姓名	19:12 1 12/1	电子技术基础			- 电机 2018 年 1 月 学号					
大题	- [=]	=	\(\text{Td} \)	五	15	t	1	总分		
成绩										
	(请考:	上社会	· *	计类 分	出十万	八颜)			
一、(10分)判断下										
1. 反相比例运算电路	8引入了并联	反馈,	其信号	原只能	是恒流》	M. (X) _V		
2. 正弦波振荡电路中	中, 选频网络	若是带	通特性	, 则一:	定也是,	正反馈的	网络。(
3. 功率放大电路的	主要作用是给	输入信	号提供	足够大	的放大位	图数。(X)	X	
4. 运算放大器组成的	的电压跟随器	不会产	生自微	振荡,	因为其	电压放力	大倍数3	(1)JJ 1. (·		
5. 电容滤波电路适应	月于小电流负	载的场	信。(\bigvee)		rest Marse	u nam open kala de	i strato	
6. 合理连接 RC 引	并联选频网	1络和两	可级共调	1-共源	放大电	路,叫	以构成	1. IE 92. 69. 78	2 300 FE	
()								V		
7. 若负反馈放大电路	各的反馈系数	$ \dot{F} < 1$,则涉	电路不	会产生	自激振	Br.	Χ)		
8. 在功率放大电路中	中,输出电流	最大时	, 功放	管的功	率损耗	也最大	· ()	< >		
OTL 电路低频特性	性差。(∨)							0.00	
10. 电流负反馈可以	稳定输出电流	荒,负	较一定的	寸其输1	出电压	也必然,	稳定。	因此可以,	人为時	
反馈也可以稳定输出										

二、(26分)选择

- 1. 现有滤波电路如下: A. 低通 B. 带通 C. 高通 D. 帶阻
- (1) 理想情况下,频率趋于零,电压放大倍数趋于通带放大倍数的滤波器有_AD
- (2) 频率趋于无穷大,电压放大倍数趋于零的滤波器有_βА_。

(2) 引入反馈后,反馈系数 $\dot{F} = R_{b2} + R_{f}$ (表达式); 深度负反馈条件下,电压放大倍数 $\dot{A}_{if} = \dot{U}_o / \dot{U}_i \approx$ (表达式)。

四、(4分)已知图(a)所示方框图各点的波形如图(b) 所示,填写各电路的名称。

电路1为区弦波振荡电路,电路2为区档积分电路。, 电路3为区相积分电路。, 电路4为 滞回比较器。

五、(11 分)已知图示电路, A_1 、 A_2 均为理想运算放大器,其输出电压极限值为 \pm 12V; 三极管 VT 工作在开关状态,其导通时管压降 $U_{CES}=0V$; U_C 为大于 0的直流信号。设某一电路参数变化时,其余参数均不变。

1. 选择① 增大、② 不变或③ 减小填入空内:

当 R_1 增大时, u_{01} 的幅值将 2 , u_{02} 的频率将 3 ; 若 R_2 增大时, u_{01} 的幅值将 4 , u_{02} 的频率将 2 ; 若 U_{C} 增大时, u_{01} 的幅值将 3 , u_{02} 的频率将 4 ; 若 4 。 4

= \mathbb{R}_{C} \mathbb{R}

3. 已知所示电路中, R_1 =100 kΩ, R_2 =50 kΩ, R_3 =100 kΩ, R_4 =20 kΩ, R_5 =300 Ω,稳压管 D_z 的稳压值 U_Z =5.3V,二极管正向压降 U_D =0.7V, U_{REF} =0,定性画出 u_{O1} 与 u_{O2} 的波形图,

