线性代数 第15讲

第三章第3讲 正交投影

上一讲要点回顾

三维空间中的正交投影例子

正交补

正交投影

最小二乘问题

正交矩阵

设 q_1,q_2,\dots,q_n 是 R^n 的一组标准正交基,记n阶方阵 $Q=[q_1 q_2 \dots q_n]$,

$$\mathbb{P} Q^T Q = \begin{bmatrix} q_1^T \\ q_2^T \\ \vdots \\ q_n^T \end{bmatrix} \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} = \begin{bmatrix} q_1^T q_1 & q_1^T q_2 & \cdots & q_1^T q_n \\ q_2^T q_1 & q_2^T q_2 & \cdots & q_2^T q_n \\ \vdots & \vdots & \ddots & \vdots \\ q_n^T q_1 & q_n^T q_2 & \cdots & q_n^T q_n \end{bmatrix} = I_n.$$

定义3.2.1(正交矩阵) 一个n阶方阵Q如果满足 $Q^TQ=I_n$.则称Q是n阶正交矩阵。

命题 3.2.3 两个 n 阶正交矩阵的乘积还是 n 阶正交矩阵.

命题 3.2.4 对 n 阶方阵 Q, 以下叙述等价:

- 1. Q 是正交矩阵,即 $Q^{\mathrm{T}}Q = I_n$;
- 2. Q 为保距变换,即,对任意 $\mathbf{x} \in \mathbb{R}^n$, $\|Q\mathbf{x}\| = \|\mathbf{x}\|$;
- 3. Q 为保内积变换,即,对任意 $x, y \in \mathbb{R}^n$,Qx 与 Qy 的内积等于 x 与 y 的内积.

设 a_1, \dots, a_n 是 \mathbb{R}^n 的一组基, Gram-Schmidt 正交化的计算过程分为两步,

第一步正交化,得到一组正交基

$$\begin{split} \tilde{q}_1 &= a_1, \\ \tilde{q}_2 &= a_2 - \frac{\tilde{q}_1^{\mathrm{T}} a_2}{\tilde{q}_1^{\mathrm{T}} \tilde{q}_1} \tilde{q}_1, \\ \tilde{q}_3 &= a_3 - \frac{\tilde{q}_1^{\mathrm{T}} a_3}{\tilde{q}_1^{\mathrm{T}} \tilde{q}_1} \tilde{q}_1 - \frac{\tilde{q}_2^{\mathrm{T}} a_3}{\tilde{q}_2^{\mathrm{T}} \tilde{q}_2} \tilde{q}_2, \\ &\vdots \\ \tilde{q}_n &= a_n - \frac{\tilde{q}_1^{\mathrm{T}} a_n}{\tilde{q}_1^{\mathrm{T}} \tilde{q}_1} \tilde{q}_1 - \dots - \frac{\tilde{q}_{n-1}^{\mathrm{T}} a_n}{\tilde{q}_{n-1}^{\mathrm{T}} \tilde{q}_{n-1}} \tilde{q}_{n-1}. \end{split}$$

设
$$A = \begin{bmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{bmatrix}, \widetilde{Q} = \begin{bmatrix} \widetilde{\boldsymbol{q}}_1 & \cdots & \widetilde{\boldsymbol{q}}_n \end{bmatrix}$$

$$A = \widetilde{Q}\widetilde{R}, \quad \widetilde{R} = \begin{bmatrix} 1 & \frac{\widetilde{q}_1^{\mathsf{T}} \boldsymbol{a}_2}{\widetilde{q}_1^{\mathsf{T}} \widetilde{q}_1} & \cdots & \frac{\widetilde{q}_1^{\mathsf{T}} \boldsymbol{a}_n}{\widetilde{q}_1^{\mathsf{T}} \widetilde{q}_1} \\ & 1 & \ddots & \vdots \\ & & \ddots & \frac{\widetilde{q}_{n-1}^{\mathsf{T}} \boldsymbol{a}_n}{\widetilde{q}_{n-1}^{\mathsf{T}} \widetilde{q}_{n-1}} \\ & & & 1 \end{bmatrix}$$

第二步再单位化每个向量,得到标准正交基: $q_i = \frac{\tilde{q}_i}{\|\tilde{q}_i\|}$. $A = Q \operatorname{diag}(\|\tilde{q}_i\|)\widetilde{R} = QR$

定理 3.2.7 (可逆矩阵的 QR 分解) 设 $A \in \mathbb{R}$ 阶可逆矩阵,则存在唯一的分解 A = QR,其中 Q 是正交矩阵, R 是对角元都是正数的上三角矩阵.

