



## B.Sc. BIOMEDICAL ENGINEERING

#### SECOND SEMESTER EXAMINATIONS: 2012/2013

BMEN 312: MEDICAL IMAGING (3 Credits)

Total Marks: 100. Time Allocation: 3HRS

This paper is of two sections. Answer all questions in Section A and three (3) questions only from Section B. All questions must be answered in the answer booklet.

This paper should not be removed from the examination hall.

## **SECTION A**

(25 Marks)

Indicate by writing the appropriate alphabet only for the correct answers for questions 1-50

- 1. The purpose of isolating electrically and acoustically the casing of a probe from the transducer element is to;
  - A. overcome the acoustic mismatch between the piezoelectric disc and the human tissue
  - B, prevent large proportion of the incident ultrasound beam to be reflected back
  - C. minimise acoustic impedance
  - D. maintain the acoustic sensitivity
- 2. Coupling materials in ultrasound probes are made from:
  - I. Silver electrodes II. E
    - II. Epoxy resins
- III. Water soluble gels

- A. I only.
- B. II only
- C. III only
- D. I, II and III

Examiner: Dr. Eric Kwasi Ofori

| 3. | Matching layers in ultrasound probes may be made from;                                                                      |                                                                                            |                          |                   |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|-------------------|--|--|--|--|--|
|    | I. Epoxy resins                                                                                                             | II. Perspex                                                                                | III. Silicone rubber     |                   |  |  |  |  |  |
|    | A. Fand II only                                                                                                             | B. II and III only                                                                         | C. I and III only        | D. I, II and III. |  |  |  |  |  |
| 4. | Which of the follow                                                                                                         | ving determines the dia                                                                    | ameter of a transducer e | element?          |  |  |  |  |  |
|    | A. The shape of the transducer                                                                                              |                                                                                            |                          |                   |  |  |  |  |  |
|    | B. The shape of the                                                                                                         | B. The shape of the waveform of the operating voltage                                      |                          |                   |  |  |  |  |  |
|    | C. The magnitude o                                                                                                          | C. The magnitude of the operating frequency                                                |                          |                   |  |  |  |  |  |
|    | D. The shape of the                                                                                                         | D. The shape of the ultrasound beam                                                        |                          |                   |  |  |  |  |  |
| 5. | Which of the follo                                                                                                          | Which of the following is the reason for having a backing layer in ultrasound transducers? |                          |                   |  |  |  |  |  |
|    | A. To increase the duration of the ultrasound pulses by damping emissions from the rear surface of the transducer element.  |                                                                                            |                          |                   |  |  |  |  |  |
|    | B. To reduce the duration of the ultrasound pulses by damping emissions from the front surface of the transducer element.   |                                                                                            |                          |                   |  |  |  |  |  |
|    | C. To increase the duration of the ultrasound pulses by damping emissions from the front surface of the transducer element. |                                                                                            |                          |                   |  |  |  |  |  |
|    | D. To reduce the duration of the ultrasound pulses by damping emissions from the rear surface of the transducer element.    |                                                                                            |                          |                   |  |  |  |  |  |
| 6. | The overall activities of an ultrasound imaging unit is coordinated by the:                                                 |                                                                                            |                          |                   |  |  |  |  |  |
|    | A. Signal manipulation and storage unit B. The pulse generator                                                              |                                                                                            |                          |                   |  |  |  |  |  |
|    | C. The transducer                                                                                                           | D. The pulse repetiti                                                                      | ion frequency generator  | ·.                |  |  |  |  |  |
| 7. | Which of the following materials is used to provide connection between the pulse generator and the transducer element?      |                                                                                            |                          |                   |  |  |  |  |  |
|    | A. Tin electrode                                                                                                            | B. Aluminium electr                                                                        | ode C. Silver elec       | trode             |  |  |  |  |  |
|    | D. Zinc electrode                                                                                                           | •                                                                                          |                          |                   |  |  |  |  |  |
| 8. | Which of the following is used to overcome the acoustic mismatch between the                                                |                                                                                            |                          |                   |  |  |  |  |  |
|    | piezoelectric disc and human tissue in the design of ultrasound probes?                                                     |                                                                                            |                          |                   |  |  |  |  |  |
|    | A. The backing layer B. The matching layer C. The backing electrode                                                         |                                                                                            |                          |                   |  |  |  |  |  |
|    | D. The matching elec                                                                                                        | D. The matching electrode .                                                                |                          |                   |  |  |  |  |  |

| 9.  | Interference from fringe fields in magnetic resonance scanners can be compensated through;                                                                                                                                                                                                                                                                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | A. Relaxation B. Shimming C. Attenuation D. Absorption                                                                                                                                                                                                                                                                                                                                                         |
| 10. | The three gradient coils in MRI unit are located around;  A. The patient tube B. Gradient amplifier C. RF transmitter  D. Signal amplifier                                                                                                                                                                                                                                                                     |
| 11. | In MRI system the coils which emit the RF pulse are situated inside the;  A. Gradient amplifier B. Gradient coils C. Patient tube D. Signal pre-amplifier                                                                                                                                                                                                                                                      |
| 12. | Which of the following determines the level of image slices in the MRI unit?  I. the mean frequency of the RF pulse II. The slice selecting gradient.  III. Orientation of magnetic field gradients  A. I and III only B. II and III only C. I and II only D. I, II and III                                                                                                                                    |
| 13. | Eddy current induced in the surrounding metal structures in MRI unit is due to the changes in the current flowing through;  A. The shim coils B. The RF transmitter coils C. The main magnetic coils  D. The gradient coils                                                                                                                                                                                    |
| 14. | Which of the following is the correct sequence of operation in an MRI system?  1. Computer program triggers the radio pulse synthesizer and gradient amplifiers  11. Imaging pulse sequence initiation  111. Signal generation from the patient detected by the receiver coils  11. IV. RF and gradient coils energize  12. V. Signal received is passed to the computer through the preamplifier for storage. |
|     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           |

C. II ⇒ I =

| 15.                                                                      | Which of the following is/are true about permanent magnets used in MR scanners?             |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                          | I. may weigh up to 20 tons  II. They are less expensive to operate                          |  |  |  |  |  |  |  |
|                                                                          | III. Have a smaller central bore IV. Give low field strength which is unstable              |  |  |  |  |  |  |  |
|                                                                          | V. produces reasonably quality images                                                       |  |  |  |  |  |  |  |
| -                                                                        | A. I, II, III and IV only B. I, II, IV and V only C. II, III, IV and V only                 |  |  |  |  |  |  |  |
|                                                                          | D. I, II and V only                                                                         |  |  |  |  |  |  |  |
|                                                                          |                                                                                             |  |  |  |  |  |  |  |
| 16.                                                                      | Which of the following sections can be imaged without disturbing the patient or             |  |  |  |  |  |  |  |
|                                                                          | moving mechanical parts?                                                                    |  |  |  |  |  |  |  |
|                                                                          | I. Sagittal II. Axial III. Coronal IV. Oblique                                              |  |  |  |  |  |  |  |
|                                                                          | A. I, II and III only B. II, III and IV only. C. I, II, and IV only                         |  |  |  |  |  |  |  |
| •                                                                        | D. I, II, III and IV                                                                        |  |  |  |  |  |  |  |
|                                                                          |                                                                                             |  |  |  |  |  |  |  |
| 17.                                                                      | Which of the following gives the correct overview of magnetic resonance imaging?            |  |  |  |  |  |  |  |
|                                                                          | 1. a patient is placed in a strong external magnetic field                                  |  |  |  |  |  |  |  |
|                                                                          | II. The patient emits signal                                                                |  |  |  |  |  |  |  |
|                                                                          | III. A radio wave is turned off                                                             |  |  |  |  |  |  |  |
|                                                                          | IV. A radio wave is sent in                                                                 |  |  |  |  |  |  |  |
| V. it is signal is received and used for the reconstruction of the image |                                                                                             |  |  |  |  |  |  |  |
|                                                                          |                                                                                             |  |  |  |  |  |  |  |
|                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                        |  |  |  |  |  |  |  |
|                                                                          |                                                                                             |  |  |  |  |  |  |  |
|                                                                          | $B. \ l \Longrightarrow \ lV \Longrightarrow \ ll \Longrightarrow \ V$                      |  |  |  |  |  |  |  |
|                                                                          |                                                                                             |  |  |  |  |  |  |  |
|                                                                          | $C. \ l \Longrightarrow \ lV \Longrightarrow \ lI \Longrightarrow \ V \Longrightarrow \ lV$ |  |  |  |  |  |  |  |
|                                                                          |                                                                                             |  |  |  |  |  |  |  |
| •                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                        |  |  |  |  |  |  |  |
| 18.                                                                      | In nuclear magnetic resonance, relaxation time T <sub>2</sub> gives information about       |  |  |  |  |  |  |  |
|                                                                          | A. The physical state of the subject                                                        |  |  |  |  |  |  |  |
|                                                                          | B. the nature of the biochemical surroundings                                               |  |  |  |  |  |  |  |

