SIEMENS

Preface Content Overview SICAM P38 **Technical Data** 3-phase Power Meter with **Functions** Multi-Tariff function Operation and Display V1.10 Installation and Wiring Communication Manual Maintenance

Ordering Number

1

Note

For safety purposes, please note instructions and warnings in the Preface.

Disclaimer of Liability

We have checked the contents of this manual against the hardware and software described. However, deviations from the description cannot be completely ruled out, so that no liability can be accepted for any errors or omissions contained in the information given. The information given in this document is reviewed regularly and any necessary corrections will be included in subsequent editions. We appreciate any suggested improvements.

We reserve the right to make technical improvements without notice

Document Version: V01.00.01 Release date: 2014.09

Copyright

Copyright © Siemens AG 2014. Allrights reserved.

Dissemination or reproduction of this document, or evaluation and communication of its contents, is not authorized except where expressly permitted. Violations are liable for damages. All rights reserved, particularly for the purposes of patent application or trademark registration.

Registered Trademarks

SIPROTEC, SINAUT, SICAM and DIGSI are registered trademarks of Siemens AG. Other designations in this manual might be trademarks whose use by third parties for their own purposes would infringe the rights of the owner.

Siemens Ltd. Order No.: E50417-H8940-C564-2

Preface

Purpose of this manual

This manual describes the functions, operation, installation, and commissioning of devices 3-phase Current Power Meter-> In particular, one will find:

- Information regarding the configuration of the scope of the device and a description of the device functions > Chapter 3;
- Instructions for Operation and Display > Chapter 4;
- · Technical Data > Chapter 2;

Target Audience

Protection engineers, commissioning engineers, personnel concerned with adjustment, checking, and service of selective protective equipment, automatic and control facilities, and personnel of electrical facilities and power plants.

Additional Support

Should further information on the System SICAM be desired or should particular problems arise which are not covered sufficiently for the purchaser's purpose, the matter should be referred to the local Siemens representative.

Our Customer Support Center provides a 24-hour service.

Phone: +49 (180) 524-8437 Fax: +49 (180) 524-2471

e-mail: support.ic@siemens.com

Safety Information

This manual does not constitute a complete index of all required safety measures for operation of the equipment (module, device), as special operational conditions may require additional measures. However, it comprises important information that should be noted for purposes of personal safety as well as avoiding material damage. Information that is highlighted by means of a warning triangle and according to the degree of danger, is illustrated as follows.

DANGER!

Danger indicates that death, severe personal injury or substantial material damage will result if proper precautions are not taken.

WARNING!

indicates that death, severe personal injury or substantial property damage may result if proper precautions are not taken.

Caution!

indicates that minor personal injury or property damage may result if proper precautions are not taken. This particularly applies to damage to or within the device itself and consequential damage thereof.

Note

indicates information on the device, handling of the device, or the respective part of the instruction manual which is important to be noted.

WARNING!

Qualified Personnel

Commissioning and operation of the equipment (module, device) as set out in this manual may only be carried out by qualified personnel. Qualified personnel in terms of the technical safety information as set out in this manual are persons who are authorized to commission, activate, to ground and to designate devices, systems and electrical circuits in accordance with the safety standards.

Use as prescribed

The operational equipment (device, module) may only be used for such applications as set out in the catalogue and the technical description, and only in combination with third-party equipment recommended or approved by Siemens.

The successful and safe operation of the device is dependent on proper handling, storage, installation, operation, and maintenance.

When operating an electrical equipment, certain parts of the device are inevitably subject to dangerous voltage. Severe personal injury or property damage may result if the device is not handled properly.

Before any connections are made, the device must be grounded to the ground terminal.

All circuit components connected to the voltage supply may be subject to dangerous voltage.

Dangerous voltage may be present in the device even after the power supply voltage has been removed (capacitors can still be charged).

Operational equipment with exposed current transformer circuits may not be operated.

The limit values as specified in this manual or in the operating instructions may not be exceeded. This aspect must also be observed during testing and commissioning.

Contents

1	Overvie	w
	1.1	Introduction
	1.2	Features
2	Technic	al Data13
	2.1	Technical Data
3	Functio	ns
	3.1	Parameter Measurement
	3.2	Power Metering
	3.8	Limit violation Alarm
	3.9	Display and Buttons
	3.10	Communication
	3.11	Permission and Security Management
	3.12	Digital Input and Output Interface
4	Operation	on and Display
	4.1	Full-screen Display
	4.2	Cyclic Display
	4.3	Key Definition
5	Installat	ion and Wiring35
	5.1	Total Dimension
	5.2	Precautions of Installation
	5.3	Terminals and Wiring Diagram
6	Commu	nication
	6.1	Use of Communication
	6.2	Introduction of MODBUS-RTU Communication Protocol
	6.2.1	Overview
	6.2.2	Function of Application Layer
	6.2.3	CRC Method
	6.2.4	Information mapping table
7	Mainten	ance
	7.1	Overview
8	Orderin	g Number
	8.1	Ordering Number

Overview

1.1	Introduction	12
1.2	Features	12

1.1 Introduction

SICAM P38 3-phase Multi-function Power Meter integrate measurement, record, power metering, remote communication and control, large screen LCD and network communication functions. This meter can measure various parameters of power grid, such as voltage, current, power, power factor and frequency. It is provided with 2nd to 50th harmonic analysis and calculation of multiple power quality parameters. It can calculate active and reactive energy. It has multi-tariff energy and multi-tariff demand functions. Two independent RS-485 ports are available. It supports MODBUS-RTU protocol. Besides, it has binary input and output.

This product is extensively applicable to power substation and distribution automation system, industrial control and industrial automation system, energy management system and community power monitoring, etc.

This 3-phase electronic multi-function power meter meets following standards:

- IEC 62052-11:2003 (Electricity metering equipment (a.c.) General requirements, tests and test conditions-Part 11: Metering equipment) standard
- IEC 62053-22:2003 static meters for active energy (classes 0.2 S and 0.5 S)
- IEC 62053-23:2003 static meters for reactive energy (classes 2 and 3)
- Modbus-RTU

1.2 Features

This meter uses high-precision sampling and metering unit and high-speed MCU data processing unit, supporting high-precision, wide-range and accurate measurement and quick data analysis; segmented multi-line WVA LCD, realizing various and abundant display; white backlight for LCD, satisfying the need for viewing data in dark environment; NVM, supporting long-time data storage without data loss even in the event of power failure; high-precision clock chip with temperature compensation, ensuring accuracy of clock within operating temperature range; double communication ports and industrial standard communication protocols, realizing flexible and convenient networking; and different communication modules, satisfying different interface need of different users.

Technical Data

2.1 Technical Data 14

2.1 Technical Data

	Item	Technical Data			
Product standard		IEC61557-12:2007			
Input connection		3-phase-3-wire, 3-phase-4-wire, single phase			
		Reference voltage U _n : AC380 V, AC220 V, AC100 V, AC57.7 V			
		Measuring range: 10 V 264 V phase voltage			
	Voltage	Maximum measuring range: 400 V phase voltage			
		Power consumption: < 0.05 VA (single phase)			
		Accuracy: RMS 0.2%			
		Resolution: 0.01 V			
		Rated current I _n : 1 A, 5 A			
		Measuring range: 0.015 A 6 A			
		Maximum measuring range: 9 A			
Measurement	Current	Power consumption: < 0.05 VA (single rated current)			
		Accuracy: RMS 0.2%			
		Resolution: 0.001 A			
	Power	Accuracy: 0.2%			
	(active, reactive, apparent)	Resolution: 0.001 kW/kVar/kVA			
		Measuring range: 45 Hz 65 Hz			
	Power grid frequency	Accuracy: 0.2%			
		Resolution: 0.01 Hz			
	Hamania	Frequency: 2 nd 50 th			
	Harmonic	Precision: 5%			
	Active newer	Accuracy level: 0.5 S, Acc. To IEC 62053-22			
Motoring	Active power	Resolution: 0.01 kWh, 5000 imp/kWh			
Metering	Ponetive newer	Accuracy level: Class 2, Acc. To IEC 62053-23			
	Reactive power	Resolution: 0.01 kvarh, 5000 imp/kvarh			
	Power pulse output	2 electric energy (active and reactive) pulse outputs			
	ower pulse output	Opto-coupler isolation, 4,000 V _{RMS}			
		2 electromagnetic relay output			
Digital signal	Binary output	Normal Open Contact			
		Contact capacity: AC 250 V /3 A, DC 30 V /3 A			
	Binary input	4 dry contact inputs			
	Dillary iliput	Opto-coupler isolation, 4,000 V _{RMS}			
Communication		Interface type: Twisted Pair, Half Duplex Transmission			
	RS-485 port	Communication rate: 600 bps 38,400 bps			
		Protocol: Modbus-RTU			
Environment	Operating temp.	-25 °C +60 °C			

	Item	Technical Data			
	Operating temp. limit	-35 °C +70 °C			
	Relative humidity	≤ 95% (condensation free)			
	Clock	< 0.5 sec./day (-40 °C +85 °C)			
	.	AC or DC power supply			
Others	Operating power supply	Max. input range: 40 V 420 V			
	Сарргу	Power consumption: ≤ 1 W, 2 VA			
	Dimension	Total dimension (mm): 96×96×95			
	Dilliension	Panel cut out size (mm): 92×92			
	Weight	Approx. 450 g			

2.1 Technical Data

Functions 3

3.1	Parameter Measurement	18
3.2	Power Metering	19
3.8	Limit violation Alarm	23
3.9	Display and Buttons	24
3.10	Communication	24
3.11	Permission and Security Management	24
3.12	Digital Input and Output Interface	25

3.1 Parameter Measurement

This meter is provided with various measuring functions. Power grid parameters and index measurable are as follows:

- · Voltage of each phase and mean voltage
- · Voltage of each line and mean voltage
- · Current of each phase, average current and neutral current
- · Total and separate active power, reactive power and apparent power of each phase
- · Phase angle of voltage and current of each phase
- · Total and separate power factor of each phase
- · Power grid frequency and measuring range 45 Hz to 65 Hz
- Effective value and ratio of 2nd to 50th harmonic voltage and harmonic current of each phase
 - Harmonic voltage ratio:

$$HRU_h = \frac{U_h}{U_1} \times 100(\%)$$

where, U_h - No. h harmonic voltage (RMS); U_1 - fundamental voltage (RMS).

- Harmonic current ratio:

$$HRI_h = \frac{I_h}{I_1} \times 100 \, (\%)$$

where, I_h - No. h harmonic current (RMS); I_1 - fundamental current (RMS).

- · Total harmonic voltage distortion and total harmonic current distortion of each phase
 - Total harmonic voltage distortion:

$$THD_u = \sqrt{\sum_{h=2}^{50} \left(\frac{U_h}{U_1}\right)^2} \times 100(\%)$$

- Total harmonic current distortion:

$$THD_i = \sqrt{\sum_{h=2}^{50} \left(\frac{I_h}{I_1}\right)^2} \times 100 \,(\%)$$

· Voltage wave crest factor (CF) of each phase, indicating peak of distorted waveform

$$CF = 1.414 \sum_{h=1}^{50} \frac{U_h}{U_1}$$

• Current K coefficient K_f of each phase, an critical index measuring current quality

$$K_f = \frac{\sum_{h=1}^{k} (h \times I_h)^2}{\sum_{h=1}^{k} (I_h)^2}$$

where, I_h - effective value of No. h harmonic current (RMS); k - range 1 to 50, configurable with communication, factory default 50.

