Evaluation of a Portable Laser Depainting System

Marta A. Jakab

Southwest Research Institute

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE FEB 2009	2. DEDODE TYPE			3. DATES COVERED 00-00-2009 to 00-00-2009		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Evaluation of a Por	rtable Laser Depain	ting System		5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE h Institute,6220 Cul -5166	` '		8. PERFORMING REPORT NUMB	GORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
13. SUPPLEMENTARY NO 2009 U.S. Army Co	otes orrosion Summit, 3-	5 Feb, Clearwater E	Seach, FL			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIM				18. NUMBER	19a. NAME OF	
a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified F			Same as Report (SAR)	OF PAGES 24	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Introduction
- Evaluation Criteria
- Evaluation of CARC coated 1018 Carbon
 Steel Substrate
- Removal of Corrosion Products
- Summary

Introduction

Types of hazardous waste generated by conventional paint removal processes:

Current Process	Hazardous Waste	
Chemical Stripping	methylene chloride, methyl ethyl ketone	
	sand media and coating residue	
Dry Media Pressure Blasting	plastic media and coating residue	
	wheat starch and coating residue	
Hand Sanding coating residue		

Mechanism of Laser Ablation

Performance Evaluation Parameters*

- Coating Removal Efficiency
- Coating Removal Rate
- Surface Erosion and Surface Roughness
- Thermal Load during Laser Depainting
- Adhesion Properties Following Laser Paint Removal and Re-coating
- Microhardness
- Electrochemical Properties
- Corrosion Product Removal
- * compared with sandblasting

Experimental Details

- Substrate: 3 in. by 6 in. 1018 Carbon Steel Panel
- Coatings used in this evaluation:
 MIL-P-53030 water reducible primer
 MIL-DTL-64159 waterborne CARC topcoat
- Measurement of thermal load: thermocouples attached to back-side of panel
- Evaluation of removal of corrosion product: uncoated panels exposed to GM9540P environment for 1-3 days

Coating Removal Efficiency

Cleaning with acetone

Laser parameters:

voltage: 3.61 kV, current: 0.75A, beam energy: 0.79 J/pulse,

gas mixture: $12.5 \% CO_2 + 22.5 \% N_2 + bal$. He, distance of end effector from test panel: 3.81 cm

Coating Removal Efficiency

Coating Removal Efficiency

If no charring is present, coating is removed completely from the surface.

Charring can be avoided by optimizing the laser fluence (optimum range: 8-12 J/cm²).

Coating Removal Rate

Test ID#	Voltage (kV)	Current (A)	Gas Mixture	Pulse Energy (J/pulse)	Panel Distance from End Effector (cm)	# Sweeps	Paint Removal Rate (cm²/min)										
137-1	2.61	0.75	A [†]	0.70	3.81	2	7.61										
137-2	3.61	0.75	А	0.79	1.27	1	6.84										
138-1	2.71	0.75	A +	0.70	1.27	1	20.12										
138-2	3.61	0.75	0.75	0./5	A [†] 0.79	0.79	1.91	1	13.83								
36-1-1	3.52	0.50	B‡	0.90	1.91	1	18.02										
36-1-2	3.32	0.52		Di	Di	Di	0.90	0.90	0.32	1	8.80						
60-1-1	3.52	0.52 B [†]	B [†] 0.90	1.27	2	6.24											
60-1-2	3.32		0.32	0.52	Di 0.90	ים	0.50	2.54	2	3.21							
120-1-1	2.00	DI DI	0.45 B [†] 1.1	1.91	1	4.30											
120-1-2	3.90	0.45		Bı	Βī	Bı	Bi	Bt .	Вт	B^{\intercal}	Bī	Ві	Ri	1.10	1.10	1.83	N/A*
D-1-1	2.50	0.50	B^{\dagger}	0.00	1.27	1	9.53										
D-1-2	3.52	0.52		Bı	Bı	Di	0.90	1.91	1	6.35							

^{*:} test was stopped prior to completion due to problems with laser

Paint removal rate using gritblasting: 4.5 ± 1.1 cm²/min

Selective Paint Removal

Clearwater Beach, FL

Surface Erosion and Surface Roughness

Surface Contamination

Thermal Load During Laser Depainting

14

Thermal Load During Laser Depainting

Thermal Load During Laser Depainting

Test ID	Pulse Energy (J/pulse)	Sample Distance from End Effector (cm)	# Sweeps	T _{max} (°F)
137-1	0.70	3.81	2	156.25
137-2	0.79	1.27	1	230.71
138-1	0.70	1.27	1	128.06
138-2	0.79	1.91	1	160.17
36-1-1	0.9	1.91	1	176.68
36-1-2	0.9	0.32	1	251.76
60-1-1	0.9	1.27	2	274.84
60-1-2	0.9	2.54	2	236.19
120-1-1	1.1	1.91	2	N/C†
120-1-2	1.1	1.83	N/A*	181.82
D-1-1	0.9	1.27	1	199.60
D-1-2	0.9	1.91	1	219.83

⁺ N/C: not collected

^{*} N/A: not available, the test was terminated prior to completion of second sweep.

Thermal Resistance of CARC

No changes in FTIR spectrum (chemical bonds) up to 302 °F.

No damage is expected to surrounding coated areas.

Adhesion and Microhardness

Paint Removal Method		ASTM D3359, Method B		
		Average	Standard Deviation	
None (control)		3.50	0.55	
Gritblasting		3.75	0.50	
	Clean Area	3.50	0.70	
Laser Treatment	Clean Area*	3.00	0.00	
	Charred Area*	3.50	0.7	

Dian later	Vickers Microhardness (ASTM E384, 100 g load)			
Paint Removal Method	Average	Standard Deviation		
None (control)	110.4	1.8		
Gritblasting	107.0	5.2		
Laser Treatment	101.2	2.7		

Electrochemical Properties

Paint Removal Method	R_p (Non-deareated), Ω	R_p (Deareated), Ω	
Gritblasting	1877 ± 73	497 ± 14	
Laser Treatment	1143 ± 190	1610 ± 40	

Removal of Corrosion Products

Removal of Corrosion Products

Lightly Rusted Panel:

Fe/O = 0.72

Fe/O = 2.73

BEFORE Heavily Rusted Panel:

Fe/O = 0.38

Fe/O = 0.58

Thermal load during corrosion product removal: T(max) = 315.20 °F

Summary

- The laser was found to be efficient in removing CARC with coating removal rates comparable to those of sandblasting. Charring was observed in some cases during laser decoating, probably due to low laser fluence. Paint residue was found on the charred surface indicating incomplete paint removal.
- Preliminary studies of selective coating removal showed that the laser can be optimized to remove the topcoat without damaging the primer layer.
- The laser treatment did not affect the surface roughness of the test panels, while sandblasting markedly increased the surface roughness and caused significant damage to the oxide layer. The impingement of high velocity sand particles also led to Si contamination of the surface.
- Thermal load of the substrate during lasing was measured using thermocouples attached to the back surface of the test panels. The temperature of the carbon steel substrate increased with each pass of the laser beam across the surface. The maximum temperature value found during laser treatment of CARC-coated test panels did not exceed 302°F, which was determined to be the upper limit for the thermal stability of CARC.

Summary

- No effect of the laser treatment on adhesion properties of the surface was found.
- The microhardness of the laser decoated panels also did not change compared to that of as-received control and gritblasted test panels.
- No significant effect of the laser treatment was found on the electrochemical properties of the substrate.
- The investigatewd laser system was also successfully used to remove corrosion products from 1018 carbon steel. Most of the corrosion product layer was removed in case of lightly rusted surfaces, while only the top corrosion product layer was removed when heavy rust was present on the surface. The thermal loading, however, was higher during the removal of heavy rust, exceeding 302°F, which was the upper limit of the thermal stability of CARC.

Acknowledgements

- The work reported here was sponsored by the U. S. Marine Corps Corrosion Prevention and Control (CPAC) Program Office.
- The author acknowledges the guidance provided by Mr. Matthew Koch, USMC CPAC and Mr. Hancel Porterfield.
- The author also acknowledges the technical assistance provided by Albert Faz, Byron Chapa, Jim Riggs and Chris Wolff in the laboratory tests.