Examiner: Dr. Eric Kwasi Ofori

C. the nuclear state of the subjectD. the state of stability of the subject



| 17.    | HIE C     | ouch of magne     | 110 1620 | mance sc    | anners    | aic illa             | iue oi       |           |         | •.           |
|--------|-----------|-------------------|----------|-------------|-----------|----------------------|--------------|-----------|---------|--------------|
|        | Α.        | Ferrous materials |          |             |           | B. Non-ferrous mater |              |           | aterial | s            |
|        | C.        | Semi-conduc       | ting m   | aterials ·  |           | D.                   | Biomat       | erials    |         | •            |
| 20.    | Super     | conducting coi    | ls are o | cooled by   | immer     | sion in              | ı liquid he  | lium w    | hich ev | vaporates at |
|        | Α.        | 4°C               | В.       | 4 K         |           | C.                   | 77 K         |           | D.      | 77 ° C       |
| 21.    | Whic      | h of the followi  | ng ma    | gnetic res  | sonance   | magn                 | ets can pro  | oduce a   | stable  | e field?     |
|        | 1.        | Resistive         | Н.       | Perma       | nent      |                      | Ш.           | Superc    | onduc   | ting         |
|        | A. l      | and II only       | B. 1     | l and III o | only.     | C. 1                 | and III on   | ly        | D. I, I | l and III    |
| 22.    |           | cavities in coils | of su    | percondu    | icting s  | canner               | s are mea    | int to r  | estrict | heat transfe |
|        | by;<br>A. | Conduction        |          | B.          | Conve     | action               |              | C.        | Radia   | ntion.       |
|        |           | Conduction        | and Da   |             | Collve    | ction                |              | C.        | Radia   | ation        |
|        | D.        | Conduction        | anu Ka   | idiation    |           | ,                    |              | ٠         |         |              |
| 23. TI | ne targe  | et material for a |          | •           | c unit is |                      | •            |           |         | .•           |
|        | A.        | Tungsten and      | l Rhod   | ium         |           | В.                   | Molybo       | denum .   | and Rh  | nodium       |
|        | C.        | Molybdenun        | n and 1  | rungsten    | 1 -       | D.                   | Tungsto      | en and    | Palladi | ium .        |
| 24. W  | hat is t  | he effect of low  | kV va    | alue in ma  | ammog     | raphic               | equipmen     | it in the | : X-ray | beam?        |
| L.     | Long      | exposure time     |          | 11.         | High      | risk of              | image un     | sharpne   | ess     |              |
| [1]    | l. High   | contrast.         | IV       | Low b       | eam in    | tensity              |              |           |         | **           |
| Α      | . l and   | II only           | В. В     | I, III and  | IV only   | ,                    | C. I, I      | l and II  | l only  |              |
| D      | . l, II a | nd IV only        |          |             |           |                      |              |           |         |              |
| 25. A  | t Kilov   | oltages greater   | lhan 25  | 5 kV, mai   | mmogra    | aphic u              | ınits may l  | have fil  | ters m  | ade from;    |
|        | I.        | Rhodium           | 11.      | Molyt       | denum     |                      | Ш.           | Palladi   | um      |              |
|        | A. 1      | and II only       |          | B. la       | and III   | only                 | C. Il a      | ınd III ( | only    |              |
|        | D. 1      | , II and III      |          |             |           |                      |              |           |         |              |
| 26. Ti | ne suita  | ble material for  | filters  | s in mamr   | nograp    | hic uni              | it at kV's o | of 20-2   | 5 KV i  | s;           |
|        | Α.        | Molybdenum        | В.       | Rhodi       | um        | C.                   | Palladi      | um        |         |              |
|        | D.        | Aluminium         |          | *           |           |                      |              |           |         |              |

