PROJEKT

Sterowniki robotów

Założenia projektowe

Sterowany Pochyleniem Ręki Pojazd Prawie Autonomiczny

S.P.R.P.P.A

Skład grupy (6): Patrycjusz Auguścik, 226523 Maciej Kajdak, 226256

Termin: wtTP11

Prowadzący: mgr inż. Wojciech DOMSKI

Spis treści

1	Opi	s projektu i założenia projektowe
	1.1	Projekt nadajnika wykorzystującego akcelerometr do sterowania pojazdem kołowym
	1.2	Projekt odbiornika i pojazdu kołowego
	1.3	Funkcjonalności dodatkowe
า	Ora	ganizacja pracy
4	_	
	2.1	Harmonogram zadań
	2.2	Podział pracy
	$^{2.3}$	Diagram Gantta

1 Opis projektu i założenia projektowe

1.1 Projekt nadajnika wykorzystującego akcelerometr do sterowania pojazdem kołowym

Projekt zakłada wykorzystanie akcelerometra dostępnego na płytce rozwojowej STM32L476 Discovery do sterowania pojazdem kołowym. Jest to moduł MEMS LSM303CTR z wbudowanym akcelerometrem i magnetometrem. Mikrokontroler będzie łączył się z modułem za pomocą szeregowego interfejsu urządzeń peryferyjnych – SPI w trybie Master Receives Only. Komunikacja między samochodzikiem a płytką odbywać się będzie za pomocą układu WiFi + Bluetooth BLE ESP-WROOM-32 - SMD. Z modułem mikrokontroler będzie się łączył dzięki komunikacji UART. W naszym projekcie zostanie wykorzystany tylko moduł bluetooth. Moduł ten w tej części projektu będzie pełnił rolę nadajnika. Pojazd będzie się poruszał w kierunku wskazanym przez dłoń sterującego. Aby połączyć się z samochodzikiem, należy trzymać w dłoni płytkę uruchomieniową, która będzie się łączyć z samochodzikiem automatycznie. Możliwości ruchu pojazdu:

- do przodu
- do tyłu
- w lewo
- w prawo

Prędkość samochodzika będzie uzależniona od szybkości ruchów ręki.

1.2 Projekt odbiornika i pojazdu kołowego

Projekt zakłada wykorzystanie układu WiFi + Bluetooth BLE ESP-WROOM-32 - SMD. Z tego modułu zostanie wykorzystany tylko moduł bluetooth jako odbiornik informacji z nadajnika. Do zbudowania pojazdu zostanie wykorzystany stary samochodzik - zabawka. W celu ulepszenia samochodu - zamontujemy nowe silniczki komutatorowe prądu stałego. Pojazd ten będzie mógł osiągnąć dużą prędkość dzięki przekładni 2:1. Wmontujemy również czujniki odległości, a zadaniem pojazdu będzie natychmiastowe zatrzymanie się w przypadku napotkania przeszkody lub w momencie utraty połączenia bluetooth z nadajnikiem. W opisywanym samochodziku wykorzystamy napęd na przednią oś, silniki zostaną połączone z mostkami H, a całością będzie sterować mikrokontroler.

1.3 Funkcjonalności dodatkowe

Nieobowiązkowo projekt zakłada dodanie funkcjonalności zmiany źródła sterowania. Przełączenie sterowania ma się opierać o dodatkową płytkę Raspberry Pi, dzięki której możliwe będzie przetwarzanie obrazu z kamery zamontowanej na samochodziku. Tym sposobem samochodzik miałby się poruszać za określonym przedmiotem (np. małą piłką w mocno jaskrawym kolorze). Przełączenie sterowania miałoby nastąpić po jawnym wybraniu odpowiedniej opcji na płytce Discovery, a do tego celu pomocne będzie użycie wyświetlacza LCD.

