PAT-NO:

JP404206161A

DOCUMENT-IDENTIFIER: JP 04206161 A

TITLE:

SUPPLY METHOD OF METHANOL

REFORMED GAS FOR FUEL CELL

PUBN-DATE:

July 28, 1992

INVENTOR-INFORMATION:

NAME

YANAGI, MASAAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MITSUBISHI HEAVY IND LTD

N/A

APPL-NO: JP02325451

APPL-DATE: November 29, 1990

INT-CL (IPC): H01M008/06, H01M008/10

ABSTRACT:

PURPOSE: To increase power generating capacity by bringing gas

from a methanol reforming reactor into contact with prescribed adsorbents, separating

adsorbed CO and CO<SB>2</SB> selectively, and sending refined gas to a fuel cell.

CONSTITUTION: When methanol reformed gas obtained from a methanol reforming

reactor 1 is brought into contact with zeolite and activated carbon under high

pressure, due to difference in adsorbing capacity between

H<SB>2</SB>, CO and

CO<SB>2</SB>, CO is adsorbed mainly to the zeolite, and

CO<SB>2</SB> is

adsorbed selectively to the activated carbon, and H<SB>2</SB> is refined as

H<SB>2</SB> having high purity. Meanwhile, CO and CO<SB>2</SB> adsorbed to the

zeolite and the activated carbon are separated by lowering the

Thereby, in the case adsorbing towers 15A and 15B filled with adsorbents of the

zeolite and the activated carbon are arranged side by side by two or more

systems and adsorption and separation are repeated alternately, H<SB>2</SB>

having high purity can be obtained continuously.

COPYRIGHT: (C)1992, JPO& Japio

卵日本国特許庁(JP)

① 特許出願公開

◎公開特許公報(A) 平4-206161

Sint. Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)7月28日

H 01 M 8/06

R 9062-4K 9062-4K

審査請求 未請求 請求項の数 3 (全6頁)

60発明の名称 燃料電池用メタノール改賞ガスの供給方法

②特 顧 平2-325451

@発明者 柳

広島県広島市西区観音新町4丁目6番22号 三菱重工業株

式会补広岛研究所内

勿出 願 人 三菱重工業株式会社

東京都千代田区丸の内 2丁目 5番 1号

個代 理 人 弁理士 光石 英俊 外1名

明 細 書

1. 発明の名称

燃料電池用メタノール改賞ガスの供給方法 2. 特許請求の範囲

- (1) メタノール 改賞 だ 一酸化炭素 、 二酸化炭素を含むメタノール 改賞 ガス を活性 炭、シリカゲル及び ゼ オライト を主成分とす る吸着剤に接触させて 故メタノール 改賞 ガス 中の一酸化炭素を 必び 二酸化炭素を 避択的に 吸 着する吸着工程と、 この吸着 工程に 供した上 記吸着剤から一酸化炭素を 脱 離する脱離工程と を 有し、 上記吸着工程により 身た精製ガスを 燃料電池 へ 供給する ことを 特徴とする 燃料電池 用メタノール 改賞 ガスの 供給方法。
- (2) 請求項1において、脱離工程で得た脱離ガスを、メタノール改質反応器へ供給して熱源に用いることを特徴とする燃料電池用メタノール改質ガスの供給方法。

(3) 糖求項1又は2において、吸着工程を二系列以上設け、そのうちの少なくとも一系列以上が常にメタノール改賞ガスを精製していることを特徴とする燃料電池用メタノール改賞ガスの供給方法。

3. 発明の詳細な説明

<産業上の利用分野>

本発明は、特に比較的低温で作動する固体 高分子電解質膜燃料電池にメタノール改賞が スを供給する方法に関する。

く従来の技術>

版料電池は、他のエネルギー機関と較べ非常に高いエネルギー回収が出来る優れた特徴を持っているため、ビルディング単位や工場単位の比較的小型の発電プラントとして利用される傾向にある。

近年、この提料電池を享載用の内盤機関に 代えて作動するモータの電源として利用し、 このモータにより車両等を駆動することが考 えられている。この場合に重要なことは、反 応によって生成する物質をできるだけ専利用することは当然のこととして、車載用であることからも明らかなように、余り大きな出力は必要でないものの、全ての付着設備と共に可能な限り小型であることが選ましく、このような点から固体高分子電解質膜燃料電池が注目されている。

