FIGURE 144

MDILVPLLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGLTGASGKVALL ELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDMRQLADGSMDVVVCTLVLCSV QSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQVFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQ PPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSLQLEQATHQPIYLPLRGT

FIGURE 145

TTTGTCCGAACAGCTCCCCTCTGCCAGCTTCTGTAGATAAGGGTTAAAAACTAATATTTATATGACAGAAGAAA ${\tt AGATG}$ TCATTCCGTAAAGTAAACATCATCTTGGTCCTGGCTGTTGCTCTTCTTACTGGTTTTGCACCATA ACTTCCTCAGCTTGAGCAGTTTGTTAAGGAATGAGGTTACAGATTCAGGAATTGTAGGGCCTCAACCTATAGACT TTGTCCCAAATGCTCTCCGACATGCAGTAGATGGGAGACAAGAGGAGATTCCTGTGGTCATCGCTGCATCTGAAG ACAGGCTTGGGGGGGCCATTGCAGCTATAAACAGCATTCAGCACAACACTCGCTCCAATGTGATTTTCTACATTG TTACTCTCAACAATACAGCAGACCATCTCCGGTCCTGGCTCAACAGTGATTCCCTGAAAAGCATCAGATACAAAA TTGTCAATTTTGACCCTAAACTTTTGGAAGGAAAAGTAAAGGAGGATCCTGACCAGGGGGAATCCATGAAACCTT TAACCTTTGCAAGGTTCTACTTGCCAATTCTGGTTCCCAGCGCAAAGAAGGCCATATACATGGATGATGATGTAA TTGTGCAAGGTGATATTCTTGCCCTTTACAATACAGCACTGAAGCCAGGACATGCAGCTGCATTTTCAGAAGATT GTGATTCAGCCTCTACTAAAGTTGTCATCCGTGGAGCAGGAAACCAGTACAATTACATTGGCTATCTTGACTATA AAAAGGAAAGAATTCGTAAGCTTTCCATGAAAGCCAGCACTTGCTCATTTAATCCTGGAGTTTTTGTTGCAAACC TGACGGAATGGAAACGACAGAATATAACTAACCAACTGGAAAAATGGATGAAACTCAATGTAGAAGAGGGACTGT ATAGCAGAACCCTGGCTGGTAGCATCACAACACCTCCTCTGCTTATCGTATTTTATCAACAGCACTCTACCATCG ${ t ATCCTATGTGGAATGTCCGCCACCTTGGTTCCAGTGCTGGAAAACGATATTCACCTCAGTTTGTAAAGGCTGCCA$ AGTTACTCCATTGGAATGGACATTTGAAGCCATGGGGAAGGACTGCTTCATATACTGATGTTTGGGAAAAATGGT $\tt ATATTCCAGACCCAACAGGCAAATTCAACCTAATCCGAAGATATACCGAGATCTCAAACATAAAG{\color{red}{\textbf{TGA}}} \texttt{AACAGAA}$ AATGCCTATCGGTAGCAAGCCATGGAAAAAGATGTCTCAGCTAGGTAAAGATGACAAACTGCCCTGTCTGGCAGT ${\tt CAGCTTCCCAGACAGACTATAGACTATAAATATGTCTCCATCTGCCTTACCAAGTGTTTTCTTACTACAATGCTG}$ ATTTTGTAACCTGTGGCCTGATCTGTAAATAAAACTTACATTTTTC

147/615

FIGURE 146

MSFRKVNIIILVLAVALFLLVLHHNFLSLSSLLRNEVTDSGIVGPQPIDFVPNALRHAVDGRQEEIPVVIAASED RLGGAIAAINSIQHNTRSNVIFYIVTLNNTADHLRSWLNSDSLKSIRYKIVNFDPKLLEGKVKEDPDQGESMKPL TFARFYLPILVPSAKKAIYMDDDVIVQGDILALYNTALKPGHAAAFSEDCDSASTKVVIRGAGNQYNYIGYLDYK KERIRKLSMKASTCSFNPGVFVANLTEWKRQNITNQLEKWMKLNVEEGLYSRTLAGSITTPPLLIVFYQQHSTID PMWNVRHLGSSAGKRYSPQFVKAAKLLHWNGHLKPWGRTASYTDVWEKWYIPDPTGKFNLIRRYTEISNIK

148/615

FIGURE 147

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTTCCTCCAAGCA AGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCTATTTGCATCTGTTTTGATAA ${\tt ATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATC} {\tt ATG} {\tt TCGGGAAGAGATACAATCCTTGGCCTGTGTATCC}$ TCGCATTAGCCTTGTCTTTGGCCATGATGTTTACCTTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTT CATTGGTTATTTTGGGATTGTTTGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCA CAGTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTTCCAAATCACAAATA ${\tt AAGCCATCAGCAGTGCTCCTTCTTGCTGTTCCAGCCACTGTGGACATTTGCCATCCTCATTTTCTTCTGGGTCC}$ TCTGGGTGGCTGTGCTGAGCCTGGGAACTGCAGGAGCTGCCCAGGTTATGGAAGGCGGCCAAGTGGAATATA AGCCCCTTTCGGGCATTCGGTACATGTGGTCGTACCATTTAATTGGCCTCATCTGGACTAGTGAATTCATCCTTG CGTGCCAGCAAATGACTATAGCTGGGGCAGTGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTCCTGATC ATCCCATCCTTTCGTCTCTCCATTCTCTTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCATTTTTAATCT CTGTGGTGAGGATTCCGAGAATCATTGTCATGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT ${\tt CCAGGTACCTGTTCCGATGCTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTCAACCAGAATG}$ CATATACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGCATTCAAAATCTTGTCCAAGA ACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAATTTTTCTAGGAAAGGTGTTAGTGGTGTTT TCACTGTTTTTGGAGGACTCATGGCTTTTAACTACAATCGGGCATTCCAGGTGTGGGCAGTCCCTCTGTTATTGG TAGCTTTTTTTGCCTACTTAGTAGCCCATAGTTTTTTATCTGTGTTTGAAACTGTGCTGGATGCACTTTTCCTGT GTTTTGCTGTTGATCTGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTT TCGTAAAAAGGACAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGAGGGAA CAGAACTCCAGGCCATTGTGAGATAGATACCCATTTAGGTATCTGTACCTGGAAAACATTTCCTTCTAAGAGCCA TTCCTCAAAA

FIGURE 148

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLSIELDTERENMKC VLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFAILIFFWVLWVAVLLSLGTAG AAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQQMTIAGAVVTCYFNRSKNDPPDHPILSSLSILFFY HQGTVVKGSFLISVVRIPRIIVMYMQNALKEQQHGALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFC TSAKDAFKILSKNSSHFTSINCFGDFIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFL SVFETVLDALFLCFAVDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQAIVR

150/615

FIGURE 149

FIGURE 150

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAGCQDPKYHVYG
TDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWRESFIVLESKPKKGVTYPSAL
TYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVATPTTLPRPSPSAASTTSIPRPQSVGHRSQE
MDLWSTATYTSSQNRPRADPGIQRQDPSGAAFQKPVGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDG
STSIGKRRFRIQKQLLADVAQALDIGPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRA
ISFVTKNFFSKANGNRSGAPNVVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAV
CRTNGFYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTNLTKEF
EISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAAINFALEQLFKKSKPNKRKLMILI
TDGRSYDDVRIPAMAAHLKGVITYAIGVAWAAQEELEVIATHPARDHSFFVDEFDNLHQYVPRIIQNICTEFNSQPRN

FIGURE 151

GCTCATCCCGCTCGGCCTCCTGTGCGCGCTGCTGCCTCAGCACCATGGTGCGCCAGGTCCCGACGGCTCCGCGCC AGATCCCGCCCACTACAGTTTTTCTCTGACTCTAATTGATGCACTGGACACCTTGCTGATTTTTGGGGAATGTCTC AGAATTCCAAAGAGTGGTTGAAGTGCTCCAGGACAGCGTGGACTTTGATATTGATGTGAACGCCTCTGTGTTTGA TGGATGGCCCTGTTCCGGGCCTCTCCTGAGAATGGCTGAGGAGGCGGCCCGAAAACTCCTCCCAGCCTTTCAGAC CCCCACTGCATGCCATATGGAACAGTGAACTTACTTCATGGCGTGAACCCAGGAGAGACCCCTGTCACCTGTAC GGCAGGGATTGGGACCTTCATTGTTGAATTTGCCACCCTGAGCAGCCTCACTGGTGACCCGGTGTTCGAAGATGT GGCCAGAGTGGCTTTGATGCGCCTCTGGGAGAGCCGGTCAGATATCGGGCTGGTCGGCAACCACATTGATGTGCT CACTGGCAAGTGGGTGGCCCAGGACGCATCGGGGCTGGCGTGGACTCCTACTTTGAGTACTTGGTGAAAGG AGCCATCCTGCTTCAGGATAAGAAGCTCATGGCCATGTTCCTAGAGTATAACAAAGCCATCCGGAACTACACCCG CTTCGATGACTGGTACCTGTGGGTTCAGATGTACAAGGGGGACTGTGTCCATGCCAGTCTTCCAGTCCTTGGAGGC CTACTGGCCTGGTCTTCAGAGCCTCATTGGAGACATTGACAATGCCATGAGGACCTTCCTCAACTACTACACTGT ATGGAAGCAGTTTGGGGGGCTCCCGGAATTCTACAACATTCCTCAGGGATACACAGTGGAGAAGCGAGAGGGCTA CCCACTTCGGCCAGAACTTATTGAAAGCGCAATGTACCTCTACCGTGCCACGGGGGATCCCACCCTCCTAGAACT CGGAAGAGATGCTGTGGAATCCATTGAAAAAATCAGCAAGGTGGAGTGCGGATTTGCAACAATCAAAGATCTGCG AGACCACAAGCTGGACAACCGCATGGAGTCGTTCTTCCTGGCCGAGACTGTGAAATACCTCTACCTCCTGTTTGA CCCAACCAACTTCATCCACAACAATGGGTCCACCTTCGACGCGGTGATCACCCCCTATGGGGAGTGCATCCTGGG GGCTGGGGGGTACATCTTCAACACAGAAGCTCACCCCATCGACCTTGCCGCCCTGCACTGCTGCCAGAGGCTGAA GGAAGAGCAGTGGGAGGTGGAGGACTTGATGAGGGAATTCTACTCTCTCAAACGGAGCAGGTCGAAATTTCAGAA AAACACTGTTAGTTCGGGGCCATGGGAACCTCCAGCAAGGCCAGGAACACTCTTCTCACCAGAAAACCATGACCA GGCAAGGGAGGGAGCCTGCCAAACAGAAGGTCCCACTTCTCAGCTGCCCCAGTCAGCCCTTCACCTCCAAGTT AAACTATAATAAATTGCTTTTTGGCTATCATAAAA

153/615

FIGURE 152

MPFRLLIPLGLLCALLPQHHGAPGPDGSAPDPAHYSFSLTLIDALDTLLILGNVSEFQRVVEVLQDSVDFDIDVN ASVFETNIRVVGGLLSAHLLSKKAGVEVEAGWPCSGPLLRMAEEAARKLLPAFQTPTGMPYGTVNLLHGVNPGET PVTCTAGIGTFIVEFATLSSLTGDPVFEDVARVALMRLWESRSDIGLVGNHIDVLTGKWVAQDAGIGAGVDSYFE YLVKGAILLQDKKLMAMFLEYNKAIRNYTRFDDWYLWVQMYKGTVSMPVFQSLEAYWPGLQSLIGDIDNAMRTFL NYYTVWKQFGGLPEFYNIPQGYTVEKREGYPLRPELIESAMYLYRATGDPTLLELGRDAVESIEKISKVECGFAT IKDLRDHKLDNRMESFFLAETVKYLYLLFDPTNFIHNNGSTFDAVITPYGECILGAGGYIFNTEAHPIDLAALHC CQRLKEEQWEVEDLMREFYSLKRSRSKFQKNTVSSGPWEPPARPGTLFSPENHDQARERKPAKQKVPLLSCPSQP FTSKLALLGQVFLDSS

154/615

FIGURE 153

 ${\tt GAAAAGGAGAGGGACAGAGGCCAGAGGACTTCTCATACTGGACAGAAACCGATCAGGC\underline{\textbf{ATG}}\textbf{GAACTCCCCTTCGT}$ CACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGGTCTCTGCTCCCCCTTTAACCTGGATGAACATCACCCACG $\verb|CCTATTCCCAGGGCCACCAGAAGCTGAATTTGGATACAGTGTCTTACAACATGTTGGGGGTGGACAGCGATGGAT| \\$ GCTGGTGGGCGCCCCTGGGATGGGCCTTCAGGCGACCGGAGGGGGGACGTTTATCGCTGCCCTGTAGGGGGGGC CCACAATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTCATCCTGCTGTGAATAT $\texttt{GCACCTGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGGATTCATGGTGAGC} \underline{\textbf{TAA}} \texttt{GGAGAGGGTGGTGGCAG}$ TGTCTCTGAAGGTCCATAAAAGAAAAAAGGGGAAGTGTGGTAAGGGAAAATGGTCTGTGTGGGGGGGTCAAGGAGT TAAAAACCCTAGAAAGCAAAAGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTC TGAGGGTGCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCATCCCCAGGCCTGTGCCCCTCTCTGGTCTCGTGCT TGTGGCAGCTCTGTCTTCAGTTCTGGGATATGTGCCCGTGTGGATGCTTCATTCCAGCCTCAGGGAAGCCTGGCA ${\tt GGGCAAAGCGGTATGATGCCTGGCAAAGGGCCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCT}$ $\verb|CCATGTTTCCTAACAGATTCAGACTCCTGGCCAGGTGTGGCCCACACCTGTAATTCTAGCACTTTGGGAGGC|\\$ CAAGGTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACTCCATCTCTACTAA AAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTCATCTACTCGGGAGGCTAAGACA GGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTGAGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTG ACAGAGTAAGCGAGACTCCATCTCAAAAATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTG GCCTGGCACAGTAACTCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGA

155/615

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039
><subunit 1 of 1, 124 aa, 1 stop
><MW: 13352, pI: 5.99, NX(S/T): 1
MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPWDGPSGDRRGDVYR
CPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:
Signal peptide:
amino acids 1-22

Cell attachment sequence. amino acids 70-73

N-glycosylation site. amino acids 98-101

Integrins alpha chain proteins amino acids 67-81

156/615

FIGURE 155

AGCGTCCCCGCCCCCCCCCGGGAGCTCTGATCTCAGCTGACAGTGCCCTCGGGGACCAAACAAGCCTGGCAGG ${\tt GTCTCACTTGTTGCCCAGGCTGGAGTTCAGTGCCATGATCATGGTTTACTGCAGCCTTGACCTCCTGGGTTCAA}$ ${\tt GCGATCCTGCTGAGTAGCTGGGACTACAGGACAAAATTAGAAGATCAAA{\tt ATG}{\tt GAAAATATGCTGCTTTGGTTGAT}$ ATTTTCACCCCTGGGTGGACCCTCATTGATGGATCTGAAATGGAATGGGATTTTATGTGGCACTTGAGAAAGGT ACCCCGGATTGTCAGTGAAAGGACTTTCCATCTCACCAGCCCCGCATTTGAGGCAGATGCTAAGATGATGGTAAA TACAGTGTGTGGCATCGAATGCCAGAAAGAACTCCCAACTCCCAGCCTTTCTGAATTGGAGGATTATCTTTCCTA TGAGACTGTCTTTGAGAATGGCACCCGAACCTTAACCAGGGTGAAAGTTCAAGATTTGGTTCTTGAGCCGACTCA AAATATCACCACAAAGGGAGTATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAGCATCTT GGACAAAAGGTTCTTAACCAATTTCCCTTTCAGCACAGCTGTGAAGCTTTCCACGGGCTGTAGTGGCATTCTCAT $\tt TTCCCCTCAGCATGTTCTAACTGCTGCCCACTGTGTTCATGATGGAAAGGACTATGTCAAAGGGAGTAAAAAGCT$ AAGGGTAGGGTTGTTGAAGATGAGGAATAAAAGTGGAGGCAAGAAACGTCGAGGTTCTAAGAGGAGCAGGAGAGA AGCTAGTGGTGGTGACCAAAGAGAGGGTACCAGAGAGCATCTGCAGGAGAGCGAAGGGTGGGAGAAGAAGAAA TCCGAAGGGCTGGGCACGAGGAGGCATGGGGGACGCTACCTTGGACTATGACTATGCTCTTCTGGAGCTGAAGCG TGCTCACAAAAAGAAATACATGGAACTTGGAATCAGCCCAACGATCAAGAAAATGCCTGGTGGAATGATCCACTT $\tt CTCAGGATTTGATAACGATAGGGCTGATCAGTTGGTCTATCGGTTTTGCAGTGTGTCCGACGAATCCAATGATCT$ CCTTTACCAATACTGCGATGCTGAGTCGGGCTCCACCGGTTCGGGGGGTCTATCTGCGTCTGAAAGATCCAGACAA $\tt CTACAACGTTGCTGTTCGCATCACTCCCCTAAAATACGCCCAGATTTGCCTCTGGATTCACGGGAACGATGCCAA$ ${\tt TTGTGCTTACGGC}$ ${\tt TAA}$ CAGAGACCTGAAACAGGGCGGTGTATCATCTAAATCACAGAGAAAACCAGCTCTGCTTA CCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTTGAACTCTGTCAATAGCATTTCAACATTTTTCAAAATCA GGAGATTTTCGTCCATTTAAAAAATGTATAGGTGCAGATATTGAAACTAGGTGGGCACTTCAATGCCAAGTATAT ACTCTTCTTTACATGGTGATGAGTTTCATTTGTAGAAAAATTTTGTTGCCTTCTTAAAAATTAGACACACTTTAA ACCTTCAAACAGGTATTATAAATAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCCTACTCTAAGAAGAAT ${ t CTAATAGGATGCTGGTTGTGTATTAAATGTGAAATTGCATAGATAAAGGTAGATGGTAAAGCAATTAGTATCAGA$ ATAGAGACAGAAAGTTACAACACAGTTTGTACTACTCTGAGATGGATCCATTCAGCTCATGCCCTCAATGTTTAT ATTATAAACAAAACTAATAACTGTTTTACTGCTTTAAGAAATAACAATTACAATGTGTATTATTTAAAAATGGGA GAAATAGTTTGTTCTATGAAATAAACCTAGTTTAGAAATAGGGAAGCTGAGACATTTTAAGATCTCAAGTTTTTA TCTTTTTCAAGAAAGAGTCTTTTTCTCCTTGACAAAATCCAGCTTTTGTATGAGGACTATAGGGTGAATTCTCTG ATTAGTAATTTTAGATATGTCCTTTCCTAAAAATGAATAAAATTTATGAATATGA

FIGURE 156

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253
<subunit 1 of 1, 413 aa, 1 stop
<MW: 47070, pI: 9.92, NX(S/T): 3</pre>

MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVCGIECQKELPTPSL SELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQVYGTDSRFSILDKRFLTNFPFSTAVKL STGCSGILISPQHVLTAAHCVHDGKDYVKGSKKLRVGLLKMRNKSGGKKRRGSKRSRREASGGDQREGTREHLQE RAKGGRRKKSGRGQRIAEGRPSFQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIK KMPGGMIHFSGFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYLRLKDPDKKNWKRKIIAVYSGHQW VDVHGVQKDYNVAVRITPLKYAQICLWIHGNDANCAYG

Important features: Signal peptide: amino acids 1-16

N-glycosylation sites. amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site. amino acids 236-239

Serine proteases, trypsin family, histidine active site. amino acids 165-170

158/615

FIGURE 157

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCCAGCGCAGCCGCAGCGGACAAAGGAGCATGTCCGCG CCGGGGAAGGCCCGTCCTCCGGCCGCCATAAGGCTCCGGTCGCCGCTGGGCCCGCGCGCCCCCCCGCCCCC ${\tt GGCTCCGGGGCCGCCTAGGCCAGTGCGCCGCCGCCGCAGGCCCCGCAGC} \underline{{\tt ATG}}{\tt GAGCCACCC}$ ${\tt GGACGCCGGGGGGCCGCGCGCGCTGTTGCTGCCGCTCTCGCTGTTAGCGCTGCTGCGGGGA}$ GGCGGCGGCGGCGCGCCGCGGCGCTGCCCGCCGGCTGCAAGCACGATGGGCGGCCCCGAGGGGCTGGCAGG GCGGCGGCCCCGAGGCCAAGGTGTGCAGCAGCCTGGAACTCGCGCAGGTCCTGCCCCAGATACTCTG CCCAACCGCACGGTCACCCTGATTCTGAGTAACAATAAGATATCCGAGCTGAAGAATGGCTCATTTTCTGGGTTA AGTCTCCTTGAAAGATTGGACCTCCGAAACAATCTTATTAGTAGTATAGATCCAGGTGCCTTCTGGGGACTGTCA TCTCTAAAAAGATTGGATCTGACAAACAATCGAATAGGATGTCTGAATGCAGACATATTTCGAGGACTCACCAAT CTGGTTCGGCTAAACCTTTCGGGGAATTTGTTTTCTTCATTATCTCAAGGAACTTTTGATTATCTTGCGTCATTA AAGAACATCACGGTACGGGATACCAGGTGTGTTTATCCTAAGTCACTGCAGGCCCAACCAGTCACAGGCGTGAAG CAGGAGCTGTTGACATGCGACCCTCCGCTTGAATTGCCGTCTTTCTACATGACTCCATCTCATCGCCAAGTTGTG TTTGAAGGAGACAGCCTTCCTTTCCAGTGCATGGCTTCATATTTGATCAGGACATGCAAGTGTTGTGGTATCAG GATGGGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTTTGTTGAAAAGAACATGATTCACAACTGCTCCTTG ATTGCAAGTGCCCTAACCATTTCTAATATTCAGGCTGGATCTACTGGAAATTGGGGCTGTCATGTCCAGACCAAA CGTGGGAATAATACGAGGACTGTGGATATTGTGGTATTAGAGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTG ACCCATGGCAGTGGGATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTTGGCGCAGATGTGATAGAGGTGGC $\tt TTTTGGGCAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCACTAGAGTTCTTTATATGTTTAATCAG$ ATGCCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGCTTACACTGTGGAAGCAGCCAACTTT TCTGACAAAATGGATGTTATATTTGTGGCAGAAATGATTGAAAAATTTTGGAAGATTTACCAAGGAGGAAAAATCA GCTCACGTTTATTCAACATATTCACCCAATATTGCTCTGGAAGCTTATGTCATCAAGTCTACTGGCTTCACGGGG ATGACCTGTACCGTGTTCCAGAAAGTGGCAGCCTCTGATCGTACAGGACTTTCGGATTATGGGAGGCGGGATCCA GAGGGAAACCTGGATAAGCAGCTGAGCTTTAAGTGCAATGTTTCAAATACATTTTCGAGTCTGGCACTAAAGGTA TGTTACATTCTGCAATCATTTAAGACTATTTACAGT<u>TAA</u>ATTAGAATGCTCCAAATGTTCTGCTTCGCAAAATAA CCTTATTAAAAGATTTTTTTTTGCAGGAAGATAGGTATTATTGCTTTTTGCTACTGTTTTAAAGAAAACTAACCAG GAAGAACTGCATTACGACTTTCAAGGGCCCTAGGCATTTTTTGCCTTTGATTCCCTTTCTTCACATAAAAATATCA GAAATTACATTTTATAACTGCAGTGGTATAAATGCAAATATACTATTGTTACATGTGAAAAAATTTTATTTGACT TAAAAGTTTATTTATTTGTTTTTTTGCTCCTGATTTTAAGACAATAAGATGTTTTCATGGGCCCCTAAAAGTATC AGCAAAATGAAAGCATTTTTACTGATTTTTAAAATTGGTGCTTTAGATATATTTGACTACACTGTATTGAAGCAA ${\tt ATAGAGGAGGCACACTCCAGCACCCTAATGGAACCACATTTTTTTCACTTAGCTTTCTGTGGGCATGTGTAATT}$ AGTCATTTTAATGGCTGCATAATAACTGATCCAACAGGTGTTAGGTGTTCTGGTTTAGTGTGAGCACTCAATAAA TATTGAATGAATGAACGAAAAAAAAAAAAAAAA

FIGURE 158

MEPPGRRGRAQPPLLLPLSLLALLALLGGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGKVVCSSLELAQVLP PDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGAFWGLSSLKRLDLTNNRIGCLNADIFR GLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQTEYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPV TGVKQELLTCDPPLELPSFYMTPSHRQVVFEGDSLPFQCMASYIDQDMQVLWYQDGRIVETDESQGIFVEKNMIH NCSLIASALTISNIQAGSTGNWGCHVQTKRGNNTRTVDIVVLESSAQYCPPERVVNNKGDFRWPRTLAGITAYLQ CTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDDYSRCQYANDVTRVLYMFNQMPLNLTNAVATARQLLAYTVE AANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDVMVDIASNIMLADERVLWLAQREAKACSRIVQCLQRIATYR LAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCTVFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSL ALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

FIGURE 159

 $\tt GGGGAATCTGCAGTAGGTCTGCCGGCG\underline{ATG}GAGTGGTGGGCTAGCTCGCCGCTTCGGCTGCTGTTGTTC$ TCTTTGGAGAATTACGAACCATGTTCAAGTCAAAACTGCAGCTGCTACCATGGTGTCATAGAAGAGGGATCTAACT $\verb|CCTTTCCGAGGAGGCATCTCCAGGAAGATGATGGCAGGGGGGTAGTCAGGAGGGAAGCTAGGGGACCCACTATCAGATC| \\$ ACTAAGAACAGACTGTACCGGGAAAATGACTGCATGTTCCCCTCAAGGTGTAGTGGTGTTGAGCACTTTATTTTG GAAGTGATCGGGCGTCTCCCTGACATGGAGATGGTGATCAATGTACGAGATTATCCTCAGGTTCCTAAATGGATG GAGCCTGCCATCCCAGTCTTCTCCTTCAGTAAGACATCAGAGTACCATGATATCATGTATCCTGCTTGGACATTT TGGGAAGGGGGACCTGCTGTTTGGCCAATTTATCCTACAGGTCTTGGACGGTGGGACCTCTTCAGAGAAGATCTG GTAAGGTCAGCACAGTGGCCATGGAAAAAGAAAACTCTACAGCATATTTCCGAGGATCAAGGACAAGTCCA GAACGAGATCCTCTCATTCTTCTGTCTCGGAAAAACCCAAAACTTGTTGATGCAGAATACACCAAAAACCAGGCC TGGAAATCTATGAAAGATACCTTAGGAAAGCCAGCTGCTAAGGATGTCCATCTTGTGGATCACTGCAAATACAAG CATGTTGGTGATGAGTGGCTAGAATTCTTCTATCCACAGCTGAAGCCATGGGTTCACTATATCCCAGTCAAAACA GATCTCTCCAATGTCCAAGAGCTGTTACAATTTGTAAAAGCAAATGATGATGTAGCTCAAGAGATTGCTGAAAGG GGAAGCCAGTTTATTAGGAACCATTTGCAGATGGATGACATCACCTGTTACTGGGAGAACCTCTTGAGTGAATAC TCTAAATTCCTGTCTTATAATGTAACGAGAAGGAAAGGTTATGATCAAATTATTCCCAAAATGTTGAAAACTGAA ATAAGCTTGGCTCCTATACCTTGAATATCTGCTATCAAGCCAAATACCTGGTTTTCCTTATCATGCTGCACCCAG AGCAACTCTTGAGAAAGATTTAAAATGTGTCTAATACACTGATATGAAGCAGTTCAACTTTTTGGATGAATAAGG ACCAGAAATCGTGAGATGTGGATTTTGAACCCAACTCTACCTTTCATTTTCTTAAGACCAATCACAGCTTGTGCC TCAGATCATCCACCTGTGTGAGTCCATCACTGTGAAATTGACTGTGTCCATGTGATGATGCCCTTTGTCCCATTA TTTGGAGCAGAAATTCGTCATTTGGAAGTAGTACAACTCATTGCTGGAATTGTGAAATTATTCAAGGCGTGATC TCTGTCACTTTATTTTAATGTAGGAAACCCTATGGGGTTTATGAAAAATACTTGGGGATCATTCTCTGAATGGTC TAAGGAAGCGGTAGCCATGCCATGCAATGATGTAGGAGTTCTCTTTTGTAAAACCATAAACTCTGTTACTCAGGA GGTTTCTATAATGCCACATAGAAAGAGGCCAATTGCATGAGTAATTATTGCAATTGGATTTCAGGTTCCCTTTTT GTGCCTTCATGCCCTACTTCTTAATGCCTCTCTAAAGCCAAA

FIGURE 160

MEWWASSPLRLWLLLFILPSAQGRQKESGSKWKVFIDQINRSLENYEPCSSQNCSCYHGVIEEDLTPFRGGISRK MMAEVVRRKLGTHYQITKNRLYRENDCMFPSRCSGVEHFILEVIGRLPDMEMVINVRDYPQVPKWMEPAIPVFSF SKTSEYHDIMYPAWTFWEGGPAVWPIYPTGLGRWDLFREDLVRSAAQWPWKKKNSTAYFRGSRTSPERDPLILLS RKNPKLVDAEYTKNQAWKSMKDTLGKPAAKDVHLVDHCKYKYLFNFRGVAASFRFKHLFLCGSLVFHVGDEWLEF FYPQLKPWVHYIPVKTDLSNVQELLQFVKANDDVAQEIAERGSQFIRNHLQMDDITCYWENLLSEYSKFLSYNVT RRKGYDQIIPKMLKTEL

162/615

FIGURE 161

CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAAGAAATTGCCAAA CAACAAAAACTTAAGCTTTAATTTCATCTGGAATTCCACAGTTTTCTTAGCTCCCTGGACCCGGTTGACCTGTT GGCTCTTCCCGCTGGCTCTATCACGTGGTGCTCTCCGACTACTCACCCCGAGTGTAAAGAACCTTCGGCTCG $\tt CGTGCTTCTGAGCTGCTGTGGA\underline{TG}GCCTCGGCTCTCTGGACTGTCCTTCCGAGTAGGATGTCACTGAGATCCCTC$ AAATGGAGCCTCCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTACCTCAGCCTTCCCCACTACAATGTG ATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTTACAGACAAGACTTTCACTTCACACTTCGA GAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATTCTGGTGACCTCCCACCCTTCAGATGTGAAAGCC ${\tt AGGCAGGCCATTAGAGTTACTTGGGGGTGAAAAAAGTCTTGGTGGGGGATATGAGGTTCTTACATTTTTCTTATTA}$ GGCCAAGAGGCTGAAAAGGAAGACAAAATGTTGGCATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATA ATCCGACAAGATTTTTTAGACACATATAATAACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTAACTGAG TTTTGCCCCAATGCCAAGTACGTAATGAAGACAGACACTGATGTTTTCATCAATACTGGCAATTTAGTGAAGTAT CTTTTAAACCTAAACCACTCAGAGAAGTTTTTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTT TACCAAAAAACCCATATTTCTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTAT ATAATGTCCAGAGATTTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTT AGAATCCATTTGGATGTCTGTCAACTGAGACGTGTGATTGCAGCCCATGGCTTTTCTTCCAAGGAGATCATCACT TTTTGGCAGGTCATGCTAAGGAACACCACATGCCATTATTAACTTCACATTCTACAAAAAGCCTAGAAGGACAGG ATACCTTGTGGAAAGTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTTACACT GAACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTCAGGCCCTTCAAA GATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGGACCAAACAATTTG GACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCACTAGGCTGTAAAAACAA AACAATGTAGAGTTTTATTTATTGAACAATGTAGTCACTTGAAGGTTTTGTGTATATCTTATGTGGATTACCAAT TTAAAAATATATGTAGTTCTGTCTCAAAAAACTTCTTCACTGAAGTTATACTGAACAAAATTTTACCTGTTTTTTG GTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATTATTATATAAAATTACTTCAACTTTGTGTT TTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAGTGAATCATTCTTTACATGCAAACATTTTCCAGT TACTTAACTGATCAGTTTATTATTGATACATCACTCCATTAATGTAAAGTCATAGGTCATTATTGCATATCAGTA ATCTCTTGGACTTTGTTAAATATTTTACTGTGGTAATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

FIGURE 162

MASALWTVLPSRMSLRSLKWSLLLLSLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHFTLREHSNCSH QNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLALSLEDEHLLYGDIIRQDFLD TYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLLNLNHSEKFFTGYPLIDNYSYRGFYQKTHIS YQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHVKPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVC QLRRVIAAHGFSSKEIITFWQVMLRNTTCHY

FIGURE 163

CATTTCTGAAACTAATCGTGTCAGAATTGACTTTGAAAAGCATTGCTTTTTACAGAAGTATATTAACTTTTTAGG AGTAATTTCTAGTTTGGATTGTAATATGAAATAATTTAAAAGGGCTTCGCTCATATATAGGAAAATCGCATATGG TCCTAGTATTAAATTCTTATTGCTTACTGATTTTTTTGAGTTAAGAGTTGTTATATGCTAGAATATGAGGATGTG AATATAAATAAGAGAAGAAAAAAGAATAAAGTAGATTGAGTCTCCAATTTTATGTAAGCTTCAGAAGAACTGGTT $\tt TGTTTACATGCAAGCTTATAGTTGAAATATTTTTCAGGAATTAC \underline{\textbf{ATG}} \\ \texttt{AATGACAGTCTTCGAACCAATGTGTTTG}$ TTCGATTTCAACCAGAGACTATAGCATGTGCTTGCATCTACCTTGCAGCTAGAGCACTTCAGATTCCGTTGCCAA CTCGTCCCCATTGGTTCTTCTTTTTGGTACTACAGAAGAGGAAATCCAGGAAATCTGCATAGAAACACTTAGGC $\verb|CCAAATTAAAAGCAAAGGGATTGAATCCGGATGGAACTCCAGCCCTTTCAACCCTGGGTGGATTTTCTCCAGCCT|\\$ CCAAGCCATCATCACCAAGAGAAGTAAAAGCTGAAGAGAAATCACCAATCTCCATTAATGTGAAGACAGTCAAAA AAGAACCTGAGGATAGACAACAGGCTTCCAAAAGCCCTTACAATGGTGTAAGAAAAGACAGCAAGAGAAGTAGAA ATAGCAGAAGTGCAAGTCGAGGTCAAGAACACGATCACGTTCTAGATCACATACTCCAAGAAGACACTATA ATAATAGGCGGAGTCGATCTGGAACATACAGCTCGAGATCAAGAAGCCGCGCCGCAGTCACAGTGAAAGCCCTC GAAGACATCATAATCATGGTTCTCCTCACCTTAAGGCCAAGCATACCAGAGATGATTTAAAAAGTTCAAACAGAC ATGGTCATAAAAGGAAAAATCTCGTTCTCGATCTCAGAGCAAGTCTCGGGATCACTCAGATGCAGCCAAGAAAC ACCATGGTGGCAGTCGCTCAGGACATGGCAGGCACAGGCGC<u>TGA</u>CTTTCTCTTCTTTGAGCCTGCATCAGTTCT CTTGAAACCCTCTAGGTCTCTAGAACACTGAGGACAGTTTCTTTTGAAAAGAACTATGTTAATTTTTTTGCACAT TAAAATGCCCTAGCAGTATCTAATTAAAAACCATGGTCAGGTTCAATTGTACTTTATTATAGTTGTGTATTGTTT ATTGCTATAAGAACTGGAGCGTGAATTCTGTAAAAATGTATCTTATTTTTATACAGATAAAATTGCAGACACTGT TCTATTTAAGTGGTTATTTGTTTAAATGATGGTGAATACTTTCTTAACACTGGTTTGTCTGCATGTGTAAAGATT

165/615

FIGURE 164

MNDSLRTNVFVRFQPETIACACIYLAARALQIPLPTRPHWFLLFGTTEEEIQEICIETLRLYTRKKPNYELLEKE VEKRKVALQEAKLKAKGLNPDGTPALSTLGGFSPASKPSSPREVKAEEKSPISINVKTVKKEPEDRQQASKSPYN GVRKDSKRSRNSRSASRSRSRSRSRSRSRSHTPRRHYNNRRSRSGTYSSRSRSRSRSHSESPRRHHNHGSPHLKAKH TRDDLKSSNRHGHKRKKSRSRSQSKSRDHSDAAKKHRHERGHHRDRRERSRSFERSHKSKHHGGSRSGHGRHRR

FIGURE 165

GGTTCCTACATCCTCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTA ATCTGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGCTT GGCTGGTTTGGGCCCTTGTAGCTGACAGAAGGTGGCCAGGGAGAATGCAGCACACTGCTCGGAGA**ATG**AAGGCGC TTCTGTTGCTGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATT CAGAACTCTGTAAAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTGTCCAG ACGGCTGTGCGAGCCTCACAGCCACGGCTCCCTCCCCAGAGGTTTCTGCAGCTGCCACCATCTCCTTAATGACAG CTGGCCGGAGCAACCGAACTAGGGCACGGCCCTTTGAGAGATCCACTATTAGAAGCAGATCATTTAAAAAAATAA ATCGAGCTTTGAGTGTTCTTCGAAGGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGAAA ATTCTGAAAACACCACTGCCCCTGAAGTCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCA TCAAGATCAATCGAGTAGATCCCAGTGAAAGCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAACCCCACTGGTCC TAAAGGTCAACGGGATGGACATCAGCAATGTCCCTCACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGG TGCTGTGGCTGACTGTGATGCGTGAACAGAAGTTCCGCAGCAGGAACAATGGACAGGCCCCGGATGCCTACAGAC CCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCCCCGAGGAGCAGCTTGGAATAAAACTGGTGCGCA AGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCGGTGTGGCATATCGACATGGTCAGCTTGAGG AGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCAGCCCAGAAAGTGCGGCTCATCTGATTC AGGCCAGTGAAAGACGTGTTCACCTCGTCGTGTCCCGCCAGGTTCGGCAGCGGAGCCCTGACATCTTTCAGGAAG CCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACACTCCCAAGCCCCTCCATCCTA CAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCTCGGCATGACCGTCGCAGGGG GAGCATCACATAGAGAATGGGATTTGCCTATCTATGTCATCAGTGTTGAGCCCGGAGGAGTCATAAGCAGAGATG GAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACAGAGGTCAGCCGGAGTGAGGCAG TGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGTCAAAGAGTATGAGCCCCAGGAAG TGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTCTGG GCTTCTGCATTGTAGGAGGTTATGAAGAATACAATGGAAACCAAACCTTTTTTCATCAAATCCATTGTTGAAGGAA CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAA TGATACATGCTTGCTTGGCAAGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAACTATTGTTTCTTGGCCTG GCACTTTTTTA<u>TAG</u>AATCAATGATGGGTCAGAGGAAAACAGAAAAATCACAAATAGGCTAAGAAGTTGAAACACT ATATTTATCTTGTCAGTTTTTATATTTAAAGAAAGAATACATTGTAAAAATGTCAGGAAAAGTATGATCATCTAA TGTATACCCCACTGAATTCAAGCTGATTTAAATTTAAAATTTGGTATATGCTGAAGTCTGCCAAGGGTACATTAT GGCCATTTTTAATTTACAGCTAAAATATTTTTTAAAATGCATTGCTGAGAAACGTTGCTTTCATCAAACAAGAAT AAATATTTTTCAGAAGTTAAA

FIGURE 166

MKALLLUVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPSPEVSAAATIS LMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFKKINRALSVLRRTKSGSAVANHADQ GRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLVGGSETPLVHIIQHIYRDGVIARDGRLLPG DIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVMREQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIK LVRKVDEPGVFIFNVLDGGVAYRHGQLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDI FQEAGWNSNGSWSPGPGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVI SRDGRIKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPPSDWSP SWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDGRIRCGDILLAVNGRS TSGMIHACLARLLKELKGRITLTIVSWPGTFL

FIGURE 167

FIGURE 168

 ${\tt MELIPTITSWRVLILVVALTQFWCGFLCRGFHLQNHELWLLIKREFGFYSKSQYRTWQKKLAEDSTWPPINRTDYSGDGKNGFYINGGYESHEQIPKRKLKLGGQPTEQHFWARL}$

FIGURE 169

 ${\tt CGCTCGGGCACCAGCCGCGGCAAGG}$ ${ t TCTCATCTCGTCCTTGCCAAGAGAGTTACACAGTCATTAATGAAGCCTGCCCTGGAGCAGAGTGGAATATCATGTG}$ ${ t TCGGGAGTGCTGTGAATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGGAAGTCGTGGGTTATACCATCCC$ GAGCTGCCGAAATGGCTCATGGGGGGGTACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAGTGCCG AGCAGGCTGGTACGGAGGAGACTGCATGCGATGTGGCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTTGTTGGA AAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGCTAAACCTGGGTTTGTCATCCAACTAAGATTTGT CATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAGGTTCGTGATGGAGACAACCGCGATGG CCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAGGATCCTCACTCCACGTCCT CTTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGCATGCTCCTCATC $\verb|CCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTGGCAGGCTATAC| \\$ TGGGCAGCGCTGTGAAAATCTCCTTGAAGAAAGAAACTGCTCAGACCCTGGGGGGCCCAGTCAATGGGTACCAGAA CTCCTATGTTCTTAGTGGCAATGAGAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTG CATAAAAGCCTGCCGAGAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGATGCAGGTTCAGTCAAG AGCCCTTCCCTTTGGAGATCTGCCCATGGGATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACC $\verb|CTTCTACCGCCGGCCTGGGCAGCAGGAGGACATGTCTGAGGACTGGGAAGTGGAGTGGGCGGCACCATCCTG| \\$ CCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGGGAAGGTCACCATGATCAAGAC AGCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATGAGAAGACCATCCAGAGCCTACA GATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCTCCT GGAGTCCCACATCACTGTGGCTGGCAGATGTCCTGGCAGACGTGAGGAGCCCTGGCTTCAAGAACGACACT GCGCTCTGGGGTGGTCAGTGTGGTGGACTCGCTGCTGTGTGAGGAGCATGAGGACCATGGCATCCCAGTGAG TGTCACTGATAACATGTTCTGTGCCAGCTGGGAACCCACTGCCCCTTCTGATATCTGCACTGCAGAGACAGGAGG CTATGATAAAACATGCAGCCACAGGCTCTCCACTGCCTTCACCAAGGTGCTGCCTTTTAAAGACTGGATTGAAAG AAATATGAAA<u>TGA</u>ACCATGCTCATGCACTCCTTGAGAAGTGTTTCTGTATATCCGTCTGTACGTGTGTCATTGCG ${\tt TGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGGCTGTGCCAGGGCTTCTGACTTCAGGGACAAA}$ ACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGATGCCGCGTCCACTACTAGGACAGCCAATTGGAA GATGCCAGGGCTTGCAAGAAGTTACTTCTTCAAAGAAGACCATATACAAAACCTCTCCACTCCACTGACCTGGT GGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTT TGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCCCAGGGCAGCAGAGCTGGGATGTGGTGCATGCCTTT GTGTACATGGCCACAGTACAGTCTGGTCCTTTTCCTTCCCCATCTCTTGTACACATTTTAATAAAATAAGGGTTG

171/615

FIGURE 170

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVGYTIPCCRNEENE CDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQVLRAPKGQILLESYPLNAHC EWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQIIKRVCGNERPAPIQSIGSSLHVLFHSDGSKN FDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKCACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLI NGRHAKIGTVVSFFCNNSYVLSGNEKRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLY SAAFSKQKLQSAPTKKPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPSCIPICGKIE NITAPKTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAHCVTDLGKVTMIKTADLKVVLG KFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASRDLSTSFQESHITVAG WNVLADVRSPGFKNDTLRSGVVSVVDSLLCEEQHEDHGIPVSVTDNMFCASWEPTAPSDICTAETGGIAAVSFPG RASPEPRWHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWIERNMK

FIGURE 171

CACCACCATCACAACCACCACGACGTCATCTTCGGGCCTGGGGTCCCCCATGATCGTGGGGTCCCCTCGGGCCCT GACACAGCCCCTGGGTCTCCTTCGCCTGCTGCAGCTGGTGTCTACCTGCGTGGCCTTCTCGCTGGTGGCTAGCGT ${\tt GGGCGCCTGGACGGGGTCCATGGGCAACTGGTCCATGTTCACCTGGTGCTTCTCCGTGACCCTGATCAT}$ $\tt CCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTCCCCCTGTCTTGGCGCAACTTCCCCATCACCTTCGCCTG$ CTATGCGGCCCTCTTCTGCCTCTCGGCCTCCATCATCTACCCCACCACCTATGTCCAGTTCCTGTCCCACGGCCG TTCGCGGGACCACGCCATCGCCACCTTCTTCTCCTGCATCGCGTGTGTGGCCTACGCCACCGAAGTGGCCTG GACCCGGGCCCGGCCGAGATCACTGGCTATATGGCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTT $\tt CGTTGCCTGCATCATCTTCGCGTTCATCAGCGACCCCAACCTGTACCAGCACCAGCCGGCCCTGGAGTGGTGCGT$ GGCGGTGTACGCCATCTGCTTCATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGGGAGTGCACCAACGTGCT CCATGCCTACTACGTGTGTGCCTGGGACCGCCGACTGGCTGTGGCCATCCTGACGGCCATCAACCTACTGGCGTA $\tt TGTGGCTGACCTGGTCTGCCCACCTGGTTTTTGTCAAGGTC\underline{TAA}GACTCTCCCAAGAGGCTCCCGTTCCC$ TCTCCAACCTCTTTGTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTTTCCTCCGCCTTTCCTCTGTTTTC GAGTGCAGTGGTGCGATCTCAGCTCACTGCAACCCCCGCCTCCTGGGTTCAAGCGATTCTCCTCCCCCAGCCTCC CAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTTCTCTTTTTCCACTCTTTTTTTCTCATC ${\tt GAGACTTCTTTCTCTCCTTGCCTCCACCCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTTGCAGCCGTCC}$ GTGTGTGTGTGTGTTTTGGGGGGTGGGGGGGTGGGTAGCTGGGGATTGGGCCCTCTTTCTCCCAGTGGAGAA GCGGGAGGCATTAAGCACCGACCCTGGGTCCCTAGGCCCCGCCTGGCACTCAGCCTTGCCAGAGATTGGCTCCAG AATTTTTGCCAGGCTTACAGAACACCCACTGCCTAGAGGCCATCTTAAAGGAAGCAGGGGCTGGATGCCTTTCAT CCCAACTATTCTCTGTGGTATGAAAAAG

FIGURE 172

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727
<subunit 1 of 1, 322 aa, 1 stop
<MW: 35274, pI: 8.57, NX(S/T): 1</pre>

MPVTVTRTTITTTTSSSGLGSPMIVGSPRALTQPLGLLRLLQLVSTCVAFSLVASVGAWTGSMGNWSMFTWCFC FSVTLIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTYVQFLSHGRSRDHAIAATFFSCIACVA YATEVAWTRARPGEITGYMATVPGLLKVLETFVACIIFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNL GECTNVLPIPFPSFLSGLALLSVLLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILT AINLLAYVADLVHSAHLVFVKV

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-255 and 294-312

N-glycosylation site. amino acids 66-69

Glycosaminoglycan attachment site. amino acids 18-21

FIGURE 173

TTGAACTCGTGACCTCATGATCCGCTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGACGC $\tt CTGGCCAGCCTATGCATTTTAAGAAATTATTCTGTATTAGGTGCTGTGCTAAACATTGGGCACTACAGTGACCA$ AAACAGACTGAATTCCCCAAGAGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAAGAGACCA TTATTACTCACTATGACTAAGGGTCACAAATGGGGTACGTTGATGGAGAGTGATTTGTTAAGAGACTACAGAGGG AGGACAGACTACCAAGAGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTTCAGCCCAAACTGGAAGAATGA AATAGCATGGGATTGGAGGAGGCTGGGGGAACACCACTTCTGCCGACCTGGGCAGGAGGCATTGAGGGCTTGAGA AAGGGCAATGGCAGTAGCAGTAGAAAGGACAGGGTAGGAGCAGGGACTTTGCAGGTGGAATCATTAGGTCTTATC AACAGATATGGGCAAGCAAAGCCAGGGGAGAATTGATGGTAATGCTGAGGTTTGGAGCCAGGCTAGATGGGACAG TGGTGGGTGATGCAAAGGAAAGAGGTCAGGAAGCAGGGCCAGACGTGGGGAGAAGGTGTGGGGGTTTGGTTTCCA TCTTGCCGAGTCTGCCGGAATGTGGATGGGAAGACCAAGAGGAGGAGCAAGGGGCAGAGGGGAAGGGAATCTTAA AGAAGTCCTGGATGCCACACTCTTCTTCCTTCCTCCTCTCCTCCTCAGAGGTCTCACTCGTGGTTCTTCAT TTCCTGCCCTGCCTCCATCTCCTCTGGGTGCTGGGAAAGTGGAGGATTAGCTGAAGTTTTGCTTCTCGGGGCCTG TCTGAATCTCCATTGCTTTCTGGGAGGACATAATTCACCTGTCCTAGCTTCTTATCATCTTACATTTCCCTGTAG GCGATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGATCGCTGCGCTGGCCAGGTCCTCCCTGCATGGT ${ t ATGCAGCCCCTCCC} { t ATG} { t TTTCTGGCCACTTTGTCCTTTCTCCTCCCGTTTGCACATCCCTTTGGAACTGTTTCCT$ ACATGGATCCTAACTACTGCCACCCTTCCACCTCCCTGCACCTGTGCTCCCTGGCCTGGTCCTTTACCAGGCTTC ${\tt TCCACCCTCCCCTATCTCCAGGTATTTCCCAGGTGGTGAAGGACCACGTGACCAAGCCTACCGCCATGGCCCAGG}$ GCCGAGTGGCTCACCTCATTGAGTGGAAGGGCTGGAGCAAGCCGAGTGACTCACCTGCTGCCCTGGAATCAGCCT TTTCCTCCTATTCAGACCTCAGCGAGGGCGAACAAGAGGCTCGCTTTGCAGCAGGAGTGGCTGAGCAGTTTGCCA TTGCTGGGGGAATGGACACAGACATGGCTGGGCAGCTGCCCCTGGGGCCGCACCTCCAGGACCTGTTCACCGGCC ACCGGTTCTCCCGGCCTGTGCGCCAGGGCTCCGTGGAGCCTGAGAGCGACTGCTCACAGACCGTGTCCCCAGACA GCGATGAGCTGCTTCTCGCCAAACTGCCCCCAGCCGGGAAAGTGCCTTCCGCAGCCTGGGCCCACTGGAGGCCC ACTGCCAGCCACTCTGCCCACCACTAACGGGCAGCTGGGAACGGCAGCGGCAAGCCTCTGACCTGGCCTCTTCTG ${\tt GGGTGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAACAG} {\color{red}{\bf TGA}} {\tt CCCACATCATGCCTGGCAGTGGCATGCA}$ t TCCCCGGCTGCTGCCAGGGGCAGAGCCTCTGTGCCCAAGTGTGGGCTCAAGGCTCCCAGCAGAGCTCCACAGCCTAGAGGGCTCCTGGGAGCGCTCGCTTCTCCGTTGTGTTTTTGCATGAAAGTGTTTGGAGAGGAGGCAGGGGCTG GGCTGGGGGCGCATGTCCTGCCCCCACTCCCGGGGCTTGCCGGGGGTTGCCCGGGGCCTCTGGGGCATGGCTACA AGGGGGTTGTGACTGGGCTGTGAGGGTGGGGTGGGAGGGGGCCCAGCAACCCCCCACCCTCCCCATGCCTCTC TCTTCTCTGCTTTTCTCTCACTTCCGAGTCCATGTGCAGTGCTTGATAGAATCACCCCCACCTGGAGGGGCTGG ATTCACCTCTCCATCGTCTCTAAATCTTCCTCTTTTTTCCTAAAGACAGAAGGTTTTTTGGTCTGTTTTTTCAGTC GGATCTTCTCTCTGGGAGGCTTTGGAATGATGAAAGCATGTACCCTCCACCCTTTTCCTGGCCCCCTAATGG ATTCACGCAGAGCTCTCTGAGCGGGAGGTGGAAGAAAGGATGGCTCTGGTTGCCACAGAGCTGGGACTTCATGTT GGCTCATTAGGTGTTTATTTTGTTCTATTTAAGAATTTGTTTTATTAAATTAATATAAAAATCTTTGTAAATCTC TAAAA

FIGURE 174

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCSLAWSFTRLLHPPL SPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSYSDLSEGEQEARFAAGVAEQFAIAEAK LRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLGPHLQDLFTGHRFSRPVRQGSVEPESDCSQTVSPDTLCSS LCSLEDGLLGSPARLASQLLGDELLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPL CPPLTGSWERQRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 175

TCAGTGCGACATTGTCACACTTAACCCATCTGTTTTCTCTAATGCACGACAGATTCCTTTCAGACAGGACAACTG TGATATTTCAGTTCCTGATTGTAAATACCTCCTAAGCCTGAAGCTTCTGTTACTAGCCATTGTGAGCTTCAGTTT $\textbf{AATACCAAAGAAGCCTACA} \underline{\textbf{ATG}} \texttt{TTGGCCTTAGCCAAAATTCTGTTGATTTCAACGTTGTTTATTCACTTCTATC}$ GGGGAGCCATGGAAAAGAAATCAAGACATAAACACAACACAGAACATTGCAGAAGTTTTTAAAACAATGGAAAA TAAACCTATTTCTTTGGAAAGTGAAGCAAACTTAAACTCAGATAAAGAAAATATAACCACCTCAAATCTCAAGGC GAGTCATTCCCCTCCTTTGAATCTACCCAACAACAGCCACGGAATAACAGATTTCTCCAGTAACTCATCAGCAGA AGTGCCTTGGAATGCACCTATAGCAGATGAAGATCTTTTGCCCATCTCAGCACATCCCAATGCTACACCTGCTCT GTCTTCAGAAAACTTCACTTGGTCTTTGGTCAATGACACCGTGAAAACTCCTGATAACAGTTCCATTACAGTTAG CATCCTCTCTCAGAACCAACTTCTCCATCTGTGACCCCCTTGATAGTGGAACCAAGTGGATGGCTTACCACAAA CAGTGATAGCTTCACTGGGTTTACCCCTTATCAAGAAAAAACAACTCTACAGCCTACCTTAAAATTCACCAATAA TTCAAAACTCTTTCCAAATACGTCAGATCCCCAAAAAGAAAATAGAAATACAGGAATAGTATTCGGGGCCATTTT AGGTGCTATTCTGGGTGTCTCATTGCTTACTCTTGTGGGCTACTTGTTGTGTGGAAAAAGGAAAACGGATTCATT TTCCCATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACAATGCACCGGAACCTTATGATGT GAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAATGATTCAGCCATGCCAGAAAGTGAAGAAAATGCACG TGATGGCATTCCTATGGATGACATACCTCCACTTCGTACTTCTGTA<u>TAG</u>AACTAACAGCAAAAAGGCGTTAAACA GCAAGTGTCATCTACATCCTAGCCTTTTGACAAATTCATCTTTCAAAAAGGTTACACAAAATTACTGTCACGTGGA TTTTGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCATCCAAAGGTTTTC TTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAATTTGTATTTTAGTAGTATTTTCTTAGT AGAAAATATTTGTGGAATCAGATAAAACTAAAAGATTTCACCATTACAGCCCTGCCTCATAACTAAATAATAAAA ATTATTCCACCAAAAATTCTAAAACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATT CAAGATTGCATTTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAGCTAAAAAAGAGA CATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGACAGACCTGTATTCTAGTACGTTATAATT TTCTAGATCAGCACACATGATCAGCCCACTGAGTTATGAAGCTGACAATGACTGCATTCAACGGGGCCATGGC AGGAAAGCTGACCCTACCCAGGAAAGTAATAGCTTCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTC TTAATATATCTTAGGCTTCAATTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGT

177/615

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732

><subunit 1 of 1, 334 aa, 1 stop ><MW: 36294, pI: 4.98, NX(S/T): 13

MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENITTSNLKASHSPPL NLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNAPIADEDLLPISAHPNATPALSSENFT ${\tt WSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVEPSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPN}$ TSDPQKENRNTGIVFGAILGAILGVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSS YYNPTLNDSAMPESEENARDGIPMDDIPPLRTSV

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222, 225-229, 298-302, 307-311

178/615

FIGURE 177

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTTCTTGCCT GCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAACA<u>ATG</u>GGCTTCAACCTGACTTTCCACCTTTCCTA TGCCATTCAAGAGATTCCTAAAGCAAAGGAGTTCATGGCTAATTTCCATAAGACCCTCATTTTGGGGAAGGGAAA AACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACTTGACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGG CCAGAGCAAGCTCATTTTCAAACCAGATCTCACTTTGGAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGG CCGGTATCGCCCTCAGGAATGTAAAGCTTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAGAAACA CCTGATGTACCTGCTGGAACATCTGCATCCCTTCCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCA CCAGGCTGAAGGTAAAAAGTTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAA TTGGGACTGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAGCA TCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTGGATATTTTGGGGGTGTTAC TGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGGATGGGGAGGCGAAGACGA GGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACGGATGAAGCTCTTACACCAAGTGTCACGAGT CTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAATTAGTATCTGTGGAACACAATCCTTTATATATCAACAT ATAATTTTGGCCTAGAGACTTCAAATAGTAGCACACATTAAGAACCTGTTACAGCTCATTGTTGAGCTGAATTTT TCCTTTTTGTATTTCTTAGCAGAGCTCCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAG TCATTTTGATCATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGA GGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAAAGGTACGAAGA TACAATACTGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGTGAGAAGGCGTCCACAAAA GAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGAGGTAGCAGGAGGGTGGAGTGTCGGC TGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGCCTTCAGGGGAGGACCTGCCCAGGTATGCCTTC CAGTGATGCCCACCAGAGAATACATTCTCTATTAGTTTTTAAAGAGTTTTTGTAAAATGATTTTGTACAAGTAGG ATATGAATTAGCAGTTTACAAGTTTACATATTAACTAATAATAATATGTCTATCAAATACCTCTGTAGTAAAAT GTGAAAAAGCAAAA

179/615

FIGURE 178

MGFNLTFHLSYKFRLLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTNEASTKKVELD NCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPHRNREKHLMYLLEHLHPFLQR QQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDCFIFHDVDLVPENDFNLYKCEEHPKHLVVGRNSTGYR LRYSGYFGGVTALSREQFFKVNGFSNNYWGWGGEDDDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAE RMKLLHQVSRVWRTDGLSSCSYKLVSVEHNPLYINITVDFWFGA

Important features:
Signal peptide:
amino acids 1-27

N-glycosylation sites. amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.
amino acids 191-202

180/615

FIGURE 179

ATTCCCTCCGCGTCCGCCCCACGCTTCTCCCGCTCCGGGCCCCGCAATGCCCCAGGCAGTGTGGTCGCGCCTCGG CCGCATCCTCTGGCTTGCCTGCCCTGGGCCCCGGCAGGGGTGGCCGCAGGCCTGTATGAACTCAATCT CACCACCGATAGCCCTGCCACCACGGGAGCGGTGGTGACCATCTCGGCCAGCCTGGTGGCCAAGGACAACGGCAG CCTGGCCCTGCCGCTGACGCCCACCTCTACCGCTTCCACTGGATCCACCCCGCTGGTGCTTACTGGCAAGAT TGCCGCTGACTGCTGGATGTGCCAGCCTGTGGCCAGGGGCTTTGTGGTCCTCCCCATCACAGAGTTCCTCGTGGG GGACCTTGTTGTCACCCAGAACACTTCCCTACCCTGGCCCAGCTCCTATCTCACTAAGACCGTCCTGAAAAGTCTC CCAGATGGTGACTGAAGACTCCGTGGTCTATTATAACTATTCCATCATCGGGACCTTCACCGTGAAGCTCAAAGT GGTGGCGGAGTGGGAAGAGGTGGAGCCGGATGCCACGAGGGCTGTGAAGCAGAAGACCGGGGACTTCTCCGCCTC GCTGAAGCTGCAGGAAACCCTTCGAGGCATCCAAGTGTTGGGGCCCACCCTAATTCAGACCTTCCAAAAGATGAC CGTGACCTTGAACTTCCTGGGGGAGCCCTCCTCTGACTGTGTGCTGGCGTCTCAAGCCTGAGTGCCTCCCGCTGGA GGAAGGGGAGTGCCACCCTGTGTCCGTGGCCAGCACAGCGTACAACCTGACCCACACCTTCAGGGACCCTGGGGA CTACTGCTTCAGCATCCGGGCCGAGAATATCATCAGCAAGACACATCAGTACCACAAGATCCAGGTGTGGCCCTC ${\tt CAGAATCCAGCCGGCTGTCTTTGCTTTCCCATGTGCTACACTTATCACTGTGATGTTGGCCTTCATCATGTACAT}$ GACCCTGCGGAATGCCACTCAGCAAAAGGACATGGTGGAGAACCCGGAGCCACCCTCTGGGGTCAGGTGCTGCTG ${\tt CCAGATGTGCTGTGGGCCTTTCTTGCTGGAGACTCCATCTGAGTACCTGGAAATTGTTCGTGAGAACCACGGGCT}$ GCTCCCGCCCTCTATAAGTCTGTCAAAACTTACACCGTG<u>TGA</u>GCACTCCCCCTCCCCACCCCATCTCAGTGTTA ACTGACTGCTGACTTGGAGTTTCCAGCAGGGTGGTGTGCACCACTGACCAGGAGGGGTTCATTTGCGTGGGGCTG ${\tt CAGCCATTCACCCATCTGTACAGTCCAGCCACTGACATAAGCCCCACTCGGTTACCACCCCCTTGACCCCCTACC}$ TTTGAAGAGGCTTCGTGCAGGACTTTGATGCTTGGGGTGTTCCGTGTTGACTCCTAGGTGGGCCTGGCTCCCAC TGCCCATTCCTCATATTGGCACATCTGCTGTCCATTGGGGGTTCTCAGTTTCCTCCCCCAGACAGCCCTACCT GTGCCAGAGAGCTAGAAAGAAGGTCATAAAGGGTTAAAAATCCATAACTAAAGGTTGTACACATAGATGGGCACA $\tt CGTCACATGGGCATTTCAGATGATCAGCTCTGTATCTGGTTAAGTCGGTTGCTGGGATGCACCCTGCACTAGAGC$ TGAGTGATTGCAGAGTGCTTTATAAATATCACCTTATTTTATCGAAACCCATCTGTGAAACTTTCACTGAGGAAA AGGCCTTGCAGCGGTAGAAGAGGTTGAGTCAAGGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGG ${\tt AGGCCGAGGCGGGTGGATCACGAGATCAGGAGATCGAGACCACCCTGGCTAACACGGTGAAACCCCGTCTCTACT}$ AAAAAATACAAAAAGTTAGCCGGGCGTGGTGGTGGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGA GAATGGTGCGAACCCGGGAGGCGGAGCTTGCAGTGAGCCCAGATGGCGCCACTGCACTCCAGCCTGAGTGACAGA GCGAGACTCTGTCTCCA

181/615

FIGURE 180

MAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPATTGAVVTISASLVAKDNGSLALPADAHLYRFHWI HTPLVLTGKMEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGFVVLPITEFLVGDLVVTQNTSLPWPSS YLTKTVLKVSFLLHDPSNFLKTALFLYSWDFGDGTQMVTEDSVVYYNYSIIGTFTVKLKVVAEWEEVEPDATRAV KQKTGDFSASLKLQETLRGIQVLGPTLIQTFQKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAYN LTHTFRDPGDYCFSIRAENIISKTHQYHKIQVWPSRIQPAVFAFPCATLITVMLAFIMYMTLRNATQQKDMVENP EPPSGVRCCCQMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV

Important features of the protein: Signal peptide: amino acids 1-24

Transmembrane domain: amino acids 339-362

N-glycosylation sites. amino acids 34-37, 58-61, 142-145, 197-200, 300-303 and 364-367

182/615

FIGURE 181

CCAGCGGCTGCGCAGAGGCGGGACCCCGGCCTCATGCACGGGAAGACTGTGCTGATCACCGGGGCGAACAGCGG CGCCGAGGAGGCGGCGGGTCAGCTCCGCCGCGAGCTCCGCCAGGCCGCGGAGTGCGGCCCAGAGCCTGGCGTCAG CGGGGTGGGCGAGCTCATAGTCCGGGAGCTGGACCTCGCCTCGCTGCGCTCGGTGCGCGCCTTCTGCCAGGAAAT GCTCCAGGAAGACCTAGGCTGGATGTCTTGATCAATAACGCAGGGATCTTCCAGTGCCCTTACATGAAGACTGA AGATGGGTTTGAGATGCAGTTCGGAGTGAACCATCTGGGGCACTTTCTACTCACCAATCTTCTCCTTGGACTCCT CAAAAGTTCAGCTCCCAGCAGGATTGTGGTAGTTTCTTCCAAACTTTATAAATACGGAGACATCAATTTTGATGA CTTGAACAGTGAACAAGCTATAATAAAAGCTTTTGTTATAGCCGGAGCAAACTGGCTAACATTCTTTTTACCAG GGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTGGTATTGTACGGACAAATCT GGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTCAATTTGGTGTCATGGGCTTTTTTCAAAACTCC AGTAGAAGGTGCCCAGACTTCCATTTATTTGGCCTCTTCACCTGAGGTAGAAGGAGTGTCAGGAAGATACTTTGG GGATTGTAAAGAGGAAGAACTGTTGCCCAAAGCTATGGATGAATCTGTTGCAAGAAAACTCTGGGATATCAGTGA AGTGATGGTTGGCCTGCTAAAATAGGAACAAGGAGTAAAAGAGCTGTTTATAAAACTGCATATCAGTTATATCTG TGATCAGGAATGGTGTGGATTGAGAACTTGTTACTTGAAGAAAAAGAATTTTGATATTGGAATAGCCTGCTAAGA GGTACATGTGGGTATTTTGGAGTTACTGAAAAATTATTTTTGGGATAAGAGAATTTCAGCAAAGATGTTTTAAAT ATATATAGTAAGTATAATGAATAATAAGTACAATGAAAAATACAATTATATTGTAAAATTATAACTGGGCAAGCA TGGATGACATATTAATATTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTTTTCAAGTATCTTTGAGT TTCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTTTGTGTGGAAATTATCTGCCTGGTGTGCA CACAAGTCTTACTTGGAATAAATTTACTGGTAC

183/615

FIGURE 182

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747</pre> <subunit 1 of 1, 336 aa, 1 stop
<MW: 36865, pI: 9.15, NX(S/T): 2</pre>

MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAELLRLGARVIMGCR DRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRSVRAFCQEMLQEEPRLDVLINNAGIFQCPY MKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSRIVVVSSKLYKYGDINFDDLNSEQSYNKSFCYSRSKLANI LFTRELARRLEGTNVTVNVLHPGIVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSG RYFGDCKEEELLPKAMDESVARKLWDISEVMVGLLK

Important features: Signal peptide: amino acids 1-21

Short-chain alcohol dehydrogenase family protein amino acids 134-144, 44-56 and 239-248

N-glycosylation site. amino acids 212-215 and 239-242

FIGURE 183

AACAGGATCTCCTCTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGCAGCCCGAAGATTC \mathtt{ACT} \mathtt{ATG} $\mathtt{GTGAAAATCGCCTTCAATACCCCTACCGCCGTGCAAAAGGAGGGGGGGCGCGCAAGACGTGGAGGCCCTC$ CTGAGCCGCACGGTCAGAACTCAGATACTGACCGGCAAGGAGCTCCGAGTTGCCACCCAGGAAAAAGAGGGCTCC TCTGGGAGATGTATGCTTACTCTTAGGCCTTTCATTCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATT TACAAGTACTTCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTTGATTCTGAGGATCCTGCAAAT TCCCTTCGTGGAGGAGGCCTAACTTCCTGCCTGTGACTGAGGAGGCTGACATTCGTGAGGATGACAACATTGCA ATCATTGATGTGCCTGTCCCCAGTTTCTCTGATAGTGACCCTGCAGCAATTATTCATGACTTTGAAAAGGGAATG ${\tt ACTGCTTACCTGGACTTGTTGCTGGGGAACTGCTATCTGATGCCCCCTCAATACTTCTATTGTTATGCCTCCAAAA}$ AATCTGGTAGAGCTCTTTGGCAAACTGGCGAGTGGCAGATATCTGCCTCAAACTTATGTGGTTCGAGAAGACCTA TTCCGCCTTCGTCGCAGAGACCTCTTGCTGGGTTTCAACAAACGTGCCATTGATAAATGCTGGAAGATTAGACAC $\tt TTCCCCAACGAATTTATTGTTGAGACCAAGATCTGTCAAGAG\underline{TAA}GAGGCAACAGATAGAGTGTCCTTGGTAATA$ AGAAGTCAGAGATTTACAATATGACTTTAACATTAAGGTTTATGGGATACTCAAGATATTTACTCATGCATTTAC TAATTGGCATTGCTTTTTTTGAAACTGAAATTACATGAGTTTCATTTTTTCTTTGCATTTATAGGGTTTAGAT TTTTTCTTTTCCTTTAAGTAAGCTCTTTATTCATCTTATGGTGGAGCAATTTTAAAATTTGAAATATTTAAAATT GTTTTTGAACTTTTTGTGTAAAATATATCAGATCTCAACATTGTTGGTTTCTTTTGTTTTTCATTTTGTACAACT TTCTTGAATTTAGAAATTACATCTTTGCAGTTCTGTTAGGTGCTCTGTAATTAACCTGACTTATATGTGAACAAT AAAAAAAAAAAAAAA

FIGURE 184

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828
<subunit 1 of 1, 263 aa, 1 stop
<MW: 29741, pI: 5.74, NX(S/T): 1
MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSFILAGLIVGGACIY
KYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDVPVPSFSDSDPAAIIHDFEKGMT
AYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASGRYLPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSF
RLRRDLLLGFNKRAIDKCWKIRHFPNEFIVETKICQE</pre>

Type II transmembrane domain: amino acids 53-75

N-glycosylation site. amino acids 166-170

Casein kinase II phosphorylation site. amino acids 35-39, 132-136, 134-138

N-myristoylation site. amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 63-74

FIGURE 185

FIGURE 186

 ${\tt MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHR} \\ {\tt SKCGMCCKT}$

188/615

FIGURE 187

 $\mathtt{CTGTCAGGAAGGACCATCTGAAGGCTGCAATTTGTTCTTAGGGAGGCAGGTGCTGGCCTGGCCTGGATCTTCCAC$ CATGTTCCTGTTGCTGCCTTTTGATAGCCTGATTGTCAACCTTCTGGGCATCTCCCTGACTGTCCTCTTCACCCT $\mathtt{CCTTCTCGTTTTCATCATAGTGCCAGCCATTTTTGGAGTCTCCTTTGGTATCCGCAAACTCTACATGAAAAGTCT$ GTTAAAAATCTTTGCGTGGGCTACCTTGAGAATGGAGCGAGGAGCCAAGGAGAAGAACCACCAGCTTTACAAGCC CTACACCAACGGAATCATTGCAAAGGATCCCACTTCACTAGAAGAAGATCAAAGAGATTCGTCGAAGTGGTAG TAGTAAGGCTCTGGACAACACTCCAGAGTTCGAGCTCTCTGACATTTTCTACTTTTGCCGGAAAGGAATGGAGAC CATTATGGATGAGGTGACAAAGAGATTCTCAGCAGAAGAACTGGAGTCCTGGAACCTGCTGAGCAGAACCAA ${\tt TTATAACTTCCAGTACATCAGCCTTCGGCTCACGGTCCTGTGGGGGGTTAGGAGTGCTGATTCGGTACTGCTTTCT}$ GCTGCCGCTCAGGATAGCACTGGCTTTCACAGGGATTAGCCTTCTGGTGGTGGGCACAACTGTGGTGGGATACTT GACAGCCATCATCACCATGACAGGGAAAACAGACCAAGAAATGGTGGCCATCTGTGTGGCCAATCATACCTC ACCGATCGATGTGATCATCTTGGCCAGCGATGGCTATTATGCCATGGTGGGTCAAGTGCACGGGGGACTCATGGG TGTGATTCAGAGAGCCATGGTGAAGGCCTGCCCACACGTCTGGTTTGAGCGCTCGGAAGTGAAGGATCGCCACCT CATCAATAATACATCGGTGATGATGTTCAAAAAGGGAAGTTTTGAAATTGGAGCCACAGTTTACCCTGTTGCTAT CAAGTATGACCCTCAATTTGGCGATGCCTTCTGGAACAGCAGCAAATACGGGATGGTGACGTACCTGCTGCGAAT GATGACCAGCTGGGCCATTGTCTGCAGCGTGTGGTACCTGCCTCCCATGACTAGAGAGGCAGATGAAGATGCTGT GAAGAGGGAGAAGGTGAAGGACACGTTCAAGGAGGAGCAGCAGAAGCTGTACAGCAAGATGATCGTGGGGAACCA TGGAGTTGCCGCCGCCGCCCCCACTGTTGTCCTTTCCAGACTCCAGGGCTCCCCGGGCTGCTCTGGATCCCAG GACTCCGGCTTTCGCCGAGCCGCAGCGGGATCCCTGTGCACCCGGCGCAGCCTACCCTTGGTGGTCTAAACGGAT GCTGCTGGGTGTTGCGACCCAGGACGAGATGCCTTGTTTCTTTTACAATAAGTCGTTGGAGGAATGCCATTAAAG TGAACTCCCCACCTTTGCACGCTGTGCGGGCTGAGTGGTTGGGGAGATGTGGCCATGGTCTTGTGCTAGAGATGG CGGTACAAGAGTCTGTTATGCAAGCCCGTGTGCCAGGGATGTGCTGGGGGGCGGCCACCCGCTCTCCAGGAAAGGC ACAGCTGAGGCACTGTGGCTTCGGCCTCAACATCGCCCCCAGCCTTGGAGCTCTGCAGACATGATAGGAAG GAAACTGTCATCTGCAGGGGCTTTCAGCAAAATGAAGGGTTAGATTTTTTATGCTGCTGCTGATGGGGTTACTAAA GGGAGGGGAAGAGGCCAGGTGGGCCGCTGACTGGGGCCATGGGGAGAACGTGTGTTCGTACTCCAGGCTAACCCTG AACTCCCCATGTGATGCGCGCTTTGTTGAATGTGTGTCTCGGTTTCCCCATCTGTAATATGAGTCGGGGGGAATG TGTTTCAAGTACAGGCCCACAAAACGGGGCACGGCAGGCCTGAGCTCAGAGCTGCACTGGGCTTTGGATTTG TTCTTGTGAGTAAATAAAACTGGCTGGTGAATGA

189/615

FIGURE 188

MFLLLPFDSLIVNLLGISLTVLFTLLLVFIIVPAIFGVSFGIRKLYMKSLLKIFAWATLRMERGAKEKNHQLYKP YTNGIIAKDPTSLEEEIKEIRRSGSSKALDNTPEFELSDIFYFCRKGMETIMDDEVTKRFSAEELESWNLLSRTN YNFQYISLRLTVLWGLGVLIRYCFLLPLRIALAFTGISLLVVGTTVVGYLPNGRFKEFMSKHVHLMCYRICVRAL TAIITYHDRENRPRNGGICVANHTSPIDVIILASDGYYAMVGQVHGGLMGVIQRAMVKACPHVWFERSEVKDRHL VAKRLTEHVQDKSKLPILIFPEGTCINNTSVMMFKKGSFEIGATVYPVAIKYDPQFGDAFWNSSKYGMVTYLLRM MTSWAIVCSVWYLPPMTREADEDAVQFANRVKSAIARQGGLVDLLWDGGLKREKVKDTFKEEQQKLYSKMIVGNH KDRSRS

FIGURE 189

FIGURE 190

MALAALMIALGSLGLHTWQAQAVPTILPLGLAPDTFDDTYVGCAEEMEEKAAPLLKEEMAHHALLRESWEAAQET WEDKRRGLTLPPGFKAQNGIAIMVYTNSSNTLYWELNQAVRTGGGSRELYMRHFPFKALHFYLIRALQLLRGSGG CSRGPGEVVFRGVGSLRFEPKRLGDSVRLGQFASSSLDKAVAHRFGEKRRGCVSAPGVQLGSQSEGASSLPPWKT LLLAPGEFQLSGVGP

192/615

FIGURE 191

FIGURE 192

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQPEGGTIIVTQN RNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSKPKVTMGLQSNKNGTCVTNLT CCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFICVARNPVSRNFSSPILARKLCEGAADDPDSS MVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPA NTVYSTVEIPKKMENPHSLLTMPDTPRLFAYENVI

FIGURE 193

GTTTCGGCGGCAGCCCCAGCCTCCTCATCCTTCTGTTGCTGCTGGGGGTCTGTGCCTGCTACCGACGCCCGC TCTGTGCCCCTGAAGGCCACGTTCCTGGAGGATGTGGCGGGTAGTGGGGGAGGCCGAGGGCTCGTCGGCCTCCTCC CCGAGCCTCCCGCCACCCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGGCCCCAGCCCACAACCCTGGGGGGC CCATCACCCCCCACCAACTTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGATGCTGATTGCTGTGGTG GGCTCCCTGGCCTTTCTGCTGATGTTCATCGTCTGTGCCGCGGTCATCACCCGGCAGAAGCAGAAGGCCTCGGCC TATTACCCATCGTCCTTCCCCAAGAAGAAGTACGTGGACCAGAGTGACCGGGCCGGGGCCCCCGGGCCTTCAGT GAGGTCCCCGACAGAGCCCCCGACAGCAGGCCCGAGGAAGCCCTGGATTCCTCCCGGCAGCTCCAGGCCGACATC TTGGCCGCCACCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGGCGGTGGGGACGGAGCCAGGATGGTGGAG GAGACACCAGAGGCGCAGGAGGAGCCGTGCTCAGGGGTCCTTGAGGGGGCTGTGGTGGCCGGTGAGGGCCAAGGG GAGCTGGAAGGGTCTCTTGTTAGCCCAGGAAGCCCAGGGACCAGTGGGTCCCCCCGAAAGCCCCTGTGCTTGC ${\tt AGCAGTGTCCACCCCAGTGTC} \underline{{\tt TAA}} {\tt CAGTCCTCCCGGGCTGCCAGCCCTGACTGTCGGGCCCCCAAGTGGTCACCT}$ $\verb|CCCCGTGTATGAAAAGGCCTTCAGCCCTGACTGCTTCCTGACACTCCCTTCGGCCTCCTGTGGTGCCAATCC| \\$ CAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGAGGAATCTTACCAAGTGCCATCA CCCTGTGACAGCCAGGATAAAACATCCCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGGCCCAAAC TACTTTTTAAAACAGCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAG $\tt GTGGCCCCTGTTTCTAGTTGGTCCAGGATTAGGGATGTGGGGTATAGGGCATTTAAATCCTCTCAAGCGCTCTC$ TCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGGGGCTGTGTTTGAGGGGACCTCCACCCTGGGGAAGTCCGA ${\tt GGGGCTGGGGAAGGGTTTCTGACGCCCAGCCTGGAGCAGGGGGGGCCCTGGCCACCCCTGTTGCTCACACATTGT}$ $\tt CTGGCAGCCTGTGTCCACAATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCTGCTTTAGGGAGGCTCT$ GGCAGGAGGTCCTCCCCCATCCCTCCATCTGGGGCTCCCCCAACCTCTGCACAGCTCTCCAGGTGCTGAGATA AAAAAAAAAAAAAAAA

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852

><subunit 1 of 1, 283 aa, 1 stop ><MW: 29191, pI: 4.52, NX(S/T): 0

 ${\tt MVSAAAPSLLILLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPALSPTSMGPQPTTLG}$ ${\tt GPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKASAYYPSSFPKKKYVDQSDRAGGPRAF}$ ${\tt SEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSPTRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVP}$ $\tt VETPEAQEEPCSGVLEGAVVAGEGQGELEGSLLLAQEAQGPVGPPESPCACSSVHPSV$

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

FIGURE 195

197/615

FIGURE 196

 $\label{thm:mkmlllclgltlvcvhaeeasstgrnfnvekingewhtiilasdkrekieehgnfrlfleqihvlenslvlkvhtvrdeecselsmvadktekageysvtydgfrtftipktdydnflmahlinekdgetfqlmglygrepdlssdikerfaqlceehgilreniidlsnanrclqare$

198/615

FIGURE 197

199/615

FIGURE 198

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPATTMSLTARKR ACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSLKNISDIHPESFNLQWFFNDS CAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGLLLVGILEVLFGLSQIVIGFLGCLCGVSKRR SQIV

FIGURE 199

201/615

FIGURE 200

 ${\tt MERVILALLLAGLIAGEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKYKSSQKQHSPVPEKAIPLITPGSATTC}$

202/615

FIGURE 201

 ${\tt AGACACTCTGGAGAGAGAGGGGGCTGGGCAGAG} {\tt ATG} {\tt AAGTTCCAGGGGCCCCTGGCCTCCTGCTGGCCTC}$ TGCCTGGGCAGTGGGGAGGCTGGCCCCCTGCAGAGCGGAGAGAAAGCACTGGGACAAATATTGGGGAGGCCCTT GGACATGGCCTGGGAGACGCCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGC GGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGATTGGC ${\tt AGACAGGCAGAAGATGTCATTCGACACGGAGCAGATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGT}$ GGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCCAAT GGAGCTCCCTGGGGTCAAGGAGGCAATGGAGGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAG CCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGA GGCTCCAGCAACTCTGGGGGAGGCAGCGGCTCACAGTCGGGCAGCAGTGGCAGCAGTGGCAGCAATGGTGACAACAAC GGCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGACATAAACCCGGGTGTGAAAAAGCCAGGGAAT GAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGGCTTCAGAGGACAGGGAGTTTCCAGCAACATGAGGGAAATA AGCAAAGAGGGCAATCGCCTCCTTGGAGGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGA GGAGGTGACGCTGTTGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTC TGGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTCGCATC $\texttt{CCG} \underline{\textbf{TGA}} \texttt{CCTCCAGACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACTCCCTCTTAAAACACCACCCTCTCA}$ AAAAAAAA

FIGURE 202

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212

><subunit 1 of 1, 440 aa, 1 stop ><MW: 42208, pI: 6.36, NX(S/T): 1

MKFOGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVSEALGQGT REAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVPGHSGAWETSGGHGI ${\tt FGSQGGLGGQGQGNPGGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGGPPNFGTNTQGAVAQPGYGSVRASNQ}$ RGDSGSESSWGSSTGSSSGNHGGSGGGNGHKPGCEKPGNEARGSGESGIQGFRGQGVSSNMREISKEGNRLLGGS GDNYRGQGSSWGSGGGDAVGGVNTVNSETSPGMFNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 387-393, 389-395, 395-401 322-328,

Cell attachment sequence.

amino acids 301-304

204/615

FIGURE 203

GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGG<u>ATG</u>TCGCTGCTGAGCCTGCCCTGGCTGGGCCTCA GACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGTTGTGGGCTCCTGGCTACTCGCCCGCATCCTGGCTT GGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGTGTTTCCCACAGCCCCCAAAACGGAACTGGTTTTGGG GTCACCTGGGCCTGATCACTCCTACAGAGGAGGGGCTTGAAGGACTCGACCCAGATGTCGGCCCACCTATTCCCAGG GCTTTACGGTATGGCTGGGTCCCATCATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCA CCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGGCCTCAGAGGGCAGCA GTCGTCTGGACATGTTTGAGCACATCAGCCTCATGACCTTGGACAGTCTACAGAAATGCATCTTCAGCTTTGACA GCCATTGTCAGGAGAGGCCCAGTGAATATATTGCCACCATCTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCC AGCATATCCTCCAGCACATGGACTTTCTGTATTACCTCTCCCATGACGGGCGGCGCTTCCACAGGGCCTGCCGCC TGGTGCATGACTTCACAGACGCTGTCATCCGGGAGCGGCGTCGCACCCTCCCCACTCAGGGTATTGATGATTTTT TCAAAGACAAAGCCAAGTCCAAGACTTTGGATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGG CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACGGCCAGTGGCC TCTCCTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCGACAGGAGGTGCAAGAGCTTC TGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCCTTCCTGACCATGTGCGTGAAGG AGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCGATGCTGCACCCAGGACATTGTTCTCCCAGATGGCC GAGTCATCCCCAAAGGCATTACCTGCCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATC CTGAGGTCTACGACCCCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCT CCGCAGGGCCCAGGAACTGCATCGGCCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGGCGTTGATGCTGC $\tt TTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCAGTGACTTTCTGACCCATCCACCTGTTTTTTTGCAGATT$ GTCATGAATAAAACGGTGCTGTCAAA

205/615

FIGURE 204

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGHLGLITPTEEGLK DSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIRFLKPWLGEGILLSGGDKWSRHRRM LTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHISLMTLDSLQKCIFSFDSHCQERPSEYIATI LELSALVEKRSQHILQHMDFLYYLSHDGRRFHRACRLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFID VLLLSKDEDGKALSDEDIRAEADTFMFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDL AQLPFLTMCVKESLRLHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYDPFRFDPENS KGRSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLNVGLQ

FIGURE 205

 ${\tt TCCCTTGACAGGTCTGGTGGCTGGTTCGGGGGTCTACTGAAGGCTGTCTTGATCAGGAAACTGAAGACTCTCTGCT}$ CGACACCTACCCTCAGCAGACGCCGGAGAGAAATGAGTAGCAACAAAGAGCAGCGGTCAGCAGTGTTCGTGATC CTCTTTGCCCTCATCACCATCCTCATCCTCTACAGCTCCAACAGTGCCAATGAGGTCTTCCATTACGGCTCCCTG AACAAGACCACCTACCGCGTCGTGGCCCATTCCAGTGTGTTCCGCGTGCTGAGGAGGCCCCAGGAGTTTGTCAAC $\tt CGGACCCTGAAACCGTGTTCATCTTCTGGGGGCCCCCGAGCAAGATGCAGAAGCCCCAGGGCAGCCTCGTGCGT$ $\tt GTGATCCAGCGAGCGGGCCTGGTGTTCCCCAACATGGAAGCATATGCCGTCTCTCCCGGCCGCATGCGGCAATTT$ GACGACCTCTTCCGGGGTGAGACGGGCAAGGACAGGGAGAAGTCTCATTCGTGGTTGAGCACAGGCTGGTTTACC CCCCGCCTCCAGCGCATGCCCTACCACTACTACGAGCCCAAGGGGCCGGACGAATGTGTCACCTACATCCAGAAT GAGCACAGTCGCAAGGGCAACCACCACCGCTTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCCAGCTGTAT AGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCCTGGGGAATCTGTTGGCGAATCAGGGATTTGGGAGT $\tt CTATGTGGTTAATCAGGGGTGTCTTTCTTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGGTATT$ TCTGAGTCAATCTGAGGCTAAGGACATGTCCTTTCCCATGAGGCCTTGGTTCAGAGCCCCAGGAATGGACCCCCC AATCACTCCCCACTCTGCTGGGATAATGGGGTCCTGTCCCAAGGAGCTGGGAACTTGGTGTTGCCCCCTCAATTT GACAAACCCTTCCCCCTCTCTGGGCACCCTTCTGCCCACACCAGTTTCCAGTGCGGAGTCTGAGACCCTTTCCAC $\verb|CTCCCCTACAAGTGCCCTCGGGTCTGTCCTCCCGTCTGGACCCTCCCAGCCACTATCCCTTGCTGGAAGGCTCA||$ GCTCTTTGGGGGGTCTGGGGTGACCTCCCCACCTCCTGGAAAACTTTAGGGTATTTTTGCGCAAACTCCTTCAGG GGCTCTTAAAGGGCCAGGCCTCCTTTTCTGCCCTCTAGCAGGGAGGTTTTCCAACTGTTGGAGGCGCCTTTGGGG $\tt CTGCCCTTTGTCTGGAGTCACTGGGGGCTTCCGAGGGTCTCCCTCGACCCTCTGTCGTCCTGGGATGGCTGTCG$ GTTTGTCTCCTGCTCTTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGAGGCTGGAGGGACCAGATG

207/615

FIGURE 206

 ${\tt MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPILGNKTLPSRCHQCV}$ IVSSSSHLLGTKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAHSSVFRVLRRPQEFVNRTPETVFIFWG PPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRMRQFDDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHV ${\tt HVYGMVPPNYCSQRPRLQRMPYHYYEPKGPDECVTYIQNEHSRKGNHRFITEKRVFSSWAQLYGITFSHPSWT}$

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 50-54

Casein kinase II phosphorylation site. amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

208/615

FIGURE 207

CGCC<u>ATG</u>GCAGGCATCAAAGCTTTGATTAGTTTGTCCTTTGGAGGAGCAATCGGACTGATGTTTTTGATGCTTGG ATGTGCCCTTCCAATATACAACAAATACTGGCCCCTCTTTGTTCTATTTTTTTACATCCTTTCACCTATTCCATA ${\tt AACGGGCATTGTCGTGTCAGCTTTTGGACTCCCTATTGTATTTGCCAGAGCACATCTGATTGAGTGGGGAGCTTG}$ TGCACTTGTTCTCACAGGAAACACAGTCATCTTTGCAACTATACTAGGCTTTTTCTTGGTCTTTGGAAGCAATGA CGACTTCAGCTGGCAGCAGTGGTGAAAAGAAATTACTGAACTATTGTCAAATGGACTTCCTGTCATTTGTTGGCC ATTCACGCACACAGGAGATGGGGCAGTTAATGCTGAATGGTATAGCAAGCCTCTTGGGGGGTATTTTAGGTGCTCC CTTCTCACTTTTATTGTAAGCATACTATTTTCACAGAGACTTGCTGAAGGATTAAAAGGATTTTCTCTTTTGGAA AAGCTTGACTGATTTCACACTTATCTATAGTATGCTTTTTTGTGGTGTCCTGCTGAATTTAAATATTTATGTGTTT TTCCTGTTAGGTTGATTTTTTTTGGAATCAATATGCAATGTTAAACACTTTTTTAATGTAATCATTTGCATTGGT TAGGAATTCAGAATTCCGCCGGCTCTATTACTGGTCAAGTACATCTTTTCTCTTAAAATTATTTAGCCTCCATTA TTACAAAAATTATAAAAATAAGTTTTCAGTCAGTCAGGATGACATCACTCCCAATGTTATGCAGACATACAGAC GGTTGGCATACGTTATAGACTGTATACTCAGTGCAAATATAGCTGCATTTATACCTCAGAGGGGCCAAGTGTTAA TGCCCATGCCCTCCGTTAAGGGTTGTTGGTTTTACTGGTAGACAGATGTTTTGTGGATTGAAAATTATTTTATGG AATTGCTACAGAGGGGTGCTTTTCTTCTCAATTGTTAGAAGAATTTATGTTAAACTTTAAGGTAAGGGTGTAAAA AAATTCCAGTTTTTGAATCCTGTTTCTATTTATAAGTGAAATTTGTGATCTCCTATCAACCTTTCATGTTTTACC CTGTTAAAATGGACATACATGGAACCACTACTGATGAGGGACAGTTGTATGTTTGCATCATATATGCCAGAAAAC CTTCCTCTGCTTCCTCCTTTTGACTTATTTGGTATGTTGTATATATTACATAAAATAACTTTTCAAATATAGTTT AGGCCTTGCCATGATTAACAAGTAACTTGTTAGTCTTACAGATAATTCATGCATTAACAGTTTAAGATTTAGACC ATGGTAATAGTAGTTCTTATTCTCTAAGGTTATATCATATGTAATTTAAAAGTATTTTTAAGACAAGTTTCCTGT ATACCTCTGAACTGTTTTGATTTTGAGTTCATCATGATAGATCTGCTGTTTCCTTATAAAAGGCATTTGTTGTGT GAGTTAATGCAAAGTAGCCAAGTCCAGCTATATAGCAGCTTCAGAAACATACCTGACCAAAAAAATTCCCAGTAAC CAGGCATGATCAATTTATAGTGGTCGTTTACATCTAATAATTATCAGGACTTTTTTCAGGAGTGGGTTATAAAAA GGAATAAATTTGGGATTTGTTCAGCTTTTTTACTAAAGATGCCTAAAGCCACAGGTTTTATTGCCTAACTTAAGC CATGACTTTTAGATATGAGATGACGGGAAGCAGGACGAAATATCGGCGTGTGGCTGGAGCCTTCCCACTGGAGGC TGAAAGTGGCTTGTGGTATTATAATGTTCAGATTTCAAGAGGAAGGTGCAGGTACACATGAGTTAGAGAGCTGGT ${\tt CCTATTTTCTGTTCTGGATGTCAGTGCAGTGCACTGCTACTGTTTTATCCACTTGGCCACAGACTTTTTCTAACA}$ GCTGCGTATTATTTCTATATACTAATTGCATTGGCAGCATTGTGTCTTTGACCTTGTATACTAGCTTGACATAGT GCTGTCTCTGATTTCTAGGCTAGTTACTTGAGATATGAATTTTCCATAGAATATGCACTGATACAACATTACCAT

FIGURE 208

 ${\tt MAGIKALISLSFGGAIGLMFLMLGCALPIYNKYWPLFVLFFYILSPIPYCIARRLVDDTDAMSNACKELAIFLTTGIVVSAFGLPIVFARAHLIEWGACALVLTGNTVIFATILGFFLVFGSNDDFSWQQW}$

210/615

FIGURE 209

GAGATTCCTGCACTATGCGTCCCAGCAGCTTGGGGCAAGGTGCTGGAGAAGTCTGGCTTCGCGTCGACTGCCGCA $\verb|CTTACTGGAATCAAGCCCTGCAGGAGCTGAGGCGCCTTCACCATGCGTGCCAGGGGGCCCCGGTGCTTAGGCCAT|\\$ ACCAGCAGCCTGAGGCTGGGACGCCATCTCTGAGGCCCAAGGCCACAGTGAAACTCACAGAAGCAACACAGCTGG $\verb|CCAGGCCCGGAGGGAATGAGGAAGCAAAGAAGAAGGCCTGGGAACATTGTTGGAAACCCTTCCAGGCCCTGTGCG|\\$ ATCTCTTTTTATATTATGCCGCTTTCAATCCAACGTTCTCACACTGGAAGAAGAGAGTTTCTAATCAGATGCAAC CAATATGATAGGGAACAGGTGCTGATGGGCCCAAGAGTGACAAGCATACACAACTACTTATTATCTGTAGAAGTT TTGCTTTGTTGATCTGAGCCTTCTATGAAAGTTTAAATATGTAACGCATTCATGAATTTCCAGTGTTCAGTAAAT

FIGURE 210

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59602
<subunit 1 of 1, 223 aa, 1 stop
<MW: 24581, pI: 9.28, NX(S/T): 0
MKFVPCLLLVTLSCLGTLGQAPRQKQGSTGEEFHFQTGGRDSCTMRPSSLGQGAGEVWLR
VDCRNTDQTYWCEYRGQPSMCQAFAADPKPYWNQALQELRRLHHACQGAPVLRPSVCREA
GPQAHMQQVTSSLKGSPEPNQQPEAGTPSLRPKATVKLTEATQLGKDSMEELGKAKPTTR
PTAKPTQPGPRPGGNEEAKKKAWEHCWKPFQALCAFLISFFRG</pre>

Important features: Signal peptide: Amino acids: 1-19

N-myristoylation sites:

Amino acids: 38-44;51-57;194-200

DNA photolyases class 1 proteins:

Amino acids: 58-69

Tyrosine kinase phosphorylation site:

Amino acids: 64-71

N-myristoylation sites:

Amino acids: 38-44;51-57;194-200

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids: 4-15

212/615

FIGURE 211

FIGURE 212

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59603
<subunit 1 of 1, 197 aa, 1 stop
<MW: 20832, pI: 8.74, NX(S/T): 2
MGVLGRVLLWLQLCALTQAVSKLWVPNTDFDVAANWSQNRTPCAGGAVEFPADKMVSVLV
QEGHAVSDMLLPLDGELVLASGAGFGVSDVGSHLDCGAGEPAVFRDSDRFSWHDRTCGAL
GTRHLASSSWTPSACPAATTTSSFRLVPPSAWGSALALAPCVSAASRLWAGRSRATRTWL
FSWRPARAAYASTGRAR</pre>

