

(B) BUNDESREPUBLIK

DEUTSCHLAND

(a) Int. Cl.7: /83WO (b) G 01 F 23/28

G 01 N 9/24 B 65 D 90/48

DEUTSCHES
PATENT- UND
MARKENAMT

(2) Aktenzeichen: 100 14 724.0
 (2) Anmeldetag: 24. 3. 2000

(4) Offenlegungstag: 27. 9. 2001

(7) Anmelder:

Endress + Hauser GmbH + Co., 79689 Maulburg, DE

(1) Vertreter:

Andres, A., Dipl. Phys., Pat. Anw., 79589 Binzen

② Erfinder:

DE

D'Angelico, Sascha, 79540 Lörrach, DE; Lopatin, Sergej, 79540 Lörrach, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 40 08 135 C2

31 40 938 C2

DE 196 46 685 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter
- Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung vorzuschlagen, die eine verläßliche Bestimmung und/oder Überwachung des Füllstandes oder der Dichte des Mediums erlauben. Bezüglich der erfindungsgemaßen Vorrichtung wird die Aufgabe dadurch gelöst, daß zumindest ein erster Mode und ein zweiter Mode der Schwingungen der schwingfähigen Einheit (2) ausgewertet werden und daß anhand der ausgewerteten Moden eine Massenänderung an der schwingfähigen Einheit (2) erkannt wird.

20

25

30

50

DE 100 14 724 A 1

kannt wird.

Während die zuvor beschriebene erste Variante des erfindungsgemäßen Verfahrens vorsieht, daß zwei Moden ausgewählt werden, die gänzlich unterschiedliche Reaktionen als Folge der Massenänderung bzw. als Folge des Kontakts mit dem Medium zeigen, geht eine zweite Variante einen anderen Weg. Gemäß der alternativen zweiten Variante des erfindungsgemäßen Verfahrens ist vorgesehen, daß als erster Mode und als zweiter Mode der Schwingungen der schwingfähigen Einheit zwei Moden ausgewählt werden, wobei beide Moden jeweils einen ersten Anteil aufweisen, der abhängig ist von der Ankopplung an die Masse des Mediums, und wobei beide Moden einen zweiten Anteil aufweisen, der unabhängig ist von der Ankopplung an die Masse des Mediums und der nur von der jeweiligen Masse der schwingfähigen Einheit abhängig ist.

Eine vorteilhafte Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, daß anhand der funktionalen Abhängigkeit des ersten und des zweiten Modes der Schwingungen der schwingfähigen Einheit von dem Medium bzw. von der Masse der schwingfähigen Einheit Rückschlüsse auf eine Massenänderung der schwingfähigen Einheit gezogen werden. Die einzige Forderung, die hinsichtlich der Auswahl der beiden Moden zu stellen ist, daß sie sich hinreichend voneinander unterscheiden.

Die Ermittlung des Einflusses der Ansatzbildung auf die Meßwerte erfolgt bevorzugt über ein Gleichungssystem, das sich aus den beiden nachfolgend genannten Formeln zusammensetzt:

$$\Delta F_C = f_C^1(m_k) + f_C^2(m_a)$$

$$\Delta F_D = f_D^1(m_k) + f_D^2(m_k)$$
Die in diesem Gleichungssystem verwendeter familie

Die in diesem Gleichungssystem verwendeten Symbole kennzeichnen die folgenden Größen: ΔI ε: die relative Frequenzverschiebung eines ersten Modes;

 $\Delta \Gamma_D$: die relative Frequenzverschiebung eines zweiten Modes; wobei der Term

$$\Delta F[\%] = \left(\frac{-F_{\text{Mefl}}[Hz]}{F_{\text{Loft, chare}} - Ansatz}[Hz]} - 1\right) * 100\%$$

jeweils die relative Frequenzverschiebung der Eigenfrequenz des entsprechenden Modes symbolisiert, wobei relativ bedeutet, daß die gemessene Frequenzverschiebung in bezug auf die entsprechende Eigenfrequenz in Luft ohne Ansatzbildung in Prozent ausgedrückt wird;

 m_k : ein Maß tür jegliche Art von Massenankopplung an und Dämpfung durch das Medium. Hier spielen – wie bereits an vorhergehender Stelle beschrieben – neben der Eintauchtiefe h der schwingfähigen Einheit auch die Dichte ρ des Mediums und die Viskosität η des Mediums eine Rolle. Rechnerisch läßt sich dies durch folgende funktionale Beziehung ausdrucken: $m_k = i(h; \rho, \eta)$; m_a : die Ansatzmasse;

