#### **UNCLASSIFIED**

## AD NUMBER AD241228 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Operational and administrative use; Dec 1959. Other requests shall be referred to Air Force Cambridge Research Center, Washington, DC. **AUTHORITY** AFCRL ltr, 8 Mar 1967



# AD 241228

Reproduced by the

ARNEE SERVICES TECHNICAL INFORMATION AGENCY
AS LINGTON HALL STATION
ARLINGTON, 12, VIRGINIA



Reproduced From Best Available Copy

This document contains blank pages that were not filmed

LASSIFIED

### REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- · Pages smaller or larger than normal.
- · Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

|   |      | If this block is checked, the copy furnished to DTIC     |
|---|------|----------------------------------------------------------|
| C | ont  | ained pages with color printing, that when reproduced in |
| E | Blac | k and White, may change detail of the original copy.     |

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.



# GENERAL RESEARCH IN DIFFRACTION THEORY

VOLUME 1



LMSD-288087

DECEMBER 1959



TECHNICAL REPORT: PHYSICAL ELECTRONICS

# GENERAL RESEARCH IN DIFF ACTION THEORY VOLUME 1

BY
NELSON A. LCCAN

LM5D-288087

DECEMBER 1959

WORK CARRIED OUT AS PART OF THE LOCKHEED GENERAL RESEARCH PROGRAM UNDER THE SPONSORSHIP OF THE UNITED STATES GOVERNMENT

Sochheed

MISSILES and SPAC DIVISION

LOCKHERD AIRCRAFT CORPORATION . SUNNYV ALE, CALIF

#### NOTICE

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM THE ARMED SERVICES TECH-NICAL INFORMATION AGENCY (ASTIA). DEPART-MENT OF DEFENSE CONTRACTORS MUST BE ESTABLISHED FOR ASTIA SERVICES. OR HAVE THEIR NEED-TO-KNOW CERTIFIED BY THE MILI-TARY AGENCY COGNIZANT OF THEIR CONTRACT.

THIS REPORT HAS BEEN RELEASED TO THE OF-FICE OF TECHNICAL SERVICES DEPARTMENT OF COMMERCE, WASHINGTON 25. D.C., FOR SALE TO THE GENERAL PUBLIC.

#### PREFACE

Two of the most diricult problems in applied electromagnetics are those of predicting the scattering characteristics of the convex metallic surfaces of radar targets and of predicting the radiation properties of antenness mounted on, or near, such surfaces. The Theoretical Analysis Section of the Electromagnetics Department is engaged in the development of numerical methods for the computation of these diffraction phenomena. With the aid of tables of certain new fundamental functions, the solution of many of these problems can now be treated by a ray-tracing procedure which is a logical extension of classical geometrical and physical optics. This report is the first of a series of reports on the theory and applications of these functions.

The first volume is primarily concerned with the development of the mathematical tools to be employed in the applications which will be discussed in later volumes. Emphasis is placed upon the definition of and derivation of properties of, a class of diffraction integrals which are related to solutions of the parabolic partial differential equation  $U_{yy} \pm iU_{yy} \pm yU_{yy} = 0$ . The recent work of the Sovjet physicist V. A. Fock the carrier work of yan der Pol and Bremnyer, and a number of other classic results in diffraction theory are shown to be special cases of the general theory which is developed.

The second volunte will consist of tables and graphs of the diffraction integrals, and will also include certain auxiliary tables which facilitate the domputation of the class of functions discussed in the first volume. In the third volume, the classical exact solutions for spheres and cylinders will be expressed in the form of asymptotic expansions in which the coefficients are expressed in terms of the functions defined and studied in the first volume. A sample of the results to be

obtained in the third volume is given in Section 18 of the first volume. These asymptotic expansions lend readily to numerical results, whereas the exact solutions converge too slowly to be used for numerical purposes when the radii of curvature greatly exceeds the wavelength. This approach is only us ful, however, when the exact solution is already known

A parturbation procedure will be used in the fourth volume to rederive some of the results of the third volume without recourse to the exact solutions. The analysis will then be extended to certain geometries for which exact solutions are not readily obtained. Further applications and generalizations will be given in later volumes in the series.

The development of the properties of the diffraction in egrals in the first volume has been patterned after the classical treatments of Bessei functions. Legendre polynomials, and similar special functions in physics. The mathematical physicists of the 19th century boidly introduced these classical special functions and thereby laid a firm foundation for 20th contury research in boundary value problems for spheres and circular cylinders. However, most of the practical problems in diffraction theory lie in the so-called "high frequency!" region where the classical solutions fail to converge readily to yield numerical results. During the last fifty years many authors have sought to provide methods for the evaluation of these problems in which thersize of the diffracting obstacle is large compared to wavelength. A. Von ego es 1914, Love (Ref. 28) surveyed this field and wrote, "Unfortunately, the question has been investigated by different methods without adequate to ordinition and the resulfs the have been obtained are somewhat discordant." The difficulties of the problem of co-ordination has been further enhanced in recent years by the increased activity in this field which have been created primarily by applications of diffraction theory to the radiation and scattering of microwaves. We have compared the notations of some of the leading authors and have introduced a set of standard notations. We have tried to reacture some of the spirit of the classicists of the nineteenth century by systematically developing a thorough knowledge of representations and properties of the functions.

The derivations may, at first reading, create the impression of constituting interesting exercises in advanced calculus. We readily admit that we enjoyed these exercises, and we invite our readers to join us in later volumes to witness the numerous applications which can be made with the results of these exercises.

The size and complexity of our compilation makes it vain to hope that errors of judgement, or mistakes have been avoided. We will be glad to receive corrections or suggestions which can be employed in our future work in this field.

#### ABSTRACT

This study involves a generalization of the ray-tracing techniques of geometrical optics through the introduction of a class of universal functions which can be used to predict the amplitude and phase of an electromagnetic wave reflected or diffracted by a convex metallic surface. These diffraction integrals are generalizations of functions previously used in studies of radio-wave propagation around the earth's surface by van der Pol, Bremmer, Pryce, Fock, Pekeris, Rice and other recent authors. The functions are defined as Fourier integrals having combinations of Airy integrals in the integrands. The Airy integrals, and particularly the history of notations for these functions are discussed in considerable detail. The present study differs from other studies in that it emphasizes the role played by the Taylor and Laurent expansions for these functions. The difficult "transition" regions are readily handled by summing certain divergent series by means of classical summation techniques.

Asymptotic expansions of radiation fields from slot antonnas on a circular cylinder are presented as an example of the application of these integrals.

#### ACKNOWLEDGMENTS

Many of the methods and concepts employed in this report were learned or conceived while the author was a member of the staff of the Air Force Cambridge Research Center during 1954-1957. The author is indebted this former associates, particularly R. E. Hiatt and C. J. Sletten, for their encouragement and support of this research during this study phase. The author wishes to express his thanks to A. S. Dunbar for his support, encouragement, and helpful suggestions during the course of this work at LMSD.

The results summarized in this report represent a large investment of efforts by many persons. In the early stages of this work, the author received analytical and computational assistance from M. E. Sherry, R. B. Mack, G. E. Reynolds, M. A. Haes, L. Bastian, and P. Donovan of the Air Force Cambridge Research Center. Two AFGRC contractors, the Parks Mathematical Laboratories and the Datamatic Corporation also contributed to the studies made by the author prior to joining LMSD in party 1958.

The coefficients in the Taylor series for  $I(\xi)$ ,  $g(\xi)$ ,  $p(\xi)$ ,  $q(\xi)$  were evaluated during the second law of 1958 by B. L. Gardner and R. L. Mason. The asymptotic expansions of these functions were obtained during this same time with the assistance of M. A. Festa. Properties and representations of  $I_n(\xi)$  and  $g_n(\xi)$  have been obtained with the collaboration of J. G. Hilliouse. Similar studies of  $I_n(\xi)$  and  $I_n(\xi)$  and  $I_n(\xi)$  and  $I_n(\xi)$  and  $I_n(\xi)$  and  $I_n(\xi)$  were made with the collaboration of R. L. Mason. The asymptotic expansions in Section 18 were obtained by K. S. Yee and A. F. Riedel. Additional valuable assistance in the form of domputations, preparation of tables, and curve plotting has been given by D. W. Gillett and P. M. Pelster. The thoroughness with which we have sought to treat these functions would not have been possible without the cheerful

cooperation of these individuals. The casual way in which we present some properties [such as those in Eqs. (15.33) through (15.42)] has concealed the fact that many hours of tedious algebraic manipulation have been necessary to arrive at the stated result. The readers of this report who are familiar with these tedious steps will appreciate the valuable contributions of these collaborators.

The computation of the coefficients in the Taylor series for the current distribution and reflection coefficient functions would not have been possible without the cooperation of J. C. P. Miller of Cambridge University (England) who supplied us with some unpublished data pertaining to the Airy integral. He also put us in touch with P. II. Haines and G. F. Miller at National Physical Laboratory (Teddington. England) who then completed and passed on to us the valuable constants contained in Tables 3 and 4. We are indebted to the Director of National Physical Laboratory for permission to include these unpublished results in this report.

Thanks are also due the International Business Machines Corporation (San Francisco) for their assistance in the preparation of Tables 12, 13, 17, and 18 which were computed on the IBM 610 electronic computer.

E. A. Blasi has been largely responsible for the creation of the favo ble environment in which this work has been conducted.

The author is pleased to acknowledge the considerable contribution of G. Unikel and W. B. Telfer, who edited the manuscript, and D. M. Price and V. C. Sholaas, who prepared the typescript from which the report was reproduced by a photo-offset process.

The work leading to this report has been carried out under the Lockheed General Research Program.

#### CONTENTS

#### Section

|                   |             | PREFACE                                                                                       | iii         |
|-------------------|-------------|-----------------------------------------------------------------------------------------------|-------------|
|                   |             | ABSTRACT                                                                                      | vii         |
|                   |             | ACKNOWLEDGMENTS                                                                               | ix          |
| ٠                 | 2           | LIST OF ILLUSTRATIONS                                                                         | жiii        |
|                   |             | LIST OF TABLES                                                                                | хv          |
|                   | **          | NOTATION                                                                                      | xix         |
| 1.                |             | GEOMETRY OF DIFFRACTION PROBLEMS                                                              | 1-1         |
| 2                 |             | LIMITATIONS OF THE CLASSICAL THEORY OF GEOMETRICAL OPTICS                                     | <b>2</b> -1 |
| , 3<br>, 1<br>, 1 | 71<br>Ung   | A MATHEMÁTICAL MODEL DISPLAYING CHARACTERISTICS OF DIFFRACTION PHENOMENA                      | 3-1         |
| 4                 | . ,         | NOTATION FOR THE DIFFRACTION FORMULA                                                          | 4-1         |
| 5                 |             | NOTATION FOR ASYMPTOTIC ESTIMATES FOR THE BESSEL FUNCTIONS IN THE TRANSITION REGION           | 5-1         |
| 6                 |             | HISTORY OF NOTATION FOR TRANSITION REGION FORMULAE                                            | 6-1         |
| 7                 |             | STANDARD NOTATION AND TERMINOLOGY FOR DIFFRACTION                                             |             |
| .8                | e a l       | ALTERNATIVE PATHS OF INTEGRATION                                                              | 8-1         |
| 9"                | - 15<br>- A | ALTERNATIVE REPRESENTATIONS FOR THE INTEGRALS $u(\xi)$ , $v(\xi)$                             | 9-1         |
| 10                | 1           | ASYMPTOTIC EXPANSIONS FOR THE INTEGRALS f, g, b, d                                            | 10-1        |
| 1.1°              |             | SOME RIMARKS OF THE EVALUATION OF f, g, $\beta$ , $\hat{\eta}$ , FOR MODERATE VALUES OF $\xi$ | 11-1        |
| 12                |             | SERIES EXPANSIONS FOR 1, g, p, q                                                              | 12-1        |
| 13                |             | FURTHER REPRESENTATIONS OF f(\xi) g(\xi), p(\xi), q(\xi)                                      | 13-1        |
| 14                | : :         | RELATIONS BUTWEEN THE INTEGRALS                                                               | 14-1        |

| Section |                                                                                       | Page  |
|---------|---------------------------------------------------------------------------------------|-------|
| 15      | REPRESENTATIONS FOR GENERALIZED INTEGRALS                                             | 15-1  |
| **      | 15.1 The egrals $J_n(\xi)$                                                            | 15-1  |
|         | 15.2 The Integrals $K_n(\xi)$                                                         | 15-19 |
|         | 15.3 The Integrals f <sub>n</sub> (ξ)                                                 | 15-24 |
|         | 15.4 The Integrals $g_n(\xi)$                                                         | 15-31 |
|         | 15.5 The Integrals $r_n(\xi)$                                                         | 15-41 |
|         | 15.6 The Integrals $s_n(\xi)$                                                         | 15-51 |
| 16      | A HISTORY OF FOCK'S INTEGRAL $V_1(z,q)$                                               | 16-1  |
| 17      | DERIVATION OF V (\xi, q) and V, (\xi, q) AS SOLUTIONS                                 |       |
|         | OF INTEGRAL EQUATIONS                                                                 | 17-1  |
| 18      | SOME APPLICATIONS TO ASYMPTOTIC EXPANSIONS OF INTEGRALS DESCRIBING RADIATION PATTERNS | · · · |
|         | OF SLOT ANTENNAS                                                                      | 18-1  |
| 19      | REFERENCES                                                                            | 19-1  |

#### LIST OF ILLUSTRATIONS

| Figure              |                                                                                       | Page |
|---------------------|---------------------------------------------------------------------------------------|------|
| 1                   | The Mechanism of Diffraction (after Booker and Walkinshaw)                            | 1-2  |
| 2                   | Geomet y of the Radio Problem                                                         | 1-3  |
| <b>3</b> $v_i^{ij}$ | Geometry of the Optics Problems                                                       | 1-4  |
| 4                   | Definitions of T <sub>1</sub> , T <sub>2</sub> , S for Shadow Region                  | 1-5  |
| 5                   | Definitions of T <sub>1</sub> , T <sub>2</sub> , S for Line of Sight Region           | 1-6  |
| 6                   | Definitions of R, $\Gamma_1$ , $D_2$ and $\alpha$ , $\beta$ , $\gamma$                | 1-7  |
| 7                   | Definition of Collision Parameter h                                                   | 1-7  |
| 8                   | Discontinuity in Electrical Properties                                                | 2-2  |
| 9                   | Definition of Virtual Angles of Incidence and Reflection                              | 3-9  |
| 10                  | Behavior of χ'(t), ψ (t) for Real Values of t                                         | 4-13 |
| 1/1                 | The Airy Integrals Ai(x) and Bi(x)                                                    | 4-22 |
| 12                  | The Airy Integrals At'(x) and Bi'(x)                                                  | 4-23 |
| 13                  | Behavior of Airy Functions on the Rays Argument $t=\frac{n\pi}{3}$ , $	au=	ext{Modt}$ | 8-2  |
| 34                  | The Contous L                                                                         | 8-4  |
| 3.460               | Behavior of Ai(x) in Complex Plane                                                    | 8-10 |
| 16                  | Beliavior of  Ai(x)  in Complex Plane                                                 | 8-11 |
| 17                  | Behavior of $y(t) = \frac{\exp(-i3t)}{Bi(t) + tAi(t)}$                                | 11-6 |
| 18                  | Dipole on a Spherical Surface                                                         | 16-1 |
| 19                  | Plane Wave Incident on a Convex Surface                                               | 16-4 |
| 20                  | Direct and Diffracted Waves in Illuminated Region                                     | 18-2 |
| 21                  | Liffracted Waves in the Shadow Region                                                 | 18-3 |

#### LIST OF TABLES

| Number       |                                                                               | Page                      |
|--------------|-------------------------------------------------------------------------------|---------------------------|
| 1            | $X = 20 \log_{10}  w_1 $                                                      | 3-6                       |
| 2            | Samples of Miller's Tables of $F$ , $\chi$ , $G$ , $\psi$                     | 4-12                      |
| 3            | Roots and Turning Values of Ai( $-\alpha$ )                                   | <b>4-</b> 20 <sub>#</sub> |
| 4            | Roots and Turning Values of $Ai'(-\beta)$                                     | 4-20                      |
|              | Roots and Turning Values for A(q), A'(q)                                      | 59                        |
| 6 ,          | Table of Bremmer's Constants $ 	au_{\mathbf{S}} $                             | 5-12                      |
| $\gamma_{4}$ | Values of An Bn Occurring in Asymptotic Expansions of                         |                           |
|              | Logarithmic Derivations of $Ai(\alpha)$ , $Ai!(\alpha)$                       | 9-3                       |
| 8            | Table of $A_T^{(n)}$                                                          | 10-9                      |
| <b>9</b> , , | Table of $B_{\mathbf{r}}^{(n)}$                                               | 10-9                      |
| 10           | Table of Cr                                                                   | 10~10                     |
| 11           | Table of $\mathbf{D}_{\mathbf{r}}^{(n)}$                                      | 10~11                     |
| 12           | Table of $\frac{\alpha}{\text{Ai'}(-\alpha_{g})}$ $\beta^{(n-1)}$             | 12-4                      |
| <b>13</b>    | Table of $\frac{s}{\beta_s Ai(\exists \beta_s)}$                              | <b>12-8</b>               |
| 14           | Computation of $\left[\exp\left[-i(5n-2)\pi/6\right]f^{(n)}(0)\right]$        | 12-14                     |
| 15           | Computation of $\left\{\exp\left(-i\frac{5\pi n}{6}\right)g^{(n)}(0)\right\}$ | 12-15                     |
| 16           | Values of E                                                                   | 12-16                     |

χv

| Number   |                                                                                                           | Page   |
|----------|-----------------------------------------------------------------------------------------------------------|--------|
| 17       | Table of $\frac{\alpha'_{s}^{(n)}}{\left[Ai'(-\alpha_{s})\right]^{2}}$                                    | 12-19  |
| 18       | Table of $\frac{\beta_s^{(n)}}{\beta_s \left[ \text{Ai}(-\beta_s) \right]^2}$                             | 12-23  |
| 19       | Computation of $\left\{ \exp\left[-i(n+1)\pi/3\right]M_{n}\right\}$ Method A                              | 12-27  |
| 20       | Computation of $\left\{\exp\left[-i(n+1)\pi/3\right]N_{n}\right\}$ Method A                               | 12-28  |
| 21       | Table of Euler Maclaurin Coefficients                                                                     | 12-29  |
| 22       | Computation of $\left[\exp\left[-i(n+1)\pi/3\right]M_{n}\right]$ Method B                                 | 1,2-32 |
| 23       | Computation of $\left[\exp\left[-i(n+1)\pi/3\right]N_{n}\right]$ Method B                                 | 12-33  |
| 24       | Table of Taylor Coefficients $\gamma_{n_{\beta}}$ , $\delta_{n_{\gamma}}$ for the Function $f^{(r)}(\xi)$ | 13-15  |
| 25       | Table of Taylor Coefficients $\alpha_n$ , $\beta_n$ for the Function $g^{(r)}(\xi)$                       | 13-17  |
| 26       | Table of Taylor Coefficients $c_n$ , $d_n$ for the Function $p^{(r)}(\xi)$                                | 13-19  |
| 27 s- 15 | Table of Taylor Coefficients $a_n$ , $b_n$ for the Function $q^{(r)}(\xi)$                                | 13-22  |

| Number     |                                                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page          |
|------------|---------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 28         | Table of Coefficients $\Lambda_{\rm m}^{\rm (n)}$ for Asymptotic Expansion of   | f <sup>(n)</sup> (ξ)                       | in the second of | 15-28         |
| 29         | Table of Coefficients A <sub>m</sub> <sup>(n)</sup> for Asymptotic Expansion of | g <sup>(n)</sup> (ξ)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-36         |
| <b>3</b> 0 | Table of Coefficients A <sub>m</sub> (n) for Asymptotic Expansion of            | $\hat{\mathfrak{p}}^{(n)}(-x)$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-46         |
| 31         | Table of Coefficients A <sub>m</sub> (n) for Asymptotic Expansion of            | $\mathring{\mathbf{q}}^{(n)}(-\mathbf{x})$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>4</b> 5-57 |
| 32         | Converson of $G(p)$ to $f(\xi)$                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16-14         |
|            | Values of α and Λ Studies                                                       | l by Wait                                  | į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16-17         |

#### NOTATION

As it is impossible to avoid using a large number of different symbols during the course of the work, some of the symbols used most frequently, together with their definitions (or references to figures or equations in the text which define them), are listed here for the convenience of the reader.

```
angular frequency
      wavelength
      propagation constant (2\pi/\lambda)
      radius of the convex surface
     cylindrical polar coordinates, referred to center of curvature (Fig. 3)
      distance of source from center of cumvature (Fig. 3)
      distance of receiver from center of curvature (Fig. 3)
      height of source above surface (Fig. 2)
      height of receiver above surface (Fig. 2)
      distance from sour a to receiver measured along the surface (Fig. 2)
      natural unit of distance (2a^2/k)^{1/3} See Eq. (1.1)
      natural unit of height (a/2k^2)^{1/3}
                                           See Eq. (1.2)
      distance from source to point of tangency (Fig. 4)
      distance from receiver to point of tangency (Fig. 4)
      arclength between points of tangency (Fig. 4)
      eikonal (Sec. 2)
      natural unit of length (2a^2/k)^{1/3} Sce Eq. (1, 3)
      natural unit of arclength (2a^2/k)^{1/3} See Eq. (1.3)
So
```

```
distance from source to receiver (Fig. 6)
                    arclength measured in natural units See Eq. (1.4)
                     Eq. (1.4)
                    angle of incidence or reflection (Fig. 6)
                    distance from source to reflection point (Fig. 6)
                    distance from receiver to reflection point (Fig. 6)
 b = a \sin \alpha
                    collision parameter (Fig. 7)
                    permittivity and permeability of free space
                    permittivity, permeability, and conductivity of convex solid
 \epsilon_1' = \epsilon_1 \pm i \, (\sigma/\omega) complex permittivity [for exp(\pm i\omega t) time dependence]
                    surface admittance Eq. (2.2)
                    surface impedance Eq. (2.4)
                    divergence factor Eq. (2.6)
                    reflection coefficient Eq. (2.7)
                    Airy integrals Eq. (3.3 3.4)
 ф (d, h, h,)
                     Freehafer's diffraction integral Eq. (3.1)
                    van der Pol Bremmer diffraction integral Eq. (3.1)
                      normalized impedance parameter Eq. (4.5)
 = i(ka/2)^{1/3}Z normalized impedance parameter Eq. (4.23, 5.27)
V(E, E, E, G)
                    Fock's diffraction integral Eq. (4.17)
                    Airy integrals Eq. (4, 16)
                   Airy integral \frac{1}{\pi} \int_{\infty}^{\infty} \cos \left(\frac{1}{3} x^3 + tx\right) dx
                  the second Airy integral \frac{1}{\pi} \int_{0}^{\infty} \left[ \exp\left(-\frac{1}{3}x^3 + \iota x\right) + \sin\left(\frac{1}{3}x^3 + \iota x\right) \right] dx
```

```
F(t)
               modulus of Airy integral Eq. (4.25)
 \chi(t)
               phase of Airy integral Eq. (4.25)
 G(t)
               modulus of derivative of Airy integral Eq. (4.26)
 \psi(t)
               phase of derivative of Airy integral Eq. (4.26)
              roots of Airy integral Ai(-\alpha_s) = 0
 \alpha_{\mathbf{s}}
 \beta_{\mathbf{S}}
              roots of derivatives of hiry integral Ai'(-\beta_s) = 0
 A(q)
               form of Airy integral used by Franz and Keller Eq. (5.24)
 V_{0}(x, q)
               attenuation function (Nicholson functions) Eq. (7.2)
 V_1(x,q)
               current distribution functions (Fock functions) Eq. (7.3)
 V_2(x,q)
               reflection coefficient function (Pekeris functions) Eq. (7.11)
 u(x)
v(x)
               Eq. (7.2)
 f(x)
g(x)
              Eq. (7.9)
 p(x) }
q(x) }
               Eq. (7.11)
              modified Fresnel integral Eq. (7.15)
 \hat{V}_2(x,q)
              Pekeris caret function Eq. (7.10)
 \hat{\mathbf{p}}(\mathbf{x})
              Eq. (7.21)
 \hat{\mathbf{q}}(\mathbf{x})
              roots of w_1'(t_s) = q w_1(t_s) = 0 Eq. (7.28)
              roots of \mathbf{w}_{1}(\mathbf{t}_{\mathbf{s}}^{0}) = 0 Eq. (7.38)
             roots of w_1(t_{S}^{(s)})^n = 0 Eq. (7.37)
\mathbf{F}(\xi) = \exp\left(i \frac{\xi^3}{3}\right) \mathbf{f}(\xi)
                                  current distribution functions for \xi < 0
G(\xi) = \exp\left(i\frac{\xi}{3}\right)g(\xi)
```

reflection coefficient functions

for  $\xi < 0$ 

$$P(\xi) - 2/\sqrt{-\xi} \exp \left[ (i \ \xi^3/12) + (i \ \pi/4) \right] p(\xi)$$

$$Q(\xi) = 2 \sqrt{-\xi} \exp \left[ (i \ \xi^3/12) + (i \ \pi/4) \right] q(\xi)$$

$$J_{(n)}^{(n)}(\xi) \\ K_{(n)}^{(n)}(\xi) \\ f_{(n)}(\xi) \\ f_{(n)}^{(n)}(\xi) \\$$

$$\begin{cases}
F_1(x, y, \delta) \\
G_1(x, y, q)
\end{cases} \quad \text{Eq. (15. 12)}$$

$$J(\xi, \alpha) \\
f(\xi, \alpha) \\
r(\xi, \alpha) \\
K(\xi, \beta) \\
q(\xi, \beta) \\
s(\xi, \beta)
\end{cases}$$

$$Eq. (15. 26)$$

$$K_0(\xi, \beta) \\
f_m(\xi) = J_m^{(0)}(\xi)$$

$$f_m(\xi) = f_m^{(0)}(\xi)$$

$$\tilde{f}^{(n)}(\xi)$$
 Eq. (15.55)
 $\tilde{g}^{(n)}(\xi)$  Eq. (15.62)
 $\tilde{q}^{(n)}(\xi)$  Eq. (15.83)

We have used the notation  $z_1$  or  $z_2$  to denote, respectively, the smaller or larger of two quantities  $z_1$ ,  $z_2$ .

## Section 1 GEOMETRY OF DIFFRACTION PROBLEMS

The LMSD general research program in diffraction theory is directed toward the development of methods for the computation of the diffraction phenomena associated with (a) the propagation of waves around, (b) the radiation of waves from sources in the vicinity of, and (c) the scattering of waves by convex metallic surfaces. This study involves a generalization of the ray-tracing techniques of geometrical optics in a manner which permits one to compute the amplitude and the phase of a wave reflected or diffracted by a convex metallic surface which has radii of curvature larger than several wavelengths. The ordinary calculational procedures of geometrical optics can only be used on these problems when the radii of curvature greatly exceed the wavelength and when the reflection point is far from edges, shadow boundaries, and other discontinuities. The present investigation involves the introduction of a class of universal functions which can be used to predict the reflection phenomena in the line-of-sight region and the diffraction phenomena in the shadow region. The functions which we will use are derived from the well-known diffraction formula which was used very extensively during World War II for the construction of coverage diagrams for radars mounted above a spherical earth in a so-called "standard atmosphere.", This formula had been developed prior to the 1940's by Nicholson (Ref. 2), Macdonald (Ref. 2), Watson (Ref. 3), Vvendensky (Ref. 4), van der Pol (Ref. 5) and van der Pol and Bremmer (Ref. 6). In this report we give a number of extensions to this method of treating diffraction by convex surfaces.



Fig. 1 The Mechanism of Diffraction (After Booker and Walkinshaw, Ref. 7)

Above the optical horizon, the field of a transmitter situated in the vicinity of a curved surface consists of a succession of lobes caused by interference between the direct wave from the source and a wave which is reflected from the surface. The form of the diffraction-field below the horizon under the condition of propagation in a "standard-atmosphere" can be considered to be the field due to a leaky waveguide having a "height" II which is of the order of

$$H \simeq \left(\frac{a}{2k^2}\right)^{1/3} = \left(\frac{4\lambda^2}{8\pi^2}\right)^{1/3}$$

where a denotes the radius of curvature of the surface, and λ denotes the wavelength. In Fig. 1 we represent this description of the diffraction problem in the manner employed by Booker and Walkinshaw (Ref. 7) who refer to H as the "track width" of the waveguide. Most authors refer to the diffracted wave near the surface as a surface wave. The track width plays an important role in these

problems. The methods of approximation for the expressions for the field strength are different according to whether the detector is above or below the track width. Furthermore, in the vicinity of the track width, the guided wave propagates at the speed of light, whereas for points closer to the surface, the wave has a velocity which is less than the velocity of light.

Most of the studies which have been made by previous authors can be classed as a <u>radio</u> problem or as an <u>optics</u> problem. In the radio problem, the source and the receiver are located at heights above the surface which are small in comparison with the radius of curvature of the diffracting surface. (See Fig. 2).



Fig. 2 Geometry of the Radio Problem

In this case it is convenient to use the distance  $\underline{d}$  measured along the surface, and the heights  $\underline{h}_1$ ,  $\underline{h}_2$  of the source and the receiver, respectively. It is found convenient to define so-called <u>natural</u> units of distance  $\underline{d}_0$  and height  $\underline{h}_0$  defined by

$$d_{o} = \left(\frac{2a^{2}}{k}\right)^{1/3} = \left(\frac{2}{ka}\right)^{1/3} a = \left(\frac{a^{2}\lambda}{r}\right)^{1/3}$$
 (1.1)

$$h_0 = \left(\frac{a}{2k^2}\right)^{1/3} = \left(\frac{ka}{2}\right)^{1/3} \frac{1}{k} = \left(\frac{a\lambda^2}{8\pi^2}\right)^{1/3}$$
 (1.2)

We then define the dimensionless variables

$$\xi = \frac{d}{d_0}$$
,  $\zeta_1 = \frac{h_1}{h_0}$ ,  $\zeta_2 = \frac{h_2}{h_0}$ 

We observe that  $H \simeq h_0$ ; i.e., the track-width of the leaky waveguide is of the order of one natural unit of height.

In the optics problem, the distances of the source and receiver are large compared with the radius of curvature of the diffracting obstacle (Fig. 3). In this problem



Fig. 3 Geometry of the Optics Problem

the geometrical lengths are the distance  $T_1$  from the source P measured along the tangent to the obstacle, the arc length S on the obstacle, and the distance  $T_2$  along the tangent from the obstacle to the receiver (Fig. 4). We observe that

$$T_1 = \sqrt{r_1^2 - a^2}$$
,  $S = a(\phi - \cos^{-1}\frac{a}{r_1} - \cos^{-1}\frac{a}{r_2})$ ,  $T_2 = \sqrt{r_2^2 - a^2}$ 



Fig. 4 Definitions of T<sub>1</sub>, T<sub>2</sub>, S for Shadow Region

It is convenient to define the natural units of length

$$S_{o} = T_{o} - \left(\frac{2}{ka}\right)^{1/3} a = \left(\frac{2a^{2}}{k}\right)^{1/3} = \left(\frac{a^{2}\lambda}{\pi}\right)^{1/3}$$
 (1.3)

and the dimensionless variables

$$\xi = \frac{S}{S_0}$$
,  $\zeta_1 = \frac{T_1^{2i}}{T_0^{2i}}$ ,  $\zeta_2 = \frac{T_2^2}{T_0^2}$  (1.4)

We observe that S is positive when Q lies below the horizon, and negative when Q lies above the horizon. In Fig. 5 we illustrate the significance of S for the case when Q lies in the line-of-sight of P.



Fig. 5 Definition of T<sub>1</sub>, T<sub>2</sub>, S for Line-of-Sight Region

For the case when Q lies well above the horizon, we introduce the concept of a direct wave passing from P to Q along the straight line of length H which joins P and Q. We also use the concept of a reflected wave which passes from P to Q along the shortest path between these points which has one point on the surface of the convex obstacle. This path consists of two straight lines of lengths  $D_1$  and  $D_2$  as shown in Fig. 6. In this figure we also define the angles  $\alpha$ ,  $\beta$ ,  $\gamma$ .

It is also convenient to introduce the concept of the <u>collision parameter b</u>, which is the distance of closest approach to the center of curvature of the extensions of the straight line segments  $D_1$  and  $D_2$  (Fig. 7). We observe that  $b=a\sin\alpha$ .



Fig. 6 Definition of R, D  $_1$ , D  $_2$  and  $\alpha$ ,  $\beta,~\gamma$ 



Fig. 7 Definition of Collision Parameter b

#### Section 2

#### LIMITATIONS OF THE CLASSICAL THEORY OF GEOMETRICAL OPTICS

For almost a century, one of the most challenging problems facing classical mathematical analysts has been that of supplying physicists, physical chemists, meteorologists, astrophysicists, seismologists, acousticians, and electrical engineers with simple expressions which describe the diffraction phenomena associated with the propagation of electromagnetic (light and radio), seismic (elastic), and acoustic waves in the vicinity of convex surfaces having radii of curvature large compared with the wavelength. Exact solutions in the form of Fourier series or series of spherical harmonics have been known for circular cylinders and spheres since the close of the nineteenth century. These series are very cumbrous in form, and, although they readily yield a physical solution for a very small obstacle, they are quite useless for obstacles having more than several wavelengths in their circumference. Furthermore, the restriction to obstacles having constant radii of curvature is a severe restriction.

The mathematical tools to be developed in this volume are useful for the clases in which the boundary conditions on the surface of the obstacle can be expressed in terms of an impedance boundary condition. This excludes the interesting cases of transparent obstacles which have attracted considerable attention in the fields of physical chemistry, meteorology, and astrophysics. However, a large class of problems in radio, television, radar, and sonar engineering can be treated by introducing the concept of an impedance boundary.

In Fig. 8 we depict a discontinuity in electrical properties across the boundary S of two homogeneous, isotropic media. We define the complex permittivity  $\epsilon_1'$  to be

$$\epsilon'_1 = \epsilon_1 + \frac{1}{2}(\sigma/\omega)$$



Fig. 8 Discontinuity in Electrical Properties

The impedance boundary condition to be imposed on the fields  $\overrightarrow{E}$ ,  $\overrightarrow{H}$  exterior to the convex surface can be expressed in the form

$$\left(\frac{\partial E_{t}}{\partial n} + i k Y E_{t}\right)_{S} = 0 , \left(\frac{\partial H_{t}}{\partial n} + i k Z H_{t}\right)_{S} = 0$$
 (2.1)

where 3/2n denotes the normal derivative, the subscript t denotes the tangential components, and Y is the surface admittance

$$Y = \frac{\mu_0^1}{\mu_1} \cdot \sqrt{\left(\frac{\epsilon_1' \mu_1}{\epsilon_0 \mu_0}\right) - 1}$$
 (2.2)

and Z is the surface impedance

$$Z = \frac{\epsilon_0}{\epsilon_1'} \sqrt{\left(\frac{\epsilon_1' \mu_1}{\epsilon_0 \mu_0}\right) - 1}$$
 (2.3)

The simplifications associated with the introduction of these simplified boundary conditions are not enough because there still remains the problem of solving the wave equation. The theory of geometrical optics represents an attempt to replace the wave equation by a more translate mathematical model. This theory was

developed by Hamilton during the first half of the nineteenth century. An excellent modern account of the theory is given by Freehafer (Ref. 8). A solution of the scalar wave equation

$$\nabla^2 \psi + \kappa^2 n^2 \psi = 0$$

is sought by writing

$$\psi = A \exp(ikS)$$

where A and S are real functions of position. It is found that these functions must satisfy the relations

$$(\nabla S)^2 - \frac{\nabla^2 A}{Ak^2} \qquad n^2 = 0$$

$$\nabla^2 S + \frac{2(\nabla S) \cdot (\nabla A)}{A} = 0$$

To obtain a tractable simplification, it is generally assumed that  $\nabla^2 A/Ak^2 << n^2$  and hence

$$(\nabla S)^2 = n^2$$

This is known as the eikonal equation. In free space n = 1 and

$$(\nabla \mathbf{S})^2 = 1$$

In this case S measures the linear distance of propagation of waves traveling in a constant direction.

One of the most important results of this theory is the reflection formula for reflection of waves from a convex surface which has radii of curvature greatly exceeding the wavelength provided the reflection point is far from edges, shadow

boundaries, and other discontinuities. Consider the special case of a line source situated at P (Fig. 7) which gives rise to a free space field

$$U^{O} = \frac{i}{4} \sqrt{\frac{2}{\pi k R}} \exp \left[ i(kR - \pi/4) \right]$$
 (2.4)

in the vicinity of a circular cylinder of radius  $\underline{a}$ . The field at Q is then given by

$$U = \frac{i}{4} \sqrt{\frac{2}{\pi kR}} \exp \left[i(kR - \pi/4)\right] + \frac{i}{4} \sqrt{\frac{2}{\pi k}} \qquad \Gamma D \exp \left[i\left[k(D_1 + D_2) - \pi/4\right]\right] (2.5)$$
direct wave

where T is the Fresnel reflection coefficient and D is the divergence factor

$$D_{i} = \sqrt{\frac{\sqrt{a^{2} - b^{2}}}{2D_{1}D_{2} + \sqrt{a^{2} - b^{2}}(D_{1} + D_{2})}} = \sqrt{\frac{a \cos \alpha}{2D_{1}D_{2} + a(D_{1} + D_{2})\cos \alpha}}$$
(2.6)

that takes into account the fact that the pencil of rays incident upon the convex surface diverges after reflection because of the curvature of the surface. The eikonal for the reflected wave is

$$\mathbf{S} = \mathbf{D}_1 + \mathbf{D}_2$$

If the impedance boundary condition is expressed in the form

$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{n}} + i\mathbf{k}\mathbf{Z}\mathbf{U}\right)_{\text{surface}} = 0$$

the Fresnel reflection coefficient is

$$\Gamma = \frac{\cos \alpha - Z}{\cos \alpha + Z} \tag{2.7}$$

where  $\alpha = \sin^{-1}(b/a)$  is the angle between the normal to the surface and the incident or reflected ray.

During the past ten years a number of attempts have been made to extend the validity of this reflection formula by seeking a representation in the form of an asymptotic expansion of the form

$$\frac{i}{4} \sqrt{\frac{2}{\pi k}} \quad \text{rD exp} \left\{ i \left[ k(D_1 + D_2) - \pi/4 \right] \right\} \left\{ 1 + \frac{A_1}{k} + \frac{A_2}{k^2} + \frac{A_3}{k^3} + \dots \right\}$$

These results have only a limited usefulness in the line-of-sight region and cannot be used at all as one approaches the shadow boundary. For example, if the plane wave  $E_{\mathbf{Z}}^{0} = \exp\left(-i\mathbf{k}\,\rho\,\cos\,\phi\right)$  illuminates a perfectly conducting circular cylinder, the secondary field is known to be of the form

$$\begin{split} \mathbf{E}_{\mathbf{z}}^{\mathbf{S}} &= \sqrt{\frac{a\cos\phi/2}{2\rho}} \exp\left[i\mathbf{k}(\rho - 2a\cos\phi/2)\right] \left\{1 + \frac{i}{2\,\mathrm{ka}\cos^3\phi/2}\right\} \\ &- \frac{3i}{16\,\mathrm{ka}\cos\phi/2} + \frac{5}{4\,\mathrm{(ka)}^2\cos^6\phi/2} - \frac{33}{32\,\mathrm{(ka)}^2\cos^4\phi/2} \\ &+ \frac{15}{512\mathrm{(ka)}^2\cos^2\phi/2} + \Im\left(\frac{1}{\mathbf{k}^3}\right) \right\} \end{split}$$

For  $\phi \rightarrow \pi$ , this series is useless regardless of how large k might be.

In order to obtain a result which is valid on shadow boundaries or horizons, one has to abandon the concept of direct and reflected rays because these rays coalesce at such a boundary. The criterion for applicability of the optical concepts can be taken to be  $(ka/2)^{-1/3} > 3$  to insure that the object is large compared with wavelength, and  $\sqrt{a^2 - b^2} > \sqrt[3]{2\,a^2/k}$  in order to avoid shadow boundaries.

## Section 3

## A MATHEMATICAL MODEL DISPLAYING CHARACTERISTICS OF DIFFRACTION PHENOMENA\*

In the last section, we reviewed the results of geometrical optics and remarked upon their limitations. The difficulty was due largely to the fact that a solution of

$$\nabla^2 \mathbf{U} + \mathbf{k}^2 \mathbf{U} = 0$$

had been sought in the form of a primary and a secondary wave

$$U = \Lambda^{p} \exp(-ik\mathbf{R}) + \mathbf{A}^{q} \exp[-ik(\mathbf{D}_{1_{q}} + \mathbf{D}_{2})]$$

which would satisfy the impedance boundary condition

$$\frac{\partial U}{\partial n} = ikZU = 0$$

We now want to seek a solution of the form

$$U = \Lambda^d \exp(-ikR)$$

which will be valid on and near the shadow boundary and which will have the property that, well above the shadow boundary, it agrees with the optical result.

In this section we will follow Freehafer and use an  $\exp(i\omega t)$  time dependence. In all other sections of this report we use an  $\exp(-i\omega t)$  time dependence.

A suitable mathematical model for such a solution is discussed by Freehafer (Ref. 8) in Section 2.10 of Vol. 13 of the Radiation Laboratory Series. In Eq. (361) we find the Fourier integral

$$\Phi (d, h_1, h_2) = 1/\sqrt{d} \int_{-\infty}^{\infty} \exp (i\tau d) \left[ y_2(h_2 + \tau) y_1(h_2 + \tau) + \Gamma \frac{y_1(\tau)}{y_2(\tau)} y_2(h_1 + \tau) y_2(h_2 + \tau) \right] d\tau$$
(3.1)

where  $\Gamma$  is defined by Eq. (355)

$$\Gamma = -\frac{y_1'(\tau) - h_0 p y_1(\tau)}{y_2'(\tau) - h_0 p y_2(\tau)}$$
(3. 2)

and  $y_1(\xi)$ ,  $y_2(\xi)$  are the Airy integrals

$$y_{1}(\xi) = -1/\sqrt{\pi} \int_{0}^{\infty} \exp\left[-\frac{1}{3}x^{3} - \xi x\right] dx - i/\sqrt{\pi} \int_{0}^{\infty} \exp\left[-i\frac{1}{3}x^{3} + i\xi x\right] dx \qquad (3.3)$$

$$y_{2}(\xi) = 1 / \pi \int_{0}^{\infty} \exp\left[-\frac{1}{3} x^{3} - \xi x\right] dx - i / \pi \int_{0}^{\infty} \exp\left[-i \frac{1}{3} x^{3} - i \xi x\right] dx$$
 (3.4)

which are discussed at length by Freehafer in Section 2.9. The quantity  $h_0 = k^{-1} (ka/2)^{1/3}$  is the standard unit of height defined earlier. The quantity p depends upon the polarization of the wave. If the obstacle has a wave number k1 we can write

$$p_{\mathbf{v}} = i(\mathbf{k}^2/\mathbf{k}_1^2) \sqrt{\mathbf{k}_1^2 - \mathbf{k}^2} = i\mathbf{k}(\epsilon_0/\epsilon_1) \sqrt{(\epsilon_1'/\epsilon_0) - 1} = i\mathbf{k}\mathbf{Z},$$
 (3.5)

for vertical polarization, 
$$p_{h} = i\sqrt{k_{1}^{2} - k_{2}^{2}} = ik\sqrt{(\epsilon_{1}^{\prime}/\epsilon_{0}) - 1} = ikY, \qquad \text{for horizontal polarization,} \qquad (3.6)$$

where  $\epsilon_1^{\prime}$  denotes the complex permittivity

$$\epsilon_1' = \epsilon_1 - i \sigma / \omega$$

This integral was first introduced in 1941 by M. H. L. Pryce (Ref. 9) in a report on the limiting ranges of the early British radar sets. Because of the specific references given to wavelength and power output of these radar sets, this report was classified and received only limited distribution. The results were summarized by Freehafer; and finally, in 1953, Pryce (Ref. 10) published a paper based upon this wartime report.

(Although the work of Pryce and Freehafer was well known at Radiation Laboratory, and Kerr's "Propagation of Short Radio Waves" was published in 1951, the integral representation for  $\Phi$  (d, h<sub>1</sub>, h<sub>2</sub>) given above is not in current use today. In the next section we will introduce a different notation, adopted from the notation used by modern Soviet writers, as a standard form for this integral.)

In the work of Pryce and Freehafer, two representations for  $\Phi$  were employed. For  $d<\sqrt{h_1}+\sqrt{h_2}$  (the so-called "interference region"), it was shown that the Fourier integral

$$\frac{1}{\sqrt{d}} \int_{-\infty}^{\infty} \exp(i \tau d) \Gamma \frac{y_1(\tau)}{y_2(\tau)} y_2(\tau + h_1) y_2(\tau + h_2) d\tau$$

has a point of stationary phase  $\tau_0$  defined by:

$$d = \sqrt{\tau_0 + h_1} + \sqrt{\tau_0 + h_2} - 2\sqrt{\tau_0}$$

It was shown that  $\tau_0$  could be interpreted physically to be related to the square of the cosine of the angle of incidence of the ray reflected from the surface (Fig. 7 where  $\alpha$  is the angle of incidence). Thus

$$\tau_0 = (ka/2)^{2/3} \cos^2 \alpha$$

It was then shown that

$$\Phi \left( \mathbf{d}, \, \mathbf{h}_{1}, \, \mathbf{h}_{2} \right) \approx 2 \sqrt{\pi} \exp \left[ -\mathrm{i} (3\pi/4) \, \right] \frac{1}{\mathrm{d}} \exp \left( -\mathrm{i} \, \phi_{1} \right) \left[ 1 + \Gamma \, \mathbf{D} \, \exp \left[ -\mathrm{i} (\phi_{2} - \phi_{1}) \, \right] \right] \quad (3.7)$$

where  $\phi_1$  is the phase of the "direct wave"

$$\phi_1 = -d^3/12 + (h_1 + h_2)d/2 + (h_2 - h_1)^2/4d$$
 (3.8)

 $\phi_2$  is the phase of the "reflected wave"

$$\phi_{2} = \phi_{1} + 4 \frac{\left(\sqrt{h_{1} + \tau_{0}} - \sqrt{\tau_{0}}\right)\left(\sqrt{h_{2} + \tau_{0}} - \sqrt{\tau_{0}}\right)}{\left(\sqrt{h_{1} + \tau_{0}} - \sqrt{\tau_{0}}\right) + \left(\sqrt{h_{1} + \tau_{0}} - \sqrt{\tau_{0}}\right)} \tau_{0}$$
(3.9)

and D is the divergence factor that takes into account the tact that a pencil of parallel rays incident upon the convex surface diverges after reflection

$$D = \left\{ 1 + \frac{2\left(\sqrt{h_1 + \tau_0} - \sqrt{\tau_0}\right)\left(\sqrt{h_2 + \tau_0} - \sqrt{\tau_0}\right)}{\left[\left(\sqrt{h_1 + \tau_0} - \sqrt{\tau_0}\right) + \left(\sqrt{h_2 + \tau_0} - \sqrt{\tau_0}\right)\right]\sqrt{\tau_0}} \right\}^{-1}$$
(3. 10)

The reflection coefficient was shown to be

$$\Gamma_{v} = \frac{k_{1}^{2} \cos \alpha - k_{0} \sqrt{k_{1}^{2} - k_{0}^{2}}}{k_{1}^{2} \cos \alpha + k_{0} \sqrt{k_{1}^{2} - k_{0}^{2}}} = \frac{\cos \alpha - Z}{\cos \alpha + Z} , Z = \frac{k_{0} \sqrt{k_{1}^{2} - k_{0}^{2}}}{k_{1}^{2}}$$

for vertical polarization

$$\Gamma_{h} = \frac{k_{o} \cos \alpha - \sqrt{k_{1}^{2} + k_{o}^{2}}}{k_{o} \cos \alpha + \sqrt{k_{1}^{2} + k_{o}^{2}}} - \frac{\cos \alpha - Y}{\cos \alpha + Y}, \quad Y = \frac{\sqrt{k_{1}^{2} - k_{o}^{2}}}{k_{o}}$$

for horizontal polarization

where the square roots indicated are to have negative imaginary parts when the time dependence is  $exp(i\omega t)$  as used by Pryce and Freehafer.

For  $d > \sqrt{h_1} + \sqrt{h_2}$  (the so-called "diffraction region"), it was shown that the contour could be closed by a circle at infinity in the upper half-plane and then  $\Phi$  could be represented in the form of a series of residues associated with the zeros  $\tau_m(m=1,\ 2,\ \dots)$  of the Airy function combination

$$y_2'(\tau_m) - h_0 p y_2(\tau_m) = 0$$
 (3.11)

It was then shown that for frequencies of 100 Mc/sec or above, the roots required could be approximated by

$$y_2(\tau_m) = 0$$

The resulting residue series representation

$$\phi(\mathbf{d}, \mathbf{h}_1, \mathbf{h}_2) = -\frac{4\pi}{\sqrt{\mathbf{d}}} \sum_{\mathbf{m}=1}^{\infty} \exp(i\tau_{\mathbf{m}} \mathbf{d}) \ \mathbf{U}_{\mathbf{m}}(\mathbf{h}_1) \ \mathbf{U}_{\mathbf{m}}(\mathbf{h}_2)$$
(3.12)

$$U_{m}(h) = i \frac{y_{2}(\tau_{m}^{-} h)}{y_{2}(\tau_{m})}$$
 (3.13)

was primarily used for points deep inside the shadow where only the first mode need be considered. This calculation could be made quite easily since the first root  $\tau_1$  was known,

$$\tau_1 = 2.3381 \exp \left[ i(2\pi/3) \right]$$

and the height-gain function  $U_1^{(h)}$  could be readily computed. The behavior of 20  $\log_{10}|U_1^{(X)}|$  is illustrated in Table 1.

Table 1

| X                                    | 20 log 10 U 1                               | Х                                      | 20 log 10 U1                                   | Х                                          | $20 \log_{10}  \mathbf{U}_1 $             |
|--------------------------------------|---------------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------|
| 0<br>0.1<br>0.2<br>0.3<br>0.4<br>0.5 | -19.9<br>-13.9<br>-10.3<br>- 7.73<br>- 5.68 | 1.0<br>1.2<br>1.4<br>1.6<br>1.8<br>2.0 | 1.120<br>3.075<br>4.82<br>6.39<br>7.84<br>9.19 | 5.<br>10.0<br>20.0<br>30.0<br>50.0<br>60.0 | 23.77<br>39.69<br>62.06<br>79.24<br>106.5 |
| 0.6                                  | - 3.96<br>- 1.16                            | 2.5<br>3.0                             | 12, 2<br>14, 9                                 | 80.0<br>100.0                              | 138.7<br>156.9                            |

In the intermediate region,  $\lceil (1-\sqrt{h_1}-\sqrt{h_2}) \leqslant 1$ , neither the stationary phase result nor the first residue term result would yield a means of calculating the field. The techniques used in this region at Radiation I aboratory is described by Freehafer in Section 2.15 of Propagation of Short Radio Wayes (Ref. 8).

The integral of Pryce and Freehafer provides a mathematical model for extending the result obtained from geometrical optics in the last section.

$$\frac{1}{4} \int \frac{2}{\pi kR} \exp\left[-i(kR - \pi/4)\right] - \frac{i}{4} \int \frac{2}{\pi kR} + \int \frac{aR}{2D_1D_2} \frac{aR}{2 + a(D_1 + D_2)\cos \alpha}$$

$$\exp\left[-i[k(D_1 + D_2) - \pi/4]\right]$$
(3.14)

to grazing angles of incidence. We observe that for  $\alpha \to \pi/2$  ,

$$\begin{aligned} \mathbf{R} &= \sqrt{\mathbf{D}_{1}^{2} + \mathbf{D}_{2}^{2}} - 2\mathbf{D}_{1}\mathbf{D}_{2}\cos\alpha - \sqrt{\left(\mathbf{D}_{1} + \mathbf{D}_{2}\right)^{2} - 4\mathbf{D}_{1}\mathbf{D}_{2}\cos^{2}\alpha} \\ &\sim (\mathbf{D}_{1} + \mathbf{D}_{2}) - \frac{2\mathbf{D}_{1}\mathbf{D}_{2}}{\mathbf{D}_{1} + \mathbf{D}_{2}} - \cos^{2}\alpha \end{aligned}$$

We can then express the optics result in the form

$$U \approx -\frac{i}{4} \sqrt{\frac{2}{\pi kR}} \exp\left[-i(kR - \pi/4)\right] \left\{1 + \Gamma \sqrt{\frac{a(D_1 + D_2)\cos\alpha}{2D_1D_2 + a(D_1 + D_2)\cos\alpha}}\right]$$

$$\exp\left(-ik \frac{2D_1D_2}{D_1 + D_2}\cos^2\alpha\right)$$
(3.15)

If we define (see Fig. 7)

$$h_1 = \left(\frac{2}{ka}\right)^{4/3} \left(\frac{kT_1}{2}\right)^2, \quad h_2 = \left(\frac{2}{ka}\right)^{4/3} \left(\frac{kT_2}{2}\right)^2, \quad p = \left(\frac{ka}{2}\right)^{1/3} \cos \alpha = \sqrt{\tau_0}, \quad q = i\left(\frac{ka}{2}\right)^{1/3} Z$$
(3. 16)

we can show that

$$\sqrt{h_{1} + \tau_{0}} - \sqrt{\tau_{0}} - \sqrt{h_{1} + p^{2}} - p - \left(\frac{2}{ka}\right)^{2/3} - \frac{kD_{1}}{2}$$

$$\sqrt{h_{2} + \tau_{0}} - \sqrt{\tau_{0}} - \sqrt{h_{2} + p^{2}} - p - \left(\frac{2}{ka}\right)^{2/3} - \frac{kD_{2}}{2}$$

$$D = \left\{1 + \frac{2D \cdot D_2}{a(D_1 + D_2)\cos\alpha}\right\}^{-1} = \left\{1 + \frac{2\left(\sqrt{h_1 + \tau_0} - \sqrt{\tau_0}\right)\left(\sqrt{h_2 + \tau_0} - \sqrt{\tau_0}\right)}{\left[\left(\sqrt{h_1 + \tau_0} - \sqrt{\tau_0}\right) + \left(\sqrt{h_2 + \tau_0} - \sqrt{\tau_0}\right)\right]\sqrt{\tau_0}}\right\}$$

$$\Gamma = \frac{q - ip}{q + ip} = \frac{p + iq}{p - iq}$$

$$\exp\left\{-ik\frac{2D_{1}D_{2}}{D_{1}+D_{2}}\cos^{2}\alpha\right\} = \exp\left\{-i\frac{4\left(\sqrt{h_{1}+\tau_{o}}-\sqrt{\tau_{o}}\right)\left(\sqrt{h_{2}+\tau_{o}}-\sqrt{\tau_{o}}\right)}{\left(\sqrt{h_{1}+\tau_{o}}-\sqrt{\tau_{o}}\right)^{2}\left(\sqrt{h_{2}+\tau_{o}}-\sqrt{\tau_{o}}\right)^{2}}\right\}$$

These results show that we can write

$$U \approx -\frac{i}{4} \sqrt{\frac{2}{\pi k R}} \exp \left[-i(kR - \pi/4)\right] \left\{ \frac{\exp\left[i(\phi_1 + 3\pi/4)\right]}{2\sqrt{\pi}} d \phi (d, h_1, h_2) \right\}$$
(3.17)

where

$$d = \left(\sqrt{h_1 + \tau_0} - \sqrt{\tau_0}\right) + \left(\sqrt{h_2 + \tau_0} - \sqrt{\tau_0}\right) = \left(\frac{k}{2a^2}\right)^{1/3} (D_1 + D_2) \approx \left(\frac{k}{2a^2}\right)^{1/3} R$$

An alternative form is

$$U \approx -\frac{i}{8\pi} \exp \left[-i(kR - \pi/4)\right] \left(\frac{2}{ka}\right)^{1/3} \left\{\frac{\exp \left[i(\phi_1 + 3\pi/4)\right]}{2\sqrt{\pi}} \sqrt{d} \Phi (d, h_1, h_2)\right\}$$
(3.18)

This result is useful for grazing incidence, i.e., for points just above the horizon. For points high above the horizon, we define

$$\sqrt{d} \Phi_{\mathbf{r}}(d, h_1, h_2) = \int_{-\infty}^{\infty} \exp(i\tau d) \Gamma \frac{y_1(\tau)}{y_2(\tau)} y_2(\tau + h_1) y_2(\tau + h_2) d\tau \qquad (3.19)$$

and write

$$U \approx -\frac{i}{4}\sqrt{\frac{2}{\pi kR}} \exp\left[-i(kR - \pi/4)\right]$$
direct wave
$$-\frac{i}{4}\sqrt{\frac{2}{\pi k}} \exp\left[-ik(D_1 + D_2) + i\pi/4\right] \frac{\exp\left[i(\phi_2 + 3\pi/4)\right]}{2\sqrt{\pi}} \frac{d}{\sqrt{R_1 + R_2}} \Phi_r(d, h_1, h_2)$$
reflected wave
$$(3.20)$$

We note that high above the horizon (i.e.,  $\sqrt{h_1} + \sqrt{h_2} >> d$ ),

$$\left\{\frac{\exp\left[i\left(\phi_{2}^{+}+\frac{3\pi}{4}\right)\right]}{2\sqrt{\pi}} - \frac{d}{\sqrt{R_{1}^{+}R_{2}^{-}}} \Phi_{\mathbf{r}}(\mathbf{d},\mathbf{h}_{1},\mathbf{h}_{2})\right\} \rightarrow \frac{\Gamma\mathbf{D}}{\sqrt{R_{1}^{+}R_{2}^{-}}} = \Gamma\sqrt{\frac{a\cos\alpha}{2\mathbf{D}_{1}\mathbf{D}_{2}^{+}+a(\mathbf{D}_{1}^{+}\mathbf{D}_{2}^{-})\cos\alpha}}$$

so that U takes on precisely the form obtained from geometrical optics. This form is a generalization of the Pryce Frechafer theory which is valid <u>well above the horizon</u> as well as near the horizon. The direct and the reflected waves are distinct. Near the horizon we use the Pryce-Freehafer form

$$U \approx -\frac{i}{4} \sqrt{\frac{2}{\pi k R}} \exp \left[-i(kR - \pi/4)\right] \left\{\frac{\exp\left[i(\phi_1 + 3\pi/4)\right]}{2\sqrt{\pi}} d\phi (d, h_1, h_2)\right\}$$
(3.21)

which involves the total field.

For points below the horizon, the concept of reflected waves (and, hence, the concept of an angle of incidence  $\alpha$ ) cannot be directly employed. How ver, if we introduce the concept of virtual angles of incidence and reflection as illustrated in Fig. 9, then the results can be extended into the shadow region just below the horizon. In this case we observe that  $\alpha$  exceeds 90° and hence  $p = (ka/2)^{1/3} \cos \alpha \approx -(ka/2)^{1/3} (\alpha - \pi/2)$  is negative.



Fig. 9 Definition of Virtual Angles of Incidence and Reflection

For points well below the horizon, another form is required. In this case the phase of the wave is of the order of  $(T_1 + S + T_2)$ , where these quantities are defined in Fig. 4. We replace

$$d = \left(\sqrt{h_1 + \tau_o} - \sqrt{\tau_o}\right) + \left(\sqrt{h_2 + \tau_o} - \sqrt{\tau_o}\right)$$

by

$$d = \xi + \sqrt{h_1} + \sqrt{h_2}$$

where

$$\xi = (ka/2)^{1/3} 2(\alpha - \pi/2) = (ka/2)^{1/3} (8/a)$$

We then define

$$\phi_3 = \frac{2}{3} h_1^{3/2} + \frac{2}{3} h_2^{3/2}$$

and express U in the form

$$\begin{split} \mathbf{U} &\approx -\frac{\mathbf{i}}{8\pi} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/4 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \frac{\left\{ \exp \left[ \mathbf{i} (\phi_3 + 3\pi/4) \right] - \sqrt{\mathbf{d}} \right\} \Phi \left( \mathbf{d}, \mathbf{h}_1, \mathbf{h}_2 \right) \right\} \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \exp \left( \mathbf{i} \phi_3 \right) \sum_{\mathbf{m} = 1}^{\infty} \exp \left( \mathbf{i} \tau_{\mathbf{m}} \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_1 \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_2 \right) \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \exp \left( \mathbf{i} \phi_3 \right) \sum_{\mathbf{m} = 1}^{\infty} \exp \left( \mathbf{i} \tau_{\mathbf{m}} \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_1 \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_2 \right) \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \exp \left( \mathbf{i} \phi_3 \right) \sum_{\mathbf{m} = 1}^{\infty} \exp \left( \mathbf{i} \tau_{\mathbf{m}} \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_1 \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_2 \right) \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \exp \left( \mathbf{i} \phi_3 \right) \sum_{\mathbf{m} = 1}^{\infty} \exp \left( \mathbf{i} \tau_{\mathbf{m}} \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_1 \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_2 \right) \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \exp \left( \mathbf{i} \phi_3 \right) \sum_{\mathbf{m} = 1}^{\infty} \exp \left( \mathbf{i} \tau_{\mathbf{m}} \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_2 \right) \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \frac{2}{\mathrm{ka}} \right)^{1/3} \exp \left( \mathbf{i} \phi_3 \right) \sum_{\mathbf{m} = 1}^{\infty} \exp \left( \mathbf{i} \tau_{\mathbf{m}} \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{h}_2 \right) \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \mathbf{k}_1 \mathbf{d} \right) \left( \mathbf{k}_2 \mathbf{d} \right) \exp \left( \mathbf{k}_1 \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{k}_2 \mathbf{d} \right) \right\} \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{i} \left[ \mathbf{k} (\mathbf{T}_1 + \mathbf{S} + \mathbf{T}_2) - \pi/2 \right] \right\} \left( \mathbf{k}_1 \mathbf{d} \right) \left( \mathbf{k}_2 \mathbf{d} \right) \exp \left( \mathbf{k}_1 \mathbf{d} \right) \left( \mathbf{k}_1 \mathbf{d} \right) \mathbf{U}_{\mathbf{m}} \left( \mathbf{k}_2 \mathbf{d} \right) \right\} \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{k} \left[ \mathbf{k} (\mathbf{k}_1 + \mathbf{k}_2 \mathbf{d} \right] \right) \left( \mathbf{k}_1 \mathbf{d} \right) \left( \mathbf{k}_2 \mathbf{d} \right) \exp \left( \mathbf{k}_1 \mathbf{d} \right) \right\} \\ &= -\frac{1}{4\sqrt{\pi}} \exp \left\{ -\mathbf{k} \left[ \mathbf{k} (\mathbf{k}_1 + \mathbf{k}_2 \mathbf{d} \right] \right) \left( \mathbf{k}_1 \mathbf{d} \right) \left( \mathbf{k}_1 \mathbf{d} \right) \left( \mathbf{k}_2 \mathbf{d} \right) \right\}$$

This residue series representation can be used on and below the horizon. On the horizon this representation agrees with the representation previously given for points on and above the horizon. For points far below the horizon, the first term of the residue series provides a suitable representation for  $\Phi$ .

The original work of Pryce and Freehafer only dealt with applications of the diffraction formula  $\Phi(d, h_1, h_2)$  for the geometry which we have depicted in Fig. 2 and referred to as the "radio problem". The present theory which has just been outlined includes the "radio problem" and the "optics problem" (Fig. 3) as special cases. The difference between the general results outlined here and the results for the "radio problem" can be better appreciated if we consider our example in more detail.

The Fourier integral

$$\begin{array}{lll} \mathbb{U}(\mathbf{r}_{2}, \phi; \mathbf{r}_{1} \theta; \mathbf{k} \mathbf{a}, \mathbb{Z}) & -\frac{\mathrm{i}}{8} \int\limits_{-\infty}^{\infty} \exp(-\mathrm{i}\nu\phi) \left\{ \mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{r}_{>}) \, \mathbb{H}_{\nu}^{(1)}(\mathbf{k} \mathbf{r}_{<}) \right. \\ & \left. -\frac{\mathbb{H}_{\nu}^{(1)}(\mathbf{k} \mathbf{a}) - \mathrm{i} \, \mathbb{Z} \, \mathbb{H}_{\nu}^{(1)}(\mathbf{k} \mathbf{a})}{\mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{a})} \, \mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{r}_{1}) \, \mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{r}_{2}) \right\} \, \mathrm{d}\nu \\ & \left. -\frac{\mathbb{H}_{\nu}^{(1)}(\mathbf{k} \mathbf{a}) - \mathrm{i} \, \mathbb{Z} \, \mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{a})}{\mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{a})} \, \mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{r}_{1}) \, \mathbb{H}_{\nu}^{(2)}(\mathbf{k} \mathbf{r}_{2}) \right\} \, \mathrm{d}\nu \end{array}$$

$$(3.22)$$

is the exact solution of the scalar wave equation

$$(\nabla^2 + \mathbf{k}^2) \mathbf{U} = \delta(\mathbf{k} - \mathbf{r}_1) \delta(\mathbf{y}) = \frac{\delta(\mathbf{r} - \mathbf{r}_1)\delta(\phi)}{\mathbf{r}_1}$$
(3.23)

which behaves like

$$U^{O} = -\frac{i}{4} \sqrt{\frac{2}{\pi k R}} \exp \left[-i(kR + \pi/4)\right]$$
,  $R = \sqrt{(x-r_1)^2 + y^2}$ 

near the source, and which satisfies the boundary condition

$$\frac{\partial \mathbf{U}}{\partial \mathbf{r}} - i \mathbf{k} \mathbf{Z} \mathbf{U} = \mathbf{0}$$

on the surface r=a. We observe that U is an aperiodic function of  $\phi$  defined on  $-\infty < \phi < \infty$ . If we now assume the geometry of the "radio problem" and introduce the definitions and asymptotic estimates

$$\nu = ka - \left(\frac{ka}{2}\right)^{1/3} \tau \qquad H_{\nu}^{(2)}(ka) - \frac{i}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{1/3} y_{2}(\tau)$$

$$q = -i\left(\frac{ka}{2}\right)^{1/3} Z \qquad H_{\nu}^{(1)}(ka) - \frac{i}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{1/3} y_{1}(\tau)$$

$$\xi = \left(\frac{ka}{2}\right)^{1/3} \phi \qquad H_{\nu}^{(2)}(ka) - \frac{i}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{2/3} y_{2}'(\tau)$$

$$\xi_{1} = \left(\frac{2}{ka}\right)^{1/3} k(r_{1} - a) \qquad H_{\nu}^{(1)}(ka) + \frac{i}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{2/3} y_{1}'(\tau)$$

$$\xi_{2} = \left(\frac{2}{ka}\right)^{1/3} k(r_{2} - a) \qquad H_{\nu}^{(2)}(kr) + \frac{i}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{1/3} y_{2}(\tau + \xi)$$

$$\xi = \left(\frac{2}{ka}\right)^{1/3} k(r - a) \qquad H_{\nu}^{(1)}(kr) + \frac{i}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{1/3} y_{1}(\tau + \xi)$$

we find that

$$\begin{split} \mathbf{U}(\mathbf{r}_{2}, \ \phi; \mathbf{r}_{1}, \ 0; \mathrm{ka}, \ Z) \approx & -\frac{\mathrm{i}}{8\pi} \left(\frac{2}{\mathrm{ka}}\right)^{1/2} \exp\left(-\mathrm{i}\mathrm{ka}\phi\right) \int_{-\infty}^{\infty} \exp\left(\mathrm{i}\,\xi\tau\right) \left\{\mathbf{y}_{2}(\tau + \xi_{2}) \ \mathbf{y}_{1}(\tau + \xi_{2})\right\} \\ & -\frac{\mathbf{y}_{1}^{\prime}(\tau) + \mathbf{q}\,\mathbf{y}_{1}(\tau)}{\mathbf{y}_{2}^{\prime}(\tau) + \mathbf{q}\,\mathbf{y}_{2}(\tau)} \ \mathbf{y}_{2}(\tau + \xi_{1}) \ \mathbf{y}_{2}(\tau + \xi_{2}) \right\} \mathrm{d}\tau \\ & -\frac{1}{8\pi} \left(\frac{2}{\mathrm{ka}}\right)^{1/3} \exp\left(-\mathrm{i}\mathrm{ka}\phi\right) \sqrt{\xi} \ \Phi\left(\xi, \xi_{1}, \xi_{2}\right) \end{split} \tag{3.25}$$

This result is valid only for very small heights

$$\mathbf{h}_1 = \mathbf{r}_1 - \mathbf{a} << \mathbf{a} \; , \qquad \qquad \mathbf{h}_2 = \mathbf{r}_2 - \mathbf{a} << \mathbf{a}$$

This result is essentially the result of van der Pol and Bremmer, Pryce and Freehafer, Burrows and Gray, and others who have studied the "radio problem."

The "optics problem" starts from the Fourier integral

$$U(\mathbf{r}, \phi; \mathbf{ka}, \mathbf{Z}) = \frac{1}{2} \int_{-\infty}^{\infty} \exp\left[-i\nu(\phi - \pi/2)\right] \left\{ H_{\nu}^{(1)}(\mathbf{kr}) - \frac{H_{\nu}^{(1)}(\mathbf{ka}) - i\mathbf{Z} H_{\nu}^{(2)}(\mathbf{ka})}{H_{\nu}^{(2)}(\mathbf{ka}) - i\mathbf{Z} H_{\nu}^{(2)}(\mathbf{ka})} + \frac{H_{\nu}^{(2)}(\mathbf{kr})}{H_{\nu}^{(2)}(\mathbf{ka})} \right\} d\nu$$
(3. 26)

For r - a, it reduces to

U(a, φ; ka, Z) = 
$$-\frac{2i}{\pi ka} \int_{-\infty}^{\infty} \frac{\exp(-i\nu\phi)}{H_{\nu}^{(2)}(ka) - iZH_{\nu}^{(2)}(ka)} d\nu$$

$$\approx \exp\left[-ika(\phi - \pi/2)\right] \sqrt{\pi} \int_{-\infty}^{\infty} \frac{\exp(ix\tau)}{y_2'(\tau) + q y_2(\tau)} d\tau$$
 (3.27)

where

$$x = \left(\frac{ka}{2}\right)^{1/3} \left(\phi - \frac{\pi}{2}\right)$$

For  $r \rightarrow \infty$ , it is customary to use the asymptotic estimate

$$H_{p}^{(2)}(kr) = -\int \frac{2}{\pi kr} \exp\left[-i(kr - \pi/4) + ip \pi/2\right]$$
 (3.28)

We then find that

$$U(\mathbf{r}, \phi; \mathbf{ka}, \mathbf{Z}) \xrightarrow{\mathbf{r} \neq 0} \exp(i\mathbf{ka} \cos \phi) = \frac{1}{2} \sqrt{\frac{2}{\pi \mathbf{kr}}} \exp\left[-i(\mathbf{kr} - \pi/4)\right] \int_{\infty}^{\infty} \exp\left[-i\nu(\phi - \pi)\right]$$

$$\frac{H_{\nu}^{(1)}(\mathbf{ka}) - i\mathbf{Z} H_{\nu}^{(2)}(\mathbf{ka})}{H_{\nu}^{(2)}(\mathbf{ka}) - i\mathbf{Z} H_{\nu}^{(2)}(\mathbf{ka})} d\nu$$
(3.29)

$$\approx \exp\left(i \operatorname{ka} \cos \phi\right) + \frac{1}{2} \sqrt{\frac{2}{\pi \operatorname{kr}}} \exp\left[-i (\operatorname{kr} - \pi/4)\right] \exp\left[-i \operatorname{ka}(\phi - \pi)\right]$$

$$= \left(\frac{\operatorname{ka}}{2}\right)^{1/3} \exp\left(i \frac{y_1'(\tau) + qy_1(\tau)}{y_2'(\tau) + qy_2(\tau)}\right) d\tau$$

where

$$\mu = \left(\frac{\mathrm{ka}}{2}\right)^{1/3} (\phi - \pi)$$

The distinction between the asymptotic estimate obtained for the "radio problem" and the "optics problem" stems from the use of two different asymptotic estimates for the Hankel function, namely

$$H_{\nu}^{(2)}(kr) = \frac{i}{r-a} \sqrt{\frac{i}{\pi}} (2/ka)^{1/3} y_2(\tau + \xi)$$

$$H_{\nu}^{(2)}(kr) \xrightarrow{r \to \infty} \sqrt{\frac{2}{\pi kr}} \exp \left[-i(kr - \pi/4) + i\nu \pi/2\right]$$
 (3.30)

In the present work we employ an approximation of the form

$$H_{\nu}^{(2)}(kr) \approx \frac{1}{\sqrt{\pi}} \left(\frac{2}{ka}\right)^{1/3} \exp\left[-ik(T-a \alpha) + i(ka/2)^{-1/3}\alpha\tau + i\frac{2}{3}\xi^{3/2} - i\xi^{1/2}\tau\right] y_2(\tau + \xi)$$
(3.31)

where

$$\alpha = \cos^{-1} a/r$$
 ,  $T = \sqrt{r^2 - a^2}$  ,  $\zeta = (ka/2)^{2/3} (r^2 - a^2)/a^2$ 

This result has the advantage of leading, when  $r \to a$  and  $r \to \infty$ , to the forms given above for these cases. The use of this approximation leads to

$$U(r_{2}, \phi; r_{1}, 0; kn, Z) \approx -\frac{i}{8\pi} (2/kn)^{1/3} \exp -i \left[k(T_{1} + S + T_{2}) - \pi/4\right] (2/kn)^{1/3}$$

$$\left\{\frac{\exp\left[i\left(\phi_{3}+3\pi/4\right)\right]}{2\sqrt{\pi}}\sqrt{d} \Phi\left(d,h_{1},h_{2}\right)\right\}$$
(3.32)

where

$$\mathbf{d} = (ka/2)^{1/3} \phi + \sqrt{h_1} + \sqrt{h_2}$$

$$\mathbf{h}_1 = (ka/2)^{2/3} (\mathbf{r}_1^2 - \mathbf{a}^2)/\mathbf{a}^2 , \quad \mathbf{h}_2 = (ka/2)^{2/3} (\mathbf{r}_2^2 - \mathbf{a}^2)/\mathbf{a}^2$$

$$\mathbf{T}_1 = \sqrt{\mathbf{r}_1^2 - \mathbf{a}^2} , \quad \mathbf{S} = \mathbf{a} \phi , \quad \mathbf{T}_2 = \sqrt{\mathbf{r}_2^2 - \mathbf{a}^2}$$
(3.33)

and

$$\phi_3 = (2/3) h_1^{3/2} + (2/3) h_2^{3/2}$$
 (3.34)

This more general formula reduces to both the "radio" and "optics" problems. It is expressed in terms of the function already used in the radio problem, however the argument has a different physical interpretation. We postpone further discussion of this application until a later volume in this series. The remainder of this volume will be devoted to developing properties and representations for the diffraction integral  $\Phi$  (d, h<sub>1</sub>, h<sub>2</sub>).

## Section 4 NOTATION FOR THE DIFFRACTION FORMULA\*

The Fourier integral introduced by Pryce in 1941

$$\begin{split} \Phi \left( \mathrm{d}, \, \xi_{\, 1}, \, \xi_{\, 2} \right) &= \, 1/\sqrt{\mathrm{d}} \int \limits_{-\infty}^{\infty} \exp \left( \mathrm{i} \, \tau \mathrm{d} \right) \left[ \, \, y_{\, 2}(\xi_{\, >} + \, \tau) y_{\, 1} \left( \, \xi_{\, <} + \, \tau \right) \, + \, \Gamma \, \frac{y_{\, 1}(\tau)}{y_{\, 2}(\tau)} \, \, y_{\, 2}(\xi_{\, 1} + \, \tau) y_{\, 2}(\xi_{\, 2} + \, \tau) \right] \mathrm{d}\tau \\ \Gamma &= \, - \, \frac{y_{\, 1}^{\, 1}(\tau) \, - \, \mathrm{i} \, \mathrm{kh}_{\, O} \, \, \mathrm{Z} \, \, y_{\, 1}(\tau)}{y_{\, 2}^{\, 2}(\tau) \, - \, \mathrm{i} \, \mathrm{kh}_{\, O} \, \, \mathrm{Z} \, y_{\, 2}(\tau)} \end{split}$$

provides an analytical continuation to all values of d,  $\xi_1$ ,  $\xi_2$ , for the residue series

$$\Phi (d, \xi_1, \xi_2) = -4\pi/\sqrt{d} \sum_{m=1}^{\infty} \frac{\exp(i\tau_{md})}{1 - \tau_m/(k\xi_0 Z)^2} U_m(\xi_1) U_m(\xi_2)$$

$$y_2'(\tau_m) - ik\xi_0 Z y_2(\tau_m) = \emptyset$$

$$U_{\mathrm{m}}(\xi_{1}) = i \cdot y_{2}(\tau_{\mathrm{m}} + \xi) / y_{2}^{\dagger} \cdot (\tau_{\mathrm{m}})$$

We will now show that this is precisely the van der Pol-Bremmer diffraction formula introduced in 1938 (Ref. 6), namely

F 
$$(x, x_1, x_2) = \sqrt{2\pi x} \exp(i \pi/4) \sum_{s=0}^{\infty} f_s(x_1) f_s(x_2) \frac{\exp(i \tau_s x)}{2\tau_s - 1/\delta^2}$$
 (4.1)

<sup>.</sup> In this section, and in all subsequent sections, we employ  $\exp(-\mathrm{i}\omega t)$  time dependence.

$$\delta \sqrt{-2\tau_{\rm S}} \, \Pi_{2/3}^{(1)} \left\{ \frac{1}{3} \left(-2\tau_{\rm S}\right)^{3/2} \right\} + \exp\left(t \, \pi/3\right) \, \Pi_{1/3}^{(1)} \left\{ \frac{1}{3} \left(-2\tau_{\rm S}\right)^{3/2} \right\} = 0 \quad (4.2)$$

$$f_{s}(x_{j}) = \sqrt{\frac{x^{2} - 2\tau_{s}}{-2\tau_{s}}} = \frac{H_{1/3}^{(1)} \left[ \frac{1}{3} (x_{j}^{2} - 2\tau_{s})^{3/2} \right]}{H_{1/3}^{(1)} \left[ \frac{1}{3} (-2\tau_{s})^{3/2} \right]}$$
(4.3)

$$= -\frac{\exp(-1\pi/3)}{\delta\sqrt{-2\tau_{\rm S}}} \frac{H_{1/3}^{(1)} \left[\frac{1}{3} \left(x^2 - 2\tau_{\rm S}^{3/2}\right)\right]}{H_{2/3}^{(1)} \left[\frac{1}{3} \left(-2\tau_{\rm S}\right)^{3/2}\right]}$$

$$x = (ka)^{1/3} \theta = (ka)^{1/3} (d/a)$$
 (4.4)

$$\delta = i \frac{k_1^2/k^2}{(kn)^{1/3} \sqrt{k_1^2/k^2 - 1}} = i \frac{1}{(kn)^{1/3} Z}$$
(4.5)

$$x_1 = (ka)^{1/3} \sqrt{2 h_1/a}$$
 (4.6)

In order to compare the residue series of Pryce and Freehafer with that of van dêr Pol and Bremmer, we first take the complex conjugate of the P-F formula (since P-F use exp(i\omegat), whereas P-B use exp(-i\omegat) time dependence),

$$\overline{\Phi}(\xi, \xi_1, \xi_2) = -\frac{4\pi}{\sqrt{\xi}} \sum_{m=1}^{\infty} \frac{\exp(-i\overline{\tau}_m \xi)}{1 - \overline{\tau}_m / (k \ln_o Z)^2} - \overline{U}_m(\xi_1) \overline{U}_m(\xi_2)$$

$$y_1'(\overline{\tau}_m) + i k \ln_o \overline{Z} y_1(\overline{\tau}_m) = 0$$

$$\overline{U}_m(\xi) = -i \frac{y_1(\overline{\tau}_m + \xi)}{y_1'(\overline{\tau}_m)}$$

We now use the properties

$$y_1(\tau) = \sqrt{\frac{\pi}{3}} \exp(-i \pi/3) \tau^{1/2} H_{1/3}^{(1)} \left(\frac{2}{3} \tau^{3/2}\right)$$
 (4.7)

$$y'_{1}(\tau) = \sqrt{\frac{\pi}{3}} \exp(i \pi/3) \tau H_{2/3}^{(1)} \left(\frac{2}{3} r^{3/2}\right)$$
 (4.8)

in order to write

$$\sqrt{\bar{\tau}_{\rm m}} \ \ {\rm H}_{2/3}^{(1)} \left(\frac{2}{3} \, \bar{\tau}_{\rm m}^{3/2}\right) - ({\rm i} \, {\rm kh_o} \, \bar{\rm Z}) \, \exp{({\rm i} \, \pi/3)} \, {\rm H}_{1/3}^{(1)} \left(\frac{2}{3} \, \bar{\tau}_{\rm m}^{3/2}\right) = 0$$

$$\overline{U}_{m}(\xi) = i \exp(-i 2\pi/3) \frac{\sqrt{\xi + \overline{\tau}_{m}}}{\overline{\tau}_{m}} \frac{H_{1/3}^{(1)} \left[\frac{2}{3} \left(\xi + \overline{\tau}_{m}\right)^{3/2}\right]}{H_{2/3}^{(1)} \left[\frac{2}{3} \left(\overline{\tau}_{m}\right)^{3/2}\right]}$$

$$= \frac{1}{k h_0 \overline{Z}} \sqrt{\frac{\xi + \overline{\tau}_m}{\overline{\tau}_m}} \frac{H_{1/3}^{(1)} \left[ \frac{2}{3} \left( \xi + \overline{\tau}_m \right)^{3/2} \right]}{H_{1/3}^{(1)} \left[ \frac{2}{3} \left( \overline{\tau}_m \right)^{3/2} \right]}$$

A comparison of these results with the van der Pol - Bremmer form reveals that

$$x_{j} = (1/\sqrt[3]{2}) \quad \xi_{j}, \quad j = 1, 2$$

$$\tau_{s-1} = -(1/\sqrt[3]{2}) \quad \tau_{s}$$

$$\delta = i(ka)^{-1/3} (\overline{Z})^{-1} = i 2^{-1/3} (kh_{o})^{-1/3} (\overline{Z}, 1)$$

$$f(x_{j}) = (ka/2)^{1/3} \, \overline{Z} \, \overline{U}(\xi_{j})$$

$$F(x, x_{1}, x_{2}) = -\frac{\xi}{\sqrt[4]{\pi}} \quad \exp(i\pi/4) \, \overline{\Phi} \, (\xi, \xi_{1}, \xi_{2})$$

$$\text{van der Pol-Bremmer} \qquad \text{Pryce-Freehafer}$$

$$(4.9)$$

The notation  $y_1(\tau)$ ,  $y_2(\tau)$  employed by Freehafer for the Airy functions differs slightly from that of Pryce who defined

$$f(\tau) = \frac{1}{\pi} \int_{0}^{\infty} \left\{ \exp\left(-\frac{1}{3} x^3 - x\tau\right) - i \exp\left(i\frac{1}{3} x^3 - i x\tau\right) \right\} dx \tag{4.10}$$

$$g(\tau) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{1}{3} x^3 - x\tau\right) dx \tag{4.11}$$

We easily observe that

$$\sqrt{\pi} f(\tau) = y_2(\tau)$$
-i  $2\sqrt{\pi} g(\tau) - y_1(\tau) + y_2(\tau)$ 
Pryce

Freehafer

The Fourier integral

$$\mathbf{P}(\xi, \xi_1, \xi_2) = \frac{1}{2} \int_{-\infty}^{\infty} \exp(\mathrm{i}\,\xi\,\tau) \left[ \mathbf{g}(\tau + \xi_2) - \frac{\mathbf{g}'(\tau) - \mathrm{i}\,\gamma\,\mathbf{g}(\tau)}{\mathbf{f}'(\tau) - \mathrm{i}\,\gamma\,\mathbf{f}(\tau)} \mathbf{f}(\tau + \xi_2) \right] \mathbf{f}(\tau + \xi_2) \,\mathrm{d}\tau$$

$$(4.12)$$

which appears in Pryce's work is identical with Freehafer's

$$\Phi(\xi,\xi_1,\xi_2) = \frac{1}{\sqrt{\xi}} \int_{\infty}^{\infty} \exp(\mathrm{i}\xi\tau) \left[ y_1(\tau+\xi_2) - \frac{y_1'(\tau) - \mathrm{i}k h_0}{y_2(\tau) - \mathrm{i}k h_0} \frac{\mathrm{Z} y_1(\tau)}{y_2(\tau+\xi_2)} y_2(\tau+\xi_2) \right] y_2(\tau+\xi_2) \mathrm{d}\tau$$

except for a normalization factor

$$-4\pi i P(\xi, \xi_1, \xi_2) = \sqrt{\xi} \Phi(\xi, \xi_1, \xi_2). \tag{4.13}$$

The notations of Pryce and Freehafer have not been accepted by later writers.

For example, in the July 1959 issue of the <u>Transactions of the Professional Group on Antennas and Propagation of the I.R. E.</u>, Tukizi (Ref. 11) has employed an integral

$$T(\mathbf{r}, \mathbf{z}_1, \mathbf{z}_2) = \int_{-\infty}^{\infty} \exp(i \mathbf{k}_0 \mathbf{r} \xi) \mathbf{u}(\mathbf{z}, \xi) d\xi$$

where

$$u(z, \zeta) = -\frac{2}{W} \exp(i \ 2 \ \pi/3) \ h_1(s) \left\{ h_1[s] \exp(-i \ 2 \ \pi/3] - \frac{\left(\frac{d}{ds} + \tau\right) h_1[s] \exp(-i \ 2 \ \pi/3)}{\left(\frac{d}{ds} + \tau\right) h_1(s]} h_1(s) \right\}$$

$$h_1(s) = \left(\frac{2}{3} s^{3/2}\right)^{1/3} H_{1/3}^{(1)} \left(\frac{2}{3} s^{3/2}\right)$$

$$\xi = \gamma z - \beta s$$
 ,  $s = \beta^{-1} (\gamma z - \xi)$ 

$$W = -i (4/\pi) (3/2)^{1/3} \gamma/\beta$$

$$\tau = i \beta/\gamma (k_0/k_1)^2 (k_1^2 - k_0^2)^{-1/2}$$

Let us now <u>translate</u> Tukizi's integral into Freehafer's integral by using Freehafer's Eq. (335).(Ref. 8)

$$h_1(\zeta) = \frac{(12)^{1/6}}{\sqrt{\pi}} \exp(i \pi/3) y_1(\zeta)$$

and Eq. (311)

$$y_1 \left[ \xi \exp(-i 2\pi/3) \right] = \exp(i 2\pi/3) y_2(\xi)$$

Therefore

$$h_1 \left[ \xi \exp(-i 2\pi/3) \right] = -\frac{(12)^{1/6}}{\sqrt{\pi}} \quad y_3(\xi) = \frac{(12)^{1/6}}{\sqrt{\pi}} \left\{ y_1(\xi) + y_2(\xi) \right\}.$$

and Tukizi's u(z, \( \xi \)) takes the form

$$\mathbf{u}(z,\xi) = \frac{2}{\mathbf{W}} \frac{(12)^{1/3}}{\pi} \mathbf{y}_{1}(\mathbf{s}_{>}) \left\{ \mathbf{y}_{2}(\mathbf{s}_{<}) - \frac{\left(\frac{\mathbf{d}}{\mathbf{d}\mathbf{s}_{o}} + \tau\right) \mathbf{y}_{2}(\mathbf{s}_{o})}{\left(\frac{\mathbf{d}}{\mathbf{d}\mathbf{s}_{o}} + \tau\right) \mathbf{y}_{1}(\mathbf{s}_{o})} \quad \mathbf{y}_{1}(\mathbf{s}_{<}) \right\}$$

If we now replace Tukizi's integration variable  $\xi$  by  $\tau$ , where

$$\tau = -\beta^{-1}\xi$$

and replace Tukizi's impedance \( \tau \) by

$$i \, kh_o Z = \tau$$

we can write

$$u(z, -\beta\tau) = ih_{0}y_{1}(\tau + h_{>}) \left\{ y_{2}(\tau + h_{<}) - \frac{y_{2}'(\tau) + ikh_{0}Zy_{2}(\tau)}{y_{1}'(\tau) + ikh_{0}Zy_{1}(\tau)} - y_{1}(\tau + h_{<}) \right\}$$

where

$$h_0 = \beta/\gamma$$
,  $h_1 = z_1/h_0$ ,  $h_2 = z_2/h_0$ 

We also define

$$d = k_0 h_0 \gamma r \qquad (k_0 \beta r)$$

We can then show that

$$T(\mathbf{r}, \mathbf{z}_{1}, \mathbf{z}_{2}) = \beta \int_{-\infty}^{\infty} \exp(-i \, d\tau) \, \mathbf{u}(\mathbf{z}, -\beta \tau) \, d\tau$$

$$= i \, h_{0} \beta \int_{-\infty}^{\infty} \exp(-i \, d\tau) \, \mathbf{y}_{1} \, (\tau + h_{>}) \left\{ \mathbf{y}_{2} (\tau + h_{<}) - \frac{\mathbf{y}_{2}^{t}(\tau) + i \, \mathbf{k} \, h_{0} \, \mathbf{Z} \, \mathbf{y}_{2}(\tau)}{\mathbf{y}_{1}^{t}(\tau) + i \, \mathbf{k} \, h_{0} \, \mathbf{Z} \, \mathbf{y}_{1}(\tau)} \, \mathbf{y}_{1}(\tau + h_{<}) \right\} \, d\tau$$

If we now examine the complex conjugate of Freehafer's function  $\Phi(d, h_1, h_2)$ ,

$$\begin{split} \overline{\Phi}(d, h_1, h_2) &= \frac{1}{\sqrt{d}} \int_{-\infty}^{\infty} \exp(-id\tau) y_1(\tau + h_2) \left\{ y_2(\tau + h_2) - \frac{y_2'(\tau) + i k h_0}{y_1'(\tau) + i k h_0} \frac{Z y_2(\tau)}{Z y_1'(\tau)} - y_1(\tau + h_2) \right\} d\tau \end{split}$$

we see immediately that

$$T(\mathbf{r}, \mathbf{z}_{1}, \mathbf{z}_{2}) = i \mathbf{h}_{0} \beta \sqrt{\mathbf{d}} \quad \overline{\Phi} (\mathbf{d}, \mathbf{h}_{1}, \mathbf{h}_{2}) = -4\pi \mathbf{h}_{0} \beta \overline{P} (\mathbf{d}, \mathbf{h}_{1}, \mathbf{h}_{2})$$

$$\mathbf{r} = \mathbf{d}/(\mathbf{k}_{0} \beta)$$

$$\mathbf{z}_{1} = \mathbf{h}_{0} \mathbf{h}_{1}$$

$$\mathbf{z}_{2} = \mathbf{h}_{0} \mathbf{h}_{2}$$

$$\mathbf{Tukizi} \quad \mathbf{Freehafer}$$

$$\mathbf{pryce}$$

$$(4.14)$$

The integral representations for the van der Pol-Bremmer diffraction formula used by Freehafer and Pryce were apparently known to Tukizi because he cites these authors as references. However, since no standard form for this integral has been adopted, the casual reader may not be aware of the fact that the integral used by Tukizi has already been used by other authors.

It is a curious fact that this classical diffraction formula is known by so many seemingly different expressions. In contrast to the variety of forms used by Western authors, all Soviet authors employ a uniform notation. In 1946, Fock (Ref. 12) had introduced an integral of the form

$$V_{1}(\xi, \xi, q) = \frac{i}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i \xi t) \left\{ w_{2}(t-t) - \frac{w_{2}(t) - q w_{2}(t)}{w_{1}(t) - q w_{1}(t)} - w_{1}(t-\xi) \right\} dt \quad (4.15)$$

where

$$w_{1,2}(t) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{1}{3}x^3 + xt\right) dx \pm i \int_{0}^{\infty} \exp\left(i\frac{1}{3}x^3 + ixt\right) dx$$
 (4.16)

Later, in 1949, Fock defined a more general integral

$$V(\xi, \ \xi_{1}, \ \xi_{2}, q) = \frac{\exp\left(i \ \pi/4\right)}{2} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp(i \ \xi \ t) w_{1}(t - \xi_{>}) \left\{ w_{2}(t - \xi_{<}) - \frac{w_{2}'(t) - q w_{2}(t)}{w_{1}(t) - q w_{1}(t)} \right.$$

$$w_{1}(t - \xi_{<}) \left\} dt \qquad (4.17)$$

The deductions made by Tukizi in Part I of his paper are not correct since he assumes in his Eq. (21) that he can use the "saddle point method" on a string of saddle points which are close together. The "saddle point method" requires well separated saddle points. For example, if two saddle points are close together one must use Airy integrals, or if three saddle points are close together one must use parabolic cylinder functions. This vital restriction to well separated saddle points invalidates all of Tukizi's results. In particular, the agreement found with experiment in Part II of his paper is merely a coincidence. Tukizi's criticism of the classical diffraction theory is unfounded. The work of Carroll and Ring, which is cited by Tukizi in order to support his conclusions has no relation to the classical theory for a homogeneous atmosphere.

Since

$$w_1(t) = -y_1(-t)$$

$$w_2(t) = y_2(-t)$$
Fock Freehafer

we can show that

$$V(\xi, \zeta_1, \zeta_2, q) = -\frac{\xi}{2\sqrt{\pi}} \exp(i \pi/4) \tilde{\Phi}(\xi, \zeta_1, \zeta_2)$$
Freehafer

(4.18)

The Soviet form is related to the form used by van der Pol and Bremmer according to the following rules:

$$V(\xi, \xi_1, \xi_2, q) = 2F(x, x_1, x_2)$$
 (4.19)

$$\sqrt[3]{2} \xi = x \tag{4.20}$$

$$\zeta_1 = \sqrt[3]{2} x_1^2 \tag{4.21}$$

$$\xi_2 = \sqrt[3]{2} x_2^2 \tag{4.22}$$

$$3\sqrt{2} \quad q = -\delta^{-1}$$
 (4.23)

The close resemblance between the notations of Freehafer and Pryce is a result of the close cooperation between British and American research groups during World War II. However, it is at first glance quite surprising that the Soviet research group in the same time period introduced an almost identical form for the related integrals.

$$V_1(x, y, q) = \sqrt{\frac{1}{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \left\{ v(t-y) - \frac{v'(t) - qv(t)}{w_1'(t) - qw_1(t)} w_1(t-y) \right\} dt$$

$$V(\xi, \xi_{1}, q) = \frac{\exp(i\pi/4)\sqrt{\xi}}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \left\{ w_{2}(t-\xi_{<}) - \frac{w_{2}'(t) - q w_{2}(t)}{w_{1}'(t) - q w_{1}(t)} w_{1}(t-\xi_{<}) \right\} w_{1}(t-\xi_{<}) dt$$

which were introduced by Fock in 1946 and 1949, respectively.

The resemblance of the notations is due to the fact that these authors had to employ solutions of Airy's differential equation

$$\frac{\mathrm{d}^2 y(x)}{\mathrm{d}x^2} + \alpha x y(x) = 0$$

Pryce and Frechafer choose  $\alpha=1$ , but Miller (Ref. 16) and Fock choose  $\alpha=-1$ . The choice of  $|\alpha|=1$  automatically fixed a set of natural units of distance which accounts for the fact that

$$\frac{\mathbf{z}}{\mathbf{z}} = \frac{\xi}{\mathbf{Fock}}$$

It is worth observing at this point that Fock employs an  $\exp(-i\omega t)$  time dependence which is a common practice among physicists. However, Pryce and Freehafer use an  $\exp(i\omega t)$  time dependence which is a common practice among electrical engineers. In this report we will employ the  $\exp(-i\omega t)$  time dependence. We take this opportunity to point out that the complex conjugate of  $\overline{V}$  is to be denoted by

$$\overline{V(\xi, \, \xi_{1}, \xi_{2}, \, q)} = \frac{\exp\left(i \, \pi/4\right) \sqrt{\xi}}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(-i\xi t) \left[ w_{1}(t - \xi_{2}) - \frac{w_{1}'(t) - \overline{q} \, w_{1}(t)}{w_{2}'(t) - \overline{q} \, w_{2}(t)} \, w_{2}(t - \xi_{2}) \right] w_{2}(t - \xi_{2}) dt$$

$$(4.24)$$

where, for real values of t,

$$w_{2}(t) = \overline{w_{1}(t)} - y_{2}(-t)$$

The reader is cautioned that Fock's definitions of  $w_1(t)$  and  $w_2(t)$  have not been universally accepted. Thus, for example, in Wait's Electromagnetic Radiation from Cylindrical Structures (Ref. 13) we find functions  $w_1(t)$ ,  $w_2(t)$  with the properties

$$w_1(t)$$
  $w_2(t)$ 
 $w_2(t)$   $w_1(t)$ 
Wait Fock

The notations introduced by Frechafer and Pryce have not been used by later authors, whereas the notations of Fock have been employed by all recent Soviet authors (Ref. 14) and also by some authors (Ref. 15) outside the Soviet Union. We will adopt Fock's notation for the diffraction formula for the purpose of theoretical manipulations, but when numerical results are desired we will change to Miller's (Ref. 16) notation because of the extensive tables, contained in The Airy Integral.

A useful feature of Miller's table is that values are given for certain amplitude functions F(t), G(t) and phase functions  $\chi(t)$ ,  $\psi(t)$  in terms of which we can write

$$\mathbf{w}_{1}(t) = \sqrt{\pi} \left\{ \mathrm{Bi}(t) + \mathrm{i} \, \mathrm{Ai}(t) \right\} = \sqrt{\pi} \, \mathbf{F}(t) \, \exp\left[\mathrm{i} \, \chi(t)\right]$$
 (4.25)

$$w'_{1}(t) = \sqrt{\pi} \left\{ Bi'(t) + i Ai'(t) \right\} = \sqrt{\pi} G(t) \exp \left[ i \psi(t) \right] \qquad (4.26)$$

$$v(t) = \sqrt{\pi} \, _{\pi} F(t) \sin \chi(t) \qquad (4.27)$$

$$v'(t) = \sqrt{\pi} G(t) \sin \psi(t)$$
 (4.28)

A sample of Miller's values of F(x), y(x), G(x),  $\psi(x)$  is given in Table 2. As an application of these tables, we observe that

$$\exp(i\xi t) w_{1}(t-\xi_{2}) \left\{ w_{2}(t-\xi_{2}) - \frac{w_{2}(t)}{w_{1}(t)} w_{1}(t-\xi_{2}) \right\} = \pi F(t-\xi_{1}) F(t-\xi_{2}) \left\{ \exp(i\phi_{1}) - \exp(i\phi_{2}) \right\}$$

$$(4.29)$$

Table 2
SAMPLES OF MILLER'S TABLES OF F, x, C

| -             | -              |             |             |             | -          |           |             |             |                  | _       | _           | -           |             |             | -           | -          | 7           | _           |             | _          | -           | _           |             | -           |
|---------------|----------------|-------------|-------------|-------------|------------|-----------|-------------|-------------|------------------|---------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|
| (x)°/         |                | 28.66019    |             | 22,44081    | 19.73567   | 16.98232  |             | 11.87073    | 9,63586          | 7.79787 | 6.20543     | 4,88838     | 3,81641     | 2.95546     | 2, 27172    | 1.73402    | 1.31483     | 0.99063     | 0.74175     | 0.55203    | 0.49839     | 0.30034     | 0.21960     | 0.15964     |
| G(x)          |                | 0.52626 79  | 55942       | 0.58918 93  | 0.63015 98 | 68424     | 0.75343 20  | 0.83986 51  | 0.94592 60       | 07434   | 22842       | 1,41212 23  | 63025       | 1,88872 44  | 2,19472 03  | 2,55702 03 | 2,98632 63  | 3, 49568 83 | 4,10102 57  | 4.82177 37 | 68168       | 70983       | 7.94184 42  | 9, 42145 99 |
| ( <u>x</u> )2 |                | 23. 29193   |             | 15.17449    | 12.96802   | 10.99809  | 9.25412     | 7,72381     | 6.39335          |         | 4.27074     | 3.44604     | 2,75689     | 2,18684     |             | 1.34172    | 1.05806     | 0.79671     | 0.60669     | 0.45846    | 0.34388     | 0,25606     | 0.18932     | 0.13901     |
| F(x)          | 71005<br>73742 | 0.7680595   | 84126       | 0.88513.91  | 93490      | 0.9915398 | 1.0561684   | 1.13012 60  | 1. 21497 97      |         | 1,42509 07  | 1.55509 60  | 1.70563 38  | 1,88031 09  | 2.08341 30  |            | 2, 59629 55 | 2.9194591   | 3, 29327 99 | 74327      | 26711       | 88511       | 61.580      | 6.48167 98  |
| ×             | 0.0            | 000         |             | 0.0         | 9.0        | 0         | 8 0         | 6.0         | 1                | ;(      | 1.2         | ا.          | 1.4         | 5.          | 1.6         | 1.7        | 1.8         | 1.9         | 2,0         | 2.1        | 2.2         | 6.1<br>6.1  | 2.4         | 2.5         |
|               |                | <u> </u>    |             |             |            | ٠,        |             |             | ر الا<br>محسابات |         |             |             |             |             |             |            | _           |             |             |            | _           |             |             |             |
| υ(- x)        |                | 28, 65455   | 24, 7676S   | 21.96798    | 18,65342   | 14.86349  | 10.63419    | 5.99774     | 0,98265          | 4.38599 | 10.08521    | 16.09371    | 22,40654    | 28,99477    | 35.85020    | 42,96112   | 50,31708    | 57.90874    | 65,72767    | 73,76630   | 82,01770    | 90.47560    | 99:13425    | 107.93836   |
| G(-x)         |                | 0.52350 000 | 53714       | 0.54554 400 |            | 56386     | .57337      | 0.58294 027 | 0.59246.276      | 60188   | 61115       | 0.62025 273 | 0.62915 594 | 0.63785 424 |             | .65461     | 0.66268 746 | 0.67054 972 | 0.67821 159 | 68567      | 69295       | 70005       | 0.70698280  | 0.71374 091 |
| χ(- x)        |                | 37, 76132   |             | 51.35707    | 56.39882   | 61.68934  | 67, 22443   | 72,99975    | 79,01083         | 25316   | 72222       | 98.41356    | 105.32277   | 112,44556   | 119.77774   | 127.31524  | 135,05411   | 142,99054   | 151,12086   | 159,44152  | 167,94910   | 176.64033   | 185, 51,205 | 194.56121   |
| F(-x)         | 0.71005 611    | 0.66345 304 | 0.62549 094 | 0.60908 568 | 0.59412    | 0.58042   | 0.56785 017 | 55626       | 0.54556 477      | 53564   | 6.02643 218 | 51784       | 0.50982 315 | 0.50231 027 | 0.49525 758 | 0.48862198 | 540         | 415         | 0.47085 833 | 0.46555    | 0.46650 945 | 0,45571 145 | 833         | 0.44677 300 |
| ×             |                | 0.2         |             | 0.5         | 9          |           | 8.0         | 6.0         | . 0              | -       |             | ຕ           | 1.4         | 1.5         |             | 1.7        | 1.8         | 1.9         | 2.0         | 2,1        | 2.2         | 2,3         | 2.4         | 2.5         |

where

$$\phi_1 = \xi t + \chi(t - \xi_2) - \chi(t - \xi_2)$$
 (4.30)

$$\phi_2 = \xi t + \chi(t - \xi_3) + \chi(t - \xi_2) - 2\psi(t)$$
 (4.31)

This form is extremely useful for computational purposes. We also observe that Miller shows that

$$\frac{\mathrm{d}\chi(t)}{\mathrm{d}t} = -\frac{1}{\pi F^2(t)} \qquad \frac{\mathrm{d}\psi(t)}{\mathrm{d}t} = \frac{t}{\pi G^2(t)}$$
(4.32)

Therefore, we can write

$$\frac{d\phi_1(t)}{dt} = \xi - \frac{1}{\pi F^2(t - \xi_{>})} + \frac{1}{\pi F^2(t - \xi_{>})}$$
(4.33)

$$\frac{d\phi_{2}(t)}{dt} = \xi - \frac{1}{\pi F^{2}(t - \xi)} - \frac{1}{\pi F^{2}(t - \xi)} - \frac{2t}{\pi G^{2}(t)}$$
(4.34)

This form is very useful in connection with the problem of finding the points of stationary phase. The behavior of  $\chi'(t)$  and  $\psi'(t)$  for real values of t is illustrated in Fig. 10.



Fig. 10 Behavior of  $\chi'(t)$ ,  $\psi'(t)$  for Real Values of t

For large negative values of  $\ x$ , these amplitude and phase functions can be computed from the asymptotic expansions given by Miller

$$\left\{F(-x)\right\}^{2} \sim \frac{1}{\pi x^{1/2}} \left(1 - \frac{1 \cdot 3 \cdot 5}{1! \cdot 96} \cdot \frac{1}{x^{3}} + \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2! \cdot 96^{2}} \cdot \frac{1}{x^{6}} - \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3! \cdot 96^{3}} \cdot \frac{1}{x^{9}} + \ldots\right)$$

$$(4.35)$$

$$\left| G(-\mathbf{x}) \right|^{2} \sim \frac{1}{\pi} \mathbf{x}^{1/2} \left( 1 + \frac{1 \cdot 3}{1! \cdot 96} \cdot \frac{7}{\mathbf{x}^{3}} - \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2! \cdot 96^{2}} \cdot \frac{13}{\mathbf{x}^{6}} + \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15}{3! \cdot 96^{3}} \cdot \frac{19}{\mathbf{x}^{9}} - \ldots \right)$$

$$(4.36)$$

$$\chi(-\mathbf{x}) - \frac{1}{4}\pi \sim \frac{2}{3} \times \frac{3/2}{3} \left( 1 - \frac{5}{32} \cdot \frac{1}{\mathbf{x}^3} + \frac{1105}{6144} \cdot \frac{1}{\mathbf{x}^6} - \frac{82825}{65536} \cdot \frac{1}{\mathbf{x}^9} + \frac{1282031525}{58720256} \cdot \frac{1}{\mathbf{x}^{12}} \cdot \dots \right)$$

$$(4, 37)$$

$$\psi(-\mathbf{x}) + \frac{1}{4}\pi \sim \frac{2}{3} \mathbf{x}^{3/2} \left( 1 + \frac{7}{32} \frac{1}{\mathbf{x}^3} - \frac{1463}{6144} \frac{1}{\mathbf{x}^6} + \frac{495271}{327680} \frac{1}{\mathbf{x}^9} - \frac{206530429}{8388608} \frac{1}{\mathbf{x}^{12}} + \ldots \right)$$

$$(4.38)$$

For large positive values of x it is more convenient to compute Ai(x), Bi(x) and Ai'(x), Bi (x) from the asymptotic expansions

$$\Lambda_{1}(x) \sim \frac{1}{2} \pi^{-1/2} x^{-1/4} e^{-\xi} \left( 1 - \frac{3 \cdot 5}{1! \ 216} \frac{1}{\xi} + \frac{5 \cdot 7 \cdot 9 \cdot 11}{2! (216)^{2}} \frac{1}{\xi^{2}} - \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3! \ (216)^{3}} \frac{1}{\xi^{3}} + \dots \right)$$

$$(4.39)$$

$$Bi(x) \sim \pi^{-1/2} x^{-1/4} e^{\xi} \left( 1 + \frac{3 \cdot 5}{1! \cdot 216} \frac{1}{\xi} + \frac{5 \cdot 7 \cdot 9 \cdot 11}{2! \cdot (216)^2} \frac{1}{\xi^2} + \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3! \cdot (216)^3} \frac{1}{\xi^3} + \dots \right)$$

$$(4.40)$$

$$Ai'(x) \sim -\frac{1}{2} \pi^{-1/2} x^{1/4} e^{-\xi} \left( 1 + \frac{3 \cdot 7}{1! \ 216} \frac{1}{\xi} - \frac{5 \cdot 7 \cdot 9 \cdot 13}{2! (216)^2} \frac{1}{\xi^2} + \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 19}{3! (216)^3} \frac{1}{\xi^3} - \ldots \right)$$

(4.41)

$$Bi'(x) \sim \pi^{-1/2} x^{1/4} e^{\xi} \left( 1 - \frac{3 \cdot 7}{1! \cdot 216} \frac{1}{\xi} - \frac{5 \cdot 7 \cdot 9 \cdot 13}{2! \cdot (216)^2} \frac{1}{\xi^2} - \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 19}{3! \cdot (216)^3} \frac{1}{\xi^3} - \ldots \right)$$

$$(4.42)$$

where

$$\xi = \frac{2}{3} x^{3/2}$$

For small values of x one can use the Taylor series

Ai(x) = 
$$\alpha y_1 - \beta y_2$$
 Bi(x) =  $3^{1/2}(\alpha y_1 + \beta y_2)$   
 $y_1 = 1 + \frac{1}{3!} x^3 + \frac{1 \cdot 4}{6!} x^6 + \frac{1 \cdot 4 \cdot 7}{9!} x^9 + \dots$   $y_2 = x + \frac{2}{4!} x^4 + \frac{2 \cdot 5}{7!} x^7 + \frac{2 \cdot 5 \cdot 8}{10!} x^{10} + \dots$ 

$$\alpha = 3^{-2/3}/(-1/3)! = 0.35502 80538 87817$$
  $\beta = 3^{-1/3}/(-2/3)! = 0.25881 94037 92807$ 

(4.43)

The tables given by Miller in The Airy Integral are:

Ai(x) and Ai'(x). x = -20.00(0.01) + 2.00. 8D

 $Log_{10}$  Ai(x) and Ai'(x)/Ai(x). x = 0.0(0.1)25.0(1)75. 7-8D

Zeros and Turning-Values of Al(x) and Ai'(x). The first 50 of each. 8D

Bi(x) and Reduced Derivatives. x = -10.0(0.1) + 2.5.7-8D

Zeros and Turning-Values of Bi(x) and Bi (x). The first 20 of each. 8D

 $Log_{10}$  Bi(x) and Bi'(x)/Bi(x). x = 0.0(0.1)10.0. 7-8 D

Auxiliary Functions. F(x),  $\chi(x)$ , G(x),  $-\psi(x)$ . x = -80(1) - 30.0(0.1) + 2.5.8D

The notation pD is used to call attention to the fact that the tables are given to p decimals.

The availability of this excellent table makes it desirable to use a standard form for the diffraction formula which enables one to readily employ this data. In the 1941 work of Pryce, the notations

$$f(\tau) = Bi(-\tau) - i Ai(-\tau) = 2 \exp(-i \pi/6) Ai \left[\exp(i \pi/3) \tau\right] \qquad (4.44)$$

$$g(\tau) = \Lambda i(-\tau) \qquad (4.45)$$

were employed. Freehafer defined his Airy integrals to be

$$y_1(\tau) = \sqrt{\pi} \left[ -Bi(-\tau) - i Ai(-\tau) \right]$$
 (4.46)

$$y_2(\tau) = \sqrt{\pi} \left\{ Bi(-\tau) - i Ai(-\tau) \right\}$$
 (4.47)

$$\mathbf{f}_{3}(\tau) = 2i\sqrt{\pi} \operatorname{Ai}(-\tau) \tag{4.48}$$

whereas Fock defined

$$\mathbf{w}_{1}(\mathbf{t}) = \sqrt{\pi} \left\{ \mathbf{Bi}(\mathbf{t}) + \mathbf{i} \, \mathbf{Ai}(\mathbf{t}) \right\} \tag{4.49}$$

$$w_{2}(t) = \sqrt{\pi} \left\{ Bi(t) - i Ai(t) \right\}$$
 (4.50)

$$v(t) = \sqrt{\pi} \operatorname{Ai}(t) \tag{4.51}$$

We will adopt the Soviet notation as the standard form for these Airy integrals when using the Fourier integral representation for the diffraction formula

$$V(\xi, \xi_1, \xi_2, q) = \frac{\exp(i \pi/4) \sqrt{\xi}}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) w_1(t - \xi_2) \left[ w_2(t - \xi_2) - \frac{w_2'(t) - q w_2(t)}{w_1'(t) - q w_1(t)} w_1(t - \xi_2) \right] dt$$

$$= \frac{\exp(-i \pi/4) \sqrt{\xi}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) w_{1}(t-\xi) \left[ v(t-\xi) - \frac{v'(t) - q v(t)}{w'_{1}(t) - q w_{1}(t)} w_{1}(t-\xi) \right] dt$$

(4.52)

The property  $2i v(t) = w_1(t) + w_2(t)$  has been used to obtain the second form.

