Parte 02 - Deslocamento temporal da função de onda

a equação da função de onda completa:

$$i\hbarrac{\partial\Psi}{\partial t}= ext{op }H\Psi$$

O opH é um operador de evolução temporal. Pode, ele, também assumir, a seguinte identidade matemática:

op
$$U(\Delta t) = e^{rac{-i\operatorname{op} H}{\hbar}}$$

Resultando, portanto, na solução, descrita abaixo:

$$\Psi(x,t+\Delta t) = e^{rac{-i\operatorname{op} H\Delta t}{\hbar}}\cdot \Psi(x,t)$$

Podendo tratar o expoente de um operador, por meio de uma série infinita, tem-se:

$$e^{rac{-i\operatorname{op} H\Delta t}{\hbar}} = \sum_{n} rac{\left(rac{-i\operatorname{op} H\Delta t}{\hbar}
ight)^{n}}{n!}$$

```
In [156...
```

#Bibliotecas

```
import matplotlib.animation as animation
from IPython.display import HTML
import matplotlib.pyplot as plt
import scipy.fftpack as fft
import scipy.linalg as scl
import numpy as np
import math
%matplotlib widget
%matplotlib inline
```

O Halmitoniano no espaço:

$$x_n = x_0 + n \Delta x$$
, com $\Delta x = rac{(x_N - x_0)}{N}$

Os valores de entrada:

```
L = 200.0

step_low = 0.

step_high= 1.

V0 = 10.
```

Definição do espaço:

Definição do potencial:

Configuração do Hamiltoniano para a função V, multiplicação com a matriz inversa:

Intervalo temporal

```
In [168... dt_max = 2/np.max(En) # Critério de estabilidade.
dt = 0.001
if dt > dt_max:
    print("ATENÇÃO: dt está na região instável!")
```

Função de onda inicial

```
In [170... g_x0=-10.
g_k0=6.
g_sig=2.
```

```
Definição de um Gaussiano no espaço K, com p=\hbar k, um momento k_0, e o espaço x, \psi(x,0)=\left(\frac{2L}{\pi}\right)^{1/4}\cdot e^{-Lx^2}:
```

```
In [173... # H é Hermitiano?
print("Verifique se H é realmente Hermitiano : ",np.array_equal(H.conj().T,H))
```

Verifique se H é realmente Hermitiano : True

```
In [174... Ut_mat = np.diag(np.ones(N,dtype="complex128"),0)

print("Criação de uma matriz U(dt = {})".format(dt))
for n in range(1,3):
    # Realiza a soma. Como se trata de matrizes, o processo irá demorar se N for gr
    Ut_mat += np.linalg.matrix_power((-1j*dt*H/hbar),n)/math.factorial(n)
```

Criação de uma matriz U(dt = 0.001)

```
In [175... p = Ut_mat.dot(psi_t0)

print("O quanto a normalização muda por etapa? Desde {} até {}".format(np.linalg.no.print("Nº de etapas em que a norma está errada por um fator 2 : ",1/(np.linalg.norm...)
```

O quanto a normalização muda por etapa? Desde 1.0 até 1.0000000127814086 N° de etapas em que a norma está errada por um fator 2 : 78238637.96537858

teste do movimento gaussiano:

Teste e verificação de coerência dos resultados:

```
\langle E \rangle = estado esperado da energia;
```

