

Elektrik-Elektronik Mühendisliği Elektronik-2 Deney-2

Yakup Demiryürek 180711049

(Bahar 2021)

DENEY 2

OPAMP DEVRELERİNDE FREKANS TEPKİSİNİN ANALİZİ

Amaç

Deneyde bir OPAMP kullanılarak kurulan bir yükseltgeç devresinin frekansa göre kazancının değişimi incelenecektir.

Ekipmanlar

- 1 adet LM348N
- 1 adet 10 kΩ direnç
- 3 adet 1 kΩ direnç
- 1 adet 1 μF kondansatör
- Breadboard
- DC Güç Kaynağı
- Fonksiyon Jeneratörü
- Osiloskop
- LTSpice yüklü bilgisayar

Deney Çalışması

DÇ1

LTSpice üzerinde **Şekil 1**'deki devre kurulmuştur. (OPAMP için LT1001 modeli kullanılmıştır.)

Şekil 1.DÇ1 Devre

Alternatif akım kaynağının frekansı 10 Hz ile 1 MHz arasında logaritmik olarak değiştirilip kazancın büyüklüğünün bode-diyagramı **Şekil 2**'de çizdirilmiştir.

Şekil 2.DÇ1 bode-diyagramı

DÇ2

DÇ1'deki devre breadboard üzerinde kurulmuştur. Alternatif akım kaynağının frekansı sırasıyla 10 Hz, 20 Hz, 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz, 200 kHz, 500 kHz, 1 MHz verilerek **Tablo 1'**de gösterilmiştir.

Tablo 1.DÇ2 Veri Tablosu

Vin	Hz	Vout	Vout/Vin
0,25	10	2,64	10,56
0,25	20	2,56	10,24
0,25	50	2,48	9,92
0,25	100	2,32	9,28
0,25	200	1,84	7,36
0,25	500	1,2	4,8
0,25	1000	0,88	3,52
0,25	2000	0,64	2,56
0,25	5000	0,56	2,24
0,25	10000	0,56	2,24
0,25	20000	0,48	1,92
0,25	50000	0,48	1,92
0,25	100000	0,48	1,92
0,25	200000	0,48	1,92
0,25	500000	0,48	1,92
0,25	1000000	0,48	1,92

Tablo 1'e göre bode-diyagramı Şekil 3'de gösterilmiştir.

DÇ3

LTSpice üzerinde **DÇ1**'deki devre kapasitör ve direncin yeri değiştirilerek kurulmuştur.

Şekil 4.DÇ devre

Alternatif akım kaynağının frekansı 10 Hz ile 1 MHz arasında logaritmik olarak değiştirilip kazancın büyüklüğünün bode-diyagramı **Şekil 5**'de çizdirilmiştir.

Şekil 5.DÇ3 bode-diyagramı

DÇ4

DÇ3'deki devre breadboard üzerinde kurulmuştur. Alternatif akım kaynağının frekansı sırasıyla 10 Hz, 20 Hz, 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz, 200 kHz, 500 kHz, 1 MHz verilerek **Tablo 2'**de gösterilmiştir.

Tablo 2. DÇ4 Veri Tablosu

Vin	Hz	Vout	Vout/Vin
0,25	10	0,16	0,64
0,25	20	0,34	1,36
0,25	50	0,81	3,24
0,25	100	1,44	5,76
0,25	200	2,1	8,4
0,25	500	2,6	10,4
0,25	1000	2,71	10,84
0,25	2000	2,71	10,84
0,25	5000	2,71	10,84
0,25	10000	2,67	10,68
0,25	20000	2,42	9,68
0,25	50000	1,6	6,4
0,25	100000	0,9	3,6
0,25	200000	0,4	1,6
0,25	500000	0,2	0,8
0,25	1000000	0,1	0,4

Tablo 2'ye göre bode-diyagramı Şekil 6'de gösterilmiştir.

Sonuç

S1

Bode-diyagramı Şekil 2'de çizdirilmiştir.

S2

DC1 ve DC2'deki grafikler karşılaştırıldığında benzer olduklarını görmekteyiz. Teorik ve deneysel yapılan deneyin doğruluğu kanıtlanmıştır.

S3

Bode-diyagramı Şekil 5'de çizdirilmiştir.

S4

DÇ3 ve **DÇ4**'deki grafikler karşılaştırıldığında benzer olduklarını görmekteyiz. Teorik ve deneysel yapılan deneyin doğruluğu kanıtlanmıştır.