

Project 3: Sodium Abundance in the Sun

Jacob Borison, Leandra Hogrefe, Andrew Miller, Karish Seebaluck

What is in our Sun?

Composed of roughly 91% of Hydrogen (# of atoms)

 Helium (8.9%) present from fusion and the Big Bang

Diverse composition of heavier elements due to conditions during formation (0.1%)

How do we know?

Spectroscopy

Observe absorption bands in light spectrum QM permits specific electron transitions in elements

How much Sodium is in the Sun?

Equivalent width = 0.712Å

 $N_{Nal} = 6.54 \times 10^{14} \text{ atoms/cm}^2$

Specifics of Sodium

Sodium can be relatively easily...

- Excited
 - Ground state $Na_0 = 1s^2 2s^2 2p^6 3s^1$
- Ionized
 - Na \rightarrow Na⁺ + e⁻

Ratio of Excited Na Atoms

Excited state (2): $1s^2 2s^2 2p^6 3p^1$

Ground State (1): 1s²2s²2p⁶**3s¹**

Boltzmann Equation:

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_2 - E_1}{kT}\right)$$

$$N_{\text{Excited}}/N_{\text{ground}} = 0.0443$$

Ratio of Ionized Na Atoms

Saha Equation:

$$\frac{Na_{II}}{Na_{I}} = \frac{2kT}{P_{e}} \frac{Z_{II}}{Z_{I}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} \exp\left(-\frac{\chi}{kT}\right)$$

$$N^+/N = 2521.792$$

Column Density of the Photosphere

Column Density (CD):
$$N_1 \times (1 + \frac{N_2}{N_1}) \times (1 + \frac{Na_{II}}{Na_I})$$

$$CD_{Na} = 1.723 \times 10^{18} \text{ atoms/cm}^2$$

Ratio of Abundance

Compared to Hydrogen, Sodium is not very abundant Abundance Number Ratio (physics):

•
$$CD_H/CD_{Na} = 2.610 \times 10^{-6}$$

Mass Abundance Ratio (astronomy):

- $Log(Na) = 12 + log(CD_{Na}/CD_{H})$
- Log(Na) = 6.517 (6.30 from Lodders et al.)

Magnesium

Same procedure followed for for Magnesium Noteworthy changes:

- Absorption band location and equivalent width
- Ground and excited states
- Ionization energy
- Energy degeneracy
- Partition function

Na and Mg Comparison

Magnesium is more abundant!

	Sodium	Magnesium
Equivalent Width (Å)	0.712	1.730
Neutral, Ground State Number Density	6.539 × 10 ¹⁴	1.868 × 10 ¹⁵
Ratio of Excited Atoms	0.044	0.025
Ratio of Ionized Atoms	2521.792	15.0756*
Column Density (atoms/cm ²⁾	1.723 × 10 ¹⁸	3.077 × 10 ¹⁶
Abundance (physics)	2.610 × 10 ⁻⁶	4.662 × 10 ⁻⁸
Abundance (astronomy)	6.517	6.055 (7.54)

Thank you!

Questions?