Mini-projet 2021 - Exploration des données de Pavkovic

Prénom Nom

2021-04-16

Contents

Synopsis du projet
Travail demandé
Remise du rapport
Critères d'évaluation
Objectifs scientifiques
1. Les données brutes
Chargement des données brutes
Transformation $\log 2$
Statistiques descriptives
2. Filtrage et normalisation des données
Filtrage 1 : élimination des gènes non détectés ou à peine exprimés
Normalisation entre échantillons
3. Les données normalisées
Statistiques par gène après normalisation
Annotation des gènes
Distribution des données
4. Analyse de regroupement des données
Filtrage 2 : sélection de gènes d'expression élevée et variable
ACP
Clustering
Enrichissement fonctionnel
Conclusions générales

The downloaded binary packages are in

/var/folders/9s/0zkjn8tm8xj7wp0059bl3v9000020t/T//RtmpgQxLMQ/downloaded_packages

Table 1: Loaded required libraries

 $\frac{\text{libraries}}{\text{knitr}}$ FactoMineR factoextra pheatmap biomaRt

R version 4.0.2 (2020-06-22)

Platform: x86_64-apple-darwin17.0 (64-bit)

Running under: macOS Mojave 10.14.6

```
Matrix products: default
```

BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:

```
[1] en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en US.UTF-8/en US.UTF-8
```

attached base packages:

```
[1] stats graphics grDevices utils datasets methods base
```

other attached packages:

```
[1] biomaRt_2.44.4 pheatmap_1.0.12 factoextra_1.0.7 ggplot2_3.3.3 FactoMineR_2.4 knitr_1.31
```

loaded via a namespace (and not attached):

[1] ggrepel_0.9.1	Rcpp_1.0.6	lattice_0.20-41	<pre>prettyunits_1.1.1</pre>	assertthat_0.2
[15] pillar_1.5.1	rlang_0.4.10	progress_1.2.2	curl_4.3	blob_1.2.1
[29] askpass_1.1	pkgconfig_2.0.3	BiocGenerics_0.34.0	htmltools_0.5.1.1	openssl_1.4.3
[43] withr_2.4.1	rappdirs_0.3.3	MASS_7.3-53.1	leaps_3.1	grid_4.0.2
[57] ellipsis_0.3.1	generics_0.1.0	vctrs_0.3.6	RColorBrewer_1.1-2	tools_4.0.2
[71] colorspace_2.0-	0 cluster_2.1.1	BiocManager_1.30.12	memoise_2.0.0	

Synopsis du projet

Travail demandé

Le but de ce travail est de mettre en oeuvre les méthodes vues dans le module 3 "R et statistiques" pour explorer le jeu de données de Pavokovic, et de rendre un rapport d'analyse au format .Rmd.

Nous fournissons ci-dessous une trame avec les principales sections attendues. Certaines contiennent déjà du code. Vous devrez en compléter d'autres. Sentez-vous libres d'adapter cette trame ou d'y ajouter des analyses complémentaires si elles vous aident à interpréter vos résultats.

Remise du rapport

Date: le 10 mai 2021 minuit. Si vous anticipez un problème pour remettre le rapport à cette date contactez-nous aussi rapidement que possible pour que nous puissions prévoir une remise plus tardive.

- Commencez par renommer le fichier .Rmd en remplaçant Prenom-NOM par vos nom et prénom.
- Le rapport est attendu en formats .Rmd + .HTML (en gardant l'option self_contained de l'en-tête activée).
- Déposez les fichiers dans un sous-dossier de vote compte du cluster. Attention, veillez à respecter précisément cette structure de chemin car nous nous baserons dessus pour récupérer vos résultats.

/shared/projects/dubii2021/[login]/m3-stat-R/mini-projet

Critères d'évaluation

- Reproductibilité des analyses: nous tenterons de regénérer le rapport HTML à partir de votre Rmd, en partant de notre compte sur le serveur IFB.
- Manipulation des objets R
- Mobilisation des méthodes statistiques vues au cours
- Pertinence des interprétations statistiques
- Pertinence des interprétations biologiques
- Clarté de la rédaction
- Clarté des illustrations (figures et tableaux): graphismes, légendes . . .

Nous vous encourageons à assurer la lisibilité de votre code (syntaxe, nommage des variables, commentaires de code)

Objectifs scientifiques

Nous partons du même jeu de données Fil Rouge de ce module issues de la publication Pavkovic, M., Pantano, L., Gerlach, C.V. et al. Multi omics analysis of fibrotic kidneys in two mouse models. Sci Data 6, 92 (2019). https://doi.org/10.1038/s41597-019-0095-5

Rappel sur les échantillons:

Deux modèles de fibrose rénale chez la souris sont étudiés:

- 1. Le premier est un modèle de néphropathie réversible induite par l'acide folique (folic acid (FA)). Les souris ont été sacrifiées avant le traitement (normal), puis à jour 1, 2, 7 et 14 (day1,...) après une seule injection d'acide folique.
- 2. Le second est un modèle irréversible induit chrirurgicalement (unilateral ureteral obstruction (UUO)). les souris ont été sacrifiées avant obstruction (day 0) et à 3, 7 et 14 jours après obstruction par ligation de l'uretère du rein gauche.

A partir de ces extraits de rein, l'ARN messager total et les petits ARNs ont été séquencés et les protéines caratérisées par spectrométrie de masse en tandem (TMT).

