QCM n° 9

Un peu de calcul.

Échauffement n°1 Soit $n \in \mathbb{N}$ et $P_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$. Montrer que 1 est racine de P_n et déterminer son ordre de multiplicité.

Échauffement n°2 Factoriser en produit de polynômes irréductibles de $\mathbb{R}[X]$ le polynôme $(X^2 - X + 2)^2 + (X - 2)^2$.

QCM - cocher une case si la phrase qui suit est correcte.

Question $n^{\circ}1$ Soit f une function continue sur $[0,1]$.
\square Si $\forall x \in [0,1[, f(x) > 0, \text{ alors } \exists a > 0 \text{ tel que } \forall x \in [0,1[, f(x) \geqslant a.$
\square Si f admet une limite finie en 1 alors f est prolongeable par continuité en 1.
\square Si $\lim_{x\to 1} f(x) = +\infty$, alors f est minorée sur $[0,1[$.
\square Alors $\frac{f(x)-f\left(\frac{1}{2}\right)}{x-\frac{1}{2}}$ admet une limite quand x tend vers $\frac{1}{2}$.
Question n°2 Soit f une application continue sur un intervalle I de \mathbb{R} . \square Si $I = [a, b]$ alors f est bornée sur I
\square Si $I = \mathbb{R}$ et f est bornée, alors f admet une limite en $+\infty$.
\square Si $I = \mathbb{R}$ et f admet une limite en $-\infty$ et en $+\infty$, alors f est bornée.
Question n°3 Soit f un fonction définie sur $]0,1]$ telle que $\forall x \in]0,1]$, $0 \leq f(x) \leq 1$. \Box Alors f admet un point fixe. \Box Alors f est bornée sur $]0,1]$. \Box Alors $\forall x \in]0,1]$, $ f'(x) \leq 1$ \Box Si f admet une limite 0, alors f est prolongeable par continuité en 0.
Question $n^{\circ}4$ Soit f une application continue.
\square Si f ne s'annule pas, elle est de signe constant.
\Box f est bornée et atteint ses bornes.
$\Box f$ admet un sup dans \mathbb{R} .
\square Si elle est monotone, elle admet une limite en tout point de son ensemble de définition.

Question n°5 Soit I un intervalle et \square Si f est croissante, $f([a,b]) = [f(a)]$ \square Si f est continue, $f([a,b]) = [f(a)]$, \square Si f est décroissante et continue, f \square Si f est décroissante et continue, f \square Si f est décroissante et continue, f	f(b)]. f(b)]. admet une limite à gauche en b . $([a,b[)=[f(a),\lim_{b^{-}}f[.$
	R dans R avec $f(0) = 0$. On suppose que la suite $f(1/n)$ suivantes permet de déduire que f est continue à droite
$\Box f$ est bornée	\Box f est paire
\Box f est croissante	□ c'est toujours le cas
Question n°7 Soit A et B deux polyn \square Si deg $A > \deg B$, alors deg $(A + B)$ \square deg $(A + B) \geqslant \min(\deg A, \deg B)$. \square deg $(A \circ B) = (\deg A) \times (\deg B)$. \square Si $A B$, alors deg $A \leqslant \deg B$. \square Si $A B$, toute racine de A est racine \square Si toute racine de A est racine de A	$A = \deg A$. e de B .
$\sum_{i=1}^{n} m_i.$ $\square \text{ Si } \lambda \text{ est une racine de } P \text{ de multiplice}$	t qu'elles sont de multiplicité m_1, \dots, m_n , alors deg $P =$ eité m , alors λ est une racine de P' de multiplicité $m-1$. cité m , alors λ est une racine de P de multiplicité $m+1$.