

Air530 GPS 模块用户手册 V1.9

模块整体说明

Air530 模块是一款高性能、高集成度的多模卫星定位导航模块。体积小、功耗低,可用于车载导航、智能穿戴、无人机等 GNSS 定位的应用中。而且提供了和其他模块厂商兼容的软、硬件接口,大幅减少了用户的开发周期。

模块支持 GPS/Beidou/GLONASS/Galileo/QZSS/SBAS。采用了射频基带一体化设计,集成了 DC/DC、 LDO、 LNA、射频前端、基带处理、32 位 RISC CPU、RAM、FLASH 存储、RTC 和电源 管理等功能。提供超高的性能,即使在弱信号的地方,也能快速、准确的定位。

模块性能:

类别	指标项	典型值	单位
	纯硬件冷启动	27.5	s
定位时间	纯硬件热启动	<1	s
[测试条件 1]	纯硬件重新捕获	<1	s
	软件辅助 A-GNSS(秒定位)	<5	s
灵敏度	冷启动	-148	dBm
[测试条件 2]	热启动	-162	dBm
	重新捕获	-164	dBm
	跟踪	-166	dBm
精度	水平定位精度	2.5	m
[测试条件 3]	高度定位精度	3.5	m
	速度精度	0.1	m/s
	授时精度	30	ns
功耗	捕获电流值	42.6	mA
[测试条件 4]	VCC=3.3V,		
	VBACKUP=3.3V		
	跟踪电流值	36.7	mA
	VCC=3.3V,		
	VBACKUP=3.3V		
	RTC 功耗	31	uA
	VCC=0V,		
	VBACKUP=3.3V		
工作温度		-35°C- 85°C	
工作温度		-35°C- 85°C	
储存温度		-55°C- 100°C	
湿度		5% - 95%	

注:以上结果为 GPS/北斗双模工作模式

[测试条件 1]:接收卫星个数大于 6,所有卫星信号强度为-130dBm,测试 10次取平均值,定位误差小于 10米。

[测试条件 2]: 外接 LNA 噪声系数 0.8,接收卫星个数大于 6,五分钟之内锁定或者不失锁条件下的接收信号强度值。

[测试条件 3]: 开阔没有遮挡环境,连续 24 小时开机测试,50%CEP。

[测试条件 4]:接收卫星个数大于 6,所有卫星信号强度为-130dBm。

模块管脚分配

Pin 脚编号	Pin 脚定义	Pin 脚描述	
1	GPS_ANT	GPS 天线输入	
2	GND	地	
3	WAKE	保留管脚,悬空处理	
4	VCC	主电源, 2.8V-4.2V	
5	VBACKUP	如果要支持热启动,在模块关机时也必须维持 VBACKUP的供电, 的供电, 后备电池的电压范围是 2.8V-3.3V, VBACKUP 必须要有供电,否则模块不工作; 如果不接后备电池,请把 VBACKUP 和 VCC 接在一起;	
6	NC	保留管脚,不用可悬空	
7	NC	保留管脚,不用可悬空	
8	TXD	串口 TX(2.8V), 输出 GPS NMEA0183 数据, 默认波特率是 9600bps	
9	RXD	串口 RX (2. 8V)	
10	GPS_TO_MCU	保留管脚,悬空处理	
11	MCU_TO_GPS	保留管脚,悬空处理	
12	GND	地	
13	1PPS	One pulse per second(2.8V)	
14	GND	地	

参考设计电路

参考电路:最简模式

设计注意事项

- 1. VCC 供电电压范围 2.8-4.2V, VBACKUP 供电电压范围 2.8-3.3V。如果要支持 GPS 热启动功 能,在关闭 VCC 供电的时候要保持给 VBACKUP 一直供电。
- 2. 模块尽量靠近GPS天线放置,天线走线保持50欧姆阻抗匹配,走线尽量短,避免锐角。
- 3. GPS 天线推荐使用25*25*4mm 尺寸的陶瓷天线。
- 4. 串口TXD,RXD是 2.8V TTL 电平, 若和 PC 连接, 需要通过 RS232 电平转换。 用户可用此串口接收定位信息数据和软件升级。
- 5. 本模块是温度敏感设备,使用中尽量远离高温器件与大功率发热器件。

