XX Internation European Energy Markets, 10-12 June, 2024, Istanbul, Türkiye

PS 4B

Self-Scheduling for a Hydrogen-Based Virtual Power Plant in Day-Ahead Energy and Reserve Electricity Markets

Erik F. Alvarez, Pedro Sánchez-Martín, and Andrés Ramos

Background and Motivation

- Hydrogen-based Virtual power plant (H2-VPP): Solar-PV+Battery+eletrolyzer+tank
- Coordination: Electricity & H2 production → Hydrogen demand, Electricity market

Research Questions

How does the...

- 1. Use of a H2 tank and battery (BESS) for energy storage affect H2-VPP's profits?
- 2. The interplay between electricity and H2 affect H2-VPP's operation?

H2-VPP

- ***** Electricity:
 - Solar-PV:
 - Max. power: 30 MW
 - ❖ BESS:
 - **❖** Max. Charge/discharge: 5 MW
 - Max storage: 20 MWh
 - **!** Electricity connection:
 - Max. flows: 30 MW
- Hydrogen:
 - Electrolyzer:
 - Efficiency: 60 kWh/kgH2
 - Max./Min. production: 333 kgH2-80 kgH2 at 30 bar
 - Min. up-time: 8 hours
 - **❖** Tank:
 - Compressor electricity consumption: 0.47 kWh/KgH2
 - **❖** Max./Min. storage: 7.5 tH2 − 3.5 tH2
 - ❖ Max. Charge/discharge: 220 kgH2 at 60 bar
 - Customer:
 - Daily demand: 3 tH2
 - ❖ Max absolute ramp: 90 kgH2

^{*}BESS and electrolyzer contribute to operating reserve

Results: Total operation cost [MEUR]

- ❖ Market cost: Incomes from arbitrage
- *Reserve cost: Incomes from operating reserve contributions

Results: Electricity Balance – Spring week

Conclusions

- Lacking BESS impairs the system's ability to swiftly adapt, leading to increased operational costs in the range of 29-87%,
 - Absence of H2-tank increases operational costs by 40-153% as significant amount of excess energy cannot be stored,
- Without BESS, the H2 VPP tends to get high peaks of electricity purchases. And more total purchases when there is no tank.

Thank You!

Erik Francisco Alvarez Quispe Ph.D. Student

Institute for Research in Technology (IIT) **Comillas Pontifical University** 28015 Madrid, Spain +34 91 542-2800 ext. 4270

ealvarezq@comillas.edu

https://www.iit.comillas.edu/ https://www.comillas.edu/en/

