MA 6011 (Cryptographic Mathematics)

Solve Problems 1 and 2 **before** the tutorial on Tuesday, 17 November.

Problem 1: Let the elliptic curve E be given by $y^2 = x^3 + 13x + 5$ modulo 43.

- (i) Verify that A = (7,3) and B = (4,11) are \mathbb{F}_{43} -points on E.
- (ii) Calculate the \mathbb{F}_{43} -point A+B.
- (iii) Calculate the \mathbb{F}_{43} -point 3A.

Problem 2: Complete the table below and use it to find the number of \mathbb{F}_5 -points on the elliptic curves $y^2 = x^3 + 3x + c$ for c = 0, 1, 2, 3, 4.

x	x^3	3x	$x^3 + 3x$	$x^3 + 3x + 1$	$x^3 + 3x + 2$	$x^3 + 3x + 3$	$x^3 + 3x + 4$
0	0	0	0	1	2	3	4
1	1						
2	3						
3	2						
4	4						
number of points							

Use sage to solve the following **before** we meet for the lab on Tuesday, 10 November.

Problem 3: What range of values are possible for the number of \mathbb{F}_7 -points on an elliptic curve according to Hasse's Theorem? For each of those values find a corresponding elliptic curve.

Problem 4: Calculate the number of \mathbb{F}_p -points and the p-defect of the elliptic curve

$$y^2 = x^3 + 17$$

for all prime numbers p satisfying $5 \le p < 200$ and $p \ne 17$. Characterise those primes p for which the p-defect is equal to zero.

Challenge: Can you prove a general statement about primes p for which the p-defect of this curve is equal to zero?

HINT: Use Fermat's Little Theorem and think RSA.