Tackling Graphical NLP problems with Graph Recurrent Networks (GRN)

Linfeng Song
University of Rochester
advised by professor Daniel Gildea

Previous work: linearization + RNN (Konstas et al., ACL 2017)

Previous work: graph separation + DAG LSTM (Peng et al., TACL 2017)

Outline

• Evidence Integration for Multi-hop Reading Comprehension with Graph Neural Networks.

N-ary Relation Extraction using Graph State LSTM.

Semantic Neural Machine Translation using AMR.

Multi-hop reading comprehension

Q: (The Hanging Gardens, country, ?)

Candidates: {Iran, India, Pakistan, Somalia, ...}

The Hanging Gardens, in [Mumbai], also known as Pherozeshah Mehta Gardens, are terraced gardens ... [They] provide sunset views over [the Arabian Sea] ...

[**Mumbai**] (also known as Bombay, the official name until 1995) is the capital city of the Indian state of Maharashtra. [**It**] is the most populous city in [**India**] ...

[The Arabian Sea] is a region of the northern Indian Ocean bounded on the north by [Pakistan] and [Iran], on the west by northeastern [Somalia] and the Arabian Peninsula ...

Multi-hop reading comprehension

Q: (The Hanging Gardens, country, ?)

Candidates: {Iran, India, Pakistan, Somalia, ...}

The Hanging Gardens, in [Mumbai], also known as Pherozeshah Mehta Gardens, are terraced gardens ... [They] provide sunset views over [the Arabian Sea] ...

[**Mumbai**] (also known as Bombay, the official name until 1995) is the capital city of the Indian state of Maharashtra. [**It**] is the most populous city in [**India**] ...

[The Arabian Sea] is a region of the northern Indian Ocean bounded on the north by [Pakistan] and [Iran], on the west by northeastern [Somalia] and the Arabian Peninsula ...

Relevant evidence:

- The Hanging Gardens are in Mumbai.
- Mumbai is the most populous city in India.

Irrelevant evidence:

- The Hanging Gardens provide sunset views over the Arabian Sea.
- The Arabian Sea is bounded by Pakistan, Iran and Somalia.

Multi-hop reading comprehension

Q: (The Hanging Gardens, country, ?)

Candidates: {Iran, India, Pakistan, Somalia, ...}

The Hangi (1) Structure, creation herozeshah Mehta Galders, are terraced gardens ... [They] provide sunset views over [the Arabian Sea] ...

the capita (2) Evidence integration he most populous city in [India] ...

[The Arabian Sea] is a region of the northern Indian Ocean bounded on the north by [Pakistan] and [Iran], on the west by northeastern [Somalia] and the Arabian Peninsula ...

Relevant evidence

- The Hanging Gardens are in Mumbai.
- Mumbai is the most populous city in India

Irrelevant evidence

- The Hanging Gardens provide sunset views over the Arabian Sea.
- The Arabian Sea is bounded by Pakistan, Iran and Somalia.

Previous SOTA (Dhingra et al., NAACL 2018)

• Baseline: gated-attention reader (Dhingra et al., ACL 2017)

Previous SOTA (Dhingra et al., NAACL 2018)

Coref-DAG

Coref-DAG vs Evidence graph

- GRN follows an iterative message passing process for updating each node state. Within each iteration, it takes two main steps:
 - Message calculation
 - Node state update

 Messages are first calculated by summing up the hidden states of neighbors

$$m_j^t = \sum_{i \in N_j} h_i^{t-1}$$
 N_j : all neighbors of v_j

 Node states are updated with messages through an LSTM step.

$$h_j^t, c_j^t = LSTM(m_j^t, c_j^{t-1})$$

Comparing GRN with other GNNs

	GRN (ACL 2018)	GCN (EMNLP 2017)	GGNN (ACL 2018)
Message calculation:		$m_j^t = \sum_{i \in N_j} h_i^{t-1}$	
State update:	h_j^t, c_j^t $= LSTM(m_j^t, [h_j^{t-1}c_j^{t-1}])$	$h_j^t = \sigma(W m_j^t + b)$	$h_j^t = GRU(m_j^t, h_j^{t-1})$
State memory:	both h and c	only <i>h</i>	only h

Baselines

Our model

Experiments

- WikiHop (http://qangaroo.cs.ucl.ac.uk/)
 - 51K instances: 44K (training), 5K (dev), 2.5K (hold-out test)
 - Each instance is: $([p_1, p_2 ... p_L], q, C, a)$
 - Mentions are generated from automatic NER and coreference resolution, by Stanford CoreNLP

DEV experiment on message passing step (T)

Main Comparison (accuracy)

Model	Dev	Test
GA w/ GRU (Dhingra et al., 2018)	54.9	
GA w/ Coref-GRU (Dhingra et al., 2018)	56.0	59.3
Local	61.0	
Local-2L	61.3	
Coref-LSTM	61.4	
Coref-GRN	61.4	
Fully-Connect-GRN	61.3	
MHQA-GRN	62.8	65.4