例 3.3.1 考虑方程组
$$Ax = b$$
, 其中 $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix}$, $x \in \mathbb{R}^2$. 简单计算可知方

程组无解. 那么,如何找到 $\hat{x} \in \mathbb{R}^2$,满足

$$\|\boldsymbol{b} - A\widehat{\boldsymbol{x}}\| = \min_{\boldsymbol{x} \in \mathbb{R}^2} \|\boldsymbol{b} - A\boldsymbol{x}\|$$
?

三维空间中的正交投影

设
$$q_1,q_2$$
 是 $span(a_1,a_2)$ 的一组标准正交基,则 $b = (q_1^T b)q_1 + (q_2^T b)q_2 + r$

对 a_1, a_2 做 Gram-Schmidt 正交化,则得到 $\mathcal{R}(A)$ 的一组标准正交基 q_1, q_2

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} R \implies \begin{bmatrix} q_1 & q_2 \end{bmatrix} = AR^{-1}$$

$$b = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} q_1^T b \\ q_2^T b \end{bmatrix} + r = AR^{-1} \begin{bmatrix} q_1^T b \\ q_2^T b \end{bmatrix} + r = A\hat{x} + r, \qquad \text{iff } \hat{y} = \begin{bmatrix} q_1^T b \\ q_2^T b \end{bmatrix} = Q^T b, \quad \hat{x} = R^{-1} \hat{y}$$

误
$$\hat{y} = \begin{bmatrix} q_1^T b \\ q_2^T b \end{bmatrix} = Q^T b, \quad \hat{x} = R^{-1} \hat{y}$$

例 3.3.1 考虑方程组
$$Ax = b$$
,其中 $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix}$,
$$b = \begin{bmatrix} q_1 & q_2 & p_1 & q_2 & p_2 & p_3 & p_4 & p$$

 $x \in \mathbb{R}^2$,简单计算可知方程组无解。那么,如何找到 $\hat{x} \in \mathbb{R}^2$,满足 $b = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} q_1^T b \\ q_2^T b \end{bmatrix} + r = A\mathbb{R}^{-1}Q^T b + r$ $||b-A\hat{x}||=\min_{x\in R^2}||b-Ax||?$

设
$$q_1, q_2$$
 是 $span(a_1, a_2)$ 的一组标准正交基,
则 $b = (q_1^T b)q_1 + (q_2^T b)q_2 + r$
 $A = [a_1 \ a_2] = [q_1 \ q_2]R \Rightarrow [q_1 \ q_2] = AR^{-1}$
 $b = [q_1 \ q_2] \begin{bmatrix} q_1^T b \\ q_2^T b \end{bmatrix} + r = AR^{-1}Q^T b + r$
 $= AR^{-1}Q^T b + r = A\hat{x} + r$

首先计算正交向量组
$$\tilde{q}_1, \tilde{q}_2$$
: $\tilde{q}_1 = a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \tilde{q}_2 = a_2 - \frac{\tilde{q}_1^{\mathrm{T}} a_2}{\tilde{q}_1^{\mathrm{T}} \tilde{q}_1} \tilde{q}_1 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} - \frac{6}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$

$$\boldsymbol{q}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \boldsymbol{q}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}. \qquad \boldsymbol{A} = \begin{bmatrix} \tilde{\boldsymbol{q}}_1 & \tilde{\boldsymbol{q}}_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 \end{bmatrix} \begin{bmatrix} \sqrt{6} & \boldsymbol{0} \\ \boldsymbol{0} & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & 0 \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} \end{bmatrix}, \quad R = \begin{bmatrix} \sqrt{6} & \sqrt{6} \\ 0 & \sqrt{5} \end{bmatrix} \tilde{R} = \begin{bmatrix} \sqrt{6} & \sqrt{6} \\ 0 & \sqrt{5} \end{bmatrix}. \quad R^{-1} = \tilde{R}^{-1} \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{5}} \\ 0 & \frac{1}{\sqrt{5}} \end{bmatrix}$$