 $\langle x \rangle$ = estado esperado da posição

```
In [179... print("Normalização : ",np.linalg.norm(psi_tu[-1][1]))

vev_E0=float(np.real(np.sum(np.conjugate(psi_t0)*H.dot(psi_t0))))

vev_x0=float(np.real(np.sum(np.conjugate(psi_t0)*x*psi_t0)))
```

```
print("<E_(t = 0)) = \{:8.4f\} < x_(t = 0) > = \{:8.4f\}".format(vev_E0, vev_x0))
                            for t,p in psi_tu:
                                                                                                        norm = np.linalg.norm(p)
                                                                                                        vev_E1 = float(np.real(np.sum(np.conjugate(p)*H.dot(p))))
                                                                                                          vev_x1 = float(np.real(np.sum(np.conjugate(p)*x*p)))
                                                                                                          print("dt = {:7.1f} norm = {:8.5f} <E > = {:8.4f} <x_(dt) > = {:8.4g}".format("dt = {:7.1f} norm = {:7.1f} 
Normalização : 1.000044736361259
\langle E_{t}(t = 0) \rangle = 17.5429 \langle x_{t}(t = 0) \rangle = -10.0000
dt = 500.0 \text{ norm} = 1.00001 \langle E \rangle = 17.5432 \langle x_{dt} \rangle = 1.00001 \langle E \rangle = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -7.164
dt = 1000.0 \text{ norm} = 1.00001 \langle E \rangle = 17.5434 \langle x_{dt} \rangle = 100001 \langle E \rangle = 1000001 \langle E \rangle = 100001 \langle E \rangle = 100001 \langle E \rangle = 1000001 \langle E \rangle = 1000001 \langle E \rangle = 1000001 \langle E \rangle = 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -4.335
dt = 1500.0 \text{ norm} = 1.00002 \langle E \rangle = 17.5436 \langle x_{dt} \rangle = 0.0002 \langle E \rangle = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -1.55
0.8044
dt = 2500.0 \text{ norm} = 1.00003 \langle E \rangle = 17.5441 \langle x_{dt} \rangle = 2.91
dt = 3000.0 \text{ norm} = 1.00004 \langle E \rangle = 17.5443 \langle x_{dt} \rangle = 1.00004 \langle E \rangle = 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5.103
dt = 3499.0 \text{ norm} = 1.00004 \langle E \rangle = 17.5446 \langle x_{(dt)} \rangle = 7.305
```

Dos dados obtidos, resulta:

```
In [181...
          def opt_plot():
              plt.minorticks_on()
              plt.tick_params(axis='both', which='minor', direction = "in",
                               top = True, right = True, length=5, width=1,
                               labelsize=15)
              plt.tick_params(axis='both', which='major', direction = "in",
                               top = True, right = True, length=8, width=1,
                               labelsize=15)
          plt.figure(figsize=(8,5))
          if vev_E0>max(V):
              plt.title('Espalhamento')
          else:
              plt.title('Tunelamento')
          plt.ylabel('$psi(x,t)$')
          plt.xlabel('$x$')
          # plt.plot(x,np.abs(psi_t0)/np.sqrt(Delta_x),label="$\Psi(x,t=0)$")
          for t,p in psi_tu:
              plt.plot(x,np.abs(p)/np.sqrt(Delta_x),label="$Psi(x,t={:6.3f})$".format(t*dt))
              plt.legend(loc = 'center left')
          ax1 = plt.twinx()
          plt.plot(x,V,color="grey",label="V(x)")
          plt.plot([x[0],x[N-1]],[vev_E0,vev_E0],color="grey",linestyle="--",label="<E>")
          plt.ylabel("Energia",color="grey")
          plt.xlim(g_x0-5*g_sig,-g_x0+5*g_sig)
          plt.legend(loc='best')
          plt.grid()
          opt_plot()
          plt.savefig('Estado deslocado.png')
```



```
In [182... %time Ut_05s = np.linalg.matrix_power(Ut_mat,int(0.5/dt) )
CPU times: total: 7min 6s
```

Repetição de tarefa

Wall time: 2min

```
In [184...
          psi_t0 = psi0(x,g_x0,g_k0,g_sig)
          psi_t1 = psi_t0
          psi_tu05 = []
          for t in range(7):
              psi_t1 = Ut_05s.dot(psi_t1)
              psi_tu05.append( (t,psi_t1))
              # psi_tu.append( (t,psi_t1))
          print("Start")
          v1=[]
          v2=[]
          tm=[]
          count=0
          for t,p in psi_tu05:
              norm = np.linalg.norm(p)
              vev_E1 = float(np.real(np.sum(np.conjugate(p)*H.dot(p))))
              vev_x1 = float(np.real(np.sum(np.conjugate(p)*x*p)))
              v1.append(vev_E1)
              v2.append(vev_x1)
              tm.append(count)
              count=count+1
              print("dt = {:7.1f} norm = {:8.5f} <E> = {:8.4f} <x_(dt)> = {:8.4g}".format(
```

```
Start
         dt =
                   0.0 norm = 1.00001 \langle E \rangle = 17.5432 \langle x_{(dt)} \rangle =
                                                                            -7.17
         dt =
                   1.0 norm = 1.00001 < E > = 17.5434 < x (dt) > =
                                                                            -4.34
                   2.0 norm = 1.00002 \langle E \rangle = 17.5436 \langle x_{(dt)} \rangle =
         dt =
                                                                           -1.555
         dt =
                   3.0 norm = 1.00003 < E > = 17.5439 < x_(dt) > =
                                                                           0.8002
         dt =
                   4.0 norm = 1.00003 < E > = 17.5441 < x_(dt) > =
                                                                            2.905
         dt =
                   5.0 norm = 1.00004 \langle E \rangle = 17.5443 \langle x_{(dt)} \rangle =
                                                                            5.099
         dt =
                   6.0 norm = 1.00004 < E > = 17.5446 < x (dt) > =
                                                                            7.305
In [185...
           plt.figure(figsize=(8,5))
           if vev_E0>max(V):
               plt.title('Espalhamento')
           else:
               plt.title('Tunelamento')
           plt.ylabel('$psi(x,t)$')
           plt.xlabel('$x$')
           line, = plt.plot(x,np.abs(psi_t0)/np.sqrt(Delta_x),label="$Psi(x,t=0)$")
           for t,p in psi_tu05:
               plt.plot(x,np.abs(p)/np.sqrt(Delta_x),label="$Psi(x,t={:6.3f})$".format(t*dt))
               plt.legend(loc='center left')
           ax1 = plt.twinx()
           plt.plot(x,V,color="grey",label="V(x)")
           plt.plot([x[0],x[6]],[vev_E0,vev_E0],color="grey",linestyle="--",label="<E>")
           plt.ylabel("Energia",color="grey")
           plt.xlim(g_x0-5*g_sig,-g_x0+5*g_sig)
           plt.legend(loc='best')
           plt.grid()
           opt_plot()
```


