Исследование образной и процедурной компонент элементов картины мира субъекта деятельности

Александр Панов

ИСА РАН научный руководитель д.ф.-м.н., проф. Г.С. Осипов

10 декабря 2014 г.

Картина мира и нейрофизиология

По нейрофизиологическим данным (В. Маунткасл, 1981; Дж. Хокинс, 2009), в том числе в теории повторного входа или информационного синтеза (Д. Эдельман, 1981; А. М. Иваницкий, 1996) возникновение ощущения, т. е. активизация некоторого элемента картины мира субъекта, происходит при замыкании контура распространения нервного возбуждения от сенсорного входа. При этом происходит наложение значения сигнала (гиппокамп) и эмоционального отношения к нему (гипоталамус) на поступившую сенсорную информацию.

Картина мира и психология

В культурно—историческом подходе (А.Р. Лурия, 1970; Л.Н. Выготский, 1960) вводится понятие знака как основного инструмента познавательной деятельности субъекта. В теории деятельности (А.Н. Леонтьев, 1975) раскрывается структура знака и его роль в формировании не только познавательной, но и любой другой деятельности субъекта.

По Леонтьеву образующими картины мира, т. е. компонентами знака, являются образ, значение и личностный смысл. «В значениях представлена преобразованная и свёрнутая в материи языка идеальная форма существования предметного мира ... раскрываемая в совокупной общественной практикой». Личностный смысл является «значением—для—меня».

«Движение, соединяющее абстрактное значение с чувственным миром, представляет собой одно из существеннейших движений сознания» (А. Н. Леонтьев).

Знак — элемент картины мира

Знак имеет следующие компоненты:

- имя,
- образ,
- значение и
- личностный смысл.

Предмет и цель исследования

Предмет исследования — построение моделей картины мира субъекта деятельности и некоторых когнитивных функций.

Целью исследования является разработка моделей и алгоритмов формирования пары образа и значения элемента знаковой картины мира субъекта деятельности.

Таким образом, в настоящей работе рассматриваются алгоритмы формирования двух основных компонент знака: образа и значения. Исследуется сходимость итерационного процесса связывания этих компонент и рассматриваются некоторые функции знаковой картины мира

Формальная постановка задачи

В качестве модели компонент знака в работе строится специальный распознающий автомат, функционирование которого с некоторыми упрощениями соответствует нейрофизиологическим данным о работе указанных участков коры головного мозга человека.

В работе были поставлены следующие задачи:

- исследовать автоматную функцию иерархии распознающих автоматов с заданным множеством состояний, т. е. со сформированными матрицами предсказания после завершения процесса обучения (например, по алгоритму HTM);
- на основе построенной модели разработать итерационный алгоритм формирования и связывания двух основных компонент знака: образа и значения;
- для построенного итерационного алгоритма исследовать его сходимость под управлением значения, полученного из внешней среды.

Признаки и распознающие автоматы

Пусть заданы следующие множества:

- ullet \mathcal{R} совокупность распознающих автоматов или R-автоматов,
- ullet \mathcal{F} совокупность допустимых признаков.

Введём бинарное отношение \dashv , определённое на декартовом произведении $\mathcal{F} \times \mathcal{R}$, и будем читать $f_k \dashv R_i^j$ как «признак f_k распознаётся R-автоматом R_i^j ».

Множество всех распознаваемых R-автоматом R_i^j признаков будем обозначать F_i^{*j} , т. е. $\forall f^* {\in} F_i^{*j} f^* {\dashv} R_i^j, F_i^{*j} {\subseteq} \mathcal{F}$.

Иерархия распознающих автоматов

Рассмотрим связный ориентированный ярусный граф $G_R = (V, E)$:

- ullet $V=\mathcal{R}$ множество вершин,
- ullet $E\subset \mathcal{R} imes \mathcal{R}$ множество рёбер,
- \bullet каждая вершина, принадлежащая $j\text{-}\mathsf{omy}$ ярусу графа G_R , является $R\text{-}\mathsf{a}\mathsf{втом}$ автоматом R_i^j уровня j
- ullet каждое ребро $e=(R_{i_1}^{j_1},R_{i_2}^{j_2}){\in}E$ обозначает иерархическую связь между дочерним R-автоматом $R_{i_1}^{j_1}$ и R-автоматом родителем $R_{i_2}^{j_2}$.

Входные признаки и функции распознавания

Введём следующие определения.

