

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

DISCRETE CURVATURE I

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

Discrete Curvature

Discrete Curvature — Visualized

Curvature of Surfaces

- In smooth setting, had many different curvatures (normal, principal, Gauss, mean, geodesic, ...)
- In discrete setting, appear to be many disconnected ways to discretize curvatures
- Actually, there is a unified viewpoint that helps explain many common choices...

A Unified Picture of Discrete Curvature

- By making some connections between smooth and discrete surfaces, we get a unified picture of many different discrete curvatures scattered throughout the literature
- To tell the full story we'll need a few pieces:
 - geometric derivatives
 - Steiner polynomials
 - sequence of curvature variations
 - basic theorems (Gauss-Bonnet, Schläfli, $\Delta f = 2HN$)
- Start with *integral* viewpoint (1st lecture), then cover *variational* viewpoint (2nd lecture).

Quantities & Conventions

- Throughout we will consider the following basic quantities:
 - f_i position of vertex i
 - e_{ij} vector from i to j
 - ℓ_{ij} length of edge ij
 - A_{ijk} area of triangle ijk
 - N_{ijk} unit normal of triangle ijk
 - θ_i^{jk} interior angle at vertex i of triangle *ijk*
 - φ_{ij} dihedral angle at oriented edge ij

$$\varphi_{ij} := \operatorname{atan2}(\hat{e}_{ij} \cdot N_{ijk} \times N_{jil}, N_{ijk} \cdot N_{jil}), \qquad \hat{e}_{ij} := e_{ij} / \ell_{ij}$$

$$\hat{e}_{ij} := e_{ij}/\ell_{ij}$$

Q: Which of these quantities are discrete differential forms? (And what kind?)

Discrete Gaussian Curvature

Euler Characteristic

The Euler characteristic of a polyhedral surface is the constant

$$\chi := V - E + F$$

Topological Invariance of the Euler Characteristic

Fact. (L'Huilier) The Euler characteristic is a *topological invariant* of a polyhedral surface, i.e., it does not depend on the vertex positions or choice of tessellation. *E.g.*, for a torus of genus g, $\chi = 2-2g$:

Angle Defect

• The **angle defect** at a vertex i is the deviation of the sum of interior angles from the Euclidean angle sum of 2π :

$$\Omega_i := 2\pi - \sum_{ijk} \theta_i^{jk}$$

Intuition: how "flat" is the vertex?

Gaussian Curvature as Ratio of Ball Areas

• Recall that Gaussian curvature captures deviation of the area of a small ball on a surface from a ball of equal radius in the plane

Roughly speaking,

$$K \propto 1 - \frac{|B_g|}{|B_{\mathbb{R}^2}|}$$

More precisely:

$$|B_{\mathcal{S}}(p,\varepsilon)| = |B_{\mathbb{R}^2}(p,\varepsilon)| \left(1 - \frac{K}{12}\varepsilon^2 + O(\varepsilon^3)\right)$$

Discrete Gaussian Curvature—Intrinsic

• For small radii ε, we have

$$\frac{\varepsilon^2}{12}K \approx 1 - \frac{|B_{\mathcal{S}}(\varepsilon)|}{|B_{\mathbb{R}^2}(\varepsilon)|}$$

Discrete case:

area of Euclidean ball

$$|B_{\mathbb{R}^2}(\varepsilon)| = \pi \varepsilon^2$$

area of geodesic "wedge"

$$W_i(\varepsilon) = \frac{\theta_i}{2\pi} |B_{\mathbb{R}^2}| = \frac{1}{2} \varepsilon^2 \theta_i$$

area of geodesic ball

$$|B_{\mathcal{S}}(\varepsilon)| = \sum_{i} W_{i}(\varepsilon) = \frac{\varepsilon^{2}}{2} \sum_{i} \theta_{i}$$

Then

$$\frac{\varepsilon^2}{12}K = 1 - \frac{1}{2\pi} \sum_{i} \theta_i \iff \left| 2\pi - \sum_{i} \theta_i = \frac{1}{6}\pi \varepsilon^2 K \right|$$

$$2\pi - \sum_{i} \theta_{i} = \frac{1}{6}\pi \varepsilon^{2} K$$

(can think of angle defect as integrated curvature)

