Uniwersytet Jagielloński w Krakowe Wydział Matematyki i Infromatyki Instytut Matematyki

Dmytro Karpus Zastosowania miar Hausdorffa

Praca proseminaryjna napisana pod kierunkiem Prof. Piotra Tworzewskiego

Spis treści

\mathbf{W} stęp			3
1	1.1 Konstrukcja Caratheodory'ego		
	1.2 1.3 1.4	Miara Hausdorffa	6
2	pod	ra Lebesgue'a na rozmaitościach Miara Lebesgue'a na podrozmaitościach	8
3	pod Hau 3.1	ra Lebesgue'a na rozmaitościach jako miara usdorffa Przygotowanie	14
Bibliografia			18

Wstęp

W tej prace będzie opisana miara Hausdorffa i jej zastosowanie do mierzania zbiorów na podrozmaitościach w przestrzeni \mathbb{R}^n .

W tym celu w pierwszym rozdziale wprowadzimy konstrukcę Caratheodory'ego. Potem zbudujemy na niej miary Hausdorffa i Lebesgua oraz zbadamy własności tych miar, które będą wykorzystywane w dalszych dowodach.

W następnym rozdziale wprowadzimy definicę miary Lebesgue'a na podrozmaitościach. Jednocześnie zdefinujemy Jacobian i udowodnimy równoważność tej definicji do definicji Federa [Fed]. Potem pokażemy ważne własności tej miary i jej σ -algebry. W końcu drugiegu rozdiału udowodnimy twierdzenie, które pokazauje jak liczyć miarę Lebesgue'a na podrozmaitościach.

W trzecim rozdziale na wstępie udowodnimy ważne fakty przygotowawcze dotyczące funckji klasy C^1 dla dowodu głównego twierdzenia tej pracy proseminaryjnej. Potem udowodnimy twierdzenie dotyczące tego jak liczyć miarę Hausdorffa obrazu funckji klasy C^1 . Na podstawie tego twierdzenia oraz twierdzenia z drugiego rozdziału o tym jak liczyć miarę Lebesgue'a na podrozmaitościach dowiemy się, że miara Lebesgue'a na podrozmaitościach i miara Hausdorffa to jest to samo, co pozwala nam wykorzystywać wszelkie własności miary Hausdorffa dla liczenia miar zbiorów i całek na podrozmaitościach w \mathbb{R}^n .

Rozdział 1 Miara Lebesgue'a i Hausdorffa

1.1 Konstrukcja Caratheodory'ego

Definicja 1.1.1 (Konstrukcja Caratheodory'ego)

Niech (X, ϱ) będzie przestrzenią metryczną, niech $\mathcal{F} \subset \mathcal{P}(X)$, $\emptyset \in \mathcal{F}$ i niech $\zeta : \mathcal{F} \to [0, +\infty]$ będzie odwozorowaniem takim, że $\zeta(\emptyset) = 0$. Funkcję ζ będziemy czasem nazywać funkcją tworzącą. Dla dowolnego $0 < \delta \leqslant +\infty$ niech $\phi_{\delta}, \phi : \mathcal{P}(X) \to [0, +\infty]$ będą zdefiniowane następująco:

$$\phi_{\delta}(A) := \inf \{ \sum_{j=1}^{\infty} \zeta(A_j) : A_j \in \mathcal{F}, diam(A_j) \leqslant \delta, A \subset \bigcup_{j=1}^{\infty} A_j \}, \quad A \subset X$$

$$\phi := \sup_{\delta > 0} \phi_{\delta}$$

Powyższa konstrukcja nazywa się konstrukcją Carathedeorego.

Twierdzenie 1.1.1 (o miarach z konstrukcji Carathedeory'ego)

 ϕ_{δ} dla $\delta \in (0, +\infty]$ oraz ϕ są miarami zewnętrznymi na X.

Dowód: [Two, 2.16]

Twierdzenie 1.1.2 (Algebra zupełna z konstrukcji Carathedeory'ego)

Niech X będzie zbiorem, α - miara zewnętrzna na X i \mathfrak{M} - rodzina zbiorów miarzalnych w sensie Caretheodory'ego, to znaczy takich zbiorów A, że

$$\forall T \subset X : \alpha(T \cap A) + \alpha(T \setminus A) = \alpha(A)$$

Wtedy:

- 1. \mathfrak{M} jest σ -ciałem,
- 2. $(A \subset X \land \alpha(A) = 0) \Longrightarrow A \in \mathfrak{M}$,
- 3. $\alpha|_{\mathfrak{M}}$ jest miarą zupełną na \mathfrak{M} .

Dowód: ([Two, 2.30])

1.2 Miara Hausdorffa

Definicja 1.2.1 (Miara Hausdorffa)

Niech (X,d) będzie przestrzenią metryczną. Ustalmy $p \in [0,+\infty]$. Dla $Y \subset X$ przyjmujemy

$$h^{p}(Y) = \begin{cases} 0, & Y = \emptyset, \\ 2^{-p}\alpha(p)(diamY)^{p}, & Y \neq \emptyset. \end{cases}$$

gdzie $\alpha(p) = \frac{[\Gamma(\frac{1}{2})]^p}{\Gamma(\frac{1}{2}p+1)}$, wartości $diam(Y)^p$ dla dowolnych srednic z zakresu $[0,+\infty]$ otrzymujemy przedłuczając funkcję $(0,+\infty)\ni x\to x^p\in (0,+\infty)$ do ciągłego przekstałcenia przedziałów $[0,+\infty]$ przy ustalionym $p\in [0,+\infty)$.

Definicja 1.2.2 (\mathcal{B} -regularity)

Miara zewnętrzna μ jest \mathcal{B} -regularna wtedy i tylko wtedy, gdy dla każdego zbioru A istnieje taki zbiór borelowski $A \subset B$, że $\mu(A) = \mu(B)$.

