MSR605

Magnetic Stripe Card Reader/Writer (High & Low Coercivity)

Programmer's Manual

Revision B

2009-06-01

Table of Contents

SEC	CTION 1 INTRODUCTION	3
>	Accessories of MSR605	3
>	Warranty	3
SEC	CTION 2 GENERAL DESCRIPTION	4
SEC	CTION 3 TECHNICAL SPECIFICATIONS	2
SEC	CTION 4 SETUP	4
SEC	CTION 5 UTILITIES TEST PROGRAM	5
>	System Requirement	.5
>	Test Program Installation	.5
SEC	CTION 6 COMMAND AND RESPONSE	6
SEC	CTION 7 DATA FORMAT1	11
SEC	CTION 8 COMMUNICATION SEQUENCE1	3
>	MSR 605 INITIALIZATION	13
>	Write Data to MSR 605	13
>	Read Data to MSR605	14
SEC	CTION 9 ADDENDUM1	5
>	Write Data to Magnetic Card	15
>	Write Raw Data to Magnetic Card	16

Section 1 Introduction

Thank you for purchasing the MSR605 Manual Swipe Magnetic Card Reader/Writer. It is ideal for access control, time keeping, banking, ID recognition & credit verification and related applications. In fact, wherever a magnetic stripe ID or transaction card is used, one can find a related use for the versatile, user-friendly MSR605 reader/writer.

The MSR605 is designed to offer a reading and writing solution of high and/or low coercivity cards that will attractively complement an existing system.

Accessories of MSR605

Make sure all the following accessories are contained in your package:

- 1. Switch power Supply, AC 110~240V in / DC 24V, 2.2~3A out.
- 2. Power cord.
- 3. Signal cable (USB).
- 4. Utility disk (A/P S/W).
- 5. Programmer's manual.

> Warranty

One year after purchase of MSR605, any alteration and/or erasure or modification of the MSR605 will void the warranty.

Section 2 General Description

The MSR605 series is designed to read and/or write high or low coercivity magnetic cards. It can encode and verify up to 3 tracks of data simultaneously. It communicates with a host computer or other terminal using a usb interface.

Section 3 Technical Specifications

ITEM	SPECIFICATION					
Standard	ISO7811					
Electrical	Electrical					
G .:	Current/operating Typical 350mA Max					
Consumption	600mA plus for each writing track					
Communication	Standard RS232 signal voltage levels. Default, 9600 Baud, None Parity, 8 bits					
Power supply	External switching Power 24V/2.2A regulated					
Interconnection						
Cable	USB					
	1,VBUS					
Pin Assignment	2. D-					
USB	3.D+					
ОЗБ	4. GND					
Mechanical						
Body	ABS 94V-0 / Metal housing optional					
Swipe	Manual, single direction					
Outline	212Lx64Wx63H mm					
Weight	1.4Kg approx.					
Environment						
Operation	-10°C to 60°C					
	10 to 85% humidity, non condensing					
Storage	-30°C to 70°C					
	10 to 90% humidity, non condensing					
Performance						
D = 1 C' = - '4	Track 1&3 210bpi					
Read Circuit	Track 2,75 or 210 bpi					
Bit per Char	5-7 bit per char.					
M 1 G 1	Read, 5-50 ips (read speed 5-40 ips for track 2 at 210bpi)					
Media Speed	Write, 5-30					
	Read 300-4000 Oe Mag. Card					
Media Coercivity	Write 300-4000 Oe Mag. Card					
Media Thickness 0.76-1.2mm						
The Co. 1	Read bit to bit interval <+/-15% card					
Jitter Card	Write bit to bit interval <+/-10%,Sub interval<+/-12% at 30ips					

Low amplitude Card	Read 60% for both 75& 210bpi			
Error Rate	Read < 0.5%			
	Write < 0.8%			
Media Swipe	Head life 1,000,000 passes for both read & write head			
	Model	Read/Write Track	Hi-C	Lo-C
	MSR605	1&2&3	R/W	R/W
Configuration				
Available Model				
Available Woder				

Section 4 Setup

- 1. Power on your system (PC).
- 2. Setup the usb driver(for windows xp or vista) and Setup the driver for MSR605,all driver in the cd.
- 3. Connect USB of the MSR605 signal cable to a free serial port .
- 4. Connect Power-in cable to Power supply and AC receptacle (110V~240V).
- 5. Now you can use the MSR605 like MSR206.

