TELECOM CHURN PREDICTION CASE STUDY

BY

- MANGESH CHAUDHARI
- VIPUL SASANE

BUSINESS PROBLEM STATEMENT

- In highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one, **customer retention** has now become even more important than customer acquisition.
- Retaining high profitable customers is the number one business goal.
- To reduce customer churn, telecom companies need to predict which customers are at high risk of churn.

OBJECTIVE

- We will analyze customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn and identify the main indicators of churn.
- The **business objective** is to predict the churn in the last (i.e. the ninth) month using the data from the first three months.

STEP BY STEP APPROACH

- Data Sourcing/ Understanding
- Data Cleaning
- Data Preparation
 - New feature creation
 - Filter High value customer
 - Tag churners

- Exploratory Data Analysis
- ► Model Preparation
 - Train and test data split
 - Data Normalization
 - Handling class imbalance
- Model Building
- Model Evaluation
- Final Inference

DATA SOURCING/ UNDERSTANDING

- Import necessary libraries
- Import the data

```
In [1]: ### Import libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings('ignore')
         ### Setting max display columns
         pd.set_option('display.max_columns', 500)
         pd.set_option('display.max_rows', 500)
In [2]: ### Reading telecom churn dataset
         data= pd.read_csv('telecom_churn_data.csv')
         data.head()
Out[2]:
            mobile_number circle_id loc_og_t2o_mou std_og_t2o_mou loc_ic_t2o_mou last_date_of_month_6 last_date_of_month_7 last_date_of_month_8 last_date_of
                                              0.0
                                                             0.0
               7000842753
                              109
                                                                           0.0
                                                                                         6/30/2014
                                                                                                            7/31/2014
                                                                                                                                8/31/2014
               7001865778
                              109
                                              0.0
                                                             0.0
                                                                           0.0
                                                                                         6/30/2014
                                                                                                            7/31/2014
                                                                                                                                8/31/2014
```

BASIC SANITY CHECKS

Checking the information regarding the

data by

- 1. Shape
- 2. Info
- 3. Head
- 4. describe

In [3]: data.describe()

Out[3]:

	mobile_number	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	arpu_9	onnet_mou_6	on
count	9.999900e+04	99999.0	98981.0	98981.0	98981.0	99999.000000	99999.000000	99999.000000	99999.000000	96062.000000	96
mean	7.001207e+09	109.0	0.0	0.0	0.0	282.987358	278.536648	279.154731	261.645069	132.395875	
std	6.956694e+05	0.0	0.0	0.0	0.0	328.439770	338.156291	344.474791	341.998630	297.207406	
min	7.000000e+09	109.0	0.0	0.0	0.0	-2258.709000	-2014.045000	-945.808000	-1899.505000	0.000000	
25%	7.000606e+09	109.0	0.0	0.0	0.0	93.411500	86.980500	84.126000	62.685000	7.380000	
50%	7.001205e+09	109.0	0.0	0.0	0.0	197.704000	191.640000	192.080000	176.849000	34.310000	
75%	7.001812e+09	109.0	0.0	0.0	0.0	371.060000	365.344500	369.370500	353.466500	118.740000	
max	7.002411e+09	109.0	0.0	0.0	0.0	27731.088000	35145.834000	33543.624000	38805.617000	7376.710000	8
4											•

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99999 entries, 0 to 99998

Columns: 226 entries, mobile_number to sep_vbc_3g dtypes: float64(179), int64(35), object(12)

memory usage: 172.4+ MB

In [5]: data.shape

Out[5]: (99999, 226)