Twierdzenie 1.2.1 (Własności miary Hausdorffa)

Niech (X, d) przestrzeń metryczna, $p \in [0, +\infty)$. Wtedy:

- 1. \mathcal{H}^p jest miarą zewnętrzną metryczną na X,
- 2. $\mathcal{B}(X) \subset H_p$, gdzie H_p to σ -algebra zbiorów mierzalnych w sensie Caretheodory'ego,
- 3. \mathcal{H}^p na H_p jest miarą zupełną,
- 4. $\forall Y \subset X \exists G_{\delta} \ni G \subset Y : \mathcal{H}^p(G) = \mathcal{H}^p(Y),$
- 5. \mathcal{H}^p jest miara zewnętrzna \mathcal{B} -regularna na X.

Dowód: [Two, 2.51]

Twierdzenie 1.2.2 (Borelowska regularność miary Hausdorffa)

(X,d) - przestrzeń metryczna, $p \in [0,+\infty), A \subset X.\mathcal{H}^p(A) < +\infty$. Wtedy następujące warunki są równoważne:

- 1. $A \in H_n$
- 2. $\exists G \text{ typu } G_{\delta} \exists C \subset X : \mathcal{H}(C) = 0 \land A = G \backslash C$,
- 3. $\exists B \in \mathcal{B}(X) : \exists C \subset X : \mathcal{H}^p(C) = 0 \land A = B \cup C$.

Dowód: [Two, 2.52]

1.3 Miara Lebesgue'a

Definicja 1.3.1 (Miara Lebesgue'a)

Niech \mathcal{F} będzie rodzina kostek zwartych w \mathbb{R}^m , $m \ge 1$ czyli zbiorów postaci

$$I = I_1 \times \cdots \times I_m$$

gdzie $I_j = [a_j, b_j]$ są zwarte przedziały $\mathbb R$ dla $j = 1, \dots, m$. Określiamy objętość I jako

$$vol(I) = (b_1 - a_1) \cdots (b_m - a_m)$$

Dodatkowo przyjmijmy $vol(\emptyset) = 0$

W ten sposób otrzymujemy funkcję

$$\zeta: \mathcal{F} \ni I \to \zeta(I) = vol(I) \in [0, +\infty].$$

Wtedy korzystając z konstrukcji Carateodry'ego i funkcji ζ jako funckji tworzącej dostajemy m-wymiarową miarę Lebesgue'a \mathcal{L}^m oraz jej σ -algebry L_m .

Twierdzenie 1.3.1 (Własności miary Lebesgue'a)

Niech $m \in \mathbb{N} \setminus \{0\}$. Wtedy:

- 1. \mathcal{L}^m jest miarą zewnętrzną metrzyczną w \mathbb{R}^m ,
- 2. $\mathcal{B}(\mathbb{R}^m) \subset L_m$,
- 3. \mathcal{L}^m na L_m jest miarą zupełną,
- 4. Jeśli I kostka, to $\mathcal{L}^m(I) = vol(I)$,
- 5. Jeśli Y ograniczony, to $\mathcal{L}^m(Y) < \infty$,
- 6. \mathcal{L}^m jest σ -skończona,
- 7. $\forall Y \subset \mathbb{R}^m \exists G \subset \mathbb{R}^m : G$ typu $G_\delta \wedge Y \subset G \wedge \mathcal{L}^m(G) = \mathcal{L}^m(Y)$,
- 8. \mathcal{L}^m jest miarą zewnętrzną regularną ,
- 9. $(Y \subset \mathbb{R}^m \land a \in \mathbb{R}^m) \Longrightarrow (\mathcal{L}^m(a+Y) = \mathcal{L}^m(Y))$,
- 10. $(Y \subset \mathbb{R}^m, s \in [0, +\infty)) \Longrightarrow (\mathcal{L}^m(sY) = s^m \mathcal{L}^m(Y)).$

Dowód: [Two, 3.41]

Twierdzenie 1.3.2 (Borelowska regularność miary Lebesgue'a)

Niech $A \subset \mathbb{R}^m, \, m \geqslant 1$. Wtedy następujące warunki są równoważne:

- 1. $A \in L_m$,
- 2. $\forall \epsilon > 0 \exists G \in top(\mathbb{R}^m) : A \subset G \land \mathcal{L}^m(G \backslash A) < \epsilon$,
- 3. $A = B \setminus C$, gdzie B typu G_{δ} , $\mathcal{L}^m(C) = 0$,
- 4. $\forall \epsilon \exists F \in cotop(\mathbb{R}^m) : F \subset A \wedge \mathcal{L}^m(A \backslash F) = 0$,
- 5. $A = B \cup C$, gdzie B typu F_{σ} i $\mathcal{L}^{m}(C) = 0$,
- 6. $A = B \cup C$, gdzie B jest σ -zwarty i $\mathcal{L}^m(C) = 0$.

Dowód: [Two, 3.42]

1.4 Równość m-wymiarowych miar Lebesgue'a i Hausdorffa w \mathbb{R}^m

Twierdzenie 1.4.1 (Równość miar Lebesug'a i Hausdorffa)

Niech $Y \subset \mathbb{R}^m$, $m \ge 1$. Wtedy $\mathcal{H}^m(Y) = \mathcal{L}^m(Y)$.

Dowód: [Two, 3.37]

Dowód tego twierdzenia polega na wykorzystywaniu nierówności izodiametrycznej [Fed, 2.10.3] i twierdzeniu Vitallego [Fed, 2.8.18]. Spoczątku pokazujemy, że równość jakieś miary μ na \mathbb{R}^n na kostkach symetrycznych do miary Lebesgue'a implikuje, że μ jest miarą Lebesgue'a, co było zrobione w lemacie [Two, 3.35]. Potem biorąc kostku i wykorzystując twierdzenie Vitallego, które mówi że możemy znalieźć takie pokrycie kulami domkniętymi rozłącznymi o średnice co najwyżej ϵ tej kostki, że miara Lebesgue'a ich różnicy będzie równa 0. To pozwala na pokazanie nierówności w pierwszą stronę:

$$\mathcal{H}_{\epsilon}^{m}(\bigcup_{n=0}^{\infty} B_{n}) \leqslant \sum_{n=1}^{\infty} \alpha(m) 2^{-m} (diam(B_{n}))^{m} = \sum_{n=1}^{\infty} \mathcal{L}^{m}(B_{n}) = \mathcal{L}^{m}(C) = 1$$

