Date transformations and visualizations

TIME SERIES ANALYSIS IN TABLEAU

Chris HuiVP of Product, Tracked

Splitting up data in Tableau

- Data can be encoded via delimiters that can be split apart into their own fields (e.g. AUS-001)
- Tableau has two distinct splitting options:
 Split or Custom split
- Split: separates the data based off the most common delimiter

Splitting up data in Tableau

- Data can be encoded via delimiters that can be split apart into their own fields (e.g. AUS-001)
- Tableau has two distinct splitting options:
 Split or Custom split
- Split: separates the data based off the most common delimiter

Cust Order Key	Split 1	Split 2	Split 3
AA-B1-C1	AA	B1	C1
AA-B2-C2	AA	B2	C2
AA-B3-C3	AA	В3	C3

Splitting up data in Tableau

- Data can be encoded via delimiters that can be split apart into their own fields (e.g. AUS-001)
- Tableau has two distinct splitting options:
 Split or Custom split
- Split: separates the data based off the most common delimiter
- Custom split: separates the data based off custom delimiters specified

Cust Order Key	Split 1	Split 2	Split 3
AA-B1-C1	AA	B1	C1
AA-B2-C2	AA	B2	C2
AA-B3-C3	AA	B3	C3

Cust Order Key	Split 1	Split 2	Split 3
AA-B1-C1.DD	AA	B1	C1.DD
AA-B2-C2.DD	AA	B2	C2.DD
AA-B3-C3.DD	AA	В3	C3.DD

Calculated splits in Tableau

- SPLIT() is helpful when you need to split up one or **more** delimiters in a textual field
- The tokens (text) are returned either left to right (positive), or right to left (negative) dependent on position
- Splitting functions are generally nested and combined with functions like:

```
Fig. 1 TRIM() / CASE
```

```
SPLIT("Alpha-Beta-Gamma","-",3)
```

Token Position 1 2 3
Token Position -3 -2 -1

Positive numbers indicate a **Left to Right** sequence. Negative numbers indicate a **Right to Left** sequence.

This is why Gamma, can be returned either with a 3 position, or -1 position.

```
State_Split_Example

Orders (Sample - Superstore Legacy)

IF TRIM(SPLIT([Order ID],"-",1)) = "CA" THEN "West Coast"

ELSE "Other"

END

The calculation is valid.

Apply

OK
```

Validating dates

- By design, Tableau adheres to and recognizes ISO-8601 and Standard Gregorian date formats
- However dates can sometimes appear in a textual / string format
- The ISDATE() function can be utilized to return True for all entries recognized as dates and False otherwise

Format according to ISO 8601	Value ranges
Year (Y)	YYYY, four-digit, abbreviated to two-digit
Month (M)	MM, 01 to 12
Week (W)	WW, 01 to 53
Day (D)	D, day of the week, 1 to 7
Hour (h)	hh, 00 to 23, 24:00:00 as the end time
Minute (m)	mm, 00 to 59
Second (s)	ss, 00 to 59
Decimal fraction (f)	Fractions of seconds, any degree of accuracy

To parse or not to parse?

- DATEPARSE() converts non-standard string fields to date time objects through **explicit** parsing of the date format
- It can be utilized for all date strings that are recognized as strings as opposed to dates
- MM-YY-DD might makes sense to us, but not to Tableau, unless you specify this with DATEPARSE()

A. Day of month

B. Month

C. Year

D. Hour, minute, second, millisecond,

Cleansing with date truncation

- ISDATE() and DATEPARSE() are useful to identify invalid dates, but **not** correcting these dates
- DATETRUNC() returns the **lowest** value for each date partition, dependent of the day specification (i.e. Week start on Monday)
- DATETRUNC() is useful for verifying reoccurring reporting periods for errors (e.g. Weekly)

Date	reporting_week
2015/9/32	27/09/2015 12:00:00 am
2015/12/32	27/12/2015 12:00:00 am

The dataset

- Univariate and multivariate analysis of Avocado Varieties
- Seasonal variations and pricing distributions
- Trend analysis & percentiles

Let's practice!

TIME SERIES ANALYSIS IN TABLEAU

Reforming dates in practice

TIME SERIES ANALYSIS IN TABLEAU

Chris HuiVP Product

Let's practice!

TIME SERIES ANALYSIS IN TABLEAU

Date transformations and visualizations

TIME SERIES ANALYSIS IN TABLEAU

Chris HuiVP of Product, Tracked

What's seasonality?

- Seasonality is when time series data experiences regular and predictable changes that recur every calendar year
- Examples include tourism or fruiting seasons that have variable prices based off timing
- Seasonal behaviour allows business to effectively plan around peaks and troughs to optimize their business

Treating seasonality with moving averages

Common methods to treat seasonality:

Moving averages

- Technique to smooth out short term fluctuations (peaks/troughs) in the data over a specific time window
- Used to filter out noise while preserving the underlying signal

Identifying seasonality with seasonal boxplots

Common methods to identify seasonality:

- Seasonal boxplots (quarterly analysis)
 - Segments the data quarterly to enable visualization of seasonal (quarterly) fluctuations
 - Consistent volatility across quarters are an indicator of seasonal behavior

What's an anomaly?

- Anomalous values (outliers), are values that deviate outside the normal distribution
- Outliers can be considered to be:
 - Any value outside +- 3 standard deviations away from the mean
 - More than 1.5 x IQR below Q1 or more than 1.5 x IQR above Q3

(Standard deviation is a measure of how far any value is from the population mean)

Z-score and the normal distribution

- The Z-score is the number of standard deviations a given data point lies above or below mean
- Z-scores within +-3 means ~99.7% of the population values lies within this range
- Subsequently, any Z-score outside the +-3 range can be considered an outlier

Unpacking percentiles in Tableau

- Percentiles determine where a value stands relative to other values
 - Median (50th Percentile)
 - Upper & Lower Quartiles (75th / 25th percentiles)
- Provides a flexible approach to outlier detection beyond the traditional Z-score methodology

Let's practice!

TIME SERIES ANALYSIS IN TABLEAU

Visualizing seasonality and percentiles

TIME SERIES ANALYSIS IN TABLEAU

Chris Hui VP Tracked

Let's practice!

TIME SERIES ANALYSIS IN TABLEAU

