ベクトル

渡邊 陽平

2024年4月1日

1ベクトル

平面上で図形の平行移動は、向きを持つ線分で表現できる。線分につけた矢印の向きで移動する向きを、線分の長さで移動距離を表現する。

A 有効線分とベクトル

向きをつけた線分を有向線分という。有向線分 AB では、A を始点、B を終点と呼び、その向きは A から B へと向かっているとする。また、線分 AB の長さを、有向線分 AB の大きさまたは長さと言う。

平面上で図形を平行移動する場合,平行移動を表す線分はいくらでも図示できるが、位置が違うだけで長さ、 向きは等しい。

有向線分の違いを無視して、その向き、長さのみに着目したものをベクトルという。 例として、物理で習った速度や力は向きと大きさを持つ量であり、ベクトルと言える。

B ベクトルの表記

有向線分 \overrightarrow{AB} が表すベクトルを \overrightarrow{AB} で表す。また、ベクトルを \overrightarrow{a} \overrightarrow{b} と表すこともある。 ベクトル \overrightarrow{AB} , \overrightarrow{a} の大きさはそれぞれ $|\overrightarrow{AB}|$, $|\overrightarrow{a}|$ で表す。このとき、 $|\overrightarrow{AB}|$ は有向線分 \overrightarrow{AB} の長さに等しい。

向き、大きさが同じの 2 つのベクトル \overrightarrow{a} $,\overrightarrow{b}$ は等しいといい、 $\overrightarrow{a}=\overrightarrow{b}$ と書く。 $\overrightarrow{AB}=\overrightarrow{CD}$ のとき、有向線分 \overrightarrow{AB} を平行移動して有向線分 \overrightarrow{CD} と重ね合わせることができる。 ベクトル \overrightarrow{a} と大きさが等しく、向きが反対のベクトルを \overrightarrow{a} の逆ベクトルといい、 $-\overrightarrow{a}$ で表す。

 $\overrightarrow{a} = \overrightarrow{BA}$ である。 すなわち $\overrightarrow{BA} = \overrightarrow{AB}$

2 ベクトルの演算

A ベクトルの加法

ベクトル $\overrightarrow{a} = \overrightarrow{AB}$ とベクトル \overrightarrow{b} に対して、 $\overrightarrow{BC} = \overrightarrow{b}$ となる点 C を取る。

このようにして定まるベクトル \overrightarrow{AB} を \overrightarrow{a} と \overrightarrow{b} の和といい、 \overrightarrow{a} + \overrightarrow{b} と書く。 次が成り立つ。

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

ベクトルの加法について、次のことが成り立つ。

- ベクトルの加法の性質 ----

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$
 (交換法則) $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ (結合法則)

B 零ベクトル

$$\overrightarrow{a} = \overrightarrow{AB}$$
 のとき、 $-\overrightarrow{a} = \overrightarrow{BA}$ であるから、 $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA}$

となる。

ここで、 \overrightarrow{AA} は始点と終点が一致した有向線分のベクトルと考え、その大きさは 0 であるとする。大きさが 0 のベクトルを零ベクトルまたはゼロベクトルといい、 $\overrightarrow{0}$ で表す。

零ベクトルに関して、次が成り立つ。

$$\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0}$$

$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}$$

Cベクトルの減法

ベクトル \overrightarrow{a} , \overrightarrow{b} に対して、 \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a} を満たすベクトル \overrightarrow{c} を、 \overrightarrow{a} と \overrightarrow{b} の差といい、 \overrightarrow{a} - \overrightarrow{b} と書く。一般に、 \overrightarrow{OB} + \overrightarrow{BA} = \overrightarrow{OA} であるから、次が成り立つ。

$$\overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{BA}$$

同様に、 $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ より、次が成り立つ。

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

ベクトルの減法について、次が成り立つ。

$$\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a} - \overrightarrow{a} = \overrightarrow{0}$$