gdzie $\{B_n\}_{n\in\mathbb{N}}$ to są te kule oraz 1 na końcu, to jest objętość tej kostki C (możemy założyć, że jest symetryczna). Skąd mamy nierówność $\mathcal{H}^m(C) \leq 1$. Żeby pokazać nierówność w drugą stronę będziemy potrzebowali jedynie tylko nierówności izodiametrycznej, która mówi że

$$\mathcal{L}^m(A) \leqslant \alpha(m)2^{-m}diam(A)$$
, $A \subset \mathbb{R}^m$

Oczywiście, biorąc dowolne pokrycie $\{Y_n\}_{n\in\mathbb{N}}$ kostki C o średnice co najwyżej $\epsilon>0$ wynika

$$1 \leqslant \sum_{n=0}^{+\infty} \mathcal{L}^m(Y_n) \leqslant \sum_{n=0}^{+\infty} \alpha(m) 2^{-n} (diam(Y_n))^m$$

Co z samej konstrukcji miary Hausdorffa daje nam żądaną nierówność $1 \leq \mathcal{H}^m(C)$.

Rozdział 2 Miara Lebesgue'a na podrozmaitościach

2.1 Miara Lebesgue'a na podrozmaitościach

W tym rozdziale wprowadzimy tak zwaną miarę Lebesgue'a na podrozamitościach, która się pojawiła w wykładzie M. Jarnickiego [Jar] oraz pojawią się w większości wykładów analizy dotyczących omawianych tutaj obiektów.

Definicja 2.1.1 (Zbiory mierzalne na podrozmaitościach)

Niech $M \in \mathcal{M}_d^1(\mathbb{R}^n)$, to znaczy M jest d-wymiarową podrozmaitością w \mathbb{R}^n klasy C^1 .

- Jeżeli d=0, to przez miarę Lebesgue'a na M rozumiemy miarę liczącą. Kładziemy $L_M=\mathcal{P}(\mathbb{R}^m)$
- W przypadku gdy d=n podrozmaitość M jest zbiorę otwartym w \mathbb{R}^n . Wtedy przyjmujemy $\mathcal{L}_M:=\mathcal{L}^n$
- Przypadek $1 \leq d < n$. Zdefinujemy L_M jako rodzinę wszystkich $A \subset M$ takich, że dla dowolnej lokalnej parametryzacji $p: P \to U$ mamy $p^{-1}(A) \in L_d$.

Twierdzenie 2.1.1

 L_M jest σ -algebra oraz $\mathcal{B}(\mathbb{R}^n) \subset L_M$.

Dowód:

Dla $d \in \{0, n\}$ to twierdzenie jest proste. Niech 0 < d < n. Oczywiście $\emptyset \in L_M$. Ustalmy $A \in L_M$. Pokażemy, że $A^C \in L_M$. Ustalamy dowolną parametryzację $p: P \to U$. Mamy $p^{-1}(A^C) = p^{-1}(M \setminus A) = p^{-1}(M) \setminus p^{-1}(A) = P \setminus p^{-1}(A)$. Poniważ P jest otwarty oraz $p^{-1}(A) \in L_d$ to stąd wynika, że $p^{-1}(A^C) \in L_d$. Teraz pokażemy, że przeliczalna suma $\{A_j\}_{j\in\mathbb{N}} \subset L_M$ jest w L_M co kończy dowód. Ustaliamy dowolne $p: P \to U$.

$$p^{-1}(\bigcup_{i\in\mathbb{N}}A_i)=\bigcup_{i\in\mathbb{N}}p^{-1}(A_i)\in L_d$$

Zostało pokazać, że zbiory borelowske są w tej algebrze. Wystarczy pokazać, że zbioru otwarte są w L_M , ale widać, że tak jest z samej postaci tych parametryzacji. To kończy dowód.

Twierdzenie 2.1.2

Niech $(p_i: P_i \to U_i)_{i \in I}$ będzie dowolnym, co najwyżej przeliczalnym, układem lokalnych parametryzacji takim, że $\bigcup_{i \in I} U_i = M$. Wtedy:

- (a) Dla $A \subset M$ mamy: $A \in L_M \Leftrightarrow \forall i \in I : p_i^{-1}(A) \in L_d$.
- (b) Dla $f:M\to Y$. gdzie Y jest przestrzenią topologiczną, następujące warunki są równoważne:
 - (i) $f \in \mathcal{M}(M, Y, L_M)$,
 - (ii) $f \circ p \in \mathcal{M}(P, Y, L_d)$ dla dowolnej parametryzacji $p: P \to U$,
 - (iii) $\forall i \in I : f \circ p \in \mathcal{M}(P_i, Y, L_d).$

Dowód:

- (a) Niech $p:P\to U$ będzie dowolną parametryzacją i niech $\phi_i:p^{-1}\circ p_i:p_i^{-1}(U\cap U_i)\to p^{-1}(U\cap U_i)$, dla $i\in I$. Wtedy $p^{-1}(A)=p^{-1}(A\cap\bigcup_{i\in I}U_i)=\bigcup_{i\in I}p_i^{-1}(A\cap U_i)=\bigcup_{i\in I}p_i^{-1}(A\cap U_i)$
- (b) (i) \Longrightarrow (ii): $(f \circ p)^{-1}(\Omega) = p^{-1}(f^{-1}(\Omega))$
 - (ii) \Longrightarrow (iii): oczywsite
 - (iii) \Longrightarrow (i): $p_i^{-1}(f^{-1}(\Omega)) = (f \circ p_i)^{-1}(\Omega)$ i korzystamy z (a)

Definicja 2.1.2 (Jakobian odwzorowania różniczkowalnego)

Dla odwozorowania $f = (f_1, ..., f_n) : \Omega \to \mathbb{R}^n$, gdzie Ω jest zbiorem otwartym w \mathbb{R}^d , $1 \leq d \leq n$, niech $J_d f : \Omega \to \mathbb{R}_+$

$$J_d f := \left(\sum_{I \in \bigwedge_d^n} \left| \det \left[\frac{\partial f_{i_j}}{\partial t_k} \right]_{j,k=1,\dots,d} \right|^2 \right)^{1/2}$$

$$\bigwedge_{d}^{n} := \{(i_1, \cdots, i_d) : 1 \leqslant i_1 < \cdots < i_d \leqslant n\}$$

Odnotujmy równieź, że $J_d f(t_0) > 0 \Leftrightarrow rank(f'(t_o)) = d$.

Lemat 2.1.1 (Równoważność z definicją Federera)

Pokażemy, że ta definicja Jacobianu jest równoważna definicji przez iloczyn zewnętrzny zdefiniowany w książce Federera "Geometric Mesure Thoery" w 3.2.1 [Fed]. Będzie wystaczająco pokazać równość dla odwzorowania liniowego $L: \mathbb{R}^n \to \mathbb{R}^m, \quad 1 \leqslant n \leqslant m$. Niech e_1, \cdots, e_n i e'_1, \cdots, e'_m bazy kanoniczne odwpoiednio dla \mathbb{R}^n i \mathbb{R}^m . Wtedy

$$L(e_i) = \sum_{j=1}^{m} a_{ji} e_j'$$

Dalej chcemy pokazać, że definicja Federera i definicja w tu są równoważne. Oczywiście:

$$\|\bigwedge^{n} L\| = |(\bigwedge^{n} L)(e_{1} \wedge \dots \wedge e_{n})| = |L(e_{1}) \wedge \dots \wedge L(e_{n})| = \left|(\sum_{j_{1}=1}^{m} a_{j_{1},1} e'_{j_{1}}) \wedge \dots \wedge (\sum_{j_{n}=1}^{m} a_{j_{n},n} e'_{j_{n}})\right|$$

$$= \left| \sum_{\lambda \in \bigwedge_{d}^{n}; \sigma \in S_{n}} a_{\lambda(\sigma(1)), 1} \cdots a_{\lambda(\sigma(1)), n} \cdot e'_{\lambda(\sigma(1))} \wedge \cdots \wedge e'_{\lambda(\sigma(n))} \right|$$

$$= \left| \sum_{\lambda \in \bigwedge_{n}^{m}} \left(\sum_{\sigma \in S_{n}} (sgn(\sigma)) a_{\lambda(\sigma(1)), 1} \cdots a_{\lambda(\sigma(n)), n} \right) e_{\lambda} \right|$$

$$= \left| \sum_{\lambda \in \bigwedge_{n}^{m}} M_{\lambda} e_{\lambda} \right| = \sqrt{\sum_{\lambda \in \bigwedge_{n}^{m}} M_{\lambda}^{2}}$$

Ostatnia równość wynika z tego, że baza algebry zewnętrznej złożona z $\{e_{\lambda} : \lambda \in \bigwedge_{n}^{m}\}$ jest ortonormalna.

Pokazanie tej równoważności pozwala na wykorzystywanie wszelkich własności iloczynu zewnętrzego i jego normy, które znajdziemy w książce Federera [Fed].

Lemat 2.1.2 (Jacobian zestawienia)

Jeżeli $\phi: G \to \Omega, \ f: \Omega \to \mathbb{R}^n$ są odwzorowaniami różniczkowalnymi, gdzie $G, \Omega \in top(\mathbb{R}^d)$ oraz $\phi(G) \subset \Omega$ to

$$J_d(f \circ \phi) = ((J_d f) \circ \phi) \cdot |\phi'|$$

Dowód:

$$\| \bigwedge^d f'(\phi) \circ \phi' \| = \| \bigwedge^d f'(\phi) \| \| \bigwedge^d \phi' \| = ((J_d f) \circ \phi) \cdot |\phi'|.$$

Dalej pokażamy, że istnieje miara \mathcal{L}^M na tych podrozmaitościach, która, jak w następnych rozdziałach się dowiemy, jest równy mierze Hausdorffa. Dla przypadku d=0, niech \mathcal{L}^M będzie miara liczącą oraz dla przypadku d=n - miarą Lebesgue'a.

Twierdzenie 2.1.3 (Miara Lebesgue'a na podrozmaitościach)

Istnieje dokładnie jedna miara $\mathcal{L}^M:L_M\to [0,+\infty]$ taka, że dla dowolnej lokalnej parametryzacji $p:P\to U$ mamy:

$$\mathcal{L}^{M}(A \cap U) = \int_{p^{-1}(A)} J_{d}p d\mathcal{L}^{d}, \quad A \in L_{M}$$

Ponadto miara ta jest zupełna, \mathcal{B} -regularna oraz istnieje ciąg $(\Omega_j)_{j=1}^{\infty}$ zbiorów otwartych i relatywnie zwartych w M, dla którego $M = \bigcup_{j=1}^{\infty} \Omega_j$ i $\mathcal{L}^M(\Omega_j) < \infty, j \in \mathbb{N}$. Miara \mathcal{L}^M nosi nazwę miary Lebesgue'a na M.

Dowód:

Ustaliamy przeliczalną rodzinę lokalnych parametryzacji $(p_j: P_j \to U_j)_{j \in \mathcal{N}}$ taką, że $\bigcap_{j=1}^{\infty} U_j = M$. NIech $B_1 := U_1, \ B_j := U_j \setminus (U_1 \cup \cdots \cup U_{j-1}), \ j \geq 2$. Oczywiście $B_j \in \mathcal{B}(M) \subset L_M, \ j \in \mathbb{N}, \ \text{oraz} \bigcup_{j=1}^{\infty} B_j = M$. Teraz dla zbiory $A \in L_M$ kładziemy:

$$\mathcal{L}^{M}(A) := \sum_{i=1}^{\infty} \int_{p_{i}^{-1}(A \cap B_{j})} J_{d}p_{j}d\mathcal{L}^{d}$$

