Theory Of Computation

Muyao Xiao

Nov. 2024

Abstract

The note is taken by studying 18.404 J/6.5400 Theory of Computation course by professor Michael Sipser of MIT. The course material can be downloaded in MIT OpenCourseWare. Meanwhile, most contents in this note will also be derived from his book Introduction to the Theory of Computation, third edition.

The course is divided into 2 parts, computational theory and complexity theory. Computational theory is developed during 1930s - 1950s. It concerns about what is computable. This note will be focused on the first part.

Example. Program verification, mathematical truth

Example (Models of Computation). Finite automata, Turing machines, ...

Contents

1	Introduction, Finite Automata, Regular Expressions	2
	1.1 Finite Automata	2

Chapter 1

Introduction, Finite Automata, Regular Expressions

The theory of computation begins with a question: What is a computer. The real computer is too complicated to understand, to start with, we use an idealized computer called **computational model**. The simplest model among them is **finite state machine** or **finite automaton**.

1.1 Finite Automata

Finite automata are good models for computers with an extremely limited amount of memory.

Finite automata and their probabilistic counterpart **Markov chains** are useful tools when we're attempting to recognize patterns in data. Markov chains have even been used to model and predict price changes in financial markets.

- The figure is called **state diagram** of M_1 .
- Three states: q_1 , q_2 and q_3 .
- Start state: q_1 .
- Accept state: q2.
- The arrows going from one state to another are called **transitions**.

When the automaton receives an input string such as 1101, it processes that string and produces an output. The output is either **accept** or **reject**:

- 1. Start in state q_1
- 2. Read 1, follow transition from q_1 to q_2

- 3. Read 1, follow transition from q_2 to q_2
- 4. Read 0, follow transition from q_2 to q_3
- 5. Read 1, follow transition from q_3 to q_2
- 6. Accept because M_1 is in an accept state q_2 at the end of the input

Definition 1.1.1 (Formal Definition of A Finite Automaton). A **finite automaton** is a 5-tuple $(Q, \Sigma, \sigma, q_0, F)$, where

- 1. Q is a finite set called **state**
- 2. Σ is a finite set called the **alphabet**
- 3. $\sigma: Q \times \Sigma \Rightarrow Q$ is the **transition function**
- 4. $q_0 \in Q$ is the **start state**
- 5. $F \subseteq Q$ is the set of accept state

Example (Revisit Finite Automata Example). Let's revisit the finite automata example M_1 and see from the formal definition perspective:

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \sigma, q_1, F)$, where

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{0, 1\}$
- 3. σ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

- 4. q_1 is the start state
- 5. $F = \{q_2\}$

If A is the set of all strings that machine M accepts, we say that A is the **language of machine M** and write L(M) = A. We say that **M recognizes A** or that **M accepts A**. Here because *accept* has different meaning, we use recognize for the language.

Remark. A machine may accept several strings, but it always recognizes only one language. If the machine accepts no strings, it still recognizes one language – namely, the empty language \emptyset .

Example (Revisit Finite Automata Example: Language). In our example, the language set A can be represented as:

 $A = \{\omega | \omega \text{ contains at least one 1 and an even number of 0s follow the last 1}\}.$

Then $L(M_1) = A$, or equivalently, M_1 recognizes A.