

# UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE COMPUTAÇÃO



## PLANO DE ENSINO

| Nome do Componente Curricular em português: Inteligência Artificial |                                |                                | Código:<br>BCC325  |
|---------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------|
| Nome do Componente Curricul Artificial Intelligence                 | ar em inglês:                  |                                | B00323             |
| Nome e sigla do departamento:                                       |                                |                                | Unidade acadêmica: |
| Departamento de Computação (DECOM)                                  |                                |                                | ICEB               |
| Nome do docente:                                                    |                                |                                |                    |
| Rodrigo César Pedrosa Silva                                         | a .                            |                                |                    |
| Carga horária semestral:                                            | Carga horária semanal teórica: | Carga horária semanal prática: |                    |
| 60 horas                                                            | 4 horas/aula                   | 0 horas/aula                   |                    |
| Data de aprovação na assemble                                       | eia departamental:             |                                |                    |
| 18/10/2024                                                          |                                |                                |                    |
| Ementa:                                                             |                                |                                |                    |

Introdução; resolução de problemas; sistemas baseados em conhecimento; representação do conhecimento; automatização do raciocínio; sistemas especialistas; aprendizado de máquina.

# Conteúdo Programático:

- Introdução
- Resolução de Problemas
  - Pesquisa como construção da solução
    - Espaço de estados
    - Decomposição de Problemas
    - Métodos de busca
  - Pesquisa em espaço de soluções
  - Subida de Encosta ("Hill-climbing")
  - Têmpera Simulada ("Simulated Annealing")
  - Métodos evolutivos: algoritmo genético
- Sistemas Baseados em Conhecimento
  - Representação do Conhecimento
    - Lógica convencional
    - Lógica Nebulosa ("Fuzzy Logic")
    - Regras
    - Raciocínio probabilístico
- Aprendizagem Automática
  - · Aprendizagem Simbólica
  - · Redes Neurais Artificiais

#### Objetivos:

Ao final do curso o aluno deverá:

Ter uma visão abrangente da área;

Dominar os principais pontos da IA (Inteligência Artificial) clássica;

Conhecer razoavelmente bem alguns tópicos avançados em IA;

Ter a capacidade de aplicar os conhecimentos estudados para resolver problemas práticos.

#### Metodologia:

- Aulas expositivas
- Projetos práticos: Implementação de vários algoritmos e técnicas de inteligência artificial. Podem ser avaliados por meio de apresentações e entrevistas.
- Quizzes: Conjunto de perguntas para medir o conhecimento teórico do aluno durante as aulas.
   Realizado sob demanda do professor.
- Leituras recomendadas: Leitura de textos técnicos com a finalidade de proporcionar ao discente a
  oportunidade de consulta e desenvolvimento de sua capacidade de análise, síntese e crítica de
  uma bibliografia específica.

Observações: A principal linguagem de programação deste curso será a linguagem Python. O código fonte dos trabalhos práticos será submetido pelo GitHub. O aluno precisará ter acesso à internet e um computador (desktop ou laptop).

Exame Especial: Os alunos que tiverem pelo menos 75% de frequência (mínimo para aprovação) e média inferior a seis pontos poderão fazer o Exame Especial ou o Exame Especial Parcial. Estes exames serão provas únicas, individuais.

#### Atividades avaliativas:

- 7 Projetos Práticos (P1, P2, P3, P4, P5, P6, P7) de 10 pontos
- 7 Quizzes (Q1, Q2, Q3, Q4, Q5, Q6, Q7) de 10 pontos

#### Nota Final =

0.05 x P1 + 0.01 x Q1 +

 $0.05 \times P2 + 0.01 \times Q2 +$ 

 $0.05 \times P3 + 0.02 \times Q3 +$ 

0.05 x P4 + 0.02 x Q4 +

0.05 x P5 + 0.03 x Q5 +

0.05 x P6 + 0.03 x Q6 +

0.30 x P7 + 0.28 x Q7

# Cronograma:

| Semanas | Conteúdo                                                                         |
|---------|----------------------------------------------------------------------------------|
| 1       | Busca                                                                            |
| 2       | Atividades Práticas (Participação do Brazilian Conference on Intelligent Systems |
|         | (BRACIS 2024))                                                                   |
| 3       | Busca (Entrega Projeto 1 (29/11))                                                |
| 4 e 5   | Representação e Manipulação do Conhecimento (Entrega Projeto 2 (22/12))          |
| 6 e 7   | Incerteza (Entrega Projeto 3 (13/12))                                            |
| 8 e 9   | Otimização (Entrega Projeto 4 (24/01))                                           |
|         |                                                                                  |

| 10 e 11 | Aprendizado (Entrega Projeto 5 (07/02))   |
|---------|-------------------------------------------|
| 12 e 13 | Redes Neurais (Entrega Projeto 6 (07/03)) |
| 14 e 15 | Linguagem (Entrega Projeto 7 (21/03))     |
| 16 e 17 | Apreciação de projetos e Quizzes          |
| 18      | Exame Especial (07/04/2025)               |

### Bibliografia Básica:

- RUSSELL, Stuart J.; NORVIG, Peter. Inteligência Artificial. 3. ed. Rio de Janeiro: Elsevier, 2013.
- LUGER, George F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving .
   6. ed. New York: Pearson, 2008.
- RICH, Elaine; KNIGHT, Kevin. Inteligência Artificial. 2. ed. São Paulo: McGraw-Hill, 1993.

#### **Bibliografia Complementar:**

- HAYKIN, Simon. Neural Networks and Learning Machines. 3. ed. New York: Prentice Hall, 2008.
- BISHOP, Christopher M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
- MITCHELL, Tom M. Machine Learning. New York: McGraw-Hill, 1997.
- BRATKO, Ivan. Prolog: Programming for Artificial Intelligence. 2. ed. Wokingham: Addison-Wesley, 1990.
- BARR, Avron; COHEN, Paul R.; FEIGENBAUM, Edward A. The Handbook of Artificial Intelligence. Massachusetts: Addison-Wesley, 1989.