· Telephone harmonic form factor (THFF) of each phase

Harmonic interference will generate communication system noise, reducing quality of connection. Consultative Committee of International Telephone and Telegraph (CCITT) measures harmonic interference to telecommunication using weight coefficient P_h of noise, expressed with THFF.

$$THFF = \sqrt{\sum_{h=1}^{100} \left(\frac{50 \times h \times P_h \times U_h}{800 \times 1000 \times U_1}\right)^2} \times 100(\%)$$

where, P_h - weight coefficient of noise.

3.2 Power Metering

This meter can meter various energy:

- · combined active and supply and demand active energy
- · combined reactive and four-quadrant reactive energy
- · fundamental active power and total harmonic active energy
- import and export active energy of each phase, combined reactive energy of each phase, fundamental active energy and harmonic active energy

3.3 Demend Measurement

1. Terms and Definitions

Demand means average power within specified period. The maximum value of demand recorded within specified period is maximum demand.

Current demand means average current within specified period. The maximum current value recorded within specified period is called maximum current demand.

Demand cycle means continuous equal intervals for measuring average power.

Sliding window time means time interval for measuring maximum demand through recursion. It is less than demand interval.

Temporary unit means the memory unit of the meter, used for temporary storage of power value or current value when calculating maximum demand.

Demand interval can be selected from 5, 10, 15, 30 and 60 min. Sliding window time can be selected from 1, 2, 3 and 5 min. Demand interval is five times the sliding window time and is 60 at maximum.

- 2. In the event of power-on, zero clearing, clock adjustment and interval change of voltage line, the meter will execute demand measurement depending on demand interval from current moment. When the first demand interval is completed, maximum demand will be recorded at slip interval. Maximum demand will not be recorded within an incomplete demand interval.
- 3. When power direction changes, temporary demand unit will be cleared. Temporary demand unit will not be cleared when across rate period to ensure continuity of maximum demand measurement. Zero clearing of temporary unit is necessary when:
 - · Overall clearing of meter;
 - · Clearing maximum demand upon communication command;
 - Clearing maximum demand manually through button;
 - · Change of power direction;
 - Settlement among different months.
- 4. This meter is capable of various maximum demand calculation functions, including import/export active demand and occurrence time, combined reactive and four-quadrant reactive maximum demand and occurrence time, import/export apparent demand, maximum current demand of Phase A, Phase B and Phase C and occurrence time.
- 5. Combined reactive maximum demand means the quadrant with maximum demand value among reactive quadrant participating in combined computation. For example, value of reactive combined status character 2 is 05 H. Typical combined reactive 1 = 1st quadrant reactive + 2nd quadrant reactive. Assuming reactive maximum demand of 1st quadrant in a demand interval is 100kvar and the same of 2nd quadrant is 200 kvar, maximum demand value of combined reactive demand 1 within the same demand interval will be 200 kvar.
- 6. This meter is provided with two types of zero clearing for demand: clearing via communication and manual clearing with button. For description of the latter, see subsequent content.
- 7. For time generating maximum demand, minute synchronization or clock synchronization is available. This is controlled by parameter mode character 2. For mode character 2, see the table below. Such mode supports parameter setting and alteration through communication.

Bit	Function	Bit Value vs Function	Default
Bit 7	Reserved		0
Bit 6	Reserved		0
Bit 5	Demand synchronization mode	1: minute synchronization 0: clock synchronization	1
Bit 4	Extreme value settlement	1: daily 0: monthly	0
Bit 3	Reserved		0
Bit 2	Reserved		0

Bit	Function	Bit Value vs Function	Default
Bit 1	Reserved		0
Bit 0	Reserved		0

3.4 Settlement

- 1. Settlement means the meter can save current electric energy and demand data at the settlement time preset. It is also called cross month settlement.
- 2. Settlement day (automatic reading day) can be set through communication and any time within the 1st to 28th day can be set.
- 3. When crossing settlement day in case of power failure, cross month settlement will be applied depending on number of months crossed. But, when more than 3 months, data of only 3 months will be settled.
- 4. The meter can save historical settlement data of previous 12 months. Historical settlement data include electric energy data and demand data.

3.5 Time Division

- 1. The meter has a built-in high-precision real-time clock backed up by battery, carrying calendar and supporting automatic switching for leap year.
- 2. 6 tariffs, 14 periods, 8 daily periods, 14 yearly time zones and 100 public holidays can be set maximally and weekend period can be set. If tariff number of certain period is over number of tariffs (error), default tariff (tariff 1) will be used.
- 3. Electric energy and maximum demand data recorded by the meter include 6 tariffs, but time-shared data will not be recorded for each phase (A, B and C).

3.6 Event Record

- 1. Instantaneous extreme value of power grid will be recorded. The meter can record maximum value and minimum value of each phase voltage, line voltage, phase current, neutral current, active power, reactive power and apparent power within cycle time. Cycle time can be "month" or "day" and is set through parameter mode character 2. At most extreme values of three cycles can be saved.
- Zero clearing, demand clearing and event clearing can be recorded. The meter records 10 latest zero clearing events.
- 3. Power failure event can be recorded. The meter records 10 latest power failure events, containing start time and end time of power failure.
- 4. Timing event can be recorded. The meter records 10 latest timing events, containing pre-timing time and post-timing time.
- 5. Voltage and current unbalance event can be recorded. The meter records 10 latest voltage unbalance events and 10 latest current unbalance events. Decision limit and decision delay time of voltage and current unbalance events are set by parameter.
 - Voltage unbalance ratio = (3-phase voltage maximum difference / 3-phase voltage mean) x 100%, where 3-phase voltage maximum difference is the largest difference between effective values of each phase voltage (only Uab and Ubc for 3-phase-3-wire) and 3-phase voltage mean is the mean of effective values of 3-phase voltage.
 - Current unbalance ratio = (3-phase current maximum difference / 3-phase current mean) x 100%, where 3-phase current maximum difference is the largest difference between effective values of each phase current (only lab and lbc for 3-phase-3-wire) and 3-phase current mean is the mean of effective values of 3-phase current.
- 6. Statistic data of voltage eligibility rate can be recorded. The meter records statistic voltage eligibility of each phase within recent 12 months. Upper and lower limits for voltage assessment are set by parameter. Statistic data of voltage eligibility include voltage monitoring time, voltage limit violation time, voltage eligibility and voltage limit violation rate.
- Relay closing event can be recorded. The meter has 2 relay outputs. When manual control is set for relay, the meter will record 10 latest manual closing records of relay output. Closing time and status will be recorded.
- 8. SOE event can be recorded. The meter can record SOE events of 4 digital binary inputs and save 50 latest records. Time of switch motion (exact to 1msec), shift status and switch port number are recorded.

3.7 Freezing

- 1. Cyclic freezing: The meter can save data of 72 latest cyclic freezing actions. Start time and interval of freezing are set with parameter. The content is import/export total active energy.
- 2. Daily freezing: The meter can save data of 8 latest daily freezing actions, including total active energy, total reactive energy, four-quadrant reactive energy and total active maximum demand.

3.8 Limit violation Alarm

- 1. This product is provided with limit violation alarm function. User may select from voltage, current, power, power factor and frequency parameters at most 6 data groups at the same time as detection object and set upper and lower limits and judgment condition for them. Alarm will be activated when measured value is over the set limit. This product is provided with 2 relay outputs. When alarm parameters are configured that output is made from certain relay which is at automatic mode (not manual), limit violation alarm signal can be output through such relay.
- 2. At most 6 limit violation alarm parameters can be set at the same time within the product. Configuration flow of each limit violation alarm parameter: select type of detected data-set threshold of detected data-set judgment condition-select output relay for alarm signal.
 - · Code of various detected data: (hexadecimal number for Modbus-RTU code)

MODBUS code	Content of data	MODBUS code	Content of data	
00	Phase A power factor	14	Phase A active power	
01	Phase B power factor	15	Phase B active power	
02	Phase C power factor	16	Phase C active power	
03	Total power factor	17	Total active power	
06	Frequency	18	Phase A reactive power	
07	Phase A voltage	19	Phase B reactive power	
08	Phase B voltage	1A	Phase C reactive power	
09	Phase C voltage	1B	Total reactive power	
0B	Uab line voltage	1C	Phase A apparent power	
0C	Ubc line voltage	1D	Phase B apparent power	
0D	Uca line voltage	1E	Phase C apparent power	
0F	Phase A current	1F	Total phase apparent power	
10	Phase B current	20	Active demand	
11	Phase C current	21	Reactive demand	
12	Neutral current	22	Apparent demand	

When code of detected data is FF, limit violation alarm function of such group is off.

- Threshold of detected data: threshold judging whether detected value is limit violation; Different units for different data types: such as voltage-V, current-A, active-KW, reactive power-KVAR, apparent-KVA, frequency-Hz.
- Judging condition: 0 means alarm activated when exceeding limit; 1 means alarm activated when falling below limit.
- Alarm signal output relay: 0 means no alarm signal output; 1 means alarm signal outputted from relay 1;
 2 means alarm signal outputted from relay 2; 3 means alarm signal outputted from relay 1 and relay 2 at the same time.
- 3. Example of alarm parameter setting. Set one limit violation alarm parameter to automatic detection and alarm for "Phase A voltage", assuming that alarm threshold is 240 V, judging criterion is "over limit" and signal is outputted from relay 2.

Use MODBUS RTU protocol to set alarm parameter: set 0110 address to "07", 0111 to "0000", 0112 to "5DC0" (multiply "240" by 100 to generate "24,000" and convert it into "00005DC0"), 0113 to "00" and 0114 to "02".

3.9 Display and Buttons

This product uses large-screen WVA multi-line LCD to provide visual and various display. The screen is provided with white backlight, enabling clear display in dark environment. Specific data information can be obtained through display with button operation. For details, see Chapter Operation and Display.

3.10 Communication

RS485 port is provided for parameter setting and reading of various data. Two independent RS485 communication ports are default configuration.

3.11 Permission and Security Management

- 1. This product is provided with programming permission management function.
 - L0 password: used for meter reset, setting all parameters and modifying L0, L2 and L4 passwords;
 - · L2 password: used for meter reset, setting all parameters and modifying L2 and L4 passwords;
 - L4 password: used for parameter setting, demand clearing and modifying L4 password, not for meter reset, event clearing, clearing extreme values and PT/CT ratio setting.
 - All level default PASSWORD is "000000"
- 2. Parameter setting is available only when this product is in programmable state. Steps for entering programming state: press " " and " at the same time to enter "PASS" screen; input correct password and press " " to enter "SET" screen and enable programmable state. After entering programmable state, programmable state prompt appears on the bottom right corner of LCD. Programmable state will remain valid in 10 minutes after program button is pressed and become invalid after power down.
- 3. If incorrect password is used to set this product continuously (including communication setting and button programming) up to specific number of times (factory default 5 times), parameter setting function will be locked (factory default 60 minutes). Error count will be reset after setting once using correct password if such count is less than specific limit. Error count of password and lock time can be set (available in factory state).
- 4. Broadcast timing is available only once each day and time for adjustment is no more than 5 min.