But scientifique: Dans le tutoriel sur les dataframes, vous avez travaillé sur les données de *transcriptome* du modèle UUO. Dans ce mini-projet, vous allez travailler sur les données du transcriptome du modèle FA afin de regrouper les observations (échantillon) et les gènes selon des profils d'expression similaires.

Votre projet se décompose en 4 parties:

- 1. statsitiques descriptives des données brutes: commandes fournies
- 2. normalisation des données : commandes fournies
- 3. statistiques descriptives des données normalisées: à vous de jouer
- 4. analyse de regroupement des données: à vous de jouer

1. Les données brutes

Vous n'avez rien à coder ici. Le code est fourni.

Chargement des données brutes

Le bloc suivant contient une fonction qui permet de télécharger un fichier dans l'espace de travail, sauf s'il est déjà présent. Nous l'utiliserons ensuite pour télécharger les données à analyser en évitant de refaire le transfert à chaque exécution de l'analyse.

```
#' @title Download a file only if it is not yet here
#' @author Jacques van Helden email{Jacques.van-Helden@@france-bioinformatique.fr}
#' @param url_base base of the URL, that will be prepended to the file name
#' @param file_name name of the file (should not contain any path)
#' @param local_folder path of a local folder where the file should be stored
#' @return the function returns the path of the local file, built from local_folder and file_name
#' @export©
download_only_once <- function(
    url_base,
    file_name,
    local_folder) {

## Define the source URL
    url <- file.path(url_base, file_name)</pre>
```

Nous téléchargeons deux fichiers dans un dossier local ~/m3-stat-R/pavkovic_analysis (vous pouvez changer le nom ou chemin dans le chunk ci-dessous), et les chargeons dans les data.frames suivants:

- Données brutes de transcriptome: fa_expr_raw
- Métadonnées: fa_meta

```
## Define the remote URL and local folder
pavkovic_url <- "https://github.com/DU-Bii/module-3-Stat-R/raw/master/stat-R_2021/data/pavkovic_2019/"
## Define the local folder for this analysis (where the data will be downloaded and the results generat
pavkovic folder <- "~/m3-stat-R/pavkovic analysis"</pre>
pavkovic_data_folder <- file.path(pavkovic_folder, "data")</pre>
## Note: we use check.names=FALSE to avoid replacing hyphens by dots
message("Downloading FA transcriptome file\t", "fa_raw_counts.tsv.gz",
  "\n\tfrom\t", pavkovic_url)
fa expr file <- download only once(</pre>
  url_base = pavkovic_url,
  file_name = "fa_raw_counts.tsv.gz",
  local_folder = pavkovic_data_folder)
message("Loading FA transcriptome data from\n\t", fa_expr_file)
fa_expr_raw <- read.delim(file = fa_expr_file,</pre>
                        header = TRUE,
                        row.names = 1)
message("Downloading FA metadata file\t", "fa_transcriptome_metadata.tsv",
```

Nous regardons la structure de chaque dataframe.

```
str(fa_expr_raw)
```

```
46679 obs. of 18 variables:
'data.frame':
$ day1_1 : num 2278.8 0 36.3 13.2 0 ...
$ day1 2 : num 1786.5 0 22.15 7.15 27.9 ...
$ day1 3 : num 2368.62 0 39.48 1.12 6.9 ...
$ day14_1 : num 627.758 0 14.471 0.867 5.692 ...
$ day14_2 : num 559.2 0 10.2 0 1.9 ...
$ day14_3 : num 611.434 0 31.691 0 0.655 ...
$ day2_1 : num 2145.22 0 300.56 1.71 57.38 ...
$ day2_2 : num 262.45 0 4.77 0 0 ...
$ day2_3 : num 745.84 0 123.9 5.26 38.9 ...
$ day3_1 : num 987.185 0 51.856 0.802 8.931 ...
$ day3_2 : num 1077.65 0 8.43 0 6.97 ...
$ day3_3 : num 1335.1 0 69.9 0 0 ...
$ day7_1 : num 1096.08 0 6.67 0 7.94 ...
$ day7 2 : num 1035.846 0 6.955 0.849 101.648 ...
$ day7_3 : num 1090.04 0 42.58 1.71 0.65 ...
$ normal_1: num 483.23 0 7.35 0.86 32.06 ...
$ normal_2: num 1842.1 0 11.2 0 10.4 ...
$ normal_3: num 475.7 0 1.03 0 0 ...
```

str(fa_meta)

3 réplicats.

```
'data.frame': 18 obs. of 5 variables:
$ dataType : chr "transcriptome" "transcriptome" "transcriptome" "transcriptome" "...
$ sampleName : chr "day14_1" "day14_2" "day14_3" "day1_1" ...
$ condition : chr "day14" "day14" "day14" "day1" ...
$ sampleNumber: int 1 2 3 1 2 3 1 2 3 1 ...
$ color : chr "#FF4400" "#FF4400" "#BBD7FF" ...
```

Les deux fichiers ne donnent pas les observations de l'échantillon dans le même ordre:

```
fa_meta$sampleName == names(fa_expr_raw)
```

```
fa_expr_raw <- fa_expr_raw[,sample_order]
fa_meta <- fa_meta[match(sample_order, fa_meta$sampleName),]

# View(fa_meta)
kable(fa_meta, caption = "Metdata for Pavkovoc FA transcriptome")</pre>
```

