CSE291D: Machine Learning for Robotics

Rabbittac

April 9, 2021

Abstract

 $Course\ webpage:\ https://haosulab.github.io/ml-for-robotics/SP21/index.\ html$

Without specific clarification, the notations are in the form below

- x, lowercase ordinary fonts: points
- ullet x, lowercase bf fonts: vectors
- A, upper case ordinary fonts: matrix
- \mathscr{F} : frame (in motion)
- $\mathbf{i}, \mathbf{j}, \mathbf{k}$: axis

Contents

1	Introd	uction, Differential Geometry	2
	1.1	Introduction	2
	1.2	Differential Geometry	2
2	Rigid 7	Transformations	3
	2.1	Coordinate Transformation	3
	2.2	Linear Transformation	4
3	SO(3).		6
		Multi-Link Rigid-Body Geometry	6
		Special Orthogonal Group	
		Euler Angle	
4		and Twist	0
	4.1	Rigid Transformation and $SE(3)$	0
		Twist	

CSE291D Spring 2021

Lecture 1: Introduction, Differential Geometry

Lecturer: Hao Su Scribes: Rabbittac

1.1 Introduction

Topics in this course: — Modeling robotics by rigid-body geometry

- Forward and inverse kinematics of robots

- Generalized force and inertia

- Friction, contact model, grasp

- Classical planning and control

- Reinforcement learning

– Deep RL framework

- Hierarchical RL

- Generalizability of RL

1.2 Differential Geometry

Not scribe.

CSE291D Spring 2021

Lecture 2: Rigid Transformations

Lecturer: Hao Su Scribes: Rabbittac

An observer records the position of any point in the space using a **frame** \mathscr{F}_s . There is a **rigid object**, to which we bind a frame \mathscr{F}_b (body frame) tightly, so that \mathscr{F}_b moves along with the object.

Figure 2.0.1

In order to learn the pose of the rigid object, we want to know the transformation from \mathscr{F}_s to \mathscr{F}_b : we first **translate** \mathscr{F}_s by $\mathbf{t}_{s\to b}$ to align o_s and o_b ^{2.1}

$$o_b^s = o_s^s + \mathbf{t}_{s \to b}^s$$

then **rotate** by $R_{s\to b}$ to align $\{\mathbf{x_i}, \mathbf{y_i}, \mathbf{z_i}\}$

$$[\mathbf{x}_b^s, \mathbf{y}_b^s, \mathbf{z}_b^s] = R_{s \to b}^s [\mathbf{x}_s^s, \mathbf{y}_s^s, \mathbf{z}_s^s]$$

Since the observer records everything using \mathscr{F}_s , then $o_s^s = 0$ and $[\mathbf{x}_b^s, \mathbf{y}_b^s, \mathbf{z}_b^s] = I_{3\times 3}$. Therefore, in this case

$$\mathbf{t}_{s \to b}^s = o_b^s \qquad R_{s \to b}^s = [\mathbf{x}_b^s, \mathbf{y}_b^s, \mathbf{z}_b^s] \in \mathbb{R}^{3 \times 3}$$

2.1 Coordinate Transformation

Now assume a second observer that records coordinates by \mathscr{F}_b . Assume a point p on the body, since \mathscr{F}_b moves along the body, its coordinate recorded in \mathscr{F}_b , denoted as p^b , should never change. If we view $(R_{s\to b}, \mathbf{t}_{s\to b})$ as the *coordinate transformation* from \mathscr{F}_s to \mathscr{F}_b , the movement of p along \mathscr{F}_b at state t is

$$p_t^s = R_{s \to b}^s p_t^b + \mathbf{t}_{s \to b}^s$$

The homogeneous coordinates for $x \in \mathbb{R}^3$ is ^{2.2}.

$$\tilde{x} := \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^4$$

^{2.1} Notation: When writing equations, we add a superscript to denote the **recording frame**.

 $^{^{2.2}}Notation:$ For simplicity, $\tilde{}$ will be ignored in the future.

The homogeneous transformation matrix is in the form

$$T_{s \to b}^s = \begin{bmatrix} R_{s \to b}^s & \mathbf{t}_{s \to b}^s \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Homogeneous coordinates allow us to write transformation in linear form

$$x^1 = T^1_{1 \to 2} x^2$$

By $x^1 = T^1_{1\to 2}x^2$, we have $x^2 = T^2_{2\to 1}x^1$ and $x^3 = T^3_{3\to 2}x^2$. Then $T^3_{3\to 1}x^1 = x^3 = T^3_{3\to 2}T^2_{2\to 1}x^1$ gives the **composition rule**

$$T_{3\to 1}^3 = T_{3\to 2}^3 T_{2\to 1}^2$$

Since $x^1 = T^1_{1\to 2}x^2$, $x^2 = (T^1_{1\to 2})^{-1}x^1$. This derives the **change of observer's** frame

$$T_{2\to 1}^2 = \left(T_{1\to 2}^1\right)^{-1}$$

e.g.1. Consider a simple robot arm with 2 degree of freedom shown in figure 2.1.2,

which revolute θ_1 and slide θ_2 . In this example, $T_{0\to 1}^0 = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & -l_2\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 & 0 & l_2\cos\theta_1 \\ 0 & 0 & 1 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$,

Figure 2.1.2: a robot arm with DoF=2

$$T_{1\to2}^1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_3 \\ 0 & 0 & 1 & \theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ and } T_{2\to3}^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -l_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \text{ By the composition rule,}$$

$$T_{0\to3}^0 = T_{0\to1}^0 T_{1\to2}^1 T_{2\to3}^2 = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & -\sin\theta_1 & (l_2+l_3) \\ \sin\theta_1 & \cos\theta_1 & 0 & \cos\theta_1 & (l_2+l_3) \\ 0 & 0 & 1 & l_1-l_4+\theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

2.2 Linear Transformation

In another perspective, we can view $(R_{s\to b}, \mathbf{t}_{s\to b})$ as a linear transformation that transforms any point in the whole space by

$$x^{\prime s} = R_{s \to b}^s x^s + \mathbf{t}_{s \to b}^s$$

Suppose $\mathscr{F}_p^s = \{p^s, [\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s]\}$ is a frame at an arbitrary point p^s . Then the new origin becomes

$$p'^s = R^s_{s \to b} p^s + \mathbf{t}^s_{s \to b}$$

Now to transform the base vectors of the frame, assume three curves $\gamma_x, \gamma_y, \gamma_z$ pass p^s at t=0 with tangents $\mathbf{x}_p, \mathbf{y}_p, \mathbf{z}_p$. The new tangents after the transformations are $\frac{\mathrm{d}}{\mathrm{d}t}R^s_{s\to b}\gamma^s_x(0), \frac{\mathrm{d}}{\mathrm{d}t}R^s_{s\to b}\gamma^s_y(0), \frac{\mathrm{d}}{\mathrm{d}t}R^s_{s\to b}\gamma^s_z(0)$. So the new frame is

$$\mathscr{F}_{p'}^s = \{p'^s, R_{s \to b}^s[\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s]\}$$

To record an arbitrary transformation from \mathscr{F}_1 to \mathscr{F}_2 in \mathscr{F}_s , we denote ^{2.3}

$$T_{1\to 2}^s := T_{s\to 2}^s T_{1\to s}^1$$

With this definition, we can derive the **composition rule** as

$$T^s_{1\to 2} = T^s_{3\to 2} T^s_{1\to 3}$$

Now we ask the question: if we change the observer, how can we describe the same motion? So given $T^s_{1\to 2}$, we want to compute $T^b_{1\to 2}$. By composition rule as linear transformation, $T^s_{1\to 2}T^s_{s\to 1}=T^s_{s\to 2}$. By composition rule as coordinate transformation, $T^s_{1\to 2}T^s_{s\to b}T^b_{b\to 1}=T^s_{s\to b}T^b_{b\to 2}$. Apply composition rule as linear transformation again, we obtain $T^s_{1\to 2}T^s_{s\to b}T^b_{b\to 1}=T^s_{s\to b}T^b_{b\to 1}$. So we get the **similarity transformation**

$$T_{1\to 2}^b = (T_{s\to b}^s)^{-1} T_{1\to 2}^s T_{s\to b}^s$$

In a special case, if $\mathscr{F}_1 = \mathscr{F}_s$ and $\mathscr{F}_2 = \mathscr{F}_b$, then $T^s_{s \to b} = T^b_{s \to b}$ ^{2.4}.