3.12 Digital Input and Output Interface

Power Pulse Output

This meter provides two power pulse outputs: active and reactive, with internal opto-isolation, pulse output width (80±20) ms, maximum allowable passing current 10 mA (DC) and operating voltage range 5 V to 80 V (DC).

Figure 3-1 Circuit Diagram of Power Pulse Output Interface

Binary Input Interface

This product is provided with 4-digit binary inputs interface based on passive dry contact. Terminals are identified as DI1, DI2, DI3, DI4 and COM. COM is the common terminal.

Figure 3-2 Circuit Diagram of Binary Input Interface

Relay Output Interface

This product is provided with two relay outputs interfaces for alarm indication or protection control output in many conditions. Electric parameter of internal relay: AC 250 V/DC 30 V, 3 A.

Figure 3-3 Circuit Diagram of Relay Output Interface

Operation and Display

4

4.1	Full-screen Display	24
4.2	Cyclic Display	24
4.3	Key Definition	26

4.1 Full-screen Display

Figure 4-1 Description of LCD Indication

4.2 Cyclic Display

Key Functions at Cyclic Display Mode

Key symbol	A	•	.	t t
Function	_	m cyclic display to m display	Lock/unlock blinking display	Switching between display areas A and B (blinking prompt)

Screen Lock in Cyclic Display State

Data in display area A or B can be locked in cyclic display state to enable long-time monitoring of data in certain area.

Steps: press " — ", select the desired display area (target data will blink thrice), and press " — " to lock, and vice versa for unlocking.

Cyclic Display Parameter

Duration: 1 to 99 sec., configurable;

Number of items: to be defined with one byte. 4 high 4 bits are number of items in display area A while 4 low 4 bits are number of items in display area B. 16 items are acceptable to each area. At any time, display area A and display area B should have at least one cyclic display item.

Cyclic Display State

Cyclic display data in areas A and B can be defined by user. User may develop cyclic display scheme previously through inquiring "Code list of optional settings in areas A and B".

Code list of optional settings in area A:

Data item	Data type (current value)		Data item	Data type (current value)		
	Tran- sient	Maximun (previous 1 to 3 months)	Minimum (previous 1 to 3 months)		Transient	2 nd to 50 th
Phase voltage	0	1 (2 4)	5 (6 8)	Voltage unbalance rate	66	/
Line voltage	9	10 (11 13)	14 (15 17)	Current unbalance rate	67	/
Current	18	19 (20 22)	23 (24 26)	Voltage eligibility rate	68	/
Neutral current	27	28 (29 31)	V	Voltage distortion rate	69	/
Active power	36	37 (38 40)	41 (42 44)	Current distortion rate	70	/
Reactive power	45	46 (47 49)	50 (51 53)	Fundamental voltage	71	72 120
Apparent power	54	55 (56 58)	59 (60 62)	Fundamental current	121	120 170
Power factor	63	1	1	Second harmonic voltage ratio	171	172 219
Phase angle	64	1	1	Second harmonic current ratio	220	221 268

Code list of optional settings in area B:

Data itam	Data: 7 continuous codes express total, tariff 1 to tariff 6 in order; 4 continuous codes express current month, previous 1 to 3 months in order.							
Data item	Current	Previous 1 month	Previous 2 month	Previous 3 month	Phase A	Phase B	Phase C	
Import active power	351 357	358 364	365 371	372 378	379 382	383 386	387 390	
Export active power	391 397	398 404	405 411	412 418	419 422	423 426	427 430	
Total active power	431 437	438 444	445 451	452 458	459 462	463 466	467 470	
Net active power	471 477	478 484	485 491	492 498	499 502	503 506	507 510	
Import reactive power	511 517	518 524	525 531	532 538	539 542	543 546	547 550	
Export reactive power	551 557	558 564	565 571	572 578	579 582	583 586	587 590	
Total reactive power	591 597	598 604	605 611	612 618	619 622	623 626	627 630	
Net reactive power	631 637	638 644	645 651	652 658	659 662	663 666	667 670	
Import active demand	671 677	678 684	685 691	692 698		l .		
Export active demand	699 705	706 712	713 719	720 726				
Import reactive demand	727 733	734 740	741 747	748 754				
Export reactive demand	755 761	762 768	769 775	776 782				
Import apparent demand	783 789	790 796	797 803	804 810				
Export apparent demand	811 817	818 824	825 831	832 838				
Phase A forward current demand	839 845	846 852	853 859	860 866				
Phase B forward current demand	867 873	874 880	881 887	888 894				
Phase C forward current demand	895 901	902 908	909 915	916 922				
Frequency	923		•		•			
Data	924							
		•						

Data item	Data: 7 continuous codes express total, tariff 1 to tariff 6 in order; 4 continuous codes express current month, previous 1 to 3 months in order.							
Data item	Current	Previous 1 month	Previous 2 month	Previous 3 month	Phase A	Phase B	Phase C	
Time	250							
Error code	926							

Note

In flip-with-key state or parameter-set-with-key state, this product will automatically return to cyclic display state if no key operation within defined duration.

4.3 Key Definition

Key Functions at Flip-With-Key Display Mode

Key symbol	A	•	4	_
Function	1) Switch from cyclic display state to key display state through pressing "▲" or "▼".		Enter next menu	Switch between A and B display areas (symbol of selected area will flicker)
		revious screen with screen with "▼".		2) Return to previous menu

Data Item of Key Display

• Data items displayed in area A (mainly measuring data)

Level 1	Level 2	Level 1	Level 2	
Voltage	Extreme value	Voltage unbalance rate	1	
Line voltage	Extreme value	Current unbalance rate	1	
Current	Extreme value	Voltage eligibility rate	1	
Active power	Extreme value	Voltage distortion rate	1	
Reactive power	Extreme value	Current distortion rate	1	
Apparent power	Extreme value	Fundamental voltage	2 nd to 50 th harmonic voltage	
Power factor	1	Fundamental current	2 nd to 50 th harmonic current	
Phase angle	,	Second harmonic voltage	3 rd to 50 th	
Friase angle	,	ratio	3.2 10 50	
DT and CT ratio	,	Second harmonic current	3 rd to 50 th	
PT and CT ratio	/	ratio	3 10 50	

• Data items displayed in area B (mainly measuring data)

	Level 1								Level 2	Level 3	
E		Import active	Export active	Total active	Net active	Import reactive	Export reactive	Total re- active	Net re- active		
	Total	(01)	(05)	(09)	(13)	(17)	(21)	(25)	(29)	Previous 1 to 3 months	0 to 6 Tariff
Electric energy	Phase A	(02)	(06)	(10)	(14)	(18)	(22)	(26)	(30)	Previous 1 to 3 months	
ergy	Phase B	(03)	(07)	(11)	(15)	(19)	(23)	(27)	(31)	Previous 1 to 3 months	
	Phase C	(04)	(08)	(12)	(16)	(20)	(24)	(28)	(32)	Previous 1 to 3 months	
Ma	aximum	Import active	Export active	Import reactive	Export reactive	Import appar- ent	Export appar- ent	Current A/B/C			
d€	emend	(33)	(34)	(35)	(36)	(37)	(38)	(39	. 41)	Previous 1 to 3 months	0 to 6 Tariff
Freq	uency	(42)								1	/
Data		(43)								1	1
Time		(44)								1	1
Fault	Fault code (45)				1	1					
Version number		(46)								Active constant Reactive constant Modbus communication address	I

• Data items combined in area A and B:

Firmware version number, active constant, reactive constant, Modbus communication address, etc.

Note

Full screen, firmware version number is displayed in order when the meter is power on.

Examples for Flip-With-Key Operation

Example 1:

This screen shows A display area (phase voltage) and B display area (electric energy at import active tariff on previous settlement day).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" again to switch to voltage items. Press "♠" to switch to area B. Press "♠" or "▼" to switch to current import active total energy display. Press "♠" to enter second level display. Press "♠" or "▼" to switch to import active total energy on previous settlement day. Press "♠" again to enter third level display. Press "♠" or "▼" to view import active energy at each tariff on previous settlement day. Press "♠" to return to previous display.

"RS1" and "RS2" show there are two RS485 ports and flickering symbol means communication in progress. "T3" on upper left corner means current operating tariff and " \(\subseteq \subseteq \subsete \)" means the meter runs in first quartile.

Example 2:

This screen shows A display area (upper limit of current line voltage) and B display area (current total active energy).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to switch to line voltage option and press "←" to enter upper limit display. You can also press "▲" or "▼" to view other extreme values. Press "←" to return to previous display. Press "←" again to switch to area B. Press "▲" or "▼" to switch to current total active energy display. Press "←" to enter second level display. Press "▲" or "▼" to view total active energy on previous 3 settlement days. Press "←" again to enter third level display. Press "▲" or "▼" to view import active energy at each tariff on previous settlement day. Press "←" to return to previous display.

Example 3:

This screen shows A display area (phase current) and B display area (current phase A total export reactive energy).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" again to switch to current option.

Example 4:

This screen shows A display area (current active power) and B display area (total export reactive energy on previous settlement day).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to enter active power items.

In the figure of A, L1=1.020 kW, L2=1.061 kW, L3=1.042 kW and total active power=3.123 kW. Press "

" to switch to area B. Press "

" or " ▼" to switch to total current export reactive energy display. Then, press "

" to enter total export reactive energy on previous settlement day. You can press "

" or " ▼" to view total export reactive energy from current to previous 3 settlement days. Press "

" to view export reactive energy at each tariff. Press "

" to return to previous display.

Example 5:

This screen shows A display area (current apparent power) and B display area (total active energy on previous 2 settlement days at phase B).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to enter apparent power items.

In the figure of A, L1=1.210 kW, L2=1.168 kVA, L3=1.174 kVA and total apparent power=3.552 kVA.Press "

" to switch to area B. Press "

" to switch to total current active energy of phase B. Press "

" to enter total active energy of phase B on previous settlement day. You can press "

" or "

" to view total active energy from previous 1 to 3 settlement days. Press "

" to return to previous display.

Example 6:

This screen shows A display area (current power factor) and B display area (current net reactive energy of phase C).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to switch to power factor items.

In the figure, L1=1.000, L2=0.999, L3=1.000 and total power factor=1.000. Press "

"▼" to switch to current phase C net reactive energy. Press
"

"to enter second level display. Press "

"to enter second level display. Press "

"to enter second level display. Press "

"to enter second level display. Press "

"to return to previous display.

Example 7:

This screen shows A display area (phase angle) and B display area (current total maximum import active demand).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" again to switch to phase angle items.

