Sensitivity Analysis for LQR

or How I Spent My Summer Vacation

Philip D Loewen

UBCV Math

30 November 2024

Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- 3 A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

Table of Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

QP Basics

Consider
$$G(z) = \frac{1}{2}z^{T}\mathbf{Q}z + \mathbf{q}^{T}z + \gamma$$
, with $\mathbf{Q} = \mathbf{Q}^{T}$.

For any base point z and offset v,

$$G(z+v) = \frac{1}{2}(z+v)^{T}\mathbf{Q}(z+v) + \mathbf{q}^{T}(z+v) + \gamma$$

$$= \frac{1}{2}z^{T}\mathbf{Q}z + \frac{1}{2}v^{T}\mathbf{Q}z + \frac{1}{2}z^{T}\mathbf{Q}v + \frac{1}{2}v^{T}\mathbf{Q}v + \mathbf{q}^{T}z + \mathbf{q}^{T}v + \gamma$$

$$= G(z) + \frac{1}{2}v^{T}\mathbf{Q}v + (\mathbf{Q}z+\mathbf{q}) \bullet v.$$

This reveals $\nabla G(z) = \mathbf{Q}z + \mathbf{q}$. If \widehat{z} is a critical point, i.e., $\nabla G(\widehat{z}) = 0$, $G(\widehat{z} + v) = G(\widehat{z}) + \frac{1}{2}v^T\mathbf{Q}v.$

Taking
$$\widehat{z} = -\mathbf{Q}^{-1}\mathbf{q}$$
 gives

$$G(\widehat{z}) = \frac{1}{2} \left(\mathbf{Q}^{-1} \mathbf{q} \right)^T \mathbf{Q} \left(\mathbf{Q}^{-1} \mathbf{q} \right) - \mathbf{q}^T \left(\mathbf{Q}^{-1} \mathbf{q} \right) + \gamma = -\frac{1}{2} \mathbf{q}^T \mathbf{Q}^{-1} \mathbf{q} + \gamma.$$

Perturbed QP

Imagine z = (x, u), with "decision variable" u and "parameter" x:

$$G(x,u) = \frac{1}{2} \begin{bmatrix} x^T & u^T \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \begin{bmatrix} \mathbf{q}_1^T & \mathbf{q}_2^T \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \gamma.$$

Rearrangement surfaces the quadratic *u*-dependence:

$$G(x,u) = \frac{1}{2}u^{T}\mathbf{Q}_{22}u + (\mathbf{q}_{2} + \mathbf{Q}_{21}x)^{T}u + (\frac{1}{2}x^{T}\mathbf{Q}_{11}x + \mathbf{q}_{1}^{T}x + \gamma).$$

Assume $\mathbf{Q}_{22} > 0$. Then $G(x, \cdot)$ is minimized at its CP,

$$\widehat{u}(x) = -\mathbf{Q}_{22}^{-1}(\mathbf{q}_2 + \mathbf{Q}_{21}x) = Kx + k$$
, with $K = -\mathbf{Q}_{22}^{-1}\mathbf{Q}_{21}$, $k = -\mathbf{Q}_{22}^{-1}\mathbf{q}_2$.

The minimum value is a quadratic function of the parameter *x*:

$$\widehat{G}(x) = G(x,\widehat{u}(x)) = \tfrac{1}{2}x^T \left[\mathbf{Q}_{11} - K^T \mathbf{Q}_{22} K \right] x + \left(\mathbf{q}_1 + \mathbf{Q}_{12} k \right)^T x + \tfrac{1}{2} \mathbf{q}_2^T k + \gamma.$$

Table of Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

Standard-Form Linear Quadratic Regulator (LQR)

States x in discrete-time dynamical system start with $x_0 = x_{init}$ and obey

$$x_{t+1} = Ax_t + Bu_t, t = 0, 1, \dots$$

Problem: Given a step-count T, choose controls u_0, \ldots, u_{T-1} to minimize

$$J = \frac{1}{2} x_T^T Q_T x_T + \frac{1}{2} \sum_{t=0}^{T-1} \left(x_t^T Q x_t + u_t^T R u_t \right).$$

Condense the notation and generalize slightly:

- stack $z = \begin{bmatrix} x \\ u \end{bmatrix}$; invent matrix $P = \begin{bmatrix} I & 0 \end{bmatrix}$ so that x = Pz;
- condense the linear dynamics and quadratic cost into block matrices: use *F* for the dynamics, *C* for the cost;
- allow lower-order terms in the cost, drift in the dynamics, and t-dependence.

