THE BEST ACT PREP COURSE EVER

LOGARITHMS

ACT Math: Problem Set

1. If x, y, z are positive real numbers, which of the following expressions is equal to

$$3\log_2 x - \log_4 y + \frac{1}{2}\log_2 z$$
?

$$\mathbf{A.} \quad \log_2 \frac{x^2 \sqrt{z}}{2y}$$

$$\mathbf{B.} \quad \log_2 \frac{x^3 z}{2} - \log_4 y$$

C.
$$\frac{3}{2}\log_2(x+z)-\log_4 y$$

$$\mathbf{D.} \quad \log_2 x^3 \sqrt{z} - \log_4 y$$

$$\mathbf{E.} \quad \log_2\left(x^3 + \sqrt{z}\right) - \log_4 y$$

2. If $\log_4 3 = a$ and $\log_4 5 = b$, which of the following is equal to 8?

$$\mathbf{A}$$
. $\mathbf{4}^{a+b}$

B.
$$4^a + 4^b$$

C.
$$16^{a+b}$$

E.
$$a+b$$

3. If $\log_a x = n$ and $\log_a y = m$ then $\log_a \left(\frac{x}{y}\right)^3 = ?$

A.
$$3(n-m)$$

B.
$$3(n+m)$$

C.
$$n-m$$

D.
$$3(m-n)$$

E.
$$\frac{n}{m}$$

4. If $3^{x-1} = 3y$, what is 3^{x+1} in terms of y?

C.
$$3y + 2$$

D.
$$(3y)^2$$

5. If $2^{a+2} = 4b$, which of the following is an expression for

$$b^2$$
 in terms of a ?

A.
$$\frac{1}{2^{2a}}$$

C.
$$2^{a+1}$$

D.
$$2^{a+2}$$

E.
$$2^{2a}$$

6. If $2^n = 53$, then which of the following must be true?

A.
$$2 < n < 3$$

B.
$$3 < n < 4$$

C.
$$4 < n < 5$$

D.
$$5 < n < 6$$

E.
$$6 < n$$

7. Which of the following is a value of X that satisfies $\log_X 27 = 3$?

8. If $16 \cdot 2^{x-4} = 4^{y+3}$ and y = 4, what is the value of x?

A.
$$\frac{1}{2}$$

B.
$$\frac{15}{2}$$

E.
$$\frac{34}{5}$$

9. If $\log_{x} 625 = 4$, then x = ?

C.
$$\frac{625}{4}$$

D.
$$\frac{625}{\log 4}$$

- 10. In the realm of real numbers, what is the solution of the equation $9^{2x-1} = 3^{1+x}$?
 - 0 A.
 - 2 B.
 - C. -1
 - **D.** 2
 - E. 1
- 11. What is *x* if $\log_6 x = 2$?
 - A. 3
 - $\sqrt{6}$ В.
 - √2 C.
 - 36 D.
 - E. 12
- **12.** For all x > 0, which of the following expressions is
 - equivalent to $\log \left[\left(\frac{3}{x} \right)^{\frac{1}{3}} \right]$?
 - A. $\log \frac{1}{x}$
 - B. $\log 1 \log \frac{X}{3}$
 - C. $\frac{1}{3} \left[\left(\log 3 \right) + \left(\log x \right) \right]$
 - $\mathbf{D.} \quad \frac{1}{3} \Big(\log 3 \log x \Big)$
 - $\mathbf{E.} \quad \log 3 \frac{1}{3} \log x$
- 13. What is the value of $log_4 64$?
 - A. 2
 - 3 B.
 - C. 60
 - D. 4
 - E. 16
- **14.** What value of X satisfies the following equation

$$\log_{16} x = \frac{-3}{4}$$
?

- B.
- C.
- D.
- E.

- 15. If a is a positive number such that $\log_a \left(\frac{1}{125} \right) = -3$, then a = ?
 - 5 A.
 - B. 25
 - 128 C.
 - D. 5
 - E.
- 16. What is the set of all values of a that satisfy the

equation
$$(y^2)^{a^2+10a+25} = 1$$
 if $y \ne 1$?

- {0} A.
- **{5**} B.
- $\{-10\}$
- $\{-5\}$ D.
- -5,5
- 17. What is the real value of a in the equation $\log_3 54 - \log_3 6 = \log_6 a$?
 - **A.** 3
 - B. 12

 - D. 36

ANSWERS

1. D 5. E 2. B 3. A 4. A 6. D 7. A 8. D 9. A 10. E 12. D 13. B 14. C 11. D 17. D 15. A 16. D

ANSWER EXPLANATIONS

- **1. D.** Since $a\log_b x = \log_b x^a$, we can rewrite $3\log_2 x$ as $\log_2 x^3$ and $\frac{1}{2}\log_2 z$ as $\log_2 \sqrt{z}$. Our equation can now be written as $\log_2 x^3 \log_4 y + \log_2 \sqrt{z}$. Combining the two terms with log base 2, we use the property $\log_a x + \log_a y = \log_a xy$ to rewrite the expression: $\log_2 x^3 \log_4 y + \log_2 \sqrt{z} \rightarrow \log_2 x^3 + \log_2 \sqrt{z} \log_4 y \rightarrow \log_2 x^3 \sqrt{z} \log_4 y$.
- **2. B.** By the definition of a logarithm, $y = b^x$ is equivalent to $log_b(y) = x$. Thus, $log_4(3) = a$ is equivalent to $4^a = 3$, and $log_4(5) = x$ is equivalent to $4^b = 5$. We can then add the two equations.

$$4^{a} = 3$$

+ $4^{b} = 5$
 $4^{a} + 4^{b} = 3 + 5$

Thus, $8 = 4^a + 4^b$.

