0

Contact: Thorsten Neuschel thorstenneuschel@dcu.ie X133

Course structure:

- · Three hours of lectures each week
- · Two hours of tutorials each week starting in week 2.

Assessment:

- · Written exam at the end: 80%
- · Continuous assessment: 20%

 Approx. four formative assessment tests

 throughout the semester.
- · Category 3 "best marks" module: no resit for the CA

final grade = max { 0.8 Exam + 0.2 CA, Exam}.

Chapter 1. The Euclidean space Rm, convergence and continuity

Let me N, we define the Euclidean space Rm as

 $\mathbb{R}^{M} := \underbrace{\mathbb{R} \times ... \times \mathbb{R}}_{M \text{ times}} = \left\{ X = \begin{pmatrix} X_{1} \\ X_{m} \end{pmatrix} : X_{1}, X_{2}, ..., X_{M} \in \mathbb{R} \right\}.$

For $X = \begin{pmatrix} x_1 \\ x_m \end{pmatrix} \in \mathbb{R}^m$ we also write $X = \begin{pmatrix} x_1, ..., x_m \end{pmatrix}^T$, and we call $x_1, ..., x_m$ its coordinates.

The set \mathbb{R}^m , together with the addition $X+Y:=(x_1+y_2,...,x_m)^T$ where $X=(x_1,...,x_m)^T$ and $Y=(y_1,...,y_m)^T$, and the scalar multiplication $X:=(X_1,...,X_m)^T$, where $X\in\mathbb{R}$ and $X:=(X_1,...,X_m)^T$, where $X\in\mathbb{R}$ and $X:=(X_1,...,X_m)^T$, forms a vector space over \mathbb{R} .

We also recall that a family of vectors $(v_1,...,v_m)$ with $v_i \in \mathbb{R}^m$ for every i=1,...,mis a basis for the space \mathbb{R}^m if these

vectors are linearly independent (in aniearly independent vectors in \mathbb{R}^m span the entire space).

The standard basis for \mathbb{R}^m is given by

(e1,..., em) with ej:= (0,...,1,...,0)..., j-th position

We want to measure lengths of vectors and distances in RM.

Definition. A norm on \mathbb{R}^m is a mapping $11 \cdot 11 : \mathbb{R}^m \to [0, \infty)$ with the following properties:

- a) If ||x|| = 0, then x = 0,
- b) lax1 = 1211x11 for neR, xER",
- c) ||x+y|| ≤ ||x|| + ||y|| for x, y ∈ RM.

The norm ||x|| can be interpreted as the length of the vector x, and the distance between two points $x, y \in \mathbb{R}^m$ is given by ||x-y||, where $x-y:=x+\epsilon iy$.

One can show that all norms on \mathbb{R}^m are equivalent in the following sense: If 11.11_1 and 11.11_2 are two morms on \mathbb{R}^m , then we can find constants c, C > 0 such that for all $x \in \mathbb{R}^m$

 $|C|| \times ||_1 \le ||X||_2 \le C ||X||_1$

Hence, in the following we usually only consider the <u>Euclidean morm</u> given by $\|X\| := \left(\sum_{i=1}^{m} x_i^2\right)^{\frac{1}{2}}$ for $X = (X_1, ..., X_m)^T \in \mathbb{R}^m$.

Moreover, a vector $x \in \mathbb{R}^m$ is called a <u>unit</u> <u>Vector</u> if ||x|| = 1.

If $x \neq 0$, then $\frac{x}{\|x\|} := \frac{1}{\|x\|} \cdot x$ is a unit vector.

We also want to measure angles between vectors.

Definition. An inner product on \mathbb{R}^n is a mapping $\langle \cdot, \cdot \rangle : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ with the following properties:

For $x_1 y_1 z \in \mathbb{R}^n$ and $x_1 \mu \in \mathbb{R}$ a) $\langle x_1 y_2 \rangle = \langle y_1 x_2 \rangle$

- $6) \langle \lambda x + \mu y, Z \rangle = \lambda \langle x, Z \rangle + \mu \langle y, Z \rangle$
- c) $\langle X, X \rangle$ 7,0 and if $\langle X, X \rangle = 0$, then X = 0.

