ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 17 febbraio 2014

Esercizio A

$R_1 = 50 \Omega$	$R_{10}=1750~\Omega$
$R_3 = 270 \text{ k} \Omega$	$R_{11}=100~\Omega$
$R_4 = 2 k\Omega$	$R_{12} = 900 \ \Omega$
$R_5 = 1 \text{ k}\Omega$	$C_1 = 1 \text{ nF}$
$R_6 = 50 \Omega$	$C_2 = 3.3 \ \mu F$
$R_7 = 450 \Omega$	C ₃ = 200 nF
$R_8 = 9 k \Omega$	$V_{\rm CC} = 15 \text{ V}$
$R_9 = 2 \text{ k}\Omega$	

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 4 mA/V² e $V_T = 1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione di uscita sia 8 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 727959.18 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 6.77$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 1328$ Hz; $f_{z2} = 107.18$ Hz; $f_{p2} = 120.26$ Hz; $f_{z3} = 884.2$ Hz; $f_{p3} = 4421$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + \overline{D}}\right)\left(\overline{B}D + \overline{C} + \overline{E}\right) + \left(\overline{B + \overline{D}}\right)\left(AD + \overline{C}\right) + A\overline{C}D + \overline{A}\overline{E}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 200 \Omega$	$R_5 = 1 \text{ k}\Omega$
$R_2 = 800 \Omega$	$V_A = 0.5 \text{ V}$
$R_3 = 1 \text{ k}\Omega$	C = 100 nF
$R_4 = 10 \text{ k}\Omega$	$V_{CC} = 5 \text{ V}$
$R_5 = 100 \Omega$	

Il circuito IC_1 è un NE555 alimentato a V_{CC} = 5V, Q_1 ha una R_{on} = 0 e V_T =1V, Q_2 ha una R_{on} = 0 e V_T = - 1V e gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 17331 Hz)

 $R_{1}+R_{2}||R_{3}| = \frac{R_{1}||R_{2}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{1}||R_{3}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{1}||R_{3}||R_{3}|}{R_{2}+R_{2}+R_{3}||R_{3}|} = \frac{R_{2}||R_{3}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{2}||R_{3}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{2}||R_{3}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{2}||R_{3}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{2}||R_{3}||R_{3}|}{R_{1}+R_{2}||R_{3}|} + \frac{R_{2}||R_{3}||R_{3}|}{R_{2}||R_{3}|} + \frac{R_{2}||R_{3}||R_{3}||R_{3}|}{R_{2}||R_{3}||R_{3}|} + \frac{R_{2}||R_{3$

= 6.771 (16.61 dB)

COMDENSATORE C1

Ruc1 = R1+ R2 | R3 | [hie+ R5 (hpors)] = 119846.08 SZ

·) fer = 1 = 1327.39 HZ

CONDENSATORE CZ

Rucz = R711 [R6+R4+ R811R3] = 401.04 R

SATORE C3

SATORE C3

$$R_{23} = \frac{1}{2\pi C_3 R_{12}} = 884.19 \text{ Hz}$$
 $R_{VC3} = R_{12} | \left[\frac{1}{9m} + R_{14} \right] = 180 R$
 $R_{VC3} = \frac{1}{2\pi C_3 R_{VC3}} = 4420.92 \text{ Hz}$

ESERCIZIO B

$$Y = (A + \overline{D})(BB + \overline{C} + \overline{E}) + (B + \overline{D})(AB + \overline{C}) + A\overline{C}B + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(BB + \overline{C} + \overline{E}) + (\overline{B}B)(AB + \overline{C}) + A\overline{C}B + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(BB + \overline{C} + \overline{A}B)(AB + \overline{C}) + A\overline{C}B + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(BB + \overline{C}) + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(B + \overline{C}) + \overline{A}\overline{E} =$$

$$= (\overline{B}B)(B + \overline{C}) + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(B + \overline{A}B)(AB + \overline{C}) + \overline{A}\overline{C}B + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(AB + \overline{C}) + \overline{A}\overline{E} =$$

$$= (\overline{A}B)(AB + \overline{C})$$

ESERCIZIO R1 = 200 /2 R2 = 800 R R3 = 1000 1KR R4 = loka RE M >> VGC VA = 0.5V C = 100 nF Rg= 100R 1) Blee U=1 => Qu Uge = 0 V Sz = 5 V => Ugsz = -5 < U+ => Q, on DIH.I. U1 OFF VCN = 1 VCC - VA = 1.16 V VCFIN = VCC R4 - VA = 4.045 V RU+RI+RI IRI = (Vcc - 2 Vcc) 1/R. = 2.083 mA VTR = 2 VCC - Ra IR1 = 2.916 V Vccon = VTR - VA = 2.416 V Vic Voor & Vf Rucy = Rq11(R2+R2) = 309.030 R 1.16V < 2.416V < 4.045V T1 = CRV61 = 9.03 x10-55 T= Z1 lu VCIN- VCFIN = 5. 177 × 10-5 5 2) (1=0 =) (20 OFF D=0 =) U1 ON Vew= 2.416 V Vi > Von > Vf 2.416V > 1.16V > -0, 264V THE LONG DODGEN Vccon = 1.16 V UCFIN = VCC RullRs - VA = -0.264 V (RyllRs) + Re+Re+R3

2= 9.434 µs

Tz = 5. 3238 µs

T= Ta+ T2 = 5,77 × 10-5 \$

f= 17331.145 Hz