

INTRODUCTION

- Real-world data is often incomplete due to occlusion, sensor limitations, or surface reflectivity, leading to holes in 3D meshes.
- Just like restoring a broken sculpture, 3D mesh inpainting aims to digitally repair lost or damaged structure.
- Traditional hole-filling trades off accuracy vs. efficiency. (MVS and SfM)
- There's a growing need for data-driven, robust approaches that can intelligently reconstruct missing geometry beyond interpolation and naive fitting.
- Thus, we present a Hybrid NeRF-based pipeline that fuses partial meshes with radiance field predictions to reconstruct watertight 3D geometry using the Objaverse Dataset, with a focus on improving performance through a comparison with existing models like PCN.

PREVIOUSLY

Baseline Methods for Mesh Reconstruction

MeshFix

Methodology:

- Uses geometry-based topological reconstruction
- Creates watertight meshes by sealing gaps and ensuring connectivity
- Focuses on repairing mesh inconsistencies

Results:

- Output mesh appears physically complete, but error mapping reveals discrepancies
- Performs well for simple geometries, achieving good volume and surface scores
- Complex models pose challenges—fails to recover correct surface geometry
- Fills gaps generically, ignoring object-specific structures

Poisson Reconstruction

Methodology:

- Converts the mesh into point clouds
- Applies density-based outlier removal and depth-adaptive filtering
- Uses Poisson equation to generate a smooth, continuous surface from point cloud

Results:

- Mesh holes are physically complete, but lack accuracy
- Point-cloud to mesh conversion ignores object structure, creating noisy, distorted output

(Left) Meshfix Reconstruction (Right) Error Map

(Left) Holed Mesh (Right) Poisson Reconstruction

PCN

- Encoder (Global Feature Extraction)
 - Input: Partial 3D Point Cloud (N x 3)
 - 3 × 1D Conv Layers + ReLU, Max Pooling → Global Feature Vector
 - Permutation invariant shape summary
- Coarse Decoder (Initial Shape Prediction)
 - 2 Fully Connected Layers → 1024 Coarse Points
 - Reshaped from final FC output; first guess of full shape
- Fine Decoder (FoldingNet-based Refinement)
 - 2D Grid + Coarse Points + Global Feature
 - 5-Layer MLP with Skip Connections
 - Learns detailed surface around coarse shape
- Training Setup
 - Losses: Chamfer Distance, Repulsion, Structure Loss
 - Epochs: 50 | Dataset: ~200 inputs

Input (Incomplete) (Mesh)

Prediction (Mesh)

Original (Mesh)

Prediction (Mesh)

Input (Incomplete) (Mesh)

Prediction (Mesh)

PCN

• Key Insights:

- Modular pipeline improves consistency and detail
- Folding decoder enables surface generation from grid
- Skip connections maintain structural alignment
- Multi-loss training balances geometry + uniformity
- Limitations & Future Work:
 - Small dataset (~200 samples) limits generalization
 - Folding decoder is compute-heavy
 - Explore: Mixed precision, encoder pretraining, larger datasets

Reference:

- Qinglew. "Qinglew/PCN-PyTorch: Implementation of PCN(Point Completion Network) in PYTORCH." *GitHub*, github.com/qinglew/PCN-PyTorch.git. Accessed 7 May 2025.
- Wentaoyuan. "Wentaoyuan/PCN: Code for PCN: Point Completion Network in 3DV'18 (Oral)." *GitHub*, github.com/wentaoyuan/pcn.git. Accessed 7 May 2025.

NERFILLER

- 3D generative inpainting framework using 2D view-based inpainting to complete 3D texture and geometry.
- Uses a dense grid structure of 40 multi-view images for joint multi-view consistent inpainting for every iteration.
- Starts with training the base NeRF model (Nerfacto) on the partial mesh views for 30k iterations.
- With a trained Nerfacto, it iteratively inpaints the rendered views to fill in occluded regions and missing geometry.
- These inpainted views are used to then estimate the depth and subsequently update the NeRF dataset, creating a fine-tuned NeRF representation.
- Inpainting occurs every 1k iterations for a total of 30k iterations, following the initial 30k Nerfacto iterations.
- Slow runtime with large memory and graphics requirements.

Weber, Ethan, et al. "NeRFiller: Completing Scenes via Generative 3D Inpainting." 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024.

NERFILLER

Mesh	Method	PSNR	SSIM
Chair	Nerfacto	6.95	0.733
	Grid Prior	21.42	0.879
Вох	Nerfacto	17.95	0.907
	Grid Prior	31.57	0.974
Trawler	Nerfacto	22.59	0.912
	Grid Prior	33.81	0.978

• Data Preparation

Load RGB + depth maps and camera metadata from NeRF-Filler outputs for 3D sampling.

• Point Cloud Generation

Convert RGB-depth pairs into point clouds using Open3D and intrinsic camera parameters.

• Partial Mesh Sampling

Load the holed mesh and uniformly sample 3,000 surface points for alignment.

• Fusion & Cleaning

Merge NeRF and mesh point clouds, align centers, downsample, and estimate normals.

• Mesh Reconstruction

Use Ball Pivoting Algorithm (BPA) to reconstruct a watertight mesh from the cleaned point cloud.

HYBRID MODEL

Weber, Ethan, et al. "NeRFiller: Completing Scenes via Generative 3D Inpainting."
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024
Bernardini, Fausto, et al. "The ball-pivoting algorithm for surface reconstruction."

IEEE Transactions on Visualization and Computer Graphics (TVCG) 5.4 (1999): 349–359.

CONCLUSION

- Our hybrid NeRF-based pipeline effectively combines partial meshes with radiance field predictions to improve the reconstruction quality, addressing some limitations of traditional methods like MeshFix.
- The implemented approach leverages the strengths of both geometric (Point Cloud Fusion) and data-driven (NeRF) techniques.
- While still a work in progress, the approach shows strong potential for digital restoration, robotics, and AR/VR applications.

