

二氧化碳的制备和章节复习

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

火警--119

逃生自救常识

1. 熟悉环境, 明辨方向; 2. 不入险地, 不贪财产;

3. 简易防护, 掩鼻匍匐; 4. 善用通道, 莫用电梯;

5. 避难场所, 固守待援; 6. 传送信号, 寻求援助;

7. 火已及身, 切勿惊跑; 8. 缓降逃生, 滑绳自救。

1、二氧化碳的工业和实验室制备 2、启普发生器及其简易装置

学习目标

&

重难点

3、燃烧和灭火

4、碳的分类、物理性质、化学性质

5、碳的化合物的物理和化学性质

1、二氧化碳的工业和实验室制备

2、启普发生器的原理以及变形装置

3、碳及其化合物的性质和转换

根深蒂固

一、二氧化碳的制备

1. 二氧化碳的工业制法(煅烧石灰石)

反应原理:	
【答案】CaCO。-	—— Silver CO ₂ ↑+CaO

2. 二氧化碳的实验室制备

(1) 反应原理:	
(2) 发生装置类型:	
(3) 收集装置类型:	
(4) 检验方法:	
(5) 验满方法:	

(6)操作:①连接仪器 ②检查装置的气密性(检查原理) ③装入固体药品 ④装入液体药品 ⑤收集气体 ⑥检验集气瓶中是否收集满气体

【答案】 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 \uparrow + H_2O$

固液不加热型 向上排空气法 将生成的气体通入澄清石灰水,石灰水变浑浊,证明是二 氧 化 碳 将燃着的木条放在集气瓶口,木条熄灭,证明已满

【思考1】为什么不选择浓盐酸、硫酸而用稀盐酸?

【答案】因为浓盐酸具有挥发性,使生成的二氧化碳中混有 HCl 而不纯。 因硫酸跟碳酸钙反应,会生成硫酸钙覆盖在大理石表面,阻止反应进一步进行。

【思考2】为什么不用碳酸钠或者粉末状碳酸钙而用块状碳酸钙?

【答案】①选用废弃的大理石(或石灰石)来源广,价格便宜;且块状与酸液接触面不大, 反应速度适中。

②不可选用粉末状的 $CaCO_3$ 或 Na_2CO_3 , 更不可选 Na_2CO_3 溶液。因跟酸液接触面太大,反应速度太快来不及收集,且 Na_2CO_3 来源少,价贵

3. 启普发生器

(1)原理:荷兰科学家启普(Kipp)设计的气体发生器,使用时打开导气管上的活塞,不断产生气体。不用时关闭导气管上的活塞,在气体的压力下,酸液下降,大理石和盐酸脱离接触,反应停止。这种装置被称为启普发生器。

(2)	装置.	如右图

- (3) 使用范围: _____。
- (4) 装置气密性的检查:
- (5) 简易的启普发生器

【结论】简易的启普发生器仍能控制反应的发生和停止

【答案】范围: 块状固体与液体反应, 反应不需要加热, 生成的气体难溶于水。

检查:关闭启普发生器的导管活塞,向启普发生器中注入少量水,静置片刻。观察漏斗中液面的变化情况,如果漏斗中的液面不下降则说明该启普发发器的气密性良好,否则说明气密性不好。

【思考】下列装置均能控制反应的发生和停止, 那么他们的原理有什么不同之处?

【答案】A、B、C、D均是启普发生器的简易装置,故关闭弹簧夹,一段时间之后由于压强差而使固体和液体分离。E、F、G是通过人工移动而使固液分离,故原理不一样。

【练一练】右图是实验室制备 CO₂ 的装置图。该装置的特点是:

打开弹簧夹,大理石和盐酸接 触,发生反应;关闭弹簧夹后,盐酸被反应产生的 CO₂ 气体压回长颈漏斗,与大理石分离,停 止反应。用该装置制备 CO₂可起到节约药品和取用方便的效果。下图装置中哪些可以起到与右图装置相同的效果?_____(填写编号)

【答案】BD

4. 发生装置的选择

思考 1: 上述五种发生装置, b与 a; c与 b; d、e与 c 相比较各有什么优点?

思考 2: e 装置的选用怎样控制反应的发生和停止?

思考3: 怎样检查装置的气密性?

思考 4: 将燃着的木条伸入集气瓶中,发现木条不熄灭,请说明原因? 将生成的气体通入澄清石灰水,发现澄清石灰水未变浑浊,请说明理由?