Main Comparison (accuracy)

Model	Dev	Test
GA w/ GRU (Dhingra et al., 2018)	54.9	
GA w/ Coref-GRU (Dhingra et al., 2018)	56.0	59.3
Local	61.0	
Local-2L	61.3 +0.4	
Coref-LSTM	61.4	
Coref-GRN	61.4	+1.8
Fully-Connect-GRN	61.3	
MHQA-GRN	62.8	65.4

Main Comparison (accuracy)

Model	Dev	Test
GA w/ GRU (Dhingra et al., 2018)	54.9	
GA w/ Coref-GRU (Dhingra et al., 2018)	56.0	59.3
Local	61.0	
Local-2L	61.3	
Coref-LSTM	61.4	
Coref-GRN	61.4	
Fully-Connect-GRN	61.3	
MHQA-GRN	62.8	65.4

Distance between question and answer

Distance between question and answer

Conclusion for this work

 We introduced a new graph-based approach for evidence integration over textual knowledge.

• We systematically compare with other alternatives, and we are the first to investigate a GNN on a reading comprehension task.

 Our model outperforms our strong baselines on a standard multi-hop reading comprehension dataset.

Cross-sentence N-ary Relation Extraction

Previous SOTA: DAG LSTM (Peng et al., 2017)

Overall framework

Peng et al., (2017)

Overall framework

Code available at: https://github.com/freesunshine0316/nary-grn

for
$$t$$
 in $[1 ... T]$

$$m_j^t \leftarrow \text{neighbors of } v_j$$

$$h_j^t, c_j^t = LSTM(m_j^t, c_j^{t-1})$$

$$v_i$$
 v_j v_k

$$x_{i,j}^{l_1} = W_1[e_{v_i}; e_{l_1}] + b_1 \quad x_{j,k}^{l_2} = W_2[e_{v_k}; e_{l_2}] + b_2$$

$$\phi_{j}^{in} = \sum_{(i,j,l) \in N_{in}(j)} x_{i,j}^{l} \quad \phi_{j}^{out} = \sum_{(j,k,l) \in N_{out}(j)} x_{j,k}^{l}$$

$$v_i$$
 v_j v_k

$$x_{i,j}^{l_1} = W_1[e_{v_i}; e_{l_1}] + b_1 \quad x_{j,k}^{l_2} = W_2[e_{v_k}; e_{l_2}] + b_2$$

$$\phi_{j}^{in} = \sum_{(i,j,l) \in N_{in}(j)} x_{i,j}^{l} \quad \phi_{j}^{out} = \sum_{(j,k,l) \in N_{out}(j)} x_{j,k}^{l}$$

$$\psi_{j}^{in} = \sum_{(i,j,l) \in N_{in}(j)} h_{i}^{t-1} \quad \psi_{j}^{out} = \sum_{(j,k,l) \in N_{out}(j)} h_{k}^{t-1}$$

$$m_i^t = [\phi_i^{in}; \phi_i^{out}; \psi_i^{in}; \psi_i^{out}]$$

This work

$$m_j^t = \sum_{i \in N_j} h_i^{t-1}$$

Multi-hop reading comprehension

Efficiency of GRN versus DAG networks

Experiments

- Evaluate on the corpus by Peng et al., (2017), with annotations of dependency, discourse and entity boundaries.
 - Ternary (drug, gene, mutation): 6987 instances (Avg. length: 73.9)
 - Binary (drug, mutation): 6087 instances (Avg. length: 61.0)
- Message passing step T=5, as determined by a DEV experiment
- Evaluation (Peng et al., 2017):
 - 5-fold validation
 - Classification accuracy

Model	Precision (%)
Peng et al. (2017)	80.7
Peng et al. (2017) + Multi-task	82.0
Bidir DAG LSTM	77.3
GRN	83.2*

Ternary

Model	Precision (%)
Peng et al. (2017)	76.7
Peng et al. (2017) + Multi-task	78.5
Bidir DAG LSTM	76.4
GRN	83.6*

Binary

Efficiency (Ternary)

Model	Train	Decode
Bidir DAG LSTM	281s	27.3s
GRN	36.7s (7.7 times faster)	2.7s (10 times faster)

Average sentence length: 75

Message passing step: 5

Case study (Ternary)

Conclusion for this work

 We studied the effectiveness of GRN for encoding dependency graphs with rich linguistic information.

 We showed that GRN is much more effective than a DAG network by keeping the original graph structure, and it is much faster.

Semantic NMT

Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks. Marcheggiani et al., (NAACL 2018).

Semantic NMT using AMR

Abstract meaning representation (AMR)

Encoding AMRs with GRN

Baseline: attention-based seq2seq

Model: Dual2seq

Other baselines:

- Dual2seq-Dep: same with Dual2seq, but GRN is for encoding dependency trees instead of AMRs
- Dual2seq-SRL: same with Dual2seq, but GRN is for encoding semantic roles instead of AMRs
- **Dual2seq (self)**: same with Dual2seq, but GRN is for encoding source sentences, treating it as a chain graph.
- Dual2seq-LinAMR: use additional sequential encoder (instead of our GRN) to encode linearized AMRs.

