데이터 마이닝 응용 프로젝트 중간발표

지속가능한 전력 생산

전력 수요, 태양열 발전량, 풍력 발전량 예측

TEAM. 빵빵이들

^{1중간발표} **1. 데이터 설명**

| 데이터 세부 설명

범위:전국

기간 : 2020 ~2022년 (3개년)

^{|중간발표} **1. 데이터 설명**

| 데이터 세부 설명

^{|중간발표} **1. 데이터 설명**

| 데이터 세부 설명

1^{중간발표} **2. 데이터 전처리**

| 데이터 병합

구분	지점	일시	기온	풍향	풍속	강수량	현지기압	해면기압	습도	도시명	태양광 발전량	풍력발전량
데이터 타입	int	datetime	float	string	float	float						

2. 데이터 전처리

| 데이터 상관관계 (피어슨 상관계수)

^{|중간발표} 3. 모델 설명

| 단일 모델_풍력&태양광

단일 모델을 위한 데이터 셋

구분	구성
기상요소	습도, 풍속, 강우량, 풍향
시간 데이터	년, 월, 일
위치 데이터	도시명
예측 목표값	태양광 발전량, 풍력 발전량

단일 모델을 위한 데이터 전처리

요소명	전처리 방법				
습도, 풍속, 강우량, 풍향	표준화				
도시명	One-Hot Encoding을 통해 벡터화				

^{] 중간발표} 3. 모델 설명

| 단일 모델_풍력&태양광

모델명	RM			
エョる	풍력 에너지	태양에너지	parameter	
Decision Tree	47.57	77.42	max_depth=8	
Multiple Linear Regression	52.24	108.63		
Random Forest	41.48	54.86	max_depth=8	
Multi-Layer Perceptron	41.08	49.69	max_iter=500	

1^{중간발표} 3. 모델 설명

| 모델 결합

모델 예시1

모델 예시2

3. 모델 설명

|시계열

1. 시계열분석의 목적

과거 데이터 바탕으로 미래 '전력 수요' 예측

2. 시계열분석 - ARIMA 선택 이유

- 1) 단기 예측
- 2) 계절적 변동 요인
- 3) 데이터 수(Sample) > 50

시계열 분해 결과

- 추세 존재 🗙
- 계절성 · 주기성 존재 O

3. 모델 설명

|시계열

3. 시계열분석 모델 적용 조건

★ 정상성 만족

- 시간에 따른 평균 일정
- 시간에 따른 분산 일정
- 시간에 따른 공분산 일정

| 중간발표

3. 모델 설명

|시계열

=> 정상성 검증

KPSS Statistic: 0.767720394093419

p-value: 0.01

Lags Used: 52

Critical Values: {'10%': 0.347, '5%': 0.463, 검증결과: 비정상(non-stationary) 시계열 데이터입니다.

1차 차분

KPSS Statistic after differencing: 0.00 p-value after differencing: 0.1 Lags Used after differencing: 40 Critical Values after differencing: {'1 검증결과: 정상(stationary) 시계열 데이터입니다.

ADF Statistic: -8.881919853667899 p-value: 1.3109363183008864e-14

Critical Values: {'1%': -3.4310999685396

Best number of lags (AIC): 8722

검증결과: 정상(stationary) 시계열 데이터입니다.

ADF 검정, KPSS 검정 결과:

비정상 시계열 데이터 (KPSS 불만족)

ADF Statistic: -15.307786341211989

p-value: 4.226749935307493e-28

Critical Values: {'1%': -3.431100054560

Best number of lags (AIC): 8721

검증결과: 정상(stationary) 시계열 데이터입니다.

ADF 검정, KPSS 검정 결과:

정상 시계열 데이터

1 중간발표 4. 추가 연구

변수 추가 분석 및 모델에 적절한 변환 필요

| ^{중간발표} **5. Q&A**

2023.11.22

제안서_팀_빵빵이들

팀 구성

빵빵 201902743 - 이의진 빵일? 201802798 - 이정현

빵이 201903156 - 정경서

빵삼 202103464 - 최서여

•