Trại Đông Đà Lạt

Hướng dẫn giải bài tập 29-31/10/2023

Ngày 31 tháng 10 năm 2023

Bài 1. CAMPING – Cắm trạ

Bài 2. Tiệc rượu – COCKTAI

Bài 3. Xác nhận báo cáo – VERIFY

Bài 1. CAMPING - Cắm trại

Bài 2. Tiệc rượu - COCKTAIL

Bài 3. Xác nhận báo cáo - VERIFY

CAMPING - Cắm trại

Khuôn viên cắm trại có dạng hình chữ nhật được chia thành lưới ô vuông gồm m dòng và n cột. Ô nằm trên hàng i $(1 \le i \le m)$ và cột j $(1 \le j \le n)$ được ký hiệu là ô (i,j). Kết quả khảo sát địa hình cho thấy có một số ô nền không phẳng (ô xấu) không phù hợp với việc đặt trại. Trại của sinh viên cần được bố trí trên 2 ô vuông liên tiếp nhau theo chiều dọc hoặc ngang, không chứa ô xấu và cũng không được ra ngoài khuôn viên.

Yêu cầu: Hãy xác định số lượng vị trí khác nhau có thể đặt trại của sinh viên.

Subtask 1 (30 %): m = 1; $n, k \le 1000$

Đánh dấu trên mảng 1 chiều, duyệt từng vị trí đếm số cặp cạnh nhau không bị đánh dấu.

Subtask 2 (30 %): $m, n \le 1000$; k = 0

Duyệt như subtask 3 hoặc sử dụng công thức: 2mn - m - n.

Subtask 3 (20 điểm): $m, n, k \le 1000$

Đánh dấu trên mảng 2 chiều, duyệt từng ô, xét 2 ô kề cạnh theo hướng sang phải và hướng xuống.

Subtask 4 (20 %): $m, n \le 10^9$; $k \le 10^5$

- Số cặp ô thoả mãn = (tổng số cặp ô cạnh nhau) (số cặp ô không thoả mãn).
- Tổng số cặp ô cạnh nhau là 2mn m m.
- Để đếm số cặp ô không thoả mãn, ta duyệt tất cả các vị trí ô cấm, duyệt 4 hướng, sử dụng map để đánh dấu các ô.

Bài 1. CAMPING - Cắm trạ

Bài 2. Tiệc rượu - COCKTAIL

Bài 3. Xác nhận báo cáo - VERIFY

Tiệc rượu – Cocktail

Minh tổ chức bữa tiệc rượu Mojito mời N người bạn. Người bạn thứ i cảm thấy thoải mái khi ly rượu của người đó chính xác D_i ml Mojito. Trước lúc bữa tiệc bắt đầu, Minh biết rằng sẽ có M cặp người trong những người bạn sẽ gặp gỡ và nói chuyện giao lưu. Hai người bạn u và v sau khi nói chuyện sẽ bắt tay nếu cả hai đều cảm thấy thoải mái. Ngược lại, cuộc gặp gỡ kết thúc không có cái bắt tay nào cả.

Yêu cầu: Tính số lượng nhiều nhất người bạn được bắt tay có thể nếu tổng lượng rượu Minh chuẩn bị cho bữa tiệc là S ml.

Subtask 1 ($M=N-1; 1\leq S\leq 1000$ và mỗi người bạn chỉ gặp gỡ tối đa 2 người bạn khác): O(N*S)

 $\mathring{\text{O}}$ subtask 1 và 2, đồ thị biểu diễn các cuộc gặp gỡ là một đoạn thẳng. Gọi I_1,I_2,\ldots,I_N là thứ tự của những người bạn từ trái sang phải.

Thực hiện quy hoạch động: $dp[I_p][k][b]$ là số lượng người bạn tối đa được bắt tay khi xét đến người bạn thứ I_p , tổng lượng rượu đã sử dụng là k và b=1/0 cho biết người bạn I_p có thoải mái hay không. Ta có công thức quy hoạch động:

- $dp[l_p][k][1] = \\ \max(dp[l_{p-1}][k D_{l_p} D_{l_{p-1}}][0] + 2, dp[l_{p-1}][k D_{l_p}][1] + 1).$

Kết quả bài toán là $\max(dp[I_N][S][0], dp[I_N][S][1])$.

Subtask 2 (M=N-1; và mỗi người bạn chỉ gặp gỡ tối đa 2 người bạn khác): $O(N^2)$

Thực hiện quy hoạch động: $dp[l_p][r][b]$ là tổng lượng rượu tối thiểu sao cho khi xét đến người bạn thứ l_p , số người bạn được bắt tay là r và b=1/0 cho biết người bạn l_p có thoải mái hay không. Ta có công thức quy hoạch động:

- $dp[I_p][r][0] = \min(dp[I_{p-1}][r][0], dp[I_{p-1}][r][1]).$
- $dp[I_p][r][1] = \min(dp[I_{p-1}][r-2][0] + D_{I_{p-1}} + D_{I_p}, dp[I_{p-1}][r-1][1] + D_{I_p}).$

Kết quả bài toán là giá trị r lớn nhất thỏa mãn $\min(dp[I_N][r][0], dp[I_N][r][1]) \leq S$.

