

本日知識點目標

理解 BackPropagation 的運作

完成今日課程後你應該可以了解

- · ForwardPropagation/BackPropagation 的 差異
- BackPropagation 的運作

何謂反向傳播

- 反向傳播(BP:Backpropagation)是「誤差反向傳播」的簡稱,是一種與 最優化方法(如梯度下降法)結合使用的該方法對網絡中所有權重計算損 失函數的梯度。這個梯度會反饋給最優化方法,用來更新權值以最小化損 失函數。
- 反向傳播要求有對每個輸入值想得到的已知輸出,來計算損失函數梯度。因此,它通常被認為是一種監督式學習方法,可以對每層疊代計算梯度。反向傳播要求人工神經元(或「節點」)的激勵函數可微。

推導流程

建構並拆解

將神經網路的運算拆解為局部單元

BP – Back Propagation

以預測水果銷售為例

- 水果銷售所應給付的價格決定因子
 - 數量(顆數或是單位重量)
 - ・單價
 - ・稅金
- 建立運算單元:
 - · 稅金是恆定的,可以當成是 Bias,給定 TAX
 - · Input-1:數量,給定X
 - · Input-2:單價,給定Y

以預測水果銷售為例 – Init & 解微分

- 要驗證網路模型是否正確?
- 更改 Init Data:
 - 更改購買數量
 - ·TAX的增加

以預測水果銷售為例 – 更改 Init Data

所以,結帳金額 f(x) 被影響的是 (3-2)x100x1.1 = 110

以預測水果銷售為例 – 更改 Init Data

所以, 結帳金額 f(x) 被影響的是 2x100x(1.2-1.1) = 20

進一步說明

更改 init data,輸出會有變動,模型的執行結果跟預期有落差也是變動,這個落差就是 error rate

· Error rate = (Target 輸出)-(實際輸出)

建立 Forward & Backward

Init Network data

Forward & Backward operation

#forward fruit_price = mul_fruit_layer.forward(price_Y, n_X) total_price = mul_tax_layer.forward(fruit_price, b_TAX)

#backward

dtotal_price = 1 #this is linear function, which y=x, dy/dx=1
d_fruit_price, d_b_TAX = mul_tax_layer.backward(dtotal_price)
d_price_Y, d_n_X = mul_tax_layer.backward(d_fruit_price)

#result print("fruit price: %i"%fruit_price) print("針對所有水果價格微分,得到 TAX: %2f" %d_fruit_price)

fruit price: 200

針對所有水果價格微分, 得到 TAX: 1.100000

重要知識點複習:

- BP 神經網絡是一種按照逆向傳播算法訓練的多層前饋神經網絡
- 優點:具有任意複雜的模式分類能力和優良的多維函數映射能力,解決了簡單感知器 不能解決的異或或者一些其他的問題。
 - ·從結構上講,BP神經網絡具有輸入層、隱含層和輸出層;
 - · 從本質上講, BP 算法就是以網絡誤差平方目標函數、採用梯度下降法來計算目標函數的最小值。

- ①學習速度慢,即使是一個簡單的過程,也需要幾百次甚至上千次的學習才能收斂。
- 2容易陷入局部極小值。
- ③網絡層數、神經元個數的選擇沒有相應的理論指導。
- 4網絡推廣能力有限。
- 應用:①函數逼近。②模式識別。③分類。④數據壓縮

重要知識點複習:

- 會第1階段:解函數微分
 - · 每次疊代中的傳播環節包含兩步:
 - · (前向傳播階段)將訓練輸入送入網絡以獲得激勵響應;
 - · (反向傳播階段)將激勵響應同訓練輸入對應的目標輸出求差,從而獲得輸出層和隱藏層的響應誤差。
- 第2階段:權重更新
 - Follow Gradient Descent
 - · 第 1 和第 2 階段可以反覆循環疊代,直到網絡對輸入的響應達到滿意的預定的目標範圍為止。

重要知識點複習:

在課程的範例程式:

- BP Neural Network
 - 實現 forward network,解函數微分求 Loss rate
 - Linear: Error rate = (target_out real_out)
 - Weights refresh per iteration
 - Training and update
 - · 得出 Loss rate

請跳出PDF至官網Sample Code&作業 開始解題