には1%前後までが展界である。

したがって、特に低温型固定高分子電解膜 燃料電池用のメタノール改質ガスとするには、 COシット処理の後に、さらに CO 除虫を行う 必要がある。

そこで、提案されているのが、メタノール 改質ガス中のCOを選択的に酸化する方法 (以下、セレクトオキソという)である。す なわち、メタノール改質ガス中に空気若しく は酸素を導入することによりCOを酸化して CO。に変化する方法である。

<発明が解決しようとする課題>

しかしながら、前述したセレクトオキソに よると CO と共に H₂も離化されてしまうので、 現在の触媒で CO を例えば 1 0 ppm 又はそれ 以下まで低減しようとするとかなり大型化せ ざるを得ない。したがって、現実には 1 0 0 ppm 前後のC O が残留することになる。

一方、固体高分子電解觀點製電池の水素器 中の被塞された触媒を再生する方法として水 10 ppm 以下に如える必要がある。

したがって、メタノール改質ガスを団体高分子電解質膜燃料電池に用いる場合には、改質ガスに水素気を添加して一酸化炭素シット放媒と接触させて一酸化炭素を二酸化炭素に転化するというCOシット処理がなされている。

てるで、 CO シット処理では、

CO+H2O-CO,+H,

という可逆反応が起こり、その厭、残留CO 譲度は、反応温度が低いほと、また、反応圧 力が高いほと、さらに、水煮気/カーボン比 が高いほど、低下させることができる。例え ば、Fe --Cr 系触線を用い、反応温度を 200 で、反応圧力を 2 0 atm, 水蒸気/カーボン 比を 4 として CO シフト処理すると残留一難 化炭素濃度を約 0.1 % (1 0 0 0 ppm) とす ることを前提とすると種々の制約がある ため、CO シフト処理による CO 除去は現実的

素質中に空気を導入する方法が提案されている。しかしながらこの場合には、COの酸化反応により H_zの酸化反応の割合の方が多く、温度上昇及び H_z ロスが大きいという問題が発生する。

一方、メタノール改賞がス中には一酸化炭素の他二酸化炭素を多量に含むため水素分圧が低下し、発電効率が低下する等の問題があ

例えばメタノールを原料とした場合の改賞 反応は下記の通りである。

したがって、理論的には水素濃度は、最高でも無料電池入口濃度で 7.5 vol 96であり、燃料電池出口濃度では 2.0 vol 96程度に低下する。

本発明はこのような事情に漏み、メタノール改賞ガス中の一数化炭素を例えば 1 0 ppm 以下という複数量まで低減すると共に二酸化 炭素を除去することができる燃料電池用メタ ノール改賞ガスの供給方法を提供することを 目的とする。

く悪軍を解決するための手段>

〈作 用〉

メタノール改費ガスが高圧でゼオライト、 活性炭に接触すると H₂ と CO 。 CO₂ との吸着 容量の差により主にゼオライトには CO が又

チューブ3の出口側には、かかるメタノール改賞ガスを気水分離機10へ導く導管11が接続されており、導管11の途中には冷却器12が介装されている。すなわち、導管11により導かれるメタノール改賞ガスは冷却器13により冷却された後、気水分離器10へ導かれる。そして、気水分離器10において分離された水はパルブ13から辨出される。一方、水が分離されたメタノール改賞ガスは

活性炭には CO2 が選択的に吸着し、高純度水素ガスとして精製される。一方、ゼオライト、活性炭に吸着された CO , CO2 は圧力を低下することにより脱離する。したがって、ゼオライト、活性炭の吸着剤を充壌した吸着場を二系統以上並設し、交互に吸着、脱離をくり返すことにより連続的に高純度水素ガスを得られる。

く実 胎 例>

以下、本発明の一実施例を図面を参照しながら説明する。

第1回には本発明方法を実施する機料電池 の全体システムを示す概念図である。

図中、1はシェル2及びチューブ3からなるシェル・チューブ型の反応器である。チューブ3内にはメタノールを改置する触媒としてCu, Zn及びCrを含む触媒が充績されており、このチューブ3の入口場には水/メタノール供給管4が接続されている。また、シェル2には燃料供給管5及び燃焼用空気供給

