

Исследование влияния скоростного режима на характер утонения образца при сверхпластической формовке

Участники проекта: студенты 3-го курса БПМ223 Клименко О. В., Конюшенко М. Н.

Руководитель проекта: Захарьев И. Ю. Руководитель направления: Аксёнов С. А. Интересант проекта: ООО «Кванторформ»

Сверхпластическая формовка

Сверхпластичность — состояние материала, в котором он способен накапливать высокие пластические деформации при бездефектном формоизменении.

Плоский образец до растяжения (А) и после растяжения (В)

Сверхпластическая формовка

Газовая формовка — технология обработки материалов давлением, позволяющая получать тонкостеные изделия сложной геометрической формы.

Процесс газовой формовки

Краевая задача механики

 $\sigma_{ij,j}=0$ — уравнение равновесия

Может реализовываться:

В скоростях

$$\sigma_{ij} = 2\mu (\dot{\varepsilon}_{ij} - \dot{\varepsilon}\delta_{ij}) + \sigma\delta_{ij}$$
$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_i} + \frac{\partial v_j}{\partial x_i} \right)$$

$$2\mu = \frac{\sigma}{\tilde{\epsilon}} = \frac{2\sigma_e}{3\dot{\epsilon}_e}$$

$$\sigma_e = f(\dot{\epsilon}_e, \epsilon_e)$$

$$\tilde{\sigma} = \frac{\sqrt{2}}{\sqrt{3}}\sigma_e, \qquad \tilde{\epsilon} = \frac{\sqrt{3}}{\sqrt{2}}\dot{\epsilon}_e$$

В перемещениях

$$\sigma_{ij} = \lambda g_{ij} \varepsilon + 2\mu \varepsilon_{ij}$$

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

$$\tilde{\sigma} = \sqrt{\tilde{\sigma}_{ij}\tilde{\sigma}_{ij}} = \frac{1}{\sqrt{3}}\sqrt{(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)}$$

$$\tilde{\dot{\varepsilon}} = \sqrt{\tilde{\dot{\varepsilon}}_{ij}\tilde{\dot{\varepsilon}}_{ij}} = \frac{1}{\sqrt{3}}\sqrt{(\dot{\varepsilon}_{11} - \dot{\varepsilon}_{22})^2 + (\dot{\varepsilon}_{22} - \dot{\varepsilon}_{33})^2 + (\dot{\varepsilon}_{33} - \dot{\varepsilon}_{11})^2 + 6(\dot{\varepsilon}_{12}^2 + \dot{\varepsilon}_{23}^2 + \dot{\varepsilon}_{31}^2)}$$

3десь σ_{ij} — компоненты тензора напряжения,

 $arepsilon_{ij}$ — компоненты тензора деформации,

 g_{ij} — компоненты ФМТ,

 λ,μ — коэффициенты Ламе

Краевая задача механики. Граничные условия

Кинематические граничные условия - вектор скорости, который задан в каждой точке фрагмента поверхности деформируемого тела

Силовые граничные условия - вектор распределённых поверхностных сил, которые действуют по нормали к прикладываемому фрагменту поверхности

Смешанные граничные условия — для каждой точки фрагмента поверхности деформируемого тела должны

 $\overline{S_v}: \bar{v} = \overline{v_0}$

быть заданы в каждом направлении по осям системы координат либо силовые граничные условия, либо кинематические условия

Цель проекта

Качественная оценка влияния режима давления на утонение заготовки входе процесса сверхпластической формовки в матрицу сложной формы.

Задачи проекта

- 1) Построение имитационных моделей процесса формовки листовой заготовки в матрицы соответствующих форм в двух программных комплексах с различными коэффициентами трения, режимами давления, сетками конечных элементов.
- 2) Проведение сравнения результатов моделирования в системах конечно элементного моделирования Abaqus и Qform.
- 3) Проведение оценки возможности применения программного комплекса Qform для решения задачи о формоизменении сверхпластичного материала.