The residue series representations

$$V(\xi, \zeta_1, \zeta_2, q) = 2\sqrt{\pi \xi} \exp(i\pi/4) \sum_{s=1}^{\infty} \frac{\exp(i\xi t_s)}{t_s - q^2} \frac{w_1(t_s - \xi_1)}{w_1(t_s)} \frac{w_1(t_s - \xi_2)}{w_1(t_s)}$$
(4.53)

$$= -2\sqrt{\pi\xi} \exp(i \, \pi/4) \sum_{\mathbf{s}=1}^{\infty} \, \frac{\exp(i\xi t_{\mathbf{s}})}{1 - \frac{t_{\mathbf{s}}}{q^2}} \, \frac{w_1(t_{\mathbf{s}} - \xi_1)}{w_1'(t_{\mathbf{s}})} \, \frac{w_1(t_{\mathbf{s}} - \xi_2)}{w_1'(t_{\mathbf{s}})}$$

$$= 2 \sqrt{\pi \xi} \exp(i \pi/4) \sum_{s=1}^{\infty} \frac{\exp(i \xi t_s)}{t_s w_1^2(t_s) - w_1^{'2}(t_s)} w_1(t_s - \xi_1) w_1(t_s - \xi_2)$$

where

$$w'_1(t_s) - q w_1(t_s) = 0$$
 (4.54)

have been used by Fock. We can also express these series in the form

$$V(\xi, \xi_{1}, \xi_{2}, q) = 2\sqrt{\pi\xi} \exp(-i\pi/12) \sum_{s=1}^{\infty} \frac{\exp[(-\sqrt{3}+i)(a_{s}/2)\xi]}{a_{s} - \exp(-i\pi/3) q^{2}} \frac{\operatorname{Ai}[-a_{s} + \exp(-i\pi/3) \xi_{1}]}{\operatorname{Ai}(-a_{s})}$$

$$= 2\sqrt{\pi\xi} \exp(-i\pi/12) \sum_{s=1}^{\infty} \frac{\exp[(-\sqrt{3}+i)(a_{s}/2)\xi]}{1 - \exp(i\pi/3) \frac{a_{s}}{2}} \frac{\operatorname{Ai}[-a_{s} + \exp(-i\pi/3) \xi_{1}]}{\operatorname{Ai}'(-a_{s})}$$

$$= \frac{\operatorname{Ai}[-a_{s} + \exp(-i\pi/3) \xi_{2}]}{\operatorname{Ai}'(-a_{s})}$$

where  $t_s = a_s \exp(i \pi/3)$  and

$$Ai'(-a_s) + \exp(i \pi/3) q Ai(-a_s) = 0$$

We will adopt this as a standard form for the residue series.

We define the roots  $\alpha_s$ ,  $\beta_s$  by means of

$$Ai(-\alpha_s) = 0 Ai'(-\beta_s) = 0$$

and observe that, for q = 0 and  $q = \infty$ , we obtain

$$V(\xi, \xi_1, \xi_2, 0) = 2\sqrt{\pi\xi} \exp(-i \pi/12) \sum_{s=1}^{\infty} \frac{\exp\left[(-\sqrt{3}+i)(\beta_s/2)\xi\right]}{\beta_s} \frac{\operatorname{Ai}\left[-\beta_s + \exp(-i \pi/3)\xi_1\right]}{\operatorname{Ai}(-\beta_s)}$$

$$\frac{\text{Ai}\left[-\beta_{s} + \exp(-i\pi/3) \xi_{2}\right]}{\text{Ai}(-\beta_{s})}$$

$$V(\xi, \xi_1, \xi_2, \infty) = 2\sqrt{\pi \xi} \exp\left(-i \pi/12\right) \sum_{s=1}^{\infty} \exp\left[(-\sqrt{3} + i)(\alpha_s/2)\xi\right] \frac{\operatorname{Ai}\left[-\alpha_s + \exp(-i \pi/3)\xi_1\right]}{\operatorname{Ai'}(-\alpha_s)}$$

$$\frac{\operatorname{Ai}\left[-\alpha_s + \exp(-i \pi/3)\xi_2\right]}{\operatorname{Ai'}(-\alpha_s)}$$

The roots  $\alpha_s$ ,  $\beta_s$  and the turning values Ai'(- $\alpha_s$ ), Ai(- $\beta_s$ ) can be obtained from Miller's The Airy Integral where they are denoted by

$$a_s = -\alpha_s$$
,  $Ai'(a_s) = Ai'(-\alpha_s)$ ,  $a_s' = -\beta_s$ ,  $Ai(a_s') = Ai(-\beta_s)$ 

Since these roots (for q=0 or  $q=\infty$ ) are all negative, it is advantageous to follow Pryce and introduce  $\alpha_s$ ,  $\beta_s$ . In 1946 Miller published eight decimal values for the first fifty roots. More recently, Haines and (G. F.) Miller (Ref. 17) of the National Physical Laboratory (Teddington, England) have extended these results to obtain 15 decimal results for the first 56 roots.

These important tables are reproduced in Tables 3 and 4. This work by Haines, Miller, and their collaborators at National Physical Laboratory constitutes a major contribution to the solution of the problem of obtaining accurate values for the residue series when many terms have to be employed. [Note: Haines and (G.F.) Miller have also extended (J.C.P.)Miller's 8-decimal table of roots and turning values of Bi(x), Bi'(x).]

Table 3 ROOTS AND TURNING VALUES OF  $Ai(-\alpha)$ 

| s          | 0                                              | $Ai'(-\alpha_g)$                                           |
|------------|------------------------------------------------|------------------------------------------------------------|
|            | 0,5                                            |                                                            |
| ] ]        | 2, 33810 71101 59767                           | +0, 70121 08227 20691                                      |
| 2          | 4, 68794 94441 30971                           | -0.80311 13696 54864                                       |
| 3          | 5, 52055 98180 95551                           | ±0, 86520 40258 94152                                      |
| 4          | 6.78670 80900 71759                            | -0.91085 07370 49602                                       |
| 5          | 7, 94413 35871 °6853                           | +e, 94733 57094 <b>41568</b>                               |
| 6          | 9, 02265 08 33 (7980                           | -0, 97792 28085 69499                                      |
| 7          | 10.04017 12415 53086                           | ±1.00437 01226 60312                                       |
| 8          | 11, 00852 43637 33263                          | -1.02773 86888 20786                                       |
| 9          | 11.93601 33632 36263                           | 41, 04872 06485 88189                                      |
| 10         | 12, 82877 67528 35751                          | -1,00779 38591 57428                                       |
| 11         | 13, 69148 90332 19748                          | +1, 08530 28313,50700                                      |
| 12         | 14, 52783 89517 75335                          | - 1.10150 45702 77497                                      |
| 13         | 15, 34075 51355 57997                          | (1.11659 61779 32656                                       |
| 14         | 16, 13268 51569 45771                          | -1.13073 23104 93188                                       |
| 15         | 16, 90563 39974 20943                          | +. 14403 66732 73553                                       |
| 16         | 17, 66130 01056 97057                          | -1,15660 98491 16566                                       |
| 17         | 18, 40113 25992 07115                          | +1, 16853 47844 87525                                      |
| 18         | 19. 12638 047 12 46952                         | 1.17983 07298 70146                                        |
| 1.9        | 19, 83812 98077 21560                          | +1, 19070 61311 58776                                      |
| 20         | 20, 53735 1.9070 77567                         | - 1. 30106 07915 <b>19823</b>                              |
| 21         | 21. 22482 99430 42097                          | 1, 21098 75148 68287                                       |
| 22         | 21, 90136 558 55 85131                         | -1, 2°032 33738 9 <b>7260</b>                              |
| 23         | 22. 5676 i 2917/2 9 7 09                       | (1, 22190 07015 09681                                      |
| 24         | 23, 99416 355 ( 0162)                          | -: 1, "3854 75758 296 <b>32</b>                            |
| 25         | 28, 871 56 445 G 770 P                         | 1, 20500 094439 59407                                      |
| 26         | 24, 51039 (13.6) 89678                         | - 1. 7 (3) 91404 75735                                     |
| 27         | 25, 140%, 11661 / ali67                        | -), %6804 32827 50799                                      |
| 28         | 25, 763 33 1 1090 27, 40                       | 1. 2 109 61 262 18604                                      |
| 29         | 26, 375%0 Acart garage                         | 7 11. 35 64 76388 24258                                    |
| 30<br>31   | 26, 9869% 31/10 0686%<br>27, 88838 7809% 82445 | 1, 2, 503, 42371, 22 <b>704</b><br>11, 29302, 89834, 49956 |
| 32         | 28, 18530, 55 % 3 %45                          | 1 29994 37525 11048                                        |
| 33         | 28, 77:300 5161 3743                           | 1. 00667 93729 32094                                       |
| 34         | 29, 35475 05.57 60288                          | 1, 31321 57401 89648                                       |
| 35         | 29, 93176 (1190 %63.6)                         | 1,31965 19603 77514                                        |
| 36         | 30, 50326 86114 1 505                          | 1, 20390 63598 38441                                       |
| 37         | 31, 06946 858.71 837.56                        | 1. 53301 66426 47762                                       |
| 38         | 31, 63055 16 20 12659                          | - 1, 33798 09181 42291                                     |
| 39         | 32, 18670 967292031                            | 1 11. 04385 27676 48983                                    |
| 40 :       | <b>32.</b> 73005 (6600) 00265                  | 1, 51955 (297) 47445                                       |
| 41         | 33, 28488 at \$15 0.402                        | 11, 35515 (1807 15907                                      |
| 42         | 33, 82721 49195 (5652                          | 1, 56063 77026 40532                                       |
| 43         | 34. 36523 21335 65656                          | +1,36501 57919 <b>26784</b>                                |
| 44         | <b>34,</b> 89907 00503 i3312                   | . + 1, 37125 00540 <b>34239</b>                            |
| 45         | <b>35.</b> 42885 61027 4789                    | 1.37646 47989 60084                                        |
| 46         | <b>35.</b> 95471 02618 98629                   | -1.38154 40663 17105                                       |
| 47         | <b>36.</b> 47674 66443 74809                   | 41, 38G53 1G477 85955                                      |
| 48         | 36, 99507 38469 94501                          | -1, 39140 11072 66471                                      |
| 49         | <b>37.</b> 50979 50920 05016                   | +1,39624 57990 06725                                       |
| 50         | 38, 02100 86772 75251                          | -1, 40097 88839 49769                                      |
| 51         | 38, 52580 83000 91249                          | +1, 40563 33445 <b>05322</b>                               |
| 52         | <b>39. 0332</b> 8 83832 72514                  | -1,41021 19979 25998                                       |
| 53         | 99.53451 92007 23005                           | +1.11471 75084 44110                                       |
| 54         | 40, 03259 76807 54176                          | -1,41915 23983 05068                                       |
| } 55<br>20 | 40, 52759 6613× ×9718                          | *1.428.190578 16189                                        |
| 56         | 41.01959 08723 32490                           | -1, 42781 97545 15052                                      |

Table 4 ROOTS AND TURNING VALUES OF Ai'(-  $\beta$ )

| s        | $eta_{f s}$                          | Ai (- β <sub>S</sub> ) |
|----------|--------------------------------------|------------------------|
| 1        | 1. 01879 29716 47471                 | +0.53565 66560 15700   |
| 2        | 3. 24810 75821 79837                 | -0.41901 54780 32564   |
| 3        | 4,82009 92111 78736                  | +0. 38040 64686 28153  |
| 4        | 6. 16330 73556 39487                 | -0, 35790 79437 12292  |
| 5        | 7. 37217 72550 47770                 | +0. 34230 12444 11624  |
| 6        | 8,48848 67340 19722                  | -0.33047 62291 47967   |
| 7        | 9.53544 90524 33547                  | +0. 32102 22881 94716  |
| 8        | 10,52766 03969 57407                 | -0. 31318 53909 78682  |
| 9        | 11.47505 66334 80245                 | +0.30651 72938 82777   |
| 10       | 12, 38478 83718 45747                | -0.30073 08293 22645   |
| 11       | 13, 26221 89616 65210                | 10, 29563 14810 01913  |
| 12       | 14.11150 19704 62995                 | -0, 29108 16772 03539  |
| 13       | 14. 93593 71967 20517                | +0. 28698 07069 99202  |
| 14       | 15. 73820 13736 92538                | -0. 28325 27361 25021  |
| 15       | 16. 52050 38254 33794                | +0, 27983 93053 60411  |
| 16       | 17. 28469 50502 16437                | -0. 27669 44450 68930  |
| 17       | 18. 03234 46225 04393                | +0. 27378 13856 46685  |
| 18       | 18. 76479 84376 65955                | 0. 27107 02785 76971   |
| 19       | 19, 48322 16565 67231                | +0. 26853 65782 82176  |
| 20       | 20. 18863 15094 63373                | -0, 26615 98682 15709  |
| 21       | 20, 88192 27555 16738                | +0, 26392 29929 60829  |
| 22       | 21, 56388 77231 98975                | -0, 26181 14056 94794  |
| 23       | 22, 23523 22853 48913                | +0. 25981 26701 51466  |
| 23<br>24 | <b>22.</b> 89658 87388 74619         | -0, 25701 60753 32572  |
|          |                                      | +0. 25611 23337 79654  |
| 25       | 23, 54852 62959 28802                | -0. 25439 33426 46825  |
| 26       | 24, 19155 97095 26354                |                        |
| 27       | 24. 82615 64259 21155                | +0. 25275 19925 76574  |
| 28       | 25, 45274 25617 77650                | -0. 25118 20133 88409  |
| 29       | 26. 07170 79351 73912                | +0. 24967 78484 21125  |
| 30       | 26, 68341 03283 22450                | -0. 24823 45513 98365  |
| 31       | 27. 28817 91215 23985                | +0. 24684 77011 60296  |
| 32       | 27, 85631 84087 68461                | -0. 24551 33306 87119  |
| 33       | 28. 47810 96831 02278                | +0. 24422 78676 45060  |
| 34       | 29, 06381 41626 38199                | -0. 24298 80842 90143  |
| 35       | 29, 64307 48146 32016                | +0. 24179 10550 23721  |
| 36       | 30. 21791 81244 68575                | - 0. 24063 41202 44844 |
| 37       | 30. 78675 56480 12503                | 10. 2395) 48554 15564  |
| 38       | 31. 35038 53790 83035                | -0. 23843 10444 66267  |
| 39       | 31, 90899 29584 30463                | +0. 23738 06568 33468  |
| 40       | 32, 46275 27462 38480                | -0, 23636 18275 53143  |
| 41       | 33, 01182 87766 34287                | +0. 23537 28399 36488  |
| 42       | 33, 55637 56097 89422                | -0. 23441 21104 38024  |
| 43       | 34, 09653 90948 09138                | +0. 23347 81753 92842  |
| 44       | <b>34.</b> 63245 70546 <b>3</b> 5866 | -0. 23256 96793 53833  |
| 45       | <b>35.</b> 16425 99025 53408         | +0, 23168 53648 03788  |
| 46       | 35, 69207 11985 10469                | -0. 23082 40630 53233  |
| 47       | 36, 21600 81523 35199                | +0. 22998 46861 64426  |
| 48       | 36.73618 20799 46803                 | -0. 22916 62197 66428  |
| 49       | 37. 25269 88178 54148                | +0, 22836 77166 46281  |
| 50       | 37. 76565 91005 38871                | -0. 22758 82910 18357  |
| 51       | 38. 27515 89047 30879                | +0. 22682 71133 87890  |
| 52       | 38. 78128 97640 80369                | -0. 22608 34059 36628  |
| 53       | 39, 28413 90572 98596                | +0. 22535 64383 68475  |
| 54       | 39, 78379 02724 68233                | -0, 22464 55241 61432  |
| 55       | 40. 28032 32499 03719                | +0, 22395 00171 79277  |
| 56       | 40. 77381 44056 64866                | -0. 22326 93086 02652  |
|          |                                      | 1                      |

In Fig. 11 we depict the behavior of Ai(x) and Bi(x) for real values of x. The envelope curve is  $\pm$  F(x). Vertical lines are drawn through the zeros of both Ai(x) and Bi(x) in order to illustrate the property that a zero of one of these functions coincides with an extreme value (maxima or minima) of the other function. In the inset we give a small table of values of  $\alpha_s$  and Ai'(- $\alpha_s$ ). From the Wronskian relation

$$Ai(x) Bi'(x) - Ai'(x) Bi(x) = 1/\pi$$
 (4.56)

we find that

$$Bi(-\alpha_s) = -\frac{1}{\pi Ai'(-\alpha_s)}$$



Fig. 11 The Airy Integrals Ai(x) and Bi(x)

A similar illustration for Ai'(x) and Bi'(x) is given in Fig. 12. The inset lists values of  $\beta_{\rm S}$  and Ai(- $\beta_{\rm S}$ ). In this case we have

$$Bi'(-\alpha_s) = \frac{1}{\pi \operatorname{Ai}(-\beta_s)}$$



Fig. 12 The Airy Integrals Ai'(x) and Bi'(x)

#### Section 5

# NOTATION FOR ASYMPTOTIC ESTIMATES FOR THE BESSEL FUNCTIONS IN THE TRANSITION REGION

For half a century, progress in diffraction theory has been seriously hampered by the fact that research workers have failed to use a consistent and standarized notation for the asymptotic estimates for the Bessel functions in the so-called transition region. This confusion is in large measure due to the fact that applied mathematicians and physicists have failed to recognize the importance of adopting a universally acceptable notation for the solutions of Airy's differential equation

$$\frac{d^2y}{dx^2} + \alpha xy = 0 , \quad \alpha = constant$$

Although this equation is considerably simpler than Bessel's differential equation

$$\frac{d^{2}Z_{\nu}(kx)}{dx^{2}} + \frac{1}{x} \frac{dZ_{\nu}(kx)}{dx} + \left(k^{2} - \frac{\nu^{2}}{x^{2}}\right)Z_{\nu}(kx) = 0$$

it is a curious fact that most authors choose to express the solutions of Airy's equation in the form

$$y(x) = x^{1/2} \left\{ a J_{1/3} \left( \frac{2}{3} \sqrt{\alpha} x^{3/2} \right) + b J_{-1/3} \left( \frac{2}{3} \sqrt{\alpha} x^{3/2} \right) \right\}$$

or

$$y(x) = x^{1/2} \left\{ c H_{1/3}^{(1)} \left( \frac{2}{3} \sqrt{\alpha} x^{3/2} \right) + d H_{1/3}^{(2)} \left( \frac{2}{3} \sqrt{\alpha} x^{3/2} \right) \right\}$$

where a and b (or c and d) are constants.

For negative values of  $\alpha$  , one frequently finds results of the form

$$y(x) = \kappa^{1/2} \left\{ e I_{1/3} \left( \frac{2}{3} \sqrt{-\alpha} x^{3/2} \right) + f I_{-1/3} \left( \frac{2}{3} \sqrt{-\alpha} x^{3/2} \right) \right\}$$

or

$$y(x) = x^{1/2} \left\{ g I_{1/3} \left( \frac{2}{3} \sqrt{-\alpha} x^{3/2} \right) + h K_{1/3} \left( \frac{2}{3} \sqrt{-\alpha} x^{3/2} \right) \right\}$$

where e and f (or g and h) are constants, and  $I_{\pm 1/3}(z)$ ,  $K_{1/3}(z)$  denotes the modified Bessel functions.

The form of Airy's equation which has been implied in most of the studies in diffraction theory has been

$$\frac{\mathrm{d}^2 \mathbf{y}}{\mathrm{d}\mathbf{x}^2} = 2 \mathbf{x} \mathbf{y} \tag{5.1}$$

and the solutions employed have been of the form

$$y(x) = \sqrt{x} \left\{ c H_{1/3}^{(1)} \left[ \frac{1}{3} (-2x)^{3/2} \right] + d H_{1/2}^{(2)} \left[ \frac{1}{3} (-2x)^{3/2} \right] \right\}$$
 (5.2)

The form

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \pm \frac{1}{3} x y \tag{5.3}$$

has often been used by mathematicians. The forms

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 9 x y \tag{5.4}$$

and

$$\frac{d^2y}{dx^2} + \frac{\pi^2}{12} xy = 0 {(5.5)}$$

have also been used.

These Bessel functions of order  $\pm 1/3$  are introduced in diffraction theory when the Bessel functions  $J_n(x)$  and  $H_n^{(1,2)}(x)$  are approximated by

$$J_{n}(x) \approx \frac{1}{3} \left[ \frac{\sqrt{-2\tau}}{x^{1/3}} \left\{ J_{1/3} \left[ \frac{1}{3} (-2\tau)^{3/2} \right] + J_{-1/3} \left[ \frac{1}{3} (-2\tau)^{3/2} \right] \right\}$$
 (5.6)

$$H_n^{(1,2)}(x) \approx \frac{\exp(\pm i \pi/6)}{\sqrt{3}} \times \frac{\sqrt{-2\tau}}{x^{1/3}} H_{1/3}^{(1,2)} \left[ \frac{1}{3} (-2\tau)^{3/2} \right]$$
 (5.7)

$$\tau = x^{-1/3} (n - x)$$

when  $x \gg 1$  and  $|x - v| = O(x^{1/3})$ . This approximation is generally attributed to Nicholson and/or Watson. It was extensively used by van der Pol and Bremmer in the late 1930's and appears frequently in recent studies. It is generally called the Hankel approximation. It was first used by Lorenz in 1890.

Since  $H_{1/3}^{(1,2)}(z)$  is a multi-valued function of z, and z-1/3  $(-2\tau)^{3/2}$  is a multi-valued function of  $\tau$ , the use of this approximation requires a thorough knowledge of the theory of complex variables (branch cuts, Riemann surfaces, circuit relations, etc.). The functions  $\sqrt[3]{z}$   $J_{1/3}(z)$ ,  $\sqrt[3]{z}$   $H_{1/3}^{(1,2)}(z)$  are, however, entire functions of z and, therefore, are much easier to use. During the carrly 1940's at least three research groups recognized the advantage of replacing the multi-valued Bessel and Hankel functions of order  $\pm 1/3$  by such an entire function. The first group to do this was an English research team, headed by M. H. L. Pryce (Ref. 10), who as early as 1941 recognized the desirability of using Jeffrey's (Ref. 18) form of the Airy integrals

$$Ai(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{t^{3}}{3} + xt\right) dt$$
 (5.8)

$$Bi(x) = \frac{1}{\pi} \int_{0}^{\infty} \left[ \sin\left(\frac{t^3}{3} + xt\right) + \exp\left(-\frac{t^3}{3} + xt\right) \right] dt$$
 (5.9)

which are solutions of

$$\frac{d^2y(x)}{dx^2} = xy(x) \qquad \text{or} \qquad \frac{d^2y(x)}{dx^2} - xy(x) = 0 \qquad (5.10)$$

Let

$$\xi = \frac{2}{3} x^{3/2}$$

then we can show that the Airy integrals have the properties:

$$Ai(x) = \frac{\sqrt{x}}{3} \left[ I_{-1/3}(\xi) - I_{1/3}(\xi) \right] \qquad ; \qquad Bi(x) = \left(\frac{x}{3}\right)^{1/2} \left[ I_{-1/3}(\xi) + I_{1/3}(\xi) \right]$$

Bi(x) ± iAi(x) = 
$$\frac{2\sqrt{x}}{3}$$
 exp(± i  $\pi/6$ )  $\left[ I_{-1/3}(\xi) + \exp(\mp i \pi/3) I_{1/3}(\xi) \right]$ 

$$Ai'(x) = \frac{x}{3} \left[ I_{2/3}(\xi) - I_{-2/3}(\xi) \right] \qquad ; \qquad Bi'(x) = \frac{x}{\sqrt{3}} - \left[ I_{2/3}(\xi) + I_{-2/3}(\xi) \right]$$

Bi'(x) ± iAi(x) = 
$$\frac{2x}{3} \exp(\mp i \pi/6) \left[ I_{-2/3}(\xi) + \exp(\mp i \pi/3) I_{2/3}(\xi) \right]$$

$$Ai(-x) = \frac{\sqrt{x}}{3} \left[ J_{-1/3}(\xi) + J_{1/3}(\xi) \right] \qquad ; \qquad Bi(-x) = \left(\frac{x}{3}\right)^{1/2} \left[ J_{-1/3}(\xi) - J_{1/3}(\xi) \right]$$

Bi(-x) ± i Ai(-x) = 
$$\frac{2\sqrt{x}}{3} \exp(\pm i \pi/6) \left[ J_{-1/3}(\xi) - \exp(\mp i \pi/3) J_{1/3}(\xi) \right]$$

$$Ai'(-x) = \frac{x}{3} \left[ J_{2/3}(\xi) - J_{-2/3}(\xi) \right] ; \qquad Bi'(-x) = \frac{x}{\sqrt{3}} \left[ J_{2/3}(\xi) + J_{-2/3}(\xi) \right]$$

Bi'(-x) ± i Ai(-x) = 
$$\frac{2x}{3} \exp(\mp i\pi/6) \left[ J_{-2/3}(\xi) + \exp(\pm i\pi/3) J_{2/3}(\xi) \right]$$

$$\text{Ai}(\mathbf{x}) = \frac{1}{\pi} \left(\frac{\mathbf{x}}{3}\right)^{1/2} K_{1/3}(\xi) \qquad \qquad \text{Ai'}(\mathbf{x}) = -\frac{\mathbf{x}}{\pi} \frac{1}{\sqrt{3}} K_{2/3}(\xi)$$

$$\text{Ai}(-\mathbf{x}) = \frac{\sqrt{\mathbf{x}}}{2\sqrt{3}} \left[ \exp(\mathbf{i} \pi/6) \ \mathbf{H}_{1/3}^{(1)}(\xi) + \exp(\mathbf{i} \pi/6) \ \mathbf{H}_{1/3}^{(2)}(\xi) \right]$$

$$\text{Ai'}(\mathbf{x}) = \frac{\mathbf{x}}{2\sqrt{3}} \left[ \exp(-\mathbf{i} \pi/6) \ \mathbf{H}_{2/3}^{(1)}(\xi) + \exp(\mathbf{i} \pi/6) \ \mathbf{H}_{2/3}^{(2)}(\xi) \right]$$

$$\text{Ai'}(\mathbf{x}) = \frac{\sqrt{\mathbf{x}}}{2\sqrt{3}} \exp(\mathbf{i} \pi/6) \ \mathbf{H}_{1/3}^{(1)} \left[ \xi \exp(-\mathbf{i} \pi) \right] = \frac{\sqrt{\mathbf{x}}}{2\sqrt{3}} \exp(-\mathbf{i} \pi/6) \ \mathbf{H}_{1/3}^{(2)} \left[ \xi \exp(\mathbf{i} \pi) \right]$$

$$\text{Ai'}(\mathbf{x}) = -\frac{\mathbf{x}}{2\sqrt{3}} \exp(-\mathbf{i} \pi/6) \ \mathbf{H}_{2/3}^{(1)} \left[ \xi \exp(-\mathbf{i} \pi) \right] = -\frac{\mathbf{x}}{2\sqrt{3}} \exp(\mathbf{i} \pi/6) \ \mathbf{H}_{2/3}^{(2)} \left[ \xi \exp(\mathbf{i} \pi) \right]$$

$$\text{Bi}(\mathbf{x}) \pm \mathbf{i} \text{Ai'}(\mathbf{x}) = 2 \exp(\pm \mathbf{i} \pi/6) \ \text{Ai'} \left[ \exp(\pm \mathbf{i} 2\pi/3) \ \mathbf{x} \right]$$

$$\text{Bi}(-\mathbf{x}) \pm \mathbf{i} \text{Ai'}(-\mathbf{x}) = -\frac{\mathbf{x}}{\sqrt{3}} \exp(\pm \mathbf{i} 2\pi/3) \ \mathbf{H}_{1/3}^{(1,2)}(\xi)$$

$$\text{Bi}(-\mathbf{x}) \pm \mathbf{i} \text{Ai'}(-\mathbf{x}) = -\frac{\mathbf{x}}{\sqrt{3}} \exp(\pm \mathbf{i} \pi/3) \ \mathbf{H}_{2/3}^{(1,2)}(\xi) = \frac{\mathbf{x}}{3} \exp(\pm \mathbf{i} 2\pi/3) \ \mathbf{H}_{-2/3}^{(1,2)}(\xi)$$

In 1942, H. Jeffreys (Ref. 18) made the observation that "Bessel functions of order  $\pm 1/3$ ,  $\pm 2/3$  seem to have no application except to provide an inconvenient way of expressing..... the Airy integrals".

When Pryce simplified the van der Pol-Bremmer formula in 1941 he encountered the functions

$$f(\nu) = Bi(-\nu) - iAi(-\nu) = 2 \exp(-i\pi/6) Ai \left[ \exp(i\pi/3) \nu \right]$$
  
 $g(\nu) = Ai(-\nu)$ 

The group at the Radiation Laboratory at M.I.T. was in close liaison with Admiralty Signal Establishment (England) and followed Pryce in introducing the Airy integrals, but they employed the definitions

$$y_2(\nu) = \sqrt{\pi} \left[ Bi(-\nu) - i Ai(-\nu) \right]$$

$$y_1(\nu) = -\sqrt{\pi} \left[ Bi(-\nu) + i Ai(-\nu) \right]$$

Since these authors had access to the manuscript tables of Miller and Jeffreys (Ref. 16), these choices of notation made it possible to obtain numerical results.

The Admiralty Computing Service (Ref. 10) (employing the services of many distinguished consultants and research workers) computed values of Ai [  $b_n$  +  $y \exp(i \pi/3)$  ], where Ai( $b_n$ ) =  $t \exp(-i 5\pi/12)$  Ai'( $b_n$ ), for a range of real values of t and y, for the first five values of the roots  $b_n$ .

At the Radio Research Laboratory at Harvard University, Furry (Ref. 19) also recognized the value of replacing the Bessel functions of order  $\pm 1/3$ ,  $\pm 2/3$  by solutions of Airy's equation. He chose to work with the form

$$\frac{d^2h(x)}{dx^2} + xh(x) = 0$$

and by end of 1944 tables of

had been tabulated to eight decimal places at the points of a square lattice of spacing 0.1 for  $|x| \le 6$ . These tables were published in the fall of 1945 under the title Tables of the Modified Hankel Functions of Order One-Third and Their Derivatives.

It is easily seen that

$$h_1(x) = k [Ai(-x) - iBi(-x)]$$
 (5.12)

$$h_2(x) = k^* [Ai(-x) + iBi(-x)]$$
 (5.13)

$$h_1'(x) = -k [Ai'(-x)-iBi'(-x)]$$
 (5.14)

$$h_2'(x) = -k*[Ai'(-x) + iBi'(-x)]$$
 (5.15)

where.

$$k = (12)^{1/6} \exp(-i \pi/6)$$
  
 $k^* = (12)^{1/6} \exp(i \pi/6)$ 

The Wave Propagation Group at Columbia University was also engaged in diffraction studies at the close of World War II. In the work of Pekeris (Ref. 20), the Bessel functions of order  $\pm 1/3$ ,  $\pm 2/3$  were retained. In the reports from this group one finds such expressions as

$$U(x) = I_{1/3}(x) + \exp(-i \pi/3) I_{-1/3}(x)$$
 (5.16)

$$V(x) = I_{2/3}(x) + \exp(i \pi/3) I_{-2/3}(x)$$
 (5.17)

$$P(v) = v^{1/2} \left[ J_{1/3}(x) + J_{-1/3}(x) \right], \quad x = \frac{2}{3} v^{3/2}$$
 (5.18)

The use by Pekeris of these forms was undoubtedly influenced by the fact that the Mathematical Tables Project (Ref. 21) at Columbia University was in the process of tabulating the tables of  $J_{\pm 1/3}$ ,  $J_{\pm 2/3}$ ,  $J_{\pm 1/4}$ ,  $J_{\pm 3/4}$ ,  $I_{\pm 1/3}$ ,  $I_{\pm 2/3}$ ,  $I_{\pm 1/4}$ ,  $I_{\pm 3/4}$ , which were later published in 1948-1949 in two volumes under the title Tables of Bessel Functions of Fractional Order.

These tables are given to either ten significant figures (or ten decimals if the magnitude exceeds unity) and constitute the most accurate tables available today (1959) for the evaluation of the Airy integrals. However, they are not generally as easy to employ as Miller's classic table which gives eight decimals.

The outstanding contribution of Pryce, Freehafer, and Furry, in employing the Airy integral in these diffraction problems, is not generally appreciated by contemporary research workers. This step is generally credited to the Soviet physicist V. A. Fock (Ref. 12) who has employed the solutions of

$$\frac{d^2y(x)}{dx} = xy(x)$$

which he denotes by

$$\mathbf{v}(\mathbf{t}) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \cos\left(\frac{\mathbf{x}^{3}}{3} + \mathbf{t}\,\mathbf{x}\right) d\mathbf{x} \tag{5.19}$$

$$u(t) = \frac{1}{\sqrt{\pi}} \int_{0}^{db} \left\{ \sin\left(\frac{x^3}{3} + tx\right) + \exp\left(-\frac{x^3}{3} + xt\right) \right\} dx$$
 (5.20)

$$w_1(t) = u(t) + i v(t) = 2 \exp(i \pi/6) v \left[ \exp(i 2\pi/3) t \right]$$
 (5.21)

$$w_2(t) = u(t) - i v(t) = 2 \exp(-i \pi/6) v [\exp(-i 2\pi/3) t]$$
 (5.22)

In a monograph, <u>Diffraction of Radio Waves Around the Earth's Surface</u>, published in 1946, Fock gives tables of u(t), u'(t), v(t), v'(t) to four significant figures. We readily observe that in terms of Miller's functions:

$$v(t) = \sqrt{\pi} \operatorname{Ai}(t) , \quad u(t) = \sqrt{\pi} \operatorname{Bi}(t)$$

$$w_{1}(t) = \sqrt{\pi} \left[ \operatorname{Bi}(t) + i \operatorname{Ai}(t) \right] , \quad w_{2}(t) = \sqrt{\pi} \left[ \operatorname{Bi}(t) - i \operatorname{Ai}(t) \right]$$

$$(5.23)$$

and, in terms of Freehafer's functions:

$$w_1(t) = -y_1(t)$$
,  $w_2(t) = y_2(t)$ 

The confusion attendant to the existence of these numerous notations has been further enhanced by the fact that Keller (Ref. 22) and his collaborators—at New York University and Franz (Ref. 23) and his collaborators at Munster University (Germany) have taken the standard form of Airy's integral to be

$$A(q) = \frac{1}{2} \int_{-\infty}^{\infty} \exp\left[-i(\tau^3 - q\tau)\right] d\tau$$
 (5.24)

so that

$$\frac{d^2\Lambda(q)}{dq^2} + \frac{q}{3}\Lambda(q) = 0$$

They have not made use of the fact that

$$A(q) = \frac{\pi}{\sqrt[3]{3}} Ai \left(-\frac{1}{\sqrt[3]{3}} q^{-1}\right)$$
 (5.25)

For example, Franz is apparently unaware of the fact that Miller has published values of  $\alpha_s$ , Ai( $-\alpha_s$ ),  $\beta_s$ , Ai( $-\beta_s$ ) and has computed the irrar five values of  $\bar{q}_s$ , A'( $\bar{q}_s$ ),  $q_s$ , A( $q_s$ ).

In Table 5 we reproduce these results by Franz.

Table 5
ROOTS AND TURNING VALUES FOR A(q), A'(q)

|                |               | •                            | 1 47                      |  |
|----------------|---------------|------------------------------|---------------------------|--|
| q <sub>ℓ</sub> | $A(q_{\ell})$ | $\overline{\mathrm{q}}_\ell$ | $A'(\overline{q}_{\ell})$ |  |
| 1.469354       | 1,16680       | 3.372134                     | -1,059053                 |  |
| 4.684712       | -0.91272      | 5.895843                     | 1,212955                  |  |
| 6.951786       | 0.82862       | 7.962025                     | -1.306735                 |  |
| 8.889027       | -0,77962      | 9.788127                     | 1.375676                  |  |
| 10.632519      | 0.74562       | 11,457423                    | -1.430780                 |  |

It is easily seen that

$$\overline{q}_{S} = \sqrt[3]{3} \alpha_{S} \qquad A'(\overline{q}_{S}) = \frac{\pi}{\sqrt[3]{3}} Ai'(-\alpha_{S})$$

$$q_{S} = \sqrt[3]{3} \beta_{S} \qquad A(q_{S}) = \frac{\pi}{\sqrt[3]{3}} Ai(\beta_{S}) \qquad (5.26)$$

and therefore the first fifty of these constants can be obtained to eight decimals from Miller's 1946 table.

Another outstanding set of values of Airy integrals has been tabulated by Cerrillo and Kautz (Ref. 24) who define the integral

$$A h_{1,3}(B) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp[-i(\tau^3 - B\tau)] d\tau$$
 (5.27)

which, except for the factor  $(1/\pi)$  is identical with Franz's integral A(B). These authors give values of  $|Ah_{1,3}(B)|$  and  $\arg |\Lambda h_{1,3}(B)|$  for |B| = 0(0.2)4,  $\beta = \arg \beta = 0(7.5^{\circ})180^{\circ}$  with an accuracy of seven decimals. They also list the first twenty values of  $q_{g}$ . It should also be mentioned that in a paper published in the Philosophical Magazine in 1946; Woodward and Woodward (Ref. 25) have given tables of the real and imaginary parts of  $\Lambda i(z)$ ,  $\Lambda i'(z)$ , Bi(z), Bi'(z) for z = x + iy, x = -2.4(0.2)2.4, y = -2.4(0.2)0, to an accuracy of four decimals.

Some current research groups have ignored the simplification introduced in the notation by Pryce in 1941, and continue to write the diffraction formula in the form

$$\mathbf{F} = \left[ 2\pi\alpha^{2/3} (\mathbf{k}_{1} \mathbf{a})^{1/3} \left( \frac{\mathbf{d}}{\mathbf{a}} \right) \right]^{1/2} \sum_{s=0}^{\infty} \frac{\mathbf{f}_{s}(\mathbf{h}_{1}) \mathbf{f}_{s}(\mathbf{h}_{2})}{\left[ 2\tau_{s} - 1/\delta_{e}^{2} \right]} \exp \left\{ \mathbf{i} \left[ (\mathbf{k}_{1} \mathbf{a})^{1/3} \tau_{s} \alpha^{2/3} \frac{\mathbf{d}}{\mathbf{a}} + \frac{\pi}{4} \right] \right\}$$
(5. 28)

$$f_{s}(h_{2}) = \left[ \frac{(k_{1}a)^{2/3} \frac{2h_{2}}{a} \alpha^{1/3} - 2\tau_{s}}{-2\tau_{s}} \right]^{1/2} \frac{H_{1/3}^{(1)} \left[ \frac{1}{3} \left[ (k_{1}a)^{2/3} \frac{2h_{2}\alpha^{1/3}}{a} - 2\tau_{s} \right]^{3/2} \right]}{H_{1/3}^{(1)} \left[ \frac{1}{3} \left( -2\tau_{s} \right)^{3/2} \right]}$$
(5. 29)

$$\frac{\exp(-i \pi/3) H_{2/3}^{(1)} \left(\frac{1}{3} (-2\tau_{s})^{3/2}\right)}{H_{1/3}^{(1)} \left(\frac{1}{3} (-2\tau_{s})^{3/2}\right)^{3/2}} = -\frac{1}{\delta_{e} \sqrt{-2\tau_{s}}}$$
(5.30)

$$\delta_{e} = \frac{i k_{2}^{2} / k_{1}^{2}}{(k_{1}a)^{1/3} \sqrt{k_{2}^{2}/k_{1}^{2} - 1}}$$
 (5.31)

The roots  $\tau_{s,o}$  and  $\tau_{s,\infty}$  defined by

$$H_{2/3}^{(1)} \left\{ \frac{1}{3} \left( -2\tau_{s,\infty} \right)^{3/2} \right\} = 0 , \delta_{e} = \infty$$
 (5.32)

$$H_{1/3}^{(1)} \left\{ \frac{1}{3} \left( -2\tau_{s,o} \right)^{3/2} \right\} = 0 , \delta_e = 0$$
 (5.33)

have the property that

$$\tau_{s,o} = \frac{1}{\sqrt[3]{2}} \alpha_{s+1} \exp(i \pi/3)$$

$$\tau_{s,\infty} = \frac{1}{\sqrt[3]{2}} \beta_{s+1} \exp(i \pi/3)$$
(5.34)

where  $\alpha_s$  and  $\beta_s$  denote Miller's roots. A recent (1956) research report (Ref. 26) lists the following results obtained from Miller's table by dividing  $\alpha_{s+1}$ ,  $\beta_{s+1}$  by  $\sqrt[3]{2}$ .

Table 6 . TABLE OF BREMMER'S CONSTANTS  $|\tau_{\rm g}|$ 

| i  | ſ · · · · · · · ·                  |                             |    | · · · · · · · · · · · · · · · · · · · |                    |
|----|------------------------------------|-----------------------------|----|---------------------------------------|--------------------|
| s  | $ 	au_{_{\mathrm{S}},\mathrm{o}} $ | $ 	au_{\mathbf{S},\infty} $ | s  | $ \tau_{\mathbf{s},\mathbf{o}} $      | $ 	au_{s,\infty} $ |
| 0  | 1.85575708                         | 0.808616516                 | 25 | 19.45383898                           | 19.20085366        |
| 1  | 3.24460762                         | 2.57809613                  | 26 | 19.95428298                           | 19.70453341        |
| 2  | 4.38167124                         | 3.82571528                  | 27 | 20.44852842                           | 20.20185516        |
| 3  | 5.38661378                         | 4.89182029                  | 28 | 20.93687144                           | 20.69312830        |
| 4  | 6,30526301                         | 5.85130097                  | 29 | 21.41958427                           | 21.17863681        |
| 5  | 7.16128272                         | 6.73731638                  | 30 | 21.89691791                           | 21.65864212        |
| 6  | 7.96889165                         | 7.56829093                  | 31 | 22.36910440                           | 22. 13338559       |
| 7  | 8.73747153                         | 8.35580960                  | 32 | 22.83635881                           | 22.60309063        |
| 8  | 9.47362183                         | 9.10775848                  | 33 | 23. 29888096                          | 23.06796458        |
| 9  | 10.18220685                        | 9.82981304                  | 34 | 23.75685692                           | 23.52820029        |
| 10 | 10.86694205                        | 10.52623016                 | 35 | 24.21046034                           | 23.98397750        |
| 11 | 11.53074627                        | 11.20030653                 | 36 | 24.65985356                           | 24.43546415        |
| 12 | 12.17596542                        | 11.85466121                 | 37 | 25.10518866                           | 24.88281736        |
| 13 | 12.80452070                        | 12.49141870                 | 38 | 25.54660838                           | 25.32618449        |
| 14 | 13.41801060                        | 13.11233258                 | 39 | 25.98424688                           | 25.76570393        |
| 15 | 14.01778319                        | 13.71887155                 | 40 | 26.41823048                           | 26.20150586        |
| 16 | 14.60498862                        | 14.31228141                 | 41 | 26.84867830                           | 26.63371297        |
| 17 | 15.18061824                        | 14.89363039                 | 42 | 27.27570281                           | 27.06244101        |
| 18 | 15.74553413                        | 15.46384328                 | 43 | 27.69941041                           | 27.48779937        |
| 19 | 16.30049193                        | 16.02372745                 | 44 | 28.11990179                           | 27.90989158        |
| 20 | 16.84615869                        | 16.5 <b>7</b> 399308        | 45 | 28.53727244                           | 28. 32881568       |
| 21 | 17.38312698                        | 17,11526902                 | 46 | 28.95161299                           | 28.74466471        |
| 22 | 17.91192624                        | 17.64811556                 | 47 | 29.363009 <b>57</b>                   | 29. 15752704       |
| 23 | 18.43303197                        | 18.17303452                 | 48 | 29.77154409                           | 29.56748664        |
| 24 | 18.94687327                        | 18.69047771                 | 49 | 30.17729458                           | 29.97462349        |

In Table 6 we reproduce these tables for the convenience of adherents to Bremmer's notation. Although this is a simple step to carry out, it would have been unnecessary if the natural units proposed by Pryce (Ref. 10), and used by Freehafer (Ref. 8) in Vol. 13 of the Radiation Laboratory Series and by all current Soviet writers (Ref. 14), had been employed. These units have been defined in Section 1 to be

$$d_{O} = \left(\frac{2}{k_{1}a}\right)^{1/3} a$$
,  $h_{O} = \left(\frac{k_{1}a}{2}\right)^{1/3} \frac{1}{k_{1}}$  (5.35)

We then write

$$d = \xi d_0, \quad h_1 = \xi_1 h_0, \quad h_2 = \xi_2 h_0$$
 (5.36)

The normalized impedance is defined to be

$$q = i \left(\frac{ka}{2}\right)^{1/3} \frac{k_1^2}{k_2^2} \sqrt{(k_2^2/k_1^2) - 1}$$
 (5.37)

The diffraction formula then takes the form of Pryce and Fock

$$\underbrace{\frac{F}{\text{Bremmer}} = \sqrt{\pi \xi} \quad \exp(i \, \pi/4) \sum_{s=1}^{\infty} \, \frac{f_s(\xi_1) f_s(\xi_2)}{t_s - q^2} \exp(i \xi \, t_s) = \underbrace{\frac{1}{2} \, V(\xi, \, \xi_1, \, \xi_2, \, q)}_{\text{Fock}} \quad (5.38)$$

$$f_s(\xi) = \frac{Ai \left[ -a_s + \xi \exp(-i \pi/3) \right]}{Ai(-a_s)} = \frac{w_1(t_s - \xi)}{w_1(t_s)}$$
 (5.39)

$$Ai'(-a_s) + q \exp(i \pi/3) Ai(-a_s) = 0$$
, or  $w'_1(t_s) - q w_1(t_s) = 0$  (5.40)

where

$$\underbrace{t_{s}}_{\text{Fock}} = a_{s} \exp(i \pi/3) = \underbrace{\sqrt[3]{2} \tau_{s-1}}_{\text{Bremmer}}$$
(5.41)

### Section 6

## HISTORY OF NOTATION FOR TRANSITION REGION FORMULAE

One modern writer has accepted Fock's normalization 'although the notation of van der Pol and Bremmer should have a historical priority.' It is a curious fact that the normalization of  $t_s$  used by Pryce, Freehafer, Furry, and Fock actually has the historical priority. Pryce is the only modern author who is apparently aware of the fact that in 1310 Poincaré (Ref. 27) had indicated for the special case  $\xi_1 = \xi_2 = 0$  that the diffraction formula should be of the form

$$\sum_{S=1}^{\infty} R_{S} \exp(it_{S}\xi)$$
 (6.1)

where  $t_s$  denotes the roots of

$$\mathbf{F}'\left[\mathbf{t_s} \exp(\mathbf{i} \ 4\pi/3)\right] = 0 \tag{6.2}$$

and

$$\mathbf{F(t)} = \int_{-\infty}^{\infty} \exp\left(i\mathbf{t}\mathbf{x} - i\frac{\mathbf{x}^3}{3}\right) d\mathbf{x} = 2\int_{0}^{\infty} \cos\left(\frac{\mathbf{x}^3}{3} - t\mathbf{x}\right) d\mathbf{x}$$

$$= A_{0} \left( 1 - \frac{t^{3}}{2 \cdot 3} + \frac{t^{6}}{2 \cdot 3 \cdot 4 \cdot 5} - \cdots \right) + A_{1} \left( t - \frac{t^{4}}{3 \cdot 4} + \cdots \right) (6.3)$$

$$A_0 = 3^{-1/6} \Gamma(\frac{1}{3})$$
 ,  $A_1 = 3^{1/6} \Gamma(\frac{2}{3})$ 

is a solution of Airy's differential equation

$$\frac{d^2\mathbf{F}}{dt^2} + t\mathbf{F} = 0 \tag{6.4}$$

Unfortunately, Poincaré did not determine R<sub>s</sub> explicitly. The brilliant analysis of the problem given by Poincaré is marred by the fact that the significant results are hidden in the difficult style of writing.

Poincaré showed that

F(t) , 
$$\exp(i\ 2\pi/3)$$
 F[t  $\exp(i\ 2\pi/3)$ ] ,  $\exp(i\ 4\pi/3)$  F[t  $\exp(i\ 4\pi/3)$ ] (6.5)

were all solutions of Airy's differential equation. He showed that

$$F(t) \xrightarrow[t \to \infty]{} 2\sqrt{\pi} t^{-1/4} \cos\left(\frac{2}{3} t^{3/2} - \frac{\pi}{4}\right) \qquad , \qquad F(t) \xrightarrow[t \to -\infty]{} \sqrt{\pi} (-t)^{-1/4} \exp\left[-\frac{2}{3} (-t)^{3/2}\right]$$

Poincare sought to evaluate the infinite series

$$\mu = -\frac{i}{4\pi\omega^2} \frac{1}{\rho^2 D^2} \sum_{n=1}^{\infty} n(n+1)(2n+1) \frac{\sqrt{\omega D} H_{n+1/2}^{(2)}(\omega D)}{\frac{d}{d(\omega \rho)} \left[\sqrt{\omega \rho} H_{n+1/2}^{(2)}(\omega \rho)\right]} P_n(\cos \theta) = \sum_{n=1}^{\infty} A_n P_n(\cos \theta)$$
(6.6)

for  $\omega \rho >> 1$  and  $\omega D = \omega \rho$ . He showed that for n in the vicinity of  $\omega \rho$ ,

$$A_{n} = -\frac{i}{4\pi\omega^{2}\rho^{4}} n(n+1)(2n+1) \frac{\sqrt{\omega\rho} H_{n+1/2}^{(2)}(\omega\rho)}{\frac{d}{d(\omega\rho)} \left[\sqrt{\omega\rho} H_{n+1/2}^{(2)}(\omega\rho)\right]} \approx -(-1)^{n} \frac{i \exp(i 2\pi/3)}{3\sqrt{2}\rho^{2}}(\omega\rho)^{-2/3}$$

$$n^{2} F[t \exp(i 4\pi/3)]$$

$$\frac{n^2}{\omega \rho} \frac{F[t \exp(i 4\pi/3)]}{F'[t \exp(i 4\pi/3)]}$$

(6.7)

where

$$\mathbf{t} = \left(\frac{\omega\rho}{2}\right)^{2/3} \left(1 - \frac{n^2}{\omega^2 \rho^2}\right) \approx \left(\frac{2}{\omega\rho}\right)^{1/3} \left(\omega\rho - n\right) \tag{6.8}$$

The Legendre polynomial was replaced by the approximation

$$P_{n}(\cos \theta) \approx \sqrt{\frac{2}{\pi n \sin \theta}} \cos \left(n\theta + \frac{\theta}{2} - \frac{\pi}{4}\right)$$
 (6.9)

The series was replaced by an integral which had poles when

$$n = \omega \rho - t_s \left(\frac{\omega \rho}{2}\right)^{1/3} \tag{6.10}$$

where tg denotes the roots of

$$F'\left[\begin{array}{c} t_s \exp(i \ 4\pi/3) \end{array}\right] = 0$$

However, Poincaré did not evaluate  $t_s$ , nor did he complete the analysis to show that the residue of  $A_n$  at these poles was

Res A<sub>n</sub> 
$$\approx (-1)^n \frac{\exp(i \pi/6)}{\rho^2} \left(\frac{\omega \rho}{2}\right)^{2/3} \frac{1}{t_s}$$
 (6.11)

At the pole, the Legendre function can be approximated by

$$P_{h_{S}}(\cos\theta) \approx \frac{1}{2\sqrt{\pi \sin\theta}} \left(\frac{2}{\omega\rho}\right)^{1/2} \exp(-i\omega\rho\theta + i\pi/4) \exp(it_{S}\xi) , \quad \xi = \left(\frac{\omega\rho}{2}\right)^{1/3}\theta$$
(6.12)

However, Poincaré did not complete the analysis to explicitly evaluate the coefficients  $\mathbf{R}_{\mathrm{S}}$  in the asymptotic result

$$\mu \xrightarrow[ka\to\infty]{} \sum_{s=1}^{\infty} R_s \exp(it_s \xi)$$

In fact, he did not go so far as to assert that

$$R_{s} = K/t_{s}$$

$$\sum_{s=1}^{\infty} R_{s} \exp(it_{s}\xi) = K\sum_{s=1}^{\infty} \frac{1}{t_{s}} \exp(i\xi t_{s})$$
(6.13)

where K does not depend on s. However, it is quite clear from Poincaré's paper that he was interested in methods and not in explicit results. Throughout this paper he makes frequent use of constants which are never explicitly evaluated. For example, he writes

$$\sqrt{x} J_{n}(x) \approx K_{1} x^{1/6} F(t) , \quad H_{n}^{(2)}(x) \approx K_{1}' x^{1/6} F[t \exp(i 4 \pi/3)]$$

$$t = \left(\frac{x}{2}\right)^{2/3} \left(1 - \frac{n^{2}}{x^{2}}\right) \simeq \left(\frac{2}{x}\right)^{1/3} (x - n)$$
(6.14)

but does not state the definition of  $K_1$  and  $K_1^{\prime}$  . However, since

$$\frac{d}{dx} \left\{ \sqrt{x} \ H_{n}^{(2)}(x) \right\} \approx K_{1}^{'} \sqrt[3]{2} \exp(i + 4\pi/3) \ x^{-1/6} \ F' \left[ t \exp(i + 4\pi/3) \right]$$

the constant cancels out when using the quotient

$$\frac{\sqrt{x} H_{n}^{(2)}(x)}{\frac{d}{dx} \left[ \sqrt{x} H_{n}^{(2)}(x) \right]} \sim \exp(-i 4\pi/3) \left( \frac{x}{2} \right)^{1/3} \frac{\mathbf{F}[t \exp(i 4\pi/3)]}{\mathbf{F}'[t \exp(i 4\pi/3)]}$$
(6.15)

This paper is made even more difficult to read because Poincaré generally suppressed the arguments of his functions and one has to follow the derivations very closely in order to know what arguments are implied. A number of unfortunate printing errors further complicates the reading of this paper. In spite of the objectionable

characteristics of the paper, it represents a very thorough study and the careful reader is fully aware that the brilliant analysis therein reflects the fact that this research study was made by one of the greatest of the mathematical physicists of the second half of the nineteenth century. In addition to these faults, Macdonald (Ref. 2), Love (Ref. 28), Watson (Ref. 3) and other contemporaries dismissed the paper as "lacking in rigour in some points of detail." Consequently, later writers, by failing to read the paper, missed several important points. The most significant result which escaped notice for thirty years is that concerning the three Airy functions

F(t) , F[t exp(i 
$$2\pi/3$$
)] , F[t exp(i  $4\pi/3$ )]

If we observe that

$$F(t) = 2 \int_{0}^{\infty} \cos\left(\frac{1}{3}x^{3} - xt\right) dx = 2\pi \text{ Ai}(-t)$$
Poincaré Miller-Jeffreys (6.16)

the results given by Poincaré imply the properties

$$Bi(x) + i Ai(x) = 2 \exp(i \pi/6) Ai \left[ x \exp(i 2\pi/3) \right]$$

$$Bi(x) - i Ai(x) = 2 \exp(-i \pi/6) Ai \left[ x \exp(-i 2\pi/3) \right]$$

$$Bi'(x) + i Ai'(x) = -2 \exp(-i \pi/6) Ai' \left[ x \exp(i 2\pi/3) \right]$$

$$Bi'(x) - i Ai'(x) = -2 \exp(i \pi/6) Ai' \left[ x \exp(-i 2\pi/3) \right]$$
(6.17)

which, for example, permit us to determine the roots of

$$Bi(x) - i Ai(x) = 2 exp(-i \pi/6) Ai[x exp(-i 2\pi/3)]$$

in terms of the roots of  $Ai(-\alpha) = 0$ .

Many of the concepts developed by Poincare were arrived at independently by Nicholson (Ref. 1).

In a paper published in 1910-1911, Nicholson showed that, for ka >> 1, the infinite series

$$H_{\phi} = \frac{i \sin \theta}{a^2 \sqrt{ka}} \sum_{n=1}^{\infty} m \frac{H_{m}^{(2)}(ka)}{\frac{d}{d(ka)} \left[ \sqrt{ka} H_{m}^{(2)}(ka) \right]} \frac{dP_{n}(\cos \theta)}{d(\cos \theta)} , \quad m = n + \frac{1}{2}$$
 (6.18)

could be approximated by the series

$$H_{\phi} = \frac{2}{a^2} \frac{\sqrt{2\pi}}{ka} \frac{1}{\sqrt{\sin \theta}} \sum_{S=1}^{\infty} \nu_S^{3/2} A_{\nu_S} \exp\left[-i(\nu_S \theta - \pi/4)\right]$$
 (6.19)

where  $\nu_s$  denotes the roots defined by

$$-\frac{a}{\partial(kn)}\left\{\sqrt{kn}\ H_{\nu_{S}}^{(2)}(ka)\right\} = 0 \tag{6.20}$$

and  $\Lambda_{\nu_{\mathbf{S}}}$  denotes the residue

$$\Lambda_{\nu_{\mathbf{S}}} = \frac{\sqrt{\mathrm{ka}} \, \mathbf{H}_{\nu_{\mathbf{S}}}^{(2)} \, \mathbf{ka}}{\frac{\partial^{2}}{\partial \nu_{\mathbf{S}} \partial(\mathrm{ka})} \left[ \sqrt{\mathrm{ka}} \, \mathbf{H}_{\nu_{\mathbf{S}}}^{(2)}(\mathrm{ka}) \right]}$$
(6.21)

In order to compute  $\nu_{\rm S}$  and  $\Lambda_{\nu_{\rm S}}$  , Nicholson wrote Lorenz's (Ref. 29) 1890 results

$$\sqrt{\frac{\pi x}{2}} H_{n+1/2}^{(1,2)}(x) = v_n(x) \pm i w_n(x)$$
(6.22)

$$v_{\rm n}(x) \approx \frac{1}{\sqrt{3}\pi} \left(\frac{x}{6}\right)^{1/3} \int_{0}^{\infty} \frac{1}{u^{2/3}} \cos(\epsilon u^{1/3} + u) du$$
 (6.23)

$$w_{n}(x) \approx \frac{1}{\sqrt{3\pi}} \left(\frac{x}{6}\right)^{1/3} \int_{0}^{\infty} \frac{1}{u^{2/3}} \left[ \sin(\epsilon u^{1/3} + u) + \exp(\epsilon u^{1/3} - u) \right] du \quad (6.24)$$

where

$$\epsilon = (6/x)^{1/3} (m-x), \qquad m = n + \frac{1}{2}$$
 (6.25)

in the form

$$\nu = ka + \left(\frac{ka}{6}\right)^{1/3} \rho \tag{6.26}$$

$$H_{\nu}^{(2)}(ka) \approx \frac{1}{\pi} \left(\frac{6}{ka}\right)^{1/3} f(\rho)$$
 (6.27)

$$f(\rho) = \int_{0}^{\infty} \cos(w^{3} + \rho w) dw + i \int_{0}^{\infty} \sin(w^{3} + \rho w) dw + i \int_{0}^{\infty} \exp(-w^{3} + \rho w) dw$$
 (6.28)

He then let  $\rho_{_{\rm B}}$  denote the roots of

$$\frac{\mathrm{d}\mathbf{f}(\rho)}{\mathrm{d}\rho}\bigg|_{\rho=\rho_{\mathbf{S}}} = 0 \tag{6.29}$$

and wrote

$$v_{s} = ka + \left(\frac{ka}{6}\right)^{1/3} \rho_{s} = ka - i(ka)^{1/3} \beta_{s}$$
 (6.30)

and showed that for r = a

$$\mathbf{H}_{\phi}\Big|_{\mathbf{r}=\mathbf{a}} \approx -\mathbf{k}^{2}(\mathbf{k}\mathbf{a})^{-5/6} \left(\frac{2\pi}{\sin\theta}\right)^{1/2} \sum_{s=1}^{\infty} \frac{1}{\beta_{s}} \exp\left[-i\mathbf{k}\mathbf{a}\theta - (\mathbf{k}\mathbf{a})^{1/3} \beta_{s}\theta + i\frac{3\pi}{4}\right]$$
(6.31)

Nicholson evaluated the first root and obtained

$$\nu_1 = ka + (0.5192 \text{ ka})^{1/3} \exp(-i\pi/3)$$

$$= ka - i(ka)^{1/3} (0.696)(1 + i\frac{1}{\sqrt{3}})$$
(6.32)

Ol

$$\beta_1 = 0.696 (1 + i \frac{1}{\sqrt{3}})$$

Nicholson knew that

$$f_1(\rho) = \int_0^\infty \cos(w^3 + \rho w) dw \qquad (6.33)$$

was related to Airy's integral

$$W(\mu) = \int_{0}^{\infty} \cos \frac{1}{2} \pi (w^{3} - \mu w) dw$$
 (6.34)

introduced in 1838 by Airy (Ref. 30). In 1851, Stokes (Ref. 31) computed (to an accuracy of four decimals) the first fifty zeros of  $W(\mu)$  and the first ten zeros of the derivative  $W'(\mu)$ . The first few of these were

$$W(\mu) = 0$$
:  $\mu = 2.4955$ , 4.3631, 5.8922, 7.2436, 8.4788, ....  
 $W'(\mu) = 0$ :  $\mu = 1.08(45)$ , 3.4669, 5.1446, 6.5782, 7.8685, ....

With one exception (the first zero of the derivative, which should be 1.0874 not 1.0845), all Stokes' values were later found by Miller (Ref. 16) to be correct within a unit of the fourth decimal. We observe that

$$f_{1}(\rho) = \sqrt[3]{\pi/2} \ W \left[ -(2/\pi)^{2/3} \rho \right]$$
 (6.35)

Nicholson failed to observe that

$$f(\rho) = \int_{0}^{\infty} \cos(w^{3} + \rho w) dw + i \int_{0}^{\infty} \sin(w^{3} + \rho w) dw + i \int_{0}^{\infty} \exp(-w^{3} + \rho w) dw$$

$$= 2 \exp(i \pi/3) f_{1} [\rho \exp(-i 2\pi/3)]$$
(6.36)

so that

$$f(\rho) = 2 \sqrt[3]{\pi/2} \exp(i \pi/3) W \left[ (2/\pi)^{2/3} \rho \exp(i \pi/3) \right]$$
 (6.37)

Therese a

$$f'(\rho) = \frac{df(\rho)}{d\rho} = 2 \sqrt[3]{2/\pi} \exp(i - 2\pi/3) W' \left[ (2/\pi)^{2/3} \rho \exp(i - \pi/3) \right]$$
 (6.38)

The roots sought by Nicholson are thus given by

$$\rho_{\rm g} = (\pi/2)^{2/3} \,\mu_{\rm g} \, \exp(-i \, \pi/3) \tag{6.39}$$

Nicholson's 1910 work resulted in

$$(\rho_1)^3 = 3.115 \exp(-i\pi)$$

which leads to  $\mu_1=1.081$ . This is further from the true value  $\mu_1=1.0874$  than Stokes' (1851) incorrect value 1.0845. Nicholson did not seek  $\rho_8$  for s>1.

It is a curious fact that the property

$$f(\rho) = 2 \exp(i \pi/3) f_1 [\rho \exp(-i 2\pi/3)] = 2 \exp(i \pi/3) f_1 [\rho \exp(i 4\pi/3)]$$

leads to

$$H_{\nu}^{(2)}$$
 (ka)  $\approx \frac{2}{\pi} \left(\frac{6}{\text{ka}}\right)^{1/3} \exp(i \pi/3) f_1 \left[\rho \exp(i 4\pi/3)\right]$ 

but

$$f_{1}(\rho) = \frac{1}{2\sqrt[3]{3}} F\left(-\frac{\rho}{\sqrt[3]{3}}\right) = \sqrt[3]{\pi/2} W\left[-(2/\pi)^{2/3}\rho\right]$$

$$\rho = -\sqrt[3]{3} t$$

$$Poincaré = -(\pi/2)^{2/3}\mu$$
Stokes

and hence Nicholson's form of this approximation turns out to be identical with Poincaré's form

$$H_{\nu}^{(2)}$$
 (ka)  $\approx \frac{\exp(i \pi/3)}{\pi} \left(\frac{2}{ka}\right)^{1/3} F[t \exp(i 4\pi/3)]$  (6.41)

except that now the arbitrary constant has been evaluated.

Neither Nicholson nor Poincaré appear to have realized the role in their work of Stokes' values of the roots of  $W(\mu)$  and  $W'(\mu)$ 

In 1909, Macdonald (Ref. 32) studied this problem and used Lorenz's result in the form

$$H_{\nu}^{(2)}(x) \approx \frac{i}{\pi} \left(\frac{6}{x}\right)^{1/3} y(\mu)$$

$$y(\mu) = \int_{0}^{\infty} \exp(3\mu \ \xi - \xi^{3}) d\xi + \exp\left(-i \ \frac{\pi}{3}\right) \int_{0}^{\infty} \exp\left[-3\mu \exp\left(-i \ \frac{\pi}{3} \ \xi\right) - \xi^{3}\right] d\xi , \quad \mu = \frac{1}{3} \left(\frac{6}{x}\right)^{1/3} (\nu - x)$$

$$(6.42)$$

However, by 1914, Macdonald (Ref. 2) had used the result

$$\frac{\sqrt{3}}{\pi \left(\frac{1}{\sqrt{3}}\right)^{2/3}} \int_{-\infty}^{\infty} \exp\left[i \left(3\left(\frac{x}{2}\right)^{2/3} s - i s^{3}\right)\right] ds = \exp(i \pi/6) H_{1/3}^{(1)} \left[x \exp(-i \pi)\right]$$

$$= \exp(i \pi/6) H_{1/3}^{(1)}(x) + \exp(-i \pi/6) H_{1/3}^{(2)}(x)$$
(6.43)

to replace the Airy integrals by Bessel functions of order  $\pm 1/3$ ,  $\pm 2/3$ . Thus, he wrote

$$H_{\nu}^{(2)}(x) \approx i 2 x^{-1/3} 3^{-2/3} \xi^{1/3} \left[ \exp(-i \pi/6) I_{-1/3}(\xi) + \exp(i \pi/6) I_{1/3}(\xi) \right]$$

$$= 2 \pi^{-1} x^{-1/3} 3^{-1/6} \xi^{1/3} K_{1/3} \left[ \xi \exp(-i \pi) \right]$$
(6.44)

where

$$\xi = \frac{2}{3} t^{3/2}$$
 ,  $t = \frac{2}{x} \frac{1/3}{(\nu - x)}$ 

This change in notation resulted in Nicholson's 1910 result

$$H_{\phi} \approx -k^{2}(kn)^{-5/6} \left(\frac{2\pi}{\theta}\right)^{1/2} \exp(-ika\theta + i 3\pi/4) \sum_{s=1}^{\infty} \frac{1}{\beta_{s}} \exp\left[-(ka)^{1/3}\beta_{s}\theta\right]$$

$$\beta_{s} = i \rho_{s} (1/\sqrt[3]{6})$$

$$\frac{df(\rho)}{d\rho} \Big|_{\rho = \rho_{s}} = 0$$

$$f(\rho) = \int_{0}^{\infty} \cos(w^{3} + \rho w)dw + i \int_{0}^{\infty} \sin(w^{3} + \rho w)dw + i \int_{0}^{\infty} \exp(-w^{3} + \rho w)dw$$

$$(6.45)$$

appearing in Macdonald's 1914 paper in the form

$$\begin{aligned} H_{\phi} &\approx -i k^{2} (ka)^{-5/6} 2 \left(\frac{2\pi}{\theta}\right)^{1/2} \exp\left[-i(ka\theta - \pi/12)\right] \sum_{k=0}^{\infty} (3x_{k})^{-2/3} \\ &= \exp\left[-(ka)^{1/3} (3x_{k})^{2/3} \theta(\sqrt{3} + i)/4\right] \\ &= H_{2/3}^{(2)} \left[\exp(i\pi) x_{k}\right] = \left[J_{2/3}(x_{k}) - J_{-2/3}(x_{k})\right] \left[\exp\left(i\frac{5\pi}{6}\right)/\sin\left(\frac{\pi}{3}\right)\right] = 0 \end{aligned}$$

The roots  $\beta_{\rm S}$  used by Nicholson are related to the roots  ${\rm x}_{\rm S}$  used by Macdonald through the relation

$$^{\beta}$$
s - 1  $\frac{3}{\sqrt{24}}$  x  $_{s}^{2/3}$  exp(i  $\pi/6$ ) (6.47)

and the  $\rho_s$  have the property

$$\rho_{s-1} = 3(x_s/2)^{2/3} \exp(-i \pi/3)$$
 (6.48)

In this paper, Macdonald (Ref. 2) computed the first three values of  $\mathbf{x}_n$  with the result that

$$x_1 = 0.6854$$
 ,  $x_2 = 3.90$  ,  $x_3 = 7.05$ 

The true value of  $x_1$  is  $x_1 = 0.685384$  and hence Macdonald's value of  $x_1$  is correct. The next 9 roots could have been immediately written down correctly from Stokes' values of the zero. For example, the values

$$x_2 = 3.9028$$
 ,  $x_3 = 7.0549$ 

follow from the second and third of Stokes' roots since

$$x_{s} = \pi (\mu_{s} / 3)^{3/2}$$
 (6.49)

It is a curious fact that from 1914 to 1941 every author writing on these diffraction problems employed these awkward, multivalued Bessel functions. This is undoubtedly due to the fact that a 1918 paper by Watson (Ref. 3) is generally taken as the basis for these diffraction studies. In this paper, Watson used the approximation

$$H_{\nu}^{(2)}(x) \approx \frac{w}{\sqrt{3}} \exp(-i\frac{\pi}{6}) \exp\left\{-i\nu(w-w^3/3-\arctan w)\right\} H_{1/3}^{(2)} \left(\frac{1}{3}\nu w^3\right)$$
 (6.50)

where

$$w = \sqrt{x^2/\nu^2 - 1}$$
 ,  $-\frac{\pi}{2} \le \arg w < \frac{\pi}{2}$   
 $w - w^3/3 - \operatorname{aretg} w = -w^5/5 + O(w^7)$ 

Since

$$H_{1/3}^{(2)}(\zeta) \xrightarrow{\zeta \to \infty} \sqrt{\frac{2}{\pi \zeta}} \exp\left(-i \zeta + i \frac{\partial \pi}{\partial z}\right)$$

it is convenient to write Watson's result in the form

$$H_{\nu}^{(2)}(x) \approx \sqrt{\frac{2}{\pi\sqrt{x^2 - \nu^2}}} \exp\left[-ix(\sin\tau - \tau\cos\tau) + i\frac{\pi}{4}\right] \left[\sqrt{\frac{\pi\xi}{2}} \exp\left(i\xi - i\frac{5\pi}{12}\right)H_{1/3}^{(2)}(\xi)\right]$$
(6.51)

where

$$\nu = x \cos \tau$$
 ,  $\xi = (x/3)(\sin^3 \tau / \cos^2 \tau) - \frac{\nu}{3} w^3$ 

This form emphasizes the fact that Watson's form leads to the result

$$H_{\nu}^{(2)}(x) \approx \sqrt{\frac{2}{\pi \sqrt{x^2 - \nu^2}}} \exp \left[-i x(\sin \tau - \tau \cos \tau) + i \frac{\pi}{4}\right]$$
 (6.52)

when x is large and  $-x \ll \nu \ll x$ .

When  $\nu$  is comparable with x (or more precisely when  $|\nu-x|< x^{1/3}$ ), we can replace w by

$$w = \frac{\sqrt{x^2 - v^2}}{v} = \frac{\sqrt{(x + v)(x - v)}}{v} \sim \sqrt{\frac{2}{x}} \sqrt{x - v} = \left(\frac{2}{x}\right)^{1/3} \left(-t\right)^{1/2}$$

where

$$\nu = x + \left(\frac{x}{2}\right)^{1/3} t$$

Also, under these conditions

$$\zeta = \frac{\nu}{3} \text{ w}^3 \approx \frac{x}{3} \left[ \left( \frac{2}{x} \right)^{1/3} \left( -t \right)^{1/2} \right]^3 = \frac{2}{3} \left( -t \right)^{3/2}$$

We can then replace the  $\exp\left\{-i\nu(w-w^3/3-\arctan w)\right\}$  by unity, and write

$$H_{\nu}^{(2)}(x) \approx \frac{\exp(-i \pi/6)}{\sqrt{3}} \left(\frac{2}{x}\right)^{1/3} \left(-t\right)^{1/2} H_{1/3}^{(2)} \left[\frac{2}{3}(-t)^{3/2}\right]$$
 (6.53)

This form derived from Watson's result was employed in 1938 by van der Pol and Bremmer. However, they wrote

$$v = x + x^{1/3} \tau$$

and hence

$$H_{\nu}^{(2)}(x) \approx \frac{\exp(-i\pi/6)}{\sqrt{3}x^{1/3}}(-2\tau)^{1/2}H_{1/3}^{(2)}\left[\frac{1}{3}(-2\tau)^{3/2}\right]$$
 (6.54)

Watson's restriction  $-\pi/2 \leqslant \arg w < \pi/2$  permits us to write

$$\frac{\nu}{3} w^3 \approx \frac{2}{3} (-t)^{3/2} = \frac{2}{3} t^{3/2} \exp(-i \ 3 \pi/2) = \xi \exp(-i \ 3 \pi/2) \quad , \quad \zeta = \frac{2}{3} t^{3/2}$$

for real values of t. Then we have

$$H_{\nu}^{(2)}(x) \sim -i \frac{\exp(-i \pi/6)}{\sqrt{3}} \left(\frac{2}{x}\right)^{1/3} \sqrt{t} H_{1/3}^{(2)} \left[\xi \exp(-i 3\pi/2)\right]$$

Since

$$\exp(-i \pi/6) H_{1/3}^{(2)} [\xi \exp(-i 3\pi/2)] - \frac{2i}{\pi} K_{1/3} [\xi \exp(-i\pi)]$$

we have

$$H_{\nu}^{(2)}(x) \sim \frac{2}{\pi} \frac{2^{1/3}}{3^{1/2} x^{1/3}} \sqrt{t} K_{1/3} \left[ \xi \exp(-i\pi) \right] = \frac{2}{\pi} x^{-1/3} 3^{-1/6} \xi^{1/3} K_{1/3} \left[ \xi \exp(-i\pi) \right]$$

This is precisely the form employed by Macdonald. We are therefore led to observe that the more rigorous (and more complex) approximation introduced by Watson is.

before making computations, reduced to the identical less rigorous form introduced in 1890 by Lorenz and employed by Poincaré and Nicholson.

The most remarkable fact is that during World War II (when first class physicists turned their attention from quantum and nuclear theory to classical wave propagation) one of the most significant advances was the replacing of Bessel functions of order  $\pm 1/3$ ,  $\pm 2/3$  by Airy integrals. We now see that this was merely a matter of going back to the notational concepts of the mathematical physicists Lorenz, Poincaré, and Nicholson. The remarkable results

$$\frac{\mathbf{w}_{2}(t)}{\mathbf{Fock}} = \underbrace{\mathbf{y}_{2}(-t)}_{\mathbf{Y_{2}(-t)}} = \sqrt{\pi} \underbrace{\left\{ \mathbf{Bi}(t) - \mathbf{i} \, \mathbf{Ai}(t) \right\}}_{\mathbf{Miller}} = \underbrace{\sqrt{\pi} \, \mathbf{f}(-t)}_{\mathbf{Pryce}} = \underbrace{\frac{\sqrt{\pi}}{(12)^{1/6}} \, \exp(-\mathbf{i} \, 2\pi/3) \mathbf{h}_{2}(-t)}_{\mathbf{Furry}}$$

$$= \frac{1}{\sqrt{\pi}} \exp(-i\pi/6) \operatorname{F}\left[-\operatorname{t}\exp(i 4\pi/3)\right]$$
(6.55)

merely reflect the fact that these men chose to take

$$\frac{d^2y(t)}{dt^2} \pm ty(t) = 0$$

as standard form of Airy's differential equation. Therefore, we feel that the adoption of the notation of Fock has an historical precedent in the work of Poincaré and represents a natural choice since Pryce, Freehafer, and Furry independently chose a related form. The form used by Keller and Franz,

$$A(q) = \int_{0}^{\infty} \cos(\tau^{3} - q\tau) d\tau, \quad \frac{d^{2}A}{dq^{2}} + \frac{q}{3} A = 0$$
 (6.56)

has an historical precedent in Nicholson's

$$f_1(\rho) = \int_0^\infty \cos(\tau^3 + \rho \tau) d\tau = A(-\rho), \qquad \frac{d^2 f_1}{d\rho^2} - \frac{\rho}{3} f_1 = 0$$
 (6.57)

and Lorenz's

$$Q(x) = \int_{0}^{\infty} \frac{1}{u^{2/3}} \cos(u - xu^{1/3}) du = 3f_{1}(-x) = 3A(x) , \frac{d^{2}Q}{dx^{2}} + \frac{x}{3} Q = 0$$
(6.58)

However, available tables and more general usage suggests that the notations of Fock and Miller should be employed.

### Section 7

### STANDARD NOTATION AND TERMINOLOGY FOR DIFFRACTION FUNCTIONS

In this paper, we use Fock's form of the van der Pol-Bremmer diffraction formula

$$V(\xi, y_{1}, y_{2}, q) = \exp(-i \pi/4) \int_{-\infty}^{\xi} \int_{-\infty}^{\infty} \exp(i\xi t) w_{1}(t-y_{2}) \left[ v(t-y_{2}) - \frac{v'(t) - q v(t)}{w_{1}'(t) - q w_{1}(t)} w_{1}(t-y_{2}) \right] dt$$
(7. 1)

as the standard form for this function.

The case when both antennas are on the surface  $(y_1 = y_2 = 0)$  was considered as early as 1910 by Poincaré (Ref. 27) and Nicholson (Ref. 1) and later by Watson in 1918 (Ref. 3) and van der Pol in 1919 (Ref. 5). In recognition of Nicholson's contributions, the designation <u>Nicholson integrals</u> or <u>Nicholson functions</u> will be used for the integrals

$$V_{O}(x, q) = \frac{\exp(-i \pi/4)}{2} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{w_{1}(t)}{w_{1}'(t) - q w_{1}(t)} dt$$

$$v(x) = V_{O}(x, 0) = \frac{\exp(-i \pi/4)}{2} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{w_{1}(t)}{w_{1}'(t)} dt$$

$$u(x) = \lim_{q \to \infty} \left[ 2i\xi q^{2}V_{O}(x, q) \right] = \frac{\exp(-i 3\pi/4)}{\sqrt{\pi}} \xi^{3/2} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{w_{1}'(t)}{w_{1}'(t)} dt$$

(7.2)

We observe that

$$V(\xi, 0, 0, q) = 2 V_{O}(\xi, q)$$
 (7.3)

and

$$V(\xi, 0, 0, q) = 2v(\xi)$$
 (7.4)

If we write

$$V_{O}(\xi, q) = \frac{\exp(-i \pi/4)}{2} \sqrt{\frac{\xi}{\pi}} \left\{ -\frac{1}{q} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{1 - \frac{w_{1}^{\prime}(t)}{qw_{1}(t)}} dt \right\}$$
(7.5)

$$= \frac{\exp(-i \pi/4)}{2} \sqrt{\frac{\xi}{\pi}} \left\{ -\frac{1}{q} \int_{-\infty}^{\infty} \exp(i\xi t) \left[ 1 + \frac{w_1'(t)}{q w_1'(t)} + \ldots \right] dt \right\}$$

we observe that

$$V_{O}(\xi, q) \xrightarrow[q \to \infty]{} -\frac{\exp(-i \pi/4)}{q} \sqrt{\pi \xi} \delta(\xi) - \frac{\exp(-i \pi/4)}{2q^{2}} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{w_{1}'(t)}{w_{1}(t)} dt + \dots$$

$$= -\frac{\exp(-i \pi/4)}{q} \sqrt{\pi \xi} \ \delta(\xi) - \frac{i}{2q^2 \xi} \ u(\xi) + \dots$$
 (7.6)

Therefore, if  $\xi \neq 0$ ,

$$V_{O}(\xi, q) \xrightarrow{q \to \infty} -\frac{i}{2q^{2}\xi} \quad u(\xi)$$
 (7.7)

and

$$V(\xi, 0, 0, q) \xrightarrow[\xi \to 0]{} -\frac{i}{q^2 \xi} u(\xi)$$

$$q \to \infty$$

$$(7.8)$$

The designation Fock integrals or Fock functions will be employed for the integrals

$$V_{1}(x, q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(ixt)}{w_{1}'(t) - q w_{1}(t)} dt$$

$$g(x) = V_{1}(x, 0) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(ixt)}{w_{1}'(t)} dt$$

$$f(x) = \lim_{q \to \infty} \left[ -q V_{1}(x, q) \right] = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(ixt)}{w_{1}(t)} dt$$

$$(7.9)$$

The Fock integral  $V_1(x, q)$  is obtained as the special form of  $V(x, y_1, y_2, q)$  when one of the antennas is on the surface  $(y_1 = 0)$  and the other antenna is raised to a great height  $(y_2 \to \infty)$ . Thus,

$$V(\xi, 0, y_2, q) \xrightarrow{y_2 \to \infty} \exp\left(i \frac{2}{3} y_2^{3/2}\right) \sqrt{\frac{\xi^2}{y_2}} V_1(x, q), \qquad x = \xi - \sqrt{y_2}$$
(7.10)

The case in which both antennas are raised to great heights was first treated correctly in 1947 by C. L. Pekeris (Ref. 20). Therefore, the designation <u>Pekeris integrals</u> or <u>Pekeris functions</u> is used for the integrals

$$V_{2}(x, q) = -\frac{\exp(i \pi/4)}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{v'(t) - q v(t)}{w'_{1}(t) - q w_{1}(t)} dt - \frac{\exp(i \pi/4)}{2\sqrt{\pi} x}$$

$$p(x) = -\exp(-i \pi/4) V_{2}(x, \infty) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{v(t)}{w_{1}(t)} dt + \frac{1}{2\sqrt{\pi} x}$$

$$q(x) = -\exp(-i \pi/4) V_{2}(x, 0) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{v'(t)}{w'_{1}(t)} dt + \frac{1}{2\sqrt{\pi} x}$$

$$(7.11)$$

We can show that

$$V(\xi, y_{1}, y_{2}, q) \xrightarrow{y_{1} \to \infty} F(\xi, y_{1}, y_{2}) + 4\sqrt{\frac{\xi^{2}}{y_{1}y_{2}}} \exp\left[i\frac{2}{3} \left(y_{1}^{3/2} + y_{2}^{3/2}\right)\right] V_{2}(x, q)$$

$$y_{2} \to \infty$$

$$x = \xi - \sqrt{y_{1}} - \sqrt{y_{2}}$$

$$(7.12)$$

where  $\mathbf{F}(\boldsymbol{\xi},\ \mathbf{y}_{1},\ \mathbf{y}_{2})$  is the "knife edge" diffraction field

$$\exp \left\{ i \left[ -\frac{\xi^{3}}{12} + \frac{\xi}{2} (y_{2} + y_{1}) + \frac{(y_{1} - y_{2})^{2}}{4\xi} \right] \right\} - 4 \sqrt{\frac{\xi^{2}}{y_{1} y_{2}}} \exp \left[ i \frac{2}{3} (y_{1}^{3/2} + y_{2}^{3/2}) \right] \\
= \exp \left( -i \tau^{2} - i \frac{\pi}{4} \right) \frac{\mu}{\sqrt{\pi}} \int_{-\tau}^{\infty} \exp \left( i s^{2} \right) ds \right], \quad x < 0$$

$$4 \sqrt{\frac{\xi^{2}}{y_{1} y_{2}}} \exp \left[ -i \frac{2}{3} (y_{1}^{3/2} + y_{2}^{3/2}) \right] \left[ \exp \left( -i \tau^{2} - i \frac{\pi}{4} \right) \frac{\mu}{\sqrt{\pi}} \int_{\tau}^{\infty} \exp \left( i s^{2} \right) ds \right], \quad x > 0$$

$$(7.13)$$

where

$$\pi = \mu x, \qquad \mu = \sqrt{\frac{\sqrt{y_1}\sqrt{y_2}}{\sqrt{y_1} + \sqrt{y_2}}}, \qquad x = \xi - \sqrt{y_1} - \sqrt{y_2}$$

(7.14)

If we define the modified Fresnel integral

$$K(\tau) = \exp\left(-i\tau^2 - i\frac{\pi}{4}\right) \frac{1}{\sqrt{\pi}} \int_{\tau}^{\infty} \exp\left(i\mathbf{s}^2\right) d\mathbf{s}$$

$$K(0) = \frac{1}{2} \qquad (7.15)$$

we can write

x < 0:

$$V(\xi, y_{1}, y_{2}, q) \xrightarrow{y_{1} \to \infty} \exp \left\{ i \left[ -\frac{\xi^{3}}{12} + \frac{\xi}{2} (y_{1} + y_{2}) + \frac{(y_{1} - y_{2})^{2}}{4\xi} \right] \right\}$$

$$+\sqrt{\frac{\xi^2}{y_1y_2}} \exp \left[i\frac{2}{3}\left(y_1^{3/2}+y_2^{3/2}\right)\right] \left[-\mu K(-\tau) + V_2(x, q)\right]$$

x > 0

$$V(\xi, y_1, y_2, q) \xrightarrow[y_1 \to \infty]{} 4\sqrt{\frac{\xi^2}{y_1 y_2}} \exp \left[i \frac{2}{3} \left(y_1^{3/2} + y_2^{3/2}\right)\right] \left[\mu K(\tau) + V_2(x, q)\right]$$

(7.16)

For large values of  $\tau$ ,

$$K(\tau) \xrightarrow[\tau \to \infty]{} \frac{1}{2\sqrt{\pi}} \exp\left(i \frac{\pi}{4}\right) \left\{\frac{1}{\tau} - \frac{i}{2\tau^3} + \dots\right\}$$
 (7.17)

We observe that for  $\tau \rightarrow -\infty$ , i.e.,  $x \rightarrow -\infty$ ,

$$-\mu K(-\tau) + V_2(x, q) \xrightarrow[\tau \to -\infty]{} \hat{V}_2(x, q)$$
 (7.18)

where

$$\hat{V}_{2}(x, q) = -\frac{\exp(i\frac{\pi}{4})}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{v'(t) - qv(t)}{w'_{1}(t) - qw_{1}(t)} dt$$
 (7.19)

Also, for  $\tau \rightarrow \infty$ , i.e.,  $x \rightarrow \infty$ 

$$\mu K(\tau) + V_2(x, q) \xrightarrow{\tau \to \infty} \hat{V}_2(x, q)$$
 (7.20)

We designate as <u>Pekeris caret functions</u> the integrals  $\hat{V}_2(x, q)$  and

$$\hat{p}(x) = -\exp\left(-i\frac{\pi}{4}\right)\hat{V}_2(x, \infty) = \frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty} \exp(ixt)\frac{v(t)}{w_1(t)} dt$$

$$\hat{\mathbf{q}}(\mathbf{x}) = -\exp\left(-i\frac{\pi}{4}\right) \hat{\mathbf{V}}_{2}(\mathbf{x}, 0) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\mathbf{x}t) \frac{\mathbf{v}'(t)}{\mathbf{w}_{1}'(t)} dt$$

(7.21)

Before proceeding let us make a few remarks in support of the notations introduced. Let us observe that when neither antenna is raised (i.e., the number of raised antennas is zero) that we have the function "V sub-zero", i.e.,  $V_0(x,q)$ . When one antenna is raised we have the function "V sub-one," i.e.,  $V_1(x,q)$ . When the two antennas are raised we have the function "V sub-two," i.e.,  $V_2(x,q)$ .

The notation  $V_1(x, q)$  is already in use in Soviet papers in this field. The notations  $V_0(x, q)$  and  $V_2(x, q)$  are new.

The function  $V_2(x, q)$  is finite at x = 0 but  $V_2(x, q)$  has the behavior

$$\hat{V}_2(x, q) = \frac{\exp\left(i \frac{\pi}{4}\right)}{2\sqrt{\pi} x}$$
 (7.22)

The caret has been chosen so as to emphasize singular nature of  $\hat{V}_2(x, \mathbf{q})$ . Since the magnitude of  $\hat{V}_2(x, \mathbf{q})$  has a graph with a "spike" at the origin, we have introduced the caret to remind us of this behavior.

The normalizations of  $u(\xi)$  and  $v(\xi)$  have been chosen so as to yield the property

$$u(0) = v(0) = 1$$
 (7.23)

The normalizations of  $\hat{p}(\xi)$  and  $\hat{q}(\xi)$  have been chosen in such a manner that only the real part of these functions is singular. The choice of the factor  $1/\sqrt{\pi}$  is dictated by the desire to omit a constant factor before  $V_2(x,q)$  in the important combinations

$$\pm \mu K(\pm \tau) + V_2(x, q)$$
 (7.24)

We will also use the nomenclature:

- 1. Attenuation function  $V_{\Omega}(x, q)$
- 2. Current distribution function  $V_1(x, q)$
- 3. Reflection coefficient function  $V_2(x, q)$

These names are suggested by the applications. The function  $V_0(x,q)$  describes the <u>attenuation</u> of the ground wave at the ground due to a source located at zero height on a convex surface. The function  $V_1(x,q)$  describes the <u>current distribution</u> (tangential magnetic field) induced on a convex surface by a plane wave. The function  $V_2(x,q)$  describes the <u>reflection</u> of plane waves by a convex surface.

It would be highly desirable if all future work in this field were to be done using an  $\exp(-i\omega t)$  time dependence since this has been adopted by Bremmer (Ref. 33) and Fock (Ref. 12) in their books and papers. Not only does the need to use complex conjugate functions complicate the applications, but it also can lead to some confusing situations. For example, Fock uses the function

$$g(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(ixt)}{w_1^i(t)} dt$$
 (7.25)

whereas Wait (Ref. 13) uses an integral

$$U(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(-ixt)}{W_1^{\dagger}(t)} dt$$
 (7.26)

which can be identified as the complex conjugate of g(x). However, Fock would write

$$\overline{g}(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(-ixt)}{w_2'(t)} dt$$

since

$$\underbrace{W_1(t)}_{\text{Wait}} = \underbrace{w_2(t)}_{\text{Fock}}$$

In previous sections, the various notations for the Airy functions are discussed in more detail. However, we take this opportunity to urge that the Fock and Jeffreys-Miller notations for the Airy integrals be universally adopted. The Fock notation is convenient for the purpose of derivations, but the best tables of the Airy integrals are those of Miller. However, after deriving results using Fock's v(x),  $w_{\frac{1}{2}}(x)$ , it is easy to obtain numerical results by noting that

$$\mathbf{v}(\mathbf{x}) = \sqrt{\pi} \operatorname{Ai}(\mathbf{x}) = \sqrt{\pi} \operatorname{F}(\mathbf{x}) \sin \chi(\mathbf{x})$$

$$\mathbf{w}_{1}(\mathbf{x}) = \sqrt{\pi} \left\{ \operatorname{Bi}(\mathbf{x}) + i \operatorname{Ai}(\dot{\mathbf{x}}) \right\} = \sqrt{\pi} \operatorname{F}(\mathbf{x}) \exp \left[ \operatorname{i}\chi(\mathbf{x}) \right]$$

$$\mathbf{w}_{2}(\mathbf{x}) = \sqrt{\pi} \left\{ \operatorname{Bi}(\mathbf{x}) - i \operatorname{Ai}(\dot{\mathbf{x}}) \right\} = \sqrt{\pi} \operatorname{F}(\mathbf{x}) \exp \left[ \operatorname{i}\chi(\mathbf{x}) \right]$$

$$(7.27)$$

In using the residue series we need the roots  $t_s(q)$  of

$$w_1'(t_s) - qw_1(t_s) = 0$$
 (7.28)

Fock uses the notation

$$w_1'(t_S') = 0$$
 (7.29)

$$w_1(t_S^0) = 0$$
 (7.30)

and Miller uses

$$Ai'(a'_s) = 0$$
 (7.31)

$$Ai(a_{g}) = 0 (7.32)$$

Therefore

$$\mathbf{t}_{\mathbf{S}}' = -\exp\left(\mathbf{i} \frac{\pi}{3}\right) \mathbf{a}_{\mathbf{S}}' \tag{7.33}$$

$$\underbrace{t_{S}^{O} = -\exp\left(\frac{\pi}{3}\right)}_{\text{Fock}} a_{S} \tag{7.34}$$

It would be better to change this notation in the following manner: Let

$$\alpha_{\mathbf{S}} = -\mathbf{a}_{\mathbf{S}} \tag{7.35}$$

$$\beta_{S} = -a'_{S} \tag{7.36}$$

The precedent already exists since  $\alpha_s$  and  $\beta_s$  were defined in this way by Pryce and Domb (Ref. 10). We also propose to let  $t_s$ (q) take on the limiting forms

$$t_s(\infty) - t_s^{\infty} = \alpha_s \exp\left(i\frac{\pi}{3}\right)$$
 (7.37)

$$t_{s}(0) = t_{s}^{0} = \beta_{s} \exp\left(i \frac{\pi}{3}\right)$$
 (7.38)

This notation can be confused with Fock's notation since

$$t_s(\infty) = \underbrace{t_s^0}_{s} = \underbrace{t_s^\infty}_{s}$$
 (7.39)

$$t_s(o) = \underbrace{t'_s}_{s} = \underbrace{t_s^o}_{s}$$
 (7.40)

However, the change is urged in order to let the superscripts indicate the limiting value of q instead of the boundary condition. This change has already been made by Wait who uses a result equivalent to

$$\frac{\mathbf{t_s^o}}{\mathbf{wait}} = \beta_{\mathbf{s}} \exp\left(-i\frac{\pi}{3}\right) - \text{complex conjugate} \quad \underbrace{\left[\mathbf{t_s^o}\right]}_{\mathbf{This paper}}$$
 (7.41)

This is a good example of the reason why one time dependence should be used.

We should also remark that one should write Miller's values of  $\operatorname{Ai}(a_s)$ ,  $\operatorname{Ai}(a_s')$  in the form

$$Ai'(a_g) = Ai'(-\alpha_g)$$
 (7.42)

$$Ai (a'_s) = Ai (-\beta_s) \qquad (7.43)$$

Also

$$w_1(t_s^{\infty}) = w_1'(t_s^{0}) = -2\sqrt{\pi} \exp(-i\frac{\pi}{6}) \operatorname{Ai'}(-\alpha_s)$$
 (7.44)

This paper Fock

$$\underline{\mathbf{w}_{1}(\mathbf{t}_{\mathbf{S}}^{\mathbf{O}})} = \underline{\mathbf{w}_{1}(\mathbf{t}_{\mathbf{S}}^{\mathbf{I}})} = 2\sqrt{\pi} \exp\left(\mathbf{i} \frac{\pi}{6}\right) \Lambda \mathbf{i} (-\beta_{\mathbf{S}})$$
 (7.45)

This paper Fock

In Soviet publications (Ref. 14) these integrals have been defined as follows:

$$V(x, y_1, y_2, q) = \exp(-i\frac{\pi}{4}) / \frac{\overline{x}}{\pi} \int_{\Gamma} \exp(ixt) F(t, y_1, y_2, q) dt$$
 (7.46)

$$V_1(z, y, q) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(izt) \phi(t, y, q) dt$$
 (7.47)

where for  $y_2 > y_1^+$ ,

$$F(t, y_1, y_2, q) = w_1(t - y_2) \Phi(t, y_1, q)$$
 (7.48)

$$\Phi(t, y, q) = v(t - y) - \frac{v'(t) - qv(t)}{w_1'(t) - qw_1(t)} w_1(t - y)$$

$$= \frac{i}{2} \left\{ w_2(t-y) - \frac{w_2'(t) - q w_2(t)}{w_1'(t) - q w_1(t)} - w_1(t-y) \right\}$$
 (7.49)

where  $\Gamma$  is a contour which starts at infinity in the sector  $\frac{\pi}{3}<\arg t<\pi$ , passes between the origin and the pole of the integrand nearest the origin, and then ends at infinity in the sector  $-\frac{\pi}{3}<\arg t<\frac{\pi}{3}$ .

Some special cases of these integrals have been given other symbolic designations by the Soviets. For example,

$$g(z) = V_1(z, 0, 0) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\pi t) \frac{1}{w_1^r(t)} dt$$
 (7.50)

$$f(z) = \frac{\partial V_1(z, y, \infty)}{\partial y} \bigg|_{y=0} = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(izt) \frac{1}{w_1(t)} dt$$
 (7.51)

We also find in Soviet literature

$$V_{11}(\xi, q) = -\frac{\exp(i\frac{\pi}{4})}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{v'(t) - qv(t)}{w_1'(t) - qw_1(t)} dt$$
 (7.52)

and

$$\hat{\mathbf{f}}(\xi) = -\mathbf{V}_{11}(\xi, \infty) = \frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{\pi}} \int_{\mathbf{r}} \exp(i\xi t) \frac{\mathbf{v}(t)}{\mathbf{w}_{1}(t)} dt \qquad (7.53)$$

$$\hat{g}(\xi) = -V_{11}(\xi, 0) = \frac{\exp(i\frac{\pi}{4})}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{v'(t)}{w'_1(t)} dt$$
 (7.54)

and

$$\hat{f}(\xi) = \frac{\exp\left(i\frac{\pi}{4}\right)}{2\sqrt{\pi}} + \hat{f}(\xi)$$
 (7.55)

$$\tilde{g}(\zeta) = \frac{\exp\left(i\frac{\pi}{4}\right)}{2\sqrt{\pi}\,\zeta} + \hat{g}(\zeta) \tag{7.56}$$

The notations introduced by Fock and his co-workers have not been strictly adhered to in this report.

We follow Fock and define

$$f(\xi) = \frac{1}{\sqrt{\pi}} \int \exp(i\xi t) \frac{1}{w_1(t)} dt$$
 (7.57)

$$g(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{1}{w'_1(t)} dt$$
 (7.58)

$$\mathbf{F}(\xi) = \exp\left(i \frac{\xi^3}{3}\right) \mathbf{f}(\xi) \tag{7.59}$$

$$G(\xi) = \exp\left(i\frac{\xi^3}{3}\right) g(\xi) \tag{7.60}$$

In the case of Fock's V(x, 0, 0, 0) and  $\frac{\partial^2}{\partial y_1} \frac{\partial^2}{\partial y_2} V(x, 0, 0, \infty)$  we define

$$\mathbf{u}(\xi) = \exp\left(-i\frac{3\pi}{4}\right) \xi^{3/2} \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{\mathbf{w}_{1}^{\prime}(t)}{\mathbf{w}_{1}(t)} dt = -\frac{i}{\xi} \frac{\partial^{2}}{\partial \mathbf{y}_{1}} \frac{\partial \mathbf{y}_{2}}{\partial \mathbf{y}_{2}} V(\xi, 0, 0, \infty)$$

$$(7.61)$$

$$\mathbf{v}(\xi) = \exp\left(-i\frac{\pi}{4}\right) \frac{1}{2} \sqrt{\frac{\xi}{\pi}} \int \exp(i\xi t) \frac{\mathbf{w}_{1}(t)}{\mathbf{w}_{1}'(t)} dt = \frac{1}{2} V(\xi, 0, 0, 0)$$
 (7.62)

In place of Fock's  $\,\, \hat{f},\,\, \hat{g}\,,\,\, V_{11}^{}$  ,  $\, \tilde{f}$  ,  $\, \tilde{g}\,\,$  we define

$$\widehat{p}(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{v(t)}{w_1(t)} dt = \exp\left(-i\frac{\pi}{4}\right) \widehat{f}(\xi)$$
 (7.63)

$$\widehat{\mathbf{q}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(\mathrm{i}\xi t) \frac{\mathbf{v}'(t)}{\mathbf{w}'_1(t)} dt = \exp\left(-\mathrm{i}\frac{\pi}{4}\right) \widehat{\mathbf{g}}(\xi)$$
 (7.64)

$$\hat{V}_{2}(\xi, q) = V_{11}(\xi, q)$$

$$p(\xi) = \exp\left(-i\frac{\pi}{4}\right) \tilde{f}(\xi) , \quad q(\xi) = \exp\left(-i\frac{\pi}{4}\right) \tilde{g}(\xi)$$
 (7.65)

so that

$$\hat{p}(\xi) = -\frac{\tilde{\chi}}{2\sqrt{\pi} - \xi} + p(\xi) \tag{7.66}$$

$$\hat{\mathbf{q}}(\xi) = -\frac{1}{2\sqrt{\pi}} + \mathbf{q}(\xi) \tag{7.67}$$

We have also defined a set of integrals

$$P(\xi) = \frac{2}{\sqrt{-\xi}} \exp\left[i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \hat{p}(\xi)$$
 (7.68)

$$Q(\xi) = \frac{2}{\sqrt{-\xi}} \exp\left[i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \hat{q}(\xi)$$
 (7.69)

which have the properties

$$P(\xi) \xrightarrow{\xi \to -\infty} 1 - i - \frac{2}{\xi^3} + \frac{20}{\xi^6} + \dots$$
 (7.70)

$$Q(\xi) \xrightarrow{\xi \to -\infty} -1 - i \frac{2}{\xi^3} + \frac{28}{\xi^6} + \dots$$
 (7.71)

The Soviets have defined

$$\widehat{\mathbf{F}}(\xi) = \exp\left(i\frac{\xi^3}{12}\right) \widehat{\mathbf{f}}(\xi) = \exp\left[i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \widehat{\mathbf{p}}(\xi) \tag{7.72}$$

$$\widehat{\mathbf{G}}(\xi) = \exp\left(i\frac{\xi^3}{12}\right) \widehat{\mathbf{g}}(\xi) = \exp\left[i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \widehat{\mathbf{q}}(\xi) \tag{7.73}$$

so that

$$P(\xi) = \frac{2}{\sqrt{-\xi}} - \hat{F}(\xi) \tag{7.74}$$

$$Q(\xi) = \frac{2}{\sqrt{-\xi}} \hat{G}(\xi) \tag{7.75}$$

In this study, a set of generalized diffraction integrals have been defined. For these the notations are:

$$J^{(n)}(\xi) = \frac{i^{n}}{2\pi i} \int_{\Gamma} t^{n} \exp(i\xi t) \frac{w'_{1}(t)}{w_{1}(t)} dt$$

$$K^{(n)}(\xi) = \frac{i^{n}}{2\pi i} \int_{\Gamma} t^{n} \exp(i\xi t) \frac{w_{1}(t)}{w'_{1}(t)} dt$$

$$(7.76)$$

$$(continued)$$

$$f^{(n)}(\xi) = \frac{i^n}{\sqrt{\pi}} \int_{\Gamma} t^n \exp(i\xi t) \frac{1}{w_1(t)} dt$$

$$g^{(n)}(\xi) = \frac{i^n}{\sqrt{\pi}} \int_{\Gamma} t^n \exp(i\xi t) \frac{1}{w'(t)} dt$$

$$\hat{p}^{(n)}(\xi) = \frac{i^n}{\sqrt{\pi}} \int_{\Gamma} t^n \exp(i\xi t) \frac{v(t)}{w_1(t)} dt$$

$$\hat{q}^{(n)}(\xi) = \frac{i^n}{\sqrt{\pi}} \int_{\Gamma} t^n \exp(i\xi t) \frac{v'(t)}{w'(t)} dt$$

$$(7.76)$$

We observe that

$$u(\xi) = 2\sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} J^{(o)}(\xi)$$

$$v(\xi) = \sqrt{\pi} \exp\left(i\frac{\pi}{4}\right) \xi^{1/2} K^{(o)}(\xi)$$

$$f(\xi) = f^{(o)}(\xi)$$

$$g(\xi) = g^{(o)}(\xi)$$

$$\hat{p}(\xi) = p^{(o)}(\xi)$$

$$\hat{q}(\xi) = q^{(o)}(\xi)$$

$$(7.77)$$

For n > 0 we observe that

$$f^{(n)}(\xi) = \frac{d^n}{d\xi^n} f(\xi)$$

$$g^{(n)}(\xi) = \frac{d^n}{d\xi^n} g(\xi)$$

$$\hat{\mathfrak{p}}^{(n)}(\xi) = \frac{\mathrm{d}^n}{\mathrm{d}\xi^n} \hat{\mathfrak{p}}(\xi)$$

$$\hat{q}^{(n)}(\xi) = \frac{d^n}{d\xi^n} \hat{q}(\xi)$$

$$\mathbf{J}^{(n)}(\xi) = \frac{d^n}{d\xi^n} - \mathbf{J}^{(0)}(\xi)$$

$$K^{(n)}(\xi) = \frac{d^n}{d\xi^n} K^{(o)}(\xi) \qquad (7.78)$$

For all values of n we observe that

$$\mathbf{Z}^{(n+1)}(\xi) = \frac{\mathrm{d}}{\mathrm{d}\xi} \mathbf{Z}^{(n)}(\xi)$$

where  $Z^{(n)}(\xi)$  denotes any of the functions  $J^{(n)}(\xi)$ ,  $K^{(n)}(\xi)$ ,  $f^{(n)}(\xi)$ ,  $g^{(n)}(\xi)$ ,  $\hat{q}^{(n)}(\xi)$ . For  $\xi>0$  we also have the property

$$Z^{(n)}(\xi) = -\int_{\xi}^{\infty} Z^{(n-1)}(\xi) d\xi$$

We have also defined a set of functions

$$J_{m}^{(n)}(\xi) = \frac{i^{n}}{2\pi i} \int_{\Gamma} t^{n} \exp(i\xi t) - \left[\frac{w_{1}'(t)}{w_{1}(t)}\right]^{m+1} dt$$

$$K_{m}^{(n)}(\xi) = \frac{i^{n}}{2\pi i} \int_{\Gamma} t^{n} \exp(i\xi t) \left[ \frac{w_{1}(t)}{w_{1}'(t)} \right]^{m+1} dt$$

$$f_{m}^{(n)}(\xi) = \frac{i^{n}}{\sqrt{\pi}} \int_{\Gamma} t^{n} \exp(i\xi t) \frac{1}{w_{1}(t)} \left[ \frac{w'_{1}(t)}{w_{1}(t)} \right]^{m} dt$$

$$\mathbf{g}_{\mathbf{m}}^{(n)}(\xi) = \frac{\mathbf{i}^{\mathbf{n}}}{\sqrt{\pi}} \int \mathbf{t}^{\mathbf{n}} \exp(i\xi t) \frac{1}{\mathbf{w}_{1}^{1}(t)} \left[ \frac{\mathbf{w}_{1}^{1}(t)}{\mathbf{w}_{1}^{1}(t)} \right]^{\mathbf{m}} dt$$

$$\mathbf{r}_{\mathbf{m}}^{(\mathbf{n})}(\xi) = \frac{\mathbf{i}^{\mathbf{n}}}{\sqrt{\pi}} \int_{\Gamma} t^{\mathbf{n}} \exp(i\xi t) \frac{1}{\left[\mathbf{w}_{1}(t)\right]^{2}} \left[\frac{\mathbf{w}_{1}'(t)}{\mathbf{w}_{1}(t)}\right]^{\mathbf{m}} dt$$

$$\mathbf{s}_{\mathbf{m}}^{(\mathbf{n})}(\xi) = \frac{\mathbf{i}^{\mathbf{n}}}{\sqrt{\pi}} \int_{\Gamma} \mathbf{t}^{\mathbf{n}} \exp(\mathbf{i}\xi t) \left[ \mathbf{w}_{1}'(t) \right]^{\mathbf{m}} dt$$

(7.**7**9)

which also possess the property

$$Z_{m}^{(n+1)}(\xi) = \frac{d}{d\xi} - Z_{m}^{n}(\xi)$$

For m=0 we have

$$J_{O}^{(n)}(\xi) = J^{(n)}(\xi)$$

$$f_{o}^{(n)}(\xi) = f^{(n)}(\xi)$$

$$K_{\Omega}^{(n)}(\xi) = K^{(n)}(\xi)$$

$$g_0^{(n)}(\xi) = g^{(n)}(\xi)$$

(7.80)

and we define

$$r_0^{(n)}(\xi) = r_0^{(n)}(\xi) = \frac{i^n}{\sqrt{\pi}} \int_{\Gamma} t^n \exp(i\xi t) \frac{1}{[w_1(t)]^2} dt$$

$$s_{O}^{(n)}(\xi) = s^{(n)}(\xi) = \frac{i^{n}}{\sqrt{\pi}} \int_{\Gamma} t^{n} \exp(i\xi t) \frac{1}{\left[w'_{1}(t)\right]^{2}} dt$$
 (7.81)

and

$$\mathbf{r}_{0}^{(0)}(\xi) = \mathbf{r}(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{1}{\left[\mathbf{w}_{1}(t)\right]^{2}} dt$$

$$s_{o}^{(o)}(\xi) = s(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{1}{\left[w_{1}^{s}(t)\right]^{2}} dt$$
 (7.82)

The properties

$$\frac{d}{dt} \left( \frac{\mathbf{v}(t)}{\mathbf{w}_{1}(t)} \right) = -\frac{1}{\mathbf{w}_{1}^{2}(t)} \qquad \frac{d}{dt} \left( \frac{\mathbf{v}'(t)}{\mathbf{w}_{1}'(t)} \right) = \frac{t}{\left[ \mathbf{w}_{1}'(t) \right]^{2}}$$
(7.83)

can be used to show that

$$\mathbf{r}(\xi) = i \, \xi \, \hat{\mathbf{p}}(\xi)$$

$$\mathbf{s}^{(1)}(\xi) = \frac{\mathrm{d}\mathbf{s}(\xi)}{\mathrm{d}\xi} = \xi \, \hat{\mathbf{q}}(\xi)$$
(7.84)

More generally, we have

$$\frac{i^{n}}{\sqrt{\pi}} \int_{\Gamma} t^{n} \exp(i\xi t) \frac{1}{\left[w_{1}(t)\right]^{2}} dt = \frac{i^{n}}{\sqrt{\pi}} \int_{\Gamma} \frac{v(t)}{w_{1}(t)} \frac{d}{dt} \left\{t^{n} \exp(i\xi t)\right\} dt$$

$$= \frac{i^{n}}{\sqrt{\pi}} \int_{\Gamma} \frac{v(t)}{w_{1}(t)} \left\{i\xi t^{n} + nt^{n-1}\right\} \exp(i\xi t) dt$$

so that

$$r^{(n)}(\xi) = i \xi \hat{p}^{(n)}(\xi) + i n \hat{p}^{(n-1)}(\xi)$$
 (7.85)

In a similar manner we obtain

$$s^{(n+1)} = (\xi) - \xi \hat{q}^{(n)}(\xi) + n\hat{q}^{(n-1)}(\xi)$$
 (7.86)

We have also defined the functions

$$\mathbf{u}^{(n)}(\xi) = 2\sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} \mathbf{J}^{(n)}(\xi) = \xi^{3/2} \frac{\mathbf{d}^n}{\mathbf{d}\xi^n} \left\{ \xi^{-3/2} \mathbf{u}^{(0)}(\xi) \right\}$$

$$\mathbf{v}^{(n)}(\xi) = \sqrt{\pi} \exp\left(i\frac{\pi}{4}\right) \xi^{1/2} \mathbf{K}^{(n)}(\xi) = \xi^{1/2} \frac{\mathbf{d}^n}{\mathbf{d}\xi^n} \left\{ \xi^{-1/2} \mathbf{v}^{(0)}(\xi) \right\}$$
(7.87)

and

$$\hat{\mathbf{u}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{\mathbf{w}_{1}(t)}{\mathbf{w}_{1}(t)} dt$$

$$\hat{\mathbf{v}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{\mathbf{w}_{1}(t)}{\mathbf{w}_{1}(t)} dt$$

$$\mathbf{c}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \mathbf{v}'(t) \frac{\mathbf{w}_{1}(t)}{\mathbf{w}_{1}(t)} dt$$

$$\mathbf{d}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \mathbf{v}(t) \frac{\mathbf{w}_{1}(t)}{\mathbf{w}_{1}(t)} dt$$

$$\hat{\mathbf{k}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{\mathbf{v}'(t)}{\mathbf{w}_{1}(t)} dt$$

$$\hat{\mathbf{l}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{\mathbf{v}'(t)}{\mathbf{w}_{1}(t)} dt$$

$$(7.88)$$

## Section 8 ALTERNATIVE PATHS OF INTEGRATION

In the last section we expressed the integrals in the form

$$\int_{-\infty}^{\infty} \exp(i\xi t) \dots dt \qquad \text{or} \qquad \int_{\Gamma} \exp(i\xi t) \dots dt$$
Pryce's form
Fock's form

We also find it convenient to follow a suggestion made by Rice in 1954 (Ref. 34) and express these functions in the form of inverse Laplace transforms. This can be done by rotating the coordinate system by defining

$$\alpha = \exp\left(i \frac{2\pi}{3}\right)t$$

and by using the properties of the Airy functions which are given in Fig. 13. We then define

$$x = \xi \exp(-i \pi/6) = (\sqrt{3} - i)(\xi/2)$$
 (8.1)

and arrive at the following forms



Fig. 13 Behavior of Airy Functions on the Rays arg t =  $\frac{n\pi}{3}$  ,  $\tau$  = Mod t

$$J^{(n)}(\xi) = \frac{\exp\left(-i\frac{n}{6}\pi\right)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \alpha^{n} \exp(x\alpha) \frac{Ai'(\alpha)}{Ai(\alpha)} d\alpha$$

$$K^{(n)}(\xi) = \frac{\exp\left(-i\frac{n-2}{6}\pi\right)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \alpha^{n} \exp(x\alpha) \frac{Ai(\alpha)}{Ai'(\alpha)} d\alpha$$

$$f^{(n)}(\xi) = \frac{\exp\left(-i\frac{n+4}{6}\pi\right)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \alpha^{n} \exp(x\alpha) \frac{1}{Ai(\alpha)} d\alpha$$
Inverse Laplace transform representation
$$g^{(n)}(\xi) = -\frac{\exp\left(-i\frac{n}{6}\pi\right)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \alpha^{n} \exp(x\alpha) \frac{1}{Ai'(\alpha)} d\alpha$$

$$\hat{p}^{(n)}(\xi) = \frac{\exp\left(-i\frac{n+4}{6}\pi\right)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \alpha^{n} \exp(x\alpha) \frac{Ai[\exp\left(-i\frac{2\pi}{3}\right)\alpha]}{Ai(\alpha)} d\alpha$$

$$\hat{q}^{(n)}(\xi) = -\frac{\exp\left(-i\frac{n}{6}\pi\right)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \alpha^{n} \exp(x\alpha) \frac{Ai[\exp\left(-i\frac{2\pi}{3}\right)\alpha]}{Ai'(\alpha)} d\alpha$$

$$(8.2)$$

where, for  $n \ge 0$ , we can take c to be any real constant larger than the smallest root of the Airy integral appearing in the denominator. For n < 0 the integrands are singular at the origin; in this case we take c o and define the contour to be indented at the origin by a half-circle lying in the left-half plane. Rice deformed the contour to a form equivalent to that used by Fock, namely,

$$\int_{\mathbf{c}-1\infty}^{\mathbf{c}+\mathbf{i}\infty} \exp(\mathbf{x}\alpha) \dots d\alpha = \int_{\mathbf{c}} \exp(\mathbf{x}\alpha) \dots d\alpha$$

where L is the contour illustrated in Fig. 14 where  $\alpha_1 \dots \alpha_n \dots$  denotes the roots of the Airy functions  ${\rm Ai}(\alpha)$  or  ${\rm Ai}'(\alpha)$ .



