

Document Title	Specification of Fixed Point Interpolation Routines
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	396

Document Status	published
Part of AUTOSAR Standard	Classic Platform
Part of Standard Release	R22-11

Document Change History			
Date	Release	Changed by	Description
2022-11-24	R22-11	AUTOSAR Release Management	 Functions updated: SWS_lfx_00014, SWS_lfx_00017, SWS_lfx_00022, SWS_lfx_00027, SWS_lfx_00032, SWS_lfx_00029, SWS_lfx_0029, SWS_lfx_00041, SWS_lfx_00051, SWS_lfx_00062, SWS_lfx_00077, SWS_lfx_00087, SWS_lfx_00097, SWS_lfx_00110, SWS_lfx_00122, SWS_lfx_00122, SWS_lfx_00151, SWS_lfx_00136, SWS_lfx_00151, SWS_lfx_00236, SWS_lfx_00166, SWS_lfx_00181, SWS_lfx_00186, SWS_lfx_00185, SWS_lfx_00186, SWS_lfx_0006 and SWS_lfx_00821. Functions added: SWS_lfx_91002, SWS_lfx_91003, SWS_lfx_91005.
2021-11-25	R21-11	AUTOSAR Release Management	 No content changes (only converted to LaTex) Artifact inclusion based on ArtifactAnalysis corrected
2020-11-30	R20-11	AUTOSAR Release Management	Chapter 7.1 Error sections updated

2019-11-28	R19-11	AUTOSAR Release Management	Editorial changesChanged Document Status from Final to published
2018-10-31	4.4.0	AUTOSAR Release Management	Editorial changes
2017-12-08	4.3.1	AUTOSAR Release Management	 A new requirement (SWS_Ifx_00251) has been added under Section 7.6 to provide clarity on the rounding mechanism for intermediate result calculation. A requirement (SWS_Ifx_00250) has been removed as it is not realizable for all the scenarios
2016-11-30	4.3.0	AUTOSAR Release Management	 Added a new requirement (SWS_Ifx_00250) to provide info on symmetricity for interpolation services A note has been added in SWS_Ifx_00016 as a suggestion to provide hardware independent solution too Section 2 has been updated to include abbreviation for (DET) Default Error tracer Updated IFX document to support MISRA 2012 standard. (Removed redundant statements in SWS_Ifx_00809 which already exist in SWS_BSW document and SWS_SRS document) Modified the reference to SRS_BSW_General (SRS_BSW_00437) & (SRS_BSW_00448) for SWS_Ifx_00436 & SWS_Ifx_00999 requirements

2015-07-31	4.2.2	AUTOSAR Release Management	 Added a new statement in Section 8.5 below the formula to provide more clarity to the users Updated the "Requirements tracea-bility" section Updated Record layouts for distributed interpolation routines in SWS_Ifx_00185 Updated SWS_Ifx_00001 for naming convetion under Section 5.1, File Structure
2014-10-31	4.2.1	AUTOSAR Release Management	IFX RecordLayout Blueprint reference in section 3.1 The usage of const is corrected in function parameters for SWS_lfx_00004, SWS_lfx_00014, SWS_lfx_00015, SWS_lfx_00017, SWS_lfx_00020, SWS_lfx_00022, SWS_lfx_00025, SWS_lfx_00027, SWS_lfx_00030, SWS_lfx_00032, SWS_lfx_00205 & SWS_lfx_00209 Modified serial numbers in Section 3.2
2014-03-31	4.1.3	AUTOSAR Release Management	Removed columns Element6 & Element7 in the Record Layout table of SWS_lfx_00186
2013-10-31	4.1.2	AUTOSAR Release Management	 Corrections made for IntMap_s16u8_s8 function in Record Layout Table of SWS_Ifx_00186 Corrected array-out-of-bounds for Ifx_IpoMap function Editorial changes

2013-03-15	4.1.1	AUTOSAR Administration	 Rounding mechanism specified for DPRatio calculation Corrected the formula for integrated map interpolation and map interpolation Removed unwanted Ratio calculation for integrated fix-I map look up with rounding and Integrated fix-map look up without rounding and integrated map look-up without rounding Modified the reference to non-existant metamodel elementCalprmElementPrototype to Parameter-DataPrototype Corrected for 'DependencyOnArtifact'
2011-12-22	4.0.3	AUTOSAR Administration	Removal of rounding off feature from 'MAP lookup routines'
2010-09-30	3.1.5	AUTOSAR Administration	DPSearch function optimised using structure pointer
2010-02-02	3.1.4	AUTOSAR Administration	Initial Release

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Contents

1	Introduction and functional overview	8
2	Acronyms and Abbreviations	9
3	Related documentation	10
	3.1 Input documents & related standards and norms	10 10
4	Constraints and assumptions	11
	4.1 Limitations	11 11
5	Dependencies to other modules	12
	5.1 File structure	12
6	Requirements Tracing	13
7		4 -
7	Functional specification	15
	7.1 Error Classification 7.1.1 Development Errors 7.1.2 Runtime Errors 7.1.3 Transient Faults 7.1.4 Production Errors	15 15 15 15
	7.1.5 Extended Production Errors	15 15
	7.3 Using Library API	16
	7.4 library implementation	16
8	API specification	18
	8.1 Imported types	18 19 19 20 20 20
	8.5 Interpolation routines definitions	20 22
	8.5.1.1 Data Point Search	22 24
	8.5.1.2 Curve interpolation	25
	8.5.1.4 Map interpolation	26
	8.5.1.5 Map look-up	28
	8.5.1.6 Map look-up without rounding	30
	8.5.2 Integrated data point search and interpolation	31 31
	o.o.z. i integrated curve interpolation	JΙ

		8.5.2.	.2	Integrated curve look-up	. 34
		8.5.2.	.3	Integrated fix-curve interpolation	
		8.5.2.	.4	Integrated fix-curve look up	
		8.5.2.	.5	Integrated fix- I curve interpolation	
		8.5.2.	.6	Integrated fix- I curve look up	. 40
		8.5.2.	.7	Integrated map interpolation	
		8.5.2.	.8	Integrated map look-up	. 46
		8.5.2.	.9	Integrated map look-up without rounding	. 48
		8.5.2.	.10	Integrated fix- map interpolation	. 50
		8.5.2.	.11	Integrated fix- map look up	. 52
		8.5.2.	.12	Integrated fix- map look up without rounding	. 55
		8.5.2	.13	Integrated fix- I map interpolation	. 57
		8.5.2	.14	Integrated fix- I map look up	. 59
		8.5.2	.15	Integrated fix- I map look up without rounding	. 62
		8.5.2.	.16	Cuboid 3D interpolation	. 64
		8.5.3	Record	layouts for interpolation routines	. 65
		8.5.3	.1	Record layouts for map values	. 65
		8.5.3	.2	Record layout definitions	. 66
	8.6	Examples	s of use	of functions	. 67
	8.7	Version A	ΝPI		. 68
		8.7.1	Ifx_Get\	VersionInfo	. 68
	8.8	Callback	notificati	ons	. 68
	8.9	Schedule	ed function	ons	. 68
	8.10	Expected	l Interfac	es	. 68
		8.10.1	Mandate	ory Interfaces	. 69
		8.10.2	Optiona	ıl Interfaces	. 69
		8.10.3	Configu	rable interfaces	. 69
9	Sequ	uence diagr	ams		70
10	Conf	iguration sp	pecificati	on	71
. •					
	10.1			chapter	
	10.2			onfiguration parameters	
	10.3	Published	ınıorma	ation	. 71
Α	Not a	applicable r	equirem	ents	72

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture and below figure shows position of AUTOSAR library in layered architecture.

Figure 1.1: Layered Architecture

If x routines specification specifies the functionality, API and the configuration of the AUTOSAR library dedicated to interpolation routines for fixed point values.

The interpolation library contains the following routines:

- Distributed data point search and interpolation
- Integrated data point search and interpolation

All routines are re-entrant and can be used by multiple applications at the same time.

Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the IFX Library module that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym:	Description:
Cur	Curve for Interpolation
DET	Default Error Tracer
DPSearch	Data point search
DPResult	Data point result
lfx	Interpolation Fixed point
IpoCur	Interpolation of curve used for distributed search and interpolation
LkUpCur	Curve look-up used for distributed search and interpolation
ІроМар	Interpolation of map used for distributed search and interpolation
LkUpMap	Map look-up used for distributed search and interpolation
IntlpoCur	Integrated interpolation of curve
IntLkUpCur	Integrated curve look-up
IntlpoFixCur	Integrated interpolation of fixed curve
IntLkUpFixCur	Integrated fixed curve look-up
IntlpoFixlCur	Integrated interpolation of fixed interval curve
IntLkUpFixICur	Integrated fixed interval curve look-up
IntlpoMap	Integrated interpolation of map
IntLkUpMap	Integrated map look-up
IntlpoFixMap	Integrated interpolation of fixed map
IntLkUpFixMap	Integrated fixed map look-up
IntlpoFixIMap	Integrated interpolation of fixed interval map
IntLkUpFixIMap	Integrated fixed interval map look-up
Lib	Library
Мар	Map for Interpolation
s8	Mnemonic for the sint8, specified in AUTOSAR_SWS_ PlatformTypes
s16	Mnemonic for the sint16, specified in AUTOSAR_SWS_ PlatformTypes
s32	Mnemonic for the sint32, specified in AUTOSAR_SWS_ PlatformTypes
u8	Mnemonic for the uint8, specified in AUTOSAR_SWS_ PlatformTypes
u16	Mnemonic for the uint16, specified in AUTOSAR_SWS_ PlatformTypes
u32	Mnemonic for the uint32, specified in AUTOSAR_SWS_ PlatformTypes

3 Related documentation

3.1 Input documents & related standards and norms

- [1] Glossary
 AUTOSAR_TR_Glossary
- [2] IFX_RecordLayout_Blueprint AUTOSAR MOD IFX RecordLayout Blueprint.arxml
- [3] ISO/IEC 9899:1990 Programming Language C http://www.iso.org
- [4] ASAM MCD-2MC Version 1.6 http://www.asam.net
- [5] General Specification of Basic Software Modules AUTOSAR SWS BSWGeneral
- [6] Requirements on Libraries AUTOSAR SRS Libraries

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [5, SWS BSW General], which is also valid for IFX Library.

Thus, the specification SWS BSW General shall be considered as additional and required specification for IFX Library.

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

Dependencies to other modules 5

5.1 File structure

[SWS Ifx 00001] [The Ifx module shall provide the following files:

• C files, Ifx <name>.c used to implement the library. All C files shall be prefixed with 'Ifx '.

Implementation & grouping of routines with respect to C files is recommended as per below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,

eg.: Ifx IntlpoMap u16u8 u8.c etc.

Option 2 : <Name> can have common name of group of functions:

• 2.1 Group by object family:

eg.:Ifx IpoMap.c, Ifx IpoCur.c, Ifx DPSearch.c

• 2.2 Group by routine family:

eg.: Ifx IpoMap.c, Ifx IntlpoMap.c, Ifx IpoCur.c etc.

• 2.3 Group by method family:

eg.: Ifx Ipo.c, Ifx Intlpo.c, Ifx Lkup.c, Ifx IntLkup.c, etc.

• 2.4 Group by architecture:

eg.: Ifx_lpoMap8.c, Ifx_lpoMap16.c

• 2.5 Group by other methods: (individual grouping allowed)

Option 3: <Name> can be removed so that single C file shall contain all Ifx functions, eg.: Ifx.c.

Using above options gives certain flexibility of choosing suitable granularity with reduced number of C files. Linking only on-demand is also possible in case of some options. (1)

6 Requirements Tracing

The following tables reference the requirements specified in [6] and links to the fulfillment of these. Please note that if column "Satisfied by" is empty for a specific requirement this means that this requirement is not fulfilled by this document.