Parte 3 - A Regressão Simbólica

```
from sklearn.utils import check_random_state, shuffle
    from gplearn.genetic import SymbolicRegressor
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.utils.random import check_random_state
    from mpl_toolkits.mplot3d import Axes3D
    from IPython.display import Image
    import pydot
    import graphviz
    from sympy import *
    import pandas as pd
```

Definição dos Operadores

Interpretação Probabilística Gaussiana da Distribuição Normal

$$N(\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-rac{1}{2}rac{(x-\mu)}{\sigma}^2}$$

.

```
In [191... m1=[]
    md=[]
    count=0
    tem=0
    df=pd.DataFrame()
    df2=pd.DataFrame()
    xix=[]
    df['v1']=v1
    df2['v2']=v2

for i in v2:
    m1.append(i)
    tem=i-vev_x0
    md.append(tem**2)
```

```
df['m1']=md
df2['t']=tm

dp=2.83/3
A = [float(i) for i in m1]
for i in A:
    xix=np.linspace(-(3.*dp),(3.*dp),40)
    y=0.39*(2.76**(-0.5*(xix**2)))
```

A amostra acima, resulta:

```
In [193...
          def opt_plot():
              plt.minorticks_on()
              plt.tick_params(axis='both', which='minor', direction = "in",
                               top = True, right = True, length=5, width=1,
                               labelsize=15)
              plt.tick_params(axis='both', which='major', direction = "in",
                               top = True, right = True, length=8, width=1,
                               labelsize=15)
          plt.figure(figsize=(8,5))
          textstr = '\n'.join((
              r'$\mu=%.2f$' % (0, ),
              ))
          textstr02 = '\n'.join((
              r'$\sigma=%.2f$' % (1, ),
          ))
          textstr03 = '\n'.join((
              r'$\sigma=%.2f$' % (2, ),
          ))
          textstr04 = '\n'.join((
              r'$\sigma=%.2f$' % (1, ),
              r'$\mu=%.2f$' % (0, ),
          ))
          plt.vlines(0, 0, 0.39, linestyle='dashed', color='b', linewidth=1, label=str(textst
          plt.vlines(1, 0, 0.23, linestyle='dashed', color='green', linewidth=1.5, label= str
          plt.vlines(-1, 0, 0.23, linestyle='dashed', color='green', linewidth=1.5) # vlines(
          plt.vlines(2, 0, 0.05, linestyle='dashed', color='orange', linewidth=1.5, label= '2
          plt.vlines(-2, 0, 0.05, linestyle='dashed', color='orange', linewidth=1.5) # vlines
          font1 = {'family':'serif','color':'blue','size':20}
          font2 = {'family':'serif','color':'darkred','size':15}
          plt.title("Alternativa ao Modelo Padrão", fontdict = font1)
          plt.xlabel("x", fontdict = font2)
          plt.ylabel("Densidade", fontdict = font2)
          plt.legend(title='Medidas de Dispersão')
          plt.grid()
```

```
opt_plot()
plt.plot(xix,y ,'r--', alpha=0.5, label= textstr04)
```

