MATH3075/3975 Financial Derivatives

School of Mathematics and Statistics University of Sydney

Semester 2, 2020

Tutorial sheet 8

Background: Chapter 3 – Multi-Period Market Models.

Exercise 1 We consider the two-period market model $\mathcal{M} = (B, S)$ with the savings account $B_t = (1+r)^t$ where the interest rate r = 0.1. The stock price process S is represented under \mathbb{P} by the following diagram

- (a) Find the risk-neutral probability measure \mathbb{Q} for the model $\mathcal{M} = (B, S)$.
- (b) Find the replicating strategy for the **digital call option** with strike K=8 and maturity T=2, that is, for the payoff X given by

$$X = h(S_2) = \begin{cases} 1, & \text{if } S_2 \ge 8, \\ 0, & \text{otherwise.} \end{cases}$$

Find the arbitrage price process $\pi_t(X)$ for t = 0, 1, 2.

(c) Compute the arbitrage price process for the *Asian option* with the payoff at maturity T=2 given by the following formula

$$Y = \left(\frac{1}{3}\left(S_0 + S_1 + S_2\right) - 4\right)^+.$$

Exercise 2 Consider the CRR model with T=2 and $S_0=80$, $S_1^u=104$, $S_1^d=88$. Assume that the interest rate r=0.2. Consider a European contingent claim X maturing at T=2 with the payoff given by the formula

$$X = (S_2 - S_1) \mathbb{1}_{\{S_2 - S_1 > 20\}} = \begin{cases} S_2 - S_1, & \text{on the event } \{S_2 - S_1 > 20\}, \\ 0, & \text{on the event } \{S_2 - S_1 \le 20\}. \end{cases}$$

- (a) Show explicitly that the contingent claim X is path-dependent.
- (b) Find the risk-neutral probability measure $\widetilde{\mathbb{P}}$ for the model $\mathcal{M} = (B, S)$ and compute the arbitrage price of X using the risk-neutral valuation formula

$$\pi_t(X) = B_t \mathbb{E}_{\widetilde{\mathbb{P}}}(XB_T^{-1} | \mathcal{F}_t), \quad t = 0, 1, 2.$$

- (c) Find the replicating portfolio (ϕ^0, ϕ^1) for the claim X and check that the equality $V_t(\phi) = \pi_t(X)$ is satisfied for t = 0, 1, 2.
- (d) Show that in any CRR model we have that $\mathbb{E}_{\widetilde{\mathbb{P}}}(S_2 S_1) = r(1+r)S_0$. Let $Y = (S_2 S_1)\mathbb{1}_{\{S_2 S_1 \leq 20\}}$. Find the price of Y at time 0 using the additivity of arbitrage prices and the fact that $X + Y = S_2 S_1$. Confirm your result by computing

$$\pi_0(Y) = B_0 \, \mathbb{E}_{\widetilde{\mathbb{P}}} \big(Y(B_2)^{-1} \big).$$

(e) Find the unique probability measure $\widehat{\mathbb{P}}$ on (Ω, \mathcal{F}_2) such that the process $\widehat{B}_t := B_t/S_t$, t = 0, 1, 2 is a martingale under $\widehat{\mathbb{P}}$ with respect to the filtration $\mathbb{F} = (\mathcal{F}_t)_{t=0,1,2}$ and check that $\pi_0(Y) = S_0 \mathbb{E}_{\widehat{\mathbb{P}}}(Y(S_2)^{-1})$.

Exercise 3 (MATH3975) We consider a discrete-time stochastic process $X = (X_t, t = 0, 1, ...)$ defined on a finite probability space $(\Omega, \mathcal{F}, \mathbb{P})$ endowed with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$. It is assumed throughout that a process X is adapted to the filtration \mathbb{F} , that is, X is \mathbb{F} -adapted.

(a) Assume that X has independent increments with respect to \mathbb{F} , meaning that for any $t = 0, 1, \ldots$ the increment $X_{t+1} - X_t$ is independent of the σ -field \mathcal{F}_t . Show that the process Y, which is given by the following expression

$$Y_t := X_t - \mathbb{E}_{\mathbb{P}}(X_t), \quad t = 0, 1, \dots,$$

is a martingale under \mathbb{P} with respect to the filtration \mathbb{F} .

(b) Let $A_0 = 0$ and for t = 0, 1, ...

$$A_{t+1} - A_t = \mathbb{E}_{\mathbb{P}}(X_{t+1} - X_t \,|\, \mathcal{F}_t).$$
 (1)

- (b1) Verify that the process \widetilde{Y} given by the equality $\widetilde{Y}_t := X_t A_t$ for $t = 0, 1, \ldots$ is a martingale under \mathbb{P} .
- (b2) We assume that the process $\widehat{Y}_t := X_t \widehat{A}_t$ for t = 0, 1, ... is a martingale under \mathbb{P} where the process \widehat{A} satisfies: $\widehat{A}_0 = 0$ and \widehat{A}_{t+1} is \mathcal{F}_t -measurable for every t = 0, 1, ... (we then say that the process \widehat{A} is \mathbb{F} -predictable). Show that $\widehat{A} = A$ where the process A is given by formula (1) with $A_0 = 0$.

Comment: In parts (b1)-(b2) we have shown that if a process X is \mathbb{F} -adapted, then there exists a unique \mathbb{F} -predictable process A with $A_0 = 0$ such that the process $\widetilde{Y} = X - A$ is a martingale under \mathbb{P} .

(c) Assume that a process $X = (X_t, t = 0, 1, ..., T)$ represents a gamble, meaning here that if the game is played at time t then the (positive or negative) reward at time t+1 per one unit of the bet equals $X_{t+1} - X_t$. The random size of the bet is given by an arbitrary \mathbb{F} -adapted process H called a gambling strategy. The profits/losses after t rounds of the game when a gambling strategy H is followed are given by the following equality (by convention, $G_0 = 0$)

$$G_t := \sum_{u=0}^{t-1} H_u(X_{u+1} - X_u).$$

Note that one does not pay any fee for the right to play the game X. By definition, we then say that the game X is fair if there is no gambling strategy H such that $\mathbb{E}_{\mathbb{P}}(G_t) \neq 0$ for some $t \leq T$.

- (c1) Show that the game is fair if and only if X is a martingale under \mathbb{P} with respect to the filtration \mathbb{F} .
- (c2) Consider an arbitrary \mathbb{F} -adapted process X. Argue that the corresponding game will become a fair game if the player is required to pay at time t the fee $A_{t+1} A_t$ per one unit of the bet where A is the unique \mathbb{F} -predictable process with $A_0 = 0$ that satisfies equality (1).