Experiments

- Benchmark (EN-DE):
 - Training: News commentary v11 (241K), full WMT 16 (4.5M)
 - Dev/Test: newstest2013/newstest2016
- Preprocessing:
 - Tokenization by Moses tokenizer
 - Training sentences with length ≥ 50 are filtered
 - AMRs (JAMR), dependency trees (CoreNLP), semantic roles (IBM SIRE)
- Report cased BLEU (primary metric), Meteor and TER \downarrow

Development experiments on T

System		NC-v11		Full WMT 16			
	BLEU(%)	TER↓	Meteor(%)	BLEU(%)	TER↓	Meteor(%)	
OpenNMT-tf	15.1	0.6902	30.4	24.3	0.5567	42.3	
Seq2seq	16.0	0.6695	33.8	23.7	0.5590	42.6	
Marcheggiani et al. (Dep)	16.1			23.9			
Marcheggiani et al. (SRL)	15.6			24.5			
Marcheggiani et al. (both)	15.8			24.9			
Dual2seq-LinAMR	17.3	0.6530	36.1	24.0	0.5643	42.5	
Duel2seq-SRL	17.2	0.6591	36.4	23.8	0.5626	42.2	
Dual2seq-Dep	17.8	0.6516	36.7	25.0	0.5538	43.3	
Dual2seq	19.2	0.6305	38.4	25.5	0.5480	43.8	

System	NC-v11			Full WMT 16			
	BLEU(%)	TER↓	Meteor(%)	BLEU(%)	TER↓	Meteor(%)	
OpenNMT-tf	15.1	0.6902	30.4	24.3	0.5567	42.3	
Seq2seq	16.0	0.6695	33.8	23.7	0.5590	42.6	
Marcheggiani et al. (Dep)	16.1			23.9			
Marcheggiani et al. (SRL)	15.6			24.5			
Marcheggiani et al. (both)	15.8			24.9			
Dual2seq-LinAMR	17.3	0.6530	36.1	24.0	0.5643	42.5	
Duel2seq-SRL	17.2	0.6591	36.4	23.8	0.5626	42.2	
Dual2seq-Dep	17.8	0.6516	36.7	25.0	0.5538	43.3	
Dual2seq	19.2	+3.2 0.6305	38.4	25.5	+1.80.5480	43.8	

System	NC-v11			Full WMT 16			
	BLEU(%)	TER↓	Meteor(%)	BLEU(%)	TER↓	Meteor(%)	
OpenNMT-tf	15.1	0.6902	30.4	24.3	0.5567	42.3	
Seq2seq	16.0	0.6695	33.8	23.7	0.5590	42.6	
Marcheggiani et al. (Dep)	16.1			23.9			
Marcheggiani et al. (SRL)	15.6			24.5			
Marcheggiani et al. (both)	15.8			24.9			
Dual2seq-LinAMR	17.3	0.6530	36.1	24.0	0.5643	42.5	
Duel2seq-SRL	17.2	0.6591	36.4	23.8	0.5626	42.2	
Dual2seq-Dep	17.8	0.6516	36.7	25.0	0.5538	43.3	
Dual2seq	19.2	0.6305	38.4	25.5	0.5480	43.8	

BLEU scores of various sentence lengths

Conclusion of this work

 We demonstrated that AMR is an effective representation for NMT and it is more useful than other common choices, such as dependency trees and semantic roles.

• GRN learns better representations for AMRs than a RNN baseline with graph linearization.

Conclusion of this talk

 We introduced our recent graph recurrent network (GRN) and its applications on several major NLP tasks

 We demonstrated that GRN successfully encodes a wide diversity of graphs and outperforms the previous SOTAs, showing that it is general and effective

Other publications: text generation

- AMR-to-text generation as a Traveling Salesman Problem. Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang and Daniel Gildea. In Proceedings of EMNLP 2016.
- AMR-to-text Generation with Synchronous Node Replacement Grammar. Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo Wang and Daniel Gildea. In Proceedings of ACL 2017.
- Leveraging Context Information for Natural Question Generation. Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang and Daniel Gildea. In Proceedings of NAACL 2018.
- Neural Transition-based Syntactic Linearization. **Linfeng Song**, Yue Zhang and Daniel Gildea. In Proceedings of INLG 2018.

Other publications: AMR parsing

 Sequence-to-sequence Models for Cache Transition Systems.
 Xiaochang Peng, Linfeng Song, Daniel Gildea and Giorgio Satta. In Proceedings ACL 2018.

 A Synchronous Hyperedge Replacement Grammar based approach for AMR parsing. Xiaochang Peng, Linfeng Song and Daniel Gildea. In Proceedings of CoNLL 2015.

Other publications

 Sense Embedding for Word Sense Induction. Linfeng Song, Zhiguo Wang, Haitao Mi and Daniel Gildea. In Proceedings of *SEM 2016.

Thanks for listening. Questions?