Fig. 14 The Contour L

If we use the Wronskian relation

$$Ai(\alpha) Bi'(\alpha) - Ai'(\alpha) Bi(\alpha) = \frac{1}{\pi}$$

and the relations.

$$\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right] = \frac{1}{2}\exp\left(i\frac{\pi}{6}\right)\left\{\operatorname{Bi}(\alpha) - i\operatorname{Ai}(\alpha)\right\}$$

$$\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right] = \frac{1}{2}\exp\left(i\frac{5\pi}{6}\right)\left\{\operatorname{Bi}'(\alpha) - i\operatorname{Ai}'(\alpha)\right\} \tag{8.3}$$

we find that

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \left\{ \frac{\mathrm{Ai} \left[ \exp\left(-\mathrm{i}\frac{2\pi}{3}\right)\alpha\right]}{\mathrm{Ai}(\alpha)} \right\} - \frac{1}{2\pi} \frac{\exp\left(\mathrm{i}\frac{\pi}{6}\right)}{\left[\mathrm{Ai}(\alpha)\right]^{2}}$$
(8.4)

and

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \left\{ \frac{\mathrm{Ai'} \left[ \exp \left( -\mathrm{i} \frac{2\pi}{3} \right) \alpha \right]}{\mathrm{Ai'}(\alpha)} \right\} = \frac{1}{2\pi} \frac{\alpha \exp \left( -\mathrm{i} \frac{\pi}{6} \right)}{\left[ \mathrm{Ai'}(\alpha) \right]^2}$$
(8.5)

For  $x \neq 0$  (i.e., for  $\xi \neq 0$ ), these results permit us to write

$$\begin{split} \widehat{p}(\xi) &= -\frac{\exp\left(i\frac{\pi}{6}\right)}{2\sqrt{\pi}} \int\limits_{L} \exp(x\alpha) \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} \, \mathrm{d}\alpha \\ &= -\frac{\exp\left(i\frac{\pi}{6}\right)}{2\sqrt{\pi}} \int\limits_{L} \frac{\mathrm{d}}{\mathrm{d}\alpha} \left\{ \frac{\exp(x\alpha)}{x} \right\} \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} \, \mathrm{d}\alpha + \frac{\exp\left(i\frac{\pi}{6}\right)}{2\sqrt{\pi}x} \int\limits_{L} \exp(x\alpha) \right. \\ &\left. \frac{\mathrm{d}}{\mathrm{d}\alpha} \left[ \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} \, \mathrm{d}\alpha = \frac{1}{2\pi} \left[ \frac{\exp\left(i\frac{\pi}{3}\right)}{2\sqrt{\pi}x} \int\limits_{L} \exp(x\alpha) \frac{1}{\left[\operatorname{Ai}(\alpha)\right]^{2}} \, \mathrm{d}\alpha \right] \right. \end{split}$$

(8.6)

and

$$\widehat{\mathbf{q}}(\xi) = \frac{i}{2\sqrt{\pi}} \int_{\mathbf{L}} \exp(\mathbf{x}\alpha) \frac{\operatorname{Ai}'\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)} d\alpha = \frac{i}{2\sqrt{\pi}} \int_{\mathbf{L}} \frac{d}{d\alpha} \\
\left\{\frac{\exp(\mathbf{x}\alpha)}{\mathbf{x}} \frac{\operatorname{Ai}'\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)}\right\} d\alpha - \frac{i}{2\sqrt{\pi}} \int_{\mathbf{L}} \exp(\mathbf{x}\alpha) \frac{d}{d\alpha} \frac{\operatorname{Ai}'\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)} d\alpha \\
= -\frac{1}{2\pi} \frac{\exp\left(i\frac{\pi}{3}\right)}{2\sqrt{\pi}} \int_{\mathbf{X}} \exp(\mathbf{x}\alpha) \frac{\alpha}{\left[\operatorname{Ai}'(\alpha)\right]^{2}} d\alpha \tag{8.7}$$

since

$$\int_{L} \frac{d}{d\alpha} \left\{ \frac{\exp(x\alpha)}{x} \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} \right\} d\alpha$$

$$= \lim_{R \to \infty} \left\{ \frac{\exp(x\alpha)}{x} \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} \right\} \Big|_{\alpha = R \exp -i\frac{2\pi}{3}} = \lim_{R \to \infty} \frac{\exp(\beta R)}{\beta} = 0$$

and
$$\int_{\mathbf{L}} \frac{d}{d\alpha} \left\{ \frac{\exp(\mathbf{x}\alpha)}{\mathbf{x}} - \frac{\operatorname{Ai}' \left[ \exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)} \right\} d\alpha$$

$$= \lim_{\mathbf{R} \to \infty} \left\{ \frac{\exp(\mathbf{x}\alpha)}{\mathbf{x}} - \frac{\operatorname{Ai}' \left[ \exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)} \right\} \right|_{\alpha = \mathbf{R} \exp\left(i\frac{2\pi}{3}\right)} = \exp\left(i\frac{2\pi}{3}\right) \lim_{\mathbf{R} \to \infty} \frac{\exp(\beta \mathbf{R})}{\beta} = 0$$

where  $\beta = \exp\left(-i\frac{5\pi}{6}\right)\xi = -\frac{1}{2}(\sqrt{3} + i)\xi$ . If  $\xi = 0$  this integral is not defined. In the evaluation of these limits we have used the properties

$$\operatorname{Ai}\!\left[\operatorname{R}\,\exp(\mathrm{i}\delta\,)\right] \xrightarrow[R\to\infty]{} \frac{1}{2\sqrt{\pi}\,\mathrm{R}^{1/4}} \,\exp\!\left(-\frac{2}{3}\,\mathrm{R}^{3/2}\cos\frac{3}{2}\,\delta\right) \,\exp\!\left[-\mathrm{i}\!\left(\frac{2}{3}\,\mathrm{R}^{3/2}\sin\frac{3}{2}\,\delta+\frac{\delta}{4}\right)\right]$$

$$\operatorname{Ai'}\left[\operatorname{R}\exp(\mathrm{i}\delta\right)\right] \xrightarrow[\text{R}\to\infty]{} -\frac{\operatorname{R}^{1/4}}{2\sqrt{\pi}} \exp\left(-\frac{2}{3}\operatorname{R}^{3/2}\cos\frac{3}{2}\delta\right) \exp\left[-\mathrm{i}\left(\frac{2}{3}\operatorname{R}^{3/2}\sin\frac{3}{2}\delta\right) - \frac{\delta}{4}\right)\right]$$

valid for  $\xi \neq \pi$  . The representations

$$\begin{vmatrix} \hat{\mathbf{p}}(\xi) & \frac{1}{2\pi} \frac{\exp\left(i\frac{\pi}{3}\right)}{2\sqrt{\pi} \mathbf{x}} \int_{\mathbf{L}} \exp(\mathbf{x}\alpha) \frac{1}{\left[\operatorname{Ai}(\alpha)\right]^{-2}} d\alpha \ \ \begin{vmatrix} \hat{\mathbf{q}}(\xi) & = -\frac{1}{2\pi} \frac{\exp\left(i\frac{\pi}{3}\right)}{2\sqrt{\pi} \mathbf{x}} \int_{\mathbf{L}} \exp(\mathbf{x}\alpha) \frac{\alpha}{\left[\operatorname{Ai}'(\alpha)\right]^{2}} d\alpha \ \ \end{vmatrix}$$

offer a number of advantages over the previous representation.

The integrals

$$\frac{\exp\left(i\frac{\pi}{6}\right)}{2\pi} \int_{\mathbf{L}} \frac{1}{\left[\operatorname{Ai}(\alpha)\right]^{2}} d\alpha = \int_{\mathbf{L}} \frac{d}{d\alpha} \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} d\alpha$$

$$= \lim_{\mathbf{R} \to \infty} \left\{ \frac{\operatorname{Ai}\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}(\alpha)} \right\} \left| \begin{array}{c} \alpha = \mathbf{R} \exp\left(i\frac{2\pi}{3}\right) \\ \alpha = \mathbf{R} \exp\left(i\frac{2\pi}{3}\right) \end{array} \right. = \exp\left(i\frac{2\pi}{3}\right)$$

$$\frac{\exp\left(-i\frac{\pi}{6}\right)}{2\pi} \int_{L} \frac{\alpha}{\left[\operatorname{Ai}'(\alpha)\right]^{2}} d\alpha = \int_{L} \frac{d}{d\alpha} \frac{\operatorname{Ai}'\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)} d\alpha$$

$$= \lim_{R \to \infty} \left\{ \frac{\operatorname{Ai}'\left[\exp\left(-i\frac{2\pi}{3}\right)\alpha\right]}{\operatorname{Ai}'(\alpha)} \right\} \begin{vmatrix} \alpha = \operatorname{R}\exp\left(i\frac{2\pi}{3}\right) \\ \alpha = \operatorname{R}\exp\left(-i\frac{2\pi}{3}\right) \end{vmatrix} = -\exp\left(i\frac{\pi}{3}\right)$$

permit us to show that

$$\hat{q}(\xi) \xrightarrow{\xi \to 0} -\frac{\exp\left(-i\frac{\pi}{6}\right)}{2\sqrt{\pi} x} = -\frac{1}{2\sqrt{\pi} \xi}$$

$$\hat{q}(\xi) \xrightarrow{\xi \to 0} -\frac{\exp\left(-i\frac{\pi}{6}\right)}{2\sqrt{\pi} x} = -\frac{1}{2\sqrt{\pi} \xi}$$
(8.8)

Since  $x = \xi \exp(-i\frac{\pi}{6})$  we observe that

$$i \xi \hat{p}(\xi) - x \exp\left(i\frac{2\pi}{3}\right) \hat{p}(\xi) = -\frac{1}{2\pi} \frac{1}{2\sqrt{\pi}} \int_{L} \exp(x\alpha) \frac{1}{\left[\operatorname{Ai}(\alpha)\right]^{2}} d\alpha = r(\xi)$$

$$\xi \hat{\mathbf{q}}(\xi) = \mathbf{x} \exp\left(i\frac{\pi}{6}\right) \hat{\mathbf{q}}(\xi) = -\frac{1}{2\pi} \frac{1}{2\sqrt{\pi}} \int_{\mathbf{L}} \exp(\mathbf{x}\alpha) \frac{\alpha}{\left[\operatorname{Ai}'(\alpha)\right]^2} d\alpha = s^{(1)}(\xi)$$
 (8.9)

These representations for the integrals have the remarkable property of involving only  $\operatorname{Ai}(\alpha)$  and  $\operatorname{Ai}'(\alpha)$ . In order to justify the rotation of the contours, or other modifications of the path of integration, we need only consider the asymptotic behavior of  $\operatorname{Ai}(\alpha)$ ,  $\operatorname{Ai}'(\alpha)$  for  $\alpha \to \infty$ . The asymptotic estimates

$$\operatorname{Ai}\left[\operatorname{w}\,\exp(\mathrm{i}\delta)\right] \xrightarrow[W\to\infty]{} \frac{1}{2\sqrt{\pi}} \frac{1}{\sqrt[4]{\mathrm{w}}} \exp(-\mathrm{i}\,\delta/4) \exp\left[-\frac{2}{3}\,\operatorname{w}^{3/2}\exp(\mathrm{i}\,\frac{3\delta}{2}\,)\right], -\pi < \delta < \pi$$

$$\operatorname{Ai}(-\operatorname{w}) \xrightarrow[W\to\infty]{} \frac{1}{\sqrt{\pi}} \frac{4}{\sqrt[4]{\mathrm{w}}} \sin\left[\frac{2}{3}\,\operatorname{w}^{3/2} + \frac{\pi}{4}\,\right] \tag{8.10}$$

are well known. The asymptotic form involving the sine is actually valid for  $\operatorname{Ai}[-\operatorname{w}\,\exp(\mathrm{i}\,\delta)]$  in the more extended region  $-\frac{\pi}{3}<\delta<\frac{\pi}{3}$ . For large w and fixed  $\delta$ , however, it coincides with the first expression because one of the exponential parts of the sine is negligible compared with the other. It is better to take the result to be of the form

$$Ai \left[\rho \exp(i\phi)\right] \xrightarrow{\rho \to \infty} \frac{1}{2\sqrt{\pi}} \rho^{-1/4} \exp\left(-i\frac{\phi}{4}\right) \exp\left[-\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right] - \frac{2\pi}{3} < \phi < \frac{2\pi}{3}$$

$$\frac{1}{2\sqrt{\pi}} \rho^{-1/4} \exp\left(-i\frac{\phi}{4}\right) \left\{\exp\left[-\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right] \pm \frac{i}{2} \exp\left[\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right]\right\} - \phi = \pm \frac{2\pi}{3}$$

$$\frac{1}{2\sqrt{\pi}} \rho^{-1/4} \exp\left(-i\frac{\phi}{4}\right) \left\{\exp\left[-\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right] + i \exp\left[\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right]\right\} - \frac{2\pi}{3} < \phi < \frac{4\pi}{3}$$

$$\frac{1}{2\sqrt{\pi}} \rho^{-1/4} \exp\left(-i\frac{\phi}{4}\right) \left\{\exp\left[-\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right] + i \exp\left[\frac{2}{3}\rho^{3/2} \exp\left(i\frac{3\phi}{2}\right)\right]\right\} - \frac{4\pi}{3} < \phi < -\frac{2\pi}{3}$$

$$\frac{1}{\sqrt{\pi}} \rho^{-1/4} \sin\left[\frac{2}{3}\rho^{3/2} + \frac{\pi}{4}\right] \qquad |\phi| = \pi$$

$$(8.11)$$

We observe that

1

$$Ai(x + iy) = Ai(x - iy)$$
 or  $Ai(z) = Ai(z)$ 

where the bar denotes the complex conjugate. The behavior of  $\left| \text{Ai} \left[ \rho \exp(i\phi) \right] \right|$  as a function of  $\rho$  is shown in Figs. 15 and 16.

Olver (Ref. 35) has presented the complete asymptotic expansions for the Airy integral in a concise form. He has defined

$$\xi = \frac{2}{3} \, x^{3/2}$$

$$u_s = \frac{(2s+1)(2s+3)(2s+5)\dots(6s-1)}{s!(216)^s}$$
,  $v_s = -\frac{6s+1}{6s-1} u_s$ 

and

$$L(\xi) = \sum_{s=0}^{\infty} \frac{u_s}{\xi^s} = 1 + \frac{3 \cdot 5}{1!216} \frac{1}{\xi} + \frac{5 \cdot 7 \cdot 9 \cdot 11}{2!(216)^2} \frac{1}{\xi^2} + \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3!(216)^3} \frac{1}{\xi^3} + \dots,$$

$$M(\xi) = \sum_{S=0}^{\infty} \frac{v_S}{\xi^S} = 1 - \frac{3 \cdot 7}{1!216} \frac{1}{\xi} - \frac{5 \cdot 7 \cdot 9 \cdot 13}{2!(216)^2} \frac{1}{\xi^2} - \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 19}{3!(216)^3} \frac{1}{\xi^3} - \dots,$$

$$P(\xi) = \sum_{s=0}^{\infty} (-)^{s} \frac{u_{2s}}{\xi^{2s}} - 1 - \frac{5 \cdot 7 \cdot 9 \cdot 11}{2!(216)^{2}} \frac{1}{\xi^{2}} + \frac{9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \cdot 21 \cdot 23}{4!(216)^{4}} \frac{1}{\xi^{4}} - \dots,$$

$$Q(\xi) = \sum_{S=0}^{\infty} (-)^{S} \frac{u_{2S+1}}{\xi^{2S+1}} - \frac{3 \cdot 5}{1!216} \frac{1}{\xi} - \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3! (216)^{3}} \frac{1}{\xi^{3}} + \ldots,$$

$$R(\xi) = \sum_{S=0}^{\infty} (-)^{S} \frac{v_{2S}}{\xi^{2S}} = 1 + \frac{5 \cdot 7 \cdot 9 \cdot 13}{2! (216)^{2}} \frac{1}{\xi^{2}} - \frac{9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \cdot 21 \cdot 25}{4! (216)^{4}} \frac{1}{\xi^{4}} + \cdots,$$

$$S(\xi) = \sum_{s=0}^{\infty} \left(-\right)^s \frac{v_{2s+1}}{\xi^{2s+1}} = \frac{3 \cdot 7}{1! \cdot 216} \cdot \frac{1}{\xi} \cdot \frac{7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 19}{3! \cdot (216)^3} \cdot \frac{1}{\xi^3} = \dots,$$

(8.12)



Fig. 15 Behavior of |Ai(x)| in Complex Plane



Fig. 16 Behavior of |Ai(x)| in Complex Plane

Then if |z| is large

$$\operatorname{Ai}(z) \sim \frac{1}{2} \pi^{-1/2} z^{-1/4} e^{-\xi} L(-\xi), \quad \operatorname{Ai}'(z) \sim -\frac{1}{2} \pi^{-1/2} z^{1/4} e^{-\xi} M(-\xi), \quad \left(|\arg z| < \frac{2\pi}{3}\right)$$

$$\operatorname{Ai}(-z) \sim \pi^{-1/2} z^{-1/4} \left| \cos\left(\xi - \frac{1}{4}\pi\right) P(\xi) + \sin\left(\xi - \frac{1}{4}\pi\right) Q(\xi) \right|$$

$$\operatorname{Ai}'(-z) \sim \pi^{-1/2} z^{1/4} \left| \cos\left(\xi - \frac{3}{4}\pi\right) R(\xi) + \sin\left(\xi - \frac{3}{4}\pi\right) S(\xi) \right|$$

$$\left(|\arg z| < \frac{\pi}{3}\right)$$
(8.13)

For arg z =  $\pm \frac{2\pi}{3}$ , we use the results (with t = |z|,  $\xi = \frac{2}{3} t^{3/2}$ )

Ai 
$$\left[ t \exp\left(\pm i \frac{2\pi}{3}\right) \right] = \frac{1}{2} \exp\left(\mp i \frac{\pi}{6}\right) \left| \operatorname{Bi}(t) \pm i \operatorname{Ai}(t) \right|$$

$$\sim \frac{1}{2\sqrt{\pi}} t^{-\frac{1}{4}} \exp\left(\mp i \frac{\pi}{6}\right) \left\{ \exp(\pm) L(\xi) \pm \frac{1}{2} \exp(-\xi) L(-\xi) \right\}$$
(8.14)

$$\operatorname{Ai'}\left[\operatorname{t} \exp\left(\pm \operatorname{i} \frac{2\pi}{3}\right)\right] = -\frac{1}{2} \exp\left(\pm \operatorname{i} \frac{\pi}{6}\right) \left|\operatorname{Bi'}(\mathsf{t}) \pm \operatorname{i} \operatorname{Ai'}(\mathsf{t})\right|$$

$$\sim -\frac{1}{2\sqrt{\pi}} \operatorname{t}^{\frac{1}{4}} \exp\left(\pm \operatorname{i} \frac{\pi}{6}\right) \left|\exp(\xi) \operatorname{M}(\xi) + \frac{\operatorname{i}}{2} \exp(-\xi) \operatorname{M}(-\xi)\right|$$

(8.15)

By closing the contour in Eq. (8.2) by a semi-circle at infinity in the left half plane (an operation which is valid when the real part of  $x = \xi \exp\left(-i\frac{\pi}{6}\right)$  is greater than zero), it can be shown that

$$u(\xi) = 2\sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} \sum_{s=1}^{\infty} \exp\left(-\frac{\sqrt{3}-i}{2} \alpha_{s} \xi\right)$$

$$\mathbf{v}(\xi) = \sqrt{\pi} \exp\left(i\frac{\pi}{4}\right) \xi^{1/2} \sum_{\mathbf{S}=1}^{\infty} \frac{1}{\beta_{\mathbf{S}}} \exp\left(-\frac{\sqrt{3}-i}{2} \beta_{\mathbf{S}} \xi\right)$$

$$f(\xi) = \exp\left(-i\frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{1}{\Lambda i'(-\alpha_s)} \exp\left(-\frac{\sqrt{3}-i}{2} \alpha_s \xi\right)$$

$$g(\xi) = \sum_{s=1}^{\infty} \frac{1}{\beta_s \operatorname{Ai}(-\beta_s)} \exp\left(-\frac{\sqrt{3}-1}{2} \beta_s \xi\right)$$

$$\hat{p}(\xi) = -\frac{1}{2\sqrt{\pi}} \exp\left(-i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{1}{\left[Ai'(-\alpha_s)\right]^2} \exp\left(-\frac{\sqrt{3}-i}{2} \alpha_s \xi\right)$$

$$\hat{\mathbf{q}}(\xi) = -\frac{1}{2\sqrt{\pi}} \exp\left(-i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{1}{\beta_s \left[\mathrm{Ai}(-\beta_s)\right] 2} \exp\left(-\frac{\sqrt{3}-i}{2}\beta_s \xi\right)$$
(8.16)

These residue series representations show emphatically the importance of the constants  $\alpha_s$ ,  ${\rm Ai}'(-\alpha_s)$ ,  $\beta_s$ ,  ${\rm Ai}(-\beta_s)$ .

## Section 9

## ALTERNATIVE REPRESENTATIONS FOR THE INTEGRALS $u(\xi)$ , $v(\xi)$

The residue series representations for the functions  $u(\xi)$  and  $v(\xi)$  become useless as  $\xi$  approaches zero. However, an alternative representation is easily found since the logarithmic derivatives

$$y(\alpha) = \frac{d}{d\alpha} \log \operatorname{Ai}(\alpha) = \frac{\operatorname{Ai}'(\alpha)}{\operatorname{Ai}(\alpha)}$$

$$z(\alpha) = \frac{d}{d\alpha} \log \operatorname{Ai}'(\alpha) = \frac{\operatorname{Ai}''(\alpha)}{\operatorname{Ai}'(\alpha)} = \frac{\alpha \operatorname{Ai}(\alpha)}{\operatorname{Ai}'(\alpha)}$$
(9.1)

satisfy the differential equations

$$\frac{dy}{d\alpha} = \alpha - y^{2}(\alpha)$$

$$\frac{dz}{d\alpha} = \alpha - \alpha^{2}z^{2}(\alpha)$$
(9.2)

We can then show that

$$-\frac{\text{Ai}'(\alpha)}{\text{Ai}(\alpha)} = -\sum_{n=0}^{\infty} A_n \frac{1}{\alpha^{(3n-1/2)}}$$

$$= \sqrt{\alpha} + \frac{1}{4} \frac{1}{\alpha} - \frac{5}{32} \frac{1}{\alpha^{5/2}} + \frac{15}{64} \frac{1}{\alpha^4} - \frac{1105}{2048} \frac{1}{\alpha^{11/2}}$$

$$+ \frac{1695}{1024} \frac{1}{\alpha^7} - \frac{414125}{65536} \frac{1}{\alpha^{17/2}} + \frac{59025}{2048} \frac{1}{\alpha^{10}}$$

$$- \frac{12820}{8388608} \frac{31525}{\alpha^{23/2}} + \frac{1}{2421} \frac{83775}{262144} \frac{1}{\alpha^{13}} + \dots$$
 (9.3)

and

$$-\frac{\alpha \operatorname{Ai}(\alpha)}{\operatorname{Ai'}(\alpha)} = -\sum_{n=0}^{\infty} \operatorname{B}_{n} \frac{1}{\alpha^{(3n-1/2)}}$$

$$= \sqrt{\alpha} - \frac{1}{4} \frac{1}{\alpha} + \frac{7}{32} \frac{1}{\alpha^{5/2}} - \frac{21}{64} \frac{1}{\alpha^{4}} + \frac{1463}{2048} \frac{1}{\alpha^{11/2}}$$

$$-\frac{2121}{1024} \frac{1}{\alpha^{7}} + \frac{495271}{65536} \frac{1}{\alpha^{17/2}} - \frac{136479}{4096} \frac{1}{\alpha^{10}}$$

$$+ \frac{14457}{8388608} \frac{13003}{\alpha^{23/2}} - \frac{268122561}{262144} \frac{1}{\alpha^{13}} + \dots$$
 (9.4)

The Laplace transform inversion integral

$$\int_{c-i\infty}^{c+i\infty} \exp(x\alpha) \frac{1}{\alpha^{p+1}} d\alpha - \frac{2\pi i}{\Gamma(p+1)} x^p$$
 (9.5)

can then be used to show that

$$u(\xi) = -2\sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} \sum_{n=0}^{\infty} A_n \frac{\left[\exp\left(-i\frac{\pi}{6}\right)\xi\right] \frac{3n-3}{2}}{\Gamma\left(\frac{3n-1}{2}\right)}$$

$$= 1 - \frac{1}{4} \frac{\Gamma(-1/2)}{\Gamma(2)} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} - \frac{5}{32} \frac{\Gamma(-1/2)}{\Gamma(5/2)} \exp\left(-i\frac{\pi}{2}\right) \xi^3 + \dots$$

$$v(\xi) = -\sqrt{\pi} \exp\left(-i\frac{\pi}{12}\right) \xi^{1/2} \sum_{n=0}^{\infty} B_n \frac{\left[\exp\left(-i\frac{\pi}{6}\right)\xi\right] \frac{3n-1}{2}}{\Gamma\left(\frac{3n+1}{2}\right)}$$

$$= 1 - \frac{1}{4} \frac{\Gamma(1/2)}{\Gamma(2)} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} + \frac{7}{32} \frac{\Gamma(1/2)}{\Gamma(7/2)} \exp\left(-i\frac{\pi}{2}\right) \xi^3 + \dots (9.6)$$

In Table 7 we list results for the first 22 values of  $\,{\bf A}_{n}\,,\,\,{\bf B}_{n}$  .

Table 7  $\begin{tabular}{llll} VALUES OF & A_n, & B_n & OCCURING IN ASYMPTOTIC EXPANSIONS \\ OF LOGARITHMIC DERIVATIVES OF & Ai($\alpha$), Ai'($\alpha$) \\ \end{tabular}$ 

| n   | A <sub>n</sub>                | $\mathtt{B}_{\mathfrak{p}}$ |
|-----|-------------------------------|-----------------------------|
| 0   | - į                           | 1                           |
| 1   | -0.25                         | + 0.25                      |
| 2   | + 0.15625                     | - 0.21875                   |
| 3   | - 0.234375                    | + 0.328125                  |
| 4   | + 0.53955 0781                | - 0.714355468               |
| 5   | - 1.65527 3437                | + 2.07128 9062              |
| 6   | + 6.31904 602                 | - 7.55723 571               |
| 7   | - 28.82080 078                | + 33.32006 83               |
| 8   | + 152.83006 7                 | - 172.34241 9               |
| 9   | - 923.85778 4                 | + 1022.80640 0              |
| 10  | + 6271.454                    | - 6847.767                  |
| 11  | - 47242.09                    | + 51038.51                  |
| 12  | $+ 3.910938 \times 10^{5}$    | $-4.190135 \times 10^5$     |
| 1.3 | $-3.529629 \times 10^{6}$     | $+ 3.756370 \times 10^{-6}$ |
| 14  | $+ 3.449236 \times 10^{7}$    | $-3.650733 \times 10^{7}$   |
| 15  | - 3.62859 x 10 <sup>8</sup>   | $+ 3.823037 \times 10^{8}$  |
| 16  | $+ 4.088748 \times 10^9$      | $-4.291192 \times 10^9$     |
| 17  | $-4.913293 \times 10^{10}$    | $+$ 5. 139436 x 10 $^{10}$  |
| 18  | $+ 6.271985 \times 10^{11}$   | $-6.541735 \times 10^{11}$  |
| 19  | $-8.476114 \times 10^{12}$    | $+ 8.818285 \times 10^{12}$ |
| 20  | + 1.208974 x 10 <sup>14</sup> | $-1.254962 \times 10^{14}$  |
| 21  | $-1.814970 \times 10^{15}$    | $+ 1.880248 \times 10^{15}$ |
| 22  | + $2.860712 \times 10^{16}$   | $-2.958293 \times 10^{16}$  |
|     |                               |                             |

These representations, along with the residue series representations, permit one to evaluate  $u(\xi)$ ,  $v(\xi)$  for all values of  $\xi$ . However, another interesting representation for  $u(\xi)$ ,  $v(\xi)$  can also be obtained by means of the Euler-Maclaurin summation formula. Consider the case of  $v(\xi)$ , for example. If we use Olvers' (Ref. 35) relation

$$\frac{da'_{s}}{ds} = \frac{1}{a'_{s}Ai(a'_{s})Ai(a'_{s})}$$

we can write

$$v(\xi) = -2\sqrt{\pi} \exp\left(-i\frac{\pi}{12}\right) \sqrt{\xi} \sum_{s=1}^{\infty} \frac{1}{a_{s}'} \exp\left(\frac{\sqrt{3}-i}{2} a_{s}' \xi\right) = -2\sqrt{\pi} \exp\left(-i\frac{\pi}{6}\right) \sqrt{\xi}$$

$$\sum_{s=1}^{\infty} \exp\left(\frac{\sqrt{3}-i}{2} a_{s}' \xi\right) \left[ Ai(a_{s}') \right]^{2} \frac{da_{s}'}{ds}$$

$$= -2\sqrt{\pi} \exp\left(-i\frac{\pi}{12}\right) \sqrt{\xi} \left\{ \sum_{s=1}^{N-1} \frac{1}{a_{s}'} \exp\left(\frac{\sqrt{3}-i}{2} a_{s}' \xi\right) + \sum_{s=N}^{\infty} \exp\left(\frac{\sqrt{3}-i}{2} a_{s}' \xi\right) \left[ Ai(a_{s}') \right]^{2} \frac{da_{s}'}{ds} \right\}$$

$$= -2\sqrt{\pi} \exp\left(-i\frac{\pi}{12}\right) \sqrt{\xi} \left\{ \sum_{s=1}^{N-1} \frac{1}{a_{s}'} \exp\left(\frac{\sqrt{3}-i}{2} a_{s}' \xi\right) + \int_{a_{N}'}^{\infty} \exp\left(\frac{\sqrt{3}-i}{2} x \xi\right) \left[ Ai(x) \right]^{2} dx + \frac{1}{2a_{N}'} \exp\left(\frac{\sqrt{3}-i}{2} a_{N}' \xi\right) + R_{M} \left[ \frac{1}{a_{N}'} \exp\left(\frac{\sqrt{3}-i}{2} a_{s}' \xi\right) \right] \right\}$$

$$(9.7)$$

where

$$R_{\mathbf{M}}[f(N)] = -\frac{1}{12} \Delta f(N) + \frac{1}{24} \Delta^{2} f(N) - \frac{19}{720} \Delta^{3} f(N) + \dots$$

$$= -\frac{1}{12} \frac{df}{dN} + \frac{1}{720} \frac{d^{3}f}{dN^{3}} - \dots$$
(9.8)

Let us now write

$$\int_{\mathbf{A}}^{-\infty} \exp\left(\frac{\sqrt{3}-\mathbf{i}}{2} \times \xi\right) \left[ \operatorname{Ai}(\mathbf{x}) \right]^{2} d\mathbf{x} = -\int_{-\infty}^{\infty} \exp\left(\frac{\sqrt{3}-\mathbf{i}}{2} \times \xi\right) \left[ \operatorname{Ai}(\mathbf{x}) \right]^{2} d\mathbf{x} + \int_{\mathbf{A}}^{\infty} \exp\left(\frac{\sqrt{3}-\mathbf{i}}{2} \times \xi\right) \left[ \operatorname{Ai}(\mathbf{x}) \right]^{2} d\mathbf{x}$$

$$= -\frac{\exp\left(i\frac{\pi}{12}\right)}{2\sqrt{\pi \xi}} \exp\left(-i\frac{\xi^3}{12}\right) + \int_{a_N}^{\infty} \exp\left(\frac{\sqrt{3}-i}{2}x\xi\right) \left[\operatorname{Ai}(x)\right]^2 dx$$
(9.9)

Therefore, we write

$$\mathbf{v}(\xi) = \exp\left(-i\frac{\xi^{3}}{12}\right) - 2\sqrt{\pi\xi} \exp\left(-i\frac{\pi}{12}\right) \left\{ \sum_{s=1}^{N-1} \frac{1}{a'_{s}} \exp\left(\frac{\sqrt{3}-1}{2} a'_{s}\xi\right) + \frac{1}{2a'_{N}} \exp\left(\frac{\sqrt{3}-1}{2} a'_{N}\xi\right) \right\}$$

$$+\int_{a_{\mathbf{N}}^{\dagger}}^{\infty} \exp\left(\frac{\sqrt{3}-1}{2} \times \xi\right) \left[\operatorname{Ai}(x)\right]^{2} dx + R_{\mathbf{M}} \left[\frac{1}{a_{\mathbf{N}}^{\dagger}} \exp\left(\frac{\sqrt{3}-1}{2} \cdot a_{\mathbf{N}}^{\dagger} \xi\right)\right]$$
(9.10)

If now we use the result

$$\exp\left(\frac{\sqrt{3}-i}{2} x\xi\right) = \sum_{n=0}^{\infty} \exp\left(-i n \frac{\pi}{6}\right) x^n \frac{\xi^n}{n!}$$

we arrive at the formal result

$$v(\xi) = \exp\left(-i\frac{\xi^3}{12}\right) - 2\sqrt{\pi \xi} \exp\left(-i\frac{\pi}{12}\right) \sum_{n=0}^{\infty} \exp\left(-in\frac{\pi}{6}\right) \frac{\xi^n}{n!} \left\{\sum_{s=1}^{N-1} (a_s')^{n-1} + \frac{1}{2} (a_N')^{n-1}\right\}$$

$$+\int_{a_{N}}^{\infty} x^{n} \operatorname{Ai}(x) \operatorname{Ai}(x) \operatorname{d}x + R_{M} \left[ (a_{N}^{'})^{n-1} \right]$$
(9.11)

The integral

$$I(n) = \int_{A_{\mathbf{N}}^{+}}^{\infty} x^{n} \operatorname{Ai}(\mathbf{x}) \operatorname{Ai}(\mathbf{x}) d\mathbf{x}$$
 (9.12)

can be evaluated by studying the generating function

$$y(t) = \int_{a_N^t}^{\infty} \exp(xt) \operatorname{Ai}(x) \operatorname{Ai}(x) dx = \sum_{n=0}^{\infty} I(n) \frac{t^n}{n!}$$
(9.13)

If we write

$$y(t) = Ai(a_N') Ai(a_N') h(t)$$
 (9.14)

we find that

$$4 t h'(t) + (2 - t^3) h(t) = \left\{ -2a'_{N} + t^2 \right\} \exp(a'_{N}t)$$
 (9.15)

Since

$$y(0) = -a'_{N} Ai(a'_{N}) Ai(a'_{N})$$

we have

$$h(0) = -a_{N}'$$
 (9.16)

We can also show that

$$y'(0) = -\int_{a_N'}^{\infty} Ai'(x) Ai'(x) dx = -\frac{1}{3} \left[ a_N' Ai(a_N') \right]^2$$
 (9.17)

and hence

$$h'(0) = -\frac{1}{3} (a'_{N})^2$$
 (9.18)

Since

$$y(t) = Ai(a_N') Ai(a_N') h(t) = \sum_{n=0}^{\infty} I(n) \frac{t^n}{n!}$$
 (9.19)

we can readily determine I(n) by using the differential equation satisfied by h(t).

The Laplace transform inversion integral form is also useful in the case of the function

$$\hat{V}_{O}(x, q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{w_{1}(t)}{w'_{1}(t) - qw_{1}(t)} dt$$
 (9.20)

which can be expressed in the form of the residue series

$$\hat{V}_{0}(x, q) = 2\sqrt{\pi}i \sum_{s=1}^{\infty} \frac{1}{t_{s} - q^{2}} \exp(ixt_{s})$$
 (9.21)

where

$$w_1'(t_s) - qw_1(t_s) = 0$$

If we let

$$t_s = -\exp(i\frac{\pi}{3}) a_s$$

we can write

$$\hat{V}_{O}(x, q) = -2\sqrt{\pi} \exp\left(i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{1}{a_{s} + \exp\left(-i\frac{\pi}{3}\right) q^{2}} \exp\left(\frac{\sqrt{3}-i}{2} a_{s} x\right)$$

$$= -2\pi \exp\left(i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{1}{a_{s} - Q^{2}} \exp\left(\frac{\sqrt{3}-i}{2} a_{s} x\right) \qquad (9.22)$$

where

$$Q = \exp\left(i\frac{\pi}{3}\right) q \tag{9.23}$$

If we write

$$\int_{\mathbf{c}-\mathbf{i}\infty}^{\mathbf{c}+\mathbf{i}\infty} \exp(\mathbf{z}\alpha) \frac{\mathrm{Ai}(\alpha)}{\mathrm{Ai}(\alpha) - \mathrm{QAi}(\alpha)} d\alpha = 2\pi i \sum_{s=1}^{\infty} \frac{1}{\alpha_s - \mathrm{Q}^2} \exp(\mathbf{z}\alpha_s)$$
(9.24)

where

$$z = \frac{\sqrt{3}-i}{2} x = \exp\left(-i\frac{\pi}{6}\right) x \qquad (9.25)$$

$$\Lambda i'(\alpha_{_{\mathbf{S}}}) - \mathbb{Q} \Lambda i(\alpha_{_{\mathbf{S}}}) = 0$$
 (9.26)

we can write

$$\bigvee_{0}^{\Lambda} (\mathbf{x}, \mathbf{q}) = \frac{1}{\sqrt{\pi}} \exp\left(i\frac{2\pi}{3}\right) \int_{\mathbf{c}-i\infty}^{\mathbf{c}+i\infty} \exp(\mathbf{z}\alpha) \frac{\mathrm{Ai}(\alpha)}{\mathrm{Ai}'(\alpha) - \mathrm{QAi}(\alpha)} d\alpha \tag{9.27}$$

From the property

$$\frac{\operatorname{Ai}'(\alpha)}{\operatorname{Ai}(\alpha)} \xrightarrow{\alpha \to \infty} -\sqrt{\alpha} \tag{9.28}$$

we are lead to consider the integral

$$W(x, q) = -\exp\left(i\frac{2\pi}{3}\right) \frac{1}{\sqrt{\pi}} \int_{c-i\infty}^{c+i\infty} \exp(z\alpha) \frac{1}{\sqrt{\alpha} + Q} d\alpha \qquad (9.29)$$

This is a well-known integral in the theory of the Laplace transformation

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} \exp(st) \frac{1}{\sqrt{s+a}} ds = \frac{1}{\sqrt{\pi t}} - a \exp(a^2 t) \operatorname{erfc}(a\sqrt{t})$$

$$= \frac{1}{\sqrt{\pi t}} - a \exp(a^2 t) \frac{2}{\sqrt{\pi}} \int_{a\sqrt{t}}^{\infty} \exp(-\lambda^2) d\lambda$$
(9.30)

Therefore, we write

$$W(x, q) = -\exp\left(i\frac{2\pi}{3}\right) \left(2\sqrt{\pi} i\right) \left\{\frac{1}{\sqrt{\pi} z} - Q \exp(Q^2 z) \frac{2}{\sqrt{\pi}} \int_{Q\sqrt{z}}^{\infty} \exp(-\lambda^2) d\lambda\right\}$$
(9.21)

where

$$Q = exp\left(i\frac{\pi}{3}\right)q$$
 ,  $z = exp\left(-i\frac{\pi}{6}\right)x$ 

Let

$$\sigma = \exp\left(-i\frac{\pi}{4}\right) q \sqrt{x}$$

$$\rho = \sigma^2 = \exp\left(-i\frac{\pi}{2}\right) q^2 x \qquad (9.32)$$

and observe that

$$Q\sqrt{z} = \exp\left(i\frac{\pi}{3}\right) q \exp\left(-i\frac{\pi}{12}\right) x = \exp\left(i\frac{\pi}{4}\right) q\sqrt{x} = \exp\left(i\frac{\pi}{2}\right) \sigma = i\sigma$$

$$Q^{2}z = -\sigma^{2}$$

and hence

$$W(x, q) = \frac{2}{\sqrt{x}} \exp\left(i\frac{\pi}{4}\right) \left\{1 - 2i\sigma \exp(-\sigma^2) \int_{i\sigma}^{\infty} \exp(-\lambda^2) d\lambda\right\}$$
(9.33)

Now change variables in the integral by writing

$$t = -i\lambda$$

so that

$$\overset{\wedge}{V_0}(x, q) \approx W(x, q) = \frac{2}{\sqrt{x}} \exp\left(i\frac{\pi}{4}\right) \left\{ 1 + 2\sigma \exp(-\sigma^2) \int_{\sigma}^{i\infty} \exp(t^2) dt \right\}$$

$$= \frac{2}{\sqrt{x}} \exp\left(i\frac{\pi}{4}\right) \left\{ 1 + 2\sqrt{\rho} \exp(-\rho) \int_{\sqrt{\rho}}^{i\infty} \exp(t^2) dt \right\} \qquad (9.34)$$

This is just the well-known Weyl-van der Pol formula.

It is not possible to obtain results for  $f(\xi)$ ,  $g(\xi)$ ,  $p(\xi)$ ,  $q(\xi)$  in such a direct manner as for  $u(\xi)$ ,  $v(\xi)$  since the integrands do not behave like a power of  $\alpha$  as  $\alpha$  tends to infinity along the real axis.

## 

The integrals

$$f(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi}(t) + i\operatorname{Ai}(t)} dt$$

$$g(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi}'(t) + i\operatorname{Ai}'(t)} dt$$

$$\hat{p}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{Ai(t)}{Bi(t) + iAi(t)} dt , \quad \hat{q}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{Ai'(t)}{Bi'(t) + iAi'(t)} dt$$
(10.1)

are known to have asymptotic expansion of the form

$$f(\xi) = 2i\xi \exp\left(-i\frac{\xi^{3}}{3}\right) \left\{1 - \frac{i}{4\xi^{3}} + \dots\right\}$$

$$g(\xi) = 2 \exp\left(-i\frac{\xi^{3}}{3}\right) \left\{1 + \frac{i}{4\xi^{3}} + \dots\right\}$$

$$\hat{p}(\xi) = \frac{\sqrt{\xi}}{2} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 - i\frac{2}{\xi^{3}} + \dots\right\}$$

$$\hat{q}(\xi) = -\frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{2}{\xi^{3}} + \dots\right\}$$
(10.2)

valid for  $\xi \to -\infty$ . In this section we extend these results to include the terms in  $\xi^{-30}$ .

Let us begin by using the properties

$$\frac{1}{\pi} \frac{1}{\text{Bi(t)} + \text{i Ai(t)}} = -2\text{Ai'(t)} + \left\{ \frac{\text{Bi'(t)} + \text{i Ai'(t)}}{\text{Bi(t)} + \text{i Ai(t)}} + \frac{\text{Ai'(t)}}{\text{Ai(t)}} \right\} \text{ Ai(t)}$$

$$\frac{1}{\pi} \frac{1}{\text{Bi'(t)} + \text{i Ai'(t)}} = 2\text{Ai(t)} - \left\{ \frac{\text{Bi(t)} + \text{i Ai(t)}}{\text{Bi'(t)} + \text{i Ai'(t)}} + \frac{\text{Ai(t)}}{\text{Ai'(t)}} \right\} \text{ Ai'(t)}$$

$$\frac{\text{Bi'(t)} + \text{i Ai'(t)}}{\text{Bi(t)} + \text{i Ai(t)}} + \frac{\text{Ai'(t)}}{\text{Ai(t)}} + \frac{\text{Ai'(t)}}{\text{Ai(t)}} = \frac{1}{2t} - \frac{15}{32} \frac{1}{t^4} - \frac{1695}{512} \frac{1}{t^7} - \frac{59025}{1024} \frac{1}{t^{10}} - \frac{242183775}{131072} \frac{1}{t^{13}} - \dots$$

$$(10.3)$$

$$\frac{\text{Bi(t)} + \text{i Ai(t)}}{\text{Bi'(t)} + \text{i Ai'(t)}} + \frac{\text{Ai(t)}}{\text{Ai'(t)}} + \frac{\text{Ai(t)}}{\text{Ai'(t)}} + \frac{1}{2t^2} + \frac{21}{32} \frac{1}{t^5} + \frac{2121}{512} \frac{1}{t^8} + \frac{136479}{2048} \frac{1}{t^{11}} + \frac{268122561}{131072} \frac{1}{t^{14}} + \dots$$

$$(10.4)$$

and

$$\frac{1}{\sqrt{\pi}} \frac{1}{B!(t) + i Ai(t)} \frac{1}{t \to -\infty} - i \sqrt{\pi} \left[ Bi'(t) - i Ai'(t) \right] - i \frac{1}{4} \left\{ \frac{1}{t} + \frac{15}{16} \frac{1}{t^4} + \frac{1695}{256} \frac{1}{t^7} + \frac{59025}{512} \frac{1}{t^{10}} + \frac{242183775}{65536} \frac{1}{t^{13}} + \dots \right\} \sqrt{\pi} \left[ Bi(t) - i Ai(t) \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{Bi'(t) + i Ai'(t)} \frac{1}{t \to -\infty} - i \sqrt{\pi} \left[ Bi(t) - i Ai(t) \right] - \frac{i}{4} \left\{ \frac{1}{t^2} + \frac{21}{16} \frac{1}{t^5} + \frac{2121}{256} \frac{1}{t^8} + \frac{136479}{1024} \frac{1}{t^{11}} + \frac{268122561}{65536} \frac{1}{t^{14}} + \dots \right\} \sqrt{\pi} \left[ Bi'(t) - i Ai'(t) \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{Bi'(t) + i Ai'(t)} - \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} + \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \right] \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} + \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \right] \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \right] \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \right] \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \right] \right]$$

$$\frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}}$$

to obtain the formal results

$$\mathbf{f}(\xi) = -2\mathbf{J}_{0}(\xi) - \frac{1}{2}\mathbf{I}_{1}(\xi) - \frac{15}{32}\mathbf{I}_{4}(\xi) - \frac{1695}{512}\mathbf{I}_{7}(\xi) - \frac{59025}{1024}\mathbf{I}_{10}(\xi) - \frac{242183775}{131072}\mathbf{I}_{13}(\xi) + \dots$$

$$g(\xi) = 2I_0(\xi) - \frac{1}{2}J_2(\xi) - \frac{21}{32}J_5(\xi) - \frac{2121}{512}J_8(\xi) - \frac{136479}{2048}J_{11}(\xi) - \frac{2681 22561}{131072}J_{14}(\xi) + \cdots$$

$$\hat{p}(\xi) = \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)^{-1}\right] - \frac{i}{4}\left[K_1(\xi) + \frac{15}{16}K_4(\xi) + \frac{1695}{256}K_7(\xi) + \frac{59025}{512}K_{10}(\xi) + \frac{2421 83775}{65536}K_{13}(\xi) + \dots\right]$$

$$\hat{\mathbf{q}}(\xi) = -\frac{\sqrt{-\xi}}{2} \exp \left[ -i \left( \frac{\xi^3}{12} + \frac{\pi}{4} \right) \right] - \frac{i}{4} \left\{ \mathbf{L}_2(\xi) + \frac{21}{16} \mathbf{L}_5(\xi) + \frac{2121}{256} \mathbf{L}_8(\xi) + \frac{136479}{1024} \mathbf{L}_{11}(\xi) + \frac{2681}{65536} \mathbf{L}_{14}(\xi) + \dots \right\}$$

where

$$I_{\mathbf{n}}(\xi) = \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{t^{\mathbf{n}}} \operatorname{Ai}(t) dt \qquad , \qquad J_{\mathbf{n}}(\xi) = \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{t^{\mathbf{n}}} \operatorname{Ai}'(t) dt$$

and

$$K_n(\xi) = \sqrt{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) t^{-n} \operatorname{Ai}(t) \left[ \operatorname{Bi}(t) - i \operatorname{Ai}(t) \right] dt$$

$$L_{n}(\xi) = \sqrt{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) t^{-n} \Lambda i'(t) \left[Bi'(t) - i \Lambda i'(t)\right] dt$$

The leading terms come from the integrals

$$J_{o}(\xi) = \int_{-\infty}^{\infty} \exp(i\xi t) \operatorname{Ai}'(t) dt = -i\xi \exp\left(-i\frac{\xi^{3}}{3}\right)$$
 (10.7)

$$I_{o}(\xi) = \int_{-\infty}^{\infty} \exp(i\xi t) \operatorname{Ai}(t) dt = \exp\left(-i\frac{\xi^{3}}{3}\right)$$
 (10.8)

$$\sqrt{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) \operatorname{Ai}(t) \left[ \operatorname{Bi}'(t) - i\operatorname{Ai}'(t) \right] dt = \frac{i}{2} \frac{1}{\sqrt{-\xi}} \exp\left[ -i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right) \right]$$
 (10.9)

$$\sqrt{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) \operatorname{Ai}'(t) \left[ \operatorname{Bi}(t) - i \operatorname{Ai}(t) \right] dt = -\frac{i}{2} \frac{1}{\sqrt{-\xi}} \exp \left[ -i \left( \frac{\xi^3}{12} + \frac{\pi}{4} \right) \right]$$
 (10.10)

We also know the integrals

$$K_{0}(\xi) = \sqrt{\pi} \int_{0}^{\infty} \exp(i\xi t) \operatorname{Ai}(t) \left[ \operatorname{Bi}(t) - i \operatorname{Ai}(t) \right] dt = \frac{1}{\sqrt{-\xi}} \exp \left[ -i \left( \frac{\xi^{3}}{12} + \frac{\pi}{4} \right) \right]$$

$$L_{0}(\xi) = \sqrt{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) \operatorname{Ai}'(t) \left[ \operatorname{Bi}'(t) - i \operatorname{Ai}'(t) \right] dt = -\frac{(-\xi)^{\frac{3}{2}}}{4} \left\{ 1 + \frac{2i}{\xi^{\frac{3}{2}}} \right\} \exp\left[ -i \left( \frac{\xi^{\frac{3}{2}} + \frac{\pi}{4}}{4} \right) \right]$$

The integral

$$I_{n}(\xi) = \int_{-\infty}^{\infty} t^{-n} \exp(i\xi t) \operatorname{Ai}(t) dt$$

can be expressed in the form

$$I_{n}(\xi) = (-1)^{n} \frac{1}{\xi^{2n}} \exp\left(-i\frac{\xi^{3}}{3}\right) \left\{1 + i\frac{A_{1}^{n}}{\xi^{3}} - \frac{A_{2}^{n}}{\xi^{6}} - i\frac{A_{3}^{n}}{\xi^{9}} + \frac{A_{4}^{n}}{\xi^{12}} + i\frac{A_{5}^{n}}{\xi^{15}} + \ldots\right\}$$

Since

$$\frac{\mathrm{d}\,\mathbf{I}_{n+1}(\xi)}{\mathrm{d}\xi} = \mathrm{i}\,\mathbf{I}_{n}(\xi)$$

and

$$\frac{\mathrm{d} \ \mathrm{I}_{n+1}(\xi)}{\mathrm{d}\xi} = (-1)^n \ \frac{\mathrm{i}}{\xi^{2n}} \ \exp\left(-\mathrm{i} \frac{\xi^3}{3}\right) \left\{ 1 + \mathrm{i} \frac{\mathrm{A}_1^{n+1} - (2n+2)}{\xi^3} - \frac{\mathrm{A}_2^{n+1} - (2n+5) \ \mathrm{A}_1^{n+1}}{\xi^6} - \mathrm{i} \frac{\mathrm{A}_3^{n+1} - (2n+8)\mathrm{A}_2^{n+1}}{\xi^9} + \ldots \right\}$$

$$= (-1)^n \frac{\mathrm{i}}{\xi^{2n}} \exp\left(-\mathrm{i} \frac{\xi^3}{3}\right) \left\{ 1 + \mathrm{i} \frac{\mathrm{A}_1^n}{\xi^3} - \frac{\mathrm{A}_2^n}{\xi^6} - \mathrm{i} \frac{\mathrm{A}_3^n}{\xi^9} + \ldots \right\}$$

we have the recursion relations

$$A_{1}^{n+1} = A_{1}^{n} + (2n + 2)$$

$$A_{2}^{n+1} = A_{2}^{n} + (2n + 5) A_{1}^{n+1}$$

$$A_{3}^{n+1} = A_{3}^{n} + (2n + 8) A_{2}^{n+1}$$

$$A_{4}^{n+1} = A_{4}^{n} + (2n + 11) A_{3}^{n+1}$$

$$A_{5}^{n+1} = A_{5}^{n} + (2n + 14) A_{4}^{n+1}$$

with the initial condition

$$A_{\mathbf{r}}^{0} = 0 \qquad \mathbf{r} \neq 0$$

$$A_{\mathbf{o}}^{n} = 1$$

The integral

$$J_{n}(\xi) = \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{t^{n}} Ai'(t)dt = -i\xi I_{n-1}(\xi) + nI_{n+1}(\xi)$$

can be expressed in the form

$$J_{n}(\xi) = (-1)^{n+1} \frac{i}{\xi^{2n-1}} \exp\left(-i\frac{\xi^{3}}{3}\right) \left\{1 + i\frac{B_{1}^{n}}{\xi^{3}} - \frac{B_{2}^{n}}{\xi^{6}} - i\frac{B_{3}^{n}}{\xi^{9}} + \frac{B_{4}^{n}}{\xi^{12}} + \ldots\right\}$$

Since

$$\frac{\mathrm{d} J_{n+1}(\xi)}{\mathrm{d}\xi} = i J_n(\xi)$$

and

$$\frac{d J_{n+1}(\xi)}{d\xi} = (-1)^n \frac{1}{\xi^{2n-1}} \exp\left(-i\frac{\xi^3}{3}\right) \left\{ 1 + i \frac{B_1^{n+1} - (2n+1)}{\xi^3} - \frac{B_2^{n+1} - (2n+4)B_1^{n+1}}{\xi^6} - i \frac{B_3^{n+1} - (2n+7) B_2^{n+1}}{\xi^9} + \dots \right\}$$

$$= (-1)^{n} \frac{1}{\xi^{2n-1}} \exp\left(-i\frac{\xi^{3}}{3}\right) \left\{ 1 + i\frac{B_{1}^{n}}{\xi^{3}} - \frac{B_{2}^{n}}{\xi^{6}} - i\frac{B_{3}^{n}}{\xi^{9}} + \ldots \right\}$$

we have the recursion relations

$$B_{m}^{n+1} = B_{m}^{n} + (2n + 3m - 2) B_{m-1}^{n+1}$$

with the initial conditions

$$B_r^0 = 0 \qquad r \neq 0$$

$$B_0^n = 1$$

Let us seek representations for  $K_n(\xi)$  and  $L_n(\xi)$  of the form

$$K_{n}(\xi) = \frac{(-1)^{n} 4^{n}}{(-\xi)^{2n+1/2}} \exp \left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{C_{1}^{n}}{\xi^{3}} - \frac{C_{2}^{n}}{\xi^{6}} - i\frac{C_{3}^{n}}{\xi^{9}} + \frac{C_{4}^{n}}{\xi^{12}} + \ldots\right\}$$

$$L_{\mathbf{n}}(\xi) = \frac{(-1)^{n+1} 4^{n-1}}{(-\xi)^{2n-3/2}} \exp \left[ -i \left( \frac{\xi^3}{12} + \frac{\pi}{4} \right) \right] \left\{ 1 + i \frac{D_1^n}{\xi^3} - \frac{D_2^n}{\xi^6} - i \frac{D_3^n}{\xi^9} + \frac{D_4^n}{\xi^{12}} + \dots \right\}$$

We observe that

$$\frac{dK_{n+1}}{d\xi} = iK_n \qquad \frac{dL_{n+1}}{d\xi} = iL_n$$

We find that

$$\frac{dK_{n+1}}{d\xi} = i \frac{(-1)^n 4^n}{(-\xi)^{2n+1/2}} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i \frac{C_1^{n+1} - 4\left(2n + \frac{5}{2}\right)}{\xi^3} - \frac{C_2^{n+1} - 4\left(2n + \frac{11}{2}\right)C_1^{n+1}}{\xi^6} - i \frac{C_3^{n+1} - 4\left(2n + \frac{17}{2}\right)C_2^{n+1}}{\xi^9} + \ldots\right\}$$

$$\frac{dL_{n+1}}{d\xi} = i \frac{(-1)^{n+1}4^{n-1}}{(-\xi)^{2n-3/2}} \exp \left[-i\left(\frac{\xi}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i \frac{D_1^{n+1} - 4\left(2n + \frac{1}{2}\right)}{\xi^3} - \frac{D_2^{n+1} - 4\left(2n + \frac{7}{2}\right)D_1^{n+1}}{\xi^6} - i \frac{D_3^{n+1} - 4\left(2n + \frac{13}{2}\right)D_2^{n+1}}{\xi^9} + \dots\right\}$$

Therefore, we have the recursion relations

$$C_1^{n+1} = C_1^n + (8n + 10) D_1^{n+1} = D_1^n + (8n + 2)$$

$$C_2^{n+1} = C_2^n + (8n + 22)C_1^{n+1} D_2^{n+1} = D_2^n + (8n + 14)D_1^{n+1}$$

$$C_3^{n+1} = C_3^n + (8n + 34)C_2^{n+1} D_3^{n+1} = D_3^n + (8n + 26)D_2^{n+1}$$

with the initial values

$$C_{\mathbf{r}}^{0} = 0$$
 ,  $\mathbf{r} = 0$   $D_{\mathbf{r}}^{0} = 0$  ,  $\mathbf{r} > 1$   $D_{\mathbf{o}}^{n} = 1$  ,  $D_{\mathbf{1}}^{0} = 2$ 

In Tables 8, 9, 10, 11 we give values of  $A_r^n$ ,  $B_r^n$ ,  $C_r^n$ ,  $D_r^n$  for n+r<12.

Table 8

TABLE OF A

| 7. | 0 | г          | 2          | es               | 4                           | ıc        | 9                           | 7               | ∞.                   | 6      | 10     | 11               | 12    | 13          | 14  | 15 |
|----|---|------------|------------|------------------|-----------------------------|-----------|-----------------------------|-----------------|----------------------|--------|--------|------------------|-------|-------------|-----|----|
|    |   |            |            |                  |                             |           |                             |                 |                      |        |        |                  |       |             |     |    |
| 0  | - | 1          | 1          | 1                |                             | 1         | r                           | 1               | 1                    | 1      | 1      | 1                | "     |             | П   | 1  |
| -4 | 0 | 2          | 9          | 12               | 20                          | 30        | 42                          | 56              | 72                   | 90     | 7.10   | 132              | ļ     | 156 182 210 | 210 |    |
| 2  | 0 | 10         | 55         | 160              | 380                         | 770       | 1400                        | 2352            | 3720                 | 5610   | . : !  | 8.40 11440 15652 | 15652 |             |     |    |
| 3  | 0 | 08         | 009        | 2520             | 7840                        | 30160     | 45360                       | 82400           | 174240 308880 520520 | 308880 | 520520 |                  |       |             |     |    |
| Ť  | Ö | 880        | 8680       | 46480            | 179760                      | 562500    | 1515360                     | 3640580 7996560 | 7996560              |        |        |                  |       |             |     |    |
| 5  | 0 | 12320      | 151200     | 987840           | 1583040                     | 16964640  | 16964640 53333280 147987840 | 147987840       |                      |        |        |                  |       |             |     |    |
| 9  | 0 | 209440     | 3082240    | 3082240 23826880 | 129236800 553352800         | 553352800 |                             |                 |                      |        |        |                  |       |             |     |    |
| 2  | 0 | 4188800    | 71998080   | 64384320E        | 998080 643843208 4004000000 |           |                             |                 |                      |        |        |                  |       |             |     |    |
| 8  | 0 | 96342400   | 1896294460 | 1.               |                             |           |                             |                 |                      |        |        |                  |       |             |     |    |
| 6  | 0 | 2504902400 |            |                  |                             |           |                             |                 |                      |        |        |                  |       |             |     |    |
| 10 | 0 |            | •          |                  |                             | Table 9   | le 9                        |                 |                      |        |        |                  |       |             |     |    |

TABLE OF B

| 122 |   |     |       |        |         |                    |            |            |            |             |    |
|-----|---|-----|-------|--------|---------|--------------------|------------|------------|------------|-------------|----|
| 14  |   | 196 |       |        |         |                    |            |            |            |             |    |
| 13  | r | 169 |       |        |         |                    |            |            |            |             |    |
| 12  | r | 144 | 13468 |        |         |                    |            |            |            |             |    |
| 111 | 1 | 121 | 9724  | 899899 |         |                    |            |            |            |             |    |
| 10  | 1 | 100 | 6820  | 406120 |         |                    |            |            |            |             |    |
| 6   | Ħ | 81  | 4620  | 235520 |         |                    |            |            |            |             |    |
| æ   | 1 | 64  | 3000  | 129360 | 5525520 | 92011920 241200960 |            |            |            |             |    |
| t-  | 1 | 49  | 1848  | 09899  | 2426880 | 92011920           |            |            |            |             |    |
| 9   | 1 | 36  | 1064  | 31248  | 096096  | 51489920           | 1305424210 |            |            |             |    |
| ē   | 1 | 25  | 260   | 13160  | 336000  | 9387840            | 286636400  | 9531121600 |            |             |    |
| **  | T | 36  | 260   | 4760   | 99120   | 2331840            | 61378240   | 1790588800 |            |             |    |
| 8.  | 1 | σı  | 100   | 1380   | 22960   | 448560             | 10077760   | 256132800  | 7268060800 |             |    |
| 23  | _ | 4   | 28    | 280    | 3640    | 58240              | 1106560    | 24344320   | 000809809  | 17041024000 |    |
| П   | г | rt  | 7     | 28     | 280     | 3640               | 58240      | 1106560    | 24344320   | 000809809   |    |
| 0   | H | 0   | 0     | .0     | 0       | 0                  | ပ          | 0          | 0          | 0           | 0  |
|     | 0 | 7   | 6)    | က      | 4       | ທ                  | ις         | 7          | 8          | 6           | 10 |

Table 10  ${}_{
m T}$ 

| 7 H | 0   | Ħ                | 2                 | က                | 4              | 5                                             |
|-----|-----|------------------|-------------------|------------------|----------------|-----------------------------------------------|
|     |     |                  |                   |                  |                |                                               |
| 0   | 7-1 | F                | 1                 | 1                | H              |                                               |
| 1   | 0   | 10               | 28                | 54               | 88             | 130                                           |
| 23  | 0   | 220              | 1060              | 3112             | 7160           | 14180                                         |
| ဇ   | 0   | 7480             | 52000             | 207600           | 622880         | 1558760                                       |
| 4   | 0   | 344080           | 3152080           | 15023280         | 59624880       | 181208160                                     |
| ιΩ  | 0   | 19956640         | 227993920         | 1413716640       | 6302956800     | 22611691200                                   |
| 9   | 0   | 1396964800       | 19180490560       | 140760121600     | 733238060800   | 3039630563200                                 |
| 2   | 0   | 114551113600     | 1840795264000     | 15635287180800   | 93358521625600 | 15635287180800 93358521625600 346517884204800 |
| ø   | 0   | 10767804678400   | 198528921606400   | 1918410511494400 |                |                                               |
| 6   | 0   | 1141387255910400 | 23773684359040000 | 1                |                |                                               |
| 10  | 0   |                  |                   |                  |                |                                               |

| r r | 0 | 9                | 2                                | 8          | 6                 | 10                   | 11              | 12              | 13  | 13 14 15 | 15 |
|-----|---|------------------|----------------------------------|------------|-------------------|----------------------|-----------------|-----------------|-----|----------|----|
|     |   |                  |                                  |            |                   |                      |                 |                 |     |          |    |
| 0   | П | 1                | T                                | 1          | 1                 | 1                    | <del>,</del> -1 | +               | H   | Н        | П  |
| 1   | 0 | 180              | 238                              | 304        | 878               | 460                  | 550             | 648   754   868 | 754 | 868      |    |
| 2   | 0 | 25340            | 42000                            | 107712     | 140220            | 183460 239560 310840 | 239560          | 310840          |     |          |    |
| က   | 0 | 3433920          | 6877920                          | 16572000   | 30313560 49760320 | 49760320             |                 |                 |     |          |    |
| 4   | 0 | 476525280        | 1123049760 2813393760 6147885360 | 2813393760 | 6147885360        |                      |                 |                 |     |          |    |
| 5   | 0 | 69311168640      | 69311168640 188354443200         |            |                   |                      |                 |                 |     |          |    |
| 9   | 0 | 0 10663859113600 |                                  |            |                   |                      |                 |                 |     |          |    |
|     |   |                  |                                  |            |                   |                      |                 |                 |     |          |    |

Table 11 TABLE OF D<sub>r</sub>

| 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1<br>1<br>4<br>4<br>4<br>4<br>1456<br>55328<br>55328<br>2766400<br>171516800<br>12692243200                                |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                         | 1<br>56<br>56<br>1456<br>55328<br>55328<br>171516800<br>171516800<br>112692243200<br>1091532915200<br>106970225689600 2941 |

|          |             |                                  |                |                            |                       | •                          | •                           | _      | 3      | 2       |
|----------|-------------|----------------------------------|----------------|----------------------------|-----------------------|----------------------------|-----------------------------|--------|--------|---------|
| F/8      | 0           | 80                               | თ              | 10                         | 11                    | 12                         | 13                          | 14     | CT.    | 24      |
|          |             |                                  |                |                            |                       |                            |                             |        |        |         |
|          |             |                                  |                |                            |                       |                            |                             |        |        |         |
|          |             |                                  |                |                            |                       |                            |                             | F      | •      | -       |
| •        | -           | -                                |                | T                          | -                     | 1                          | 1                           | 7      | 4      | 1       |
| <u>_</u> | 1           | 0.00                             | 806            | 389                        | 464                   | 554                        | 652                         | 758    | 872    | 994     |
| -        | CJ          | 242                              |                |                            |                       |                            |                             | 000    | 000    | 100100  |
| ç        | •           | 43344                            | 67368          | 100220                     | 143836                | 200344                     | 272064 361508 471350 155150 | 361508 | 4/1550 | 1007001 |
| 1        | >           |                                  |                |                            | ĺ                     | 1 4                        | 0000000                     |        |        |         |
| 67       | c           | 7193760                          | 13256880       | 23078440                   |                       | 38325056 61164272 84356080 | 94356080                    |        |        |         |
| ,        | ١           |                                  |                |                            | 0000000               |                            |                             |        |        |         |
| 4        | 0           | 1189093920                       | 2541295680     |                            | 5079924080 9602280688 |                            |                             |        |        |         |
| 5        | 0           | 201696559680                     |                | 491404267200 1111155004960 |                       |                            |                             |        |        |         |
| 9        | <del></del> | 0 3604.8075898240 97965013565440 | 97965013565440 |                            |                       |                            |                             |        |        |         |
|          |             |                                  |                |                            |                       |                            |                             |        |        |         |

With these results we can write

$$f(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{Bi(t) + iAi(t)} dt = 2i\xi \exp\left(-i\frac{\xi^3}{3}\right) \left\{1 - \frac{i}{4}\frac{1}{\xi^3} \left[1 + i\frac{2}{\xi^3} - \frac{10}{\xi^6} - i\frac{80}{\xi^9} + \frac{880}{\xi^{12}}\right] \right\}$$

$$+ i\frac{12320}{\xi^{15}} - \frac{209440}{\xi^{18}} - i\frac{4188800}{\xi^{21}} + \frac{96342400}{\xi^{24}} + i\frac{2504902400}{\xi^{27}} - \dots \right] + i\frac{15}{64} \int_{\xi^9}^{12} \left[1 + i\frac{20}{\xi^3} - \frac{380}{\xi^6} - i\frac{7840}{\xi^9} + \frac{179760}{\xi^{12}} + i\frac{45830...0}{\xi^{15}} - \frac{129236800}{\xi^{18}} - i\frac{4004000000}{\xi^{21}} + \dots \right]$$

$$- i\frac{1695}{1024} \frac{1}{\xi^{15}} \left[1 + i\frac{56}{\xi^3} - \frac{2352}{\xi^6} - i\frac{92100}{\xi^9} + \frac{3640560}{\xi^{12}} + i\frac{147987840}{\xi^{15}} - \dots \right]$$

$$+ i\frac{59025}{2048} \frac{1}{\xi^{21}} \left[1 + i\frac{110}{\xi^3} - \frac{8140}{\xi^6} - i\frac{520520}{\xi^9} + \dots \right]$$
or
$$f(\xi) = 2i\xi \exp\left(-i\frac{\xi^3}{3}\right) \left\{1 - \frac{i}{4\xi^3} + \frac{1}{2\xi^6} + i\frac{175}{64} \frac{1}{\xi^9} - \frac{395}{16} \frac{1}{\xi^{12}} - i\frac{318175}{1024} \frac{1}{\xi^{15}} + \frac{641305}{128} \frac{1}{\xi^{18}} + i\frac{201550385}{2048} \frac{1}{\xi^{21}} - \frac{2332126775}{1024} \frac{1}{\xi^{24}} - \frac{1}{\xi^{30}} + \dots \right\}$$

$$- i\frac{158956578}{262144} \frac{25375}{2048} \frac{1}{\xi^{21}} - \frac{239179318685125}{131072} \frac{1}{\xi^{30}} + \dots \right\}$$

(10.11)

For  $g(\xi)$  we obtain

$$\begin{split} g(\xi) &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{Bi'(t) + iAi'(t)} dt = 2 \exp\left(-i\frac{\xi^3}{4}\right) \left\{ 1 + i\frac{1}{4\xi^3} \left[ 1 + i\frac{4}{\xi^3} - \frac{28}{\xi^6} - i\frac{280}{\xi^9} \right] \right. \\ &+ \frac{3640}{\xi^{12}} + i\frac{58240}{\xi^{15}} - \frac{11\,06560}{\xi^{18}} - i\frac{243\,44320}{\xi^{21}} + \frac{6086\,08000}{\xi^{24}} + i\frac{170410\,24000}{\xi^{27}} + \dots \right] \\ &- i\frac{21}{64\xi^9} \left[ 1 + i\frac{25}{\xi^3} - \frac{560}{\xi^6} - i\frac{13160}{\xi^9} + \frac{336000}{\xi^{12}} + i\frac{9387840}{\xi^{15}} - \frac{2866\,86400}{\xi^{18}} \right. \\ &- i\frac{95311\,21600}{\xi^{21}} + \dots \right] + i\frac{2121}{1024\,\xi^{15}} \left[ 1 + i\frac{64}{\xi^3} - \frac{3000}{\xi^6} - i\frac{129360}{\xi^9} + \frac{5525520}{\xi^{12}} \right. \\ &+ i\frac{2412\,00960}{\xi^{15}} + \dots \right] - i\frac{136479}{4096\,\xi^{21}} \left[ 1 + i\frac{121}{\xi^3} - \frac{9724}{\xi^6} - i\frac{668668}{\xi^9} + \dots \right] \\ &+ i\frac{2681\,22561}{262144\,\xi^{27}} \left[ 1 + i\frac{196}{\xi^3} + \dots \right] + \dots \right\} \end{split}$$

or

$$g(\xi) = 2 \exp\left(-i\frac{\xi^{3}}{3}\right) \left\{ 1 + i\frac{1}{4\xi^{3}} - \frac{1}{\xi^{6}} - i\frac{469}{64}\frac{1}{\xi^{9}} + \frac{5005}{64}\frac{1}{\xi^{12}} + i\frac{1122121}{1024}\frac{1}{\xi^{15}} - \frac{24}{128}\frac{33368}{128}\frac{1}{\xi^{18}} - i\frac{16102}{4096}\frac{89919}{\xi^{21}} + \frac{3}{4096}\frac{86598}{4096}\frac{44839}{\xi^{24}} + i\frac{6763}{262144}\frac{07799}{262144}\frac{35425}{\xi^{27}} - \frac{51837}{65536}\frac{22434}{65536}\frac{61681}{\xi^{30}} + \dots \right\}$$

(10.12)

By observing that

$$K_{1}(\xi) = +\frac{4\sqrt{-\xi}}{\xi^{3}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{10}{\xi^{3}} - \frac{220}{\xi^{6}} - i\frac{7480}{\xi^{9}} + \dots\right\}$$

$$K_{4}(\xi) = -\frac{256\sqrt{-\xi}}{\xi^{9}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{88}{\xi^{3}} + \dots\right\}$$

$$K_{7}(\xi) = +\frac{16384\sqrt{-\xi}}{\xi^{15}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{238}{\xi^{3}} + \dots\right\}$$

$$K_{10}(\xi) = -\frac{1048576\sqrt{-\xi}}{\xi^{21}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{460}{\xi^{3}} + \dots\right\}$$

$$K_{13}(\xi) = \frac{671\ 08864\sqrt{-\xi}}{\xi^{27}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{754}{\xi^{3}} + \dots\right\}$$

we find that

$$\hat{p}(\xi) = \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 - i\frac{2}{\xi^3} \left[1 + i\frac{10}{\xi^3} - \frac{220}{\xi^6} - i\frac{7480}{\xi^9} + \dots\right] \right.$$

$$+ i\frac{15}{2} \frac{1}{16} \frac{256}{\xi^9} \left[1 + i\frac{88}{\xi^3} - \dots\right] - i\frac{1695}{2} \frac{1}{256} \frac{16384}{\xi^{15}} \left[1 + i\frac{238}{\xi^3} + \dots\right]$$

$$+ i\frac{59025}{2} \frac{1}{512} \frac{1048576}{\xi^{21}} \left[1 + i\frac{460}{\xi^3} + \dots\right]$$

$$- i\frac{12109}{2} \frac{18875}{2} \frac{1}{32768} \frac{671}{\xi^{27}} \frac{08864}{\xi^{27}} \left[1 + i\frac{754}{\xi^3} + \dots\right] + \dots$$

or

$$\hat{\beta}(\xi) = \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 - i\frac{2}{\xi^3}\left[1 + i\frac{10}{\xi^3} - \frac{220}{\xi^6} - i\frac{7480}{\xi^9} + \frac{344080}{\xi^{12}}\right] \right.$$

$$+ i\frac{19956640}{\xi^{15}} - \frac{1396964800}{\xi^{18}} - i\frac{114551113600}{\xi^{21}} + \frac{10767804678400}{\xi^{24}}$$

$$+ i\frac{1141387295910400}{\xi^{27}} - \dots\right] + i\frac{120}{\xi^9}\left[1 + i\frac{88}{\xi^3} - \frac{7160}{\xi^6} - i\frac{622880}{\xi^9}\right]$$

$$+ \frac{59624880}{\xi^{12}} + i\frac{6302956800}{\xi^{15}} - \frac{733238060800}{\xi^{18}} - i\frac{93358521625600}{\xi^{21}} + \dots\right]$$

$$- i\frac{54240}{\xi^{15}}\left[1 + i\frac{238}{\xi^3} - \frac{42000}{\xi^6} - i\frac{6877920}{\xi^9} + \frac{1123049760}{\xi^{12}}\right]$$

$$+ i\frac{188354443200}{\xi^{15}} - \dots\right] + i\frac{60441600}{\xi^{21}}\left[1 + i\frac{460}{\xi^3} - \frac{183460}{\xi^6}\right]$$

$$- i\frac{49760320}{\xi^9} + \dots\right] - i\frac{1239980928000}{\xi^{27}}\left[1 + i\frac{754}{\xi^3} + \dots\right] + \dots$$

$$\widehat{p}(\xi) = \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 - i\frac{2}{\xi^3} + \frac{20}{\xi^6} + i\frac{560}{\xi^9} - \frac{25520}{\xi^{12}} - i\frac{16\ 01600}{\xi^{15}} + \frac{1115\ 68000}{\xi^{18}} + i\frac{1\ 22874\ 36800}{\xi^{21}} - \frac{138\ 63185\ 60000}{\xi^{24}} - i\frac{18276\ 69924\ 99200}{\xi^{27}} + \frac{27\ 64468\ 11630\ 84800}{\xi^{30}} + \dots\right\}$$

(10.13)

By observing that

$$L_{2}(\xi) = \frac{4\sqrt{-\xi}}{\xi^{3}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{14}{\xi^{3}} + \ldots\right\}$$

$$L_{5}(\xi) = -\frac{256\sqrt{-\xi}}{\xi^{9}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{92}{\xi^{3}} + \ldots\right\}$$

$$L_{8}(\xi) = \frac{16384\sqrt{-\xi}}{\xi^{15}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{242}{\xi^{3}} + \ldots\right\}$$

$$L_{11}(\xi) = -\frac{1048576\sqrt{-\xi}}{\xi^{21}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{464}{\xi^{3}} + \ldots\right\}$$

$$L_{14}(\xi) = \frac{671 \cdot 08864\sqrt{-\xi}}{\xi^{27}} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{758}{\xi^{3}} + \ldots\right\}$$

we find that

$$\hat{\mathbf{q}}(\xi) = -\frac{\sqrt{-\xi}}{2} \exp\left[-\frac{1}{2}\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{2}{\xi^{3}}\left[1 + i\frac{14}{\xi^{3}} - \frac{364}{\xi^{6}} - i\frac{13832}{\xi^{9}} + \dots\right] \right.$$

$$-i\frac{21}{2}\frac{1}{16}\frac{256}{\xi^{9}}\left[1 + i\frac{92}{\xi^{3}} - \dots\right] + i\frac{2121}{256}\frac{1}{\xi^{15}}\left[1 + i\frac{242}{\xi^{3}} - \dots\right]$$

$$-i\frac{136479}{2}\frac{1}{1024}\frac{1048576}{\xi^{21}}\left[1 + i\frac{464}{\xi^{3}} - \dots\right]$$

$$+i\frac{2681}{2}\frac{22561}{65536}\frac{1}{\xi^{27}}\left[1 + i\frac{464}{\xi^{3}} - \dots\right]$$

$$+i\frac{2681}{2}\frac{22561}{65536}\frac{1}{\xi^{27}}\left[1 + i\frac{758}{\xi^{3}} - \dots\right] + \dots\right\}$$

$$\hat{\mathbf{q}}(\xi) = -\frac{\sqrt{-\xi}}{2}\exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right]\left\{1 + i\frac{2}{\xi^{3}}\left[1 + i\frac{14}{\xi^{3}} - \frac{364}{\xi^{6}} - i\frac{13832}{\xi^{9}} + \frac{691600}{\xi^{12}}\right] + i\frac{42879200}{\xi^{15}} - \frac{3173060800}{\xi^{18}} - i\frac{272883228800}{\xi^{21}} + \frac{26742556422400}{\xi^{24}}$$

$$+ i\frac{2941681206464000}{\xi^{27}} - \dots\right] - i\frac{168}{\xi^{9}}\left[1 + i\frac{92}{\xi^{3}} - \frac{7760}{\xi^{6}} - i\frac{695920}{\xi^{9}}\right]$$

 $+ \frac{68397840}{\xi^{12}} + i \frac{7401206400}{\xi^{15}} - \frac{879257344000}{\xi^{18}} - i \frac{114105826419200}{\xi^{21}} + \dots$ 

(continued)

$$+ i \frac{67872}{\xi^{15}} \left[ 1 + i \frac{242}{\xi^3} - \frac{43344}{\xi^6} - i \frac{7193760}{\xi^9} + \frac{1189093920}{\xi^{12}} \right]$$

$$+ i \frac{201696559680}{\xi^{15}} - \dots \right] - i \frac{69877248}{\xi^{21}} \left[ 1 + i \frac{464}{\xi^3} - \frac{143836}{\xi^6} \right]$$

$$- i \frac{38325056}{\xi^9} + \dots \right] + i \frac{137278751232}{\xi^{27}} \left[ 1 + i \frac{758}{\xi^3} - \dots \right] - \dots$$

or

$$\widehat{\mathbf{q}}(\xi) = -\frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{2}{\xi^3} - \frac{28}{\xi^6} - i\frac{896}{\xi^9} + \frac{43120}{\xi^{12}} + i\frac{2754752}{\xi^{15}}\right] \\
-\frac{219097984}{\xi^{18}} - i\frac{20848679936}{\xi^{21}} + \frac{2309847054592}{\xi^{24}} \\
+ i\frac{292094671769600}{\xi^{27}} - \frac{41524796886114304}{\xi^{30}} - \dots\right\}$$

(10.14)

#### Section 11

# SOME REMARKS ON THE EVALUATION OF f, g, p, q

The integrals

$$f(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi}(t) + i \operatorname{Ai}(t)} dt = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_1(t)} dt$$

$$g(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi'}(t) + i\operatorname{Ai'}(t)} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_1'(t)} dt$$

$$\widehat{\mathbf{p}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{\mathbf{A}i(t)}{\mathbf{B}i(t) + i \mathbf{A}i(t)} dt = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{\mathbf{v}(t)}{\mathbf{w}_1(t)} dt$$

$$\hat{q}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{Ai'(t)}{Bi'(t) + iAi'(t)} dt = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{v'(t)}{w_1'(t)} dt$$
(11.1)

can be readily evaluated for  $\xi > 1$  (residue series) and  $\xi < < -1$  (asymptotic expansions). For moderate values of  $\xi$  it is much more difficult to find a suitable representation. One method which has been investigated has been the method of stationary phase.

The integral

$$y(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{-\tau} \exp(i\xi t) \frac{1}{w_1(t)} dt = \frac{1}{\pi} \int_{-\infty}^{-\tau} \exp(i\xi t) \frac{1}{Bi(t) + iAi(t)} dt$$

$$= \frac{1}{\pi} \int_{-\infty}^{-\tau} \frac{1}{F(t)} \exp[i\xi t - i\chi(t)] dt = \frac{1}{\pi} \int_{-\infty}^{\tau} \frac{1}{F(t)} \exp[i\phi(t)] dt$$

$$\phi(t) = \xi t - \chi(t)$$
(11. 2)

can be integrated by making a transformation from t to u where

$$\phi(t) = \phi(t_0) + \frac{\pi}{2} u^2 = \xi t_0 - \chi(t_0) + \frac{\pi}{2} u^2$$

$$\phi'(t_0) = \xi - \frac{d\chi}{dt} - \xi + \frac{1}{\pi F^2(t_0)} = 0$$

The condition  $\phi'(t_0)=0$  can be satisfied only for  $\xi<0$  . We assume that we can calculate the constants  $c_n$  defined by

$$\frac{1}{\pi \mathbf{F}(t)} \frac{dt}{du} = \sum_{n=0}^{\infty} \mathbf{c}_n \mathbf{u}^n$$
 (11.3)

We observe that

$$\mathbf{c}_{o} = \frac{1}{\pi F(t_{o})} \left(\frac{dt}{du}\right)_{t=t_{o}}$$

and

$$\phi'$$
 (t)  $\frac{dt}{du} = \pi u$ 

or

$$\left(\xi - \frac{\mathrm{d}\chi}{\mathrm{d}t}\right) \frac{\mathrm{d}t}{\mathrm{d}u} = \pi u$$

or

$$\left(\xi + \frac{1}{\pi F^2(t)}\right) \frac{dt}{du} = \pi u$$

Therefore, we have

$$\left(\xi + \frac{1}{\pi F^{2}(t)}\right) \frac{d^{2}t}{du^{2}} - \frac{2}{\pi} \frac{F'(t)}{F^{3}(t)} \left(\frac{dt}{du}\right)^{2} = \pi$$

If we let  $t = t_0$ , the first term vanishes and we obtain

$$\left(\frac{\mathrm{d}t}{\mathrm{d}u}\right)_{t=t_0}^2 = -\frac{\pi^2}{2} \frac{F^3(t_0)}{F'(t_0)}$$

or

$$\frac{\mathrm{dt}}{\mathrm{du}} = \frac{\pi}{\sqrt{2}} \frac{\mathrm{F}^2(\mathrm{t_0})}{\sqrt{-\mathrm{F}(\mathrm{t_0})\mathrm{F}^{\dagger}(\mathrm{t_0})}}$$

so that

$$c_{o} = \frac{1}{\sqrt{2}} \frac{F(t_{o})}{\sqrt{-F(t_{o})F'(t_{o})}}$$
 (11.4)

Let us now observe that

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{u}} \left\{ \frac{1}{\pi \mathbf{F}(\mathbf{t})} \quad \frac{\mathrm{d}\mathbf{t}}{\mathrm{d}\mathbf{u}} \right\}_{\mathbf{t} = \mathbf{t}_{0}} = \mathbf{c}_{1}$$

or

$$\frac{1}{\pi F(t_o)} \left( \frac{d^2 t}{du^2} \right)_{t=t_o} - \frac{1}{\pi} \frac{F'(t_o)}{F^2(t_o)} \left( \frac{dt}{du} \right)_{t=t_o}^2 = c_1$$

and

$$\left(\xi + \frac{1}{\pi F^{2}(t)}\right) \frac{d^{3}t}{du^{2}} - \frac{6}{\pi} \frac{F'(t)}{F^{3}(t)} \frac{d^{2}t}{du^{2}} \frac{dt}{du} + \frac{6}{\pi} \frac{\left[F'(t)\right]^{2}}{F^{4}(t)} \left(\frac{dt}{du}\right)^{3} - \frac{2}{\pi} \frac{F''(t)}{F^{3}(t)} \left(\frac{dt}{du}\right)^{3} = 0$$

so that

$$\left(\frac{d^2t}{du^2}\right)_{t=t_o} = \left(\frac{F'(t_o)}{F(t_o)} - \frac{1}{3} \frac{F''(t_o)}{F'(t_o)}\right) \left(\frac{dt}{du}\right)_{t=t_o}^2$$

Therefore,

$$c_{1} = -\frac{1}{3\pi} \frac{F''(t_{o})}{F(t_{o})} F'(t_{o}) \left(\frac{dt}{du}\right)_{t=t_{o}}^{2}$$

$$c_{1} = \frac{\pi}{6} \left[\frac{F(t_{o})}{F'(t_{o})}\right]^{2} F''(t_{o})$$
(11.5)

Higher coefficients can be obtained in the same manner. They become quite complex, however. For example,

$$C_{2} = \frac{\pi^{2}}{4\sqrt{2}} \frac{1}{\left[-F(t_{o})F'(t_{o})\right]^{3/2}} \left\{ -\frac{1}{4} \left[F'(t_{o})\right]^{2} F^{3}(t_{o}) - \frac{1}{4} F''(t_{o})F^{4}(t_{o}) \right\}$$

$$+ \frac{5}{12} \frac{\left[F''(t_{o})\right]^{2} F^{5}(t_{o})}{\left[F'(t_{o})\right]^{2}} - \frac{1}{4} \frac{F'''(t_{o}) F^{5}(t_{o})}{F'(t_{o})} \right\}$$
(11.6)

We now have

$$y(\xi) = \exp\left[i\phi(t_{o})\right] \int_{-\infty}^{u_{o}} (c_{o} + c_{1} u + \dots) \exp\left(i\frac{\pi}{2}u^{2}\right) du$$

$$= \exp\left[i\phi(t_{o})\right] \int_{-\infty}^{\infty} (c_{o} + c_{1}u + \dots) \exp\left(i\frac{\pi}{2}u^{2}\right) du$$

$$- \exp\left[i\phi(t_{o})\right] \int_{u_{o}}^{\infty} (c_{o} + c_{1}u + \dots) \exp\left(i\frac{\pi}{2}u^{2}\right) du$$
(11.7)

These integrals can be readily expressed in terms of Fresnel integrals. This approach has not been studied further than the obtaining of the results outlined above. However, it is possible that significant results will be obtained later by using this approach.

Some appreciation of the difficulty in numerically evaluating these integrals can be obtained by considering Fig. 17 where the function

$$\frac{\exp(-\mathrm{i}\ 3\mathrm{t})}{\mathrm{Bi}(\mathrm{t}) + \mathrm{i}\,\mathrm{Ai}(\mathrm{t})} = \frac{\sqrt{\pi}}{\mathrm{w}_1(\mathrm{t})} \ \exp(-\mathrm{i}\ 3\mathrm{t})$$

is illustrated. The stationary phase point is in the vicinity of t = -9.

Let us now consider another way in which  $f(\xi)$  or  $g(\xi)$  may be evaluated. We consider both functions simultaneously by seeking to evaluate the integral

$$V_1(x, q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{1}{w_1'(t) - qw_1(t)} dt$$
 (11.8)

as a function of x for prescribed values of q. Tables of  $w_1'(t)$  and  $w_1(t)$  are available.

For  $t \rightarrow \infty$  we have

$$w'_{1}(t) \rightarrow \sqrt[4]{t} \exp\left(\frac{2}{3} + t^{3/2}\right)$$

$$w_{1}(t) \rightarrow \frac{1}{\sqrt[4]{t}} \exp\left(\frac{2}{3} + t^{3/2}\right) \qquad (11.9)$$

and therefore the integral converges at the upper limit like

$$\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{2}{3} t^{3/2} + ixt\right) \frac{1}{\sqrt[4]{t} \left(1 - \frac{q}{\sqrt{t}}\right)} dt$$



For  $t \to -\infty$  we have

$$w'_{1}(t) \rightarrow (-t)^{1/4} \exp \left[i \frac{2}{3} (-t)^{3/2} - i \frac{\pi}{4}\right]$$

$$w_{1}(t) \rightarrow \frac{1}{\sqrt{-t}} w'_{1}(t)$$

and therefore the integral behaves like

$$\frac{1}{\sqrt{\pi}} \exp\left(i\frac{\pi}{4}\right) \int_{-\infty}^{t} \exp\left[i\frac{2}{3}(-t)^{3/2} - ix(-t)\right] \frac{1}{\sqrt[4]{-t}\left(1-\frac{iq}{\sqrt{-t}}\right)} dt \qquad (11.10)$$

Because of the oscillatory nature of the integrand along the negative real axis, many authors have found it desirable to use another contour. Fock in 1945 proposed the contour  $\infty \exp\left(i\frac{2\pi}{3}\right)$  to 0 and 0 to  $\infty$ . The result is

$$V_{1}(x, q) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\exp\left(-xt \frac{\sqrt{3} + i}{2}\right)}{w'_{2}(t) - q \exp\left(i\frac{2\pi}{3}\right) w_{2}(t)} dt + \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\exp(ixt)}{w'_{1}(t) - q w_{1}(t)} dt$$
(11.11)

The first integral converges like

$$\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-i\frac{xt}{2}\right) \exp\left(-x\frac{\sqrt{3}}{2}t\right) \exp\left(-\frac{2}{3}t^{3/2}\right) \frac{1}{\sqrt[4]{t}\left[1-\frac{q}{\sqrt{t}}\exp\left(i\frac{2\pi}{3}\right)\right]} dt$$
(11. 12)

For x < 0 this integrand has a peak in its amplitude in the vicinity of  $t_c = \frac{3}{4} x^2$ . The amplitude at  $t_c$  is proportional to  $\exp\left(-\frac{\sqrt{3}}{8} x^3\right) = \exp\left(\frac{\sqrt{3}}{8} \left[-x\right]^3\right)$ . For large negative values of x this oscillation in the amplitude is too great to allow computation of  $V_1(x,q)$  from existing tables of  $w_1(t)$ ,  $w_1'(t)$ .

As an alternative to numerical evaluation of the integrals it is proposed that the Poisson summation formula be employed. If we compute the sum

$$S_{1}(x, q) = \frac{1}{2\sqrt{\pi}} \sum_{n=-\infty}^{\infty} \frac{\exp\left(i \times \frac{n}{2}\right)}{w_{1}^{r}\left(\frac{n}{2}\right) - qw_{1}\left(\frac{n}{2}\right)}$$
(11.13)

the Poisson summation formula tells us that

$$S_1(x, q) = \sum_{m=-\infty}^{\infty} V_1(x + 4\pi m, q) - 2\pi < x < 2\pi$$
 (11. 14)

or

$$V_1(x, q) = S_1(x, q) - V_1(x + 4\pi, q) - V_1(x + 8\pi, q) - \dots$$

$$- V_1(x - 4\pi, q) - V_1(x - 8\pi, q) - \dots \qquad (11.15)$$

For x > 0 we can show that

$$V_1(x, q) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(ixt_s)}{t_s - q_s^2} \frac{1}{w_1(t_s)}$$

where

$$w_1'(t_s) - qw_1(t_s) = 0$$

where the imaginary part of  $t_{\mathbf{S}}$  generally exceeds unity. For  $\mathbf{x} < \mathbf{0}$  we can show that

$$V_1(x, q) - \frac{2 \exp(-i x^3/3)}{1 + i \frac{q}{x}}$$

Therefore, the series

$$V_1(x + 4\pi, q) + V_1(x + 8\pi, q) + \dots$$

converges rapidly and can be approximated by the first term. On the other hand, the series

$$V_1(x-4\pi, q) + V_1(x-8\pi, q) + V_1(x-12\pi, q) + \dots$$

behaves like

$$2\sum_{m=1}^{\infty} \frac{\exp\left[i\frac{1}{3}(4\pi m - x)^{3}\right]}{1 - i\frac{q}{4\pi m - x}}$$

We can interpret this series in the Abel sense,

$$\lim_{r \to 1} 2 \sum_{m=1}^{\infty} r^{m} \frac{\exp\left[i\frac{1}{3}(4\pi m - x)^{3}\right]}{1 - i\frac{q}{4\pi m - x}}$$
(11.16)

However, a better approach might be that of computing numerically the derivative evaluated at  $\xi = 1$  for the function

$$-6i\sum_{m=1}^{\infty} \frac{1}{(4\pi m - x)^3} \frac{\exp\left[i\frac{1}{3}\xi (4\pi m - x)^3\right]}{1 - i\frac{q}{4\pi m - x}}$$
(11.17)

It is also not practical to compute the part of  $S_1(x, q)$  consisting of

$$\frac{1}{2\sqrt{\pi}} \sum_{n=-\infty}^{-N} \frac{\exp\left(i \times \frac{n}{2}\right)}{w_1'\left(\frac{n}{2}\right) - qw_1\left(\frac{n}{2}\right)} , \quad \text{where} \quad N >> 2x^2$$
 (11.18)

It is suggested that this series be evaluated by numerically evaluating the derivative at  $\xi = 1$  of the function

$$\frac{\exp(i\frac{\pi}{4})}{2\sqrt{\pi}} \sum_{n=N}^{\infty} \exp\left[i\frac{(-x)}{2}n\right] \frac{1}{4\sqrt{\frac{n}{2}}\left(1-\frac{iq}{\sqrt{\frac{n}{2}}}\right)} \frac{\exp\left[i\frac{2}{3}\xi\left(\frac{n}{2}\right)^{3/2}\right]}{i\frac{2}{3}\left(\frac{n}{2}\right)^{3/2}}$$
(11.19)

We have studied the case of q = 0. The sum

$$S_{\mathbf{N}}(\mathbf{x}) = \frac{1}{2\sqrt{\pi}} \sum_{\mathbf{n}=-\mathbf{N}}^{\infty} \frac{\exp\left(i\mathbf{x}\frac{\mathbf{n}}{2}\right)}{\mathbf{w}_{1}'(\frac{\mathbf{n}}{2})} - \frac{1}{2\pi} \sum_{\mathbf{n}=-\mathbf{N}}^{\infty} \frac{\exp\left(i\mathbf{x}\frac{\mathbf{n}}{2}\right)}{\mathbf{B}\mathbf{i}'(\frac{\mathbf{n}}{2}) + i\mathbf{A}\mathbf{i}'(\frac{\mathbf{n}}{2})}$$
(11.20)

has been evaluated. However, a study of the sum

$$2\sum_{m=1}^{\infty} r^{m} \exp \left\{ i \frac{1}{3} \left[ 4\pi m + (-x) \right]^{3} \right\}$$
 (11.21)

has revealed that this approach does not readily lead to the evaluation of the limit as  $r \rightarrow 1$  from below.

We need therefore to study the numerical differention of the sums

$$- \operatorname{Gi} \sum_{m=1}^{\infty} \frac{1}{\left[4\pi \, m + (-x)\right]^{3}} \exp \left[i \frac{\xi}{3} \left[4\pi \, m + (-x)\right]^{3}\right]$$

$$\frac{\exp\left(-i \frac{\pi}{4}\right)}{2\sqrt{\pi}} \sum_{n=N}^{\infty} \exp\left[i \frac{(-x)}{2} \, n\right] \frac{1}{4\sqrt{\frac{n}{2}}} \frac{\exp\left[i \frac{2}{3} \, \xi\left(\frac{n}{2}\right)^{3/2}\right]}{\frac{2}{3} \left(\frac{n}{2}\right)^{3/2}}$$
(11. 23)

The practicability of this approach has not yet been determined.

### Section 12 SERIES EXPANSIONS FOR f, g, p, q

It can be shown that in the vicinity of  $\xi = 0$  these functions can be expressed in the forms

$$f(\xi) = \sum_{n=0}^{\infty} \left( \gamma_n + i \delta_n \right) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} f^{(n)}(0) \frac{\xi^n}{n!}$$

$$g(\xi) = \sum_{n=0}^{\infty} \left( \alpha_n + i \beta_n \right) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} g^{(n)}(0) \frac{\xi^n}{n!}$$

$$\hat{p}(\xi) = -\frac{1}{2\sqrt{\pi}\,\xi} + p(\xi) \; ; \qquad \hat{q}(\xi) = -\frac{1}{2\sqrt{\pi}\,\xi} + q(\xi)$$

$$p(\xi) = \sum_{n=0}^{\infty} \left( c_n + i d_n \right) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} p^{(n)}(0) \frac{\xi^n}{n!}$$

$$q(\xi) = \sum_{n=0}^{\infty} \left( a_n + i b_n \right) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} q^n(0) \frac{\xi^n}{n!}$$
 (12. 1)

where  $\alpha_n$ ,  $\beta_n$ ,  $\gamma_n$ ,  $\delta_n$ ,  $a_n$ ,  $b_n$ ,  $c_n$ ,  $d_n$  are real constants.

It can be shown that these constants can be determined from the summable divergent series

$$f^{(n)}(0) = \exp\left(i\frac{5n\pi}{6} - i\frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{(\alpha_s)^n}{Ai'(-\alpha_s)}$$

$$g^{(n)}(0) = \exp\left(i\frac{5n\pi}{6}\right) \sum_{s=1}^{\infty} \frac{(\beta_s)^{n-1}}{Ai(-\beta_s)}$$

$$p^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} \frac{(\alpha_s)^n}{\left[Ai'(-\alpha_s)\right]^2}$$

$$q^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} \frac{(\beta_s)^{n-1}}{\left[Ai(-\beta_s)\right]^2}$$
(12. 2)

The series for  $f^{(n)}(0)$  and  $g^{(n)}(0)$  have alternating signs and can be summed by means of the Euler summation formula (Ref. 36). If we let  $R_E \left| f(N) \right|$  denote the operation

$$R_{E}\left[f(N)\right] = \frac{1}{2} f(N) - \frac{1}{4} \Delta f(N) + \frac{1}{8} \Delta^{2} f(N) - \frac{1}{16} \Delta^{3} f(N) + \dots$$
 (12.3)

where  $\Delta^n f(N)$  are the forward differences

$$\Delta f(N) = f(N + 1) - f(N)$$

$$\Delta^{2}f(N) = f(N + 2) - 2f(N + 1) + f(N),$$
etc.,

we can write

$$f^{(n)}(o) = \exp\left(i\frac{5n\pi}{6} - i\frac{\pi}{3}\right) \left[\sum_{s=1}^{N-1} \frac{(\alpha_s)^n}{Ai'(-\alpha_s)} + R_E \left\{\frac{(-a_N)^n}{Ai'(a_N)}\right\}\right]$$

$$g^{(n)}(o) = \exp\left(i\frac{5n\pi}{6}\right) \left[\sum_{s=1}^{N-1} \frac{(\beta_s)^{n-1}}{Ai(-\beta_s)} + R_E \left\{\frac{(-a_N')^{n-1}}{Ai(a_N')}\right\}\right]$$
(12.4)

In Tables 12 and 13 we list values of

$$P_n(s) = \frac{\alpha_s^n}{\text{Ai'}(-\alpha_s)}$$
 and  $Q_n(s) = \frac{\beta_s^n}{\beta_s \text{Ai}(-\beta_s)}$ 

The reader can readily see that the divergent series which represent  $f^{(n)}(0)$  and  $g^{(n)}(0)$  would seem to offer no information as to the numerical value of these constants. However, in Tables 14 and 15 we show how rapidly the Euler summation scheme leads to a value for these series. In these tables the constants  $E_n$  are defined by  $1/(2^{n+1})$ .

