Outline Introduction Similar Projects Proposed Solution Datasets and Implementation References

Laser-Based Feature Extraction and Pattern Recognition in Intersection Management Systems

Gustavo Velasco-Hernández

Pattern Recognition, 2014

Outline

Introduction Similar Projects Proposed Solution Datasets and Implementation References

Introduction

Context

Problem Statement

Aims and Conditions

Proposed Solution

Block Diagrams

Video Processing

Laser Processing

Datasets and Implementation

Datasets Overview

Foreground Estimation

Feature Extraction and Classification

Next Steps

References

References

Outline
Introduction
Similar Projects
Proposed Solution
Datasets and Implementation
References

Context Problem Statement Aims and Conditions

Context

Master's Research Project:

Multisensor Architecture for a Vehicular Intersection Management System

Transportation Systems

Issues in traditional transportation systems

- Congestion
- Traffic rules violation
- Vehicle interaction

Transportation Systems

Issues in traditional transportation systems

- Congestion
- Traffic rules violation
- Vehicle interaction

Intersections are critical places in transportation systems

Intelligent Transportation Systems

Objectives of ITS

- Increase safety
- Increase efficiency
- Reduce costs

Intersection Management Systems

Tasks

- Traffic Monitoring
- Traffic Management
- Warning Advertisement

Intersection Scenario

- Pedestrians, Vehicles (Cars, Two-wheeled vehicles, Big vehicles)
- Recognition, Classification, Tracking
- Incident detection, Intersection Management

Outline
Introduction
Similar Projects
Proposed Solution
Datasets and Implementation
References

Context Problem Statement Aims and Conditions

Main Objective

- To develop a feature extraction and pattern recognition laser-based module for an intersection management system

- Review of laser-based feature extraction and pattern recognition in ITS and IMS

- Review of laser-based feature extraction and pattern recognition in ITS and IMS
- Evaluate pros and cons of the reviewed methods

- Review of laser-based feature extraction and pattern recognition in ITS and IMS
- Evaluate pros and cons of the reviewed methods
- Implement at least one method

- Review of laser-based feature extraction and pattern recognition in ITS and IMS
- Evaluate pros and cons of the reviewed methods
- Implement at least one method
- Evaluate implemented module and compare it with similar developments

Outline Introduction Similar Projects Proposed Solution Datasets and Implementation References

Context Problem Statement Aims and Conditions

Conditions

- The information source will be a dataset.

Conditions

- The information source will be a dataset.
- [New!] Just one laser.

Research Groups

- PKU Omni Smart Sensing (POSS) Research group at Peking University (POSS-i project)
- Institute of Measurement, Control and Microtechnology at Ulm University (Ko-PER program)

PKU Omni Smart Sensing (POSS)

- POSS is leaded by Prof. Huijing Zhao, Ph.D.
- Focus on perception technologies using an intelligent vehicle, a network sensing system or a collaboration of them

POSS-i

Ko-PER

- Ko-PER from Cooperative Perception
- Included in Forschungsinitiative Ko-FAS from Bundesministerium für wirtschaft und Technologie (Germany)
- Cooperative and collaborative sensors system for perception and preventive road safety.
- Daniel Meissen from Ulm University as leader researcher.

Projects

3D-recreated intersection scene with laser beams depicted [Meissner12, 13a, 13b, 13c, 14][Striegel13]

Applications, Methods and Techniques

Project	POSSi	Ko-PER		
Applications	Recognition, Classification and Tracking of Vehicles and Pedestrians			
Methods and Techniques	ClusteringKL TransformMarkov ChainsKalman FilteringAdaBoost	 DBSCAN Multi-object Bayes Filter Sequential Monte Carlo Methods Dempster-Shafer Theory Multiple-Model Probability Hypothesis Density Filter (in Gaussian Mixture representation) 		

POSSi and PKU projects comparison

Applications, Methods and Techniques

Project	POSSi	Ko-PER		
Applications	Recognition, Classification and Tracking of Vehicles and Pedestrians			
Methods and Techniques	ClusteringKL TransformMarkov ChainsKalman FilteringAdaBoost	 DBSCAN Multi-object Bayes Filter Sequential Monte Carlo Methods Dempster-Shafer Theory Multiple-Model Probability Hypothesis Density Filter (in Gaussian Mixture representation) 		

POSSi and PKU projects comparison

Typical System for one source of data

Single source system block diagram

Multisensor Data System

Multisensor system block diagram

How to fuse information?