Requirement	Description	Satisfied by
[SRS_BSW_00003] All software modules shall		[SWS_lfx_00815]
	provide version and identification	
information		
[SRS_BSW_00007]	All Basic SW Modules written in	[SWS_lfx_00809]
	C language shall conform to the	
	MISRA C 2012 Standard.	
[SRS_BSW_00304]	All AUTOSAR Basic Software	[SWS_lfx_00812]
	Modules shall use only	
	AUTOSAR data types instead of	
	native C data types	
[SRS_BSW_00306]	AUTOSAR Basic Software	[SWS_lfx_00813]
	Modules shall be compiler and	
	platform independent	
[SRS_BSW_00318]	Each AUTOSAR Basic Software	[SWS_lfx_00815]
	Module file shall provide version	
1000 00111 0000	numbers in the header file	10110
[SRS_BSW_00321]	The version numbers of	[SWS_lfx_00815]
	AUTOSAR Basic Software	
	Modules shall be enumerated	
1000 0011/ 000/01	according specific rules	F014/0 1/ 0004/1
[SRS_BSW_00348]	All AUTOSAR standard types	[SWS_lfx_00811]
	and constants shall be placed	
	and organized in a standard type	
1000 DOW 000741	header file	FOMO 16 000441
[SRS_BSW_00374]	All Basic Software Modules shall	[SWS_lfx_00814]
	provide a readable module	
ICDC DCW 002701	vendor identification	[SWS_lfx_00812]
[SRS_BSW_00378]	AUTOSAR shall provide a	[3W3_IIX_00612]
[SRS_BSW_00379]	boolean type All software modules shall	[SWS lfx 00814]
[202_0247_003/9]	provide a module identifier in the	[3773_11x_00614]
	header file and in the module	
	XML description file.	
[SRS BSW 00402]	Each module shall provide	[SWS Ifx 00814]
[5115_5511_00402]	version information	[0110_11x_00014]
[SRS_BSW_00407]	Each BSW module shall provide	[SWS_lfx_00815] [SWS_lfx_00816]
[55_2500.07]	a function to read out the version	[5115_111_00010]
	information of a dedicated	
	module implementation	
[SRS_BSW_00411]	All AUTOSAR Basic Software	[SWS_lfx_00816]
	Modules shall apply a naming	
	rule for enabling/disabling the	
	existence of the API	
[SRS_BSW_00437]	Memory mapping shall provide	[SWS_lfx_00810]
	the possibility to define RAM	
	segments which are not to be	
	initialized during startup	

Requirement	Description	Satisfied by
[SRS_BSW_00448]	Module SWS shall not contain requirements from other modules	[SWS_lfx_00999]
[SRS_LIBS_00001]	The functional behavior of each library functions shall not be configurable	[SWS_lfx_00818]
[SRS_LIBS_00002]	A library shall be operational before all BSW modules and application SW-Cs	[SWS_lfx_00800]
[SRS_LIBS_00003]	A library shall be operational until the shutdown	[SWS_lfx_00801]
[SRS_LIBS_00015]	It shall be possible to configure the microcontroller so that the library code is shared between all callers	[SWS_lfx_00806]
[SRS_LIBS_00017]	Usage of macros should be avoided	[SWS_lfx_00807]
[SRS_LIBS_00018]	A library function may only call library functions	[SWS_lfx_00808]

7 Functional specification

7.1 Error Classification

[SWS_Ifx_00823] [Section 7.1 "Error Handling" of the document "General Specification of Basic Software Modules" describes the error handling of the Basic Software in detail. Above all, it constitutes a classification scheme consisting of five error types which may occur in BSW modules.] ()

Based on this foundation, the following section specifies particular errors arranged in the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Transient Faults

There are no transient faults.

7.1.4 Production Errors

There are no production errors.

7.1.5 Extended Production Errors

There are no extended production errors.

7.2 Initialization and shutdown

[SWS_lfx_00800] [Ifx library shall not require initialization phase. A Library function may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall be ready.] (SRS_LIBS_00002)

[SWS_lfx_00801] [Ifx library shall not require a shutdown operation phase.] (SRS_-LIBS_00003)

7.3 Using Library API

If x API can be directly called from BSW modules or SWC. No port definition is required. It is a pure function call.

The statement 'lfx.h' shall be placed by the developer or an application code generator but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library, the developer should add an Implementation-DependencyOnArtifact in the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case of AUTOSAR library, these parameters may be left empty because a SWC or BSW module may rely on a library behaviour, not on a supplier implementation. However, the SWC or BSW modules shall be compatible with the AUTOSAR platform where they are integrated.

7.4 library implementation

mapping mechanism. (SRS BSW 00437)

[SWS_Ifx_00806] The Ifx library shall be implemented in a way that the code can be shared among callers in different memory partitions. (SRS_LIBS_00015)

[SWS_lfx_00807] [Usage of macros should be avoided. The function should be declared as function or inline function. Macro #define should not be used.] (SRS_LIBS_-00017)

[SWS_lfx_00808] \[A \] library function can call other library functions because all library functions shall be re-entrant. A library function shall not call any BSW modules functions, e.g. the DET. \[(SRS \] LIBS \] 00018)

[SWS_Ifx_00809] The library, written in C programming language, should conform to the MISRA C Standard.

Please refer to SWS_BSW_00115 for more details. \((SRS_BSW_00007) \)

[SWS_lfx_00810] [Each AUTOSAR library Module implementation library>*.c and library>*.h shall map their code to memory sections using the AUTOSAR memory

[SWS_Ifx_00811] [Each AUTOSAR library Module implementation library>*.c, that uses AUTOSAR integer data types and/or the standard return, shall include the header file Std Types.h.|(SRS_BSW_00348)

[SWS Ifx 00812] [All AUTOSAR library Modules should use the AUTOSAR data types (integers, boolean) instead of native C data types, unless this library is clearly identified to be compliant only with a platform. (SRS BSW 00304, SRS BSW 00378)

[SWS Ifx 00813] [All AUTOSAR library Modules should avoid direct use of compiler and platform specific keyword, unless this library is clearly identified to be compliant only with a platform. eg. #pragma, typeof etc. | (SRS BSW 00306)

[SWS_Ifx_00820] [If input value is less than first distribution entry then first value of the distribution array shall be returned or used in the interpolation routines. If input value is greater than last distribution entry then last value of the distribution array shall be returned or used in the interpolation routines. ()

[SWS Ifx 00821] [Axis distribution passed to Ifx routines shall have normal monotony sequence. (1)

[SWS Ifx 00251] [The intermediate results during unscaling in interpolation calculation shall be Rounded towards zero. (/)

8 API specification

8.1 Imported types

In this chapter, all types included from the following modules are listed:

[SWS_lfx_91001] [

Module	Header File	Imported Type
Std	Std_Types.h	Std_VersionInfoType

]()

It is observed that since the sizes of the integer types provided by the C language are implementation-defined, the range of values that may be represented within each of the integer types will vary between implementations.

Thus, in order to improve the portability of the software these types are defined in Platform_Types.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in the library routine names.

Size	Platform Type	Mnemonic	Range
unsigned 8-Bit	boolean	NA	[TRUE, FALSE]
signed 8-Bit	sint8	s8	[-128, 127]
signed 16-Bit	sint16	s16	[-32768, 32767]
signed 32-Bit	sint32	s32	[-2147483648, 2147483647]
unsigned 8-Bit	uint8	u8	[0, 255]
unsigned 16-Bit	uint16	u16	[0, 65535]
unsigned 32-Bit	uint32	u32	[0, 4294967295]

Table 8.1: Mnemonic for Base Types

As a convention in the rest of the document:

- mnemonics will be used in the name of the routines (using <InTypeMn1> that means Type Mnemonic for Input)
- the real type will be used in the description of the prototypes of the routines (using <InType> or <OutType>).

8.2 Type definitions

Structure definition:

[SWS_lfx_00002] [

Name	Ifx_DPResultU16_Type	
Kind	Structure	
Elements	Index	
	Туре	uint16
	Comment	Data point index
	Ratio	
	Туре	uint16
	Comment	Data point ratio
Description	Structure used for data point search for index and ratio	
Available via	lfx.h	

10

[SWS_lfx_00003] [Ratio shall have resolution of 2⁻¹⁶]()

[SWS_lfx_00248] [Ratio shall be rounded towards zero]()

[SWS_lfx_00200] [Ifx_DPResultU16_Type structure shall not be read/write/modified by the user directly. Only Ifx routines shall have access to this structure.] ()

8.3 Comment about rounding

Two types of rounding can be applied:

Results are 'rounded off', it means:

- $0 \le X < 0.5$ rounded to 0
- 0.5 <= X < 1 rounded to 1
- -0.5 < X <= 0 rounded to 0
- -1 < X <= -0.5 rounded to -1

Results are rounded towards zero.

- 0 <= X < 1 rounded to 0
- -1 < X <= 0 rounded to 0

Comment about routines optimization 8.4

Target optimization 8.4.1

The routines described in this library may be realized as regular routines or inline functions. For ROM optimization purposes, it is recommended that the c routines be realized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:

• 00302

Some routines can be replaced by another routine using integer promotion

 Some routines can be replaced by the combination of a limiting routine and a routine with a different signature.

8.4.2 Optimization for routine numbers

Many routines can be omitted by exchanging 'X' and 'Y' data types. With this method, reduction in total number of routines is possible in case of Map interpolation routines. This optimization of routine numbers is done based on below mentioned rules.

- Rule 1: Bigger data type of 'X' and 'Y' comes first . (16 Bit before 8 Bit)
- Rule 2: unsigned before signed (u16 before s16)
- Order: u32, s32, u16, s16, u8, s8

In this case, below routine can be replaced as:

Ifx_IntlpoMap_s8u16_u16

With

Ifx IntlpoMap u16s8 u16

Note: swapped inputs need another map value order in memory, see record layout section

8.5 Interpolation routines definitions

Interpolation between two given points is calculated as shown below.

where: X is the input value

x0 = data point before X

x1 = data point after X

y0 = value at x0

y1 = value at x1

Quantization error is by design and shall not be compensated in implementation.

Figure 8.1: Linear and lookup interpolation

There are two interpolation methods.

- Linear interpolation
- Lookup interpolation

Above figure differentiates linear and lookup integration method. Linear method interpolates result considering two data points, whereas lookup interpolation returns entry data point.

Data point arrays can be grouped as one array or one structure for all elements as shown below.

Y axis distribution = 1 to 6

Interpolation routines accepts arguments separately to support above scenarios. Routine call example is given below for array and structure grouping respectively.

Example:

```
uint8 Ifx_IntlpoCur_u8_u8 (15, Curve_u8[0], &Curve_u8[1], &Curve_u8[6]); uint8 Ifx_IntlpoCur_u8_u8 (15, Curve_u8.N, &Curve_u8.X, &Curve_u8.Y); Interpolation can be calculated in two ways as shown below:
```

- 1. Distributed data point search and interpolation
- 2. Integrated data point search and interpolation

8.5.1 Distributed data point search and interpolation

In this interpolation method data point search (e.g. index and ratio) is calculated using routine Ifx_DPSearch_<InTypeMn> which returns result structure Ifx_DPResultU16_ Type. It contains index and ratio information. This result can be used by curve interpolation, curve look-up interpolation, map interpolation and map look-up interpolation.