【答案】

【思考1】a 是最简单的装置,操作简单。

b 相对 a 而言, 便于添加液体, 长颈漏斗下端管口应伸入液体内, 防止气体逸出。

- c 相对 b 而言. 改用分液漏斗可调节液体流量, 控制反应速度。
- d、e是启普发生器, 优点是可随时使用, 随时使反应停止, 节约药品, 便于操作。
- e. 是具有启普发生器原理和优点的简易装置。
- 【思考2】打开弹簧夹,添加液体至接触固体,反应开始;

关闭弹簧夹,一段时间之后,反应停止。

【思考3】把导管的一端浸入水里,用手掌紧捂着试管的外壁(如仪器较大,温度较高,可用 酒精灯微热)。如果装置不漏气,一开始会看到烧杯中导管口有气泡冒出,当手掌移开时, 又看到烧杯的导管中有一段水柱。

【思考4】①使用长颈漏斗时,漏斗末端未伸入液面以下。

②选用浓盐酸, 导致二氧化碳气体中混有 HCl 较多, 而氢氧化钙先和 HCl 反应。

二、燃烧和灭火

1. 燃烧

(1)	定 义.	剧列的	1发光	发热现	象	的化	学反	应
(1/	AE A :	カリかく ロコ	ノノス ノレ	レノス ババ・ナンバ	20	ub ru		

(2) 特征: 发光、发热、化学反应

(3) 条件: ①	(2)	(3)	

【注明】①燃烧不一定有氧气参与 ②可燃物的着火点是不会变化的

2. 灭火条件

_			
1	; ②	; ③	
(1)	; (4)	; (3)	C

3. 理论与实际相结合

酒精灯着火用湿抹布原理: 。 森林着火设置隔离带原理: 炒锅着火用锅盖盖灭原理:

4. 可燃物充分燃烧的措施:

5. 三大化石燃料是:

【答案】物质为可燃物 与助燃剂接触 温度达到着火点

①清除或者隔绝可燃物 ②隔绝空气 ③降低温度到着火点以下

降低温度到着火点以下和与空气隔绝 隔离可燃物 隔绝助燃物

多鼓入空气 增大反应物的接触面积

煤 石油 天然气

三、碳及其氧化物的相关知识点

1. 常见的碳单质

14204430(17)			
碳的单质	颜色和状态	特殊性质	主要用途
金刚石	,正八面体	天然物质中,熔点高,	做装饰品; 切割玻璃
	状固体	不导电,有光泽	的等
石墨	黑灰色,有	 的矿物之一,滑腻,	高温剂,,
	光泽,不透明固体	熔点高,导电,导热,	制铅笔芯等
碳 60	棕黑色固体,金属光	导电、、抗辐射、强磁	超导体,材料
	泽	性、有延展性等	

【答案】无色透明,最硬,钻头;金属,最软,润滑,电极;超导,纳米

2.	同素	异,	性	体

(1) 定义: 同一种	l做这种元素的同素异形体。
-------------	---------------

【答案】元素 单质 氧气和臭氧;金刚石和石墨、C₆₀,红磷和白磷原子的排列方式不同

3. 碳单质的化学性质

(1)	常温下化学性质	。因此可以用来作	

(2) 可燃性:

不完全燃烧: _____

完全燃烧:______

因此可以用来作。

(3) 还原性:

碳还原氧化铜:

实验现象: _____。

碳还原氧化铁: ______

实验现象:

碳还原二氧化碳:

【答案】稳定 油墨 $2C+O_2$ $\xrightarrow{\text{ § SAM}}$ 2CO $C+O_2$ $\xrightarrow{\text{ § SAM}}$ CO_2 燃料

 $C + 2CuO \xrightarrow{\Delta} 2Cu + CO_2$ ↑ 黑变红

 $3C + 2Fe_2O_3 \xrightarrow{\overline{\text{na}}} 4Fe + 3CO_2 \uparrow$ 红变黑

 $C + CO_2 \xrightarrow{\bar{\beta} \underline{\mathbb{A}}} 2CO$

4. 碳的氧化物

(1) 物理性质

物质	СО	CO ₂
颜色、气味、状态	无色、无味、气体	无色、无味、气体
密度(与空气比)	比空气相近	比空气大
在水中溶解性	难溶	能溶

(2) 化学性质

物质	СО	CO ₂
与氧气反应	2CO+O ₂ 点燃 → 2CO ₂	×
与氧化铜反应	$CO + CuO \xrightarrow{\Delta} Cu + CO_2$	×
与水反应	×	$CO_2 + H_2O \longrightarrow H_2CO_3$
与石灰水反应	×	$CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$
毒性	有毒	无毒

(3) 物质的性质决定物质的用途

物质的性质	用途	
不可燃、不助燃、密度大于空气	CO ₂ 可用来灭火	
CO ₂ 可进行光合作用	气体肥料	
干冰升华吸热	冷藏剂	
CO 具有可燃性	气体燃料	
CO 具有还原性	CO 可用于冶金工业	

