## COSC422 Advanced Computer Graphics



7 Mesh Processing

Semester 2 2021



## 3D Mesh Processing

- Detailed geometric models use highly complex meshes.
- Mesh models will often need to be modified:
   Eg., Sculpting and repair, simplification, subdivision.
- Mesh algorithms require efficient data structures for performing local operations around vertices.



## Mesh Processing Algorithms

■ Remeshing:

-Reformating



■ Mesh Simplification

( lower resolution)







Mesh Subdivision

- different nevel of







## Mesh Processing Algorithms

Mesh Parameterization





Mesh Deformation/Morphing





## 3D Mesh Files

3D mesh files are usually created by content designers.

- Popular 3D mesh editing tools: 3D Studio Max, AutoCAD, Maya, Blender, Zbrush, MakeHuman
- Several mesh file formats exist: OFF, OBJ, PLY, 3DS, Blend, B3D, DXF, LWO, STL, X3D, X, GLTF
- OFF, OBJ, PLY are editable text files that can be easily parsed, while others have complex structures.
- A mesh file may store several things: verts, polys, normals, textures, materials, lights, matrices, bones...
- 3D graphics application development often requires 3D model loaders! - open Mesh Cibrary to load models

## Object File Format (OFF)

The simplest ASCII mesh file format containing only the most basic information.

We cannot store texture coordinates, normals or material definitions in an OFF file.

Always begins with keyword OFF

Number of vertices, polygons and edges

```
OFF 8 6 0 -
```

### Face list:

No. of vertices per face (4=quad), Vertex indices

## Wavefront Object Format (OBJ)

A versatile file format that can store several mesh related attributes.

```
comment line
 sample mesh file
                     Vertex coords
v 1 1 -1
vt 0 0.5
                    Texture coords
vt. 0.2 0.2
vn -0.15 0.12 0.8
                          Normal components
vn 0.9 -0.01 0.012
f 1 3 4 2
f 2/1 4/2 3/3
                          Face elements v/t/n
f 5/3/8 9/6/4/ 2/2/1
f 8//1 6//2 3//4
```

Note: The starting value of indices is 1.

Ref: http://paulbourke.net/dataformats/obj/

## OBJ File: Material Definition

Materials are stored in external files with .mtl extension and referenced from the OBJ file.

```
separate madulal
                   User defined object
  sample mesh
                     name - ignored.
o cube
                     Material file name
mtlib cube.mtl
\nabla 1 = 1 - 1
usemtl red
                      Material name
f 1 3 4 2
f 2/1 4/2 3/3
                      Material name
usemtl green
f 5/3/8 9/6/4/ 2/2/1
f 8//1 6//2 3//4
```

If a material name is not specified, a white material is used. Once a material is assigned, it cannot be turned off — it can only be changed.

## OBJ Material File (MTL)

The material file contained the definitions for each named material in the OBJ file

### cube.mtl:

```
newmtl green
  Ka 0.1 0.1 0.1
  Kd 0 1 0
  Ks 0.0000 0.0000 0.0000
  Ns 0.0000
newmtl red
  Ka 0.1 0.1 0.1
  Kd 1 0 0
  Ks 1 1 1
  Ns 10.0000
```

- Ambient material property
- Diffuse material property
- Specular material property
- Phong's exponent

# Polygonal Manifolds - early ascerable varieties

A polygonal manifold mesh (or simply, a manifold mesh) satisfies two conditions:

- No edge is shared by more than two faces,
- The faces sharing any vertex can be ordered in such a way that their vertices excluding the shared vertex form a simple chain. The chain can be either closed or open.





## Polygonal Manifolds

### Manifold Meshes





Non-manifold Meshes



An edge shared by more than two faces



The neighbours of a vertex do not form a single chain

### Euler-Poincaré Formula

Assumption: Polygonal manifold mesh.

V = number of vertices, F = number of faces,

E = number of edges, g = genus: V + F - E = 2 - 2g

$$V + F - E = 2 - 2g$$

Genus 0

Genus 1



Genus 2



## Ring Neighbourhoods



One- ring neighbourhood: The set of adjacent vertices to a given vertex.

Two-ring neighbourhood: The union of one-ring neighbourhoods of adjacent vertices.

