Spans

December 3, 2023

- **00QB** This chapter contains some material about spans. Notably, we discuss and explore:
 - 1. The basic definitions around spans (Section 1);
 - 2. The relation between spans and functions (Proposition 7.1.1.1);
 - 3. The relation between spans and relations (Propositions 7.2.2.1 and 7.3.1.1 and Remark 7.5.1.1).
 - 4. "Hyperpointed sets" (??). I don't know why I wrote this...

TODO:

- 1. internal adjoint equivalences in **Rel**
- 2. internal adjoint equivalences in Span
- 3. 2-categorical limits in **Rel**;
- 4. morphism of internal adjunctions in **Rel**;
- 5. morphism of internal adjunctions in Span;
- 6. morphism of co/monads in Span;
- 7. What is Adj(Span(A, B))?
- 8. monoids, comonoids, pseudomonoids, etc. in Span.
- 9. write down the dumb intuition about spans inducing morphisms $\mathsf{Sets}(S,A) \to \mathsf{Sets}(S,B)$ instead of $\mathcal{P}(A) \to \mathcal{P}(B)$ from the similarity between

$$S \to A \times B$$

Contents 2

and

$$A \times B \rightarrow \{\mathsf{t},\mathsf{f}\}.$$

This intuition is justified by taking A = pt or B = pt.

- 10. What about using the direct image with compact support in $g(f^{-1}(a))$?
- 11. Monads in Span | develop this in the level of morphisms too
- 12. Comonads in Span are spans whose legs are equal | develop this in the level of morphisms too
- 13. Does Span have an internal **Hom**?
- 14. Examples of spans
- 15. Functional and total spans
- 16. closed symmetric monoidal category of spans
- 17. double category of relations
- 18. collage of a span
- 19. equivalence spans?
- 20. functoriality of powersets for spans
- 21. Is Span a closed bicategory?
- 22. skew monoidal structure on Span(A, B)
- 23. Adjunctions in Span
- 24. Isomorphisms in Span
- 25. Equivalences in Span
- 26. Interaction between the above notions in Span vs.in **Rel** via the comparison functors

Contents

1	Spans	4
	1.1 The Walking Span	4

Contents 3

	1.2 1.3 1.4 1.5	Spans	4 4 5 6			
2		segories of Spans	6			
	2.1	Categories of Spans	6			
	2.2 2.3	The Bicategory of Spans The Monoidal Bicategory of Spans	7 10			
	2.3	The Double Category of Spans	10			
	2.5	Properties of The Bicategory of Spans	13			
3	Lin	nits of Spans	16			
4	Col	imits of Spans	17			
5	Cor	nstructions With Spans	17			
U	5.1	Representable Spans	17			
	5.2	Composition of Spans	17			
	5.3	Horizontal Composition of Morphisms of Spans	18			
	5.4	Properties of Composition of Spans	19			
	5.5	The Inverse of a Span	19			
6	Fur	actoriality of Spans	19			
	6.1	Direct Images				
	6.2	Functoriality of Spans on Powersets	19			
7		mparison of Spans to Functions and Relations	19			
	7.1	Comparison to Functions.	19			
	7.2	Comparison to Relations: From Span to Rel	21			
	7.3 7.4	Comparison to Relations: From Rel to Span	23			
tic	on		25			
	7.5	Comparison to Multirelations	25			
	7.6	Comparison to Relations via Double Categories	26			
\mathbf{A}	A Other Chapters 2					

Spans 1 00QC

The Walking Span

OURSE Definition 1.1.1.1. The walking span is the category Λ that looks like this:

00QF 1.2 Spans

Let A and B be sets.

Definition 1.2.1.1. A span from A to B^1 is a functor $F: \Lambda \to \mathsf{Sets}$ such that

$$F([-1]) = A,$$

$$F([1]) = B.$$

Remark 1.2.1.2. In detail, a span from A to B is a triple (S, f, g)consisting of 2,3

- The Underlying Set. A set S, called the **underlying set of** (S, f, g);
- The Legs. A pair of functions $f: S \to A$ and $g: S \to B$.

00QJ 1.3 Morphisms of Spans

³Every span (S, f, g) from A to B determines in particular a relation $R: A \to B$ via $R \stackrel{\text{def}}{=} \{ (f(a), g(a)) \mid a \in A \},\$

¹Further Terminology: Also called a **roof from** A **to** B or a **correspondence from** A to B.

