Измерение магнитного поля Земли

Цель работы

Определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измерить горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

Оборудование

12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0,5-0,6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25\times30\times60~{\rm mm}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики ($20~{\rm mt.}$) и неодимовые магниты в форме параллелепипедов $(2~{\rm mt.})$, набор гирь и разновесов.

Экспериментальная установка

Рис. 1: Определение магнитного момента шариков по силе тяжести.

Рис. 2: Определение горизонтальной составляющей поля Земли.

Рис. 3: Определение вертикальной составляющей поля Земли.

Теоретическая часть

Точечный магнитный диполь.

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент \vec{P}_m тонкого витка S с током I равен:

$$\vec{P}_m = (I/c)\,\vec{S} = (I/c)S\,\vec{n},$$

где c — скорость света в вакууме, $\vec{S} = S \, \vec{n}$ — вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} — единичный вектор нормали к площадке S (это же направление \vec{P}_m принимается за направление $S \longrightarrow N$ от южного (S) к северному (N) полюсу). Если размеры контура с током или магнитной стрелки малы по сравнению с расстоянием до диполя, то соответствующий магнитный диполь \vec{P}_m называют элементарным или точечным.

Магнитное поле точечного диполя определяется по формуле, аналогичной формуле для поля элементарного электрического диполя:

$$\vec{B} = 3(\vec{P}_m \vec{r}) \vec{r} / r^5 - \vec{P}_m / r^3.$$

В магнитном поле с индукцией \vec{B} на точечный магнитный диполь \vec{P}_m действует механический момент сил:

$$\vec{M} = \vec{P}_m \times \vec{B}.$$

Под действием вращающего момента \vec{M} виток с током или постоянный магнит поворачивается так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это — положение устойчивого равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия. В положении, когда \vec{P}_m и \vec{B} параллельны, но направлены противоположно друг другу, также имеет место равновесие (M=0), но такое равновесие неустойчиво: малейшее отклонение от этого положения приведёт к появлению момента сил, стремящихся отклонить диполь ещё дальше от начальногомагнитный момент шарика положения.

Магнитный диполь в магнитном поле обладает энергией:

$$W = -(\vec{P}_m, \vec{B}).$$

Из этой формулы следует, что энергия диполя в поле минимальна и равна $W_{min} = -P_m B$ при сонаправленных

векторах $\vec{P}_m \uparrow \uparrow \vec{B}$ (угол θ между \vec{P}_m и \vec{B} равен нулю), т. е., как и следовало ожидать, в положении устойчивого равновесия.

Обратим внимание на то, что формула для энергии диполя в магнитном поле очень удобна для выяснения единиц измерения магнитного диполя \vec{P}_m , причём, как в системе СИ, так и в системе СГСЭ, т. к. в обеих системах единиц формулы для энергии диполя выглядит одиаково:

в системе СИ размерность $[P_m] = [W]/[B] = Дж/Тл;$ в системе СГСЭ размерность $[P_m] = [W]/[B] = \operatorname{эрг}/\Gamma c.$

В неоднородном поле на точечный магнитный диполь, кроме момента сил, действует ещё и сила:

$$\vec{F} = (\vec{P}_m, \vec{\Delta})\vec{E}.$$

Используя формулы для момента силы, силы и энергии, не сложно выяснить, как ведёт себя свободный магнитный диполь в неоднородном магнитном поле: он выстраивается вдоль силовых линий магнитного поля и, кроме того, под действием результирующей силы, возникающей из-за неоднородности поля, втягивается в область более сильного магнитного поля, т.е. в область, где он обладает меньшей энергией.

Зная магнитные моменты P_1 и P_2 двух небольших постоянных магнитов, можно рассчитать силу их взаимодействия. Если магнитные моменты $P_1 = P_2 = P_m$ двух одинаковых небольших магнитов направлены вдоль соединяющей их прямой, а расстояние между ними равно r, то магниты взаимодействуют с силой:

$$F = P_m \partial B / \partial r = P_m \partial (2P_m/r^3) / \partial r = -6P_m^2/r^4.$$

Магниты притягиваются, если их магнитные моменты сонаправлены $(\vec{P_1} \uparrow \uparrow \vec{P_2})$ и отталкиваются, если моменты направлены противоположно друг другу $(\vec{P_1} \uparrow \downarrow \vec{P_2})$.

Если магнитные моменты направлены перпендикулярно соединяющей их прямой, то сила их взаимодействия окажется в два раза меньшей: $F = 3p^2/r^4$ (в этом случае диполи притягиваются при $\vec{P_1} \uparrow \downarrow \vec{P_2}$ и отталкиваются при $\vec{P_1} \uparrow \uparrow \vec{P_2}$).

Неодимовые магнитные шары.

В настоящей работе используются неодимовые магниты шарообразной формы.