## Common Mesh Operations

**Edge flipping** 



Vertex removal and retriangulation (usually for mesh simplification)





**Vertex addition** 

or





Triangle subdivision

(usually for subdivision)





## Adjacency Queries

Mesh elements: V: Vertices, E: Edges, F: Faces

- V  $\rightarrow$  V: Given a vertex, find all vertices that are adjacent to it (one-ring neighbourhood).
- V → E: Given a vertex, find all edges that are incident at that vertex.
- V → F: Given a vertex, find all faces that share the vertex.
- E → V: Given an edge, find the vertices that form its end points.
- E → E: Given an edge, find its neighbouring edges.
- E → F: Given an edge, find its two bordering faces.













## Adjacency Queries

■ F  $\rightarrow$  V: Given a face, find all its vertices. (Directly obtained from the face list)



 $\blacksquare$  F  $\rightarrow$  E: Given a face, find all its edges.



 $F \rightarrow F$ : Given a face, find all neighbouring faces.



### Mesh Data Structures

- Winged Edge Data Structure (Baumgart, 1975)
- Half-Edge Data Structure [HEDS] (Eastman, 1982)
- Split-Edge Data Structure
- Corner Data Structure
- QuadEdge Data Structure (Guibas and Stolfi, 1985)
- FacetEdge Data Structure (Dobkin and Laszlo, 1987)

• • •

Mesh data structures are designed to efficiently perform local mesh search in the **neighbourhood of a vertex** without having to traverse the whole mesh.

## Half-Edge Data Structure

- Each edge is divided into two directed half-edges
- Each half-edge belongs to a single face.
- Each triangle has exactly 3 half-edges. The total number of half-edges in a triangle mesh is exactly three times the number of triangles.

The half-edges always have a counter-clockwise

ordering on each face.

Written as "halfedge".



## Halfedge Data Structure

- The data structure consists of three components
  - **Vertex:** Each vertex points to *one of the* outgoing halfedges.
  - Face: Each face points to *one of its* halfedges
  - □ Halfedge: Each halfedge contains four pointers:
    - A pointer to the unique vertex it points to
    - A pointer to the unique face it belongs to
    - A pointer to the next halfedge
    - A pointer to the previous halfedge
    - A pointer to the opposite halfedge\



## Half-Edge Data Structure: Example

```
struct HE edge
  HE vert* vert; //The vertex the edge points to
  HE face* face; //The face the edge belongs to
  HE edge* next; //The next halfedge
  HE edge* prev; //The previous halfedge (optional)
  HE edge* pair; //The opposite halfedge
struct HE vert
  HE edge* edge; //An outgoing halfedge from the vertex
  float x, y, z;
struct HE face
  HE edge* edge; //A halfedge belonging to the face
```

## Half-Edge Data Structure

```
HE edge *e1, *e2, *e3, *d1, *d2, *d3;
HE vert *p, *q, *r;
HE face *f, *q;
e1->vert = q;
e1->face = f;
                    Unique
e1->next = e2;
e1->pair = d1;
r->edge = e3;
p->edge = e1;
f \rightarrow edge = e2;
q \rightarrow edge = d1;
```



## Half-Edge Data Structure

Query V→E (Slide 9)



## Anticlockwise enumeration of incident halfedges at a vertex.

```
HE_edge *e0 = v->edge->prev;
HE_edge *edge = e0;
do
{
  output(edge);
  edge = edge -> pair -> prev;
} while (edge != e0);
```

## Clockwise enumeration of incident halfedges at a vertex.

```
HE_edge *e0 = v->edge->prev;
HE_edge *edge = e0;
do
{
  output(edge);
  edge = edge -> next -> pair;
} while (edge != e0);
```

## Simple Mesh Operations

Retrieving end-points of an edge:

```
Query E→V
```

```
HE_vert* vert1 = edge->vert;
HE_vert* vert2 = edge->pair->vert;
```

Retrieving the two faces that border an edge:

```
HE_face* face1 = edge->face;
HE_face* face2 = edge->pair->face;
```

Query E→F

Retrieving vertices of a face:

```
HE_edge* edge = face->edge;
do{
  output(edge->vert);
  edge = edge->next;
} while (edge!= face->edge);
```

Query  $F \rightarrow V$ 



## One-Ring Neighbourhood

Query  $V \rightarrow V$  (Slide 9)



```
HE_edge *e0 = v->edge;
HE_edge *edge = e0;
do
{
  output(edge->vert);
  edge = edge -> prev -> pair;
} while (edge != e0);
```

## Boundary Edges

- A boundary halfedge does not belong to any face (e->face == null)
- If a halfedge is a boundary edge, its previous and next halfedge also will be boundary edges. This property can be used to traverse mesh boundary.