- 3. A. Since $a \log_b x = \log_b x^a$, we can write $\log_a \left(\frac{x}{y}\right)^3$ as $3\log_a \left(\frac{x}{y}\right)$. Since $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$, we can write $3\log_a \left(\frac{x}{y}\right)$ as $3(\log_a x \log_a y)$. Now, substituting in $\log_a x = n$ and $\log_a y = m$, we get $3(\log_a x \log_a y) = 3(n m)$.
- **4. A.** $3^{x+1} = 3^{x-1}(3^2)$ so substituting 3y for 3^{x-1} , we get $3^{x+1} = 3y(3^2) = 27y$.
- 5. E. We can write 2^{a+2} as $2^a 2^2$ which simplified becomes $2^a (4)$. Dividing both sides of the equation by 4, we get $2^a = b$. Now, squaring both sides, we get $2^{2a} = b^2$.
- **6. D.** Looking at the powers of 2, we know that $2^5 = 32$ and $2^6 = 64$. Since $2^5 = 32 < 2^n = 53 < 2^6 = 64$, 5 < n < 6.
- 7. **A.** Raising x to the values on both sides of the equation, we get $x^{(\log_x 27)} = x^3 \rightarrow 27 = x^3$. Taking the cube root of both sides, we get 3 = x.
- 8. **D.** Plugging in y = 4, we get $16(2^{x-4}) = 4^{4+3}$. Since $16 = 2^4$, and $4 = 2^2$, we rewrite this as $2^4(2^{x-4}) = (2^2)^7$. This is equal to $2^x = 2^{14} \rightarrow x = 14$.
- **9. A.** By the definition of a logarithm, $\log_x 625 = 4$ is equivalent to $x^4 = 625$. Taking the 4th root of both sides, we get $x = \sqrt[4]{625} \rightarrow x = 5$.
- **10.** E. Since $9=3^2$, we can write $\left(3^2\right)^{2x-1}=3^{1+x}$. This is equal to $3^{4x-2}=3^{1+x}$. So, 4x-2=1+x. Adding 2 and subtracting x to both sides, we get $3x=3\rightarrow x=1$.

- 11. **D.** By the definition of a logarithm, $\log_6 x = 2$ is equivalent to $6^2 = x$, so x = 36.
- **12. D.** Since $a \log_b x = \log_b x^a$, we can write $\log \left[\left(\frac{3}{x} \right)^{\frac{1}{3}} \right] = \frac{1}{3} \log \left(\frac{3}{x} \right)$. Since $\log_a \left(\frac{x}{y} \right) = \log_a x \log_a y$, we can write $\frac{1}{3} \log \left(\frac{3}{x} \right) = \frac{1}{3} (\log 3 \log x)$.
- **13. B.** We want to find the value that $\log_4 64$ is equal to, which we will call x. By the definition of a logarithm, $\log_4 64 = x$ is equivalent to $4^x = 64$. Since we know that $4^3 = 64$, we know x = 3.
- 14. C. Because we understand what a logarithm represents, we know that $\log_{16} x = \frac{-3}{4}$ is equivalent to $x = 16^{-\frac{3}{4}} = \frac{1}{16^{\frac{3}{4}}} = \frac{1}{2^3} = \frac{1}{8}$.
- 15. A. Again, because we know the definition of a logarithm, we know that $\log_a \left(\frac{1}{125}\right) = -3$ is equivalent to $a^{-3} = \frac{1}{125}$. This implies that $\frac{1}{a^3} = \frac{1}{125} \rightarrow a^3 = 125 \rightarrow a = 5$.
- **16. D.** If $y \ne 1$, then the only way the equation is true is if the exponent equals 0, because $y^0 = 1$. Thus we know that $2(a^2 + 10a + 25) = 0$. Factoring, we get 2(a+5)(a+5) = 0, which means y = -5 only.
- 17. **D.** Since $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$, we can write $\log_3 54 \log_3 6$ as $\log_3 \left(\frac{54}{6}\right) = \log_3 9$. So, $\log_3 9 = \log_6 a$. Raising 3 to the values on both sides of the equation gives us $3^{\log_3 9} = 3^{\log_6 a} \rightarrow 9 = 3^{\log_6 a}$. Since $9 = 3^2$, we have $3^2 = 3^{\log_6 a} \rightarrow 2 = \log_6 a$. Raising 6 to the values on both sides of this equation, we get $6^2 = 6^{\log_6 a} \rightarrow 6^2 = a$. So, a = 36.