Out[193... [<matplotlib.lines.Line2D at 0x11c3e679d60>]

Criação e Calibração de um modelo Simbólico Regressor:

	Population	Average		Best Individual	I	
Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Left
0	15.94	8.42754	24	0.101256	0.141842	3.93m
1	8.38	1.41838	10	0.0282817	0.0287366	4.66m
2	4.25	0.913171	10	0.0275074	0.0357058	2.07m
3	2.38	0.458598	10	0.0262319	0.0471853	1.69m
4	2.34	69.5123	10	0.0262295	0.0472067	1.69m
5	4.42	1.11605	11	0.0181481	0.0271488	2.21m
6	6.21	1.40624	11	0.0183373	0.0356987	2.37m
7	6.89	1.00531	11	0.0196629	0.0237683	1.42m
8	7.20	0.86294	11	0.0185499	0.0337846	1.46m
9	7.36	0.927227	12	0.0193277	0.0303689	1.27m
10	7.54	1.14538	12	0.0202671	0.0219142	1.03m
11	7.90	1.22699	8	0.0258667	0.038024	1.21m
12	8.04	1.22625	8	0.0252462	0.0436084	57 . 18s
13	7.96	1.29076	8	0.0249788	0.0460152	1.27m
14	7.86	1.30819	8	0.0245602	0.04586	1.12m
15	8.06	1.22489	8	0.0247419	0.0481478	46.88s
16	7.99	1.55607	8	0.0246505	0.04897	36.24s
17	7.92	1.26517	11	0.0241093	0.0259531	23.80s
18	7.97	1.25025	8	0.0246505	0.04897	7.76s
19	8.00	1.2177	10	0.023813	0.0384339	0.00s
-						

Out[195...

SymbolicRegressor

div(0.333, sub(0.812, neg(mul(mul(0.696, X0), X0))))

Escore:

```
In [197...
print('R2:',est_gp.score(xix.reshape(-1, 1),y))
next_e = sympify(str(est_gp._program), locals=converter)
y1=next_e
```

R2: 0.9502743138806782

Equação Proposta:

```
In [199... y1 0.333 \\ \hline 0.696 X_0^2 + 0.812
```

Soluções para o Poço de Potencial Infinito

Solução da função de onda da posição

$$\psi_n(x) = \sqrt{rac{2}{L}} \sin\Bigl(rac{n\pi x}{L}\Bigr)$$

In [202... import matplotlib.pyplot as plt
import numpy as np

```
def opt_plot():
    plt.minorticks_on()
    plt.tick_params(axis='both', which='minor', direction = "in",
                    top = True, right = True, length=5, width=1,
                    labelsize=15)
    plt.tick_params(axis='both', which='major', direction = "in",
                    top = True, right = True, length=8, width=1,
                    labelsize=15)
a=20
A=np.sqrt(2/a)
# Data for plotting
for i in range(5):
   t = np.arange(0.0, 2.0, 0.01)
    s = A*np.sin(0 * np.pi * t)
s1 = A*+np.sin(0.5 * np.pi * t)
s2 = A*np.sin(1.0 * np.pi * t)
s3 = A*np.sin(1.5 * np.pi * t)
s4 = A*np.sin(2.0 * np.pi * t)
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(t, s)
ax.plot(t, s1,label='n=0')
ax.plot(t, s2,label='n=1')
ax.plot(t, s3,label='n=2')
ax.plot(t, s4,label='n=3')
ax.set(xlabel='time (s)', ylabel='$w(x,t)$',
       title="Soluções para o Poço de Potencial Infinito")
ax.grid()
opt_plot()
plt.legend()
fig.savefig("test.png")
plt.show()
```


Gera-se e ajusta-se,um modelo Simbólico Regressor para a solução da função de onda da Posição:

