Сети ЭВМ и телекоммуникации

Лекция 2.

Адресация в сетях

Соответствие адресов

Требования к схеме адресации

- Уникальность
- Минимизация ручного труда
- Иерархичность
- Удобство для пользователя
- Компактность

Схемы адресации

- Аппаратные (МАС адреса): 0081005e24a8
- Символьные адреса: google.com
- Числовые (IP адреса): 192.168.13.56

МАС адрес

MAC-адрес (от англ. Media Access Control — управление доступом к среде, также Hardware Address, также физический адрес) уникальный идентификатор, присваиваемый каждой единице активного оборудования или некоторым их интерфейсам в компьютерных сетях

Структура МАС адреса

Как узнать МАС адрес?

```
Microsoft Windows [Version 6.3.9600]
(c) Корпорация Майкрософт (Microsoft Corporation), 2013. Все права защищены.
C:\Users\amartynov}ipconfig /all
Hacтройка протокола IP для Windows
   Имя компьютера . . . . . . . : alekseev-pc
   Основной DNS-суффикс : :
Тип узла. : Гибридный
   IР-маршрутизация включена . . . : Нет
  WINS-прокси включен . . . . . : Het
Порядок просмотра суффиксов DNS . : corp.unitedbanks.org
                                       ext.unitedbanks.org
                                       c24.unitedbanks.org
Ethernet adapter Ethernet 2:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   Ethernet adapter Ethernet:
  Описание....: Контролюр оснойотва Realtek PCIe GBE
Физический адрес...: F4-4D-30-95-FF-32

DHCP включен...: Да
Автонастройка включена...: 192.168.10.179(Основной)
Маска подсети...: 255.255.255.0

Аренда получена...: 9 сентября 2019 г. 9:51:59
Срок аренды истекает...: 9 сентября 2019 г. 20:11:58
Основной шлюз...: 192.168.10.1
   DNS-суффикс подключения . . . . :
   Туннельный адаптер isatap.{B0153967-A28B-4714-BE3C-4470D5B7EDB2}:
   Состояние среды. . . . . . . : Среда передачи недоступна.
   DNS-суффикс подключения . . . . :
   Описание. . . . . . . . . . . : Aдаптер Microsoft ISATAP
   DHCP включен. . . . . . . . . . . . . . . . . .
   Автонастройка включена. . . . . : Да
 :\Users\amartynov}_
```

Протокол ARP

Address Resolution Protocol (ARP) - протокол разрешения локальных адресов

ARP Request RFC 826 Source IP: 192.168.0.101 Source: MAC: f2:f2:f2:f2:f2:f2 Target IP: 192.168.0.1 Target MAC: 00:00:00:00:00:00 **ARP Response** Source IP: 192.168.0.1 Source: MAC: 02:f2:02:f2:02:f2 Target IP: 192.168.0.101 Target MAC: f2:f2:f2:f2:f2:f2

Протокол ARP

Определение МАС по ІР

ARP запрос

MAC	МАС отправ.	Искомый МАС	Заданный IP
FFFFFFFFFF	00E0F77F1920	адрес	135.12.0.11

ARP ответ

МАС назнач. МАС отправ. 00E0F77F1920 00E0F77F51A0		Найденный МАС 00E0F77F51A0	Заданный IP 135.12.0.11
---	--	-------------------------------	----------------------------

Протокол ARP: ARP кэш

```
C:\Users\amartynov>arp −a
Интерфейс: 192.168.10.179 --- 0x3
 адрес в Интернете
                         Физический адрес
 192.168.10.1
                        6c-3b-6b-57-76-e5
 192.168.10.124
                         f4-4d-30-91-69-00
                        00-14-ee-0a-ea-bd
 192.168.10.168
 192.168.10.181
                         4c-cc-6a-79-3a-26
 192.168.10.255
 224.0.0.22
                        01-00-5e-00-00-16
 224.0.0.251
                        01-00-5e-00-00-fb
                        01-00-5e-00-00-fc
  224.0.0.252
                        01-00-5e-61-1d-91
 228.97.29.145
 231.69.32.5
                        01-00-5e-45-20-05
 238.117.39.165
                        01-00-5e-75-27-a5
                        01-00-5e-15-27-c5
 239.192.152.143
                        01-00-5e-40-98-8f
                        01-00-5e-7f-ff-fa
 239.255.255.250
                                                статический
 255.255.255.255
                                                статический
```

Статические записи создаются вручную с помощью утилиты arp и не имеют срока устаревания, точнее, они существуют до тех пор, пока компьютер или маршрутизатор не будут выключены.

Динамические записи создаются модулем протокола ARP, использующим широковещательные возможности локальных сетевых технологий. Динамические записи должны периодически обновляться. Если запись не обновлялась в течение определенного времени (порядка нескольких минут), то она исключается из таблицы. Таким образом, в ARP-таблице содержатся записи не обо всех узлах сети, а только о тех, которые активно участвуют в сетевых операциях. Поскольку такой способ хранения информации называют кэшированием, ARP-таблицы иногда называют ARP-кэш.

Символьные адреса

Доме́нное имя — символьное имя, служащее для идентификации областей, которые являются единицами административной автономии в сети Интернет, в составе вышестоящей по иерархии такой области. Каждая из таких областей называется доме́ном.

Общее пространство имён Интернета функционирует благодаря DNS — системе доменных имён. Доменные имена дают возможность адресации интернет-узлов и расположенным на них сетевым ресурсам (веб-сайтам, серверам электронной почты, другим службам) быть представленными в удобной для человека форме

Система доменных имен DNS

DNS (Domain Name System — система доменных имён) — компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста

Древовидная структура DNS

Итеративная схема разрешения доменного имени

- 1. DNS-клиент обращается к корневому DNS-серверу с указанием полного доменного имени
- 2. DNS-сервер отвечает, указывая адрес следующего DNSсервера, обслуживающего домен верхнего уровня, заданный в старшей части запрошенного имени
- 3. DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена, и т. д., пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту

Рекурсивная схема разрешения доменного имени

- 1. DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, который обслуживает поддомен, к которому принадлежит имя клиента
- 2. Если локальный DNS-сервер знает ответ, то он сразу же возвращает его клиенту это может соответствовать случаю, когда запрошенное имя входит в тот же поддомен, что и имя клиента, а также может соответствовать случаю, когда сервер уже узнавал данное соответствие для другого клиента и сохранил его в своем кэше
- 3. Если же локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и т. д. точно так же, как это делал клиент в первом варианте
- 4. Получив ответ, он передает его клиенту, который все это время просто ждал его от своего локального DNS-сервера

IP — адреса (IPv4)

- 32-х битное число
- обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками
- Наименьший адрес 0.0.0.0, наибольший 255.255.255.255
- адрес состоит из двух логических частей номера сети и номера узла в сети
- различают 5 классов IP-адресов: A, B, C,
 D и E

Цели внедрения IPv6

- 1. Поддержка миллиардов хостов
- 2. Уменьшение размера таблиц маршрутизации
- 3. Упрощение протокола обработки пакетов маршрутизаторами
- 4. Более надежное обеспечение безопасности (аутентификации и конфиденциальности)
- 5. Необходимость обращать больше внимания на тип сервиса
- 6. Упрощение работы многоадресных рассылок с помощью указания областей рассылки
- 7. Возможность изменения положения хоста без необходимости изменять его адрес
- 8. Возможность дальнейшего развития протокола в будущем
- 9. Возможность сосуществования старого и нового протоколов в течение нескольких лет

IPv6: 1. Основная форма

X:X:X:X:X:X:X

х - это шестнадцатеричное 16-битное число

Примеры:

- 1. fabc:de12:3456:7890:ABCD:EF98:7654:3210
- 2. 108b:0:0:0:8:800:200C:417A

IPv6: 2. Сжатая форма

Для уменьшения длинны адреса, в котором присутствует несколько групп, содержащих в себе только нулевые биты, применяется сокращение "::"

Примеры:

(1 форма) 108b:0:0:0:8:800:200С:417A

(2 форма) 108b::8:800:200С:417А

(1 форма) ff01:0:0:0:0:0:0:43

(2 форма) ff01::43

IPv6: Альтернативная форма

Два типа переходных адресов:

- с поддержкой туннелирования трафика (96 нулевых бит + адрес IPv4)
- с прямой поддержкой IPv4 (80 нулевых бит + 16 единичных бит + адрес IPv4)