Section 5 Utilities Test Program

Every MSR605 comes with a utilities test program disk that includes a Windows version. This program is to verify and demonstrate the functionality of the MSR605. In some cases, it can be used as a card reading and writing program.

> System Requirement

- 1. 80286 PC/AT compatibles or later model with color display.
- 2. Either the following operating systems: Windows 95,98,2000,XP,VISTA
- 3. 256K available conventional memory.
- 4. A free serial port (Com 1 or Com 2) with DB9 male connector.

> Test Program Installation

User shall follow the steps below in order to install test program.

- A. Connect MSR605 to USB port, and power on it.
- B. Execute test program from the subdirectory of 'Demo AP' (e.g. MSR605.exe)
- D. When the test program is first opened, a password dialog box will ask whether you wish a first time password.
- D The test program will auto-detect communication port. If there is any errors occurred, it'll appear in the information dialog box after opening the program. User can close the AP by pressing OK button.
- E. If "Not Find Reader/Writer!" appears in the information dialog box after opening the program, check to see that the USB connector is plugged into the correct USB port and the power cord/connector is also attached to USB thus lighting the green LED on the MSR605.
- F. When the test program is opened, you'll see the main window of the READER/WRITER UTILITY PROGRAM.

From this main window you can activate all functions by clicking the appropriate buttons and following the on screen instructions.

Section 6 Command and Response

This section gives detailed description of commands to the MSR605 and the corresponding responses from MSR605. Notional Conventions:

<esc></esc>	Control character named	
	Special string named sname, meaning can be found in section 7.	
[[[[[sname]		
	ie.[Data Block] [Status Byte] [Select Byte] etc.	
X	Standard ANSI character	

Command Description:

1. Command: RESET

Command code: <ESC> a

Hex code: 1B 61 Response: none

Description: This command reset the MSR605 to initial state.

2. Command: READ (ISO format only)

Command code: <ESC> r

Hex code: 1B 72

Response: [Data Block] <ESC> [Status Byte]

Description: This command request MSR605 to read a card swiped and respond with the data read.

3. Command: WRITE (ISO format only)

Command code: <ESC> w [Data Block]

Hex code: 1B 77 [Data Block] Response: <ESC> [Status Byte]

Description: This command request MSR605 to write the Data Block into the card swiped.

4. Command: Communication test

Command code: <ESC> e

Hex code: 1B 65

Response: <ESC> y [1B] [79]

Description: This command is used to verify that the communication link between computer and MSR605 is up

and good.

5. Command: All LED off

Command code: <ESC> <81>

Hex code: 1B 81 Response: none

Description: This command is used to turn off all the LEDs.

6. Command: All LED on

Command code: <ESC> <82>

Hex code: 1B 82 Response: none

Description: This command is used to turn on all the LEDs.

7. Command: GREEN LED on Command code: <ESC> <83>

Hex code: 1B 83 Response: none

Description: This command is used to turn on the Green LED.

8. Command: YELLOW LED on

Command code: <ESC> <84>

Hex code: 1B 84 Response: none

Description: This command is used to turn on the Yellow LED.

9. Command: RED LED on

Command code: <ESC> <85>

Hex code: 1B 85 Response: none

Description: This command is used to turn on the Red LED.

10. Command: Sensor test

Command code: <ESC> <86>

Hex code: 1B 86

Response: <ESC> 0 (1B 30) if test ok

Description: This command is used to verify that the card sensing circuit of MSR605 is working properly.

MSR605 will not response until a card is sensed or receive a RESET command.

11. Command: Ram test

Command code: <ESC> <87>

Hex code: 1B 87

Response: <ESC> 0 (1B 30) ram test ok; <ESC> A (1B 41) ram test fail

Description: This command is used to request MSR605 to perform a test on its on board RAM.

Response: <ESC> 0 [1B] [30] select ok

<ESC> A [1B] [41] select fail

Description: This command is used to select the density

```
12. Command: Set leading zero
 Command code: <ESC> z [leading zero of track 1 & 3] [leading zero of track 2]
 Hex code: 1B 7A [00~ff] [00~ff]
 Response: <ESC> 0 (1B 30) set ok
 <ESC> A (1B 41) set fail
 Description: This command is used to set how many leading zeros will be written before the card data starts, and
              the space should calculated as [leading zero] X25.4 / BPI (75or210) =mm
              Default setting of leading zero: [3D] [16]
              TK1 & TK3: [3D] means leading zero=61
              TK2: [16] means leading zero=22
13. Command: Check leading zero
 Command code: <ESC>1
 Hex code: 1B 6C
 Response: 1B [00~ff] [00~ff]
 Description: This command is used to ask MSR605 the present setting number of leading zeros.
14. Command: Erase card
 Command code: <ESC> c [Select Byte]
 Hex code: 1B 63 [Select Byte]
 Response: <ESC> 0 [1B] [30] command Select Byte ok
            <ESC> A [1B] [41] command Select Byte fail
 Description: This command is used to erase the card data when card swipe.
        *[Select Byte] format:
        00000000: Track 1 only
        00000010: Track 2 only
        00000100: Track 3 only
        00000011: Track 1 & 2
        00000101: Track 1 & 3
        00000110: Track 2 & 3
        00000111: Track 1, 2 & 3
15. Command: Select BPI
 Command code: <ESC> b [Density]
 Hex code:
    track2: 1B 62 [D2 or 4B]
                                  // [D2]: 210bpi, [4B]: 75bpi
    track1: 1B 62 [A1 or A0]
                                  // [A1]: 210bpi, [A0]: 75bpi
    track3: 1B 62 [C1 or C0]
                                  // [C1]:210bpi, [C0]: 75bpi
```

16. Command: Read raw data Command code: <ESC> m

Hex code: 1B 6D

Response: [Raw Data Block] <ESC> [Status Byte]

Description: This command requests MSR605 to read a card swipe but send without ASCII decode.

Refer to [Raw Data Block] & [Raw Data] format.

17. Command: Write raw data

Command code: <ESC> n [Raw Data Block]

Hex code: 1B 6E [Raw Data Block] Response: <ESC> [Status Byte]

Description: This command requests MSR605 to write raw Data Block into the card swiped.

Refer to [Raw Data Block] & [Raw Data] format.

18. Command: Get device model

Command code: <ESC> t

Hex code: 1B 74

Response: <ESC> [Model] S

Description: This command is used to get the model of MSR605.

19. Command: Get firmware version

Command code: <ESC> v Hex code: <ESC> 76

Response: <ESC> [version]

Description: This command can get the firmware version of MSR605.

20. Command: Set BPC

Command code: <ESC> o [tk1bit][tk2bit][tk3bit] Hex code: <ESC> 6F [05-08][05-08][05-08] Response: <ESC> 30 [tk1bit][tk2bit][tk3bit]

Description: This command is used to set the bit per character of every track.

21. Command: Set Hi-Co

Command code: <ESC> x

Hex code: 1B 78 Response: <ESC> 0

Description: This command is used to set MSR605 status to write Hi-Co card.

22. Command: Set Low-Co

Command code: <ESC> y

Hex code: 1B 79

Response: <ESC> 0

Description: This command is used to set MSR605 status to write Low-Co card.

