Laboratorio 5 - Text Mining

Repositorio: https://github.com/DiegoLinares11/Clasificacion-de-Tweets-usando-Mineria-de-Texto

Integrantes:

- Diego Linares 221256
- José Prince 22087

```
In [12]:
         import pandas as pd
         import numpy as np
         import re
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model selection import train test split
         from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import (classification_report, confusion_matrix,
                                       accuracy_score, precision_score, recall_score,
         # por si no lo tenees pip install wordcloud pillow
         from wordcloud import WordCloud
         # Reproducibilidad
         RANDOM_STATE = 42
         np.random.seed(RANDOM_STATE)
         # RUTAS
         TRAIN_PATH = "data/train.csv"
         TEST_PATH = "data/test.csv"
```

Carga de los datos

```
In [13]: # 1) CARGA
    train = pd.read_csv(TRAIN_PATH)
    test = pd.read_csv(TEST_PATH)

# 1.1) Dimensiones y columnas
    print("Train shape:", train.shape)
    print("Test shape :", test.shape)
    print("\nTrain columns:", train.columns.tolist())

# 1.2) Vistazo rápido
    display(train.head(10))
    display(test.head(10))

# 1.3) Datos faltantes por columna
```

 $\verb|display(train.isna().mean().sort_values(ascending=\textit{False}).to_frame("missing_r")| \\$

Train shape: (7613, 5) Test shape: (3263, 4)

Train columns: ['id', 'keyword', 'location', 'text', 'target']

- 11	атп	Cocumiis.	į iu,	keyword, tocation, text, target	
	id	keyword	location	text	target
0	1	NaN	NaN	Our Deeds are the Reason of this #earthquake M	1
1	4	NaN	NaN	Forest fire near La Ronge Sask. Canada	1
2	5	NaN	NaN	All residents asked to 'shelter in place' are	1
3	6	NaN	NaN	13,000 people receive #wildfires evacuation or	1
4	7	NaN	NaN	Just got sent this photo from Ruby #Alaska as	1
5	8	NaN	NaN	#RockyFire Update => California Hwy. 20 closed	1
6	10	NaN	NaN	#flood #disaster Heavy rain causes flash flood	1
7	13	NaN	NaN	I'm on top of the hill and I can see a fire in	1
8	14	NaN	NaN	There's an emergency evacuation happening now	1
9	15	NaN	NaN	I'm afraid that the tornado is coming to our a	1
	id	keyword	location	text	
	Iu	Reyword	location		
0	0	NaN	NaN	Just happened a terrible car crash	

	id	keyword	location	text
0	0	NaN	NaN	Just happened a terrible car crash
1	2	NaN	NaN	Heard about #earthquake is different cities, s
2	3	NaN	NaN	there is a forest fire at spot pond, geese are
3	9	NaN	NaN	Apocalypse lighting. #Spokane #wildfires
4	11	NaN	NaN	Typhoon Soudelor kills 28 in China and Taiwan
5	12	NaN	NaN	We're shakingIt's an earthquake
6	21	NaN	NaN	They'd probably still show more life than Arse
7	22	NaN	NaN	Hey! How are you?
8	27	NaN	NaN	What a nice hat?
9	29	NaN	NaN	Fuck off!

	missing_ratio
location	33.27%
keyword	0.80%
id	0.00%
text	0.00%
target	0.00%

El dataset trae id, keyword, location, text, target (target = 1 desastre, 0 no).

Analisis exploratorio

Primeramente, se analizará como esta la distribución de las clases (1 o 0) para ver si existe un desbalance en las clases.

```
In [14]: train["target"].value_counts(normalize=True).plot(kind="bar", title="Distrib")
Out[14]: <Axes: title={'center': 'Distribución de clases'}, xlabel='target'>
```


Se puede apreciar que si existe una diferencia en la cantidad de datos por clase pero se puede ver que esta diferencia no es significativa, por lo tanto se puede considerar que el dataset esta balanceado y se puede trabajar con este de forma adecuada.

Ahora se va a revisat la longitud de los tweets para reconocer si existen posibles patrones en la longitud.

```
In [15]: train["text_len"] = train["text"].str.len()
    train["text_wordcount"] = train["text"].str.split().map(len)
    sns.histplot(train, x="text_len", hue="target", bins=30, kde=True)
```

Out[15]: <Axes: xlabel='text_len', ylabel='Count'>

El gráfico muestra una diferencia en la distribución de la longitud de los tweets, los que no hace referencia a desastres presentan un pico muy pronunciado y concentrado alrederdor de los 140 caracteres; lo que sugiere que la mayoría de estos tweets son más largos y cercanos al límite tradicional de la plataforma. En contraste, los tweets que sí se refieren a desastres tienen una distribución más amplia y plana, lo que indica una mayor diversidad en su longitud y que son igualmente probables de ser tanto cortos como largos, lo que podría ser un patrón útil para la clasificación.