Multisensor system block diagram

Fusion Levels

Fusion Levels [Luo11]

Block Diagrams Video Processing Laser Processing

Fusion Algorithms

Low lev	rel fusion	Medium level fusion	High level fusion
Estimation methods		Classification methods	Inference methods
Recursive: • Kalman filter • Extended Kalman filter Non-recursive: • Weighted average • Least squares	Covariance-based: Cross covariance Covariance intersection Covariance union	Parametric templates Cluster analysis K-means clustering Learning vector quantization Kohonen feature map Artificial neural network Support vector machines	Bayesian inference Particle filters Dempster-Shafer theory Expert system Fuzzy logic

Classification of Fusion Algorithms [Luo11]

Video-Based System Block Diagram

Video-Based System Block Diagram

Laser-Based System Block Diagram

Laser-Based System Block Diagram

Based on [Zhao06]

Outline Introduction Similar Projects Proposed Solution Datasets and Implementation References

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Dataset

- Although datasets for both projects are available, POSS-i dataset was choosen.
- It includes laser readings from 6 laser-scanner located in different corners in an intersection.
- The duration of scanning is approximately 10 minutes.

Outline Introduction Similar Projects Proposed Solution Datasets and Implementation References

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Dataset

Capture of dataset viewer application [Zhao06]

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Background Extraction

- Histogram-based background extraction
- Done for each angle
- When a pick value is detected, tells that an object is detected

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Background Extraction

- Histogram-based background extraction
- Done for each angle
- When a pick value is detected, tells that an object is detected
- Dataset already includes a background model for each laser scanner

Outline Introduction Similar Projects Proposed Solution Datasets and Implementation References

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Clustering

In [Zhao06] it is not detailed how clustering was done, so
 DBSCAN is proposed to identify clusters in laser-data points

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

DBSCAN - Introduction

- Density-Based Spatial Clustering for Applications with Noise
- Proposed by Ester et al in 1996 in KDD conference [Ester96].

DBSCAN - Explanation

- The algorithm needs two parameters: $Eps(\epsilon)$ and minPts
- Also are defined two types of points: Core points and border points
- p is a core point if in its *Eps-Neighborhood* are at least *minPts* points.

Types of points [Ester96]

DBSCAN - Algorithm

- DBSCAN starts at an arbitrary point p, then evaluate if point's Eps-Neighnorhood contains at least minPts points
- If *True*, *p* is a core point (Is in a cluster)
 - Assign *clusterId* to p and its neighbour, and neighbours of its neighbours and so on.
 - Increase clusterId.
- If False, p is labelled as Noise
- Continue with an unlabelled point, until all points in dataset are labelled.

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Clustering

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Clustering

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Clustering

Definitions

- Classes are proposed based on distribution of points in clusters
- Karhunen-Loeve Transform to detect number of axis

Objects in	Example of laser data					Class
cross road	t_1	t ₂	t ₃	t ₄	ts	definition
car	:			i	:	2-axis
bicycle						1-axis
pedestrian	٠.	٠.	٠.	٠.	٠.	0-axis

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Markov States

There are 8 patterns that can happen

Possible transitions

Features

- Normal Vectors
- Number of axis
- Axis lengths
- Directional vector, Motion speed
- Markov States

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Classification and Tracking

- Classification and tracking stages are under review

Datasets Overview Foreground Estimation Feature Extraction and Classification Next Steps

Next Steps

- Implement Dataset handler
- Implement Clustering and KL Transform to classify in 0, 1 or 2 axis object
- Get features from objects and obtain trajectory

- Elmenreich07 Elmenreich, W. A Review on System Architectures for Sensor Fusion Applications. Software Technologies for Embedded and Ubiquitous Systems Lecture Notes in Computer Science Volume 4761 (pp. 547–559). 2007.
 - Esteban, J. et al, A Review of data fusion models and architectures: towards engineering guidelines. Neural Computing and Applications, 14(4),(pp. 273–281). 2012.
 - Ester96 Ester, M. et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). 1996.
- Goldhammer12 Goldhammer, M. et al, Cooperative multi sensor network for traffic safety applications at intersections. 2012 15th
 International IEEE Conference on Intelligent Transportation Systems (pp. 1178–1183). 2012.

