Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 12. Дифференциальные 1-формы на кривых

На прошлой лекции мы предъявили на всякой алгебраической кривой рода g g-мерное пространство голоморфных 1-форм. Цель сегодняшней лекции — доказать, что это все голоморфные 1-формы на кривой. Для этого мы докажем, что пространство голоморфных 1-форм не может быть более, чем g-мерно. Инструментом доказательства будет интегрирование 1-форм по вещественным путям в комплексных кривых.

Лекция 12. Интегрирование 1-форм

Пусть C — гладкая алгебраическая кривая, ω — голоморфная дифференциальная 1-форма на ней. Каждому непрерывному пути $\gamma:[0,1]\to C$ сопоставляется интеграл

$$\int_{\gamma} \omega = \int_{0}^{1} \gamma^{*}(\omega)$$

1-формы ω вдоль этого пути.

Лекция 12. Интегрирование 1-форм

Пусть C — гладкая алгебраическая кривая, ω — голоморфная дифференциальная 1-форма на ней. Каждому непрерывному пути $\gamma:[0,1]\to C$ сопоставляется интеграл

$$\int_{\gamma} \omega = \int_{0}^{1} \gamma^{*}(\omega)$$

1-формы ω вдоль этого пути.

Точно так же можно интегрировать и мероморфные 1-формы, только в этом случае путь γ не должен проходить через полюса 1-формы ω .

Лекция 12. Интегрирование 1-форм

Пусть C — гладкая алгебраическая кривая, ω — голоморфная дифференциальная 1-форма на ней. Каждому непрерывному пути $\gamma:[0,1]\to C$ сопоставляется интеграл

$$\int_{\gamma} \omega = \int_{0}^{1} \gamma^{*}(\omega)$$

1-формы ω вдоль этого пути.

Точно так же можно интегрировать и мероморфные 1-формы, только в этом случае путь γ не должен проходить через полюса 1-формы ω .

Интеграл от 1-формы по пути не меняется при замене его другим путем в том же гомотопичском классе. Если 1-форма ω является точной, т.е. $\omega=df$ для некоторой мероморфной функции f, то по формуле Ньютона–Лейбница ее интеграл не зависит от выбранного пути, соединяющего две данные точки $x_0=\gamma(0)$ и $x_1=\gamma(1)$,

$$\int_{\gamma} df = \int_{x_0}^{x_1} df = f(x_1) - f(x_0).$$

В частности, интеграл от точной 1-формы по любому замкнутому пути равен 0.

Лекция 12. Периоды 1-форм

Интеграл 1-формы на алгебраической кривой вдоль замкнутого пути на этой кривой называется периодом этой 1-формы. Выберем на кривой C рода g какой-нибудь набор $\{\gamma_1,\ldots,\gamma_{2g}\}$ из 2g замкнутых путей с началом и концом в данной точке $x_0\in C$, классы гомологий которых образуют базис в группе одномерных гомологий $H_1(C,\mathbb{Z})$.

Lemma

Если все периоды гладкой вещественной 1-формы ω по путям γ_i равны нулю, то эта 1-форма точна, $\omega=df$ для некоторой гладкой вещественной функции f.

Доказательство. Функция f строится стандартным образом: мы полагаем $f(x) = \int_{x_0}^x \omega$. Поскольку все периоды 1-формы ω равны 0, этот интеграл не зависит от выбора гомотопического класса пути, соединяющего точки x_0 и x.

Лекция 12. Периоды 1-форм

Интеграл 1-формы на алгебраической кривой вдоль замкнутого пути на этой кривой называется периодом этой 1-формы. Выберем на кривой C рода g какой-нибудь набор $\{\gamma_1,\ldots,\gamma_{2g}\}$ из 2g замкнутых путей с началом и концом в данной точке $x_0\in C$, классы гомологий которых образуют базис в группе одномерных гомологий $H_1(C,\mathbb{Z})$.

Lemma

Если все периоды гладкой вещественной 1-формы ω по путям γ_i равны нулю, то эта 1-форма точна, $\omega=df$ для некоторой гладкой вещественной функции f.