## Mesh Processing Software

MeshLab:

http://www.meshlab.net/

- PMP: Polygon Mesh Processing: v1.0 Feb 2019 https://www.pmp-library.org/
- CGAL: Computational Geometry Algorithms Library: https://www.cgal.org/
- OpenMesh:

https://www.openmesh.org/



### https://www.openmesh.org/ OpenMesh



#### A generic and efficient polygon mesh data structure

OpenMesh is a generic and efficient data structure for representing and manipulating polygonal meshes. For more information about OpenMesh and its features take a look at the Introduction page.

OpenMesh is a C++ library. Python bindings are also provided.

On top of OpenMesh we develop OpenFlipper, a flexible geometry modeling and processing framework.

#### News

OpenMesh 8.1 released

April 23, 2020

This release introduces Smart Handles.

Smart Handles know their corresponding mesh and can be used to simplify access to navigation methods (e.g. mesh->next\_halfedge\_handle(HH) can be written as handle.next()). You can find further details in the smart handles section under tutorials in the Documentation.

There are also new convenience functions to simplify calculations (e.g. summing up all neighbors,...)

Double support in OM and PLY Reader/Writer has been improved.



### https://www.openmesh.org/intro/

### OpenMesh provides the following features:

- Representation of arbitrary polygonal (the general case) and pure triangle meshes (providing more efficient, specialized algorithms)
- Explicit representation of vertices, halfedges, edges and faces.
- Fast neighborhood access, especially the one-ring neighborhood (see below).
- Highly customizable :
  - Choose your coordinate type (dimension and scalar type)
  - Attach user-defined elements/functions to the mesh elements.
  - Attach and check for attributes.
  - Attach data at runtime using dynamic properties.

In addition we provide some sample applications that demonstrate the usage of OpenMesh:

- · Mesh Smoothing.
- · Mesh Decimation.
- Qt integration.

### The halfedge data structure

Polygonal meshes consist of geometry (vertices) and topology (edges, faces). Data structure for polygonal meshes mainly differ in the way they store the topology information. While face-based structures lack the explicit representation of edges, and edge-based structures loose efficiency because of their missing orientation of edges, halfedge-based structures overcome this disadvantages. The halfedges (that result in splitting the edges in two *oriented* parts) store the main connectivity information:



- one vertex
- one face
- the next halfedge

## OpenMesh: Initialization

cube.off

General polygonal manifold mesh

```
#include <OpenMesh/Core/Mesh/PolyMesh ArrayKernelT.hh>
typedef OpenMesh::PolyMesh ArrayKernelT<> MyMesh;
MyMesh mesh;
OpenMesh::IO::read_mesh(mesh, "cube.off")
 Triangle mesh for Assassment
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
typedef OpenMesh::TriMesh_ArrayKernelT<> MyMesh;
MyMesh mesh;
OpenMesh::IO::read mesh(mesh, "cube.off")
```

```
OFF
8 12 0
```

## OpenMesh: Basic Types, Functions

```
OpenMesh::Vec3f p = \{ 1, 2, 3 \};
                                    //a point or a vector
OpenMesh::Vec3f n = { 0, 1, 0 };
                                   //a point or a vector
MyMesh::Point q = \{ 10, 20, 30 \}; //a point
MyMesh::Normal m = \{ 0.6, 0.8, 0 \}; //a vector
```

### **Basic Operations:**

```
len = p.length();
glVertex3fv(p.data());
glNormal3fv(n.data());
d = n1 | n2; //dot product
m = n1 % n2; //cross product
float x = p[0], y = p[1], z = p[2]; //component access
Number of vertices: mesh.n vertices()
Number of faces: mesh.n faces()
Number of edges: mesh.n_edges()
```

## OpenMesh: Handles

MyMesh::FaceHandle feh;

MyMesh::VertexHandle veh;

MyMesh::HalfedgeHandle heh;

MyMesh::HalfedgeHandle e1;



## OpenMesh: Iterators

Traversing a mesh using vertex iterator:

Traversing a mesh using face iterator:

```
MyMesh::FaceIter fit;
for (fit = mesh.faces_begin(); fit != mesh.faces_end(); fit++)
{
    MyMesh::FaceHandle feh = *fit;
    n = mesh.normal(feh);
}
```

## OpenMesh: Valence

### Vertex valence:

- = number of halfedges from the vertex
- = number of halfedges to the vertex
- = number of one-ring neighbours of the vertex
- int nedges = mesh.valence(veh);



Vertex valence = 10

### Face valence:

- = number of vertices of the face
- int nvert = mesh.valence(feh);
- $\Box$  For a triangle mesh, nvert = 3.

## OpenMesh: Normals

Getting face normals:

```
if (!mesh.has_face_normals())
    mesh.request_face_normals();
mesh.update_face_normals();
...
normFace = mesh.normal(feh);
```





```
if (!mesh.has_vertex_normals())
    mesh.request_vertex_normals();
mesh.update_face_normals();
mesh.update_vertex_normals();
...
normVert = mesh.normal(veh);
```





Using face normals



Using vertex normals

## OpenMesh: Circulators

Circulators are used to traverse the local neighbourhood using half-edge structures.

Find all faces sharing a given vertex:

```
Query V→F
```

```
MyMesh::VertexFaceIter vfit;
for(vfit = mesh.vf_iter(veh); vfit; vfit++)
{
    feh = *vfit;
    ...
}
```



Note: vfit returns false when all faces around the vertex have been visited. You may also use the function vfit.is valid()

## OpenMesh: Circulators

### <u>Circulator</u>

All one-ring neighours of a vertex: VertexVertexIter



All outgoing halfedges from a vertex: VertexOHalfedgeIter



All incident halfedges on a vertex: VertexIHalfedgeIter



All vertices of a given face:
FaceVertexIter



All halfedges belonging to a face: FaceHalfedgeIter



All adjacent faces of a given face:

FaceFaceIter



## Mesh Simplification



- Commonly used for creating level-of-detail representations.
- Primary goals:
  - Geometrical shape characteristics must be preserved.
  - Topology must not be significantly altered.

# Mesh Simplification

#### Vertex Decimation Algorithm

- Select a vertex from the mesh based on an error metric (see next slide).
- Remove the vertex with incident edges, and re-triangulate the resulting hole.



#### Edge Collapse Algorithm

Move a vertex towards its adjacent vertex, collapsing an edge



### Error Metric

- We require an error metric that measures the amount of error introduced in the simplified mesh at each step.
  - Cost function: Heuristic based on curvature, distance etc.
  - Selection: Modify the mesh where the cost function is minimum.
- Mesh elements to which a cost function is attached may be stored in a priority queue, for fast processing.
- Vertices can be flagged as locked, so that they will not be touched by the simplification algorithm:

mesh.status(veh).set\_locked(true);

### Signed Distance from a Plane

The plane passing through a point  $P = (p_x, p_y, p_z)$  and having a <u>unit</u> normal vector  $\mathbf{n} = (n_x, n_y, n_z)$  is given by the equation:

$$(x-p_x)n_x + (y-p_y)n_y + (z-p_z)n_z = 0$$

The signed distance of any vertex  $v = (v_x, v_y, v_z)$  from the plane is given by

$$d = (v_x - p_x)n_x + (v_y - p_y)n_y + (v_z - p_z)n_z$$



#### Error Metric for Vertices

- This error metric represents local curvature.
- For any vertex "V", consider the set of triangles sharing the vertex. (Query V->F)
- We take the weighted average of the centres of the triangles to get a point P, and the weighted average of the normal vectors to get a vector N. The point P and the normal vector N form an average plane.