- Признак $f\dashv R_k^{j-1}$ называется входным для R-автомата R_i^j , если R_k^{j-1} является дочерним автоматом по отношению к R_i^j . Всё множество входных признаков для R_i^j будем обозначать F_i^j .
- Для каждого признака $f^* {\in} F_i^{*j}$ введём функцию распознавания $\hat{f}(x_1,\dots,x_q)=x^*$, где $x^* {\in} (0,1)$ вес распознаваемого признака f^* , а $x_1,\dots,x_q {\in} (0,1)$ веса признаков из множества входных признаков F_i^j . Всю совокупность функций распознавания для R_i^j будем обозначать \hat{F}_i^j .

Динамика распознающего автомата

- вектор $\bar{x}_i^j(t)$ длины l_i^j входной сигнал (вектор весов входных признаков),
- ullet вектор $ar{x}_i^{*j}(t)$ длины l_i^j выходной сигнал (вектор весов распознаваемых признаков),
- вектор $\hat{x}_i^{j+1}(t)$ длины q_i^{j+1} управляющий вектор, задающий начальное состояние в моменты времени $0,h_i^j,2h_i^j,\ldots$,
- ullet вектор $\hat{x}_i^j(t)$ длины q_i^j вектор состояния (вектор ожиданий входных признаков в следующий момент времени),
- h_i^j глубина памяти R-автомата R_i^j .

Входы и выходы распознающего автомата

$$F_{i}^{*j} = \begin{cases} f_{1}^{*}: & x_{11}^{*} \rightarrow x_{21}^{*} \rightarrow \cdots \rightarrow x_{t1}^{*} \rightarrow \cdots \rightarrow x_{h_{i}^{j}1}^{*} \\ f_{2}^{*}: & x_{12}^{*} \rightarrow x_{22}^{*} \rightarrow \cdots \rightarrow x_{t2}^{*} \rightarrow \cdots \rightarrow x_{h_{i}^{j}2}^{*} \\ \cdots & \cdots & \cdots & \cdots \\ f_{l_{i}^{*}}: & x_{1l_{i}^{j}}^{*} \rightarrow x_{2l_{i}^{j}}^{*} \rightarrow \cdots \rightarrow x_{tl_{i}^{j}}^{*} \rightarrow \cdots \rightarrow x_{h_{i}^{j}l_{i}^{j}}^{*} \\ \uparrow \bar{x}^{*}(t_{1}) \uparrow \bar{x}^{*}(t_{2}) & \uparrow \bar{x}^{*}(t) & \uparrow \bar{x}^{*}(h_{i}^{j}) \\ \hline \hat{x}^{i}(t_{1}) \uparrow \bar{x}^{*}(t_{2}) & \uparrow \bar{x}^{*}(t) & \uparrow \bar{x}^{*}(h_{i}^{j}) \\ \hline \hat{x}^{i}_{i}(t_{1}) \hat{x}^{i}_{i}(t_{2}) & \hat{x}^{i}_{i}(t) & \hat{x}^{i}_{i}(h_{i}^{j}) & \text{состояния} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \hat{x}^{i}_{i}(t) & \hat{x}^{i}_{i}(h_{i}^{j}) & \text{состояния} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}(t_{2}) & \uparrow \bar{x}(t) & \uparrow \bar{x}(h_{i}^{j}) & \text{время} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \hat{x}^{i}_{i}(t) & \hat{x}^{i}_{i}(h_{i}^{j}) & \text{состояния} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}(t_{2}) & \uparrow \bar{x}(t) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}(t_{2}) & \uparrow \bar{x}(t) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(t_{1}) & \bar{x}^{i}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}(t_{2}) & \uparrow \bar{x}(t) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}(t_{1}) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}(t_{1}) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}(t_{1}) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}(t_{1}) & \uparrow \bar{x}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(t_{1}) & \uparrow \bar{x}^{i}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(t_{1}) & \uparrow \bar{x}^{i}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(t_{1}) & \uparrow \bar{x}^{i}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{1}) \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(t_{2}) & \uparrow \bar{x}^{i}(h_{i}^{j}) & \text{cocrosshus} \\ \hline \hat{x}^{i}_{i}(t_{2}) & \uparrow \bar{x$$

Матрица предсказаний

Для определения состояния R-автомата и его автоматной функции, поставим каждой функции распознавания \hat{f}_k из множества \hat{F}_i^j в соответствие набор булевых матриц предсказания $Z_k = \{Z_1^k, \dots, Z_m^k\}$ размерности $q_i^j \times h_i^j$. Тогда

- столбец $\bar{z}_u^r=(z_{u1}^k,\dots,z_{uq}^k)$ матрицы Z_r^k это вектор предсказания входных признаков из множества F_i^j в момент времени $\tau_s+u,\,z_{uv}^k\in\{0,1\}$,
- ullet матрица Z_r^k задаёт последовательность битовых векторов, наличие бита в котором свидетельствует о присутствии распознаваемого функцией \hat{f}_k признака,
- ullet \mathcal{Z}_i^j множество всех матриц предсказания R-автомата R_i^j .