導管 1 4 から吸着塔 1 5 A , 1 5 B へ導かれこる。

吸着塔15A, 15Bはそれぞれ事営14 から分岐した導管16A,16Bに介装され て並列に配設されており、導管 1 6 A , 1 6 B の吸着塔 1 5 A , 1 5 B の上流倒にはそれぞ れパルプ17A,17Bが、また下流偏には パルプ18A,18Bがそれぞれ介装されて いる。また、パルプ17Aと吸着塩15Aと の間の導管16A並びにパルプ17Bと扱着 塔15Bとの間の導管16Bにはそれぞれパ ルブ19A,19Bが介養されている分益管 20 A, 20 B が接続している。一方、パル ブ18A,18Bの後流側の導管15A,16B は、一端が固体高分子電解質膜燃料電池本体 (以下総料電池本体という) 2 1 の水素質の 入口側に連結される等皆22の他場に合法し ている。また、燃料電池本体21の水素板の 出口値には排ガスを燃料供給管5へ戻す戻し 管23が連結されており、戻し管23の燃料

供給管5との連絡側には逆止弁24が介装されている。なお、上記分岐管20A,20B も、戻し管23の途中へ合流するようになっている。

以上説明したシステムにおいて、反応器 1 のチューブ 3 へ供給されたメタノールは、触 狐と接触し且つシェル 2 内を流れる高温の懸

そして、吸着塔15A中の吸着剤が舶和する 前に、パルプ17A,18Aを調とすると開 時にパルプ17B,18Bを閉とし、吸着塔 15Bに切換える。これによりメタノール改 質がスは、吸着塔15Bに導かれ、精製される。一方、吸着塔15Bを使用している間に 吸着塔15Aの再生を行う。

すなわち、バルブ19Aを関とすると吸着 塔15Aの圧力が低下し、吸着されている CO2, CO 及び水煮気が脱離される。そして脱離が スは分岐管20Aを介して戻し管23へ合液 され、燃料供給管5へ戻される。脱離が終了 した後バルブ19Aを閉とし、次いでバルブ 17Aを閉として吸着塔15A内の圧力を操 作圧まで上昇させる。以上が再生操作である が、この作業は吸着塔15Bが飽和になる前 に終了するように行わなければならない。

次に、吸着塔15日が飽和される前にバルブ17日、18日を開とすると同時にバルブ 18Aを関とし、吸着塔15Aへ切り替え、 勝ガスから熱を得ることにより接触反応し、 H_aを主成分とするメタノール改質ガスとなる。 このメタノール改質ガスは冷却器 1 2 で冷却 された後気水分離器 1 0 を通過することによ り水が分離され、その後吸着等 1 5 A 若しく は吸着等 1 5 B へ進かれる。

ここで、吸着塔15A,15Bには活性炭、 シリカゲル及び合成ゼオライト(モレキュラ ーシーブ: 商品名)が充壌されており、CO₂, CO 及び気水分離器10で分離できない水素 気を吸着除去するものである。すなわち、メ タノール改質ガスは、吸着塔15A,15B を適遇することにより高級皮水素に精製される。

本実施例ではメタノール改質ガスを連載的に精製するために、二塔の吸着塔 15A, 15B を並列に設け、交互に使用するようにしている。まず、例えばパルブ17A, 18Aを関とすると共に他は防とすることにより、メタノール改質ガスは吸着塔 15Aで精製される。

吸着塔15Aで精製を行うと共に吸着塔15B を開機に再生する。

以上の愛作を繰り返えすことにより、連続的に高純度水業ガスを得ることができる。なお、上記吸着剤は、高圧、低温ほどCOg,CO及び水蒸気の吸着容量が大きく、低圧、高温ほど脱離しやすいため、吸着時には高圧・低温とし、脱離時には低圧・高温で操作するのが効果的である。

このように精製された高純度水素がメルが燃料電池本体21の水素をへ供給されると、各電極にい空気が酸素値へ供給される。なおは、いで電池反応が生じ、発電される。なおは、灰灰ので使用されなかった高純度水素がスとは、反灰の砂糖がスと共に燃料供給管5へ炭製造した適りである。また、燃料電池によりである。また、燃料電池によりである。また、増加がである。また、増加がである。は上述した適りである。上述した適りである上述した適りである。上述した適りである。上述した適りである。

