Construction of Lebesgue Measure

Motivation. What are length, area and volume? What is a quantity of 4 or more dimensional object?

Question. How can we define quantity measurement of some sets in Euclidean space?

Definition1. Let $a, b \in \mathbb{R}$ with $a \leq b$.

Define naturally the length ℓ of each interval such that

$$\ell((a,b]) = b - a$$
, $\ell((a,+\infty)) = +\infty$, $\ell((-\infty,b]) = +\infty$, $\ell((-\infty,+\infty)) = +\infty$, and $\ell(\bigcup_{i=1}^n (a_i,b_i]) = \sum_{i=1}^n (b_i-a_i)$ where $(a_i,b_i]$ are disjoint.

Definition 2.

- (1). A family \mathcal{A} of subsets of a set X is said to be an 'algebra' if it satisfies followings.
 - I. $\emptyset, X \in \mathcal{A}$
 - II. $E \in \mathcal{A} \Rightarrow X \setminus E \in \mathcal{A}$
 - III. $E_1, E_2, \dots, E_n \in \mathcal{A} \Rightarrow \bigcup_{i=1}^n E_i \in \mathcal{A}$
- (2). A family Σ of subset of a set X is said to be a ' σ -algebra' if it satisfies followings.
 - I. $\emptyset, X \in \Sigma$
 - II. $E \in \Sigma \Rightarrow X \setminus E \in \Sigma$
 - III. $E_1, E_2, \dots, E_n, \dots \in \Sigma \implies \bigcup_{n=1}^{\infty} E_n \in \Sigma$

Definition 3. Let \mathcal{A} be an algebra and Σ be a σ -algebra of a set X.

- (1). A 'measure' on \mathcal{A} is an extended real-valued function $\mu: \mathcal{A} \to \overline{\mathbb{R}}$ defined on \mathcal{A} such that
 - I. $\mu(\emptyset) = 0$
 - II. $\mu(E) \ge 0$ for $\forall E \in \mathcal{A}$
 - III. If (E_n) is a disjoint sequence in \mathcal{A} with $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$, then $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$.
- (2). A 'measure' on Σ is an extended real-valued function $\mu: \Sigma \to \overline{\mathbb{R}}$ defined on Σ such that
 - I. $\mu(\emptyset) = 0$
 - II. $\mu(E) \ge 0$ for $\forall E \in \Sigma$
 - III. $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$ for any disjoint sequence (E_n) in \sum

Lemma 1. Let \mathcal{F} be a collection of all finite union of set of the form $(a, b], (a, +\infty), (-\infty, b], (-\infty, +\infty)$.

Then \mathcal{F} is an algebra of subsets of \mathbb{R} and length is a measure on \mathcal{F} .

Proof)By construction of \mathcal{F} , it is readily seen that \mathcal{F} is an algebra. And ℓ satisfies the condition I and II of Definition 3 trivially.

It is enough to show that $(a,b] = \bigcup_{n=1}^{\infty} (a_n,b_n]$ where $(a_n,b_n]$ are disjoint implies $\ell((a,b]) = \sum_{n=1}^{\infty} \ell((a_n,b_n])$ to check the condition IIIof Definition 3.

Let $(a, b] = \bigcup_{n=1}^{\infty} (a_n, b_n]$ where $(a_n, b_n]$ are disjoint and consider any finite collection $(a_1, b_1], (a_2, b_2], \dots, (a_m, b_m]$ of such intervals.

Suppose that

$$a \le a_1 < b_1 \le a_2 < \dots < b_{n-1} \le a_n < b_n \le b$$

by renumbering the finite indices.

Then

$$\sum_{n=1}^{m} \ell((a_n, b_n]) = \sum_{n=1}^{m} (b_n - a_n) \le b_n - a_1 \le b - a = \ell((a, b])$$

Since *m* is arbitrary, we infer that

$$\sum_{n=1}^{\infty} \ell((a_n, b_n]) \le \ell((a, b])$$

Conversely, let $\varepsilon > 0$ and (ε_n) be a sequence of positive numbers with $\sum \varepsilon_n < \frac{\varepsilon}{4}$.