8.5.1.1 Data Point Search

[SWS Ifx 00004] [

Service Name	Ifx_DPSearch_ <intypemn></intypemn>	
Syntax	<pre>void Ifx_DPSearch_<intypemn> (Ifx_DPResultU16_Type* dpResult, <intype> Xin, <intype> N, const <intype>* X_array)</intype></intype></intype></intypemn></pre>	
Service ID [hex]	0x001 to 0x004	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Xin Input value	
	N	Number of samples
	X_array Pointer to the X axis distribution array	
Parameters (inout)	None	
Parameters (out)	dpResult	Pointer to the result structure
Return value	None	
Description	Ifx_DPSearch_ <intypemn> routine searches the position of input Xin within the given distribution array X_array, and returns index and ratio necessary for interpolation.</intypemn>	
Available via	lfx.h	

10

[SWS_Ifx_00006] \lceil If $(X_array[0] \le Xin \le X_array[N-1])$, then returned Index shall be the lowest index.

dpResult ->Index = index- dpResult ->Ratio = (Xin - X array[index]) / (X array [index+1] - X array [index]) | ()

[SWS_lfx_00008] [If the input value matches with one of the distribution array values, then return the respective index and ratio = 0.

If (Xin == X_array[index]), then

dpResult ->Index = index

dpResult ->Ratio = 0 | ()

[SWS Ifx 00009] [If (Xin < X array[0]), then return first index of an array and ratio = 0

dpResult ->Index = 0

dpResult ->Ratio = 0 | ()

[SWS Ifx 00010] [If (Xin > X array[N-1]), then return last index of an array and ratio = 0

dpResult ->Index = N - 1

dpResult ->Ratio = 0 | ()

[SWS Ifx 00011] [The minimum value of N shall be 1]()

[SWS_Ifx_00013] [This routine returns index and ratio through the structure of type Ifx DPResultU16 Type (/)

[SWS Ifx 00014] [Here is the list of implemented routines.

Service ID[hex]	Service prototype
0x001	void Ifx_DPSearch_u8 (Ifx_DPResultU16_Type*, uint8, uint8, const uint8 *)
0x002	void Ifx_DPSearch_s8 (Ifx_DPResultU16_Type*, sint8, sint8, const sint8 *)
0x003	void Ifx_DPSearch_u16 (Ifx_DPResultU16_Type*, uint16, uint16, const uint16 *)
0x004	void Ifx_DPSearch_s16 (Ifx_DPResultU16_Type*, sint16, sint16, const sint16 *)
0x0C1	void Ifx_DPSearch_u32 (Ifx_DPResultU16_Type* dpResult, uint32 Xin, uint32 N, const uint32 * X_array)
0x0C2	void Ifx_DPSearch_s32 (Ifx_DPResultU16_Type* dpResult, sint32 Xin, sint32 N, const sint32 * X_array)

10

8.5.1.2 Curve interpolation

[SWS_lfx_00015]

Service Name	Ifx_IpoCur_ <outtypemn></outtypemn>	lfx_lpoCur_ <outtypemn></outtypemn>	
Syntax	<pre><outtype> Ifx_IpoCur_<outtypemn> (const Ifx_DPResultU16_Type* dpResult, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID [hex]	0x005 to 0x008		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant		
Parameters (in)	dpResult Data point search result		
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	
Description	Based on searched index and ratio information, this routine calculates and returns interpolation for curve.		
Available via	lfx.h		

10

[SWS_lfx_00016] [index = dpResult->Index

if dPResult->Ratio == 0

Result = Val array[index]

else

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio Note:

In case of missing HW support the Software solution mentioned below could also be used to avoid 64-bit arithmetic operation.

if (Val_array[index] <= Val_array[index+1]) then

Result = Val array[index] + (Val array[index+1] - Val array[index]) * dpResult->Ratio

if (Val array[index] > Val array[index+1]) then

Result = Val_array[index] - (Val_array[index] - Val_array[index+1]) * dpResult->Ratio | (/)

[SWS_lfx_00201] Do not call this routine until you have searched the axis using the lfx_DPSearch routine. Only then it is ensured that the search result (lfx_DPResult U16 Type) contains valid data and is not used uninitialized.

[SWS_lfx_00017] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x005	sint8 lfx_lpoCur_s8 (const lfx_DPResultU16_Type*, const sint8 *)
0x006	sint16 Ifx_IpoCur_s16 (const Ifx_DPResultU16_Type*, const sint16 *)
0x007	uint16 lfx_lpoCur_u16 (const lfx_DPResultU16_Type*, const uint16 *)
0x008	uint8 lfx_lpoCur_u8 (const lfx_DPResultU16_Type*, const uint8 *)
0x0C3	uint32 lfx_lpoCur_u32 (const lfx_DPResultU16_ Type*dpResult, const uint32* Val_array)
0x0C4	sint32 lfx_lpoCur_s32 (const lfx_DPResultU16_ Type*dpResult, const sint32* Val_array)

]()

8.5.1.3 Curve look-up

[SWS_lfx_00020] [

Service Name	lfx_LkUpCur_ <outtypemn></outtypemn>	lfx_LkUpCur_ <outtypemn></outtypemn>	
Syntax	<pre><outtype> Ifx_LkUpCur_<outtypemn> (const Ifx_DPResultU16_Type* dpResult, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID [hex]	0x00A to 0x00D		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	dpResult Data point search result		
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None	None	
Parameters (out)	None		
Return value	<outtype></outtype>	Entry point of the result array	
Description	Based on searched index and ratio information, this routine calculates and returns entry point of the result array.		
Available via	lfx.h		

]()

[SWS_lfx_00021] [Result = Val_array[dpResult->Index]]()

[SWS_Ifx_00202] [Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResult U16_Type) contains valid data and is not used uninitialized.] ()

[SWS Ifx 00022] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x00A	sint8 lfx_LkUpCur_s8 (const lfx_DPResultU16_Type*, const sint8 *)
0x00B	sint16 lfx_LkUpCur_s16 (const lfx_DPResultU16_Type*, const sint16 *)
0x00C	uint16 lfx_LkUpCur_u16 (const lfx_DPResultU16_Type*, const uint16 *)
0x00D	uint8 Ifx_LkUpCur_u8 (const Ifx_DPResultU16_Type*, const uint8 *)
0x0C5	sint32 lfx_LkUpCur_s32 (const lfx_DPResultU16_Type* dpResult, const sint32 * Val_array)
0x0C6	uint32 lfx_LkUpCur_u32 (const lfx_DPResultU16_Type* dpResult, const uint32 * Val_array)

]()

8.5.1.4 Map interpolation

[SWS_lfx_00025] [

Service Name	Ifx_lpoMap_ <outtypemn></outtypemn>		
Syntax	<pre><outtype> Ifx_IpoMap_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID [hex]	0x010 to 0x013	0x010 to 0x013	
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	dpResultX	Data point search result for x axis	
	dpResultY	Data point search result for y axis	
	num_value	Number of y axis points	
	Val_array	Val_array Pointer to the result axis distribution array	
Parameters (inout)	None	None	
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	
Description		Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for map.	
Available via	lfx.h		

]()

[SWS_Ifx_00026] [Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for map.

BaseIndex = dpResultX->Index * num_value + dpResultY->Index if (dpResultX->Ratio == 0)

if (dpResultY->Ratio == 0)

Result = Val_array [BaseIndex]

else

LowerY = Val array [BaseIndex]

UpperY = Val array [BaseIndex + 1]

Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio

else

if (dpResultY->Ratio == 0)

LowerX = Val array[BaseIndex]

UpperX = Val array[BaseIndex + num value]

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio

else

LowerY = Val array [BaseIndex]

UpperY = Val_array [BaseIndex + 1]

LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio

LowerY = Val_array[BaseIndex + num_value]

UpperY = Val_array[BaseIndex + num_value + 1]

UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio | ()

[SWS_lfx_00203] [Do not call this routine until you have searched the axis using the lfx_DPSearch routine. Only then it is ensured that the search result (lfx_DPResult U16 Type) contains valid data and is not used uninitialized. | ()

[SWS Ifx 00027] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x010	uint8 lfx_lpoMap_u8 (const lfx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const uint8 *)
0x011	uint16 lfx_lpoMap_u16 (const lfx_DPResultU16_Type*,
	const lfx_DPResultU16_Type*,
	uint16,
	const uint16 *)

- /	١.
/	\
\angle	_

Routine ID[hex]	Routine prototype
0x012	sint8 lfx_lpoMap_s8 (const lfx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const sint8 *)
0x013	sint16 lfx_lpoMap_s16 (const lfx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const sint16 *)
0x0C7	sint32 lfx_lpoMap_s32 (const lfx_DPResultU16_ Type*dpResultX,
	const Ifx_DPResultU16_Type*dpResultY,
	uint16 num_value,
	const sint32 * Val_array)
0x0C8	uint32 lfx_lpoMap_u32 (const lfx_DPResultU16_ Type*dpResultX,
	const Ifx_DPResultU16_Type*dpResultY,
	uint16 num_value,
	const uint32 * Val_array)

]()

8.5.1.5 Map look-up

[SWS_Ifx_00030] [

Service Name	Ifx_LkUpMap_ <outtypemn:< th=""><th>></th></outtypemn:<>	>
Syntax	<pre><outtype> Ifx_LkUpMap_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>	
Service ID [hex]	0x015 to 0x018	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	dpResultX	Data point search result for x axis
	dpResultY	Data point search result for y axis
	num_value	Number of y axis points
	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Entry point of the result array
Description	Based on searched index and ratio information, this routine calculates and returns entry value of the result distribution array.	
Available via	lfx.h	

]()

[SWS_lfx_00031] [BaseIndex = dpResultX->Index * num_value + dpResultY->Index] ()

[SWS_lfx_00033] \lceil if(dpResultX->Ratio < 0.5 && dpResultY->Ratio < 0.5) then return Val_array [BaseIndex]

if(dpResultX->Ratio ≥ 0.5 && dpResultY->Ratio < 0.5) then

return Val_array [BaseIndex + num_value]

if(dpResultX->Ratio < 0.5 && dpResultY->Ratio \geq 0.5) then

return Val_array [BaseIndex + 1]

if(dpResultX->Ratio \geq 0.5 && dpResultY->Ratio \geq 0.5) then

return Val_array [BaseIndex + num_value + 1]|()

[SWS_lfx_00204] [Do not call this routine until you have searched the axis to ensure the search result contains valid data and is not used uninitialized. | ()

[SWS_lfx_00032] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x015	uint8 lfx_LkUpMap_u8 (const lfx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const uint8 *)
0x016	uint16 lfx_LkUpMap_u16 (const lfx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const uint16 *)
0x017	sint8 Ifx_LkUpMap_s8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const sint8 *)
0x018	sint16 lfx_LkUpMap_s16 (const lfx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const sint16 *)
0x0C9	sint32 lfx_LkUpMap_s32 (const lfx_DPResultU16_ Type*dpResultX,
	const Ifx_DPResultU16_Type*dpResultY,
	uint16 num_value,
	const sint32* Val_array)
0x0CA	uint32 lfx_LkUpMap_u32 (const lfx_DPResultU16_Type* dpResultX,
	const Ifx_DPResultU16_Type*dpResultY,
	uint16 num_value,
	const uint32* Val_array)

10

8.5.1.6 Map look-up without rounding

[SWS_lfx_00205] [

Service Name	Ifx_LkUpBaseMap_ <outtyp< th=""><th colspan="2">Ifx_LkUpBaseMap_<outtypemn></outtypemn></th></outtyp<>	Ifx_LkUpBaseMap_ <outtypemn></outtypemn>	
Syntax	const Ifx_DPResult const Ifx_DPResult uint16 num_value,	<pre><outtype> Ifx_LkUpBaseMap_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>	
Service ID [hex]	0x0A5 to 0x0A8	0x0A5 to 0x0A8	
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	dpResultX	Data point search result for x axis	
	dpResultY	Data point search result for y axis	
	num_value	Number of y axis points	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None	None	
Parameters (out)	None	None	
Return value	<outtype></outtype>	Entry point of the result array	
Description		Based on searched index and ratio information, this routine calculates and returns entry value of the result distribution array.	
Available via	lfx.h	lfx.h	

10

[SWS_lfx_00206] [BaseIndex = dpResultX->Index * num_value + dpResultY->Index | ()

[SWS_lfx_00207] [Return Value = Val_array [BaseIndex]] ()

[SWS_Ifx_00208] [Do not call this routine until you have searched the axis using the Ifx DPSearch routine. Only then it is ensured that the search result (Ifx DPResult U16 Type) contains valid data and is not used uninitialized. (1)

[SWS_lfx_00209] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x0A5	uint8 lfx_LkUpBaseMap_u8 (const lfx_DPResultU16_Type*,
	const lfx_DPResultU16_Type*,
	uint16,
	const uint8 *)

/\	

Routine ID[hex]	Routine prototype
0x0A6	uint16 Ifx_LkUpBaseMap_u16 (const Ifx_DPResultU16_ Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const uint16 *)
0x0A7	sint8 Ifx_LkUpBaseMap_s8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const sint8 *)
0x0A8	sint16 Ifx_LkUpBaseMap_s16 (const Ifx_DPResultU16_ Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
	const sint16 *)
0x0CB	sint32 Ifx_LkUpBaseMap_s32 (const Ifx_DPResultU16_ Type* dpResultX,
	const Ifx_DPResultU16_Type* dpResultY,
	uint16 num_value,
	const sint32* Val_array)
0x0CC	uint32 Ifx_LkUpBaseMap_u32 (const Ifx_DPResultU16_ Type* dpResultX,
	const Ifx_DPResultU16_Type* dpResultY,
	uint16 num_Val,
	const uint32* Val_array)

]()

8.5.2 Integrated data point search and interpolation

In this method of interpolation, single routine does data point search (e.g. Index and ratio) and interpolation for curve, map or look-up table.

