Eigen-12

Title

Fundamental frequency of a simply supported beam

Description

A simply supported beam is analyzed to determine the fundamental frequency. Determine the fundamental frequency.

Structural geometry and analysis model

MODEL

Analysis Type

2-D eigenvalue analysis (X-Z plan)

Unit System

in, lbf

Dimension

Length 80in

Element

Beam element

Material

```
Modulus of elasticity E = 30.0 \times 10^6 \text{ psi}
Weight density \gamma = 0.281 \text{ lbf/in}^3
```

Sectional Property

Rectangular cross-section: b = 2 in, h = 2 in

Boundary Condition

Node 1, 5: Constrain D_X and D_Z

Analysis Case

Eigenvalue analysis

Results

Fundamental frequency

Comparison of Results

		Unit: Hz
Result	Theoretical	MIDAS/Civil
Frequency	28.766	28.759

References

Thomson, W. T., (1965). "Vibration Theory and Application", Prentice Hall, Englewood Cliffs, N. J.