Table 12

$$P_{n}(s) = \frac{\alpha_{s}^{n}}{Ai'(-\alpha_{s})}$$

|     |                                      |          | •                                      |                 | •                                    |
|-----|--------------------------------------|----------|----------------------------------------|-----------------|--------------------------------------|
| 8   | $P_0$                                |          | P <sub>1</sub>                         |                 | P <sub>2</sub>                       |
| 1   | 1.42610462873340                     | 1        | 3,33438580053254                       | 1               | 7.7961521495569                      |
| 2   | 1,24515731912710                     | 2        | 5.09014017058123                       | 2               | 20.8082356808762                     |
| 3   | 1.15579674859520                     | 3        | 6.38064509973811                       | 3               | 35.2247330149489                     |
| 4   | 1.09787472230530                     | 4        | 7.45095525975466                       | 4               | 50.5674583401396                     |
| 5   | 1.05559200401030                     | 5        | 8.38576389335443                       | 5               | 66.6176285988622                     |
| 6   | 1.02257559721180                     | 6        | 9.22634258478867                       | 6               | 83.2460677958597                     |
| 7   | 0.995648892214420                    | 7        | 9.99648846081186                       | 7               | 100.366486949923                     |
| 8   | 0.973009978973720                    | . 8      | 10.7114040013071                       | 8               | 117.916751275494                     |
| 9   | 0.953542777427160                    | 9        | 11.3815014315821                       | 9               | 135.849778220360                     |
| 10  | 0.936510349281340                    | 10       | 12.0142821976786                       | 10              | 154. 128544159948                    |
| 11  | 0.921401816261230                    | 11       | 12.6153628643638                       | 11              | 172.723102332641                     |
| 12  | 0.907849161032590                    | 12       | 13.1890782 <b>333433</b>               | 12              | 191.608685794672                     |
| 13  | 0.985578920797900                    | 13       | 13.7388569289040                       | 13              | 210.764439994550                     |
| 14  | 0.884382617105750                    | 14       | 14.2674663200428                       | 14              | 230.172542128578                     |
| 15  | 0.874097853120910                    | 15       | 14.7771783828013                       | 15              | 249.817569254371                     |
| 16  | 0.864595784623310                    | 16       | 15.2698856223529                       | 16              | 269.686032556043                     |
| 17  | 0.855772556602640                    | 17       | 15.7471842888076                       | 17              | 289,766026162499                     |
| 18  | 0.847543293727700                    | 18       | 16.2104355042324                       | 18              | 310.046957107190                     |
| 19  | 0.839837785186180                    | 19       | 16.6608110704991                       | 19              | 330.519334117992                     |
| 20  | 0.832597323183450                    | 20       | 17.0993284042597                       | 20              | 351, 174599935989                    |
| 21  | 3.825772345067290                    | 21       | 17.5268775962157                       | 21              | 372,004996422708                     |
| 22  | 0.819320646688550                    | 22       | 17.9442426617784                       | 22              | 393.003454759989                     |
| 23  | 0.813206009212090                    | 23       | 18.3521184380805                       | 23              | 414.163505126651                     |
| 24  | 0.807397130073680                    | 24       | 18.7511241702632                       | 24              | 435.479204686713                     |
| 25  | 0.801866780981850                    | 25       | 19.1418145469613                       | 25              | 456.945059753701                     |
| s   | $\mathtt{P}_3^{}$                    | 8        | $\mathfrak{p}_{4}$                     | 8               | ${f P_5}$                            |
|     | , <b>3</b>                           |          | * <b>4</b>                             |                 | , A                                  |
| 1   | 18.228241113950                      | 1        | 42.61958562817                         | . 1             | 99.6491689879                        |
| 2   | 85.063015484984                      | 2        | 347.73330686794                        | 2               | 1421.5161785156                      |
| 3   | 194.460246037717                     | 3        | 1073.52942243739                       | 3               | 5926.4834037864                      |
| 4   | 343.186578611392                     | 4        | 2329.10712946598                       | 4               | 15806.9701981905                     |
| 5   | 529.219340846563                     | 5        | 4204. 18914057313                      | 5               | 33398.6401582357                     |
| 6   | 751.100204635594                     | 6        | 6776,91490229993                       | 6               | 61145.7370262556                     |
| 7   | 1007.69702702693                     | 7        | 10117.4538348200                       | 7               | 101581.000394257                     |
| . 8 | 1298.08942223353                     | 8        | 14290.0489530768                       | 8               | 157312.351201483                     |
| 9   | 1621.50506710041                     | 9        | 19354,3097167770                       | . 9.            | 231013.341995145                     |
| 10  | 1977. 29068427219                    | 10       | 25366,0924762816                       | 10              | 325415.937470765                     |
| 11  | 2364.83646171492                     | 11       | 32378, 1324856362                      | 11              | 443304.845907687                     |
| 12  | 2783.65840450813                     | 12       | 40440.5159445242                       | 12              | 587512.938804105                     |
| 13  | 3233. 28566532791                    | 13       | 49601.0436764631                       | 13              | 760917.465529570<br>966436.867661564 |
| 14  | 3713.30115393419                     | 14       | 59905,5184093438                       | 14              | 1207028.05755742                     |
| 15  | 4223.32439194199                     | 15       | 71397.9764225894                       | 15              | 1485684.06412231                     |
| 16  | 4763.00595528707                     | 16       | 84120.8775815474                       | 16              | 1805431.97433341                     |
| 17  | 5332.02307016145                     | 17       | 98115, 2635360721                      | 17              | 2169331. 11670370                    |
| 18  | 5930.07606651465                     | 18       | 113420,891089385                       | 18              | 2580471.44533306                     |
| 19  | 6556,88548195802                     | 19       | 130076.345876226                       | 19              | 3041972.09222342                     |
| 20  | 7212. 18966760596                    | 20       | 148119.140196935                       | 20<br>21        | 3556980.06220936                     |
| 21  | 7895,74278725716                     | 21       | 167585.797938271                       |                 | 4128669,04988055                     |
| 22. | 8607.31312903341                     | 22       | 188511.928849266                       | 22<br><b>23</b> | 4760238.36171209                     |
| 23  | 9346.68166825183                     | 23<br>24 | 210932, 293952167<br>234880, 863503181 | 23<br>24        | 5454911.92960381                     |
| 24  | 10113.6408345289<br>10907.9934465491 | 26<br>26 | 260390.868639860                       | 25              | 6215937.40436939                     |
| 25  | T0907.333440043T                     | 44       | <b>2</b> 00000000000                   | æv              | AWT00011                             |

# Table 12 (Cont'd)

$$P_{n}(s) = \frac{\alpha_{s}^{n}}{Ai'(-\alpha_{s})}$$

|                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                                                                                                                                                                                                           | $P_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                        | P <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                            | $P_8$                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                           | 232.990460456                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                        | 544.75672216                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                            | 1275.6997289                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                                                                                                                                                                                                           | 5811.086271790                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                        | 23755.42689456                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                            | 97110.9841687                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                                                                                                                                                                                                           | 32717,506200818                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                        | 180618.95040770                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                            | 997117.7218135                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                                                                                                                                                           | 107277. 292523582                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                        | 728059.66905078                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                            | 4941128.4460019                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                                                                                                                           | 265323, 259045203                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                        | 2107763.41362536                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                            | 16744354, 1278857                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6                                                                                                                                                                                                           | 551696.636358108                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                        | 4977766. 12682183                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                            | 44912645.7919007                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7                                                                                                                                                                                                           | 1019890.95374821                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                        | 10239882, 9850098                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .7                                                                                                                                                                           | 102810210.406651                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8                                                                                                                                                                                                           | 1731776,84147893                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                        | 19064307.4480631                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                            | 209869891.875844                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                                                                                                                                                                                           | 2757378.84536928                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                        | 32912116.8120662                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                            | 392839538.487873                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                          | 4174688.41363698                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                       | 53556145.6713242                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                           | 687059836.561378                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11                                                                                                                                                                                                          | 6069503,43700086                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                       | 83100539.7568709                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                           | 1137770128.90128                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                                                                                                                                          | 8535288, 06941380                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                       | 123999213.661860                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                           | 1801439490.23335                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13<br>14                                                                                                                                                                                                    | 11673048,5173781                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                       | 179073378.995488                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                           | 2747120858.54196                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                             | 15591221,7100489                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                       | 251528271.060357                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                           | 4057826405,08766                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15                                                                                                                                                                                                          | 20405574.5656944                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                      | 344969175.114894                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                           | 5831022614,88770                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16                                                                                                                                                                                                          | 26239112.1187158                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                       | 463416833,635673                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                           | 8184543772.87152                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17                                                                                                                                                                                                          | 33221993, 1585573                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                       | 611322301.320563                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                           | 11249022727.4521                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18<br>19                                                                                                                                                                                                    | 43491452.3126980                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                       | 793581303.361737                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                           | 15178337945.3454                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                             | 51191727.7143955                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                                                                       | 1015548143.77981                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                           | 20146575987.6005                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20                                                                                                                                                                                                          | 62473993,5538569                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                       | 1283049203.68766                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                           | 26350408633.0641                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21                                                                                                                                                                                                          | 75496296.9333191                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                       | 1602396063.78440                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                           | 34010583956. 1853                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22                                                                                                                                                                                                          | 90423498.5419490                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                       | 1980398280.84607                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                           | 43373430734.4745                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23                                                                                                                                                                                                          | 107427216.742136                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                       | 2424375844, 24052                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                                                                                                                                                           | 54712375619.3488                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24                                                                                                                                                                                                          | 126685774.719706                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                       | 2942171335, 38538                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                                           | 68329472554.5606                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25                                                                                                                                                                                                          | 148384150.399980                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                       | 3542161810.45305                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                           | 84556943970.1677                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٠.                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                                                                                                           | $v_{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | 10 <sup>-10</sup> P <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                             | ė                                                                                                                                                                            | 10 <sup>-11</sup> P <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2                                                                                                                                                                                                      | 2978.046775<br>396984.793751                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                        | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                            | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260                                                                                                                                                                                                                                                                                                                                                                                            |
| 1<br>2<br>3                                                                                                                                                                                                 | 2978.046775<br>396984.793751<br>5504648.038926                                                                                                                                                                                                                                                                                                                                                                                            | 1 2                                                                                                                                                                                      | 10 <sup>-10</sup> P <sub>10</sub><br>0.000000696299323<br>0.000162285376694                                                                                                                                                                                                                                                                                                                                                                                                   | s<br>1<br>2                                                                                                                                                                  | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4                                                                                                                                                                                            | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3                                                                                                                                                                              | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149                                                                                                                                                                                                                                                                                                                                                                                       | \$<br>1<br>2<br>3                                                                                                                                                            | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802260 0.000066341441544 0.001677628508195                                                                                                                                                                                                                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                       | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4                                                                                                                                                                         | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057                                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4                                                                                                                                                             | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508185 0.015445559783926                                                                                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                       | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.388565<br>133019386.021982<br>405281121 880094                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5                                                                                                                                                                    | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299823 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542                                                                                                                                                                                                                                                                                                                                                   | \$<br>1<br>2<br>3<br>4<br>5                                                                                                                                                  | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244                                                                                                                                                                                                                                                                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                  | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121.880094<br>1032232436.57503                                                                                                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                               | 10 <sup>-10</sup> P <sub>10</sub><br>0.000000696299323<br>0.000162285376694<br>0.003038873883149<br>0.022758544465057<br>0.105672377223542<br>0.365625892763175                                                                                                                                                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5                                                                                                                                                        | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.01545559783926 0.085947548113244 0.329891477334321                                                                                                                                                                                                                                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                        | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                               | 10 <sup>-10</sup> P <sub>10</sub><br>0.000000696299323<br>0.000162285376694<br>0.003038873883149<br>0.022758544465057<br>0.105672377223542<br>6.365625892763175<br>1.03637936242245                                                                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5                                                                                                                                                        | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054204827141                                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                        | 2978.046775<br>396984.793751<br>5504648.038926<br>33538996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4688938845.24581                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                     | 10 <sup>-10</sup> P <sub>10</sub><br>0.000000696299323<br>0.000162285376694<br>0.003038873883149<br>0.022758544465057<br>0.105672377223542<br>0.365625892763175<br>1.03637936242245<br>2.54336375603729                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                   | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802280 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054204827141 2.79986734541689                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                   | 2978.046775<br>396984.793751<br>5504648.038926<br>33538996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4668938845.24581<br>8814137259.10638                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                     | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.0363703603729 5.59672473319172                                                                                                                                                                                                                                                                                                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                    | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04654254827141 2.79986734641689 6.68025931604454                                                                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                             | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4608938845.24581<br>8814137259.10638<br>15577767244.4421                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.54336379563729 5.59672473319172 11.3074599166192                                                                                                                                                                                                                                                             | \$<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                              | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054£04827141 2.79986734541689 6.88025931604454 14.5060878912286                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                                 | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121.880094<br>1032232436.57503<br>2310357805.33708<br>4688938845.24581<br>8814137259.10638<br>1557767244.4421<br>26171006582.5228                                                                                                                                                                                                          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                          | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.03637036242245 2.543363*0503729 5.596724*)3319172 11.3074599166192 21.3282829420343                                                                                                                                                                                                                                           | \$ 1 2 3 4 5 6 7 8 9 10 11                                                                                                                                                   | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054204827141 2.79986734541689 6.8025931604454 14.5060878912286 29.2015952040734                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                           | 2978.046775<br>396984.793751<br>5504648.038926<br>33638996.398565<br>133619386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4668938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                              | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.03637936242245 2.54336376503729 5.59672473519172 11.3074599166192 21.3282829420343 38.0207933297683                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>9<br>10<br>11<br>12                                                                                                                            | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04654254827141 2.79986734541689 6.88025931604454 14.5060878912286 29.2015952040734 55.2359620126466                                                                                                                                                                                             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                           | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4668938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814.8204                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                        | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242343 3.5282829420343 3.6207933287683 64.6504038786554                                                                                                                                                                                   | 5<br>3<br>4<br>5<br>6<br>9<br>10<br>11<br>12<br>13                                                                                                                           | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.01545559783926 0.083947548113244 0.329891477334321 1.04654254827141 2.79986734541689 6.68025931604454 14.5060878912286 29.2015952040734 55.2359620128466 99.1786015344534                                                                                                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                     | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4608938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814.8204<br>98592349228.6257                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                  | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.1.3074599166192 21.3282829420343 38.0207933297683 64.6504038786554 105.610422582945                                                                                                                                              | 5<br>1<br>2<br>3<br>4<br>5<br>6<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                           | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0,329891477334321 1.040546204827141 2.79986734541689 6.88025931604454 14.5060878912286 29.2015952040734 55.2359620128466 99.1786015344534 170.377969682235                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                               | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4688938845.24581<br>8814137259.10638<br>1557767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814.8204<br>98592349228.6257<br>144649883800.898                                                                                                                          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                            | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299823 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03627036242245 2.543363*0503729 5.596724*,3319172 11.3074599166192 21.3282829420343 38.0207933297683 64.6504038786554 165.610422582945 196.676617100593                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                          | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508185 0.015445559783926 0.088947548113244 1.04054204827141 2.79986734541689 6.68025931604454 14.5060878912286 29.2015952040734 55.2859620126466 99.1786015344534 170.377969682225 281.777388463239                                                                                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                   | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4668938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814.8204<br>98592349228.6257<br>144549883800.838<br>206894758819.3440                                                                                                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                      | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.03627036242245 2.543363°0503729 5.596724°,)319172 11.3074599166192 21.3282829420343 38.0207933227683 64.6504038786554 105.610422582945 196.676617100593 255.293534579128                                                                                                                                                      | 5<br>1<br>2<br>3<br>4<br>5<br>6<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                               | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054204827141 2.79986734541689 6.68025931604454 14.5060878912286 29.2015952040734 55.2859620126466 99.1786015344534 170.377969682235 281.777388463229 450.88157287.13                                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                                                                             | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4668938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814.8204<br>98592349228.6257<br>144649883800.898<br>206994758819.340<br>290306666509.376                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.54336379563729 3.596724;3319172 11.3074599166192 21.3282829420343 38.0207933287683 64.6504038786554 165.610422682945 196.676617100593 255.293534579128 380.893800437556 | 5<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                               | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 10,329891477334321 1.04654254827141 2.79986735451689 6.68025931604454 14.5060878912286 29.2015952040734 55.2359620128466 99.1786015344534 170.377969682285 281.777388463239 450.88157287,13                                                                                                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                                                                       | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310957805.33708<br>4688938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814.8204<br>98592349228.6257<br>144549883800.898<br>206894758819.340<br>290306666509.376                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                                                          | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 3.5967247,3319172 11.3074599166192 21.3282829420343 38.0207933297683 64.6504038786554 165.610422582945 196.676617100593 255.293534579128 380.893800437556 555.251575786866                                                         | \$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                                                                                                              | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0,329891477334321 1.04054£04827141 2.79986734641689 6.88025931604454 14.5060878912286 29.2015952040734 55.2359620128466 99.1786015344534 170.377969682285 281.747388463239 450.88157287.13 700.8877328066739 1331.99528974247                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                                                 | 2978.046775 396984.793751 5504648.038926 33538996.398565 133019386.021982 405231121 880094 1032232436.57503 2310357805.33708 4688938845.24581 8814137259.10638 15577767244.4421 26171006582.5228 42142908419.8298 6546353814.8204 9859239228.6257 144649883800.898 206994758819.340 290306666509.376 399670391315.458 541167114350.579                                                                                                    | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                                                                                                                                          | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299823 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03627036242245 2.543363 60503729 5.596724 3319172 11.3074599166192 21.3282829420343 38.0207933297683 64.6504038786554 165.610422582945 196.676617100593 255.293534579128 380.893800437556 555.251575786866 792.871313679117                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>2<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508185 0.015445559783926 0.083947548113244 0,329891477334321 1.04054204827141 2.7998673451698 6.68025931604454 14.5060878912286 29.2015952040734 55.2259620126466 99.1786015344534 170.377969682255 281.777388463239 450.88157287 1370.887732806739 1031.99522974247 1572.90841081861                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                                                           | 2978.046775 396984.793751 5504648.038926 33539996.398565 133019386.021982 405231121 880094 1032232436.57503 2310377805.33708 46688938845.24581 8814137259.10638 15577767244.4421 26171006562.5228 42142908419.8298 65463635814.3204 98892349228.6257 144549683800.898 206994758819.340 290306666509.376 3998670391315.458 541167114350.579 721868860753.998                                                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 10 <sup>-10</sup> P <sub>10</sub> 0.000000696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 6.365625892763175 1.03637036242245 2.543363′0503729 6.596724′;)319172 11.3074599166192 21.3282829420343 38.0207933227683 64.6504038786554 165.610422582945 196.676617100593 255.293534579128 380.893800437556 555.251575786866 792.871313679117 1111.47291863050                                                                                  | 1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20                                                                                                                          | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054254827141 2.79986734641689 6.68025931604454 14.5060878912286 29.2015952040734 55.2369620126466 99.1786015344534 170.377969682235 281.777388463239 450.88157287 133 700.887732806739 133.98528974247 1572.99841081861 2282.54571073974                                                      |
| 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22                                                                                                                                                  | 2978.046775<br>396984.793751<br>5504648.038926<br>33533996.398565<br>133019386.021982<br>405231121 880094<br>1032232436.57503<br>2310357805.33708<br>4668938845.24581<br>8814137259.10638<br>15577767244.4421<br>26171006582.5228<br>42142908419.8298<br>65463635814,8204<br>98592349228.6257<br>144649683800.898<br>206994758819.340<br>290306666509.376<br>399670391315.456<br>541167114350.579<br>721868860753.995<br>949937450397.374 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                                                        | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.5433637956242245 2.1.326269420343 38.0207933297683 64.6504038786554 165.610422682945 196.676617100593 255.293534579128 380.893800437556 555.251575786866 792.871313670117 1111.41291863050 1532.15438111142                                                            | \$ 1 2 3 4 4 5 6 .7 8 9 10 11 12 13 14 15 16 17 18 19 20 21                                                                                                                  | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802260 0.00066341441544 0.001677628508195 0.015445559783926 0.083947548113244 10,329891477334321 1.04054254827141 2.79986735641689 6.68025931604454 14.5060878912286 29.2015952040734 55.2359620128466 99.1786015344534 170.377969682265 281.777388463239 450.88157287, 113 700.887732806739 1.031.99522974247 1572.90841081861 2282.54571073974 3251.97161864960                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                                                                               | 2978.046775 396984.793751 5504648.038926 33539996.398565 133019386.021982 405231121 880094 1032232436.57503 2310957805.33708 4688938845.24581 8814137259.10638 15577767244.4421 26171006582.5228 42142908419.8298 65463635814.8204 98592349228.6257 144649883800.898 206984758819.340 29036666509.376 398670391315.456 541167114350.579 721868880753.995 949937450397.374                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21<br>22<br>22                                                      | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.1.3282829420343 38.0207933297683 64.6504038786554 165.610422582945 196.676617100593 255.293594579128 380.893800437556 555.251575786866 792.871313679117 1111.41291863050 1532.15438111142 2030.49292939667                                                             | \$ 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 21 22                                                                                                             | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0,329891477334321 1.04054204827141 2.79986734641689 6.88025931604454 14.5060878912286 29.2015952040734 55.2259620126466 99.1786015344534 170.377969682255 281.777388463239 450.88157287.13 700.887732806739 1331.99528974247 1572.90841081861 2282.54571073974 3251.97161864960 4556.56404267299                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 2978.046775 396984.793751 5504648.038926 33538996.398565 133019386.021982 405231121 880094 1032232436.57503 2310357805.33708 4688938845.24581 8814137259.10638 15577767244.4421 26171006582.5228 42242908419.8298 65463635814.8204 98892349228.6257 144549883800.898 20694758819.340 290306666509.376 39967039315.455 541167514350.579 721868860753.995 949937450397.374 123472771774.13 1586884945046.73                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21<br>22<br>22<br>23                                                | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.543363765054729 5.5967247,3319172 11.3074599166192 21.3282829420343 38.0207933297683 64.6504038786554 165.610422582945 196.676617100593 255.293534579128 380.893800437556 555.251575786866 792.871313679117 1111.41291863050 1532.15438111142 2090.49292939667 2796.48571255275                              | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23                                                                                                                  | 10 <sup>-11</sup> P <sub>11</sub> 0.000000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0.329891477334321 1.04054204827141 2.79986734541689 6.68025931604454 14.5060878912286 29.2015952040734 55.2359620126466 99.1786015344534 170.377969682235 281.777388463239 450.88157287 133 700.887732806739 1361.99528974247 1572.90841081861 2282.54571073974 3251.97161864960 4556.56404267299 6288.43309610248 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                                                                               | 2978.046775 396984.793751 5504648.038926 33539996.398565 133019386.021982 405231121 880094 1032232436.57503 2310957805.33708 4688938845.24581 8814137259.10638 15577767244.4421 26171006582.5228 42142908419.8298 65463635814.8204 98592349228.6257 144649883800.898 206984758819.340 29036666509.376 398670391315.456 541167114350.579 721868880753.995 949937450397.374                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21<br>22<br>22                                                      | 10 <sup>-10</sup> P <sub>10</sub> 0.000003696299323 0.000162285376694 0.003038873883149 0.022758544465057 0.105672377223542 0.365625892763175 1.03637936242245 2.5433637956242245 2.5433637956242245 2.1.3282829420343 38.0207933297683 64.6504038786554 165.610422582945 196.676617100593 255.293594579128 380.893800437556 555.251575786866 792.871313679117 1111.41291863050 1532.15438111142 2030.49292939667                                                             | \$ 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 21 22                                                                                                             | 10 <sup>-11</sup> P <sub>11</sub> 0.00000162802260 0.000066341441544 0.001677628508195 0.015445559783926 0.083947548113244 0,329891477334321 1.04054204827141 2.79986734641689 6.88025931604454 14.5060878912286 29.2015952040734 55.2259620126466 99.1786015344534 170.377969682255 281.777388463239 450.88157287.13 700.887732806739 1331.99528974247 1572.90841081861 2282.54571073974 3251.97161864960 4556.56404267299                    |

Table 12 (Cont<sup>1</sup>d)

$$P_{\rm n}(s) = \frac{\alpha_{\rm s}^{\rm n}}{{\rm Ai}^{\rm t}(-\alpha_{\rm s})}$$

| S                                                                                                                              | $10^{-12}$ $P_{12}$                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                    | 10 <sup>-13</sup> P <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                              | 10 <sup>-14</sup> P <sub>14</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                                                                              | 0.00000038064917                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                    | 0.000000008899986                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                              | 0.00000002080912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                                              | 0.000027120045908                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                    | 0.000011086537659                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                              | 0.000004532120546                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                                                                                                              | 0.000926144854881                                                                                                                                                                                                                                                                                                                                                                                                          | .3                                                                                                                                   | 0.000511283808085                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                              | 0.000282257285167                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                                                                                                              | 0.010482450554126                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                    | 0.007114133197946                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                              | 0.004828154532835                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                                                                                                              | 0.066689053652286                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                    | 0.052978675101243                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                              | 0.042086967227295                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6                                                                                                                              | 0.297649561948043                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                    | 0.268558807410707                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                              | 0.242311235285645                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7                                                                                                                              | 1.04472326105237                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                    | 1.04892036796468                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                              | 1.05313433647765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                              | 3.08224077192507                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                    | 3.39309224476945                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                              | 3.73529384413531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                              | 7.97356791627619                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                    | 9,51726307431942                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                              | 11.3598200174490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                                             | 18.6095363114021                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                   | 23.8737586813327                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                             | 30.6271120374609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                                                                                                             | 39.9813320547232                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                   | 54.7403969440360                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                             | 74.9477544542350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                                                                                                                             | 80.2458663342449                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                   | 116.579830043680                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                             | 169.365194668144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                                                                                                             | 152.147464086878                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                  | 233.405699111680                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                             | 358.061967741404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                                                                                                                             | 274.865414256363                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                   | 443,431718873138                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                             | 715.374430918363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                                                                                                             | 476.362539811114                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                   | 805.321074813282                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                             | 1361.44633412102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                                                                                                                             | 796.315477155034                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                   | 1406.39666208464                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                             | 3483.37935167275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                                                                                                                             | 1289.71281085344                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                   | 2373, 21764474102                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                             | 4366.98925676574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18                                                                                                                             | 2031.21259734726                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                   | 3884.97449609471                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                             | 7430.55003450534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19                                                                                                                             | 3120.35613616008                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                                   | 6190.20303375738                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                             | 12280.2051839807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                                                                                                                             | 4687,74011384536                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                   | 9627.36793027166                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                             | 19772.0460208688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21                                                                                                                             | 6902.25445873882                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                   | 14649,9177114476                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                             | 31094.2012113825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22                                                                                                                             | 9979.49840714064                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                   | 21856.4663034343                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                             | 47868.6502852033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23                                                                                                                             | 14191.4923970414                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                                   | 32026,8107138024                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                             | 72276.8667171022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24                                                                                                                             | 19877.8084768120                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                                                                                   | 46164.5503926177                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                                                                             | 107213.313552075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25                                                                                                                             | 27458.2469459129                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                   | 65547, 1311805381                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                             | 156471, 256685168                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                        | .1                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s                                                                                                                              | 10 <sup>-15</sup> P <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                                                    | $10^{-16}$ P <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                              | 10 <sup>-17</sup> P <sub>17</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | " · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      | .10                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                              | 0.00000000486539                                                                                                                                                                                                                                                                                                                                                                                                           | -1                                                                                                                                   | 0.000000000113758                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                              | 0.00000000026597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                                              | 0.00000000486539<br>0.000001852707966                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                    | 0.000000000113758<br>0.000000757377650                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                              | 0.000000000026597<br>0.000000309612154                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2<br>3                                                                                                                         | 0.00000000486539<br>0.00001852707966<br>0.000155821822968                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                    | 0.00000000113758<br>0.00000757377650<br>0.000086022369621                                                                                                                                                                                                                                                                                                                                                                  | 2<br>3                                                                                                                         | 0.00000000026597<br>0.000000309612154<br>0.000047489163805                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>3<br>4                                                                                                                    | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4                                                                                                                          | 0.00000000113758<br>0.00000757377650<br>0.000086022369621<br>0.002223819332375                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4                                                                                                                    | 0.000000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>3<br>4<br>5                                                                                                               | 0.00000000486539<br>0.000001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040                                                                                                                                                                                                                                                                                                                       | 2<br>3<br>4<br>5                                                                                                                     | 0.00000000113758<br>0.000000757377650<br>0.000086022369621<br>0.602223819\32375<br>0.026560772921249                                                                                                                                                                                                                                                                                                                       | 2<br>3<br>4<br>5                                                                                                               | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358                                                                                                                                                                                                                                                                                                                                                                                            |
| 2<br>3<br>4<br>5<br>6                                                                                                          | 0.00000000486539<br>0.000001852707966<br>0.000155821822968<br>0.003276727542510<br>0.033434448993040<br>0.218628967382413                                                                                                                                                                                                                                                                                                  | 2<br>3<br>4<br>5<br>6                                                                                                                | 0.00000000113758<br>0.000000757377650<br>0.000086022369621<br>0.002223819\32375<br>0.026560772921249<br>0.197261283911798                                                                                                                                                                                                                                                                                                  | 2<br>3<br>4<br>5<br>6                                                                                                          | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792                                                                                                                                                                                                                                                                                                                                                                       |
| 2<br>3<br>4<br>5<br>6<br>7                                                                                                     | 0.00000000486539<br>0.000001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166                                                                                                                                                                                                                                                                              | 2<br>3<br>4<br>5<br>6<br>7                                                                                                           | 0.00000000113758<br>0.00000757377650<br>0.000086022369621<br>0.002223819\32375<br>0.026560772921249<br>0.197261283911798<br>1.06161312953921                                                                                                                                                                                                                                                                               | 2<br>3<br>4<br>5<br>6                                                                                                          | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177081969161792<br>1.06587809038606                                                                                                                                                                                                                                                                                                                                                   |
| 2<br>3<br>4<br>5<br>6<br>7                                                                                                     | 0.00000000486539<br>0.000001852707966<br>0.000155821822968<br>0.003276727542810<br>0.03343444893040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485                                                                                                                                                                                                                                                           | 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                      | 0.00000000113758<br>0.00000757377650<br>0.000086022369621<br>0.0022381932375<br>0.026560772921249<br>0.197261283911798<br>1.06161812953921<br>4.52671323704568                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                | 0.00000000026597<br>0.000000309612154<br>0.00047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177081969161792<br>1.06587809038606<br>4.98324326860481                                                                                                                                                                                                                                                                                                                                |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                | 0.00000000486539<br>0.000001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834                                                                                                                                                                                                                                      | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                 | 0.00000000113758<br>0.00000757377650<br>0.000086022369621<br>0.002223819332375<br>0.026560772921249<br>0.197261283911798<br>1.06161812953921<br>4.52671323704568<br>16.1841614925507                                                                                                                                                                                                                                       | 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                | 0.00000000026597<br>0.000000309612154<br>0.00047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014                                                                                                                                                                                                                                                                                                            |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                           | 0.00000000486539<br>0.000001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594                                                                                                                                                                                                                  | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                 | 0.00000000113758<br>0.000000757377650<br>0.000086022369621<br>0.002223819432375<br>0.026560772921249<br>0.197261283911798<br>1.06161312953921<br>4.52671323704568<br>16.1841614925507<br>50.4053392872800                                                                                                                                                                                                                  | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                           | 0.00000000026597<br>0.0000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.38324326860481<br>19.3174403453014<br>64.6638844608970                                                                                                                                                                                                                                                                                      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                     | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594<br>102.614635832382                                                                                                                                                                                               | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                           | $\begin{array}{c} 0.000000000113758\\ 0.00000757377650\\ 0.000086022369621\\ 0.002223819332375\\ 0.026560772921249\\ 0.197261283911798\\ 1.06161312953921\\ 4.52671323704568\\ 16.1841614925507\\ 50.4053392872800\\ 140.494716135119 \end{array}$                                                                                                                                                                         | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                     | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902                                                                                                                                                                                                                                                                   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                         | 0.00000000486539<br>0.00001852707966<br>0.000155821822268<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594<br>102.614635832382<br>246.050874788811                                                                                                                                                                           | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                               | 0.00000000113758 0.00000757377650 0.000086022369621 0.002223819\$32375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740                                                                                                                                                                                                           | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                               | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.356186546902<br>519.209669276890                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                   | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594<br>102.614635832382<br>246.050874788811<br>549.294097062733                                                                                                                                                       | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                         | 0.00000000113758 0.00000757377650 0.000086022369621 0.0222381932275 0.02656077221249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458528441740 842.658624067751                                                                                                                                                                                              | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                         | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435                                                                                                                                                                                                                           |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                   | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382213594<br>102.614635832382<br>246.050874788811<br>549.294097062733<br>1154.09104633352                                                                                                                                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                   | 0.00000000113758 0.00000757377650 0.000086022369621 0.002223819322375 0.026560772921249 0.197261283911798 1.06161912953921 4.52671923704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488                                                                                                                                                                          | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                   | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791                                                                                                                                                                                                       |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                             | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594<br>102.614635832382<br>246.05087478811<br>549.294097062733<br>1154.09104633352<br>2301.61134317926                                                                                                                | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                             | 0.00000000113758 0.00000757377650 0.000086022369621 0.002223819332375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215                                                                                                                                                         | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                       | 0.00000000026597<br>0.000000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546962<br>519.209669276890<br>1292,70196150435<br>3003.67810090791<br>6578.01582589859                                                                                                                                                              |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                 | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594<br>102.614635832382<br>246.050874788811<br>549.294097062733<br>1154.09104633352<br>2301.61134317926<br>4386.85386562367                                                                                           | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                       | 0.00000000113758 0.000000757377650 0.000086022369621 0.002223819\\ 32375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01988721215 7747.75426408170                                                                                                                                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                       | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001569241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788                                                                                                                                                               |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                           | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382913594<br>102.614635832382<br>246.050874788811<br>549.294097062733<br>1154.09104633352<br>2301.61134317926<br>4386.85386562367<br>8085.75483730592                                                                       | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                 | $\begin{array}{c} 0.000000000113758\\ 0.000000757377650\\ 0.000086022369621\\ 0.002223819332375\\ 0.026560772921249\\ 0.197261283911798\\ 1.06161312953921\\ 4.52671323704568\\ 16.1841614925507\\ 50.4053392872800\\ 140.494716135119\\ 357.458526841740\\ 842.658624067751\\ 1861.85874929488\\ 3891.01989721215\\ 7747.75426408170\\ 14786.6990295986\\ \end{array}$                                                    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                 | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821                                                                                                                                            |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                     | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5550988523834<br>39.2908382913594<br>102.614635832382<br>246.050874788811<br>549.294097062733<br>1154.09104633352<br>2301.61134317926<br>4386.85386562367<br>8035,75488730592<br>14211.9527092878                                                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                           | 0.00000000113758 0.00000757377650 0.000086022369621 0.0022381932375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426408170 14786.6990295986 27182.3214799843                                                                                                        | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                     | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292,70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209,200954821<br>51989.942279947                                                                                                                         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                               | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.03343444893040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382213594<br>102.614635832382<br>246.050874788811<br>549.294097062733<br>1154.09104633352<br>2301.61134317926<br>4386.85386562367<br>8085.75483730592<br>14211.9527092878<br>24561.6305534800                                | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                     | 0.00000000113758 0.00000757377650 0.000086022369621 0.002223819322375 0.026560772921249 0.197261283911798 1.06161912953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458528841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426405170 14786.6990295986 27182.3214799843 48328.9191298035                                                                                     | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                               | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292,70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947<br>95875.5375223548                                                                                                     |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                         | 0.00000000486539<br>0.00001852707966<br>0.000155821822968<br>0.003276727542810<br>0.033434448993040<br>0.218628967382413<br>1.05736523433166<br>4.11200730647485<br>13.5590988523834<br>39.2908382213594<br>102.614635832382<br>246.050874788811<br>549.294097062733<br>1154.09104633352<br>2301.61134317926<br>4386.85386562367<br>8035.75483730592<br>14211.9527092878<br>24661.6805534800<br>42606.6391696.14           | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                               | 0.00000000113758 0.000000757377650 0.000086022369621 0.00222381932375 0.026560772921249 0.197261283911798 1.06161912953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426408170 14786.6990295986 27182.3214799843 48328.9191298035 83394.9396419653                                                                    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                         | 0.00000000026597<br>0.00000000026597<br>0.000000309612154<br>0.0001509241265389<br>0.021100232826358<br>0.177081969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546962<br>519.209669276890<br>1292,70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947<br>95875.5375223545<br>171270.963824272                                                                                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                   | 0.00000000486539 0.00001852707966 0.000155821822968 0.003276727542810 0.033434448993040 0.218628967382413 1.05736523433166 4.11200730647485 13.5590988523834 39.2908382913594 102.614635832382 246.050874788811 549.294097062733 1154.09104633352 2301.61134317926 4386.85386562367 8085.75488730592 14211.9527092878 24561.6805537800 42605.7391793.14                                                                    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                         | 0.00000000113758 0.000000757377650 0.000086022369621 0.002223819432375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426406170 14786.6990295986 27182.3214799843 48328.9191298035 83394.9396419653 140077.326148101                                                  | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                   | 0.00000000026597<br>0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.38324326860481<br>19.3174403453014<br>64.6638844668970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947<br>95875.5375223545<br>171270.963824272<br>297311.742645353                                                              |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22             | 0.00000000486539 0.00001852707966 0.000155821822968 0.003276727542810 0.033434448993040 0.218628967382413 1.05736523433166 4.11200730647485 13.5590988523834 39.2908382913594 102.614635832382 246.050874788811 549.294097062733 1154.09104633352 2301.61134317926 4386.85386562367 8035.75483730592 14211.9527092878 24561.6305537800 42605.799196.14 65396.9132944983 104838.890620074                                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                   | 0.00000000113758 0.000000757377650 0.000086022369621 0.002223819\$32375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426408170 14786.6990295986 27182.3214799843 48328.9191298035 83394.9396419653 140077.326148101 229611.508178357                                | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22             | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947.<br>95875.5375223548<br>171270.963824272<br>297311.742645353<br>502880.664479089                                        |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23       | 0.00000000486539 0.00001852707966 0.000155821822968 0.003276727542810 0.033434448993040 0.218628967382413 1.05736523433166 4.11200730647485 13.5590988523834 39.2908382913594 102.614635832382 246.050874788811 549.294097062733 1154.09104633352 2301.61134317926 4386.85386562367 8035.75483730592 14211.9527092878 24561.6305536800 42605.7991790.14 65596.9152944983 104838.890620074 163111.635096104                 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23             | 0.00000000113758 0.00000757377650 0.000086022369621 0.0022381932375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426408170 14786.6990295986 27182.3214799843 48328.9191298035 83394.9396419653 140077.326148101 229611.508178357                                    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15<br>17<br>18<br>19<br>20<br>21<br>22<br>23       | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947,<br>95875.5375223545<br>171270.963824272<br>297311.742645353<br>502880.604479089<br>830722.913420122                    |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 0.00000000486539 0.00001852707966 0.000155821822968 0.003276727542810 0.033434448993040 0.218628967382413 1.05736523433166 4.11200730647485 13.5590988523834 39.2908382213594 102.614635832382 246.050874788811 549.294097062733 1154.09104633352 2301.61134317926 4386.85386562367 8085.75488730592 14211.9527092878 24561.6305536300 42808.7591796.14 6596.9152944983 104838.890620074 163111.635096104 248993.968425038 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>23<br>24 | 0.00000000113758 0.00000757377650 0.000086022369621 0.00222381932275 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458528441740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426405170 14786.6990295986 27182.3214799843 48328.9191298035 83394.9396419653 140077.326148101 229611.508178357 368104.024318881 578267.700698716 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292,70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947<br>95875.5375223546<br>171270.963824272<br>297311.742645353<br>502880.604479089<br>830722.913420122<br>1342978.44958462 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23       | 0.00000000486539 0.00001852707966 0.000155821822968 0.003276727542810 0.033434448993040 0.218628967382413 1.05736523433166 4.11200730647485 13.5590988523834 39.2908382913594 102.614635832382 246.050874788811 549.294097062733 1154.09104633352 2301.61134317926 4386.85386562367 8035.75483730592 14211.9527092878 24561.6305536800 42605.7991790.14 65596.9152944983 104838.890620074 163111.635096104                 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23             | 0.00000000113758 0.00000757377650 0.000086022369621 0.0022381932375 0.026560772921249 0.197261283911798 1.06161312953921 4.52671323704568 16.1841614925507 50.4053392872800 140.494716135119 357.458526841740 842.658624067751 1861.85874929488 3891.01989721215 7747.75426408170 14786.6990295986 27182.3214799843 48328.9191298035 83394.9396419653 140077.326148101 229611.508178357                                    | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15<br>17<br>18<br>19<br>20<br>21<br>22<br>23       | 0.00000000026597<br>0.000000309612154<br>0.000047489163805<br>0.001509241265389<br>0.021100232826358<br>0.177981969161792<br>1.06587809038606<br>4.98324326860481<br>19.3174403453014<br>64.6638844868970<br>192.368186546902<br>519.209669276890<br>1292.70196150435<br>3003.67810090791<br>6578.01582589859<br>13683.5413202788<br>27209.200954821<br>51989.942279947,<br>95875.5375223545<br>171270.963824272<br>297311.742645353<br>502880.604479089<br>830722.913420122                    |

Table 12 (Concluded)

$$P_{n}(s) = \frac{\alpha^{n}}{Ai^{t}(-\alpha)}$$

| 8          | · · · · · · · · · · · · · · · · · · ·                       | s   | 10 <sup>-19</sup> P <sub>19</sub> | . 8      | 10 P <sub>20</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------|-----|-----------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -          | 30000278                                                    | 1   | 0.(00)000000                      | 01464 1  | 0.000000000000339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1          | 10 1.5° 200 2 2056 1888                                     | 2   | 0.00/0000517                      |          | 0.000000021151177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2,         | (1) 1 9 - 100 1204 1507 6927                                | 3   | 0.0000144730                      | 735:25 3 | 0.000007989946752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3          | 111 4 01024217990568                                        | 4   | 0.0006951475                      |          | 0.000471776365412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4          | )                                                           | 4   | 0.0.33162004                      |          | 0.010578567539022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5          | 1 Ve 0 16:3000 CH03695                                      | 6   | 0, 148919680                      |          | 0.130730963875308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6          | 1 0 /4 1901 \$543229                                        | 7   | 1. 744594835                      |          | 1.07877605374151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7          | \$6×2°,44\$388509                                           | . 8 | 6. )390732854                     |          | 6.64812850348693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8          | 1 637 835 3603406                                           | 9   | 27 521261225                      |          | 32.8494202303462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0          | 9321386056503                                               | 10  |                                   | 77 10    | 136.526681060242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LÒ.        | 1 20000393992                                               | 11  | 36 , 588639531                    | 37 11    | 493.699540447300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11         | 26 1                                                        | 12  |                                   | 3 12     | 1592.31377576067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.2        | 3 242502866                                                 | 13  | 30 2,22887197 2                   |          | 4667.00881922220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13         | 2095147601                                                  | 14  |                                   | 7 14     | 12611.6922047265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14         | 3 7 1 33,27981949                                           | 15  | 18 99,999545! 37                  |          | 31782.5911468691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,6        | 9 59786160                                                  | 16  | 42 81,910270 63                   | 16       | 75381,8026377498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LG         | 347 0 04698133                                              | 17  | 9' 130, 81180' 255                |          | 169531, 128443430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L.T        | M 10880418                                                  | 18  | 19 188,79063 47                   | 18       | 363762.317152909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (3)        | 43 . 156680708                                              | 19  |                                   | 19       | 748531: 360631607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13         | 44, 380147788                                               | 20  | 7 2390 1702 627                   | 20       | 1483596.74149727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 31000, 117789550                                            | 21  | 1, 19369.796; 391                 | 21       | 2842789.61578402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _          | 1102247, 2975865                                            | 22  | 2 12166,905 260                   | 22       | 5282975.40988794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1-         | 1874740/31517602                                            | 23  | 2 30848 14: 2565                  | 23       | 9548014.32638645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| å,         | 8 8 1 2 2 2 3 3 3 4 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 24  | 243513. 27 7402                   | 24       | 16822454.7520648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>}</b> ( | 1 1100. 16988875                                            | 25  | 129390. 751                       | 25       | 28954752.8790463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0          | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | 210 |                                   |          | the state of the s |

Table 13

$$Q_{n}(s) = \frac{\beta_{s}^{n}}{\beta_{s} \operatorname{Ai}(-\beta_{s})}$$

| ន  | $Q_0$              | ·s          | $Q_1$                                | s        | $\mathtt{Q}_{2}^{}$                    |
|----|--------------------|-------------|--------------------------------------|----------|----------------------------------------|
| 1  | 1.83243067797684   | 1           | 1.86686749575401                     | 1        | 1.9019514836712                        |
| 2  | 0.734729530600078  | 2           | 2.38654668485130                     | 2        | 7.7519751714933                        |
| 3  | 0.545376134438550  | 3           | 2.62876707540296                     | 3        | 12.6709181065224                       |
| 4  | 0.453330392656394  | 4           | 2.79401454359409                     | 4        | 17.2203703882971                       |
| 5  | 0.396274159274657  | 5           | 2.92140334376780                     | 5        | 21.5371032837454                       |
| 6  | 0.356475345977321  | 6           | 3.02593624533357                     | . 6      | 25.6856196765035                       |
| 7  | 0.326680840226629  | 7           | 3.11504850838729                     | 7        | 29.7033863475853                       |
| 8  | 0.303295968469470  | 8           | 3.19299695581287                     | 8        | 33.6147875993167                       |
| 9  | 0.284308719742012  | 9           | 3,26245866043183                     | 9        | 37.4368978928432                       |
| 10 | 0.268493303359080  | 10          | 3.32523274135997                     | 10       | 41. 1823037888756                      |
| 11 | 0.255054580298498  | 11          | 3.38258969109424                     | 11       | 44.8606451407626                       |
| 12 | 0.243451183763479  | 12          | 3,43546185938988                     | 12       | 48.4795267982308                       |
| 13 | 0.233300043634439  | 13          | 3.48455479971613                     | 13       | 52.0450916470911                       |
| 14 | 0.224321442178684  | 14          | 3.53041602944524                     | 14       | 55,5623984043212                       |
| 15 | 0.216305716987676  | 15          | 3.57347942495810                     | 15       | 59.0356805101292                       |
| 16 | 0.209092202768276  | 16          | 3,61409496222766                     | 16       | 62.4685293046285                       |
| 17 | 0.202555427229719  | 17          | 3.65254926896490                     | 17       | 65.8640271686516                       |
| 18 | 0.196595781268435  | 18          | 3,68908020919765                     | 18       | 69,2248465459767                       |
| 19 | 0.191133044574795  | 19          | 3.72388747334526                     | 19       | 72.5533250072998                       |
| 20 | 0. 186101788117184 | 20          | 3.75714042355006                     | 20       | 75.8515235403614                       |
|    |                    |             | Mr.                                  |          |                                        |
| _  |                    | ន           |                                      | s        | ω                                      |
| s  | $Q_3$              |             | <b>Q</b> <u>4</u> + 3                |          | <b>Q</b> <sub>5</sub>                  |
| 1  | 1,937694803978     | 1           | 1.97410984749                        | ,1       | 2.0112092378                           |
| 2  | 25, 179947009162   | 2           | 81,78944299457                       | 2<br>3   | 265.6682709828                         |
| 3  | 61.075082370159    | 3           | 294.38795635508                      |          | 1418.9791562076                        |
| 4  | 106.134435481028   | 4           | 654. 13914688686                     | 4        | 4031.6606156195                        |
| 5  | 158.775342968043   | <b>5</b> `, | 1170.51997209141                     | 5        | 8629.2807148314                        |
| 6  | 218.032041879076   | 6           | 1850.76209508176                     | 6        | 15710.1694919281                       |
| 7  | 283. 235127202149  | 7           | 2700.77412529563                     | 7        | 25753.0940738873                       |
| 8  | 353.885068161461   | 8           | <b>372</b> 5. 58181715799            | 8        | 39221.6601521187                       |
| 9  | 429.590523502192   | . 9         | 4929,57558639406                     | 9        | 56567, 1590328932                      |
| 10 | 510.034117090283   | 10          | 6316.66460258433                     | 10       | 78230.5543189357                       |
| 11 | 594.951698618347   | 11          | 7890.37969869105                     | 11       | 104643.943254717                       |
| 12 | 684. 118937940347  | 12          | 9653.94574077627                     | 12       | 136231,674343707                       |
| 13 | 777.342220238515   | 13          | 11610.3345818417                     | 13       | 173411, 228147300                      |
| 14 | 874.452214892537   | 14          | 13762.3050496501                     | 14<br>15 | 216593,928237579<br>- 266185,526350795 |
| 15 | 975. 299185704678  | 15          | 16112.4339283766                     |          |                                        |
| 16 | 1079.74947926601   | 16          | 18663.1404797429                     | 16<br>17 | 322586,691871706<br>386193,426937730   |
| 17 | 1187.68283613111   | 17<br>18    | 21416.7062033497                     | 17<br>18 | 457397, 422619877                      |
| 18 | 1298,99029231361   |             | 24375.2910077497                     | 18<br>19 | 457397, 422619677<br>536586, 367666736 |
| 19 | 1413, 57251420717  | 19          | 27540.9466219294<br>30915.6278486222 | 20       | 624144.218519538                       |
| 20 | 1531.33845818774   | 20          | 00313.0410400444                     | 40       | 024144, 210019000                      |

Table 13 (Cont'd)

$$Q_{n}(s) = \frac{\beta_{s}^{n}}{\beta_{s} \operatorname{Ai}(-\beta_{s})}$$

| ន                                                                                               | $Q_{m{6}}$                                                                                                                                                                                                                                                                                                                                        | В                                                                                               | Q <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                               | $Q_8$                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                               | 2.049005836                                                                                                                                                                                                                                                                                                                                       | 1                                                                                               | 2.08751274                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                               | 2.1267433                                                                                                                                                                                                                                                                                                                                                                     |
| 2                                                                                               | 862,943035468                                                                                                                                                                                                                                                                                                                                     | 2                                                                                               | 2803,00948136                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                               | 9104,7286202                                                                                                                                                                                                                                                                                                                                                                  |
| . 3                                                                                             | 6839,620311515                                                                                                                                                                                                                                                                                                                                    | 3                                                                                               | 32967.64846829                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                               | 158907.3363764                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                               | 24848, 363527690                                                                                                                                                                                                                                                                                                                                  | 4                                                                                               | 153148, 10170581                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                               | 943898.8217456                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                               | 63616.587013302                                                                                                                                                                                                                                                                                                                                   | 5                                                                                               | 468992,75582323                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                               | 3457497,7272622                                                                                                                                                                                                                                                                                                                                                               |
| 6                                                                                               | 133355.565321433                                                                                                                                                                                                                                                                                                                                  | 6                                                                                               | 1131986,94713868                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                               | 9608856, 1838702                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                                                               | 245567.316484080                                                                                                                                                                                                                                                                                                                                  | 7                                                                                               | 2341594.63527677                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                               | 22328156, 3461334                                                                                                                                                                                                                                                                                                                                                             |
| 8                                                                                               | 412912, 318286382                                                                                                                                                                                                                                                                                                                                 | 8                                                                                               | 4347000.66063942                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                               | 45763746,7005612                                                                                                                                                                                                                                                                                                                                                              |
| 9                                                                                               | 649111,353497530                                                                                                                                                                                                                                                                                                                                  | 9                                                                                               | 7448589.54281914                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                               | 85472986,8433981                                                                                                                                                                                                                                                                                                                                                              |
| 19                                                                                              | 968868.859452199                                                                                                                                                                                                                                                                                                                                  | 10                                                                                              | 11999235,7843870                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                              | 148607995.813510                                                                                                                                                                                                                                                                                                                                                              |
| 11                                                                                              | 1387810.88845610                                                                                                                                                                                                                                                                                                                                  | 11                                                                                              | 18405451,8800876                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                              | 244097132,922111                                                                                                                                                                                                                                                                                                                                                              |
| 12                                                                                              | 1922433.54094069                                                                                                                                                                                                                                                                                                                                  | 12                                                                                              | 27128424,7010688                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                              | 382822818,624689                                                                                                                                                                                                                                                                                                                                                              |
| - 13                                                                                            | 2590059, 21281425                                                                                                                                                                                                                                                                                                                                 | 13                                                                                              | 38684961.7383800                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                                             | 577796158.981993                                                                                                                                                                                                                                                                                                                                                              |
| 14                                                                                              | 3408798,85892213                                                                                                                                                                                                                                                                                                                                  | 14                                                                                              | 53648362.8841297                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                              | 844328738.439364                                                                                                                                                                                                                                                                                                                                                              |
| 15                                                                                              | 4397519.00635342                                                                                                                                                                                                                                                                                                                                  | 15                                                                                              | 72649229.5668795                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                              | 1200201874.97445                                                                                                                                                                                                                                                                                                                                                              |
| 16                                                                                              | 5575812.59626056                                                                                                                                                                                                                                                                                                                                  | 16                                                                                              | 96376220.3835192                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                              | 1665833579, 42158                                                                                                                                                                                                                                                                                                                                                             |
| 17                                                                                              | 6963972.96548713                                                                                                                                                                                                                                                                                                                                  | 17                                                                                              | 125576760.455467                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                              | 2264443421.11068                                                                                                                                                                                                                                                                                                                                                              |
| 18                                                                                              | 8582970.44136992                                                                                                                                                                                                                                                                                                                                  | 18                                                                                              | 161057710.328751                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                              | 3022215471/15102                                                                                                                                                                                                                                                                                                                                                              |
| 19                                                                                              | 10454431.1391432                                                                                                                                                                                                                                                                                                                                  | 19                                                                                              | 203685999.177246                                                                                                                                                                                                                                                                                                                                                             | 19                                                                                              | 3968459470.30966                                                                                                                                                                                                                                                                                                                                                              |
| 20                                                                                              | 12600617.6364529                                                                                                                                                                                                                                                                                                                                  | 20                                                                                              | 254389226.253994                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                              | 5135770348.81941                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   | -                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | 4.4                                                                                                                                                                                                                                                                                                                                                                           |
| 8                                                                                               | $Q_{g}$                                                                                                                                                                                                                                                                                                                                           | g                                                                                               | 10 <sup>-10</sup> Q <sub>10</sub>                                                                                                                                                                                                                                                                                                                                            | 8                                                                                               | 10 <sup>-11</sup> .Q <sub>11</sub>                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 | 10 <sup>-10</sup> Q <sub>10</sub>                                                                                                                                                                                                                                                                                                                                            | <b>s</b><br>1                                                                                   | 10 <sup>-11</sup> .Q <sub>11</sub><br>0.00000000022489                                                                                                                                                                                                                                                                                                                        |
|                                                                                                 | 2.166711                                                                                                                                                                                                                                                                                                                                          | 1                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 | 2, 166711<br><b>29</b> 57 <b>3</b> , 957 <b>49</b> 0                                                                                                                                                                                                                                                                                              | 1<br>2                                                                                          | :0.00000000220743                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                               | 0.00000000022489                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                 | 2.166711<br>29573,957490<br>765949.126718                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3                                                                                     | 0.00000000220743<br>0.000009606205721                                                                                                                                                                                                                                                                                                                                        | 1<br>2                                                                                          | 0.00000000022489<br>0.00003120285419                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                 | 2, 166711<br><b>29</b> 57 <b>3</b> , 957 <b>49</b> 0                                                                                                                                                                                                                                                                                              | 1<br>2                                                                                          | .0.00000000220743<br>0.000009606205721<br>0.000369195078149                                                                                                                                                                                                                                                                                                                  | 1<br>2<br>3<br>4<br>5                                                                           | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4                                                                                | 2,166711<br>29573,957490<br>765949,126718<br>5817538,551044                                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4                                                                                | .0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336                                                                                                                                                                                                                                                                                            | 1<br>2<br>3<br>4                                                                                | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195                                                                                                                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6                                                                      | 2.166711<br>29573,957490<br>765949.126718<br>5817538,551044<br>25489286.104302                                                                                                                                                                                                                                                                    | 1<br>2<br>3<br>4<br>5                                                                           | .0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                 | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6                                                                      | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5                                                                           | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018                                                                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637                                                                                                                                                                                                                                                     |
| 1<br>2<br>3<br>4<br>5<br>6                                                                      | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                 | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587055748336<br>0.533970388798037<br>1.29149697542412                                                                                                                                                                                       |
| 1<br>2<br>3<br>4<br>5                                                                           | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755808                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.27939376978170                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587055748336<br>0.533970388798037<br>1.29149687542412<br>2.82298094548499                                                                                                                                                                   |
| 1<br>2,3<br>4<br>5<br>6<br>7<br>8                                                               | 2.166711<br>29573,957490<br>765949.126718<br>5817538,551044<br>25489286,104302<br>81564648.245885<br>212908997.273326<br>481785183,755888<br>980807364.660701                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                           | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.27393376978170<br>4.29333786010857                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                 | 0.0000000022489<br>0.00000120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587055748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094546499<br>5.69391867771661                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 2.166711<br>29578, 957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755888<br>980807364.660701<br>1840478578.51446                                                                                                                                                                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                           | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.27939376978170<br>4.29333786010857<br>7.62332259288608                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                           | 0.00000000022489<br>0.00003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.138587055748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094548499<br>5.69391867771661<br>10.7576531790987                                                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755808<br>980807364.660701<br>1840478578.51446<br>3237269624.72769<br>5402204959.36051<br>8629927143.06139                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.273933769010857<br>7.62332259288608<br>12.8896049821038                                                                                                                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587065748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094542499<br>5.69391867771661<br>10.7576531700887<br>19.2518330503238                                                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755888<br>980807364.660701<br>1840479578.51446<br>3237289624.72769<br>5402204959.36051<br>8629927143.06139<br>13288215711.1544                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.27939376978170<br>4.29333786010857<br>7.62332259288608<br>12.8896049821038<br>20.9132614759213                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 0.00000000022489<br>0.00003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587055748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094548499<br>5.69391867771661<br>10.7576531790987<br>19.2518330503238<br>32.9137120488735                                                                                    |
| 1 22 3 4 5 6 7 8 9 10 11 12 13 14 15                                                            | 2,166711<br>29573,957490<br>765949,126718<br>5817538,551044<br>25489286,104302<br>81564648,245885<br>212908997,273326<br>481785183,755888<br>980807364,660701<br>1840479578,51446<br>3237269624,72769<br>5402204959,36051<br>8629927143,06139<br>13288215711,1544                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                   | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069230494460018<br>0.209318289630451<br>0.507207079886771<br>1.12548200560160<br>2.27939376978170<br>4.29333786010857<br>7.62332259288608<br>12.8896049821038<br>20.9132614759213<br>32.7567533115976                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                   | 0.00000000022489<br>0.00003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587055748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094542499<br>5.69391867771661<br>10.7576531790987<br>19.2518330503238<br>32.9137120488735<br>54.1158101434047                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16             | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755888<br>980807364.660701<br>1840479578.51446<br>3237269624.72769<br>5402204959.36051<br>8629927143.06139<br>13288215711.1544<br>19827939666.8082<br>28793425424.7124                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16             | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.27939376978170<br>4.29333786010857<br>7.62332259288608<br>12.8896049821038<br>20.9132614759213<br>32.7567533115976<br>49.7685577917302                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16             | 0.00000000022489<br>0.00003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.138587055748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094548499<br>5.69391867771661<br>10.7576531790987<br>19.2518330503238<br>32.9137120488735<br>54.1158101434047<br>86.0234344519128                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755888<br>980807364.660701<br>1840479578.51446<br>3237269624.72769<br>5402204999.36051<br>8629927143.06139<br>13288215711.1544<br>19827939666.8082<br>28793425424.7124<br>40833224147.6306                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.273933769018770<br>4.29333786010857<br>7.62332259288608<br>12.8896049821038<br>20.9132614759213<br>32.7567533115976<br>49.7685577917302<br>73.6318769878044                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.198587065748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094542499<br>5.69391867771661<br>10.757653170087<br>19.2518330503238<br>32.9187120488735<br>54.1158101434047<br>86.0234344519128<br>132.775538104594                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755808<br>980807364.660701<br>1840479578.51446<br>3237269624.72769<br>5402204959.36051<br>8629927143.06139<br>13288215711.1544<br>19827939666.8082<br>28793425424.7124<br>40833224147.6306<br>56711264151.3447 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791133526554<br>0.069236043460018<br>0.203018288630451<br>0.507207079886771<br>1.12548200560160<br>2.27939376978170<br>4.29333786010857<br>7.62332259288608<br>12.8896049821038<br>20.9132614759213<br>32.7567533115976<br>49.7685577917302<br>73.6318769878044<br>106.417544094521 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.193587055748336<br>0.533970388798037<br>1.29149697542412<br>2.822980945428499<br>5.693918677771661<br>10.7576531700087<br>19.2518330503238<br>32.9137120488735<br>54.1158101434047<br>86.0234344519128<br>122.775538104594<br>199.690376516518 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 2.166711<br>29573,957490<br>765949.126718<br>5817538.551044<br>25489286.104302<br>81564648.245885<br>212908997.273326<br>481785183.755888<br>980807364.660701<br>1840479578.51446<br>3237269624.72769<br>5402204999.36051<br>8629927143.06139<br>13288215711.1544<br>19827939666.8082<br>28793425424.7124<br>40833224147.6306                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 0.000000000220743<br>0.000009606205721<br>0.000369195078149<br>0.003585527814336<br>0.018791153526554<br>0.069236043460018<br>0.203018289630451<br>0.507207079886771<br>1.12548200560160<br>2.273933769018770<br>4.29333786010857<br>7.62332259288608<br>12.8896049821038<br>20.9132614759213<br>32.7567533115976<br>49.7685577917302<br>73.6318769878044                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 0.00000000022489<br>0.000003120285419<br>0.000177955690496<br>0.002209870995195<br>0.013853171462457<br>0.058770923642637<br>0.198587065748336<br>0.533970388798037<br>1.29149697542412<br>2.82298094542499<br>5.69391867771661<br>10.757653170087<br>19.2518330503238<br>32.9187120488735<br>54.1158101434047<br>86.0234344519128<br>132.775538104594                        |

Table 13 (Contid)

$$Q_{n}(s) = \frac{\beta_{s}^{n}}{\beta_{s} \operatorname{Ai}(-\beta_{s})}$$

| s                                     | $10^{-12} Q_{12}$                 | s               | $10^{-13}    \mathrm{Q}_{13}$ s            | 16-14 Q14                  |
|---------------------------------------|-----------------------------------|-----------------|--------------------------------------------|----------------------------|
| 1                                     | 0.000000000002291                 | 1               | 0.00000000000233 1                         | 0.000100000000023          |
| 2                                     | 0.000001013530355                 | 2               | 0.000000329214685 2                        | 0.000/00106935434          |
| 3                                     | 0.000085776408338                 | 3               | 0.000041345079817 3                        | 0.000(19928738661          |
| 4                                     | 0.001362011415970                 | 4               | 0.000839449497851 4                        | 0.000017378526479          |
| . 5                                   | 0.010212803556580                 | 5               | 0.007529059809009 5                        | 0.005550556347587          |
| 6                                     | 0.049887620568661                 | 6               | 0.042347040538889 6                        | 0.0359 16229183936         |
| 7                                     | 0.184593950729887                 | 7               | 0.176018621257227 7                        | 0.1678 1659527788          |
| 8                                     | 0.562145891529704                 | 8               | 0.591808103956957 8                        | 0.6230; 5473862611         |
| · 9                                   | 1,48200009349602                  | 9               | 1.70060350036898                           | 1.95145214778287           |
| 10                                    | 3.49620215875845                  | 10              | 4.32997238414136 10                        | 5.36257 )16335269          |
| 11                                    | 7.55139962537918                  | 11              |                                            | 13.28188 (8613473          |
| 12                                    | 15. 1806644034408                 | 12              | 10.0148315298813 11<br>21.4221975642093 11 | 30.22993 3138988           |
| 13                                    | 28.7544169361385                  | 13              | 42.9474165486481 13                        | 64.14599; 6332003          |
| 14                                    | 51,8002628180901                  | 14              | 81,5242967441298, 14                       | 128.304579900777           |
| 15                                    | 89.4020448490567                  | 15              | 147.696682393044 15                        | 244.002360347817           |
| 16                                    | 148,688883167359                  | 16              | 257.004200290505 " 16"                     | 444. 223922 164613         |
| 17                                    | 239.435426054050                  | 17              | 431.740179399658 17                        | 778,528770 31651           |
| 18                                    | 374.714966527400                  | 18              | 703. 145081846343 18                       | 1319.43757352828           |
| 19                                    | 571.827496842488                  | 19              | 1114,10418703021                           | 2170.6338824 \$103         |
| 20                                    | 853, 165176038568                 | 20              | 1722.42373557491 20                        | 3477.3378100675"           |
|                                       |                                   |                 | 1 × 1 × 1                                  | *                          |
|                                       | -15                               |                 | -16                                        | -17                        |
| 8                                     | 10 <sup>-15</sup> Q <sub>15</sub> | s               | $10^{-16}$ Q <sub>16</sub> s               | 10 " 317. 7                |
| . 1                                   | 0.0000000000000000                | . 1             | 0.0000000000000                            | 0.0000000000000000         |
| 2                                     | 0.000000034734741                 | 2               | 0.000000011282530 2                        | 0.00000000000044-8         |
| 3                                     | 0.000009605849750                 | 3               | 0,000004630114880 3                        | 0.000002231700 18          |
| 4                                     | 0.000318876287790                 | 4               | 0.000196533257007 4                        | 0.000121125.38 64          |
| 5                                     | 0.004091968525854                 | 5               | 0.003016671729467 5                        | 0.062223943 A J92          |
| 6                                     | 0.030512908956587                 | . 6,            | 0.025900842289434 6                        | 0.021985895c17 <b>37</b> 0 |
| · · · · · · · · · · · · · · · · · · · | 0.160044559330312                 | - 7/            | 0.152609674161337 4 7                      | 0.145520177387891          |
| . 8                                   | 0.655910588408299                 | · · · · · · · · | 0.690520392553108 8                        | 0.726956418997283          |
| 9                                     | 2,23930239133350                  | /9              | 2:56961217600395 : 9                       | 2.94864452457257           |
| 10                                    | 6.64144080653924                  | <i>;/</i> 10    | 8,22528388731287 : 10                      | 10.1868400242722           |
| 11                                    | 17,6147318303687                  | <sup>#</sup> 11 | 23,3610430485360                           | 30.9819268082 67           |
| 12                                    | 42.6589834083558                  | 12              | 60.1982328494961 . 12                      | 84,9487481375 775          |
| 13                                    | 95.8080502454839                  | 13              | 143.098302143679 13                        | 213,730725373051           |
| 14                                    | 201.928331564546                  | 14              | 317.7988745%1657                           | 500.158268355468           |
| 15                                    | 403.104193249714                  | 15              | 665.948436663031 15                        | 110c. 18036954332          |
| 16                                    | 767.827504072569                  | 16              | 1327.16642590631 16                        | 2293, 96669526 .V          |
| 17                                    | 1403.86990833516                  | 17              | 2531.5065992263 17                         | 4564.89994115.5            |
| 18                                    | 2475.8980110755                   | . ?             | 4645.97271372430 18                        | 8718.07415199327           |
| 19                                    | 72.79. 0.1330×112                 | 19              | 825 59779870672 19                         | 16053, 4689 407200         |
| 20                                    | 7021 -6716213770                  | 20              | 14172 327332781 20                         | 28613.2722019508           |

Table 13 (Cont'd)

$$Q_{n}(s) = \frac{\beta_{s}^{n}}{\beta_{s} \operatorname{Ai}(-\beta_{s})}$$

| s    | $10^{-18} Q_{18}$ | s   | 10 <sup>-19</sup> Q <sub>19</sub> | 8  | $10^{-20}$ Q <sub>20</sub> |
|------|-------------------|-----|-----------------------------------|----|----------------------------|
| 1    | 0.00000000000000  | 1   | 0.000000000000000                 | 1  | 0.000000000000000          |
| . 2  | 0.00000001190395  | 2   | 0.00000000386664                  | 2  | 0.00000000125596           |
| 3    | 0.000001075731092 | 3   | 0.000000518513058                 | 3  | 0.000000249928438          |
| 4    | 0.000074655825731 | 4   | 0.000046012679987                 | 4  | 0.000028359028901          |
| 5    | 0.001639530842223 | ភំ  | 0.001208691198398                 | 5  | 0.000891068576121          |
| 6    | 0.018662698328366 | 6   | 0.015841806718135                 | 6  | 0.013447296616979          |
| 1 7  | 0.138760023662502 | 7   | 0.132313913614826                 | 7  | 0.126167258220227          |
| .\ 8 | 0.765315030259167 | . 8 | 0.805697673525568                 | 8  | 0.848211148949584          |
| 19   | 3,38358629114715  | 9   | 3.88268443151808                  | 9  | 4.45540237416018           |
| 1:0  | 12.6161857878459  | 10  | 15.6248791042359                  | 10 | 19.3510821041635           |
| 11   | 41.0889097185379  | 11  | 54.4930117583335                  | 11 | 72.2698253819605           |
| 13   | 119.875442673108  | 12  | 169.162254549169                  | 12 | 238.713348839856           |
| 13   | 319, 226869118141 | 13  | 476.795246865427                  | 13 | 712.138386287687           |
| 1 1  | 787, 159154609569 | 14  | 1238,84692883909                  | 14 | 1949.72224372501           |
| 11   | 1817.55340037077  | 1.5 | 3002,68979037555                  | 15 | 4960.59481684903           |
| 16   | 3965.05147830536  | 16  | 6853.47056609179                  | 16 | 11846.0148770530           |
| 17   | 8231,58489058748  | 17  | 14843, 4775536473                 | 17 | 26766.2702643777           |
| 18   | 16359.2904226779  | 18  | 30697.8787364792                  | 18 | 57603,9506953945           |
| 19   | 31277,3293728865  | 19  | 60938,3140997408                  | 19 | 118727, 468098276          |
| 20   | 57766.2803765158  | 20  | 116622, 215828814                 | 20 | 235444.294118503           |

## Table 13 (Cont'd)

$$Q_{n}(s) = \frac{\beta_{s}^{n}}{\beta_{s} \operatorname{Ai}(-\beta_{s})}$$

| 8  | $Q_{-1}$                        | 8   | $Q_{-2}$           |                | ŝ          | $Q_{-3}$  |
|----|---------------------------------|-----|--------------------|----------------|------------|-----------|
| 1  | 1.7986282                       | 1   | 1.7654501          | 0              | 1          | 1.7328841 |
| 2  | 0.22619600                      | 2   | 6.9637390 x        | $10^{-2}$      | 2          | 0.0214388 |
| 3  | 0.11314622                      | 3   | 2.3473837 x        | 10 2           | 3          | 0.0048700 |
| 4  | $7.3553095 \times 10^{-2}$      | 4   | 1.1934030 x        | $10^{-2}$      | 4,         | 0.0019363 |
| 5  | $5.3752645 \times 10^{-2}$      | 5   | 7.2912849 x        | 10 2           | 5          | 0.0009890 |
| 6  | $4.1995147 \times 10^{-2}$      | 6   | 4.9473068 x        | 10_3           | 6          | 0,0005828 |
| 7  | $3.4259608 \times 10^{-2}$      | 7   | 3.5928678 x        | 10 2           | 7          | 0.0003768 |
| 8  | 2.8809467 x $10^{-2}$           | 8   | 2.7365500 x        | 10 3           | 8          | 0.0002599 |
| 9  | $2.4776259 \times 10^{-2}$      | 9   | 2.1591404 x        | 10 3           | 9          | 0.0001881 |
| 10 | 2.1679316 x 10 <sup>-2</sup>    | 10  | 1.7504794 x        | 10 3           | 10         | 0.0001413 |
| 11 | $1.9231661 \times 10^{-2}$      | 11  | 1.4501089 x        | $10^{-3}$      | 11         | 0.0001093 |
| 12 | $1.7251981 \times 10^{-2}$      | 12  | 1.2225475 x        | $10^{-3}$      | 12         | 0.0000866 |
| 13 | $1.5620071 \times 10^{-2}$      | 13  | 1.0458046 x        | 10_4           | 13         | 0.0000700 |
| 14 | $1.4253335 \times 10^{-2}$      | 14  | $9.0565217 \times$ |                | 14         | 0.0000575 |
| 15 | $1.3093163 \times 10^{-2}$      | 15  | 7.9254021  x       | 10_4           | 15         | 0.0000480 |
| 16 | $1.2096959 \times 10^{-2}$      | 16  | 6.9986540 x        | 10_4           | 16         | 0.0000405 |
| 17 | $1.1232893 \times 10^{-2}$      | 17  | 6.2293026 x        | 10_4           | 17         | 0.0000345 |
| 18 | $-1.0476836 \times 10^{-2}$     | 18  | 5.5832399 x        | $10_{-4}^{-4}$ | <b>1</b> 8 | 0.0000298 |
| 19 | $9.8101518 \times 10^{-6}$      | 19  | 5.0351794 x        | 10-4           | 19         | 0.0000258 |
| 20 | $9.2181445 \times 10^{-3}$      | 20  | 4.5660075 x        | 10 4           | 20         | 0.0000226 |
| 21 | $8.6892571 \times 10^{-3}$      | .21 | 4.1611384 x        | 10_4           | 21         | 0.0000199 |
| 22 | $8.2140612 \times 10^{-3}$      | 22  | 3.8091745 x        | 10-4           | 22         | 0.0000177 |
| 23 | $7.7849702 \times 10^{-3}$      | 23  | 3.5011869 x        | 10_4           | 23         | 0.0000157 |
| 24 | $7.3957255 \times 10_{-3}^{-3}$ | 24  | 3,2300556 x        | $10^{-4}_{-4}$ | 24         | 0.0000141 |
| 25 | $7.0411286 \times 10^{-3}$      | 25  | 2.9900507 x        | 10             | 25         | 0.0000127 |

Table 13 (Concluded)

| 0 (~)              |   | $oldsymbol{eta}_{_{f B}}^{ {f n}}$                |
|--------------------|---|---------------------------------------------------|
| Q <sub>n</sub> (s) | = | $\beta_{\rm g} \operatorname{Ai}(-\beta_{\rm g})$ |

| $\mathbf{s}$ | $Q_{-4}$  | s   | $Q_{-5}$          | 8 - | $Q_{-6}$         |
|--------------|-----------|-----|-------------------|-----|------------------|
| 1.           | 1.7009188 | 1   | 1.6695431         | . 1 | 1,6387462        |
| 2            | 0.0066002 | 2   | 0.0020320         | 2   | 0.0006256        |
| 3            | 0.0010103 | 3   | 0.0002096         | 3   | 0.0000435        |
| 4            | 0.0003142 | 4   | 0.0000510         | 4   | 0.0000083        |
| 5            | 0.0001341 | 5   | 0.0000182         | 5   | 0.0000025        |
| 6            | 0.0000687 | . 6 | 0.0000081         | 6   | 0.0000009        |
| 7            | 0.0000395 | 7   | 0.0000041         |     |                  |
| 8            | 0.0000247 | 8   | 0.0000023         |     |                  |
| 9            | 0.0000164 | 9   | 0.0000014         |     |                  |
| .10          | 0.0000114 | 10  | 0.0000009         |     |                  |
| 11           | 0.0000082 |     |                   |     |                  |
| 12           | 0.0000061 |     | Q <sub>-7</sub>   |     | ବ <sub>_8</sub>  |
| 13           | 0.0000047 |     | -7                |     | -0               |
| 14           | 0.0000036 | 1   | 1,6085174         | 1   | 1.5788462        |
| 15           | 0.0000029 | 2   | 0.0001926         | . 2 | 0.0000593        |
| 16           | 0.0000023 | 3   | 0.0000090         | . 3 | 0.0000019        |
| 17           | 0.0000019 | . 4 | 0.0000013         | 4   | 0.0000002        |
| 18           | 0.0000016 | 5   | 0.0000003         |     | e e              |
| 19           | 0.0000013 |     |                   |     |                  |
| 20           | 0.0000011 |     |                   |     |                  |
| 21           | 0.0000010 |     | ଦ <sub>_9</sub>   |     | Q <sub>-10</sub> |
| 22           | 0.0000008 |     | -y                |     |                  |
| 23           | 0.0000007 | 1   | 1.549722 <b>3</b> | 1   | 1.5211356        |
| 24           | 0.0000006 | 2   | 0.0000182         | 2   | 0.0000056        |
| 25           | 0.0000005 | 3   | 0.0000004         | 3   | 0.0000000        |

Table 14

COMPUTATION OF  $\left\{\exp\left[-i(5n-2)\frac{\pi}{6}\right]f^{(n)}(0)\right\}$ 

| n                                                                          | 0               | 1            | 2                     | 3                   | ı           | ī          | ı,         |
|----------------------------------------------------------------------------|-----------------|--------------|-----------------------|---------------------|-------------|------------|------------|
| $\sum_{g=1}^{1} \frac{a_{g}^{n}}{A! (-a_{g})}$                             | 1,4261016287    | 3,334385801  | 7.79615213            | 18, 2282411         | 42,619586   | 99.64917   | 232,9905   |
| α η<br>2<br>2 Al (-α <sub>2</sub> )                                        | 0.6221786595    | -2,545070085 | -10,40 <b>4</b> 11784 | -42.5313077         | -173,866653 | -710,75309 | -2905,5431 |
| E <sub>1</sub> Δ f(2)                                                      | -0.0003461426   | 0.322626232  | 3,60:12133            | 27.3 93077          | 181,449029  | 1126 24181 | 6726.6050  |
| -E2.2 <sup>2</sup> f(2)                                                    | -0,0039298180   | 0.027521346  | -0, 1)577850          | -4.9161378          | -66, 222699 | -671,90995 | -5056,6708 |
| E <sub>3</sub> Δ <sup>3</sup> f(2)                                         | -0.0009874523   | 9.005299328  | -0.01367394           | -0.1264170          | 5,607670    | 145,97897  | 2239.5509  |
| -E <sub>A</sub> Δ <sup>3</sup> f(2)                                        | -0,0002945700   | 0.001356927  | 0,00280022            | -0, 0176358         | 0,361977    | -3,39313   | -281.5130  |
| E <sub>5</sub> Z <sup>5</sup> 1(2)                                         | ≈0, 00nn973415  | 0-00040-425  | 0.00073000            | -0.0037212<br>      | 0,056457    | -0.31392   | -5,5643    |
| - £ <sub>6</sub> ∆ <sup>6</sup> {(2)                                       | 0.0000341348    | 0,000133339  | -0,00021865           | o, 000aaaa          | b.012263    | -0.05289   | -0.6322    |
| F. 7 6 [2]                                                                 | -0.0000127943   | 0.000016344  | -0,00007176           | -0.0002851          | 0,003199    | -0.01174   | -0.1129    |
| -E <sub>R</sub> \(\Delta^{\text{R}}\) (2)                                  | 0,0000019311    | 0.000017268  | -0,00002.07           | 0.0000917           | 6,000938    | -0.00307   | -0,0255    |
| Ε <sub>9</sub> Δ <sup>2</sup> f(2)                                         | -0.0000019587   | 0.00000-504  | -0,00000019           | -0.0000311          | 0.000299    | -0,00089   | -0,0067    |
| -Ε <sub>10</sub> Δ <sup>10</sup> ((2)                                      | -0,0000007937   | 6,0000002599 | - 0, 00000049         | -0.0000113          | 0.000101    | -0.09028   | -o anto    |
| E <sub>[1]</sub> A <sup>[1]</sup> ((2)                                     | ~0,0000003282   | 6.00000101"  | - 6, 00000137         | 0.0000042           | 0,000036    | -0.00009   | -6.0006    |
| -Ε <sub>12</sub> Δ <sup>12</sup> ((2)                                      | 0.0000001379    | 0, 000130    | ~0,0000g055           | aroopeo, o-         | 6,060013    | -0.00003   | -0,0002    |
| Ε <sub>13</sub> Δ <sup>13</sup> ((2)                                       | -0,0000t393A7   | 0.000000180  | 0 00000022            | e, 9000000          | 0,000005    | -0,00001   | -0.0001    |
| -Ε <sub>14</sub> Δ <sup>14</sup> ((2)                                      | -0.0000000253   | 0.000000076  | -0,00000009           | 0.0000003           | 0,00002     | -0.00000   | -0.0000    |
| E t3 \$\Delta^{15} \((2)\)                                                 | -0 0000000110   | 0.000000033  | -0.0000001            | -0.0000003          | 0.00001     | -0.00000   | -0 5000    |
| -Ε <sub>16</sub> Δ <sup>16</sup> ((2)                                      | -9. 00060000 ta | a ressoure   | -0.00000002           | -0.0600000          | 0.000000    | -0,00000   | -0.6000    |
| E <sub>17</sub> Δ <sup>17</sup> f(2)                                       | -0 00000000021  | 0.000000003  | -0.00000001           | -D. 9900000         | 0.000000    | -0.00000   | -0.0000    |
| -E 18 A 12 f(2)                                                            | -0.0000000000   | 0.000000003  | -0.00000000           | - <b>U.</b> 0000000 | 0.000000    | -0.00000   | -2,0000    |
| exp $\left[-\frac{1}{6}\left(3n-2\right)\frac{\tilde{c}}{6}\right]^{H}(9)$ | 0.7758211623    | 1, 146730417 | 0,86284558            | -2.0192621          | -9.977776   | -11.39904  | :0.0751    |

Table 15 COMPUTATION OF  $\left| \exp \left( -i \frac{5\pi n}{6} \right) g^{(n)}(0) \right|$ 

| n                                                              | 0          | 1           | 2          | 3                   | -1          | 3            | 6.                |
|----------------------------------------------------------------|------------|-------------|------------|---------------------|-------------|--------------|-------------------|
| $\sum_{s=1}^{l} \frac{\beta_s^n}{\beta_s^n Al(-\beta_s)}$      | 1,8324307  | 1.8668675   | 1,9019315  | 1,9376948           | 1.9741110   | 2, 0112092   | 2,0490058         |
| $\frac{\beta_2^{\mathrm{n}}}{\beta_2^{\mathrm{Al}(-\beta_2)}}$ | -0.3673648 | -1, 1932733 | -3,8759876 | -12. 5899735        | -40.8947215 | -132,8341355 | -431,4715178      |
| E 1 2 ((2)                                                     | -0.0473383 | 0.0605550   | 1.2297357  | 8,9737837           | 53.1496275  | 288.3277213  | 1494.1693590      |
| -E <sub>2</sub> Δ <sup>2</sup> f(2)                            | -0.0151634 | 0.0096216   | 0.0461863  | -1.1255271          | -18,3940837 | -182.4213125 | -1504.0082425     |
| Ε <sub>3</sub> Δ <sup>3</sup> ((2)                             | -0.0038949 | 0.0024446   | 0.0085482  | -0.0989164          | 0.5923093   | 32.8480041   | 545.4633958       |
| -E <sub>4</sub> △ <sup>4</sup> f(2)                            | -0.0013933 | 0.0007534   | 0.0022583  | -0.0192781          | 0.0701653   | 0.8511876    | -46,9706320       |
| Ε <sub>5</sub> Δ <sup>5</sup> 1(2)                             | ~0.0005329 | 0.0002584   | 0.0007067  | -0.0000064          | 0.0144100   | 0, 1199234   | -3.0174401        |
| -E <sub>6</sub> △ <sup>6</sup> f(2)                            | -0.0002131 | 0.0000949   | 0.0002443  | -0.0015160          | 0.0037659   | 0.0255750    | -0,4752380        |
| Ε <sub>4</sub> Δ <sup>7</sup> 1(2)                             | -0.0000880 | 0.0000365   | 0.0000902  | -0.0005049          | 0.0011303   | 0.0067156    | -0.1043127        |
| -E <sub>β</sub> Δ <sup>8</sup> f(2)                            | -0.0000372 | 0,0000145   | 0,0000348  | -0.0001795          | 0.0003712   | 0.0020021    | -0.0274980        |
| E <sub>9</sub> △ <sup>9</sup> ((2)                             | -0.0000160 | 0.0000059   | 0.0000139  | -0.0000669          | 0.0001299   | 0.0006504    | -0.0081527        |
| -E <sub>10</sub> \$\times^{10} f(2)                            | -v.0000070 | 0.0000625   | 0.0000057  | -0.000 <b>02</b> 58 | 0.0000476   | 0.0002248    | -0". 0026234      |
| Ε <sub>11</sub> Δ <sup>11</sup> f(2)                           | -0,0000031 | 0.0000010   | 0.0000024  | -0.0000102          | 0.0000191   | 0.0000814    | 0.0008967         |
| -E <sub>12</sub> Δ <sup>12</sup> f(2)                          | -0.0000013 | 9.0000004   | 0.0000016  | -0.0000041          | 0,0000071   | 0.0000306    | -0,0003211        |
| E <sub>13</sub> △ <sup>13</sup> f(2)                           | -0.0000008 | 0.0000002   | 0,0000004  | -0.0000017          | 0, 0000028  | 0.9000118    | -0.0001193        |
| -E <sub>14</sub> Δ <sup>14</sup> {(2)                          | -0.0000002 | 6.00va000   | 0.0009001  | -0.000007           | 0,0000011   | 0.0000046    | -0,0000456        |
| E <sub>15</sub> Δ <sup>15</sup> ((2)                           | -0,0000001 | 0.0000000   | 6.0000000  | -0.000003           | 0.0000004   | 0.0000018    | -0,0000179        |
| -E <sub>16</sub> $\Delta^{16}$ f(2)                            | -0.0000000 | 0.0000000   | 0.0000000  | -0.0000001          | 0.0000002   | 0.0000007    | -0,0000072        |
| Ε <sub>17</sub> Δ <sup>17</sup> f(2)                           | -0.000000  | 0.0000000   | 0.0000000  | -0.0000000          | 0.000000    | 0.0000003    | <b>-0.00062</b> 9 |
| -E <sub>18</sub> Δ <sup>18</sup> f(2)                          | -0.0000000 | 0.0000000   | 0.000000   | -0.6000000          | 5,000000    | 0.0900001    | -n, 0000012       |
| $\exp\left(-1\frac{5\pi n}{6}\right)g^{(n)}(0)$                | 1,3993766  | 0, /473831  | -0.6862681 | -2.995352           | -3.4827975  | 8.9378967    | 56. 1946214       |

For the convenience of others who undertake computations of this type we list below the values of  $\, {\bf E}_n \, .$ 

Table 16 VALUES OF E<sub>n</sub>

|                                                                                                 | n                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n                                                                                               | $E_{n} = \frac{1}{2^{n+1}}$                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>16 | .25<br>.125<br>.0625<br>.03125<br>.015625<br>.0078125<br>.00390625<br>.001953125<br>.0009765625<br>.00018828125<br>.0002141160625<br>.0001220703125<br>.00006103515625<br>.000030517578125<br>.0000152507890625<br>.00000762939153125<br>.00000762939153125 |

The series for  $p^{(n)}(0)$  and  $q^{(n)}(0)$  are not suitable for the Euler summation process since the signs of the terms are all positive. However, because of Olver's (Ref. 35) relations

$$\frac{da_s}{ds} = \frac{1}{\left[\Lambda i'(-\alpha_s)\right]^2}$$

$$\frac{\mathrm{da'_{S}}}{\mathrm{ds}} = \frac{1}{-\beta_{S} \left[ \mathrm{Ai}(-\beta_{S}) \right]^{2}}$$
 (12.5)

we can write

$$p^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} (\alpha_s)^n \frac{d(\alpha_s)}{ds}$$

$$q^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} (\beta_s)^n \frac{d(\beta_s)}{ds}$$
 (12.6)

This form is ideally suited for use in the Euler-Maclaurin summation formula (Ref. 36).

$$\sum_{s=N}^{\infty} f(s) = \frac{1}{2} f(N) + \int_{N}^{\infty} f(s) ds + R_{M} \left\{ f(N) \right\}$$

$$R_{M} \left\{ f(N) \right\} = -\frac{1}{12} \Delta f(N) + \frac{1}{24} \Delta^{2} f(N) - \frac{19}{720} \Delta^{3} f(N) + \frac{3}{160} \Delta^{4} f(N) - \frac{863}{60480} \Delta^{5} f(N) + \dots$$
(12.7)

We find that

$$p^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \left[\sum_{s=1}^{N-1} \frac{(\alpha_{s})^{n}}{\left[Ai'(-\alpha_{s})\right]^{2}} + \frac{1}{2} \frac{(-a_{N})^{n}}{\left[Ai'(a_{N})\right]^{2}} - \frac{(-a_{N})^{n+1}}{n+1}\right]$$

$$+ R_{M} \left\{\frac{(-a_{N})^{n}}{\left[Ai'(a_{N})\right]^{2}}\right\}$$

$$q^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \left[\sum_{s=1}^{N-1} \frac{(\beta_{s})^{n-1}}{\left[Ai(-\beta_{s})\right]^{2}} + \frac{1}{2} \frac{(-a_{N}')^{n-1}}{\left[Ai(a_{N}')\right]^{2}}\right]$$

$$-\frac{(-a_{N}')^{n+1}}{n+1} + R_{M} \left\{\frac{(-a_{N}')^{n-1}}{\left[Ai(a_{N}')\right]^{2}}\right\}$$

$$(12.8)$$

In Tables 17 and 18 we list values of

$$R_{n}(s) = \frac{\alpha_{s}^{n}}{\left[Ai'(-\alpha_{s})\right]^{2}} \quad \text{and} \quad S_{n}(s) = \frac{\beta_{s}^{n}}{\beta_{s}\left[Ai(-\beta_{s})\right]^{2}}$$

We have found it convenient to define constants  $M_n$  and  $N_n$  by means of

$$p^{(n)}(0) = c_n + i d_n - \frac{\exp(i \frac{5n-1}{6})}{2\sqrt{\pi}} \sum_{s=1}^{\infty} \frac{\alpha_s^n}{\left[\Lambda i'(-\alpha_s)\right]^2} = -i \frac{1}{2\sqrt{\pi}} \exp(i \frac{n\pi}{2}) M_n$$

$$q^{(n)}(0) = a_n + ib_n - \frac{\exp\left(i\frac{5n-1}{6}\right)}{2\sqrt{\pi}} \sum_{s=1}^{\infty} - \frac{\beta_s^n}{\beta_s \left[\operatorname{Ai}(-\beta_s)\right]^2} = -i\frac{\pi}{2\sqrt{\pi}} \exp\left(i\frac{n\pi}{2}\right) N_n$$
(12.9)

Details of the calculation of  $M_n$  and  $N_n$  by means of the Euler-Maclaurin summation formula are given in Tables 19 and 20. The coefficient of the  $n^{th}$  difference has been denoted by  $M_n$  and should not be confused with the constants  $M_n$  which are the subject of this study. We designate these constants in the summation formula as Euler-Maclaurin coefficients. A table of these coefficients is given in Table 21.

### Table 17

$$R_{n}(s) = \frac{\alpha_{s}^{n}}{\left[Ai'(-\alpha_{s})\right]^{2}}$$

| 8                                                                                                                             | $R_{o}$                                                                                                                                                                                                                                                                                                                                                                                                | B                                                                                                                       | $\mathbf{R}_{1}$                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                       | ${\tt R}_2$                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                             | 2.03377441209490                                                                                                                                                                                                                                                                                                                                                                                       | . 1                                                                                                                     | 4.75518302412254                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                       | 11,1181286667934                                                                                                                                                                                                                                                                                                                                                                                  |
| 2                                                                                                                             | 1,55041674937580                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                       | 6.33802528878214                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                       | 25,9095269561649                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                                                                                                                             | 1.33586612406330                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                       | 7.37472886021756                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                       | 40.7126318888139                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                                                                                                                             | 1.20532890587700                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                       | 8,18021543671277                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                       | 55.5167342828684                                                                                                                                                                                                                                                                                                                                                                                  |
| 5                                                                                                                             | 1,11427447893050                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                       | 8.85194531334336                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                       | 70.3210360750879                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                                                                                                                             | 1.04566085201300                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                       | 9.43463277872035                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                       | 85.1253974918799                                                                                                                                                                                                                                                                                                                                                                                  |
| 7                                                                                                                             | 0.991316716567800                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                       | 9.95299266204154                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                       | 99.9297815471445                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                                                                                                                             | 0.946748419182440                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                       | 10.4223029820908                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                       | 114.734175679217                                                                                                                                                                                                                                                                                                                                                                                  |
| 9                                                                                                                             | 0.909243828383500                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                       | 10.8527484863620                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                       | 129.538574837106                                                                                                                                                                                                                                                                                                                                                                                  |
| 10                                                                                                                            | 0.877051634311060                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                      | 11.2514996173126                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                      | 144.342976725458                                                                                                                                                                                                                                                                                                                                                                                  |
| 11                                                                                                                            | 0.848981307009500                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                      | 11.6238182560194                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                      | 159.147380199571                                                                                                                                                                                                                                                                                                                                                                                  |
| 12                                                                                                                            | 0.824190099187580                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                     | 11.9736936989339                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                      | 173.951784645250                                                                                                                                                                                                                                                                                                                                                                                  |
| 13                                                                                                                            | 0.802061603377530                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                      | 12.3042306613845                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                      | 188.756189712892                                                                                                                                                                                                                                                                                                                                                                                  |
| 14                                                                                                                            | 0.782132613438810                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                      | 12.6178992035875                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                      | 203.560595193554                                                                                                                                                                                                                                                                                                                                                                                  |
| 15                                                                                                                            | 0.764047056830580                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                      | 12.9166998995913                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                      | 218.365000957130                                                                                                                                                                                                                                                                                                                                                                                  |
| 16                                                                                                                            | 0.747525870788400                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                      | 13.2022787407664                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                      | 233.169406919740                                                                                                                                                                                                                                                                                                                                                                                  |
| 17                                                                                                                            | 0.732346668634210                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                                                                                      | 13.4760081581256                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                      | 247.973613025665                                                                                                                                                                                                                                                                                                                                                                                  |
| 18                                                                                                                            | 0.718329634742800                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                      | 13.7390459000176                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                      | 262.778219236879                                                                                                                                                                                                                                                                                                                                                                                  |
| 19                                                                                                                            | 0.705327505426430                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                      | 13.9923786688534                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                                                      | 277.582625526866                                                                                                                                                                                                                                                                                                                                                                                  |
| 20                                                                                                                            | 0.693218302572240                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                      | 14.2368550576212                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                      | 292.387031876720                                                                                                                                                                                                                                                                                                                                                                                  |
| 21                                                                                                                            | 0.681899965877930                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                      | 14,4732108143344                                                                                                                                                                                                                                                                                                                                                                                    | 21                                                                                                                      | 307.191438272729                                                                                                                                                                                                                                                                                                                                                                                  |
| 22                                                                                                                            | 0.671286322090140                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                      | 14.7020885019844                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                      | 321.995844704785                                                                                                                                                                                                                                                                                                                                                                                  |
| 23                                                                                                                            | 0.661304013418650                                                                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                      | 14,9240529953933                                                                                                                                                                                                                                                                                                                                                                                    | 23                                                                                                                      | 336,800251165333                                                                                                                                                                                                                                                                                                                                                                                  |
| 24                                                                                                                            | 0.651890125651210                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                      | 15.1396038407256                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                      | 351.604657648627                                                                                                                                                                                                                                                                                                                                                                                  |
| 25.                                                                                                                           | 0.642990334442190                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                      | 15.3491852129233                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                      | 366.409064150257                                                                                                                                                                                                                                                                                                                                                                                  |
| 20.                                                                                                                           | 0.01200001111                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         | No.                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |
| g                                                                                                                             | R <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                       | R <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                      | . 8                                                                                                                     | $\mathbf{r}_{5}$                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                   | . B                                                                                                                     | R <sub>5</sub><br>14 <b>2.</b> 1101411431                                                                                                                                                                                                                                                                                                                                                         |
| 1.                                                                                                                            | 025.995379026274                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                       | 60.77998833904                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1<br>2                                                                                                                        | 025.995379026274<br>105.916836318150                                                                                                                                                                                                                                                                                                                                                                   | 1<br>2                                                                                                                  | 60.77998833904<br>432.98267215089                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                       | 142,1101411431                                                                                                                                                                                                                                                                                                                                                                                    |
| 1<br>2<br>3                                                                                                                   | 025.995379026274<br>105.916836318150<br>224.756520101427                                                                                                                                                                                                                                                                                                                                               | 1<br>2<br>3                                                                                                             | 60.77998833904<br>432.98267215089<br>1240.78181597448                                                                                                                                                                                                                                                                                                                                               | 1<br>2                                                                                                                  | 142.1101411431<br>1770.0112739375                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4                                                                                                              | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>3<br>. 4                                                                                                      | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>3                                                                                                             | 142.1101411431<br>1770.0112739375<br>6849.8102487001                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5                                                                                                         | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242                                                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5                                                                                                   | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600                                                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4                                                                                                        | 142,1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274                                                                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5                                                                                                         | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100                                                                                                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6                                                                                              | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246                                                                                                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5                                                                                                   | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514                                                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                               | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713                                                                                                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                         | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691                                                                                                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5                                                                                                   | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751                                                                                                                                                                                                                                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                          | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                    | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                         | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                          | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345<br>1546.17444529514                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                    | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                    | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                     | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345<br>1546.17444529514<br>1851.74382425500                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                               | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210<br>23755.6081248653                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                    | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748781                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                     | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345<br>1646.17444529514<br>1861.74382425500<br>2178.96461098493                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                               | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210<br>23755.6081248653<br>29833.2700794123                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                    | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>163066.487534860<br>220281.103748781<br>304755.393262461                                                                                                                                                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                   | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345<br>1546.17444529514<br>1851.74382425500<br>2178.96461098493<br>2527.14194713402                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                         | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210<br>23755.6081248663<br>29833.2700794123<br>36713.8884719613                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                               | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748761<br>304755.393262461<br>408461.890176752                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                             | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345<br>1546.17444529514<br>1851.74382425500<br>2178.96461098493<br>2527.14194713402<br>2895.66248678568                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                       | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210<br>23755.6081248653<br>29833.2700794123<br>36713.8884719613<br>44421.6491662162                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                   | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748761<br>304755,393262461<br>408461.890176752<br>533373.128589097                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                       | 025.995379026274<br>105.916836318150<br>224.756520101427<br>376.775869691907<br>558.639704565242<br>768.056740321100<br>1003.31242864713<br>1263.05396143345<br>1546.17444529514<br>1851.74382425500<br>2178.96461098493<br>2527.14194713402<br>2895.66248678568<br>3283.97899261810                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                 | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210<br>23755.6081248653<br>29833.2700794123<br>36713.8884719613<br>44421.6491662162<br>52979.3991499318                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                       | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748781<br>304755.393262461<br>408461.890176752<br>533373.128589097<br>681461.642595244                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                 | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3263.97899261810 3691.59878402966                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                           | 60.77998833904<br>432.98267215089<br>1240.78181597448<br>2557.06784298188<br>4437.90844013600<br>6929.90780347246<br>10073.4317026691<br>13904.3602313666<br>18455.1622425210<br>23755.6081248653<br>29833.2700794123<br>36713.8884719613<br>44421.6491662162<br>52979.3991499318<br>62408.8179081626                                                                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                           | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748781<br>304755,393262461<br>408461.890176752<br>53373.128589097<br>661461.642596244<br>854699.966290011                                                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                           | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107993                                                                                                                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                     | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8884719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195                                                                                                                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                     | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>163066.487534860<br>220281.103748781<br>304755.393262461<br>408461.890176752<br>533373.128589097<br>651461.642595244<br>354699.966290011<br>1055060.63376764<br>1284516.17912218                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15                                           | 025.995379026274 105.916836318150 224.756620101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1646.17444529514 1861.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107693 4562.99901461625                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                     | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347746 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8864719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 83964.3499180049                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                           | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748781<br>304755.393262461<br>408461.890176752<br>533373.128589097<br>661461.642595244<br>854699.966290011<br>1055060.63376764                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                     | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1646.17444529514 1861.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.9789261810 3691.59878402966 4112.07487107693 4662.99901461625 5025.89620146963                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                         | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347746 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8864719613 44421.6491662162 52979.3991499318 62408.8179081626 727730.5561558195 83964.3499180049 96129.1156114283                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                               | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374988514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748781<br>304755.393262461<br>408461.890176752<br>533373.128589097<br>661461.642595244<br>854699.966290011<br>1055060.63376764<br>1284516.17912218<br>1545039.13644743                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15<br>16<br>17<br>18<br>19                   | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107993 4562.99901461625 5025.89620146063 5566.72018088705                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                   | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8884719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 83964.3499180049 96129.1156114283 109243.030225801                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                         | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534890<br>220281.103748781<br>304755.393262461<br>408461.890176752<br>533373.128589097<br>661461.642595244<br>854699.966290011<br>1055060.63376764<br>1284516.17912218<br>1545039.13644743<br>1838602.03983705                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15<br>15<br>17<br>18<br>19<br>20             | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107693 4562.99901461625 5025.89620146063 0506.72018088705 6004.84981153994                                                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20             | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8884719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 83964.3499180049 96129.1156114283 109243.030225801 123323.599640200                                                    | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                                                                      | 142.1101411431<br>1770.0112739375<br>6849.8102487001<br>17354.0730168274<br>35255.3374958514<br>62526.1385565751<br>101139.010512575<br>153066.487534860<br>220281.103748781<br>304755.393262461<br>408461.890176752<br>533373.128589097<br>651461.642595244<br>854699.966290011<br>1055060.63376764<br>1284516.17912218<br>1545039.13644743<br>1838602.03983705<br>2167177.42338469              |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21                                                                         | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3263.97899261810 3691.59878402966 4112.07487107093 4562.99901461625 5027.99520146363 5506.72018089705 6004.84981153994 6520.08603748150                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21       | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8884719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 83964.3409180049 96129.1156114288 109243.030225801 123323.599640200 138387.717363460                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21       | 142.1101411431 1770.0112739375 6849.8102487001 17354.0730168274 35255.3374958514 62526.1385565751 101139.010512575 153066.487534860 220281.103748781 304755.393262461 408461.890176752 533373.128589097 651461.642596244 854699.966290011 1055060.63376764 1284516.17912218 1545039.13644743 1838602.03983705 2167177.42338469 2532737.82118393 2937255.76732824                                  |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22                                                                      | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107093 4562.99901461625 5023.89820146363 5566.72018088705 6004.84981153994 6520.08603748150 7052.14935913043                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8884719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 85964.3499180049 96129.1156114288 109243.030225801 123323.599640200 138387.717363460 154451.715453285                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 142.1101411431 1770.0112739375 6849.8102487001 17354.0730168274 35255.3374958514 62526.1385565751 101139.010512575 153066.487534860 220281.103748781 304755.393262461 408461.890176752 533373.128589097 661461.642595244 854699.966290011 1055060.63376764 1284516.17912218 1545039.13644743 1838602.03983705 2167177.42338469 2532737.82118393 2937255.76732824 3382703.79591110                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>15<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1861.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107993 4562.99901461625 5025.69820146363 0506.72018088705 6004.84981153994 6520.08603748150 7052.14935913043 7600.77769881483 | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23                                                           | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8864719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 85964.3499180049 96129.1156114283 109243.030225801 123323.599640200 138387.717363460 154451.715453285 171531.408978792 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23                                                             | 142.1101411431 1770.0112739375 6849.8102487001 17354.0730168274 35255.3374958514 62526.1385565751 101139.010512575 163066.487534860 220281.103748781 304755.393262461 408461.890176752 533373.128589097 651461.642595244 354699.966290011 1055060.63376764 1284516.17912218 1545039.13644743 1838602.03983705 2167177.42339469 2532737.8218393 2937255.76732824 3382703.79591110 3871054.44102616 |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22                                                                      | 025.995379026274 105.916836318150 224.756520101427 376.775869691907 558.639704565242 768.056740321100 1003.31242864713 1263.05396143345 1546.17444529514 1851.74382425500 2178.96461098493 2527.14194713402 2895.66248678568 3283.97899261810 3691.59878402966 4112.07487107093 4562.99901461625 5023.89820146363 5566.72018088705 6004.84981153994 6520.08603748150 7052.14935913043                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 60.77998833904 432.98267215089 1240.78181597448 2557.06784298188 4437.90844013600 6929.90780347246 10073.4317026691 13904.3602313666 18455.1622425210 23755.6081248653 29833.2700794123 36713.8884719613 44421.6491662162 52979.3991499318 62408.8179081626 72730.5561558195 85964.3499180049 96129.1156114288 109243.030225801 123323.599640200 138387.717363460 154451.715453285                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 142.1101411431 1770.0112739375 6849.8102487001 17354.0730168274 35255.3374958514 62526.1385565751 101139.010512575 153066.487534860 220281.103748781 304755.393262461 408461.890176752 533373.128589097 661461.642595244 854699.966290011 1055060.63376764 1284516.17912218 1545039.13644743 1838602.03983705 2167177.42338469 2532737.82118393 2937255.76732824 3382703.79591110                 |

## Table 17 (Cont'd)

$$R_n(s) = \frac{\alpha_s^n}{\left[Ai'(-\alpha_s)\right]^2}$$

| 8                                                                                                                                   | $^{\cdot}$ $^{\circ}$ $^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ន                                                                 | R <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                 | $R_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                   | 332,268774108                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                 | 776.88008300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                 | 1816.4290791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2                                                                                                                                   | 7235,716603398                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                 | 29579.24366675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                 | 120918.4527053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                                                                                                   | 37814.787289051                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                 | 208758.79561591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ω                                                                 | 1152465.4208388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                                                   | 117777,027738998                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                 | 799318,30698086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                 | 5424740.0205294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5                                                                                                                                   | 280073.110726074                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                 | 2224938.20576842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                 | 17675206.3297133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| G                                                                                                                                   | 564151, 517403598                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G                                                                 | 5090142.16991518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                 | 45926575,5930121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7                                                                                                                                   | 1015453, 29827892                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                 | 10195328.1504304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                 | 102362872.099715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8                                                                                                                                   | 1685036.14811458                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                 | 18549761.3891883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                 | 204205499.081331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9                                                                                                                                   | 2629278.68263232                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                 | 31383111.2759848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                 | 374589304.612931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10                                                                                                                                  | 3909638,90439593                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                | 50155884.6888142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                | 643438647.515277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11                                                                                                                                  | 5592451.49065643                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                | 76568988.2642702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                | 1048343463.25743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12                                                                                                                                  | 7748754, 11298878                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                | 112572582, 091620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                | 1635435329.85932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13                                                                                                                                  | 10454136, 1936149                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                | 160374343.504411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                                | 246026 <b>3533</b> .79439                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14                                                                                                                                  | 13788605.4598089                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                | 222447230.636440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                | 3588671135.89219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15                                                                                                                                  | 17836468.9195721                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                | 301536815.360819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                | 5097671037.24060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16                                                                                                                                  | 22686225,7301001                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                | 400668240.884885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                | 7076322045.08969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 17                                                                                                                                  | 28430470.0207335                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                | 523152848.709299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                | 9626604938.75 <b>27</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18                                                                                                                                  | 35165802, 1546500                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                | 672594511,691930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                | 12864298535,5102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19                                                                                                                                  | 42992747,2235117                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                | 852895703,821973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                | 16919855756.5115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20                                                                                                                                  | 52015679,8015203                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                | 1068263332.50298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                | 21939279692.6787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21                                                                                                                                  | 62342754, 1625238                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                | 1323214355,31785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                | 28084999670.6073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22                                                                                                                                  | 74085839.3012300a                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                | 1622581200, 16368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                | 35536747318,4704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23                                                                                                                                  | 87360458, 2076341                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                | 1971517005.12501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23                                                                | 44492432631.9231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24                                                                                                                                  | 102285730.929851                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                | · 2375500692,37519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                | 55169020040.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                                                                                                                                  | 118984321.029958                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                | 2840341888,66481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>2</b> 5                                                        | 67803404471.0205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8                                                                                                                                   | $\mathbf{R_{9}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g                                                                 | $10^{-10} \ \mathrm{R}_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                 | 10 <sup>-11</sup> R <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                   | 4247.006290                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                 | 0.00000092995687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 1                                                               | 0.00000232173057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1<br>v 2                                                                                                                            | 4247.006290<br>494308.521521                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>2                                                            | 0.00000092995687<br>0.000202070824578                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | 0.00000232173057<br>0.000082605531501                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3                                                                                                                         | 4247.006290<br>494308.521521<br>6362254.305552                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>2<br>3                                                       | 0.000000992995687<br>0.000202070824578<br>0.003512320553535                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>2<br>3                                                       | 0.00000232173057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1<br>2<br>3<br>4                                                                                                                    | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4                                                  | 0.000000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   | 0.00000232173057<br>0.000082605531501<br>0.001938997575124                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5                                                                                                               | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5                                             | 0.000000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5                                             | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                          | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5                                             | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4                                                  | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612                                                                                                                                                                                                                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                          | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7                                   | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115348378<br>1.03186996410982                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7                                   | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797                                                                                                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                              | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7                                   | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957229658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328                                                                                                                                                                                                                                                                                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180                                                                                                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                         | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115348378<br>1.03186996410982<br>2.47471758405386                                                                                                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                         | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.01938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180<br>5254550763.13939                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                              | 0.000000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115348378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664                                                                                                                                                                                                                                                                                                            | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                              | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>21                                                                               | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550703.13939<br>14363383032.3239                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                         | 0.000000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978                                                                                                                                                                                                                                                                                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                         | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478<br>13.5851014377203                                                                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                           | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180<br>5254550763.13939                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11             | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519138405241<br>34.5171453262236                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                         | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957229658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>21                                                                               | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180<br>5254550753.13939<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12       | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519138405241<br>34.5171453262236                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                   | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092                                                                                                                                                                                                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>21<br>12                                                                         | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550763.15939<br>14363383032.3239<br>23759326369.3217                                                                                                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>12<br>12       | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.7242986689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700                                                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>21<br>12<br>13                                                                   | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180<br>5254530763.13933<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>12<br>12<br>13 | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.086614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.830303314948                                                                                                                                                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                       | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180<br>5254550763.15959<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8884                                                                                                                                                                                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                               | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115348378<br>1.03186996410982<br>2.47471758405386<br>5.3671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084                                                                                                                                                                                      | 1 2 3 4 5 6 6 7 8 9 10 12 13 14 15 16 17                          | 0.000000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957229658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.3091302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.830307314948<br>599.800486995444                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>21<br>12<br>13<br>14<br>15<br>16                                                 | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769:68180<br>5254550753.15939<br>14353383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8884<br>124977047282.889                                                                                                                                                                 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                            | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115348378<br>1.03186996410982<br>2.47471758405386<br>5.3671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699                                                                                                                                                                  | 1 2 3 4 4 5 6 6 7 8 9 10 12 13 14 15 16 17 18                     | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.30991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.822264984700<br>150.679314724764<br>246.301010313733<br>389.83030\squares                                                                                                                                                                  |
| 1 2 3 4 5 6 7 8 9 0 1 1 2 1 1 1 5 6 7 1 8 1 9 1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1                                                       | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550763.13939<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8884<br>124977047282.889<br>177140433958.171                                                                                                                                             | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                         | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539                                                                                                                                             | 1 2 3 4 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19                    | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.83030\314948<br>599.600486995444<br>900.086985791645<br>1320.98791604262                                                                                                      |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                                                                                  | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550703.13939<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8884<br>124977047282.889<br>177140433958.17.1<br>246047468324.466                                                                                                                        | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                      | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.3671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539<br>470.599749389897                                                                                                                          | 1 2 3 4 4 5 6 6 7 8 9 10 12 13 14 15 16 17 18 19 20               | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.7242986689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.83030\314948<br>599.800486995444<br>900.086985791645<br>1320.98791604262<br>1900.44144880574                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>21<br>12<br>13<br>14<br>15<br>16<br>-17<br>18<br>19<br>20<br>21                  | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254530763.13939<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8884<br>124077047282.889<br>177110433958.171<br>246047468324.466<br>335658296246.866                                                                                                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                   | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519136405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539<br>470.599749389897<br>665.883288017926                                                                                                     | 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21                | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.36991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.822264984700<br>150.679314724764<br>246.301010313733<br>389.83030314948<br>599.800486995444<br>900.086985791645<br>1320.98791604262<br>1900.44144880574<br>2685.38822962455                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>-17<br>18<br>19<br>20<br>21<br>22<br>22 | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550763.15959<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8884<br>124977047282.889<br>177110433958.171<br>246047468324.466<br>335658296246.866<br>450574290803.193                                                                                 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539<br>470.599749389897<br>665.883288017926<br>925.359420986591                                                                                 | 1 2 3 4 4 5 6 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22         | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.30991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.83030314948<br>599.600486995444<br>900.086985791645<br>1320.98791604262<br>1900.44144880574<br>2685.38822962455<br>3733.28699812060                                           |
| 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 -17 18 19 20 21 22 23                                                                          | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550763.13939<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8854<br>124977047282.889<br>177140433958.171<br>246047468324.466<br>335658296246.866<br>450574290803.193<br>586049341975.884<br>778303366173.243<br>1004087997395.03                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23       | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.3671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539<br>470.599749389897<br>665.883288017926<br>925.359420986591<br>1265.21071629550<br>1704.59081234414<br>2265.98692603152                      | 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23          | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957229658629<br>0.088614360544612<br>0.337338974450206<br>1.03601544374797<br>2.72429886689328<br>6.30991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.83030\314948<br>599.800486995444<br>900.086985791645<br>1320.98791604262<br>1900.44144880574<br>2685.38822962455<br>3733.28699812060<br>5113.79158227871                      |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 18 19 20 21 22 23 24                                                                        | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550763.13539<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8854<br>124977047282.889<br>177140433958.17.1<br>246047468324.466<br>335658296246.866<br>450574290803.193<br>53609341975.884<br>778303266173.243<br>1004087997395.03<br>1281254424359.15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24    | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.33671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995388347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539<br>470.599749389897<br>665.883288017926<br>925.359420986591<br>1265.21071629550<br>1704.59081234414<br>2265.98692603152<br>2975.60641597341 | 1 2 3 4 4 5 6 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 3 24    | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957289658629<br>0.088614360544612<br>0.337338974450206<br>1.03601543374797<br>2.72429886689328<br>6.30991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88,822264984700<br>150,679314724764<br>246,301010313733<br>389,83030\\$314948<br>599,600486995444<br>900.086985791645<br>1320.98791604262<br>1900.44144880574<br>2685,38822962455<br>3733,28699812060<br>5113,79158227871<br>6910.59743829628 |
| 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 -17 18 19 20 21 22 23                                                                          | 4247.006290<br>494308.521521<br>6362254.305552<br>36816126.983863<br>140414200.263166<br>414379456.465319<br>1027741081.98374<br>2248001199.59279<br>4471103769.68180<br>5254550763.13939<br>14363383032.3239<br>23759326369.3217<br>37742300441.9156<br>57894901567.1677<br>86179360794.8854<br>124977047282.889<br>177140433958.171<br>246047468324.466<br>335658296246.866<br>450574290803.193<br>586049341975.884<br>778303366173.243<br>1004087997395.03                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23       | 0.00000992995687<br>0.000202070824578<br>0.003512320553535<br>0.024986030684649<br>0.111546916441933<br>0.373880115948378<br>1.03186996410982<br>2.47471758405386<br>5.3671641797664<br>10.5895532359978<br>19.6519186405241<br>34.5171453262236<br>57.8995389347941<br>93.4000219175484<br>145.691673173084<br>220.725713838699<br>325.958461394539<br>470.599749389897<br>665.883288017926<br>925.359420986591<br>1265.21071629550<br>1704.59081234414<br>2265.98692603152                      | 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23          | 0.00000232173057<br>0.000082605531501<br>0.001938997575124<br>0.016957229658629<br>0.088614360544612<br>0.337338974450206<br>1.03601544374797<br>2.72429886689328<br>6.30991302215478<br>13.5851014377203<br>26.9064028587588<br>50.1459217720092<br>88.8222649284700<br>150.679314724764<br>246.301010313733<br>389.83030\314948<br>599.800486995444<br>900.086985791645<br>1320.98791604262<br>1900.44144880574<br>2685.38822962455<br>3733.28699812060<br>5113.79158227871                      |