Входные и выходные функции

Таким образом, R-автомат R_i^j является бесконечным автоматом Миля с переменной структурой и конечной памятью и определяется следующим набором $R_i^j = < X_i^j \times \hat{X}_i^{j+1}, 2^{\mathcal{Z}_i^j}, X_i^{*j} \times \hat{X}_i^j, \varphi_i^j, \vec{\eta}_i^j, >$, где

- \bullet X_i^j множество входных сигналов,
- \bullet X_i^{*j} множество выходных сигналов,
- \hat{X}_i^{j+1} множество управляющих сигналов с верхнего уровня иерархии,
- ullet \hat{X}_i^j множество управляющих сигналов на нижний уровень иерархии,
- $2^{\mathbb{Z}_i^j}$ множество состояний (множество подмножеств множества матриц предсказания),
- ullet $arphi_i^j: X_i^j imes \hat{X}_i^{j+1} o 2^{\mathcal{Z}_i^j} -$ функция переходов,
- ullet $ec{\eta}_i^j: 2^{\mathcal{Z}_i^j} o X_i^{*j} imes \hat{X}_i^j$ вектор—функция выходов.

Алгоритм \mathfrak{A}_{th} функционирования R-автомата

В работе построен пороговый алгоритм $\mathfrak{A}_{th}(c_1,c_2)$ вычисления функции переходов φ_i^j и выходной функции $\bar{\eta}_i^j$ по начальному моменту времени τ_s , управляющему воздействию $\hat{x}_i^{j+1}(\tau_s)$ и входному воздействию ω_i^j .

Для исследования автоматной функции на основании разработанного алгоритма ниже будут построены 4 типа операторов распознавания, сформулированы задачи классификации и доказаны теоремы корректности линейных замыканий множеств этих операторов.

Статический оператор распознавания

Зафиксируем момент времени t, равный началу некоторого s-го вычислительного цикла τ_s , т. е. рассмотрим первый этап алгоритма \mathfrak{A}_{th} — задание начального состояния R-автомата.

В этом случае, R-автомат R_i^j можно рассматривать как статический оператор распознавания $R_i^j(\hat{x}_i^{j+1},\mathcal{Z}_i^j,\bar{x}_i^j)=\bar{x}_i^{*j}.$

Задача классификации в статическом случае

Пусть

- ullet $\{Q\}$ совокупность задач классификации,
- ullet $\{\mathcal{A}\}$ множество алгоритмов, переводящих пары (\hat{x}, \bar{x}) в вектора $ar{eta}$, составленные из элементов $0,1,\Delta:\mathcal{A}(\hat{x},\bar{x})=ar{eta}$.

Задача $Q(\hat{x}, \bar{x}, \bar{\alpha}) \in \{Q\}$ состоит в построении алгоритма, вычисляющего по поступившему вектору ожиданий \hat{x} и входному вектору \bar{x} значения информационного вектора $\bar{\alpha} = (\alpha_1, \dots, \alpha_l), \alpha_i \in \{0, 1\}$ присутствия признаков f_1^*, \dots, f_l^* .

Свойство корректности алгоритма

Определение 1

Алгоритм $\mathcal A$ называется корректным для задачи Q, если выполнено равенство

$$\mathcal{A}(\hat{x}, \bar{x}) = \bar{\alpha}.$$

Алгоритм \mathcal{A} , не являющийся корректным для Q, называется некорректным.

Далее будем считать, что множество $\{\mathcal{A}\}$ является совокупностью, вообще говоря, некорректных алгоритмов.

Разложение алгоритма классификации

Утверждение 1 (аналог теоремы Журавлёва о введении пространства оценок)

Каждый алгоритм $\mathcal{A} \in \{\mathcal{A}\}$ представим как последовательность выполнения алгоритмов R и C, где $R(\hat{x},\bar{x})=\bar{x}^*$, \bar{x}^* — вектор действительных чисел, $C(\bar{x}^*)=\bar{\beta}$, $\beta_i\in\{0,1,\Delta\}$.