8.5.2.1 Integrated curve interpolation

[SWS_lfx_00035] [

Service Name	lfx_IntlpoCur_ <intypemn>_<outtypemn></outtypemn></intypemn>
Syntax	<pre><outtype> Ifx_IntIpoCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>
Service ID [hex]	0x01A to 0x029

\triangle

Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Xin Input value	
	N	Number of samples
	X_array	Pointer to the X axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Result of the Interpolation
Description	This routine calculates interpolation of a curve at position Xin using below equation.	
Available via	lfx.h	

]()

[SWS_lfx_00036] [If $(X_array[0] < Xin < X_array[N-1])$, then

index = lowest index for which $(Xin < X_array[index + 1])$.

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index])*RatioX]()

[SWS_Ifx_00037] [Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,

Result = Val_array[index] | ()

[SWS_lfx_00038] [If (Xin < X_array[0]) then,

Result = Val_array[0] | ()

[SWS_lfx_00039] [If $(Xin > X_array[N-1])$ then,

Result = Val_array[N-1] | ()

[SWS_lfx_00040] [The minimum value of N shall be 1 | ()

[SWS_lfx_00041] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x01A	uint8 lfx_IntlpoCur_u8_u8 (uint8, uint8, const uint8 *, const uint8 *)
0x01B	uint16 lfx_IntlpoCur_u8_u16 (uint8, uint8, const uint8 *, const uint16 *)
0x01C	sint8 lfx_IntlpoCur_u8_s8 (uint8, uint8, const uint8 *, const sint8 *)
0x01D	sint16 lfx_IntlpoCur_u8_s16 (uint8, uint8, const uint8 *, const sint16 *)
0x01E	uint8 lfx_IntlpoCur_u16_u8 (uint16, uint16, const uint16 *, const uint8 *)
0x01F	uint16 lfx_IntlpoCur_u16_u16 (uint16, uint16, const uint16 *, const uint16 *)
0x020	sint8 lfx_IntlpoCur_u16_s8 (uint16, uint16, const uint16 *, const sint8 *)
0x021	sint16 lfx_IntlpoCur_u16_s16 (uint16, uint16, const uint16 *, const sint16 *)
0x022	uint8 lfx_IntlpoCur_s8_u8 (sint8, sint8, const sint8 *, const uint8 *)
0x023	uint16 lfx_IntlpoCur_s8_u16 (sint8, sint8, const sint8 *, const uint16 *)
0x024	sint8 lfx_IntlpoCur_s8_s8 (sint8, sint8, const sint8 *, const sint8 *)
0x025	sint16 lfx_IntlpoCur_s8_s16 (sint8, sint8, const sint8 *, const sint16 *)
0x026	uint8 lfx_IntlpoCur_s16_u8 (sint16, sint16, const sint16 *, const uint8 *)
0x027	uint16 lfx_IntlpoCur_s16_u16 (sint16, sint16, const sint16 *, const uint16 *)
0x028	sint8 lfx_IntlpoCur_s16_s8 (sint16, sint16, const sint16 *, const sint8 *)
0x029	sint16 lfx_IntlpoCur_s16_s16 (sint16, sint16, const sint16 *, const sint16 *)
0x0CD	sint32 lfx_IntlpoCur_s32_s32 (sint32 Xin, sint32 N, const sint32* X_array, const sint32* Val_array)
0x0CE	uint32 lfx_IntlpoCur_u32_u32 (uint32 Xin, uint32 N, const uint32* X_array, const uint32* Val_array)

]()

8.5.2.2 Integrated curve look-up

[SWS Ifx 00045]

Service Name	Ifx_IntLkUpCur_ <intypemn:< th=""><th>>_<outtypemn></outtypemn></th></intypemn:<>	>_ <outtypemn></outtypemn>
Syntax	<pre><outtype> Ifx_IntLkUpCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>	
Service ID [hex]	0x030 to 0x03F	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Xin	Input value
	N	Number of samples
	X_array	Pointer to the X axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Entry point of the result array
Description	This routine returns respective entry value of the result at position Xin based on below equations.	
Available via	lfx.h	

 $\rfloor ()$

[SWS_lfx_00046] [If $(X_array[0] < Xin < X_array[N -1])$, then

index = lowest index for which $(Xin < X \ array[index + 1])$.

Result = Val array[index] | ()

[SWS_Ifx_00047] [Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X array[index]) then,

Result = Val_array[index] | ()

[SWS_lfx_00048] [If (Xin < X_array[0]) then,

Result = Val_array[0] | ()

[SWS_lfx_00049] [If $(Xin > X_array[N-1])$ then,

Result = Val_array[N-1]]()

[SWS Ifx 00050] [The minimum value of N shall be 1 | ()

[SWS_lfx_00051] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x030	uint8 Ifx_IntLkUpCur_u8_u8 (uint8 , uint8, const uint8 *, const uint8 *)
0x031	uint16 lfx_IntLkUpCur_u8_u16 (uint8 , uint8, const uint8 *, const uint16 *)
0x032	sint8 lfx_IntLkUpCur_u8_s8 (uint8 , uint8, const uint8 *, const sint8 *)
0x033	sint16 lfx_IntLkUpCur_u8_s16 (uint8 , uint8, const uint8 *, const sint16 *)
0x034	uint8 lfx_IntLkUpCur_u16_u8 (uint16 , uint16, const uint16 *, const uint8 *)
0x035	uint16 lfx_IntLkUpCur_u16_u16 (uint16 , uint16, const uint16 *, const uint16 *)
0x036	sint8 lfx_IntLkUpCur_u16_s8 (uint16 , uint16, const uint16 *, const sint8 *)
0x037	sint16 lfx_IntLkUpCur_u16_s16 (uint16 , uint16, const uint16 *, const sint16 *)
0x038	uint8 lfx_IntLkUpCur_s8_u8 (sint8 , sint8, const sint8 *, const uint8 *)
0x039	uint16 lfx_IntLkUpCur_s8_u16 (sint8 , sint8, const sint8 *, const uint16 *)
0x03A	sint8 lfx_IntLkUpCur_s8_s8 (sint8, sint8, const sint8 *, const sint8 *)
0x03B	sint16 lfx_IntLkUpCur_s8_s16 (sint8, sint8, const sint8 *, const sint16 *)
0x03C	uint8 lfx_IntLkUpCur_s16_u8 (sint16, sint16, const sint16 *, const uint8 *)
0x03D	uint16 lfx_IntLkUpCur_s16_u16 (sint16, sint16, const sint16 *, const uint16 *)
0x03E	sint8 lfx_IntLkUpCur_s16_s8 (sint16, sint16, const sint16 *, const sint8 *)
0x03F	sint16 lfx_IntLkUpCur_s16_s16 (sint16, sint16, const sint16 *, const sint16 *)
0x0CF	sint32 lfx_IntLkUpCur_s32_s32 (sint32 Xin, sint32 N, const sint32* X_array, const sint32* Val_array)
0x0D0	uint32 Ifx_IntLkUpCur_u32_u32 (uint32 Xin, uint32 N, const uint32* X_array, const uint32* Val_array)
	•

]()

8.5.2.3 Integrated fix-curve interpolation

[SWS_lfx_00055]

Service Name	Ifx_IntIpoFixCur_ <intypemi< th=""><th colspan="2">Ifx_IntlpoFixCur_<intypemn>_<outtypemn></outtypemn></intypemn></th></intypemi<>	Ifx_IntlpoFixCur_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntIpoFixCur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>		
Service ID [hex]	0x040 to 0x043		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	Xin	Input value	
	N	Number of samples	
	Val_array	Pointer to the result axis distribution array	
	Offset	Offset of the first sampling value for X-axis	
	Shift	'Shift' is the power of 2, (2^Shift) represents X-axis distribution point interval	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	
Description	This routine calculates interpolation of a curve at position Xin using below equations.		
Available via	lfx.h		

10

[SWS_lfx_00056] \lceil X axis distribution points shall be calculated based on Offset and Shift values.

X_array [index] = Offset + index * 2Shift

If Offset = 10, Shift = 2 and N = 5 then,

 $X_{array}[5] = \{10, 14, 18, 22, 26\} | ()$

[SWS_lfx_00057] [If $(X_array[0] < Xin < X_array[N - 1])$, then

index = lowest index for which $(Xin < X \ array[index + 1])$.

RatioX = $(Xin - X \ array[index]) / (X \ array[index+1] - X \ array[index])$

Result = Val array[index] + (Val array[index+1] - Val array[index]) * RatioX|()

[SWS_Ifx_00058] [Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X array[index])

Result = Val array[index] | ()

[SWS_lfx_00059] [If $(Xin < X_array[0])$ then,

Result = Val_array[0]]()

[SWS_lfx_00060] \lceil If (Xin > X_array[N-1]) then,

Result = Val_array[N-1] | ()

[SWS_lfx_00061] [The minimum value of N shall be 1 | ()

[SWS_lfx_00062] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x040	uint8 lfx_IntlpoFixCur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x041	uint16 lfx_IntlpoFixCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x042	sint8 lfx_IntlpoFixCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x043	sint16 lfx_IntlpoFixCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)
0x0D1	sint32 lfx_IntlpoFixCur_s32_s32 (sint32 Xin, sint32 N, const sint32* Val_array, sint32 offset, sint32 shift)
0x0D2	uint32 lfx_IntlpoFixCur_u32_u32 (uint32 Xin, uint32 N, const uint32* Val_array, uint32 offset, uint32 shift)

]()

8.5.2.4 Integrated fix-curve look up

[SWS_lfx_00070] [

Service Name	lfx_IntLkUpFixCur_ <inty< th=""><th colspan="2">lfx_IntLkUpFixCur_<intypemn>_<outtypemn></outtypemn></intypemn></th></inty<>	lfx_IntLkUpFixCur_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<intype> Xin, <intype> N,</intype></intype>	<pre><intype> N, const <intype>* Val_array, <intype> Offset,</intype></intype></intype></pre>	
Service ID [hex]	0x045 to 0x048	0x045 to 0x048	
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	Xin	Input value	
	N	Number of samples	
	Val_array	Pointer to the result axis distribution array	
	Offset	Offset Offset of the first sampling value for X-axis	
	Shift	'Shift' is the power of 2, (2^Shift) represents X-axis distribution point interval	
Parameters (inout)	None	•	
Parameters (out)	None		

\triangle

Return value	<outtype></outtype>	Entry point of the result array
Description	This routine returns respective entry value of the result distribution array at position Xin based on below equations.	
Available via	lfx.h	

10

[SWS_lfx_00071] $\lceil X \mid$ axis distribution points shall be calculated based on Offset and Shift values.