Доказательство. Функция f строится стандартным образом: мы полагаем $f(x) = \int_{x_0}^x \omega$. Поскольку все периоды 1-формы ω равны 0, этот интеграл не зависит от выбора гомотопического класса пути, соединяющего точки x_0 и x.

Corollary

Размер пространства голоморфных 1-форм на алгебраической кривой рода g не превышает 2g.

Действительно, разность двух голоморфных 1-форм с одинаковыми периодами имеет нулевые периоды, а значит является дифференциалом голоморфной функции, т.е. нулем.

Каждой голоморфной 1-форме ω можно сопоставить комплексно сопряженную ей антиголоморфную 1-форму $\bar{\omega}$. Мы хотим доказать, что если голоморфные 1-формы ω_1,\dots,ω_k линейно независимы, то классы когомологий 1-форм $\omega_1,\dots,\omega_k,\bar{\omega}_1,\dots,\bar{\omega}_k$ линейно независимы. Отсюда сразу вытекает, что $k\leq g$.

Каждой голоморфной 1-форме ω можно сопоставить комплексно сопряженную ей антиголоморфную 1-форму $\bar{\omega}$. Мы хотим доказать, что если голоморфные 1-формы ω_1,\dots,ω_k линейно независимы, то классы когомологий 1-форм $\omega_1,\dots,\omega_k,\bar{\omega}_1,\dots,\bar{\omega}_k$ линейно независимы. Отсюда сразу вытекает, что $k\leq g$.

Lemma

Если для пары голоморфных 1-форм ω_1, ω_2 1-форма $\omega_1 + \bar{\omega}_2$ является дифференциалом гладкой функции, то $\omega_1 = \omega_2 = 0$.

Lemma

Если для пары голоморфных 1-форм ω_1, ω_2 1-форма $\omega_1 + \bar{\omega}_2$ является дифференциалом гладкой функции, то $\omega_1 = \omega_2 = 0$.

Lemma

Если для пары голоморфных 1-форм ω_1, ω_2 1-форма $\omega_1 + \bar{\omega}_2$ является дифференциалом гладкой функции, то $\omega_1 = \omega_2 = 0$.

Доказательство. Пусть $\omega_1\wedge\bar{\omega}_2=df$. В локальной координате z=u+iv имеем $\bar{z}=u-iv$, $dz\wedge d\bar{z}=-2idu\wedge dv$ и $\omega_2=g_2(z)dz$. Отсюда

$$rac{i}{2}\omega_2\wedgear{\omega}_2=|g_2(z)|^2rac{i}{2}dz\wedge dar{z}=|g_2(z)|^2du\wedge dv.$$

Это означает, что если $\omega_2
eq 0$, то интеграл $\iint_C rac{i}{2} \omega_2 \wedge ar{\omega}_2 > 0$. С другой стороны,

$$\omega_2 \wedge \bar{\omega}_2 = \omega_2 \wedge \omega_1 + \omega_2 \wedge \bar{\omega}_2 = \omega_2 \wedge (\omega_1 + \bar{\omega}_2) = \omega_2 \wedge df$$

И

$$d(f\omega_2) = df \wedge \omega_2 + fd\omega_2 = df \wedge \omega_2$$

т.е. 1-форма $df \wedge \omega_2$ точна, а значит,

$$\iint_C df \wedge \omega_2 = 0.$$

Лекция 12. Вычеты

Для мероморфных 1-форм утверждение о том, что интеграл по пути не зависит от выбора пути с данными концами в данном гомотопическом классе перестает быть верным. Точнее, оно остается верным но не для кривой C, а для этой кривой проколотой в полюсах 1-формы. Гомологическое описание мероморфной 1-формы дополняется описанием ее интегралов по путям, обходящим вокруг ее полюсов, — вычетов.