Consider the intervals $I_n=(a_n-\varepsilon_n,b_n+\varepsilon_n)$ for $n\in\mathbb{N}.$

Since $[a+\frac{\varepsilon}{2},b]\subset (a,b]\subset \bigcup_{n=1}^\infty I_n$ for sufficiently small ε , (I_n) is an open covering of the compact set $[a+\frac{\varepsilon}{2},b]$. It implies that there is a finite sub-covering I_1,I_2,\cdots,I_k of $[a+\frac{\varepsilon}{2},b]$. By renumbering and discarding some extra intervals, we may assume that

$$a_1 - \varepsilon_1 < a + \frac{\varepsilon}{2}, \quad b < b_k + \varepsilon_k, \quad a_j - \varepsilon_j < b_{j-1} + \varepsilon_{j-1}$$
 for $j = 2, 3, \dots, k$

Then

$$b - (a + \frac{\varepsilon}{2}) \le (b_k + \varepsilon_k) - (a_1 - \varepsilon_1) \le \sum_{j=1}^k \left[\left(b_j + \varepsilon_j \right) - \left(a_j - \varepsilon_j \right) \right] \le \sum_{j=1}^k \left(b_j - a_j \right) + \frac{\varepsilon}{2} \le \sum_{n=1}^\infty (b_n - a_n) + \frac{\varepsilon}{2}$$

Thus we get

$$b - a \le \sum_{n=1}^{\infty} (b_n - a_n) + \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, it follows that $\ell((a,b]) \leq \sum_{n=1}^{\infty} \ell((a_n,b_n])$.

Therefore, we get $\ell((a,b]) = \sum_{n=1}^{\infty} \ell((a_n,b_n])$.

Definition 4. Let $B \subseteq X$ be an arbitrary subset. Define

$$\mu^*(B) := \inf\{\sum \mu(E_i) | B \subseteq \bigcup E_i, E_i \in \mathcal{A}\}$$

the 'outer measure' generated by μ withan algebra \mathcal{A} .

Lemma 2. The function $\mu^* : \wp(X) \to \overline{\mathbb{R}}$ of Definition 4 satisfies the followings.

- (a) $\mu^*(\emptyset) = 0$
- (b) $\mu^*(B) \ge 0$ for $\forall B \subseteq X$
- (c) If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$
- (d) If $B \in \mathcal{A}$, then $\mu^*(B) = \mu(B)$
- (e) If (B_n) is a sequence of subsets of X, then

$$\mu^* \left(\bigcup_{n=1}^{\infty} B_n \right) \le \sum_{n=1}^{\infty} \mu^* (B_n)$$

Proof)(a), (b) and (c) are trivial.

(d): Since $\{B, \emptyset, \emptyset, \cdots\}$ is a countable cover of B in \mathcal{A} , it follows that

$$\mu^*(B) \le \mu(B) + \sum \mu(\emptyset) = \mu(B)$$

Conversely, if (E_n) is a sequence in \mathcal{A} whose union contains B, then

$$B = B \cap \left(\bigcup_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} (B \cap E_n)$$

Since μ is a measure on \mathcal{A} , by II and III of definition 3, we have known that

$$\mu(B) \le \sum_{n=1}^{\infty} \mu(B \cap E_n) \le \sum_{n=1}^{\infty} \mu(E_n)$$

Since (E_n) is arbitrary chosen, it follows that $\mu(B) \leq \mu^*(B)$.

(e): Let (B_n) is a sequence of subsets of X and $\varepsilon > 0$. Choose a sequence $(E_{nk})_{k \in \mathbb{N}}$ in \mathcal{A} for each nsuch that

$$B_n \subseteq \bigcup_{k=1}^{\infty} E_{nk}$$
 and $\sum_{k=1}^{\infty} \mu(E_{nk}) \le \mu^*(B_n) + \frac{\varepsilon}{2^n}$

Since $\{E_{nk}|n,k\in\mathbb{N}\}$ is a countable collection in \mathcal{A} such that $\bigcup_n B\subseteq\bigcup_{n,k}E_{nk}$, it follows from the definition of μ^* that

$$\mu^* \left(\bigcup_{n=1}^{\infty} B_n \right) \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu(E_{nk}) \le \sum_{n=1}^{\infty} \mu^*(B_n) + \varepsilon$$

Since ε is arbitrary chosen, we get $\mu^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \mu^*(B_n)$.