**Normal** 

Centre

Area-weighted average normal

$$N = \frac{\sum_{i} A_{i} n_{i}}{\sum_{i} A_{i}}$$

$$\hat{N} = \frac{N}{|N|}$$

$$P = \frac{\sum_{i} A_{i} p_{i}}{\sum_{i} A_{i}}$$

### Error Metric for Vertices



The absolute value of the distance of the vertex *V* from the **average plane** can be used as an error metric representing the local curvature of the surface.

$$Cost(V) = abs(d)$$

## Error Metric for Edges

A linear combination of the dihedral angle between the two triangles bordering the edge and the length of the edge can be used as an error metric:

Cost(
$$P$$
,  $Q$ ) =  $k_1 \cos^{-1}(\boldsymbol{m}_1 \cdot \boldsymbol{m}_2) + k_2 |P-Q|$ 
Small angle
Small length

□ The above can be approximated by the following

Cost(P, Q) = 
$$k_1 \left( \frac{1 - m_1 \cdot m_2}{2} \right) + k_2 |P - Q|$$

## Collapsing Edges

- Collapsing a halfedge moves its "from\_vertex" (Q) to its "to\_vertex" (P)
- An edge collapse operation reduces the number of vertices by one, and the number of triangles by 2.
- OpenMesh function: mesh.collapse(heh);
- The topology may get altered.



Note: Edges AQ, BQ, PQ are deleted. Triangles BPQ, APQ are deleted.

# Edge Collapse Operation



**Sliver triangles**: An edge collapse operation usually results in several "thin" triangles.

Mesh repair: Some edges will need to be flipped to get an angle-optimal triangulation.

OpenMesh function: mesh.flip(heh);

## Edge Collapse Operation

#### Invalid edge collapse operations:



- (a). The edge or its pair belongs to a triangle whose other two edges are boundary edges.
- (b). Both vertices of the edge are boundary vertices, but the edge is not a boundary edge.
- (c). The intersection of the one-ring neighbourhoods of vertices *P* and *Q* normally contains only the opposite vertices *A*, *B* of an edge. In this case, the intersection contains the points *A*, *B*, *C* and *D*.

OpenMesh: mesh.is collapse ok();

### Subdivision Surfaces

- Iteratively subdivides a mesh, creating a smooth surface as the limit of a sequence of successive refinements.
- Extensively used in games and animation design for modelling complex objects with smooth surfaces, that are otherwise difficult to model using parametric curves/surfaces, splines etc.
- Two main classes of subdivision algorithms:
  - Surface interpolation methods
  - Surface approximation methods

## Interpolation Surfaces

- A low polygon mesh is used as the base mesh that defines the required shape of the final mesh.
- In each iteration, the mesh is subdivided and the locations of new vertices are computed using a weighted combination of a set of existing neighbouring vertices.
- No vertex is moved once it is computed. In particular, the base mesh's vertices are not altered.



Base Mesh

### Approximation Surfaces

- A low polygon mesh is used as the control mesh for the final mesh. The generated mesh gives only a smooth approximation surface.
- In each iteration, the mesh is subdivided and the new vertices computed using a weighted combination of existing neighbouring vertices.
- Existing vertices are then modified using a local averaging step. The shape of the subdivided surface tends to a limiting surface.



### Mesh Subdivision



#### Triangle Mesh Subdivision:

- Bisects every edge by inserting a new vertex between every pair of adjacent vertices, increasing the number of triangles by a factor of 4 in each step.
- Creates vertices of valence 6.

#### Quad Mesh Subdivision

- Bisects every edge by inserting a new vertex between every pair of adjacent vertices, and adds a new vertex for each face, increasing the number of quads by a factor of 4 in each step.
- Creates vertices of valence 4.



### Interpolation: Butterfly Algorithm

Uses a subdivision of triangle meshes.

Transforms a new vertex using a convex combination

of vertices in the neighbourhood.



$$P = \left(\frac{1}{2}\right)A + \left(\frac{1}{2}\right)B + \left(\frac{1}{8}\right)C + \left(\frac{1}{8}\right)D - \left(\frac{1}{16}\right)E - \left(\frac{1}{16}\right)F - \left(\frac{1}{16}\right)G - \left(\frac{1}{16}\right)H$$



## Weights of Butterfly Algorithm



Sum of weights = 8 Weights:

A, B: 1/2 C, D: 1/4

E, F, G, H: -1/8





Sum of weights = 4 Weights:

A, B: 1/2

C, D: 1/8

E, F, G, H: -1/16

(See previous slide)

The Butterfly Algorithm uses a 8-point stencil with a convex set of weights attached to the points.