- R оператор распознавания,
- ullet C решающее правило.

Решающее правило и операции над алгоритмами

Определение 2

Решающее правило C^* называется корректным на множестве входных векторов X, если для всякого вектора $\bar x$ из X существует хотя бы один числовой вектор $\bar x^*$ такой, что $C^*(\bar x^*)=\bar \alpha$, где $\bar \alpha$ — информационный вектор входного вектора $\bar x$.

В множестве операторов $\{R\}$ введём операции умножения на скаляр, сложения и умножения. Пусть r' — скаляр, $R', R'' \in \{R\}$. Определим операторы $r' \cdot R', R'' + R''$ и $R \cdot R''$ следующим образом:

$$r' \cdot R' = (r' \cdot x_1^{*\prime}, \dots, r' \cdot x_l^{*\prime}), \tag{1}$$

$$R' + R'' = (x_1^{*'} + x_1^{*''}, \dots, x_1^{*'} + x_l^{*''}), \tag{2}$$

$$R' \cdot R'' = (x_1^{*'} \cdot x_1^{*''}, \dots, x_1^{*'} \cdot x_l^{*''}). \tag{3}$$

Замыкание множества алгоритмов

Утверждение 2

Замыкание $L\{R\}$ множества $\{R\}$ относительно операций (1) и (2) является векторным пространством.

Утверждение 3

Замыкание $\mathfrak{U}\{R\}$ множества $\{R\}$ относительно операций (1), (2) и (3) является ассоциативной линейной алгеброй с коммутативным умножением.

Определение 3

Множества $L\{A\}$ и $\mathfrak{U}\{A\}$ алгоритмов $\mathcal{A}=R\cdot C^*$ таких, что $R{\in}L\{R\}$ и $R\in\mathfrak{U}\{R\}$, называются линейными и алгебраическими замыканиями множества $\{\mathcal{A}\}$ соответственно.

Свойство полноты задачи

Зафиксируем пару (\hat{x}, \bar{x}) управляющего вектора и входного вектора. Будем рассматривать задачи $Q(\hat{x}, \bar{x})$, обладающие следующим свойством относительно множества операторов распознавания \mathcal{R} .

Определение 4

Если множество векторов $\{R(\hat{x},\bar{x})\}$, где R пробегает некоторое множество операторов распознавания \mathcal{R} , содержит базис в пространстве числовых векторов длины l, то задача $Q(\hat{x},\bar{x},\bar{\alpha})$ называется полной относительно \mathcal{R} .

Связь свойств полноты и корректности

Имеет место следующее утверждение.

Утверждение 4 (аналог теоремы Журавлёва о корректности линейного замыкания)

Если множество задач $\{Q\}$ состоит лишь из задач, полных относительно \Re , то линейное замыкание $L\{R\cdot C^*\}$ $(C^*-$ произвольное фиксированное корректное решающее правило, R пробегает множество \Re является корректным относительно $\{Q\}$.

Теорема корректности в статическом случае

Будем рассматривать только такие задачи $Q(\hat{x}, \bar{x}, \bar{\alpha})$, для которых удовлетворяется следующее условие: $\exists k$ такое, что x_k является k-ым элементом вектора \bar{x} и $x_k > 1/2$.

В работе доказано следующее утверждение.

Теорема 1

Линейное замыкание $L\{\mathcal{A}\}$ семейства алгоритмов $\{\mathcal{A}\}=\{R\cdot C^*\}$ с произвольным корректным решающим правилом C^* и операторами распознавания R, определёнными алгоритмом \mathfrak{A}_{th} , является корректным на $\{Q\}$.

Операторы распознавания R^t

Пусть $au_s < t < au_s + h_i^j$, тогда операторы распознавания примут вид $R_i^j(\hat{x}_i^j(t),\mathcal{Z}_i^j,\bar{x}_i^j(t))$, кратко R^t .

Для этих операторов постановка задачи распознавания выглядит таким же образом как и для операторов R, формулировки определений полноты и корректности идентичны.

Теорема о корректности линейного замыкания $L\{R^t\cdot C^*\}$ доказывается аналогично.

Динамические операторы распознавания

Будем фиксировать не конкретный момент времени t, а полуинтервал $\Delta t = [\tau_s, \tau_s + h_i^j).$

В этом случае R-автомат R_i^j можно рассматривать как динамический оператор распознавания $\hat{R}_i^j + \hat{R}_i^j + \hat{$

$$\hat{R}_i^j(\hat{x}_i^{j+1}(\tau_s), \mathcal{Z}_i^j, \omega_{i\Delta t}^j) = \gamma_{i\Delta t}^j$$

- ullet принимающий функцию входного воздействия ω_i^j и
- ullet выдающий функцию выходной величины γ_i^j .

