

Phillip Compeau, Ph.D.

Asst. Dept. Head for Education Computational Biology Department School of Computer Science Carnegie Mellon University

WELCOME

OUR FIRST COMPUTATIONAL PROBLEM

Algorithms are Everywhere

Algorithm: a sequence of steps used to solve a problem.

Algorithms are Everywhere

Programming:

converting an algorithm into code.

Computational problem: input data along with a specified output involving the input data that can be interpreted in only one way.

Computational problem: input data along with a specified output involving the input data that can be interpreted in only one way.

GCD Problem

- Input: Integers a and b.
- Output: The greatest common divisor of a and b, denoted GCD(a, b).

Computational problem: input data along with a specified output involving the input data that can be interpreted in only one way.

GCD Problem

- Input: Integers a and b.
- Output: The greatest common divisor of a and b, denoted GCD(a, b).

a and b are called variables; they can change depending on what values we want them to have.

Computational problem: input data along with a specified output involving the input data that can be interpreted in only one way.

GCD Problem

- Input: Integers x and y.
- Output: The greatest common divisor of x and y, denoted GCD(x, y).

STOP: Does this substitution change the computational problem?

```
Divisors of 378 | 1 2 3 6 7 9 14 18 21 27 42 54 63 126 189 378 Divisors of 273 | 1 3 7 13 21 39 91 273
```

- A **trivial** (obvious) algorithm solving the GCD problem.
- 1. Start our largest common divisor at 1.

```
Divisors of 378 | 1 2 3 6 7 9 14 18 21 27 42 54 63 126 189 378 Divisors of 273 | 1 3 7 13 21 39 91 273
```

- 1. Start our largest common divisor at 1.
- 2. For every integer n between 1 and min(a, b):

```
Divisors of 378 | 1 2 3 6 7 9 14 18 21 27 42 54 63 126 189 378 Divisors of 273 | 1 3 7 13 21 39 91 273
```

- 1. Start our largest common divisor at 1.
- 2. For every integer *n* between 1 and min(*a*, *b*):
 - Is *n* a divisor of *a*?

```
Divisors of 378 | 1 2 3 6 7 9 14 18 21 27 42 54 63 126 189 378 Divisors of 273 | 1 3 7 13 21 39 91 273
```

- 1. Start our largest common divisor at 1.
- 2. For every integer *n* between 1 and min(*a*, *b*):
 - Is *n* a divisor of *a*?
 - Is *n* a divisor of *b*?

```
Divisors of 378 | 1 2 3 6 7 9 14 18 21 27 42 54 63 126 189 378 Divisors of 273 | 1 3 7 13 21 39 91 273
```

- 1. Start our largest common divisor at 1.
- 2. For every integer *n* between 1 and min(*a*, *b*):
 - Is *n* a divisor of *a*?
 - Is *n* a divisor of *b*?
 - If the answer to both of these questions is "Yes", update our largest common divisor found to be equal to *n*.

Divisors of 378	1	2	3	6	7	9	14	18	21	27	42	54	63	126	189	378
Divisors of 273	1		3		7		13		21		39			91		273

- 1. Start our largest common divisor at 1.
- 2. For every integer *n* between 1 and min(*a*, *b*):
 - Is *n* a divisor of *a*?
 - Is *n* a divisor of *b*?
 - If the answer to both of these questions is "Yes", update our largest common divisor found to be equal to *n*.
- 3. After ranging through all these integers, the largest common divisor found must be GCD(a, b).

Divisors of 378	1	2	3	6	7	9	14	18	21	27	42	54	63	126	189	378
Divisors of 273	1		3		7		13		21		39			91		273

A trivial (obvious) algorithm solving the GCD problem.

- 1. Start our largest common divisor at 1.
- 2. For every integer *n* between 1 and min(*a*, *b*):
 - Is *n* a divisor of *a*?
 - Is *n* a divisor of *b*?
 - If the answer to both of these questions is "Yes", update our largest common divisor found to be equal to *n*.
- 3. After ranging through all these integers, the largest common divisor found must be GCD(a, b).

STOP: Why might we want a faster approach?

A PAINLESS INTRO TO PSEUDOCODE/CONTROL FLOW

Programming Languages are Plentiful

Pseudocode and the Three Bears

Pseudocode: A way of describing algorithms by emphasizing ideas that is "just right"...

Not too vague, like human language

Not too precise, like a specific programming language

Illustrating Pseudocode with a Simple Problem

Minimum of Two Numbers Problem

- Input: Numbers a and b.
- Output: The minimum value of a and b.

Illustrating Pseudocode with a Simple Problem

Minimum of Two Numbers Problem

- **Input:** Numbers *a* and *b*.
- Output: The minimum value of a and b.

Seminal idea in computer science: being able to branch based on testing a condition.

Algorithms are Just Like Functions


```
Min2(a, b)

if a > b

return b

else

return a
```

```
Min2(a, b)

if a > b

return b

else

return a
```

Min2: name of the function.

```
Min2(a, b)

if a > b

return b

else

return a
```

a, **b**: input "argument"/"parameter" variables.

```
Min2(a, b)

if a > b

return b

else

return a
```

if *a* > *b*: **if statement** (allows us to branch)

```
Min2(a, b)

if a > b

return b

else

return a
```

If the "if statement" is true, we enter the if block.

return b: return statement (provides output).

```
Min2(a, b)

if a > b

return b

else

return a
```

If the "if statement" is false, we *skip* the if block and enter the **else block**.

else: indicates where to go when if statement is false.

```
Min2(a, b)

if a > b

return b

else

return a
```

STOP: Does **Min2** still return the desired answer if *a* and *b* are equal?

General Form of If Statements

Control flow: The sequence of steps that a computer takes when executing a program.

SomeFunction(*parameters*)

execute instructions A

if condition *X* is **true**

execute instructions Y

else

execute instructions *Z* execute instructions *B*

General Form of If Statements

"if", "else", "return", "true", etc. are **keywords**: words with *reserved meanings* in most languages.

```
SomeFunction(parameters)
```

execute instructions A
if condition X is true
 execute instructions Y

else

execute instructions *Z* execute instructions *B*

General Form of If Statements

STOP: Will *A* always be executed? Will *B* always be executed?

SomeFunction(*parameters*)

execute instructions A
if condition X is true
 execute instructions Y

else

execute instructions *Z* execute instructions *B*

It's Your Turn ...

Minimum of Three Numbers Problem

- **Input:** Numbers *a*, *b*, and *c*.
- Output: The minimum value of a, b, and c.

Exercise: Write a (pseudocode) function **Min3** that solves this problem.

Control Flow Can Get Tricky Quickly

```
Min3(a, b, c)

if a > b

if b > c

return c

else

return b
```

Control Flow Can Get Tricky Quickly

```
Min3(a, b, c)
      if a > b
             if b > c
                   return c
             else
                   return b
      else
             if a > c
                   return c
             else
                   return a
```

Control Flow Can Get Tricky Quickly

```
Min3(a, b, c)
      if a > b
             if b > c
                    return c
             else
                    return b
      else
             if a > c
                    return c
             else
                    return a
```


The colored lines represent a **nested** if statement.

```
Min3(a, b, c)
      if a > b
             if b > c
                   return c
             else
                   return b
      else
             if a > c
                   return c
             else
                   return a
```

STOP: Where have we seen the colored code?

```
Min3(a, b, c)
      if a > b
            if b > c
                   return c
                                 Min2(b, c)
             else
                   return b
      else
            if a > c
                   return c
                                 Min2(a, c)
            else
                   return a
```

STOP: Where have we seen the colored code?

```
Min3(a, b, c)

if a > b

return Min2(b, c)

else

return Min2(a, c)
```

```
Min3(a, b, c)

if a > b

return Min2(b, c)

else

return Min2(a, c)
```

Subroutine: a function used within another function.

```
Min3(a, b, c)

if a > b

return Min2(b, c)

else

return Min2(a, c)
```

Subroutine: a function used within another function.

Exercise: Write pseudocode for a function **Min4**(*a*, *b*, *c*, *d*) that computes the minimum of four numbers.

Multiple Approaches Exist for Solving Even a Simple Problem

```
Min4(a, b, c, d)

if a > b

return Min3(a, c, d)

else

return Min3(b, c, d)
```

Multiple Approaches Exist for Solving Even a Simple Problem

```
Min4(a, b, c, d)

if a > b

return Min3(a, c, d)

else

return Min3(b, c, d)
```

```
Min4(a, b, c, d)
return Min2(Min2(a, b), Min2(c, d))
```

Multiple Approaches Exist for Solving Even a Simple Problem

```
Min4(a, b, c, d)
if a > b
return Min3(a, c, d)
else
return Min3(b, c, d)
```

```
Min4(a, b, c, d)
return Min2(Min2(a, b), Min2(c, d))
```

STOP: Which of these do you prefer?

Party Trick: Knowing Day of the Week of Your Birthday

The Doomsday Algorithm

These doomsdays occur on Thursdays in 2019:

- -1/3
- -2/28
- -3/0
- -4/4
- -5/9
- -6/6
- -7/11
- -8/8
- -9/5
- -10/10
- -11/7
- -12/12

STOP: How can we use this information to quickly find the day of the week for any given date in 2019?

