

Kapitel 12

Hashing: Einführung (Teil 1)

Effiziente Algorithmen, SS 2018

Professor Dr. Petra Mutzel

VO 21/22 am 3./5. Juli 2018

Ubersicht

- I. Effiziente Graphalgorithmen
- II. Approximationsalgorithmen
- III. Wörterbuch- und Wörtersuchprobleme
 - Skiplisten
 - Hashing und Perfektes Hashing
 - String Matching

Wörterbuch- und Wörtersuchprobleme

Es gibt verschiedene Ansätze zur Lösung des Wörterbuchproblems:

- Strukturierung der aktuellen Schlüsselmenge: z.B. Listen (Kap. 11: Skiplisten), Bäume, Graphen,...
- Aufteilung des gesamten Schlüssel-Universums: Hashing (Kap.
 12: Hashing und Perfektes Hashing)

String Matching ist die Suche von Wörtern in Texten und gehört zu den Wörtersuchproblemen.

String Matching (Kap. 13)

Petra Mutzel

VO 21/22 am 3./5. Juli 2018

Literatur

 Cormen, Leiserson, Rivest, Stein: Algorithmen – Eine Einführung, z.B. 4. Auflage, 2011, Kap. 11 Hashtabellen

12.1 Einführung

Wörterbuchproblem Verwalte eine Menge von Schlüsseln (mit Daten).

Operationen: Insert, Search, Delete

Erinnerung Schlüssel können geordnet und ungeordnet sein Erinnerung "Lösungen" z. B.

- lineare Listen (einfach, langsam, deterministisch)
- AVL-Bäume (schnell, kompliziert, deterministisch, nur für geordnete Schlüsseluniversen)
- Skiplisten (schnell, eher unkompliziert, randomisiert, nur für geordnete Schlüsseluniversen)
- Hashing (schnell im Average Case, langsam im Worst Case, einfach, randomisiert)

Petra Mutzel VO 21/22 am 3./5. Juli 2018

Hashing

Idee von Hashing:

- Ermittle die Position eines Schlüssels durch eine arithmetische Berechnung statt durch Schlüsselvergleiche
- Dazu: Datenstruktur Hashtabelle: speichert M Schlüssel mit Hashadressen 0,...,M-1

Situation:

- Schlüssel S aus Universum \mathcal{U} : $S \subseteq \mathcal{U}$, |S| = n
- Hashfunktion $h: \mathcal{U} \to \{0, 1, \dots, M-1\} \ (|\mathcal{U}| \gg M)$
- Speicherung von Schlüssel x an Position T[h(x)] in Hashtabelle
- Kollision $x \neq y \in \mathcal{U}$ mit h(x) = h(y)
- Geburtstagsparadoxon: M=365, n=23 Kollisionen unvermeidlich

- Schlüssel S aus Universum \mathcal{U} : $S \subseteq \mathcal{U}$, |S| = n
- Hashfunktion $h: \mathcal{U} \to \{0, 1, \dots, M-1\} \ (|\mathcal{U}| \gg M)$
- ullet Speicherung von Schlüssel x an Position T[h(x)]

Einführung

Offene Fragen

0000

- Was sind gute Hashfunktionen?
- Wie geht man mit Kollisionen um?

12.2 Wahl der Hashfunktion

- Ziel: Hashadressen sollen gleichverteilt in $\{0,\ldots,M-1\}$ sein
- Hashfunktionen sollen Häufungen fast gleicher Schlüssel möglichst gleichmäßig auf den Adressbereich streuen
- Generalannahme: Schlüssel sind nicht-negative ganze Zahlen
- Z.B.: Lösung für Character-Strings: deren ASCII-Code ist Nummer in [0,...,127], z.B.

$$\texttt{p} \triangleq 112, \quad \texttt{t} \triangleq 116 \quad \Longrightarrow \quad \texttt{pt} \triangleq 112 \times 128 + 116 = 14452$$

Petra Mutzel

Divisions-Rest-Methode

Definition (Divisions-Rest-Methode)

Die Hashfunktion der Divisions-Rest-Methode ist gegeben durch

$$h(x) = x \bmod M$$

Eigenschaften

- (1) h(x) kann schnell berechnet werden.
- (2) Die richtige Wahl von M (Tabellengröße) ist sehr wichtig.

