Martin Schrimpf

E-Mail	msch@mit.edu	♦ Google Scholar 🗹
Mobile	+1 617-586-6748	
Web	http://mschrimpf.com ☑	ogithub.com/mschrimpf ☑

_ 1	
-	ucation
	$\mathbf{H}(\mathbf{A}\mathbf{H}(\mathbf{M}))$
$\mathbf{L}\mathbf{Q}$	ucution

2017 - 2022	Massachusetts Institute of Technology (MIT), PhD
	Department of Brain and Cognitive Sciences. GPA 5.0/5.0.
	Advisor: James DiCarlo.
2014 - 2017	TU & LMU Munich & University of Augsburg, Master of Science
	Elite Program Software Engineering. GPA 4.0/4.0 with honors.
	Thesis completed at Harvard University .
2011 - 2014	TU Munich, Bachelor of Science
	Program Information Systems.
	Thesis completed at the University of Sydney .

Research and Industry Experience

Fall 2023	EPFL, Tenure-Track Assistant Professor
Since 2022	MIT Quest, Research Scientist
	Leading a group of research scientists and engineers to bridge natural
	and artificial intelligence research across the institute.
2017	Salesforce Einstein AI, Deep Learning Intern
	Advisor: Richard Socher.
	Flexible architecture search for natural language processing with
	reinforcement learning (discovered highly novel architectures).
2016	Harvard Medical School, Research Assistant
	Advisor: Gabriel Kreiman.
	Recurrent computations for the recognition of occluded objects in
	humans and models (29% improvement in accuracy); Robustness of
	neural networks to weight perturbations.
2015 - 2016	Oracle Labs, Research Assistant
	Development of an on-demand cluster database module (now widely
	used by research teams).
2015 - 2020	Integreat Digital Factory , Co-Founder / Technical Advisor (since 2017)
	Platform for distributing local information to refugees, now used in 1
	out of every 6 cities in Germany (<i>integreat-app.de/en</i>).
2015	Siemens AG, Software Engineering Intern
	Behavior-driven testing framework to run a test specification written in
	natural language (now used in three major business areas).
2012 - 2015	Martin Schrimpf Software Solutions, Freelancer
	Led the development of a document management system with optical
	character recognition to make the client company paper-free.

Martin Schrimpf 1 / 6

Peer-reviewed Publications

1 001 10 110 110	ou i de fieu de fie
2022	Geiger*, F., Schrimpf *, M. , Marques, T. & DiCarlo, J. J. Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream. Spotlight , International Conference on Learning Representations (ICLR)
2021	Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E., Kanwisher, N., Tenenbaum, J. & Fedorenko, E. The neural architecture of language: Integrative modeling converges on predictive processing. <i>Proceedings of the National Academy of Sciences (PNAS)</i>
2021	Casper, S., Boix, X., D'Amario, V., Guo, L., Schrimpf , M. , Vinken, K. & Kreiman, G. Frivolous Units: Wider Networks are not really that Wide. <i>AAAI</i>
2020	Gan, C., Schwartz, J., Alter, S., Schrimpf , M. , Traer, J., De Freitas, J., Kubilius, J., Bhandwaldar, A., Haber, N., Sano, M., <i>et al.</i> ThreeDWorld: A platform for interactive multi-modal physical simulation. <i>Oral</i> , <i>Neural Information Processing Systems</i> (<i>NeurIPS</i>)
2020	Zhuang, C., Yan, S., Nayebi, A., Schrimpf , M. , Frank, M. C., DiCarlo, J. J. & Yamins, D. L. K. Unsupervised Neural Network Models of the Ventral Visual Stream. <i>Proceedings of the National Academy of Sciences (PNAS)</i>
2020	Dapello*, J., Marques*, T., Schrimpf , M. , Geiger, F. & DiCarlo, J. J. Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Spotlight , Neural Information Processing Systems (NeurIPS)
2020	Schrimpf , M. , Kubilius, J., Lee, M., Murty, N. A. R., Ajemian, R. & DiCarlo, J. J. Integrative Benchmarking to Advance Neurally-Mechanistic Models of Human Intelligence. <i>Neuron</i>
2019	Kubilius*, J., Schrimpf *, M. , Nayebi, A., Bear, D., Yamins, D. L. K. & DiCarlo, J. J. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. Oral , Neural Information Processing Systems (NeurIPS)
2018	Bashivan, P., Schrimpf , M. , Ajemian, R., Rish, I., Riemer, M. & Tu, Y. Continual Learning with Self-Organizing Maps. <i>Neural Information Processing Systems</i> (<i>NeurIPS</i>) Continual Learning Workshop
2018	Schrimpf* , M. , Merity*, S. & Socher, R. A Flexible Approach to Automated RNN Architecture Generation. <i>International Conference on Learning Representations (ICLR)</i>
2018	Tang*, H., Schrimpf *, M. , Lotter*, W., Moerman, C., Paredes, A., Ortega Caro, J., Hardesty, W., Cox, D. & Kreiman, G. Recurrent computations for visual pattern completion. <i>Proceedings of the National Academy of Sciences (PNAS)</i>