e.g.2. Consider a camera with frame \mathscr{F}_c observing a red car with the current frame \mathscr{F}_1 . Then the red car move to a new frame \mathscr{F}_2 . By the composition rule of linear transformation $T_{c\to 2}^c = T_{c\to 1}^c T_{1\to 2}^1$. Then we compute $T_{1\to 2}^1 = (T_{c\to 1}^c)^{-1} T_{c\to 2}^c = T_{c\to 1}^c T_{c\to 2}^c = T_{c\to 2}^c T_{c\to 2}^c =$

ear transformation
$$T_{c\to 2}^c = T_{c\to 1}^c T_{1\to 2}^1$$
. Then we compute $T_{1\to 2}^1 = (T_{c\to 1}^c)^{-1} T_{c\to 2}^c = \begin{pmatrix} \left[\cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & l\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & -l\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}\right]^{-1} \begin{bmatrix} \cos\pi & -\sin\pi & 0 & l\\ \sin\pi & \cos\pi & 0 & l\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 2l\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.$

We can also achieve this by computing $T_{1\to 2}^1$ with the composition rule of coordinate transformation and then applying the similarity transformation.

 $^{^{2.3} \}mathrm{This}$ is actually hard to describe in perspectives of the coordinate transformation.

^{2.4} Notation: So we often use the abbreviated notations $T^b \equiv T^s_b \equiv T^s_{s \to b}$.

CSE291D Spring 2021

Lecture 3: SO(3)

Lecturer: Hao Su Scribes: Rabbittac

3.1 Multi-Link Rigid-Body Geometry

Links are the rigid-body connected in sequence. Joints are the connector between links, which determine the DoF of motion between adjacent links. The 0-th link of the robot is called **base link**/root link, which is often static and attached by the spatial frame \mathscr{F}_s . The last link is called the **end-effector link**, which is attached by the frame \mathscr{F}_e . Two common joint types are **revolute**/hinge/rotational and **prismatic**/translational joint.

Kinematics describes the motion (position and velocities) of bodies, without considering the force that leads the motion. Two representations of the pose of the end-effector are joint space and Cartesian space. The **joint space** is the space that each coordinate is a vector of joint poses. The **Cartesian space** is the space of the rigid transformations of the end-effector by $(R_{s\to e}, \mathbf{t}_{s\to e})$. We can map the joint space coordinates $\theta \in \mathbb{R}^n$ to a transformation matrix T by composing transformations along the kinematic chain, i.e. $T_{s\to e} = f(\theta)^{-3.1}$. The problem of finding this mapping is known as **forward kinematics**. The inverse problem is known as **inverse kinematics**: given the forward kinematics $T_{s\to e}(\theta)$ and the target pose $T_{\text{target}} = \mathbb{SE}(3)$, we want to know θ so that $T_{s\to e}(\theta) = T_{\text{target}}$.

 $^{^{3.1}}e.g.$ See example 1 in lecture 2.

Lecture 3: SO(3)

3.2 Special Orthogonal Group

We define the **Special Orthogonal Group** SO(n) as ^{3.2}

$$\mathbb{SO}(n) = \{ R \in \mathbb{R}^{n \times n} : \det(R) = 1, RR^T = I \}$$

e.g.1. SO(2) works with 2D rotations and has 1 DoF; SO(3) works with 3D rotations and has 3 DoF.

3.2.1 Rotation Matrix, Angle-Axis Parameterization

The **Euler's Theorem** states that any rotation is equivalent to a rotation about a fixed axis $\hat{\omega} \in \mathbb{R}^3 : ||\hat{\omega}|| = 1$ through a positive angle θ . The rotation matrix R is defined

$$R \in \mathbb{SO}(3) := \operatorname{Rot}(\hat{\omega}, \theta)$$

Given $\hat{\omega}$ and θ , we want to find $R \in \mathbb{SO}(3)$. We can derive $\operatorname{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x) = (I + [\hat{\omega}]\sin \theta + [\hat{\omega}]^2(1 - \cos \theta))x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x = e^{[\hat{\omega}]\theta}x^{3.3}$

$$\operatorname{Rot}(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta}$$

where $[\cdot]$ is the **skew-symmetric matrix operator** ^{3.5}, and $\vec{\theta} = \hat{\omega}\theta$ is called rotation vector or exponential coordinate. From the derivation, we can also get **Rodrigues formula**

$$e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)$$

Now consider the inverse problem: given $R \in \mathbb{SO}(3)$, we want to find $\hat{\omega}$ and θ . First note that this parameterization will not be unique.

e.g.2. $(\hat{\omega}, \theta)$ and $(-\hat{\omega}, -\theta)$ give the same rotation; If $R = I, \theta = 0$, then $\hat{\omega}$ can be arbitrary; $(\hat{\omega}, \pi)$ and $(-\hat{\omega}, \pi)$ give the same rotation since $\operatorname{tr}(R) = -1$.

