

Integrationsleitfaden iJaw

Integration von 4 iJaw Spannbacken über einen TigoGateway 1TE in eine Siemens Steuerung mit TIA Portal V18

Version: 1.3

Stand: 01.12.2023 Autor: Lukasz Moisa

Prüfer: Sebastian Gottschalk, Martin Stangl

Projektnummer: 2706

Änderungshistorie

Version	Änderung	Geändert durch	Datum
1.0	Erstausgabe	Moisa	23.06.2023
1.1	Relevanten Datentypen und Programmbausteine	Moisa	05.07.2023
	Baustein Aufruf (FB SendRcv_iJaw)		
	Schnittstellebeschreibung der Eingänge		
	Schnittstellebeschreibung UDT_iJawDataSendUser		
	Schnittstellebeschreibung der Ausgänge		
	Schnittstellebeschreibung UDT_iJawDataRcvUser		
	Schnittstellebeschreibung UDT_iJawDataRcvUser		
	Anforderung zu der Ausführung der Beispiel Funktion GAIN		
	Schreiben des empfangenen GAIN Funktion im lokalen Speicher		
	Bibliothekbaustein Aktualisieren		
	SendRcv_iJaw (Kopiervorlage)		
	Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle		
1.2	Inhaltsanpassung für TigoGateway 1TE	Buschmann	22.11.2023
1.3	Detaillierte Darstellung der Hardwarearchitektur	Stangl	01.12.2023

Inhaltsverzeichnis

1	HAF	RDWAREAUFBAU	3
2		TALLATION DER GSD-DATEI IM TIA PORTAL V18	
_	2.1	GSD-Datei installieren	
3	INT	EGRATION IN DIE HARDWAREKONFIGURATION (SPS)	5
	3.1	HARDWARE / PROJEKT VORAUSSETZUNGEN	5
	3.2	EINBINDEN DER GSD-DATEI IN DIE OFFLINE HARDWAREKONFIGURATION	5
	3.3	ProfiNet-Schnittstelle Geräteanpassung	6
	3.4	Submodul Geräteanpassung	7
	3.5	E/A-Adressen Geräteanpassung	8
	3.6	GERÄTENAMEN ZUWEISEN	9
4	INT	EGRATION IN DIE SOFTWARE (SPS)	10
	4.1	GLOBALE BIBLIOTHEK ÖFFNEN	10
	4.2	Einfügen / aktualisieren der relevanten Bausteine und Datentypen	12
	4.2.	1 Erstmaliges einfügen der relevanten Datentypen und Programmbausteine ins TIA-Projekt	12
	4.2.		
	4.2.	p	
	4.3	AUFRUF DES FB SENDRCV_IJAW	17
	4.3.	= = = = = = = = = = = = = = = = = = = =	
	4.3.		
	4.3.		
	4.3.	· · · · · · · · · · · · · · · · · · ·	
	4.3.		
	4.3.	3 –	
	4.4	BEISPIEL ZUR NUTZUNG DER FREIEN ISDU-SCHNITTSTELLE	
	4.4.		
	4.5	VERHALTEN AM PROFINET	
	4.6	ERLÄUTERUNG PROZESSWERTE	25

HEITEC engineering solutions

1 Hardwareaufbau

Lieferumfang:

- IO-Link wireless Masters 1TE
- Stecker Spannungsversorgung 24V
- 1x Ethernetverbinder

Bei der Gestaltung der Topologie der ProfiNet-Geräte sollte die freie Zugänglichkeit einer der beiden Ethernet-Anschlüsse des IO-Link wireless Masters 1TE berücksichtigt werden.

Entweder wird der 1TE am Ende der Geräte-Kette platziert.

Abbildung 1-1: 1TE in "Daisy-Chain"-Anordnung

Alternativ kann auch ein Switch verwendet werden, um eine Sternanordnung zu ermöglichen.

Abbildung 1-2: 1TE in Sternanordnung

2 Installation der GSD-Datei im TIA Portal V18

Um die Feldgeräte (ProfiNet) eines Herstellers in der Gerätekonfiguration von STEP 7 (TIA Portal V18) zu projektieren, müssen Sie zuvor die GSD-Datei installieren.

GSD-Dateien verwenden Sie üblicherweise, um normkonforme Feldgeräte von "Fremdherstellern" in STEP 7 (TIA Portal) zu integrieren. In diesen Textdateien sind die spezifischen Eigenschaften des Feldgeräts enthalten.

2.1 GSD-Datei installieren

Die GSD-Datei können Sie mit einem geöffneten Projekt oder ohne ein geöffnetes Projekt in STEP 7 (TIA Portal V18) installieren

- 1. Extrahieren Sie die ZIP-Datei des Geräte-Herstellers in ein separates Verzeichnis auf Ihrer Festplatte.
- 2. Öffnen Sie mit STEP 7 (TIA Portal V18) Ihr Projekt, in welches die GSD-Datei installiert werden soll
- 3. Öffnen Sie STEP 7 (TIA Portal) in der Projektansicht und wählen Sie in der Menüleiste den Menübefehl "Extras > Gerätebeschreibungsdateien (GSD) verwalten".
- 4. Wählen Sie in der Menüleiste den Menübefehl "Extras > Gerätebeschreibungsdateien (GSD) verwalten".
- 5. Im Dialog "Gerätebeschreibungsdateien (GSD) verwalten "ist der Quellpfad voreingestellt, aus dem die letzte GSD-Datei installiert wurde.

 Über die Schaltfläche "[Durchsuchen...]" (rechts neben dem Quellpfad) navigieren Sie zum Verzeichnis, in das Sie die ZIP-Datei extrahiert haben.
- 6. Für den gewählten Quellpfad erscheint die GSD-Datei in der Tabelle unterhalb. Wählen Sie die GSD-Datei, die Sie installieren möchten, aus.
- 7. Klicken Sie auf die Schaltfläche "Installieren". Der Installationsfortschritt erscheint in einem eigenen Fenster.

Abbildung 2-1: Installation GSD-Datei

3 Integration in die Hardwarekonfiguration (SPS)

Um die im vorherigen Abschnitt installierte GSD-Datei in Ihr bestehendes Projekt einbinden zu können, müssen Sie ihr Projekt im TIA Portal V18 öffnen und anschließend die Hardwarekonfiguration der betreffenden CPU starten.

3.1 Hardware / Projekt Voraussetzungen

- Bestehendes TIA-Projekt
- Im TIA Portal V18 projektierte Steuerung (S7-1500 / Sinumerik One) mit ProfiNet-Schnittstelle
- Projektiertes ProfiNet

3.2 Einbinden der GSD-Datei in die offline Hardwarekonfiguration

- 1. Öffnen Sie ihr bestehendes Projekt in STEP 7 (TIA Portal V18)
- 2. Wählen Sie, falls mehrere Steuerungen im Projekt vorhanden sind, die entsprechende aus, in der des TigoGateway eingebunden werden soll.
- 3. Öffnen Sie die Gerätekonfiguration der vorher ausgewählten Steuerung.
- 4. Suchen Sie nun im Hardware-Katalog den TigoGateway1TE und ziehen Sie diese in Ihr bestehendes ProfiNet-System hinein.
- Pfad der GSD-Datei: "Weitere FELDGERÄTE > PROFINET I/O > I/O > CoreTigo Ltd > TigoGateway 1TE > Kopfmodul > TigoGateway 1TE -PNT

Abbildung 3-1: Integration GSD-Datei in das Projekt

HEITEC AG · Peter-Dörfler-Str. 32 · 86199 Augsburg

3.3 ProfiNet-Schnittstelle Geräteanpassung

Über den Punkt "Geräte & Netze" unter Eigenschaften kann man den Gerätenamen, die Gerätenummer und die IP-Adresse des TigoGateways festlegen.

Abbildung 3-2: Anpassen allg. Geräteeigenschaften des TigoGateways

Abbildung 3-3: Anpassen der Profinet-Eigenschaften des TigoGateways

3.4 Submodul Geräteanpassung

Nach Festlegen der allgemeinen Geräteeigenschaften können nun die Submodule hinzugefügt werden. Pro verwendeter iJaw Backe wird ein Submodul "IO-Link Wireless Device with 32 I/ 32 O + PQI" benötigt. Maximal können 8 Backen an einem TigoGateway verwendet werden.