Important features: Signal peptide: Amino acids 1-19

N-glycosylation site: Amino acids 35-39

Glycosaminoglycan attachment site: Amino acids 81-85

N-myristoylation sites: Amino acids 82-88;118-124;153-159

C-type lectin domain proteins: Amino acids 108-118

214/615

FIGURE 213

215/615

FIGURE 214

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPFARDAVKKCFAVCLA}$

216/615

FIGURE 215

GGATTTTTGTGATCCGCGATTCGCTCCCACGGGCGGGACCTTTGTAACTGCGGGAGGCCCAGGACAGGCCCACCC AAAAGGCAGTCACCCGCAGGGCCAAGGTGGCTCCCGCTGAGAGGATGAGCAAGTTCTTAAGGCACTTCACGGTCG AGCCACCACACCAGTCTCAGGCGAGGAAGGCAGAGCTGCAGCCCCTGACGTTGCCCCTGCCCCTGGCCCCG TCTGCTTGGTGGTTCTGGATGCCCTCCTGGTGCTTGCTGAGCTCATCCTGGACCTGAAGATCATCCAGCCCGACA AGAATAACTATGCTGCCATGGTATTCCACTACATGAGCATCACCATCTTGGTCTTTTTTATGATGGAGATCATCT $\verb|TTAAATTATTTGTCTTCCGCCTGAGTTCTTTCACCACAAGTTTGAGATCCTGGATGCCCGTCGTGGTGGTGGTCT|\\$ CATTCATCCTGGACATTGTCCTCCTGTTCCAGGAGCACCAGTTTGAGGCTCTGGGCCTGCTGATTCTGCTCCGGC TGTGGCGGGTGGCCCGGATCATCAATGGGATTATCATCTCAGTTAAGACACGTTCAGAACGGCAACTCTTAAGGT **GATGAGTTTGCTGTATCAACCTGTAAGGAGAAGCTCTCTCCCGGATGGCTATGGGAATGAAAGAATCCGACTTCTA** ATGTTCACTGGGCTGGTGTTACGACAGAGAACCTGACAGTCACTGGCCAGTTATCACTTCAGATTACAAATCACA CAGAGCATCTGCCTGTTTTCAATCACAAGAGAACCAAAATCTATAAAGATATTCTGAAAATATGACAGAA

FIGURE 216

MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEQPPPTPVSGEEGRAAAPDVA PAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVVLDALLVLAELILDLKIIQPDKNNYAAMVFHYMSITILVFF MMEIIFKLFVFRLSSFTTSLRSWMPVVVVVSFILDIVLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSE RQLLRLKQMNVQLAAKIQHLEFSCSEKPLD

FIGURE 217

 ${\tt GGAAGGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCC} \underline{{\tt ATG}} {\tt GCTTCCCTGGGG}$ ATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCTGGGAACATTGGGGAGGATGGAATCCTGAGC CATGAGTTCAAAGAAGGCAAAGATGAGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCT GATCAAGTGATAGTTGGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGT TATATCATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTTCAGCATGCCGGAAGTG AATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTTCCCCCAGCCCACAGTGGTC TGGGCATCCCAAGTTGACCAGGGAGCCAACTTCTCGGAAGTCTCCAATACCAGCTTTGAGCTGAACTCTGAGAAT GTGACCATGAAGGTTGTGTCTGTGCTCTACAATGTTACGATCAACAACACATACTCCTGTATGATTGAAAATGAC ATTGCCAAAGCAACAGGGGATATCAAAGTGACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTGCTAAAC TCAAAGGCTTCTCTGTGTGTCTCTTTCTTTGCCATCAGCTGGGCACTTCTGCCTCTCAGCCCTTACCTGATG $\tt CTAAAA\underline{TAA} \tt TGTGCCTTGGCCACAAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCAC$ CACCAGATATGACCTAGTTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTGAGCAAACAAG GAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGAGTGATAAGTAAAATGCACGTGGAGACAAGT GCATCCCCAGATCTCAGGGACCTCCCCCTGCCTGTCACCTGGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTG TCTCTGAATTTTTAGTTATATGTGCTGTAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCA CATCTTATATTCCACAAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAG GGGCGGCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCTTGGCTTCTCTTC CCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGTCGGGGACACCGATTT AAAAAAA

FIGURE 218

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLSDIVIQWLKEG VLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKCYIITSKGKGNANLEYKTGAF SMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGANFSEVSNTSFELNSENVTMKVVSVLYNVTINNTYSC MIENDIAKATGDIKVTESEIKRRSHLQLLNSKASLCVSSFFAISWALLPLSPYLMLK

220/615

FIGURE 219

 $\texttt{GAATTTGTAGAAGACAGCGGCGTTGCC} \underline{\textbf{ATG}} \texttt{GCGGCGTCTCTGGGGGCAGGTGTTGGCTCTGGTGGTGGCCGCT}$ CAGCAGTTGCTACAGGAGATGAAGACCCTCTTCTTGAATACTGAGTACCTGATGCCCTTTCTCCTCAACCAGTGT GGATCCCTTCTCTATTACCTCACCTTGGCATCGACAGATCTGACCCTGGCTGTGCCCATCTGTAACTCTCTGGCT ATCATCTTCACACTGATTGTTGGGAAGGCCCTTGGAGAAGATATTGGTGGAAAACGTAAGTTAGACTACTGCGAG AGGACACGGCCTTTCCCATCCTGCCCTTTCCTCTGCAGCTGTTTTGCTTCCTTGTGGCCATCAGAGTTCCCTTC $\texttt{CCCTGGACAGTCTGGAGAAAGACAGAGGCTGGGGTTTGGGAT} \underline{\textbf{TGA}} \\ \texttt{AGACCCGATCTGAGCCCTTCCTCCA}$ ${\tt GCCCTGTACCAGCTCCTACTGGCATGGCTGAGCTCAGACCCTCCTGATTTCTGCCTATTATCCCAGGAGCAGTTG}$ $\verb|CTGGCATGGTGCTCACCGTGATAGGAATTTCACTCTGCATCACAAGCTCAGTGAGTAAGACCCAGGGGCAACAGT|\\$ CTACCCTTTGAGTGGGCCGAACCCACTTCCAGCTCTGCTGCCTCCAGGAAGCCCCTGGGCCATGAAGTGCTGGCA TGGATCACAATAAGAGAACAAGAGTGAAAGAGTTTTGTAACCTTCAAGTGCTGTTCAGCTGCGGGGATTTAGCAC AGGAGACTCTACGCTCACCCTCAGCAACCTTTCTGCCCCAGCAGCTCTCTTCCTGCTAACATCTCAGGCTCCCAG $\verb|CCCAGCCACCATTACTGTGGCCTGATCTGGACTATCATGGTGGCAGGTTCCATGGACTGCAGAACTCCAGCTGCA|\\$ CTGAATGAGGGGTGGAACCGAGGGAAGAAGGTGCGTCGGAGTGGCAGATGCAGGAAATGAGCTGTCTATTAGCCT TGCCTGCCCCACCCATGAGGTAGGCAGAAATCCTCACTGCCAGCCCCTCTTAAACAGGTAGAGAGCTGTGAGCCC

FIGURE 220

 ${\tt MAASLGQVLALVLVAALWGGTQPLLKRASAGLQRVHEPTWAQQLLQEMKTLFLNTEYLMPFLLNQCGSLLYYLTLASTDLTLAVPICNSLAIIFTLIVGKALGEDIGGKRKLDYCECGTQLCGSRHTCVSSFPEPISPEWVRTRPFPILPFPLQLFCFLVAIRVPFPWTVWRKTEAGVWD$

222/615

FIGURE 221

ATTATAGCAGGACCCTGCCAGGCTGTCGAAAAGATTCCGCAATAAAACTTTGCCAGTGGGAAGTACCTAGTGAAA $\tt CGGCCTAAGATGCCACTTCTTCTCATGTCCCAGGCTTGAGGCCCTGTGGTCCCCATCCTTGGGAGAAGTCAGCTC$ $\texttt{CAGCACC} \underline{\textbf{ATG}} \texttt{AAGGGCATCCTCGTTGCTGGTATCACTGCAGTGCTTGTTGCAGCTGTAGAATCTCTGAGCTGCGT}$ GCAGTGTAATTCATGGGAAAAATCCTGTGTCAACAGCATTGCCTCTGAATGTCCCTCACATGCCAACACCCAGCTG TATCAGCTCCTCAGCCAGCTCCTCTCTAGAGACACCAGTCAGATTATACCAGAATATGTTCTGCTCAGCGGAGAA $\tt CTGCAGTGAGGAGACACATTACAGCCTTCACTGTCCACGTGTCTGCTGAAGAACACTTTCATTTTGTAAGCCA$ GTGCTGCCAAGGAAAGGAATGCAGCAACACCAGCGATGCCCTGGACCCTCCCCTGAAGAACGTGTCCAGCAACGC AGAGTGCCCTGCTTGTTATGAATCTAATGGAACTTCCTGTCGTGGGAAGCCCTGGAAATGCTATGAAGAAGAACA $\tt GTGTGTCTTTCTAGTTGCAGAACTTAAGAATGACATTGAGTCTAAGAGTCTCGTGCTGAAAGGCTGTTCCAACGT$ CAGTAACGCCACCTGTCAGTTCCTGTCTGGTGAAAACAAGACTCTTGGAGGAGTCATCTTTCGAAAGTTTGAGTG $\texttt{CCTCTTGGCCCTTGCCAGCCTCCTTCTTCGGGGGACTGCTGCCC} \underline{\textbf{TGA}} \texttt{GGTCCTGGGGGCTGCACTTTGCCCAGCACCC}$ $\verb|CCATTTCTGCTTCTGAGGTCCAGAGCACCCCCTGCGGTGCTGACACCCTCTTTCCCTGCTCTGCCCCGTTTAA| \\$ $\tt CTGCCCAGTAAGTGGGAGTCACAGGTCTCCAGGCAATGCCGACAGCTGCCTTGTTCTTCATTATTAAAGCACTGG$ TTCATTCACTGCCAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 222

MKGILVAGITAVLVAAVESLSCVQCNSWEKSCVNSIASECPSHANTSCISSSASSSLETPVRLYQNMFCSAENCS EETHITAFTVHVSAEEHFHFVSQCCQGKECSNTSDALDPPLKNVSSNAECPACYESNGTSCRGKPWKCYEEEQCV FLVAELKNDIESKSLVLKGCSNVSNATCQFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKASLYLL ALASLLLRGLLP

FIGURE 223

TTTGGGGGCCCCATGACCCGCAGCTACCGGAGCACCGCCCGGACTGGTCTTCCCCGGAAGACAAGGATAATCCTA GTGTCCACCGGCTTTAGCCGGTCGTCCGCCATTAACGAGGAGGATGGGTCTTCAGAAGAGGGGGTTGTGATTAAT GCCGGAAAGGATAGCACCAGCAGAGAGCTTCCCAGTGCGACTCCCAATACAGCGGGGAGTTCCAGCACGAGGTTT ATAGCCAATAGTCAGGAGCCTGAAATCAGGCTGACTTCAAGCCTGCCGCGCTCCCCCGGGAGGTCTACTGAGGAC CTGCCAGGCTCGCAGGCCACCCTGAGCCAGTGGTCCACACCTGGGTCTACCCCGAGCCGGTGGCCGTCACCCTCA CCCACAGCCATGCCATCTCCTGAGGATCTGCGGCTGGTGCTGATGCCCTGGGGGCCCGTGGCACTGCCAAG TCGGGCACCATGAGCCGGAGCCGGTCTGGGAAGCTGCACGGCCTTTCCGGGCGCCTTCGAGTTGGGGCGCTGAGC CAGCTCCGCACGGAGCACAAGCCTTGCACCTATCAACAATGTCCCTGCAACCGACTTCGGGAAGAGTGCCCCCTG GACACAAGTCTCTGTACTGACACCAACTGTGCCTCTCAGAGCACCACCAGTACCAGGACCACCACTACCCCCTTC $\tt CCCACCATCCACCTCAGAAGCAGTCCCAGCCTGCCACCCGCCAGCCCTGCCCAGCCCTGGCTTTTTGGAAACGG$ GTCAGGATTGGCCTGGAGGATATTTGGAATAGCCTCTCTTCAGTGTTCACAGAGATGCAACCAATAGACAGAAAC $\mathtt{CCACTAGATATTTTTAGTACAGAAAAACAAAACTGGAAAACACAA}$

225/615

FIGURE 224

MVPAAGALLWVLLINLGPRAAGAQGLTQTPTEMQRVSLRFGGPMTRSYRSTARTGLPRKTRIILEDENDAMADAD RLAGPAAAELLAATVSTGFSRSSAINEEDGSSEEGVVINAGKDSTSRELPSATPNTAGSSSTRFIANSQEPEIRL TSSLPRSPGRSTEDLPGSQATLSQWSTPGSTPSRWPSPSPTAMPSPEDLRLVLMPWGPWHCHCKSGTMSRSRSGK LHGLSGRLRVGALSQLRTEHKPCTYQQCPCNRLREECPLDTSLCTDTNCASQSTTSTRTTTTPFPTIHLRSSPSL PPASPCPALAFWKRVRIGLEDIWNSLSSVFTEMQPIDRNQR

226/615

FIGURE 225

 $\texttt{CCCGGGTCGACCCACGCGTCCGGGGGAGAAAGG} \underline{\textbf{ATG}} \\ \texttt{GCCGGCCTGGCGGCGGGTTGGTCCTGCTAGCTGGGGGCAG} \\$ CGGCGCTGGCGAGCGGCTCCCAGGGCGACCGTGAGCCGGTGTACCGCGACTGCGTACTGCAGTGCGAAGAGCAGA GGGACGACTGTAAGTATGAGTGTATGTGGGTCACCGTTGGGCTCTACCTCCAGGAAGGTCACAAAGTGCCTCAGT TCCATGGCAAGTGGCCCTTCTCCCGGTTCCTGTTCTTTCAAGAGCCGGCATCGGCCGTGGCCTCGTTTCTCAATG GCCTGGCCAGCCTGGTGATGCTCTGCCGCTACCGCACCTTCGTGCCAGCCTCCTCCCCCATGTACCACACCTGTG TGGCCTTCGCCTGGGTGTCCCTCAATGCATGGTTCTGGTCCACAGTCTTCCACACCAGGGACACTGACCTCACAG AGAAAATGACTACTTCTGTGCCTCCACTGTCATCCTACACTCAATCTACCTGTGCTGCGTCAGGACCGTGGGGC TGCAGCACCCAGCTGTGGTCAGTGCCTTCCGGGCTCTCCTGCTGCTCATGCTGACCGTGCACGTCTCCTACCTGA GCCTCATCCGCTTCGACTATGGCTACAACCTGGTGGCCAACGTGGCTATTGGCCTGGTCAACGTGGTGGTGGC TGGCCTGGTGCCTGTGGAACCAGCGGCGGCTGCCTCACGTGCGCAAGTGCGTGGTGGTGGTCTTGCTGCTGCAGG GGCTGTCCCTGCTCGAGCTGCTTGACTTCCCACCGCTCTTCTGGGTCCTGGATGCCCATGCCATCTGGCACATCA GCACCATCCCTGTCCACGTCCTCTTTTTCAGCTTTCTGGAAGATGACAGCCTGTACCTGCTGAAGGAATCAGAGG ${\tt ACAAGTTCAAGCTGGAC} {\color{blue}{\textbf{TGA}}} {\color{blue}{\textbf{AGACCTTGGAGCGAGTCCCCAGTGGGGGATCCTGCCCCGCCCTGCTGGCCTC}}$ ${\tt CCTTCTCCCCTCAACCCTTGAGATGATTTTCTCTTTTCAACTTCTTGAACTTGGACATGAAGGATGTGGGCCCAG}$ AATCATGTGGCCAGCCCACCCCTGTTGGCCCTCACCAGCCTTGGAGTCTGTTCTAGGGAAGGCCTCCCAGCATC TGGGACTCGAGAGTGGGCAGCCCCTCTACCTCCTGGAGCTGAACTGGGGTGGAACTGAGTGTTCTTAGCTCTA CCCTCTGTCTACCTGGGAGACCAGGGACCACAGGCCTTAGGGATACAGGGGGTCCCCTTCTGTTACCACCCCCCA CCCTCCTCCAGGACACCACTAGGTGGTGCTGGATGCTTGTTCTTTGGCCAAGGTTCACGGCGATTCTCCCC ATGGGATCTTGAGGGACCAAGCTGCTGGGATTGGGAAGGAGTTTCACCCTGACCGTTGCCCTAGCCAGGTTCCCA $\tt TTGAGAGCCTGCCACCGTGTGTCGGGAGTGTGGGCCAGGCTGAGTGCATAGGTGACAGGGCCGTGAGCATGGGCCCAGGCCTGAGCATGGGCCCAGGCAGGC$ TGGGTGTGTGAGCTCAGGCCTAGGTGCGCAGTGTGGAGACGGGTGTTGTCGGGGAAGAGGTGTGGCTTCAAAG TGTGTGTGTGCAGGGGGTGGGTGTTAGCGTGGGTTAGGGGAACGTGTGCGCGCGTGCTGGTGGCATGTGAGA TGAGTGACTGCCGGTGAATGTGTCCACAGTTGAGAGGTTGGAGCAGGATGAGGGAATCCTGTCACCATCAATAAT CACTTGTGGAGCGCCAGCTCTGCCCAAGACGCCACCTGGGCGGACAGCCAGGAGCTCTCCATGGCCAGGCTGCCT GTGTGCATGTTCCCTGTCTGGTGCCCCTTTGCCCGCCTCCTGCAAACCTCACAGGGTCCCCACACAACAGTGCCC TCCAGAAGCAGCCCCTCGGAGGCAGAGGAAAAATGGGGATGGCTGGGGCTCTCTCCATCCTCTTTTCTCCT TGCCTTCGCATGGCTGGCCTTCCCCTCCAAAACCTCCATTCCCCTGCTGCCAGCCCCTTTGCCATAGCCTGATTT TGGGGAGGAGGAGGGCGATTTGAGGGAGAAGGGGAAAAGCTTATGGCTGGGTCTGGTTTCTTCCCTTCCCAG CCCAAAGGCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTGCTCTGCCCCTGACCCCTTGTCCCTCTTTGAGGGA GGGGAGCTATGCTAGGACTCCAACCTCAGGGACTCGGGTGGCCTGCGCTAGCTTCTTTTGATACTGAAAACTTTT

FIGURE 226

MAGLAARLVLLAGAAALASGSQGDREPVYRDCVLQCEEQNCSGGALNHFRSRQPIYMSLAGWTCRDDCKYECMWV TVGLYLQEGHKVPQFHGKWPFSRFLFFQEPASAVASFLNGLASLVMLCRYRTFVPASSPMYHTCVAFAWVSLNAW FWSTVFHTRDTDLTEKMDYFCASTVILHSIYLCCVRTVGLQHPAVVSAFRALLLLMLTVHVSYLSLIRFDYGYNL VANVAIGLVNVVWWLAWCLWNQRRLPHVRKCVVVVLLLQGLSLLELLDFPPLFWVLDAHAIWHISTIPVHVLFFS FLEDDSLYLLKESEDKFKLD

Important features:
Signal peptide:
amino acids 1-20

Transmembrane domains: amino acids 105-123, 138-156, 169-185, 193-209, 221-240, 256-272

N-glycosylation site. amino acids 40-44

N-myristoylation site. amino acids 43-49

CUB domain proteins profile. amino acids 285-302

Amiloride-sensitive sodium channels proteins. amino acids 162-186

228/615

FIGURE 227

TGGGGGTGACATTGCACCGCGCCCCTCGTGGGGTCGCGTTGCCACCCCACGCGGACTCCCCAGCTGGCGCCCCC TCATCCTGGTCGCAGGGGCATTTTTCTGGCTGGTCTCCCTGCTCCTGGCCTCTGTGGTCTGGTTCATCTTGGTCC ATGTGACCGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTGGTGCTGCTGTCTCTGTCCTTCTAC GAAGATCACCCATCTCCATCCGCCAGATGGCCTATGTTTCTGGTCTCTCCTTCGGTATCATCAGTGGTGTCTTCT CTGTTATCAATATTTTGGCTGATGCACTTGGGCCAGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCC TGACTTCAGCCTTTCTGACAGCAGCCATTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATGCCTGTG AGAGGAGACGGTACTGGGCCTTGGGGTGGTTGGGAGTCACCTACTGACATCGGGACTGACATTCCTGAACC ${\tt CCTGGTATGAGGCCAGCCTGCTGCCCATCTATGCAGTCACTGTTTCCATGGGGCCTTCATCACAGCTG}$ CACCTGCCTGTCCACTGCCCATGACTGAGCCCAGCCCCAGCCCGGGTCCATTGCCCACATTCTCTGTCTCTCT ${\tt CAGCCTGGGTTCAGCCAGTCAGTGACTGGTGGGTTTGAATCTGCACTTATCCCCACCACCTGGGGACCCCCTTGT}$ TGTGTCCAGGACTCCCCTGTGTCAGTGCTCTGCTCTCACCCTGCCCAAGACTCACCTCCCTTCCCCTCTGCAGG GGTTGCCAAGAAAAGGGACCTAGTTTAGCCATTGCCCTGGAGATGAAATTAATGGAGGCTCAAGGATAGATGAGC TCTGAGTTTCTCAGTACTCCCTCAAGACTGGACATCTTGGTCTTTTTCTCAGGCCTGAGGGGGAACCATTTTTGG AACCTCCTTGGGCTATATTTTCTCTCCTCGAGTTGCTCCTCATGGCTGGGCTCATTTCGGTCCCTTTCTCCTTGG TCCCAGACCTTGGGGGAAAGGAAGGAAGTGCATGTTTGGGAACTGGCATTACTGGAACTAATGGTTTTAACCTCC TTAACCACCAGCATCCCTCTCTCCCCAAGGTGAAGTGGAGGTGCTGTGGTGAGCTGGCCACTCCAGAGCTGCA TGTGGGAGGGCGGGGAGGTTTTCTATAAACTGTATCATTTTCTGCTGAGGGTGGAGTGTCCCATCCTTTTAATC **ААААААААААААААААААААААААААААААА**

229/615

FIGURE 228

MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDRSDARLQYGLLIFG AAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSPISIRQMAYVSGLSFGIISGVFSVINILADALGPGVVGIH GDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRRYWALGLVVGSHLLTSGLTFLNPWYEASLLPIYAVTVSMG LWAFITAGGSLRSIQRSLLCKD

230/615

FIGURE 229

CGGGAGGCTGGGTCGTCATGATCCGGACCCCATTGTCGGCCTCTGCCCATCGCCTGCTCCTCCCAGGCTCCCGCG GCCGACCCCGCGCAACATGCAGCCCACGGGCCGCGAGGGTTCCCGCGCGCTCAGCCGGCGGTATCTGCGGCGTC TGCTGCTCCTGCTGCTGCTGCTGCTGCGGCAGCCCGTAACCCGCGGGAGACCACGCCGGGCGCCCCCAGAG CCCTCTCCACGCTGGGCTCCCCCAGCCTCTTCACCACGCCGGGTGTCCCCAGCGCCCTCACTACCCCAGGCCTCA CTACGCCAGGCACCCCAAAACCCTGGACCTTCGGGGTCGCGCAGGCCCTGATGCGGAGTTTCCCACTCGTGG ACGGCCACATGACCTGCCCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGATGTTAACCTGCGAAATT ${\tt TCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGGCCTCGTGGGTGCCCAGTTCTGGTCAGCCTCCGTCT}$ CATGCCAGTCCCAGGACCAGACTGCCGTGCGCCTCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCT CCTACTCTGAACTCGAGCTTGTGACCTCAGCTGAAGGTCTGAACAGCTCTCAAAAGCTGGCCTCATTGGCG TGNAGGGTGGTCACTCACTGGACAGCCTCTCTGTGCTGCGCAGTTTCTATGTGCTGGGGGTGCGCTACCTGA ${\tt CACTTACCTTCACCTGCAGTACACCATGGGCAGAGAGTTCCACCAAGTTCAGACACCACATGTACACCAACGTCA}$ GCGGATTGACAAGCTTTGGTGAGAAAGTAGTAGAGGGGTTGAACCGCCTGGGCATGATGATAGATTTGTCCTATG CATCGGACACCTTGATAAGAAGGGTCCTGGAAGTGTCTCAGGCTCCTGTGATCTTCTCCCACTCAGCTGCCAGAG CTGTGTGTGACAATTTGTTGAATGTTCCCGATGATATCCTGCAGCTTCTGAAGAACGGTGGCATCGTGATGGTGA CACTGTCCATGGGGGTGCTGCAACCTGCTTGCTAACGTGTCCACTGTGGCAGATCACTTTGACCACATCA GGGCAGTCATTGGATCTGAGTTCATCGGGATTGGTGGAAATTATGACGGGACTGGCCGGTTCCCTCAGGGGCTGG AGGATGTGTCCACATACCCAGTCCTGATAGAGGAGTTGCTGAGTCGTASCTGGAGCGAGGAGAGAGCTTCAAGGTG TGGAGGCTGAGTTTCCATATGGGCAACTGAGCACATCCTGCCACTCCTGTGCCTCAGAATGGACACCAGG $\tt CTACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCCTGGAGGTCCTCAAATGCCTCCCCATACCTTG$ $\tt TTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTCTGC\underline{\textbf{TGA}}\\ CACAGTCGGTCCCCGCAGA$ GGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCTCCTAGTTCACTACACAAGCATATGCTGAGAATAAACATGTTA CACATGGAAAA

PCT/US01/06520 WO 01/68848

231/615

FIGURE 230

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817

><subunit 1 of 1, 487 aa, 1 stop, 2 unknown ><MW: 53569.32, pI: 7.68, NX(S/T): 5

MQPTGREGSRALSRRYLRRLLLLLLLLLLLLRQPVTRAETTPGAPRALSTLGSPSLFTTPGVPSALTTPGLTTPGTP KTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQTSLDRLRDGLVGAQFWSASVSCQSQD QTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSSQKLACLIGVXGGHSLDSSLSVLRSFYVLGVRYLTLTFTC STPWAESSTKFRHMYTNVSGLTSFGEKVVEELNRLGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNL LNVPDDILQLLKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDVSTY PVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVREESRAQSPVEAEFPYGQLSTSCHSHLVPQNGHQATHLEV TKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLC

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

232/615

FIGURE 231

233/615

FIGURE 232

 ${\tt MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTPWQEDPEPEDENLYEKNPDSHG} \cdot {\tt YDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAERLVKYREANGLPIMESNCFDPSKIQLPEDE}$

FIGURE 233

 $\texttt{GCGGCGGCT} \underline{\textbf{ATG}} \texttt{CCGCTTGCTCGTCCTGTTGCTCCTGGGGGCCCGGCGGTGCTTGCAGAACCCCCA}$ ${\tt ACGCGCTGGGATTCGGAGCTTCAGCGGGAAGGAGTGTCCCATTACAGGCTCTTTCCCAAAGCCCTGGGGCAGCTG}$ ATCTCCAAGTATTCTCTACGGGAGCTGCACCTGTCATTCACACAAGGCTTTTGGAGGACCCGATACTGGGGGCCCA $\verb|CCCTTCCTGCAGGCCCCATCAGGTGCAGAGCTGTGGGTTCCAAGACACTGTCACTGATGTGGATAAATCT|\\$ TGGAAGGAGCTCAGTAATGTCCTCTCAGGGATCTTCTGCGCCTCTCTCAACTTCATCGACTCCACCAACACAGTC ACTCCCACTGCCTCCTTCAAACCCCTGGGTCTGGCCAATGACACTGACCACTACTTTCTGCGCTATGCTGTGCTG TCTGTGCTGCTGAAGGCAGATCGCTTGTTCCACACCAGCTACCACTCCCAGGCAGTGCATATCCGCCCTGTTTGC AGAAATGCACGCTGTACTAGCATCTCCTGGGAGCTGAGGCAGACCCTGTCAGTTGTATTTGATGCCTTCATCACG GGGCAGGGAAAGAAAGACTGGTCCCTCTTCCGGATGTTCTCCCGAACCCTCACGGAGCCCTGCCCCCTGGCTTCA GAGAGCCGAGTCTATGTGGACATCACCACCTACAACCAGGACAACGAGACATTAGAGGTGCACCCCCCCGACC AACAACTCTCGAAACCTCAACATCCAGCTCAAGTGGAAGAGACCCCCAGAGAATGAGGCCCCCCAGTGCCCTTC $\tt CTGCATGCCCAGCGGTACGTGAGTGGCTATGGGCTGCAGAAGGGGGAGCTGAGCACACTGCTGTACAACACCCCAC$ $\tt CCATACCGGGCCTTCCCGGTGCTGCTGGACACCGTACCCTGGTATCTGCGGCTGTATGTGCACACCCTCACC$ ATCACCTCCAAGGGCAAGGAGAACAAACCAAGTTACATCCACTACCAGCCTGCCCAGGACCGGCTGCAACCCCAC AAGTGGACCGAGTACACGCCAGATCCTAACCATGGCTTCTATGTCAGCCCCATCTGTCCTCAGCGCCCTTGTGCCC AGCATGGTAGCAGCCAAGCCAGTGGACTGGGAAGAGAGTCCCCTCTTCAACAGCCTGTTCCCAGTCTCTGATGGC TCTAACTACTTTGTGCGGCTCTACACGGAGCCGCTGCTGGTGAACCTGCCGACACCGGACTTCAGCATGCCCTAC AACGTGATCTGCCTCACGTGCACTGTGGTGGCCGTGTGCTACGGCTCCTTCTACAATCTCCTCACCCGAACCTTC TGCCACTTGCTCTCCTCAGAGTTGGCTTTTGAACCAAAGTGCCCTGGACCAGGTCAGGGCCTACAGCTGTGTTGT CCAGTACAGGAGCCACGAGCCAAATGTGGCATTTGAATTTGAATTAACTTAGAAATTCATTTCCTCACCTGTAGT GGCCACCTCTATATTGAGGTGCTCAATAAGCAAAAGTGGTCGGTGGCTGCTGTATTGGACAGCACAGAAAAAGAT TTCCATCACCACAGAAAGGTCGGCTGGCAGCACTGGCCAAGGTGATGGGGTGTGCTACACAGTGTATGTCACTGT

235/615

FIGURE 234

MPLALLVLLLLGPGGWCLAEPPRDSLREELVITPLPSGDVAATFQFRTRWDSELQREGVSHYRLFPKALGQLISK YSLRELHLSFTQGFWRTRYWGPPFLQAPSGAELWVWFQDTVTDVDKSWKELSNVLSGIFCASLNFIDSTNTVTPT ASFKPLGLANDTDHYFLRYAVLPREVVCTENLTPWKKLLPCSSKAGLSVLLKADRLFHTSYHSQAVHIRPVCRNA RCTSISWELRQTLSVVFDAFITGQGKKDWSLFRMFSRTLTEPCPLASESRVYVDITTYNQDNETLEVHPPPTTTY QDVILGTRKTYAIYDLLDTAMINNSRNLNIQLKWKRPPENEAPPVPFLHAQRYVSGYGLQKGELSTLLYNTHPYR AFPVLLLDTVPWYLRLYVHTLTITSKGKENKPSYIHYQPAQDRLQPHLLEMLIQLPANSVTKVSIQFERALLKWT EYTPDPNHGFYVSPSVLSALVPSMVAAKPVDWEESPLFNSLFPVSDGSNYFVRLYTEPLLVNLPTPDFSMPYNVI CLTCTVVAVCYGSFYNLLTRTFHIEEPRTGGLAKRLANLIRRARGVPPL

236/615

FIGURE 235

TGACGTCAGAATCACCATGCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACAAGCACCAGGAGC CCCTCCGGGTAGCTACTACCCTGGACCCCCAATAGTGGAGGCAGTATGGTAGTGGGCTACCCCCTGGTGGTGG TTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACCAGCTGGTGGAGGGCCCTATGGACACCCCAATCCTGG GATGTTCCCCTCTGGAACTCCAGGAGGACCATATGGCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCC AAGTTCCTACGGTGCCCAGCAGCCTGGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTA CTCCTGGTTCCAGTCGGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAA CTGCAATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTTGACAAGACCAAGTCAGGCCG ${\tt CATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAGAACCTCTTCCAGCAGTATGACCG}$ GGACCGCTCGGGCTCCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCCAAATGGGCTACAACCTGAGCCCCCA GTTCACCCAGCTTCTGGTCTCCCGCTACTGCCCACGCTCTGCCAATCCTGCCATGCAGCTTGACCGCTTCATCCA GGTGTGCACCCAGCTGCAGGTGCTGACAGAGGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCT ${\tt CAGGGACCTTTCCTGGCTTCTTAGAGTGAGAGAGTATGTGGACATCTCTTTTTCCTGTCCCTCTAGAAGAAC}$ ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCAAATAGTGAGG ACCGGGGCTGAGGCCACACAGATAGGGGCCTGATGGAGGAGAGGATAGAAGTTGAATGTCCTGATGGCCATGAGC AGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGGAGTTAGTGTCCAGTCAGCTGAGCTCCACCC TGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACCGTTAGTACCTGTGTTCCCTCACCAGGCCATCCTGTCAAAC GCCACACCCATAAATCCTTGTGTTTAACTTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTG TCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

237/615

FIGURE 236

MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYGHPNPGMFPSG TPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSVDSDHSGYISMKELKQALVNCNWSS FNDETCLMMINMFDKTKSGRIDVYGFSALWKFIQQWKNLFQQYDRDRSGSISYTELQQALSQMGYNLSPQFTQLL VSRYCPRSANPAMQLDRFIQVCTQLQVLTEAFREKDTAVQGNIRLSFEDFVTMTASRML

Important features of the protein: Signal peptide: amino acids 1-19

N-glycosylation site. amino acids 147-150

Casein kinase II phosphorylation sites. amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites. amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

238/615

FIGURE 237

 $\verb|CTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAAGTTTCCCAAAACTTCGGGACCAACTTGCCTCAGCTCGGACA| \\$ ACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCAGCCCGCTCTGGACCCTAGGTCTAATGACTTGGCCAAG GGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGGCTTCCCACCTGCAGGAGGTTCTGCAGTGCAGAGGTGGCC TCCATCGTGGGGGCTGCCTGCCATGGATTCCTGGCCCCCTGAGGATCCTTGGCAGATGATGGCTGCTGCGGCTGA GGACCGCCTGGGGGAAGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGGTCCGGGCAGTGG $\verb|CCCTTTGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGACTCGGA|$ CATCCACAGGGTTCTGCCTGATCACCCCTGGGGTACCCTGAATCCCAGTGTGTCCTGGGGAGGTGGAGGCCCTGG GACTGGTTGGGGAACGAGGCCCATGCCACACCCTGAGGGAATCTGGGGTATCAATAATCAACCCCCAGGTACCAG TATTAATCGGTATCCAGGAGGCAGCTGGGGGGAATATTCATCTATACCCAGGTATCAATAACCCATTTCCTCCTGG AGTTCTCCGCCCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG ${\tt GGGC} \underline{{\tt TAG}} {\tt AGCACGATAGAGGGAAACCCAACATTGGGAGTTAGAGTCCTGCTCCCGCCCCTTGCTGTGGGGCTCA}$ ${\tt ATCCAGGCCCTGTTAACATGTTTCCAGCACTATCCCCACTTTTCAGTGCCTCCCCTGCTCATCTCCAATAAAATA}$ ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

239/615

FIGURE 238

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPALDPRSNDLARV PLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDRLGEALPEELSYLSSAAALAPGSGP LPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRPPWSLIHRVLPDHPWGTLNPSVSWGGGGPGT GWGTRPMPHPEGIWGINNQPPGTSWGNINRYPGGSWGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGV LRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein: Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites. amino acids 56-59, 155-158

N-myristoylation sites. amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

240/615

FIGURE 239

GGGCGTCTCCGGCTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGTGCCCGCGCTGTCGCCG ${\tt AGCTCTGCCCCAGGAGCCCAGGCTGCCCCGTGAGTCCCATAGTTGCTGCAGGAGTGGAGCC{\tt ATG}{\tt AGCTGCGTCCT}}$ ${\tt GGGTGGTGTCATCCCCTTGGGGCTGCTGTTCCTGGTCTGCGGATCCCAAGGCTACCTCCTGCCCAACGTCACTCT}$ CTTAGAGGAGCTGCTCAGCAAATACCAGCACAACGAGTCTCACTCCCGGGTCCGCAGAGCCATCCCCAGGGAGGA ${\tt CAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGGCCCAGGTGCAGCCTCCAACATGGAGTACAT}$ CCAGCTCTGTTCCCCAGCCAGTGCGTGTGATGGCTGGCTCAGGGTCTCCTCTGGCAGGGGAGGATCCCGGCTCTG TTCTGTTTGTTTGTTTTGAGACAGGGTCTCACTCTGCCACTGACGCTGGAGTGCAATGGCACAATCGTCA $\tt TGCCCTGAAACCT\underline{TAG} ACTCCCGGGGTTAAGCGATCCTGCTTCAGCCTCCCAAGTAGCTGGAACTACAGGCATGC$ ACCATGGTGCCCAGCTAGATTTTAAATATTTTGTGGAGATGGGGGTCTTGCTACGTTGCCCAGGCTGGTCTTGAA CTCCTAGGCTCAAGCAATCCTCCTGCCTCAGCCTCTCAAAGTGCTAGGATTATAGGCATGAGTCACCCTGTCTGG ATGTCACTCTTGGTAGCTCCACTGGGAACACAGCTCTCAGCCTTTCCCACCTGGAGGCAGAGTGGGGAGGGGCCC AGGGCTGGGCTTTGCTGATGCTGATCTCAGCTGTGCCACACGCTAGCTGCACCACCCTGACTTCTCCTTAGCCCG TGTGAGCCTCACTTTCCACTTGGAGAGTCCTTCCTCGCGTGGTTGCCATGACTGTGAGATAAGTCGAGGCTGTGA AGGGCCCGGCACAGACTGACCTGCCTCCCCAACCCCTAGGCTTTGCTAACCGGGAAAGGAGCTAACGGTGACAGA AGACAGCCAAGGTCAACCCTCCCGGGTGATTGTGATGGGTGTTCCAGGTGTGGTTGGGCGATGCTGCTACTTGAC CCCAAGCTCCAGTGTGGAAACTTCCTTCCTGGCTGGTTTTCCAGAACTACAGAGGAATGGACCACAGTCTTCCAG TTGAGCCTGGGAAGTCGAGGCTGCAGTGAGCTGAGATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGAC CCTGTCTCAAAAA

FIGURE 240

 ${\tt MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILMLHNKLRGQVQPQASNMEYMVSAGSGRRGWHRGWGLGHQPALFPSQLCSPASACDGWLRVSSGRGGSRLCSVLFVCFETGSHSATDAGVQWHNRHALKP$

Important features:
Signal peptide:
amino acids 1-22

N-glycosylation site. amino acids 27-31, 41-45

N-myristoylation site. amino acids 126-132, 140-146

Amidation site. amino acids 85-89

FIGURE 241

AAGGAGAGCCACCGGGACTTCAGTGTCTCCTCCATCCCAGGAGCGCAGTGGCCACT<u>ATG</u>GGGTCTGGGCTGCCC
CTTGTCCTCCTCTTGACCCTCCTTGGCAGCTCACATGGAACAGGGCCGGGTATGACTTTGCAACTGAAGCTGAAG
GAGTCTTTTCTGACAAATTCCTCCTATGAGTCCAGCTTCCTGGAATTGCTTGAAAAGCTCTGCCTCCTCCAC
CTCCCTTCAGGGACCAGCGTCACCCTCCACCATGCAAGATCTCAACACCATGTTGTCTGCAACACA<u>TGA</u>CAGCCA
TTGAAGCCTGTGTCCTTCTTGGCCCGGGCTTTTGGGCCGGGGATGCAGGAGGCCCCGACCCTGTCTTTCAG
CAGGCCCCCACCCTCCTGAGTGGCAATAAATAAAATTCGGTATGCTG

243/615

FIGURE 242

 ${\tt MGSGLPLVLLITLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTLHHARSQHHVVCNT}$

FIGURE 243

245/615

FIGURE 244

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59855
<subunit 1 of 1, 93 aa, 1 stop
<MW: 10161, pI: 7.39, NX(S/T): 0
MKLVTIFLLVTISLCSYSATAFLINKVPLPVDKLAPLPLDNILPFMDPLKLLLKTLGISV
EHLVEGLRKCVNELGPEASEAVKKLLEALSHLV</pre>

Important features: Signal peptide: Amino acids 1-18

FIGURE 245

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGATCCCTCTATGACT $\texttt{GCAATGTGAGGTGTCCGGCTTTGCTGGCCCAGCAAGCCTGATAAGC} \underline{\textbf{ATG}} \\ \texttt{AAGCTCTTATCTTTGGTGGCTGTGGT}$ $\tt CGGGTGTTTGCTGGTGCCCCCAGCTGAAGCCAACAAGAGTTCTGAA\overline{GAT}ATCCGGTGCAAATGCATCTGTCCACC$ GCTGGTGGACCCTCTGATCCGAAAGCCGGATGCATACACTGAGCAACTGCACAATGAGGAGGAGAATGAGGATGC ${\tt TCGCTCTATGGCAGCAGCTGCTGCATCCCTCGGGGGACCCCGAGCAAACACAGTCCTGGAGCGTGTGGAAGGTGC}$ CCAGCAGCGGTGGAAGCTGCAGGTGCAGGAGCAGCGGAAGACAGTCTTCGATCGGCACAAGATGCTCAGCTAGAT ${\tt GGGCTGGTGGTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGGGCTACTT}$ $\tt CTCCCTTCCCTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTTCTCCCTAACTTTAGAAATG$ TTGTACTTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCTGATCTCTGTTGTCTTCTTGGGGTCTTTGGGGTT GAAGGGAGGGGAAGGCAGACCAGAAGGGAATGGAGACATTCGAGGCGGCCTCAGGAGTGGATGCGATCTGTCTC ${\tt TCCTGGCTCCACTCTTGCCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTC}$ TTCAGGAACTCAGTGTCTGGGAGGAAAGCATGGCCCAGCATTCAGCATGTGTTCCTTTCTGCAGTGGTTCTTATC ACCACCTCCCTCCCAGCCCCGGCGCCTCAGCCCCAGCTCCAGCCCTGAGGACAGCTCTGATGGGAGAGC $\tt TGGGCCCCTGAGCCCACTGGGTCTTCAGGGTGCACTGGAAGCTGGTGTTCGCTGTCCCCTGTGCACTTCTCGCA$ CTGGGGCATGGAGTGCCCATGCATACTCTGCTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTC ${\tt ACACCACAGCCCCTGTACTTGGGTTGCCTCTTGTCCCTGAACTTCGTTGTACCAGTGCATGGAGAGAAATTTTG}$ TCCTCTTGTCTTAGAGTTGTGTAAATCAAGGAAGCCATCATTAAATTGTTTTATTTCTCTCA

247/615

FIGURE 246

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278
<subunit 1 of 1, 183 aa, 1 stop
<MW: 20574, pI: 6.60, NX(S/T): 3
MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPMPVPGHDVEAYCLL
CECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTEQLHNEEENEDARSMAAAAASLGGPRA
NTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS</pre>

Important features:
Signal peptide:
amino acids 1-20

Transmembrane domain: amino acids 90-112

N-glycosylation sites. amino acids 21-24, 38-41 and 47-50

248/615

FIGURE 247

249/615

FIGURE 248

MIGYYLILFLMWGSSTVFCVLLIFTIAEASFSVENECLVDLCLLRICYKLSGVPNQCRVPLPSDCSK

Important features: Signal peptide: amino acids 1-29

250/615

FIGURE 249

AGCGGGTCTCGCTTGGGTTCCGCTAATTTCTGTCCTGAGGCGTGAGACTGAGTTCATAGGGTCCTGGGTCCCCGA ACCAGGAAGGGTTGAGGGAACACAATCTGCAAGCCCCCGCGACCCAAGTGAGGGGCCCCGTGTTGGGGTCCTCCC CGGAGCAAGGATTCGTCCTGCTGCTCCTACTGGCCGCGGTGCTGATGGTGGAGAGCTCACAGATCGGCAGT TCGCGGGCCAAACTCAACTCCATCAAGTCCTCTCTGGGCGGGAGACGCCTGGTCAGGCCGCCAATCGATCTGCG GGCATGTACCAAGGACTGGCATTCGGCGGCAGTAAGAAGGGCAAAAACCTGGGGCAGGCCTACCCTTGTAGCAGT GATAAGGAGTGTGAAGTTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATCGGCCTGCATGGTGTGTCGGAGA AAAAAGAAGCGCTGCCACCGAGATGGCATGTGCCCCAGTACCCGCTGCAATAATGGCATCTGTATCCCAGTT ACTGAAAGCATCTTAACCCCTCACATCCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACCACGGTCATTAC TCAAACCATGACTTGGGATGGCAGAATCTAGGAAGACCACACACTAAGATGTCACATATAAAAGGGCATGAAGGA GACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTTGCTGTCCTCGTCATTTCTGGACCAAAATCTGCAAA CCAGTGCTCCATCAGGGGGAAGTCTGTACCAAACAACGCAAGAAGGGTTCTCATGGGCTGGAAATTTTCCAGCGT TGCGACTGTGCGAAGGGCCTGTCTTGCAAAGTATGGAAAGATGCCACCTACTCCTCCAAAGCCAGACTCCATGTG TGTCAGAAAATT**TGA**TCACCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGTATTTAATGCATTATAG CATGGTGGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAATATAGATGATCACAA AAAGGGAGAAAGAAAACATGAACTGAATAGATTAGAATGGGTGACAAATGCAGTGCAGCCAGTGTTTCCATTATG CAACTTGTCTATGTAAATAATGTACACATTTGTGGAAAATGCTATTATTAAGAGAACAAGCACACGTGGAAATT ACTGATGAGTAGCATGTGACTTTCCAAGAGTTTAGGTTGTGCTGGAGGAGAGGTTTCCTTCAGATTGCTGATTGC TTATACAAATAACCTACATGCCAGATTTCTATTCAACGTTAGAGTTTAACAAAATACTCCTAGAATAACTTGTTA TACAATAGGTTCTAAAAATAAAATTGCTAAACAAGAAATGAAAACATGGAGCATTGTTAATTTACAACAGAAAAT TTCAGATTCTACGGAATGACAGTATATCTCTCTTTATCCTATGTGATTCCTGCTCTGAATGCATTATATTTTCCA AACTATACCCATAAATTGTGACTAGTAAAATACTTACACAGAGCAGAATTTTCACAGATGGCAAAAAAATTTAAA GATGTCCAATATATGTGGGAAAAGAGCTAACAGAGAGATCATTATTTCTTAAAGATTGGCCATAACCTATATTTT GATAGAATTAGATTGGTAAATACATGTATTCATACATACTCTGTGGTAATAGAGACTTAAGCTGGATCTGTACTG CACTGGAGTAAGCAAGAAAATTGGGAAAACTTTTTCGTTTGTTCAGGTTTTTGGCAACACATAGATCATATGTCTG AGGCACAAGTTGGCTGTTCATCTTTGAAACCAGGGGATGCACAGTCTAAATGAATATCTGCATGGGATTTGCTAT TGCTGAGATCCTCAAATAATCTCAATTTCAGGAGGTTTCACAAAATGTACTCCTGAAGTAGACAGAGTAGTGAGG TTTCATTGCCCTCTATAAGCTTCTGACTAGCCAATGGCATCATCCAATTTTCTTCCCAAACCTCTGCAGCATCTG ACCTGCATATTGCTAATCTATAGACACCACAGTTTCTAAATTCTTTGAAACCACTTTACTACTTTTTTAAACTT ${\tt AACTCAGTTCTAAATACTTTGTCTGGAGCACAAAACAATAAAAGGTTATCTTATAGTCGTGACTTTAAACTTTTG}$ TAGACCACAATTCACTTTTTAGTTTTCTTTTACTTAAATCCCATCTGCAGTCTCAAATTTAAGTTCTCCCAGTAG AGATTGAGTTTGAGCCTGTATATCTATTAAAAATTTCAACTTCCCACATATATTTACTAAGATGATTAAGACTTA TTAATGAGATGTATTTTCTTATAGAGATATTTCTTACAGAAAGCTTTGTAGCAGAATATATTTGCAGCTATTGAC AAAAAAAAAAAAAAAAA

FIGURE 250

MAALMRSKDSSCCLLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLAFGGSKKGKNLGQA YPCSSDKECEVGRYCHSPHQGSSACMVCRRKKKRCHRDGMCCPSTRCNNGICIPVTESILTPHIPALDGTRHRDR NHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCLRSSDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGL EIFQRCDCAKGLSCKVWKDATYSSKARLHVCQKI

Signal peptide: amino acids 1-25

252/615

FIGURE 251

 ${\tt AGGCGTGAGCCACCGGCCAACATCACGTTTTTAAAAATTGATTTCTTCAAATTCATGGCAAATATTTCCC}$ ATTTTCATGTAGTATTTTCTAAGTTATATTTTAGTAATTCATATGTTTTAGATTATAGGTTTTAACATACTTGTG $\textbf{AAAATACTTG} \underline{\textbf{ATG}} \texttt{TGTTTTAAAGCCTTGGGCAGAAATTCTGTATTGTTGTGTTCTTTTATCCCCCTTTT}$ AAAGTCATCCGTCCTTGGCTCAGGATTTGGAGAGCTTGCACCACCAAAAATGGCAAACATCACCAGCTCCCAGAT TTTGGACCAGTTGAAAGCTCCGAGTTTGGGCCAGTTTACCACCACCCCAAGTACACAGCAGAATAGTACAAGTCA CCCTACAACTACTTCTTGGGACCTCAAGCCCCCAACATCCCAGTCCTCAGTCCTCAGTCATCTTGACTTCAA ATCTCAACCTGAGCCATCCCCAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCACTGT TCCTCCTCGTTTTGGAGTCCTTTCCTTCCCAGGCAAAACTTCGAGAATCAACACCTGGAGACAGTCCCTCCAC ACACATCAAACTTGCTAAGCGGCGGATACCCCCAGCTTCTAAGATCCCAGCTTCTGCAGTGGAAATGCCTGGTTC ${\tt AGCAGATGTCACAGGATTAAATGTGCAGTTTGGGGCTCTGGAATTTGGGTCAGAACCTTCTCTCTGAATTTGG}$ ATCAGCTCCAAGCAGTGAAAATAGTAATCAGATTCCCATCAGCTTGTATTCGAAGTCTTTAAGTGAGCCTTTGAA TACATCTTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACTTCCGTCATTACCTCCTGCAGTCTGAC AAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTTCCTCTTATGACCAGAGTTCTGTGCATAACAGGAT CCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCAGGAACCATCATGAATGGACATGGTGGTGGTCGAAG ${\tt GATAGCTCACGTGATGTGGAAAACACCAGTTGGTCAATGGCTCATTCGT} \underline{{\tt TAA}} {\tt AAAGCAGCCCTTTTGCTTTTTTG}$ $\tt TTTTTGGACCAGGTGTTGGCTGTGTTATTAGAAATGTCTTAACCACAGCAAGAAGGAGGTGGTCGTCATA$ TTCTTCTGCCCTAATCAGACTGCACCACAAGTGCAGCATACAGTATGCATTTTAAAGATGCTTGGGCCAGGCGGG GTGGCTGATGCCCATAATCCCAGTGCTTTGGGGGGCCCAAGGCAGATTGCCCCAAGCTCAGGAGTTTGAGACC TGTAATCCCAGCTACTTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGGCTACAAAGTGAGACTCCGT CTGAAAAGA

253/615

FIGURE 252

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTTPSTQQNSTSHPTT TTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPPPGLESFPSQAKLRESTPGDSPSTVNK LLQLPSTTIENISVSVHQPQPKHIKLAKRRIPPASKIPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAP SSENSNQIPISLYSKSLSEPLNTSLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQ SPVSSSESAPGTIMNGHGGGRSQQTLDSKYSSKLLLSWLVPTKQRKRIAHVMWKTPVGQWLIR

Signal peptide: amino acids 1-24

254/615

FIGURE 253

GGGCGCCCGCGTACTCACTAGCTGAGGTGGCAGTGGTTCCACCAAC<u>ATG</u>GAGCTCTCGCAGATGTCGGAGCTCAT GGGGCTGTCGGTGTTGCTTGGGCTGCTGGCCCTGATGGCGACGGCGGCGGTAGCCGCGGGGGTGGCTGCCGCGGG GGAGGAGAGGAGCGGCCGGCCTGCCAAAAAGCAAATGGATTTCCACCTGACAAATCTTCGGGATCCAAGAA TCTGAAGAGCCACAGCGGGAACATATCTTGCATGGACTTTAGCAGCAATGGCAAATACCTGGCTACCTGTGCAGA TGATCGCACCATCCGCATCTGGAGCACCAAGGACTTCCTGCAGCGAGAGCACCGCAGCATGAGAGCCCAACGTGGA CCTCCGTGTCTTCAAGATGACCAAGCGGGAGGATGGGGGCTACACCTTCACAGCCACCCCAGAGGACTTCCCTAA AAAGCACAAGGCGCCTGTCATCGACATTGGCATTGCTAACACAGGGAAGTTTATCATGACTGCCTCCAGTGACAC TGCTGTATCTCCCTGTGGCAGATTTGTAGCCTCGTGTGGCTTCACCCCAGATGTGAAGGTTTGGGAAGTCTGCTT TGGAAAGAAGGGGGAGTTCCAGGAGGTGGTGCGAGCCTTCGAACTAAAGGGCCACTCCGCGGCTGTGCACTCGTT TGCTTTCTCCAACGACTCACGGAGGATGGCTTCTGTCTCCAAGGATGGTACATGGAAACTGTGGGACACAGATGT GGAATACAAGAAGAAGCAGGACCCCTACTTGCTGAAGACAGGCCGCTTTGAAGAGGCGGCGGGTGCCGCCGTG $\tt CCGCCTGGCCTCTCCCCCAACGCCCAGGTCTTGGCCTTGGCCAGTGGCAGTAGTATTCATCTCTACAATACCCG$ GCGGGGGGAAAGGAGGAGTGCTTTGAGCGGGTCCATGGCGAGTGTATCGCCAACTTGTCCTTTGACATCACTGG CCGCTTTCTGGCCTCCTGTGGGGACCGGGCGGTGCGGTTTTCACAACACTCCTGGCCACCGAGCCATGGTGGA GGAGATGCAGGGCCACCTGAAGCGGGCCTCCAACGAGAGCACCCGCCAGAGGCTGCAGCAGCAGCTGACCCAGGC CCAAGAGACCCTGAAGAGCCTGGGTGCCCTGAAGAAGTGACTCTGGGAGGGCCCGGCGCAGAGGATTGAGGAGGA GGGATCTGGCCTCCTCATGGCACTGCTGCCATCTTTCCTCCCAGGTGGAAGCCTTTCAGAAGGAGTCTCCTGGTT TTCTTACTGGTGGCCCTGCTTCTTCCCATTGAAACTACTCTTGTCTACTTAGGTCTCTCTTCTTGTTGGCTGG ACCCAAAGAAGTTTGTAAATGTTCCAGAACAACCTAGAGAACACCTGAGTACTAAGCAGCAGTTTTGCAAGGATG GGAGACTGGGATAGCTTCCCATCACAGAACTGTGTTCCATCAAAAAGACACTAAGGGATTTCCTTCTGGGCCTCA GTTCTATTTGTAAGATGGAGAATAATCCTCTCTGTGAACTCCTTGCAAAGATGATATGAGGCTAAGAGAATATCA AGTCCCCAGGTCTGGAAGAAAAGTAGAAAAGAGTAGTACTATTGTCCAATGTCATGAAAGTGGTAAAAGTGGGAA ${\tt CCAGTGTGCTTTGAAACCAAATTAGAAACACATTCCTTGGGAAGGCAAAGTTTTCTGGGACTTGATCATACATTT}$ TATATGGTTGGGACTTCTCTCTCTCGGGAGATGATATCTTGTTTAAGGAGACCTCTTTTCAGTTCATCAAGTTCAT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

255/615

FIGURE 254

MELSQMSELMGLSVLLGLLALMATAAVARGWLRAGEERSGRPACQKANGFPPDKSSGSKKQKQYQRIRKEKPQQH NFTHRLLAAALKSHSGNISCMDFSSNGKYLATCADDRTIRIWSTKDFLQREHRSMRANVELDHATLVRFSPDCRA FIVWLANGDTLRVFKMTKREDGGYTFTATPEDFPKKHKAPVIDIGIANTGKFIMTASSDTTVLIWSLKGQVLSTI NTNQMNNTHAAVSPCGRFVASCGFTPDVKVWEVCFGKKGEFQEVVRAFELKGHSAAVHSFAFSNDSRRMASVSKD GTWKLWDTDVEYKKKQDPYLLKTGRFEEAAGAAPCRLALSPNAQVLALASGSSIHLYNTRRGEKEECFERVHGEC IANLSFDITGRFLASCGDRAVRLFHNTPGHRAMVEEMQGHLKRASNESTRQRLQQQLTQAQETLKSLGALKK

Important features:
Signal peptide:
amino acids 1-25

N-glycosylation site. amino acids 76-80, 92-96, 231-235, 289-293, 378-382, 421-425

Beta-transducin family Trp-Asp repeat protein. amino acids 30-47, 105-118, 107-119, 203-216, 205-217, 296-308

256/615

FIGURE 255

257/615

FIGURE 256

 ${\tt MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVVFSLLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI$

FIGURE 257

FIGURE 258

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFEATEKRFFFKN VSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEYIHFTPDLLLGKKQNEYGPPG KLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSAGISGRNRVYKCQGGSCLSRACRIDSTTKLYGKDCQF FPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAPSLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLL KISQRIVCLVLDKSGSMGGKDRLNRMNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGL PTYPLGGTSICSGIKYAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMS KITGGSHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMNDTVIIDSTVGKDTFFLITWNS LPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSRAANSSVPPITVNAKM NKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNGAGADSFKNDGVYSRYFTAYTENGRYS LKVRAHGGANTARLKLRPPLNRAAYIPGWVVNGEIEANPPRPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLP DQYPPSQITDLDATVHEDKILTWTAPGDNFDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKES FAFKPENISEENATHIFIAIKSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPTPDKSHNSGVNISTL VLSVIGSVVIVNFILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

260/615

FIGURE 259

CGCCGGAGGCAGCGGCGCGTGGCGCAGCGGCGACATCGCCGTTGTCTCAGAGGACGACTTTCAGCACAGTTCAA ACTCCACCTACGGAACCACAGCAGCAGTCTCCGAGCTGACCAGGAGGCACTGCTTGAGAAGCTGCTGGACCGCC GTCTACTGCCATGGAACTTCTTTATCACTGCCAAGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAG $\verb|CCACCGGGGGGGCCCTGAGGGCTCAGACTACTTTGAGAGCTACCTTGCCGTTGCCTCCACCGTGC|\\$ CCTCCATGCTGTGCCTGGTGGCCAACTTCCTGCTTGTCAACAGGGTTGCAGTCCACATCCGTGTCCTGGCCTCAC TGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAAGGTGGACACTTCCTCCTGGACCCGTGGTT TTTTTGCGGTCACCATTGTCTGCATGGTGATCCTCAGCGGTGCCTCCACTGTCTTCAGCAGCAGCATCTACGGCA TGACCGGCTCCTTTCCTATGAGGAACTCCCAAGCACTGATATCAGGAGGAGCCATGGGCGGGACGGTCAGCGCCG TGGCCTCATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGGCCACCA TCTTCCTCGTGCTCTGCATGGGACTCTACCTGCTGCTGTCCAGGCTGGAGTATGCCAGGTACTACATGAGGCCTG TTCTTGCGGCCCATGTGTTTTCTGGTGAAGAGGAGCTTCCCCAGGACTCCCTCAGTGCCCCTTCGGTGGCCTCCA GATTCATTGATTCCCACACCCCCTCTCCGCCCCATCCTGAAGAAGACGCCAGCCTGGGCTTCTGTGTCACCT ACGTCTTCATCACCAGCCTCATCTACCCCGCCGTCTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCT CACTGTGGACCACCAAGTTTTTCATCCCCCTCACTACCTTCCTCTGTACAACTTTGCTGACCTATGTGGCCGGC AGCTCACCGCCTGGATCCAGGTGCCAGGGCCCAACAGCAGGCGCTCCCAGGGTTCGTGCTCCTCCGGACCTGCC TCATCCCCCTCTTCGTGCTCTGTAACTACCAGCCCCGCGTCCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGT ACCCCGCACTCCTCAGCTCCTGCTGGGGCTCAGCAACGGCTACCTCAGCACCCTGGCCCTCCTCTACGGGCCTA AGATTGTGCCCAGGGAGCTGAGGCCACGGGAGTGGTGATGTCCTTTTATGTGTGCTTGGGCTTAACACTGG GCTCAGCCTGCTCTACCCTCCTGGTGCACCTCATC<u>TAG</u>AAGGGAGACACAAGGACATTGGTGCTTCAGAGCCTT TGAAGATGAGAAGAGTGCAGGAGGGCTGGGGGCCATGGAGGAAAGGCCTAAAGTTTCACTTGGGGACAGAGAG CAGAGCACACTCGGGCCTCATCCCTCCCAAGATGCCAGTGAGCCACGTCCATGCCCATTCCGTGCAAGGCAGATA TTCCAGTCATATTAACAGAACACTCCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGGTACTCCCTTCACA GCTGATGGTTAACATTCCACCTTCTTTCTAGCCCTTCAAAGATGCTGCCAGTGTTCGCCCTAGAGTTATTACAAA GCCAGTGCCAAAACCCAGCCATGGGCTCTTTGCAACCTCCCAGCTGCGCTCATTCCAGCTGACAGCGAGATGCAA GCAAATGCTCAGCTCTCCTTACCCTGAAGGGGTCTCCCTGGAATGGAAGTCCCCTGGCATGGTCAGTCCTCAGGC AAAGATGGGCCTTCCATGAATGCTTCATTCCAGAGGGACCAGAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCT GGCCTGGGTTTTCAAAAAAAAGGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTCTTTCA

261/615

FIGURE 260

MAVVSEDDFQHSSNSTYGTTSSSLRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFFSLGIGSLLPWNFFITAK EYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFLLVNRVAVHIRVLASLTVILAIFMVIT ALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSIYGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSD VRNSALAFFLTATIFLVLCMGLYLLLSRLEYARYYMRPVLAAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRP ILKKTASLGFCVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVPGPN SKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSSLLGLSNGYLSTLALLYGPKIVPRELAEATG VVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330, 448-472

FIGURE 261

CGGACGCGTGGGTGCTGGTGGGAAGGCCTAAAGAACTGGAAAGCCCACTCTCTTGGAACCACCACACCTGTTTA $AAGAACCTAAGCACCATTTAAAGCCACTGGAAATTTGTTGTCTAGTGGTTGTGGGTGAATAAAGGAGGGCAGA{\color{red} AT}$ GATGATTTCATCTCCATTAGCCTGTCTCTGGCTATGTTGGTGGGATGTTACGTGGCCGGAATCATTCCCTT GGCTGTTAATTTCTCAGAGGAACGACTGAAGCTGGTGACTGTTTTGGGTGCTGCCTTCTCTGTGGAACTGCTCT AACACATAATGTGATTGCATCAGACAAAGCAGCAGAAAAATCAGTTGTCCATGAACATGAGCACAGCCACGACCA CACACAGCTGCATGCCTATATTGGTGTTTCCCTCGTTCTGGGCTTCGTTTTCATGTTGCTGGTGGACCAGATTGG TAACTCCCATGTGCATTCTACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCCAAAATCACCACCACGCTGGG ${\tt TCTGGTTGTCCATGCTGCAGCTGATGGTGTTGCTTTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTCCAGTT}$ CTTAGAGCGGAATCGAATCAGAAAGCACTTGCTGGTCTTTGCATTGGCAGCACCAGTTATGTCCATGGTGACATA $\tt CTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTTCAGAGGTGAACGCCACGGGAGTGGCCATGCTTTTCTCTGC$ CGGGACATTTCTTTATGTTGCCACAGTACATGTCCTCCTGAGGTGGGCGGAATAGGGCACAGCCACAAGCCCGA TGCCACGGGAGGGAGAGGCCTCAGCCGCCTGGAAGTGGCAGCCCTGGTTCTGGGTTGCCTCATCCCTCTCATCCT $\tt GTCAGTAGGACACCAGCAT \underline{TAA} \tt ATGTTCAAGGTCCAGCCTTGGTCCAGGGCCGTTTGCCATCCAGTGAGAACAGC$ TAGACATCCCATTGTGTTATCTTTTAAAAGGCCCTTGACATTTTGCGTTTTAATATTTCTCTTAACCCTATTCTC ${\tt AGGGAAGATGGAATTTAGTTTTAAGGAAAAGAGGAGAACTTCATACTCACAATGAAATAGTGATTATGAAAATAC}$ AGTGTTCTGTAATTAAGCTATGTCTCTTTCTTCTTAGTTTAGAGGCTCTGCTACTTTATCCATTGATTTTTAACA TGGTTCCCACCATGTAAGACTGGTGCTTTAGCATCTATGCCACATGCGTTGATGGAAGGTCATAGCACCCACTCA CTTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAGGAAAATGATAGCAAGACACATTGAAAGCTC TCTTTATACTCAAAAGAGATATCCATTGAAAAGGGATGTCTAGAGGGATTTAAACAGCTCCTTTGGCACGTGCCT CTCTGAATCCAGCCTGCCATTCCATCAAATGGAGCAGGAGGAGGTGGGAGGAGCTTCTAAAGAGGTGACTGGTATT $\tt TTGTAGCATTCCTTGTCAAGTTCTCCTTTGCAGAATACCTGTCTCCACATTCCTAGAGAGGAGCCAAGTTCTAGT$ AGTTTCAGTTCTAGGCTTTCCTTCAAGAACAGTCAGATCACAAAGTGTCTTTGGAAATTAAGGGATATTAAATTT TAAGTGATTTTTGGATGGTTATTGATATCTTTGTAGTAGCTTTTTTTAAAAGACTACCAAAATGTATGGTTGTCC TCAGCTTTGGCGACACTGTGTCTTCTCACATAACCACCTGTAGCAAGATGGATCATAAATGAGAAGTGTTTGCCT ATTGATTTAAAGCTTATTGGAATCATGTCTCTTGTCTCTTCGTCTTTTCTTTGCTTTTCTTAACTTTTCCCTC TAGCCTCTCCTCGCCACAATTTGCTGCTTACTGCTGGTGTTAATATTTGTGTGGGATGAATTCTTATCAGGACAA CCACTTCTCGAACTGTAATAATGAAGATAATAATATCTTTATTCTTTATCCCCCTTCAAAGAAATTACCTTTGTG TCAAATGCCGCTTTGTTGAGCCCTTAAAATACCACCTCCTCATGTGTAAATTGACACAATCACTAATCTGGTAAT TTACACTAAGGGGGAACCAAGACTAGTTTCTTCAGGGCAGTGGACGTAGTAGTTTGTAAAAACGTTTTCTATGAC GCATAAGCTAGCATGCCTATGATTTATTTCCTTCATGAATTTGTCACTGGATCAGCAGCTGTGGAAATAAAGCTT GCATACAATTTTACTACCAAGAGAAGGTATAGTATGGAAAGTCCAAATGACTTCCTTGATTGGATGTTAACAGCT GACTGGTGTGAGACTTGAGGTTTCATCTAGTCCTTCAAAACTATATGGTTGCCTAGATTCTCTCTGGAAACTGAC TTTGTCAAATAAATAGCAGATTGTAGTGTCAAAAAAA

FIGURE 262

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHALYEDILEGKHHQAS ETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDQIGNSHVHSTDDPEAARSSNSKITTTL GLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHKAPAAFGLVSFLMHAGLERNRIRKHLLVFALAAPVMSMVT YLGLSKSSKEALSEVNATGVAMLFSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLI LSVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

264/615

FIGURE 263

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGGAAAGACCATACGTCCCCGGGCAGGGGTGACAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACGCCAAGGGTAATTTTGACCCAGAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATTTACTAGAGAGTGTCAACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGG TTGAGGATTGCCACCGGTTCTGGACGCTGGTTCCTGAATGATGGTTCGCCGGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTTTTTGCTGGTGCTCTCTGCTGTGCTATCTCTGTCCTGTACATGTTGCTGCACCCCAAAAGGTGACGAGGAGCAGCTGGCACTGCCCAGGGCCAACAGCCCCACGGGGAAG TGGCCTGCACCCCAAAAGGTGACGAGGAGCAGCTGGCACTGCCCCAGGGCCAACAGCCCCACCGGGAAG
GAGGGTTACCAGGCCTCCTTCAGGAGTGGGAGAGCAGCACCCCCAACGGCCCCAACGCGCAACTACGTGACAGCC
GCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGGAGTAGCAGCAGTACCAAG
CCAGCGATGCTGCTGGCCTGGGCTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTCCTGGCC
TTCCTGCACTCGCAGGTGGACAAGGCAGAGGTGAATGCTGGCGTCAAGCTGGCCACAGAGTATGCAGC
AGTGCCTTTCGATAGCTTTACTCTACAGAAGGTGTACCAGCTGGAGACTGGCCTTACCCGCCACCCCG
AGGAGAAGCCTGTGAGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATTGAATCAGCCTTTGGAGACC
CTGAACAATCCTGCAGGAGAACAGCCCCAATCACCGTCCTTCAAAAGGGGACCACAAACAGAAT
CTAACACCACTAATTTTTCCACCACTCATTCAACCCATCAAAAAGGGACCAAACACAAT AAAACA<u>TGA</u>ACTCCCAGAGAAGAATTGGGGGGACACTTTTTCCTTTTTGCAATTACTGAAAGTG GCTGCAACAGAAAAGACTTCCATAAAGGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAA AGCCTCCGATTTCTCTCTGTTGGGCTTTTTACAACAGAAATCAAAATCTCCGCTTTGCCTGCAAAAGT AACCCAGTTGCACCCTGTGAAGTGTCTGACAAAGGCAGAATGCTTGTGAGATTATAAGCCTAATGGTG

265/615

FIGURE 264

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWEEQHRNYVSSL KRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDKAEVNAGVKLATEYAAVPFDS FTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYE LTFKGDHKHEFKRLILFRPFSPIMKVKNEKLNMANTLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVY FGKEEINEVKGILENTSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNT QPGKKVFYPVLFSQYNPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDLDIKGWGGED VHLYRKYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHLRKQKQ KTSSKKT

266/615

FIGURE 265

 $\mathsf{GG} \underline{\mathsf{ATG}} \mathtt{CAGAAAGCCTCAGTGTTGCTCTTCCTGGCCTGGGTCTGCTTCTTCTACGCCTGGCATTGCCCTCTTCA$ TGCCATGGGGGAGCCAAGGGAAACCTGGGGCCTGCTGGATGGCTTCCCGATTTTCGCGGGTTGTTGTTGGTGCTGA TAGATGCTCTGCGATTTGACTTCGCCCAGCCCCAGCATTCACACGTGCCTAGAGAGCCTCCTGTCTCCCTACCCT TCCTGGGCAAACTAAGCTCCTTGCAGAGGATCCTGGAGATTCAGCCCCACCATGCCCGGCTCTACCGATCTCAGG TTGACCCTCCTACCACCATGCAGCGCCTCAAGGCCCTCACCACTGGCTCACCTTCATTATTGATGCTG GTAGTAACTTCGCCAGCCACGCCATAGTGGAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGGCGTGTAG TCTTCATGGGAGATGATACCTGGAAAGACCTTTTCCCTGGTGCTTTCTCCAAAGCTTTCTTCTTCCCATCCTTCA ATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCTACCCCACCATGGACAGTGGTGAATGGG ACGTGCTGATTGCTCACCTCCTGGGTGTGGACCACTGTGGCCACAAGCATGGCCCTCACCACCCTGAAATGGCCA AGAAACTTAGCCAGATGGACCAGGTGATCCAGGGACTTGTGGAGCGTCTGGAGAATGACACACTGCTGGTAGTGG CTGGGGACCATGGGATGACCACAAATGGAGACCATGGAGGGGACAGTGAGCTGGAGGTCTCAGCTGCTCTTTC TGTATAGCCCCACAGCAGTCTTCCCCAGCACCCACCAGAGGAGCCAGAGGTGATTCCTCAAGTTAGCCTTGTGC CCACGCTGGCCCTGCTGGGCCTGCCCATCCCATTTGGGAATATCGGGGAAGTGATGGCTGAGCTATTCTCAG GGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTTAGCCCAAGCCTCAGCTCTCCATCTCAATGCTCAGCAGGTGT CCCGATTTCTTCATACCTACTCAGCTGCTACTCAGGACCTTCAAGCTAAGGAGCTTCATCAGCTGCAGAACCTCT TCTCCAAGGCCTCTGCTGACTACCAGTGGCTTCTCCAGAGCCCCAAGGGGGGCTGAGGCGACACTGCCGACTGTGA $\tt TTGCTGAGCTGCAGCAGTTCCTGCGGGGAGCTCGGGCCATGTGCATCGAGTCTTGGGCTCGTTTCTCTGGTCC$ CAGGCTTTCCATTCTGCCCTCTACTCCTGACACCTGTGGCCTGGGGCCTGGTTGGGGCCCATAGCGTATGCTGGAC TCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGCTTCTAGGGGGCTGTGGCTGCAGTGAGCTCATTCCTCCCTT TTCTGTGGAAAGCCTGGGCTGGGGGTCCAAGAGGCCCCTGGCAACCCTGTTTCCCATCCCTGGGCCCGTCC TGTTACTCCTGCTGTTTCGCTTGGCTGTGTTCTTCTCTGATAGTTTTGTTGTAGCTGAGGCCAGGGCCACCCCCT TCCTTTTGGGCTCATTCATCCTGCTCCTGGTTGTCCAGCTTCACTGGGAGGGCCCAGCTGCTTCCACCTAAGCTAC TCACAATGCCCCGCCTTGGCACTTCAGCCACAACAAACCCCCCACGGCACAATGGTGCATATGCCCTGAGGCTTG GAATTGGGTTGCTTTTATGTACAAGGCTAGCTGGGCTTTTTCATCGTTGCCCTGAAGAGACACCTGTTTGCCACT CGGCGCTGGTGGCCCTGTTAGCTGCCGTGCGCTTGTGGCTTCGCCGCTATGGTAATCTCAAGAGCCCCGAGCCAC CAGATGAGGCTCCCCCCGTCTCCGGGTCCTGGTCTCTGGGGCATCCATGGTGCTGCCTCGGGCTGTAGCAGGGC TGGCTGCTTCAGGGCTCGCGCTGCTGCTCTGGAAGCCTGTGACAGTGCTGGTGAAGGCTGGGGCAGGCGCTCCAA GGACCAGGACTGTCCTCACTCCCTTCTCAGGCCCCCCCACTTCTCAAGCTGACTTGGATTATGTGGTCCCTCAAA TCTACCGACACATGCAGGAGGAGTTCCGGGGCCGGTTAGAGAGGACCAAATCTCAGGGTCCCCTGACTGTGGCTG CTTATCAGTTGGGGAGTGTCTACTCAGCTGCTATGGTCACAGCCCTCACCCTGTTGGCCCTTCCCACTTCTGCTGT CAGAGGGTCATGGCTCCTGTACTTGGCTGCCTGCTTTGCTAGTGGGAGCCAACACCTTTGCCTCCACCTCCTCT TTGCAGTAGGTTGCCCACTGCTCCTGCTCTGGCCTTTCCTGTGTGAGAGTCAAGGGCTGCGGAAGAGACAGCAGC CCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCCGAGGAGGAAGAGGCGCCACTGATGGAGATGCGGCTCCGGG ATGCGCCTCAGCACTTCTATGCAGCACTGCTGCAGCTGGGCCTCAAGTACCTCTTTATCCTTGGTATTCAGATTC TGGCCTGTGCCTTGGCAGCCTCCATCCTTCGCAGGCATCTCATGGTCTGGAAAGTGTTTGCCCCTAAGTTCATAT TTGAGGCTGTGGGCTTCATTGTGAGCAGCGTGGGACTTCTCCTGGGCATAGCTTTTGGTGATGAGAGTGGATGGTG CTGTGAGCTCCTGGTTCAGGCAGCTATTTCTGGCCCAGCAGAGG<u>TAG</u>CCTAGTCTGTGATTACTGGCACTTGGCT ACAGAGAGTGCTGGAGAACAGTGTAGCCTGGCCTGTACAGGTACTGGATGATCTGCAAGACAGGCTCAGCCATAC TCTTACTATCATGCAGCCAGGGGCCGCTGACATCTAGGACTTCATTATTCTATAATTCAGGACCACAGTGGAGTA GCGTGGTGACTTGCACCTATAATCCCAGCACTTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCA

FIGURE 266

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809
<subunit 1 of 1, 1089 aa, 1 stop
<MW: 118699, pI: 8.49, NX(S/T): 2</pre>

MQKASVLLFLAWVCFLFYAGIALFTSGFLLTRLELTNHSSCQEPPGFGSLPWGSQGKPGACWMASRFSRVVLVLI
DALRFDFAQPQHSHVPREPPVSLPFLGKLSSLQRILEIQPHHARLYRSQVDPPTTTMQRLKALTTGSLPTFIDAG
SNFASHAIVEDNLIKQLTSAGRRVVFMGDDTWKDLFPGAFSKAFFFPSFNVRDLDTVDNGILEHLYPTMDSGEWD
VLIAHFLGVDHCGHKHGPHHPEMAKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFL
YSPTAVFPSTPPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQQVS
RFLHTYSAATQDLQAKELHQLQNLFSKASADYQWLLQSPKGAEATLPTVIAELQQFLRGARAMCIESWARFSLVR
MAGGTALLAASCFICLLASQWAISPGFPFCPLLLTPVAWGLVGAIAYAGLLGTIELKLDLVLLGAVAAVSSFLPF
LWKAWAGWGSKRPLATLFPIPGPVLLLLLFRLAVFFSDSFVVAEARATPFLLGSFILLLVVQLHWEGQLLPPKLL
TMPRLGTSATTNPPRHNGAYALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVA
ALVALLAAVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLPRAVAGL
AASGLALLUKKPVTVLVKAGAGAPRTRTVLTPFSGPPTSQADLDYVVPQIYRHMQEEFRGRLERTKSQGPLTVAA
YQLGSVYSAAMVTALTLLAFPLLLHAERISLVFLLLFLQSFLLHLLAAGIPVTTPGPFTVPWQAVSAWALMAT
QTFYSTGHQPVFPAIHWHAAFVGFPEGHGSCTWLPALLVGANTFASHLLFAVGCPLLLLWPFLCESQGLRKRQQP
PGNEADARVRPEEEEEPLMEMRLRDAPQHFYAALLQLGLKYLFILGIQILACALAASILRRHIMVWKVFAPKFIF
EAVGFIVSSVGLLLGIALVMRVDGAVSSWFRQLFLAQQR

Important features: Signal peptide: amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034, 1052-1070

Leucine zipper pattern. amino acids 843-864

N-glycosylation sites. amino acids 37-40, 268-271

FIGURE 267

GAGACTGCAGAGGGGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGATCCAGAAACCCATG ATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGCAAGAGAAGCAGAGAGAAATACACT $\tt CTAGTCCTCAAATTCCCAGTCCCCTGCACCCCTTCCTGGGACACT{\color{red} ATG}{\color{blue} TTGTTCTCCGCCCTCCTGCTGGAGGTG}$ ATTTGGATCCTGGCTGCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCC TTGCCTGCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGACCTGCACAACAATGGCCACACA GTGCAACTCTCTCTGCCCTCTACCCTGTATCTGGGTGGACTTCCCCGAAAATATGTAGCTGCCCAGCTCCACCTG CACTGGGGTCAGAAAGGATCCCCAGGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCAC GGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAGTCACTTGCATGAAGTCAGG CATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAGAGGCTGCTCCCCAAACAGCTGGGGCAGTACTTC $\tt CGCTACAATGGCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAG$ ATTTCAATGGAACAGCTGGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGGCCCTCTAAGCTTCTGGTA ${\tt CAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGATCCTCGTAT}$ ATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAACCGAAAGAGTGTGGTCTTCACCTCAGCACAAGCCACGACT ${\tt GAGGCA} \underline{{\tt TAA}} {\tt ATTCCTTCTCAGATACCATGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATG}$ GGGTGTAGGATCTGGCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGA GGAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAAATGAG GAAATCGCTGTGTTGATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGGATATACCCCAAAGTC CTCTACCCCTCACTTTTATGGCCCTTTCCCTAGATATACTGCGGGATCTCTCCTTAGGATAAAGAGTTGCTGTT GAAGTTGTATATTTTTGATCAATATATTTTGGAAATTAAAGTTTCTGACTTT

FIGURE 268

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812

><subunit 1 of 1, 337 aa, 1 stop ><MW: 37668, pI: 6.27, NX(S/T): 1

MLFSALLLEVIWILAADGGOHWTYEGPHGODHWPASYPECGNNAQSPIDIQTDSVTFDPDLPALQPHGYDQPGTE PLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEATFAELHIVHYDSDSYDSLSEA AERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSV LWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVG CLCLLLAVYFIARKIRKKRLENRKSVVFTSAQATTEA

Important features of the protein: Signal peptide: amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site. amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins amino acids 197-245, 104-140, 22-69

FIGURE 269

 $\tt GTGGCGCTGGCGGTTGCTGATTCCCGGGGTTGGTGGCAGCGGCGGTAGCAGCA\underline{\textbf{ATG}}\texttt{GACTTTCTCCTG}$ GGGAACCCGTTCAGCTCTCCAGTGGGACAGCGCATCGAGAAAGCCACAGATGGCTCCCTGCAGAGCGAGGACTGG GCCCTCAACATGGAGATCTGCGACATCATCAACGAGACGGAGGAAGGTCCCAAAGATGCCCTCCGAGCAGTAAAG ${\tt AAGAGAATCGTGGGGAATAAGAACTTCCACGAGGTGATGCTGGCTCTCACAGTCTTAGAAACCTGTGTCAAGAAC}$ TGCGGGCACCGCTTCCACGTGCTGGTGGCCAGCCAGGACTTCGTGGAGAGTGTGCTGGTGAGGACCATCCTGCCC ${\tt AAGAACCACCCACCATCGTGCATGACCAAAGTGCTCAACCTCATCCAGTCCTGGGCTGACGCGTTCCGCAGC}$ CTGGACATGCTGTCACCCATCCACACCCCAGAGGACCGTGTTCAACTCAGAGACACAATCAGGACAGGATTCTG $\tt GTGACACGCCCA{\color{red}{\textbf{TAG}}} CACCAACCCCGGAACAGATTGGGAAGCTGCGCAGTGAGCTGGAGATGGTGAGTGGGAACG$ AGCTCAACCGCACGTGCCGAGCCATGCAGCAGCGGGTCCTGAGTGATACCCTGCTCCGGGCCCATGCCCCAAGGA ${\tt GCCCTTCAGAGCCCACACTGCCAGTCGAGGCCTGGCTGGAGGCTGGCCACAGTGGAAATTCTGCCGAGCCTATTG}$ $\verb|CCCCTGAGGAGCTGCGGCGCCCAGGTACGAAGCTGCAACTCTGCGCGCAGTGGGCGAGATCTCATCAGCCCCA| \\$ ${\tt GGCTGCAGGTGAGGCTTCAGGGGATGCTGGGGCCCCACTGCCCTCCGCTGCCTTGCCTCCATCCTTCTT}$ ${\tt TCCTTCTGGCCGGGCACCACAGCACTGGGGGCTCACCTCTTGGTTGATCCTCTTGTACTGGGAGAGGTGCCTTTTG}$ TATCCCCAATTAAAGGTAGAAAACC

FIGURE 270

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62813

><subunit 1 of 1, 209 aa, 1 stop ><MW: 23465, pI: 7.57, NX(S/T): 1

 $\verb|MDFLLGNPFSSPVGQRIEKATDGSLQSEDWALNMEICDIINETEEGPKDALRAVKKRIVGNKNFHEVMLALTVLE|$ TCVKNCGHRFHVLVASQDFVESVLVRTILPKNNPPTIVHDKVLNLIQSWADAFRSSPDLTGVVTIYEDLRRKGLE FPMTDLDMLSPIHTPRGPCSTQRHNQDRILWALTPASKRTLASMLPLCPPRPYSPVTRP

Important features of the protein:

Signal peptide:

Amino acids

1-15

N-glycosylation site:

Amino acids

N-myristoylation sites:

Amino acids 6-12;23-29

272/615

FIGURE 271

FIGURE 272

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845
><subunit 1 of 1, 283 aa, 1 stop
><MW: 30350, pI: 9.66, NX(S/T): 2
MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGFLLRARWVVSAAHC FSHRDLRTGLVVLGAHVLSTAEPTQQVFGIDALTTHPDYHPMTHANDICLLRLNGSAVLGPAVGLLRLPGRRARP ${\tt PTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPDVCNSSWKGHLTLTMLCTRSGDSHRRGFCSADSGGPLVCR}$ ${\tt NRAHGLVSFSGLWCGDPKTPDVYTQVSAFVAWIWDVVRRSSPQPGPLPGTTRPPGEAA}$

Signal peptide:

amino acids 1-30

FIGURE 273

 ${\tt GAAGTTCGCGAGCGCTGGCT} \underline{{\tt ATC}} {\tt GGTCCTGGGGGCGCGGCTGGCGGCGCTGCTGGCGGTGCTGGCGCTCGGGGACAG}$ GAGACCCAGAAAGGGCTGCGGCTCGGGGCGACACGTTCTCGGCGCTGACCAGCGTGGCGCGCCCCTGGCCGCCCCG ACGACAAGGTACTTTCTTTGCATGAGGATTCAACAACCCCTGTGGCTAACCCTCTGCTTGCATTTACTCTCATCA AACGCCTGCAGTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTCTGAAGGATG GCTATGAGAAGGTGGAGCAAGACCTTCCAGCCTTTGAGGACCTTGAGGGAGCAGCAAGGGCCCTGATGCGGCTGC AGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCCGAGGTGTCTŤTCAGAGAGTCACTGGCTCTGCCATCACTG ACCTGTACAGCCCCAAACGGCTCTTTTCTCTCACAGGGGATGACTGCTTCCAAGTTGGCAAGGTGGCCTATGACA ${\tt TGGGGGATTATTACCATGCCATTCCATGGCTGGAGGAGGCTGTCAGTCTTTCCGAGGATCTTACGGAGAGTGGA}$ AGACAGAGGATGAGGCAAGTCTAGAAGATGCCTTGGATCACTTGGCCTTTGCTTATTTCCGGGCAGGAAATGTTT CGTGTGCCCTCAGCCTCTCTCGGGAGTTTCTTCTCTACAGCCCAGATAATAAGAGGATGGCCAGGAATGTCTTGA AATATGAAAGGCTCTTGGCAGAGAGCCCCAACCACGTGGTAGCTGAGGCTGTCATCCAGAGGCCCAATATACCCC ACCTGCAGACCAGAGACACCTACGAGGGGCTATGTCAGACCCTGGGTTCCCAGCCCACTCTCTACCAGATCCCTA GCCTCTACTGTTCCTATGAGACCAATTCCAACGCCTACCTGCTGCTCCAGCCCATCCGGAAGGAGGTCATCCACC ${\tt CATGGCTACAGAGGTCAGTGGCATCAGGGGGAGAAGCAGTTACAAGTGGAGTACCGCATCAGCAAAAGTGCCT}$ $\tt GGCTGAAGGACACTGTTGACCCAAAACTGGTGACCCTCAACCGCATTGCTGCCCTCACAGGCCTTGATGTCC$ GGCCTCCCTATGCAGAGTATCTGCAGGTGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATG $\tt CGGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGAATGCAGCACTGT$ ATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGGACAGGAATTCCGCAGACCCTGCAGCTCCAGCCCTGAAG $\texttt{AC} \underline{\textbf{TGA}} \texttt{ACTGTTGGCAGAGAGAGCTGGTGGAGTCCTGTGGCTTTCCAGAGAAGCCAGGAGCCAAAAGCTGGGGTA}$ GGAGAGGAGAAAGCAGAGCCTCCTGGAAGAAGCCTTGTCAGCTTTGTCTGTGCCTCGCAAATCAGAGGCAA ${\tt GGGAGAGGTTGTTACCAGGGGACACTGAGAATGTACATTTGATCTGCCCCAGCCACGGAAGTCAGAGTAGGATGC}$ ACATCTCAACAGTCTCAGGTTCGATCAGTGGGTCTTTTTGGCACTTTGAACCTTGACCACAGGGACCAAGAAGTGG ${\tt CAATGAGGACACCTGCAGGAGGGGGCTAGCCTGACTCCCAGAACTTTAAGACTTTCTCCCCACTGCCTTCTGCTGC}$ ${\tt GTTGAAAACAACTTTCTTTTTTTTTTTTTTTTTTATGATGGTTTTTTTAACACAGTCATTAAAAATGTTTATAAATCAAAA}$

FIGURE 274

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64849

><subunit 1 of 1, 544 aa, 1 stop ><MW: 61126, pI: 6.40, NX(S/T): 2

MGPGARLAALLAVLALGTGDPERAAARGDTFSALTSVARALAPERRLLGLLRRYLRGEEA RLRDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGY EKVEQDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLT GDDCFQVGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAFAYFRA GNVSCALSLSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHLQTRDT YEGLCQTLGSQPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEA ${\tt QKIRELAEPWLQRSVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRP}$ PYAEYLQVVNYGIGGHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIY ANLSVPVVRNAALFWWNLHRSGEGDSDTLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSS

Important features of the protein:

Signal peptide:

Amino acids 1-19

Leucine zipper pattern:

Amino acids 34-56;41-63

Ribonucleotide reductase small subunit signature:

Amino acids 340-356

N-glycosylation sites:

Amino acids 242-246;482-486

Cell attachment sequence:

Amino acids 27-30

Tyrosine kinase phosphorylation site:

Amino acids 189-198

N-myristoylation sites:

Amino acids 4-10;135-141;153-159;164-170;241-247;303-309;309-315; 457-463;473-479

276/615

FIGURE 275

GGCAAC<u>ATG</u>GCTCAGCAGGCTTGCCCCAGAGCCATGGCAAAGAATGGACTTGTAATTTGCATCCTGGTGATCACC TTACTCCTGGACCAGACCACCAGCCACACATCCAGATTAAAAGCCAGGAAGCACAGCAAACGTCGAGTGAGAGAC AAGGATGGAGATCTGAAGACTCAAATTGAAAAGCTCTGGACAGAAGTCAATGCCTTGAAGGAAATTCAAGCCCTG CAGACAGTCTGTCTCCGAGGCACTAAAGTTCACAAGAAATGCTACCTTGCTTCAGAAGGTTTGAAGCATTTCCAT GAGGCCAATGAAGACTGCATTTCCAAAGGAGGAATCCTGGTTATCCCCAGGAACTCCGACGAAATCAACGCCCTC CAAGACTATGGTAAAAGGAGCCTGCCAGGTGTCAATGACTTTTGGCTGGGCATCAATGACATGGTCACGGAAGGC AAGTTTGTTGACGTCAACGGAATCGCTATCTCCTTCCTCAACTGGGACCGTGCACAGCCTAACGGTGGCAAGCGA GAAAACTGTGTCCTGTTCTCCCAATCAGCTCAGGGCAAGTGGAGTGATGAGGCCTGTCGCAGCAGCAAGAGATAC TTCATGATCTCTAAGATCAAGTAAAAATCATAATTTTTACTTATTAAAAAATTGCAACACAAGATCAATGTCCAT AGCAATATGATAGCATCAGCCAATTTTGCTAACACATTTCTTTGGGATTTTGCCCTTCCTGGGGTATAGGGGATC AGAAATATTGATCCATGTGCACGCAGATAAAATGGCTTCTGCTAAACAGACTAAAATCTTTCTCTCTAGTCTTTC AGGCTACCTGAAAGATTTTCCCTTGGAAGTTTAGCGTATGTTTGACTAACAAAAATTCCCTACATCAGAGACTCT AGGTGCTATATAATCCAAAAACTTTTCAGCCTGTTGCTCATTCTGTCCCATGCTGGCAATAATACCTTGTCAGCC CATTACCCTTATTTTGAATTGCTCCATCTCCTGGTGGGACTTGTATCTTGTCTGCCATATCAGAACACAAACCCC AATGAAATGACAAGGTGTATATTTGATCAATTTTCATTCCACCACTTGCATTACAACCTCTAACTTAAATGGGTA TAGCATCCTTACTCTCACCTTTTATGAGATTGAGAGTGGACTTACATTTCCTTTTTTACATTTTCGTATATTTAT TTTTTTTAGCCATCATTATATGTTTAAGTCTATTATGGGCAACCAATCTTTGGAAGCTGAAAACTGAATTTAAAG AATGCTATCTTGGAAAATTGCATACGTCTGTGCAATTTTTTATTCTGCCTAGTGCTATTCTGCTTGTTTAACTAG ATTGTACAAAATAACTTCATTGCTTAATATCAAATTACAAAGTTTAGACTTGGAGGGAAATGGGCTTTTTAGAAG CAAACAATTTTAAATATTTTTGTTCTTCAAATAAATAGTGTTTAAACATTGAATGTGTTTTGTGAACAATATCC CACTTTGCAAACTTTAACTACACATGCTTGGAATTAAGTTTTAGCTGTTTTCATTGCTCAATAATAAAGCCTGAA TTCTGATCAATAAAAAAAAAAAAAAAAAAAAAAAAAA

277/615

FIGURE 276

MAQQACPRAMAKNGLVICILVITLLLDQTTSHTSRLKARKHSKRRVRDKDGDLKTQIEKLWTEVNALKEIQALQT VCLRGTKVHKKCYLASEGLKHFHEANEDCISKGGILVIPRNSDEINALQDYGKRSLPGVNDFWLGINDMVTEGKF VDVNGIAISFLNWDRAQPNGGKRENCVLFSQSAQGKWSDEACRSSKRYICEFTIPK

278/615

FIGURE 277

GAGATAGGGAGTCTGGGTTTAAGTTCCTGCTCCATCTCAGGAGCCCCTGCTCCCACCCCTAGGAAGCCACCAGAC GGAGAGCCCCGGAGCCCCGTAACCCGCGGGGGAGCGCCCAGG<u>ATG</u>CCGCGGGGGACTCGGAGCAGGTGCGCT ${\tt ACTGCGCGCGCTTCTCCTACCTCTGGCTCAAGTTTTCACTTATCATCTATTCCACCGTGTTCTGGCTGATTGGGG}$ CCCTGGTCCTGTCGGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCCTTGAAAGTGCCTTCCTGG $\tt CTCCAGCCATCATCCTCATGCTCTGGGCGTCGTCATGTTCATGGTCTCCTTCATTGGTGTGCTGGCGTCCCTCC$ GTGACAACCTGTACCTTCTCCAAGCATTCATGTACATCCTTGGGATCTGCCTCATCATGGAGCTCATTGGTGGCG TGGTGGCCTTGACCTTCCGGAACCAGACCATTGACTTCCTGAACGACATTCGAAGAGGAATTGAGAACTACT ATGATGATCTGGACTTCAAAAACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACC GAGATTGGAGCAAGAATCAGTACCACGACTGCAGTGCCCCTGGACCCCTGGCCTGTGGGGTGCCCTACACCTGCT GCATCAGGAACACGACAGAAGTTGTCAACACCATGTGTGGCTACAAAACTATCGACAAGGAGCGTTTCAGTGTGC AGGATGTCATCTACGTGCGGGGCTGCACCAACGCCGTGATCATCTGGTTCATGGACAACTACACCATCATGGCGT GCATCCTCCTGGGCATCCTGCTTCCCCAGTTCCTGGGGGTGCTGCTGACGCTGCTGTACATCACCCGGGTGGAGG CGGGATGCTGCTTGTGCTACCCCAATTAGGGCCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTCTGGGATAGC ACCTCTCAGTCAACATCGTGGGGCTGGACAGGGCTGCGCCCCTCTGCCCACACTCAGTACTGACCAAAGCCAGG GCTGTGTGTGCCTGTGTGTGGGCCCACGGCCTCTGCCTCCCCAGGGAGCCTGGGCCTCCCCTAAGAGGC TTTCCCCGAGGCAGCTCTGGAATCTGTGCCCACCTGGGGCCTGGGGAACAAGGCCCTCCTTTCTCCAGGCCTGGG CTACAGGGGAGGGAGAGCCTGAGGCTCTGCTCAGGGCCCATTTCATCTCTGGCAGTGCCTTGGCGGTGGTATTCA AGGCAGTTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTCGGGGCAGGAGGGAAGGGCATCTGGGGAA ${\tt GGGCAGGAGGGAAGAGCTGTCCATGCAGCCACGCCCATGGCCAGGTTGGCCTCTTCTCAGCCTCCCAGGTGCCTT}$ GTACAGATAACAGGAGTTTCTGACTAATCAAAGCTGGTATTTCCCCGCATGTCTTATTCTTGCCCTTCCCCCAAC

FIGURE 278

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863
><subunit 1 of 1, 294 aa, 1 stop
><MW: 33211, pI: 5.35, NX(S/T): 3
MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAPAIILILLGVVMFM
VSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFLNDNIRRGIENYYDDLDFKNIMDFVQK
KFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCCIRNTTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVII

WFMDNYTIMACILLGILLPQFLGVLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN

Signal peptide: amino acids 1-44

Transmembrane domains: amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 279