The Doomsday Algorithm

```
Doomsday(day, month)
         if month = 1
                  if day = 3, 10, 17, 24, or 31
                           return "Thursday"
                  else
                           if day = 4, 11, 18, or 25 this is ugly!
                                     return "Friday"
                  etc.
         else
                  if month = 2
                           if day = 7, 14, 21, or 28
                                     return "Thursday"
                           else
                                     if day = 1, 8, 15, or 22 this is ugly!
                                              return "Friday"
                           etc.
                  else
                           if month = 3 this is ugly!
                           etc.
```

The "Else" Statements Aren't Needed...

```
Doomsday(day, month)
       if month = 1
               if day = 3, 10, 17, 24, or 31
                      return "Thursday"
               if day = 4, 11, 18, or 25
                      return "Friday"
               etc.
       if month = 2
               if day = 7, 14, 21, or 28
                      return "Thursday"
               if day = 1, 8, 15, or 22
                      return "Friday"
               etc.
       if month = 3
               etc.
```

Introducing "Else If"

```
Doomsday(day, month)
       if month = 1
               if day = 3, 10, 17, 24, or 31
                      return "Thursday"
              else if day = 4, 11, 18, or 25
                      return "Friday"
               etc.
       else if month = 2
               if day = 7, 14, 21, or 28
                      return "Thursday"
               else if day = 1, 8, 15, or 22
                      return "Friday"
               etc.
       else if month = 3
               etc.
```

LOOPS AND THE TRIVIAL GCD ALGORITHM

How Do We Convert this to Pseudocode?

Divisors of 378	1	2	3	6	7	9	14	18	21	27	42	54	63	126	189	378
Divisors of 273	1		3		7		13		21		39			91		273

A **trivial** (obvious) algorithm solving the GCD problem.

- 1. Start our largest common divisor at 1.
- 2. For every integer n between 1 and min(a, b):
 - Is *n* a divisor of *a*?
 - Is *n* a divisor of *b*?
 - If the answer to both of these questions is "Yes", update our largest common divisor found to be equal to *n*.
- 3. After ranging through all these integers, the largest common divisor found must be GCD(a, b).

How Do We Convert this to Pseudocode?

Divisors of 378	1	2	3	6	7	9	14	18	21	27	42	54	63	126	189	378
Divisors of 273	1		3		7		13		21		39			91		273

A trivial (obvious) algorithm solving the GCD problem.

- 1. Start our largest common divisor at 1.
- 2. For every integer n between 1 and min(a, b):
 - Is *n* a divisor of *a*?
 - Is n a divisor of b?
 - If the answer to both of these questions is "Yes", update our largest common divisor found to be equal to *n*.
- 3. After ranging through all these integers, the largest common divisor found must be GCD(a, b).

Key Point: how can we do something "for every integer" in a range?

Factorial Problem

- Input: An integer n.
- Output: n! = n * (n-1) * (n-2) * ... * 2 * 1.

Factorial Problem

- **Input:** An integer *n*.
- Output: n! = n * (n-1) * (n-2) * ... * 2 * 1.

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

 $p \leftarrow 1$: declaring an intermediate variable p equal to 1 (p will eventually hold the factorial product)

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

 $p \leftarrow 1$: the *variable* on the left of \leftarrow receives the *value* of the right side.

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

 $i \leftarrow 1$: i will allow us to "range" over all integers up to n.

```
Factorial(n)

p \leftarrow 1

i \leftarrow 1

while i \leq n

p \leftarrow p \cdot i

i \leftarrow i + 1

return p
```

while $i \le n$: example of a while loop. Just like an if statement – if $i \le n$ is true, we enter while block.

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i \quad (p = 1)
i \leftarrow i + 1 \quad (i = 2)
return p
```

The difference: after the while block, we test $i \le n$ again and (if true) enter the while block again.

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
\text{while } i \leq n
p \leftarrow p \cdot i \quad (p = 2)
i \leftarrow i + 1 \quad (i = 3)
\text{return } p
```

```
Factorial(n)

p \leftarrow 1

i \leftarrow 1

while i \leq n

p \leftarrow p \cdot i

i \leftarrow i + 1

return p
```

```
npiIs i \le n?Updated value of pUpdated value of i411Yes1 \cdot 1 = 11 + 1 = 2
```

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
\mathbf{while} \ i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
\mathbf{return} \ p
```

```
      n
      p
      i
      Is i \le n?
      Updated value of p
      Updated value of i

      4
      1
      1
      Yes
      1 \cdot 1 = 1
      1 + 1 = 2

      4
      1
      2
      Yes
      1 \cdot 2 = 2
      2 + 1 = 3
```

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

```
      n
      p
      i
      Is i \le n?
      Updated value of p
      Updated value of i

      4
      1
      1
      Yes
      1 \cdot 1 = 1
      1 + 1 = 2

      4
      1
      2
      Yes
      2 + 1 = 3

      4
      2
      3
      Yes
      3 + 1 = 4
```

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

```
Is i \leq n?
                       Updated value of p
                                            Updated value of i
n
4 1 1 Yes
                            1 \cdot 1 = 1
                                                1 + 1 = 2
4 1 2 Yes
                           1 \cdot 2 = 2
                                                2 + 1 = 3
4 2 3 Yes
                          2 \cdot 3 = 6
                                              3 + 1 = 4
                           6 \cdot 4 = 24
                                              4 + 1 = 5
            Yes
```

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

```
Is i \leq n?
                       Updated value of p
                                           Updated value of i
n
                            1 \cdot 1 = 1
                                                1 + 1 = 2
             Yes
4 1 2 Yes
                            1 \cdot 2 = 2
                                                2 + 1 = 3
4 2 3
              Yes
                           2 \cdot 3 = 6
                                              3 + 1 = 4
   6 4 Yes
                           6 \cdot 4 = 24
                                              4 + 1 = 5
         5 No
   24
```

```
Factorial(n)
p \leftarrow 1
i \leftarrow 1
while i \leq n
p \leftarrow p \cdot i
i \leftarrow i + 1
return p
```

STOP: What happens if we remove $i \leftarrow i + 1$?

