Obliczenia naukowe

Wojciech Maziarz

Październik 2022

1 Zadanie 1

1.1 Wyznaczanie macheps

_	Arytmetyka Macheps		eps()	float.h
_	Float16	0.000 977	0.000977	brak
	Float32	1.1920929×10^{-7}	1.1920929×10^{-7}	1.192093×10^{-7}
	Float64	$2.220446049250313 \times 10^{-16}$	$2.220446049250313 \times 10^{-16}$	2.220446×10^{-16}

1.2 Związek macheps z precyzją arytmetyki

Precyzja arytmetyki to połowa machepsu.

1.3 Wyznaczanie eta

Arytmetyka	Eta	nextfloat(0)
Float16	6.0×10^{-8}	6.0×10^{-8}
Float32	1.0×10^{-45}	1.0×10^{-45}
Float64	5.0×10^{-324}	5.0×10^{-324}

1.4 Związek eta z MIN_{sub}

Eta jest równy MIN_{sub} , czyli najmniejszej liczbie nieznormalizowanej.

1.5 Związek floatmin() a MIN_{nor}

Funkcja floatmin() zwraca najmniejszą liczbę znormalizowaną, czyli MIN_{nor} .

1.6 Wyznaczanie MAX

Arytmetyka	max	floatmax()	float.h
Float16	6.55×10^4	6.55×10^4	brak
Float32	3.4028235×10^{38}	3.4028235×10^{38}	3.4×10^{38}
Float64	$1.7976931348623157 \times 10^{308}$	$1.7976931348623157 \times 10^{308}$	1.8×10^{308}

2 Zadanie 2

2.1 Wzór Kahana

Kahan stwierdził, że epsilon maszynowy (macheps) można otrzymać obliczając wyrażenie: $macheps = 3 \cdot (\frac{4}{3} - 1) - 1$. Mamy eksperymentalnie sprawdzić poprawność tego wyrażenia.

2.2 Wyniki

Arytmetyka	Wzór Kahana	Macheps
Float16	-0.000977	0.000977
Float32	1.1920929×10^{-7}	1.1920929×10^{-7}
Float64	$-2.220446049250313 \times 10^{-16}$	$2.220446049250313\times10^{-16}$

2.3 Wnioski

Wzór Kahana wynosi tyle samo co macheps z dokładnością do znaku.

3 Zadanie 3

3.1 Problem

Eksperymentalnie sprawdzić w arytmetyce Float
64 równomierność rozmieszczenia liczb w przedziałach $(1,2), (\frac{1}{2},1)$ oraz (2,4)

3.2 Rozwiązanie

Dla danego x możemy obliczyć różnicę x - nextfloat(x).

wyrażenie	wartość
\overline{x}	1.0
bitstring(x)	001111111111100000000000000000000000000
bitstring(nextfloat(x))	001111111111100000000000000000000000000
x-nextfloat(x)	$2.220446049250313\times10^{-16}$
2^{-52}	$2.220446049250313\times10^{-16}$

 $^{2^{-52}}$ jest odległością pomiędzy kolejnymi wartościami w przedziale $\left(1,2\right)$

wyrażenie	wartość
\overline{x}	2.0
bitstring(x)	010000000000000000000000000000000000000
bitstring(nextfloat(x))	010000000000000000000000000000000000000
x-nextfloat(x)	$4.440892098500626\times10^{-16}$
2^{-51}	$4.440892098500626\times10^{-16}$

 $^{2^{-51}}$ jest odległością pomiędzy kolejnymi wartościami w przedziale (2,4)

wyrażenie	wartość
\overline{x}	2.0
$\overline{bitstring(x)}$	001111111111000000000000000000000000000
bitstring(nextfloat(x))	001111111111000000000000000000000000000
x-nextfloat(x)	$1.1102230246251565 \times 10^{-16}$
$-\frac{2^{-53}}{}$	$1.1102230246251565 \times 10^{-16}$

 $^{2^{-53}}$ jest odległością pomiędzy kolejnymi wartościami w przedziale $(\frac{1}{2},1)$

3.3 Wnioski

Dla danego przedziału $(2^n, 2^{n+1})$, odległość pomiędzy kolejnymi liczbami wynosi 2^{52-n}

4 Zadanie 4

4.1 Problem

Należy eksperymentalnie znaleźć liczbę zmiennopozycyjną $x \in (1,2)$ taką że $x \cdot \frac{1}{x} \neq 1$ w arytmetyce Float64.