Udowodnimy, że jest to miara. Niech $(A_k)_{k=1}^{\infty}$ będzie ciągiem parami rozłącznych zbiorów mierzalnych. Wtedy:

$$\mathcal{L}^{M}(\bigcup_{k=1}^{\infty} A_{k}) = \sum_{j=1}^{\infty} \int_{p_{j}^{-1}((\bigcup_{k=1}^{\infty} A_{k}) \cap B_{j})} J_{d}p_{j}d\mathcal{L}^{d} = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \int_{p_{j}^{-1}(A_{k} \cap B_{j})} J_{d}p_{j}d\mathcal{L}^{d}$$

$$= \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \int_{p_j^{-1}(A_k \cap B_j)} J_d p_j d\mathcal{L}^d = \sum_{k=1}^{\infty} \mathcal{L}^M(A_k)$$

Teraz musimy pokazać, że zachodzi równość z tego twierdzenia. Ustalmy lokalną parametryzację $p:P\to U$ i niech $\phi_j:=p^{-1}\circ p_j:p_j^{-1}(U\cap U_j)\to p^{-1}(U\cap U_j),\ \psi_j:=\phi_j^{-1},\ j\in\mathbb{N}$. Wtedy dla $A\in L_M$ takiego, że $A\subset U$, korzystając z twierdzenia o zmianie zmiennych mamy:

$$\int_{p^{-1}(A)} J_d p d\mathcal{L}^d = \sum_{j=1}^{\infty} \int_{p^{-1}(A \cap B_j)} J_d p d\mathcal{L}^d = \sum_{j=1}^{\infty} \int_{\phi_j(p_j^{-1}(A \cap B_j \cap U))} J_d(p_j \circ \psi_j) d\mathcal{L}^d$$

$$= \sum_{j=1}^{\infty} \int_{p_j^{-1}(A \cap B_j)} (J_d(p_j \circ \psi_j) \circ \phi_j) |\phi_j'| d\mathcal{L}^d = \sum_{j=1}^{\infty} \int_{p_j^{-1}(A \cap B_j)} J_d p_j d\mathcal{L}^d = \mathcal{L}^M(A)$$

NIech $\mu: L_M \to [0, +\infty]$ będzie inną miarą spełniającą tą równość. Wtedy dla $A \in L_M$ mamy:

$$\mu(A) = \sum_{i=1}^{\infty} \mu(A \cap B_j) = \sum_{i=1}^{\infty} \int_{p_j^{-1}(A \cap B_j)} J_d p_j d\mathcal{L}^d = \mathcal{L}^m(A)$$

Stąd wynika, że \mathcal{L}^M jest jedyna.

Rozdział 3 Miara Lebesgue'a na podrozmaitościach jako miara Hausdorffa

3.1 Przygotowanie

Lemat 3.1.1

Niech $\Omega \in top(\mathbb{R}^n)$, $f: \Omega \to \mathbb{R}^m$ jest klasy C^1 , $1 \leq n \leq m$, $a \in \Omega$ oraz T:=f'(a) monomorfizm. Wtedy dla $\lambda > 1$ istnieje takie r > 0, że:

- 1. $K := B(a,r) \subset \Omega$,
- 2. $\forall h \in \mathbb{R}^m, x \in K : \lambda^{-1}|T(h)| \leq |f'(x)(h)| \leq \lambda |T(h)|$,
- 3. $\forall x_1, x_2 \in K : \lambda^{-1}|T(x_1) T(x_2)| \leq |f(x_1) f(x_2)| \leq \lambda |T(x_1) T(x_2)|$,
- 4. $f|_K: K \to f(K)$ jest bilipschitzowskie.

Dowód:

Wybieramy $\epsilon > 0$, tak aby

$$\epsilon(\frac{1}{\lambda - 1} + \frac{1}{1 - \lambda^{-1}}) \le \inf\{|f'(a)(h)| : |h| = 1\} = \|f'(a)\|$$

Wtedy mamy:

$$\begin{cases} \epsilon |h| \leqslant (\lambda - 1)|f'(a)(h)| &, h \in \mathbb{R}^m, \\ \epsilon |h| \leqslant (1 - \lambda^{-1})|f'(a)(h)| &, h \in \mathbb{R}^m. \end{cases}$$
(3.1)

Wybieramy następnie r > 0 tak aby:

- (a) $K = B(a, r) \subset \Omega$
- (b) $\forall x \in K : ||f'(x) f'(a)|| \le \epsilon$

Sprawdzamy 2.:

$$|f'(x)(h) - f'(a)(h)| \le \epsilon |h| \implies ||f'(x)(h)| - |f'(a)(h)|| \le \epsilon |h|$$

$$\implies -\epsilon |h| \le |f'(x)(h)| - |f'(a)(h)| \le \epsilon |h| \implies$$

$$|f'(a)(h)| - \epsilon |h| \le |f'(x)(h)| \le |f'(a)(h)| + \epsilon |h|$$

Korzystając z tego jake dobieraliśmy ϵ dostajemy:

$$\lambda^{-1}|T(h)| = \lambda^{-1}|f'(a)(h)| \le |f'(x)(h)| \le \lambda |f'(a)(h)| = \lambda |T(h)|$$

Dla sprawdzenia 3. rozpatrzymy następujące dwzorowanie:

$$F: K \ni x \to f(x) - f'(a)(x) \in \mathbb{R}^m$$

Mamy F'(x) = f'(x) - f'(a). Zatem $\forall x_1, x_2 \in K : |F(x_1) - F(x_2)| \le \epsilon |x_1 - x_2|$ skąd dalej dostajemy:

$$|(f(x_1) - f'(a)(x_1)) - (f(x_2) - f'(a)(x_2))| \le \epsilon |x_1 - x_2|$$

$$|(f(x_1) - f(x_2)) - f'(a)(x_1 - x_2))| \le \epsilon |x_1 - x_2|$$

$$||f(x_1) - f(x_2)| - |f'(a)(x_1 - x_2))|| \le \epsilon |x_1 - x_2|$$

$$|f'(a)(x_1 - x_2))| - \epsilon |x_1 - x_2| \le |f(x_1) - f(x_2)| \le |f'(a)(x_1 - x_2))| + \epsilon |x_1 - x_2|$$

Ponownie korzystając z tego jakie dobieraliśmy ϵ i podstawiając $h = x_1 - x_2$ dostajemy:

$$\lambda^{-1}|T(x_1) - T(x_2)| \le |f(x_1) - f(x_2)| \le \lambda |T(x_1) - T(x_2)|$$

Co kończy dowód 3. z którego natychmiast wynika 4.

