DEVOIR À LA MAISON N°10 : CORRIGÉ

SOLUTION 1.

- 1. On a $\dim(F \oplus H) = \dim F + \dim H = n$ et $\dim(G \oplus H) = \dim G + \dim H = n$. D'où $\dim F = \dim G = n \dim H$.
- **2.** F admet un supplémentaire dans E qui est également un supplémentaire de G puisque F = G.
- 3. **a.** Puisque dim $F = \dim G = n 1$, on ne peut avoir $F \subset G$ sinon on aurait F = G. De même, on ne peut avoir $G \subset F$. Il existe donc $u \in F \setminus G$ et $v \in G \setminus F$.
 - **b.** Supposons que $w \in F$. Alors $v = w u \in F$ ce qui n'est pas. Supposons que $w \in G$, alors $u = w v \in G$, ce qui n'est pas. Ainsi $w \notin F \cup G$.
 - **c.** Soit $x \in F \cap H$. Il existe donc $\lambda \in \mathbb{K}$ tel que $x = \lambda w = \lambda (u + v)$. Si $\lambda \neq 0$, alors $v = \frac{1}{\lambda} x u \in F$, ce qui n'est pas. Ainsi $\lambda = 0$ et $x = 0_E$. Ainsi $F \cap H = \{0_E\}$.
 - Puisque $w \notin F \cup G$, $w \neq 0_E$ donc dim H = 1. Ainsi dim $F + \dim H = (n-1) + 1 = n$, ce qui permet de conclure que $F \oplus H = E$.
 - Soit $x \in G \cap H$. Il existe donc $\lambda \in \mathbb{K}$ tel que $x = \lambda w = \lambda(u + v)$. Si $\lambda \neq 0$, alors $u = \frac{1}{\lambda}x v \in G$, ce qui n'est pas. Ainsi $\lambda = 0$ et $x = 0_E$. Ainsi $G \cap H = \{0_E\}$. Puisque dim $G + \dim H = (n-1) + 1 = n$, $G \oplus H = E$. H est donc un supplémentaire commun de F et G dans E.
- **4. a.** $F \cap G$ est un sous-espace vectoriel de F: il admet donc un supplémentaire F' dans F. De même, $F \cap G$ étant un sous-espace vectoriel de G, il admet un supplémentaire G' dans G.
 - **b.** Puisque $F \neq G$, $F \cap G \subsetneq F$ et donc $\dim F \cap G < \dim F$. Puisque $F = (F \cap G) \oplus F'$, $\dim F' = \dim F \dim F \cap G > 0$. De même, $\dim G' = \dim G \dim F \cap G = \dim F \dim F \cap G = \dim F'$. Soit $x \in F' \cap G'$. Comme $F' \subset F$ et $G' \subset G$, $x \in F \cap G$. Ainsi $x \in (F \cap G) \cap F' = \{0_E\}$ puisque $F \cap G$ et F' sont en somme directe. D'où $F' \cap G' = \{0_E\}$.
 - **c.** Soit $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tels que $\sum_{i=1}^p \lambda_i h_i = 0_E$. On a donc $\sum_{i=1}^p \lambda_i f_i = -\sum_{i=1}^p \lambda_i g_i \in F' \cap G' = \{0_E\}$. Ainsi $\sum_{i=1}^p \lambda_i f_i = 0_E$. Comme la famille (f_1, \ldots, f_p) est libre, on en déduit que les λ_i sont nuls. Ceci prouve la liberté de (h_1, \ldots, h_p) .
 - **d.** Comme la famille (h_1, \ldots, h_p) est libre et génératrice de H', c'est une base de H'. Ainsi dim H' = p.

Soit $x \in F \cap H'$. Il existe donc $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tels que $x = \sum_{i=1}^p \lambda_i (f_i + g_i)$. On a donc $\sum_{i=1}^p \lambda_i g_i = x - \sum_{i=1}^p \lambda_i f_i \in (F \cap G) \cap G' = \{0_E\}$. Comme la famille (g_1, \ldots, g_p) est libre, on en déduit que les λ_i sont nuls puis que x est nul. Ainsi $F \cap H' = \{0_E\}$. On démontre de même que $G \cap H' = \{0_E\}$.