4.2 Rozwiązanie

Wiemy z poprzedniego zadania że w przedziale (1,2) liczby są równomiernie rozmieszczone z krokiem $\delta=2^{-52}$. Korzystając z tej wiedzy możemy kolejnych $x=1+k\cdot\delta$ sprawdzać nierówność $x\cdot\frac{1}{x}\neq 1$.

4.3 Wyniki

$\underline{}$	$x \cdot (1/x) \neq 1$
1.000000057228997	0.999 999 999 999 999 9
1.000000066222211	0.999 999 999 999 9
1.0000000694943918	0.999 999 999 999 9
1.0000000710740116	0.999 999 999 999 9
1.0000000833000269	0.999 999 999 999 9
1.0000000991235327	0.999 999 999 999 9
$\overline{1.000000105103379}$	0.999 999 999 999 9
$\overline{1.0000001071951936}$	0.999 999 999 999 9
$\overline{1.00000011025853}$	0.999 999 999 999 9
$\overline{1.0000001151831874}$	0.999 999 999 999 9
•••	

Najmniejszą znalezioną liczbą jest: $1.000\,000\,057\,228\,997$

5 Zadanie 5

5.1 Problem

Mamy zaimplementować 4 rodzaje algorytmów obliczających iloczyn skalarny podanych wektorów x=[2.718281828,-3.141592654,1.414213562,0.5772156649,0.3010299957]

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

- (a) w przód
- (b) w tył
- (c) od największego do najmniejszego (dodaj dodatnie liczby w porządku od największego
- do najmniejszego, dodaj ujemne liczby w porządku od najmniejszego do największego, a następnie daj do siebie obliczone sumy częściowe)
- (d) od najmniejszego do największego (przeciwnie do metody (c)).

5.2 Wyniki

Algorytm	Float32	Float64
A	-0.4999443	$1.0251881368296672\times10^{-10}$
В	-0.4543457	$-1.5643308870494366 \times 10^{-10}$
С	-0.5	0.0
D	-0.5	0.0

5.3 Wnioski

Różne algorytmy iloczynu skalarnego dają różniące się wyniki.

6 Zadanie 6

6.1 Problem

Mamy podane dwie funkcje $f(x)=\sqrt{x^2+1}-1$ $g(x)=\frac{x^2}{\sqrt{x^2+1}+1}$, gdzie f(x)=g(x), mamy dla kolejnych wartości argumentów $x=8^{-1},8^{-2},8^{-3}...$

6.2 Wyniki

Wyniki zostały obliczone w arytmetyce Float64.

x	f(x)	g(x)
8^{-1}	0.0077822185373186414	0.0077822185373187065
8^{-2}	0.00012206286282867573	0.00012206286282875901
8-3	$1.9073468138230965 \times 10^{-6}$	$1.907346813826566\times10^{-6}$
8^{-4}	$2.9802321943606103\times10^{-8}$	$2.9802321943606116\times10^{-8}$
8^{-5}	$4.656612873077393 \times 10^{-10}$	$4.6566128719931904 \times 10^{-10}$
8^{-6}	$7.275957614183426 \times 10^{-12}$	$7.275957614156956 \times 10^{-12}$
8^{-7}	$1.1368683772161603\times10^{-13}$	$1.1368683772160957\times10^{-13}$
8-8	$1.7763568394002505 \times 10^{-15}$	$1.7763568394002489\times10^{-15}$
8-9	0.0	$2.7755575615628914 \times 10^{-17}$
8^{-10}	0.0	$4.336808689942018 \times 10^{-19}$
8^{-175}	0.0	$4.144523 \times 10^{-317}$
8^{-176}	0.0	6.4758×10^{-319}
8^{-177}	0.0	1.012×10^{-320}
8^{-178}	0.0	1.6×10^{-322}
8^{-179}	0.0	0.0
8^{-180}	0.0	0.0