$$\hat{m{y}} = Q^{\mathrm{T}} m{b} = \begin{bmatrix} rac{11}{\sqrt{6}} \\ rac{7}{\sqrt{5}} \end{bmatrix}, \hat{m{x}} = R^{-1} \hat{m{y}} = \begin{bmatrix} rac{1}{\sqrt{6}} & -rac{1}{\sqrt{5}} \\ 0 & rac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} rac{11}{\sqrt{6}} \\ rac{7}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} rac{13}{30} \\ rac{7}{5} \end{bmatrix}.$$

因此,
$$r = b - A\widehat{x} = \begin{bmatrix} -\frac{11}{6} \\ \frac{11}{15} \\ \frac{11}{20} \end{bmatrix}$$
,最小距离 $\|r\| = \frac{11}{\sqrt{30}}$.

下面,将正交投影的概念推广 到任意子空间上。

子空间的正交补空间

命题3.3.2 如果b与 a_1 , … , a_s 都正交,则b与子空间 $span(a_1$, … , a_s) 中的任意向量都正交.

在 📭 中, 命题3.3.2 的几何描述, 就是

向量垂直于某个平面当且仅当它垂直于平面内两条相交直线.

齐次方程组 Ax = 0 的任意解向量 x 与矩阵 A 的所有行向量都正交.

因此,零空间 $\mathcal{N}(A)$ 中的任意向量和行空间 $\mathcal{R}(A^{\mathrm{T}})$ 中的任意向量都正交.

定义 3.3.3 (子空间正交) 给定 \mathbb{R}^n 的子空间 \mathcal{M}, \mathcal{N} ,如果 \mathcal{M} 中任意向量和 \mathcal{N} 中任意向量都正交,则称 \mathcal{M} 与 \mathcal{N} **正交**,记为 $\mathcal{M} \perp \mathcal{N}$.

特别地,如果 $\operatorname{span}(\boldsymbol{a}) \perp \mathcal{M}$,则简称向量 \boldsymbol{a} 与子空间 \mathcal{M} 正交,记为 $\boldsymbol{a} \perp \mathcal{M}$.

定义 3.3.4 (正交补) 给定 \mathbb{R}^n 的子空间 \mathcal{M} , 则 \mathbb{R}^n 的子集 $\mathcal{M}^{\perp} := \{ \boldsymbol{a} \in \mathbb{R}^n \mid \boldsymbol{a} \perp \mathcal{M} \}$, 称为 \mathcal{M} 的正交补.

例3.3.5 设 $A = [1\ 0\ 0]^T$,则 $\mathcal{N}(A) = \text{span}(\boldsymbol{e}_2, \boldsymbol{e}_3)$, $\mathcal{R}(A^T) = \text{span}(\boldsymbol{e}_1)$,两个子空间互为正交补

.

正交补空间

命题 3.3.6 如果 \mathcal{M} 是 \mathbb{R}^n 的子空间,则其正交补 \mathcal{M}^{\perp} 也是 \mathbb{R}^n 的子空间.

证明: 首先, \mathcal{M}^{\perp} 非空: $\mathbf{0} \in \mathcal{M}^{\perp}$.

其次, ℳ 对线性运算封闭:

如果 $a_1, a_2 \in \mathcal{M}^{\perp}$,则对任意 $b \in \mathcal{M}$, $a_1^T b = a_2^T b = 0$,

于是对任意线性组合 $k_1a_1 + k_2a_2$,

有 $(k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2)^{\mathrm{T}} \mathbf{b} = k_1 \mathbf{a}_1^{\mathrm{T}} \mathbf{b} + k_2 \mathbf{a}_2^{\mathrm{T}} \mathbf{b} = \mathbf{0}$,