- **Gute Wahl:** Primzahl M, die kein $r^i \pm j$ teilt.
- Vermeide z.B.
 - $M=2^i$: Alle bis auf die letzten Binärziffern werden ignoriert.
 - $M=10^i$ oder $M=r^i$: Analog bei Dezimal- bzw. r-adischen
 - $M = r^i \pm j$ für kleines j, z.B. $M = 2^7 1 = 127$:

$$\begin{array}{l} \mathtt{pt} \triangleq (112 \cdot 128 + 116) \bmod 127 = 14452 \bmod 127 = 101 \\ \mathtt{tp} \triangleq (116 \cdot 128 + 112) \bmod 127 = 14960 \bmod 127 = 101 \end{array}$$

Dasselbe passiert, wenn in einem längeren String zwei Buchstaben vertauscht werden.

- Praktisch bewährt!
- **Beispiel:** Die Hashtabelle soll circa 700 Einträge aufnehmen, die Schlüssel sind Dualzahlen.

Gute Wahl: M = 701, da $2^9 = 512$ und $2^{10} = 1024$.

Petra Mutzel VO 21/22 am 3./5. Juli 2018

Multiplikationsmethode

•00000000

Definition (Multiplikationsmethode)

Die Hashfunktion der Multiplikationsmethode ist gegeben durch

$$h(x) = \lfloor M(x \cdot A \bmod 1) \rfloor = \lfloor M \underbrace{(x \cdot A - \lfloor x \cdot A \rfloor)}_{\in [0,1)} \rfloor$$

mit 0 < A < 1.

Eigenschaften

- Die Wahl von M ist unkritisch.
- (2) Wir erhalten eine gleichmäßige Verteilung für $U = \{1, 2, \dots, n\}$ bei einer guten Wahl von A.

Multiplikationsmethode: Wahl von A

Irrationale Zahlen sind eine gute Wahl, denn:

Satz: Sei ξ eine irrationale Zahl. Plaziert man die Punkte

$$\xi - \lfloor \xi \rfloor$$
, $2\xi - \lfloor 2\xi \rfloor$, ..., $n\xi - \lfloor n\xi \rfloor$

in das Intervall [0,1], dann haben die n+1 Intervallteile höchstens drei verschiedene Längen.

Außerdem fällt der nächste Punkt

$$(n+1)\xi - \lfloor (n+1)\xi \rfloor$$

in einen der größten Intervallteile.

(Beweis: Vera Turán Sos [1957])

Multiplikationsmethode: Wahl von A

Beste Wahl für A nach Knuth [1973]:

$$A = \Phi^{-1} = \frac{2}{1 + \sqrt{5}} = -\hat{\Phi} = \frac{\sqrt{5} - 1}{2} = 0.6180339887...$$

 Φ^{-1} ist bekannt als der "goldene Schnitt".

Beispiel: (Dezimalrechnung) x=123456, M=10000, $A=-\hat{\Phi}$

$$h(x) = \lfloor 10000 \cdot (123456 \cdot 0.61803 \dots \mod 1) \rfloor$$

$$= \lfloor 10000 \cdot (76300.0041151 \dots \mod 1) \rfloor$$

$$= \lfloor 10000 \cdot 0.0041151 \dots \rfloor$$

$$= \lfloor 41.151 \dots \rfloor$$

$$= 41$$

Der goldene Schnitt

Der goldene Schnitt

- ist behandelt in Euklids Elemente.
- wird von Kepler als die "göttliche Teilung" bezeichnet,
- findet sich in vielfacher Weise in der Natur,
 - z.B. Durchmesserverhältnis benachbarter Nautilus-Spiralkammern,
 - z.B. Verhältnis von Sonnenblumenkernspiralen,
 - z.B. beim Menschen (Leonardo da Vinci)
 - Verhältnis Scheitel/Sohle zu Nabel/Sohle,
 - Verhältnis Hüfte/Sohle zu Knie/Sohle,
 - Verhältnis Schulter/Fingerspitzen zu Ellbogen/Fingerspitzen,
- bestimmt Ma
 ßverh
 ältnisse in Kunstwerken.
 - z.B. von Michelangelo, Dürer, da Vinci,
- erscheint in kompositorischen Strukturen,
 - z.B. von Mozart, Beethoven, Bartók, Debussy, Schubert,
- bestimmt Maßverhältnisse in der Architektur,
 - z.B. ägyptischer Pyramiden,
 - z.B. antiker Gebäude.
 - z.B. des UN-Hauptquartiers in New York.

Multiplikationsmethode: Wahl von M

Eine gute Wahl ist $M=2^i$. Ist dann A von der Form $0, \dots$ $\le w$ Bits

(eine praktisch vernünftige Annahme!), so kann h(x) nach folgendem Schema effizient berechnet werden:

Multiplikationsmethode: Beispiel zur Berechnung

Multiplikationsmethode: Beispiel zur Berechnung ff

```
Beispiel: i = 5, w = 8, A = 0.101, x = 1011111
```

```
00101111
  x 10100000
  10111100000
10111100000000 Ueberlauf
              ignorieren!
1110101100000
     h(x)
```

Ubungsaufgabe: Erklären Sie, warum das funktioniert.

Divisions-Restmethode vs. Multiplikationsmethode

Empirische Untersuchungen zeigen:

Divisions-Rest-Methode ist besser

Jetzt: Umgang mit Kollisionen

- Hashing mit Verkettung (Offenes Hashing)
- Hashing mit offener Adressierung (Geschlossenes Hashing)

12.3 Hashing mit Verkettung

Methode: Jedes Element der Hashtabelle ist eine Referenz auf eine Überlaufkette, die als verkettete lineare Liste implementiert ist.

Petra Mutzel VO 21/22 am 3./5. Juli 2018

Illustration für Insert

Analyse von Search

Definition (Belegungsfaktor einer Hashtabelle)

Wir nennen die durchschnittliche Anzahl von Elementen in einer Überlaufkette

$$\alpha = \frac{n}{M}$$

den Belegungsfaktor (Auslastungsfaktor) der Hashtabelle.

Im worst case (alle Elemente hashen auf denselben Platz) haben wir offensichtlich $\Theta(n)$ Suchaufwand.

Average Case Analyse von Search

Annahmen:

- (1) Ein gegebenes Element hasht auf jeden der M Plätze mit gleicher Wahrscheinlichkeit $\frac{1}{M}$, unabhängig von den anderen Elementen.
- (2) Jeder der n gespeicherten Schlüssel ist mit gleicher Wahrscheinlichkeit der Gesuchte.
- (3) Insert fügt neue Elemente am Anfang der Liste ein.
- (4) Die Berechnung von h(x) benötigt konstante Zeit und bleibt außen vor.

Theorem (Analyse Hashing mit Verkettung)

Die erwartete Anzahl der betrachteten Einträge bei Hashing mit Verkettung bei einem Belegungswert $0<\alpha=\frac{n}{M}<1$ beträgt für

- erfolglose Suche: $n/M = \alpha$
- erfolgreiche Suche: $1 + \frac{\alpha}{2} \frac{1}{2M} = \theta(1 + \alpha)$

Beweis: siehe später in Kapitel: Perfektes Hashing

Vorteile:

- Belegungsfaktor von mehr als 1 ist möglich
- Echte Entfernungen von Einträgen sind möglich
- eignet sich für Externspeichereinsatz (Hashtabelle im Internspeicher, Listen extern)

Nachteile:

- Zu den Nutzdaten kommt der Speicherplatzbedarf für die Zeiger
- Speicherplatz der Tabelle wird nicht genutzt, dies ist umso schlimmer, wenn in der Tabelle viele Plätze leer bleiben

12.4 Hashing mit offener Adressierung

- Methode: Alle Elemente werden in der Hashtabelle gespeichert. Wenn ein Platz belegt ist, so werden in einer bestimmten Reihenfolge weitere Plätze ausprobiert → Sondierungsreihenfolge.
- Hierzu: Erweiterung der Hashfunktion auf zwei Argumente:

$$h: U \times \{0, 1, \dots, M-1\} \to \{0, 1, \dots, M-1\}.$$

• Die Sondierungsreihenfolge ergibt sich dann durch

$$\langle h(x,0), h(x,1), \dots, h(x,M-1) \rangle$$

• Diese ist idealerweise eine Permutation von $(0, 1, \dots, M-1)$.

