

UI Learnability and Efficiency

24/2/2014

Adapted from materials of

- MIT CS Course 6.813/6.831
- Jakob Nielsen, Usability Engineering, 1994

Outline

- Usability dimensions overview
- Learnability
 - Human memory
 - Models
 - Learnability principles
- Efficiency
 - Human information processing
 - Pointing efficiency
 - Design principles
- UI Hall of Fame or Shame

Usability definition

- Usability
 - How well users can use the system's functionality
- Dimensions
 - Learnability
 - How easy it is to learn and use?
 - Efficiency
 - How quickly users perform tasks using the UI?
 - Memorability
 - How easy it is for users to reestablish proficiency?
 - Errors
 - Are the errors committed by users often? Is it easy to recover from errors?
 - Satisfaction
 - Are users satisfied with the UI?

3

Usability is only one attribute

(Jakob Nielsen, Usability Engineering, 1994)

Learnability

Outline

- Learning curve
- Human memory
- Models relevant to UI design
- Learnability principles

Learning curve

(Jakob Nielsen, Usability Engineering, 1994, page 28)

7

Mini experiment

Try to remember items below as many as you can

	E403	Báo chí	
Thiết kế giao di	ện Phá	Phần mềm	
	Nóng	Con người	
Nhà đất			
Xe đạp	Trịnh Công Sơn	Valentine Trịnh Công Sơn	
ebook	Nhân văn	Google	
	Kỹ sư mù sử		

Mini experiment (cont'd)

- How many items do you remember?
- How could you remember them?
 - familiar?
 - funny?
 - attracting your attention?
 - related?

2/24/2014

repeating them?

Memory

- Short-term memory (working memory)
 - □ Small: ~ 7 items or "chunks"
 - Short-lived: ~10 seconds
 - Repeating helps retain chunks
 - Distraction does the opposite

- Unlimited size and duration
- Elaborative rehearshal helps transfer chunks from shortterm to long-term memory

Learning

 A process of transferring and putting information from short-term to long-term memory

Chunking

- Chunk is a unit of memory or perception
 - Depends on how the information is presented

```
HAPPY VALENTINE Easy remember all
```

- Depends on what you already know
 - Linking with the past experience

Recognition and Recall

Recognition

- Remembering with the help of a visible cue (evidence bằng chứng)
- e.g., you recognize someone when looking at his face or photo

Recall

- Remembering with no help
- e.g., you remember a person when someone refers to him
- It is easier to recognize than recall things
 - You don't remember every items in the File menu of Notepad, do you?
 - But you recognize their functions when you look at them

Recognition and Recall (cont'd)

Implications

- Performing operations via visual presentation is more learnable than via command line
- Direct manipulation is more learnable than other styles of interfaces

Delete a file name keymap.txt

Delete a file name keymap.txt

What do you need to remember to do?

Models

- Model of a system is a presentation of its operations
 - Elements of a system
 - How these elements work together to carry out its operations
- Three kinds of models relevant to UI design
 - System model or implementation model
 - Internal structure and interactions of the system's operations
 - How system works internally
 - Visio's objects vs. Photoshop's images
 - Interface model
 - How system works through its interface
 - Command line vs. Menu
 - Editing Visio's objects vs. editing Photoshop's images
 - User model or mental model or conceptual model
 - How the user thinks the system works

Models (cont'd)

(Source: MIT CS Course 6.813/6.831)

Models (cont'd)

- Interface model encapsulates or hide system model
 - It should be simple and appropriated
- Intreface model should closely reflect user model
 - Does this beautiful dog do searching?
- User model may be wrong
 - So, errors happen

Learnability Principles

- Ways to communicate and present the system model
 - Affordances
 - Natural mapping
 - Visibility
 - Feedback
- Consistency
 - Internal, external, and metaphorical
 - Speak the user's language
 - Metaphors
 - Platform standards

Affordances

- "Perceived and actual properties of a thing" Don Norman
- "Perceived" may be different from "actual"

Natural mapping

- Physical arrangement of controls matches arrangement of their operations
- It's best to map directly, but not always have to be
 - Light switches
 - Car's turn signals

Visibility

- Operations should be visible to users
 - Unix commands are very invisible vs. Windows' menus
 - Right click menus are not very visible
 - A reason why iOS does not support much right-click
 - Drag-drop is not either
 - But it's a direct manipulation style reflecting real world

Feedback

- Actions should have immediate effects
 - e.g., push buttons, scroll bars, mouse icons
- Feedback types
 - Audio
 - Visual
 - Haptic (giving a feeling, e.g., vibration of a mouse click)

Consistency

- Similar things should work similarly
- Different things should look different
- Consistency types
 - Internal: within the system
 - External: across different systems
 - Metaphorical: reflecting real-world objects
 - A print icon is a metaphor of the printer

Concistency (cont'd)

- Speak the user's language
 - Use common words, avoid slangs and jargon
 - But avoid wordy and overly verbose

Metaphors

- Metaphor is a presentation of real-world in user interface
- Advantages
 - Highly learnable
 - Connect with user's existing model easily

- Hard to design metaphors that are appropriate
- Potentially deceptive and misleading
- May not be used consistently everywhere
- Cuturally dependent (localization issue)

Platform standards

- Follow guidelines of platforms
 - MS Windows user interface guidelines
 - Apple user experience guidelines
- Follow frameworks
 - Various frameworks have their own looks and feels guidelines
- Learn from existing applications

Efficiency

Outline

- Human information processing
- Pointing efficiency
- Design principles

Human information processing

(Source: MIT CS Course 6.813/6.831)

28

Fitts's law

Time T to move hand to a target of size S at distance D away from the mouse pointer is T = a + b * log (D/S + 1)

a and b are constants

- S cang lon thoi gian cang nhanh
- T is dependent only on log (D/S + 1)
- $\log (D/S + 1)$ is defined as index of difficulty

Implications of Fitts's law

- Similar targets should be grouped Doi tuong tuong dong thi gop lai
- Targets at screen edge are easy to hit
- Pie menu is faster to use than linear menu
 - It's faster 15-20% according to a study by Callahan, 1994
- Lengthy menus should be avoided

(Callahan et al. 1994, "An empirical comparison of pie vs. linear menus," CHI 1991)

Power law of practice

Time T_n to do a task the nth time is

$$T_n = T_1 * n^{-a}$$

a is typically from 0.2 to 0.6

- With practice, novices get better
- But their performance becomes nearly flat
- Remember the Nielsen's Learning curve?

31

Principles to improve efficiency

- Make often-used targets big
- Group targets that are used together
 - Grouped toolbar buttons, menu items, etc.
- Place oftenly-used menu items on top of menu
- Use screen corners and edges

Use keyboard shortcuts and menu accelerators

Predefine a group of styles

33

- Aggregating and choose most common selections by default
- Use defaults

- Keep history (e.g., recent files in Word)
- Auto completion
- Auto suggestion
 - This makes you lazy, doesn't it?

- Anticipation
 - Anticipate what users will do next and present corresponding operations for them

UI Hall of Fame or Shame

- Critique the usability of the UI designs presented in following slides
- Based on usability dimensions
 - Learnability
 - Efficiency
 - Memorability
 - Errors
 - Satisfaction

UI Hall of Fame or Shame

Credit: Nguyễn Hữu Đức

UI Hall of Fame or Shame

HCMC's bus

Credit: Huỳnh Công Toàn