```
Factorial(n)

p \leftarrow 1

i \leftarrow 1

while i \leq n

p \leftarrow p \cdot i

i \leftarrow i + 1

return p
```

STOP: What happens if we remove $i \leftarrow i + 1$?

Infinite loop: a loop that never terminates.

```
Factorial(n)

p \leftarrow 1

i \leftarrow 1

while i \leq n

p \leftarrow p \cdot i

return p
```

For Loops Simplify Ranging

For loop: a way of simplifying the process of "ranging" through a collection of values.

```
AnotherFactorial(n)

p \leftarrow 1

for every integer i from 1 to n

p \leftarrow p \cdot i

return p
```

Note: While Loops are More General

PittsburghFebruary()

while temperature is below freezing daydream about moving south

Returning to the Trivial GCD

A trivial (obvious) algorithm solving the GCD problem.

- 1. Start our largest common divisor at 1.
- 2. For every integer *n* between 1 and min(*a*, *b*):
 - Is *n* a divisor of *a*?
 - Is *n* a divisor of *b*?
 - If the answer to both of these questions is "Yes", update our largest common divisor found to be equal to *n*.
- 3. After ranging through all these integers, the largest common divisor found must be GCD(a, b).

Exercise: Write pseudocode for a function **TrivialGCD**(*a*, *b*) representing this algorithm (assume any subroutines you like).

Returning to the Trivial GCD

```
TrivialGCD(a, b)

d \leftarrow 1

m \leftarrow Min2(a, b) (subroutine!)

for every integer p from 1 to m

if p is a divisor of both a and b

d \leftarrow p

return d
```

Returning to the Trivial GCD

```
TrivialGCD(a, b)
d \leftarrow 1
m \leftarrow Min2(a, b) (subroutine!)

for every integer p from 1 to m
if p is a divisor of both a and b
d \leftarrow p

return d
```

We should discuss how a computer determines if one number is a divisor of another...

The **integer division** of *x/y* is defined by taking the integer part of the division and "throwing away" the remainder.

$$14/3 = ?$$
 $102/12 = ?$ $11/2 = ?$

The **integer division** of *x/y* is defined by taking the integer part of the division and "throwing away" the remainder.

$$14/3 = 4$$
 $102/12 = 8$ $11/2 = 5$

The **integer division** of *x/y* is defined by taking the integer part of the division and "throwing away" the remainder.

$$14/3 = 4$$
 $102/12 = 8$ $11/2 = 5$

STOP: How does *p* being a divisor of *n* relate to integer division and remainder?

The **integer division** of *x/y* is defined by taking the integer part of the division and "throwing away" the remainder.

$$14/3 = 4$$
 $102/12 = 8$ $11/2 = 5$

Exercise: Write pseudocode for functions **IntegerDivision**(n, p) and **Remainder**(n, p) corresponding to the integer division and remainder formed by n/p. Your only allowable arithmetic operations are addition, subtraction, and multiplication.

Integer Division is "Repeated Subtraction"

```
IntegerDivision(n, p)
c \leftarrow 0
n \leftarrow n - p
while n \ge 0
c \leftarrow c + 1
n \leftarrow n - p
return c
```

Note: We can check the correctness of our function by *testing* it on various outputs.

Remainder() Uses IntegerDivision() as a Subroutine

Remainder(n, p) return n - p * IntegerDivision(n, p)

Remainder(14,3) = 14 - 3*IntegerDivision(14,3) = 2

Remainder() Uses IntegerDivision() as a Subroutine

Remainder(n, p) return n - p * IntegerDivision(n, p)

Remainder(14,3) = 14 - 3*IntegerDivision(14,3) = 2

Remainder(102,12) = 102 - 12*IntegerDivision(102,12) = 6

Remainder() Uses IntegerDivision() as a Subroutine

Remainder(n, p) return n - p * IntegerDivision(n, p)

Remainder(14,3) = 14 - 3*IntegerDivision(14,3) = 2

Remainder(102,12) = 102 - 12*IntegerDivision(102,12) = 6

Remainder(11,2) = 11 - 2*IntegerDivision(11,2) = 1

Remainder() and Doomsday

```
Doomsday(day, month)
        if month = 1
                if day = 3, 10, 17, 24, or 31
                        return "Friday"
                else if day = 4, 11, 18, or 25
                        return "Saturday"
                etc.
        else if month = 2
                if day = 7, 14, 21, or 28
                        return "Monday"
                else if day = 1, 8, 15, or 22
                        return "Tuesday"
                etc.
        else if month = 3
                etc.
```

STOP: How would **Remainder** be helpful here?

TrivialGCD is Now Good to Go

