	•	r		
Lasso reg	raccian	tor	Mathan	natice
Lasso ice	1 6331011	101	Mathen	iatics

<u>Lasso regression for Portuguese</u>

schoolMS		schoolMS	-1.169855763
sexM	0.817565729	sexM	-0.541573048
age	-0.132818044	age	0.125430588
addressU	0.304060079	addressU	0.271464984
famsizeLE3	0.409395784	famsizeLE3	0.227962892
PstatusT	-0.114561905	PstatusT	0.066550266
Medu	0.253366503	Medu	0.056463333
Fedu	0.233300303	Fedu	0.135308342
Mjobhealth	1.201629335	Mjobhealth	0.647768858
Mjobneattn	1.201023333	Mjobother	-0.001435661
Mjobservices	0.853817716	Mjobservices	0.241713393
Mjobservices	0.055017710	Mjobservices	0.333843234
Fjobhealth	0.090248757	Fjobhealth	-0.219519785
Fjobother	-0.008503719	Fjobother	0.213313103
Fjobservices	0.000303713	Fjobservices	-0.368704030
Fjobservices	0.716317798	Fjobteacher	0.712918611
reasonhome	0.710317736	reasonhome	0.712310011
reasonother	0.385420721	reasonother	-0.426584298
reasonreputation	0.305236995	reasonreputation	
guardianmother	0.303230333	guardianmother	-0.306121785
guardianother	•	guardianother	0.300121703
traveltime	-0.130990747	traveltime	•
studytime	0.257531647	studytime	0.396403997
failures	-1.661880666	failures	-1.387835893
schoolsupyes	-0.825500102	schoolsupyes	-1.224305008
	-0.460077155	famsupyes	1.224303000
famsupyes	0.059052807	paidyes	-0.276345736
paidyes	0.039032807	activitiesyes	0.163176843
activitiesyes	•	_	-0.126035046
nurseryyes	1.022163827	nurseryyes higheryes	1.701942399
higheryes			0.239014556
internetyes	0.198002688	internetyes romanticyes	-0.367335308
romanticyes	-0.716109590	famrel	0.120839565
famrel	0.046775346	freetime	
freetime	0.077935168		-0.117894039
goout	-0.361925108	goout	-0.041381922
Dalc	•	Dalc Walc	-0.201984863
Walc		walc health	-0.083216544
health	-0.083314647		-0.170237680
absences	0.028320085	absences	-0.031423576

rmse / mean = 0.4099021 = 41%

rmse / mean = 0.2309279 = 23%

Part 2

I performed Lasso regression. Displayed above are the coeffecients for each predictor.

<u>Prediction accuracy for "final grade"</u>

Mathematics: the model is quite poor, with a root-mean-squared-error of 41% of the sample mean of the final grade.

Portuguese: the model is better than the one for Mathematics, with a root-mean-squared-error of 23% of the sample mean of the final grade.

Interpretation

There are 4 nominal variables. "mother's job" and "father's job" have "at home" as the base case, so the relevant coefficients are relative to the "at home" case. E.g. a Maths student whose mother works in "health", is predicted to score 1.2 more points on the Maths test, than if the student's mother worked "at home". "Reason" has course preference as the base case. "Guardian" has "father" as base case. Similarly, binary variables have "no" as the base case.

Above are the plots of cross-validation Mean-Squared Error vs log(Lambda) for Maths and Portuguese respectively. Each log(Lambda) value corresponds to a unique Lasso model. The left vertical dotted line indicates the log(Lambda) value of the point with least cross-validation error. The right dotted line indicates the smallest model (the one with least predictors) whose error is within one standard error from the model indicated by the left dotted line.

The wide range of values for log(Lambda) between the two dotted lines, shows that there are many possible models each with different number of predictors, that produce similarly accurate predictions. This means that the coefficients should not be interpreted too seriously, because the Lasso regression does not give us much confidence in the truthfulness of any chosen model corresponding to a particular number of predictors. E.g. for Mathematics, the model at the right dotted line produces a model with only one predictor ("failures").