即 $k_1a_1 + k_2a_2 \in \mathcal{M}^{\perp}$. 证毕

对两个子空间M, N,如果 $M \perp N,$ 那么 $M \subseteq N^{\perp}, N \subseteq M^{\perp};$ 如果 $M \subseteq N,$ 那么 $N^{\perp} \subseteq M^{\perp}.$

命题 3.3.7 对 \mathbb{R}^n 的子空间 \mathcal{M} ,有

- 1. $\mathcal{M} \cap \mathcal{M}^{\perp} = \{\mathbf{0}\};$
- 2. $\dim \mathcal{M}^{\perp} = n \dim \mathcal{M}$;
- 3. $(\mathcal{M}^{\perp})^{\perp} = \mathcal{M}$;
- 4. 对任意 $\mathbf{a} \in \mathbb{R}^n$, 都存在唯一的分解 $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$, 使得 $\mathbf{a}_1 \in \mathcal{M}, \mathbf{a}_2 \in \mathcal{M}^{\perp}$.

证明:

第1 条:对任意 $a \in \mathcal{M} \cap \mathcal{M}^{\perp}$,则 $a \perp a$,因此 $a^{\mathsf{T}}a = 0$,可知 a = 0.

第2 条: 取 \mathcal{M} 的一组标准正交基 $q_1, \cdots, q_r,$ 将其扩充成 \mathbb{R}^n 的一组基 $q_1, \cdots, q_r, q_{r+1}, \cdots, q_n$. 则 q_{r+1}, \cdots, q_n 是 \mathcal{M}^{\perp} 的一组标准正交基. 所以 $\dim \mathcal{M}^{\perp} = n - \dim \mathcal{M}$.

第3 条: 显然有 $\mathcal{M} \subseteq (\mathcal{M}^{\perp})^{\perp}$. 根据第2 条, $\dim(\mathcal{M}^{\perp})^{\perp} = n - \dim \mathcal{M}^{\perp} = \dim \mathcal{M}$. 因为 $\mathcal{M} \subseteq (\mathcal{M}^{\perp})^{\perp}$,且二者维数相等,所以 $\mathcal{M} = (\mathcal{M}^{\perp})^{\perp}$.

第4 条: 取 *M* 的一组标准正交基 q_1, \dots, q_r ,对任意 $a \in \mathbb{R}^n$, 令 $a_1 = (q_1^T a)q_1 + \dots + (q_r^T a)q_r$, $q_i^T a_1 = q_i^T \left[(q_1^T a)q_1 + \dots + (q_i^T a)q_i + \dots + (q_r^T a)q_r \right] = q_i^T a$ $q_i^T a = q_i^T a_1$, $1 \le i \le r$. 因此 $a - a_1$ 与每个 q_i 都正交,即 $a_2 = a - a_1 \in M^T$. 唯一性:假设有两个分解 $a = a_1 + a_2 = a_1' + a_2'$,则 $a_1 - a_1' = a_2' - a_2 \in M \cap M^T = \{0\}$,因此 $a_1 = a_1'$, $a_2' = a_2$,即分解唯一.

定理 3.3.8 给定 $m \times n$ 矩阵 A, 则

1.
$$\mathcal{R}(A^{\mathrm{T}})^{\perp} = \mathcal{N}(A), \mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\mathrm{T}});$$

2.
$$\mathcal{R}(A^{\mathrm{T}}A) = \mathcal{R}(A^{\mathrm{T}}), \mathcal{N}(A^{\mathrm{T}}A) = \mathcal{N}(A);$$

3.
$$\mathcal{R}(AA^{\mathrm{T}}) = \mathcal{R}(A), \mathcal{N}(AA^{\mathrm{T}}) = \mathcal{N}(A^{\mathrm{T}}).$$

$$A_{m \times n} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_m^T \end{bmatrix}, \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_m^T \end{bmatrix} x = 0$$

$$span(\tilde{a}_1, \dots, \tilde{a}_m) \perp N(A)$$

证. 第1条: 显然.