Рассматриваемые геометрии

Сравнение разных давлений на первой геометрии

Сравнение давлений на второй геометрии

Сравнение разных коэффициентов трения на первой геометрии

Сравнение различных коэффициентов трения на второй геометрии

Моменты изменения скорости деформации

Графики утонения для полиномиальных свойств

Графики утонения для полиномиальных свойств

Графики утонения для полиномиальных свойств

Первичное сравнение

Выявленные проблемы

Анализ различных геометрий

Перебор параметров расчёта QForm

Сетка перебора:

Мин. адаптация: {0.1, 0.01, 0.001, 0.0001} Макс. адаптация: {1, 10, 50, 100, 200} Мин число К.Э. на дуге: {1, 3, 5, 10}

Анализ различных конечно-элементных сетей

Сеть КЭ 1 Сеть КЭ 2 Сеть КЭ 3

Анализ различных конечно-элементных сетей

Центральный элемент

Критическая зона

Анализ различных конечно-элементных сетей

Сеть КЭ 1

Сеть КЭ 3

Опыты с разными давлениями

Центральный элемент

Критическая зона

Опыты с разными коэффициентами трения

Свободная формовка в цилиндр

Центральный элемент

Погрешность

Свободная формовка в цилиндр

Результаты проекта

- 1) Проведено сравнение утонения заготовки, получаемой в результате моделирования процесса формовки со свойствами Бэкофена с различными величинами рабочего давления
- 2) Проведено сравнение утонения заготовки, получаемой в результате моделирования процесса формовки со свойствами Бэкофена с различными коэффициентами трения
- 3) Проведено сравнение результатов моделирования процесса формовки в программном комплексе QForm с различными граничными условиями симметрии
- 4) Проведено сравнение результатов моделирования процесса в программных комплексах Abaqus и QForm
- 5) Проведено сравнение результатов моделирования процесса формовки в программном комплексе QForm с различными сетками конечных элементов
- 6) Проведено сравнение утонения заготовки, получаемой в результате моделирования процесса формовки с параметрами материала, зависящими от степени деформации с различными режимами рабочего давления
- 7) Написаны скрипты для обработки массивов данных, выгружаемых из систем Abaqus и QForm, в том числе, реализующие отсутствующий в данных комплексах функционал

Выводы

- 1) Встроенный модуль генерации сети Qform не справляется с особенностями формоизменения сверхпластических материалов
- 2) Необходимо использовать стороннее программное обеспечение, позволяющее создавать сетки КЭ
- 3) В связи с обнаруженной существенной разницей между результатами моделирования в системах QForm и Abaqus, вопрос о применимости QForm для решения задач формоизменения сверхпластических материалов остаётся открытым и требует дополнительных исследований
- 4) В результате имитационного моделирования в системе Abaqus с применением соотношения Бэкофена были обнаружены отклонения в распределениях толщин по заготовке, что может быть связано с влиянием коэффициента трения
- 5) В результате моделирования со свойствами материала, учитывающими деформационное упрочнение/разупрочнение показали существенное влияние режима давления на распределение толщины по заготовке, причём это влияние локализировано в зоне критических деформаций
- 6) Выбор момента времени, зависящий от геометрии оснастки, при котором осуществляется изменение целевой скорости деформации существенен

Команда проекта

Конюшенко Максим Николаевич БПМ223

- Работа с программным комплексом QForm
- Работа с геометрией 1 в комплексе Abaqus
- Написание скриптов для пре/пост процессинга для данных, выгружаемых из QForm, в том числе реализация методов для анализа, отсутствующих в текущей версии QForm
- Подготовка постера, отчёта и презентации к защите проекта

Команда проекта

Клименко Олеся Владимировна БПМ223

- Работа с программным комплексом Abaqus
- Написание скриптов для автоматизации работы с Abaqus, а также для анализа результатов
- Создание презентации к представлению проекта, а также отчёта и презентации к защите проекта

Спасибо за внимание!

QUANTOR FORM ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ

ООО «КванторФорм» | 115088, Москва, а/я 74, Россия | тел./факс: +7 (499) 643-04-53

www.qform3d.ru | sales@qform3d.ru

Дата 31.01.2024 Ист. И 31/01-1 На № ____от ___

Куда: МИЭМ НИУ ВШЭ Заместителю директора по научной работе, доценту, кандидату технических наук, С.А. Аксенову

Уважаемый Сергей Алексеевич!

Компания ООО «Кванторформ» заинтересована в результатах, планируемых к получению при выполнении проекта № 1713 «Исследование влияния скоростного режима на характер утонения образца при сверхпластической формовке» (руководитель к.т.н. Захарьев И.Ю.).

Особый интерес нашей компании представляет сравнение результатов экспериментов по сверхпластической формовке с результатами имитационного моделирования данных экспериментов в программных комплексах QForm и SIMULIA Abaqus.

Для выполнения данного проекта компания ООО «Кванторформ» предоставит лицензию QForm, а также готова оказывать информационнометодическую поддержку проекта в рамках регулярных встреч с командой проекта.

Технический директор

Гартвиг А .А.