UNIT - III RANDOM PROCESSES-TEMPORAL CHARACTERISTICS

1.	A random process is defined as X (t) = A. $\cos(\omega t + \theta)$, where θ , ω are constants and A is a
	random variable. Then X(t) is stationary if

- a. E(A)=2
- b. E(A)=0
- c. A is a Gaussian with non zero mean
- d. A is a Rayleigh with non zero mean
- 2. A random process is defined as A cos ($\omega_0 t + \theta$), where θ is a random variable over (- Π , Π). Then second moment of the process is
 - a. 0
 - b. ½
 - C. 1/4
 - d. 1
- 3. For the random process X(t)=A cos (ωt) where ω is a constant and a is a uniform random variable over (0,1), the mean square value is
 - a. 1/3
 - b. $1/3 \cos(\omega t)$
 - c. $1/3 \cos^2(\omega t)$
 - d. 1/9
- 4. A stationary random process X(t) is periodic with period 2T. its auto correlation function

is

- a. A non periodic
- b. Periodic with period T
- c. Periodic with period 2T
- d. Periodic with period T/2
- 5. Consider a random process X (t) defined as Acos (ωt) + Bsin(ωt) where ω is constant and

A, B are random variables which of the following is a condition for its stationary?

- a. E(A)≠0; E(B)≠0
- b. Both A and b should be independent
- c. E(A)=0; E(B)=0

	d.	E(AB)≠0					
6.	Two WSS processes X(t) and Y(t) are jointly wide sense stationary if?						
	a.	E(X(t).Y(t))=E(X(t)).E(Y(t))					
	b.	Cov(X(t).Y(t))=var(X(t)).var(Y(t))					
	C.	$R_{XY}(t, t+\tau)=R_{xy}(\tau)$					
	d.	E(X(t))=constant & $E(Y(t))$ =constant					
7.	Fo	r the random processes X(t)= A cos (ω t+ θ) & Y(t)=A. sin (ω t+ θ), where A and w are					
	constants and is a uniform random variable over (0,2 Π),						
	a.	$R_{XY}(\tau)=R_{YX}(\tau)$					
	b.	$R_{YX}(\tau) = R_{XY}(-\tau)$					
	C.	$R_{XY}(\tau)$ =- $R_{YX}(\tau)$					
	d.	$R_{XY}(-\tau)=-R_{YX}(\tau)$					
8.	X (t) is a Gaussian process with mean =2 and auto correlation function 5. $E^{-0.2 \tau }$. Then the						
	variance of the random variable X(2) is						
	a.	21					
	b.	25					
	C.	4					
	d.	1					
9.	X (t) is a random process defined as $X(t) = \cos\Omega t$, where Ω is a uniform random variable					
	OV	over $(0, w_0)$. Then the mean of $X(t)$ is zero at $t=$					
	a.	3∏/2w ₀					
	b.	∏/w₀					
	C.	$\prod/2w_0$					
	d.	$\prod /4w_0$					
10.	Fo	r an ergodic process,					

	a.	Mean is necessarily zero						
	b.	Mean square value is infinity						
	C.	Mean square value is independent of time						
	d.	All time averages are zero						
11.	11. A random process is a random variable that is a function of							
	a.	Time						
	b.	Temperature						
	C.	Both						
	d.	None						
12.	a. b. c.	andom process is said to be independent , if f _{XY} (x,y₁:t₁,t₂)≠f _X (x₁:t₁).f _Y (y₁:t₂) is True False Both None						
13.	tim a. b. c.	stationary random process X(t) will have itsproperties not affected by a shift in lee Mathematical Normal Statistical None						
14.	a. b. c.	strict sense stationary (SSS) process are WSS it is True False Both None						
15.	a. b. c.	Il the statistical properties of X(t) are not affected by time shift, it is referred asSSS WSS Both None						
16.	a. b. c.	averages are computed by considering all the sample functions. Time Ensemble Both None						
17.	ave	andom process X (t) is said to be ergodic or ergodic in mean sense, if its statistical erage is to its time. Equal						

- b. Not equal
- c. Both
- d. None
- 18. $R_{XX}(\tau +_ T) = R_{XX}(\tau)$ then it is_____
 - a. Periodic
 - b. Non periodic
 - c. Both
 - d. None
- 19. $R_{XY}(\tau) = _____$
 - a. $R_{YX}(\tau)$
 - b. $R_{YX}(-\tau)$
 - c. $R_{XX}(\tau)$
 - d. None
- 20. Correlation coefficient $\rho_{XX}(t_1,t_2)=$ _____
 - $a.C_{XY}(t_1,\!T_2)/(C_{XX}(t_1,\!t_1))^{1/2}.(C_{XX}(t_2,\!t_2))^{1/2}$
 - $b. \ C_{XX}(t_1,\!t_2)/\big(C_{XY}(t_1,\!t_1)\big)^{1/2}.\big(C_{XY}(t_2,\!t_2)\big)^{1/2}$
 - c. $C_{xx}(t_1,t_2)/(C_{xx}(t_1,t_1))^{1/2}.(C_{xx}(t_2,t_2))^{1/2}$
 - d. none

1. b	2. b	3. c	4. c	5. c
6. c	7. b	8. d	9. b	10. c
11. a	12. b	13. c	14. a	15. c
16. b	17. a	18. a	19. b	20. c

ANSWERS: