Multivariate Statistical Analysis

Assignment 6

12112627 李乐平

Question 7.4

```
In [19]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_excel("exec7.7data.xlsx")
df
```

C:\Users\Wandering Troubadour\AppData\Local\Programs\Python\Python310\lib\site-packages\openpyxl\worksheet\header_foote r.py:48: UserWarning: Cannot parse header or footer so it will be ignored warn("""Cannot parse header or footer so it will be ignored""")

Out[2]:

	周	阿莱德化学	杜邦	联合碳化物	埃克森	德士古
0	1	0.000000	0.000000	0.000000	0.039473	0.000000
1	2	0.027027	-0.044855	-0.003030	-0.014466	0.043478
2	3	0.122807	0.060773	0.088146	0.086238	0.078124
3	4	0.057031	0.029948	0.066808	0.013513	0.019512
4	5	0.063670	-0.003793	-0.039788	-0.018644	-0.024154
95	96	0.000000	-0.020080	-0.006579	0.029925	-0.004807
96	97	0.021429	0.049180	0.006622	-0.002421	0.028985
97	98	0.045454	0.046375	0.074561	0.014563	0.018779
98	99	0.050167	0.036380	0.004082	-0.011961	0.009216
99	100	0.019108	-0.033303	0.008362	0.033898	0.004566

100 rows × 6 columns

```
In [8]: corr = df.iloc[:, 1:].corr()
corr
```

Out[8]:

	阿莱德化学	杜邦	联合碳化物	埃克森	德士古
阿莱德化学	1.000000	0.576924	0.508656	0.386721	0.462178
杜邦	0.576924	1.000000	0.598384	0.389519	0.321953
联合碳化物	0.508656	0.598384	1.000000	0.436101	0.425627
埃克森	0.386721	0.389519	0.436101	1.000000	0.523529
德士古	0.462178	0.321953	0.425627	0.523529	1.000000

```
In [16]: eig_val, eig_vec = np.linalg.eig(corr)
    sorted_indices = np.argsort(eig_val)[::-1]
    eig_val = eig_val[sorted_indices]
    eig_vec = eig_vec[:, sorted_indices]
    eig_vec, eig_val
```

```
In [27]: for i in range(5):
               print(f''''\lambda\{i + 1\} = \{eig\_val[i]: .3f\}, y\{i + 1\} = \{
                      + '.join([f"{eig_vec[k, i]: .3f}x{k + 1}" for k in range(5)])
           \lambda 1 = 2.856, y1 = 0.464x1 + 0.457x2 + 0.470x3 + 0.422x4 + 0.421x5
           \lambda 2 = 0.809, y2 = 0.241x1 + 0.509x2 + 0.261x3 + -0.525x4 + -0.582x5
           \lambda \ 3 = 0.540, \ y3 = 0.613x1 + -0.178x2 + -0.337x3 + -0.539x4 + 0.434x5
           \lambda 4 = 0.451, y4 = -0.381x1 + -0.211x2 + 0.664x3 + -0.473x4 + 0.381x5
           \lambda 5 = 0.343, y5 = 0.453x1 + -0.675x2 + 0.396x3 + 0.179x4 + -0.387x5
In [23]: con = [eig / sum(eig_val) for eig in eig_val]
          acc = con.copy()
          for i in range(1, 5):
               acc[i] += acc[i - 1]
In [28]: x_values = [1, 2, 3, 4, 5]
          plt.figure(dpi = 160)
          plt.plot(x_values, con, label = "Contribution Rate")
plt.plot(x_values, acc, label = "Accumulated Contribution Rate")
          plt.title("Explained Variations")
          plt.xlabel("Principal Component")
          plt.ylabel('Proportion')
          plt.xticks(x_values)
          plt.legend()
          plt.grid()
          plt.show()
```

Explained Variations

