Class13: RNASeq pt. 1

McKenzie Mai (A1664664)

The data for today's lab comes from a published RNA-seq experiment where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects.

Import Data

We need two things for this analysis: counts and metadata; these are called "countData" and "colData" in the DESeq2 world.

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")
head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	CDD1020E17	CDD1020E20	SRR1039521		
	211066011110	Shn1039320	511111059521		
ENSG0000000003	1097	806	604		
ENSG0000000003 ENSG0000000005					
	1097	806	604		
ENSG0000000005	1097 0	806 0	604 0		
ENSG0000000005 ENSG00000000419	1097 0 781	806 0 417	604 0 509		

The counts are organized with a gene per row and experiment per column.

head(metadata)

```
dex celltype
          id
                                  geo_id
1 SRR1039508 control
                       N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
    Q1. How many genes are in this dataset?
  nrow(counts)
[1] 38694
    Q2. How many 'control' cell lines do we have?
  sum(metadata$dex=="control")
[1] 4
  table(metadata$dex)
control treated
      4
```

Examine Data

Check on match of metadata and coldata

```
colnames(counts)

[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"

[6] "SRR1039517" "SRR1039520" "SRR1039521"
```

metadata\$id

- [1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
- [6] "SRR1039517" "SRR1039520" "SRR1039521"

```
colnames(counts) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

If you want to know that all the elements of a vector are TRUE we can use the all() function.

```
all(c(T,T,T, F))
[1] FALSE
    all( colnames(counts) == metadata$id)
```

[1] TRUE

Analysis

I want to start by comparing "control" and "Treated" columns. To this I will first find the average for each gene (row) in all "control" columns. Then I will find the average in the "treated" columns. Then I will compare them.

Let's extract all "control" columns first.

```
control.inds <- metadata$dex == "control"
control.counts <- counts[,control.inds]</pre>
```

Now find the mean count value per gene using the apply() function.

```
control.mean <- apply(control.counts, 1, mean)</pre>
```

Now do the same for the "treated" columns. i.e. find treated.mean values.

```
treated.mean <- apply( counts[, metadata$dex == "treated"], 1, mean)</pre>
```

Put these two mean vectors together for ease of book-keeping

```
meancounts <- data.frame(control.mean, treated.mean)
head(meancounts)</pre>
```

	control.mean	treated.mean
ENSG0000000003	900.75	658.00
ENSG0000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Let's have a wee look with a quick plot.

```
plot(meancounts)
```



```
plot(meancounts, log="xy")
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot


```
log(10, base=2)

[1] 3.321928

log2(10/10)

[1] 0

log2(20/10)
```

```
log2(10/20)
```

[1] -1

```
log2(40/10)
```

[1] 2

We most often work in log2 units because they have a more simple interpretation.

Here we calculate the $\log 2$ Fold-change of treated/control values add it to our wee data frame of results.

```
meancounts$log2fc <- log2(meancounts$treated.mean / meancounts$control.mean)
head(meancounts)</pre>
```

	control.mean	treated.mean	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG0000000005	0.00	0.00	NaN
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000938	0.75	0.00	-Inf

There are some funky answers in here like NaN (Not a number) and -Inf (minus infinity) that all come because I have zero count genes in my dataset.

It is common practice to filter these zero count genes out before we go too deep.

```
to.keep.inds <- (rowSums(meancounts[,1:2] == 0) == 0)
mycounts <- meancounts[to.keep.inds,]
head(mycounts)</pre>
```

	control.mean	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805

ENSG00000000460	97.25	78.75 -0.30441833
ENSG00000000971	5219.00	6687.50 0.35769358
ENSG0000001036	2327.00	1785.75 -0.38194109

Q. How many genes do we have left after zero count filtering?

```
nrow(mycounts)
```

[1] 21817

A common threshold for calling a gene "up" or "down" is a log2 fold change of +2 or -2.

Q. How many "up" regulated genes do we have?

```
sum(mycounts$log2fc >= +2)
```

[1] 314

DESeq analysis

We need to do this analysis properly with our inner stats person kept happy.

```
library(DESeq2)
```

To use DESeq we need to get our input data in very particular format.

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)
```

```
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
Get the results
  res <- results(dds)</pre>
  head(res)
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns
                  baseMean log2FoldChange
                                               lfcSE
                                                          stat
                                                                  pvalue
                                <numeric> <numeric> <numeric> <numeric>
                 <numeric>
ENSG00000000003 747.194195
                               -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005
                  0.000000
                                       NA
                                                  NA
                                                            NA
                                                                      NA
ENSG00000000419 520.134160
                                0.2061078 0.101059
                                                      2.039475 0.0414026
ENSG00000000457 322.664844
                                0.0245269 0.145145 0.168982 0.8658106
ENSG00000000460 87.682625
                               -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938
                  0.319167
                               -1.7322890 3.493601 -0.495846 0.6200029
                     padj
                <numeric>
ENSG00000000003 0.163035
ENSG0000000005
ENSG00000000419
                 0.176032
ENSG00000000457
                 0.961694
ENSG00000000460
                 0.815849
```

I want to make a figure showing an overview of all my results to date. A plot of **log2 fold change** vs. the **p-value** (adjusted p-value)

NA

ENSG00000000938

```
mycols <- rep("gray", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "light blue"

plot( res$log2FoldChange, -log(res$padj),
   col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )
abline(v=-2, col="gray")
abline(v=+2, col="gray")
abline(h=-log(0.05), col="gray")</pre>
```



```
log(0.5)

[1] -0.6931472

log(0.000005)

[1] -12.20607
```