西北工业大学 《编译原理》词法分析实验

学	院 :	<u>软件学院</u>
学	号:	2018303081
姓	名:	马泽红
专	VK:	软件工程

西北工业大学

2021 年 4 月

目录

一.状态结	转换图(DFA)及描述	3
1.1	DFA 图	3
1.2	DFA 说明	3
	1.2.1 正则表达式与状态对应关系	
	1.2.1 符号含义	4
二.构造	DFA	5
2. 1	构造 NFA	5
2.2	NFA->DFA 映射	5
2 3	DFA 化筒	7

一.状态转换图(DFA)及描述

1.1 DFA 图

1.2 DFA 说明

1.2.1 正则表达式与状态对应关系

ID 正则表达式由状态 Start, 1, 2, Done 来表示。

INTEGER 正则表达式由状态 Start, 3, 4, 5, Done 来表示。

STRING 正则表达式由状态 Start, 6, 7, 8, Done 来表示, 其中状态 8 是为

了和其他正则表达式共同使用接受状态 Done 而引入的(如果想要精简的话可以删去)。

BOOLEAN 表达式由 START, 9, Done 来表示。

1.2.1 符号含义

Zero: 0

Underline: ''

Positive Digit: [1-9]

Quote: ' " '

Backslash: '\'

Char_Set1: $[\sim \ \]$

Char_Set2: $[b|t|n|f|r|"|\]$

二.构造 DFA

2.1 构造 NFA

利用正则表达式构造 NFA 如上图,接受状态由于没有引入 Done 状态,所以有多个,每个正则表达式都有自己的接受状态。

2.2 NFA->DFA 映射

利用 NFA->DFA 的映射方法,根据 NFA 状态图,利用等价类闭包,我们可以求出以下表格,其中黄色标注的行表示没有新状态产生,即此支路映射完成。

状态\终结	Letter	Digit	Underline	Zero	Positive	Integer_Type_	Quote	Char_Set1	Back	Char_Set2	False	True
符					Digit	Suffix			Slash			
0 {0}	{1,2,4}	Ø	Ø	{5,9}	{6,7,9}		{10,11}	Ø	Ø	Ø	{14}	{14}
1 {1,2,4}	{2,4}	{2,4}	{3}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
2 {2,4}	{2,4}	{2,4}	Ø	Ø	Ø		Ø	Ø	Ø	Ø	Ø	Ø
3 {3}	{2,4}	{2,4}	Ø	Ø	Ø		Ø	Ø	Ø	Ø	Ø	Ø
4 {5,9}	Ø	Ø	Ø	Ø	Ø	{8,9}	Ø	Ø	Ø	Ø	Ø	Ø
5 {8,9}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
6 {6,7,9}	Ø	{7,9}	Ø	Ø	Ø	{8,9}	Ø	Ø	Ø	Ø	Ø	Ø
7 {7,9}	Ø	{7,9}	Ø	Ø	Ø	{8,9}	Ø	Ø	Ø	Ø	Ø	Ø
8 {10,11}	Ø	Ø	Ø	Ø	Ø	Ø	{13}	{11}	{12}	Ø	Ø	Ø
9 {13}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10 {12}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	{11}	Ø	Ø
11 {11}	Ø	Ø	Ø	Ø	Ø	Ø	{13}	{11}	{12}	Ø	Ø	Ø
12 {14}	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

利用上表,绘制出的 DFA 如下:

2.3 DFA 化简

利用等价类划分,对 2.2 中的 DFA 进行化简,可得到以下的 DFA:

