Course Code	Essentials of Data Analytics	L	Т	Р	J	С
CSE3506		2	0	2	4	4
Pre-requisite	NIL	Sy	Syllabus version			
			v.1.0			

Course Objectives:

- 1. To understand the concepts of analytics using various machine learning models.
- 2. To appreciate supervised and unsupervised learning for predictive analysis
- 3. To understand data analytics as the next wave for businesses looking for competitive advantage
- 4. Carry out rule-based analysis of the data in line with the analysis plan
- 5. Validate the results of their analysis according to statistical guidelines
- 6. Validate and review data accurately and identify anomalies
- 7. To learn aspects of computational learning theory
- 8. Apply statistical models to perform Regression Analysis, Clustering and Classification

Expected Course Outcome:

- 1. Identify and apply the appropriate supervised learning techniques to solve real world problems with labelled data.
- 2. Choose and implement typical unsupervised algorithms for different types of applications with unlabelled data.
- 3. Implement statistical analysis techniques for solving practical problems.
- 4. Understand different techniques to optimize the learning algorithms.
- 5. Aware of health and safety policies followed in organization, data and information management and knowledge & skill development.

Student Learning Outcomes (SLO) 1,2,4, 12, 14

- [1] Having an ability to apply mathematics and science in engineering applications
- [2] Having a clear understanding of the subject related concepts and of contemporary issues
- [4] Having Sense-Making Skills of creating unique insights in what is being seen or observed
- [12] Having adaptive thinking and adaptability
- [14] Having an ability to design and conduct experiments, as well as to analyze and interpret data

interpre	t data							
Module:1	Regression Analysis	6 hours	CO3					
Linear regression: simple linear regression - Regression Modelling - Correlation, ANOVA, Forecasting, Autocorrelation								
Module:2	Classification	6 hours	CO1					
Logistic Regression, Decision Trees, Naïve Bayes-conditional probability - Random Forest - SVM Classifier								
		T	T					
Module:3	Clustering	4 hours	CO2					
K-means, K-medoids, Hierarchical clustering								
Module:4	Optimization	3 hours	CO4					

Gradient descent - Variants of gradient descent - Momentum - Adagrad - RMSprop - Adam -

AMSGrad

Module:5 Managing Health and Safety 4 hours CO5

Comply with organization's current health, safety and security policies and procedures - Report any identified breaches in health, safety, and security policies and procedures to the designated person - Identify and correct any hazards that they can deal with safely, competently and within the limits of their authority - Report any hazards that they are not competent to deal with to the relevant person in line with organizational procedures and warn other people who may be affected.

Module:6 Data and Information Management 4 hours CO5

Establish and agree with appropriate people the data/information they need to provide, the formats in which they need to provide it, and when they need to provide it - Obtain the data/information from reliable sources - Check that the data/information is accurate, complete and up-to-date

Module:7 Learning and Self Development 3 hours CO5

Obtain advice and guidance from appropriate people to develop their knowledge, skills and competence - Identify accurately the knowledge and skills they need for their job role - Identify accurately their current level of knowledge, skills and competence and any learning and development needs - Agree with appropriate people a plan of learning and development activities to address their learning needs

Total Lecture hours: 30 hours

Text Book(s)

- 1. Cathy O'Neil and Rachel Schutt. "Doing Data Science, Straight talk from the Frontline", O'Reilly. 2014.
- 2. Dan Toomey, "R for Data Science", Packt Publishing, 2014.
- 3. Trevor Hastie, Robert Tibshirani and Jerome Friedman. "Elements of Statistical Learning", Springer, Second Edition. 2009.
- 4. Kevin P. Murphy. "Machine Learning: A Probabilistic Perspective", MIT Press; 1st Edition, 2012.

Reference Books

- 1. Glenn J. Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", John Wiley & Sons, Second Edition, 2014.
- 2. G. K. Gupta, —Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.
- 3. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 4. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007.
- 5. R N Prasad, Seema Acharya, "Fundamentals of Business Analytics", Wiley; Second edition, 2016.

6.	https://www.sscnasscom.com/qualification-pack/SSC/Q2101/							
List of Experiments (Indicative) SLO: 1,2,4					, 12, 14			
1.	Linear regression analysis							
2.	Forecasting - weather dataset using R							
3.	Gradient descend implementati	Gradient descend implementation using R						
4.	Text Analytics – Sentiment Analysis using R, Word cloud analysis using R			lysis using R				
5.	Time Series Components(Trend, Seasonality, Cyclicity and Level)							
6.	Banking Sector: Understand of along with evaluating areas of respond to customer requests for							
7.	Retail Case Study: A retail stransactions and keeping a traclocations and their purchases objective of the case study is to of purchase and returns through							
8	Movie Recommendation System recommendation system work Filter using Netflix dataset							
9.	Case study on Stock Market An obtained from Yahoo! Finance, apply statistical modeling on the provides tools for moving available analysis which forms the crux of							
10.	Detect credit card fraudulent tr from Kaggle. The team will use that will be able to discern fraud							
	30 hours							
Recommended by Board of Studies Total Laboratory Hours					22			
Approved by Academic Council Date								