Examiner: Dr. Eric Kwasi Ofori

| 21.        | Space charge compensation in mami                                                  | nographic units is achieved by;                     |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|
| A. Lov     | vering the filament temperature                                                    | B. Boosting the filament current                    |  |  |  |  |  |  |
| C. Boo     | osting the filament temperature                                                    | D. Narrowing the gap between the electrodes         |  |  |  |  |  |  |
|            |                                                                                    |                                                     |  |  |  |  |  |  |
| 28. Th     | e capability of the system to make vi-                                             | sible small details or calcifications down to about |  |  |  |  |  |  |
| 0.1        | mm is known as;                                                                    |                                                     |  |  |  |  |  |  |
| A.         | Sharpness B. Noise                                                                 | C Contrast D. Spatial resolution                    |  |  |  |  |  |  |
|            |                                                                                    |                                                     |  |  |  |  |  |  |
| 29.        | The surface of breast support plate m                                              | nay be made of;                                     |  |  |  |  |  |  |
| A.         | Carbon fiber B. Glass fiber                                                        | C. Lead D. Aluminum sheet                           |  |  |  |  |  |  |
|            |                                                                                    |                                                     |  |  |  |  |  |  |
| 30.        | What is the recommended foci                                                       | us-to-film distance and focal spot size in          |  |  |  |  |  |  |
|            | mammographic units?                                                                |                                                     |  |  |  |  |  |  |
| A.         | 45-60 mm and 0.4- 0.6 mm B.                                                        | 45-60 cm and 0.4-0.6 cm                             |  |  |  |  |  |  |
| C.         | 45-60 cm and 4- 6 cm D.                                                            | 45-60 cm and 0.4-0.6 mm.                            |  |  |  |  |  |  |
|            | ,                                                                                  |                                                     |  |  |  |  |  |  |
| 31.        | What is the KV range for mammogra                                                  | aphic x-ray generators?                             |  |  |  |  |  |  |
| A.         | 30-45kV B. 50-80kV                                                                 | C. 20- 80kV D. 20-45 kV                             |  |  |  |  |  |  |
| 32.: •     | The effect of low kV value in mamm                                                 | ographic units is offset by using;                  |  |  |  |  |  |  |
| A.         | High potential generator B. Six-pulse generator                                    |                                                     |  |  |  |  |  |  |
| <b>C</b> , | Two-pulse generator. D. Constant potential generator                               |                                                     |  |  |  |  |  |  |
| 33.        | Automatic exposure timing is an                                                    | essential feature of mammographic equipment         |  |  |  |  |  |  |
| ٠.,        | because of;                                                                        |                                                     |  |  |  |  |  |  |
| A.         | Durability and efficiency                                                          | B. Efficiency and portability                       |  |  |  |  |  |  |
| C.         | Variation of breast size and opacity                                               | D. High exposure rate                               |  |  |  |  |  |  |
|            |                                                                                    |                                                     |  |  |  |  |  |  |
| 34.        | The variation in image density gradients created by the shape of the breast may be |                                                     |  |  |  |  |  |  |
|            | lessened by;                                                                       |                                                     |  |  |  |  |  |  |
|            | A. the use of filters B. Beam collimation C. the use of gentle compression         |                                                     |  |  |  |  |  |  |
|            | D. Beam alignment                                                                  |                                                     |  |  |  |  |  |  |
|            |                                                                                    |                                                     |  |  |  |  |  |  |

