KEYS IN DATABASE:

 keys are like road signs for your database. They help the database organize and find data quickly.

Imagine you have a huge library with thousands of books. Keys are like the index that tells you exactly where to find each book.

Importance of Keys:

Uniqueness

Fast Retrieval

Data Relationships

■Types of keys in DBMS

Key plays an important role in relational database; it is used for identifying unique rows from table & establishes relationship among tables on need.

1. Primary Key – A primary key is a unique identifier for each record in a table. It uniquely identifies each row and ensures that there are no duplicate entries. Here's an example:

Roll No.	Name	Age	Grade
1	John	16	Α
2	Lisa	17	Α
3	Michael	16	В

Table: Students

In this example, the "Roll No." column serves as the primary key. Each student has a unique roll number, and it is used to identify them uniquely.

```
CREATE TABLE Employees (
   EmployeeID INT PRIMARY KEY,
   FirstName VARCHAR(50),
   LastName VARCHAR(50)
);
```

Example: Consider a table named "Employees" where each employee has a unique employee ID

2.Foreign Key: A foreign key is a field in a table that refers to the primary key of another table. It establishes a relationship between two tables. Here's an example: Table: Courses

Course ID	Course Name	Instructor
101	Math	Mr. Smith
102	Science	Mrs. Johnson
103	History	Mr. Davis

Table: Enrollments

In this example, the "Cour	se ID"
column in the "Enrollments	s" table is a
foreign key.	
It references the primary k	*
ID" in the "Courses" table	establishing

Student ID	Course ID
1	101
1	102
2	101
3	103

Course ID" in the "Courses" table, establishing a relationship between the two tables.

```
CREATE TABLE Orders (
  OrderID INT PRIMARY KEY,
  CustomerID INT,
  OrderDate DATE,
  FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)
);
```

Example: In a "Orders" table, you can use a foreign key to reference the "CustomerID" from a "Customers" table to show which customer placed the order.

3.Unique Key: A unique key ensures that the values in a column or set of columns are unique and cannot be duplicated.

```
CREATE TABLE Products (
ProductID INT PRIMARY KEY,
ProductCode VARCHAR(20) UNIQUE,
ProductName VARCHAR(100),
Price DECIMAL(10, 2)
);
```

Example: In a "Products" table, you can use a unique key on the "ProductCode" column to ensure that product codes are unique, but allow for NULL values in other columns.

Table: Employees

Employee ID	Name	Email
1	John	john@example.com
2	Lisa	lisa@example.com
3	Michael	michael@example.com

In this example, the "Employee ID" column serves as the primary key. However, the "Email" column can also be marked as a unique key to ensure that no two employees have the same email address.