Discrete Gaussian Curvature—Extrinsic

- Consider the discrete Gauss map:
 - unit normals on surface become points on the sphere
 - connecting these points to the sphere center makes a new vertex star
 - dihedral angles on surface become interior angles on sphere and vice versa
 - angle defect on surface becomes area on the sphere

Total Angle Defect Theorem

- Consider a closed convex polyhedron in R^3
- Q: Given each angle defect is an area on the sphere, what might we guess about total angle defect?
- A: Equal to area of unit sphere! 4π
- Can in fact argue that total angle defect is equal to 4π for *any* polyhedron with spherical topology
- **Theorem.** For any polyhedron of genus g, total angle defect is equal to $2\pi(2-2g)$.
- Does this theorem remind you of anything?

Review: Gauss-Bonnet Theorem

- Gauss-Bonnet theorem says total Gaussian curvature plus geodesic curvature along the boundary is always equal to 2π times *Euler characteristic* χ
- "Total angle defect theorem" is really a discrete analogue of Gauss-Bonnet
- Q: How do we generalize discrete theorem to surfaces with boundary?

Gauss-Bonnet $\int_{M} K \, dA + \int_{\partial M} \kappa_{g} \, ds = 2\pi \chi$

Discrete Boundary Curvature

- Angle defect Ω_i provides discrete analogue of Gaussian curvature K
- Intuitively: captures failure of vertex star to be "flattenable"
- Since every boundary vertex star can be flattened without stretching, boundary vertices have zero Gaussian curvature
- But can still measure how straight boundary itself is, via discrete geodesic curvature:

$$\kappa_i := \pi - \sum_{ijk} \theta_i^{jk}$$

Discrete Gauss Bonnet Theorem

Theorem. For a smooth surface M with Gauss curvature K and geodesic curvature κ_g ,

$$\int_{M} K \, dA + \int_{\partial M} \kappa_{g} \, ds = 2\pi \chi$$

Theorem. For a simplicial surface K = (V, E, F) with interior angle defects Ω_i , boundary angle defects κ_i ,

$$\sum_{i \in \text{int} V} \Omega_i + \sum_{i \in \partial V} \kappa_i = 2\pi \chi$$

Approximating Gaussian Curvature

- Many other ways to approximate Gaussian curvature
- E.g., locally fit quadratic functions, compute smooth Gaussian curvature
- Which way is "best"?
 - values from quadratic fit won't satisfy Gauss-Bonnet
 - angle defects won't converge¹ unless vertex valence is 4 or 6
- In general, no best way; each choice has its own pros & cons

¹Borrelli, Cazals, Morvan, "On the angular defect of triangulations and the pointwise approximation of curvatures"

Curvature Normals

Curvature Normals

- Earlier we saw vector area, which was the integral of the 2-form *NdA*
- This 2-form is one of three quantities we can naturally associate with a surface:

$$\frac{1}{2} df \wedge df = NdA$$
 (area normal)
$$\frac{1}{2} df \wedge dN = HNdA$$
 (mean curvature normal)
$$\frac{1}{2} dN \wedge dN = KNdA$$
 (Gauss curvature normal)

• Effectively "mixed areas" of ordinary surface area and area on sphere

Review: Principal Curvature

- Principal directions X_1 , X_2 describe directions of min/max bending
- Key relationship that is helpful in many derivations:

Curvature Normals—Derivation

For any surface *f* with normals *N*, we have:

$$df \wedge df(X_1, X_2) = df(X_1) \times df(X_2) - df(X_2) \times df(X_1) =$$

 $2df(X_1) \times df(X_2) = \boxed{2NdA(X_1, X_2)}$

$$df \wedge dN(X_{1}, X_{2}) = df(X_{1}) \times dN(X_{2}) - df(X_{2}) \times dN(X_{1}) = \kappa_{1} df(X_{1}) \times df(X_{2}) - \kappa_{2} df(X_{2}) \times df(X_{1}) = (\kappa_{1} + \kappa_{2}) df(X_{1}) \times df(X_{2}) = 2HNdA(X_{1}, X_{2})$$

$$dN \wedge dN(X_{1}, X_{2}) = dN(X_{1}) \times dN(X_{2}) - dN(X_{2}) \times dN(X_{1}) = \kappa_{1}\kappa_{2}df(X_{1}) \times df(X_{2}) - \kappa_{2}\kappa_{1}df(X_{2}) \times df(X_{1}) = 2Kdf(X_{1}) \times df(X_{2}) = 2KNdA(X_{1}, X_{2})$$

Discrete Vector Area

- Recall smooth vector area: $\int_{\Omega} N dA = \frac{1}{2} \int_{\Omega} df \wedge df = \frac{1}{2} \int_{\partial \Omega} f \times df$
- Idea: Integrate NdA over dual cell to get normal at vertex p

$$\frac{1}{3} \int_{\Omega} N \, dA = \frac{1}{6} \int_{\partial \Omega} f \times df =$$

$$\frac{1}{6} \sum_{ij \in \partial \Omega} \int_{e_{ij}}^{f} f \times df =$$

$$\frac{1}{6} \sum_{ij \in \partial \Omega} \frac{f_i + f_j}{2} \times (f_j - f_i) = \left| \frac{1}{6} \sum_{ij \in \partial \Omega} f_i \times f_j \right|$$

$$\sum_{i \in \partial \Omega} f_i \times f_j$$

Q: What kind of quantity is the final expression?

Discrete Mean Curvature Normal

Similarly, integrating HN over a circumcentric dual cell C yields

$$\int_C HN \, dA = \int_C df \wedge dN = \int_C dN \wedge df = \int_C d(N \wedge df) =$$

$$\int_{\partial C} N \wedge df = \sum_{j} \int_{e_{ij}^{\star}} N \wedge df = \sum_{j} N_a \times (m - a) + N_b \times (b - m)$$

- Since N × is an in-plane 90-degree rotation, both terms in the summand are parallel to the edge vector e_{ij}
- The length of the sum equals the length ℓ_{ij}^{\star} of the dual edge
- Ratio of dual/primal length is given by cotan formula, yielding

$$(HN)_i := \frac{1}{2} \sum_{ij \in E} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_i - f_j)$$

Mean Curvature Normal via Laplace-Beltrami

- Another well-known fact: the mean curvature normal can be expressed via the *Laplace-Beltrami operator** Δ
- Fact. For any smooth immersed surface f, $\Delta f = 2HN$.
- Discretizing Δ via the *cotangent formula* yields the same expression for the discrete mean curvature normal:

$$(\Delta f)_i = \frac{1}{2} \sum_{ij \in E} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_j - f_i)$$

^{*}Will see *much* more of the Laplacian in upcoming lectures!

Discrete Gauss Curvature Normal

- A similar calculation leads to an expression for the (discrete) Gauss curvature normal
- One key difference: rather than viewing *N* as linear along edges, we imagine it makes an arc on the unit sphere

$$2\int_C KN \, dA = \int_C dN \wedge dN = \int_C d(N \wedge dN) =$$

$$\int_{\partial C} N \wedge dN = \int_{\partial C} N \times dN(\gamma') \, ds =$$

$$\int_{\partial C} N \times T \, ds = \sum_{j} \int_{\partial C} \frac{e_{ij}}{|e_{ij}|} \, ds = \sum_{j} \frac{e_{ij}}{\ell_{ij}} \varphi_{ij}$$

$$(KN)_i := \frac{1}{2} \sum_{ij \in E} \frac{\varphi_{ij}}{\ell_{ij}} (f_j - f_i)$$

Discrete Curvature Normals—Summary

	area (NdA)	mean (HNdA)	Gauss (KNdA)
smooth	$\frac{1}{2} df \wedge df$	$\frac{1}{2} df \wedge dN$	$\frac{1}{2} dN \wedge dN$
discrete	$\frac{1}{6} \sum_{ijk \in St(i)} f_j \times f_k$	$\frac{1}{2} \sum_{ij \in St(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_i - f_j)$	$\frac{1}{2} \sum_{ij \in St(i)} \frac{\varphi_{ij}}{\ell_{ij}} (f_j - f_i)$

