4. Sea (E, d) un espacio métrico. Sean $x \in E$ y r > 0.

(a) Probar que $\{x\}$ es un conjunto cerrado.

(b) Probar que B(x,r) es un conjunto abierto.

(c) Probar que si r > r' > 0 entonces $\overline{B(x,r')} \subseteq B(x,r)$.

(d) Probar que $\overline{B}(x,r) = \{y \in E : d(x,y) \le r\}$ es un conjunto cerrado.

(e) Deducir que $\overline{B(x,r)} \subseteq \overline{B}(x,r)$.

(f) Dar un ejemplo en que $\overline{B(x,r)}$ sea un subconjunto propio de $\overline{B}(x,r)$.

(g) Probar que $\{y \in E: 2 < d(y,x) < 3\}$ es un conjunto abierto.

4a) 5:
$$A = \{x\}$$
 er corrado
=> $A^{c} = E \setminus \{x\}$ er doirto
Sea $y \in A^{c}$ (para cada $y \in A^{c}$)

$$g^{vq}$$
 $\exists \epsilon > 0 / \exists (g, \epsilon) \subseteq A^{c}$

$$\left\{ z \in E : d(g, z) (\epsilon) \subseteq A^{c} \right\}$$

Si tomo
$$\varepsilon = d(x, b)$$

=>
$$B(y, \varepsilon) = \{ z \in E : d(y, z) < d(x, y) \}$$

 $z \in E(x) \text{ puer } y \neq x \text{ }$

$$\Rightarrow \mathcal{B}(y, \varepsilon) \subseteq A^{c} \qquad d(y, \varepsilon) < d(y, x)$$

... A cer abier to

