Lei de Ohm e curva característica do diodo

Eduardo Parducci - 170272 Lucas Koiti Geminiani Tamanaha - 182579 Rodrigo Seiji Piubeli Hirao - 186837 Tanus Vaz Szabo - 187308

21 de Março de 2017

Conteúdo

1	Material Utilizado	4
2	Procedimento	4
	2.1 Determinar resistências	4
	2.2 Curva do Resistor	4
	2.3 Curva do Diodo (Polarização Direta)	4
	$2.4~$ Curva do Diodo (Polarização Reversa) $\ .\ .\ .\ .\ .\ .\ .\ .$	4
3	Circuitos	ţ

Lista de Figuras

1	Circuito para medição de resistências pequenas	ţ
2	Circuito para medição de resistências grandes	ļ
3	Circuito de montagem do diodo na polarização direta	(
4	Circuito de montagem do diodo na polarização reversa	(

1 Material Utilizado

- 1 Resistor de 100Ω
- 1 Resistor de 10Ω
- 1 Resistor de 220Ω
- 2 multímetros
- 1 Protoboard
- 1 Diodo de silício
- 1 Fonte de tensão contínua
- Cabos de plug "banana"

2 Procedimento

2.1 Determinar resistências

Determinar o valor dos resist
tores de $10\Omega, 100\Omega e220\Omega,$ com o uso do Multímetro na escala Ω juntamente com sua incerteza e comparar os valores com o nominal.
 Determinar os valores mínimo e máximo de tensão para a realização do experimento.

2.2 Curva do Resistor

Montar o Circuito 1 utilizando $R_p = 10\Omega$ e $R = 100\Omega$.

Realizar 24 medidas de tensão e corrente aumentando a tensão gradativamente em 0.5V, sendo $V_{min}=0V$ e $V_{max}=12V$.

Colocar os dados numa tabela com os seus valores e respectivos erros $V\pm\Delta V$ e $i\pm\Delta i$

2.3 Curva do Diodo (Polarização Direta)

Montar o Circuito 3 utilizando $R_p = 220\Omega$.

Realizar 20 medidas de tensão e corrente aumentando a tensão gradativamente em 0.5V, sendo $V_{min}=0V$ e $V_{max}=10V$.

Colocar os dados numa tabela com os seus valores e respectivos erros $V\pm\Delta V$ e $i\pm\Delta i$

2.4 Curva do Diodo (Polarização Reversa)

Montar o Circuito 4 utilizando $R_p = 10\Omega$.

Realizar 20 medidas de tensão e corrente aumentando a tensão gradativamente em 0.5V, sendo $V_{min}=0V$ e $V_{max}=10V$.

Colocar os dados numa tabela com os seus valores e respectivos erros $V\pm\Delta V$ e $i\pm\Delta i$

3 Circuitos

Figura 1: Circuito para medição de resistências pequenas

Figura 2: Circuito para medição de resistências grandes

Figura 3: Circuito de montagem do diodo na polarização direta

Figura 4: Circuito de montagem do diodo na polarização reversa