以下に具体的要施例を示す。

メタノール改賞の反応器 1 のチューブ 3 内 にメタノール改賞触媒(Cu/2n= 5 0 / 5 0) を 5 kg 充壌し、又吸着塔 1 5 A , 1 5 B (2 塔) に活性炭、モレキュラシーブ(商品名) 及びシリカゲルをそれぞれ一塔につき 4 kg , 1 kg , 1.5 kgを充壌し、メタノール改賞ガス を精製し後燃料電池本体 2 1 に供給した結果 を下記に示す。

1) メタノール改賞反応条件

H₂O/CH₃OH供給量(mol 比~1.0/1.0) 5.9kg/H メタノール改変反応温度 260で

メタノール改賞反応圧力

1 5 kg/cdG

2) 上記の条件でメタノール改賞反応を行な

い次のメダノール改賞ガスを得た。

H₂: 74.3 vol%, CO: 1.0 vol%, CO₂: 24 vol%, CH₂OH: 0.1 vol%, H₂O: 0.5 vol%

3) メタノール改質ガスの複製条件

メタノール精製ガス供給量

9 x N/H

吸着形式镁铬吸着压力

15 kg/cdG

<発明の効果>

以上説明したように、本発明に係るメタノ ール改賞ガスの供給方法を採用することで、 燃料電池の水素振倜の触媒の CO 被毒を防止 し、かつ高純度水素が供給されるため発電能 力が向上しかつ安定した発電を維続すること が可能となる。

4. 図面の簡単な説明

第1図は本発明の一実施例に係る燃料電池用メタノール改質ガスの供給方法を採用した燃料電池の全体システムを示す概念図、第2図は本発明に係る燃料電池用メタノール改質ガスの供給方法を適用した場合の発電試験結果を示すグラフである。

窗 面 中、

- 1 は反応器、
- 2はシェル、
- 3 はチューブ、
- 4 は水/メタノール供給管、
- 5 は燃料供給管、

吸着形形操物吸着温度 常 温 吸着形形操物影響压力 大 気 圧 吸着形形操物影響温度 常 温

吸着用尤指等吸着/影像切割的图 3 分

- 4) 上記の条件でメタノール改賞ガスの精製を行ない H₂ 純度は 9 9 , 9 9 9 vol%を得た。 この結果関体高分子電解質膜両側に接合されている触媒被毒成分である CO は分析検 出版界 1 ppm 以下であった。
- 5) この精製ガスを燃料電池(1 2 1 od/セル×2 0 セル)に供給し、なお他方から空気を供給し発電チストを行った結果を集2 図に示した。なお、比較のためメタノール改質ガスから従来法により CO のみを除去したものを燃料電池本体 2 1 へ供した場合についても発電チストを行った。この結果から本法で精製した精製ガスを用いる向上を対象が厚った。
 - 6 は燃焼用空気供給管、
 - 10世気水分離器、
 - 12は冷却器。
 - 15A, 15Bは吸着塔、
- 2 1 は原体寫分子電解質膜燃料電池本体、
- 2 6 は冷却タンクである。

第 1 図

1 : 汉応祭 2 : シェル 3 : チューブ

4 : 水/メタノール供給管

15A, 158 : 吸骨等

21: 固体高分子電解質膜燃料電池

第 2 図

-350-

(12) Patent Gazette (A)	(19) Japan Patent and Trademark Office (JP) (11) Kokai Patent Application No. H04-206161 (43) Laid Open: July 28, 1992		
(51) Int Cl. ⁵ H 01 M 8/06 8/10	ID No.	Internal Filing No. R-9062-4K 9062-4K	(10) Zala Opeliroal y 20, 1992
Examination Not Requested		No. of Claims 3	(6 pages in original)
(54) Title	Reformed methanol gas supply method for fuel cell		
(21) Application No.		H02-235451	
(22) Submitted		November 29, 1990	
(72) Inventor (71) Applicant		Masaaki YANAGI Mitsubishi Heavy Industries, Ltd. Hiroshima Research Facility 6-22 Kanonshin-machi 4-chome, Nishi-ku, Hiroshima-shi, Hiroshima-ken, Japan Mitsubishi Heavy Industries, Ltd. (Mitsubishi Jukogyo K. K.) 5-1 Maru-no-uchi 2-chome, Chiyoda-ku, Tokyo, Japan	
(74) Agent		Hidetoshi MITSUISHI, Patent Attorney, et al.	