But if we restrict $\theta \in (0, \pi)$, a unique parameterization exists

$$\theta = \arccos \frac{\operatorname{tr}(R_2 R_1^T) - 1}{2}, \quad [\hat{\omega}] = \frac{1}{2\sin \theta} (R - R^T)$$

This also enables us to define **distance between rotations**: the interpretation is to measure the minimal effort to rotate the body at R_1 pose to R_2 pose

$$d(R_1, R_2) = \theta(R_2 R_1^T) = \arccos \frac{\operatorname{tr}(R_2 R_1^T) - 1}{2}$$

$$[a] := \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}.$$

^{3.2}Group means roughly closed under matrix multiplication; orthogonal means $RR^T = I$; special means det(R) = 1.

^{3.3}For derivation of the first equality, see wikipedia.

^{3.4}Note that for matrix exponential, $e^{A+B} = e^A e^B$ if and only if AB = BA.

 $^{^{3.5}}A$ is skew-symmetric if $A = -A^T$. The skew-symmetric matrix operator allows us to write cross product in linear form: $a \times b = [a]b$ where $a = (a_1, a_2, a_3)^T, b = (b_1)$ and

Lecture 3: SO(3)

3.2.2 Quaternion

Another representation of the rotation is **quaternion**, which a more generalized complex number

$$q := w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = (w, \vec{v})$$

where w is the real part, $\vec{v} = (x, y, z)$ is the imaginary part that satisfies $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$ and anti-commutative law $\mathbf{i}\mathbf{j} = \mathbf{k} = -\mathbf{j}\mathbf{i}$, $\mathbf{j}\mathbf{k} = \mathbf{i} = -\mathbf{k}\mathbf{j}$, $\mathbf{k}\mathbf{i} = \mathbf{j} = -\mathbf{i}\mathbf{k}$. The product rule for two quaternions q_1 and q_2 is

$$q_1q_2 := (w_1w_2 - \vec{v}_1^T\vec{v}_2, w_1\vec{v}_2 + w_2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2)$$

Note that quaternion product is non-commutable. The **conjugate** of q is

$$q^* := (w, -\vec{v})$$

the **norm** is defined

$$||q||^2 := w^2 + \vec{v}^T \vec{v} = qq^* = q^*q$$

and the **inverse** is

$$q^{-1} := \frac{q^*}{\|q\|^2}$$

A unit quaternion (3 DoF) can represent a rotation. To map the exponential coordinate to quaternion

$$q = \left[\cos\frac{\theta}{2}, \hat{\omega}\sin\frac{\theta}{2}\right]$$

To map the quaternion to exponential coordinate

$$\theta = 2 \arccos w, \quad \hat{\omega} = \begin{cases} \frac{1}{\sin \frac{\theta}{2}} \vec{v} & \theta \neq 0\\ 0 & \theta = 0 \end{cases}$$

e.g.3. Rotate a vector $\vec{x} \in \mathbb{R}^3$ by a quaternion q: First augment \vec{x} to $x = (0, \vec{x})$. Then $x' = qxq^{-1}$. If we want to compose two rotations by unit quaternions q_1 and q_2 . $x' = q_2(q_1xq_1^*)q_2^* = (q_2q_1)x(q_1^*q_2^*)$. The computational complexity of using quaternions is often cheaper.

e.g.4. Notations may be different in various systems:

- (w, x, y, z): SAPIEN, Eigen, blender, transforms3d, MuJoCo, V-Rep
- (x, y, z, w): ROS, PhysX, PyBullet