```
TrivialGCD(a, b)

d \leftarrow 1

m \leftarrow Min2(a, b) (subroutine!)

for every integer p from 1 to m

if p is a divisor of both a and b

d \leftarrow p

return d
```

TrivialGCD is Now Good to Go

```
TrivialGCD(a, b)

d \leftarrow 1

m \leftarrow \text{Min2}(a, b) (subroutine!)

for every integer p from 1 to m

if Remainder(a, p) = 0 and Remainder(b, p) = 0

d \leftarrow p

return d
```

Note: The word "and" is a keyword too. More later...

EUCLID'S INSIGHT AND THE WORLD'S FIRST NONTRIVIAL ALGORITHM

Euclid's Theorem: If a > b, then GCD(a, b) = GCD(a-b, b).

Programming for Lovers. © 2019 by Phillip Compeau. All rights reserved.

Euclid's Theorem: If a > b, then

GCD(a, b) = GCD(a-b, b).

Two Pressing Questions:

- 1. How can we demonstrate this for any possible pair of integers?
- 2. Why do we really *care* that this is true computationally?

Euclid's Theorem: If a > b, then

GCD(a, b) = GCD(a-b, b).

Two Pressing Questions:

- 1. How can we demonstrate this for any possible pair of integers? *Let's prove it!*
- 2. Why do we really *care* that this is true computationally?

Euclid's Theorem: If a > b, then GCD(a, b) = GCD(a-b, b).

Common problem-solving technique in mathematics: sometimes, we can prove a *more general* statement.

Euclid's Theorem: If a > b, then GCD(a, b) = GCD(a-b, b).

Common problem-solving technique in mathematics: sometimes, we can prove a *more general* statement.

More general statement: If a > b, then *all* shared divisors of a and b is the same as *all* shared divisors of a - b and b.

We prove the general statement with two facts:

- 1. Any shared divisor of a and b must also be a divisor of a b.
- 2. Any shared divisor of a b and b must also be a divisor of a.

More general statement: If a > b, then *all* shared divisors of a and b is the same as *all* shared divisors of a - b and b.

We prove the general statement with two facts:

- 1. Any shared divisor of *a* and *b* must also be a divisor of *a* − *b*.
- 2. Any shared divisor of a b and b must also be a divisor of a.

Say *d* is a divisor of *a* and *b*. There must be some integers *x* and *y* such that

$$dx = a$$
, $dy = b$

We prove the general statement with two facts:

- 1. Any shared divisor of *a* and *b* must also be a divisor of *a* − *b*.
- 2. Any shared divisor of a b and b must also be a divisor of a.

Say *d* is a divisor of *a* and *b*. There must be some integers *x* and *y* such that

$$dx = a, dy = b$$
$$a - b = dx - dy = d(x - y)$$

We prove the general statement with two facts:

- 1. Any shared divisor of a and b must also be a divisor of a b.
- 2. Any shared divisor of a b and b must also be a divisor of a.

Say *d* is a divisor of *a* and *b*. There must be some integers *x* and *y* such that

$$dx = a, dy = b$$
$$a - b = dx - dy = d(x - y)$$

So d is a divisor of a - b as well.

We prove the general statement with two facts:

- 1. Any shared divisor of a and b must also be a divisor of a b.
- 2. Any shared divisor of a b and b must also be a divisor of a.

Say e is a divisor of a - b and b. There must be some integers p and q such that

$$ep = a - b$$
, $eq = b$

We prove the general statement with two facts:

- 1. Any shared divisor of a and b must also be a divisor of a b.
- 2. Any shared divisor of a b and b must also be a divisor of a.

Say e is a divisor of a - b and b. There must be some integers p and q such that

$$ep = a - b$$
, $eq = b$
 $a = (a - b) + b = ep + eq = e(p + q)$

We prove the general statement with two facts:

- 1. Any shared divisor of a and b must also be a divisor of a b.
- 2. Any shared divisor of a b and b must also be a divisor of a.

Say e is a divisor of a - b and b. There must be some integers p and q such that

$$ep = a - b$$
, $eq = b$
 $a = (a - b) + b = ep + eq = e(p + q)$

So e is a divisor of a as well.

Euclid's Theorem: If a > b, then

GCD(a, b) = GCD(a-b, b).

Two Pressing Questions:

- 1. How can we demonstrate this for any possible pair of integers?
- 2. Why do we really *care* that this is true computationally?

Euclid's Theorem: If a > b, then GCD(a, b) = GCD(a-b, b).

GCD(378, 273) = GCD(105, 273)

$$GCD(378, 273) = GCD(105, 273)$$

= $GCD(105, 168)$

$$GCD(378, 273) = GCD(105, 273)$$

= $GCD(105, 168)$
= $GCD(105, 63)$