Table 2: Metdata for Pavkovoc FA transcriptome

	dataType	sampleName	condition	sampleNumber	color
16	transcriptome	normal_1	normal	1	#BBFFBB
17	transcriptome	$normal_2$	normal	2	#BBFFBB
18	transcriptome	$normal_3$	normal	3	#BBFFBB
4	transcriptome	$day1_1$	day1	1	$\#\mathrm{BBD7FF}$
5	transcriptome	$day1_2$	day1	2	$\#\mathrm{BBD7FF}$
6	transcriptome	$day1_3$	day1	3	$\#\mathrm{BBD7FF}$
7	transcriptome	$day2_1$	day2	1	#F0BBFF
8	transcriptome	$day2_2$	day2	2	#F0BBFF
9	transcriptome	$day2_3$	day2	3	#F0BBFF
10	transcriptome	$day3_1$	day3	1	#FFFFDD
11	transcriptome	$day3_2$	day3	2	#FFFFDD
12	transcriptome	$day3_3$	day3	3	#FFFFDD
13	transcriptome	$day7_1$	day7	1	#FFDD88
14	transcriptome	$day7_2$	day7	2	#FFDD88
15	transcriptome	$day7_3$	day7	3	#FFDD88
1	transcriptome	$day14_1$	day14	1	#FF4400
2	transcriptome	$day14_2$	day14	2	#FF4400
3	transcriptome	$day14_3$	day14	3	#FF4400

=> Ainsi, nous avons un jeu de données avec un échantillon de 18 observations et des données d'expression de 46679 gènes.

Transformation log2

Appliquez une transformation $\log 2$ des données brutes, après avoir ajouté un epsilon $\epsilon = 1$ (les valeurs nulles seront donc représentées par un $\log 2(\text{counts})$ valant 0. Stockez le résultat dans un data frame nommé fa_expr_log2.

Affichez un fragment des tableaux fa_expr_raw et fa_expr_log2 en sélectionnant les lignes 100 à 109 et les colonnes 5 à 10, afin de vous assurer que la transformation log2 a bien fonctionné.

```
## Log2 transformation of the transcriptome data
epsilon <- 1
fa_expr_log2 <- log2(fa_expr_raw + epsilon)
# dim(fa_expr_log2)
# View(head(fa_expr_log2))

## Display of a fragment of the data before and after log2 transformation
kable(fa_expr_raw[100:109, 5:10], caption = "Fragment des données transcriptomiques brutes")</pre>
```

Table 3: Fragment des données transcriptomiques brutes

day1_2	$\rm day 1_3$	${\rm day}2_1$	$day2_2$	$day2_3$	day3_1
ENSMUSG0000000056 5 99.648075	304.093177	1052.689447	106.995584	347.13842	479.59911

$day1_2$	$day1_3$	${\rm day}2_1$	$day2_2$	${\rm day2}_3$	day3_1
ENSMUSG00000000556308.026306	1349.126716	818.257157	116.136417	3406.45030	766.09722
ENSMUSG00000000575999.832586	500.735597	473.399472	36.258005	410.57787	347.05054
ENSMUSG0000000058942.511039	744.646735	546.260344	87.788535	319.12679	461.45732
ENSMUSG000000005 30 463.845705	2743.404374	2283.051270	1115.588250	1491.61384	1576.68451
ENSMUSG000000000 683 41.854530	3561.805180	3674.188108	589.840068	1399.10751	3446.01856
ENSMUSG0000000000000791.312561	558.710943	489.579657	77.008213	256.00200	282.80077
ENSMUSG00000000606 4.785252	6.566374	3.970399	0.000000	138.48677	0.00000
ENSMUSG0000000061715.839486	29.138902	30.228506	6.670500	18.27493	13.41152
ENSMUSG0000000062736.673777	35.967747	46.297517	2.878275	17.03638	15.45854

kable(fa_expr_log2[100:109, 5:10], caption = "Fragment des données transcriptomiques après transformati

Table 4: Fragment des données transcriptomiques après transformation log2

	day1_2	day1_3	day2_1	day2_2	day2_3	day3_1
ENSMUSG00000000567	9.230376	8.253106	10.041234	6.754829	8.443517	8.908690
ENSMUSG00000000568	9.978748	10.398879	9.678173	6.872046	11.734477	9.583266
ENSMUSG00000000579	9.230819	8.970783	8.889959	5.219479	8.685022	8.443153
ENSMUSG00000000581	9.881896	9.542348	9.096084	6.472302	8.322500	8.853176
ENSMUSG00000000594	11.581599	11.422277	11.157379	10.124882	10.543625	10.623593
ENSMUSG00000000600	11.706865	11.798798	11.843602	9.206624	10.451322	11.751133
ENSMUSG00000000605	9.629926	9.128538	8.938344	6.285554	8.005636	8.148735
ENSMUSG00000000606	2.532380	2.919602	2.313362	0.000000	7.123984	0.000000
ENSMUSG00000000617	4.073776	4.913555	4.964792	2.939321	4.268654	3.849151
ENSMUSG00000000627	5.235489	5.208195	5.563693	1.955415	4.172838	4.040765

Statistiques descriptives

Dans le tutorial sur les dataframes sur le jeu de données "uuo" (relisez le corrigé), nous vous avons demandé de créer un data frame qui collectera les statistiques par gène et par échantillon. Nous vous demandons de réaliser une étude similaire sur les données "FA".

Par échantillon avant normalisation

Nous créons un data.frame nommé sample_stat_prenorm qui comportera une ligne par échantillon et une colonne par statistique. Nous calculons les statistiques suivantes sur les valeurs log2 d'expression de chaque échantillon:

- moyenne
- écart-type
- intervalle inter-quartiles
- premier quartile
- médiane
- troisième quartile
- maximum
- nombre de valeurs nulles

Il sera affiché avec la fonction kable() (n'oubliez pas la légende).

```
sample_stat_prenorm <- data.frame(</pre>
  mean = apply(fa_expr_log2, 2, mean, na.rm=TRUE),
```

```
sd = apply(fa_expr_log2, 2, sd, na.rm=TRUE),
   iqr = apply(fa_expr_log2, 2, IQR, na.rm=TRUE),
   Q1 = apply(fa_expr_log2, 2, quantile, p = 0.25, na.rm=TRUE),
   median = apply(fa_expr_log2, 2, median, na.rm=TRUE),
   Q3 = apply(fa_expr_log2, 2, quantile, p = 0.75, na.rm=TRUE),
   max = apply(fa_expr_log2, 2, max, na.rm=TRUE),
   null = apply(fa_expr_log2 == 0, 2, sum, na.rm=TRUE)
)

kable(sample_stat_prenorm, caption = "Sample-wise statistics before normalisation.")
```

Table 5: Sample-wise statistics before normalisation.

	mean	sd	iqr	Q1	median	Q3	max	null
normal_1	2.876096	3.382687	5.566333	0	1.115495	5.566333	23.48952	21415
$normal_2$	3.475984	3.851531	6.702346	0	1.991260	6.702346	24.43355	20203
$normal_3$	2.796962	3.301372	5.419783	0	1.057748	5.419783	23.47218	21660
$day1_1$	3.003791	3.526143	5.901203	0	1.074190	5.901203	23.65130	21700
$day1_2$	3.516314	3.877108	6.816493	0	2.019190	6.816493	24.58225	20152
$day1_3$	3.607632	3.917601	6.946987	0	2.252981	6.946987	24.70005	19621
$day2_1$	3.608242	3.944769	7.000535	0	2.170400	7.000535	24.32636	19978
$day2_2$	2.088503	2.832614	3.958139	0	0.000000	3.958139	21.94520	24446
$day2_3$	3.071767	3.573520	6.008117	0	1.309292	6.008117	23.47538	21455
$day3_1$	3.233264	3.638371	6.300924	0	1.621087	6.300924	23.41316	20772
$day3_2$	3.163046	3.595828	6.231985	0	1.556653	6.231985	23.03797	21142
$day3_3$	3.440775	3.777905	6.727257	0	1.991235	6.727257	23.97460	20287
$day7_1$	3.296409	3.667439	6.515860	0	1.703173	6.515860	23.34983	20865
$day7_2$	3.251819	3.587848	6.350051	0	1.822801	6.350051	23.20695	20467
$day7_3$	3.289691	3.617495	6.400883	0	1.954087	6.400883	23.53623	20045
$day14_1$	3.102341	3.484017	6.044672	0	1.597272	6.044672	23.41418	20496
$day14_2$	3.147517	3.557991	6.130466	0	1.600695	6.130466	23.87931	20870
day14_3	3.192445	3.533419	6.250143	0	1.699228	6.250143	23.46460	20396

Par gène avant normalisation

Nous créons ci-dessous un data frame nommé gene_stat_prenorm qui comportera une ligne par gène et une colonne par statistique. Nous calculons les statistiques suivantes sur les valeurs log2 de chaque gène.

- movenne
- médiane
- écart-type
- premier quartile
- troisième quartile
- maximum
- nombre de valeurs nulles
- ullet inter-quartiles

Ces résultats seront stockés dans un data frame avec 1 ligne par échantillon et 1 colonne par statistique. Vous afficherez les lignes 100 à 109 de ce tableau de statistiques avec la fonction kable() (n'oubliez pas la légende).

```
## Gene-wise statistics before normalisation
gene_stat_prenorm <- data.frame(
   mean = apply(fa_expr_raw, 1, mean, na.rm = TRUE),
   sd = apply(fa_expr_raw, 1, sd, na.rm = TRUE),</pre>
```

```
iqr = apply(fa_expr_raw, 1, IQR, na.rm = TRUE),
Q1 = apply(fa_expr_raw, 1, quantile, p = 0.25, na.rm = TRUE),
median = apply(fa_expr_raw, 1, median, na.rm = TRUE),
Q3 = apply(fa_expr_raw, 1, quantile, p = 0.75, na.rm = TRUE),
max = apply(fa_expr_raw, 1, max, na.rm = TRUE),
null = apply(fa_expr_raw == 0, 1, sum, na.rm = TRUE)
)
kable(gene_stat_prenorm[100:109, ], caption = "Gene-wise statistics before normalisation")
```

Table 6: Gene-wise statistics before normalisation

	mean	sd	iqr	Q1	median	Q3	max	null
ENSMUSG000000	0 825 6744	286.399084	364.362298	91.046357	261.659973	455.40866	1052.68945	0
ENSMUSG000000	0 85763 48825	694.432189	282.978949	575.571199	711.096105	858.55015	3406.45030	0
ENSMUSG000000	0 0023.707 5702	162.290415	157.732606	340.417017	447.572742	498.14962	728.51737	0
ENSMUSG000000	0 498 <i>8</i> 178227	248.612029	259.324338	320.599085	471.269224	579.92342	942.51104	0
ENSMUSG000000	0 2053 :58334	1237.521694	937.571105	1400.226182	1868.718762	2337.79729	6408.96044	0
ENSMUSG000000	0 2269 9978163	911.222891	1480.192582	1719.874980	2093.572929	3200.06756	3674.18811	0
ENSMUSG000000	0 325 0552118	169.456624	195.879561	221.735904	282.608205	417.61546	791.31256	0
ENSMUSG000000	00 96926 9258	32.151350	2.736779	1.178311	1.934744	3.91509	138.48677	4
ENSMUSG000000	0 086807 4116	9.470819	13.654701	12.188276	18.150391	25.84298	36.00235	0
ENSMUSG000000	0 056223 306	14.341852	12.308127	4.780913	10.064895	17.08904	46.29752	0

2. Filtrage et normalisation des données

Vous n'avez rien à coder ici. Le code est fourni.