- **e.** Pour tout $i \in [1, p]$, $h_i = f_i + g_i \in F + G$. Ainsi $H' \subset F + G$. Donc $F \oplus H' \subset F + G$. De plus, $\dim(F + G) = \dim F + \dim G \dim F \cap G = \dim F + \dim G' = \dim F + p = \dim(F \oplus H')$. Ainsi $F \oplus H' = F + G$. On démontre de même que $G \oplus H' = F + G$.
- **f.** $H' \subset F + G$ donc $\{0_E\} \subset H' \cap H'' \subset (F + G) \cap H'' = \{0_E\}$ puisque H'' est en somme directe avec F + G. D'où $H' \cap H'' = \{0_F\}$.
- g. Soit $x \in F \cap H$. Il existe donc $h' \in H'$ et $h'' \in H''$ tel que x = h' + h''. Donc h'' = x h'. Or $x \in F \cap F + G$ et $h' \in H' \cap F + G$ donc $h'' \in H'' \cap F + G$. D'où $x = h' \in H' \cap F = \{0_E\}$. Ainsi $F \cap H = \{0_E\}$. De plus, $\dim(F \oplus H) = \dim F + \dim H = \dim F + \dim H' + \dim H'' = \dim(F + G) + \dim H'' = n = \dim E$. On en déduit que $F \oplus H = E$. En échangeant le rôle de F et G, on démontre de même que $G \oplus H = E$.

SOLUTION 2.

1. La suite nulle est clairement p-périodique. Soient $(\lambda, \mu) \in \mathbb{C}^2$ et $(a, b) \in \mathbb{F}_p^2$. Alors pour tout $n \in \mathbb{N}$

$$(\lambda a + \mu b)_{n+p} = \lambda a_{n+p} + \mu b_{n+p} = \lambda a_n + \mu b_n = (\lambda a + \mu b)_n$$

Ainsi $\lambda a + \mu b \in \mathbb{F}_p$.

Ceci prouve que F_p est un sous-espace vectoriel de E.

2. Les suites u^0, \ldots, u^{p-1} sont clairement p-périodiques.

Soit $(\lambda_0, ..., \lambda_{p-1}) \in \mathbb{K}^p$ tel que $\sum_{k=0}^{p-1} \lambda_k u^k = 0$. En évaluant cette égalité de suites aux rangs 0, ..., p-1, on trouve $\lambda_0 = \cdots = \lambda_{p-1} = 0$. Ceci prouve que la famille $(u^0, ..., u^{p-1})$ est libre.

Soit $a \in \mathbb{F}_p$. Alors $a = \sum_{k=0}^{p-1} a_k u^k$. Ceci prouve que la famille (u^0, \dots, u^{p-1}) engendre \mathbb{F}_p . Finalement, la famille (u^0, \dots, u^{p-1}) est une base de \mathbb{F}_p de sorte que dim $\mathbb{F}_p = p$.

3. La suite u est clairement 3-périodique. De plus, $j^3 = \overline{j}^3 = 1$ de sorte que pour tout $n \in \mathbb{N}$

$$v_{n+3} = j^n j^3 = j^n = v_n$$

$$w_{n+3} = \overline{j}^n \overline{j}^3 = \overline{j}^n = w_n$$

Ainsi v et w sont 3-périodiques.

Par conséquent, u, v et w appartiennent à F_3 .

4. Montrons que (u, v, w) est libre. Soit $(\lambda, \mu, v) \in \mathbb{C}^3$ tel que $\lambda u + \mu v + v w = 0_E$. On a donc pour tout $n \in \mathbb{N}$

$$\lambda + \mu j^n + \nu \overline{j}^n = 0$$

En évaluant cette égalité pour $n \in \{0, 1, 2\}$, on obtient en tenant compte du fait que $j^2 = \overline{j}$

$$\begin{cases} \lambda + \mu + \nu = 0 \\ \lambda + \mu j + \nu \overline{j} = 0 \\ \lambda + \mu \overline{j} + \nu j = 0 \end{cases}$$

Puisque $1 + j + \overline{j} = 0$, on obtient en sommant ces trois égalités $3\lambda = 0$ i.e. $\lambda = 0$.

On a également

$$(\lambda + \mu + \nu) + j(\lambda + \mu j + \nu \overline{j}) + \overline{j}(\lambda + \mu \overline{j} + \nu j) = 0$$

ce qui équivaut à

$$(1+j+\overline{j})\lambda + \mu(1+j^2+\overline{j}^2) + \nu(1+j\overline{j}+\overline{j}j) = 0$$

Or $1 + j + \overline{j} = 0$, $1 + j^2 + \overline{j}^2 = 1 + \overline{j} + j = 0$ et $1 + j\overline{j} + \overline{j}j = 1 + 2|j|^2 = 3$, ce qui fournit $3\nu = 0$ et donc $\nu = 0$.

$$(\lambda + \mu + \nu) + \overline{j}(\lambda + \mu j + \nu \overline{j}) + j(\lambda + \mu \overline{j} + \nu j) = 0$$

ce qui équivaut à

$$(1 + \overline{j} + j)\lambda + \mu(1 + \overline{j}j + j\overline{j}) + \nu(1 + \overline{j}^2 + j^2) = 0$$

Or $1 + \overline{j} + j = 0$, $1 + \overline{j}j + j\overline{j} = 1 + 2|j|^2 = 3$ et $1 + \overline{j}^2 + j^2 = 1 + j + \overline{j} = 0$, ce qui fournit $3\mu = 0$ et donc $\mu = 0$. Il en résulte que la famille (u, v, w) est libre. Puisqu'elle comporte 3 éléments et que dim $F_3 = 3$, (u, v, w) est une base de F_3 .

