Electronic Materials and Devices

5 Semiconductor

陈晓龙 Chen, Xiaolong 电子与电气工程系

4.1 Intrinsic semiconductor

Metal

High conductivity

Free electron

Semiconductor

H Medium conductivity

Insulator

Extremely low conductivity

Most investigated and popular semiconductor is

Abundant reserves

Widely used

Atom structure of Silicon

3s and 3p energy level are so close that the interactions result in 4 orbitals.

Crystal structure of silicon/germanium/diamond

2-dimensional schematic of silicon structure

Thermal / light activation 热 / 光激发

Bonded electrons are excited

Electron and hole pair excitation 电子空穴对激发

Light absorption

Higher temperature.

Electrons get more energy.

More electron and hole pairs.

Electron and hole pair recombination 电子空穴对复合

At one time, there are both electron and hole pair excitation and recombination. They reach a dynamic equilibrium.

Electron and hole pair recombination

Emit photon or energy lose to lattice vibration.

Light emission

Free electron!

Free hole?

Free hole!

Equivalent to say holes as moving 电子的激发和复合可以等效成空穴在运动

Treat holes as particles with positive charge.

The number of free electrons and holes in intrinsic semiconductor are equal.

4.2 Conduction in intrinsic semiconductors

Equivalent to say holes as moving 等效成空穴在运动

Treat holes as particles with positive charge 可以把空穴看作一种带正电荷的粒子

Electric field

The conduction of semiconductor is contributed from both electrons and holes

No electrical field

Collision with thermal vibration of Si atoms

Current density in semiconductors:

$$J = env_{de} + epv_{dh}$$

Concentrations of **electrons** and **holes**.

Drift velocity of electrons and holes:

$$v_{\rm de} = \mu_{\rm e} E_{\rm x}$$
 $v_{\rm dh} = \mu_{\rm h} E_{\rm x}$

Drift mobilities of electrons and holes.

$$\mu_{\rm e} = \frac{e \tau_{\rm e}}{m_{\rm e}^*}$$
 $\mu_{\rm h} = \frac{e \tau_{\rm h}}{m_{\rm h}^*}$

Effective mass of electrons and holes.

Conductivity in semiconductors:

$$\sigma = en\mu_{\rm e} + ep\mu_{\rm h}$$

For intrinsic semiconductors:

$$n = p$$

4.3 Electron and hole concentrations in intrinsic semiconductor

$$p = \int_{0}^{E_{v}} [1 - f(E)] g_{vb}(E) dE \approx N_{v} \exp\left(-\frac{E_{F} - E_{v}}{kT}\right), \ N_{v} = 2\left(\frac{2\pi m_{h}^{*} kT}{h^{2}}\right)^{3/2}$$

Electron concentration:
$$n = N_{\rm c} \exp\left(-\frac{E_{\rm c} - E_{\rm F}}{kT}\right)$$
, $N_{\rm c} = 2\left(\frac{2\pi m_{\rm e}^* kT}{h^2}\right)^{3/2}$

Hole concentration:
$$p = N_{\rm v} \exp\left(-\frac{E_{\rm F} - E_{\rm v}}{kT}\right)$$
, $N_{\rm v} = 2\left(\frac{2\pi m_{\rm h}^* kT}{h^2}\right)^{3/2}$

$$np = N_{\rm c}N_{\rm v} \exp\left(-\frac{E_{\rm c} - E_{\rm v}}{kT}\right) = N_{\rm c}N_{\rm v} \exp\left(-\frac{E_{\rm g}}{kT}\right)$$

$$n_{\rm i} = \sqrt{np} = \sqrt{N_{\rm c}N_{\rm v}} \exp\left(-\frac{E_{\rm g}}{2kT}\right)$$

For intrinsic semiconductors: $n = p = n_i$

The Fermi energy of intrinsic semiconductor

$$\begin{cases}
p = n_{\rm i} = \sqrt{N_{\rm c}N_{\rm v}} \exp\left(-\frac{E_{\rm g}}{2kT}\right) \\
p = N_{\rm v} \exp\left(-\frac{E_{\rm F} - E_{\rm v}}{kT}\right)
\end{cases}$$

$$E_{\rm F} = E_{\rm v} + \frac{1}{2}E_{\rm g} - \frac{1}{2}kT\ln\left(\frac{N_{\rm c}}{N_{\rm v}}\right)$$

$$E_{\rm F} = E_{\rm v} + \frac{1}{2}E_{\rm g} - \frac{3}{4}kT\ln\left(\frac{m_{\rm e}^*}{m_{\rm h}^*}\right)$$

The Fermi energy of intrinsic semiconductor

Q: The average energy of electrons in conduction band?

$$\begin{cases}
\overline{E_{CB}} = \frac{1}{n} \int_{CB \text{ band}} Ef(E) g_{cb}(E) dE \\
n = \int_{CB \text{ band}} f(E) g_{cb}(E) dE
\end{cases}$$

$$\overline{E_{CB}} = E_c + \frac{3}{2} kT$$

KE: kinetic energy

Summary of intrinsic semiconductor

Electrical conduction is contributed from both:

electrons with negative charges, holes with positive charges.