Definition 5. [Carathéodory Condition]

A subset E of X is said to be ' μ *-measurable' if

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$$
 for any $A \subseteq X$

Define $\mathcal{A}^* := \{ E \subseteq X | E \text{ is } \mu^* - \text{measurable} \}.$

Theorem 1. [Carathéodory Extension Theorem]

The collection \mathcal{A}^* is a σ -algebra containing \mathcal{A} . Moreover, if (E_n) is a disjoint sequence in \mathcal{A}^* , then

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) = \sum_{n=1}^{\infty} \mu^* (E_n)$$

Proof)Clearly, \emptyset , $X \in \mathcal{A}^*$ and $E \in \mathcal{A}^*$ implies $X \setminus E \in \mathcal{A}^*$.

Claim: \mathcal{A}^* is closed under intersections

Let $E, F \in \mathcal{A}^*$. Then for any $A \subseteq X$ and $E \in \mathcal{A}^*$, we have

$$\mu^*(A \cap F) = \mu^*(A \cap F \cap E) + \mu^*((A \cap F) \setminus E)$$

Since $F \in \mathcal{A}^*$, $\mu^*(A) = \mu^*(A \cap F) + \mu^*(A \setminus F)$.

Let $B = A \setminus (E \cap F)$. Then it is readily seen that

$$B \cap F = (A \cap F) \setminus E$$
 and $B \setminus F = A \setminus F$

It follows that

$$\mu^*(A \setminus (E \cap F)) = \mu^*((A \cap F) \setminus E) + \mu^*(A \setminus F)$$

Thus, we get

$$\mu^*(A) = \mu^*(A \cap F) + \mu^*(A \setminus F) = \left[\mu^*(A \cap F \cap E) + \mu^*((A \cap F) \setminus E)\right] + \mu^*(A \setminus F)$$
$$= \mu^*(A \cap F \cap E) + \mu^*(A \setminus (E \cap F))$$

Which shows that $E \cap F \in \mathcal{A}^*$.

Since \mathcal{A}^* is closed under intersections and complementation, \mathcal{A}^* is an algebra.

Let $E, F \in \mathcal{A}^*$ with $E \cap F = \emptyset$. Since $A \cap (E \cup F) \subseteq X$ and $E \in \mathcal{A}^*$, we obtain

$$\mu^*(A \cap (E \cup F)) = \mu^*(A \cap (E \cup F) \cap E) + \mu^*(A \cap (E \cup F) \setminus E) = \mu^*(A \cap E) + \mu^*(A \cap F)$$
 for any $A \subseteq X$

For A = X, it shows that μ^* is finitely additive on \mathcal{A}^* .

Let (E_k) be a disjoint sequence in \mathcal{A}^* and $E = \bigcup E_k$. Since \mathcal{A}^* is an algebra, we know that $F_n \coloneqq \bigcup_{k=1}^n E_k \in \mathcal{A}^*$ and finite additivity implies

$$\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \setminus F_n) = \sum_{k=1}^n \mu^*(E_k) + \mu^*(A \setminus F_n)$$

for any $A \subseteq X$ and each $n \in \mathbb{N}$.

Since $F_n \subseteq E$, $A \setminus E \subseteq A \setminus F_n$ and letting $n \to \infty$ implies

$$\sum_{k=1}^{\infty} \mu^*(E_k) + \mu^*(A \setminus E) \le \mu^*(A)$$

Conversely, it follows from Lemma 2. (e) that

$$\mu^*(A \cap E) \le \sum_{k=1}^{\infty} \mu^*(A \cap E_k) \quad and \quad \mu^*(A) \le \mu^*(A \cap E) + \mu^*(A \setminus E)$$

From the last three inequalities, we get

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E) = \sum_{k=1}^{\infty} \mu^*(A \cap E_k) + \mu^*(A \setminus E)$$

This shows that $E = \bigcup E_k \in \mathcal{A}^*$. For A = E, we get $\mu^*(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu^*(E_k)$.