Abbildung 3-4: Hinzufügen Submodule

Sitz der Gesellschaft: Erlangen, Deutschland

3.5 E/A-Adressen Geräteanpassung

Wenn alle benötigten Submodule hinzugefügt wurden, können die E/A-Adressen vergeben werden. Ein Submodul belegt 32 + 1 (PQI) Byte Eingangsdaten und 32 Byte Ausgangsdaten. Hinzu kommen noch 2 Byte Eingangsdaten und 2 Byte Ausgangsdaten für den IO-Link Wireless Master.

Im Beispiel wurden ein Bereich für die Ein- u. Ausgangsbytes von 500 bis 765 verwendet.

Abbildung 3-5: Anpassung Ein-/Ausgangsadressen

HEITEC AG · Peter-Dörfler-Str. 32 · 86199 Augsburg

3.6 Gerätenamen zuweisen

Zum Schluss muss dem Gerät noch der ProfiNet-Gerätename zugewiesen werden, welcher in der Offline-Konfiguration festgelegt wurde. (Punkt 3.3 "ProfiNet-Schnittstelle Geräteanpassung) Zum Vergeben des ProfiNet-Namens ist eine Online-Verbindung zur PLC zwingend notwendig.

Über den Punkt "Online & Diagnose> Funktionen > PROFINET-Gerätename vergeben " können Sie dem TigoGateway den entsprechenden PROFINET-Gerätname zuweisen.

Abbildung 3-6: Aufruf Gerätename zuweisen

4 Integration in die Software (SPS)

4.1 Globale Bibliothek öffnen

Um eine globale Bibliothek im TIA Portal V18 zu öffnen, gehen Sie wie folgt vor:

- 1. Extrahieren Sie die ZIP-Datei der Bibliothek in ein separates Verzeichnis auf Ihrer Festplatte.
- 2. Klicken Sie auf "Globale Bibliotheken", um die Palette zu öffnen.
- 3. Klicken Sie in der Funktionsleiste auf das Symbol "Globale Bibliothek öffnen".
- 4. Wählen Sie in Ihrem Verzeichnis die globale Bibliothek, die Sie öffnen möchten und markieren Sie die Datei mit der Datei-Endung "al".

Abbildung 4-1: Globale Bibliothek öffnen

- 1. Navigieren Sie im Verzeichnisbaum auf die extrahierte ZIP-Datei der Bibliothek
- 2. Wählen Sie im linken Feld die Bibliothek aus und bestätigen Sie mit "Öffnen"

Abbildung 4-2: Auswahl und öffnen der globalen iJaw Bibliothek

4.2 Einfügen / aktualisieren der relevanten Bausteine und Datentypen

4.2.1 Erstmaliges einfügen der relevanten Datentypen und Programmbausteine ins TIA-Projekt

Kopieren Sie die Datentypen und Programmbausteine aus der Globale Bibliothek in ihr Projekt.

4-3Kopieren der Datentypen und Programmbausteine

Abbildung 4-3: Kopieren der Datentypen und Programmbausteine

Hinweis:

Bei allen Bausteinen ist das Attribut "Optimierter Bausteinzugriff" und die automatische Nummerierung aktiv.

Abbildung 4-4: Menu Baustein Eigenschaften

Abbildung 4-5: Optimierter Bausteinzugriff

Abbildung 4-6: Automatische Nummerierung

4.2.2 Aktualisieren der Bibliotheksbaustein im Projekt

Sollten der TigoGateway und die Bibliotheksbaustein schon in Projekt vorhanden sein, können die Bausteine und Datentypen durch eine neuere Version aktualisiert werden.

- 1. In Fenster "Globale Bibliotheken" klicken Sie auf "Öffnen".
- 2. Wählen Sie in Ihrem Verzeichnis die globale Bibliothek, die Sie öffnen möchten und markieren Sie die Datei mit der Datei-Endung "al" and drücken Sie "Öffnen"
- 3. Gewählte Bibliothek > Rechte Maus Taste > Typen aktualisieren > Bibliothek
- 4. Wählen Sie "Projektbibliothek aktualisieren" und bestätigen Sie mit "OK"

Abbildung 4-7: Aktualisierung der Bibliothekbaustein

Abbildung 4-8: Aktualisierung der Projektbibliothek

Hinweis:

Bei Aktualisierung und Änderungen von Bibliotheken wichtig ist den Ordner "Programmbausteine" zu Übersetzen.