- Khaleghi11 Khaleghi, B. et al, **Multisensor data fusion: A review of the** state-of-the-art. *Information Fusion, 14(1) (pp. 28–44).* 2011.
 - Luo02 Luo, R. C. Multisensor fusion and integration: approaches, applications, and future research directions. *IEEE Sensors Journal*, *2*(2), *107–119*. 2002
 - Luo11 Luo, R. C. et al. Multisensor Fusion and Integration: Theories, Applications, and its Perspectives. *IEEE Sensors Journal*, 11(12), 3122–3138. 2011.
- Meissner10 Meissner, D. and Dietmayer, K. Simulation and calibration of infrastructure based laser scanner networks at intersections. 2010 IEEE Intelligent Vehicles Symposium, 670–675. 2010.

- Meissner, D., Reuter, S., and Dietmayer, K. Real-time detection and tracking of pedestrians at intersections using a network of laserscanners. 2012 IEEE Intelligent Vehicles Symposium, 630–635. 2012.
- Meissner13a Meissner, D., Reuter, S., and Dietmayer, K. Road user tracking at intersections using a multiple-model PHD filter. 2013 IEEE Intelligent Vehicles Symposium (IV), (Iv), 377–382. 2013.
- Meissner13b Meissner, D. et al. Road User Tracking Using a Dempster-Shafer Based Classifying Multiple-Model PHD Filter. Information Fusion (FUSION), 2013 16th International Conference on (Vol. 32, pp. 1236–1242) 2013.
- Meissner13c Meissner, D., Reuter, S., and Dietmayer, K. Combining the 2D and 3D world: a new approach for point cloud based object detection. *IET Intelligent Signal Processing Conference 2013 (ISP 2013) (pp. 4.1–4.1).* 2013.

- Meissner14 Meissner, D. et al. Intersection-Based Road User Tracking Using a Classifying Multiple-Model PHD Filter. IEEE Intelligent Transportation Systems Magazine, 6(April 2014), 21–33.2014.
 - Song08 Song, X. et al. Bayesian fusion of laser and vision for multiple People Detection and tracking. 2008 SICE Annual Conference, 3014–3019. 2008.
 - Song13a Song, X. et al. Laser-based tracking of multiple interacting pedestrians via on-line learning. *Neurocomputing*, 115, 92–105. 2013.
 - Song13b Song,X. et al. An Online System for Multiple Interacting Targets
 Tracking: Fusion of Laser and Vision, Tracking and Learning.

 ACM Transactions on Intelligent Systems and Technology. 2013.

- Strigel13 Strigel, E., Meissner, D., and Dietmayer, K. Vehicle detection and tracking at intersections by fusing multiple camera views. 2013

 IEEE Intelligent Vehicles Symposium (IV) (pp. 882–887). 2013.
 - Zhao06 Zhao, H., and Shibasaki, R. Joint tracking and classification of moving objects at intersection using a single-row laser range scanner. In Proceedings of the IEEE Intelligent Transportation Systems Conference (pp. 287–294). 2006.
 - Zhao08 Zhao, H. et al. **Monitoring an intersection using a network of laser scanners**. Proceedings of the11th International IEEE Conference on Intelligent Transportation Systems (pp. 428–433). 2008
 - Zhao09 Zhao, H., Cui, J., and Zha, H. Sensing an Intersection Using a Network of Laser Scanners and Video Cameras. *IEEE Intelligent Transportation Systems Magazine*, 31–37, 2009.
 - Zhao12 Zhao, H. et al. Detection and Tracking of Moving Objects at Intersections Using a Network of Laser Scanners. *IEEE*