Torino, novembre 2004

Reti e sistemi telematici

Architetture di router IP

Gruppo Reti TLC giancarlo.pirani@telecomitalia.it http://www.telematica.polito.it/

GIANCARLO PIRANI – TELECOM ITALIA LAB

ROUTER IP - 1

Richiami su IP

GIANCARLO PIRANI - TELECOM ITALIA LAB

IP: Internet Protocol

- Protocollo di strato rete (strato 3)
- Definisce
 - Formato pacchetti
 - Formato indirizzi
 - Procedure di forwarding dei pacchetti (detti datagram)
- · Offre un servizio detto best-effort
 - non connesso
 - inaffidabile
 - senza garanzie di qualità di servizio (QoS)
- Specificato in RFC 791 (novembre 1981)

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 5

L'evoluzione da IPv4 a IPv6

- Le motivazioni
 - esaurimento spazio indirizzamento IPv4 ($2^{32} = 4.3 \times 10^9$)
 - esplosione tabelle instradamento sui router
 - servizi nuovi e più efficienti (es. QoS, Sicurezza, Mobilità, Multicast)
- Gli ostacoli
 - Esiste una legacy su IPv4
 - Costi della transizione
 - Disponibilità di applicazioni
- I fattori abilitanti
 - Disponibilità di uno spazio di indirizzamento praticamente illimitato $(2^{128} = 3.4 \times 10^{38})$
 - Stato molto avanzato degli standard
 - Disponibilità di apparati di tutti i principali costruttori
 - Costi della NON transizione

GIANCARLO PIRANI - TELECOM ITALIA LAB

Il protocollo ICMP

- ICMP (Internet Control Message Protocol) è solitamente considerato parte del livello IP
- Comunica messaggi di errore o di controllo.
- Può trasportare richieste di informazioni e risposte alle richieste.
- I messaggi ICMP sono trasmessi all'interno di datagram IP.

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 7

Indirizzi IP: Principi

- Ogni interfaccia di un host è individuata da un indirizzo a 32 bit univoco
- Un indirizzo è caratterizzato da informazioni sulla rete (netid) e sull'host (hostid)
- · L'instradamento si basa sul netid
 - indirizzo non individua la macchina ma la rete ⇒ se sposto host devo cambiare indirizzo
- Ogni router ha almeno due indirizzi IP
- Gli host solitamente uno solo
 - server spesso hanno più accessi (multi-homed)

GIANCARLO PIRANI - TELECOM ITALIA LAB

Rappresentazione decimale

• L'indirizzo Internet viene comunemente rappresentato nella forma:

XXX.XXX.XXX

con xxx numero decimale tra 0 e 255

 Il primo numero permette di riconoscere la classe dell'indirizzo:

Classe A	Classe B	Classe C	Classe D	Classe E
0127	128191	192223	224239	240255

GIANCARLO PIRANI – TELECOM ITALIA LAB

ROUTER IP - 9

Classi di indirizzi IP

• A: 105.20.38.165

B: 130.192.2.158

C: 193.24.54.110

indirizzo di rete (netid)

GIANCARLO PIRANI - TELECOM ITALIA LAB

L'introduzione delle maschere

- È necessario superare la divisione rigida in netid e hostid
- · Scompare il concetto di classe
- Uso maschera per definire quanti bit dei 32 di indirizzo individuano la rete, ovvero per indicare l'estensione del campo netid
- Inizialmente si utilizzano le maschere per suddividere indirizzi di classe B (RFC 950)
- In una seconda fase si utilizzano le maschere per accorpare (blocchi contigui) di indirizzi di classe C (RFC 1338 - 1992)
 - CIDR (Classless Inter-Domani Routing RFC 1519 1993)
 - Permette di ridurre la dimensione delle routing tables, e ridurre il numero di reti propagate dai nodi

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 11

La maschera

- La maschera (o netmask) è un valore di 32 bit contenente:
 - bit messi a 1 per identificare la parte di rete
 - bit messi a 0 per identificare la parte di host
- Per esigenze di instradamento, host e router devono conoscere la parte di rete del(i) proprio indirizzo IP: utilizzano la maschera
- Maschere non compaiono nei pacchetti IP, ma sono scambiate nelle tabelle di instradamento

GIANCARLO PIRANI - TELECOM ITALIA LAB

Suddivisione classe B (subnetting)