2 Organizacja pracy

2.1 Harmonogram zadań

Harmonogram pracy zespołu wraz z datami terminu został przedstawiony na rysunku 1. Na podstawie danych z harmonogramu rozpoczęto pracę nad rozdziałem pomniejszych zadań. Harmonogram został wygenerowany przy pomocy programu Ganttproject.

Name	Begin date	End date
Raporty i dokumentacja	27/02/18	05/06/18
Założenia projektowe	27/02/18	17/04/18
Określenie funkcjonalności	27/02/18	17/04/18
Rozdział pracy	27/02/18	17/04/18
Etap I - Założenia projektowe	13/03/18	17/04/18
Etap II - raport z prac	18/04/18	15/05/18
Etap III - dokumentacja i wynik projektu	16/05/18	05/06/18
Praca nad pojazdem	13/03/18	21/05/18
Projektowanie układu	13/03/18	23/04/18
Tworzenie modelu 3D	13/03/18	23/04/18
Gotowe schematy elektroniczne i model 3D	24/04/18	24/04/18
Implementacja połączenia bluetooth	25/04/18	18/05/18
Budowa pojazdu	25/04/18	18/05/18
Implementacja sterowania silnikami	25/04/18	18/05/18
Gotowy pojazd	21/05/18	21/05/18
Praca nad sterownikiem	17/04/18	21/05/18
Konfiguracja Cube	17/04/18	18/04/18
Implementacja połączenia z akcelerometrem	19/04/18	18/05/18
Implementacja połączenia z modułem komunikacji	19/04/18	18/05/18
Gotowy sterownik	21/05/18	21/05/18
Łączenie prac	22/05/18	05/06/18
Połączenie sterownika z pojazdem	22/05/18	22/05/18
Testowanie i debugowanie	22/05/18	29/05/18
Podłączenie czujników i implementacja ich działania	30/05/18	30/05/18
Testowanie i debugowanie	31/05/18	31/05/18
Koniec pracy	06/06/18	06/06/18
Prace dodatkowe	17/04/18	04/06/18
Kompletowanie elementów	17/04/18	18/05/18
Praca nad przetwarzaniem obrazu	21/05/18	21/05/18
Przełączanie sterowania	22/05/18	22/05/18
Podłączenie do układu	23/05/18	23/05/18
Testowanie i debugowanie	24/05/18	04/06/18

Rysunek 1: Harmonogram pracy

2.2 Podział pracy

Podział pracy pomiędzy członków grupy został przedstawiony w tabeli 1.

Patrycjusz	Maciej							
dobór elementów potrzebnych do realizacji projektu	konfiguracja Cube							
projekt 3D pojazdu	algorytm sterowania pojazdem za pomocą akcele-							
	rometru na płytce Discovery							
wydrukowanie modelu na drukarce 3D	testy poprawności działania algorytmu podłączają							
	pojazd do płytki za pomocą kabla							
projekt elektroniki i płytki PCB	algorytm sterowania pojazdem w momencie gdy zo-							
	stanie wykryta przeszkoda							
polutowanie układu oraz testy poprawności działa-	testy poprawności działania algorytmu podłączają							
nia	pojazd do płytki za pomocą kabla							
podłączenie elektroniki i montaż elementów mecha-								
nicznych								
rozwój modułu komunikacji								
testy poprawności działania robota								

Tabela 1: Tabela rozkładu zadań

Biorąc pod uwagę przedstawiony rozkład pracy oraz jej harmonogram uwzględniający terminy oddania raportów z poszczególnych etapów projektu przystąpiono do stworzenia diagramu Gantta niniejszego projektu.

2.3 Diagram Gantta

Na podstawie stworzonego harmonogramu oraz rozkładu pracy wygenerowano diagram Gantta korzystając z programu Ganttproject. Diagram przedstawiono na rysunku 2.

Rysunek 2: Diagram Gantta

Spis rysunków

1	Harmonogram pracy																				•
2	Diagram Gantta																				ļ

α	•	. 1		•
	pis	tal	hΙ	10
\sim	DIO.	UCU	$\mathbf{v}_{\mathbf{L}}$	\mathbf{r}