GPS 天线

GPS 天线可根据需要选择无源天线或有源天线,有源天线相比无源天线效果好,但是成本高。

1. 无源天线

如果采用无源天线,建议天线与模块之间的走线尽可能的短,最理想的情况是 GPS 模块直接放置在天线的背面,使模块的天线焊盘和 GPS 天线馈点之间零距离,如下图所示:

2. 有源天线

采用有源天线时要注意有源天线的供电电压范围,如果有源天线的供电要和模块的供电共用一个电源的话,需要串接一颗 47nH 的电感,同时在靠近天线处并联一颗 1000pF 的电容,模块内部已经有隔直电容,外部无须再加。

参考电路如下:

- 6 -

模块外形尺寸

模块尺寸为 12.9mm*9.9mm*2.3mm;

- 7 -

模块推荐 PCB 封装尺寸图

说明:

为方便邮票孔焊接,邮票孔焊盘需外延至少0.5mm,因此模块封装尺寸建议为12.9mm*10.9mm; 模块封装请前往 Luat 技术支持论坛下载:

http://bbs.openluat.com/forum.php?mod=viewthread&tid=2615&extra=page%3D1

NMEA0183 协议

AIR530 模块支持 NMEA 0183 V4.1 协议并兼容以前版本,关于 NMEA 0183 V4.1 的详细信息请 参照 NMEA 0183 V4.1 官方文档。

NMEA 0183 简述

GGA:时间、位置、卫星数量

GLL: 经度、纬度、 UTC 时间

GSA: GPS 接收机操作模式,定位使用的卫星,DOP 值,定位状态

GSV:可见 GPS 卫星信息、仰角、方位角、信噪比

RMC:时间、日期、位置、速度

VTG: 地面速度信息

Goke NMEA 命令

Air530 定制了一些命令用来控制冷、热、温启动和卫星定位模式等,可以直接通过串口直接发送命令来控制模块,命令格式如下:

1. 启动命令

系统热启动命令: \$PGKC030,1,1*2C<CR><LF>

系统温启动命令: \$PGKC030,2,1*2F<CR><LF>

系统冷启动命令: \$PGKC030,3,1*2E<CR><LF>

系统重置冷启动:\$PGKC030,4,1*29<CR><LF>

2.卫星定位模式设置

单 GPS: \$PGKC115,1,0,0,0*2B<CR><LF>

GPS+BEIDOU: \$PGKC115,1,0,1,0*2A<CR><LF>

GPS+GLONASS: \$PGKC115,1,1,0,0*2A<CR><LF>

1.GKC 接口数据格式

GKC 接口是用户和 Air530 之间进行交互的接口。其命令格式如下:

\$PGKC Command Arguments * CheckSum CR LF	
---	--

Command: 表示发送的命令号,具体的值参考下文。

Arguments: 表示发送命令需要的参数,参数可以是多个,不同的命令对应不同的数据,

具体值参考下文。

*: 数据结束的标志

CheckSum: 整条命令的校验数据

CR, LF: 包结束标志

样例数据: \$PGKC030,3,1*2E <CR><LF>

2.GKC 命令

1、Command: 001

应答消息,回应对方发送的消息处理结果

Arguments:

Arg1: 该消息所应答消息的 command。

Arg2: "1",不支持接收到的消息

"2",有效消息,但执行不正确

"3",有效消息,并且执行正确

Example:

\$PGKC001,101,3*2D<CR><LF>

2、Command: 030

系统重启命令

Arguments:

Arg1: "1", 热启动

"2",温启动

"3",冷启动

Arg2: "1", 软件重启

Example:

\$PGKC030,1,1*2C<CR><LF>

3、Command: 040

擦除 flash 中的辅助定位数据

Arguments:

无

Example:

\$PGKC040*2B<CR><LF>

4、Command: 101

配置输出 NMEA 消息的间隔 (ms 单位)

Arguments:

Arg1: 200-10000

Example:

\$PGKC101,1000*02<CR><LF>

\$PGKC105,8*3F<CR><LF>

5、Command: 113

开启或关闭 QZSS NMEA 格式输出

Arguments:

Arg1: "0", 关闭

"1", 开启

Example:

\$PGKC113,1*31<CR><LF>

6、Command: 114

开启或关闭 QZSS 功能

Arguments:

Arg1: "0", 开启

"1",关闭

Example:

\$PGKC114,0*37<CR><LF>

7、Command: 115

设置搜星模式

Arguments:

Arg1: "1", GPS on

"0", GPS off

Arg2: "1", Glonass on

"0", Glonass off

Arg3: "1", Beidou on

"0", Beidou off

Arg4: "1", Galieo on

"0", Galieo off

Example:

\$PGKC115,1,0,0,0*2B<CR><LF>

8、Command: 147

设置 NMEA 输出波特率

Arguments:

Arg1: 9600, 19200, 38400, 57600, 115200......921600.

Example:

\$PGKC147,115200*06<CR><LF>

9、Command: 149

设置 NMEA 串口参数

Arguments:

Arg1: "0", NMEA 数据

"1", Binary 数据

Arg2: 9600, 19200, 38400, 57600, 115200......921600.

Example:

\$PGKC149,0,38400*2C<CR><LF>

10、Command: 161

PPS 设置

Arguments:

Arg1: "0", 关闭 PPS 输出

"1",第一次 fix

"2", 3D fix

"3", 2D/3D fix

"4",始终开启

Arg2: PPS 脉冲宽度(ms)

要求小于 999

Arg3: PPS 周期 (ms)

要求大于 PPS 脉冲宽度

Example:

\$PGKC161,2,500,1000*2E<CR><LF>

11、Command: 201

查询 NMEA 消息的间隔

Arguments:

无

Example:

\$PGKC201*2C<CR><LF>

12、Command: 202

返回 NMEA 消息的间隔(应答 201 命令)

Arguments:

无

Example:

\$PGKC202,1000,0,0,0,0*02<CR><LF>

13、Command: 239

开启或关闭 SBAS 功能

Arguments:

Arg1: "0", 开启

"1",关闭

Example:

\$PGKC239,1*3A<CR><LF>

14、Command: 240

查询 SBAS 是否使能

Arguments:

无

Example:

\$PGKC240*29<CR><LF>

15、Command: 241

返回 SBAS 是否使能(应答 240 命令)

Arguments:

Arg1: "0", 关闭

"1", 打开

Example:

\$PGKC241,1*35<CR><LF>

16、Command: 242

设置 NMEA 语句输出使能

Arguments:

Arg1: GLL "0", 关闭; "1", 打开

Arg2: RMC "0",关闭;"1",打开

Arg3: VTG "0", 关闭; "1", 打开

Arg4: GGA "0", 关闭; "1", 打开

Arg5: GSA "0", 关闭; "1", 打开

Arg6: GSV "0", 关闭; "1", 打开

Arg7: GRS "0", 关闭; "1", 打开

Arg8: GST "0", 关闭; "1", 打开

Arg9~ Arg19: 保留

Example:

17、Command: 243

查询 NMEA 语句输出频率

Arguments:

无

Example:

\$PGKC243*2A<CR><LF>

18、Command: 244

返回 NMEA 语句输出频率(应答 243 命令)

Arguments:

Args: 参考 242 命令

Example:

19、Command: 278

设置 RTC 时间

Arguments:

Arg1: 年

Arg2: 月,1~12

Arg3: 日,1~31

Arg4: 时,0~23

Arg5: 分,0~59

Arg6: 秒,0~59

Example:

\$PGKC278,2017,3,15,12,0,0*12<CR><LF>

20、Command: 279

查询 RTC 时间

Arguments:

无

Example:

\$PGKC279*23<CR><LF>

21、Command: 280

返回 NMEA 语句输出频率(应答 243 命令)

Arguments:

Args: 参考 278 命令

Example:

\$PGKC280,2017,3,15,12,0,0*15<CR><LF>

22、Command: 284

设置速度门限,速度低于门限值时,输出速度为0

Arguments:

Arg1: 门限值

Example:

\$PGKC284,0.5*26<CR><LF>

23、Command: 356

设置 HDOP 门限,实际 HDOP 大于门限值时,不定位

Arguments:

Arg1: 门限值

Example:

\$PGKC356,0.7*2A<CR><LF>

24、Command: 357

获取 HDOP 门限

Arguments:

无

Example:

\$PGKC357*2E<CR><LF>

25、Command: 462

查询当前软件的版本号

Arguments:

无

Example:

\$PGKC462*2F<CR><LF>

26、Command: 463

返回当前软件的版本号(应答 462 命令)

Arguments:

无

Example:

\$PGKC463,GOKE9501_1.3_17101100*22<CR><LF>

27、Command: 639

设置大概的位置信息和时间信息,以加快定位速度

Arguments:

Arg1: 纬度, 例如:28.166450

Arg2: 经度,例如:120.389700

Arg3: 高度, 例如:0

Arg4: 年

Arg5: 月

Arg6: 日

Arg7: 时,时间是UTC时间

Arg8: 分

Arg9: 秒

Example:

\$PGKC639,28.166450,120.389700,0,2017,3,15,12,0,0*33<CR><LF>

3. 支持 NMEA0183 协议

Air530 支持 NMEA0183 V4.1 协议并兼容以前版本 ,关于 NMEA0183 V4.1 的详细信息可以 参照 NMEA 0183 V4.1 官方文档。

常见输出格式如下:

GGA:时间、位置、卫星数量

GSA: GPS 接收机操作模式,定位使用的卫星,DOP 值,定位状态

GSV:可见 GPS 卫星信息、仰角、方位角、信噪比

RMC:时间、日期、位置、速度

VTG: 地面速度信息

语句标识符:

标识符	含义
BD	BDS,北斗二代卫星系统
GP	GPS
GL	GLONASS
GA	Galileo
GN	GNSS,全球导航卫星系统

GGA

 $\$--\mathsf{GGA}, \mathsf{hhmmss.ss}, \mathsf{IIII}.\mathsf{II}, \mathsf{a}, \mathsf{yyyyy}.\mathsf{yy}, \mathsf{a}, \mathsf{x}, \mathsf{xx}, \mathsf{x}.\mathsf{x}, \mathsf{x}.\mathsf{x}, \mathsf{M}, \mathsf{x}.\mathsf{x}, \mathsf{M}, \mathsf{x}.\mathsf{x}, \mathsf{xxxx}^* \mathsf{hh}$

样例数据:\$GPGGA,065545.789,2109.9551,N,12023.4047,E,1,9,0.85,18.1,M,8.0,M,,*5E

名称	样例	单位	描述
消息 ID	\$GPGGA		GGA 协议头
UTC 时间	065545.789		hhmmss.sss
纬度	2109.9551		ddmm.mmmm
N/S 指示	N		N=北,S=南
经度	12023.4047		dddmm.mmmm
E/W 指示	E		W=西,E=东

定位指示			0:未定位
			1:SPS 模式,定位有效
			2:差分,SPS 模式,定位有效
			3:PPS 模式,定位有效
卫星数目	9		范围 0 到 12
HDOP	0.85		水平精度
MSL 幅度	18.1	米	
单位	M	*	
大地	-2.2	*	
单位	M		-
差分时间	8.0	秒	当没有 DGPS 时,无效
差分 ID	0000		
校验和	*5E		
<cr><lf></lf></cr>			消息结束

GSA

样例数据:\$GPGSA,A,3,10,24,12,32,25,21,15,20,31,,,,1.25,0.85,0.91*04

名称	样例	单位	描述
消息 ID	\$GPGS		GSA 协议头
模式 1	Α		M=手动,强制在 2D 或 3D 模式
			A=自动
模式 2	3		1:定位无效
			2:2D 定位
			3:3D 定位
卫星使用	10		通道 1

卫星使用	24		通道 2
卫星使用	12		通道 3
卫星使用	32		通道 4
卫星使用	25		通道 5
卫星使用	21		通道 6
卫星使用	15		通道 7
卫星使用	20		通道 8
,,,	,,,	,,,	111
卫星使用			通道 12
PDOP	1.25		位置精度
HDOP	0.85		水平精度
VDOP	0.91		垂直精度
校验和	*04		
<cr><lf></lf></cr>			消息结束