• Esempio: indirizzo host 130.192.2.7

130.192.2.7 10000010 11000000 00000010 00000111 255.255.255.0 11111111 11111111 1111111 00000000

130.192.2.0 10000010 11000000 00000010 00000000

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 13

Consegna diretta e indiretta

- Sottorete: insieme di host tra cui esiste un collegamento di livello 2. Può essere una LAN, un collegamento punto-punto, etc.
- Se due host sono connessi alla stessa sottorete si ha consegna diretta (non intervengono router)
- Se due host non sono connessi alla stessa sottorete, la consegna è mediata da uno o più router: si ha consegna indiretta

GIANCARLO PIRANI – TELECOM ITALIA LAB

Router IP

- · Funzionalità dei router
 - forwarding
 - routing
 - controllo e gestione
- · Architettura dei router
 - router con bus condiviso
 - router con matrice di commutazione

GIANCARLO PIRANI – TELECOM ITALIA LAB

ROUTER IP - 15

Funzionalità dei router (2)

- Forwarding
 - analizzare header IP
 - identificare next hop
- Routing
 - identificare il percorso
 - algoritmi statici o dinamici
 - gerarchia

GIANCARLO PIRANI - TELECOM ITALIA LAB

Funzionalità dei router (2) Analizza l'header IP del pacchetto entrante - analizzare header IP Se indirizzo IP destinazione = indirizzo IP Router - identificare next hop => passa ai livelli superiori per elaorazione In caso contrario decrementa il campo TTL (Time To Live), scarta il pacchetto se TTL=0, inoltra il datagram al router successivo (next hop) dopo aver aggiornato la checksum e indentificato l'indirizzo del naxt hop.

Routing

Forwarding

- identificare il percorso
- algoritmi statici o dinamici
- gerarchia

Routing agent FIFO packet scheduler Line interface

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 17

Altre funzionalità

- gestione di errori
 - esempio: informare la sorgente in caso di congestione o anomalie nell'instradamento
 - si usa il protocollo ICMP (Internet Control Message Protocol)
- - esempio: fornire informazioni sullo stato ed eventualmente modificarlo
 - si usa il protocollo SNMP (Simple Network Management Protocol)
- multicast
- sicurezza
- accounting
- qualità del servizio

GIANCARLO PIRANI - TELECOM ITALIA LAB

Architettura dei router (1)

- Le singole implementazioni si differenziano per:
 - scelta dei blocchi
 - loro distribuzione e interconnessione
- Principali parametri prestazionali:
 - throughput aggregato
 - scalabilità
 - affidabilità

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 19

Architettura dei router (2)

- · Blocchi fondamentali:
 - processore centrale (detto route processor o network processor) per routing, controllo e gestione
 - interfacce di linea (line card) per la ricezione e trasmissione dei dati
 - uno o più sottosistemi per l'analisi dell'header (route table lookup) e l'instradamento dei pacchetti (forwarding engine)
 - una struttura di interconnessione (bus condiviso o matrice di commutazione) che permette la comunicazione tra le diverse parti del router.
 - Blocchi più critici:
 - forwarding engine(s)
 - · struttura d'interconnessione

GIANCARLO PIRANI - TELECOM ITALIA LAB

Qualche numero

- · Limiti attuali di un bus condiviso: 1,28 Gbps
- Con l'attuale lunghezza media dei pacchetti IP (circa 1,6 Kbit), il tempo medio a disposizione per le operazioni di lookup dell'header è:
 - Ethernet 10 Mb/s: 160 μs (~6 Kpps)
 - Ethernet 100 Mb/s: 16 μs (~60 Kpps)
 - STM-1 (155 Mb/s): 10 μs (~100 Kpps)
 - STM-4 (622 Mb/s): 2.5 μs (~400 Kpps)
 - STM-16 (2.5 Gb/s): 0.6 μs (~1.5 Mpps)

GIANCARLO PIRANI - TELECOM ITALIA LAB

ROUTER IP - 21

Architettura della forwarding engine

- Cache locale + full route table lookup centralizzato
 - fast/slow path
 - performances non predicibili e dipendenti dal tipo di traffico
- Full route table lookup locale
 - solo fast path
 - performance predicibili
 - richiede HW dedicato

GIANCARLO PIRANI - TELECOM ITALIA LAB

