Cours de Mathématiques — Niveau terminale RYAN BOUCHOU

Sommaire

1	Les	ensembles	3
	1	Éléments généraux	3
	2	Opérations ensemblistes	3
	3	Cardinalité	
	4	Produit cartésien	4
2	Dén	nombrement	5
	1	k_Arrangements	5
	2	Combinaisons	
	3	Triangle de Pascal	6

1 Les ensembles

1 Éléments généraux

Définition: Ensemble

Un ensemble est une collection d'objets appelés **éléments**, qui peuvent être en nombre fini ou non.

Un ensemble peut se définir de deux manières :

• En donnant la liste explicite et exhaustive de ses éléments. (Raisonnablement dans le cas des ensembles finis)

Exemple: $E = \{6, 8, D, \%\}$

• Par compréhension : lorsque les éléments vérifient une propriété particulière. Exemple: $E = \{x \in \mathbb{R} : x^2 + x + 1 = 0\}$ i.e $Rac(X^2 + X + 1)$

On note \emptyset l'ensemble vide, ne contenant donc aucun élément. Par ailleurs, un certain nombre d'ensembles de références sont nécessaires ; à savoir: $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ On définit pour la suite E et F des ensembles quelconques, ainsi que $n \in \mathbb{N}^*$

2 Opérations ensemblistes

- Appartenance: $x \in E$ si x appartient à E
- Inclusion: $E \subset F$ si E est inclus dans F ; i.e, E est un sous-ensemble de F
- Réunion: $E \cup F$ est l'ensemble des éléments appartenant à E ou F
- Intersection: $E \cap F$ est l'ensemble des éléments appartenant à E et à F
- Exclusion: $E \setminus F$ est l'ensemble des éléments de E qui n'appartiennent pas à F
- Différence symétrique: $E\triangle F$ est l'ensemble des éléments qui sont uniquement dans E et uniquement dans F. Autrement dit, $E\triangle F=(E\cup F)\backslash(E\cap F)$

Par ailleurs, on note P(E) les parties de E, l'ensemble des sous-ensembles de E.

 $\underline{\wedge}$ Si $B = \{1, 7, 8\}$ Attention à la différence entre $\{1\} \subset B$ et $\{1\} \in P(B)$

3 Cardinalité

Définition: Cardinal

On note Card(E), |E| ou encore #E, le nombre d'éléments de E. On l'appelle **cardinal** de E.

Définition: Ensembles deux à deux disjoints

Si $E_1, ..., E_n$ sont deux à deux disjoints, alors $\forall i, j \in [1..n]$ et $i \neq j, Card((E_i \cap E_j)) = 0$

Propriété

Si $E_1, ..., E_n$ sont deux à deux disjoints et finis, alors $Card(E_1 \cup ... \cup E_n) = \sum_{i=1}^n Card(E_i)$

Ryan Bouchou 3/7

Produit cartésien

On appelle produit cartésien de n ensemble $E_1, ..., E_n$, l'ensemble

$$E_1 \times ... \times E_n = \{(x_1, ..., x_n) \mid x_1 \in E_1, ..., x_n \in E_n\}$$

dont les éléments sont des n_uplets. On parle alors de couple, triplet, quadruplets etc... Si l'un des E_i est vide alors, le produit cartésien l'est aussi. Enfin, si $E_1 = ... = E_n = E$ alors on note leur produit cartésien E^n

Propriété

Soient
$$E_1, ..., E_n$$
 des ensembles finis.
 $Card(E_1 \times ... \times E_n) = \prod_{i=1}^n Card(E_i)$

Exercices

Exercices 1

On considère le diagramme de Venn suivant, avec A,B,C trois parties d'un ensemble E; et a,b,c,d,e,f,g,h des éléments de E.

Dire si les affirmations suivantes sont vraies ou fausses:

- $g \in A \cap B$
- $g \in \bar{A} \cap \bar{B}$
- $g \in \bar{A} \cup \bar{B}$
- $f \in C \backslash A$
- $e \in \bar{A} \cap \bar{B} \cap \bar{C}$
- $\{h,b\}\subset \bar{A}\cap \bar{B}$

Exercice 2

Soient A, B, C trois ensembles tels que $A \cup B = B \cap C$. Montrer que $A \subset B \subset C$.

Exercice 3

Soient A, B et C trois parties d'un ensemble E. Pour $X \subset E$, on note X^c le complémentaire de X dans E . Démontrer les lois de Morgan suivantes :

1.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
 2. $(A^c)^c = A$

2.
$$(A^c)^c = A$$

3.
$$(A \cap B)^c = A^c \cup B^c$$

4.
$$(A \cup B)^c = A^c \cap B^c$$
.

Exercice 4

Écrire l'ensemble des parties de E=a,b,c,d.

Ryan Bouchou 4/7

Exercice 5

On considère l'ensemble $D = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1\}$. Montrer qu'il ne peut pas s'écrire comme un produit cartésien de deux parties de \mathbb{R} .

Exercice 6

On considère $\Sigma_1 = \{0, 1\}$ et $\Sigma_2 = \{a, b, c, d, e\}$. On souhaite composer des mots de passes composé d'un chiffre et de 8 lettres. Quel est le nombre de mdp possibles ?

Quel est le nombres de mots de passes si on s'autorise à avoir un ou deux chiffres?

2 Dénombrement

On considère dans cette partie un ensemble E de cardinal fini n et $0 \le k \le n$:

1 k Arrangements

Définition: Arrangement

On appelle k_liste ou k_Arrangements un k_ uplet d'éléments de E tous différents.

On assimile un k_Arrangement au nombre d'issues lors d'un tirage sans remise de k éléments dans un ensemble à n éléments.

Propriété

Le nombre de k_Arrangements vaut $n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$

Propriété

Le nombre de permutations de E vaut n!

2 Combinaisons

Définition: k_Combinaison

Partie de E à k éléments.

On assimile le nombre de k-combinaison au nombre d'issues d'un tirage avec remise de k éléments dans un ensemble de cardinal n.

Propriété

Le nombre de k-combinaisons de E est $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Symétrie des coefficients binomiaux: $\binom{n}{k} = \binom{n}{n-k}$

Exercice 7

On considère une course de karting comprenant n pilotes. Déterminer le nombre de podium possibles (on classera les 3 premiers).

Ryan Bouchou 5/7

Exercice 8

On considère une course de karting comprenant n pilotes. Malheureusement, tous ne peuvent pas s'élancer sur la grille de départ en même temps. Déterminer le nombre de possibilités de sélectionner les k premiers qui partiront en premiers.

3 Triangle de Pascal

Démonstrations

 \rightarrow Méthode combinatoire

 \rightarrow Méthode algébrique

Ryan Bouchou 6/7

Propriété

Pour n un entier natural, on a $:\sum_{k=0}^{n} = \binom{n}{k} = 2^{n}$

Démonstrations

 \rightarrow Méthode combinatoire

 \rightarrow Méthode algébrique

Propriété

Le nombre de parties d'en ensemble à n éléments vaut 2^n

Exercice - Spécialité NSI

On pourra aborder ici quelques notions sur les Langages

On considère $\Sigma_1 = \{0,1\}$ et $\Sigma_2 = \{a,b,c,d,e\}$. On souhaite composer des mots de passes à partir du langage engendré par $L = \Sigma_1^+ \cdot \Sigma_2^+$; dont on restreindra leur taille à un entier n>1. On notera L' le langage subséquent.

• Cas où n=2

Préciser la partie de L, notée L', qui nous intéresse ici à l'aide d'une description ensembliste par compréhension.

Même question avec un produit cartésien. Donner alors le cardinal de cet ensemble.

• Cas où n>1

On considère u un mot de L'. Préciser sa décomposition et les caractéristiques de celles-ci. Donner le cardinal de L' en fonction de n, et des autres données de l'exercice.

Ryan Bouchou 7/7