Page 6

- 35. Which of the following material is used for the window of the x-ray tube of mammographic units?
  - A. Glass with a maximum thickness of 1 mm
  - B. Beryllium with a maximum thickness of 1 mm
  - C. Aluminium with a maximum thickness of 1 mm
  - D. Molybdenum with a maximum thickness of 1 mm
- 36. Which of the following are incorporated on mammographic equipment as a means of patient reassurance?
- 1. Handles are provided for the patient to grasp for steadiness during the procedure
- II. The manocuvrability of the equipment can allow the patient to sit, stand or lie down, according to need.
- III. The control panel is commonly separated from the patient by a full-length lead glass protection screen.
- IV. The surface of breast support plate is warm to touch
- A. I, II and IV only B. II, III, and IV only C. I, II and III only D. I, II, III and IV
- 37. The tube head for a simple dental unit in most long focus-to-film distance contains
  - A. A rotating anode tube insert, filament transformer, high tension transformer and expansion bellow
  - B. A stationary anode tube insert, high tension transformer, tube filament transformer and expansion bellow
  - C. A grid anode tube insert, filament transformer, high tension source and expansion bellow
  - D. A rotating anode tube insert, nasal positioner, high tension transformer and AEC
- 38. Dental radiographic equipment may deliver entrance doses between
  - A. 0.5 and 150 mGy B. 5 and 50 mGy C. 5.0 and 150 mGy D. 0.5 and 50 mGy
- 39. A Simple Dental unit is made up of the following components:

. .

- A. Tube head, Nasal positioner, control unit B. Tube support, Control unit, tube insert
- C. Tube head, Tube support, Control unit D. Tube support, control unit and moderator

