The Sampling Distribution of The Sample Proportion

• If a random sample of n measurements is selected from a binomial population with parameter p, then the sampling distribution of the sample proportion $\hat{p} = \frac{x}{n}$ will have a mean p and a standard deviation $SE(\hat{p}) = \sqrt{\frac{pq}{n}}$ where

and a standard deviation
$$SE(\hat{p}) = \sqrt{\frac{pq}{n}}$$
 where $q = 1 - p$.

- When the sample size n is large, the sampling distribution of \hat{p} can be approximated by a normal distribution.
- The approximation will be adequate if np>5 and nq>5.
- 1. Find the necessary values of **n** and **p**.
- 2. Check whether the normal approximation to the binomial distribution is appropriate (np>5 and nq>5).
- 3. Write down the event of interest in terms of \hat{p} , and locate the appropriate area on the normal curve.
- 4. Convert the necessary values of \hat{p} to z-values using $z = \frac{\hat{p} - p}{\sqrt{pq}}$
- 5.Use standard normal table calculate the probability

MTB > random 10000 c1; SUBC> normal 120 10. MTB > desc c1

Descriptive Statistics: C1

Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
C1	10000	0	119.99	0.0997	9.97	84.14	113.26	120.16	126.79

Variable Maximum C1 160.18

MTB > let c2=c1>140

MTB > table c2

Tabulated statistics: C2

Rows: C2

Count 9786 1 214 All 10000

MTB > let k1=sum(c2)/10000

MTB > print k1

Data Display

K1 0.0214000

MTB > sample 100 c2 c3 MTB > sample 100 c2 c4 MTB > sample 100 c2 c5 MTB > sample 100 c2 c6 MTB > sample 100 c2 c7 MTB > sample 100 c2 c8 MTB > sample 100 c2 c9 MTB > sample 100 c2 c10 MTB > sample 100 c2 c11

EXPECTED 100*0.0214=2.14

Sum of C3 = 2Sum of C4 = 0Sum of C5 = 6Sum of C6 = 4Sum of C7 = 3Sum of C8 = 5Sum of C9 = 2

Sum of C10 = 1

Sum of C11 = 1

MTB > Random 10000 c1-c100;

SUBC> Bernoulli 0.05.

MTB > rsum c1-c100 c101

MTB > let c102=c101/100

MTB > desc c102

Descriptive Statistics: C102

Variable		N	N*	Mean	SE Mean	StDev	Minimum
Q1 Med	<mark>ian</mark>						
C102	100	000	0	0.050197	0.000218	0.021827	0.000000
0.030000	0.0	500	00				

 Variable
 Q3
 Maximum

 C102
 0.060000
 0.150000

$$SE(\hat{p}) = \sqrt{\frac{pq}{n}} = \sqrt{\frac{\hat{p}\hat{q}}{n}} = \sqrt{\frac{(0.05)(0.95)}{100}} = 0.0218$$

Example: In a survey, 500 mothers and fathers were asked about the importance of sports for boys and girls. Of the parents interviewed, 60% agreed that the genders are equal and should have equal opportunities to participate in sports.

Describe the sapling distribution of the sample proportion.

$$\hat{p} = 0.60$$

$$SE(\hat{p}) = \sqrt{\frac{pq}{n}} = \sqrt{\frac{\hat{p}\hat{q}}{n}} = \sqrt{\frac{(0.60)(0.40)}{500}} = 0.022$$

Suppose the proportion p of parents in the population is actually equal to 0.55. What is the probability of observing a sample proportion as large as or larger than the observed value $\hat{p} = 0.60$?

$$p = 0.55$$

$$SE = \sqrt{\frac{pq}{n}} = \sqrt{\frac{(0.55)(0.45)}{500}} = 0.0222$$

$$P(\hat{p} > 0.60) = P(z > \frac{0.60 - 0.55}{0.0222})$$
$$= P(Z > 2.25) = 1 - 0.9878 = 0.0122$$

Exercise: Random samples of size n=75 were selected from a binomial population with p=0.30. Use the normal distribution to approximate the following probabilities:

$$P(\hat{p} \ge 0.40)$$

$$P(\hat{p} \le 0.28)$$

$$P(0.25 \le \hat{p} \le 0.32)$$

A Control Chart for the Proportion Defective: The P Chart

To monitor a process for defective items, samples of size n are selected at periodic intervals and the sample proportion \hat{p} is calculated. When the process is in control, \hat{p} should fail into the interval $p \pm 3SE$, where p is the proportion of defectives in the population (or the process fraction defective) with standard error

$$SE = \sqrt{\frac{pq}{n}} = \sqrt{\frac{p(1-p)}{n}}$$

The process fraction defective is unknown but can be estimated by the average of the **k** sample proportions

$$\overline{p} = \frac{\sum_{i=1}^{k} \hat{p}_i}{k}$$

The standard error is estimated by

$$SE = \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

The centerline for the p chart is located at

$$CL = \overline{p}$$

The upper and lower control limits are

$$UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$LCL = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

Example: Proportions of Defectives in samples of n=1000.

		Number	
	Sample	of	
Day	Size	Defective	Proportion
1	1000	18	0.018
2	1000	14	0.014
3	1000	15	0.015
4	1000	17	0.017
5	1000	21	0.021
6	1000	13	0.013
7	1000	12	0.012
8	1000	19	0.019
9	1000	23	0.023
10	1000	14	0.014
11	1000	16	0.016
12	1000	18	0.018
13	1000	21	0.021
14	1000	14	0.014
15	1000	17	0.017
16	1000	19	0.019
17	1000	19	0.019
18	1000	21	0.021
19	1000	21	0.021
20	1000	23	0.023

$$\overline{p} = \frac{\sum_{i=1}^{k} \hat{p}_i}{k} = \frac{0.018 + \dots + 0.023}{20} = 0.01775$$

$$SE = \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$= \sqrt{\frac{0.01775(1-0.01775)}{1000}} = 0.00417552$$

$$UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$
$$= 0.01775 + 3(0.00417552) = 0.03028$$

$$LCL = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$= 0.01775 - 3(0.00417552) = 0.00522$$