 $f_c^2(m_k)$. $f_0^2(m_k)$: die Frequenzverschiebungskurven zweier hinreichend unterschiedlicher Moden (z. B. Mode C und Mode D) der schwingfähigen Einheit als Funktion der Massenankopplung m_k der schwingfähigen Einheit an und der Dampfung der schwingfähigen Einheit durch das Medium (\rightarrow Eintauchkurven); $f_c^2(m_k)$: die Frequenzverschiebungskurven zweier hinreichend unterschiedlicher Moden (z. B. Mode C und Mode

D) der schwingfähigen Einheit als Funktion der Ansatzbildung m_a an der schwingfähigen Einheit (→ Ansatzkurven). Eine vorteilhalte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß eine Fehlermeldung ausgegeben wird, wenn die durch Massenänderung der schwingfähigen Einheit hervorgerufenen Frequenzänderungen eines ersten und/oder eines zweiten Modes der Schwingungen der schwingfähigen Einheit einen vorgegebenen Sollwert überschrei-

Besonders vorteilhaft ist es, wenn eine durch Massenänderung an der schwingfähigen Einheit hervorgerufene Änderung eines ersten und/oder eines zweiten Modes der Schwingungen der schwingfähigen Einheit dazu verwendet wird, eine Inline-Korrektur der McBdaten der schwingfähigen Einheit vorzunehmen.

Bezüglich der erfindungsgemäßen Vorrichtung wird die Aufgabe dadurch gelöst, daß die Regel-/Auswerteeinheit zumindest einen ersten Mode und einen zweiten Mode der Schwingungen der schwingfähigen Einheit zur Auswertung heranzicht und daß die Regel-/Auswerteeinheit anhand der ausgewerteten Moden eine Massenänderung an der schwingfähigen Einheit erkennt.

Eine vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung sieht vor, daß die Auswerte-/Regeleinheit in die Vorrichtung zur Bestimmung und/oder Überwachung des Füllstandes bzw. zur Bestimmung der Dichte des Mediums integriert ist. Bei der erfindungsgemäßen Vorrichtung handelt es sich in diesem Falle um einen sog. Kompaktsensor. Die Fehlermeldung kann z. B. optisch, akustisch und/oder über zumindest zwei Datenleitungen digital ausgegebenen werden.

Eine zum Kompaktsensor alternative Ausgestaltung der erfindungsgemäßen Vorrichtung sieht zumindest zwei Datenleitungen vor, über die die Meßdaten zur Auswerte-/Regeleinheit geleitet werden oder über die die Auswerte-/Regeleinheit mit einer entfernten Kontrollstelle kommuniziert. Besonders vorteilhaft ist es in diesem Zusammenhang, wenn die jeweiligen Meß- und/oder Korrekturdaten digital an die entfernte Kontrollstelle übertragen werden. Die digitale Datenkommunikation hat gegenüber der analogen Datenübertragung den bekannten Vorteil einer erhöhten Störsicherheit. Für die Kommunikation kann selbstverständlich auf die bekannten Übertragungsprotokolle und Übertragungsstandards zurückgegriffen werden.

Gemäß einer bevorzugten Weiterbildung der erfindungsgemäßen Vorrichtung wird eine Ausgabeeinheit vorgeschlagen, die optisch und/oder akustisch eine Fehlermeldung an das Bedienpersonal ausgibt, wenn, bevorzugt im Rahmen

20

40

45

50

55

65

DE 100 14 724 A 1

die Datenleitung 13. Bevorzugt erfolgt die Kommunikation wegen der erhöhten Störsicherheit der Übertragung auf digitaler Basis.

Die Figuren Fig. 2a, Fig. 2b, Fig. 2c und Fig. 2d zeigen vier ausgewählte und mögliche Schwingungsmoden einer schwingfähigen Einheit 2 mit zwei paddelförmig ausgebildeten Schwingstäben 3, 4. Bei dem in Fig. 2b dargestellten Mode B ist die Eintauchkurve ΔF im wesentlichen unabhängig von der Massenankopplung m_k an das Medium, da infolge der parallel zur Paddelfläche erfolgenden Schwingbewegungen die mit dem Medium wechselwirkenden Querschnittsflächen relativ klein sind. Die Schwingungsfrequenz ist daher im wesentlichen unabhängig von der Eintauchtiefe h der schwingfähigen Einheit 2 in das Medium, sie zeigt aber eine deutliche Abhängigkeit von der an den Schwingstäben 3, 4 vorhandenen Ansatzmasse m_a . Wie bereits mehrfach erwähnt, gelten analoge Überlegungen auch für einen Massenverlust, der an der schwingfähigen Einheit auftritt. Im Rahmen gewisser Toleranzen läßt sich daher aus einer Frequenzänderung ΔF des Modes B ein eindeutiger Schluß auf die an den Schwingstäben 3, 4 vorhandene Ansatzmasse m_a ziehen.

Graphisch ist dieser funktionale Zusammenhang in Fig. 3 zu sehen. Fig. 3 zeigt die Eintauchkurven $\Delta F(h)$ der in Fig. 2b dargestellten Moden A und B mit und ohne Ansatzmasse m_a . Dargestellt sind in Fig. 3 auch die entsprechenden Eintauchkurven $\Delta F(h)$ bei einer negativen Massenänderung der schwingfähigen Einheit 2, also einem Masseverlust (m_k) an der schwingfähigen Einheit 2; ein Masseverlust tritt z. B. infolge von Korrosion oder mechanischer Abnutzung der Schwingstäbe 3, 4 auf. Die Eintauchkurven $\Delta F(h)$, also die Frequenzänderung ΔF des Modes B in Abhängigkeit von der Eintauchtiefe h, haben unabhängig von der Masse der schwingfähigen Einheit 2 näherungsweise die Steigung Null. Sie verlaufen also im wesentlichen parallel zur x-Achse. Logischerweise wird die Frequenzänderung ΔF mit wachsender bzw. fallender Massenänderung m_a größer. Ein gänzlich anderes Verhalten zeigen die Eintauchkurven $\Delta F(h)$ des gleichfalls in Fig. 3 darstellten Modes A: Eine Frequenzänderung wird hier ganz klar von der Eintauchtiefe h der schwingfähigen Einheit 2 in das Medium dominiert. Wiederum drückt sich eine positive oder negative Massenänderung m_a , m_k der schwingfähigen Einheit 2 in einer Parallelverschiebung der Eintauchkurven $\Delta F(h)$ aus.

Beide Moden, Mode A und Mode B, sind daher bestens dazu geeignet, in Verbindung mit einer ersten Ausgestaltung des erfindungsgemäßen Verfahrens verwendet zu werden. Gemäß der ersten Variante des erfindungsgemäßen Verfahrens erfolgt die Bestimmung des Grades der Ansatzbildung (bzw. des Massenverlusts) nämlich anhand zweier Moden, wobei es sich bei dem ersten Mode um einen Mode handelt, dessen Schwingungen im wesentlichen unabhängig sind von dem Medium, und wobei es sich bei dem zweiten Mode um einen Mode handelt, dessen Schwingungen im wesentlichen nur von dem Medium beeinflußt werden.

Die anhand des von der Ansatzmasse m_a (bzw. dem Masseverlust) abhängigen Modes B ermittelte Frequenzänderung ΔF wird – wie eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens vorschlägt – zur Inline-Korrektur der Meßdaten des Vibrationsdetektors 1 herangezogen. Weiterhin können die Informationen über den Grad der Ansatzbildung an der schwingfähigen Einheit 2 bzw. des Massenverlusts der schwingfähigen Einheit 2 auch für "Predictive Maintenance"-Zwecke herangezogen werden:

Dem Bedienpersonal wird angezeigt oder mitgeteilt, wann die schwingfähige Einheit 2 gereinigt oder durch eine ansatzfreie Einheit 2 ersetzt werden muß.

Die Figuren Fig. 2c und Fig. 2d zeigen zwei weitere mögliche Moden einer schwingfähigen Einheit 2 mit zwei paddelförmig ausgebildeten Schwingstäben 3, 4, die bevorzugt bei der zweiten Variante des erfindungsgemäßen Verfahrens eingesetzt werden. Voraussetzung ist hier, daß beide Moden C und D sowohl eine Abhängigkeit von der Massenankopplung m_k der schwingfähigen Einheit an das Medium als auch eine Abhängigkeit von der Ansatzmasse, die sich an der schwingfähigen Einheit gebildet hat, aufweisen. Weiterhin müssen sich die beiden ausgewählten Moden deutlich hinsichtlich ihrer Eintauchkurven $\Delta F(h)$ voneinander unterscheiden. Daß dies der Fall ist, läßt sich anhand der in Fig. 4 gezeigten skizzierten Kurvenscharen klar erkennen.

In Fig. 5 sind übrigens die Ansatzkurven $\Delta F(m_a)$ des Modes A, B und C dargestellt. Während Mode B nur eine geringe Abhängigkeit von der Ansatzmasse m_a aufweist, zeigen die Moden C und D eine starke Abhängigkeit von einer Massenänderung an der schwingfähigen Einheit 2.

