IR Assignment 3

Homework Submission Guidelines

- 1. Due date: 15.06.23 at 23:55
- 2. The assignment can be done in pairs
- 3. Answers can be submitted either in English or Hebrew
- 4. HW submission should be done via moodle in the corresponding area (by **only** one of the students)
- 5. Late submissions will not be accepted
- 6. Questions / clarifications and more in the dedicated discussion sub-forum in Piazza

Dry part (80%)

<u>Language Models (30%):</u>

- (5%) Rank the following documents with respect to the query "information retrieval" using the query likelihood model and Dirichlet smoothing with mu=100
 - a. Doc1: information retrieval course is fun
 - b. Doc2: information information information information information computer
 - c. Doc3: information retrieval retrieval methods
- 2. (5%) Propose a variant of **JM smoothing** method in which λ will depend on query length.
- 3. (10%) Show that the ranking induced using the -CE (negative Cross Entropy) score between a query and a document is equivalent to that induced using the query likelihood method. Specify your assumptions.
- 4. (10%) KL divergence is an asymmetric divergence measure, which measures how different two probability distributions are from each other. In our course we use it to measure how different the probability distribution M_q is at modeling M_d . Suggest a **symmetric** and **non-negative** measure for comparing query and document language models based on KL divergence.

Relevance Models (20%):

Given the query q: " $cat\ dog$ " and the following list of initially retrieved documents:

 d_1 : cat dog cow pig horse

 d_2 : the cat and the dog are playing together

 d_3 : cat cat cat cat cat

1. (5%) Write the RM1 formula. Explain what the formula means.

- 2. (5%) Induce a query model using the RM1 relevance model assuming that p(q|d) is constant and that an MLE is used for the document language model. Explain your calculations.
- 3. (10%) Induce a query model using the RM3 relevance model. Use $\beta=0.3$ and the same assumptions as before.

Passage Retrieval (20%)

The passage retrieval task is ranking passages of documents by their relevance to the information need expressed by a query.

A passage is any sequence of text in a document which is usually much shorter than the entire document length.

The idea is to estimate the relevance according to the probability of generating a passage g given the query q, expressed as p(g|q). Instead of directly estimating this probability, we use Bays rule and passages can be ranked using the query-likelihood approach: p(q|g). Note that we assume that the prior p(g) is uniform and thus can be removed.

p(q|g) can now be estimated using the standard language-model-based approach. For each passage a language-model is inferred.

Your task is to suggest **3** different approaches (**that were not taught in class**) to estimate $p(q|M_a)$, where M_a is the passage model.

Tips:

- 1. In your solution you should address the vocabulary mismatch problem between the terms used in the query and in the short relevant passages.
- 2. Use the document that contains the passage and the collection for smoothing.
- 3. Each suggestion should result in a valid language model.

Elaborate and detail all of your notations, free parameters, equations, etc...

Positional Language Models (10%)

Rank the following documents with respect to the query "onion soup onion" using the 'best position strategy'. Use Dirichlet smoothing with $\mu=100$ and MLE for the query model. For the propagation function use the Gaussian kernel with $\sigma=5$.

D1: onion vegetable vegetable

D2: corn onion soup

D3: potato onion

Wet part – Query expansion (20%)

1. Files can be copied using:

sftp -r irlabsharedstorage.irlabuser@irlabsharedstorage.blob.core.windows.net:HW3

Enter password: yUvF4gAs1+PQIYzKyB6DbZNz2J1/6XSZ

- 2. Inside the folder you will find the following files and directories:
 - a) "indriRunQuery.xml" A retrieval parameter file. We use the Dirichlet smoothed unigram language model as our retrieval method.
 - b) "Dinit.res" an initially retrieved document list using a Dirichlet smoothed unigram language model. We retrieve the top 1000 documents for 10 ROBUST queries.
 - c) "qrels_10_Queries " file the ROBUST relevance judgments.
 - d) "query_relDoc" directory Each file in the directory is in the format:
 "queryId_document_name.txt". Each file contains the text of one relevant document (document name) for a given query (query id).
 - e) ROBUSTIndex The collection index. We used Krovetz stemming
 - f) 10_ROBUST_Queries 10 queries
- 3. Fill in the empty cells in Table 1 for "Dinit" columns using trec_eval evaluation tool (10%)
- 4. Expand each query using the provided relevant document's text to achieve the best MAP, P@5 and P@10 values as possible.
 - a) You can expand each query by up to 2 words.
 - b) The original query words cannot be removed.
 - c) Explain your expansion method be creative (10%).

Table 1	Dinit			Best expansion		
Query	MAP	P@5	P@10	MAP	P@5	P@10
301						
302						
303						
304						
305						
306						
307						
308						
309						
310						
Average						

Submission Instructions:

- 1. A **PDF** file containing all answers to the questions (Dry and Wet parts).
- The name of the file as follows:
 HW3 Student 1 EMAIL Student 2 EMAIL.pdf