### Butterfly Algorithm: OpenMesh



```
#include <OpenMesh/Tools/Subdivider/Uniform/ModifiedButterFlyT.hh>
OpenMesh::Subdivider::Uniform::ModifiedButterflyT<MyMesh> butterfly;
...
butterfly.attach(mesh);
butterfly(niter); //Number of iterations
butterfly.detach();
mesh.update_normals();
```

# Subdivision Curves For Approximation

- An iterative refinement of a control polygon (in 2D) can be made to converge to a parametric curve.
- Subdivision is a 2-step process
  - Topological split: New points are added as shown on Slide 45, and their positions computed using neighbouring vertices
  - Local Averaging/Smoothing: Existing points are transformed using their current position and the locations of its closest new neighbours.

Step 1: Computing new vertices Q



$$Q_0 = (P_0 + P_1)/2$$
  
 $Q_1 = (P_1 + P_2)/2$   
 $Q_2 = (P_2 + P_3)/2$ 

# Subdivision Curves for Approximation

Step 2: Shifting existing points. (Local averaging)



$$P_1' = \left(\frac{1}{4}\right)Q_0 + \left(\frac{1}{2}\right)P_1 + \left(\frac{1}{4}\right)Q_1$$

$$P_2' = \left(\frac{1}{4}\right)Q_1 + \left(\frac{1}{2}\right)P_2 + \left(\frac{1}{4}\right)Q_2$$





$$P_1' = \left(\frac{1}{8}\right)P_0 + \left(\frac{6}{8}\right)P_1 + \left(\frac{1}{8}\right)P_2$$

$$P_{1}' = \left(\frac{1}{8}\right) P_{0} + \left(\frac{6}{8}\right) P_{1} + \left(\frac{1}{8}\right) P_{2}$$

$$P_{2}' = \left(\frac{1}{8}\right) P_{1} + \left(\frac{6}{8}\right) P_{2} + \left(\frac{1}{8}\right) P_{3}$$

# Subdivision Curves: 2D Example









### Charles-Loop Subdivision

- Extension of the previous method for a triangle mesh.
- (Step 1: Computing new points): A new point is added on every edge, and their positions computed using a 4-point stencil.

Step 1: Computing new points





$$Q = \frac{P_1 + 3P_2 + P_3 + 3P_4}{8}$$

### Charles-Loop Subdivision

(Step 2: Local averaging): Existing points are transformed based on their current position and the locations of their closest new neighbours.



$$P_4' = \left(\frac{1}{10}\right) \left(Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6\right) + \left(\frac{4}{10}\right) P_4$$

# Loop Subdivision: OpenMesh









Original mesh 60 triangles

Iteration 1 240 triangles

Iteration 2 960 triangles

Iteration 3 3840 triangles

```
#include <OpenMesh/Tools/Subdivider/Uniform/LoopT.hh>
OpenMesh::Subdivider::Uniform::LoopT<MyMesh> loop;
...
loop.attach(mesh);
loop(niter); //Number of iterations
loop.detach();
mesh.update_normals();
```

### Catmull-Clark Subdivision

- An approximation method suitable for <u>quad meshes</u>
- Step 1: Computing new points:
  - Add a new face point at the centre of each face.
  - For each edge, add a new edge point by taking the average of the two end points and the new adjacent face points.
- Step 2: Local averaging:
  - Move existing vertices (P) using neighboring points as follows:  $\frac{1}{-}(F+2R+(n-3)P)$ 
    - F: Average of new face points surrounding P.
    - R: Average of midpoints of edges through P.
    - n: Number of edges that share the old vertex P.

### Catmull-Clark Subdivision



- Original Vertex
- New Face Point
- New Edge Point

- Modified Vertex
- ----- Subdivided Mesh

### Catmull-Clark Subdivision: OpenMesh



```
#include <OpenMesh/Tools/Subdivider/Uniform/ CatmullClarkT.hh>
OpenMesh::Subdivider::Uniform:: :CatmullClarkT<MyMesh> catmull;
...
catmull.attach(mesh);
catmull(niter); //Number of iterations
catmull.detach();
mesh.update_normals();
```

# Summary

- Mesh processing is fun!
- Many complex mesh shapes can be created using subdivision tools.
- Mesh decimation algorithms are used primarily for creating multiple levels of detail
- OpenMesh is a versatile mesh processing library that can be used for
  - Approximation (Loop, Catmull-clark)
  - Interpolation (Buttefly)
  - Decimation (Edge collapse)
  - Conversion (Read-write, Triangulation)
  - Visualization