IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 COMPUTER ARCHITECTURE AND ORGANIZATION

(Common to Electronics and Communication Engineering and Electronics and **Instrumentation Engineering)**

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

		PART-A (22 Marks)	
1.	a)	What are the data types?	[4]
	b)	Write micro operations for ADD R1, R2.	[3]
	c)	What is sequencer? Mention its functions.	[4]
	d)	Differentiate between static and dynamic memory.	[4]
	e)	What is interrupt?	[3]
	f)	What is pipelining? Draw the diagram for instruction pipelining.	[4]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	Explain error detection with odd parity bit and even parity bit.	[8]
	b)	Explain the bus structures.	[8]
3.	a)	Briefly explain the different instruction formats with suitable examples.	[8]
	b)	Discuss about steps involved in instruction cycle with interrupt enabled.	[8]
4.	a)	Discuss about functioning of micro-programmed control unit.	[8]
	b)	Justify how Hardwired control unit is faster than micro-programmed control unit.	[8]
5.	a)	Draw and Explain about the virtual memory organization.	[8]
	b)	Explain the cache memory mapping techniques.	[8]
6.	a)	What is meant by handshaking? Explain with neat diagram.	[8]
	b)	Explain programmed I/O in detail.	[8]
7.	a)	What is cache coherence problem? Discuss about different cache coherence	
		approaches.	[8]
	b)	Explain briefly about arithmetic pipeline with neat diagram.	[8]

R13

Code No: **RT41044**

Set No. 2

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 COMPUTER ARCHITECTURE AND ORGANIZATION

(Common to Electronics and Communication Engineering and Electronics and
Instrumentation Engineering)
e: 3 hours

Max. Marks: 70

Time: 3 hours

Question paper consists of Part-A and Part-B

Answer ALL sub questions from Part-A

Answer any THREE questions from Part-B

PART-A (22 Marks)

1.	a)	Define and explain Von Neumann Architecture.	[4]
	b)	Define the interrupt cycle.	[3]
	c)	What is microinstruction? Write its format.	[4]
	d)	Draw the memory hierarchy.	[4]
	e)	What is meant by handshaking?	[4]
	f)	What is an arithmetic pipeline?	[3]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	Give the functional organization of a digital computer and explain the function of	
	/	each element of a computer.	[8]
	b)	Design a 4-bit adder/subtractor circuit and explain its function.	[8]
	U)	Design a 1 on addensaction enealt and explain its function.	[0]
3.	a)	Design a digital circuit that performs the four logic operations of AND, OR,	
		Exclusive-OR and NOT. Show the logic diagram of one typical stage.	[8]
	b)	Explain in detail various types of memory –reference instructions with example.	[8]
	,		
4.	a)	Explain about microinstruction sequencing techniques, specifically variable format	
		address microinstruction.	[8]
	b)	Explain how control memory functions.	[8]
5.	a)	Explain about virtual memory address translation.	[8]
	b)	Discuss about memory management hardware.	[8]
6.	a)	What are the different modes of data transfer? Explain each mode in detail.	[8]
	b)	What is Interrupt? Explain the Priority Interrupt technique.	[8]
7.	a)	Discuss in detail about the multiport memory interconnection structure used in	
	,	multiprocessors.	[8]
	b)	Explain in detail inter processor synchronization.	[8]

R13

Code No: **RT41044**

Set No. 3

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 COMPUTER ARCHITECTURE AND ORGANIZATION

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

		$\underline{IAKI-A}$ (22 Marks)	
1.	a)	Explain the IEEE single and double precision standard of floating point	
		representation.	[4]
	b)	What are the phases in instruction cycle?	[3]
	c)	Differentiate between hardwired control and micro programmed control unit.	[4]
	d)	Differentiate between RAM and ROM.	[4]
	e)	What are functions of IO processors?	[3]
	f)	What is parallel processing?	[4]
		$\mathbf{PART} - \mathbf{B} (3x16 = 48 Marks)$	
2.	a)	What are functional units? Discuss on basic functional units of a computer?	[8]
	b)	Derive and explain an algorithm for adding and subtracting 2 floating point	
		binary numbers.	[8]
3.	a)	With examples explain the Data transfer, Logic and Program Control	
		Instructions.	[8]
	b)	Explain the various address modes? Give the suitable examples.	[8]
4.	a)	Discuss the two techniques to design the control unit.	[8]
••	b)	List and explain the functions of control unit.	[8]
	- /		L-1
5.	a)	Explain the memory hierarchy with neat diagram.	[8]
	b)	What is meant by paging? Explain paging technique with an example.	[8]
6.	a)	Write short notes on I/O devices.	[8]
	b)	Explain the strobe control method of asynchronous data transfer.	[8]
7	۵)	What is simplicing? Name the two simpline appointings. Explain about the	
7.	a)	What is pipelining? Name the two pipeline organizations. Explain about the arithmetic pipeline with the help of an example.	ΓΟΊ
	b)	Illustrate in detail various characteristics of multiprocessors.	[8] [8]
	υj	musuate in uctan various characteristics of muniprocessors.	[O]

1 of 1

R13

Code No: **RT41044**

Set No. 4

IV B.Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 COMPUTER ARCHITECTURE AND ORGANIZATION

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B PART-A (22 Marks) 1. a) Explain the bus structure. [4] b) What is register transfer language? Give an example for RTL. [3] c) What is the function of control memory? [4] d) What is meant by page table? [3] Differentiate between synchronous and Asynchronous modes. e) [4] Describe the need for Inter Processor Communication. f) [4]

$\underline{\mathbf{PART-B}}\ (3x16 = 48\ Marks)$

- 2. a) Differentiate between multiprocessor and multicomputer
 b) Draw the flowchart for Booth's algorithm for multiplication of signed 2's complement numbers and explain with an example.
- 3. a) What is instruction cycle? Explain each phase of instruction cycle with neat diagram? [8]
 - b) Write about memory read and memory write operations. [8]
- 4. a) Explain the block diagram of a control unit. [8]
- b) Describe micro instruction sequencing with neat block diagram. [8]
- 5. a) Explain the Cache memory? Explain how blocks of main memory are addressed through the cache blocks. [8]
 - b) Explain the auxiliary memory. [8]
- 6. a) With a neat diagram, describe DMA transfer in a computer system.b) Discuss about Input-output processor.[8]
- b) Discuss about input-output processor. [8]
- 7. a) Explain instruction pipeline with neat timing diagram. [8]
 - b) What is cache coherence problem? Discuss about different cache coherence approaches. [8]

1 of 1