Example 8:

This screen shows A display area (PT and CT conversion ratio) and B display area (maximum export reactive demand at tariff 3 of previous 2 settlement days/combined reactive 2).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to enter PT and CT ratio display items.

In the figure of A, PT conversion ratio=20.0, CT conversion ratio=5.0. Press "

" to switch to area B. Press "

" or "

" to switch to maximum export reactive demand at tariff 3 of previous 2 settlement days/combined reactive 2. Press "

" to enter second level display. Press "

" or "

" to switch to total maximum export reactive demand on previous 2 settlement days. Press "

" again to enter third level display. Press "

" or "

" to view maximum reactive demand at each tariff on previous 2 settlement days.

Example 9:

This screen shows A display area (current voltage unbalance rate) and B display area (total maximum export apparent demand on previous settlement day).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" switch to current voltage unbalance rate option.

In the figure of A, voltage unbalance rate = 1.46%. Press "

" to switch to area B. Press " ■ " or " ▼ " to switch to total maximum export apparent demand display. Press " ■ " to enter second level display. Press " ■ " or " ▼ " to view total maximum export apparent demand on previous 3 settlement days. Press " ■ " again to enter third level display. Press " ■ " or " ▼ " to view maximum export reactive demand at each tariff. Press " ■ " to return to previous display.

Example 10:

This screen shows A display area (current voltage eligibility rate) and B display area (current phase A current maximum demand).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to enter voltage eligibility rate option.

In the figure of A, L1=99.2%, L2=100.0%, L3=98.5% and mean voltage eligibility rate=99.2%. Press " " to switch to area B. Press " ▲" or " ▼" to switch to current phase A current maximum demand display. Press " →" to enter second level display. Press " ▲" or " ▼" to view current phase A current maximum demand on previous 3 settlement days. Press " →" again to enter third level display. Press " ▲" or " ▼" to view maximum demand at each tariff. Press " →" to return to previous display.

Example 11:

This screen shows A display area (voltage distortion rate) and B display area (frequency).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" again to switch to voltage distortion rate option.

In the figure of A, L1=0.72%, L2=0.90%, L3=1.05% and average voltage distortion rate=0.89%. Press " ➡ " to return to area B and press " ▲" or " ▼" to switch to frequency option.

Example 12:

This screen shows A display area (fundamental voltage) and B display area (current date).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to switch to fundamental voltage option.

In the figure of A, L1=10.20 V, L2=11.03 V, L3=9.88 V and mean fundamental voltage=10.37 V. Press " to enter second level display. You can press " or " or " to view 2nd to 50th harmonic voltage. Press " to return to previous display. Press " again to return to area B and press " or " verturn to switch to current time display.

Example 13:

This screen shows A display area (2nd harmonic current ratio) and B display area (current time).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When area A is selected, press "▲" or "▼" to switch to 2nd harmonic current ratio option.

In the figure of A, L1=10.02%, L2=9.11%, L3=9.73% and mean 2nd harmonic current ratio=9.62%. Press " → " to enter second level display. You can press " ▲ " or " ▼ " to view 3rd to 50th harmonic voltage. Press " → " to return to previous display. Press " → " again to return to area B and press " ▲ " or " ▼ " to switch to current time display.

RS1 RS2 III

Example 14:

This screen shows B display area (software version).

At cyclic display mode, press "▲" or "▼" to enter key display mode, press "▲" to switch to area B. Press "▲" or "▼" to switch to software version number display. "Soft" means software version, "13" means product specification, "1210119" means software version date and "00" means serial number of software production. Press " to enter second level display. You can press "▲" or "▼" to view active pulse constant, reactive pulse constant, Modbus communication address. Press " to return to previous display.

RS1 RS2

Example 15:

This screen shows A display area (current unbalance rate) and B display area (error code).

At cyclic display mode, press "▲" or "▼" to enter key display mode. When A is selected, press "▲" or "▼" switch to current unbalance rate option.

In the figure of A, current unbalance rate = 1.46%. Press "

" to switch to area B. Press " ■ " or " ▼ " to switch to error code display. "E" means error prompt, the 7 bits from right to left mean respectively Phase A loss, Phase B loss, Phase C loss, voltage phase reverse, Phase A current reverse, Phase B current reverse, Phase C current reverse. For example, "E0000001" means phase C current reverse fault occurs.

Key Setting Parameters

1. Key functions at parameter setting mode

Key symbol	A	▼	ļ	ð	
	b) "▼" to move cursor or flip over.		a) Press " — " and " — " at the same time to enter setting screen.		
Function			b) Press " — " to enter next menu or "confirm" parameter setting.		
			c) Press " to return to previous menu or "cancel" parameter setting ¹ .		

^{1.}Press " → " once after adjusting parameters with " ▲ " and " ▼ " to display "Sure", and press " → " once again to alter parameters. Pressing " → " immediately after "Sure" appears will cancel current alteration.

2. Data items configurable with key (Note 1)

NO.	1 st lev	el menu		2 nd leve	el menu		
NO.	Symbol	Definition	Symbol	Definition	Range	Remarks	
			6PS:1	Baud rate	600 38400	Default setting: 2400	
			6PS2	Baud rate	600 38400	Default setting: 2400	
			Pry I	Parity	8E1/8o1/8n1/8n 2	Default setting: 8E1	
1	_	Communication setting	P-42	Parity	8E1/8o1/8n1/8n 2	Default setting: 8E1	
	Conn		NEUS	Modbus address	0 247	Default setting: 0	
			9F8A	Modbus sending delay	0 2999	Unit: ms Default setting: 10	
			645H	DL/T645 high 6 address	0 999999	Default setting: 0	
			64SL	DL/T645 low 6 address	0 999999	Default setting: Last 3 digital of S/N	
		Ratio setting (Note 2)	PC-8	Voltage ratio integer part	0 9999	Combination 0 9999.9999	
2	PCCC			PC-6	Voltage ratio decimal part	0 9999	Default setting: 1
			CC-A	Current ratio integer part	0 9999	Combination 0 9999.9999	
			CL-P	Current ratio decimal part	0 9999	Default setting: 1	

NO.	1 st lev	el menu		2 nd leve	l menu				
NO.	Symbol	Definition	Symbol	Definition	Range	Remarks			
						98F6	Data		
			LI UE	Time					
		0			3P4L	3phase4wire			
3	595	System setting		Connection	3P3L_2CT	3phase3wire -2CT			
	ر د د		FALE	Connection	3P3L_3CT	3phase3wire -3CT			
					AUto	Automatic			
					Password		6 bits in total, Set L0 to L2 password		
			PASS	Password		Default setting: 000000			
		Clearing extreme value	Et-6						
4	[Lr	Clearing demand Meter reset	95119						
			ALL						
		Display setting	PrES	Time of returning to cyclic display state when no operation	1 99	Unit: min. Default setting: 10			
5	al SP		LI 9H	Time of backlight on when no opera- tion (normally on when set to 0)	0 99	Unit: min. Default setting: 10			
			CACT	Interval of cyclic display	1 99	Unit: sec Default setting: 5			

Note

Password level (1 bit, 0 to 2) and password (6 bits) should be entered at first for key setting. Password level and permission:

- L0 password-all parameters above are configurable;
- L1 password-all parameters above are configurable;
- L2 password-all parameters except for meter reset, clearing extreme value and PT/CT conversion ratio are configurable.

Note

The meter should be reset after altering PT/CT ratio to ensure reasonable correspondence between communication reading and displayed metering data.

3. Parameter setting with keys (take "Conn communication setting" for example)

Figure 4-2 Parameter setting with keys

At any time, press " → " and " → " simultaneously to enter "PASS" screen. The first digit of displayed data means password level and the remaining 6 data make up the password (press " ▲ " to change digits and " ▼ " to move cursor). Press " → " to confirm. "FAIL" will appear if password level and password are wrong. To reenter password, press " → ". To quit and return to cyclic display state, enter " → " (if specified error count is reached, parameter setting function will be locked for certain period which is configurable in advance). If is password is validated, you may enter the first level menu. The figure shows the read-write items under "Conn" menu: baud rate and communication address of RS485 port can be set.

Note

"SURE" screen appears after selecting or inputting parameter and pressing " — ". Press " — " once again to activate new parameter. Pressing " — " at any time during parameter setting will cancel setting or return to previous menu.

Installation and Wiring

5

5.1	Total Dimension	36
5.2	Precautions of Installation	36
5.3	Terminals and Wiring Diagram	37

5.1 Total Dimension

The figure below shows the total dimension of this product. Panel cut out size: 92 mm×92 mm

Figure 5-1 Total Dimension of Instrument

5.2 Precautions of Installation

- 1. Dry and well ventilated environment far away from thermal source and strong electric (magnetic) field is recommended for installation of this product.
- 2. Ambient temperature: -25 $^{\circ}$ C to +60 $^{\circ}$ C , humidity: \leq 95% (no condensation)
- 3. This product should be firmly mounted to avoid accident arising from vibration.
- 4. For the reason of convenient installation, maintenance and operation and safety, enough space around this product should be reserved during installation (especially when one panel for multiple meters).
- 5. Requirement for electric wiring: Stranded fire-retarded copper wire over 2.5 mm² should be used for current circuit, 1.5 mm² stranded fire-retarded copper wire should be used for voltage circuit and power supply circuit, and 1.0 mm² Shielded Twisted Pair should be used for RS485 communication.
- 6. Requirement for electric connection: In voltage input circuit and operating power supply circuit, appropriate fuses (such as 0.5 A fuse) should be connected and a CT short-circuit box should be provided to prevent open circuit of CT wiring.

5.3 Terminals and Wiring Diagram

Definition of Terminals (viewed from rear to front and from left to right)

1. Upper main terminals

V+	V-	NC	NC	R11	R12	R21	R22
י מינים	Power sinnly	Reserved	Reserved	on the second	Relay output 1		S friutino Aelav

Note

NC means no connection, the same below.

2. Lower main terminals

V1	V2	V3	VN	l11	l12	I21	122	I31	l32
Phase A voltage	Phase B voltage	Phase C voltage	Neutral	Phase A current input	Phase A current output	Phase B current input	Phase B current output	Phase C current input	Phase C current output

Note

Main terminals are barrier terminals which can be connected using fork or ring type lug (no more than 6.5 mm wide). For cables to be connected to upper and lower main terminals, cold-pressed UT2.5-3 terminal is recommended before connection. The diagram of connection is below.

Figure 5-2 Connection Diagram of Main Terminal

2	Middle	auvilian	, torminal	(common)	
o.	wildule	auxillal	, t e mminai	(COITITIOIT)	

P+	Q+	COM1	DI1	DI2	DI3	DI4	COM2	A1	B1	A2	B2
Active pulse	Reactive pulse	Common pulse output terminal	Binary input 1	Binary input 2	Binary input 3	Binary input 4	Common binary input terminal	RS485 + 1	RS485 - 1	RS485 + 2	RS485 - 2

Note

Auxiliary terminal is pluggable.

Wiring diagram

Wiring diagram of main terminal is showed below. "V+" and "V-" are power supply terminals. This product supports DC/AC input, with input voltage 40 V to 420 V. For 3-phase-3-wire connection, V_n and V_2 should be connected together, see Figure 5-5.