(4)除杂问题			
	欲除去 CO2 中混有的少量 CO 气体,	可采用的方法是()欲除去 CO 中混有的少	量的 CO ₂
气体	x,可采用的方法是() A. 将混合气体点燃	B. 将混合气体通过	过澄清的石灰水	
	C. 将混合气体通过灼热的 CuO	D. 将混合气体通过	过灼热的炭层	
	【答案】C B			
5.	碳的其他化合物			
	(1) 碳酸钙			
	①物理性质:难溶于水的白色固体。			
	②化学性质:高温分解:	0		

与盐酸反应:

 $CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2 \qquad \qquad Ca(HCO_3)_2 \qquad \qquad \triangle \qquad CaCO_3 + H_2O + CO_2 \uparrow$

枝繁叶茂

知识点1: 启普发生器

【例1】右图是一个气密性良好的启普发生器,反应一段时间后关闭活塞 K,不可能观察到的现象是 (

)

- A. 固液接触,无气泡产生
- B. 固液接触, 仍有气泡产生
- C. M中液面不断下降、N中液面不断上升
- D. N 中液面下降至 L 中

【答案】C

变式 1: 甲乙是某同学设计的两套制取二氧化碳的发生装置,对两套装置分析不正确的是 ()

- A. 此时甲装置中的止水夹 M 处于关闭状态
- B. 甲装置气体导出过程中容器内外气压相等
- C. 甲装置具有启普发生器的功能
- D. 乙装置 N 处添加止水夹可以与甲装置具有相同功能

- 变式 2: 可用右图装置进行实验且能控制反应发生和停止的一组药品是
 - A. 二氧化锰和双氧水
 - B. 二氧化锰和氯酸钾
 - C. 碳酸钙粉末和稀盐酸
 - D. 块状大理石和稀盐酸

【难度】★【答案】D

【方法提炼】

- ①掌握启普发生器的原理是打开弹簧夹,添加液体至与固体接触,反应开始;引起反应停止的操作是关闭弹簧夹。
 - ②掌握控制反应发生和停止的装置,且能分辨哪些与启普发生器原理是否相同。
 - ③选择启普发生器制备块状固体与液体不加热, 且产生的气体不易溶于水的气体。

知识点 2: 二氧化碳的实验室制备

【例1】几位同学根据下列各实验装置图,设计和讨论了以下问题:

- ①实验室利用装置 B 可以制取 CO2 气体,反应方程式
- ②实验室利用装置 B 还可以用来制取其他气体,该气体制取的化学方程式表示为:

(写出一种即可);

③实验室利用装置 A 和 E, 可以制取并收集的气体是 , 该实验在气体收集满后, 停止实验时, 需要 ;如果利用装置 D 来收集气体,进气口应该是 (填 特别注意的操作 写装置中的"a"或"b")。

【难度】★★

【答案】 __

1)	CaCO ₃ +2HCl→CaCl ₂ +H ₂ O+CO ₂ ↑
2	$2H_2O_2 \xrightarrow{MnO_2} 2H_2O + O_2\uparrow$
	氧气
3	先将导管移出水面再停止加热
	ь
4	不与空气中的成分反应

变式 1: 下列实验中, 仪器和用品的选择不合理的是 ()

- A. 收集 CO₂ 气体——678
- C. 用 H₂O₂溶液和 MnO₂制 O₂——①②
- B. 检验一瓶气体是否为 O₂—⑦⑧⑨
- D. 用大理石和稀盐酸制 CO₂——③④⑤

【难度】★★【答案】C

【方法提炼】

- 掌握实验中①反应原理 ②发生装置选择依据 ③收集装置选择的依据 ④除杂装置
- ⑤实验操作的步骤

知识点 3: 燃烧和灭火

【例1】下列灭火的方法主要利用了可燃物与氧气隔绝的原理是())

- A. 起火的油锅用锅盖盖灭
- B. 燃烧的木材用水浇灭
- C. 关闭燃气阀门使燃烧停止
- D. 森林着火设置隔离带

【难度】★【答案】A

变式 1: 为探究物质的燃烧条件,某同学进行了如图所示的实验,下列有关说法正确的是 (

- A. 现象①②说明红磷不是可燃物
- B. 现象②③说明白磷和红磷的着火点都高于80℃
- C. 现象①③说明物质燃烧需要与氧气接触
- D. 现象③说明物质不可能在水中燃烧

【难度】★★

【答案】C

- A. 炒菜时油锅着火,用锅盖盖灭——隔绝了空气
- B. 用嘴吹燃着的蜡烛, 蜡烛熄灭——降低了可燃物的着火点
- C. 用扇子扇煤炉, 炉火越扇越旺——给煤燃烧提供充足的氧气
- D. 酒精洒到实验台上着火,用湿布覆盖——隔绝空气又降低了温度