Лекция 12. Вычеты

Для мероморфных 1-форм утверждение о том, что интеграл по пути не зависит от выбора пути с данными концами в данном гомотопическом классе перестает быть верным. Точнее, оно остается верным но не для кривой C, а для этой кривой проколотой в полюсах 1-формы. Гомологическое описание мероморфной 1-формы дополняется описанием ее интегралов по путям, обходящим вокруг ее полюсов, — вычетов. Пусть мероморфная 1-форма ω в локальной координате z в окрестности своего полюса порядка k>1 раскладывается в ряд Лорана

$$\omega = \left(\frac{a_{-k}}{z^k} + \cdots + \frac{a_{-1}}{z} + a_0 + a_1 z + \ldots\right) dz, \qquad a_{-k} \neq 0.$$

Интеграл от каждого монома этого ряда кроме монома $a_{-1}dz/z$ по петле γ , обходящей точку z=0 в положительном направлении, равен 0: интегрируется дифференциал функции. Для исключительного монома

$$\int_{\gamma} \omega = \int_{\gamma} \frac{a_{-1}dz}{z} = a_{-1} \int_0^{2\pi} \frac{(-\sin t + i\cos t)dt}{\cos t + i\sin t} = 2\pi i a_{-1}.$$

Величина $a_{-1}=\frac{1}{2\pi i}\int_{\gamma}\omega$ называется *вычетом* 1-формы ω в ее полюсе. Она не зависит от выбора локальной координаты z.

Лекция 12. Сумма вычетов

Theorem

Сумма вычетов мероморфной 1-формы на гладкой алгебраической кривой равна 0.

Лекция 12. Сумма вычетов

Theorem

Сумма вычетов мероморфной 1-формы на гладкой алгебраической кривой равна 0.

Доказательство 1. Представим поверхность как результат склейки сторон многоугольника. Сумма вычетов 1-формы — ее интеграл по композиции петель, обходящих все полюса. Эта композиция гомотопна границе многоугольника. Граница гомологична нулю, так как по каждому отрезку проходит два раза — в противоположных направлениях.

Лекция 12. Сумма вычетов

Theorem

Сумма вычетов мероморфной 1-формы на гладкой алгебраической кривой равна 0.

Доказательство 1. Представим поверхность как результат склейки сторон многоугольника. Сумма вычетов 1-формы — ее интеграл по композиции петель, обходящих все полюса. Эта композиция гомотопна границе многоугольника. Граница гомологична нулю, так как по каждому отрезку проходит два раза — в противоположных направлениях.

Доказательство 2. Выберем маленькие диски с центром в каждом из полюсов 1-формы ω . На дополнении к этим дискам ω голоморфна. Значит ее дифференциал равен нулю, и по формуле Стокса ее интеграл по границе равен нулю. С другой стороны, этот интеграл — сумма вычетов 1-формы ω , с точностью до умножения на $-1/2\pi i$.

Лекция 12. Линейные расслоения над комплексными кривыми; дивизоры

Пусть $p:E\to C$ — линейное расслоение над кривой C. Всякому его ненулевому мероморфному сечению $\sigma:C\to E$ сопоставляются два набора точек на C — нули и полюса сечения. Кроме того, каждому нулю и каждому полюсу приписано натуральное число — порядок нуля или полюса. Совокупность нулей и полюсов сечения, с учетом их кратностей, называется дивизором сечения и записывается в виде формальной суммы

$$(\sigma) = \sum a_i x_i, \qquad a_i \in \mathbb{Z} \setminus \{0\};$$

положительные коэффициенты это порядки нулей, отрицательные — порядки полюсов.

Лекция 12. Линейные расслоения над комплексными кривыми; дивизоры

Пусть $p:E\to C$ — линейное расслоение над кривой C. Всякому его ненулевому мероморфному сечению $\sigma:C\to E$ сопоставляются два набора точек на C — нули и полюса сечения. Кроме того, каждому нулю и каждому полюсу приписано натуральное число — порядок нуля или полюса. Совокупность нулей и полюсов сечения, с учетом их кратностей, называется дивизором сечения и записывается в виде формальной суммы

$$(\sigma) = \sum a_i x_i, \qquad a_i \in \mathbb{Z} \setminus \{0\};$$

положительные коэффициенты это порядки нулей, отрицательные — порядки полюсов. **Пример.** Для $C=\mathbb{C}P^1$ дивизор функции z равен

$$(z)=1\cdot 0-1\cdot \infty,$$

а дивизор 1-формы dz равен

$$(dz) = -2 \cdot \infty.$$

Лекция 12. Дивизоры

Definition

Дивизором на кривой C называется формальная линейная комбинация конечного числа ее точек с ненулевыми целыми коэффициентами, $\sum a_i \cdot x_i$, $a_i \neq 0$.

Лекция 12. Дивизоры

Definition

Дивизором на кривой C называется формальная линейная комбинация конечного числа ее точек с ненулевыми целыми коэффициентами, $\sum a_i \cdot x_i$, $a_i \neq 0$.

Дивизоры также естественно записывать в виде сумм

$$\sum_{x\in C}a_x\cdot x, \qquad a_x\in \mathbb{Z},$$

по всем точкам кривой C, в которых лишь конечное число коэффициентов a_x отлично от нуля.

Лекция 12. Дивизоры

Definition

Дивизором на кривой C называется формальная линейная комбинация конечного числа ее точек с ненулевыми целыми коэффициентами, $\sum a_i \cdot x_i$, $a_i \neq 0$.

Дивизоры также естественно записывать в виде сумм

$$\sum_{x\in C}a_x\cdot x, \qquad a_x\in \mathbb{Z},$$

по всем точкам кривой C, в которых лишь конечное число коэффициентов a_x отлично от нуля.

Дивизоры образуют коммутативную группу относительно сложения:

$$\sum_{x\in C} a_x \cdot x + \sum_{x\in C} b_x \cdot x = \sum_{x\in C} (a_x + b_x) \cdot x.$$

Нулем в этой группе является нулевой дивизор.

Лекция 12. Степень дивизора

Количество нулей каждой мероморфной функции с учетом кратностей равно количеству ее полюсов с учетом их кратностей. Поэтому для дивизора $(f) = \sum a_i \cdot x_i$ мероморфной функции имеем $\sum a_i = 0$.

Умножив ненулевое мероморфное сечение $\sigma:C\to E$ расслоения $p:E\to C$ на ненулевую мероморфную функцию $f:C\to \mathbb{C}P^1$, мы получим новое сечение $f\sigma:C\to E$, дивизор которого равен

$$(f\sigma)=(f)+(\sigma).$$

Поэтому сумма коэффициентов дивизора $(f\sigma)$ такая же, как у (σ) . Поскольку отношение любых двух ненулевых сечений данного линейного расслоения является мероморфной функцией, дивизоры всех ненулевых сечений одного линейного расслоения имеют одну и ту же сумму коэффициентов.

Лекция 12. Степень дивизора

Количество нулей каждой мероморфной функции с учетом кратностей равно количеству ее полюсов с учетом их кратностей. Поэтому для дивизора $(f) = \sum a_i \cdot x_i$ мероморфной функции имеем $\sum a_i = 0$.

Умножив ненулевое мероморфное сечение $\sigma:C\to E$ расслоения $p:E\to C$ на ненулевую мероморфную функцию $f:C\to \mathbb{C}P^1$, мы получим новое сечение $f\sigma:C\to E$, дивизор которого равен

$$(f\sigma)=(f)+(\sigma).$$

Поэтому сумма коэффициентов дивизора $(f\sigma)$ такая же, как у (σ) . Поскольку отношение любых двух ненулевых сечений данного линейного расслоения является мероморфной функцией, дивизоры всех ненулевых сечений одного линейного расслоения имеют одну и ту же сумму коэффициентов.

Definition

Степенью дивизора на кривой C называется сумма его коэффициентов, $\deg(\sum a_i \cdot x_i) = \sum a_i$. Степенью линейного расслоения называется степень дивизора любого его ненулевого мероморфного сечения.