^{* =} equal contribution

Martin Schrimpf 2 / 6

Selected Peer-reviewed Abstracts

2021	Schrimpf , M. , Mc Grath, P. & DiCarlo, J. Topographic ANNs Predict the Behavioral Effects of Causal Perturbations in Primate Visual Ventral Stream IT. <i>Champalimaud Research Symposium (CRS21)</i>
2021	Kar, K., Schrimpf , M. & DiCarlo, J. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. <i>Vision Sciences Society Annual Meeting</i>
2020	Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E., Kanwisher, N., Tenenbaum, J. & Fedorenko, E. Predictive Neural Language Models Capture Language Processing in the Brain. Oral, Society for the Neurobiology of Language Merit Award Honorable Mention
2020	Schrimpf* , M. , Kubilius*, J., Nayebi, A., Bear, D., Yamins, D. L. K. & DiCarlo, J. J. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. <i>Oral</i> , neuromatch
2020	Marques, T., Schrimpf , M. & DiCarlo, J. J. Hierarchical neural network models that more closely match primary visual cortex also better explain high-level vision. <i>Computational and Systems Neuroscience</i> (<i>Cosyne</i>)
2019	Schrimpf* , M. , Kubilius*, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Ziemba, C., Bashivan, P., Prescott-Roy, J., Schmidt, K., Yamins, D. L. K. & DiCarlo, J. J. Using Brain-Score to Evaluate and Build Neural Networks for Brain-Like Object Recognition. <i>Computational and Systems Neuroscience (Cosyne)</i>
2018	Schrimpf* , M. , Kubilius*, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., Yamins, D. L. K. & DiCarlo, J. J. Brain-Score: Which Artificial Neural Network Best Emulates the Brain's Neural Network? <i>Cognitive Computational Neuroscience (CCN)</i>
2016	Schrimpf , M. , Tang, H., Lotter, W., Paredes, A., Ortega Caro, J., Hardesty, W., Cox, D. & Kreiman, G. Recurrent computations for pattern completion. <i>Neural Information Processing Systems (NIPS) Brains and Bits Workshop</i>

Preprints

2022	Dapello, J., Kar, K., Schrimpf , M. , Geary, R., Ferguson, M., Cox, D. D. & DiCarlo, J. J. Aligning Model and Macaque Inferior Temporal Cortex Representations Improves Model-to-Human Behavioral Alignment and Adversarial Robustness. <i>bioRxiv</i>
2021	Marques, T., Schrimpf , M. & DiCarlo, J. Multi-scale hierarchical neural network models that bridge from single neurons in the primary visual cortex to primate object recognition behavior. <i>bioRxiv</i>

Martin Schrimpf 3 / 6

2019	Jozwik, K. M., Schrimpf , M. , Kanwisher, N. & DiCarlo, J. J. To find better neural network models of human vision, find better neural network models of primate vision. <i>bioRxiv</i>
2018	Arend, L., Han, Y., Schrimpf , M. , Bashivan, P., Kar, K., Poggio, T., DiCarlo, J. J. & Boix, X. Single units in a deep neural network functionally correspond with neurons in the brain: preliminary results. <i>CBMM Memo</i>
2018	Schrimpf* , M. , Kubilius*, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., Yamins, D. L. K. & DiCarlo, J. J. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? <i>bioRxiv</i>
2017	Cheney*, N., Schrimpf *, M. & Kreiman, G. On the Robustness of Convolutional Neural Networks to Internal Architecture and Weight Perturbations. <i>CBMM Memo</i>

Invited Talks

miviced rains	
2022	WorldWideNeuro SNUFA
2022	MPI, Kornfeld lab
2022	Tenyx
2022	EPFL
2022	Erlangen AI meetup
2022	MIT, BCS interviews
2021	MIT, Fiete lab
2021	Telluride Workshop
2021	MIT, Yang lab
2021	Stanford University, NLP seminar
2021	MIT, Saxe Lab
2020	GDR TAL, France NLP
2020	MIT, Kanwisher Lab
2020	Brown University, Serre lab
2020	Cosyne Workshop: Decision Making
2020	Cosyne Workshop: Neural Networks and the Brain
2019	MIT, BCS Cog Lunch
2019	IBM, AI Week
2019	Center for Brain-Inspired Computing (C-BRIC)
2019	Center for Brains, Minds and Machines (CBMM; MIT/Harvard)
2018	MIT, Tenenbaum Lab
2016	Harvard Medical School, Systems Club