Table 17 (Cont'd)

$$R_{n}(s) = \frac{\alpha_{s}^{n}}{\left[Ai!(-\alpha_{s})^{\frac{1}{2}}\right]^{2}}$$

| s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>-12</sup> R <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b>                                                                                                    | 10 <sup>-13</sup> R <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                     | $10^{-14} R_{14}$                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000000054284554                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                           | 0.000000012692311                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                     | 0.000000002967598                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,000033768723658                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                           | 0.000013804483510                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                     | 0.000005643203069                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001070435212000                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                           | 0.000590940162994                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                     | 0.000326232052463                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.011508417491190                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                           | 0.007810427009138                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                     | 0.005300708816983                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.070396431790369                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                           | 0.055923865819933                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                     | 0.044426666078177                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,304569178568832                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                           | 0:274621682874476                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                     | 0.247781556133332                                                                                                                                                                                                                                                                                                                                                                                            |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04017755753744                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                           | 1.04435640238518                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                     | 1.04855203546695                                                                                                                                                                                                                                                                                                                                                                                             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.99905102868274                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                           | 3.30151261373899                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                     | 3.63447818474273                                                                                                                                                                                                                                                                                                                                                                                             |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.60313809689010                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                           | 9.07511746539150                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                     | 10.8320743305110                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.4280233509549                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                          | 22, 3580220813132                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                    | 28.6826073916811                                                                                                                                                                                                                                                                                                                                                                                             |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36,8388719717657                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                          | 50, 4379011670960                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                    | 69.0569970788335                                                                                                                                                                                                                                                                                                                                                                                             |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.8511424278776                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                          | 105,836900898476                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                    | 153.758049887595<br>320.672750648614                                                                                                                                                                                                                                                                                                                                                                         |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 136.260061689062                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                          | 209. 033224118515                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                    | 632.664711426112                                                                                                                                                                                                                                                                                                                                                                                             |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 243.066194411896                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                          | 392.163304044723                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>15                                                                                              | 1190.03731779451                                                                                                                                                                                                                                                                                                                                                                                             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 416.387473356117                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                          | 703,929422567310<br>1215,96462554667                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                    | 2147.55161696913                                                                                                                                                                                                                                                                                                                                                                                             |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 688.491004778542                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16<br>17                                                                                                    | 2030.93453121449                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                    | 3737, 14956091863                                                                                                                                                                                                                                                                                                                                                                                            |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1103.70082942721                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                          | 3292, 68408046825                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                    | 6297.71285045318                                                                                                                                                                                                                                                                                                                                                                                             |
| 18<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1721.54061501691<br>2620.59298638479                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                          | 5198.76640572358                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                    | 10313, 3803233462                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3902.99987056726                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                          | 8015,72076804624                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                    | 16462.1525908350                                                                                                                                                                                                                                                                                                                                                                                             |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5699,69085064391                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                                          | 12097, 4969036249                                                                                                                                                                                                                                                                                                                                                                                          | 21.                                                                                                   | 25676.7314523175                                                                                                                                                                                                                                                                                                                                                                                             |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8176.40908856576                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                          | 17907, 4541060561                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                    | 39219.7735077804                                                                                                                                                                                                                                                                                                                                                                                             |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11540.6068969617                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                          | 26044.3949283622                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                    | 58775,9823413687                                                                                                                                                                                                                                                                                                                                                                                             |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16049. 2855163321                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                          | 97979 1954081400                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                                                    | 86563,7216676340                                                                                                                                                                                                                                                                                                                                                                                             |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22017.8560899238                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                          | 52560.0670823329                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                    | 125469, 102914320                                                                                                                                                                                                                                                                                                                                                                                            |
| ,i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>-15</sup> R <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                           | 10 <sup>-16</sup> R <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                     | 10 <sup>-17</sup> R <sub>17</sub>                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>-15</sup> R <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                              | . s<br>. 1                                                                                                  | 10 <sup>-16</sup> R <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                     | 0.00000000037931                                                                                                                                                                                                                                                                                                                                                                                             |
| s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2                                                                                                | 0.00000000003 <b>7931</b><br>0.000000385515840                                                                                                                                                                                                                                                                                                                                                               |
| s<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000000000693856                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                           | 0.00000000162231                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>3                                                                                           | 0.00000000037981<br>0.000000385515840<br>0.000054887821119                                                                                                                                                                                                                                                                                                                                                   |
| 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000000000693856<br>0.000002306912885                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br>3<br>4                                                                                            | 0.00000000162231<br>0.00000942054324<br>0.000099424375115<br>0.002441475031989                                                                                                                                                                                                                                                                                                                             | 1<br>2<br>3                                                                                           | 0.00000000037981<br>0.000000385515840<br>0.000054887821119<br>0.001656957835130                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000000000693856<br>0.000002306912885<br>0.000180098356346<br>0.003507436341133<br>0.035293137015544                                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>3<br>4<br>5                                                                                       | 0.00000000162231<br>0.00000942054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004                                                                                                                                                                                                                                                                                                        | 1<br>2<br>3<br>4<br>5                                                                                 | 0.00000000037981<br>0.000000385515840<br>0.000054887821119<br>0.001656957835130<br>0.022273237054260                                                                                                                                                                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000000000693856<br>0.000002306912885<br>0.000180098356346<br>0.003507436341133<br>0.035293137015544<br>0.223564646888856                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5                                                                                       | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861                                                                                                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5                                                                                 | 0.00000000037931<br>0.00000385515840<br>0.000054887821119<br>0.001658957835130<br>0.022273237054260<br>0.182000018408540                                                                                                                                                                                                                                                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000000000693856<br>0.000002306912885<br>0.00180098356346<br>0.003507436341133<br>0.035293137015544<br>0.22356464688856<br>1.05276452422836                                                                                                                                                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                             | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714675202861<br>1.05699393638600                                                                                                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5                                                                                 | 0.00000000037931<br>0.000000385515840<br>0.00054687821119<br>0.001656957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033992851                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00000000093856<br>0.00002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.22356464688856<br>1.05276452422836<br>4.00102414281284                                                                                                                                                                                                                                                                                                                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                        | 0,00000000162231<br>0,00000943054324<br>0,000099424375115<br>0,002441475031989<br>0,028037339516004<br>0,201714575202861<br>1,05699393638600<br>4,40453715159784                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                  | 0.00000000037931<br>0.000000385515840<br>0.000054887821119<br>0.001656857835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033392851<br>4.84874542800606                                                                                                                                                                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.22356464688856<br>1.05276452422836<br>4.00102414281284<br>18.9291807791111                                                                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                        | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.4322903999365                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                  | 0.00000000037931<br>0.000000385515840<br>0.000054887821119<br>0.001656957835130<br>0.02273237054260<br>0.182000018408540<br>1.0612403392851<br>4.84874542800606<br>18.4200057196422                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000000000693856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.22356464688855<br>1.05276452422836<br>4.00102414281284<br>1R.9291807791111<br>36.7962766917975                                                                                                                                                                                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                   | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714675202861<br>1:05699393638600<br>4:40453715169784<br>15.4322902999385<br>47.2051219015749                                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                             | 0.00000000037931<br>0.000000385515840<br>0.000054887821119<br>0.001656957835130<br>0.02227327054260<br>0.182000018408540<br>1.06124033992851<br>4.84874542800606<br>18.4200057196422<br>60.5583970467120                                                                                                                                                                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00000000093856<br>0.00002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.22356464688856<br>1.05276452422836<br>4.00102414281284<br>12.9291807791111<br>36.7962766917975<br>94.5493118309426                                                                                                                                                                                                                                                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                             | 0.00000000162231<br>0.00000942054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.4322902999365<br>47.2051219015749<br>129.452086622003                                                                                                                                                                               | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                             | 0.00000000037931<br>0.00000385515840<br>0.000054887821119<br>0.001658957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033932851<br>4.84874542800606<br>18.420057196422<br>60.5583970467120                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1p.929180779111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356                                                                                                                                                                                                                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                 | 0.000000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.432290399365<br>47.2051219015749<br>129.452086622006<br>324.518423697218                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                           | 0.00000000037931<br>0.000000385515840<br>0.000054887821119<br>0.001658957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033992851<br>4.84874542800606<br>18.4200057196422<br>60.5583970467120<br>177.239182457034<br>471.454847569135                                                                                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003507436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>12.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                           | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.00244147531989<br>0.028037339516004<br>0.201714575202861<br>1.05609393638600<br>4.40453715159784<br>15.4322902999365<br>47.2051219015749<br>129.452086622006<br>324.518423697218                                                                                                                                                            | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                     | 0.00000000037931<br>0.000000385515840<br>0.000054687821119<br>0.001656957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033992851<br>4.84874542800606<br>18.4200057136422<br>60.5583970467120<br>177.239182457034<br>471.454847569135<br>1157.71662759737                                                                                                                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.22356464688855<br>1.05276452422836<br>4.00102414281284<br>12.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491.936214648091<br>1020.65805993474                                                                                                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                           | 0,00000000162231<br>0,00000943054324<br>0,000099424375115<br>0,002441475031989<br>0,028037339516004<br>0,201714575202861<br>1,05699393638600<br>4,40453715159784<br>15,4322902999365<br>47,2051219015749<br>129,452086622006<br>324,518423697218<br>354,667301143627<br>1646,59551338262                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                               | 0.00000000037931<br>0.000000385515840<br>0.000054887821119<br>0.001656857835130<br>0.022273237054260<br>0.182000018498540<br>1.06124033092851<br>4.84874542800606<br>18.4200057106422<br>60.5583970467120<br>177.239182457034<br>471.454847569135<br>1157.71662759737<br>2656.40069982413                                                                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.03593137015544<br>0.22356464688856<br>1.05276452422836<br>4.00102414281284<br>1%.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491.936214648091<br>1020.65805993474<br>2011.83353379171                                                                                                                                                                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                     | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.4322903999365<br>47.2051219016749<br>129.45208662206<br>324.518423697218<br>754.667301143627<br>1646,59551338262<br>3401.13233860386                                                                                                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                         | 0.00000000037931<br>0.000000385515840<br>0.000054887821119<br>0.0016569578353130<br>0.022273237054260<br>0.182000018408540<br>1.0612403392851<br>4.84874542800606<br>18.4200057196422<br>60.5583970467120<br>177.299182457034<br>471.454847569135<br>1157.71662758737<br>2656.40069982413<br>5749.82951121328                                                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00000000093856<br>0.00002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.22356464688856<br>1.05276452422836<br>4.00102414281284<br>1p.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091<br>1020.65805993474<br>2011.83353379171<br>3792.85535997668                                                                                                                                                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                               | 0.00000000162231<br>0.00000942054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.4322903999365<br>47.2051219015749<br>129.452086622006<br>324.518423697218<br>754.667301143627<br>1646,59551338262<br>3401.1323860386<br>6698.67567700499                                                                            | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                   | 0.00000000037931<br>0.00000385515840<br>0.000054887821119<br>0.001656957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033932851<br>4.84874542800606<br>18.420057196422<br>60.5583970467120<br>177.239182457034<br>471.454847569135<br>1157.71662759737<br>2656.4006982413<br>5749.82951121328<br>11830.7321442318                                                                               |
| \$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1p.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091<br>1020.65865993474<br>2011.83353379171<br>3792.85535997668<br>6876.77846135323                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                         | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.4322903999365<br>47.2051219016749<br>129.452086622006<br>324.518423697218<br>.754.667301143627<br>1646.59551338262<br>3401.13213860388<br>6698.67567700499<br>12654.0512322732                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17             | 0.00000000037931<br>0.00000385515840<br>0.000054887821119<br>0.001656957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033932851<br>4.84874542800606<br>18.420057196422<br>60.5583970467120<br>177.239182457034<br>471.454847569135<br>1157.71662759737<br>2656.4006982413<br>5749.82951121328<br>11830.7321442318                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003507436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1R.929180779111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091<br>1020.65805993474<br>2011.83353379171<br>3792.85535997668<br>6876.77846135323<br>12045.2452095322                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                               | 0.00000000162231<br>0.00000943054324<br>0.000099424375115<br>0.002441475031989<br>0.028037339516004<br>0.201714575202861<br>1.05699393638600<br>4.40453715159784<br>15.432903999365<br>47.2051219015749<br>129.452086622006<br>324.518423697218<br>.754.667301143627<br>1646.59551338262<br>3401.13213860388<br>6698.67567700499<br>12654.0512322732                                                       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17             | 0.00000000037931<br>0.00000385515840<br>0.000054887821119<br>0.001658957835130<br>0.022273237054260<br>0.182000018408540<br>1.06124033992851<br>4.84874542800606<br>18.4200057196422<br>60.5583970467120<br>177.239182457034<br>471.454847569135<br>1157.71662758737<br>2656.40069982413<br>5749.82951121328<br>11830.7321442318<br>23284.8874642219                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1p.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091<br>1020.65865993474<br>2011.83353379171<br>3792.85535997668<br>6876.77846135323                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18             | 0.00000000162231 0.00000943054324 0.000099424375115 0.00244147531989 0.028037339516004 0.201714575202861 1.05609393638600 4.40453715159784 15.4322902999365 47.2051219015749 129.452086622006 324.518423697218 .754.667301143627 1646.59551338262 3401.13213860386 6698.67567700499 12654.0512322732 23038.1942783113                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       | 0.00000000037931 0.000000385515840 0.000054687821119 0.001656957835130 0.022273237054260 0.182000018408540 1.06124033992851 4.84874542800606 18.4200057196422 60.5583970467120 177.239182457034 471.454847569135 157.71662759737 2656.40069982413 5749.82951121328 11830.7321442318 23284:8874642219 44063.7269206662                                                                                        |
| \$\\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003507436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1½.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091<br>1020.65805993474<br>2011.835535997668<br>6876.77846135323<br>12045.2452095322<br>20459.8178477266                                                                                                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19       | 0.00000000162231 0.00000943054324 0.000099424375115 0.002441475031989 0.028037339516004 0.201714575202861 1.05609393638600 4.40453715159784 15.4322902999365 47.2051219015749 129.452086622006 324.518423697218 .754.667301143627 1646.59551358262 3401.13213860386 6698.67567700499 12654.0512322732 23038.1942783113                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 0.00000000037931 0.000000385515840 0.000054887821119 0.001656957835130 0.022273237054260 0.182000018408540 1.0612403392851 4.84874542800606 18.420057136422 60.5583970467120 177.239182457034 471.454847569135 1157.71662759737 2656.40069982413 5749.82951121328 11830.7321442318 23284.8874642219 44063.7269206662 80519.8990863088                                                                        |
| 8<br>1 2 3 4 4 5 6 7 7 8 8 9 100 111 11 115 116 117 118 119 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.223564646888556<br>1.05276452422836<br>4.00102414281284<br>1½.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491.936214648091<br>1020.65805993474<br>2011.83353379171<br>3792.85535997668<br>6876.77846135323<br>12045.2452095322<br>20459.8178477266<br>33808.8708134965                                                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 0,00000000162231 0,000000943054324 0,000099424375115 0,002441475031989 0,028037339516004 0,201714575202861 1,05699393638600 4,40453715159784 15,4322902999365 47,2051219015749 129,452086622006 324,518423697218 324,518423697218 325,667301143627 1646,59551338262 3401,1323860388 6698,67567700499 12654,0512322732 23038,1942783113 40588,4528024162 69434,4035129442                                   | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22                                              | 0.00000000037931 0.0000000385515840 0.000054887821119 0.001658957835130 0.022273237054260 0.182000018408540 1.06124033992851 4.84874542800606 18.4200057196422 60.5583970467120 177.239182457034 471.454847569135 1157.71662758737 2656.40069982413 5749.82951121328 11830.7321442338 23284.8874642219 44063.7269206662 80519.8990863088 142599.746019135 245511.814940296 412020.462068934                  |
| \$\begin{array}{cccccccccccccccccccccccccccccccccccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000000000093856<br>0.000002306912885<br>0.000180098356346<br>0.003507436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1R.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491,936214648091<br>1020.65805993474<br>2011.83353379171<br>3792.85535997668<br>6876.77846135323<br>12045.2452095322<br>20459.8178477266<br>33808.8708134965<br>54498.4258584005<br>85896.6676609488<br>132643.361832561 | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23                                               | 0.00000000162231 0.000000943054324 0.000099424375115 0.00244147531989 0.028037339516004 0.201714575202861 1.05609393638600 4.40453715169784 15.4322902999365 47.2051219015749 129.452086622006 324.518423697218 .754.667301143627 1646.59551338262 3401.13273860386 6698.67567700499 12654.0512322732 23038.1942783113 40588.4524024162 69434.403512942 115671.982104073 188125.449367824 299344.404591266 | 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 12 22 23                                      | 0.00000000037931 0.0000000385515840 0.000054887821119 0.001656957835130 0.022273237054260 0.182000018408540 1.06124033992851 4.84874542800606 18.4200057196422 60.5583970467120 177.239182457034 471.454847569135 1157.71662759737 2656.40069882413 5749.82951121328 11830.7321442338 23284.8874642219 44063.7269206662 80519.8990863088 142599.746019135 245511.814940296 412020.462068934 675548.865183415 |
| 8<br>1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000000000093856<br>0.0000000000093856<br>0.000180098356346<br>0.003597436341133<br>0.035293137015544<br>0.223564646888856<br>1.05276452422836<br>4.00102414281284<br>1p.9291807791111<br>36.7962766917975<br>94.5493118309426<br>223.377080248356<br>491.936214648091<br>1020.65805993474<br>2011.83353379171<br>3792.85535997668<br>6876.77846135323<br>12045.2452096322<br>20459.8178477266<br>33808.8708134965<br>54498.428584005<br>85896.6676609488                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24                                               | 0.00000000162231 0.00000943054324 0.000099424375115 0.002441475031989 0.028037339516004 0.201714575202861 1.05699393638600 4.40453715159784 15.4322903999365 47.2051219016749 129.452086622006 324.518423697218 .754.667301148627 1646.69551338262 3401.13213860388 6698.67567700499 12654.0512322732 23036.1942783113 40588.4524024162 69434.4035129442 115671.982104073 188125.449367824                 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22                                              | 0.00000000037931 0.0000000385515840 0.000054887821119 0.001658957835130 0.022273237054260 0.182000018408540 1.06124033992851 4.84874542800606 18.4200057196422 60.5583970467120 177.239182457034 471.454847569135 1157.71662758737 2656.40069982413 5749.82951121328 11830.7321442338 23284.8874642219 44063.7269206662 80519.8990863088 142599.746019135 245511.814940296 412020.462068934                  |

Table 17 (Concluded)

$$R_n(s) = \frac{\alpha_s^n}{[Ai'(-\alpha_s)]^2}$$

| g            | 10 <sup>-18</sup> R <sub>18</sub> | ន    | 10 <sup>-19</sup> R <sub>19</sub>           | 8               | 10 <sup>-20</sup> R <sub>20</sub> |
|--------------|-----------------------------------|------|---------------------------------------------|-----------------|-----------------------------------|
| 1            | 0.000000000008868                 | 1    | 0.00000000000207                            | 3 1             | 0.000000000000484                 |
| 2            | 0.000000157596926                 | 2    | 0.00000064424826                            | 3 2             | 0.000000026336543                 |
| 3            | 0.000030301150032                 | 3    | 0,00001672793116                            | 1 3             | 0.000009234754477                 |
| 4 ~          | 0.001124528914458                 | 4    | 0.00076318494812                            | 7 4             | 0.000517951346167                 |
| 5            | 0.017694157057665                 | 5    | 0.014056474737759                           | 9 5             | 0.011166651308074                 |
| 6            | 0.164212262140188                 | 6    | 0.14816299071282                            | 16              | 0.133682293458858                 |
| 7            | 1.06550380311765                  | 7    | 1.06978439448942                            | 7               | 1,07408218285518                  |
| 8            | 5.33775318868199                  | 8    | 5.87607857049350                            | 8               | 6.46869537539235                  |
| 9            | 21,9861474944550                  | 9    | 26.2426998669423                            | . 9             | 31.3233274033162                  |
| 10           | 77.6890156223675                  | 10   | 99.6655037569256                            | 10              | 127,858649765950                  |
| 11           | 242.666832322018                  | 11   | 332,247027394622                            | 11              | 454.895653255481                  |
| 12           | 684.921585542453                  | 12   | 995.042432506107                            | 12              | 1445.58072542495                  |
| 13           | 1776.02473008214                  | 13   | 2724.55604996315                            | 13              | 4179.67472167321                  |
| 14           | 4285.48761409531                  | 14   | 6913.64224221904                            | 14              | 11153.5613581480                  |
| 15           | 9720.45132641929                  | 15   | 16433.0392414276                            | 15              | 27781.0946880978                  |
| 16           | 20894.6110869395                  | 16   | 36902.5996998264                            | 16              | 65174.7887979041                  |
| 17           | 42846.8301786762                  | 17   | 78843.0203573529                            | $\frac{17}{18}$ | 145080.087211763                  |
| 18           | 84277.9606197867                  | 18   | 161193, 234040764 <sup>1</sup>              | 18              | 308304.312413799                  |
| 19           | 159736.421694250                  | 19   | 316887, 188200933                           | 19              | 628644.920055250 <sup>3</sup>     |
| 20           | , <b>292</b> 861, 845654524       | 20   | 601460.122016385                            | 20              | 1235238,67565428                  |
| $21_{\rm a}$ | 521094,652126271                  | 21   | _ 1106014.53759214 (i - *                   | 21              | 2347497.04755891                  |
| 22           | 902381, 159667455                 | 22 . | 1976338. 14892073 "                         | 22              | 4328450.82926911                  |
| 23           | 1524552.52963133; "               | 23   | 3440551, 13611099                           | 23              | 7764502,62626056 "                |
| 24           | 2518235.56661485                  | 24   | 45848391,83107564                           | 24              | 13582401.6876112                  |
| 25           | 4074368,64454212                  | 25   | 9 <b>72</b> 6155.3 <b>71</b> 38 <b>0</b> 16 | 25              | 23217854.4852458                  |

#### Table 18

$$S_n(s) = \frac{\beta_s^n}{\beta_s [Ai(-\beta_s)]^2}$$

| ន                | s <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8       | $\mathbf{s}_{1}$          |                 | $\mathbf{s_2}$               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|-----------------|------------------------------|
| ĺ                | 3.42090527093745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       | 3.48519424670285          | 1               | 3.5506914033670              |
| $\overset{1}{2}$ | 1.75346632551597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | 5.69560507897474          | 2               | 18.5004506465769             |
| 3                | 1,43366682592260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | 6.91041633672266          | 3               | 33.3088923335535             |
| 4                | 1. 26661171013518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4       | 7.80651726981529          | 4               | 48.1139653109793             |
| 5                | 1.15767665395375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŝ       | 8.53459749697771          | 5               | 62.9185655482067             |
| 6                | 1.07867166996060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6       | 9.15629016082348          | 6               | 77.7230475629854             |
| 7                | 1.01762666406664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7       | 9.70352720960537          | 7               | 92.5274893360947             |
| 8                | 0.968423104033338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8       | 10.1952295598303          | 8               | 107.331914474915             |
| 9                | 0.927545444958618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9       | 10.6446365110267          | 9               | 122.136331750209             |
| 10               | 0.892802723165511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10      |                           | 10              | 136.940744923402             |
| 11               | 0.862744993984072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11      | 11.4419130182971          | 11              | 151.745155788981             |
| 12 -             | 0.006367256442953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12      | 1. 8023 51873226          | $1\overline{2}$ | 166.549565276592             |
| 10               | 0.812946786820368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13      | 12.1421221522247          | 13              | 181.353973900537             |
| 14               | 0.791948015215901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14:     | 12.4638373409639          | 14              | 196.158381961038             |
| 15               | 0.772964029156273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15      | 12,7697552005989          | 15              | 210.962789641347             |
| 16               | 0.755679076665912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16      | 13,0616823959993          | 16              | 225.767197057629             |
| 17               | 0.739843677652785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17      | 13.3411161622160          | 17              | 240.571604285943             |
| 18               | 0.725257605889135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18      | 13,6093127898938          | 18              | 255.376011377507             |
| 19               | 0.711757950434424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19      | 13.8673379141378          | 19              | 270.180418367666             |
| 20               | 0.699210551030022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20      | 14.1161041622739          | 20              | 284.98482528 <b>1</b> 351    |
|                  | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i.      | # # # P # 12              |                 |                              |
|                  | 10 to | $V_{j}$ | · #                       |                 | and the second of the second |
|                  | i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #       | 15<br>                    |                 | n                            |
| 8 ",             | S <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8       | $\mathbf{s}_{\mathbf{q}}$ | 8               | $\mathbf{s}_5$               |
| 1                | 3.617419446239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | 3.68540150732             | 1               | 3.7546611533                 |
| . 2              | 60.093119059448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 195. 19432403454          | 2               | 634.0297313842               |
| 3                | 160.552165662199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | 773.87736706140           | 3               | 3730.1656865217              |
| 4                | 236.541156310142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4       | 827.67428993613           | 4               | 11264.5183948765             |
| 5                | 463.846817854721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 3419.56096041486          | 5               | 25209.6095346197             |
| 6                | 659.751058165985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6       | \$600.28810499744         | 6               | 47537,9712859592             |
| 7                | 882.291160513919.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7       | 8413.04241049 <b>2</b> 95 | 7               | 80222, 1372812183            |
| .8               | 1129 95394534718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8       | 11895.7714008173          | 8               | 125234.641467642             |

Table 18 (Cont'd)

$$S_n(s) = \frac{\beta_s^n}{\beta_s \left[Ai(-\beta_s)\right]^2}$$

| 8                                                                                               | $\mathbf{s}_{6}$                                                                                                                                                                                                                                                                                                                  | s                                                                       | $\mathbf{s}_7$                                                                                                                                                                                                                                                                                                                                                             | 8                                                                             | $\mathbf{s}_8$                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                               | 3,825222393                                                                                                                                                                                                                                                                                                                       | 1                                                                       | 3.89710968                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                             | 3,9703479                                                                                                                                                                                                                                                                                                                |
| 2                                                                                               | 2059.453840512                                                                                                                                                                                                                                                                                                                    | $\hat{2}$                                                               | 6689.51298536                                                                                                                                                                                                                                                                                                                                                              | . 2                                                                           | 21728.8599050                                                                                                                                                                                                                                                                                                            |
| 3                                                                                               | 17979.768683169                                                                                                                                                                                                                                                                                                                   | 3                                                                       | 86664,26884692                                                                                                                                                                                                                                                                                                                                                             | 3                                                                             | 417730.3739064                                                                                                                                                                                                                                                                                                           |
| 4                                                                                               | 69426.689080879                                                                                                                                                                                                                                                                                                                   | 4                                                                       | 427898,02348987                                                                                                                                                                                                                                                                                                                                                            | 4                                                                             | 2637267.0356387                                                                                                                                                                                                                                                                                                          |
| 5                                                                                               | 185849.710019759                                                                                                                                                                                                                                                                                                                  | 5                                                                       | 1370117.00506489                                                                                                                                                                                                                                                                                                                                                           | 5                                                                             | 10100745.4214935                                                                                                                                                                                                                                                                                                         |
| 6                                                                                               | 403525,438623075                                                                                                                                                                                                                                                                                                                  | 6                                                                       | 3425320.33259146                                                                                                                                                                                                                                                                                                                                                           | 6                                                                             | 29075786.2029706                                                                                                                                                                                                                                                                                                         |
| 7                                                                                               | 764954.102922387                                                                                                                                                                                                                                                                                                                  | 7                                                                       | 7294180.87586643                                                                                                                                                                                                                                                                                                                                                           | 7                                                                             | 69553290.1210595                                                                                                                                                                                                                                                                                                         |
| 8                                                                                               | 1318427.77530606                                                                                                                                                                                                                                                                                                                  | 8                                                                       | 13879959.8763382                                                                                                                                                                                                                                                                                                                                                           | 8                                                                             | 146123503.901484                                                                                                                                                                                                                                                                                                         |
| 9                                                                                               | 2117698.95680265                                                                                                                                                                                                                                                                                                                  | 9                                                                       | 24300715.4619724                                                                                                                                                                                                                                                                                                                                                           | 9                                                                             | 278852086.160221                                                                                                                                                                                                                                                                                                         |
| 10                                                                                              | 3221714.45353455                                                                                                                                                                                                                                                                                                                  | 10                                                                      | 39900251.7015419                                                                                                                                                                                                                                                                                                                                                           | 10                                                                            | 494156173.306973                                                                                                                                                                                                                                                                                                         |
| 11                                                                                              | 4694394.80447998                                                                                                                                                                                                                                                                                                                  | 11                                                                      | 62258091.7895160                                                                                                                                                                                                                                                                                                                                                           | 11                                                                            | 825680445,448000                                                                                                                                                                                                                                                                                                         |
| 12                                                                                              | 6604447.10711363                                                                                                                                                                                                                                                                                                                  | 12                                                                      | 93198668,3658527                                                                                                                                                                                                                                                                                                                                                           | 12                                                                            | 1315173192. 28925                                                                                                                                                                                                                                                                                                        |
| 13                                                                                              | 9025203.26156089                                                                                                                                                                                                                                                                                                                  | 13                                                                      | 134799869.102310                                                                                                                                                                                                                                                                                                                                                           | 13                                                                            | 2013362379.03825                                                                                                                                                                                                                                                                                                         |
| 14                                                                                              | 12034478, 1326933                                                                                                                                                                                                                                                                                                                 | 14                                                                      | 189401040.279627                                                                                                                                                                                                                                                                                                                                                           | 14                                                                            | 2980831712.30761                                                                                                                                                                                                                                                                                                         |
| 15                                                                                              | 15714443.6900662                                                                                                                                                                                                                                                                                                                  | 15                                                                      | 259610527.096302                                                                                                                                                                                                                                                                                                                                                           | 15                                                                            | 4288896706.01735                                                                                                                                                                                                                                                                                                         |
| 16                                                                                              | 20151516.2144708                                                                                                                                                                                                                                                                                                                  | 16                                                                      | 348312812,566620                                                                                                                                                                                                                                                                                                                                                           | 16                                                                            | 6920480747.29721                                                                                                                                                                                                                                                                                                         |
| 17                                                                                              | 25436254.3641814                                                                                                                                                                                                                                                                                                                  | $\cdot 17$                                                              | 458675304.600601                                                                                                                                                                                                                                                                                                                                                           | 17                                                                            | 8270991162.39021                                                                                                                                                                                                                                                                                                         |
| 18                                                                                              | 31663266.3913862                                                                                                                                                                                                                                                                                                                  | 18                                                                      | 594154811.712487                                                                                                                                                                                                                                                                                                                                                           | 18                                                                            | 11149195282.5542                                                                                                                                                                                                                                                                                                         |
| 19                                                                                              | 38931125.1600065                                                                                                                                                                                                                                                                                                                  | 19                                                                      | 758503740,831967                                                                                                                                                                                                                                                                                                                                                           | 19                                                                            | 14778096509.9646                                                                                                                                                                                                                                                                                                         |
| - 20                                                                                            | 47342289.8836153                                                                                                                                                                                                                                                                                                                  | 20                                                                      | 955776045 274508                                                                                                                                                                                                                                                                                                                                                           | 20                                                                            | 19295810383.6192                                                                                                                                                                                                                                                                                                         |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                                                                                                                                                                                                                          |
|                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                 | я                                                                       | 10 <sup>-10</sup> 8                                                                                                                                                                                                                                                                                                                                                        | В                                                                             | 10 <sup>-11</sup> S                                                                                                                                                                                                                                                                                                      |
| · s                                                                                             | $\mathbf{s_g}$                                                                                                                                                                                                                                                                                                                    | 8                                                                       | 10 <sup>-10</sup> S <sub>10</sub>                                                                                                                                                                                                                                                                                                                                          | 8                                                                             | 10 <sup>-11</sup> s <sub>11</sub>                                                                                                                                                                                                                                                                                        |
| 1                                                                                               | 4.014962                                                                                                                                                                                                                                                                                                                          | 1                                                                       | 0.00000000412097                                                                                                                                                                                                                                                                                                                                                           | 1                                                                             | 0.00000000041984                                                                                                                                                                                                                                                                                                         |
| 1<br>2                                                                                          | 4.014962<br>70579,680206                                                                                                                                                                                                                                                                                                          | 1 2                                                                     | 0.00000000412097<br>0.000022925658418                                                                                                                                                                                                                                                                                                                                      | 1<br>2                                                                        | 0.00000000041984<br>0.000007446706824                                                                                                                                                                                                                                                                                    |
| 1<br>2<br>3                                                                                     | 4.014962<br>70579,630206<br>2013501,845751                                                                                                                                                                                                                                                                                        | 1<br>2<br>3                                                             | 0.00000000412097                                                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>3                                                                   | 0.00000000041984<br>0.000007446706824<br>0.000467804060056                                                                                                                                                                                                                                                               |
| 1<br>2<br>3                                                                                     | 4.044962<br>70579.680206<br>2013501.845751<br>16254287.319537                                                                                                                                                                                                                                                                     | 1<br>2<br>3<br>4                                                        | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718                                                                                                                                                                                                                                                                                            | 1<br>2<br>3<br>4                                                              | 0.00000000041984<br>0.000007446706824<br>9.000467804060056<br>0.006174411700042                                                                                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5                                                                           | 4.014962<br>70579.680206<br>2013501.845751<br>16254287.315537<br>74464485.655362                                                                                                                                                                                                                                                  | 1<br>2<br>3<br>4<br>5                                                   | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729                                                                                                                                                                                                                                                                       | 1<br>2<br>3<br>4<br>5                                                         | 0.00000000041984<br>0.00007446706824<br>9.000467804060056<br>0.006174411700042<br>0.040470701432211                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5                                                                           | 4.044962<br>70579.630206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109                                                                                                                                                                                                                              | 1<br>2<br>3<br>4<br>5                                                   | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161                                                                                                                                                                                                                                                  | 1<br>2<br>3<br>4<br>5                                                         | 0.000000000041984<br>0.000007446706824<br>2.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6                                                                      | 4.044962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492                                                                                                                                                                                                          | 1<br>2<br>3<br>4<br>5<br>6<br>7                                         | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503863389161<br>0.632411820288661                                                                                                                                                                                                                             | 1<br>2<br>3<br>4<br>5<br>6                                                    | 0.000000000041984<br>0.000007446706824<br>0.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 4.044962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830                                                                                                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                    | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520                                                                                                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7                                               | 0.00000000041984<br>0.000007446706824<br>2.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496582592635                                                                                                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                            | 4.014962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264                                                                                                                                                                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                    | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                          | 0.00000000041984<br>0.000007446706824<br>2.090467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496582592635<br>4.21345549239397                                                                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | 4.014962<br>70579.680206<br>2013501.845751<br>16254287.315537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04797                                                                                                                                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                               | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503863389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                     | 0.000000000041984<br>0.00007446706824<br>2.090467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496582592635<br>4.213455492383897<br>9.38706866816208                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                 | 4.044962<br>70579,680206<br>2013501.845751<br>16254227.315537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04787<br>10950354859.8964                                                                                                                          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                         | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008                                                                                                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                               | 0.000000000041984<br>0.00007446706824<br>2.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496882592635<br>4.21345549239397<br>9.38706866816208<br>19.2601906211732                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                           | 4.044962<br>70579.630206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538336625.08830<br>3199843481.05264<br>6120019629.04787<br>10950354859.8964<br>18559069094.4899                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12             | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854                                                                                                                         | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                         | 0.000000000041984<br>0.00007446706824<br>0.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496582592635<br>4.21345549239397<br>9.38706866816208<br>19.2601906211732<br>36.9575071933381                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 4.044962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538336625.08830<br>3199843481.05264<br>6120019629.04797<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551                                                                                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13       | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854<br>44.9145349068349                                                                                                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13             | 0.000000000041984<br>0.000007446706824<br>0.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496582592635<br>4.21345549239397<br>9.38706866816208<br>19.2601906211732<br>36.9575071933381<br>67.0840672388398                                                  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 4.014962<br>70579,680206<br>2013501.845751<br>16264287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04707<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551<br>46912929749.3858                                                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820298661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854<br>44.9145349068349<br>73.8325135425724                                                                                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14       | 0.000000000041984 0.00007446706824 9.090467804060056 0.006174411700042 0.040470701432211 0.177837068021990 0.603023069251929 1.70496582592635 4.21345549239397 9.38706860816208 19.2601906211732 36.9575071933381 67.0840672388398 116.199096605888                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                   | 4.014962<br>70579.680206<br>2013501.845751<br>16254287.315537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04797<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551<br>46912929749.3858<br>70854734438.6501                                          | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                     | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503863389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854<br>44.9145349068349<br>73.8325135425724<br>117.055591134381                                                             | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 0.000000000041984<br>0.00007446706824<br>2.000467804060056<br>0.006174411700042<br>0.040470701432211<br>0.177837068021990<br>0.603023069251929<br>1.70496582592635<br>4.21345549239397<br>9.38706866816208<br>19.2601906211732<br>36.9575071933381<br>67.0840672388398<br>116.199096605888<br>193.381734112396           |
| 1<br>2<br>3<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                  | 4.044962<br>70579,680206<br>2013501.845751<br>16254227.315537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04797<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551<br>46912929749.3858<br>70854734438.6501<br>104062173772.731;                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                  | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1886340096854<br>44.9145349068349<br>73.8325135425724<br>117.055591134381<br>179.868293992428                                         | 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16                                          | 0.000000000041984 0.00007446706824 0.000467804060056 0.006174411700042 0.040470701432211 0.177837068021990 0.603023069251929 1.70496582592635 4.21345549239397 9.38706866816208 19.2601906211732 36.9575071933381 67.0840672388398 116.199096605888 193.381734112396 310.896861086180                                    |
| 1<br>2<br>3<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17            | 4.044962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04797<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551<br>46912929749.3858<br>70854734438.6501<br>104062173772.731;<br>149145363009.908 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                               | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854<br>44.9145349068349<br>73.8325135425724<br>117.055591134381<br>179.868293992428<br>268.944058464319                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                                     | 0.000000000041984 0.00007446706824 0.000467804060056 0.006174411700042 0.040470701432211 0.177837068021990 0.603023069251929 1.70496582592635 4.21345549239397 9.38706866816208 19.2601906211732 36.9575071933381 67.0840672588398 116.19909660588 193.381734112396 310.896861086180 484.969194640357                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | 4.014962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04707<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551<br>46912929749.3858<br>70854734408.6501<br>104062173772.731;<br>149145363009.908 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                            | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854<br>44.9145349068349<br>73.8325135425724<br>117.055591134381<br>179.868293992428<br>268.944058464319<br>392.582855830519 | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                | 0.000000000041984 0.00007446706824 9.000467804060056 0.006174411700042 0.040470701432211 0.177837068021990 0.603023069251929 1.70496582592635 4.21345549239397 9.38706866816208 19.2601906211732 36.9575071933381 67.0840672588398 116.199096605888 193.381734112396 310.8968618086180 484.969194640357 736.673815974298 |
| 1<br>2<br>3<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17            | 4.044962<br>70579.680206<br>2013501.845751<br>16254287.319537<br>74464485.655362<br>246809425.465109<br>663221854.378492<br>1538338625.08830<br>3199843481.05264<br>6120019629.04797<br>10950354859.8964<br>18559069094.4899<br>30071454047.5551<br>46912929749.3858<br>70854734438.6501<br>104062173772.731;<br>149145363009.908 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                               | 0.00000000412097<br>0.000022925658418<br>0.000970527865841<br>0.010018016859718<br>0.054896538745729<br>0.209503853389161<br>0.632411820288661<br>1.61951066204520<br>3.67183851633515<br>7.57951479373008<br>14.5226003859879<br>26.1896340096854<br>44.9145349068349<br>73.8325135425724<br>117.055591134381<br>179.868293992428<br>268.944058464319                     | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                                     | 0.000000000041984 0.00007446706824 0.000467804060056 0.006174411700042 0.040470701432211 0.177837068021990 0.603023069251929 1.70496582592635 4.21345549239397 9.38706866816208 19.2601906211732 36.9575071933381 67.0840672588398 116.19909660588 193.381734112396 310.896861086180 484.969194640357                    |

## Table 18 (Cont'd)

$$S_n(s) = \frac{\beta_s^n}{\beta_s [Ai(-\beta_s)]^2}$$

| s   | $10^{-12} \ \mathrm{s}_{12}$      | s  | 10 <sup>-13</sup> S <sub>13</sub> | s  | $10^{-14} \ \mathrm{s}_{14}$      |
|-----|-----------------------------------|----|-----------------------------------|----|-----------------------------------|
| 1   | 0.00000000004277                  | 1  | 0.000000000000435                 | 1  | 0.000000000000044                 |
| 2   | 0.000002418837510                 | 2  | 0.000000785686215                 | 2  | 0.000000255206406                 |
| 3   | 0.000225486198086                 | 3  | 0.000108686584552                 | 3  | 0.000052388012046                 |
| 4   | 0.003805479704761                 | 4  | 0.002345434105609                 | 4  | 0.001445563127527                 |
| 5   | 0.029835718459437                 | 5  | 0.021995420501467                 | 5  | 0.016215413873613                 |
| 6   | 0.150956759272163                 | 6  | 0.128139444849236                 | 6  | 0.108770997770739                 |
| 7   | 0.575019110878440                 | 7  | 0.548306543595701                 | 7  | 0.522834911157274                 |
| 8   | 1.79493012037706                  | 8  | 1.889641474 <b>3</b> 5996         | 8  | 1.98935037140675                  |
| 9   | 4.83496403978691                  | 9  | 5.54814861773950                  | 9  | 6,36653195995256                  |
| 10  | 11.6256858887170                  | 10 | 14.3981659409313                  | 10 | 17,8318238121151                  |
| 11  | 25.5432865261406                  | 11 | 33.8760658910224                  | 11 | 44.9271803406531                  |
| 12  | 52.1525935582191                  | 12 | 73.5951426761564                  | 12 | 103.853800089108                  |
| 13  | 100. 196341547860                 | 13 | 149.652626470000                  | 13 | 223.520223028019                  |
| 14  | 182.876478182462                  | 14 | 287.814684014727                  | 14 | 452.968545532945                  |
| 15  | 319.476367817286                  | 15 | 527.791055666118                  | 15 | 871,937415416185                  |
| 1.6 | 537.375743594411                  | 16 | 928.837585541267                  | 16 | 1605.46744172601                  |
| 17  | 874.513164905334                  | 17 | 1576.95227664900                  | 17 | 2843.61469057776                  |
| 18  | 1382.35356710639                  | 18 | 2593.95860563401                  | 18 | 4867 51103903714                  |
| 19  | 2129.42125240613                  | 19 | 4148.79862608335                  | 19 | 8083.19632404435                  |
| 20  | 3205 461370859#1                  | 20 | 6471.38784341062                  | 20 | 13064.8464525438                  |
|     | ""                                |    |                                   |    |                                   |
|     | $10^{-15}$ S <sub>15</sub>        | _  | 10 <sup>-16</sup> s <sub>16</sub> | ~  | 10 <sup>-17</sup> s <sub>17</sub> |
| 8   | 10 <sup>-15</sup> s <sub>15</sub> | s  | 10 S <sub>16</sub>                | B  | 10 517                            |
| 1   | 0.0000000000000004                | 1  | 0.00000000000000000               | 1  | 0.0000000000000000                |
| 2   | 0.000000082896083                 | 2  |                                   | 2  | 0.000000008746189                 |
| 3   | 0.000025251541554                 | 3  | 0.000012171493552                 | 3  | 0.000005866780647                 |
| 4   | 0.000890944985692                 | 4  | 0.000549116778379                 | 4  | 0.000338437547928                 |
| 5   | 0.011954290534023                 | 5  | 0.008812914877516                 | 5  | 0.006497037061069                 |
| 6   | 0.092330117162300                 | 6  | 0.078374297468267                 | 6  | 0.066527918434750                 |
| 7   | 0.498546565817380                 | 7  | 0.475386537861734                 | 7  | 0.453302411199334                 |
| 8   | 2.09432051207314                  | 8  | 2.20482951134879                  | 8  | 2,32116963286696                  |
| 9   | 7.30563147993173                  | 9  | 8.38325349755524                  | 9  | 9.61983086572674                  |
| 10  | 23.0843364197085                  | 10 | 27.3509832890735                  | 10 | 33.8736139797063                  |
| 11  | 59.5834103007953                  | 11 | 79.0208233891873                  | 11 | 104.799146231846                  |
| 12  | 146.553310459752                  | 12 | 206.808732933067                  | 12 | 291.838184229394                  |
| 13  | 333.848401334345                  | 13 | 498.63387555532                   | 13 | 744.756424945478                  |
| 14  | 712,891018554608                  | 14 | 1121.96224075091                  | 14 | 1765.76676786172                  |
| 15  | 1440.48454069219                  | 15 | 2379 75303649836                  | 15 | 3931.47191430589                  |
| 16  | 2775.00151432851                  | 16 | 4796.50549390571                  | 16 | 8290.61347688478                  |
| 17  | 5127.70400741145                  | 17 | 9246,45257838401                  | 17 | 16673.5219429065                  |
| 18  | 9133.78635406462                  |    | 17139.3659906726                  | 18 | 32161.6748164360                  |
| 19  | 15748.6705674905                  |    | 30683.4839462673                  | 19 | 59781.3118920848                  |
| 20  | 26376.1370758127                  | 20 | 53249 8112066678                  | 20 | 107504.081639991                  |

## Table 18 (Concluded)

$$S_n(s) = \frac{\beta_s^n}{\beta_s \left[Ai(-\beta_s)\right]^2}$$

| ·s | 10 <sup>-18</sup> s <sub>18</sub> - |    | $10^{-19}$ $s_{19}$ |    | 10 <sup>-20</sup> S <sub>20</sub> |
|----|-------------------------------------|----|---------------------|----|-----------------------------------|
| 1  | 0.000000000000000                   | 1  | 0.000000000000000   | 1  | 0.000000000000000                 |
| 2  | 0.00000002840935                    | 2  | 0.00000000922791    | 2  | 0.000000000299741                 |
| 3  | 0.000002827846476                   | 3  | 0.000001363050057   | 3  | 0.000000657003650                 |
| 4  | 0.000208589462857                   | 4  | 0.000128560097073   | 4  | 0.000079235539193                 |
| 5  | 0.004789730884681                   | 5  | 0.003531074508585   | 5  | 0.002603170717806                 |
| 6  | 0.056472135307532                   | 6  | 0.047936297139975   | 6  | 0.040690662235071                 |
| 7  | 0.432244204733653                   | 7  | 0.412164259244740   | 7  | 0.393017129526223                 |
| 8  | 2.44364856185536                    | 8  | 2.57259021887266    | 8  | 2 70833561648257                  |
| 9  | 11.0388103988715                    | 9  | 12.6670974493300    | 9  | 14.5355660612875                  |
| 10 | 41.9517540528257                    | 10 | 51.9563595771966    | 10 | 64.3468517935099                  |
| 11 | 138,986922432229                    | 11 | 184.327499810417    | 11 | 244.459166314201                  |
| 12 | 411.827511180944                    | 12 | 581.150473552076    | 12 | 820.090605266563                  |
| 13 | 1112,36351898397                    | 13 | 1661,41916594676    | 13 | 2481.48523200086                  |
| 14 | 2778.99929715819                    | 14 | 4373,64505560255    | 14 | £6883.3306 <u>6</u> 221275        |
| 15 | 6494,98967998760                    | 15 | 10730.0501854388    | 15 | 17726,5835135638                  |
| 16 | 14330.0725727167                    | 16 | 24769 0934466879    | 16 | 42812.6226896314                  |
| 17 | 30066.2693745379                    | 17 | 54216.5330874717    | 17 | 97765.1208870703                  |
| 18 | 60350.7345348181                    | 18 | 113246.936911095    | 18 | 212505,594481977                  |
| 19 | 116473, 255051386                   | 19 | 226927, 424522805   | 19 | 442127,731193173                  |
| 20 | 217036.028999305                    | 20 | 438166.041374418    | 20 | 884597.274926842                  |

Table 19  $\label{eq:computation} \mbox{COMPUTATION OF } \left\{ \exp\left[-i(n+1)\,\pi/3\right] M_n \right\}$ 

| n                                                                             | 0         | 1           | 2             | 3           | 4                     | 5          | 6          |
|-------------------------------------------------------------------------------|-----------|-------------|---------------|-------------|-----------------------|------------|------------|
| $-\sum_{n=1}^{1} \frac{\alpha_{n}^{n}}{\left[Al^{n}(-\alpha_{n})\right]^{2}}$ | -2.033774 | -4,7551830  | -11, 11812867 | -25.9953790 | -60.779988            | -142.11014 | -332, 268  |
| $\frac{\alpha_2^n}{2[\text{Al'}(-\alpha_2)]^2}$                               | -0.775208 | -3, 1690126 | -12.95476348  | -52,9564182 | -216. 491 <b>3</b> 36 | ~885.00564 | -3617.858  |
| $\frac{\alpha_2^{n+1}}{n+1}$                                                  | 4.087549  | 8.3556653   | 22.77169162   | 69.6171431  | 228.327161            | 777.82491  | 2725.484   |
| -761 ∆ f(2)                                                                   | -0.017670 | 0.0863920   | 1.23359208    | 9.9033070   | 67.316595             | 423.31658  | 2548 . 255 |
| M <sub>2</sub> Δ <sup>2</sup> f(2)                                            | -0.003500 | 0.0096340   | -0.00004156   | -1.3824861  | -21.186953            | -226,01932 | -2057.632  |
| -М <sub>3</sub> Δ <sup>3</sup> f(2)                                           | -0.001175 | 0.0025719   | -0.00002100   | -0.0880117  | 1,479564              | 52.05308   | 869.531    |
| M <sub>4</sub> $\Delta^4$ f(2)                                                | -0.000515 | 0.0009890   | -0.00001234   | -0.0195731  | 0,177440              | 0.00006    | -121, 833  |
| -M <sub>5</sub> △ <sup>5</sup> ((2)                                           | -0.000266 | 0.0004673   | -0.000007\$3  | -0.00566150 | 0.046019              | 0.         | 209        |
| M <sub>6</sub> Δ <sup>6</sup> f(2)                                            | -0.000153 | 6.0002522   | -0.00000542   | -0.0028664  | 0,018736              | 6.90002    | -1. 470    |
| -My 1 (2)                                                                     | -0.000005 | 0.0001494   | -0.00000389   | -0.0014315  | 0.007429              | 0.00002    | -0.459     |
| М <sub>8</sub> Д <sup>8</sup> ((2)                                            | -0.000032 | 0.0000948   | -0.00000389   | -9.000792É  | 0,003767              | 0.00001    | -0. 182    |
| -M <sub>g</sub> $\Delta^{9}$ ((2)                                             | -0.000043 | 0.0000834   | -0.00000221   | -0.0004756  | 0.002103              | 0.00001    | -9.084     |
| M <sub>10</sub> ^ 10 f(2)                                                     | -0.000031 | 0.0000443   | -0.00000173   | -0,0003025  | 0.001261              | 0.00001    | -0.043     |
| -M <sub>11</sub> Δ <sup>11</sup> ((2)                                         | -0.000023 | 0.0000320   | -0.09000139   | -0.0002018  | 0.000801              | 0.00001    | -0.024     |
| M <sub>12</sub> Δ <sup>12</sup> 1(2)                                          | -0.000017 | 0.0000237   | -0.00000113   | -0.0001398  | 0.000532              | 0.00000    | -0,014     |
| -M <sub>13</sub> $\Delta^{13}$ ((2)                                           | -0.000013 | 0.0000181   | -0.0000093    | -0.0001001  | C. 000367             | 0.00000    | -0.009     |
| M <sub>14</sub> $\Delta^{14}$ f(2)                                            | ~0.000010 | 0.0000140   | -0.90000077   | -0.0000736  | 0,000261              | 0.00000    | -0.006     |
| -M <sub>15</sub> $\Delta$ <sup>15</sup> f(2)                                  | -0.000008 | 0.0000111   | -0.00000065   | -0.0000554  | 0.000191              | 0.00000    | -0.004     |
| M <sub>15</sub> A <sup>16</sup> f(2)                                          | -0.000007 | 9,0000019   | -0.00000056   | -0.0600425  | 0.000143              | 6.00000    | -0.003     |
| -M <sub>17</sub> $\Delta^{17}$ f(2)                                           | -0.000005 | 0.0000072   | -0,00000049   | -0.0000332  | 0.000109              | 0,00000    | -0.002     |
| M <sub>18</sub> Δ <sup>18</sup> f(2)                                          | -0.000004 | 9, Jedon.,6 | -9,00000041   | 0.0000263   | 0.000084              | 0.00000    | -0.001     |
| p[-1(n+1)+3]M <sub>n</sub>                                                    | 1.255161  | 0. 53221/ 9 | -0.06-71380   | -0 7366265  | 1.077714              | 6.05965    | 4. 144     |

Table 20 COMPUTATION OF  $\left\{ \exp \left[ -i(n+1) \, \pi/3 \, \right] \, N_n \right\}$ 

|                                                                                                        | 0         | 1         | 2          | 3                | -1         | 5               | 6           |
|--------------------------------------------------------------------------------------------------------|-----------|-----------|------------|------------------|------------|-----------------|-------------|
| $-\sum_{g=1}^{1} \frac{\beta_{g}^{n}}{\beta_{g} \left[ \text{Ai} \left(-\beta_{g}\right) \right]^{2}}$ | 3.12091   | 3, 4×519  | -3.550691  | -3,61742         | -3.68540   | -3,754661       | -3,8252     |
| $\frac{\sum_{s=1}^{2} \beta_{s} [Ai(-\beta_{s})]^{2}}{\beta_{2}^{n}}$                                  |           |           |            |                  |            |                 |             |
| 2β <sub>2</sub> [Ai(-β <sub>2</sub> )] <sup>2</sup>                                                    | -0. A7673 | - 2.84786 | -9 250225  | -30.04656        | -97. 59716 | -317,014866     | - 1029,7269 |
| β <sub>2</sub> <sup>n+1</sup><br>n+1                                                                   | 3.24820   | 5.27539   | 11,423681  | 27,82978         | 72,31730   | 195.750726      | 545.0032    |
| -N <sub>1</sub> ∆ f(2)                                                                                 | -0.02665  | 0.10123   | 1,234037   | N, 37159         | 48, 22359  | 258,011329      | 1326.6929   |
| N <sub>2</sub> Δ <sup>2</sup> ((2)                                                                     | -0.00636  | 0.01328   | 0.000140   | 1,48041          | -19.79641  | -184,925698     | -1480.2752  |
| -N <sub>3</sub> $\Delta^3$ ((2)                                                                        | -0.00250  | 0.00398   | 0.000076   | -0.11118         | 1,66186    | 62,062655       | 777.1394    |
| N <sub>4</sub> $\Delta^4$ ((2)                                                                         | -0.00124  | 0.00167   | 9.000048   | -0.02803         | 0.22922    | -0.000197       | -128,0083   |
| -N <sub>5</sub> \( \Delta^5 \) (2)                                                                     | -0.00072  | 0,00085   | 0.000032   | -0,01056         | 0.06651    | -0.000129       | -8.6113     |
| Ν <sub>6</sub> Δ <sup>6</sup> ((2)                                                                     | -0.00045  | 0.00048   | 0,000023   | -0.00193         | 0.02656    | -0.000090       | -1.9519     |
| - N <sub>7</sub> Δ <sup>7</sup> .((2)                                                                  | -0.00031  | 0.00000   | 0.000017   | -0.00264         | 0.01277    | -0.000065       | -0.6676     |
| N <sub>8</sub> Δ <sup>9</sup> ((2)                                                                     | -0.00022  | 0.00020   | 0.000013   | <b>0</b> . 00156 | 0.00694    | -0.000040       | -0.2864     |
| -N <sub>9</sub> △ <sup>9</sup> f(2)                                                                    | -0.00016  | 0,00014   | 0.000011   | -0 00099         | 0.00412    | -0.0000 JR      | -0.1422     |
| N <sub>10</sub> Δ <sup>10</sup> ((2)                                                                   | -0.00012  | 0.00010   | 0 , 000000 | -0.00066         | 0.00261    | -0.000030       | -0.0783     |
| N <sub>11</sub> Δ <sup>11</sup> ((2)                                                                   | -0.00009  | 0.00007   | 0.000007   | -0.00046         | 0.00174    | -0.000024       | ~0.0488     |
| N <sub>12</sub> Δ <sup>12</sup> [(2)                                                                   | -0.0000×  | 0,00066   | 0.000006   | -0.00933         | 0.00121    | -0,000020       | -0.0294     |
| -N <sub>13</sub> Δ <sup>13</sup> ((2)                                                                  | 0.00006   | 9,00004   | 0.000005   | -0.00024         | 0 00087    | -0, 000017      | -0.0194     |
| N <sub>14</sub> Δ <sup>14</sup> ((2)                                                                   | -0.00003  | 0.00003   | 0.000004   | -0.00019         | 0.00064    | -0.000014       | -0.0134     |
| -N <sub>15</sub> Δ <sup>15</sup> ((2)                                                                  | -0.00004  | 0,00003   | 0.000004   |                  | 0.00049    | -0,000012       | -0.0095     |
| N <sub>16</sub> ^ 16 (2)                                                                               | -0,00004  | 0.00002   | ð. 000u03  |                  | 0.0003%    | 0.000011        | 0.0069      |
| -N <sub>17</sub> △ <sup>17</sup> ((2)                                                                  | -6.00003  | 0.00092   | 0.000003   |                  | 0.00029    | -0.000010       | -0.0052     |
| N <sub>18</sub> △ <sup>18</sup> f(2)                                                                   | -0.00003  | 0.00092   | 0, 090992  | -                | 6,00023    | -0.000010       | -0 0016     |
| exp[-1(n+1)r.3]X                                                                                       | -2,054,0  | -0,93504  | -0.142195  | 0.49521          | 1, 17536   | :<br>  0,334769 | -1.5722     |

Table 21

TABLE OF EULER-MACLAURIN COEFFICIENTS

We have shown that we can use the Euler-Maclaurin formula in the form

$$\sum_{s=1}^{\infty} f(s) = \sum_{s=1}^{N} f(s) - \frac{1}{2} f(N) + \int_{N}^{\infty} f(s) ds - \frac{1}{12} f'(N) + \frac{1}{720} f'''(N) - \frac{1}{30240} f^{(5)}(N) + \frac{1}{1209600} f^{(7)}(N) + \dots$$
(12.10)

and use Olver's relations to arrive at

$$\begin{split} \mathbf{M}_{\mathbf{n}} &= \exp \left[ \mathbf{i} \, (\mathbf{n} + 1) \, \frac{\pi}{3} \, \right] \, \lim_{\mathbf{N} \to \infty} \left\{ - \sum_{\mathbf{s} = 1}^{\mathbf{N}} \, \frac{\alpha_{\mathbf{s}}^{\mathbf{n}}}{\left[ \operatorname{Ai}' (-\alpha_{\mathbf{s}})^{\frac{n}{2}} \right]^{2}} \, + \frac{1}{2} \, \frac{\alpha_{\mathbf{N}}^{\mathbf{n}}}{\left[ \operatorname{Ai}' (-\alpha_{\mathbf{s}})^{\frac{n}{2}} \right]^{2}} \, + \frac{\alpha_{\mathbf{N}}^{\mathbf{n} + 1}}{\mathbf{n} + 1} \right. \\ &+ \frac{\pi^{2}}{12} \, \left( \mathbf{n} - \frac{1}{2} \right) \alpha_{\mathbf{N}}^{\mathbf{n} - 2} - \frac{\pi^{2}}{6} \, (\mathbf{n} - 2) \, \left[ \, \frac{1 \cdot 3 \cdot 5}{1! (96)} \, + \frac{\pi^{2}}{120} \, \left( \mathbf{n} \cdot \frac{1}{2} \right) \left( \mathbf{n} - \frac{7}{2} \right) \, \right] \alpha_{\mathbf{N}}^{\mathbf{n} - 5} \\ &+ \frac{\pi^{2}}{12} \, \left( \mathbf{n} - \frac{7}{2} \right) \, \left[ \, \frac{472}{231} \, \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2! (96)^{2}} \, + \frac{\pi^{2}}{15} \, (\mathbf{n} - 2) (\mathbf{n} - 5) \, \frac{1 \cdot 3 \cdot 5}{1! (96)} \, + \frac{\pi}{2520} \right. \\ &\left. \left( \mathbf{n} - \frac{1}{2} \right) (\mathbf{n} - 2) \, \left( \mathbf{n} - 5 \right) \left( \mathbf{n} - \frac{13}{2} \right) \, \right] \alpha_{\mathbf{N}}^{\mathbf{n} - 8} \, - \frac{\pi^{2}}{12} \, \left[ \, \frac{448}{221} \, (\mathbf{n} - 5) \, \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3! \, (96)^{3}} \right. \\ &\left. \left. + \frac{\pi^{2}}{15} \, \left( \frac{118}{231} \left( \mathbf{n} - \frac{7}{2} \right) (\mathbf{n} - 8) \left( \mathbf{n} - \frac{19}{2} \right) \, + \frac{5}{231} \, \left( \mathbf{n} - 2 \right) (\mathbf{n} - 5) \left( \mathbf{n} - \frac{19}{2} \right) + \frac{41}{77} \right. \\ &\left. \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - \frac{13}{2} \right) \left( \mathbf{n} - \frac{28}{41} \right) \, \right) \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2! \, \left( 96 \right)^{2}} \, + \frac{\pi^{4}}{420} \, \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - \frac{7}{2} \right) (\mathbf{n} - 5) \left( \mathbf{n} - \frac{13}{2} \right) \\ &\left. \left( \mathbf{n} - 8 \right) \frac{1 \cdot 3 \cdot 5}{1! \left( 96 \right)} \, + \frac{\pi}{100800} \, \left( \mathbf{n} - \frac{1}{2} \right) (\mathbf{n} - 2) \left( \mathbf{n} - \frac{7}{2} \right) (\mathbf{n} - 5) \left( \mathbf{n} - \frac{13}{2} \right) (\mathbf{n} - 8) \left( \mathbf{n} - \frac{19}{2} \right) \right] \\ &\left. \alpha_{\mathbf{N}}^{\mathbf{n} - 11} \, + \ldots \, \right\}$$

and

$$\begin{split} N_{\mathbf{n}} &= \exp \left[ \mathbf{i} (\mathbf{n} + 1) \frac{\pi}{3} \right] \lim_{\mathbf{N} \to \infty} \left\{ -\sum_{\mathbf{S} = 1}^{\mathbf{N}} \frac{\beta_{\mathbf{S}}^{\mathbf{n}}}{\beta_{\mathbf{S}} \left[ \mathrm{Ai} (-\beta_{\mathbf{S}}) \right]^2} + \frac{1}{2} \frac{\beta_{\mathbf{N}}^{\mathbf{n}}}{\beta_{\mathbf{N}} \left[ \mathrm{Ai} (-\beta_{\mathbf{S}}) \right]^2} \right. \\ &+ \frac{\beta_{\mathbf{N}}^{\mathbf{n} + 1}}{\mathbf{n} + 1} + \frac{\pi^2}{12} \left( \mathbf{n} - \frac{1}{2} \right) \beta_{\mathbf{N}}^{\mathbf{n} - 2} + \frac{\pi^2}{6} \left( \mathbf{n} - 2 \right) \left[ \frac{1 \cdot 3 \cdot 7}{1! (96)} - \frac{\pi^2}{120} \left( \mathbf{n} - \frac{1}{2} \right) \left( \mathbf{n} - \frac{7}{2} \right) \left( \mathbf{n} - \frac{7}{2} \right) \right] \\ &+ \beta_{\mathbf{N}}^{\mathbf{n} - 5} - \frac{\pi^2}{12} \left( \mathbf{n} - \frac{7}{2} \right) \left[ \frac{376}{15} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2! (96)^2} + \frac{\pi^2}{15} \right. 7 \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - 5 \right) \frac{1 \cdot 3}{1! (96)} - \frac{\pi^4}{2520} \right. \\ &+ \left( \mathbf{n} - \frac{1}{2} \right) \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - 5 \right) \left( \mathbf{n} - \frac{13}{2} \right) \right] \beta_{\mathbf{N}}^{\mathbf{n} - 8} + \frac{\pi^2}{12} \left[ \frac{2048}{55} \left( \mathbf{n} - 5 \right) \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15}{3! (96)^3} \right. \\ &+ \frac{\pi^2}{15} \left( \frac{94}{15} \left( \mathbf{n} - \frac{7}{2} \right) \left( \mathbf{n} - 8 \right) \left( \mathbf{n} - \frac{19}{2} \right) - \frac{7}{15} \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - 5 \right) \left( \mathbf{n} - \frac{19}{2} \right) + \frac{29}{5} \left( \mathbf{n} - 2 \right) \right. \\ &+ \left( \mathbf{n} - \frac{13}{2} \right) \left( \mathbf{n} - \frac{4}{29} \right) \right) \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2! (96)^2} + \frac{\pi^4}{60} \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - \frac{7}{2} \right) \left( \mathbf{n} - 5 \right) \left( \mathbf{n} - \frac{13}{2} \right) \left( \mathbf{n} - 8 \right) \frac{1 \cdot 3}{1! (96)} \\ &- \frac{6}{100800} \left( \mathbf{n} - \frac{1}{2} \right) \left( \mathbf{n} - 2 \right) \left( \mathbf{n} - \frac{7}{2} \right) \left( \mathbf{n} - 5 \right) \left( \mathbf{n} - \frac{13}{2} \right) \left( \mathbf{n} - 8 \right) \left( \mathbf{n} - \frac{19}{2} \right) \right] \beta_{\mathbf{N}}^{\mathbf{n} - 11} + \dots \right\} \end{aligned}$$

In Tables 22 and 23 we illustrate the use of this method to compute  $M_n$  and  $N_n$  (in the case of  $N_n$  certain entries for n < o are included and will be discussed later). The coefficients are defined by

Table 22  $\begin{array}{c} \text{COMPUTATION OF } \left\{ \exp \left[ -i (n+1) \, \frac{\pi}{3} \, \right] \, M_n \, \right. \\ \\ \text{Method B} \end{array}$ 

| ເດ  | -33383917. 29544                                        | 2452176, 85861                                       | 30841396.58328                                                                  | 50347,00713                        | -3.51069                     | 0.00010                         | 0,00000                   | 0.04.297                                   |
|-----|---------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|------------------------------|---------------------------------|---------------------------|--------------------------------------------|
| 4   | -1656407.4317220-33383917.29544                         | 104399.3938167                                       | 1550366.6074702                                                                 | 1640. 3945115                      | -0.0413697                   | 0.0000020                       | 0:0000000                 | -1.0772913                                 |
| က   | -85605.9078826                                          | 4373.3787960                                         | 81182.7085295                                                                   | 49.0839370                         | -0.0001543                   | -0.0000001                      | 0.000000                  | -0.7367745                                 |
| 23  | -292.0853239700 -4718.9222673865                        | 183. 2045320751                                      | 4534, 4163167156                                                                | 1.2337005502                       | 0                            | -0.0000000077                   | 0.0000000000              | -0.0677180533                              |
| r-I | -292.0853239700                                         | 7.6745926065                                         | 284, 9257947774                                                                 | 0.0172269194                       | 0.0000002707                 | -0.000000000                    | 6. 6300000000             | 0.5322906035                               |
| 0   | -22.9372135443                                          | 0.3214951672                                         | 23.8715644555                                                                   | -0.0007216502                      | 0.0000001274                 | -0.000000000                    | 0.000000000               | 1. 2551245555                              |
| u   | $\sum_{s=1}^{25} \frac{\alpha^n}{-Ai'(-\alpha_s)^{-2}}$ | $\frac{\alpha_{25}}{2[\mathrm{Ai}(-\alpha_{25})]^2}$ | $\begin{array}{c} \alpha & n+1 \\ \hline \alpha & 25 \\ \hline n+1 \end{array}$ | $^{ m A}_{ m (n-2)}^{(lpha_{25})}$ | $^{A}_{(n-5)}(^{lpha}_{25})$ | $^{ m A}_{ m (n-8)}(lpha_{25})$ | $A_{(n-11)}(\alpha_{25})$ | $\exp\left[-i(n+1)\frac{\pi}{3}\right]M_n$ |

COMPUTATION OF  $\begin{cases} \exp[-i(n+1), \frac{\pi}{3}]N_n \end{cases}$ Method B Table 23

| n                                                                                  | <u>.</u> -                              | 9-             | -5            | 7-                                      | £.             | 2-           |
|------------------------------------------------------------------------------------|-----------------------------------------|----------------|---------------|-----------------------------------------|----------------|--------------|
| $-\sum_{s=1}^{20} \frac{\beta_s^n}{\beta_s \left[\frac{Ai(-\beta_s)}{2}\right]^2}$ | -3.00337899264                          | -3.0609672180  | - 3.122473666 | - 3.1956891566                          | - 3. 3.4033453 | -3.655406461 |
| $\frac{\beta_{20}}{2\beta_{20} \left[\operatorname{Ai}(-\beta_{20})\right]^2}$     | 0.0000000025                            | 0.000000052    | 0.00000104    | 0.0000021045                            | 0.000342487    | 0.000857757  |
| β <sub>20</sub> n+1 n+1 n+1                                                        | -0.0000000246                           | -6,000000596   | -0.00001505   | -0.0000405096                           | -0.001226750   | -0.449532827 |
| $^{\mathrm{B}}_{(\mathrm{n-2})}^{(eta_{20})}$                                      | -0.0000000000                           | -0.0000000000  | -0.00000003   | -0.0000000547                           | -0.006000858   | -0.000012377 |
| B <sub>(n-5)</sub> (i3 <sub>20</sub> )                                             | 0.00000000000                           | 0.000000000    | 0.00000000    | 0.0000000000                            | 9, 000000000   | 6.000000004  |
| B <sub>(n-8)</sub> (\beta_{20})                                                    | 0.0000000000                            | -0. 0000000000 | -0.000000000  | -0.300000000                            | -0.000000000   | -0.000000000 |
| B <sub>(n-11)</sub> (β <sub>20</sub> )                                             | 0.0000000000000000000000000000000000000 | 0.0000000000   | 0.000000000   | 000000000000000000000000000000000000000 | 0.00000000     | 0.000000000  |
| $\exp\left[-i(n+1)\frac{\pi}{3}\right]N_n$                                         | -3.00337899486                          | -3.0609672726  | -3.122475070  | - 3, 1957276164                         | - 3, 315218574 | -3,704093504 |

Table 23 (Cont'd) COMPUTATION OF  $\left\{ \exp\left[-i(n+1)\frac{\pi}{3}\right]N_n \right\}$ 

lethod B

|    | 359779                                                                              | 136762                                                                              | 301758                                      | 12840                           | -1.660143                             | -0.000193                             | 0.000000                                                | -1.568755                                  |
|----|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------------------|--------------------------------------------|
| ē0 | -12487651.959779                                                                    | 1172498, 736762                                                                     | 11284698.8                                  | 30454.512840                    | -1.6                                  | -0.0                                  | -0.0                                                    | -1.5                                       |
| 4  | -730004, 7322236                                                                    | 58077.1775547                                                                       | 670755, 6957604 11284698, 801758            | 1173, 2763216                   | 0.0121921                             | -0, 0000008                           | -0.0000000                                              | 1.4296044                                  |
|    | -7300                                                                               |                                                                                     |                                             |                                 |                                       |                                       |                                                         |                                            |
| 3  | -44447.880776258                                                                    | 2876.726813697                                                                      | 41530,535731313                             | 41.511205676                    | 0.001297760                           | 0. 000000/1039                        | -0.00000(000                                            | 0.894280226                                |
| 67 | -2586, 7020162289                                                                   | 142,4924126407                                                                      | 2742. 832989591 )                           | 1,2337005503                    | j<br>j                                | 0.0000000334                          | -0. 0000000000                                          | -0.1429634236                              |
| 1  | -211,803765579                                                                      | 7.058052681                                                                         | 203, 790421112                              | 0.020369559                     | 9.0000C31S4                           | - ō . ʊʊʊʊʊʊəə                        | -0.000000000                                            | -0.934525405                               |
| c  | -21,628118363                                                                       | 0.349605275                                                                         | 20.188631509                                | -(). 1601.65358                 | -0.000000073                          | 0.000000000-0-                        | -0.03000000                                             | -1.038558614                               |
| -1 | -5,506732411                                                                        | 0.017316938                                                                         | $\gamma + \ln \beta_{20} =$ 3.552335314     | -0,000149930                    | 0.000000024                           | -0.00000000                           | 0.00000000                                              | -1.907230065                               |
| u  | $-\sum_{s=1}^{20}\frac{\beta_s^n}{3_s^n\left[\operatorname{Al}(-\beta_s)\right]^2}$ | $\frac{\beta_{20}^{n}}{2\beta_{20}\left[\operatorname{Ai}(-\beta_{20})\right]^{2}}$ | $\beta_{20}^{n+1}$ $\frac{\beta_{20}}{n+1}$ | B <sub>(n-2)</sub> (\beta_{20}) | B <sub>(n-5)</sub> (β <sub>20</sub> ) | B <sub>(n-3)</sub> (β <sub>20</sub> ) | $^{'}$ $^{'}$ $^{'}$ $^{'}$ $^{'}$ $^{'}$ $^{'}$ $^{'}$ | $\exp\left[-i(n+1)\frac{\pi}{3}\right]N_n$ |

$$\begin{split} &\Lambda_{(n-2)}(\alpha_{25}) - \frac{\pi^2}{12} \left( n - \frac{1}{2} \right) \alpha_{25}^{n-2} \\ &\Lambda_{(n-5)}(\alpha_{25}) = -\frac{\pi^2}{6} \left( n - 2 \right) \left[ -\frac{1 \cdot 3 \cdot 5}{1 \cdot (96)} + \frac{\pi^2}{120} \left( n - \frac{1}{2} \right) \left( n - \frac{7}{2} \right) \right] \alpha_{25}^{n-5} \\ &\Lambda_{(n-8)}(\alpha_{25}) = \frac{\pi^2}{12} \left( n - \frac{7}{2} \right) \left[ -\frac{472}{231} \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2 \cdot (96)^2} + \frac{\pi^2}{15} \left( n - 2 \right) \left( n - 5 \right) \cdot \frac{1 \cdot 3 \cdot 5}{1 \cdot (96)} \right. \\ &\quad + \frac{\pi^4}{2520} \left( n - \frac{1}{2} \right) \left( n - 2 \right) \left( n - 5 \right) \left( n - \frac{13}{2} \right) \right] \alpha_{25}^{n-8} \\ &\Lambda_{(n-11)}(\alpha_{25}) = -\frac{\pi^2}{12} \left\{ -\frac{448}{221} \left( n - 5 \right) \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17}{3 \cdot (96)^3} + \frac{\pi^2}{15} \right. \\ &\quad \left[ -\frac{118}{231} \left( n - \frac{7}{2} \right) \left( n \cdot 8 \right) \left( n - \frac{1}{2} \right) + \frac{5}{231} \left( n - 2 \right) \left( n - 5 \right) \left( n - \frac{19}{2} \right) \right. \\ &\quad + \frac{41}{77} \left( n - 2 \right) \left( n - \frac{13}{2} \right) \left( n - \frac{28}{41} \right) \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2 \cdot (96)^2} \\ &\quad + \frac{\pi^4}{420} \left( n - 2 \right) \left( n - \frac{7}{2} \right) \left( n - 5 \right) \left( n - \frac{13}{2} \right) \left( n - 8 \right) \cdot \frac{1 \cdot 3 \cdot 5}{1 \cdot (96)} \\ &\quad + \frac{\pi^6}{100800} \left( n - \frac{1}{2} \right) \left( n - 2 \right) \left( n - \frac{7}{2} \right) \left( n - 5 \right) \left( n - \frac{13}{2} \right) \left( n - 8 \right) \left( n - \frac{19}{2} \right) \right. \right. \right. \\ &\quad + \frac{\pi^6}{100800} \left( n - \frac{1}{2} \right) \left( n - 2 \right) \left( n - \frac{7}{2} \right) \left( n - 5 \right) \left( n - \frac{13}{2} \right) \left( n - 8 \right) \left( n - \frac{19}{2} \right) \right. \right. \right.$$

and

$$\begin{split} \mathbf{B}_{(\mathbf{n}-2)}(\beta_{20}) &= \frac{\pi^2}{12} \left(\mathbf{n} - \frac{1}{2}\right) \beta_{20}^{-\mathbf{n}-2} \\ \mathbf{B}_{(\mathbf{n}-5)}(\beta_{20}) &= \frac{\pi^2}{6} \left(\mathbf{n}-2\right) \left[ \frac{1 \cdot 3 \cdot 7}{1!(96)} - \frac{\pi^2}{120} \left(\mathbf{n} - \frac{1}{2}\right) \left(\mathbf{n} - \frac{7}{2}\right) \right] \beta_{20}^{-\mathbf{n}-5} \\ \mathbf{B}_{(\mathbf{n}-8)}(\beta_{20}) &= -\frac{\pi^2}{12} \left(\mathbf{n} - \frac{7}{2}\right) \left[ \frac{376}{15} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2!(96)^2} + \frac{\pi^2}{15} 7(\mathbf{n} - 2)(\mathbf{n} - 5) \frac{1 \cdot 3}{1!(96)} \right. \\ &\qquad \qquad - \frac{\pi^4}{2520} \left(\mathbf{n} - \frac{1}{2}\right)(\mathbf{n} - 2)(\mathbf{n} - 5) \left(\mathbf{n} - \frac{13}{2}\right) \right] \beta_{20}^{-\mathbf{n}-8} \\ \mathbf{B}_{(\mathbf{n}-11)}(\beta_{20}) &= -\frac{\pi^2}{12} \left\{ \frac{2048}{55} \left(\mathbf{n} - 5\right) \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15}{3! (96)^3} + \frac{\pi^2}{15} \left[ \frac{94}{15} \left(\mathbf{n} - \frac{7}{2}\right)(\mathbf{n} - 8) \left(\mathbf{n} - \frac{19}{2}\right) - \frac{7}{15} (\mathbf{n} - 2)(\mathbf{n} - 5) \left(\mathbf{n} - \frac{19}{2}\right) + \frac{29}{5} (\mathbf{n} - 2) \left(\mathbf{n} - \frac{13}{2}\right) \left(\mathbf{n} - \frac{4}{29}\right) \right] \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2!(96)^2} \\ &\qquad \qquad + \frac{\pi^4}{60} (\mathbf{n} - 2) \left(\mathbf{n} - \frac{7}{2}\right)(\mathbf{n} - 5) \left(\mathbf{n} - \frac{13}{2}\right)(\mathbf{n} - 8) \frac{1 \cdot 3}{1!(96)} \\ &\qquad \qquad - \frac{\pi^6}{100800} \left(\mathbf{n} - \frac{1}{2}\right)(\mathbf{n} - 2) \left(\mathbf{n} - \frac{7}{2}\right)(\mathbf{n} - 5) \left(\mathbf{n} - \frac{13}{2}\right)(\mathbf{n} - 8) \left(\mathbf{n} - \frac{19}{2}\right) \right\} \beta_{20}^{-\mathbf{n}-11} \end{split}$$

# Section 13

FURTHER REPRESENTATIONS FOR  $f(\xi)$ ,  $g(\xi)$ ,  $p(\xi)$ ,  $q(\xi)$ 

We can also show that

$$f^{(n)}(0) = \exp\left(i\frac{5n\pi}{6} - i\frac{\pi}{3}\right)\sqrt{\pi} \left(\frac{3\pi}{2}\right)^{\frac{2}{3}\left(n - \frac{1}{4}\right)} \sum_{m=0}^{\infty} A_{m}(n) \left(\frac{2}{3\pi}\right)^{2m} \tau \left(2m - \frac{4n-1}{6}, \frac{3}{4}\right)$$

$$g^{(n)}(0) = \exp\left(i\frac{5n\pi}{6}\right)\sqrt{\pi} \left(\frac{3\pi}{2}\right)^{\frac{2}{3}\left(n - \frac{3}{4}\right)} \sum_{m=0}^{\infty} B_{m}(n) \left(\frac{2}{3\pi}\right)^{2m} \tau \left(2m - \frac{4n-3}{6}, \frac{1}{4}\right)$$

$$p^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \pi \left(\frac{3\pi}{2}\right)^{\frac{2}{3}\left(n - \frac{1}{2}\right)} \sum_{m=0}^{\infty} C_{m}(n) \left(\frac{2}{3\pi}\right)^{2m} \xi \left(2m - \frac{2n-1}{3}, \frac{3}{4}\right)$$

$$q^{(n)}(0) = -\frac{\exp\left[i\frac{(5n-1)\pi}{6}\right]}{2\sqrt{\pi}} \pi \left(\frac{3\pi}{2}\right)^{\frac{2}{3}\left(n - \frac{1}{2}\right)} \sum_{m=0}^{\infty} D_{m}(n) \left(\frac{2}{3\pi}\right)^{2m} \xi \left(2m - \frac{2n-1}{3}, \frac{1}{4}\right)$$

(13.1)

where  $\xi(\lambda, \mu)$  is the generalized zeta function and  $\int \tau(\lambda, \mu)$  is the generalized taufunction

$$\tau(\lambda, \mu) = 2^{1-\lambda} \xi(\lambda, \frac{\mu}{2}) - \xi(\lambda, \mu)$$

$$\xi(\lambda, \mu) = \sum_{n=0}^{\infty} \frac{1}{(n+\mu)^{\lambda}}$$

$$\tau(\lambda, \mu) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+\mu)^{\lambda}}$$

$$\lambda > 1$$

$$(13. 2)$$

The coefficients  $A_{m}(n)$ , ...  $D_{m}(n)$  are given by

$$A_{o}(n) = 1 \qquad A_{1}(n) = \frac{5}{48}(n-1)$$

$$A_{2}(n) = \frac{6}{2^{9} \cdot 3^{2}} \left(5n^{2} - 143n + \frac{26385}{16}\right)$$

$$A_{3}(n) = \frac{25}{2^{13}} \frac{1}{3^{4}} \left(5n^{3} - 414n^{2} + \frac{435025}{16}n - \frac{676598}{4}\right)$$
etc.
$$B_{o}(n) = 1$$

$$B_{1}(n) = -\frac{7}{48} \left(n - \frac{3}{2}\right)$$

$$B_{2}(n) = \frac{1}{2^{9} \cdot 3^{2}} \left(49n^{2} + 364n + \frac{39849}{16}\right)$$

$$B_{3}(n) = -\frac{25}{2^{13} \cdot 3^{4}} \left(49n^{3} + \frac{2625}{2}n^{2} + \frac{5623119}{80}n + 38887952\right)$$
etc.
$$C_{0}(n) = 1$$

$$C_{1}(n) = \frac{5}{48} (n-2)$$

$$C_{2}(n) = \frac{5}{2^{9} \cdot 3^{2}} (n-5)(5n-128)$$

$$C_{3}(n) = \frac{25}{2^{13} \cdot 3^{4}} (n^{3} - 429n^{2} + 52832n - 209780)$$

etc.

$$D_0(n) = 1$$

$$D_1(n) = -\frac{7}{48} (n - 2)$$

$$D_2(n) = \frac{7}{2^9 \cdot 3^2} (7n + 80)(n - 5)$$

$$D_3(n) = -\frac{1}{2^{13} \cdot 3^4} \left(343n^3 + 8673n^2 + \frac{6175701}{10}n - \frac{109}{20} \frac{552}{20}\right)$$

We can also show that

$$\sum_{\mathbf{s}=\mathbf{N}}^{\infty} \frac{\left(\alpha_{\mathbf{s}}\right)^{\mathbf{n}}}{\mathrm{Ai'}(-\alpha_{\mathbf{s}})} = \mathrm{R}_{\mathbf{E}} \left\{ \frac{\left(-a_{\mathbf{N}}\right)^{\mathbf{n}}}{\mathrm{Ai'}(a_{\mathbf{N}})} \right\} = \left(-1\right)^{\mathbf{N}-1} \sqrt{\pi} \left(\frac{3\pi}{2}\right)^{\frac{2}{3}\left(\mathbf{n}-\frac{1}{4}\right)} \sum_{\mathbf{m}=0}^{\infty} \mathrm{A}_{\mathbf{m}}(\mathbf{n}) \left(\frac{2}{3\pi}\right)^{2\mathbf{m}} \tau \left(2\mathbf{m}-\frac{4\mathbf{n}-1}{6},\,\mathbf{N}-\frac{1}{4}\right)$$

$$\sum_{\mathbf{s}=\mathbf{N}}^{\infty} \frac{(\beta_{\mathbf{s}})^{n-1}}{\text{Ai}(-\beta_{\mathbf{s}})} = \text{R}_{\mathbf{E}} \left\{ \frac{(-a_{\mathbf{N}})^{n-1}}{\text{Ai}(a_{\mathbf{N}}^{\top})} \right\} = (-1)^{\mathbf{N}-1} \sqrt{\pi} \cdot \left(\frac{3\pi}{2}\right)^{\frac{2}{3}\left(n-\frac{3}{4}\right)} \sum_{m=0}^{\infty} \text{B}_{m}(n) \left(\frac{2}{3\pi}\right)^{2m} \tau \left(2m - \frac{4n-3}{6}, N - \frac{3}{4}\right)$$

$$\sum_{s=N}^{\infty} \frac{(\alpha_s)^n}{\left[\Lambda_i'(-\alpha_s)\right]^2} = \pi \left(\frac{3\pi}{2}\right)^{\frac{2n-1}{3}} \sum_{m=0}^{\infty} C_m(n) \left(\frac{2}{3\pi}\right)^{2m} \xi \left(2m - \frac{2n-1}{3}, N - \frac{1}{4}\right)$$

$$\sum_{s=N}^{\infty} \frac{\left(\beta_{s}\right)^{n-1}}{\left[\operatorname{Ai}(-\beta_{s})\right]^{2}} = \pi \left(\frac{3\pi}{2}\right)^{\frac{2n-1}{3}} \sum_{m=0}^{\infty} \operatorname{D}_{m}(n) \left(\frac{2}{3\pi}\right)^{2m} \zeta \left(2m - \frac{2n-1}{3}, N - \frac{3}{4}\right)$$

The tau function can be written in the form

$$\tau(\lambda, \mu) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n + \mu)^{\lambda}}$$

for all values of  $\lambda$  since this is a summable divergent series for Re  $\lambda < 1$ , a uniformly convergent series for Re  $\lambda > 1$ , and a conditionally convergent series for  $\lambda = 1$ . The Euler summation process can be used on this series to obtain the values of the tau function for  $\lambda < 1$ . However, the form involving differences is unsatisfactory for analytical purposes and in its place we use the result

$$\begin{split} \sum_{n=0}^{\infty} \ (-1)^n \ T(n) &= \sum_{n=0}^{N-1} (-1)^n \ T(n) \ + \ (-1)^N \left\{ \frac{\mathrm{i}}{2} \ T(N) - \frac{1}{4} \frac{\mathrm{d}}{\mathrm{d}N} \ T(N) \ + \frac{1}{48} \frac{\mathrm{d}^3}{\mathrm{d}N^3} \ T(N) \right. \\ &\left. - \frac{1}{480} \ \frac{\mathrm{d}^5}{\mathrm{d}N^5} \ T(N) \ + \frac{17}{80540} \frac{\mathrm{d}^7}{\mathrm{d}N^7} \ T(N) \ + \ldots \right. \\ &\left. + \ (-1)^n \ (2^{2n} - 1) \ \frac{\mathrm{B}_n}{(2n)!} \frac{\mathrm{d}^{2n-1}}{\mathrm{d}N^{2n-1}} \ T(N) \ + \ldots \right\} \end{split}$$

where B<sub>n</sub> are the Bernoulli numbers

$$B_1 = \frac{1}{6}$$
,  $B_2 = \frac{1}{30}$ ,  $B_3 = \frac{1}{42}$ ,  $B_4 = \frac{1}{30}$ ,  $B_5 = \frac{5}{66}$ ,  $B_6 = \frac{691}{2730}$ ,  $B_7 = \frac{7}{6}$ , ...

Therefore, we take

$$\tau(\lambda, \mu) = \sum_{n=1}^{N-1} \frac{(-1)^n}{(n+\mu)^{\lambda}} + (-1)^N \left\{ \frac{1}{2} (N+\mu)^{-\lambda} + \frac{\lambda}{4} (N+\mu)^{-\lambda-1} - \frac{\lambda(\lambda+1)(\lambda+2)}{48} (N+\mu)^{-\lambda-3} + \frac{\lambda(\lambda+1)(\lambda+2)(\lambda+3)(\lambda+4)}{480} (N+\mu)^{-\lambda-5} - \dots \right\}$$

In the case of the zeta function the series

$$\xi(\lambda, \mu) = \sum_{n=0}^{\infty} \frac{1}{(n+\mu)^{\lambda}}$$

is a summable divergent series for  $\,{\rm R}_{e\,\lambda}\, \leq \, 1\,$  and

a uniformly convergent series for  $\text{Re }\lambda > 1$ . For  $\lambda = 1$  the zeta function is not defined. This divergent series can be summed by using the Euler-Maclaurin summation formula in a form involving derivatives, namely

$$\sum_{n=0}^{\infty} T(n) = \sum_{n=0}^{N-1} T(n) + \frac{1}{2} T(N) + \int_{N}^{\infty} T(n) dn - \frac{1}{12} \frac{d}{dN} T(N) + \frac{1}{720} \frac{d^3}{dN^3} T(N)$$

$$- \frac{1}{30240} \frac{d^5}{dN^5} T(N) + \frac{1}{1209600} \frac{d^7}{dN^7} T(N) - \frac{1}{47900160} \frac{d^9}{dN^9} T(N)$$

$$+ \dots (-1)^n \frac{B_n}{(2n)!} \frac{d^{2n-1}}{dN^{2n-1}} T(N) + \dots$$
(13. 3)

Therefore, we take

$$\xi(\lambda,\mu) = \sum_{n=1}^{N-1} \frac{1}{(n+\mu)^{\lambda}} + \frac{1}{2}(n+\mu)^{-\lambda} + \frac{1}{(\lambda-1)}(n+\mu)^{-\lambda+1} + \frac{\lambda}{12}(n+\mu)^{-\lambda-1} - \frac{\lambda(\lambda+1)(\lambda+2)}{720}(n+\mu)^{-\lambda-3} + \frac{\lambda(\lambda+1)(\lambda+2)(\lambda+3)(\lambda+4)}{30240}(n+\mu)^{-\lambda-5} - \frac{\lambda(\lambda+1)(\lambda+2)(\lambda+3)(\lambda+4)(\lambda+5)(\lambda+6)}{1209600}(n+\mu)^{-\lambda-7} + \dots$$
(13.4)

In the work of Fock it is suggested that the integrals be expressed in the forms

$$\mathbf{f}(\xi) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\exp(\mathbf{i}\xi t)}{\mathrm{Bi}(t) + \mathrm{i}\mathrm{Ai}(t)} \, \mathrm{d}t + \frac{\exp\left(-\mathrm{i}\frac{2\pi}{3}\right)}{\pi} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + \mathrm{i}}{2}\xi t\right) \frac{1}{\mathrm{Bi}(t) - \mathrm{i}\mathrm{Ai}(t)} \, \mathrm{d}t$$

$$g(\xi) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\exp(i\xi t)}{Bi'(t) + i Ai'(t)} dt + \frac{1}{\pi} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + i}{2} \xi t\right) \frac{1}{Bi'(t) - i Ai'(t)} dt$$

$$p(\xi) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp(i\xi t) \frac{Ai(t)}{Bi(t) + i Ai(t)} dt + \frac{\exp\left(-i\frac{\pi}{3}\right)}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + i}{2} \xi t\right) \frac{Ai(t)}{Bi(t) - i Ai(t)} dt$$

$$q(\xi) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp(i\xi t) \frac{Ai'(t)}{Bi'(t) + i Ai'(t)} dt + \frac{\exp\left(-i\frac{\pi}{3}\right)}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + i}{2} \xi t\right) \frac{Ai'(t)}{Bi'(t) - i Ai'(t)} dt$$

It should be observed that

$$\frac{1}{\pi} \int_{-\infty}^{0} \exp(i\xi t) \frac{1}{Bi(t) + i Ai(t)} dt = \frac{\exp\left(-i\frac{2\pi}{3}\right)}{\pi} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + i}{2} \xi t\right) \frac{1}{Bi(t) - i Ai(t)} dt$$

$$\frac{1}{\pi} \int_{-\infty}^{0} \exp(i\xi t) \frac{1}{Bi'(t) + i Ai'(t)} dt = \frac{1}{\pi} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + i}{2} \xi t\right) \frac{1}{Bi'(t) - i Ai'(t)} dt$$

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} \exp(i\xi t) \frac{Ai(t)}{Bi(t) + i Ai(t)} dt = -\frac{i}{2\sqrt{\pi}} \int_{-\infty}^{0} \exp(i\xi t) \frac{Bi(t) - i Ai(t)}{Bi(t) + i Ai(t)} dt$$

$$+ \frac{i}{2\sqrt{\pi}} \int_{-\infty}^{0} \exp(i\xi t) \frac{Bi(t) - i Ai(t)}{Bi(t) + i Ai(t)} dt$$

$$= -\frac{1}{2\sqrt{\pi} \xi} + \frac{\exp\left(-i\frac{\pi}{3}\right)}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3} + i}{2} \xi t\right)$$

$$\frac{Ai(t)}{Bi'(t) - i Ai'(t)} dt$$

$$\frac{Ai'(t)}{Bi'(t) - i Ai'(t)} dt = -\frac{Ai'(t)}{Bi'(t) - i Ai'(t)} dt$$

$$\frac{Ai'(t)}{Bi'(t) - i Ai'(t)} dt$$

The integrals of the form

$$\int_{\infty}^{0} \exp(i\xi t) \cdot \cdot \cdot dt$$

are characterized by integrands which make them improper integrals. For example, for t  $\rightarrow -\infty$ , the integrands of  $\hat{p}(\xi)$  and  $\hat{q}(\xi)$  have the properties

$$\frac{\text{Bi}(t) - i \text{Ai}(t)}{\text{Bi}(t) + i \text{Ai}(t)} \xrightarrow[t \to -\infty]{} \exp \left[-i2\left[\frac{2}{3}(-t)^{\frac{3}{2}} + \frac{\pi}{4}\right]\right]$$

$$\frac{\text{Bi'(t)} - 1 \,\text{Ai'(t)}}{\text{Bi'(t)} + 1 \,\text{Ai'(t)}} \xrightarrow{\text{t} \to \infty} -\exp\left\{-12\left[\frac{2}{3}\left(-t\right)^{\frac{3}{2}} + \frac{\pi}{4}\right]\right\}$$

which permits us to write

$$\frac{i}{2\sqrt{\pi}} \int_{-\infty}^{0} \frac{\operatorname{Bi}(t) - i \operatorname{Ai}(t)}{\operatorname{Bi}(t) + i \operatorname{Ai}(t)} \exp(i\xi t) dt \xrightarrow{\xi \to -\infty} \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{0} \exp\left[i\xi t - i\frac{4}{3}(-t)^{\frac{3}{2}}\right] dt$$

$$\frac{i}{2\sqrt{\pi}} \int_{-\infty}^{0} \frac{\operatorname{Bi}'(t) - i \operatorname{Ai}'(t)}{\operatorname{Bi}'(t) + i \operatorname{Ai}'(t)} \exp(i\xi t) dt \xrightarrow{\xi \to -\infty} -\frac{1}{2\sqrt{\pi}} \int_{-\infty}^{0} \exp\left[i\xi t - i\frac{4}{3}(-t)^{\frac{3}{2}}\right] dt \qquad (13.6)$$

The improper integral

$$I(\xi) = \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} \exp\left[i\xi t - i\frac{4}{3}(-t)^{\frac{3}{2}}\right] dt, \quad \xi < 0$$

has a point of stationary phase at  $t^{1/2} = -(\xi/2)$ . If we write

$$\xi t - \frac{4}{3}(-t)^{3/2} = -\frac{\xi^3}{12} - \frac{1}{(-\xi)} \left(t - \frac{\xi^2}{4}\right)^2 + \cdots$$

we note that

$$I(\xi) = \frac{1}{2\sqrt{\pi}} \exp\left(-i\frac{\xi^3}{12}\right) \int_{-\infty}^{0} \exp\left[-i\frac{1}{(-\xi)}\left(t - \frac{\xi^2}{4}\right)^2\right] dt$$
$$= \frac{1}{2\sqrt{\pi}} \exp\left(-i\frac{\xi^3}{12}\right) \int_{-\infty}^{\xi^2} \frac{\xi^2}{4} \exp\left[-i\frac{1}{(-\xi)}u^2\right] du$$

Therefore, the improper integrals behave like Fresnel integrals. On the other hand, the integrals of the form

$$\int_{0}^{\infty} \exp\left(-\frac{\sqrt{3}+i}{2}\xi t\right) \dots dt$$

are uniformly convergent with respect to ξ since

Ai(t) 
$$\xrightarrow{t \to \infty} \frac{1}{2\sqrt{\pi}} - \frac{1}{4\sqrt{t}} \exp\left(-\frac{2}{3}t^{3/2}\right)$$
,  
Bi(t)  $\xrightarrow{t \to \infty} \frac{1}{\sqrt{\pi}} - \frac{1}{4\sqrt{t}} \exp\left(\frac{2}{3}t^{3/2}\right)$ .

Fock proposed that these integrals be evaluated by introducing the expansions

$$\exp(\mathrm{i}\xi t) \ = \ \sum_{n=0}^{\infty} \frac{(\mathrm{i}t)^n}{n!} \ \xi^n \qquad , \quad \exp\left(-\frac{\sqrt{3} \ + \ \mathrm{i}}{2} \ \xi t\right) = \ \sum_{n=0}^{\infty} \frac{\left[-\exp\left(\mathrm{i}\,\frac{\pi}{6}\right) t\right]^n}{n!} \ \xi^n$$

and interchanging the roles of summation and integration.

In this way we find that

$$\begin{split} &\alpha_{n} = \frac{1}{\pi} \left\{ \left[ \cos \frac{5n\pi}{6} + \cos \frac{n\pi}{2} \right] J_{1}(n) + \left[ \sin \frac{5n\pi}{6} + \sin \frac{n\pi}{2} \right] J_{2}(n) \right\} \\ &\beta_{n} = \frac{1}{\pi} \left\{ \left[ -\sin \frac{5n\pi}{6} + \sin \frac{n\pi}{2} \right] J_{1}(n) + \left[ \cos \frac{5n\pi}{6} - \cos \frac{n\pi}{2} \right] J_{2}(n) \right\} \\ &\gamma_{n} = \frac{1}{\pi} \left\{ \left[ \cos \frac{(5n+4)}{6} \pi + \cos \frac{n\pi}{2} \right] I_{1}(n) + \left[ \sin \frac{(5n+4)}{6} \pi + \sin \frac{n\pi}{2} \right] I_{2}(n) \right\} \\ &\delta_{n} = \frac{1}{\pi} \left\{ \left[ -\sin \frac{(5n+4)}{6} \pi + \sin \frac{n\pi}{2} \right] I_{1}(n) + \left[ \cos \frac{(5n+4)}{6} \pi - \cos \frac{n\pi}{2} \right] I_{2}(n) \right\} \\ &\alpha_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ \cos \frac{(5n+2)}{6} \pi + \cos \frac{n\pi}{2} \right] J_{3}(n) + \left[ \sin \frac{(5n+2)}{6} \pi + \sin \frac{n\pi}{2} \right] J_{4}(n) \right\} \\ &b_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ -\sin \frac{(5n+2)}{6} \pi + \cos \frac{n\pi}{2} \right] I_{3}(n) + \left[ \sin \frac{(5n+2)}{6} \pi + \sin \frac{n\pi}{2} \right] I_{4}(n) \right\} \\ &c_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ \cos \frac{(5n+2)}{6} \pi + \cos \frac{n\pi}{2} \right] I_{3}(n) + \left[ \sin \frac{(5n+2)}{6} \pi + \sin \frac{n\pi}{2} \right] I_{4}(n) \right\} \\ &d_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ -\sin \frac{(5n+2)}{6} \pi + \sin \frac{n\pi}{2} \right] I_{3}(n) + \left[ \cos \frac{(5n+2)}{6} \pi - \cos \frac{n\pi}{2} \right] I_{4}(n) \right\} \end{aligned}$$

where

$$I_{1}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Bi}(t)}{F^{2}(t)} dt , \qquad J_{1}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Bi}'(t)}{G^{2}(t)} dt ,$$

$$I_{2}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}(t)}{F^{2}(t)} dt , \qquad J_{2}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}'(t)}{G^{2}(t)} dt ,$$

$$I_{3}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}(t) \operatorname{Bi}(t)}{F^{2}(t)} dt , \qquad J_{3}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}'(t) \operatorname{Bi}'(t)}{G^{2}(t)} dt ,$$

$$I_{4}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}(t) \operatorname{Ai}(t)}{F^{2}(t)} dt , \qquad J_{4}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}'(t) \operatorname{Ai}'(t)}{G^{2}(t)} dt ,$$

$$F^{2}(t) = \operatorname{Ai}^{2}(t) + \operatorname{Bi}^{2}(t) , \qquad G^{2}(t) = \operatorname{Ai}^{12}(t) + \operatorname{Bi}^{12}(t) . \qquad (13.8)$$

The integrals  $I_1$  (n),  $\cdots$   $J_4$  (n) have been evaluated for n=0 (1) 20 with an accuracy of about five significant figures.

For large values of n we have used the results

$$\begin{split} \frac{1}{\pi} \frac{1}{\text{Bi(t)}} &= -2\text{Ai'(t)} - \left(\frac{1}{2t} + \frac{15}{32} \frac{1}{t^4} + \frac{1695}{512} \frac{1}{t^7} + \frac{59025}{1024} \frac{1}{t^{10}} + \frac{2421\,83775}{131072} \frac{1}{t^{13}} \cdots \right) \text{Ai(t)} \\ \frac{1}{\pi} \frac{1}{\text{Bi'(t)}} &= 2\text{Ai(t)} - \left(\frac{1}{2t^2} + \frac{21}{32} \frac{1}{t^5} + \frac{2121}{612} \frac{1}{t^8} + \frac{136479}{1284} \frac{1}{t^{11}} + \frac{2681\,22561}{131072} \frac{1}{t^{14}} + \cdots \right) \text{Ai'(t)} \\ \left[\frac{1}{\pi \,\text{Bi'(t)}}\right]^2 &= 4\text{Ai'(t)} \,\text{Ai'(t)} + \left(\frac{2}{t} + \frac{15}{8} \frac{1}{t^4} + \frac{1695}{128} \frac{1}{t^7} + \frac{59025}{256} \frac{1}{t^{10}} + \cdots \right) \text{Ai(t)} \,\text{Ai'(t)} \,\text{Ai'(t)} \\ &+ \left(\frac{1}{4t^2} + \frac{15}{32} \frac{1}{t^5} + \frac{3615}{1024} \frac{1}{t^8} + \frac{547625}{8192} \frac{1}{t^{11}} + \cdots \right) \text{Ai(t)} \,\text{Ai(t)} \,\text{Ai'(t)} \\ \left[\frac{1}{\pi \,\text{Bi'(t)}}\right]^2 &= 4\text{Ai'(t)} \,\text{Ai'(t)} \,\text{Ai'(t)} - \left(\frac{2}{t^2} + \frac{21}{8} \frac{1}{t^5} + \frac{2121}{128} \frac{1}{t^8} + \frac{136479}{5122} \frac{1}{t^{11}} + \cdots \right) \text{Ai'(t)} \,\text{Ai'(t)} \,\text{Ai'(t)} \\ &+ \left(\frac{1}{4t^4} + \frac{21}{32} \frac{1}{t^7} + \frac{4683}{1024} \frac{1}{t^{10}} + \frac{590457}{8192} \frac{1}{t^{13}} + \cdots \right) \text{Ai'(t)} \,\text{Ai'(t)} \,\text{Ai'(t)} \\ &+ \left(\frac{1}{2t^2} + \frac{15}{16} \frac{1}{t^5} + \frac{3615}{1024} \frac{1}{t^{10}} + \frac{590457}{8192} \frac{1}{t^{13}} + \cdots \right) \text{Ai'(t)} \,\text{Ai'(t)} \,\text{A$$

along with a class of integrals

$$\begin{split} \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai(t) \, dt &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai'(t) \, dt \\ &= \, B_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai(t) \, Ai(t) \, dt \\ &= \, C_{n} \, , \\ \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai'(t) \, Ai(t) \, dt \\ &= \, D_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai'(t) \, Ai'(t) \, dt \\ &= \, E_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, F_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{2}(t) \, Ai'(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai'(t) \, Ai'(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{2}(t) \, Ai'^{2}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{2}(t) \, Ai'^{2}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{2}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{2}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{2}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, Ai'^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{n!} \int\limits_{0}^{\infty} t^{n} \, Ai^{3}(t) \, dt \\ &= \, A_{n} \, , \quad \frac{1}{$$

In this way we find, for example,

We have shown that

$$A_0 = \frac{1}{3}$$
,  $A_1 = -Ai'(0) = \frac{1}{8^{1/3}\Gamma(1/3)}$ ,  $A_2 = \frac{1}{2}Ai(1) = \frac{1}{2}\frac{1}{3^{2/3}\Gamma(2/3)}$ ,  $A_{n+3} = \frac{A_n}{n+3}$ 

and

$$B_{o} = -Ai(0) = -\frac{1}{3^{2/3}\Gamma(2/3)}$$
,  $B_{n} = -A_{n-1}$ ,  $n \ge 1$ .

Also, we have shown that

$$C_{0} = Ai^{2}(0) = \left\{ \frac{1}{3^{1/3}\Gamma(1/3)} \right\}^{2}$$

$$C_{1} = \frac{-1}{3} Ai(0) Ai^{1}(0) = \frac{1}{6\sqrt{3}\pi}$$

$$C_{2} = \frac{1}{10} Ai^{2}(0) = \frac{1}{10} \left\{ \frac{1}{3^{2/3}\Gamma(2/3)} \right\}^{2}$$

$$C_{n+3} = \frac{C_{n}}{2(2n+7)}, \quad n \ge 0$$

Furthermore,

$$D_{o} = -\frac{1}{2} \operatorname{Ai}^{2}(0) = -\frac{1}{2} \left\{ \frac{1}{3^{2/3} \Gamma(2/3)} \right\}^{2}$$

$$D_{n} = -\frac{1}{2} C_{n-1}, n >> 1, D_{n+3} = \frac{D_{n}}{2(2n+5)}$$

$$E_{o} = \frac{2}{3} \operatorname{Ai}(0) \operatorname{Ai}'(0)$$

$$E_{1} = \frac{3}{10} \Lambda i^{2}(0)$$

$$E_{2} = \frac{2}{7} A i^{2}(0)$$

$$E_{n} = \frac{1}{2} C_{n-2} - (n+1) C_{n+1}$$

Similar results have been obtained for  $F_n$  ,  $\cdots$  ,  $T_n$  .

For n > 20 we can neglect the integrals  $I_2$  ,  $J_2$  ,  $I_4$  ,  $J_4$  and use the approximations

$$\begin{split} & I_{1}(n) \sim \int_{0}^{\infty} \frac{t^{n}}{Bi(t)} dt = 2\pi n! A_{n-1} - \pi \Big\{ \frac{1}{2}(n-1)! A_{n-1} + \frac{15}{32}(n-4)! A_{n-4} + \frac{1695}{512}(n-7)! A_{n-7} + \cdots \Big\} \\ & J_{1}(n) \sim \int_{0}^{\infty} \frac{t^{n}}{Bi'(t)} dt = \pi \Big[ 2n! A_{n} + \frac{1}{2}(n-2)! A_{n-3} + \frac{21}{32}(n-5)! A_{n-6} + \frac{2121}{512}(n-8)! A_{n-9} + \cdots \Big] \\ & I_{3}(n) \sim \int_{0}^{\infty} t^{n} \frac{Ai(t)}{Bi'(t)} dt = \pi n! C_{n-1} - \pi \Big\{ \frac{1}{2}(n-1)! C_{n-1} + \frac{15}{32}(n-4)! C_{n-4} + \frac{1695}{512}(n-7)! C_{n-7} + \cdots \Big\} \\ & J_{3}(n) \sim \int_{0}^{\infty} t^{n} \frac{Ai'(t)}{Bi'(t)} dt = 2\pi n! D_{n} - \pi \Big\{ \frac{1}{2}(n-2)! E_{n-2} + \frac{21}{32}(n-5)! E_{n-5} + \frac{2121}{512}(n-8)! E_{n-8} + \cdots \Big\} \end{split}$$

The above representations have been used to compute the Taylor coefficients  $f^{(n)}(0)$ ,  $g^{(n)}(0)$ ,  $p^{(n)}(0)$ ,  $q^{(n)}(0)$  for n = 0(1)40. The numerical values obtained for these constants are given in Tables 24-27. (Certain values for n < 0 are also included.)

# Table 24 Table of taylor coefficients $\gamma_n$ , $\delta_n$ for the functions

$$f^{(r)}(\xi) = \sum_{m=0}^{\infty} \gamma_{m+r} \frac{\xi^m}{m!} + i \sum_{m=0}^{\infty} \delta_{m+r} \frac{\xi^m}{m!}$$

|     | •                         |                          |                                          |
|-----|---------------------------|--------------------------|------------------------------------------|
| n   | $\gamma_{n}$              | $\delta_n$               | $\sqrt{\gamma_{r}^{2} + \delta_{r}^{2}}$ |
| -1  | -0.368146                 | 0.212549                 | . 425099                                 |
| 0   | 0.387911                  | -0.671881                | .775821                                  |
| 1   | 0                         | 1,14673                  | 1.14673                                  |
| 2 · | -0.431479                 | -0.747343                | .862957                                  |
| 3   | -1.74873                  | -1,00963                 | 2,01926                                  |
| . 4 | 9. 97777                  | 0                        | 9, 97777                                 |
| 5   | -12.6478                  | 7.30219                  | 14.6044                                  |
| 6   | -24,5374                  | 42,5000                  | 49.0748                                  |
| 7   | 0                         | $-3.59472 \times 10^2$   | $3.59472 \times 10^{2}$                  |
| 8   | $3.60285 \times 10^2$     | $6.24032 \times 10^2$    | 7. $20570 \times 10^2$                   |
| 9   | $2.71105 \times 10^3$     | $1.56522 \times 10^3$    | $3.13045 \times 10^3$                    |
| 10  | $-2.91055 \times 10^4$    | . 0                      | $2.91055 \times 10^4$                    |
| 11  | 6. $24272 \times 10^4$    | $-3.60424 \times 10^4$   | 7. $20847 \times 10^4$                   |
| 12  | $1.89184 \times 10^5$     | $-3.27676 \times 10^5$   | 3. $78367 \times 10^{\frac{5}{2}}$       |
| 13  | 0                         | $4.18803 \times 10^{6}$  | $4.18803 \times 10^{6}$                  |
| 14  | $-6.08711 \times 10^6$    | $-1.05432 \times 10^{7}$ | 1. $21742 \times 10^7$                   |
| 15  | $-6.41752 \times 10^{7}$  | $3.70515 \times 10^{7}$  | $7.41031 \times 10^{7}$                  |
| 16  | $9.41657 \times 10^8$     | 0                        | $9.41657 \times 10^8$                    |
| 17  | $-2.69736 \times 10^{9}$  | $1.55732 \times 10^9$    | $3.11464 \times 10^9$                    |
| 18  | $-1.07015 \times 10^{10}$ | 1.85356 x $10^{10}$      | $2.14030 \times 10^{10}$                 |
| 10  |                           |                          |                                          |

### Table 24 (Cont'd)

| n          | $\boldsymbol{\gamma}_{\mathbf{n}}$ | $^{\delta}$ n             | $\sqrt{\gamma_{\rm r}^2 + \delta_{\rm r}^2}$ |
|------------|------------------------------------|---------------------------|----------------------------------------------|
| 19         | 0                                  | $-3.04929 \times 10^{11}$ | $3.04929 \times 10^{11}$                     |
| 20         | $5.61909 \times 10^{11}$           | 9. $73255 \times 10^{11}$ | $1.12382 \times 10^{12}$                     |
| 21         | $7.41073 \times 10^{12}$           | $4.27859 \times 10^{12}$  | 8. 55717 x $10^{12}$                         |
| 22         | $-1.34416 \times 10^{14}$          | 0                         | 1. $34416 \times 10^{14}$                    |
| 23         | $4.70865 \times 10^{14}$           | $-2.71854 \times 10^{14}$ | $5.43708 \times 10^{14}$                     |
| 24         | 2. 26253 x 10 <sup>15</sup>        | $-3.91881 \times 10^{15}$ | $4.52505 \times 10^{15}$                     |
| 25         | Ū                                  | $7.73963 \times 10^{16}$  | 7, 73963 x $10^{16}$                         |
| 26         | $-1.69854 \times 10^{17}$          | $-2.94195 \times 10^{17}$ | $3.39707 \times 10^{17}$                     |
| 27         | $-2.64831 \times 10^{18}$          | $-1.52900 \times 10^{18}$ | $3.05800 \times 10^{18}$                     |
| 28         | $5.64059 \times 10^{19}$           | 0                         | $5.64059 \times 10^{19}$                     |
| 29         | $-2.30587 \times 10^{20}$          | 1. 33130 x $10^{20}$      | $2.66259 \times 10^{20}$                     |
| 30         | $-1.28557 \times 10^{21}$          | 2. $22667 \times 10^{21}$ | $2.57114 \times 10^{21}$                     |
| 31         | 0                                  | $-5.07533 \times 10^{22}$ | $5.07533 \times 10^{22}$                     |
| 32         | 1, 27909 x $10^{23}_{54}$          | $2.21545 \times 10^{23}$  | $2.55818 \times 10^{23}$                     |
| <b>3</b> 3 | 2, $27963 \times 10^{24}$          | 1.31615 x $10^{24}$       | $2.63229 \times 10^{24}$                     |
| 34         | $-5.52593 \times 10^{25}$          | 0                         | $5.52593 \times 10^{25}$                     |
| <b>3</b> 5 | $2.56058 \times 10^{26}$           | $-1.47835 \times 10^{26}$ | $2.95670 \times 10^{26}$                     |
| 36         | 1. 61199 x $10^{27}$               | $-2.79204 \times 10^{27}$ | 3. 22398 x $10^{27}$                         |
| 37         | 0                                  | 7. $16039 \times 10^{28}$ | $7.16039 \times 10^{28}$                     |
| 38         | $-2.02353 \times 10^{29}$          | $-3.50486 \times 10^{29}$ | $4.04707 \times 10^{29}$                     |
| 39         | $-4.03109 \times 10^{30}$          | $-2.32735 \times 10^{30}$ | $4.65471 \times 10^{30}$                     |
| 40         | $1.08894 \times 10^{32}$           | 0                         | $1.08894 \times 10^{32}$                     |

Table 25  ${\rm TABLE~OF~TAYLOR~COEFFICIENTS~} ^{\alpha}_{\rm n} \ , \ \beta_{\rm n} \ {\rm FOR~THE~FUNCTIONS}$ 

$$g^{(r)}(\xi) = \sum_{m=0}^{\infty} \alpha_{m+r} \frac{\xi^m}{m!} + i \sum_{m=0}^{\infty} \beta_{m+r} \frac{\xi^m}{m!}$$

| n          | $lpha_{_{_{11}}}$          | $oldsymbol{eta}_{\cdot,\mathbf{n}}$ | $\sqrt{\alpha_n^2 + \beta_n^2}$ |
|------------|----------------------------|-------------------------------------|---------------------------------|
| <b>-</b> 5 | 1.444255                   | -0.833841                           | 1.66768                         |
| -4         | <b>-0.</b> 8 <b>4755</b> 3 | 1.46800                             | 1.69511                         |
| -3         | 0                          | -1.71501                            | 1.71501                         |
| -2         | 0,85588                    | 1.48242                             | 1.71175                         |
| -1         | -1.42244                   | <b>-0.</b> 82125                    | 1.64249                         |
| 0          | 1,39938                    | 0                                   | 1.39938                         |
| 1          | -0.647253                  | 0,373692                            | 0.747384                        |
| . 2        | -0.343104                  | 0.594273                            | 0.686207                        |
| 3          | 0                          | -2.94954                            | 2. 94954                        |
| 4          | 1.74135                    | 3.01611                             | 3.48271                         |
| 5          | 7.74049                    | 4,46897                             | 8.93795                         |
| 6          | -56, 1946                  | 0                                   | 56 <b>.</b> 1 <b>94</b> 6       |
| 7          | 84. 5802                   | -48.8324                            | 97.6648                         |
| 8          | $1.85255 \times 10^2$      | $-3.20611 \times 10^2$              | $3.70285 \times 10^2$           |
| 9          | 0                          | $3.08379 \times 10^3$               | $3.08379 \times 10^3$           |
| 10         | $-3.45171 \times 10^3$     | $-5.97854 \times 10^3$              | $6.90342 \times 10^3$           |
| 11         | $-2.86020 \times 10^4$     | $-1.65134 \times 10^4$              | $3.30268 \times 10^4$           |
| 12         | $3.36144 \times 10^5$      | 0                                   | $3.36144 \times 10^5$           |
| 13         | $-7.83146 \times 10^5$     | $4.52149 \times 10^5$               | $9.04299 \times 10^5$           |
| 14         | $-2.56109 \times 10^6$     | $4.43593 \times 10^6$               | $5.12217 \times 10^6$           |
| 15         | . 0                        | $-0.608715 \times 10^8$             | $0.608715 \times 10^8$          |

Table 25 (Cont'a)

| n  | $lpha_{ m n}$               | $\beta_n$                  | $\sqrt{\alpha_{\rm n}^2 + \beta_{\rm n}^2}$ |
|----|-----------------------------|----------------------------|---------------------------------------------|
| 16 | 9.45444 x $10^7$            | 1.63756 x $10^8$           | 1.89089 x 10 <sup>8</sup>                   |
| 17 | $1.06114 \times 10^9$       | $6,12648 \times 10^8$      | 1, 22530 x 10 <sup>9</sup>                  |
| 18 | $-1.65044 \times 10^{10}$   | 0                          | 1. $65044 \times 10^{10}$                   |
| 19 | $4.99689 \times 10^{10}$    | $-2.88495 \times 10^{10}$  | $5.76991 \times 10^{10}$                    |
| 20 | $0.208930 \times 10^{12}$   | $-0.361878 \times 10^{12}$ | $4.17860 \times 10^{11}$                    |
| 21 | 0                           | $6.25779 \times 10^{12}$   | 6, 25779 x $10^{12}$                        |
| 22 | $-1.20927 \times 10^{13}$   | $-2.09452 \times 10^{13}$  | $2.41855 \times 10^{13}$                    |
| 23 | $-1.66888 \times 10^{14}$   | $-0.963526 \times 10^{14}$ | 1,92705 x 10 <sup>14</sup>                  |
| 24 | $3.16128 \times 10^{15}$    | 0                          | $3.16128 \times 10^{15}$                    |
| 25 | $-1.15446 \times 10^{16}$   | 0, 666530 × 10             | 1.33306 x 10 <sup>16</sup>                  |
| 26 | $-5.77329 \times 10^{16}$   | $9.99963 \times 10^{16}$   | 1, 15466 $\times$ 10 $\frac{17}{10}$        |
| 27 | 0                           | $-2.05226 \times 10^{18}$  | $2.05226 \times 10^{18}$                    |
| 28 | $4.67362 \times 10^{18}$    | $8.09434 \times 10^{18}$   | 9. $34724 \times 10^{18}$                   |
| 29 | $7.55164 \times 10^{19}$    | $4.35994 \times 10^{19}$   | $8.71988 \times 10^{19}$                    |
| 30 | $-1.66478 \times 10^{21}$   | 0                          | $1.66478 \times 10^{21}$                    |
| 31 | 7.03610 $\times$ 10 $^{21}$ | $-4.06230 \times 10^{21}$  | 8, $12459 \times 10^{21}$                   |
| 32 | $4.05126 \times 10^{22}$    | $-7.01698 \times 10^{22}$  | 8. $10251 \times 10^{22}$                   |
| 33 | 0                           | $1.65014 \times 10^{24}$   | $1.65014 \times 10^{24}$                    |
| 34 | $-4.28655 \times 10^{24}$   | $-7.42452 \times 10^{24}$  | $8.57309 \times 10^{24}$                    |
| 35 | -7. 86747 x $10^{25}$       | $-4.54228 \times 10^{25}$  | $9.08457 \times 10^{25}$                    |
| 36 | $1.96235 \times 10^{27}$    | 0                          | $1.96235 \times 10^{27}$                    |
| 37 | $-9.34900 \times 10^{27}$   | $5.39765 \times 10^{27}$   | $1.07953 \times 10^{28}$                    |
| 38 | $-6.04673 \times 10^{28}$   | $1.04732 \times 10^{29}$   | 1. 20935 x 10 <sup>29</sup>                 |
| 39 | 0                           | $-2.75752 \times 10^{30}$  | $2.75752 \times 10^{30}$                    |
| 40 | 7, 99506 x 10 <sup>30</sup> | $1.38478 \times 10^{31}$   | $1.59901 \times 10^{31}$                    |

Table 26  $\label{eq:table 26} \mbox{TABLE OF TAYLOR COEFFICIENTS } \ c_n \ , \ d_n \ \mbox{FOR THE FUNCTIONS }$ 

$$p^{(r)}(\xi) = \sum_{m=0}^{\infty} c_{m+r} = \frac{\xi^m}{m!} + i \sum_{m=0}^{\infty} d_{m+r} = \frac{\xi^m}{m!}$$

| 'n  | $\mathbf{c}_{\mathbf{n}}$ | d <sub>n</sub>         | $\sqrt{e_n^2 + d_n^2}$            |
|-----|---------------------------|------------------------|-----------------------------------|
| 0   | 0.306628                  | -0.177032              | 0.354064                          |
| 1   | -0.075074                 | 0.130032               | 0. 150139                         |
| 2   | 0                         | 0.019102               | 0.019102                          |
| 3   | -0, 103899                | -0.179957              | 0. 207797                         |
| 4   | 0. 263286                 | 0.152009               | 0.304017                          |
| 5   | 0.016830                  | 0                      | 0.016830                          |
| 6   | -1.00941                  | 0.582785               | 1, 16557                          |
| 7   | 1, 30741                  | -2. 26451              | 2. 61483                          |
| 8   | 0                         | -0.050352              | 0.050352                          |
| 9   | 8.85214                   | 15.3323                | 17.7043                           |
| 1.0 | -14, 1769                 | -25.5056               | 51.0111                           |
| 11  | -0.312482                 | 0                      | 0.312482                          |
| 12  | $4.46438 \times 10^2$     | $-2.57751 \times 10^2$ | $5.30630 \times 10^{2}$           |
| 13  | $-8.88385 \times 10^{2}$  | $1,53873 \times 10^3$  | 1. 77677 $\times$ 10 <sup>3</sup> |
| 14  | 0                         | 0.327929               | 0. 327929                         |
| 15  | $-1.22548 \times 10^4$    | $-2.12260 \times 10^4$ | $2.45097 \times 10^4$             |
| 16  | $8.41077 \times 10^4$     | $4.85596 \times 10^4$  | 9. $71193 \times 10^4$            |
| 17  | <b>52. 0</b> 334          | 0                      | 52.0334                           |
| 18  | $-1.49242 \times 10^{6}$  | $8.61651 \times 10^5$  | 1. $72330 \times 10^6$            |
| 19  | 3. 83642 x $10^6$         | $-6.64488 \times 10^6$ | $7.67934 \times 10^6$             |
| 20  | 0                         | $-1.16244 \times 10^3$ | $1.16244 \times 10^3$             |

#### Table 26 (Cont'd)

|    |                           |                             | 2 2                       |
|----|---------------------------|-----------------------------|---------------------------|
| n  | $\mathbf{e}_{\mathbf{n}}$ | d <sub>n</sub>              | $\sqrt{c_n^2 + d_n^2}$    |
| 21 | $8.42125 \times 10^{7}$   | 1.45860 x 10 <sup>8</sup>   | 1.68425 x 10 <sup>8</sup> |
| 22 | $7.16724 \times 10^8$     | -4, 13801 x 10 <sup>8</sup> | $8.27602 \times 10^8$     |
| 23 | 0                         | 0                           | 0                         |
| 24 | 1.89036 x $10^{10}$       | $-1.09140 \times 10^{10}$   | $2.18279 \times 10^{10}$  |
| 25 | $-5.84380 \times 10^{10}$ | 1. $01218 \times 10^{11}$   | $1.16876 \times 10^{11}$  |
| 26 | 0                         | 0                           | 0                         |
| 27 | $-1.81137 \times 10^{12}$ | $-3.13739 \times 10^{12}$   | $3.62274 \times 10^{12}$  |
| 28 | $1.81272 \times 10^{13}$  | $1.04657 \times 10^{13}$    | $2.09315 \times 10^{13}$  |
| 29 | 0                         | 0                           | 0                         |
| 30 | $-6.48931 \times 10^{14}$ | $3.74660 \times 10^{14}$    | $7.49321 \times 10^{14}$  |
| 31 | 2. 31776 x $10^{15}$      | $-4.01448 \times 10^{15}$   | $4.63552 \times 10^{15}$  |
| 32 | 0                         | 0                           | 0                         |
| 33 | $9.44929 \times 10^{16}$  | 1.63666 x $10^{17}$         | $1.88986 \times 10^{17}$  |
| 34 | $-1.07722 \times 10^{18}$ | $-6.21933 \times 10^{17}$   | 1, $24387 \times 10^{18}$ |
| 35 | 0                         | 0                           | 0                         |
| 36 | $4.94407 \times 10^{19}$  | $-2.85446 \times 10^{19}$   | $5.70892 \times 10^{19}$  |
| 37 | $-1.98836 \times 10^{20}$ | $3.44394 \times 10^{20}$    | $3.97672 \times 10^{20}$  |
| 38 | 0                         | 0                           | 0                         |
| 39 | $-1.01748 \times 10^{22}$ | $-1,76234 \times 10^{22}$   | $2.03497 \times 10^{22}$  |
| 40 | 1, $29347 \times 10^{23}$ | 7.46786 x $10^{22}$         | $1.49357 \times 10^{23}$  |
| 41 | 0                         | 0                           | 0 24                      |
| 42 | $-7.31948 \times 10^{24}$ | $4.22590 \times 10^{24}$    | $8.45180 \times 10^{24}$  |
| 43 | $3.25563 \times 10^{25}$  | $-5.63892 \times 10^{25}$   | $6.51126 \times 10^{25}$  |
| 44 | 0                         | 0                           | 9                         |
| 45 | $2.02294 \times 10^{27}$  | 3. $50384 \times 10^{27}$   | $4.04589 \times 10^{27}$  |

### Table 26 (Cont'd)

| n  | $c_{n}$                   | d <sub>n</sub>             | $\sqrt{e_n^2 + d_n^2}$      |
|----|---------------------------|----------------------------|-----------------------------|
| 46 | $-2.82412 \times 10^{28}$ | $-1.63051 \times 10^{28}$  | $3.26101 \times 10^{28}$    |
| 47 | 0                         | 0                          | 0                           |
| 48 | $1.91512 \times 10^{30}$  | $-1.10569 \times 10^{30}$  | $2.21138 \times 10^{30}$    |
| 49 | $-9.29714 \times 10^{30}$ | 1,61031 x 10 <sup>31</sup> | 1. 85943 ж 10 <sup>31</sup> |
| 50 | 0                         | 0                          | 0                           |

|     | $q^{(r)}(\xi) \sum_{m=0}^{\infty} a_{m+r}$ | $\frac{\xi^{\mathrm{m}}}{\mathrm{m}!} + \mathrm{i} \sum_{\mathrm{in}=0}^{\infty} b_{\mathrm{m}+\mathrm{r}} \frac{\xi^{\mathrm{m}}}{\mathrm{m}!}$ |                        |
|-----|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 11  | a<br>n                                     | h<br>n                                                                                                                                           | $\sqrt{a_n^2 + b_n^2}$ |
| -14 | -0,643967                                  | -0.371795                                                                                                                                        | 0.743589               |
| -13 | 0.757564                                   | 0                                                                                                                                                | 0, 757564              |
| -12 | -0.668399                                  | 0.385901                                                                                                                                         | 0.771801               |
| -11 | 0, 393153                                  | -0.680961                                                                                                                                        | 0. 786306              |
| -10 | 0                                          | 0.801086                                                                                                                                         | 0.801086               |
| -9  | -0.408075                                  | -0.706805                                                                                                                                        | 0.816149               |
| -8  | 0.720114                                   | 0.415758                                                                                                                                         | 0,831516               |
| -7  | · ···0, 847238                             | 0                                                                                                                                                | 0.847238               |
| -6  | 0.747798                                   | -0.431742                                                                                                                                        | 0.863483               |
| -5  | -0.440416                                  | 0.762823                                                                                                                                         | 0.880833               |
| -4  | 0                                          | -0.901488                                                                                                                                        | 0.901488               |
| -3  | 0.467603                                   | 0.809912                                                                                                                                         | 0, 935205              |
| -2  | -0.904914                                  | -0.52245 <b>3</b>                                                                                                                                | 1.044906               |
| -1  | 0,537744                                   | 0.147704                                                                                                                                         | 0.557660               |
| 0   | -0. 266001                                 | 0.153626                                                                                                                                         | 0.307177               |
| 1   | 0, 131893                                  | -0.228410                                                                                                                                        | 0. 263755              |
| 2   | 0                                          | 0.040272                                                                                                                                         | 0.040272               |
| 3   | 0, 126164                                  | 0. 218471                                                                                                                                        | 0.252283               |
| 4   | -0.361509                                  | -0.208757                                                                                                                                        | 0.417454               |
|     |                                            |                                                                                                                                                  |                        |

0.033482

0.033482

## Table 27 (Cont'd)

|   | n    | a <sub>n</sub>              | b <sub>n</sub>              | $\sqrt{a_n^2 + b_n^2}$   |
|---|------|-----------------------------|-----------------------------|--------------------------|
|   | 6    | 1.19487                     | -0.690009                   | 1.37980                  |
|   | 7    | -1.56808                    | 2.71544                     | 3. 13568                 |
|   | 8    | 0                           | -0.08668                    | 0.08668                  |
|   | 9    | -9.99823                    | -17.3138                    | 19.9933                  |
|   | 10   | 49.6659                     | 28,6805                     | <b>57. 3521</b>          |
|   | 11   | -0.475105                   | 0                           | 0.475105                 |
|   | 12   | $-4.88786 \times 10^2$      | $2.82260 \times 10^{2}$     | $5.64431 \times 10^2$    |
|   | 13   | 9.67394 × 19 <sup>2</sup>   | $-1.67523 \times 10^3$      | $1.93449 \times 10^3$    |
|   | 14   | 0                           | 4, 55469                    | 4.55469                  |
|   | 15   | $1.31501 \times 10^4$       | $2.27719 \times 10^4$       | $2.62961 \times 10^4$    |
|   | 16   | -8. 99173 x 10 <sup>4</sup> | -5. 19245 x 10 <sup>4</sup> | $1.03833 \times 10^{5}$  |
|   | 17   | 67. 8254                    | 0                           | 67. 8254                 |
| ı | 18   | $1.58366 \times 10^6$       | -9. 14516 x 10 <sup>5</sup> | $1.82875 \times 10^6$    |
| i | 19   | $-4.05504 \times 10^6$      | $7.02207 \times 10^6$       | $8.10881 \times 10^6$    |
| ) | 20   | 0                           | $-1.44881 \times 10^3$      | $1.44881 \times 10^3$    |
|   | 21   | $-8.65467 \times 10^{7}$    | $-1.49903 \times 10^8$      | 1, 73093 $\times 10^8$   |
| ı | 22   | $7.51322 \times 10^8$       | $4.33776 \times 10^8$       | $8.67552 \times 10^8$    |
|   | . 23 | 0                           | 0                           | 0 .                      |
|   | 24   | $-1.93601 \times 10^{10}$   | 1. $11775 \times 10^{10}$   | $2.23551 \times 10^{10}$ |
|   | 25   | $5.97790 \times 10^{10}$    | $-1.03540 \times 10^{11}$   | $1.19558 \times 10^{11}$ |
| , | 26   | 0                           | 0                           | 0                        |
|   | 27   | $1.84938 \times 10^{11}$    | $3.20322 \times 10^{11}$    | $3.69876 \times 10^{11}$ |
| • | 28   | $-1.84935 \times 10^{13}$   | $-1.06772 \times 10^{13}$   | $2.13544 \times 10^{13}$ |
| ì | 29   | 0                           | 0                           | 0                        |
| ļ | 30   | 6. 61135 x $10^{15}$        | $-3.81707 \times 10^{14}$   | $3.87390 \times 10^{14}$ |
|   |      |                             |                             |                          |

## Table 27 (Cont'd)

| n ·        | a<br>n                    | b <sub>n</sub> .          | $\sqrt{a_n^2+b_n^2}$        |
|------------|---------------------------|---------------------------|-----------------------------|
| 31         | $-2.35990 \times 10^{15}$ | 4. $08747 \times 10^{15}$ | $4.71980 \times 10^{15}$    |
| 32         | 0                         | 0                         | 0                           |
| 33         | $-9.61080 \times 10^{16}$ | $-1.66464 \times 10^{17}$ | 1. 69216 x $10^{17}$        |
| 34         | 1.09507 x $10^{18}$       | 6. $32241 \times 10^{17}$ | $1.26448 \times 10^{18}$    |
| <b>3</b> 5 | 0                         | 0                         | Ũ                           |
| 36         | -5,02133 x $10^{19}$      | $2.89907 \times 10^{19}$  | $5,79813 \times 10^{19}$    |
| 37         | $2.01857 \times 10^{20}$  | $-3.49626 \times 10^{20}$ | $4.03714 \times 10^{20}$    |
| 38         | 0                         | 0                         | 0                           |
| 39         | 1.03213 x $10^{22}$       | $1.78770 \times 10^{22}$  | $2,06426 \times 10^{22}$    |
| 40         | $-1.31201 \times 10^{23}$ | $-7.57488 \times 10^{22}$ | 7. 57602 x $10^{22}$        |
| 41         | 0                         | 0                         | 0                           |
| 42         | $7.49854 \times 10^{24}$  | $-4.32928 \times 10^{24}$ | $8.65857 \times 10^{24}$    |
| 43         | $-3.33337 \times 10^{25}$ | $5,77356 \times 10^{25}$  | 6. 66674 x 10 <sup>25</sup> |
| 44         | 0                         | 0                         | 0                           |
| 4.5        | $-2.06904 \times 10^{27}$ | $-3.58368 \times 10^{27}$ | 4. $13808 \times 10^{27}$   |
| 46         | 2. 88703 x $10^{28}$      | 1. $66683 \times 10^{28}$ | $3.33365 \times 10^{28}$    |
| 47         | 0                         | 0                         | 0                           |
| 48         | $-1.95595 \times 10^{30}$ | $1,12927 \times 10^{30}$  | $2.25854 \times 10^{30}$    |
| 49         | $9.49125 \times 10^{30}$  | $-1.64393 \times 10^{31}$ | $1.89825 \times 10^{31}$    |
| 50         | 0                         | 0                         | 0                           |

# Section 14 RELATIONS BETWEEN THE INTEGRALS

In this section we will obtain some relations between the integrals. Since

$$\mathbf{v}(t) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\left(i\,\mathbf{x}t + i\,\frac{1}{3}\,\mathbf{x}^{3}\right) d\mathbf{x}, \quad \mathbf{v}'(t) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \mathbf{x}\,\exp\left(i\,\mathbf{x}t + i\,\frac{1}{3}\,\mathbf{x}^{3}\right) d\mathbf{x}$$

we have

$$\begin{split} \frac{1}{\sqrt{\pi}} \exp(i\xi_1 t) v(t) &= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \exp\left[i\xi t + i \, \frac{1}{3} \, (\xi - \xi_1)^3 \right] \! d\xi \,, \\ &\frac{1}{\sqrt{\pi}} \exp(i\xi_1 t) \, v^{\, \prime}(t) = \frac{i}{2\pi} \int\limits_{-\infty}^{\infty} \, (\xi - \xi_1) \exp\left[i\xi t + i \, \frac{1}{3} \, (\xi - \xi_1)^3 \right] \! d\xi \end{split} \tag{14.1}$$

Therefore, we see that the integrals

$$f(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \frac{\exp(i\xi t)}{w_1(t)} dt, g(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \frac{\exp(i\xi t)}{w_1(t)} dt$$

are related to the integrals

$$\hat{\mathbf{p}}\left(\xi\right) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(\mathrm{i}\xi t) \, \frac{\mathbf{v}(t)}{\mathbf{w}_{1}(t)} \, \mathrm{d}t, \quad \hat{\mathbf{q}}\left(\xi\right) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(\mathrm{i}\xi t) \, \frac{\mathbf{v}'(t)}{\mathbf{w}_{1}'(t)} \, \mathrm{d}t$$

in the following manner:

$$\frac{1}{\sqrt{\pi}} \hat{p}(\xi_1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left[i \frac{1}{3} (\xi - \xi_1)^3\right] f(\xi) d\xi,$$

$$\frac{1}{\sqrt{\pi}} \hat{q}(\xi_1) = \frac{i}{2\pi} \int_{-\infty}^{\infty} (\xi - \xi_1) \exp\left[i \frac{1}{3} (\xi - \xi_1)^3\right] g(\xi) d\xi.$$
(14.2)

If we let

$$F(\xi) = \exp(i\frac{1}{3}\xi^3)f(\xi), \quad G(\xi) = \exp(i\frac{1}{3}\xi^3)g(\xi)$$

we can write

$$\begin{split} &\frac{1}{\sqrt{\pi}} \exp \left( \mathrm{i} \; \frac{1}{3} \; \xi_1^3 \right) \stackrel{\wedge}{p} (\xi_1) \; = \; \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \; \exp \left[ (- \; \mathrm{i} \; \xi^2 \xi_1 + \mathrm{i} \; \xi \; \xi_1^2) \right] \mathbf{F} (\xi) \, \mathrm{d} \xi \\ &\frac{1}{\sqrt{\pi}} \exp \left( \mathrm{i} \; \frac{1}{3} \; \xi_1^3 \right) \stackrel{\wedge}{q} (\xi_1) \; = \; \frac{\mathrm{i}}{2\pi} \int\limits_{-\infty}^{\infty} \; (\xi - \xi_1) \, \exp (- \, \mathrm{i} \; \xi^2 \; \xi_1 + \mathrm{i} \; \xi \; \xi_1^2) \, \mathbf{G} (\xi) \, \mathrm{d} \xi \; . \end{split}$$

Now write

$$\xi^2 \xi_1 - \xi \, \xi_1^2 \; = \; (\xi \sqrt{\xi_1})^2 - 2 \, (\xi \sqrt{\xi_1}) \left(\frac{\xi_1^{3/2}}{2}\right) + \frac{\xi_1^3}{4} - \frac{\xi_1^3}{4} \; = \; \xi_1 \left(\xi - \frac{\xi_1}{2}\right)^2 - \frac{\xi_1^3}{4}$$

and

$$\frac{1}{\sqrt{\pi}} \exp\left(i \frac{1}{12} \xi_1^3\right) \stackrel{\wedge}{p} (\xi_1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left[-i \xi_1 \left(\xi + \frac{\xi_1}{2}\right)^2\right] \mathbf{F}(\xi) \, \mathrm{d}\xi$$

$$\frac{1}{\sqrt{\pi}} \exp\left(i \frac{1}{12} \xi_1^3\right) \stackrel{\wedge}{q} (\xi_1) = \frac{i}{2\pi} \int_{-\infty}^{\infty} (\xi - \xi_1) \exp\left[-i \xi_1 \left(\xi + \frac{\xi_1}{2}\right)^2\right] \mathbf{G}(\xi) \, \mathrm{d}\xi$$

Now define a new variable u by the definition

$$\xi = \frac{\xi_1}{2} + \sqrt{\frac{\pi}{-2\xi_1}} u$$

$$-\xi_1 \left(\xi - \frac{\xi_1}{2}\right)^2 = \frac{\pi}{2} u^2$$

Then we have

$$\frac{1}{\sqrt{\pi}} \exp\left(i \frac{1}{12} \xi_{1}^{3}\right) \hat{p}(\xi_{1}) = \frac{1}{2\pi} \sqrt{\frac{\pi}{-2\xi_{1}}} \int_{-\infty}^{\infty} \exp\left(i \frac{\pi}{2} u^{2}\right) F\left(+\frac{\xi_{1}}{2} + \sqrt{\frac{\pi}{-2\xi_{1}}} u\right) du \tag{14.3}$$

$$\frac{1}{\sqrt{\pi}} \exp\left(i \frac{1}{12} \xi_{1}^{3}\right) \hat{q}(\xi_{1}) = \frac{i}{2\pi} \sqrt{\frac{\pi}{-2\xi_{1}}} \int_{-\infty}^{\infty} \left(-\frac{1}{2} \xi_{1} + \sqrt{\frac{\pi}{-2\xi_{1}}} u\right) \exp\left(i \frac{\pi}{2} u^{2}\right) G\left(+\frac{\xi_{1}}{2} + \sqrt{\frac{\pi}{-2\xi_{1}}} u\right) du.$$

If we write

$$\begin{split} \mathbf{F} \left( \frac{\xi_{1}}{2} + \sqrt{\frac{\pi}{-2\xi_{1}}} \, \mathbf{u} \, \right) &= \mathbf{F} \left( \frac{\xi_{1}}{2} \right) + \, \mathbf{F}' \left( \frac{\xi_{1}}{2} \right) \sqrt{\frac{\pi}{-2\xi_{1}}} \, \mathbf{u} + \frac{1}{2} \, \mathbf{F}'' \left( \frac{\xi_{1}}{2} \right) \left( \frac{\pi}{-2\xi_{1}} \right) \mathbf{u}^{2} + \cdots \\ \left( -\frac{1}{2} \, \xi_{1} + \sqrt{\frac{\pi}{-2\xi_{1}}} \, \mathbf{u} \right) \mathbf{G} \left( \frac{\xi_{1}}{2} + \sqrt{\frac{\pi}{-2\xi_{1}}} \, \mathbf{u} \right) &= -\frac{1}{2} \, \xi_{1} \, \mathbf{G} \left( \frac{\xi_{1}}{2} \right) + \, \left\{ \mathbf{G} \left( \frac{\xi_{1}}{2} \right) - \frac{1}{2} \, \xi_{1} \, \mathbf{G}' \left( \frac{\xi_{1}}{2} \right) \right\} \sqrt{\frac{\pi}{-2\xi_{1}}} \, \mathbf{u} \\ &+ \, \left\{ \mathbf{G}' \left( \frac{\xi_{1}}{2} \right) - \frac{1}{4} \, \xi_{1} \, \mathbf{G}'' \left( \frac{\xi_{1}}{2} \right) \right\} \left( \frac{\pi}{-2\xi_{1}} \right) \mathbf{u}^{2} + \cdots \end{split}$$

And use the properties

$$\int_{-\infty}^{\infty} \exp\left(i\frac{\pi}{2}u^2\right) du = \sqrt{2} \exp\left(i\frac{\pi}{4}\right)$$

$$\int_{-\infty}^{\infty} u \exp\left(i\frac{\pi}{2}u^2\right) du = 0$$

$$\int_{-\infty}^{\infty} u^2 \exp\left(i\frac{\pi}{2}u^2\right) du = \frac{\sqrt{2}}{\pi} \exp\left(i\frac{3\pi}{4}\right)$$

we arrive at

$$\exp\left(i\frac{1}{12}\xi_{1}^{3}\right) \hat{p}(\xi_{1}) = \frac{1}{2} \frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{-\pi}\xi_{1}} \left\{ F\left(\frac{\xi_{1}}{2}\right) - \frac{i}{4\xi_{1}} F''\left(\frac{\xi_{1}}{2}\right) + \cdots \right\}$$

$$\exp\left(i\frac{1}{12}\xi_{1}^{3}\right) \hat{q}(\xi_{1}) = \frac{1}{2} \frac{\exp\left(-i\frac{\pi}{4}\right)}{\sqrt{-\pi}\xi_{1}} \left\{ \frac{\xi_{1}}{2} G_{1}\left(\frac{\xi_{1}}{2}\right) + \frac{i}{4\xi_{1}} \left[2G'\left(\frac{\xi_{1}}{2}\right) - \frac{1}{2}\xi_{1} G''\left(\frac{\xi_{1}}{2}\right)\right] + \cdots \right\}$$

$$(14.4)$$

This result is primarily useful for large negative values of  $\,\xi_{\,1}\,$  . For example, since

$$F(\xi) \xrightarrow{\xi \to -\infty} 2i\xi \left\{ 1 - \frac{i}{4\xi^3} + \frac{1}{2\xi^6} + \frac{175}{64} \frac{i}{\xi^9} + \cdots \right\}$$

$$G(\xi) \xrightarrow{\xi \to \infty} 2 \left\{ i + \frac{i}{4\xi^3} - \frac{1}{\xi^6} + \frac{299}{64} \frac{i}{\xi^9} + \cdots \right\}$$
(14.5)

and

$$F^{(1)}(\xi) \xrightarrow{\xi \to -\infty} \frac{3}{\xi^4} + i \frac{30}{\xi^7} - \frac{1575}{4} \frac{1}{\xi^{10}} + \cdots$$

$$G^{(1)}(\xi) \xrightarrow{\xi \to -\infty} \frac{3i}{2\xi^4} + \frac{12}{\xi^7} - \frac{2691}{32} \frac{i}{\xi^{10}} + \cdots$$

$$G^{(1)}(\xi) \xrightarrow{\xi \to -\infty} \frac{6i}{\xi^5} - \frac{84}{\xi^8} + \frac{13455}{16} \frac{i}{\xi^{11}} + \cdots$$

we find that

$$F\left(\frac{\xi_{1}}{2}\right) - \frac{i}{4\xi_{1}} F''\left(\frac{\xi_{1}}{2}\right) \underbrace{\xi_{1} - \infty}_{i} i \xi_{1} + \frac{2}{\xi_{1}^{2}} + i \frac{20}{\xi_{1}^{5}} + \cdots$$

$$\frac{\xi_{1}}{2} G_{1}\left(\frac{\xi_{1}}{2}\right) + \frac{i}{4\xi_{1}} \left[2G'\left(\frac{\xi_{1}}{2}\right) - \frac{1}{2}\xi_{1} G''\left(\frac{\xi_{1}}{2}\right)\right] \underbrace{\xi_{1} - \infty}_{\xi_{1}} \xi_{1} + i \underbrace{\frac{2}{\xi_{1}^{2}} - \frac{28}{\xi_{1}^{5}}}_{\xi_{1}^{5}} + \cdots$$

Therefore,

$$\exp\left(i\frac{1}{12}\xi_{1}^{3}\right)\hat{q}(\xi_{1}) \xrightarrow{\xi_{1} \to -\infty} \frac{1}{2}\sqrt{\frac{-\xi_{1}}{\pi}} \exp\left(i\frac{3\pi}{4}\right) \left\{1 - i\frac{2}{\xi_{1}^{3}} + \frac{20}{\xi_{1}^{6}} + \cdots\right\}$$

$$\exp\left(i\frac{1}{12}\xi_{1}^{3}\right)\hat{q}(\xi_{1}) \xrightarrow{\xi_{1} \to \infty} \frac{1}{2}\sqrt{\frac{-\xi_{1}}{\pi}} \exp\left(-i\frac{\pi}{4}\right) \left\{1 + i\frac{2}{\xi_{1}^{3}} - \frac{28}{\xi_{1}^{6}} + \cdots\right\}$$
(14.6)

We can also show that the integrals

$$\hat{\vec{u}}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \; \frac{w_1'(t)}{w_1(t)} \; dt \qquad \qquad \hat{\vec{v}}(\xi) = \; \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \; \exp(i\xi t) \; \frac{w_1(t)}{w_1'(t)} \; dt$$

are related to the integrals

$$f(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{w_1(t)} dt \qquad g(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{w_1(t)} dt$$

in the following manner:

$$\begin{split} &f(\xi_1) + \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} \exp(\mathrm{i}\xi_1 t) \ v'(t) \, \mathrm{d}t \ = \ \frac{1}{2\sqrt{\pi}} \int\limits_{-\infty}^{\infty} \exp\left[\mathrm{i} \ \frac{1}{3} (\xi - \xi_1)^3\right] \hat{u}(\xi) \, \mathrm{d}\xi \\ &g(\xi_1) - \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{\infty} \exp(\mathrm{i}\xi_1 t) \ v(t) \, \mathrm{d}t \ = \ -\frac{\mathrm{i}}{2\sqrt{\pi}} \int\limits_{-\infty}^{\infty} (\xi - \xi_1) \exp\left[\mathrm{i} \ \frac{1}{3} (\xi - \xi_1)^3\right] \hat{v}(\xi) \, \mathrm{d}\xi \ . \end{split}$$

Since

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) v(t) dt = \exp\left(-i\frac{1}{3}\xi^{3}\right)$$

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e(i\xi t) v'(t) dt = -i\xi \exp\left(-i\frac{1}{3}\xi^{3}\right)$$

we can write

$$f(\xi_{1}) = i \xi_{1} \exp\left(-i \frac{1}{3} \xi_{1}^{3}\right) + \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\left[i \frac{1}{3} (\xi - \xi_{1})^{3}\right] \hat{u}(\xi) d\xi$$

$$g(\xi) = \exp\left(-i \frac{1}{3} \xi_{1}^{3}\right) - \frac{i}{2\sqrt{\pi}} \int_{-\infty}^{\infty} (\xi - \xi_{1}) \exp\left[i \frac{1}{3} (\xi - \xi_{1})^{3}\right] \hat{v}(\xi) d\xi . \tag{14.7}$$

We remark that  $\hat{v}(\xi)$  and  $\hat{v}(\xi)$  are even functions of  $\xi$ .

We can also write

$$\exp\left(i\frac{1}{3}\xi_{1}^{3}\right)f(\xi_{1}) = F(\xi_{1}) - i\xi_{1} + \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(-i\xi^{2}\xi_{1} + i\xi\xi_{1}^{2} + i\frac{1}{3}\xi^{3}) u(\xi) d\xi$$

$$\exp\left(i\frac{1}{3}\xi_{1}^{3}\right)g(\xi_{1}) = G(\xi_{1}) = 1 - \frac{i}{2\sqrt{\pi}} \int_{-\infty}^{\infty} (\xi - \xi_{1}) \exp(-i\xi^{2}\xi_{1} + i\xi\xi_{1}^{2} + i\frac{1}{3}\xi^{3}) v(\xi) d\xi$$

Near  $\xi = 0$ ,

$$\hat{\mathbf{v}}(\xi) \approx -\frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \, \hat{\mathbf{w}}_{1}'(t) \, \mathbf{v}'(t) \, dt = 2 \left\{ \frac{\xi^{2}}{4} - \frac{i}{2\xi} \right\} \frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{\xi}} \exp\left(-i\frac{1}{12}\xi^{3}\right)$$

$$\hat{\mathbf{v}}(\xi) \approx \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \, \mathbf{w}_{1}(t) \, \mathbf{v}(t) \, dt = 2 \frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{\xi}} \exp\left(-i\frac{1}{12}\xi^{3}\right)$$

If we define

$$U(\xi) = \exp i \frac{1}{12} \xi^3 \hat{V}(\xi) \approx 2 \left\{ \frac{\xi^2}{4} - \frac{i}{2\zeta} \right\} \frac{\exp\left(i \frac{\eta}{4}\right)}{\sqrt{\xi}}$$

$$V(\xi) = \exp i \frac{1}{12} \xi^3 \hat{V}(\xi) \approx 2 \frac{\exp\left(i \frac{\eta}{4}\right)}{\sqrt{\xi}}$$

we can write

$$F(\xi_1) = i\xi_1 + \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(-i\xi^2 \xi_1 + i\xi \xi_1^2 + i\frac{1}{4}\xi^3) U(\xi) d\xi$$

$$G(\xi_1) = 1 - \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} (\xi - \xi_1) \exp(-i\xi^2 \xi_1 + i\xi \xi_1^2 + i\frac{1}{4}\xi^3) V(\xi) d\xi . (14.9)$$

Now write

$$\frac{1}{4}\xi^3 - \xi^2\xi_1 + \xi\xi_1^2 = \frac{1}{4}(\xi - 2\xi_1)^3 + \frac{\xi_1}{2}(\xi - 2\xi_1)^2$$

so that if we let

$$\xi = 2\xi_1 + \sqrt{\frac{\pi}{\xi_1}} u$$

$$\frac{\xi_1}{2} (\xi - 2\xi_1)^2 = \frac{\pi}{2} u^2$$

we can write

$$\begin{split} \mathbf{F} \left( \xi_{1} \right) &= \mathbf{i} \, \xi_{1} + \frac{1}{2} \, \frac{1}{\sqrt{\xi_{1}}} \, \int \limits_{-\infty}^{\infty} \, \exp \left( \mathbf{i} \, \frac{\pi^{3}}{4 \xi_{1}^{3}} \, \mathbf{u}^{3} \right) \exp \left( \mathbf{i} \, \frac{\pi}{2} \, \mathbf{u}^{2} \right) \mathbf{U} \left( 2 \xi_{1} + \sqrt{\frac{\pi}{\xi_{1}}} \, \mathbf{u} \right) \mathrm{d}\mathbf{u} \\ \mathbf{G} \left( \xi_{1} \right) &= 1 - \frac{\mathbf{i}}{2} \, \frac{1}{\sqrt{\xi_{1}}} \, \int \limits_{-\infty}^{\infty} \, \left( \xi_{1} + \sqrt{\frac{\pi}{\xi_{1}}} \, \mathbf{u} \right) \, \exp \left( \mathbf{i} \, \frac{\pi^{3}}{4 \xi_{1}^{3}} \, \mathbf{u}^{3} \right) \, \exp \left( \mathbf{i} \, \frac{\pi}{2} \, \mathbf{u}^{2} \right) \, \mathbf{V} \left( 2 \xi_{1} + \sqrt{\frac{\pi}{\xi_{1}}} \, \mathbf{u} \right) \mathrm{d}\mathbf{u} \, . \end{split}$$

Now consider the case for which  $\ \xi_1$  is moderately large and write

$$\exp\left(i\frac{\pi^3}{4\xi_1^3}u^3\right) = 1 + i\frac{\pi^3}{4\xi_1^3}u^3 + \cdots$$

$$\begin{split} \mathbf{U} \left( 2\xi_1 \right) + \sqrt{\frac{\pi}{\xi_1}} \, \mathbf{u} \right) &= \mathbf{U} \left( 2\xi_1 \right) + \mathbf{U}' \left( 2\xi_1 \right) \sqrt{\frac{\pi}{\xi_1}} \, \mathbf{u} + \frac{\pi}{2\xi_1} \, \mathbf{U}'' \left( 2\xi_1 \right) \mathbf{u}^2 + \cdots \\ \\ \left( \xi_1 + \sqrt{\frac{\pi}{\xi_1}} \, \mathbf{u} \right) \, \mathbf{V} \left( 2\xi_1 + \sqrt{\frac{\pi}{\xi_1}} \, \mathbf{u} \right) &= \xi_1 \, \mathbf{V} \left( 2\xi_1 \right) + \left[ \mathbf{V} \left( 2\xi_1 \right) + \xi_1 \, \mathbf{V}' \left( 2\xi_1 \right) \right] \sqrt{\frac{\pi}{\xi_1}} \, \mathbf{u} \\ \\ &+ \frac{\pi}{2\xi_1} \left[ 2\mathbf{V}' \left( 2\xi_1 \right) + \xi_1 \, \mathbf{V}'' \left( 2\xi_1 \right) \right] \mathbf{u}^2 + \cdots \end{split}$$

We then find that since

$$\int_{-\infty}^{\infty} \exp\left(i\frac{\pi}{2}u^2\right) du = \sqrt{2} \exp\left(i\frac{\pi}{4}\right)$$

$$\int_{-\infty}^{\infty} u \exp\left(i\frac{\pi}{2}u^2\right) du = 0$$

$$\int_{\infty}^{\infty} u^2 \exp\left(i\frac{\pi}{2}u^2\right) du = \frac{\sqrt{2}}{\pi} \exp\left(i\frac{3\pi}{4}\right)$$

we have

$$F(\xi_{1}) = i \xi_{1} + \frac{\exp\left(i \frac{\pi}{4}\right)}{\sqrt{2}\xi_{1}} \left\{ U(2\xi_{1}) + \frac{i}{2\xi_{1}} U''(2\xi_{1}) + \cdots \right\}$$

$$G(\xi_{1}) = 1 + \sqrt{\frac{\xi_{1}}{2}} \exp\left(-i \frac{\pi}{4}\right) \left\{ V(2\xi_{1}) + \frac{i}{2\xi_{1}^{2}} \left[ 2V'(2\xi_{1}) + \xi_{1} V''(2\xi_{1}) \right] + \cdots \right\}$$

Since

$$\begin{split} & \text{U}\left(2\xi_{1}\right) \rightarrow \sqrt{\frac{2}{\xi_{1}}} \left[\xi_{1}^{2} - \frac{\mathrm{i}}{4\xi_{1}}\right] \exp\left(\mathrm{i} \frac{\pi}{4}\right) \\ & \text{V}\left(2\xi_{1}\right) \rightarrow \sqrt{\frac{2}{\xi_{1}}} \exp\left(\mathrm{i} \frac{\pi}{4}\right) \end{split}$$

we obtain

$$F(\xi_1) \rightarrow 2i\xi_1,$$

$$G(\xi_1) \rightarrow 2.$$

The results in this section reveal that  $u(\xi)$  and  $v(\xi)$  are the basic functions, and, at least in principle, the functions  $f(\xi)$ ,  $g(\xi)$  and  $\hat{p}(\xi)$ ,  $\hat{q}(\xi)$  can be considered to be integrals of  $u(\xi)$ ,  $v(\xi)$ . However, except for the asymptotic formula discussed above, no practical use (for the purpose of computing f, g,  $\hat{p}$ ,  $\hat{q}$ ) for these relations has been found. However, from a theoretical point of view, these relations are of great value.

# Section 15 REPRESENTATIONS FOR GENERAL!ZED INTEGRALS

The Fourier integrals

$$F(x, y_{o}, y, \delta) = \frac{9^{2}}{\theta y \theta y_{o}} G(x, y_{o}, y, \frac{1}{\delta})$$

$$G(x, y_{o}, y, q) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(ixt) \left[ w_{1}(t - y_{s}) v(t - y_{s}) - \frac{v'(t) - qv(t)}{w_{1}'(t) - qw_{1}(t)} w_{1}(t - y_{o}) w_{1}(t - y) \right] dt$$
(15.1)

play an important role in the theory of diffraction by convex surfaces and in the theory of propagation over plane surfaces above which the index of refraction increases linearly with height. The functions appearing in the integrand are the Airy integrals

$$v(t) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \cos\left(\frac{1}{3}x^{3} + xt\right) dx$$

$$w_{1}(t) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{1}{3}t^{3} + xt\right) dx + \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-i\left(\frac{1}{3}x^{3} + xt\right)\right) dx.$$

We can show that  $G(x,y_0,y,q)$  is the solution of the inhomogeneous diffusion equation

$$\frac{\partial^2 G}{\partial y^2} + i \frac{\partial G}{\partial x} + y G = -\delta(x) \delta(y - y_0)$$

$$0 \le y < \infty$$

$$0 < x < \infty$$

$$0 < x < \infty$$

which has the property

$$\left(\frac{\partial G}{\partial y} + q G\right)_{y=0} = 0$$

and which, for  $y \gg y_0$ , has the property that

$$\frac{\partial}{\partial v} \arg G > 0$$
,

i.e., the phase of G increases with an increase of y, provided  $y >> y_0$ .

The integrals can be evaluated in the form of a series of residues

$$F(x, y_{0}, y, \delta) = -\sum_{s=1}^{\infty} \frac{\exp(ixt_{s})}{t_{s} - q^{2}} \frac{w_{1}'(t_{s} - y)}{w_{1}(t_{s})} \frac{w_{1}'(t_{s} - y_{0})}{w_{1}(t_{s})}$$

$$= \sum_{s=1}^{\infty} \frac{\exp(ixt_{s})}{1 - (t_{s}/q^{2})} \frac{w_{1}'(t_{s} - y)}{w_{1}'(t_{s})} \frac{w_{1}'(t_{s} - y_{0})}{w_{1}'(t_{s})}$$

$$G(x, y_{0}, y, q) = \sum_{s=1}^{\infty} \frac{\exp(ixt_{s})}{t_{s} - q^{2}} \frac{w_{1}(t_{s} - y)}{w_{1}(t_{s})} \frac{w_{1}(t_{s} - y_{0})}{w_{1}(t_{s})}$$

$$= \sum_{s=1}^{\infty} \frac{\exp(ixt_{s})}{1 - (t_{s}/q^{2})} \frac{w_{1}(t_{s} - y)}{w_{1}'(t_{s})} \frac{w_{1}(t_{s} - y_{0})}{w_{1}'(t_{s})}$$

$$(15.3)$$

where  $t_s$  denotes the roots of

$$w_{1}(t_{s}) - q w_{1}(t_{s}) = 0.$$

In order to obtain these forms we have made use of the fact  $\mathbf{w}_1$  (t) and  $\mathbf{v}$ (t) are solutions of the differential equations

$$w_1^{\tau \tau}(t) = t w_1(t), \qquad v^{\tau \tau}(t) = t v(t)$$

which have the Wronskian

$$v(t) w_1'(t) - v'(t) w_1(t) = 1.$$

We call the fields

$$F_{o}(x, y_{o}, y) = \frac{\exp(-i\frac{\pi}{4})}{4x\sqrt{\pi x}} \left\{ 1 - i\frac{(y - y_{o})^{2}}{2x} - i\frac{x^{3}}{2} \right\} \exp\left[-i\frac{x^{3}}{12} + i\frac{x}{2}(y + y_{o}) + i\frac{(y - y_{o})^{2}}{4x}\right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(ixt) w_{1}'(t - y_{>}) v'(t - y_{<}) dt$$

$$G_{o}(x, y_{o}, y) = \frac{\exp(i\frac{\pi}{4})}{2\sqrt{\pi}x} \exp\left[-i\frac{x^{3}}{12} + i\frac{x}{2}(y + y_{o}) + i\frac{(y - y_{o})^{2}}{4x}\right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(ixt) w_{1}(t - y_{>}) v(t - y_{<}) dt \qquad (15.4)$$

the primary fields or the "point source" fields. We can show that

$$F(x,0,0,0) \xrightarrow{x \to 0} 2 F_{O}(x,0,0) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{2x\sqrt{\pi x}} \left(1 - i\frac{x^{3}}{2}\right) \exp\left(-i\frac{x^{3}}{12}\right),$$

$$G(x,0,0,0) \xrightarrow{x \to 0} 2 G_{O}(x,0,0) = \frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{\pi x}} \exp\left(-i\frac{x^{3}}{12}\right)$$
(15.5)

It is convenient to renormalize  $F(x, y_0, y; \delta)$  and  $G(x, y_0, y, q)$  by defining

$$U(x,y_{0},y,\delta) = 4x\sqrt{\pi x} \exp\left(i\frac{\pi}{4}\right)F\left(x,y_{0},y,\frac{1}{\delta}\right)$$

$$V(x,y_{0},y,q) = 2\sqrt{\pi x} \exp\left(-i\frac{\pi}{4}\right)G(x,y_{0},y,q) \qquad (15.6)$$

It is also convenient to introduce the special functions  $U_{_{\rm O}}(x,\,\delta)$  and  $V_{_{\rm O}}(x,q)$  defined by

$$U(x,0,0,\delta) = 2 U_{O}(x,\delta)$$
  
 $V(x,0,0,q) = 2 V_{O}(x,q)$  (15.7)

or

$$U_{o}(x,\delta) = -\exp\left(i\frac{\pi}{4}\right) \frac{x^{3/2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{w_{1}'(t)}{w_{1}(t) - \delta w_{1}'(t)} dt$$

$$V_{o}(x,q) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{2} \sqrt{\frac{x}{\pi}} \int_{-\infty}^{\infty} \exp(ixt) \frac{w_{1}'(t)}{w_{1}'(t) - q w_{1}'(t)} dt \qquad (15.8)$$

We can show that

$$U_{o}(0, \delta) = 1$$

$$V_{o}(0, q) = 1$$
(15.9)

If we let  $y_0 \rightarrow \infty$  , we can introduce the asymptotic estimates

$$w_{1}(t-y_{o}) \xrightarrow{y_{o} \to \infty} \exp\left(i\frac{\pi}{4}\right) y_{o}^{-1/4} \exp\left(i\frac{2}{3}y_{o}^{3/2} - i\sqrt{y_{o}}t\right)$$

$$w_{1}'(t-y_{o}) \xrightarrow{y_{o} \to \infty} \exp\left(-i\frac{\pi}{4}\right) y_{o}^{1/4} \exp\left(i\frac{2}{3}y_{o}^{3/2} - i\sqrt{y_{o}}t\right)$$
(15. 10)

to obtain

$$F(x, \infty, y, \delta) = -\exp(-i\frac{\pi}{4})y_0^{1/4} \exp(i\frac{2}{3}y_0^{3/2}) \frac{1}{2\sqrt{\pi}} F_1(\xi, y, \delta)$$

$$G(x, \infty, y, q) = \exp(i\frac{\pi}{4})y_0^{-1/4} \exp(i\frac{2}{3}y_0^{3/2}) \frac{1}{2\sqrt{\pi}} G_1(\xi, y, q)$$
(15.11)

where

$$\xi = x - \sqrt{y_0}$$

and

$$F_{1}(\xi,y,\delta) \ = \ -\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \ \exp(\mathrm{i} \xi \, t) \left\{ v^{\dag}(t-y) - \frac{v(t) - \delta \ v^{\dag}(t)}{w_{1}(t) - \delta \ w_{1}^{\dag}(t)} \ w_{1}^{\dag}(t-y) \right\} \mathrm{d}t$$

$$G_{1}(\xi,y,q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \left[ v(t-y) - \frac{v'(t) - q \ v(t)}{w_{1}'(t) - q \ w_{1}(t)} \ w_{1}(t-y) \right] dt \quad (15.12)$$

We call the fields

$$\mathbf{F}_{O}(\xi, \mathbf{y}) = -\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \, \mathbf{v}'(t - \mathbf{y}) \, dt = i \, \xi \, \exp\left(i\xi \mathbf{y} - i \, \frac{\xi^{3}}{3}\right)$$

$$\mathbf{G}_{O}(\xi, \mathbf{y}) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \, \mathbf{v}(t - \mathbf{y}) \, dt = \exp\left(i \, \xi \mathbf{y} - i \, \frac{\xi^{3}}{3}\right) \qquad (15.13)$$

the primary fields or the "plane wave" fields. We observe that  $G_1(\xi,y,q)$  satisfies the diffusion equation

$$\frac{\partial^2 G_1}{\partial v^2} + i \frac{\partial G_1}{\partial \xi} + y G_1 = 0$$

and the boundary condition

$$\left(\frac{\partial G_1}{\partial y} + q G_1\right)_{y=0} = 0.$$

Also, we observe that

$$F_{1}(\xi, y, \delta) = \frac{\partial}{\partial y} G_{1}(\xi, y, 1/\delta). \tag{15.14}$$

For y = 0 we define the special functions  $U_1(\xi, \delta) V_1(\xi, q)$  as follows

$$U_{1}(\xi, \delta) = F_{1}(\xi, 0, \delta) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{w_{1}(t) - \delta w_{1}(t)} dt$$

$$V_{1}(\xi, q) = G_{1}(\xi, 0, q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{w_{1}(t) - q w_{1}(t)} dt$$
(15.15)

For  $y \rightarrow \infty$  we find that

$$F_{1}(\xi, y, \delta) \xrightarrow{y \to \infty} \frac{\partial}{\partial y} G_{1}(\xi, y) + i y^{1/4} \exp\left(i \frac{2}{3} y^{3/2}\right) U_{2}(z, \delta)$$

$$G_{1}(\xi, y, q) \xrightarrow{y \to \infty} G_{1}(\xi, y) + y^{-1/4} \exp\left(i \frac{2}{3} y^{3/2}\right) V_{2}(z, q) \tag{15.16}$$

where

$$z = \xi - \sqrt{y}$$

and

$$U_2(z,\delta) = V_2(z,\frac{1}{\delta})$$

and

$$V_{2}(z,q) = \frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(izt) \frac{v'(t) - q v(t)}{w_{1}'(t) - q w_{1}(t)} dt - \frac{\exp\left(i\frac{\pi}{4}\right)}{2\sqrt{\pi} z}$$
(15.17)

The function  $G_1(\xi y)$  is defined by

$$G_{1}(\xi, y) = \exp\left(i\xi y - i\frac{\xi^{3}}{3}\right) + \frac{1}{y^{1/4}} \exp\left(i\frac{2}{3}y^{3/2}\right) \left[-\mu K(-\tau)\right], z < 0$$

$$= \frac{1}{y^{1/4}} \exp\left(i\frac{2}{3}y^{3/2}\right) \mu K(\tau) , z > 0 \quad (15.18)$$

$$15-6$$

where

$$\tau = \mu z , \qquad \mu = \frac{4}{\sqrt{z}} , \qquad (15.19)$$

and  $K(\tau)$  is the modified Fresnel integral

$$K(\tau) = \exp\left(-i\tau^2 - i\frac{\pi}{4}\right) \frac{1}{\sqrt{\pi}} \int_{\tau}^{\infty} \exp(is^2) ds$$
 (15.20)

We also observe that if  $y_0$  is large, but not infinite, we can write

$$V(x,y_{o}y,q) \xrightarrow{y \to \infty}_{y_{o} \to \infty} H(x,y,y_{o}) + \sqrt[4]{\frac{\xi^{2}}{yy_{o}}} \exp\left[i \frac{2}{3} \left(y^{3/2} + y_{o}^{3/2}\right)\right] V_{2}(z,q)$$
 (15.21)

where

$$z_0 = x - \sqrt{y_0} - \sqrt{y} = \xi - \sqrt{y}$$

and

$$\begin{split} H(x,y,y_{0}) &= \exp \left[ i - \frac{x^{3}}{12} + \frac{x}{2} (y_{1} + y_{2}) + \frac{(y_{1} - y_{2})^{2}}{4x} \right] \\ &+ \sqrt{4 \left[ \frac{\xi^{2}}{y y_{0}} \exp \left[ i \frac{2}{3} \left( y^{3/2} + y_{0}^{3/2} \right) \right] \left[ -\mu K(-\tau) \right], \quad z < o \\ &= \sqrt{4 \left[ \frac{\xi^{2}}{y y_{0}} \exp \left[ i \frac{2}{3} \left( y^{3/2} + y_{0}^{3/2} \right) \right] \mu K(\tau), \quad z > o \end{split}$$

$$(15.22)$$

where

$$\tau = \mu z, \quad \mu = \sqrt{\frac{\sqrt{y}\sqrt{y_0}}{\sqrt{y} + \sqrt{y_0}}}$$
 (15.23)

It is also convenient to define

$$U_{11}(z,\delta) = V_{11}\left(z,\frac{1}{\delta}\right)$$

$$V_{11}(z,q) = -\frac{\exp\left(i\frac{\pi}{4}\right)}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(izt) \frac{v'(t) - qv(t)}{w_1'(t) - qw_1(t)} dt$$
(15.24)

For large values of  $\tau$ 

$$\mu \ \mathrm{K}(\tau) + \ \mathrm{V}_{2}(z, \mathbf{q}) \xrightarrow{\tau \to \infty} \ \mathrm{V}_{11}(z, \mathbf{q})$$
$$-\mu \ \mathrm{K}(-\tau) + \ \mathrm{V}_{2}(z, \mathbf{q}) \xrightarrow{\tau \to -\infty} \ \mathrm{V}_{11}(z, \mathbf{q})$$

since

$$K(\pm \mid \tau \mid) \xrightarrow{\tau \to \infty} \frac{\exp\left(i\frac{\pi}{4}\right)}{\pm 2\sqrt{\pi}\mid \tau\mid}$$

In order to evaluate the special functions defined above we write

$$\begin{aligned} \mathbf{U}_{0}(\mathbf{x},\delta) &= -\exp\left(\mathrm{i}\,\frac{\pi}{4}\right)\frac{\mathbf{x}^{3/2}}{\sqrt{\pi}}\int_{-\infty}^{\infty}\exp(\mathrm{i}\mathbf{x}t)\,\frac{\mathbf{w}_{1}^{\dagger}(t)}{\mathbf{w}_{1}(t)-\delta}\,\mathbf{w}_{1}^{\dagger}(t)\,\,\mathrm{d}t = \exp\left(\mathrm{i}\,\frac{\pi}{4}\right)2\sqrt{\pi}\,\mathbf{x}^{3/2}\,\mathbf{J}(\mathbf{x},\delta)\\ \mathbf{V}_{0}(\mathbf{x},\mathbf{q}) &= \frac{\exp\left(\mathrm{i}\,\frac{\pi}{4}\right)}{2}\sqrt{\frac{x}{\pi}}\int_{-\infty}^{\infty}\exp(\mathrm{i}\mathbf{x}t)\,\frac{\mathbf{w}_{1}(t)}{\mathbf{w}_{1}^{\dagger}(t)-\mathbf{q}\,\mathbf{w}_{1}(t)}\,\mathrm{d}t = \exp\left(\mathrm{i}\,\frac{\pi}{4}\right)\sqrt{\pi}\,\mathbf{x}^{\dagger}\,\mathbf{K}(\mathbf{x},\mathbf{q})\\ \mathbf{W}_{1}(t,\mathbf{x},\delta) &= \frac{f(t,\mathbf{x},\delta)}{2},\\ \mathbf{V}_{1}(t,\mathbf{x},\delta) &= -\exp\left(\mathrm{i}\,\frac{\pi}{4}\right)\mathrm{r}(t,\delta)\\ \mathbf{W}_{1}(t,\mathbf{x},\delta) &= -\exp\left(\mathrm{i}\,\frac{\pi}{4}\right)\mathrm{r}(t,\delta) \end{aligned} \tag{15.25}$$

(15.26)

where the functions we have now introduced have the properties that

$$\mathbf{J}(\xi,\,\alpha) \;=\; \frac{1}{2\pi\mathrm{i}} \, \int\limits_{\Gamma} \exp(\mathrm{i}\xi \, t) \, \frac{\mathbf{w}_1^{\,\prime}(t)}{\mathbf{w}_1(t) - \alpha \, \mathbf{w}_1^{\,\prime}(t)} \, \mathrm{d}t \;=\; \sum_{m=0}^{\infty} \; \mathbf{J}_m(\xi) \, \alpha^m$$

$$f(\xi, \alpha) = \frac{1}{\sqrt{\pi}} \int \exp(i\xi t) \frac{1}{w_1(t) - \alpha w_1'(t)} dt = \sum_{m=0}^{\infty} f_m(\xi) \alpha^m$$

$$\mathbf{r}(\xi,\,\alpha) \;=\; \frac{1}{\sqrt{\pi}} \; \int\limits_{\Gamma} \exp(\mathrm{i}\xi\,t) \; \frac{\mathbf{v}(t) - \alpha\,\mathbf{v}^{\dagger}(t)}{\mathbf{w}_{1}(t) - \alpha\,\mathbf{w}_{1}^{\dagger}(t)} \, \mathrm{d}t \;=\; \frac{1}{\sqrt{\pi}} \; \int\limits_{\Gamma} \exp(\mathrm{i}\xi\,t) \; \frac{\mathbf{v}(t)}{\mathbf{w}_{1}(t)} \, \mathrm{d}t \;+\; \sum_{m=0}^{\infty} \mathbf{r}_{m}(\xi) \; \alpha^{m+1}$$

$$K(\xi,\beta) = \frac{1}{2\pi i} \int_{\Gamma} \exp(i\xi t) \frac{w_i(t)}{w_1^*(t) - \beta w_1(t)} dt = \sum_{m=0}^{\infty} K_m(\xi) \beta^m$$

$$g(\xi,\beta) = \frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{1}{w'_1(t) - \beta w_1(t)} dt = \sum_{m=0}^{\infty} g_m(\xi) \beta^m$$

$$s(\xi,\beta) = -\frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{v'(t) - \beta v(t)}{w'_1(t) - \beta w_1(t)} dt = -\frac{1}{\sqrt{\pi}} \int_{\Gamma} \exp(i\xi t) \frac{v'(t)}{w'_1(t)} dt + \sum_{m=0}^{\infty} s_m(\xi) \beta^{m+1}$$

These functions can be represented in the form of residue series. Let

$$w_1(\tau_s) - \alpha w_1(\tau_s) = 0$$
  
 $w_1(\tau_s) - \beta w_1(t_s) = 0$   
, s = 1, 2, 3, ...

Then we can write

$$J(\xi,\alpha) = \sum_{s=1}^{\infty} \frac{\exp(i\xi \, \tau_s)}{1 - \alpha^2 \, \tau_s} \qquad K(\xi,\beta) = \sum_{s=1}^{\infty} \frac{\exp(i\xi \, t_s)}{t_s - \beta^2}$$

$$f(\xi,\alpha) = 2\sqrt{\pi} \, i \sum_{s=1}^{\infty} \frac{\exp(i\xi \, \tau_s)}{1 - \alpha^2 \, \tau_s} \, \frac{1}{w_1'(\tau_s)} \qquad g(\xi,\beta) = 2\sqrt{\pi} \, i \sum_{s=1}^{\infty} \frac{\exp(i\xi \, t_s)}{t_s - \beta^2} \, \frac{1}{w_1(t_s)}$$

$$r(\xi,\alpha) = 2\sqrt{\pi} \, i \sum_{s=1}^{\infty} \frac{\exp(i\xi \, \tau_s)}{1 - \alpha^2 \, \tau_s} \, \frac{1}{[w_1'(\tau_s)]^2} \qquad s(\xi,\beta) = 2\sqrt{\pi} \, i \sum_{s=1}^{\infty} \frac{\exp(i\xi \, t_s)}{t_s - \beta^2} \, \frac{1}{[w_1(t_s)]^2}$$

Let us now observe that if

$$w_1(\tau_s) - \alpha w_1(\tau_s) = 0$$

then since

$$\mathbf{w}_{1}^{\tau\tau}(\tau) = \tau \ \mathbf{w}_{1}(\tau)$$

we find that

$$w_1'(\tau_s) \frac{d\tau_s}{d\alpha} - w_1'(\tau_s) - \alpha w_1''(\tau_s) \frac{d\tau_s}{d\alpha} = 0$$

or

$$\frac{\mathrm{d}\,\tau_{\mathrm{S}}}{\mathrm{d}\,\alpha} = \frac{1}{1 - \alpha^2\,\tau_{\mathrm{S}}}\tag{15,28}$$

If we define  $t_{S}^{\infty}$  to be the solution of

$$w_1(t_S^{\infty}) = 0$$
 (15.29)

15-10

and  $t_s^o$  to be the solution of

$$w_1'(t_s^0) = 0$$
 (15.30)

then we can write the limiting forms of  $\tau_{_{\mathbf{S}}}(\alpha)$  in the form

$$\tau_{s}(0) = t_{s}^{\infty}$$

We can then use the differential equation to show that

$$\tau_{s}(\alpha) = t_{s}^{\infty} + \alpha + \frac{1}{3}t_{s}^{\infty}\alpha^{3} + \frac{1}{4}\alpha^{4} + \frac{1}{5}(t_{s}^{\infty})^{2}\alpha^{5} + \frac{7}{18}(t_{s}^{\infty})\alpha^{6} + \left(\frac{(t_{s})^{3}}{7} + \frac{5}{28}\right)\alpha^{7} + \cdots$$
(15.31)

We can also show that

$$\frac{\mathrm{d}\,t_{s}}{\mathrm{d}\,\beta} = \frac{1}{t_{s} - \beta^{2}}$$

We define  $t_8^0$  to be the solution of

$$w_1^{\dagger}(t_s^0) = 0.$$

The differential equation then leads to

$$t_{s}(\beta) = t_{s}^{o} + \frac{1}{t_{s}^{o}} \beta - \frac{1}{2(t_{s}^{o})^{3}} \beta^{2} + \left(\frac{1}{3(t_{s}^{o})^{2}} + \frac{1}{2(t_{s}^{o})^{5}}\right) \beta^{3}$$

$$-\left(\frac{7}{12(t_{s}^{o})^{4}} + \frac{5}{8(t_{s}^{o})^{7}}\right) \beta^{4} + \left(\frac{1}{5(t_{s}^{o})^{3}} + \frac{21}{20(t_{s}^{o})^{6}} + \frac{7}{8(t_{s}^{o})^{9}}\right) \beta^{5} + \cdots$$
(15. 32)

From the properties

$$w_{1}^{\prime}(\tau_{s}) = w_{1}^{\prime}(t_{s}^{\infty}) \left\{ 1 + \frac{1}{2} t_{s}^{\infty} (\tau_{s} - t_{s}^{\infty})^{2} + \frac{1}{3} (\tau_{s} - t_{s}^{\infty})^{3} + \frac{(t_{s}^{\infty})^{2}}{24} (\tau_{s} - t_{s}^{\infty})^{4} + \frac{t_{s}^{\infty}}{20} (\tau_{s} - t_{s}^{\infty})^{5} + \cdots \right\}$$

$$w_{1}(t_{s}) = w_{1}(t_{s}^{0}) \left\{ 1 + \frac{1}{2} t_{s}^{0} (t_{s} - t_{s}^{0})^{2} + \frac{1}{6} (t_{s} - t_{s}^{0})^{3} + \frac{(t_{s}^{0})^{2}}{24} (t_{s} - t_{s}^{0})^{4} + \frac{t_{s}^{0}}{30} (t_{s} - t_{s}^{0})^{5} + \cdots \right\}$$

we find that

$$w_{1}'(\tau_{s}) = w_{1}'(t_{s}^{\infty}) \left\{ 1 + \frac{t_{s}^{\infty}}{2} \alpha^{2} + \frac{1}{3} \alpha^{3} + \frac{3}{8} (t_{s}^{\infty})^{2} \alpha^{4} + \frac{19}{30} (t_{s}^{\infty}) \alpha^{5} + \cdots \right\}$$

$$w_{1}(t_{s}) = w_{1}(t_{s}^{0}) \left\{ 1 + \frac{1}{2t_{s}^{0}} \beta^{2} - \frac{1}{3(t_{s}^{0})^{3}} \beta^{3} + \left( \frac{3}{8(t_{s}^{0})^{2}} + \frac{3}{8(t_{s}^{0})^{5}} \right) \beta^{4} - \left( \frac{19}{30(t_{s}^{0})^{4}} + \frac{1}{2(t_{s}^{0})^{7}} \right) \beta^{5} + \cdots \right\}$$

$$(15.33)$$

We can also show that

$$\frac{1}{1-\alpha^{2}\tau_{s}} = 1 + t_{s}^{\infty} \alpha^{2} + \alpha^{3} + (t_{s}^{\infty})^{2} \alpha^{4} + \frac{7}{3} (t_{s}^{\infty}) \alpha^{5} + \cdots$$

$$\frac{1}{t_{s}-\beta^{2}} = \frac{1}{t_{s}^{0}} - \frac{1}{(t_{s}^{0})^{3}} \beta + \left(\frac{1}{(t_{s}^{0})^{2}} + \frac{3}{2(t_{s}^{0})^{5}}\right) \beta^{2} - \left(\frac{7}{3(t_{s}^{0})^{4}} + \frac{5}{2(t_{s}^{0})^{7}}\right) \beta^{3}$$

$$+ \left(\frac{1}{(t_{s}^{0})^{3}} + \frac{21}{4(t_{s}^{0})^{6}} + \frac{35}{8(t_{s}^{0})^{9}}\right) \beta^{4}$$

$$- \left(\frac{58}{15(t_{s}^{0})^{5}} + \frac{231}{20(t_{s}^{0})^{8}} + \frac{63}{8(t_{s}^{0})^{+1}}\right) \beta^{5} + \cdots$$

and

$$\exp(i\xi \tau_{\mathbf{s}}) = \exp(i\xi t_{\mathbf{s}}^{\infty}) \left\{ 1 + i\xi \alpha - \frac{1}{2} \xi^{2} \alpha^{2} + \left( \frac{1}{3} i\xi (t_{\mathbf{s}}^{\infty}) - \frac{1}{6} i\xi^{3} \right) \alpha^{3} + \left( \frac{1}{4} i\xi - \frac{1}{3} \xi^{2} (t_{\mathbf{s}}^{\infty}) + \frac{1}{24} \xi^{4} \right) \alpha^{4} + \left( \frac{1}{5} i\xi (t_{\mathbf{s}}^{\infty})^{2} - \frac{1}{6} i\xi^{3} (t_{\mathbf{s}}^{\infty}) + \frac{1}{120} i\xi^{5} - \frac{1}{4} \xi^{2} \right) \alpha^{5} + \cdots \right\} (15.35)$$

$$\exp(i\xi t_{\mathbf{s}}) = \exp(i\xi t_{\mathbf{s}}^{0}) \left\{ 1 + i\xi \frac{1}{t_{\mathbf{s}}^{0}} \beta - \left( \xi^{2} \frac{1}{2(t_{\mathbf{s}}^{0})^{2}} + i\xi \frac{1}{2(t_{\mathbf{s}}^{0})^{3}} \right) \beta^{2} + \left( i\xi \frac{1}{3(t_{\mathbf{s}}^{0})^{2}} - i\xi^{3} \frac{1}{6(t_{\mathbf{s}}^{0})^{3}} + \xi^{2} \frac{1}{2(t_{\mathbf{s}}^{0})^{4}} + i\xi \frac{1}{2(t_{\mathbf{s}}^{0})^{5}} \right) \beta^{3} - \left( \xi^{2} \frac{1}{3(t_{\mathbf{s}}^{0})^{3}} - \xi^{4} \frac{1}{24(t_{\mathbf{s}}^{0})^{4}} + i\xi \frac{7}{12(t_{\mathbf{s}}^{0})^{4}} - i\xi^{3} \frac{1}{4(t_{\mathbf{s}}^{0})^{5}} + \xi^{2} \frac{5}{8(t_{\mathbf{s}}^{0})^{6}} + i\xi \frac{5}{8(t_{\mathbf{s}}^{0})^{7}} \right) \beta^{4} + \left( i\xi \frac{1}{5(t_{\mathbf{s}}^{0})^{3}} - i\xi^{3} \frac{1}{6(t_{\mathbf{s}}^{0})^{4}} + i\xi^{5} \frac{1}{120(t_{\mathbf{s}}^{0})^{5}} + \xi^{2} \frac{3}{4(t_{\mathbf{s}}^{0})^{5}} + i\xi \frac{21}{20(t_{\mathbf{s}}^{0})^{6}} - \xi^{4} \frac{1}{12(t_{\mathbf{s}}^{0})^{6}} - i\xi^{3} \frac{3}{8(t_{\mathbf{s}}^{0})^{7}} + \xi^{2} \frac{7}{8(t_{\mathbf{s}}^{0})^{8}} + i\xi \frac{7}{8(t_{\mathbf{s}}^{0})^{9}} \right) \beta^{5} + \cdots$$

$$(15.36)$$

These results can be used to show that:

$$\frac{\exp(i\xi\tau_{\mathbf{S}})}{1-\alpha^{2}\tau_{\mathbf{S}}} = \exp(i\xi\,t_{\mathbf{S}}^{\infty}) \left\{ 1 + i\,\xi\,\alpha + (t_{\mathbf{S}}^{\infty} - \frac{1}{2}\,\xi^{2})\,\alpha^{2} + (1 + i\,\frac{4}{3}\,\xi\,t_{\mathbf{S}}^{\infty} - \frac{i}{6}\,\xi^{3})\,\alpha^{3} + \left( i\,\frac{5}{4}\,\xi + \frac{1}{24}\,\xi^{4} - \frac{5}{6}\,\xi^{2}\,t_{\mathbf{S}}^{\infty} + (t_{\mathbf{S}}^{\infty})^{2} \right)\alpha^{4} - \left( \frac{3}{4}\,\xi^{2} - \frac{1}{120}\,i\,\xi^{5} - \frac{7}{3}\,t_{\mathbf{S}}^{\infty} + i\,\frac{1}{3}\,\xi^{3}\,t_{\mathbf{S}}^{\infty} - i\,\frac{23}{15}\,\xi\,(t_{\mathbf{S}}^{\infty})^{2} \right)\alpha^{5} + \cdots \right\}$$

$$\frac{\exp(i\xi\tau_{\mathbf{S}})}{(1-\alpha^{2}\tau_{\mathbf{S}})\,w_{\mathbf{I}}^{\prime}(\tau_{\mathbf{S}})} = \frac{\exp(i\xi t_{\mathbf{S}}^{\infty})}{w_{\mathbf{I}}^{\prime}(t_{\mathbf{S}}^{\infty})} \left\{ 1 + i\,\xi\,\alpha - \left( \frac{1}{2}\,\xi^{2} - \frac{1}{2}\,t_{\mathbf{S}}^{\infty} \right)\alpha^{2} + \left( \frac{2}{3} + i\,\frac{5}{6}\,\xi\,t_{\mathbf{S}}^{\infty} - i\,\frac{1}{6}\,\xi^{3} \right)\alpha^{3} + \left( i\,\frac{11}{12}\,\xi + \frac{1}{24}\,\xi^{4} + \frac{3}{8}\,(t_{\mathbf{S}}^{\infty})^{2} - \frac{7}{12}\,\xi^{2}\,t_{\mathbf{S}}^{\infty} \right)\alpha^{4} - \left( \frac{7}{12}\,\xi^{2} - i\,\frac{1}{120}\,\xi^{5} - \frac{6}{5}\,t_{\mathbf{S}}^{\infty} + i\,\frac{1}{4}\,\xi^{3}\,t_{\mathbf{S}}^{\infty} - i\,\frac{89}{120}\,\xi\,(t_{\mathbf{S}}^{\infty})^{2} \right)\alpha^{5} + \cdots \right\}$$

$$(15.38)$$

$$\frac{\exp(i\xi\tau_{\mathbf{s}})}{(1-\alpha^{2}\tau_{\mathbf{s}})\left[w_{1}^{i}(\tau_{\mathbf{s}})\right]^{2}} = \frac{\exp(i\xi t_{\mathbf{s}}^{s})}{\left[w_{1}^{i}(t_{\mathbf{s}}^{s})\right]^{2}} \left\{ 1 + i\xi\alpha - \frac{1}{2}\xi^{2}\alpha^{2} + \left(\frac{1}{3} + i\frac{1}{3}\xi t_{\mathbf{s}}^{s} - i\frac{1}{6}\xi^{3}\right)\alpha^{3} + \left(i\frac{7}{12}\xi + \frac{1}{24}\xi^{4} - \frac{1}{3}\xi^{2}t_{\mathbf{s}}^{s}\right)\alpha^{4} + \left(i\frac{7}{12}\xi + \frac{1}{24}\xi^{4} - \frac{1}{3}\xi^{2}t_{\mathbf{s}}^{s}\right)\alpha^{4} - \left(\frac{5}{12}\xi^{2} - i\frac{1}{120}\xi^{5} - \frac{2}{5}t_{\mathbf{s}}^{s} + i\frac{1}{6}\xi^{3}t_{\mathbf{s}}^{s} - i\frac{1}{6}\xi^{3}t_{\mathbf{s}}^{s} + i\frac{1}{2}\xi^{2}t_{\mathbf{s}}^{s} + i\frac{1}{6}\xi^{3}t_{\mathbf{s}}^{s} + i\frac{1}{2}\xi^{2}t_{\mathbf{s}}^{s} + i\frac{1}{2}\xi^{2}t_{\mathbf{s$$

$$\begin{split} \frac{\exp(i\xi t_{\mathbf{S}})}{t_{\mathbf{S}} - \beta^{2}} \frac{1}{w_{1}(t_{\mathbf{S}})} &= \frac{\exp(i\xi t_{\mathbf{S}})}{w_{1}(t_{\mathbf{S}})^{3}} \left\{ \frac{1}{t_{\mathbf{S}}^{2}} + \left( i \frac{1}{(t_{\mathbf{S}}^{0})^{2}} \xi - \frac{1}{(t_{\mathbf{S}}^{0})^{3}} \right) \beta \right. \\ &\quad + \left( \frac{1}{2(t_{\mathbf{S}}^{0})^{2}} - \frac{1}{2(t_{\mathbf{S}}^{0})^{3}} \xi^{2} - i \frac{3}{2(t_{\mathbf{S}}^{0})^{4}} \xi + \frac{3}{2(t_{\mathbf{S}}^{0})^{5}} \right) \beta^{2} \\ &\quad + \left( i \frac{5}{6(t_{\mathbf{S}}^{0})^{3}} \xi - \frac{3}{2(t_{\mathbf{S}}^{0})^{4}} - i \frac{1}{6(t_{\mathbf{S}}^{0})^{4}} \xi^{3} + \frac{1}{(t_{\mathbf{S}}^{0})^{5}} \xi^{2} + i \frac{5}{2(t_{\mathbf{S}}^{0})^{6}} \xi - \frac{5}{2(t_{\mathbf{S}}^{0})^{7}} \right) \beta^{3} \\ &\quad + \left( \frac{3}{8(t_{\mathbf{S}}^{0})^{3}} \frac{7}{12(t_{\mathbf{S}}^{0})^{4}} \xi^{2} - i \frac{8}{3(t_{\mathbf{S}}^{0})^{5}} \xi + \frac{1}{24(t_{\mathbf{S}}^{0})^{5}} \xi^{4} + \frac{91}{24(t_{\mathbf{S}}^{0})^{6}} \xi - \frac{5}{2(t_{\mathbf{S}}^{0})^{7}} \right) \beta^{4} \\ &\quad + i \frac{5}{12(t_{\mathbf{S}}^{0})^{6}} \xi^{3} - \frac{15}{8(t_{\mathbf{S}}^{0})^{7}} \xi^{2} - i \frac{35}{8(t_{\mathbf{S}}^{0})^{8}} \xi + \frac{35}{8(t_{\mathbf{S}}^{0})^{9}} \right) \beta^{4} \\ &\quad + \left( i \frac{89}{120(t_{\mathbf{S}}^{0})^{4}} \xi - \frac{233}{120(t_{\mathbf{S}}^{0})^{5}} - i \frac{1}{4(t_{\mathbf{S}}^{0})^{5}} \xi^{3} + \frac{25}{12(t_{\mathbf{S}}^{0})^{6}} \xi^{2} + i \frac{1}{120(t_{\mathbf{S}}^{0})^{6}} \xi^{5} \right) \right. \\ &\quad + i \frac{277}{40(t_{\mathbf{S}}^{0})^{7}} \xi - \frac{1}{8(t_{\mathbf{S}}^{0})^{7}} \xi^{4} - \frac{357}{40(t_{\mathbf{S}}^{0})^{8}} - i \frac{7}{8(t_{\mathbf{S}}^{0})^{8}} \xi^{3} \\ &\quad + \frac{7}{2(t_{\mathbf{S}}^{0})^{9}} \xi^{2} + i \frac{63}{8(t_{\mathbf{S}}^{0})^{10}} \xi - \frac{63}{8(t_{\mathbf{S}}^{0})^{11}} \right) \beta^{5} + \dots \right\}$$

$$\begin{split} \frac{\exp(i\xi \, t_{\mathbf{s}})}{t_{\mathbf{s}} - \beta^2} \frac{1}{\left[w_{\mathbf{l}}(t_{\mathbf{s}})\right]^2} &= \frac{\exp(i\xi t_{\mathbf{s}})}{\left[w_{\mathbf{l}}(t_{\mathbf{s}})\right]^2} \left\{ t_{\mathbf{s}}^0 + \left( i \frac{1}{(t_{\mathbf{s}})^2} \xi - \frac{1}{(t_{\mathbf{s}})^3} \right) \beta + \left( -\frac{1}{2(t_{\mathbf{s}})^3} \xi^2 - i \frac{3}{2(t_{\mathbf{s}})^4} \xi^4 + \frac{3}{2(t_{\mathbf{s}})^5} \right) \beta^2 \right. \\ &\quad + \left( i \frac{1}{3(t_{\mathbf{s}})^3} \xi - \frac{2}{3(t_{\mathbf{s}})^3} 4 - i \frac{1}{6(t_{\mathbf{s}})^4} \xi^3 + \frac{1}{(t_{\mathbf{s}})^5} \xi^2 + i \frac{5}{2(t_{\mathbf{s}})^5} \xi - \frac{5}{2(t_{\mathbf{s}})^7} \right) \beta^3 \\ &\quad + \left( -\frac{1}{3(t_{\mathbf{s}})^4} \xi^2 - i \frac{19}{12(t_{\mathbf{s}})^5} \xi + \frac{1}{24(t_{\mathbf{s}})^5} \xi^4 + \frac{7}{3(t_{\mathbf{s}})^6} \xi - \frac{5}{12(t_{\mathbf{s}})^6} \xi^3 \right. \\ &\quad - \frac{15}{8(t_{\mathbf{s}})^7} \xi^2 - i \frac{35}{8(t_{\mathbf{s}})^8} \xi + \frac{35}{8(t_{\mathbf{s}})^9} \right) \beta^4 \\ &\quad + \left( i \frac{1}{5(t_{\mathbf{s}})^4} \xi - \frac{3}{5(t_{\mathbf{s}})^5} - i \frac{1}{6(t_{\mathbf{s}})^5} \xi^3 + \frac{17}{12(t_{\mathbf{s}})^6} \xi^2 + i \frac{1}{120(t_{\mathbf{s}})^6} \xi^5 \right. \\ &\quad + i \frac{24}{5(t_{\mathbf{s}})^7} \xi - \frac{1}{8(t_{\mathbf{s}})^7} \xi^4 - \frac{63}{10(t_{\mathbf{s}})^8} - i \frac{7}{8(t_{\mathbf{s}})^8} \xi^3 \\ &\quad + \frac{7}{2(t_{\mathbf{s}})^9} \xi^2 + i \frac{63}{8(t_{\mathbf{s}})^{10}} \xi - \frac{63}{8(t_{\mathbf{s}})^{11}} \right) \beta^5 + \dots \right\} \end{split}$$

## 15.1 THE INTEGRALS $J_n(\xi)$

We can now use these expansions to show that

$$J_{G}(\xi) = \sum_{s=1}^{\infty} \exp(i\xi t_{s}^{\infty}) = J^{(0)}(\xi)$$

$$J_{1}(\xi) = \sum_{s=1}^{\infty} (i\xi) \exp(i\xi t_{s}^{\infty}) = i\xi J^{(0)}(\xi)$$

$$J_{2}(\xi) = \sum_{s=1}^{\infty} \left[ -\frac{1}{2} \xi^{2} + t_{s}^{\infty} \right] \exp(i\xi t_{s}^{\infty}) = -\frac{\xi^{2}}{2} J^{(0)}(\xi) - i J^{(1)}(\xi)$$

$$J_{3}(\xi) = \sum_{s=1}^{\infty} \left\{ 1 - \frac{i}{6} \xi^{3} + i \frac{4}{3} \xi t_{s}^{\infty} \right\} \exp(i\xi t_{s}^{\infty}) = \left( 1 - \frac{i}{6} \xi^{3} \right) J^{(0)}(\xi) + \frac{4}{3} \xi J^{(1)}(\xi)$$
(15.43)

$$J_{4}(\xi) = \sum_{s=1}^{\infty} \left[ i \frac{5}{4} \xi + \frac{1}{24} \xi^{4} - \frac{5}{6} \xi^{2} i_{s}^{\infty} + (i_{s}^{\infty})^{2} \right] \exp(i \xi i_{s}^{\infty})$$

$$= \left( i \frac{5}{4} \xi + \frac{1}{24} \xi^{4} \right) J^{(0)}(\xi) + i \frac{5}{6} \xi^{2} J^{(1)}(\xi) - J^{(2)}(\xi)$$

$$J_{5}(\xi) = \sum_{s=1}^{\infty} \left\{ -\frac{3}{4} \xi^{2} + \frac{i}{120} \xi^{5} + \frac{7}{3} t_{s}^{\infty} - \frac{i}{3} \xi^{3} t_{s}^{\infty} + i \frac{23}{15} \xi (t_{s}^{\infty})^{2} \right\} \exp(i\xi t_{s}^{\infty})$$

$$= \left( -\frac{3}{4} \xi^{2} + \frac{i}{120} \xi^{5} \right) J^{(0)}(\xi) - \left( i \frac{7}{3} + \frac{1}{3} \xi^{3} \right) J^{(1)}(\xi) - i \frac{23}{15} \xi J^{(2)}(\xi)$$

In general, we have

$$J_{n}(\xi) = \frac{i \, \xi}{n} \, J_{n-1}(\xi) - i \, \frac{d \, J_{n-2}(\xi)}{d \, \xi}. \tag{15.44}$$

We observe that

$$J^{(n)}(\xi) = \frac{d^n}{d\xi^n} J(\xi)$$

where

$$J(\xi) = J^{(0)}(\xi) = J_{o}(\xi) = \sum_{s=1}^{\infty} \exp(i\xi t_{s}^{o}) = \sum_{s=1}^{\infty} \exp(-\frac{\sqrt{3}+i}{2} \alpha_{s} \xi)$$

where  $\alpha_s$  denotes the roots of the Airy function

Ai (- 
$$\alpha_s$$
) = 0.

We can also write

$$J(\xi) = \frac{1}{2\pi i} \int_{C-i\infty}^{C+i\infty} \exp(x \, \alpha) \, \frac{Ai'(\alpha)}{Ai(\alpha)} \, d\alpha \,, \quad x = \frac{\sqrt{3}-i}{2} \, \xi = \exp\left(-i \, \frac{\pi}{6}\right) \xi$$

$$= -\sum_{n=0}^{\infty} \Lambda_n \frac{x \frac{3n-3}{2}}{\Gamma(\frac{3n-1}{2})} = \frac{\exp(i \frac{\pi}{4})}{2\sqrt{\pi} \xi^{3/2}} \left\{ 1 + \frac{1}{4} \frac{\Gamma(-\frac{1}{2})}{\Gamma(2)} \exp(-i \frac{\pi}{4}) \xi^{3/2} \right\}$$

$$-\frac{5}{32}\frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma\left(\frac{5}{2}\right)}\exp\left(-i\frac{\pi}{2}\right)\xi^{3}+\cdots$$

where  $A_n$  denotes the coefficient of  $\alpha^{(-3n+1/2)}$  in the asymptotic expansion of the logarithmic derivative of the Airy function

$$\frac{\text{Ai'}(\alpha)}{\text{Ai}(\alpha)} = \sum_{n=0}^{\infty} A_n \alpha^{(3n-1/2)} = -\sqrt{\alpha} - \frac{1}{4} \frac{1}{\alpha} + \frac{5}{32} \frac{1}{\alpha^{5/2}} - \frac{15}{64} \frac{1}{\alpha^4} + \frac{1105}{2048} \frac{1}{\alpha^{11/2}} - \frac{1695}{1024} \frac{1}{\alpha^7} + \frac{414125}{65536} \frac{1}{\alpha^{17/2}} - \frac{59025}{2048} \frac{1}{\alpha^{10}} + \frac{12820}{8388608} \frac{31525}{\alpha^{21/2}} - \frac{2421}{262144} \frac{83775}{\alpha^{13}} + \cdots$$

## 15.2 THE INTEGRALS K<sub>n</sub>(ξ)

We can also show that

$$K_{o}(\xi) = \sum_{s=1}^{\infty} \frac{\exp(i\xi t_{s}^{o})}{t_{s}^{o}} = K^{(0)}(\xi)$$

$$K_1(\xi) = \sum_{s=1}^{\infty} \left\{ -\frac{1}{(t_s^0)^2} + \frac{i}{t_s^0} \xi \right\} \frac{\exp(i\xi t_s^0)}{t_s^0} = K^{(-2)}(\xi) - \xi K^{(-1)}(\xi)$$

$$\begin{split} K_{2}(\xi) &= \sum_{s=1}^{\infty} \left[ \frac{3}{2(t_{s}^{0})^{4}} - i \frac{3}{2(t_{s}^{0})^{3}} \xi - \frac{1}{2(t_{s}^{0})^{2}} \xi^{2} + \frac{1}{t_{s}^{0}} \right] \frac{\exp(i\xi t_{s}^{0})}{t_{s}^{0}} \\ &= \frac{3}{2} K^{(-4)}(\xi) - \frac{3}{2} \xi K^{(-3)}(\xi) + \frac{1}{2} \xi^{2} K^{(-2)}(\xi) + i K^{(-1)}(\xi) \\ K_{3}(\xi) &= \sum_{s=1}^{\infty} \left\{ -\frac{5}{2(t_{s}^{0})^{6}} + i \frac{5}{2(t_{s}^{0})^{5}} \xi + \frac{1}{(t_{s}^{0})^{4}} \xi^{2} - i \frac{1}{6(t_{s}^{0})^{3}} \xi^{3} - \frac{7}{3(t_{s}^{0})^{3}} + i \frac{4}{3(t_{s}^{0})^{2}} \xi \right\} \\ &= \frac{5}{2} K^{(-6)}(\xi) - \frac{5}{2} \xi K^{(-5)}(\xi) + \xi^{2} K^{(-4)}(\xi) - \frac{1}{6} \xi^{3} K^{(-3)}(\xi) + i \frac{7}{3} K^{(-3)}(\xi) - i \frac{4}{3} \xi K^{(-2)}(\xi) \\ K_{4}(\xi) &= \sum_{s=1}^{\infty} \left[ \frac{35}{8(t_{s}^{0})^{8}} - i \frac{35}{8t_{s}^{0}} \right] \xi - \frac{15}{8(t_{s}^{0})^{6}} \xi^{2} + i \frac{5}{12(t_{s}^{0})^{5}} \xi^{3} + \frac{21}{4(t_{s}^{0})^{5}} + \frac{1}{24(t_{s}^{0})^{4}} \xi^{4} - i \frac{15}{4(t_{s}^{0})^{4}} \xi - \frac{5}{6(t_{s}^{0})^{3}} \xi^{2} \\ &+ \frac{1}{t_{s}^{0}} \frac{1}{2} \sum_{s=1}^{\infty} \left[ \frac{35}{8(t_{s}^{0})^{8}} - i \frac{35}{8(t_{s}^{0})^{7}} \xi - \frac{35}{8} K^{(-8)}(\xi) - \frac{35}{8} \xi K^{(-7)}(\xi) + \frac{15}{8} \xi^{2} K^{(-6)}(\xi) - \frac{5}{12} \xi^{3} K^{(-5)}(\xi) \\ &+ i \frac{21}{4} K^{(-5)}(\xi) + \frac{1}{24} \xi^{4} K^{(-4)}(\xi) - i \frac{15}{4} \xi K^{(-4)}(\xi) \\ &+ i \frac{5}{5} \xi^{2} K^{(-3)}(\xi) - K^{(-2)}(\xi) \\ \\ K_{5}(\xi) &= \sum_{s=1}^{\infty} \left[ -\frac{63}{8(t_{s}^{0})^{10}} + i \frac{63}{8(t_{s}^{0})^{3}} \xi + \frac{7}{2(t_{s}^{0})^{8}} \xi^{2} - i \frac{7}{8(t_{s}^{0})^{7}} \xi^{3} - \frac{233}{20(t_{s}^{0})^{7}} - \frac{1}{8(t_{s}^{0})^{3}} \xi^{2} \frac{2}{120(t_{s}^{0})^{6}} \xi \right] \\ &+ i \frac{1}{120(t_{s}^{0})^{5}} \xi^{5} + \frac{11}{4(t_{s}^{0})^{5}} \xi^{5} \xi^{2} - i \frac{7}{3(t_{s}^{0})^{7}} \xi^{3} - \frac{233}{20(t_{s}^{0})^{7}} - \frac{1}{8(t_{s}^{0})^{3}} \xi^{2} \frac{2}{120(t_{s}^{0})^{6}} \xi^{2} \\ &+ i \frac{1}{120(t_{s}^{0})^{5}} \xi^{5} + \frac{11}{4(t_{s}^{0})^{5}} \xi^{5} \xi^{2} - i \frac{7}{3(t_{s}^{0})^{7}} \xi^{3} - \frac{233}{20(t_{s}^{0})^{7}} - \frac{1}{8(t_{s}^{0})^{3}} \xi^{2} \frac{\exp(i\xi t_{s}^{0})}{t_{s}^{6}} \xi^{2} \\ &+ i \frac{1}{120(t_{s}^{0})^{5}} \xi^{5} + \frac{1}{4(t_{s}^{0})^{5}} \xi^{5} \xi^{5} - \frac{1}{3(t_{s}^{0})^{7}} \xi^{3} \frac{1}{3(t_{s}^{0})^{7}} \xi^{3} - \frac{233}{20(t_{s}^{0})^{7}} \xi^{3} \frac{1}{3(t_{s}^{0})^{7}} \xi^{5$$

We can show that

$$\frac{dK_{n}(\xi)}{d\xi} = -\frac{\xi}{n} K_{n-1}(\xi) + iK_{n-2}(\xi). \qquad (15.46)$$

We observe that

$$K^{(n)}(\xi) = \frac{d^n}{d \xi^n} K(\xi)$$

where

$$K(\xi) = K^{(0)}(\xi) = K_0(\xi) = \sum_{s=1}^{\infty} \frac{\exp(i\xi t_s^0)}{t_s^0} = \exp(-i\frac{\pi}{3}) \sum_{s=1}^{\infty} \frac{1}{\beta_s} \exp(\frac{-\sqrt{3}+i}{2})\beta_s \xi$$

where  $\beta_{\mathbf{S}}$  denotes the roots of the derivative of the Airy function

$$Ai'(-\beta_s) = 0.$$

We can also write

$$K(\xi) = \frac{\exp\left(i\frac{\pi}{6}\right)}{2\pi} \int_{\mathbf{C}-i\infty}^{\mathbf{C}+i\infty} \exp(x\alpha) \frac{\operatorname{Ai}(\alpha)}{\operatorname{Ai}'(\alpha)} d\alpha , \quad x = \frac{\sqrt{3}-i}{2} \xi = \exp\left(-i\frac{\pi}{6}\right) \xi$$

$$= \frac{\exp\left(-i\frac{\pi}{4}\right)}{\sqrt{\pi} \xi} \left\{1 - \frac{1}{4} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(2)} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} + \frac{7}{32} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{7}{2}\right)} \exp\left(-i\frac{\pi}{2}\right) \xi^{3} + \cdots\right\}$$

$$= -\exp\left(-i\frac{\pi}{3}\right) \sum_{n=0}^{\infty} \operatorname{B}_{n} \frac{x^{(3n-1)/2}}{\Gamma\left(\frac{3n+1}{2}\right)}$$

where  $B_n$  denotes the coefficient of  $\alpha^{(-3n+1/2)}$  in the asymptotic expansion of the logarithmic derivative of the Airy function

$$\frac{d}{d\alpha} \log \operatorname{Ai'}(\alpha) = \frac{\operatorname{Ai'}(\alpha)}{\operatorname{Ai'}(\alpha)} = \alpha \frac{\operatorname{Ai}(\alpha)}{\operatorname{Ai'}(\alpha)} = \sum_{n=0}^{\infty} B_n \frac{1}{\alpha^{\frac{3n-1}{2}}}$$

$$= -\sqrt{\alpha} + \frac{1}{4} \frac{1}{\alpha} - \frac{7}{32} \frac{1}{\alpha^{\frac{5}{2}}} + \frac{21}{64} \frac{1}{\alpha^4} - \frac{1463}{2048} \frac{1}{\alpha^{\frac{11}{2}}}$$

$$+ \frac{2121}{1024} \frac{1}{\alpha^7} - \frac{495271}{65536} \frac{1}{\alpha^{\frac{17}{2}}} + \frac{136479}{4096} \frac{1}{\alpha^{\frac{10}{2}}}$$

$$- \frac{14457}{8388608} \frac{1}{\alpha^{\frac{23}{2}}} + \frac{268122561}{262144} \frac{1}{\alpha^{\frac{13}{2}}} - \cdots$$

For n < 0, the functions  $K^{(n)}(\xi)$  must be written in the form

$$K^{(n)}(\xi) = K^{(n)}(0) + K^{(n+1)}(0) x + K^{(n+2)}(0) \frac{x^{2}}{2!} + \cdots$$

$$+ K^{(-2)}(0) \frac{x^{-n-2}}{(-n-2)!} + K^{(-1)}(0) \frac{x^{-n-1}}{(-n-1)!} - \exp\left(-i\frac{\pi}{3}\right) \sum_{m=0}^{\infty} B_{m} \frac{x^{(3m-2n-1)/2}}{\Gamma\left(\frac{3m-2n-1}{2}\right)}$$

$$(15.47)$$

where

$$K^{(n)}(0) = \exp\left(i\frac{5n-2}{6}\pi\right) \sum_{s=1}^{\infty} \frac{1}{\beta_s^{-n+1}}$$
 (15.48)

The infinite series

$$\mathbf{S}_{n} = \sum_{\mathbf{s}=1}^{\infty} \frac{1}{\beta_{\mathbf{s}}^{-(n+1)}}$$
 (15.49)

can be summed exactly by using the generating function

$$\frac{\text{Ai}(\alpha)}{\text{Ai'}(\alpha)} = -\sum_{s=1}^{\infty} \frac{1}{(\alpha + \beta_s)} \frac{1}{\beta_s} = -S_{-1} + \alpha S_{-2} - \alpha^2 S_{-3} + \alpha^3 S_{-4} + \cdots$$

$$= -S + \alpha - S \frac{\alpha^2}{2!} + 4S \frac{\alpha^3}{3!} - (6 + 6S^3) \frac{\alpha^4}{4!} + \cdots \quad (15.50)$$

where

$$S = -\frac{Ai(0)}{Ai'(0)} = 1.371721164.$$

In the applications it has been convenient to define and tabulate the functions

$$u^{(n)}(\xi) = 2\sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \xi^{3/2} J^{(n)}(\xi)$$

$$v^{(n)}(\xi) = \sqrt{\pi} \exp\left(i\frac{\pi}{4}\right) \xi^{1/2} K^{(n)}(\xi)$$
(15.51)

We observe that

$$u^{(n)}(\xi) + \frac{d^n}{d\xi^n} u^{(0)}(\xi)$$

$$v^{(n)}(\xi) = \frac{d^n}{d \xi^n} v^{(0)}(\xi)$$

since

1

$$u^{(n)}(\xi) = \xi^{3/2} \frac{d^n}{d\xi^n} \left\{ \xi^{-3/2} u^{(0)}(\xi) \right\}$$

$$v^{(n)}(\xi) = \xi^{1/2} \frac{d^n}{d\xi^n} \left[ \xi^{-1/2} v^{(0)}(\xi) \right].$$

## 15.3 THE INTEGRALS $f_{p}(\xi)$

The functions  $f_n(\xi)$  have the properties

$$f_{o}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi l_{s}^{\infty})}{w_{1}^{\prime}(l_{s}^{\infty})} = f^{(0)}(\xi) = f(\xi)$$

$$f_1(\xi) = 2\pi i \sum_{s=1}^{\infty} (i \xi) \frac{\exp(i \xi t_s^{\infty})}{w_1'(t_s^{\infty})} = i \xi f^{(0)}(\xi) = i \xi f(\xi)$$

$$f_{2}(\xi) = 2\pi i \sum_{s=1}^{\infty} \left\{ -\frac{1}{2} \xi^{2} + \frac{1}{2} t_{s}^{\infty} \right\} \frac{\exp(i\xi t_{s}^{\infty})}{w_{1}^{*}(t_{s}^{\infty})} = -\frac{1}{2} \xi^{2} f^{(0)}(\xi) - \frac{i}{2} f^{(1)}(\xi)$$

$$f_{3}(\xi) = 2\pi i \sum_{s=1}^{\infty} \left| \frac{2}{3} + i \frac{5}{6} \xi t_{s}^{\infty} - i \frac{1}{6} \xi^{3} \right| \frac{\exp(i \xi t_{s}^{\infty})}{w_{1}'(t_{s}^{\infty})} = \left| \frac{2}{3} - \frac{i}{6} \xi^{3} \right| f^{(0)}(\xi) + \frac{5}{6} \xi f^{(1)}(\xi)$$

$$f_{4}(\xi) = 2\pi i \sum_{s=1}^{\infty} \left\{ i \frac{11}{12} \xi + \frac{1}{24} \xi^{4} + \frac{3}{8} (\iota_{s}^{\infty})^{2} - \frac{7}{12} \xi^{2} \iota_{s}^{\infty} \right\} \frac{\exp(i \xi \iota_{s}^{\infty})}{w_{1}^{\prime} (\iota_{s}^{\infty})} = \left\{ i \frac{11}{12} \xi + \frac{1}{24} \xi^{4} \right\} f^{(0)}(\xi) + i \frac{7}{12} \xi^{2} f^{(1)}(\xi) - \frac{3}{8} f^{(2)}(\xi)$$

$$f_{5}(\xi) = 2\pi i \sum_{s=1}^{\infty} \left\{ -\frac{7}{12} \xi^{2} + i \frac{1}{120} \xi^{5} + \frac{6}{5} t_{s}^{\infty} - i \frac{1}{4} \xi^{3} t_{s}^{\infty} + i \frac{89}{120} \xi (t_{s}^{\infty})^{2} \right\} \frac{\exp(i \xi t_{s}^{\infty})}{w_{1}'(t_{s}^{\infty})}$$

$$= \left[ -\frac{7}{12} \xi^{2} + \frac{i}{120} \xi^{5} \right] f^{(0)}(\xi) - \left[ i \frac{6}{5} + \frac{1}{4} \xi^{3} \right] f^{(1)}(\xi) - i \frac{89}{120} \xi f^{(2)}(\xi)$$

$$(15.52)$$

We observe that

$$f_n(\xi) = \frac{i \, \xi}{n} f_{n-1}(\xi) - i \frac{n-1}{n} \frac{d f_{n-2}(\xi)}{d \, \xi}$$

Also we define

$$f^{(n)}(\xi) = \frac{d^n}{d\xi^n} f(\xi)$$

where

$$f(\xi) = f_{O}(\xi) = f^{(0)}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi t_{s}^{\infty})}{w_{1}^{\prime}(t_{s}^{\infty})}$$

$$= \exp\left(-i\frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{\exp\left(-\frac{\sqrt{3}-i}{2}\alpha_{s}\xi\right)}{\operatorname{Ai}^{\prime}(-\alpha_{s})}$$

$$= -\frac{\exp\left(i\frac{\pi}{6}\right)}{2\pi} \int_{c-i\infty}^{c+i\infty} \frac{\exp\left(\frac{\sqrt{3}-i}{2}\rho\xi\right)}{\operatorname{Ai}(p)} dp$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_{1}(t)} dt$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi}(t) + i\operatorname{Ai}(t)} dt$$

$$= \frac{\exp\left(-i\frac{2\pi}{3}\right)}{\pi} \int_{0}^{\infty} \frac{\exp\left(-\frac{\sqrt{3}+i}{2}\xi t\right)}{\operatorname{Bi}(t) - i\operatorname{Ai}(t)} dt + \frac{1}{\pi} \int_{0}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi}(t) + i\operatorname{Ai}(t)} dt$$

We can show that  $f(\xi)$  is an entire function of  $\xi$  which can be represented in the form

$$f(\xi) = \sum_{n=0}^{\infty} f^{(n)}(0) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} (\gamma_n + i \delta_n) \frac{\xi^n}{n!}$$

where f<sup>(n)</sup>(0) can be evaluated by summing the divergent series

$$f^{(n)}(0) = \exp\left(i \operatorname{Sn} \frac{\pi}{6} - i \frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{\alpha_s^n}{\operatorname{Ai'}(-\alpha_s)}$$

by means of the Euler summation scheme

$$\sum_{s=1}^{\infty} f(s) = \sum_{s=1}^{\infty} f(s) + \frac{1}{2} f(N) - \frac{1}{2} \Delta f(N) + \frac{1}{4} \Delta^{2} f(N) - \frac{1}{8} \Delta^{3} f(N) + \cdots$$

where

$$\Delta f(N) = f(N+1) - f(N)$$
  
$$\Delta^{n+1} f(N) = \Delta^n f(N+1) - \Delta^n f(N)$$

We can also write

$$\gamma_{n} = \frac{1}{\pi} \left[ \left[ \cos \frac{5n+4}{6} \pi + \cos \frac{n\pi}{2} \right] I_{1}(n) + \left[ \sin \frac{5n+4}{6} \pi + \sin \frac{n\pi}{2} \right] I_{2}(n) \right]$$

$$\delta_{n} = \frac{1}{\pi} \left[ \left[ -\sin \frac{5n+4}{6} \pi + \sin \frac{n\pi}{2} \right] I_{1}(n) + \left[ \cos \frac{5n+4}{6} \pi - \cos \frac{n\pi}{2} \right] I_{2}(n) \right]$$

where the integrals

$$I_{2}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai}(t)}{\operatorname{Bi}^{2}(t) + \operatorname{Ai}^{2}(t)} dt$$

$$I_{1}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Bi}(t)}{\operatorname{Bi}^{2}(t) + \operatorname{Ai}^{2}(t)} dt$$

can be evaluated numerically.

For large negative values of  $\xi$  we can show that  $f(\xi)$  has an asymptotic expansion of the form

$$f(\xi) = \frac{1}{\xi - \infty} 2i \xi \exp\left(-i \frac{\xi^3}{3}\right) \left\{1 - \frac{i}{4\xi^3} + \frac{1}{2\xi^6} + i \frac{175}{64} \frac{1}{\xi^9} - \frac{395}{16} \frac{1}{\xi^{12}} - i \frac{318175}{1024} \frac{1}{\xi^{15}} + \frac{641305}{128} \frac{1}{\xi^{18}} + i \frac{2015}{2048} \frac{50385}{\xi^{21}} \frac{1}{\xi^{21}} - \frac{23321}{1024} \frac{26775}{\xi^{24}} \frac{1}{\xi^{24}} - i \frac{1589}{262144} \frac{56578}{262144} \frac{253917}{\xi^{27}} + \frac{23917}{131072} \frac{93186}{\xi^{30}} \frac{85125}{\xi^{30}} + \cdots \right\}$$

We have also show that  $f^{(n)}(\xi)$  has an asymptotic expansion of the form

$$f^{(n)}(\xi) = (-i\xi^2)^n (2i\xi) \exp\left(-i\frac{\xi^3}{3}\right) \left\{1 - i\frac{A_1^{(n)}}{\xi^3} + \frac{A_2^{(n)}}{\xi^6} + i\frac{A_3^{(n)}}{\xi^9} - \frac{A_4^{(n)}}{\xi^{12}} + \cdots\right\} (15.53)$$

where

$$A_1^{(n+1)} = A_1^{(n)} - (2n+1)$$

$$A_m^{(n+1)} = A_m^{(n)} + (2n+1-3m+3)A_{m-1}^{(n)}, \quad m > 1 \quad (15.54)$$

In Table 28 we give values of  $A_{m}^{(n)}$ .

For negative values of  $\, n \,$  (the integrals of  $\, f(\xi) \,$ ) we must add to the asymptotic expansion the contour integral

$$\tilde{f}^{(n)}(\xi) = -\frac{1}{\sqrt{\pi}} \int_{C} \frac{(it)^n \exp(i\xi t)}{w_1(t)} dt$$
 (15.55)

where c is a contour which encircles the origin in a counterclockwise direction.

Table 28

| TABLE OF COEFFICIENTS | $\Lambda_{m}^{(n)}$ | FOR | ASYMPTOTIC | EXPANSION ( | OF |
|-----------------------|---------------------|-----|------------|-------------|----|
|-----------------------|---------------------|-----|------------|-------------|----|

| f <sup>(n)</sup> (ξ | $(-i\xi^2)^n (2i\xi) ex$    | $p(-i \xi^3/3) \left\{1 - i\right\}$ | $\frac{A_1^{(n)}}{\xi^3} + \frac{A_2^{(n)}}{\xi^6} +$ | $i \frac{A_3^{(n)}}{\xi^9} - \frac{A_4^{(n)}}{\xi^{12}} + \dots $ |
|---------------------|-----------------------------|--------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|
| m <sup>n</sup>      | -2                          | -1                                   | 0                                                     | 1                                                                 |
| 1                   | $-\frac{15}{4}$             | $-\frac{3}{4}$                       | $\frac{1}{4}$                                         | $-\frac{3}{4}$                                                    |
| 2                   | $-\frac{50}{2}$             | $-\frac{5}{2}$                       | $\frac{1}{2}$                                         | 0                                                                 |
| 3                   | $-\frac{15345}{64}$         | $-\frac{945}{64}$                    | $\frac{175}{64}$                                      | $\frac{1.5}{64}$                                                  |
| 4                   | $-\frac{192010}{64}$        | $-\frac{7870}{64}$                   | $\frac{395}{16}$                                      | $\frac{45}{16}$                                                   |
| 5                   | $-\frac{47401185}{1024}$    | 1318785<br>1024                      | $\frac{318175}{1024}$                                 | $\frac{40095}{1024}$                                              |
| 6                   | $-\frac{869191450}{1024}$   | $-\frac{15970120}{1024}$             | $\frac{641305}{128}$                                  | $\frac{675990}{1024}$                                             |
| 7                   | $-\frac{36911355075}{2048}$ | $-\frac{405314175}{2048}$            | $\frac{201550385}{2048}$                              | $\frac{27115425}{2048}$                                           |
| m 'n                | 2                           | 3                                    | 4                                                     | 5                                                                 |
| 1                   | $-\frac{115}{4}$            | $-\frac{35}{4}$                      | $-\frac{63}{4}$                                       | $-\frac{99}{4}$                                                   |
| 2                   | 10                          | $-\frac{15}{2}$                      | $-\frac{85}{2}$                                       | - 137                                                             |
| 3                   | $\frac{15}{64}$             | $\frac{15}{64}$                      | $-\frac{465}{64}$                                     | $-\frac{8625}{64}$                                                |
| 4                   | $\frac{45}{32}$             | $\frac{15}{32}$                      | 0 .                                                   | 0                                                                 |
| 5                   | $\frac{14175}{1024}$        | $\frac{4095}{1924}$                  | $\frac{1695}{1024}$                                   | $\frac{1695}{1024}$                                               |
| 6                   | $\frac{194850}{1024}$       | $\frac{53100}{1024}$                 | $\frac{20340}{1024}$                                  | $\frac{10170}{1024}$                                              |
| 7                   | $\frac{6835725}{2048}$      | $\frac{1769625}{2048}$               | $\frac{601425}{2048}$                                 | $\frac{235305}{2048}$                                             |

If we observe that

$$\frac{\exp(i\xi t)}{w_{1}(t)} = \frac{1 + i\xi t - \frac{\xi^{2}t^{2}}{2} - i\frac{\xi^{3}t^{3}}{6} + \cdots}{w_{1}(0)\left[1 + \frac{1}{3!}t^{3} + \frac{1\cdot4}{6!}t^{6} + \cdots\right] + w_{1}'(0)\left[t + \frac{2}{4!}t^{4} + \frac{2\cdot5}{7!}t^{7} + \cdots\right]}$$

$$= \frac{1}{w_{1}(0)} + \left(\frac{i\xi}{w_{1}(0)} - \frac{w_{1}'(0)}{\left[w_{1}(0)\right]^{2}}\right)t + \cdots$$

we find that

$$\widetilde{f}^{(-1)}(\xi) = -2\sqrt{\pi} \frac{1}{w_1(0)} = -3^{2/3} \Gamma\left(\frac{2}{3}\right) \exp\left(-i\frac{\pi}{6}\right) = -2.816678828 \exp\left(-i\frac{\pi}{6}\right)$$

$$\widetilde{f}^{(-2)}(\xi) = 2\sqrt{\pi} i \left(\frac{i\xi}{w_1(0)} - \frac{w_1'(0)}{\left[w_1(0)\right]^2}\right)$$

$$= \left[-2.816678828 \exp\left(-i\frac{\pi}{6}\right)\right] - 2.0533902$$

We have also shown that the coefficients  $\gamma_n$  and  $\delta_n$  of Table 24 can be used to evaluate  $f_n(\xi)$ . Thus,

$$f_{o}(\xi) = \sum_{s=o}^{\infty} (C_{s}^{o} + i D_{s}^{o}) \frac{\xi^{s}}{s!}$$

$$C_{s}^{o} = \gamma_{s}$$

$$D_{s}^{o} = \delta_{s}$$
(15.56)
Cont.

$$f_{1}(\xi) = \sum_{s=0}^{\infty} \left(C_{s}^{1} + i D_{s}^{1}\right) \frac{\xi^{s}}{s!}$$

$$C_{s}^{1} = -s \delta_{s-1}$$

$$D_{s}^{1} = s \gamma_{s-1}$$

$$f_{2}(\xi) = \sum_{s=0}^{\infty} \left(C_{s}^{2} + i D_{s}^{2}\right) \frac{\xi^{s}}{s!}$$

$$C_{s}^{2} = -\frac{1}{2} \left\{ s(s-1) \gamma_{s-2} - \delta_{s+1} \right\}$$

$$D_{s}^{2} = -\frac{1}{2} \left\{ s(s-1) \delta_{s-2} + \gamma_{s+1} \right\}$$

$$f_{3}(\xi) = \sum_{s=0}^{\infty} \left(C_{s}^{3} + iD_{s}^{3}\right) \frac{\xi^{s}}{s!}$$

$$C_{s}^{3} = \frac{1}{6} \left[ s(s-1)(s-2)\delta_{s-3} + (5_{s}+4)\gamma_{s} \right]$$

$$D_{s}^{3} = -\frac{1}{6} \left[ s(s-1)(s-2)\gamma_{s-3} - (5s+4)\delta_{s} \right]$$

$$f_{4}(\xi) = \sum_{s=0}^{\infty} \left( C_{s}^{4} + i D_{s}^{4} \right) \frac{\xi^{s}}{s!}$$

$$C_{s}^{4} = \frac{1}{24} s(s-1)(s-2)(s-3) \gamma_{s-4} - s \frac{7s+4}{12} \delta_{s-1} - \frac{3}{8} \gamma_{s+2}$$

$$D_{s}^{4} = \frac{1}{24} s(s-1)(s-2)(s-3) \delta_{s-4} + s \frac{7s+4}{12} \gamma_{s-1} - \frac{3}{8} \delta_{s+2}$$
(15.56)
Cont.

$$\begin{split} f_5(\xi) &= \sum_{s=0}^{\infty} \left( C_s^5 + i D_s^5 \right) \frac{\xi^s}{s!} \\ &C_s^5 = -\frac{1}{120} \, s(s-1)(s-2)(s-3)(s-4) \, \delta_{s-5} - \frac{1}{12} s(s-1)(3s+1) \, \gamma_{s-2} \\ &+ \frac{1}{120} \, (144 + 89s) \, \delta_{s+1} \\ &D_s^5 = \frac{1}{120} \, s(s-1)(s-2)(s-3)(s-4) \, \gamma_{s-5} - \frac{1}{12} \, s(s-1)(3s+1) \, \delta_{s-2} \\ &- \frac{1}{120} \, (144 + 89s) \, \gamma_{s+1} \end{split}$$

15.4 THE INTEGRALS  $g_n(\xi)$ 

The functions  $g_n(\xi)$  have the property that

$$g_{O}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi t_{s}^{O})}{t_{s}^{O} w_{1}(t_{s}^{O})} = g^{(0)}(\xi) = g(\xi)$$

$$g_1(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left( i \frac{1}{t_s^0} \xi - \frac{1}{(t_s^0)^2} \right) \frac{\exp(i \xi t_s^0)}{t_s^0 w_1(t_s^0)} = g^{(-2)}(\xi) - \xi g^{(-1)}(\xi)$$

$$g_{2}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left( \frac{1}{2t_{s}^{o}} - \frac{1}{2(t_{s}^{o})^{2}} \xi^{2} - i \frac{3}{2(t_{s}^{o})^{3}} \xi + \frac{3}{2(t_{s}^{o})^{4}} \right) \frac{\exp(i\xi t_{s}^{o})}{t_{s}^{o} w_{1}(t_{s}^{o})}$$

$$= \frac{3}{2} g^{(-4)}(\xi) - \frac{3}{2} \xi g^{(-3)}(\xi) + \frac{1}{2} \xi^{2} g^{(-2)}(\xi) + i \frac{1}{2} g^{(-1)}(\xi)$$

(15,57) Cont.

$$\begin{split} g_3(\xi) &= 2\sqrt{\pi} \, \mathrm{i} \sum_{s=1}^{\infty} \left( \mathrm{i} \frac{5}{6(t_s^0)^2} \xi - \frac{3}{2(t_s^0)^3} - \mathrm{i} \frac{1}{6(t_s^0)^3} \xi^3 + \frac{1}{(t_s^0)^4} \xi^2 + \mathrm{i} \frac{5}{2(t_s^0)^5} \xi - \frac{5}{2(t_s^0)^6} \right) \frac{\exp(\mathrm{i} \xi t_s^0)}{t_s^0 w_1(t_s^0)} \\ &= \frac{5}{2} \mathrm{g}^{(-6)}(\xi) - \frac{5}{2} \xi \, \mathrm{g}^{(-5)}(\xi) + \xi^2 \, \mathrm{g}^{(-4)}(\xi) + \left[ \mathrm{i} \frac{3}{2} - \frac{1}{6} \xi^3 \right] \mathrm{g}^{(-3)}(\xi) - \mathrm{i} \frac{5}{6} \xi \, \mathrm{g}^{(-2)}(\xi) \\ &= g_4(\xi) = 2\sqrt{\pi} \, \mathrm{i} \sum_{s=1}^{\infty} \left( \frac{3}{8(t_s^0)^2} 2 - \frac{7}{12(t_s^0)^3} \xi^2 - \mathrm{i} \frac{8}{3(t_s^0)^4} \xi + \frac{1}{24(t_s^0)^4} \xi^4 + \frac{91}{24(t_s^0)^5} \xi + \mathrm{i} \frac{5}{12(t_s^0)^5} \xi^3 \right. \\ &= \frac{15}{8(t_s^0)^6} \xi^2 - \mathrm{i} \frac{35}{8(t_s^0)^7} \xi + \frac{35}{8(t_s^0)^8} \right) \frac{\exp(\mathrm{i} \xi t_s^0)}{v_1 v_2^0} \\ &= \frac{35}{8} \, \mathrm{g}^{(-8)}(\xi) - \frac{35}{8} \, \xi \, \mathrm{g}^{(-7)}(\xi) + \frac{15}{8} \, \xi^2 \, \mathrm{g}^{(-6)}(\xi) + \left[ \mathrm{i} \frac{91}{24} - \frac{5}{12} \xi^3 \right] \mathrm{g}^{(-5)}(\xi) - \left[ \mathrm{i} \frac{8}{3} \xi - \frac{1}{24} \xi^4 \right] \mathrm{g}^{(-4)}(\xi) \\ &+ \mathrm{i} \frac{7}{12} \xi^2 \, \mathrm{g}^{(-3)}(\xi) - \frac{3}{8} \, \mathrm{g}^{(-2)}(\xi) \right. \\ &= \frac{1}{8(t_s^0)^6} \xi^4 - \frac{357}{40(t_s^0)^7} - \mathrm{i} \frac{7}{8(t_s^0)^7} \chi^{\frac{3}{8}} + \frac{25}{2(t_s^0)^8} \xi^2 + \mathrm{i} \frac{1}{120(t_s^0)^5} \xi^5 + \mathrm{i} \frac{277}{40(t_s^0)^6} \xi \\ &- \frac{1}{8(t_s^0)^6} \xi^4 - \frac{357}{40(t_s^0)^7} - \mathrm{i} \frac{7}{8(t_s^0)^7} \chi^{\frac{3}{8}} + \frac{7}{2(t_s^0)^8} \xi^2 + \frac{1}{8(t_s^0)^9} \xi - \frac{(3)}{9(t_s^0)^{1/2}} \right) \frac{\exp(\mathrm{i} \xi t_s^0)}{v_s^0 w_1(t_s^0)} \xi \\ &= \frac{63}{8} \, \mathrm{g}^{(-10)}(\xi) - \frac{63}{8} \, \xi \, \mathrm{g}^{(-9)}(\xi) + \frac{7}{2} \, \xi^2 \, \mathrm{g}^{(-8)}(\xi) + \left[ \mathrm{i} \frac{357}{40} - \frac{7}{8} \xi^3 \right] \mathrm{g}^{(-7)}(\xi) - \left[ \mathrm{i} \frac{277}{40} \xi - \frac{1}{8} \xi^4 \right] \mathrm{g}^{(-4)}(\xi) \\ &+ \left[ \mathrm{i} \frac{25}{12} \xi^2 - \frac{1}{120} \xi^5 \right] \mathrm{g}^{(-5)}(\xi) - \left[ \frac{233}{120} + \mathrm{i} \frac{1}{4} \xi^3 \right] \mathrm{g}^{(-4)}(\xi) \\ &+ \frac{9}{120} \xi \, \mathrm{g}^{(-3)}(\xi) \right. \end{split}$$

In general we have

$$\frac{d g_n(\xi)}{d \xi} = -\frac{\xi}{n} g_{n-1}(\xi) + i \frac{n-1}{n} g_{n-2}(\xi)$$
 (15.58)

(15.57)

The functions  $g^{(n)}(\xi)$  are defined by

$$g^{(n)}(\xi) = \frac{d^n}{d\xi^n} g(\xi)$$

where

$$g(\xi) = g_{0}(\xi) = g^{(o)}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi t_{s}^{\circ})}{t_{s}^{\circ} w_{1}(t_{s}^{\circ})}$$

$$= \sum_{s=1}^{\infty} \frac{\exp(-\frac{\sqrt{3} - i}{2} \beta_{s} \xi)}{\beta_{s} \operatorname{Ai}(-\beta_{s})}$$

$$= -\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(\frac{\sqrt{3} - i}{2} p \xi)}{\operatorname{Ai'}(p)} dp$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_{1}^{\circ}(t)} dt$$

$$= \frac{1}{\pi} \int_{o}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi'}(t) + i \operatorname{Ai'}(t)} dt$$

$$= \frac{1}{\pi} \int_{o}^{\infty} \frac{\exp(-\frac{\sqrt{3} + i}{2} \xi t)}{\operatorname{Bi'}(t) - i \operatorname{Ai'}(t)} dt + \frac{1}{\pi} \int_{o}^{\infty} \frac{\exp(i\xi t)}{\operatorname{Bi'}(t) + i \operatorname{Ai'}(t)} dt$$

we can show that  $g(\xi)$  is an entire function of  $\xi$  which can be represented in the form

$$g(\xi) = \sum_{n=0}^{\infty} g^{(n)}(0) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} (\alpha_n + i\beta_n) \frac{\xi^n}{n!}$$

Note: The reader is cautioned not to confuse the  $\alpha_n$ ,  $\beta_n$  defined by  $g^{(n)}(0) = \alpha_n + i\beta_n$  with the Airy integral roots defined by Ai(- $\alpha_s$ ) = 0 and Ai'(- $\beta_s$ ) = 0.

where g<sup>(n)</sup>(0) can be evaluated by summing the divergent series

$$g^{(n)}(0) = \exp\left(i\frac{5n\pi}{6}\right) \sum_{s=1}^{\infty} \frac{\beta_s^{n-1}}{A!(-\beta_s)}$$

by means of the Euler summation scheme. We can also write

$$\operatorname{Re} g^{(n)}(0) = \alpha_n = \frac{1}{\pi} \left[ \left[ \cos \frac{5n \pi}{6} + \cos \frac{n \pi}{2} \right] J_1(n) + \left[ \sin \frac{5n \pi}{6} + \sin \frac{n \pi}{2} \right] J_2(n) \right]$$

$$\operatorname{Im} g^{(n)}(0) = \beta_n = \frac{1}{\pi} \left[ \left[ -\sin \frac{5n \pi}{6} + \sin \frac{n \pi}{2} \right] J_1(n) + \left[ \cos \frac{5n \pi}{6} - \cos \frac{n \pi}{2} \right] J_2(n) \right]$$

where the integrals

$$J_{1}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Ai'}(t)}{\left[\operatorname{Bi'}(t)\right]^{2} + \left[\operatorname{Ai'}(t)\right]^{2}} dt$$
$$J_{2}(n) = \int_{0}^{\infty} \frac{t^{n} \operatorname{Bi'}(t)}{\left[\operatorname{Bi'}(t)\right]^{2} + \left[\operatorname{Ai'}(t)\right]^{2}} dt$$

can be evaluated numerically.

