

New Section 1 Page 1

 $\Rightarrow f(z) \Rightarrow unknown.$

 $P(x) \rightarrow)$ polynomial

$$P_{n}(x) = q_{0} + q_{1}x + \cdots + q_{n}x^{n}$$

$$f(0) = 1 \qquad f(x_{0}) = y_{0}$$

$$f(x_{1}) = y$$

Weirstaus Aphroximation $f(\vec{x}) \rightarrow \text{ Lont 8 defined on [a,b]} \cdot \text{Then } + 270$ $F(n) (Polynomial) + |P(n) - f(n)| < \epsilon \cdot + n \in [a,b]$ $\chi^{100} + (\sin 1)^2 \chi^3$ $\chi^{100} + (\sin 1)^2 \chi^3$

f: \rightarrow continous on [a, n]. $G(x_i^o) = Y_i^o, l = 0, 1, ..., n$ $\chi_i \in [a, b, J]$. Then $f_n P_n(x)$ of degree $\leq n + s + P_n(x_i^o) = f(x_i^o)$ & $|P_n(x_i^o) - f(x_i)| < \epsilon$ $\forall x \in [a, b]$

n=1,2,3,

$$\chi = 1,2,3$$
 $(x-1)(x-2)(x-3)(x-1)(x-6)$

Unquenes

Le Prins Lanin,

Pn(x) = yi', Unlx)=yi-

deg Pn(n) < n.

deg Qn(n) En

T-P Pn(n) = On(n) + x & [9,4]

 $R_n(n) = P_n(n) - O_n(n)$

 $deg R_n(n) \leq n - R_n(n) = R_n(n) = R_n(n) = 0 \quad \exists i > n$

Each ne is unique,

& $R_n(n) \rightarrow degle \leq n$ & has (n+1) 2004, $R_n(n) = 0$ $\Rightarrow P_n(n) = On(n) + n \in [9,6]$

-> Lagrange Interpolation

-> Newton forward

-> Newton Backward -

Roglange Interpolation

Chiffange Interpolation
(ni,yi), 1=0,-,n
f(n) -> wort. (unknown) un [a,b], U=f(xi)
Proces we can find a urique polynomie
of degree $\leq n$ (Pn(n) $S+P_n(n) = f(n_n) = y_i$
$P_n(n)$ -u parsing $f(x_0), f(x_1), -, f(x_n)$
$P_n(n) = l_o(x)f(x_0) + l_i(n)f(x_i) + - + l_n(n)f(x_n)$ deg $l_i(n) \leq n$
$P_{n}(x_{0}) = f(x_{0}^{*}) = y_{0}^{*}$ $P_{n}(x_{0}) = f(x_{0}) = l_{0}(x_{0})f(x_{0}) + l_{1}(x_{0})f(x_{0}) = - + l_{n}(x_{0})f(x_{0})$
$l_0(n_0) = 0$ $l_1(n_0) = 0$ $l_1(n_0) = 0$
$P_{n}(n,) = f(n,) = l_{0}(x_{1})f(x_{0}) + l_{1}(x_{1})f(n_{1}) + + l_{n}(n_{1})f(n_{2}) + l_{n}(n_{1}) + l_{n}(n_{1}) = 0$

$$P_{n}(y_{i}^{\circ}) = f(y_{i}^{\circ}) = l_{0}(y_{i}) f(y_{0}) + l_{1}(y_{i}) f(y_{i}) + l_{2}(y_{i}) f(y_{i}) + l_{2}(y_{i}) f(y_{i}) f(y_{i}) + l_{2}(y_{i}) f(y_{i}) f(y_{i}) f(y_{i}) + l_{2}(y_{i}) f(y_{i}) f(y_{i}) f(y_{i}) f(y_{i}) f(y_{i}) f(y_{i}) = 0 \quad l \neq 1$$

$$deg li(y_{i}) = \int_{0}^{\infty} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \int_{0}^{\infty} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \int_{0}^{\infty} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \frac{1}{(x_{i})} \int_{0}^{\infty} \frac{1}{(x_{i})} \frac{1}{(x_{i$$