Figure 5-3 Wiring Diagram of 3-phase-4-wire (W/O PT)

Figure 5-4 Wiring Diagram of 3-phase-4-wire (With PT)

Figure 5-5 Wiring Diagram of 3-phase-3-wire

5.3 Terminals and Wiring Diagram

Communication

6.1	Use of Communication	42
6.2	Introduction of MODBUS-RTU Communication Protocol	43

6.1 Use of Communication

RS485 port of this meter supports MODBUS-RTU communication protocol. Even parity check is the default setting for data byte check. MODBUS-RTU communication protocol can also be configured to odd parity check or no verification (1 or 2 stop bits can be set without check). Baud rate of communication port could any of 600 bps, 1,200 bps, 2,400 bps, 4,800 bps, 9,600 bps, 19,200 bps and 38,400 bps.

RS485 port of this product should be connected using Shield Twisted Pair. When wiring, layout of the entire network should be considered: length and orientation of communication cable, position of upper computer, matched resistance at network end-point, communication converter, network scalability, network coverage, EMI, etc.

Note

- 1. Wiring should be conducted strictly in accordance with requirement.
- 2. The power meter requiring no communication temporarily should be connected to RS485 network for easy diagnosis and test.
- 3. The shielding layer side of cable connected with upper computer should be reliably earthed (PGND: ground, cubicle, cabinet, etc.) to avoid two-point or multi-point earthing.
- 4. Shield Twisted Pair should be used for RS485 bus cable. For two twisted pairs, different colors are recommended, one color for "A" side and another color for "B" side of 485 communication port.

6.2 Introduction of MODBUS-RTU Communication Protocol

6.2.1 Overview

Type of Protocol

This is MODBUS RTU protocol applicable to real-time communication of embedded electric energy meter. This protocol defines the data exchange between terminal unit (slave) and Master, which is realized in the form of RTU (remote terminal unit) of MODBUS. Asynchronous master-slave half-duplex communication is used. Communication is initiated from master and slave responds after receiving request from master. Communication response time < 0.2 sec.

Physical Layer

Transmission interface: RS-485Communication address: 0 to 247

· Communication baud rate: 600 bps to 38,400 bps

· Communication media: Shield Twisted Pair

Data Link Layer (DLL)

· Transmission manner: asynchronous master-slave half-duplex

• Data frame format: 1 start bit, 8 digit data, even parity check bit, 1 stop bit (default)

· Data packet format:

Address	Function	Data	CRC
8 bits	8 bits	n*8 bits	16 bits

Data packet transmission sequence always uses identical address, function code, data and check code. Each data packet should be transmitted as a continuous bit stream. When data packet from the master reaches slave, slave matching the address field in data packet will receive and check the data. If no error, slave will execute the request in data packet and send the responsive date packet to the master. The data packet sent back by slave contains slave Address, Function executed, Data generated from function execution and CRC.

Address

Address is at the beginning of data packet and consists of an 8-bit data which means slave address specified by the master. Each slave address in the bus is unique. Valid address range is from 0 to 247. After the master sends data packet, only slave matching the inquire address of the master will respond.

• Function

It describes which function is executed by slave. Meanings of all function codes are given below.

Code	Definition	Function
03 H	Read data	Read current binary value of one or more variables
10 H	Preset multiple registers	Overwrite values of several variables using specific binary value

Data

It contains data required for executing specific function by slave or data acquired when slave responds inquiry of master. Content of these data may be address code or data.

CRC

Check code is 16-bit check data formed in data transmission for CRC of master and slave. Various interferences exist in communication, so data transmitted during communication may change. CRC will avoid data distortion during responsive transmission of master and slave and improves security and efficiency of system. For formation rule of check code, see Annex 1.

6.2.2 Function of Application Layer

Read Data Command (function code 03 H)

· Down frame format

Communication address (0-247)	Function code (03 H)	High byte of start address of data	Low byte of start address of data	•	Low byte of length of data	Low byte of CRC	High byte of CRC	
-------------------------------	----------------------------	------------------------------------	-----------------------------------	---	----------------------------	-----------------	------------------	--

· Response frame format

Communication address (0-247)	Function code (03 H)	Number of bytes of data length	Content of data	Content of data	Content of data	Low byte of CRC	High byte of CRC	
-------------------------------	----------------------------	--------------------------------------	-----------------	-----------------	-----------------	--------------------	------------------	--

Example

- Down frame of 3-phase voltage data read

Device address	03 H	10 H	00 H	00 H	03 H	Low check	High check
----------------	------	------	------	------	------	-----------	------------

- Response frame

Device address	03 H	06 H	Data 1	Data 2	 Low check	High check
1						

Preset Multi-Register Command (function code 10 H)

· Down frame format

Device address 0-247	Func- tion code (10 H)	Highbyte of start address of vari- able	Low byte of start address of vari- able	High byte of vari- able number	Low byte of variable number	Byte n of data	Byte 1 of data	Byte of data	Byte n of data	Low byte of CRC	High byte of CRC
----------------------------	---------------------------------	---	---	---	--------------------------------------	----------------------	----------------------	--------------------	----------------------	-----------------------	------------------------

· Response frame format

	_	High	Low				
Device	Func-	byte of	byte of	High	Low		
address	tion	start	start	byte of	byte of	Low byte	High byte
0-247	code	address	address	variable	variable	of CRC	of CRC
0-247	(10 H)	of vari-	of vari-	number	number		
	,	able	able				

• Example

- Down frame when PT conversion ratio is 1234.5678 (hexadecimal notation of 12345678: 00BC 614EH)

Devi addre	 10 H	00 H	03 H	00 H	02 H	04 H	00 H	вс н	61 H	4E H	Low check	High check
0.0.0.												

- Response frame

Device address	10 H	00 H	03 H	00 H	02 H	Low check	High check

Exception Response

· Exception response frame format

	Function code			
Communication address (0-247)	(80 H+03 H)	Exception code (XX H)	Low byte of CRC	High byte of CRC
,	(80 H+10 H)			

- Example
 - Address data of illegal register read

Device address	03 H	XX H	XX H	00 H	01 H	Low check	High check
201100 aaa1000	00	,,,,,,	,,,,,,	00	0	Low oncon	riigir onoon

- Response frame

Device address	83 H	02 H	Low check	High check
----------------	------	------	-----------	------------

· Exception code of MODBUS

Code	Meaning
02 H	Illegal data address
03 H	Illegal data
10 H	No permission
11 H	Register length overflow

6.2.3 CRC Method

CRC contains 2 bytes, namely 16-bit binary system. CRC is calculated with transmitting device and placed at the tail of transmitted message. Receiving device recalculates CRC of message received and compares whether CRC derived matches the received one. If not, error may occur.

To calculate CRC, preset all 16-bit registers to 1. Then, process each 8-bit data message one by one. Only 8-bit data bit is used for CRC calculation and start bit and stop bit and parity check bit (if any) are not involved.

Steps of calculating CRC:

- Preset 16-bit register to hexadecimal FFFF (namely all to 1), and this register is called CRC register.
- Execute exclusive OR of low bytes of 1st 8-bit data and 16-bit CRC register and put the result in CRC register.
- Shift the content of register rightwards by one bit (towards lower bit) and fill the highest bit with 0. Check the lowest bit.
- If the lowest bit is 0, repeat step 3 (shift again); if it is 1, execute exclusive OR of CRC register and polynomial A001 (1010 0000 0000 0001).
- Repeat step 3 and step 4 until shift rightwards 8 times. Now, all 8-bit data are processed.
- · Repeat step 2 to step 5 to process next 8-bit data.
- The CRC register derived finally is CRC.

6.2.4 Information mapping table

Common Parameters

Parameter	Address	Data Type	Length	R/W	Data Range	Remark
Modbus address	0000 H	unsigned int	2 bytes	R/W	0 247	
						0: 2400 bps
						1: 4800 bps
			2 bytes			2: 9600 bps
Baud rate of communication	0001 H	unsigned int		R/W	0 6	3: 19200 bps
						4: 38400 bps
						5: 600 bps
						6: 1200 bps
High 16 bits of voltage conversion ratio	0002 H	unsigned long	4 bytes	R/W	0 99999999	PT ratio=set val- ue/10,000, 10,000
Low 16 bits of voltage conversion ratio	0003 H	unsigned long	4 bytes	1000	0 3333333	as default when PT=0
High 16 bits of current conversion ratio	0004 H	unsigned long	4 bytes	R/W	0 99999999	CT ratio=set val- ue/10,000, 10,000
Low 16 bits of current conversion ratio	0005 H	unsigned long	4 bytes	FV VV	0 9999999	as default when CT=0
Clearing extreme value	0006 H	unsigned int	2 bytes	W	Arbitrary value	
						0: 8E1
Parity	0020 H	unsigned int	2 bytes	R/W	0 3	1: 801
r anty	0020 F1	urisigned ifft	2 Dytes	FX/ V V	U 3	2: 8n1
						3: 8n2
Clearing demand	0021 H	unsigned int	2 bytes	W	Arbitrary value	

Relay Alarm Parameters

Parameter	Address	Data Type	Length	R/W	Data Range	Remark
Relay output 1	0100 H	unsigned int	2 bytes	R/W	0 1	Write operation is valid when "alarm manner control byte" is 0 or 2
Relay output 2	0101 H	unsigned int	2 bytes	R/W	0 1	Write operation is valid when "alarm manner control byte" is 0 or 1
Binary inputs	0102 H	unsigned int	2 bytes	R		High byte: binary input status (note) Low byte: binary output status

Pa	rameter	Address	Data Type	Length	R/W	Data Range	Remark
							0: turn off alarm function
Δla	ırm manner						1: relay output 1 is used for alarm
_	ntrol byte	0103 H	unsigned int	2 bytes	R/W	0 3	2: relay output 2 is used for alarm
							3: output ports 1 and 2 are all used for alarm
Ala	ırm status byte	0106 H	unsigned int	2 bytes	R	0 0x3F	From low to high, each bit means status of an alarm group:
			annengine e mie	,		0 0.01	0: no alarm activated
							1: in alarm status
	Out-of-limit data type	0110 H	unsigned int	2 bytes	R/W	0 34	See alarm type table
	High 16 bits of out- of-limit threshold	0111 H	unsigned long	4 bytes	R/W	Arbitrary	Threshold=set val-
	Low 16 bits of out- of-limit threshold	0112 H	andighed forig		1000	value	ue/100
Alarm 1	Out-of-limit detection type	0113 H	unsigned int	2 bytes	R/W	0 1	0: over, 1: below
							0: off
							1: alarm output to relay output 1
	Alarm port	0114 H	unsigned int	2 bytes	R/W	0 3	2: alarm output to relay output 2
							3: alarm output to output ports 1 and 2
Ala	ırm 2	0115 H 0119 H		10 bytes	R/W		See Alarm 1
Ala	ırm 3	011A H 011E H		10 bytes	R/W		See Alarm 1
Ala	ırm 4	011F H 0123 H		10 bytes	R/W		See Alarm 1
Ala	ırm 5	0124 H 0128 H		10 bytes	R/W		See Alarm 1
Ala	ırm 6	0129 H 012D H		10 bytes	R/W		See Alarm 1

Note

High bytes BIT0 to BIT3 respectively mean status of binary input 1 to 4. Bit value 0 means input is open while 1 means input is closed.

