2.16.2) If \mathcal{T} and \mathcal{T}' are on X and \mathcal{T}' is strictly finer that \mathcal{T} , what can you say about the corresponding subspace on the subset Y of X?

We have that $\mathcal{T} \subsetneq \mathcal{T}'$. Let $Y \subset X$. The corresponding subspace topologies are

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

$$\mathcal{T}_Y' = \{ Y \cap U' \mid U' \in \mathcal{T}' \}$$

We'll show that \mathcal{T}_Y is at least contained in \mathcal{T}'_Y . But containment in the other direction depends on Y.

Let $\mathcal{O} \in \mathcal{T}_Y$. We have that $\mathcal{O} = Y \cap U$ for some $U \in \mathcal{T}$. But $\mathcal{T} \subset \mathcal{T}'$ implies $\mathcal{O} = Y \cap U \in \mathcal{T}'_Y \Rightarrow$

$$\mathcal{T}_Y \subset \mathcal{T}_Y'$$
.

Now consider,

$$X = \{a, b, c, d, e\},\$$

and the following two topoologies on X. We write them without braces for simplicity.

$$\mathcal{T} = \{\emptyset, abcde, abc, cde, c\}$$
$$\mathcal{T}' = \{\emptyset, abcde, abc, cde, c, bc, bcde\}.$$

The two examples show choices of Y that the strictly finer condition doesn't necessarily carry over to subspace topologies.

ex1)
$$Y = \{bcde\}$$

$$\mathcal{T}_Y = \{\emptyset, bcde, bc, cde, c\}$$

$$\mathcal{T}_Y' = \{\emptyset, bcde, bc, cde, c\}$$

$$ex2) Y = \{ab\}$$

$$\mathcal{T}_Y = \{\emptyset, ab\}$$
$$\mathcal{T}_Y' = \{\emptyset, ab, b\}$$

2.16.3) Consider Y = [-1, 1] as a subspace of \mathbb{R} .

(a) $A = \{x \mid \frac{1}{2} < |x| < 1\}$. Open in [-1, 1] and \mathbb{R} .

$$\begin{split} A &= \left(-1, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right) \\ &= \left\{ \left(-1, -\frac{1}{2}\right) \cap [-1, 1] \right\} \cup \left\{ \left(\frac{1}{2}, 1\right) \cap [-1, 1] \right\} \end{split}$$

(b) $B = \{x \mid \frac{1}{2} < |x| \le 1\}$. Open in [-1, 1].

$$B = \left[-1, -\frac{1}{2} \right) \cup \left(\frac{1}{2}, 1 \right]$$
$$= \left\{ \left(-2, -\frac{1}{2} \right) \cap [-1, 1] \right\} \cup \left\{ \left(\frac{1}{2}, 2 \right) \cap [-1, 1] \right\}$$

- (c) $C = \{x \mid \frac{1}{2} \le |x| < 1\}$. Not open in either.
- (d) $D = \{x \mid \frac{1}{2} \le |x| \le 1\}$. Not open in either.
- (e) $E = \{x \mid 0 < |x| < 1, \frac{1}{x} \notin \mathbb{Z}_+\}$. Open in [-1, 1] and \mathbb{R} .

$$E = \bigcup_{k=1}^{\infty} \left(\frac{1}{k+1}, \frac{1}{k} \right)$$
$$= \bigcup_{k=1}^{\infty} \left(\frac{1}{k+1}, \frac{1}{k} \right) \cap [-1, 1]$$

- 2.16.4) Show $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.
 - (\Rightarrow) Let $\mathcal{O} \subset_o X \times Y$ (\subset_o denotes open set). Then \mathcal{O} is the union of some basis elements

$$\mathcal{O} = \bigcup_{\alpha} (U_{\alpha} \times V_{\alpha}), \qquad U_{\alpha} \subset_{o} X, \ V_{\alpha} \subset_{o} Y.$$

 $\pi_1(\mathcal{O}) = \bigcup_{\alpha} U_{\alpha}$ is a union of open sets of X and is therefore open. Similarly,

 $\pi_2(\mathcal{O}) = \bigcup_{\alpha} V_{\alpha}$ is a union of open sets of Y and is therefore open.

2.17.3) Let $A \subset_c X$ and $B \subset_c Y$. Show that $A \times B \subset_c X \times Y$. (\subset_c closed set) (\Rightarrow)

$$A \times B = (A \times Y) \cap (X \times B) \Rightarrow$$

$$(X \times Y) - (A \times B) = (X \times Y) - \{(A \times Y) \cap (X \times B)\}$$

$$= \{(X \times Y) - (A \times Y)\} \cup \{(X \times Y) - (X \times B)\}$$

$$= \{(X - A) \times Y\} \cup \{X \times (Y - B)\}.$$

Since (X - A) and (Y - B) are open in their respective spaces, $A \times B$ is open in $X \times Y$.

- 2.17.6 Let A, B, A_{α} be subsets of a space X.
 - (a) Show $A \subset B \to \bar{A} \subset \bar{B}$.

Suppose $A \subset B$ and let $a \in \bar{A}$. Then every neighborhood U_a of a intersets A. If follows that $U_a \cap B \neq \emptyset$. Therefore $a \in \bar{B} \Rightarrow$

$$\overline{A} \subset \overline{B}$$

- (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (\Rightarrow) Let $x \in \overline{A \cup B}$. Then for all neighborhood U_x of x,

$$U_x \cap (A \cup B) \neq \emptyset$$
.

This tells us that $U_x \cap A \neq \emptyset$ or $U_x \cap B \neq \emptyset$. Therefore, $x \in \overline{A}$ or $x \in \overline{B} \Rightarrow x \in \overline{A} \cup \overline{B}$. So that

$$\overline{A \cup B} \subset \overline{A} \cup \overline{B}.$$

 (\Leftarrow) Let $x \in \overline{A} \cup \overline{B}$ Then \forall neighborhood U_x of x,

$$U_x \cap A \neq \emptyset$$
 or $U_x \cap B \neq \emptyset$.

$$A, B \subset A \cup B \Rightarrow U_x \cap (A \cup B) \neq \emptyset$$
. Thus,

$$\overline{A} \cup \overline{B} \subset \overline{A \cup B}$$
.

Therefore,

$$\overline{A \cup B} = \overline{A} \cup \overline{B}.$$

(c) Show $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$. Give an example where equality fails.

Let $x \in \bigcup \overline{A_{\alpha}}$ and denote U_x an open set containing x. We have $x \in \overline{A_{\alpha}}$ for some $\alpha \Rightarrow \forall U_x, U_x \cap A_{\alpha} \neq \emptyset$

$$\Rightarrow U_x \cap (\bigcup A_\alpha) \neq \emptyset$$
$$\Rightarrow x \in \overline{\bigcup A_\alpha}$$
$$\Rightarrow \overline{\bigcup A_\alpha} \subset \overline{\bigcup A_\alpha}.$$

ex) Let
$$A_{\alpha} = \left(\frac{1}{\alpha}, 1\right) \Rightarrow \overline{A_{\alpha}} = \left[\frac{1}{\alpha}, 1\right].$$

The union $\bigcup A_{\alpha} = (0,1) \Rightarrow \overline{\bigcup A_{\alpha}} \ni 0$.

But
$$0 \notin \overline{A_{\alpha}} \ \forall \ \alpha \Rightarrow 0 \notin \bigcup \overline{A_{\alpha}}$$
.

Thus equality fails here.

2.17.7) Criticize the proof of Problem 2.17.7.

The problem is with the assumption that every neighborhood of x intersects the union implies that, that neighborhood always intersects the same set. i.e.

$$U_x \cap \bigcup A_\alpha \neq \emptyset \Rightarrow U_x \cap A_\alpha \neq \emptyset$$
, some α .

 α may depend on the neighborhood, $\alpha = \alpha(U_x)$.

2.17.9) Let $A \subset X, B \subset Y$. Show that in space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

 (\Rightarrow) Suppose $(x,y) \in \overline{A \times B}$. We know that for all open sets containing (x,y), $\mathcal{O}_{(x,y)}$,

$$\mathcal{O}_{(x,y)} \cap (A \times B) \neq \emptyset.$$

Let $x \in U_x, y \in V_y$, both open sets in their respective spaces. We have that the product contains (x, y) and is open in $X \times Y$

$$(x,y) \in (U_x \times V_y) \subset_o X \times Y.$$

Hypothesis implies

$$\Rightarrow (U_x \times V_y) \cap (A \times B) \neq \emptyset$$

\Rightarrow (U_x \cap A) \times (V_y \cap B) \neq \empty
\Rightarrow (U_x \cap A) \neq \empty \ and \ (V_y \cap B) \neq \empty.

Since U_x and V_y were arbitrary open sets, this implies $x \in \overline{A}$ and $y \in \overline{B}$. Therefore, $(x,y) \in \overline{A} \times \overline{B}$ and

$$\overline{A \times B} \subset \overline{A} \times \overline{B}$$

 (\Leftarrow) Suppose $(x,y) \in \overline{A} \times \overline{B}$. Then $x \in \overline{A}$ and $y \in \overline{B}$.

Now consider some open $\mathcal{O} \subset X \times Y$ containing (x,y). Then $\exists U_x \ni x, V_y \ni y$ (open in X, Y respectively) s.t.

$$(x,y) \in (U_x \times V_y) \subset \mathcal{O}.$$

It follows from the hypotheses that

$$U_x \cap A \neq \emptyset \ and \ V_y \cap B \neq \emptyset.$$

$$\Rightarrow (U_x \cap A) \times (V_y \cap B) \neq \emptyset$$
$$\Rightarrow (U_x \times V_y) \cap (A \times B) \neq \emptyset$$
$$\Rightarrow \mathcal{O} \cap (A \times B) \neq \emptyset.$$

Since \mathcal{O} is was an arbitrary neighborhood of (x, y), we have that

$$\overline{A} \times \overline{B} \subset \overline{A \times B}$$
.

Finally,

$$\overline{A \times B} = \overline{A} \times \overline{B}$$