Abbildung 4-9: Übersetzung von Software

4.2.3 Beispiel Aufruf FB SendRcv_iJaw / Kopiervorlage

Die Bibliothek enthält unter Kopiervorlagen einen Beispielaufruf des Bausteins SendRcv_iJaw.

- 1. Die Globale Bibliothek öffnen
- 2. Die Bausteine, welche unter Kopiervorlagen liegen in das Projekt kopieren.

Abbildung 4-10: Globale Bibliothek Kopiervorlage

Abbildung 4-11: Kopieren der Kopiervorlage des Bausteins SendRcv_iJaw in das SPS-Projekt

4.3 Aufruf des FB SendRcv_iJaw

4.3.1 Bausteinaufruf

Der Funktionsbaustein FB "SendRcv_iJaw_1TE" muss im Programm aufgerufen werden. Die Schnittstelle wird in Tabelle 1 und Tabelle 2 beschrieben.

Abbildung 4-12: Aufruf FB "SendRcv_iJaw_1TE"

4.3.2 Schnittstellenbeschreibung der Eingänge

Eingang	Datentyp	Beschreibung
		System-/Hardwarekonstante des
		Submoduls IO-Link Wireless Master
iLADDR_TigoGateway	HW_Device	laut Hardwarekonfiguration
		De-/Aktivierung des TigoGateway
		1TE als ProfiNetteilnehmer
		True - Teilenehmer aktivieren
iPN_Act	BOOL	False - Teilnehmer deaktivieren
		Restartmerker der SPS
		Wenn keiner vorhanden dann mit
i_CpuRestart	BOOL	False besetzten.
		Quitterung des
		Kommunikationsfehlers.
		(Sende-/ Lese Aufträge werden
iAck_Fehler_loLinkKom	BOOL	danach erneut gestartet)
		Reset der LIO-Link kommunikation
		(Alle Sende-/ Lese Aufträge werden
iResetIoLinkKom	BOOL	gelöscht)
		Zeit zum Hochlauf des Bussystems /
	TIN 45	des TigoGateways
iTime_PnloRyd	TIME	(Vermeidung von Lesefehlern)
ilJawAktiv_iJaw1	BOOL	iJaw 1 ist aktiv & vorhanden
iIJawAktiv_iJaw2	BOOL	iJaw 2 ist aktiv & vorhanden
ilJawAktiv_iJaw3	BOOL	iJaw 3 ist aktiv & vorhanden
ilJawAktiv_iJaw4	BOOL	iJaw 4 ist aktiv & vorhanden
iFreeIsduCmd	"UDT_iJawISDUCmdData"	Freier ISDU-Auftrag
		Datenbereich zum Schreiben für
iFreeIsduSendData	Array[0231] of Byte	den freien ISDU-Auftrag
iUserDaten_iJaw1	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 01
iUserDaten_iJaw2	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 02
iUserDaten_iJaw3	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 03
iUserDaten_iJaw4	"UDT_iJawDataSendUser"	Sendedaten PLC> iJaw 04