Extended-Form LQR

Recalling
$$z = \begin{bmatrix} x \\ u \end{bmatrix}$$
, $P = \begin{bmatrix} I & 0 \end{bmatrix}$ so that $Pz = x$,

min
$$J = \sum_{t=0}^{T} \left(\frac{1}{2} z_{t}^{T} C_{t} z_{t} + c_{t}^{T} z_{t} \right)$$

over u_{0}, \dots, u_{T} ,
s.t. $Pz_{t+1} = F_{t} z_{t} + f_{t}$, $t = 0, \dots, T - 1$,
 $x_{0} = Pz_{0} = x_{\text{init}}$.

Special restrictions: $C_0 \sim \begin{bmatrix} 0 & 0 \\ 0 & * \end{bmatrix}$, $c_0 \sim \begin{bmatrix} 0 & * \end{bmatrix}$, $C_T \sim \begin{bmatrix} * & 0 \\ 0 & 0 \end{bmatrix}$, $c_T \sim \begin{bmatrix} * & 0 \end{bmatrix}$.

8/27

Extended-Form LQR

Recalling $z = \begin{bmatrix} x \\ u \end{bmatrix}$, $P = \begin{bmatrix} I & 0 \end{bmatrix}$ so that Pz = x, set up for Dynamic Programming:

Consider cost-to-go as a scalar-valued function of initial state;

$$V(x) = \min \quad J = \sum_{t=0}^{T} \left(\frac{1}{2} z_{t}^{T} C_{t} z_{t} + c_{t}^{T} z_{t} \right)$$
over u_{0}, \dots, u_{T} ,
s.t. $Pz_{t+1} = F_{t} z_{t} + f_{t}$, $t = 0, \dots, T - 1$,
 $x_{0} = Pz_{0} = x$.

Special restrictions:
$$C_0 \sim \begin{bmatrix} 0 & 0 \\ 0 & * \end{bmatrix}$$
, $c_0 \sim \begin{bmatrix} 0 & * \end{bmatrix}$, $C_T \sim \begin{bmatrix} * & 0 \\ 0 & 0 \end{bmatrix}$, $c_T \sim \begin{bmatrix} * & 0 \end{bmatrix}$.

Extended-Form LQR

Recalling $z = \begin{bmatrix} x \\ u \end{bmatrix}$, $P = \begin{bmatrix} I & 0 \end{bmatrix}$ so that Pz = x, set up for Dynamic Programming:

- Consider cost-to-go as a scalar-valued function of initial state;
- Consider cost-to-go from any start time.

$$V_{r}(x) = \min \quad J_{r} = \sum_{t=r}^{T} \left(\frac{1}{2} z_{t}^{T} C_{t} z_{t} + c_{t}^{T} z_{t} \right)$$
over u_{r}, \dots, u_{T} ,
s.t. $Pz_{t+1} = F_{t} z_{t} + f_{t}$, $t = r, \dots, T - 1$,
 $x_{r} = Pz_{r} = x$.

• Function V_T is essentially given. Find prior V_r to solve original problem.

Special restrictions:
$$C_0 \sim \begin{bmatrix} 0 & 0 \\ 0 & * \end{bmatrix}$$
, $c_0 \sim \begin{bmatrix} 0 & * \end{bmatrix}$, $C_T \sim \begin{bmatrix} * & 0 \\ 0 & 0 \end{bmatrix}$, $c_T \sim \begin{bmatrix} * & 0 \end{bmatrix}$.