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGACACCTGGGAAGAT $\underline{\mathbf{c}}$ GCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACCTTGATCCAAGCCACCCTCAGTCCCAC TGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAG GGTGAACACCGTCCTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCC CTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCCTGGTCAA GACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGCCCCAC GGTGAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTG TCCCGTGATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAG ${\tt CATTGACCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGGGGCCCAA}$ $\tt GTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCACCCTGGA$ ${\tt CAACATCCCGTTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGTGGCTGTTGCTCTCCAGAAGA}$ ATTCATGGTCCTGTTGGACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGA AAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTTTTTTATAGA $\tt CCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCAGTGAAGCCCTCCGCCCTTTGTT$ CACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTACACCAAAGGTGACCAACTTATACTCAACTTGAATAA CATCAGCTCTGATCGGATCCAGCTGATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCAT CACTGAGATCATCCACTCCATCCTGCCGGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGT GAAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCCTTGTG $\tt GAAACCCAGCTCTCCTGTCTCCCAG{\color{red}{\textbf{TGA}}} AGACTTGGATGGCAGCCATCAGGGAAGGCTGGGTCCCAGCTGGGAGT$

PCT/US01/06520 WO 01/68848

281/615

FIGURE 280

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881

><subunit 1 of 1, 484 aa, 1 stop ><MW: 52468, pI: 7.14, NX(S/T): 3

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGS LVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGP TRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISL ${\tt SIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPE}$ ${\tt EFMVLLDSVLPESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPL}$ FTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSL VKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein: Signal peptide: amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site. amino acids 412-415

LBP / BPI / CETP family proteins. amino acids 407-457

282/615

FIGURE 281

 $\tt CTTTCCACCTTTCTTCTTCCCACCTTAGACCTCCCTTCCTGCCCTCCTTTCCTGCCCACCGCTGCTTCCTGGC$ $\tt CCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGTCTGTGGGTTGATCTGTGGCCCCTGTGCCTCCGTGTC$ CTTTTCGTCTCCCTTCCTCCCGACTCCGGACCAGCGGCCTGACCCTGGGGAAAGGATGGTTCCCGAGGT CATGTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCACAAGGCCT GATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCCCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCTGTCCA CTGCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCG GGCCCCACCAAAGTCCTGCCAGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTT CCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCACAACCTG CCCCGAACCAGGCTGCCCAGCCCCTCCCACTGCCAGACTCCTGCCAAGCCTGCAAAGATGAGGCAAGTGA GCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGC TGGGAGAAAGAGAGGCCCGGGCACCCCAGCCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTT CAGACCCAAGGGAGCAGCACAACTGTCAAGATCGTCCTGAAGGAAACATAAGAAAGCCTGTGTGCATGG $\tt CGGGAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCCTTGCCCTGCATCCTATG$ CACCTGTGAGGATGCCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGTACCCCTGCCGTCACCCCGAGAA ${\tt AGTGGCTGGGAAGTTGCCCAGAGGACAAAGCAGACCCTGGCCACAGTGAGATCAGTTCTACCAG}$ GTGTCCCAAGGCACCGGGCCGGGTCCTCGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGC CCTGGAACACGAGGCCTCGGACTTGGTGGAGGTCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCA GAGAGGTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAGGAAGC AAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACTGGAACGTCTTCCTAG $\verb|CCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAGACATAACAAAGACC\underline{\textit{TAA}} \\ \verb|CAGTTGCA| \\ |CAGTTGCA| \\ |C$ AAAAAAA

FIGURE 282

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902

><subunit 1 of 1, 451 aa, 1 stop ><MW: 49675, pI: 7.15, NX(S/T): 1

 ${\tt MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSEGAHVSCYRLH}$ CPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELFPSRLPNQCVLCSCTEGQIYC GLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSF IPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPC RHPEKVAGKCCKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDE ${\tt ETEAQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT}$

Signal peptide:

amino acids 1-25

284/615

FIGURE 283

GCGATGGTGCGCCCGGTGGCGGCGGCGGCGGTTGCGGAGGCTTCCTTGGTCGGATTGCAACGAGGAGAAGAT GACTGACCAACCGACTGGCTGAATGAATGGATGGCGGAGCCGAGCGCCATGAGGAGCCTGCCGAGCCTGGGCG GCCTCGCCTGTTGTGCTGCCGCCGCCGCCGCCGCCGCCGTCGCCTCAGCCGCCTCGGCGGGGAATGTCACCGGTG GCGGCGGGCCGCGGGCAGGTGGACGCGTCGCCGGGCCCCGGGTTGCGGGGCGAGCCCAGCCACCCCTTCCCTA GGGCGACGGCTCCACGGCCCAGGCCCCGAGGACCGGCCCCCGCGCCACCGTCCACCGACCCTTGGCTGCGA $\tt CTTCTCCAGCCCAGTCCCCGGAGACCACCCCTCTTTGGGCGACTGCTGGACCCTCTTCCACCACCTTTCAGGCGC$ CGCTCGGCCCTCGCCGACCACCCCTCCGGCGGCGGAACGCACTTCGACCACCTCTCAGGCGCCGACCAGACCCG CGCCGACCACCCTTTCGACGACCACTGGCCCGCCGCCGACCACCCCTGTAGCGACCACCGTACCGGCGCCCACGA CCCCCTCTCGCCTCCCAGAGTATGTATGTAACTGCTCTGTGGTTGGAAGCCTGAATGTGAATCGCTGCAACC AGACCACAGGGCAGTGTGAGTGTCGGCCAGGTTATCAGGGGCTTCACTGTGAAACCTGCAAAGAGGGCTTTTACC ${\tt TAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCCACATGGAGCTCTCAGCATACCGTGCAACAGG\underline{\bf T}$ TACTGGTTTAAACAAAGGAGGATGAGGGTCATAGATTTACAAAATATTTTATATACTTTTATTCTCTTACTTTAT ATGTTATATTTAATGTCAGGATTTAAAAACATCTAATTTACTGATTTAGTTCTTCAAAAGCACTAGAGTCGCCAA TTTTTCTCTGGGATAATTTCTGTAAATTTCATGGGAAAAAATTATTGAAGAATAAATCTGCTTTCTGGAAGGGCT TTCAGGCATGAAACCTGCTAGGAGGTTTAGAAATGTTCTTATGTTTATTAATATACCATTGGAGTTTGAGGAAAT TTGTTGTTTGGTTTATTTTTCTCTCTAATCAAAATTCTACATTTGTTTCTTTGGACATCTAAAGCTTAACCTGGG GGTACCCTAATTTATTTAACTAGTGGTAAGTAGACTGGTTTTACTCTATTTACCAGTACATTTTTGAGACCAAAA ${\tt GTAGATTAAGCAGGAATTATCTTTAAACTATTATGTTATTTGGAGGTAATTTAATCTAGTGGAATAATGTACTGT}$ TATCTAAGCATTTGCCTTGTACTGCACTGAAAGTAATTATTCTTTGACCTTATGTGAGGCACTTGGCTTTTTGTG GACCCCAAGTCAAAAACTGAAGAGACAGTATTAAATAATGAAAAAAATAATGACAGGTTATACTCAGTGTAACC TGGGTATAACCCAAGATCTGCTGCCACTTACGAGCTGTGTTCCTTGGGCAAGTAATTTCCTTTCACTGAGCTTGT CTGGTTTGTTTTAATTTCAAAGGAATATTATGGACTGAAATGAGAGAACATGTTTTAAGAACTTTTAGCTCCTTG $\textbf{ACAAAGAAGTGCTTTATACTTTAGCACTAAATATTTTAAATGCTTTATAAATGATATTATACTGTTATGGAATAT$ TGTATCATATTGTAGTTTATTAAAAATGTAGAAGAGGCTGGGCGCGGTGGCTCACGCCTGTAATCCTAGCACTTT GGGAGGCCAAGGCGGGTGGATCACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCACAGTGAAACCCCGTCT CTACTAAAAATACAAACAAATTAGCTGGGCGTGGTGGCACACACCTGTAGTCCCAGCTACTCGGGAGGCTGAGGC AGGAGAATCGGTTGAACCCGGGAGGTGGAGGTTGCAGTGAGCTGAGATCGCCCCACTGCACTCCAGCCTGGTGAG

285/615

FIGURE 284

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952

><subunit 1 of 1, 258 aa, 1 stop ><MW: 25716, pI: 8.13, NX(S/T): 5

TVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAAERTSTTSQAPTRPAPTTLSTTTGPAPTTPV ATTVPAPTTPTPTDLPSSSNSSVLPTPPATEAPSSPPPEYVCNCSVVGSLNVNRCNQTTGQCECRPGYQGLHC ETCKEGFYLNYTSGLCQPCDCSPHGALSIPCNR

Important features of the protein: Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

286/615

FIGURE 285

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGAC<u>ATG</u>CTGCTGCTGCTGCTGCCCCTGCTCTGGGGG AGGGAGAGGCCGAAGGACAAGTAAACTGCTGACGATGCAGAGTTCCGTGACGGTGCAGGAAGGCCTGTGT ${\tt GTCCATGTGCCCTGCTTCTCCTACCCCTCGCATGGCTGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGG}$ ACTCGGGACCGATTCCACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGA AGTGATGCGGGGAGATACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAAACATCACCGGCTCTCT GTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTGGAGTCCGGCTGCCCCCAGAAT $\tt CTGACCTGCTCTGTGCCCTGTGAGCAGGGGACACCCCCTATGATCTCCTGGATAGGGACCTCCGTGTCC$ CCCCTGGACCCCTCCACCACCCCCTCCTCGGTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTC ACCTGTCAGGTGACCTTCCCTGGGGCCAGCGTGACCACGAACAAGACCGTCCATCTCAACGTGTCCTACCCGCCT CAGAACTTGACCATGACTGTCTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCTCTGTCA CTCCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAATCCCCCTGCCAGGCTGAGC CTGAGCTGGAGAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCAC CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCC CTGCAGAGCAAAGCCACATCAGGAGTGACTCAGGGGGTGGTCGGGGGGAGCCTGGAGCCACAGCCCTGGTCTTCCTG TCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAAAATCGGCAAGGCCAGCAGCGGGCGTGGGAGAT AGTCCCCAGACCAGCCTCCCCAGCTTCTGCCCGCTCCTCAGTGGGGGAAGGAGCTCCAGTATGCATCCCTC AGCTTCCAGATGGTGAAGCCTTGGGACTCGCGGGGACAGGAGCCCACTGACACCGAGTACTCGGAGATCAAGATC CACAGA<u>TGA</u>GAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAGAAGTCAGAGGC TGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATGTGCAGAGTGAAAAGC ACAGACAAATTCCTA

287/615

FIGURE 286

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFREGANTDQDAPVA TNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSIKWNYKHHRLSVNVTALTHRPNILI PGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTN KTVHLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPS NPGVLELPWVHLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRK KSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMVKPWDSRGQE ATDTEYSEIKIHR

Signal peptide:
amino acids 1-15

Transmembrane domain: amino acids 351-370

288/615

FIGURE 287

CGCGAGCTGAGAGGAGCAGGTAGAGGGGGCAGAGGCGGGACTGTCGTCTCTGGGGGAGCCGCCCAGGAGGCTCCTCAG GCCGACCCCAGACCCTGGCTGGCCAGGATGAAGTATCTCCGGCACCGGCGCCCAATGCCACCCTCATTCTGGCC GCGATCCCCGAGGCCCTGGCCTGGCCCACCCACCCGCCCAGCCCCGGCCCCGTGCCATGCCAACACCTCT ATGGTCACCCACCCGGACTTCGCCACGCAGCCGCAGCACGTTCAGAACTTCCTCCTGTACAGACACTGCCGCCAC TTTCCCTGCTGCAGGACGTGCCCCCTCTAAGTGCGCGCAGCCGGTCTTCCTGCTGCTGATCAAGTCCTCC CGCCTCCTCTTCCTGGTGGGCACAGCCTCCAACCCGCACGAGGCCCGCAAGGTCAACCGGCTGCTGGAGCTGGAG GCACAGACTCACGGAGACATCCTGCAGTGGGACTTCCACGACTCCTTCTTCAACCTCACGCTCAAGCAGGTCCTG TTCTTACAGTGGCAGGAGACAAGGTGCGCCAACGCCAGCTTCGTGCTCAACGGGGATGATGACGTCTTTGCACAC ACAGACAACATGGTCTTCTACCTGCAGGACCATGACCCTGGCCGCCACCTCTTCGTGGGGCAACTGATCCAAAAC TATTGTGGGGGTGGTGCTTCTTGCTGTCCCGCTTCACGGCCGCTGCCCTGCCCGTGCTGCCCATGTCTTGGAC ATCCGCACGTCTGGCGTGCGGGCTCCATCGCAACACCTGTCCTCTTTGACCCCTGCTTCTACCGAGACCTGCTG CTGGTGCACCGCTTCCTACCTTATGAGATGCTGCTCATGTGGGATGCGCTGAACCAGCCCAACCTCACCTGCGGC AATCAGACACAGATCTAC<u>TGA</u>GTCAGCATCAGGGTCCCCAGCCTCTGGGCTCCTGTTTCCATAGGAAGGGGCCAC ACCTTCCTCCCAGGAAGCTGAGACCTTTGTGGTCTGAGCATAAGGGAGTGCCAGGGAAGGTTTGAGGTTTGATGA GTGAATATTCTGGCTGGCGAACTCCTACACATCCTTCAAAACCCACCTGGTACTGTTCCAGCATCTTCCCTGGAT GGCTGGAGGAACTCCAGAAAATATCCATCTTCTTTTTGTGGCTGCTAATGGCAGAAGTGCCTGTGCTAGAGTTCC AACTGTGGATGCATCCGTCCCGTTTGAGTCAAAGTCTTACTTCCCTGCTCTCACCTACTCACAGACGGGATGCTA AGACAACTCAGAAGGTTGGGGGGATACCAGAGAGGTGGTGGAATAGGACCGCCCCCTCCTTACTTGTGGGATCAA ATGCTGTAATGGTGGAGGTGTGGGCAGAGGGGGGGGGCAAGTGTCTTTGAAAGTTGTGAGAGCTCAGAGTTTCTG GGGTCCTCATTAGGAGCCCCCATCCCTGTGTTCCCCAAGAATTCAGAGAACAGCACTGGGGCTGGAATGATCTTT AATGGGCCCAAGGCCAACAGGCATATGCCTCACTACTGCCTGGAGAAGGGAGAGATTCAGGTCCTCCAGCAGCCT ${\tt CCTCAGTGTCTGCCAGTCAAGCTTCACAGGCATTGTGATGGGGCAGCCTTGGGGAATATAAAATTTTGTGAAGAA}$

FIGURE 288

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65413</pre>

<subunit 1 of 1, 372 aa, 1 stop

<MW: 42515, pI: 8.92, NX(S/T): 6

MKYLRHRRPNATLILAIGAFTLLLFSLLVSPPTCKVQEQPPAIPEALAWPTPPTRPAPAPCHANTSMVTHPDFAT QPQHVQNFLLYRHCRHFPLLQDVPPSKCAQPVFLLLVIKSSPSNYVRRELLRRTWGRERKVRGLQLRLLFLVGTA SNPHEARKVNRLLELEAQTHGDILQWDFHDSFFNLTLKQVLFLQWQETRCANASFVLNGDDDVFAHTDNMVFYLQ DHDPGRHLFVGQLIQNVGPIRAFWSKYYVPEVVTQNERYPPYCGGGGFLLSRFTAAALRRAAHVLDIFPIDDVFL GMCLELEGLKPASHSGIRTSGVRAPSQHLSSFDPCFYRDLLLVHRFLPYEMLLMWDALNQPNLTCGNQTQIY

Important features:

Type II transmembrane domain:

Amino acids 15-34

N-glycosylation sites:

Amino acids 10-14;64-68;184-188;202-206;362-366;367-371

TonB-dependent receptor proteins signature 1:

Amino acids 1-32

N-myristoylation sites:

Amino acids 308-314;316-322

FIGURE 289A

 $\tt CGCGCTCCCGCGCGCCTCCTCGGGCTCCACGCGTCTTGCCCCGCAGAGGCAGCCTCCTCCAGGAGCGGGCCCCT$ GAGCGTCCTGAGTGGGCCTCCAGCCGTCGCCCCACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCA CGGGCTGGGCCTCCGCGGGTTCCTCGGGGCATCCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATAT CACCAGGATCACCAAGATGGACTTCGCTGGGCTCAAGAACCTCCGAGTCTTGCATCTGGAAGACAACCAGGTCAG CGTCATCGAGAGAGGCGCCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACAAGAATAAGCTGCAAGT CCTTCCAGAATTGCTTTTCCAGAGCACGCCGAAGCTCACCAGACTAGATTTGAGTGAAAACCAGATCCAGGGGAT ${\tt CCCGAGGAAGGCGTTCCGCGGCATCACCGATGTGAAGAACCTGCAACTGGACAACCACATCAGCTGCATTGA}$ AGATGGAGCCTTCCGAGCGCTGCGCGATTTGGAGATCCTTACCCTCAACAACAACAACATCAGTCGCATCCTGGT CACCAGCTTCAACCACATGCCGAAGATCCGAACTCTGCGCCTCCACTCCAACCACCTCTACTGCGACTGCCACCT GGCCTGGCTCTCGGATTGGCTGCGACAGCGACGGACAGTTGGCCAGTTCACACTCTGCATGGCTCCTGTGCATTT GAGGGCTTCAACGTGGCGGATGTGCAGAAGAAGGAGTACGTGTGCCCAGCCCCCCACTCGGAGCCCCCATCCTG CAATGCCAACTCCATCTCCTGCCCTTCGCCCTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAAGGGCTT GATGGAGATTCCTGCCAACTTGCCGGAGGGCATCGTCGAAATACGCCTAGAACAGAACTCCATCAAAGCCATCCC TGCAGGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGATATTGCTCC AGATGCCTTCCAGGGCCTGAAATCACTCACATCGCTGGTCCTGTATGGGAACAAGATCACCGAGATTGCCAAGGG GTTTCAGGACCTGCAGAACCTCAACTTGCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGGCTCTT CGCCCCTCTGCAGTCCATCCAGACACTCCACTTAGCCCAAAACCCATTTGTGTGCGACTGCCACTTGAAGTGGCT GGCCGACTACCTCCAGGACAACCCCATCGAGACAAGCGGGGCCCGCTGCAGCAGCCCGCGCCGACTCGCCAACAA GCGCATCAGCCAGATCAAGAGCAAGAAGTTCCGCTGCTCAGGCTCCGAGGATTACCGCAGCAGCTTCAGCAGCGA GTGCTTCATGGACCTCGTGTGCCCCGAGAAGTGTCGCTGTGAGGGCACGATTGTGGACTGCTCCAACCAGAAGCT GGTCCGCATCCCAAGCCACCTCCCTGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGA AGAGGGAGCTTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCTGGAGACCGTGCACGG GCGCGTGTTCCGTGGCCTCAGTGGCCTCAAAACCTTGATGCTGAGGAGTAACTTGATCAGCTGTGTGAGTAATGA CACCTTTGCCGGCCTGAGTTCGGTGAGACTGCTGTCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGGC CTTCACCACGCTTGTCTCCCTGTCCACCATAAACCTCCTGTCCAACCCCTTCAACTGCAACTGCCACCTGGCCTG GCTCGGCAAGTGGTTGAGGAAGAGGCGGATCGTCAGTGGGAACCCTAGGTGCCAGAAGCCATTTTTCCTCAAGGA GATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAGTAGCTGCCAGCTGAGCCC GCGCTGCCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCGATGCAGCAACAAGGGGCTCCGCGCCCTCCCCAG CCTCCGACACCTGACGCTTATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAGTAACAT GTCTCACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCTTCAACGGGCTGCG GTCCCTGCGAGTGCTAACCCTCCATGGCAATGACATTTCCAGCGTTCCTGAAGGCTCCTTCAACGACCTCACATC TCTTTCCCATCTGGCGCTGGGAACCAACCCACTCCACTGTGACTGCAGTCTTCGGTGGCTGTCGGAGTGGGTGAA GGCGGGGTACAAGGAGCCTGGCATCGCCCGCTGCAGTAGCCCTGAGCCCATGGCTGACAGGCTCCTGCTCACCAC

291/615

FIGURE 289B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCCATCAACACCTGCATCCAGAACCCCTGTCAGCATGGAGGCACC TGCCACCTGAGTGACAGCCACAAGGATGGGTTCAGCTGCTCCTGCCCTCTGGGCTTTGAGGGGCAGCGGTGTGAG ATCAACCCAGATGACTGTGAGGACAACGACTGCGAAAACAATGCCACCTGCGTGGACGGGATCAACAACTACGTG $\tt TGTATCTGTCCGCCTAACTACACAGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCCTGAGCTGAACCTC$ TGTCAGCATGAGGCCAAGTGCATCCCCCTGGACAAAGGATTCAGCTGCGAGTGTGTCCCTGGCTACAGCGGGAAG ACCAGCCCATGCGACCAGTACGAGTGCCAGAACGGGGCCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGC TGCCCACCAGGCTTCGCCGGCCCCAGATGCGAGAAGCTCATCACTGTCAACTTCGTGGGCAAAGACTCCTACGTG GAACTGGCCTCCGCCAAGGTCCGACCCCAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAACGGCATC $\verb|CTTCTACAAAGGAGACAATGACCCCCTGGCACTGGAGCTGTACCAGGGCCACGTGCGGTCTATGACAGC| \\$ $\tt CTGAGTTCCCCTCCAACCACAGTGTACAGTGTGGAGACAGTGAATGATGGGCAGTTTCACAGTGTGGAGCTGGTG$ ACGCTAAACCAGACCTGAACCTAGTAGTGGACAAAGGAACTCCAAAGAGCCTGGGGAAGCTCCAGAAGCAGCCA ${\tt GCAGTGGGCATCAACAGCCCCTCTACCTTGGAGGCATCCCCACCTCCACCGGCCTTCCGCCTTGCGCCAGGGC}$ ${\tt ACGGACCGCCTTCTAGGCGGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAACGAGCTGCAGGACTTCAAG}$ GCCCTCCCACCACAGTCCCTGGGGGTGTCACCAGGCTGCAAGTCCTGCACCGTGTGCAAGCACGGCCTGTGCCGC TCCGTGGAGAAGGACAGCGTGGTGTGCGAGTGCCGCCCAGGCTGGACCGGCCCACTCTGCGACCAGGAGGCCCGG GACCCCTGCCTCGGCCACAGATGCCACCATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCC GAGGGCTATGGAGGGGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCTGCTCAGCCTTCAAGTGTCACCAT $\tt GGGCAGTGCCACATCTCAGACCAAGGGGAGCCCTACTGCCTGTGCCAGCCCGGCTTTAGCGGCGAGCACTGCCAA$ CAAGAGAATCCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCCGCCAGAAAGGTTATGCATCATGTGCCACA GCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGGCTGTGGGCCCCAGTGCTGCCAGCCCACCCGCAGCAAGCGG CGGAAATACGTCTTCCAGTGCACGGACGGCTCCTCGTTTGTAGAAGAGGTGGAGAGACACTTAGAGTGCGGCTGC $\tt CTCGCGTGTTCC\underline{TAA}GCCCCTGCCGCCTGCCACCTCTCGGACTCCAGCTTGATGGAGTTGGGACAGCCAT$ GTGGGACCCCTGGTGATTCAGCATGAAGGAAATGAAGCTGGAGAGGAAGGTAAAGAAGAAGAAGAATATTAAGTA

FIGURE 290

MAPGWAGVGAAVRARLALALALASVLSGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRNAERLDLDRNNITR $\verb|ITKMDFAGLKNLRVLHLEDNQVSVIERGAFQDLKQLERLRLNKNKLQVLPELLFQSTPKLTRLDLSENQIQGIPR|$ KAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEILTLNNNNISRILVTSFNHMPKIRTLRLHSNHLYCDCHLAW LSDWLRQRRTVGQFTLCMAPVHLRGFNVADVQKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLME IPANLPEGIVEIRLEQNSIKAIPAGAFTQYKKLKRIDISKNQISDIAPDAFQGLKSLTSLVLYGNKITEIAKGLF DGLVSLQLLLLNANKINCLRVNTFQDLQNLNLLSLYDNKLQTISKGLFAPLQSIQTLHLAQNPFVCDCHLKWLAD YLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRSRFSSECFMDLVCPEKCRCEGTIVDCSNQKLVR IPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPNLRKINLSNNKIKEVREGAFDGAASVQELMLTGNQLETVHGRV FRGLSGLKTLMLRSNLISCVSNDTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLG KWLRKRRIVSGNPRCQKPFFLKEIPIQDVAIQDFTCDGNEESSCQLSPRCPEQCTCMETVVRCSNKGLRALPRGM PKDVTELYLEGNHLTAVPRELSALRHLTLIDLSNNSISMLTNYTFSNMSHLSTLILSYNRLRCIPVHAFNGLRSL RVLTLHGNDISSVPEGSFNDLTSLSHLALGTNPLHCDCSLRWLSEWVKAGYKEPGIARCSSPEPMADRLLLTTPT HRFQCKGPVDINIVAKCNACLSSPCKNNGTCTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDS HKDGFSCSCPLGFEGQRCEINPDDCEDNDCENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAK CIPLDKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAQCVDTINGYTCTCPQGFSGPFCEHPPPMVLLQTSPCDQ YECONGAOCIVVOOEPTCRCPPGFAGPRCEKLITVNFVGKDSYVELASAKVRPQANISLQVATDKDNGILLYKGD NDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHSVELVTLNQTLNLVVDKGTPKSLGKLQKQPAVGINS PLYLGGIPTSTGLSALRQGTDRPLGGFHGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDS VVCECRPGWTGPLCDOEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHIS ${\tt DQGEPYCLCQPGFSGEHCQQENPCLGQVVREVIRRQKGYASCATASKVPIMECRGGCGPQCCQPTRSKRRKYVFQ}$ CTDGSSFVEEVERHLECGCLACS

Signal peptide: amino acids 1-27

293/615

FIGURE 291

GGATGCAGGACGCTCCCCTGAGCTGCCTGTCACCGACTAGGTGGAGCAGTGTTTCTTCCGCAGACTCAACTGAGA
AGTCAGCCTCTGGGGCAGGCACCAGGAATCTGCCTTTTCAGTTCTGTCTCCGGCAGGCTTTGAGGAATCGAAGGCTG
CGGGCATTCTGACCCTCATTGGCTGCCTGGTCACAGGCGCCGAGTCCAAAATCTACACTCGTTGCAAACTGGCAA
AAATATTCTCGAGGGCTGGCCTGGACAATTACTGGGGCTTCAGCCTTGGAAACTGGATCTGCATGGCATATTATG
AGAGCGGCTACAACACCACAGCCCCGACGGTCCTGGATGACGGCAGCATCGACTATGGCATCTTCCAGATCAACA
GCTTCGCGTGGTGCAGACGCGGAAAGCTGAAGGAGAACAACCACTGCCATGTCGCCTGCTCAGCCTTGATCACTG
ATGACCTCACAGATGCAATTATCTGTGCCAGGAAAATTGTTAAAGAGACACCAAGGAATGAACTATTGGCAAGGCT
GGAAGAAACATTGTGAGGGCAGAGACCTGTCCGAGTGGAAAAAAAGGCTGTGAGGTTTCCTAAACTGGAACTGGAC
CCAGGATGCTTTGCAGCAACGCCCTAGGATTTGCAGTGAATGTCCAAATGCCTGTGTCATCTTTTCCATTTTAAATGTC

FIGURE 292

MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAPTVLDDGSIDYGIF QINSFAWCRRGKLKENNHCHVACSALITDDLTDAIICARKIVKETQGMNYWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide: amino acids 1-19

295/615

FIGURE 293

 ${\tt TGCAGCTGAGACTCAGACAAGATTACA} {\tt ATGCAACCCAGCTTCCTGCTGTTTCTCATAGCGACCACCAGAGGA}$ $\tt TGGAGTACAGATGAGGCTAATACTTACTTCAAGGAATGGACCTGTTCTTCGTCTCCATCTCTGCCCAGAAGCTGC$ ${\tt AAGGAAATCAAAGACGAATGTCCTAGTGCATTTGATGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTAC}$ CAGACCTTCTGTGACATGACCTCTGGGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGT GGGAAGTGCACGGTGGGCGATCGCTGGTCCAGTCAGCAGGCCAGACAGCAGACTACCCAGAGGGGGACGGCAAC TGGGCCAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCGATGACTACAAGAACCCTGGCTACTACGAC ATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAGTCCCCCATGCAGCACTGGAGAAACAGCTCCCTG CTGAGGTACCGCACGGACACTGGCTTCCTCCAGACACTGGGACATAATCTGTTTGGCATCTACCAGAAATATCCA GTGAAATATGGAGAAGGAAAGTGTTGGACTGACAACGGCCCGGTGATCCCTGTGGTCTATGATTTTGGCGACGCC ${\tt CAGAAAACAGCATCTTATTACTCACCCTATGGCCAGCGGGAATTCACTGCGGGATTTGTTCAGTTCAGGGTATTT}$ AATAACGAGAGAGCCCAACGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATT GGTGGAGGAGGATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATAT TGTGGGAGGGAACCCAGACCTCTCCCCAACCATGAGATCCCAAGGATGGAGAACAACTTACCCAGTAGCTAGA ATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGAAAAAA

296/615

FIGURE 294

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVIYQTFCDMTSG GGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSAEAATSDDYKNPGYYDIQAKDLGIW HVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSP YGQREFTAGFVQFRVFNNERAANALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSS REITEAAVLLFYR

297/615

FIGURE 295

CAGGCCATTTGCATCCCACTGTCCTTGTGTTCGGAGCCAGGCCACACCGTCCTCAGCAGTGTCATGTGTTAAAAA CGCCAAGCTGAATATATCATGCCCCTATTAAAACTTGTACATGGCTCCCCATTGGTTTTTGGAGAAAAGTTCAAG CACTTCCCAGATCTGCTTCTCACCAAGAGAGATTCTTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATA GAGGAATACACCACAGGCATGGCAGACTGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTTTAAGGAAACA TTCAAGTCCCTGTCTCACATAGACCCTGATGTCCTCTATCCATCTCTAAATGTCACCAGCTTTGACTCAGTTGTT CCTGAAAAGCTGGATGACCTAGTCCCCAAGGGGAAAAAATTCCTGCTGCTCCCATCAACAGATACGAAAGGAAA AAAAATCTGACTTTGGCACTGGAAGCCCTAGTACAGCTGCGTGGAAGATTGACATCCCAAGATTGGGAAGAGGTT CATCTGATCGTGGCAGGTGGTTATGACGAGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATG CACAGCTGCACGTGTGCTTTACACACCAAGCAATGAGCACTTTGGCATTGTCCCTCTGGAAGCCATGTACATG CAGTGCCCAGTCATTGCTGTTAATTCGGGTGGACCCTTGGAGTCCATTGACCACAGTGTCACAGGGTTTCTGTGT $\tt CTGGCTGGAAGACCAGAGTGAAGGAAAAATTTTCCCCTGAAGCATTTACAGAACAGCTCTACCGATATGTTACC$ $\textbf{AAACTGCTGGTA} \underline{\textbf{TAA}} \textbf{TCAGATTGTTTTTAAGATCTCCATTAATGTCATTTTTATGGATTGTAGACCCAGTTTTGA$ AACCAAAAAGAACCTAGAATCTAATGCAGAAGAGATCTTTTAAAAAATAAACTTGAGTCTTGAATGTGAGCCA $\verb|CTTTCCTATATACCACACCTCCCTGTCCACTTTTCAGAAAAACCATGTCTTTTATGCTATAATCATTCCAAATTT|\\$ TGCCAGTGTTAAGTTACAAATGTGGTGTCATTCCATGTTCAGCAGAGTATTTTAATTATATTTTCTCGGGATTAT TGCTCTTCTGTCTATAAATTTTGAATGATACTGTGCCTTAATTGGTTTTCATAGTTTAAGTGTGTATCATTATCA AAGTTGATTAATTTGGCTTCATAGTATAATGAGAGCAGGGCTATTGTAGTTCCCAGATTCAATCCACCGAAGTGT

298/615

FIGURE 296

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRRKKILFYCHFPDLLLTKRDSFLKRLYRAPIDWIEEYTTG
MADCILVNSQFTAAVFKETFKSLSHIDPDVLYPSLNVTSFDSVVPEKLDDLVPKGKKFLLLSINRYERKKNLTLA
LEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVEHYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCV
LYTPSNEHFGIVPLEAMYMQCPVIAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIEKFIREPSLKATMGLAGRAR
VKEKFSPEAFTEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

299/615

FIGURE 297

GACTACGCCGATCCGAGACGTGGCTCCCTGGGCGGCAGAACCATGTTGGACTTCGCGATCTTCGCCGTTACCTTC TTGCTGGCGTTGGTGGGAGCCGTGCTCTACCTCTATCCGGCTTCCAGACAAGCTGCAGGAATTCCAGGGATTACT CCAACTGAAGAAAAAGATGGTAATCTTCCAGATATTGTGAATAGTGGAAGTTTGCATGAGTTCCTGGTTAATTTG CATGAGAGATATGGGCCTGTGGTCTCCTTCTGGTTTGGCAGGCGCCTCGTGGTTAGTTTGGGCACTGTTGATGTA CTGAAGCAGCATATCAATCCCAATAAGACATCGGACCCTTTTGAAACCATGCTGAAGTCATTATTAAGGTATCAA TCTGGTGGTGGCAGTGTGAAAACCACATGAGGAAAAAATTGTATGAAAATGGTGTGACTGATTCTCTGAAG AGTAACTTTGCCCTCCTCAAAGCTTTCAGAAGAATTATTAGATAAATGGCTCTCCTACCCAGAGACCCAGCAC GTGCCCCTCAGCCAGCATATGCTTGGTTTTGCTATGAAGTCTGTTACACAGATGGTAATGGGTAGTACATTTGAA GATGATCAGGAAGTCATTCGCTTCCAGAAGAATCATGGCACAGTTTGGTCTGAGATTGGAAAAAGGCTTTCTAGAT GGGTCACTTGATAAAAACATGACTCGGAAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTTTTAAGG AACATCATAAAAGAACGAAAAGGAAGGAACTTCAGTCAACATATTTTCATTGACTCCTTAGTACAAGGGAACCTT AATGACCAACAGATCCTAGAAGACAGTATGATATTTTCTCTGGCCAGTTGCATAATAACTGCAAAATTGTGTACC AATGGTCCTGTTACTCCAGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTTGTGAAACTGTTCGAACT GCCAAACTGACTCCAGTTTCTGCCCAGCTTCAAGATATTGAAGGAAAAATTGACCGATTTATTATTCCTAGAGAG ACCCTCGTCCTTTATGCCCTTGGTGTGGTACTTCAGGATCCTAATACTTGGCCATCTCCACACAAGTTTGATCCA GATCGGTTTGATGATGAATTAGTAATGAAAACTTTTTCCTCACTTGGATTCTCAGGCACACAGGAGTGTCCAGAG TTGAGGTTTGCATATATGGTGACCACAGTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTTCTGTGGAG GGACAGGTTATTGAACAAAGTATGAACTGGTAACATCATCAAGGGAAGAAGCTTGGATCACTGTCTCAAAGAGA AATCCTTTTATAAACCAGTATCACTTTGTAATATAAACACCTATTTGTACTTAA

300/615

FIGURE 298

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLHERYGPVVSFWFGR
RLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRKKLYENGVTDSLKSNFALLLKLSEELL
DKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFEDDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNMTRKKQYE
DALMQLESVLRNIIKERKGRNFSQHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQK
KLYEEINQVFGNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVLQDP
NTWPSPHKFDPDRFDDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLSVEGQVIETKYELVTSS
REEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

301/615

FIGURE 299

302/615

FIGURE 300

 ${\tt MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFAVELAGFLSGV\\ SMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFVTVFGLKKKPF}$

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

303/615

FIGURE 301

TTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGATGATGGTCCTCCCGGCTCAGAGGAC CCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCCCGGGTGCCTCGGAAGCGGGGCCACATCTCACCTAAGTCC CCCAACCGCCCGAACCACACCCCCCACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTACTCC AACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAATGGGACCTTCAGCGTC CACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCCCCCAGTAAAGCTGTAGAGTTC CACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATGGAGTGGAGAAGGTA GAACGGGGCCGCCGGACCTCGCTTTGCACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCA GCCACCTGGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTATCGGCTG $\tt GTCCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATCTGGG\underline{\textbf{TGA}}\texttt{CCCGGGGCAGGC}$ GTTGGGCCTCAGGCAGGGGGGGGGGGGGAGACGAGGAGATGCCAAGTGGGGCCAAGTCTCAAGTGGCAG AGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTG GGCTCTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGGTCCCCGAGGCCTGTGGGCAG GCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTTCTTGCCATCCTGAGGAAAGATA GAGCCAGTCAGCAGGGTGGGGTGGGGCCAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCCCCTGAGCCCCTTGTC GTGTGCTGAGCATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCT CCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCGGAGAGGGGTCCCTCAACAGTCAGCC TCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGCCCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGG AACCGCTGATTGCTGACTTTTGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

304/615

FIGURE 302

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521

><subunit 1 of 1, 252 aa, 1 stop

><MW: 28127, pI: 8.91, NX(S/T): 5

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

305/615

FIGURE 303

306/615

FIGURE 304

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658

><subunit 1 of 1, 257 aa, 1 stop

><MW: 28472, pI: 9.33, NX(S/T): 0

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDGPTQKYLLIFG AFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGVFSFVNTLSDSLGPGTVGIHG DSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGT WAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

307/615

FIGURE 305

308/615

FIGURE 306

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

309/615

FIGURE 307

CCGGGGACATGAGGTGGATACTGTTCATTGGGGCCCTTATTGGGTCCAGCATCTGTGGCCCAAGAAAATTTTTTTG GGGACCAAGTTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAAATTGAGTCAACTAGTGAATTCAAACA ${\tt ACTTGAAGCTCAATTTCTGGAAATCTCCCTCCTTCAATCGGCCTGTGGATGTCCTGGTCCCATCTGTCAGTC}$ TGCAGGCATTTAAATCCTTCCTGAGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTT TAGACAATGAAGATGATGAAATGCAACACAATGAAGGGCAAGAACGGAGCAGTAATAACTTCAACTACGGGGCTT AGATTGGACATTCGTTTGAAAACCGGCCGATGTATGTACTGAAGTTCAGCACTGGGAAAGGCGTGAGGCGGCCGG CCGTTTGGCTGAATGCAGGCATCCATTCCCGAGAGTGGATCTCCCAGGCCACTGCAATCTGGACGCAAGGAAGA TTGTATCTGATTACCAGAGGGATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTTTCTTGTTGCCTGTGG CCAATCCTGATGGATATGTGTATACTCAAAACTCAAAACCGATTATGGAGGAAGACGCGGTCCCGAAATCCTGGAA GCTCCTGCATTGGTGCTGACCCAAATAGAAACTGGAACGCTAGTTTTGCAGGAAAGGGAGCCAGCGACAACCCTT GCTCCGAAGTGTACCATGGACCCCACGCCAATTCGGAAGTGGAGGTGAAATCAGTGGTAGATTTCATCCAAAAAC ATGGGAATTTCAAGGGCTTCATCGACCTGCACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTACTCAGTCA AAAAGGCCCCAGATGCCGAGGAACTCGACAAGGTGGCGAGGCTTGCGGCCAAAGCTCTGGCTTCTGTGTCGGGCA CTGAGTACCAAGTGGGTCCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGGGCGTATGACA ACGGCATCAAATTTGCATTCACATTTGAGTTGAGAGATACCGGGACCTATGGCTTCCTCCTGCCAGCTAACCAGA TCGTGTGTCCTGCGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTTTGGTCCTGCTGTTTTTGATG AGCCTTTTGTCTGTTTCTCCTTCCACCCTGCTGGCTGGGCGGCTGCACTCAGCATCACCCCTTCCTGGGTGGCAT GTCTCTCTCTCTCACTCTTTTTAGAACCAAAGAACATCTGAGATGATTCTCTACCCTCATCCACATCTAGCCAAGC ${\tt CAGTGACCTTGCTCTGGTGGCACTGTGGGAGACACCACTTGTCTTTAGGTGGGTCTCAAAGATGATGTAGAATTT}$ CCTTTAATTTCTCGCAGTCTTCCTGGAAAATATTTTCCTTTGAGCAGCAAATCTTGTAGGGATATCAGTGAAGGT $\tt CTCTCCCTCCTCCTGTTTTTTTTTTTTTTTGAGACAGAGTTTTGCTCTTGTTGCCCAGGCTGGAGTGTGA$ TGGCTCGATCTTGGCTCACCACAACCTCTGCCTCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCTCTTGAGTAGC TTGGTTTATAGGCGCATGCCACCATGCCTGGCTAATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCATGTTGGT CAGGCTGGTCTCAAACTCCCAACCTCAGGTGATCTGCCCTCCTTGGCCTCCCAGAGTGCTGGGATTACAGGTGTG AGCCACTGTGCCGGGCCCGTCCCTCTTTTTTAGGCCTGAATACAAAGTAGAAGATCACTTTCCTTCACTGTGC GATCTGTGTCACTGTAGGTACTGTGCCCAGGAAGGCTGGGTGAAGTGACCATCTAAATTGCAGGATGGTGAAATT ATCCCCATCTGTCCTAATGGGCTTACCTCCTCTTTGCCTTTTGAACTCACTTCAAAGATCTAGGCCTCATCTTAC AGGTCCTAAATCACTCATCTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCATTTGTGCTGTGGTGTATCCT TTTTGTATCCTGGACCACAAGTTCCTAAGTAGAGCAAGAATTCATCAACCAGCTGCCTCTTGTTTCATCTTCACCT AAAAAAAAAA

FIGURE 308

MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNRPVDVLVPSVSLQA FKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNYGAYHSLEAIYHEMDNIAADFPDLARRVKIG HSFENRPMYVLKFSTGKGVRRPAVWLNAGIHSREWISQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANP DGYVYTQTQNRLWRKTRSRNPGSSCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGN FKGFIDLHSYSQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYDNGI KFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide: amino acids 1-16

311/615

FIGURE 309

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCCTGAGTCCAAGAT TCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAGCCTTTATCTCTTCACCTTCAAGTCCC $\tt CTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCTTGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGC$ $\texttt{CACAAAGAGACAG} \underline{\textbf{ATG}} \textbf{AAGATGCAGAAAGGAAATGTTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGC}$ AACAAATTCCAATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACACCAC ${\tt CAACTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACCACCATCTCAGGGTCCAGCGTGACCTCCAATGG}$ GGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCACAGCCCAACTCTGAGTTCAG CACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACACCACCAC AGCCAGCACTGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGAGTCTAG CACACTCTCCAGTGGGGCCAGCACACCCAACTCTGACTCCAGCACAACCTCCAGTGGGGCTAGCACACCAC ${\tt CAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCAGCACCCAACTCTGAGTCCAGCACAGTGTCCAGTAG}$ GGCCAGCACTGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACACCCCAACTCTGAGTCCAG AACGACCTCCAATGGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCAGCACACCAC GGCCAGCACACCCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGACTCCAG GGCCAACACACCCAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCAACTCTGAGTCCAG CAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACACCAACTCTGAGTCTAGCACAGTGTCCAGTGG GATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCCAGTGGGGCCCAACACACCCCAACTCTGGGTCCAG CGTGGGGCTCTTTGCTGGGCTCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGT CTACCACCCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAG $\tt GTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGAACAGCGGGCCC$ $\texttt{C}\underline{\textbf{TGA}} \texttt{GCAGCCCGGAAGCAAGTGCCGCATTCTTCAGGAAGGAAGAGACCTGGGCACCCAAGACCTGGTTTCCTTT}$ ${\tt CATTCATCCCAGGAGACCCCTCCCAGCTTTGTTTGAGATCCTGAAAATCTTGAAGAAGGTATTCCTCACCTTTCT}$ ACACGACAAAGAGAAGCTGTGCTTGCCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAAC

FIGURE 310

MKMQKGNVLLMFGLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATIS
GSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESS
TPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTS
SGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGA
GTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTA
TNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNS
ESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESS
TVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGS
LVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAP
HRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide: amino acids 1-20

Transmembrane domain: amino acids 510-532

FIGURE 311A

GCCCAGCCAGCCGGAGGACGCGGGCAGGGCGGGACGGGACTCGTCTGCCGCCGCCGTCGTCGCCGTCGTCG GCCACGGCGCCGCGCCAGCCCCGAGGGCTGCCGGTCCGGGCAGGCGGCGGCGTTCCCAGGCCGGCGGGGGCGCGCG GCGATGCGCGCGGGGCGCAGCTCTGGCCGCCCGGCTCGGACCCAGATGGCGGCCCGCGCGACAGGAACTTTCTCT TCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCCGTGGCCGCCTACAGAACATGGTCCAAGACAA TTCCTGGGAAAGTTCAGTTCTCTCAAGTGAGGGTTCTGACACATCTGTACCAATTCCAGTAGTGCCACTACGGG GTGTGGACGACTCCTACCCGCCCCAGAAGAAGTCCTTCATGATGCTCAAGTACATGCACGACCACTACTTGGACA AGTATGAATGGTTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAACTTCCTGAGGAGTT TGAACAGCAGCGAGCCCCTCTTTCTTGGGCAGACAGGCCTGGGCACCACGGAAGAAATGGGAAAACTGGCCCTGG AGCCTGGTGAGAACTTCTGCATGGGGGGGCCTGGCGTGATCATGAGCCGGGAGGTGCTTCGGAGAATGGTGCCGC ACATTGCCAAGTGTCTCCGGGAGATGTACACCACCCATGAGGACGTGGAGGTGGGAAGGTGTCCCGGAGGTTTG ACAGGCTCCACAGCTACATGCTGAGCCGCAAGATATCCGAGCTCCGCCATCGCACAATACAGCTGCACCGCGAAA TGAGGTTTCAGCCCCGCCAGCGAGAGAGTTCTGGAATGGGAGTTTCTGACTGGAAAATACTTGTATTCGGCAG TTGACGGCCAGCCCCTCGAAGAGGAATGGACTCCGCCCAGAGGGAAGCCTTGGACGACATTGTCATGCAGGTCA TGGAGATGATCAATGCCAACGCCAAGACCAGAGGGCGCATCATTGACTTCAAAGAGATCCAGTACGGCTACCGCC GGGTGAACCCCATGTATGGGGCTGAGTACATCCTGGACCTGCTGCTTCTGTACAAAAAGCACAAAAGGGAAGAAAA TGACGGTCCCTGTGAGGAGGCACGCGTATTTACAGCAGACTTTCAGCAAAATCCAGTTTGTGGAGCATGAGGAGC TGGATGCACAAGAGTTGGCCAAGAGAATCAATCAGGAATCTGGATCCTTGTCCTTTCTCTCAAACTCCCTGAAGA AGCTCGTCCCCTTTCAGCTCCCTGGGTCGAAGAGTGAGCACAAAGAACCCAAAGATAAAAAGATAAACATACTGA TTCCTTTGTCTGGGCGTTTCGACATGTTTGTGAGATTTATGGGAAACTTTGAGAAGACGTGTCTTATCCCCAATC GAGATTACCGCATTAAGTACCCTAAAGCCGACATGCAGATTTTGCCTGTGTCTGGAGAGTTTTCAAGAGCCCTGG CCCTGGAAGTAGGATCCTCCCAGTTTAACAATGAATCTTTGCTCTTCTTCTGCGACGTCGACCTCGTGTTTACTA CAGAATTCCTTCAGCGATGTCGAGCAAATACAGTTCTGGGCCAACAAATATATTTTTCCAATCATCTTCAGCCAGT ${\tt ATGACCCAAAGATTGTTTATAGTGGGAAAGTTCCCAGTGACAACCATTTTGCCTTTACTCAGAAAACTGGCTTCT}$ ${\tt GTTACAGTAAAAGCAGCAATAATAATGGCTCAGTGAGGACAGCC} \underline{{\tt TAA}} {\tt TGTCCAGCTTTGCTGGAAAAGACGTTTT}$ TAATTATCTAATTTATTTTTCAAAAATTTTTTGTATGATCAGTTTTTGAAGTCCGTATACAAGGATATATTTTAC AAGTGGTTTTCTTACATAGGACTCCTTTAAGATTGAGCTTTCTGAACAAGAAGGTGATCAGTGTTTGCCTTTGAA CACATCTTCTTGCTGAACATTATGTAGCAGACCTGCTTAACTTTGACTTGAAATGTACCTGATGAACAAAACTTT TTTAAAAAAATGTTTTCTTTTGAGACCCTTTGCTCCAGTCCTATGGCAGAAAACGTGAACATTCCTGCAAAGTAT TATTGTAACAAAACACTGTAACTCTGGTAAATGTTCTGTTGTGATTGTTAACATTCCACAGATTCTACCTTTTGT GTTTTGTTTTTTTTTTTACAATTGTTTTAAAGCCATTTCATGTTCCAGTTGTAAGATAAGGAAATGTGATAATA GCTGTTTCATCATTGTCTTCAGGAGAGCTTTCCAGAGTTGATCATTTCCTCATGGTACTCTGCTCAGCATGGC ${\tt CAGTGGCGCAATCTTGGCTCACTTTAACCTCCACTTCCCTGGTTCAAGCAATTCCCCTGCCTTTGCCTCCGAGT}$ GCAAGCCCAGCTGGCCACGTAGGTTTTAAAGCAAGGGGCGTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTCG TGGTAGTTCATTCGGCCTAAATAGACCTGGCATTAAATTTCAAGAAGGATTTGGCATTTTCTCTTCTTGACCCTT CTCTTTAAAGGGTAAAATATTAATGTTTAGAATGACAAAGATGAATTATTACAATAAATCTGATGTACACAGACT GAAACATACACACATACACCCTAATCAAAACGTTGGGGAAAAATGTATTTGGTTTTGTTCCTTTCATCCTGTCTG

FIGURE 311B

FIGURE 312

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836

><subunit 1 of 1, 802 aa, 1 stop

><MW: 91812, pI: 9.52, NX(S/T): 3

MAARGRRAWLSVLLGLVLGFVLASRLVLPRASELKRAGPRRRASPEGCRSQAAASQAGGARG DARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEGSD TSVPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLRSLN SSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYTTHED VEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPPYQYRL HSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDLQLGIPPSFMRFQPRQREEILEWEF LTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQYGYRRVNP MYGAEYILDLLLLYKKHKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKRINQESGSL SFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTCLIPNQNVKL VVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQFNNESLLFFC DVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFTQKTGFWRNYGF GITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVHVHHPVFCDPNLD PKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 313

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGACCCC GGTGGGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCA ${\tt ACAAATGGATGATGTGATAT} \underline{\textbf{ATG}} {\tt CATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCAT}$ $\overline{\texttt{GGTCAATTAACGAGGCAGTTTCT}}\overline{\texttt{AGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCT}}$ TTGGAATCATGGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTTGGGGAAGCTTTT TTGGAAGCATTTTCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATC GCTGGATCAACAACCGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCA TCATGAACCATCGGACAAGAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCT CCATGCAGGCTGCCTATATCTTCATTCATAGGAAATGGAAGGATGACAAGAGCCATTTCG AAGACATGATTACTTTTGTGATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAG AGAAATATGAATATGTTTTACATCCAAGAACTACAGGCTTTACTTTTGTGGTAGACCGTCTAA GAGAAGGTAAGAACCTTGATGCTGTCCATGATATCACTGTGGCGTATCCTCACAACATTCCTC AATCAGAGAAGCACCTCCTCCAAGGAGACTTTCCCAGGGAAATCCACTTTCACGTCCACCGGT ATCCAATAGACACCCTCCCCACATCCAAGGAGGACCTTCAACTCTGGTGCCACAAACGGTGGG AAGAGAAAGAAGAGAGGCTGCGTTCCTTCTATCAAGGGGAGAAGAATTTTTATTTTACCGGAC AGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTCCTTGTGGTCAAATTGCTCTCTATAC TGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCATATATTTGTACAGTCTTGTTAAGT GGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGAGAATATTTGGTGGACTGGAGA TCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACATTTAAATTCAAAGAAAAATG AG**TAA**GATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTGGAAATGTTCTAAACCTT TCTAAGCTCAGATGCATTTTTGCATGACTATGTCGAATATTTCTTACTGCCATCATTATTTGT TGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTTGGGCCAGAATA TTATTAAACAATCATCAGGCTTTTAAA

FIGURE 314

PCT/US01/06520

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFML SPFLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTR MDWMFLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYF CDIHEPLQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLD AVHDITVAYPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERL RSFYQGEKNFYFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITI VIFVLQERIFGGLEIIELACYRLLHKQPHLNSKKNE

Important features of the protein: Signal peptide: amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

FIGURE 315

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGA CCTCCAAATCATCCATCCACCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGG $\texttt{AATATCC} \underline{\textbf{ATG}} \texttt{GCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACAGTG}$ GCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCTCCTG CTCCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCA TGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCG CATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGA GGCCACCTGGGAGCTGCGGTGGCAGCACTGGGCTCACTTCCTCATTTCCATCGTGGGATA TGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGCCCACAGCCAA GTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAG CCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCATATTGTGTTCCAT CCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCA TGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCT GGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAA AGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTTCTCA GGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGACGTGGGACAAAATGTAGGGTGGTATGT GGGAGTGTCGGGATGACGTAGACAGGGGGGAAGAACAATGTGACTTTGTCTCCCAACAATGG GTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCACATTCAATCCCCATTTTATCAG CCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCTGGACTATGAGGGTGGGACCAT CTCCTTCTTCAATACAAATGACCAGTCCCTTATTTATACCCTGCTGACATGTCAGTTTGAAGG CTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAGGGGACTCCCATATTCAT ACAGAGAGTCACGCCCCCACTCTCCTTTAGGGAGCTGAGGTTCTTCTGCCCTGAGCCCTGCA GCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGGATTGGCCTGACCCTGTGGGAGTCAGAAGCC ATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTGTGAAAACTCCATC CAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGGACAGT GATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTTTGA GGGCACAGTGTTTGCTAATGATGTGTTTTTATATTATACATTTTCCCACCATAAACTCTGTTT GCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACAC CTGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAG TATCCCTCATTAACACAGACACAAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAAT ATATTTAAAGATGATATAACTACTCAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAA TATTTAAATATCAACCAGTGTAATTCAGCACATTAATAAAGTAAAAAAGAAAACCATAAAAAA AAAAAAAA

FIGURE 316

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866

><subunit 1 of 1, 466 aa, 1 stop

><MW: 52279, pI: 6.16, NX(S/T): 2

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAV VHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEAT WELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLY DVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVM GMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAP QEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYW VLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLL RPYIQHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

320/615

FIGURE 317

321/615

FIGURE 318

322/615

FIGURE 319

 $\verb|CCTTCACAGGACTCTTCATTGCTGGTTGGCAATGTATCGGCCAGATGTGGTGAGGGCTAG|\\$ GAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCT GGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTA CTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAA CAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAATCTCC ATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGGAGTGTT GGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAGATAAAAT TGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAGATCCTCA AACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGA GGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGATGGGAGTCATCGCTGTGGAGCAACCTT AATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAAGAACCCTGCCAG ATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAAT AATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCTCTTTGCAGAGCTTTC TAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGATGCATCCTATGAGTT TCAACCAGGTGATGTGTTTTGTGACAGGATTTGGAGCACTGAAAAATGATGGTTACAGTCA AAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACCTCAAGC TTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGC ATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGC TGGAATAGTGAGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGT TACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATC**TAA**GAGACAAAAGCCTCATGGAA CAGATAACATTTTTTTTTTTTTTTTTTGGGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGA AGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAACTGTTTGCTTGATGCATGTATTTT CTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCAGATCAACTCTGTCATCTGTGA GCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTACATTACAGCCTGTA TTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTGTAATGCATA TATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCA TTTTCAAGGTGCAGAACAAGGAGTGAAAGAAAATATAAGAAGAAAAAATCCCCTACATTTTA TTGGCACAGAAAAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATATTCATTAT GAAAGGTCAAGCAAAGACAGCAGAATACCAATCACTTCATCATTTAGGAAGTATGGGAACTAA GTTAAGGAAGTCCAGAAAGAAGCCAAGATATATCCTTATTTTCATTTCCAAACAACTACTATG ATAAATGTGAAGAAGATTCTGTTTTTTTGTGACCTATAATAATTATACAAACTTCATGCAATG TACTTGTTCTAAGCAAATTAAAGCAAATATTTATTTAACATTGTTACTGAGGATGTCAACATA TAACAATAAAATATAAATCACCCA

323/615

FIGURE 320

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871

><subunit 1 of 1, 423 aa, 1 stop

><MW: 47696, pI: 8.96, NX(S/T): 3

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDK
LYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFH
STEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQS
LRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIK
PSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTG
FGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLV
SSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

324/615

FIGURE 321

 $\tt CCGGGCTCCTGGGTGAGGCCGGCAAGTTTGGAGCGTGGTCAGACAATAGGGGCCTGGCTACGG$ CTCGCGGAGCGCAACCAACGCTCTAGACCAGACCTGGGCTCGAGACCATAACTGTTTGGCTTT AACAGTACGTGGGCGGCCGGAATCCGGGAGTCCGGTGACCCGGGCTGTGGTCTAGCATAAAGG $\tt CGGAGCCCAGAAGAAGGGGGGGGGT{\color{red} \underline{\textbf{ATG}}} GGAGAAGCCTCCCCACCTGCCCCGCAAGGCGGCA$ TCTGCTGGTCCTGCTGCTCCTCTCTACCCTGGTGATCCCCTCCGCTGCAGCTCCTATCCA TGATGCTGACGCCCAAGAGGCTCCTTGGGTCTCACAGGCCTCCAGAGCCTACTCCAAGGCTT CAGCCGACTTTTCCTGAAAGGTAACCTGCTTCGGGGCATAGACAGCTTATTCTCTGCCCCCAT GGACTTCCGGGGGCCTCCCTGGGAACTACCACAAAGAGGAGAACCAGGAGCACCAGCTGGGGAA CAACACCCTCTCCAGCCACCTCCAGATCGACAAGATGACCGACAACAAGACAGGAGAGGTGCT GATCTCCGAGAATGTGGTGGCATCCATTCAACCAGCGGAGGGGAGCTTCGAGGGTGATTTGAA GGTACCCAGGATGGAGGAGAAGGAGGCCCTGGTACCCATCCAGAAGGCCACGGACAGCTTCCAC ${\tt ACAGAACTCCATCCCGGGTGGCCTTCTGGATCATTAAGCTGCCACGGCGGAGGTCCCACCAG}$ GATGCCCTGGAGGGCGGCCACTGGCTCAGCGAGAAGCGACACCGCCTGCAGGCCATCCGGGAT GGACTCCGCAAGGGACCCACAAGGACGTCCTAGAAGAGGGGACCGAGAGCTCCTCCCACTCC ${\tt AGGCTGTCCCCCGAAAGACCCACTTACTGTACATCCTCAGGCCCTCTCGGCAGCTG}$ TGGGGACCGGGGAGCACCTGCCTGTAGCCCCCATCAGACCCTGCCCCAAGCACCATATGGAAA TAAAGTTCTTTCTTACATCTAAAAA

FIGURE 322

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68879

><subunit 1 of 1, 242 aa, 1 stop

><MW: 27007, pI: 8.68, NX(S/T): 2

MGEASPPAPARRHLLVLLLLLSTLVIPSAAAPIHDADAQESSLGLTGLQSLLQGFSRLFL KGNLLRGIDSLFSAPMDFRGLPGNYHKEENQEHQLGNNTLSSHLQIDKMTDNKTGEVLIS ENVVASIQPAEGSFEGDLKVPRMEEKEALVPIQKATDSFHTELHPRVAFWIIKLPRRRSH QDALEGGHWLSEKRHRLQAIRDGLRKGTHKDVLEEGTESSSHSRLSPRKTHLLYILRPSR QL

Important features of the protein:

Signal peptide:

Amino acids 1-30

N-glycosylation sites:

Amino acids 97-101;112-116

N-myristoylation sites:

Amino acids 80-86;132-138;203-209;216-222

FIGURE 323

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCC CAGCGCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTC GCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGATGAGG GACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTCATTTTG ACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGG ATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGT TTGCTTGTCATTTTCTGTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATG GTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCT GTATATTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGATTCCTGCTGTTT AGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAG GGTTGTGGGAAGAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGCAGGTGCTGAGGTTT CTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACCATTACTCTGCTCTGG GCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTCCTTGAAGAATGACAAC TCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCCTGTCAAGAATCTTTGAA CACACATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAGGAGTTA**TAA**AAAGAAATG TCACAGAAGAAACCACAAACTTGTTTTATTGGACTTGTGAATTTTTGAGTACATACTATGTG TTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACACCTAAGCATATACTATTCTA TGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCACCACCTGGACAATAATTGATGC CCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCCTGTGTATGACTTTTACTGAAC ACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCATCCATGCAAACGAGTCACA TATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAACTAGTATATAAAGTACT AATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTACTCAGCGATCTATTC TTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACTACCTAAATGTGAT TTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGAGCAAGCTAACACATTGTCTTAAGCT GATCAGGGATTTTTTGTATATAAGTCTGTGTTAAATCTGTATAATTCAGTCGATTTCAGTTCT GATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATTATTTTTA GCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAACTGTTA TTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTCAGA ATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGAA AGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAA AGCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGA AAATAGTGTTCTTTTTCTCCAGAAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAG AGATTCTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTT TTTACAAGAGTATAGTATTTATTTGAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTAT TAA

327/615

FIGURE 324

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880

><subunit 1 of 1, 305 aa, 1 stop

><MW: 35383, pI: 5.99, NX(S/T): 0

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVV
HPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWS
DMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGC
SKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDR
REPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 325

AGCAGTGCATTGCTGGAGCGAGGAGAAGCTCACGAATCAGCTGCAGGTCTCTGTTTTGAAAAA GCAGAGATACAGAGGCAGAGGAAAAGGGTGGACTCCTATGTGACCTGTTCTTAGAGCAAGACA CAGAAAGAAGCAAAAGGATGGGAAATGCCTGCATTCCCCTGAAAAGAATTGCTTATTTCCTAT GTCTCTTATCTGCGCTTTTGCTGACTGAGGGGAAGAAACCAGCGAAGCCAAAATGCCCTGCCG TGTGTACTTGTACCAAAGATAATGCTTTATGTGAGAATGCCAGATCCATTCCACGCACCGTTC CTCCTGATGTTATCTCATTATCCTTTGTGAGATCTGGTTTTACTGAAATCTCAGAAGGGAGTT TTTTATTCACGCCATCGCTGCAGCTCTTGTTATTCACATCGAACTCCTTTGATGTGATCAGTG CAATTTCAAGACATACTTTCCGGGGACTAAAGTCATTAATTCACTTGAGCCTTGCAAACAACA ATCTCCAGACACTCCCAAAAGATATTTTCAAAGGCCTGGATTCTTTAACAAATGTGGACCTGA GGGGTAATTCATTTAATTGTGACTGTAAACTGAAATGGCTAGTGGAATGGCTTGGCCACACCA ATGCAACTGTTGAAGACATCTACTGCGAAGGCCCCCCAGAATACAAGAAGCGCAAAATCAATA GTCTCTCCTCGAAGGATTTCGATTGCATCATTACAGAATTTGCAAAGTCTCAAGACCTGCCTT ATCAATCATTGTCCATAGACACTTTTTCTTATTTGAATGATGAGTATGTAGTCATCGCTCAGC CTTTTACTGGAAAATGCATTTTCCTTGAATGGGACCATGTGGAAAAGACCTTCCGGAATTATG ACAACATTACAGGCACATCCACTGTAGTATGCAAGCCTATAGTCATTGAAACTCAGCTCTATG TCATAAAAATCCAGGATATTGAAATTCTCAAAATCCGAAAACCCAATGACATTGAAACATTCA AGATTGAAAACAACTGGTACTTTGTTGTTGCTGACAGTTCAAAAGCTGGTTTTACTACCATTTAC AAATGGAACGGAAACGGATTCTACTCCCATCAATCCTTACACGCGTGGTACAGGGACACTGAT GTGGAATATCTAGAAATAGTCAGAACACCTCAGACACTCAGAACGCCTCATTTAATTCTGTCT AGTAGTTCCCAGCGTCCTGTAATTTATCAGTGGAACAAAGCAACACAATTATTCACTAACCAA ACTGACATTCCTAACATGGAGGATGTGTACGCAGTGAAGCACTTCTCAGTGAAAGGGGACGTG TACATTTGCTTGACAAGATTCATTGGTGATTCCAAAGTCATGAAATGGGGAGGCTCCTCGTTC TACCAATATGCAATTCTTGGAAGTGATTACTCCTTTACTCAAGTGTATAACTGGGATGCAGAG AAAGCCAAATTTGTGAAATTTCAGGAATTAAATGTTCAGGCACCAAGATCATTCACACATGTG TCCATTAATAAGCGTAATTTTCTTTTTTGCTTCCAGTTTTAAGGGAAATACACAGATTTACAAA ${\tt CATGTCATAGTTGACTTAAGCGCA} \underline{{\tt TGA}} {\tt GACACCAAATTCTGTGGCTGCCATCAGAAATTTTCT}$ ACAGTACATGACCCGGATGAACTCAATGCATGATGACTCTTCTTATCACACTTGCAAATGAAT GCCTTTCAAACATTGAGACTGCTAGAACCAAGCACTACCAGTATCTCCATCCTTAACTGTCCA GTCCAGTGATGTGGGAAGTTACCTTTTATAAGACAAAATTTAATTGTGTAACTGTTCTTTGCA GTGAAGATGTGTAAATAAGCGTTTAATGGTATCTGTTACTCCAAAAAGAAATATTAATATGTA CTTTTCCATTTATTCATGTGTACAGAAACAACTGCCAAATAAAATGTTTACATTTTCTT TCATA

FIGURE 326

></usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA68882

><subunit 1 of 1, 557 aa, 1 stop

><MW: 63818, pI: 8.61, NX(S/T): 3

MESERSKRMGNACIPLKRIAYFLCLLSALLLTEGKKPAKPKCPAVCTCTKDNALCENARS IPRTVPPDVISLSFVRSGFTEISEGSFLFTPSLQLLLFTSNSFDVISDDAFIGLPHLEYL FIENNNIKSISRHTFRGLKSLIHLSLANNNLQTLPKDIFKGLDSLTNVDLRGNSFNCDCK LKWLVEWLGHTNATVEDIYCEGPPEYKKRKINSLSSKDFDCIITEFAKSQDLPYQSLSID TFSYLNDEYVVIAQPFTGKCIFLEWDHVEKTFRNYDNITGTSTVVCKPIVIETQLYVIVA QLFGGSHIYKRDSFANKFIKIQDIEILKIRKPNDIETFKIENNWYFVVADSSKAGFTTIY KWNGNGFYSHQSLHAWYRDTDVEYLEIVRTPQTLRTPHLILSSSSQRPVIYQWNKATQLF TNQTDIPNMEDVYAVKHFSVKGDVYICLTRFIGDSKVMKWGGSSFQDIQRMPSRGSMVFQ PLQINNYQYAILGSDYSFTQVYNWDAEKAKFVKFQELNVQAPRSFTHVSINKRNFLFASS FKGNTQIYKHVIVDLSA

Important features of the protein:

Signal peptide:

Amino acids 1-34

Transmembrane domain:

Amino acids 281-306

N-glycosylation sites:

Amino acids 192-196;277-281;422-426

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 310-314

Tyrosine kinase phosphorylation sites:

Amino acids 228-235;378-385

N-myristoylation sites:

Amino acids 172-178;493-499

Amidation site:

Amino acids 33-37

FIGURE 327

CCAAGGCCAGAGCTGTGGACACCTTATCCCACTCATCCTCATCCTCTTCCTCTGATAAAGCCC AAGAGAAGGGACAAAGGAACACCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTC CCAGTTGGATGAGTCTCAAGGTCCTCTCTATGTGACAACCATGTGAATGGGGAGTGGTACCA CTTCACGGGCATGGCGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAAC $\tt CCACGCACCTGTCTGGCTCAATGGCAGCCACCCCCTAGAAGGCGACGGCATTGTGCAACGCCA$ GGCTTGTGCCAGCTTCAATGGGAACTGCTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTG CCCTGGAGGCTACTATGTGTATCGTCTGACCAAGCCCAGCGTCTGCTTCCACGTCTACTGTGG TCATTTTTATGACATCTGCGACGAGGACTGCCATGGCAGCTGCTCAGATACCAGCGAGTGCAC GCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAACTCCTACCGCTGTGAGTG TGGGGTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAA TAACAATGGTGGCTGCAGCCACTCTTGCCTTGGATCTGAGAAAGGCTACCAGTGTGAATGTCC CCGGGGCCTGGTGTCTGAGGATAACCACACTTGCCAAGTCCCTGTGTTGTGCAAATCAAA TGCCATTGAAGTGAACATCCCCAGGGAGCTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACAC TACAGTGGTCGATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGACAGGTCTACCCAA GCAGACCCCGGGGAGCAGCGGGGACTTCATCATCCGAACCAGCAAGCTGCTGATCCCGGTGAC CTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCC ACTGGAAATCATGAGCCGAAATCATGGGATCTTCCCATTCACTCTGGAGATCTTCAAGGACAA TGAGTTTGAAGAGCCTTACCGGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTT CCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCATCCGGGATGGCTGTGTTTCAGA TGACTCGGTAAAGCAGTACACATCCCGGGATCACCTAGCAAAGCACTTCCAGGTCCCTGTCTT CAAGTTTGTGGGCAAAGACCACAAGGAAGTGTTTCTGCACTGCCGGGTTCTTGTCTGTGGAGT GTTGGACGAGCGTTCCCGCTGTGCCCAGGGTTGCCACCGGCGAATGCGTCGTGGGGCAGGAGG AGAGGACTCAGCCGGTCTACAGGGCCAGACGCTAACAGGCGGCCCGATCCGCATCGACTGGGA GGAC CCCCCACCGCCCTCTAAGAACATCTGCCAACAGCTGGGTTCAGACTTCACACTGTGAGTTCAG ACTCCCAGCACCAACTCACTCTGATTCTGGTCCATTCAGTGGGCACAGGTCACAGCACTGCTG AACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCACCCAGAA AGACACTCACCCCATTTCCTTTCTTTCCTACACTTAAATACCTCGTGTATGGTGCAATC AGACCACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAG TTACTGAAATTATGACTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTT GAAATTTCAATTCAAATGCAGACTAATTATAGGGAATTTGGAAGTGTATCAATAAAACAGTAT ATAATTT

FIGURE 328

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFT GMAGDAMPTFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPG GYYVYRLTKPSVCFHVYCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQN NGGCSEICVNLKNSYRCECGVGRVLRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRG LVLSEDNHTCQVPVLCKSNAIEVNIPRELVGGLELFLTNTSCRGVSNGTHVNILFSLKTCGTV VDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVTCEFPRLYTISEGYVPNLRNSPLE IMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHVSGLESLVESCFATPT SKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRVLVCGVLD ERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein: Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

FIGURE 329

GAGAGAGGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCT TGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAGACC $\tt GGGAGGATCACAGAGCCAGC{\color{red} \underline{\textbf{ATG}}} TTACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCG$ ATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGATCCCCA TCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGGTGATTC TGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAGCTGTGTG ACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTCCCCGAAG GGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCA CAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTA GGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGATGTTGTTGAAA TCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCC AGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGACAAACAGCACGTCT GTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGCAGCCCACTGCTTCAGGAAACATA CCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAGCTTCCCATCCCTGG CTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACATCGCCC TTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGA ATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGT GCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGG AAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCCCCTGATGTACCAATCTGACCAGT GGCATGTGGTGGGCATCGTTAGCTGGGGGCTATGGCTGCGGGGGCCCCGAGCACCCCAGGAGTAT ${ t ACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCTGGAAGGCTGAGCTG}{ t TAA}{ t TGCT}$ GCTGCCCCTTTGCAGTGCTGGGAGCCGCTTCCTTCCTGCCCTGCCCACCTGGGGATCCCCCAA AGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCATTTCTT GGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAG TCAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCACT GAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATGGAAGC AGGCTGTCTTGTAAAAGCCCAGATCACTGTGGGCTGGAGAGGAGAAGGAAAGGGTCTGCGCCA GCCCTGTCCGTCTTCACCCATCCCCAAGCCTACTAGAGCAAGAAACCAGTTGTAATATAAAAT GCACTGCCCTACTGTTGGTATGACTACCGTTACCTACTGTTGTCATTGTTATTACAGCTATGG

FIGURE 330

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47644, pI: 5.18, NX(S/T): 2

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFL CGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSA CFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCL ACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWK VRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTP ATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTC QGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 331

 ${\tt TCCAGGACTTTGGCCATCTATAAAGCTTGGCA} {\tt ATG} {\tt AGAAATAAGAAATTCTCAAGGAGGACG}$ AGCTCTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAATCA ATGTTCCAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGGTGGTCATCTACC TGATCCTGCTCACCGCTGGCGCTGGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGCGCGGC TCCGGGTCCTGGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGTCCTTCT CCTTGCTGCAGTCAGCACACCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTGCAAGTCC TGCAGGCCCAACTCACCTGGGTCCGCGTCAGCCATGAGCACTTGCTGCAGCGGGTAGACAACT TCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTCTTCAAGGTC ACAAGGGGCCATGGCATGCCTGGTGCCCCTGGCCCGGGGACCACCTGCTGAGAAGGGAG CCAAGGGGGCTATGGGACGAGATGGAGCAACAGGCCCCTCGGGACCCCAAGGCCCACCGGGAG TCAAGGGAGAGGCGGCCTCCAAGGACCCCAGGGTGCTCCAGGGAAGCAAGGAGCCACTGGCA CCCCAGGACCCCAAGGAGAGAGGCGACAAAGGCGATGGGGGTCTCATTGGCCCAAAAGGGG AAACTGGAACTAAGGGAGAGAAAGGAGACCTGGGTCTCCCAGGAAGCAAAGGGGACAGGGGCA TGAAAGGAGATGCAGGGGTCATGGGGGCCTCCTGGAGCCCAGGGGAGTAAAGGTGACTTCGGGA GGCCAGGCCCACCAGGTTTGGCTGGTTTTCCTGGAGCTAAAGGAGATCAAGGACAACCTGGAC TGCAGGGTGTTCCGGGCCCTCCTGGTGCAGTGGGACACCCAGGTGCCAAGGGTGAGCCTGGCA GTGCTGGCTCCCCTGGGCGAGCAGGACTTCCAGGGAGCCCCGGGAGTCCAGGAGCCACAGGCC TGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGACAGCAAGGAAGAAAAGGAGAATCAGGAG TTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGGAGCCCAGGGCTGGCAGGTCCCAAGGGAG CCCCTGGACAAGCTGGCCAGAAGGGAGCCAGGGAGTGAAAGGATCTTCTGGGGAGCAAGGAG TAAAGGGAGAAAAAGGTGAAAGAGGTGAAAACTCAGTGTCCGTCAGGATTGTCGGCAGTAGTA ACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGGGACAATTTGCGATGACGAGTGGC AAGTGGGAGCTGGCACTGGGCAGATCTGGCTGGATAATGTTCAGTGTCGGGGCACGGAGAGTA CCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCATGACTGCAGCCACGAGGAGGACGCAG CTCATATGTGGGAAGGCAGAGGATCTCTGAGGAGTTCCCTGGGGACAACTGAGCAGCCTCTGG AGAGGGGCCATTAATAAAGCTCAACATCATTGA

FIGURE 332

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGLL VVQVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVRVS HEHLLQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRDGAT GPSGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGEKGDL GLPGSKGDRGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPGPPGAV GHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPAGVKGEQ GSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGRAEVYYSG TWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLWSCTKNSWG HHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-qlycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

FIGURE 333

CCATCCCCCAGGTCCAGCCCTCAGTGCTGTCCCATCCAGCAGGGCTACCCTGAAGCTCTGGC TGCAGCCCTCCGTCCAGTGGGCAGGCGGCTTCATCCCTCCTTTCTCTCCCAAAGCCCAACTG CTGTCACTGCATGCTCTGCCAAGGAGGAGGGAACTGCAGTGACAGCAGGAGTAAGAGTGGGAG GCAGGACAGAGCTGGGACACAGGTATGGAGAGGGGGTTCAGCGAGCCTAGAGAGGGCAGACTA TCAGGGTGCCGGCGGTGAGAATCCAGGGAGAGGGGGGAAACAGAAGAGGGGCAGAAGACCGG ${\tt GGCACTTGTGGGTTGCAGAGCCCCTCAGCC} {\color{red} {\bf ATG}} {\tt TTGGGAGCCAAGCCACACTGGCTACCAGGT}$ CAGGAGGGGTCAGAGCCCGTCCTGCTGGAGGGGGGGGTGCCTGGTGGTCTGTGAGCCTGGCCGA GCTGCTGCAGGGGGGCCCGGGGGAGCAGCCCTGGGAGAGGCACCCCCTGGGCGAGTGGCATTT GCTGCGGTCCGAAGCCACCACCATGAGCCAGCAGGGGAAACCGGCAATGGCACCAGTGGGGCC ATCTACTTCGACCAGGTCCTGGTGAACGAGGGCGGTGGCTTTGACCGGGCCTCTGGCTCCTTC GTAGCCCCTGTCCGGGTGTCTACAGCTTCCGGTTCCATGTGGTGAAGGTGTACAACCGCCAA ACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTCATCTCAGCCTTTGCCAATGATCCT GACGTGACCCGGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTTGGACCCTGGGGACCGAGTG TCTCTGCGCCTGCGTCGGGGGAATCTACTGGGTGGTTGGAAATACTCAAGTTTCTCTGGCTTC ${\tt CTCATCTTCCCTCTC} \underline{{\tt TGA}}{\tt GGACCCAAGTCTTTCAAGCACAAGAATCCAGCCCCTGACAACTTT}$ CCACCTCTTTGCATGGGACCCTGTGCCAAACACCCCAAGTTTAAGAGAAGAGTAGAGCTGTGGC ATCTCCAGACCAGGCCTTTCCACCCACCCACCCCAGTTACCCTCCCAGCCACCTGCTGCATC TGCGGCCTCTGCTCCTCCGGTTCCCCCACCCCAGCTTCCTGCTCAATGCTGATCAGGGACAGG TGGCGCAGGTGAGCCTGACAGGCCCCCACAGGAGCCCAGATGGACAAGCCTCAGCGTACCCTG CCAGCACCGTATGGGCTAGGGTGGGAGGCTCAGCCACAGGCAGAAGGGTGGGAAGGGCCTGGA GTCTGTGGCTGGTGAGGAAGGAAGGAGGGTGTATTGTCTAGACTGAACATGGTACACATTCTG CATGTATAGCAGAGCAGCAGCAGGTAGCAATCCTGGCTGTCCTTCTATGCTGGATCCCAGAT GGACTCTGGCCCTTACCTCCCCACCTGAGATTAGGGTGAGTGTTTTGCTCTGGCTGAGAGCA GAGCTGAGAGCAGGTATACAGAGCTGGAAGTGGACCATGGAAAACATCGATAACCATGCATCC TCTTGCTTGGCCACCTCCTGAAACTGCTCCACCTTTGAAGTTTGAACTTTAGTCCCTCCACAC TCTGACTGCTCCCTCCCCAGCTCTCTCACTGAGTTATCTTCACTGTACCTGTTCCAG CATATCCCCACTATCTCTCTTTTCTCCTGATCTGTGCTGTCTTATTCTCCTCCTTAGGCTTCCT ATTACCTGGGATTCCATGATTCATTCCTTCAGACCCTCTCCTGCCAGTATGCTAAACCCTCCC TCTCTCTTTCTTATCCCGCTGTCCCATTGGCCCAGCCTGGATGAATCTATCAATAAAACAACT AGAGAATGGTGGTCAGTGAGACACTATAGAATTACTAAGGAGAAGATGCCTCTGGAGTTTGGA AATTAAAAA

FIGURE 334

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180
><subunit 1 of 1, 205 aa, 1 stop
><MW: 21521, pI: 7.07, NX(S/T): 1
MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGAA
LGEAPPGRVAFAAVRSHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVYSF
RFHVVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRGNLL
GGWKYSSFSGFLIFPL

Signal peptide:

amino acids 1-32

FIGURE 335

GCTGTTTCTCTCGCGCCACCACTGGCCGCCGGCCGCAGCTCCAGGTGTCCTAGCCGCCCAGCC TCGACGCCGTCCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGGCCGGGGCATGG GACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACCGGAG CCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACTGGATC CAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAAGGTGGA CTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTGCTCTACTT CACTTGGCTGGTGTTTGACTGGAACACCCCAAGAAAGGTGGCAGGAGGTCACAGTGGGTCCG AAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGAAGACACACAA CCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATGGGCCTGGGTGC CTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGGCATACGGCCTTA CCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACCTGATGTCTGGAGG TATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAATGGGAGTGGCAATGC TATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCCTGGCAAGAATGCAGT CACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATGGAGCTGACCTGGTTCC CATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTCGAGGAGGGCTCCTGGGG CCGATGGGTCCAGAAGAGTTCCAGAAATACATTGGTTTCGCCCCATGCATCTTCCATGGTCG AGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCAAGCCCATCACCACTGTTGT GGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAGCAAGACATCGACCTGTACCA CACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCACAAGACCAAGTTCGGCCTCCC ${\tt GGAGACTGAGGTCCTGGAGGTGAAC} {\color{blue}{\textbf{TGA}}} {\color{blue}{\textbf{GCCAGCCTTCGGGGCCAATTCCCTGGAGGAACCAG}}$ CTGCAAATCACTTTTTTGCTCTGTAAATTTGGAAGTGTCATGGGTGTCTGTGGGTTATTTAAA

FIGURE 336

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184

><subunit 1 of 1, 388 aa, 1 stop

><MW: 43831, pI: 9.64, NX(S/T): 3

MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRSK VEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRSQW VRNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIR PYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSMPGKN AVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFAPCIFH GRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTKFG LPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

340/615

FIGURE 337

GGGCGCGGATGGGGGCCGGGGCGGGCGCGCCCCACTCGCTGAGGCCCCGACGCAGGGCCGGGCCGGGCCCA GCGGCTGCAGGCTTGTCCAGCCGGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGCTGACCTTGTGCCTTGGA CGGCTGTCCTCAGCGAGGGGCCGTGCACCCGCTCCTGAGCAGCGCC ATG GGCCTGCTGGCCTTCCTGAAGACCCAGTTCGTGCTGCACCTGCTGGTCGGCTTTGTCTTCGTGGTGAGTGGTCTGGTCATCAACTTCGTCCAGCTGTGCAC ACTGGTCATGCTGCTGGAGTGGTGCTCCTGCACGGAGTGTACACTGTTCACGGACCAGGCCACGGTAGAGCGCTT GCGCTTCGGAGTGCTGGGGAGCTCCAAGGTCCTCGCTAAGAAGGAGCTGCTCTACGTGCCCCTCATCGGCTGGAC GCGCCTGTCGGACTACCCCGAGTACATGTGGTTTCTCCTGTACTGCGAGGGGACGCGCTTCACGGAGACCAAGCA CTTCACCACCGCAGTCAAGTGCCTCCGGGGGACAGTCGCAGCTGTCTATGATGTAACCCTGAACTTCAGAGGAAA CAAGAACCCGTCCCTGCTGGGGATCCTCTACGGGAAGAAGTACGAGGCGGACATGTGCGTGAGGAGATTTCCTCT GGAAGACATCCCGCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAGGAGAAGGACGCGCTCCA GGAGATATATAATCAGAAGGGCATGTTTCCAGGGGAGCAGTTTAAGCCTGCCCGGAGGCCGTGGACCCTCCTGAA $\tt CTTCCTGTCCTGGGCCACCATTCTCCTGTCTCCCCTCTTCAGTTTTGTCTTGGGCGTCTTTGCCAGCGGATCACC$ TCTCCTGATCCTGACTTTCTTGGGGTTTGTGGGAGCAGCTTCCTTTGGAGTTCGCAGACTGATAGGAGAATCGCT ${\tt TGAACCTGGGAGGTGGAGATTGCAG{\color{red} TGA}{\color{blue} GCTGAGATGGCATCACTGTACTCCAGCCTAGGCAACAGAGCAAGACT}}$ CAGTCTCAAAAAAAAAAAAAAAAAAAAAAAACCCCAGAAATTCTGGAGTTGAACTGTGTAGTTACTGACATGAAAA ATTCACTAGAGGCTGAACAGCAGATTTGAGCAGGCAGAAAAAAATCAGCAAGCTTGAAGATGGTACCTTGAGATT TTTCAGGCTAATGAAAAAAGAATGAAGGAAAATTAACAGCCTCAGAGACCCATGGTGCACCGTCACACAAATCAA GTAACCTACCCACTCAGGAAGCTCAGTGAACTCCAATGAGGATGAATATCAGAGATCCACACCTAGATATTTCAT AATCAAAGTGTCAAATGACAAAGAATCTTGAAAGCAGCAAGAGATGAGCAACTTATCTTGTTCAAAGGATCTTTG ATCAGATTAACAGCTCATTTCTCCTCAGAAATCATGGGAGCCAGGAGATAGTGGGATGAACACTGTTGAAGGCAA AACCTTCAACTGTAATTATTGGACTTTTGAGTCTTAGATGGTCCTGACCTCTTTGTCTTCAGGGACAGTTTTTCA $\verb|TTACACCTGTAATCCCAGCACTTTGGGAGGCCCAGACGGGTGGATCATTTGGGGTCAGGCTGATCTCAAACTCCT|$ GAGTTCAGGTGATCTGCCCGCCTCAGCCTCCCAAAGTGTTGTGATTGCAGGCGTGAGCCACTGCGCCTGGCCGGA ATTTCTTTTTAAGGCTGAATGATGGGGGCCAGGCACGATGGCTCACGCCTGTGATCCCAAGTAGCTTGGATTGTA AACATGCACCACCATGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGTGTTAGCCAGGCTGGTCTCGATCTCCT GACCTCAAGTGACCACCTGCCTCAGCCTCCCAAAGTACTGGGATTACAGGCGTGAGCCACTGTGCCTGGCCTTGA GCATCTTGTGATGTGCTTATTGGCCATTTGTATATCTTCTATCTTTTGGGGGAAATGTCTGTTCAAGTCCTTTG CAGTGGCACAGTCTTGGCTCACTGCAGCCTCGACCTCCTGGGCTGCAGTGATCCTCCCACCTCAGCCTCCCTTGT GAGGGGCCGGGTGTGGCCCCAACTACCAGGGAGACTGAAGTGGGAGGATCGCTTGGGCATGAGAAGTCGAGGCTG CAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCCTGGACAACAGAGTGAGACCCTGTCTC

341/615

FIGURE 338

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213

><subunit 1 of 1, 368 aa, 1 stop

><MW: 42550, pI: 9.11, NX(S/T): 1

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLVM LLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKKEL LYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHRVSM EVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKKYEAD MCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLLNFLSWA TILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ

Important features of the protein: Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 339

TACGCCTGATACGGCCCTGGGTTAGAAGGGAAGGGAAGATAAACTTTTATACAAATGGGGATA GCTGGGGTCTGAGACCTGCTTCCTCAGTAAAATTCCTGGGATCTGCCTATACCTTCTTTTCTC TAACCTGGCATACCCTGCTTAAAGCCTCTCAGGGCTTCTCTCTGTTCTTAGGATCAAAGTATT TAGAGCTACAAGAGCCCTCATGGTCTGGCCCCTGCCCCCTGGCCAGCTTCATTGTACATGTG $\tt GTGTTCTCTTGTCGTTCCTG{\color{red}{\textbf{TAA}}} TGTGGTATGCCATGGGGTCTTTGCACAAGCCTTTCCTCTT$ TGGCTGGACACTGTTCCCTGCCCCCCATACTCTTCCTACTTAATATGTAGTCATCCTGCAG ATTTCAATTCTAACATCATTTTCTCCAGGGATCCTGGCCTGACAGAATCTCATCTTGTTTAAT GCTCTCATAAGACCACTTGTTTCCCTTTTTGCAGCACTTGCCACTCAGTTGTATCTTTATGTGC GTTTGTGGTTGTATGGGTTGTGTCTCTCCCAGAATGCCCAGCTCTGAGCTGCGTGAGGGTC CTAAATGGAGGAGGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCAGATGGTGTAGGGCC CAGCATTGTAAATTCACACGTTGACTGTGCTTGTGAATTATCTGGGGATGCAGGTCCTGATTC AGTAGGCCCAGGTTGGGCATCTCTAACAAACTCCCACGTGATGCTGATGCTGGTCCTATGAAC TATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGGCATGGTGGCTCACACCTATGATCCCA GCACTTTGGGAGGCTGAGGCAGGCTGATCACCTGGAGTCAGGATTTCAAGACTAGCCTGGCCA ACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTGGGCATGGTGGCACATGCCT GTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTGAACCTGGGAGGCGGAGGTTG CAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGACAGAGTGAGACTCTATGTCCAA AAAAAAAAA

FIGURE 340

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234

><subunit 1 of 1, 143 aa, 1 stop ><MW: 15624, pI: 9.58, NX(S/T): 0

MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSCGVGGRQAGLRLIRPWVRRE GKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWSGP CPPGQLHCTCGVLLSFL

Important features of the protein:

Signal peptide:

amino acids 1-28

344/615

FIGURE 341

FIGURE 342

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71269

><subunit 1 of 1, 220 aa, 1 stop

><MW: 24075, pI: 7.67, NX(S/T): 3

MAGLSRGSARALLAALLASTLLALLVSPARGRGGRDHGDWDEASRLPPLPPREDAARVAR FVTHVSDWGALATISTLEAVRGRPFADVLSLSDGPPGAGSGVPYFYLSPLQLSVSNLQEN PYATLTMTLAQTNFCKKHGFDPQSPLCVHIMLSGTVTKVNETEMDIAKHSLFIRHPEMKT WPSSHNWFFAKLNITNIWVLDYFGGPKIVTPEEYYNVTVQ

Important features of the protein:

Transmembrane domain:

Amino acids 11-29

N-glycosylation sites:

Amino acids 160-164;193-197;216-220

N-myristoylation sites:

Amino acids 3-9;7-13;69-75;97-103

346/615

FIGURE 343

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGAT TATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAG ${\tt GAGTTGAACTGCTAGGATTCTGACT} {\color{red} {\bf ATG}} {\tt CTGTGGTGGCTAGTGCTCCTACTCCTACCTACATT}$ AAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACT GTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGT TGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGG $\tt CTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGGAT{\color{red} {\bf TGA}}{CAAGCCCGAAGATTTCATAGGCG{\color{red} {\bf GCGAAGATTTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGG{\color{red} {\bf GCGAAGATTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGG{\color{red} {\bf GCGAAGATTCATAGGCG{\color{red} {\bf GCGAAGATTCATAGGCG{\bf GCGAAGATTCATAGGCCG{\color{red} {\bf GCGAAGATTCATAGGCG{\bf G$ ATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGG CATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGGAACCCAGAGCT TGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGA TGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGC ATTCAGTGGACATGTGGGGGAAGGGCTGCCGATGGCGCATGACACACTCGGGACTCACCTCTG GGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTGAAGGGCAACTGCAGGC GGAAGGAGCAAAGTGACCATTTCTCCTCCCCTCCTTCCCTCTGAGAGGCCCTCCTATGT CCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATGGCTCAGTGTTGGCCCAGGA GGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCTGTGCGAACACGGAAATGCCTCCAGT AAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGGCTCAATTTAAATCATGTTCTAGT AATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTTCAAATGATCTCCAAGGGCCCT TATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAATCCAAACCTAAGAACCAGGTGCA TTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACATTTTGGGAGGCCGAGGCG GGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCTGTCTC TACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGTGTGTGCCTGTATCCCAGCTACTCGGG AGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGTGAAGGAGGCTGAGACAGGAGAATCACT GTAA

FIGURE 344

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277

><subunit 1 of 1, 109 aa, 1 stop ><MW: 11822, pI: 8.63, NX(S/T): 0 MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTAS PCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD .

Signal peptide:

amino acids 1-15

FIGURE 345

CCGCCGCCGCAGCCGCTACCGCCGCTGCAGCCGCTTTCCGCGGCCTGGGCCTCTCGCCGTCAG CATGCCACACGCCTTCAAGCCCGGGGACTTGGTGTTCGCTAAGATGAAGGGCTACCCTCACTG CTTTTTCTTTGGCACACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCCTACGACAA ATGTAAAGACAAGTACGGGAAGCCCAACAAGAGGAAAAGGCTTCAATGAAGGGCTGTGGGAAGAT CCAGAACAACCCCCACGCCAGCTACAGCGCCCCTCCGCCAGTGAGCTCCTCCGACAGCGAGGC CCCCGAGGCCAACCCCGCCGACGCAGTGACGCTGACGAGGACGATGAGGACCGGGGGGTCAT GGCCGTCACAGCGGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCAGACTCAGA CAAGAGTAGCGACAACAGTGGCCTGAAGAGGGAAGACGCCTGCGCTAAAGATGTCGGTCTCGAA ACGAGCCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCGAAGAGGAGAA CTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCTGAGAAGAAAGC CTCCGACTCCGACTCCAAGGCCGATTCGGACGGGGCCAAGCCTGAGCCGGTGGCCATGGCGCG GTCGGCGTCTCCTCTCTTCCTCCTCCTCCTCCGACTCCGATGTGTCTGTGAAGAAGCC TCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCCGAAGCCGCGAGGGCGGAAACCGAAGCC TGAACGGCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGGTGGACCGCATCAGTGA GTGGAAGCGGCGGACGAGGCGCGGAGGCGCGAGCTGGAGGCCCGGCGGCGAGAGCAGGA CGACCGCGGGGAGGCTGAGCGGGGGCAGCGGCAGCAGCGGGGACGAGCTCAGGGAGGACGA TGAGCCCGTCAAGAAGCGGGGACGCAAGGGCCGGGGCCGGGGTCCCCCGTCCTCTGACTC CGAGCCCGAGGCCGAGCTGGAGAGAGAGGCCAAGAAATCAGCGAAGAAGCCGCAGTCCTCAAG CACAGAGCCCGCCAGGAAACCTGGCCAGAAGGAGAAGAGTGCGGCCCGAGGAGAAGCAACA AGCCAAGCCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCCGAGGGCTTCTCGATGGACAGGAA GGTAGAGAAGAAGAAGAGCCCTCCGTGGAGGAGAAGCTGCAGAAGCTGCACAGTGAGATCAA GTTTGCCCTAAAGGTCGACAGCCCGGACGTGAAGAGGTGCCTGAATGCCCTAGAGGGAGCTGGG AACCCTGCAGGTGACCTCTCAGATCCTCCAGAAGAACACAGACGTGGTGGCCACCTTGAAGAA GATTCGCCGTTACAAAGCGAACAAGGACGTAATGGAGAAGGCAGCAGAAGTCTATACCCGGCT CAAGTCGCGGGTCCTCGGCCCAAAGATCGAGGCGGTGCAGAAAGTGAACAAGGCTGGGATGGA GAAGGAGAAGGCCGAGGAGAAGCTGGCCGGGGAGGAGCTGGCCGGGGAGGAGGCCCCCCAGGA GAAGGCGGAGGACAAGCCCAGCACCGATCTCTCAGCCCCAGTGAATGGCGAGGCCACATCACA GAAGGGGGAGAGCGCAGAGGACAAGGAGCACGAGGAGGGTCGGGACTCGGAGGAGGGGCCAAG GTGTGGCTCCTCTGAAGACCTGCACGACAGCGTACGGGAGGGTCCCGACCTGGACAGGCCTGG GAGCGACCGCAGGAGCGCGAGAGGGCACGGGGGGACTCGGAGGCCCTGGACGAGGAGAGCC**TG A**GCCGCGGCAGCCAGGCCCAGCCCCGAGCTCAGGCTGCCCCTCTCCTTCCCCGGCTC GCAGGAGAGCAGAGAACTGTGGGGAACGCTGTGCTGTTTGTATTTGTTCCCTTGGGTT TTTTTTTCCTGCCTAATTTCTGTGATTTCCAACCAACATGAAATGACTATAAACGGTTTTTTA ATGA

FIGURE 346

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286

><subunit 1 of 1, 671 aa, 1 stop

><MW: 74317, pI: 7.61; NX(S/T): 0

MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFGTHETAFLGPKDLFPYDK
CKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPPVSSSDSEAPEANPADGSDADEDDEDRGVM
AVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSDLDQASVSPSEEEN
SESSSESEKTSDQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDSKADSDGAKPEPVAMAR
SASSSSSSSSSSDSDVSVKKPPRGRKPAEKPLPKPRGRKPKPERPPSSSSSDSDSDEVDRISE
WKRRDEARRRELEARRRREQEEELRRLREQEKEEKERRERADRGEAERGSGGSSGDELREDD
EPVKKRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRVRPEEKQQ
AKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRCLNALEELG
TLQVTSQILQKNTDVVATLKKIRRYKANKDVMEKAAEVYTRLKSRVLGPKIEAVQKVNKAGME
KEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHEEGRDSEEGPR
CGSSEDLHDSVREGPDLDRPGSDRQERERARGDSEALDEES

Signal peptide:

amino acids 1-13

FIGURE 347

GTTGGTTCTCCTGGATCTTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATATTAAATTA ACACCATTTGAAAGAGAACATTGTTTTCATCATGAATGCTAATAAAGATGAAAGACTTAAAGCCAGAAGCCAAGA TTTTCACCTTTTTCCTGCTTTGATGATGCTAAGCATGACCATGTTGTTTCTTCCAGTCACTGGCACTTTGAAGCA AAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTTCAAATAGCTGTATTCCCTTTTTGGGTTCATC CTTTCTACTCAGTCTGGTTGACTTAAACAAAAATTTTAAGAAGATTTATTGGCCTGCTGCAAAGGAACGGGTGGA ATTATGTAAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCTATAACAA AACTCACATATATGTGTGTGGAACTGGAGCATTTCATCCAATATGTGGGTATATTGATCTTGGAGTCTACAAGGA GGATATTATATTCAAACTAGACACACATAATTTGGAGTCTGGCAGACTGAAATGTCCTTTCGATCCTCAGCAGCC TTTTGCTTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTTCTGATTTCCTTGGCAAAGATACTGCATT CACTCGATCCCTTGGGCCTACTCATGACCACCACTACATCAGAACTGACATTTCAGAGCACTACTGGCTCAATGG AGCAAAATTTATTGGAACTTTCTTCATACCAGACACCTACAATCCAGATGATGATAAAATATATTTCTTCTTTCG TGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTTCTCGAGTTGGAAGAGTTTGTAAGAATGATGT AGGAGGACAACGCAGCCTGATAAACAAGTGGACGACTTTTCTTAAGGCCAGACTGATTTGCTCAATTCCTGGAAG AGTATATGGAGTCTTTACTACAACCAGCTCCATCTTCAAAGGCTCTGCTGTTTGTGTATAGCATGGCTGACAT CAGAGCAGTTTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTGCAGTATGATGGGAGAAAT TCCTTATCCACGGCCTGGTACATGTCCAAGCAAAACCTATGACCCACTGATTAAGTCCACCCGAGATTTTCCAGA TGATGTCATCAGTTTCATAAAGCGGCACTCTGTGATGTATAAGTCCGTATACCCAGTTGCAGGAGGACCAACGTT CAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGTGGATCATGTCATTGCAGAAGATGGCCAGTACGA TGTAATGTTTCTTGGAACAGACATTGGAACTGTCCTCAAAGTTGTCAGCATTTCAAAGGAAAAGTGGAATATGGA GCAACAATTGTACATTGGTTCCCGAGATGGATTAGTTCAGCTCTCCTTGCACAGATGCGACACTTATGGGAAAGC TTCTAAAAGGAGAGCTAGACGCCAAGATGTAAAATATGGCGACCCAATCACCCAGTGCTGGGACATCGAAGACAG CATTAGTCATGAAACTGCTGATGAAAAGGTGATTTTTGGCATTGAATTTAACTCAACCTTTCTGGAATGTATACC TAAATCCCAACAAGCAACTATTAAATGGTATATCCAGAGGTCAGGGGATGAGCATCGAGAGGAGTTGAAGCCCGA TGAAAGAATCATCAAAACGGAATATGGGCTACTGATTCGAAGTTTGCAGAAGAAGGATTCTGGGATGTATTACTG CAAAGCCCAGGAGCACACTTTCATCCACACCATAGTGAAGCTGACTTTGAATGTCATTGAGAATGAACAGATGGA AAATACCCAGAGGGCAGAGCATGAGGAGGGGGCAGGTCAAGGATCTATTGGCTGAGTCACGGTTGAGATACAAAGA CTACATCCAAATCCTTAGCAGCCCAAACTTCAGCCTCGACCAGTACTGCGAACAGATGTGGCACAGGGAGAAGCG GAGACAGAGAAACAAGGGGGGCCCAAAGTGGAAGCACATGCAGGAAATGAAGAAGAAACGAAATCGAAGACATCA ${\tt CAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCACG} {\color{red}{\textbf{TAG}}} {\color{blue}{\textbf{TTTTCTACTTAATTTAAAGAAAAGAATTCCTTACC}}$ TATAAAAACATTGCCTTCTGTTTTGTATATCCCTTATAGTAATTCATAAATGCTTCCCATGGAGTTTTGCTAAGG CACAAGACAATAATCTGAATAAGACAATATGTGATGAATATAAGAAAGGGCAAAAAATTCATTTGAACCAGTTTT CCAAGAACAAATCTTGCACAAGCAAAGTATAAGAATTATCCTAAAAATAGGGGGTTTACAGTTGTAAATGTTTTA TGTTTTGAGTTTTGGAATTTATTGTCATGTAAATAGTTGAGCCTAAGCCAAGCCCCGAATTTGATAGTGTATAAGGT GCTTTATTCCCTCGAATGTCCATTAAGCATGGAATTTACCATGCAGTTGTGCTATGTTCTTATGAACAGATATAT CATTCCTATTGAGAACCAGCTACCTTGTGGTAGGGAATAAGAGGTCAGACACAAATTAAGACAACTCCCATTATC TGGCCACTGGGGTTAAATTTAGTGTACTACAACATTGATTTACTGAAGGGCACTAATGTTTCCCCCAGGATTTCT ATTGACTAGTCAGGAGTAACAGGTTCACAGAGAGAAGTTGGTGCTTAGTTATGTGTTTTTTAGAGTATATACTAA GCTCTACAGGGACAGAATGCTTAATAAATACTTTAATAAGATATGGGAAAATATTTTAATAAAACAAGGAAAACA TAATGATGTATAATGCATCCTGATGGGAAGGCATGCAGATGGGATTTGTTAGAAGACAGAAGGAAAGACAGCCAT AAATTCTGGCTTTGGGGAAAACTCATATCCCCATGAAAAGGAAGAACAATCACAAATAAAGTGAGAGTAATGTAA AACTGCTAGCAAAATCTGAGGAAACATAAATTCTTCTGAAGAATCATAGGAAGAGTAGACATTTTATTATAACC CTTTATTCTCTCTCTGTATATTGGATTTTGTGATTATATTTGAGTGAATAGGAGAAAACAATATATAACACACAGA AACGGAAAGGGTTAAATTAACTCTTTGACATCTTCACTCAACCTTTTCTCATTGCTGAGTTAATCTGTTGTAATT GTAGTATTGTTTTTGTAATTTAACAATAAATAAGCCTGCTACATGT

351/615

FIGURE 348

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA71883

><subunit 1 of 1, 777 aa, 1 stop

><MW: 89651, pI: 7.97, NX(S/T): 3

MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNIPRLKLTYKDLLLSNSCIPFLG
SSEGLDFQTLLLDEERGRLLLGAKDHIFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDANT
ECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFDPQQ
PFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDHHYIRTDISEHYWLNGAKFIGTFFIPDT
YNPDDDKIYFFFRESSQEGSTSDKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLICSIPGS
DGADTYFDELQDIYLLPTRDERNPVVYGVFTTTSSIFKGSAVCVYSMADIRAVFNGPYAHKES
ADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPVAGGPTFK
RINVDYRLTQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSISKEKWNMEEVVLEELQIFKHSS
IILNMELSLKQQQLYIGSRDGLVQLSLHRCDTYGKACADCCLARDPYCAWDGNACSRYAPTSK
RRARRQDVKYGDPITQCWDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQATIKWYIQRSG
DEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLNVIENEQMENTQ
RAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRNKGGPKWKHMQEM
KKKRNRRHHRDLDELPRAVAT

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 349

CAACCTCCCAGGTAAGCTGGGAGCAAGACCTGAAGCTGTTTCTTCAGGAGCCTGGTGTATTTTCCCCCACCCCAC GTGGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAGAACCATGGGCATC GGGTGAGGTGGGGGGCACAGGTGTCATGTGCACCTTCTTGTCTCAGCAAGAAGAGCTGAGAGAGGGGATCTTGG AGCCATTGAGGGTGTCATGGAGCTACAGAGGGGAAAGGTATTTTAAGGTAACAGTGTGGCACAATAGTTAA GAGCACAGTTTTTGGAGCTAGACCGACATAGGTTCAAATTCTCTTCTGTTGCTTCCTAGTTCTGTAGCCCCAGGT AGGGAAGATTAAATGACATAATGTATGTGTATTTCCACCCACCCTGTTCTCTGCCTTCCCAACCAGGTACTGCAACGACTGGAGCAGAGGCGGCAGCAGGCTT CAGAGCGGGAGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGCACAGGTGAGCC TGACCCAGGCCCAGGATGAGGTGGAGCAGGAGCGGCGCTCAGTGAGGCTCGGCTGTCCCAGAGGGACCTCTCTC AAGACAGTGACAATCCCTGCGGGGCAGAGCCCACAGCATTCCTGGCACAGGCCCTGTACAGCTACACCGGACAGA GTGCAGAGGAGCTGAGCTTCCCTGAGGGGGCACTCATCCGTCTGCTGCCCCGGGCCCAAGATGGAGTAGATGACG ACATGATGGCACCTCGACTCAGGCCGATGCGTCCACCACCTCCCCGGCCGACTAAAGCCCCGGATCCTGGCCACC $\texttt{CAGATCCCCTCACC} \underline{\textbf{TGA}} \texttt{AGGCCAGGGAAGCCTTGACCCCCAGTGATGCTGCTGTCCCTATCTTCAAGCTGTCAGA$ CCACACCATCAATGATCCAGAGCAACACAGCCAAAAGCTGGAATCGCCCTTATTTCCACCCTCACCTCCAAGGGT GGAAACTTGCCCCTTCCCATTTCTAGAGCTGGAACCCACTCCTTTTTTTCCCATTGTTCTATCATCTCTAGGACC GGAACTACTTCTCTCTCTGTCATGACCCTATCTAGGGTGGTGAAATGCCTGAAATCTCTGGGGCTGGAAACC ${\tt CCAGGGTCACTGGGGTTGGGCTGGGGAGGGAGGGAGCCTTGGGAATCAGGAGCTGGAGCCAGGATGCGAAGCAG}$ $\verb|CTGTAATGGTCTGAGCGGATTTATTGACAATGAATAAAGGGCACGAAGGCCAGGGCCAGGGCCTGGGCCTCTTGTG|\\$ CTAAGAGGGCAGGGGCCTACGGTGCTATTGCTTTAGGGGCCCACCACGGGCAGGGGCCTGCTCCCAGCTGCCAC TGAGGGGCTGTGACCTCTCCTGAGGCCCCCAGCCTGAGACTGTGCAACTCCAGGTGGAAGTAGAGCTGGTCCCTC AGCTGGGGGGCAGTGCTGTCCAGTGGAGGGGAGGGCTTTCACGCCCACCCCCCTGGCCCTGCCAGCTGGTAG TCCATCAGCACAATGAAGGAGACTTGGAGAAGAGGAAGAATAACACTGTTGCTTCCTGTTCAAGCTGTGCCAGC TTTTCCCCTGGGGCTCCAGGACCTTCCCTACCTCCACCACCAAACCAAGGGATTTATAGCAAAGGCTAAGCCTGC AGTTTACTCTGGGGGTTCAGGGAGCCGAAAGGCTTAAATAGTTTAAGTAGGTGATGGGAAGATGAGATTACCTCA TTTAGGGCTCAGGCAGACTCACCTCACATACTCCCTGCTCCCTGTGGTAGAGACACCTGAGAGAAAGGGGAGGGG TCAACAATGAGAGCCAGGAGTAGGTCCTATCAGTGCCCCCCAGAGTAGAGAGCAATAAGAGCCCAGCCCAGTGC AGTCCCGGCTGTGTTTTCCTACCTGGTGATCAGAAGTGTCTGGTTTGCTTGGCTGCCCATTTGCCTCTTGAGTGG GCAGCCCTGGGCTTGGGCCCCTCCCTCCGGCCCTCAGTGTTGGCTCTGCAGAAGCTCTGGGGGTTCCCTTCAAGTG TCTCAGGGGGCAGCCTCTCCATGGCAGGCATCCCTGCCTTGGGCTGCCCTCCCCAGACCCCTGACCACCCCCTG GGTCCTGTCCCCCACCAGAGCCCCAGCTCCTGTCTGTGGGGGAGCCATCACGGTGTTCGTGCAGTCCATAGCGCT TCTCAATGTGTGTCACCCGGAACCTGGGAGGGGAGGGAACACTGGGGTTTAGGACCACAACTCAGAGGCTGCTTG GCCCTCCCCTCTGACCAGGGACATCCTGAGTTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGGAGGCCTTCTC AGATTGTGGGGCACATTGTGTAGCCTGACTTCTGCTGGAGCTCCCAGTCCAGGAGGAAAGAGCCCAAGGCCCACTT TTGGGATCAGGTGCCTGATCACTGGGCCCCCTACCTCAGCCCCCCTTTCCCTGGAGCACCTGCCCCACCTGCCCA GCCTCTTGCTGCGGCTGCAATGGATGCAAGGGGCTGCAGAGCCCAGGTGCACTGTGTGATGATGGGAGGGGGCTC TCATGTTTTGTTTCTTACGTTCTTTCAGCATGCTCCTTAAAACCCCCAGAAGCCCCAATTTCCCCAAGCCCCATTT TTTCTTGTCTTTATCTAATAAACTCAATATTAAG

FIGURE 350

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401

><subunit 1 of 1, 370 aa, 1 stop

><MW: 40685, pI: 4.53, NX(S/T): 0

MQLAKYQSHSKSCPTVFPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRAQ VSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELSDF EECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEWVKA RNQHGEVGFVPERYLNFPDLSLPESSQDSDNPCGAEPTAFLAQALYSYTGQSAEELSFPEGAL IRLLPRAQDGVDDGFWRGEFGGRVGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPSFSPPA PTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPPAKAPDPGHPDPLT

354/615

FIGURE 351A

GAAGGCAGAGACAGGGCAGAGAAGCGGCCCAGACAGAGTCCTACAGAGGGAGAGGCCAGAGAAGCTGCAGA AGACACAGGCAGGGAGACAAAGATCCAGGAAAGGAGGGCTCAGGAGGAGAGTTTGGAGAAGCCAGACCCCTGG GCACCTCTCCCAAGCCCAAGGACTAAGTTTTCTCCATTTCCTTTAACGGTCCTCAGCCCTTCTGAAAACTTTGCC TCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGGAGGAGCTTTCCAAAGCTAGGGTGTGGAGGACTTGGT GCCCTAGACGGCCTCAGTCCCTCCCAGCTGCAGTACCAGTGCCATCCCAGACAGGCTCGCATCCCGGGAGGGG GCTGCTTCTGCTACTGCTGCCTCTCTCCTGCCCTCAGCCCGGCTGGCCAGCCCCCTCCCCCGGGAGGAGGAGAT GGCCTTTGGGGAGACGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCAGGTCGAGGGGCTGACAGTGCAGTA GGAGTCGGTGGCATCTCTGCACTGGGATGGGGGAGCCCTGTTAGGCGTGTTACAATATCGGGGGGGCTGAACTCCA CCTCCAGCCCCTGGAGGGAGGCACCCCTAACTCTGCTGGGGGACCTGGGGCTCACATCCTACGCCGGAAGAGTCC TGCCAGCGGTCAAGGTCCCATGTGCAACGTCAAGGCTCCTCTTGGAAGCCCCAGCCCCAGACCCCGAAGAGCCAA GCGCTTTGCTTCACTGAGTAGATTTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGCCGCATTCCACGGTGC GGGGCTAAAGCGCTACCTGCTAACAGTGATGGCAGCAGCCAAGGCCTTCAAGCACCCAAGCATCCGCAATCC TGTCAGCTTGGTGGTGACTCGGCTAGTGATCCTGGGGTCAGGCGAGGAGGGGCCCCAAGTGGGGCCCAGTGCTGC CACCGTCTGTGACCCGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGGCTCCAGTCAGCCTTCACTGCTGCTCA TGAACTGGGTCATGTCTTCAACATGCTCCATGACAACTCCAAGCCATGCATCAGTTTGAATGGGCCTTTGAGCAC CTCTCGCCATGTCATGGCCCCTGTGATGGCTCATGTGGATCCTGAGGAGCCCTGGTCCCCCTGCAGTGCCCGCTT CATCACTGACTTCCTGGACAATGGCTATGGGCACTGTCTCTTAGACAAACCAGAGGCTCCATTGCATCTGCCTGT GACTTTCCCTGGCAAGGACTATGATGCTGACCGCCAGTGCCAGCTGACCTTCGGGCCCGACTCACGCCATTGTCC ACAGCTGCCGCCCCTGTGCTGCCCTCTGGTGCTCTGGCCACCTCAATGGCCATGCCATGTGCCAGACCAAACA GCTCCAGGACTTCAATATTCCACAGGCTGGTGGCTGGGGTCCTTGGGGACCATGGGGTGACTGCTCTCGGACCTG TGGGGGTGGTGTCCAGTTCTCCTCCCGAGACTGCACGAGGCCTGTCCCCCGGAATGGTGGCAAGTACTGTGAGGG CCGCCGTACCCGCTCCGCTCCTGCAACACTGAGGACTGCCCAACTGGCTCAGCCCTGACCTTCCGCGAGGAGCA GTGTGCTGCCTACAACCACCGCACCGACCTCTTCAAGAGCTTCCCAGGGCCCATGGACTGGGTTCCTCGCTACAC AGGCGTGGCCCCCAGGACCAGTGCAAACTCACCTGCCAGGCCCGGGCACTGGGCTACTACTATGTGCTGGAGCC ACGGGTGGTAGATGGGACCCCCTGTTCCCCGGACAGCTCCTCGGTCTGTGTCCAGGGCCGATGCATCCATGCTGG CTGTGATCGCATCATTGGCTCCAAGAAGAAGTTTGACAAGTGCATGGTGTGCGGAGGGGACGGTTCTGGTTGCAG CAAGCAGTCAGGCTCCTTCAGGAAATTCAGGTACGGATACAACAATGTGGTCACTATCCCCGCGGGGGCCACCCA CATTCTTGTCCGGCAGCAGGAAACCCTGGCCACCGGAGCATCTACTTGGCCCTGAAGCTGCCAGATGGCTCCTA TGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCCACAGATGTGGTACTGCCTGGGGCAGTCAGCTTGCGCTA ${\tt CAGCGGGGCCACTGCAGCCTCAGAGACACTGTCAGGCCATGGGCCACTGGCCCAGCCTTTGACACTGCAAGTCCT}$ AGTGGCTGGCAACCCCCAGGACACACGCCTCCGATACAGCTTCTTCGTGCCCCGGCCGACCCCTTCAACGCCACG CCCCACTCCCCAGGACTGGCTGCACCGAAGAGCACAGATTCTGGAGATCCTTCGGCGGCGCCCCTGGGCGGCAG CAGTTGTATTTATTTAGTATTTATTCACTTTTATTTAGCACCAGGGAAGGGGACAAGGACTAGGGTCCTGGGGAA CCTGACCCCTGACCCCTCATAGCCCTCACCCTGGGGCTAGGAAATCCAGGGTGGTGGTAAAGTATAAGTGGTG TTCCTGAATTTTATTTTTTGGGAAAAGAAAAGTCAAGGGTAGGGTGGGCCTTCAGGGAGTGAGGGATTATCTTTT GCACAATCTCGGCTCACTGCATCCTCCGCCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTG GGATTACAGGCTCCTGCCACCACGCCCAGCTAATTTTTGTTTTGTTTTGTTTTGGAGACAGAGTCTCGCTATTGTC ACCAGGGCTGGAATGATTTCAGCTCACTGCAACCTTCGCCACCTGGGTTCCAGCAATTCTCCTGCCTCAGCCTCC ${\tt CATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTTAGGTGATCCACTCGCCTTCATCTCCCAAAGTGCTGGGATTCCACTCGCCTTCATCTCCCAAAGTGCTGGGATTCCACTCGCCTTCATCTCCCAAAGTGCTGGGATTCCACTCGCCTTCATCTCCCAAAGTGCTGGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGATTCCACTCGCCTTCATCTCCCCAAAGTTGCTGGATTCCACTCGCCTTCACTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCTCACTCACTCTCACTCTCACTCTCACTCTCACTCACTCTCAC$ ACAGGCGTGAGCCACCGTGCCTGGCCACCCCAACTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGT $\tt TGGCCAGGCTGCTCTGAACTCCTGACCTCAGGTAATCGACCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGG$

FIGURE 351B

356/615

FIGURE 352

></usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA73492

><subunit 1 of 1, 837 aa, 1 stop

><MW: 90167, pI: 8.39, NX(S/T): 1

MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLLASLLPSARLASPLPREEEIVF
PEKLNGSVLPGSGAPARLLCRLQAFGETLLLELEQDSGVQVEGLTVQYLGQAPELLGGAEPGT
YLTGTINGDPESVASLHWDGGALLGVLQYRGAELHLQPLEGGTPNSAGGPGAHILRRKSPASG
QGPMCNVKAPLGSPSPRPRRAKRFASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAAAAKA
FKHPSIRNPVSLVVTRLVILGSGEEGPQVGPSAAQTLRSFCAWQRGLNTPEDSGPDHFDTAIL
FTRQDLCGVSTCDTLGMADVGTVCDPARSCAIVEDDGLQSAFTAAHELGHVFNMLHDNSKPCI
SLNGPLSTSRHVMAPVMAHVDPEEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHLPVTFPGK
DYDADRQCQLTFGPDSRHCPQLPPPCAALWCSGHLNGHAMCQTKHSPWADGTPCGPAQACMGG
RCLHMDQLQDFNIPQAGGWGPWGPWGDCSRTCGGGVQFSSRDCTRPVPRNGGKYCEGRRTRFR
SCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMDWVPRYTGVAPQDQCKLTCQARALGY
YYVLEPRVVDGTPCSPDSSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDGSGCSKQSGSFR
KFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTLMPSPTDVVLPGA
VSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPTPSTPRPTPQDWLH
RRAQILEILRRRPWAGRK

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

357/615

FIGURE 353

GCGGAACTGGCTCCGGCTGGCACCTGAGGAGCGGCGTGACCCCGAGGGCCCAGGGAGCTGCCC $\mathsf{GGCTGGCCTAGGCAGCCGCACCATCGCCAGCAGGCCGTGCAGCTTCTGGGCTTCCTGC$ TCAGCTTCCTGGGCATGGTGGGCACGTTGATCACCACCATCCTGCCGCACTGGCGGAGGACAG TGTGGCACAGCACAGGCATCTACCAGTGCCAGATCTACCGATCCCTGCTGGCGCTGCCCCAAG GCGCCGTCATCGGGATGAAGTGCACGCGCTGCGCCCAAGGGCCACCCCGCCAAGACCACCTTTG CCATCCTCGGCGGCACCCTCTTCATCCTGGCCGGCCTCCTGTGCATGGTGGCCGTCTCCTGGA CCACCAACGACGTGGTGCAGAACTTCTACAACCCGCTGCTGCCCAGCGGCATGAAGTTTGAGA TTGGCCAGGCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGTGGCACCCTGC TTTGCCTGTCCTGCCAGGACGAGGCACCCTACAGGCCCTACCAGGCCCCGCCCAGGGCCACCA CGACCACTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAGACAATCGGGCCC $\tt CCTCAGTGACCTCGGCCACGCACAGCGGGTACAGGCTGAACGACTACGTG{\color{red} {\bf TGA}}{\bf G}{\color{blue} {\bf TCCCCACAG}}$ TTCCAGCACAAAGTTTACTTCTGGGCAATTTTTGTATCCAAGGAAATAATGTGAATGCGAGGA AATGTCTTTAGAGCACAGGGACAGAGGGGGGAAATAAGAGGAGGAGAAAGCTCTCTATACCAAA GACTGAAAAAAAATCCTGTCTGTTTTTGTATTTATTATATATTTTATGTGGGTGATTTGA TAACAAGTTTAATATAAAGTGACTTGGGAGTTTGGTCAGTGGGGTTTGGTTTGTGATCCAGGAA

F.,

358/615

a .

FIGURE 354

MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIYQ CQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTLFI LAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQDEA PYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 355

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGC AGGCGGCAGGGCGGCCGGCCAGGATCATGCCCACCACCACGCCAAGTGGCGGCGTTCCTCC TGTCCATCCTGGGGCTGGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCCAGG ACCTGTACGACACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGA GGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGCCATGC TGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCCTGGTAT CCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCCAACATGA CACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGTGTCTGTGT TTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTG GGATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCG CTGGAGGCCTCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGGCACCAG AAGAAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTG GAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCCAAAAACAAGAAGATATACGATGGAG GTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTATGTGTAATGCTCTA AGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCACCCAAAAAAACAAGGAGATCCCA TCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCTCGATTTCATCTTTG GAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACAGCTGAG TTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTTAAATATAA ACTCCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAG AAAACTTTTGAAAGGAAAGAGTAGACCCAAAGATGTTATTTTCTGCTGTTTGAATTTTTGTCTC CCCACCCCAACTTGGCTAGTAATAAACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATT TGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTGTGATCTTAAAAGTTACCAAACCA AAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTGTTGACATCTTCTTATTACAGC AACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGTCGCGGGTCAGAAA TTGTCCCTAGATGAATGAGAAAATTATTTTTTTTAATTTAAGTCCTAAATATAGTTAAAATAA ATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAG AAGGAAATGAAAAAATAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAA GTACAAATTCCATGAAAAGCTCACACCTGTAATCCTAGCACTTTGGGAGGCTGAGGAAGG ATCACTTGAGCCCAGAAGTTCGAGACTAGCCTGGGCAACATGGAGAAGCCCTGTCTCTACAAA ATACAGAGAGAAAAATCAGCCAGTCATGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAG GCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGTTGGGGCTGCAGTGAGCCATGATCACACC ACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

360/615

FIGURE 356

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734

><subunit 1 of 1, 261 aa, 1 stop

><MW: 27856, pI: 8.50, NX(S/T): 1

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTEC RPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFI VSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGG VMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQ SYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

361/615

FIGURE 357

GGAAAAACTGTTCTCTTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGG AGTCCAGCTGGCTAAAACTCATCCCAGAGGATAATCGCAACCCATGCCTTAGAAATCGCTGGG $\tt CTGTTTCTTGGTGGTGTTGGAATGGTGGGCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGA$ GTGTCGCCTTCATTGAAAACAACATCGTGGTTTTTTGAAAACTTCTGGGAAGGACTGTGGATG AATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGGCTCTT TCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCT TTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAAGGTGAAG GCTCACATTCTGCTGACGGCTGGAATCATCTTCATCATCACGGGCATGGTGGTGCTCATCCCT GTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAATGTTGCCCAA AAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCTGATTGTTGGA GGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACAGATACTCGATA CCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCGTCTACTCC ${\tt AGAAGTCAGTATGTG} {\color{red}{\textbf{TAG}}} {\color{blue}{\textbf{TTGTGTATGTTTTTTTAACTTTACTATAAAGCCATGCAAATGACA}}$ AAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGC CTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAA TGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGG TTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTT ACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCA CATAGAGACATGCTTATATGGTTTTATTTAAAATGAAATGCCAGTCCATTACACTGAATAAAT AGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTGAAGAAGGTTACTATTAATTG TTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGAAGATTAAAATGAAGGCTTTAA TCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTGTTTTTTAGCCTAGGAGTTAGAA TTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCAAACTGCTTTTCCAGGGCTATACTC AGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAAGTGAAAATATTTTT GTCTTGGTTTTCATTTGCTTACCAAAAAAACAACAACAAAAAAAGTTGTCCTTTGAGAACTTC $\verb|CTTCTTGTACCATTTCTGTTTAGTTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATT|\\$ GAATGTGTTCTATTTGCTTTATACATTTATATTAATAAATTGTACATTTTTCTAATT

362/615

FIGURE 358

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735

><subunit 1 of 1, 225 aa, 1 stop

><MW: 24845, pI: 9.07, NX(S/T): 0

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQ CKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIF IITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCN EKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

363/615

FIGURE 359

364/615

FIGURE 360

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742

><subunit 1 of 1, 148 aa, 1 stop

><MW: 17183, pI: 8.77, NX(S/T): 0

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKEFLG SLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYDED SAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

365/615

FIGURE 361

FIGURE 362

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746

><subunit 1 of 1, 148 aa, 1 stop

><MW: 16896, pI: 6.05, NX(S/T): 1

MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKIN ENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMNNW VEWRLHCSGRPLSYWLTGCRLR

Signal peptide:

amino acids 1-18

FIGURE 363

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGGCTGTCAGCCCTGCTTGACTGAGAACCCAC CAGCTCATCCCAGACACCTCATAGCAACCTATTTATACAAAGGGGGAAAGAACACCTGAGCA TTGAAGTCCCTGTGAATGGGCTTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGACTTGG GGTGAAACTTGGGTCCTGTGGTTTTCTGATTGTAAGTGGAAGCAGGTCTTGCACACGCTGTTG GCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTTCCAGGTGGAACAAGCAACCCAT GTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTAACTTGAACATGACCTGTTGC ATTTGGCAAGTTCTAGCAACATGCTCCTAAGGAAGCGATACAGGCACAGACCATGCAGACTCC AGTTCCTCCTGCTCCTGATGCTGGGATGCGTCCTGATGATGGTGGCGATGTTGCACCCTC ACCGCCTGGACTTTGGGGAATCCCAGGATTGGGTACTGGAAGCTGAGGATGAGGGTGAAGAGT ACAGCCCTCTGGAGGGCCTGCCACCCTTTATCTCACTGCGGGAGGATCAGCTGCTGGTGGCCG TGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTGGGAGCTACCGCCTCA TCAAGCAGCCAAGGAGGCAGGATAAGGAAGCCCCCAAAGAGGGACTGGGGGGCTGATGAGGACG GGGAGGTGTCTGAAGAAGAGGAGTTGACCCCGTTCAGCCTGGACCCACGTGGCCTCCAGGAGG CACTCAGTGCCCGCATCCCCCTCCAGAGGGCTCTGCCCGAGGTGCGGCACCCACTGTGTCTGC AGCAGCACCCTCAGGACAGCCTGCCCACAGCCAGCGTCATCCTCTGTTTCCATGATGAGGCCT GGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGCCCAGGGCCTTCCTGAAGG AGATCATCCTCGTGGACGACCTCAGCCAGCAAGGACAACTCAAGTCTGCTCTCAGCGAATATG TGGCCAGGCTGGAGGGGTGAAGTTACTCAGGAGCAACAAGAGGCTGGGTGCCATCAGGGCCC GGATGCTGGGGGCCACCAGAGCCACCGGGGATGTGCTCGTCTTCATGGATGCCCACTGCGAGT GCCACCCAGGCTGGCTGGAGCCCCTCCTCAGCAGAATAGCTGGTGACAGGAGCCGAGTGGTAT CTCCGGTGATAGATGTGATTGACTGGAAGACTTTCCAGTATTACCCCTCAAAGGACCTGCAGC GTGGGGTGTTGGACTGGAAGCTGGATTTCCACTGGGAACCTTTGCCAGAGCATGTGAGGAAGG CCCTCCAGTCCCCCATAAGCCCCATCAGGAGCCCTGTGGTGCCCGGAGAGGTGGTGGCCATGG ACAGACATTACTTCCAAAACACTGGAGCGTATGACTCTCTTATGTCGCTGCGAGGTGGTGAAA ACCTCGAACTGTCTTTCAAGGCCTGGCTCTGTGGGGCTCTGTTGAAATCCTTCCCTGCTCTC GGGTAGGACACATCTACCAAAATCAGGATTCCCATTCCCCCCTCGACCAGGAGGCCACCCTGA GGAACAGGGTTCGCATTGCTGAGACCTGGCTGGGGTCATTCAAAGAAACCTTCTACAAGCATA GCCCAGAGGCCTTCTCCTTGAGCAAGGCTGAGAAGCCAGACTGCATGGAACGCTTGCAGCTGC AAAGGAGACTGGGTTGTCGGACATTCCACTGGTTTCTGGCTAATGTCTACCCTGAGCTGTACC CATCTGAACCCAGGCCCAGTTTCTCTGGAAAGCTCCACAACACTGGACTTGGGCTCTGTGCAG ACTGCCAGGCAGAAGGGGACATCCTGGGCTGTCCCATGGTGTTGGCTCCTTGCAGTGACAGCC GGCAGCAACAGTACCTGCAGCACCAGCAGGAAGGAGATTCACTTTGGCAGCCCACAGCACC TGTGCTTTGCTGTCAGGCAGGAGCAGGTGATTCTTCAGAACTGCACGGAGGAAGGCCTGGCCA GCATGGAAGCTGTGGTGCAAGAAAACAATAAAGATTTGTACCTGCGTCCGTGTGATGGAAAAG CCCGCCAGCAGTGGCGATTTGACCAGATAAATGCTGTGGATGAACGA**TGA**ATGTCAATGTCAG AAGGAAAAGAGAATTTTGGCCATCAAAATCCAGCTCCAAGTGAACGTAAAGAGCTTATATATT TCATGAAGCTGATCCTTTTGTGTGTGTGCTCCTTGTGTTAGGAGAGAAAAAAGCTCTATGAAA

FIGURE 364

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760

><subunit 1 of 1, 639 aa, 1 stop

><MW: 73063, pI: 6.84, NX(S/T): 2

MLLRKRYRHRPCRLQFLLLLLMLGCVLMMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFGE SQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRRGGSYRLIKQPRRQ DKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHPQDS LPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVARLEGV KLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSPVIDVI DWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMDRHYFQN TGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATLRNRVRIA ETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFHWFLANVYPELYPSEPRPS FSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSPQHLCFAVRQ EQVILQNCTEEGLAIHQQHWDFQENGMIVHILSGKCMEAVVQENNKDLYLRPCDGKARQQWRFDQINAVDER

Signal peptide:

amino acids 1-28

369/615

FIGURE 365

GGAGAGAGGCGCGCGGTGAAAGGCGCATTGATGCAGCCTGCGGCGCCTCGGAGCGCGCGG AGCCAGACGCTGACCACGTTCCTCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGC $\mathtt{AGCCGGGAGCC}$ TGCTCCTGCTGCTGCAGCTGCCCGCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAA AGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAG CAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCC CAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCT GGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAA TTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCT CACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTG ATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTG GATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAAGGAGATGCTTCTA CTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAA**TAA**ATGCTTTAATTTT CATTTGCTACCTCTTTTTTTATTATGCCTTGGAATGGTTCACTTAAATGACATTTTAAATAAG TTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGACCAAAGTGTGATTTCA TAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTATAATTTGGAATATTGTTG TGGTCTTTTGTTTTTCTCTTAGTATAGCATTTTTAAAAAAATATAAAAAGCTACCAATCTTTG

370/615

FIGURE 366

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVP GRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAEC TFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTI NIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 367

372/615

FIGURE 368

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398

><subunit 1 of 1, 121 aa, 1 stop

><MW: 12073, pI: 4.11, NX(S/T): 0

 ${\tt MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTGP}$

PAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 116-119

N-myristoylation site.

amino acids 91-96

FIGURE 369

GCTGTCTGCACTGCCACAGCAACTTCTCCCAAGAAGTTCTCCTTCTACCGCCACCATGTGAACT TCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGCGCTGCTCACCGACTGGAGCGACG ACACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGACCAAG TGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGGAAGATGTACTTCCCCGGGT ATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGCACCTCATCCAGAACGCCATCA TAGCACCTGAAGGATCAATGCCATCACCCCGCGGGGACCTCCCCTAAGTAGCCCCCAGAGGCG CTGGGAGTGTTGCCACCGCCCTCCCCTGAAGTTTGCTCCATCTCACGCTGGGGGTCAACCTGG GGACCCCTTCCCTCCGGGCCATGGACACACATACATGAAAACCAGGCCGCATCGACTGTCAGC ACCGCTGTGGCATCTTCCAGTACGAGACCATCTCCTGCAACAACTGCACAGACTCGCACGTCG TGTCCCTGGGGTCCCAGGCTCTCCTTGGAGGGGGCTCCCCGCCTTCCACCTGGCTGTCATCGG GTAGGGCGGGCCGTGGGTTCAGGGGCCCACCACTTCCAAGCCTGTGTCCCACAGGTCCTCGG CCTCCTCAAACCAACACAGGCAGTGTGTGTGTGTGAGCACCTCGTGGGTGAGTATGTGTGGGG CACAGGCTGGCTCCCTCAGCTCCCACGTCCTAGAGGGGCTCCCGAGGAGGTGGAACCTCAACC CAGCTCTGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAGGTCTCCGACCCTCAGCTGG AGGCGGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCCACCCCATCCCAGGTCTGTGG TCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCCATGGAGGGGCTGACTGCCCCA CATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGCCCTGACCTGGACTTCAGGGGGA GGGGGTAAAGGGAGAGGAGGGGGGCTAGGGGGGTCCTCTAGATCAGTGGGGGCACTGCAGGT GGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCACCTCTGCAACCACACCCATGTGGTG GTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGGCCTGGGACACACAGAGCCACCCCGG CCTTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGAAGGGGTGCTCGTAAGCCAACACCAGC GTGCCGCGGCCTGCACACCCTTCGGACATCCCAGGCACGAGGGTGTCGTGGATGTGGCCACAC GGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCCCCGCAGCCTGGTATCGCCAGCCTTAAGGT GTCTGGAGCCCCACACTTGGCCAACCTGACCTTGGAAGATGCTGCTGAGTGTCTCAAGCAGC GCCTGTCACTCTGGAGCTGGGCTGCTGCTCCTCAGGACCCCCTCTCCGACCCCGGACAGAGC CGCCTGGGCAGGTCCGCAGAGCTGCGGGATGTGATTAAAGTCCCTGATGTTTCTC

FIGURE 370

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399</pre>

><subunit 1 of 1, 157 aa, 1 stop

><MW: 17681, pI: 7.65, NX(S/T): 1

 ${\tt MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMKE} $$ LHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIERHL $$ APGSWGGQQLSREGPSLAPEGSMPSPRGDLP$

Signal peptide:

amino acids 1-15

FIGURE 371

 ${\tt GCCGGCTGTGCAGAGACGCC}$ ${\tt ATG}$ ${\tt TACCGGCTCCTGTCAGCAGTGACTGCCCGGGCTGCCCCCC}$ CCGGGGGCTTGGCCTCAAGCTGCGGACGACGCGGGGTCCATCAGCGCGCCGGGCTGCCGCCTC TCGGCCACGGCTGGGGCCTCGGGCTGGGGCTGGGGCTGGCGCTCGGGGTGAAGCTGG CAGGTGGGCTGAGGGCGCGCGCCCGGCGCGCCCCGGCCCCCGACCCTGAGGCGTCGC CTCTGGCCGAGCCGCCACAGGAGCAGTCCCTCGCCCCGTGGTCTCCGCAGACCCCGGCGCCCCC CCTGCTCCAGGTGCTTCGCCAGAGCCATCGAGAGCAGCCGCGACCTGCTGCACAGGATCAAGG ATGAGGTGGGCGCACCGGGCATAGTGGTTGGAGTTTCTGTAGATGGAAAAGAAGTCTGGTCAG AAGGTTTAGGTTATGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACAGTTATGCGAA TTGCTAGCATCAGCAAAAGTCTCACCATGGTTGCTCTTGCCAAATTGTGGGAAGCAGGGAAAC TGGATCTTGATATTCCAGTACAACATTATGTTCCCGAATTCCCAGAAAAAGAATATGAAGGTG AAAAGGTTTCTGTCACAACAAGATTACTGATTTCCCCATTTAAGTGGAATTCGTCATTATGAAA AGGACATAAAAAAGGTGAAAGAAGAGAAAGCTTATAAAGCCTTGAAGATGATGAAAGAGAAATG TTGCATTTGAGCAAGAAAAGAAGGCAAAAGTAATGAAAAGAATGATTTTACTAAATTTAAAA CAGAGCAGGAGAATGAAGCCAAATGCCGGAATTCAAAACCTGGCAAGAAAAAGAATGATTTTG AACAAGGCGAATTATATTTGAGAGAAAAGTTTGAAAATTCAATTGAATCCCTAAGATTATTTA AAAATGATCCTTTGTTCTTCAAACCTGGTAGTCAGTTTTTGTATTCAACTTTTTGGCTATACCC TACTGGCAGCCATAGTAGAGAGAGCTTCAGGATGTAAATATTTGGACTATATGCAGAAAATAT TCCATGACTTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGCCAGTGATTTACAATAGAG ${\tt CAAGG}{f TAA}$ ATGAATACCTTCTGCTGTGTCTAGCTATATCGCATCTTAACACTATTTTATTAAT TAAAAGTCAAATTTTCTTTGTTTCCATTCCAAAATCAACCTGCCACATTTTGGGAGCTTTTCT ACATGTCTGTTTTCTCATCTGTAAAGTGAAGGAAGTAAAACATGTTTATAAAGTAAAAAAA

FIGURE 372

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA76522

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41221, pI: 8.54, NX(S/T): 0

MYRLLSAVTARAAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLGLALGVKLAGGLRGA
APAQSPAAPDPEASPLAEPPQEQSLAPWSPQTPAPPCSRCFARAIESSRDLLHRIKDEVGAPG
IVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLTMVALAKLWEAGKLDLDIPV
QHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAFEQEK
EGKSNEKNDFTKFKTEQENEAKCRNSKPGKKKNDFEQGELYLREKFENSIESLRLFKNDPLFF
KPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

377/615

FIGURE 373

GACTACGGGGAGAGAGAGACCAGGACAGCTGCTGAGACCTCTAAGAAGTCCAGATACTAA GAGCAAAGATGTTTCAAACTGGGGGCCTCATTGTCTTCTACGGGCTGTTAGCCCAGACCATGG $\tt CCCAGTTTGGAGGCCTGCCCGTGCCCCTGGACCAGACCCTGCCCTTGAATGTGAATCCAGCCCTG$ $\verb|CCCTTGAGTCCCACAGGTCTTGCAGGAAGCTTGACAAATGCCCTCAGCAATGGCCTGTCT|\\$ GGGGGCCTGTTGGGCATTCTGGAAAACCTTCCGCTCCTGGACATCCTGAAGCCTGGAGGAGGT ACTTCTGGTGGCCTCCTTGGGGGACTGCTTGGAAAAGTGACGTCAGTGATTCCTGGCCTGAAC AACATCATTGACATAAAGGTCACTGACCCCCAGCTGCTGGAACTTGGCCTTGTGCAGAGCCCT GATGGCCACCGTCTCTATGTCACCATCCCTCTCGGCATAAAGCTCCAAGTGAATACGCCCCTG GTCGGTGCAAGTCTGTTGAGGCTGGCTGTGAAGCTGGACATCACTGCAGAAATCTTAGCTGTG AGAGATAAGCAGGAGGATCCACCTGGTCCTTGGTGACTGCACCCATTCCCCTGGAAGCCTG CAAATTTCTCTGCTTGATGGACTTGGCCCCCTCCCCATTCAAGGTCTTCTGGACAGCCTCACA GGGATCTTGAATAAAGTCCTGCCTGAGTTGGTTCAGGGCAACGTGTGCCCTCTGGTCAATGAG GTTCTCAGAGGCTTGGACATCACCCTGGTGCATGACATTGTTAACATGCTGATCCACGGACTA $\texttt{CAGTTTGTCATCAAGGTC} \underline{\textbf{TAA}} \texttt{GCCTTCCAGGAAGGGGCTGGCCTCTGCTGAGCTGCTTCCCAG}$ TGCTCACAGATGGCTGGCCCATGTGCTGGAAGATGACACAGTTGCCTTCTCTCCGAGGAACCT GCCCCTCTCCTTTCCCACCAGGCGTGTGTAACATCCCATGTGCCTCACCTAATAAAATGGCT CTTCTTATGCA

378/615

FIGURE 374

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76533

><subunit 1 of 1, 256 aa, 1 stop

><MW: 26713, pI: 5.62, NX(S/T): 0

MFQTGGLIVFYGLLAQTMAQFGGLPVPLDQTLPLNVNPALPLSPTGLAGSLTNALSNGLL SGGLLGILENLPLLDILKPGGGTSGGLLGGLLGKVTSVIPGLNNIIDIKVTDPQLLELGL VQSPDGHRLYVTIPLGIKLQVNTPLVGASLLRLAVKLDITAEILAVRDKQERIHLVLGDC THSPGSLQISLLDGLGPLPIQGLLDSLTGILNKVLPELVQGNVCPLVNEVLRGLDITLVH DIVNMLIHGLQFVIKV

Important features of the protein:

Signal peptide:

Amino acids 1-19

Transmembrane domain:

Amino acids 79-97

N-myristoylation sites:

Amino acids 46-52;49-55;58-64;62-68;66-72;80-86;81-87; 82-88;85-91;86-92;89-95;202-208;233-239

FIGURE 375

AGTTCTGAGAAAGAAGGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTTT AAAT**ATG**TCAAGATCCAGACTTTTCAGTGTCACCTCAGCGATCTCAACGATAGGGATCTTGTG TTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGTAAA TTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTTTGGTGGC TTCTCACAGGCGCACCATGGCAGTTTTTGCTGTTGGAGACTTGGACTCTATTTATGGGACAGA AGCAGCTGTGAGTCCAACTGTTGGAATTCACCTTCAAACTCAAACCCCTGACCTATATCCTGT TCCTGCTCCATGTTTTGGCCCTTTAGGCTCCCCACCTCCATATGAAGAAATTGTAAAAACAAC $\mathtt{C} \mathbf{TGA} \mathtt{TTTTAGGTGTGGATTATCAATTTAAAGTATTAACGACATCTGTAATTCCAAAACATCAA$ ATTTAGGAATAGTTATTTCAGTTGTTGGAAATGTCCAGAGATCTATTCATATAGTCTGAGGAA GGACAATTCGACAAAAGAATGGATGTTGGAAAAAATTTTTGGTCATGGAGATGTTTAAATAGTA AAGTAGCAGGCTTTTGATGTGTCACTGCTGTATCATACTTTTATGCTACACAACCAAATTAAT GCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTTTCCATCACATTTA GGACTCCACTGCAGTATACAGCACCACTTTTCTGCTTTAAACTCTTTCCTAGCATGGGGTCC ATAAAAATTATTATAATTTAACAATAGCCCAAGCCGAGAATCCAACATGTCCAGAACCAGAAC CAGAAAGATAGTATTTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAAGAAAAGTTTGGAGTTG AAGGGTAAAGGATAAATGAAGAGGAAAAGGAAAAGATTACAAGTCTCAGCAAAAACAAGAGGT TTTATGCCCCAACCTGAAGAGAAGAAATTGTAGATAGAAGGTGAAGGAGATTGCTGAAGATA GGCCTCCATAGTCCATAGTGTTTCTCTGGAGCCTCAGGGCTTGGCATTTATTGCAGCATCATG CTAAGAACCTTCGGCATAGGTATCTGTTCCCATGAGGACTGCAGAAGTAGCAATGAGACATCT

380/615

FIGURE 376

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303

><subunit 1 of 1, 146 aa, 1 stop

><MW: 16116, pI: 4.99, NX(S/T): 0

MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCVNYNDQHPNGWYIWILLLLVLVAA LLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYPVP APCFGPLGSPPPYEEIVKTT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 377

CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCAGGAGAGCGGCCGGGCGTCAGCTCCTCG ACCCCGTGTCGGGCTAGTCCAGCGAGGCGGACGGGCGGGGGGCGCATGGCCCATGGCCCGGC ATGGAGCGGTGGCGCGCCTGGCGCTGGTGACGGGGGCCTCGGGGGGCATCGGCGCCC GTGGCCCGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAAC ATCGAGGAGCTGGCTGAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGA TGTGACCTATCAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGC GGTGTAGACATCTGCATCAACAATGCTGGCTTGGCCCGGCCTGACACCCTGCTCTCAGGCAGC ACCAGTGGTTGGAAGGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAA GCCTACCAGTCCATGAAGGAGCGGAATGTGGACGATGGGCACATCATTAACATCAATAGCATG TCTGGCCACCGAGTGTTACCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTC ACTGCGCTGACAGAGGGACTGAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACG TGCATCTCTCCAGGTGTGGTGGAGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAG AAGGCAGCTGCCACCTATGAGCAAATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTT ATCTACGTCCTCAGCACCCCCGCACACCTCCAGATTGGAGACATCCAGATGAGGCCCACGGAG $\texttt{CAGGTGACC} \underline{\textbf{TAG}} \texttt{TGACTGTGGGAGCTCCTCCTTCCCTCCCCACCCTTCATGGCTTGCCTCCTG}$ CCTCTGGATTTTAGGTGTTGATTTCTGGATCACGGGATACCACTTCCTGTCCACACCCCGACC AGGGGCTAGAAATTTGTTTGAGATTTTTATATCATCTTGTCAAATTGCTTCAGTTGTAAATG TGAAAAATGGGCTGGGGAAAGGAGGTGTCCCTAATTGTTTACTTGTTAACTTGTTCTTG TGCCCCTGGGCACTTGGCCTTTGTCTGCTCTCAGTGTCTTCCCTTTGACATGGGAAAGGAGTT GTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTGTGGCTCAGGGCTGGGGTGGCAGAGG ACTGCACCCTCTCCCCCTTATCTATCTCCTTCTCGGCTCCCCAGCCCAGTCTTGGCTTCTTGT CCCCTCTGGGGTCATCCTCCACTCTGACTCTGACTATGGCAGCAGAACACCAGGGCCTGGC

382/615

FIGURE 378

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGT LIPYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALS ICTREAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQT HIRATCISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQ MRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

FIGURE 379

TCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCCGCTTATTAGC TCTCGCTGCGTCGCCCCGGCTCAGAAGCTCCGTGGCGGCGGCGACCGTGACGAGAAGCCCACG GCCAGCTCAGTTCTCTTCTACTTTGGGAGAGAGAGAAAGTCAGATGCCCCTTTTAAACTCCCT CTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATACAACCTTGCTGAAGATGAA CAAGTTACCATTTTTCAGTCAAGTCTGTTTGTTTGCTTCTTCAGAAATCTCTCAGAAATCTC AAGAAAAATATGTCCCAGAAATTGAGTTTACTGTTGCTTGTATTTGGACTCATTTGGGGATT GATGTTACTGCACTATACTTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTTACGTGAGCA AATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGAACACAGTGGA TGTCGAGAACGGTGCTTCTATGGCAGGATATGCGGATCTGAAAAGAACAATTGCTGTCCTTCT GGATGACATTTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATATTGTTGTGAATGG CTCAGCAGCCAACACCAACACGTACTAGTGGGAATTTGGTGCCAGTAACCACAAATAAAAG AACGAATGTCTCGGGCAGTATCAGA**TAG**CAGTTGAAAATCACCTTGTGCTGCTCCATCCACTG TGGATTATATCCTATGGCAGAAAAGCTTTATAATTGCTGGCTTAGGACAGAGCAATACTTTAC AATAAAAGCTCTACACATTTTCAAGGAGTATGCTGGATTCATGGAACTCTAATTCTGTACATA AAAATTTTAAAGTTATTTGTTTGCTTTCAGGCAAGTCTGTTCAATGCTGTACTATGTCCTTAA AGAGAATTTGGTAACTTGGTTGATGTGGTAAGCAGATAGGTGAGTTTTGTATAAATCTTTTGT GTTTGAGATCAAGCTGAAATGAAAACACTGAAAAACATGGATTCATTTCTATAACACATTTAT TTAAGTATAACACGTTTTTTGGACAAGTGAAGAATGTTTAATCATTCTGTCATTTGTTCTC AATAGATGTAACTGTTAGACTACGGCTATTTGAAAAAATGTGCTTATTGTACTATATTTTGTT ATTCCAATTATGAGCAGAGAAAGGAAATATAATGTTGAAAATAATGTTTTGAAATCATGACCC AAAGAATGTATTGATTTGCACTATCCTTCAGAATAACTGAAGGTTAATTATTGTATATTTTTA AAAATTACACTTATAAGAGTATAATCTTGAAATGGGTAGCAGCCACTGTCCATTACCTATCGT AAACATTGGGGCAATTTAATAACAGCATTAAAATAGTTGTAAACTCTAATCTTATACTTATTG GAATGTTCATTTAAAAGTTTAATCCTTTGAGTGTCTATGCTATCAGGAAAGCACATTATTTCC ATATTTGGGTTAATTTTGCTTTTATTATTATTGGTCTAGGAGGAAGGGACTTTGGAGAATGGAA CTCTTGAGGACTTTAGCCAGGTGTATATAATAAAGGTACTTTTGTGCTGCATTAAATTGCTTG GAAAGTGTTAACATTATATATATAAGAGTATCCTTTATGAAATTTTGAATTTGTATAACAGA TGCATTAGATATTCATTTTATATAATGGCCACTTAAAATAAGAACATTTAAAATATAAACTAT GAAGATTGACTATCTTTTCAGGAAAAAAGCTGTATATAGCACAGGGAACCCTAATCTTGGGTA ATTCTAGTATAAAACAAATTATACTTTTATTTAAATTTCCCTTGTAGCAAATCTAATTGCCAC AGATTTAGACTATATAGAATTTAGATATTGTATTGTTCGTCATTATAATATGCTACCACATGT AGCAATAATTACAATATTTTATTAAAATAAATATGTGAAATATTGTTTCATGAAAGACAGATT TTGCCAGGT

FIGURE 380

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648

><subunit 1 of 1, 140 aa, 1 stop

><MW: 15668, pI: 10.14, NX(S/T): 5

MFFTISRKNMSQKLSLLLLVFGLIWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAEE NKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNLVP VTTNKRTNVSGSIR

Important features of the protein:

Signal peptide:

amino acids 1-26

385/615

FIGURE 381

AACTTCTACATGGGCCTCCTGCTGCTGGTGCTCTTCCTCAGCCTCCTGCCGGTGGCCTACACC ATCATGTCCCTCCCACCCTCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGG GAGCACCTCCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTT TCATGCCAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCATTTAAGAGGGGTT TTCTGCCAGGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAG $\tt CCACCTGTGGCCGTTGAGTGCTTGAAA{\color{red}{\textbf{TGA}}} GGAACTGAGAAAATTAATTTCTCATGTATTTTT$ CTCATTTATTTATTTAATTTTTAACTGATAGTTGTACATATTTTGGGGGGTACATGTGATATTTGG ATACATGTATACAATATATAATGATCAAATCAGGGTAACTGGGATATCCATCACATCAAACAT TTATTTTTTTTTTTTTTTTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCC ATCTCAGCTTACTGCAACCTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCCAA GTAGCTGGGACTACAGGCATGCACCACAATGCCCAACTAATTTTTGTATTTTTAGTAGAGACC GGGTTTTGCCATGTTGCCCAGGCTGGCCTTGAACTCCTGGCCTCAAACAATCCACTTGCCTCG GCCTCCCAAAGTGTTATGATTACAGGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTT CTTTGTGTTGGGAACTTTGAAATTATACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTG ACTTCATCCCCACTCCTCTATCCTTCCCAACCTCTGATCACCTCATTCTACTCTCTACCTC CATGAGATCCACTTTTTTAGCTCCCACATGTGAGTAAGAAAATGCAATATTTGTCTTTCTGTG TTTCGTTCTTAATTTCAATTAAAATAACCACACATGGCAAAAA

FIGURE 382

MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQ PVKGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

FIGURE 383

TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACCATGATCAGCGCAG CCTGGAGCATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAG TTATGGCTAAATCCTGTCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATC GCTTTCTGACATCCAACAGGAATACCAGAGGATGCTACAACTCTCTACCTTCAGAACA ACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCTCCCAAAGTATGTAAAAGAGTTAC ATTTGCAAGAAATAACATAAGGACTATCACTTATGATTCACTTTCAAAAATTCCCTATCTGG AAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCATTCCGAG ACAGCAACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTT TGCCCAGGACTATAGAAGAACTACGCTTGGATGATAATCGCATATCCACTATTTCATCACCAT CTCTTCAAGGTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATG GTTTAGGTGACAAAGTTTTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATT CCCTGACTGCTGCACCAGTAAACCTTCCAGGCACAAACCTGAGGAAGCTTTATCTTCAAGATA ACCACATCAATCGGGTGCCCCCAAATGCTTTTTCTTATCTAAGGCAGCTCTATCGACTGGATA TGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTTGATGATTTTGGACAATATAACAC AACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATGGGTACGTGACTGGT TACAATCACTACCTGTGAAGGTCAACGTGCGTGGGCTCATGTGCCAAGCCCCAGAAAAGGTTC GTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAA GCACCATTCAGATAACCACTGCAATACCCAACACAGTGTATCCTGCCCAAGGACAGTGGCCAG CTCCAGTGACCAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAG GGAGTCCCTCAAGAAAACAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATA TCTCTTGGAAACTTGCTCTACCTATGACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATA GCCCGGCATTTGGATCTATAACAGAAACAATTGTAACAGGGGAACGCAGTGAGTACTTGGTCA CAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTCCCATGGAAACCAGCAACCTCT ACCTATTTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCCTTCGAATGTACAACC CTACAACCACCCTCAATCGAGAGCAAGAGAAAACCTTACAAAAACCCCAATTTACCTTTGG CTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTGTTGGT ATGTTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTGCATATAGCAAAGGGAGGAGAAGAA AGGATGACTATGCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTT CTTTTCAGATGTTACCAATAAGCAATGAACCCATCTCGAAGGAGGAGTTTGTAATACACACCA TATTTCCTCCTAATGGAATGAATCTGTACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAA GCTACAGAGACAGTGGTATTCCAGACTCAGATCACTCACACTCA<u>TGA</u>TGCTGAAGGACTCACA GCAGACTTGTGTTTTTGGGTTTTTTTAAACCTAAGGGAGGTGATGGT

FIGURE 384

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTL YLQNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSK IPYLEELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRIST ISSPSLQGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKL YLQDNHINRVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKW VRDWLQSLPVKVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQ GQWPAPVTKQPDIKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWL KLGHSPAFGSITETIVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPL RMYNPTTTLNREQEKEPYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSK GRRRKDDYAEAGTKKDNSILEIRETSFQMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSES SSNRSYRDSGIPDSDHSHS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636 Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

FIGURE 385

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGG CAGCCCTGCCGGGCCACTTGTCTTC**ATG**TCTGCCAGGGGGAGGTGGGAAGGAGGTGGGAAGGAG GGCGTGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGA GCAGAGGCCGGCCATGGCCAGCCTGGGGCTGCTCCTGCTCTTACTGACAGCACTGCCACC GCTGTGGTCCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCT GATCCTGTCTGCGCTGGAGAGAGCCACCGTCTTCCTAGAACAGAGGCTGCCTGAAATCAACCT GGATGGCATGGTGGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGC CCAGGAGCCCCTGCTGCAGCCGTGAGCCTGCGCGTGGGGATGCTGGGGGAGAAGCTGGAGGC TGCCATCCAGAGATCCCTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCA GCTGACCCTCCAGCCCGGGTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTT GGTGTACCCCACGTTCGGGCCCCAGGACTCATTCTCAGAGGAGAAGTGACGTGTGCCTGGT GCAGCTGCTGGGAACCGGGACGGACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAG CCTCATGACCAAGCCCGGCTGCTCAGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTG GGCCAGAATGAGGGGATGCACACAGGGACCACTCCAACAGAGCCAGGACTATATCAACCTCTT CTGCGCCAACATGATGGACTTGAACCGCAGAGCTGAGGCCATCGGATACGCCTACCCTACCCG GGACATCTTCATGGAAAACATCATGTTCTGTGGAATGGGCGGCTTCTCCGACTTCTACAAGCT TGCTGAAGATGAAGAATTATCTAAAGCTATTCAATATCAGCAGCATTTTTTCGAGGAGAGTGAA GAGGCGAGAAAACAATTTCCAGATTCTCGCTCTGTTGCTCAGGCTGGAGTACAGTGGCGCAA TCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGCAATTCTCTTGCCTCATCCTCCCGAG TAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAATTTTTTATATTTTTTTAGTAGAGAC ${\tt AGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGATCTCAAGAGATCCGCCCACCTC}$ ${\tt AGGCTCCCAAAGTGTGGGATTA}$ GAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTCATGGGGGGCTCTCTCCCC TAGATGGCTGCTCCCCACAACACAGCCACAGCAGTGGCAGCCCTGGGTGGCTTCCTATACA TCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACACCCATCCACACCGCCACCAAGCA GCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAACAGACCCCTTTAGTCCTCA TCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGGATAAGCAAA GCCACCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGGGGCCGGG

FIGURE 386

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPG LDTAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPL SLRVGMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQ DSFSEERSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQ GPLQQSQDYINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILS WQKQQEGCFGEPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLP PGFKQFSCLILPSSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

FIGURE 387

TGCTGCTGCTATCGGGGGATGTCCAGAGCTCGGAGGTGCCCGGGGCTGCTGCTGAGGGATCGG GAGGGAGTGGGGTCGGCATAGGAGATCGCTTCAAGATTGAGGGGCGTGCAGTTGTTCCAGGGG TGAAGCCTCAGGACTGGATCTCGGCGGCCCGAGTGCTGGTAGACGGAGAAGAGCACGTCGGTT TCCTTAAGACAGATGGGAGTTTTGTGGTTCATGATATACCTTCTGGATCTTATGTAGTGGAAG TTGTATCTCCAGCTTACAGATTTGATCCCGTTCGAGTGGATATCACTTCGAAAGGAAAAATGA GAGCAAGATATGTGAATTACATCAAAACATCAGAGGTTGTCAGACTGCCCTATCCTCCCAAA TGAAATCTTCAGGTCCACCTTCTTACTTTATTAAAAGGGAATCGTGGGGCTGGACAGACTTTC TAATGAACCCAATGGTTATGATGATGGTTCTTCCTTTATTGATATTTGTGCTTCTGCCTAAAG TGGTCAACACAAGTGATCCTGACATGAGACGGGAAATGGAGCAGTCAATGAATATGCTGAATT CCAACCATGAGTTGCCTGATGTTTCTGAGTTCATGACAAGACTCTTCTCTTCAAAATCATCTG GCAAATCTAGCAGCGGCAGCAGTAAAACAGGCAAAAGTGGGGCTGGCAAAAGGAGG<u>TAG</u>TCAG GCCGTCCAGAGCTGGCATTTGCACAAACACGGCAACACTGGGTGGCATCCAAGTCTTGGAAAA CCGTGTGAAGCAACTACTATAAACTTGAGTCATCCCGACGTTGATCTCTTACAACTGTGTATGTT AACTTTTTAGCACATGTTTTGTACTTGGTACACGAGAAAACCCAGCTTTCATCTTTTGTCTGT ATGAGGTCAATATTGATGTCACTGAATTAATTACAGTGTCCTATAGAAAATGCCATTAATAAA TTATATGAACTACTATACATTATGTATATTAATTAAAACATCTTAATCCAGAAATCAAAAAAA AAAAAAAAAAAAAAAAAA

FIGURE 388

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWIS AARVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYI KTSEVVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPLLIFVLLPKVVNTSDPD MRREMEQSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

393/615

FIGURE 389

CTGGCTGGGTGCCTGCTGGTGTCAGCATTGGGAATGGTACCACCTCCCGAAAATGTCAG AATGAATTCTGTTAATTTCAAGAACATTCTACAGTGGGAGTCACCTGCTTTTGCCAAAGGGAA CCTGACTTTCACAGCTCAGTACCTAAGTTATAGGATATTCCAAGATAAATGCATGAATACTAC CTTGACGGAATGTGATTTCTCAAGTCTTTCCAAGTATGGTGACCACACCTTGAGAGTCAGGGC TGAATTTGCAGATGAGCATTCAGACTGGGTAAACATCACCTTCTGTCCTGTGGATGACACCAT TATTGGACCCCCTGGAATGCAAGTAGAAGTACTTGCTGATTCTTTACATATGCGTTTCTTAGC CCCTAAAATTGAGAATGAATACGAAACTTGGACTATGAAGAATGTGTATAACTCATGGACTTA TAATGTGCAATACTGGAAAAACGGTACTGATGAAAAGTTTCAAATTACTCCCCAGTATGACTT TGAGGTCCTCAGAAACCTGGAGCCATGGACAACTTATTGTGTTCAAGTTCGAGGGTTTCTTCC GGTCCCCTCCTGGATGGTGGCCGTCATCCTCATGGCCTCGGTCTTCATGGTCTGCCTGGCACT CCTCGGCTGCTTCTCCTTGCTGTGGTGCGTTTACAAGAAGAAGAAGTACGCCTTCTCCCCTAG GAATTCTCTTCCACAGCACCTGAAAGAGTTTTTTGGGCCATCCTCATCATAACACACTTCTGTT TTTCTCCTTTCCATTGTCGGATGAGAATGATGTTTTTGACAAGCTAAGTGTCATTGCAGAAGA CTCTGAGAGCGGCAAGCAGAATCCTGGTGACAGCTGCAGCCTCGGGACCCCGCCTGGGCAGGG ${\tt GCCCCAAAGC}{ extbf{TAG}}{\tt GCTCTGAGAAGGAAACACACTCGGCTGGGCACAGTGACGTACTCCATCTC}$ CATCTAGAACTCCAGACCTGGACTTAGCCACCAGAGAGCTACATTTTAAAGGCTGTCTTGGCA AAAATACTCCATTTGGGAACTCACTGCCTTATAAAGGCTTTCATGATGTTTTCAGAAGTTGGC CACTGAGAGTGTAATTTTCAGCCTTTTATATCACTAAAATAAGATCATGTTTTAATTGTGAGA ATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAATATGGTGAAACCCAGTCTCTACTAA AAATACAAAAATTAGCTAGGCATGATGGCGCATGCCTATAATCCCAGCTACTCGAGTGCCTGA GGCAGGAGAATTGCATGAACCCGGGAGGAGGAGGAGGAGGAGGTTGCAGTGAGCCGAGATAGCGGC TCTACCAGATTATGGATGGACTGATCTGAAAATCGACCTCAACTCAAGGGTGGTCAGCTCAAT ATGTTTTATATGCTGCTGGTGCTCCATTAAAGTTTTACTCTGTGTTGC

FIGURE 390

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83551

><subunit 1 of 1, 325 aa, 1 stop

><MW: 37011, pI: 5.09, NX(S/T): 4

MAWSLGSWLGGCLLVSALGMVPPPENVRMNSVNFKNILQWESPAFAKGNLTFTAQYLSYRIFQ DKCMNTTLTECDFSSLSKYGDHTLRVRAEFADEHSDWVNITFCPVDDTIIGPPGMQVEVLADS LHMRFLAPKIENEYETWTMKNVYNSWTYNVQYWKNGTDEKFQITPQYDFEVLRNLEPWTTYCV QVRGFLPDRNKAGEWSEPVCEQTTHDETVPSWMVAVILMASVFMVCLALLGCFSLLWCVYKKT KYAFSPRNSLPQHLKEFLGHPHHNTLLFFSFPLSDENDVFDKLSVIAEDSESGKQNPGDSCSL GTPPGQGPQS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 222-245

N-glycosylation sites.

amino acids 49-53, 68-72, 102-106, 161-165

N-myristoylation sites.

amino acids 6-12, 316-322

FIGURE 391

AGCACCTGAGCTGGTGGTGGCCACTGTCTGCATGCTGCTCTTCAGCCACCTCTCTGCGG TCCAGACGAGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCC TCGACATTGACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCG ATGGCATCCACTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCT GCATCAATGCCACCCAGGCGGCGAACCAGGGGGGGGTTCCAGAAGCCAGACAACAAGCTCCACC AGAGGGGCGCAGGACTTCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGA TCTGGCTCATGGTGAAA**TAA**GCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCAGCAAAA TCCTGGCAAGTGACCCAGCTCTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGC GGCGATGCACTCGCACTGCAAATGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCT GATAGATGGGGGACTGTGGCTTCTCCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCA CACTAGATTAGTAGTAAATGCTTGATGAGAAGAACACATCAGGCACTGCCCACCTGCTTCAC AGTACTTCCCAACAACTCTTAGAGGTAGGTGTATTCCCGTTTTACAGATAAGGAAACTGAGGC CCAGAGAGCTGAAGTACTGCACCCAGCATCACCAGCTAGAAAGTGGCAGAGCCAGGATTCAAC CCTGGCTTGTCTAACCCCAGGTTTTCTGCTCTGTCCAATTCCAGAGCTGTCTGGTGATCACTT TATGTCTCACAGGGACCCACATCCAAACATGTATCTCTAATGAAATTGTGAAAGCTCCATGTT TAGAAATAAATGAAAACACCTGA

FIGURE 392

MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQG RKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNK LHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK

Important features of the protein: Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

FIGURE 393

CAAGCATCACTTACAGGACCAGAGGGACAAGACATGACTGTGATGAGGAGCTGCTTTCGCCAA TTTAACACCAAGAAGAATTGAGGCTGCTTGGGAGGAAGGCCAGGAGGAACACGAGACTGAGAG **ATG**AATTTTCAACAGAGGCTGCAAAGCCTGTGGACTTTAGCCAGACCCTTCTGCCCTCTTTG CTGGCGACAGCCTCTCAAATGCAGATGGTTGTGCTCCCTTGCCTGGGTTTTACCCTGCTTCTC TGGAGCCAGGTATCAGGGGCCCAGGGCCAAGAATTCCACTTTGGGCCCTGCCAAGTGAAGGGG GTTGTTCCCCAGAAACTGTGGGAAGCCTTCTGGGCTGTGAAAGACACTATGCAAGCTCAGGAT AACATCACGAGTGCCCGGCTGCTGCAGCAGGAGGTTCTGCAGAACGTCTCGGATGCTGAGAGC TGTTACCTTGTCCACACCCTGCTGGAGTTCTACTTGAAAACTGTTTTCAAAAACCACCACAAT AGAACAGTTGAAGTCAGGACTCTGAAGTCATTCTCTACTCTGGCCAACAACTTTGTTCTCATC GTGTCACAACTGCAACCCAGTCAAGAAAATGAGATGTTTTCCATCAGAGACAGTGCACACAGG CGGTTTCTGCTATTCCGGAGAGCATTCAAACAGTTGGACGTAGAAGCAGCTCTGACCAAAGCC CCAGGACCTCCCCCCGGCACTGGTTTGTTCCCTGTGTCATTTCAAACAGTCTCCCTTCC TATGCTGTTCACTGGACACTTCACGCCCTTGGCCATGGGTCCCATTCTTGGCCCAGGATTATT GTCAAAGAAGTCATTCTTTAAGCAGCGCCAGTGACAGTCAGGGAAGGTGCCTCTGGATGCTGT AACTGAAGTTCTATTTATTTGTGAGACTGTAAGTTACATGAAGGCAGCAGAATATTGTGCCCC ATGCTTCTTTACCCCTCACAATCCTTGCCACAGTGTGGGGCAGTGGATGGGTGCTTAGTAAGT ACTTAATAAACTGTGGTGCTTTTTTTGGCCTGTCTTTGGATTGTTAAAAAACAGAGAGGGATG CTTGGATGTAAAACTGAACTTCAGAGCATGAAAATCACACTGTCTTCTGATATCTGCAGGGAC AGAGCATTGGGGTGGGGGTAAGGTGCATCTGTTTGAAAAGTAAACGATAAAATGTGGATTAAA TCCACTTGAGTGTCAAGCTGACCTTGCTGATGGTGACATTGCACCTGGATGTACTATCCAATC AAAA

WO 01/68848 PCT/US01/06520

398/615

FIGURE 394

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA88002

><subunit 1 of 1, 206 aa, 1 stop

><MW: 23799, pI: 9.12, NX(S/T): 3

MNFQQRLQSLWTLARPFCPPLLATASQMQMVVLPCLGFTLLLWSQVSGAQGQEFHFGPCQVKG VVPQKLWEAFWAVKDTMQAQDNITSARLLQQEVLQNVSDAESCYLVHTLLEFYLKTVFKNHHN RTVEVRTLKSFSTLANNFVLIVSQLQPSQENEMFSIRDSAHRRFLLFRRAFKQLDVEAALTKA LGEVDILLTWMQKFYKL

Signal sequence:

amino acids 1-42

N-glycosylation sites.

amino acids 85-89, 99-103, 126-130

WO 01/68848 PCT/US01/06520

399/615

FIGURE 395

FIGURE 396

MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGT CEGLFYEYIA

Important features of the protein: Signal peptide: amino acids 1-25

N-myristoylation site. amino acids 62-68

FIGURE 397

PCT/US01/06520

C<u>ATG</u>CCGCTGCCGCCGCTGCTGCTGTTGCTCCTGGCGGCGCCTTGGGGGACGGGCAGTTCCCTGTGTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGAATGT CATATATGGGCAAAAGAAATGGCTGAATAAATCAGAATGCAGAAATATCAATAGAACCTACTG TGATCTTTCTGCTGAAACTTCTGACTACGAACACCAGTATTATGCCAAAGTTAAGGCCATTTG GGGAACAAAGTGTTCCAAATGGGCTGAAAGTGGACGGTTCTATCCTTTTTTAGAAACACAAAT TGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC AGAGAAGTGGAAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCT GAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCCCAGTGTGTGACCAA CCACACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTT CGTCCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTGCCAGGACTTTGAAAGA TCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCATATCTATTACCGT GTTTCTTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAAACA CCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGA AAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGA TATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAA CCTGAGGCCCCCTCAGGAGGAGGAGGGGGGGAAACATTTAGGGTATGCTTCGCATTTGATGGA AATTTTTTGTGACTCTGAAGAAAACACGGAAGGTACTTCTCTCACCCAGCAAGAGTCCCTCAG CAGAACAATACCCCCGGATAAAACAGTCATTGAATATGAATATGATGTCAGAACCACTGACAT TTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGGAGGAGGTGTCCACACAAGGAACATT ATTGGAGTCGCAGGCAGCGTTGGCAGTCTTGGGCCCGCAAACGTTACAGTACTCATACACCCC TCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCACACAGACTCGGAGGAGGGCCCGGAGGA AGAGCCATCGACGACCCTGGTCGACTGGGATCCCCAAACTGGCAGGCTGTGTATTCCTTCGCT GTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAGCCTTCTGAGGGGGGATGGGCTCGGAGAGGA GGGTCTTCTATCTAGACTCTATGAGGAGCCGGCTCCAGACAGGCCACCAGGAGAAAATGAAAC $\tt CTATCTCATGCAATTCATGGAGGAATGGGGGGTTATATGTGCAGATGGAAAAC\underline{\textbf{TGA}} \texttt{TGCCAACA}$ CTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAGTCACCCCTTTGATCCCAGCCATAAA GTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGTCTGTGAGAA

FIGURE 398

MPLPPLLLLLAAPWGRAVPCVSGGLPKPANITFLSINMKNVLQWTPPEGLQGVKVTYTVQYF
IYGQKKWLNKSECRNINRTYCDLSAETSDYEHQYYAKVKAIWGTKCSKWAESGRFYPFLETQI
GPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIYSNLKYNVSVLNTKSNRTWSQCVTN
HTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLKDQSSEFKAKIIFWYVLPISITV
FLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEKIVINFITLNISDDSKISHQD
MSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFCDSEENTEGTSLTQQESLS
RTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQAALAVLGPQTLQYSYTP
QLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEE
GLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 240-260

N-glycosylation sites.

amino acids 31-34, 72-75, 80-83, 171-174, 180-183, 189-192, 304-307, 523-526

Tyrosine kinase phosphorylation site.

amino acids 385-392, 518-526

N-myristoylation sites.

amino acids 53-58, 106-111, 368-373, 492-497

Tissue factor

amino acids 1-278

FIGURE 399

CCGGCGATGTCGCTGCTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAG CCGACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTA ATCCCCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGAC TATTCAATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAG GCCACCAAGATTTGTGTGACGGGCAAAAGCAACTTCCAGTCCTACAGCTGTGAGGTGCAAT TACACAGAGGCCTTCCAGACTCAGACCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATC GGCTTCCCTGTAGAGCTGAACACAGTCTATTTCATTGGGGCCCCATAATATTCCTAATGCAAAT ATGAATGAAGATGGCCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATA ATGAAATATAAAAAAAAGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGT AAGAAGAATGAGGAGACAGTAGAAGTGAACTTCACAACCACTCCCCTGGGAAACAGATACATG GCTCTTATCCAACACACCACTATCATCGGGTTTTCTCAGGTGTTTGAGCCACACCAGAAGAAA CAAACGCGAGCTTCAGTGGTGATTCCAGTGACTGGGGGATAGTGAAGGTGCTACGGTGCAGCTG ACTCCATATTTTCCTACTTGTGGCAGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGC AGGCACGAAAGGATCAAGAAGACTTCCTTTTCTACCACCACACTACTGCCCCCCATTAAGGTT CTTGTGGTTTACCCATCTGAAATATGTTTCCATCACACAATTTGTTACTTCACTGAATTTCTT CAAAACCATTGCAGAAGTGAGGTCATCCTTGAAAAGTGGCAGAAAAAGAAAATAGCAGAGATG GGTCCAGTGCAGTGGCTTGCCACTCAAAAGAAGGCAGCAGACAAAGTCGTCTTCCTTTTCC AATGACGTCAACAGTGTGTGCGATGGTACCTGTGGCAAGAGCGAGGGCAGTCCCAGTGAGAAC TCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCAGTGATCTAAGAAGCCAGATTCAT CTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACAAAAGACGATTACAATGCTCTC AGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTTCTGTGCAGAACTTCTCCAT GTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACGATGGCTGCTGCTTG TAG

FIGURE 400

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYS
ILMNVSWVLRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGF
PVELNTVYFIGAHNIPNANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKK
NEETVEVNFTTTPLGNRYMALIQHSTIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTP
YFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNKSKPGGWLPLLLLSLLVATWVLVAGIYLMWRH
ERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFLQNHCRSEVILEKWQKKKIAEMGP
VQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLAFNLFCSDLRSQIHLH
KYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDGCCSL

Important features of the protein: Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites. amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site. amino acids 116-122

Amidation site.

amino acids 488-452

FIGURE 401

GGGAACAGGGAACTATCAGCCCGTCGGCCTCCGGGCCCTGCATTCTCTAGCCATCGGACCG GGGCCCGCCCCCAGCACCCGTTGCAGGGCAGAAAAGAGAAGAGAGTTGACAACATCGA GATACAGAAATTCATCTCCAAAAAAGCGGATCTGCTTTTTGCACTTTCCTGGAAATCAGA TGCACCTGCAACTTCTGAAATTAATGAAGACAGTGAAGATCATTATGCAATCATGCCACC TTTAGAGCAATTCATGGAGATACCTAGTATGGATCGGAGAGAGCTGTTTTTCCGAGATAT TGAGCGTGGTGATATAGTGATTGGAAGAATTAGTTCTATTCGGGAATTCGGTTTTTTCAT GGTGTTGATCTGTTTAGGAAGTGGTATCATGAGAGATATAGCCCACTTAGAAATCACAGC TCTTTGTCCCTTAAGAGATGTGCCTTCTCACAGTAACCATGGGGATCCTTTATCATATTA CCAAACTGGTGACATCATTCGAGCTGGAATCAAGGATATTGACAGATACCATGAAAAGCT AGCAGTATCTCTGTATAGCTCTTCTCTTCCACCACACCTATCTGGTATTAAATTAGGTGT AATTAGCTCTGAAGAGCTTCCTTTATACTACAGGAGAAGTGTTGAGCTAAATAGCAATTC TTTGGAGTCCTATGAAAATGTCATGCAGAGTTCCTTGGGATTTGTTAATCCAGGAGTAGT TGAATTCCTTCTAGAAAAACTAGGAATAGATGAATCTAATCCACCATCTTTAATGAGAGG CGCATCTTGGGCTTTAAAATGTGTGAAGATCGGAGTTGACTATTTTAAAGTTGGACGCCA TTTGGTAGCTCGTGGAGCATTATATGCGACAAAAGGAAGTTTGAACAAAGCAATAGAAGA TTTTGAGCTTGCATTAGAAAACTGTCCAACTCACAGAAATGCAAGAAAATACCTCTGCCA GACACTTGTAGAGAGAGGAGGACAGTTAGAAGAAGAAGAAAAGTTTTTAAATGCTGAAAG TTACTATAAGAAAGCCTTGGCTTTGGATGAGACTTTTAAAGATGCAGAGGATGCTTTGCA GAAACTTCATAAATATATGCAGAAATCTTTGGAATTAAGAGAAAAACAAGCTGAAAAGGA AGAAAAGCAGAAAACAAAGAAAATAGAAACAAGTGCAGAAAAGTTGCGTAAGCTCTTAAA AGAAGAGAGAGGCTAAAGAAGAAAAGAAGAAAATCAACTTCTTCAAAGTGTTTCTTC TGCTGATGAATCAGTGTCTTCATCATCATCCTCTTCCTCTTCTGGTCACAAAAGGCATAA GAAACATAAGAGGAACCGTTCAGAGTCTTCTCGCAGTTCCAGAAGGCATTCATCTAGGGC ATCCTCAAATCAGATAGATCAGAATAGGAAAGATGAGTGCTACCCAGTTCCAGCTAATAC TTCAGCATCTTTTCTTAACCATAAACAAGAAGTGGAGAAACTACTGGGGAAGCAGGATAG ACAGCCTCAGGCAGGTCCTTCAGGAGATATTCCAGAAGAGGGCATTGTTATCATAGATGA CAGCTCCATTCATGTTACTGACCCTGAAGACCTTCAAGTGGGACAAGATATGGAGGTGGA ${\tt AGACAGTGGTATTGATGATCCTGACCACGGG} \underline{\textbf{TAG}} {\tt GCTTAGGTTTATGTGTGTATGTGT}$ CTTAGTTTTTAACAAAAAATTAAAAAGTAAAAAACTAAAAATAGAAAAATGCTTAGAG AATAAGGATATAAAGAATATTTTTGTGCAGTTGAACAATGAGTGCTTAAGCTAAATGTCA TCACAAAAGAGTAAAAAAATTTTACAAAATTAAAAATGTTTAAAGTTAAAAAGCTCTAGG AAGCTAAGGTCAATTTATTATTGGAGAAATAAAATTATTTTTTATGAATTTACTGT

FIGURE 402

MDRDLLRQSLNCHGSSLLSLLRSEQQDNPHFRSLLGSAAEPARGPPPQHPLQGRKEKRVD NIEIQKFISKKADLLFALSWKSDAPATSEINEDSEDHYAIMPPLEQFMEIPSMDRRELFF RDIERGDIVIGRISSIREFGFFMVLICLGSGIMRDIAHLEITALCPLRDVPSHSNHGDPL SYYQTGDIIRAGIKDIDRYHEKLAVSLYSSSLPPHLSGIKLGVISSEELPLYYRRSVELN SNSLESYENVMQSSLGFVNPGVVEFLLEKLGIDESNPPSLMRGLQSKNFSEDDFASALRK KQSASWALKCVKIGVDYFKVGRHVDAMNEYNKALEIDKQNVEALVARGALYATKGSLNKA IEDFELALENCPTHRNARKYLCQTLVERGGQLEEEEKFLNAESYYKKALALDETFKDAED ALQKLHKYMQKSLELREKQAEKEEKQKTKKIETSAEKLRKLLKEEKRLKKKRRKSTSSSS VSSADESVSSSSSSSSGHKRHKKHKRNRSESSRSSRRHSSRASSNQIDQNRKDECYPVP ANTSASFLNHKQEVEKLLGKQDRLQYEKTQIKEKDRCPLSSSSLEIPDDFGVYSYLFKKL TIKQPQAGPSGDIPEEGIVIIDDSSIHVTDPEDLQVGQDMEVEDSGIDDPDHG

Important features of the protein:

Signal peptide:

Amino acids 1-23

Transmembrane domain:

Amino acids 138-155

N-glycosylation sites:

Amino acids 288-292;508-512;542-546

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 300-304;472-476;473-477;517-521;598-602

N-myristoylation sites:

Amino acids 218-224;222-228;271-277;348-354

Amidation site:

Amino acids 52-56

Cell attachment sequence:

Amino acids 125-128

WO 01/68848 PCT/US01/06520

407/615

FIGURE 403

CCGAGGCGGAGGCCCGAGGGGGGGCGCGAGCCCCGCATGAATCATTGTAGTCAATCATTTTC CAGTTCTCAGCCGCTCAGTTGTGATCAAGGGACACGTGGTTTCCGAACTGCCAGCTCAGAATA $\mathsf{GGAAAATAACTTGGGATTTTATATTGGAAGAC$ AGAAGGCAATTGAAAAATTTATCAGACAGCTGCTGGAAAAGAATGAACCTCAGAGACCCCCCC CGCAGTATCCTCTCTTATAGTTGTGTATAAGGTTCTCGCAACCTTGGGATTAATCTTGCTCA CTGCCTACTTTGTGATTCAACCTTTCAGCCCATTAGCACCTGAGCCAGTGCTTTCTGGAGCTC ACACCTGGCGCTCACTCATCCATCACATTAGGCTGATGTCCTTGCCCATTGCCAAGAAGTACA ACCCCTGGTGGACAAACGACTGTGAGCAGAATGAGTCAGAGCCCATTCCTGCCAACTGCACTG GCTGTGCCCAGAAACACCTGAAGGTGATGCTCCTGGAAGACGCCCCAAGGAAATTTGAGAGGC TCCATCCACTGGTGATCAAGACGGGAAAGCCCCTGTTGGAGGAAGAGATTCAGCATTTTTTGT GCCAGTACCCTGAGGCGACAGAAGGCTTCTCTGAAGGGTTTTTTCGCCAAGTGGTGGCGCTGCT TTCCTGAGCGGTGGTTCCCATTTCCTTATCCATGGAGGAGACCTCTGAACAGATCACAAATGT TACGTGAGCTTTTTCCTGTTTTCACTCACCTGCCATTTCCAAAAGATGCCTCTTTAAACAAGT GCTCCTTTCTTCACCCAGAACCTGTTGTGGGGGAGTAAGATGCATAAGATGCCTGACCTATTTA TCATTGGCAGCGGTGAGGCCATGTTGCAGCTCATCCCTTCCAGTGCCGAAGACATTGTC TCTACGTTATAGCCAGAGGGGTCCAGCCTTTGGTCATCTGCGATGGAACCGCTTTCTCAGAAC AAATAAAAACAAAAACGATGAAACTGCAAAAA

WO 01/68848 PCT/US01/06520

408/615

FIGURE 404

MDLAANEISIYDKLSETVDLVRQTGHQCGMSEKAIEKFIRQLLEKNEPQRPPPQYPLLIVVYK VLATLGLILLTAYFVIQPFSPLAPEPVLSGAHTWRSLIHHIRLMSLPIAKKYMSENKGVPLHG GDEDRPFPDFDPWWTNDCEQNESEPIPANCTGCAQKHLKVMLLEDAPRKFERLHPLVIKTGKP LLEEEIQHFLCQYPEATEGFSEGFFAKWWRCFPERWFPFPYPWRRPLNRSQMLRELFPVFTHL PFPKDASLNKCSFLHPEPVVGSKMHKMPDLFIIGSGEAMLQLIPPFQCRRHCQSVAMPIEPGD IGYVDTTHWKVYVIARGVQPLVICDGTAFSEL

FIGURE 405

TGCCGGGCTGCGGGGCGCCTTGACTCTCCCTCCACCCTGCCTCCTCGGGCTCCACTCGTCTGCCCCTGGACTCCC GTCTCCTCCTGTCCTCCGGCTTCCCAGAGCTCCCTCCTTATGGCAGCAGCTTCCCGCGTCTCCGGCGCAGCTTCT CAGCGGACGACCCTCTCGCTCCGGGGCTGAGCCCAGTCCCTGGATGTTGCTGAAACTCTCGAGATCATGCGCGGG TTTGGCTGCTGCTTCCCCGCCGGGTGCCACTGCCACCGCCGCCGCCTCTGCTGCCGCCGTCCGCGGGATGCTCAG TAGCCCGCTGCCCGGCCCCCCGCGATCCTGTGTTCCTCGGAAGCCGTTTGCTGCTGCAGAGTTGCACGAACTAGTC CCCGTCATGCTACTCATCGTAGCCCGCCCGGTGAAGCTCGCTGCTTTCCCTACCTCCTTAAGTGACTGCCAAACG $\tt CCCACCGGCTGGAATTGCTCTGGTTATGATGACAGAGAAAATGATCTCTTCCTCTGTGACACCCAACACCTGTAAA$ TTTGATGGGGAATGTTTAAGAATTGGAGACACTGTGACTTGCGTCTGTCAGTTCAAGTGCAACAATGACTATGTG GAGATACTTGTGGTGTCAGAAGGATCATGTGCCACAGATGCAGGATCAGGATCTGGAGATGGAGTCCATGAAGGC TCTGGAGAAACTAGTCAAAAGGAGACATCCACCTGTGATATTTGCCAGTTTGGTGCAGAATGTGACGAAGATGCC GAGGATGTCTGGTGTGTGTAATATTGACTGTTCTCAAACCAACTTCAATCCCCTCTGCGCTTCTGATGGGAAA TCTTATGATAATGCATGCCAAATCAAAGAAGCATCGTGTCAGAAACAGGAGAAAATTGAAGTCATGTCTTTGGGT CGATGTCAAGATAACACAACTACAACTACTAAGTCTGAAGATGGGCATTATGCAAGAACAGATTATGCAGAGAAT GGGAAGTGTGAGCATTCTATCAATATGCAGGAGCCATCTTGCAGGTGTGATGCTGGTTATACTGGACAACACTGT GAAAAAAAGGACTACAGTGTTCTATACGTTGTTCCCGGTCCTGTACGATTTCAGTATGTCTTAATCGCAGCTGTG ATTGGAACAATTCAGATTGCTGTCATCTGTGTGGTGGTCCTCTGCATCACAAGGAAATGCCCCAGAAGCAACAGA ATTCACAGACAGAAGCAAAATACAGGGCACTACAGTTCAGACAATACAACAAGAGCGTCCACGAGGTTAATC<u>TAA</u> ${\tt AGGGAGCATGTTTCACAGTGGCTGGACTACCGAGAGCTTGGACTACACAATACAGTATTATAGACAAAAGAATAA}$ GACAAGAGATCTACACATGTTGCCTTGCATTTGTGGTAATCTACACCAATGAAAACATGTACTACAGCTATATTT

FIGURE 406

MVLWESPRQCSSWTLCEGFCWLLLLPVMLLIVARPVKLAAFPTSLSDCQTPTGWNCSGY
DDRENDLFLCDTNTCKFDGECLRIGDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQ
AACKQQSEILVVSEGSCATDAGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAED
VWCVCNIDCSQTNFNPLCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTK.
SEDGHYARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGY
TGQHCEKKDYSVLYVVPGPVRFQYVLIAAVIGTIQIAVICVVVLCITRKCPRSNRIHRQ
KONTGHYSSDNTTRASTRLI

FIGURE 407

CTCGCAGCCGAGCGCGGGGGGAAGGGCTCTCCTTCCAGCGCCGAGCACTGGGCCCTGGCAG ACGCCCCAAGATTGTTGTGAGGAGTCTAGCCAGTTGGTGAGCGCTGTAATCTGAACCAGCTGT GTCCAGACTGAGGCCCCATTTGCATTGTTTAACATACTTAGAAAATGAAGTGTTCATTTTTAA CATTCCTCCTCCAATTGGTTTAATGCTGAATTACTGAAGAGGGGCTAAGCAAAACCAGGTGCTT CGCTCGGCCCCTCTGGAATAAAACACCCGCGAGGCCCCGAGGGCCCAGAGGAGGCCGACGTGCC CGAGCTCCTCCGGGGGTCCCGCCGCGAGCTTTCTTCTCGCCTTCGCATCTCCTCCTCGCGCG $\verb"TCTTGGAC" \underline{\textbf{ATG}} \texttt{CCAGGAATAAAAAGGATACTCACTGTTACCATTCTGGCTCTCTGTCTTCCAA$ GCCCTGGGAATGCACAGGCACAGTGCACGAATGGCTTTGACCTGGATCGCCAGTCAGGACAGT GTTTAGATATTGATGAATGCCGAACCATCCCCGAGGCCTGCCGAGGAGACATGATGTGTTA ACCAAAATGGCGGGTATTTATGCATTCCCCGGACAAACCCTGTGTATCGAGGGCCCTACTCGA ACCCCTACTCGACCCCCTACTCAGGTCCGTACCCAGCAGCTGCCCCACCACCTCTCAGCTCCAA TCAATACTGAAGGCGGGTACACCTGCTCCTGCACCGACGGATATTGGCTTCTGGAAGGCCAGT GCTTAGACATTGATGAATGTCGCTATGGTTACTGCCAGCAGCTCTGTGCGAATGTTCCTGGAT CCTATTCTTGTACATGCAACCCTGGTTTTACCCTCAATGAGGATGGAAGGTCTTGCCAAGATG TGAACGAGTGTGCCACCGAGAACCCCTGCGTGCAAACCTGCGTCAACACCTACGGCTCTCTCA TCTGCCGCTGTGACCCAGGATATGAACTTGAGGAAGATGGCGTTCATTGCAGTGATATGGACG AGTGCAGCTTCTCTGAGTTCCTCTGCCAACATGAGTGTGTGAACCAGCCCGGCACATACTTCT GCTCCTGCCCTCCAGGCTACATCCTGCTGGATGACAACCGAAGCTGCCAAGACATCAACGAAT GTGAGCACAGGAACCACACGTGCAACCTGCAGCAGACGTGCTACAATTTACAAGGGGGCTTCA AATGCATCGACCCCATCCGCTGTGAGGAGCCTTATCTGAGGATCAGTGATAACCGCTGTATGT GTCCTGCTGAGAACCCTGGCTGCAGAGACCAGCCCTTTACCATCTTGTACCGGGACATGGACG TGGTGTCAGGACGCTCCGTTCCCGCTGACATCTTCCAAATGCAAGCCACGACCCGCTACCCTG GGGCCTATTACATTTTCCAGATCAAATCTGGGAATGAGGGCAGAGAATTTTACATGCGGCAAA CGGGCCCCATCAGTGCCACCCTGGTGATGACACGCCCCATCAAAGGGCCCCGGGAAATCCAGC TGGACTTGGAAATGATCACTGTCAACACTGTCATCAACTTCAGAGGCAGCTCCGTGATCCGAC ${ t TGCGGATATATGTGTCGCAGTACCCATTC}{{ t TGA}}{ t GCCTCGGGCTGGAGCCTCCGACGCTGCCTCT}$ CATTGGCACCAAGGGACAGGAGAAGAGAGAAATAACAGAGAGAATGAGAGCGACACAGACGT TAGGCATTTCCTGCTGAACGTTTCCCCGAAGAGTCAGCCCCGACTTCCTGACTCTCACCTGTA CTATTGCAGACCTGTCACCCTGCAGGACTTGCCACCCCCAGTTCCTATGACACAGTTATCAAA AAGTATTATCATTGCTCCCCTGATAGAAGATTGTTGGTGAATTTTCAAGGCCTTCAGTTTATT TCCACTATTTTCAAAGAAAATAGATTAGGTTTGCGGGGGTCTGAGTCTATGTTCAAAGACTGT GAACAGCTTGCTGTCACTTCTTCACCTCTTCCACTCTTCTCACTGTGTTACTGCTTTGCA AAGACCCGGGAGCTGGCGGGAACCCTGGGAGTAGCTAGTTTGCTTTTTGCGTACACAGAGAA GGCTATGTAAACAAACCACAGCAGGATCGAAGGGTTTTTAGAGAATGTGTTTCAAAACCATGC CTGGTATTTCAACCATAAAAGAAGTTTCAGTTGTCCTTAAATTTGTATAACGGTTTAATTCT GTCTTGTTCATTTTGAGTATTTTTAAAAAATATGTCGTAGAATTCCTTCGAAAGGCCTTCAGA CACATGCTATGTTCTGTCTTCCCAAACCCAGTCTCCTCTCCATTTTAGCCCAGTGTTTTCTTT GAGGACCCCTTAATCTTGCTTTCTTTAGAATTTTTACCCAATTGGATTGGAATGCAGAGGTCT CCAAACTGATTAAATATTTGAAGAGA

FIGURE 408

MPGIKRILTVTILALCLPSPGNAQAQCTNGFDLDRQSGQCLDIDECRTIPEACRGDMMCVNQN GGYLCIPRTNPVYRGPYSNPYSTPYSGPYPAAAPPLSAPNYPTISRPLICRFGYQMDESNQCV DVDECATDSHQCNPTQICINTEGGYTCSCTDGYWLLEGQCLDIDECRYGYCQQLCANVPGSYS CTCNPGFTLNEDGRSCQDVNECATENPCVQTCVNTYGSLICRCDPGYELEEDGVHCSDMDECS FSEFLCQHECVNQPGTYFCSCPPGYILLDDNRSCQDINECEHRNHTCNLQQTCYNLQGGFKCI DPIRCEEPYLRISDNRCMCPAENPGCRDQPFTILYRDMDVVSGRSVPADIFQMQATTRYPGAY YIFQIKSGNEGREFYMRQTGPISATLVMTRPIKGPREIQLDLEMITVNTVINFRGSSVIRLRI YVSQYPF