第**2**条: 先证 $\mathcal{N}(A^{\mathsf{T}}A) = \mathcal{N}(A)$;

Ax = 0, 则 $A^{\mathsf{T}}Ax = 0$, 所以 $\mathcal{N}(A) \subseteq \mathcal{N}(A^{\mathsf{T}}A)$,

下证 $\mathcal{N}(A^{\mathsf{T}}A) \subseteq \mathcal{N}(A)$. 对任意 $x \in \mathcal{N}(A^{\mathsf{T}}A)$,有 $A^{\mathsf{T}}Ax = \mathbf{0}$,

两边同时左乘行向量 x^{T} , 可得 $x^{\mathsf{T}}A^{\mathsf{T}}Ax = 0$.

设 y = Ax, 则 $y^{T} = x^{T}A^{T}$, $0 = y^{T}y = y_{1}^{2} + \cdots + y_{m}^{2}$.

而 y_i 都是实数,因此 y = 0,即 $x \in \mathcal{N}(A)$.

根据零空间维数定理**2.4.1** ($A^{T}A$ 的维数与其零空间的维数和为n),

 $\operatorname{rank}(A^{\mathsf{T}}A) = n - \dim \mathcal{N}(A^{\mathsf{T}}A) = n - \dim \mathcal{N}(A) = \operatorname{rank}(A).$

而 $\mathcal{R}(A^{\mathsf{T}}A) \subseteq \mathcal{R}(A^{\mathsf{T}})$, rank $(A^{\mathsf{T}}A) = \operatorname{rank}(A)$, 所以 $\mathcal{R}(A^{\mathsf{T}}A) = \mathcal{R}(A^{\mathsf{T}})$

第3条:对 A^T 应用第2条.

图 3.3.2: 矩阵导出的四个子空间关系图

这四个子空间的关系可以用图 3.3.2 来表示,其中 r = rank(A),有如下解释:

- 1. $\mathcal{R}(A^{\mathrm{T}})$ 和 $\mathcal{N}(A)$ 在 \mathbb{R}^n 中互为正交补; $\mathcal{R}(A)$ 和 $\mathcal{N}(A^{\mathrm{T}})$ 在 \mathbb{R}^m 中互为正交补.
- 2. A 对应的线性映射 $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$ 把 $\mathcal{N}(A)$ 映射到 $\{\mathbf{0}_m\}$, 把 $\mathcal{R}(A^{\mathrm{T}})$ 映射到 $\mathcal{R}(A)$;
- 3. A^{T} 对应的线性映射 $A^*: \mathbb{R}^m \to \mathbb{R}^n$ 把 $\mathcal{N}(A^{\mathrm{T}})$ 映射到 $\left\{\mathbf{0}_n\right\}$, 把 $\mathcal{R}(A)$ 映射到 $\mathcal{R}(A^{\mathrm{T}})$.

定理 3.3.8 给定 $m \times n$ 矩阵 A, 则

1.
$$\mathcal{R}(A^{\mathrm{T}})^{\perp} = \mathcal{N}(A), \mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\mathrm{T}});$$

$$2. \ \mathcal{R}(A^{\mathrm{T}}A) = \mathcal{R}(A^{\mathrm{T}}), \mathcal{N}(A^{\mathrm{T}}A) = \mathcal{N}(A);$$

3.
$$\mathcal{R}(AA^{\mathrm{T}}) = \mathcal{R}(A), \mathcal{N}(AA^{\mathrm{T}}) = \mathcal{N}(A^{\mathrm{T}}).$$

例 3.3.9 回顾例
$$3.3.1$$
 , $A = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$, $\boldsymbol{r} = \frac{11}{30} \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$,

则
$$\mathcal{N}(A^{\mathrm{T}}) = \mathrm{span}(\boldsymbol{r}) = \mathcal{R}(A)^{\perp}$$
.