Backward Recursion

Principle of Optimality: From state *x* at time *t*, best cost-to-go will satisfy

$$V_t(x) = \min_{u} G_t(x, u),$$
 where $u \sim u_t$, and

$$G_t(z) = (\frac{1}{2}z^T C_t z + c_t^T z) + V_{t+1}(F_t z + f_t).$$
 Recall $z = (x, u).$

If V_{t+1} is a quadratic, then G_t will be quadratic also, and so will V_t . We know V_T is quadratic, so this holds for all V_t , t = T, ..., 0. So predict

$$V_t(x) = \frac{1}{2}x^T \mathbf{V}_t x + \mathbf{v}_t^T x + \beta_t,$$

$$G_t(x, u) = \frac{1}{2}z^T \mathbf{Q}_t z + \mathbf{q}_t^T z + \gamma_t, \qquad z = \begin{bmatrix} x \\ u \end{bmatrix}.$$

We have formulas for the minimizer $\widehat{u}_t(x)$ and the minimum value $V_t(x) = \widehat{G}_t(x) = G_t(x, \widehat{u}_t(x))!$ Align them with the forms above . . .

Two-pass solution

Backward: Knowing function V_T gives $\mathbf{V}_T = C_{T,11}$, $\mathbf{v}_T = c_{T,1}$, $\beta_T = 0$. Counting down with $t = T - 1, \dots, 2, 1, 0$, define, in order,

$$\begin{aligned} \mathbf{Q}_{t} &= C_{t} + F_{t}^{T} \mathbf{V}_{t+1} F_{t} \\ \mathbf{q}_{t} &= c_{t} + F_{t}^{T} \mathbf{v}_{t+1} + F_{t}^{T} \mathbf{V}_{t+1} f_{t} \\ K_{t} &= -(\mathbf{Q}_{t,22})^{-1} \mathbf{Q}_{t,21}, \\ k_{t} &= -(\mathbf{Q}_{t,22})^{-1} \mathbf{q}_{t,2}, \\ \beta_{t} &= \beta_{t+1} + \frac{1}{2} f_{t}^{T} \mathbf{V}_{t+1} f_{t} + \mathbf{v}_{t+1}^{T} f_{t} + \frac{1}{2} \mathbf{q}_{t,2}^{T} k_{t}, \\ \mathbf{v}_{t} &= \mathbf{q}_{t,1} + \mathbf{Q}_{t,12} k_{t}, \\ \mathbf{V}_{t} &= \mathbf{Q}_{t,11} - K_{t}^{T} \mathbf{Q}_{t,22} K_{t}. \end{aligned}$$

Forward: Given any initial state x_0 , proceed with t = 0, 1, ..., T - 1 in

$$u_t = K_t x_t + k_t,$$
 $z_t = \begin{bmatrix} x_t \\ u_t \end{bmatrix},$ $x_{t+1} = P(F_t z_t + f_t).$

Table of Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- 3 A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

Lagrange Multiplier Alternative

We seek z_0, z_1, \ldots, z_T to

minimize
$$J = \sum_{t=0}^{T} \left(\frac{1}{2} z_t^T C_t z_t + c_t^T z_t \right)$$
 s.t. $Pz_{t+1} = F_t z_t + f_t$, $t = 0, ..., T - 1$.

To solve this "all at once", introduce multipliers $\lambda_0, \dots, \lambda_{T-1}$ and form

$$\mathscr{L} = \sum_{t=0}^{T} \left(\frac{1}{2} z_t^T C_t z_t + c_t^T z_t \right) + \sum_{t=0}^{T-1} \lambda_t^T \left(F_t z_t + f_t - P z_{t+1} \right).$$

The KKT system is a collection of linear equations relating z_t , λ_t ; typically,

$$0 = \nabla_{z_t} \mathcal{L} = C_t z_t + c_t + F_t^T \lambda_t - P^T \lambda_{t-1},$$

$$0 = \nabla_{\lambda_t} \mathcal{L} = F_t z_t + f_t - P z_{t+1}.$$

In matrix form, ...

