ENSC 424 - Multimedia Communications Engineering Project

Jie Liang Engineering Science Simon Fraser University jiel@sfu.ca

Project Topic

- The topic must be related to multimedia communications or deep learning
- "Default" project:
 - Based on the simple video codec that we will develop through assignments
 - Introduce some advanced coding tools from latest standards, such as H.264 and H.265
 - Intra prediction, Sub-pixel motion estimation, SVC, MVC, 3D video coding ...

Past Project Topics

- Video coding:
 - motion estimation, scene change detection, multiple reference frames, intra prediction, Multiview video coding, Scalable video coding
- WebRTC (a web-based video communication protocol)
- Kinect depth image coding
- High dynamic range (HDR) image
- Deep learning projects
- **.....**

- Pioneered by Canadians:
 - Geoffrey E. Hinton: UoT (Google now)
 - Yoshua Bengio: U Montreal
 - Yann LeCun: NYU. Director of Facebook AI Research
 - 2019 Turing Award
- Record-breaking results in many fields
- Need powerful GPU to do serious research
- Possible to work with toy examples

- Some deep learning topics:
 - Object detection
 - Object classification
 - Semantic segmentation
 - Generative adversarial network (GAN)
 - Face recognition
 - Object tracking
 - Multi-object tracking
 - Compression of DL network
 - Image/video captioning
 - Image/video compression
 -
- Many open-source codes

- Types of projects:
 - Design a simple neural network and train it
 - Train an existing network from scratch
 - Compare with pre-trained models
 - Implement DL on different platforms
 - Apply DL to some applications

- Deep learning algorithms have millions of parameters
- The training needs millions of data and could take days
- The training and testing need powerful GPU cards
- Examples:
- GeForce GTX 1050 Ti: \$169
 - 768 CUDA cores 4GB memory
- GeForce GTX 1070 Ti: \$399
 - 1920 CUDA cores 8GB memory
- GeForce GTX 1080: \$699
 - 2560 CUDA cores 8GB memory
- NVIDIA Titan X Pascal Architecture: US\$1200
 - 3584 CUDA cores 12GB memory
- Caution: Some cards need special computer case and power.

- Embedded Systems: NVIDIA TX2 board
 - US\$299 after education discount
 - Has built-in camera
 - A Linux computer!
 - 256 NVIDIA CUDA Cores
 - HMP Dual Denver 2/2 MB L2 + Quad ARM® A57/2 MB L2
 - 8 GB Memory 32 GB Flash St
- Can run deep learning algorithms
- But not powerful enough to train
- ENSC has 25 sets.

- Other Embedded Systems:
- Raspberry Pi 3:
 - https://medium.com/dt42/run-object-detection-using-deep-learning-on-raspberry-pi-3-1-55027eac26c3
 - https://medium.com/dt42/run-object-detection-using-deep-learning-on-raspberry-pi-3-2-66f43609bc85
 - https://github.com/DT42/BerryNet
- https://developer.movidius.com/
 - Movidius Neural Compute Stick

Google Coral TPU:

- Amazon DeepLens for developers:
 - A fully programmable video camera

- Amazon DeepRacer: (pre-order)
 - Use reinforcement learning

- Many mobile phones have powerful GPUs:
- ARM Compute Library:
- https://community.arm.com/graphics/b/blog/posts/armcompute-library-for-computer-vision-and-machinelearning-now-publicly-available
- Qualcomm AI:
- https://www.qualcomm.com/invention/cognitivetechnologies/artificial-intelligence

- Apple Core ML:
- https://developer.apple.com/machine-learning/

- Amazon EC2 Elastic GPUs
 - https://aws.amazon.com/ec2/elastic-gpus/

Amazon EC2 Elastic GPUs Pricing

With Amazon EC2 Elastic GPUs, you only pay for what you use. The pricing for Elastic GPUs is listed below.

US East (Ohio):

Elastic GPU Size	GPU Memory	Price
eg1.medium	1 GiB	\$0.050/hour
eg1.large	2 GiB	\$0.100/hour
eg1.xlarge	4 GiB	\$0.200/hour
eg1.2xlarge	8 GiB	\$0.400/hour

■ IEEE Xplore:

http://ieeexplore.ieee.org/search/advsearch.jsp

Search keywords, or browse journals and conferences.

