CSC 212: Data Structures and Abstractions Computational Cost

Jonathan Schrader

[credit Marco Alverez]

Department of Computer Science and Statistics University of Rhode Island

Fall 2022

Quick notes

- Attending lectures and labs
 - √ take notes (by hand or typing) avoid just taking screenshots
 - √ be ready to answer questions
- Assignment 1
 - √ autograder activate to accept submissions
 - ✓ use **double** variables in all calculations
 - √ the median of a list of even length is the average of the two
 elements in the middle
 - √ include pixel i, j as part of the local neighborhood
 - √ when calculating standard deviation, divide by n

Analyzing running time

Empirical Analysis

- Run algorithm
- Measure actual time

Mathematical Model

- Analyze algorithm
- Develop Model

Theoretical Models

Mathematical model

- High-level analysis no need to implement
- Independent of HW/SW
- Based on **counts** of basic **instructions**
 - √ additions, multiplications, comparisons, etc
 - ✓ exact definition <u>not important</u> but <u>must be relevant</u> to the problem

Basic assumptions

- In order to use a **formal framework**, we will make certain assumptions
 - count basic instructions: additions, multiplications, comparisons, assignments
 - ✓ each instruction takes one time unit
 - ✓ instructions are executed sequentially
 - ✓ infinite memory
- Focus on analyzing running time

What to count?

✓ only relevant instructions? all instructions?

```
double sum = 1;
for (int = 0; i < n; i ++) {
    i
} sum = sum * i;</pre>
```

lets also plot both cases ...

```
for (inti = 0; i < n; i ++) {
    for (int j = 0; j < n; j ++) {
        sum = sum * j;
    }
}</pre>
```

```
for (int i = 0; i < n; i ++) {
   for (intj = 0; j < n*n; j ++) {
      sum = sum * j;
   }
}</pre>
```

```
for (inti = 0; i < n; i ++) {
    for (int j = 0; j < i; j ++) {
        sum = sum * j;
    }
}</pre>
```

```
for (inti = 0; i < n; i ++) {
    for (int j = 0; j < n; j ++) {
        for (int k = 0; k < n; k ++) {
            // count 1 instruction
        }
    }
}</pre>
```

```
for (int i = 0; i < n; i ++) {
    for (intj = 0; j < i*i; j ++) {
        for (int k = 0; k < j; k ++) {
            // count 1 instruction
        }
    }
}</pre>
```

Some rules ...

Single loops

essentially the number of iterations times the number of instructions performed at each iteration

Nested loops

- √ count instructions inside out
- ✓ careful with the range of the loop
- when possible, multiplications can be used for counts from each loop

Consecutive statements

✓ just add the counts

. Conditionals

✓ consider the branch with the highest count

Computational cost

Number of **basic instructions** required by the algorithm to process an input of a certain **size n**

T(n)

- √ basic instructions are always relevant to the problem
 - ex: find max in an array
 - # of comparisons
 - ex: sum elements in an array
 - # of additions

Comparing computational cost

find (x,y,z) s.t. x+y+z=k

find (x,y) s.t. x+y=k

find x=k

Size of Input	n ³	n ²	n	
n = 1	1	1	1	
n = 10	1,000	100	10	
n = 100	1,000,000	10,000	100	
n = 1000	1,000,000,000	1,000,000	1,000	
n = 10000	1,000,000,000,000	100,000,000	10,000	
n = 100000	1,000,000,000,000,000	10,000,000,000	100,000	
n = 1000000	1,000,000,000,000,000,000	1,000,000,000,000	1,000,000	
n = 10000000	1,000,000,000,000,000,000,000	100,000,000,000,000	10,000,000	

Growth Rate

n	log log n	log n	n	n log n	n^2	n^3	2 ⁿ
16	2	4	2 ⁴	$4\cdot 2^4=2^6$	2 ⁸	2 ¹²	2 ¹⁶
256	3	8	2 ⁸	$8 \cdot 2^8 = 2^{11}$	2 ¹⁶	2 ²⁴	2 ²⁵⁶
1024	≈ 3.3	10	2 ¹⁰	$10\cdot 2^{10}\approx 2^{13}$	2 ²⁰	2 ³⁰	2 ¹⁰²⁴
64K	4	16	2 ¹⁶	$16 \cdot 2^{16} = 2^{20}$	2 ³²	2 ⁴⁸	2 ^{64K}
1M	≈ 4.3	20	2 ²⁰	$20\cdot 2^{20}\approx 2^{24}$	2 ⁴⁰	2 ⁶⁰	2 ^{1M}
1G	≈ 4.9	30	2 ³⁰	$30\cdot 2^{30}\approx 2^{35}$	2 ⁶⁰	2 ⁹⁰	2 ^{1G}

growth of T(n) as $n \to \infty$