Network Transport Architectures

CS 2103

Data Communication and Computer Networks

Dr. Omar Haji Kombo

Outline

- A brief discussion on IP Addressing
- Understand the transport layer's role in networking.
- Explore how TCP and UDP work in practical scenarios.
- Learn about TCP Congestion Control mechanisms.

IPv4 Address Classes

IPv4 addresses are divided into **classes** based on the first octet:

Class	Range	Default Subnet Mask	Purpose
A	1 - 126	255.0.0.0	Large networks
В	128 - 191	255.255.0.0	Medium networks
С	192 - 223	255.255.255.0	Small networks
D	224 - 239	N/A	Multicast addresses
E	240 - 255	N/A	Reserved for research

Subnet Mask

- A subnet mask determines which part of an IP address is the network portion and which is the host portion.
- Example:

IP Address: 192.168.1.1

Subnet Mask: 255.255.255.0

■ **Network Portion:** 192.168.1

■ Host Portion: 1

Default Subnet Masks:

Class A: 255.0.0.0

Class B: 255.255.0.0

Class C: 255.255.255.0

Subnetting

- **Subnetting** is the process of dividing a big network into smaller, more manageable portions known as *subnets*. This practices:
 - Improve network performance.
 - Enhance security.
 - Efficiently utilize IP addresses.
 - Reduce network congestion.

Steps to Subnetting

- 1. Determine the number of subnets or hosts required.
- Formula for number of subnets: 2^n , where n is the number of bits borrowed from the host portion.
- Formula for number of hosts: $2^n 2$, where n is the number of host bits left.

Steps to Subnetting...Cont.

2. Borrow bits from the host portion.

 Convert the subnet mask to binary and adjust the bits.

3. Calculate the new subnet mask.

Example: Borrowing 2 bits from /24 results in /26 (255.255.255.192).

4. Determine the subnet ranges.

Subnet increment 256-192 = 64

Example 1

- Let's say we have 192.168.1.0/24 (256 total addresses). We want to divide it into 4 subnets.
- Determine New Subnet Mask
- Original Mask: /24 (255.255.255.0)
- Subnet Bits Needed: 2 (to divide into 4 subnets, $2^2 = 4$).
- New Mask: /26 (255.255.255.192).

Calculating Subnet Ranges and Hosts

• Subnet range is 2^6 =64 addresses (and each host gets 64-2 = 62 for hosts).

Subnet	Range	Broadcast Address
Subnet 1	192.168.1.0 - 192.168.1.63	192.168.1.63
Subnet 2	192.168.1.64 - 192.168.1.127	192.168.1.127
Subnet 3	192.168.1.128 - 192.168.1.191	192.168.1.191
Subnet 4	192.168.1.192 - 192.168.1.255	192.168.1.255

Overview of Transport Layer

The Transport layer of the OSI model is responsible for reliable end-to-end communication between applications on different hosts.

Key Functions:

- Segmentation and reassembly.
- Flow control.
- Error control.

Two primary protocols operate at this layer: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

TCP

Characteristics:

- Reliable and connection-oriented.
- Ensures data delivery in order.

Key Features:

- Three-way handshake (connection establishment).
- Error detection using checksum.
- Flow control using sliding window protocol.
- Practical Use Case: Web browsing (HTTP/HTTPS).
 Diagram: Three-way handshake (SYN, SYN-ACK, ACK).

TCP-Connection Establishment

- Before data transmission, TCP establishes a connection between the sender and receiver to ensure reliability:
 - **Step 1 (SYN):** The sender sends a synchronization (SYN) packet to the receiver, indicating the intent to start communication.
 - **Step 2 (SYN-ACK):** The receiver acknowledges by sending back a synchronization acknowledgment (SYN-ACK).
 - Step 3 (ACK): The sender sends an acknowledgment (ACK) to confirm the connection is established.
 - This handshake ensures that both parties are ready and agree on parameters like sequence numbers

Connection Oriented Service

The diagram illustrates the connection between sender and receiver

Socket -Address Family for Connection-oriented Services

Address Family	Purpose	Example Address
AF_INET	IPv4 communication	192.168.0.1
AF_INET6	IPv6 communication	2001:db8::ff00:42:8329
AF_UNIX	Local IPC via Unix domain sockets	/tmp/socket
AF_PACKET	Low-level network packet access	Ethernet frames
AF_RAW	Custom protocol development	Raw IP packets
AF_BLUETOOTH	Bluetooth communication	Bluetooth device addresses
AF_IRDA	Infrared communication	Infrared devices
AF_CAN	I Ontroller Area Network	Embedded systems communication

TCP-Data Transmission

- Once the connection is established, TCP ensures reliable data transfer:
 - Segmentation: Data is broken into smaller packets, each labeled with a sequence number.
 - **Delivery Order:** TCP uses sequence numbers to ensure packets are reassembled in the correct order at the destination.
 - Acknowledgments (ACKs): The receiver sends ACKs for received packets. If an ACK is not received within a timeout period, the sender retransmits the packet.
 - Flow Control: TCP uses a sliding window mechanism to control the rate of data flow and avoid overwhelming the receiver.
 - Error Detection: TCP checks for errors in the data using checksums and requests retransmission of corrupt packets.

TCP-Connection Termination

- After data transmission, the connection is terminated:
 - **Step 1 (FIN):** The sender sends a FIN (Finish) packet, indicating it has no more data to send.
 - Step 2 (ACK): The receiver acknowledges the FIN packet.
 - Step 3 (FIN): The receiver sends its own FIN packet.
 - Step 4 (ACK): The sender acknowledges the receiver's FIN packet, closing the connection.