Specification

1. Title

Reformed methanol gas supply method for fuel cell

2. Claims

- (1) A reformed methanol gas supply method for fuel cell that is characterized by possessing an adsorption process, in which reformed methanol gas that contains carbon monoxide and carbon dioxide obtained from a methanol reformation reactor is brought into contact with an adsorbent whose main constituents are activated charcoal, silica gel, and zeolite to selectively adsorb the carbon monoxide and carbon dioxide in said reformed methanol gas, and a release process that releases the carbon monoxide and carbon dioxide from the aforementioned adsorbent, and by delivering the fuel gas obtained by the aforementioned adsorption process to a fuel cell.
- (2) The reformed methanol gas supply method for fuel cell in claim 1 that is characterized by delivering the released gas obtained in the release process to the methanol reformation reactor for use as a heat source.
- (3) The reformed methanol gas supply method for fuel cell in claim 1 or 2 that is characterized by providing two or more adsorption process systems and always purifying the reformed methanol gas with at least one or more of these systems.

3. Detailed Description

<Field of Industrial Application>

This invention specifically pertains to a method for delivering reformed methanol gas to solid polymer electrolyte membrane fuel cells that operate at relatively low temperatures.

<Prior Art>

Since they have the superior characteristic of being capable of extremely high levels of energy recovery compared with other energy facilities, fuel cells have tended to be utilized as relatively small-scale, building-unit or plant-unit electrical generation plants.

In recent years, these fuel cells have been utilized as power sources for motors that operation in place of internal combustion engines in automobiles, etc., and these motors are being considered to drive rolling stock, etc. A crucial matter in this case naturally is as much as possible to reuse the substances produced by the reaction, and since excessively great output clearly is not required since they will be used in cars, and the like, it is preferable that they and all the associated equipment be as small as possible, and from these viewpoints, solid polymer electrolyte membrane fuel cells are gaining attention. A power generation system is used in these solid polymer electrolyte membrane fuel cells in which primarily reformed methanol gas obtained by reforming methanol is delivered to the hydrogen electrode side of the cell body. The cell body here is comprised by bonding together gas diffusion electrodes that contain catalysts on both sides of a solid polymer electrolyte membrane. The problem here is that fuel cells that operate at low temperatures of 100°C are particularly susceptible to contamination by carbon monoxide (CO). Since the catalyst is contaminated and generation performance is decreased when the reformed gas thus contains CO, it is necessary to keep the CO concentration in the reformed gas specifically below 10 ppm in low-temperature fuel cells.

Consequently, when reformed methanol gas is used in a solid polymer electrolyte membrane fuel cell, CO shift treatment is performed, in which steam is added to the reformed gas and brought in contact with a carbon monoxide shift catalyst to convert the carbon monoxide to carbon dioxide.

The following reversible reaction occurs in CO shift treatment:

$$CO + H_2O \rightarrow CO_2 + H_2$$

in which case, the lower the reaction temperature, the higher the reaction pressure, and furthermore, the higher the steam/carbon ratio, the more the residual CO concentration can be decreased. For instance, when CO shift treatment is performed using a Fe-Cr catalyst with a reaction temperature of 200°C, reaction pressure of 20 atm, and steam/carbon ratio of 4, the residual carbon monoxide concentration is approximately 0.1% (1,000 ppm), but there are a variety of restrictions if a small-scale fuel cell system is assumed, and so CO removal by CO shift treatment is practically limited to 1%, more or less.

Consequently, it is necessary to perform further CO removal after CO shift treatment in order to produce reformed methanol gas specifically for use in a low-temperature solid polymer electrolyte membrane fuel cell.

A method has been proposed for that purpose in which the CO in the reformed methanol gas is selectively oxidized (hereinafter, referred to as selective oxidation). Namely, this method oxidizes CO and changes it to CO₂ by introducing air or oxygen into the reformed methanol gas.