Lagrange Multiplier Alternative

... the KKT system involves a *symmetric*, block tridiagonal coefficient matrix:

$$\begin{bmatrix} \ddots & \vdots & \vdots & \vdots & & & & \\ \cdots & 0 & -P & 0 & & & \\ \cdots & -P^T & C_t & F_t^T & & & \\ \cdots & 0 & F_t & 0 & -P & 0 & \cdots \\ & & -P^T & C_{t+1} & F_{t+1}^T & \cdots \\ 0 & F_{t+1} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ \lambda_{t-1} \\ z_t \\ \lambda_t \\ z_{t+1} \\ \lambda_{t+1} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ -f_{t-1} \\ -c_t \\ -f_t \\ -c_{t+1} \\ -f_{t+1} \\ \vdots \end{bmatrix}$$

(Typical 3×3 blocks overlap on their diagonal corners; details of top and bottom block-rows differ slightly.)

$$\begin{aligned} 0 &= \nabla_{z_t} \mathcal{L} &\iff & -P^T \lambda_{t-1} + C_t z_t + F_t^T \lambda_t &= -c_t, \\ 0 &= \nabla_{\lambda_t} \mathcal{L} &\iff & F_t z_t & -P z_{t+1} = -f_t. \end{aligned}$$

Notes: (1) Symmetry is useful later.

(2) Sparsity and structure can be exploited.

13/27

Loewen (UBCV Math) Sensitivity Analysis for LQR CMS Winter 2024

Table of Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- 3 A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

Gradients

Setup: (\mathscr{X}, \bullet) is a real inner-product space; $f: \mathscr{X} \to \mathbb{R}$; $x_0 \in \mathscr{X}$.

Idea: $\nabla f(x_0)$ is the element of \mathscr{X} for which

$$f(x) \approx f(x_0) + \nabla f(x_0) \bullet (x - x_0)$$
, when $x \approx x_0$.

Calculation: Assert for arbitrary $v \in \mathcal{X}$,

$$\nabla f(x_0) \bullet v = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = \frac{d}{dt} f(x_0 + tv) \Big|_{t=0}$$

Examples

Warmup:
$$\mathcal{X} = \mathbb{R}^{q \times d}$$
; $X \bullet Y = \sum_{i,j} X_{ij} Y_{ij} = \sum_{i} (XY^T)_{ii} = \operatorname{tr}(XY^T)$

- Function $f(X) = u^T X w$ is linear, so $\nabla f(X) = u w^T$ is a constant matrix with the same shape as X.
- Take q = d and consider $f(X) = u^T X^{-1} w$. This time, for arbitrary $V \in \mathbb{R}^{d \times d}$,

$$\nabla f(X) \bullet V = \lim_{t \to 0} t^{-1} u^{T} \left[(X + tV)^{-1} - X^{-1} \right] w$$

$$= \lim_{t \to 0} t^{-1} u^{T} \left[(I + tX^{-1}V)^{-1} - I \right] X^{-1} w$$

$$= -u^{T} X^{-1} V X^{-1} w \qquad \left(\text{use } (I - R)^{-1} = I + R + R^{2} + \dots \right)$$

$$= -(X^{-T} u)^{T} (X^{-1} w) \bullet V.$$

Result: If X^{-1} exists, $\nabla f(X) = -(X^{-T}u)(X^{-1}w)^T = -X^{-T}uw^TX^{-T}$.

Solution Sensitivity in Linear Equations, Ay = b

For $A \in \mathbb{R}^{d \times d}$, $b \in \mathbb{R}^d$, and some given "loss function" $\ell \colon \mathbb{R}^d \to \mathbb{R}$, let

$$W(A,b) = \ell(A^{-1}b) = \ell(y)$$
, where $Ay = b$.

For $A' \approx A$, $b' \approx b$, and y' from A'y' = b',

$$W(A',b') - W(A,b) = \ell(y') - \ell(y)$$

$$\approx \nabla \ell(y) \bullet (y' - y) = \nabla \ell(y)^T \left((A')^{-1}b' - A^{-1}b \right)$$

$$\approx \nabla \ell(y)^T \left((A')^{-1} - A^{-1} \right) b + \nabla \ell(y)^T (A')^{-1} (b' - b).$$

Reconcile this with

$$W(A',b') - W(A,b) \approx \nabla_A W(A,b) \bullet (A'-A) + \nabla_b W(A,b) \bullet (b'-b)$$
.