【难度】★【答案】B

变式 3: 在工业上,下列增大燃料利用率的措施中,与燃料的充分燃烧无关的是 ()

- A. 把煤炭磨成粉状进行燃烧
- B. 把柴油喷成雾状进行燃烧
- C. 给锅炉鼓风,增加空气量
- D. 给锅炉外侧装隔热层,减少热量散失

【难度】★★【答案】D

【方法提炼】

重点掌握:①燃烧的条件:可燃物,与助燃物接触,温度达到着火点。同时满足以上三个条件 物质才能燃烧。【注】温度可以降低,着火点不能降低,是物质固有的属性,不可改变。

- ②灭火的条件:隔绝可燃物,隔绝助燃物,降低温度到着火点以下。【注】满足其中一个条件 即可灭火哦。
 - ③利用学过的知识会解释生活中的一些现象。
 - ④常用的灭火剂有:水:二氧化碳(泡沫灭火器):沙子:干粉灭火剂

知识点 4: 碳单质的性质和用途

【例1】以下知识梳理中	, 错误的是()
-------------	-------------------

	物质的性质与用途 石墨能导电——可做电极 活性炭具有吸附性——可吸附色素		安全常识	
A			煤气泄漏——关闭阀门打开门窗	
			加热液体——试管口不能对着人	
	元素与人体健康 缺铁——易患贫血症 缺钙——易骨质疏松		化学之最	
В			天然存在的最硬的物质——大理石	
			人体里含量最多的元素——钙元素	

	ļ	儿尔一儿	(1) (注) (水)		1	化于之取		
	В	缺铁—	易患贫血症		D	天然存在	的最硬的物质—	—大理石
		缺钙—	易骨质疏松			人体里含	量最多的元素—	—钙元素
_	【难月	度】★【	答案】D					
变式	1: 7	「列说法」	E确的是()				
1	A. 木	に 炭和石 🗟	墨都是由碳元素组	且成的纯净物				
]	в. ₹	T墨能导申	包,木炭有吸附能	力				
(C. 進	成金刚石	5和石墨物理性质	的差异是由	于组成	两种物质的	力元素不同	
]	D. C	60是一种	新化合物					
	【难月	度】★【	答案】B					
【例	2】厚	属于同素 身	异形体的是 ()				
1	A. 氢	〔气与液态	态氢 B. 水与	i冰 C	. 石墨	与 C ₆₀	D. 二氧化矿	流与三氧化硫
	【难月	度】★【	答案】C					
变式	1:	关于金刚石	石、石墨的说法中	不正确的是	()		
1	4. 它	它们都是硕	炭元素组成的单质	B. 金	刚石质	硬,石墨原		
(C. 它	了们都是电	电的良导体	D. 它	们里面	的碳原子排	 「利不同	
	【难月	度】★【	答案】C					
【例	3】	E反应 H_2	$+CuO \xrightarrow{\Delta} Cu$	$+H_2O \oplus ,$	具有还	原性的物质	:是 ()	
1	А. Н	2	B. CuO	C. Cu		D. H ₂ O		
	【难月	度】★【	答案】A					
变式	1: A	1+Fe ₂ O ₃ -	— 高温 → Al ₂ O ₃ +2]	Fe 进行焊接	,该反	应中的氧化	:剂是 ()
1	A. F	e_2O_3	B. Al ₂ C)3	C.	Al I	D. Fe	
	【难月	度】★【	答案】A					

【例4】关于单质碳的性质描述错误的是(

- A. 单质碳在常温下化学性质不活泼
- B. 单质碳在充足的氧气中燃烧生成二氧化碳
- C. 高温时单质碳跟二氧化碳不反应 D. 高温时碳跟氧化铜反应生成铜和二氧化碳

【难度】★【答案】C

变式 1: 一氧化碳还原氧化铜的实验装置如下图所示,有关说法错误的是()

)

- A. 实验时通入 CO 后再点燃 A 处酒精灯,可以防止爆炸
- B. 通过观察黑色固体颜色的变化判断反应是否发生
- C. 通入 0.1mol 一氧化碳可以生成 0.1mol 铜
- D. 实验结束时应先熄灭 A 处酒精灯

【难度】★★【答案】C

变式 2: 做氢气还原氧化铜实验,一段时间后停止加热,测得剩余固体中铜元素与氧元素的物质的量之比为 5:

- 3,则已反应的氧化铜与原氧化铜的质量比是 (
- A. 1: 5 B. 2: 3
- C. 2: 5
- D. 3: 5

【难度】★★【答案】C

【方法提炼】掌握碳的

①分类: 定形碳和无定形碳

对于无定形碳, 性质有如下特点:

无定形碳	用 途
10,019 %	
木炭	用作燃料,吸附性,绘画炭笔,制火药
焦炭	化工原料, 冶金还原剂
活性炭	吸附剂,制防毒面具等
炭黑	制中国墨、油墨、鞋油、颜料. 作橡胶补强剂

②掌握碳的物理性质和化学性质以及用途

- ③碳的还原性重点掌握
- 1) 常温下, 碳的化学性质不活泼(稳定性)
- 2) 可燃性——碳可做燃料

$$C+O_2$$
 点燃 CO_2 高温 $C+O_2$ 不完全燃烧 CO_2

3) 还原性——碳可作还原剂, 用于冶炼金属

$$C+2CuO$$
 $\xrightarrow{\Delta}$ $2Cu+CO$, \uparrow 黑色粉末变红色,石灰水变浑浊

$$3C + 2Fe_2O_3 \xrightarrow{\overline{n} \triangleq} 4Fe + 3CO_2 \uparrow$$

$$C+H_2O$$
 $\xrightarrow{\overline{ala}}$ $CO+H_2$ 工业上制造水煤气

知识点 5: 碳的化合物的性质和用途

【例1】二氧化碳在下列变化中肯定没有发生化学变化的是(

- A. 溶于水中
- B. 溶于澄清的石灰水中
- C. 进行光合作用 D. 制成"干冰"

【难度】★【答案】D

变式 1: 下列方法能鉴别空气、氧气和二氧化碳三瓶气体的是

- A. 闻气味
- B. 将集气瓶倒扣在水中
- C. 观察颜色 D. 将燃着的木条深入集气瓶中

【难度】★【答案】D

变式 2: A、B、C、D 是初中化学常见的物质,这四种物质中均含有同一种元素。其中 A 为无色气体单质, B、 C 为氧化物,且 B 为有毒气体, D 是大理石的主要成分。它们之间的部分转化关系如图所示(图中反应条 件及部分反应物、生成物已省略)。

回答下列问题:

- (1) 完成下列填空: A 的化学式 ; B 的一种用途
- (2) 写出由物质 C 转化为物质 B 的化学方程式:
- (3) 写出由物质 D 转化为物质 C 的化学方程式: 属于分解反应

【难度】★★

【答案】 (1) O_2 以做燃料 (冶炼金属等) (2) $CO_2+C \xrightarrow{\overline{hla}} 2CO$

(3) CaCO₃
$$\xrightarrow{\text{βLL}}$$
 CaO+CO₂↑

【例 2】除去括号内杂质的操作方法正确的是 ()

- A. N₂(O₂): 放入木炭燃烧
- B. CaO (CaCO₃):加稀盐酸
- C. CO (CO₂): 通过灼热氧化铜
- D. MnO₂ (NaCl):溶解、过滤、洗涤、干燥

【难度】★★【答案】D

变式1: 除杂(括号内为杂质)方法错误的是()

- $A. N_2(O_2)$ 通过灼热的铜网
- B. KNO₃ (NaCl) 溶解、蒸发浓缩后降温结晶
- C. CaO (CaCO₃) 加水后过滤
- D. CO₂ (CO) 通过灼热的氧化铜

【难度】★【答案】C

变式 2: 欲除去 CuO 粉末中混有的少量炭粉,可采用的方法是 ()

- A. 将混合物隔绝空气加强热
- B. 采用先溶解后过滤混合物
- C. 将 H₂不断通过灼热的混合物
- D. 将 O₂ 不断通过灼热的混合物

【难度】★★【答案】D

【例 2】: 下图能正确反映其对应操作中各量的变化关系的是 (

- A. 向澄清石灰水中不断通入二氧化碳
- B. 向饱和 Ca(OH)2 溶液中不断加入 CaO 固体
- C. 高温加热碳和氧化铜的混合物,恰好完全反应生成铜和二氧化碳
- D. 氢氧化钠溶液中加足量的水稀释

【难度】★★【答案】C

变式 1: 工业上用如下工艺流程获得较纯净细白的碳酸钙用作食品添加剂,(石灰石中的杂质高温不分解、不溶于水且不与盐酸反应; 氢氧化钙与盐酸反应没有气泡产生)试回答:

- ① 石灰石高温分解的化学方程式是
- ② 操作 a 的名称是 , 为了节约成本,该工艺中可循环使用的物质是 ;

(3)	有同学对流程中固体。	A的成分进行实验探究。
(0)		1 11 11 11 11 11 11 11 11 11 11 11 11 1

I.提出问题: 石灰石中的碳酸钙是否完全分解了?

