A Note Template for Mathematics

Huang, Jiangyi September 2023

Abstract

Insert abstract

1 Section 1

The first paragraph is not indented by default. Use \usepackage{indentfirst} to intent first paragraphs.

In ordinary text, we can write $a \in \mathbb{R}$, compared with $a \in \mathbb{R}$.

Definition 1. [1] is an in-text citation.

Text following theorem denotation are italic by default.

Ordinary text with default indent.

Ordinary text without indent. Hyperlink is available.

Referring to Section 2 and equation 2.1. More details can be found here.

Theorem 1.1. Let K be a compact set in a metric space (X,d). Suppose $\mathfrak{F} = \{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of K, then there exists a positive number λ so that for every $p\in K$ the open ball $B(p,\lambda)$ is contained in one of the open sets of \mathfrak{F} .

Proof. Since $K \subset \bigcup_{\alpha \in A} U_{\alpha}$, for each point p in K there is a positive number $2\varepsilon(p)$ so that the ball $B(p, 2\varepsilon(p))$ is contained in one of the open sets of \mathcal{F} . Clearly $\{B(p, 2\varepsilon(p))\}_{p \in K}$ forms an open cover of K, and so by compactness this admits a finite refinement.

2 Section 2

2.1 Euler equation

$$e^{ix} = \cos x + i\sin x \tag{2.1}$$

Equation 2.1 is the renowned Euler equation.

References

[1] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. $Annalen\ der\ Physik,\ 322(10):891–921,\ 1905.$