6

data; and

## WHAT IS CLAIMED IS:

| i             | 1. A method for high-speed, 3D imaging of optically-invisible                      |
|---------------|------------------------------------------------------------------------------------|
| 72            | radiation, the method comprising:                                                  |
| $\frac{1}{3}$ | detecting optically-invisible radiation within an environment to obtain            |
| 4             | signals;                                                                           |
| 5             | processing the signals to obtain stereoscopic data; and                            |
| 6             | displaying the stereoscopic data in the form of optically-visible                  |
| 7             | radiation images superimposed on a view of the environment so that a user can      |
| 8             | obtain a 3D view of the radiation by utilizing natural human stereo imaging        |
| 9             | processes.                                                                         |
|               |                                                                                    |
| 1             | 2. The method as claimed in claim 1 wherein the environment is                     |
| 2             | a virtual environment.                                                             |
|               |                                                                                    |
| 1             | 3. The method as claimed in claim 1 wherein the environment is                     |
| 2             | an optically-visible environment.                                                  |
|               |                                                                                    |
| 1             | 4. The method as claimed in claim 1 wherein the radiation is                       |
| 2             | ionizing radiation.                                                                |
|               |                                                                                    |
| 1             | 5. The method as claimed in claim 4 further comprising                             |
| 2             | energizing material so that the material emits or deflects the ionizing radiation. |
|               |                                                                                    |
| 1             | 6. The method as claimed in claim 1 wherein the radiation is                       |
| 2             | infrared radiation.                                                                |
|               | \                                                                                  |
| XP            | 7. A system for high-speed, 3D imaging of optically-invisible                      |
| 27            | radiation, the system comprising:                                                  |
| 3             | a detector subsystem for detecting optically-invisible radiation within            |
| 4             | an environment to obtain signals;                                                  |
| 5             | a signal processor for processing the signals to obtain stereoscopic               |

1



- The system as claimed in claim 7 wherein the environment is 8. 1 a virtual environment. 2
- The system as claimed in claim 7 wherein the environment is 9. 1 an optically-visible environment. 2
- The system as claimed in claim 7 wherein the radiation is 10. 1 2 . ionizing radiation.
- The system as claimed in claim 10 further comprising means 11. 1 for energizing material so that the material emits or deflects the ionizing radiation. 2
- The system as claimed in claim 7 wherein the radiation is 12. 1 infrared radiation. 2
- The system as claimed in claim 7 wherein the detector 13. 1 subsystem includes a set of field or area detectors. 2
- The system as claimed in claim 7 wherein the detector 14. 1 subsystem includes a set of point detectors. 2
- The system as claimed in claim 7 wherein the detector 15. 1 subsystem includes a set of passive detectors. 2
- The system as claimed in claim 7 wherein the detector 16. subsystem includes a set of active detectors. 2

3

4

1

2





| 1 | 17. The system as claimed in claim 13 wherein the radiation is                       |
|---|--------------------------------------------------------------------------------------|
| 2 | gamma-ray radiation and wherein the set of field detectors includes a pair of gamma- |
| 3 | ray or other positional radiation detectors.                                         |
|   | •                                                                                    |
| 1 | 18. The system as claimed in claim 17 wherein the gamma-ray                          |
| 2 | cameras are scanning gamma-ray cameras and wherein each of the gamma-ray             |

- cameras are scanning gamma-ray cameras and wherein each of the gamma-ray cameras is capable of scanning the environment through a plurality of angles and wherein the signals are processed to locate a source within the environment.
- 1 19. The system as claimed in claim 7 wherein the radiation is 2 ionizing radiation and wherein the detector subsystem includes a scintillator and a 3 collimator for directing the ionizing radiation into the scintillator.
- 1 20. The system as claimed in claim 19 wherein the scintillator is 2 curved.
- 1 21. The system as claimed in claim 7 wherein the detector subsystem includes a compound eye detector.
  - 22. The system as claimed in claim 21 wherein the compound eye detector includes a plurality of individual detectors.
- 1 23. The system as claimed in claim 22 wherein the plurality of individual detectors are movable independently or as a group.
- 1 24. The system as claimed in claim 21 wherein the compound eye detector includes a single detector movable in three dimensions.
- 1 25. The system as claimed in claim 14 wherein the signal processor processes the signals to obtain a 3D map of radiation-emitting sources.
- 1 26. The system as claimed in claim 7 wherein the detector subsystem has stereoscopic capabilities.



| 1  | 27. The system as claimed in claim 7 wherein the detector                         |
|----|-----------------------------------------------------------------------------------|
| 2  | subsystem is portable.                                                            |
|    |                                                                                   |
| 1  | 28. The system as claimed in claim 7 wherein the display                          |
| 2  | subsystem includes a see-through display subsystem and wherein the system further |
| 3  | includes a tracking system for tracking the display subsystem.                    |
| _  |                                                                                   |
| 1  | 29. The system as claimed in claim 28 wherein the display                         |
| 2  | subsystem is head-mountable.                                                      |
| 1  | 30. The system as claimed in claim 7 wherein the system provides                  |
| 1  | real-time visual feedback about location and relative strength of at least one    |
| 2  | · · · · · · · · · · · · · · · · · · ·                                             |
| 3  | radiation-emitting source.                                                        |
| 1  | 31. An ionizing radiation detector comprising:                                    |
| 2. | an ionization substrate for converting ionizing radiation into a signal;          |
| 3  | a converter coupled to the substrate for converting the signal into a             |
| 4  | corresponding electrical signal; and                                              |
| 5  | a positioner for moving the substrate in three dimensions to image                |
| 6  | over a surface of a sphere.                                                       |
|    |                                                                                   |
| 1  | 32. The detector as claimed in claim 31 wherein the substrate is                  |
| 2  | a scintillator for converting ionizating radiation into photons of light.         |
|    |                                                                                   |
| 1  | 33. The detector as claimed in claim 32 wherein the signal is an                  |
| 2  | optical signal and the converter is a photodetector.                              |
|    |                                                                                   |
| 1  | 34. The detector as claimed in claim 32 wherein the signal is an                  |
| 2  | optical signal and the converter is a multiplier phototube.                       |

| 1 | 35. An array of detectors wherein each of the detectors is a                           |
|---|----------------------------------------------------------------------------------------|
| 2 | detector as claimed in claim 31 and wherein the detectors are arranged in a            |
| 3 | curvilinear geometry.                                                                  |
| 1 | 36. The array as claimed in claim 35 wherein the detectors are                         |
| 2 | arranged so that the array forms a substantially hemispherical device.                 |
| 1 | 37. The array as claimed in claim 35 wherein the substrates of the                     |
| 2 | detectors are formed from separate materials.                                          |
| 1 | 38. An ionizing radiation detector comprising:                                         |
| 2 | an ionization substrate formed from a single material and having a                     |
| 3 | curved first surface and a second surface opposing the first surface for converting    |
| 4 | ionizing radiation at the curved first surface into a signal; and                      |
| 5 | a radiation shield disposed at the second surface to substantially block               |
| 6 | ionizing radiation at the second surface.                                              |
| 1 | 39. The detector as claimed in claim 38 wherein the radiation                          |
| 2 | shield is a fanned collimator.                                                         |
| 1 | 40. The detector as claimed in claim 38 wherein the ionization                         |
| 2 | substrate is a curved scintillator for converting ionizating radiation into photons of |
| 3 | light.                                                                                 |
| 1 | The detector as claimed in claim 38 wherein the ionization                             |
| 2 | substrate is a semiconductor substrate.                                                |
| 1 | 42. The detector as claimed in claim 38 wherein the detector forms                     |
| 2 | a substantially hemispherical device.                                                  |
| 1 | 43. The detector as claimed in claim 38 wherein the second surface                     |

is curved and is substantially parallel to the curved first surface.