Selected Awards and Funding

2022	MIT, Open Data Prize (Brain-Score)
2021	Neuro - Irv and Helga Cooper Foundation, Open Science Prize
2021	McGovern Institute, Fellowship [tuition and stipend]
2021	MIT, Walle Nauta Award for Continuing Dedication in Teaching
2020	DAAD, Postdoc-NeT-AI Fellow
2020	Takeda , Fellowship in AI+Health [tuition and stipend]

Martin Schrimpf 4 / 6

2019	Grant: IBM ThreeDWorld
2019	MIT, Shoemaker Fellowship [tuition and stipend]
2019	McGovern Institute, Travel award [travel scholarship]
2018	Grant: C-BRIC brain-inspired neural network models
2018	Google.org , <i>Impact Challenge</i> (<i>Integreat</i>) [finalist, 250,000€]
2017	MIT, Singleton Fellowship [tuition and stipend]
2017	Council of Europe, European Youth Award (Integreat) [winner]
2016	DAAD German Academic Exchange Service, FITweltweit [scholarship]
2016	University of Augsburg, Teilstipendium [scholarship]
2015	Federal Ministry for Education and Research, Deutschlandstipendium
	[scholarship]
2014	Bavarian State Ministry, Ministeriumsstipendium [scholarship]

Mentored Students

Since 2021	Marliawaty I Gusti Bagus, CDTM
	Generalization of neural representations
2020 - 2021	Paul McGrath, TUM
	Modeling neural perturbations
2020 - 2021	Tilak Sharma, Facebook / MIT
	Local learning without backpropagation
2019 - 2020	Caleb Littlejohn, MIT
	Brain-Score submission platform
2020	Sachi Sanghavi, MIT
	Dependence of action recognition on temporal integration
2019 - 2020	Franziska Geiger, TUM / LMU / UNA
	Compressing neural network weights into structured distributions
2019	Fukushi Sato, TUM
	Building temporal models of the ventral stream
2018 - 2019	William Hartman, MIT
	Identifying high-performance substructures within architectures
2016	Jacklyn Sarette, Emmanuel College
	Behavioral experiments on visual context
2016	Doré de Morsier, ETH Zurich
	Behavioral experiments on the recognition of novel objects
2016	Wendy Fernandez, City University of New York
	Behavioral experiments and data analysis on the identification of
	occluded objects (MIT Summer Research Program)

Teaching

2022	Brains, Minds, and Machines summer school
	Computational Models of Vision and Language
2021	Systems Neuroscience Core II (Prof. Halassa)
	Teaching Assistant / Co-Lecturer
2021	Guest Lecture, Program for Software Engineering UNA TUM LMU
	Engineering an Artificial Biological Intelligence

Martin Schrimpf 5 / 6

2020	Systems Neuroscience Core II (Prof. Halassa)
	Teaching Assistant
2019	Computational Cognitive Science (Prof. Tenenbaum)
	Teaching Assistant
2019	Harvard-MIT Computational Neuroscience Journal Club
	Deep Networks and PyTorch
2019	Neural Mechanisms of Cognitive Computation (Prof. Halassa)
	Teaching Assistant
2017	MIT BCS Peer Lectures
	Introduction to Deep Learning

Service

2022	Brains, Minds, and Machines summer school, Course Consultant	
2022	Neural Information Processing Systems (NeurIPS), Reviewer	
2022	Cosyne Workshop, Organizer	
	Brain-Score and beyond: confronting brain-like ANNs with	
	neuroscientific data	
2022	Intl. Conference on Learning Representations (ICLR), Reviewer	
2021	Neural Information Processing Systems (NeurIPS), Reviewer	
2021	International Conference on Machine Learning (ICML), Reviewer	
2021	Nature Communications, Reviewer	
2021	Neuron, Reviewer	
2020	CCN GAC Workshop, Organizer	
	Is it that simple? The use of linear models in neuroscience	
2020	eLife, Reviewer	
2020	iScience, Reviewer	
2020	Cosyne Workshop, Organizer	
	Closing the Gap between Neural Networks and the Brain	
Since 2020	Underrepresented minorities in Machine Learning, Mentor	
2019	NeurIPS Real Neurons & Hidden Units Workshop, Reviewer	
Since 2018	CBMM (MIT & Harvard), Trainee Leadership Council	
2016	University of Augsburg AI Workshop, Organizer	

References

James DiCarlo, MIT (advisor)	dicarlo@mit.edu
Peter de Florez Professor of Neuroscience	
Joshua Tenenbaum, MIT	jbt@mit.edu
Paul E. Newton Career Development Professor of C	Cognitive Science
Nancy Kanwisher, MIT	ngk@mit.edu
Walter A. Rosenblith Professor of Cognitive Neuros	science
Gabriel Kreiman, Harvard	gabriel.kreiman@tch.harvard.edu
Professor of Ophthalmology	
Evelina Fedorenko, MIT	evelina9@mit.edu
Associate Professor	
Daniel Yamins, Stanford	yamins@stanford.edu
Assistant Professor	•

Martin Schrimpf 6 / 6