Low bytes BIT0 and BIT1 respectively mean status of relay output 1 and 2. Bit value 0 means contact is open (relay no operation) while 1 means contact is closed (relay closed).

Other Parameters

Parameter	Address	Data Type	Length	R/W	Data Range	Remark
Demand interval	0130 H	unsigned int	2 bytes	R/W	1 60	Unit: min.
Sliding window time	0131 H	unsigned int	2 bytes	R/W	1 60	Unit: min.
Voltage specification	0134 H	unsigned int	2 bytes	R/W	0 3	3-phase-3-wire 0: 100 V; 3: 380 V; 3-phase-4-wire 1: 220 V; 2: 57.7 V;
Cyclic display time	0132 H	unsigned int	2 bytes	R/W	1 99	Unit: sec
Number of cyclic display items	0133 H	unsigned int	2 bytes	R/W	00 FF	
1 st screen of cyclic display item of screen A	0140 H	unsigned int	2 bytes	R/W	0 999	
Number n screen of cyclic display item of screen A		unsigned int	2 bytes	R/W	0 999	See cyclic display code table of area A
16 th screen of cyclic display item of screen A	014F H	unsigned int	2 bytes	R/W	0 999	
1st screen of cyclic display item of screen B	0150 H	unsigned int	2 bytes	R/W	0 999	
Number n screen of cyclic display item of screen B		unsigned int	2 bytes	R/W	0 999	See cyclic display code table of area B
16 th screen of cyclic display item of screen B	015F H	unsigned int	2 bytes	R/W	0 999	

Instantaneous Such as Voltage, Current, Active/Reactive and Apparent Power, Power Factor, Frequency, Unbalance and Current Demand

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase A voltage	1000 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase B voltage	1001 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase C voltage	1002 H	unsigned int	2 bytes	R	0 65535	0.01 V
Average phase voltage	1003 H	unsigned int	2 bytes	R	0 65535	0.01 V
Uab line voltage	1004 H	unsigned int	2 bytes	R	0 65535	0.01 V
Ubc line voltage	1005 H	unsigned int	2 bytes	R	0 65535	0.01 V
Uca line voltage	1006 H	unsigned int	2 bytes	R	0 65535	0.01 V
Average line voltage	1007 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase A current	1008 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase B current	1009 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase C current	100A H	unsigned int	2 bytes	R	0 65535	0.001 A
Average current	100B H	unsigned int	2 bytes	R	0 65535	0.001 A
Neutral current	100C H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase A active power	100D H	signed int	2 bytes	R	-32767 32767	1 W
Phase B active power	100E H	signed int	2 bytes	R	-32767 32767	1 W

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase C active power	100F H	signed int	2 bytes	R	-32767 32767	1 W
Total active power	1010 H	signed int	2 bytes	R	-32767 32767	1 W
Phase A reactive power	1011 H	signed int	2 bytes	R	-32767 32767	1 var
Phase B reactive power	1012 H	signed int	2 bytes	R	-32767 32767	1 var
Phase C reactive power	1013 H	signed int	2 bytes	R	-32767 32767	1 var
Total reactive power	1014 H	signed int	2 bytes	R	-32767 32767	1 var
Phase A apparent power	1015 H	signed int	2 bytes	R	-32767 32767	1 VA
Phase B apparent power	1016 H	signed int	2 bytes	R	-32767 32767	1 VA
Phase C apparent power	1017 H	signed int	2 bytes	R	-32767 32767	1 VA
Total apparent power	1018 H	signed int	2 bytes	R	-32767 32767	1 VA
Phase A power factor	1019 H	signed int	2 bytes	R	-1000 1000	0.001
Phase B power factor	101A H	signed int	2 bytes	R	-1000 1000	0.001
Phase C power factor	101B H	signed int	2 bytes	R	-1000 1000	0.001
Total power factor	101C H	signed int	2 bytes	R	-1000 1000	0.001
Frequency	101D H	unsigned int	2 bytes	R	0 65535	0.01 Hz
Voltage unbalance rate	101E H	unsigned int	2 bytes	R	0 65535	0.01%
Current unbalance rate	101F H	unsigned int	2 bytes	R	0 65535	0.01%
Current active demand	1020 H	signed int	2 bytes	R	-32767 32767	1 W
Current reactive demand	1021 H	signed int	2 bytes	R	-32767 32767	1 var
Current apparent demand	1022 H	signed int	2 bytes	R	-32767 32767	1 VA
Phase A angle	1023 H	unsigned int	2 bytes	R	0 3600	0.1
Phase B angle	1024 H	unsigned int	2 bytes	R	0 3600	0.1
Phase C angle	1025 H	unsigned int	2 bytes	R	0 3600	0.1
Current Phase A current demand	1026 H	unsigned int	2 bytes	R	0 65535	0.001 A
Current Phase B current demand	1027 H	unsigned int	2 bytes	R	0 65535	0.001 A
Current Phase C current demand	1028 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase A fundamental voltage	1100 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase B fundamental harmonic voltage	1101 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase C fundamental harmonic voltage	1102 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase A 2 nd harmonic voltage	1103 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase B 2 nd harmonic voltage	1104 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase C 2 nd harmonic voltage	1105 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase A No. n harmonic voltage		unsigned int	2 bytes	R	0 65535	0.01 V
Phase B No. n harmonic voltage		unsigned int	2 bytes	R	0 65535	0.01 V

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase C No. n harmonic voltage		unsigned int	2 bytes	R	0 65535	0.01 V
Phase A 50 th harmonic voltage	1193 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase B 50 th harmonic voltage	1194 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase C 50 th harmonic voltage	1195 H	unsigned int	2 bytes	R	0 65535	0.01 V
Phase A fundamental current	1200 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase B fundamental current	1201 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase C fundamental current	1202 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase A 2 nd harmonic current	1203 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase B 2 nd harmonic current	1204 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase C 2 nd harmonic current	1205 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase A No. n harmonic current		unsigned int	2 bytes	R	0 65535	0.001 A
Phase B No. n harmonic current		unsigned int	2 bytes	R	0 65535	0.001 A
Phase C No. n harmonic current		unsigned int	2 bytes	R	0 65535	0.001 A
Phase A 50 th harmonic current	1293 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase B 50 th harmonic current	1294 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase C 50 th harmonic current	1295 H	unsigned int	2 bytes	R	0 65535	0.001 A
Phase A voltage 2 nd harmonic ratio	1303 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase B voltage 2 nd harmonic ratio	1304 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase C voltage 2 nd harmonic ratio	1305 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase A voltage No. n harmonic ratio		unsigned int	2 bytes	R	0 10000	0.01%
Phase B voltage No. n harmonic ratio		unsigned int	2 bytes	R	0 10000	0.01%
Phase C voltage No. n harmonic ratio		unsigned int	2 bytes	R	0 10000	0.01%
Phase A voltage 50 th harmonic ratio	1393 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase B voltage 50 th harmonic ratio	1394 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase C voltage 50 th harmonic ratio	1395 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase A current 2 nd har- monic ratio	1403 H	unsigned int	2 bytes	R	0 10000	0.01%

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase B current 2 nd harmonic ratio	1404 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase C current 2 nd harmonic ratio	1405 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase A current No. n harmonic ratio		unsigned int	2 bytes	R	0 10000	0.01%
Phase B current No. n harmonic ratio		unsigned int	2 bytes	R	0 10000	0.01%
Phase C current No. n harmonic ratio		unsigned int	2 bytes	R	0 10000	0.01%
Phase A current 50 th harmonic ratio	1493 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase B current 50 th harmonic ratio	1494 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase C current 50 th harmonic ratio	1495 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase A voltage wave- form distortion	1500 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase B voltage wave- form distortion	1501 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase C voltage wave- form distortion	1502 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase A current wave- form distortion	1503 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase B current wave- form distortion	1504 H	unsigned int	2 bytes	R	0 10000	0.01%
Phase C current wave- form distortion	1505 H	unsigned int	2 bytes	R	0 10000	0.01%

Power Parameters

Parame	ter	Address	Data Type	Length	R/W	Data Range	Unit
	Phase A active power high 16 bits	2000 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
	Phase A active power low 16 bits	2001 H	long	4 bytes	IX.	0 4234307233	0.1 4411
	Phase B active power high 16 bits	2002 H	unsigned long	4 bytes	R	0 4294967295	0.1 Wh
	Phase B active power low 16 bits	2003 H		+ bytes		0 4294901293	O. I VVII
Import	Phase C active power high 16 bits	2004 H	unsigned 4 byt	4 bytes	R	0 4294967295	0.1 Wh
ППРОП	Phase C active power low 16 bits	2005 H	long				O. I VVII
	Total active power high 16 bits	2006 H	unsigned	41. 1	R	0 4294967295	0.1 Wh
	Total active power low 16 bits	2007 H	long	4 bytes	IX.	0 4234307233	0.1 4411
	Phase A reactive power high 16 bits	2008 H	unsigned	4 bytes	R	0 4004007005	0.1 varh
	Phase A reactive power low 16 bits	2009 H	long	+ Dyles	IX.	0 4294967295	U. I Valli

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase B reactive power high 16 bits	200A H	unsigned	4 bytes	R	0 4294967295	0.1 varh
Phase B reactive power low 16 bits	200B H	long	5,300			
Phase C reactive power high 16 bits	200C H	unsigned	4 bytes	R	0 4294967295	0.1 varh
Phase C reactive power low 16 bits	200D H	long	. 5,100	.,	0 120 1001 200	
Total reactive power high 16 bits	200E H	unsigned	4 bytes	R	0 4294967295	0.1 varh
Total reactive power low 16 bits	200F H	long	1 5)100		0 120 1007 200	0.1 70.11
T1 active power high16 bits	2010 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T1 active power low16 bits	2011 H	long	4 bytes	K	0 4234307233	0.1 4411
T2 active power high16 bits	2012 H	unsigned	4 bytos	R	0 4294967295	0.1 Wh
T2 active power low16 bits	2013 H	long	4 bytes	K	0 4294907293	O. I VVII
T3 active power high16 bits	2014 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T3 active power low16 bits	2015 H	long	4 Dytes	K	0 4294907293	0.1 ****
T4 active power high16 bits	2016 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T4 active power low16 bits	2017 H	long	4 bytes	K	0 4294907293	211 1111
T5 active power high16 bits	2018 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T5 active power low16 bits	2019 H	long	4 Dytes	K	0 4294967293	U. I VVII
T6 active power high16 bits	201A H	unsigned	4 bytes	R	0 4294967295	0.4.10//-
T6 active power low16 bits	201B H	long	4 Dytes	K	0 4294907293	0.1 Wh
T1 reactive power high16 bits	201C H	unsigned	4 bytos	R	0 4294967295	0.1 varh
T1 reactive power low16 bits	201D H	long	4 bytes	K	0 4294907293	U. I Valli
T2 reactive power high16 bits	201E H	unsigned	4 bytos	D	0 4204067205	0.1 yarb
T2 reactive power low16 bits	201F H	long	4 bytes	R	0 4294967295	0.1 varh
T3 reactive power high16 bits	2020 H	unsigned long	4 bytes	D	0 4204067205	0.1 varh
T3 reactive power low16 bits	2021 H		4 bytes	R	0 4294967295	U. I Valli
T4 reactive power high16 bits	2022 H	unsigned			D 0 4004007005	0.1 yarb
T4 reactive power low16 bits	2023 H	long	4 bytes	R	0 4294967295	0.1 varh