Más adelante se va a analizar la distribución de palabras (en nubes de palabras y ngramas) que se encuentran en el dataset y como se relacionan a un desastre o no.

Limpieza

Del enunciado: minúsculas, quitar #, @, URL, emojis, puntuación; quitar stopwords; y decidir si quitar números (ojo con "911").

```
In [16]: import nltk
         nltk.download("stopwords")
         from nltk.corpus import stopwords
         STOP EN = set(stopwords.words("english"))
         # patrones regex
         EMOJI PATTERN = re.compile("["
                                          # rango de emojis comunes
             "\U0001F600-\U0001F64F"
             "\U0001F300-\U0001F5FF"
             "\U0001F680-\U0001F6FF"
             "\U0001F1E0-\U0001F1FF"
         "]+", flags=re.UNICODE)
                       = re.compile(r"http\S+|www\.\S+")
         URL PATTERN
         MENTION PATTERN = re.compile(r"@\w+")
         HASHTAG_PATTERN = re.compile(r"#(\w+)") # conserva la palabra, quita '#'
         HTML TAGS
                     = re.compile(r"<.*?>")
         # tokens super comunes de Twitter; sklearn quitará más stopwords con stop_wo
         TW STOPS = {"rt", "amp"}
         def clean_tweet(text: str, remove_numbers=False, preserve_911=True) -> str:
             if not isinstance(text, str):
                 return ""
             t = text.lower()
             t = URL PATTERN.sub(" ", t)
             t = HTML_TAGS.sub(" ", t)
             t = MENTION PATTERN.sub(" ", t)
             t = HASHTAG_PATTERN.sub(r"\1", t)
             t = re.sub(r"[^a-z0-9\s]", " ", t)
             t = EMOJI PATTERN.sub(" ", t)
             if remove numbers:
                 if preserve 911:
                     t = re.sub(r"\b(?!911\b)\d+\b", " ", t) # quita números excepto
                 else:
                     t = re.sub(r"\b\d+\b", " ", t)
             t = re.sub(r"\s+", " ", t).strip()
             tokens = t.split()
             # quitar stopwords de twitter y NLTK
             tokens = [w for w in tokens if w not in TW_STOPS and w not in STOP_EN an
             return " ".join(tokens)
         # aplicar
         train["clean_text"] = train["text"].apply(lambda s: clean_tweet(s, remove_nu
```

```
test["clean_text"] = test["text"].apply(lambda s: clean_tweet(s, remove_num
display(train[["text","clean_text","target"]].head(10))
```

[nltk_data] Downloading package stopwords to /home/akice/nltk_data...
[nltk_data] Package stopwords is already up-to-date!

	text	clean_text	target
0	Our Deeds are the Reason of this #earthquake M	deeds reason earthquake may allah forgive us	1
1	Forest fire near La Ronge Sask. Canada	forest fire near la ronge sask canada	1
2	All residents asked to 'shelter in place' are	residents asked shelter place notified officer	1
3	13,000 people receive #wildfires evacuation or	13 000 people receive wildfires evacuation ord	1
4	Just got sent this photo from Ruby #Alaska as	got sent photo ruby alaska smoke wildfires pou	1
5	#RockyFire Update => California Hwy. 20 closed	rockyfire update california hwy 20 closed dire	1
6	#flood #disaster Heavy rain causes flash flood	flood disaster heavy rain causes flash floodin	1
7	I'm on top of the hill and I can see a fire in	top hill see fire woods	1
8	There's an emergency evacuation happening now	emergency evacuation happening building across	1
9	I'm afraid that the tornado is coming to our a	afraid tornado coming area	1

Se quitaron caracteres especiales, tambien palamras como I'm porque se convierte en im y esta está en la lista de stopwords de NLTK que considera que es lo mismo que I am asi que la elimina, como son palabras poco informativas para un desastre solo nos generan ruido por eso se eliminan.