In [204	est_gp.fit(t.reshape(-1, 1),s1)						
		Population	Average		Best Individual		
	Gen	Length	Fitness	Length	Fitness	OOB Fitness	Time Left
	0	15.94	10.9162	6	0.0305686	0.0286007	4.07m
	1	8.25	1.36407	9	0.0238001	0.0246281	2.44m
	2	5.03	0.916274	9	0.0248264	0.0153917	3.08m
	3	2.76	0.458664	7	0.0265144	0.031241	1.97m
	4	2.38	16.2677	7	0.026512	0.0312625	2.16m
	5	5.04	0.628504	6	0.0142702	0.0251	1.99m
	6	6.00	1.07399	6	0.0145615	0.0224778	1.42m
	7	6.08	0.645816	6	0.0137287	0.0299735	2.52m
	8	6.07	0.686379	6	0.013608	0.0310599	2.07m
	9	6.19	0.767054	6	0.0124938	0.0410876	2.18m
	10	6.10	0.799589	6	0.0129802	0.0367098	1.99m
	11	6.08	0.641764	6	0.013121	0.0354423	1.06m
	12	6.19	0.677095	6	0.0122761	0.0430471	2.23m
	13	6.17	0.895997	6	0.012991	0.0366123	1.28m
	14	6.06	0.736398	6	0.0132391	0.03438	41.61 s
	15	6.18	0.696137	6	0.0133269	0.0335893	35.80s
	16	6.17	0.844118	6	0.0132413	0.0343599	24.23s
	17	6.09	0.700994	6	0.0128263	0.0380947	12.49s
	18	6.16	0.612862	6	0.0130871	0.0357479	8.11s
	19	6.17	0.633526	6	0.0125276	0.0407834	0.00s

```
Out[204... ▼ SymbolicRegressor add(mul(-0.517, X0), sin(X0))
```

Escore

```
In [206... print('R2:',est_gp.score(t.reshape(-1, 1),s1))
    next_e = sympify(str(est_gp._program), locals=converter)
    y2=next_e
```

R2: 0.9048979343134357

Equação Proposta

Solução para o espectro energético

$$E_n=rac{n^2\pi^2\hbar^2}{2mL^2}$$

Verificando os níveis de energia:

```
In [210...
          import numpy as np
          a=1
          h=1
          m=1
          En=0
          Enn=[]
          for i in range(7):
              En=((i**2)*(h**2)*(np.pi**2))/(2*m*a*a)
              Enn.append(En)
          for i in range(7):
              n = i+1
              print("E[{}] = {:9.4f}".format(n,Enn[i],n, n*n*np.pi**2*h*h/(2*m*a*a)))
         E[1] =
                   0.0000
                4.9348
         E[2] =
         E[3] = 19.7392
         E[4] =
                44.4132
         E[5] =
                78.9568
         E[6] = 123.3701
         E[7] = 177.6529
```

Gráfico da Energia Quantizada:

```
In [212...

def opt_plot():
    plt.minorticks_on()
    plt.tick_params(axis='both',which='minor', direction = "in",
```

```
top = True, right = True, length=5, width=1,
                    labelsize=15)
    plt.tick_params(axis='both', which='major', direction = "in",
                    top = True, right = True, length=8, width=1,
                    labelsize=15)
plt.figure(figsize=(10, 6))
plt.plot(Enn)
plt.text(x=0.0, y=10, s="Eo", weight="bold")
plt.text(x=1.0, y=15, s="E1", weight="bold")
plt.text(x=2.0, y=30, s="E2", weight="bold")
plt.text(x=3.0, y=55, s="E3", weight="bold")
plt.text(x=4.0, y=90, s="E4", weight="bold")
plt.text(x=5.0, y=135, s="E5", weight="bold")
plt.text(x=6.0, y=170, s="E6", weight="bold")
for i in range(7):
   En=((i**2)*(h**2)*(np.pi**2))/(2*m*a*a)
   plt.scatter(i,En, marker='o',label="E["+str(i)+"] = "+str(round(Enn[i],2)))
font1 = {'family':'serif','color':'blue','size':20}
font2 = {'family':'serif','color':'darkred','size':15}
plt.title("Níveis Energéticos", fontdict = font1)
plt.xlabel("n", fontdict = font2)
plt.ylabel("Energia", fontdict = font2)
plt.text(x=2.0, y=130, s=r'f(x) = 4.93.\{x^2\}, fontdict = font2)
plt.legend(title='Níveis de Energia')
opt_plot()
plt.grid()
```


Para:

Gen

0

Length

10.86

```
In [214... l_count=np.linspace(0,6,7)
E_df=np.array([1_count,Enn])
E_df02=E_df.T
E_df02
y_E=4.93*E_df[:,0]**2
```

Obtem-se o seguinte modelo:

Fitness

1.23511e+07

Length

14

Fitness

0

OOB Fitness Time Left

0

2.13m

```
neg(neg(div(mul(inv(X0), mul(X1, -0.362)), sub(cos(X2), sin(0.200)))))
```

