

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
Disciplina:				Código da Dis	ciplina:		
Materiais e Processos I - Polímo	eros			DSG31	6		
Course:				-!			
Materials and Processes I - Poly	ymers						
Materia:							
Materiales y Procesos I - Polímo	eros						
Periodicidade: Semestral	Carga horária total:	80	Carga horária sema	nal: 02 - 02 - 00)		
Curso/Habilitação/Ênfase:	•		Série:	Período:			
Design			3	Matutino			
Design			2	Noturno			
Design			2	Matutino			
Design			3	Noturno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Gra	duação		
Viviane Tavares de Moraes		Bacharel em Er	ngenharia Ambier	ntal Doutor			
Professores:		Titulação - Graduaç	ão	Pós-Gra	duação		
Viviane Tavares de Moraes		Bacharel em Engenharia Ambiental Doutor					

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

(C1)Conhecer as características e aplicações dos principais materiais polimericos sintéticos e naturais e sua correta aplicação

Habilidades: a aluno deverá ser capaz de :

- (H1) Estabelecer correlação entre propriedades mecânicas, físicas e químicas dos diversos materiais disponíveis mais importantes para concepção e fabricação de um produto
- (H2) Discutir critérios de seleção de materiais
- (H3) Integrar e ampliar conceitos, princípios e teorias de materiais

Atitudes

(A1) Desenvolver uma visão crítica sobre aplicação e seleção de materiais

EMENTA

Introdução aos polímeros, histórico. Identificação de polímeros: classificação numérica e chama. Revisão, estruturas, ligações propriedades gerais. Propriedades dos materiais poliméricos- protótipo. Polímeros amorfos e semicristalinos, copolímeros, blendas. Identificação de polímeros: densidade e ponto de fusão. Temperaturas de transição de fase (Tg e Tm). Deformações elásticas e plásticas de polímeros, relação estrutura propriedades. Ensaios de tração e dureza. Propriedades, aplicações, exemplos, seleção (PP, PEBD, PEAD, PVC). Propriedades, aplicações, exemplos, seleção (PMMA, PA, PC, PC, PET). Síntese Polimérica. Processamento de termoplásticos I e II. Fabricação do molde. Fabricação da peça. Elastômeros, propriedades e aplicação. Aditivos. Degradação, reciclagem de materiais poliméricos. Adesivos. Novos materiais.

2020-DSG316 página 1 de 9

Aditivos.

SYLLABUS

Introduction to polymers, history. Identification of polymers: numerical classification and flame. Revision, structures, links general properties. Properties of polymeric materials - prototype. Amorphous and semi-crystalline polymers, copolymers, blends. Identification of polymers: density and melting point. Phase transition temperatures (Tg and Tm). Elastic and plastic deformations of polymers, relation structure properties. Tensile and hardness tests. Properties, applications, examples, selection (PP, LDPE, HDPE, PVC). Properties, applications, examples, selection (PMMA, PA, PC, PC, PET). Polymer Synthesis. Processing of thermoplastics I and II. Manufacture of mold. Manufacture of the part. Elastomers, properties and application. Additions. Degradation, recycling of polymeric materials. Stickers. New materials. Additions.

TEMARIO

Introducción a los polímeros, histórico. Identificación clasificación numérica y llama. Revisión, estructuras, vínculos de propiedades generales. Propiedades de los materiales poliméricos- prototipo. Polímeros amorfos y semicristalinos, copolímeros, blendas. Identificación de polímeros: densidad y punto de fusión. Temperaturas de transición de fase (Tg y Tm). Deformaciones elásticas y plásticas de polímeros, relación estructura propiedades. Ensayos de tracción y dureza. Propiedades, aplicaciones, ejemplos, selección (PP, PEBD, PEAD, PVC). Propiedades, aplicaciones, ejemplos, selección (PMMA, PA, PC, PC, PET). Síntesis Polimérica. Procesamiento de termoplásticos I y II. Fabricación del molde. Fabricación de la pieza. Elastómeros, propiedades y aplicación. Aditivos. Degradación, reciclado de materiales poliméricos. Adhesivos. Nuevos materiales. Aditivos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Design Thinking
- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositívas, resolução de casos, visitas e aulas práticas.

