Analysis of Block Matching Algorithms for Image Transformation

ADA Final Project: Questions 5 - 10

Alejandro Goicochea Diego Linares Ariana Villegas

Universidad de Ingeniería y Tecnología

July 23, 2020

- Recap of Block Matching
- 2 Decoding Images through Luma
 - What is Luma?
 - Transforming into a Matrix of bits
- 3 Our Approach
 - Base Process for Transformation
 - Different Algorithms
- 4 Examples
- 6 Conclusion

- Recap of Block Matching
- 2 Decoding Images through Luma
 - What is Luma?
 - Transforming into a Matrix of bits
- 3 Our Approach
 - Base Process for Transformation
 - Different Algorithms
- 4 Examples
- 6 Conclusion

Previous Presentation

In the previous presentation we designed **two algorithms** for block matching:

- Greedy / Naive Algorithm
- Memoized Algorithm (now improved to DP version).

For this last part we are including a third algorithm, a DP with **better** weight.

We are gonna see how each of this performs for image transformation.

Greedy Algorithm

Figure: Greedy Algorithm

Recursion

Figure: Recursion

Figure: Dynamic Programming Algorithm - Step 1

A = [3, 4, 5, 1]
B = [7, 2, 1, 3]

3/7	7/7	

Figure: Dynamic Programming Algorithm - Step 1

A = [3, 4, 5, 1]	
B = [7, 2, 1, 3]	

3/7	7/7	12/7	13/7

A = [3, 4, 5, 1]
B = [7, 2, 1, 3]

3/7	7/7	12/7	13/7
3/9			
3/10			
3/13			

Figure: Dynamic Programming Algorithm - Step 2

A = [3, 4, 5, 1]	
B = [7, 2, 1, 3]	

3/7	7/7	12/7	13/7
3/9	2,43		
3/10			
3/13			

Figure: Dynamic Programming Algorithm - Step 3

A = [3, 4, 5, 1]	
B = [7, 2, 1, 3]	

3/7	7/7	12/7	13/7
3/9	2,43	3,5	
3/10			
3/13			

A = [3, 4, 5, 1]
B = [7, 2, 1, 3]

3/7	7/7	12/7	13/7
3/9	2,43	3,5	2,21
3/10			
3/13			

A = [3, 4, 5	5, 1]
B = [7, 2, 1	., 3]

3/7	7/7	12/7	13/7
3/9	2,43	3,5	2,21
3/10	1,76	2,67	2,05
3/13			

A = [3, 4,	5, 1]
B = [7, 2,	1 , 3]

3/7	7/7	12/7	13/7
3/9	2,43	3,5	2,21
3/10	1,76	2,67	2,05
3/13	1,10	1,83	1,88

Figure: Dynamic Programming Algorithm - Step 5

- Recap of Block Matching
- 2 Decoding Images through Luma
 - What is Luma?
 - Transforming into a Matrix of bits
- 3 Our Approach
 - Base Process for Transformation
 - Different Algorithms
- 4 Examples
- 6 Conclusion

- Recap of Block Matching
- 2 Decoding Images through Luma
 - What is Luma?
 - Transforming into a Matrix of bits
- 3 Our Approach
 - Base Process for Transformation
 - Different Algorithms
- 4 Examples
- 6 Conclusion

- Recap of Block Matching
- 2 Decoding Images through Luma
 - What is Luma?
 - Transforming into a Matrix of bits
- 3 Our Approach
 - Base Process for Transformation
 - Different Algorithms
- 4 Examples
- 6 Conclusion

- Recap of Block Matching
- 2 Decoding Images through Luma
 - What is Luma?
 - Transforming into a Matrix of bits
- 3 Our Approach
 - Base Process for Transformation
 - Different Algorithms
- 4 Examples
- 6 Conclusion