Accessible from SFU computers

If you need to access from home, use the link at SFU library: http://www.lib.sfu.ca/

- Click 'Journal articles & databases'
- Enter 'ieee explore' into the text box below 'Find databases by database title and description:'
- Click 'connect'

■ IEEE Xplore:

http://ieeexplore.ieee.org/search/advsearch.jsp

Search keywords, or browse journals and conferences.

- Some relevant journal publications:
 - IEEE Transactions on Circuits and Systems for Video Technology
 - IEEE Transactions on Image Processing
 - IEEE Transactions on Multimedia
 - ACM Transactions on Multimedia Computing, Communications and Applications

- https://arxiv.org/
- Many latest papers
- Free access anywhere
- https://scholar.google.ca/
- Provide useful citation information

- The Calls for Papers of major conferences are good places to know the latest topics in the field:
- Example: ICIP (International Conf on Image Processing)
 - Image/video coding and transmission
 - Image/video processing
 - Image formation
 - Image scanning, display, and printing
 - Image/video storage, retrieval, and authentication
 - Applications

- ICME: International Conf Multimedia and Expo
 - Multimedia content analysis
 - Multimedia activity and event understanding
 - Multimedia search and retrieval
 - Mobile, location-based and other context-based multimedia
 - Social, user-generated, and cloud-based multimedia
 - 3D immersion and virtual reality
 - Multimedia security and forensics
 - Human computer interaction based on multimedia
 - Multimedia networking and communication
 - Multimedia coding and compression
 - Multimedia signal processing and enhancement
 - Multimedia systems, applications, services and implementations

ACM Multimedia:

- Mobile Multimedia
- Multimedia Systems and Middleware
- Multimedia Telepresence and Virtual Reality
- Multimedia Transport and Delivery
- Multimedia for Education & Distributed Environments
- Multimedia HCI and Quality of Experience
- Music, Speech and Audio Processing in Multimedia
- Multimedia Authoring and Enrichment
- Multimedia Art, Entertainment and Culture
- Multimedia Search and Recommendation
- Social Multimedia
- Emotional and Social Signals in Multimedia
- Deep Learning for Multimedia
- Multimodal Analysis and Description
- Multimedia and Vision

- CVPR: Computer Vision and Pattern Recognition
 - Image captioning
 - Object recognition and detection
 - Image restoration
 - Computational Photography
 - Actions and human pose estimation
 - Video understanding
 - Learning and CNN architectures
 - 3D reconstruction
 - Face recognition
 - 3D, stereo, matching and saliency estimation
- Other computer vision conferences:
 - ECCV
 - ICCV
 - NeurlPS

Source Codes

■ JPEG 2000: http://www.openjpeg.org/

H.264: http://iphome.hhi.de/suehring/tml/

HEVC: http://hevc.hhi.fraunhofer.de/

H.266/VVC: https://jvet.hhi.fraunhofer.de/

- Prof. Xin Li's List of Reproducible Research:
 - http://www.csee.wvu.edu/~xinl/source.html
 - Has links to many other source codes.
- Video Sequences:
 - http://trace.eas.asu.edu/yuv/
 - ftp://ftp.tnt.uni-hannover.de/testsequences/

Report Format & Grading

- Format: similar to a scientific publication
 - □ Title
 - Abstract
 - Introduction
 - Project description (can have multiple sections), including experimental results
 - Conclusion
 - Explanation of each team member' contribution.
 - Clearly state if you use any source codes from other places, and what changes you have made.
 - References
 - Software
- Length: No more than 20 pages, including references:
 - □ single column, single space, 12-point font.
 - Penalty for overlength report: 20% / page

Report Format & Grading

- Grading: the project is 60% of the course
 - Understanding of the topic
 - Difficulty and amount of work
 - Writing: clarity, correctness (no grammar/spelling errors)

- Always cite the references if you use something from other places
- Cheating caught in the project will fail the course!

Tips for the Projects

- Work on the project progressively:
 - Agile workflow
 - Build a simple but demo-able prototype first
 - Improve the feature of each component gradually
 - This way you can stop at any time and still have something to report
- Start early, don't wait till it is too late
- Define some milestones

Tips for the Projects

- Version control:
 - punch.cs.sfu.ca
 - Google Code
 - https://github.com/ https://bitbucket.org/
- At least back up your codes frequently