6.3 Wnioski

Funkcja g(x) daje bardziej wiarygodne wyniki, dzieje się tak ponieważ w funkcji f(x) występuje odejmowanie liczb $\sqrt{x^2+1}$ i 1, które dla bardzo małego x są bardzo zbliżone, co zwiększa błąd obliczeń poprzez utratę znaczących bitów.

7 Zadanie 7

7.1 Problem

Mamy obliczyć w arytmetyce Float
64 przybliżoną wartość pochodnej funkcji f korzystając za pomocą następującego wzoru:
 $f^{'}(x_0) \approx f^{'}(x_0) = \frac{f(x_0+h)-f(x_0)}{h}$, gdzie $f(x) = sin(x) + cos(3 \cdot x)$

$$f'(x) = g(x) = \cos(x) - 3 \cdot \sin(3 \cdot x)$$

7.2 Wyniki

,	<i>y</i> 111111		
i	wzór	$f^{'}(x)$	$ f^{'}(x) - g(x) $
0.0	2.0	2.017 989 225 268 596 7	1.901 046 943 580 058 5
-1.0	1.5	1.870 441 397 931 647 2	1.753 499 116 243 109
-2.0	1.25	1.1077870952342974	0.990 844 813 545 759 3
-3.0	1.125	0.623 241 279 297 581 7	0.5062989976090435
-4.0	1.0625	0.3704000662035192	0.253457784514981
-5.0	1.031 25	0.243 443 074 397 546 87	0.1265007927090087
-6.0	1.015 625	0.18009756330732785	0.063 155 281 618 789 7
-7.0	1.0078125	0.148 491 395 371 095 8	0.03154911368255764
-8.0	1.00390625	0.132 709 114 280 515 9	0.015766832591977753
-9.0	1.001953125	0.1248236929407085	0.007881411252170345
-10.0	1.0009765625	0.12088247681106168	0.0039401951225235265
-11.0	1.00048828125	0.11891225046883847	0.001969968780300313
-12.0	1.000244140625	0.11792723373901026	0.0009849520504721099
-13.0	1.0001220703125	0.11743474961076572	0.0004924679222275685
-14.0	1.00006103515625	0.11718851362093119	0.0002462319323930373
-15.0	1.000030517578125	0.11706539714577957	0.00012311545724141837
-16.0	1.0000152587890625	0.11700383928837255	$6.155759983439424 \times 10^{-5}$
-17.0	1.0000076293945312	0.11697306045971345	$3.077877117529937\times 10^{-5}$
-18.0	1.0000038146972656	0.11695767106721178	$1.5389378673624776\times 10^{-5}$
-19.0	1.0000019073486328	0.116 949 976 363 684 98	$7.694675146829866 \times 10^{-6}$
-20.0	1.0000009536743164	0.11694612901192158	$3.8473233834324105 \times 10^{-6}$
-21.0	1.0000004768371582	0.1169442052487284	$1.9235601902423127 \times 10^{-6}$
-22.0	1.000000238418579	0.11694324295967817	$9.612711400208696 \times 10^{-7}$
-23.0	1.0000001192092896	0.11694276239722967	$4.807086915192826 \times 10^{-7}$
-24.0	1.0000000596046448	0.11694252118468285	$2.394961446938737 \times 10^{-7}$
-25.0	1.0000000298023224	0.116942398250103	$1.1656156484463054 \times 10^{-7}$
-26.0	1.0000000149011612	0.11694233864545822	$5.6956920069239914 \times 10^{-8}$
-27.0	1.0000000074505806	0.116 942 316 293 716 43	$3.460517827846843\times10^{-8}$