Cujo Escore é:

com a proposta de equação:

```
In [220... y3  -\frac{0.362X_1}{X_0 \left(\cos{(X_2)} - 0.198669330795061\right)}
```

Densidade de Probabilidade da posição

$$\left|\psi_n(x)
ight|^2=rac{2}{a}\sin^2(n\pi x)$$

```
import matplotlib.pyplot as plt
In [222...
          import numpy as np
          def opt_plot():
              plt.minorticks_on()
              plt.tick_params(axis='both', which='minor', direction = "in",
                               top = True, right = True, length=5, width=1,
                               labelsize=15)
              plt.tick_params(axis='both', which='major', direction = "in",
                               top = True, right = True, length=8, width=1,
                               labelsize=15)
          val_esp=[-7.17,-4.344,-1.555,0.8002,2.905,5.095 ,7.305]
          a=20
          A=(2/a)
          # Data for plotting
          t = np.arange(0.0, 2.0, 0.01)
          x=np.arange(0.0,2.0,0.01)
          s = A*(np.sin((0 * np.pi * x)))**2
          s1 = A*(np.sin((0.5 * np.pi * abs(x))))**2
          s2 = A*(np.sin((1.0 * np.pi * x)))**2
          s3 = A*(np.sin((1.5 * np.pi * x)))**2
          s4 = A*(np.sin((2.0 * np.pi * x)))**2
          fig, ax = plt.subplots(figsize=(10,6))
```

```
ax.plot(x, s)
ax.plot(x, s1)
ax.fill(x,s1,color='grey', alpha=0.5, label='n1')
ax.plot(x, s2)
ax.fill(x,s2,color='blue', alpha=0.5, label='n2')
ax.plot(x, s3)
ax.fill(x,s3,color='green', alpha=0.5, label='n3')
ax.plot(x, s4)
ax.fill(x,s4,color='yellow', alpha=0.3, label='n4')
ax.set(xlabel='time (s)', ylabel='$w(x,t)$',
       title="Densidade de Probabilidade da Posição")
ax.grid()
ax.legend()
opt_plot()
fig.savefig("test.png")
plt.show()
```


Relaciona-se os valores médios esperados, da função de onda, com a função normal gaussiana:

```
In [224...
val_esp=np.array([-7.17,-4.344,-1.555,0.8002,2.905,5.095 ,7.305])
niveis=[0,1,2,3,4,5,6]
arr_value=np.array([[niveis],[val_esp]])
x_arr = val_esp
print(x_arr)
y_arr=0.399*(2.76**(-0.5*x_arr[:]**2))
```

para então, modular:

```
function_set = ['add', 'sub', 'mul', 'div','cos','sin','neg','inv']
In [226...
          # Instanciação
          est_gp = SymbolicRegressor(population_size=5000,
                                      generations=20,function_set=function_set,
                                      stopping_criteria=0.01,
                                      p_crossover=0.7, p_subtree_mutation=0.1,
                                      p_hoist_mutation=0.05, p_point_mutation=0.1,
                                      max_samples=0.9, verbose=1,
                                      parsimony_coefficient=0.01, random_state=0)
          # Ajuste
          est_gp.fit(x_arr.reshape(-1,1),y_arr)
                                                     Best Individual
                 Population Average
          Gen
                                Fitness Length
                                                                        OOB Fitness Time Left
                Length
                                                          Fitness
                                                        0.0150923
                                                                                         2.42m
            0
                 15.94
                                24.2581
                                              9
                                                                           0.125521
```

29

3.10342

Out[226...

SymbolicRegressor sin(mul(cos(sub(sin(add(0.782, 0.138)), sin(sub(0.773, X0)))), div(cos(inv (cos(X0))), sub(sin(add(-0.483, 0.614)), mul(mul(X0, X0), add(X0, X0))))))

0.001741

2.71m

0.390678

Escore:

```
In [228... print('R2:',est_gp.score(x_arr.reshape(-1,1),y_arr))
    next_e = sympify(str(est_gp._program), locals=converter)
    y2_arr=next_e
```

R2: -1.099778938698206

9.25

Equação:

```
In [230... y2_arr
```

$$\sin \left(\frac{\cos \left(\sin \left(X_0 - 0.773 \right) + 0.795601620036366 \right) \cos \left(\frac{1}{\cos \left(X_0 \right)} \right)}{0.130625639531083 - 2X_0^3} \right)$$

