CS/B.TECH (CSE)/SEM-5/CS-503/07/(06)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER - 5

Time: 3 Hours]

Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1.	Choose	the correct	alternatives	for	the	following
----	--------	-------------	--------------	-----	-----	-----------

 $10 \times 1 = 10$

- i) Time complexity for recurrence relation T(n) = 2T(n/2) + n is
 - a) $O(\log n)$

b) $O(n \log n)$

c) O(n)

- d) $O(n^2)$.
- ti) O-notation provides an asymptotic
 - a) upper bound

b) lower bound

c) light bound

d) none of these.

iii) Consider the graph:

The minimum cost spanning tree for the graph above has the cost

a) 18

b) 24

c) 20

d) 22.

CS/B.TECH (CSE)/SEM-5/CS-503/07/(08)

5

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Find out the worst case time complexity of merge sort.
- Compare and contrast BFS vis-a-vis DFS.
 - . Write down the difference between:

$$2\frac{1}{2} + 2\frac{1}{2}$$

- a) Prim's algorithm and Kruskal's algorithm
- b) Linear search and binary search.
- 5. Solve the following recurrence relation using generating function:

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$
 for $n > 3$ with initial condition $a_0 = 1$, $a_1 = -1$ and $a_2 = 1$.

6. Prove that if $f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$, then $f(n) = O(n^m).$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

 Find the optimal solution using greedy criteria for a knapsack having capacity 100 kg for the following list of items having values and weights as shown in the table.

Item	Value	Weight	
I_1	10	15	
I ₂	20	25	
Ia	30	35	
	40	45	
I ₅	50	55	

8. a) Find out the minimum cost spanning tree using any algorithm:

- b) Find out Hamiltonian cycle of the above graph and also draw the permutation tree.

 3 + 5
- c) What is the Tail Recursion? Give an example.

2

- 9. a) What do you mean by dynamic programming? What is the difference between dynamic programming and greedy method? 1 + 2
 - b) Discuss the procedure for Strassen's matrix multiplication to evaluate the product of n matrices. Find the resulting recurrence relation for the same and analyze its time-complexity. Is this method an improvement over the conventional matrix multiplication method? If so, why? 7 + 1 + 2 + 2
- 10. a) Establish the theoretical minimum lower bound of time complexity for any sorting algorithm where the sorting is performed by pairwise comparison.
 - b) What is union-find algorithm?

4

c) State the 0/1 knapsack problem.

5

11. a) Explain the basic concept of a divide-and-conquer algorithm.

4

b) Prove that the average case time-complexity of quick sort is $O(n \log n)$. You should state clearly the reasons behind the design of the recurrence relation you use for establishing this complexity. 6+5

END