Result:
$$\nabla_b W(A, b) = A^{-T} \nabla \ell(y)$$
, $\nabla_A W(A, b) = -A^{-T} \nabla \ell(y) b^T A^{-T}$.

Notice factor $p \triangleq A^{-T}\nabla \ell(y)$ in both expressions; recall $y = A^{-1}b$.

Solution Sensitivity in Linear Equations, Ay = b

For $A \in \mathbb{R}^{d \times d}$, $b \in \mathbb{R}^d$, and some given "loss function" $\ell \colon \mathbb{R}^d \to \mathbb{R}$, let

$$W(A,b) = \ell(A^{-1}b) = \ell(y)$$
, where $Ay = b$.

To find gradients of W at a point (A, b) where A^{-1} exists,

- Solve for y: Ay = b.
- Solve for p: $A^T p = \nabla \ell(y)$. (That's "the adjoint system".)
- **3** Report: $\nabla_A W(A, b) = -py^T$, $\nabla_b W(A, b) = p$.

Notes:

- Calculations for step (1) (e.g., factorizations for matrix A) may be useful in step (2). Especially when $A^T = A$.
- Gradients reported in (3) match element-by-element with the shapes of the inputs *A* and *b* for function *W*.

Now let $W = W(M, m, G, g) = \ell(x)$, where ℓ is given, and x comes from

(*)
$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}.$$

Assume $M = M^T$ in $\mathbb{R}^{d \times d}$ and $G \in \mathbb{R}^{q \times d}$ both have full rank. Taking

$$A = \begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix}, \qquad y = \begin{bmatrix} x \\ \lambda \end{bmatrix}, \qquad b = \begin{bmatrix} m \\ g \end{bmatrix},$$

Now let $W = W(M, m, G, g) = \ell(x)$, where ℓ is given, and x comes from

(*)
$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}.$$

Assume $M = M^T$ in $\mathbb{R}^{d \times d}$ and $G \in \mathbb{R}^{q \times d}$ both have full rank. Taking

$$A = \begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix}, \qquad y = \begin{bmatrix} x \\ \lambda \end{bmatrix}, \qquad b = \begin{bmatrix} m \\ g \end{bmatrix},$$

we find gradients of W like this:

• Solve for (x, λ) : (*).

Now let $W = W(M, m, G, g) = \ell(x)$, where ℓ is given, and x comes from

$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}.$$

Assume $M = M^T$ in $\mathbb{R}^{d \times d}$ and $G \in \mathbb{R}^{q \times d}$ both have full rank. Taking

$$A = \begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix}, \qquad y = \begin{bmatrix} x \\ \lambda \end{bmatrix}, \qquad b = \begin{bmatrix} m \\ g \end{bmatrix},$$

- Solve for (x, λ) : (*).
- Solve for (p_0, p_1) : $\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} = \begin{bmatrix} \nabla \ell(x) \\ 0 \end{bmatrix}.$

Now let $W = W(M, m, G, g) = \ell(x)$, where ℓ is given, and x comes from

$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}.$$

Assume $M = M^T$ in $\mathbb{R}^{d \times d}$ and $G \in \mathbb{R}^{q \times d}$ both have full rank. Taking

$$A = \begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix}, \qquad y = \begin{bmatrix} x \\ \lambda \end{bmatrix}, \qquad b = \begin{bmatrix} m \\ g \end{bmatrix},$$

- Solve for (x, λ) : (*).
- Solve for (p_0, p_1) : $\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} = \begin{bmatrix} \nabla \ell(x) \\ 0 \end{bmatrix}. \text{ Notice } py^T = \begin{bmatrix} p_0 x^T & p_0 \lambda^T \\ p_1 x^T & p_1 \lambda^T \end{bmatrix}.$

