					 	T-
75 37						
Keg. No						

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

Third Semester

21BMC203J - ELECTRIC AND ELECTRONIC CIRCUITS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours					Max. Marks: 75		
PART - A (20 × 1 = 20 Marks) Answer all Questions					CO		
1.	The algebraic sum of voltages around electrical network is equal to (A) Unity (C) Infinite	d any closed path or loop in an (B) Zero (D) Non zero	1	1	1		
2.	A mesh is a loop that contains number (A) 0 (C) 2	of loops within it. (B) 1 (D) many	1	2	1		
3.	Ohms law holds good only at (A) Constant temperature (C) Constant current	(B) Constant voltage (D) Constant pressure	1	1	1		
4.	The number of nodes to be considered as re(A) 0 (C) 2	ference nodes in nodal analysis is (B) 1 (D) 3	1	2	1		
5.	Thevenin's voltage refers to (A) Short circuit voltage (C) Bias voltage	(B) Open circuit voltage (D) Offset voltage	1	2	2		
6.	The complementary of Thevenin's theorem (A) Superposition theorem (C) Substitution theorem	is (B) Reciprocity theorem (D) Norton's Theorem	1	1	2		
7.	The condition to deliver maximum power impedance should be (A) Less than load impedance (C) Inverse of admittance	r at the load terminals is that, Source (B) Greater than load impedance (D) Equal to load impedance		1	2		
8.	The dual of inductance is (A) Resistance (C) Capacitance	(B) Admittance (D) Reactance	1	1	2		
9.	Superposition theorem is applicable only to (A) Linear (C) Both Linear and Non-Linear	networks (B) Non-Linear (D) Asymmetric	1	2	3		
10.	Replace any branch in a network by an terminal voltage is related to (A) Substitution theorem (C) Tellegen's theorem	(B) Superposition theorem (D) Millman's theorem	1	1	3		

11.	eciprocity theorem holds good for networks which are (A) Linear (B) Non-Linear (C) Bilateral (D) Linear and bilateral		1	2	3
12.	According to superposition theorem, V sources, other current sources are (A) Short circuited (C) Open circuited	While considering the effect of individual (B) Undisturbed (D) Considered ideal	1	1	3
13.	If the positive terminal of the supply is biasing is termed as (A) Forward bias (C) Zero bias	s connected to the anode of the diode, the (B) Reverse bias (D) Conditional bias	1	1	4
14.	Specify the temperature coefficient of re (A) Positive (C) Zero	sistance possessed by a semiconductor (B) Negative (D) unity	1	2	4
15.	Zener diode is used mainly in (A) amplifiers (C) Voltage attenuator	(B) Voltage regulator(D) Voltage multiplier	1	2	4
16.	Which rectifier is constructed using 4 dio (A) Half wave rectifier (C) Bridge rectifier	odes? (B) Full wave rectifier (D) Both Half wave rectifier and Full wave rectifier	1	2	5
17.	How many terminals does a transistor have? (A) 1 (B) 2 (C) 3 (D) 4		1	1	5
18.	In which region does a transistor operate during amplification? (A) Active (B) Cutoff (C) Saturation (D) Biasing		, 1	2	5
19.	Which terminal acts as input to the transistor in CE mode? (A) Emitter (B) Base (C) Collector (D) Gate		1	3	5
20.	Both junctions of a transistor are reverse (A) Active mode (C) cutoff mode	biased during (B) saturation mode (D) Linear mode	1	4	5
	$PART - B (5 \times 8 = Answer all Queen$	Mark	s BL	CO	

21. (a) Using Norton's theorem, find current in branch " $R_L = 2\Omega$ " in the given 8 4 2 network

(b) Find the value of R_L at which maximum power is transferred. The internal resistance of the voltage source is 0.2Ω . Find the value of maximum power.

- 22. (a) With a neat diagram, explain the operation of a PN junction diode under forward and reverse bias
- 2

3

8

1

- (OR)
- (b) How are semiconductors classified? Explain them with a neat diagram
- 23. (a) Write the mesh equations for the given network

- (OR)
- (b) Write node voltage equations and determine the currents 5Ω and 10Ω branch of the network

24. (a) Verify reciprocity theorem for the given network

(OR)

(b) Can you replace the 4Ω resistor in the branch "cd" with any other electronic component with affecting the terminal voltages?

25. (a) Compare and contrast CB, CC and CE configurations

4 5

8

3

3

(OR)

(b) With a simple circuit, demonstrate how BJT can be used as a switch?

PART - C (1
$$\times$$
 15 = 15 Marks)
Answer any 1 Questions

Marks BL CO

26. Find the voltage across the 2Ω resistor using superposition theorem

15 4 3

27. With a neat diagram, Explain the operating principle of bridge rectifier and derive 15 3 necessary expressions that describes its performance measures.