而向量 **b** 的分解是 $\mathbf{b} = A\widehat{\mathbf{x}} + \mathbf{r}, A\widehat{\mathbf{x}} \in \mathcal{R}(A), \mathbf{r} \in \mathcal{N}(A^{\mathrm{T}}).$

另一方面,
$$\mathcal{R}(A^{\mathrm{T}}) = \mathbb{R}^2$$
, 所以 $\mathcal{N}(A) = \mathcal{R}(A^{\mathrm{T}})^{\perp} = \{\mathbf{0}\}.$

1.
$$\mathcal{M} \cap \mathcal{M}^{\perp} = \{\mathbf{0}\};$$

- 2. $\dim \mathcal{M}^{\perp} = n \dim \mathcal{M}$;
- 3. $(\mathcal{M}^{\perp})^{\perp} = \mathcal{M}$;
- 4. 对任意 $\boldsymbol{a} \in \mathbb{R}^n$, 都存在唯一的分解 $\boldsymbol{a} = \boldsymbol{a}_1 + \boldsymbol{a}_2$, 使得 $\boldsymbol{a}_1 \in \mathcal{M}, \boldsymbol{a}_2 \in \mathcal{M}^{\perp}$.

正交投影

给定 \mathbb{R}^n 的子空间 \mathcal{M} ,根据命题 3.3.7 可知,对任意 $\mathbf{a} \in \mathbb{R}^n$,都有**唯一的**分解

$$\boldsymbol{a} = \boldsymbol{a}_1 + \boldsymbol{a}_2 \,, \ \, \boldsymbol{\sharp} \, \boldsymbol{\pitchfork} \, \, \boldsymbol{a}_1 \in \mathcal{M}, \boldsymbol{a}_2 \in \mathcal{M}^\perp.$$

定义 \mathbb{R}^n 上的一个变换 $\mathbf{P}_{\mathcal{M}}: \mathbf{a} \mapsto \mathbf{a}_1$,

它是线性变换: 如果 a 和 b 分别有分解 $a = a_1 + a_2$, $b = b_1 + b_2$,

则 $a + b = (a_1 + b_1) + (a_2 + b_2)$ 是 a + b 唯一的分解,

因此 $P_{\mathcal{M}}(a+b) = a_1 + b_1 = P_{\mathcal{M}}(a) + P_{\mathcal{M}}(b)$;

 $P_{\mathcal{M}}(ka) = P_{\mathcal{M}}(ka_1 + ka_2) = ka_1 = kP_{\mathcal{M}}(a).$

定义 3.3.10 给定 \mathbb{R}^n 的子空间 \mathcal{M} ,线性变换 $P_{\mathcal{M}}$ 称为子空间 \mathcal{M} 上的正交投影(变换),而 $a_1 = P_{\mathcal{M}}(a)$ 称为向量 a 在 \mathcal{M} 上的正交投影.

正交投影

定义3.3.10 给定 \mathbb{R}^n 的子空间 \mathcal{M} , 对任意 $a \in \mathbb{R}^n$

都有唯一的分解 $a = a_1 + a_2$, 其中 $a_1 \in \mathcal{M}, a_2 \in \mathcal{M}^{\perp}$.

线性变换 $P_{\mathcal{M}}(a) = a_1$ 称为子空间 \mathcal{M} 上的**正交投影(变换)**,

而 $a_1 = P_{\mathcal{M}}(a)$ 称为向量 a 在 \mathcal{M} 上的**正交投影**.

特别地, $a \in \mathcal{M}$ 当且仅当 $P_{\mathcal{M}}(a) = a$,而 $a \in \mathcal{M}^{\perp}$ 当且仅当 $P_{\mathcal{M}}(a) = 0$.

线性变换 $P_{\mathcal{M}^{\perp}}: a \mapsto a_2$ 是 \mathcal{M}^{\perp} 上的正交投影 (变换),

而 a_2 是 a 在 \mathcal{M}^{\perp} 上的正交投影.

注意, $a_1 \perp a_2$, 因此一个向量在一个子空间上的正交投影,

与其在该子空间的正交补上的投影总正交,这就是这种变换称为正交投影的原因.

显然 $I = P_{\mathcal{M}} + P_{\mathcal{M}^{\perp}}$.

例 3.3.11 给定 \mathbb{R}^3 的子空间 $\mathcal{M} = \operatorname{span}(\boldsymbol{e}_1, \boldsymbol{e}_2)$ 是 $\boldsymbol{e}_1 \boldsymbol{\cdot} \boldsymbol{e}_2$ 坐标平面. 其正交补 $\mathcal{M}^{\perp} = \operatorname{span}(\boldsymbol{e}_3)$,是 \boldsymbol{e}_3 坐标轴.