X_array [index] = Offset + index * 2Shift

If Offset = 10, Shift = 2 and N = 5 then,

 $X_{array}[5] = \{10, 14, 18, 22, 26\} \] ()$

[SWS_lfx_00072] [If $(X_array[0] < Xin < X_array[N - 1])$, then

index = lowest index for which (Xin < X_array[index + 1]).

Result = Val array[index] | ()

[SWS_Ifx_00073] [Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X array[index]) then,

Result = Val_array[index] | ()

[SWS_lfx_00074] [If $(Xin < X_array[0])$ then,

Result = Val array[0] | ()

[SWS_lfx_00075] [If $(Xin > X_array[N-1])$ then,

Result = Val array[N-1]

[SWS_lfx_00076] [The minimum value of N shall be 1 | ()

[SWS_lfx_00077] [Here is the list of implemented routines

Routine ID[hex]	Routine prototype
0x045	uint8 lfx_IntLkUpFixCur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x046	uint16 lfx_IntLkUpFixCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x047	sint8 lfx_IntLkUpFixCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x048	sint16 Ifx_IntLkUpFixCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)
0x0D3	sint32 Ifx_IntLkUpFixCur_s32_s32 (sint32 Xin, sint32 N, const sint32* Val_array, sint32 offset, sint32 shift)
0x0D4	uint32 lfx_IntLkUpFixCur_u32_u32 (uint32 Xin, uint32 N, const uint32* Val_array, uint32 offset, uint32 shift)

8.5.2.5 Integrated fix- I curve interpolation

[SWS Ifx 00080]

Service Name	lfx_IntlpoFixlCur_ <intyp< th=""><th>eMn>_<outtypemn></outtypemn></th></intyp<>	eMn>_ <outtypemn></outtypemn>	
Syntax	<pre><outtype> Ifx_IntIpoFixICur_<intypemn>_<outtypemn> (</outtypemn></intypemn></outtype></pre>		
Service ID [hex]	0x04A to 0x04D		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	Xin	Input value	
	N	Number of samples	
	Val_array	Val_array Pointer to the result axis distribution array	
	Offset	Offset Offset of the first sampling value for X-axis	
	Interval	Interval represents X-axis distribution point fix interval	
Parameters (inout)	None		
Parameters (out)	None		
Return value	<outtype></outtype>	Result of the Interpolation	
Description	This routine calculates interpolation of a curve at position Xin using below equations.		
Available via	lfx.h		

10

[SWS_Ifx_00081] [X axis distribution points shall be calculated based on Offset and Interval values.

X array [index] = offset + index * Interval

If Offset = 5, Interval = 12 and N = 5 then,

 $X = \{5, 17, 29, 41, 53\} \mid ()$

[SWS_lfx_00082] [If (X array[0] < X in < X array[N-1]), then

index = lowest index for which (Xin < X_array[index + 1]).

RatioX = $(Xin - X \ array[index]) / (X \ array[index+1] - X \ array[index])$

Result = Val array[index] + (Val array[index+1] - Val array[index]) * RatioX | ()

[SWS_Ifx_00083] [Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X array[index])

Result = Val_array[index] | ()

[SWS_lfx_00084] [If $(Xin < X_array[0])$ then,

Result = Val_array[0]]()

 $\textbf{[SWS_lfx_00085]} \ \lceil \text{If (Xin} > \text{X_array[N-1]) then,} \\$

Result = Val_array[N-1] | ()

[SWS_lfx_00086] [The minimum value of N shall be 1 | ()

[SWS_lfx_00087] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x04A	uint8 lfx_IntlpoFixlCur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x04B	uint16 lfx_IntlpoFixlCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x04C	sint8 lfx_IntlpoFixlCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x04D	sint16 lfx_IntlpoFixlCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)
0x0D5	sint32 lfx_IntlpoFixlCur_s32_s32 (sint32 Xin, sint32 N, const sint32 * Val_array, sint32 offset, sint32 Interval)
0x0D6	uint32 lfx_IntlpoFixlCur_u32_u32 (uint32 Xin, uint32 N, const uint32 * Val_array, uint32 offset, uint32 Interval)

]()

8.5.2.6 Integrated fix- I curve look up

[SWS_lfx_00090] [

Service Name	Ifx_IntLkUpFixICur_ <intype< th=""><th colspan="2">Ifx_IntLkUpFixICur_<intypemn>_<outtypemnt></outtypemnt></intypemn></th></intype<>	Ifx_IntLkUpFixICur_ <intypemn>_<outtypemnt></outtypemnt></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpFixICur_<intypemn>_<outtypemnt> (</outtypemnt></intypemn></outtype></pre>		
Service ID [hex]	0x050 to 0x053	0x050 to 0x053	
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	Xin	Input value	
	N	Number of samples	
	Val_array	Pointer to the result axis distribution array	
	Offset	Offset of the first sampling value for X-axis	
	Interval	represents X-axis distribution point fix interval	
Parameters (inout)	None		
Parameters (out)	None		

\triangle

Return value	<outtype></outtype>	Entry point of the result array
Description	This routine returns respective entry value of the result distribution array at position Xin based on below equations.	
Available via	lfx.h	

10

[SWS_lfx_00091] [X axis distribution points shall be calculated based on Offset and Interval values.

X_array [index] = offset + index * Interval

If Offset = 5, Interval = 12 and N = 5 then,

 $X_{array}[5] = \{5, 17, 29, 41, 53\} \] ()$

[SWS_lfx_00092] [If $(X_array[0] < Xin < X_array[N - 1])$, then

index = lowest index for which (Xin < X_array[index + 1]).

Result = Val array[index] | ()

[SWS_Ifx_00093] [Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X array[index])

Result = Val_array[index] | ()

[SWS_lfx_00094] [If $(Xin < X_array[0])$ then,

Result = Val_array[0]|()

[SWS_lfx_00095] [If (Xin > X array[N-1]) then,

Result = Val array[N-1]

[SWS_lfx_00096] [The minimum value of N shall be 1 | ()

[SWS_lfx_00097] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x050	uint8 Ifx_IntLkUpFixICur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x051	uint16 lfx_IntLkUpFixICur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x052	sint8 lfx_IntLkUpFixICur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x053	sint16 lfx_IntLkUpFixICur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)
0x0D7	sint32 lfx_IntLkUpFixICur_s32_s32 (sint32 Xin, sint32 N, const sint32 * Val_array, sint32 offset, sint32 Interval)
0x0D8	uint32 lfx_IntLkUpFixICur_u32_u32 (uint32 Xin, uint32 N, const uint32 * Val_array, uint32 offset, uint32 Interval)

8.5.2.7 Integrated map interpolation

[SWS_lfx_00098]

Service Name	lfx_IntlpoMap_ <intypemn></intypemn>	<intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntIpoMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x060 to 0x087		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant		
Parameters (in)	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number of X axis samples	
	Ny	Number of Y axis samples	
	X_array Pointer to the X axis distribution array		
	Y_array	Pointer to the Y axis distribution array	
	Val_array Pointer to the result axis distribution array		
Parameters (inout)	None	None	
Parameters (out)	None	None	
Return value	<outtype></outtype>	Result of the Map Interpolation	
Description	This routine calculates Inter	This routine calculates Interpolation of a map at position X and Y using below equations.	
Available via	lfx.h		

10

[SWS_lfx_00099] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y array[indexY] < Yin < Y array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS_Ifx_00100] [Ratio calculation:

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) | (/)

[SWS_lfx_00101] [LowerY = Val array [BaseIndex]

UpperY = Val_array [BaseIndex + 1]

LowerX = LowerY + (UpperY - LowerY) * RatioY

LowerY = Val array [BaseIndex + Ny]

UpperY = Val_array [BaseIndex + Ny + 1]

UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX | ()

[SWS_lfx_00102] [If $(Xin == X_array[indexX])$ and $(Y_array[indexY] < Yin < Y_array[indexY+1])$

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) * RatioY|()

[SWS_lfx_00103] [If (Yin == $Y_array[indexY]$) and ($X_array[indexX] < Xin < X_array[indexX+1]$)

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex]) * RatioX|()

[SWS_lfx_00104] [If $(Xin == X_array[indexX])$ and $(Yin == Y_array[indexY])$

Result = Val_array [BaseIndex] | ()

[SWS_lfx_00105] [If Xin < X_array[0], then

indexX = 0,

RatioX = 0)

[SWS_lfx_00106] [If $Xin > X_array[Nx-1]$, then

indexX = Nx - 1,

RatioX = 0|()

[SWS Ifx 00107] [If Yin < Y array[0], then

indexY = 0.

RatioY = $0 \mid ()$

[SWS Ifx 00108] [If Yin > Y array[Ny-1], then

indexY = Ny - 1,

RatioY = $0 \mid ()$

[SWS_lfx_00109] [The minimum value of Nx and Ny shall be 1]()

[SWS_lfx_00110] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x060	uint8 lfx_IntlpoMap_u16u8_u8 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const uint8 *)
0x061	uint16 lfx_IntlpoMap_u16u8_u16 (uint16, uint8, uint16, uint16, const uint16 *, const uint16 *)
0x062	sint8 lfx_IntlpoMap_u16u8_s8 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const sint8 *)

\triangle

Routine prototype
sint16 lfx_IntlpoMap_u16u8_s16 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const sint16 *)
uint8 lfx_IntlpoMap_u16u16_u8 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint8 *)
uint16 lfx_IntlpoMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint16 *)
sint8 lfx_IntlpoMap_u16u16_s8 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const sint8 *)
sint16 lfx_IntlpoMap_u16u16_s16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const sint16 *)
uint8 lfx_IntlpoMap_u16s8_u8 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const uint8 *)
uint16 lfx_IntlpoMap_u16s8_u16 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const uint16 *)
sint8 lfx_IntlpoMap_u16s8_s8 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const sint8 *)
sint16 lfx_IntlpoMap_u16s8_s16 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const sint16 *)
uint8 lfx_IntlpoMap_u16s16_u8 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const uint8 *)
uint16 lfx_IntlpoMap_u16s16_u16 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const uint16 *)
sint8 lfx_IntlpoMap_u16s16_s8 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const sint8 *)
sint16 lfx_IntlpoMap_u16s16_s16 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const sint16 *)
uint8 lfx_IntlpoMap_s16u8_u8 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const uint8 *)
uint16 lfx_IntlpoMap_s16u8_u16 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const uint16 *)
sint8 lfx_IntlpoMap_s16u8_s8 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const sint8 *)
sint16 lfx_IntlpoMap_s16u8_s16 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const sint16 *)
uint8 lfx_IntlpoMap_s16s8_u8 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const uint8 *)
uint16 lfx_IntlpoMap_s16s8_u16 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const uint16 *)
sint8 lfx_IntlpoMap_s16s8_s8 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const sint8 *)
sint16 lfx_IntlpoMap_s16s8_s16 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const sint16 *)
uint8 lfx_IntlpoMap_s16s16_u8 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const uint8 *)
uint16 lfx_IntlpoMap_s16s16_u16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const uint16 *)
sint8 lfx_IntlpoMap_s16s16_s8 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const sint8 *)
sint16 lfx_IntlpoMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)
uint8 lfx_IntlpoMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *)