3.2.3 Local Structure of SO(3)

When $\theta \to 0$, $e^{[\vec{\theta}]} = I + [\vec{\theta}] + o([\vec{\theta}])$ where $[\vec{\theta}]$ is a linear subspace of $\mathbb{R}^{3\times 3}$. This means that any local movement in $\mathbb{SO}(3)$ around I can be approximated by $[\vec{\theta}]$. In other words, the set of $[\vec{\theta}]$ forms the tangent space of $\mathbb{SO}(3)$ at R = I. More

generally, the tangent space at $R \in \mathbb{SO}(3)$ is $\{SR : S \in \mathbb{R}^{3\times 3}, S^T = -S\}$ 3.6. We call this Lie Algebra of SO(3) and denote $^{3.7}$

$$\mathfrak{so}(3) := \{ S \in \mathbb{R}^{3 \times 3} : S^T = -S \}$$

Now we want to parameterize the rotation of a body frame by time. An observer associated to \mathscr{F}_o records the motion as $R^o_{s'\to b(t)}$, where the body frame is at $\mathscr{F}_{b(t)}$. We can derive $R^{o}_{s'\to b(t+\Delta t)} - R^{o}_{s'\to b(t)} = R^{o}_{b(t)\to b(t+\Delta t)} R^{o}_{s'\to b(t)} - R^{o}_{s'\to b(t)} =$ $e^{\left[\chi^o_{b(t)\to b(t+\Delta t)}\right]}R^o_{s'\to b(t)}-R^o_{s'\to b(t)} \approx \left[\chi^o_{b(t)\to b(t+\Delta t)}\right]R^o_{s'\to b(t)}.$ Divide this by Δt and take the limit, we obtain

$$\dot{R}_{s'\to b(t)}^o = \left[\omega_{b(t)}^o\right] T_{s'\to b(t)}^o$$

where $\omega_{b(t)}^o := \lim_{\Delta t \to 0} \frac{\vec{\theta}_{b(t) \to b(t + \Delta t)}^o}{\Delta t}$ is the instant angular velocity.

Euler Angle 3.3

This part is not included in the lecture.

Representations	Inverse?	Composing	Movements ^{3.8}	Usage
Rotation Matrix	/		N/A	Define concepts
Euler Angle	Complicated	Complicated	No	Visualization
Angle-axis	✓	Complicated	Part	Visualization
Tingic-axis				Derivatives
Quaternion	✓	✓	✓	Write code

Table 3.3.1: Summary

 $^{^{3.6} \}text{Since } e^{[\vec{\theta}]} - I = [\vec{\theta}] + o([\vec{\theta}]), \ e^{[\vec{\theta}]} R - R = [\vec{\theta}] R + o([\vec{\theta}])$ $^{3.7} \text{By introducing Lie bracket } [A,B] = AB - BA, \text{ the set of skew-symmetric matrices form}$ an "algebra" because the set is closed and left and right distributive law are satisfied under Lie

 $^{^{3.8}}$ In complete sentence, local movement in SO(3) can be achieved by local movement in the domain.

CSE291D Spring 2021

Lecture 4: Screw and Twist

Lecturer: Hao Su Scribes: Rabbittac

Rigid Transformation and SE(3)4.1

We define **Special Euclidean Group** SE(3) as ^{4.1}

$$\mathbb{SE}(3) := \left\{ T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}, R \in \mathbb{SO}(3), t \in \mathbb{R}^3 \right\}$$

e.g.1. SE(3) has 6 DoF.

Screw Parameterization 4.1.1

Recall Euler's Theorem for SO(3), similarly in SE(3), we have **Screw Motion Theorem** which states that any rigid body motion is equivalent to rotating about one axis while also translating along the axis, where the axis may not pass the origin.

	$\mathbb{SO}(3)$	$\mathbb{SE}(3)$
Model Interpretation	$\hat{\omega}$: motion direction	$\hat{\xi}$: 6D motion direction
Exponential Coordinate	rot vector: $\vec{\theta} = \hat{\omega}\theta \in \mathbb{R}^3$	screw: $\chi = \hat{\xi}\theta \in \mathbb{R}^6$
Exponential Map	$R = \exp(\hat{[\omega]}\theta) \in \mathbb{SO}(3)$	$T = \exp([\hat{\xi}]\theta) \in \mathbb{SE}(3)$
Tangent Space	At $R = I : [\hat{\omega}]\theta \in \mathfrak{so}(3)$	At $T = I : [\hat{\xi}]\theta \in \mathfrak{se}(3)$

Table 4.1.1: Summary of SO(3) and SE(3)