For large negative values of  $\xi$ , we can show that  $g(\xi)$  has an asymptotic expansion of the form

$$g(\xi) \xrightarrow{\xi \to -\infty} 2 \exp(-i\frac{\xi^3}{3}) \left\{ 1 + i\frac{1}{4\xi^3} - \frac{1}{\xi^6} - i\frac{469}{64}\frac{1}{\xi^9} + \frac{5005}{64}\frac{1}{\xi^{12}} + i\frac{11}{1024}\frac{2121}{\xi^{15}} - \frac{2433368}{128}\frac{1}{\xi^{18}} \right.$$

$$-i\frac{1610289919}{4096}\frac{1}{\xi^{21}} + \frac{38659844839}{4096}\frac{1}{\xi^{24}} + i\frac{67630779935425}{262144}\frac{1}{\xi^{27}}$$

$$-\frac{518372243461681}{65536}\frac{1}{\xi^{30}} + \cdots \right\}$$

We have also shown that  $g^{(n)}(\xi)$  has an asymptotic expansion of the form

$$g^{(n)}(\xi) = (-1\xi^{2})^{n} \ 2 \exp(-i\frac{\xi^{3}}{3}) \left\{ 1 + i\frac{A_{1}^{(n)}}{\xi^{3}} - \frac{A_{2}^{(n)}}{\xi^{6}} - i\frac{A_{3}^{(n)}}{\xi^{9}} + \frac{A_{4}^{(n)}}{\xi^{12}} + \cdots \right\}$$
 (15.59)

where

$$A_1^{(n+1)} = A_1^{(n)} + (2n)$$

$$A_m^{(n+1)} = A_m^{(n)} + (2n + 3m + 3) A_{m-1}^{(n)}, \quad m > 1.$$
 (15.60)

In Table 29 we give a set of values for  $A_{m}^{(n)}$ .

For negative values of n (the integrals of  $g(\zeta)$ ) we must add to the asymptotic expansion the contour integral

$$\widetilde{g}^{(n)}(\xi) = -\frac{1}{\sqrt{\pi}} \int_{C} \frac{(it)^n \exp(i\xi t)}{w_1'(i)} dt$$
 (15.61)

where c is a contour which encircles the origin in a counterclockwise direction.

Table 29  $\label{eq:table 29}$  TABLE OF COEFFICIENTS  $\Lambda_{\,\, m}^{(n)}$  FOR ASYMPTOTIC EXPANSION OF

$$\begin{split} g^{(n)}(\xi) &= 2(-i\,\xi^2)^n \exp(-i\,\xi^3/3) \left\{ 1 + i\,\frac{A_1^{(n)}}{\xi^3} - \frac{A_2^{(n)}}{\xi^6} - i\,\frac{A_3^{(n)}}{3} + \frac{A_4^{(n)}}{\xi^{12}} + \ldots \right\}, \qquad n > 0 \\ g^{(n)}(\xi) &= \widetilde{g}^{(n)}(\xi) + 2(-i\,\xi^2)^n \exp(-i\,\xi^3/3) \left\{ 1 + i\,\frac{A_1^{(n)}}{\xi^3} - \frac{A_2^{(n)}}{\xi^6} - i\,\frac{A_3^{(n)}}{\xi^9} + \frac{A_4^{(n)}}{\xi^{12}} + \ldots \right\}, \quad n < 0 \\ &\stackrel{n}{m} - 10 \qquad -9 \qquad -8 \qquad -7 \\ &1 \qquad \frac{441}{4} \qquad \frac{361}{4} \qquad \frac{289}{4} \qquad \frac{225}{4} \\ &2 \qquad 8176 \qquad \frac{22561}{4} \qquad 3745 \qquad \frac{9489}{64} \\ &3 \qquad \frac{33528789}{64} \qquad \frac{19923925}{64} \qquad \frac{11260501}{64} \qquad \frac{5987541}{64} \\ &4 \qquad \frac{2028562165}{64} \qquad \frac{264056821}{10} \qquad \frac{518281309}{64} \qquad \frac{14798049}{4} \\ &5 \qquad \qquad \\ &6 \qquad \qquad \\ & \qquad$$

Table 29 (Concluded)

Table of coefficients  $A_{\mathfrak{m}}^{(n)}$  for asymptotic expansion of

| $g^{(n)}(\xi) = 2(-$               | $i\xi^2$ ) <sup>n</sup> exp(-1 $\xi^3$ /3 |                                                       |                                                                                              | )<br>,                                                                                        |
|------------------------------------|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $g^{(n)}(\xi) = \widehat{g}^{(n)}$ | $(\xi) + 2(-1\xi^2)^n \exp$               | $(-1  \xi^3/3) \left\{ 1 + 1  \frac{A}{\xi} \right\}$ | $\frac{\binom{(n)}{1}}{3} - \frac{\Lambda_{\frac{2}{6}}^{(n)}}{\xi} - 1 \frac{\Lambda}{\xi}$ | $\frac{\binom{n}{3}}{\frac{3}{9}} + \frac{A_4^{(n)}}{\frac{\xi^{12}}{2}} + \ldots $ , $n < 0$ |
| m <sup>11</sup>                    | -2                                        | -1                                                    | 0                                                                                            | 1                                                                                             |
| 1                                  | $\frac{25}{4}$                            | $\frac{9}{4}$                                         | $\frac{1}{4}$                                                                                | $\frac{1}{4}$                                                                                 |
| 2                                  | $\frac{224}{4}$                           | $\frac{49}{4}$                                        | 1.                                                                                           | $\frac{1}{4}$                                                                                 |
| 3                                  | $\frac{42581}{64}$                        | $\frac{6741}{64}$                                     | $\frac{469}{64}$                                                                             | <u>85</u><br>64                                                                               |
| 4                                  | $\frac{632709}{64}$                       | $\frac{79156}{64}$                                    | 5005<br>64                                                                                   | 784<br>64                                                                                     |
| 5                                  | $\frac{180826569}{1024}$                  | $\frac{18853065}{1024}$                               | $\frac{1122121}{1024}$                                                                       | $\frac{161161}{1024}$                                                                         |
| 6                                  | $\frac{3775673860}{1024}$                 | 339969049<br>1024                                     | $\frac{2433368}{128}$                                                                        | $\frac{2635129}{1024}$                                                                        |
| m                                  | 2                                         | 3                                                     | 4                                                                                            | 5                                                                                             |
| , i 1:                             | $\frac{9}{4}$                             | $\frac{25}{4}$                                        | $\frac{49}{4}$                                                                               | $\frac{81}{4}$                                                                                |
| 2                                  | 0 .                                       | $\frac{9}{4}$                                         | $\frac{84}{4}$                                                                               | $\frac{329}{4}$                                                                               |
| 3                                  | $\frac{21}{64}$                           | $\frac{21}{64}$                                       | $\frac{21}{64}$                                                                              | $\frac{2709}{64}$                                                                             |
| 4                                  | $\frac{189}{64}$                          | $\frac{84}{64}$                                       | $\frac{21}{64}$                                                                              | 0                                                                                             |
| 5                                  | $\frac{35721}{1024}$                      | $\frac{11529}{1024}$                                  | $\frac{3465}{1024}$                                                                          | $\frac{2121}{1024}$                                                                           |
| 6                                  | $\frac{540036}{1024}$                     | $\frac{147105}{1024}$                                 | $\frac{43344}{1024}$                                                                         | $\frac{19089}{1024}$                                                                          |

If we write

$$\widetilde{g}^{(n)}(\xi) = \sum_{r=0}^{\infty} \left( \widetilde{\alpha}_{r+n} + i \widetilde{\beta}_{r+n} \right) \frac{\xi^{r}}{r!}$$

$$\widetilde{\alpha}_{n} + i \widetilde{\beta}_{n} = -\frac{1}{\sqrt{\pi}} \int_{\Omega} \frac{(it)^{n}}{w_{1}^{\prime}(t)} dt$$
(15.62)

we can show that

$$\begin{split} \widetilde{\alpha}_{n} + i \, \widetilde{\beta}_{n} &= 0 & n \geq 0 \\ \widetilde{\alpha}_{-1} + i \, \widetilde{\beta}_{-1} &= -2\sqrt{\pi} \, \frac{1}{w_{1}^{\prime}(0)} = -\frac{1}{\beta} \exp\left(i \, \frac{\pi}{6}\right) = -3.3460590 - i \, 1.9318490 \\ \widetilde{\alpha}_{-2} + i \, \widetilde{\beta}_{-2} &= 0 \\ \widetilde{\alpha}_{-3} + i \, \widetilde{\beta}_{-3} &= -\sqrt{\pi} \, \frac{w_{1}(0)}{\left[w_{1}^{\prime}(0)\right]^{2}} = -\frac{1}{2} \, \frac{\alpha}{\beta^{2}} \exp\left(i \, \frac{\pi}{2}\right) = -i \, 2.6499581 \\ \widetilde{\alpha}_{-4} + i \, \widetilde{\beta}_{-4} &= i \, \frac{2}{3} \, \sqrt{\pi} \, \frac{1}{w_{1}^{\prime}(0)} = i \, \frac{1}{3} \, \frac{1}{\beta} \, \exp\left(i \, \frac{\pi}{6}\right) = -0.6439497 + i \, 1.1153530 \\ \widetilde{\alpha}_{-5} + i \, \widetilde{\beta}_{-6} &= -\frac{1}{2} \, \sqrt{\pi} \, \left[\frac{w_{1}(0)}{w_{1}^{\prime}(0)}\right]^{2} = -\frac{1}{4} \, \frac{\alpha^{2}}{\beta^{3}} \, \exp\left(i \, \frac{5\pi}{6}\right) = 1.5740020 - i \, 0.9087509 \\ \widetilde{\alpha}_{-6} + i \, \widetilde{\beta}_{-6} &= i \, \frac{3}{5} \, \sqrt{\pi} \, \left[\frac{w_{1}(0)}{w_{1}^{\prime}(0)}\right]^{2} - i \, \frac{3}{10} \, \frac{\alpha}{\beta^{2}} \, \exp\left(i \, \frac{\pi}{2}\right) = -1.5899749 \\ \widetilde{\alpha}_{-7} + i \, \widetilde{\beta}_{-7} &= \frac{7}{36} \, \sqrt{\pi} \, \frac{1}{w_{1}^{\prime}(0)} - \frac{1}{4} \, \sqrt{\pi} \, \left[\frac{w_{1}(0)}{w_{1}^{\prime}(0)}\right]^{3} = \frac{7}{72} \, \frac{1}{\beta} \exp\left(i \, \frac{\pi}{6}\right) - \frac{1}{8} \, \frac{\alpha^{3}}{\beta^{4}} \exp\left(i \, \frac{7\pi}{6}\right) \\ &= 1.4048572 + i \, 0.8110951 \end{split}$$

$$\tilde{\alpha}_{-8} + i \tilde{\beta}_{-8} = i \frac{1}{10} \sqrt{\pi} \frac{\left[w_1(0)\right]^2}{\left[w_1'(0)\right]^3} = i \frac{1}{20} \frac{\alpha^2}{\beta^3} \exp\left(i \frac{5\pi}{6}\right) = -0.1817502 - i 0.3148004$$

$$\widetilde{\alpha}_{-9} + i \, \widetilde{\beta}_{-9} = -\frac{1}{8} \sqrt{\pi} \, \frac{\left[w_{1}(0)\right]^{4}}{\left[w_{1}'(0)\right]^{5}} + \frac{21}{80} \sqrt{\pi} \, \frac{w_{1}(0)}{\left[w_{1}'(0)\right]^{2}} = -\frac{1}{16} \frac{\alpha^{4}}{\beta^{5}} \, \exp\left(i\frac{3\pi}{2}\right) + \frac{21}{160} \frac{\alpha}{\beta^{2}} \exp\left(i\frac{\pi}{2}\right)$$

= i1.5505755

$$\widetilde{\alpha}_{-10} + i \widetilde{\beta}_{-10} = i \frac{17}{60} \sqrt{\pi} \left[ \frac{w_1(0)^3}{\left[ w_1^{\dagger}(0) \right]^4} - i \frac{127}{2268} \sqrt{\pi} \frac{1}{w_1^{\dagger}(0)} = i \frac{17}{120} \frac{\alpha^3}{\beta^4} \exp\left(i \frac{7\pi}{6}\right) - i \frac{127}{4536} \frac{1}{\beta} \exp\left(i \frac{\pi}{6}\right) \right]$$

= 0.7604683 - i 1.3171691

Although the function  $\widetilde{g}^{(n)}(\xi)$  must be added to the asymptotic expansion in order to represent  $g^{(n)}(\xi)$  for large negative  $\xi$ , it will generally be found that when computing  $g_n(\xi)$  in terms of  $g^{(n)}(\xi)$  the terms involving  $\widetilde{g}^{(n)}(\xi)$  vanish.

The coefficients  $\alpha_n$  ,  $\beta_n$  given in Table 25 can be used to compute  ${}^{\sharp}g_n(\xi)$ . Thus,

$$g_{0}(\xi) = \sum_{s=0}^{\infty} \left( A_{s}^{0} + i B_{s}^{0} \right) \frac{\xi^{s}}{s!}$$

$$A_{s}^{0} = \alpha_{s}$$

$$B^{0} = \beta$$

$$g_{1}(\xi) = \sum_{s=0}^{\infty} \left(A'_{s} + i B'_{s}\right) \frac{\xi^{s}}{s!}$$

$$A'_{s} = -(s-1) \alpha_{s-2}$$

$$B'_{s} = -(s-1) \beta_{s-2}$$

(15.64) Cont.

$$\begin{split} \mathbf{g}_{2}(\xi) &= \sum_{\mathbf{s}=\mathbf{o}}^{\infty} \left(\Lambda_{\mathbf{s}}^{2} + \mathbf{i} \, \mathbf{p}_{\mathbf{s}}^{2}\right) \frac{\xi^{\mathbf{s}}}{\mathbf{s}!} \\ &\Lambda_{\mathbf{s}}^{2} = \frac{(\mathbf{s}-3)(\mathbf{s}-1)}{2} \, \alpha_{\mathbf{s}-4} - \frac{1}{2} \, \beta_{\mathbf{s}-1} \\ &B_{\mathbf{s}}^{2} = \frac{(\mathbf{s}-3)(\mathbf{s}-1)}{2} \, \beta_{\mathbf{s}-4} + \frac{1}{2} \, \alpha_{\mathbf{s}-1} \\ &\mathbf{g}_{3}(\xi) &= \sum_{\mathbf{s}=\mathbf{o}}^{\infty} \left(\Lambda_{\mathbf{s}}^{3} + \mathbf{i} \, \mathbf{B}_{\mathbf{s}}^{3}\right) \frac{\xi^{\mathbf{s}}}{\mathbf{s}!} \\ &\Lambda_{\mathbf{s}}^{3} = \frac{3(\mathbf{s}-1)(2\mathbf{s}-5) - \mathbf{s}(\mathbf{s}-1)(\mathbf{s}-2)}{6} \, \alpha_{\mathbf{s}-6} - \frac{9-5\mathbf{s}}{6} \, \beta_{\mathbf{s}-3} \\ &B_{\mathbf{s}}^{3} = \frac{3(\mathbf{s}-1)(2\mathbf{s}-5) - \mathbf{s}(\mathbf{s}-1)(\mathbf{s}-2)}{6} \, \beta_{\mathbf{s}-6} + \frac{9-5\mathbf{s}}{6} \, \alpha_{\mathbf{s}-3} \\ &\mathbf{g}_{4}(\xi) &= \sum_{\mathbf{s}=\mathbf{o}}^{\infty} \left(\Lambda_{\mathbf{s}}^{4} + \mathbf{i} \, \mathbf{B}_{\mathbf{s}}^{4}\right) \frac{\xi^{5}}{\mathbf{s}!} \\ &\Lambda_{\mathbf{s}}^{4} = (\mathbf{s}-1) \left| \frac{15(3\mathbf{s}-7) + \mathbf{s}(\mathbf{s}-2)(\mathbf{s}-13)}{24} \right| \, \alpha_{\mathbf{s}-9} + \frac{14\mathbf{s}^{2} - 78\mathbf{s} + 91}{24} \, \alpha_{\mathbf{s}-5} - \frac{3}{8} \, \alpha_{\mathbf{s}-2} \\ &B_{\mathbf{s}}^{4} = (\mathbf{s}-1) \left| \frac{15(3\mathbf{s}-7) + \mathbf{s}(\mathbf{s}-2)(\mathbf{s}-13)}{24} \right| \, \beta_{\mathbf{s}-8} + \frac{14\mathbf{s}^{2} - 78\mathbf{s} + 91}{24} \, \alpha_{\mathbf{s}-5} - \frac{3}{8} \, \beta_{\mathbf{s}-2} \\ &\mathbf{g}_{5}(\xi) &= \sum_{\mathbf{s}=\mathbf{o}}^{\infty} \left(\Lambda_{\mathbf{s}}^{5} + \mathbf{i} \, \mathbf{B}_{\mathbf{s}}^{5}\right) \frac{\xi^{5}}{\mathbf{s}!} \\ &A_{\mathbf{s}}^{5} = \left\{ (\mathbf{s}-1)(\mathbf{s}-3) \left[ -\frac{7}{8}(\mathbf{s}-3) + \frac{1}{12\mathbf{s}} \, \mathbf{s}(\mathbf{s}-2)(19-\mathbf{s}) \right] \right| \, \alpha_{\mathbf{s}-10} \\ &+ \left[ \frac{1}{40} \left( 277\mathbf{s} - 357 \right) + \frac{1}{12} \, \mathbf{s}(\mathbf{s}-1)(3\mathbf{s}-31) \right] \, \alpha_{\mathbf{s}-7} + \left[ \frac{1}{120} \left( 89\mathbf{s}-233 \right) \right] \, \alpha_{\mathbf{s}-4} \\ &B_{\mathbf{s}}^{5} = \left[ (\mathbf{s}-1)(\mathbf{s}-3) \left[ -\frac{7}{8} (\mathbf{s}-3) + \frac{1}{12} \, \mathbf{s}(\mathbf{s}-2)(19-\mathbf{s}) \right] \right] \, \alpha_{\mathbf{s}-7} + \left[ \frac{1}{120} \left( 89\mathbf{s}-233 \right) \right] \, \beta_{\mathbf{s}-4} \\ &- \left[ \frac{1}{40} \left( 277\mathbf{s}-357 \right) + \frac{1}{12} \, \mathbf{s}(\mathbf{s}-1)(3\mathbf{s}-31) \right] \, \alpha_{\mathbf{s}-7} + \left[ \frac{1}{120} \left( 89\mathbf{s}-233 \right) \right] \, \beta_{\mathbf{s}-4} \\ &- \left[ \frac{1}{40} \left( 277\mathbf{s}-357 \right) + \frac{1}{12} \, \mathbf{s}(\mathbf{s}-1)(3\mathbf{s}-31) \right] \, \alpha_{\mathbf{s}-7} + \left[ \frac{1}{120} \left( 89\mathbf{s}-233 \right) \right] \, \beta_{\mathbf{s}-4} \\ &- \left[ \frac{1}{40} \left( 277\mathbf{s}-357 \right) + \frac{1}{12} \, \mathbf{s}(\mathbf{s}-1)(3\mathbf{s}-31) \right] \, \alpha_{\mathbf{s}-7} + \left[ \frac{1}{120} \left( 89\mathbf{s}-233 \right) \right] \, \beta_{\mathbf{s}-4} \\ &- \left[ \frac{1}{40} \left( 277\mathbf{s}-357 \right) + \frac{1}{12} \, \mathbf{s}(\mathbf{s}-1)(3\mathbf{s}-31) \right] \, \alpha_{\mathbf{s}-7} + \left[ \frac{1}{120} \left( 89\mathbf{s}-233 \right) \right] \, \alpha_{\mathbf{s}-8} \right] \, \alpha_{\mathbf{s}-8} \\ &-$$

15.5 THE INTEGRALS  $r_p(\xi)$ 

The functions  $r_n(\xi)$  have the property that

$$r_{o}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} (i\xi) \frac{\exp(i\xi t_{s}^{\infty})}{\left[w_{1}'(t_{s}^{\infty})\right]^{2}} = i\xi \hat{p}^{(0)}(\xi)$$

$$r_1(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} (-\frac{1}{2} \xi^2) \frac{\exp(i\xi t_s^{\infty})}{[w_1'(t_s^{\infty})]^2} = -\frac{1}{2} \xi^2 \hat{p}^{(0)}(\xi)$$

$$r_{2}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left(\frac{1}{3} + i \frac{1}{3} \xi t_{s}^{\infty} - i \frac{1}{6} \xi^{3}\right) \frac{\exp(i\xi t_{s}^{\infty})}{\left[w_{1}^{\prime}(t_{s}^{\infty})\right]^{2}} = \left[-i \frac{1}{6} \xi^{3} + \frac{1}{3}\right] \hat{p}^{(0)}(\xi) + \frac{1}{3} \xi \hat{p}^{(1)}(\xi)$$

$$\mathbf{r}_{3}(\xi) = 2\sqrt{\pi} \,\mathbf{i} \sum_{s=1}^{\infty} \left(\mathbf{i} \frac{7}{12} \,\xi + \frac{1}{24} \,\xi^{4} - \frac{1}{3} \,\xi^{2} \,\mathfrak{t}_{s}^{\infty}\right) \frac{\exp(\mathbf{i} \xi \,\mathfrak{t}_{s}^{\infty})}{\left[\mathbf{w}_{1}'(\mathbf{t}_{s}^{\infty})\right]^{2}} = \left[\frac{1}{24} \xi^{4} + \mathbf{i} \frac{7}{12} \xi\right] \,\hat{p}^{(0)}(\xi) + \mathbf{i} \frac{1}{3} \,\xi^{2} \,\hat{p}^{(1)}(\xi)$$

$$r_{4}(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left[ -\frac{5}{12} \xi^{2} + i \frac{1}{120} \xi^{5} + \frac{2}{5} t_{s}^{\infty} - i \frac{1}{6} \xi^{3} t_{s}^{\infty} + i \frac{1}{5} \xi (t_{s}^{\infty})^{2} \right] \frac{\exp(i\xi t_{s}^{\infty})}{\left[w_{1}^{*}(t_{s}^{\infty})\right]^{2}}$$

$$= \left( i \frac{1}{120} \xi^{5} - \frac{5}{12} \xi^{2} \right) \hat{p}^{(0)}(\xi) - \left( \frac{1}{6} \xi^{3} + i \frac{2}{5} \right) \hat{p}^{(1)}(\xi) - i \frac{1}{5} \xi \hat{p}^{(2)}(\xi)$$

$$\mathbf{r}_{5}(\xi) = 2\sqrt{\pi} \, \mathbf{i} \sum_{\mathbf{s}=1}^{\infty} \left[ -\frac{1}{720} \xi^{6} - \mathbf{i} \frac{13}{72} \xi^{3} + \frac{7}{18} + \frac{1}{18} \xi^{4} \mathbf{t}_{\mathbf{s}}^{\infty} + \mathbf{i} \frac{9}{10} \xi \, \mathbf{t}_{\mathbf{s}}^{\infty} - \frac{23}{90} \xi^{2} (\mathbf{t}_{\mathbf{s}})^{2} \right] \frac{\exp(\mathbf{i} \xi \, \mathbf{t}_{\mathbf{s}}^{\infty})}{\left[ w_{1}^{\prime} (\mathbf{t}_{\mathbf{s}}^{\infty}) \right]^{2}}$$

$$= \left[ -\frac{1}{720} \xi^{6} - i \frac{13}{72} \xi^{3} + \frac{7}{18} \right] \hat{p}^{(0)}(\xi) + \left[ \frac{9}{10} \xi - i \frac{1}{18} \xi^{4} \right] \hat{p}^{(1)}(\xi) + \frac{23}{90} \xi^{2} \hat{p}^{(2)}(\xi)$$
 (15.65)

In general, we can show that

$$\mathbf{r}_{n}(\xi) = \frac{i\,\xi}{n+1}\,\mathbf{r}_{n-1}(\xi) - i\,\frac{n-1}{n+1}\,\frac{\mathrm{d}}{\mathrm{d}\,\xi}\,\mathbf{r}_{n-2}(\xi) \tag{15.66}$$

The functions  $\hat{p}^{(n)}(\xi)$  are defined by

$$\hat{p}^{(n)}(\xi) = \frac{d^n}{d\xi^n} \hat{p}(\xi)$$

where

$$\begin{split} \hat{\beta}(\xi) &= \hat{\beta}^{(0)}(\xi) = 2\sqrt{\pi} \ i \sum_{s=1}^{\infty} \frac{\exp(i\xi t \frac{c}{s})}{\left[iv_{1}^{\prime}(t \frac{c}{s})\right]^{2}} \\ &= -\frac{1}{2\sqrt{\pi}} \exp\left(-i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{\exp\left(-\frac{\sqrt{3}-i}{2} \alpha_{s} \xi\right)}{\left[\Lambda i^{\prime}(-\alpha_{s})\right]^{2}} \\ &= -\frac{\exp\left(i\frac{\pi}{6}\right)}{2\sqrt{\pi}} \int_{e-i\infty}^{e+i\infty} \exp\left(\frac{\sqrt{3}-i}{2} p\xi\right) \frac{Ai\left[\exp\left(i\frac{2\pi}{3}\right)p\right]}{Ai(p)} \, \mathrm{d}p \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{v(t)}{w_{1}(t)} \, \mathrm{d}t \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{Ai(t)}{Bi(t)+i} \frac{Ai(t)}{Ai(t)} \, \mathrm{d}t \\ &= \frac{1}{2\sqrt{\pi}\xi} + \frac{\exp\left(-i\frac{\pi}{3}\right)}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(\frac{\sqrt{3}+i}{2}\xi t\right) \frac{Ai(t)}{Bi(t)-i} \, \mathrm{d}t \\ &+ \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp(i\xi t) \frac{Ai(t)}{Bi(t)+i} \frac{Ai(t)}{Ai(t)} \, \mathrm{d}t \end{split}$$

We can show that  $\hat{p}(\xi)$  can be represented for all finite values of  $\xi$ , except  $\xi=0$ , by a Laurent expansion of the form

$$\hat{p}(\xi) = -\frac{1}{2\sqrt{\pi}\,\xi} + p(\xi)$$

where  $p(\xi)$  is an entire function of  $\xi$ .

$$p(\xi) = \frac{\exp\left(-i\frac{\pi}{3}\right)}{\sqrt{\pi}} \int_{0}^{\infty} \exp\left(-\frac{\sqrt{3}+i}{2}\xi t\right) \frac{Ai(t)}{Bi(t)-i \ Ai(t)} \ dt + \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp(i\xi t) \frac{Ai(t)}{Bi(t)+i \ Ai(t)} \ dt \ .$$

We can express  $p(\xi)$  in the form of a Taylor series

$$p(\xi) = \sum_{n=0}^{\infty} p^{(n)}(0) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} (c_n + i d_n) \frac{\xi^n}{n!}$$

where p<sup>(n)</sup>(0) is to be evaluated by summing the divergent series

$$p^{(n)}(0) = c_n + id_n = -\frac{\exp\left[i(5n-1)\frac{\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} \frac{\alpha_s^n}{\left[Ai(-\alpha_s)\right]^2}$$

by means of the Euler-Maclaurin summation scheme

$$\sum_{s=N}^{\infty} f(s) = \frac{1}{2} f(N) + \int_{N}^{\infty} f(s) ds - \frac{1}{12} \Delta f(N) + \frac{1}{24} \Delta^{2} f(N) - \frac{19}{720} \Delta^{3} f(N) + \frac{3}{160} \Delta^{4} f(N)$$

$$- \frac{863}{60480} \Delta^{5} f(N) + \frac{275}{24192} \Delta^{6} f(N) - \frac{33953}{3628800} \Delta^{7} f(N)$$

$$+ \frac{8183}{1036800} \Delta^{8} f(N) - \frac{3250433}{479001600} \Delta^{9} f(N) + \frac{4671}{788480} \Delta^{10} f(N)$$

$$- \frac{13695779093}{2615348736000} \Delta^{11} f(N) + \cdots$$

The Olver relation

$$\frac{\mathrm{d}\,\alpha_{\mathrm{s}}}{\mathrm{d}\mathrm{s}} = \frac{1}{\left[\mathrm{Ai'}(-\alpha_{\mathrm{s}})\right]^2}$$

permits us to interpret the integral in the sense

$$-\frac{\exp\left[i(5n-1)\frac{\pi}{6}\right]}{2\sqrt{\pi}}\int\limits_{N}^{\infty}\frac{\alpha_{s}^{n}}{\left[\Lambda i(-\alpha_{s})\right]^{2}}ds = \frac{\exp\left[-i(5n-1)\frac{\pi}{6}\right]}{2\sqrt{\pi}}\frac{(\alpha_{N})^{n+1}}{n+1}$$

We can also write

$$c_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ \cos \frac{5n+2}{6} \pi + \cos \frac{n\pi}{2} \right] I_{3}(n) + \left[ \sin \frac{5n+2}{6} \pi + \sin \frac{n\pi}{2} \right] I_{4}(n) \right\}$$

$$d_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ -\sin \frac{5n+2}{6} \pi + \sin \frac{n\pi}{2} \right] I_{3}(n) + \left[ \cos \frac{5n+2}{6} \pi - \cos \frac{n\pi}{2} \right] I_{4}(n) \right\}$$

where the integrals

$$I_3(n) = \int_0^\infty \frac{t^n \operatorname{Ai}(t) \operatorname{Ai}(t)}{\operatorname{Bi}^2(t) + \operatorname{Ai}^2(t)} dt$$

$$I_4(n) = \int_0^\infty \frac{t^n \operatorname{Ai}(t) \operatorname{Bi}(t)}{\operatorname{Bi}^2(t) + \operatorname{Ai}^2(t)} dt$$

can be evaluated numerically.

For large negative values of  $\xi$ , we can show that  $\widehat{p}(\xi)$  has an asymptotic expansion of the form

$$\hat{p}(\xi) \xrightarrow{\xi \to -\infty} \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 - i\frac{2}{\xi^3} + \frac{20}{\xi^6} + i\frac{560}{\xi^9} - \frac{25520}{\xi^{12}} - i\frac{1601600}{\xi^{15}} + \frac{111568000}{\xi^{18}} + i\frac{1}{\xi^{21}} - \frac{1386318560000}{\xi^{24}} + \frac{112766992499200}{\xi^{27}} + \frac{27644681163084800}{\xi^{30}} + \dots\right\}$$

We have also shown that  $\hat{p}^{(n)}(\xi)$  has an asymptotic expansion of the form

$$\hat{p}^{(n)}(\xi) \xrightarrow{\xi \to -\infty} \left( -i \frac{\xi^{2}}{4} \right)^{n} \frac{\sqrt{-\xi}}{2} \exp \left[ -i \left( \frac{\xi^{3}}{12} + \frac{\pi}{4} \right) \right] \left( 1 - i \frac{A_{1}^{(n)}}{\xi^{3}} + \frac{A_{2}^{(n)}}{\xi^{6}} + i \frac{A_{3}^{(n)}}{\xi^{9}} - \frac{A_{4}^{(n)}}{\xi^{12}} + \cdots \right)$$
(15. 67)

where

$$A_1^{(n+1)} = A_1^{(n)} - (8n + 2)$$
 (15.68)  
 $A_{m}^{(n+1)} = A_m^{(n)} + (8n - 12m + 14) A_{m-1}^{(n)}$ , m > 1

In Table 30 we list values of  $A_{\underline{m}}^{(n)}$ .

 $\begin{array}{c} \text{Table 30} \\ \text{TABLE OF COEFFICIENTS} \ \ A_m^{\text{(n)}} \ \ \text{FOR ASYMPTOTIC EXPANSION OF} \end{array}$ 

| ĝ <sup>(n)</sup> (- | $\mathbf{x}$ ) = $(-1)^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}}$ | $\frac{2}{5} \exp\left[i\left(\frac{x^3}{12} - \frac{\pi}{4}\right)\right] \left\{1\right\}$ | $+1\frac{A_1^n}{x^3} + \frac{A_2^n}{x^6} - i$ | $\frac{A_3^n}{x^9} - \frac{A_4^n}{x^{12}} + i \frac{A_5^n}{x^{15}} + \dots $ |
|---------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|
| m n                 | 6                                                                | -4                                                                                           | -3                                            | - <b>2</b>                                                                   |
| 0                   | 1                                                                | 1                                                                                            | 1                                             | 1                                                                            |
| 1                   | -1.08                                                            | -70                                                                                          | -40                                           | -18                                                                          |
| 2                   | -10220                                                           | -4820                                                                                        | -1880                                         | -520                                                                         |
| 3                   | -1 <b>001</b> 60                                                 | -367520                                                                                      | -107240                                       | -20760                                                                       |
| 4                   | -105616560                                                       | -31530720                                                                                    | -7274400                                      | -1054480                                                                     |
| 5                   | -12116294400                                                     | -3033270240                                                                                  | -573874080                                    | -64666080                                                                    |
| 6                   | -1512075598400                                                   | -324678747200                                                                                | -51684425600                                  | -4626751040                                                                  |
| mn                  | -1 .                                                             | 0                                                                                            | 1                                             | 2                                                                            |
| 0                   | 1                                                                | 1                                                                                            | . 1                                           | 1                                                                            |
| 1                   | -4                                                               | 2                                                                                            | 0                                             | -10                                                                          |
| 2                   | -52                                                              | 20                                                                                           | 0                                             | 0                                                                            |
| 3                   | -1000                                                            | 560                                                                                          | 1 20                                          | 120                                                                          |
| 4                   | -16480                                                           | 255 <b>20</b>                                                                                | 6480                                          | 3360                                                                         |
| 5                   | 711680                                                           | 1601600                                                                                      | 427680                                        | 181440                                                                       |
| 6                   | 1585 <b>3</b> 8880                                               | 111568000                                                                                    | 18675200                                      | -2708800                                                                     |

Table 30 (Concluded)

Table of Coefficients  $\,A_{m}^{\text{(n)}}\,$  for asymptotic expansion of

$$\hat{p}^{(n)}(-x) = (-i)^n \frac{x^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{x^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 + i\frac{A_1^n}{x^3} + \frac{A_2^n}{x^6} - i\frac{A_3^n}{x^9} - \frac{A_4^n}{x^{12}} + i\frac{A_5^n}{x^{15}} + \ldots\right\}$$

| m n | 3         | 4         | 5         |
|-----|-----------|-----------|-----------|
| 0   | 1         | 1         | 1.        |
| 1 . | -28       | -54       | -88       |
| 2   | ·-60      | -452      | -1640     |
| 3   | 1 20      | 0         | -4520     |
| 4   | 1200      | 0         | 0         |
| . 5 | 80640     | 54240     | 54240     |
| 6   | -10329280 | -13071040 | -14481280 |

We can also show that

$$r_{0}(-x) = -i \frac{x^{3/2}}{2} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 + i \frac{2}{x^{3}} + \frac{20}{x^{6}} - i \frac{560}{x^{9}} - \frac{25520}{x^{12}} + \cdots\right\}$$

$$r_{1}(-x) = -\frac{x^{5/2}}{4} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 + i \frac{2}{x^{3}} + \frac{20}{x^{6}} - i \frac{560}{x^{9}} - \frac{25520}{x^{12}} + \cdots\right\}$$

$$r_{2}(-x) = i \frac{x^{3/2}}{8} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 + i \frac{0}{x^{3}} + \frac{16}{x^{6}} - i \frac{440}{x^{9}} - \frac{19920}{x^{12}} + \cdots\right\}$$

$$r_{3}(-x) = \frac{x^{4/2}}{16} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i \frac{5}{3x^{3}} + \frac{34}{3x^{6}} - i \frac{940}{3x^{9}} - \frac{42400}{3x^{12}} + \cdots\right\}$$

$$r_{4}(-x) = -i \frac{x^{5/2}}{32} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i \frac{10}{x^{3}} + \frac{16}{x^{6}} - i \frac{312}{x^{9}} - \frac{12320}{x^{12}} + \cdots\right\}$$

$$r_{5}(-x) = -\frac{x^{6/2}}{64} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i \frac{18}{x^{3}} + \frac{0}{x^{6}} - i \frac{280}{x^{9}} - \frac{10080}{x^{12}} + \cdots\right\}$$

$$r_{6}(-x) = i \frac{x^{7/2}}{128} \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i \frac{28}{x^{3}} - \frac{60}{x^{6}} - i \frac{1840}{x^{9}} - \frac{8560}{x^{12}} + \cdots\right\}$$

$$(15.69)$$

We can also write

$$r_{0}(\xi) = -\frac{i}{2\sqrt{\pi}} + i\xi \ p^{(0)}(\xi)$$

$$r_{1}(\xi) = \frac{\xi}{4\sqrt{\pi}} - \frac{\xi^{2}}{2} \ p^{(0)}(\xi)$$

$$r_{2}(\xi) = \frac{i\xi^{2}}{12\sqrt{\pi}} + \left(-\frac{i\xi^{3}}{6} + \frac{1}{3}\right) p^{(0)}(\xi) + \frac{\xi}{3} p^{(1)}(\xi)$$
(15.70)
Cont.

$$r_3(\xi) = -\frac{1}{2\sqrt{\pi}} \left(\frac{\xi^3}{24} + \frac{1}{4}\right) + \left(\frac{\xi^4}{24} + i\frac{7}{12}\xi\right) p^{(0)}(\xi) + i\frac{\xi^2}{3} p^{(1)}(\xi)$$

$$r_4(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{1\xi^4}{120} - \frac{\xi}{4} \right) + \left( i \frac{\xi^5}{120} - \frac{5}{12} \xi^2 \right) p^{(0)}(\xi) - \left( \frac{\xi^3}{6} + i \frac{2}{5} \right) p^{(1)}(\xi) - i \frac{1}{5} \xi p^{(2)}(\xi)$$

$$\mathbf{r}_{5}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( -\frac{\xi^{5}}{720} - i\frac{\xi^{2}}{8} \right) + \left( -\frac{\xi^{6}}{720} - i\frac{13}{72}\xi^{3} + \frac{7}{18} \right) \mathbf{p}^{(0)}(\xi) + \left( -i\frac{\xi^{4}}{18} + \frac{9\xi}{10} \right) \mathbf{p}^{(1)}(\xi) + \frac{23}{90}\xi^{2} \mathbf{p}^{(2)}(\xi)$$

We observe that the functions  $r_n(\xi)$  are entire functions of  $\xi$ .

The coefficients  $e_n$  ,  $d_n$  of Table 26 can be used to show that

$$\mathbf{r}_{o}(\xi) = \sum_{r=0}^{\infty} \left( \mathbf{G}_{r}^{0} + \mathbf{i} \, \mathbf{H}_{r}^{0} \right) \frac{\xi^{r}}{r!}$$

$$\mathbf{G}_{r}^{0} = -\mathbf{r} \, \mathbf{d}_{r-1}$$

$$\mathbf{H}_{r}^{0} = \mathbf{r} \, \mathbf{e}_{r-1}$$

$$\begin{split} \mathbf{r}_{1}(\xi) &= \sum_{\mathbf{r}=0}^{\infty} \left( \mathbf{G}_{\mathbf{r}}^{1} + \mathbf{i} \; \mathbf{H}_{\mathbf{r}}^{1} \right) \frac{\xi^{\mathbf{r}}}{\mathbf{r}!} \\ \mathbf{G}_{\mathbf{r}}^{1} &= -\frac{\mathbf{r}(\mathbf{r}-1)}{2} \; \mathbf{d}_{\mathbf{r}-2} \\ \mathbf{H}_{\mathbf{r}}^{1} &= \frac{\mathbf{r}(\mathbf{r}-1)}{2} \; \mathbf{c}_{\mathbf{r}-2} \end{split}$$

$$r_{2}(\xi) = \sum_{r=0}^{\infty} \left(G_{r}^{2} + i \Pi_{r}^{2}\right) \frac{\xi^{r}}{r!}$$

$$G_{r}^{2} = \frac{r(r-1)(r-2)}{6} d_{r-3} + \frac{r+1}{3} e_{r}$$

$$H_{r}^{2} = -\frac{r(r-1)(r-2)}{6} e_{r-3} + \frac{r+1}{3} d_{r}$$

(15.71)

$$\begin{split} \mathbf{r}_{3}(\xi) &= \sum_{\mathbf{r}=0}^{\infty} \left( \mathbf{G}_{\mathbf{r}}^{3} + \mathbf{i} \; \mathbf{H}_{\mathbf{r}}^{3} \right) \frac{\xi^{4}}{\mathbf{r}!} \\ & \mathbf{G}_{\mathbf{r}}^{3} = \frac{\mathbf{r}^{4} - 6\mathbf{r}^{3} + 11\mathbf{r}^{2} - 6\mathbf{r}}{24} \; \mathbf{e}_{\mathbf{r}-4} - \frac{\mathbf{r}(4\mathbf{r} + 3)}{12} \; \mathbf{d}_{\mathbf{r}-1} \\ & \mathbf{H}_{\mathbf{r}}^{3} = \frac{\mathbf{r}^{4} - 6\mathbf{r}^{3} + 11\mathbf{r}^{2} - 6\mathbf{r}}{24} \; \mathbf{d}_{\mathbf{r}-4} + \frac{\mathbf{r}(4\mathbf{r} + 3)}{12} \, \mathbf{e}_{\mathbf{r}-1} \end{split}$$

$$\begin{split} \mathbf{r}_4(\xi) &= \sum_{\mathbf{r}=0}^{\infty} \left( \mathbf{G}_{\mathbf{r}}^4 + \mathbf{i} \; \mathbf{H}_{\mathbf{r}}^4 \right) \frac{\xi^{\mathbf{r}}}{\mathbf{r}!} \\ & \mathbf{G}_{\mathbf{r}}^4 = -\frac{\mathbf{r}^5 - 10\mathbf{r}^4 + 35\mathbf{r}^3 - 50\mathbf{r}^2 + 24\mathbf{r}}{120} \, \mathbf{d}_{\mathbf{r}-5} - \frac{\mathbf{r}(\mathbf{r}-1)(2\mathbf{r}+1)}{12} \, \mathbf{c}_{\mathbf{r}-2} + \frac{\mathbf{r}+2}{5} \, \mathbf{d}_{\mathbf{r}+1} \\ & \mathbf{H}_{\mathbf{r}}^4 = \frac{\mathbf{r}^5 - 10\mathbf{r}^4 + 35\mathbf{r}^3 - 50\mathbf{r}^2 + 24\mathbf{r}}{120} \, \mathbf{c}_{\mathbf{r}-5} - \frac{\mathbf{r}(\mathbf{r}-1)(2\mathbf{r}+1)}{12} \, \mathbf{d}_{\mathbf{r}-2} - \frac{\mathbf{r}+2}{5} \, \mathbf{c}_{\mathbf{r}+1} \end{split}$$

$$r_{5}(\xi) = \sum_{r=0}^{\infty} \left(G_{r}^{5} + i H_{r}^{5}\right) \frac{\xi^{r}}{r!}$$

$$G_{r}^{5} = -\frac{r^{6} - 15r^{5} + 85r^{4} - 225r^{3} + 274r^{2} - 120r}{720} e_{r-6} + \frac{r(r-1)(r-2)(4r+1)}{72} d_{r-3} + \frac{35 + r(58 + 23r)}{90} e_{r}$$

$$H_{r}^{5} = -\frac{r^{6} - 15r^{5} + 85r^{4} - 225r^{3} + 274r^{2} - 120r}{720} d_{r-6} - \frac{r(r-1)(r-2)(4r+1)}{72} e_{r-3} + \frac{35 + r(58 + 23r)}{90} d_{r}$$

(15.71) Cont.

$$\begin{split} \mathbf{r}_{6}(\xi) &= \sum_{\mathbf{r}=0}^{\infty} \left( \mathbf{G}_{\mathbf{r}}^{6} + \mathbf{i} \, \mathbf{H}_{\mathbf{r}}^{6} \right) \frac{\xi^{\mathbf{r}}}{\mathbf{r}!} \\ \mathbf{G}_{\mathbf{r}}^{6} &= \frac{\mathbf{r} \, (\mathbf{r} - \mathbf{1}) (\mathbf{r} - 2) (\mathbf{r} - 3) (\mathbf{r} - 4) (\mathbf{r} - 5) (\mathbf{r} - 6)}{5040} \, \mathbf{d}_{\mathbf{r} - 7} + \frac{\mathbf{r}^{2} (\mathbf{r} - \mathbf{1}) (\mathbf{r} - 2) (\mathbf{r} - 3)}{72} \, \mathbf{e}_{\mathbf{r} - 4} \\ &- \left[ \frac{41 \mathbf{r}}{63} + \frac{47 \mathbf{r} (\mathbf{r} - 1)}{60} + \frac{7 \mathbf{r} (\mathbf{r} - 1) (\mathbf{r} - 2)}{45} \right] \mathbf{d}_{\mathbf{r} - 1} - \frac{\mathbf{r} + 3}{7} \, \mathbf{e}_{\mathbf{r} + 2} \\ \mathbf{H}_{\mathbf{r}}^{6} &= -\frac{\mathbf{r} \, (\mathbf{r} - 1) (\mathbf{r} - 2) (\mathbf{r} - 3) (\mathbf{r} - 4) (\mathbf{r} - 5) (\mathbf{r} - 6)}{5040} \, \mathbf{e}_{\mathbf{r} - 7} + \frac{\mathbf{r}^{2} (\mathbf{r} - 1) (\mathbf{r} - 2) (\mathbf{r} - 3)}{72} \, \mathbf{d}_{\mathbf{r} - 4} \\ &+ \left[ \frac{41 \mathbf{r}}{63} + \frac{47 \mathbf{r} (\mathbf{r} - 1)}{60} + \frac{7 \mathbf{r} \, (\mathbf{r} - 1) (\mathbf{r} - 2)}{45} \right] \mathbf{e}_{\mathbf{r} - 1} - \frac{\mathbf{r} + 3}{7} \, \mathbf{d}_{\mathbf{r} + 2} \end{split}$$

$$(15.71)$$

15.6 THE INTEGRALS  $s_n(\xi)$ 

The functions  $s_n(\xi)$  have the property that

$$s_{o} = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left( i \frac{1}{t_{s}^{o}} \xi - \frac{1}{(t_{s}^{o})^{2}} \right) \frac{\exp(i\xi t_{s}^{o})}{t_{s}^{o} [w_{1}(t_{s}^{o})]^{2}} = -\hat{q}^{(-2)}(\xi) + \xi \hat{q}^{(-1)}(\xi)$$

$$s_{1} = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left( -\frac{1}{2(t_{s}^{0})^{2}} \xi^{2} - i \frac{3}{2(t_{s}^{0})^{3}} \xi + \frac{3}{2(t_{s}^{0})^{4}} \right) \frac{\exp(i\xi t_{s}^{0})}{t_{s}^{0} [w_{1}(t_{s}^{0})]^{2}}$$
$$= -\frac{3}{2} \hat{q}^{(-4)}(\xi) + \frac{3}{2} \xi \hat{q}^{(-3)}(\xi) - \frac{1}{2} \xi^{2} \hat{q}^{(-2)}(\xi)$$

$$s_{2} = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left( i \frac{1}{3(t_{s}^{0})^{2}} \xi - \frac{2}{3(t_{s}^{0})^{3}} - i \frac{1}{6(t_{s}^{0})^{3}} \xi^{3} + \frac{1}{(t_{s}^{0})^{2}} \xi^{2} + i \frac{5}{2(t_{s}^{0})^{5}} \xi - \frac{5}{2(t_{s}^{0})^{6}} \right) \frac{\exp(i\xi t_{s}^{0})}{t_{s}^{0} [w_{1}(t_{s}^{0})]^{2}}$$

$$= -\frac{5}{2} \hat{q}^{(-6)}(\xi) + \frac{5}{2} \xi \hat{q}^{(-5)}(\xi) - \xi^{2} \hat{q}^{(-4)}(\xi) + \left(\frac{1}{6} \xi^{3} - i \frac{2}{3}\right) \hat{q}^{(-5)}(\xi) + i \frac{1}{3} \xi \hat{q}^{(-2)}(\xi)$$

$$(15.72)$$

$$s_{3} = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \left( -\frac{1}{3(t_{s}^{0})^{3}} \xi^{2} - i \frac{19}{12(t_{s}^{0})^{4}} \xi + \frac{1}{24(t_{s}^{0})^{4}} \xi^{4} + \frac{7}{3(t_{s}^{0})^{5}} \xi + i \frac{5}{12(t_{s}^{0})^{5}} \xi^{3} \right)$$

$$- \frac{15}{8(t_{s}^{0})^{6}} \xi^{2} - i \frac{35}{8(t_{s}^{0})^{7}} \xi + \frac{35}{8(t_{s}^{0})^{8}} \frac{\exp(i\xi t_{s}^{0})}{t_{s}^{0} [w_{1}(t_{s}^{0})]^{2}}$$

$$= -\frac{35}{8} \hat{q}^{(-8)}(\xi) + \frac{35}{8} \xi \hat{q}^{(-7)}(\xi) - \frac{15}{8} \xi^{2} \hat{q}^{(-6)}(\xi) + \left(\frac{5}{12} \xi^{3} - \frac{7}{3}\right) \hat{q}^{(-5)}(\xi)$$

$$- \left(\frac{1}{24} \xi^{4} - i \frac{19}{12} \xi\right) \hat{q}^{(-4)}(\xi)$$

$$- i \frac{1}{3} \xi^{2} \hat{q}^{(-3)}(\xi)$$

$$\begin{split} \mathbf{s}_{4} &= 2\sqrt{\pi} \; \mathbf{i} \sum_{\mathbf{s}=1}^{\infty} \left( \mathbf{i} \; \frac{1}{5(\mathbf{t}_{\mathbf{s}}^{0})^{3}} \; \boldsymbol{\xi} \; - \frac{3}{5(\mathbf{t}_{\mathbf{s}}^{0})^{4}} - \mathbf{i} \; \frac{1}{6(\mathbf{t}_{\mathbf{s}}^{0})^{4}} \; \boldsymbol{\xi}^{3} \; + \; \frac{17}{12(\mathbf{t}_{\mathbf{s}}^{0})^{3}} \; \boldsymbol{\xi}^{2} + \mathbf{i} \; \frac{1}{120(\mathbf{t}_{\mathbf{s}}^{0})^{5}} \; \boldsymbol{\xi}^{5} + \mathbf{i} \; \frac{24}{5(\mathbf{t}_{\mathbf{s}}^{0})^{6}} \; \boldsymbol{\xi} \right. \\ & - \frac{1}{8(\mathbf{t}_{\mathbf{s}}^{0})^{6}} \; \boldsymbol{\xi}^{4} \; - \; \frac{63}{10(\mathbf{t}_{\mathbf{s}}^{0})^{7}} - \mathbf{i} \; \frac{7}{8(\mathbf{t}_{\mathbf{s}}^{0})^{7}} \; \boldsymbol{\xi}^{3} \; + \; \frac{7}{2(\mathbf{t}_{\mathbf{s}}^{0})^{8}} \; \boldsymbol{\xi}^{2} + \mathbf{i} \; \frac{63}{8(\mathbf{t}_{\mathbf{s}}^{0})^{9}} \; \boldsymbol{\xi} \\ & - \frac{63}{8(\mathbf{t}_{\mathbf{s}}^{0})^{10}} \right) \frac{\exp(\mathbf{i}\boldsymbol{\xi}\mathbf{t}_{\mathbf{s}}^{0})}{\mathbf{t}_{\mathbf{s}}^{0} |\mathbf{w}_{1}(\mathbf{t}_{\mathbf{s}}^{0})|^{2}} \\ & = - \frac{63}{8} \; \hat{\mathbf{q}}^{(-10)}(\boldsymbol{\xi}) \; + \; \frac{63}{8} \; \boldsymbol{\xi} \; \hat{\mathbf{q}}^{(-9)}(\boldsymbol{\xi}) \; - \; \frac{7}{2} \; \boldsymbol{\xi}^{2} \; \hat{\mathbf{q}}^{(-8)}(\boldsymbol{\xi}) \; + \; \left(\frac{7}{8} \; \boldsymbol{\xi}^{3} \; - \mathbf{i} \; \frac{63}{10}\right) \hat{\mathbf{q}}^{(-7)}(\boldsymbol{\xi}) \\ & + \; \left(\mathbf{i} \; \frac{24}{5} \; \boldsymbol{\xi} \; - \; \frac{1}{8} \; \boldsymbol{\xi}^{4}\right) \hat{\mathbf{q}}^{(-6)}(\boldsymbol{\xi}) \\ & + \; \left(\frac{1}{120} \; \boldsymbol{\xi}^{5} \; - \; \mathbf{i} \; \frac{17}{12} \; \boldsymbol{\xi}^{2}\right) \hat{\mathbf{q}}^{(-5)}(\boldsymbol{\xi}) \\ & + \; \left(\frac{3}{5} \; + \; \mathbf{i} \; \frac{1}{6} \; \boldsymbol{\xi}^{3}\right) \hat{\mathbf{q}}^{(-4)}(\boldsymbol{\xi}) \; - \; \frac{1}{5} \; \boldsymbol{\xi} \; \hat{\mathbf{q}}^{(-3)}(\boldsymbol{\xi}) \end{split}$$

$$s_{5}(\xi) = -\frac{231}{16} \hat{q}^{(-12)}(\xi) + \frac{231}{16} \xi \hat{q}^{(-11)}(\xi) - \frac{105}{16} \xi^{2} \hat{q}^{(-10)}(\xi) + \left(\frac{7}{4} \xi^{3} - i \frac{77}{5}\right) \hat{q}^{(-9)}(\xi) - \left(\frac{7}{24} \xi^{4} - i \frac{749}{60} \xi\right) \hat{q}^{(-8)}(\xi) + \left(\frac{7}{240} \xi^{5} - i \frac{511}{120} \xi^{2}\right) \hat{q}^{(-7)}(\xi) - \left(\frac{1}{720} \xi^{6} - i \frac{159}{216} \xi^{3} - \frac{29}{9}\right) \hat{q}^{(-6)}(\xi) - \left(i \frac{\xi^{4}}{18} + \frac{5}{3} \xi\right) \hat{q}^{(-5)}(\xi) + \frac{23}{90} \xi^{2} \hat{q}^{(-4)}(\xi)$$

$$(15.72)$$

In general, we can show that

$$\frac{d s_n(\xi)}{d \xi} = -\frac{1}{n+1} \xi s_{n-1}(\xi) + i \frac{n-1}{n+1} s_{n-2}(\xi)$$
 (15.73)

The functions  $\hat{q}^{(n)}(\xi)$  are defined by

$$\hat{q}^{(n)}(\xi) = \frac{\mathrm{d}^n}{\mathrm{d}\,\xi^n} \,\,\hat{q}(\xi)$$

whore

$$\begin{split} \widehat{\eta}(\xi) &= \widehat{\eta}^{(0)}(\xi) = -2\sqrt{\pi} \ \mathrm{i} \ \sum_{\mathbf{s}=1}^{\infty} \frac{\exp(\mathrm{i}\xi t_{\mathbf{s}}^{0})}{t_{\mathbf{s}}^{0}[\mathbf{w}_{\mathbf{l}}(t_{\mathbf{s}}^{0})]^{2}} \\ &= -\frac{1}{2\sqrt{\pi}} \exp\left(-\mathrm{i} \frac{\pi}{6}\right) \sum_{\mathbf{s}=1}^{\infty} \frac{\exp\left(-\frac{\sqrt{3}-1}{2}\beta_{\mathbf{s}}t\right)}{\beta_{\mathbf{s}}[\mathrm{Ai}(-\beta_{\mathbf{s}})]^{2}} \\ &= \frac{\mathrm{i}}{2\sqrt{\pi}} \int_{\mathbf{s}}^{\mathbf{c}+\mathrm{i}\infty} \exp\left(\frac{\sqrt{3}-\mathrm{i}}{2}\mathrm{p}\,\xi\right) \frac{\mathrm{Ai'}\left[\exp(-\mathrm{i}\,\frac{2\pi}{3}\,\mathrm{p})\right]}{\mathrm{Ai'}(\mathrm{p})} \,\mathrm{d}\mathrm{p} \end{split}$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{v'(t)}{w_1'(t)} dt$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{Ai'(t)}{Bi'(t) + i Ai'(t)} dt$$

$$= -\frac{1}{2\sqrt{\pi} \xi} + \frac{\exp(-i\frac{\pi}{3})}{\sqrt{\pi}} \int_{0}^{\infty} \exp(-\frac{\sqrt{3} + i}{2} \xi t) \frac{Ai'(t)}{Bi'(t) - i Ai'(t)} dt$$

$$+ \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp(i\xi t) \frac{Ai'(t)}{Bi'(t) + i Ai'(t)} dt$$

We can show that  $\widehat{\eta}(\xi)$  can be represented for all finite values of  $\xi$ , except  $\xi=0$ , by a Laurent expansion of the form

$$\hat{\mathbf{q}}(\xi) = -\frac{1}{2\sqrt{\pi} \, \xi} + \mathbf{q}(\xi)$$

where  $q(\xi)$  is an entire function of  $\xi$ 

$$q(\xi) = \frac{\exp\left(-i\frac{\pi}{3}\right)}{\sqrt{\pi}}\int\limits_{0}^{\infty} \exp\left(-\frac{\sqrt{3}+i}{2}\xi t\right) \frac{Ai'(t)}{Bi'(t)-i\,Ai'(t)}\,\mathrm{d}t + \frac{1}{\sqrt{\pi}}\int\limits_{0}^{\infty} \exp(i\xi t) \,\,\frac{Ai'(t)}{Bi'(t)+i\,Ai'(t)}\,\mathrm{d}t.$$

We can express  $q(\xi)$  in the form of a Taylor series

$$q(\xi) = \sum_{n=0}^{\infty} q^{(n)}(0) \frac{\xi^n}{n!} = \sum_{n=0}^{\infty} (a_n + ib_n) \frac{\xi^n}{n!}$$

where q(n)(0) is to be evaluated by summing the divergent series

$$q^{(n)}(0) = a_n + ib_n = -\frac{\exp\left[i(5n-1)\frac{\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} \frac{\beta_s^n}{\beta_s[\Lambda i(-\beta_s)]^2}$$

by means of the Euler-Maclaurin summation scheme. The Olver relation

$$\frac{\mathrm{d}\,\beta_{\mathrm{S}}}{\mathrm{d}\mathrm{s}} = \frac{1}{\beta_{\mathrm{S}}[\mathrm{Ai}(-\beta_{\mathrm{S}})]^2}$$

permits us to interpret the integral in the sense

$$-\frac{\exp\left[\mathrm{i}(5\mathrm{n}-1)\frac{\pi}{6}\right]}{2\sqrt{\pi}}\int\limits_{N}^{\infty}\frac{\beta_{\mathrm{s}}^{\mathrm{n}}}{\beta_{\mathrm{s}}[\mathrm{Ai}(-\beta_{\mathrm{s}})]^{2}}\,\mathrm{d}\mathrm{s}=\frac{\exp\left[\mathrm{i}(5\mathrm{n}-1)\frac{\pi}{6}\right]}{2\sqrt{\pi}}\frac{\left(\beta_{\mathrm{N}}\right)^{\mathrm{n}+1}}{\mathrm{n}+1}$$

We can also write

$$a_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ \cos \frac{5n+2}{6} \pi + \cos \frac{n\pi}{2} \right] J_{3}(n) + \left[ \sin \frac{5n+2}{6} \pi + \sin \frac{n\pi}{2} \right] J_{4}(n) \right\}$$

$$b_{n} = \frac{1}{\sqrt{\pi}} \left\{ \left[ -\sin \frac{5n+2}{6} \pi + \sin \frac{n\pi}{2} \right] J_{3}(n) + \left[ \cos \frac{5n+2}{6} \pi - \cos \frac{n\pi}{2} \right] J_{4}(n) \right\}$$

where the integrals

$$J_3(n) = \int_{0}^{\infty} \frac{t^n Ai'(t) Ai'(t)}{Bi'^2(t) + Ai'^2(t)} dt$$

$$J_4(n) = \int_{0}^{\infty} \frac{t^n Ai'(t) Bi'(t)}{Bi'^2(t) + Ai'^2(t)} dt$$

can be evaluated numerically.

For large negative values of  $\xi$ , we can show that  $\hat{q}(\xi)$  has an asymptotic expansion of the form

$$\hat{q}(\xi) = \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^{3}}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{2}{\xi^{3}} - \frac{28}{\xi^{6}} - i\frac{896}{\xi^{9}} + \frac{43120}{\xi^{12}} + i\frac{2754752}{\xi^{15}} - \frac{219097984}{\xi^{18}} - i\frac{20848679936}{\xi^{21}} + \frac{2309847054592}{\xi^{24}} + i\frac{292094671769600}{\xi^{27}} - \frac{41524796886114304}{\xi^{30}} + \dots\right\}$$

We have also shown that  $\hat{q}^{(n)}(\xi)$  has an asymptotic expansion of the form

$$\hat{q}^{(n)}(\xi) = -\infty - \left(-i\frac{\xi^2}{4}\right)^n \frac{\sqrt{-\xi}}{2} \exp\left[-i\left(\frac{\xi^3}{12} + \frac{\pi}{4}\right)\right] \left\{1 + i\frac{A_1^{(n)}}{\xi^3} - \frac{A_2^{(n)}}{\xi^6} - i\frac{A_3^{(n)}}{\xi^9} + \frac{A_4^{(n)}}{\xi^{12}} + \cdots\right\}$$
(15.74)

where

$$A_{1}^{(n+1)} = A_{1}^{(n)} + (8n+2)$$

$$A_{m}^{(n+1)} = A_{m}^{(n)} + (8n-10) A_{m-1}^{(n)}, \quad m > 1$$
 (15.75)

In Table 31 we list values of  $A_{m}^{(n)}$ .

We can then show that

$$s_{o}(-x) = -i \frac{2 \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right]}{x^{1/2}} \left\{1 - i\frac{4}{x^{3}} - \frac{84}{x^{6}} + i\frac{3080}{x^{9}} + \frac{160160}{x^{12}} - i\frac{10762752}{x^{15}} + \cdots\right\}$$
(15.76)
Cont.

Table 31

| TABLE OF COEFFICIENTS | A <sub>m</sub> (n) | FOR ASYMPTOTIC EXPANSION OF |
|-----------------------|--------------------|-----------------------------|
|-----------------------|--------------------|-----------------------------|

$$\hat{q}^{(n)}(-\mathbf{x}) = -(-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_2^n}{\mathbf{x}^6} + i\frac{\Lambda_3^n}{\mathbf{x}^9} + \frac{\Lambda_4^n}{\mathbf{x}^{12}} - i\frac{\Lambda_5^n}{\mathbf{x}^{15}} + \dots\right\}, \qquad n > 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - (-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_2^n}{\mathbf{x}^6} + i\frac{\Lambda_3^n}{\mathbf{x}^9} + \frac{\Lambda_4^n}{\mathbf{x}^{12}} - i\frac{\Lambda_5^n}{\mathbf{x}^{15}} + \dots\right\}, \qquad n > 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - (-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_2^n}{\mathbf{x}^6} + i\frac{\Lambda_3^n}{\mathbf{x}^9} + \frac{\Lambda_4^n}{\mathbf{x}^{12}} - i\frac{\Lambda_5^n}{\mathbf{x}^{15}} + \dots\right\}, \qquad n > 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - (-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_2^n}{\mathbf{x}^6} + i\frac{\Lambda_3^n}{\mathbf{x}^9} + \frac{\Lambda_4^n}{\mathbf{x}^3} - i\frac{\Lambda_5^n}{\mathbf{x}^9} + \dots\right\}, \qquad n > 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - (-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_2^n}{\mathbf{x}^6} + i\frac{\Lambda_3^n}{\mathbf{x}^9} + \frac{\Lambda_4^n}{\mathbf{x}^{12}} - i\frac{\Lambda_5^n}{\mathbf{x}^{15}} + \dots\right\}, \qquad n > 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - (-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_2^n}{\mathbf{x}^6} + i\frac{\Lambda_3^n}{\mathbf{x}^9} + \frac{\Lambda_4^n}{\mathbf{x}^{12}} - i\frac{\Lambda_5^n}{\mathbf{x}^{15}} + \dots\right\}, \qquad n < 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - (-\mathbf{i})^n \frac{\mathbf{x}^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{\mathbf{x}^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_1^n}{\mathbf{x}^9} + \frac{\Lambda_1^n}{\mathbf{x}^3} - \frac{\Lambda_1^n}{\mathbf{x}^9} + \frac{\Lambda_1^n}{\mathbf{x}^{12}} - i\frac{\Lambda_1^n}{\mathbf{x}^{12}} + \dots\right\}, \qquad n < 0$$

$$\hat{q}^{(n)}(-\mathbf{x}) = \hat{q}^{(n)}(-\mathbf{x}) - \hat{q}^{(n)}(-\mathbf{x}) + \hat{q}^{(n)}$$

Table 31 (Concluded)

TABLE OF COEFFICIENTS  $A_m^{(n)}$  FOR ASYMPTOTIC EXPANSION OF

$$\hat{q}^{(n)}(-x) = -(-i)^n \frac{x^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{x^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{A_1^n}{x^3} - \frac{A_2^n}{x^6} + i\frac{A_3^n}{x^9} + \frac{A_4^n}{x^{12}} - i\frac{A_5^n}{x^{15}} + \dots\right\} \qquad n > 0$$

$$\hat{q}^{(n)}(-x) = \hat{q}^{(n)}(-x) - (-i)^n \frac{x^{2n+1/2}}{2^{2n+1/2}} \exp\left[i\left(\frac{x^3}{12} - \frac{\pi}{4}\right)\right] \left\{1 - i\frac{A_1^n}{x^3} - \frac{A_2^n}{x^6} + i\frac{A_3^n}{x^9} + \frac{A_4^n}{x^{12}} - i\frac{A_5^n}{x^{15}} + \dots\right\} n < 0$$

| m $n$ | <b>3</b> .      | . 4     | 5 -     |
|-------|-----------------|---------|---------|
| 0     | 1               | 1       | 1       |
| 1 .   | 32              | . 58    | 92      |
| 2     | 84              | 532     | 1808    |
| . 3   | 168             | 336     | 5656    |
| 4     | 2352            | 672     | 0       |
| 5     | 129024          | 77280   | 67872   |
| 6     | 8568 <b>000</b> | 4181184 | 2171904 |

$$\mathbf{s_{1}(-x)} = \frac{4 \exp \left[i\left(\frac{x^{\frac{3}{12}} - \frac{\pi}{4}\right)}{x^{\frac{3}{2}}}\right] \left\{1 - i\frac{10}{x^{\frac{3}{3}}} - \frac{264}{x^{\frac{6}{3}}} + i\frac{11000}{x^{\frac{9}{3}}} + \frac{622160}{x^{\frac{3}{3}}} - i\frac{44359392}{x^{\frac{15}{3}}} + \cdots\right\}$$

$$s_{2}(-x) = i \frac{8 \exp\left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right]}{x^{5/2}} \left\{1 - i \frac{18}{x^{3}} - \frac{600}{x^{6}} + i \frac{718976}{25x^{9}} + \frac{8955648}{5x^{12}} + \cdots\right\}$$
(15.76)
Cont.

$$s_3(-x) = -\frac{16 \exp\left[i\left(\frac{x^3}{12} - \frac{\pi}{4}\right)\right]}{x^{7/2}} \left\{1 - i\frac{28}{x^3} - \frac{1160}{x^6} + i\frac{1598976}{25x^9} + \frac{22023168}{5x^{12}} + \cdots\right\}$$

$$s_4(-x) = -i \frac{32 \exp \left[i \left(\frac{x^3}{12} - \frac{\pi}{4}\right)\right]}{x^{9/2}} \left[1 - i \frac{40}{x^3} - \frac{2024}{x^6} + i \frac{34228224}{125x^9} + \frac{9740288}{x^{12}} + \cdots\right]$$

$$s_{5}(-x) = \frac{64 \exp \left[i\left(\frac{x^{3}}{12} - \frac{\pi}{4}\right)\right]}{x^{11/2}} \left\{1 - i\frac{54}{x^{3}} - \frac{3284}{x^{6}} + i\frac{29376512}{125x^{9}} + \frac{497156096}{25x^{12}} + \cdots\right\}$$

$$\mathbf{s}_{6}(-\mathbf{x}) = \mathbf{i} \frac{128 \exp\left[\mathbf{i} \left(\frac{\mathbf{x}^{3}}{12} - \frac{\pi}{4}\right)\right]}{\mathbf{x}^{13/2}} \left\{1 - \mathbf{i} \frac{70}{\mathbf{x}^{3}} - \frac{5044}{\mathbf{x}^{6}} + \cdots\right\}$$
(15.76)

We can also write

$$s_0(\xi) = -\frac{1}{2\sqrt{\pi}} \xi - q^{(-2)}(\xi) + \xi q^{(-1)}(\xi)$$

$$s_{1}(\xi) = \frac{1}{2\sqrt{\pi}} \frac{\xi^{3}}{6} - \frac{3}{2} q^{(-4)}(\xi) + \frac{3}{2} \xi q^{(-3)}(\xi) - \frac{\xi^{2}}{2} q^{(-2)}(\xi)$$

$$s_2(\xi) = \frac{1}{2\sqrt{\pi}} \left( \frac{\xi^5}{90} + i \frac{\xi^2}{6} \right) - \frac{5}{2} q^{(-6)}(\xi) + \frac{6}{2} \xi q^{(-5)}(\xi) - \xi^2 q^{(-4)}(\xi) + \left( \frac{\xi^3}{6} - i \frac{2}{3} \right) q^{(-3)}(\xi) + \frac{i\xi}{3} q^{(-2)}(\xi)$$

$$\begin{split} \mathbf{s}_{3}(\xi) &= \frac{1}{2\sqrt{\pi}} \left( \frac{\xi^{7}}{2520} + \mathrm{i} \, \frac{\xi^{4}}{32} \right) - \frac{35}{8} \, \mathrm{q}^{(-8)}(\xi) + \frac{35}{8} \, \xi \, \mathrm{q}^{(-7)}(\xi) - \frac{15}{8} \, \xi^{2} \, \mathrm{q}^{(-6)}(\xi) \\ &+ \left( \frac{5}{12} \, \xi^{3} - \mathrm{i} \, \frac{7}{3} \right) \mathrm{q}^{(-5)}(\xi) - \left( \frac{\xi^{4}}{24} - \mathrm{i} \, \frac{19}{12} \, \xi \right) \, \mathrm{q}^{(-4)}(\xi) - \mathrm{i} \, \frac{\xi^{2}}{3} \, \mathrm{q}^{(-3)}(\xi) \end{split}$$

(15.77)

Cont.

$$s_{4}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^{9}}{113400} + i \frac{31}{14400} \xi^{6} - \frac{\xi^{3}}{30} \right) - \frac{63}{8} q^{(-10)}(\xi) + \frac{63}{8} \xi q^{(-9)}(\xi) - \frac{7}{2} \xi^{2} q^{(-8)}(\xi)$$

$$- \left( \frac{7}{8} \xi^{3} - i \frac{63}{10} \right) q^{(-7)}(\xi) - \left( \frac{\xi^{4}}{8} - i \frac{24}{5} \xi \right) q^{(-6)}(\xi)$$

$$+ \left( \frac{\xi^{5}}{120} - i \frac{17}{12} \xi^{2} \right) q^{(-5)}(\xi) + \left( i \frac{1}{6} \xi^{3} + \frac{3}{5} \right) q^{(-4)}(\xi) - \frac{\xi}{5} q^{(-3)}(\xi)$$

$$s_{5}(\xi) = \frac{1}{2\sqrt{\pi}} \left( \frac{\xi^{11}}{7484400} + i \frac{377}{4838400} \xi^{8} - \frac{19}{3600} \xi^{5} \right) - \frac{231}{16} q^{(-12)}(\xi) + \frac{231}{16} \xi q^{(-11)}(\xi)$$

$$- \frac{105}{16} \xi^{2} q^{(-10)}(\xi) + \left( \frac{7}{4} \xi^{3} - i \frac{77}{5} \right) q^{(-9)}(\xi) - \left( \frac{7}{24} \xi^{4} - i \frac{749}{60} \xi \right) q^{(-8)}(\xi)$$

$$+ \left( \frac{7}{240} \xi^{5} - i \frac{511}{120} \xi^{2} \right) q^{(+7)}(\xi) - \left( \frac{1}{720} \xi^{6} - i \frac{159}{216} \xi^{3} - \frac{29}{9} \right) q^{(-6)}(\xi)$$

$$- \left( i \frac{\xi^{4}}{18} + \frac{5}{3} \xi \right) q^{(-5)}(\xi) + \frac{23}{90} \xi^{2} q^{(-4)}(\xi)$$

$$(15.77)$$

We observe that the functions  $s_n(\xi)$  are entire functions of  $\xi$ . However, the functions  $q^{(-r)}(\xi)$ , where r > 0, which are employed in this representation have not yet been defined since  $q^{(n)}(\xi)$  is defined only for n > 0.

$$q^{(n)}(\xi) = \frac{d^n}{d \, \xi^n} \, q(\xi).$$

The functions  $q^{(n)}(\xi)$  for n < 0 are defined by

$$\hat{\mathbf{q}}^{(-10)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^9}{362880} \right) \ln|\xi| - \frac{7129}{914457600} \xi^9 + A(\xi) \frac{\xi^9}{9!} + \mathbf{q}^{(-10)}(\xi)$$

$$\hat{\mathbf{q}}^{(-9)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^8}{40320} \ \ln|\xi| - \frac{2283}{33868800} \, \xi^8 \right) + \Lambda(\xi) \, \frac{\xi^8}{8!} + \mathbf{q}^{(-9)}(\xi)$$

$$\hat{q}^{(-8)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\hat{\xi}^{7-}}{5040} - \ln|\xi| - \frac{2178}{4233600} \, \xi^7 \right) + A(\xi) \, \frac{\xi^7}{7!} + q^{(-8)}(\xi)$$

$$\hat{\mathbf{q}}^{(-7)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^6}{720} - \ln|\xi| - \frac{294}{86400} \xi^6 \right) + A(\xi) \frac{\xi^6}{6!} + \mathbf{q}^{(-7)}(\xi)$$

$$\hat{q}^{(-6)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^5}{120} \ln |\xi| - \frac{274}{14400} \xi^5 \right) + A(\xi) \frac{\xi^5}{5!} + q^{(-6)}(\xi)$$

$$\hat{q}^{(-5)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^4}{24} \ln |\xi| - \frac{25}{288} \xi^4 \right) + \Lambda(\xi) \frac{\xi^4}{4!} + q^{(-5)}(\xi)$$

$$\hat{\mathbf{q}}^{(-4)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left( \frac{\xi^3}{6} \ln |\xi| - \frac{11}{36} \, \xi^3 \right) + A(\xi) \, \frac{\xi^3}{3!} + q^{(-4)}(\xi)$$

$$\hat{q}^{(-3)}(\xi) = -\frac{1}{2\sqrt{\pi}} \left(\frac{\xi^2}{2} \ln|\xi| - \frac{3}{4} \xi^2\right) + A(\xi) \frac{\xi^2}{2!} + q^{(-3)}(\xi)$$

$$\hat{q}^{(-2)}(\xi) = -\frac{1}{2\sqrt{\pi}} (\xi \ln |\xi| - \xi) + A(\xi) \xi + q^{(-2)}(\xi)$$

$$\hat{q}^{(-1)}(\xi) = -\frac{1}{2\sqrt{\pi}} \ln |\xi| + A(\xi) + q^{(-1)}(\xi)$$

$$\hat{q}^{(0)}(\xi) = -\frac{1}{2\sqrt{\pi}} \frac{1}{\xi} + q^{(0)}(\xi)$$

(15.78)

The function  $A(\xi)$  is defined by

$$A(\xi) = \begin{cases} 0 & \xi > 0 \\ -i \frac{\sqrt{\pi}}{2} & \xi < 0 \end{cases}$$
 (15.79)

The function  $A(\xi)$  serves to define the appropriate branch of the multivalued function  $\ln \xi$  which we have written in the form

$$\ln \xi = \begin{cases} \ln(\xi) & \xi > 0 \\ \ln(-\xi) + i \pi & \xi < 0 \end{cases}$$

or

$$-\frac{1}{2\sqrt{\pi}} \ln \xi = -\frac{1}{2\sqrt{\pi}} \ln |\xi| + A(\xi).$$

The constants

$$q^{(-r)}(0) = a_{-r} + ib_{-r} \dots e_{-r} 2, 3, 4, 5, \cdots$$

are defined by the convergent series

$$q^{(-r)}(0) = -\frac{\exp\left[-i(5r+1)\frac{\pi}{6}\right]}{2\sqrt{\pi}} \sum_{s=1}^{\infty} \frac{1}{\beta_s^{r+1} \left[Ai(-\beta_s)\right]^2}$$
 (15.80)

The case r=1 requires special attention. In this case we find that

$$q^{(-1)}(0) = a_{-1} + ib_{-1} = -\frac{1}{2\sqrt{\pi}} \left( \sum_{s=1}^{\infty} - \int_{1}^{\infty} ds \right) \frac{1}{\beta_{s}^{2} [Ai(-\beta_{s})]^{2}} - \left( \frac{\gamma + \ln \beta_{1}}{2\sqrt{\pi}} \right) + i \frac{\sqrt{\pi}}{12}$$
(15.81)

where  $\gamma = 0.57721~56649$  denotes Euler's constant. The operation

$$\left(\sum_{s=1}^{\infty} - \int_{1}^{\infty} ds\right) f(s)$$

is to be interpreted in the sense of the Euler-Maclaurin summation formula, i.e.,

$$\left(\sum_{s=1}^{\infty} - \int_{1}^{\infty} ds\right) f(s) = \frac{1}{2} f(1) - \frac{1}{12} \Delta f(1) + \frac{1}{24} \Delta^{2} f(1) + \cdots$$

It is important to observe when constructing  $s_n(\xi)$  from  $\hat{q}^{(-r)}(\xi)$  that the portions involving the multivalued function  $\ln \xi$  vanish.

The functions

$$\hat{\mathbf{q}}^{(-r)}(\xi) = \frac{1}{\sqrt{\pi}} \int_{\Gamma_{+}} \frac{1}{(i\,t)^{r}} \exp(i\xi\,t) \frac{\mathbf{v}'(t)}{\mathbf{w}'_{1}(t)} dt = -2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi\,t_{s}^{0})}{(i\,t_{s}^{0})^{r}\,t_{s}^{0}\,\mathbf{w}_{1}^{2}(t_{s}^{0})}$$
(15.82)

are defined by a contour  $\Gamma_+$  running from  $\infty$  to  $\infty$  in upper half plane. In order to obtain the asymptotic expansion for  $\xi \to -\infty$  the contour must start at infinity in the sector  $\pi > \arg t > \frac{\pi}{3}$  and return to infinity along the ray  $\arg t = -\frac{\pi}{3}$ . Therefore, the function defined by the asymptotic expansion for the case  $r \ge 1$  represents the sum of  $\hat{Q}^{(-r)}(\xi)$  and the residue contribution

$$\widetilde{q}^{(-r)}(\xi) = \frac{1}{\sqrt{\pi}} \int_{C} \frac{1}{(it)^r} \exp(i\xi t) \frac{v'(t)}{w_1'(t)} dt$$
 (15.83)

where c is a contour which encircles the origin in a counterclockwise direction. If we let

$$\widetilde{q}^{(-r)}(\xi) = \sum_{m=0}^{\infty} (\widetilde{a}_{m-r} + i\widetilde{b}_{m-r}) \frac{\xi^m}{m!}$$

we can show that

$$\widetilde{a}_{n} + i \widetilde{b}_{n} = 0 , \qquad n \ge 0$$

$$\widetilde{a}_{-1} + i \widetilde{b}_{-1} = \sqrt{\pi} \exp\left(i\frac{\pi}{6}\right)$$

$$\widetilde{a}_{-2} + i \widetilde{b}_{-2} = 0$$

$$\widetilde{a}_{-3} + i \widetilde{b}_{-3} = -\sqrt{\pi} \frac{1}{\left[w_{1}^{1}(0)\right]^{2}}$$

$$\widetilde{a}_{-4} + i \widetilde{b}_{-4} = 0$$

$$\widetilde{a}_{-5} + i \widetilde{b}_{-5} = -\frac{\sqrt{\pi}}{2} \frac{w_{1}^{(0)}}{\left[w_{1}^{1}(0)\right]^{2}}$$

$$\widetilde{a}_{-6} + i \widetilde{b}_{-6} = i \frac{4\sqrt{\pi}}{15} \frac{1}{\left[w_{1}^{1}(0)\right]^{2}}$$

$$\widetilde{a}_{-7} + i \widetilde{b}_{-7} = -\frac{\sqrt{\pi}}{4} \frac{\left[w_{1}(0)\right]^{2}}{\left[w_{1}^{1}(0)\right]^{4}}$$

$$\widetilde{a}_{-8} + i \widetilde{b}_{-8} = i \frac{4\sqrt{\pi}}{15} \frac{w_{1}^{(0)}}{\left[w_{1}^{1}(0)\right]^{3}}$$

$$\widetilde{a}_{-9} + i \widetilde{b}_{-9} = \frac{77\sqrt{\pi}}{1008} \frac{1}{\left[w_{1}^{1}(0)\right]^{2}} - \frac{\sqrt{\pi}}{8} \frac{\left[w_{1}^{(0)}\right]^{3}}{\left[w_{1}^{1}(0)\right]^{5}}$$

$$\widetilde{a}_{-10} + i \widetilde{b}_{-10} = i \frac{\sqrt{\pi}}{5} \frac{\left[w_{1}^{(0)}\right]^{2}}{\left[w_{1}^{1}(0)\right]^{4}}$$
(15.34)

Although the functions  $\widehat{q}^{(-r)}(\xi)$  are needed in order to define  $\widehat{q}^{(-r)}(\xi)$  for  $\xi \to -\infty$ , " should be observed that in constructing  $s_n(\xi)$  from  $\widehat{q}^{(-r)}(\xi)$  all of the terms involving  $\widehat{q}^{(-r)}(\xi)$  vanish.

We can use the coefficients  $a_n$ ,  $b_n$  of Table 27 to express  $s_n(\xi)$  in the form

$$s_0(\xi) = \sum_{r=0}^{\infty} (E_r^0 + i F_r^0) \frac{\xi^r}{r!}$$

$$E_{r}^{0} = (1 - r) a_{r-2}$$

$$F_{r}^{o} = (1 - r)b_{r-2}$$

$$s_{1}(\xi) = \sum_{r=0}^{\infty} (E_{r}^{1} + i F_{r}^{1}) \frac{\xi^{r}}{r!}$$

$$E_{r}^{1} = \frac{(r-3)(r-1)}{2} a_{r-4}$$

$$F_{r}^{1} = \frac{(r-3)(r-1)}{2} b_{r-4}$$

$$s_{2}(\xi) = \sum_{r=0}^{\infty} (E_{r}^{2} + i F_{r}^{2}) \frac{\xi^{r}}{r!}$$

$$E_{r}^{2} = \left[ -r^{3} + 4r^{2} - \frac{11}{2} r + \frac{5}{2} \right] a_{r-6} + \frac{r-2}{3} b_{r-3}$$

$$F_{r}^{2} = \left[ -r^{3} + 4r^{2} - \frac{11}{2} r + \frac{5}{2} \right] b_{r-6} - \frac{r-2}{3} a_{r-3}$$

$$s_{3}(\xi) = \sum_{r=0}^{\infty} (E_{r}^{3} + i F_{r}^{3}) \frac{\xi^{r}}{r!}$$

$$E_{r}^{3} = \left[ \frac{1}{24} r^{4} - \frac{2}{3} r^{3} + \frac{43}{12} r^{2} - \frac{22}{3} r + \frac{35}{8} \right] a_{r-8} - \frac{(r-4)(4r-7)}{12} b_{r-5}$$

$$F_{r}^{3} = \left[ \frac{1}{24} r^{4} - \frac{2}{3} r^{3} + \frac{43}{12} r^{2} - \frac{22}{3} r + \frac{35}{8} \right] b_{r-8} + \frac{(r-4)(4r-7)}{12} a_{r-5}$$
(15. 53)
Cont

$$\begin{split} \mathbf{s_4}(\xi) &= \sum_{\mathbf{r}=\mathbf{0}}^{\infty} \left( \mathbf{E_r^4} + \mathbf{i} \mathbf{F_r^4} \right) \frac{\xi^{\mathbf{r}}}{\mathbf{r}!} \\ &= \left[ -\frac{1}{120} \, \mathbf{r}^5 + \frac{5}{24} \, \mathbf{r}^4 - \frac{23}{12} \, \mathbf{r}^3 + \frac{95}{12} \, \mathbf{r}^2 - \frac{563}{40} \, \mathbf{r} + \frac{63}{8} \right] \mathbf{a_{r-10}} \\ &+ \left[ \frac{1}{6} \, \mathbf{r}^3 - \frac{23}{12} \, \mathbf{r}^2 + \frac{131}{20} \, \mathbf{r} - \frac{63}{10} \right] \mathbf{b_{r-7}} + \frac{\mathbf{r} - 3}{5} \, \mathbf{a_{r-4}} \\ &\mathbf{F_r^4} &= \left[ -\frac{1}{120} \, \mathbf{r}^5 + \frac{5}{24} \, \mathbf{r}^4 - \frac{23}{12} \, \mathbf{r}^3 + \frac{95}{12} \, \mathbf{r}^2 - \frac{563}{40} \, \mathbf{r} + \frac{63}{8} \right] \mathbf{b_{r-10}} \\ &- \left[ \frac{1}{6} \, \mathbf{r}^3 - \frac{23}{12} \, \mathbf{r}^2 + \frac{131}{20} \, \mathbf{r} - \frac{63}{10} \right] \mathbf{a_{r-7}} + \frac{\mathbf{r} - 3}{5} \, \mathbf{b_{r-4}} \end{split}$$

$$\begin{split} \mathbf{r}_{5}(\xi) &= \sum_{\mathbf{r}=\mathbf{0}}^{\infty} \left( \mathbf{E}_{\mathbf{r}}^{5} + \mathbf{i} \, \mathbf{F}_{\mathbf{r}}^{5} \right) \frac{\xi^{\mathbf{r}}}{\mathbf{r}_{1}!} \\ &= \mathbf{E}_{\mathbf{r}}^{5} = \left[ \frac{1}{720} \, \mathbf{r}^{6} - \frac{1}{20} \, \mathbf{r}^{5} + \frac{101}{144} \, \mathbf{r}^{4} - \frac{29}{6} \, \mathbf{r}^{3} + \frac{12139}{720} \, \mathbf{r}^{2} - \frac{1627}{60} \, \mathbf{r} + \frac{231}{16} \right] \mathbf{a}_{\mathbf{r}-12} \\ &+ \left[ -\frac{1}{133} \, \mathbf{r}^{4} + \frac{77}{72} \, \mathbf{r}^{3} - \frac{637}{90} \, \mathbf{r}^{2} + \frac{6677}{360} \, \mathbf{r} - \frac{77}{5} \right] \mathbf{b}_{\mathbf{r}-9} + \left[ -\frac{23}{90} \, \mathbf{r}^{2} + \frac{173}{90} \, \mathbf{r} - \frac{29}{9} \right] \mathbf{a}_{\mathbf{r}-6} \\ &+ \mathbf{F}_{\mathbf{r}}^{5} = \left[ \frac{1}{720} \, \mathbf{r}^{6} + \frac{2}{20} \, \mathbf{r}^{5} - \frac{101}{20} \, \mathbf{r}^{4} + \frac{29}{30} \, \mathbf{r}^{3} + \frac{12139}{720} \, \mathbf{r}^{2} - \frac{1627}{60} \, \mathbf{r} + \frac{231}{16} \right] \mathbf{b}_{\mathbf{r}-12} \\ &- \left[ -\frac{1}{18} \, \mathbf{r}^{4} + \frac{77}{72} \, \mathbf{r}^{3} - \frac{637}{90} \, \mathbf{r}^{2} + \frac{6677}{360} \, \mathbf{r} - \frac{77}{9} \right] \mathbf{a}_{\mathbf{r}-9} + \left[ -\frac{23}{90} \, \mathbf{r}^{2} + \frac{173}{90} \, \mathbf{r} - \frac{29}{9} \right] \mathbf{b}_{\mathbf{r}-6} \end{split}$$

$$s_{6}(\xi) = \sum_{\mathbf{r} = 0}^{\infty} \left( \mathbf{E}_{\mathbf{r}}^{6} + \mathbf{i}^{2} \mathbf{F}_{\mathbf{r}}^{6} \right) \frac{\xi^{\mathbf{r}}}{\mathbf{r}!}$$

$$= \frac{6}{\mathbf{r}} = \left[ -\frac{1}{5040} \mathbf{r}^{7} + \frac{7}{720} \mathbf{r}^{6} + \frac{1}{720} \mathbf{r}^{5} + \frac{237}{144} \mathbf{i}^{4} - \frac{8197}{720} \mathbf{r}^{3} + \frac{25333}{720} \mathbf{r}^{2} - \frac{88069}{1680} \mathbf{r} \right]$$

$$+ \frac{429}{16} \mathbf{a}_{\mathbf{r} = 14} + \left[ \frac{1}{72} \mathbf{r}^{5} + \frac{29}{72} \mathbf{r}^{4} + \frac{523}{120} \mathbf{r}^{3} - \frac{7781}{360} \mathbf{r}^{2} + \frac{17197}{360} \mathbf{r} - \frac{143}{4} \right] \mathbf{b}_{\mathbf{r} = 11}$$

$$+ \left[ \frac{1}{45} \mathbf{j}^{3} - \frac{131}{60} \mathbf{r}^{2} + \frac{187}{20} \mathbf{r} - \frac{532}{45} \right] \mathbf{a}_{\mathbf{r} = 3} + \left[ -\frac{1}{7} \mathbf{r} + \frac{4}{7} \right] \mathbf{b}_{\mathbf{r} = 5}$$

$$\mathbf{F}_{\mathbf{r}}^{6} = \left\{ -\frac{1}{5040} \mathbf{r}^{7} + \frac{7}{720} \mathbf{r}^{6} - \frac{139}{720} \mathbf{r}^{5} + \frac{287}{144} \mathbf{r}^{4} - \frac{8197}{720} \mathbf{r}^{3} + \frac{25333}{720} \mathbf{r}^{2} - \frac{88069}{1680} \mathbf{r} \right]$$

$$+ \frac{429}{16} \mathbf{b}_{\mathbf{r} = 14} - \left[ \frac{1}{72} \mathbf{r}^{5} - \frac{29}{72} \mathbf{r}^{4} + \frac{523}{120} \mathbf{r}^{3} - \frac{7781}{360} \mathbf{r}^{2} + \frac{17197}{360} \mathbf{r} - \frac{143}{4} \right] \mathbf{a}_{\mathbf{r} = 11}$$

$$+ \frac{7}{45} \mathbf{r}^{3} - \frac{131}{60} \mathbf{r}^{2} + \frac{187}{20} \mathbf{r} - \frac{532}{45} \right] \mathbf{b}_{\mathbf{r} = 8} - \left[ -\frac{1}{7} \mathbf{r} + \frac{4}{7} \right] \mathbf{a}_{\mathbf{r} = 5}$$

$$(15.85)$$

## Section 16

A HISTORY OF FOCK'S INTEGRAL  $V_1(z,q)$  WITH PARTICULAR REFERENCE TO THE ROLE OF THE NOTATION FOR AIRY'S INTEGRAL

The integral

$$V_1(z,q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(izt) \frac{1}{w'_1(t) - qw_1(t)} dt$$
 (16.1)

was introduced by Fock (Ref. 12) in 1945 in a study of the field produced by a vertical electric dipole located on the surface of a sphere having a radius which is very large compared with the wavelength. Fock showed that for the primary field derived from the potential function

$$U_{O} = \frac{\exp(ikR)}{R}$$
,  $R = \sqrt{a^2 + r^2 - 2ar \cos \theta}$ ,

the resulting total field is asymptotically equal to



Fig. 18 Dipole on a Spherical Surface

$$U(\mathbf{r}, \theta) = \frac{\exp(i \operatorname{ka} \theta)}{a \theta} \exp(i \frac{2}{3} y^{3/2}) V_1(\mathbf{z}, \mathbf{q})$$

where

$$y = \left(\frac{2}{ka}\right)^{1/3} k(r - a)$$

$$z = x - \sqrt{y}$$

$$x = \left(\frac{ka}{2}\right)^{1/3} \theta$$

$$q = i\left(\frac{ka}{2}\right)^{1/3} \frac{k}{k_2} \sqrt{1 - \frac{k^2}{k_2^2}}$$

The function  $w_1(t)$  is defined by the integral

$$w_1(t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(tz - \frac{1}{3}z^3) dz$$

Fock showed that for z > 0 he could compute  $V_{1}(z,q)$  from the residue series representation

$$V_{1}(z,q) = i 2\sqrt{\pi} \sum_{s=1}^{\infty} \frac{\exp(i z t_{s})}{(t_{s} - q^{2})w_{1}(t_{s})} = -i 2\sqrt{\pi} \frac{1}{q} \sum_{s=1}^{\infty} \frac{\exp(i z t_{s})}{\left(1 - \frac{s}{q^{2}}\right)w_{1}^{\prime}(t_{s})}$$
(16.2)

where

$$w_1(t_s) - qw_1(t_s) = 0$$
.

For z > 0, Fock showed that

$$\forall_{1}(z,q) \xrightarrow[z \to -\infty]{} \frac{2\exp\left(-i\frac{z^{3}}{3}\right)}{1+\frac{iq}{z}}$$
 (16.3)

For z < 0, and q = 0, he noted that

$$V_1(z,0) \xrightarrow{z \to -\infty} 2 \exp\left(-i \frac{z^3}{3}\right) \left(1 + \frac{i}{4z^3}\right). \tag{16.4}$$

For small values of z, Fock showed that one could write

$$V_1(z,q) = \sum_{n=0}^{\infty} a_n(q) z^n$$
 (16.5)

where

$$a_n(q) = a_n^{(1)}(q) \exp(-i\frac{5\pi}{6}) + a_n^{(2)}(q) \exp(i\frac{n\pi}{2})$$

and

$$a_n^{(1)}(q) = \frac{1}{\Gamma(n+1)} \frac{1}{\sqrt{\pi}} \int_0^{\infty} \frac{t^n}{w_2'(t) - q w_2(t) \exp(i\frac{2\pi}{3})} dt$$

$$a_n^{(z)}(q) = \frac{1}{\Gamma(n+1)} \frac{1}{\sqrt{\pi}} \int_0^{\infty} \frac{t^n}{w_1^i(t) - q w_1(t)} dt$$
 (16.6)

and

$$w_1(t) = u(t) + iv(t), \quad w_2(t) = u(t) - iv(t).$$

However, no values of  $a_{\mathbf{n}}(\mathbf{q})$  have been published by the Soviets.

In this early work Fock gave a table only for the case of q = 0. The function

$$V_1(z, 0) = g(z) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(izt)}{w_1'(t)} dt$$
 (16.7)

was computed for z = -4.5(0.1)4.5 with an accuracy of three decimals.

Fock also showed how  $V_{\downarrow}(z,q)$  could be used to describe the field induced by an incident plane wave on and near the surface of a convex body of finite conductivity. In particular, he showed that the tangential magnetic field on the surface of an obstacle with radius of curvature  $\underline{a}$  at the shadow boundary is given by the relations

$$H_{y} = H_{y}^{O} \exp(i kx) \exp\left(i \frac{\xi^{3}}{3}\right) V_{1}(\xi, q)$$

$$H_{x} = i\left(\frac{2}{ka}\right)^{1/3} H_{z}^{O} \exp(i kx) F(\xi)$$
(16.8)



Fig. 19 Plane Wave Incident on a Convex Surface.

where

$$\xi = \left(\frac{k}{2a^2}\right)^{1/3} x$$

and

$$F(\xi) = \exp\left(i\frac{\xi^3}{3}\right) \left\{\lim_{q \to \infty} -q V_1(\xi, q)\right\} = \frac{\exp\left(i\frac{\xi^3}{3}\right)}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_1(t)} dt \quad (16.9)$$

The asymptotic behavior of  $V_1(\xi,q)$  for  $\xi \to -\infty$  was obtained by the method of statinary phase. This result is identical with the results derived from geometrical optics. The residue series was first introduced by Nicholson and Poincaré in. 1910 and placed on a sound mathematical basis by Watson in 1918. The residue series converges only for points in the shadow, i.e.,  $\xi > 0$ . In the vicinity of the shadow boundary neither geometrical optics (stationary phase) nor the diffraction formula (residue series) provides a means of determining the field. Fock's proposal to numerically evaluate the integral representation for  $V_1(\xi,q)$  for small values of  $\xi$  provided the first satisfactory treatment of the penumbra region (for the case in which one antenna is on the ground and the other is at a very great height). For this outstanding work Fock received the Stalin prize.

The work of Fock was highly publicized by the Soviets. The first four papers were published (in English) in the <u>Journal of Physics</u> in 1945-46. A survey paper entitled "New Methods in Diffraction Theory" appeared in the Philosophical Magazine in 1948. However, it was almost ten years after the publication of Fock's first papers on this subject before other scientists made direct use of Fock's table of  $g(\xi)$ .

Fock's work has often been criticized by people who have read only the classic paper in which it is shown that for a perfect conductor

$$H_{tan} = H_{tan}^{0} \exp\left(i kx + i \frac{\xi^{3}}{3}\right) g(\xi)$$
 (16.10)

The criticism is generally made that since only one universal function is introduced that this is a scalar theory. These persons take the formula to mean that  $H_{\mathrm{tan}}$  denotes any component of the magnetic field which is tangent to the surface. In his second paper, appearing 269 pages later in the same volume of <u>Journal of Physics</u>, Fock writes the formulas in the form

$$H_{y} = H_{y}^{o} \exp(i kx + i \frac{\xi^{3}}{3}) V_{1}(\xi, q)$$

$$H_{x} = H_{z}^{o} (\frac{2}{ka})^{1/3} H_{z}^{o} \exp(i kx) F(\xi)$$
(16.11)

and thereby explicitly shows the dependence on polarization. For a perfect conductor, q=0, and  $V_1(\xi,0)=g(\xi)$  so that

$$H_{y} = H_{y}^{0} \exp(ikx + i\frac{\xi^{3}}{3}) g(\xi)$$

$$H_{x} = H_{z}^{0} \left(\frac{2}{ka}\right)^{1/3} \exp(ikx + i\frac{\xi^{3}}{3}) f(\xi)$$
(16.12)

where

$$g(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_1'(t)} dt , \quad f(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(i\xi t)}{w_1(t)} dt$$

For positive values of  $\xi$  these functions can be computed by means of the residue series representations

$$g(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi t_{s}^{0})}{t_{s}^{0} w_{1}(t_{s}^{0})}, \quad w_{1}^{t}(t_{s}^{0}) = 0$$

$$f(\xi) = 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(i\xi t_{s}^{\infty})}{w_{1}^{t}(t_{s}^{\infty})}, \quad w_{1}(t_{s}^{\infty}) = 0$$
(16.13)

where

$$t_{1}^{0} - 1.01879 \exp(i\frac{\pi}{3})$$
  $t_{1}^{\infty} = 2.33811 \exp(i\frac{\pi}{3})$   $t_{2}^{0} = 3.24820 \exp(i\frac{\pi}{3})$   $t_{2}^{\infty} = 4.08795 \exp(i\frac{\pi}{3})$   $t_{3}^{\infty} = 6.16331 \exp(i\frac{\pi}{3})$   $t_{3}^{\infty} = 6.78671 \exp(i\frac{\pi}{3})$ 

Note: The notation  $t_s^0$ ,  $t_s^\infty$  does not agree with the notation of Fock. Fock wrote

$$w_1(t_8^0) = 0$$
,  $w_1'(t_8^1) = 0$ 

so that

$$t_{s}^{o} \longrightarrow t_{s}^{\infty}$$

$$t_{s}' \longrightarrow t_{s}^{o}$$
Fock This paper (16.14)

We have deliberately changed Fock's notation in order to let the limiting cases of  $\boldsymbol{t}_{s}(\boldsymbol{q}),$  where

$$w_1^*[t_s(q)] - q w_1[t_s(q)] = 0$$
,

be denoted according to

$$t_{s}(\infty) = t_{s}^{\infty}, \quad t_{s}(0) = t_{s}^{0}.$$
 (16.15)

It apparently is not known generally that the importance of the universal functions  $f(\xi)$  and  $g(\xi)$  had been recognized by two scientists at the Bell Telephore Laboratories prior to the publication of Fock's papers. In 1941, Burrows and Gray (Ref. 37) expressed the field of a vertical electric dipole located above a sphere r = b,  $\theta = 0$ , in the form

$$E(r, \theta) = 2 E_{o} (2\pi \xi_{a})^{1/2} \sum_{s=o}^{\infty} \frac{\exp(-i\tau_{s}\xi_{a})}{\delta + 2\tau_{s}} f_{s}(h_{1}) f_{s}(h_{2})$$
 (16.16)

where

$$\xi_{a} = \left(\frac{2\pi a}{\lambda}\right)^{1/3} \theta$$

$$h_{1} = b - a$$

$$h_{2} = r - a$$

and  $\tau_{s}$  denotes the roots of

$$\frac{\exp \left(\frac{\pi}{3} \frac{H_{2/3}^{(2)}\left(\frac{1}{3}(-2\tau_{s})^{3/2}\right)}{H_{1/3}^{(2)}\left(\frac{1}{3}(-2\tau_{s})^{3/2}\right)} = -\frac{\sqrt{o}\exp\left(-\frac{\pi}{4}\right)}{\sqrt{-2\tau_{s}}} = \frac{J_{-2/3}(z_{s}) - J_{2/3}(z_{s})}{J_{-1/3}(z_{s}) + J_{1/3}(z_{s})}$$

$$z_g = \frac{1}{3}(-2\tau_g)^{3/2} \exp(-i\pi)$$
 (16.17)

The height-gain functions are defined by

$$f_s(h) = \sqrt{\frac{x-\tau_s}{-\tau_s}} \frac{H_{1/3}^{(2)} \left[ \frac{1}{3} (2x-2\tau_s)^{3/2} \right]}{H_{1/3}^{(2)} \left[ \frac{1}{3} (-2\tau_s)^{3/2} \right]}$$

$$x_{j} = \left(\frac{2\pi a}{\lambda}\right)^{2/3} \frac{h_{j}}{a}, \quad j = 1, 2,$$
 (16.18)

The quantity E for a vertical electric dipole would be

$$E_0 = \frac{\exp(-iR)}{R}$$
,  $R = \sqrt{b^2 + r^2 - 2rb \cos \theta}$ 

Since  $f_{s}(0) = 1$ , if we take b = a (source on the surface) and consider the diffraction region, we can, to a high degree of approximation, write

$$E(\mathbf{r},\theta) = \frac{\exp(-i \operatorname{ka} \theta)}{\operatorname{a} \overline{\theta}} 2\sqrt{2\pi \xi} \operatorname{a} \sum_{s=0}^{\infty} \frac{\exp(-i \tau_s \xi_a)}{\delta + 2\tau_s} f_s(h_2)$$
 (16.19)

For great heights, Burrows and Gray observed that

$$f_{s}(h_{2}) = \frac{3}{x_{2} >> 1} \frac{3}{\sqrt{2\pi}} \frac{1}{\sqrt{2}x_{2}} \frac{\exp(i\sqrt{2}x_{2} \tau_{s})}{\sqrt{-2}\tau_{s}} \exp\left[-i\frac{1}{3}(2x_{2})^{3/2} + i\frac{7\pi}{12}\right]$$
(16.20)

and wrote

$$\xi_a = \sqrt{2x_0}$$

Then they wrote for the case  $h_1 = 0$ ,  $x_2 >> 1$ ,

$$E(\mathbf{r}, \theta) = (E_0) \ 2\sqrt[4]{\frac{2\mathbf{x}_0}{2\mathbf{x}_2}} \exp\left[-i\frac{1}{3}(2\mathbf{x}_2)^{3/2} + i\frac{7\pi}{12}\right] \sum_{\mathbf{s}=0}^{\infty} \frac{\exp\left[-i\tau_{\mathbf{s}}\left(\sqrt{2\mathbf{x}_0} - \sqrt{2\mathbf{x}_2}\right)\right]}{\frac{1}{3}\sqrt{-2\tau_{\mathbf{s}}}\left(\delta + 2\tau_{\mathbf{s}}\right)\left[J_{-1/3}(z_{\mathbf{s}}) + J_{1/3}(z_{\mathbf{s}})\right]}$$

$$= (E_0) 2 \sqrt[4]{\frac{2x_0}{2x_2}} \exp\left[-i\frac{1}{3}(2x_2)^{3/2} + i\frac{\pi}{3}\right] \frac{1}{\sqrt{\delta}} \sum_{s=0}^{\infty} \frac{\exp\left[-i\tau_s\left(\sqrt{2x_0} - \sqrt{2x_2}\right)\right]}{\frac{2}{3}\tau_s\left(1 + \frac{2\tau_s}{\delta}\right)\left[J_{-2/3}(z_s) - J_{2/3}(z_s)\right]}$$
(16, 21)

Burrows and Gray then presented a set of curves which showed the behavior of these series when  $\delta << 1$  and when  $\delta >> 1$ .

$$F_{L} \xrightarrow{\delta >> 1} \left| \sum_{s=0}^{\infty} \frac{\exp(-i\tau_{s}^{\infty} L)}{\frac{2}{3}\tau_{s}^{\infty} \left[ J_{-2/3}(z_{s}^{\infty}) - J_{2/3}(z_{s}^{\infty}) \right]} \right|$$

$$F_{L} \xrightarrow{\delta <<1} \left| \frac{\sqrt{-2\tau_{o}^{o}} (2\tau_{o}^{o}) \left[ J_{1/3}(z_{o}^{o}) + J_{-1/3}(z_{o}^{o}) \right]}{\frac{2}{3}\tau_{o}^{\infty} \left[ J_{-2/3}(z_{o}^{\infty}) - J_{2/3}(z_{o}^{\infty}) \right]} \sum_{s=o}^{\infty} \frac{\exp(-i \left| \tau_{o}^{\infty} / \tau_{o}^{o} \right| \tau_{s}^{o} L)}{\frac{1}{3}\sqrt{-2\tau_{s}^{o}} (2\tau_{s}^{o}) \left[ J_{1/3}(z_{s}^{o}) + J_{1/3}(z_{s}^{o}) \right]} \right|$$

$$(16.22)$$

for  $L \geq 0$ . If we translate these results into Fock's notation we find that

$$F_{L} \xrightarrow{\delta \gg 1} \frac{1}{\sqrt[3]{4}} \left| f\left(\frac{L}{\sqrt[3]{2}}\right) \right|$$

$$F_{L} \xrightarrow{\delta \ll 1} \frac{\left| t_{1}^{0} w_{1}(t_{1}^{0}) \right|}{\sqrt[3]{4}} \left| w_{1}'(t_{1}^{0}) \right| \left| g\left(\frac{\left| t_{0}^{\infty} \right|}{\left| t_{0}^{0} \right|} \frac{L}{\sqrt[3]{2}}\right) \right|$$

$$(16. 23)$$

The difference in notation has so thoroughly concealed the relationship between these results that we now find Fock receiving credit (including the lucrative Stalin prize) for recognizing the value of introducing a class of universal functions which had already been introduced by Burrows and Gray. It is true, of course, that Fock recognized the possibility of using these functions for both positive and negative values of  $\xi$ , while Eurrows and Gray computed them only for positive values of  $\xi$ . However, in Fock's early work he computed only  $g(\xi)$ , whereas Burrows and Gray considered both  $f(\xi)$  and  $g(\xi)$ .