² Picture:

- OOQK Definition 1.3.1.1. A morphism of spans (R, f_1, g_1) to $(S, f_2, g_2)^4$ is a natural transformation $(R, f_1, g_1) \Longrightarrow (S, f_2, g_2)$.
- 00QL Remark 1.3.1.2. In detail, a morphism of spans from (R, f_1, g_1) to (S, f_2, g_2) is a function $\phi \colon R \to S$ making the diagram⁵

commute.

00QM 1.4 Functional Spans

Let $\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$ be a span. A morphism of spans from id_A to $\lambda \diamond \lambda^{\dagger}$ is a morphism

$$s: A \to S \times_B S$$

making the diagram

i.e. where $R(a) = g(f^{-1}(a))$ for each $a \in A$; see Proposition 7.2.2.1.

⁴Further Terminology: Also called a morphism of roofs from (R, f_1, g_1) to (S, f_2, g_2) or a morphism of correspondences from (R, f_1, g_1) to (S, f_2, g_2) .

 $^{^5} Alternative\ Picture:$

commute, where $S \times_B S$ is the pullback

$$S \times_B S \cong \{(s,t) \in S \times S \mid g(s) = g(t)\}$$

$$S \times_B S \longrightarrow S$$

$$\downarrow \qquad \qquad \downarrow g$$

$$S \xrightarrow{g} B$$

of S with itself along g.

- 00QN 1.5 Total Spans
- **OOQP** 2 Categories of Spans
- 00QQ 2.1 Categories of Spans

Let A and B be sets.

OOQR Definition 2.1.1.1. The category of spans from A to B is the category $\mathsf{Span}(A,B)$ defined by

$$\mathsf{Span}(A,B) \stackrel{\scriptscriptstyle{\mathrm{def}}}{=} \mathsf{Fun}(\Lambda,\mathsf{Sets}) \underset{\mathrm{ev}_{[-1]},\mathsf{Sets},[A]}{\times} \mathsf{pt} \underset{[B],\mathsf{Sets},\mathrm{ev}_{[1]}}{\times} \mathsf{Fun}(\Lambda,\mathsf{Sets}),$$

as in the diagram

- 00QS Remark 2.1.1.2. In detail, the category of spans from A to B is the category $\mathsf{Span}(A,B)$ where
 - Objects. The objects of Span(A, B) are spans from A to B;

- Morphisms. The morphism of Span(A, B) are morphisms of spans;
- *Identities*. The unit map

$$\mathbb{F}^{\mathsf{Span}(A,B)}_{(S,f,g)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{Span}(A,B)}((S,f,g),(S,f,g))$$

of Span(A, B) at (S, f, g) is defined by ⁶

$$id_{(S,f,g)}^{\mathsf{Span}(A,B)} \stackrel{\text{def}}{=} id_S;$$

• Composition. The composition map

$$\circ_{R,S,T}^{\mathrm{Span}(A,B)} \colon \mathrm{Hom}_{\mathrm{Span}(A,B)}(S,T) \times \mathrm{Hom}_{\mathrm{Span}(A,B)}(R,S) \to \mathrm{Hom}_{\mathrm{Span}(A,B)}(R,T)$$

of Span
$$(A, B)$$
 at $((R, f_1, g_1), (S, f_2, g_2), (T, f_3, g_3))$ is defined by⁷

$$\psi \circ^{\mathsf{Span}(A,B)}_{R,S,T} \phi \stackrel{\scriptscriptstyle \mathrm{def}}{=} \psi \circ \phi.$$

00QT 2.2 The Bicategory of Spans

OOQU Definition 2.2.1.1. The bicategory of spans is the bicategory Span where

• Objects. The objects of Span are sets;

 $^6Picture:$

⁷Picture:

• Hom-Categories. For each $A, B \in \text{Obj}(\mathsf{Span})$, we have

$$\mathsf{Hom}_{\mathsf{Span}}(A,B) \stackrel{\mathrm{def}}{=} \mathsf{Span}(A,B);$$

• *Identities*. For each $A \in \text{Obj}(\mathsf{Span})$, the unit functor

$$\mathbb{H}_A^{\mathsf{Span}} \colon \mathsf{pt} \to \mathsf{Span}(A,A)$$

of Span at A is the functor picking the span (A, id_A, id_A) :

