西安电子科技大学

2021 年硕士研究生招生考试初试试题

考试科目代码及名称 <u>821 电路、信号与系统</u> 考试时间 2020 年 12 月 27 日下午(3 小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写在试题上一律作废,准考证号写在指定位置!

电路部分(75分)

- 一、简答题(共5小题,共33分)
- 1、(7分) 求图 1 所示电路中, a,b 两端的电压及电阻吸收的功率。

2、(6 分) 求图 2 所示电路中,a,b 端的等效电阻 R_{ab} 。

821 电路、信号与系统 试题 共 7 页 第 1 页

3、(6分) 电路如图 3 所示, 试列写出各节点的节点电压方程。

4、(6分) 如图 4 所示电路中,电源 $u_s(t)=10cos\omega t$ V,若电源的角频率 ω 任意可变,求 当角频率 ω 等于多少时,电流表的读数最大,并求出该最大值。

5、(8分) 题 5 图所示二端口电路中,已知电源的角频率 $\omega=2rad/s$,请写出其 Z 参数矩阵。

821 电路、信号与系统 试题 共 7 页 第 2 页

二、计算题(共3小题,共42分)

6、(15 分) 如图 6 所示电路,已知 1) a、b 开路时, $u_o = 6V$; 2) a、b 短路时, $u_o = 8V$; 问在 a、b 端接可变电阻 R,且获得最大功率时 $u_o = ?$

7、(15 分)如图 7 所示电路,在 t < 0时开关 S 是断开的,电路已处于稳态。 t = 0开关 S 闭合。求 $t \ge 0$ 时的电流 i(t)。

图 7

8、(12 分)如图 8 所示正弦稳态电路,已知 $u(t)=100\cos(10^3t+75^\circ)$ V, $i(t)=10\sqrt{2}cos(10^3t+30^\circ)$ A, L=5 mH。求电流 $i_c(t)$ 。

信号与系统部分(75分)

- 一、简答题(共5小题,共37分)
- 1、(6 分) 已知函数 $f_1(t)$ 和 $f_2(2-\frac{t}{3})$ 的波形如图 9 所示。画出 $y_1(t)=2f_1(1-2t)$ 和 $y_2(t)=f_2(t)$ 的波形。

图 9

2、(每小题 3 分, 共 9 分) 计算下列各小题:

(1)
$$\int_{-\infty}^{t} (x^2 + x + 1) \delta(\frac{x}{2}) dx =$$

(2)
$$[\sin t \cdot \varepsilon(t)] * \varepsilon(t-1) =$$

(3)
$$\frac{\sin(4\pi t)}{\pi t} * [\cos(2\pi t) + \sin(6\pi t)] =$$

3、(9 分) 如图 10 所示, f(t) 是高度为 1,宽度为 τ 的周期举行脉冲:

(1) 画出 f(t) 的频谱;

(2) 设 $\tau = \frac{1}{20}s$, $T = \frac{1}{4}s$, 计算在有效带宽 $(0 \sim \frac{2\pi}{\tau})$ 内所有谐波的平均功率占信号全部功率的百分比(计算中可查表 1 中列出的部分函数值)。

表 1

x	0.1π	0.2π	0.3π	0.4π	0.5π	0.6π	0.7π	0.8π	0.9π	π
$\sin(x)$	0.309	0.588	0.809	0.951	1	0.951	0.809	0.588	0.309	0
$Sa^2(x)$	0.967	0.875	0.737	0.573	0.405	0.255	0.135	0.055	0.012	0

4、(4 分) 已知函数 $f_1(t)$ 和 $f_2(t)$ 的波形如图 11 所示,画出 $f(t) = f_1(t) * f_2(t)$ 的波形图。

图 11

- 5、(9分)简要回答下列各小题:
 - (1) 分析系统 $y(t) = f(t)\varepsilon(t)$ 的线性、因果性和时变特性。
 - (2) 已知 $f(t) = f_1(t) + f_2^2(t)$, 其中 $f_1(t)$ 和 $f_2(t)$ 均为带限信号, $f_1(t)$ 的最高频率 为 ω_1 , $f_2(t)$ 的最高频率为 ω_2 ,且 $\omega_2 > \omega_1$ 。求信号 f(t) 的奈奎斯特抽样频率。
 - (3) 若 $F(s) = \frac{s+6}{(s+2)(s+5)}$, 则原函数的初值 $f(0_+)$ 和终值 $f(+\infty)$ 分别为多少?
- 二、计算题(共3小题,共38分)
- 6、(12 分) 已知 y(k)-y(k-1)-y(k-2)=f(k-1) 为离散时间 LTI 因果系统的差分方程。
 - (1) 求系统函数H(z);
 - (2) 求系统的单位序列响应h(k);

821 电路、信号与系统 试题 共 7 页 第 6 页

- (3) 画出H(z) 并联形式的流程图;
- (4) 判断该系统是否稳定。
- 7、(16 分)已知某 LTI 连续实因果系统的零、极点分布如图 12 所示,且其冲激响应函数 h(t) 满足 $\int_0^\infty h(t)dt=1.5$ 。
 - (1) 求冲激响应函数 h(t);
 - (2) 写出该系统对应的微分方程。
 - (3) 设该系统的系统函数为H(s),则其逆系统的系统函数为 $H_1(s)=\frac{1}{H(s)}$,且与H(s) 收敛域相同。试判断其逆系统 $H_1(s)$ 的因果、稳定性,并求逆系统的冲激响应函数 $h_1(t)$ 。

图 12

8、(10 分) 图 13 所示为一个幅度调制系统,图中 \otimes 表示相乘, Σ 表示相加,f(t)为 宽带信号,其带宽是 $2\omega_m$, $p(t)=\frac{2\pi}{5\omega_m}\sum_{n=-\infty}^{\infty}\delta(t-\frac{n2\pi}{5\omega_m})$, $h(t)=\frac{\sin(6\omega_m t)}{\pi t}$ 。求幅度调制系统的输出信号 y(t)。

图 13

821 电路、信号与系统 试题 共 7 页 第 7 页