GSV

 $\$\text{--GSV}, x, x, x, x, x, x, x, x, \dots \text{*} hh$

样例数据:

\$GPGSV,3,1,12,14,75,001,31,32,67,111,38,31,57,331,33,26,47,221,20*73 \$GPGSV,3,2,12,25,38,041,29,29,30,097,32,193,26,176,35,22,23,301,30*47 \$GPGSV,3,3,12,10,20,185,28,44,20,250,,16,17,217,21,03,14,315,*7D

名称	样例	单位	描述
消息 ID	\$GPGSV		GSV 协议头
消息数目	3		范围 1 到 4
消息编号	1		范围 1 到 4
卫星数目	12		
卫星 ID	14		范围 1 到 32

仰角	75	度	最大 90°
方位角	001	度	范围 0 到 359°
载噪比(C/No)	31	dBHz	范围 0 到 99,没有跟踪时为空
卫星 ID	32		范围 1 到 32
仰角	67	度	最大 90°
方位角	111	度	范围 0 到 359°
载噪比(C/No)	38	dBHz	范围 0 到 99,没有跟踪时为空
卫星 ID	31		范围 1 到 32
仰角	57	度	最大 90°
方位角	331	度	范围 0 到 359°
载噪比(C/No)	33	dBHz	范围 0 到 99,没有跟踪时为空
卫星 ID	26		范围 1 到 32
仰角	47	度	最大 90°
方位角	221	度	范围 0 到 359°
载噪比(C/No)	20	dBHz	范围 0 到 99,没有跟踪时为空
校验和	*73		
<cr><lf></lf></cr>			消息结束

RMC

 $\$--\mathsf{RMC}, \mathsf{hhmmss.ss}, \mathsf{A}, \mathsf{IIII}.\mathsf{II}, \mathsf{a}, \mathsf{yyyyy}.\mathsf{yy}, \mathsf{a}, \mathsf{x}.\mathsf{x}, \mathsf{x}.\mathsf{x}, \mathsf{x}\mathsf{x}\mathsf{x}\mathsf{x}, \mathsf{x}.\mathsf{x}, \mathsf{a}^*\mathsf{hh}$

样例数据:

\$GPRMC,100646.000,A,3109.9704,N,12123.4219,E,0.257,335.62,291216,,,A*59

名称	样例	单位	描述
消息 ID	\$GPRMC		RMC 协议头
UTC 时间	100646.000		hhmmss.ss

Air530 模块用户手册

状态	А		A=数据有效;V=数据无效
纬度	2109.9704		ddmm.mmmm
N/S 指示	N		N=北,S=南
经度	11123.4219		dddmm.mmmm
E/W 指示	Е		W=西,E=东
地面速度	0.257	Knot(节)	
方位	335.62	度	
日期	291216		ddmmyy
磁变量			-
校验和	*59		
<cr><lf></lf></cr>			消息结束

VTG

\$--VTG,x.x,T,x.x,M,x.x,N,x.x,K*hh

样例数据:\$GPVTG,335.62,T,,M,0.257,N,0.477,K,A*38

名称	样例	单位	描述
消息 ID	\$GPVTG		VTG 协议头
方位	335.62	度	
参考	Т		True
方位	335.62	度	
参考	M		Magnetic
速度	0.257	Knot(节)	
单位	N		节
速度	0.477	公里/小时	
单位	K		公里/小时

单位	А	定位系统模式指示:
		A—自主模式;
		D—差分模式;
		E—估算(航位推算)模式;
		M—手动输入模式;
		S—模拟器模式;
		N—数据无效。
校验和	*10	
<cr><lf></lf></cr>		消息结束

GNSS 工具 naviTrack

naviTrack 是一个专为 Air530 开发的 GNSS 工具,它为用户评估、控制 Air530 模块提供了一个易用、强大的可视化 PC 端工具。当然用户也可以使用诸如 u-Center、PowerGPS 等工具。