Динамические операторы распознавания

Действие динамического оператора \hat{R}_i^j можно заменить последовательным действием статических операторов

$$R(\hat{x}_{i}^{j+1}(\tau_{s}), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s})), R^{1}(\hat{x}_{i}^{j}(\tau_{s}+1), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s}+1)), \dots,$$

$$R^{h_{i}^{j}-1}(\hat{x}_{i}^{j}(\tau_{s}+h_{i}^{j}-1), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s}+h_{i}^{j}-1)),$$

выдающих последовательность

$$\{\bar{x}_i^{*j}(t)\} = \{\bar{x}_i^{*j}(\tau_s), \bar{x}_i^{*j}(\tau_s+1), \dots, \bar{x}_i^{*j}(\tau_s+h_i^j-1)\}.$$

Так как параметр h_i^j фиксирован, то конечные последовательности векторов $\omega_{i\Delta t}^j$ и $\gamma_{i\Delta t}^j$ можно считать матрицами размерности $l_i^j \times h_i^j$. Далее будем опускать индексы i и j.

Задача классификации в динамическом случае

Задача $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$ состоит в построении алгоритма $\hat{\mathcal{A}}$, вычисляющего по поступившему начальному (управляющему) вектору ожиданий \hat{x} и матрице входных воздействий $\omega_{\Delta t}$ последовательность векторов $\beta_{\Delta t}$, монотонно сходящуюся к информационному вектору $\bar{\alpha}$.

Искомый оператор распознавания \hat{R} должен выдавать весовую матрицу распознаваемых признаков $\gamma_{\Delta t}$, столбцы которой должны сходиться (с учётом корректного решающего правила) к информационному вектору: $\lim_{t \to \tau_s + h} \bar{x}^*(t) = \bar{\alpha}$.

Свойство корректности алгоритма в динамическом случае

Определение 5

Алгоритм $\hat{\mathcal{A}}(\hat{x},\bar{x})=eta_{\Delta t}=(ar{eta}_1,\ldots,ar{eta}_h)$ называется корректным для задачи \hat{Q} , если выполнено условие

$$\|\bar{\beta}_1 - \bar{\alpha}\| \geqslant \|\bar{\beta}_2 - \bar{\alpha}\| \geqslant \dots \geqslant \|\bar{\beta}_h - \bar{\alpha}\|,$$

причём $\|ar{\beta}_h - ar{\alpha}\| = 0$. $\|ar{\beta}_i - ar{\alpha}\| = \sum_j (\beta_{ij} - \alpha_j)$, где $\beta_{ij} - \alpha_j = 0$, если $\beta_{ij} = \alpha_j$, $\beta_{ij} - \alpha_j = \frac{1}{2}$, если $\beta_{ij} = \Delta$, и $\beta_{ij} - \alpha_j = 0$ иначе. Алгоритм $\hat{\mathcal{A}}$, не являющийся корректным для \hat{Q} , называется некорректным.

Разложимость алгоритма в динамическом случае

Утверждение 5

Каждый алгоритм $\hat{\mathcal{A}} \in \{\hat{\mathcal{A}}\}$ представим как последовательность выполнения алгоритмов \hat{R} и \hat{C} , где $\hat{R}(\hat{x},\mathcal{Z},\omega_{\Delta t})=\gamma_{\Delta t}$, $\gamma_{\Delta t}$ — матрица действительных чисел, $\hat{C}(\gamma_{\Delta t})=\beta_{\Delta t}$, $\beta_{\Delta t}$ — матрица значений $\beta_{ij}\in\{0,1,\Delta\}$.

Корректное решающее правило

Корректное решающее правило \hat{C}^* для матрицы $\gamma_{\Delta t}$ определяется через набор корректных правил для векторов (C_1^*,\dots,C_h^*) таких, что

$$||C_1^*(\bar{x}^*(\tau_s)) - \bar{\alpha}|| \ge ||C_2^*(\bar{x}^*(\tau_s + 1)) - \bar{\alpha}|| \ge \cdots \ge$$

 $\ge ||C_h^*(\bar{x}^*(\tau_s + h - 1)) - \bar{\alpha}||,$

причём последняя норма равна нулю. В простейшем случае $\forall i$ $C_i^*(\bar{x}^*(\tau_s+i))=\bar{\alpha}.$