```
GCD(378, 273) = GCD(105, 273)
= GCD(105, 168)
= GCD(105, 63)
= GCD(42, 63)
```

```
GCD(378, 273) = GCD(105, 273)
= GCD(105, 168)
= GCD(105, 63)
= GCD(42, 63)
= GCD(42, 21)
```

```
GCD(378, 273) = GCD(105, 273)
= GCD(105, 168)
= GCD(105, 63)
= GCD(42, 63)
= GCD(42, 21)
= GCD(21, 21)
```

$$GCD(378, 273) = GCD(105, 273)$$

= $GCD(105, 168)$
= $GCD(105, 63)$
= $GCD(42, 63)$
= $GCD(42, 21)$
= $GCD(21, 21)$
= 21

Grace Hopper on the Value of Speed

Source: https://youtu.be/9eyFDBPk4Yw

Exercise: Brainstorm how we could write a function in pseudocode to compute the GCD of two numbers by repeatedly applying Euclid's Theorem.

```
GCD(378, 273) = GCD(105, 273)

= GCD(105,168)

= GCD(105,63)

= GCD(42,63)

= GCD(42,21)

= GCD(21,21)

= 21
```

Pseudocode for Euclid's Algorithm

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

Pseudocode for Euclid's Algorithm

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

STOP: If we change **return** *a* to **return** *b*, how does it change the algorithm?

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

```
a b Is a \neq b? Updated value of a Updated value of b 378 273 Yes 105 273
```

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

```
abIs a \neq b?Updated value of aUpdated value of b378273Yes105273105273Yes105168
```

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

а	b	Is $a \neq b$?	Updated value of a	Updated value of b
378	273	Yes	105	273
105	273	Yes	105	168
105	168	Yes	105	63

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

а	b	Is $a \neq b$?	Updated value of a	Updated value of b
378	273	Yes	105	273
105	273	Yes	105	168
105	168	Yes	105	63
105	63	Yes	42	63

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

а	b	Is $a \neq b$?	Updated value of a	Updated value of b
378	273	Yes	105	273
105	273	Yes	105	168
105	168	Yes	105	63
105	63	Yes	42	63
42	63	Yes	42	21

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

а	b	Is $a \neq b$?	Updated value of a	Updated value of b
378	273	Yes	105	273
105	273	Yes	105	168
105	168	Yes	105	63
105	63	Yes	42	63
42	63	Yes	42	21
42	21	Yes	21	21

```
EuclidGCD(a, b)

while a \neq b

if a > b

a \leftarrow a - b

else

b \leftarrow b - a

return a
```

а	b	Is $a \neq b$?	Updated value of <i>a</i>	Updated value of b
378	273	Yes	105	273
105	273	Yes	105	168
105	168	Yes	105	63
105	63	Yes	42	63
42	63	Yes	42	21
42	21	Yes	21	21
21	21	No		

Programming for Lovers. © 2019 by Phillip Compeau. All rights reserved.

ARRAYS AND A FIRST ATTEMPT AT PRIME FINDING

Eratosthenes of Cyrene (276 – 195 BC)

Also: first nontrivial algorithm for identifying prime numbers (soon)

Eratosthenes of Cyrene (276 – 195 BC)

Also: first nontrivial algorithm for identifying prime numbers (soon)

Recall that a positive integer is **prime** if its only divisors are 1 and itself (and **composite** otherwise).

Prime Number Problem

- **Input:** An integer *n*.
- **Output:** "Yes" if *n* is prime, and "No" otherwise.

Prime Number Problem

- **Input:** An integer *n*.
- **Output:** "Yes" if *n* is prime, and "No" otherwise.

Decision problem: a computational problem that always returns a "Yes"/"No" answer.

(Decision problems may sound simple, but they lie at the dark heart of computer science.)

Prime Number Problem

- **Input:** An integer *n*.
- Output: "Yes" if n is prime, and "No" otherwise.

We use the keywords **true** and **false** to represent "Yes" and "No".

A variable taking **true** or **false** is called a **Boolean variable**.

Prime Number Problem

- **Input:** An integer *n*.
- **Output:** "Yes" if *n* is prime, and "No" otherwise.

```
IsPrime(n)
    if n = 1
        return false
    for every integer p from 2 to n = 1
        if p is a divisor of n
        return false
    return true
```

STOP: How does this change the algorithm?

```
IsPrime(n)
    if n = 1
        return false
    for every integer p from 1 to n - 1
        if p is a divisor of n
        return false
    return true
```

Running IsPrime() on Multiple n

```
p 1 2 3 4 5 6 7 8 9 10 11 Is p prime? false true false true false true false true
```

```
IsPrime(n)
    if n = 1
        return false
    for every integer p from 2 to n - 1
        if p is a divisor of n
        return false
    return true
```

Running IsPrime() on Multiple n

p 1 2 3 4 5 6 7 8 9 10 11 Is p prime? false true false true false true false true

STOP: Do you see any improvements to **IsPrime**()?

```
if n = 1
    return false
    for every integer p from 2 to n - 1
        if p is a divisor of n
            return false
    return true
```

Running IsPrime() on Multiple n

p 1 2 3 4 5 6 7 8 9 10 11 Is p prime? false true false true false true false true

Theorem: If ab = n, a or b must be at most \sqrt{n} .