Examiner: Dr. Eric Kwasi Ofori Page 7

| 40. W   | nat type of mot                                                    | ion is emplo    | yea in an ( | Irtnopa               | ntomography (     | dental e               | quipment?        |  |  |  |
|---------|--------------------------------------------------------------------|-----------------|-------------|-----------------------|-------------------|------------------------|------------------|--|--|--|
| A.      | Synchronized oscillatory B.                                        |                 |             | Synchronized harmonic |                   |                        |                  |  |  |  |
| C.      | Synchronized                                                       | rotary          | D.          | Synch                 | ronized rectilir  | iear                   |                  |  |  |  |
|         |                                                                    |                 |             |                       |                   |                        |                  |  |  |  |
| 41. W   | hat are the fund                                                   | tions of the    | cone at the | tube p                | ort of a dental i | tube hea               | ad?              |  |  |  |
| 1       | To collimate and centre the X-ray beam.                            |                 |             |                       |                   |                        |                  |  |  |  |
| 11      | To guides the radiographer to use the correct focus-film distance. |                 |             |                       |                   |                        |                  |  |  |  |
| 111.    | To guide the flow of thermionic electrons in the tube.             |                 |             |                       |                   |                        |                  |  |  |  |
| A.      | I only                                                             | B. lan          | d III only  | C.                    | I and II only     | D.                     | I, II, and III   |  |  |  |
| 42. Ho  | ow is the dental                                                   | tube-head p     | rotected ag | gainst el             | ectrical and pr   | imary r                | adiation hazard? |  |  |  |
| 1.      | The tube head                                                      | l is insulated  | internally  | with oi               |                   |                        |                  |  |  |  |
| II.     | The tube hous                                                      | sing is lead li | ined        |                       |                   |                        |                  |  |  |  |
| []]     | Tube head is                                                       | earthed via b   | oth its sup | ply cab               | le and its mour   | nting.                 |                  |  |  |  |
| A.      | l and II only                                                      | B. I and III    | only        | C. 11                 | and III only      | D. 1, 1                | l and III        |  |  |  |
|         |                                                                    |                 |             |                       |                   |                        |                  |  |  |  |
| 43. Th  | e dental tube h                                                    | ead is joined   | to the tube | e suppo               | rt by means of    | •                      |                  |  |  |  |
| Α.      | Bearings                                                           | B. Sha          | ft          | C.                    | Gimbal            | D.                     | Split rings      |  |  |  |
|         |                                                                    |                 |             |                       |                   |                        |                  |  |  |  |
| 44. Th  | ne filters used i                                                  | •               |             |                       |                   |                        |                  |  |  |  |
| A.      | Tungsten                                                           | B. Dur          | alumin      | C.                    | Aluminium         | D.                     | Palladium        |  |  |  |
|         |                                                                    |                 |             | • .                   |                   |                        |                  |  |  |  |
| 45. Th  | e casing of a d                                                    | ental tube he   | ad is made  | up of;                |                   |                        |                  |  |  |  |
| A.      | Molybdenum                                                         | lined with le   | ad          | В.                    | Aluminium li      | minium lined with lead |                  |  |  |  |
| C       | Aluminium a                                                        | lloy lined wit  | th lead     | D.                    | Molybdenum        | alloy li               | ned with lead    |  |  |  |
|         | *                                                                  |                 |             |                       |                   |                        |                  |  |  |  |
| 46. Sir | nple dental uni                                                    | it has low po   | wer of X-r  | ay prod               | uction which i    | mplies                 |                  |  |  |  |
| 1.      | I. Relatively high rate of heat production                         |                 |             |                       |                   |                        |                  |  |  |  |
| · II.   | II. Relatively low rate of heat production                         |                 |             |                       |                   |                        |                  |  |  |  |
| Щ       | III. Safe use of stationary anode X-ray tube                       |                 |             |                       |                   |                        |                  |  |  |  |
|         |                                                                    |                 |             |                       |                   |                        |                  |  |  |  |
| A.      | l and Honly                                                        | B. I and III    | only        | C. II a               | nd III only       | D. I,                  | II and III       |  |  |  |
|         |                                                                    |                 |             |                       |                   |                        |                  |  |  |  |

OF THE NELKINGPARTA

|             | _                                                                                     | used to e     | nsure t     | he use of a much longer fo       | ocus- to- film |  |  |  |
|-------------|---------------------------------------------------------------------------------------|---------------|-------------|----------------------------------|----------------|--|--|--|
| distanc     | ce?                                                                                   |               | •           |                                  |                |  |  |  |
| A.          | Conical plastic cone                                                                  |               | B.          | Conical metallic cone            |                |  |  |  |
| C.          | Conventional metallic co                                                              | one           | D.          | Lead alloy                       |                |  |  |  |
|             |                                                                                       |               |             |                                  |                |  |  |  |
| 48. W       | hat type of X-ray tube is in                                                          | n Craniostat  | : Unit?     |                                  |                |  |  |  |
| A.          | Low power rotating anot                                                               | de type       | <b>B</b> .1 | Medium power rotating anode type |                |  |  |  |
| C.          | High power rotating and                                                               | de type       | D.5         | High power stationary anode type |                |  |  |  |
|             |                                                                                       |               |             |                                  |                |  |  |  |
| 49. Pa      | tients are located in orthog                                                          | dontic exam   | ination     | using a Cephalostat Unit by;     |                |  |  |  |
| 1.          | earplugs II su                                                                        | uspension     | 111         | nasal positioner                 |                |  |  |  |
| A.          | I and II only                                                                         | В.            | II and      | III only                         |                |  |  |  |
| C.          | I and III only                                                                        | D.            | I, II, a    | nd III                           |                |  |  |  |
|             |                                                                                       |               |             |                                  |                |  |  |  |
| 50. Th      | e total tube's inherent filts                                                         | ration in a s | imple d     | ental unit is                    |                |  |  |  |
| A.          | 10-20mm Al B.                                                                         | . 1-2 cı      | m Al        | C. 1-2mm Al D. 3-5mn             | ı.Al           |  |  |  |
|             |                                                                                       |               |             |                                  |                |  |  |  |
|             |                                                                                       |               |             |                                  |                |  |  |  |
|             |                                                                                       |               |             |                                  |                |  |  |  |
|             |                                                                                       | SE            | CTION       | <u> </u>                         |                |  |  |  |
|             |                                                                                       | (7)           | E Manli     | · • )                            |                |  |  |  |
|             |                                                                                       | (7.           | 5 Mark      |                                  | •              |  |  |  |
|             | Answer                                                                                | only three o  | questio     | ns from this section             |                |  |  |  |
| Quest       | ion 1                                                                                 |               |             |                                  |                |  |  |  |
| Q 4 4 5 5 1 |                                                                                       |               | :           |                                  | •              |  |  |  |
| (a)         | (a) Draw a block diagram demonstrating the core modules in ultrasound imaging         |               |             |                                  |                |  |  |  |
|             | equipment and state the main functions of each module. (10 marks)                     |               |             |                                  |                |  |  |  |
| (b)         | Describe the mode of operation of a pulse-echo ultrasound imaging. (6 marks)          |               |             |                                  |                |  |  |  |
| (c)         | c) Use piezoelectricity to explain the function of an ultrasound transducer (3 marks) |               |             |                                  |                |  |  |  |
| (d)         | State three similarities a                                                            | and three d   | ifferen     | ces between ultrasound imag      | ing and X-ray  |  |  |  |