- 5. Soit $n \in \mathbb{N}$, puisque $n+3 \equiv n[3]$, les restes des divions euclidiennes de n+3 et n par 3 sont identiques i.e. $t_{n+3} = t_n$. Ceci prouve que t est 3-périodique i.e. $t \in \mathbb{F}_3$.
- **6.** Comme (u, v, w) est une base de F_3 , il existe un unique triplet $(\lambda, \mu, v) \in \mathbb{C}^3$ tel que $t = \lambda u + \mu v + v w$. En particulier

$$\begin{cases} \lambda u_0 + \mu v_0 + \nu w_0 = t_0 \\ \lambda u_1 + \mu v_1 + \nu w_1 = t_1 \\ \lambda u_2 + \mu v_2 + \nu w_2 = t_2 \end{cases}$$

ou encore

$$\begin{cases} \lambda + \mu + \nu = 0 \\ \lambda + \mu j + \nu \overline{j} = 1 \\ \lambda + \mu \overline{j} + \nu j = 2 \end{cases}$$

En sommant ces trois égalités, on obtient $3\lambda = 3$ et donc $\lambda = 1$

On a également

$$(\lambda + \mu + \nu) + j(\lambda + \mu j + \nu \overline{j}) + \overline{j}(\lambda + \mu \overline{j} + \nu j) = j + 2\overline{j}$$

En raisonnant comme à la question 4, on obtient $3v = j + 2\overline{j}$ i.e. $v = \frac{1}{3}(j + 2\overline{j})$.

On a enfin

$$(\lambda + \mu + \nu) + \overline{j}(\lambda + \mu j + \nu \overline{j}) + j(\lambda + \mu \overline{j} + \nu j) = \overline{j} + 2j$$

En raisonnant comme à la question 4, on obtient $3\mu = \overline{j} + 2j$ i.e. $\mu = \frac{1}{3}(\overline{j} + 2j)$. Les coordonnées de t dans la base (u, v, w) sont donc $(1, \frac{1}{3}(\overline{j} + 2j), \frac{1}{3}(j + 2\overline{j}))$.

7. Soit $a \in F_3$. Pour tout $n \in \mathbb{N}$,

$$a_{n+6} = a_{(n+3)+3} = a_{n+3} = a_n$$

Ainsi $a \in F_6$. On a donc prouvé que $F_3 \subset F_6$.

8. Remarquons que $(-j)^6 = j^6 = (j^3)^2 = 1$. On en déduit également que $(-\overline{j})^6 = \overline{(-j)^6} = 1$. Pour tout $n \in \mathbb{N}$,

$$\begin{aligned} x_{n+6} &= (-1)^{n+6} = (-1)^n (-1)^6 = (-1)^n = x_n & \text{car 6 est pair} \\ y_{n+6} &= (-j)^{n+6} = (-j)^n (-j)^6 = (-j)^n = y_n \\ z_{n+6} &= (-\overline{j})^{n+6} = (-\overline{j})^n (-\overline{j})^6 = (-\overline{j})^n = z_n \end{aligned}$$

Ainsi x, y et z sont 6-périodiques.

Par conséquent, x, y et z appartiennent à F_6 . Comme G = vect(x, y, z), $G \subset F_6$.

9. Soit $(\lambda, \mu, \nu) \in \mathbb{C}^3$ tel que $\lambda x + \mu y + \nu z = 0_E$. On a donc pour tout $n \in \mathbb{N}$

$$\lambda + \mu(-j)^n + \nu(-\overline{j})^n = 0$$

En évaluant cette égalité pour $n \in \{0,1,2\}$, on obtient en tenant compte du fait que $j^2 = \overline{j}$

$$\begin{cases} \lambda + \mu + \nu = 0 \\ -\lambda - \mu j - \nu \overline{j} = 0 \\ \lambda + \mu \overline{j} + \nu j = 0 \end{cases}$$

On a d'abord

$$(\lambda + \mu + \nu) - (-\lambda - \mu j - \nu \overline{j}) + (\lambda + \mu \overline{j} + \nu j) = 0$$

et donc $3\lambda = 0$ i.e. $\lambda = 0$ car $1 + j + \overline{j} = 0$.