```
IsPrime(n)
    if n = 1
        return false
    for every integer p from 2 to √n
        if p is a divisor of n
        return false
    return true
```

Do the Primes Really Go on Forever?

Do the Primes Really Go on Forever?

Programming for Lovers. © 2019 by Phillip Compeau. All rights reserved.

Do the Primes Really Go on Forever?

Euclid's Theorem

#2: There are infinitely many primes.

Programming for Lovers. © 2019 by Phillip Compeau. All rights reserved.

First, a Simpler Fact

Simpler Fact: Every composite integer greater than 1 has at least one prime factor.

First, a Simpler Fact

Simpler Fact: Every composite integer greater than 1 has at least one prime factor.

Consider any composite integer *n*; since it is composite, it has factors other than itself and 1.

First, a Simpler Fact

Simpler Fact: Every composite integer greater than 1 has at least one prime factor.

Consider any composite integer *n*; since it is composite, it has factors other than itself and 1.

Take the smallest factor *p* of *n* other than 1. *p* must be prime, since any factor that it would have other than 1 and itself would also be a factor of *n* (but we assumed *p* was the smallest such factor).

Euclid's Theorem #2: There are infinitely many prime numbers.

Euclid's Theorem #2: There are infinitely many prime numbers.

Proof by contradiction: Assume the opposite of what we want to prove, and show that it leads to a **contradiction**, a statement that we know is false.

Euclid's Theorem #2: There are infinitely many prime numbers.

Proof by contradiction: Assume the opposite of what we want to prove, and show that it leads to a **contradiction**, a statement that we know is false.

STOP: What is the opposite of what we want to prove in this case?

Euclid's Theorem #2: There are infinitely many prime numbers.

Assume that there are finitely many primes. This means that there must be some number n of them, and we can label them $p_1, p_2, ..., p_n$.

Euclid's Theorem #2: There are infinitely many prime numbers.

Assume that there are finitely many primes. This means that there must be some number n of them, and we can label them $p_1, p_2, ..., p_n$.

Consider the number formed by multiplying all these primes together:

$$p = (p_1) (p_2) \dots (p_n)$$
.

Euclid's Theorem #2: There are infinitely many prime numbers.

STOP: Is *p* prime or composite? Why?

Consider the number formed by multiplying all these primes together:

$$p = (p_1) (p_2) \dots (p_n)$$
.

Euclid's Theorem #2: There are infinitely many prime numbers.

Answer: Composite, because *p* has many factors other than 1 and itself.

Consider the number formed by multiplying all these primes together:

$$p = (p_1) (p_2) \dots (p_n)$$
.

Euclid's Theorem #2: There are infinitely many prime numbers.

Now take the number that is 1 larger than p: $q = p + 1 = (p_1) (p_2) \dots (p_n) + 1$.

Euclid's Theorem #2: There are infinitely many prime numbers.

Now take the number that is 1 larger than p: $q = p + 1 = (p_1) (p_2) \dots (p_n) + 1$.

STOP: Is *q* prime or composite? Why?

Euclid's Theorem #2: There are infinitely many prime numbers.

Now take the number that is 1 larger than p: $q = p + 1 = (p_1) (p_2) \dots (p_n) + 1$.

STOP: Is *q* prime or composite? Why?

Answer: *q* must be composite, because it is clearly larger than all known primes!

Proof of Euclid's Theorem #2

Euclid's Theorem #2: There are infinitely many prime numbers.

Now take the number that is 1 larger than *p*:

$$q = p + 1 = (p_1)(p_2) \dots (p_n) + 1.$$

$$q/p_1 = (p_2) \dots (p_n) + 1/p_1$$
.

Proof of Euclid's Theorem #2

Euclid's Theorem #2: There are infinitely many prime numbers.

Now take the number that is 1 larger than p: $q = p + 1 = (p_1)(p_2)...(p_n) + 1$.

$$q/p_1 = (p_2) \dots (p_n) + 1/p_1$$
.
 $q/p_2 = (p_1)(p_3) \dots (p_n) + 1/p_2$.

Proof of Euclid's Theorem #2

Euclid's Theorem #2: There are infinitely many prime numbers.

Now take the number that is 1 larger than p: $q = p + 1 = (p_1) (p_2) \dots (p_n) + 1$.

$$q / p_1 = (p_2) \dots (p_n) + 1/p_1$$
.
 $q / p_2 = (p_1) (p_3) \dots (p_n) + 1/p_2$.
The remainder is always 1!

Remember Our Fact ...

Fact: Every composite integer greater than 1 has at least one prime factor.

$$q / p_1 = (p_2) \dots (p_n) + 1/p_1$$
.
 $q / p_2 = (p_1) (p_3) \dots (p_n) + 1/p_2$.
The remainder is always 1!

Remember Our Fact ...

Fact: Every composite integer greater than 1 has at least one prime factor.

q is composite, so it has a prime factor. But none of the primes p_i is a factor. **Contradiction!**

$$q / p_1 = (p_2) \dots (p_n) + 1/p_1$$
.
 $q / p_2 = (p_1) (p_3) \dots (p_n) + 1/p_2$.
The remainder is always 1!

The Theorem is Proved ©

Euclid's Theorem #2: There are infinitely many prime numbers.

q is composite, so it has a prime factor. But none of the primes p_i is a factor. **Contradiction!**

$$q / p_1 = (p_2) \dots (p_n) + 1/p_1$$
.
 $q / p_2 = (p_1) (p_3) \dots (p_n) + 1/p_2$.
The remainder is always 1!

Returning to Factorials

Array: an ordered table/list of variables.

Factorial Array Problem

- **Input:** An integer *n*.
- **Output:** An array containing all the n+1 factorials 0! = 1, 1!, 2!, ..., n!.

Returning to Factorials

Array: an ordered table/list of variables.

Factorial Array Problem

- **Input:** An integer *n*.
- **Output:** An array containing all the n+1 factorials 0! = 1, 1!, 2!, ..., n!.

0-based indexing: starting numbering at 0, not 1.

Returning to Factorials

Array: an ordered table/list of variables.

Factorial Array Problem

- **Input:** An integer *n*.
- **Output:** An array containing all the n+1 factorials 0! = 1, 1!, 2!, ..., n!.

FactorialArray(*n*)