Examiner: Dr. Eric Kwasi Ofori

imaging.



(6 marks)

#### Question 2

- (a) With the aid of a well-labelled block diagram, describe the mode of operation of a Magnetic Resonance Imaging System. (10 marks)
- (b) State five (5) installation requirements of a Magnetic Resonance Scanner. (5 marks)
- (c) What are the causes and effects of leakage of cryogenic gas in a Magnetic Resonance facility? How could leakage of the gas be detected? (5 marks)
- (d) Explain nuclear magnetism. What factors determine it? (5 marks)

## Question 3

- (a) Write short notes on the design of the following components in mammographic equipment;
  - The X-ray tube insert
  - The breast support plate / table
  - The breast compression paddle

- (8 marks)
- (b) Mention three important principles which are significant in the mammographic techniques. (3 marks)
- (c) Describe briefly how mammographic equipment should be designed to meet each of the three principles required in (b) above. (3 marks)
- (d) Briefly explain why molybdenum target material is used with molybdenum filter in mammographic equipment instead of Aluminum filter. (3 marks)
- (e) How is mammographic equipment designed to ensure radiation protection and enhance image quality? (3 marks)
- (f) What is the effect of the use of low beam quality or kVp in mammographic unit? Explain how this effect can be offset. (5 marks)

Page 10

## **Question 4**

- (a) With the aid of a well-labelled diagram describe the structure and principle of operation of Orthopantomographic equipment. (8 marks)
- (b) Give four merits each for a Cephalostat and an Orthopantomographic unit over a simple dental unit. (8 marks)
- (c) List five (5) features on an Orthopantomography unit that enhances patient safety and promotes image quality. (5 marks)
- (f) Mention two (2) types of cone attachment on the mounting plate surrounding the tube port of the simple dental unit. What are their functions? (4 marks)

# **Question 5**

- (a) Explain the occurrence of the following phenomena in Magnetic Resonance Imaging
  - Longitudinal magnetisation
  - Transversal magnetisation
  - Spin-lattice-relaxation/ Longitudinal relaxation
  - Spin-spin-relaxation/transversal relaxation

(16 marks)

- (b) What is the essential requirement for the diagnostic reliability of mammographic images? How can this requirement be achieved? (4 marks)
- (c) What is the basis of accuracy and reliability in Cephalometric unit? (2 marks)
- (d) State three basic functions of ultrasound imaging equipment? (3 marks)



