Geometric Part*

Xiao Ming Xiu¹

October 19, 2017

Abstract—Given 3 2-D points' coordinates in two different Reference Systems, Barcode System (BS) and Camera System (CS), output two things: \vec{t} and θ , defined as the CS origin's coordinates in BS and the rotated angle of CS relative to BS.

I. PROBLEM SETTING

A. Given

Notation:

$$BS - - - S$$

 $CS - - - S'$

Three Points' coordinates in both systems are known:

P1:
$$(x_1, y_1), (x'_1, y'_1)$$

P2: $(x_2, y_2), (x'_2, y'_2)$
P3: $(x_3, y_3), (x'_3, y'_3)$

B. Want

$$\vec{t} = (t_x, t_y)$$

where,

 \vec{t} is defined by S' origin in S. θ is defined by

 $(\varepsilon_{x}', \varepsilon_{y}') = (\varepsilon_{x}, \varepsilon_{y}) * R$ $= (\varepsilon_{x}, \varepsilon_{y}) * \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ (1)

 $(\varepsilon_x, \varepsilon_y)$ denotes the basis vector in S. $\varepsilon_x', \varepsilon_y'$ denotes the basis vector in S'.)

C. Relationship Equation

Denote \vec{P} (column vector)as vector coordinate representation in S and \vec{P}' in S'. We have

$$\vec{P} = \vec{t} + R * \vec{P}' \tag{2}$$

Write in explicit form:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} * \begin{bmatrix} x' \\ y' \end{bmatrix}$$
 (3)

Eq. (3) is necessary and sufficient.

You have 3 unknown variables, t_x, t_y, θ . Given 1 pair

coordinates \vec{P} and \vec{P}' , you will get 2 independent equations. At least, 2 points are needed to solve all the 3 variables, though 1 equation is over determined.

II. QUESTION: WHAT IS MINIMAL SET OF INPUT SUFFICIENT TO SOLVE?

Theorem 1. Given 6 Rits of $x_1, y_1, x'_1, y'_1, x_2, x'_2$ is sufficient.

3 independent equations have already been prepared up from Eq.(3). Only left with a Two-fold ambiguity.

Remark 1. The set of 1.5 points, not 2, is the minimum input. Remark 2. Do there exist the following case: the input given format cannot exactly fit the sufficient and necessary solution of Problem, at least have some input as overdetermined condition and called unavoidable waste input?

III. SOLUTION

Eliminate θ first from Eq. (3) by Left Multiply (based on $R^T * R = I$): (Eq. (3) represents 2 equations.)

$$(x - t_x)^2 + (y - t_y)^2 = {x'}^2 + {y'}^2$$
 (4)

Rely on Point P1 and P2. Substitute Eq.(4) as:

$$(x_1 - t_x)^2 + (y_1 - t_y)^2 = x_1'^2 + y_1'^2$$
 (5)

$$(x_2 - t_x)^2 + (y_2 - t_y)^2 = x_2'^2 + y_2'^2$$
 (6)

Use Eq.(5)- Eq.(6), we get

$$t_{y} = kt_{x} + b \tag{7}$$

where

$$k = -\frac{x_1 - x_2}{y_1 - y_2} \tag{8}$$

$$b = \frac{1}{2} * \{y_1 + y_2 - \frac{1}{y_1 - y_2} [x_1'^2 + y_1'^2 - x_2'^2 - y_2'^2 - x_1^2 + x_2^2] \}$$

$$(9)$$

Substitute t_v in Eq. (5)

$$At_x^2 + Bt_x + C = 0 ag{10}$$

Where,

$$A = 1 + k^{2}$$

$$B = -2[x_{1} + k(y_{1} - b)]$$

$$C = x_{1}^{2} + (y_{1} - b)^{2} - x_{1}^{2} - y_{1}^{2}$$
(11)

^{*}This work was supported by Standard-Robots Ltd.,co.

¹Xiao Ming Xiu is with Visual SLAM Algorithm Group, Standard-Robots Ltd.,co. Shenzhen, China. stevenxiu@aliyun.com

Fig. 1. 0cm Case No Lean

Fig. 2. 2cm Case No Lean

Solve this quadratic equation

$$\Delta = B^2 - 4AC$$

$$t_x = \frac{-B \pm \sqrt{\Delta}}{2A} \tag{12}$$

The corresponding t_v can be derived from Eq. (7).

Here is a two-fold ambiguity. Only one of the roots are correct. Check them by the third point P3:

$$(x_3 - t_x)^2 + (y_3 - t_y)^2 = x_3'^2 + y_3'^2$$
 (13)

Define

$$\delta_{check} = |(x_3 - t_x)^2 + (y_3 - t_y)^2 - (x_3'^2 + y_3'^2)|? = ?0$$
 (14)

The right root will satisfy Eq. (13). In practice we can set the threshold of δ_{check} .

IV. EXPERIMENTS OF OCT.17

In the evening of Oct.17, a 2cm translation experiment was conducted.

A. 2cm case data

Notice you need to transform the S' pixel unit to cm.

TABLE I 2CM1017.JPG'S P1.P2.P3

2cmNoLean	BS (cm)	CS(pixel)
P1	(0,0)	(267,455)
P2	$(3*cos(30^\circ), 3*sin(30^\circ))$	(271,256)
P3	$(-3*cos(30^\circ), 3*sin(30^\circ))$	(466,460)

Output:

$$t_x = 7.94855$$

 $t_y = -0.215983$
 $\theta = 120^\circ$

B. 0cm case data

Output:

$$t_x = 8.82632$$

 $t_y = -2.04685$
 $\theta = 118.005^\circ$

TABLE II 0cm1017.jpg's P1,P2,P3

0cmNoLean	BS (cm)	CS(pixel)
P1	(0,0)	(399,458)
P2	$(3*cos(30^\circ), 3*sin(30^\circ))$	(406,257)
P3	$(-3*cos(30^\circ), 3*sin(30^\circ))$	(599,463)

Fig. 3. 0cm Case No Lean

Fig. 4. 2cm Case No Lean

C. Translation Calculation

$$Translation = \sqrt{(7.94855 - 8.82632)^2 + (-0.215983 + 2.04685)^2}$$
$$= 2.03cm$$

(15)

The real translation is just 2 cm. So the precision has attained to 0.3mm.

V. EXPERIMENTS OF OCT.19

In the evening of Oct.19, just use the data collected in Sep., to check the algorithm again in Lean case.