

The Perceptron - History

- An algorithm for supervised learning of binary classifiers
- Invented in 1958 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.
- Initially seemed promising, but it was quickly proved that they are only capable of learning linearly separable patterns.
 - This caused the field of neural network research to stagnate for many years
 - Later it was found that a multilayer network of perceptrons could solve many problems
- Neural network research experienced a resurgence in the 1980s.

The Perceptron - Structure

- The perceptron is a simplified model of a biological neuron.
- ♦ It takes an *n*-dimensional input
- ♦ Internally it has *n* weights and a *bias*
- ♦ It outputs 0 or 1
- The weights and bias start as random and get proper values during training
- Training is done by the perceptron algorithm (feedforward)

The Perceptron Algorithm (Feedforward)

$$f(x) = \begin{cases} 1 & \text{if } w.x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$
 Where $w.x = \text{dot product of } w \text{ and } x, \text{ and } b \text{ is the } bias$

$$w_i(t+1) = w_i(t) + r.[d_j - y_j(t)]x_{j,i}$$

- ⋄ j signifies the j-th training sample
- i signifies the i-th dimension
- ⋄ r is the learning rate
- d is the desired output
- ⋄ y is the actual output
- ♦ t is the iteration

Multilayer Perceptrons

- Has more than one layer
- Outputs of one layer become inputs of the next
- Layers between input and output layers are called hidden layers
- Can detect more complex patterns
- May need backpropagation and sigmoid functions

Backpropagation

- An algorithm to train multilayer neural networks (perceptrons)
- ♦ The error causes the weights to change backwards from the output to the input, hence the name
- ♦ The gradient of the error function with respect to the neural network's weights is calculated
- Fuch faster than forward-propagation
- Further Reading: https://brilliant.org/wiki/backpropagation/

Convolutional Neural Networks (CNN)

- A deep network (more then one hidden layer)
- ♦ Takes 2-D (or 3D) input
- Components
 - ♦ Convolution
 - ♦ Pooling
 - ⋄ Dropout
 - ♦ ReLU
 - ♦ Fully Connected
 - ♦ Softmax
 - ♦ Sigmoid
 - ♦ Etc.

Convolution

Filters to detect basic patterns in the image

Pooling

 Downscales the image while preserving approximate location of highest responses

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

ReLU

 Rectified Linear Units or ReLU layers keep positive outputs intact while making negative outputs zero

Dropout

 Dropout layers "kill" some of the outputs from the previous layer to make the training more robust

Flattening

 Changes the ndimensional output from a layer into a 1dimensional vector before the FC layers

Fully Connected

 A standard network of perceptrons all connected to each other that take 1-D inputs

Softmax

 Last layer in singlelabel classification networks to make the output scores sum to 1

Sigmoid

 Used in output layer of multi-label classification networks where the scores don't sum to 1

First Layer filters

First Layer filters learnt by AlexNet by Krizhevsky et al (https://papers.nips.cc/paper/2012/file/c399862d3b9d6 b76c8436e924a68c45b-Paper.pdf)