-28.0	1.0000000037252903	0.116 942 286 491 394 04	$4.802855890773117 \times 10^{-9}$
-29.0	1.0000000018626451	0.11694222688674927	$5.480178888461751\times10^{-8}$
-30.0	1.0000000009313226	0.11694216728210449	$1.1440643366000813\times10^{-7}$
-31.0	1.0000000004656613	0.11694216728210449	$1.1440643366000813\times10^{-7}$
-32.0	1.0000000002328306	0.11694192886352539	$3.5282501276157063\times10^{-7}$
-33.0	1.0000000001164153	0.11694145202636719	$8.296621709646956 \times 10^{-7}$
-34.0	1.0000000000582077	0.116 941 452 026 367 19	$8.296621709646956 \times 10^{-7}$
-35.0	1.0000000000291038	0.11693954467773438	$2.7370108037771956\times10^{-6}$
-36.0	1.000000000014552	0.116943359375	$1.0776864618478044 \times 10^{-6}$
-37.0	1.000000000007276	0.1169281005859375	$1.4181102600652196\times10^{-5}$
-38.0	1.000000000003638	0.116 943 359 375	$1.0776864618478044 \times 10^{-6}$
-39.0	1.000 000 000 001 819	0.116 882 324 218 75	$5.9957469788152196 \times 10^{-5}$
-40.0	1.000 000 000 000 909 5	0.116 821 289 062 5	0.000 120 992 626 038 152 2
-41.0	1.000 000 000 000 454 7	0.116 943 359 375	$1.0776864618478044 \times 10^{-6}$
$\frac{-42.0}{12.0}$	1.000 000 000 000 227 4	0.116 699 218 75	0.000 243 062 938 538 152 2
$\frac{-43.0}{44.0}$	1.000 000 000 000 113 7	0.116 210 937 5	0.000 731 344 188 538 152 2
$\frac{-44.0}{45.0}$	1.000 000 000 000 056 8	0.1171875	0.000 245 218 311 461 847 8
$\frac{-45.0}{46.0}$	1.000 000 000 000 014 2	0.113 281 25	0.003 661 031 688 538 152
$\frac{-46.0}{47.0}$	1.0000000000000142 1.000000000000000	0.109375	0.007 567 281 688 538 152 0.007 567 281 688 538 152
$\frac{-47.0}{48.0}$	1.000 000 000 000 007	0.109375 0.09375	0.007 567 281 688 538 152
$\frac{-48.0}{-49.0}$	1.000 000 000 000 003 8	0.09375	0.008 057 718 311 461 848
$\frac{-49.0}{-50.0}$	1.000 000 000 000 001 8	0.125	0.008 057 718 511 401 848
$\frac{-50.0}{-51.0}$	1.000 000 000 000 000 9	0.0	0.116 942 281 688 538 15
$\frac{-51.0}{-52.0}$	1.000 000 000 000 000 4	-0.5	0.616 942 281 688 538 2
$\frac{-53.0}{-53.0}$	1.0	0.05	0.116 942 281 688 538 15
$\frac{-54.0}{-54.0}$	1.0	0.0	0.116 942 281 688 538 15
	1.0	1 0.0	0.11001220100000010

Funkcja do obliczania pochodnej dla danej funkcji jest najdokładniejsza dla i=-28, a jej błąd wynosi $4.802\,855\,890\,773\,117\times10^{-9}.$

7.3 Wnioski

Zmniejszając wartość h wartość pochodnej staje się coraz dokładniejsza, ale ponieważ wraz ze zmniejszaniem h liczby $f(x_0+h)$ i $f(x_0)$ stają się bardzo bliskie siebie przez co błąd w ich odejmowaniu zwiększa się. $h=2^{-28}$ jest kompromisem pomiędzy błędami wynikającymi ze zbyt dużego i zbyt małego h.