Аналогично статическому случаю вводятся определения линейного $L\{\hat{R}\}$ и алгебраического $\mathfrak{U}\{\hat{R}\}$ замыкания над множеством $\{\hat{R}\}.$

Основная теорема корректности в динамическом случае

Зафиксируем начальный вектор ожиданий \hat{x} и последовательность входных векторов $\omega_{\Delta t}.$

Если, как и в статическом случае, будем рассматривать только такие задачи $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$, для которых в матрице $\omega_{\Delta t}$ в каждом столбце с номером s $\exists k$ такое, что x_{sk} является k-ым элементом вектора $\bar{x}(\tau_s+s)$ и $x_{sk}>1/2$, то можно сформулировать следующую теорему.

В работе доказано следующее утверждение.

Теорема 2

Линейное замыкание $L\{\hat{\mathcal{A}}\}$ семейства алгоритмов $\{\hat{\mathcal{A}}\}=\{\hat{R}\cdot\hat{C}^*\}$ с произвольным корректным решающим правилом \hat{C}^* и операторами распознавания \hat{R} , определёнными алгоритмом \mathfrak{A}_{th} , является корректным на $\{\hat{Q}\}$.

Иерархический оператор распознавания

Рассмотрим пример из двухуровневой иерархии, на каждом уровне которой находится по одному оператору: статический $R_{i_1}^{j+1}(\hat{x}_{i_1}^{j+2}, \bar{x}_{i_1}^{j+1}(\tau_s), \bar{\alpha}_{i_1}^{j+1})$ на верхнем уровне и динамический $\hat{R}_{i_2}^j(\hat{x}_{i_2}^{j+1}, \omega_{i_2\Delta t}^j, \bar{\alpha}_{i_2}^j)$ — на нижнем.

Эту иерархию можно рассматривать как *иерархический оператор* распознавания $\hat{R}^2_{e,j}(\hat{x}^{j+1}_{i_1}(au_s),\mathcal{Z}^{j+1}_{i_1},\mathcal{Z}^{j}_{i_2},\omega^{j}_{i_2\Delta t})=\bar{x}^{*j+1}_{i_1}.$

Задача классификации в случае двухуровневой иерархии

Задача $\hat{Q}_{e,j}^2(\hat{x}_{i_1}^{j+2},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_1}^{j+1})$ состоит в построении алгоритма $\hat{\mathcal{A}}_e$, вычисляющего по поступившему начальному вектору ожиданий $\hat{x}_{i_1}^{j+2}$ и матрице входных воздействий $\omega_{i_2\Delta t}^j$ значения информационного вектора $\bar{\alpha}_{i_1}^{j+1}$.

Основная теорема корректности в иерархическом случае

Зафиксируем начальный вектор ожиданий $\hat{x}_{i_1}^{j+2}$ и последовательность входных векторов $\omega_{i_2\Delta t}^j$. Если рассматривать только такие задачи $\hat{Q}_{e,j}^2(\hat{x}_{i_1}^{j+2},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_1}^{j+1})$, для которых в матрице $\omega_{i_2\Delta t}^j$ в каждом столбце с номером s $\exists k$ такое, что x_{sk} является k-ым элементом вектора $\bar{x}_{i_2}^j(\tau_s+s)$ и $x_{sk}>1/2$, то можно сформулировать следующую теорему.

В работе доказано следующее утверждение.

Теорема 3

Линейное замыкание $L\{\hat{\mathcal{A}}_e\}$ семейства алгоритмов $\{\hat{\mathcal{A}}_e\}=\{\hat{R}_{e,j}^2\cdot\hat{C}_e^*\}$ с произвольным корректным решающим правилом \hat{C}_e^* и операторами распознавания $\hat{R}_{e,j}^2$, определёнными алгоритмом \mathfrak{A}_{th} , является корректным на множестве задач $\{\hat{Q}_{e,j}^2\}$.

Формирование пары «образ — значение»

Рассмотрим формирование пары «образ — значение предмета» элемента картины мира субъекта под управлением эталонного значения, полученного из внешней среды.

Отношения иерархичности признаков

Введём семейство бинарных отношений $\{ \sqsubset, \sqsubset^1, \sqsubset^2, \dots \}$, определённых на декартовом произведении $\mathcal{F} \times \mathcal{F}$.