Remark. The symmetry a) and the linearity in the first argument b) together imply

linearity also in the second argument:

$$\langle X, \lambda Y + \mu Z \rangle = \langle \lambda Y + \mu Z, X \rangle = \lambda \langle Y, X \rangle + \mu \langle Z, X \rangle$$

$$= \lambda \langle X, Y \rangle + \mu \langle X, Z \rangle.$$

$$= \lambda \langle X, Y \rangle + \mu \langle X, Z \rangle.$$

The most important inner product on RM is given by the so-called standard or Euclidean uner product

$$\langle x_1 / 7_2 \rangle := \sum_{i=1}^{m} x_i / i = x^T y$$
, where

 $X = (X_1, \dots, X_m)^T$ and $Y = (Y_1, \dots, Y_m)^T$.

It can be shown that any other uner product (.7) on \mathbb{R}^{M} can be expressed in terms of (.7): $(x_{1}y) = (x_{1}Ay)_{2}$, where A is an MXM

matrix with real entries which is symmetric (A = AT) and positive definite.

In the following we usually only consider the standard unner product and Funply write < x, y, 7 instead of < x, y, 72.

08/03/25

A connection between the Euclidean product and the Euclidean norm is given by $\sqrt{\langle x_i x_7 \rangle} = \left(\sum_{i=1}^{m} x_i^2\right)^{\frac{1}{2}} = ||x||, x \in \mathbb{R}^n,$

and by the <u>Cauchy-Schwatz</u> inequality $|\langle x,y \rangle| \leq ||x|| \cdot ||y||$, $||x,y| \in \mathbb{R}^m$.

By this inequality we have for $X,Y \in \mathbb{R}^m$ - $\|X\|\|\|Y\| \le \langle X,Y \rangle \le \|X\|\|Y\|$.

Hence, if $X, y \neq 0$, we have $-1 \leq \frac{\langle x, y \rangle}{\|x\| \|y\|} \leq 1.$

Since $\cos: [0, TE] \rightarrow [-1, 1]$ is bijective, for each $x_1y \in \mathbb{R}^m \setminus \{0\}$, we can find a unique number $\theta \in [0, TE]$ such that

 $\cos \Theta = \frac{\langle x, y \rangle}{\|x\| \|y\|}$

Definition. For vectors $x,y \in \mathbb{R}^m \setminus \{0\}$ we define their <u>angle</u> as the unique number $\theta \in [0, TE]$ such that $\cos \theta = \frac{\langle x,y \rangle}{\|x\| \|y\|}$.

Moreover, we call x and y orthogonal if $\theta = \frac{\pi}{2}$, i.e., $\langle x, y \rangle = 0$.

Example. Let $(e_1, ..., e_m)$ be the standard basis of \mathbb{R}^m , then $\langle e_i, e_j \rangle = \sum_{k=1}^m \langle e_i \rangle_k \langle e_j \rangle_k = \int_{1/2}^{0} (i+j) e_k$

Hence, these vectors are pairwise orthogonal and all of them have length 1.

Definition. A basis $(v_1,...,v_m)$ of \mathbb{R}^m is called <u>orthonormal</u>, if its vectors are pairwise orthogonal and each v_i has $u_m i$ $Morm, i.e., <math>||v_i|| = 1$, i = 1,...,m.

Next we introduce the notion of convergence for sequences of vectors in RM. The case M=1 corresponds to sequences of real numbers, for which we recall:

A sequence of real numbers $(a_k)_{k\in\mathbb{N}}$ is convergent with limit $a\in\mathbb{R}$ if for every E>0 there exists a $k_0\in\mathbb{N}$ such that $|a_k-a|<\varepsilon$ for all $k>k_0$.

11/09/25

In higher dimensions we use the Euclidean norm 11.11 instead of the modules 1.1.

Definition Let $(X_R)_{R\in\mathbb{N}}$ be a sequence of vectors $X_R \in \mathbb{R}^m$ and $X \in \mathbb{R}^m$. The sequence $(X_R)_{R\in\mathbb{N}}$ is <u>convergent</u> with limit X if for every E > 0 there exists a $R \circ \in \mathbb{N}$ such that $\|X_R - X\| < E$ for all $R \supset R_0$.

In this case we write $\lim_{k\to\infty} x_k = x$, or $x_k \to x$, $k\to\infty$.

Instead of working with this definition it sometimes is more convenient to work with the real-valued coordinates.