• Composition. For each $A, B, C \in \text{Obj}(\mathsf{Span})$, the composition bifunctor

$$\circ^{\mathsf{Span}}_{A,B,C} \colon \mathsf{Span}(B,C) \times \mathsf{Span}(A,B) \to \mathsf{Span}(A,C)$$

of Span at (A, B, C) is the bifunctor where

- Action on Objects. The composition of two spans

is the span $(R \times_B S, f_1 \circ \operatorname{pr}_1, g_2 \circ \operatorname{pr}_2)$, constructed as in the diagram

- Action on Morphisms. The horizontal composition of 2-morphisms is defined via functoriality of pullbacks: given morphisms of spans

their horizontal composition is the morphism of spans

constructed as in the diagram

- Associators and Unitors. The associator and unitors are defined using the universal property of the pullback.
- **00QV** 2.3 The Monoidal Bicategory of Spans
- 00QW 2.4 The Double Category of Spans
- OOQX Definition 2.4.1.1. The double category of spans is the double category Span^{dbl} where
 - Objects. The objects of Span^{dbl} are sets;
 - Vertical Morphisms. The vertical morphisms of Span^{dbl} are functions $f: A \to B$;
 - Horizontal Morphisms. The horizontal morphisms of Span^{dbl} are spans $(S, \phi, \psi) \colon A \to X$;
 - 2-Morphisms. A 2-cell

of Span^{dbl} is a morphism of spans from the span

to the span

• Horizontal Identities. The horizontal unit functor

$$\not\Vdash^{\mathsf{Span}^{\mathsf{dbl}}} \colon \left(\mathsf{Span}^{\mathsf{dbl}}\right)_0 \to \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1$$

of $\mathsf{Span}^\mathsf{dbl}$ is the functor where

- Action on Objects. For each $A \in \text{Obj}\left(\left(\mathsf{Span}^{\mathsf{dbl}}\right)_{0}\right)$, we have $\mathbb{1}_{A} \stackrel{\text{def}}{=} (A, \mathrm{id}_{A}, \mathrm{id}_{A})$,

as in the diagram

– Action on Morphisms. For each vertical morphism $f \colon A \to B$ of $\mathsf{Span}^\mathsf{dbl}$, i.e. each map of sets f from A to B, the identity 2-morphism

$$\begin{array}{ccc}
A & \xrightarrow{\mathbb{F}_A} & A \\
\downarrow & & \parallel & \downarrow f \\
f & & \mathbb{F}_f & \downarrow f \\
B & \xrightarrow{\mathbb{F}_B} & B
\end{array}$$

of f is the morphism of spans from

to

given by the isomorphism $A \xrightarrow{\cong} A \times_B B$;

• Vertical Identities. For each $A \in \mathrm{Obj}\Big(\mathsf{Span}^\mathsf{dbl}\Big)$, we have

$$\mathrm{id}_A^{\mathsf{Span}^{\mathsf{dbl}}} \stackrel{\mathrm{def}}{=} \mathrm{id}_A;$$

Identity 2-Morphisms. For each horizontal morphism $R: A \to B$ of Span^{dbl}, the identity 2-morphism

$$\begin{array}{ccc}
A & \xrightarrow{S} & B \\
\downarrow \operatorname{id}_{A} & & \downarrow \operatorname{id}_{S} & \downarrow \operatorname{id}_{B} \\
A & \xrightarrow{S} & B
\end{array}$$

of R is the morphism of spans from

to

given by the isomorphism $S \xrightarrow{\cong} A \times_A S$;

• Horizontal Composition. The horizontal composition functor

$$\odot^{\mathsf{Span}^{\mathsf{dbl}}} \colon \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1 \times_{\left(\mathsf{Span}^{\mathsf{dbl}}\right)_0} \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1 \to \left(\mathsf{Span}^{\mathsf{dbl}}\right)_1$$

of Span^{dbl} is the functor where

– Action on Objects. For each composable pair
$$A \overset{(R,\phi_R,\psi_R)}{\to} B \overset{(S,\phi_S,\psi_S)}{\to} C$$

of horizontal morphisms of Span^{dbl}, we have

$$(S,\phi_S,\psi_S)\odot(R,\phi_R,\psi_R)\stackrel{\mathrm{def}}{=} S\circ^{\mathsf{Span}}_{A,B,C}R,$$

where $S \circ_{A,B,C}^{\mathsf{Span}} R$ is the composition of (R,ϕ_R,ψ_R) and (S,ϕ_S,ψ_S) defined as in Definition 2.2.1.1;