Paramet		Address	Data Type	Length	R/W	Data Range	Unit
	T5 reactive power high16 bits	2024 H	unsigned	4 bytes	R	0 4294967295	0.1 varh
	T5 reactive power low16 bits	2025 H	long				
	T6 reactive power high16 bits	2026 H	unsigned	4 bytes	R	0 4294967295	0.1 varh
	T6 reactive power low16 bits	2027 H	long	1 Dyteo		0 120 1007 200	o. i vaiii
	Phase A active power high 16 bits	2100 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
	Phase A active power low 16 bits	2101 H	long	4 bytes	11	0 +20+00/200	0.1 7711
	Phase B active power high 16 bits	2102 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
	Phase B active power low 16 bits	2103 H	long	1 57100	К	0 4294907293	0.1 4411
	Phase C active power high 16 bits	2104 H	unsigned	4 bytos	R	0 4204067205	0.1 Wh
	Phase C active power low 16 bits	2105 H	long	4 bytes	K	0 4294967295	O. I VVII
	Total active power high 16 bits	2106 H	unsigned	4 bytoo	R	0 4294967295	0.1 Wh
	Total active power low 16 bits	2107 H	long	4 bytes	K	0 4294907293	O. I VVII
	Phase A reactive power high 16 bits	2108 H	unsigned	4 bytes	R	0 4294967295	0.1 varh
	Phase A reactive power low 16 bits	2109 H	long	4 bytes	K	0 4294907293	
Export	Phase B reactive power high 16 bits	210A H	unsigned	4 bytes	R	0 4294967295	0.1 varh
Export	Phase B reactive power low 16 bits	210B H	long	4 Dytes	K	0 4294907293	U. I Valli
	Phase C reactive power high 16 bits	210C H	unsigned	4 bytes	R	0 4204067205	0.4
	Phase C reactive power low 16 bits	210D H	long	4 bytes	K	0 4294967295	U. I Valli
	Total reactive power high 16 bits	210E H	unsigned	4 bytoo	В	0 4204067205	0.1 varh
	Total reactive power low 16 bits	210F H	long	4 bytes	R	0 4294967295	u. i vam
	T1 active power high16 bits	2110 H	unsigned	4 by to a	Ь	0 4204007205	0.4.\\/\
	T1 active power low16 bits	active power low16 2111 H long	4 bytes	R	0 4294967295	0.1 Wh	
	T2 active power high16 bits	2112 H	unsigned	4 by 45 5	Г	0 4204007005	0.4.\\/\
	T2 active power low16 bits	2113 H	4 bytes	R	0 4294967295	0.1 Wh	
	T3 active power high16 bits	2114 H	unsigned		D		
	T3 active power low16 bits	2115 H	long	4 bytes	R	0 4294967295	0.1 Wh

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
T4 active power high16 bits	2116 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T4 active power low16 bits	2117 H	long	4 bytes	IX	0 4234307233	
T5 active power high16 bits	2118 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T5 active power low16 bits	2119 H	long	4 Dytes	K	0 4234307233	0.1 4411
T6 active power high16 bits	211A H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
T6 active power low16 bits	211B H	long	4 bytes	K	0 4294907293	O. I VVII
T1 reactive power high16 bits	211C H	unsigned long	4 bytes	R	0 4294967295	0.1 varh
T1 reactive power low16 bits	211D H		4 bytes		o 4254507250	U. I Valli
T2 reactive power high16 bits	211E H	unsigned	4 bytes	R	0 4294967295	0.1 varh
T2 reactive power low16 bits	211F H	long			0 4294967295	U. I Valli
T3 reactive power high16 bits	2120 H	unsigned	4 bytes	R	0 4204067205	0.1 varh
T3 reactive power low16 bits	2121 H	long	4 bytes	ĸ	0 4294967295	U. I Valli
T4 reactive power high16 bits	2122 H	unsigned	4 bytes	Б	0 4204007205	0.1
T4 reactive power low16 bits	2123 H	long	4 bytes	R	0 4294967295	0.1 varh
T5 reactive power high16 bits	2124 H	unsigned	4 bytos	В	0 4204067205	0.1 yerb
T5 reactive power low16 bits	2125 H	long	4 bytes	R	0 4294967295	0.1 varh
T6 reactive power high16 bits	2126 H	unsigned	4 by tas	s R	0 4204007205	0.1) :
T6 reactive power low16 bits	2127 H	long	4 bytes		0 4294967295	0.1 varh

Parameter List of Maximum Demand

Paramet	ter	Address	Data Type	Length	R/W	Data Range	Unit
	Import active demand	3000 H	unsigned int	2 bytes	R	0 65535	W
	Occurrence time	3001 H	unsigned int	2 bytes	R	0 65535	Year
	Occurrence time	3002 H	unsigned int	2 bytes	R	1 12	Month
	Occurrence time	3003 H	unsigned int	2 bytes	R	1 31	Day
	Occurrence time	3004 H	unsigned int	2 bytes	R	0 23	Hour
	Occurrence time	3005 H	unsigned int	2 bytes	R	0 59	Minute
	Occurrence time	3006 H	unsigned int	2 bytes	R	0 59	Second
	Import active T1 demand	3007 H 300D H	unsigned int			Same as import active demand	
	Import active Tn demand	•••	unsigned int			Same as import active demand	
	Import active T6 demand	302A H 3030 H	unsigned int			Same as import active demand	
	Export active demand	3031 H 3037 H	unsigned int			Same as import active demand	
	Export active T1 demand	3038 H 303E H	unsigned int			Same as import active demand	
Tota	Export active Tn demand		unsigned int			Same as import active demand	
l maxir	Export active T6 demand	305B H 3061 H	unsigned int			Same as import active demand	
num d	Combined reactive 1 demand	3062 H 3068 H	unsigned int			Same as import active demand	var
emano	Combined reactive 1T1 demand	3069 H 306F H	unsigned int			Same as import active demand	
d of cu	Combined reactive 1Tn demand		unsigned int			Same as import active demand	
Total maximum demand of current month	Combined reactive 1T6 demand	308C H 3092 H	unsigned int			Same as import active demand	
nonth	Combined reactive 2 demand	3093 H 3099 H	unsigned int			Same as import active demand	
	Combined reactive 2T1 demand	309A H 30A0 H	unsigned int			Same as import active demand	
	Combined reactive 2Tn demand		unsigned int			Same as import active demand	
	Combined reactive 2T6 demand	30BD H 30C3 H	unsigned int			Same as import active demand	
	Import apparent demand	30C4 H 30CA H	unsigned int			Same as import active demand	VA
	Import apparent T1 demand	30CB H 30D1 H	unsigned int			Same as import active demand	
	Import apparent Tn demand		unsigned int			Same as import active demand	
	Import apparent T6 demand	30EE H 30F4 H	unsigned int			Same as import active demand	
	Export apparent demand	30F5 H 30FB H	unsigned int			Same as import active demand	
	Export apparent T1 demand	30FC H 3102 H	unsigned int			Same as import active demand	

Parame	eter	Address	Data Type	Length	R/W	Data Range	Unit
	Export apparent Tn demand		unsigned int			Same as import active demand	
	Export apparent T6 demand	311F H 3125 H	unsigned int			Same as import active demand	
	Current demand	3126 H 312C H	unsigned int			Same as import active demand	
Α	T1 current demand	312D H 3133 H	unsigned int			Same as import active demand	
	Tn current demand		unsigned int			Same as import active demand	
	T6 current demand	3150 H 3156 H	unsigned int			Same as import active demand	
	Current demand	3157 H 315D H	unsigned int			Same as import active demand	
В	T1 current demand	315E H 3164 H	unsigned int			Same as import active demand	
	Tn current demand		unsigned int			Same as import active demand	
	T6 current demand	3181 H 3187 H	unsigned int			Same as import active demand	
	Current demand	3188 H 318E H	unsigned int			Same as import active demand	
С	T1 current demand	318F H 3195 H	unsigned int			Same as import active demand	
	Tn current demand		unsigned int			Same as import active demand	
	T6 current demand	31B2 H 31B8 H	unsigned int			Same as import active demand	

Extreme Value Parameters

Paramete	r	Address	Data Type	Length	R/W	Data Range	Unit
	Phase A voltage	4000 H	unsigned int	2 bytes	R	065535	0.01 V
	Occurrence time	4001 H	unsigned int	2 bytes	R	065535	Year
	Occurrence time	4002 H	unsigned int	2 bytes	R	1 12	Month
	Occurrence time	4003 H	unsigned int	2 bytes	R	1 31	Day
	Occurrence time	4004 H	unsigned int	2 bytes	R	0 23	Hour
	Occurrence time	4005 H	unsigned int	2 bytes	R	0 59	Minute
	Occurrence time	4006 H	unsigned int	2 bytes	R	0 59	Second
NAi	Phase B voltage	4007 H 400D H	unsigned int			Same as Phase A voltage	
Maximum	Phase C voltage	400E H 4014 H	unsigned int			Same as Phase A voltage	
	Uab line voltage	4015 H 401B H	unsigned int			Same as Phase A voltage	
	Ubc line voltage	401C H 4022 H	unsigned int			Same as Phase A voltage	
	Uca line voltage	4023 H 4029 H	unsigned int			Same as Phase A voltage	
	Phase A current	402A H 4030 H	unsigned int			Same as Phase A voltage	0.001 A