Для нас важно то, что: 1) шары намагничены однородно; 2) Вещество, из которого изготовлены магниты, является магнитожёстким материалом. Магнитное поле однородно намагниченного шара радиуса R на расстояниях $r \geq R$ от

центра шара совпадает с полем точечного магнитного диполя \vec{P}_m , равного полному магнитному моменту шара и расположенного в центре (можно сказать, что внутри (r < R) такого шара поле однородно и равно $B_0 = 2P_m/R^3$)

Магнитожёсткость материала означает, что магнитные моменты шаров в нашей работе не изменяются под действием внешних магнитных полей, т. е. шар ведёт как жёсткий диполь. Поэтому, при расчетах можно считать, что шары взаимодействуют как жёсткие точечные магнитные диполи, расположенные в центрах шаров.

Полный магнитный момент \vec{P}_m постоянного магнита определяется намагниченностью \vec{p}_m вещества, из которого он изготовлен. По определению, намагниченность — это магнитный момент единицы объёма. ДЛя однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p}_m = \vec{P}_m / V,$$

где V — объём шара. Намагниченность — важная характеристика вещества постоянных магнитов, определяющая, в частности, величину остаточной магнитной индукции $B_r = 4\pi p_m$ (остаточная индукция B_r — одна из величин, которая, как правило, указывается в справочниках по магнитожёстким материалам).

Не сложно показать, что индукция магнитного поля \vec{B}_p на полюсах однородно намагниченного шара связана с величиной намагниченности \vec{p}_m и остаточной магнитной индукцией \vec{B}_r формулой:

$$\vec{B}_p = (8\pi/3)\vec{p}_m = (2/3)\vec{B}_r.$$

Экспериментальное определение величины магнитного момента магнитных шариков.

Величину магнитного момента P_m одинаковых шариков можно рассчитать, зная их массу m и определив максимальное расстояние r_{max} , на котором они ещё удерживают друг друга в поле тяжести (см. рис.1). При максимальном расстоянии сила тяжести шариков равна силе их магнитного притяжения:

$$6P_m^2/r_{max}^4 = mg, \quad P_m = \sqrt{\frac{mgr_{max}^4}{6}}.$$

По величине магнитного момента P_m можно рассчитать величину индукции магнитного поля вблизи любой точки на

поверхности шара радиуса R. Максимальная величина индукции наблюдаются на полюсах:

$$\vec{B}_p = 2\vec{P}_m/R^3.$$

Измерение горизонтальной составляющей индукции магнитного поля Земли.

Магнитное поле Земли в настоящей работе определяется по периоду крутильных колебаний магнитной стрелки вокруг вертикальной оси.

«Магнитная стрелка» образована из сцепленных друг с другом противоположными полюсами шариков и с помощью ∧-образного подвеса подвешена в горизонтальном положении (см. рис. 2). Магнитные моменты шариков направлены в одну сторону вдоль оси «стрелки». Под действием вращательного момента $ec{M} = ec{P_0} imes ec{B}$ магнитный момент «стрелки» $ec{P_0}$ выстроится вдоль горизонтальной составляющей магнитного поля Земли $\acute{B_h}$ в направлении Юг ightarrow Север. При отклонении «стрелки» на угол θ от равновесного положения в горизонтальной плоскости возникают крутильные колебания вокруг вертикальной оси, проходящей через середину стрелки.Если пренебречь упругостью нити, то уравнение крутильных колебаний такого маятника определяется возвращающим моментом сил $M=-P_0B_h\sin heta$, дейсвующим на «стрелку» со стороны магнитного поля Земли, и моментом инерции I_n «стрелки» относительно оси вращения.

При малых амплитудах $(\sin \theta \approx \theta)$ уравнение колебаний «стрелки» имеет вид:

$$I_n d^2 \theta / dt^2 = -P_0 B_h \theta$$
, или $I_n \ddot{\theta} + P_0 B_h \theta = 0$.

Период колебаний:

$$T = 2\pi \sqrt{I_n/P_0 B_h} = 2\pi \sqrt{I_n/n P_m B_h},$$

где $P_0 = nP_m$ — полный магнитный момент магнитной «стрелки», составленной из n шариков.

Момент инерции «стрелки», сотоящей из n шариков, как не сложно убедиться, с хорошей точностью равен моменту инерции тонкого однородного стержня массой m=nm и длиной l=nd:

$$I_n = (1/12)m_{\text{cr}}l_{\text{cr}}^2 = (1/12)nm(nd)^2 = (1/12)n^3md^2.$$

Даже для трёх шариков момент инерции, рассчитанный по приближённой формуле, отличается от точного результата

примерно на 2 %, а для $n \ge 5$ — различие не превышает процента; если же учесть, что $T \sim \sqrt{I_n}$, то для всех $n \ge 3$ погрешность наших расчётов для периода колебаний T не превысит процента, что освобождает нас от необходимости вводить поправочные коэффиценты.

Таким образом, в нашем приближении период колебаний маятника оказывается пропорциональным числу шаров n, составляющих «стрелку»:

$$T(n)=2\pi\sqrt{I_n/nP_mB_h}=$$

$$=2\pi\sqrt{n^3md^2/12nP_mB_h}=\pi n\sqrt{md^2/3P_mB_h}=kn,$$
 где $k=\pi\sqrt{md^2/3P_mB_h}.$

При выводе этой формулы предполагалось, что магнитный момент — величина аддитивная: полный магнитный момент системы магнитов («стрелки»)равен векторной сумме магнитных моментов шариков, составляющих «стрелку». Экспериментальное подтверждение этой зависимости $(T \sim n)$ будет являться косвенным доказательством наших предположений о магнитожёсткости магериала магнитов и, соответственно, свойства аддитивности магнитных моментов шаров.