Steiner Approach to Curvature

- What's the curvature of a discrete surface (polyhedron)?
- Simply taking derivatives of the surface gives a useless answer: zero except at vertices/edges, where derivative is ill-defined ("infinite")
- Steiner approach: "smooth out" the surface; define discrete curvature in terms of this *mollified* surface

Minkowski Sum

A+B

• Given two sets A, B in R^n , their Minkowski sum is the set of points

$$A + B := \{a + b \mid a \in A, b \in B\}$$

Q: Does translation of *A*, *B* matter?

Mollification of Polyhedral Surfaces

- **Steiner approach:** smooth out or "mollify" polyhedral surface by taking Minkowski sum with ball of radius $\varepsilon > 0$
- Measure curvature, take limit as ε goes to zero to get discrete definition
- Have to be careful about nonconvex polyhedra... same formulas hold

Steiner Formula

• **Theorem.** (Steiner) Let A be any convex body in \mathbb{R}^n , and let B_{ε} be a ball of radius ε . Then the volume of the Minkowski sum $A+B_{\varepsilon}$ can be expressed as a polynomial in ε :

volume
$$(A + B_{\varepsilon}) = \text{volume}(A) + \sum_{k=1}^{n} \Phi_k(A) \varepsilon^k$$

- Coefficients Φ_k are called *quermassintegrals* ("cross-dimension integrals")
 - describe how quickly the volume grows
- This volume growth is related to (discrete) curvature...

Surface Area of a Sphere

Area of a sphere of radius r is $4\pi r^2$

Surface Area of a Cylinder

Area of a cylinder of radius r and length L is $2\pi rL$ (omitting end caps)

More generally, area of a cylindrical arc of angle φ is equal to φrL

Gaussian Curvature of Mollified Surface

• **Q:** Consider a *closed*, *convex* polyhedron in R^3 ; what's the Gaussian curvature K of the mollified surface for a ball of radius ε ?

- Triangles: K = 0
- Edges: K = 0
- Vertices?

- each contributes a piece of sphere of radius ε ($K=1/\varepsilon^2$)
- recall (unit) spherical area is equal to angle defect Ω_i
- total curvature associated with vertex i is hence

$$A_i K_i = \left(\frac{\Omega_i}{4\pi} 4\pi \varepsilon^2\right) \frac{1}{\varepsilon^2} = \Omega_i$$

• For whole surface, have $Gauss(\varepsilon) = \sum_{i \in V} \Omega_i$

Mean Curvature of Mollified Surface

- **Q**: What's the mean curvature *H* of the mollified surface?
- Faces: H = 0
- Edges?
 - each contributes a piece of a cylinder ($H=1/2\varepsilon$)
 - area of cylindrical piece is $\ell_{ij}\varphi_{ij}\varepsilon$
 - total mean curvature for edge is hence $H_{ij} = \frac{1}{2} \ell_{ij} \varphi_{ij}$
- Vertices?
 - each contributes a piece of the sphere $(H=1/\epsilon)$
 - area is $(\Omega_i/4\pi) 4\pi \varepsilon^2 = \Omega_i \varepsilon^2$, hence $H_i = \Omega_i \varepsilon$
- For whole surface, have mean $(\varepsilon) = \frac{1}{2} \sum_{ij \in E} \ell_{ij} \varphi_{ij} + \varepsilon \sum_{i \in V} \Omega_i$

Area of a Mollified Surface

- Q: What's the area of the mollified surface?
 - Faces: just the original area A_{ijk}
 - Edges: $\ell_{ij}\varphi_{ij}\varepsilon$
 - Vertices: $\Omega_i \varepsilon^2$
- Total area of the whole surface is then

$$\operatorname{area}(\varepsilon) = \sum_{ijk \in F} A_{ijk} + \varepsilon \sum_{ij \in E} \ell_{ij} \varphi_{ij} + \varepsilon^2 \sum_{i \in V} \Omega_i$$