23. Command: Get Hi-Co or Low-Co status

Command code: <ESC> d

Hex code: 1B 64

Response: <ESC> H -----to write Hi-Co

: <ESC> L ----- to write Low-Co

Description: This command is to get MSR605 write status.

Section 7 Data Format

* [Data Block] format:

Start Field	R/W Data Field		Ending Field
Command code	<esc> s</esc>	[Card data]	? <fs> <esc> [Status]</esc></fs>
Hex code	1B 73	[Card data]	3F 1C 1B [Status]

* [Card data] format:

Card Data	
Char Code	<esc> 1[string1] <esc> 2 [string2] <esc> 3 [string3]</esc></esc></esc>
Hex Code	1B 01 [string1] 1B 02 [string2] 1B 03 [string3]

* [Status Byte] format:

Status	description		ASCII
Ok	If read, write or command ok		0
	Write or read error		1
Error	Command format error		2
	Invalid command	34h	4
	Invalid card swipe when in write mode		9

^{*} Note:

- 1. When [Status Byte] equal 39h means card moving error.
- 2. None available and none data tracks will not be transmitted when swipe of card.

For example, when read card with data encoded on track 2 only for MSR605, it will transmit data like **1B 73 1B 01 1B 02** [string] **3F 1C**, for no data on track 1 so it shown 1B 01 only.

* [Raw Data Block] format:

Start Field	R/W Data Field		Ending Field
Command code	<esc> s</esc>	[Raw data]	? <fs> <esc> [Status]</esc></fs>
Hex code	1B 73	[Raw data]	3F 1C 1B [Status]

* [Raw Data] format:

Raw Data		
Char Code	<esc>1[L1][string1]<esc>2[L2][string2]<esc>3[L3][string3]</esc></esc></esc>	
Hex Code	1B 01[L1][string1]1B 02[L2][string2]1B 03[L3][string3]	

Note:

- 1. [L1], [L2], [L3] is the length of [string1],[string2],and [string3]
- 2. None available and none data tracks will not output when swipe of card.

For example, when read card (encoded data on track 2 only) on MSR605, it will transmit data like **1B 73 1B 01 00 1B 02 [L2] [string] 3F 1C**.

* [Raw Data] bit orientation:

Track 1 for 8 BPC

Track 2 & 3 for 8 BPC

^{*}Refer to Section 9 ADDENDUM.

Section 8 Communication Sequence

The examples below assumes data on track1, 2 & 3 to be 01, 23, 45 respectively.

> MSR605 INITIALIZATION

HOST	Direction	MSR605
Command code: <esc>a HEX code: [1B][61]</esc>		(Reset)
Command code: <esc>e HEX code: [1B][65]</esc>	(Serial port test)	
		Command test ACK: <esc> y HEX code: [1B][79]</esc>
Command code: <esc>a HEX code: [1B][61]</esc>	-	(Reset)

> Write Data to MSR605

HOST	Direction	MSR605
Command code: <esc>w<esc>s<esc>[01]01 <esc>[02]23<esc>[03]45?<fs> HEX code: [1B][77][1B][73][1B][01][30][31][1B] [02][32][33][1B][03][34][35][3F][1C]</fs></esc></esc></esc></esc></esc>	(write command)	
	(status ACK)	(Wait until swipe card) Command ACK: <esc> <status> HEX code: [1B][status] Status =[30] no error Status =[31]~[3F] if error</status></esc>

> Read Data to MSR605

HOST	Direction	MSR605
Command code: <esc> r HEX code: [1B][72]</esc>	(read command)	
	(status ACK) ◀	(Wait until swipe card) Command ACK: <esc>s<esc>[01]%01?<esc>[02];23?<esc>[03];45??< FS><esc><status> HEX code: [1B][73][1B][01][25][30][31][3F][1B][02][3B][32][33][3F] [1B][03][3B][34][35][3F][1C][1B][status] Status=[30] ok Status=[31]~[3F] if error</status></esc></esc></esc></esc></esc>

^{*} [XX] = HEX Code XX

Section 9 Addendum

> Write Data to Magnetic Card

The WRITE command:

Command	WRITE
Command code	<esc> w [Data Block]</esc>
Hex code	1B 77 [Data Block]
Response	<esc> [Status Byte]</esc>
Description	This command request MSR605 to write the Data Block into the card swiped.

