

CLAIMS:

1. A porous film-forming composition comprising  
(A) 100 parts by weight of a curable silicone resin  
5 having a number average molecular weight of at least 100,  
(B) 5 to 50 parts by weight of a micelle-forming  
surfactant, and  
(C) 0.01 to 10 parts by weight of a compound which  
generates an acid upon pyrolysis.

10

2. The composition of claim 1 wherein the curable  
silicone resin (A) comprises at least 10 mol% of structural  
units derived by hydrolytic condensation of a silane having  
the general formula (1):

15



wherein Z is a hydrolyzable group or a partial hydrolytic  
condensate thereof.

20

3. The composition of claim 1 wherein the compound (C)  
generates an acid upon pyrolysis at a pyrolytic temperature  
which is lower than the decomposition temperature or boiling  
point of the micelle-forming surfactant (B).

25

4. The composition of claim 3 wherein the pyrolytic  
temperature of the compound (C) is up to 150°C.

30

5. The composition of claim 4 wherein the compound (C) is  
a diazo compound of the general formula (3) or (4):



(3)



wherein  $\text{R}^1$  and  $\text{R}^2$  are each independently a substituted or unsubstituted monovalent hydrocarbon group.

5 6. The composition of claim 5 wherein the diazo compound is selected from compounds of the formulae (5) to (10).



7. The composition of claim 1, further comprising a  
10 solvent.

8. A method of manufacturing a porous film, comprising:  
a step of applying the composition of claim 1 to a  
substrate to form a coating,

5 a first stage of heat treatment of the coating at a  
temperature which is lower than the decomposition temperature  
or boiling point of component (B) and equal to or higher than  
the pyrolytic temperature of component (C), and

10 a second stage of heat treatment of the coating at a  
temperature which is equal to or higher than the  
decomposition temperature or boiling point of component (B).

9. A porous film obtained using the composition of claim 1.

10. An interlayer dielectric film obtained using the  
15 composition of claim 1.

11. A semiconductor device having a porous film  
incorporated therein, the porous film being obtained using a  
porous film-forming composition comprising

20 (A) 100 parts by weight of a curable silicone resin  
having a number average molecular weight of at least 100,

(B) 5 to 50 parts by weight of a micelle-forming  
surfactant, and

25 (C) 0.01 to 10 parts by weight of a compound which  
generates an acid upon pyrolysis.

12. The semiconductor device of claim 11 wherein the  
curable silicone resin (A) comprises at least 10 mol% of  
structural units derived by hydrolytic condensation of a  
30 silane having the general formula (1):



(1)

35 wherein Z is a hydrolyzable group or a partial hydrolytic  
condensate thereof.

13. The semiconductor device of claim 11 wherein the compound (C) generates an acid upon pyrolysis at a pyrolytic temperature which is lower than the decomposition temperature or boiling point of the micelle-forming surfactant (B).

5

14. The semiconductor device of claim 13 wherein the pyrolytic temperature of the compound (C) is up to 150°C.

15. The semiconductor device of claim 14 wherein the compound (C) is a diazo compound of the general formula (3) or (4):



wherein R<sup>1</sup> and R<sup>2</sup> are each independently a substituted or unsubstituted monovalent hydrocarbon group.

16. The semiconductor device of claim 15 wherein the diazo compound is selected from compounds of the formulae (5) to (10).



5

17. The semiconductor device of claim 11 wherein said composition further comprises a solvent.

18. The semiconductor device of claim 11 wherein the  
10 porous film is present as a dielectric film between metal  
lines in an identical layer in a multilayer interconnect  
structure or an interlayer dielectric film between upper and  
lower metal wiring layers.