AUTOSAR Specification of Fixed Point Interpolation Routines AUTOSAR CP R22-11

\triangle

Routine ID[hex]	Routine prototype
0x07D	uint16 lfx_IntlpoMap_u8u8_u16 (uint8, uint8, uint8, uint8, const uint8 *, const uint16 *)
0x07E	sint8 lfx_IntlpoMap_u8u8_s8 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const sint8 *)
0x07F	sint16 lfx_IntlpoMap_u8u8_s16 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const sint16 *)
0x080	uint8 lfx_IntIpoMap_u8s8_u8 (uint8, sint8, uint8, uint8, const uint8 *, const uint8 *)
0x081	uint16 lfx_IntlpoMap_u8s8_u16 (uint8, sint8, uint8, const uint8 *, const sint8 *, const uint16 *)
0x082	sint8 lfx_IntlpoMap_u8s8_s8 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const sint8 *)
0x083	sint16 lfx_IntlpoMap_u8s8_s16 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const sint16 *)
0x084	uint8 lfx_IntIpoMap_s8s8_u8 (sint8, sint8, sint8, sint8, const sint8 *, const uint8 *)
0x085	uint16 lfx_IntlpoMap_s8s8_u16 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const uint16 *)
0x086	sint8 lfx_IntlpoMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *)
0x087	sint16 lfx_IntlpoMap_s8s8_s16 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint16 *)
0x0D9	sint32 lfx_IntlpoMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * X_array, const sint32 * Y_array, const sint32 * Val_array)
0x0DA	uint32 lfx_IntlpoMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * X_array, const uint32 * Y_array, const uint32 * Val_array)

]()

8.5.2.8 Integrated map look-up

[SWS_lfx_00111] [

Service Name	Ifx_IntLkUpMap_ <intypemr< th=""><th>n><intypemn>_<outtypemn></outtypemn></intypemn></th></intypemr<>	n> <intypemn>_<outtypemn></outtypemn></intypemn>
Syntax	<pre></pre> <pre><outtype> Ifx_IntLkUpMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>	
Service ID [hex]	0x08A to 0x08D	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Xin Input value for X axis	
	Yin	Input value for Y axis
	Nx Number of X axis samples	
	Ny Number of Y axis samples	
	X_array Pointer to the X axis distribution array	
	Y_array Pointer to the Y axis distribution array	
	Val_array Pointer to the result axis distribution array	
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype> Entry point of the result array</outtype>	
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via	lfx.h	

10

[SWS_lfx_00112] [Index calculation:

```
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
```

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

BaseIndex = IndexX * Ny + indexY \(\) ()

[SWS_lfx_00113] [Ratio calculation:

if (indexX < (Nx - 1))

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])

else

RatioX = 0

if (indexY < (Ny - 1))

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])

else

RatioY = $0 \mid ()$

[SWS_lfx_00114] [if(RatioX < 0.5 && RatioY < 0.5) then

Result = Val array [BaseIndex]

if(RatioX \geq 0.5 && RatioY < 0.5) then

Result = Val array [BaseIndex + Ny]

if(RatioX < 0.5 && RatioY \geq 0.5) then

Result = Val array [BaseIndex + 1]

if(RatioX \geq 0.5 && RatioY \geq 0.5) then

Result = Val_array [BaseIndex + Ny + 1] | ()

[SWS_lfx_00116] [If (Xin == X array[indexX]) and (Yin == Y array[indexY])

Result = Val array [BaseIndex] | ()

[SWS_lfx_00117] [If Xin < X_array[0], then

indexX = 0 | ()

[SWS_lfx_00118] [If Xin > $X_{array}[Nx-1]$, then

indexX = Nx - 1 | ()

[SWS_lfx_00119] [If Yin < Y_array[0], then

indexY = 0 | ()

[SWS Ifx 00120] [If Yin > Y array[Ny-1], then

indexY = Ny - 1 | ()

[SWS_lfx_00121] [The minimum value of Nx and Ny shall be 1 | ()

[SWS_Ifx_00122] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
A80x0	uint8 lfx_IntLkUpMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, const uint8 *)
0x08B	sint8 lfx_IntLkUpMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *)
0x08C	uint16 Ifx_IntLkUpMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint16 *)
0x08D	sint16 lfx_IntLkUpMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const sint16 *)
0x0DB	sint32 Ifx_IntLkUpMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * X_array, const sint32 * Y_array, const sint32 * Val_array)
0x0DC	uint32 lfx_IntLkUpMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * X_array, const uint32 * Y_array, const uint32 * Val_array)

8.5.2.9 Integrated map look-up without rounding

[SWS Ifx 00211]

Service Name	Ifx_IntLkUpBaseMap_ <in< th=""><th colspan="2">Ifx_IntLkUpBaseMap_<intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn></th></in<>	Ifx_IntLkUpBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax	<pre><intype> Xin,</intype></pre>	<pre></pre> <pre><outtype> Ifx_IntLkUpBaseMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x0AA to 0x0AD	0x0AA to 0x0AD		
Sync/Async	Synchronous	Synchronous		
Reentrancy	Reentrant	Reentrant		
Parameters (in) Xin Input value for X axis		Input value for X axis		
	Yin	Input value for Y axis		
	Nx	Nx Number of X axis samples		
	Ny	Ny Number of Y axis samples		
	X_array	X_array Pointer to the X axis distribution array		
	Y_array	Y_array Pointer to the Y axis distribution array		
	Val_array	Val_array Pointer to the result axis distribution array		
Parameters (inout)	None	None		
Parameters (out)	None	None		
Return value	<outtype></outtype>	Entry point of the result array		
Description		This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.		
Available via	lfx.h	lfx.h		

10

[SWS_lfx_00212] [Index calculation:

```
indexX = minimum value of index if (X array[indexX] < Xin < X array[indexX+1])
```

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS_lfx_00214] [Return Value = Val_array [BaseIndex]] ()

[SWS_lfx_00216] [If (Xin == X array[indexX]) and (Yin == Y array[indexY])

Result = Val array [BaseIndex] ()

[SWS Ifx 00217] [If Xin < X array[0], then

indexX = 0 ()

[SWS_lfx_00218] [If $Xin > X_array[Nx-1]$, then

indexX = Nx - 1 ()

[SWS_lfx_00219] [If Yin < Y array[0], then

indexY = 0 | ()

[SWS_lfx_00220] [If $Yin > Y_array[Ny-1]$, then

indexY = Ny - 1 | ()

[SWS_lfx_00221] [The minimum value of Nx and Ny shall be 1]()

[SWS_lfx_00222] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x0AA	uint8 Ifx_IntLkUpBaseMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, const uint8 *)
0x0AB	sint8 lfx_IntLkUpBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *)
0x0AC	uint16 lfx_IntLkUpBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint16 *)
0x0AD	sint16 Ifx_IntLkUpBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const sint16 *)
0x0DD	sint32 Ifx_IntLkUpBaseMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * X_array, const sint32 * Y_array, const sint32 * Val_array)
0x0DE	uint32 lfx_IntLkUpBaseMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * X_array, const uint32 * Y_array, const uint32 * Val_array)

]()

8.5.2.10 Integrated fix- map interpolation

[SWS_lfx_00123] [

Service Name	Ifx_IntIpoFixMap_ <intypen< th=""><th colspan="2">Ifx_IntIpoFixMap_<intypemn>_<outtypemn></outtypemn></intypemn></th></intypen<>	Ifx_IntIpoFixMap_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntIpoFixMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x090 to 0x093		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Ny Number to Y axis samples	
	Val_array	Pointer to the result axis distribution array	
	OffsetX	Offset of the first sampling value for X-axis	
	ShiftX	ShiftX 'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
ShiftY		'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval	
Parameters (inout)	None	None	
Parameters (out)	None	None	
Return value	<outtype></outtype>	Result of the Interpolation	
Description	This routine calculates Inter	This routine calculates Interpolation of a map at position X and Y using below equations.	
Available via	lfx.h	lfx.h	

10

[SWS_Ifx_00124] [X and Y axis distribution points shall be calculated based on Offset and Shift values.

```
X array[index] = OffsetX + index * 2ShiftX
```

Y array[index] = OffsetY + index * 2ShiftY

If Offset = 10, Shift = 2 and N = 5 then,

 $axis = \{10, 14, 18, 22, 26\}$ (applicable to X and Y axis) | ()

[SWS_lfx_00125] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])


```
BaseIndex = IndexX * Ny + indexY | ()
[SWS Ifx 00126] [Ratio calculation:
RatioX = (Xin - X \ array[indexX]) / (X \ array[indexX+1] - X \ array[indexX])
RatioY = (Yin - Y array[indexY]) / (Y array [indexY+1] - Y array [indexY]) | ()
[SWS Ifx 00127] [LowerY = Val array [BaseIndex]
UpperY = Val array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY
LowerY = Val array [BaseIndex + Ny]
UpperY = Val array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY
Result = LowerX + (UpperX - LowerX) * RatioX | ()
[SWS_Ifx_00128] [If (Xin == X array[indexX]) and (Y array[indexY] < Yin < Y ar-
ray[indexY+1])
Result = Val array [BaseIndex] + (Val array [BaseIndex+1] - Val array[BaseIndex]) *
RatioY ()
[SWS_lfx_00129] [If (Yin == Y array[indexY]) and (X array[indexX] < Xin < X ar-
ray[indexX+1])
Result = Val array [BaseIndex] + (Val array [BaseIndex+Ny] - Val array[BaseIndex]) *
RatioX ()
ISWS Ifx 00130] [If (Xin == X array[indexX]) and (Yin == Y_array[indexY])
Result = Val array [BaseIndex] ()
[SWS Ifx 00131] [If Xin < X array[0], then
indexX = 0.
RatioX = 0 \mid ()
[SWS Ifx 00132] [If Xin > X array[Nx-1], then
indexX = Nx - 1,
RatioX = 0 \mid ()
[SWS_lfx_00133] [If Yin < Y array[0], then
indexY = 0.
RatioY = 0]()
```


[SWS_lfx_00134] [If $Yin > Y_array[Ny-1]$, then

indexY = Ny - 1,

RatioY = 0 | ()

[SWS_lfx_00135] [The minimum value of Nx and Ny shall be 1 | ()

[SWS_lfx_00136] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x090	uint8 lfx_IntlpoFixMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
0x091	uint16 lfx_IntlpoFixMap_u16u16_u16 (uint16, uint16, uint16, uint16, uint16, uint16, uint16)
0x092	sint8 lfx_IntlpoFixMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x093	sint16 lfx_IntlpoFixMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)
0x0DF	sint32 lfx_IntIpoFixMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX, sint32 ShiftX, sint32 offsetY, sint32 shiftY)
0x0E0	uint32 lfx_IntlpoFixMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)

]()

8.5.2.11 Integrated fix- map look up

[SWS_lfx_00139] [

Service Name	Ifx_IntLkUpFixMap_ <intype< th=""><th>Mn><intypemn>_<outtypemn></outtypemn></intypemn></th></intype<>	Mn> <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpFixMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x095 to 0x098		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant		
Parameters (in)	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Number to Y axis samples	
	Val_array	Pointer to the result axis distribution array	

\triangle

	OffsetX	Offset of the first sampling value for X-axis
	ShiftX	'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval
	OffsetY	Offset of the first sampling value for Y-axis
	ShiftY	'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype></outtype>	Entry point of the result array
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via	lfx.h	

]()

[SWS_Ifx_00140] [X and Y axis distribution points shall be calculated based on Offset and Shift values.