Il existe plusieurs façons de normaliser les données de transcriptome vues dans les modules 4 et 5 (cf. total counts, quantiles, TMM, RLE, limma voom,...), mais nous avons choisi ici une solution simple tout en étant robuste pour normaliser les données en standardisant le 3ème quantile.

La méthode choisie ici consiste à :

- écarter les gènes "non-détectés", c'est-à-dire ceux ayant des valeurs nulles dans au moins 90% des échantillons;
- écarter les gènes à peine exprimés, c'est-à-dire ceux ayant une valeur moyenne < 10 (arbitrairement);
- standardiser les échantillons sur le 3ème quartile des valeurs non-nulles: on divise par le 3ème quartile de l'échantillon et on multiplie par le 3ème quartile déterminé sur l'ensemble des échantillons.

Nous fournissons ci-dessous le code.

Filtrage 1 : élimination des gènes non détectés ou à peine exprimés

```
## Data filtering: genes having at least 90% null values
undetected_genes <- gene_stat_prenorm$null >= ncol(fa_expr_raw) * 0.9
print(paste0("Undetected genes (null in >= 90% samples): ", sum(undetected_genes)))
```

[1] "Undetected genes (null in >= 90% samples): 14380"

```
## Data filtering: genes having a mean expression < 10
barely_expressed_genes <- gene_stat_prenorm$mean < 10
print(paste0("Barely expressed genes (mean < 10): ", sum(barely_expressed_genes)))</pre>
```

[1] "Barely expressed genes (mean < 10): 26286"

```
## Apply filtering on both criteria
discarded_genes <- undetected_genes | barely_expressed_genes
print(paste0("Discarded genes: ", sum(discarded_genes)))</pre>
```

[1] "Discarded genes: 26288"

```
kept_genes <- !discarded_genes
print(paste0("Kept genes: ", sum(kept_genes)))</pre>
```

[1] "Kept genes: 20391"

```
## Genes after filtering
fa_expr_log2_filtered <- fa_expr_log2[kept_genes, ]</pre>
```

Normalisation entre échantillons

```
## Generate a data frame where null values are replaced by NA
fa_expr_nonull <- fa_expr_log2_filtered
fa_expr_nonull[fa_expr_log2_filtered <= 0] <- NA
sum(is.na(fa_expr_nonull))</pre>
```

[1] 5598

```
## Compute the 3rd quartile of non-null values for each sample and store them in a vector:
sample_q3_nonull <- apply(fa_expr_nonull, 2, quantile, prob = 0.75, na.rm = TRUE)
# print(sample_q3_nonull)

## Compute the Q3 for all the values, which will serve as target value for the standardised sample Q3
all_q3_nonull <- quantile(unlist(fa_expr_nonull), prob = 0.75, na.rm = TRUE)
# print(all_q3_nonull)

## Standardise expression on the third quartile of non-null values
## Trick : we transpose the table to apply the ratio sample per sample,
## and then transpose the results to get back the genes in rows and samples in columns
fa_expr_log2_standard <- t(t(fa_expr_log2_filtered) * all_q3_nonull / sample_q3_nonull)
# quantile(unlist(fa_expr_log2_standard), probs = 0.75, na.rm = TRUE)

## We also compute the values for the "nonull" table for
## the sake of comparison and to check that the third quantiles of non-null
## values are well identical across samples.
fa_expr_log2_standard_nonull <- t(t(fa_expr_nonull) * all_q3_nonull / sample_q3_nonull)
# quantile(unlist(fa_expr_log2_standard_nonull), probs = 0.75, na.rm = TRUE)

## Compute Q3 before and after standardisation, including or not the null values
standardisation_impact <- data.frame(
    before_all = apply(fa_expr_log2_filtered, 2, quantile, prob = 0.75, na.rm = TRUE),
    before_nonull = apply(fa_expr_log2_standard_nonull, 2, quantile, prob = 0.75, na.rm = TRUE),
    after_nonul = apply(fa_expr_log2_standard_nonull, 2, quantile, prob = 0.75, na.rm = TRUE)

## Note: after standardization the Q3 of the data show some variations
## because we compute them here with the null values
```

Table 7: Impact of standardization on the third quantile (Q3) per sample. Third quantiles are computed before and after standardisation, with either all the values of the filtered table, or only the non-null values.

