

Hale School

MATHEMATICS SPECIALIST 3CD

Semester Two Examination 2010 MARKING KEY and SOLUTIONS

Section One Calculator-Free

MAS 3CD Semester 2 2010 Section 1: Calculator-free [40 marks]

MARKING KEY and SOLUTIONS Question 1 [6 marks]

Find the anti-derivative:

$$\int xe^{2x^2}dx$$

(a)

[2 marks]

					Solution			
$\int xe^{2x^2}dx$		e^{2x^2}			e^{2x^2}			
	=	x . 4x	+ C	=	4	+	С	

- Specific Behaviours
- Anti-derivative of exponential is itself
- Recognises the derivative factor to divide by 4x

$$\int \sqrt{\sin x} \cos x dx$$

(b)

[2 marks]

$$\int \sqrt{\sin x} \cos x \, dx = \int (\sin x)^{\frac{1}{2}} \cos x \, dx$$

$$= \frac{(\sin x)^{\frac{3}{2}} \cos x}{\frac{3}{2} \cos x} + c$$

$$= \frac{2\sqrt{\sin^3 x}}{3} + c$$

$$= \frac{2\sqrt{\sin^3 x}}{3} + c$$

- Specific Behaviours
- Integrates power of sine function
- Recognises the derivative factor to divide by cos x

$$\int \frac{\ln x}{x} dx$$

(c)

Solution
$$\int \frac{\ln x}{x} dx = \int \ln x \cdot \frac{1}{x} dx$$

$$= \frac{(\ln x)^2}{2} + c$$
Specific Behaviours

✓ Integrates the power of ln x

✓ Recognises the derivate factor 1/x

[2 marks]

Note: If there is NO use of integration constants in Q1, then ONE mark is to be deducted from Q1c.

Question 2 [9 marks]

Given that $z = 2e^{ix}$ and $w = 2e^{-ix}$:

(a) express iz in complex exponential form.

[2 marks]

$$iz = e^{\frac{i\pi}{2}} \cdot 2e^{ix} = 2e^{\frac{i(x + \frac{\pi}{2})}{2}}$$

Specific Behaviours

- ✓ Converts i into exponential form
- \checkmark adds indices to give argument $x + \pi/2$ and real part 2

(b) express Z in complex exponential form.

[2 marks]

$$\frac{\text{cis 5x}}{z} = \frac{e^{5ix}}{2e^{ix}} = \frac{1}{2}e^{4ix}$$

Specific Behaviours

Solution

- ✓ Expresses cis 5x in exponential form
- ✓ subtracts indicies to give argument 4x and real part 0.5
- (c) simplify $z^2 + w^2$

[2 marks]

$$z^{2} + w^{2} = 4e^{2ix} + 4e^{-2ix} = 4(e^{2ix} + e^{-2ix})$$

$$= 4 \cdot 2 \cos 2x$$

$$= 8 \cos 2x$$

Specific Behaviours

- ✓ Multiply indices by 2
- Express as twice the real part cos 2x
- (d) solve for x given that $z^3 + 8 = 0$

[3 marks]

Solution
$$z^{3} = -8 = 8 \operatorname{cis} \pi$$

$$8^{\frac{1}{3}} \operatorname{cis} \left(\frac{\pi + 2\pi k}{3} \right)$$

$$\therefore z = k = 0, 1, 2$$

MARKING KEY and SOLUTIONS

$$z = \frac{2 \operatorname{cis} \left(\frac{\pi}{3}\right)}{2 \operatorname{cis} (\pi)}, \quad 2 \operatorname{cis} \left(-\frac{\pi}{3}\right)$$

 $\therefore \quad x = \pi/3, \ \pi, \ -\pi/3$

Specific Behaviours

- ✓ Expression for cube roots using De Moivre's Theorem
- ✓ Give roots in cis form
- ✓ Solve for x

Question 3 [4 marks]

Points A and B have respective position vectors given by :

$$a = 2i + j - k$$

 $b = xi + j + k$

Determine the value of x given that vectors \mathbf{a} and \mathbf{b} are at an angle of 60° .

Specific Behaviours

- expresses dot product using components AND using magnitudes
- ✓ uses $\cos 60^{\circ} = 0.5$ to form an equation in x^{2}
- ✓ squares both sides to eliminate the square root
- ✓ solves to find 2 values for x but only accepts the POSITIVE solution

Question 4 [4 marks]

Give the following transformation matrices, describe their effect on some object in the coordinate plane :

(a)
$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Solution

Horizontal dilation about x = 0 with factor 2

Specific Behaviours

Uses term dilation about x = 0 and mentions factor 2

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(b)

[1 mark]

[2 marks]

Solution

Reflection about y = x

Specific Behaviours

Uses term reflection and states the position of the mirror y = x

Question 4 [4 marks]

(c)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

Solution

Vertical shear with factor 2 AND THEN an anti-clockwise rotation of 90o about origin Specific Behaviours

- States 2 transformations and gives the correct order (shear then rotate)
- Describes each transformation correctly.

