Grupy - twierdzenia Sylowa

Zadanie 1 Udowodnij, że w dowolnej grupie G relacja sprzężenia:

$$aRb$$
 jeśli $b = gag^{-1}$ dla pewnego elementu $g \in G$

jest relacją równoważności. Klasy równoważności dla tej relacji nazywamy klasami sprzężeń i oznaczamy przez cl(a).

Wyznacz klasy sprzężoności w grupach D_3 , S_3 i A_4 .

Zadanie 2 Udowodnij twierdzenie: Jeżeli H jest podgrupą grupy G i H jest sumą klas sprzężoności to $H \triangleleft G$. Korzystając z tego twierdzenia wyznacz podgrupy normalne S_3 , S_4 , A_4 , Q.

Zadanie 3 Podgrupy H_1, H_2 grupy G nazywamy sprzężonymi jeśli istnieje $g \in G$ takie, że $H_1 = gH_2g^{-1}$. Które podgrupy grup S_3, S_4, A_4, Q są sprzężone?

Zadanie 4 Niech G będzie grupą a X dowolnym jej niepustym podzbiorem. Wykaż, że $N_G(X) = \{g \in G; gXg^{-1} = X\}$ jest podgrupą G. Wyznacz $N_{D_3}(H)$, gdzie |H| jest podgrupą rzędu 2.

Zadanie 5 Centralizatorem elementu $a \in G$ (gdzie Gjest pewną grupą) nazywamy zbiór

$$Z(a) = \{b \in G : ab = ba\}$$

Udowodnij, że odwzorowanie

$$f: G/Z(a) \ni xZ(a) \to xax^{-1} \in \operatorname{cl}(a)$$

jest bijekcją (pamiętaj, że wpierw należy wykazać, że f jest dobrze określona czyli, że jeśli xZ(a) = yZ(a) wówczas f(xZ(a)) = f(yZ(a))).

Zwróć uwagę na fakt, że jeśli grupa G jest skończona, wówczas w konsekwencji prawdziwy jest wzór $|\operatorname{cl}(a)| = |G|/|Z(a)|$.

Sprawdź ten wzór na przykładzie grupy D_3 .

Zadanie 6 Niech G będzie grupą. Wykaż, że $a \in Z(G)$ wtedy i tylko wtedy gdy N(a) = G (gdzie $N(a) = N_G(\{a\})$). Jak można opisać Z(G) za pomocą klas sprzężoności? Korzystając z tego opisu wyznacz $Z(S_3)$, $Z(A_4)$, $Z(S_4)$ i Z(Q).

Zadanie 7 Na wykładzie zostało udowodnione następujące twierdzenie: Jeżeli G jest grupą $|G|=p^2$ gdzie p jest liczbą pierwszą to grupa G jest abelowa. W niniejszym zadaniu wskazany zostanie przykład nieprzemiennej grupy rzędu p^3 . Niech $p\geq 3$ będzie liczbą pierwszą. Niech $G=Z_p\times Z_p\times Z_p$. Działanie określamy następująco:

$$(x, y, z) * (x_1, y_1, z_1) = (x + x_1, y + y_1, z + z_1 - yx_1)$$

Wykaż, że (G,*) jest nieabelową grupą rzędu p^3 oraz rząd każdego elementu różnego od neutralnego wynosi p.

Zadanie 8 Niech p będzie liczbą pierwszą. Wykaż, że jeśli G jest p-grupą skończoną i $G \neq \{1\}$, wówczas $Z(G) \neq \{1\}$.

Zadanie 9 Niech G będzie dowolną grupą. Udowodnij, że jeśli $H,K \leq G$ wówczas:

$$HK \le G \Leftrightarrow HK = KH \Leftrightarrow KH \le G$$

Zadanie 10 Jeżeli H i K są podgrupami normalnymi grupy G, wówczas:

- HK = KH
- HK i KH są podgrupami normalnymi G.

Zadanie 11 Udowodnij, że jeśli G jest grupą, $H \subseteq G$ oraz $K \subseteq G$, wówczas $HK \subseteq G$. Jeśli G jest grupą skończoną i $H \cap K = \{e\}$, wówczas |HK| = |H||K|.

Zadanie 12 Niech K będzie cykliczną i normalną podgrupą grupy G. Udowodnij, że każda podgrupa H grupy K jest normalną podgrupą grupy G.

Zadanie 13 Dla wszystkich liczb pierwszych p wyznacz wszystkie p-podgrupy Sylowa grup $D_3, S_3, S_4, A_4, Q, D_4, Z_{12}$.

Zadanie 14 Oblicz

- 1. $n_5 \le A_5$
- 2. n_{11} w G, takiej, że |G| = 396 i wiemy, że $n_{11} \neq 1$

Zadanie 15 Udowodnij, że jeśli H i K są normalnymi podgrupami grupy G takimi, że $H \cap K = \{e\}$, wówczas hk = kh dla dowolnych $h \in H$ i $k \in K$.

Zadanie 16 Wykaż, że

- 1. Każda grupa rzędu 15 jest cykliczna.
- 2. Każda grupa rzędu 245 jest izomorficzna z $\mathbb{Z}_5\oplus\mathbb{Z}_{49}$ lub $\mathbb{Z}_5\oplus\mathbb{Z}_7\oplus\mathbb{Z}_7.$

Zadanie 17 Udowodnij, że każda grupa rzędu 30 ma podgrupę cykliczną rzędu 15.

Zadanie 18 Wykaż, że żadna grupa rzędu 40 nie jest prosta.

Zadanie 19 Czy w dowolnej grupie G rzędu 45 istnieje element rzędu 15?

 ${\bf Zadanie}~{\bf 20}~{\rm Wykaz},$ że jeżelip,qsą liczbami pierwszymi to grupa rzędu pqnie jest prosta.

Zadanie 21 Wykaż, że grupy następujących rzędów nie są proste:

- 1. 36
- 2. 72
- 3. 56
- 4. p^2q^2 (gdzie p,q są liczbami pierwszymi).

Zadanie 22 Wykaż,że istnieją, z dokładnością do izomorfizmu,

- 1. dokładnie 2 grupy rzędu 99
- 2. dokładnie 1 grupa rzędu 1001

Zadanie 23 Wykaż, że jeśli |G|=pm, gdzie p jest liczbą pierwszą oraz p>m to p-podgrupa Sylowa grupy G jest normalna.