- Action on Morphisms. For each horizontally composable pair

of 2-morphisms of Span^{dbl},

• Vertical Composition of 1-Morphisms. For each composable pair $A \xrightarrow{F} B \xrightarrow{G} C$ of vertical morphisms of $\mathsf{Span}^\mathsf{dbl}$, i.e. maps of sets, we have

$$g \circ^{\mathsf{Span}^{\mathsf{dbl}}} f \stackrel{\scriptscriptstyle \mathrm{def}}{=} g \circ f;$$

• Vertical Composition of 2-Morphisms. For each vertically composable pair

of 2-morphisms of Span^{dbl}

• Associators and Unitors. The associator and unitors of Span^{dbl} are defined using the universal property of the pullback.

2.5 Properties of The Bicategory of Spans

QUOUT Proposition 2.5.1.1. Let $\lambda = (A \xleftarrow{f} S \xrightarrow{g} B)$ be a span.

00R0 1. Self-Duality.

00R1 2. Isomorphisms in Span.

- 00R2 3. Equivalences in Span.
- 00R3 4. Adjunctions in Span. Let A and B be sets.⁸
- 00R4 (a) We have a natural bijection

$$\left\{ \begin{array}{c} \text{Adjunctions in Span} \\ \text{from } A \text{ to } B \end{array} \right\} \cong \left\{ \begin{array}{c} \text{Spans } A \xleftarrow{f} S \xrightarrow{g} B \\ \text{from } A \text{ to } B \text{ with} \\ f \text{ an isomorphism} \end{array} \right\}.$$

00R5 (b) We have an equivalence of categories

$$\mathsf{MapSpan}(A,B) \stackrel{\mathrm{eq.}}{\cong} \mathsf{Sets}(A,B)_{\mathsf{disc}},$$

where $\mathsf{MapSpan}(A,B)$ is the full subcategory of $\mathsf{Span}(A,B)$ spanned by the spans $A \xleftarrow{f} S \xrightarrow{g} B$ from A to B with f an isomorphism.

00R6 (c) We have a biequivalence of bicategories

$$\mathsf{MapSpan} \overset{\mathrm{eq.}}{\cong} \mathsf{Sets}_{\mathsf{bidisc}},$$

where MapSpan is the sub-bicategory of Span whose Hom-categories are given by MapSpan(A, B).

- 00R7 5. Monads in Span.
- 00R8 6. Comonads in Span.
- 00R9 7. Monomorphisms in Span.
- 00RA 8. Epimorphisms in Span.
- **00RB** 9. Existence of Right Kan Extensions.
- **00RC** 10. Existence of Right Kan Lifts.
- 00RD 11. Closedness.

Proof. Item 1, Self-Duality:

Item 2, Isomorphisms in Span:

Item 3, *Equivalences in* Span:

Item 4, Adjunctions in Span: We first prove Item 4a.

We proceed step by step:

⁸In the literature (e.g. [ref]),...are called maps and denoted by MapSpan(A, B)

1. From Adjunctions in Span to Functions. An adjunction in Span from A to B consists of a pair of spans

together with maps

We claim that these conditions

- 2. From Functions to Adjunctions in Rel.
- 3. Invertibility: From Functions to Adjunctions Back to Functions.
- 4. Invertibility: From Adjunctions to Functions Back to Adjunctions.

We now proceed to the proof of Item 4b. For this, we will construct a functor

$$F \colon \mathsf{Sets}(A,B)_{\mathsf{disc}} \to \mathsf{MapSpan}(A,B)$$

and prove it to be essentially surjective and fully faithful, and thus an equivalence by Categories, ?? of ??. Indeed, given a map $f: A \to B$, let F(f) be the representable span associated to f of Definition 5.1.1.1, and let F send the unique (identity) morphism from f to itself to the identity morphism of F(f) in MapSpan(A, B). We now prove that F is fully faithful and essentially surjective:

1. F Is Fully Faithful: Given maps $f, g: A \Rightarrow B$, we need to show that

$$\operatorname{Hom}_{\mathsf{MapSpan}(A,B)}(F(f),F(g)) = \begin{cases} \operatorname{pt} & \text{if } f = g, \\ \emptyset & \text{otherwise.} \end{cases}$$

Indeed, a morphism from F(f) to F(g) takes the form

From the relations $id_A = id_A \circ \phi$ and $f = g \circ \phi$, we see that $\phi = id_A$, and thus from the relation $f = g \circ \phi$ there is such a morphism iff f = g.