Измерение вертикальной составляющей индукции магнитного поля Земли. Магнитное наклонение.

Для измерения вертикальной B_v составляющей вектора индукции поля Земли используется та же установка, что и для измерения горизонтальной составляющей с тем лишь отличием, что магнитная «стрелка» подвешивается на нити без \land -образного подвеса. В этом случае магнитная «стрелка», составленная из чётного числа шариков и подвешенная на тонкой нити за середину, расположится не горизонтально, а под некоторым, отличным от нуля, углом к горизонту (см. рис. 3, слева). Это связано с тем, что вектор \vec{B} индукции магнитного поля Земли в общем случае не горизонтален, а образует с горизонтом угол β , зависящим от географической широты ϕ места, где проводится опыт. Величина угла β называется магнитным наклонением.

С помощью небольшого дополнительного грузика «стрелку» можно «выровнять», расположив её горизонтально (см.рис. 3, справа): в этом случае момент силы тяжести груза относительно точки подвеса будет равен моменту сил, действующих на «стрелку» со стороны магнитного поля Земли. Если масса уравновешивающего груза равна $m_{\rm rp}$, плечо силы

тяжести $r_{\rm rp}$, а полный магнитный момент «стрелки» $P_0 = n P_m$, то в равновесии:

$$m_{\rm rp}gr_{\rm rp} = P_0B_v = nP_mB_v,$$

где B_v — вертикальная составляющая поля Земли. Видно, что момент M(n) силы тяжести уравновешивающего груза пропорционален числу n шариков, образующих магнитную «стрелку»:

$$M(n) = An, \quad A = P_m B_v.$$

Обработка результатов измерений

Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков.

N	$m, 10^{-3}$ г	$d, 10^{-2} \text{ cm}$		
1	863	61		
2	848	62		
3	857	63		
4	846	62		
5	838	60		
6	850	61		
7	853	62		
8	842	61		
9	844	63		
10	853	62		
11	847	61		
12	848	60		

Таблица 1: Измерения первого задания.

Проложим между двумя магнитными шариками брусок из немагнитного материала; выясним максимальное расстояние, при котором шарики удерживают друг друга в поле Земли с учётом случайной погрешности:

$$r_{max} = 2.5 \pm 0.1$$
 cm.

Рассчитаем величину p_m :

$$P_m = \sqrt{\frac{mgr_{max}^4}{6}} = 73 \pm 2 \frac{\text{эрг}}{\Gamma c}$$

$$p_m = \frac{P_m}{V} = 600 \pm 30 \frac{\text{эрг}}{\Gamma \text{c} \cdot \text{cm}^3}$$

Рассчитаем величину B_p и B_r материала, из которого изготовлен шарик:

$$B_p=2P_m/R^3=5,0\pm0,2~{\rm kGc}.$$

$$B_r=4\pi p_m=7,5\pm0,3~{\rm kGc};~~B_{r_{\rm tab}}=11,5-14~{\rm kGc}$$

Определение горизонтальной составляющей магнитного поля Земли.

Измерим зависимость периода T крутильных колебаний «стрелки» от количества магнитных шариков n, составляющих «стрелку», померив количество периодов k за время t:

n	T, c		
3	0,86		
4	1,09		
5	1,32		
6	1,53		
7	1,78		
8	2,05		
9	2,31		
10	2,58		
11	2,86		
12	3,14		

Таблица 2: Измерения второго задания.

Построим график зависимости T от n:

Рис. 4: График зависимости T=kn

$$k = 0,253 \pm 0,018$$

Вычислим величину горизонтальной составляющей магнитного поля Земли:

$$B_h = \frac{\pi^2 m d^2}{2k^2 P_m} = 0,227 \pm 0,024 \; \Gamma c$$

Рассчитаем моменты сил тяжести для разного количества шариков:

$$M = m \cdot g \cdot d \cdot (\frac{N}{2} - 1)$$

N, шт	4	6	8	10	12
$M, \frac{\mathbf{r} \cdot \mathbf{c_M}^3}{\mathbf{c}^2}$	172,98	314,61	428,31	547,25	641,88

Построим график момента силы тяжести M от числа шариков n для нахождения вертикальной составляющей магнитного поля Земли:

Рис. 5: График зависимости M=An

$$A = 48 \pm 4$$
 $B_v = \frac{A}{P_m} = 0,66 \pm 0,10 \; \Gamma c$

Магнитное поле Земли:

$$B = 0.70 \pm 0.13 \; \Gamma c$$

Вывод

Полученное с помощью магнитных неодимовых шариков магнитное поле Земли с учетом погрешности совпадает с табличным: $B_{\text{табл}}=0.25$ —0.65 Гс, что можно с некоторой степенью сказать и о остаточной магнитной индукции, однако расхождения с табличными данными получились заметными из-за большой случайной погрешности.