 \bullet By (discrete) Gauss-Bonnet, last sum equals $2\pi\chi$

Volume of Mollified Surface

- Q: What's the total volume of the mollified surface?
- Starting to see a pattern—if V_0 is original volume, then

volume(
$$\varepsilon$$
) = $V_0 + \varepsilon \sum_{ijk \in F} A_{ijk} + \frac{1}{2}\varepsilon^2 \sum_{ij \in E} \ell_{ij} \varphi_{ij} + \frac{1}{3}\varepsilon^3 \sum_{i \in V} \Omega_i$

- Faces add "slabs" of thickness ε , hence volume εA
- **Edges** add cylindrical wedges of volume $\frac{1}{2}\ell_{ij}\varphi_{ij}\varepsilon^2$ (cylinder: πr^2L)
- **Vertices** add spherical cones of volume $\frac{1}{3}\Omega_i \varepsilon^3$ (sphere: $4\pi r^3/3$)

Steiner Polynomial for Polyhedra in R³

• Volume of mollified polyhedron is a polynomial in radius ε

volume(
$$\varepsilon$$
) = $V_0 + \varepsilon \sum_{ijk \in F} A_{ijk} + \frac{1}{2}\varepsilon^2 \sum_{ij \in E} \ell_{ij} \varphi_{ij} + \frac{1}{3}\varepsilon^3 \sum_{i \in V} \Omega_i$

• Derivatives w.r.t. ε give total area, mean curvature, Gauss curvature:

$$\frac{d}{d\varepsilon}$$
volume $_{\varepsilon}$ = area $_{\varepsilon}$

$$\frac{d}{d\varepsilon}$$
area $_{\varepsilon} = 2$ mean $_{\varepsilon}$

$$\frac{d}{d\varepsilon}$$
volume $_{\varepsilon} = area_{\varepsilon}$ $\frac{d}{d\varepsilon}area_{\varepsilon} = 2mean_{\varepsilon}$ $\frac{d}{d\varepsilon}mean_{\varepsilon} = Gauss_{\varepsilon}$ $\frac{d}{d\varepsilon}Gauss_{\varepsilon} = 0$

$$\frac{d}{d\varepsilon}$$
Gauss_{\varepsilon} = 0

Steiner Polynomial for Surfaces in R³

- Not surprisingly, there is an analogous formula for surfaces in \mathbb{R}^3
- Taking a Minkowski sum w/a small ball of radius $\varepsilon > 0$ is the same as shifting the surface in the normal direction by ε
- Consider a surface $f: M \longrightarrow R^3$ with Gauss map N; let $f_t := f + tN$
- How is the area of the "smoothed" surface changing?

$$dA_{t} = \frac{1}{2} \langle N, df_{t} \wedge df_{t} \rangle$$

$$df_{t} \wedge df_{t} =$$

$$(df + tdN) \wedge (df + tdN) =$$

$$df \wedge df + 2tdf \wedge dN + t^{2}dN \wedge dN =$$

$$(1 + 2tH + t^{2}K)df \wedge df$$

 $\Longrightarrow dA_t = (1 + 2tH + t^2K)dA_0$

Notice:

- •surface area given by $df \wedge df$
- •spherical area $dN \wedge dN$ gives Gauss curvature
- "mixed area" $df \wedge dN$ gives mean curvature

Discrete Curvature of n-Manifolds

- Can use this same machinery to define/ understand discrete curvature in any dimension
- *E.g.*, for planar curves recover "turning angle" definition of curvature

Discrete Curvature of n-Manifolds

- Can use this same machinery to define/ understand discrete curvature in any dimension
- *E.g.*, for planar curves recover "turning angle" definition of curvature
- For 3-manifolds:
 - scalar curvature: compare total solid angle around vertex to area of Euclidean sphere
 - Riemann curvature: compare total dihedral angle around edge to 2π
- In general: consider volume of Minkowski sum with (n+1)-ball of radius ϵ ; derivatives with respect to ϵ give all the discrete curvatures

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858