2. F Is Essentially Surjective: Let λ be a span of the form

$$\begin{array}{c}
S \\
\phi \nearrow S \\
A & B.
\end{array}$$

we claim that $\lambda \cong F(f \circ \phi^{-1})$. Indeed, we have morphisms

inverse to each other in $\mathsf{MapSpan}(A,B)$, and thus $\lambda \cong F(f \circ \phi^{-1})$.

Finally, we prove Item 4c.

Item 5, *Monads in* Span:

Item 6, *Comonads in* Span:

Item 7, Monomorphisms in Span:

Item 8, *Epimorphisms in Span*:

Item 9, Existence of Right Kan Extensions:

Item 10, Existence of Right Kan Lifts:

Item 11, Closedness:

OURE 3 Limits of Spans

OORF 4 Colimits of Spans

OORG 5 Constructions With Spans

00RH 5.1 Representable Spans

OORJ Definition 5.1.1.1. Let $f: A \to B$ be a function.

• The representable span associated to f is the span

from A to B.

• The corepresentable span associated to f is the span

from B to A.

00RK 5.2 Composition of Spans

OORL Definition 5.2.1.1. The composition of two spans

is the span $(R \times_B S, f_1 \circ \operatorname{pr}_1, g_2 \circ \operatorname{pr}_2)$, constructed as in the diagram

00RM 5.3 Horizontal Composition of Morphisms of Spans

Definition 5.3.1.1. The **horizontal composition** of a pair of 2-morphisms of spans

is the morphism of spans

constructed as in the diagram

OORP 5.4 Properties of Composition of Spans

OURQ Proposition 5.4.1.1. Let $\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$ be a span.

00RR 1. Functoriality.

Proof.

00RS 5.5 The Inverse of a Span

OORT 6 Functoriality of Spans

00RU 6.1 Direct Images

00RV 6.2 Functoriality of Spans on Powersets

OORW 7 Comparison of Spans to Functions and Relations

00RX 7.1 Comparison to Functions

OORY Proposition 7.1.1.1. We have a pseudofunctor

$$\iota \colon \mathsf{Sets}_{\mathsf{bidisc}} o \mathsf{Span}$$

from $\mathsf{Sets}_{\mathsf{bidisc}}$ to Span where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, we have

$$\iota(A) \stackrel{\mathrm{def}}{=} A;$$

• Action on Hom-Categories. For each $A, B \in \mathrm{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, the action on Hom-categories

$$\iota_{A,B} \colon \mathsf{Sets}(A,B)_{\mathsf{disc}} \to \mathsf{Span}(A,B)$$

of ι at (A,B) is the functor defined on objects by sending a function $f\colon A\to B$ to the span

from A to B.

• Strict Unity Constraints. For each $A \in \mathrm{Obj}(\mathsf{Sets}_{\mathsf{bidisc}}),$ the strict unity constraint

$$\iota_A^0 : \mathrm{id}_{\iota(A)} \Longrightarrow \iota(\mathrm{id}_A)$$

of ι at A is given by the identity morphism of spans

$$\begin{array}{c|c}
 & A & \operatorname{id}_{A} \\
 & A & \operatorname{id} & A, \\
 & \operatorname{id}_{A} & A & \operatorname{id}_{A}
\end{array}$$

as indeed $id_{\iota(A)} = \iota(id_A);$

• Pseudofunctoriality Constraints. For each $A,B,C\in \mathrm{Obj}(\mathsf{Sets}_{\mathsf{bidisc}})$, each $f\in \mathsf{Hom}_{\mathsf{Sets}_{\mathsf{bidisc}}}(A,B)$, and each $g\in \mathsf{Hom}_{\mathsf{Sets}_{\mathsf{bidisc}}}(B,C)$, the pseudofunctoriality constraint

$$\iota_{q,f}^2 \colon \iota(g) \circ \iota(f) \Longrightarrow \iota(g \circ f)$$

of ι at (f,g) is the morphism of spans from the span

to the span

given by the isomorphism $A \times_B B \cong A$.

 ${\it Proof.} \ {\rm Omitted.}$

- 00RZ 7.2 Comparison to Relations: From Span to Rel
- 00S0 7.2.1 Relations Associated to Spans

Let
$$\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$$
 be a span.