3. EDA: distribución de clases, longitudes y nubes de palabras

```
In [17]: # 3) DISTRIBUCIÓN DE CLASES
display(train["target"].value_counts().to_frame("count"))

# 3.1) Longitud en tokens del texto limpio
train["tok_len"] = train["clean_text"].str.split().apply(len)

fig, ax = plt.subplots(1,2, figsize=(12,4), sharey=True)
train.loc[train["target"]==1, "tok_len"].plot(kind="hist", bins=40, ax=ax[0])
train.loc[train["target"]==0, "tok_len"].plot(kind="hist", bins=40, ax=ax[1])
```

```
for a in ax: a.set_xlabel("tokens"); a.set_ylabel("frecuencia")
plt.tight_layout()
plt.show()
```

count

target

- **0** 4342
- **1** 3271


```
In [18]: # 3.2) Nube de palabras por clase
    pos_text = " ".join(train.loc[train["target"]==1, "clean_text"])
    neg_text = " ".join(train.loc[train["target"]==0, "clean_text"])

wc_pos = WordCloud(width=900, height=500, background_color="white").generate
    plt.imshow(wc_pos, interpolation="bilinear"); plt.axis("off"); plt.title("Wo
    wc_neg = WordCloud(width=900, height=500, background_color="white").generate
    plt.imshow(wc_neg, interpolation="bilinear"); plt.axis("off"); plt.title("Wo
```

WordCloud - Desastre (1)

En tweets de desastre (1) resaltan términos como fire, flood, storm, earthquake, death, suicide, emergency, bomb. → Son palabras clave muy ligadas a incidentes reales.

En tweets de no desastre (0) sobresalen like, love, day, time, lol, video. → Reflejan conversaciones cotidianas o expresiones personales, sin relación con emergencias.

Frecuencias de palabras y n-gramas (unigramas/bigramas/trigramas)

El lab pide contar frecuencias por categoría y discutir si vale explorar bigramas/ trigramas .

```
In [19]: # 4) TOP UNIGRAMAS POR CLASE

def top_terms(df, target_value, n=25):
    vec = CountVectorizer(ngram_range=(1,1), min_df=2, stop_words="english")
    X = vec.fit_transform(df.loc[df["target"]==target_value, "clean_text"])
    freqs = np.asarray(X.sum(axis=0)).ravel()
    terms = np.array(vec.get_feature_names_out())
    order = np.argsort(freqs)[::-1][:n]
    return pd.DataFrame({"term": terms[order], "freq": freqs[order]})

top_uni_1 = top_terms(train, 1, n=30)
    top_uni_0 = top_terms(train, 0, n=30)

display(top_uni_1.head(20))
    display(top_uni_0.head(20))
```

	term	freq
0	news	137
1	disaster	121
2	california	115
3	suicide	112
4	police	109
5	people	105
6	killed	95
7	like	94
8	hiroshima	92
9	storm	89
10	crash	85
11	fires	85
12	families	81
13	train	79
14	emergency	77
15	buildings	76
16	bomb	76
17	nuclear	73
18	mh370	72
19	attack	71

	term	freq
0	like	254
1	new	171
2	body	116
3	video	96
4	people	94
5	love	91
6	day	86
7	know	86
8	time	84
9	got	84
10	emergency	81
11	going	76
12	let	76
13	gt	72
14	good	67
15	want	67
16	man	66
17	think	66
18	world	63
19	lol	62

Desastre (1): news, disaster, california, suicide, police, killed, storm, fires. \rightarrow Altamente informativas para detectar eventos.

No desastre (0): like, new, body, video, love, lol, man. \rightarrow Muchas de estas son palabras comunes en redes sociales que no aportan al contexto de desastre.

Conclusión: Los unigrams ya separan bien ambas clases.

TOP BIGRAMAS POR CLASE

```
In [20]: def top_bigrams(df, target_value, n=25):
    vec = CountVectorizer(ngram_range=(2,2), min_df=3, stop_words="english")
    X = vec.fit_transform(df.loc[df["target"]==target_value, "clean_text"])
    if X.shape[1] == 0:
```

```
return pd.DataFrame(columns=["bigram","freq"])
freqs = np.asarray(X.sum(axis=0)).ravel()
terms = np.array(vec.get_feature_names_out())
order = np.argsort(freqs)[::-1][:n]
return pd.DataFrame({"bigram": terms[order], "freq": freqs[order]})

top_bi_1 = top_bigrams(train, 1, n=30)
top_bi_0 = top_bigrams(train, 0, n=30)

display(top_bi_1.head(20))
display(top_bi_0.head(20))
```

	bigram	freq
0	suicide bomber	59
1	northern california	41
2	oil spill	38
3	burning buildings	37
4	suicide bombing	35
5	california wildfire	34
6	bomber detonated	30
7	70 years	30
8	homes razed	29
9	confirmed mh370	29
10	year old	28
11	16yr old	28
12	pkk suicide	28
13	latest homes	28
14	razed northern	28
15	detonated bomb	28
16	severe thunderstorm	27
17	mass murder	27
18	old pkk	27
19	families affected	26

	bigram	freq
0	cross body	39
1	liked video	34
2	gt gt	30
3	body bag	27
4	body bagging	24
5	burning buildings	23
6	body bags	22
7	reddit quarantine	21
8	quarantine offensive	21
9	looks like	21
10	offensive content	20
11	content policy	20
12	feel like	20
13	loud bang	19
14	pick fan	17
15	fan army	17
16	prebreak best	17
17	reddit new	16
18	fall cliff	16
19	stock market	16

Desastre (1): suicide bomber, northern california, oil spill, burning buildings, california wildfire. → Dan contexto adicional: no es lo mismo "suicide" que "suicide bomber".

No desastre (0): cross body, liked video, body bagging, reddit quarantine. → Muchos parecen spam, moda o expresiones de comunidades online.

Conclusión: Los bigramas capturan combinaciones más claras de eventos, reducen ambigüedad.

Para trigramas:

```
In [21]: def top_trigrams(df, target_value, n=25, min_df=4, stop_words="english"):
    vec = CountVectorizer(ngram_range=(3,3), min_df=min_df, stop_words=stop_
```

```
X = vec.fit_transform(df.loc[df["target"] == target_value, "clean_text"]
vocab = vec.get_feature_names_out()
if X.shape[1] == 0:
    return pd.DataFrame(columns=["trigram", "freq"]), 0 # DF vacio y ta

freqs = np.asarray(X.sum(axis=0)).ravel()
    order = np.argsort(freqs)[::-1][:n]
    out = pd.DataFrame({"trigram": vocab[order], "freq": freqs[order]})
    return out, len(vocab)

# Uso

top_tri_1, V1 = top_trigrams(train, 1, n=30, min_df=4)
top_tri_0, V0 = top_trigrams(train, 0, n=30, min_df=4)

print(f"Vocab trigramas clase=1: {V1}, clase=0: {V0}")
display(top_tri_1.head(20))
display(top_tri_0.head(20))
```

Vocab trigramas clase=1: 546, clase=0: 328

	trigram	freq
0	suicide bomber detonated	30
1	northern california wildfire	29
2	bomber detonated bomb	28
3	homes razed northern	28
4	latest homes razed	28
5	pkk suicide bomber	28
6	razed northern california	27
7	16yr old pkk	27
8	old pkk suicide	27
9	families affected fatal	26
10	40 families affected	26
11	affected fatal outbreak	26
12	families sue legionnaires	26
13	legionnaires 40 families	25
14	wreckage conclusively confirmed	25
15	obama declares disaster	25
16	typhoon devastated saipan	25
17	disaster typhoon devastated	25
18	sue legionnaires 40	25
19	declares disaster typhoon	25

	trigram	freq
0	reddit quarantine offensive	21
1	quarantine offensive content	20
2	cross body bag	19
3	pick fan army	17
4	china stock market	16
5	stock market crash	16
6	reddit new content	16
7	new content policy	16
8	content policy goes	15
9	subreddits banned quarantined	15
10	knock detonation sensor	15
11	goes effect horrible	15
12	movie trapped miners	15
13	effect horrible subreddits	15
14	gt gt gt	15
15	hollywood movie trapped	15
16	ignition knock detonation	15
17	horrible subreddits banned	15
18	policy goes effect	15
19	nearby appears blast	13

Desastre (1): suicide bomber detonated, northern california wildfire, families affected fatal, typhoon devastated saipan. \rightarrow Muy descriptivos, pero mucho menos frecuentes; por eso sus conteos son bajos (25–30).

No desastre (0): reddit quarantine offensive, stock market crash, cross body bag. \rightarrow Mezclan eventos de otras temáticas (mercado, internet).

Conclusión: Los trigramas aportan mucha especificidad, pero son escasos en tweets tan cortos.

Unigrams: útiles para identificar palabras discriminantes. Son la base del modelo.

Bigrams: capturan expresiones clave (ej. "suicide bomber"), por lo que sí vale la pena incluirlos.