The translation of notation is most easily carried through by starting from Fock's formulas. Since Durrows and Gray use  $\exp(i\,\omega t)$  time dependence and Fock uses  $\exp(-i\,\omega t)$  time dependence, we must consider the complex conjugates of  $f(\xi)$  and  $g(\xi)$ . The properties

$$w_{2}(\overline{t}_{s}^{o}) = 2 \exp\left(-i\frac{\pi}{6}\right) \sqrt{\pi} \frac{|\overline{t}_{s}^{o}|^{1/2}}{3} \left[J_{1/3}\left(\frac{2}{3}|\overline{t}_{s}^{o}|^{3/2}\right) + J_{-1/3}\left(\frac{2}{3}|\overline{t}_{s}^{o}|^{3/2}\right)\right]$$

$$w_{2}(\overline{t}_{s}^{o}) = 2 \exp\left(i\frac{\pi}{6}\right) \sqrt{\pi} \frac{|\overline{t}_{s}^{o}|}{3} \left[J_{2/3}\left(\frac{2}{3}|\overline{t}_{s}^{o}|^{3/2}\right) - J_{-2/3}\left(\frac{2}{3}|\overline{t}_{s}^{o}|^{3/2}\right)\right]$$
(16. 24)

are used in the relations

$$\overline{g}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(-i\xi t)}{w_2!(t)} dt - 2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(-i\xi \overline{t}_s^0)}{\overline{t}_s^0 w_2(\overline{t}_s^0)}$$

$$\overline{f}(\xi) - \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(-i\xi t)}{w_2!(t)} dt = -2\sqrt{\pi} i \sum_{s=1}^{\infty} \frac{\exp(-i\xi \overline{t}_s^0)}{w_2!(\overline{t}_s^0)}$$
(16. 25)

to obtain

$$\widetilde{\mathbf{g}}(\xi) = -3 \sum_{\mathbf{s}=1}^{\infty} \frac{\exp(-i\xi \widetilde{\mathbf{t}}_{\mathbf{s}}^{\mathbf{o}})}{\left|\widetilde{\mathbf{t}}_{\mathbf{s}}^{\mathbf{o}}\right|^{3/2} \left[ \mathbf{J}_{1/3} \left( \frac{2}{3} \left| \widetilde{\mathbf{t}}_{\mathbf{s}}^{\mathbf{o}} \right|^{3/2} \right) + \mathbf{J}_{-1/3} \left( \frac{2}{3} \left| \widetilde{\mathbf{t}}_{\mathbf{s}}^{\mathbf{o}} \right|^{3/2} \right) \right]}$$

$$\overline{f}(\xi) = -3 \exp\left(i \frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{\exp(-i\xi \overline{t}_{s}^{\infty})}{|\overline{t}_{s}^{\infty}| \left[J_{2/3}\left(\frac{2}{3}|\overline{t}_{s}^{\infty}|^{3/2}\right) - J_{-2/3}\left(\frac{2}{3}|\overline{t}_{s}^{\infty}|^{3/2}\right)\right]}$$
(16. 26)

By observing that

$$\xi = \left(\frac{\mathrm{ka}}{2}\right)^{1/3} \theta = \frac{1}{2^{1/3}} L$$

and

$$\delta \gg 1 , \quad \tau_{s-1} = \frac{1}{\sqrt[3]{2}} |\overrightarrow{t}_s^{\infty}| \exp\left(-i\frac{\pi}{3}\right),$$

$$\delta \ll 1 , \quad \tau_{s-1} = \frac{1}{\sqrt[3]{2}} |\overrightarrow{t}_s^{0}| \exp\left(-i\frac{\pi}{3}\right),$$

the translation is readily carried out.

The Burrows and Gray function  $F_L$  is referred to in a footnote (page 129) of Propagation of Short Radio Waves where it appears in the form

$$\mathbf{F}_{L} = 2^{2/3} \, \mathrm{s}^{1/6} \left[ \sum_{m=1}^{\infty} \frac{\exp i \xi_{m} (\mathbf{x} - \sqrt{Z_{1}})}{h_{2}'(\xi_{m})} \right]$$
 (16.27)

where h<sub>2</sub>(t) is the modified Hankel function of order 1/3,

$$h_2(\zeta) = \left(\frac{2}{3}\right)^{1/3} \zeta^{1/2} H_{1/3}^{(2)} \left(\frac{2}{3} \zeta^{3/2}\right)$$
 (16.28)

and

$$h_2'(\xi) = \left(\frac{z}{3}\right)^{1/3} \xi \exp\left(-i\frac{z\pi}{3}\right) H_{2/3}^{(z)} \left(\frac{z}{3} \xi^{3/2}\right)$$

The first few of the roots  $\xi_{m}$  defined by

$$II_{1/3}^{(2)} \left(\frac{2}{3} \zeta_{\rm m}^{3/2}\right) = 0$$

are

$$\xi_1 = 2.33811 \exp\left(i\frac{2\pi}{3}\right)$$
 $\xi_2 = 4.08795 \exp\left(i\frac{2\pi}{3}\right)$ 
 $\xi_3 = 5.52056 \exp\left(i\frac{2\pi}{3}\right)$ 
 $\xi_4 = 6.78671 \exp\left(i\frac{2\pi}{3}\right)$ 

This notation is easily related to Fock's function  $\bar{f}(\xi)$  since

and hence

$$\overline{f}(\xi) = 2\sqrt{\pi} \exp\left(i\frac{\pi}{2}\right) \sum_{s=1}^{\infty} \frac{\exp\left(-i\xi \overline{t}_{s}^{\infty}\right)}{\left(\pi^{1/2}/12^{1/6}\right) \exp\left(i\frac{\pi}{3}\right) h_{2}^{\prime}\left(-\overline{t}_{s}^{\infty}\right)} = 2\sqrt[6]{12} \exp\left(i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{\exp\left(i\xi \xi_{s}\right)}{h_{2}^{\prime}\left(\xi_{s}\right)}$$

$$(16.30)$$

where  $\xi_s = -t_s^{\infty}$ .

Numerical results for  $f(\xi)$  for  $\xi < 0$  were first obtained by Pekeris (Ref. 20) at Columbia University. He showed that the field in the vicinity of the horizon, when the transmitter is on the ground and the receiver is elevated to great heights above the ground, is given by

$$\Psi \simeq \frac{\exp\left\{i\left[\omega t - (\pi/3) - kr - \left(2\varkappa_2^{3/2}/3\right)\right]\right\}}{\pi (r r)^{1/2} \gamma (\epsilon_1 - 1)^{1/2}} \left(\frac{3\lambda}{2\pi a}\right)^{1/3} G(p) \qquad (16.31)$$

where

$$G(p) = \int_{0}^{\infty} \frac{\exp\left(-i px^{2/3}\right)}{x^{2/3} \left[I_{-1/3}(x) + \exp\left(i \frac{\pi}{3}\right)I_{1/3}(x)\right]} dx + \exp\left(i \frac{\pi}{3}\right) \int_{0}^{\infty} \frac{\exp\left\{\left[(-3^{1/2}/2) + (i/2)\right] px^{2/3}\right\}}{x^{2/3} \left[I_{-1/3}(x) + \exp\left(-i \frac{\pi}{3}\right)I_{1/3}(x)\right]} dx$$

$$(16.32)$$

We will now show that

G(p) 
$$= \left(\frac{2}{3}\right)^{1/3} \pi \exp\left(-i\frac{\pi}{6}\right) f\left(\left|\frac{2}{3}\right|^{2/3} p\right)$$
 (16.33)

The translation can be most easily made by writing Fock's  $f(\xi)$  in the form

$$\overline{f}(\xi) = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\exp(-i\xi t)}{w_2(t)} dt - \frac{1}{\sqrt{\pi}} \exp\left(-i\frac{\pi}{2}\right) \int_{0}^{\infty} \frac{\exp\left[-\xi t \exp(-i\pi/6)\right]}{w_1(t)} dt$$

and then observing that

$$\begin{split} w_2(t) &= \frac{2\sqrt{\pi t}}{3} \exp\left(-i\frac{\pi}{6}\right) \left\{ I_{-1/3} \left(\frac{2}{3}t^{3/2}\right) + \exp\left(i\frac{\pi}{3}\right) I_{1/3} \left(\frac{2}{3}t^{3/2}\right) \right\} \\ w_1(t) &= \frac{2\sqrt{\pi t}}{3} \exp\left(i\frac{\pi}{6}\right) \left\{ I_{-1/3} \left(\frac{2}{3}t^{3/2}\right) + \exp\left(-i\frac{\pi}{3}\right) I_{1/3} \left(\frac{2}{3}t^{3/2}\right) \right\} \\ x &= \frac{2}{3} t^{3/2} , \qquad dx = t^{1/2} dt = \left(\frac{3}{2}\right)^{1/3} x^{1/3} dt \end{split} \tag{16.34}$$

and hence

$$\widetilde{\mathbf{f}}(\xi) = \frac{1}{\sqrt{\pi}} \left(\frac{2}{3}\right)^{2/3} \frac{3}{2\sqrt{\pi}} \exp\left(i\frac{\pi}{6}\right) \begin{cases} \int_{0}^{\infty} \frac{\exp\left[-i\xi\left(\frac{3}{2}\right)^{2/3} x^{2/3}\right]}{\mathbf{I}_{-1/3}(x) + \exp\left(i\frac{\pi}{3}\right) \mathbf{I}_{1/3}(x)} \frac{\mathrm{d}x}{x^{2/3}} \\
+ \exp\left(i\frac{\pi}{3}\right) \int_{0}^{\infty} \frac{\exp\left[-\xi\left(\frac{3}{2}\right)^{2/3} x^{2/3} \exp\left(-i\frac{\pi}{6}\right)\right]}{\mathbf{I}_{-1/3}(x) + \exp\left(-i\frac{\pi}{3}\right) \mathbf{I}_{1/3}(x)} \frac{\mathrm{d}x}{x^{2/3}} \\
= \left(\frac{3}{2}\right)^{1/3} \frac{1}{\pi} \exp\left(i\frac{\pi}{6}\right) G\left[\left(\frac{3}{2}\right)^{2/3} \xi\right]. \tag{16.35}$$

Therefore, Fock's form which was suitable for numerical integration was almost simultaneously obtained by Pekeris (who, in addition to not having received the monetary reward of a Stalin prize, has received no credit for his contribution to this field).

In Table 32 we give Pekeris' table for G(p). We have also converted it to  $f(\xi)$  by using Eq. (16.35).

Table 32

CONVERSION OF G(p) TO f(\xi)

| þ    | ξ     | $_{ m RG}$ | I G      | Rf       | If    |
|------|-------|------------|----------|----------|-------|
| -2,0 | -1.53 | 8.38       | -1.63    | 2.94     | -1.01 |
| -1.5 | -1.14 | 5,96       | 2.89     | 1.35     | -2.00 |
| -1.0 | -0.76 | 3,62       | 3.24     | 0.55     | -1,68 |
| -0.5 | -0.38 | 2.49       | 2.22     | 0.38     | -1.16 |
| 0    | 0     | 1.84       | 1.16     | 0.39     | -0,67 |
| 0.5  | 0.38  | 1.24       | 0.23     | 0.35     | -0.30 |
| 1.0  | 0.76  | 0.67       | 0.16     | 0.24     | -0.07 |
| 1.5  | 1.14  | 0.27       | 0.23     | 0,13     | 0.02  |
| 2.0  | 1.53  | 0.07       | 0.16     | 0.05     | 0.04  |
| }    | 1     |            | <u> </u> | <u> </u> |       |

By 1949 the Soviets (Ref. 14) had completed an evaluation of  $V_1(z,q)$  for z>0 and for certain values of q of interest in the transmission of radio waves over the surface of a real earth. The amplitude and phase are given for z=1.0(0.2)5.0 and  $\alpha=0.00(0.01)0.03$  where

$$q = \frac{i n^{5/6}}{\sqrt{i + \alpha n}}$$
 (16.36)

and '

$$\ln (n) = -0.9(0.2)2.9$$
.

It is of interest to note that these calculations were based on using no more than two terms in the Watson residue series. The transition region (for the treatment of which Fock received the Stalin prize) is not included in these tables.

The integrals  $f(\xi)$  and  $g(\xi)$  were redefined in 1954 by Rice (Ref. 34). The functions appear in three forms, namely

$$h^{1/3}\xi_{O} J \exp\left(ix + i\frac{\gamma^{3}}{3}\right) = \frac{1}{\pi} \int_{0}^{\infty} \left[\frac{i^{-2/3} \exp\left(-i\frac{1/3}{3}u\gamma\right)}{\operatorname{Ai}(u) - i\operatorname{Bi}(v)} + \frac{\exp\left(-iu\gamma\right)}{\operatorname{Ai}(u) + i\operatorname{Bi}(u)}\right] du$$

$$= \frac{\exp\left(i\frac{\pi}{3}\right)}{2\pi} \int_{-\infty}^{\infty} \exp\left(i\frac{2\pi}{3}\right) \exp\left(i^{1/3}\gamma\alpha\right) \frac{do}{\operatorname{Ai}(\alpha)}$$

$$= \exp\left(-i\frac{\pi}{6}\right) \sum_{s=1}^{\infty} \frac{\exp(i^{1/3}\gamma a_{s})}{\operatorname{Ai'}(a_{s})}$$

$$= -i\overline{f}(\gamma) \tag{16.37}$$

$$J_{V} \exp\left(i x + i \frac{\gamma^{3}}{3}\right) = \frac{i}{\pi} \int_{0}^{\infty} \left[ -\frac{\exp(-i^{-1/3} u \gamma)}{\operatorname{Ai'}(u) - i \operatorname{Bi'}(u)} + \frac{\exp(-i u \gamma)}{\operatorname{Ai'}(u) + i \operatorname{Bi'}(u)} \right] du$$

$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} \exp\left(-i \frac{2\pi}{3}\right) \exp\left(i \frac{1/3}{3} \gamma \alpha\right) \frac{d\alpha}{\operatorname{Ai'}(\alpha)}$$

$$= -\sum_{s=1}^{\infty} \frac{\exp\left(i \frac{1/3}{3} \gamma \alpha_{s}^{'}\right)}{\alpha_{s}^{'} \operatorname{Ai}(\alpha_{s}^{'})}$$

$$= \overline{g}(\gamma) \qquad (16.38)$$

The relationship between Rice's functions and Fock's functions is easily obtained since

$$w_2(t) = \sqrt{\pi} \left[ Bi(t) - i Ai(t) \right], \qquad w_2'(t) = \sqrt{\pi} \left[ Bi'(t) - i Ai'(t) \right].$$

We observe that

$$\overline{t}_{s}^{\infty} = |a_{s}| \exp(-i\frac{\pi}{3}), \qquad \overline{t}_{s}^{0} = |a_{s}^{1}| \exp(-i\frac{\pi}{3}).$$

The constants  $a_s$ ,  $Ai'(a_s)$ ,  $A_s^{ir}$ ,  $Ai(a_s^i)$  can be found in Miller's table of The Airy Integral.

Fock's integral  $\overline{V}_1(z,\overline{q})$  was written in the form

$$g(X) = \frac{1}{\sqrt{\pi}} \int_{\Gamma_2} \frac{\exp(-iXt)}{W_1^i(t) - qW_1(t)} dt = \overline{V}_1(X, \overline{q})$$
 (16.39)

in a 1958 paper by Wait (Ref. 13). Fock would have written this in the form

$$\overline{V}_{1}(z,\overline{q}) = \frac{1}{\sqrt{\pi}} \int_{\Gamma_{2}} \frac{\exp(-izt)}{w_{2}'(t) - \overline{q}w_{2}(t)} dt , \qquad (16.40)$$

since

$$\underbrace{\frac{W_1(t)}{Wait} - \frac{w_2(t)}{Foek}}_{(16.41)}$$

Wait gave a table of  $\overline{V}_1(z,\overline{q})$  for z=-3.0(0.5)3.0 and the values of  $\alpha$  and n (or rather,  $A=\sqrt[6]{1/2~n^5}$ ), shown in Table 33. We remark that

$$\overline{q} = \frac{-i n^{5/6}}{\sqrt{-1 + \alpha n}} = 2^{1/6} \Lambda \exp(-i \frac{\pi}{4}) \left[1 + i \frac{\epsilon \omega}{\sigma}\right]^{-1/2}$$
 (16.42)

$$A = (ka)^{1/3} \left(\frac{\epsilon_0 \omega}{2\sigma}\right)^{1/2}$$

Table 33

### VALUES OF α AND A STUDIED BY WAIT

|      | Α    | 0        | 0.1 | 0.2 | 0.3  | 0.5 | 0.7 | 1.0 | 1.2        | 1.5 | 2 | 3 | 5        | 7        | 10 |
|------|------|----------|-----|-----|------|-----|-----|-----|------------|-----|---|---|----------|----------|----|
| ===: | 0    | <b>√</b> | * / | √.  | 1    | 1   | J # | 1   | <i>J</i> . | ľ   | 1 | 1 |          | <b>√</b> | 1  |
|      | 0.01 |          | 1   |     |      |     |     |     | ,          | ,   |   |   |          |          | 1  |
|      | 0.02 |          |     |     | js n |     |     |     |            |     |   |   | .:       |          | 1  |
|      | 0.03 | ·        |     |     | 6 1  |     |     | 1   | J          | 1   | 1 | √ | <b>V</b> | J        | /  |

For z = 1.0(0.5)3.0 these tables overlap Belkina's 1949 tables.

It is interesting to note that Wait has followed Fock's suggestion and has numerically integrated through the transition region. The Soviets have not published any results comparable with those of Wait in the region -3.0 < z < 1.0.

It can be expected, as a result of the work of Franz (Ref. 23) in Germany and Keller (Ref. 22) at New York University, that an even different form of Fock's integrals  $f(\xi)$  and  $g(\xi)$ 

will be introduced. Let us now show how this can come to pass.

In the work of Franz and Galle in 1955 we find a result of the torm

$$\frac{\partial \overline{u}}{\partial n}(a,\phi) = k \frac{\exp\left(-i\frac{\pi}{3}\right)}{(ka)^{1/3}} \sum_{\ell=1}^{\infty} \overline{D}_{\ell} \frac{\exp\left[i\overline{\nu}_{\ell}\left(\phi - \frac{\pi}{2}\right)\right] + \exp\left[i\overline{\nu}_{\ell}\left(\frac{3\pi}{2} - \phi\right)\right]}{1 - \exp\left(i2\pi\overline{\nu}_{\ell}\right)}$$
(16.43)

where

$$\overline{D}_{\ell} = -\frac{\pi}{3} \frac{6^{1/3}}{A'(\overline{q})} + O([ka]^{-2/3})$$

$$\overline{\nu}_{\ell} = ka + \left(\frac{ka}{6}\right)^{1/3} \exp\left(i\frac{\pi}{3}\right) \overline{q}_{\ell} + O([ka]^{-1/3}).$$

Therefore, if ka >> 1, we take

$$\frac{3\overline{u}}{3n}(a,\phi) = k \frac{\exp\left(-i\frac{\pi}{3}\right)}{(ka)^{1/3}} \sum_{\ell=1}^{\infty} \left(-\frac{\pi}{3} \frac{6^{1/3}}{A!(\overline{q}_{\ell})}\right) \exp\left[ika\left(\phi - \frac{\pi}{2}\right)\right] \exp\left[i\left(\frac{ka}{6}\right)^{1/3} \exp\left(i\frac{\pi}{3}\right)\overline{q}_{\ell}\right]$$
(16.44)

where  $\overline{q}$  are the roots of  $A(\overline{q}) = 0$  and

$$\overline{q}_1 = 3.372134$$
 $\overline{q}_2 = 5.895843$ 
 $\overline{q}_3 = 7.962025$ 
 $\overline{q}_4 = 9.788127$ 

We can show that

$$q_{\chi} = -3^{1/3} a_{\chi}$$

where a are the roots of

$$Ai(a_{\theta}) = 0$$

In fact, since

Ai(t) = 
$$\frac{3^{1/3}}{\pi}$$
 A(-3<sup>1/3</sup>t)

we have

$$At^{+}(t) = -\frac{3^{2/3}}{\pi} A^{+}(-3^{1/3}t)$$

and hence

$$A^{\dagger}(a_{\ell}) = -\frac{\pi}{3^{2/3}} Ai^{\dagger}(a_{\ell})$$

Therefore, we have

$$\frac{\partial \overline{u}}{\partial n}(a, \phi) = k \frac{\exp\left(-i\frac{\pi}{3}\right)}{(ka)^{1/3}} \exp\left[ika\left(\phi - \frac{\pi}{2}\right)\right] \sum_{i=1}^{\infty} \frac{6^{1/3}}{3^{1/3}Ai'(a_i)} \exp\left(i\xi t_s^0\right), \quad \xi = \left(\frac{ka}{2}\right)^{1/3} \left(\phi - \frac{\pi}{2}\right)$$

$$= k\left(\frac{2}{ka}\right)^{1/3} \exp\left[ika\left(\phi - \frac{\pi}{2}\right)\right] \left\{\exp\left(-i\frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{\exp(i\xi t_s^0)}{Ai'(a_s)}\right\}$$

$$= k\left(\frac{2}{ka}\right)^{1/3} \exp\left[ika\left(\phi - \frac{\pi}{2}\right)\right] f(\xi) \qquad (16.45)$$

where

$$f(\xi) = \exp\left(-i\frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{\exp(i\xi t_s^0)}{\operatorname{Ai'}(a_s)} = \exp\left(-i\frac{\pi}{3}\right) \sum_{s=1}^{\infty} \frac{\exp(\sqrt{3-i}a_s \xi)}{\operatorname{Ai'}(a_s)}$$

is Fock's function.

Franz also has a result of the form

$$\mathbf{u}(\mathbf{a},\phi) = \sum_{\ell=1}^{\infty} \mathbf{D}_{\ell} \frac{\exp\left[i\nu_{\ell}\left(\phi - \frac{\pi}{2}\right)\right] + \exp\left[i\nu_{\ell}\left(\frac{3\pi}{2} - \phi\right)\right]}{1 - \exp(2\pi i\nu_{\ell})}$$
(16.46)

where

$$D_{\ell} = \frac{\pi}{q \cdot A(q)} + O([ka]^{-2/3}),$$

$$\nu_{\ell} = ka + \left(\frac{ka}{6}\right)^{1/3} \exp\left(i\frac{\pi}{3}\right) q_{\ell} + O([ka]^{-1/3})$$

If ka >> 1, we take

$$u(a, \sigma) \approx \sum_{\ell=1}^{\infty} \frac{\pi}{q_{\ell} \Lambda(q_{\ell})} \exp \left[ i \operatorname{ka} \left( \phi - \frac{\pi}{2} \right) + i \left( \frac{\operatorname{ka}}{2} \right)^{1/3} \left[ \exp \left( i \frac{\pi}{3} \right) \right] q_{\ell} \left( \phi - \frac{\pi}{2} \right) \right]$$

$$(16.47)$$

We can show that this is equivalent to

$$u(a, \phi) \approx \exp\left[i ka \left(\phi - \frac{\pi}{2}\right)\right] g(\xi)$$

$$\xi = \left(\frac{ka}{2}\right)^{1/3} \left(\phi - \frac{\pi}{2}\right)$$
(16.48)

where  $g(\xi)$  is Fock's integral. The reader will find it interesting to study Section 5 of a recent paper by Klante (Ref. 23), where the constants f(0), g(0) appear in Franz's notation.

Since Keller and Levy have used Franz's notation the above comments on the role of Fock's integral are equally applicable to their work.

The approximations

$$\frac{\partial \overline{u}}{\partial n} (a, \phi) \approx k \left(\frac{2}{ka}\right)^{1/3} \exp\left[i ka \left(\phi - \frac{\pi}{2}\right)\right] f(\xi)$$

$$u(a, \phi) \approx \exp\left[i ka \left(\phi - \frac{\pi}{2}\right)\right] g(\xi)$$
(16.49)

are valid for large values of ka for  $\phi$  greater than about 75°. For  $\phi$  tending to zero we use Fock's 1946 results to write

$$\frac{\partial \overline{u}}{\partial n}(a, \phi) \approx k \left(\frac{2}{ka}\right)^{1/3} \exp(-i ka \cos \phi) \exp\left(i \frac{\xi_1^3}{3}\right) f(\xi_1)$$

$$u(a \phi) \sim \exp(-i ka \cos \phi) \exp\left(i \frac{\xi_1^3}{3}\right) g(\xi_1)$$
(16.50)

where

$$\xi_1 = -\left(\frac{\ln a}{2}\right)^{1/3} \cos \phi = \left(\frac{\ln a}{2}\right)^{1/3} \sin \left(\phi - \frac{\pi}{2}\right)$$

These results are uneful in the lighted region  $0 \le \phi < \frac{\pi}{2}$  and can be used up to 95° or  $100^{\circ}$ . Frank has shown that

$$\frac{\partial \overline{u}}{\partial n} (a, \phi) \xrightarrow{ka \to \infty} 2ik \cos \phi \exp(-ika \cos \phi) \left\{ 1 + \frac{1}{2ka \cos^3 \phi} + \dots \right\}$$

$$u(a, \phi) \xrightarrow{ka \to \infty} 2 \exp(-ika \cos \phi) \left\{ 1 - \frac{1}{2ka \cos^3 \phi} + \dots \right\}$$
(16.51)

Also, we know that

$$f(\xi_1) = \frac{\xi_1}{\xi_1 - \infty} 2i \xi_1 \exp(-i \frac{\xi_1^3}{3}) \left(1 - \frac{i}{4\xi_1^3} + \dots\right)$$

$$g(\xi_1) = \frac{\xi_1^3}{\xi_1 - \infty} 2 \exp(-i \frac{\xi_1^3}{3}) \left(1 + \frac{i}{4\xi_1^3} + \dots\right)$$
(16.52)

Since

$$1 \mp \frac{i}{4\xi_1^3} = 1 \pm \frac{i}{2 \ln \cos^3 \phi}$$

we observe that the choice of definition of  $\xi_{\perp}$  is precisely what is required to make these asymptotic expansions agree in their first two terms.

The above summary of instances in which the Fock integrals have been naturally introduced as important universal functions clearly establishes that these functions deserve to take their place in mathematical physics alongside such special functions as the Fresnel integrals. The above study also indicates the need for a more uniform notation not only for the Fock integral but, (and even more important) also for the Airy integral.

# Section 17 DERIVATION OF $V_0(\xi,q)$ AND $V_1(\xi,q)$ AS SOLUTIONS OF INTEGRAL EQUATIONS

The integrals

$$V_{O}(\xi, q) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{2} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{w_{1}(t)}{w_{1}^{\prime}(t) - q w_{1}(t)} dt$$

$$= \frac{\exp\left(-i\frac{\pi}{4}\right)}{2} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{Bi(t) + i \Lambda i(t)}{[Bi^{\prime}(t) - q Bi(t)] + i [Ai^{\prime}(t) - q Ai(t)]} dt$$
(17.1)

$$V_{1}(\xi, q) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{w_{1}(t) - q w_{1}(t)} dt$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{Bi'(t) - qBi(t) + ii Ai'(t) - qAi(t)} dt \qquad (17.2)$$

will now be shown to be solutions of the integral equations

$$V_{O}(\xi, q) = \exp\left(-i\frac{1}{12}\xi^{3}\right) - \frac{\exp\left(-i\frac{\pi}{4}\right)\sqrt{\frac{\xi}{\pi}}\int_{0}^{\xi} V_{O}(x, q) \exp\left[-i\frac{1}{12}(\xi - x)^{3}\right] \left[(\xi - x) - 2iq\right] \frac{dx}{\sqrt{x(\xi - x)}}$$
(17.3)

$$V_{1}(\xi, q) = 2 \exp\left(-i\frac{1}{3}\xi^{3}\right) - \frac{\exp\left(-i\frac{\pi}{4}\right)}{2\sqrt{\pi}} \int_{-\infty}^{\xi} V_{1}(x, q) \exp\left[-i\frac{1}{12}(\xi - x)^{3}\right] \left[(\xi - x) - 2iq\right] \frac{dx}{\sqrt{\xi - x}}$$
(17.4)

We begin by defining  $g(\xi, q)$  and  $h(\xi, q)$  by means of

$$g(\xi,q) = V_1(\xi,q) \qquad h(\xi,q) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{\sqrt{\pi \xi}} V_0(\xi,q) \qquad (17.5)$$

The resulting integral equations

$$g(\xi, q) = 2 \exp\left(-i \frac{1}{3} \xi^{3}\right) - \frac{1}{2} \frac{\exp\left(-i \frac{\pi}{4}\right)}{2\sqrt{\pi}} \int_{-\infty}^{\xi} g(x, q) \exp\left[-i \frac{1}{12} (\xi - x)^{3}\right] \left\{(\xi - x) - 2iq\right\} \frac{dx}{\sqrt{\xi - x}}$$
(17.6)

$$h(\xi,q) = \frac{\exp\left(-\frac{1}{12}\xi^3 - i\frac{\pi}{4}\right)}{\sqrt{\pi}\,\xi} - \frac{1}{2}\,\frac{\exp\left(-i\frac{\pi}{4}\right)}{\sqrt{\pi}}\int\limits_0^\xi \,h(x,q)\exp\left[-i\,\frac{1}{12}(\xi-x)^3\right]\left[(\xi-x) - 2\,i\,q\right]\frac{\mathrm{d}x}{\sqrt{\xi-x}}$$

can be solved by assuming that  $g(\xi,q)$  and  $h(\xi,q)$  can be expressed in the forms of Fourier integrals

$$g(\xi,q) = \int_{-\infty}^{\infty} \exp(i\xi t) G(t,q) dt \qquad -\infty < \xi < \infty$$
 (17.7)

$$h(\xi, q) = \begin{cases} \int_{-\infty}^{\infty} \exp(i\xi t) H(t, q) dt & \xi > 0 \\ 0 & \xi < 0 \end{cases}$$
 (17.8)

We also need to define the function

$$k(\xi - x, q) = \begin{cases} 0 & x > \xi \\ \left[ (\xi - x) - 2iq \right] \frac{\exp \left[ -i\frac{1}{12} (\xi - x)^3 \right]}{\sqrt{\xi - x}} & x < \xi \end{cases}$$
(17.9)

$$= \int_{-\infty}^{\infty} \exp[i(\xi - z) t] K(t, q) dt \qquad (17.10)$$

We can then express the integral equations in the forms

$$g(\xi, q) = 2 \exp\left(-i\frac{1}{3}\xi^{\frac{1}{3}}\right) \cdot \frac{1}{2} \frac{\exp\left(-i\frac{\pi}{4}\right)}{\sqrt{\pi}} \int_{-\infty}^{\infty} g(x, q) k(\xi - x, q) dx$$

$$h(\xi, q) = \frac{\exp\left(-i\frac{1}{12}\xi^{3} - i\frac{\pi}{4}\right)}{\sqrt{\pi} - \xi} - \frac{1}{2} \frac{\exp\left(-i\frac{\pi}{4}\right)}{\sqrt{\pi}} \int_{-\infty}^{\infty} h(x, q) k(\xi - x, q) dx$$
(17.11)

We can now use the convolution theorem to write

$$\int_{-\infty}^{\infty} g(x,q) k(\xi - x,q) dx = 2\pi \int_{-\infty}^{\infty} \exp(i\xi t) G(t,q) K(t,q) dt$$

$$\int_{-\infty}^{\infty} h(x,q) k(\xi - x,q) dx = 2\pi \int_{-\infty}^{\infty} \exp(i\xi t) H(t,q) K(t,q) dt \qquad (17.12)$$

and

1

$$g(\xi,q) = 2 \exp\left(-i\frac{1}{3}\xi^{3}\right) - \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \int_{-\infty}^{\infty} \exp(i\xi t) G(t,q) K(t,q) dt$$

$$= \int_{-\infty}^{\infty} \exp(i\xi t) G(t,q) dt \qquad \infty < \xi < \infty$$

$$h(\xi,q) = \frac{\exp\left(-i\frac{1}{12}\xi^{3} - i\frac{\pi}{4}\right)}{\sqrt{\pi} \xi} - \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) \int_{-\infty}^{\infty} \exp(i\xi t) H(t,q) dt$$

$$= \int_{-\infty}^{\infty} \exp(i\xi t) H(t,q) dt \qquad \xi > 0 \qquad (17.13)$$

If we now define

$$A(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(-i\xi \tau) \left\{ 2 \exp\left(-i\frac{1}{3}\xi^{3}\right) \right\} d\xi$$

$$B(\tau) = \frac{1}{2\pi} \int_{0}^{\infty} \exp(-i\xi \tau) \left\{ \frac{\exp\left(-i\frac{1}{12}\xi^{3} - i\frac{\pi}{4}\right)}{\sqrt{\pi - \xi}} \right\} d\xi$$
(17.14)

we can use the Fourier inversion theorem to obtain

$$G(\tau, q) = \Lambda(\tau) - \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) G(\tau, q) K(\tau, q)$$

$$H(\tau, q) = B(\tau) - \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) H(\tau, q) K(\tau, q)$$
(17.15)

or

$$G(\tau, q) = \frac{A(\tau)}{1 + \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) K(\tau, q)}$$

$$H(\tau, q) = \frac{B(\tau)}{1 + \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) K(\tau, q)}$$
(17.16)

We must now evaluate  $A(\tau)$ ,  $B(\tau)$ , and  $K(\tau,q)$ . We note that

$$A(\tau) = \frac{1}{\pi} \int_{-\infty}^{\infty} \exp\left[-i\left(\xi \tau + \frac{1}{3} \xi^{3}\right)\right] d\xi - \frac{2}{\pi} \int_{0}^{\infty} \cos\left(\xi \tau + \frac{1}{3} \xi^{3}\right) d\xi = 2 \operatorname{Ai}(\tau)$$

where  $Ai(\tau)$  is the Airy integral.

The integrals

$$B(\tau) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{2\pi^{3/2}} \int_{0}^{\infty} \frac{1}{\sqrt{\xi}} \exp\left(-i\xi \tau - i\frac{1}{12}\xi^{3}\right) d\xi$$

$$K(\tau, q) = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{\sqrt{\xi}} \exp\left(-i\xi \tau - i\frac{1}{12}\xi^{3}\right) (\xi - 2iq) d\xi$$
(17. 17)

can be expressed in the form

$$B(\tau) = \frac{\exp(-i\frac{\pi}{4})}{2\pi^{3/2}} I_{1}(\tau)$$

$$K(\tau) = \frac{1}{2\pi} I_{2}(\tau) - \frac{iq}{\pi} I_{1}(\tau)$$
(17.18)

where

$$I_{1}(\tau) = \int_{0}^{\infty} \frac{1}{\sqrt{\xi}} \exp\left(-i\xi \tau - i\frac{1}{12}\xi^{3}\right) d\xi$$

$$I_{2}(\tau) = \int_{0}^{\infty} \sqrt{\xi} \exp\left(-i\xi \tau - i\frac{1}{12}\xi^{3}\right) d\xi = i\frac{d}{d\tau}I_{1}(\tau)$$
(17.19)

We can show (by integration by parts) that  $\mathbf{I}_1(\tau)$  and  $\mathbf{I}_2(\tau)$  are solutions of the differential equations

$$I_{1}^{(1)}(\tau) - 4\tau I_{1}^{(1)}(\tau) - 2I_{1}(\tau) = 0$$

$$I_{2}^{(1)}(\tau) - 4\tau I_{2}^{(1)}(\tau) - 6I_{2}(\tau) = 0$$

Solutions of these equations are of the form

$$\begin{split} & I_{1}(\tau) = C_{1} \operatorname{Ai}^{2}(\tau) + C_{2} \operatorname{Ai}(\tau) \operatorname{Bi}(\tau) + C_{3} \operatorname{Bi}^{2}(\tau) \\ & - i I_{2}(\tau) = 2 C_{1} \operatorname{Ai}(\tau) \operatorname{Ai}^{*}(\tau) + C_{2} [\operatorname{Ai}^{*}(\tau) \operatorname{Bi}(\tau) + \operatorname{Ai}(\tau) \operatorname{Bi}^{*}(\tau)] + 2 C_{3} \operatorname{Bi}(\tau) \operatorname{Bi}^{*}(\tau) \end{split}$$

where  $\mathbf{C_1}$  ,  $\mathbf{C_2}$  , and  $\mathbf{C_3}$  are constants. We can show that

$$C_1 = 2\pi^{3/2} \exp(i\frac{\pi}{4}), \quad C_2 = 2\pi^{3/2} \exp(-i\frac{\pi}{4}), \quad C_3 = 0$$

Therefor

$$I_{1}(\tau) = 2\pi^{3/2} \exp\left(-i\frac{\pi}{4}\right) \operatorname{Ai}(\tau) \left| \operatorname{Bi}(\tau) + i\operatorname{Ai}(\tau) \right|$$

$$I_{2}(\tau) = 2\pi^{3/2} \exp\left(i\frac{\pi}{4}\right) \left| 2\operatorname{Ai}(\tau) \left[ \operatorname{Bi}'(\tau) + i\operatorname{Ai}'(\tau) \right] - \frac{1}{\pi} \right|$$
(17. 20)

and hence

$$B(\tau) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{2\pi^{3}/2} I_{1}(\tau) = \exp\left(-i\frac{\pi}{2}\right) Ai(\tau) \left[Bi(\tau) + iAi(\tau)\right]$$

$$K(\tau, q) = \frac{1}{2\pi} I_{2}(\tau) - \frac{iq}{\pi} I_{1}(\tau) = \sqrt{\pi} \exp\left(i\frac{\pi}{4}\right) \left[2Ai(\tau)\left[Bi'(\tau) + iAi'(\tau)\right] - \frac{1}{\pi}\right]$$

$$-\sqrt{\pi} \exp\left(i\frac{\pi}{4}\right) q Ai(\tau) \left[Bi(\tau) + iAi(\tau)\right]$$

and

$$1 + \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) K(\tau, q) = 2 \pi \operatorname{Ai}(\tau) \left\{ \left[ \operatorname{Bi}'(\tau) + i \operatorname{Ai}'(\tau) \right] - q \left[ \operatorname{Bi}(\tau) + i \operatorname{Ai}(\tau) \right] \right\}$$
(17.21)

Therefore, ve find that

$$G(\tau, \mathbf{q}) = \frac{A(\tau)}{1 + \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) K(\tau, \mathbf{q})} = \frac{1}{\pi} \frac{1}{\left[\overline{\mathbf{Bi'}}(\tau) + i\operatorname{Ai'}(\tau)\right] - \mathbf{q}\left[\overline{\mathbf{Bi}}(\tau) + i\operatorname{Ai}(\tau)\right]}$$

$$H(\tau, \mathbf{q}) = \frac{B(\tau)}{1 + \sqrt{\pi} \exp\left(-i\frac{\pi}{4}\right) K(\tau, \mathbf{q})} = \frac{1}{2\pi i} \frac{Bi(i) + i\operatorname{Ai}(\tau)}{\left[\overline{\mathbf{Bi'}}(\tau) + i\operatorname{Ai'}(\tau)\right] - \mathbf{q}\left[\overline{\mathbf{Bi}}(\tau) + i\operatorname{Ai}(\tau)\right]}$$

$$(17.22)$$

Since

$$V_{1}(\xi,q) = g(\xi,q) = \int_{-\infty}^{\infty} \exp(i\xi t) G(t,q) dt$$

$$V_{0}(\xi,q) = \sqrt{\pi} \xi \exp\left(i\frac{\pi}{4}\right) h(\xi,q) = \sqrt{\pi} \xi \exp\left(i\frac{\pi}{4}\right) \int_{-\infty}^{\infty} \exp(i\xi t) H(t,q) dt$$

it follows that

$$V_{1}(\xi,q) = \frac{1}{\pi} \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{\left[Bi'(t) + iAi'(t)\right] - q\left[Bi(t) + iAi(t)\right]} dt$$

$$V_{O}(\xi,q) = \frac{\exp\left(-i\frac{\pi}{4}\right)}{2} \sqrt{\frac{\xi}{\pi}} \int_{-\infty}^{\infty} \exp\left(i\xi t\right) \frac{\operatorname{Bi}(t) + i\operatorname{Ai}(t)}{\left[\operatorname{Bi}'(t) + i\operatorname{Ai}'(t)\right] - q\left[\operatorname{Bi}(t) + i\operatorname{Ai}(t)\right]} dt$$

This is the result we set out to prove.

The proof of the relation

$$I_1(\tau) = 2\pi^{3/2} \exp\left(-i\frac{\pi}{4}\right) Ai(\tau) \left[Bi(\tau) + iAi(\tau)\right]$$

used above contains some interesting analysis. Therefore, we take this opportunity to set forth the details of this demonstration.

The integral

$$I_{1}(\tau) = \int_{0}^{\infty} \frac{1}{\sqrt{\xi}} \exp\left(-i\xi \tau - i\frac{1}{12}\xi^{3}\right) d\xi$$

is a solution of the differential equation

$$I_1^{(1)}(\tau) = 4 \tau I_1^{(1)}(\tau) = 2 I_1(\tau) = 0$$

This can be proven readily by observing that

In the introduction to the table The Airy Integral, Miller has shown that the complete solution of

$$z^{(1)}(x) - 4 \times z^{(1)}(x) - 2 z(x) = 0$$

is

$$z(x) = C_1 Ai^2(x) + C_2 Ai(x) Bi(x) + C_3 Bi^2(x).$$

Therefore, we express  $I_1(\tau)$  in the form

$$I_1(\tau) = C_1 Ai^2(\tau) + C_2 Ai(\tau) Bi(\tau) + C_3 Bi^2(\tau).$$

We observe that since

$$Ai''(\tau) = \tau Ai(\tau) \qquad Bi''(\tau) = \tau Bi(\tau)$$

$$Ai(0) = \frac{1}{\sqrt{3}} Bi(0) = \frac{1}{3^{2/3} \Gamma(\frac{2}{3})} \qquad -Ai'(0) = \frac{1}{\sqrt{3}} Bi'(0) = \frac{1}{3^{1/3} \Gamma(\frac{1}{3})}$$

we can show that

$$I_{1}(0) = C_{1} \operatorname{Ai}^{2}(0) + C_{2} \operatorname{Ai}(0) \operatorname{Bi}(0) + C_{3} \operatorname{Bi}^{2}(0) - \frac{1}{3^{4/3} \Gamma(\frac{2}{3}) \Gamma(\frac{2}{3})} \left[ C_{1} + \sqrt{3} C_{2} + 3 C_{3} \right]$$

$$\begin{split} & I_1'(0) = \, 2\,C_1\,\text{Ai}(0)\,\text{Ai}'(0) + C_2\,\big[\text{Ai}(0)\,\text{Bi}'(0) + \,\text{Ai}'(0)\,\text{Bi}(0)\big] + \,2\,C_3\,\text{Bi}(0)\,\text{Bi}'(0) \\ & = \frac{2}{3\,\,\Gamma\!\left(\!\frac{2}{3}\!\right)\,\Gamma\!\left(\!\frac{1}{3}\!\right)}\,\,\left\{-\,\,C_1\,+\,3\,C_3\right\} \end{split}$$

$$\begin{split} \mathbf{1}_{1}^{i}(0) &= 2\,\mathbf{C}_{1}\,\mathbf{A}i'(0)\,\mathbf{A}i'(0) + 2\,\mathbf{C}_{2}\,\mathbf{A}i'(0)\,\mathbf{B}i'(0) + \mathbf{C}_{3}\,\mathbf{B}i'(0)\,\mathbf{B}i'(0) \\ &= \frac{2}{3^{2/3}\,\Gamma\!\left(\frac{1}{3}\right)\Gamma\!\left(\frac{1}{3}\right)}\,\left\{\mathbf{C}_{1} - \sqrt{3}\,\,\mathbf{C}_{2} + 3\,\mathbf{C}_{3}\right\} \end{split}$$

We also have

$$I_{1}(0) = \int_{0}^{\infty} \frac{1}{\sqrt{\xi}} \exp\left(-i\frac{1}{12}\xi^{3}\right) d\xi = \frac{1}{3} \int_{0}^{6} \sqrt{12} \Gamma\left(\frac{1}{6}\right) \exp\left(-i\frac{\pi}{12}\right)$$

$$I_{1}'(0) = -i\int_{0}^{\infty} \sqrt{\xi} \exp\left(-i\frac{1}{12}\xi^{3}\right) d\xi = \frac{1}{3}\sqrt{12} \Gamma\left(\frac{1}{2}\right) \exp\left(-i\frac{3\pi}{4}\right)$$

$$I_{1}''(0) = -\int_{0}^{\infty} \xi^{3/2} \exp\left(-i\frac{1}{12}\xi^{3}\right) d\xi = -\frac{1}{3}(12)^{5/6} \Gamma\left(\frac{5}{6}\right) \exp\left(-i\frac{5\pi}{12}\right)$$

since

$$\int_{0}^{\infty} \xi^{\lambda} \exp\left(-i\frac{1}{12}\xi^{3}\right) d\xi = \frac{1}{3} (12)^{(\lambda+1/3)} \exp\left[-i(\lambda+1)\frac{\pi}{6}\right].$$

If we use the properties

$$\frac{1}{3^{4/3} \Gamma(\frac{2}{3}) \Gamma(\frac{2}{3})} = \frac{\Gamma(\frac{1}{6})}{(12)^{5/6} \pi^{3/2}}$$

$$\frac{1}{3 \Gamma(\frac{2}{3}) \Gamma(\frac{1}{3})} = \frac{\Gamma(\frac{1}{2})}{\sqrt{12} \pi^{3/2}}$$

$$\frac{1}{3^{2/3} \Gamma(\frac{1}{3}) \Gamma(\frac{1}{3})} = \frac{\Gamma(\frac{5}{6})}{(12)^{1/6} \pi^{3/2}}$$

to write

$$I_{1}(0) = \frac{\Gamma\left(\frac{1}{6}\right)}{(12)^{5/6} \pi^{3/2}} \left\{ C_{1} + \sqrt{3} C_{2} + 3 C_{3} \right\} = \frac{1}{3} \sqrt[6]{12} \Gamma\left(\frac{1}{6}\right) \exp\left(-i\frac{\pi}{12}\right)$$

$$I'_{1}(0) = \frac{2 \Gamma\left(\frac{1}{2}\right)}{\sqrt{12} \pi^{3/2}} \left\{ -C_{1} + 3 C_{3} \right\} = \frac{1}{3} \sqrt{12} \Gamma\left(\frac{1}{2}\right) \exp\left(-i\frac{3\pi}{4}\right)$$

$$I'_{1}(0) = \frac{2 \Gamma\left(\frac{5}{6}\right)}{(12)^{1/6} \pi^{3/2}} \left\{ C_{1} - \sqrt{3} C_{2} + 3 C_{3} \right\} = -\frac{1}{3} (12)^{5/6} \Gamma\left(\frac{5}{6}\right) \exp\left(-i\frac{5\pi}{12}\right)$$

we find that

$$C_1 = 2\pi^{3/2} \exp(i\frac{\pi}{4})$$
  $C_2 = 2\pi^{3/2} \exp(-i\frac{\pi}{4})$   $C_3 = 0$ 

Therefore

$$I_1(\tau) = 2\pi^{3/2} \exp\left(-i\frac{\pi}{4}\right) Ai(\tau) \left[Bi(\tau) + i Ai(\tau)\right]$$

This is the result which was to be proven.

#### Section 18

## SOME APPLICATIONS TO ASYMPTOTIC EXPANSION OF INTEGRALS DESCRIBING RADIATION PATTERNS OF SLOT ANTENNAS

The Fourier series

$$\Phi_{1}(x,\phi) = \frac{2}{\pi x} \sum_{n=-\infty}^{\infty} \frac{\exp\left[\ln\left(\phi - \frac{\pi}{2}\right)\right]}{H_{n}^{(1)}(x)}$$
 (infinitesimal circumferential slot)

$$\Phi_{2}(x,\phi) = \frac{21}{\pi x} \sum_{n=-\infty}^{\infty} \frac{\exp\left[\ln(\phi - \frac{\pi}{2})\right]}{H_{n}^{(1)'}(x)}$$
 (axial slot) (18.1)

$$\Phi_{3}(x,\phi) = \frac{2}{\pi x} \sum_{n=-\infty}^{\infty} \frac{\exp\left[\ln(\phi - \frac{\pi}{2})\right]}{H_{n}^{(1)}(x)} = \frac{\cos\frac{n\pi}{2x}}{1 - \frac{n^{2}}{x^{2}}} \quad \text{(half-wave circumferential slot)}$$

play important roles in the study of radiation patterns of slots mounted on circular cylinders. Each of these series are of the form

$$\Phi(x,\phi) = \sum_{n=-\infty}^{\infty} A_n(x) \exp\left[\ln(\phi - \frac{\pi}{2})\right], \quad -\pi < \phi < \pi$$
 (18.2)

The Poisson summation formula permits us to construct the <u>periodic</u> function  $\Phi(x, \phi) = \Phi(x, \phi \pm 2n \pi) = \Phi(x, -\phi)$  from the aperiodic Fourier integral

$$\Psi(\mathbf{x},\phi) = \int_{-\infty}^{\infty} \mathbf{A}_{11}(\mathbf{x}) \exp\left[\ln(\phi - \frac{\pi}{2})\right] d\mathbf{n} , \quad -\infty < \phi < \infty$$
 (18.3)

according to the rule

$$\Phi(\mathbf{x},\phi) - \Psi(\mathbf{x},\phi) + \sum_{m=1}^{\infty} \Psi(\mathbf{x},2m\pi+\phi) + \sum_{m=1}^{\infty} \Psi(\mathbf{x},2m\pi-\phi) , \quad 0 \le \phi < \pi . \quad (18.4)$$

For x > 2, it is known that the terms with m > 1 are negligible. The terms in the series can be interpreted, for



Fig. 20 Direct and Diffracted Waves in Illuminated Region

 $-\pi/2 < \phi < \pi/2$ , in terms of a direct wave  $\Psi(\phi)$  and diffracted waves  $\Psi(2m\pi^-\phi)$  and  $\Psi(2m\pi^+\phi)$  which have encircled the cylinder m times. The terms with m > 1 are exponentially small, in comparison with the terms for which m - 1. These terms are illustrated as rays in Fig. 20. For  $|\phi - \pi| < \pi/2$ , it is generally sufficient to write

$$\Phi(\mathbf{x},\phi) = \Psi(\mathbf{x},\phi) + \Psi(\mathbf{x},2\pi - \phi) \qquad (18.5)$$

where  $\Psi(x,\phi)$  and  $\Psi(x,2\pi-\phi)$  are the diffracted waves depicted in Fig. 21.



Fig. 21 Diffracted Waves in the shadow region

In the work of Fock, Goriainov and Wait, the asymptotic estimates

$$H_{\nu}^{(1)}(x) \sim -\frac{1}{\sqrt{\pi}} \left(\frac{2}{x}\right)^{1/3} w_{1}(t) , \qquad H_{\nu}^{(1)}(x) \sim \frac{1}{\sqrt{\pi}} \left(\frac{2}{x}\right)^{2/3} w_{1}'(t) \qquad (18.6)$$

$$t = \left(\frac{2}{x}\right)^{1/3} (\nu - x)$$

$$\xi = \left(\frac{x}{2}\right)^{1/3} \left(\phi - \frac{\pi}{2}\right)$$

have been used to show that

$$\begin{split} \Psi_{1}(\mathbf{x},\phi) &= \frac{2}{\pi \mathbf{x}} \int_{-\infty}^{\infty} \frac{\exp\left[\mathrm{i}\,\mathbf{n}(\phi-\frac{\pi}{2})\right]}{\mathrm{H}_{\mathbf{n}}^{(1)}(\mathbf{x})} \mathrm{d}\mathbf{n} \sim \mathrm{i}\left(\frac{2}{\mathbf{x}}\right)^{1/3} \exp\left[\mathrm{i}\,\mathbf{x}(\phi-\frac{\pi}{2})\right] \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp\left(\mathrm{i}\xi\,\mathbf{i}\right)}{\mathrm{w}_{1}(\mathbf{t})} \, \mathrm{d}\mathbf{t} \\ &= \mathrm{i}\left(\frac{2}{\mathbf{x}}\right)^{1/3} \exp\left[\mathrm{i}\,\mathbf{x}(\phi-\frac{\pi}{2})\right] f(\xi) \end{split} \tag{18.7}$$

$$\Psi_{2}(\mathbf{x},\phi) &= \frac{2\,\mathrm{i}}{\pi \mathbf{x}} \int_{-\infty}^{\infty} \frac{\exp\left[\mathrm{i}\,\mathbf{n}(\phi-\frac{\pi}{2})\right]}{\mathrm{H}_{\mathbf{n}}^{(1)}(\mathbf{x})} \, \mathrm{d}\mathbf{n} \sim \exp\left[\mathrm{i}\,\mathbf{x}(\phi-\frac{\pi}{2})\right] \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp\left(\mathrm{i}\xi\,\mathbf{t}\right)}{\mathrm{w}_{1}^{(1)}} \, \mathrm{d}\mathbf{t} = \exp\left[\mathrm{i}\,\mathbf{x}(\phi-\frac{\pi}{2})\right] g(\xi) \end{split}$$

A similar result can be obtained for  $\Psi_3(x,\phi)$  if we write

$$\Psi_{3}(\mathbf{x},\phi) = \frac{2}{\pi \mathbf{x}} \int_{-\infty}^{\infty} \frac{\exp\left[\ln\left(\phi - \frac{\pi}{2}\right)\right]}{H_{n}^{(1)}(\mathbf{x})} \frac{\cos\frac{n\pi}{2\mathbf{x}}}{1 - \frac{n^{2}}{\mathbf{x}^{2}}} dn = \Psi_{3}^{(+)}(\mathbf{x},\phi) + \Psi_{3}^{(-)}(\mathbf{x},\phi) (18.8)$$

where

$$\Psi_{3}^{(+)}(\mathbf{x},\phi) = \frac{1}{\pi \mathbf{x}} \int_{-\infty}^{\infty} \frac{\exp\left[i \, \mathbf{n} \left(\phi - \frac{\pi}{2} \pm \frac{\pi}{2\mathbf{x}}\right)\right]}{\mathrm{II}_{\mathbf{n}}^{(1)}(\mathbf{x}) \left(1 - \frac{\mathbf{n}^{2}}{\mathbf{x}^{2}}\right)} \, \mathrm{d}\mathbf{n} \sim -\frac{1}{2} \exp\left[i \, \mathbf{x} \left(\phi - \frac{\pi}{2} \pm \frac{\pi}{2\mathbf{x}}\right)\right] \int_{-\infty}^{\infty} \frac{1}{(it)} \, \exp\left(i \, \xi_{\pm} t\right) \frac{1}{\mathbf{w}_{1}(t)} \, \mathrm{d}\mathbf{t}$$

$$= \mp \frac{i}{2} \, \exp\left[i \, \mathbf{x} \left(\phi - \frac{\pi}{2}\right)\right] \, \mathbf{f}^{(-1)}(\xi_{\pm}) - \xi_{\pm} \left(\frac{\mathbf{x}}{2}\right)^{1/3} \, \left(\phi - \frac{\pi}{2} \pm \frac{\pi}{2\mathbf{x}}\right) \,. \tag{18.9}$$

We will now show how to obtain asymptotic expansions which have the above results as leading terms. We let

$$\nu = x + \left(\frac{x}{2}\right)^{1/3} t, \quad d\nu = \left(\frac{x}{2}\right)^{1/3} dt$$

and use the asymptotic expansion

$$H_{\nu}^{(1)}(x) = -\frac{1}{\sqrt{\pi}} \left(\frac{2}{x}\right)^{1/3} w_{1}(t) \left\{ 1 + \left[ \left(\frac{2}{x}\right)^{2/3} a_{1} + \left(\frac{2}{x}\right)^{4/3} a_{2} + \left(\frac{2}{x}\right)^{6/3} a_{3} + \dots \right] \right\}$$

where

$$a_{1} = -\left[\frac{1}{15}t + \frac{1}{60}t^{2}\frac{w_{1}^{1}(t)}{w(t)}\right]$$

$$a_{2} = \left[\left(\frac{1}{7200}t^{5} + \frac{13}{1260}t^{2}\right) + \left(\frac{1}{420}t^{3} + \frac{1}{140}\right)\frac{w_{1}^{1}(t)}{w(t)}\right]$$

$$a_{3} = -\left[\left(\frac{283}{9072000}t^{6} + \frac{463}{226800}t^{3} + \frac{1}{900}\right) + \left(\frac{1}{1296000}t^{7} + \frac{13}{32400}t^{4} + \frac{19}{6300}t\right)\frac{w_{1}^{1}(t)}{w(t)}\right]$$
(18.10)

to arrive at

$$\Psi_1(\mathbf{x},\phi) = \frac{1}{\pi} \left(\frac{2}{\mathbf{x}}\right)^{2/3} \exp\left[1 \mathbf{x} (\phi - \frac{\pi}{2})\right] \int_{-\infty}^{\infty} \exp(i\xi t) \frac{1}{H_{\nu}^{(1)}(\mathbf{x})} dt$$

where

$$\begin{split} \frac{1}{H_{\nu}^{(1)}(x)} &= i\sqrt{\pi} \left(\frac{x}{2}\right)^{1/3} \frac{1}{w_{1}(t)} \left\{ 1 + \left(\frac{2}{x}\right)^{2/3} \left[ \frac{1}{15}t + \frac{1}{60}t^{2} \frac{w_{1}'(t)}{w_{1}(t)} \right] - \left(\frac{2}{x}\right)^{4/3} \left[ \left(\frac{1}{7200}t^{5} + \frac{74}{12600}t^{2}\right) \right. \\ &+ \left( \frac{1}{6300}t^{3} + \frac{1}{140}\right) \frac{w_{1}'(t)}{w_{1}(t)} - \left(\frac{1}{3600}t^{4}\right) \left(\frac{w_{1}'(t)}{w_{1}(t)}\right)^{2} \right] \\ &+ \left(\frac{2}{x}\right)^{6/3} \left[ \left(\frac{115}{9072000}t^{6} + \frac{1091}{134000}t^{3} + \frac{1}{900}\right) \right. \\ &- \left(\frac{1}{259200}t^{7} + \frac{43}{1134000}t^{4} - \frac{13}{6300}t\right) \frac{w_{1}'(t)}{w_{1}(t)} \\ &- \left(\frac{1}{42000}t^{5} + \frac{1}{4200}t^{2}\right) \left(\frac{w_{1}(t)}{w_{1}(t)}\right)^{2} + \left(\frac{1}{216000}t^{6}\right) \left(\frac{w_{1}'(t)}{w_{1}(t)}\right)^{3} \right] + \dots \right\} \quad (18.11) \end{split}$$

We recall the definition of the functions

$$f_{m}^{(n)}(\xi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} (it)^{n} \frac{\exp(i\xi t)}{w_{1}(t)} \left(\frac{w_{1}(t)}{w_{1}(t)}\right)^{m} dt$$

Where n can be positive or negative, positive values of n denote differentiation with respect to  $\xi$  while negative values denote "integration".

We find that

$$\Psi_{1}(x,\phi) = i \binom{2}{x}^{1/3} \exp\left[i x(\phi - \frac{\pi}{2})\right] \left\{ f(\xi) + \binom{2}{x}^{2/3} \left[ -\frac{1}{15} i f^{(1)}(\xi) - \frac{1}{60} f_{1}^{(2)}(\xi) \right] \right.$$

$$\left. - \left(\frac{2}{x}\right)^{4/3} \left[ \frac{-i}{7200} f^{(5)}(\xi) - \frac{74}{12600} f^{(2)}(\xi) + \frac{i}{6300} f^{(3)}(\xi) + \frac{1}{140} f_{1}(\xi) - \frac{1}{3600} f_{2}^{(4)}(\xi) \right] \right.$$

$$\left. + \left(\frac{2}{x}\right)^{6/3} \left[ \frac{-115}{9672000} f^{(6)}(\xi) + \frac{1091}{1134000} f^{(3)}(\xi) + \frac{1}{900} f(\xi) - \frac{i}{259200} f_{1}^{(7)}(\xi) \right.$$

$$\left. - \frac{43}{1134000} f_{1}^{(4)}(\xi) - \frac{13}{6300} i f_{1}^{(1)}(\xi) + \frac{i}{42000} f_{2}^{(5)}(\xi) + \frac{1}{4200} f_{2}^{(2)}(\xi) \right.$$

$$\left. - \frac{1}{21600} f_{3}^{(6)}(\xi) \right] + \dots \right\} (18.12)$$

If we now express the  $f_m^{(n)}(\xi)$  in terms of  $f_m^{(n)}(\xi)$  by means of the relations

$$f_{1}^{(1)} = i f(\xi) + i \xi f^{(1)}(\xi)$$

$$f_{1}^{(2)}(\xi) = i \xi f^{(2)}(\xi) + 2i f^{(1)}(\xi)$$

$$f_{1}^{(n)} = i \xi f^{(n)}(\xi) + n i f^{(n-1)}(\xi)$$

$$f_{2}^{(1)}(\xi) = -\xi f(\xi) - \frac{\xi^{2}}{2} f^{(1)}(\xi) - \frac{i}{2} f^{(2)}(\xi)$$

$$f_{2}^{(1)}(\xi) = -\xi f(\xi) - \frac{\xi^{2}}{2} f^{(1)}(\xi) - \frac{i}{2} f^{(2)}(\xi)$$

$$f_{2}^{(2)}(\xi) = -\frac{i}{2} f^{(3)}(\xi) - \frac{1}{2} \xi^{2} f^{(2)}(\xi) - 2\xi f^{(1)}(\xi) - f(\xi)$$

$$f_{2}^{(3)}(\xi) = -3 f^{(1)}(\xi) - 3\xi f^{(2)}(\xi) - \frac{1}{2} \xi^{2} f^{(3)}(\xi) - \frac{i}{2} f^{(4)}(\xi)$$

$$f_{2}^{(3)}(\xi) = -\frac{1}{2} \xi^{2} f^{(4)}(\xi) - 4\xi f^{(3)}(\xi) - 6f^{(2)}(\xi) - \frac{1}{2} f^{(5)}(\xi)$$

$$f_{2}^{(5)}(\xi) = -\frac{1}{2} \xi^{2} f^{(5)}(\xi) - 5\xi f^{(4)}(\xi) - 10 f^{(3)}(\xi) - \frac{i}{2} f^{(6)}(\xi)$$

$$f_{3}^{(6)} = \frac{2}{3} f^{(6)}(\xi) - \frac{1}{6} \left[ \xi^{3} f^{(6)}(\xi) + 18 \xi^{2} f^{(5)}(\xi) + 90 \xi f^{(4)}(\xi) + 120 f^{(3)}(\xi) \right]$$

$$+ \frac{5}{6} \left[ \xi f^{(7)}(\xi) + 6 f^{(6)}(\xi) \right]$$
(18.12)

we find that

$$\Psi_{1}(\mathbf{x},\phi) = i\left(\frac{2}{\mathbf{x}}\right)^{1/3} \exp\left[i\,\mathbf{x}(\phi - \frac{\pi}{2})\right] \left[f(\xi) + \left(\frac{2}{\mathbf{x}}\right)^{2/3} \left[i\,\left(-\frac{1}{10}\,f^{(1)}(\xi) - \frac{\xi}{60}\,f^{(2)}(\xi)\right)\right] \right] \\
+ \left(\frac{2}{\mathbf{x}}\right)^{4/3} \left[\left(-\frac{1}{7200}\,\xi^{2}\,f^{(4)}(\xi) - \frac{6}{6300}\,\xi\,f^{(3)}(\xi) + \frac{59}{12600}\,f^{(2)}(\xi) - \frac{1}{140}\,\xi\,f(\xi)\right)\right] \\
+ \left(\frac{2}{\mathbf{x}}\right)^{6/3} \left[\left(-\frac{1}{8400}\,\xi^{2}\,f^{(2)}(\xi) + \frac{1}{630}\,\xi\,f^{(1)}(\xi) + \frac{37}{12600}\,f(\xi)\right) \\
+ i\left(\frac{\xi^{3}}{1296000}\,f^{(6)}(\xi) + \frac{1}{504000}\,\xi^{2}\,f^{(5)}(\xi)\right) \\
- \frac{397}{4536000}\,\xi\,f^{(4)}(\xi) + \frac{619}{1134000}\,f^{(3)}(\xi)\right)\right] + \dots\right\} (18.14)$$

This expansion is primarily useful for  $\phi > \frac{\pi}{2}$  or  $\xi > 0$ . For  $\xi \to -\infty$ 

$$f(\xi) \to 2i \xi \exp \left[-i(\xi^3/3)\right] \left\{1 - \frac{i}{4\xi^3} + \ldots\right\} ;$$

$$-\frac{1}{10} f^{(1)}(\xi) - \frac{\xi}{60} f^{(2)}(\xi) \to \frac{1}{30} \xi^6 \exp \left[-i(\xi^3/3)\right]$$
(18.15)

and hence the successive terms in the asymptotic expansion increase in a manner which prohibits the use of the expansion unless

$$\left(\frac{2}{x}\right)^{2/3} \xi^5 << 1$$

or

$$\frac{\pi}{2}$$
 -  $\phi < (2/x)^{1/5}$ 

This is the same criterion necessary for

$$- x \cos \phi = x \sin (\phi - \frac{\pi}{2}) = x(\phi - \frac{\pi}{2}) - \frac{x}{6}(\phi - \frac{\pi}{2})^3 + \frac{x}{120}(\phi - \frac{\pi}{2})^5 + \dots$$

to be represented by the first two terms of the Taylor series.

The mathematical difficulty is related to the fact that physically we know that for  $\xi < 0$  we are in the illuminated region and  $\Psi_1$  (ka,  $\phi$ ) should have the property

$$\Psi_{1}(ka, \phi) \xrightarrow{ka \to \infty} 2\cos \phi \exp(-i ka \cos \phi)$$

$$|\phi| < \frac{\pi}{2}$$
(18.16)

We can obtain such a result if we define

$$\zeta = \left(\frac{ka}{2}\right)^{1/3} \sin\left(\phi - \frac{\pi}{2}\right) = -\left(\frac{ka}{2}\right)^{1/3} \cos\phi$$

and use the expansions

$$\sin^{-1} x = x + \frac{1}{6} x^{3} + \frac{3}{40} x^{5} + \frac{5}{112} x^{7} + \dots \qquad (x^{2} < 1)$$

$$(\phi - \pi/2) = \left(\frac{2}{ka}\right)^{1/3} \xi + \frac{1}{6} \left(\frac{2}{ka}\right) \xi^{3} + \frac{3}{40} \left(\frac{2}{ka}\right)^{5/3} \xi^{5} + \frac{5}{112} \left(\frac{2}{ka}\right)^{7/3} \xi^{7} + \dots$$

$$\frac{\exp\left[\left[\nu(\phi - \pi/2)\right]\right]}{\left(\frac{H_{\nu}^{(1)}}{H_{\nu}^{(1)}}\right)} = \left\{i\sqrt{\pi} \exp\left\{i\left[ka \sin(\phi - \pi/2) + \frac{1}{3}\xi^{3}\right]\right\} \left(\frac{ka}{2}\right)^{1/3} \frac{\exp\left(i\xi t\right)}{w_{1}(t)}\right\}$$

$$\times \left\{1 + \left(\frac{2}{ka}\right)^{2/3} \left[i\left(\frac{1}{6}\xi^{3}t + \frac{c}{20}\xi^{5}\right) + \frac{1}{15}t + \frac{1}{60}t^{2} \frac{w_{1}^{\prime}(t)}{w_{1}(t)}\right] - \left(\frac{2}{ka}\right)^{4/3} \left[\left(\frac{1}{72}\xi^{6}t^{2} + \frac{1}{40}\xi^{8}t + \frac{9}{800}\xi^{10} + \frac{1}{7200}t^{5} + \frac{74}{12600}t^{2}\right)\right\}$$

$$-i\left(\frac{1}{90}\xi^{3}t^{2} + \frac{17}{200}\xi^{5}t + \frac{5}{56}\xi^{7}\right) + \left(\frac{1}{6300}t^{3} + \frac{1}{140}\right)\frac{w_{1}'(t)}{w_{1}(t)}$$

$$-i\left(\frac{1}{360}\xi^{3}t^{3} + \frac{1}{400}\xi^{5}t^{2}\right)\frac{w_{1}'(t)}{w_{1}(t)} - \left(\frac{1}{3600}t^{4}\right)\left(\frac{w_{1}'(t)}{w_{1}(t)}\right)^{2} + \dots \left\{(18, 17)\right\}$$

We then find that

$$\Psi(ka,\phi) = i\left(\frac{2}{ka}\right)^{1/3} \exp\left[i\left[ka\sin(\phi - \frac{\pi}{2}) + \frac{1}{3}\xi^{3}\right]\right] \left\{i(\xi) + \left(\frac{2}{ka}\right)^{2/3} \left[\left(\frac{\xi^{3}}{6}f^{(1)}(\xi)\right)\right] + i\left(\frac{3}{20}\xi^{5}f(\xi) - \frac{\xi}{60}f^{(2)}(\xi) - \frac{1}{10}f^{(1)}(\xi)\right)\right] - \left(\frac{2}{ka}\right)^{4/3} \left[\left(\frac{9}{800}\xi^{10}f(\xi) - \frac{59}{3600}\xi^{6}f^{(2)}(\xi) - \frac{9}{100}\xi^{5}f^{(1)}(\xi) + \frac{\xi^{2}}{7200}f^{(4)}(\xi) + \frac{6\xi}{6300}f^{(3)}(\xi) - \frac{59}{12600}f^{(2)}(\xi)\right) + i\left(\frac{1}{40}\xi^{8}f^{(1)}(\xi) - \frac{5}{56}\xi^{7}f(\xi) + \frac{\xi^{4}}{360}f^{(3)}(\xi) + \frac{7}{360}\xi^{3}f^{(2)}(\xi) + \frac{1}{140}\xi^{6}f^{(3)}(\xi)\right] + \dots\right\}$$

$$(18.18)$$

This result is useful for  $\xi \leq 0$ . If we use the asymptotic expansions

$$f^{(n)}(\xi) = (-i\xi^2)^n (2i\xi) \exp(-i\xi^3/3) \left[ 1 - iA_1^{(n)}/\xi^3 + A_2^{(n)}/\xi^6 + iA_3^{(n)}/\xi^9 - A_4^{(n)}/\xi^{12} + \dots \right]$$
(18.19)

along with the values of  $A_{\rm m}^{(n)}$  contained in Table 28, we arrive at

$$\Psi(ka, \phi) \xrightarrow{ka \to \infty} \left\{ (-2\pi \xi) \left( \frac{2}{ka} \right)^{1/3} \exp(-ika \cos \phi) \right\} \left\{ \left( 1 - \frac{i}{4\xi^3} + \frac{1}{2\xi^6} + i \frac{175}{64} \frac{1}{\xi^9} + \ldots \right) + \left( \frac{2}{ka} \right)^{2/3} \left( -\frac{3}{8} \frac{1}{\xi^4} - \frac{105i}{32} \xi^{-7} + \ldots \right) + \left( \frac{2}{ka} \right)^{4/3} \left( \frac{3}{4} i \frac{1}{\xi^5} + \ldots \right) + \ldots \right\}$$
(18.20)

If we now observe that

$$\frac{1}{2 \ln \cos^{3} \phi} = -\frac{1}{4 \xi^{3}} \frac{1 + 3 (1 - \cos^{2} \phi)}{2(\ln \alpha)^{2} \cos^{6} \phi} = \frac{4 - 3 \xi^{2} \left(\frac{2}{\ln \alpha}\right)^{2/3}}{8 \xi^{6}}$$

$$= \frac{1}{2 \xi^{6}} - \frac{3}{8} \left(\frac{2}{\ln \alpha}\right)^{2/3} \frac{1}{\xi^{4}}$$

$$- i \frac{13 + 114(1 - \cos^{2} \phi) + 48(1 - \cos^{2} \phi)^{2}}{64 \xi^{9}} = \frac{175}{64} \frac{i}{\xi^{9}} - \frac{210i}{64 \xi^{7}} \left(\frac{2}{\ln \alpha}\right)^{2/3} + \frac{48i}{64 \xi^{5}} \left(\frac{2}{\ln \alpha}\right)^{4/3}$$
(18.21)

we find that

$$\Psi(ka,\phi) \xrightarrow{ka \to \infty} 2\cos\phi \exp(-ika\cos\phi) \left\{ 1 + \frac{i}{2(ka)\cos^{3}\phi} + \frac{1+3\sin^{2}\phi}{2(ka)^{2}\cos^{6}\phi} \right\} \\ |\phi| < \frac{\pi}{2} \\ -i\frac{11+114\sin^{2}\phi+48\sin^{4}\phi}{8(ka)^{3}\cos^{9}\phi} + \dots \right\}$$
(18.22)

This result shows that the choice of  $\zeta$  as a parameter leads for  $\ker \infty$ ,  $|\phi| < \pi/2$  to the optics result  $2\cos\phi\exp(-i\ker\cos\phi)$ . Furthermore, instead of an asymptotic estimate, we now have an asymptotic expansion. The terms in  $(\ker)^{-1}$  and  $(\ker)^{-1}$  have been previously found by Franz and Galle (Ref. 23) and by Keller, Lewis, and Seckler (Ref. 38). However, this expansion is useless for  $|\phi| \to \pi/2$ , whereas the expansion involving  $f^{(n)}(\zeta)$  is valid at  $\phi = \pi/2$ . Furthermore, at  $\phi = \pi/2$  the expansion  $\zeta$  is identical with the expansion involving  $\xi$ . Therefore, the two expansions complement each other.

In a similar manner we can show that, for  $\phi > \pi/2 - (2/\mathrm{ka})^{1/5}$  ,

$$\begin{split} \Psi_2(ka,\phi) &= \exp\left[1 \, ka \left(\phi - \frac{\pi}{2}\right)\right] \left\{ g(\xi) - \left(\frac{2}{ka}\right)^{2/3} \left[\frac{1}{10} (k^{\frac{3}{2}})^2(\xi) - \xi \, g^{\frac{3}{2}}(\xi)\right) + i \left( + \frac{\xi}{60} \, g^{\frac{3}{2}}(\xi) - \frac{1}{30} \, g^{\frac{3}{2}}(\xi)\right) \right] \\ &- \left(\frac{2}{ka}\right)^{4/3} \left[ \left(\frac{\xi^2}{7200} \, g^{\frac{3}{2}}(\xi) - \xi \, g^{\frac{3}{2}}(\xi) + \frac{61}{12600} \, g^{\frac{3}{2}}(\xi) - \frac{\xi^2}{200} \, g^{\frac{3}{2}}(\xi) \right] \\ &+ \frac{3\xi}{200} \, g^{\frac{3}{2}}(\xi) - \frac{3}{200} \, g^{\frac{3}{2}}(\xi) - \frac{1}{200} \, g^{\frac{3}{2}}(\xi) \right) \\ &+ i \left(\frac{\xi^2}{600} \, g^{\frac{3}{2}}(\xi) - \frac{\xi}{40} \, g(\xi) - \frac{1}{200} \, g^{\frac{3}{2}}(\xi) \right) \\ &+ i \left(\frac{\xi^2}{6000} \, g^{\frac{3}{2}}(\xi) - \frac{\xi}{2000} \, g^{\frac{3}{2}}(\xi) + \frac{503}{84000} \, \xi \, g^{\frac{3}{2}}(\xi) - \frac{\xi}{2000} \, g^{\frac{3}{2}}(\xi) \right) \\ &+ \frac{2}{175} \, g(\xi) + \frac{\xi^2}{1000} \, g^{\frac{3}{2}}(\xi) - \frac{\xi}{400} \, g^{\frac{3}{2}}(\xi) \\ &+ \frac{\xi^3}{6000} \, g^{\frac{3}{2}}(\xi) + \frac{\xi^2}{60480} \, g^{\frac{3}{2}}(\xi) - \frac{\xi}{907200} \, \xi \, g^{\frac{3}{2}}(\xi) \\ &- \frac{1}{12000} \, \xi^3 \, g(\xi) + \frac{29}{12000} \, \xi^2 \, g^{\frac{3}{2}}(\xi) - \frac{19}{12000} \, \xi \, g^{\frac{3}{2}}(\xi) \\ &- \frac{3}{2000} \, g^{\frac{3}{2}}(\xi) - \frac{1}{1200} \, g^{\frac{3}{2}}(\xi) - \frac{1}{1200} \, g^{\frac{3}{2}}(\xi) \right] + \dots \right\} \quad (18.23) \end{split}$$

and for 
$$\phi < \pi/2 + (2/kn)^{1/5}$$

$$\Psi_{2}(ka,\phi) = \exp\left\{i\left[ka\sin(\phi - \pi/2) + \frac{1}{3}\xi^{3}\right]\right\}$$

$$\left\{g(\xi) + \left(\frac{2}{kn}\right)^{2/3} \left[\left(\frac{1}{6}\xi^{3}g^{(1)}(\xi) - \frac{1}{10}g^{(-2)}(\xi) + \frac{\xi}{10}g^{(-1)}(\xi)\right)\right\}$$

$$+ i\left(\frac{3}{20}\xi^{5}g(\xi) + \frac{1}{30}g^{(1)}(\xi) - \frac{1}{60}\xi g^{(2)}(\xi)\right)\right]$$

$$- \left(\frac{2}{kn}\right)^{4/3} \left[\left(\frac{\xi^{2}}{7200}g^{(4)}(\xi) - \frac{2}{1575}\xi g^{(3)}(\xi) - \left(\frac{59}{3600}\xi^{6} - \frac{244}{50400}\right)g^{(2)}(\xi) - \frac{7\xi^{5}}{100}g^{(1)}(\xi)\right]$$

$$+ \left(\frac{9}{800}\xi^{1/3} - \frac{\xi^{4}}{60}\right)g(\xi) - \frac{1}{200}\xi^{2}g^{(-2)}(\xi) + \frac{3\xi}{200}g^{(-3)}(\xi) \cdot \frac{3}{200}g^{(-4)}(\xi)\right)$$

$$+ i\left(\frac{\xi^{4}}{360}g^{(3)}(\xi) - \frac{1}{360}\xi^{3}g^{(2)}(\xi) - \left(\frac{\xi^{8}}{40} - \frac{\xi^{2}}{600}\right)g^{(1)}(\xi)\right)$$

$$- \left(\frac{5\xi^{7}}{56} + \frac{\xi}{40}\right)g(\xi) - \left(\frac{3}{200}\xi^{6} + \frac{1}{200}\right)g^{(-1)}(\xi) + \frac{3}{200}\xi^{5}g^{(-2)}(\xi)\right) + \dots\right\}$$

$$(18.24)$$

These two expansions are identical when  $\phi = \pi/2$ . In the illuminated region,  $\xi \to -\infty$ , and we can show that

$$\Psi_{2}(ka, \phi) \xrightarrow{ka \to \infty} \exp(-ika\cos\phi) \left\{ \left( 1 + \frac{1}{4} \frac{1}{\xi^{3}} - \frac{1}{\xi^{6}} - \frac{469}{64} \frac{1}{\xi^{9}} \frac{5005}{64} \frac{1}{\xi^{12}} + \dots \right) - \left( \frac{2}{ka} \right)^{2/3} \frac{3}{4} \frac{1}{\xi^{4}} + \frac{582}{64} \frac{1}{\xi^{7}} + \dots \right) + \left( \frac{2}{ka} \right)^{4/3} \left( -\frac{i44}{64} i \frac{1}{\xi^{5}} + \dots \right) \right\}$$

$$(18.25)$$

or

$$\Psi_{2}(ka, \phi) \xrightarrow{ka \to \infty} 2 \exp(-ika \cos \phi) \left\{ 1 - \frac{1}{2ka \cos^{3} \phi} - \frac{1 + 3\sin^{2} \phi}{(ka)^{2} \cos^{6} \phi} + i \frac{31 + 294 \sin^{2} \phi + 144 \sin^{4} \phi}{8 (ka)^{3} \cos^{9} \phi} + \frac{135 + 3537 \sin^{2} \phi + 5328 \sin^{4} \phi + 960 \sin^{6} \phi}{8 (ka)^{4} \cos^{12} \phi} + \dots \right\}$$

$$(18.26)$$

The terms in  $(ka)^{-1}$  and  $(ka)^{-2}$  agree with those of Franz and Galle (Ref. 23) and Keller, Lewis, and Seekler (Ref. 38). We remark again that this type expansion is useless for  $\phi = \pi/2$ , as was also the case with  $\Psi_1(ka, \phi)$ .

In the case of  $\Psi_3^{(\pm)}(x,\phi)$  we find that for the shadow region

$$\begin{split} \Psi_{3}^{(+)}(k\alpha,\phi) &= \frac{1}{2} \exp[ik\alpha(\phi - \frac{\pi}{2})] \left\{ if^{(-1)}(\xi) - \left(\frac{2}{k\alpha}\right)^{2/3} \left(\frac{1}{6}f(\xi) - \frac{1}{60}\xi f^{(1)}(\xi)\right) \right. \\ &+ \left(\frac{2}{k\alpha}\right)^{4/3} \left[ \left(\frac{1}{140}f^{(-2)}(\xi) - \frac{\xi}{140}f^{(-1)}(\xi)\right) \right. \\ &+ i\left(-\frac{9}{280}f^{(1)}(\xi) + \frac{1}{3}\frac{1}{50}\xi f^{(2)}(\xi) - \frac{1}{7200}\xi^{2}f^{(3)}(\xi)\right) \right] \\ &+ \left(\frac{2}{k\alpha}\right)^{6/3} \left[ \left(\frac{913}{129600}f^{(2)}(\xi) - \frac{3073140}{3429216000}\xi f^{(3)}(\xi)\right) \right. \\ &+ \frac{51}{453600}\xi^{2}f^{(4)}(\xi) - \frac{1}{1296000}\xi^{3}f^{(5)}(\xi)\right) \\ &+ i\left(\frac{1}{900}f^{(-1)}(\xi) - \frac{7\xi}{25200}f(\xi) - \frac{195998}{8228304000}f^{(5)}(\xi)\right) \right] + \dots \right\} \end{split}$$

where  $\xi$  denotes  $\xi_{\pm}^+$  . For the Illuminated region, we obtain

$$\begin{split} \Psi_{3}^{(\pm)}(ka,\phi) &= \mp \frac{1}{2} \exp\left[i\left[ka \sin(\phi - \frac{\pi}{2}) + \frac{1}{3}\xi^{3}\right]\right] \\ &= \left[if^{(-1)}(\xi) + \left(\frac{2}{ka}\right)^{2/3} \left[\left(-\frac{1}{6}f(\xi) - \frac{3}{20}\xi^{5}f^{(-1)}(\xi) + \frac{\xi}{60}f^{(1)}(\xi)\right) + \frac{1}{6}\xi^{3}f(\xi)\right] \\ &+ \left(\frac{2}{ka}\right)^{4/3} \left[\left(-\frac{5}{56}\xi^{7}f^{(-1)}(\xi) + \frac{1}{140}\xi^{6}f^{(-1)}(\xi) - \frac{1}{140}f^{(-2)}(\xi) - \frac{1}{40}\xi^{8}f(\xi)\right) \\ &- \frac{\xi^{3}}{40}f^{(1)}(\xi) + \frac{\xi^{4}}{360}f^{(2)}(\xi)\right) \\ &+ i\left(-\frac{9}{800}\xi^{10}f^{(-1)}(\xi) + \frac{1}{20}\xi^{5}f(\xi) - \frac{9}{280}f^{(1)}(\xi) + \frac{118}{7200}\xi^{6}f^{(1)}(\xi) + \frac{11}{3150}\xi^{6}f^{(2)}(\xi)\right) \\ &- \frac{1}{7200}\xi^{2}f^{(3)}(\xi)\right] + \dots \bigg\} \end{split}$$

$$(18.28)$$

where  $\xi$  denotes  $\xi_4$  where

$$\xi_{+} = \left(\frac{\mathrm{ka}}{2}\right)^{1/3} \sin\left(\phi - \frac{\pi}{2} \pm \frac{\pi}{2\,\mathrm{ka}}\right)$$

If we use the asymptotic expansions for  $\xi \to -\infty$  , we obtain

$$\Psi_{3}(\mathbf{k}\mathbf{a},\phi) = \left\{ i \left( \frac{\mathbf{k}\mathbf{a}}{2} \right)^{1/3} 2 i \xi^{-1} \right\} \left\{ \frac{\exp\left[i \, \mathbf{k}\mathbf{a} \, \sin\left(\phi - \frac{\pi}{2} + \frac{\pi}{2 \, \mathbf{k}\mathbf{a}}\right)\right] + \exp\left[i \, \mathbf{k}\mathbf{a} \, \sin\left(\phi - \frac{\pi}{2} - \frac{\pi}{2 \, \mathbf{k}\mathbf{a}}\right)\right]}{2} \right\}$$

$$\left\{ \left[ 1 + i \frac{3}{4} \frac{1}{\xi^{3}} - \frac{5}{2\xi^{6}} - i \frac{945}{64\xi^{9}} \right] + \left( \frac{2}{\mathbf{k}\mathbf{a}} \right)^{2/3} \left[ \frac{1}{2} i \xi^{-1} - \frac{1781}{768} \xi^{-4} + \dots \right] \right\}$$

$$+ \left( \frac{2}{\mathbf{k}\mathbf{a}} \right)^{4/3} \left[ -\frac{419}{192} \xi^{-2} + \dots \right] + \dots \right\}$$

$$(18.29)$$

or

$$\Psi_{3}(ka,\phi) = \left[2\exp(-ika\cos\phi) \frac{\cos(\pi/2\sin\phi)}{\cos\phi}\right] \left\{1 + \frac{i\pi^{2}}{8ka}\cos\phi - i\frac{1 + 2\sin^{2}\phi}{2ka\cos^{3}\phi} + \dots\right\}$$
(18.30)

The leading term is precisely the result obtained from geometrical optics.

These examples clearly indicate the usefulness of the functions  $f^{(n)}(\xi)$  and  $g^{(n)}(\xi)$  in the problem of asymptotically expanding these Fourier integrals which describe the radiation properties of slore of a cylindrical surface. The role of the two expansion parameters

$$\xi = \left(\frac{\ln n}{2}\right)^{1/3} \left(\phi - \frac{\pi}{2}\right)$$

$$\xi = \left(\frac{\ln n}{2}\right)^{1/3} \sin\left(\phi - \frac{\pi}{2}\right) = -\left(\frac{\ln n}{2}\right)^{1/3} \cos\phi$$

is very important. Some critics of Fock's work who have seen the 1946 work involving  $\xi$  have remarked that for  $\xi > 1$  the approximation becomes very poor. Others, who have recently employed  $\xi$  have remarked that the results are very poor for  $\xi < -1$ . The effect has been to leave the impression that Fock's universal functions f(x), g(x) are only useful in the penumbra region. Our results above show that with a suitable definition of the argument, the functions f(x), g(x) can be equally useful in the umbra region and in the line-of-sight region.

The confusion attendant to the use of these two arguments has led to such statements as (Ref. 39, p. 94): "Wetzel's formulation differs from Fock's in that he introduces the basic parameter  $\xi$  as a function of the arc length along the convex surface, instead as a function of the linear distance along the tangent line at the shadow boundary. There seems to be some reason to believe that Wetzel's definition of  $\xi$  is to be preferred." The asymptotic expansions above clearly indicate that each definition is important

since one is useful in the lighted region, the other is good in the umbra, and both are good in the penumbra. Both definitions had been used by Fock as early as 1945, but it was not until the publication of Goriainov's paper (Ref. 14) in 1956 that the advantages of the two different arguments were demonstrated by numerical examples.

The use of different arguments for the lighted region and the umbra is not new since an example can readily be found by expressing results of Nicholson (Ref. 1) and Macdonald (Ref. 2) in the notation of our function  $v(\xi)$ . Thus, we find that Nicholson gives the magnetic field in the penumbra and on the surface in the form

$$H_{\phi}|_{r=a} \approx -\frac{k}{a} \frac{\exp(-i \log \theta)}{\sqrt{(\theta/2) \sin(\theta/2)}} \overline{v} [(ka/2)^{1/3} \overline{\theta}]$$

whereas Macdonald gives the field for small heights - h r - a in the form

$$H_{\phi} \approx -\frac{ik}{a} \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} \exp\left(-i2ka\sin\frac{\theta}{2}\right) \left\{ \overline{v} \left[2(ka/2)^{1/3}\sin(\theta/2)\right] + i2(ka/2)^{4/3}(h/a)^2 \overline{v}^{(1)} \left[2(ka/2)^{1/3}\sin(\theta/2)\right] \right\}$$

Macdonald presented a physical argument to substantiate his results by observing that according to geometrical optics he would expect that

$$H_{\phi} \approx -i 2k \left(\frac{r \cos \theta}{R^2}\right) \exp(-i kR), \qquad R = \sqrt{a^2 + (a + h)^2 - 2a(a + h) \cos \theta}$$

or for  $\theta \rightarrow 0$  h << a,

$$H_{ib} \approx -i \frac{2k}{a} \exp\left(-i 2ka \sin \frac{\theta}{2}\right) \left[1 - i \frac{kh^2}{4a \sin \frac{\theta}{2}} + \dots \right].$$

Macdonald showed that the functions  $\overline{v}(z)$ ,  $\overline{v}^{(1)}(z)$  had the property that

$$\overline{v}(z) \xrightarrow{z \to 0} 1$$
,  $\overline{v}^{(1)}(z) \xrightarrow{z \to 0} -\frac{1}{2z}$ 

and therefore his result was identical with that obtained from geometrical optics. This agreement with the optics result in a strong argument in favor of the use of  $\left[2\left(\frac{ka}{2}\right)^{1/3}\sin(\frac{9}{2})\right]$  as the variable in the function  $\overline{v}(z)$  when the receiver is in the lighted region.

In the penumbra, on the other hand, Nicholson's form reduces to (cf. Eq. 6-31)

$$H_{\phi} \Big|_{r=a} \sim -k^{2} (ka)^{-5/6} \left(\frac{2\pi}{\sin \theta}\right)^{1/2} \frac{1}{\beta_{1}} \exp\left[-i ka \theta - (ka)^{1/3} \beta_{1} \theta + i \frac{3\pi}{4}\right]$$

$$\beta_{1} = 0.696 \left(1 + i \frac{1}{\sqrt{3}}\right).$$

This form is also consistent with physical concepts since the factor  $(1/\sin\theta)$  shows that the waves follow closely the sphere's curvature, with a divergence in redance with the area of the sphere over which they spread (the radius of parallel circles being proportional to  $\sin\theta$ ), but while traveling, they continually give off energy at a rate given by the factor  $\exp[-0.696 \text{ (ka)}^{1/3}\theta]$ .

The results given above have all been obtained by expanding asymptotically an exact solution. The results can also be obtained by a perturbation procedure which can be extended to non-circular geometries. For example, if we let

$$\Psi(\rho, \phi) = \exp(i \operatorname{ka} \phi) \Phi(\rho, \phi) = \exp(i \operatorname{ka} \phi) \left\{ \Phi_{O}(\xi, \xi) + \left(\frac{2}{\operatorname{kg}}\right)^{2/3} \Phi_{I}(\xi, \xi) + \left(\frac{2}{\operatorname{kg}}\right)^{4/3} \Phi_{2}(\xi, \xi) + \dots \right\}$$

where

$$\xi = \left(\frac{\text{ka}}{2}\right)^{1/3} \left(\phi - \frac{\pi}{2}\right), \quad \xi = \left(\frac{\text{ka}}{2}\right)^{2/3} \frac{\rho^2 - a^2}{a^2}$$

we can show that if  $\Psi(\rho, \phi)$  is a solution of

$$\left[\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + k^2\right] \Psi(\rho, \phi) = 0$$

that

$$\begin{split} &\frac{\partial^2 \Phi_0}{\partial \zeta^2} + i \frac{\partial \Phi_0}{\partial \xi} + \xi \Phi_0 = 0 \\ &\frac{\partial^2 \Phi_1}{\partial \zeta^2} + i \frac{\partial \Phi_1}{\partial \xi} + \xi \Phi_1 = L_1 \Phi_0 \\ &\frac{\partial^2 \Phi_{n+2}}{\partial \zeta^2} + i \frac{\partial \Phi_{n+2}}{\partial \xi} + \xi \Phi_{n+2} = L_1 \Phi_{n+1} + L_2 \Phi_n , \quad n=0, 1, 2 \dots \end{split}$$

where  $L_1$  and  $L_2$  denote the operators

$$L_{1} = -\zeta \frac{\partial^{2}}{\partial \zeta^{2}} - \frac{\partial}{\partial \zeta} + \zeta^{2} + i\zeta \frac{\partial}{\partial \xi} - \frac{1}{4} \frac{\partial^{2}}{\partial \xi^{2}}$$

$$L_{2} = -\zeta^{3} - i\zeta^{2} \frac{\partial}{\partial \xi} + \frac{1}{4} \zeta \frac{\partial^{2}}{\partial \xi^{2}}$$

If we represent the  $\Phi_{\dot{\mathbf{n}}}(\xi, \zeta)$  in the form of Fourier integrals

$$\Phi_{n}(\xi,\zeta) = \int_{-\infty}^{\infty} \exp(i\xi t) F_{n}(t,t-\zeta) dt,$$

we find that the  $F_n(t,u)$  are solutions of the inhomogeneous Airy differential equation

$$\frac{d^2 F_n}{du^2} - u F_n = H(u, t)$$

subject to the boundary condition

$$F_n(t,t) = -G(t,o).$$

The solution to this equation can be shown to be

$$F(t, t - \xi) = \frac{1}{2i} \left[ w_2(t - \xi) - \frac{w_2(t)}{w_1(t)} - w_1(t - \xi) \right] \int_{-\infty}^{t - \xi} w_1(x) H(x, t) dx$$

$$+ \frac{1}{2i} w_1(t-\xi) \int_{1-t}^{t} \left[ w_2(x) - \frac{w_2(t)}{w_1(t)} w_1(x) \right] H(x, t) dx - G(t, 0) \frac{w_1(t-\xi)}{w_1(t)}$$

where  $w_{1,2}(z)$  denote the Airy integrals.

This approach can be readily applied in the case of the elliptic and parabolic cylinders, and in the case of ellipsoids of revolution. Results, obtained by using this approach, will be presented in a Volume IV of this series of reports.

In Volume III, we will present a collection of asymptotic expansions which are obtained in a manner similar to that used above in the case of the radiation patterns for slets on a circular cylinder.

### Section 19 REFERENCES

- 1. J. W. Nicholson, "On the Bending of Electric Waves Round the Earth,"

  Phil. Mag., Vol. 18, 1910, pp. 757-760
  - J. W. Nicholson, "On the Bending of Electric Waves Round a Large Sphere," II, Phil. Mag. (Ser. 6), Vol. 20, 1910, pp. 157-172
  - J. W. Nichelson, "On the Bending of Electric Waves Round a Large Sphere," III, Phil. Mag. (Ser. 6), Vol. 21, 1911, pp. 62-68
  - J. W. Nicholson. "On the Bending of Electric Waves Round a Large Sphere."
    IV. Phil. Mag., Vol. 21, 1911, pp. 281-295
- 2. H. M. Macdonald, "The Transmission of Electric Waves Around the Earth's Surface," Proc. Roy. Soc., Vol. 90A, 1914, pp. 50-61
- 3. G. N. Watson, "The Diffraction of Electric Waves by the Earth," <u>Proc. Roy. Soc.</u>. Vol. 95A, 1918, pp. 83-99
- 4. B. Vvedensky, "Diffraction Propagation of Fadio Waves," Part I, Zhur. Tekh.

  Fiz. U.S.S.R., Vol. 2, 1935, pp. 624-639; Part II, Zhur. Tekh. Fiz. U.S.S.R.,

  Vol. 3, 1936, pp. 915-925
- 5. B. van der Pol, "On the Propagation of Electromagnetic Waves Round the Earth, "Phil. Mag., Vol. 38, 1919, pp. 365-380
- 6. B. van der Pol and H. Bremmer, "Diffraction of Electromagnetic Waves from an Electrical Point Source Round a Finitely Conducting Sphere with Applications to Radio-Telegraphy and the Theory of the Rainbow," Part I: Phil. Mag., Vol. 24, 1937, pp. 141-176; Part II: Phil. Mag., Vol. 24, 1937, pp. 825-864
  - B. van der Pol and H. Bremmer, "Results of a Theory of the Propagation of Electromagnetic Waves Over a Finitely Conducting Sphere," <u>Hochfrequenztech</u>. <u>Elektroak</u>., Ve. 51, 1938, pp. 181-188

- 6. B. van der Pol and H. Bremmer, "Propagation of Radio Waves Over a Finitely Conducting Spherical Earth," Phil. Mag., Vol. 25, 1938, pp. 817-834
  - B. van der Pol and H. Bremmer, "Propagation of Radio Waves Oves. Finitely Conducting Spherical Earth," Phil. Mag., Vol. 27, 1939, pp. 261-275
  - B. van der Pol and H. Bremmer, "The Propagation of Wireless Waves Found the Earth," Philips Tech.Rev., Vol. 4, 1939, pp. 245-253
- 7. H. C. Booker and W. Walkinshaw. "The Mode Theory of Tropospheric Refraction and its Relation to Wave-Guides and Diveraction," Physical Society (Special Report), Meteorological Factors in Radio-Wave Propagation, 1946, pp. 80-127
- 8, D. E. Kerr, ed., Propagation of Short Radio Waves, New York, McGraw-Hill, 1961
- 9. Admiralty Signal Establishment, The Limiting Ranges of RDF Sets Over the Sea, by M. H. L. Pryce and F. Hoyle, Report No. M 395, 1941
- 10. M. H. T. Pryce, "The Diffraction of Radio Waves by the Curvature of the Earth;" Advances in Phys., Vol. 2, 1953, pp. 67-95

Admiralty Signal Establishment, <u>Interim Repo</u>rt on Propagation Within and Beyond the Option Range, by M. H. L. Pryce and C. Dongo, Report # M 448, 1942

Admiralty Computing Service, Calculations Is volving Airy Integral for Complex Arguments—First Zero, Department of Scientific Research and Experiment, Report No. 21, Mar 1942

Admiralty Computing Service, Calculations Involving Airy Integral for Complex Arguments Second Zero, Department of Scientific Research and Experiment, Report No. 31, Feb 1944

Admiralty Computing Service, Calculations Involving Airy Integral for Complex Arguments—Third Zero, Department of Scientific Research and Experiment, Report SRE/ACS/39, Apr 1944

Admiralty Computing Service, Calculations Involving Airy Integral for Complex Arguments Fourth Acro. Department of Scientific Research and Experiment, Report SRE/ACS/46, July 1944

10. Admiralty companing Service, Congress on Loyalving are retegral for Complex

Assuments—Filtra ... The Department of Medentific I carel and Experiment,

Report SRE/ACS/55, Feb 1.55

Admiralty Computing Service, Tables of Function Associated With the Airy Integral, Department of Scientific Rebearch and Experiment, Report SRE/ACS/59, 1 Apr 1944

Admiratty Computing Service, Tables of Functions Associated With the Airy Integral for Complex Arguments, Department of Adentific Research and Experiment, Report SRE/ACS/99, 1 Sept 1945

- C. Domb and M. H. L. Pryce, "The Calculation of Field Strengths Over a Spherical Earth," J.I.E.E., Vol. 94, No. 5, Part III, 1947, pp. 325-339
- C. Domb, "Tables of Functions Occurring in the Diffraction of Electromagnetic Waves by the Earth," Advances in Caysies, Quarterly Supplement of Phil. Mag. Vol. 5, Part 2, No. 5, 1953, pp. 96-402
- 11. O. Tukizi, "Diffraction Theory of Tropospheric Propagation Near and Beyond the Radio Horizon," Part I and II, IRE Trans. on Antennas and Propagation, Vol. AP 7, July 1959, pp. 261-273
- 12. V. A. Fock, Tables of the Airy Function, Moscow, 1946
  - V. A. Fock, "Ground Wave Propagation Around the Earth Teking Diffraction and Refraction into Account," Invest, on Radiowave Propagation, 11, pp. 40-68; IAN (Ser. Fiz.), Vol. 12, 1948, pp. 81-97; Izd. A.N., Moscow, 1948
  - V. A. Fock, "Fresnel Reflection and Diffraction Laws," UFN, Vol. 36, 1948, pp. 308-319
  - V. A. Fock, "Diffraction of Radio Waves Around the Earth's Surface."

    J. Phys., Vol. 9, 1945, pp. 255-266; ZETF, Vol. 15, 1945, p. 480; IAN

    (Ser. Fiz.), Vol. 10, 1946, pp. 187-195
  - V. A. Fook, "Diffraction of Radio Waves Around the Spherical Earth," DAN, Vol. 46, 1945, pp. 310-313

- 12. V. A. Fock. "The Field of a Plane Wave in the Vicinity of a Conducting Body,"
  IAN (Ser. Fiz.), Vol. 10, 1946, pp. 171-186
  - V. A. Fock, "On the Propagation and Scattering of Radio Waves," IAN, Vol. 3, 1946, pp. 28-34
  - V. A. Fock, "The Field of a Plane Wave Near the Surface of a Conducting Body," <u>J. Phys.</u>, Vol. 10, 1946, pp. 399-409
  - V. A. Fock, "The Diffraction of Radio Waves Around the Surface of the Earth," Acad. of Sciences of U.S.S.R., Moscow, 1946
  - V. A. Fock, "Fresnel Diffraction by Convex Bodies," UFN, Vol. 43, 1951, pp. 587-599
  - V. A. Fock, "Generalization of Reflection Formulas to the Case of Reflection on an Arbitrary Wave from a Surface of Arbitrary Form," ZETF, Vol. 20, 1950, pp. 961-978
  - V. A. Fock, "Field of a Vertical and Horizontal Dipole Raised Above the Surface of the Earth," ZETF, Vol. 19, 1949, pp. 916-929
  - V. A. Fock, "Theory of the Propagation of Radio Waves in a Non-Homogeneous Atmosphere for an Elevated Source," IAN (Ser. Fiz.), Vol. 14, 1950, p. 70-94
  - V. A. Fock, "The Distribution of Currents induced by a Plane Wave on the Surface of a Conductor," J. Phys., Vol. 10, 1946, pp. 130-136
  - V. A. Fock, "New Methods in Diffraction Theory," (in Finglish) Phil. Mag., Vol. 39, 1948, pp. 149-155

(Translations of these papers are contained in: V. A. Fock. Diffraction, Refraction and Reflection of Radio Waves, AFCRCTN-57-102, Astia Document AD117276, June 1957)

- J. R. Wait, <u>Electromagnetic Radiation from Cylindrical Structures</u>, Pergamon Press, New York, 1959
  - J. R. Wait and A. M. Conda, "Pattern of an Antenna on Curved Lossy Surface," IRE Trans. on Antenna and Propagation, Vol. AP-6, 1958

- J. R. Wait and A. M. Conda, "Diffraction of Electromagnetic Waves by Smooth Obstacles fe" Grazing Angles," <u>Journal of Research NBS D. Radio</u> <u>Propagation</u>, Vol. 63L, 1959
- M. G. Belkina, Tables to Calculate the Electromagnetic Field in the Shadow Region for Various Soils, Soviet Radio Press, Moscow, 1949 (Translated by Morris D. Friedman, ASTIA Document No. AD 110298, Nov 1956)
  - A, S. Goriainov, "Diffraction of Plane Electromagnetic Waves on a Conducting Cylinder," <u>Doklady Akad. Nauk U.S.S.R.</u>, Vol. 109, 1956 (Translated by Morris D. Friedman, ASTIA Document No. AD 110165)
  - P. A. Azriliant and M. G. Belkina, <u>Numerical Results of the Theory of Diffraction of Radio Waves Around the Earth's Surface</u>, Soviet Radio Press, Moscow, 1957
  - A. S. Goriainov; "An Asymptotic Solution of the Problem of Diffraction of a Plane Electromagnetic Wave by a Conducting Cylinder," Radiotekh, i Elektron., Vol. 3, 1958, pp. 603-614

    (See also the English translation: Radio Engineering and Electronics, Vol. 3, 1959, pp. 23-39)
  - A. A. Federov. "Asymptotic Solution of the Problem of Diffraction of a Plane Electromagnetic Wave by a Perfectly Conducting Sphere." Radiotekh, i Elektron., Vol. 3, 1938, pp. 1451–1462
  - V. A. Fock and A. A. Federov, "Diffraction of a Plane Electromagnetic Wave by a Perfectly Conducting Paraboloid of Revolution," Zhur, Tekh, Flz., Vol. 28, 1958, pp. 2548–2566
  - V. A. Fock, L. A. Vainshtein, and M. G. Belkina, Diffraction of Electromagnetic Waves by Certain Bodies of Revolution; Soviet Radio Press, 1957
  - Yu. K. Kalinin and E. L. Feinberg, "Ground Wave Propagation over the Surface of an Inhomogeneous Spherical Earth," Radiotekh, i Elektron., Vol. 3, 1958, pp. 1122-1132

- 15. University of Miel Soul, theory Report Lawrent St. South Report No. 3, by R. F. St. Air Forest Continue Air Substitution Continue Continue Air Substitution Continue Continue Air Substitution Continue Contin
- 16. J. C. P. Miller, And A Integral Change Laborate Signors.

  Differential Equations of the state of the Stat
- 17. National Physics and the space of the project communication from G. F. Military of the space of the ago by P. H. I the space of the DEDGE electronic contribution of the by this group at a later date.
- 18. Sed the profuce of Ref. 16
- 19. Harvard University, "Tables of the Modified Hankel Functions of Order One-Third and of Their Derivatives," Annals of the Computation Laboratory of Harvard University, Vol. II, Harvard University Press, Cambridge, Mass., 1945.
- 29. C. L. Pekeris, "Theory of Propagation of Sound in a Half-Space of Variable Sound Velocity Under Conditions of Formation of a Shadow Zone,"

  J. Acoust. Soc. Amer., Vol. 18, 1946, pp. 295-315
  - "Accuracy of the Earth-Flattening Approximation in the Theory of Microwave Propagation," Phys. Rev., Vol. 70, 1956, pp. 518-522
  - "Asymptotic Solutions for the Normal Modes in the Theory of Microwave Propagation." J. Appl. Phys., Vol. 17, 1946, pp. 1108-1124
  - "The Field of a Microwave Dipole Agreema in the Vicinity of the Horizon," J. Appl. Phys., Vol. 18, 1947, pp. 667-680, 1025-1027
- 21. The Computation Laboratory, National Bureau of Standards, <u>Tables of Bessel</u> <u>Functions of Fractional Order</u>, Vols. I and II, New York, Columbia University Press, 1948-1949
- 22. J. B. Keller, "Diffraction by a Convex Cylinder," IRE Trans., Vol. AP-4, 1956, pp. 312-321

- 22. J. B. Keller, "How Dark is the Shadow of a Round- and and Research Report Em-119. Air Force Contract AF 19(604)1717, New York University, Oct 1958 (AFCRO TN 58-580, ASTIA Document No. AD 207520)
  - J. B. Keller and B. R. Levy, "Diffraction by a Smooth Object,"

    Communications on Pure and Applied Mathematics, Vol. 12, 1959, pp. 159-209
  - B. Levy, "Diffraction by an Elliptic Cylinder," Research Report EM-121, Air Force Contract AF 19(604)1717, New York University, Dec 1958 (AFCRC-TN-59-103, ASTIA Document No. AD 208235)
- W. Franz, "The Green's Functions of Cylinders and Spheres," Z. Naturforsch, Vol. 9A, 1954, pp. 705-716
  - W. Franz and R. Galle, "Semiasymptotic Series for the Diffraction of a Plane Wave by a Cylinder," Z. Naturforsch., Vol. 10A, 1955, pp. 374-378
  - W. Franz and P. Beckmann, "Creeping Waves for Objects of Finite"
    Conductivity, "Trans. Institute Radio Engineers, Vol. AP-4, 1956, pp. 203-208
  - W. Franz, "Theorie der Beugung Elektromagnetischer Wellen," Ergebnisse der Angewändten Mathematik, Part 4, Berlin, Springer-Verlag, 1957
  - W. Franz and P. Beckmann, "Berechnung den Streuquerschnitte von Kugel unde Zylinder unter Anwendung einer modifizierten Watson Transformation,"

    Z. Naturforsch., Vol. 12a, 1957, pp. 533-537
  - W. Franz and P. Beckmann, "Uber die Groensche Funktion Transparenter Zylinder," Z. Naturforsch., Vol. 12a, 1957, pp. 257-267
  - W. Franz and P. Beckmann, "Asymptotisches Verhalten der Zylinder."

    Inder onen in Abhangigheit vom komplexen Index," Z. angew. Math.u. Mech.

    37, 1957, pp. 17-27
  - K. Klante, 'Zur Beugun skalarer Wellen am Rotations-Paraboloid," Ann. phys., Vol. 3, 1959, pp. 171-182

- 24. Massachusetts Institute of Technology, "Properties and Tables of Extended Airy-Hardy Integrals," by M. V. Gerrillo and W. H. Kautz, Teel 1 port No. 144, Research Laboratory of Electronics, M.I.T., 15 Nov.
- 25. P. M. Woodward and A. M. Woodward, "Four Figure Fabres of the Airy Function in the Complex Plane," Phil. Mag., (7), Vol. 37, 1946, 1... 236-261
- 26. National Bureau of Standards, "Phase of the Low Radio Frequency round Wave," by J. R. Johler, W. J. Kellar and L. C. Walters, Nationa Bureau of Standards Circular 573, June 1956
- 27. H. Poincaré, "Upon the Diffraction of Hertizian Waves;" Rendicon del Circulo Matematico di Palermo, Vol. 29, 1910, pp. 169-260 (The only author who has used Poincaré's notation is W.v. R. czysnki, "Upon the Propagation of Radio Waves Around a Spherical E. th," The Ann. phys. (4 Ser.), Vol. 41, 1913, pp. 191-208)
- 28. A. E. H. Love, "The Transmission of Electric Waves Over the Susace of the Earth," Trans. Roy. Soc., Vol. 215A, 1915, pp. 105-131
- 29. L. Lorenz, "Upon the Reflection and Refraction of Light by a Transarent Sphere," Videnskabernes Sciskabs Skrifter, 1890 (Ocuvres Scientiff ucs I. 1898, pp. 405-502)
- 30. Sir G. B. Airy, "On the Intensity of Light in the Neighborhood of a run Trans, Cambridge, Phil. Soc., Vol. 6, 1838
- 31. Sir G. G. Stokes, "On the Numerical Calculation of a Class of Define engrsts and Infinite Series." Trans. Cambridge Phil. Sec., Vol. 9, 1851
- 32. H. M. Macdonald, "The Diffraction of Electric Waves Around a Personal Reflecting Obstacle," Trans. Roy. Soc. A, Vol. 210, 1910, pp. 11.
- 33. H. Bremmer, Terrestial Radio Waves, New York, Elsevier, 1949
- 34. S. O. Rice, "Diffraction of Plane Radio Waves by a Parabolic Cylin Calculation of Shadows Behind Hills," Bell System Tech. J., Vol. Mar 1954, pp. 417-504