III.设计实验方案、进行实验:

下表是对猜想①进行实验探究的过程:

实验步骤	实验现象	实验结论
取样,加适量水溶解,静置	试液变为红色;	rbu로스 F로 시 스n 시 An
取少量上层清液于试管中,滴入酚酞试液;		碳酸钙全部分解
取少量下层固体于试管中,加入足量盐酸。	°	

请你对猜想②进行探究,完成下表:

实验步骤	实验现象	实验结论
取样,加适量水溶解,静置		
取少量上层清液于试管中,滴入酚酞试液;		
取少量下层固体于试管中,加入足量盐酸。		

【难度】★★

【答案】 $CaCO_3$ $\xrightarrow{\beta \mathbb{A}}$ CO_2 \uparrow + CaO 过滤 没有气泡 溶液变红色,有气泡产生。 H₂O、CO₂ 碳酸钙部分分解 碳酸钙部分分解或猜想②成立。

【方法提炼】

梳理掌握 CO 和 CO2 的物理性质、化学性质、用途

瓜熟蒂落

- 1. 雾霾天气导致呼吸病人增多,因为雾霾可使空气中增加大量的 ()

- A. 二氧化碳 B. 一氧化碳 C. 二氧化硫 D. 可吸入颗粒物

【难度】★【答案】D

- 2. 下列物质的用途中,利用其化学性质的是 ()
 - A. 稀有气体做电光源
- B. 干冰用于人工降雨
- C. 活性炭做吸附剂
- D. 氧气用于气焊

【难度】★【答案】D

【难度】★【答案】A

3.	不是碳的同素异形体	的是 ()			
	A、金刚石	B、石墨	C, C ₆₀	D、煤炭	
	【难度】★【答案】	D			
4.		属。工业冶炼钼的]反应为: 3H ₂ +	MoO ₃ — 高温 → Mo + 3H	$_2\mathrm{O}$,该反应的还原剂是
	()				
	A. H ₂ B		C. Mo	D. H ₂ O	
	【难度】★【答案】	A			
5.	"蜂窝煤"比煤球更	互有利于煤的完全煤	然烧、提高燃烧效	率,这主要是因为 ()
	A. 增大了煤与氧气	的接触面积			
	B. 升高了煤的着火	点			
	C. 提高了氧气的浓	度	10000	and the same of th	6000a
	D. 降低了煤的着火	点	0000	•	
	【难度】★				
	【答案】A			各种形状的蜂窝煤	
6.	下列混合气体,点燃	然时可能发生爆炸的)	
	①氢气和空气 ②	二氧化碳和一氧化	化碳 ③氦气和	氧气 ④天然气和氧气	
	A. ①②	B.123	C. 124	D.(1)(4)	
	【难度】★【答案】	D			
7.	有关 CO ₂ 的描述正硕	角的是 ()			
	A. 将 CO ₂ 通入滴有				
	B.CO ₂ 与CO互为[司素异形体			
	C. 干冰升华会放出	大量的热			
	D. 工业上可用锻烧	石灰石的方法制取	CO ₂		
	【难度】★【答案】	D			
8.	根据二氧化碳的性质	〔,相关实验过程 [□]	中无明显现象的是	()	
	CO ₂	CO ₂	CO ₂	34	
	—	→	→ =	T. 5	(CO ₂)
	₩ 水	■ 澄清 石灰水		紫色石蕊 试液	
	۸ 🐷 D	F0-1	\mathbf{c}	ווייין ת ש	

- 9. 有关 CO 的说法正确的是 ()
 - A. 一氧化碳是有刺激性气味的有毒气体
 - B. 在炉火上放一盆水,可以避免一氧化碳中毒
 - C. 一氧化碳中含有氧元素和碳元素, 所以它属于混合物
 - D. 一氧化碳能与血红蛋白结合,导致人体缺氧

【难度】★【答案】B

- 10. 有关碳和碳的氧化物的说法中,错误的是 ()
 - A. 用碳素墨水填写档案,是因为碳单质常温下化学性质稳定
 - B. CO和CO2都有毒,都是大气污染物
 - C. 一氧化碳能还原氧化铜,是因为一氧化碳有还原性

()

D. 金刚石、石墨物理性质差异很大是因为它们的结构中碳原子的排列方式不同

【难度】★【答案】B

- 11. 实验室制取二氧化碳气体通常有以下几个步骤:
 - ①加入大理石 ②检查装置的气密性 ③收集 ④验满 ⑤加入盐酸

实验步骤正确的是

- A. 24315
- B. 15234
- C. 21543
- D. 21534

【难度】★

【答案】D

- 12. 可以用来鉴别一氧化碳和二氧化碳的方法是 ()
 - A. 分别通入无色酚酞试液
- B. 分别放入一根带火星的木条
- C. 分别通过灼热的氧化铜
- D. 闻气味