Now let $W = W(M, m, G, g) = \ell(x)$, where ℓ is given, and x comes from

$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}.$$

Assume $M = M^T$ in $\mathbb{R}^{d \times d}$ and $G \in \mathbb{R}^{q \times d}$ both have full rank. Taking

$$A = \begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix}, \qquad y = \begin{bmatrix} x \\ \lambda \end{bmatrix}, \qquad b = \begin{bmatrix} m \\ g \end{bmatrix},$$

- Solve for (x, λ) : (*)
- Solve for (p_0, p_1) : $\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} = \begin{bmatrix} \nabla \ell(x) \\ 0 \end{bmatrix}. \text{ Notice } py^T = \begin{bmatrix} p_0 x^T & p_0 \lambda^T \\ p_1 x^T & p_1 \lambda^T \end{bmatrix}.$
- Report: $\nabla_m W = p_0, \qquad \nabla_M W = -\frac{1}{2}(p_0 x^T + x p_0^T),$ $\nabla_g W = p_1, \qquad \nabla_G W = -(p_1 x^T + \lambda p_0^T).$

Why Bother?

Recognize the previous system

as the KKT setup for this Quadratic Programming problem:

$$\min_{x \in \mathbb{R}^d} \ \frac{1}{2} x^T M x - m^T x \quad \text{s.t.} \quad G x = g.$$

(Check:
$$\mathcal{L} = \frac{1}{2}x^T M x - m \bullet x + G^T \lambda \bullet x - \lambda \bullet g.$$
)

Idea: Elements *M*, *m*, *G*, *g* define a QP. The minimizer *x* depends on them:

$$x = \widehat{x}(M, m, G, g).$$

The steps above make derivatives of $W \triangleq \ell \circ \widehat{x}$, a "simple" case for the Chain rule, fully concrete.

Why Bother?

Recognize the previous system

$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}$$

as the KKT setup for this Quadratic Programming problem:

$$\min_{x \in \mathbb{R}^d} \ \frac{1}{2} x^T M x - m^T x \quad \text{s.t.} \quad G x = g.$$

(Check:
$$\mathcal{L} = \frac{1}{2}x^T M x - m \bullet x + G^T \lambda \bullet x - \lambda \bullet g.$$
)

Idea: Elements M, m, G, g define a QP. The minimizer x depends on them:

$$x = \widehat{x}(M, m, G, g).$$

The steps above make derivatives of $W \triangleq \ell \circ \widehat{x}$, a "simple" case for the Chain rule, fully concrete. Here's Step 1 in the painful alternative we're skipping:

$$\widehat{x} = M^{-1} \left(I - G^T (G M^{-1} G^T)^{-1} G M^{-1} \right) m + M^{-1} G^T \left(G M^{-1} G^T \right)^{-1} g.$$

19/27

Loewen (UBCV Math) Sensitivity Analysis for LQR CMS Winter 2024

Table of Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

Grand Unification

Recall the LQ problem, where z = (x, u), and $x_0 = x_{init}$ is given:

min
$$J = \sum_{t=0}^{T} \left(\frac{1}{2} z_t^T C_t z_t + c_t^T z_t \right)$$

s.t. $x_{t+1} = F_t z_t + f_t, \qquad t = 0, \dots, T - 1.$

The optimal control/state sequence \widehat{z} depends on the coefficients, defining

$$\widehat{z}_t = \widehat{z}_t(F, f, C, c), \qquad t = 0, 1, \dots, T.$$

Given any smooth function $\ell = \ell(z)$, consider $W = \ell \circ \widehat{z}$, i.e.,

$$W(F,f,C,c) = \ell(\widehat{z}(F,f,C,c)).$$

The KKT interpretation gives immediate access to gradients of *W*!