2020-DSG316 página 2 de 9

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Conteúdos necessários:

- habilidade de visualização espacial
- noções de ligações químicas e estrutura atômica
- conceitos básicos de física
- noções básicas de tensão e deformação

CONTRIBUIÇÃO DA DISCIPLINA

Os conhecimentos adquiridos pelos alunos fazem parte da fundamentação teórica básica de um designer, sendo aplicados rotineiramente em sua vida profissional. A premissa é que o designer conceberá, construirá ou ainda, administrará a produção de componentes e que estes serão fabricadas com algum material. Assim, a diciplina possibilitará ao aluno compreender a constituição dos materiais de um ponto de vista mais amplo, envolvendo sua composição química, seu processamento, sua microestrutura e as relações destas com as propriedades físicas dos materiais.

Ao final do curso os alunos devem ter desenvolvido uma visão crítica sobre seleção e aplicação materiais, seja em aplicações diretas industriais, como nas disciplinas subsequentes de projetos e desenvolvimento de produto onde será necessário a caracterizão dos materiais mais adequados para cada tipo de aplicação em projetos industriais.

BIBLIOGRAFIA

Bibliografia Básica:

ASHBY, Michael F; JOHNSON, Kara. Materiais e design: arte e ciência da seleção de materiais no design de produto. Trad. da 2. ed. americana por Arlete Simille Marques; rev. téc. Mara Martha Roberto e Ágata Tinoco. Rio de Janeiro, RJ: Elsevier, 2011. 346 p. ISBN 9788535238426.

ASHBY, Michael F; JONES, David R. H. Engenharia de materiais. Trad. da 3 ed. americana por Arlete Simille Marques. Rio de Janeiro , RJ: Elsevier, 2007. v. 1. 371 p. ISBN 9788535223620.

CALLISTER JR., William D. Ciência e engenharia de materiais: uma introdução. SOARES, Sérgio Murilo Stamile (trad.), d'ALMEIDA, José Roberto Moraes de (Rev.). 7. ed. Rio de Janeiro, RJ: LTC, 2007. 705 p. ISBN 9788521615958.

WIEBECK, Hélio; HARADA, Júlio. Plásticos de engenharia: tecnologia e aplicações. São Paulo, SP: Artliber, 2005. 349 p. ISBN 85-88098-27-X.

Bibliografia Complementar:

FUAD-LUKE, Alastair. The eco-design handbook: a complete sourcebook. 3. ed. San Francisco: Chronicle, 2009. 352 p. ISBN 9780811871297.

2020-DSG316 página 3 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

LEFTERI, Chris. Como se faz: 82 técnicas de fabricação para design de produtos. São Paulo, SP: Blucher, 2010. 240 p. ISBN 9788521205067.

LESKO, Jim. Design industrial: Materiais e processos de fabricação. [Industria design: materials and manufacturing]. Trad. Wilson Kindlein Júnior e Clovis Belbute Peres. São Paulo, SP: Edgard Blücher, 2008. 272 p. ISBN 9788521203377.

LIMA, Marco Antonio Magalhões. Introdução aos materiais e processos para designers. Rio de Janeiro, RJ: Ciência Moderna, 2006. 225 p. ISBN 8573934204.

MANO, Eloisa Biasotto. Polímeros como materiais de engenharia. São Paulo, SP: Edgard Blücher, 1996. 197 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos.

Pesos dos trabalhos:

 k_1 : 2,0 k_2 : 2,0 k_3 : 3,0 k_4 : 3,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

- Kl será a média das atividades de laboratório.
- K2 será a média das atividades quinzenais de aprendizagem ativa
- K3 será a atividade de exercício com questões objetivas
- K4 será a nota da apresentação dos projetos desenvolvidos com auxílio da aprendizagem ativa no decorrer do curso.