Mathematisch formal lassen sich die Eintauchkurven ΔF(h) der beiden Moden C und D in erster Näherung (der Mischterm wird vernachlässigt) durch folgendes Gleichungssystem beschreiben:

$$\Delta F_C = f_C^1(m_k) + f_C^2(m_k) \qquad (1)$$

$$\Delta F_D = f_D^1(m_k) + f_D^2(m_k)$$
 (2)

Dieses Gleichungssystem muß nach $m_a = f(\Delta F_0, \Delta F_x)$ aufgelöst werden. Aus Gleichung (1) folgt:

$$f_C^2(m_a) = \Delta F_C - f_C^1(m_k)$$
 (3)

Aus Gleichung (2) folgt:

$$f_D^1(m_k) = \Delta F_D - f_D^2(m_a) \qquad (4)$$

$$m_{k} = f_{D}^{-1} \left(\Delta F_{D} - f_{D}^{2} (m_{a}) \right)$$
 (5)

Bevorzugt wird übrigens ein numerisches Lösungsverfahren angewendet. Aus (3) und (5) ergibt sich:

30

DE 100 14 724 A 1

sen, der im wesentlichen unabhängig ist von dem Medium und im wesentlichen nur von der jeweiligen Masse der schwingfähigen Einheit (2) abhängig ist.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß anhand der funktionalen Abhängigkeit des ersten und des zweiten Modes der Schwingungen der schwingfähigen Einheit (2) von dem Medium bzw. von der Masse der schwingfähigen Einheit (2) Rückschlüsse auf die Masse des Ansatzes, der sich an der schwingfähigen (2) Einheit gebildet hat, gezogen werden.

8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5 oder nach Ansprüch 6 oder 7, dadurch gekennzeichnet, daß eine Fehlermeldung ausgegeben wird, wenn die durch die Massenänderung an der schwingfähigen Einheit hervorgerufenen Änderungen des ersten und/oder des zweiten Modes der Schwingungen der schwingfähigen Einheit (2) einen vorgegebenen Sollwert überschreiten.

9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6 oder nach Ansprüch 6 oder 7, dadurch gekennzeichnet, daß eine durch eine Massenänderung an der schwingfähigen Einheit (2) hervorgerufene Änderung des ersten und/oder des zweiten Modes der Schwingungen der schwingfähigen Einheit (2) dazu verwendet wird, eine Inline-Korrektur der Schwingfrequenz der schwingfähigen Einheit (2) vorzunehmen.

10. Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in dem Behälter, wobei eine schwingfähige Einheit vorgesehen ist, die auf der Höhe des vorbestimmten Füllstandes angebracht ist bzw. wobei eine schwingfähige Einheit so angebracht ist, daß sie bis zu einer definierten Eintauchtiefe in das Medium eintaucht, wobei eine Antriebs-/Empfangseinheit vorgesehen ist, die die schwingfähige Einheit mit einer vorgegebenen Erregerfrequenz zu Schwingungen anregt und die die Schwingungen der schwingfähigen Einheit empfängt, und wobei eine Regel-/Auswerteeinheit vorgesehen ist, die das Erreichen des vorbestimmten Füllstandes erkennt, sobald eine vorgegebene Frequenzänderung auftritt bzw. die anhand der Schwingfrequenz der schwingfähigen Einheit die Dichte des Mediums ermittelt, dadurch gekennzeichnet,

daß die Regel-/Auswerteeinheit (10) zumindest einen ersten Mode und einen zweiten Mode der Schwingungen der schwingfähigen Einheit (2) zur Auswertung heranzieht und

daß die Regel-/Auswerteeinheit (10) anhand der ausgewerteten Moden eine Massenänderung an der schwingfähigen Einheit (2) erkennt.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Auswerte-/Regeleinheit (10) in die Vorrichtung zur Bestimmung und/oder Überwachung des Füllstandes bzw. zur Bestimmung der Dichte des Mediums integriert ist.

12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß zumindest zwei Datenleitungen (8, 9) vorgesehen sind, über die Meßdaten zur Auswerte-/Regeleinheit (10) geleitet werden oder über die die Auswerte-/Regeleinheit (10) mit einer entfernten Kontrollstelle (12) kommuniziert.

13. Vorrichtung nach einem oder mehreren der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß eine Ausgabeeinheit (14) vorgesehen ist, die optisch und/oder akustisch eine Fehlermeldung an das Bedienpersonal ausgibt, wenn, bevorzugt im Rahmen vorgegebener Toleranzwerte, ein vorgegebener Sollwert der Frequenzänderung überoder unterschritten wird, der auf eine Massenänderung an der schwingfähigen Einheit (2) zurückgeht.

14. Vorrichtung nach Anspruch 10 oder 13, dadurch gekennzeichnet, daß der Regel-/Auswerteeinheit (10) eine Speichereinheit (11) zugeordnet ist, in der Sollwerte für tolerierbare Frequenzänderungen, die auf eine Massenänderung an der schwingfähigen Einheit (2) zurückgehen, abgespeichert sind.

15. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Meßdaten und die Daten über die Ansatzbelegung der schwingfähigen Einheit (2) digital an die entfernte Kontrollstelle (13) übertragen werden.

Hierzu 5 Seite(n) Zeichnungen

7

Fig. 2c

Fig. 2d

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 100 14 724 A1 G 01 F 23/28 27. September 2001

101 390/744