Petra Mutzel VO 21/

Hashing mit offener Adressierung

- Annahme: Die Hashtabelle enthält immer wenigstens einen unbelegten Platz.
- Eigenschaften:
 - (1) Stößt man bei der Suche auf einen unbelegten Platz, so kann die Suche erfolglos abgebrochen werden.
 - (2) Wegen (1) wird bei Delete nicht wirklich entfernt, sondern nur als "entfernt" markiert. Beim Einfügen wird ein solches Element als nicht vorhanden, beim Suchen als "entfernt vorhanden" betrachtet.
- Nachteil: Die Suchzeit ist nicht mehr proportional zu $(1+\alpha)$. Wenn Delete benötigt wird, ist "Hashing mit Verkettung" die bessere Wahl. Deshalb nehmen wir jetzt an, dass Delete nicht benötigt wird.

Lineares Sondieren

Definition (Lineares Sondieren)

Gegeben sei eine normale Hashfunktion

 $h': U \to \{0, 1, \dots, M-1\}$. Für Lineares Sondieren definieren wir

$$h(x,i) = (h'(x) + i) \bmod M$$

für $i = 0, 1, \dots, M - 1$.

Kritik: Es gibt nur M verschiedene Sondierungsreihenfolgen, da die erste Position die gesamte Sequenz festlegt:

$$h'(x), h'(x) + 1, \dots, M - 1, 0, 1, \dots, h'(x) - 1.$$

Petra Mutzel VO 21/22 am 3./5. Juli 2018

Lineares Sondieren

Beispiel:
$$M = 8$$
, $h'(x) = x \mod M$

Schlüssel

Die durchschnittliche Zeit für eine erfolgreiche Suche

ist $\frac{9}{6} = 1.5$.

Lange belegte Teilstücke tendieren zu schnellerem Wachstum als kurze: "Primäre Häufung".

Lineares Sondieren: Analyseergebnisse

Theorem (Analyse Hashing mit Linearem Sondieren)

Die erwartete Anzahl der betrachteten Einträge (Sondierungen) bei Linearem Sondieren bei einem Belegungswert $0<\alpha=\frac{n}{M}<1$ beträgt für

- erfolglose Suche: $\leq \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$
- erfolgreiche Suche: $\leq \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$

(Ohne Beweis)

Quadratisches Sondieren

Definition (Quadratisches Sondieren)

Gegeben sei eine normale Hashfunktion $h': U \to \{0, 1, \dots, M-1\}$. Für Quadratisches Sondieren definieren wir für $i = 0, 1, \dots, M-1$:

$$h(x,i) = (h'(x) + c_1 i + c_2 i^2) \mod M.$$

Beispiel: M = 8, $h'(x) = x \mod M$, $c_1 = c_2 = \frac{1}{2}$, gleiche Schlüssel wie vorhin (h(x, i) muss ganzzahlig sein!)

0	1	2	3	4	5	6	7
		10	19			22	31

Petra Mutzel

Quadratisches Sondieren

Die durchschnittliche Zeit für eine erfolgreiche Suche

ist
$$\frac{8}{6} = 1.33$$
.

Petra Mutzel

- Kritik: Wie beim linearen Sondieren gibt es nur M verschiedene Sondierungsfolgen. \rightarrow "Sekundäre Häufung"
- Aber: Bei richtiger Wahl von M, c₁, c₂ erhalten wir in der Praxis eine bessere Verteilung.

Theorem (Analyse Hashing mit Quadratischem Sondieren)

Die erwartete Anzahl der betrachteten Einträge (Sondierungen) bei Quadratischem Sondieren bei einem Belegungswert $0<\alpha=\frac{n}{M}<1$ beträgt für

- erfolglose Suche: $\leq \frac{1}{1-\alpha} \alpha + \ln\left(\frac{1}{1-\alpha}\right)$
- erfolgreiche Suche: $\leq 1 + \ln\left(\frac{1}{1-\alpha}\right) \frac{\alpha}{2}$

(Ohne Beweis)

Uniformes Hashing

- **Ideal:** "uniform hashing": Jeder Schlüssel erhält mit gleicher Wahrscheinlichkeit jede der M! Permutationen von $\{0,1,\ldots,M-1\}$ als Sondierungsreihenfolge zugeordnet.
- Das ist aber schwierig zu implementieren, später mehr darüber

Theorem (Analyse Uniformes Hashing)

Die erwartete Anzahl der betrachteten Einträge (Sondierungen) bei Uniformem Hashing bei einem Belegungswert $0<\alpha=\frac{n}{M}<1$ beträgt für

- erfolglose Suche: $\leq \frac{1}{1-\alpha}$
- erfolgreiche Suche: $\leq \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

(Ohne Beweis)

Übersicht über durchschnittliche Anzahl an Sondierungen

				mit of	fener A	dressierı	ıng	
α	Verket	Verkettung		lineares S.		quadr. S.		rm
	erfolgreich	erfolglos	er	el	er	el	er	el
0.5	1.250	0.50	1.5	2.5	1.44	2.19	1.39	2
0.9	1.450	0.90	5.5	50.5	2.85	11.40	2.56	10
0.95	1.475	0.95	10.5	200.5	3.52	22.05	3.15	20
1.0	1.500	1.00	-	-	-	-	-	-

Quadratisches Sondieren ist schon sehr gut!