[Data Block] format:

Start Field	R/W I	Ending Field	
Command code	<esc>s</esc>	[card data]	? <fs></fs>
HEX code	1B 73	[card data]	3F 1C

[card data] format:

card data	
Char. code	<esc>[01] [string] <esc> [02] [string] <esc> [03] [string3]</esc></esc></esc>
HEX code	1B 01 [string1] 1B 02 [string2] 1B 03 [string3]

As an example the following information will be written to the card:

Track1: %ABC123? Track2: ;12345? Track3: :12345?

HOST	DIRECTION	MSR605
Command code: <esc>w<esc>s<esc>[01]ABC123<esc> [02]12345<esc>[03]12345?<fs> HEX code: [1B][77][1B][73][1B][01][41][42][43][31][32][33][1B][02][31][32][33][34][35][1B][0 3][31][32][33][34][35][3F][1C]</fs></esc></esc></esc></esc></esc>	(write command)	
After send command to MSR605	Yellow LED on, then swipe card	write data to the magnetic card
	(status ACK)	(wait until swipe card) Command ACK: <esc><status> HEX code: [1B][status] Status = [30] no error Status = [31] ~ [3F] if error</status></esc>

> Write Raw Data to Magnetic Card

Converting Card Data Information to Hexadecimal for the Binary Write Function

Converting track one ASCII information into HEX

				B5	0	0	1	1
	В3	B2	B1	B0 B4	0	1	0	1
0	0	0	0	0	(sp)	0	@	P
1	0	0	0	1	!	1	A	Q
2	0	0	1	0	"	2	В	R
3	0	0	1	1	#	3	С	S
4	0	1	0	0	\$	4	D	T
5	0	1	0	1	%	5	Е	U
6	0	1	1	0	&	6	F	V
7	0	1	1	1	4	7	G	W
8	1	0	0	0	(8	Н	X
9	1	0	0	1)	9	I	Y
A	1	0	1	0	*	:	J	Z
В	1	0	1	1	+	;	K	[
С	1	1	0	0	,	<	L	\
D	1	1	0	1	,	=	M]
Е	1	1	1	0	•	>	N	<
F	1	1	1	1	/	?	О	_

Converting track two and three ASCII information into HEX

Data	p	В3	B2	B1	В0
0	1	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	1	0	0	1	1
4	0	0	1	0	0
5	1	0	1	0	1
6	1	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	1	1	0	0	1
:	1	1	0	1	0
;(*)	0	1	0	1	1
<	1	1	1	0	0
=	0	1	1	0	1
>	0	1	1	1	0
? (*)	1	1	1	1	1

^{*} Note: The ";" is start sentinel and "?" is end sentinel of tk2 & 3 of ISO format.

As an example the following information will be written to the card:

Track1: %ABC123? Track2: ;12345? Track3: ;12345?

We use three different data bits to write raw data on the cards. The procedures are listed as below:

08, 08, 08 BITS

Set each track as 08.

First of all, set BPC command:

1B, 6F, 08, 08, 08

Present the information to the card encoder, as follows:

Start Field	1B6E1B73
Track1 header	1B01
Length	08
Track1 data	C5B07814954E3E2A
Track header	1B02
Length	05
Track2 data	2B8849EAAF
Track3 header	1B03
Length	05
Track3 data	2B8849EAAF
Ending Field	3F1C

Transfer the track1 data to HEX under 08 bits:

	B0	B1	B2	В3	B4	B5	P
%	1	0	1	0	0	0	1
A	1	0	0	0	0	1	1
В	0	1	0	0	0	1	1
С	1	1	0	0	0	1	0
1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	1
3	1	1	0	0	1	0	0
?	1	1	1	1	1	0	0
LRC	0	1	0	1	0	1	0

Calculate Odd Parity (P column)

If there is an Even Number of 1's in the row of data for each character, put a 1 in the P column. Other wise, put a 0 in the column.

