Mecánica Clásica - 2do. cuatrimestre de 2024

Guía 1: Coordenadas generalizadas. Grados de libertad. Lagrange.

- 1. En el sistema de la figura, las posiciones x_1 y x_2 de las dos masas se miden a partir de sus puntos de equilibrio. Sea $q_1 = x_1 + x_2$ y $q_2 = x_1 x_2$.
 - (a) ¿Definen q_1 y q_2 un conjunto admisible de coordenadas generalizadas?
 - (b) Si $q_1 = 0$, describa cualitativamente el movimiento de cada partícula. Ídem si $q_2 = 0$.
 - (c) Calcular las fuerzas generalizadas Q_1 y Q_2 .

2. Para los casos siguientes, ¿cuántos grados de libertad tiene cada sistema? Proponga conjuntos adecuados de coordenadas generalizadas.

- a) m_1 y m_2 se mueven en el plano de la mesa.
- b) Ídem, pero la mesa rota con ω constante.

c) m_1 y m_2 se hallan dentro de un tubo. Si q_1 y q_2 se miden a partir del centro de masa, ¿son coordenadas apropiadas?

d) Las dos masas se hallan unidas por una barra rígida.
Analize los casos en que las masas
pueden moverse horizontalmente o en el plano.

e) Discuta los casos P fijo y P móvil.

f) Una masa enhebrada en un alambre elíptico.

g) Una máquina de Atwood. Analice los casos en que la cuerda desliza y no desliza sobre la polea.

h) Una partícula puntual que cae por una esfera.

3. D_1 y D_2 son dos plataformas rotantes, como se muestra en la figura. D_1 se mueve respecto al sistema de laboratorio con velocidad angular $\dot{\theta}_1$. D_2 se mueve respecto a D_1 con velocidad angular $\dot{\theta}_2$. Una partícula de masa m se mueve libremente sobre D_2 . Escriba el lagrangiano del sistema en términos de las coordenadas polares ρ y φ , de un sistema fijo a D_2 . Halle las ecuaciones de movimiento de la partícula e interprete.

- 4. Para el sistema de la figura, hallar la aceleración de cada masa, utilizando:
 - (a) Las ecuaciones de Newton y condiciones cinemáticas.
 - (b) El principio de los trabajos virtuales (PTV).
 - (c) Las ecuaciones de Lagrange.
 - (d)* Repita (a) y (b), pero ahora las poleas tienen masa M y radio R.

- 5. Dos partículas de masas m_1 y m_2 están unidas por un hilo inextensible de longitud l; m_1 se mueve sólo sobre el eje x y m_2 sólo sobre el y. Las condiciones iniciales son las que indica la figura.
 - (a) Halle la ecuación de movimiento para θ utilizando el PTV.
 - (b) Halle la ecuación de Lagrange para θ .
 - (c) Si $m_1 = m_2 \equiv m$, halle la tensión T en el hilo como función de θ .
 - (d) ¿Cuál es el período de movimiento en este caso? Suponga que θ sólo puede tomar valores pequeños.

- 6. Dos partículas de masas m_1 y m_2 están unidas por un hilo de longitud L, como indica la figura. La masa m_1 se mueve en el plano de la mesa y m_2 sólo verticalmente. En t=0, m_1 se encuentra a una distancia $r_0 < L$ del orificio y se le aplica una velocidad v_0 perpendicular al hilo.
 - (a) Escriba las ecuaciones de Lagrange y halle sus integrales primeras en términos de las condiciones iniciales.
 - (b) Halle la tensión del hilo.
 - (c) Repita (a) y (b), pero ahora la masa m_2 puede moverse en las dos direcciones de un plano vertical.

7. Bajo la acción de la gravedad, una partícula de masa m se desliza sin rozamiento sobre una supeficie cónica definida por $\theta = \alpha$, donde θ es el ángulo polar de las coordenadas esféricas.

- (a) Halle las ecuaciones de movimiento de la partícula utilizando como coordenadas generalizadas el ángulo ϕ y el radio r de las coordenadas esféricas habituales.
- (b) Halle el r máximo y el r mínimo para el caso en que $\alpha=30$ y las condiciones iniciales sean $r(0)=a, \dot{r}(0)=0, \dot{\phi}(0)^2=4\sqrt{3}g/a.$
- (c) Halle el potencial efectivo unidimensional equivalente. Muestre que las órbitas circulares son posibles y halle la velocidad de la partícula en tales órbitas.
- (d) Suponiendo que la partícula está en movimiento circular, halle la constante del oscilador y el período de oscilación para pequeñas perturbaciones alrededor de este movimiento. Compare el período de las oscilaciones con el período de revolución y describa cualitativamente la órbita de la partícula.

8. Analizar los siguientes puntos.

- (a) Dado un sistema formado por N partículas, ¿cuál es el número de grados de libertad del mismo y cuál el de ecuaciones de vínculo?
- (b) ¿Se puede utilizar una velocidad como coordenada generalizada?
- (c) ¿Las fuerzas generalizadas se aplican sobre cada partícula?
- (d) El número de grados de libertad de un sistema, ¿es independiente del sistema de referencia utilizado para describir el movimiento?
- (e) Para estudiar el equilibrio de un sistema, ¿es siempre válido utilizar el principio de los trabajos virtuales?
- (f) ¿Es válida la formulación lagrangiana para un potencial dependiente de la velocidad?, ¿y para el campo electromagnético?
- (g) Dé un ejemplo en que un desplazamiento virtual difiera de uno real. ¿En qué casos son iguales?
- (h) Las ecuaciones de vínculo para un sistema físico, ¿dependen del sistema de referencia utilizado?, ¿y las fuerzas de vínculo?
- (i) Para calcular las fuerzas de vínculo de un sistema, ¿qué métodos es posible emplear?
- (j) ¿Siempre se pueden escribir las ecuaciones de Newton desde el centro de masa de un sistema?
- (k) Para un sistema de N partículas, ¿cuántas ecuaciones de Newton se necesitan?, ¿y de Lagrange?
- (l) ¿Qué se entiende por un sistema inercial? ¿Serán correctas las ecuaciones de movimiento si se escribe el lagrangiano desde un sistema no inercial?
- (m) Para una carga en un campo electromagnético, ¿se puede conservar su impulso lineal? ¿Qué magnitud se conserva?

9. Para el sistema de la figura.

- (a) Halle las ecuaciones de movimiento utilizando el método de Lagrange.
- (b) Para el caso g=0, integre las ecuaciones para condiciones iniciales $r(0)=r_0$, $\dot{r}(0)=0$.
- (c) Discuta el caso en que la barra puede girar libremente.
- 10. Considere el péndulo plano doble de la figura.

- (a) Encuentre las ecuaciones de movimiento.
- (b) Halle una expresión aproximada de las ecuaciones de movimiento para pequeñas oscilaciones alrededor de la posición de equilibrio estable.
- (c) Resuelva las ecuaciones proponiendo una solución de tipo armónico para los grados de libertad. En t=0 ambas masas se hallan sobre la vertical y a la inferior se le aplica una velocidad v_0 perpendicular al hilo.
- (d) Halle las tensiones sobre los hilos.
- 11. Una partícula de masa m se desliza sin fricción por un alambre fijo en el punto A y que forma un ángulo θ_0 con el eje vertical. El alambre rota alrededor del eje con velocidad angular constante ω .
 - (a) Encuentre el lagrangiano y las ecuaciones de Lagrange.
 - (b) Halle r(t) sabiendo que en t = 0, $r(0) = r_0$, $\dot{r}(0) = 0$.

12. Considere el péndulo en tres dimensiones (péndulo esférico). Encontrar las ecuaciones de Lagrange y las constantes de movimiento. Discuta cualitativamente el movimiento de este péndulo.

5

- 13. Escriba el lagrangiano de un péndulo plano donde el punto de suspensión:
 - (a) se desplaza uniformemente por un círculo vertical de radio a con frecuencia ω ,
 - (b) efectúa oscilaciones verticales de la forma $a \cos \omega t$,
 - (c) efectúa oscilaciones horizontales de la forma $a \cos \omega t$.

14. Encuentre el lagrangiano de los sistemas de la figura.

- 15. Una partícula de masa m y carga q está en un campo electromagnético con potenciales φ y \mathbf{A} . $[\mathbf{E} = -\nabla \varphi (1/c)\partial \mathbf{A}/\partial t, \mathbf{B} = \nabla \times \mathbf{A}]$. A partir del lagrangiano L = T U, donde $U = q(\varphi \mathbf{v} \cdot \mathbf{A}/c)$, es un potencial generalizado dependiente de la velocidad. Muestre que la fuerza aplicada sobre la partícula es la de fuerza Lorentz, $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}/c)$.
- 16. Sean (x_1,y_1) y (x_2,y_2) dos sistemas de referencia cartesianos bidimensionales. Suponga que, respecto del sistema (x_1,y_1) , el origen de coordenadas del sistema (x_2,y_2) se mueve con velocidad v constante y que los ejes de (x_2,y_2) rotan con velocidad angular constante ω . Hallar explícitamente las ecuaciones de transformación: $x_1=x_1(x_2,y_2,t)$ y $y_1=y_1(x_2,y_2,t)$.
- 17. Encuentre el lagrangiano y las ecuaciones de movimiento del siguiente sistema: un péndulo simple de masa m_1 , con una masa m_2 en el punto sostén, la cual puede moverse sobre una línea horizontal contenida en el plano de movimiento de m_1 . Resuelva las ecuaciones de movimiento y halle la frecuencia de oscilación del sistema para pequeños apartamientos de la posición de equilibrio estable.

18. Escriba el lagrangiano y las ecuaciones de movimiento del siguiente sistema: una máquina de Atwood con una cuerda de largo l que pasa sin deslizar por una polea con momento de inercia I.

- 19. Una partícula de masa m y carga q está en un campo magnético uniforme $\mathbf{B}=B_0\hat{z}$.
 - (a) Si $\mathbf{A} = B_0 x \, \hat{y}$, compruebe que $\mathbf{B} = \nabla \times \mathbf{A}$, calcule las ecuaciones de movimiento y muestre que las órbitas son hélices. Las condiciones iniciales son $\mathbf{r}(0) = (x_0, y_0, z_0)$, $\mathbf{v}(0) = (\dot{x}_0, \dot{y}_0, \dot{z}_0)$.
 - (b) Repita el punto anterior, pero ahora para el potencial vector $\mathbf{A}' = \frac{1}{2}\mathbf{B} \times \mathbf{r}$.

- (c) Calcule la función ψ que da el cambio de medida $\mathbf{A}' = \mathbf{A} + \nabla \psi$.
- (d) Si $\mathbf{v}(0) = 0$, interprete físicamente la solución hallada en (a).
- 20. Sea un oscilador isótropo bidimensional ($k_x = k_y \equiv k$).
 - (a) Escriba el lagrangiano del sistema y halle las ecuaciones de movimiento para las coordenadas generalizadas $q_1 = x$ y $q_2 = y$.
 - (b) Sea $\mathcal{L}^* = m\dot{x}\dot{y} kxy$. Halle las ecuaciones de movimiento para este sistema. Compare con las obtenidas en (a).