Лабораторная работа № 3

Тема: Градиентные методы многомерной минимизации.

Цель работы: Приобретение практических навыков для решения задач многомерной минимизации градиентными методами и методами второго порядка.

Постановка задачи

Требуется найти безусловный минимум функции многих переменных $y = f(x_1, \ldots, x_n)$, то есть такую точку $x^* \in \mathbb{R}^n$, что $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$.

Градиентные методы многомерной минимизации

К основным градиентным методам многомерной минимизации относят:

- 1. метод градиентного спуска с постоянным шагом;
- 2. метод наискорейшего градиентного спуска;
- 3. овражный метод.

Основными численными методами многомерной минимизации второго порядка являются:

- 1. метод Ньютона;
- 2. метод Метод Ньютона с регулировкой шага;
- 3. метод Левенберга-Марквардта.

Задание

- 1. Составить программы поиска минимума функции методами, указанными в задании (язык программирования выбрать самостоятельно).
- 2. Найти координаты и значение функции в точке минимума заданными методами. Для градиентных методов используйте функции из первой таблицы. Для методов второго порядка возьмите функцию из второй таблицы.
- 3. Для градиентных методов найти точное значение координаты точки минимума аналитическими методами, то есть используя необходимые и достаточные условия экстремума.
- 4. Для градиентных методов исследовать сходимость алгоритма, фиксируя точность определения минимума, количество итераций метода и количество вычислений функции в зависимости от задаваемой точности поиска.
- 5. Для метода второго порядка исследовать сходимость алгоритма по числу итераций при выборе различных начальных точек (не менее трёх).
- 6. Проанализировать полученные результаты.

Содержание отчёта

- 1. Титульный лист, который должен включать:
 - название учреждения, где выполнена работа;

- номер лабораторной работы;
- название лабораторной работы;
- номер варианта;
- Ф.И.О. студента, выполнившего работу;
- изображение подписи рядом с фамилией;
- номер учебной группы;
- Ф.И.О. преподавателя;
- год и место выполнения.
- 2. Цель работы.
- 3. Формулировка задачи с указанием номера варианта.
- 4. Листинги программ в виде текста (скриншоты программного кода вставлять не допускается).
- 5. Результаты вычислений.
- 6. Найденное точное значение минимума функции и координаты точки где он достигается.
- 7. Графическое представление траекторий движения к экстремуму, полученных соответствующими методами (выполнение этого пункта не обязательно, даёт дополнительные +2 балла).
- 8. Сравнительная характеристика методов.
- 9. Выводы.

Варианты заданий для поиска минимума градиентным методом

$N_{\overline{0}}$	Град. метод	Функция
1.	1,2	$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 5)^2$
2.	1,3	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$
3.	1,2	$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$
4.	1,3	$f(x_1, x_2) = 1 - 2x_1 - 2x_2 - 4x_1x_2 + 10x_1^2 + 2x_2^2$
5.	1,2	$f(x_1, x_2) = x_1^3 + x_2^2 - 3x_1 - 2x_2 + 2$
6.	1,3	$f(x_1, x_2) = 5x_1^2 + 5x_2^2 - 8x_1x_2$
7.	1,2	$f(x_1, x_2) = x_1^3 + x_2^2 - x_1 x_2 - 2x_1 + 3x_2 - 4$
8.	1,3	$f(x_1, x_2) = [(x_2 + 1)^2 + x_1^2] \times [x_1^2 + (x_2 - 1)^2]$
9.	1,2	$f(x_1, x_2) = (x_2^2 + x_1^2 - 1)^2 + (x_1 + x_2 - 1)^2$
10.	1,3	$f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 - 3x_1 - 6x_2$
11.	1,2	$f(x_1, x_2) = 4x_1^2 - 6x_1x_2 - 34x_1 + 5x_2^2 + 42x_2 + 7$
12.	1,3	$f(x_1, x_2) = x_1^4 + x_2^4 - 2x_1^2 + 4x_1x_2 - 2x_2^2 + 3$
13.	1,2	$f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 + 3x_1 - 2x_2 + 1$
14.	1,3	$f(x_1, x_2) = 4 - 3x_1 - 9x_2 + x_1^2 + x_1x_2 + x_2^2$
15.	1,2	$f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 + 2x_1 - x_2$
16.	1,3	$f(x_1, x_2) = x_1^4 + x_1 x_2 + 0.5 x_2^2 + 5$
17.	1,2	$f(x_1, x_2) = 3x_1^2 + 2x_2^2 - 2x_1x_2$
18.	1,3	$f(x_1, x_2) = 3x_1^2 - x_1x_2 + x_2^2 - 7x_1 - 8x_2 + 2$
19.	1,2	$f(x_1, x_2) = (x_1 - 5)^2(x_2 - 4)^2 + (x_1 - 5)^2 + (x_2 - 4)^2 + 1$
20.	1,3	$f(x_1, x_2) = 4x_1^2 + 3x_2^2 - 4x_1x_2 + x_1$
21.	1,2	$f(x_1, x_2) = 3x_1^2 + x_1x_2 + 2x_2^2 - x_1 - 4x_2$
22.	1,3	$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 5)^2$
23.	1,2	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$
24.	1,3	$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$
25.	1,2	$f(x_1, x_2) = 1 - 2x_1 - 2x_2 - 4x_1x_2 + 10x_1^2 + 2x_2^2$
26.	1,3	$f(x_1, x_2) = x_1^3 + x_2^2 - 3x_1 - 2x_2 + 2$
27.	1,2	$f(x_1, x_2) = 5x_1^2 + 5x_2^2 - 8x_1x_2$
28.	1,3	$f(x_1, x_2) = x_1^3 + x_2^2 - x_1 x_2 - 2x_1 + 3x_2 - 4$
29.	1,2	$f(x_1, x_2) = [(x_2 + 1)^2 + x_1^2] \times [x_1^2 + (x_2 - 1)^2]$
30.	1,3	$f(x_1, x_2) = 100(x_2 - x_1^3)^2 + x_2^2 + x_1^2$
31.	1,2	$f(x_1, x_2) = (x_2^2 + x_1^2 - 1)^2 + (x_1 + x_2 - 1)^2$
32.	1,3	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$

