

Lecture 8 – Introduction to HPLC

Learning Objectives

Discuss the basic principles of HPLC

Describe of the various HPLC separation mechanisms

List the applications of each separation in bioanalytics

Topics

Overview of Chromatography

Reverse Phase Chromatography

Size Exclusion Chromatography

Ion Exchange Chromatography

Chromatography

Can be used to:

1. Separate the pure protein from contaminants such as viruses, DNA, other proteins, toxins, aggregates

Large scale chromatography in Downstream Processing

2. To characterise proteins during processing to ensure consistent production of the protein with correct sequence, folding, structure, purity and post-translational modifications

Small scale chromatography in bioanalytics

Liquid Chromatography

- Sample is dissolved in a solvent and flushed through a column packed with lots of tiny solid particles
- Solvent = 'mobile phase'
- Solid particles = 'stationary phase'
- The individual components of the sample separate due to:
 - higher affinity for the mobile phase
 - higher affinity for the stationary phase

Liquid Chromatography

High Performance Liquid chromatography Introduction

- High pressure used to generate flow required for LC in packed columns
- One of the most powerful tools in analytical chemistry
- Analytical or preparative

HPLC Column

Column

- Usually glass or metal tube of sufficient strength to withstand the pressure
- Mobile phase runs through & permeates the stationary phase

PEEK (an engineered plastic) and glass have inert surfaces but are less tolerant of high pressures than stainless steel

Stationary phase (particles)

- Usually solid particles of very small diameter (1.7μm– 5μm)
- Particles can be coated with various substances to attract a specific type of molecule
- Should have a large surface area which is accessible to mobile phase & sample
- Common stationary phase material is silica (component of sand/quartz)

HPLC Equipment

HPLC Separation on the column

- As the mixture passes through the column the individual components separate based upon their affinities for the stationary phase and the mobile phase
- Affinities for stationary phase: red < orange < purple < green < blue
- A detector analyses the components as they elute

HPLC How a band becomes a peak

• Bands are more concentrated in the centre than at the fronting and tailing edges, this distribution of analyte molecules reach the detector at different times generating a peak

HPLC How a band becomes a peak

• Bands are more concentrated in the centre than at the fronting and tailing edges, this distribution of analyte molecules reach the detector at different times generating a peak

HPLC How a band becomes a peak

• Bands are more concentrated in the centre than at the fronting and tailing edges, this distribution of analyte molecules reach the detector at different times generating a peak

HPLC Chromatogram

Retention time

 Time it takes sample to travel from injection port through column to detector

Quantitation

 Chromatograms are 'integrated' to quantitate sample components

HPLC Isocratic v Gradient Methods

Isocratic: One mobile phase is used throughout the run

Gradient:

- Two mobile phases are used (A & B) that are mixed before hitting the column
- Allows separation of a wider range of analytes in a single run

HPLC

Isocratic v Gradient Methods

• Isocratic: mobile phase composition remains the same throughout the run

• **Gradient**: mobile phase composition is changed during the separation. As the separation proceeds, the elution strength of the mobile phase is increased

HPLC Mobile phases

- Water
- Organic solvents (HPLC grade)
- Buffers

Mobile phase polarity

Water > acetonitrile > methanol > ethanol > tetrahydrofuran >propanol > cyclohexane > hexane

Example: Mobile phase for RP-HPLC gradient method

Start: 90% Water + 10% Acetonitrile End: 80% Acetonitrile + 20% Water

Degassing is required to remove dissolved oxygen to prevent band spreading and interference **Filtering** of buffers is required for UPLC analysis

Sample/Analyte Characteristics

 Characteristics of chemicals can be used to create HPLC separations:

- Polarity
- Electrical Charge
- Molecular Size
- Biological affinity

Key Analytical methods Chromatography

	Isolation Method	Feature
•	Normal phase chromatography (NP-HPLC)	Hydrophilicity
•	Reversed phase chromatography (RP-HPLC)	Hydrophobicity
•	Affinity chromatography	Biorecognition
•	Size exclusion chromatography (SEC)	Size
•	Ion exchange chromatography (IEX)	Charge
•	Hydrophilic interaction chromatography (HILIC)	Hydrophilicity

Topics

Overview of Chromatography

Reverse Phase Chromatography

Size Exclusion Chromatography

Ion Exchange Chromatography

Polarity

Polarity:

Separation of charge across a molecule due to uneven sharing of valence electrons between atoms in a molecule

Ethane, a nonpolar molecule

- Polar compound: more hydrophilic, e.g. water (H₂O)
- Non-polar compound: more hydrophobic, e.g.
 chloroform (CHCl₃), oils, fats

Reversed Phase HPLC

- Separation of molecules based on hydrophobicity
- Chemical attraction involved: hydrophobic interactions

Stationary Phase:

Silica particles which have a hydrophobic (non-polar) coating

Mobile phase:

- Gradient: from mostly aqueous to mostly organic
- Hydrophobic compounds are attracted to the to non-polar stationary phase in a polar mobile phase
- **Polar** compounds in the sample will be attracted to the **polar** mobile phase and move faster to create the separation

RP-LC columns

- The stationary phase is made up of hydrophobic alkyl chains (-CH₂-CH₂-CH₂-CH₃) that interact with the analyte e.g. C4, C8, and C18.
- C4 is usually used for proteins
- C18 is usually used for peptides or small molecules
- C4 and C8 columns are better than C18 for separation of proteins because elution takes place in lower proportion of solvent so minimise denaturation of protein

Applications of RP-LC

- Protein quantitation
- Separation of complex protein mixtures
- Detection of isoforms
- Peptide mapping

Analytical: Peptide mapping

- Peptide mapping involves digesting a protein with a protease such as trypsin to create specific peptides
- Used to produce a unique 'fingerprint' of an individual protein when analysed by RP-LC

Protein Digestion Yields Peptides

 Digestion of the protein product with a protease to create specific peptides

Trypsin

- Trypsin is a serine protease that hydrolyses specific peptide bonds:
 - at the carboxyl end of basic amino acids arginine and lysine
- This generates several peptide fragments that serve as a protein 'fingerprint'
 - Protein should always have same peptide fragmentation

Cleavage Products:

Interpreting the Peptide Map

Peptide maps tend to be complex with many peaks

• Serve as a unique 'fingerprint' or 'map' for the protein

 The fingerprint is compared to a reference standard, and the chromatograms can be overlaid or mirrored ('butterfly plot') for comparison

 Can also be compared to 'theoretical' peptide map, which can be calculated based on the known amino acid sequence and the protease used

Peptide mapping of BSA

Overlaying of results:

Topics

Overview of Chromatography

Reverse Phase Chromatography

Size Exclusion Chromatography

Ion Exchange Chromatography

Size Exclusion Chromatography

- Separation of molecules based on size
- No chemical attraction involved

Stationary Phase:

Silica particles which have pores which are of a defined size

Mobile phase:

- Aqueous buffer to control pH and ionic strength of protein solution
- Small proteins penetrate pores in the column & progress through the column more slowly
- Large proteins cannot penetrate the pores and flow through the column faster

Size Exclusion Chromatography

Size exclusion chromatography Protein Mix

Applications of SEC

 SEC is currently the primary method of aggregate detection in biotherapeutic production

- Fast (sample analysis, approx. 30min)
- Efficient
- Quantitative
- High precision

Detection of protein aggregation with SEC

SEC Chromatogram of a therapeutic antibody sample containing monomer (eluted last), dimer (eluted second last) and high molecular weight (MW) aggregates (eluted first)

SEC Limitations

- Failure to detect larger aggregates
 - Collection of larger aggregates at column frits or guard columns; excluded from analysed portion of sample, not detected
 - Can co-elute with void volume
 - UV detection not as sensitive as light scattering for large aggregates

SEC Limitations

SEC is subject to inaccuracies in the detection of protein aggregates

- Formulation changes for protein during analysis
 - Dilution of protein in high ionic strength buffers
 - Buffer/solvent conditions may produce false positives or mask true aggregation state of protein

 Must use orthogonal methods to further characterise aggregation during drug development

Topics

Overview of Chromatography

Reverse Phase Chromatography

Size Exclusion Chromatography

Ion Exchange Chromatography

Ion Exchange Chromatography

- Separation of molecules based on charge
- Chemical attraction involved: ionic interactions

Stationary Phase:

 Particles (e.g. agarose) to which positive or negative charge has been applied

Mobile phase:

- Aqueous buffer
- Charged compounds with the opposite charge to stationary phase will be attracted to the particle surface (ion–exchange) and be retained

Ion exchange chromatography

- Separations method that depends on charge
- Stationary phase particle has a charge (positive or negative)

lonised compounds with the opposite charge will be attracted to the particle surface (ion—

exchange) and be retained

 Separation depends on the reversible adsorption of charged solute molecules to immobilized ion exchange groups of opposite charge

Binding can be controlled using pH

pH > pI, the protein has a net negative charge pH < pI, the protein will have a net positive charge

Ion exchange chromatography Separation mechanism

Ion exchange separations consist of four main steps:

Applications of IEX

Examination of charge variants

- Monitoring chemical changes to proteins during processing
 - Chemical change could result in change in overall charge of protein and lead to change in retention time
 - Oxidation, deamidation

Applications of IEX

Identifying isoforms (charge variants) of the biopharmaceutical

Topics

Overview of Chromatography

Reverse Phase Chromatography

Size Exclusion Chromatography

Ion Exchange Chromatography

Thank You

