Database Design: The Entity-Relationship Approach

Chapter 7: Entity-Relationship Model

- Design Process
- □ Modeling
- Constraints
- ☐ E-R Diagram
- ☐ Design Issues
- Weak Entity Sets
- ☐ Extended E-R Features
- ☐ Design of the Bank Database
- ☐ Reduction to Relation Schemas
- ☐ Database Design
- ☐ UML

Design Phases

- The initial phase of database design is to characterize fully the data needs of the prospective database users.
- Next, the designer chooses a data model and, by applying the concepts of the chosen data model, translates these requirements into a conceptual schema of the database.
- A fully developed conceptual schema also indicates the functional requirements of the enterprise. In a "specification of functional requirements", users describe the kinds of operations (or transactions) that will be performed on the data.

Design Phases (Cont.)

- The process of moving from an abstract data model to the implementation of the database proceeds in two final design phases.
- ☐ Logical Design Deciding on the database schema. Database design requires t hat we find a "good" collection of relation schemas.
 - Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how shoul d the attributes be distributed among the various relation schemas?
- ☐ Physical Design Deciding on the physical layout of the database

Design Approaches

- ☐ Entity Relationship Model (covered in this chapter)
 - Models an enterprise as a collection of *entities* and *relationships*
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
 - Represented diagrammatically by an entity-relationship diagram:
- Normalization Theory (Chapter 8)
 - Formalize what designs are bad, and test for them

ER model -- Database Modeling

- ☐ The ER data model was developed to facilitate database design by allowing spe cification of an enterprise schema that represents the overall logical structure of a database.
- The ER model is very useful in mapping the meanings and interactions of real-world enterprises onto a conceptual schema. Because of this usefulness, many database-design tools draw on concepts from the ER model.
- ☐ The ER data model employs three basic concepts:
 - entity sets,
 - relationship sets,
 - attributes.
- The ER model also has an associated diagrammatic representation, the ER diagram, which can express the overall logical structure of a database graphically.

Entity Sets

- An **entity** is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays
- An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, street, city, salary )
course= (course_id, title, credits)
```

A subset of the attributes form a **primary key** of the entity set; i.e., uniquely identifying each member of the set.

Entity Sets -- instructor and student

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Relationship Sets

☐ A **relationship** is an association among several entities Example:

A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken f rom entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

- Example:

$$(44553,22222) \in advisor$$

Relationship Set advisor

Relationship Sets (Cont.)

- ☐ An attribute can also be associated with a relationship set.
- For instance, the *advisor* relationship set between entity sets *instructor* and *stud* ent may have the attribute *date* which tracks when the student started being asso ciated with the advisor

Degree of a Relationship Set

- ☐ binary relationship
 - involve two entity sets (or degree two).
 - most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)
 - Example: students work on research projects under the guidance of an instructor.
 - relationship *proj_guide* is a ternary relationship between *instructor*, *student*, and *proj ect*

Mapping Cardinality Constraints

- ☐ Express the number of entities to which another entity can be associated via a re lationship set.
- ☐ Most useful in describing binary relationship sets.
- ☐ For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

Note: Some elements in *A* and *B* may not be mapped to any elements in the other set

Mapping Cardinalities

Note: Some elements in A and B may not be mapped to any elements in the other set

Complex Attributes

- ☐ Attribute types:
 - **Simple** and **composite** attributes.
 - Single-valued and multivalued attributes
 - Example: multivalued attribute: *phone_numbers*
 - **Derived** attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth
- **Domain** the set of permitted values for each attribute

Composite Attributes

Redundant Attributes

- ☐ Suppose we have entity sets:
 - *instructor*, with attributes: *ID*, *name*, *dept_name*, *salary*
 - department, with attributes: dept_name, building, budget
- We model the fact that each instructor has an associated department using a relationship set *inst_dept*
- The attribute *dept_name* appears in both entity sets. Since it is the primary key for the entity set *department*, it replicates information present in the relationship and is therefore redundant in the entity set *instructor* and needs to be removed.
- BUT: when converting back to tables, in some cases the attribute gets reintrodu ced, as we will see later.

Entity Sets

- Entities can be represented graphically as follows:
 - Rectangles represent entity sets.
 - Attributes listed inside entity rectangle
 - Underline indicates primary key attributes

instructor

<u>ID</u>

name

salary

student

<u>ID</u>

name

tot_cred

Relationship Sets

☐ Diamonds represent relationship sets.

Relationship Sets with Attributes

Cardinality Constraints

- We express cardinality constraints by drawing either a directed line (\rightarrow) , signifying "one," or an undirected line (-), signifying "many," between the relations hip set and the entity set.
- ☐ One-to-one relationship between an *instructor* and a *student* :
 - A student is associated with at most one instructor via the relationship advisor
 - A *instructor* is associated with at most one *student* via the relationship *advisor*

One-to-Many Relationship

- one-to-many relationship between an *instructor* and a *student*
 - an instructor is associated with several (including 0) students via advisor
 - a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- ☐ In a many-to-one relationship between an *instructor* and a *student*,
 - an instructor is associated with at most one student via advisor,
 - and a student is associated with several (including 0) instructors via advisor

Many-to-Many Relationship

- ☐ An instructor is associated with several (possibly 0) students via *advisor*
- ☐ A student is associated with several (possibly 0) instructors via *advisor*

Total and Partial Participation

■ Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set

- participation of *student* in *advisor relation* is total
 - every student must have an associated instructor
- Partial participation: some entities may not participate in any relationship in the relationship set
 - Example: participation of *instructor* in *advisor* is partial

Notation for Expressing More Complex Constraints

- A line may have an associated minimum and maximum cardinality, shown in the form l..h, where l is the minimum and h the maximum cardinality
 - A minimum value of 1 indicates total participation.
 - A maximum value of 1 indicates that the entity participates in at most one r elationship
 - A maximum value of * indicates no limit.

Instructor can advise 0 or more students. A student must have 1 advisor; cannot have multiple advisors

Notation to Express Entity with Complex Attributes

instructor