Logistic regression for bank data

age	-0.0001415071	day	0.0113335586
jobblue-collar	-0.2652712116	monthaug	-0.1744552316
jobentrepreneur	-0.0624738735	monthdec	0.1282695945
jobhousemaid	-0.1808366518	monthfeb	0.1925716377
jobmanagement	0.0150510370	monthjan	-0.8497269008
jobretired	0.6058998363	monthjul	-0.5958861945
jobself-employed	•	monthjun	0.4933176625
jobservices	•	monthmar	1.5320362249
jobstudent	0.4458274979	monthmay	-0.3976177022
jobtechnician	-0.0492008822	monthnov	-0.6670507511
jobunemployed	-0.4024502777	monthoct	1.4138041976
jobunknown	0.3975623497	monthsep	0.6826810408
maritalmarried	-0.3396536185	duration	0.0040917507
maritalsingle	-0.1026129203	campaign	-0.0608291238
educationsecondary	•	pdays	•
educationtertiary	0.2318290735	previous	•
educationunknown	-0.3581899935	poutcomeother	0.4502936237
defaultyes	0.4082144270	poutcomesuccess	2.3777377588
balance	•	poutcomeunknown	-0.0985305483
housingyes	-0.2237008673		
Loanyes	-0.5561009736	Confusion matrix	
contacttelephone	-0.0167035130	bankPred	
contactunknown	-1.2850063330		
		no	yes
		no 3919	81
		yes 344	177

• cross-validated Misclassification error = 0.09666003 = 9.7%

Part 3

I performed cross-validated logistic regression with regularisation.

<u>Prediction accuracy</u>

The cross-validated misclassification error of 9.7% is quite low, which means that using the above model, about 9.7% of our predictions will be wrong.

- positive predictive value = 177 / (81+177) = 0.6860465 = 69%
- subscription rate estimate (from sample) = 521/4521 = 0.11524 = 11.5%

Using the confusion matrix, we can see that out of the people we predict to be subscribers, we expect 69% of them will truly subscribe. This is much better than the expected 11.5% (estimated from sample) subscription rate if we asked people at random. This means that using the predictive model, resources put towards getting new subscribers will be well spent indeed (at 69% success rate).

Interpretation

The variables with no coefficient ("."), are found to compromise the model's predictive accuracy, and hence are dropped from the logistic regression. The x-axis denotes a range of models with different regularisation values ("Lambda"). The top row of the diagram indicates the number of predictors used. The model at the left dotted line is the one we have chosen here, since it produces the lowest cross-validated misclassification error. As the graph indicates, there is a whole range of possible models ranging from one with 36 predictors (the one we've chosen), to one with as few as 17 predictors, that give similar predictive accuracies. So we should not make too much of any one partiular variable.

A negative coefficient means that higher values of the variable are associated with proportionately lower chances of subscrition. A positive coefficient means that higher values of the variable are associated with proportionately higher chances of subscrition. (Keeping the values of other variables constant.) E.g. given two otherwise identical people, the retiree is $e^0.6$ = 1.8 times more likely to subscribe than the non-retiree. E.g.(2) the person who has personal loan is $1/e^0.556 = 0.57 = 57\%$ as likely to subscribe as the person who has no personal loan.

Part 1

The subquestions are all highly correlated within the main questions of Q87 and Q90 (vectors are long and in the same direction). As seen in the above principal components analysis biplot: the direction of the (principal component loading) vectors {Q87a,Q87b,...} are nearly identical. Same for {Q90a,Q90b,...}.

This is reasonable because Q87 concern positive traits about general life, while Q90 are about positive traits of the workplace. i.e. within the main question, the subquestions are very similar.

It is interesting to observe that general life (Q87) and workplace (Q90) are almost perfectly orthogonal (have no association with each other). This strongly suggests that people tend to compartmentalise (mentally separate) their assessment of general life and assessment of workplace.

We should not make too much of Q2a and Q2b, because of their short vector lengths from this biplot perspective. Though, we can try to note the weak positive association between the Q2 variables and Q87, i.e. being female / older is associated with better general life. Simarly, a weak negative associataion between Q2 and Q90, i.e. being female/older is associated with worse workplace. This does confirm some stereotypes about females / older people being less suited to the workplace, while tending to have a more positive attitude in general life.