US-PAT-NO:

6835956

DOCUMENT-IDENTIFIER: US 6835956 B1

TITLE:

Nitride semiconductor device and manufacturing method

thereof

----- KWIC -----

US Patent No. - PN (1): 6835956

US Document Identifier - DID (1): US 6835956 B1

Detailed Description Text - DETX (29):

(<u>Undoped n-type Contact Layer</u> 1:Al.sub.a G.sub.1-a N of the Present Invention)

Detailed Description Text - DETX (30):

An <u>undoped n-type contact layer</u> 1 made of undoped Al.sub.0.05 Ga.sub.0.095 N was grown to the thickness of 1 .mu.m on the GaN substrate 30, using TMA (trimethylalminium), TMG and ammonia gas as a source gas at 1050.degree. C. (n-type contact layer 2: Al.sub.a Ga.sub.1-a N of the present invention)

Detailed Description Text - DETX (32):

Now, there were no small cracks in the above-mentioned n-type contact layer (including the n-type contact layer 1), thus the cracks can be prevented well. If there are any small cracks in tha GaN substrate, the small cracks can be prevented from propagating by growing the n-type nitride semiconductor layer 2, so as to grow a device structure having a good crystallinity. The crystallinity was enhanced better in the case that both an n-type contact layer 2 and an <u>undoped n-type contact layer</u> 1 are formed as described above, compared with the case that only the n-type contact layer 2 was formed.

Detailed Description Text - DETX (63):

The laser device was fabricated in the same manner as in Example 1, except that the <u>undoped n-type contact layer</u> 1 was not grown and only the n-type contact layer 2 was grown.

Dec. 28, 2004

(12) United States Patent

Nagahama et al.

(10) Patent No.:

US 6,835,956 B1

(45) Date of Patent:

Dec. 28, 2004

(54) NITRIDE SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

(75)	Inventors:	Shinichi Nagahama,	Anan (JP);	Shuji
		Nakamura Anan (IP)	

(73) Assignee: Nichia Corporation, Tokushima (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/500,288

(22)

Feb. 8, 2000 (30)Foreign Application Priority Data

(51) Int CL ⁷		T	U01T 2	7/15
Nov. 22, 1999	(JP)		P 11-33	1797
Feb. 9, 1999	(JP)		P 11-03	0990

U.S. Cl. 257/79; 257/13; 257/82; 257/85; 257/94; 257/101; 257/103

(56)References Cited

U.S. PATENT DOCUMENTS

3,566,215 A	2/1971	Heywang 317/235
3,593,191 A		Henker 331/94.5
3,655,439 A		Seiter 117/212
3,658,585 A	4/1972	Folkmann et al 117/201
3,704,427 A	11/1972	Heywang 331/94.5
3,705,567 A		Emels 118/49
3,737,737 A		Heywang et al 317/234 R
3,747,559 A		Dietze 118/48
3,793,984 A	2/1974	
3,819,974 A	6/1974	Stevenson et al 313/499
3,853,974 A		Reuschel et al 264/81
3,941,647 A		Druminski 156/612
3,948,693 A	4/1976	Weyrich et al 148/171
3,963,537 A	•	Kniepkamp et al 148/175
3,965,347 A		Heywang 250/211 J
3,974,561 A		Schnoeller 29/611
0,5,001 11	0, 1,	20,011

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

CA	1325582	12/1993	H01L/21/36
DE	196 48 955 A1	5/1997	H01L/33/00
EP	0356059 A3	2/1990	H01L/21/38
EP	0356059 A2	2/1990	H01L/21/38
EP	0380340 A3	8/1990	H01L/29/91
EP	0380340 A2	8/1990	H01L/29/91
EP	0637069 A1	2/1995	H01L/21/473
EP	0731512 A2	9/1996	H01L/33/00
EP	0731512 A3	7/1997	H01L/33/00
EP	0781619 A1	7/1997	B23H/7/02
EP	0871208 A2	10/1998	H01L/21/20
EP	0 874 405	10/1998	
EP	0880181 A2	11/1998	H01L/29/45
EP	0871208 A3	12/1998	H01L/21/20
EP	0880181 A3	1/1999	H01L/29/45
EP	0905799 A2	3/1999	H01L/33/00

(List continued on next page.)

OTHER PUBLICATIONS

US 5,961,723, 10/1999, Roithner et al. (withdrawn) Nakamura et al: "High-power, Long-Lifetime InGaN/GaN/ AlGaN-Based Laser Diodes Grown on Pure GaN Substrates," Jpn J. Appl. Phys., vol. 37 (1998) pp. 309-312.

(List continued on next page.)

Primary Examiner—Long Pham Assistant Examiner-Wai-Sing Louie (74) Attorney, Agent, or Firm-Nixon & Vanderhye PC

ABSTRACT (57)

A nitride semiconductor device includes a GaN substrate having a single-crystal GaN layer at least on its surface and plurality of device-forming layers made of nitride semiconductor. The device-forming layer contacting the GaN substrate has a coefficient of thermal expansion smaller than that of GaN, so that a compressive strain is applied to the device-forming layer. This result in prevention of crack forming in the device-forming layers, and a lifetime characteristics of the nitride semiconductor device is improved.

8 Claims, 4 Drawing Sheets