Lemat 3.1.2

Niech $\Omega \in top(\mathbb{R}^n)$, $f: \Omega \to R^m$ będzie funckją klasy C^1 , $1 \leq n \leq m$ oraz f'(x) będize monomorfizmem dla $x \in \Omega$, $\lambda > 1$. Wtedy istnieje ciąg par $\{(B_v, T_v)\}_{v \in \mathbb{N}}$ takich, że $B_v \in \mathcal{B}(\mathbb{R}^n)$, $T_v: \mathbb{R}^n \to \mathbb{R}^m$ liniowe dla każdego $v \in \mathbb{N}$ oraz :

- 1. $B_v \cap B_\mu = \emptyset \iff \mu \neq v$,
- $2. \bigcup_{v \in \mathbb{N}} B_v = \Omega ,$
- 3. $\forall x \in B_v, h \in \mathbb{R}^n, v \in \mathbb{N} : \lambda^{-1}|T_v(h)| \leq |f'(x)(h)| \leq \lambda |T_v(h)|,$
- 4. $\forall x_1, x_2 \in B_v, v \in \mathbb{N} : \lambda^{-1} |T_v(x_1 x_2)| \le |f(x_1) f(x_2)| \le \lambda |T_v(x_1 x_2)|,$
- 5. $f|_{B_v}: B_v \to f(B_v)$ jest odwzorowaniem bilipschitzowskim dla $v \in \mathbb{N}$.

Dowód:

Korzystając z poprzedniego twierdzenia wiemy, że dla każdego $a \in \Omega$ możemy znalieźć (K,T) które spełniają warunki 3.-5. . Korzystając z tego, że \mathbb{R}^m jest ośrodkowa wiemy, że możemy znalieźć przeliczalną rodzinę $\{(K_v,T_v)\}_{v\in\mathbb{N}}$ taką, że ona spełnia 2.. Teraz definujemy indukcyjnie $B_0=K_0$ oraz $B_v=K_v \setminus \bigcup_{j=0}^{v-1} K_j$. Wtedy ciąg par $\{(B_v,T_v)\}_{v\in\mathbb{N}}$ spełnia wszystkie wymagane warunki

Lemat 3.1.3

Niech $f: \mathbb{R}^m \to \mathbb{R}^n$ jest funkcją Lipschitzowską o stałej C, oraz $A \subset \mathbb{R}^m$ i $p \in [0, +\infty)$. Wtedy:

$$\mathcal{H}^p(f(A)) \leqslant (Lip(f))^p \mathcal{H}^p(A)$$

Dowód:

Dla p=0 ta nierówność jest oczywista. Niech p>0. Jeśli Lip(f)=0 to f jest stała, a więc obraz tej funkcji jest miary zero. Niech teraz Lip(f)>0. Jeśli $\mathcal{H}^p(A)=+\infty$ to ta nierówność znowu jest oczywista. Pozostaje przypadek gdy $\mathcal{H}^p(A)<+\infty$ w którym korzystamy z nierówności

$$diam(f(Z)) \leq Lip(f)(diam(Z))$$

dla $Z \subset \mathbb{R}^m$

Twierdzenie 3.1.1

 $\Omega \in top(\mathbb{R}^n), \ f: \Omega \to \mathbb{R}^m \text{ klasy } C^1, \ 1 \leqslant n \leqslant m, \ f'(x) \text{ jest monomorfizmem dla } x \in \Omega.$ Wtedy:

- 1. $(A \subset \Omega, A \in L_n) \implies f(A) \in H_n$,
- 2. $(B \subset \mathbb{R}^m, B \in H_n) \Longrightarrow f^{-1}(B) \in L_n$.

Dowód 1.:

Dla początku musimy pokazać to, że obraz zbioru A miary zero jest miary zero. Wiemy, że dla każdego zbioru $A \subset \mathbb{R}^n$ zachodzi nierówność $\mathcal{H}^p(f(A)) \leq (Lip(f))^p \mathcal{H}^p(A)$, gdize $p \in [0, +\infty)$. Ponieważ A jest mairy zero to dostajemy, że f(A) musi być miary zero. Teraz pokażemy, że 1. zahcodzi dla zbiorów typu F_{σ} , to znaczy zbiory które są przeliczlną sumą zbiorów domkniętych. Niech $A = \bigcup_{j \in \mathbb{N}} K_j$, gdzie K_j to są zbiory domknięte. Ponieważ $f(A) = f(\bigcup_{j \in \mathbb{N}} K_j) = \bigcup_{j \in \mathbb{N}} f(K_j)$ to wystarczy pokazać, że każdy $f(K_j)$ jest mierzalny. Możemy założyć, że K_j jest zwarty. Ale wtedy obraz musi być zwarty, a więc domknięty, skąd wynika, że f(A) jest typu F_{σ} w \mathbb{R}^m , a więc borelowski, a więc mierzalny w sensie \mathcal{H}^n . Teraz wystarczy skorzystać z tego, że każdy $A \in L_n$ można przedstawić jako $C \setminus Z$, gdzie C jest typu F_{σ} oraz Z jest miary zero, co kończy dowód.