Варианты заданий для поиска минимума методами второго порядка

<u>No</u>	Метод 2-го порядка	Функция
1.	1	$f(x_1, x_2) = x_1^4 - x_1 x_2 + x_2^4 + 3x_1 - 2x_2 + 1$
2.	2	$f(x_1, x_2) = [(x_2 + 1)^2 + x_1^{2}] \times [x_1^2 + (x_2 - 1)^2]$
3.	3	$f(x_1, x_2) = x_1^4 + x_2^4 - 2x_1^2 + 4x_1x_2 - 2x_2^2 + 3$
4.	1	$f(x_1, x_2) = x_1^4 + x_1 x_2 + 0.5 x_2^2 + 5$
5.	2	$f(x_1, x_2) = (x_1 - 5)^2(x_2 - 4)^2 + (x_1 - 5)^2 + (x_2 - 4)^2 + 1$
6.	3	$f(x_1, x_2) = x_1^4 + x_1 x_2 + x_2^4 - 3x_1 - 6x_2$
7.	1	$f(x_1, x_2) = 100(x_2 - \sin(x_1))^2 + x_2^2 + x_1^2$
8.	2	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + x_2^2 + x_1^2$
9.	3	$f(x_1, x_2) = 100(x_2 - \cos(x_1))^2 + (x_2 - 1)^2 + x_1^2$
10.	1	$f(x_1, x_2) = 100(x_2 - x_1^3)^2 + x_2^2 + x_1^2$
11.	2	$f(x_1, x_2) = 10(1 - x_1^2 - x_2^2)^2 + x_2^2$
12.	3	$f(x_1, x_2) = 10(1 - x_1^2 - x_2^2)^2 + x_1^2$
13.	1	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$
14.	2	$f(x_1, x_2) = 100(1 - x_1^{2} - x_2^{2})^{2} + (x_2 - 1)^{2} + x_1^{2}$
15.	3	$f(x_1, x_2) = 100(1 + x_1^2 - 2x_2^2)^2 + (x_1 - 1)^2 + (x_2 - 1)^2$
16.	1	$f(x_1, x_2) = 100(x_2^2 - 3x_1^2 - 1)^2 + (x_1 - 1)^2 + (x_2 - 2)^2$
17.	2	$f(x_1, x_2) = 100(x_2 - \sin(x_1))^2 + (x_1 - x_2^2)^2 + x_2^2$
18.	3	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$
19.	1	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (1 - x_2)^2$
20.	2	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (2 - x_2 - x_1^2)^2$
21.	3	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (x_1^2 - x_2)^2$
22.	1	$f(x_1, x_2) = 3x_1^4 + 2x_2^4 - 2x_1x_2$
23.	2	$f(x_1, x_2) = 3x_1^4 - x_1x_2 + x_2^4 - 7x_1 - 8x_2 + 2$
24.	3	$f(x_1, x_2) = 4x_1^4 + 3x_2^4 - 4x_1x_2 + x_1$
25.	1	$f(x_1, x_2) = 3x_1^4 + x_1x_2 + 2x_2^4 - x_1 - 4x_2$
26.	2	$f(x_1, x_2) = 4x_1^4 - 6x_1x_2 - 34x_1 + 5x_2^4 + 42x_2 + 7$
27.	3	$f(x_1, x_2) = 4 - 3x_1 - 9x_2 + x_1^4 + x_1x_2 + x_2^4$
28.	2	$f(x_1, x_2) = (x_1 + x_2)^2 + \sin^2(x_1 + 2) + x_2^2$
29.	1	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + x_2^2 + x_1^2$
30.	3	$f(x_1, x_2) = 100(x_2 - \cos(x_1))^2 + (x_2 - 1)^2 + x_1^2$
31.	1	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$
32.	2	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_2 - 1)^2 + x_1^2$