<Problems to be Solved>

However, since H₂ is also oxidized along with the CO by the selective oxidation described above, the system unavoidably must be fairly large to reduce the CO to, e.g., 10 ppm or less using current catalysts.

Consequently, around 100 ppm of CO will remain for practical reasons.

Meanwhile, a method has been proposed in which air is introduced into the hydrogen electrode as a method of regenerating the contaminated catalyst in the hydrogen electrode in a solid polymer electrolyte membrane fuel cell. However, in this case, there is a greater proportion of H₂ oxidation than CO oxidation, producing the problem of increased temperatures and high H₂ losses.

Meanwhile, since reformed methanol gas contains large quantities of carbon dioxide besides the carbon monoxide, there are also problems with the partial pressure of hydrogen decreasing, lowering generation efficiency, etc.

For instance, the reformation reaction when methanol is used as the raw fuel is as follows:

$$CH_3OH + nH_2O \rightarrow (1 - n)CO + nCO_2 + (2 + n)H_2$$

wherein $0 < n < 1$

Consequently, the theoretical hydrogen concentration is, at most, 75 vol% in the fuel cell intake concentration, and decreases to around 20 vol% in the fuel cell exhaust concentration.

This invention addresses these circumstances and its objective is to provide a reformed methanol gas supply method for fuel cells that can decrease the carbon monoxide in the reformed methanol fuel to a trace amount of, e.g., 10 ppm or less, while also eliminating carbon dioxide.

<Means of Solving Problems>

The reformed methanol gas supply method for fuel cells of this invention that achieves the aforementioned objective is characterized by possessing an adsorption process, in which reformed methanol gas that contains carbon monoxide and carbon dioxide obtained from a methanol reformation reactor is brought into contact with an adsorbent whose main constituents are activated charcoal, silica gel, and zeolite to selectively adsorb the carbon monoxide and carbon dioxide in said reformed methanol gas, and a release process that releases the carbon monoxide and carbon dioxide from the aforementioned adsorbent, and by delivering the fuel gas obtained by the aforementioned adsorption process to a fuel cell.

<Action>

The reformed methanol gas is brought into contact with the zeolite and activated charcoal under high pressure, because of the different capacities for adsorbing H₂, CO, and CO₂, the zeolite selectively adsorbs primarily CO and the activated charcoal selectively adsorbs primarily CO₂ to purify the reformed methanol gas as high-purity hydrogen gas. Meanwhile, CO and CO₂ adsorbed by the zeolite and activated charcoal are released by decreasing the pressure. Consequently, high-purity hydrogen gas can be continuously yielded by providing two adsorbent towers filled with the zeolite and activated charcoal adsorbents and alternately switching them between adsorption and release.

<Example Embodiment>

An example embodiment of this invention will be described below, referring to the attached figures.

Figure 1 is a schematic drawing that shows an entire fuel cell system implementing the method of this invention.

In the figure, 1 is a shell-and-tube reactor comprising a shell 2 and a tube 3. The tube 3 is filled with a catalyst that contains Cu, Zn, and Cr as methanol-reforming catalysts, and a water/methanol supply tube 4 is connected to the inlet end of this tube 3. In addition, a fuel supply tube 5 and fuel air supply tube 6 are connected to the shell 2 by means, respectively, of a fuel regulator valve 7 and an air regulator valve 9. Thus, the heat necessary for methanol reformation is then obtained by passing the high-temperature combustion gas obtained by burning the mixed gas of fuel and air inside the shell 2, and the cooled combustion gas is then exhausted from an exhaust tube 9. Meanwhile, by obtaining this heat, the methanol introduced from the water/methanol supply tube 4 to the aforementioned tube 3 comes in contact with the catalyst and reacts to produce reformed methanol gas, whose main constituent is H₂.

A tube 11 is connected to the exhaust end of the tube 3 that guides this reformed methanol gas to a air moisture separator 10, and a cooler 12 is installed midway in this tube 11. In other words, after the reformed methanol gas being guided by the tube 11 has been cooled by the cooler 12, it is guided to the air moisture separator 10. The water separated in the air moisture separator 10 is discharged from a valve 13. Meanwhile, the reformed methanol gas, with the water separated, is guided from a tube 14 to the adsorption towers 15A, 15B.