Subtask 3 (1 $\leq N < 100$): $O(N^3)$

- Thực hiện quy hoạch động trên cây với ý tưởng quy hoạch động giống với subtask 2.
- ▶ Gọi dp[p][r][b] là tổng lượng rượu tối thiểu sử dụng sao cho khi xét trong cây con gốc p, số người bạn được bắt tay là r và b=1/0 cho biết người bạn p có thoải mái hay không.
- Dể tính được giá trị dp[p][r][b] trong cây con gốc p thì trước hết ta phải tính giá trị pre[k][r][b] là tổng lượng rượu tối thiểu sử dụng sao cho khi xét qua k nút con trực tiếp của đỉnh p thì có r người được bắt tay và b=1/0 cho biết người bạn p có thoải mái hay không.
- ▶ Dễ thấy dp[p][r][b] = pre[số nút con trực tiếp của <math>p][r][b]. Gọi c_i là đỉnh con trực tiếp thứ i của đỉnh p.

Subtask 3 (1 $\leq N < 100$): $O(N^3)$

Ta có công thức quy hoạch động:

- $pre[k][a + b][0] = min(pre[k 1][a][0] + min(dp[c_k][b][0], dp[c_k][b][1]))$
- pre[k][a+b][1] =

$$\min \begin{cases} pre[k-1][a-1][0] + dp[c_k][b][1] + D_p \\ pre[k-1][a-1][0] + dp[c_k][b-1][0] + D_p + D_{c_k} \\ pre[k-1][a][1] + dp[c_k][b][1] \\ pre[k-1][a][1] + dp[c_k][b-1][0] + D_{c_k} \\ pre[k-1][a][1] + dp[c_k][b][0] \end{cases}$$

Subtask 4 ($1 \le N < 1000$): $O(N^2)$

 $\mathring{\text{O}}$ subtask 3 ta không thể tối ưu được thêm điều gì, tuy nhiên thuật toán của subtask 3 có thể cải tiến thành $O(N^2)$ nếu ta duyệt 2 thông số a,b không thừa. Giá trị a không vượt quá tổng kích thước của các cây con đã xét cộng với 1, giá trị b không vượt quá tổng kích thước của các cây con còn lại.

Bài 1. CAMPING - Cắm trại

Bài 2. Tiêc rươu - COCKTAIL

Bài 3. Xác nhận báo cáo - VERIFY

Xác nhận báo cáo – Verify

- Tâm có N cửa hàng trải dài trên con đường ấy, các cửa hàng được đánh số thứ tự từ 0 đến N-1. Trước đó ông biết rằng, thu nhập của N cửa hàng sẽ tạo thành 1 dãy hoán vị từ 0 đến N-1. Tâm có hỏi thư kí của mình Q câu hỏi. Ở câu hỏi thứ i, Tâm muốn biết: thu nhập ít nhất trong các cửa hàng được đánh số từ L_i đến R_i là bao nhiêu? Sau đó thư kí đã gửi cho ông 1 bản báo cáo gồm Q số nguyên A_1, A_2, \ldots, A_Q , số nguyên A_i ($0 \le A_i < N$) là câu trả lời cho câu hỏi thứ i.
- ightharpoonupĐể xác nhận tính chính xác của bản báo cáo, Tâm nhờ bạn tìm xem có tồn tại một dãy hoán vị từ 0 đến N-1 ứng với thu nhập của N của hàng sao cho tất cả câu trả lời của thư ký đều chính xác hay không.

Subtask 1 (1 \leq *N*, *Q* \leq 10): O(Q * N!)

Thực hiện duyệt tất cả các dãy hoán vị và kiểm tra chúng có thỏa mãn mọi câu trả lời hay không.

Subtask 2 (1 \leq N, Q \leq 1000): O(Q * N

Với mỗi câu trả lời L_i, R_i, C_i cho ta biết rằng một dãy hoán vị phải thỏa mãn 2 ràng buộc sau:

- Tất cả các giá trị ở vị trí L_i đến vị trí R_i đều phải lớn hơn hoặc bằng C_i.
- $ightharpoonup C_i$ không được nằm ngoài phạm vi $[L_i, R_i]$.

Gọi A_i là giá trị nhỏ nhất có thể ở vị trí i, dễ thấy $A_i = \max\{C_j\}$ với $L_j \leq i \leq R_j$. Gọi U_j, V_j là phạm vi mà giá trị j phải có mặt ở trong đó, $U_j = \max\{L_j\}, V_j = \min\{R_j\}$ với $L_j \leq i \leq R_j$.

Ta thực hiện một thuật toán tham lam như sau: Duyệt vị trí i từ 0 đến N-1, tại vị trí i thì ta sẽ chọn giá trị j thỏa mãn:

- Giá trị j chưa được chọn trước đó.
- ightharpoonup j nhỏ nhất và $j \geq A_i$.
- $ightharpoonup U_j \leq i \leq V_j$.

Nếu tại vị trí i mà không tồn tại giá trị j thỏa mãn thì không tồn tại đáp án thỏa mãn.

Subtask 3 $(1 \le N, Q \le 10^5)$: $O((N + Q) * \log N)$

Sử dụng Segment Tree Lazy để tính các giá trị A_i . Khác với subtask 2 thì ta duyệt giá trị j trước và chọn vị trí i nhỏ nhất sao cho:

- ▶ Vị trí *i* chưa được chọn trước đó.
- ▶ $j \leq A_i$.
- $ightharpoonup U_j \le i \le V_j$.

Ta sử dụng Segment Tree để tìm kiếm trong phân đoạn $[L_j, R_j]$ vị trí i nhỏ nhất thỏa mãn các điều kiện trên.