

EE2211 Pre-Tutorial 4

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 4

Recap

- Operations on Vectors and Matrices
 - Dot-product, matrix inverse
- System of Linear Equations
 - Matrix-vector notation, linear dependency, invertible
 - Even-, over-, under-determined linear systems
- Set and Functions
 - Inner product function
 - Linear and affine functions

Operations on Vectors and Matrices

Dot Product or Inner Product of Vectors:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}T \mathbf{y}$$

$$= [x_1 \ x_2] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$= x_1 \ y_1 + x_2 y_2$$

Geometric definition:

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

Where θ is the angle between x and y , and $||x|| = \sqrt{x \cdot x}$ is the Euclidean length of vector x

Operations on Vectors and Matrices

Matrix inversion computation

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

- det(A) is the determinant of A
- adj(A) is the adjugate or adjoint of A

Determinant computation

Example: 2x2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Systems of Linear Equations

Even-, over-, under-determined linear systems

$$X \in \mathbb{R}^m \times d$$
 e.g. Samples of features w : Weightings

X is Square	Even-determined	m = d	One unique solution in general	$\widehat{w} = X^{-1}y$
X is Tall	Over-determined	m > d	No exact solution in general; An approximated solution	$\widehat{w} = (X^T X)^{-1} X^T y$ Left-inverse
X is Wide	Under-determined	m < d	Infinite number of solutions in general; Unique constrained solution	$\widehat{w} = X^T (XX^T)^{-1} y$ Right-inverse

Systems of Linear Equations

^{*} This particular case will not be covered in this course.

Functions

The inner production function

Suppose a is a d-vector. We can define a scalar valued function f of d-vectors, given by

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \dots + a_d x_d$$
 (1)

for any *d*-vector **x**

The inner product of its d-vector argument x with some (fixed) d-vector a

• We can also think of f as forming a **weighted sum** of the elements of x; the elements of α give the weights

Functions

Linear Functions

Superposition and linearity

• The inner product function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ defined in equation (1) (slide 9) satisfies the property

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \mathbf{a}^{T}(\alpha \mathbf{x} + \beta \mathbf{y})$$

$$= \mathbf{a}^{T}(\alpha \mathbf{x}) + \mathbf{a}^{T}(\beta \mathbf{y})$$

$$= \alpha(\mathbf{a}^{T}\mathbf{x}) + \beta(\mathbf{a}^{T}\mathbf{y})$$

$$= \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

for all d-vectors \mathbf{x} , \mathbf{y} , and all scalars α , β .

- This property is called superposition, which consists of homogeneity and additivity
- A function that satisfies the superposition property is called linear

Functions

Linear and Affine Functions

A linear function plus a constant is called an affine function

A linear function $f: \mathcal{R}^d \to \mathcal{R}$ is **affine** if and only if it can be expressed as $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + \mathbf{b}$ for some d-vector \mathbf{a} and scalar \mathbf{b} , which is called the offset (or bias)

Example:

$$f(\mathbf{x}) = 2.3 - 2x_1 + 1.3x_2 - x_3$$

This function is affine, with b = 2.3, $a^T = [-2, 1.3, -1]$.

THANK YOU