Electrical conduction of intrinsic semiconductor

Low conductivity

Strong temperature-dependence

Higher temperature, more electron-hole pairs, and higher conductivity

Suitable for thermistor and photoresistor.

Conductivity of intrinsic semiconductor is too low for practical applications.

Q: How to improve the conductivity of semiconductors?

4.4 Doped/Extrinsic semiconductor 掺杂半导体

Substitute intrinsic Si/Ge atoms with foreign atoms.

Depends on dopant (掺杂物), doped semiconductors can be categorized as

N-type semiconductor N型半导体

N represents "Negative". Electrons are major conducting carriers.

P-type semiconductor P型半导体

P represents "Positive". Holes are major conducting carriers.

N-type semiconductor

Dopant: Phosphorus and Arsenide

Q: Is this electron free?

Binding energy of electron in a hydrogen atom model:

$$E_{\rm b} = -E_1 = \frac{m_{\rm e}e^4}{8{\varepsilon_0}^2h^2} = 13.6 \text{ eV}$$

In real situation:

$$E_{\rm b} = \frac{m_{\rm e}^* e^4}{8(\varepsilon_0 \varepsilon_{\rm r})^2 h^2} = 0.032 \text{ eV}$$

$$\varepsilon_{\rm r}=11.9, m_{\rm e}^* \approx \frac{m_{\rm e}}{3}$$

Electron can be treated as "free electron".

Dopant: Phosphorus and Arsenide

Electron can be treated as "free electron".

Dopant: Phosphorus and Arsenide

One more free electron and one positive ion

Electron number > hole number

Electron: major carriers

电子:多数载流子

Hole: minor carriers

空穴:少数载流子

P and As: donor 施主杂质

N-type semiconductor

N-type semiconductor

Major carriers: electrons Minor carriers: hole

Schematic 示意简图 for N-type semiconductor

Donor ions 施主杂志正离子

The schematic neglects Si atoms and holes 简图中硅原子和少量空穴没有标识出来

Band diagram of N-type semiconductor

Electron and hole concentrations in N-type semiconductor

Hole concentration in VB:

$$p = N_{\rm v} \exp\left(-\frac{E_{\rm F} - E_{\rm v}}{kT}\right), \quad N_{\rm v} = 2\left(\frac{2\pi m_{\rm h}^* kT}{h^2}\right)^{3/2}$$

Electron concentration in CB:

$$n = N_{\rm c} \exp\left(-\frac{E_{\rm c} - E_{\rm F}}{kT}\right), \quad N_{\rm c} = 2\left(\frac{2\pi m_{\rm e}^* kT}{h^2}\right)^{3/2}$$

$$np = n_i^2$$
, $n_i = \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2kT}\right)$

Fermi energy is closer to CB.

Electron and hole concentrations in N-type semiconductor

Total electron concentrations=

hole concentrations

electron concentration from donors $n_{\rm d}$

$$n = p + n_{d}$$

Q: How to get n_d ?

Electron concentration from donors $n_d \neq D$ onor concentrations N_d

Probability of finding an electron at E_d :

$$f_{\rm d}(E) = \frac{1}{1 + \frac{1}{2} \exp\left(\frac{E_{\rm d} - E_{\rm F}}{kT}\right)}$$

At E_d: either spin up or spin down, but not both.

Q: What's the relation between n_d and N_d ?

$$n_{\rm d} = N_{\rm d}[1 - f_{\rm d}(E)]$$

Total electron concentrations=hole concentrations + electron concentration from donors n_d

$$n = p + n_d$$

$$N_{\rm c} \exp\left(-\frac{E_{\rm c} - E_{\rm F}}{kT}\right) = N_{\rm v} \exp\left(-\frac{E_{\rm F} - E_{\rm v}}{kT}\right) + N_{\rm d} \frac{1}{1 + 2\exp\left(\frac{E_{\rm F} - E_{\rm d}}{kT}\right)}$$

Question: For N-type semiconductor (n>>p):

- (1) The electron concentration and the Fermi energy at low temperature T.
- (2) When $T \rightarrow 0K$, the electron concentration and the Fermi energy.