Dowód 2.:

Będziemy stosować lemat 3.1.2 o tym, że możemy znalieźć ciąg par $\{(B_v, T_v)\}_{v \in \mathbb{N}}$, takich, że B_v pokrywają Ω , oraz T_v robią odpowiednie ograniczenia dla f na B_v . Zauważmy, że możemy dobrać taki ciąg B_v , że $\mathcal{H}^n(B_v) < +\infty$. Mamy

$$f^{-1}(B) = \bigcup_{v=0}^{\infty} (f|_{B_v})^{-1}(B \cap f(B_v))$$

Ponieważ $B \cap f(B_v)$ ma miarę \mathcal{H}^n skończoną to $B \cap f(B_v) = C_v \cup Z_v$, gdzie C_v jest borelowski oraz Z_v jest mary \mathcal{H}^m zero. Wtedy

$$(f|_{B_v})^{-1}(B \cap f(B_v)) = (f|_{B_v})^{-1}(C_v) \cap (f|_{B_v})^{-1}(Z_v)$$

Korzystając z tego, że f jest bilipschitzowska na B_v dostajemy, że $(f|_{B_v})^{-1}(C_v)$ jest borelowska (bo przeciobraz zbioru borolewskiego przez funckju ciągłu) oraz $(f|_{B_v})^{-1}(Z_v)$ ma miarę \mathcal{H}^n zerową, gdzyć $(f|_{B_v})^{-1}$ jest lipszitzowska. Zatem z tego, że $\mathcal{H}^n = \mathcal{L}^n$ na \mathbb{R}^n wynika, że $(f|_{B_v})^{-1}(B \cap f(B_v))$ są L_n mierzalne dla $v \in \mathbb{N}$, a więc $f^{-1}(B) \in L_n$ co kończy dowód.

3.2 Miara Hausdorffa obrazu

Twierdzenie 3.2.1

 $\Omega \in top(\mathbb{R}^n), f: \Omega \to \mathbb{R}^m$ klasy $C^1, 1 \leq n \leq m$. $\forall x \in \Omega : f'(x)$ jest monormifizmem. Niech $L_n \ni A \subset \Omega$ taki, że $f|_A$ - injekcja. Wtedy:

- 1. $f(A) \in H_n$
- 2. $\mathcal{H}^n(f(A)) = \int_A J_n f d\mathcal{L}^n$.

Dowód:

Już wiemy, że $f(A) \in H_n$, więc musimy jedynie pokazać tą równość. Ustalmy $\lambda > 1$ i wybieramy rozbicie Ω oraz ciągi operatorów zgodnie z lematem 3.1.2 $\{(B_v, T_v)\}_{v \in \mathbb{N}}$. Korzystając z własności normy w algebrze zewnętrznej oraz tego, że $J_n f = \| \bigwedge_n f \|$, dostajemy dla $x \in B_v$ oraz $v \in \mathbb{N}$ nierówność

$$\lambda^{-n}|T_v| \leqslant (J_n f)(x) \leqslant \lambda^n |T_v|$$

która wynika bezpośrednio z następującej nierówności z lematu 3.1.2

$$|\lambda^{-1}|T_v(h)| \leq |f'(x)(h)| \leq \lambda |T_v(h)|$$
 dla $x \in B_v, h \in \mathbb{R}^{\times}, v \in \mathbb{N}$

oraz wniosku [Two, 8.41] z Analizy Matematycznej 3, który mówi, że

$$\forall v \in \mathbb{R}^n : |W_1(v)| \leqslant |W_2(v)| \implies |W_1| \leqslant |W_2|$$

gdzie W_1 i W_2 to są dowolne odwzorowania liniowe $\mathbb{R}^n \to \mathbb{R}^m$. Definujemy $A_v := A \cap B_v$. Wtedy całkując otrzymaną nierówność na A_v dostajemy

$$\lambda^{-n}|T_v|\mathcal{L}^n(A_v) \leqslant \int_{A_v} J_n f d\mathcal{L}^n \leqslant \lambda^n |T_v|\mathcal{L}^n(A_v)$$

W tym samym lemacie 3.1.2 mamy następującą nierówność

$$|\lambda^{-1}|T_v(x_1-x_2)| \le |f(x_1)-f(x_2)| \le \lambda |T_v(x_1,x_2)|$$
 dla $x_1,x_2 \in B_v$

Skąd już wynika, że

$$\lambda^{-1}|T_v(x_1) - T_v(x_2)| \le |f(x_1) - f(x_2)| \le \lambda |T_v(x_1) - T_v(x_2)|$$
 dla $x_1, x_2 \in A_v$

Rozpatrzymy diagram

dla $h_v = (T_v|_{A_v}) \circ (f|_{A_v})^{-1}$ mamy $Lip(h_v) \leq \lambda$, $Liph_v^{-1} \leq \lambda$ dla $v \in \mathbb{N}$. Zatem dla $v \in \mathbb{N}$ otrzymujemy

$$\lambda^{-n}\mathcal{H}^n(T_v(A_v)) \leqslant \mathcal{H}^n(f(A_v)) \leqslant \lambda^n\mathcal{H}^n(T_v(A_v))$$

Skąd dostajemy

$$\lambda^{-2n}\mathcal{H}^n(f(A_v)) \leqslant \int_{A_v} J_n f d\mathcal{L}^n \leqslant \lambda^{2n}\mathcal{H}^n(f(A_v))$$

Dalej sumując tą nierówność po $v \in \mathbb{N}$ dostajemy

$$\lambda^{-2n} \sum_{v=0}^{\infty} \mathcal{H}^n(f(A_v)) \leqslant \int_{A_v} J_n f d\mathcal{L}^n \leqslant \lambda^{2n} \sum_{v=0}^{\infty} \mathcal{H}^n(f(A_v))$$

Skąd na podstawie injektywności f dostajemy

$$\lambda^{-2n}\mathcal{H}^n(f(A)) \leqslant \int_A J_n f d\mathcal{L}^n \leqslant \lambda^{2n}\mathcal{H}^n(f(A))$$

Teraz widzimy, że jeśli $\mathcal{H}^n(f(A)) = +\infty$ to równość z tezy zachodzi. Jeśli $\mathcal{H}^n(f(A)) < +\infty$ to przechodząc z $\lambda > 1$ do 1 dostajemy równość

$$\mathcal{H}^n f(A) = \int_A J_n f d\mathcal{L}^n$$

Lemat 3.2.1

 $\Omega \in top(\mathbb{R}^n), f: \Omega \to \mathbb{R}^m$ klasy C^1 . $1 \le n \le m, A \subset \Omega, \forall x \in A: J_n f(x) = 0$. Wtedy $\mathcal{H}^n(f(A)) = 0$.