The adsorption towers 15A, 15B are respectively installed inside tubes 16A, 16B that branch from the tube 14, and valves 17A, 17B are respectively installed in the tubes 16A, 16B on the upstream sides, and valves 18A, 18B are respectively installed on the downstream sides, of the adsorption towers 15A, 15B. Additionally, splitter tubes 20A, 20B, in which valves 19A, 19B are respectively installed, are respectively connected to tube 16A between the valve 17A and the adsorption tower 15A, and to tube 16B between the valve 17B and the adsorption tower 15B. Meanwhile, the tubes 16A, 16B on the downstream sides of valves 18A, 18B flow together into one end

of a tube 22, whose other end is connected to the hydrogen electrode intake of a solid polymer electrolyte membrane fuel cell body (hereinafter, referred to as the fuel cell body) 21. Additionally, a return tube 23, which returns exhaust gas to the fuel supply tube 5, is connected to the exhaust side of the hydrogen electrode in the fuel cell body 21, and a check valve 24 is installed on the end of the return tube where it connects to the fuel supply tube 5. Further, the aforementioned splitter tubes 20A, 20B are also constituted to flow together midway along the return tube 23.

In addition, an air introduction tube 24 is connected on the intake side of the oxygen electrode of the fuel cell body 21, and an air exhaust tube 25 is connected to its exhaust side to discharge unreacted air. Furthermore, a coolant supply tube 27 that introduces coolant from a cooler tank 26 is connected to the fuel cell body 21, and a pump 28 is installed along this coolant supply tube 27 to supply coolant. Additionally, coolant that has cooled the fuel cell body 21 and has itself been heated is discharged from a discharge tube 29, but after the temperature of this coolant has been lowered by a cooler 30 disposed along the discharge tube 29, it is returned to the cooler tank 26.

In the system described above, methanol supplied to the tube 3 of the reactor 1 contacts the catalyst and receives heat from the high-temperature combustion gas flowing inside the shell 2 to cause a contact reaction and produce reformed methanol gas whose main constituent is H₂. After this reformed methanol gas has been cooled by the cooler 12, water is removed by passing it through the air water separator 10, after which, it is guided to the adsorption tower 15A or adsorption tower 15B.

The adsorption towers 15A, 15B here are filled with activated charcoal, silica gel, and synthetic zeolite (Molecular Sieve: trade name), which adsorb and remove CO₂, CO, and the steam that could not be separated by the air water separator 10. In other words, the reformed methanol gas is purified into high-purity hydrogen by passing through the adsorption tower 15A, 15B.

With this invention, two adsorption towers 15A, 15B are disposed in parallel so that they can be alternately used in order to continuously purify reformed methanol gas. First, e.g., by opening valves 17A and 18A and closing the other valves, the reformed methanol gas is purified by adsorption tower 15A. Then, before the adsorbents in adsorption tower 15A become saturated, valves 17A and 18A are closed and, at the same time, valves 17B and 18B are opened to switch to adsorption tower 15B. Thus, the reformed methanol gas is guided to adsorption tower 15B and purified. Meanwhile, adsorption tower 15A is regenerated while adsorption tower 15B is being used.

Namely, if valve 19A is opened, the pressure in adsorption tower 15A is decreased, releasing the CO₂, CO, and steam that have been adsorbed. The released gas then flows into the return tube 23 via the splitter tube 20A, and is returned to the fuel supply tube 5. After release is completed, the valve 19A is closed, and then valve 17A is opened to raise the pressure inside the adsorption tower 15A to operating pressure. The above is the regeneration process, but this process must be performed so that it is completed before adsorption tower 15B becomes saturated.

Next, valves 17B and 18B are closed and, at the same time, valve 18A is opened before adsorption tower 15B becomes saturated, switching to adsorption tower 15A, whereby purification is performed by adsorption tower 15A, while adsorption tower 15B is likewise regenerated.