【难度】★【答案】C

13. 不具有启普发生器的工作原理的装置是 ()

【难度】★【答案】A

- 14. 一定量的木炭在盛有氧气和氮气混气体的密闭容器中燃烧,有关分析正确的是 () A. 反应前后混合气体中氮气的质量分数不变 B. 反应后气体混合物的组成有3种情况 C. 若反应后气体是3种气体的混合物,则其中C、O元素的质量比一定小于12:16 D. 若反应后气体中有氧气,则容器中 C、O 元素的质量比大于 12:32 【难度】★★【答案】C 15. 等物质的量的下列物质,完全燃烧后得到二氧化碳质量最多的是 (B. CH_4 C. C_2H_6 D. C_3H_8 【难度】★【答案】D 16. 下图分别是二氧化碳的制取、干燥,收集和性质检验的装置图。其中错误的是 (【难度】★【答案】C 17. 实验室用二氧化锰和双氧水制取氧气,下列装置不适用的是 В \mathbf{C} D 【难度】★【答案】B 18. 取一定质量的 CaCO₃ 固体高温加热一段时间后,冷却,测得剩余固体的质量为 8.0g,其中,钙元素质量
- 分数为 50.0%。下列判断正确的是 ()
 - A. 生成 2.0gCO₂气体
- B. 原来 CaCO₃ 的质量为 14.5g
- C. 剩余 8.0g 固体为纯净物
- D. 剩余 8.0g 固体中加入稀盐酸无明显现象

【难度】★★★【答案】A

- 19. "碳"的世界丰富多彩。
 - ①根据表中提供的信息, 回答问题。

	金刚石	石墨	C ₆₀
结构	.:::.		
用途		作电极材料	作超导体材料
相应的性质	硬度大		

	表中几种物质均是由碳元素组成的单质	,互为。
	②"碳海绵"是已知最轻的固体材料,其	主要成分是石墨烯和碳纳米管(两者都是碳单质),具备高弹性
和疏	流松多孔的结构。下列关于"碳海绵"的说	法中正确的是。
	A. 具有吸附性 B.	在一定条件下可还原氧化铜
	C. 常温下化学性质活泼 D.	. 在氧气中完全燃烧的产物是 CO ₂
	③人类目前主要依赖的能源是化石燃料	,包括煤、、、天然气。
	④煤燃烧会产生大量的二氧化碳、一氧	
	,会造成酸雨的是	,能与血红蛋白结合的是。
	工业上常把煤块粉碎后使其充分燃烧,	
	A. 减少煤的浪费 B. 减少	
	C. 减少一氧化碳的排放 D. 减	
		源迫在眉睫,氢能作为理想的能源,重要原因是它的燃 烧产物
	亏染,用化学反应方程式表示为	
<i>/</i> 1 , 7	2mol 氢气中约含	
		理答案均可) 导电 同素异形体 ②ABD ③石油
		$2H_2+O_2 \xrightarrow{\text{f.m.}} 2H_2O$ 2.408×10^{24}
	\$CO ₂ SO ₂ CO AC \$	2.170
20	下图具利用 CO 还值 CvO 的实验妆器图	B,该实验开始时,要先通一会儿 CO 再加热,其目的是
20.	, , , , = , , , , , , , , , , , , , , ,	色变化是 ; 试剂瓶中的澄清石灰水用于检验和除
	理尾气的方法是。	
	【答案】排尽硬质玻璃管内的空气,以	防爆炸 黑色变红色
	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$ 左	
	右端稍露出橡皮塞 占燃(可收集)	

21.	甲乙两位同学根据下列转化关系在实验室中模拟炼铁,并对生成物的成分进行探究。
	①模拟炼铁的原理可能是(用化学方程式表示)。
	②初步分析得知,黑色粉末 B 的成分是一种或两种单质。
	【猜想与假设】
	甲同学认为无色气体 A 中可能有 CO_2 ,也可能有。
	乙同学认为黑色粉末的成分中存在以下两种情况:
	假设一: 只含有铁; 假设二: 含有。 【实验探究】 (1) 验证甲同学猜想的实验装置(箭头表示气体流向)。 ^{元色气体 A} → □
	I 澄清石灰水 II 浓硫酸 III 氧化铜粉末
	上述实验装置II中浓硫酸的作用是吸收水蒸气,装置I的作用是,
	当看到I中足量的澄清石灰水变浑浊,III中黑色固体变成红色后,可以确定无色气体 A 的