```
a \leftarrow array of length n+1

a[0] \leftarrow 1

for every integer k from 1 to n

a[k] \leftarrow a[k-1] \cdot k

return a
```

Trivial Prime Finding

Prime Number Array Problem

- **Input:** An integer *n*.
- **Output:** An array *primes* of length n + 1 such that for every nonnegative integer $p \le n$, *primes*[p] is **true** if p is prime and **false** otherwise.

0	1	2	3	4	5	6	7	8	9
false	false	true	true	false	true	false	true	false	false

Trivial Prime Finding

```
TrivialPrimeFinder(n)
```

primes ← array of n + 1 false boolean variables for every integer p from 2 to nif IsPrime(p) = true primes[p] ← true

return primes

0	1	2	3	4	5	6	7	8	9
false	false	true	true	false	true	false	true	false	false

THE WORLD'S SECOND NONTRIVIAL ALGORITHM

Eratosthenes's Nontrivial Algorithm

Programming for Lovers. © 2019 by Phillip Compeau. All rights reserved.

The Sieve of Eratosthenes

Prime Number Array Problem

- Input: An integer n.
- **Output:** An array *primes* of length n + 1 such that for every nonnegative integer $p \le n$, *primes*[p] is **true** if p is prime and **false** otherwise.

Exercise: Write a pseudocode function **SieveOfEratosthenes**() that solves this problem by implementing the Sieve of Eratosthenes. (Use a subroutine if it's helpful.)

Implementing SieveOfEratosthenes

```
SieveOfEratosthenes(n)

primes \leftarrow array of n + 1 true booleans

primes[0] \leftarrow false

primes[1] \leftarrow false

for every integer p from 2 to \sqrt{n}

if primes[p] = true

primes \leftarrow CrossOff(primes, p)

return primes
```

```
CrossOff(primes, p)

for every multiple k of p from 2p to n

primes[k] \leftarrow false

return primes
```

Implementing SieveOfEratosthenes

Next time, let's implement the sieve of Eratosthenes in Go, and compare it to the trivial prime finder in terms of speed. *Can it really be that much faster?*

But ... what practical use are there for primes in the 21st Century?

CONCLUSION: PUBLIC KEY CRYPTOGRAPHY

Encryption is Vital to Internet Security

Encryption:

transforming a message so that it cannot be read by an eavesdropper but can be **decrypted** by the recipient.

Most Encryption Schemes are Symmetric

A **symmetric** encryption scheme uses the same **key** for encrypting/decrypting a message.

Most Encryption Schemes are Symmetric

A **symmetric** encryption scheme uses the same **key** for encrypting/decrypting a message.

Evenif we have a complicated key, it must be *private*: the sender and receiver must agree on the key in advance.

Public key encryption (late 1970s): knowing the key doesn't make it automatically easy to decrypt!

Public key encryption (late 1970s): knowing the key doesn't make it automatically easy to decrypt!

Picks two large primes *p* and *q* (typically ~300 digits long)

Public key encryption (late 1970s): knowing the key doesn't make it automatically easy to decrypt!

Public key encryption (late 1970s): knowing the key doesn't make it automatically easy to decrypt!

Key Point: The only way to decrypt is by knowing the primes p and q. This makes the key **asymmetric**.

"But an eavesdropper just has to factor n!"

Integer Factorization Problem

- **Input:** An integer *n*.
- Output: The factorization of n.

"But an eavesdropper just has to factor n!"

Integer Factorization Problem

- **Input:** An integer *n*.
- Output: The factorization of n.

Key Point: No one has ever found a "fast" solution to this problem for 600-digit integers ...