High-purity hydrogen gas can be continuously yielded by repeating the above operation. Further, the higher the pressure and the lower the temperature, the greater the capacity of the aforementioned adsorbents for adsorbing CO₂, CO, and steam, and the lower the pressure and the higher the temperature the more easily they are released, therefore, high-pressure, low-temperature operation is effective for adsorption, while low-pressure, high-temperature operation is effective for release.

When high-purity hydrogen gas purified in this manner is supplied to the hydrogen electrode, and air is supplied to the oxygen electrode, in the fuel cell body 21, a cell reaction occurs at the various electrodes, generating electricity. Further, the high-purity hydrogen gas that is not used in the reaction is returned together with the released gas from the splitter tubes 20A, 20B to the fuel supply tube 5 via the return tube 23, as described above. In addition, reaction heat generated inside the fuel cell body 21 is removed by the coolant circulated by the pump 28 from the cooler tank 26, as described above.

A typical example embodiment is shown below.

The tube 3 of the methanol reformation reactor 1 is filled with 5 kg of methanol reformation catalyst (Cu/Zn = 50/50), and the adsorption towers 15A, 15B (two towers) are each filled with 4 kg, 1 kg, and 1.5 kg of activated charcoal, Molecular Sieve (trade name), and silica gel, respectively, and the results of purifying reformed methanol gas and supplying it to the fuel cell body 21 are shown below.

1) Methanol reformation reaction conditions

 H_2O/CH_3OH supply rate (mol ratio = 1.0/1.0)

5.9 kg/H

Methanol reformation reaction temperature

260°C

Methanol reformation reaction pressure

15 kg/cm²G

2) The following reformed methanol gas was obtained by performing a methanol reformation reaction under the above conditions.

H₂: 74.3 vol%, CO: 1.0 vol%, CO₂: 24 vol%, CH₃OH: 0.1 vol%, H₂O: 0.5 vol%

3) Reformed methanol gas purification conditions

Methanol purification gas supply rate

 $9 \text{ m}^3 \text{N/H}$

Adsorption pressure in adsorbent-filled tower

15 kg/cm²G

Adsorption temperature in adsorbent-filled tower

Room temperature

Release pressure in adsorbent-filled tower

Atmospheric pressure

Release temperature in adsorbent-filled tower

Room temperature

3 minutes

Adsorption/release switch time in adsorbent-filled tower

4) H₂ purity of 99.999 vol% was obtained by performing reformed methanol gas purification under the above conditions. As result CO, catalyst-contaminating constituent that bonds to both sides of the solid polymer electrolyte membrane, was reduced to below the detectable limit of 1 ppm.

The results of supplying this purified gas to a fuel cell (121 cm²/cell × 20 cells) and supplying air to the other side and conducting generation tests are shown in Figure 2. Further, for comparison, a generation test was conducted supplying a reformed methanol gas from which only CO had been removed by a past method to a fuel cell body 21. It was understood from these results that power generating capacity of the fuel cell was vastly improved by using the purified gas purified by this method.

<Effect>

Since CO contamination of the catalyst on the hydrogen electrode side of the fuel cell is prevented and high-purity hydrogen is supplied by utilizing the reformed methanol gas supply method of this invention, as described above, it is possible to improve generating capacity and to continuously generate stable power.

4. Brief Explanation of the Figures

Figure 1 is a schematic drawing that shows an entire fuel cell system utilizing the reformed methanol gas supply method for fuel cells associated with an example embodiment of this invention and Figure 2 is a graph that shows the results of generation tests when using the reformed methanol gas supply method for fuel cells of this invention.

In the figure,

1 is a reactor,

2 is a shell,

3 is a tube.

4 is a water/methanol supply tube,

5 is a fuel supply tube,

6 is a combustion air supply tube,

10 is a air water separator,

12 is a cooler,

15A and 15B are adsorbent towers,

21 is a solid polymer electrolyte membrane fuel cell body, and

26 is a cooling tank.

Patent Applicant

Mitsubishi Heavy Industries, Ltd.

Agent

Hidetoshi MITSUISHI, Patent Attorney, et al.

1: REACTOR

2: SHELL 3: TUBE

4: WATER/METHANOL SUPPLY TUBE

12: COOLER

15A, 15B: ADSORBENT TOWERS

21 : SOLID POLYMER ELECTROLYTE MEMBRANE FUEL CELL BODY