Three-way handshake for TCP

TCP Practical Demonstration

- We can use Wireshark/Tcpdump/Tshark or any other appropriate tool to capture packets for an HTTP request.
- Then, we can highlight TCP headers (sequence number, acknowledgment).
- We can also show how retransmissions occur if packets are lost.

TCP Congestion Control Overview

- Problem: Network congestion leads to packet loss and reduced performance.
- TCP's Solution: Adaptive mechanisms to avoid and recover from congestion.

Phases:

- Slow Start: Gradual increase in transmission rate.
- Congestion Avoidance: Linear increase to avoid congestion.
- Fast Retransmit: Quickly resends lost packets.
- Fast Recovery: Avoids returning to slow start after a minor loss.

TCP/IP Protocol Architecture

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet
- No official model but a working one.
 - Application layer
 - Host to host or transport layer
 - Internet layer
 - Network access layer
 - Physical layer

UDP

- Alternative to TCP is User Datagram Protocol
- Not guaranteed delivery
- No preservation of sequence
- No protection against duplication
- Minimum overhead
- Adds port addressing to IP

UDP (User Datagram Protocol)

Characteristics:

- Lightweight, connectionless, and unreliable.
- No flow or error control.

Key Features:

- Low overhead, faster than TCP.
- Suitable for time-sensitive applications.
- Practical Use Case: Video streaming, VoIP.
 Diagram: Simple UDP header structure.

UDP Practical Demonstration

- We can use a basic UDP clientserver Python script.
- To showcase message sending without connection establishment.
- To highlight how lost packets are not retransmitted.

Comparing TCP and UDP

Feature	ТСР	UDP
Connection	Connection-oriented	Connectionless
Reliability	Reliable (acknowledgment)	Unreliable
Speed	Slower (overhead)	Faster
Use Cases	HTTP, Email	VoIP, Gaming

Challenges with TCP and UDP

• TCP:

- Overhead due to reliability mechanisms.
- Poor performance in high-latency networks.

UDP:

- Lack of reliability can lead to loss of critical data.
- Not suitable for file transfers or critical applications.

Connection-less Service

TCP and UDP

No.	TCP	UDP
1.	Connection Oriented Protocol	Connection-less Protocol
2.	Connection in byte stream	Connection in message stream
3.	It does't support multicasting and broadcasting	It supports broadcasting
4.	It provides error control and flow control	Error Control and Flow control is not provided
5.	Supports full Duplex	Does not support full Duplex
6.	TCP packet is called as Segment	UDP packet is called as User Datagram

UDP and **TCP**

Packet-Switched Connection (PSC)

- In packet-switched connection, data is divided into small packets that are transmitted independently through the network. This type of connect has the following features:
- **Dynamic Path Selection:** Each packet can take a different path to reach the destination.
- Store-and-Connectionless (e.g., UDP) or Connectionoriented (e.g., TCP): Depending on the protocol, the communication may or may not establish a dedicated connection.
- Best Effort Delivery: No guarantee of order or delivery unless the protocol ensures it.
- Forward: Intermediate nodes store packets temporarily before forwarding them

Merits, Demerits and Applications of PSC

Category	Details	
Advantages	Efficient Resource Use: Network resources are shared, reducing idle time.	
	Scalability: Handles large, bursty traffic effectively.	
	Fault Tolerance: Packets can be rerouted if a node or path fails.	
Disadvantages	Latency and Jitter: Due to queuing and varying routes.	
	Packet Loss: Possible if the network is congested.	
	Complex Protocols: Requires mechanisms for sequencing, error correction, and reassembly.	
Common Uses	Internet Communication: e.g., web browsing, email, streaming.	
	VoIP and Real-Time Applicatio ↓ Vith added protocols to reduce delay.	

Circuit-Switched Connection (CSC)

- In circuit-switched connection, a dedicated communication path is established between the source and destination before data transfer begins. This type of connect has the following features:
- **Dedicated Connection:** Resources (e.g., bandwidth) are reserved for the duration of the session.
- Continuous Data Flow: Once established, data flows without interruption.
- **Fixed Path:** All data follows the same path during the session.

Merits, Demerits and Applications of CSC

Category	Details	
Advantages	Guaranteed Bandwidth: Suitable for applications requiring consistent performance.	
	Low Latency and Jitter: As the path is fixed, there's no variation in delay.	
	Reliable: Once the circuit is established, no data is lost.	
Disadvantages	Inefficient Resource Use: Resources remain idle when not in use.	
	Setup Delay: Establishing a connection can take time.	
	Scalability: Less efficient in handling bursty or unpredictable traffic.	
Common Uses	Traditional Telephone Networks.	
	Older Technologies: Like Integrated Services Digital Network (ISDN).	

Emerging Trends in Transport Layer Architecture

- QUIC Protocol: Developed by Google, Used in HTTP/3, combines transport and security (TLS) for reduced latency.
- **Software-Defined Networking (SDN):** Centralized control for transport architectures, simplifies network management and enables dynamic path selection.
- Transport Layer Security (TLS): Ensures encrypted communication over networks.
- **5G and Beyond:** Enhanced transport architectures for ultra-low latency and high bandwidth.

Application

- Reliable data transfers (TCP).
- Real-time gaming and video streaming (UDP, QUIC).
- IoT systems requiring lightweight protocols like MQTT or CoAP.

Thank you