Paramete	[Address	Data Type	Length	R/W	Data Range	Unit
	Phase B current	4031 H 4037 H	unsigned int			Same as Phase A voltage	
	Phase C current	4038 H 403E H	unsigned int			Same as Phase A voltage	
	Neutral current	403F H 4045 H	unsigned int			Same as Phase A voltage	
	Phase A active power	4046 H 404C H	unsigned int			Same as Phase A voltage	1 W
	Phase B active power	404D H 4053 H	unsigned int			Same as Phase A voltage	
	Phase C active power	4054 H 405A H	unsigned int			Same as Phase A voltage	
	Total active power	405B H 4061 H	unsigned int			Same as Phase A voltage	
	Phase A reactive power	4062 H 4068 H	unsigned int			Same as Phase A voltage	1 var
	Phase B reactive power	4069 H 406F H	unsigned int			Same as Phase A voltage	
	Phase C reactive power	4070 H 4076 H	unsigned int			Same as Phase A voltage	
	Total reactive power	4077 H 407D H	unsigned int			Same as Phase A voltage	
	Phase A apparent power	407E H 4084 H	unsigned int			Same as Phase A voltage	1 VA
	Phase B apparent power	4085 H 408B H	unsigned int			Same as Phase A voltage	
	Phase C apparent power	408C H 4092 H	unsigned int			Same as Phase A voltage	
	Total apparent power	4093 H 4099 H	unsigned int			Same as Phase A voltage	
	Phase A voltage	4100 H 4106 H				Same as Phase A voltage	0.01 V
	Phase B voltage	4107 H 410D H				Same as Phase A voltage	
	Phase C voltage	410E H 4114 H				Same as Phase A voltage	0.01 V
	Uab line voltage	4115 H 411B H				Same as Phase A voltage	
	Ubc line voltage	411C H 4122 H				Same as Phase A voltage	
Minimum	Uca line voltage	4123 H 4129 H				Same as Phase A voltage	
	Phase A current	412A H 4130 H				Same as Phase A voltage	0.001 A
	Phase B current	4131 H 4137 H				Same as Phase A voltage	
	Phase C current	4138 H 413E H				Same as Phase A voltage	
	Neutral current	413F H 4145 H				Same as Phase A voltage	
	Phase A active power	4146 H 414C H				Same as Phase A voltage	1 W

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase B active power	414D H 4153 H				Same as Phase A voltage	
Phase C active power	4154 H 415A H				Same as Phase A voltage	
Total active power	415B H 4161 H				Same as Phase A voltage	
Phase A reactive power	4162 H 4168 H				Same as Phase A voltage	1 var
Phase B reactive power	4169 H 416F H				Same as Phase A voltage	
Phase C reactive power	4170 H 4176 H				Same as Phase A voltage	
Total reactive power	4177 H 417D H				Same as Phase A voltage	
Phase A apparent power	417E H 4184 H				Same as Phase A voltage	1 VA
Phase B apparent power	4185 H 418B H				Same as Phase A voltage	
Phase C apparent power	418C H 4192 H				Same as Phase A voltage	
Total apparent power	4193 H 4199 H				Same as Phase A voltage	

Event Record

Param	Parameter Ac		Data Type	Length	R/W	Data Range	Unit/Descrip- tion
	Occurrence time of previous 1 event	5000 H	unsigned int	2 bytes	R	065535	Year
	Occurrence time of previous 1 event	5001 H	unsigned int	2 bytes	R	1 12	Month
	Occurrence time of previous 1 event	5002 H	unsigned int	2 bytes	R	1 31	Day
71	Occurrence time of previous 1 event	5003 H	unsigned int	2 bytes	R	0 23	Hour
Relay 1 control event	Occurrence time of previous 1 event	5004 H	unsigned int	2 bytes	R	0 59	Minute
contr	Occurrence time of previous 1 event	5005 H	unsigned int	2 bytes	R	0 59	Second
ol ever	Identifier of previous 1 event	5006 H	unsigned int			0 1	0: trip, 1: close
#	Record of previous 2 events	5007 H 500D H	unsigned int			Same as previous 1 event	
	Record of previous n events		unsigned int			Same as previous 1 event	
	Record of previous 9 events	5038 H 503E H	unsigned int			Same as previous 1 event	
	Record of previous 10 events	503F H 5045 H	unsigned int			Same as previous 1 event	

Param	eter	Address	Data Type	Length	R/W	Data Range	Unit/Descrip- tion
_	Record of previous 1 events	5046 H 504C H	unsigned int			Same as previous 1 event	
Relay 2	Record of previous n events		unsigned int			Same as previous 1 event	
8	Record of previous 10 events	5085 H 508B H	unsigned int			Same as previous 1 event	
	Occurrence time of previous 1 event	5100 H	unsigned int	2 bytes	R	065535	Year
	Occurrence time of previous 1 event	5101 H	unsigned int	2 bytes	R	1 12	Month
	Occurrence time of previous 1 event	5102 H	unsigned int	2 bytes	R	1 31	Day
	Occurrence time of previous 1 event	5103 H	unsigned int	2 bytes	R	0 23	Hour
	Occurrence time of previous 1 event	5104 H	unsigned int	2 bytes	R	0 59	Minute
SOE	Occurrence time of previous 1 event	5105 H	unsigned int	2 bytes	R	0 59	Second
)E event	Occurrence time of previous 1 event	5106 H	unsigned int	2 bytes	R	0 999	msec
ñ	Identifier 1 of previous 1 event	5107 H	unsigned int	2 bytes	R	0 3	Binary bit (1 to 4)
	Identifier 1 of previous 2 event	5108 H	unsigned int	2 bytes	R	0 1	Shit status (1: open to close, 0: close to open)
	Record of previous 2 events	5109 H 5111 H	unsigned int			Same as previous 1 event	
	Record of previous n events						
	Record of previous 50 events	52B9 H 52C1 H	unsigned int			Same as previous 1 event	

Data bloak copy

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase A import active power high 16 bits	7000 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
Phase A import active power low 16 bits	7001 H	long	4 bytes	IX	0 4294907293	0.1 7711
Phase B import active power high 16 bits	7002 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
Phase B import active power low 16 bits	7003 H	long				0.1 7711
Phase C import active power high 16 bits	7004 H	unsigned	4 bytes	R	0 4294967295	0.1 Wh
Phase C import active power low 16 bits	7005 H	long	4 Dyles	IX.	0 4294907293	O. I VVII

Parameter	Address	Data Type	Length	R/W	Data Range	Unit	
Total import active	7006 H						
power high 16 bits	700011	unsigned	4 bytes	R	0 4294967295	0.1 Wh	
Total import active power low 16 bits	7007 H	long	, , , ,				
Phase A voltage	7008 H	unsigned int	2 bytes	R	0 65535	0.01 V	
Phase B voltage	7000 H	unsigned int	2 bytes	R	0 65535	0.01 V	
Phase C voltage	7003 H	unsigned int	2 bytes	R	0 65535	0.01 V	
Average phase voltage	700KT1	unsigned int	2 bytes	R	0 65535	0.01 V	
Uab line voltage	700C H	unsigned int	2 bytes	R	0 65535	0.01 V	
Ubc line voltage	700D H	unsigned int	2 bytes	R	0 65535	0.01 V	
Uca line voltage	700E H	unsigned int	2 bytes	R	0 65535	0.01 V	
Average line voltage	700F H	unsigned int	2 bytes	R	0 65535	0.01 V	
Phase A current	7010 H	unsigned int	2 bytes	R	0 65535	0.001 A	
Phase B current	7011 H	unsigned int	2 bytes	R	0 65535	0.001 A	
Phase C current	7012 H	unsigned int	2 bytes	R	0 65535	0.001 A	
Average current	7013 H	unsigned int	2 bytes	R	0 65535	0.001 A	
Neutral current	7014 H	unsigned int	2 bytes	R	0 65535	0.001 A	
Phase A active power	7015 H	signed int	2 bytes	R	-32767 32767	1 W	
Phase B active power	7016 H	signed int	2 bytes	R	-32767 32767	1 W	
Phase C active power	7017 H	signed int	2 bytes	R	-32767 32767	1 W	
Total active power	7018 H	signed int	2 bytes	R	-32767 32767	1 W	
Phase A reactive	7019 H	signed int	2 bytes	R	-32767 32767	1 var	
power	701911	signed int 2 bytes R -		-32707 32707	ı vai		
Phase B reactive power	701A H	signed int	2 bytes	R	-32767 32767	1 var	
Phase C reactive power	701B H	signed int	2 bytes	R	-32767 32767	1 var	
Total reactive power	701C H	signed int	2 bytes	R	-32767 32767	1 var	
Phase A apparent power	701D H	signed int	2 bytes	R	-32767 32767	1 VA	
Phase B apparent power	701E H	signed int	2 bytes	R	-32767 32767	1 VA	
Phase C apparent power	701F H	signed int	2 bytes	R	-32767 32767	1 VA	
Total apparent power	7020 H	signed int	2 bytes	R	-32767 32767	1 VA	
Phase A power factor	7021 H	signed int	2 bytes	R	-1000 1000	0.001	
Phase B power factor	7022 H	signed int	2 bytes	R	-1000 1000	0.001	
Phase C power factor	7023 H	signed int	2 bytes	R	-1000 1000	0.001	
Total power factor	7024 H	signed int	2 bytes	R	-1000 1000	0.001	
Frequency	7025 H	unsigned int	2 bytes	R	0 65535	0.01 Hz	
Phase A import reactive power high 16 bits	7026 H	unsigned			0 4204007205	0.1	
Phase A import reactive power low 16 bits	7027 H	long 4 bytes		S R	0 4294967295	0.1 varh	
Phase B import reactive power high 16 bits	7028 H	unsigned	1 h. 4	_	0 4004007005	0.1	
Phase B import reactive power low 16 bits	7029 H	long	4 bytes	R	0 4294967295	0.1 varh	

Parameter	Address	Data Type	Length	R/W	Data Range	Unit
Phase C import reactive power high 16 bits	702A H	unsigned	4 bytes	R	0 4294967295	0.1 varh
Phase C import reactive power low 16 bits	702B H	long	+ bytes	IX	0 4 294907293	U. I Valli
Total import reactive power high 16 bits	702C H	unsigned	4 bytes	R	0 4294967295	0.1 varh
Total import reactive power low 16 bits	702D H	long		IX.		
Voltage unbalance rate	702E H	unsigned int	2 bytes	R	0 65535	0.01%
Current unbalance rate	702F H	unsigned int	2 bytes	R	0 65535	0.01%
Binary inputs 7030 H unsigned int		2 bytes	R	High byte: bit 0 to express input 1 to status		
Directly imputs	7030 H unsigned int		2 bytes	IX.	Low byte: bit 0 to bit 1 express output 1 to output 2 status	

Note

X-0 means maximum value while X=1 means minimum value.

6.2.4 Information mapping table

Maintenance

7.1 Overview 64

7.1 Overview

- Voltage connection should be conducted strictly in accordance with voltage level marked on nameplate.
- Tighten the terminals and hang the meter securely to screen which is strong, refractory and vibration-free during installation. Upward view of the meter provides the best display effect, so it should be installed vertically.
- The meter should be stored in environment free of condensation at -35 °C to 70 °C and ≤ 95% humidity in original package. At most 5 layers are allowable for stacking. The meter is inappropriate for storing after unpacking. The meter should be stored in clean location free of hazardous substances or gas which may cause corrosion in air.
- In the operating environment of the meter, lightning protection should be provided.

Ordering Number

8.1 Ordering Number 66

8.1 Ordering Number

Device name:	SICAM	_	Р	3	
Function					
3-phase voltage, current, power, power factor, frequency, electric energy, pudemand, 4 Binary inputs, 2 Binary outputs, 2 RS485 ports	ulse output, har	moni	C,		8

Model	Ordering No.
SICAM P38	7KG7331-1TA12