Tabelle 1: Schnittstellenbeschreibung der Eingänge

4.3.3 Schnittstellenbeschreibung UDT_iJawDataSendUser

Eingang	Datentyp	Beschreibung
		Trigger Befehl "System Mode" senden
		(vorher Eingang "Mode" mit 0x1 oder
RelCmdSysMode	BOOL	0x2 beschreiben)
RelCmdTara	BOOL	Trigger Befehl "Tara" senden
		Trigger sende Kommando lese iJaw
RelReadType	BOOL	Туре
RelIMA	BOOL	Trigger sende Kommando IMA
		Trigger sende Kommando Force
RelForceTreshold	BOOL	Treshold
RelNoiseLevel	BOOL	Trigger sende Kommando Noise Level
		Trigger sende Kommando
RelStoreToFlash	BOOL	StoreToFlash
		Höhe der Kraftänderung innerhalb
		der Samplerate 100Hz, die zur
		Bestimmung einer
		Messdatenübertragung neben dem
		Schwellwert herangezogen wird
Noise Level	UInt	(Relevant nur für Mode2)
		Schwellwert der Spannkraftsumme,
		die anliegt, um im Mode 2
Force Treshold	UDInt	kontinuierlich Daten zu übertragen
		Zeitintervall in [s], innerhalb der die
		iJaw spätestens einen neuen
		Messwert an den Empfänger
IMA	USInt	überträgt
		Auswahl System Mode
		-0x1 (continuous mode)
Mode	BYTE	-0x2 (state dependent mode)
nRotSpeedSpindleAct	INT	Aktuelle Spindeldrehzahl
		tatsächlicher Hydraulikdruck in der
		Betätigungszylinderkammer 1 zur
pHydCylChamber1Act	BYTE	äußeren Klemmung
		tatsächlicher Hydraulikdruck in der
		Betätigungszylinderkammer 2 zur
pHydCylChamber2Act	ВҮТЕ	äußeren Klemmung
		Hydraulikbereich der Zylinderkammer
AHydCylChamber1Act	BYTE	1 zur äußeren Klemmung
10 101		Hydraulikbereich der Zylinderkammer
AHydCylChamber2Act	BYTE	2 zur äußeren Klemmung

Tabelle 2: Schnittstellenbeschreibung UDT_iJawDataSendUser

4.3.4 Schnittstellenbeschreibung der Ausgänge

Ausgang	Datentyp	Beschreibung
o_Error	BOOL	Fehler bei der Abarbeitung des Bausteines
		Status des TigoGateway 1TE als ProfiNetteilnehmer
o_PnTeilAkt	BOOL	TRUE= Teilnehmer aktivFALSE= Teilnehmer deaktiviert
oloLinkRdy	BOOL	IoLink Kommunikation bereit zum Senden\ Empfangen
oloLinkBusy	BOOL	IoLink Kommunikation beschäftigt
oloLinkError	BOOL	IoLink Kommunikation fehlerhaft
		Freier ISDU-Auftrag erfolgreich
oFreeIsduCmdFertig	BOOL	abgeschlossen
oFreeIsduCmdDataBereit	BOOL	Empfange ISDU-Daten liegen bereit
oFreeIsduRcvData	Array[0231] of Byte	Empfange ISDU-Daten
oUserDaten_iJaw1	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 01
oUserDaten_iJaw2	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 02
oUserDaten_iJaw3	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 03
oUserDaten_iJaw4	"UDT_iJawDataRcvUser"	Empfangsdaten PLC < iJaw 04

Tabelle 3: Schnittstellenbeschreibung der Ausgänge

4.3.5 Schnittstellenbeschreibung UDT_iJawDataRcvUser

Ausgang	Datentyp	Beschreibung	
Gauge1	INT	ADC Eingang der Sensorrohdaten (min.: 0 max.: 4096)	
Gauge2	INT	ADC Eingang der Sensorrohdaten (min.: 0 max.: 4096)	
		Rohsignal aktuelle Batteriespannung (min.: 0 max.: 157)	
Battery	INT	[0.023*V]	
Temperature	INT	Rohsignal Temperatursensor (min.: -40 max.: 125) [°C]	
		Rohsignal Beschleunigungssensor X (min.: -128 max.: 127)	
GyroXaxis	INT	[1/8*g]	
		Rohsignal Beschleunigungssensor Y (min.: -128 max.: 127)	
GyroYaxis	INT	[1/8*g]	
		Rohsignal Beschleunigungssensor Z (min.: -128 max.: 127)	
GyroZaxis	INT	[1/8*g]	
		Warnungs-Fehlercode	
		Bit0 - Klemmkraft überschritten	
Warning		Bit1 - Klemmkraft unterschritten	
Force1	DINT	Spannkraft Kanal 1 (min.: 0 max.: 65,535) [2*N]	
Force2	DINT	Spannkraft Kanal 2 (min.: 0 max.: 65,535) [2*N]	

		originoonii)	
iJawType	String	Ausgelesene Typ des iJaws	
Reserve2	BOOL	Reserve	
Reserve3	BOOL	Reserve	
Reserve4	BOOL	Reserve	
Reserve5	BOOL	Reserve	
Reserve6	BOOL	Reserve	
Reserve7	BOOL	Reserve	
Reserve8	BOOL	Reserve	
Reserve9	BOOL	Reserve	
Reserve10	BOOL	Reserve	
Reserve11	BOOL	Reserve	
Reserve12	BOOL	Reserve	

Tabelle 4: Schnittstellenbeschreibung UDT_iJawDataRcvUser

4.3.6 Schnittstellenbeschreibung UDT_iJawISDUCmdData

Ausgang	Datentyp	Beschreibung	
execute	BOOL	Anforderung zum Ausführung der Funktion	
readWrite	BOOL	FALSE: lesen, TRUE: schreiben	
port	INT	Port am IO-Link_Master_Modul (1-8 für iJaw 1-8)	
		Adressparameterindex (IO-Link Device); 032767: IOL-D; 65535:	
index	INT	Portfunktionen	
		Adressparameter Subindex (IO-Link Device); 0: vollständige	
subindex	INT	Aufzeichnung; 1-255: Einzelparameter	
writeLen	INT	Länge der Schreibdaten (Nettodaten); 1232	

Tabelle 5: Schnittstellenbeschreibung UDT_iJawISDUCmdData

HEITEC AG · Peter-Dörfler-Str. 32 · 86199 Augsburg

Beispiel zur Nutzung der freien ISDU-Schnittstelle

Mit der Schnittstelle "iFreelsduCmd" können weiter ISD-Kommandos ausgeführt werden. Wie ein ISD-Kommando erstellt und gesendet wird, wird in einem Beispiel am Kommando "Gain" (Read) in der Kopiervorlage gezeigt.

Eine Tabelle möglicher ISDU-Kommandos finden sie im Anhang.

Abbildung 4-13: Anlegen und ausführen des ISDU-Kommandos GAIN

Abbildung 4-14: Lesen und abspeichern der empfangenen Daten von GAIN

HRB 7754, AG Fürth

4.4.1 Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle

In dem unten abgebildeten Trace soll das Zeitverhalten der Ein und Ausgangssignale der ISDU-Schnittstelle dargestellten werden.

- Alle Daten müssen vor Auftragsausführung in den Eingang "iFreelsduCmd" geschrieben werden (Port, Index, Subindex etc.).
- Mit einer steigenden Flanke am Eingang iFreelsduCmd.Execute wird der ISDU-Auftrag abgesendet.
- Sollten keine falsche Portnummer gewählt worden sein (1-8), wechselt der Ausgang oloLinkRdy auf den Wert FALSE und der Ausgang oloLinkBusy auf den Wert TRUE.
- Sobald der Auftrag erfolgreich abgeschlossen wurde (azyklisch Kommunikation) wird der Ausgang oFreelsduCmdFertig auf den TRUE geschalten.
- Sollten es sich um ein Leseauftrag handeln (iFreelsduCmd.readWrite = TRUE), werden die empfangenen Daten in oFreelsduRcvData abgelegt.
 Sobald der Ausgangs oFreelsduCmdDataBereit den Wert TRUE hat, liegen die Daten bereit und können im Programm verwendet werden.
- Die Daten in oFreelsduRcvData und die Ausgänge oFreelsduCmdDataBereit, oFreelsduCmdFertig stehen so lange bereit, bis der Eingang iFreelsduCmd.execute auf den Wert FALSE wechselt

Abbildung 4-15: Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle

HRB 7754, AG Fürth

4.5 Verhalten am ProfiNet

Werden beim TigoGateway 1TE iJaws an oder abgemeldet, kann dies zu Fehler im ProfiNet bzw. zu einer Stopp-Reaktion der SPS führen. Daher sollte der TigoGateway 1TE vor dem An-/ Abmelden einer iJaw in der SPS als ProfiNet-Slave deaktiviert werden. Dies kann durch Setzen des Eingangs "i_PN_Act" am Baustein "SendRcv_iJaw_1TE" mit dem Wert "false" abgearbeitet werden. Der Ausgang "o_PnTeilAkt" meldet bei deaktiviertem TigoGateway 1TE ebenfalls das Signal "FALSE".

Alternativ kann bspw. der OB86 (Baugruppenträgerausfall) und der OB83 (Ziehen/Stecken) geladen werden, um einen Stopp der CPU bei Störung des TigoGateway 1TE zu verhindern.

HRB 7754, AG Fürth

4.6 Erläuterung Prozesswerte

			min.	max.	
Kanal	Bedeutung	Einheit	Werte	Werte	Auflösung
	ADC Eingang				
Gauge 1	der				
Gauge 2	Sensorrohdaten	LSB	0	4096	0.8mV
	Rohsignal				
	aktuelle				
	Batteriespannu	[0.023			
Battery	ng	*]V	0	157	23.56mV
	Rohsignal				
	Temperatursen				
Temperature	sor	°C	-40	125	1°
	Rohsignal				
Gyro X	Beschleunigung				
Gyro Y	ssensor	[1/8*]g			
Gyro Z			-128	127	0.125g
	Umrechnung				
	gemäß				
	Kennlinie der				
	Kanäle Gauge 1				
	u. 2 in eine				
	physikalische				
Force 1	Kraft mit der				
Force 2	Einheit N	[2*]N	0	65,535	N
					Bit 0 -
					Klemmkraft überschritten
					Bit 1 —
					Klemmkraft unterschritten
					Bit 2 —
					Kritische Temperatur erreicht
	Warnungs-				Bit 3 —
Warning	/Fehlercode		0	255	Akkumulatorspannung zu niedrig

Tabelle 6: Erläuterung Prozesswerte

Umrechnungsbespiele

Signal	Rohwert	Umrechnungsfaktor	physikalischer Wert
Gyro X	128	1/8	16g
Force 1	17500	2	35000N

Abbildungsverzeichnis

Abbildung 1-1: 1TE in "Daisy-Chain"-Anordnung	3
Abbildung 1-2: 1TE in Sternanordnung	3
Abbildung 2-1: Installation GSD-Datei	4
Abbildung 3-1: Integration GSD-Datei in das Projekt	5
Abbildung 3-2: Anpassen allg. Geräteeigenschaften des TigoGateways	6
Abbildung 3-3: Anpassen der Profinet-Eigenschaften des TigoGateways	6
Abbildung 3-4: Hinzufügen Submodule	7
Abbildung 3-5: Anpassung Ein-/Ausgangsadressen	8
Abbildung 3-6: Aufruf Gerätename zuweisen	9
Abbildung 4-1: Globale Bibliothek öffnen	10
Abbildung 4-2: Auswahl und öffnen der globalen iJaw Bibliothek	11
Abbildung 4-3: Kopieren der Datentypen und Programmbausteine	12
Abbildung 4-4: Menu Baustein Eigenschaften	13
Abbildung 4-5: Optimierter Bausteinzugriff	13
Abbildung 4-6: Automatische Nummerierung	13
Abbildung 4-7: Aktualisierung der Bibliothekbaustein	14
Abbildung 4-8: Aktualisierung der Projektbibliothek	15
Abbildung 4-9: Übersetzung von Software	15
Abbildung 4-10: Globale Bibliothek Kopiervorlage	16
Abbildung 4-11: Kopieren der Kopiervorlage des Bausteins SendRcv_iJaw in das SPS-Projekt	16
Abbildung 4-12: Aufruf FB "SendRcv_iJaw_1TE"	17
Abbildung 4-13: Anlegen und ausführen des ISDU-Kommandos GAIN	22
Abbildung 4-14: Lesen und abspeichern der empfangenen Daten von GAIN	22
Abbildung 4-15: Trace Verhalten der Ein-/Ausgangssignale der ISDU-Schnittstelle	23
Tabellenverzeichnis	
Tabelle 1: Schnittstellenbeschreibung der Eingänge	18
Tabelle 2: Schnittstellenbeschreibung UDT_iJawDataSendUser	20
Tabelle 3: Schnittstellenbeschreibung der Ausgänge	20
Tabelle 4: Schnittstellenbeschreibung UDT_iJawDataRcvUser	21
Tabelle 5: Schnittstellenbeschreibung UDT_iJawISDUCmdData	21
Tabelle 6: Erläuterung Prozesswerte	25