Признак f_1 является дочерним по отношению к признаку f_2 : $(f_1,f_2)\in \sqsubset$ или $f_1 \sqsubset f_2$, в том случае, если $f_1\dashv R_1^j, f_2\dashv R_2^{j+1}, R_2^{j+1}$ — родительский R-автомат по отношению к R_1^j и в множестве матриц предсказания \mathcal{Z}_2 признака f_2 существует как минимум одна матрица Z_r^2 , содержащая некоторый столбец \bar{z}_u^r с элементом $z_{uv}^r \neq 0$, где v — индекс признака f_1 во входном векторе для R-автомата R_2^{j+1} .

Отношения иерархичности признаков

Пара признаков $(f_1,f_2)\in \sqsubset^t$ или $f_1 \mathrel{\sqsubset}^t f_2$, где $t\in\{1,2,\dots\}$, если $f_1\dashv R_1^j, f_2\dashv R_2^{j+1}$, R_2^{j+1} — родительский R-автомат по отношению к R_1^j и в множестве матриц предсказания \mathcal{Z}_2 признака f_2 существует хотя бы одна матрица Z_r^2 , содержащая t-ый столбец \overline{z}_t^r с элементом $z_{tv}^r \neq 0$, где v — индекс признака f_1 во входном векторе для R-автомата R_2^{j+1} .

Каждый элемент вектора—столбца соответствует определённому признаку из входного множества признаков R-автомата, что означает задание типа для каждого элемента вектора-столбца. Будем обозначать тип k-го элемента вектора-столбца R-автомата R_i^j как $f_i^j(k) \in F_i^j$, $k \in (1,q_i^j)$.

Признаки «условие» и «эффект»

Значение будем рассматривать как множество правил, каждое из которых соответствует некоторому действию. Правило для простоты будем представлять в виде пары «условия — эффект действия» так, как это принято в искусственном интеллекте.

Введём два выделенных признака: f_c является меткой условия, а f_e — меткой эффекта. Пусть некоторый R-автомат, например R_0^1 , распознает оба этих признака.

Определение 6

Tе признаки, которые распознаются R-автоматами, выступающими родительскими по отношению к R-автомату R^1_0 , будем называть процедурными признаками, остальные — объектными признаками.

Столбцы условий и эффектов

Определение 7

Столбцы матрицы предсказания Z, в которых соответствующий признаку f_e элемент вектора не нулевой, будем называть столбцами эффектов, а те столбцы матрицы предсказания Z, в которых не равен нулю элемент вектора, соответствующий признаку f_c – столбцами условий.

Пополним семейство отношений $\{ \sqsubset, \sqsubset^1, \sqsubset^2, \dots \}$ двумя отношениями: \sqsubset^c и \sqsubset^e , принадлежность к которым пары признаков (f_1, f_2) свидетельствует о том, что признак f_1 присутствует соответственно в столбце условий и эффектов как минимум в одной матрице предсказания процедурного признака f_2 .

Образ знака

Определение 8

Если f_1 — признак, соответствующий знаку s_1 , то подмножество $\tilde{p}(f_1)$ множества \mathcal{F} таких признаков, что $\forall f_i \in \tilde{p}(f_1) f_i \sqsubset f_1$, будем называть образом знака s_1 (признака f_1).

На множестве всех образов \tilde{P} введём метрику $\rho_p(\tilde{p}(f_1), \tilde{p}(f_2))$, вычисляемую по следующему правилу:

- ullet если f_1 и f_2 распознаются разнымиR-автоматами, т.е. $f_1\dashv R_1^j, f_2\dashv R_2^i$, то $\rho_p(\tilde{p}(f_1), \tilde{p}(f_2))=\infty$,
- ullet если f_1 и f_2 распознаются одним и тем же R-автоматом R_1^j со множеством входных признаков F_1^j мощности q и характерным временем h, то

$$\rho_p(\tilde{p}(f_1), \tilde{p}(f_2)) = \min_{\substack{Z_1^r \in Z_1 \\ Z_2^s \in Z_2}} \frac{1}{q \cdot h} \sum_{u=1}^h \|\bar{z}_u^r - \bar{z}_u^s\|. \tag{4}$$

Значение знака

Определение 9

Если f_1 — признак, соответствующий знаку s_1 , f_2 — процедурный признак и $f_1 \sqsubset^c f_2$, то будем называть f_2 значением знака s_1 (признака f_1). Множество всех значений признака f_1 будем обозначать $\tilde{m}(f_1)$.