正交投影
$$\mathbf{P}_{\mathcal{M}}\left(\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\right) = \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix}, \mathbf{P}_{\mathcal{M}^{\perp}}\left(\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 0 \\ a_3 \end{bmatrix},$$

分别是 $\begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix}$ 向 e_1 - e_2 平面和 e_3 轴的正交投影.

利用正交投影求最小距离

命题 3.3.12 给定 \mathbb{R}^n 的子空间 \mathcal{M} 和向量 \boldsymbol{a} ,而 $\boldsymbol{a}_1 = \boldsymbol{P}_{\mathcal{M}}(\boldsymbol{a})$ 为 \boldsymbol{a} 在 \mathcal{M} 上的正交投影,则 $\|\boldsymbol{a} - \boldsymbol{a}_1\| = \min_{\boldsymbol{x} \in \mathcal{M}} \|\boldsymbol{a} - \boldsymbol{x}\|$.

证明: 给定 $a \in R^n$,存在唯一的分解式 $a = a_1 + a_2$,其中 $a_1 \in M, a_2 \in M^{\perp}$,

则对任意 $x \in M$,

$$||a-x||^{2} = ||a-a_{1}+a_{1}-x||^{2}$$

$$= ||(a-a_{1})+(a_{1}-x)||^{2}$$

$$= [(a-a_{1})+(a_{1}-x)]^{T}[(a-a_{1})+(a_{1}-x)]$$

$$= [a_{2}^{T}+(a_{1}-x)^{T}][a_{2}+(a_{1}-x)]$$

$$= a_{2}^{T}a_{2}+(a_{1}-x)^{T}(a_{1}-x)$$

$$\geq a_{2}^{T}a_{2}$$

等号在 $(a_1-x)^T(a_1-x)=0$,即 $a_1=x$ 时,取得。

如何计算正交投影

设 q_1, \dots, q_r 是 \mathcal{M} 的一组标准正交基.

将其扩充成 \mathbb{R}^n 的一组基 $q_1, \dots, q_r, q_{r+1}, \dots, q_n$.

对任意
$$a \in \mathbb{R}^n$$
, $a = (q_1^{\mathsf{T}}a)q_1 + \cdots + (q_r^{\mathsf{T}}a)q_r + (q_{r+1}^{\mathsf{T}}a)q_{r+1} + \cdots + (q_n^{\mathsf{T}}a)q_n$

则
$$P_{\mathcal{M}}(a) = (q_1^{\mathsf{T}}a)q_1 + \cdots + (q_r^{\mathsf{T}}a)q_r$$
.

令
$$Q_r = [q_1 \cdots q_r]$$
, 于是 $P_{\mathcal{M}}(a) = q_1 q_1^{\mathsf{T}} a + \cdots + q_r q_r^{\mathsf{T}} a = Q_r Q a$.

因此正交投影 P_M 的表示矩阵就是 Q_rQ_r 记为 P_M .

注意,表示矩阵 $P_{\mathcal{M}}$ 与 \mathcal{M} 的正交基和 Q_r 的选取无关(为什么?).

因此正交投影 $P_{\mathcal{M}}$ 的表示矩阵就是 Q_rQ ,记为 $P_{\mathcal{M}}$

该正交投影的表示矩阵是 P.

下面讨论 $\mathcal{M} = \mathcal{R}(A)$ 的情形,此时 $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\mathsf{T}})$.

定义3.3.13 给定矩阵 A,其列空间上的正交投影的表示矩阵 $P_{\mathcal{R}(A)}$,称为关于 A 的正交投影矩阵,简记为 P_A .

当 A 是可逆方阵时, $\mathcal{R}(A) = \mathbb{R}^n$,此时正交投影就是恒同变换,因此 $P_A = I_n$. 如果 P 是关于 A 的正交投影矩阵,则 $P = P_{\mathcal{R}(A)}$,

于是 $I_n - P = P_{R(A)^{\perp}} = P_{N(A^T)}$,也是正交投影矩阵(关于哪个矩阵?). 正交投影矩阵有如下性质.