TREATMENT OF MISSING VALUES

- Find the % missing value in the data.
- Check missing values in every column.
- Treatment to be done in missing values.
- We will not drop the missing values greater than 70%, that will leads to loss of important data.

```
In [6]: print((data.isnull().sum()/len(data) * 100).sort values(ascending= False))
                                     74.846748
        arpu 3g 6
        night_pck_user_6
                                     74.846748
        total rech data 6
                                     74.846748
        arpu 2g 6
                                     74.846748
        max rech data 6
                                     74.846748
        fb user 6
                                     74.846748
        av rech amt data 6
                                     74.846748
        date of last rech data 6
                                     74.846748
        count_rech_2g_6
                                     74.846748
        count rech 3g 6
                                     74.846748
        date of last rech data 7
                                     74.428744
        total rech data 7
                                     74.428744
        fb user 7
                                     74,428744
        max rech data 7
                                     74.428744
        night pck user 7
                                     74.428744
        count rech 2g 7
                                     74.428744
        av_rech_amt_data_7
                                     74.428744
                                     74.428744
        arpu 2g 7
        count rech 3g 7
                                     74.428744
        arpu 3g 7
                                     74.428744
        total rech data 9
                                     74.077741
        count rech 3g 9
                                     74.077741
        fb user 9
                                     74.077741
        max rech data 9
                                     74.077741
        arpu 3g 9
                                     74.077741
        date_of_last_rech_data_9
                                     74.077741
        night pck user 9
                                     74.077741
        arpu 2g 9
                                     74.077741
        count rech 2g 9
                                     74.077741
```

7/ 0777/1

av rach amt data 9

TREATMENT OF MISSING VALUES

- Missing values for the column total_rech_data and date_of_last_rech_data has same missing values.
- So, we can conclude that no recharge was done and we will impute missing values as 0.

```
In [17]: # The logic here would be to check if columns - 'total_rech_data_6' and 'date_of_last_rech_data_6' both
# have null values at the same index. If yes, then that would mean there was no data recharge done for that month
# and we can safely impute the 'total_rech_data_6' value with 0.

total_rech_data_6_index = data['total_rech_data_6'].isnull()
date_of_last_rech_data_6_index = data['date_of_last_rech_data_6'].isnull()

if total_rech_data_6_index.equals(date_of_last_rech_data_6_index):
    print('The indexes for NULL values for month 6 are equal')
```

The indexes for NULL values for month 6 are equal

So we see that the two indexes object are equal and we can safely conclude that no data recharge was done for that month and the 'total_rech_data_6' missing values can be imputed with 0. Also as the total data recharge for the month is 0, we can impute 0 for 'av_rech_amt_data_6' column as well.

```
In [18]: data['total_rech_data_6'].fillna(0, inplace=True)
    data['av rech amt data 6'].fillna(0, inplace=True)
```

We will follow the same logic for 'total rech data 7', av rech amt data 7, 'total rech data 8' & 'av rech amt data 8' columns as well.

DATA PREPARATION

NEW FEATURE CREATION

 we can derive new feature for the respective months called total_data_rech_amt_ which equals
 total_rech_data_ * av_rech_amt_data_

1. New feature creation

Now we have values for 'total_rech_data_' and 'av_rech_amt_data_' (for months 6, 7, 8 & 9). Using these 2 values we can derive new feature for the respective months called total_data_rech_amt_ which equals total_rech_data_ * av_rech_amt_data_

```
data['total_data_rech_amt_6'] = data['total_rech_data_6'] * data['av_rech_amt_data_6']
data['total_data_rech_amt_7'] = data['total_rech_data_7'] * data['av_rech_amt_data_7']
data['total_data_rech_amt_8'] = data['total_rech_data_8'] * data['av_rech_amt_data_8']
data['total_data_rech_amt_9'] = data['total_rech_data_9'] * data['av_rech_amt_data_9']
```

DATA PREPARATION

2. Filtering High Value Customers

 we can define High value customer as those who have recharged with an amount more than or equal to 70th percentile of the average recharge amount.

2. Filtering High value customers

```
avg_recharge_amount_month_6_7 = data[['total_data_rech_amt_6','total_data_rech_amt_7','total_rech_amt_6',
                                             'total rech amt 7']].mean(axis = 1)
amount 70th percentile = np.percentile(avg recharge amount month 6 7, 70)
print("70th percentile of the average recharge amount in the first two months is - ", amount 70th percentile)
70th percentile of the average recharge amount in the first two months is - 239.0
# Filtering the high values customers
data = data[avg recharge amount month 6 7 >= amount 70th percentile]
data.shape
(30001, 229)
```

DATA PREPARATION

3. Tag Churners

 we tag churned customers (churn=1, else 0) based on the fourth month those who have not made calls (Incoming and Outgoing).

