Il ruolo del Fisico Medico in Medicina Nucleare

8 marzo 2019 Istituto Europeo di Oncologia – Milano

francesca.botta@ieo.it

La Medicina Nucleare è una Specialità Medica che si occupa di

DIAGNOSI e **TERAPIA**

attraverso l'uso di radionuclidi artificiali in forma non sigillata (liquidi, solidi, aeriformi) In una opportuna forma chimica o coniugati a molecole o cellule che fungono da vettori, i radionuclidi vengono introdotti nell'organismo sotto forma di soluzioni, sospensioni, aerosol o altro e possono comportarsi come traccianti funzionali, permettendo studi diagnostici "in vivo", o concentrarsi in tessuti patologici, permettendone il riconoscimento o l'irradiazione terapeutica.

La Medicina Nucleare è una Specialità Medica che si occupa di

DIAGNOSTICA – emettitori gamma

Al paziente è somministrato un radiofarmaco che tende a concentrarsi nella zona malata. L'emissione gamma proveniente dal tracciante radioattivo presente nel radiofarmaco viene raccolta su un rivelatore

Informazioni <u>funzionali</u> del tessuto in esame

IMMAGINI STATICHE

IMMAGINI A CORPO INTERO

IMMAGINI DINAMICHE

si basa sulla proprietà di alcuni rivelatori di radiazioni di convertire l'energia dissipata dai fotoni X e γ nelle loro interazioni, in impulsi elettronici di ampiezza proporzionale

COLLIMATORE E RIVELATORE

Mappe uniformità: necessaria alta statistica

100.000 conteggi

10.000.000 conteggi

Correzione di uniformità

 La mappa di correzione di uniformità armonizza le ultime irregolarità residue del rivelatore.

La mappa di correzione uniformità NON deve essere acquisita per correggere difetti macroscopici

La mappa di correzione tampona i difetti, ma non li risolve. Va usata solo per <u>raffinare</u> l'uniformità di macchine a posto.

FANTOCCI PER UNIFORMITA' PLANARE

a riempimento

RISOLUZIONE SPAZIALE

· E' la capacita' del sistema di rappresentare come distinte 2 sorgenti diverse

Risoluzione spaziale

Dipende dal collimatore, dall'isotopo e dalla distanza dal collimatore

COME MISURARE LA RISOLUZIONE

- Si riempie un tubicino capillare con l'isotopo desiderato
- Si acquisisce un'immagine ponendo il tubicino a 5, 10 15, cm dal collimatore
- Si crea un profilo di conteggi perpendicolare all'immagine del tubicino
- La risoluzione è la larghezza a metà altezza (FWHM) della gaussiana data dal profilo di conteggi
- Si misura in millimetri.

DIAGNOSTICA – emettitori di positroni: PET

Positron emission tomography (PET) scanner

Cristalli Scintillatori PET

	Nal(Tl)	BGO	LSO	GSO
Densità (g/cm³)	3.7	7.1	7.4	6.71
μ (cm ⁻¹)	0.34	0.92	0.81	0.62
Efficienza di scintillazione %	100	20	75	35
Costante di decadimento	230	300	40	60

↑ densità № ↑ efficienza di rivelazione (frenamento)

 \Uparrow eff. di scintillazione \Lsh \Uparrow risoluzione energetica-temporale

Accoppiamento rivelatori - PMT

La risoluzione energetica del sistema dipende dalla risoluzione intrenseca dello scintillatore, dal output luminoso, dall'efficienza e dall'UNIFORMITA' del sistema rivelatore

Blocco da 36/64 elementi BGO/LSO 4 PMT per blocco

Array multiplo di cristalli GSO accoppiati con una griglia di PMT *PIXELAR detector*

Curved Cristal technology NaI(Tl) C-Pet

PET Detector Architecture

Gantry ring

Sinogramma con "difetti"

sinogramma corretto

rivelatore fuori uso

blocco fuori uso

modulo fuori uso

Reconstruction

- Veloce Iterative Reconstruction con OS-EM
- Qualità migliore
- Riduce le striature e lo spillover vicino alla vescica e al cuore

Controlli di Qualità in PET

SFERE

POLMONE

FONDO

Ottimizzazione Radioprotezione del paziente

TERAPIA

Sistemica

Loco-regionale

dosimetria nelle terapie con radiofarmaci

"pre-trattamento"

eseguita *prima* della terapia,
per controllare la
biodistribuzione e stabilire
l'attività da somministrare
(organi critici)

"di verifica"

eseguita *durante* la terapia, per valutare la dose al bersaglio e organi sani

INDISPENSABILE nel caso di molecole sperimentali

NECESSARIA in caso di grande variazione interpaziente

$$\dot{D} = \frac{dD}{dt} = \frac{k \cdot A \cdot \sum_{i} n_{i} \cdot E_{i} \cdot \phi_{i}}{m}$$

$$D = \int_{0}^{\infty} \dot{D}(t) \cdot dt$$

3D dosimetry

SPECT/PET imaging: Distribuzione di attività a livello di voxel

Distribuzione di dose a livello di voxel

Analisi quantitativa delle immagini: la Radiomica

Advanced methods: Artificial Intelligence, Machine Learning

