Machine Project Proposal

Jadie | Lopez | Ponce STINTSY S14

Outline

- Task and Description
- The Dataset and its information
- (planned) Machine learning models to be used

Description of the Task

- Task Category: Image Classification
 to associate a label with a given image
- Classify an image according to:

if it contains...

tom only

jerry only

both tom and jerry

no tom and jerry

The Dataset

Tom and Jerry Image Classification

- Dataset containing images from various episodes of the famous cartoon show, Tom and Jerry.
- Currently contains 5478 images (instances).
 - 1930 images wherein only Tom is present.
 - 1240 images wherein only Jerry is present.
 - 780 images wherein both Tom and Jerry are present.
 - 1528 images wherein neither of them are present.

Source: Kaggle
https://www.kaggle.com/datasets/balabaska
r/tom-and-jerry-image-classification

The Dataset

Tom and Jerry Image Classification

From Kaggle:

- The images are already separated and placed into sub-folders which are also the labels.
- A ground truth file is also provided containing the labeled data against each image file for supervised training.

Data Explorer

Version 2 (469.3 MB)

- ▼ tom_and_jerry
- tom_and_jerry
- i jerry
 tom
- ▶ □ tom_jerry_0
- tom_jerry_1 ground_truth.csv

Summary

- ▶ □ 5479 files
- 3 columns

1	Α	В	С
1	filename	tom	jerry
2	frame0.jpg	0	0
3	frame1.jpg	0	0
4	frame2.jpg	0	0
5	frame3.jpg	0	0
6	frame4.jpg	0	0
7	frame5.jpg	0	0
8	frame6.jpg	0	0
9	frame7.jpg	0	0
10	frame8.jpg	0	0
11	frame9.jpg	0	0
12	frame10.jpg	0	0
13	frame11.jpg	0	0
14	frame12.jpg	0	1
15	frame13.jpg	0	0
16	frame14.jpg	1	0
17	frame15.jpg	1	0
18	frame16.jpg	0	0
19	frame17.jpg	0	1
20	frame18.jpg	1	1
21	frame19.jpg	0	1
22	framazo ina	0	0

The Dataset

Tom and Jerry Image Classification

Features? -> Images

- All images are in JPEG format (1280x720).
 - Resized and converted into 3D NumPy ndarrays (200x200x3).
 - Faster training.
 - Data type for each pixel value is float32.
 - Values are normalized, scaling them down to 0-1 from 0-255.
 - Faster convergence.


```
In [20]: | x single Ton and Jerry image (200×200×3)

X[0]

arrow([[6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6,  6],  [6,  6],  [6,  6],
```

(planned) ML Models to be Used

Applicable classification models in STINTSY:

- k-Nearest Neighbors
- (Multinomial) Logistic Regression
- Neural Networks
- Naive Bayes*
- Decision Trees*

^{*}yet to be discussed in STINTSY

(planned) ML Models to be Used

Applicable classification models in STINTSY:

- k-Nearest Neighbors
- (Multinomial) Logistic Regression
- Neural Networks
- Naive Bayes*
- Decision Trees*

^{*}yet to be discussed in STINTSY

Machine Project Proposal

Jadie | Lopez | Ponce STINTSY S14