Лекция 12. Степень дивизора

Количество нулей каждой мероморфной функции с учетом кратностей равно количеству ее полюсов с учетом их кратностей. Поэтому для дивизора $(f) = \sum a_i \cdot x_i$ мероморфной функции имеем $\sum a_i = 0$.

Умножив ненулевое мероморфное сечение $\sigma:C\to E$ расслоения $p:E\to C$ на ненулевую мероморфную функцию $f:C\to \mathbb{C}P^1$, мы получим новое сечение $f\sigma:C\to E$, дивизор которого равен

$$(f\sigma)=(f)+(\sigma).$$

Поэтому сумма коэффициентов дивизора $(f\sigma)$ такая же, как у (σ) . Поскольку отношение любых двух ненулевых сечений данного линейного расслоения является мероморфной функцией, дивизоры всех ненулевых сечений одного линейного расслоения имеют одну и ту же сумму коэффициентов.

Definition

Степенью дивизора на кривой C называется сумма его коэффициентов, $\deg(\sum a_i \cdot x_i) = \sum a_i$. Степенью линейного расслоения называется степень дивизора любого его ненулевого мероморфного сечения.

Пример. Степень тривиального линейного расслоения $C \times \mathbb{C} \to C$ равна 0. Степень кокасательного расслоения к $\mathbb{C}P^1$ равна -2.

С. К. Ландо

Лекция 12. Линейная эквивалентность дивизоров

Дивизоры степени 0 образуют подгруппу в группе дивизоров. Дивизоры мероморфных функций образуют подгруппу в этой подгруппе; эти дивизоры называются *главными*.

Definition

Два дивизора называются *линейно эквивалентными*, если их разность является дивизором мероморфной функции. Факторгруппа группы дивизоров по подгруппе главных дивизоров называется *группой классов дивизоров*.

Дивизоры любых двух сечений одного линейного расслоения линейно эквивалентны между собой.

Лекция 12. Линейная эквивалентность дивизоров

Дивизоры степени 0 образуют подгруппу в группе дивизоров. Дивизоры мероморфных функций образуют подгруппу в этой подгруппе; эти дивизоры называются *главными*.

Definition

Два дивизора называются *линейно эквивалентными*, если их разность является дивизором мероморфной функции. Факторгруппа группы дивизоров по подгруппе главных дивизоров называется *группой классов дивизоров*.

Дивизоры любых двух сечений одного линейного расслоения линейно эквивалентны между собой.

Упражнение. Пусть C — эллиптическая кривая, $p,q\in C$ — различные точки на ней. Существует ли мероморфная функция f на C с дивизором $(f)=1\cdot p-1\cdot q$?

Семинар 12.

- Докажите, что касательное и кокасательное расслоения к проективной прямой не являются тривиальными.
- ullet Пусть $E_1 o C$, $E_2 o C$ два линейных расслоения над кривой C, $E_1 \otimes_C E_2$ линейное расслоение, являющееся их тензорным произведением. Докажите, что

$$\deg(E_1\otimes_C E_2)=\deg(E_1)+\deg(E_2).$$

• Докажите, что степени двойственных линейных расслоений противоположны.

Семинар 12.

- Приведите пример линейного расслоения степени 1 над проективной прямой.
- Докажите, что для каждого целого d над проективной прямой есть линейное расслоение степени d.
- Чему равна степень касательного расслоения к кривой рода g? Кокасательного расслоения?

Семинар 12.

- Пусть $E_1 \to C$, $E_2 \to C$ два линейных расслоения над данной кривой C, $\sigma_1: C \to E_1$, $\sigma_2: C \to E_2$ ненулевые мероморфные сечения этих расслоений. Докажите, что если $(\sigma_1) = (\sigma_2)$, то расслоения E_1, E_2 изоморфны.
- Опишите все линейные расслоения над проективной прямой.
- Приведите пример нетривиального линейного расслоения над эллиптической кривой.
 Чему равна степень этого расслоения? Укажите класс линейной эквивалентности дивизоров его сечений.