(1) The electron concentration and the Fermi energy at low temperature T.

$$\begin{cases} n = p + n_{d} \\ np = n_{i}^{2} = N_{c}N_{v} \exp\left(-\frac{E_{g}}{kT}\right) \\ \blacksquare \\ n = \frac{n_{i}^{2}}{n} + n_{d} \\ \blacksquare \\ n = \frac{1}{2}n_{d} + \left[\frac{1}{4}n_{d}^{2} + n_{i}^{2}\right]^{1/2} \end{cases}$$

As+ As+

At low temperature:

$$n_{i} \ll n_{d}$$

$$= \frac{1}{2}n_{d} + \left[\frac{1}{4}n_{d}^{2} + n_{i}^{2}\right]^{1/2}$$

$$\approx n_{d}$$

$$= N_{d} \frac{1}{1 + 2\exp\left(\frac{E_{F} - E_{d}}{kT}\right)}$$

$$\approx \frac{N_{d}}{2}\exp\left(-\frac{E_{F} - E_{d}}{kT}\right)$$

$$\begin{cases} n = \frac{N_{\rm d}}{2} \exp\left(-\frac{E_{\rm F} - E_{\rm d}}{kT}\right) \\ n = N_{\rm c} \exp\left(-\frac{E_{\rm c} - E_{\rm F}}{kT}\right) \\ \blacksquare \\ n^2 = \frac{1}{2} N_{\rm c} N_{\rm d} \exp\left(-\frac{E_{\rm c} - E_{\rm d}}{kT}\right) \\ \blacksquare \\ n = \sqrt{\frac{1}{2} N_{\rm c} N_{\rm d}} \exp\left(-\frac{E_{\rm c} - E_{\rm d}}{2kT}\right) \\ \blacksquare \\ E_{\rm F} = \frac{E_{\rm c} + E_{\rm d}}{2} + \frac{1}{2} kT \ln\left(\frac{N_{\rm d}}{2N_{\rm c}}\right) \end{cases}$$

$$E_{\rm F} = \frac{E_{\rm c} + E_{\rm d}}{2} + \frac{1}{2}kT \ln\left(\frac{N_{\rm d}}{2N_{\rm c}}\right)$$

$$E_{\rm F} = \frac{E_{\rm c} + E_{\rm d}}{2}, \quad n = 0$$

P-type semiconductor

One more free hole and one negative ion

Hole number > electron number

Hole: major carriers

空穴:多数载流子

Electron: minor carriers

电子:少数载流子

B: Acceptor 受主杂质

P-type semiconductor

Schematic 示意简图 for P-type semiconductor

The schematic neglects Si atoms and electrons 简图中硅原子和少量电子没有标识出来

Band diagram of P-type semiconductor

Probability of finding a hole at E_a :

$$f_{a}(E) = \frac{1}{1 + \frac{1}{2} \exp\left(\frac{E_{F} - E_{a}}{kT}\right)}$$

Practice: For P-type semiconductor (p>>n), (1) the hole concentration and the Fermi energy at relatively low temperature T.

(2)When T→0K, the hole concentration and the Fermi energy.

4.5 Temperature dependence of conductivity in doped semiconductor

Conductivity in semiconductors:

$$\sigma = en\mu_{\rm e} + ep\mu_{\rm h}$$

- (1) Temperature dependence of *n* and *p*
- (2) Temperature dependence of $\mu_{\rm e}$ and $\mu_{\rm h}$
- (3) Temperature dependence of σ

In following section, we use **n-type semiconductor** to illustrate the temperature-dependent properties.

Temperature dependence of *n* and *p*

 $T_{\rm s}$ is called **saturation temperature**: all donors are ionized, and the number of ionized donors are saturated.

(1) Low temperature range: $T < T_s$

A portion of donors are ionized.

$$n \approx n_{\rm d} = \sqrt{\frac{1}{2}N_{\rm c}N_{\rm d}}\exp\left(-\frac{E_{\rm c} - E_{\rm d}}{2kT}\right)$$

(2) Medium temperature range: $T_{\rm s} < T < T_{\rm i}$

All donors are ionized and $N_{\rm d}\gg p$. In this range, $n\approx N_{\rm d}$.