Пример:

0:0:0:0:0:0:13.1.68.3 - 1 тип

0:0:0:0:0:FFFF:129.144.52.38 — 2 тип

Классы IP адресов (v4)

Класс	Первые биты	Наименьший номер сети	Наибольший номер сети	Максимальное число узлов в сети
A	0	1.0.0.0	126.0.0.0	2 ²⁴
В	10	128.0.0.0	191.255.0.0	2 ¹⁶
c	110	192.0.1.0	223.255.255.0	2 ⁸
D	1110	224.0.0.0	239.255.255.255	Multicast
Ε	11110	240.0.0.0	247.255.255.255	Зарезервирован

Особые ІР адреса

- IP-адрес 0.0.0.0 может использоваться хостом только при загрузке
- ІР-адреса с нулевым номером сети обозначают текущую сеть
- адрес, состоящий только из единиц, обеспечивает широковещание в пределах текущей (обычно локальной) сети. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast)
- адреса, в которых указана сеть, но в поле номера хоста одни единицы, обеспечивают широковещание в пределах любой удаленной локальной сети, соединенной с Интернетом. Такая рассылка называется широковещательным сообщением (broadcast)
- адреса вида 127.xx.yy.zz зарезервированы для тестирования сетевого программного обеспечения методом обратной передачи. Этот адрес имеет название *loopback*

Использование масок

Маской подсети или **маской сети** называется битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.

Клас	с Двоичная форма	Десятичная форма	
Α	1111111 00000000 00000000 00000000	255.0.0.0	
В	1111111 11111111 00000000 00000000	255.255.0.0	
С	11111111 11111111 11111111 00000000	255.255.255.0	

Маска: 255.255.255.128 — 128-2 = 126 хостов Маска: 255.255.255.192 — 64-2 = 62 хоста Маска: 255.255.255.224 — 32-2 = 30 хостов Маска: 255.255.255.240 — 16-2 = 14 хостов Маска: 255.255.255.248 — 8-2 = 6 хостов Маска: 255.255.255.252 — 4-2 = 2 хоста

Задача №1

Сеть Internet 199.40.123.0 разбита на одинаковые подсети маской 255.255.255.224. Назначить адреса интерфейсам подсетей и, по крайней мере, одной рабочей станции каждой подсети

Задача №1 (решение)

- 1. Сеть 199.40.123.0 принадлежит к классу С, поскольку номер первого октета 199 принадлежит диапазону {192 223}
- 2. Маска 255.255.255.224 в двоичной записи выглядит так:

$$224_{10} = E0_{16} = 1110\ 0000_2$$

3. Множество возможных номеров подсетей внутри сети это множество { xxx0 000 } из которого нужно исключить номера { 0000 0000 } и { 1110 0000 }, тогда число подсетей равно:

$$2^{3}-2=8-2=6$$

Задача №1 (решение)

Номера полученных сетей:

Номер	A-nos ID		
Двоичное значение	Десятичное значение	Адрес IP — подсети	
0010 0000	32	199.40.123.32	
0100 0000	64	199.40.123.64	
0110 0000	96	199.40.123.96	
1000 0000	128	199.40.123.128	
1010 0000	160	199.40.123.160	
1100 0000	192	199.40.123.192	

Задача №1 (решение)

4. Допустимые номера узлов подсети, которая имеет номер ххх0 0000 получаются при замене 0-позиций в этом номере единичными, при этом помним, что нужно исключить { ххх0 0000 } и { ххх1 1111 }

Адреса узлов подсети		A ID	
Интерфейс	Рабочая станция	Адрес IP — подсети	
199.40.123.33	199.40.123.34	199.40.123.32	
199.40.123.65	199.40.123.66	199.40.123.64	
199.40.123.97	199.40.123.98	199.40.123.96	
199.40.123.129	199.40.123.130	199.40.123.128	
199.40.123.161	199.40.123.162	199.40.123.160	
199.40.123.193	199.40.123.194	199.40.123.192	

Задача №2

Разбить адресное пространство сети 199.40.123.0 на 4 одинаковые подсети с максимальным числом узлов и назначить IP адрес этим подсетям.