Important features of the protein: Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 283-287, 296-300

N-myristoylation sites. amino acids 21-27, 64-70, 149-155, 186-192, 226-232, 242-248, 267-273, 310-316

Aspartic acid and asparagine hydroxylation sites. amino acids 144-156, 181-193, 262-274

Cell attachment sequence. amino acids 54-57

Calcium-binding EGF-like.

amino acids 131-166, 172-205, 211-245, 251-286

WO 01/68848 PCT/US01/06520

413/615

FIGURE 409

TCGCTGGTCCTGTTGATGCCTGGCCCCTGTGATGGGCTGTTTCGCTCCCTATACAGAAGTGTT TCCATGCCACCTAAGGGAGACTCAGGACAGCCATTATTTCTCACCCCTTACATTGAAGCTGGG AAGATCCAAAAAGGAAGAATTGAGTTTGGTCGGCCCTTTCCCAGGACTGAACATGAAGAGT TATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTTCTGGTTCTTCCCA GCTCAGATACAGCCAGAAGATGCCCCAGTAGTTCTCTGGCTACAGGGTGGGCCGGGAGGTTCA TCCATGTTTGGACTCTTTGTGGAACATGGGCCTTATGTTGTCACAAGTAACATGACCTTGCGT GACAGAGACTTCCCCTGGACCACAACGCTCTCCATGCTTTACATTGACAATCCAGTGGGCACA GGCTTCAGTTTTACTGATGATACCCACGGATATGCAGTCAATGAGGACGATGTAGCACGGGAT TTATACAGTGCACTAATTCAGTTTTTCCAGATATTTCCTGAATATAAAAATAATGACTTTTAT AACCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGATGGATATTCTGAT CCCGAATCAATTATAGGGGGCTATGCAGAATTCCTGTACCAAATTGGCTTGTTGGATGAGAAG CAAAAAAGTACTTCCAGAAGCAGTGCCATGAATGCATAGAACACATCAGGAAGCAGAACTGG TTTGAGGCCTTTGAAATACTGGATAAACTACTAGATGGCGACTTAACAAGTGATCCTTCTTAC TTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTTTGCGGTGCACGGAACCTGAGGAT CAGCTTTACTATGTGAAATTTTTGTCACTCCCAGAGGTGAGACAAGCCATCCACGTGGGGAAT AAGCCATGGTTAACTGAAATCATGAATAATTATAAGGTTCTGATCTACAATGGCCAACTGGAC ATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTTGATGGGCATGGACTGGAAAGGATCCCAG GAATACAAGAAGGCAGAAAAAAAAGTTTGGAAGATCTTTAAATCTGACAGTGAAGTGGCTGGT TACATCCGGCAAGCGGGTGACTTCCATCAGGTAATTATTCGAGGTGGAGGACATATTTTACCC TATGACCAGCCTCTGAGAGCTTTTGACATGATTAATCGATTCATTTATGGAAAAGGATGGGAT CCTTATGTTGGA**TAA**ACTACCTTCCCAAAAGAGAACATCAGAGGTTTTCATTGCTGAAAAGAA AATCGTAAAAACAGAAAATGTCATAGGAATAAAAAAATTATCTTTTCATATCTGCAAGATTTT TTTCATCAATAAAAATTATCCTTGAAACAAGTGAGCTTTTGTTTTTGGGGGGGAGATGTTTACT ACAAAATTAACATGAGTACATGAGTAAGAATTACATTATTTAACTTAAAGGATGAAAGGTATG GATGATGTGACACTGAGACAAGATGTATAAATGAAATTTTAGGGTCTTGAATAGGAAGTTTTA CCAATAACAGAAGTTTGGCATGCCGTGAAGGTGTTTGGAAATATTATTGGATAAGAATAGCTC AATTATCCCAAATAAATGGATGAAGCTATAATAGTTTTGGGGGAAAAGATTCTCAAATGTATAA

FIGURE 410

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGQPLFLTPYIEAGKIQKGRELSLV GPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEHGP YVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQFFQI FPEYKNNDFYVTGESYAGKYVPATAHLIHSLNPVREVKINLNGIAIGDGYSDPESIIGGYAEF LYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTSDPSYFQNVTGCSNYY NFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVEKYLREDTVQSVKPWLTEIMNNY KVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVAGYIRQAGDFHQV IIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352, 353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 411

GCAAGCCAAGGCGCTGTTTGAGAAGGTGAAGAAGTTCCGGACCCATGTGGAGGAGGGGGACATTGTGTACCGCCT CTAC<u>ATG</u>CGGCAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACACCGTCTACTACGTGCACAA CCTGGCCACACTCTTCAAGATCCTGGCGTCCTTCTACATCAGCCTAGTCATCTTCTACGGCCTCATCTGCATGTA CACACTGTGGTGGATGCTACGGCGCTCCCTCAAGAAGTACTCGTTTGAGTCGATCCGTGAGGAGGAGCAGCTACAG CGACATCCCCGACGTCAAGAACGACTTCGCCTTCATGCTGCACCTCATTGACCAATACGACCCGCTCTACTCCAA GCGCTTCGCCGTCTTCCTGTCGGAGGTGAGTGAGAACAAGCTGCGGCAGCTGAACCTCAACAACGAGTGGACGCT GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTTCATGCTCAGTGGCAT CCCTGACACTGTGTTTGACCTGGTGGAGCTGGAGGTCCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCCGCC CAGCATTGCCCAGCTCACGGGCCTCAAGGAGCTGTGGCTCTACCACACAGGGGCCAAGATTGAAGCGCCTGCGCT GGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTTCACCGACATCAAGGAGATCCCGCTGTGGATCTA TAGCCTGAAGACACTGGAGGAGCTGCACCTGACGGGCAACCTGAGCGCGGAGAACAACCGCTACATCGTCATCGA AGATGTGGGCGTGCACCTGCAGAAGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTCAACAGCCTCAA GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCACTCCATCTTCAGCCT CCACAACCTGCAGGAGATTGACCTCAAGGACAACCTCAAGACCATCGAGGAGATCATCAGCTTCCAGCACCT GCACCGCCTCACCTGCCTTAAGCTGTGGTACAACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACCAA $\tt CTACCTGGACCTCAGCCACAACAACCTGACCTTCCTCCCTGCCGACATCGGCCTCCTGCAGAACCTCCAGAACCT$ ${\tt AGCCATCACGGCCAACCGGATCGAGACGCTCCCTCCGGAGCTCTTCCAGTGCCGGAAGCTGCGGGCCCTGCACCT}$ GGGCAACAACGTGCTGCAGTCACTGCCCTCCAGGGTGGGCGAGCTGACCAACCTGACGCAGATCGAGCTGCGGGG GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCC<u>TGA</u>GCGAG GCCGGCCCAGCACAGCAGCAGCAGGACCGCTGCCCAGTCCTCAGGCCCGGAGGGGCAGGCCTAGCTTCTCCCAG AGCAAGTCTCAAGAGCGCAGTATTTGGATAATCAGGGTCTCCTCCCTGGAGGCCAGCTCTGCCCCAGGGGCTGAG AGATAACTTATACATTCCCAAGAAAGTTCAGCCCAGATGGAAGGTGTTCAGGGAAAGGTGGGCTGCCTTTTCCCC CCATGGGACGGTCACCCAGCAGTGCCGGGCTGGGCTCTGCGGTGCGGTCCACGGGAGAGCAGGCCTCCAGCTGGA AAAAGACACTAACGGCCAGTGAGTTGGAGTCTCAGGGCAGGTGGCAGTTTCCCTTGAGCAAAGCAGCCAGACGT TGAACTGTGTTTCCTTTCCCTGGGCGCAGGGTGCAGGGTGTCTTCCGGATCTGGTGTGACCTTGGTCCAGGAGTT ATGTGTCTTGGCAGGCACTCATTTCTGTGGCTGTCGGCCAGAGGGAATGTTCTGGAGCTGCCAAGGAGGAGGAG CGCACAGTGTTAAGGAGCCAAGAGGAGCCACTTCGCCCAGACTTTGTTTCCCCACCTCCTGCGGCATGGGTGTGT $\tt CCAGTGCCACCGCTGGCCTCCGCTGCTCCATCAGCCCTGTCGCCACCTGGTCCTTCATGAAGAGCAGACACTTA$ GAGGCTGGTCGGGAATGGGGAGGTCGCCCCTGGGAGGGCAGGCGTTGGTTCCAAGCCGGTTCCCGTCCCTGGCGC $\tt CTGGAGTGCACACCCAGTCGGCACCTGGTGGCTGGAAGCCAACCTGCTTTAGATCACTCGGGTCCCCACCTT$ ${\tt AGAAGGGTCCCCGCCTTAGATCAATCACGTGGACACTAAGGCACGTTTTAGAGTCTCTTGTCTTAATGATTATGT}$ ${\tt CCATCCGTCTGTCCGTCCATTTGTGTTTTCTGCGTCGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG}$ CCTCTGACAACCATGAAGCAAAAATCCGTTACATGTGGGTCTGAACTTGTAGACTCGGTCACAGTATCAAATAAA ATCTATAACAGAAAAAAAAAAAAAAA

FIGURE 412

MRQTIIKVIKFILIICYTVYYVHNIKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYIS LVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSKRF AVFLSEVSENKLRQLNLNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFDLVELEVLKL ELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWIYSLK TLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSINNEGT KLIVLNSLKKMANLTELELIRCDLERIPHSIFSLHNLQEIDLKDNNLKTIEEIISFQHLHRLT CLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLTFLPADIG LLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQSLPSRVGELTNLTQIELRGNRLEC LPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368, 398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 413

GAATCATCCACGCACCTGCAGCTCTGCTGAGAGAGTGCAAGCCGTGGGGGTTTTGAGCTCATC TTCATCATTCATATGAGGAAATAAGTGGTAAAATCCTTGGAAATACAATGAGACTCATCAGAA CATATTAATATGTTATAAACTATTAGGTTGGTGCAAAACTAATTGTGGTTTTTTGCCATTGAAA TGGCATTGAAATAAAGTGTAAAGAAATCTATACCAGATGTAGTAACAGTGGTTTTGGGTCTGG GAGGTTGGATTACAGGGAGCATTTGATTTCTATGTTGTGTATTTCTATAATGTTTGAATTGTT TAGAATGAATCTGTATTTCTTTTATAAGTAGAAAAAAAATAAAGATAGTTTTTACAGCCT

FIGURE 414

MRLIRNIYIFCSIVMTAEGDAPELPEERELMTNCSNMSLRKVPADLTPATTTLDLSYNLLFQL QSSDFHSVSKLRVLILCHNRIQQLDLKTFEFNKELRYLDLSNNRLKSVTWYLLAGLRYLDLSF NDFDTMPICEEAGNMSHLEILGLSGAKIQKSDFQKIAHLHLNTVFLGFRTLPHYEEGSLPILN TTKLHIVLPMDTNFWVLLRDGIKTSKILEMTNIDGKSQFVSYEMQRNLSLENAKTSVLLLNKV DLLWDDLFLILQFVWHTSVEHFQIRNVTFGGKAYLDHNSFDYSNTVMRTIKLEHVHFRVFYIQ QDKIYLLTKMDIENLTISNAQMPHMLFPNYPTKFQYLNFANNILTDELFKRTIQLPHLKTLI LNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNDENCSWPETVVNMNLSYNKLSDSVFRCL PKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDLPGCSHFSRLSVLNIEMNFILSPS LDFVQSCQEVKTLNAGRNPFRCTCELKNFIQLETYSEVMMVGWSDSYTCEYPLNLRGTRLKDV HLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRMLGQCTQTWHRVRKTTQEQLKR NVRFHAFISYSEHDSLWVKNELIPNLEKEDGSILICLYESYFDPGKSISENIVSFIEKSYKSI FVLSPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIPTRYHKLKALLEKKAYLE WPKDRRKCGLFWANLRAAINVNVLATREMYELQTFTELNEESRGSTISLMRTDCL

FIGURE 415

CGGCAAAGTTTGGCCCGAAGAGGAAGTGGTCTCAAACCCCGGCAGGTGGCGACCAGGCCAGACCAGGGGGCGCTCG CTGCCTGCGGGCGGCTGTAGGCGAGGCGCCCCAGTGCCGAGACCCGGGGCTTCAGGAGCCGGCCCCGGGAG AGAAGAGTGCGGCGGGCGGAGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGCTGCCG CCGCCTCCCCGCCCCAGCCCTGGCATCCAGAGTACGGGTCGAGCCCGGGCCATGGAGCCCCCCTGGGGAGGCGG CACCAGGGAGCCTGGGCGCCCGGGGCTCCGCCGCGACCCCATCGGGTAGACCACAGAAGCTCCGGGACCCTTCCG $\texttt{GCACCTCTGGACAGCCCAGG} \underline{\textbf{ATG}} \texttt{CTGTTGGCCACCCTCCTCCTCCTCCTTGGAGGCGCTCTGGCCCATCCAG}$ ACCGGATTATTTTTCCAAATCATGCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGCAGGGCACCTTACAGA GGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG TCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAGAGCGCTTAACCCTACGCTCCCCTCTCCAGCCAC TGATCTCCCTGTGTGAGGCACCTCCCAGCCTCTGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATG $\tt CTGGGGCCAGAGCACCCATGGGCCAGGGCTTCCTGCTCTCCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAGCACCCAGGGCAGGGCCAGGCCAGGGCCAGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGG$ AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT CTGATGAAGCAGGTTGCAGCCCAGACCCCTTCCCTGGCCTGACCCCAAGACCCGTCCCCTGCCTTGCAATG TCACCTTGGAGGACTTCTATGGGGTCTTCTCCTCTCTGGATATACACACCTAGCCTCAGTCTCCCACCCCAGT GAGATGCAGTGCATGTGTATGACGGCCCCTGGGCCCCCTGAGAGCTCCCGACTACTGCGTAGTCTCACCCACTTCA GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCCAGGCTGTTGTGTCCTACCACACAGTTGCTTGGAGCA ATGGTCGTGGCTTCAATGCCACCTACCATGTGCGGGGCTATTGCTTGGCACAGACCCTGTGGCTTAGGCT GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT CTGGTGCCACAGCCTGCTACCTGCCTGCTGACCGCTGCAACTACCAGACTTTCTGTGCTGATGGAGCAGATGAGA GACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGTATGAGACGTGGGTGTGCG ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG CTGCAGTCATTGGCAGCCTAGTGTGCGGCCTGCTCCTGGTCATCGCCCTGGGCTGCACCTGCAAGCTCTATGCCA TTCGCACCCAGGAGTACAGCATCTTTGCCCCCCTCTCCCGGATGGAGGCTGAGATTGTGCAGCAGCAGCACCCC CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG CCAACACCCCGGCTCGGGCCTCTGAGGCCAGATCCCAGGTCACACCTTCTGCTGCTCCCCTTGAGGCCCTAGATG AGGCTCCCCTCCCATCTGCTAGCACGTCTCCAGCCCCCACTACTGTCCCTGAAGCCCCAGGGCCACTGCCCTCAC TGCCCCTAGAGCCATCACTATTGTCTGGAGTGGTGCAGGCCCTGCGAGGCCGCCTGTTGCCCAGCCTGGGGCCCC CAGGACCAACCCGGAGCCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ACCACTTCCTTCCCTGTCCCTGGATTTCAGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT TCACCACCACCTGCTCCCCACGCCACCACTTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA GGTCTGGACACTCCATCCTTGCCAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA CCCTCCAGCCCCCAAGGGGAGGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA GGAATCATACATCTC

FIGURE 416

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631
<subunit 1 of 1, 713 aa, 1 stop
<MW: 76193, pI: 5.42, NX(S/T): 4
MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLILG
SKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAPMG
QGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRPVPS
LPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVHVYDG
PGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLPWDRPC
GLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGATACYLPA
DRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCSYVLPRKV
ITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSYGQLIAQGA
IPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRRQRGRLMRRLVRRLRRWGLLP
RTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGEQAPPLPIKAPLPSASTSPA
PTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAVLALEDEDDVLL
VPLAEPGVWVAEAEDEPLLT</pre>

Important features:
Signal peptide:
amino acids 1-16

Transmembrane domain: amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins amino acids 411-431, 152-171, 331-350 and 374-393

FIGURE 417

GTCGTTCCTTTGCTCTCCGCGCCCAGTCCTCCTCCTGGTTCTCCTCAGCCGCTGTCGGAGGAGAGCACCCGGA GACGCGGGCTGCAGTCGCGGCGGCTTCTCCCCGCCTGGGCGGCCTCGCCGCTGGGCAGGTGCTGAGCGCCCCTAG AGCCTCCCTTGCCGCCTCCTCTCTCCCGGCCGCAGCAGTGCACATGGGGTGTTGGAGGTAGATGGGCTCCCG GCCCGGGAGGCGGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCCGGGCG $\texttt{CCCCTGCGAGTCCCCGGTTCAGCC} \underline{\textbf{ATG}} \texttt{GGGACCTCTCCGAGCAGCAGCCGCCCTCGCCTCCTGCAGCCGCATC}$ ${\tt GCCCGCCGAGCCACGATG\overline{ATC}GCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACAGCTCAGGCTAGGCTCAGGC$ CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACAAGCCTGCGCGTCTGCAGCAGTTGCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCCATGGCCAATG ATTGAGAAATTACCTTGTGCTGCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT ACCTGTGCCCCCCATACGGTGTGTCCTGTGGGTTGGGGTGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCGG TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTGCCTTCTAGTGTGATGAAATGCAAAGCATACACAGACTGT $\tt CTGAGTCAGAACCTGGTGGTGATCAAGCCGGGGACCAAGGAGACAACGTCTGTGGCACACTCCCGTCCTTC$ TCCAGCTCCACCTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG GCCACTGGGGGGGGAGAAGTCCAGCACGCCCATCAAGGGCCCCCAAGAGGGGACATCCTAGACAGAACCTACACAAG TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA GGGCTGAAGAAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT AGGGAGGTTGCTGCTTCTCCAATGGGTACACAGCCGACCACGAGCGGGCCTACGCAGCTCTGCAGCACTGGACC ATCCGGGGCCCCGAGCCAGCCTAATTAGCGCCCTGCGCCAGCACCGGAGAAACGATGTTGTGGAG AAGATTCGTGGGCTGATGGAAGACACCCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG CAGGACAAGAACAAGGGCTTCTTCGTGGATGAGTCGGAGCCCCTTCTCCGCTGTGACTCTACATCCAGCGGCTCC CCCTGTGACTTGCAGCCTATCTTTGATGACATGCTCCACTTTCTAAATCCTGAGGAGCTGCGGGTGATTGAAGAG $\tt CTCCTGGACTCTGTTTATAGCCATCTTCCTGACCTGCTG{\color{red}{\textbf{TAG}}} AACATAGGGATACTGCATTCTGGAAATTACTCA$ TCTCTCTCTTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTGCCTTCTTATGTATTTTCAAGATTATTCTG TGCACTTTAAATTTACTTAACTTACCATAAATGCAGTGTGACTTTTCCCACACACTGGATTGTGAGGCTCTTAAC TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT AAAAACAAATATTATTACTATTTTTATTATTGTTTGTCCTTTATAAATTTTCTTAAAGATTAAGAAAATTTAAGA $\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG$ TCTTCTTATGCTAATATGCTCTGGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTTGCTATTTAAGTGGCTT GACAACTGGGCCACCAAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT GGAAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG TTTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGATTCCTTCACCAATT ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTGCAACTATGCTCCCATTTACAAATG TACCTTCTAATGCTCAGTTGCCAGGTTCCAATGCAAAGGTGGCGTGGACTCCCTTTGTGTGGGGTGGGGTTTGTGG AAAAAAAA

FIGURE 418

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATGQ VLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCAAL TDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKCKAY TDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVPKGMN STESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHILKLLPS MEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVVIVVCSIRKSSRTLK KGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIYQFLCNAS EREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRGLMEDTTQL ETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLLRCDSTSSGS SALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQAEDKLDRLFE IIGVKSQEASQTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

FIGURE 419

ATGGCTGGTGACGGCGGGCCGGGCAGGGGACCGGGGCCGGGCCCGGGAGCCGGGAGCCCTGA ATCACCGCCTGGCCCGACTCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAG GCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGCCTTACA GAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTAC CAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGC CTCTGGGACCAAAACCAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAG CAGAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCCAGCCACTGAGA GACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAG GCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGC AATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAG GAGCAGATGCAGCAGGTGCTGGAGTTGGAGATACAGCTGGCCAACATCACAGTGCCCCAGGACCAGCGGCGCGAC GAGGAGAAGATCTACCACAAGATGAGCATTTCGGAGCTGCAGGCTCTGGCCCCCCCATGGACTGGCTTGAGTTC CAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAACAATTACCTGATCTGGAACCTGGTGCAAAAG ACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAAGCTGCTGGAGACCCTCTATGGCACTAAGAAG GTGAAGGCCACGTTTGACCGGCAAAGCAAAGAAATTGCAGAGGGGATGATCAGCGAAATCCGGACCGCATTTGAG GAGGCCCTGGGACAGCTGGTTTGGATGGATGAGAAGACCCGCCAGGCAGCCAAGGAGAAAGCAGATGCCATCTAT GATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTTCT GAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGACCAGCTCCGCAAG CCTCCCAGCCGAGACCAGTGGAGCATGACCCCCCAGACAGTGAATGCCTACTACCTTCCAACTAAGAATGAGATC GTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATC GGTGTGGTCATGGGCCATGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTG CGGCCCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAGTACAATCAA TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTACTGACAACGGGGGGCTGAAG GCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGGAGCAGCAACTGCCAGCCGTGGGGCTCACC $\tt CTGGTGACCGACCCCCACAGCCCTGCCCGCTTCCGCGTGCTGGGCACTCTCCCAACTCCCGTGACTTCCTGCGG$ ${\tt GAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTT\overline{\tt GG}GTTGGGAAGCAA}$ ATGCAAGCTGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACATTG TGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTTCCGTGTCACCCT

FIGURE 420

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSHS
TCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQAIL
KHLLENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDNFME
VLKAVAGTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAYLDYM
EELGMLLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAPSMDWL
EFLSFLLSPLELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSLDRRFES
AQEKLLETLYGTKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMISEIRTAF
EEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSFFQNMLNLY
NFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNHPKALNFGGI
GVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQVNGERLNGRQT
LGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCSVRTPESSHEGL
VTDPHSPARFRVLGTLSNSRDFLRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain:

amino acids 32-57

FIGURE 421

GGCGCCGCGTAGGCCCGGGAGGCCGGGCCGGGCTGCGAGCGCCTGCCCCATGCGCCCCC GCCTCTCCGCACGATGTTCCCCTCGCGGAGGAAAGCGGCGCAGCTGCCCTGGGAGGACGGCAG GTCCGGGTTGCTCTCCGGCGCCTCCCTCGGAAGTGTTCCGTCTTCCACCTGTTCGTGGCCTG CCTCTCGCTGGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGGACGTGGCCCG CCCTGAGCACTGGGAAGAAGACGCATCCTGGGGCCCCCACCGCCTGGCAGTGCTGGTGCCCTT CCGCGAACGCTTCGAGGAGCTCCTGGTCTTCGTGCCCCACATGCGCCGCTTCCTGAGCAGGAA GAAGATCCGGCACCACATCTACGTGCTCAACCAGGTGGACCACTTCAGGTTCAACCGGGCAGC GCTCATCAACGTGGGCTTCCTGGAGAGCAGCAACAGCACGGACTACATTGCCATGCACGACGT TGACCTGCTCCCTCTCAACGAGGAGCTGGACTATGGCTTTCCTGAGGCTGGGCCCTTCCACGT GGCCTCCCCGGAGCTCCACCCTCTCTACCACTACAAGACCTATGTCGGCGGCATCCTGCTGCT CTCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTTCTGGGGCTGGGGCCGCGA GGACGACGAGTTCTACCGGCGCATTAAGGGAGCTGGGCTCCAGCTTTTCCGCCCCTCGGGAAT CACAACTGGGTACAAGACATTTCGCCACCTGCATGACCCAGCCTGGCGGAAGAGGGGACCAGAA GAAGTACCATGTGGCTTCCCGCACTGCCCTGTCTGTGGGCGGGGCCCCCTGCACTGTCCTCAA ${\tt CATCATGTTGGACTGTGACAAGACCGCCACACCCTGGTGCACATTCAGC} \underline{{\tt TGA}}{\tt GCTGGATGGAC}$ AGTGAGGAAGCCTGTACCTACAGGCCATATTGCTCAGGCTCAGGACAAGGCCTCAGGTCGTGG GCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCAAGCTACGCAATTGCAGCCA CATGCACAGTGATCAGAGAGAGGCTGGGGTGTGTCCTGTCCGGGACCCCCCCTGCCTTCCTGC TCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGGTAGTGGGGAGGGCTGAACAGGA CAACCTCTCATCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGGTAGTGGGGAGGG AAAAAAAAAA

FIGURE 422

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531

><subunit 1 of 1, 327 aa, 1 stop

><MW: 37406, pI: 9.30, NX(S/T): 1

MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVRG QGQETSGPPRACPPEPPPEHWEEDASWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKIRH HIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVASPE LHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGITTGY KTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVLNIMLD CDKTATPWCTFS

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 423

WO 01/68848 PCT/US01/06520

428/615

FIGURE 424

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965
<subunit 1 of 1, 175 aa, 1 stop
<MW: 19330, pI: 7.25, NX(S/T): 1
MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWMD
ADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSSTD
VMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD</pre>

Important features: Signal peptide: amino acids 1-26

C-type lectin domain signature. amino acids 146-171

FIGURE 425

 $\tt CGGACGCGTGGGCCGCCACCTCCGGAACAAGCC{\color{red}\underline{\textbf{ATG}}} GTGGCGGCGACGGTGGCAGCGGCGTGG$ AACATCCGGGGCAAACTGGTGTCGCTGGAGAAGTACCGCGGATCGGTGTCCCTGGTGGTGAAT GTGGCCAGCGAGTGCGGCTTCACAGACCAGCACTACCGAGCCCTGCAGCAGCTGCAGCGAGAC CTGGGCCCCCACCACTTTAACGTGCTCGCCTTCCCCTGCAACCAGTTTGGCCAACAGGAGCCT GACAGCAACAAGGAGATTGAGAGCTTTGCCCGCCGCACCTACAGTGTCTCATTCCCCATGTTT AGCAAGATTGCAGTCACCGGTACTGGTGCCCATCCTGCCTTCAAGTACCTGGCCCAGACTTCT GGGAAGGAGCCCACCTGGAACTTCTGGAAGTACCTAGTAGCCCCAGATGGAAAGGTGGTAGGG GCTTGGGACCCAACTGTGTCAGTGGAGGAGGTCAGACCCCAGATCACAGCGCTCGTGAGGAAG CCCACCTGTGTGGGGCTGACCAATGCAAACTCAAATGGTGCTTCAAAGGGAGAGACCCACTGA CTCTCCTTCCTTTACTCTTATGCCATTGGTCCCATCATTCTTGTGGGGGGAAAAATTCTAGTAT TTTGATTATTTGAATCTTACAGCAACAAATAGGAACTCCTGGCCAATGAGAGCTCTTGACCAG TGAATCACCAGCCGATACGAACGTCTTGCCAACAAAAATGTGTGGCAAATAGAAGTATATCAA GCAATAATCTCCCACCCAAGGCTTCTGTAAACTGGGACCAATGATTACCTCATAGGGCTGTTG AATGAACATTTTTTGCATATAAACCAAAAAATAACTTGTTATCAATAAAAACTTGCATCCAAC ATGAATTTCCAGCCGATGATAATCCAGGCCAAAGGTTTAGTTGTTGTTATTTCCTCTGTATTA TTTTCTTCATTACAAAAGAAATGCAAGTTCATTGTAACAATCCAAACAATACCTCACGATATA AAATAAAATGAAAGTATCCTCCTCAAAAA

FIGURE 426

MVAATVAAAWLLLWAAACAQQEQDFYDFKAVNIRGKLVSLEKYRGSVSLVVNVASECGFTDQH YRALQQLQRDLGPHHFNVLAFPCNQFGQQEPDSNKEIESFARRTYSVSFPMFSKIAVTGTGAH PAFKYLAQTSGKEPTWNFWKYLVAPDGKVVGAWDPTVSVEEVRPQITALVRKLILLKREDL

FIGURE 427

WO 01/68848 PCT/US01/06520

432/615

FIGURE 428

MGVEIAFASVILTCLSLLAAGVSQVVLLQPVPTQETGPKAMGDLSCGFAGHS

FIGURE 429

FIGURE 430

><ss.DNA57834

><subunit 1 of 1, 176 aa, 1 stop ><MW: 19616, pI: 7.11, NX(S/T): 0

MVLTIFGIQSHGYEVFNIISPSNNGGNVQETVTIDNEKNTAIVNIHAGSCSSTTIFDYKH GYIASRVLSRRACFILKMDHQNIPPLNNLQWYIYEKQALDNMFSNKYTWVKYNPLESLIK DVDWFLLGSPIEKLCKHIPLYKGEVVENTHNVGAGGCAKAGLLGILGISICADIHV

Important features:

Signal peptide:

Amino acids 1-26

N-myristoylation sites:

Amino acids 48-54;153-159;156-162;167-173

FIGURE 431

WO 01/68848 PCT/US01/06520

436/615

FIGURE 432

MSRSSKVVLGLSVLLTAATVAGVHVKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILTE QLEAEREKMLLAKGSQKS

FIGURE 433

GAATTCGTGTCTCGGCACTCACTCCCGGCCGCCCGGACAGGAGCTTTCGCTGGCCGCCGTTGGCCGGCGACAGGA CGCTGCCGCTGCTGCTGGGCCTCTTCCTCCCCGCGCTCTGGCGTAGAGCTATCACTGAGGCAAGGGAAGAAGCCA AGCCTTACCCGCTATTCCCGGGACCTTTTCCAGGGAGCCTGCAAACTGACCACACCCGCTGTTATCCCTTCCTC ${\tt ACGCCAGTGGGTACCAGCCTTGATGTTTTCACCAACCCAGCCTGGAAGACCACATACAGGAAACGTAGCCATT}$ CCCCAGGTGACCTCTGTCGAATCAAAGCCCCTACCGCCTCTTGCCTTCAAACACACAGTTGGACACATAATACTT TCTGAACATAAAGGTGTCAAATTTAATTGCTCAATCAATGTACCTAATATATACCAGGACACCACAATTTCTTGG TGGAAAGATGGGAAGGAATTGCTTGGGGGACATCATCGAATTACACAGTTTTATCCAGATGATGAAGTTACAGCA ATAATCGCTTCCTTCAGCATAACCAGTGTGCAGCGTTCAGACAATGGGTCGTATATCTGTAAGATGAAAATAAAC AATGAAGAGATCGTGTCTGATCCCATCTACATCGAAGTACAAGGACTTCCTCACTTTACTAAGCAGCCTGAGAGC ATGAATGTCACCAGAAACACAGCCTTCAACCTCACCTGTCAGGCTGTGGGCCCGCCTGAGCCCGTCAACATTTTC TGGGTTCAAAACAGTAGCCGTGTTAACGAACAGCCTGAAAAATCCCCCGGCGTGCTAACTGTTCCAGGCCTGACG GAGATGGCGGTCTTCAGTTGTGAGGCCCACAATGACAAAGGGCTGACCGTGTCCCAGGGAGTGCAGATCAACATC AAAGCAATTCCCTCCCCACCAACTGAAGTCAGCATCCGTAACAGCACTGCACACAGCATTCTGATCTCCTGGGTT CCTGGTTTTGATGGATACTCCCCGTTCAGGAATTGCAGCATTCAGGTCAAGGAAGCTGATCCGCTGGGTAATGGC TCAGTCATGATTTTTAACACCTCTGCCTTACCACATCTGTACCAAATCAAGCAGCTGCAAGCCCTGGCTAATTAC ATGAAGCCTCCGACTAAGCAGCAGGATGGAGAACTGGTGGGCTACCGGATATCCCACGTGTGGCAGAGTGCAGGG ATTTCCAAAGAGCTCTTGGAGGAAGTTGGCCAGAATGGCAGCCGAGCTCGGATCTCTGTTCAAGTCCACAATGCT CCTGCACACGGTTGGGTAGATTATGCCCCCTCTTCAACTCCGGCGCCTGGCAACGCAGATCCTGTGCTCATCATC TTTGGCTGCTTTTGTGGATTTATTTTGATTGGGTTGATTTTATACATCTCCTTGGCCATCAGAAAAAGAGTCCAG GAGACAAAGTTTGGGAATGCATTCACAGAGGAGGATTCTGAATTAGTGGTGAATTATATAGCAAAGAAATCCTTC TGTCGGCGAGCCATTGAACTTACCTTACATAGCTTGGGAGTCAGTGAGGAACTACAAAATAAACTAGAAGATGTT CTTAAGCAGGAAGATGGGACCTCTCTGAAAGTGGCAGTGAAGACCATGAAGTTGGACAACTCTTCACATCGGGAG ATCGAGGAGTTTCTCAGTGAGGCAGCGTGCATGAAAGACTTCAGCCACCCAAATGTCATTCGACTTCTAGGTGTG TGTATAGAAATGAGCTCTCAAGGCATCCCAAAGCCCATGGTAATTTTACCCTTCATGAAATACGGGGACCTGCAT ACTTACTTACTTTATTCCCGATTGGAGACAGGACCAAAGCATATTCCTCTGCAGACACTATTGAAGTTCATGGTG GATATTGCCCTGGGAATGGAGTATCTGAGCAACAGGAATTTTCTTCATCGAGATTTAGCTGCTCGAAACTGCATG TTGCGAGATGACATGACTGTCTGTGTTGCGGACTTCGGCCTCTCTAAGAAGATTTACAGTGGCGATTATTACCGC CAAGGCCGCATTGCTAAGATGCCTGTTAAATGGATCGCCATAGAAAGTCTTGCAGACCGAGTCTACACAAGTAAA AACCATGAGATGTATGACTATCTTCTCCATGGCCACAGGTTGAAGCCCCGAAGACTGCCTGGATGAACTGTAT GAAATAATGTACTCTTGCTGGAGAACCGATCCCTTAGACCGCCCCACCTTTTCAGTATTGAGGCTGCAGCTAGAA TCTGAGGGCCTGGCCCAGGGCCCCACCCTTGCTCCACTGGACTTGAACATCGACCCTGACTCTATAATTGCCTCC TGCACTCCCCGCGCTGCCATCAGTGTGGTCACAGCAGAAGTTCATGACAGCAAACCTCATGAAGGACGGTACATC $\tt CTGAATGGGGGGCAGTGAGGAATGGGAAGATCTGACTTCTGCCCCCTCTGCTGCAGTCACAGCTGAAAAGAACAGT$ GTTTTACCGGGGGAGAGACTTGTTAGGAATGGGGTCTCCTGGTCCCATTCGAGCATGCTGCCCTTGGGAAGCTCA TTGCCCGATGAACTTTTGTTTGCTGACGACTCCTCAGAAGGCTCAGAAGTCCTGATG<u>TGA</u>GGAGAGGTGCGGGGA CCTTACCAAGTGAACTCCATGGCCCCAAAGCACCAGATGAATGTTGTTAAGGAAGCTGTCATTAAAAATACATAA TATATATTTATTTAAAGAGAAAAAATATGTGTATATCATGAAAAAGACAAGGATATTTTAATAAAACATTACTTA TTTCATTTCACTTATCTTGCATATCTTAAAATTAAGCTTCAGCTGCTCCTTGATATTAACCTTTGTACAGAGTTG AAGTTGTTTTTCAACTTCTTTTTCTTTTTCATTACTATTAAATGTAAAAATATTTGTAAAATGAAATGCCATATT TGACTTGGCTTCTGGTCTTGATGTATTTGATAAGAATGATTAATTTTCTGATATGGCTTCCATAATAAAATTGAA ATAGGA

FIGURE 434

MGPAPLPILLGLFLPALWRRAITEAREEAKPYPLFPGPFFGSLQTDHTPLLSLPHASGYQPALMFSPTQPGRPHT GNVAIPQVTSVESKPLPPLAFKHTVGHIILSEHKGVKFNCSINVPNIYQDTTISWWKDGKELLGGHHRITQFYPD DEVTAIIASFSITSVQRSDNGSYICKMKINNEEIVSDPIYIEVQGLPHFTKQPESMNVTRNTAFNLTCQAVGPPE PVNIFWVQNSSRVNEQPEKSPGVLTVPGLTEMAVFSCEAHNDKGLTVSQGVQINIKAIPSPPTEVSIRNSTAHSI LISWVPGFDGYSPFRNCSIQVKEADPLGNGSVMIFNTSALPHLYQIKQLQALANYSIGVSCMNEIGWSAVSPWIL ASTTEGAPSVAPLNVTVFLNESSDNVDIRWMKPPTKQQDGELVGYRISHVWQSAGISKELLEEVGQNGSRARISV QVHNATCTVRIAAVTRGGVGPFSDPVKIFIPAHGWVDYAPSSTPAPGNADPVLIIFGCFCGFILIGLILYISLAI RKRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNKLEDVVIDRNLLILGKILGEGEFFGS VMEGNLKQEDGTSLKVAVVKTMKLDNSSHFEIEFLSEAACMKDFSHPNVIRLGVCIEMSSQGIPKPMVILPFMK YGDLHTYLLYSRLETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVCVADFGLSKKIYS GDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGVTMWEIRTRGMTPYPGVQNHEMYDYLLHGHRLKQPEDC LDELYEIMYSCWRTDPLDRPTFSVLRLQLEKLLESLPDVRNQADVIYVNTQLLESSEGLAQGPTLAPLDLNIDPD SIIASCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKNSVLPGERLVRNGVSWSHSML PLGSSLPDELLFADDSSEGSEVLM

Signal sequence:

Amino acids 1-18

Transmembrane domain:

Amino acids 501-520

N-glycosylation sites:

Amino acids 114-118;170-174;207-211; 215-219;234-238;294-298;316-320;329-333; 336-340;354-358;389-393;395-399;442-446; 454-458;625-629

Tyrosine kinase phosphorylation sites:

Amino acids 675-683;865-873;923-930

N-myristoylation sites:

Amino acids 41-47;110-116;171-177; 269-275;275-281;440-446;507-513;535-541; 966-972

300 37

Prokaryotic membrane lipoprotein lipid attachment site:
Amino acids 351-362

Tyrosine protein kinases specific active-site signature:
Amino acids 719-732

FIGURE 435

AATGTGAGAGGGCTCATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGGATG TGACAGCAGGCAGAGGAGCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGCAAGGAT $\texttt{CCAAGC} \underline{\textbf{ATG}} \texttt{GAATGCTGCCGTCGGGCAACTCCTGGCACACTGCTCCTCTTTCTGGCTTTCCTG}$ CTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGGGATGCCTGGGGC CCATGGAGTGAATGCTCACGCACCTGCGGGGGGGGGGGCCTCCTACTCTGAGGCGCTGCCTG AGCAGCAAGAGCTGTGAAGGAAGAAATATCCGATACAGAACATGCAGTAATGTGGACTGCCCA CCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCACCATGGC CAGTTTTATGAATGGCTTCCTGTGTCTAATGACCCTGACAACCCATGTTCACTCAAGTGCCAA GCCAAAGGAACAACCCTGGTTGTTGAACTAGCACCTAAGGTCTTAGATGGTACGCGTTGCTAT ${\tt ACAGAATCTTTGGATATGTGCATCAGTGGTTTATGCCAAATTGT:} {\tt TGGCTGCGATCACCAGCTGCTTATGCCAAATTGT:} {\tt TGGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCTGCGATCACCAGCTGCAGAATTGT:$ GGAAGCACCGTCAAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCACCTGCCGGCTG GTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATCGGATGATACTGTGGTTGCACTT CCCTATGGAAGTAGACATATTCGCCTTGTCTTAAAAGGTCCTGATCACTTATATCTGGAAACC AAAACCCTCCAGGGGACTAAAGGTGAAAACAGTCTCAGCTCCACAGGAACTTTCCTTGTGGAC AATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGATACTGAGAATGGCTGGACCACTC ACAGCAGATTTCATTGTCAAGATTCGTAACTCGGGCTCCGCTGACAGTACAGTCCAGTTCATC GGAGGAGGTTATCAGCTGACATCGGCTGAGTGCTACGATCTGAGGAGCAACCGTGTGGTTGCT GACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACCCAAGCTTCAGGAGTGCAAC TTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGCCTTATGACCTCTACCATCCC AGCCGGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGGCATGTCACTTCAGTGGAAGAGTGG AAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCTGCAACATTTTTGACTGCCCTAAA TGGCTGGCACAGGGGTCTCCGTGCACAGTGACATGTGGCCAGGGCCTCAGATACCGTGTG GTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGGCTGTAGCCCAAAAACAAAGCCCCAC ATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATAAACCCAAAGAGAAACTTCCAGTCGAG GCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTAGAAGAAGGAGCTGCTGTGTCAGAGGAG CCCTCG GTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGAACTAAGTGTAATCATCTCACCAAAGCTTT

FIGURE 436

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847
<subunit 1 of 1, 525 aa, 1 stop
<MW: 58416, pi: 6.62, NX(S/T): 1
MECCRRATPGTLLLFLAFILLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLSS
KSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQAK
GTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNGDGSTCRLVR
GQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFLVDNS
SVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCSATCGG
GYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCPASDGYKQIMPYDLYHPLP
RWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNIFDCPKWL
AQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKPHIKEECIVPTPCYKPKEKLPVEAK
LPWFKQAQELEEGAAVSEEPS</pre>

Important features:
Signal peptide:
amino acids 1-25

N-glycosylation site. amino acids 251-254

Thrombospondin 1 amino acids 385-399

von Willebrand factor type C domain proteins amino acids 385-399, 445-459 and 42-56

FIGURE 437

 $\texttt{AACTGGAAGGAAAGAAAGGTCAGCTTTGGCCCAG} \underline{\textbf{ATG}} \texttt{TGGTTACCCCTTGGTCTCCTGT}$ CTTTATGTCTTTCTCCTCTTTCTTTCTGTCATCTCCCTCACTTAAGTCTCAGGCCTGTCAGC AGCTCCTGTGGACATTGCCATCCCCTCTGGTAGCCTTCAGAGCAAACAGGACAACCTATGTTA TGGATGTTTCCACCAACCAGGGTAGTGGCATGGAGCACCGTAACCATCTGTGCTTCTGTGATC ${\tt TCTATGACAGAGCCACTTCTCCACCTCTGAAATGTTCCCTGCTC} \underline{{\tt TGA}} {\tt AATCTGGCATGAGATG}$ TCTCTTATTGTCAACCTCAGCACAACAGGCTGGCGCCCAATGGCATTACAGAGAAAGCAATCTG TGTGGCTAGTGGGCAGATTACCATGCAAGCCCCAGGAGAAATGGAGGAGCTTTGTAGCCACCT CCCTGTCAGCCAGTATTAACATGTCCCCTTCCCCCTGCCCGCCGTAGATTCAGGACATTCGC CCCTGTGTGCCACCAAACCAGGACTTTCCCCTTGGCTTGGCATCCCTGGCTCTCCTCGGTAC CCAGCAAGACGTCTGTTCCAGGGCAGTGTAGCATCTTTCAAGCTCCGTTACTATGGCGATGGC CATGATGTTACAATCCCACTTGCCTGAATAATCAAGTGGGAAGGGGAAGCAGAGGGAAATGGG GCCATGTGAATGCAGCTGCTCTGTTCTCCCTACCCTGAGGAAAAACCAAAGGGAAGCAACAGG AAGAAATGTAGCTGGAGAAGATTGATGAAAGTGCAGGTGTGTAAGGAAATAGAACAGTCTGCT GGGAGTCAGACCTGGAATTCTGATTCCAAACTCTTTATTACTTTGGGAAGTCACTCAGCCTCC CCGTAGCCATCTCCAGGGTGACGGAACCCAGTGTATTACCTGCTGGAACCAAGGAAACTAACA ATGTAGGTTACTAGTGAATACCCCAATGGTTTCTCCAATTATGCCCATGCCACCAAAACAATA AAACAAAATTCTCTAACACTGAAA

FIGURE 438

MWLPLGLLSLCLSPLPILSSPSLKSQACQQLLWTLPSPLVAFRANRTTYVMDVSTNQGSGMEH RNHLCFCDLYDRATSPPLKCSLL

FIGURE 439

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCGGGAGCGACGCAGCTT GAGGGAAGCATCCCTAGCTGTTGGCGCAGAGGGGCCGAGGCTGAAGCCGAGTGGCCCGAGGTGTCTGAGGGGCTGG GGCAAAGGTGAAAGAGTTTCAGAACAAGCTTCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATACCGT CTGAGGGTAGCAGCTCGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCCTGGC GGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACC<u>ATG</u>CTGCGTGGGACGATGACGGCGTGGAGAGGAATG AGGCCTGAGGTCACACTGGCTTGCCTCCTAGCCACAGCAGGCTGCTTTGCTGACTTGAACGAGGTCCCTCAG GTCACCGTCCAGCCTGCGTCCACAGAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGAACCTCCAAGGATGAATGTAACCTGGCGCTCAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCCTCATCACC CACGGGACCCTCGTCATCACTGCCCTTAACAACCACACTGTGGGACGGTACCAGTGTGTGGCCCGGATGCCTGCG GGGCTGTGGCCAGCGTGCCACCACTGTGACACTAGCCAATCTCCAGGACTTCAAGTTAGATGTGCAGCACGTG GTGAATGCCAGCCAGGAGGACGAGGGCATGTACAAGTGTGCAGCCTACAACCCAGTGACCCAGGAAGTGAAAACC TCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGCTGCCCGCATCATCTACCCCCCAGAGGCCCCAAACCATCATCGTCACCCAAAGGCCAGAGTCTCATTCTGGAGTGTGTGGCCAGTGGAATCCCACCCCCACGGGTC ACCTGGGCCAAGGATGGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGCTGAGCAACCTCCTCATCGAC ACCACCAGCGAGGAGGACTCAGGCACCTACCGCTGCATGGCCGACAATGGGGTTGGGCAGCCCGGGGCAGCGGTCACCCTCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATGGAGCTATCCCAGCTGGTCATCCCCTGGGGC CTCATCTCCAGCCAGCCCTCCGGCTCTCCGCAGGGCCCTGCGCGTGCTCAGCATGGGGCCTGAGGACGAAGGC GTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAGCTGCGGACCTCCAGGCCAAGC ATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGCACACCTCCTGTATCACCCCTCCAAACTCGGCAAC CCTGAGCAGATGCTGAGGGGGCAACCGGCGCTCCCCAGACCCCAACGTCAGTGGGGCCTGCTTCCCCGAAGTGT ACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTACAACTGTGCGGGAGAGGGCCAGACAGCC ATGGTCACCTTCCGAACTGGACGGCGGCCCAAACCCGAGATCATGGCCAGCAAAGAGCAGCAGATCCAGAGAGAC GACCCTGGAGCCAGTCCCCAGAGCAGCCAGCCAGACCACGCCCCCCAGAAGCTCCCCACAGAGCTCCCGACAGG GACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAGCGAGTTCAGCAACGTGATGATCTGTGAGACCAAAGCT ANTAGGGGCTGCCCCTCGGCTGCAGTGGGCTACCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAG ANTAGGGGCTGCCCCTCGGCTGCAGGCAGCCAGCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATC TATGTTTTATAATTCTGGAGAGACATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCA CCTAACAGGAGTCACCCAGGAAAGCACCGCACAGGCTGGCGCGGGACAGACTCCTAACCTGGGGCCTCTGCAGTG ACATTTTCCTAAGATGCCCATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAACCTTCCAGAAT

FIGURE 440

MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVEPPR MNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTLAN LQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIMPSGNLQIVN ASQEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTIIVTKGQSLILEC VASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGAAVILY NVQVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSQRLRLSRRALRV LSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQDAELATGTPPVSPSKLGNPEQM LRGQPALPRPPTSVGPASPKCPGEKGQGAPAEAPIILSSPRTSKTDSYELVWRPRHEGSGRAP ILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGEGQTAMVTFR TGRRPKPEIMASKEQQIQRDDPGASPQSSSQPDHGRLSPPEAPDRPTISTASETSVYVTWIPR GNGGFPIQSFRVEYKKLKKVGDWILATSAIPPSRLSVEITGLEKGTSYKFRVRALNMLGESEP SAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNNTPIHGFYIYYRPT DSDNDSDYKKDMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVMICETKARKSSGQP GRLPPPTLAPPQPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVLIIVTFIPFCLWRAW SKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQASGQPYLSGISGRACANGIHMNRGCPSAA VGYPGMKPQQHCPGELQQQSDTSSLLRQTHLGNGYDPQSHQITRGPKSSPDEGSFLYTLPDDS THQLLQPHHDCCQRQEQPAAVGQSGVRAPDSPVLEAVWDPPFHSGPPCCLGLVPVEEVDSPD SCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 441

GAGAGAATAGCTACAGATTCTCCATCCTCAGTCTTTGCAAGGCGACAGCTGTGCCAGCCGGGC ${\tt TCTGGCAGGCTCCTGGCAGC} \underline{{\tt ATG}} {\tt GCAGTGAAGCTTGGGACCCTCCTGCTGGCCCTTGCCCTGG}$ CAGACTACATCAGTGATGAGGCGCTGGAGTCATTGCCTGGTTTCAAAGAGATTGTGAGCAGGG GAGTAAAAGTGGATTACTTGACTCCAGACTTCCCTAGTCTCTCGTATCCCAATTATTATACCC TAATGACTGGCCGCCATTGTGAAGTCCATCAGATGATCGGGAACTACATGTGGGACCCCACCA GCTGTGAGGTTGAGATTCTGGGTGTCAGACCCACCTACTGCCTAGAATATAAAAATGTCCCAA CGGATATCAATTTTGCCAATGCAGTCAGCGATGCTCTTGACTCCTTCAAGAGTGGCCGGGCCG ACCTGGCAGCCATATACCATGAGCGCATTGACGTGGAAGGCCACCACTACGGGCCTGCATCTC CGCAGAGGAAAGATGCCCTCAAGGCTGTAGACACTGTCCTGAAGTACATGACCAAGTGGATCC AGGAGCGGGCCTGCAGGACCGCCTGAACGTCATTATTTTCTCGGATCACGGAATGACCGACA TTTTCTGGATGGACAAAGTGATTGAGCTGAATAAGTACATCAGCCTGAATGACCTGCAGCAAG TGAAGGACCGCGGGCCTGTTGTGAGCCTTTGGCCGGCCCCTGGGAAACACTCTGAGATATATA ATTACAAGAAAGGAAAGTTTGTCTCTCTCTTTGACTTTAGTGGCTGATGAAGGCTGGTTCATAA CTGAGAATCGAGAGATGCTTCCGTTTTGGATGAACAGCACCGGCAGGCGGGAAGGTTGGCAGC GTGGATGGCACGGCTACGACAACGAGCTCATGGACATGCGGGGCATCTTCCTGGCCTTCGGAC CTGATTTCAAATCCAACTTCAGAGCTGCTCCTATCAGGTCGGTGGACGTCTACAATGTCATGT GCAATGTGGTGGGCATCACCCCGCTGCCCAACAACGGATCCTGGTCCAGGGTGATGTGCATGC ${\tt TTCTCTTCCTGCTTGCA} \underline{{\tt TAA}} {\tt CTGATCATATTGCTTGTCTCAGAAAAAAACACCATCAGCAAAG}$ TGGGCCTCCAAAGCCAGATGATTTTCATTTTATGTGTGAATAATAGCTTCATTAACACAATCA AGACCATGCACATTGTAAATACATTATTCTTGGATAATTCTATACATAAAAGTTCCTACTTGT TAAA

FIGURE 442

MAVKLGTLLLALALGLAQPASARRKLLVFLLDGFRSDYISDEALESLPGFKEIVSRGVKVDYL TPDFPSLSYPNYYTLMTGRHCEVHQMIGNYMWDPTTNKSFDIGVNKDSLMPLWWNGSEPLWVT LTKAKRKVYMYYWPGCEVEILGVRPTYCLEYKNVPTDINFANAVSDALDSFKSGRADLAAIYH ERIDVEGHHYGPASPQRKDALKAVDTVLKYMTKWIQERGLQDRLNVIIFSDHGMTDIFWMDKV IELNKYISLNDLQQVKDRGPVVSLWPAPGKHSEIYNKLSTVEHMTVYEKEAIPSRFYYKKGKF VSPLTLVADEGWFITENREMLPFWMNSTGRREGWQRGWHGYDNELMDMRGIFLAFGPDFKSNF RAAPIRSVDVYNVMCNVVGITPLPNNGSWSRVMCMLKGRAGTAPPVWPSHCALALILLFLLA

Important features of the protein: Signal peptide:

amino acids 1-22

N-glycosylation sites. amino acids 100-104, 118-122, 341-345, 404-408

N-myristoylation sites. amino acids 148-154, 365-371

Amidation site. amino acids 343-347

FIGURE 443

AGTGACTGCAGCCTTCCTAGATCCCCTCCACTCGGTTTCTCTCTTTGCAGGAGCACCGGCAGC ACCAGTGTGTGAGGGGGGCAGCGGTCCTAGCCAGTTCCTTGATCCTGCCAGACCACCCA $\texttt{GCCCCGGCACAGAGCTGCTCCACAGGCACC} \underline{\textbf{ATG}} \texttt{AGGATCATGCTGCTATTCACAGCCATCCT}$ GGCCTTCAGCCTAGCTCAGAGCTTTGGGGGCTGTCTGTAAGGAGCCACAGGAGGAGGTGGTTCC TGGCGGGGCCCGCAGCAAGAGGGATCCAGATCTCTACCAGCTGCTCCAGAGACTCTTCAAAAG CCACTCATCTCTGGAGGGATTGCTCAAAGCCCTGAGCCAGGCTAGCACAGATCCTAAGGAATC AACATCTCCCGAGAAACGTGACATGCATGACTTCTTTGTGGGACTTATGGGCAAGAGGAGCGT CCAGCCAGAGGGAAAGACAGGACCTTTCTTACCTTCAGTGAGGGTTCCTCGGCCCCTTCATCC CAATCAGCTTGGATCCACAGGAAAGTCTTCCCTGGGAACAGAGGAGCAGAGACCTTTA**TAA**GA AGCAGAATAGGTACTCCACTTCCGGACTCCTGGACTGCATTAGGAAGACCTCTTTCCCTGTCC CAATCCCCAGGTGCGCACGCTCCTGTTACCCTTTCTCTTCTCTGTTGTAACATTCTTGTG CTTTGACTCCTTCTCCATCTTTTCTACCTGACCCTGGTGTGGAAACTGCATAGTGAATATCCC CAACCCCAATGGGCATTGACTGTAGAATACCCTAGAGTTCCTGTAGTGTCCTACATTAAAAAT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 444

MRIMLLFTAILAFSLAQSFGAVCKEPQEEVVPGGGRSKRDPDLYQLLQRLFKSHSSLEGLLKA LSQASTDPKESTSPEKRDMHDFFVGLMGKRSVQPEGKTGPFLPSVRVPRPLHPNQLGSTGKSS LGTEEQRPL

Important features: Signal peptide: amino acids 1-18

Tyrosine kinase phosphorylation site. amino acids 36-45

N-myristoylation site. amino acids 33-39, 59-65

Amidation site.
amino acids 90-94

Leucine zipper pattern. amino acids 43-65

Tachykinin family signature. amino acids 86-92

FIGURE 445

PCT/US01/06520 WO 01/68848

450/615

FIGURE 446

 $\verb|MIHLGHILFLLLLPVAAAQTTPGERSSLPAFYPGTSGSCSGCGSLSLPLLAGLVAADAVASLLIVGAVFLCARPR|$ RSPAQDGKVYINMPGRG

Signal peptide:

Amino acids 1-18

transmembrane domain:

Amino acids 51-70

Glycosaminoglycan attachment site: Amino acids 40-44

N-myristoylation sites:

Amino acids 34-40;37-43;52-58

Prokaryotic membrane lipoprotein lipid attachment site:
Amino acids 29-40

FIGURE 447

 ${\tt GCCAGGTGTGCAGGCCGCTCCAAGCCCAGCCTGCCCGCTGCCGCCACC} \underline{{\tt ATG}} {\tt ACGCTCCTCCC}$ GCACCCCACAGTCACGGTACCCCACACTGCTACTCGGCTGAGGAACTGCCCCTCGGCCAGGC CAGCCTGGAGGCAGCAAGCCACAGGGGGGAGGCCACGAGAGGCCCTCAGCTACGACCCAGTGCCC ATACCGTGTGGACACGGATGAGGACCGCTATCCACAGAAGCTGGCCTTCGCCGAGTGCCTGTG CAGAGGCTGTATCGATGCACGGACGGCCGCGAGACAGCTGCGCTCAACTCCGTGCGGCTGCT CCAGAGCCTGCTGGTGCTGCGCCGCCGGCCCTGCTCCCGCGACGGCTCGGGGGCTCCCCACACCC TGGGGCCTTTGCCTTCCACACCGAGTTCATCCACGTCCCCGTCGGCTGCACCTGCGTGCTGCC $\texttt{CCGTTCAGTG} \underline{\textbf{TGA}} \texttt{CCGCCGAGGCCGTGGGGCCCCTAGACTGGACACGTGTGCTCCCCAGAGGG}$ $\overline{\texttt{CACCCCTATTTATGTGTATTTATTGTTATTTATATGCCTCCCCAACACTACCCTTGGGGGTC}$ TGGGCATTCCCCGTGTCTGGAGGACAGCCCCCCACTGTTCTCCTCATCTCCAGCCTCAGTAGT TGGGGGTAGAAGGAGCTCAGCACCTCTTCCAGCCCTTAAAGCTGCAGAAAAGGTGTCACACGG CTGCCTGTACCTTGGCTCCCTGTCCTGCTCCCGGCTTCCCTTACCCTATCACTGGCCTCAGGC $\tt CCCGCAGGCTGCCTCTTCCCAACCTCCTTGGAAGTACCCCTGTTTCTTAAACAATTATTTAAG$ TGTACGTGTATTATTAAACTGATGAACACATCCCCAAAA

FIGURE 448

MTLLPGLLFLTWLHTCLAHHDPSLRGHPHSHGTPHCYSAEELPLGQAPPHLLARGAKWGQALP VALVSSLEAASHRGRHERPSATTQCPVLRPEEVLEADTHQRSISPWRYRVDTDEDRYPQKLAF AECLCRGCIDARTGRETAALNSVRLLQSLLVLRRRPCSRDGSGLPTPGAFAFHTEFIHVPVGC TCVLPRSV

Important features:
Signal peptide:
amino acids 1-18

Tyrosine kinase phosphorylation site. amino acids 112-121

N-myristoylation sites. amino acids 32-38, 55-61, 133-139

Leucine zipper pattern. amino acids 3-25

Homologous region to IL-17. amino acids 99-195

FIGURE 449

 $\tt TGCAGAGCTTGTGGAGGCC\underline{ATG} \tt GGGCGCGTCGTCGCGGAGCTCGTCTCCTCGCTGGGGGTT$ GTGGCTGTTGCTGTGCAGCTGCGGATGCCCCGAGGGCCCCGAGCTGCGTGCTCCGCCAGATAA AATCGCGATTATTGGAGCCGGAATTGGTGGCACTTCAGCAGCCTATTACCTGCGGCAGAAATT TGGGAAAGATGTGAAGATAGACCTGTTTGAAAGAGAAGAGGTCGGGGGCCGCCTGGCTACCAT GAAACGTTTTGTCAAAGACCTGGGTCTCTCTGCTGTTCAGGCCTCTGGTGGCCTACTGGGGAT ATATAATGGAGAGACTCTGGTATTTGAGGAGAGCAACTGGTTCATAATTAACGTGATTAAATT AGTTTGGCGCTATGGATTTCAATCCCTCCGTATGCACATGTGGGTAGAGGACGTGTTAGACAA GTTCATGAGGATCTACCGCTACCAGTCTCATGACTATGCCTTCAGTAGTGTCGAAAAATTACT TCATGCTCTAGGAGGAGATGACTTCCTTGGAATGCTTAATCGAACACTTCTTGAAACCTTGCA AAAGGCCGGCTTTTCTGAGAAGTTCCTCAATGAAATGATTGCTCCTGTTATGAGGGTCAATTA TGGCCAAAGCACGGACATCAATGCCTTTGTGGGGGCGGTGTCACTGTCCTGTTCTGATTCTGG CCTTTGGGCAGTAGAAGGTGGCAATAAACTTGTTTGCTCAGGGCTTCTGCAGGCATCCAAAAG CAATCTTATATCTGGCTCAGTAATGTACATCGAGGAGAAAACAAAGACCAAGTACACAGGAAA TCCAACAAAGATGTATGAAGTGGTCTACCAAATTGGAACTGAGACTCGTTCAGACTTCTATGA CATCGTCTTGGTGGCCACTCCGTTGAATCGAAAAATGTCGAATATTACTTTTCTCAACTTTGA TCCTCCAATTGAGGAATTCCATCAATATTATCAACATATAGTGACAACTTTAGTTAAGGGGGGA ATTGAATACATCTATCTTTAGCTCTAGACCCATAGATAAATTTGGCCTTAATACAGTTTTAAC CACTGATAATTCAGATTTGTTCATTAACAGTATTGGGATTGTGCCCTCTGTGAGAGAAAAGGA AGATCCTGAGCCATCAACAGATGGAACATATGTTTGGAAGATCTTTTCCCAAGAAACTCTTAC TAAAGCACAAATTTTAAAGCTCTTTCTGTCCTATGATTATGCTGTGAAGAAGCCATGGCTTGC ATATCCTCACTATAAGCCCCCGGAGAAATGCCCCTCTATCATTCTCCCATGATCGACTTTATTA CCTCAATGGCATAGAGTGTGCAGCAAGTGCCATGGAGATGAGTGCCATTGCAGCCCACAACGC ${\tt TGAGAAACTTAAAACTGAACTA}{\tt TGA}{\tt AGTGACACACTCCTTTTTCCCCTCCTAGTTCCAAATGA}$ CTATCAGTGGCAAAAAAGAACAAAATCTGAGCAGAGATGATTTTGAACCAGATATTTTGCCAT

FIGURE 450

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62880
<subunit 1 of 1, 505 aa, 1 stop
<MW: 56640, pI: 6.10, NX(S/T): 4
MGRVVAELVSSLLGLWLLLCSCGCPEGAELRAPPDKIAIIGAGIGGTSAAYYLRQKFGKDVKI
DLFEREEVGGRLATMMVQGQEYEAGGSVIHPLNLHMKRFVKDLGLSAVQASGGLLGIYNGETL
VFEESNWFIINVIKLVWRYGFQSLRMHMWVEDVLDKFMRIYRYQSHDYAFSSVEKLLHALGGD
DFLGMLNRTLLETLQKAGFSEKFLNEMIAPVMRVNYGQSTDINAFVGAVSLSCSDSGLWAVEG
GNKLVCSGLLQASKSNLISGSVMYIEEKTKTKYTGNPTKMYEVVYQIGTETRSDFYDIVLVAT
PLNRKMSNITFLNFDPPIEEFHQYYQHIVTTLVKGELNTSIFSSRPIDKFGLNTVLTTDNSDL
FINSIGIVPSVREKEDPEPSTDGTYVWKIFSQETLTKAQILKLFLSYDYAVKKPWLAYPHYKP
PEKCPSIILHDRLYYLNGIECAASAMEMSAIAAHNAALLAYHRWNGHTDMIDQDGLYEKLKTEL</pre>

Important features: Signal peptide:

amino acids 1-23

N-glycosylation sites.

amino acids 196-200, 323-327, 353-357

Tyrosine kinase phosphorylation site. amino acids 291-298

N-myristoylation sites. amino acids 23-29, 41-47, 43-49, 45-51, 46-52, 72-78, 115-121, 119-125, 260-266, 384-390, 459-465

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 12-23, 232-243

FIGURE 451

CATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTCCC CGGCCAATGCCCCAGTGCATACCCCCGCCCTTCCTCCACAAAGAGCACCCCTGCCTCACAGG TGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTTTGGAGACCCCGA GTCAGAACATCTTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCATGCTCTCCCTTGGGG TGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGGAGCTGCAGCTGCAGGCAAATTTCT TGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCTTTTCTACAGATTTCTCCAACCCCTCCA TTGCCCAGGCGAGGATCAACAGCCATGTGAAAAAGAAGACCCAAGGGAAGGTTGTAGACATAA TCCAAGGCCTTGACCTTCTGACGGCCATGGTTCTGGTGAATCACATTTTCTTTAAAGCCAAGT GGGAGAAGCCCTTTCACCTTGAATATACAAGAAAGAACTTCCCATTCCTGGTGGGCGAGCAGG TCACTGTGCAAGTCCCCATGATGCACCAGAAAGAGCAGTTCGCTTTTGGGGTGGATACAGAGC TGAACTGCTTTGTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTTCTTTGTCCTCCCTA GCAAGGGCAAGATGAGGCAACTGGAACAGGCCTTGTCAGCCAGAACACTGATAAAGTGGAGCC ACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTTCCATTTCTGCCTCCTACA ATCTGGAAACCATCCTCCCGAAGATGGGCATCCAAAATGCCTTTGACAAAAATGCTGATTTTT CTGGAATTGCAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCCACAAGGCTGTGCTGGATG TCAGTGAAGAGGGCACTGAGGCCACAGCAGCTACCACCAAGTTCATAGTCCGATCGAAGG ATGGTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCTGATGATGATTACAAATAAAG GCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAACAAACCACATCCCTCTTTCTGT TCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTGGCAGGGATGCCACTTCCAAGGCT CATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAACCCAGGTTAGGCACCTCTATTGCAGAA

FIGURE 452

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLET PSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVPSK DLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGKVVD IIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAFGVDT ELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRFSISAS YNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVSEEGTEATAATTTKFIVRS KDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide: amino acids 1-20

FIGURE 453

CCCGCGGGGGGCGATGACCGTGCGCTGACCCTGACTCCAGGTCCGGAGGCGGGGGCCCCCGGGGCGACTCG GGGGCGGACCGCGGGGGGGGGCCGCCCGTGAGTCCGGCCGAGCCACCTGAGCCCGAGCCGCGGGACACCGTC $\texttt{GCTCCTGCTCTCCGA} \underline{\textbf{ATG}} \texttt{CTGCGCACCGCGATGGGCCTGAGGAGCTGGCTGCCCCATGGGGCGCGCTGCCG}$ CCTCGGCCACCGCTGCTGCTGCTGCTGCTGCTGCTGCTGCAGCCGCCCCCCCACCTGGGCCGCCTCAGC CCCCGGATCAGCCTGCCTCTGGGCTCTGAAGAGCGGCCATTCCTCAGATTCGAAGCTGAACACATCTCCAACTAC ACAGCCCTTCTGCTGAGCAGGGATGGCAGGACCCTGTACGTGGGTGCTCGAGAGGCCCTCTTTGCACTCAGTAGC AACCTCAGCTTCCTGCCAGGCGGGGAGTACCAGGAGCTGCTTTGGGGTGCAGACGCAGAGAAAACAGCAGTGC AGCTTCAAGGGCAAGGACCCACAGCGCGACTGTCAAAACTACATCAAGATCCTCCTGCCGCTCAGCGGCAGTCAC CTGTTCACCTGTGGCACAGCCTTCAGCCCCATGTGTACCTACATCAACATGGAGAACTTCACCCTGGCAAGG GACGAGAAGGGGAATGTCCTCCTGGAAGATGGCAAGGCCCGTTGTCCCTTCGACCCGAATTTCAAGTCCACTGCC $\tt CTGGTGGTTGATGGCGAGCTCTACACTGGAACAGTCAGCAGCTTCCAAGGGAATGACCCGGCCATCTCGCGGAGC$ CAAAGCCTTCGCCCCACCAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTTTGTGGCCTCAGCCTAC ATTCCTGAGAGCCTGGGCAGCTTGCAAGGCGATGATGACAAGATCTACTTTTTCTTCAGCGAGACTGGCCAGGAA TTTGAGTTCTTTGAGAACACCATTGTGTCCCGCATTGCCCGCATCTGCAAGGGCGATGAGGGTGGAGAGCGGGTG ${\tt GTGCTGCAGGATGTCTTCACGCTGAGCCCCCAGGACTGGCGTGACACCCTTTTCTATGGGGTCTTCACT}$ TCCCAGTGGCACAGGGGAACTACAGAAGGCTCTGCCGTCTGTGTCTTCACAATGAAGGATGTGCAGAGAGTCTTC CCTGGAGCGTGCATCACCAACAGTGCCCGGGAAAGGAAGATCAACTCATCCCTGCAGCTCCCAGACCGCGTGCTG AACTTCCTCAAGGACCACTTCCTGATGGACGGGCAGGTCCGAAGCCGCATGCTGCTGCAGCCCCAGGCTCGC GTGCCCATGGCCAACTGCAGCCTGTACCGGAGCTGTGGGGACTCCTCCTCGCCCGGGACCCCTACTGTGCTTGG AGCGGCTCCAGCTGCAAGCACGTCAGCCTCTACCAGCCTCAGCTGGCCACCAGGCCGTGGATCCAGGACATCGAG GGAGCCAGCGCCAAGGACCTTTGCAGCGCGTCTTCGGTTGTGTCCCCGTCTTTTGTACCAACAGGGGAGAAGCCA TGTGAGCAAGTCCAGTTCCAGCCCAACACAGTGAACACTTTGGCCTGCCGGCTCCTCCCAACCTGGCGACCCGA GTGGGCACCCAACAGCTGGGGGAGTTCCAGTGCTGGTCACTAGAGGAGGGCTTCCAGCAGCTGGTAGCCAGCTAC TGCCCAGAGGTGGTGGAGGACGGGGTGGCAGACCAAACAGATGAGGGTGGCAGTGTACCCGTCATTATCAGCACA TCGCGTGTGAGTGCACCAGCTGGTGGCAAGGCCAGCTGGGTGCAGACAGGTCCTACTGGAAGGAGTTCCTGGTG ATGTGCACGCTCTTTGTGCTGGCCGTGCTCCCAGTTTTATTCTTGCTCTACCGGCACCGGAACAGCATGAAA GTCTTCCTGAAGCAGGGGGAATGTGCCAGCGTGCACCCCAAGACCTGCCCTGTGGTGCTGCCCCTGAGACCCGC CCACTCAACGGCCTAGGGCCCCCTAGCACCCCGCTCGATCACCGAGGGTACCAGTCCCTGTCAGACAGCCCCCCG GGGGCCCGAGTCTTCACTGAGTCAGAGAGAGAGGCCACTCAGCATCCAAGACAGCTTCGTGGAGGTATCCCCAGTG ${\tt TGCCCCGGCCCCGGGTCCGCCTTGGCTCGGAGATCCGTGACTCTGTGGTG} {\tt TGA}{\tt GAGCTGACTTCCAGAGGACGC}$ TGCCCTGGCTTCAGGGGCTGTGAATGCTCGGAGAGGGTCAACTGGACCTCCCCTCCGCTCTGCTCTTCGTGGAAC ACGACCGTGGTGCCCGGCCCTTGGGAGCCTTGGAGCCAGCTGGCCTGCTCCAGTCAAGTAGCGAAGCTCC CAGTGCTCCTTATGTAAACTGAGCCCTTTGTTTAAAAAAACAATTCCAAATGTGAAACTAGAATGAGAGGGAAGAG ATAGCATGCATGCACACACGCTGCTCCAGTTCATGGCCTCCCAGGGGTGCTGGGGATGCATCCAAAGTGG TTGTCTGAGACAGAGTTGGAAACCCTCACCAACTGGCCTCTTCACCTTCCACATTATCCCGCTGCCACCGGCTGC TTGCTGCCGTCGTCCCACCACCTCAGGGACCAGAGGGCTAGGTTGGCACTGCGGCCCTCACCAGGTCCTGGGCTC GGACCCAACTCCTGGACCTTTCCAGCCTGTATCAGGCTGTGGCCACACGAGAGACAGCGCGAGCTCAGGAGAGA CTGGTCCTCTCCCCAGTCCCCAGTTCACCCTCCATCCCTCACCTTCCTCCACTCTAAGGGATATCAACACTGCCC GTCTGAAGAATTACTGTTTAAAAAAAAAAAAAAA

FIGURE 454

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962

><subunit 1 of 1, 837 aa, 1 stop

><MW: 92750, pI: 7.04, NX(S/T): 6

MLRTAMGLRSWLAAPWGALPPRPPLILILLLLLLLLQPPPPTWALSPRISLPLGSEERPFLRFE
AEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEKKQQCSFKGKD
PQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVLLEDGKGRCPFDP
NFKSTALVVDGELYTGTVSSFQGNDPAISRSQSLRPTKTESSLNWLQDPAFVASAYIPESLGS
LQGDDDKIYFFFSETGQEFEFFENTIVSRIARICKGDEGGERVLQQRWTSFLKAQLLCSRPDD
GFPFNVLQDVFTLSPSPQDWRDTLFYGVFTSQWHRGTTEGSAVCVFTMKDVQRVFSGLYKEVN
RETQQWYTVTHPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFLMDGQVRSRMLLLQ
PQARYQRVAVHRVPGLHHTYDVLFLGTGDGRLHKAVSVGPRVHIIEELQIFSSGQPVQNLLLD
THRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQPQLATRPWIQ
DIEGASAKDLCSASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATRLWLRNGAPVN
ASASCHVLPTGDLLLVGTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQTDEGGSVPVII
STSRVSAPAGGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHRNSMKVFLKQGECASV
HPKTCPVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFTESEKRPLSIQDSFVEVSP

Transmembrane domains:

amino acids 23-46 (type II), 718-738

FIGURE 455

TAAGATGAGGGCATCCCTCACGTTCACACCCCTGGTGGCATCTGCCAGCCCTGTTCTGGGGAC AAGGCGGGCTTTCGTGGGAGCCATGCTCAGCCTGCCAGGAAGCCCAAGCCCTACAGTGCAGAGG AAACAGAATTTCAACGGGAAGCTGGTTTGCTTCATACCATTGGGATCTGCTGGTAAAGCTGTT ATTTGGGTTTAGGGACTGATCCCTTGCAGTTTACTTCTGGATCACCATGAATGGCCAAGATGG TGGCAGAACACGCTGTGGACCCTGAGTTAGAGACAATGCAAATGTTGGATTGGGTGTAATTCT TTTTGAATCCCAGATCCAGTCTGTACTTGAATATGAGCAGAAGATCTACAAGAATGCTGACAG GGAACCGTGTTAAGACCCAGCACCCCTATTCCCAGGAGCTTCTGGCCTGACCATCTGCAGCCA AAGCACTAACAGGGACAGATATGGGAATGTCCACCTTTGATCCGCATCCTGCACAATAGTGGT CCCACCATGGCTGCCACTTTTTTATACTATTTGGAGAAAAGACCTTGTATAAATTCGAGGCCC GAGTGACTAACGTCTCTGTCACACGGAAATGGGTACTTGGTGGCATAGAGAAACACAATTAGC TCTGCTGTCCTTTCCCCAACGTACTGGGTCCCGAGCGTGGTGGGTATTTGCCACACTGGGTGC CAGCTCAGCAGCCCCCCACCTCTTTTATTCTCTCCAAAGCTGGTCTTTCTGACTATCATTGT GGTAGGGGGAGACAGATGCTAAAGGTGGAAGCTGACCTGGAGAAAGAGACACACGGGGTGAC TGTGGCAAAGGACAGCTGGAAAAGAAACTCTATCACTTCTTCATTGGCAACCACAAGGCACCC GAGGCCATGGCACTCCCAGAGGCTGTGCGCAGAGCCAAGCCTCTCAACCTCTTCTGGCCCTGC ${\tt GTCCTGCAGCGAAGTCTCTGCTGTAAGACAG} {\tt TAG} {\tt ACTCCTTCGATGAGGTGCTCAAAAATGCT}$ ACCCGGGGTGGTGTCTGGCTTGCAGTCTGGCCCAGTTCAGAGAAAGTTGCAGAGATCAGGG GCCAAGGATGTCATAGCCCCAGGTTGTCCTCAGGGTCCCAATCCTAGGGCAGGGTGTGCATGG AAGCAAGAACTATGGAAACCTAGCTCCAGTCTGCAGGCTCTGAGCCCCTAGTTCCTCACTCCA GCGGGGCTCCCTCACTGCACAGAACCCACCCCTTCTGTGTGGGCACTGCTGACCACACAGATG ACCCAGACCCAAAGAGCCTGGCAGAAGCTCTGTGGTTGGAGCTGGGCTCCGTCTCCAGGTCTG GTTCAGGGGGATCAGGAAGGCTCTTTTCCACCTGTGGCTTCACTGGCCCTTTGAGATTTCCTA TCTCACCGTTACTTCAGTTACCCTTGCAGGGGGCCAGGGAGTCAAGAATATACCGTGTTCCTC CAGGGTTTAAGCCGGCCATGCCTTCCCGAGAGCATAACCAACTTGACAGGGGTGCCCAGTTAC CCCACAAACTGAAGGAAGGAGATCCTTCCCCCGTCCCCAGGAGTGCTCTCAACCAGCCTCAGA AAGCTTGAGAAGATGGACCCTTTGCCCACCAGGGTTAATTCCTGGTGGGGCAGCTCGGCTGTG ATCAGGGCAACCAAACCTATAGGAAGCCTTCCAGTGTGAGCTGGAATTAGACTGAACATGTGC TTGGGCCTGCCTCCCTAGACGCAGTTGCGGGGCACTCCAGGGAATGAACCAGCTCAAGTGT GTCCCTAACAGCAGCCTGGAGCTACCCCCAATCCCTCACAGCCTGACCCTCCTCATTCCATCA GATCTCGTGCCG

FIGURE 456

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA69555
><subunit 1 of 1, 148 aa, 1 stop
><MW: 16214, pI: 10.22, NX(S/T): 0</pre>

MGTWWHRETQLATFSATLLTQLHPTLLTQVHPLLLSFPQRTGSRAWWVFATLGASSAAPH LSLFSPKLVFLTIIVVGGGQMLKVEADLEKETHGVTVAKDSWKRNSITSSLATTRHPRPW HSQRLCAEPSLSTSSGPASCSEVSAVRQ

Important features of the protein:

Signal peptide:

Amino acids 1-28

Transmembrane domain:

Amino acids 64-78

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 103-107

N-myristoylation sites:

Amino acids 53-59;94-100

FIGURE 457

 $\texttt{CCCGCGCCCCTGGCACTCAATCCCCGCC} \underline{\textbf{ATG}} \texttt{TGGGGGGCTCCTGCTCGCCCTGGCCGCCTTC}$ GGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCG GAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTC ATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCC CTTGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCT ${\tt CCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCC}$ TATGATGGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGG GTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCAC AGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTC GCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTT GAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATG AGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGG AAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCATGAG TTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACC CGGCTGCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATC GCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATC GATCTTAACCATAATTTTGCTGACCTCAACACACCCTGTGGGAAGCACAGGACGATGGGAAG GTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCC ACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGT GCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGG GCTGCCCGCGAGCTCACGCCCACACCAGATGATGCTGTTTTCGCTGGCTCAGCACTGTCTAT GCTGGCAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCC AGCTACCTACACCACCTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCAC GTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCT CTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGG AACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCC AAACAGAGGCTGCGCGAGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGC

FIGURE 458

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71162

><subunit 1 of 1, 734 aa, 1 stop

><MW: 81677, pI: 6.60, NX(S/T): 6

MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL ESLRVSDSRLEASSSQSFGLGPHRGRLNIHSGLEDGDLYDGAWCAEEQDADPWFQVDAGH PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH GNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR AVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSN LAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHE NELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDY WRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKD

FIGURE 459

FIGURE 460

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71290
><subunit 1 of 1, 85 aa, 1 stop
><MW: 9700, pI: 9.55, NX(S/T): 0
MKKVLLLITAILAVAVGFPVSQDQEREKRSISDSDELASGFFVFPYPYPFRPLPPIPFPRFPW
FRRNFPIPIPESAPTTPLPSEK

Important features of the protein: Signal peptide: amino acids 1-17

Homologous region to B3-hordein: amino acids 47-85

Important features of the protein: Signal peptide:
Amino acids 1-20

N-glycosylation sites: Amino acids 57-61;210-214;220-224;318-322;428-432;472-476

cAMP- and cGMP-dependent protein kinase phosphorylation site: Amino acids 80-84

N-myristoylation sites: Amino acids 3-9;20-29;39-48;152-161;161-170;262-271;358-364; 538-544;560-566;637-643

Zinc carboxypeptidases, zinc-binding region 2 signature:
Amino acids 498-509

Zinc carboxypeptidases: Amino acids 391-411

FIGURE 461

 ${\tt AGCAGGAGCAGGAGGGACA} \underline{\textbf{ATG}} {\tt GAAGCTGCCCCGTCCAGGTTCATGTTCCTCTTATTTCTC}$ CTCACGTGTGAGCTGGCTGCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTGGT GCTGCCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTCATTGCTGCCACT GAGGTGGCTGTCATAGGCTTCTTCCAGGATTTAGAAATACCAGCAGTGCCCATACTCCATAGC ATGGTGCAAAAATTCCCAGGCGTGTCATTTGGGATCAGCACTGATTCTGAGGTTCTGACACAC TACAACATCACTGGGAACACCATCTGCCTCTTTCGCCTGGTAGACAATGAACAACTGAATTTA GAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTCATTGAGATCAACAGC CTCCACATGGTGACAGAGTACAACCCTGTGACTGTGATTGGGTTATTCAACAGCGTAATTCAG ATTCATCTCCTCCTGATAATGAACAAGGCCTCCCCAGAGTATGAAGAGAACATGCACAGATAC CAGAAGGCAGCCAAGCTCTTCCAGGGGAAGATTCTCTTTATTCTGGTGGACAGTGGTATGAAA GAAAATGGGAAGGTGATATCATTTTTCAAACTAAAGGAGTCTCAACTGCCAGCTTTGGCAATT TACCAGACTCTAGATGACGAGTGGGATACACTGCCCACAGCAGAAGTTTCCGTAGAGCATGTG ${\tt AAGACTCCAAAGGTGGAACTC} \underline{{\tt TGA}} {\tt CTTCTCCTTGGAACTACATATGGCCAAGTATCTACTTTA}$ TGCAAAGTAAAAAGGCACAACTCAAATCTCAGAGACACTAAACAACAGGATCACTAGGCCTGC ACACACACAGAGCTTCATTTCCTGTCTTAAAATCTCGTTTTTCTCTTCTTCTTCTTTTAAA TTTCATATCCTCACTCCCTATCCAATTTCCTTCTTATCGTGCATTCATACTCTGTAAGCCCAT CTGTAACACCCTAGATCAAGGCTTTAAGAGACTCACTGTGATGCCTCTATGAAAGAGAGGCA TTCCTAGAGAAAGATTGTTCCAATTTGTCATTTAATATCAAGTTTGTATACTGCACATGACTT ACACACAACATAGTTCCTGCTCTTTTAAGGTTACCTAAGGGTTGAAACTCTACCTTCTTTCAT AAGCACATGTCCGTCTCTGACTCAGGATCAAAAACCAAAGGATGGTTTTAAACACCTTTGTGA AATTGTCTTTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTCCCTGAACTCAGCAGAAATAGACC ATGTGAAAACTCCATGCTTGGTTAGCATCTCCAACTCCCTATGTAAATCAACAACCTGCATAA TAAATAAAAGGCAATCATGTTATA

FIGURE 462

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30480, pI: 4.60, NX(S/T): 1

MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIGF FQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDIES IDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAAKLF QGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEVSVEHVQNFCDGF LSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 463

FIGURE 464

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541
><subunit 1 of 1, 178 aa, 1 stop
><MW: 19600, pI: 5.89, NX(S/T): 1
MHRPEAMLLLITLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQVKL
GDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISSAY
PSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR

Signal peptide: amino acids 1-22

FIGURE 465

 ${\tt TTGCGAGCCGCTGCCTAGAGGCCGAGGAGCTCACAGCT} {\tt ATG} {\tt GGCTGGAGGCCCCGGAGAGCTCGGGGGACCCCGT}$ TGCTGCTGCTACTACTGCTGCTCTGGCCAGTGCCAGGCGCGGGGTGCTTCAAGGACATATCCCTGGGC CAGACATGGGGCTGGTGGCCCTGGAGGCTGAAGGCCAGGAGCTCCTGCTTGAGCTGGAGAAGAACCACAGGCTGC TGGCCCCAGGATACATAGAAACCCACTACGGCCCAGATGGGCAGCCAGTGGTGCTGGCCCCCAACCACACGGATC ATTGCCACTACCAAGGGCGAGTAAGGGGCTTCCCCGACTCCTGGGTAGTCCTCTGCACCTGCTCTGGGATGAGTG GCCTGATCACCCTCAGCAGGAATGCCAGCTATTATCTGCGTCCCTGGCCACCCCGGGGCTCCAAGGACTTCTCAA CCCACGAGATCTTTCGGATGGAGCAGCTGCTCACCTGGAAAGGAACCTGTGGCCACAGGGATCCTGGGAACAAAG CGGGCATGACCAGCCTTCCTGGTGGTCCCCAGAGCAGGGGCAGGCGAGAAGCGCGCAGGACCCGGAAGTACCTGG AACTGTACATTGTGGCAGACCACACCCTGTTCTTGACTCGGCACCGAAACTTGAACCACACCAAACAGCGTCTCC TGGAAGTCGCCAACTACGTGGACCAGCTTCTCAGGACTCTGGACATTCAGGTGGCGCTGACCGGCCTGGAGGTGT GGACCGAGCGGGACCGCAGCCGCTCACGCAGGACGCCAACGCCACGCTCTGGGCCCTTCCTGCAGTGGCGCCGGG GGCTGTGGGCGCAGCGCCCCACGACTCCGCGCAGCTGCTCACGGGCCGCCTTCCAGGGCGCCACAGTGGGCC TGGCGCCCGTCGAGGGCATGTGCCGCGCCGAGAGCTCGGGAGCGTGAGCACGGACCACTCGGAGCTCCCCATCG GCGCCGCAGCCACCATGGCCCATGAGATCGGCCACAGCCTCGGCCTCAGCCACGACCCCGACGGCTGCTGCGTGG AGGCTGCGGCCGAGTCCGGAGGCTGCGTCATGGCTGCGGCCACCGGGCACCCGTTTCCGCGCGTGTTCAGCGCCT GCAGCCGCCAGCTGCGCCCTTCTTCCGCAAGGGGGGGCGCCTTGCCTCTCCAATGCCCCGGACCCCGGAC AGTGCCGCGACCTCTGCTGCTTTGCTCACAACTGCTCGCTGCGCCCGGGGGCCCAGTGCGCCCACGGGGACTGCT GCGTGCGCTGCTGAAGCCGGCTGGAGCGCTGTGCCGCCAGGCCATGGGTGACTGTGACCTCCCTGAGTTTT GCACGGGCACCTCCTCCCACTGTCCCCCAGACGTTTACCTACTGGACGGCTCACCCTGTGCCAGGGGCAGTGGCT ${\tt CCGAGGCCTGTTTCCAGGTGGAACTCTGCGGGAGATGCTCATGGAAACTGCGGCCAGGACAGCGAGGGCCACT}$ TCCTGCCCTGTGCAGGGAGGGATGCCCTGTGTGGGAAGCTGCAGTGCCAGGGTGGAAAGCCCAGCCTGCTCGCAC GCAATAGCAACCATAACTGCCACTGTGCTCCAGGCTGGGCTCCACCCTTCTGTGACAAGCCAGGCTTTGGTGGCA GCTGCAGAAGGGACCCTGCGTGCAGTGGCCCCAAAGATGGCCCACACAGGGACCACCCCCTGGGCGGCGTTCACC CCATGGAGTTGGGCCCCACAGCCACTGGACAGCCCTGGCCCCTGGACCCTGAGAACTCTCATGAGCCCAGCAGCC ACCCTGAGAAGCCTCTGCCAGCAGTCTCGCCTGACCCCCAAGCAGATCAAGTCCAGATGCCAAGATCCTGCCTCT TCGACCCACCCACTCCAGGAACCCAGAGCCACATTAGAAGTTCCTGAGGGCTGGAGAACACTGCTTGGGCACACT GTAGTGCTGGCCATCCCAAAAGGGCTCTGTCCTGGGAGTCTGGTGTCTCCTACATGCAATTTCCACGGACCCA ${\tt GCTCTGTGGAGGGCATGACTGCTGGCCAGAAGCTAGTGGTCCTGGGGGCCCTATGGTTCGACTGAGTCCACACTCC}$ CTCCCCTAGGTGGTTCCTGAGCCCCCACCCCCAATCCCAGTGCTACACCTGAGGTTCTGGAGCTCAGAATCTGAC AGCCTCTCCCCCATTCTGTGTGTGTCCGGGGGACAGAGGGAACCATTTAAGAAAAGATACCAAAGTAGAAGTCAA AAGAAAGACATGTTGGCTATAGGCGTGGTGGCTCATGCCTATAATCCCAGCACTTTGGGAAGCCGGGGTAGGAGG ATCACCAGAGGCCAGCAGGTCCACACCAGCCTGGGCAACACAGCAAGACACCGCATCTACAGAAAAATTTTAAAA TTAGCTGGGCGTGGTGGTGTACCTGTAGGCCTAGCTGCTCAGGAGGCTGAAGCAGGAGGATCACTTGAGCCTG AGTTCAACACTGCAGTGAGCTATGGTGGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTCTAA

FIGURE 466

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76788
><subunit 1 of 1, 813 aa, 1 stop
><MW: 87739, pI: 6.94, NX(S/T): 5</pre>

MGWRPRRARGTPLLLLLLLLLLWPVPGAGVLQGHIPGQPVTPHWVLDGQPWRTVSLEEPVSKPDMGLVALEAEGQ ELLLELEKNHRLLAPGYIETHYGPDGQPVVLAPNHTDHCHYQGRVRGFPDSWVVLCTCSGMSGLITLSRNASYYL RPWPPRGSKDFSTHEIFRMEQLLTWKGTCGHRDPGNKAGMTSLPGGPQSRGRREARRTRKYLELYIVADHTLFLT RHRNLNHTKQRLLEVANYVDQLLRTLDIQVALTGLEVWTERDRSRVTQDANATLWAFLQWRRGLWAQRPHDSAQL LTGRAFQGATVGLAPVEGMCRAESSGGVSTDHSELPIGAAATMAHEIGHSLGLSHDPDGCCVEAAAESGGCVMAA ATGHPFPRVFSACSRRQLRAFFRKGGGACLSNAPDPGLPVPPALCGNGFVEAGEECDCGPGQECRDLCCFAHNCS LRPGAQCAHGDCCVRCLLKPAGALCRQAMGDCDLPEFCTGTSSHCPPDVYLLDGSPCARGSGYCWDGACPTLEQQ CQQLWGPGSHPAPEACFQVVNSAGDAHGNCGQDSEGHFLPCAGRDALCGKLQCQGKPSLLAPHMVPVDSTVHLD GQEVTCRGALALPSAQLDLLGLGLVEPGTQCGPRMVCQSRRCRKNAFQELQRCLTACHSHGVCNSNHNCHCAPGW APPFCDKPGFGGSMDSGPVQAENHDTFLLAMLLSVLLPLLPGAGLAWCCYRLPGAHLQRCSWGCRRDPACSGPKD GPHRDHPLGGVHPMELGPTATGQPWPLDPENSHEPSSHPEKPLPAVSPDPQADQVQMPRSCLW

Important features of the protein: Signal peptide:
Amino acids 1-27

Transmembrane domain: Amino acids 702-720

N-glycosylation sites: Amino acids 109-113;145-149;231-235;276-280;448-452

Tyrosine kinase phosphorylation site: Amino acids 236-244

N-myristoylation sites: Amino acids 29-35;185-191;195-201;308-314;318-324;326-332;338-344;370-376; 400-406;402-408;454-460;504-510;510-516;517-523;580-586; 601-607;661-667;687-693;717-723;719-725

Amidation site: Amino acids 200-204

Neutral zinc metallopeptidases, zinc-binding region signature: Amino acids 342-352

FIGURE 467

FIGURE 468

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77623
><subunit 1 of 1, 97 aa, 1 stop
><MW: 10160, pI: 6.56, NX(S/T): 0
MQLGTGLLLAAVLSLQLAAAEAIWCHQCTGFGGCSHGSRCLRDSTHCVTTATRVLSNTEDLPL
VTKMCHIGCPDIPSLGLGPYVSIACCQTSLCNHD

Important features of the protein: Signal peptide: amino acids 1-20

N-myristoylation sites. amino acids 6-11 and 33-38

Prokaryotic membrane lipoprotein lipid attachment sites. amino acids 24-34 and 78-88

FIGURE 469

 $\texttt{C} \underline{\textbf{ATG}} \texttt{GAGCCTCTTGCAGCTTACCCGCTAAAATGTTCCGGGCCCAGAGCAAAGGTATTTGCAGT}$ TTTGCTGTCTATAGTTCTATGCACAGTAACGCTATTTCTTCTACAACTAAAATTCCTCAAACC TAAAATCAACAGCTTTTATGCCTTTGAAGTGAAGGATGCAAAAGGAAGAACTGTTTCTCTGGA AAATTACTTAGGGCTGAAGGAACTGCACAAAGAGTTTGGACCATCCCACTTCAGCGTGTTGGC AAGAAAAACTACGGAGTAACTTTCCCCATCTTCCACAAGATTAAGATTCTAGGATCTGAAGG AGAACCTGCATTTAGATTTCTTGTTGATTCTTCAAAGAAGGAACCAAGGTGGAATTTTTTGGAA GTATCTTGTCAACCCTGAGGGTCAAGTTGTGAAGTTCTGGAGGCCCAGAGGAGCCCATTGAAGT ${f A}$ GAATGCCATTGCGTTTCTAATAGAACAGAGAAATGTCTCCATGAGGGTTTGGTCTCATTTTA AACATTTTTTTTTTGGAGACAGTGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTAGTGCGTT CTCAGCTCATTGCAACCTCTGCCTTTTTAAACATGCTATTAAATGTGGCAATGAAGGATTTTT TTTTAATGTTATCTTGCTATTAAGTGGTAATGAATGTTCCCAGGATGAGGATGTTACCCAAAG CAAAAATCAAGAGTAGCCAAAGAATCAACATGAAATATATTAACTACTTCCTCTGACCATACT AAAGAATTCAGAATACACAGTGACCAATGTGCCTCAATATCTTATTGTTCAACTTGACATTTT CTAGGACTGTACTTGATGAAAATGCCAACACACTAGACCACTCTTTGGATTCAAGAGCACTGT GTATGACTGAAATTTCTGGAATAACTGTAAATGGTTATGTTAATGGAATAAAACACAAATGTT AGGATTTTGTTTTTTTTTTAAGTACAGGTTCCTAGTGTTTTACTATAACTGTCACTATGTA TGTAACTGACATATATAAATAGTCATTTATAAATGACCGTATTATAACATTTGAAAAAGTCTT CATCAAAAAAAAAAAAAAA

FIGURE 470

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA80136

><subunit 1 of 1, 209 aa, 1 stop

><MW: 23909, pI: 9.68, NX(S/T): 0

MEPLAAYPLKCSGPRAKVFAVLLSIVLCTVTLFLLQLKFLKPKINSFYAFEVKDAKGRTVSLE KYKGKVSLVVNVASDCQLTDRNYLGLKELHKEFGPSHFSVLAFPCNQFGESEPRPSKEVESFA RKNYGVTFPIFHKIKILGSEGEPAFRFLVDSSKKEPRWNFWKYLVNPEGQVVKFWRPEEPIEV IRPDIAALVRQVIIKKKEDL

Important features of the protein:

Signal peptide: amino acids 1-31

Glutathione peroxidases signature 2.

amino acids 104-112

Glutathione peroxidases.