00S1 Definition 7.2.1.1. The relation associated to λ is the relation

$$S(\lambda) \colon A \to B$$

from A to B defined as follows:

• Viewing relations from A to B as functions $A \times B \to \{\mathsf{true}, \mathsf{false}\}$, we define

$$\iota_{A,B}(S)_b^a \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if there exists } x \in S \text{ such} \\ & \text{that } a = f(x) \text{ and } b = g(x), \\ \text{false} & \text{otherwise} \end{cases}$$

for each $(a, b) \in A \times B$.

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$[\iota_{A,B}(S)](a) \stackrel{\text{def}}{=} g(f^{-1}(a))$$

for each $a \in A$.

• Viewing relations from A to B as subsets of $A \times B$, we define

$$\iota_{A,B}(S) \stackrel{\text{def}}{=} \{ (f(x), g(x)) \mid x \in S \}.$$

- **00S2** Proposition 7.2.1.2. Let $\lambda = \left(A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B\right)$ be a span.
- 00S3 1. Interaction With Identities.
- 00S4 2. Interaction With Composition.
- 00S5 3. Interaction With Inverses.

Proof.

00S6 7.2.2 The Comparison Functor from Span to Rel

OOS7 Proposition 7.2.2.1. We have a pseudofunctor

$$\iota \colon \mathsf{Span} \to \mathbf{Rel}$$

from Span to **Rel** where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Span})$, we have

$$\iota(A) \stackrel{\mathrm{def}}{=} A;$$

• Action on Hom-Categories. For each $A, B \in \mathrm{Obj}(\mathsf{Span}),$ the action on Hom-categories

$$\iota_{A,B} \colon \mathsf{Span}(A,B) \to \mathbf{Rel}(A,B)$$

of ι at (A, B) is the functor where

- Action on Objects. Given a span

from A to B, the image

$$\iota_{A,B}(S) \colon A \to B$$

of S by ι is the relation from A to B defined as follows:

* Viewing relations as functions $A \times B \to \{\text{true}, \text{false}\}\$, we define

$$\iota_{A,B}(S)_b^a \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if there exists } x \in S \\ & \text{such that } a = f(x) \\ & \text{and } b = g(x), \\ \text{false} & \text{otherwise} \end{cases}$$

for each $(a, b) \in A \times B$;

* Viewing relations as functions $A \to \mathcal{P}(B)$, we define

$$[\iota_{A,B}(S)](a) \stackrel{\text{def}}{=} g(f^{-1}(a))$$

for each $a \in A$;

* Viewing relations as subsets of $A \times B$, we define

$$\iota_{A,B}(S) \stackrel{\text{def}}{=} \{ (f(x), g(x)) \mid x \in S \}.$$

- Action on Morphisms. Given a morphism of spans

$$\begin{array}{c|c}
 & R \\
f_R & \downarrow & g_R \\
A & \phi & B, \\
f_S & \downarrow & f_S
\end{array}$$

we have a corresponding inclusion of relations

$$\iota_{A,B}(\phi)$$
: $\iota_{A,B}(R) \subset \iota_{A,B}(S)$,

since we have $a \sim_{\iota_{A,B}(R)} b$ iff there exists $x \in R$ such that $a = f_R(x)$ and $b = g_R(x)$, in which case we then have

$$a = f_R(x)$$

$$= f_S(\phi(x)),$$

$$b = g_R(x)$$

$$= g_S(\phi(x)),$$

so that $a \sim_{\iota_{A,B}(S)} b$, and thus $\iota_{A,B}(R) \subset \iota_{A,B}(S)$.

Proof. Omitted.

00S8 7.3 Comparison to Relations: From Rel to Span

OOS9 Proposition 7.3.1.1. We have a lax functor

$$(\iota, \iota^2, \iota^0)$$
: **Rel** \rightarrow Span

from **Rel** to Span where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Span})$, we have

$$\iota(A) \stackrel{\text{def}}{=} A;$$

• Action on Hom-Categories. For each $A, B \in \mathrm{Obj}(\mathsf{Span})$, the action on Hom-categories

$$\iota_{A,B} \colon \mathbf{Rel}(A,B) \to \mathsf{Span}(A,B)$$

of ι at (A, B) is the functor where

- Action on Objects. Given a relation $R: A \to B$ from A to B, we define a span

$$\iota_{A,B}(R)\colon A\to B$$

from A to B by

$$\iota_{A,B}(R) \stackrel{\text{def}}{=} (R, \upharpoonright \operatorname{pr}_1 R, \upharpoonright \operatorname{pr}_2 R),$$

where $R \subset A \times B$ and $\lceil \operatorname{pr}_1 R$ and $\lceil \operatorname{pr}_2 R$ are the restriction of the projections

$$\operatorname{pr}_1 \colon A \times B \to A,$$

 $\operatorname{pr}_2 \colon A \times B \to B$

to R;