X array[index] = offsetX + index * 2ShiftX

Y array[index] = offsetY + index * 2ShiftY

If Offset = 10, shift = 2 and N = 5 then,

axis = {10, 14, 18, 22, 26} (applicable to X and Y axis) | ()

[SWS_lfx_00141] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y array[indexY] < Yin < Y array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS_lfx_00143] [Ratio calculation:

if (indexX < (Nx - 1))

RatioX = $(Xin - X \ array[indexX]) / (X \ array[indexX+1] - X \ array[indexX])$

else

RatioX = 0

if (indexY < (Ny - 1))

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])

else

RatioY = $0 \mid ()$

[SWS_lfx_00144] [if(RatioX < 0.5 && RatioY < 0.5) then

Result = Val array [BaseIndex]

if(RatioX \geq 0.5 && RatioY < 0.5) then

Result = Val array [BaseIndex + Ny]

if(RatioX < 0.5 && RatioY \geq 0.5) then

Result = Val array [BaseIndex + 1]

if(RatioX \geq 0.5 && RatioY \geq 0.5) then

Result = Val_array [BaseIndex + Ny + 1] | ()

[SWS_lfx_00145] \lceil If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [BaseIndex] | ()

[SWS_lfx_00146] [If Xin < X_array[0], then

indexX = 0 | ()

[SWS_lfx_00147] [If Xin > X array[Nx-1], then

indexX = Nx - 1 | ()

[SWS_lfx_00148] [If Yin < Y_array[0], then

indexY = 0 | ()

[SWS_lfx_00149] [If $Yin > Y_array[Ny-1]$, then

indexY = Ny - 1 | ()

[SWS Ifx 00150] [The minimum value of Nx and Ny shall be 1 | ()

[SWS Ifx 00151] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x095	uint8 lfx_IntLkUpFixMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
0x096	uint16 lfx_IntLkUpFixMap_u16u16_u16 (uint16, uint16, uint16, uint16, uint16, uint16, uint16)
0x097	sint8 lfx_IntLkUpFixMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x098	sint16 Ifx_IntLkUpFixMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)
0x0E1	sint32 lfx_IntLkUpFixMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Ny, const sint32 * Val_array, sint32 offsetX, sint32 ShiftX, sint32 offsetY, sint32 shiftY)
0x0E2	uint32 lfx_IntLkUpFixMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)

]()

8.5.2.12 Integrated fix- map look up without rounding

[SWS_lfx_00225] [

Service Name	Ifx_IntLkUpFixBaseMap_ <i< th=""><th colspan="2">Ifx_IntLkUpFixBaseMap_<intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn></th></i<>	Ifx_IntLkUpFixBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpFixBaseMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID [hex]	0x0B0 to 0x0B3		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Number to Y axis samples	
	Val_array	Pointer to the result axis distribution array	
	OffsetX	Offset of the first sampling value for X-axis	
	ShiftX	ShiftX 'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
	ShiftY	'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval	
Parameters (inout)	None	None	
Parameters (out)	None	None	
Return value	<outtype></outtype>	Entry point of the result array	
Description	This routine returns respect based on below equations.	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via	lfx.h		

]()

[SWS_Ifx_00226] [X and Y axis distribution points shall be calculated based on Offset and Shift values.

X_array[index] = offsetX + index * 2ShiftX

Y_array[index] = offsetY + index * 2ShiftY

If Offset = 10, shift = 2 and N = 5 then,

axis = {10, 14, 18, 22, 26} (applicable to X and Y axis) | ()

[SWS_lfx_00227] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS_lfx_00229] [Return Value = Val_array [BaseIndex]] ()

[SWS_lfx_00230] [If (Xin == X array[indexX]) and (Yin == Y array[indexY])

Result = Val_array [BaseIndex] | ()

[SWS_lfx_00231] [If Xin < X_array[0], then

indexX = 0 | ()

[SWS_lfx_00232] [If $Xin > X_array[Nx-1]$, then

indexX = Nx - 1 | ()

[SWS_lfx_00233] [If Yin < Y_array[0], then

indexY = 0 | ()

[SWS_lfx_00234] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1 | ()

[SWS_lfx_00235] [The minimum value of Nx and Ny shall be 1 | ()

[SWS_lfx_00236] [Here is the list of implemented routines

Routine ID[hex]	Routine prototype
0x0B0	uint8 lfx_IntLkUpFixBaseMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
0x0B1	uint16 Ifx_IntLkUpFixBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, uint16, uint16, uint16)
0x0B2	sint8 lfx_IntLkUpFixBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x0B3	sint16 lfx_IntLkUpFixBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)
0x0E3	sint32 Ifx_IntLkUpFixBaseMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX, sint32 ShiftX, sint32 offsetY, sint32 shiftY)
0x0E4	uint32 lfx_IntLkUpFixBaseMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)

10

8.5.2.13 Integrated fix- I map interpolation

[SWS_lfx_00153] [

Service Name	Ifx_IntlpoFixIMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>			
Syntax	<pre></pre> <pre></pre> <pre><outtype> Ifx_IntIpoFixIMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>			
Service ID [hex]	0x09A to 0x09D			
Sync/Async	Synchronous			
Reentrancy	Reentrant			
Parameters (in)	Xin Input value for X axis			
	Yin Input value for Y axis			
	Nx Number to X axis samples			
	Ny	Ny Number to Y axis samples		
	Val_array Pointer to the result axis distribution array			
	OffsetX Offset of the first sampling value for X-axis			
	IntervalX represents X-axis distribution point interval			
	Offset Y Offset of the first sampling value for Y-axis			
	IntervalY represents Y-axis distribution point interval			
Parameters (inout)	None			
Parameters (out)	None			
Return value	<outtype></outtype>	Result of the Interpolation		
Description	This routine calculates Interpolation of a map at position X and Y using below equations.			
Available via	lfx.h			

10

[SWS_Ifx_00154] [X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
```

Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis) | ()

[SWS_lfx_00155] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y array[indexY] < Yin < Y array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS Ifx 00156] [Ratio Calculation:

```
RatioX = (Xin - X \ array[indexX]) / (X \ array[indexX+1] - X \ array[indexX])
RatioY = (Yin - Y array[indexY]) / (Y array[indexY+1] - Y array[indexY]) | ()
[SWS Ifx 00157] [LowerY = Val array [BaseIndex]
UpperY = Val array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY
LowerY = Val array [BaseIndex + Ny]
UpperY = Val array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY
Result = LowerX + (UpperX - LowerX) * RatioX | ()
[SWS_lfx_00158] [If (Xin == X array[indexX]) and (Y array[indexY] < Yin < Y ar-
ray[indexY+1])
Result = Val array [BaseIndex] + (Val array [BaseIndex+1] - Val array[BaseIndex]) *
RatioY ()
[SWS Ifx 00159] [If (Yin == Y array[indexY]) and (X array[indexX] < Xin < X ar-
ray[indexX+1])
Result = Val array [BaseIndex] + (Val array [BaseIndex+Ny] - Val array[BaseIndex]) *
RatioX (1)
ISWS Ifx 00160] [If (Xin == X array[indexX]) and (Yin == Y_array[indexY])
Result = Val array [BaseIndex] ()
[SWS Ifx 00161] [If Xin < X array[0], then
indexX = 0.
RatioX = 0 \mid ()
[SWS Ifx 00162] [If Xin > X array[Nx-1], then
indexX = Nx - 1,
RatioX = 0 \mid ()
[SWS_lfx_00163] [If Yin < Y_array[0], then
indexY = 0,
RatioY = 0]()
```


[SWS_lfx_00164] [If $Yin > Y_array[Ny-1]$, then

indexY = Ny - 1,

RatioY = 0 | ()

[SWS_lfx_00165] [The minimum value of Nx and Ny shall be 1 | ()

[SWS_lfx_00166] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype	
0x09A	uint8 lfx_IntlpoFixIMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)	
0x09B	uint16 lfx_IntlpoFixIMap_u16u16_u16 (uint16, uint16, uint16, uint16, uint16, uint16, uint16, uint16)	
0x09C	sint8 lfx_IntlpoFixIMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)	
0x09D	sint16 lfx_IntlpoFixIMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)	
0x0E5	sint32 lfx_IntlpoFixIMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX, sint32 ShiftX, sint32 offsetY, sint32 shiftY)	
0x0E6	uint32 lfx_IntlpoFixlMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX, uint32 ShiftX, uint32 offsetY, uint32 shiftY)	

]()

8.5.2.14 Integrated fix- I map look up

[SWS_lfx_00169] [

Service Name	lfx_IntLkUpFixIMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax	<pre><outtype> Ifx_IntLkUpFixIMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>	
Service ID [hex]	0x0A0 to 0x0A3	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Xin	Input value for X axis
	Yin	Input value for Y axis
	Nx	Number to X axis samples
	Ny	Number to Y axis samples
	Val_array	Pointer to the result axis distribution array

\triangle

	OffsetX	Offset of the first sampling value for X-axis
	IntervalX represents X-axis distribution point interval	
	OffsetY Offset of the first sampling value for Y-axis	
	IntervalY represents Y-axis distribution point interval	
Parameters (inout)	None	
Parameters (out)	None	
Return value	<outtype> Entry point of the result array</outtype>	
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	
Available via	lfx.h	

]()

[SWS_lfx_00170] [X and Y axis distribution points shall be calculated based on Offset and Interval values.

X array[index] = offsetX + index * IntervalX

Y array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

 $axis = \{10, 12, 14, 16, 18\}$ (applicable to X and Y axis) | ()

[SWS_lfx_00171] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS_lfx_00173] [Ratio calculation:

if (indexX < (Nx - 1))

RatioX = $(Xin - X \ array[indexX]) / (X \ array[indexX+1] - X \ array[indexX])$

else

RatioX = 0

if (indexY < (Ny - 1))

RatioY = (Yin - Y array[indexY]) / (Y array [indexY+1] - Y array [indexY])

else

RatioY = $0 \mid ()$

[SWS_lfx_00174] [if(RatioX < 0.5 && RatioY < 0.5) then

Result = Val_array [BaseIndex]

if(RatioX \geq 0.5 && RatioY < 0.5) then

Result = Val array [BaseIndex + Ny]

if(RatioX < 0.5 && RatioY \geq 0.5) then

Result = Val_array [BaseIndex + 1]

if(RatioX \geq 0.5 && RatioY \geq 0.5) then

Result = Val_array [BaseIndex + Ny + 1] | ()

[SWS_lfx_00175] \lceil If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])

Result = Val_array [BaseIndex] | ()

[SWS_lfx_00176] [If $Xin < X_array[0]$, then

indexX = 0 | ()

[SWS_lfx_00177] [If $Xin > X_array[Nx-1]$, then

indexX = Nx - 1 | ()

[SWS_lfx_00178] [If Yin < Y_array[0], then

indexY = 0 | ()

[SWS_lfx_00179] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1 | ()

[SWS_lfx_00180] [The minimum value of Nx and Ny shall be 1 | ()

[SWS_lfx_00181] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype
0x0A0	uint8 Ifx_IntLkUpFixIMap_u8u8_u8 (uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8, uint8)
0x0A1	uint16 lfx_IntLkUpFixIMap_u16u16_u16 (uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16)
0x0A2	sint8 lfx_IntLkUpFixIMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x0A3	sint16 lfx_IntLkUpFixIMap_s16s16_s16 (sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)
0x0E7	sint32 lfx_IntLkUpFixlMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX, sint32 IntervalX, sint32 offsetY, sint32 IntervalY)
0x0E8	uint32 lfx_IntLkUpFixIMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX, uint32 IntervalX, uint32 offsetY, uint32 IntervalY)

10

8.5.2.15 Integrated fix- I map look up without rounding

[SWS_lfx_00249] [

Service Name	Ifx_IntLkUpFixIBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>			
Syntax	<pre><pre></pre> <pre><outtype> Ifx_IntLkUpFixIBaseMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre></pre>			
Service ID [hex]	0x0B4 to 0x0B7	0x0B4 to 0x0B7		
Sync/Async	Synchronous			
Reentrancy	Reentrant			
Parameters (in)	Xin Input value for X axis Yin Input value for Y axis			
	Nx Number to X axis samples			
	Ny Number to Y axis samples			
	Val_array	Val_array Pointer to the result axis distribution array		
	OffsetX	OffsetX Offset of the first sampling value for X-axis		
	IntervalX	IntervalX represents X-axis distribution point interval		
	OffsetY	OffsetY Offset of the first sampling value for Y-axis		
	IntervalY represents Y-axis distribution point interval			
Parameters (inout)	None			
Parameters (out)	None			
Return value	<outtype></outtype>	Entry point of the result array		
Description	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.			
Available via	lfx.h			

10

[SWS_Ifx_00237] [X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X array[index] = offsetX + index * IntervalX
```

Y array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

 $axis = \{10, 12, 14, 16, 18\}$ (applicable to X and Y axis) | ()

[SWS_lfx_00238] [Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])

indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])

BaseIndex = IndexX * Ny + indexY | ()

[SWS_lfx_00240] [Return Value = Val_array [BaseIndex]] ()

[SWS_lfx_00241] [If (Xin == X array[indexX]) and (Yin == Y array[indexY])

Result = Val array [BaseIndex] | ()

[SWS_lfx_00242] [If Xin < X_array[0], then

indexX = 0 | ()

[SWS_lfx_00243] [If $Xin > X_array[Nx-1]$, then

indexX = Nx - 1 | ()

[SWS_lfx_00244] [If Yin < Y_array[0], then

indexY = 0 | ()

[SWS_lfx_00245] [If Yin > Y_array[Ny-1], then

indexY = Ny - 1 | ()

[SWS_lfx_00246] [The minimum value of Nx and Ny shall be 1 | ()

[SWS_lfx_00247] [Here is the list of implemented routines.

Routine ID[hex]	Routine prototype	
0x0B4	uint8 lfx_IntLkUpFixIBaseMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)	
0x0B5	uint16 Ifx_IntLkUpFixIBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, uint16, uint16, uint16, uint16, uint16)	
0x0B6	sint8 lfx_IntLkUpFixIBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)	
0x0B7	sint16 lfx_IntLkUpFixIBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, sint16, sint16, sint16, sint16)	
0x0E9	sint32 lfx_IntLkUpFixIBaseMap_s32s32_s32 (sint32 Xin, sint32 Yin, sint32 Nx, sint32 Ny, const sint32 * Val_array, sint32 offsetX, sint32 IntervalX, sint32 offsetY, sint32 IntervalY)	
0x0EA	uint32 Ifx_IntLkUpFixIBaseMap_u32u32_u32 (uint32 Xin, uint32 Yin, uint32 Nx, uint32 Ny, const uint32 * Val_array, uint32 offsetX, uint32 IntervalX, uint32 offsetY, uint32 IntervalY)	

]()

8.5.2.16 Cuboid 3D interpolation

[SWS Ifx 91002]

Service Name	Ifx_lpoCub_ <outtypemn></outtypemn>	Ifx_lpoCub_ <outtypemn></outtypemn>		
Syntax	<pre></pre> <pre><outtype> Ifx_IpoCub_<outtypemn> (const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, const Ifx_DPResultU16_Type* dpResultZ, uint16 num_x, uint16 num_y, const <intype>* Val_array)</intype></outtypemn></outtype></pre>			
Service ID [hex]	0x100	0x100		
Sync/Async	Synchronous	Synchronous		
Reentrancy	Reentrant	Reentrant		
Parameters (in)	dpResultX Data point search result for X axis			
	dpResultY Data point search result for Y axis			
	dpResultZ	dpResultZ Data point search result for Z axis		
	num_x	num_x Number of X axis points		
	num_y	num_y Number of Y axis points		
	Val_array	Val_array Pointer to the result axis distribution array		
Parameters (inout)	None	None		
Parameters (out)	None			
Return value	<outtype> Result of the interpolation</outtype>			
Description	Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for a 3D cuboid.			
Available via	lfx.h	lfx.h		

10

[SWS_lfx_91003] [

Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for 3D cuboids.

The axis order memory representation is [z][x][y]. This is the column-major orientation COLUMN DIR from the ASAM standard. The first axis z specifies the selected slice.

Implementation:

Linear interpolation along x-axis between the result of two 2D interpolations between neighbouring X/Y Maps.

```
num slice = num x * num y
```

if(dpResultZ->Ratio==0)

Result=Ifx_IpoMap_<OutTypeMn> (dpResultX, dpResultY, num_y, Val_array[num_slice * dpResultZ->Index])

else

LowerXY=Ifx_lpoMap_<OutTypeMn> (dpResultX, dpResultY, num_y, Val_array[num_slice * dpResultZ ->Index])

UpperXY=Ifx_IpoMap_<OutTypeMn> (dpResultX, dpResultY, num_y, Val_array[num_slice * dpResultZ ->Index + 1])

Result=LowerXY + dpResultZ->Ratio * (UpperXY - LowerXY)

10

[SWS_lfx_91004] [

Do not call this routine without using the Ifx_DPSearch routine. It is ensures a valid search result (Ifx_DPResultU16_Type) and initialization.

10

[SWS Ifx 91005]

Routine ID[hex]	Routine prototype	
0x0F1	sint8 lfx_lpoCub_s8 (const lfx_DPResultU16_Type * dpResultX, const lfx_DPResultU16_Type * dpResultY, const lfx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16 num_y, const sint8 * Val_array)	
0x0F2	uint8 Ifx_IpoCub_u8 (const Ifx_DPResultU16_Type * dpResultX, const Ifx_DPResultU16_Type * dpResultY, const Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16 num_y, const uint8 * Val_array)	
0x0F3	sint16 Ifx_lpoCub_s16 (const Ifx_DPResultU16_Type * dpResultX, const Ifx_DPResultU16_Type * dpResultY, const Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16 num_y, const sint16 * Val_array)	
0x0F4	uint16 Ifx_IpoCub_u16 (const Ifx_DPResultU16_Type * dpResult, const Ifx_DPResultU16_Type * dpResultY, const Ifx_DPResultU16_Type * dpResultZ, uint16 num_x, uint16_num y, const uint16 * Val_array)	

10

8.5.3 Record layouts for interpolation routines

Record layout specifies calibration data serialization in the ECU memory which describes the shape of the characteristics. Single record layout can be referred by multiple instances of interpolation ParameterDataPrototype. Record layouts can be nested particular values refer to the particular property of the object. With different properties of record layouts it is possible to specify complex objects.

8.5.3.1 Record layouts for map values

Due to optimization, the orientation of map values in memory is different depending on the usage of the inputs. See section 8.4.2.

1. If the "X" and "Y" inputs are not swapped then, values "Val" of maps have to be in COLUMN_DIR order.

2. If the "X" and "Y" inputs are swapped then, values "Val" of maps have to be in ROW DIR order.

According to ASAM standard [ASAM MCD-2MC Version 1.5.1 and 1.6], COLUMN DIR and ROW DIR are formats of storing map values (Val[]) and more information can be found in ASAM standard.

The "Z" input of cuboids is the third dimension and selects the slice X / Y or Y / X - 2D maps.

Example for cuboids order:

2x2x2 cuboid representation in memory shall be COLUMN DIR according to the ASAM standard: [1 2 3 4 5 6 7 8]

COLUMN DIR order [z][x][y]:

Slice 1:

[12

3 41

Slice 2:

[5 6

7 8]

8.5.3.2 Record layout definitions

Below table specifies record layouts supported for distributed interpolation routines.

[SWS Ifx 00185]

Record layout Name	Element1	Element2
Distr_s8	sint8 N	sint8 X[]
Distr_u8	uint8 N	uint8 X[]
Distr_s16	sint16 N	sint16 X[]
Distr_u16	uint16 N	uint16 X[]
Cur_u8	uint8 Val[]	
Cur_u16	uint16 Val[]	
Cur_s8	sint8 Val[]	
Cur_s16	sint16 Val[]	
Map_u8	uint8 Val[]	
Map_u16	uint16 Val[]	
Map_s8	sint8 Val[]	
Map_s16	sint16 Val[]	
Cur_u32	uint32 Val[]	
Cur_s32	sint32 Val[]	

- /	١.
/	\
_	_

Map_u32	uint32 Val[]	
Map_s32	sint32 Val[]	
Cub_s8	sint8 Val[]	
Cub_s16	sint16 Val[]	
Cub_u8	uint8 Val[]	
Cub_u16	uint16 Val[]	

Table 8.2: Record layouts for distributed interpolation routines

10

Below table specifies record layouts supported for integrated interpolation routines.

[SWS_lfx_00186] [

For IntTypeMn, OutTypeMN of {s8, u8,s16, u16,s32, u32}

IntCur_<nTypeMn>_<OutTypeMn>

FixIntCur_<InTypeMn>_<OutTypeMn>

IntMap_<InTypeMn>_<OutTypeMn>

FixIntMap_<InTypeMn><InTypeMn>_<OutTypeMn>

For InTypeMn, OutTypeMn of {s8, u8, s16, u16}

IntCub <InTypeMn><InTypeMn> <OutTypeMn>

Remark:

All combinations have to be defined in IFX_RecordLayout_Blueprint, AUTOSAR_ MOD IFX RecordLayout Blueprint.arxml

Note: As mentioned in in chapter 8.4, interpolation routines optimization is achieved by swaping X and Y axis during function call for Call-back notifications for below mentioned record layouts.

From Map_u8u16_u8 (S. No 61) to Map_s16u16_s16 (S. No 84)|()

8.6 Examples of use of functions

None

8.7 Version API

8.7.1 Ifx_GetVersionInfo

[SWS_lfx_00815] [

Service Name	Ifx_GetVersionInfo	
Syntax	<pre>void Ifx_GetVersionInfo (Std_VersionInfoType* versioninfo)</pre>	
Service ID [hex]	0xff	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	None	
Parameters (inout)	None	
Parameters (out)	versioninfo	Pointer to where to store the version information of this module. Format according [BSW00321]
Return value	None	
Description	Returns the version information of this library.	
Available via	lfx.h	

[(SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_00321)] The version information of a BSW module generally contains:

Module Id

Vendor Id

Vendor specific version numbers (SRS BSW 00407).

[SWS_Ifx_00816] [If source code for caller and callee of Ifx_GetVersionInfo is available, the Ifx library should realize Ifx_GetVersionInfo as a macro defined in the module's header file. | (SRS_BSW_00407, SRS_BSW_00411)

8.8 Callback notifications

None

8.9 Scheduled functions

The Ifx library does not have scheduled functions.

8.10 Expected Interfaces

None

8.10.1 Mandatory	y Interfaces
------------------	--------------

None

8.10.2 Optional Interfaces

None

8.10.3 Configurable interfaces

None

Sequence diagrams

Not applicable.

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into containers. In order to support the specification Chapter 10.1 describes fundamentals. It also specifies a template (table) you shall use for the parameter specification. We intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module lfx.

Chapter 10.3 specifies published information of the module Ifx.

10.1 How to read this chapter

For details refer to the chapter 10.1 "Introduction to configuration specification" in SWS BSWGeneral.

10.2 Containers and configuration parameters

[SWS_Ifx_00818] The Ifx library shall not have any configuration options that may affect the functional behavior of the routines. I.e. for a given set of input parameters, the outputs shall be always the same. For example, the returned value in case of error shall not be configurable.] (SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning library implementation, e.g. for resources consumption optimization.

10.3 Published Information

For details refer to the chapter 10.3 "Published Information" in SWS BSWGeneral.

[SWS_Ifx_00814] [The standardized common published parameters as required by SRS_BSW_00402 in the General Requirements on Basic Software Modules [REF] shall be published within the header file of this module and need to be provided in the BSW Module Description. The according module abbreviation can be found in the List of Basic Software Modules [REF].] (SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379)

A Not applicable requirements

[SWS_lfx_00999] [These requirements are not applicable to this specification.] (SRS_BSW_00448)