MTP, Inc.

Move! That! Plane!

Reid Majka NYC-DS-080723

Background

- MTP specializes in aircraft logistics: distribution, storage, and transportation of materials
- MTP is looking to establish warehouses around the US to store aircraft and parts for replacement, and reduce transportation resources from manufacturing sites to these warehouses

Approach to Business Efficiency

Objectives

- Optimize aircraft distribution to areas with high proportion of accidents, as hubs will require replacement aircraft
- Create relationships with companies to optimize distribution channels by selecting the highest make and model for replacement
- Determine best time of year for distribution
- Confirm all products are increasing safety measures over time (determined by crashes per year)

Approach

- Reviewed database of 82K aviation accidents in the United States between 1982-2022
- Assumed total replacement of these aircraft to satisfy FAA regulations

Products in focus:

After the top 5
makes, amount of
accidents by Make
becomes relatively
uniform; it is in the
company's best
interest to direct the
customer's focus to
our top 5 makes
inventory

Focusing on Top 5 Makes:

Accidents by Make, 1982-2022

Areas of Focus:

- Personal/Private airplanes
 - Textron aircraft (Cessna, Beechcraft)
 - Piper aircraft
 - Boeing (To be discussed)
- Helicopters
 - Bell aircraft
- Commercial airplanes
 - Boeing

Models by Make in Accident Database:

The Bell Exception:

- Helicopters are often highlycustomized, and the numerical modeling system is not congruent with the airplane numerical modeling system
 - For example, the 206B model is separate from the 206 model, so we cannot group
- Less focus on specific models within Bell, locate single manufacturing source for all helicopters

Geographical Spread

Regions of focus:

Across all regions, Cessna continues to be the front-runner for choice in aircraft; continue focus on replacement aircraft & parts within each region

Good for Society, Bad for Business

Aviation accidents steadily declining over a 40-year span, despite a continuously increasing number of flights over the same period (1)

Decrease in Opportunities Uniform Across Sectors

Key Findings

Cessna aircraft continuously the top attributor, main focus across all regions

Relatively stable number of crashes over time for commercial aircraft (Boeing) and helicopters (Bell) – reliable forecast of replacement aircraft

Key Findings

Accidents by all Regions decreasing over 40-year period

South Region noticing a slight increase in aviation accidents over latest 6-year timeframe (highlighted above); opportunity to investigate forecasts for future opportunities

Focusing on Seasonality

- On any given year in scope, accidents increase beginning in May, peaking in July, and decreasing through the end of the year
- To alleviate wait times between aircraft replacement, units and parts will be distributed in Q1-Q2 of the year

Results - Proposal

- Focus on Cessna aircraft distribution, as it is consistently the most common aircraft found in aviation accidents
- Within each of the top 5 makes, focus on the major models for distribution
- Distribution is cyclical within any given year: expect an increase in flights during warmer months (May – Aug with a peak in July), therefore aircraft & parts should be distributed before May of that year

Next steps

- Re-group geographical data ("Regions") based off clustering methodology to minimize transportation distance, as larger regions (i.e. West) may have opportunities to consolidate resources for distributing
- Calculate average distance from airport to crash site
 - Assess safe travel distance perimeter by aircraft model for insurance coverage efficiency
 - Determine resources needed to retrieve damaged aircraft material
- Review accident damage measures to determine possibility of partialrepairs of existing aircraft, minimizing necessity of full-aircraft distribution

Thank you