It remains to show that $A \subseteq A^*$. Let $E \in A$ and $A \subseteq X$ be arbitrary. By Lemma 2. (d) and (e), we know that

$$\mu^*(E) = \mu(E)$$
 and $\mu^*(A) \le \mu^*(A \cap E) + \mu^*(A \setminus E)$

Let $\varepsilon > 0$ and (F_n) be a sequence such that $A \subseteq \bigcup F_n$ and

$$\sum_{n=1}^{\infty} \mu(F_n) \le \mu^*(A) + \varepsilon$$

by definition of outer measure.

Since $A \cap E \subseteq \bigcup (F_n \cap E)$ and $A \setminus E \subseteq \bigcup (F_n \setminus E)$, it follows from Lemma 2. (e) that

$$\mu^*(A \cap E) \le \sum_{n=1}^{\infty} \mu(F_n \cap E)$$
 and $\mu^*(A \setminus E) \le \sum_{n=1}^{\infty} \mu(F_n \setminus E)$

Hence we have

$$\mu^*(A \cap E) + \mu^*(A \setminus E) \le \sum_{n=1}^{\infty} [\mu(F_n \cap E) + \mu(F_n \setminus E)] = \sum_{n=1}^{\infty} \mu(F_n) \le \mu^*(A) + \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, $\mu^*(A \cap E) + \mu^*(A \setminus E) \le \mu^*(A)$. Therefore, we conclude that $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$ for any $A \subseteq X$, that means $E \in \mathcal{A}^*$.

Conclusion. Suppose the algebra \mathcal{F} defined in Lemma 1 and the 'length' ℓ that is a measure on \mathcal{F} .

Consider

$$m\coloneqq\ell^*$$

,the outer measure generated by ℓ and

$$\mathcal{L} := \mathcal{F}^* = \{ E \subseteq \mathbb{R} | E \text{ is a } m - measurable \}$$

,the collection of subsets of $\mathbb R$ that satisfies the Carathéodory Condition.

By Theorem 1, \mathcal{L} is a σ -algebra containing \mathcal{F} and m is a measure on \mathcal{L} .

A subset of $\mathbb R$ contained in $\mathcal L$ is called a 'Lebesgue measurable set' and m is called the 'Lebesgue measure'.

Theorem 2. [Hahn Extension Theorem]

If μ is a measure on \mathcal{L} such that $\mu(I) = l(I)$ for all open intervals $I \subseteq \mathbb{R}$, then $\mu = m$. In other word, the

Lebesgue measure is unique.

Proof) For $n \in \mathbb{N}$, let $I_n = (-n, n)$. Let $E \in \mathcal{L}$ be any set with $E \subseteq I_n$ for some n and (J_k) be a sequence of open intervals such that $E \subseteq \bigcup_{k=1}^{\infty} J_k$. Since μ is a measure and $\mu(J_k) = m(J_k)$ for all $k \in \mathbb{N}$, we have

$$\mu(E) \le \mu\left(\bigcup_{k=1}^{\infty} J_k\right) \le \sum_{k=1}^{\infty} \mu(J_k) = \sum_{k=1}^{\infty} l(J_k)$$

Therefore, $\mu(E) \leq m^*(E) = m(E)$ for all Lebesgue measurable sets $E \subseteq I_n$.

Since μ and m are additive,

$$\mu(E) + \mu(I_n \setminus E) = \mu(I_n) = l(I_n) = m(I_n) = m(E) + m(I_n \setminus E)$$

Since all of these terms are finite and $\mu(E) \le m(E)$ and $\mu(I_n \setminus E) \le m(I_n \setminus E)$, it follows that $\mu(E) = m(E)$ for all Lebesgue measurable sets $E \subseteq I_n$.

Let E be an arbitrary Lebesgue measurable set. Then it can be written as the union of disjoint Lebesgue measurable sets E_n , defined by

$$E_1 := E \cap I_1$$
, $E_n := E \cap (I_n \setminus I_{n-1})$ for $n > 1$

Since $\mu(E_n) = m(E_n)$ for all $n \in \mathbb{N}$ by previous step, it follows that

$$\mu(E) = \sum_{n=1}^{\infty} \mu(E_n) = \sum_{n=1}^{\infty} m(E_n) = m(E)$$

Therefore, $\mu=m$ on \mathcal{L} .

Reference: Bartle, The Elements of Integration and Lebesgue Measure, 1995