

flusser@utia.cas.cz

Prof. Ing. Jan Flusser, DrSc.

Digitální zpracování obrazu Lecture 1

Image enhancement

Změny kontrastu a jasu

· Potlačení šumu

Detekce a zvýraznění hran

Detekce a zvýraznění hran

• Jednoduché metody zaostření obrazu

Detekce hran

Jednoduché metody zaostření obrazu

Unsharp masking (neostré maskování)

• Odečtení Laplace: $f - \Delta f$

Unsharp masking

$$g(x,y) = f(x,y) - f_{smooth}(x,y)$$

$$f_{sharp}(x,y) = f(x,y) + k * g(x,y)$$

Jednoduché metody zaostření obrazu

Unsharp masking (neostré maskování)

Neostré maskování - Laplace

$$A = 1/5 \begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} - \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} \right)$$

$$B = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$B-A = 1/5 \begin{vmatrix} -1 & 4 & -1 \\ 0 & -1 & 0 \end{vmatrix}$$

Neostré maskování

orig

Zaostření obrazu - Laplace

orig

Přehnané zaostření obrazu - Laplace

Detekce hran

Detekce hran

Detekce hran

• Detektory založené na 1. derivaci obrazu

Detektory založené na 2. derivaci obrazu

Detektory které nepracují s derivacemi

• Detekce hran ve Fourierově oblasti

Gradient obrázku

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Gradient ukazuje ve směru nejrychlejší změny intenzity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

Směr gradientu je dán

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Síla hrany je dána velikostí gradientu

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Jednoduché detektory založené na 1. derivaci

- · Roberts
- · Sobel
- · Prewitt
- ·Kirsch

Roberts

Prewitt

```
    1
    1
    0
    0
    0
```

vyhlazení

Sobel

1
 0
 0
 -1
 -2
 -1

Kde je hrana?

Hrany a šum

Sobel na obrázku se šumem

• Roberts

• Sobel

Canny

- vymyšleno pro skokové hrany
 - jedna hrana jedna odezva
 - přesná lokalizace hran

Postup:

- 1. obraz se vyhladí gausem f*G
- 2. spočítají se derivace (f*G)' Sobel
- 3. hledání maxim maximum = kandidát na hranu
- 4. Prahování prahy T1, T2

>T2 = hrana

<T2 & >T1 = hrana, jen soused hrany

Canny

- málo, dobře, jednou
- vyhlazení
- první derivace
- detekce hřbetů
- non-maximal suppression

Canny

Porovnání

obr a šum

Sobel

Canny

wavelety

Detektory založené na 2. derivaci

D. Marr, E. Hildreth (1980) -- LoG

Hrany a šum

Laplacian of Gaussian

• ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Detektory založené na 2. derivaci

D. Marr, E. Hildreth (1980) -- LoG

Zero crossing množiny △G*f

$$sigma = 2$$

Porovnání Canny a Marr

originál Canny Marr

Whitening

original image

"whitened" image

Díky, pro dnešek končíme s detektory hran!

Nějaké otázky?