Question 5 [6 marks]

Prove using the method of mathematical induction that, for all values of the positive integer n, $7^{n} + 2$ is always divisible by 3.

Solution

For n = 1, 71 + 2 = 9 which is divisible by 3.

Hence true for n = 1.

Assume true for n = k i.e. 7k + 2 = 3m where m is some integer

Consider
$$n = k + 1$$
: $7k+1 + 2 = 7.7k + 2$
= $7(3m - 2) + 2$
= $21m - 12$
= $3(7m - 4)$ which is divisible by 3

Hence true for n = k + 1

Hence true ∀ n.

Specific Behaviours

- Show true for n = 1
- \checkmark Assumes true for n = k

MARKING KEY and SOLUTIONS

- ✓ Expresses divisibility by 3 using some multiple of 3
- ✓ Expresses 7^{k+1} in terms of previous result
- ✓ Shows that result for n = k+1 has a factor of 3
- ✓ Concludes that true for all values n

Question 6 [7 marks]

A particle's position is given by x(t) cm after t seconds and moves according to the differential equation :

$$\frac{d^2X}{dt^2} = -\pi^2X$$

It is known that x(0) = k cm, and its velocity $v(0) = -\sqrt{3}\pi k$ cm s⁻¹ where k is some positive constant. Write an expression (in terms of the constant k) for :

(a) the displacement x(t).

[5 marks]

Solution

Motion is SHM from the differential equation with T = 2 seconds

Hence suggest $x(t) = A \cos(\pi t + \alpha)$

Given x(0) = k then $k = A \cos \alpha$ (1)

$$v(t) = -\pi A \sin(nt + \alpha)$$

Given $v(0) = -\sqrt{3\pi}k$ then $-\sqrt{3\pi}k = -\pi A \sin \alpha$ (2)

From (1)
$$\cos \alpha = k/A$$

From (2)
$$\sin \alpha = -\sqrt{3}k/A$$
 $\therefore \cos 2\alpha + \sin 2\alpha = 1$
$$\frac{k^2}{A^2} + \frac{3k^2}{A^2} = 1$$

$$\therefore$$
 i.e. $A = 2k$ $(k > 0)$

$$\therefore$$
 cos α = 0.5 i.e. α = $\pi/3$

Hence
$$x(t) = 2k \cos(\pi t + \pi/3)$$

Specific Behaviours

- States motion as SHM and determines the period T
- \checkmark Writes x(t) of form A cos(nt + α) i.e. a trigonometric function with phase shift
- \checkmark Obtains relationships between k and A using x(0) and v(0)
- \checkmark Solves for A and α .
- \checkmark Concludes with expression for x(t) in terms of k
- (b) the distance travelled in the first 4 seconds.

[2 marks]

Solution

Since the period T = 2 sec, then over 4 seconds, the particle does 2 complete

Specific Behaviours

- ✓ Recognises 2 cycles of motion
- ✓ Expresses distance in terms of k

Question 7 [4 marks]

$$z = cis\left(\frac{3\pi}{4}\right)$$

It is known that (x^4) is a solution to the equation $(x^n) = 1$. Determine the set of possible values for the positive integer (x^n) .

Solution

$$z^n = cis \pi/2$$

$$\operatorname{cis}\left(\frac{\frac{\pi}{2} + 2\pi k}{n}\right)$$

$$\therefore z = \frac{3\pi n}{1} = \frac{\pi}{2} + 2\pi k$$

 $\frac{4}{2}$ for some integer value of k and n

- \therefore 3n = 2 + 8k
- \therefore 3n = 2, 10, **18**, 26, 34, **42**, . . .
- \therefore n = 6, 14, 22, . . .

Hence n can be any integer that is 2 less than a multiple of 8

Specific Behaviours

- ✓ Expression for the n-th roots using De Moivre's Theorem
- \checkmark Express cis(3 π /4) as one of the solutions
- ✓ Develops equation to determine n

MAS 3CD Semester 2 2010 Section 1 : Calculator-free [40 marks]

MARKING KEY and SOLUTIONS

✓ Obtains the entire set of values for n