На множестве всех значений \tilde{M} введём метрику $\rho_m(\tilde{m}(f_1),\tilde{m}(f_2))$ следующим образом:

$$\rho_{m}(\tilde{m}_{1}(f_{1}), \tilde{m}_{2}(f_{2})) = \min_{\substack{f_{i} \in \tilde{m}(f_{1}) \\ f_{j} \in \tilde{m}(f_{2})}} \rho_{p}(\tilde{p}(f_{i}), \tilde{p}(f_{j})). \tag{5}$$

Процедурный признак как правило

Любой элементарный процедурный признак f_p , распознаваемый R-автоматом R_i^j , можно представить в виде правила $r_p = < F_C(f_p), F_A(f_p), F_D(f_p) >$, в котором:

- ullet $F_C(f_p)\subseteq F_i^{\jmath}$ множество признаков условий правила: $\forall f\in F_C(f_p)\; f\sqsubset^c f_p;$
- ullet $F_A(f_p)\subseteq F_i^j$ множество добавляемых правилом признаков: $\forall f\in F_A(f_p)\; f\sqsubset^e f_p, f
 otin F_C;$
- ullet $F_D(f_p)\subseteq F_i^j$ множество удаляемых правилом признаков: $orall f\in F_D(f_p)\ f
 otin F_A, f\in F_C.$

Свойство выполнимости

Определение 10

Процедурный признак f_p^1 с матрицей предсказания $Z=(\bar{z}_1^c,\bar{z}_2^e)$ выполняется на векторе z длины q, если $z\cdot \bar{z}_1^c=\bar{z}_1^c$.

Будем говорить, что процедурный признак f_p^1 выполним в условиях процедурного признака f_p^2 , если

- ullet оба признака распознаются одним и тем же R-автоматом R_i^j и признак f_p^1 выполняется на столбце условий матрицы предсказания признака f_p^2 ,
- $f_p^1\dashv R_1^{j_1}, f_p^2\dashv R_2^{j_2}$, множества $F_C(f_p^1)$ и $F_C(f_p^2)$ состоят из одних и тех же признаков, образуемый вектор \tilde{z} (той же мощности, что и множество $F_1^{j_1}$) элементы которого, соответствующие признакам из $F_C(f_p^2)$ принимаются равными 1, остальные 0, и признак f_p^1 выполним на векторе \tilde{z} .

Свойство конфликтности

Определение 11

Будем говорить, что два процедурных признака f_p^1 и f_p^2 конфликтуют, если выполнено как минимум одно из следующих условий:

- $F_D(f_p^1) \cap F_A(f_p^2) \neq \varnothing$,
- $F_D(f_p^2) \cap F_A(f_p^1) \neq \emptyset$,
- $F_D(f_p^1) \cap F_C(f_p^2) \neq \emptyset$,
- $F_D(f_p^2) \cap F_C(f_p^1) \neq \varnothing$.

Опыт наблюдения

У субъекта имеется опыт наблюдения, который выражается в виде отношения Ψ_p^m : $\tilde{p}\Psi_p^m\tilde{m}$, или $\Psi_p^m(\tilde{p})=\tilde{m}$, в том случае, если $\tilde{p}\in \tilde{P}$ является образом некоторого знака s, а $\tilde{m}\in \tilde{M}$ — значением того же знака s.

Построен итерационный алгоритм \mathfrak{A}_{pm} доопределения функции Ψ_p^m , который обеспечивает формирование такого образа из множества признаков \hat{F} , при котором формируемое значение сходится к значению $\tilde{m}^0=\{f_p\}$, полученному из внешней среды. Полученные образ и значение служат основной для образования нового знака.

Теорема корректности алгоритма \mathfrak{A}_{pm}

Имеет место следующее утверждение.

Теорема 4

Алгоритм \mathfrak{A}_{pm} корректен, т. е. последовательность значений $\langle \tilde{m}^{*(0)}, \tilde{m}^{*(1)}, \ldots \rangle$, которая строится с помощью алгоритма \mathfrak{A}_{pm} для значения \tilde{m}^0 , полученного из внешней среды, сходится к \tilde{m}^0 .

Результаты

- Построена модель компонент знака элемента картины мира субъекта деятельности.
- Построены четыре типа операторов распознавания (два статических случая, динамический и иерархический случаи) в терминах алгебраической теории для образной компоненты знака.
- Доказаны теоремы корректности линейных замыканий множеств построенных в работе операторов распознавания.
- Построен алгоритм итерационного процесса формирования и связывания двух компонент знака.
- Исследована сходимость итерационного процесса формирования и связывания двух компонент знака.

Спасибо за внимание!

ИСА РАН, лаб. «Динамические интеллектуальные системы», pan@isa.ru