(2) 为验证乙同学的假设二成立,请你设计实验用物理方法(或化学方法)完成以下探究。

实验方法	实验操作	实验现象	实验结论
物 理 方 法			假设二成立
化 学 方 法			假设二成立

【交流反思】对甲同学实验存在的缺陷,甲乙同学一起进行了改进,解决了污染环境问题。

【难度】★★★

成分是_____。

【答案】(1) $3C + 2Fe_2O_3$ 一高温 $\rightarrow 4Fe + 3CO_2$ 个或 $3C + Fe_2O_3$ 一高温 $\rightarrow 2Fe + 3CO$ 个 CO 或一氧化碳;铁和碳 检验与吸收二氧化碳;CO 和 CO₂

(2) 以下实验方法中,每个操作和现象都正确得1分。(可任选一种)

实验方法	实验操作	实验现象
物理方法	取少量黑色粉末 B, 用磁铁吸引	部分黑色粉末被吸引上来
	方法 1: 取少量黑色粉末放在玻璃管	方法 1: 澄清石灰水变浑浊,产生白
	中, 通入氧气, 加热, 将产生的气体	色沉淀。
	通入澄清石灰水中	
	方法 2: 取少量黑色粉末与适量氧化	方法 2: 黑色粉末中出现红色固体,
化学方法	铜混合放在玻璃管中,高温加热,将	澄清石灰水变浑浊,产生白色沉淀。
	产生的气体通入澄清石灰水中	
	方法 3: (合理均得分)	

22. 请根据装置图回答下列有关问题(K、 K_1 、 K_2 、 K_3 为止水夹):

①写出图中标号仪器的名称:	I	, II	c

②欲用过氧化氢溶液制氧气,	可选田	发生基署。	请写出该反应的化学方程式
少 队用过来化全价似则非 (,	可延用	双工农且,	相可山区区凹的七十万性八

③将 C 和 D 装置相连接能制备 CO_2 并验证 CO_2 的性质,	连接 C 和 D 装置后, 关闭 K_2 ,	打开 K ₁ 和 K ₃ ,
用试管 a 收集 CO2, 此收集方法说明 CO2 的密度比空气的	(填"大"或"小"),	石蕊试液最终呈
色,b中发生反应的化学方程式是	0	

④收集满 CO_2 后,关闭 K_1 和 K_3 ,欲使 CO_2 气体进入装有澄清石灰水的烧杯中,进行如下操作:打开 K_2 、______,烧杯中发生反应的化学方程式______。

【难度】★★

 $H_2O + CO_2 \rightarrow H_2CO_3$ 手捂住或其他微热方法

 $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow +H_2O$

【提出问题】加热后剩余固体的成分是什么?

【提出猜想】

猜想二:碳酸钙部分分解,剩余固体成分为_____

【方案与结论】

实验步骤		实验现象	实验结论
1 H 7 HV 4	将少量剩余固体放入盛有水的烧杯中,		
步骤 1	搅拌、静置,滴加少量酚酞		猜想二成立
步骤 2	向步骤1中的烧杯中滴加盐酸至过量		

【难度】★★

【答案】 CaO (或氧化钙) CaCO₃ — 高温 → CO₂ ↑+CaO CaO 和 CaCO₃

烧杯中液体变红 液体由红色变无色并有气泡产生

24. 实验室常用下列实验装置来制取某些气体:

①甲图装置中仪器"a"的名称是 ; 甲图装置在实验室中可以用来制取 气体。 在 实 验 室中利用乙图装置来制取氧气,发生的化学方程式是

②利用块状的锌粒和稀硫酸制取氢气,可以利用丙图中的启普发生器,实验中锌粒应放在

(选填"A、B、C")处;利用启普发生器来制取气体的优点是:_____;

若用丁图装置来收集氢气,则排出空气的导管口是 (选填"D、E")处。

而在100多年前,曾利用水与铁在高温下反应得到氢气。

③若从原料上考虑,该方法的优点是_____;该反应的方程式为:

3Fe + 4H₂O→X+ 4H₂, 物质 X 的化学式为 。

④在反应时,人们将铁管埋在灼热的炭中,将水蒸气通过铁管,就 可以得到氢气。而铁管一般选择螺旋形(如右图),它比采用直管

⑤反应中为保持高温,让炭块充分燃烧,有关做法及解释正确的是

(选填编号)。

- A. 向炭中通入更多的空气,可使炭块燃烧更充分
- B. 敲打炭块,将炭块变得更小,可使炭块燃烧更快
- C. 加入越多的炭块, 燃烧的温度就越高
- D. 在炭块上加入少许油更易点燃,这是由于降低了炭块的着火点

【难度】★

【答案】长颈漏斗 CO_2 $2KClO_3 \xrightarrow{MnO_2} 2KCl + 3O_2$ ↑ B 随开随用,随关随停

E 原料来源广,容易获取 Fe_3O_4 聚集热量,增大反应物接触面积 AB