	before_all	before_nonull	after_nonul	after_all
normal_1	7.892971	7.929471	8.546124	8.506785
$normal_2$	9.095259	9.120100	8.546124	8.522846
$normal_3$	7.690496	7.728764	8.546124	8.503808
$day1_1$	8.275875	8.310843	8.546124	8.510165
$day1_2$	9.215737	9.236819	8.546124	8.526618
$day1_3$	9.339495	9.356787	8.546124	8.530330
$day2_1$	9.372222	9.391459	8.546124	8.528618
$day2_2$	6.401122	6.563217	8.546124	8.335056
$day2_3$	8.428494	8.462042	8.546124	8.512242
$day3_1$	8.600914	8.618327	8.546124	8.528857
$day3_2$	8.449052	8.476090	8.546124	8.518862
$day3_3$	8.929730	8.945829	8.546124	8.530744
$day7_1$	8.637420	8.652095	8.546124	8.531628
$day7_2$	8.457495	8.478531	8.546124	8.524920
$day7_3$	8.568555	8.585032	8.546124	8.529721
day14_1	8.181662	8.194184	8.546124	8.533064
day14_2	8.339087	8.364105	8.546124	8.520562
day14_3	8.313689	8.334105	8.546124	8.525188

3. Les données normalisées

A vous de jouer!

Statistiques par gène après normalisation

Générez un data frame avec une ligne par gène à partir du tableau de données normalisées, avec les statistiques suivantes (une statistique par colonne):

- movenne
- variance
- écart-type
- coefficient de variation (écart-type divisé par la moyenne)
- intervalle inter-quartiles
- minimum
- médiane
- maximum

```
## Gene-wise statistics after normalisation
gene_stat_norm <- data.frame(
   mean = apply(fa_expr_log2_standard, 1, mean, na.rm = F),
   var = apply(fa_expr_log2_standard, 1, var, na.rm = TRUE),
   sd = apply(fa_expr_log2_standard, 1, sd, na.rm = F),
   CV = NA,
   min = apply(fa_expr_log2_standard, 1, min, na.rm = TRUE),
   Q1 = apply(fa_expr_log2_standard, 1, quantile, p = 0.25, na.rm = TRUE),
   median = apply(fa_expr_log2_standard, 1, median, na.rm = TRUE),</pre>
```

```
Q3 = apply(fa_expr_log2_standard, 1, quantile, p = 0.75, na.rm = TRUE),
max = apply(fa_expr_log2_standard, 1, max, na.rm = TRUE),
null = apply(fa_expr_log2_standard == 0, 1, sum, na.rm = TRUE)
)
gene_stat_norm$CV <- gene_stat_norm$sd / gene_stat_norm$mean</pre>
```

Annotation des gènes

Chaque gène étant donné par son identifiant dans la base de données ENSEMBL vous utiliserez le paquet biomaRt de bioconductor pour ajouter des annotations : symbole, chromosome, coordonnées génomiques, brin. Suivez pas à pas la méthode proposée:

- sélectionnez la base de données ENSEMBL avec la fonction useMart(). Attention à choisir le bon génome avec l'agument dataset: mmusculus_gene_ensembl
- avec la fonction getBM() récupérez de la base de données ENSEMBL les champs demandés (*pour symbole utilisez external_gene_name*) en appliquant "ensembl_geneid" pour l'agument filter et en indiquant pour l'argument values le vecteur des identifiants des gènes présents dans le dataframe gene stat norm. Vous obtenez un dataframe.

A présent, ajoutez au dataframe gene_stat_norm en lères colonnes les annotations retrouvées grâce à biomaRt. Attention, certains gènes ne sont pas retrouvés dans la version d'ENSEMBL sur biomaRt donc laissez des NA comme données manquantes dans ce cas. Nous vous recommandons d'utiliser la function merge() ou left_join() de dplyr pour fusionner les deux dataframes en un seul.

Table 8: Gene-wise statistics after normalisation

ensembl_ extrernaid_eteroe nce	ossonacet <u>q</u> aceniti <u>o</u> postita	ionan var	sd	CV	min	Q1	medianQ3	max	null
100 ENSMUS C 6,0000000000724	7760944177616109	5.59500.197	728.4114	416.6879	93 8.83 6	9442	304632564829	946.0126	584
101 ENSMUS Æ 1000000000000000000000000000000000000	778658567879444	4.9365 9 £86	58 3.276 6	60 5.05 :	51 3.7 95	42.333	36 \$2 9844 5 (510	01 62 47	1004
102 ENSMUS IGOS 100000 007 32	7790513 6 791974 7	5.543 72.5 85	59 0.3 08	30 7.423)(00 2 7. 59 4	50.9 17	74 9 6736467.856	66 8.2 50	1207
103 ENSMUS S ‡0 57 00000 3 0738	1237896 82 3824499	8.4268 3.2 74	1601.4524	406.56	2189477	86224	50 9 &304 8 £699	99 9.6 184	1200
104 ENSMUS R-pD0 000000740	12382908 2 3831983	10.820 83 83	30 7.8 764	4 79.4 0B	3 71102.2 5	648.56	61 09. 850 25.9 6	66 164 62	290 0
105 ENSMUS C 1000 Q010 0 080 743	1239310 02 39395 02	7.6196 9.3 79	940.7986	60 05 242	25 2.61 10	12.070	02 93 98 74.9 08	8298.86	63073
106 ENSMUS R-po0 0000 007 51	7518899 2 7523915 0	7.3689 7.5 22	26 0.99 2	29 02.409 8	8 15.3% 4	87.865	51 9.2 419 8.6 76	69 4.4 010	795
107 ENSMUS © 20000 00000753	7530059 5 53135 27	2.8306 3.9 68	89 4.74 3	30 6.1 908	3 70.600 0	0259	50 3 9314 3.9 59	96 5 £177	214
108 ENSMUS CHOOQOO (80759	126642772722248	8.61 7902 302	27 335 6(20.2063	38 4.90 4	384808	83 9 .11978 9 8791	16201.03	96 9 2
109 ENSMUS C pa@a000@766	670850669881981	5.3560 8.6 39	98 95'9 9	99 3.4 91	93 3.29 7	2468 32	25 2. 75193 3.3 33	75 6 . 4 01	1433

