Introduction to Statistics

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 1

Department of Computer Engineering Kasetsart University

Outline

- Introduction
- Review
 - Random variables
 - Discrete random variables
 - Continuous random variables

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 2

What is Statistics?

- Study of collection, analysis, interpretation, presentation, and organization of data [1]
- A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of <u>numerical data</u>
 [2]
- The practice or science of collecting and analyzing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample.
 [3]
- [1] http://en.wikipedia.org/wiki/Statistics
- [2] http://www.merriam-webster.com/dictionary/statistics
- [3] http://www.google.com

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 3

Department of Computer Engineering Kasetsart University

Questions about Data

- 1. Descriptive
 - Explain what actually happens
- 2. Relational
 - Focus on relationship between two or more variables
- Causal
 - Figure out cause/effect of one variable on the others

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 4

Random Variable (RV)

- Function that associates a numerical value with each outcome in experiment
- Random variable is represented by uppercase letter
 - Example: X, Y, Z
 - Note: lower case letter is used for outcome value.
- Example: coin toss
 - Outcome of coin-tossing experiment = {head, tail}

$$X = \{ \begin{array}{ll} 1 & \text{if outcome=head} \\ 0 & \text{if outcome=tail} \end{array}$$

Bernoulli RV:

Outcome with two possible values

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 13

Department of Computer Engineering Kasetsart University

Types of Random Variables (RV)

- Discrete random variable
 - Outcomes come from finite set
 - Example:
 - Coin: {0, 1}
 - Dice: {1, 2, 3, 4, 5, 6}
- Continuous random variable
 - Outcomes come from interval(s) of numbers (infinite set)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering
Slide 14

Probability Distribution

- Probability = likelihood that each outcome will occur
- Probability density function(pdf) for continuous RV
- Probability mass function (pmf) for discrete RV
 - Links each outcome with probability of its occurrence
- Example: coin toss
 - Unbiased coin

$$X = \{ \begin{array}{ll} 1 & \text{if outcome=head} \\ 0 & \text{if outcome=tail} \end{array} \}$$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 15

Department of Computer Engineering Kasetsart University

Probability Distribution (cont.)

- Example 2: Standard normal variable
 - Probability distribution = Gaussian distribution

$$x = (-\infty, \infty)$$

$$P(X = x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

with mean = 0, standard deviation = 1

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Cumulative Distribution Function (CDF)

Sum of probabilities up to x

$$F(x) = P(X \le x) = \sum_{y:y \le x} P(y)$$

Example 2: Standard normal

Example 2: Standard normal

Image source: http://oneau.files.wordpress.com/2011/02/norm_cdf.png

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 19 Department of Computer Engineering
Kasetsart University

Outline

- Introduction
- Review
 - Random variable
 - Discrete random variables
 - Continuous random variables

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 20

Bernoulli Random Variable

- Random variable X with two outcomes
- Range of outcome value = {0,1}

$$P(X) = \begin{cases} p & , x = 1 \\ 1 - p & , x = 0 \end{cases}$$

Mean	р
Variance	p(1-p)

Example:

Head vs. Tail

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 21

Department of Computer Engineering Kasetsart University

Binomial Random Variable

- Random experiments that independently repeat n times
- Let X = <u>number of times that a certain event appears</u>
- Range of outcome value = {0,1,2, ..., n-1, n}

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, k \in \{0,1,\dots,n-1,n\}$$

Example:

Toss coins n times and observe k heads

Mean	np
Variance	np(1-p)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Geometric Random Variable

- Random experiments that independently repeat n times
- Let X = number of failures until a success occurs
- Range of outcome value = {0,1,2, ...}

$$P(X = k) = (1 - p)^k p$$
, $p = prob(success), k \in \{0,1,2,...\}$

Example:

 Observe k system-failures, until a system success occurs

Mean	(1-p)/p
Variance	(1-p)/p ²

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering
Slide 23

Department of Computer Engineering

Kasetsart University

Poisson Random Variable

- Let X = <u>number of events in a certain period</u>
 - Event occurs randomly both in time and space
- Range of outcome value = {0,1,2, ...}

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k \in \{0,1,2...\}$$

 $\begin{array}{ccc} \text{Mean} & \lambda \\ \text{Variance} & \lambda \end{array}$

 λ = average number of events

Example:

- Particle emission of radioactive substances
- Test a system and find out possibility of k successes (or failures) to occur

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Outline

- Introduction
- Review
 - Random variable
 - Discrete random variables
 - Continuous random variables

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 25

Department of Computer Engineering
Kasetsart University

Uniform Random Variable

- · Random variable that has equal probability
- Range of outcome value = [a,b]

$$P(X=x) = \frac{1}{b-a}$$

Example:

• Real value that is likely to occur between [a,b]

Mean	(a+b)/2
Variance	(b-a) ² /12

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Normal Random Variable

- Random variable that has distribution Gaussian (normal) distribution
- Common and well-known distribution

$$P(X = x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean	μ
Variance	σ^2

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 27

Department of Computer Engineering
Kasetsart University

Exponential Random Variable

Random variable that models time between occurrences of events

$$P(X = x) = \begin{cases} \lambda e^{-\lambda x} & , x \ge 0\\ 0 & , x < 0 \end{cases}$$

 λ = rate that event occurs

Mean	1/λ
Variance	1/λ ²

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

References

- 1. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.
- 2. A.L. Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison-Wesley, 1994.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 29