Grand Unification

To differentiate $W(F, f, C, c) = \ell(\widehat{z}(F, f, C, c))$ at (F, f, C, c), where

$$\widehat{z} \triangleq \arg \min \quad J = \sum_{t=0}^{T} \left(\frac{1}{2} z_t^T C_t z_t + c_t^T z_t \right)$$
s.t.
$$x_{t+1} = F_t z_t + f_t, \qquad t = 0, \dots, T - 1,$$

- **Q** Run the 2-pass method to find \hat{z} in the nominal problem above.
- **②** Find the corresponding Lagrange multipliers, $\widehat{\lambda}$. Stack with \widehat{z} to get a vector q solving the KKT system.
- **Our Proof** Calculate $\nabla \ell(\widehat{z})$.
- Rerun the 2-pass method, after changing $f \to 0$, $c \to -\nabla \ell(\overline{z})$. (Save work: re-use the matrices in the forward pass.) Name the solution vector p.
- **5** Extract $\nabla_c W$ and $\nabla_f W$ directly from p.
- Imagine the matrix $-(pq^T + qp^T)$:
 - find $\nabla_{F_t}W$ in the blocks occupied by F_t in KKT matrix;
 - find $\nabla_{C_t} W$ in the blocks occupied by C_t in KKT matrix.

Table of Contents

- Unconstrained QP, with parameters
- 2 Linear-Quadratic Optimal Control
- 3 A Complementary Approach
- Sensitivity Analysis for Linear Equations
- Sensitivity Analysis for LQR
- 6 Applications

Applications

- Direct: LQR is useful. Sensitivity info supports "what-if" analysis.
- Inverse Problem: What LQR setup is responsible for this sequence (x_t, u_t) ?
- NN Layers: Training by Backpropagation, a.k.a. the Chain Rule. For $H(\theta) = h_N \circ \cdots \circ h_3 \circ h_2 \circ h_1$,

$$D_{\theta}H = [D_{\theta}h_1][D_{\theta}h_2][D_{\theta}h_3]\cdots[D_{\theta}h_N].$$

If h_k involves LQR, with $\theta_k \sim (F, f, C, c)$, the operator $D_{\theta}h_k$ is complicated, but to build $D_{\theta}H[w]$, we only need to evaluate $D_{\theta}h_k$, i.e., to find

$$D_{\theta}h_k[w_k]$$
, for $w_k = [D_{\theta}h_{k+1}]\cdots[D_{\theta}h_N]w$.

That's what this construction provides!

24/27

Implementation and Further Reading

Try it yourself:

https://github.com/PhilipLoewen/DiscreteLQR

Read more:

- Amos and Kolter, OptNet: Differentiable Optimization as a Layer in Neural Networks, ICML 2017. arXiv 1703.00443
- Bounou, Ponce, Carpentier, Leveraging Proximal Optimization for Differentiating Optimal Control Solvers, IEEE CDC 2023.

Professional Software:

- Pytorch autograd, the standard backprop wrapper.
- JAX, Google's Python library for accelerator-oriented array computation and program transformation.
- optax, c/o Google Deepmind, a gradient processing and optimization library for JAX.

Leftovers

Sidebar/Appendix – The QP Value Function

Consider
$$V(M, m, G, g) = \min_{x \in \mathbb{R}^p} \left\{ \frac{1}{2} x^T M x - m^T x : Gx = g \right\}.$$

With $\widehat{x}(M, m, G, g) = \arg\min \left\{ \cdots \right\},$

$$V(M, m, G, g) = \frac{1}{2}\widehat{x}^{T}M\widehat{x} - m^{T}\widehat{x} = \ell(\widehat{x}; M, m).$$

Here
$$\widetilde{\ell}(x; M, m) = \frac{1}{2}x^T M x - m^T x$$
 has $\nabla_x \widetilde{\ell}(x; M, m) = M x - m$.

From above,

• Solve for
$$(x, \lambda)$$
:
$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} m \\ g \end{bmatrix}$$
. Notice $Mx - m = -G^T \lambda$.

Solve for
$$(z_0, z_1)$$
: $\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} = \begin{bmatrix} -G^T \lambda \\ 0 \end{bmatrix}$. Inspection: $\begin{bmatrix} z_0 \\ z_1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\lambda \end{bmatrix}$.

Neport:
$$\nabla_m V = -x, \qquad \nabla_g V = -\lambda, \\ \nabla_M V = \frac{1}{2} x x^T, \qquad \nabla_G V = \lambda x^T.$$
 (Reassuring.)