Analyzing the effect of mechanical properties of cellular processes on cellular packing patterns using unsupervised machine learning

SCIComp 9502B Project Yasamin Modabber 251390444

Finding a tool to quantify local structure

G3 distribution function

$$g_3(r, heta)$$

Finding a good cutoff radius

Points of interest

A metric for finding similarity between different distributions

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}.$$

$$\sigma^2 = variance$$

$$\sigma_{xy} = covariance$$

$$\mu = mean$$

g3 distribution for different values of Sf

The importance of choosing a good size for the system

Sf, inter-membrane friction and medium friction

The effect of medium and inter-membrane friction on critical sf