Challenge falcultatif:

Enfin, réordonnez les gènes par position génomique et affichez les lignes 5 premières et 5 dernières lignes de ce tableau de statistiques.

```
gene_stat_norm <- gene_stat_norm[order(gene_stat_norm$chromosome_name, gene_stat_norm$start_position),]
kable(gene_stat_norm[c(1:5, (nrow(gene_stat_norm)-4):nrow(gene_stat_norm)), ], caption = "Gene-wise stat_norm)</pre>
```

Table 9: Gene-wise statistics after normalisation.

ensembl exetre m id deno	ossomet <u>rpositio</u> postita	ion hean var	sd	CV	min	Q1	mediarQ3	max	null
11991ENSMUS X30 00000051951	327612437417211	4.7797 5.5 56	66 2.03 47	76452961	102.75224	88.1843	34 2.94 699 5 .89	5 26. 801	470
1793£NSMUS G£000008003 3377	343595434387721	2.371040.1108	80 2.002 6	58 0.85 4	18440600	000.0249	928 86 90 4.5 22	79 58 706	4450
1787ŒNSMUS G:00300481 3161	366311536661261	6.9874 0.2 94	460.342	280.077	7 68.410 .4	13 53 705	53 2.49 79375.113	34 82 854	6207
17551ENSMUS G600093812 331	371753237291271	4.7113 02 660	0507.083.2	27 5.48 2	252.872	2 792 09	93 4.3% 01 6.9 80	62 85 770	961
17647ENSMUS G6000008E0 2592	382223338245831	5.8545 2.6 71	1707.8831.9	96 2.03 9	9 99.788 9	1 52 80	00 5275 68 5.2 1	0062211	903
1789ŒNSMUS G6000005803 234	16691330669703 3	11.652 6632 9	9702.0366)1 6.7)B(90869	8 783 1	1905.59046.79	64 179.4 8	59 7 8
1829ENSMUS G600000204 381	4014424 @0147214	2.8262 3.6 293	3817.184	19 02 642	21 5 .DDC	02035	52 7.68 89 3.9 7	505.0017	8634
1737ÆNSMUS GÐŒŒ 101106	$6899787 \mathbf{\$} 900846 9$	2.6634 26 768	87 17.838 3	39 6462 4	4 75.06 0	020.014	48 7.5 1499 6 245′	79 9.1 756	5327
16671ENSMUS G6047028396 768	$9079600 \\ 70827734$	8.5091 79 68	880.187	68 0.33 0	30 4.32 1	90.6701	11 89 5315 9 .08	2058.20	68665
17213ENSMUS G 6000000299871	9084868 2 085530 9	2.1624 25 86	62 0.82 .9	9960087	78 6.7 0400	000043	30 928 159 3 .121	48 6 . 3 94	224

Distribution des données

• Dessinez sous forme d'un histogramme la distribution des valeurs après normalisation (tous échantillons confondus)

• Dessinez un box plot des échantillons avant et après normalisation, et commentez la façon dont l'effet de la normalisation apparaît sur ces graphiques.

```
#### Box plots to show normalisation impact ####
par(mar = c(4,6,4,1)) ## Set the margins
par(mfrow = c(2,2))
boxplot(fa_expr_log2_filtered,
        horizontal = TRUE,
        xlab = "log2(counts)",
        las = 1,
        col = fa meta$color,
        main = "Before standardisation\nall values")
boxplot(fa_expr_nonull,
        horizontal = TRUE,
        xlab = "log2(counts)",
        las = 1,
        col = fa_meta$color,
        main = "Before standardisation\nzeros discarded")
boxplot(fa_expr_log2_standard_nonull,
        horizontal = TRUE,
```

distribution after standardisation

Figure 1: Distribution of expression values (log2 counts) after gene filtering and standardisation on the sample-wise third-quartile of non-null values. The vertical line highlights the mean value.

```
xlab = "log2(counts)",
    las = 1,
    col = fa_meta$color,
    main = "Standardised\nzeros discarded")
boxplot(fa_expr_log2_standard,
    xlab = "log2(counts)",
    las = 1,
    horizontal = TRUE,
    col = fa_meta$color,
    main = "Standardised\nall values")

par(mfrow = c(1, 1))
```

4. Analyse de regroupement des données

par(mar = c(4,5,5,1))

Filtrage 2 : sélection de gènes d'expression élevée et variable

Pour réduire le nombre de gènes, nous allons écarter les gènes faiblement exprimés (log2 moyen inférieur à 4), et ne retenir que ceux qui montrent des variations importantes entre échantillons. Pour ce dernier critère, nous nous basons sur le coefficient de variation afin de relativiser la dispersion (écart type) par rapport à la tendance centrale (moyenne).