In $\mathbb{SE}(3)$, we have $\operatorname{Trans}(\hat{\omega}, \theta, q, d_{\omega})x = (I + A + \frac{A^2}{2!} + \dots)x = e^A x$ where $x \in \mathbb{R}^4$ and $A = \begin{bmatrix} [\hat{\omega}\theta] & -[\hat{\omega}\theta]q + d_{\omega} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4\times 4}$. To align the expression in the form of $\operatorname{Rot}(\hat{\omega},\theta) \, \equiv \, e^{[\hat{\omega}]\theta}, \text{ we introduce } \hat{\xi} \, = \, \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix} \, \in \, \mathbb{R}^6 \, \text{ so } \, [\hat{\xi}]\theta \, = \, \begin{bmatrix} [\hat{\omega}] & d \\ 0 & 0 \end{bmatrix} \theta, \text{ where } \, d \, = \, \begin{bmatrix} (\hat{\omega}) & d \\ 0 & 0 \end{bmatrix} \theta$ $\frac{-[\hat{\omega}\theta]q+d_{\omega}}{\theta}$. So we can rewrite

$$T = \exp\left([\hat{\xi}]\theta\right)$$

e.g.2. In a special case, when the motion is translation-only, we define $\hat{\omega}=0,\theta=0$ $||d_{\omega}||$, and $d = \frac{d_{\omega}}{||d_{\omega}||}$.

^{4.1}**Group** means closed under matrix multiplication and other conditions of forming a group; **Euclidean** means R and t; **special** means det(R) = 1.

We call $\hat{\xi}$ unit twist which describes the motion direction, and call $\chi = \hat{\xi}\theta = \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix} \theta = \begin{bmatrix} -[\hat{\omega}]q\theta + d_{\omega} \\ \hat{\omega}\theta \end{bmatrix}$ screw or exponential coordinate. By $T = \exp([\chi])$, we have

$$\chi = \log(T)$$

Using Taylor expansion, we can express $e^{[\hat{\xi}]}$ as $e^{[\hat{\xi}]\theta} = I + [\hat{\xi}] + \frac{1-\cos\theta}{\theta^2} [\hat{\xi}]^2 + \frac{\theta-\sin\theta}{\theta^3} [\hat{\xi}]^3$ and further computation gives

$$e^{[\hat{\xi}\theta]} = \begin{bmatrix} e^{[\hat{\omega}\theta]} & (I - e^{[\hat{\omega}\theta]}) & (\hat{\omega} \times d) + \hat{\omega}\hat{\omega}^T d\theta \\ 0 & 1 \end{bmatrix}$$

which enables us to compute T from $\hat{\xi}\theta$. Now we consider computing $T \in \mathbb{SE}(3)$ from $\hat{\xi}\theta$. We first need to determine $\hat{\omega}\theta \in \mathfrak{so}(3)$ from $\mathbb{SO}(3)$ rotation. The translation component of T is t. Then d can be computed by

$$d = \left(\frac{1}{\theta}I - \frac{1}{2}[\hat{\omega}] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\hat{\omega}]^2\right)t$$

e.g.3. If $t \perp \hat{\omega}$, then $\frac{1}{\theta} (I + [\hat{\omega}]^2) t = 0$. Thus $d = (-\frac{1}{2} [\hat{\omega}] - \frac{1}{2} \cot \frac{\theta}{2} [\hat{\omega}]^2) t$.

In order to extract motion parameters from $\hat{\xi}\theta^{4.2}$, $\hat{\omega}$ and θ can be read directly;

$$q = [\hat{\omega}](\hat{\omega}\hat{\omega}^T - I)d$$
$$d_{\omega} = \hat{\omega}\hat{\omega}^T d\theta$$

where d is from $\hat{\xi}$.

e.g.4. What is the screw χ given $T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$?

Recall from lecture 3, given $R \in \mathbb{SO}(3)$, we can compute θ and $[\hat{\omega}]$: $\theta = \alpha t$, $[\hat{\omega}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$, thus $\hat{\omega} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. We can also compute $d = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Thus, $\hat{\xi}\theta = \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix}$, $\theta = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

 $[0,1,0,1,0,0]^T \alpha t$. So $\chi = \hat{\xi}\theta = [0,\alpha t,0,\alpha t,0,0]^T$. If $T^s_{s\to b}(\theta) \equiv T(\theta)$ describes the relative transformation of a body frame relative to spatial frame, then $\chi^s_{s\to b} = \hat{\xi}^s_{s\to b}\theta^s_{s\to b} = [0,\alpha t,0,\alpha t,0,0]^T$ represents the linear transformation of rotating about a fixed axis.

e.g.5. What are motion parameters $\hat{\omega}, q, \theta, d_{\omega}$ for $T(\theta) = e^{[\hat{\xi}]\theta}$, where $\hat{\xi}\theta = [0, \alpha t, 0, \alpha t, 0, 0]^T$?