O desvio padrão da posição:

$$\Delta x n = \sqrt{< x^2 n > - < x n >^2} = a \sqrt{rac{1}{12} - rac{1}{2\pi^2 n^2}}$$

```
import pandas as pd
xx0=-10
val_esp=[-7.17,-4.344,-1.555,0.8002,2.905,5.095 ,7.305]
a=val_esp[6]-val_esp[0]
```

```
x_quadrado=0
dp=[]
n=1
desp=0
j=-10
c=0
dsp=[]
for i in val_esp:
   if (j<0 and i>0):
        c=np.abs(j)+i
    else:
        c=np.abs(j)-np.abs(i)
        c=np.abs(c)
    dsp.append(c)
    j=i
dsp
er_count=0
err=[]
med_ex=2.86
for i in dsp:
    er_count=med_ex-i
    err.append(er_count)
err
dpp=pd.DataFrame()
dpp['DesvioP']=dsp
dpp['ErrDesvioP']=err
dpp
```

Out[232...

	DesvioP	ErrDesvioP
0	2.8300	0.0300
1	2.8260	0.0340
2	2.7890	0.0710
3	2.3552	0.5048
4	2.1048	0.7552
5	2.1900	0.6700
6	2.2100	0.6500

Podemos encontrar, também, o desvio padrão do momento

$$e^{rac{-i\operatorname{op} H\Delta t}{\hbar}} = \sum_n rac{\left(rac{-i\operatorname{op} H\Delta t}{\hbar}
ight)^n}{n!}$$

$$\Delta K n = < K^2 n > - < K n >^2 = \frac{n\hbar}{a}$$

```
import numpy as np
a=20

h=1
dpm=0
dmp=[]
for i in range(7):
    a=np.abs(a)
    dpm=(i*np.pi)/a
    dmp.append(dpm)
```

O Princípio da Incerteza

$$\Delta x.\,\Delta p>rac{\hbar}{2}$$

```
In [236...
          desvf=pd.DataFrame()
          desvf["dp"]=dpp.DesvioP
          desvf["dmp"]=dmp
          j=0
          incerteza=[]
          form=[]
          f=r'$\Delta x.\Delta p $'
          g=r'$\Delta x $'
          h=r'$\Delta p $'
          c=0
          gord=dpp.DesvioP
          hord=dmp
          for i in dpp.DesvioP:
             j=dmp[c]*i
             incerteza.append(j)
             form.append(f)
             c=c+1
          desvf02=pd.DataFrame()
          desvf02[g]=gord
          desvf02[h]=hord
          desvf02["lesquerdo"]=form
          desvf02["incerteza"]=incerteza
          desvf02
```

$\cap \dots +$	Γ	γ	\neg	-	
UUT	L	_	3	0	

	Δx	Δp	lesquerdo	incerteza
0	2.8300	0.000000	$\Delta x. \Delta p$	0.000000
1	2.8260	0.157080	$\Delta x.\Delta p$	0.443907
2	2.7890	0.314159	$\Delta x.\Delta p$	0.876190
3	2.3552	0.471239	$\Delta x.\Delta p$	1.109862
4	2.1048	0.628319	$\Delta x.\Delta p$	1.322485
5	2.1900	0.785398	$\Delta x. \Delta p$	1.720022
6	2.2100	0.942478	$\Delta x. \Delta p$	2.082876

Regressão Simbólica entre os Δx e Δp , como variáveis independentes.

```
In [238...
```

```
from array import array
pr_in=[]
mul=0
co=0
for i in dp:
    mul=dmp[co]*i
    pr_in.append(mul)
    co=co+1
pr_in
l=np.linspace(-20,20,7)
est_gp.fit(desvf,1)
```

I	Populatio	n Average		Best Individual		
Gen	Length	Fitness	Length	 Fitness	OOB Fitness	Time Left
0	14.12	17.3358	61	4.58152	2.20469	3.45m
1	13.19	12.2287	63	2.01855	16.5301	2.28m
2	22.91	12.5299	68	1.48236	19.5784	3.20m
3	45.90	11.1265	67	1.35883	16.5595	3.00m
4	57.10	8.42914	74	1.2534	16.1118	2.97m
5	56.64	8.65533	103	0.940835	17.0272	2.68m
6	55.98	8.42966	74	0.897443	18.0636	3.05m
7	55.51	8.75305	89	0.915222	18.4083	2.35m
8	54.16	8.32359	57	0.83206	5.84937	2.04m
9	54.13	8.69014	59	0.601793	5.16499	1.84m
10	51.85	8.2424	59	0.601793	5.16499	1.64m
11	50.01	8.74759	70	0.566704	2.36483	1.42m
12	48.89	8.13448	63	0.433342	38.7046	1.45m
13	51.54	7.87202	75	0.439702	1.6471	1.06m
14	55.80	7.78783	74	0.409549	1.6472	59.38s
15	62.10	7.10821	63	0.414798	1.55232	56.88s
16	65.83	8.2369	79	0.343407	1.43067	37.18s
17	66.11	7.72361	78	0.387547	1.80321	24.98s
18	64.58	7.55171	78	0.274171	1.35523	13.50s
19	63.97	7.15509	77	0.328465	1.395	0.00s

```
Out[238...
```