- Action on Morphisms. Given an inclusion ϕ : $R \subset S$ of relations, we have a corresponding morphism of spans

$$\iota_{A,B}(\phi) \colon \iota_{A,B}(R) \to \iota_{A,B}(S)$$

as in the diagram

• The Lax Functoriality Constraints. The lax functoriality constraint

$$\iota_{R,S}^2 \colon \iota(S) \circ \iota(R) \Longrightarrow \iota(S \diamond R)$$

of ι at (R,S) is given by the morphism of spans from

to

$$S \diamond R$$

$$|\operatorname{pr}_1 S \diamond R| \qquad |\operatorname{pr}_2 S \diamond R|$$

$$A \qquad C$$

given by the natural inclusion $R \times_B S \hookrightarrow S \diamond R$, since we have

$$R \times_B S = \{((a_R, b_R), (b_S, c_S)) \in R \times S \mid b_R = b_S\};$$

$$S \diamond R = \left\{(a, c) \in A \times C \mid \text{there exists some } b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\right\};$$

• The Lax Unity Constraints. The lax unity constraint⁹

$$\iota_A^0 \colon \underbrace{\operatorname{id}_{\iota(A)}}_{(A,\operatorname{id}_A,\operatorname{id}_A)} \Longrightarrow \underbrace{\iota(\chi_A)}_{(\Delta_A,\lceil\operatorname{pr}_1\Delta_A,\lceil\operatorname{pr}_2\Delta_A)}$$

of ι at A is given by the diagonal morphism of A, as in the diagram

Proof. Omitted.

00SA

7.4 Comparison to Relations: The Wehrheim-Woodward Construction

00SB 7.5 Comparison to Multirelations

Remark 7.5.1.1. The pseudofunctor of Proposition 7.2.2.1 and the lax functor of Proposition 7.3.1.1 fail to be equivalences of bicategories. This happens essentially because a span $(S, f, g): A \to B$ from A to B may relate elements $a \in A$ and $b \in B$ by more than one element, e.g. there could be $s \neq s' \in S$ such that a = f(s) = f(s') and b = g(s) = g(s').

Thus, in a sense, spans may be thought of as "relations with multiplicity". And indeed, if instead of considering relations from A to B, i.e. functions

$$R \colon A \times B \to \{\mathsf{true}, \mathsf{false}\}$$

⁹Which is in fact strong, as δ_A is an isomorphism.

from $A \times B$ to $\{\text{true}, \text{false}\} \cong \{0, 1\}$, we consider functions

$$R: A \times B \to \mathbb{N} \cup \{\infty\}$$

from $A \times B$ to $\mathbb{N} \cup \{\infty\}$, then we obtain the notion of a **multirelation from** A to B, and these turn out to assemble together with sets into a bicategory MRel that is biequivalent to Span; see [some-algebraic-laws-for-spans-and-their-connections-with-mul

18. The Cell Category

Comparison to Relations via Double Categories

Remark 7.6.1.1. There are double functors between the double categories Rel^{dbl} and Span^{dbl} analogous to the functors of Propositions 7.2.2.1 and 7.3.1.1, assembling moreover into a strict-lax adjunction of double functors; see [higher-dimensional-categories].

Appendices

Other Chapters

10. Constructions With Categories

Set Theory	11. Kan Extensions
1. Sets	Bicategories
2. Constructions With Sets	12. Bicategories
	13. Internal Adjunctions
3. Pointed Sets	Internal Category Theory
4. Tensor Products of Pointed Sets	14. Internal Categories
5. Indexed and Fibred Sets	Cyclic Stuff
6. Relations	15. The Cycle Category
7. Spans	Cubical Stuff
8. Posets	16. The Cube Category
	Globular Stuff
Category Theory	17. The Globe Category
9. Categories	Cellular Stuff

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

Probability Theory

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes