TRIGONOMETRY Chapter 10

PROPIEDADES DE LAS RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO I

HELICO-MOTIVACIÓN

LA TRIGONOMETRIA EN LA VIDA DIARIA

La trigonometría a aportado mucho en nuestra sociedad como por ejemplo la construcción de casas o edificaciones las diferentes medidas que se deben hacer.

La trigonometría es de mucha utilidad en la ingeniería civil, para el cálculo preciso de distancias, ángulos de inclinación, etc.

PROPIEDADES DE LAS RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO I

Razones Trigonométricas Recíprocas

Determine el ángulo y/o la razón trigonométrica que falta.

🕪 Resolución:

I.
$$sen20^{\circ}$$
. $csc_{20^{\circ}} = 1$

II.
$$cos 12^{\circ}$$
 $sec 12^{\circ} = 1$

Calcule las razones trigonométricas recíprocas, según corresponda

Resolución:

I.
$$\sec \beta = \frac{3}{2}$$
 $\cos \beta = \boxed{\frac{2}{3}}$

II.
$$\tan\theta = \frac{5}{4}$$
 $\cot\theta = \begin{bmatrix} \frac{4}{5} \end{bmatrix}$

III.
$$\csc \alpha = 2$$
 $\sec \alpha = \left[\frac{1}{2}\right]$

Recordar:

$$\cos \beta = \frac{m}{n}$$
 $\sec \beta = \frac{n}{m}$

$$\tan\theta = \frac{x}{y}$$
 $\cot\theta = \frac{y}{x}$

Halle el valor numérico de M si

M =
$$sen\phi + cos\alpha + tan \theta$$

además
 $csc \phi = 7$,

$$\sec \alpha = 7/2$$
 y

 $\cot \theta = 7/4$

Recordar

$$sen\theta = \frac{a}{b} \implies csc\theta = \frac{b}{a}$$

$$\cos\theta = \frac{c}{b}$$
 $\sec\theta = \frac{b}{c}$

$$\tan\theta = \frac{a}{c}$$
 $\cot\theta = \frac{c}{a}$

Resolución:

$$\longrightarrow$$
 M = $\frac{1}{7} + \frac{2}{7} + \frac{4}{7} = \frac{7}{7}$

M = 1

Calcule A+B.

$$A = \sqrt{9tan\varphi \cdot cot\varphi + 7sen\alpha \cdot csc\alpha}$$
1

 $\mathsf{B} = \frac{\frac{1}{5sen10^{\circ}.csc10^{\circ} + 9tan40^{\circ}.cot40^{\circ}}}{2cos\phi.sec\phi}$

1

Recordar

 $sen\theta$. $csc\theta = 1$

 $tan\theta \cdot cot\theta = 1$

Resolución:

$$A = \sqrt{9(1) + 7(1)} = \sqrt{16} = 4$$

B =
$$\frac{5(1)+9(1)}{2(1)}$$
 = $\frac{14}{2}$ = 7

$$A + B = 4 + 7$$

 $\therefore A + B = 11$

Calcule
$$\frac{a+b}{c}$$
 si:

sen 20°. csc
$$a = 1$$

tan b. cot $12^\circ = 1$
cos 8°. sec $c = 1$

Recordar

$$sen\alpha . csc\alpha = 1$$

$$\cos \alpha$$
 . $\sec \alpha = 1$

$$tan\alpha . cot\alpha = 1$$

Resolución:

tan b. cot
$$12^{\circ} = 1$$
 b = 12°

$$\cos 8^{\circ}$$
. $\sec c = 1$ $c = 8^{\circ}$

Reemplazando en lo pedido:

$$\frac{a+b}{c} = \frac{20^{\circ} + 12^{\circ}}{8^{\circ}} = \frac{32}{8}$$

$$\therefore \frac{a+b}{c}=4$$

Calcule $tan(3x+7^\circ)$, si $sen(8x - 6^\circ) \cdot csc(5x+24^\circ) = 1$

Resolucióna

Del dato:

$$sen(8x - 6^{\circ}) \cdot csc(5x+24^{\circ}) = 1$$

$$8x - 6^{\circ} = 5x + 24^{\circ}$$

$$8x - 5x = 6^{\circ} + 24^{\circ}$$

$$3x = 30^{\circ}$$

$$x = 10^{\circ}$$

Recuerda

$sen\theta . csc\theta = 1$

Piden: $tan(3x+7^{\circ})$

$$tan(3(10^{\circ})+7^{\circ}) = tan37^{\circ}$$

∴
$$tan(3x+7^\circ) = \frac{3}{4}$$

Calcule cos 3x, si tan 5x . $cot(x+40^\circ) = 1$

Resolución:

Del dato:

$$tan5x \cdot \cot(x+40^\circ) = 1$$

Recuerda

$$tan\theta \cdot cot\theta = 1$$

$$5x = x + 40^{\circ}$$

$$5x - x = 40^{\circ}$$

$$4x = 40^{\circ}$$

$$x = 10^{\circ}$$

Piden: cos3x

$$\cos 3(10^{\circ}) = \cos 30^{\circ}$$

$$\therefore \cos 3x = \frac{\sqrt{3}}{2}$$

Adrián y Simón tienen a y b años, respectivamente. Averigüe quién de los dos es el mayor si se cumplen las siguientes condiciones $sen(a + 10)^{\circ} \cdot csc(2a - 5)^{\circ} = 1$ y $tan(3b - 6)^{\circ} \cdot cot(2b + 8)^{\circ} = 1$

$$sen(a + 10)^{\circ} \cdot csc(2a - 5)^{\circ} = 1$$

Recordar:

 $sen\alpha. csc\alpha = 1$

a + 10 = 2a - 5

$$5 + 10 = 2a - a$$

$$a = 15$$

Edad de Adrián= 15 $tan\alpha$. $cot\alpha = 1$

$$tan(3b - 6)^{\circ} \cdot cot(2b + 8)^{\circ} = 1$$

$$3b - 6 = 2b + 8$$

$$3b - 2b = 8 + 6$$

$$b = 14$$

Edad de Simón = 14

: El mayor es Adrián

MUCHAS GRACIAS POR TUATENCIÓN

Tu curso amigo TRIGONOMETRÍA