SymbolicRegressor

```
sub(sub(sub(mul(neg(div(X0, X0)), add(neg(X1), div(X0, X1))), inv(add(neg
(-0.046), div(-0.094, X1)))), mul(add(neg(div(add(neg(X1), add(neg(X1), ne
g(X1))), X0)), sin(X1)), neg(sin(X1)))), div(sin(sub(sub(sub(mul(neg(div(X
0, X0)), add(neg(sub(X1, -0.041)), div(X0, X1))), inv(add(neg(-0.046), div
(-0.094, X1)))), sin(0.355)), div(sin(div(-0.094, X1)), sub(X1, -0.04
1)))), sub(X1, -0.041)))
```

Escore:

```
In [240... print('R2:',est_gp.score(desvf,1))
    next_e = sympify(str(est_gp._program), locals=converter)
    y4=next_e
```

R2: 0.9974758366230793

Equação Proposta:

```
In [242... print(y4)  -X0/X1 + X1 + (\sin(X1) + 3*X1/X0)*\sin(X1) + \sin(X0/X1 - X1 + 0.306590365235784 - \sin(0.094/X1))/(X1 + 0.041) + 1/(0.046 - 0.094/X1))/(X1 + 0.041) - 1/(0.046 - 0.094/X1)
```

Regressão Simbólica entre os Δx e Δp , como um produto entre ambas.

```
In [244...
          deltax=np.linspace(2.1,2.83,100)
          deltap=np.linspace(0.15,0.94,100)
          delta_dp=pd.DataFrame()
          delta_dp['deltax']=deltax
           delta_dp['deltap']=deltap
          c=0
          mult=[]
          for i in deltax:
              j=deltap[c]*i
              mult.append(j)
             c=c+1
           c_inf=0
          mult_inf=[]
          mult_sup=[]
          for i in mult:
               if i<0.5:
                   mult_inf.append(i)
                   c_inf=c_inf+1
               else:
                   mult_sup.append(i)
```

```
In [245... est_gp.fit(delta_dp,mult)
```

Escore:

```
In [247... print('R2:',est_gp.score(delta_dp,mult))
   next_e = sympify(str(est_gp._program), locals=converter)
   y5=next_e
```

R2: 1.0

Equação

```
In [249... print(y5)

X0*X1
```

As Equações Sugeridas:

```
In [251...
          print('As Equações Sugeridas:')
          print('____')
          print('')
          print('I - y1(X0) =', y1)
          print('----')
          print('II - y2(X0) =', y2)
          print('----')
          print('III - y3(X0,X1,X2) =', y3)
          print('----')
          print('IV - y2\_arr(X0) = ',y2\_arr)
          print('----')
          print('V - y4(X0,X1) = ', y4)
          print('----')
          print('VI - y5(X0,X1) = ', y5)
          print('----')
```

```
As Equações Sugeridas:

I - y1(X0) = 0.333/(0.696*X0**2 + 0.812)

II - y2(X0) = -0.517*X0 + sin(X0)

III - y3(X0,X1,X2) = -0.362*X1/(X0*(cos(X2) - 0.198669330795061))

IV - y2_arr(X0) = sin(cos(sin(X0 - 0.773) + 0.795601620036366)*cos(1/cos(X0))/(0.13 0625639531083 - 2*X0**3))

V - y4(X0,X1) = -X0/X1 + X1 + (sin(X1) + 3*X1/X0)*sin(X1) + sin(X0/X1 - X1 + 0.3065 90365235784 - sin(0.094/X1)/(X1 + 0.041) + 1/(0.046 - 0.094/X1))/(X1 + 0.041) - 1/(0.046 - 0.094/X1)

VI - y5(X0,X1) = X0*X1

In []:

In []:
```