```
ID
name
  first_name
   middle_initial
   last_name
address
   street
     street_number
     street_name
     apt_number
   city
   state
  zip
{ phone_number }
date_of_birth
age()
```

Roles

- ☐ Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- ☐ The labels "course_id" and "prereq_id" are called roles.

Non-binary Relationship Sets

- ☐ Most relationship sets are binary
- ☐ There are occasions when it is more convenient to represent relationships as no n-binary.
- ☐ E-R Diagram with a Ternary Relationship

Expressing Weak Entity Sets

- ☐ In E-R diagrams, a weak entity set is depicted via a double rectangle.
- ☐ We underline the discriminator of a weak entity set with a dashed line.
- The relationship set connecting the weak entity set to the identifying strong entity set is depicted by a double diamond.
- ☐ Primary key for *section* (*course_id*, *sec_id*, *semester*, *year*)

Weak Entity Sets

- □ Consider a *section* entity, which is uniquely identified by a *course_id*, *semester*, *year*, and *sec_id*.
- ☐ Clearly, section entities are related to course entities. Suppose we create a relationship set *sec_course* between entity sets *section* and *course*.
- Note that the information in *sec_course* is redundant, since *section* already has an attribute *course_id*, which identifies the course with which the section is related.
- One option to deal with this redundancy is to get rid of the relationship sec_course; however, by doing so the relationship between section and course becomes implicit in an attribute, which is not desirable.

E-R Diagram for a University Enterprise

Reduction to Relation Schemas

- ☐ Entity sets and relationship sets can be expressed uniformly as *relation schemas* that represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of schemas.
- ☐ For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Entity Sets

- ☐ A strong entity set reduces to a schema with the same attributes
 - student(<u>ID</u>, name, tot_cred)
- ☐ A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set

section (<u>course_id, sec_id, sem, year</u>)

Representing Relationship Sets

- A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- ☐ Example: schema for relationship set *advisor*

$$advisor = (\underline{s} \ \underline{id}, \underline{i} \ \underline{id})$$

Entities vs. Attributes

☐ Use of entity sets vs. attributes

☐ Use of phone as an entity allows extra information about phone numbers (plus multiple phone numbers)

Entities vs. Relationship sets

☐ Use of entity sets vs. relationship sets

Possible guideline is to designate a relationship set to describe an action that oc curs between entities

☐ Placement of relationship attributes

- For example, attribute date as attribute of advisor or as attribute of student

Information Engineering Notations

Information Engineering Notations

기호	의미
	• 비식별자 관계(non–identifying relationship) : 강한 개체 타입 • 부모 개체의 키가 일반 속성으로 포함되는 관계
	• 식별자 관계(identifying relationship) : 약한 개체 타입 • 부모 개체의 키가 주식별자로 포함되는 관계
	• 일대다(1:N)의 관계 : N 쪽에 새발을 표시
O-	• 0(선택 참여), 최소 참여가 0일 경우
	• 1(필수 참여), 최소 참여가 1일 경우

Information Engineering Notations

