

دانشکدهی علوم ریاضی

مدرس: دكتر محمد هادي مستفيد

آمار و کاربرد ها

تمرین سری دو

شماره دانشجویی: ۴۰۱۱۰۰۷۱

نام و نامخانوادگی: کژال باغستانی

پرسش ۱

پرسش ۲

آ) بیان ب) برهان: می خواهیم نشان دهیم:

$$\forall \epsilon > 0$$
 $\lim_{n \to \infty} P(|\bar{X} - \mu| > \epsilon) = 0$

با توجه به نامساوی مارکوف داریم

$$P(X > a) < \frac{E[X]}{a}$$

پس داریم

$$P((\bar{X} - \mu)^2 > a^2) < \frac{E[(\bar{X} - \mu)^2]}{a^2}$$

که این یعنی

$$P((\bar{X} - \mu)^2 > a^2) < \frac{var(\bar{X})}{a^2}$$

و با توجه به i.i.d بودن Xi ها

$$var(\bar{X}) = \frac{\sigma^2}{n}$$

$$P(|\bar{X} - \mu| > \epsilon) < \frac{\sigma^2}{n\epsilon}$$
 for fixed ϵ and $\sigma < \infty$

$$0 < \lim_{n \to \infty} P(|\bar{X} - \mu| > \epsilon) < \lim_{n \to \infty} \frac{\sigma^2}{n\epsilon} = 0$$

$$\forall \epsilon > 0$$
 $\lim_{n \to \infty} P(|\bar{X} - \mu| > \epsilon) = 0$

پ)

پرسش ۳

آ) قضیه حد مرکزی: فرض کنیم دنبالهای از متغیرهای تصادفی مستقل و هم توزیع (i.i.d) را داشته باشیم، که به صورت X_1, X_2, \dots, X_n نشان داده می شوند. قضیه حد مرکزی بیان می کند که توزیع متغیر تصادفی

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

به توزیع متغیر تصادفی نرمال استاندارد نزدیک و نزدیکتر می شود وقتی که مقدار n به خوبی زیاد شود. به صورت رسمی، این قضیه به صورت زیر بیان می شود:

$$\lim_{n\to\infty} P\left(\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \le x\right) = \Phi(x)$$

که در این جا $\Phi(x)$ تابع توزیع متغیر تصادفی نرمال استاندارد است. $\Phi(x)$ کد پایتون:

```
src > hw2 > ② CLT.py > ...
    import numpy as np
    num_samples = 10000
    mu = 50
    lb = 0
    ub = 100

random_vars = np.random.uniform(lb, ub, (num_samples, n))
sample_means = np.mean(random_vars, axis=1)
# variance = 2500/3
variance = 2500/3
z = (sample_means - mu) / (np.sqrt(variance) / np.sqrt(n))

plt.hist(Z, bins=30, density=True, edgecolor='black', alpha=0.7)

x = np.linspace(-3, 3, 1000)
standard_normal = (1 / np.sqrt(2 * np.pi)) * np.exp(-0.5 * x**2)
plt.plot(x, standard_normal, color='red', linestyle='dashed')

plt.legend()
plt.grid(True)
plt.show()
```

خروجي:

پرسش ۴

آ) تعریف استقلال برای دو متغیر تصادفی به صورت زیر است:

$$E[XY] = E[X]E[Y]$$

که برای این دومتغیر تصادفی اگر تعریف کنیم Xi=flip(i)=H->1:0 داریم:

$$E[X] = E[X1 + X2] = E[X1] + E[X2] = \frac{1}{2} + \frac{1}{2} = E[X2] + E[X3] = E[X2 + X3] = E[Y] = 1$$
حالا كافيست $E[XY]$ را محاسبه كنيم كه داريم:

p	event	XY	Y	X
$\frac{1}{8}$	TTT	0	0	0
$\frac{1}{8}$	TTH	0	1	0
0	impossible	0	2	0
$\frac{1}{8}$	HTT	0	0	1
$\begin{array}{r} \frac{1}{8} \\ \frac{2}{8} \\ 1 \end{array}$	THT or HTH	1	1	1
$\frac{1}{8}$	THH	2	2	1
0	impossible	0	0	2
$\frac{1}{8}$	HHT	2	1	2
$\frac{1}{8}$	ННН	4	2	2

در نتیجه داریم:

$$E[XY] = \frac{2}{8} \times 1 + \frac{1}{8} \times 2 + \frac{1}{8} \times 2 + \frac{1}{8} \times 4 = 1.25$$

پس مستقل نیستند و کوواریانس آنها برابر است با:

$$cov(X, Y) = E[XY] - E[X]E[Y] = 1.25 - 1 = 0.25$$

تمرین سری دو ۳

 \mathbf{v} چون پرتاب های سکه مستقل هستند توزیع و میانگین و واریانس برای Y برابر با X است. پس به محاسبه این پارامتر ها برای X و Z می پردازم.

$$P(X = 0) = \frac{1}{4}$$
 $P(X = 1) = \frac{1}{2}$ $P(X = 2) = \frac{1}{4}$

که عبارت بالا توزیع X و Y است.

$$E[X] = E[Y] = 1$$

$$var(X) = var(Y) = E[X^2] - E[X]^2 = 1.5 - 1 = 0.5$$

و برای Z داریم :

$$P(Z=0) = \frac{1}{8}$$
 $P(Z=1) = \frac{3}{8}$ $P(Z=2) = \frac{3}{8}$ $P(Z=3) = \frac{1}{8}$

که عبارت بالا توزیع Z است.

$$E[Z] = 1.5$$

$$var(Z) = E[Z^2] - E[Z]^2 = 3 - 2.25 = 0.75$$

که به صورت کلی متغیر های X و Y توزیع دو جمله دارند با پارامتر های $(2, \frac{1}{2})$ و Z توزیع دو جمله ای با پارامتر $(3, \frac{1}{2})$ دارد.