$\begin{array}{c} {\rm Mandatory~assignment~2} \\ {\rm MEK4300} \end{array}$

Christian Pedersen

April 7, 2016

Exercise 1

We are to solve the dimensionless non-linear Falkner-Skan equation

$$f''' + ff'' + \beta (1 - f'^2) = 0 \tag{1}$$

where $f=f(\eta),$ $\eta=y\sqrt{\frac{U(1+m)}{2\nu x}}$ and $\beta=\frac{2m}{1+m}.$ m is is called the Falkner-Skan power-law parameter.

To solve this I introduce a new function $H=f^{\prime}.$ Inserted, this gives me two equations

$$H'' + fH + \beta (1 - H^2) = 0$$

 $H - f' = 0$ (2)

I then introduce two test functions v, q and rewrite the equation set on variational form

$$-\int H'v'dx + \int fHvdx + \int \beta vdx - \int \beta H^2vdx = 0$$

$$\int Hqdx - \int f'qdx = 0$$
(3)

This can be implemented directly into FEniCS.

Part a

Velocity profiles and shear-stress profiles for selected β values can be seen in figure 1.

Figure 1: Plots of the velocity profiles and the shear-stress profiles for selected values of β .

Part b

When we have $\beta=-0.198838$ we see from figure 1 that the shear-stress is very close to 0. When $\beta=-0.19884$ we have that the shear-stress is exactly 0. Two different solutions for the shear-stress when $\beta=-0.1$ can be seen in figure 2

Figure 2: Plots of the shear-stress profile for two different initial guesses.

Exercise 2