Sélectionnez les gènes ayant un niveau log2 moyen minimal supérieur à 3 (s > 3) et un coefficient de variation supérieur à 0.5 (CV > 0.5). Note: ces valeurs sont parfaitement arbitraires, elles ont été choisies pour obtenir un nombre raisonnable de gènes.

```
## Compute a Boolean vector indicating whether each gene passes or not the expression level threshold
high_expression <- gene_stat_norm$mean > 3
# table(high_expression) # count number of genes with high/weak expression

## Compute a Boolean vector indicating whether each gene passes or not the variation coefficient thresh
high_variation <- gene_stat_norm$CV > 0.5
# table(high_variation) # count number of genes with weak high coeffficient of variation
```


Figure 2: Box plots showing the impact of normalisation

```
## Compute a Boolean vector indicating whether each gene passes or not the variance threshold
# high_variance <- gene_stat_norm$var > 2
# table(high_variance) # count number of genes with weak high variance

## Select genes having both a high mean expression and a high variation coefficien
selected_genes <- high_variation & high_expression
# table(selected_genes) # count number of genes with weak high coeffficient of variation
print(pasteO("Selected genes: ", sum(selected_genes)))</pre>
```

[1] "Selected genes: 473"

```
## Create a data frame with the expression of the selected genes
fa_expr_selected <- fa_expr_log2_standard[selected_genes, ]</pre>
```

Dessinez des histogrammes des valeurs d'expression avant et après cette sélection de gènes, et commentez les différences.

```
#### Histograms of expression before and after gene selection ####

par(mfrow = c(2,1))
hist(unlist(fa_expr_log2_standard),
    breaks = seq(from = 0, to = max(fa_expr_log2_standard) + 1, by = 0.25),
    las = 1,
    cex.axis = 0.8,
    main = "Standardized values before gene selection",
    col = "#DDBBFF")

hist(unlist(fa_expr_selected),
    breaks = seq(from = 0, to = max(fa_expr_log2_standard) + 1, by = 0.25),
    las = 1,
    cex.axis = 0.8,
    main = "Standardized values after gene selection",
    col = "#FFDDBB")
```

```
par(mfrow = c(1,1))

# ## Some quick checks: the selection of highly variable genes select those having many zeros - and hig
# hist(unlist(fa_expr_log2_filtered[high_expression, ]), breaks=100)
# hist(unlist(fa_expr_log2_filtered[high_variation, ]), breaks=100)
# hist(unlist(fa_expr_log2_filtered[!high_variation, ]), breaks=100)
# hist(unlist(fa_expr_log2_filtered[selected_genes, ]), breaks=100)
```

Dessinez un box plot par échantillon des valeurs d'expression avant et après sélection des gènes, et commentez le résultat.

Standardized values before gene selection

Standardized values after gene selection

Figure 3: Distribution of expression values before and after gene selection

Figure 4: Box plots of standardised expression values before and after gene selection.

```
par(mfrow = c(1,1))
```

ACP

Dessinez un plot ACP des échantillons en les colorant par condition avant et après normalisation.

• avec les comptages bruts de la matrice d'expression initiale (fa_expr)

• avec la matrice de valeurs filtrées et après transformation log2

• avec la matrice finale (transformation log2, filtre des gènes non-détectés, standardisation et sélection des gènes fortement exprimés et à haut coefficient de variation)

Figure 5: PC plot of the samples from the raw expression values of all genes.

Figure 6: PC plot of the samples from standardised values after gene selection.

Figure 7: PC plot of the samples from standardised values after gene selection.

Clustering

• Calculez les matrices de distance entre échantillons, en utilisant respectivement les distances euclidienne (dist()), coefficient de Pearson (cor(, method = "pearson")) et de Spearman (cor(, method = "spearman")).

```
#### Sample distances ####
dist_euc_sel <- dist(t(fa_expr_selected))
cor_pearson_sel <- as.dist(1 - cor(fa_expr_selected))
cor_spearman_sel <- 1 - as.dist(cor(fa_expr_selected, method = "spearman"))</pre>
```

• Effectuez un clustering hiérarchique des échantillons, en utilisant le critère de Ward (ward.d2) pour l'agglomération. Comparez les arbres d'échantillons obtenus avec ces trois métriques et choisissez celle qui vous paraît la plus pertinente.

• Effectuez un clustering hiérarchique des gènes en utilisant la distance basée sur le coefficient de Pearson et le critère de Ward

Figure 8: Sample tree with three alternative distance metrics: Euclidiant distance (left), Pearson correlation (center), Spearman correlation (right).?

```
cor_pearson_gene <- as.dist(1 - cor(t(fa_expr_selected)))
plot(hclust(cor_pearson_gene), hang = -1,
    main = "gènes")</pre>
```


cor_pearson_gene
hclust (*, "complete")

• Dessinez un arbre avec le résultat du clustering des gènes et commentez sa struture. Si vous deviez choisir de façon arbitraire un nombre de clusters, que choisiriez-vous? Pourquoi? Pas de panique, nous pouvons assumer ici que la réponse comporte une part de subjectivité.

```
plot(hclust(cor_pearson_gene), hang = -1,
    main = "gènes")
rect.hclust(hclust(cor_pearson_gene), k = 7)
```

gènes

cor_pearson_gene hclust (*, "complete")

• Dessinez une heatmap du résultat, en sélectionnant les deux résultats de clustering ci-dessus pour les gènes et les échantillons.

Interprétez les résultats en quelques phrases.

Enrichissement fonctionnel

Effectuez une analyse d'enrichissement fonctionnel avec les principaux clusters obtenus dans la section précédente.

Conclusions générales

Résumez en quelques phrases vos conclusions à partir des résultats obtenus.