(3) High temperature range: $T_i < T$

In this range, $n_i \gg N_d$.

$$n \approx p \approx n_{\rm i} \gg N_{\rm d}$$

$$\ln(n) \quad n_{\rm i} = \sqrt{N_{\rm c}N_{\rm v}} \exp\left(-\frac{E_{\rm g}}{2kT}\right)$$

$$Extrinsic \quad range \quad range$$

$$1/T_{\rm i} \quad 1/T_{\rm s} \rightarrow 1/T$$

Temperature dependence of $\mu_{\rm e}$ and $\mu_{\rm h}$

$$\mu = \frac{e\tau}{m_{\rm e}^*}$$

Scatterings from lattice vibrations

Scatterings from ionized donor atoms

Mobility limited by lattice vibrations

$$\mu = \frac{e\tau}{m_{\rm e}^*}$$

$$\tau_{\rm L} = \frac{1}{S v_{\rm th} N_{\rm s}}$$

$$\frac{1}{2}mv_{\rm th}^2 = \frac{3}{2}kT$$

$$v_{\rm th} \propto \sqrt{T}$$

Scattering cross-sectional area: $S = \pi a^2$

Mean free path : $l = v_{\rm th} \tau$

The concentration of scattering centers: N_s

Mobility limited by lattice vibrations

$$\begin{cases} \tau_{\rm L} = \frac{1}{Sv_{\rm th}N_{\rm s}} \\ v_{\rm th} \propto \sqrt{T} \\ S \propto T \\ & \qquad \qquad \downarrow \\ \tau_{\rm L} \propto T^{-3/2} \\ & \qquad \qquad \downarrow \\ \mu_{\rm L} \propto T^{-3/2} \end{cases}$$

Mobility limited by ionized atoms

$$\tau_{\rm I} = \frac{1}{S v_{\rm th} N_{\rm I}}$$

$$KE \approx |PE|$$

$$r_{\rm c} \propto T^{-1}$$

$$S \propto T^{-2}$$

Mobility limited by ionized atoms

$$\begin{cases} \tau_{\rm I} = \frac{1}{Sv_{\rm th}N_{\rm I}} \\ S \propto T^{-2} \\ v_{\rm th} \propto \sqrt{T} \\ \end{bmatrix}$$

$$\tau_{\rm I} \propto \frac{T^{3/2}}{N_{\rm I}}$$

$$\mu_{\rm I} \propto \frac{T^{3/2}}{N_{\rm I}}$$

Total mobility: Matthiessen's rule

$$\frac{1}{\mu_{\rm d}} = \frac{1}{\mu_{\rm L}} + \frac{1}{\mu_{\rm I}} \quad \left\{ \begin{array}{l} \mu_{\rm L} \propto T^{-3/2} \\ \\ \mu_{\rm I} \propto \frac{T^{3/2}}{N_{\rm I}} \end{array} \right.$$

Conductivity temperature dependence

Comparison between semiconductor and metal

4.6 Nondegenerate and degenerate semiconductors

非简并与简并半导体

4.7 Direct and indirect bandgap semiconductor

直接与间接带隙半导体

The concept of direct and indirect bandgap is very important for materials for LED and laser applications.

Excitation of an electron-hole pair Recombination of an electron-hole pair

Energy-momentum relation

A third body, such as **phonon** (lattice vibration modes) is involved in this process.

Phonon: large momentum, small energy ~10⁻² eV

Electron can recombine with hole and emit photon with the assistance of phonon.

The efficiency to emit a photon is very low compared with direct bandgap materials.

High efficiency!

Good for LED applications!

Low efficiency!

Not good for LED applications!

4.8 Diffusion and conduction equations

N-type Semiconductor

N-type Semiconductor

Electron and hole concentrations are not uniform everywhere.

Electrons and holes will diffusive 扩散 from high to low concentration region.

Electron concentration along x-direction

Particle flux density 粒子通量:

$$\Gamma = \frac{\Delta N}{A\Delta t}$$

 ΔN : total number of particles passing through the plane area A in time Δt

Current density for e- and h+:

$$J = \mp e\Gamma$$

Since l is very small, n_1 and n_2 can be treated as constant in region $[x_0 - l, x_0]$ and $[x_0, x_0 + l]$, respectively.

