UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

FACET

Cálculo IV e Vetorial

Lista 01

27 de Fevereiro de 2015

(1) A transformação $x=au,\,y=bv\;(a,b>0)$ pode ser reescrita como $x/a=u,\,y/b=v$ e, portanto, transforma a região circular

$$u^2 + v^2 \le 1$$

na região elíptica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1.$$

Ao efetuar integrações em regiões elípticas, primeiro transformamos esta região em uma circular e depois aplicamos a transformada em coordenadas polares da seguinte maneira:

$$u = r\cos\theta \Rightarrow x/a = u = r\cos\theta \Rightarrow x = ra\cos\theta$$

$$v = r \sin \theta \Rightarrow y/b = v = r \sin \theta \Rightarrow y = rb \sin \theta.$$

Portanto, a mudança a coordenadas polares de uma região elíptica é dada por

$$(x,y) = (ar\cos\theta, br\sin\theta)$$

com $\theta \in [0, 2\pi)$ e $r \in [0, 1]$.

- Usando esta mudança, calcule a integral $\int \int_R \sqrt{16x^2+9y^2}dA$, onde R é a região envolvida pela elipse $\frac{x^2}{3^2}+\frac{y^2}{4^2}=1$.
- (2) De modo análogo, a transformação $x=au,\,y=bv,\,z=cw$ (a,b,c>0) pode ser reescrita como $x/a=u,\,y/b=v,z/c=w$ e, portanto, transforma a região esférica

$$u^2 + v^2 + w^2 < 1$$

na região elipsoidal

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$$

Ao efetuar integrações em regiões elipsoidais, primeiro transformamos esta região em uma esférica e depois aplicamos a transformada em coordenadas esféricas da seguinte maneira:

$$u = \rho \cos \theta \sin \phi \Rightarrow x/a = u = \rho \cos \theta \sin \phi \Rightarrow x = a\rho \cos \theta \sin \phi$$

$$v = \rho \sin \theta \sin \phi \Rightarrow y/b = v = \rho \sin \theta \sin \phi \Rightarrow y = b\rho \cos \theta \sin \phi.$$

$$w = \rho \cos \phi \Rightarrow z/c = w = \rho \cos \phi \Rightarrow z = c\rho \cos \phi.$$

Portanto, a mudança a coordenadas esféricas de uma região elipsoidal é dada por

$$(x, y) = (a\rho\cos\theta\sin\phi, b\rho\cos\theta\sin\phi, c\rho\cos\phi)$$

com $\theta \in [0, 2\pi), \ \phi \in [0, \pi] \ r \in [0, 1].$

- Usando esta mudança, calcule a integral $\int \int \int_G x^2 dV$, onde G é a região envolvida pelo elipsóide $9x^2 + 4y^2 + z = 36$.
- (3) Calcule a integral de linha, onde C é a curva dada:
 - a) $\int_C xy^4 ds,\, C$ é a metade direita do círculo $x^2+y^2=16.$
 - b) $\int_C x e^{yz} ds$, C é o seguimento de reta de (0,0,0) a (1,2,3).
 - c) $\int_C z dx + x dy + y dz$, $C: x = t^2$, $y = t^3$, $z = t^2$, $0 \le t \le 1$.
- (4) Se $\rho(x,y)$ representa a função densidade linear de um ponto (x,y) de um fio fino com a forma de uma curva C, então a **massa total** do fio é dada pela integral de linha

$$m = \int_C \rho(x, y) ds.$$

O centro de massa do fio com a função densidade $\rho(x,y)$ encontra-se no ponto $(\overline{x},\overline{y})$, onde

$$\overline{x} = \frac{1}{m} \int_C x \rho(x, y) ds,$$

$$\overline{y} = \frac{1}{m} \int_C y \rho(x, y) ds.$$

Se um arame fino tem a forma da parte que está no primeiro quadrante da circunferência com centro na origem e raio a e a função densidade for $\rho(x,y)=kxy$, k constante, encontre:

- a) A massa total do arame.
- b) O centro de massa do arame.
- (5) O campo de velocidade de um fluido em movimento é dado por $\overrightarrow{v}=(2x,2y,-z)$. Calcular a circulação do fluido ao redor da curva fechada C, sendo C dada por $\overrightarrow{r}=\cos t \, \overrightarrow{i} + \sin t \, \overrightarrow{j} + 2 \, \overrightarrow{k}$, $t \in [0,2\pi]$.
- (6) Determine o trabalho realizado pelo campo de força $F(x,y) = x^2 \overrightarrow{i} + y e^x \overrightarrow{j}$ em uma partícula que se move sobre a parábola $x = y^2 + 1$ de (1,0) a (2,1).

Bons estudos!

Bibliografia:

Stewart, J. - Cálculo Vol II

Flemming, D. - Cálculo B

Howard, A. - Cálculo Vol II

Guidorizzi, H. - Um curso de cálculo Vol $3.\,$