JFET - Exercícios de Fixação

Todos os JFET's usados neste texto possuem os seguintes parâmetros de modelagem @ 27 °C:

$$\beta = 309,207780432~\mu A/V^2; V_{To} = -2~V; \lambda = 0,02~V^1; C_{GS} = C_{GD} = 2~pF; m = 0,5; P_B = 0,798574~V.$$

Todos os circuitos analisados neste texto estão polarizados no mesmo ponto quiescente.

1.) Amplificadores CS:

Analisando os circuitos da Figura 1, calcular:

- 1a.) Os pontos quiescentes de ambos, incluindo a tensão V_{DSx} .
- 1b.) As grandezas AC (A_{v} ; A_{vg} ; R_{i} ; R_{o} ; f_{CA} e f_{CB}), para R_{ger} = 0 e para R_{ger} = 10 k Ω e com C_{S} = 0 e com C_{S} = 100 μ F.

Figura 1 – Amplificadores Fonte-Comum. a.) Polarizado com Fonte Dupla. b.) Com Autopolarização.

2.) Amplificador CG:

Analisando o circuito da Figura 2, calcular:

- 2a.) O ponto quiescente, incluindo a tensão V_{DSx} .
- 2b.) As grandezas AC (A_{v} ; A_{vg} ; R_{i} ; R_{o} ; f_{CA} e f_{CB}), para R_{ger} = 0 e para R_{ger} = 600 Ω .

Figura 2 – Amplificador Porta-Comum.

3.) Amplificadores CD:

Analisando os circuitos da Figura 3, calcular:

- 3a.) Os pontos quiescentes dos três amplificadores.
- 3b.) As grandezas AC (A_v ; A_{vg} ; R_i ; R_o ; f_{CA} e f_{CB}), para R_{ger} = 0 e para R_{ger} = 10 k Ω .

Figura 3 – Amplificadores Dreno-Comum. a.) Com Divisor de Fonte. b.) Com Divisor de Fonte e com R_D Desacoplado. c.) Com Divisor de Porta.

O objetivo destes exercícios é verificar a exatidão das equações fornecidas nas aulas de teoria e usadas em calculadoras avançadas. Os resultados poderão ser checados comparando-os com simulações feitas no *LTSpice IV*.