On a également

$$(\lambda + \mu + \nu) - j(-\lambda - \mu j - \nu \overline{j}) + \overline{j}(\lambda + \mu \overline{j} + \nu j) = 0$$

ce qui équivaut à

$$(1+j+\overline{j})\lambda + \mu(1+j^2+\overline{j}^2) + \nu(1+j\overline{j}+\overline{j}j) = 0$$

Or $1 + j + \overline{j} = 0$, $1 + j^2 + \overline{j}^2 = 1 + \overline{j} + j = 0$ et $1 + j\overline{j} + \overline{j}j = 1 + 2|j|^2 = 3$, ce qui fournit $3\nu = 0$ et donc $\nu = 0$.

$$(\lambda + \mu + \nu) - \overline{j}(-\lambda - \mu j - \nu \overline{j}) + j(\lambda + \mu \overline{j} + \nu j) = 0$$

ce qui équivaut à

$$(1 + \overline{j} + j)\lambda + \mu(1 + \overline{j}j + j\overline{j}) + \nu(1 + \overline{j}^2 + j^2) = 0$$

Or $1 + \overline{j} + j = 0$, $1 + \overline{j}j + j\overline{j} = 1 + 2|j|^2 = 3$ et $1 + \overline{j}^2 + j^2 = 1 + j + \overline{j} = 0$, ce qui fournit $3\mu = 0$ et donc $\mu = 0$. Il en résulte que la famille (x, y, z) est libre. Comme (x, y, z) engendre G, c'est une base de G et dim G = 3.

10. Tout d'abord, $F_3 \subset F_6$ d'après la question 7 et $G \subset F_6$ d'après la question 8.

Ensuite $\dim F_6 = \dim F_3 + \dim G = 6$.

Montrons que $F_3 \cap G = \{0_E\}$. Soit donc $a \in F_3 \cap G$. Puisque $a \in G$, il existe $(\lambda, \mu, \nu) \in \mathbb{C}^3$ tel que $a = \lambda x + \mu y + \nu z$. Donc pour tout $n \in \mathbb{N}$

$$a_n = \lambda(-1)^n + \mu(-j)^n + \nu(-\overline{j})^n$$

De plus, $a \in \mathbb{F}_3$ donc pour tout $n \in \mathbb{N}$, $a_{n+3} = a_n$. On en déduit que pour tout $n \in \mathbb{N}$

$$-\lambda(-1)^n - \mu(-j)^n - \nu(-j)^n = \lambda(-1)^n + \mu(-j)^n + \nu(-j)^n$$

et donc

$$\lambda(-1)^n + \mu(-j)^n + \nu(-\overline{j})^n = 0$$

En évaluant cette égalité pour $n \in \{0, 1, 2\}$, on obtient

$$\begin{cases} \lambda + \mu + \nu = 0 \\ -\lambda - \mu j - \nu \overline{j} = 0 \\ \lambda + \mu \overline{j} + \nu \overline{j} = 0 \end{cases}$$

On a déjà résolu le même système à la question 9. On a à nouveau $(\lambda, \mu, \nu) = (0,0,0)$. Ainsi a est nulle. On a donc dim $F_6 = \dim F_3 + \dim G$ et F_3 et G sont en somme directe : ceci suffit pour conclure que F_3 et G sont supplémentaires dans F_6 .

- 11. Tout d'abord, u et x sont bien des éléments de F_2 puisque ce sont clairement des suites 2-périodiques. Comme $u_0 = x_0 = 1$ et $u_1 = -x_1 = 1$, les suites u et x sont clairement non colinéaires. La famille (u, x) est donc libre. De plus, dim $F_2 = 2$ donc (u, x) est une base de F_2 .
- 12. Tout d'abord

$$F_2 + H = \text{vect}(u, x) + \text{vect}(v, w, y, z) = \text{vect}(u, v, w, x, y, z) = \text{vect}(u, v, w) + \text{vect}(x, y, z) = F_3 + G = F_6$$

grâce à la question 10.

Comme (u, v, w) et (x, y, z) sont des bases respectives de F_3 et G et que $F_6 = F_3 \oplus G$, (u, v, w, x, y, z) est une base de F_6 . En particulier, c'est une famille libre. Comme la famille (v, w, y, z) est une sous-famille de cette famille, elle est également libre. Enfin, (v, w, y, z) engendre H donc c'est une base de H. On peut donc affirmer que dim H = 4. On a alors dim $F_6 = \dim F_2 + \dim H$.

On a donc $\dim F_6 = \dim F_2 + \dim H$ et $F_6 = F_2 + H$: ceci suffit pour conclure que F_2 et H sont supplémentaires dans F_6 .