命题3.3.14 给定 n 阶方阵 P, P 是正交投影矩阵, 当且仅当 $P^2 = P^T = P$.

证. "⇒" : 假设 P 是关于 A 的投影矩阵,且 $\mathcal{R}(A)$ 的一组标准正交基组成矩阵 Q_r ,那么 $P = Q_rQ$ 是对称矩阵.同时, $P^2 = (Q_rQ_r)(Q_rQ_r) = Q_rQ_r = P_r$.

" \leftarrow ":下证 P 是关于矩阵 P 本身的投影矩阵.对任意向量 x, $Px \in \mathcal{R}(P)$. 由于 $P^2 = P = P^\mathsf{T}$,因此 $P^\mathsf{T}(x - Px) = Px - P^2x = 0$,所以 $x^\mathsf{T}P^\mathsf{T}(x - Px) = 0$. 因此 x = Px + (x - Px) 是正交投影对应的唯一分解,

例 3.3.1 考虑方程组
$$Ax = b$$
, 其中 $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix}$,

$$\hat{m{y}} = Q^{\mathrm{T}} m{b} = \begin{bmatrix} rac{11}{\sqrt{6}} \\ rac{7}{\sqrt{5}} \end{bmatrix}, \hat{m{x}} = R^{-1} \hat{m{y}} = \begin{bmatrix} rac{1}{\sqrt{6}} & -rac{1}{\sqrt{5}} \\ 0 & rac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} rac{11}{\sqrt{6}} \\ rac{7}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} rac{13}{30} \\ rac{7}{5} \end{bmatrix}.$$

因此,
$$\mathbf{r} = \mathbf{b} - A\widehat{\mathbf{x}} = \begin{bmatrix} -\frac{11}{6} \\ \frac{11}{15} \\ \frac{11}{30} \end{bmatrix}$$
,最小距离 $\|\mathbf{r}\| = \frac{11}{\sqrt{30}}$.

例 3.3.15 继续讨论例 3.3.1 , 取 $\mathcal{R}(A)$ 的一组标准正交基并列排成的矩阵是

$$Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & 0 \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} \end{bmatrix}. \quad \text{E交投影矩阵} \ P_A = QQ^{\mathrm{T}} = \frac{1}{6} \begin{bmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{13}{15} & -\frac{1}{15} \\ \frac{1}{6} & -\frac{1}{15} & \frac{29}{30} \end{bmatrix}.$$

向量 \boldsymbol{b} 的正交投影分解为 $\boldsymbol{b} = P_A \boldsymbol{b} + (I_3 - P_A) \boldsymbol{b}$,

可以验证
$$A\widehat{x} = P_A b$$
, $(I_3 - P_A)b = r$,

与例 3.3.1 中的分解 $\boldsymbol{b} = A\hat{\boldsymbol{x}} + \boldsymbol{r}$ 一致.

如果不计算 $\Re(A)$ 的标准正交基, 能否求出正交投影矩阵?

对任意向量 b,记其在 $\mathcal{R}(A)$ 上的正交投影为 Ax,

则 $b-Ax \perp \mathcal{R}(A)$.

因此 $b-Ax \in \mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\mathsf{T}})$, 即 $A^{\mathsf{T}}(b-Ax) = \mathbf{0}$, 于是 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$.

考虑线性方程组 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$,

 $\mathcal{R}(A^{\mathsf{T}}A) = \mathcal{R}(A^{\mathsf{T}})$, 因此 $A^{\mathsf{T}}b \in \mathcal{R}(A^{\mathsf{T}}A)$.

这说明 $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ 有解.

如果 $A^{\mathsf{T}}A$ 可逆, 那么唯一解 $x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$,

于是 \boldsymbol{b} 在 $\mathcal{R}(A)$ 上的正交投影是 $A\boldsymbol{x} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\boldsymbol{b}$.

这意味着,关于 A 的正交投影矩阵是 $P_A = A(A^TA)^{-1}A^T$.

最小二乘问题

作业(11月1日)

练习3.3

1, 2, 6, 7, 9, 10, 11, 18, 19, 20

11月8日提交