MEDIA DE APROVAÇÃO MA=(2xK1+2xK2+3xK3+3xK4)/10

2020-DSG316 página 4 de 9

OUTRAS INFORMAÇÕES		

2020-DSG316 página 5 de 9

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
Ces	Edupack	

2020-DSG316 página 6 de 9

APROVAÇÕES

Prof.(a) Viviane Tavares de Moraes Responsável pela Disciplina

Prof.(a) Claudia Alquezar Facca Coordenador(a) do Curso de Design

Data de Aprovação:

2020-DSG316 página 7 de 9

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
21 Т	Apresentação do laboratório, discussão e distribuição do projeto	0
	do 2º bimestre.	
21 E	Palestra de segurança.	0
22 T	Introdução aos polímeros, histórico.	0
22 E	Identificação de polímeros: classificação numérica; chama,	91% a
	densidade e ponto de fusão.problem based learning	100%
23 T	Revisão, estruturas, ligações propriedades gerais	0
23 E	Atividade Semana 1 - Projeto 1º bimestre - Propriedades dos	91% a
	materiais poliméricos- protótipoProject based learning	100%
24 T	Polímeros amorfos e semicristalinos, copolímeros, blendas	0
24 E	Atividade semana 2 - Projeto 1º bimestre - Processo do	91% a
	protótipoProjecto based learning	100%
25 T	Temperaturas de transição de fase (Tg e Tm).	0
25 E	Ensaios de tração, impacto e dureza - associação das propriedade	91% a
	mecânicas de peças fabricadas com polímeros.Peer instruction -	100%
	estudo de caso	
26 T	Deformações elásticas e plásticas de polímeros, relação estrutura	0
	propriedades.	
26 E	Atividade semana 3 - Projeto 1º bimestre - Processo do	91% a
	ProdutoProjecto based learning	100%
27 T	Propriedades, aplicações, exemplos - seleção (PP, PEBD, PEAD,	0
	PVC)	
27 E	Síntese PolimericaPeer instruction - estudo de caso	91% a
		100%
28 T	Propriedades, aplicações, exemplos - seleção (PMMA, PA, PC, PC,	0
	PET)	
28 E	Atividade semana 4 - Projeto 1º bimestre - Fabricação da	91% a
	embalagem, processo de reciclagem, sustentabilidadePeer	100%
	instruction - estudo de caso	
29 T	Atividade: Desafio PolímerosDesign thinkingProblem based learning	91% a
		100%
29 E	Atividade: Desafio PolímerosDesign thinkingProblem based learning	91% a
		100%
30 T	Processamento de termoplásticos I	0
30 E	Fabricação do molde do protótipo do projetoProject based learning	91% a
		100%
31 T	Processamento de termoplásticos II - Redação do artigo e	0
	preparação da apresentação	
31 E	Fabricação do protótipoProject based learning	91% a
	-	100%
32 E	Projeto 1º bimestre - Fabricação da peça	0
32 T	Elastômeros, propriedades e aplicação	0
33 T	Degradação, reciclagem de materiais poliméricos.	0
33 E	Fabricação da peça - modelagem	0

2020-DSG316 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

34 T	Adesivos	0	
34 E	Fabricação do molde m silicone a partir da peça	0	
35 E	Ensaio com diversos adesivos x materiais. Teste de molhabilidade	0	
	e compatibilidade		
35 T	Novos materiais	0	
36 T	Preparação da peça em resina	0	
36 E	Preparação da peça em resina	0	
37 E	Acabamento da peça	0	
37 T	Acabamento da peça	0	
38 T	Finalização do projeto	0	
38 E	Finalização do projeto	0	
39 E	Apresentação do projeto	0	
39 T	Apresentação do projeto	0	
40 T	Atividade substitutiva	0	
40 E	Atividade substitutiva	0	
41 T	PLANTÃO DE DÚVIDAS/ENCERRAMENTO	0	
41 E	PLANTÃO DE DÚVIDAS/ENCERRAMENTO	0	
Legenda: T = Teoria, E = Exercício, L = Laboratório			

2020-DSG316 página 9 de 9