Math 297 Discussion 2*

Annie Xu

January 22, 2019

1 Finite, infinite, and uncountable sets

A set A is called *countable* if there is a bijection between A and a subset of the natural numbers $\mathbb{N} := \{1, 2, 3, \dots\}$.

Question. Prove the following.

- (i) A is countable if and only if $A = \emptyset$ or there is a surjective function $f : \mathbb{N} \to A$.
- (ii) If A is infinite and countable then there is a bijection between A and \mathbb{N} .

Theorem 1. Every infinite subset of a countable set A is countable.

Remark. To prove this theorem, you will probably need the notion of a sequence.

Union and intersection of sets

Question. Prove the following:

(i)
$$B \setminus A = A^c \setminus B^c$$
.

$$(ii)$$
 $(\bigcup_{\alpha} B_{\alpha}) \setminus (\bigcup_{\alpha} A_{\alpha}) \subset \bigcup_{\alpha} (B_{\alpha} \setminus A_{\alpha}).$

Theorem 2. Let $\{E_n\}$, $n = 1, 2, 3, \ldots$, be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n$$

Then S is countable.

Corollary 3. Suppose A is at most countable, and, for every $\alpha \in A$, B_{α} is at most countable. Put

$$T = \bigcup_{\alpha \in A} B_{\alpha}$$

Then T is at most countable.

Theorem 4. If A_1, \ldots, A_k are countable sets then the Cartesian product $A_1 \times \cdots \times A_k$ is countable.

Corollary 5. The set of all rational numbers is countable.

Note: In fact, even the set of all algebraic numbers is countable.

Theorem 6. Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is uncountable.

Metric Spaces

Open and closed sets in metric spaces

Question. Is a set necessarily either open or closed? Can a set be both? Can it be neither?

^{*}Reference: Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, NY, 1976.

Topological Spaces

1) Topology

Question. Let $W = \{B, H, P\}$ and set $\tau_W = \{\emptyset, W, \{H\}, \{B, P\}\}$. Verify that (W, τ_W) is a topological space.

Question. Let $\tau_R := \{(a, \infty) | a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$. Show that (\mathbb{R}, τ_R) is a topological space.

- 2) Open and closed sets in a topological space
- 3) Basis and sub-basis

Remark. If \mathcal{B} , as a basis of X, is countable, we say that X is **second counable**.

Question. Show that the set of rational balls $\mathcal{B} = \{B(r,q)|r \in \mathbb{Q}^n, q \in \mathbb{Q}\}$ is a basis for \mathbb{R}^n (with Euclidean Topology).

4) Hausdorff spaces

Let (X, \mathbb{T}) be a topological space, we say X is Hausdorff if $\forall x, y \in X$ with $x \neq y$, there are disjoint open sets $U_x, V_y \in \mathbb{T}$ such that $x \in U_x$ and $y \in V_y$.

Note: A metric space is automatically Hausdorff (Why?)

Theorem 7. X is Hausdorff if and only if $\Delta = \{(x, x) | x \in X\} \subset X \times X$ is closed in $X \times X$ in the product topology. (We'll prove it after introducing product topology)