Trigrams: aunque interesantes, tienen baja frecuencia (pocos tweets largos los generan). Son más útiles en análisis cualitativo que como features principales en un modelo de tweets.

Modelo

1

accuracy macro avg

weighted avg

0.76

0.78

0.79

```
In [22]:
         from sklearn.feature_extraction.text import TfidfVectorizer
         from sklearn.linear_model import LogisticRegression
          from sklearn.model_selection import cross_val_score
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import classification report
         # Training
         vectorizer = TfidfVectorizer(
             ngram_range=(1,2),  # unigramas + bigramas
min_df=3,  # descarta términos muy raros
max_df=0.9,  # descarta términos demasiado comunes
              stop_words="english" # refuerzo extra de limpieza
         X_train = vectorizer.fit_transform(train["clean_text"])
         X_test = vectorizer.transform(test["clean_text"])
         y train = train["target"]
         model = LogisticRegression(max_iter=1000, class_weight="balanced")
         scores = cross_val_score(model, X_train, y_train, cv=5, scoring="f1")
         print("F1 (CV):", scores.mean())
         model.fit(X_train, y_train)
         y_pred = model.predict(X_test)
         # Evaluation
         X_tr, X_val, y_tr, y_val = train_test_split(X_train, y_train, test_size=0.2,
         model.fit(X_tr, y_tr)
         y val pred = model.predict(X val)
         print(classification_report(y_val, y_val_pred))
        F1 (CV): 0.6087171964348689
                       precision recall f1-score
                                                         support
                    0
                            0.81
                                     0.82
                                                  0.82
                                                              874
```

Para nuestro modelo se hizo un modelo de clasificón que usara regresión logística para

0.75

0.79

0.78

0.79

649

1523

1523

1523

16 of 17 8/27/25, 16:08

0.74

0.78

0.79

clasificar tweets en dos categorías: relacionadas con desastres (1) y no relacionados con desastres (0). De igual forma se convirtieron los textos ne vectores, de esta forma: se incluian unigramas y bigramas en el modelo para no solo identificar palabras individuales, sino también frases cortas; se eliminan palabras raras o muy comunes para reducir el ruido entre las palabras; y se quitan los "stop words".

La validación cruzada del conjunto de entrenamiento muestra ser de 0.6087, indicando que no hay sobre ajuste y que el modelo es consistentemente preciso. Podemos ver que el modelo presenta un accuracy del 79%, esto nos indica que el modelo no se encuentra sobreajustado y tiene un margen para hacer correctamente la predicción si un tweet es referente a un desastre o no.

```
In [24]: def clasificar tweet(texto nuevo, vectorizer, model):
             texto vectorizado = vectorizer.transform([texto nuevo])
             prediccion = model.predict(texto vectorizado)
             if prediccion[0] == 1:
                 return "El tweet se relaciona con un desastre."
                 return "El tweet no se relaciona con un desastre."
         tweet1 = "Un sismo de 7.5 grados sacude la costa y provoca daños en varias d
         print(f"'{tweet1}' -> {clasificar tweet(tweet1, vectorizer, model)}")
         tweet2 = "Hoy es un día soleado, perfecto para ir a la playa y relajarse un
         print(f"'{tweet2}' -> {clasificar tweet(tweet2, vectorizer, model)}")
         tweet3 = "Un incendio forestal se extiende rápidamente, se pide a la poblaci
         print(f"'{tweet3}' -> {clasificar tweet(tweet3, vectorizer, model)}")
         tweet4 = ";Me encanta mi café de la mañana!"
         print(f"'{tweet4}' -> {clasificar tweet(tweet4, vectorizer, model)}")
        'Un sismo de 7.5 grados sacude la costa y provoca daños en varias ciudades.
        #terremoto' -> El tweet se relaciona con un desastre.
        'Hoy es un día soleado, perfecto para ir a la playa y relajarse un poco.' ->
        El tweet se relaciona con un desastre.
        'Un incendio forestal se extiende rápidamente, se pide a la población evacua
        r la zona.' -> El tweet se relaciona con un desastre.
        '¡Me encanta mi café de la mañana!' -> El tweet se relaciona con un desastr
In [28]: custom tweet = input("Ingresa un tweet: ")
         print(f"'{custom tweet}' -> {clasificar tweet(custom tweet, vectorizer, mode
        'Un sismo de 7.5 sacude la costa' -> El tweet se relaciona con un desastre.
 In [ ]:
```