OUTLIERS IDENTIFICATION AND HANDLING

- There are Outliers present in the data.
- We will removing them by normalizing.

CHECKING OF DATA IMBALANCE

There is data imbalance present in data which is handled by SMOTE.

Class Imbalance n [83]: y.value_counts(normalize=True).to_frame() ut[83]: churn 0 0.920735 1 0.079265

ANALYSIS PART OF DATA

UNIVARIATE ANALYSIS

Analyze night pack user.

INSIGHT-99% of customers are not using night packs.

UNIVARIATE ANALYSIS

Analyze fb user column.

INSIGHTThe percentage of churn and not churn are same in 3 months.

BIVARIATE ANALYSIS

 Analyze the churn vs total data recharge amount.

INSIGHTThere is significant drop observed in 8th month.

Data Visualization of churn vs total_data_rech_amt

BIVARIATE ANALYSIS

Analyze the Churn and Total recharge amount.

INSIGHT-

The churn probability increased with increase in total recharge amount in month 6 and month 7.

Data Visualization of churn vs total rech amt

BUILDING MULTIPLE MODELS

- 1. Logistic Regression with RFE.
- 2. PCA+ Logistic Regression
- 3. PCA+ Random forest classifier

LOGISTIC REGRESSION WITH RFE

```
Train Performance:
Accuracy: 0.804
Sensitivity / True Positive Rate / Recall : 0.802
Specificity / True Negative Rate: 0.806
Precision / Positive Predictive Value: 0.805
F1-score : 0.803
Test Performance:
Accuracy: 0.801
Sensitivity / True Positive Rate / Recall : 0.65
Specificity / True Negative Rate: 0.814
Precision / Positive Predictive Value : 0.242
F1-score : 0.353
 ROC AUC score for Train: 0.877
 ROC AUC score for Test: 0.801
```

PCA+ LOGISTIC REGRESSION

```
Train Performance:
Accuracy: 0.561
Sensitivity / True Positive Rate / Recall : 0.93
Specificity / True Negative Rate : 0.529
Precision / Positive Predictive Value : 0.142
F1-score: 0.246
Test Performance:
Accuracy: 0.634
Sensitivity / True Positive Rate / Recall : 0.669
Specificity / True Negative Rate : 0.631
Precision / Positive Predictive Value : 0.141
F1-score : 0.233
```

PCA + RANDOM FOREST CLASSIFIER

```
Train Performance:
    Accuracy: 0.876
    Sensitivity / True Positive Rate / Recall : 0.81
    Specificity / True Negative Rate : 0.881
    Precision / Positive Predictive Value : 0.364
    F1-score : 0.502
    Test Performance:
    Accuracy: 0.836
    Sensitivity / True Positive Rate / Recall : 0.568
    Specificity / True Negative Rate: 0.861
    Precision / Positive Predictive Value : 0.271
    F1-score : 0.367
5]: ## out of bag error
    pca_rf_best_fit.oob_score_
51: 0.8597911477294501
```

MOST IMPORTANT PREDICTORS OF CHURN

```
Most Important Predictors of churn , in the order of importance are :
: const
                        1.9137
   fb user 8
                       -1.2250
   monthly_2g_7
                       -1.1677
   sachet 2g 8 0
                      -0.8884
   count_rech_3g_7_0.0 -0.7465
   monthly 2g 6
                    -0.6385
   total_rech_data_8 -0.2816
   sachet_2g_7_0
                       -0.2508
   total_rech_num_8 -0.2053
   count_rech_2g_6 0.1390
   total_rech_num_7
                        0.0835
   Name: coef, dtype: float64
```

RECOMMENDATIONS-

- The customer who used the 2G network in 7th month likely to churn.
- The customer who avail for Facebook and other social sites in 8th month are likely to churn.
- Models with high sensitivity are the best for predicting churn. Use the PCA + Logistic Regression model to predict churn. It has an ROC score of 0.87, test sensitivity of 67%.