amino acids 57-82

FIGURE 471

GCCCTAACCTTCCCAGGGCTCAGCTCTTTGGAGCTGCCCATTCCTCCGGCTGCGAGAAAGGACGCGCGCCCTGCG TCGGGCGAAGAAAAGAAGCAAAACTTGTCGGGAGGGTTTCGTCATCAACCTCCTTCCCGCAAACCTAAACCTCCT GCTGGCTGTGGAATTAGATCTGTTTTGAACCCAGTGGAGCGCATCGCTGGGGGCTCGGAAGTCACCGTCCGCGGGC ACCGGGTTGGCGCTGCCCGAGTGGAACCGACAGTTTGCGAGCCTCGGCTGCAAGTGGCCTCTCCTCCCCGCGGTT GTTGTTCAGTGTCGGGTGAGGGCTGCGAGTGTGGCAAGTTGCAAAGAGAGCCTCAGAGGTCCGAAGAGCGCTGCG GGTCCTACCGAGACCGATCCGCAGCGTTTGGCCCGGTCGTGCCTATTGCATCGGGAGCCCCCGAGCACCGGCGAA AGTTATGTTACTTTGCCACTTCTTCACGGACCAGTTTCAGTTCGCCGATGGGAAACCCGGAGACCAAATCCTTGA TTGGCAGTATGGAGTTACTCAGGCCTTCCCTCACACAGAGGAGGAGGTGGAAGTTGATTCACACGCGTACAGCCA CAGGTGGAAAAGAAACTTGGACTTTCTCAAGGCGGTAGACACGAACCGAGCAAGCGTCGGCCAAGACTCTCCTGA GCCCAGAAGCTTCACAGACCTGCTGCTGGATGATGGGCAGGACAATAACACTCAGATCGAGGAGGATACAGACCA CAATTACTATATCTCGAATATATGGTCCATCTGATTCTGCCAGCCGGGATTTATGGGTGAACATAGACCAAAT GGAAAAAGATAAAGTGAAGATTCATGGAATATTGTCCAATACTCATCGGCAAGCTGCAAGAGTGAATCTGTCCTT ${\tt CGATTTTCCATTTTATGGCCACTTCCTACGTGAAATCACTGTGGCAACCGGGGGTTTCATATACACTGGAGAAGT}$ CGTACATCGAATGCTAACAGCCACACAGTACATAGCACCTTTAATGGCAAATTTCGATCCCAGTGTATCCAGAAA TTCAACTGTCAGATATTTTGATAATGGCACAGCACTTGTGGTCCAGTGGGACCATGTACATCTCCAGGATAATTA TGTCTTGGTCACACAGATAAGTTCAACCAATCATCCAGTGAAAGTCGGACTGTCCGATGCATTTGTCGTTGTCCA CAGGATCCAACAATTCCCAATGTTCGAAGAAGAACAATTTATGAATACCACCGAGTAGAGCTACAAATGTCAAA AATTACCAACATTTCGGCTGTGGAGATGACCCCATTACCCACATGCCTCCAGTTTAACAGATGTGGCCCCTGTGT ATCTTCTCAGATTGGCTTCAACTGCAGTTGGTGTAGTAAACTTCAAAGATGTTCCAGTGGATTTGATCGTCATCG GCAGGACTGGGTGGACAGTGCACCTGAAGAGTCAAAAGAGAAGATGTGTGAGAATACAGAACCAGTGGAAAC TTCTTCTCGAACCACCACAACCGTAGGAGCGACAACCACCCAGTTCAGGGTCCTAACTACCACCAGAAGAGCAGT GACTTCTCAGTTTCCCACCAGCCTCCCTACAGAAGATGATACCAAGATAGCACTACATCTAAAAGATAATGGAGC TTCTACAGATGACAGTGCAGCTGAGAAGAAAGGGGGGAACCCTCCACGCTGGCCTCATCATTGGAATCCTCATCCT CTTTATTGAGAGACGCCCAAGCAGATGGCCTGCGATGAAGTTTAGAAGAGGCTCTGGACATCCTGCCTATGCTGA AAGCTCTAAGCTGCTGTAGCCTGAAGAAGACAAGATTTCTGGACAAGCTCAGCCCAGGAAACAAAGGGTAAACAA AAAACTAAAACTTATACAAGATACCATTTACACTGAACATAGAATTCCCTAGTGGAATGTCATCTATAGTTCACT GGATCAGAAAAAAAAATCATAATAAAGCTTTAGTTCATGAGGG

476/615

FIGURE 472

MARFPKADLAAAGVMLLCHFFTDQFQFADGKPGDQILDWQYGVTQAFPHTEEEVEVDSHAYSH RWKRNLDFLKAVDTNRASVGQDSPEPRSFTDLLLDDGQDNNTQIEEDTDHNYYISRIYGPSDS ASRDLWVNIDQMEKDKVKIHGILSNTHRQAARVNLSFDFPFYGHFLREITVATGGFIYTGEVV HRMLTATQYIAPLMANFDPSVSRNSTVRYFDNGTALVVQWDHVHLQDNYNLGSFTFQATLLMD GRIIFGYKEIPVLVTQISSTNHPVKVGLSDAFVVVHRIQQIPNVRRRTIYEYHRVELQMSKIT NISAVEMTPLPTCLQFNRCGPCVSSQIGFNCSWCSKLQRCSSGFDRHRQDWVDSGCPEESKEK MCENTEPVETSSRTTTTVGATTTQFRVLTTTRRAVTSQFPTSLPTEDDTKIALHLKDNGASTD DSAAEKKGGTLHAGLIIGILILVLIVATAILVTVYMYHHPTSAASIFFIERRPSRWPAMKFRR GSGHPAYAEVEPVGEKEGFIVSEQC

Important features of the protein: Transmembrane domain:

amino acids 454-478

N-glycosylation sites. amino acids 103-107, 160-164, 213-217, 221-225, 316-320, 345-349

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 297-301, 492-496, 503-507

N-myristoylation sites. amino acids 42-48, 100-106, 147-153, 279-285, 397-403, 450-456, 455-461

FIGURE 473

CGCGGAGCCCTGCGCTGGGAGGTGCACGGTGTGCACGCTGGACCCCCATGCAACCCCG CGCCTGCGCCTTAACCAGGACTGCTCCGCGCGCCCCTGAGCCTCGGGCTCCGGCCCGGACCT ${\tt TTTAAAAGTGCTACTAGAACAAGAGAAAACGTTTTTCACTCTTTTAGTATTACTAGGCTATTT}$ GTCATGTAAAGTGACTTGTGAATCAGGAGACTGTAGACAGCAAGAATTCAGGGATCGGTCTGG AAACTGTGTTCCCTGCAACCAGTGTGGGCCAGGCATGGAGTTGTCTAAGGAATGTGGCTTCGGC TATGGGGAGGATGCACAGTGTGACGTGCCGGCTGCACAGGTTCAAGGAGGACTGGGGCTTC CAGAAATGCAAGCCCTGTCTGGACTGCGCAGTGGTGAACCGCTTTCAGAAGGCAAATTGTTCA GCCACCAGTGATGCCATCTGCGGGGACTGCTTGCCAGGATTTTATAGGAAGACGAAACTTGTC GGCTTTCAAGACATGGAGTGTGTGCCTTGTGGAGACCCTCCTCCTTACGAACCGCACTGT GCCAGCAAGGTCAACCTCGTGAAGATCGCGTCCACGGCCTCCAGCCCACGGGACACGGCGCTG GCTGCCGTTATCTGCAGCGCTCTGGCCACCGTCCTGCTGGCCCTGCTCATCCTCTGTGTCATC TATTGTAAGAGACAGTTTATGGAGAAGAAACCCAGCTGGTCTCTGCGGTCGCAGGACATTCAG TACAACGGCTCTGAGCTGTCTTTTGACAGACCTCAGCTCCACGAATATGCCCACAGAGCC TGCTGTGAGGAGGCCTGCAGCCCCAACCCGGCGACTCTTGGTTGTGGGGTGCATTCTGCAGCC AGTCTTCAGGCAAGAAACGCAGGCCCAGCCGGGGAGATGGTGCCGACTTTCTTCGGATCCCTC ACGCAGTCCATCTGTGGCGAGTTTTCAGATGCCTGGCCTCTGATGCAGAATCCCATGGGTGGT GTTCCAGTCCAGTCTCATTCTGAAAACTTTACAGCAGCTACTGATTTATCTAGATATAACAAC AAGCCTTTCAGCCAGTTGCTTCTGAGCCAGACCAGCTGTAAGCTGAAACCTCAATGAATAACA AGAAAAGACTCCAGGCCGACTCATGATACTCTGCATCTTTCCTACATGAGAAGCTTCTCTGCCAC AAAAGTGACTTCAAAGACTGATGGGTTGAGCTGGCAGCCTATGAGATTGTGGACATATAACAA GAAACAGAAATGCCCTCATGCTTATTTTCATGGTGATTGTGGTTTTACAAGACTGAAGACCCA GAGTATACTTTTCTTTCCAGAAATAATTTCATACCGCCTATGAAATATCAGATAAATTACCT TAGCTTTTATGTAGAATGGGTTCAAAAGTGAGTGTTTCTATTTGAGAAGGACACTTTTTCATC TATTAGATGAAGTTTACTGAATCAGAGGAATCAGACAGAGGAGGATAGCTCTTTCCAGAATCC ACACTTCTGACCTCAGCCTCGGTCTCATGAACACCCGCTGATCTCAGGAGAACACCTGGGCTA GGGAATGTGGTCGAGAAAGGGCAGCCCATTGCCCAGAATTAACACATATTGTAGAGACTTGTA TGCAAAGGTTGGCATATTTATATGAAAATTAGTTGCTATAGAAACATTTGTTGCATCTGTCCC TCTGCCTGAGCTTAGAAGGTTATAGAAAAAGGGTATTTATAAACATAAATGACCTTTTACTTG CATTGTATCTTATACTAAAGGCTTTAGAAATTACAACATATCAGGTTCCCCTACTACTGAAGT AGCCTTCCGTGAGAACACACCACATGTTAGGACTAGAAGAAAATGCACAATTTGTAGGGGTTT GGATGAAGCAGCTGTAACTGCCCTAGTGTAGTTTGACCAGGACATTGTCGTGCTCCTTCCAAT TGTGTAAGATTAGCACATCATCTCCTACTTTAGCCATCCGGTGTTGGATTTAAGAGGAC GGTGCTTCTTTCTATTAAAGTGCTCCATCCCCTACCATCTACACATTAGCATTGTCTCTAGAG CTAAGACAGAAATTAACCCCGTTCAGTCACAAAGCAGGGAATGGTTCATTTACTCTTAATCTT TATGCCCTGGAGAAGACCTACTTGAACAGGGCATATTTTTTAGACTTCTGAACATCAGTATGT TCGAGGGTACTATGATATTTTGGTTTGGAATTGCCCTGCCCAAGTCACTGTCTTTTAACTTTT AAACTGAATATTAAAATGTATCTGTCTTTCCT

FIGURE 474

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA84210

><subunit 1 of 1, 417 aa, 1 stop

><MW: 45305, pI: 5.12, NX(S/T): 6

MALKVLLEQEKTFFTLLVLLGYLSCKVTCESGDCRQQEFRDRSGNCVPCNQCGPGMELSK ECGFGYGEDAQCVTCRLHRFKEDWGFQKCKPCLDCAVVNRFQKANCSATSDAICGDCLPG FYRKTKLVGFQDMECVPCGDPPPPYEPHCASKVNLVKIASTASSPRDTALAAVICSALAT VLLALLILCVIYCKRQFMEKKPSWSLRSQDIQYNGSELSCFDRPQLHEYAHRACCQCRRD SVQTCGPVRLLPSMCCEEACSPNPATLGCGVHSAASLQARNAGPAGEMVPTFFGSLTQSI CGEFSDAWPLMQNPMGGDNISFCDSYPELTGEDIHSLNPELESSTSLDSNSSQDLVGGAV PVQSHSENFTAATDLSRYNNTLVESASTQDALTMRSQLDQESGAVIHPATQTSLQEA

Important features of the protein:

Signal peptide:

1 - 25Amino acids

Transmembrane domain:

Amino acids 169-192

N-glycosylation sites:

105-109;214-218;319-323;350-354;368-372;379-383 Amino acids

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

200-204;238-242 Amino acids

Tyrosine kinase phosphorylation site:

Amino acids 207-214

N-myristoylation sites:

55-61;215-221;270-276 Amino acids

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 259-270

TNFR/NGFR family cysteine-rich region proteins:

Amino acids 89-96

FIGURE 475

FIGURE 476

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA86576 ><subunit 1 of 1, 251 aa, 1 stop ><MW: 26935, pI: 7.42, NX(S/T): 2 MAMGVPRVILLCLFGAALCLTGSQALQCYSFEHTYFGPFDLRAMKLPSISCPHECFEAILSLD $\tt TGYRAPVTLVRKGCWTGPPAGQTQSNPDALPPDYSVVRGCTTDKCNAHLmTHDALPNLSQAPD$ PPTLSGAECYACIGVHQDDCAIGRSRRVQCHQDQTACFQGSGRMTVGNFSVPVYIRTCHRPSC TTEGTTSPWTAIDLQGSCCEGYLCNRKSMTQPFTSASATTPPRALQVLALLLPVLLLVGLSA

Important features of the protein: Signal peptide:

amino acids 1-19

Transmembrane domain: amino acids 233-251

N-glycosylation sites. amino acids 120-124, 174-178

N-myristoylation sites. amino acids 15-21, 84-90

FIGURE 477

CCCACGCGTCCGGGACAGATGAACTTAAAAGAGAAGCTTTAGCTGCCAAAGATTGGGAAAGGGAAAGGACAAAAA AGACCCCTGGGCTACACGGCGTAGGTGCAGGGTTTCCTACTGCTGTTCTTTTATGCTGGGAGCTGTGGCTGTAAC ${\tt CAACTAGGAAATAACGTATGCAGCAGCT}$ TCTTTTTCTTTTTTGGGGAGTGTCCTTGGCAGGTTCTGGGTTTGGACGTTATTCGGTGACTGAGGAAACAGAGAA GGTTTCCGATGATAACAAACAATACCTGCTCCTGGATTCACATACCGGGAATTTGCTCACAAATGAGAAACTGGA $\tt CCGAGAGAGCTGTGTGCCCTAAAGAGCCCTGTATGCTGTATTTCCAAATTTTAATGGATGATCCCTTTCAGAT$ TTACCGGGCTGAGCTGAGAGTCAGGGATATAAATGATCACGCGCCAGTATTTCAGGACAAAGAAACAGTCTTAAA AATATCAGAAAATACAGCTGAAGGGACAGCATTTAGACTAGAAAGAGCACAGGATCCAGATGGAGGACTTAACGG TATCCAAAACTACACGATCAGCCCCAACTCTTTTTCCATATTAACATTAGTGGCGGTGATGAAGGCATGATATA TCCAGAGCTAGTGTTGGACAAAGCACTGGATCGGGAGGAGCAGGGAGAGCTCAGCTTAACCCTCACAGCGCTGGA AGAAGATGTAGACTCTGGAGTCAACGCGGAAGTATCCTATTCATTTTTTTGATGCCTCAGAAAATATTCGAACGAC CTTTCAAATCAATCCTTTTTCTGGGGAAATCTTTCTCAGAGAATTGCTTGATTATGAGTTAGTAAATTCTTACAA AATAAATATACAGGCAATGGACGGTGGAGGCCTTTCTGCAAGATGTAGGGTTTTAGTGGAAGTATTGGACACCAA TGACAATCCCCCTGAACTGATCGTATCATCATTTTCCAACTCTGTTGCTGAGAATTCTCCTGAGACGCCGCTGGC TGTTTTTAAGATTAATGACAGAGACTCTGGAGAAAATGGAAAGATGGTTTGCTACATTCAAGAGAATCTGCCATT CCTACTAAAACCTTCTGTGGAGAATTTTTACATCCTAATTACAGAAGGCGCGCTGGACAGAGAGATCAGAGCCGA GTACAACATCACTATCACCGTCACTGACTTGGGGACACCCAGGCTGAAAACCGAGCACAACATAACGGTCCTGGT CTCCGACGTCAATGACAACGCCCCCGCCTTCACCCAAACCTCCTACACCCTGTTCGTCCGCGAGAACAACAGCCC ${\tt CGCCCTGCACATCGGCAGCGTCAGCGCCACAGACAGAGACTCGGGCACCAACGCCCAGGTCACCTACTCGCTGCT}$ GCCGCCCCAAGACCCGCACCTGCCCCTCGCCTCCCTGGTCTCCATCAACGCGGACAACGGCCACCTGTTCGCCCT CAGGTCGCTGGACTACGAGGCCTGCAGGCTTTCGAGTTCCGCGTGGGCGCCACAGACCGCGGCTCCCCCGCGCT GAGCAGAGAGGCGCTGGTGCGCGTGCTGGTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACCCGCTGCA GAACGGCTCCGCGCCCTGCACCGAGCTGGTGCCCCGGGCGGCCGAGCCGGGCTACCTGGTGACCAAGGTGGTGGC GGTGGACGGCGACTCGGGCCAGAACGCCTGGCTGTCGTACCAGCTGCTCAAGGCCACGGAGCCCGGGCTGTTCGG ${\tt GGTGCTTGTCAAGGACAATGGCGAGCCTCCTCGCTCGGCCACGCCACGCTGCACTTGCTCCTGGTGGACGGCTT}$ $\tt CTCCCAGCCCTACCTGCCTCTCCCGGAGGCCGGCCCCAGGCCCAGGCCGAGGCCGACTTGCTCACCGTCTA$ GAGGGGCGCTGAGACCCTGTCCCAGAGCTACCAGTATGAGGTGTGTCTGACGGGAGGCCCCGGGACCAGTGAGTT ${\tt CAAGTTCTTGAAACCAGTTATTTCGGATATTCAGGCACAGGGCCCTGGGAGGAAGGGTGAAGAAAATTCCACCTT}$ $\texttt{CCGAAATAGCTTTGGATTTAATATTCAG} \underline{\textbf{TAA}} \texttt{AGTCTGTTTTTAGTTTCATATACTTTTGGTGTGTTACATAGCCA}$ $\overline{\texttt{TGTTTCTATTAGTTTACTTTTAAATCTC}}\overline{\texttt{CAAA}\texttt{TTTAAGTTATTATGCAACTTCAAGCATTATTTTCAAGTAGTATA}}$ ATCTGAGGTTTTGATTCATTTCAGAGCTTGCATCTCATGATTCTAATCACTTCTGTCTATAGTGTACTTGCTCTA TTTAAGAAGGCATATCTACATTTCCAAACTCATTCTAACATTCTATATATTCGTGTTTGAAAACCATGTCATTTA TTTCTACATCATGTATTTAAAAAGAAATATTTCTCTACTACTATGCTCATGACAAAATGAAACAAAGCATATTGT GGCCAATATTTTCTTATGTTAACTTTTGCTGATGTATAAAACAGACTATGCCTTATAATTGAAATAAAATTATAA

FIGURE 478

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA87976

><subunit 1 of 1, 800 aa, 1 stop

><MW: 87621, pI: 4.77, NX(S/T): 7

MAVRELCFPRQRQVLFLFWGVSLAGSGFGRYSVTEETEKGSFVVNLAKDLGLAEGELAARG
TRVVSDDNKQYLLLDSHTGNLLTNEKLDREKLCGPKEPCMLYFQILMDDPFQIYRAELRVRDI
NDHAPVFQDKETVLKISENTAEGTAFRLERAQDPDGGLNGIQNYTISPNSFFHINISGGDEGM
IYPELVLDKALDREEQGELSLTLTALDGGSPSRSGTSTVRIVVLDVNDNAPQFAQALYETQAP
ENSPIGFLIVKVWAEDVDSGVNAEVSYSFFDASENIRTTFQINPFSGEIFLRELLDYELVNSY
KINIQAMDGGGLSARCRVLVEVLDTNDNPPELIVSSFSNSVAENSPETPLAVFKINDRDSGEN
GKMVCYIQENLPFLLKPSVENFYILITEGALDREIRAEYNITITVTDLGTPRLKTEHNITVLV
SDVNDNAPAFTQTSYTLFVRENNSPALHIGSVSATDRDSGTNAQVTYSLLPPQDPHLPLASLV
SINADNGHLFALRSLDYEALQAFEFRVGATDRGSPALSREALVRVLVLDANDNSPFVLYPLQN
GSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATEPGLFGVWAHNGEVRTARLL
SERDAAKHRLVVLVKDNGEPPRSATATLHLLLVDGFSQPYLPLPEAAPAQAQAEADLLTVYLV
VALASVSSLFLLSVLLFVAVRLCRRSRAASVGRCSVPEGPFPGHLVDVRGAETLSQSYQYEVC
LTGGPGTSEFKFLKPVISDIQAQGPGRKGEENSTFRNSFGFNIQ

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 687-711

N-glycosylation sites.

amino acids 169-173, 181-185, 418-422, 436-440, 567-571, 788-792

Glycosaminoglycan attachment site.

amino acids 28-32

Tyrosine kinase phosphorylation sites.

amino acids 394-402, 578-585

N-myristoylation sites.

amino acids 22-28, 27-33, 53-59, 82-88, 162-168, 184-190, 217-223, 324-330, 325-331, 471-477, 568-574, 759-765

Amidation site.

amino acids 781-785

Aminoacyl-transfer RNA synthetases class-II signature 1.

amino acids 117-138

Cadherins extracellular repeated domain signature.

amino acids 121-132, 230-241, 335-346, 439-450, 549-560

FIGURE 479

CTCGGCTGGATTTAAGGTTGCCGCTAGCCGCCTGGGAATTTAAGGGACCCACACTACCTTCCC GAATATTGCTTTTCCTTTTTTTGGCCGTGCACGAGGCTTGGGCTGGGATGTTGAAGGAGGAGG ACGATGACACAGAACGCTTGCCCAGCAAATGCGAAGTGTGTAAGCTGCTGAGCACAGAGCTAC AGGCGGAACTGAGTCGCACCGGTCGATCTCGAGAGGTGCTGGAGCTGGGGCAGGTGCTGGATA CAGGCAAGAGAGAGACACGTGCCTTACAGCGTTTCAGAGACAAGGCTGGAAGAGCCTTAG AGAATTTATGTGAGCGGATCCTGGACTATAGTGTTCACGCTGAGCGCAAGGGCTCACTGAGAT ATGCCAAGGGTCAGAGTCAGACCATGGCAACACTGAAAGGCCTAGTGCAGAAGGGGGTGAAGG TGGATCTGGGGATCCCTCTGGAGCTTTGGGATGAGCCCAGCGTGGAGGTCACATACCTCAAGA AGCAGTGTGAGACCATGTTGGAGGAGTTTGAAGACATTGTGGGAGACTGGTACTTCCACCATC AGGAGCAGCCCTACAAAATTTTCTCTGTGAAGGTCATGTGCTCCCAGCTGCTGAAACTGCAT GTCTACAGGAAACTTGGACTGGAAAGGAGATCACAGATGGGGAAGAGAAAACAGAAGGGGAGG AAGAGCAGGAGGAGGAGGAAGAGAGGAAGAGGGAGACAAGATGACCAAGACAG ${\sf GAAGCCACCCCAAACTTGACCGAGAAGATCTT}$ AGGGATCATGGAGAGCCCTCTAAAGCCTGCACTCTCCCTGCTCCACAGCTTTCAGGGTGTGTT TATGAGTGACTCCACCCAAGCTTGTAGCTGTTCTCTCCCATCTAACCTCAGGCAAGATCCTGG TGAAACAGCATGACATGGCTTCTGGGGTGGAGGGTGGGGGTGGAGGTCCTGCTCCTAGAGATG AACTCTATCCAGCCCCTTAATTGGCAGGTGTATGTGCTGACAGTACTGAAAGCTTTCCTCTTT AACTGATCCCACCCCACCCAAAAGTCAGCAGTGGCACTGGAGCTGTGGGCTTTGGGGAAGTC ACTTAGCTCCTTAAGGTCTGTTTTTAGACCCTTCCAAGGAAGAGGCCAGAACGGACATTCTCT GCGATCTATATACATTGCCTGTATCCAGGAGGCTACACACCAGCAAACCGTGAAGGAGAATGG GCTCAATGTAACCCAGAGCCCACCATATAGTTTTATAGGTGCTCAACTTTCTATATCGCTATT AAACTTTTTTCTTTTTTTCTA

FIGURE 480

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA92256

><subunit 1 of 1, 248 aa, 1 stop

><MW: 28310, pI: 4.63, NX(S/T): 0

MGPVRLGILLFLFLAVHEAWAGMLKEEDDDTERLPSKCEVCKLLSTELQAELSRTGRSREVLE LGQVLDTGKRKRHVPYSVSETRLEEALENLCERILDYSVHAERKGSLRYAKGQSQTMATLKGL VQKGVKVDLGIPLELWDEPSVEVTYLKKQCETMLEEFEDIVGDWYFHHQEQPLQNFLCEGHVL PAAETACLQETWTGKEITDGEEKTEGEEEQEEEEEEEEEEGGDKMTKTGSHPKLDREDL

Important features of the protein:

Signal peptide:

amino acids 1-21

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 106-110

N-myristoylation site.

amino acids 115-121

Amidation site.

amino acids 70-74

FIGURE 481

GGCGTGTGCAAGGCGGGGTCCGGCCCGCGCAGGTCGGGTAAGCGCGTCTAGGGCCGCTGCGCGG CGCAGCGAAA**ATG**GCGGCTTCCAGGTGGGCGCGCAAGGCCGTGGTCCTGCTTTGTGCCTCTGA CCTGCTGCTGCTGCTACTGCTACCACCGCCTGGGTCCTGCGCGGCCGAAGGCTCGCCCGG GACGCCCGACGAGTCTACCCCACCTCCCCGGAAGAAGAAGAAGGATATTCGCGATTACAATGA TGCAGACATGGCGCGTCTTCTGGAGCAATGGGAGAAAGATGATGACATTGAAGAAGGAGATCT AAGCATATTGAAAATGACGAAAAAAGGGAAGACTCTCATGATGTTTGTCACTGTATCAGGAAG CCCTACTGAGAAGGAGACAGAGGAAATTACGAGCCTCTGGCAGGGCAGCCTTTTCAATGCCAA CTATGACGTCCAGAGGTTCATTGTGGGATCAGACCGTGCTATCTTCATGCTTCGCGATGGGAG CTACGCCTGGGAGATCAAGGACTTTTTGGTCGGTCAAGACAGGTGTGCTGATGTAACTCTGGA GGGCCAGGTGTACCCCGGCAAAGGAGGAGGAAGCAAAGAGAAAAATAAAACAAAGCAAGACAA GGGCAAAAAAAAGAAGGAAGGAGATCTGAAATCTCGGTCTTCCAAGGAAGAAAATCGAGCTGG ${\tt GAATAAAAGAGAAGACCTG} \underline{{\tt TGA}} {\tt TGGGGGCAGCAGTGACGCGCTGTGGGGGGACAGGTGGACGTG}$ GAGAGCTCTTTGCCCAGCTCCTGGGGTGGGAGTGGTCTCAGGCAACTGCACACCGGATGACAT TCTAGTGTCTTCTAGAAAGGGTCTGCCACATGACCAGTTTGTGGTCAAAGAATTACTGCTTAA TAGGCTTCAAGTAAGAAGACAGATGTTTTCTAATTAATACTGGACACTGACAAATTCATGTTT ACTATAAAATCTCCTTACATGGAAATGTGACTGTGTTGCTTTTTCCCATTTACACTTGGTGAG TCATCAACTCTACTGAGATTCCACTCCCCTCCAAGCACCTGCTGTGATTGGGTGGCCTGCTCT GATCAGATAGCAAATTCTGATCAGAGAAGACTTTAAAACTCTTGACTTAATTGAGTAAACTCT TCATGCCATATACATCATTTTCATTATGTTAAAGGTAAAATATGCTTTGTGAACTCAGATGTC TGTAGCCAGGAAGCCAGGGTGTGTAAATCCAAAATCTATGCAGGAAATGCGGAGAATAGAAAA TATGTCACTTGAAATCCTAAGTAGTTTTGAATTTCTTTGACTTGAATCTTACTCATCAGTAAG AGAACTCTTGGTGTCTGTCAGGTTTTATGTGGTCTGTAAAGTTAGGGGGTTCTGTTTTGTTTCC TTATTTAGGAAAGAGTACTGCTGGTGTCGAGGGGTTATATGTTCCATTTAATGTGACAGTTTT AAAGGATTTAAGTAGGGAATCAGAGTCCTTTGCAGAGTGTGACAGACGACTCAATAACCTCAT TTGTTTCTAAACATTTTTCTTTGATAAAGTGCCTAAATCTGTGCTTTCGTATAGAGTAACATG ATGTGCTACTGTTGATGTCTGATTTTGCCGTTCATGTTAGAGCCTACTGTGAATAAGAGTTAG AACATTTATATACAGATGTCATTTCTAAGAACTAAAATTCTTTGGGAAAAACCCTCAAAAAAA **ААААААААААААААААА**АА

FIGURE 482

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA92289

><subunit 1 of 1, 234 aa, 1 stop

><MW: 26077, pI: 8.13, NX(S/T): 1

MAASRWARKAVVLLCASDLLLLLLLPPPGSCAAEGSPGTPDESTPPPRKKKKDIRDYND ADMARLLEQWEKDDDIEEGDLPEHKRPSAPVDFSKIDPSKPESILKMTKKGKTLMMFVTV SGSPTEKETEEITSLWQGSLFNANYDVQRFIVGSDRAIFMLRDGSYAWEIKDFLVGQDRC ADVTLEGQVYPGKGGGSKEKNKTKQDKGKKKKEGDLKSRSSKEENRAGNKREDL

Important features of the protein:

Signal peptide:

Amino acids 1-32

N-glycosylation site:

Amino acids 201-205

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 85-89

Tyrosine kinase phosphorylation site:

Amino acids 50-59

N-myristoylation sites:

Amino acids 30-36;138-144;153-159;176-182

Amidation site:

Amino acids 207-211

FIGURE 483

 $\tt GTTGCTCCGGCGCGCTCGGGGAGGGAGCCAGCCTAGGGCCTAGGCCCGGGCCACC \underline{\textbf{ATG}} \texttt{G}$ CGCTGCCTCCAGGCCCAGCCGCCCTCCGGCACACTGCTGCTGCTGCCAGCCCTTCTGAGCT CAGGTTGGGGGGGGGTTGGAGCCACAAATAGATGGTCAGACCTGGGCTGAGCGGGCACTTCGGG AGAATGAACGCCACGCCTTCACCTGCCGGGTGGCAGGGGGGCCTGGCACCCCCAGATTGGCCT GGTATCTGGATGGACAGCTGCAGGAGGCCAGCACCTCAAGACTGCTGAGCGTGGGAGGGGAGG CCTTCTCTGGAGGCACCAGCACCTTCACTGTCACTGCCCATCGGGCCCAGCATGAGCTCAACT GCTCTCTGCAGGACCCCAGAAGTGGCCGATCAGCCAACGCCTCTGTCATCCTTAATGTGCAAT TCAAGCCAGAGATTGCCCAAGTCGGCGCCAAGTACCAGGAAGCTCAGGGCCCAGGCCTCCTGG TTGTCCTGTTTGCCCTGGTGCGTGCCAACCCGCCGGCCAATGTCACCTGGATCGACCAGGATG GGCCAGTGACTGTCAACACCTCTGACTTCCTGGTGCTGGATGCGCAGAACTACCCCTGGCTCA CCAACCACACGGTGCAGCTGCAGCTCGGAGCCTGGCACACACCTCTCGGTGGTGGCCACCA ATGACGTGGGTGTCACCAGTGCGTCGCTTCCAGCCCCAGGCCCCTCCCGGCACCCATCTCTGA TATCAAGTGACTCCAACAACCTAAAACTCAACAACGTGCGCCTGCCACGGGAGAACATGTCCC TCCCGTCCAACCTTCAGCTCAATGACCTCACTCCAGATTCCAGAGCAGTGAAACCAGCAGACC GGCAGATGGCTCAGAACAACAGCCGGCCAGAGCTTCTGGACCCGGAGCCCGGCGGCCTCCTCA CCACTTTTGCTTGCCCTCCTGGCTGGGGTGCCCTCCATGTCATGCACGTGATGCATTTCACTG GGCTGTAACCCGCAGGGGCACAGGTATCTTTGGCAAGGCTACCAGTTGGACGTAAGCCCCTCA TGCTGACTCAGGGTGGGCCCTGCATGTGATGACTGGGCCCTTCCAGAGGGAGCTCTTTGGCCA GGGGTGTTCAGATGTCATCCAGCATCCAAGTGTGGCATGGCCTGCTGTATACCCCCACCCCAGT GCATGGATTTTCCTCCTATGCTATGTAGCCTTGTTCCCTCAGGTAAAATTTAGGACCCT CCAAGCACAAACGTCCTTTTTGCTGCACACGTCTCTGCCCTTCACTTCTTCTCTTCTGTCCCC ACCTCCTCTTGGGAATTCTAGGTTACACGTTGGACCTTCTCTACTACTTCACTGGGCACTAGA TGAGTCTAGTAGCACCCAGGACGGCTTGTAGCTATGCATCATTTTCCTACGGCGTTAGCACTT TAAGCACATCCCCTAGGGGAGGGGGTGAGTGAGGGGCCCAGAGCCCTCTTTGTGGCTTCCCCA AGCATGTCTCCTCCACCACGGGACCCCAGCCCTGACCAACCCATGGTTGCCTCATCAGCAGGA AGGTGCCCTTCCTGGAGGATGGTCGCCACAGGCACATAATTCAACAGTGTGGAAGCTTTAGGG GAACATGGAGAAAGAAGGAGACCACATACCCCAAAGTGACCTAAGAACACTTTAAAAAAGCAAC ATGTAAATGATTGGAAATTAATATAGTACAGAATATATTTTTCCCTTGTTGAGATCTTCTTTT GTAATGTTTTCATGTTACTGCCTAGGGCGGTGCTGAGCACACAGCAAGTTTAATAAACTTGA

FIGURE 484

MALPPGPAALRHTLLLLPALLSSGWGELEPQIDGQTWAERALRENERHAFTCRVAGGPGTPRL AWYLDGQLQEASTSRLLSVGGEAFSGGTSTFTVTAHRAQHELNCSLQDPRSGRSANASVILNV QFKPEIAQVGAKYQEAQGPGLLVVLFALVRANPPANVTWIDQDGPVTVNTSDFLVLDAQNYPW LTNHTVQLQLRSLAHNLSVVATNDVGVTSASLPAPGPSRHPSLISSDSNNLKLNNVRLPRENM SLPSNLQLNDLTPDSRAVKPADRQMAQNNSRPELLDPEPGGLLTSQGFIRLPVLGYIYRVSSV SSDEIWL

N-glycosylation sites:

amino acids 106-110, 119-123, 162-166, 175-179, 192-196, 205-209, 251-255, 280-284

Glycosaminoglycan attachment site:

amino acids 23-27

Casein kinase II phosphorylation sites:

amino acids 36-40, 108-112, 164-168, 282-286, 316-320

N-myristoylation sites:

amino acids 34-40, 89-95, 215-221, 292-298, 293-299

489/615

FIGURE 485

490/615

FIGURE 486

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96855 ><subunit 1 of 1, 84 aa, 1 stop ><MW: 9274, pI: 9.70, NX(S/T): 1 MALLWWISTVAILLFTSTILGTYVEAGAAKSNEEEIVNKSEFGRFPRGSRKDASGCHKPG YPVPPHSRCPPPPHVQRPRPILHA

Signal peptide:

Amino acids 1-21

N-glycosylation site:

Amino acids 38-42

N-myristoylation site:

Amino acids 27-33

491/615

FIGURE 487

FIGURE 488

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96857

><subunit 1 of 1, 221 aa, 1 stop

><MW: 23598, pI: 6.96, NX(S/T): 0

MWSAGRGGAAWPVLLGLLLALLVPGGGAAKTGAELVTCGSVLKLLNTHHRVRLHSHDIKYGSG ${\tt SGQQSVTGVEASDDANSYWRIRGGSEGGCPRGSPVRCGQAVRLTHVLTGKNLHTHHFPSPLSN}$ NQEVSAFGEDGEGDDLDLWTVRCSGQHWEREAAVRFQHVGTSVFLSVTGEQYGSPIRGQHEVH GMPSANTHNTWKAMEGIFIKPSVEPSAGHDEL

Important features of the protein:

Signal peptide:

amino acids 1-28

Glycosaminoglycan attachment site.

amino acids 62-66

N-myristoylation sites.

amino acids 16-22, 25-31, 27-33, 61-67, 71-77, 86-92, 87-93, 91-97, 190-196

Endoplasmic reticulum targeting sequence.

amino acids 218-223

FIGURE 489

ACAGGGC $\underline{A}\underline{T}\underline{G}$ GATCACTGTGGTGCCCTTTTCCTGTGCCTGTGCCTTCTGACTTTGCAGAATGCAACAACAGAGAC ATGGGAAGAACTCCTGAGCTACATGGAGAATATGCAGGTGTCCAGGGGCCCGGAGCTCAGTTTTTTCCTCTCGTCA ${\tt CCAGTCTCTGGCCTTCAAGCTGAGCTGTGACTTCTCTGGCCTCTCGCTGACCAGTGCCACTCTGAAGCGGGTGCC}$ CCAGGCAGGAGGTCAGCATGCCCGGGGTCAGCACGCCATGCAGTTCCCCGGCGGAGCTGACCCGGGGACGCCTGCAA GACCCGCCCCAGGGAGCTGCGGCTCATCTGTATCTACTTCTCCAACACCCCACTTTTTCAAGGATGAAAACAACTC ATCTCTGCTGAATAACTACGTCCTGGGGGCCCAGCTGAGTCATGGGCACGTGAACAACCTCAGGGATCCTGTGAA ACAGCCCTGGGGGGGCTGGAGCCCTGAGGGCTGTCGTACAGAGCAGCCCTCCCACTCTCAGGTGCTCTGCCGCTG CAACCACCTCACCTACTTTGCTGTTCTCATGCAACTCTCCCCAGCCCTGGTCCCTGCAGAGTTGCTGGCACCTCT TACGTACATCTCCCTCGTGGGCTGCAGCATCTCCATCGTGGCCTCGCTGATCACAGTCCTGCTGCACTTCCATTT CAGGAAGCAGAGTGACTCCTTAACACGTATCCACATGAACCTGCATGCCTCCGTGCTGCTCCTGAACATCGCCTT CCTCTCTGTCAAGAGCTCGGTATACGGACCCTGCACAATCCCCGTCTTCGACAGCTGGGAGAATGGCACAGGCTT AAGTGTCAGGGCCTGCCATGACACTGTCACTGTGCTGGGCCTCACCGTGCTGCTGGGAACCACCTGGGCCTTGGC $\tt CTTCTTTTTTTGGCGTCTTCCTGCTGCCCCAGCTGTTCCTCTTCACCATCTTAAACTCGCTGTACGGTTTCTT$ CCTTTTCCTGTGGTTCTGCTCCCAGCGGTGCCGCTCAGAAGCAGAGGCCAAGGCACAGATAGAGGCCTTCAGCTC $\tt CTCCCAAACAACACAG{\color{red}{\bf TAG}} TCCGGGCCTCCTGGCCTGGAATCCTCAGCCTCTGGCCGCCAGTAGCCTGAGGCT$ CACTTCCACGGCCTCTCCAGGCACTGAGGGGAAGGCATTGCTCTACCTCTCCCTGACATTTTGCTCCGGGGCAGA TCCAACCTTACCTGGGGCAGCAAACTTTGTCCTGGTACCTGGGCCCAGCTCGCCAGGGATGTGGGCAGAGCACCA ${\tt ACAGACCCTAGGTATCCACAGCTGTGACATGGGGGCAAGCAGCTTTGTTTCAGCCTAACCCAGGAGCTTAGTAAA}$ AGGATCTCATTCAGGCTGCCCTGGAAGCACCTGCTTGGCCCTGCCACCTTCCTCCAGGGGAGGGCCAGATGGCAT $\tt CCTGGCTTGGGGCGGGTGGGACCTACCCAGGCTCTGAGACTTTACTGGCCTATGCCTGAGGCCTCTTTTCCTTTA$ ACTCCCTAAATTATGATGACTCCAAGTCCAAGCCCACCCTTCCCAAAGATTGGGAGGTTCCGCCGTTCCCAGAGG CTCCTCCTGCGGTGCTCCCAAGACTTCCATAGACCATCTGGACCAGTAGCCCATCCCGCAGTTTTCTTGGGGGCA GAGGAAAACGCTTCTTTCTCCTCCAGCTGAATCAGCTGGATCCCAGTGTCCTGGCTGTTTGGTGATTGGGCAAGA ${\tt TTGAATTTGCCCAGGTAGGCGTGAGAGTGTGGGTTTTAAATTCGAAGCTCAGGCCATAGTTTCAGAGAATCACCC}$ GTCCACACTCAGAGGCCCTTGGCGCCCAAGACTGCATCTAGAATCGCTCAAACACCTGTTTGCAGACCCCATGCAC TGGCACCAGAGCAGGGTGCTCAGGTGGTGGTGGTGCTCAGGGCCCTGCCCCAGGCCACTGGGCCGTTTTGATGACCT CAAAGGTCACAGGCAGAAAATAGGAGCAGGATTTCCCCTGGGGAAAAGTTATCCTGGGACATCTTCTGCTCTTCT TATTTGTAAAATAGAGACCATAGTGGTACCTATTTTGAAGACTAAGTAAAAGAATTCAAATAAAGAGACTTGGCA CAGAGTAAGTGCTCAGTAAAAA

FIGURE 490

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96860

><subunit 1 of 1, 528 aa, 1 stop

><MW: 59000, pI: 8.73, NX(S/T): 9

MDHCGALFLCLCLLTLQNATTETWEELLSYMENMQVSRGRSSVFSSRQLHQLEQMLLNTS FPGYNLTLQTPTIQSLAFKLSCDFSGLSLTSATLKRVPQAGGQHARGQHAMQFPAELTRD ACKTRPRELRLICIYFSNTHFFKDENNSSLLNNYVLGAQLSHGHVNNLRDPVNISFWHNQ SLEGYTLTCVFWKEGARKQPWGGWSPEGCRTEQPSHSQVLCRCNHLTYFAVLMQLSPALV PAELLAPLTYISLVGCSISIVASLITVLLHFHFRKQSDSLTRIHMNLHASVLLLNIAFLL SPAFAMSPVPGSACTALAAALHYALLSCLTWMAIEGFNLYLLLGRVYNIYIRRYVFKLGV LGWGAPALLVLLSLSVKSSVYGPCTIPVFDSWENGTGFQNMSICWVRSPVVHSVLVMGYG GLTSLFNLVVLAWALWTLRRLRERADAPSVRACHDTVTVLGLTVLLGTTWALAFFSFGVF LLPQLFLFTILNSLYGFFLFLWFCSQRCRSEAEAKAQIEAFSSSQTTQ

Important features of the protein: Signal peptide:

Amino acids

1-21

Transmembrane domains:

244-264;290-309;316-344;358-376;411-431;468-491 Amino acids

N-glycosylation sites:

Amino acids

18-22;58-62;65-69;146-150;147-151;173-177;

179-183;394-398;400-404

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 274-278

N-myristoylation sites:

86 GLSLTS

101 GGOHAR

157 GAQLSH

255 GCSISI

311 GSACTA

420 GGLTSL

467 GTTWAL

Prokaryotic membrane lipoprotein lipid attachment sites:

246-257;318-329 Amino acids

Eukaryotic thiol (cysteine) proteases histidine active site:

410-421 Amino acids

G-protein coupled receptors family 2 proteins:

Amino acids 273-302;314-343

495/615

FIGURE 491

CTTGGCTGCCCGACAACAAGCTCGCCACCTGCGCTGGGCGCATCCACCATCCAAGGCCCAGCT GAGGGGCACCAGACAGAGGATGAGGAGAGAGAGTCGCACACGGGCTGCCCTGAGAGACATTTC CATGGACATCCTCATGCTTCTGCTTTTTGTGTGTAATATATGGGAGATTTTCCCAAGATGA ATACTCCCTCAATCAAGCTATCCGGAAAGAATTTACAAGAAATGCCAGAAACTGCTTGGGTGG CCTGAGAAACATCGCTGACTGGTGGGACTGGAGTCTGACCACACTTCTGGATGGCCTGTACCC GGGAGGCACCCCGTCAGCCCGTGTGCCGGGGGCTCAGCCTGGAGCTCTTGGAGGAAAATGCTA CCTAATAGGCAGTTCCGTAATTAGGCAGCTAAAAGTTTTTCCTAGGCATTTATGCAAGCCTCC CAGGCCATTTTCAGCACTCATCGAAGACTCTATTCCTACATGTAGTCCCGAAGTTGGAGGCCC TGAGAACCCCTACCTGATAGACCCAGAGAACCAAAACGTGACCCTGAATGGTCCTGGGGGGCTG TGGGACAAGGGAGGACTGTGTGCTCAGCCTGGGCAGAACAAGGACTGAAGCCCACACAGCCCT GTCCCGACTCAGGGCCAGCATGTGGATTGACCGCAGCACCAGGGCTGTGTCTGTGCACTTCAC TCTCTATAACCCTCCAACCCAACTCTTCACCAGCGTGTCCCTGAGAGTGGAGATCCTCCCTAC GGGGAGTCTCGTCCCTCATCCCTGGTGGAGTCATTCAGCATCTTCCGCAGCGACTCAGCCCT GCAGTACCACCTCATGCTTCCCCAGCTGGTCTTCCTGGCACTCAGCCTGATCCACCTCTGTGT TCAACTCTACCGTATGATGGACAAGGGCGTCCTCAGCTACTGGCGAAAGCCAAGGAACTGGCT ${\tt GGAGGTAGCCTCTTGTGTCATTTTCTTTTGAAAAA} \underline{{\tt TAA}}{\tt CAATAAACTGTTTATATCTTGAAAAAA}$ AAAATAATTTAAATAAGAAATTGATTATGCACTAGCTACTGCCAACATTATTGCAGTTTTCTC CCTCTGTAGTGTTAATCTCAAAACAGCATTTGAGATCAGGTATCATTTAGTGTTGTTACAGTT ACCGTCATGTACCACACGAATTTCAGCCAAGGTGGTGGTCCCATAAGATCATATGGTGCTAAG CTGTTTGTATCTTAGCTTTTAATAAAGAAGTTTAAAAAATAAAAAA

FIGURE 492

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96861

><subunit 1 of 1, 300 aa, 1 stop

><MW: 33649, pI: 9.26, NX(S/T): 1

MRRESRTRAALRDISMDILMLLLLCVIYGRFSQDEYSLNQAIRKEFTRNARNCLGGLRN IADWWDWSLTTLLDGLYPGGTPSARVPGAQPGALGGKCYLIGSSVIRQLKVFPRHLCKPP RPFSALIEDSIPTCSPEVGGPENPYLIDPENQNVTLNGPGGCGTREDCVLSLGRTRTEAH TALSRLRASMWIDRSTRAVSVHFTLYNPPTQLFTSVSLRVEILPTGSLVPSSLVESFSIF RSDSALQYHLMLPQLVFLALSLIHLCVQLYRMMDKGVLSYWRKPRNWLEVASLVSFSFEK

Important features of the protein:

Signal peptide:

Amino acids 1-30

Transmembrane domain:

Amino acids 250-267

N-glycosylation site:

Amino acids 153-157

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 2-6

N-myristoylation sites:

Amino acids 56-62;75-81;79-85;80-86;88-94;92-98;160-166

FIGURE 493

TCTCAGGGCTTCATACAGGAAATCTATTGCTGTGTCAAGTTCCAGAGAAAAGCTTCTGTTCGT CCCACTGTTGATGGGGTAAGAGGATCCTGTACTGAGAAGTTGACCAGAGAGGGTCTCACCATG CGCACAGTTCCTTCTGTACCTGTGTGGAGGAAAAGTACTGAGTGAAGGGCAGAAAAAGAGAAAA ACAGAA**ATG**CTCTGCCCTTGGAGAACTGCTAACCTAGGGCTACTGTTGATTTTGACTATCTTC TTAGTGGCCGAAGCGGAGGGTGCTGCTCAACCAAACAACTCATTAATGCTGCAAACTAGCAAG GAGAATCATGCTTTAGCTTCAAGCAGTTTATGTATGGATGAAAAACAGATTACACAGAACTAC TCGAAAGTACTCGCAGAAGTTAACACTTCATGGCCTGTAAAGATGGCTACAAATGCTGTGCTT TGTTGCCCTCCTATCGCATTAAGAAATTTGATCATAATAACATGGGAAATAATCCTGAGAGGC CAGCCTTCCTGCACAAAAGCCTACAGGAAAGAAACAAATGAGACCAAGGAAACCAACTGTACT GATGAGAGAATAACCTGGGTCTCCAGACCTGATCAGAATTCGGACCTTCAGATTCGTCCAGTG GCCATCACTCATGACGGGTATTACAGATGCATAATGGTAACACCTGATGGGAATTTCCATCGT GGATATCACCTCCAAGTGTTAGTTACACCTGAACTGACCCTGTTTCAAAACAGGAATAGAACT GCAGTATGCAAGGCAGTTGCAGGGAAGCCAGCTGCGCAGATCTCCTGGATCCCAGAGGGCGAT TGTGCCACTAAGCAAGAATACTGGAGCAATGGCACAGTGACTGTTAAGAGTACATGCCACTGG GAGGTCCACAATGTGTCTACCGTGACCTGCCACGTCTCCCATTTGACTGGCAACAAGAGTCTG TACATAGAGCTACTTCCTGTTCCAGGTGCCAAAAAATCAGCAAAATTATATATTCCATATATC ATCCTTACTATTATTATTTTGACCATCGTGGGATTCATTTGGTTGTTGAAAGTCAATGGCTGC AGAAAATATAAATTGAATAAAACAGAATCTACTCCAGTTGTTGAGGAGGATGAAATGCAGCCC CAGGCATTACAAAGTGAAGTTGACACAGACCTCCATACTTTA**TAA**GTTGTTGGACTCTAGTAC CAAGAAACAACAACAACGAGATACATTATAATTACTGTCTGATTTTCTTACAGTTCTAGAAT GAAGACTTATATTGAAATTAGGTTTTCCAAGGTTCTTAGAAGACATTTTAATGGATTCTCATT CATACCCTTGTATAATTGGAATTTTTGATTCTTAGCTGCTACCAGCTAGTTCTCTGAAGAACT GATGTTATTACAAAGAAAATACATGCCCATGACCAAATATTCAAATTGTGCAGGACAGTAAAT AATGAAAACCAAATTTCCTCAAGAAATAACTGAAGAAGGAGCAAGTGTGAACAGTTTCTTGTG TATCCTTTCAGAATATTTTAATGTACATATGACATGTGTATATGCCTATGGTATATGTGTCAA TTTATGTGTCCCCTTACATATACATGCACATATCTTTGTCAAGGCACCAGTGGGAACAATACA CTGCATTACTGTTCTATACATATGAAAACCTAATAATATAAGTCTTAGAGATCATTTTATATC ATGACAAGTAGAGCTACCTCATTCTTTTTAATGGTTATATAAAATTCCATTGTATAGTTATAT CATTATTTAATTAAAAACAACCCTAATGATGGATATTTAGATTCTTTTAAGTTTTTGTTTATTT CTTTTAAGTTTTGTTGTGGTATAAACAATACCACATAGAATGTTTCTTGTTCATATATCTCT TTGTTTTTGAGTATATCTGTAGGATAACTTTCTTGAGTGGAATTGTCAGGTCAAAGGGTTTGT TTGTTTAAATGTGCCTTTCCCTAAATTTCTATTTTAATAACTGTACTATTCCTGCTTCTACAG TTGCCACTTTCTCTTTTTAATCAACCAGATTAAATATGATGTGAGATTATAATAAGAATTATA CTATTTAATAAAAATGGATTTATA

FIGURE 494

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96866

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39069, pI: 8.13, NX(S/T): 10

MLCPWRTANLGLLLILTIFLVAEAEGAAQPNNSLMLQTSKENHALASSSLCMDEKQITQN YSKVLAEVNTSWPVKMATNAVLCCPPIALRNLIIITWEIILRGQPSCTKAYRKETNETKE TNCTDERITWVSRPDQNSDLQIRPVAITHDGYYRCIMVTPDGNFHRGYHLQVLVTPELTL FQNRNRTAVCKAVAGKPAAQISWIPEGDCATKQEYWSNGTVTVKSTCHWEVHNVSTVTCH VSHLTGNKSLYIELLPVPGAKKSAKLYIPYIILTIIILTIVGFIWLLKVNGCRKYKLNKT ESTPVVEEDEMQPYASYTEKNNPLYDTTNKVKASQALQSEVDTDLHTL

Important features of the protein:

Signal peptide:

Amino acids 1-24

Transmembrane domains:

Amino acids 78-98;267-286

N-glycosylation sites:

Amino acids 31-35;60-64;69-73;116-120;122-126;185-189;

218-222;233-237;247-251;298-302

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 112-116

N-myristoylation sites:

Amino acids 103-109;259-265

499/615

FIGURE 495

CCAGGTGCACAGCGCATCGCCCGAGGCTGTCACCGCCCTGCCCCGCCCACCCCAGCTGTCCTG GACCCAGGGGCAGGGAGAGGCTGGACGCCAGGTGCGCGGACACAGAAGCGTCTAAGCACAGCT ${\tt TCCTCCTTGCCGCTCCGGGAAGTGGGCAGCCAGCCCAGGAACCAGTACCACCTGCACC} \underline{{\tt ATG}} {\tt GG}$ GCTGTCCCGGAAGGAGCAGGTCTTCTTGGCCCTGCTGGGGGGCCTCGGGGGGTCTCAGGCCTCAC GGCACTCATTCTCCTCCTGGTGGAGGCCACCAGCGTGCTCCTGCCCACAGACATCAAGTTTGG GATCGTGTTTGATGCGGGCTCCTCCCACACGTCCCTCTTCCTGTATCAGTGGCCGGCGAACAA GGAGAATGGCACGGGTGTGGTCAGCCAGGCCCTGGCCTGCCAGGTGGAAGGGCCTGGAATCTC CTCCTACACTTCTAATGCTGCACAGGCTGGTGAGAGCCTGCAGGGCTGCTTGGAGGAGGCGCT GGTGCTGATCCCAGAGGCCCAGCATCGGAAAACACCCACGTTCCTGGGGGCCCACGGCTGGCAT GAGGTTGCTCAGCCGGAAGAACAGCTCTCAGGCCAGGGACATCTTTGCAGCAGTCACCCAGGT CCTGGGCCGGTCTCCCGTGGACTTTTGGGGTGCCGAGCTCCTGGCCGGGCAGGCCGAAGGTGC CTTTGGTTGGATCACTGTCAACTACGGCTTGGGGACGCTGGTCAAGTACTCCTTCACTGGAGA ATGGATCCAGCCTCCGGAGGAGATGCTGGTGGGTGCCCTGGACATGGGAGGGGCCTCCACCCA GATCACGTTCGTGCCTGGGGGCCCCATCTTGGACAAGAGCACCCAGGCCGATTTTCGCCTCTA CGGCTCCGACTACAGCGTCTACACTCACAGCTACCTGTGCTTTGGACGGGACCAGATGCTGAG CAGGCTCCTCGTGGGGCTGCAGAGCCGCCCGGCTGCCCTGCTCCGTCACCCGTGCTACCT CAGCGGCTACCAGACCACACTGGCCCTGGGCCCGCTGTATGAGTCACCCTGTGTCCACGCCAC GCCCCGCTGAGCCTCCCCCAGAACCTCACAGTTGAAGGGACAGGCAACCCTGGAGCCTGCGT CTCAGCCATCCGGGAACTTTTCAACTTCTCCAGCTGCCAGGGCCAGGAGGACTGCGCCTTTGA CGGGGTCTACCAGCCCCCGCTGCGGGGCCAGTTCTATGTGGAGGCCAGCTACCCTGGGCAGGA CCGCTGGCTGCGGGACTACTGTGCCTCAGGCCTGTACATCCTCACCCTCCTGCACGAGGGCTAC GGCTGGACACTGGGCTACATGCTGAACCTGACCGGGATGATCCCGGCCGATGCGCCGGCTCAG TGGCGGGCAGAGAGCTACGGCGTCTGGGTGGCCAAAGTGGTGTTCATGGTGCTGGCCCTGGTG GGGCCCCCACAGAGCCCACAGGCAGCTGCGTCCCGGATGCTGGAGGCTTCCTGAGCCCTGAGC GCCGTGGGGCCTTGCTCTGTGGCTCTGCCCACGGTCAGGTGACAGCCACCTCCAGGGCACCGT TTCCGCAACTGGGCTTCCAGGGCCGTAGGTGCCTTTCTGCACACAGGCCGCCAGGACTCGTGG GGGCTTCTGCTGGGCCAGCCCGGCCTCCCACACCCACTTGGAGGGTGAGACTGCAGTGGGGGT

FIGURE 496

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96870

><subunit 1 of 1, 458 aa, 1 stop

><MW: 49377, pI: 4.98, NX(S/T): 5

MGLSRKEQVFLALLGASGVSGLTALILLLVEATSVLLPTDIKFGIVFDAGSSHTSLFLYQ WPANKENGTGVVSQALACQVEGPGISSYTSNAAQAGESLQGCLEEALVLIPEAQHRKTPT FLGATAGMRLLSRKNSSQARDIFAAVTQVLGRSPVDFWGAELLAGQAEGAFGWITVNYGL GTLVKYSFTGEWIQPPEEMLVGALDMGGASTQITFVPGGPILDKSTQADFRLYGSDYSVY THSYLCFGRDQMLSRLLVGLVQSRPAALLRHPCYLSGYQTTLALGPLYESPCVHATPPLS LPQNLTVEGTGNPGACVSAIRELFNFSSCQGQEDCAFDGVYQPPLRGQFYVEASYPGQDR WLRDYCASGLYILTLLHEGYGFSEETWPSLEFRKQAGGVDIGWTLGYMLNLTGMIPADAP AQWRAESYGVWVAKVVFMVLALVAVVGAALVQLFWLQD

Important features of the protein:

Signal peptide:

Amino acids 1-21

Transmembrane domain:

Amino acids 428-449

N-glycosylation sites:

Amino acids

67-71;135-139;304-308;325-329;410-414

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 133-137

N-myristoylation sites:

Amino acids

50-56;123-127;165-171;207-213;234-240; 259-265;311-317;314-320;331-337;398-404; 413-419;429-435

GDA1/CD39 family of nucleoside phosphatases proteins:

Amino acids 43-59;202-215

FIGURE 497

GCCTTATAAAGTAGCCTCTGCATCTGCCTGCCTCGGGCAGAGGAGGGCTACCCTGGGGCTGAG ${\tt AGTTCACCTGTCTCAGGAACCACCTGAGCCCACAGATCCTGTGGGCAGCGGCCAGGGCAGCC\underline{\bf A}}$ CGCCAGGCACCGTGGTCCGACTCAACAAGGCAGCATTGAGCTACGTGTCTGAAATTGGGAAAG CCCCTCTCCAGCGGGCCCTGCAGGTCACTGTCCCTCATTTCCTGGACTGGAGTGGAGAGGCGC TTCAGCCCACCAGGATCCGGATTCTGAATGTCCATGTGCCCCGCCTCCACCTGAAATTCATTG CTGGTTTCGGAGTGCGCCTGCTGGCAGCAGCTAATTTTACTTTCAAGGTCTTTCGCGCCCCAG AGCCCCTGGAGCTGACGCTGTGGAACTGCTGGCTGACACCCGCGTGACCCAGAGCTCCA TCAGGACCCCTGTGGTCAGCATCTCTGCCTGCTCTTTATTCTCGGGCCACGCCAACGAGTTTG ATGGCAGTAACAGCACCTCCCACGCGCTGCTGGTCCTGGTGCAGAAGCACATTAAAGCTGTCT TGAGTAACAAGCTGTGCCTGAGCATCTCCAACCTGGTGCAGGGTGTCAATGTCCACCTGGGCA CCTTAATTGGCCTCAACCCCGTGGGTCCTGAGTCCCAGATCCGCTATTCCATGGTCAGTGTGC CCACTGTCACCAGTGACTACATTTCCCTGGAAGTCAATGCTGTTCTCTTCCTGCTGGGCAACC CCATCATCCTGCCCACGGATGCCACCCCTTTTGTGTTGCCAAGGCATGTGGGTACCGAGGGCT CCATGGCCACCGTGGGCCTCTCCCAGCAGCTGTTTGACTCTGCGCTCCTGCTGCAGAAGG CCGGTGCCCTCAACCTGGACATCACAGGGCAGCTGAGGTCGGATGACAACCTGCTGAACACCT CTGCTCTGGGCCGGCTCATCCCGGAGGTGGCCCGCCAGTTTCCCGAGCCCATGCCTGTGGTGC TCAAGGTGCGGCTGGGCCACACCTGTGGCCATGCTCCACACAACAACGCCACCCTGCGGC TGCAGCCCTTCGTGGAGGTCCTGGCCACAGCCTCCAACTCGGCTTTCCAGTCCCTCTTCTCCC TGGATGTGGTAGTGAACTTGAGACTCCAGCTCTCTGTGTCCAAGGTGAAGCTTCAGGGGACCA CGTCTGTGCTGGGGGATGTCCAGCTCACGGTGGCCTCCTCCAACGTGGGCTTCATTGATACAGAT CAGGTGCGCACACTGATGGGCACCGTTTTTGAGAAGCCCCTGCTGGACCATCTCAATGCTCTC TTGGCCATGGGAATTGCCCTCCCTGGTGTGGTCAACCTCCACTATGTTGCCCCTGAGATCTTT ${ t GTCTATGAGGGCTACGTGGTGATATCCAGTGGACTCTTCTACCAGAGC{ t { t TGA}}{ t GGCAAGACCACT}}$ GGGAGGCCTGAGAGTGGGCCAGCTCGCTGCTCAGGCGAATTTCTCATTTCAAGCCACTGGGGA AACTGAGGCAAAACCATACTTAGTCATCACCAACAAGCTGGACTGCTTAGCTGGGCTGTTTTA TCTTCCCTGAGTGCCTGGGTCTCCCTCCCTCACTTCTGCCCTTTCCCTCCTCCTCTTCT CCTCCTCTTCCCTCATCTCCCCCCTCCTTCCTCTGCCCCACCCCAGGGGGGAGCAGACTGCT CCTCCAGGCTGTATAGACCTGCCCTCTTGCATTAAACAACTTCTCTTGAGCTGC

FIGURE 498

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96872

><subunit 1 of 1, 458 aa, 1 stop

><MW: 49158, pI: 8.72, NX(S/T): 4

MAWASRLGLLLALLLPVVGASTPGTVVRLNKAALSYVSEIGKAPLQRALQVTVPHFLDWS
GEALQPTRIRILNVHVPRLHLKFIAGFGVRLLAAANFTFKVFRAPEPLELTLPVELLADT
RVTQSSIRTPVVSISACSLFSGHANEFDGSNSTSHALLVLVQKHIKAVLSNKLCLSISNL
VQGVNVHLGTLIGLNPVGPESQIRYSMVSVPTVTSDYISLEVNAVLFLLGNPIILPTDAT
PFVLPRHVGTEGSMATVGLSQQLFDSALLLLQKAGALNLDITGQLRSDDNLLNTSALGRL
IPEVARQFPEPMPVVLKVRLGATPVAMLHTNNATLRLQPFVEVLATASNSAFQSLFSLDV
VVNLRLQLSVSKVKLQGTTSVLGDVQLTVASSNVGFIDTDQVRTLMGTVFEKPLLDHLNA
LLAMGIALPGVVNLHYVAPEIFVYEGYVVISSGLFYQS

Important features of the protein:

Signal peptide:

Amino acids 1-20

Transmembrane domain:

Amino acids 217-236

N-glycosylation sites:

Amino acids 96-100;151-155;293-297;332-336

N-myristoylation sites:

Amino acids 8-14;149-155;189-195;249-255;252-258;283-289

LBP / BPI / CETP family proteins:

Amino acids 22-50; 251-287

FIGURE 499

FIGURE 500

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96878
><subunit 1 of 1, 125 aa, 1 stop
><MW: 13821, pI: 8.60, NX(S/T): 2
MKALMLLTLSVLLCWVSADIRCHSCYKVPVLGCVDRQSCRLEPGQQCLTTHAYLGKMWVFSNL
RCGTPEEPCQEAFNQTNRKLGLTYNTTCCNKDNCNSAGPRPTPALGLVFLTSLAGLGLWLLH

Important features of the protein: Signal peptide: amino acids 1-18

N-glycosylation sites. amino acids 77-81, 88-92

N-myristoylation site. amino acids 84-90

Ly-6 / u-PAR domain protein signature. amino acids 85-98

WO 01/68848 PCT/US01/06520

505/615

FIGURE 501

FIGURE 502

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96879
><subunit 1 of 1, 198 aa, 1 stop
><MW: 22584, pI: 9.40, NX(S/T): 1
MCAFPWLLLLLLQEGSQRRLWRWCGSEEVVAVLQESISLPLEIPPDEEVENIIWSSHKS
LATVVPGKEGHPATIMVTNPHYQGQVSFLDPSYSLHISNLSWEDSGLYQAQVNLRTSQIS
TMQQYNLCVYHPNYASEKPSTAFCLLAKGLLIFLLLVILAMGLWVIRVQKRHKMPRMKKL
MRNRMKLRKEAKPGSSPA

Important features of the protein: Signal peptide:

Amino acids 1-18

Transmembrane domain: Amino acids 144-165

N-glycosylation site: Amino acids 99-103

N-myristoylation site: Amino acids 106-112

FIGURE 503

ACGGGCCGCAGCGCAGTGACGTAGGGTTGGCGCACGGATCCGTTGCGGCTGCAGCTCTGCAG CGCAGCCTGCGGGCCGGGAGCGGCCGGGTACTGCTTGCTCCTCGGCTTGCATTTGTTTCTGCT GACCGCGGGCCCTGCCCTGGGCTGGAACGACCCTGACAGAATGTTGCTGCGGGATGTAAAAGC TCTTACCCTCCACTATGACCGCTATACCACCTCCCGCAGGCTGGATCCCATCCCACAGTTGAA ATGTGTTGGAGGCACAGCTGGTTGTGATTCTTATACCCCAAAAGTCATACAGTGTCAGAACAA AGGCTGGGATGGGTATGATGTACAGTGGGAATGTAAGACGGACTTAGATATTGCATACAAATT TGGAAAAACTGTGGTGAGCTGTGAAGGCTATGAGTCCTCTGAAGACCAGTATGTACTAAGAGG TTCTTGTGGCTTGGAGTATAATTTAGATTATACAGAACTTGGCCTGCAGAAACTGAAGGAGTC TGGAAAGCAGCACGGCTTTGCCTCTTTCTCTGATTATTATTATAAGTGGTCCTCGGCGGATTC CTGTAACATGAGTGGATTGATTACCATCGTGGTACTCCTTGGGATCGCCTTTGTAGTCTATAA GCTGTTCCTGAGTGACGGGCAGTATTCTCCTCCACCGTACTCTGAGTATCCTCCATTTTCCCA CCGTTACCAGAGATTCACCAACTCAGCAGGACCTCCTCCCCCAGGCTTTAAGTCTGAGTTCAC AGGACCACAGAATACTGGCCATGGTGCAACTTCTGGTTTTGGCAGTGCTTTTACAGGACAACA AGGATATGAAAATTCAGGACCAGGGTTCTGGACAGGCTTGGGAACTGGTGGAATACTAGGATA TTTGTTTGGCAGCAATAGAGCGGCAACACCCTTCTCAGACTCGTGGTACTACCCGTCCTATCC TCCCTCCTACCCTGGCACGTGGAATAGGGCTTACTCACCCCTTCATGGAGGCTCGGGCAGCTA TTCGGTATGTTCAAACTCAGACACGAAAACCAGAACTGCATCAGGATATGGTGGTACCAGGAG ACGA**TAA**AGTAGAAAGTTGGAGTCAAACACTGGATGCAGAAATTTTGGATTTTTCATCACTTT CTCTTTAGAAAAAAGTACTACCTGTTAACAATTGGGAAAAGGGGGATATTCAAAAGTTCTGTG GTGTTATGTCCAGTGTAGCTTTTTGTATTCTATTATTTGAGGCTAAAAGTTGATGTGACAA AATACTTATGTGTTGTATGTCAGTGTAACATGCAGATGTATATTGCAGTTTTTGAAAGTGATC ATTACTGTGGAATGCTAAAAATACATTAATTTCTAAAACCTGTGATGCCCTAAGAAGCATTAA GAATGAAGGTGTTGTACTAATAGAAACTAAGTACAGAAAATTTCAGTTTTAGGTGGTTGTAGC TGATGAGTTATTACCTCATAGAGACTATAATATTCTATTTGGTATTATATTATTTGATGTTTG CTGTTCTTCAAACATTTAAATCAAGCTTTGGACTAATTATGCTAATTTGTGAGTTCTGATCAC TTTTGAGCTCTGAAGCTTTGAATCATTCAGTGGTGGAGATGGCCTTCTGGTAACTGAATATTA CCTTCTGTAGGAAAAGGTGGAAAATAAGCATCTAGAAGGTTGTTGTGAATGACTCTGTGCTGG CAAAAATGCTTGAAACCTCTATATTTCTTTCGTTCATAAGAGGTAAAGGTCAAATTTTTCAAC AAAAGTCTTTTAATAACAAAAGCATGCAGTTCTCTGTGAAATCTCAAATATTGTTGTAATAGT CTGTTTCAATCTTAAAAAGAATCA

FIGURE 504

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96889

><subunit 1 of 1, 339 aa, 1 stop

><MW: 36975, pI: 7.85, NX(S/T): 1

 ${\tt MAAACGPGAAGYCLLLGLHLFLLTAGPALGWNDPDRMLLRDVKALTLHYDRYTTSRRLDPIPQ}$ LKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEGYESSEDQYVL RGSCGLEYNLDYTELGLQKLKESGKQHGFASFSDYYYKWSSADSCNMSGLITIVVLLGIAFVV YKLFLSDGQYSPPPYSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGHGATSGFGSAFTG QQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSDSWYYPSYPPSYPGTWNRAYSPLHGGSG SYSVCSNSDTKTRTASGYGGTRRR

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 171-190

N-glycosylation site.

amino acids 172-176

Glycosaminoglycan attachment sites.

amino acids 244-248, 259-263, 331-335

Tyrosine kinase phosphorylation site.

amino acids 98-106

N-myristoylation sites.

amino acids 68-74, 69-75, 131-137, 241-247, 247-253, 266-272, 270-276, 278-284, 312-318

FIGURE 505

GCAAAAGGAAGGGAGGGAAGCACTCCATCATCTCACTGGGAAGAACGGCACGGGCATACCTGC AGCTACTGGGGTTCCACTGGGCTTGAGGGTCGATTTTTCACCTTTTGAAGGACAAG<u>ATG</u>CATT GGAAGATGTTGCTGCTTGTTGTTATTACAATGCTGAGGCTTCTATGTGCCACAGGTGGA GCAGGGCTGTGCTCTTCCCTGCCGCCCACCGGCCAAAGAGGTCCTCATCACTGCCATTGAACC CAGTCCTGCAGACCTCCCTGGAGGAGGTGGAGCTGCTCTACGAGTTCCTGCTGGCCGAACTTG AGATCAGCCCTGACCTGCAGATCTCCATCAAGGACGAGGAGCTGGCCTCCTTGCGGAAGGCCT CAGACTTCCGCACCGTCTGCAACAACGTCATCCCCAAGAGCATCCCAGACATCCGCCGGCTCA CCCTGGCCTACACAGCCTACCGCACAGCCCTGTCCCACGGCCATCAGAAGGACATCTGGGCGC AGTCCCTCGTTAGCCTCTTCCAGGCCCTGAGGCACGACTTGATGCGCTCCTCACAGCCGGGAG AAGTCTTCATTCTCTACTCCATTTACAGAGACCAGCAACAAAACACTTACCGCTGACACAGAG CAGCAGAGATCAAACAGTAACCCCGATGCTCTTTTCTCCTTGTAGTTTCCTGGAAGACACATC TGATTCATGCCATCATGTGACCTGGGCTGGAAGAAAGGGCTGGAATGGTCATTCAAGACGCCT CCATGGGCAGAATGGTTTGCCTATGGCAGGCAGAATTCTGATATGCTTCAACCCAGAGCAGTG GCCACACTCAAGAGTGAGAACAGGCGTGAGCCACCGTGCCTGGCCCAGGATCTAAAAACTT TCTAAGTTTCCTCCATCGTTGGCATCCTCACAGCTATCTCCAATGTCACTCAAGAGACATCAA CAGACATTTAACTGCTGCAGACTTCATTGCTCTGTCACCTCACCTTGAATCTAACAAATCAAA GTATTTCTGCAGGTCCAATGGTCTAAAATCAAATGCTTGTTAAATGACTTTTTACAACACCCCTT AGACCCCCGGAACTTTCTCATCTTGTAATTCTGAAGTTCTATACCCACCGAACAACTCCTCTT TTCCCCTTCCCCTGCCTGCCCCAGCTCTTGGCACCATTATTCTGCTTTCTGTTTTTGAGAGT CTGACTACTTAAGATACCTCATACAAGCGGGATCTGGCTTACATTTCTTGAGCATTGTATTCT GGAAAAGTGTTTCCTTCCTCTGAAAAATGGGTAGAGTTCTGAAGGAGAACTACTGGTCTTATT GTACACTTGCTGTACCTATTTTTATTTAACAAATATTCATCTATGGTATAATAAAGATGTCAT GGTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 506

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96893
><subunit 1 of 1, 173 aa, 1 stop
><MW: 19733, pI: 8.78, NX(S/T): 0
MHWKMLLLLLLYYNAEASMCHRWSRAVLFPAAHRPKRSSSLPLNPVLQTSLEEVELLYEF
LLAELEISPDLQISIKDEELASLRKASDFRTVCNNVIPKSIPDIRRLSASLSSHPGILKK
EDFERTVLTLAYTAYRTALSHGHQKDIWAQSLVSLFQALRHDLMRSSQPGVPP

Important features of the protein: Signal peptide:

Amino acids 1-17

cAMP- and cGMP-dependent protein kinase phosphorylation sites: Amino acids 36-40;84-88;105-109

FIGURE 507

GGCGGCGGGCTGCGCGGAGCGGCGTCCCCTGCAGCCGCGGACCGAGGCAGCGGCGCACCTGC CGGCCGAGCAATGCCAAGTGAGTACACCTATGTGAAACTGAGAAGTGATTGCTCGAGGCCTTC CCTGCAATGGTACACCCGAGCTCAAAGCAAG<mark>ATG</mark>AGAAGGCCCAGCTTGTTATTAAAAGACAT CCTCAAATGTACATTGCTTGTGTTTTGGAGTGTGGATCCTTTATATCCTCAAGTTAAATTATAC TACTGAAGAATGTGACATGAAAAAAATGCATTATGTGGACCCTGACCATGTAAAGAGAGCTCA GAAATATGCTCAGCAAGTCTTGCAGAAGGAATGTCGTCCCAAGTTTGCCAAGACATCAATGGC GCTGTTATTTGAGCACAGGTATAGCGTGGACTTACTCCCTTTTGTGCAGAAGGCCCCCAAAGA CAGTGAAGCTGAGTCCAAGTACGATCCTCCTTTTGGGTTCCGGAAGTTCTCCAGTAAAGTCCA GACCCTCTTGGAACTCTTGCCAGAGCACGACCTCCCTGAACACTTGAAAGCCAAGACCTGTCG GCGCTGTGTGTTATTGGAAGCGGAGGAATACTGCACGGATTAGAACTGGGCCACACCCTGAA CCAGTTCGATGTTGTGATAAGGTTAAACAGTGCACCAGTTGAGGGATATTCAGAACATGTTGG AAATAAAACTACTATAAGGATGACTTATCCAGAGGGCGCACCACTGTCTGACCTTGAATATTAT TCCAATGACTTATTTGTTGCTGTTTTATTTAAGAGTGTTGATTTCAACTGGCTTCAAGCAATG GTAAAAAAGGAAACCCTGCCATTCTGGGTACGACTCTTCTTTTGGAAGCAGGTGGCAGAAAAA ATCCCACTGCAGCCAAAACATTTCAGGATTTTGAATCCAGTTATCATCAAAGAGACTGCCTTT GACATCCTTCAGTACTCAGAGCCTCAGTCAAGGTTCTGGGGCCGAGATAAGAACGTCCCCACA ATCGGTGTCATTGCCGTTGTCTTAGCCACACATCTGTGCGATGAAGTCAGTTTGGCGGGTTTT GGATATGACCTCAATCAACCCAGAACACCTTTGCACTACTTCGACAGTCAATGCATGGCTGCT ATGAACTTTCAGACCATGCATAATGTGACAACGGAAACCAAGTTCCTCTTAAAGCTGGTCAAA GAGGGAGTGGTGAAAGATCTCAGTGGAGGCATTGATCGTGAATTT**TGA**ACACAGAAAACCTCA GTTGAAAATGCAACTCTAACTCTGAGAGCTGTTTTTTGACAGCCTTCTTGATGTATTTCTCCAT GTTGTATTGATTTTTAAGAAAGTAATTTAATTTGTAAAACTTCTGCTCGTTTACACTGCACAT TGAATACAGGTAACTAATTGGAAGGAGGGGGGGGTCACTCTTTTGATGGTGGCCCTGAACCT CATTCTGGTTCCCTGCTGCGCTGCTTGGTGTGACCCACGGAGGATCCACTCCCAGGATGACGT GCTCCGTAGCTCTGCTGATACTGGGTCTGCGATGCAGCGGCGTGAGGCCTGGGCTGGTTG GAAGCTGTCCTGGAGGTCCCTGGTCGGAGAGGGACATAGAATCTGTGACCTCTGACAACTGTG AAGCCACCTGGGCTACAGAAACCACAGTCTTCCCAGCAATTATTACAATTCTTGAATTCCTT GGGGATTTTTTACTGCCCTTTCAAAGCACTTAAGTGTTAGATCTAACGTGTTCCAGTGTCTGT CTGAGGTGACTTAAAAAATCAGAACAAAACTTCTATTATCCAGAGTCATGGGAGAGTACACCC TTTAA

FIGURE 508

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA96897
><subunit 1 of 1, 362 aa, 1 stop
><MW: 41736, pI: 8.80, NX(S/T): 3
MRRPSLLLKDILKCTLLVFGVWILYILKLNYTTEECDMKKMHYVDPDHVKRAQKYAQQVL
QKECRPKFAKTSMALLFEHRYSVDLLPFVQKAPKDSEAESKYDPPFGFRKFSSKVQTLLE
LLPEHDLPEHLKAKTCRRCVVIGSGGILHGLELGHTLNQFDVVIRLNSAPVEGYSEHVGN
KTTIRMTYPEGAPLSDLEYYSNDLFVAVLFKSVDFNWLQAMVKKETLPFWVRLFFWKQVA
EKIPLQPKHFRILNPVIIKETAFDILQYSEPQSRFWGRDKNVPTIGVIAVVLATHLCDEV
SLAGFGYDLNQPRTPLHYFDSQCMAAMNFQTMHNVTTETKFLLKLVKEGVVKDLSGGIDR
EF

Important features of the protein:

Transmembrane domains:

Amino acids 11-27;281-297

N-glycosylation sites:

Amino acids 30-34;180-184;334-338

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 2-6;109-113;223-227

N-myristoylation sites:

Amino acids 146-152;150-156;179-185;191-197

FIGURE 509

GGGCGGACGCAGTGCAGTAAGAGCAGATGGGCGGACCCAAATTTCTTCGGCTTCACGATTTTG CCGAGGTCTAGCCCTGCATCCAGCCTTGAAACAGGGTGGGGAGGAGGCAGAAAGGGGAGGAC TGCACTCCCTCTGAGCGTGCTAGCTCCGACTGCCTGACGGATCACCCTTCCGCTCCAACATGG CCCACAGGTGGCGAAGGCTCCGCGAGAGGGTTCCCGCCAGGCTAGACAGTGGAGTGCCGCACA GCGCGCCTTCCAGCCTCGCAGCCGCCACCCTAGCGGTTCCGACCCGGCGCCAGCAGGCCTGCT TGCTGCCGCCGGGTACTGTCCTGGGTGCCAGTGCTCGTTATTGTCCTCGTCGTCCTCGTCC TACTATGCCTACGTCTTTGAACTCTGCCTGGTTATTTACCTCATACTCTACCATGCCATCTTT GTGTTCTTTACCTGGACCTACTGGAAGTCTATCTTTACACTCCCACAGCAGCCAAACCAGAAG CAGATGCTTGTTGATATGGCCAAAAAGCTACCGGTTTACACAAGAACTGGAAGTGGAGGTCAG TTCATCCAAAGGCAGCTAGAGAGGCAGCTCAGCAAGTATCTCAGAAAGGCTAAGTCATATATG TTCTCAAACTAGCCCTTTTTTTTCCTCCCATCTTCTGAAAACCACTATGGAGATTTTTCTCCA CACATATGCATACCTCTATTTATCTTTCGTCAAGCCATCTTATGTTTCTGATGCATTTCAAAG TAAATAGCTGACATCAGTAAGACATCTACCTAAATATTTTATTCTGTTTTGTTAAAATTTACA TACAAAAACATGCATAATCTTAAGGGTACCATTCCATGTATTTTGAAAAGTGTACACATCTGT GTAACTAAACCCCCAATAAAATTGCCATCACCTCAG

FIGURE 510

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA98564
><subunit 1 of 1, 143 aa, 1 stop
><MW: 17255, pI: 9.99, NX(S/T): 0
MRRGWKMALSGGLRCCRRVLSWVPVLVIVLVVLWSYYAYVFELCLVIYLILYHAIFVFFT
WTYWKSIFTLPQQPNQKFHLSYTDKERYENEERPEVQKQMLVDMAKKLPVYTRTGSGGQF
IQRQLERQLSKYLRKAKSYMFSN

Important features of the protein:

Transmembrane domain:

Amino acids 24-45

N-myristoylation sites:

Amino acids 11-17;12-18

FIGURE 511

CGGCGAGTGCCCTTTCCCTGGCCGGCGCCAGTCTGGTCCTGAGCCTGCTGCAGAGGGTGGCGA GCTACGCGCGGAAATGGCAGCAGATGCGGCCCATCCCCACGGTGGCCCGCGCCTACCCACTGGTG GGCCACGCGCTGCTGATGAAGCCGGACGGGCGAGGTAAGGGCCGGCGCTCCTCCTGGAGCGCA ACGGGGTCCGCAGCCCGTTCCCACCCTCCGATCAGCCAGGAACCCGCTGCTTGTGGCGCTGG CCGCAGGAGAGAGGAGCCTGTCACCCTGTGGAGAATGCACTCCCAGTTCTAGTCGTTGCCCCT TGGCACCCGCCGACACTGCTAGTGCCCCCATCCCAAAGTGAGCATTTTCTTTGTGTGTAGCACA GGATGCGGTATTTCCAAACCCCTGCCCTCGGTCTTTTCCCACCTCACCGCTGCTCAGCTCTCA $\mathtt{AAGCCCTGCCGTTTCCTCCTGCCTTGGCTTGGGAAGCCT}$ ACAGAGCGGTTTTAAACTGGCCAACACCTTAACGCCCAGAGCCGCCCTCCTCTCGCTGCCACT TTGGAAAATAAGAGACTAGAGATTCACTGGACGCTTCCTCCCGGCATCACAAGACTTGACTGC TGCTTCAGTTCCCGCTTGACCTTCATACTTTAGCCCTTTAAAGGATGTTACATAATAACAATT AAGAGACGCCAGGCCTTCAGGCAGACTTCTTTGGAGGGTGTCAAACGCCTTGTTTATTAAAG AGTGAATTTTTTAATTAAAATCATGTTTTAAAACAGAGATGGACATTTTATTGATGGAAAAAA GAACTCGATCTCAGAGTTTTATTTTCATCAGGGGATTACGTTGAGGTACCCAGAAATGAGAAGA TTTGCCCAAAATGGCATATTTTAAAATTGGCCCAGACCAGAACCCAGTTTCCTCTGGGATTAT TTGTTAGTAATCGTTTTACAGGCTGAGCATTAACTAACTCCAAAGCTTGAAGGACTTTTTCTC ATTTTCACTTGTTTTCTCTAATAAAAATAATGCTGTAATTTCAACTTCACAAGATGAGGCCTC ATGGAAGAGTGTTTACCAAAATATTAAAAATACTTTGACAGAAAAAAATCAAGCGAACTCTTT GCCAACCAAATATCATCATGACTGATGTAACAAGTAATCCAACACAGATATGAAAATCACTGG TAAAAATCATCTCAGTTAATTCTAAAAGCAGAGCTAACCACCCCTTTTGTCCTAAGGCTTTAT GGTATTAAAAATAAACTGTACAAAAATATAGATTTTCCCCTATCCCCTACCCCTGGAAAGTA ATATACTGAAGTCTCATCATACTGTTTTTGGGGGATTCCAGTAATTAAAATCTCTAGTGAACAAA GACCTGTTTCAAAACAACCTGTGAGCTGACTGGACTATTTAAAGTAATTCTCCTTGTAGTCAC TTTCAGAGTGAAGACAATGACGAATACTGTCTTTTACAAAGGGACTTTTTATTCCACCAACAA ATTCTGGATTTTGGCATCAGGAAAACCACTGTTCAATTTCCAACACTATATCCAAGTTGTTTG AAGTCAGTTAGAGTAAGTTCTTTAGTTGTCAATCAAGCATTTAGTAAGGCCCTGCTTTGTGCC CAGTGTTGACCTCAACAAAGTTGGGGGATATCAGAATATTCTAAGATACAGTCGTTGTTCCCAA GAATCTTGTCTTTCACATACAAGAGGTGTTGCGTTTCATTTTGCGGCTAATGTCCAAACGCTG GCCTCAGCCATTTCACCTTGAAGATTGCAGTTGGCTTCCAACTGGCCTCTAAACTCTAATCTA GCATTTTCCAGTCCATTGTGACAAAGTCTGCCTTCCCCAGCTACTCCCAGCTGTTGGACCTGC TGCCTTAGAACCACAGATTGGTACCTCGTGCC

FIGURE 512

PCT/US01/06520

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA107443

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19353, pI: 10.97, NX(S/T): 0

MAGLWLGLVWQKLLLWGAASALSLAGASLVLSLLQRVASYARKWQQMRPIPTVARAYPLV GHALLMKPDGRGKGRRSSWSATGSAAPFPPSDQPGTRCLWRWPQERGACHPVENALPVLV VAPWHPPTLLVPHPKVSIFFVCSTGCGISKPLPSVFSHLTAAQLSKPCRFLLPWLGKP

Important features of the protein:

Signal peptide:

Amino acids 1-25

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 75-79

N-myristoylation sites:

Amino acids 3-9;17-23;145-151

Amidation site:

Amino acids 73-77

Leucine zipper pattern:

Amino acids 8-30

FIGURE 513

GGCGGCTGGACGAGGCCCAGAGCCCAGCTCTCGAGAGTTCAAGCAACCGACGGTTCC GGCCGAGGACCTGCCAGTAGGGCTCAGTTGCCTGGAGCCCGTTCAGCCCATCCCCCAGTT CACTTTGCTTGTGGGATCTCCCCGTTGCTCCTGCCCGTGGACTGAGTGGCAGGCCATCCT ACAAGCACCCGGACACTTGACATCAGTGGTGTCAAGACAACTCTAAGAAGGTTTTCCGTG ATCCTGCAAGCCCTGCCTTCCTTGCGGATCCTGCCTTCAATTTGATTGCACAGGTACC ACAGCAAGCCAGTGCTGTGTGCTCCGAGTTCCAGGGCGTCCTCCAGCTCAGCCACTGCAC TGAGAACATGGACTCTCTGTGGGGCCCAGGAGCCGGGAGTCACCCCTTTGGGGTCCACAA CACCCGGCTGTCCCCAGACTTGTGTCCAGGGAAGATAGTGTTGAGGGCCCTCAAGGAGAG CGGGGCAGGATGCCTGAGCAGGACAAGGACCCTAGAGTCCAAGAGAATCCTGGTGATCA GAGAAGGGTCCCCGAGGTCACCGGGGATGCACGGTCTGCATTTCGGCCCCTGCGGGACAA GAGGTCAGAAATCAGATATAACCAGACATCCCAGACCTCCTGGACGAGCTCCTGCACCAA CCGAAATGCCATCTCCAGCTCCTACAGCTCCACGGGAGGCTTGCTGGGGCTAAAGCGGAG GGACAGGCCTCAGGCTGTCTCTTCAGGTCACACCCAGTGTGAAAAGGCAGCAGATATAGC ACCAGGGCAGACACTCACCCTCAGGAATGACTCCTCCACATCCGAGGCCTCTAGGCCCAG TACACACAAGTTTCCCCTGCTGCCACGCAGGCGAGGGGAGCCTTTGATGCTGCCACCTCC CTTAGAGCTGGGGTACCGGGTCACTGTTGAAGACCTGGACCGGGAGAAGGAGGCGGCCTT CCAGCGCATCAACAGTGCACTGCAGGTTGAGGACAAGGCCATCTCGGACTGCAGACCCTC TAAAGCACCCAGTATGGATGCACAGCAGGAGACACACAAGTCCCAAGACTGCCTGGGCCT ACTGGACCCCTTAGCATCTGCTGCAGGGGTCCCCTCTACAGCTCCCATGTCTGGGAAGAA GCACAGACCACCAGGCCCCTGTTCTCCTCCTCAGATCCCCTTCCTGCCACCTCTTCTGA TTCCCAGGACTCAGCCCAGGTCACCTCGCTGATTCCTGCCCCCTTCCCAGCTGCAAGCAT GGATGCGGGCATGAGAAGAACAAGGCATGGCACTTCTGCTCCTGCAGCTGCCGCAGCAGC TCACATTTCTGGGCCTCAGCCACAGCTGCAGCAGGTGCCCAGAGGTCAGAACCAGAGATC $\verb|CCAGACCTCCTGGACCAGCTCGTGCCCCAAA| \textbf{TGA}| \texttt{AATGCCATCTCGAGCCCCTACAGCTC}|$ TACGGGAGGCCTCCCGGAACAAAAGCGGAAGAGGGGCCAGCCTCATCCCACTGCCAGCTG ACCCTCAGTTCCTCAAACACAGTGAGTGAGGACGGACCTCAGGCTGTCTCTTCGGGTCAC ACCCAGTGTGAAAAGACGGCAGATACAGCACCAGGGCAGACACTCGCCTCCAGGGGTGGC TCCCCCAGATCCCAGGCCTCTAGGCCCCGTATATGCAAGTTTCCCCTGCTGCCACGCAGG CGAGGGGAGCCTTTGATGCTGCCACCTCCCTTAGAGATGGGGTACCGGGTCACTGCTGAA GACCTGGACCGGGAGAAGGAGGAGGCATTCCAGCGCATCAACAGTGCACTGCAGGTTGAG GACCAGGCCATCTAGGACTGCAGACCCTCACGGCCTTCCCACACTTTGTCCTCACTTGCA ACAGGGGCTTCTGGTCTGCCTGCCGTTTCTAAAGCACCCAGTATGGATGCACAGCAGGAG ACACACAAGTCCCAAGACTGCCTGGGCCTAGTGGCCCCCCTGCATCTGCTGCACAGGCCT GTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAACGGCATAAACCCGGGAGGCAGAGC TTGCAGTGAGCTGAGATCGCGCCACTGCACTCCAGCCTGGGTGACAGAGCGAGACTCCGT CTC

FIGURE 514

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA107786

><subunit 1 of 1, 428 aa, 1 stop

><MW: 45450, pI: 9.28, NX(S/T): 3

MDSLWGPGAGSHPFGVHNTRLSPDLCPGKIVLRALKESGAGMPEQDKDPRVQENPGDQRR VPEVTGDARSAFRPLRDNGGLSPFVPGPGPLQTDLHAQRSEIRYNQTSQTSWTSSCTNRN AISSSYSSTGGLLGLKRRRGPASSHCQLTLSSSKTVSEDRPQAVSSGHTQCEKAADIAPG QTLTLRNDSSTSEASRPSTHKFPLLPRRRGEPLMLPPPLELGYRVTVEDLDREKEAAFQR INSALQVEDKAISDCRPSRPSHTLSSLATGASGLPAVSKAPSMDAQQETHKSQDCLGLLD PLASAAGVPSTAPMSGKKHRPPGPLFSSSDPLPATSSDSQDSAQVTSLIPAPFPAASMDA GMRRTRHGTSAPAAAAAAPPRSTLNPTLGSLLEWMEALHISGPQPQLQQVPRGQNQRSQT SWTSSCPK

Important features of the protein:

N-glycosylation sites:

Amino acids 105-109;187-191

Glycosaminoglycan attachment site:

Amino acids 38-42

N-myristoylation sites:

Amino acids 15-21;130-136;180-186;307-313;361-367

Amidation site:

Amino acids 315-319

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 106-117

FIGURE 515

CAGCCACCTCACGGCTGCCAGGAGTGCGCGGGAGTTTGCCCCGGAGCGCGGGGAAGTTTCCTC CGAAGCTGCGCTCCTGGAACAGCACCTGCAAGCGCCCGGCAGCGCCCGCGAGGTTACTT TATGGAATTGGGCTCTTAGAGAACAAGAAAAGACTGAAGTTTTACGGGAAAACAAATCATGTG GTCTTCAGATTCTGAAATAAGGAGAAATGCCAGCCATCTGAAATGGTCATGAACCCCAAACAAG TCTTCCTCTGTGCTGATATTTGGAGTAGCTGGGCTACTCCTCTTCATGTATTTGCAAGTCTGG GGACCAGTGAAGTACTTGCGGCCTGTACCCAGAATCATGAGTACAGAAAAAATCCAGGAACAT ATCACCAACCAGAACCCCAAGTTTCACATGCCTGAGGATGTACGAGAAAAAAAGGAAAATCTT CTACTCAATTCTGAGAGATCTACTAGGCTCTTAACAAAGACCAGTCATTCACAAGGAGGGGAT AAGACTGTTTTTAACAAGTTCAGCAACATGAATTGGCCAGTGGACATTCACCCTTTAAACAAA AGTTTAGTCAAAGATAATAAATGGAAGAAAACTGAGGAGACCCAAGAGAAACGAAGGTCTTTC CTTCAGGAGTTTTGCAAGAAATACGGTGGGGTGAGTCATCATCAGTCACATCTTTTTCATACA GTATCCAGAATCTATGTAGAAGATAAACACAAAATCTTATATTGTGAGGTACCTAAGGCTGGC TGTTCCAATTGGAAAAGAATTCTGATGGTACTAAATGGATTGGCTTCCTCTGCATACAACATC TCCCACAATGCTGTCCACTACGGGAAGCATTTGAAGAAGCTAGATAGCTTTGACCTAAAAAGGG GTATCAGCCTTTAGGGACAAATTTGAACACCCCAATAGTTATTACCATCCAGTATTCGGAAAG AAGTTCAAAGAGTTTATCCACTACTTGCTGGATTCCCACCGTCCAGTAGGAATGGACATTCAC TGGGAAAAGGTCAGCAAACTCTGCTATCCGTGTTTGATCAACTATGATTTTGTAGGGAAATTT GAGACTTTGGAAGAAGATGCCAATTACTTTTTACAGATGATCGGTGCTCCAAAGGAGCTGAAA TTTCCCAACTTTAAGGATAGGCACTCTTCCGATGAAAGAACCAATGCTCAAGTCGTGAGACAG TATTTAAAGGATCTGACTAGAACTGAGAGACAATTAATCTATGACTTTTATTACTTGGACTAT ${\tt TTAATGTTTAATTATACAACTCCACTTTTG} \underline{{\tt TAG}} {\tt TTTGCATTTCTAAAACCCTGTATAT}$ ACTTAATGATGATAAGTTCAAATCAGCTGTAATTTTTCTATAATTCTCTGTATGACAGAAATT TAACCAAGTGCAGTTGTCTTGATTTAATGTAGATTTTTACCAAATAGTATGACACCAATTGGC ACAAAGTTATAGGAAAATCACCTACAGGAGATGTAAACAACTTGAGTTGCTCTAAAATGTTTG GAAAAGAGCTGCTTTTGCATTATGAATTATATTGTTGAAGCAATAACCTAGCCAGCTGTTGCA TTAGCTAAAGCAGCCTCTTGCAATGGTAGGAAAAAAGGATCTCAAATAGCATGAGTGTATGTC TATATCCTGAAATTTATTGTCTAAAATGCATGAATATATTTTTAGCAGTCTGTGGCATATTAA TCAAACTGTTGAATTGTTTTCTTACACCCTGGAAATCTTTCTATCAACTATAATGATAAATCC ATTTTGAAGTGATATTTTGGACTTAGGCATTTTACTTTAGATTGGAAGGCATTATGTGATTTACA ATATGAGAATATAGCAGAAAAACCA

