IBM Data Science Project: Select the best location for a new restaurant in Vancouver

Background:

For the IBM Data Science Capstone Project, we are trying to answer to the following business problem.

A restaurant business owner with multiple locations opened across Canada decides to open a new restaurant in Vancouver. The new unit is going to be focused on Asian cuisine, which is the main specialization gastronomy area on which the restaurants chain is focusing.

Considering the high real-estate prices across Vancouver, intense competition and the high rates that the restaurant plans to apply, one of the variable to decide upon is the right location. The intention of the owner is to find an optimal location in an area which is close to sceneries eating delights, high frequency tourist sections of the city and easily accessible to wealthier inhabitants.

The analysis can be driven by using unsupervised machine learning to create clusters of district areas potentially candidates for the optimal location. The new restaurant will be situated closest to culinary centers and tourist attractions.

Data:

To conduct the analysis we need the following sets of data:

- List of the main districts of Vancouver which is obtained through a csv file. List of districts to be obtained from Wikipedia website: https://en.wikipedia.org/wiki/List_of-neighbourhoods in Vancouver
- 2. Geo-coordinates of districts selected at point 1 above to be retrieved in using geocoder tool
- 3. Venues from each district are collected using Foursquare API.

Problem solve:

After obtaining the complete data in the desired formatting, we apply the k-means methodology in order to create cluster of districts and determine areas where the restaurant should be located.

Analysis begins by uploading wiki data through csv. file and creating a list of districts of Vancouver, together with the geo-coordinates of each district. Basically, the imported list of districts is used in geocode python library to get the latitude and longitude of each district in the list. Districts and their coordinates are stored in a pandas data frame format. When done, this includes the following details: District, Name, Latitude and Longitude.

	District	Name	Latitude	Longitude
0	Vancouver-Downtown	Downtown	49.283393	-123.117458
1	Vancouver-False Creek	False Creek	49.274751	-123.108131
2	Vancouver-Fraserview	Fraserview	49.218416	-123.073287
3	Vancouver-Hastings	Hastings	49.280673	-123.032600
4	Vancouver-Arbutus ridge	Arbutus ridge	49.240968	-123.187001
5	Vancouver-Kingsway	Kingsway	49.258732	-123.089712
6	Vancouver-Langara	Langara	49.219437	-123.118026
7	Vancouver-Mount Pleasant	Mount Pleasant	49.263330	-123.096588
8	Vancouver-Point Grey	Point Grey	49.264019	-123.195022
9	Vancouver-Quilchena	Quilchena	49.243838	-123.149094
10	Vancouver-West End	West End	49.284131	-123.131795
11	North Vancouver-Lonsdale	North Lonsdale	49.343624	-123.072751
12	North Vancouver-Seymour	North Seymour	49.556758	-123.045975
13	North Vancouver-Capilano	North Capilano	49.342203	-123.111585
14	North Vancouver-Garibaldi	North Garibaldi	49.740507	-123.083205
15	Vancouver-Burrard	Burrard	49.285636	-123.119815
16	Vancouver-Little Mountain	Little Mountain	49.241853	-123.113496

The next step is to retrieve the venues of each district. This is completed with the help of Foursquare.com credentials via API. Data is retrieved in json format. We setup a limit of 100 venues for each district and a radius of 1000 meter from the coordinates of district center. In addition to that, we determine which venues are the most common within each district. First 10 venues retrieved are shown below:

	Neighborhood	Neighborhood Latitudine	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Vancouver-Downtown	49.283393	-123.117458	Rosewood Hotel Georgia	49.283429	-123.118911	Hotel
1	Vancouver-Downtown	49.283393	-123.117458	Gotham Steakhouse & Cocktail Bar	49.282830	-123.115865	Steakhouse
2	Vancouver-Downtown	49.283393	-123.117458	Hawksworth Restaurant	49.283362	-123.119462	Lounge
3	Vancouver-Downtown	49.283393	-123.117458	SEPHORA	49.284092	-123.117204	Cosmetics Shop
4	Vancouver-Downtown	49.283393	-123.117458	Abercrombie & Fitch	49.282274	-123.118885	Clothing Store
5	Vancouver-Downtown	49.283393	-123.117458	Hyatt Regency Vancouver	49.284934	-123.120407	Hotel
6	Vancouver-Downtown	49.283393	-123.117458	Vancouver Art Gallery	49.282827	-123.120457	Art Gallery
7	Vancouver-Downtown	49.283393	-123.117458	The Keg Steakhouse + Bar - Dunsmuir	49.283438	-123.116363	Restaurant
8	Vancouver-Downtown	49.283393	-123.117458	Mogu: Japanese Street Eats	49.284118	-123.117531	Food Truck
9	Vancouver-Downtown	49.283393	-123.117458	Disney store	49.281689	-123.119850	Toy / Game Store
10	Vancouver-Downtown	49.283393	-123.117458	Cartems Donuterie	49.283833	-123.113554	Donut Shop

After collecting this additional data, a new data frame includes the districts and separate columns for "n" most common venues of each districts. At this stage, the columns look like this: Neighborhood, 1st most common venue, 2nd common venue and so on up to the 10th most common venue.

	Neighborhood	1st Most common venue	2nd Most common venue	3rd Most common venue	4 Most common venue	5 Most common venue
0	North Vancouver-Capilano	Coffee Shop	Bank	Sandwich Place	Park	Convenience Store
1	North Vancouver-Lonsdale	Coffee Shop	Bar	Chinese Restaurant	Sandwich Place	Park
2	Vancouver-Arbutus ridge	Sushi Restaurant	Park	Bakery	Tea Room	Coffee Shop
3	Vancouver-Burrard	Hotel	Dessert Shop	Food Truck	Coffee Shop	Sandwich Place
4	Vancouver-Downtown	Hotel	Dessert Shop	Coffee Shop	Restaurant	Sandwich Place

Unsupervised machine learning will be applied by using the K-means methodology. In order to do this, first we need to use one-hot encode to create dummy variables to transform the venue categories values and allow the machine learning process.

K-means requires an optimal number of clusters to be used. For determining the appropriate district clustering, the parameter for the optimal number of clusters will be identified by using silhouette score approach. We create a chart to show the silhouette scores for a range number of clusters. The highest score on the chart becomes the optimal number of clusters to initiate.

The number of clusters mentioned above is going to be used in the K-means process. The end result will have each district assigned with a cluster label into the data set.

Results:

The clustered data will let us know which cluster is the best for the solution of our problem. Most common venues and their frequency are a valuable indicator when considering the cluster to include the potential restaurant location. We will advise the owner to consider district from the cluster where most of the lively part of the city is present with a lot of gastronomy and tourist venues on site.

Conclusion:

By using various Python libraries we are able to analyse and provide the output and recommendation to support decisional process. As a result, business owner selects the most profitable location with the most benefits available to his customers.