Since $\hat{\omega} = [1, 0, 0]^T$, $d = [0, 1, 0]^T$, $q = [\hat{\omega}]^{\dagger} (\hat{\omega} \hat{\omega}^T - I) d = q = [0, 0, 1]^T$. With $\theta = \alpha t$, $d_{\omega} = \hat{\omega} \hat{\omega}^T d\theta = [0, 0, 0]^T$.

e.g.6. A robot has two links (green stick and blue stick) connected by a revolute joint (green sphere). The end-effector (blue sphere) is connected to the end of the second link. The spatial frame is at the red sphere (static). What is the screw $\chi_{s\to e}^s(t)$ of the end-effector in the spatial frame? Left as a reading (page 35-45).

^{4.2}One reason we need to do this is that $T \in \mathbb{R}^{4\times 4}$, which is computationally expensive.

4.1.2 Local Structure of SE(3)

When $\theta \to 0$, $e^{[\hat{\xi}]\theta} \to I + \theta[\hat{\xi}] + o(\theta[\hat{\xi}])$. So $\forall T \in \mathbb{SE}(3) : e^{[\hat{\xi}]\theta}T \approx T + \theta[\hat{\xi}]T$ when $\theta \approx 0$. This implies that $\mathbb{SE}(3)$ has a linear local structure (differentiable manifold). When $\theta \approx 0$, $e^{[\chi]} - I \to [\chi] + o([\chi])$ indicates $[\chi] \to 0 \implies e^{[\chi]} \to I$. This implies that any local movement in $\mathbb{SE}(3)$ around I can be approximated by some small $[\chi]$. Moreover, the set of $[\chi]$ forms the tangent space of $\mathbb{SE}(3)$ at T = I. We call this set **Lie Algebra of** $\mathbb{SE}(3)$

$$\mathfrak{se}(3) := \left\{ \left[\begin{array}{cc} S & t \\ 0 & 0 \end{array} \right] \in \mathbb{R}^{4 \times 4} : S^T = -S \right\}$$

4.2 Twist

To parameterize the motion of a body frame by time: an observer associated to \mathscr{F}_o records the motion as $T^o_{s'\to b(t)}$, where the body frame is at $\mathscr{F}_{b(t)}$.

Then $T^o_{s' \to b(t+\Delta t)} - T^o_{s' \to b(t)} = T^o_{b(t) \to b(t+\Delta t)} T^o_{s' \to b(t)} - T^o_{s' \to b(t)} = e^{\left[\chi^o_{b(t) \to b(t+\Delta t)}\right]} T^o_{s' \to b(t)} - T^o_{s' \to b(t)} \approx \left[\chi^o_{b(t) \to b(t+\Delta t)}\right] T^o_{s' \to b(t)}$. Divide by Δt and take the limit, we have

$$\dot{T}_{s' \rightarrow b(t)}^o = \left[\xi_{b(t)}^o \right] T_{s' \rightarrow b(t)}^o$$

where we define $\xi_{b(t)}^{o}$ as **twist**, which is 6D instant velocity ^{4.3}

$$\xi_{b(t)}^o := \lim_{\Delta t \to 0} \frac{\chi_{b(t) \to b(t + \Delta t)}^o}{\Delta t}$$

The **linear velocity** of p^o caused by $T^o_{s'\to b(t)}$ at time t can derived by $\mathbf{v}^o_p(t) = \lim_{\Delta t\to 0} \frac{T^o_{b(t)\to b(t+\Delta t)}p^o - p^o}{\Delta t} = \lim_{\Delta t\to 0} \frac{\exp\left([\chi^o_{b(t)\to b(t+\Delta t)}]\right) - I}{\Delta t} p^o = [\xi^o_{b(t)}]p^o$ which gives

$$\mathbf{v}_p^o(t) = \left[\xi_{b(t)}^o\right] p^o$$

e.g.7. If a motion is a pure rotation, then $\mathbf{v}_p^o(t) = \omega_{b(t)}^o \times p^o$.

^{4.3}In general, $\xi_{b(t)}^o \neq \dot{\chi}_{s' \to b(t)}^o$.