FIGURE 516

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA108682

><subunit 1 of 1, 443 aa, 1 stop

><MW: 52021, pI: 9.63, NX(S/T): 4

MQPSEMVMNPKQVFLSVLIFGVAGLLLFMYLQVWIEEQHTGRVEKRREQKVTSGWGPVKY LRPVPRIMSTEKIQEHITNQNPKFHMPEDVREKKENLLLNSERSTRLLTKTSHSQGGDQA LSKSTGSPTEKLIEKRQGAKTVFNKFSNMNWPVDIHPLNKSLVKDNKWKKTEETQEKRRS FLQEFCKKYGGVSHHQSHLFHTVSRIYVEDKHKILYCEVPKAGCSNWKRILMVLNGLASS AYNISHNAVHYGKHLKKLDSFDLKGIYTRLNTYTKAVFVRDPMERLVSAFRDKFEHPNSY YHPVFGKAIIKKYRPNACEEALINGSGVKFKEFIHYLLDSHRPVGMDIHWEKVSKLCYPC LINYDFVGKFETLEEDANYFLQMIGAPKELKFPNFKDRHSSDERTNAQVVRQYLKDLTRT ERQLIYDFYYLDYLMFNYTTPLL

Important features of the protein:

Signal peptide:

Amino acids 1-24

N-glycosylation sites:

Amino acids 159-163;243-247;324-328;437-441

Glycosaminoglycan attachment site:

Amino acids 53-57

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 177-181

Tyrosine kinase phosphorylation site:

Amino acids 329-337

N-myristoylation sites:

Amino acids 116-122;236-242

FIGURE 517

 ${\tt CCGCCTTGGTCCTGGCAGGGTCCTCAGGCTGGGCCTGGGTCCCCAACCACTGCAGGAGCCCTGGCCAGGCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCA$ CCCTGGGCGCCCCCTTCGCCTGTGACTTCGAGCAGGACCCCTGCGGCTGGCGGGACATTAGTACCTCAGGCTACA TGGGCTGGTACATGGCCGTTGGAACCCACCGAGGGAAAGAGGCATCCACCGCAGCCCTGCGCTCGCCAACCCTGC GAGAGGCAGCCTCCTCTTGCAAGCTGAGGCTCTGGTACCACGCGGCCTCTGGAGATGTGGCTGAACTGCGGGTGG ACCACTGCCAGAACAAGGTCTGCGTGGAGCCCCAGCAGCTGTGCGACGGGGAAGACAACTGCGGGGACCTGTCTG ATGAGAACCCACTCACCTGTGGCCGCCACATAGCCACCGACTTTGAGACAGGCCTGGGCCCATGGAACCGCTCGG AAGGCTGGTCCCGGAACCACCGTGCTGGTGGTCCTGAGCGCCCCTCCTGGCCACGCCGTGACCACAGCCGGAACA GTGCACAGGGCTCCTTCCTGGTCTCCGTGGCCGAGCCTGGCACCCCTGCTATACTCTCCAGCCCCGAATTCCAAG TCCTGCAGACTCTGGGGGCCCCGGGCCCCCGGGCCCCCGTCCTGCTGCGGAGGCGCCGAGGGGAGCTGGGGACCG GGGGCGTCGTGGGTCTGGACGACCTCATCCTGTCTGACCACTGCAGACCAGTCTCGGAGGTGTCCACCCTGCAGC AGGGGCATCTTGCCTGCGGGGACCTGTGTGTGCCCCCGGAACAACTGTGTGACTTCGAGGAGCAGTGCGCAGGGG GCGAGGACGAGCAGGCCTGTGGCACCACAGACTTTGAGTCCCCCGAGGCTGGGGGCTGGGAGGACGCCAGCGTGG GGCGGCTGCAGTGGCGGCGTGTCTCAGCCCAGGAGAGCCAGGGGTCCAGTGCAGCTGCTGCTGGGCACTTCCTGT CCACAGGCCAAGGCCACTTTGTGCTCCTGGACCCCACAGACCCCCTGGCCTGGGCCACAGTGCCCACCTGCTCT CCAGGCCCCAGGTGCCAGCAGCACCCACGGAGTGTCTCAGCTTCTGGTACCACCTCCATGGGCCCCAGATTGGGA $\tt CTCTGCGCCTAGCCATGAGACGGGAAGGGGAGACACACCTGTGGTCGCGGTCAGGCACCCAGGGCAACCGCT$ GGCACGAGGCCTGGGCCACCCTTTCCCACCAGCCTGGCTCCCATGCCCAGTACCAGCTGCTGTTCGAGGGCCTCC GGGACGGATACCACGGCACCATGGCGCTGGACGATGTGGCCGTGCGGCCCCTGCTGGGCCCCTAATTACT GCTCCTTTGAGGACTCAGACTGCGGCTTCTCCCCTGGAGGCCAAGGTCTCTGGAGGCGGCAGGCCAATGCCTCGG GCCATGCTGCCTGGGGCCCCCAACAGACCATACCACTGAGACAGCCCAAGGGCACTACATGGTGGTGGACACAA GCCCAGACGCACTACCCCGGGGCCAGACGGCCTCCCTGACCTCCAAGGAGCACAGGCCCCTGGCCCAGCCTGCTT GTCTGACCTTCTGGTACCACGGGAGCCTCCGCAGCCCAGGCACCCTGCGGGTCTACCTGGAGGAGCGCGGGAGGC CCTGGAGGGTGGTGTTTGAGGCAGTGGCCGCAGGCGTGGCACACTCCTACGTGGCTCTGGATGATCTGCTCCTCC AGGACGGGCCCTGCCCTCAGCCAGGTTCCTGTGATTTTGAGTCTGGCCTGTGTGGCTGGAGCCACCTGGCCGGGC ACACCCTGGGCACAGAGGCAGGCCACTTTGCCTTCTTTGAAACTGGCGTGCTGGGCCCCGGGGGCCGGGCCGCCT GGCTGCGCAGCGAGCCTCTGCCGGCCACCCCAGCCTCCTGCCTCCGCTTCTGGTACCACATGGGTTTTCCTGAGC ATCGGCGGCACCAGTGGCTGGAGGCCCAGGTGGAGGTAGCCAGTGCCAAGGAGTTCCAGATCGTGTTTGAAGCCA AGCCTGCCCCAGCCCGGGAACACAGCCGCACCCGGGTCTGTGCCAGCTGTGGTTGGCAGTGCCCTCCTATTGC ACACAGAGGCCACAGCCCCTGGCTTTGACAACATCCTTTTCAATGCGGATGGTGTCACCCTCCCGGCATCTGTCA AGGGACCGGACACCTGCCCCGCCCAGGCTGGGACAGGCTGCAGGTCTCAGGATATGCTGAGGCCTGGGCGTTCCC AAAAAAAAAAAA

FIGURE 518

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108684

><subunit 1 of 1, 1137 aa, 1 stop ><MW: 122776, pI: 6.00, NX(S/T): 4

MPLSSHLLPALVLFLAGSSGWAWVPNHCRSPGQAVCNFVCDCRDCSDEAQCGYHGASPTL GAPFACDFEQDPCGWRDISTSGYSWLRDRAGAALEGPGPHSDHTLGTDLGWYMAVGTHRG KEASTAALRSPTLREAASSCKLRLWYHAASGDVAELRVELTHGAETLTLWQSTGPWGPGW QELAVTTGRIRGDFRVTFSATRNATHRGAVALDDLEFWDCGLPTPQANCPPGHHHCQNKV CVEPQQLCDGEDNCGDLSDENPLTCGRHIATDFETGLGPWNRSEGWSRNHRAGGPERPSW PRRDHSRNSAQGSFLVSVAEPGTPAILSSPEFQASGTSNCSLVFYQYLSGSEAGCLQLFL QTLGPGAPRAPVLLRRRRGELGTAWVRDRVDIQSAYPFQILLAGQTGPGGVVGLDDLILS $\verb|DHCRPVSEVSTLQPLPPGPRAPAPQPLPPSSRLQDSCKQGHLACGDLCVPPEQLCDFEEQ|$ CAGGEDEQACGTTDFESPEAGGWEDASVGRLQWRRVSAQESQGSSAAAAAGHFLSLQRAWG QLGAEARVLTPLLGPSGPSCELHLAYYLQSQPREVSCNFERDTCSWYPGHLSDTHWRWVE ${\tt SRGPDHDHTTGQGHFVLLDPTDPLAWGHSAHLLSRPQVPAAPTECLSFWYHLHGPQIGTL}$ RLAMRREGEETHLWSRSGTQGNRWHEAWATLSHQPGSHAQYQLLFEGLRDGYHGTMALDD ${\tt VAVRPGPCWAPNYCSFEDSDCGFSPGGQGLWRRQANASGHAAWGPPTDHTTETAQGHYMV}$ VDTSPDALPRGQTASLTSKEHRPLAQPACLTFWYHGSLRSPGTLRVYLEERGRHQVLSLS AHGGLAWRLGSMDVQAERAWRVVFEAVAAGVAHSYVALDDLLLQDGPCPQPGSCDFESGL CGWSHLAGPGLGGYSWDWGGGATPSRYPQPPVDHTLGTEAGHFAFFETGVLGPGGRAAWL RSEPLPATPASCLRFWYHMGFPEHFYKGELKVLLHSAQGQLAVWGAGGHRRHQWLEAQVE VASAKEFQIVFEATLGGQPALGPIALDDVEYLAGQHCQQPAPSPGNTAAPGSVPAVVGSA LLLLMLLVLLGLGGRRWLQKKGSCPFQSNTEATAPGFDNILFNADGVTLPASVTSDP

Important features of the protein:

Signal peptide:

Amino acids 1-20

Transmembrane domain:

Amino acids 1075-1092

N-glycosylation sites:

Amino acids 203-207;281-285;339-343;756-760

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 514-518;1100-1104

N-myristoylation sites:

Amino acids 32-38;55-61;61-67;106-112;116-122;336-342;350-356;409-415; 523-529;540-546;678-684;707-713;791-797;870-876;921-927; 937-943;954-960;1036-1042;1071-1077

Amidation site:

Amino acids 1093-1097

Cell attachment sequence:

Amino acids 191-194

WO 01/68848 PCT/US01/06520

523/615

FIGURE 519

GCAGGGGAGCTCCGAGTGTCCACAGGAAGGGAACTATCAGCTCCTGGCATCTGTAAGG**ATG**CT GTCCATGCTGAGGACAATGACCAGACTCTGCTTCCTGTTATTCTTCTCTGTGGCCACCAGTGG GTGCAGTGCAGCAGCCTCTTCTCTTGAGATGCTCTCGAGGGAATTCGAAACCTGTGCCTT CTCCTTTTCTTCCCTGCCTAGAAGCTGCAAAGAAATCAAGGAACGCTGCCATAGTGCAGGTGA TGGCCTGTATTTTCTCCGCACCAAGAATGGTGTTGTCTACCAGACCTTCTGTGACATGACTTC TGGGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCACGAGAATGACATGCGTGGGAAGTGCAC GGTGGGTGATCGCTGGTCCAGTCAGCAGGGCAACAAAGCAGACTACCCAGAGGGGGATGGCAA CTGGGCCAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCGATGACTACAAGAACCC TGGCTACTACGACATCCAGGCCAAGGACCTGGGCATCTGGCATGTGCCCAACAAGTCCCCCAT GCAGCATTGGAGAAACAGCGCCCTGCTGAGGTACCGCACCAACACTGGCTTCCTCCAGAGACT GGGACATAATCTGTTTGGCATCTACCAGAAATACCCAGTGAAATACAGATCAGGGAAATGTTG GAATGACAATGGCCCAGCCATACCTGTGGTCTATGACTTTGGTGATGCTAAGAAGACTGCATC TTATTACTCACCGTATGGTCAACGGGAATTTGTTGCAGGATTCGTTCAGTTCCGGGTGTTTAA TAACGAGAGAGCCAACGCCCTTTGTGCTGGGATAAAAGTTACTGGCTGTAACACTGAGCA TCACTGCATCGGTGGAGGAGGGTTCTTCCCACAGGGCAAACCCCGTCAGTGTGGGGACTTCTC CGCCTTTGACTGGGATGGATATGGAACTCACGTTAAGAGCAGCTGCAGTCGGGAGATAACGGA ${\tt GGCGGCTGTACTCTTGTTCTATAGA} {\color{red}{\textbf{TGA}}} {\color{red}{\textbf{GACAGAGCTCTGCGGTGTCAGGGCGAGAACCCATC}}$ ATCACATCAATTTGCA

FIGURE 520

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108701

><subunit 1 of 1, 325 aa, 1 stop

><MW: 36212, pI: 8.68, NX(S/T): 1

MLSMLRTMTRLCFLLFFSVATSGCSAAAASSLEMLSREFETCAFSFSSLPRSCKEIKERC HSAGDGLYFLRTKNGVVYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGNKA DYPEGDGNWANYNTFGSAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSALLR YRTNTGFLQRLGHNLFGIYQKYPVKYRSGKCWNDNGPAIPVVYDFGDAKKTASYYSPYGQ REFVAGFVQFRVFNNERAANALCAGIKVTGCNTEHHCIGGGGFFPQGKPRQCGDFSAFDW DGYGTHVKSSCSREITEAAVLLFYR

Important features of the protein:

Signal peptide:

Amino acids 1-26

Glycosaminoglycan attachment site:

Amino acids 86-90

N-myristoylation sites:

Amino acids 23-29;88-94;127-133;136-142;265-271

FIGURE 521

 ${\tt GATCAGTGTGAGGGAACTGCCATC} \underline{{\tt ATG}} {\tt AGGTCTGACAAGTCAGCTTTGGTATTTCTGCTCCTGCAGCTCTTCT}$ GTGTTGGCTGTGGATTCTGTGGGAAAGTCCTGGTGTGGCCCTGTGACATGAGCCATTGGCTTAATGTCAAGGTCA GGAAGCCTTCTGCATTGAAATTTGAGGTGGTCCATATGCCACAGGACAGAACAGAAGAAAATGAAATATTTGTTG TAAGAGGAACTTTAAAAATGATGTGTGAGAGCTTTATCTACAATCAGACGCTTATGAAGAAGCTACAGGAAACCA TGCTCACACTTAGAATTTCTGTAGGAGGCAATATGGAGCGAAGCTGTGGGAAACTTCCAGCTCCACTTTCCTATG TACCTGTGCCTATGACAGGACTAACAGACAGAATGACCTTTCTGGAAAGAGTAAAAAATTCAATGCTTTCAGTTT TGTTCCACTTCTGGATTCAGGATTACGACTATCATTTTTGGGAAGAGTTTTATAGTAAGGCATTAGGAAGGCCCA $\verb|CTACATTATGTGAGACTGTGGGAAAAGCTGAGATATGGCTAATACGAACATATTGGGATTTTGAATTTCCTCAAC|$ CATACCAACCTAACTTTGAGTTTGTTGGAGGATTGCACTGTAAACCTGCCAAAGCTTTGCCTAAGGAAATGGAAA ATTTTGTCCAGAGTTCAGGGGAAGATGGTATTGTGGTGTTTTCTCTGGGGTCACTGTTTCAAAATGTTACAGAAG AAAAGGCTAATATCATTGCTTCAGCCCTTGCCCAGATCCCACAGAAGGTGTTATGGAGGTACAAAGGAAAAAAAC ${\tt AAGCTTTTATCACTCATGGTGGAATGAATGGGATCTATGAAGCTATTTACCATGGGGGTCCCTATGGTGGGAGTTC}$ CCATATTTGGTGATCAGCTTGATAACATAGCTCACATGAAGGCCCAAAGGAGCAGCTGTAGAAATAAACTTCAAAA CTATGACAAGCGAAGATTTACTGAGGGCTTTGAGAACAGTCATTACCGATTCCTCTTATAAAGAGAATGCTATGA GATTATCAAGAATTCACCATGATCAACCTGTAAAGCCCCTAGATCGAGCAGTCTTCTGGATCGAGTTTGTCATGC GCCACAAAGGAGCCAAGCACCTGCGATCAGCTGCCCATGACCTCACCTGGTTCCAGCACTACTCTATAGATGTGA TTGGGTTCCTGCTGACCTGTGTGGCAACTGCTATATTCTTGTTCACAAAATGTTTTTTATTTTCCTGTCAAAAAT TTAATAAAACTAGAAAGATAGAAAAGAGGGAA<u>TAG</u>ATCTTTCCAAATTCAAGAAAGACCTGATGGGGTAATCCTG TTAATTCCAGCCACATAGAATTTGGTGAAAACCTTGCTATTTTCATATTATCTATTCTGTTATTTTATCTTAGCT ATATAGCCTAGAATTCCATGATCATGAGGTTGTGAGTATATCTCATTCTTTCGTTGTATTTTCCTAGGTGTCTTT ACTCTCTTCTCTCACTTTGTGACACAAGGACATGAATACATCTAAATTTTCCTATTTCTGATATGACTGTTTTGA TGATGTCATTACTTCTATAACCTTAAGTGATAGGGTGACATGCAATATGATTATTCCTGGTGTGCGCCCAAACAC ATGGATATAAAGAGGTAAAAAACTTAAAATTCACAAAATTCAGTAAACCACACAAATCAGGTAAGTGTTCTATGA GATTAGCTGGCTATGAGAAACATAATGATGTTTCTTTTTCAATTTAAATAAGCCTTTCTACATAGCCAGCATCAG TGATCTCAGAAAATAAATTGCTAATAATGATGACATGGCATTATGCTTAGAAAAGTTTGCTGTATTTCCATAGAC CTCATCTAGATGTCATGGCCTACATTTCTGCCATCACTCAACCAATACTTTTTTCTGTTTTCTTGATGATAAAAA ATTCAAGGTGAACAGATATTTTTGGGATTAGTAACTATTTGAAATATGTGGTGATAATTACTGAGTTTATAAAAT TTATTTGATAGTACACTTAAAGAAGATTTATATGTTTATTCTTTAAAAAATGATGAATACTCATAATTCTTATCTC TATAATCAAAAGTATAATTTACTGTAGAAAAATAAAGAGATGCTTGTTCTGAAAGTAAGATCAGTGAACTGCTTT CTGCATAACAAATAGTATTATATATAAATATTTTGATATGTAAAGCTCTACACAAAGCTAAATATAGTGTAATA ATGTTTACACTAGTAAGCAAATATGTTAATCTTCTCATTTTTTTACTGTCATATAATCTTAGTGATATGCCTATT AATAGTTTTAAATAAATAAATTGGCTTATCTGGCTTTTTGAAAATTTTGAAAATTCTTACAGATGTTGATTAGGTA ATAAATATAAATAAAATTGTTTACTGTTTTGAAAGTTTCTTAAGTTTTA

FIGURE 522

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108720

><subunit 1 of 1, 527 aa, 1 stop

><MW: 60284, pI: 8.31, NX(S/T): 3

MRSDKSALVFLLLQLFCVGCGFCGKVLVWPCDMSHWLNVKVILEELIVRGHEVTVLTHSK PSLIDYRKPSALKFEVVHMPQDRTEENEIFVDLALNVLPGLSTWQSVIKLNDFFVEIRGT LKMMCESFIYNQTLMKKLQETNYDVMLIDPVIPCGDLMAELLAVPFVLTLRISVGGNMER SCGKLPAPLSYVPVPMTGLTDRMTFLERVKNSMLSVLFHFWIQDYDYHFWEEFYSKALGR PTTLCETVGKAEIWLIRTYWDFEFPQPYQPNFEFVGGLHCKPAKALPKEMENFVQSSGED GIVVFSLGSLFQNVTEEKANIIASALAQIPQKVLWRYKGKKPSTLGANTRLYDWIPQNDL LGHPKTKAFITHGGMNGIYEAIYHGVPMVGVPIFGDQLDNIAHMKAKGAAVEINFKTMTS EDLLRALRTVITDSSYKENAMRLSRIHHDQPVKPLDRAVFWIEFVMRHKGAKHLRSAAHD LTWFQHYSIDVIGFLLTCVATAIFLFTKCFLFSCQKFNKTRKIEKRE

Important features of the protein:

Signal peptide:

Amino acids 1-21

Transmembrane domain:

Amino acids 489-510

N-glycosylation sites:

Amino acids 131-135;313-317;518-522

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 67-71;340-344

Tyrosine kinase phosphorylation sites:

Amino acids 122-131;136-144

N-myristoylation sites:

Amino acids 19-25;276-282;373-379;377-383

Amidation site:

Amino acids 338-342

FIGURE 523

 ${\tt GGCTGCGGGGTCGGCACGGAAG} {\color{red} {\bf ATG}} {\tt CACGCGAGGCTCTGGGGCTCTCGGCCCTGCTGCAGGCCCTGCTGCAGGCCTGCTGCAGGCCTGCTGCAGGCCTGCTGGGGGCTCTCGGGCCCTGCTGCAGGCCTGCAGGCCTGCAGGCCTGCAGGCCTGCTGCAGGCCTGCAGGCCTGCTGCAGGCCTGC$ GGCCGAACAGAGCGCGCCCTTTACACCGTGGCTTACTACTTCACCACAGGACGGCTTCTGTG GGGGTGGCCGTGCCTGCCCGGGTTCTTGGTCCAGGCCCTGAGCTACCTGTG GTTCCGAGCAGACGGGCATCCAGGGCATTGCTCCTTGGTGATGCTGCACCTCCTACAGCTTGG TGTTTGGAAGCGCACTGGGACGCTGCACTGACCAGTCTGCAGAAGGAACTGGAGGCTCCCCA $\tt CCGAGGCTGCAGCTGCAGGAGGCCGACCTGTCGGCCCTTCGACTCTTGGAGGCCCTGCT$ GCAGACTGGGCCCCACCTGCTGCTTCAGACATATGTTTTTCTAGCCTCAGACTTCACAGATATT GTGCCAGGGGTGAGCACCCTGTTTTCCTGGTCCTCACTCTCCTGGGCACTGGTGTCCTACACT CGCTTCATGGGCCTTCATGAAGCCAGGCCACCTGGCCATGCCATGGGCCGCCCTCTTCTGCCAG CAGCTCTGGAGGATGGGCATGTTGGGAACCCGCGTGCTGAGTCTGGTTCTACAAAGCC GCCCAGCAGAGTGACATCATCGACAGCACCTGCCACTGGAGGCTGTTCAACCTGCTCGTGGGG GCCGTGTACATCCTCTGCTACCTCAGCTTCTGGGACAGCCCTTCTAGAAATAGGATGGTCACG TTCTACATGGTCATGCTGTTGGAGAACATCATCCTGTTGCTGTTGGCCACCGACTTTCTCCAG GGGGCATCGTGGACCAGCCTGCAGACCATAGCTGGGGTCCTGTCTGGATTTCTGATTGGCAGT GTCTCACTGGTAATTTATTACAGCCTGCTGCATCCAAAATCCACAGACATCTGGCAGGGCTGC ACAGATCTAGCTGGGAAGAGAACCGAGAGCTCAGGCTCATGCCAAGGGGCAAGTTATGAACCA ACCATTTTAGGGAAGCCCCCTACCCCTGAGCAGGTCCCCCCAGAGGCTGGGCTGGGGACCCAG GTTGCTGTGGAGGACTCTTTCCTCAGTCATCACCACTGGCTGTGGGTGAAACTTGCCCTAAAA ACAGGAAATGTGTCTAAGATCAATGCCGCCTTTGGAGATAACAGTCCTGCCTATTGTCCACCT GCATGGGGGTTGAGTCAACAGGACTACCTGCAGAGAAAGGCCTTGTCTGCCCAGCAAGAGCTC CCATCCTCATCCCGTGACCCTCAACCTTAGAGAACAGCTCTGCGTTTGAAGGTGTCCCTAAA GCAGAGGCCGACCCATTGGAAACCTCAAGTTACGTATCTTTTGCCAGCGATCAGCAGGATGAA GCACCTACCCAGAACCCAGCAGCCACGCAGGGGGGGGGCACCCCAAAGGAAGGAGCTGACGCT GTTTCTGGGACACAGGGGAAGGGGACAGGTGGGCAGCAGAGAGGAGGGGAAGGACAGCAGAGT TCCACGTTGTACTTCAGCGCCACTGCAGAAGTGGCCACATCCTCACAACAAGAAGGCAGCCCA GCTACTCTGCAAACGGCCCACTCTGGAAGGAGGCTGGGAAAGAGCAGCCCTGCCCAGCCTGCA TCGCCCCACCCAGTGGGCTTGGCGCCCTTCCCCGACACCATGGCCGACATTAGCCCCATCCTA GGCACAGGCCCATGTAGAGGCTTCTGCCCCAGTGCAGGCTTCCCTGGAAGAACCCTCAGTATC TCAGAGCTAGAGGAGCCGCTGGAGCCCAAAAGGGAGCTAAGTCACCATGCAGCTGTTGGTGTG TGGGTGTCATTGCCACAGCTGAGGACTGCCCATGAGCCCTGCCTCACGTCCACCCCTAAGTCT GAGTCTATCCAAACGGACTGCAGCTGCAGGGAACAGATGAAGCAAGAGCCGAGTTTTTTCATC TGACCACAGTCATGGTGGGATAAGACAACAGGCTGACAAACCAAGCTGGCCATTTGGTACCGT GAGAAAGGAAATCCCACTTCTGACACCTGTGTCCTTGGGCACATCACTGTCACCTCTGAATCT CCATCTGCATCCCTGAAAAATGAAGAAACAGGGCTGGATGATTTTGCAGGTCCAATGCAAACA TCACAGACCCCACCCATGCATAGGAGAGACTCTAACATACTTTAGAGGAGGAGAAAGAGATTC CAGTCAAAATTGTCTGCTACCTTTTATGAGCTGTAGGTTCCCTTATTTTATCTTTTTGCTGTG GCTTCTAGGAAACACAAAGGTAAAACCCAGATTCCTATTTTATTTGAGGTTCTTGTTACAATT AGCTTTGCCTCACATTTAGCGGTTATGAATCTCATTTTAATATATTCTAACTGTATTATGTTA TGAAATCTCTTGGTAAGATAATTTGCATGCTTTCTGGGAGTAGGTAAGGCCTGTGTGCTTGTA ATAACTAACATAACTGAAAGTGCAAATGTCA

FIGURE 524

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108726

><subunit 1 of 1, 686 aa, 1 stop ><MW: 74981, pI: 6.60, NX(S/T): 2

MHARLLGLSALLQAAEQSARLYTVAYYFTTGRLLWGWLALAVLLPGFLVQALSYLWFRAD GHPGHCSLVMLHLLQLGVWKRHWDAALTSLQKELEAPHRGWLQLQEADLSALRLLEALLQ TGPHLLLQTYVFLASDFTDIVPGVSTLFSWSSLSWALVSYTRFMGFMKPGHLAMPWAALF CQQLWRMGMLGTRVLSLVLFYKAYHFWVFVVAGAHWLVMTFWLVAQQSDIIDSTCHWRLF NLLVGAVYILCYLSFWDSPSRNRMVTFYMVMLLENIILLLLATDFLQGASWTSLQTIAGV LSGFLIGSVSLVIYYSLLHPKSTDIWQGCLRKSCGIAGGDKTERRDSPRATDLAGKRTES SGSCQGASYEPTILGKPPTPEQVPPEAGLGTQVAVEDSFLSHHHWLWVKLALKTGNVSKI NAAFGDNSPAYCPPAWGLSQQDYLQRKALSAQQELPSSSRDPSTLENSSAFEGVPKAEAD PLETSSYVSFASDQQDEAPTQNPAATQGEGTPKEGADAVSGTQGKGTGGQQRGGEGQQSS TLYFSATAEVATSSQQEGSPATLQTAHSGRRLGKSSPAQPASPHPVGLAPFPDTMADISP ILGTGPCRGFCPSAGFPGRTLSISELEEPLEPKRELSHHAAVGVWVSLPQLRTAHEPCLT STPKSESIQTDCSCREQMKQEPSFFI

Important features of the protein:

Signal peptide:

Amino acids 1-17

Transmembrane domains:

Amino acids 35-50;269-287;293-313

N-glycosylation sites:

Amino acids 416-420;467-471

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 344-348

N-myristoylation sites:

Amino acids 188-194;288-294;299-305;335-341;338-344;362-368;

390-396;473-479;529-535;536-542;558-564;603-609;

643-649

Amidation sites:

Amino acids 354-358;568-572

Leucine zipper pattern:

Amino acids 112-134

FIGURE 525A

AGTGCCCTCTGTCATTTAATCTCCACGGAGTCCTGAAGGTGCTTCCCAGGTTTGTCCCCATCACACAGATGAGGC ${\tt AATCGTTCTGTTAAGACTGTCCTTGGGTCATT} \underline{{\tt ATC}} {\tt TCAGCAATGAAATCGGTGCTGCCATTACTAAACCCTTACT}$ TTGTGTGCCTGTGTGTGCACATGTAGAAAGAAAGTGATGTGGGGAATGGAGAATTCCAACCCAGGAGGAGACTG TGCCTGGGGCTGCCACGAGAAGTGGTGACACTTCGAGAAACGGGTTCCAAATGCACGTTGCCTTCCAGTTCTCTG ${\tt TGTGACCTTGGGCAAGTCACTTCAGCTCCC} {\tt TGA} {\tt GCTTTGTTTTTAAAAATATTTTTTAAATGTATAAAACCATGG}$ ACCATTACATATGAAGAGAAATGTGTGTGCAAACATTCAGTTAATAATCACAAGGTGGAGGAGTGCCTGCTCAGA AGCCCGTGCTTATCTGTTCAGTGGAAATGCCATGTGCCACGTTCCTCAGAAGTAAAGCCACTAGGTAAGTGTGAC GTACTGTCACTTCCCCCACTTTGAAGATGAGGAGAGCACAAATTCTAGATGGAAATGGAGGTCACGCAGTGGAAA TAGGATCCAGACAGATTAATCCAATCTCAAGCCTGAATTCTTCCATTCCACGCTACGCTTGAAGCTCAATCTCTC TTCCTGGTTGATTCTCCCCACTTCCCCACCCCCAGATATATCCCATCGCTGCTTGGTGGACAGTAGCCATGACTG GGTTTTGGTAAAGGTTGCTGAATAATCAGGCTGCTGGTTAGTTTTTACATTTCACCTTTCCCAGTGAAATGGGGC AGGATTTGGGGTAGACACTGGGAATTTACTAATTATGAATTCCAGTGCTTTCCTTGCTGAAAGAGAGGCGTGGAA TCAACGCTGAGTGAAGGCATCAAGTTTAAGCTGCTAATTACTTCCTGATCATGCAGAATAAAAGCTACGTCCCTT GAAATACACCAGGCAGCTAAACATAATCTTTGCGTTTCCGTAGTGTTGGTTAAGGAATCCAGATGTTACTGCAAT AACCACTCCATAAACAAAAGGAACACCCAGCTGTGAGAACTGGCTTCTCAGCATTCGTCCCAGCAGAGGCTCTTC ACGGCTACGGGCACAGCCACAGGCTGAAGGTGAGTCCAGCACAACTTTCTGACAGTGAACAGGAGTAAACATG GGACCCACCCGAAACCTTTGTCTGTTGACTTCTTAGCAAATGGAGGCAGCTCTAGGCTCTGGAGAGTTCGGGTAT AGGAGACCATGACTTGAGCAGACTGATATAAGTGGAATGCAAACATATTTAGATGGCACAACTTAATTTAGATTT ATCAGTGCTAATATAGAAAAAGCTAGTATTTATTGGGGCTTATTAGATTTTTAGTCTGAATCCTCACAACTTACG AGGGGGTTCGTTTTACAGACTATGATCTTGCATGATTTCCCCAAAGATGCTCATTAAGTATATGGTGAAAGTAGA ATTTGAATACAGAAGACCTGGTTCTGCTACTTTCTGTGTTTCTATTTGGTTCAAACCAGCCTTTCTTCTATCAAA ACAACTTCAGTGCAATTCATGGTTTTTGGAAAATAAACTTGATTTTTGAGATTCAGACAATAAGTGCATTTTTAATG CACAGACAGTACAATGACAAATTGGAGATCAGCTCTAATCTCGGCCCCCAATTTAATGCATTGCTGAATATTCTT CTGAACATAGTCCATCCCACACTGTCCCATGACACAAGACGCTCCAAGGGGCTGAAGATAGAGGGGACTTCTGCAG TCAAGAGAGCTGGGAAACTCTTGGACAGTCACAATGTGCATTTGGGTATTAAAGGCTCTGCAAAGTTCTGCACCA AATAAACCCTTGGATTGGCTTGATCCAATGCCATGTTTCCAAAACCTACTTGCCCGTGGGACACCTTAGTCCATA ACACAGGTTGGCATTCTTCTAGAGAGTGTGCTGTGAAAAACACTGGTCTCACAGCACCGTGCATTCATCCAGCA GGTATTTACCAAGCAGGGACTTTGGGCCAGGTCCGTGCTAGGCTCTGCAGGTGGACCAGCCCAGCCCTGACCTCCA TGGTGTCTCTCTCATGGGAGAGGCTGCACAGCAGTCATTGAGAAAACGAAGAAACACACAGGTACTTTCAGATG CTGATAATGACTACCATGTGCTAAAAGAGCTCCAGGTGTTGTCTGTTTTGAGACAATCTTCTCGACAATGAGATA GAATGAACCATGCAAACTTTGGGGGCTACGATGGTTTTAGGAAAGAGCTAGAGTGAAAAATCCTTTGACATATAT ACATACAAATAAAGATACATGTGTATAATTTTATGTAATTGACATCACATTATATGCTGGCACCTGCCTTTTTTG TCCCACTTCTGAAATGATCTCCTTAGAATAAATTCCCCAAATTGTATTGCTGGGTTCAAAGGCATGAACATTTTA CATTTTTATACAATAATGTCAAACTACCTTCCGGAAATGATGCTCACTTTACTTTCCCTCCAAGACTGTGTGAAA ATGCCCATTTTCCTAAATGCTTACTATGACTGGTTTCCAACTACATTTTAATTCTTGTTCAATCTGATAGGCAAA AAATGATATTTAATTTTATTTGATTGATAATGACCTTGAACGTGCCCATTAGCCTTTTGCATGTATTCTTTTAT GAAACATCTGTTCCTATCCTTCGTCAATGTTCCTCTTCATATGTTAACTTTTCTTATTGATTTGTTAGAGCACTT TGTATATTGTGAATATTAGCTTTTGTGATCAGAATTATGGAATTGTTGTTGTCTTTAGTTTTGCTTATCAAGTTT AAAGCCATTCAGAGATGTTGTAAATGTGTATGTTGTTAAATTTATGTCTTATTTTTGTGTTTTCTGATGCTCATAT CCAAATGGTGATTCAGCTGTTCCATTTCCCATATTCTCCCTTATTAGAAATGACCACTATATTATGTTCTAAAATA TCTGCGTACTTGTGTCCCTTCCTATAATCTCAGTTCATCTCTTTGAGCTATCTTTTGATTCCTTTTTCAAACCAC ACTGCTTTACTGAACTGTCATCTTATACATTTTTAATACTCAGCAAGACAAGTTTCTCAATGCCACTCTTTT GTCTTCTTATCCAATAAAAAAGATATGAATTTCCATGTATTGAAATCTTCACTGAGACTTATTTTTGGCTTTTCA

FIGURE 525B

FIGURE 526

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108728
<subunit 1 of 1, 100 aa, 1 stop
<MW: 10922, pI: 8.81, NX(S/T): 0
MSAMKSVLPLLNPYCVLAFVYACMCVRAHVCVCVYMCMCVLCACVCTCRKKVMCGNGEFQ
PRRRLCLGLPREVVTLRETGSKCTLPSSSLCDLGQVTSAP</pre>

Important features of the protein:

Signal peptide:

Amino acids 1-28

N-myristoylation sites:

Amino acids 80-86;94-100

Prokaryotic membrane lipoprotein lipid attachment sites:

Amino acids 13-24;34-45

FIGURE 527

GTGAGACTTCTTCTTCATTGTGGCTAGCTTTGAAAAGACCCTCTGAACTTCCTAAAGATATC TGTGGAGCACTAGCCATACTTCTTTCTTATCTTTACTATGTGTTTAAGGTTGTTCATCTGCAA GCCAGCTTAACAACTTTTAAGAATAGCCAGCCTGTGAATCCCCAAACACTCTAGAAGAAGTGAA AAGAAATCCAATCATAAAGACTCCTCAATACACCATCTTCGTTTATCTGCCAACGATGCT GAAGATAGCCTTCGCATGCACAGTACTGTGATTAACTTACTAACATGGATTGTATTACTCAGC ATGCCTTCTCTAATTTATTGGCTAAAGAATCTTAGGTATTATTTTAAACTTAATCCTGATCCA TGTAAACCTTTGGCATTTATCCTTATTCCGACTATGGCAATTCTTGGAAATACTTACACTGTT TCAATAAAATCAAGTAAATTGTTGAAGACTACTTCACAATTTCCACTTCCTCTGGCTGTTGGT ${\tt GTGATTGCTTTTGGGTCAGCACATTTATATAGGCTTCCATGCTTTGTCTTCATTCCTCTTTTA}$ $\tt CTCCATGCATTATGCAACTTTATG{\color{red}{\textbf{TAA}}} GATTGGACTTAAGGAATGATGAAGATAATTTATGTG$ TTTAGGGCCAGTGATAAGAGGGAACACACAGATCCATCAGTATGGACAGCAAGATCCTTTGGA GAAGACAAGTCTATTTTTACAATATTGAAAATAGGAAATTAGTTTTGTAATGTTTTGAGGGAAG TAGTTGAAGCATGGTTTTGTTGTGGTGTGGAATCCATGTACTAATCATTTTTGAAAAATTC ATGAAGGGATATATGGTGATCACTATCATTGAGGACTCCTGTGCATATAAAATAGTCTGTTTT ATCAACTGTAAA

FIGURE 528

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108738

><subunit 1 of 1, 196 aa, 1 stop ><MW: 22225, pI: 9.90, NX(S/T): 0

MISPDLPFLTIVLIIVSWTTCGALAILLSYLYYVFKVVHLQASLTTFKNSQPVNPKHSRR SEKKSNHHKDSSIHHLRLSANDAEDSLRMHSTVINLLTWIVLLSMPSLIYWLKNLRYYFK $\verb|LNPDPCKPLAFILIPTMAILGNTYTVSIKSSKLLKTTSQFPLPLAVGVIAFGSAHLYRLP|$ CFVFIPLLLHALCNFM

Important features of the protein:

Signal peptide:

Amino acids 1-25

Transmembrane domains:

Amino acids 91-108;128-143;167-186

N-myristoylation site:

Amino acids 141-147

FIGURE 529

GCGAGCCGGGTCCCACCATGGCCGCGAATTATTCCAGTACCAGTACCCGGAGAGAACATGTCA AAGTTAAAACCAGCTCCCAGCCAGGCTTCCTGGAACGGCTGAGCGAGACCTCGGGTGGGATGT TTGTGGGGCTCATGGCCTTCCTGCTCTCCTTCTACCTAATTTTCACCAATGAGGGCCGCGCAT TGAAGACGGCAACCTCATTGGCTGAGGGGCTCTCGCTTGTGGTGTCTCCCGACAGCATCCACA GTGTGGCTCCGGAGAATGAAGGAAGGCTGGTGCACATCATTGGCGCCCTTACGGACATCCAAGCTT TTGTCTGATCCAAACTATGGGGTCCATCTTCCGGCTGTGAAACTGCGGAGGCACGTGGAGATG TACCAATGGGTAGAAACTGAGGAGTCCAGGGAGTACACCGAGGATGGGCAGGTGAAGAAGGAG ACGAGGTATTCCTACAACACTGAATGGAGGTCAGAAATCATCAACAGCAAAAACTTCGACCGA GTCCAAATTGGCAGGTTTTTCCTCTCGTCAGGCCTCATCGACAAAGTCGACAACTTCAAGTCC CTGAGCCTATCCAAGCTGGAGGACCCTCATGTGGACATCATTCGCCGTGGAGACTTTTTCTAC CACAGCGAAAATCCCAAGTATCCAGAGGTGGGAGACTTGCGTGTCTCCTTTTCCTATGCTGGA CTGAGCGGCGATGACCCTGACCTGGGCCCAGCTCACGTGGTCACTGTGATTGCCCGGCAGCGG GGTGACCAGCTAGTCCCATTCTCCACCAAGTCTGGGGATACCTTACTGCTCCTGCACCACGGG GACTTCTCAGCAGAGGAGGTGTTTCATAGAGAACTAAGGAGCAACTCCATGAAGACCTGGGGC ACCTTGGTGGACTGGTTTCCTGTTTTCCGAGACCTGGTCAACATTGGCCTGAAAGCCTTTGCC $\tt CTGTGGGCCCTCCTCATTGCCGGCCCTGGCCCTTGTGCCCATCCTTGTTGCTCGGACACGGGTG$ ${\tt CCAGCCAAAAAGTTGGAG}$ ${\tt AAAGACCCTGGCACCCGGCCGACACCTGCGTGAGCCCTGAGG}$ CTGGTTGTACAATGCCCACGCCTGCCTGGCTGCTTTCACCTGGGAGTGCTTTCGATGTGGGCA CCTGGGCTTCCTAGGGCTGCTTCTGAGTGGTTCTTTCACGTGTTGTGTCCATAGCTTTAGTCT TCCTAAATAAGATCCACCCACACCTAAGTCACAGAATTTCTAAGTTCCCCAACTACTCTCACA CCCTTTTAAAGATAAAGTATGTTGTAACCAGGACGTCTTAAATGATTCTTTGTGTACCTTTTC TGTCATATTCAGAAACCGTTCTGTGCCTGCGGAGTAATTCCTTTAGCAATTAAGTATTTGG TAGCTGAATAAGGGGTCAGAACTTCTGAAACCAGAGATCTGTAATCATCTCTATTGGCCTGGG GGGTTTAGGATTCAATAGTATTCACTAACTGCTTATTACATGAGCAATTTCATCAAATCTCCA AACTCTTAAAGGATGCTTTCGGAAAACACGCTGTATACCTAGATGACTAAATGCAAAATC $\verb|CTTGGGCTTTGGTTTTTTTTTTTAAAGGATTTTAAATAACTGCCGACTTCAAAAGTGTTCTTA|\\$ AAACGAAAGATAATGTTAAGAAAAATTTGAAAGCTTTGGAAAACCAAATTTGTAATATCATTG TATTTTTTATTAAAAGTTTTGTAATAAATTTCTAAATTATCA

FIGURE 530

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108743

><subunit 1 of 1, 400 aa, 1 stop

><MW: 44876, pI: 8.32, NX(S/T): 2

MAANYSSTSTRREHVKVKTSSOPGFLERLSETSGGMFVGLMAFLLSFYLIFTNEGRALKT ATSLAEGLSLVVSPDSIHSVAPENEGRLVHIIGALRTSKLLSDPNYGVHLPAVKLRRHVE MYQWVETEESREYTEDGQVKKETRYSYNTEWRSEIINSKNFDREIGHKNPSAMAVESFMA TAPFVQIGRFFLSSGLIDKVDNFKSLSLSKLEDPHVDIIRRGDFFYHSENPKYPEVGDLR VSFSYAGLSGDDPDLGPAHVVTVIARQRGDQLVPFSTKSGDTLLLLHHGDFSAEEVFHRE LRSNSMKTWGLRAAGWMAMFMGLNLMTRILYTLVDWFPVFRDLVNIGLKAFAFCVATSLT LLTVAAGWLFYRPLWALLIAGLALVPILVARTRVPAKKLE

Important features of the protein:

Transmembrane domains:

Amino acids 34-53;365-388

N-glycosylation site:

Amino acids 4-8

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 140-144

Tyrosine kinase phosphorylation sites:

Amino acids 99-107;220-227

N-myristoylation sites:

Amino acids 35-41;93-99;310-316

Cell attachment sequences:

Amino acids 221-224;268-271

WO 01/68848 PCT/US01/06520

536/615

FIGURE 531

FIGURE 532

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108758
<subunit 1 of 1, 100 aa, 1 stop
<MW: 10316, pI: 8.52, NX(S/T): 0
MGNNCYFKSLGAVILPSASATFVVLCVASVPPLILLSFLSLFPPSFPSVFLRSKGYNGGA
NCLAISDKTSLSDCSAHDLPCSLTGSGIRSHQLSAGHLGL</pre>

Important features of the protein: Signal peptide:

Amino acids 1-47

N-myristoylation site:
Amino acids 58-64

FIGURE 533

CGGGGTGTACGAAAGAGAAACCCGGAGGGCCCGGGGACTGGGCCCGGGGTCTGCAGGGCTCAG CTGAGCCCATGAGCTCCCAGAGCTAACCCCTGAACACCCAGGCGGCAAAGGGCTGATGTCGG ${\tt TAGTCCCCATCCTGGAGGGGCAGGCTCTGCGCATCTGCTCCTGGC} \underline{{\tt ATG}} {\tt GCGCTGCGGCACCTC}$ GCCCTCCTGGCTGGCCTTCTCGTGGGAGTCGCCAGCAAGTCCATGGAGAACACGGCCCAGCTG CCAGGCTGTTACAGGCGCTGGAACGCGGACGGGAGCGCCAGCTGCGTCCGCTGTGGGAACGGA ACCCTCCCAGCCTACAACGGCTCCGAGTGTAGAAGCTTTGCTGGCCCGGGTGCGCCATTCCCC ATGAACAGAAGCTCAGGGACCCCCGGGCGGCCACATCCTGGGGCTCCGCGCGTGGCCGCCTCC $\verb|CTCTTCCTGGGCACGTTCTTCATTAGCTCCGGCCTCATCCTCTCCGTAGCTGGGTTCTTCTAC| \\$ CTCAAGCGCTCCAGTAAACTCCCCAGGGCCTGCTACAGAAGAAACAAAGCTCCGGCCCTGCAG CCTGGCGAAGCCGCTGCAATGATCCCCCCGCCACAGTCCTCAGACGTGGGGTCTGCAGGAAAG GAGGACCCACCACGACAGGGCAGACCCCCAATACCTGCTCCTCCT<u>TGA</u>AGTCCAGCTCCACCC GAGGACAGACGCAGCCGCCTCCGCCAGGCCCTCCTGAGCAGCCATCGCTTCAGTGGTGCTGG GTCAGGCGGACCCAAGAGTCAGCCCGTACGGAAGCCGCGCTACGTCAGGCGGGAGCGGCCCCT GGACAGGGCCACGGATCCCGCTGCCTTCCCGGGGGAGGCCCGTATCAGCAATGTCTGACCTGG AGGCCGAGACCACGCACTTGGCGGCAGGGACCCGGAGGCCGACCCCTTGGCGGGAACC AGCACAAAGTGTTGGCATCGCCCGGCGCCCCGGGACAGTCCTGGGCACAGCCTCGGCTCTGGGT AGCCATCTCGTTTATCGGACCAGGAGCAGCATCCATGAGACCTCAGAGCTTCAGATCGAGGC CTTGGGGGGTCCGGGCCCCCCAGGAAACACGGTGAGGCCCCAGCGCCTGCAGCCAAAGCTGG CACGATCTATGGGGCAGGTGCCGCTCTGCCTAGAAAAGCCAGGGGCTCTGCTGCCGTGCCCTC CAGAGCCCACAGGGGCAGGACTCCTCCAGCACCACCACCCAGTGGCCCGAGACCCCTCTG AGAACAGTGAGGCTGGTCCTCGTGCCGTTCCAGCCGGTGCCCGGCCAGTGGGGAGGACACAGC AAGCACGCAGCCACCCATTTCCGGAGCTGCAGGATAGAGCTTCCTCTTGATCTCTGTTTTTAAG CAGAAATTCATTGTGCAGAAAAGTCCTCCAGAGCTCTGTGGCCCCGCTCGGATCCGCTGGACC CCCATGCCTGGCTGATCCCTGCCCACGTGGGGCAGGCCCACATCTAACCCCCACAAGTCACTG GAGAAAGGCGCCGTCGTGGCCGCCTCCCGCACGCCAGGCCCGGGCTCCACCGTGGGTCTCAGA ${\tt TTCGGGGTCCCCACGCTCCTTTGCGAAGTCCACTGTGGGTGCCATCATGGTCTCCGGGACCTG}$

FIGURE 534

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108765
><subunit 1 of 1, 189 aa, 1 stop
><MW: 19464, pI: 9.60, NX(S/T): 4
MALRHLALLAGLLVGVASKSMENTAQLPECCVDVVGVNASCPGASLCGPGCYRRWNADGS

MALRHLALLAGLLVGVASKSMENTAQLPECCVDVVGVNASCPGASLCGPGCYRRWNADGS ASCVRCGNGTLPAYNGSECRSFAGPGAPFPMNRSSGTPGRPHPGAPRVAASLFLGTFFIS SGLILSVAGFFYLKRSSKLPRACYRRNKAPALQPGEAAAMIPPPQSSDVGSAGKEDPPRQ GRPPIPAPP

Important features of the protein:

Signal peptide:

Amino acids 1-18

Transmembrane domain:

Amino acids 111-129

N-glycosylation sites:

Amino acids 38-42;68-72;75-79;92-96

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 134-138

N-myristoylation sites:

Amino acids 11-17;36-42;43-49;59-65;69-75;122-128

FIGURE 535

TGGATCTGCGGGAATGTGGGCTGGAGAGGTCCTGCCGTGGTACCAGCCTCCAGCCTGCCCCCA ${\tt CCTGCATCCTGAAGAGAAAGTCTGTGATTGCTGTGAGCTTCATAGCAGCGTTCCTTTTCCTGC}$ TGGTTGTGCGTCTTGTAAATGAAGTGAATTTCCCATTGCTACTAAACTGCTTTGGACAACCTG GTACAAAGTGGATACCATTCTCCTACACATACAGGCGGCCCCTTCGAACTCACTATGGATACA TAAATGTGAAGACACAAGAGCCTTTGCAACTGGACTGTGACCTTTGTGCCATAGTGTCAAACT TGAACAATGCCCCCACCAAAGGTTATGAAGAAGATGTCGGCCGCATGACCATGATTCGAGTTG TGTCCCATACCAGCGTTCCTCTTTTGCTAAAAAACCCTGATTATTTTTTCAAGGAAGCGAATA CTACTATTTATGTTATTTTGGGGACCTTTCCGCAATATGAGGAAAGATGGCAATGGCATCGTTT ACAACATGTTGAAAAAGACAGTTGGTATCTATCCGAATGCCCAAATATACGTGACCACAGAGA $\mathtt{AGCGCATGAGTTACTGTGATGGAGTTTTTAAGAAGGAAACTGGGAAGGACAGTACAGAG\underline{\mathbf{TGA}}\mathtt{C}$ AAACAAATACCCATGTCAGTGGTTCAAAGATTAAGATTGTGGCTTTGTGTAAAGTTCTTTCCC TTGTGGTATGTGGTATGTAAATATTTTTAAATGTTGTCTCTCTGTTTTGATCAGTTTTTGTTT TATTCAATTTGTCTTTATTAAATCTTATCAAAGCA

FIGURE 536

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA108783

><subunit 1 of 1, 210 aa, 1 stop

><MW: 24022, pI: 9.51, NX(S/T): 1

MACILKRKSVIAVSFIAAFLFLLVVRLVNEVNFPLLLNCFGQPGTKWIPFSYTYRRPLRT HYGYINVKTQEPLQLDCDLCAIVSNSGQMVGQKVGNEIDRSSCIWRMNNAPTKGYEEDVG RMTMIRVVSHTSVPLLLKNPDYFFKEANTTIYVIWGPFRNMRKDGNGIVYNMLKKTVGIY PNAQIYVTTEKRMSYCDGVFKKÉTGKDSTE

Important features of the protein:

Signal peptide:

Amino acids 1-27

N-glycosylation sites:

Amino acids 148-152

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 6-10;191-195;201-205

N-myristoylation sites:

Amino acids 41-47;87-93;91-97;167-173;178-184

FIGURE 537

GTTTTATTGACAATACATGCATCATATCTTTTGACTTTGAAGGATATCTCATGTCAAAGGAAT CAAGTTATGATTTATAGAGGATTCAGCTGGAATACCTTGTGGGTGCTGACGGTGGCAAA ACGCCTACCGAGACATGAAGGTTTTAGCCACTAGTTTTGTCCTTGGGAGCCTGGGGTTGGCCT TCTACCTGCCTTTGGTGGTGACTACACCTAAAACACTGGCCATCCCTGAGAAGCTGCAAGAAG CTGTGGGGAAAGTTATCATCAATGCCACAACCTGTACTGTCACCTGTGGCCTTGGCTATAAGG AGGAGACCGTCTGTGAGGTGGGCCCTGATGGAGTGAGAAGGAAATGTCAGACTCAGCGCTTAGAA TGTCTGACCAACTGGATCTGTGGGATGCTCCATTTCACCATTCTCATTGGCAAGGAATTTGAG ${\tt CTTAGCTGTCTGAGTTCAGACATCTTGGAGTTTGGACAGGAAGCTTTCCGGTTCACCTGGAGA}$ CTTGCTCGAGGTGTCATCTCCACTGACGATGAGGTCTTCAAACCCTTTCAAGCCAACTCCCAC TTTGTGAAGTTTAAATATGCTCAGGAGTATGACTCTGGGACATATCGCTGTGATGTGCAGCTG GTGAATCTGAATTTCCATCAGTCACTTACTGAGGATCAGAAGTTAATAGATGAGGGATTGGAA GTTAATCTGGACAGCTACTCCAAGCCTCACCACCCAAAGTGGAAAAAAGAAGGTGGCGTCAGCC TTGGGAATAGGAATTGCCATTGGAGTGGTTGGTGGCGTGTTGGTGAGGATTGTCCTCTGTGCG $\tt CTAAGGGGGGGCCTGCAGCAG{\color{blue} TGA} CAGCTTCAAGAACTTAACAGCCTTGCTCCTGAAGAACTG$ GCTGCCCAGGAAGCCAAGCTTTTTTAGGGGAGTGTTCCAGCTGCTGGTAGTGGATCAGCT TAGAGGGAACACTCCCACAGCCAAAAGAATGAGTGGGAGAAATGGAGGGGACAATCTCCTGGG AGCTATGCGCAGTAACCTAACTTCCTTATGTCCCATGGATCTCCTGATCTTCCCTGCCCA TTGGGTACCCAGGAAACTGCAAGCATTGCCTGTGTTCCTGGGAAGAGTTCTAAGAAGCTTGCA TTCATTTTCTACCCTTTATGACTTGGATGCCTCCCACCTCCATTTCCCCTCTTCTGAGCTGT CACAGTAA

FIGURE 538

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108789</pre>

><subunit 1 of 1, 255 aa, 1 stop

><MW: 28440, pI: 8.92, NX(S/T): 1

MKVLATSFVLGSLGLAFYLPLVVTTPKTLAIPEKLQEAVGKVIINATTCTVTCGLGYKEE TVCEVGPDGVRKCQTQRLECLTNWICGMLHFTILIGKEFELSCLSSDILEFGQEAFRFT WRLARGVISTDDEVFKPFQANSHFVKFKYAQEYDSGTYRCDVQLVKNLRLVKRLYFGLRV LPPNLVNLNFHQSLTEDQKLIDEGLEVNLDSYSKPHHPKWKKKVASALGIGIAIGVVGGV LVRIVLCALRGGLQQ

Important features of the protein:

Signal peptide:

Amino acids 1-30

Transmembrane domain:

Amino acids 225-244

N-glycosylation site:

Amino acids 45-49

N-myristoylation sites:

Amino acids 126-132;156-162;204-210;229-235;231-237;235-241

WO 01/68848 PCT/US01/06520

544/615

FIGURE 539

FIGURE 540

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA108806

><subunit 1 of 1, 159 aa, 1 stop

><MW: 18865, pI: 9.76, NX(S/T): 0

MKFSPAHYLLPLLPALVLSTRQDYEELEKQLKEVFKERSTILRQLTKTSRELDGIKVNLQ SLKNDEQSAKTDVQKLLELGQKQREEMKSLQEALQNQLKETSEKAEKHQATINFLKTEVE RKSKMIRDLQNEDSRKRPRDLQWKIVSMRTMSIYLLMYL

Important features of the protein:

Signal peptide:

Amino acids 1-22

N-myristoylation site:

Amino acids 54-60

FIGURE 541

WO 01/68848 PCT/US01/06520

547/615

FIGURE 542

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA108936

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19472, pI: 5.71, NX(S/T): 0

MSPSGRLCLLTIVGLILPTRGQTLKDTTSSSSADSTIMDIQVPTRAPDAVYTELQPTSPT PTWPADETPQPQTQTQQLEGTDGPLVTDPETHKSTKAAHPTDDTTTLSERPSPSTDVQTD PQTLKPSGFHEDDPFFYDEHTLRKRGLLVAAVLFITGIIILTSGKCRQLSRLCRNRCR

Important features of the protein:

Signal peptide:

Amino acids 1-21

Transmembrane domain:

Amino acids 147-162

Tyrosine kinase phosphorylation site:

Amino acids 45-52

N-myristoylation site:

Amino acids 146-152

FIGURE 543

CGGCTCGAGGTGAGAAGGAAACTGCAAGAGTGGGGGCAGAGAACCAGAGTGTCAGAGCAAAACC GCTCCGCCTTTGAAGGGTAAAACCCAAGGCGGGGCCTTGGTTCTGGCAGAAGGGACGCT<u>ATG</u>A ATGAGAAACCGCCCAAGCCCTCCACGCCTGGCCCAGCTCGGTGGTTGAAGCCGAGAGCA ATGTGACCCTGAAGTGTCAGGCTCATTCCCAGAATGTGACATTTGTGCTGCGCAAGGTGAACG ACTCTGGGTACAAGCAGGAACAGAGCTCGGCAGAAAACGAAGCTGAATTCCCCTTCACGGACC TGAAGCCTAAGGATGCTGGGAGGTACTTTTGTGCCTACAAGACAACAGCCTCCCATGAGTGGT CAGAAAGCAGTGAACACTTGCAGCTGGTGGTCACAGATAAACACGATGAACTTGAAGCTCCCT CAATGAAAACAGACACCAGAACCATCTTTGTCGCCATCTTCAGCTGCATCTCCATCCTTCTCC TCTTCCTCTCAGTCTTCATCATCTACAGATGCAGCCAGCACGGTTCATCATCTGAGGAATCCA CCAAGAGAACCAGCCATTCCAAACTTCCGGAGCARGAGGCTGCCGAGGCAGATTTATCCAATA TGGAAAGGGTATCTCTCTCGACGGCAGACCCCCAAGGAGTGACCTATGCTGAGCTAAGCACCA GCGCCCTGTCTGAGGCAGCTTCAGACACCACCCAGGAGCCCCCAGGATCTCATGAATATGCGG ${\tt CACTGAAAGTG} \underline{\textbf{TAG}} {\tt CAAGAAGACAGCCCTGGCCACTAAAGGAGGGGGGATCGTGCTGGCCAAG}$ GTTATCGGAAATCTGGAGATGCAGATACTGTGTTTCCTTGCTCTTCGTCCATATCAATAAAAT TAAGTTTCTCGTCTTA

FIGURE 544

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA119510

><subunit 1 of 1, 236 aa, 1 stop

><MW: 26079, pI: 5.05, NX(S/T): 3

MTAEFLSLLCLGLCLGYEDEKKNEKPPKPSLHAWPSSVVEAESNVTLKCQAHSQNVTFVL RKVNDSGYKQEQSSAENEAEFPFTDLKPKDAGRYFCAYKTTASHEWSESSEHLQLVVTDK HDELEAPSMKTDTRTIFVAIFSCISILLLFLSVFIIYRCSQHGSSSEESTKRTSHSKLPE QEAAEADLSNMERVSLSTADPQGVTYAELSTSALSEAASDTTQEPPGSHEYAALKV

Important features of the protein:

Signal peptide:

Amino acids 1-16

Transmembrane domain:

Amino acids 135-153

N-glycosylation sites:

Amino acids 44-48;55-59;64-68

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 171-175

Tyrosine kinase phosphorylation sites:

Amino acids 61-69;87-95

N-myristoylation sites:

Amino acids 12-18;203-209

FIGURE 545

GGCGGCCCGGAGCTGGGAGCGCGGGGAAGGCGGTTGGGGTTCTGACAGCTGCGCGCGATCCTG CTCTCTCTCAGCCGCCTGTGGACATGCGCAAAGGGCCCTCTCCTGAGTCCAG<u>ATG</u>ATGCTCAT ACCAATGGCTTCAGTGATGGCGGTGACTGAACCGAAATGGGTCTCGGTCTGGAGCCGCTTCCT TGTGGAGGAGCAGTGCTTGGCTGTGCTCAAAGGCCTCTACCTGCTCAGGAGCAAACCGGACAG GGCGCAGCATGCCGCCACCAAGTGCACCAGCCCGTCCACGGAGCTCAGCATCACCTCCAGGGG CGCGACGCTGCTGGTGGCCAAGACCAAGGCCTCTCCAGCGGGTAAGTTGGAAGCCAGAGCTGC CCTGAACCAGGCCCTGGAGATGAAGCGCCAGGGCAAGCGGGAAAAAGCCCCAAAAGCTCTTCAT GCACGCCTCAAGATGGACCCGGACTTCGTGGACGCGCTCACCGAGTTTGGCATCTTCTCGGA AGAAGACAAGGACATCATCCAGGCGGACTACTTGTACACCAGAGCATTGACCATCTCACCCTA CCATGAGAAAGCACTGGTCAACCGCGATCGGACACTGCCTCTTGTGGAAGAGATCGACCAGAG GTATTTCAGCATCATCGACAGCAAAGTGAAGAAGGTCATGTCCATCCCCAAGGGGAACTCAGC TCTGCGCAGGGTCATGGAGGAGCCTACTACCATCACATCTACCACACAGTGGCCATCGAGGG CAACACCCTCACCCTCTCGGAAATCAGGCACATCCTGGAGACCCGCTACGCCGTGCCCGGGAA TCTGGTTTCGCGCATCGGCTCCGTCACCATCAGCGACGTGCTGGAGATCCACAGGCGGGTGCT GGGCTACGTGGACCCCGTGGAAGCCGGCAGGTTTCGGACAACACAGGTCCTGGTCGGACACCA CATCCCTCCCCATCCGCAGGATGTGGAAAAGCAGATGCAGGAGTTTGTACAGTGGCTCAACTCC GAGGAAGCCATGAACCTGCACCCAGTGGAGTTTGCAGCCTTAGCCCATTATAAACTCGTTTAC ATCCACCCTTTCATTGATGGCAACGGGAGGACCTCCCGTCTGCTCATGAACCTCATCCTCATG CAGGCGGCTACCCGCCCATCACCATCCGCAAGGAGCAGCGGTCCGACTACTACCACGTGTTG GAAGCTGCCAACGAGGGCGACGTGAGGCCTTTCATTCGCTTCATCGCCAAGTGTACTGAGACC ACCCTGGACACCCTGCTTTTTGCCACAACTGAGTACTCGGTGGCACTGCCAGAAGCCCAACCC $\texttt{AACCACTCTGGGTTCAAGGAGACGCTTCCTGTGAAGCCC} \underline{\textbf{TAA}} \texttt{CCCTAGAAATCCTCAGTGACA}$ AAGGCTGTCCTGAGGTAGGAAA

WO 01/68848 PCT/US01/06520

551/615

FIGURE 546

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA119517

><subunit 1 of 1, 458 aa, 1 stop

><MW: 51778, pI: 7.81, NX(S/T): 2

MMLIPMASVMAVTEPKWVSVWSRFLWVTLLSMVLGSLLALLIPLGAVEEQCLAVLKGLYL LRSKPDRAQHAATKCTSPSTELSITSRGATLLVAKTKASPAGKLEARAALNQALEMKRQG KREKAQKLFMHALKMDPDFVDALTEFGIFSEEDKDIIQADYLYTRALTISPYHEKALVNR DRTLPLVEEIDQRYFSIIDSKVKKVMSIPKGNSALRRVMEETYYHHIYHTVAIEGNTLTL SEIRHILETRYAVPGKSLEEQNEVIGMHAAMKYINTTLVSRIGSVTISDVLEIHRRVLGY VDPVEAGRFRTTQVLVGHHIPPHPQDVEKQMQEFVQWLNSEEAMNLHPVEFAALAHYKLV YIHPFIDGNGRTSRLLMNLILMQAGYPPITIRKEQRSDYYHVLEÄANEGDVRPFIRFIAK CTETTLDTLLFATTEYSVALPEAQPNHSGFKETLPVKP

Important features of the protein:

Signal peptide:

Amino acids 1-46

N-glycosylation sites:

Amino acids 275-279;446-450

Tyrosine kinase phosphorylation sites:

Amino acids 216-225;217-225;244-232

N-myristoylation sites:

Amino acids 35-41;235-241;266-272;368-374

Amidation site:

Amino acids 119-123

FIGURE 547

CCTCTGTCTGTGCTCCCATCCCAGGGAGTATAGGTGGAGCCTCCAGAGCCCATGGACAGGGCA TGCTGGGGCTGGGCCAGCCCCAGCGGTGTCTCTAAGGCACCCCTGGGATCCCCACTGAGCTGG CCTACTTCAGACAGCCAGGGCCCACCCCTCTGGCCCCCTTAGTGTCCAGCTCGTGGCCCCTTG GCATTTCCACAAGACGCCAAGATGGAGATTCCCATGGGGACCCAGGGCTGCTTCTCAAAGAGC ${ t CTCCTGCTCTCAGCCTCAATCCTGGTCCTCTGGATGCTCCAAGGCTCCCAGGCAGCTCTCTACCTCTGGTCTCTACCTCTCTACCTCTCTACCTCTCTACCTCTCTACCTCTCTACCTCTACCTCTACCTCTACCTCTACCTCTACCTCTCTACCTACCTCTACCTCTACCTACCTCTACCTCTACCTCTACCTCTACCTACCTACCTCTACCTCTACCTCTACCTCTACCTCTACCTCTACCTACCTACCTCTAC$ ATCCAGAGATTCCAGAGCAGCCTCAAAAGAACCAGGACCTTCTCCTGTCAGTCCAGGGTGTC CCAGACACCTTCCAGGACTTCAACTGGTACCTGGGGGAGGAGACGTACGGAGGCACGAGGCTA TTTACCTACATCCCTGGGATACAACGGCCTCAGAGGGATGGCAGTGCCATGGGACAGCGAGAC TACCAAGTAGCCATTACCATCAACTCTGAATGGACTATGAAGGCCAAGACTGAGGTCCAGGTA GCTGAAAAGAATAAGGAGCTGCCCAGTACACCCTGCCCACCAACGCTGGGATCCTGGCGGCC ACCATCATTGGATCTCTTGCTGCCGGGGCCCTTCTCATCAGCTGCATTGCCTATCTCCTGGTG ACAAGGAACTGGAGGGGCCAGAGCCACAGACTGCCTGCTCCGAGGGGCCAGGGATCTCTGTCC GAGAAGCCAGAATTGGGCCCTGCTCATGATGCTGGTGACAACAACATCTATGAAGTGATGCCC TCTCCAGTCCTCCTGGTGTCCCCCATCAGTGACACAAGGTCCATAAACCCAGCCCGGCCCCTG CCCACACCCCCACACCTGCAGGCGGAGCCAGAGAACCACCAGTACCAGCAGGACCTGCTAAAC CCCGACCCTGCCCCTACTGCCAGCTGGTGCCAACTTCCTGATGGGTCCTGGGCCAGGCCAGC CAGGGAGAAGACAAGGCCCCAGCCCTCTCTGGGAGCCTCACACCTGAGACCAGCAGGACAAG GCCATTGGGGGCTGTGGGGCCGATGAGGTGGACTCAGCCAAAGACTCAGCAGCACATGGGGCCA GGTGTCCTGGCAGGGGGACAGGAGACTGTAACAGGCCCAGGTCCTTGTGCAGCCCCTGAATGC ACGCCCGCCTTCGGTCTGTTCCTTCAAGCAAGCTGGCCTGGGCCATGTGCCTGTGAAAGGCAG GCTCTGGCCCCTTTCCATGCCAAAGTCCCCCAAGATCTGGATATCTGGGGACAAGATGGTGGC AACTCCACTAGTGACCCTCAGAGTCTTCTCCCCTTAGGACAAGGCAGACACCCCACCATGCGG GCCTCAGGTGGCAGAGAGGCCCAGCCTCACAGGCCTGTGGCCCCACACACCAGTCCCAGCAAG CCAGCTGCTGGTCTTGGCCCCCACCCTGAATCTTACTGAGTCCCTCTGGGCAGCAGCTCCCTT CTCCACCCCACCCCAGCACCCGTCCCAAATGTGGCCTCAGCTTGTCCTCCCCTTCCCCAAACT ATGCATTCATTCAGCAATAAATGAGCCTTTGCTGCA

FIGURE 548

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA119535

><subunit 1 of 1, 300 aa, 1 stop ><MW: 32638, pI: 6.02, NX(S/T): 1

MEIPMGTQGCFSKSLLLSASILVLWMLQGSQAALYIQKIPEQPQKNQDLLLSVQGVPDTF QDFNWYLGEETYGGTRLFTYIPGIQRPQRDGSAMGQRDIVGFPNGSMLLRRAQPTDSGTY QVAITINSEWTMKAKTEVQVAEKNKELPSTHLPTNAGILAATIIGSLAAGALLISCIAYL LVTRNWRGQSHRLPAPRGQGSLSILCSAVSPVPSVTPSTWMATTEKPELGPAHDAGDNNI YEVMPSPVLLVSPISDTRSINPARPLPTPPHLQAEPENHQYQQDLLNPDPAPYCQLVPTS

Important features of the protein:

Signal peptide:

Amino acids 1-32

Transmembrane domain:

Amino acids 159-178

N-glycosylation site:

Amino acids 104-108

N-myristoylation sites:

Amino acids 6-12;29-35;55-61;91-97;157-163;165-171

WO 01/68848 PCT/US01/06520

554/615

FIGURE 549

GCCACTCACACCATCTGCTAATGGGACAGCTCACTCTTCCCTCCAAACCATGGCCTTGGCTCA AGAGCTTCCTTGTTTCTGGAATGTTCTTTCCTCCAGCTCCAGGTGTTGAAATTCTGCCTGGTC ${\tt TGGGTCTCCTGTTGAAGGACGCCCTCCACTGGGAAGGATCCTCTTGCCTTCACCACTTGTCTT}$ GTGTTTGACACACATCTTCTCTCACCCTCTAACACAGTTCTCAACCACAGCACTTTTGTCCC TGGAGATGTTGGCAGTGTCCAGAGGCGTGTTGATGGTCCCACTGGGGTTGGGGGTGCTGCTGGCA CCAGATGGTAGGGAGATGCCAGGGGTGCTCCACACCCTATGGGACACTGCACAGTACACC TGGCCTGTGTCCCCCACAGCGAGAGCTGGCCCTGGGCAGGCGTGGTCCCTGCGGTGTGTTG GTTGGGATCCTCCACAGTGACAGACGGTGCGCTCTGCCCACGTTTCCACACAGCTCTTTTGCT TGTGGAGCTCACCCCTTTGCAGAGAGCTCATTTCCCTGCGGTCTTTGGCCTGCAGAAGTAAAA **TGA**GGGGTGGTGAATTACACCCCTGCTGGTTACACATGGAAAACTCAGGAGTGAGAATTTTGT GGAGAGCAAGAGAGGTGAGACTGGGGTGCTGCCAGCCAGGCGGTCCCTCAGCCCCTGGA CTCCCAGTCACCTTTCTCCCAGTGCCACTACTGCGCTTTCGATGCAGAATAATTCAGTATTT GGCGACTTGAAGTCGGACGAGATGGAGCTGCTCTACTCAGCCTACGGAGATGAGACAGGCGTG CAGTGTGCGCTGAGCCTGCAGGAGTTTGTGAAGGATGCTGGGAGCTACAGCAAGAAAGTGGTG GACGACCTCCTGGACCAGATCACAGGCGGAGACCACTCTAGGACGCTCTTCCAGCTGAAGCAG AGAAGAATGTTCCCATGAAGCCTCCAGATGAAGCCAAGGTTGGGGACACCCTAGGAGACAGC AGCAGCTCTGTTCTGGAGTTCATGTCGATGAAGTCCTATCCCGACGTTTCTGTGGATATCTCC ATGCTCAGCTCTCTGGGGAAGGTGAAGAAGGAGCTGGACCCTGACGACAGCCATTTGAACTTG GATGAGACGAGGCTCCTGCAGGACCTGCACGAAGCACAGGCGGAGCGCGGCGGCTCTCGG CCGTCGTCCAACCTCAGCTCCCTGTCCAACGCCTCCGAGAGGGACCAGCACCACCTGGGAAGC CCTTCTCGCCTGAGTGTCGGGGAGCAGCCAGACCTCACCCACGACCCCTATGAGTTTCTTCAG TCTCCAGAGCCTGCGGCCTCTGCCAAGACCTAACTCTAGACCACCTTCAGCTCTTTATTTTA TTTTTTTAGTTTTATTTTGCACGTGTAGAGTTTTTGTCATCAGACAAGGACTTTGATCCTGTC CCCTTTGGCATGCGGGAAGCAGCCGCGGGGAGGTAATGAATTGTCTGTGGTATCATGTCAGCA GAGTCTCCAAGCCCCACGAACCCTGAGGAGTGGAGTCATACGCGAAGGCCATATGGCCATCGT GTCAGCAGAGAGTCTCTGTACACAGCCCCGTGAACCCTGAGGAGTGGAGTCATACACGAAG GGCGTGTGGCCATCGTGTCAGCAGAGAGAGTCTCTGTACACAGCCCCGTGAACCCTGAGGAGTGG AGTCATACGCGAAGGGTGTGTGGCCAGGCTGCAGAGCTGCGTGCCGTTTGTGTCCGAGCATCA TCGCTCTTGGGAGGCACAGGCATGGGTGTGTCTGGCCTCATTCTGTATCAGTCCAGTGTGTTC CTGTCATAGTTTGTGTCTCCCAGGCAGGCCATGGTAGGGGCCTCGCAGGGGCCATTGGGGAGC ACAGGGCCAGGCTGGGGTGAGGAGACTCCCCTGTTTTCTGTTTAATTGATGAGCCTGGGAAA GGAGTGTGTTCTGCCTGCCCGTTACAGTGGAGCGTTCCGTGTCCATAAAACGTTTTCTAACTG **GGAA**

FIGURE 550

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA119537 ><subunit 1 of 1, 104 aa, 1 stop ><MW: 11136, pI: 8.20, NX(S/T): 0 MLAVSRGVLMVPLGLGVLLAPDGREMPGVLLHTLWDTAQYTWPVSPTARAGPGQAWSLRC VLVGILHSDRRCALPTFPHSSFACGAHPFAESSFPCGLWPAEVK

Important features of the protein:

Signal peptide:

Amino acids 1-20

N-myristoylation sites:

Amino acids 53-59;64-70;97-103

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 74-85

FIGURE 551

CGCCCTTAGCATGGGTTTCTGCCGCAGCGCCCTGCACCCGCTGTCTCTCTGGTGCAGGCCATCATGCTGGCCAT GACCCTGGCCCTGGGTACCTTGCCTGCCTTCCTACCCTGTGAGCCCCACGGCCTGGTGAACTGCAACTG GCTGTTCCTGAAGTCTGTGCCCCACTTCTCCATGGCAGCACCCCGTGGCAATGTCACCAGCCTTTCCTTGTCCTC CAACCGCATCCACCACCTCCATGATTCTGACTTTGCCCACCTGCCCAGCCTGCGGCATCTCAACCTCAAGTGGAA CTGCCCGCCGGTTGGCCTCAGCCCCATGCACTTCCCCTGCCACATGACCATCGAGCCCAGCACCTTCTTGGCTGT GCCCACCCTGGAAGAGCTAAACCTGAGCTACAACATCATGACTGTGCCTGCGCTGCCCAAATCCCTCATATC CCTGTCCCTCAGCCATACCAACATCCTGATGCTAGACTCTGCCAGCCTCGCGGCCTGCATGCCTGCGCTTCCT CCTGGGCAGCCTCACCCACCTGTCACTCAAGTACAACCTCACTGTGGTGCCCCGCAACCTGCCTTCCAGCCT GGAGTATCTGCTGTTGTCCTACAACCGCATCGTCAAACTGGCGCCTGAGGACCTGGCCAATCTGACCGCCCTGCG TGTGCTCGATGTGGGCGGAAATTGCCGCCGCTGCGACCACGCTCCCAACCCCTGCATGGAGTGCCCTCGTCACTT ATGCATCACTAAAACCAAGGCCCTCCAGGGCCTAACACAGCTGCGCAAGCTTAACCTGTCCTTCAATTACCAAAA CGGCATCTTCTCCGCTCACTCGATGAGACCACGCTCCGGCCACTGGCCCGCCTGCCCATGCTCCAGACTCTGCG TCTGCAGATGAACTTCATCAACCAGGCCCAGCTCGGCATCTTCAGGGCCTTCCCTGGCCTGCGCTACGTGGACCT GTCGGACAACCGCATCAGCGGAGCTTCGGAGCTGACAGCCACCATGGGGGGAGGCAGATGGAGGGGGAGAAGGTCTG GCTGCAGCCTGGGGACCTTGCTCCGGCCCCAGTGGACACTCCCAGCTCTGAAGACTTCAGGCCCAACTGCAGCAC CCTCAACTTCACCTTGGATCTGTCACGGAACAACCTGGTGACCGTGCAGCCGGAGATGTTTGCCCAGCTCTCGCA TCTGCAGGTGCTAGACCTGTCCCACAATAAGCTGGACCTCTACCACGAGCACTCATTCACGGAGCTACCACGACT GGAGGCCCTGGACCTCAGCTACAACAGCCAGCCCTTTGGCATGCAGGGCGTGGGCCACAACTTCAGCTTCGTGGC TCACCTGCGCACCCTGCGCCACCTCAGCCTGGCCCACAACAACATCCACAGCCAAGTGTCCCAGCAGCTCTGCAG TACGTCGCTGCGGGCCCTGGACTTCAGCGGCCATGCGCCCATATGTGGGCCGAGGGAGACCTCTATCTGCA CTTCTTCCAAGGCCTGAGCGGTTTGATCTGGCTGGACTTGTCCCAGAACCGCCTGCACACCCCTCCTGCCCCAAAC CCTGCGCAACCTCCCCAAGAGCCTACAGGTGCTGCGTCTCCGTGACAATTACCTGGCCTTCTTTAAGTGGTGGAG CCTCCACTTCCTGCCCAAACTGGAAGTCCTCGACCTGGCAGGAAACCAGCTGAAGGCCCTGACCAATGGCAGCCT GCCTGCTGGCACCCGGCTCCGGAGGCTGGATGTCAGCTGCAACAGCATCAGCTTCGTGGCCCCCGGCTTCTTTTC CAAGGCCAAGGAGCTGCGAGAGCTCAACCTTAGCGCCCAACGCCCTCAAGACAGTGGACCACTCCTGGTTTGGGCC CCTGGCGAGTGCCCTGCAAATACTAGATGTAAGCGCCAACCCTCTGCACTGCGCCTGTGGGGCGGCCTTTATGGA CTTCCTGCTGGAGGTGCAGGCTGCCGTTCCCCGGTCTGCCCAGCCGGGTGAAGTGTGGCAGTCCGGGCCAGCTCCA GGGCCTCAGCATCTTTGCACAGGACCTGCGCCTCTGCCTGGATGAGGCCCTCTCCTGGGACTGTTTCGCCCTCTC GCTGCTGGCTGTGGCCTGGGTCTGCCCATGCTGCATCACCTCTGTGGCTGGGACCTCTGGTACTGCTT CCACCTGTGCCTGGCCTGGCCTGGCGGGGGGGGGCGAAAGTGGGCGAGATGAGGATGCCCTGCCCTACGATGC CTTCGTGGTCTTCGACAAAACGCAGAGCGCAGTGGCAGACTGGGTGTACAACGAGCTTCGGGGGCAGCTGGAGGA CCTGTGGGCCTCGGTCTATGGCAGCCGCAAGACGCTGTTTGTGCTGGCCCACACGGACCGGGTCAGTGGTCTCTT GCGCGCCAGCTTCCTGCTGGCCCAGCAGCGCCTGCTGGAGGACCGCAAGGACGTCGTGGTGCTGATCCTGAG CCCTGACGCCGCCGCTCCCGCTACGTGCGCCTGCGCCAGCGCCTCTGCCGCCAGAGTGTCCTCTGGCCCCA CCAGCCCAGTGGTCAGCGCAGCTTCTGGGCCCAGCTGGCCATGGCCCTGACCAGGGACAACCACCTTCTATAA CCGGAACTTCTGCCAGGGACCCACGGCCGAA<u>TAG</u>CCGTGAGCCGGAATCCTGCACGGTGCCACCTC

FIGURE 552

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA119714

><subunit 1 of 1, 1032 aa, 1 stop

><MW: 115799, pI: 8.61, NX(S/T): 12

MGFCRSALHPLSLLVQAIMLAMTLALGTLPAFLPCELQPHGLVNCNWLFLKSVPHFSMAA PRGNVTSLSLSSNRIHHLHDSDFAHLPSLRHLNLKWNCPPVGLSPMHFPCHMTIEPSTFL AVPTLEELNLSYNNIMTVPALPKSLISLSLSHTNILMLDSASLAGLHALRFLFMDGNCYY KNPCROALEVAPGALLGLGSLTHLSLKYNNLTVVPRNLPSSLEYLLLSYNRIVKLAPEDL ANLTALRVLDVGGNCRRCDHAPNPCMECPRHFPQLHPDTFSHLSRLEGLVLKDSSLSWLN ASWFRGLGNLRVLDLSENFLYKCITKTKALQGLTQLRKLNLSFNYQKRVSFAHLSLAPSF GSLVALKELDMHGIFFRSLDETTLRPLARLPMLQTLRLQMNFINQAQLGIFRAFPGLRYV DLSDNRISGASELTATMGEADGGEKVWLQPGDLAPAPVDTPSSEDFRPNCSTLNFTLDLS RNNLVTVQPEMFAQLSHLQCLRLSHNCISQAVNGSQFLPLTGLQVLDLSHNKLDLYHEHS FTELPRLEALDLSYNSQPFGMQGVGHNFSFVAHLRTLRHLSLAHNNIHSQVSQQLCSTSL RALDFSGNALGHMWAEGDLYLHFFQGLSGLIWLDLSQNRLHTLLPQTLRNLPKSLQVLRL RDNYLAFFKWWSLHFLPKLEVLDLAGNOLKALTNGSLPAGTRLRRLDVSCNSISFVAPGF FSKAKELRELNLSANALKTVDHSWFGPLASALQILDVSANPLHCACGAAFMDFLLEVQAA VPGLPSRVKCGSPGQLQGLSIFAQDLRLCLDEALSWDCFALSLLAVALGLGVPMLHHLCG WDLWYCFHLCLAWLPWRGRQSGRDEDALPYDAFVVFDKTQSAVADWVYNELRGQLEECRG RWALRLCLEERDWLPGKTLFENLWASVYGSRKTLFVLAHTDRVSGLLRASFLLAQQRLLE DRKDVVVLVILSPDGRRSRYVRLRQRLCRQSVLLWPHQPSGQRSFWAQLGMALTRDNHHF YNRNFCQGPTAE

Important features of the protein:

Signal peptide:

Amino acids 1-30

Transmembrane domain:

Amino acids 818-835

N-glycosylation sites:

Amino acids 64-68;129-133;210-214;242-246;300-304;340-344; 469-473;474-477;513-517;567-571;694-698;731-735

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 347-351

Tyrosine kinase phosphorylation site:

Amino acids 863-871

N-myristoylation sites:

Amino acids 27-33;41-47;63-69;193-199;361-367;409-415; 563-569;607-613;695-701;794-800;929-935;945-951; 1010-1016

Amidation site:

Amino Acids 974-978

Leucine zipper patterns:

Amino acids 204-226;644-666;814-836

WO 01/68848 PCT/US01/06520

558/615

FIGURE 553

GTTAAGAGTGCTACTCGCCCGGGGTTGATCTGTGCATGCCACTCCTGGGTCAGACGGTGAGGT CGGCGTCTGCGAGGACGCGGCGGTGGAGTAGAAGGGCAGCCGGAGACAGGCCCGGCGCCCCTT CCGAGGCTAGACGGCCCCAGCTTCGCGGGGATCATGCTGCTGGTGGACCGAGTGCGGGGC CACTGGCGAATCGCCGCCGGGCTCCTGTTCAACCTGCTGGTGTCCATCTGCATTGTGTTCCTC AACAAATGGATTTATGTGTACCACGGCTTCCCCAACATGAGCCTGACCCTGGTGCACTTCGTG GTCACCTGGCTGGGCTTGTATATCTGCCAGAAGCTGGACATCTTTGCCCCCAAAAGTCTGCCG ${\tt CCCTCCAGGCTCCTCCTGGCCCTCAGCTTCTGTGGCTTTGTGGTCTTCACTAACCTTTCT}$ CTGCAGAACACCATAGGCACCTATCAGCTGGCCAAGGCCATGACCACGCCGGTGATCATA GCCATCCAGACCTTCTGCTACCAGAAAACCTTCTCCACCAGAATCCAGCTCACGCTGATTCCT ATAACTTTAGGTGTAATCCTAAATTCTTATTACGATGTGAAGTTTAATTTCCTTGGAATGGTG TTTGCTGCTCTTGGTGTTTTAGTTACATCCCTTTATCAAGTGTGGGTAGGAGCCAAACAGCAT GAATTACAAGTGAACTCAATGCAGCTGCTGTACTACCAGGCTCCGATGTCATCTGCCATGTTG $\tt CTGGTTGCTGTGCCCTTCTTTGAGCCAGTGTTTTGGAGAAGGAGGAATATTTGGTCCCTGGTCA$ GTTTCTGCTTTGCTTATGGTGCTGCTATCTGGAGTAATAGCTTTCATGGTGAACTTATCAATT TATTGGATCATTGGGAACACTTCACCTGTCACCTATAACATGTTCGGACACTTCAAGTTCTGC ATTACTTTATTCGGAGGATATGTTTTATTTAAGGATCCACTGTCCATTAATCAGGCCCTTGGC AGTAGGAGTAAACTGGCACAACGTCCT**TAA**TTGGGTTTTTGTGGAGAAAAGAATGTTGTCCCA AGAAGATAAAAAATATTGTTAAGTGTGCAAGTTATTA

FIGURE 554

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA125170

><subunit 1 of 1, 313 aa, 1 stop

><MW: 35066, pI: 9.39, NX(S/T): 5

MALLVDRVRGHWRIAAGLLFNLLVSICIVFLNKWIYVYHGFPNMSLTLVHFVVTWLGLYI CQKLDIFAPKSLPPSRLLLLALSFCGFVVFTNLSLQNNTIGTYQLAKAMTTPVIIAIQTF CYQKTFSTRIQLTLIPITLGVILNSYYDVKFNFLGMVFAALGVLVTSLYQVWVGAKQHEL QVNSMQLLYYQAPMSSAMLLVAVPFFEPVFGEGGIFGPWSVSALLMVLLSGVIAFMVNLS IYWIIGNTSPVTYNMFGHFKFCITLFGGYVLFKDPLSINQALGILCTLFGILAYTHFKLS EQEGSRSKLAQRP

Important features of the protein:

Signal peptide:

Amino acids 1-27

Transmembrane domains:

Amino acids 46-60;75-90;153-167;192-208;221-237

N-glycosylation sites:

Amino acids 43-47;92-96;97-101;238-242

N-myristoylation sites:

Amino acids 17-23;57-63;140-146;155-161;162-168;283-289

FIGURE 555

GTTAGGCAGAGCCAAGGTGGTTGCAGACCTGGAATCAGAACAGCTTTTAGACCAACCTGAAAG CAGGAATGTAAGCACTGTTCACAGAGATTTTCGTCTTTTGGCTTATTGTGCCTGCAGAGTCTAG TGCTTCTTTGCCAGCTGTGCTGACTCAGCACTCCATGCCTGTTTTCTGGAACCAGTCCCTGGA GCTGGGCCATGTTTTGATTGACAGTGTGGAGCTAGCCCAGCAAGTACTCTACATGCAACCCCC CACCCAGGCACTACCTCTGCTCCTCCTCCATGGCCTCCTGCTACACCGGCAGCTCTATGGAAC AAGGCTGCAGGCACACAGGGGGCGCTGGAGTCAAGTGACTCTAACCCAGGTTCTTCAGACCCA TTTCTACGGGGGTCCTCTGGGGGGACACTGAGGACAGGGAGGCCCTGATTAGCCTCACACAAGC CTGCCTGAGCCCCAGTAGTGGGAGCTGGGTCCAGCCACACACCCTCAGTCTTTGCTGGCCAC GCTCATGCCCCTCCCAGCTAAGGGAGCTGGATGCAATGGCAGAGTGCAAGGCCCAGATGCACC TACTGCCCTCACCACC**TGA**ACCCCGGCTCTGCGGACTGAGTGAGGGCCCCCAAGCCTGGCTGT TGCGACGCCAGAGTCGCGCTCTCTTGAGTGCGCTGCAGCGGAGTTCACCCGTGTGGGTTCCTG AGTCTCGAAGAGGCGCCCAGCTTGCGGAAAGGCGACTGCGGCAACGCCTAGTGCAAGTCAACCG GAGGCTGGAGTCACTGCAGGATCTGCTGACCCACGTGATTCGCCAAGACGAGTCCGACGCCCC GTGGTCAGTGCTGGGGCCAAATGCACGGCGCCTCTGGAGGGCGTCTTAGAGACCGAGGCTCT AGAACTGAGCCAGTTGGTGGGCACGCTACAACGCGACCTTGATTGCCTGTTGCAGCAGCTGAA GGGCGCACCCCGTGCCCTCCCGCCGCTGTGCTGCGGTGGCCCACGCTCTCTGGACTGGCCG CCTACCCTTGCCTTGGCGACCTCATGCGCCGGCCGGTCCGCAGCCGCCCTGGCACTGGCTGCG ACAGTTGTCGCGCCGTGGGCAACTGTTGGTTCGTTACTTGGGCGTGGGCGCGGACGCGAGCAG TGATGTACCAGAGCGCGTCTTCCACCTGTCAGCCTTTCGCCACCCGCGCCGCCTGCTGGC ATTGCGTGGGGAAGCTGCCCTGGACCAGAATGTGCCCAGCTCGAATTTCCCTGGTAGCCGAGG CTCGGTCTCCAGTCAGCTCCAGTATAAACGTCTGGAGATGAACAGCAACCCTCTGCACTTCAG GGTGGAGAATGGTCCAAATCCCACGGTTCCAGAGAGAGGGCTGCTGGTCGGGCTACAGGT CCTACATGCGGAGTGGGACCCAATAGCTGGAGCCTTGCAGGACAGTCCTTCCAGCCAACCCAG CCCTCTGCCTCCCGTCAGCATCAGCACACAGGCCCCGGGCACCAGTGACCTGCCAGCCCCAGC CGACCTGACTGTGTACTCGTGTCCTGTGTACATGGGAGGGCCCCTTGGCACCGCTAAGCTGCA GAGCAGGAACATCGTGATGCATCTGCCTTTACCCACCAAGCTCACCCCCAACACCTGTGTCCA AAGGAGGGTCCATGTGTGCAGCCCACCCCTGTCTTGAGCCCGTCTACCAAAATAAAGTTGTAG TGATTCCA

FIGURE 556

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA129594
><subunit 1 of 1, 162 aa, 1 stop
><MW: 17598, pI: 6.58, NX(S/T): 1
MPVFWNQSLELGHVLIDSVELAQQVLYMQPPTQALPLLLHGLLLHRQLYGTRLQAHRGR
WSQVTLTQVLQTQDQLWASLSNPRAAMQELAASVFYGGPLGDTEDREALISLTQACLSPS
SGSWVQPHTPQSLLATLMPLPAKGAGCNGRVQGPDAPTALTT

Important features of the protein: Signal peptide:

Amino acids 1-45

N-glycosylation site:

Amino acids 6-10

N-myristoylation sites:

Amino acids 97-103;144-150

FIGURE 557

AAGGAGCTCGAGCTCTACTCCGAAGCCGGGTGGTCAGACCCGCTTATGTGTCAGCATTTC TCCAGGACCAGCCTACCCAAGGACGTGTGGTACCCAGCACATTCACCTGTCACCAAGCCACC ACTCTGGTTCCAAGGCTGCATCTCTCCACTGGACCAGTGAGAGGGTTGTCAGTGTTCTGCTCT TGGGGCTGATCCCTGCTGGGTACTTGAATCCCTGCTCTGTGGTGGACTACTCTCTGGCTGCAG CCCTCACCCTGCACAGTCACTGGGGCCTTGGACAAGTGGTTACCGACTACGTTCATGGGGACA $\verb|CCCTGCCGAAGGCTGCCAGGGCAGGCCTCTTGGCACTCTCAGCTTTGACCTTTGCTGGGCTTTGC|\\$ TACTTCAATTACCACGATGTCGGCATCTGCAGAGCGGTTGCCATGCTGTGGAAGCTC**TGA**CCT GGGTGCAGCACTTTGATTGTGTGCCTCCTTGCCTCTGCTTTACCAATGCCGTTCACCTCGCAG TGAGGGGGGATGAAGGATAAGCCCATTGGTGGGCAGAATGTCTTCTAATTACATGGTTATTTT CAGAATTTATTTGTTGAGGAAGAGGTTTGAGGAGTTAGGTTCGACCATTCGTGAGTCTGTGTT CCATACTCCACTGAGTGTGGGCACTAGCTCACAGCCTCGCGGTGAGACTGAACATTTCATGAG CTCATGTTGCCTTTGACCACCATTTCTTAAGGAGAGCCAGCTGATTGCTGTCAGGATAAGAGC ATCTCTTCAGCCAGGAGGGAGGCCTGTTCCCTCCTGAGTTAGACTTTGCATGAAGCTCGAAAG TATTCCCTTTGGAACCTCCCATTCTTGTTCAGGTGACACCAGCTCTGTTGATGGCTCTGCTTC TGACAGATTGCAAACAGACTACTCTTCAAATGTATCTCAATTGTGCAGAAGTGAGCTGTCCAA TACTCTGAAAAAACAAGGGGG

PCT/US01/06520 WO 01/68848

563/615

FIGURE 558

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA129793

><subunit 1 of 1, 159 aa, 1 stop

><MW: 17014, pI: 9.38, NX(S/T): 0

 ${\tt MAVLLKLGVLCSGQGARALLLRSRVVRPAYVSAFLQDQPTQGRCGTQHIHLSPSHHSGSK}$ AASLHWTSERVVSVLLLGLIPAGYLNPCSVVDYSLAAALTLHSHWGLGQVVTDYVHGDTL PKAARAGLLALSALTFAGLCYFNYHDVGICRAVAMLWKL

Important features of the protein: Signal peptide:

Amino acids 1-15

Transmembrane domains:

Amino acids 71-88;126-140

Glycosaminoglycan attachment site:

Amino acids 12-16

N-myristoylation sites

Amino acids 8-14;58-64;78-84;108-114;148-154

FIGURE 559

CCCAGCCCGCGTTCGGCTGCTCTCGAGGAGGCCGGAGTCCCCGGAGACGATGCGCCCCGCGC $\tt CTGGGTTTTCACTTCCTGACCGTGGGCTGGAGGAACAGAGCGGAACAGCCACAGCAGCCTCC$ CAAGGAGTCTGCAAGTTGGTGGGTGGAGCCGCTGACTGCCGAGGGCAGAGCCTCGCTTCGGTG CCCAGCAGCCTCCCGCCCCACGCCCGGATGCTCACCCTGGATGCCAACCCTCTCAAGACCCTG TGGAATCACTCCCTCCAGCCTTACCCTCTCCTGGAGAGCCTCAGCCTGCACAGCTGCCACCTG GAGCGCATCAGCCGCGCCCTTCCAGGAGCAAGGTCACCTGCGCAGCCTGGTCCTGGGGGAC AACTGCCTCTCAGAGAACTACGAAGAGACGGCAGCCGCCCTCCACGCCCTGCCGGGCCTGCGG AGGCTGGACTTGTCAGGAAACGCCCTGACGGAGGACATGGCAGCGCTCATGCTCCAGAACCTC TCCTCGCTGCGGTCCGTGTCCCTGGCGGGGAACACCATCATGCGGCTGGACGACTCCGTCTTC GAGGGCCTGGAGCGTCTCCGGGAGCTGGATCTGCAGAGGAACTACATCTTCGAGATCGAGGGC GGCGCTTTCGACGGCCTGGCTGAGCTGAGGCACCTCAACCTGGCCTTCAACAACCTCCCCTGC ATCGTGGACTTCGGGCTCACGCGGCTGCGGGTCCTCAACGTCAGCTACAACGTCCTGGAGTGG TTCCTCGCGACCGGGGGAGAGGCTGCCTTCGAGCTGGAGACGCTGGACCTGTCTCACAACCAG CTGCTGTTCTTCCCGCTGCCCCAGTACAGCAAGTTGCGGACCCTCCTGCTGCGCGACAAC AACATGGGCTTCTACCGGGACCTGTACAACACCTCGTCGCCGAGGGAGATGGTGGCCCAGTTC $\tt CTCCTCGTGGACGGCAACGTGACCAACATCACCACCGTCAGCCTCTGGGAAGAATTCTCCTCC$ AGCGACCTCGCAGATCTCCGCTTCCTGGACATGAGCCAGAACCAGTTCCAGTACCTGCCAGAC GGCTTCCTGAGGAAAATGCCTTCCCTCTCCCACCTGAACCTCCACCAGAATTGCCTGATGACG CTTCACATTCGGGAGCACGAGCCCCCGGGAGCGCTCACCGAGCTGGACCTGAGCCACAACCAG $\tt CTGTCGGAGCTGCCTGGGCTCCGGGGCTGCCTGGCCTGCGCTTGTTCAAC$ CTGAGCTCCAACCAGCTCCTGGGCGTCCCCCTGGCCTCTTCGCCAATGCTAGGAACATCACTAC ACTTGACATGAGCCACAATCAGATCTCACTTTGTCCCCTGCCAGCTGCCTCGGACCGGGTGGG CCCCCTAGCTGTGTGGATTTCAGGAATATGGCATCTTTAAGGAGCCTGTCTCTGGAGGGCTG TGGCCTGGGGGCATTGCCAGACTGCCCATTCCAAGGGACCTCCCTGACCTACTTAGACCTCTC AAGCAACTGGGGGGTTCTGAATGGGAGCCTCGCCCCACTCCAGGATGTTGCCCCCATGTTACA GGTCCTGTCTCAGGAACATGGGCCTCCACTCCAGCTTTATGGCGTTGGACTTCTCTGGGTT TGGGAATCTCAGGGACTTAGATCTGTCGGGGAATTGCTTGACCACCTTCCCAAGGTTTGGGGG CAGCCTGGCCCTGGAGCCCTGGATCTCCGTAGAAACTCGCTCACAGCCCTTCCCCAGAAGGC CTGTGGGGTGGATGGCTGGGGGGCCCTGCAGCATGGGCAGACGGTGGCCGACTGGGCCATGGT CACCTGCAACCTCTCCTCCAAGATCATCCGCGTGACGGAGCTGCCCGGAGGTGTGCCTCGGGA CTGCAAGTGGGAGCGGCCTGGGCCTGCTCTACCTCGTGCTCATCCTCCCCAGCTGCCT CACCCTGCTGGTGGCCTGCACTGTCATCGTCCTCACTTTTAAGAAGCCTCTGCTTCAGGTCAT ${\tt CAAGAGCCGCTGCCACTGGTCCTCCGTTTAC} {\color{red}{\textbf{TGA}}} {\tt CCTGGCTGTGTGCCAAGACTCGAAATTCG}$ GTCCGCACACACAGGACACTTTCTCTGCCAGCTTTCAAGATGTGATGCAGAGGCCAAGTCTG ACGAATTGAAGTTTCAATTAAAATTTAATATGTTTCCATTCCTCATCGCCCACCCCACCCCCG CCCCCACCACCCCCCAAGTTCTTTTCCATCATTATAATTCATCCTTATTATCTTGGTAAAAT ATTTATTAAGTGACTTTTTCAGAAATAAAAGGCAACGTGTCTCATAAATATTTTTTAAAAAAA AAAAAAAAAA

FIGURE 560

><subunit 1 of 1, 692 aa, 1 stop ><MW: 76366, pI: 6.07, NX(S/T): 11

MELLPLWLCLGFHFLTVGWRNRSGTATAASQGVCKLVGGAADCRGQSLASVPSSLPPHAR
MLTLDANPLKTLWNHSLQPYPLLESLSLHSCHLERISRGAFQEQGHLRSLVLGDNCLSEN
YEETAAALHALPGLRRLDLSGNALTEDMAALMLQNLSSLRSVSLAGNTIMRLDDSVFEGL
ERLRELDLQRNYIFEIEGGAFDGLAELRHLNLAFNNLPCIVDFGLTRLRVLNVSYNVLEW
FLATGGEAAFELETLDLSHNQLLFFPLLPQYSKLRTLLLRDNNMGFYRDLYNTSSPREMV
AQFLLVDGNVTNITTVSLWEEFSSSDLADLRFLDMSQNQFQYLPDGFLRKMPSLSHLNLH
QNCLMTLHIREHEPPGALTELDLSHNQLSELHLAPGLASCLGSLRLFNLSSNQLLGVPPG
LFANARNITTLDMSHNQISLCPLPAASDRVGPPSCVDFRNMASLRSLSLEGCGLGALPDC
PFQGTSLTYLDLSSNWGVLNGSLAPLQDVAPMLQVLSLRNMGLHSSFMALDFSGFGNLRD
LDLSGNCLTTFPRFGGSLALETLDLRRNSLTALPQKAVSEQLSRGLRTIYLSQNPYDCCG
VDGWGALQHGQTVADWAMVTCNLSSKIIRVTELPGGVPRDCKWERLDLGLLYLVLILPSC
LTLLVACTVIVLTFKKPLLOVIKSRCHWSSVY

Important features of the protein:

Signal peptide:

Amino acids 1-18

Transmembrane domain:

Amino acids 651-672

N-glycosylation sites:

Amino acids 21-25

21-25;74-78;155-159;232-236;292-296;309-313; 312-316;408-414;427-431;500-504;622-626

Glycosaminoglycan attachment site:

Amino acids 533-537

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 566-570

N-myristoylation sites:

Amino acids 24-30;39-45;45-51;141-147;199-205;245-251;

308-314;396-402;416-422;420-426;471-477;

484-490; 497-503; 522-528; 545-551; 555-561; 610-616

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 657-668

Leucine zipper patterns:

Amino acids 48-70;492-514

FIGURE 561

TGGCCTACTGGAAAAAAAAAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGGTGGCCACAAC**AT** CCAGTCGGATCTCAGCCACGGACGCGTTTCTCGGACCTCAAAGTGTGCGGGGACGAAGAGTG CAGCATGTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTGT GAATTTTAAAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACT TTGGGCTGGAAGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCA AGGAAGAGATGATTTTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGA CTCTGTACCTGAAGAGAGAGAAGCTGAAGAAGTTTCTCAGCACAGAGAAAATCTCCTGA GGAGTCTCGGGGGCGTGAACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGA GGATGGAGAAGGTGCTTTCTCAGAGAGCACCGAGGGGCTGCAGGACAGCCCTCAGCTCAGGA GAGCCACCCTCACACCAGCGGTCCTGCGGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACAC TTTTGAAGAAATTCTGCACGATAAATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAG TTCTCCTGCCTCGGTGGAGCGGGAGAAGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAG TCAGAGAGGAAGTGGACAGTGCGTTATTCATTACAGCAAAGGATTTCGTTGGCATCAAAATCT AAGTTTGTTTTACAAAGATTGTTTT<u>TAG</u>TACTAAGCTGCCTTGGCAGTTTGCATTTTTGAGCC

FIGURE 562

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA131639

><subunit 1 of 1, 303 aa, 1 stop

><MW: 33900, pI: 4.81, NX(S/T): 2

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPD CRFVNFKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADET DFVCFEGGRDDFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVP EPEAFRADSEDGEGAFSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDK LKVPGSESRTGNSSPASVEREKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYK DCF

Important features of the protein:

Signal peptide:

Amino acids 1-22

N-glycosylation site:

Amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 30-34

Tyrosine kinase phosphorylation site:

Amino acids 67-76

N-myristoylation sites:

Amino acids 205-211;225-231;277-283

Amidation site:

Amino acids 28-32

FIGURE 563

WO 01/68848 PCT/US01/06520

569/615

FIGURE 564

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA131649</pre>

><subunit 1 of 1, 153 aa, 1 stop

><MW: 17603, pI: 7.42, NX(S/T): 0

MGLGQPQAWLLGLPTAVVYGSLALFTTILHNVFLLYYVDTFVSVYKINKMAFWVGETVFL LWNSLNDPLFGWLSDRQFLSSQPRLCGEELLVGSEEADSITLGRYLRQLARHRNFLWFVS MDLVQVQWLTPVIPALRDAKVERPLEPRSSRLQ

Important features of the protein:

Signal peptide:

Amino acids 1-20

N-myristoylation sites:

Amino acids 4-10;12-18;93-99

Leucine zipper pattern:

Amino acids 102-124

FIGURE 565

FIGURE 566

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA131652
><subunit 1 of 1, 89 aa, 1 stop
><MW: 9688, pI: 11.49, NX(S/T): 0
MHSALATALLLLIPLLLLRRFFDGSALREGGSREKPGPSRRRWAGHSPEPWRSPTLRSGPGFPSYPLGVPAFVFISPGPSPSQWALPCL

Important features of the protein: Signal peptide:

Amino acids 1-1

Glycosaminoglycan attachment site:

Amino acids 58-62

FIGURE 567

FIGURE 568

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA131658
><subunit 1 of 1, 164 aa, 1 stop
><MW: 18903, pI: 11.08, NX(S/T): 1
MAAVGSLLGLAASSWLGGQNASDHSLWLLRKPRGSSCPGTGHQLCRLRQSTVKATGPALR
RLHTSSWRADSSRASLTRVHRQAYARLYPVLLVKQDGSTIHIRYREPRRMLAMPIDLDTL
SPEERRARLRKREAQLQSRKEYEQELSDDLHVERYRQFWTRTKK

Important features of the protein:

Signal peptide:

Amino acids 1-18

N-glycosylation site:

Amino acids 20-24

N-myristoylation sites:

Amino acids 5-11;9-15;17-23;18-24

FIGURE 569

GGTGCCAAGGGTTCGGGGGGGGGAGCACTGAGGCTTTAGCAGCTCTCCTGTATCCTCATTTGCAT GGAGCCCTCCCACACCTTGCTCTGTGTGCCTCTCATTCTGATTTTGAATTCTTATTTTTGCTATA TGATGAAGCTGTAATCCTAAGTTTAAAAAGGGGAGTAGGTATTGACATCATGGTAGAAATAGG CTGTCTTATGGAACTGTAGTTAGGGATCACAGCCTATTGGACCAGCCCCAGCCTTAGCAGCAG TTCTGTACACTGATTCTTCCAGATTAGTCTACGTTCCCTCGAACAGACCTATGCCATGGGTTA CAACTACAATTTGTTGTCGATTAGAGTTAACTTACAGACTCTCAAAACCCCATTCTTTGGGTT TAGGCAACTTCCAGAAGTAGTCATTTATTTGAATTTTAGTCTAAGATCAACTGAATTAGGGAG GTTTGAAAGTGTAAAAGCAAATCGTACATTCCCAAACACTTTGTAAAGAAGGAATGGGTAGTG **ATG**CCCACGAGCTCAGCTGTCCTGCTCCGTGTCCTCCATACCCTTGTTGACTGTGCTCATA TTAGCCAGAGACCTAAGTGCTCTTGGAGGATGTCCCTGGGGCCCCCTCCCCCTCCGCTGTCAC TGTCTACTTCCTGATCCTCTTCTGTGCAGGAGAGGTCCAGGCCTTCTATGAGGACCTGAGT GGCCGGCAGTACGTGAATGAAGTCTTCAACTTCAGCGTGGACAAGCTCTATGACCTCCTCTTC ACCAACTCGCCCTTCCAGCGGGATTTCATGGAGCAGCGGCGCTTCTCTGATATCATCTTCCAT CCATGGAAAAGGAGGAGAATGGAAACCAGAGCCGAGTGATTCTTTACACCATCACCCTTACC AACCCTCTGGCTCCCAAAACTGCCACTGTCAGGGAGACACAGACCATGTACAAGGCGAGCCAG GAGAGTGAATGTTACGTGATAGATGCCGAAGTCCTCACCCACGACGTGCCCTACCACGACTAC TTCTACACAATCAATCGCTACACGCTCACCCGTGTGGCTCGGAACAAGAGCCGACTCAGGGTC TCCACAGAGCTGCGCTATCGAAAACAGCCCTGGGGGTTAGTGAAAACGTTCATCGAGAAGAAC ACTTATTTGGCTGAGATGCACAGACAATCTCCCAAAGAGAGGCCAGCAAGACTACAACGGTG CGGAGGAGGAAGCGTCCCCATGCCCACCTGCGAGTCCCTCACCTGGAAGAGGTGATGAGCCCG GTCACCACGCCCACAGATGAGGATGTGGGCCACAGGATCAAACATGTGGCAGGTTCCACACAG ACGCGGCATATCCCGGAGGACACCCCCAACGGTTTCCACCTGCAGAGCGTGTCCAAGCTGCTG CTGGTTATCAGCTGTTCTGGTGCTGCTGGTCATCCTTAACATGATGCTCTTCTACAAACTC TGGATGTTGGAATACACCACGCAGACCCTCACTGCCTGGCAGGGTCTAAGGCTCCAAGAAAGG TTACCCCAGTCTCAGACAGAATGGGCCCAGCTCTTAGAGTCCCAACAAAAGTACCACGATACT GAGCTCCAAAAATGGAGGGAAATCATCAAATCCTCAGTGATGCTCCTTGACCAGATGAAGGAC TCGCTCATCAACCTTCAGAACGGCATCAGGTCCCGCGACTACACGTCGGAAAGTGAAGAAAAG ${\tt AGGAATCGCTATCAT}$ ${\tt TGA}$ ${\tt CAAGGCAGGAACAGGGTGGCTGCAAGAGGCCTGTGCAATACATGT}$ ATATACAGATTTTAAAAAAGAGATAATGCCTATGTACCAGGGAGAAGGAGCGGGCCCTCCCGC GCCCTGTGCTGGCCGGAGCAGCGTTTTCTTATGGTGGAGCAGCTGAGGAGGGCAGGAACCGCC TCTCAGCACCGACCTCCCTGATCTCCCTCCCCACCCTCTGTTCCCCACCCCTTCCCTTGC TGGCCATTCTTGGCTTTTAGAAGGGAAATGTTGAGCCAAAGTTATGCCTGCGAAGACCCTAAG GTCTCAAAAAGAAGTCTTAAGACGGCATTGCTTAAGGTGCTTCATTCCCTAATCCCCTTTTGA

FIGURE 570

><subunit 1 of 1, 425 aa, 1 stop ><MW: 49786, pI: 8.84, NX(S/T): 3

MPTSSAVLLRVLSIPLLTVLILARDLSALGGCPWGPLPLRCHCLLPDPLFCAGEVQAFYE DLSGRQYVNEVFNFSVDKLYDLLFTNSPFQRDFMEQRRFSDIIFHPWKKEENGNQSRVIL YTITLTNPLAPKTATVRETQTMYKASQESECYVIDAEVLTHDVPYHDYFYTINRYTLTRV ARNKSRLRVSTELRYRKQPWGLVKTFIEKNFWSGLEDYFRHLESELAKTESTYLAEMHRQ SPKEKASKTTTVRRRKRPHAHLRVPHLEEVMSPVTTPTDEDVGHRIKHVAGSTQTRHIPE DTPNGFHLQSVSKLLLVISCVLVLLVILNMMLFYKLWMLEYTTQTLTAWQGLRLQERLPQ SQTEWAQLLESQQKYHDTELQKWREIIKSSVMLLDQMKDSLINLQNGIRSRDYTSESEEK RNRYH

Important features of the protein:

Signal peptide:

Amino acids 1-28

Transmembrane domain:

Amino acids 312-334

N-glycosylation sites:

Amino acids 73-77;114-118;183-187

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 97-101

Tyrosine kinase phosphorylation sites:

Amino acids 144-153;188-196

N-myristoylation sites:

Amino acids 201-207;291-297

Leucine zipper pattern:

325-347

FIGURE 571

GTAGAGAGTGAAGCAGCAAGACTGCAGAGCCTCATCAAGAAGTGTGGAGTGAAGGGAAGGCTTCAGATGGACAAT TTGTGTGCTGGGGAAAAAATGGAATGTGCTGCAAATTCCCCTGTGGATAAGGGTGGACGGCTGCTCTGTCAACTT TGACCATTTTCAGATTCTGCGGGCCATTGGTAAAGGGAGTTTTGGAAAGGTATGCATCGTGCAGAAGCGAGACAC TAAGAAAATGTATGCA<u>ATG</u>AAGTACATGAACAAGCAGAAGTGCATCGAGAGGGATGAGGTTCGGAATGTTTTCCG GGAGCTGCAGATCATGCAAGGGCTGGAGCACCCCTTCCTGGTCAATCTGTGGTACTCCTTCCAGGATGAGGAGGA CATGTTCATGGTGGTGGACCTGCTCCTGGGAGGCGACCTGCGCTACCATCTGCAGCAGAATGTGCATTTCACAGA GGGGACTGTGAAACTCTACATCTGTGAGCTGGCACTGGCCCTGGAGTATCTTCAGAGGTACCACATCATCCACAG $A {\tt GACATCAAGCCAGACAATATCCTGCTGGATGAACACGGACATGTTCACATTACAGACTTCAACATAGCGACGGT}$ AGTGAAAGGAGCAGAAAGGGCTTCCTCCATGGCTGGCACCAAGCCCTACATGGCTCCAGAAGTATTCCAGGTGTA GGGCTGGAGGCCGTACGAAATCCACTCGGTCACGCCCATCGATGAAATCCTTAACATGTTCAAGGTGGAGCGTGT $\verb|CCACTACTCCTCCACGTGGTGCAAGGGGATGGTGGCCCTGCTGAGGAAGCTCCTGACCAAGGATCCTGAGAGCCG|\\$ CGTGTCCAGCCTTCATGACATACAGAGCGTGCCCTACTTGGCCGACATGAACTGGGACGCGGTGTTCAAGAAGGC ACTGATGCCCGGCTTTGTGCCCAATAAAGGGAGGTTGAACTGCGATCCCACATTTGAGCTTGAAGAGATGATTCT AGAATCCAAGCCACTTCACAAAAAGAAGAAGCGATTGGCAAAGAACAGATCCAGGGATGGCACAAAGGACAGCTG $\verb|CCCGCTGAATGGACACCTGCAGCACTGTTTGGAGACTGTCCGGGAGGAATTCATCATATTCAACAGAGAGAAGCT|\\$ ${\tt CCAGGACGGGTGCAACAACAACCTCCTCACCCACACCTGCACCCGTGGCTGCAGCAGCT{\tt CAGCCACCTTGTTG}$ CTGCTCAACAGGACTGCACTCGTCTCTGCCCTGCCCAGAGCCCCTCTTTGTGCCCTGATGGTCCCTGTCTC ACCCCTGAAAACATCAGATGCAGAAAAAGCCCTGGACTTGGAGCTGGGAAGCCTGGGTTCTGGTCCCATCTCCAT GACTGATTCACGTGTGACCTCAGACAAGTCACGCCCTCTCTGTGCCTCCGTTTTCTGCATCTGCCAAAGGGGTTA ${ t TATTTATAAAATCATTTTTACGTGCAAAATATAACCTTAATATTTGAAGTGACCCCCATTCCCCAAAGCAATCAA$ ACCGTCATGACTTTGCAATTTGGCACATCCTAGCTTGTTAGAGGGCACTTCCGAAAAACACAGCCCTGACAGCAA AATAAAGGTCTGATATGTTGGCCCCTTCTATGGAAACAACGCTGCCAAATCCTGGAGCAAAACCTGAAGTGTCTT ${\tt CATGTGCATTCTCTGGCAGGCCACAGTCCTTCTGAGCTTGTAAGATGGTGCAGCATGCAGACCAGACTTGTCCCC}$ ${\tt AAGGTCTCAGCGCTGCGGTCTCACTCCCCCTCATTTAAGAAGACTATCCTTACCTTTAGTTTCAGCAGTCCT}$ CACCACCACATATCCCCAGTGCTGGGATGGCACACAGGTGTCCATTCAGATGAGAGTTGGGTCGCTGAGCATTG GTTACTCCTGCAGAGTGTAATCAGCACCCCATCCAACTGGCCCGAAAGCCCAGACCTGCAGCAGAACTCTCCAAC AGGAAAATGGGTTCACACAAAAAGCAAACTACATTCTGATCTGCTCAGGGAGAAGCTTGCCTTTGAACTGGAAGA TGTTGGGATGAGCAGGGAAAGCTTAGACTTTGGAGTCAGGTTTGTGTTCAGAATCCAGCCCTGCTGGCTACTAAC TAACTGGGAGACCTTAGGCAAAGCATGCAATCGCTCTGAATGGCAGTTTCCTCATTTTTAAACAGGGATAATAAA ACTAATATTGCAGGGGAGTTACAGGGTTAAATAAGATCCTGTGTGTAACCCCCAAGCATTGGATGACTCATAGAAT ${\tt TGTGCAAACCAAACCTGTTTAGGATTCTTCCAAATGTTCTTCCTGGGGTCTTTGATATTTGTTACATCCTGC}$ TGAAGTTCGACTGTTTTTTTTTTTTTTTCATCCAACTTCCATTTTTCACTTTTTACATGATTACTCAATCCTTGGG AAAAGAAATAGTCAGTGTTTTCCTCCTTTCAACCGAGACTATTTCTGGATTGTGTGCTCCTCGTCAGTTGACTTGT TTTGCACACTTTTCTTTACTTCATGTCCCCATCAACAACCGTCCTGCTCCCCACCTCCCCAGGAAATAAGGGGC $\tt TTAGGGGCAGGAGCTGGAAGTCGCCCTAGGAACACCAGATTTCCTGGTTCTAGTTGAAGTTGGCATTTCTTGTTTG$ GAATAAACTATTTCTTGG

WO 01/68848 PCT/US01/06520

577/615

FIGURE 572

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA136110</pre>

<subunit 1 of 1, 364 aa, 1 stop
<MW: 42195, pI: 7.40, NX(S/T): 1</pre>

MKYMNKQKCIERDEVRNVFRELQIMQGLEHPFLVNLWYSFQDEEDMFMVVDLLLGGDLRY HLQQNVHFTEGTVKLYICELALALEYLQRYHIIHRDIKPDNILLDEHGHVHITDFNIATV VKGAERASSMAGTKPYMAPEVFQVYMDRGPGYSYPVDWWSLGITAYELLRGWRPYEIHSV TPIDEILNMFKVERVHYSSTWCKGMVALLRKLLTKDPESRVSSLHDIQSVPYLADMNWDA VFKKALMPGFVPNKGRLNCDPTFELEEMILESKPLHKKKKRLAKNRSRDGTKDSCPLNGH LQHCLETVREEFIIFNREKLRRQQGQGSQLLDTDSRGGGQAQSKLQDGCNNNLLTHTCTR GCSS

Important features of the protein:

N-glycosylation site:

Amino acids 285-289

N-myristoylation sites:

Amino acids 123-129;290-296;337-343;339-345;348-354

Serine/Threonine protein kinases active-site signature:

Amino acids 92-105

FIGURE 573

CCTGCTACTGTCCCACCTAAACAACTCCCGTTACACGGACAAGTGAACATCTGTGGCTGTCCTCTCTTTTCTTC CTCCTCTTCCAACTCCTTCTCCTCCCACTTCCCAGCCGCAGCAGAAAGCCCCCAACCCAACTGACGCTGGCA GCGCCCAGCCCCTGCTGCTCTGGGCAGACGATGCTGAAGATGCTCTCCTTTAAGCTGCTGCTGCTGGCCGTGGCT AATGGGAACCCCCGAAGCGCCTGAAAAGGAGAGACAGGAGGATGATGTCCCAGCTGGAGCTGCTGAGTGGGGGA GAGAATAAGATATTTCTGTTACCAACAACACAGAATGTGGGAAGTTACTGGAGGAAATCAAATGTGCACTTTGC TGCAAAGACTATTGCAAAGAATTCTTTTACACTTGCCGAGGCCATATTCCAGGTTTCCTTCAAACAACTGCGGAT GAGTTTTGCTTTTACTATGCAAGAAAAGATGGTGGGTTGTGCTTTCCAGATTTTCCAAGAAAACAAGTCAGAGGA CCAGCATCTAACTACTTGGACCAGATGGAAGAATATGACAAAGTGGAAGAGTCAGCAGAAAGCACAAACACAAC TGCTTCTGTATTCAGGAGGTTGTGAGTGGGCTGCGGCAGCCCGTTGGTGCCCTGCATAGTGGGGATGGCTCGCAA CGTCTCTTCATTCTGGAAAAAGAAGGTTATGTGAAGATACTTACCCCTGAAGGAGAAATTTTCAAGGAGCCTTAT TTGGACATTCACAAACTTGTTCAAAGTGGAATAAAGGGAGGAGATGAAAGAGGACTGCTAAGCCTCGCATTCCAT GACCACATTCTTAGGGTTGTGGAATACACAGTATCCAGAAAAAATCCACACCAAGTTGATTTGAGAACAGCCAGA GTCTTTCTTGAAGTTGCAGAACTCCACAGAAAGCATCTGGGAGGACAACTGCTCTTTGGCCCTGACGGCTTTTTG TCAGTGCTACGGCTGGATGTGGACACAGACATGTGCAACGTGCCTTATTCCATACCAAGGAGCAACCCACACTTC AACAGCACCAACCAGCCCCCGAAGTGTTTGCTCATGGGCTCCACGATCCAGGCAGATGTGCTGTGGATAGACAT CCCACTGATATAAACATCAATTTAACGATACTGTGTTCAGACTCCAATGGAAAAAACAGATCATCAGCCAGAATT CTACAGATAATAAAGGGGAAAGATTATGAAAGTGAGCCATCACTTTTAGAATTCAAGCCATTCAGTAATGGTCCT TTGGTTGGTGGATTTGTATACCGGGGCTGCCAGTCAGAAAGATTGTATGGAAGCTACGTGTTTGGAGATCGTAAT GGGAATTTCCTAACTCTCCAGCAAAGTCCTGTGACAAAGCAGTGGCAAGAAAAACCACTCTGTCTCGGCACTAGT GGGTCCTGTAGAGGCTACTTTTCCGGTCACATCTTGGGATTTGGAGAAGATGAACTAGGTGAAGTTTACATTTTA TCAAGCAGTAAAAGTATGACCCAGACTCACAATGGAAAACTCTACAAAATTGTAGATCCCAAAAGACCTTTAATG CCTGAGGAATGCAGAGCCACGGTACAACCTGCACAGACACTGACTTCAGAGTGCTCCAGGCTCTGTCGAAACGGC TACTGCACCCCCACGGGAAAGTGCTGCTGCAGTCCAGGCTGGGAGGGGGGACTTCTGCAGAACTGCAAAATGTGAG ${\tt CCAGCATGTCATGGAGGTGTCTGTTAGACCGAACAAGTGCCTCTGTAAAAAAGGATATCTTGGTCCTCAA}$ TGTGAACAAGTGGACAGAAACATCCGCAGAGTGACCAGGGCAGGTATTCTTGATCAGATCATTGACATGACATCT ${\tt TACTTGCTGGATCTAACAAGTTACATTGTA} \underline{{\tt TACTTGTGGGACTGTTTGAATATTCTATTCCAATGGGCATTTAT}$ TTTTTATCCTGTCATTAAAAAAAAAAAAAGACTGTTATCCTGCTACACACTCCTGTGATTTCATTCTCTTTTATTAA ATACTCATAACCCCTATATGCGTTGTTGCATAACAGATGATTTTTTAAAATATATACTTCCTTATGCAAAGTAAT TTACACAGAAATTCCATTGTAAATTGATAATGGATTTTTTATGTTACTAGAAGAGATTATTTGACTTCCCAGGAA TTTTCTGTCTGTAATCACTAAAGTCAACTTTAATAGAGTTTTGAAACAGTACTGTGCAATCCGATGGATCTAATT AAAAAAAAGGCAATATTTTATATTAAAGTACTATACTAGGAGAAAGTTTCAGAACTCCCTGATGAATTTCTA AGTGAGCAACTTGATATAAAATTGTAATCTTCATTTTTGTCAGTGTATCCAGTTACAGAATGCTACACACTTACC TTTTTATTGGCTGAGAAATCTGGTTATTTCATCTTAATCTCAAGATTGTTTTCAAGTGTTTTATAATTAAATCAT AATAGCATATTTTAAAATCAAAAA

FIGURE 574

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA139592

><subunit 1 of 1, 882 aa, 1 stop

><MW: 98428, pI: 8.89, NX(S/T): 5

MKHVTVGRNMRGCVRSCSRRQRRPQHHLEPSAGPASACAAAAVAVSVPATVPPKQLPLHG
QVNICGCPLLFFLLFQLLLLPLPSRSRKPPTQLTLAQLQTVSSAQLYLAPRAPLRHWTH
RRVFYFCKVASLYIFLSPPPPSVSGVPYSPANSSWSCALVPLLGSGVPPHPPAPSPCCSG
QTMLKMLSFKLLLLAVALGFFEGDAKFGERNEGSGARRRCLNGNPPKRLKRRDRRMMSQ
LELLSGGEMLCGGFYPRLSCCLRSDSPGLGRLENKIFSVTNNTECGKLLEEIKCALCSPH
SQSLFHSPEREVLERDLVLPLLCKDYCKEFFYTCRGHIPGFLQTTADEFCFYYARKDGGL
CFPDFPRKQVRGPASNYLDQMEEYDKVEEISRKHKHNCFCIQEVVSGLRQPVGALHSGDG
SQRLFILEKEGYVKILTPEGEIFKEPYLDIHKLVQSGIKGGDERGLLSLAFHPNYKKNGK
LYVSYTTNQERWAIGPHDHILRVVEYTVSRKNPHQVDLRTARVFLEVAELHRKHLGGQLL
FGPDGFLYIILGDGMITLDDMEEMDGLSDFTGSVLRLDVDTDMCNVPYSIPRSNPHFNST
NQPPEVFAHGLHDPGRCAVDRHPTDININLTILCSDSNGKNRSSARILQIIKGKDYESEP
SLLEFKPFSNGPLVGGFVYRGCQSERLYGSYVFGDRNGNFLTLQQSPVTKQWQEKPLCLG
TSGSCRGYFSGHILGFGEDELGEVYILSSSKSMTQTHNGKLYKIVDPKRPLMPEECRATV
QPAQTLTSECSRLCRNGYCTPTGKCCCSPGWEGDFCRTAKCEPACRHGGVCVRPNKCLCK
KGYLGPQCEQVDRNIRRVTRAGILDQIIDMTSYLLDLTSYIV

Important features of the protein:

Transmembrane domains:

Amino acids 63-80;186-201

N-glycosylation sites:

Amino acids 152-156;281-285;598-602;629-633;641-645

Glycosaminoglycan attachment site:

Amino acids 417-421

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 856-860

N-myristoylation sites:

Amino acids 12-18;413-419;457-463;698-695;720-726;723-729

EGF-like domain cysteine pattern signatures:

Amino acids 805-817;837-849

FIGURE 575

 ${\tt CGGCTCGAGAGCGGGGCAAACTGCTTGGCACCTCTTCAATAGGTGACATTCA{\color{red} {\bf ATG}}{\bf ATAGATCT}}$ $\tt CTGGCTTCCTGCTCTGTTTGTTCTGGTTGCCCTGGAAAGCCTGCTCAGCCCATGCCCCGG$ GACTTCCTCCACCCTCACCAGGACATTCTTTCCATCTCTTGTCTCCTGTGTGCAAGTCCCTTT CTCCTGGATTCCATGTCTTGAATGTTTCTTAATTTACTTCCTCATTTTTGGCAGAGGATGTCCT GGGTTAATAACCAATCAGATTCTCTCTTTTCAAGATGGTTAACATAACAGACACCAAGAAAGG GAAGAGGAGCCGACAGCAGAGGGGGGAAGCTGAAAAGACGCACAAAGAATGGCCATAAAAGATA TGAGCAACCCCAGCTTTCCAGACAGTCACTTTTCCCAGTGGTCATACCTGGTCTGGAAGATTC CCCATCATCTCGAATAAAGCTGTTGTTGCTTTTAACTCCATGGAGAGACCGAATGGAGTGAGC CCAGCAGGGCATGCTGGGCAAGAGAGGTCCCCGAGTCCCAAATAAGAATTTCAACTAGTATA AAACGAGGCAGCGAACCCACACGTGGAAGTCTGATACCGCTTGCAGAAGGGAATTGAATAGAT TGATCATCCGCGGGATGCTGCCACAAGGAATAATTGAGCACTCATTCAGACACAGGGGAAACC ACCTCCCTGAGAAGACGTTGCAGCTCACCCCAGTGGGCACTGGGAGCCTCTGCTCAGGT GGGAGACAGATGCCCCCCACATGCACATCTGGTGTTTTATGAAGCAGATACTGGGGCTTCATAA ACACAGAAGGGGCAGGGAAGTAGCCCCAGGGCATAGTGTGGGGCCTCCTGACTAAAAGTAGCTT GCAAACCCCTGCCTATAACAGCCACTTCCTGGCAGTCATTGTGCCACTTAGGAGCCCTCCTCA CCGCTCTTCCTTTAGTTCCTTCACTCTGTATAGACCCTGCCAGAGCAGCTCAGGGTGGAGCAG CTGCAGCCATGGGACCTGCTCCAGGCAAGGCCCTATGCTACACAGTCCCTGGGGGTGAGGATT CCAGAGGGTCAATTCCCTACCCGCCCTTCCAGGGGATGGCCGAGATGAGCGTTCCCACAGGG AAAGTGAAAGTTGCAAGGCTGTTGCGGAAACACCAGGGGTTCCATTTAGGTCTTGCTGCTCAT CTCACAGAAAGCCAGTCACTGAGACAAGTATTGTCAGGGAAGAAGGCTTTATCCAGGTGCTAC AGACAGGGTGAACAAGAGATCAGTCTCAAATCCATCATCAACTGACTAAAATTAGGGGTT TATATAGCAGGGAAGAATGTAACTACATGTGGGAAAACAGGGATTAACGAGGGGCAAGGAAG AGGAGTTGGCCAACAGGCAGCAGGTGGTCACCTGGGGAATCATGATGGGTGAGGGGTCTGGCT TCTCACTTTCCAGATGTGGGGATCTGGTAAATTTCAGTTTCTTGATACCGTCTGGGAGGATTG CTGGCTGGTTTCCTGAGAAAGGAATTCAGATGACATAAATGTAAATTTCTCCTTGGGTTTCAA GACTGAGAGGGTCAATTTCTAGGTTTATTCAAGAAAAACCATAAACATCAGTTCTATGGGACA ATTGGGCCCATTTCAAGGCTCTGAGGATAAGGGTTAATGAGGGGACAGAGTCGCCTGGAGAAG TTCACTGGGGCCTACAAGAAACTAGAGAGGCTTCCTGGCAAAGCTCTATGCTGTCTATCCTCT CTTCTCTCCTTGCAGGAAGATTCCAGTATAATAGACCCGAGGTGAAAAGGCTTTTGTTCAATA AGTAGAAAACTGAAGGGGGGGGGGGGGCACATGGATTTGAACCAGAGACCGCTTGGCCTGCAG GCAAATGCTGTACCTTCAGTTGCACCCCTCACTTGTTACAGCTGTTTCTGATAAGCACTTGTG CAGCCCCATCAGCACCTCGATTTCTTCTTGGTGAGTCCATGGGAACAGCCCCACTGCAAACAA CCCATTCCTGCTCTCTTTCCTCTAAACCTCAACCTCCTACCTGGCAGTCCACAGGCC TACAGCTTCTCCTCAGTGGGAAAGACATCAGCTTGGAAAACCACTTGGAAAGCCAACGTTATC CTAGAAAAGCTTTTTAAATGACCCAGCAGGACAAGTCTCCGGATGGCCTTGGCCAACCCGGTG CTTCCCTCTTTTCTTGGTTGTAGTTCTCAGAATAACTAGAGAATGTACTGGGAGTGTTGTCCT GAGATAAGGAGGAACTGTCCTAAACCTGGACTCTGTTCCCATCACACCTAGAACAGGATGTCC TGCAACGCTTTAGCCCAATGATCCAAGTTGCCCTTGGGGTATAAAACTTGACAGCAGAGGGCG TTCAGGGTCCCTCAGCTGCAGTGTGAAGTGGGACACACAGGTGAGACTCCATCTGCCCTGGGC AGGTTCCTGAGCCTTGGGGGACCAGTTCACCCTACATCCCAGGCTTCTGTTGTCCCTTGCCTG CCTGTAAGGAATAAAGTTGCTTTA

FIGURE 576

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA139608 ><subunit 1 of 1, 80 aa, 1 stop ><MW: 8927, pI: 3.77, NX(S/T): 0 MIDLWLPALFVLVALESLLLSPCPGTSSTLTRTFFPSLVSCVQVPFSWIPCLECFLIYFL ILAEDVLQLFSGNANMQVNQ

Important features of the protein: Signal peptide:

Amino acids 1-29

Transmembrane domain:

Amino acids 47-62

N-myristoylation sites:

Amino acids 25-31

FIGURE 577

PCT/US01/06520

FIGURE 578

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA143292

><subunit 1 of 1, 160 aa, 1 stop

><MW: 18576, pI: 9.29, NX(S/T): 3

MINPELROGRADGFIHRIVPKLIQNWKIGLMCFLSIIITTVCIIMIATWSKHAKPVACSG DWLGVRDKCFYFSDDTRNWTASKIFCSLQKAELAQIDTQEDMEFLKRYAGTDMHWIGLSR KQGDSWKWTNGTTFNGWPSNSKWSCNWSLRQWLLLLGPLR

Important features of the protein:

Signal peptide:

Amino acids 1-42

N-glycosylation sites:

Amino acids 78-82;130-134;146-150

N-myristoylation site:

Amino acids 131-137

FIGURE 579

FIGURE 580

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA144844
><subunit 1 of 1, 145 aa, 1 stop
><MW: 16618, pI: 5.26, NX(S/T): 1
MDTFTVQDSTAMSWWRNNFWIILAVAIIVVSVGLGLILYCVCKWQLRRGKKWEIAKPLKH
KQVDEEKMYENVLNESPVQLPPLPPRNWPSLEDSSPQEAPSQPPATYSLVNKVKNKKTVS
IPSYIEPEDDYDDVEIPANTEKASF

Important features of the protein: Signal peptide:

Amino acids 1-35

Tyrosine kinase phosphorylation site:

Amino acids 61-70

Amidation site:

Amino acids 48-52

FIGURE 581

GGCCGCCTCCGCGGGGCTGTGGGAAGCTTGGGCTGTCCCAGGACCGTCAGTCTCCTCTCTGA CCCTCCCTTTCCCCTTGTGTGTAGGGCCGCCGTCCCACCCCACCTCGCCGGAGTCCGGGGCG GCCCCGGTGTCCCCTCCGAGCCTGCTGCACTCCACGTCCCCTACCAGGGCTCCAGCCCCCAG GGAAATCTCCGACCAGGCCCCCAGGAGCCAGATCCAGGCTCCTGGAAGAACCATGTCCGGC AGCTACTGGTCATGCCAGGCACACTGCTGCCCAAGAGGGGGCTGCTGTTTGAATTATCTGTG **ATG**GACTTTCTGGTCCTCTTGTTCTACCTGGCTTCGGTGCTGATGGGTCTTGTTCTTATC TGCGTCTGCAAAACCCATAGCTTGAAAGGCCTGGCCAGGGGAGGAGCACAGATATTTTCC TGTATAATTCCAGAATGTCTTCAGAGAGCCGTGCATGGATTGCTTCATTACCTTTTCCATACG AGAAACCACCTTCATTGTCCTGCACCTGGTCTTGCAAGGGATGGTTTATACTGAGTACACC TGGGAAGTATTTGGCTACTGTCAGGAGCTGGAGTTGTCCTTGCATTACCTTCTTCTGCCCTAT CTGCTGCTAGGTGTAAACCTGTTTTTTTTCACCCTGACTTGTGGAACCAATCCTGGCATTATA ACAAAAGCAAATGAATTATTATTTCTTCATGTTTATGAATTTGATGAAGTGATGTTTCCAAAG AACTGGTGTGCACCGTTTCGACCATCACTGTGTTTGGGTGAACAACTGCATCGGGGCCTGG ${ t AACATCAGGTACTTCCTCATCTACGTCTTGACCTTGACGGCCTCGGCTGCCACCGTCGCCATT}$ GTGAGCACCACTTTCTGGTCCACTTGGTGGTGATGTCAGATTTATACCAGGAGACTTACATC TTTCCACGGATTGTCTTCATGCTGGGCTTTGTCGTGGTTCTGAGCTTCCTCCTGGGTGGCTAC CTGTTGTTTGTCCTGTATCTGGCGGCCACCAACCAGACTACTAACGAGTGGTACAGAGGTGAC TGGGCCTGGTGCCAGCGTTGTCCCCTTGTGGCCTCGGTCAGCAGAGCCCCAAGTCCAC CGGAACATTCACTCCCATGGGCTTCGGAGCAACCTTCAAGAGATCTTTCTACCTGCCTTTCCA TGTCATGAGAGGAAGAACAAGAA<mark>TGA</mark>CAAGTGTATGACTGCCTTTG

FIGURE 582

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA144857

><subunit 1 of 1, 344 aa, 1 stop ><MW: 39787, pI: 7.44, NX(S/T): 2

MDFLVLFLFYLASVLMGLVLICVCSKTHSLKGLARGGAQIFSCIIPECLQRAVHGLLHYL FHTRNHTFIVLHLVLQGMVYTEYTWEVFGYCQELELSLHYLLLPYLLLGVNLFFFTLTCG TNPGIITKANELLFLHVYEFDEVMFPKNVRCSTCDLRKPARSKHCSVCNWCVHRFDHHCV WVNNCIGAWNIRYFLIYVLTLTASAATVAIVSTTFLVHLVVMSDLYQETYIDDLGHLHVM DTVFLIQYLFLTFPRIVFMLGFVVVLSFLLGGYLLFVLYLAATNQTTNEWYRGDWAWCQR CPLVAWPPSAEPQVHRNIHSHGLRSNLQEIFLPAFPCHERKKQE

Important features of the protein:

Signal peptide:

Amino acids

Transmembrane domains:

Amino acids 100-116;201-217;256-275

N-glycosylation sites:

Amino acids 65-69;284-290

N-myristoylation sites:

Amino acids 32-38;77-83;120-126;322-328

Cell attachment sequence:

Amino acids 292-298

DHHC zinc finger domain:

Amino acids 140-204

FIGURE 583

GACGGGAAGGCCAGTGCGACGGCAAATCTCGTGAACCTTGGGGGGACGA<u>ATG</u>CTCAGGATGCGGGTCCCCGCCCTC CTCGTCCTCTCTTCTGCTTCAGAGGGAGAGCAGGCCCGTCGCCCCATTTCCTGCAACAGCCAGAGGACCTGGTG $\tt GTGCTGCTGGGGGGGGGGGGGCTGCCGTGTGCTCTGGGCGCCTACTGGGGGCTAGTTCAGTGGACTAAGAGTGGG$ CTGGCCCTAGGGGCCCAAAGGGACCTACCAGGGTGGTCCCGGTACTGGATATCAGGGAATGCAGCCAATGGCCAG CATGACCTCCACATTAGGCCCGTGGAGCTAGAGGATGAAGCATCATATGAATGTCAGGCTACACAAGCAGGCCTC CGCTCCAGACCAGCCCAACTGCACGTGCTGGTCCCCCAGAAGCCCCCCAGGTGCTGGGCGGCCCCTCTGTGTCT $\tt TGGGCAAAAGGGGGCTCTCCGGTGCTCGGGGCCCGGGCCCAAGGTTAGAGGTCGTGGCAGACGCCTCGTTCCTG$ ${\tt ACTGAGCCCGTGTCCTGCGAGGTCAGCAACGCCGTGGGTAGCGCCAACCGCAGTACTGCGCTGGATGTGCTGTTT}$ CGCGGGAACCCGCTTCCACGGGTAACCTGGACCCGCCGCGGTGGCGCACGGTGCTGGGGCTCTGGAGCCACACTG CGTCTTCCGTCGGTGGGGCCCGAGGACGCAGGCGACTATGTGTGCAGAGCTGAGGCTGGGCTATCGGGCCTGCGG $\tt CTGAGGGGCCCTGCTCGCTCTGGTTTTCGCCTCTCCCGCCCAGATGCCGTGGTCTGGTCTTGGGAT$ GAGGGCTTCCTGGAGGCGGGGTCGCAGGGCCGGTTCCTGGTGGAGACATTCCCTGCCCCAGAGAGCCGCGGGGGA $\tt CTGGGTCCGGGCCTGATCTCTGTGCTACACATTTCGGGGACCCAGGAGTCTGACTTTAGCAGGAGCTTTAACTGC$ $\tt CACAGCAAGGCCTCAGCCTCTTTCTCCGAGCAAAAGAACCTGATGCGAATCCCTGGCAGCAGCGACGGCTCCAGT$ TCACGAGGTCCTGAAGAAGAGAGACAGGCAGCCGCGAGGACCGGGGCCCCATTGTGCACACTGACCACAGTGAT GTGAGCCTGAGCCTTGGCGAAGCCCCTGGAGGAGGTCTCTTCCTGCCACCACCCTCCCCCTTGGGCCCCCAGGG TATCTCACCACACCCCACCCTCGAGCTTTCACCAGCTACATCAAACCCACATCCTTTGGGCCCCCAGATCTGGCC CCCGGGACTCCCCCTTCCCATATGCTGCCTTCCCCACACCTAGCCACCCGCGTCTCCAGACTCACGTG<u>TGA</u>CAT ${\tt CAGTCAGCCAAAAGGAGATGCCCCAAGTGGGAGCAACATGGCCACCCAATATGCCCACCTATTCCCCGGTG}$ TAAAAGAGATTCAAGATGGCAGGTAGGCCCTTTGAGGAGAGATGGGGACAGGGCAGTGGGTGTTGGGAGTTTGGG GCCGGGATGGAAGTTGTTTCTAGCCACTGAAAGAAGATATTTCAAGATGACCATCTGCATTGAGAGGAAAGGTAG ${\tt CATAGGATGAAGATGAAGAGCATACCAGGCCCCACCCTGGCTCTCCCTGAGGGGAACTTTGCTCGGCCAAT}$ GGAAATGCAGCCAAGATGGCCATATACTCCCTAGGAACCCAAAATGGCCACCATCTTGATTTTACTTTCCTTAAA GACTCAGAAAGACTTGGACCCAAGGAGTGGGGATACAGTGAGAATTACCACTGTTGGGGCAAAATATTGGGATAA

FIGURE 584

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA145841
><subunit 1 of 1, 708 aa, 1 stop
><MW: 75093, pI: 6.65, NX(S/T): 3</pre>

MLRMRVPALLVLLFCFRGRAGPSPHFLQQPEDLVVLLGEEARLPCALGAYWGLVQWTKSG LALGGQRDLPGWSRYWISGNAANGQHDLHIRPVELEDEASYECQATQAGLRSRPAQLHVL VPPEAPQVLGGPSVSLVAGVPANLTCRSRGDARPTPELLWFRDGVLLDGATFHQTLLKEG TPGSVESTLTLTPFSHDDGATFVCRARSQALPTGRDTAITLSLQYPPEVTLSASPHTVQE GEKVIFLCQATAQPPVTGYRWAKGGSPVLGARGPRLEVVADASFLTEPVSCEVSNAVGSA NRSTALDVLFGPILQAKPEPVSVDVGEDASFSCAWRGNPLPRVTWTRRGGAQVLGSGATL RLPSVGPEDAGDYVCRAEAGLSGLRGGAAEARLTVNAPPVVTALHSAPAFLRGPARLQCL VFASPAPDAVVWSWDEGFLEAGSQGRFLVETFFAPESRGGLGPGLISVLHISGTQESDFS RSFNCSARNRLGEGGAQASLGRRDLLPTVRIVAGVAAATTTLLMVITGVALCCWRHSKAS ASFSEQKNLMRIPGSSDGSSSRGPEEEETGSREDRGPIVHTDHSDLVLEEEGTLETKDPT NGYYKVRGVSVSLSLGEAPGGGLFLPPPSPLGPPGTPTFYDFNPHLGMVPPCRLYRARAG YLTTPHPRAFTSYIKPTSFGPPDLAPGTPPFPYAAFPTPSHPRLQTHV

Important features of the protein:

Signal peptide:

Amino acids 1-20

Transmembrane domain:

Amino acids 511-531

N-glycosylation sites:

Amino acids 143-147;301-305;484-488

N-myristoylation sites:

Amino acids 48-54;60-66;79-85;139-145;180-186;183-189;355-361;383-389; 387-393;460-466;473-479;494-500;495-501;514-520;528-534; 554-560;592-598;608-614

Amidation site:

Amino acids 500-504

Cell attachment sequence:

Amino acids 149-152

Multicopper oxidases signature 1:

Amino acids 445-466

Immunoglobulin domain:

Amino acids 326-377

FIGURE 585

GCCCGCCTGAGGAAGCCGTGTGCCTGGGATGCCAAGAGCCAGAGAATGGATCTTCTCCGAGTG GGGACATTGCTGACAATCCCGGCTTCCCGAGGCGGCTAAGAACAGGCAGTTTGTGTCGGCTGG CTGCAGATACCCAGAGGCACAAAGAGACCGAAGCCACCGGAGGGACCCACGGACGGACAGAT GGTAGGCGCGAACCCGAGAGGACCGGCGGAGGCTGAGCACCGAGAGCCGCCAAGGAAGAAAA $\tt CTATTCCTTCAGCCAGCAGCCCAGGACCAGGTGGTGGTGGTGGTGGGGACAGCCAGTGACGCTACT$ ${\tt TTGCGCCATCCCCGAATACGATGGCTTCGTTCTGTGGATCAAGGACGGCTTGGCTCTGGGTGT}$ GGGCAGGGACCTCTCAAGTTACCCACAGTACCTGGTGGTAGGGAACCACCTGTCAGGGGAGCA CCACCTGAAGATCCTGAGGGCAGAGCTGCAAGACGATGCGGTGTACGAGTGCCAGGCCATCCA GGCCGCCATCCGCTCCCGCCCCGCACGCCTCACAGTCCTGGTGCCGCCTGATGACCCCGTCAT CCTGGGGGGCCCTGTGATCAGCCTGCGTGCGGGGGGACCCTCTCAACCTCACCTGCCACGCAGA CAATGCCAAGCCTGCAGCCTCCATCATCTGGTTGCGAAAGGGAGAGGTCATCAATGGGGCCAC CTACTCCAAGACCCTGCTTCGGGACGGCAAGCGGGAGAGCATCGTCAGCACCCTCTTCATCTC CCCTGGTGACGTGGAGAATGGCCAGAGCATCGTGTGTCGTGCCACCAACAAGCCATCCCCGG ${\tt AGGAAAGGAGACGTCGGTCACCATTGACATCCAGCACCCTCCACTGGTCAACCTCTCGGTGGA}$ GCCACAGCCAGTGCTGGAGGACAACGTCGTCACTTTCCACTGCTCTGCAAAGGCCAACCCAGC ${\tt TGTCACCCAGTACAGGGGGCCAAGCGGGGCCAGATCATCAAGGAGGCATCTGGAGAGGTGTA}$ GGCAGCACCAACCTCAGCCGCACGGTTGACGTCTACTTTGGGCCCCGGATGACCACAGAACCC CAATCCTTGCTCGTGGATCTGGGCTCTGATGCCATCTTCAGCTGCGCCTGGACCGGCAACCCA TCCCTGACCATCGTCTGGATGAAGCGGGGCTCCGGAGTGGTCCTGAGCAATGAGAAGACCCTG ${\tt ACCCTCAAATCCGTGCGCCAGGAGGACGCGGGCAAGTACGTGTGCCGGGCTGTGGTGCCCCGT}$ CAGACCCAGCACGCCTCCACGGCGAGAAGGGCCAGATCAAGTGCTTCATCCGGAGCACGCCG CCGCCGGACCGCATCGCCTGGTCCTGGAAGGAGAACGTTCTGGAGTCGGGCACATCGGGGCGC TATACGGTGGAGACCATCAGCACCGAGGAGGGCGTCATCTCCACCCTGACCATCAGCAACATC GTGCGGGCCGACTTCCAGACCATCTACAACTGCACGGCCTGGAACAGCTTCGGCTCCGACACT GAGATCATCCGGCTCAAGGAGCAAGGTTCGGAAATGAAGTCGGGAGCCGGGCTGGAAGCAGAG TCTGTGCCGATGGCCGTCATCATTGGGGTGGCCGTAGGAGCTGGTGTGGCCTTCCTCGTCCTT ATCTCAGGGAGGGGACAGAAAAAGGCCAGGCTTAGGCTGCCCCGGAGAGCAAGTAAGCAG ${\tt GAGTGCAATGAACAGGGGTCC} {\color{red}{\bf TAA}} {\tt CAGTGCTGTGAGCTCCTGGGGCAGGGAGTGGGTCTGATG}$ CATCGGTGTATGTGAGCCTGGGCAACATGGCGCCTGGCAGAGTGGGCGCTAGGCTGAGGTTGA CCTGGACTAGACTGAACTTCATCTGCAGGGCAGCCAGCATTTTGGATTGAACACATAGCTCTT TCAGTCAGGAACTGTACAGAAAGATAGGGGGAAAAGCGGTTTGTGGTTTGATCCTTGCTCTAC AAGAGCTGTTAGTCTAGAGAGACCCCATCTCTACAACAAAATAAAAATAAAGAGCTGCTAGTC TCACCAGAAAAGCAGGTCACTCACACAGCTGTGGGGGAGTGGGGGAAGCAATAAAGGAAT TGCTTTGAGAAAACTTAA

FIGURE 586

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA148004

><subunit 1 of 1, 600 aa, 1 stop

><MW: 65308, pI: 8.35, NX(S/T): 5

MKPFQLDLLFVCFFLFSQELGLQKRGCCLVLGYMAKDKFRRMNEGQVYSFSQQPQDQVVV SGQPVTLLCAIPEYDGFVLWIKDGLALGVGRDLSSYPQYLVVGNHLSGEHHLKILRAELQ DDAVYECQAIQAAIRSRPARLTVLVPPDDPVILGGPVISLRAGDPLNLTCHADNAKPAAS IIWLRKGEVINGATYSKTLLRDGKRESIVSTLFISPGDVENGQSIVCRATNKAIPGGKET SVTIDIQHPPLVNLSVEPQPVLEDNVVTFHCSAKANPAVTQYRWAKRGQIIKEASGEVYR TTVDYTYFSEPVSCEVTNALGSTNLSRTVDVYFGPRMTTEPQSLLVDLGSDAIFSCAWTG NPSLTIVWMKRGSGVVLSNEKTLTLKSVRQEDAGKYVCRAVVPRVGAGEREVTLTVNGPP IISSTQTQHALHGEKGQIKCFIRSTPPPDRIAWSWKENVLESGTSGRYTVETISTEEGVI STLTISNIVRADFQTIYNCTAWNSFGSDTEIIRLKEQGSEMKSGAGLEAESVPMAVIIGV AVGAGVAFLVLMATIVAFCCARSQRSTGGRSGISGRGTEKKARLRLPRRASKQECNEQGS

Important features of the protein:

Signal peptide:

Amino acids 1-17

Transmembrane domain:

Amino acids 534-555

N-glycosylation sites:

Amino acids 167-171;253-257;324-328;498-502

Glycosaminoglycan attachment sites:

Amino acids 523-527;574-578

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 204-208;370-374;588-592

Tyrosine kinase phosphorylation sites:

Amino acids 40-49;300-308;389-397

N-myristoylation sites:

Amino acids 45-51;62-68;84-90;103-109;192-198;236-242;

374-380;436-442;478-484;539-545;543-549;

568-574

Amidation site:

Amino acids 202-206

Leucine zipper pattern:

Amino acids 8-30

FIGURE 587

CAAAAAAGGAGCATGTCTTCATCCATGAGAGGCCTCGAAAAATCAATGGTATTTGCATTTCTC CCAAGAAGGTTGCCTTGCCAAAACCTTTCGGCCATTTTCTGCTTTCAGAGTGAGACAAAGTTCA $\tt CCACAGAGGGGTTTGTTCTTGTCACTTGTGATGACTTGAGGCCAGATAGTTTCCTTGGCTATG$ $\tt GTGCCTGAGGCAGACCTGGACCGTGGACATGGGGCAATGCCTTGAGCGGAAGGGGAAGCCACT$ GAATTTTGGGTGTCACCAGGTAAACAGAGCCCTCAGCATCTGAATAGAAACTGAACAGGAACA ${\tt GAAGAGATTACACTACATCTGAG} {\tt GAGACCTTTCCTCTGCTGCTGCTCAGCCTGGGCCTGG}$ TTCTTGCAGAAGCATCAGAAAGCACAATGAAGATAATTAAAGAAGAATTTACAGACGAAGAGA TGCAATATGACATGGCAAAAAGTGGCCAAGAAAAACAGACCATTGAGATATTAATGAACCCGA TCCTGTTAGTTAAAAATACCAGCCTCAGCATGTCCAAGGATGATATGTCTTCCACATTACTGA CATTCAGAAGTTTACATTATAATGACCCCAAGGGAAACAGTTCGGGTAATGACAAAGAGTGTT GCAATGACATGACAGTCTGGAGAAAAGTTTCAGAAGCAAACGGATCGTGCAAGTGGAGCAATA ACTTCATCCGCAGCTCCACAGAAGTGATGCGCAGGGTCCACAGGGCCCCCAGCTGCAAGTTTGTA ${\tt CAGAATCCTGGCATAAGCTGCTGTGAGAGCCTAGAACTGGAAAATACAGTGTGCCAGTTCACT}$ ACAGGCAAACAATTCCCCAGGTGCCAATACCATAGTGTTACCTCATTAGAGAAGATATTGACA ${\tt GTGCTGACAGGTCATTCTCTGATGAGCTGGTTAGTTTGTGGCTCTAAGTTG} {\color{red}{\textbf{TAA}}} {\tt ATCCCACAG}$ ${\tt AGCTTTAGGACTAGGGTCTTACTAAAGAAGGACCTCTTCTTGTTCATTCTTGTTTAAACCTTT}$ AAAAATCCAAAATTGTGGATAATTCAATTAAAAGTTATGACTGATACCG

FIGURE 588

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA149893

><subunit 1 of 1, 199 aa, 1 stop

><MW: 22427, pI: 6.46, NX(S/T): 3

METFPLLLLSLGLVLAEASESTMKIIKEEFTDEEMQYDMAKSGQEKQTIEILMNPILLVK NTSLSMSKDDMSSTLLTFRSLHYNDPKGNSSGNDKECCNDMTVWRKVSEANGSCKWSNNF IRSSTEVMRRVHRAPSCKFVQNPGISCCESLELENTVCQFTTGKQFPRCQYHSVTSLEKI LTVLTGHSLMSWLVCGSKL

Important features of the protein:

Signal peptide:

Amino acids 1-16

N-glycosylation sites:

Amino acids 61-65;89-93;111-115

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 105-109

N-myristoylation sites:

Amino acids 12-18;88-94;144-150

Microbodies C-terminal targeting signal:

Amino acids 197-201

FIGURE 589

CAGTCCTGCCGGGACGGTGAGCGCATTCAGCACCCTGGACAGCACCGCGGTTGCGCTGCCTCC AGGGCGGCCCCGGGCTGCTCCTGCTCCGCAGAGCTACGCCCTCCCCCGGGTGCCCCGGACCC TGCACTTGCCGCCGCTTTCCTCGCGCTCTGGACCTTGCTAGCCGGCTCTGCACCTCCCAG AAGCCGTGGGCGCGCCCCAGCTCCATCGCCTCACTTTCCCAGGCTCGCGCCCGAAGCA ${\tt GAGCCATGAGAACCCCAGGGTGCCTGGCGAGCCGCTAGCGCC} \underline{{\tt ATG}} {\tt GGCCCCGGCGAGGCGCTG}$ $\overline{\texttt{CTGGCGGGTCTCCTGGTGATGGTACTGGCCGTGGCGCTGCTATCCAACGCACTGGTGCTGCTT}}$ TGTTGCGCCTACAGCGCTGAGCTCCGCACTCGAGCCTCAGGCGTCCTCCTGGTGAATCTGTCT $\tt CGGACACCGTCGGCGCGCGCGCATGCCAAGTCATTGGCTTCCTGGACACCTTCCTGGCGTCC$ TCCTGTTCGCTGCGCCTGCCGCCCGAGCCTGAGCGTCCGCGCTTCGCAGCCTTCACCGCCACG CTCCATGCCGTGGGCTTCGTGCTGCCGCTGGCGTGCTCTCCCTCGCTCCAGGTGCAC CGGGTGGCACGCAGACACTGCCAGCGCATGGACACCGTCACCATGAAGGCGCTCGCGCTGCTC GCCGACCTGCACCCCAGTGTGCGGCAGCGCTGCCTCATCCAGCAGAAGCGGCGCCGCCACCGC GCCACCAGGAAGATTGGCATTGCTATTGCGACCTTCCTCATCTGCTTTGCCCCGTATGTCATG ${\tt CGCCAAGTCCTGGCCGGCATGGTGCACCGGCTGCTGAAGAGAACCCCGCGCCCAGCATCCACC}$ CATGACAGCTCTCTGGATGTGGCCGGCATGGTGCACCAGCTGCTGAAGAGAACCCCGCGCCCA $\overline{\text{GGGCCTGGCAGGGCTCATCGCCCCACCTTCTAAGAAGCCCTGTGGAAAGGGCACTGGCCCTG}}$ CCACAGAGATGCCACTGGGGACCCCCAGACACCAGTGGCTTGACTTTGAGCTAAGGCTGAG

FIGURE 590

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA149930

><subunit 1 of 1, 363 aa, 1 stop

><MW: 39332, pI: 10.42, NX(S/T): 3

MGPGEALLAGLLVMVLAVALLSNALVLLCCAYSAELRTRASGVLLVNLSLGHLLLAALDM PFTLLGVMRGRTPSAPGACQVIGFLDTFLASNAALSVAALSADQWLAVGFPLRYAGRLRP RYAGLLLGCAWGQSLAFSGAALGCSWLGYSSAFASCSLRLPPEPERPRFAAFTATLHAVG FVLPLAVLCLTSLQVHRVARRHCQRMDTVTMKALALLADLHPSVRQRCLIQQKRRRHRAT RKIGIAIATFLICFAPYVMTRLAELVPFVTVNAQWGILSKCLTYSKAVADPFTYSLLRRP FRQVLAGMVHRLLKRTPRPASTHDSSLDVAGMVHQLLKRTPRPASTHNGSVDTENDSCLQ QTH

Important features of the protein:

Signal peptide:

Amino acids 1-24

Transmembrane domains:

Amino acids 46-60;85-103;130-150;175-192;246-264

N-glycosylation sites:

Amino acids 47-51;348-352;355-359

Tyrosine kinase phosphorylation site:

Amino acids 286-295

N-myristoylation sites:

Amino acids 66-72;124-130;128-134;132-138;139-145;244-250; 349-355

G-protein coupled receptor proteins:

Amino acids 72-112

7 transmembrane receptor (rhodopsin family):

Amino acids 22-294

FIGURE 591

 $\texttt{AAC} \underline{\textbf{ATG}} \texttt{GCTGCGGCGCTGGCTGCTCGTCTGGCTGCTCGGCTGCCCTGGCGGGTG}$ GAATGCAGCATGATGTACCGCGGTGAGGCTCTTGAAGATTTCACAGGCCCGGATTGTCGTTTT GTGAATTTTAAAAAAGGTGATCCTGTATATGTTTACTATAAACTGGCAAGAGGATGGCCTGAA GTTTGGGCTGGAAGTGTTGGACGCACTTTTGGATATTTTCCAAAAGATTTAATCCAGGTAGTT CATGAATATACCAAAGAAGAGCTACAAGTTCCAACAGATGAGACGGATTTTGTTTTGAT ${\tt GGAGGAAGAGATGATTTCATAATTATAATGTAGAAGAACTTTTAGGGTTTTTGGAACTGTAC}$ AATTCTGCAGCTACAGATTCTGAGAAAAGCTGTAGAAAAAACTTTACAGGATATGGAAAAAAAC CCTGAATTATCTAAGGAAAGGGAACCTGAACCTGAACCAGTAGAAGCCAACTCAGAGGAAAGT GATAGTGTATTCTCAGAAAACACTGAGGATCTTCAGGAACAGTTTACAACTCAGAAGCACCAC TCCCATGCAAACAGCCAAGCAAATCATGCTCAGGGAGAGCAGGCTTCATTTGAATCTTTTGAA GAAATGCTGCAAGATAAACTAAAAGTGCCAGAAAGTGAAAACAACAAAACCAGCAATAGTTCT CAGGTCTCAAATGAACAGGATAAGATTGATGCCTATAAACTTTTGAAAAAAAGAAATGACTCTA GACTTGAAAACCAAATTTGGCTCAACAGCTGATGCACTTGTATCTGATGATGAGACAACCAGA CTCGTTACTTCATTAGAAGATGATTTTGATGAGGAATTGGATACTGAGTATTATGCAGTTGGA GAAGATATGAAAACTCCAGCAAAGTCTGGCGTTGAGAAATATCCAACAGATAAAGAGCAGAAT TCAAATGAAGAGGACAAGGTTCAGCTAACTGTGCCCCCTGGCATCAAAAATGATGATAAAAAT ATACTAACAACCTGGGGGGACACTATCTTCTCTATTGTCACAGGAGGTGAAGAAACAAGAGAT ACGATGGATTTAGAGAGCTCTAGTTCAGAGGAAGAAAAAGAAGATGATGATGATGCATTAGTC CCAGATAGCAAACAGGGGAAACCACAGTCAGCAACAGATTATAGTGACCCTGACAATGTAGAT GATGGTCTTTTTATTGTAGACATTCCTAAAACAAATAATGACAAAGAAGTAAACGCAGAACAT CACATTAAAGGAAAAGGGAGGGGGGTTCAGGAATCCAAGAGGGGGCCTGGTACAAGATGAGACA ${\tt GAATTAGAGGATGAAAATCAAGAGGCTTTAAAACAGAGCCCATAAAACTA}{\color{red}{\bf TGA}{\bf CCTCTGAGGCCCATAAAACTA}{\color{red}{\bf TGA}{\bf CCTCTGAGGCCCATAAAACTA}{\color{red}{\bf TGA}{\bf CCTCTGAGGCCCATAAAACTA}{\color{red}{\bf TGA}{\bf CCTCTGAGGCCCATAAAAACTA}{\color{red}{\bf TGA}{\bf TGA}{\bf CCTCTGAGGCCCATAAAAACTA}{\color{red}{\bf TGA}{\bf TGA}{\bf CCTCTGAGGCCCATAAAAACTA}{\color{red}{\bf TGA}{\bf TGA}{\bf CCTCTGAGGCCCATAAAAACTA}{\color{red}{\bf TGA}{\bf TGA}{$ AATCCAAAAGTTTATTTTAAAAGGTTTGTTGTTAGAACTAAGCTGCCTTGGCAGTGTGCATTT CGTCCTTACAACTTTGAAATGTGCAATAAAGAATACCTGTGTTTTAGCTAATGTAGCATATGT AATTGCAAAATGATTTAGAATGTCATGAAAAATATGAACATTTCCTGTGGAAATGCTTTAAGA ACATGTATTTCCATTATCCTATTTTTAGTGTACACCAGCTGAATACGGAGCAATGGTGTTTAT AAGCGTTTTTTTAAACTATCTGGTCACAAAGACTGTTACGCTAAAAATGTTTACTAAAAGATC ACTAAACTATCTCCCCTCTTGCTGAAGTTCTTTGTAGTAATAGCTCATAAAAATTTGTTTATT AATATTTAAAAAAAAAAAAA

FIGURE 592

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA150157

><subunit 1 of 1, 499 aa, 1 stop

><MW: 56471, pI: 4.31, NX(S/T): 2

MAAAPGLLVWLLVLRLPWRVPGQLDPSTGRRFSEHKLCADDECSMMYRGEALEDFTGPDC RFVNFKKGDPVYVYYKLARGWPEVWAGSVGRTFGYFPKDLIQVVHEYTKEELQVPTDETD FVCFDGGRDDFHNYNVEELLGFLELYNSAATDSEKAVEKTLQDMEKNPELSKEREPEPEP VEANSEESDSVFSENTEDLQEQFTTQKHHSHANSQANHAQGEQASFESFEEMLQDKLKVP ESENNKTSNSSQVSNEQDKIDAYKLLKKEMTLDLKTKFGSTADALVSDDETTRLVTSLED DFDEELDTEYYAVGKEDEENQEDFDELPLLTFTDGEDMKTPAKSGVEKYPTDKEQNSNEE DKVQLTVPPGIKNDDKNILTTWGDTIFSIVTGGEETRDTMDLESSSSEEEKEDDDDALVP DSKQGKPQSATDYSDPDNVDDGLFIVDIPKTNNDKEVNAEHHIKGKGRGVQESKRGLVQD ETELEDENQEGFKTEPIKL

Important features of the protein:

Signal peptide:

Amino acids 1-22

N-glycosylation sites:

Amino acids 245-249;249-253

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 30-34

Tyrosine kinase phosphorylation site:

Amino acids 66-72

N-myristoylation sites:

Amino acids 392-398;469-475

Amidation site:

Amino acids 28-32

Aminoacyl-transfer RNA synthetases class-II signature 1:

Amino acids 47-70

FIGURE 593

GGGCCAGTAGAGTGTCTGGGTCAGCTGAGTGACTACATCAAAGCTCCCAGCCTTGAAAAAC TTCTACAATGTCTGAAGAAGTGACCTACGCGACACTCACATTTCAGGATTCTGCTGGAGCAAG GAATAACCGAGATGGAAATAACCTAAGAAAAAGAGGGCATCCAGCTCCATCTCCCATTTGGCG TCATGCTGCTCTGGGTAACTCTTTGCCTGATGTTGCTGATTGGGCTGGTGACGTTGGG GATGATGTTTTTGCAGATATCTAATGACATTAACTCAGATTCAGAGAAATTGAGTCAACTTCA GAAAACCATCCAACAGCAGCAGGATAACTTATCCCAGCAACTGGGCAACTCCAACAACTTGTC CATGGAGGAGGAATTTCTCAAGTCACAGATCTCCAGTCTACTGAAGAGGCAGGAACAAATGGC CATCAAACTGTGCCAAGAGCTAATCATTCATACTTCAGACCACAGATGTAATCCATGTCCTAA GATGTGGCAATGGTACCAAAATAGTTGCTACTATTTTACAACAAATGAGGAGAAAACCTGGGC TAACAGTAGAAAGGACTGCATAGACAAGAACTCCACCCTAGTGAAGATAGACAGTTTGGAAGA AAAGGATTTTCTTATGTCACAGCCATTACTCATGTTTTCGTTCTTTTGGCTGGGATTATCATG GGACTCCTCTGGCAGAAGTTGGTTCTGGGAAGATGGCTCTGTTCCCTCTCCATCCTTGTACGT CTCTAACTAT<u>TGA</u>GGGTAAACACAAGCTTTCCATGGAATCCTGGGAAAATTAATAATGATTGT GAGAATTATAAATACAGACATAAAAAGAGGAGTACAACATACTGAGAAAAGAGCTCCAGTAAC AAATATTGAAAGGAGATTTAGTACTAAAGAACTTGACCAGATCAATGGATCCAAAGGATGTGC TTATTTCAAAAAGGAAATATTTATATTTCTCGCTGTAGTGCTGAAATTTTTTTGGATTTGCGA GAAGACAGCTGCCCCAGTGAAGACTGAGGATTTGGATTAGTATGCTTCTTCCAAATTCTCCAA GAAGTAAGAGACTTGTGAGTAAGCTCATATGAGGAAAGAGGAAACTACGGTACCAGAGCAAGG GCGAATTCTGCA

FIGURE 594

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA150163
><subunit 1 of 1, 232 aa, 1 stop
><MW: 26754, pI: 5.80, NX(S/T): 3
MSEEVTYATLTFQDSAGARNNRDGNNLRKRGHPAPSPIWRHAALGLVTLCLMLLIGLVTL
GMMFLQISNDINSDSEKLSQLQKTIQQQQDNLSQQLGNSNNLSMEEEFLKSQISSLLKRQ
EQMAIKLCQELIIHTSDHRCNPCPKMWQWYQNSCYYFTTNEEKTWANSRKDCIDKNSTLV
KIDSLEEKDFLMSQPLLMFSFFWLGLSWDSSGRSWFWEDGSVPSPSLYVSNY

Important features of the protein: Transmembrane domain:

Amino acids 42-62

N-glycosylation sites:

Amino acids 91-95;101-105;176-180

N-myristoylation sites:

Amino acids 17-23;97-103

FIGURE 595

CGGACGCGTGGGGAAGAGGAGGAGGAGGAGGAGGACGTGGACAAGGACCCCCATCCTACCCAG ${\tt AACACCTGCCTGCCGCCACTTCTCTTTAAGGGAGAGGGAAAAGAGAGCCTAGGAGAACCC}$ **ATG**GGGGGCTGCGAAGTCCGGGAATTTCTTTTGCAATTTGGTTTCTTCTTGCCTATGCTGACA GCGTGGCCAGGCGACTGCAGTCACGTCTCCAACAACCAAGTTGTGTTGCTTGATACAACAACT GATGAACATAATAGGCCCATTCACACATACCAGGTATGTAATGTAATGGAACCAAACCAAAAC AACTGGCTTCGTACAAACTGGATCTCCCGTGATGCAGCTCAGAAAATTTATGTGGAAATGAAA TTCACACTAAGGGATTGTAACAGCATCCCATGGGTCTTGGGGACTTGCAAAGAAACATTTAAT CTGTTTTATATGGAATCAGATGAGTCCCACGGAATTAAATTCAAGCCAAACCAGTATACAAAG ATCGACACAATTGCTGCTGATGAGAGTTTTACCCAGATGGATTTGGGTGATCGCATCCTCAAA CTCAACACTGAAATTCGTGAGGTGGGGCCTATAGAAAGGAAAGGATTTTATCTGGCTTTTCAA GACATTGGGGCGTGCATTGCCCTGGTTTCAGTCCGTGTTTTCTACAAGAAATGCCCCTTCACT ${\tt GTTCGTAACTTGGCCATGTTTCCTGATACCATTCCAAGGGTTGATTCCTCCTCTTTGGTTGAA}$ GTACGGGGTTCTTGTGTGAAGAGTGCTGAAGAGCGTGACACTCCTAAACTGTATTGTGGAGCT GATGGAGATTGGCTGGTTCCTCTTGGAAGGTGCATCTGCAGTACAGGATATGAAGAAATTGAG ${\tt GGTTCTTGCCATGGAGCCTCCAAAGGCCGCTGCTTC} \underline{{\tt TAG}} {\tt TTGGCCATCTTGGCCCCACCCCGA}$ AACAGTAACCTTTGAAGAATAAAAGAAAAAGCAAAAGAGTAGCATTACTAAAATATTAAACGG TTACATTTACAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 596

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA153579

><subunit 1 of 1, 285 aa, 1 stop

><MW: 32368, pI: 5.32, NX(S/T): 0

MGGCEVREFLLQFGFFLPMLTAWPGDCSHVSNNQVVLLDTTTVLGELGWKTYPLNGWDAI TEMDEHNRPIHTYQVCNVMEPNQNNWLRTNWISRDAAQKIYVEMKFTLRDCNSIPWVLGT CKETFNLFYMESDESHGIKFKPNQYTKIDTIAADESFTQMDLGDRILKLNTEIREVGPIE RKGFYLAFQDIGACIALVSVRVFYKKCPFTVRNLAMFPDTIPRVDSSSLVEVRGSCVKSA EERDTPKLYCGADGDWLVPLGRCICSTGYEEIEGSCHGASKGRCF

Important features of the protein: Signal peptide:

Amino acids

1-22

N-myristoylation sites:

Amino acids 192-198;274-280;278-284

Receptor tyrosine kinase class V signature 1:

Amino acids 192-209

Ephrin receptor ligand binding domain:

Amino acids 34-207

FIGURE 597

ACACTGGCCAAACAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTCCCA GGACAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCCTCTGGAGGGCTGAAGAGGG ${\tt CAGCACAGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAG{\color{red} {\bf ATG}}{\bf CCTGTGCCCTGGTTCTT}}$ ${\tt GCTGTCCTTGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTG}\overline{{\tt GAG}}{\tt AGGCTTGTGGGGCCTCA}$ GGACGCTACCCACTGCTCTCCGGGCCTCTCCTGCCGCCTCTGGGACAGTGACATACTCTGCCT CGTGCATGGGCACTGGGAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGG GGTGGAGGAGCCTAGGAATGCCTCTCCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCC TACTGCCCGCTGCGTCCTGGAGGTGCAAGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTC ${\tt TGTGGGCTCTGTGGTATATGACTGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTC}$ GCTCAACGTGTCAGCAGTGGTGACAACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCAGCA CTTCGGCCTCTCCCTGTACTGGAATCAGGTCCAGGGCCCCCCAAAACCCCCGGTGGCACAAAA CCTGACTGGACCGCAGATCATTACCTTGAACCACACAGACCTGGTTCCCTGCCTCTGTATTCA GGTGTGGCCTCTGGAACCTGACTCCGTTAGGACGAACATCTGCCCCTTCAGGGAGGACCCCCG $\tt CTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACGTCACTGTGGACAAGGTTCTCGAGTT$ CCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTGAACAGCTCGGAGAAGCTGCAGCT GCAGGAGTGCTTGTGGGCCTGACTCCCTGGGGCCTCTCAAAGACGATGTGCTACTGTTGGAGAC ACGAGGCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCAGTGGCTGTACTTCACTACC CCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTGCCCCATGGACAAATA CATCCACAAGCGCTGGGCCTCGTGTGGCCTGGCCTACTCTTTGCCGCTGCGCTTTCCCT CATCCTCCTTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAACAGGACGTCCG CTCGGGGGCCGCCAGGGGCCGCGCGCTCTGCTCCTACTCAGCCGATGACTCGGGTTT $\tt CGAGCGCCTGGGGCGCCTGGGCGTGGCCGTGGCCGTGGCGTGGCCGTAGA$ CCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAGCGGCG CAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGGGCGCACGCCCGCACGACGCCTTCCG ${\tt GGCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGT}$ CTTCACACTGCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCG GGCGGGGGACGGACT<u>TAA</u>ATAAAGGCAGACGCTGTTTTTCTAAAAAA

FIGURE 598

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA164625

><subunit 1 of 1, 705 aa, 1 stop

/><MW: 76970, pI: 6.00, NX(S/T): 9

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGP VLAPTHLQTELVLRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRN ASLQAQVVLSFQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYT QPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWH KNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQNLWQAARLRLLT LQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCV QVNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRA ARLGEYLLQDLQSGQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILL LKKDHAKGWLRLLKQDVRSGAAARGRAALLLYSADDSGFERLVGALASALCQLPLRVAV DLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSPGAVALCSEWLQDGVSGPGAHGP HDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLPSQLPDFLG ALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

Important features of the protein: Signal peptide:

Amino acids 1-20

Transmembrane domain:

Amino acids 453-473

N-glycosylation sites:

Amino acids 118-1

118-122;186-190;198-202;211-215;238-242;

248-252;334-338;357-360;391-395;

Glycosaminoglycan attachment site:

Amino acids 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 552-556

N-myristoylation sites:

Amino acids 107-113;152-158;319-325;438-444;516-522;612-618;

692-698;696-702;700-706

FIGURE 599

 ${\tt GGTCCTTA} \underline{{\tt ATG}} {\tt GCAGCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCCTGC}$ TGTCCGGCTGGTCCCGGGCTGGGCGAGCCGACCCTCACTCTTTGCTATGACATCACCGTCA TCCCTAAGTTCAGACCTGGACCACGGTGGTGTGCGGTTCAAGGCCAGGTGGATGAAAAGACTT TTCTTCACTATGACTGTGGCAACAAGACAGTCACACCTGTCAGTCCCCTGGGGAAGAAACTAA ATGTCACAACGGCCTGGAAAGCACAGAACCCAGTACTGAGAGAGGTGGTGGACATACTTACAG AGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGAACCCCTCACCCTGCAGGCAA GGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGATCTTGGCAGTTCAGTTTCGATG GGCAGATCTTCCTCCTCTTTGACTCAGAGAAGAGAATGTGGACAACGGTTCATCCTGGAGCCA GAAAGATGAAAAGTGGGAGAATGACAAGGTTGTGGCCATGTCCTTCCATTACTTCTCAA ${\tt TGGGAGACTGTATAGGATGGCTTGAGGACTTCTTGATGGGCATGGACAGCACCCTGGAGCCAA}$ GTGCAGGAGCACCACTCGCCATGTCCTCAGGCACAACCCAACTCAGGGCCACAGCCACCC $\verb|CCTTTAGAGTGACAGGTTAAAGCTGATACCAAAAGGCTCCTGTGAGCACGGTCTTGATCAAAC| \\$ TCGCCCTTCTGTCTGGCCAGCTGCCCACGACCTACGGTGTATGTCCAGTGGCCTCCAGCAGAT CATGATGACATCATGGACCCAATAGCTCATTCACTGCCTTGATTCCTTTTTGCCAACAATTTTA ${\tt CCAGCAGTTATACCTAACATATTATGCAATTTTCTCTTTGGTGCTACCTGATGGAATTCCTGCA}$ TCAAGTACTTCTTTGAATGATGATCTCTTTCTTGCAAATGATATTGTCAGTAAAATAATCACG TTAGACTTCAGACCTCTGGGGATTCTTTCCGTGTCCTGAAAGAGAATTTTTTAAATTATTTAAT AAGAAAAATTTATATTAATGATTGTTTCCTTTAGTAATTTATTGTTCTGTACTGATATTTAA ATAAAGAGTTCTATTTCCCAAAAAAAAAAAAAAAAAAA

FIGURE 600

MAAAAATKILLCLPLLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRWCAVQGQVDEKTFLH YDCGNKTVTPVSPLGKKLNVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLTLQARMS CEQKAEGHSSGSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAMSFHYFSMGD CIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPCFILPGI

Important features:
Signal peptide:
amino acids 1-25

Transmembrane domain: amino acids 224-246

N-glycosylation site. amino acids 68-72, 82-86

N-myristoylation site. amino acids 200-206, 210-216

Amidation site.
amino acids 77-81

FIGURE 601

GCAGTCAGAGACTTCCCCTGCCCCTCGCTGGGAAAGAACATTAGGAATGCCTTTTAGTGCCTT GCTTCCTGAACTAGCTCACAGTAGCCCGGCGGCCCAGGGCCAATCCGACCACATTTCACTCTCA CCGCTGTAGGAATCCAG<u>ATG</u>CAGGCCAAGTACAGCAGCACGAGGGACATGCTGGATGATGATG GGGACACCACGATGAGCCTGCATTCTCAAGCCTCTGCCACAACTCGGCATCCAGAGCCCCGGC GCACAGAGCACAGGGCTCCCTCTTCAACGTGGCGACCAGTGGCCCTGACCCTGCTGACTTTGT GCTTGGTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTCAGTACTACCAGCTCT CCAATACTGGTCAAGACACCATTTCTCAAATGGAAGAAGATTAGGAAATACGTCCCAAGAGT TGCAATCTCTTCAAGTCCAGAATATAAAGCTTGCAGGAAGTCTGCAGCATGTGGCTGAAAAAC TCTGTCGTGAGCTGTATAACAAAGCTGGAGCACACAGGTGCAGCCCTTGTACAGAACAATGGA AATGGCATGGAGACAATTGCTACCAGTTCTATAAAGACAGCAAAAGTTGGGAGGACTGTAAAT CCGCGTCTCAGAGCTACTCTGAGTTTTTCTACTCTTATTGGACAGGGCTTTTGCGCCCTGACA GTGGCAAGGCCTGGCTGTGGATGGATGGAACCCCTTTCACTTCTGAACTGTTCCATATTATAA TAGATGTCACCAGCCCAAGAAGCAGAGACTGTGTGGCCATCCTCAATGGGATGATCTTCTCAA AGGACTGCAAAGAATTGAAGCGTTGTGTGTGTGAGAGAAGGGCAGGAATGGTGAAGCCAGAGA ${\tt GCCTCCATGTCCCCCTGAAACATTAGGCGAAGGTGAC} {\tt TGA} {\tt TTCGCCCTCTGCAACTACAAAT}$ $\mathtt{AGCAGAGTGAGCCAGGCGGTGCCAAAGCAAGGGCTAGT}\overline{\mathtt{TGA}}\mathtt{GACATTGGGAAATGGAACATAA}$ ${\tt CAGCATTTCTGAGCTTGGGTTTATGCACGTATTTAACAGTCACAAGAAGTCTTATTTACATGC}$ CACCAACCACCTCAGAAACCCATAATGTCATCTGCCTTCTTGGCTTAGAGATAACTTTTAGC TCTCTTTCTTCAATGTCTAATATCACCTCCCTGTTTTCATGTCTTCCTTACACTTGGTGGA ATAAGAAACTTTTTGAAGTAGAGGAAATACATTGAGGTAACATCCTTTTCTCTGACAGTCAAG TAGTCCATCAGAAATTGGCAGTCACTTCCCAGATTGTACCAGCAAATACACAAGGAATTCTTT TTGTTTGTTTCAGTTCATACTAGTCCCTTCCCAATCCATCAGTAAAGACCCCATCTGCCTTGT CCATGCCGTTTCCCAACAGGGATGTCACTTGATATGAGAATCTCAAATCTCAATGCCTTATAA GCATTCCTTCCTGTGTCCATTAAGACTCTGATAATTGTCTCCCCATAGGAATTTCTCCCA GGAAAGAAATATATCCCCATCTCCGTTTCATATCAGAACTACCGTCCCCGATATTCCCTTCAG AGAGATTAAAGACCAGAAAAAAGTGAGCCTCTTCATCTGCACCTGTAATAGTTTCAGTTCCTA TTTTCTTCCATTGACCCATATTTATACCTTTCAGGTACTGAAGATTTAATAATAATAATGTA AATACTGTGAAAAA

FIGURE 602

MQAKYSSTRDMLDDDGDTTMSLHSQASATTRHPEPRRTEHRAPSSTWRPVALTLLTLCLVLLI GLAALGLLFFQYYQLSNTGQDTISQMEERLGNTSQELQSLQVQNIKLAGSLQHVAEKLCRELY NKAGAHRCSPCTEQWKWHGDNCYQFYKDSKSWEDCKYFCLSENSTMLKINKQEDLEFAASQSY SEFFYSYWTGLLRPDSGKAWLWMDGTPFTSELFHIIIDVTSPRSRDCVAILNGMIFSKDCKEL KRCVCERRAGMVKPESLHVPPETLGEGD

FIGURE 603

GGGAGAGAGGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTCC $\texttt{CAGCAAT} \underline{\textbf{ATG}} \texttt{CATCTTGCACGTCTGGTCGGCTCCTGCTCCTTCTGCTACTGGGGGCCCT}$ GTCTGGATGGCCGCCATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGGGCT GAGCAATGCAGAGAGAGAGGCCAAGGCCCTGGATGGCATCAACAGTGGAATCACGCATGC CGGAAGGGAAGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGCAAGGA GTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGATCAACCA ${\tt TGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTTGGCCATGGGGTCAACAACGCTGCTGG}$ ACAGGCCGGGAAGGAAGCAAAGCGGTCCAAGGGTTCCACACTGGGGTCCACCAGGCTGG GAAGGAAGCAGAGAAACTTGGCCAAGGGGTCAACCATGCTGACCAGGCTGGAAAGGAAGT GGAGAAGCTTGGCCAAGGTGCCCACCATGCTGCCGGCCAGGCCGGGAAGGAGCTGCAGAATGC TCATAATGGGGTCAACCAAGCCAGCAGGAGGCCAACCAGCTGCTGAATGGCAACCATCAAAG ${\tt CGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGGGGCCTCAGTCAA}$ ${\tt CACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCATGCCC} {\color{red}{\bf TAA}} {\tt ACTGG}$ ${\tt TTGGGGGTGGGGGACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTGGGATTTGTGAATAAA}$ CTTGATACACCA

FIGURE 604

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675
><subunit 1 of 1, 247 aa, 1 stop
><MW: 25335, pI: 7.00, NX(S/T): 0
MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAGR
EVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAGQA
GKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQNAHN
GVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features of the protein: Signal peptide: amino acids 1-25

Homologous region to circumsporozoite (CS) repeats: amino acids 35-225

FIGURE 605

TCCCCGGCGCGCGGGCTGGTGTTGTCTCGTGCTCTGGCTCCCCGCGTGCGTCGCGGCCCACG GCTTCCGTATCCATGATTATTTGTACTTTCAAGTGCTGAGTCCTGGGGACATTCGATACATCT TCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATGAGCAGATTCACC AGATTGCTCTGGTGGAGAGGGGGGGGCTGCTCCTTCCTCCAAGACTCGGGTGGTCCAGGAGC ACGGCGGGCGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTACGTGGAGA TGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTCTTCCTGCTCGGCCGAGACG GCTACATGATCCGCCGCTCTCTGGAACAGCATGGGCTGCCATGGGCCATCATTTCCATCCCAG ${\tt TCAATGTCACCAGCATCCCCACCTTTGAGCTGCTGCAACCGCCCTGGACCTTCTGG} {\color{red} {\tt TAG}} {\tt AAGA}$ GTTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGGAAACCCAGGAATTTTGC ${\tt TACTTGGAATTTGGAGATAGCATCTGGGGACAAGTGGAGCCAGGTAGAGGAAAAGGGTTTGGG}$ CGTTGCTAGGCTGAAAGGGAAGCCACACCACTGGCCTTCCCCTTCCCCAGGGCCCCCAAGGGTG TCTCATGCTACAAGAAGAGAGAGACAGGCCCCAGGGCTTCTGGCTAGAACCCGAAACAAA ${\tt AGGAGCTGAAGGCAGGTGGCCTGAGAGCCATCTGTGACCTGTCACCTGGCTCCAGCCTGGAGGCCAGCCTGAGGCGAGGCCAGGCCTGAGGGCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCAGGCAGGCCAGGCAGGCCAGGCAGGCCAGGCAGGCCAGGCAGGCCAGGCCAGGCAGGCAGGCCAGGCAGGCCAGGCAGGC$ TCCCCTACCCAGGGTCTCTGCACAGTGACCTTCACAGCAGTTGTTGGAGTGGTTTAAAGAGCT GGTGTTTGGGGACTCAATAAACCCTCACTGACTTTTTAGCAATAAAGCTTCTCATCAGGGTTG САААААААААААААААААААААА

FIGURE 606

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532

><subunit 1 of 1, 188 aa, 1 stop ><MW: 21042, pI: 5.36, NX(S/T): 2

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQI ${\tt HLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSFYV}$ $\verb|EMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW|$

Signal peptide:

amino acids 1-20

FIGURE 607

GCATTTGCCACTGGTTGCAGATCAGGCGGACGAGGCCGGGAAGGCAGAGCC ATG TGGCTGCGAGCCCCAGAGCAGGGTCCCTGACGGTTCAATGCCACTATAAGCAAGGATGGGAGACCTACA TTAAGTGGTGCCGAGGGGTGCGCTGGGATACATGCAAGATCCTCATTGAAACCAGAGGGT CGGAGCAAGGAGAAGAGTGACCGTGTGTCCATCAAGGACAATCAGAAAGACCGCACGTTCA CTGTGACCATGGAGGGGCTCAGGCGAGATGACGCAGATGTTTACTGGTGTGGGATTGAAAGAA GAGGACCTGACCTTGGGACTCAAGTGAAAGTGATCGTTGACCCAGAGGGAGCGGCTTCCACAA CAGCAAGCTCACCTACCAACAGCAATATGGCAGTGTTCATCGGCTCCCACAAGAGGAACCACT ACATGCTCCTGGTATTTGTGAAGGTGCCCATCTTGCTCATCTTGGTCACTGCCATCCTCTGGT ${\tt TGAAGGGGTCTCAGAGGGTCCCTGAGGAGCCAGGGGAACAGCCTATCTACATGAACTTCTCCG}$ $\overline{\texttt{ACGTTTCCAGAAGAACATCTACGAGTCCTCGGGATGCAGTGACT}}$ ${\tt GAGATAGGGGCCCTGGCCTTGGCCTTGGAGCTGGTGGGCACCTCCCTGTTCTGCAC}$ AGCTCAGGGACTTAGCCAGGTCCTCTCCTGAGCCACCATCACCTCCTGGGGTGCCAGCACCTG TTCTCTTGGTCAGGAGCTGTAGAGATGGAGCTCAAGCACTGGACGACTCTGTCCCCACTGCTG GAATAACTCGGGCACAGAGCATGGGACCAAAGTACAGAAAGAGGTTGGGGGAGACCCCCCAG CCCTAGACTTCCATCATTCCGGAGACCAACTCAACACCGTCTTTGCCTGAGAACCTGATATATCC GTGTTTTTAAATTTTTTTTTTTTTCTAGCAAAGTTGGGTTTTAATGACTTATGTTCATAGGAAAC CTCTCTGATCCCACACACAGGAGGGTGATTCTGGGATGAGTTCCTGGTTCTAGGGCATGAGG GGCTGGATGGACCCTGTCCCCAGGGAGGACATGGCTCTGAGTCCACAGGGCTGAGGAGGCAAT ${\tt GGGAACCTCCCTGGCCCGGTGCTTGTCCTCCCCCCTCCCACCTCTTCCTCCTAGCT}$ $\tt CCCCAAGCTCCCTGCCTATTCCCCCACCTCCGAGGGGCTGCAGCTTGGGAGCCTCCTCAGCAT$ GACAGCTTGGGTCTCCCCCAAAAGAGCCTGTCAGGCCTCAAGAACCACCTCCAGGTGGGGA TTACTAATGAAAACTGTCCTAGGGAAGTGGTTCTGTCTCCTCACAGGCTTCACCCACGGCGAT GAGGCCCTTGAATGTGGTCACTTTGTGCTGTATGGTTGAGGGACCCTCACACCAAAGGGACCT TCCCATGTGAGATGTGCTCCCGCCCCCACCTGCCCACAAGCAAACACACCACACATGTTCGGC ATGTTGCCCTTTGAACACCCATGAGGACGCCTCCAACCTGCTCTTGGTTCTAATAGGGAGTAC ${\tt TGACTGTCAGCAGTGGATAAAGGAGAGGGGACCCTCTGGTCCCTAGCATGGCACCCAGAGCCT}$ CCCCTCTTCTTGTCCTTCAGCCAAAGAGAAACTTTCTCTGACTTTGAACTGAATTTAGGTCTC TGGCCAATGATGGGCCTGAAAATTCCATAATGGCCAGAGAGGAGAGTTCGAGCCCGGCTAAGA TCCCCTGAGTCATTCTGTGAGGGACCAAGACCCACAGTCCACCAGCCCCAGGGCCCTACCTCC TGGAATGCTTTCCTGGATCCAGCTTCCCGAAGATCCGACCAGACCCAGGGAGGACGGCACCGC GGCGCTTGTCAACGTGATGTCATTCTTTTCCCACCGTTTCTTCCTGTTGATATTCAATGAATC

FIGURE 608

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA105849

><subunit 1 of 1, 201 aa, 1 stop

><MW: 22689, pI: 7.41, NX(S/T): 1

MWLPPALLLSLSGCFSIQGPESVRAPEQGSLTVQCHYKQGWETYIKWWCRGVRWDTCKI LIETRGSEQGEKSDRVSIKDNQKDRTFTVTMEGLRRDDADVYWCGIERRGPDLGTQVKVI VDPEGAASTTASSPTNSNMAVFIGSHKRNHYMLLVFVKVPILLILVTAILWLKGSQRVPE EPGEQPIYMNFSEPLTKDMAT

Important features of the protein:

Signal peptide:

Amino acids 1-17

Transmembrane domain:

Amino acids 151-170

N-glycosylation site:

Amino acids 190-194

Tyrosine kinase phosphorylation site:

Amino acids 95-103

N-myristoylation sites:

Amino acids 66-72;125-131

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids 5-16

FIGURE 609

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGG GACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT<u>ATG</u>CGTCAATTCCCCAAA CCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACG ACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAG GCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGT CTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAG ACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCT GAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACT GAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTC TATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGC AGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCATGCCCACATGACA TGCCATTGTGGGGAGGAAGCAATGAAGAAATAÇAGCCAGATTCTGAGTCACTTTGAAAAGCTG ${\tt GAGACAGAA}$ ${\tt TAG}$ ${\tt GAGGAAAGTGATGCTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCT}$ TCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACTGTACTAGTCTTGTGCT GGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGATTGTCTTTATGCATCCCC AATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTTTCTGCTATTGGATATATT AAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAGAGCAGGTGATGTATTTTTAT ACAGTAAAAAAAAAACCTTGTĄAATTCTAGAAGAGTGGCTAGGGGGGTTATTCATTTGTAT TCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGATATTTGAAATTGAACCAATGAC TACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCACATCTACCTTACAATTACTG

FIGURE 610

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500
><subunit 1 of 1, 261 aa, 1 stop
><MW: 29667, pI: 8.76, NX(S/T): 0
MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSEL
RPEIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVI
ATNLQEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVF
KNYQTPDHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQ
AAVVKALGELDILLQWMEETE

Important features of the protein: Signal peptide:

Amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites: Amino acids 192-196;225-229

N-myristoylation sites:

Amino acids 42-48;46-52;136-142