$$\Gamma_{\rm e} = \frac{\frac{1}{2}n_1Al - \frac{1}{2}n_2Al}{A\tau} = -\frac{l}{2\tau}(n_2 - n_1)$$

n(x,t) n_1 n_2 $x_0 - l \quad x_0 \quad x_0 + l \quad x$

Particle flux density at x_0 :

$$\Gamma_{\rm e} = -\frac{l}{2\tau}(n_2 - n_1)$$

Because *l* is very small:

$$n_2 - n_1 = \frac{\mathrm{d}n}{\mathrm{d}x} l$$

$$\Gamma_{\rm e} = -\frac{l^2}{2\tau} \frac{\mathrm{d}n}{\mathrm{d}x}$$

$$\Gamma_{\rm e} = -D_{\rm e} \frac{{\rm d}n}{{\rm d}x}$$

 D_{e} : electron diffusion coefficient 电子扩散系数

Our oversimplified model:
$$D = \frac{l^2}{2\tau}$$

More accurate model:
$$D = \frac{l^2}{\tau}$$

$$n(x,t)$$

$$n_1 \qquad \text{Diff}$$

$$x_0 - l \qquad x_0 \qquad x_0 + l \qquad x$$

$$\Gamma_{\rm e} = -D_{\rm e} \frac{{\rm d}n}{{\rm d}x}$$

Diffusion current density of electrons:

$$J_{\rm e} = -e\Gamma_{\rm e} = eD_{\rm e} \frac{\mathrm{d}n}{\mathrm{d}x}$$

For hole carriers:

$$\Gamma_{\rm h} = -D_{\rm h} \frac{\rm dp}{\rm dx}$$

$$J_{\rm h} = +e\Gamma_{\rm h} = -eD_{\rm h} \frac{\mathrm{d}p}{\mathrm{d}x}$$

N-type Semiconductor

N-type Semiconductor

Q: What's the current density when there is external electric field?

Electron:
$$J_{\rm e} = en\mu_{\rm e}E_{\rm x} + eD_{\rm e}\frac{{\rm d}n}{{\rm d}x}$$

Hole:
$$J_h = en\mu_h E_x - eD_h \frac{dp}{dx}$$

Drift漂移 Diffusion扩散

Electron:
$$J_e = en\mu_e E_x + eD_e \frac{dn}{dx}$$

Hole:
$$J_h = en\mu_h E_x - eD_h \frac{dp}{dx}$$

Drift漂移 Diffusion扩散

D: is a measure of the ease with which the diffusing charge carriers move in the medium.

 μ : is a measure of the ease with which the charge carriers move in the medium.

$$\frac{D_{\mathrm{e}}}{\mu_{\mathrm{e}}} = \frac{kT}{e}$$
 and $\frac{D_{\mathrm{h}}}{\mu_{\mathrm{h}}} = \frac{kT}{e}$

Einstein relation

Einstein relation

$$\frac{D_{\mathrm{e}}}{\mu_{\mathrm{e}}} = \frac{kT}{e}$$
 and $\frac{D_{\mathrm{h}}}{\mu_{\mathrm{h}}} = \frac{kT}{e}$

$$D_{\rm e} = \frac{l^2}{\tau} = \frac{(v_{\chi}\tau)^2}{\tau} = v_{\chi}^2 \tau$$

In CB band of semiconductor and in one-dimension, the mean *KE* of electrons is:

$$\frac{1}{2}m_{\rm e}^*v_x^2 = \frac{1}{2}kT \implies v_x^2 = \frac{kT}{m_{\rm e}^*}$$

$$D_{\rm e} = \frac{kT\tau}{m_{\rm e}^*} = \frac{kT}{e} \left(\frac{e\tau}{m_{\rm e}^*}\right)$$

$$D_{\rm e} = \frac{kT}{e} \mu_{\rm e}$$

Einstein relation

$$\frac{D_{\mathrm{e}}}{\mu_{\mathrm{e}}} = \frac{kT}{e}$$
 and $\frac{D_{\mathrm{h}}}{\mu_{\mathrm{h}}} = \frac{kT}{e}$

For semiconductors:

For metals: ? X

The assumption we used is: $\frac{1}{2}m_{\rm e}^*v_x^2 = \frac{1}{2}kT$

Einstein relation is only valid for electrons and holes in non-degenerated semiconductor.

[Example]: The doping concentration is non-uniform in a n-type semiconductor. The dopant concentration is higher near left surface. The

Electron diffusion, charged donors are left.

Electric field is formed to prevent the diffusion of electrons.

When the system reaches equilibrium:

$$J_{e} = en\mu_{e}E_{x} + eD_{e}\frac{dn}{dx} = 0$$

$$-en\mu_{e}\frac{dV}{dx} + eD_{e}\frac{dn}{dx} = 0$$

$$-e\mu_{e}dV + eD_{e}\frac{dn}{n} = 0$$

$$V_{2} - V_{1} = \frac{kT}{e}\ln(\frac{n_{2}}{n_{1}})$$