Diskussion

- Hashing mit Verkettung hat deutlich weniger Schritte; jedoch Nachteil: hoher Speicherbedarf und evtl. Suchzeit trotzdem langsamer, wegen Zeigerverfolgung
- ullet Quadratisches Hashing ist nahe an Uniform Hashing ullet empfehlenswert
- ullet Lineare Sondierung fällt deutlich ab o nicht empfehlenswert
- Belegungsfaktor α sollte nicht höher als 0,9 sein; besser: 0,7 oder 0,8.

Double Hashing

Definition (Double Hashing)

Für zwei normale Hashfunktionen $h_1, h_2: U \to \{0, 1, \dots, M-1\}$ definieren wir

$$h(x,i) = (h_1(x) + ih_2(x)) \mod M.$$

- Die Sondierungsreihenfolge hängt in zweifacher Weise vom Schlüssel ab:
 - erste Sondierungsposition (wie gehabt)
 - Schrittweite (neu)
- Es ergeben sich $\Theta(M^2)$ verschiedene Sondierungsreihenfolgen.

Petra Mutzel VO 21/22 am 3./5. Juli 2018

Double Hashing

• Bedingung an h_2 : Für alle Schlüssel x muss $h_2(x)$ relativ prim zu M sein:

$$ggT(h_2(x), M) = 1,$$

sonst wird die Tabelle nicht vollständig durchsucht. (Falls $ggT(h_2(x),M)=d>1$, so wird nur $\frac{1}{d}$ -tel durchsucht.)

- Zwei Vorschläge:
 - (1) $M=2^p$ (schlecht für Divisionsmethode), $h_2(x)$ immer ungerade
 - (2) M Primzahl, $0 < h_2(x) < M$, z.B.

$$h_1(x) = x \bmod M \qquad h_2(x) = 1 + (x \bmod M')$$
 mit $M' = M - 1$ oder $M' = M - 2$.

Petra Mutzel

Double Hashing: Beispiel

Beispiel für (2): M = 7, $h_1(x) = x \mod 7$,

$$h_2(x) = 1 + (x \bmod 5)$$

x	10	19	31	22	14	16
$h_1(x)$	3	5	3	1	0	2
$h_2(x)$	1	5	2	3	5	2

0	1	2	3	4	5	6
			10		19	

0	1	2	3	4	5	6
31	22		10		19	

0	1	2	3	4	5	6
31	22	16	10		19	14
					•	•

Die durchschnittliche Zeit für eine erfolgreiche Suche

ist $\frac{12}{6} = 2.00$. (Untypisch schlechtes Beispiel für double hashing.)

Double Hashing ist eine gute Approximation an uniformes Hashing!

Verbesserung von Brent [1973]

- **Idee:** Wenn beim Einfügen von Item p mit x = p.key ein sondierter Platz j belegt ist mit x' = T[j].key, setze
 - $j_1 = (j + h_2(x)) \mod M$
 - $j_2 = (j + h_2(x')) \mod M$
- Ist j_1 frei oder j_2 belegt, so fahre fort wie im Original mit $j=j_1$. Sonst $(j_1$ belegt und j_2 frei) setze
 - T[j2] = T[j]
 - T[j] = p

Verbesserung von Brent: Beispiel

Die durchschnittliche Zeit für eine erfolgreiche Suche

ist
$$\frac{7}{6} = 1.17$$
.

Verbesserung von Brent: Analyse

Theorem (Analyse Double Hashing nach Brent)

Die erwartete Anzahl der betrachteten Einträge bei Double Hashing nach Brent bei einem Belegungswert $0<\alpha=\frac{n}{M}<1$ beträgt für

- erfolglose Suche: $\leq \frac{1}{1-\alpha}$ (wie uniform)
- erfolgreiche Suche: ≤ 2.5 (unabhängig von α !)

(Ohne Beweis)