Dowód:

Tezę wystarczy pokazać dla $A := \{x \in \Omega : J_n f(x) = 0\}$. A jest σ -zwarta, więc dalej możemy ograniczyć dowód do zbiorów A zwartego. Przy ustalionym A i $\epsilon > 0$ rozważmy odwzorowanie

$$g_{\epsilon}: \Omega \ni x \to (\epsilon x, f(x)) \in \mathbb{R}^n \times \mathbb{R}^m$$

oraz rzutowanie $p: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ dla którego Lip(p) = 1. Mamy $f(A) = p(g_{\epsilon}(A))$. g_{ϵ} jest injekcją oraz $\forall x \in \Omega: g'_{\epsilon}(x)$ - monomorfizm, więc dostajemy nierówność:

$$\mathcal{H}^n(f(A)) \leqslant \mathcal{H}^n(g_{\epsilon}(A)) = \int_A J_n g_{\epsilon} d\mathcal{L}^n$$

Macierz g_{ϵ} ma taką postać:

$$\begin{bmatrix} \epsilon & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \epsilon \end{bmatrix}$$
$$f'(x)$$

Teraz zauważmy, że $(J_n g_{\epsilon})^2(x) = \epsilon^{2n} + \epsilon^{2n-1} s_1(x) + \cdots + \epsilon^2 s_{2n-2}(x)$, gdzie $s_1, ..., s_{2n-2}$ są ciągłe , więc ograniczone na A. Istnieje więc stała M > 0, że $J_n g_{\epsilon}(x) \leq M \epsilon$ dla $x \in A$, $\epsilon \in (0,1)$. Skąd dostajemy $\mathcal{H}^n(f(A)) \leq \int_A J_n g_{\epsilon} d\mathcal{L}^n \leq \epsilon M \mathcal{L}^n(A)$ dla $\epsilon \in (0,1)$ skąd wynika już żądana równość $\mathcal{H}^n(f(A)) = 0$

Twierdzenie 3.2.2 (Wzór na liczenie miary obrazu)

Niech $\Omega \in top(\mathbb{R}^n)$, $f: \Omega \to \mathbb{R}^m$ klasy C^1 , $1 \leq n \leq m$, $A \subset \Omega$, $A \in L_n$, $f|_A$ injekcja. Wtedy $\mathcal{H}^n(f(A)) = \int_A J_n f d\mathcal{L}^n$.

Dowód:

Niech $F:=\{x\in\Omega:J_nf(x)=0\}$ oraz $\Omega':=\Omega\backslash F$. Wiemy, że $\mathcal{H}^n(f(F))=0$. Stąd już wynika, że

$$\mathcal{H}^{n}(f(A)) = \mathcal{H}^{n}(f(A \cap \Omega')) + \mathcal{H}^{n}(f(A \cap F)) = \mathcal{H}^{n}(f(A \cap \Omega'))$$
$$= \int_{A \cap \Omega'} J_{n} f d\mathcal{L}^{n} + \int_{A \cap F} 0 d\mathcal{L}^{n} = \int_{A} J_{n} f d\mathcal{L}^{n}$$

3.3 Równość miar na podrozmaitościach

Twierdzenie 3.3.1 (Miary Lebesgue'a na podrozmaitościach to miara Hausdorffa) Niech $M \in \mathcal{M}_d^1(\mathbb{R}^n)$. Wtedy $L_M \subset H_d$ oraz $\mathcal{L}^M = \mathcal{H}^d$ na L_M .

Dowód:

Dla $d \in \{0, n\}$ teza twierdzenia jest oczywista. Niech $1 \leq d \leq n-1$. Ustalmy $A \in L_M$. Ustalmy dowolny atlas $\{p_v : P_v \to U_v\}_{v \in \mathbb{N}}$ podrozmaitości M. Definujemy indukcyjnie $C_0 := p_0^{-1}(A)$ oraz $C_v := p_v^{-1}(A) \setminus \bigcup_{j=0}^{v-1} p_j^{-1}(A)$. Ponieważ $A \in L_M \Leftrightarrow \forall v \in \mathbb{N} : p_v^{-1}(A) \in L_d$ to stąd wynika, że A jest H^d mierzalny jako suma obrazów $p_v^{-1}(A)$ przez p_v które są bijektywne klasy C^1 . Definujemy indukcyjnie $B_0 := U_0$ oraz $\mathcal{B}_v := U_v \setminus \bigcup_{j=0}^{v-1} U_j$, $C_0 := p_0^{-1}(B_0)$ oraz $C_v := p_v^{-1}(B_v)$. Dalej korzystając z własności miary \mathcal{L}^M dostajemy

$$\mathcal{L}^{M}(A) = \mathcal{L}^{M}(\bigcup_{v \in \mathbb{N}} A \cap B_{v}) = \sum_{v \in \mathbb{N}} \mathcal{L}^{M}(A \cap B_{v}) = \sum_{v \in \mathbb{N}} \mathcal{L}^{M}(p_{v}(p_{v}^{-1}(A \cap B_{v})))$$

$$= \sum_{v \in \mathbb{N}} \int_{p_v^{-1}(A \cap B_v)} J_d p_v d\mathcal{L}^d = \sum_{v \in \mathbb{N}} \mathcal{H}^d(p_v(p_v^{-1}(A \cap B_v))) = \sum_{v \in \mathbb{N}} \mathcal{H}^d(A \cap B_v) = \mathcal{H}^d(A)$$

To kończy dowód.

Bibliografia

- [Fed] H. Federer. Geometric Mesure Theory. Springer-Verlag Berlin Heidelberg GmbH.
- [Jar] M. Jarnicki. *Notatki do wykładu z analizy matematycznej*. Wykład prowadzony na Uniwersytecie Jagiellońskim.
- [Two] P. Tworzewski. *Notatki do wykładu z analizy matematycznej*. Wykład prowadzony na Uniwersytecie Jagiellońskim.