LRC: If there is an Even Number of 1's in the column of data for each character, put a 0 in the LRC row. Other wise, put a 0 in the row. The last LRC will be considered as the parity rule of this row.

В0	B1	B2	В3	B4	B5	B6	B7
1	0	1	0	0	0	1	1
0	0	0	0	1	1	0	1
0	0	0	1	1	1	1	0
0	0	1	0	1	0	0	0
1	0	1	0	1	0	0	1
0	1	1	1	0	0	1	0
0	1	1	1	1	1	0	0
0	1	0	1	0	1	0	0

В7	B6	B5	B4	В3	B2	B1	B0	HEX
1	1	0	0	0	1	0	1	C5
1	0	1	1	0	0	0	0	B0
0	1	1	1	1	0	0	0	78
0	0	0	1	0	1	0	0	14
1	0	0	1	0	1	0	1	95
0	1	0	0	1	1	1	0	4E
0	0	1	1	1	1	1	0	3E
0	0	1	0	1	0	1	0	2A

Transfer track 2 (track 3) data to HEX under 08 bits:

	В0	B1	B2	В3	P
;	1	1	0	1	0
1	1	0	0	0	0
2	0	1	0	0	0
3	1	1	0	0	1
4	0	0	1	0	0
5	1	0	1	0	1
?	1	1	1	1	1
LRC	1	0	1	0	1

В0	B1	B2	В3	B4	B5	B6	B7
1	1	0	1	0	1	0	0
0	0	0	1	0	0	0	1
1	0	0	1	0	0	1	0
0	1	0	1	0	1	1	1
1	1	1	1	0	1	0	1

В7	B6	B5	B4	В3	B2	B1	В0	HEX
0	0	1	0	1	0	1	1	2B
1	0	0	0	1	0	0	0	88
0	1	0	0	1	0	0	1	49
1	1	1	0	1	0	1	0	EA
1	0	1	0	1	1	1	1	AF

07, 05, 05 BITS

Set TK1, TK2 & TK3 as 07, 05, 05

1B, 6F, 07, 05, 05

First of all, set BPI command:

Present the information to the card encoder, as follows:

1B6E1B73
1B01
09
456162235152131F2A
1B02
08
0B01021304151F15
1B03
08
0B01021304151F15
3F1C

Transfer the track1 data to HEX under 07 bits:

	В0	B1	B2	В3	B4	B5	P
%	1	0	1	0	0	0	1
A	1	0	0	0	0	1	1
В	0	1	0	0	0	1	1
C	1	1	0	0	0	1	0
1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	1
3	1	1	0	0	1	0	0
?	1	1	1	1	1	0	0
LRC	0	1	0	1	0	1	0

Calculate Odd Parity (P column)

If there is an Even Number of 1's in the row of data for each character, put a 1 in the P column. Other wise, put a 0 in

the column.

	Add	P	B5	B4	В3	B2	B1	В0	HEX
%	0	1	0	0	0	1	0	1	45
A	0	1	1	0	0	0	0	1	61
В	0	1	1	0	0	0	1	0	62
C	0	0	1	0	0	0	1	1	23
1	0	1	0	1	0	0	0	1	51
2	0	1	0	1	0	0	1	0	52
3	0	0	0	1	0	0	1	1	13
?	0	0	0	1	1	1	1	1	1F
LRC	0	0	1	0	1	0	1	0	2A

HEX

	В3	B2	B1	B0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
A	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
Е	1	1	1	0
F	1	1	1	1

Transfer track 2 (track 3) data to HEX under 05 bits:

	В0	B1	B2	В3	P
;	1	1	0	1	0
1	1	0	0	0	0
2	0	1	0	0	0
3	1	1	0	0	1
4	0	0	1	0	0
5	1	0	1	0	1
?	1	1	1	1	1
LRC	1	0	1	0	1

	Add 0	Add 0	Add 0	P	В3	B2	B1	В0	HEX
;	0	0	0	0	1	0	1	1	0B
1	0	0	0	0	0	0	0	1	01
2	0	0	0	0	0	0	1	0	02
3	0	0	0	1	0	0	1	1	13
4	0	0	0	0	0	1	0	0	04
5	0	0	0	1	0	1	0	1	15
?	0	0	0	1	1	1	1	1	1F
LRC	0	0	0	1	0	1	0	1	15

06, 05, 06 BITS

Set TK1, TK2 & TK3 as 06, 05, 06

First of all, set BPI command:

1b, 6F, 06, 05, 06

Present the information to the card encoder, as follows:

Start Field	1B6E1B73
Track1 header	1B01
Length	09
Track1 data	052122231112131F2A
Track2 header	1B02
Length	08
Track2 data	0B01021304151F15
Track3 header	1B03
Length	08
Track3 data	0101020304051F1F
Ending Field	3F1C

Transfer track1 data to HEX under 06 bits:

	В0	B1	B2	В3	B4	B5
%	1	0	1	0	0	0
Α	1	0	0	0	0	1
В	0	1	0	0	0	1
C	1	1	0	0	0	1
1	1	0	0	0	1	0
2	0	1	0	0	1	0
3	1	1	0	0	1	0
?	1	1	1	1	1	0
LRC	0	1	0	1	0	1

	Add 0	Add 0	B5	B4	В3	B2	B1	В0	HEX
%	0	0	0	0	0	1	0	1	05
A	0	0	1	0	0	0	0	1	21
В	0	0	1	0	0	0	1	0	22
С	0	0	1	0	0	0	1	1	23
1	0	0	0	1	0	0	0	1	11
2	0	0	0	1	0	0	1	0	12
3	0	0	0	1	0	0	1	1	13
?	0	0	0	1	1	1	1	1	1F
LRC	0	0	1	0	1	0	1	0	2A

Transfer track 2 data to HEX under 05 bits:

	В0	B1	B2	В3	P
;	1	1	0	1	0
1	1	0	0	0	0
2	0	1	0	0	0
3	1	1	0	0	1
4	0	0	1	0	0
5	1	0	1	0	1
?	1	1	1	1	1
LRC	1	0	1	0	1

	Add 0	Add 0	Add 0	P	В3	B2	B1	В0	HEX
;	0	0	0	0	1	0	1	1	0B
1	0	0	0	0	0	0	0	1	01
2	0	0	0	0	0	0	1	0	02
3	0	0	0	1	0	0	1	1	13
4	0	0	0	0	0	1	0	0	04
5	0	0	0	1	0	1	0	1	15
?	0	0	0	1	1	1	1	1	1F
LRC	0	0	0	1	0	1	0	1	15

Transfer track 3 data to HEX under 06 bits:

	B0	B1	B2	В3	B4	B5
!	1	0	0	0	0	0
1	1	0	0	0	0	0
2	0	1	0	0	0	0
3	1	1	0	0	0	0
4	0	0	1	0	0	0
5	1	0	1	0	0	0
?	1	1	1	1	1	0
LRC	1	1	1	1	1	0

	Add 0	Add 0	B5	B4	В3	B2	B1	В0	HEX
!	0	0	0	0	0	0	0	1	01
1	0	0	0	0	0	0	0	1	01
2	0	0	0	0	0	0	1	0	02
3	0	0	0	0	0	0	1	1	03
4	0	0	0	0	0	1	0	0	04
5	0	0	0	0	0	1	0	1	05
?	0	0	0	1	1	1	1	1	1F
LRC	0	0	0	1	1	1	1	1	1F