# **DLP – LAB02: Back Propagation**

學號:310611008 姓名:張祐誠

## Introduction:

在這次 LAB 中,要達到以下事項:

- (1) 只用 numpy 和其他標準程式庫架設一個 2 hidden layer 的 Deep network。
- (2) 透過計算 Loss,使用反向傳播來更新 weight。
- (3) 最後能讓預測準確度達到 90% 以上。

### 2 hidden layer deep network 架構如下:



- 1. x1, x2 : nerual network inputs
- 2.X : [x1, x2]
- 3. *y* : *nerual network outputs* s
- $4. \hat{y}: ground truth$
- 5.  $L(\theta)$ : loss function
- 6. W1, W2, W3: weight matrix of network layers
- 7. B1, B2, B3: bias matrix of network layers

#### 整個 LAB 流程:

- 1. 初始化各個 layer 的節點數和 layer 之間的 weight, bias。
- 2. 正向傳播得到一個預測值 y\_pred
- 3. 計算 y\_pred 與 ground truth 之間的 loss
- 4. 使用反向傳播,計算 weight 對 loss 的影響
- 5. 透過前一步計算的 gradient 來更新新的 weight
- 6. 重複執行 2.-5.直到收斂

## **Experiment Setups:**

## A. Sigmoid functions

Sigmoid function 因為 exp 的關係,可以擴大領先優勢,同時可以讓輸出限制在 [0,1] 之間,在 label 只有兩類時常常被使用在最後的輸出層。

(在下一節呈現 Result 的部分,因為作業指定,所以都是以 sigmoid 函數作為 activation function)

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

[sigmoid(x)]' = sigmoid(x) \* (1 - sigmoid(x))



#### **B.** Neural Network



同 Introduction 介紹,另外說明幾點:

W1, W2, W3, B1, B2, B3 在初始化時是隨機產生對應維度的矩陣。

Forward propagation:  $Z_{i+1} = \sigma(W_{i+1}^T Z_i + B)$ 

Loss function:  $L(\theta) = \frac{\sum_{i=1}^{n} (y - \hat{y})^2}{n}$  (mean square error)

### C. Back propagation

$$\frac{\partial L}{\partial W_{3}^{2}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial y'} \frac{\partial y'}{\partial W_{3}^{2}} = \sigma(y)^{2} + 2(y - \hat{y}) \cdot Z_{2}^{T} = \sigma W_{3}^{T}$$

$$\frac{\partial L}{\partial B_{3}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial y'} = \delta(y) + 2(y - \hat{y}) \cdot Z_{2}^{T} = \sigma W_{3}^{T}$$

$$\frac{\partial L}{\partial B_{3}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial y'} \frac{\partial y'}{\partial z_{2}} \frac{\partial z_{2}}{\partial z'} \frac{\partial z'}{\partial w'}$$

$$= \left[\sigma(z_{2}) + (w_{3} \cdot (\sigma(y) + 2(y - \hat{y})))\right] \cdot Z_{2}^{T} = \nabla W_{3}^{T}$$

$$= \left[\sigma(z_{1}) + (w_{3} \cdot (\sigma(y) + 2(y - \hat{y}))\right] = \nabla B_{2}$$

$$\frac{\partial L}{\partial W_{1}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial y'} \frac{\partial y'}{\partial z_{2}} \frac{\partial z_{3}}{\partial z'} \frac{\partial z'}{\partial z'} \frac{\partial z'}{\partial z'} \frac{\partial z'}{\partial z'} \frac{\partial z'}{\partial w'}$$

$$= \left[\sigma(z_{1}) + (w_{3} \cdot (\sigma(y) + 2(y - \hat{y}))\right] = \nabla B_{2}$$

$$\frac{\partial L}{\partial W_{1}} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial y'} \frac{\partial y'}{\partial z_{2}} \frac{\partial z_{3}}{\partial z'} \frac{\partial z'}{\partial z'} \frac{\partial z'}{\partial z'} \frac{\partial z'}{\partial w'}$$

$$= \left[\sigma'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right]\right] \cdot \chi^{T} = \nabla W_{3}^{T}$$

$$\frac{\partial L}{\partial B_{1}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right] = \nabla B_{1}^{T}$$

$$\frac{\partial L}{\partial B_{1}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right] = \nabla B_{1}^{T}$$

$$\frac{\partial L}{\partial B_{1}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right] = \nabla B_{1}^{T}$$

$$\frac{\partial L}{\partial B_{1}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right] = \nabla B_{1}^{T}$$

$$\frac{\partial L}{\partial B_{2}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right] = \nabla B_{1}^{T}$$

$$\frac{\partial L}{\partial W_{2}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y}))\right] = \nabla B_{1}^{T}$$

$$\frac{\partial L}{\partial W_{2}} = \delta'(z_{1}) + w_{3} \cdot \left[\sigma'(z_{2}) + (w_{3} \cdot \delta(y) + 2(y - \hat{y})\right]$$

# Result of Testing:

在 Lab 中使用了兩種 data 作測試:

### (1) linear data:



## 訓練 linear data 使用的參數:

節點數: (inputLayer, hiddenLayer1, hiddenLayer2, outputLayer) = (2, 5, 5, 1)

Learning rate: 0.01

Activate function: sigmoid

Optimizer: SGD

### 結果比較:



## 訓練時的 loss 跟 testing accuracy:

| epoch: | Θ,     | loss:0.37650149, | accuracy:57.00%  |
|--------|--------|------------------|------------------|
| epoch: | 500,   | loss:0.24830636, | accuracy:56.00%  |
| epoch: | 1000,  | loss:0.24854323, | accuracy:57.00%  |
| epoch: | 1500,  | loss:0.26020150, | accuracy:46.00%  |
| epoch: | 2000,  | loss:0.25394168, | accuracy:54.00%  |
| epoch: | 2500,  | loss:0.26126942, | accuracy:49.00%  |
| epoch: | 3000,  | loss:0.24219162, | accuracy:60.00%  |
| epoch: | 3500,  | loss:0.24876497, | accuracy:54.00%  |
| epoch: | 4000,  | loss:0.05491345, | accuracy:95.00%  |
| epoch: | 4500,  | loss:0.03915000, | accuracy:92.00%  |
| epoch: | 5000,  | loss:0.03255377, | accuracy:94.00%  |
| epoch: | 5500,  | loss:0.03823855, | accuracy:93.00%  |
| epoch: | 6000,  | loss:0.03193779, | accuracy:96.00%  |
| epoch: | 6500,  | loss:0.01194818, | accuracy:98.00%  |
| epoch: | 7000,  | loss:0.01443738, | accuracy:99.00%  |
| epoch: | 7500,  | loss:0.02092372, | accuracy:97.00%  |
| epoch: | 8000,  | loss:0.01893835, | accuracy:98.00%  |
| epoch: | 8500,  | loss:0.01063031, | accuracy:99.00%  |
| epoch: | 9000,  | loss:0.01388598, | accuracy:98.00%  |
| epoch: | 9500,  | loss:0.00769935, | accuracy:99.00%  |
| epoch: | 10000, | loss:0.02373350, | accuracy:97.00%  |
| epoch: | 10500, | loss:0.02222102, | accuracy:97.00%  |
| epoch: | 11000, | loss:0.01278821, | accuracy:98.00%  |
| epoch: | 11500, | loss:0.01637581, | accuracy:98.00%  |
| epoch: | 12000, | loss:0.00996847, | accuracy:99.00%  |
| epoch: | 12500, | loss:0.00086174, | accuracy:100.00% |
| epoch: | 13000, | loss:0.00856620, | accuracy:99.00%  |
| epoch: | 13500, | loss:0.00266563, | accuracy:100.00% |
| epoch: | 14000, | loss:0.00867435, | accuracy:99.00%  |
| epoch: | 14500, | loss:0.00565897, | accuracy:99.00%  |

## Learning Curve:



### (2) non-linear data (XOR data):



## 訓練 nonlinear data 使用的參數:

節點數: (inputLayer, hiddenLayer1, hiddenLayer2, outputLayer) = (2, 7, 7, 1)

Learning rate: 0.1

Activate function: sigmoid

Optimizer: SGD

### 結果比較:



## 訓練時的 loss 跟 testing accuracy:

| epoch: | Θ,     | loss:0.37650149, | accuracy:57.00%  |
|--------|--------|------------------|------------------|
| epoch: | 500,   | loss:0.24830636, | accuracy:56.00%  |
| epoch: | 1000,  | loss:0.24854323, | accuracy:57.00%  |
| epoch: | 1500,  | loss:0.26020150, | accuracy:46.00%  |
| epoch: | 2000,  | loss:0.25394168, | accuracy:54.00%  |
| epoch: | 2500,  | loss:0.26126942, | accuracy:49.00%  |
| epoch: | 3000,  | loss:0.24219162, | accuracy:60.00%  |
| epoch: | 3500,  | loss:0.24876497, | accuracy:54.00%  |
| epoch: | 4000,  | loss:0.05491345, | accuracy:95.00%  |
| epoch: | 4500,  | loss:0.03915000, | accuracy:92.00%  |
| epoch: | 5000,  | loss:0.03255377, | accuracy:94.00%  |
| epoch: | 5500,  | loss:0.03823855, | accuracy:93.00%  |
| epoch: | 6000,  | loss:0.03193779, | accuracy:96.00%  |
| epoch: | 6500,  | loss:0.01194818, | accuracy:98.00%  |
| epoch: | 7000,  | loss:0.01443738, | accuracy:99.00%  |
| epoch: | 7500,  | loss:0.02092372, | accuracy:97.00%  |
| epoch: | 8000,  | loss:0.01893835, | accuracy:98.00%  |
| epoch: | 8500,  | loss:0.01063031, | accuracy:99.00%  |
| epoch: | 9000,  | loss:0.01388598, | accuracy:98.00%  |
| epoch: | 9500,  | loss:0.00769935, | accuracy:99.00%  |
| epoch: | 10000, | loss:0.02373350, | accuracy:97.00%  |
| epoch: | 10500, | loss:0.02222102, | accuracy:97.00%  |
| epoch: | 11000, | loss:0.01278821, | accuracy:98.00%  |
| epoch: | 11500, | loss:0.01637581, | accuracy:98.00%  |
| epoch: | 12000, | loss:0.00996847, | accuracy:99.00%  |
| epoch: | 12500, | loss:0.00086174, | accuracy:100.00% |
| epoch: | 13000, | loss:0.00856620, | accuracy:99.00%  |
| epoch: | 13500, | loss:0.00266563, | accuracy:100.00% |
| epoch: | 14000, | loss:0.00867435, | accuracy:99.00%  |
| epoch: | 14500, | loss:0.00565897, | accuracy:99.00%  |

## Learning Curve:



## Discussion:

## A. different learning rate

我分別嘗試以下各種 learning rate (其他參數無更改)。 在 linear 的 case 中 Learning rate = 0.1:



### Learning rate = 0.001:



雖然都能收斂,但可以發現當 learning rate 太小時,所需要收斂的 epoch 就越多。

### Non-linear case 的結果:

### Learning rate = 1:



## Learning rate = 0.01:



一樣有隨著 learning rate 減小而時間增加的趨勢,值得注意的是,當 learning rate=  $10e^{-3}$  時,是找不到解的(100000 epoch),下圖所示。





## B. Different Hidden Units

我先嘗試了極限的

節點數: (inputLayer, hiddenLayer1, hiddenLayer2, outputLayer) = (2, 2, 2, 1) 發現在 linear 跟 nonlinear 的 case 儘管時間花費較多,但都能找到不錯的模型 Linear: Nonlinear:





所以原本預期當 hidden units 越多,應該收斂越快,但在 nonlinear 的 case 裡面發現並沒有太大差別,也就是過多的 unit 可能只會徒增計算而已。

#### Nonlinear:

節點數: (inputLayer, hiddenLayer1, hiddenLayer2, outputLayer) = (2, 15, 15, 1)



## C. Try without activation functions

不使用 activation function 時,因為非線性項不存在,所以預期只有 linear 可以 train,但實際在嘗試時,再計算 loss 常常會有 overflow 的狀況出現,所以連 linear 的狀況都無法使用,目前想到的方法是更改 loss function (e.g. Cross entropy),但還沒有實現出來。

## Extra:

## Implement different activation functions

承前面嘗試不使用 activation function,我先只在最後一層使用 sigmoid,其他一樣不加:

#### <u>Linear activation functions:</u>

#### Linear case:

#### Non-Linear case



跟前面猜測相同,非線性的資料在不使用非線性 activation 下,是無法達成好的 分類方法的。但我們可以看到,在線性資料裡面還是可以得到一個很高的預測 準確率。

#### Tanh:

使用 tanh(x)當作 activation function:

以 nonlinear 資料為例:



發現 tanh 作為 activation function 在這個 lab 裡面可以更有效的讓資料分類。

### ReLU:

雖然不太確定原因,但 ReLU 在 nonlinear 資料裡面並沒能得到成功分類效果,有試著嘗試 debug,但目前可能會嘗試改成複合式 ReLU(好幾個合在一起的)。

