ИДЗ 19.1 ВАРИАНТ 2

Барсуков Максим

11 декабря 2023 г.

а-б)

Интервал	Середина интервала x_i	Частота f_i	$w_i = \frac{f_i}{n}$	w_i^{HAK}	$x_i f_i$	$x_i^2 f_i$
14.0 - 15.0	14.5	8	0.08	0.08	116.0	1682.0
15.0 - 16.0	15.5	11	0.11	0.19	170.5	2642.75
16.0 - 17.0	16.5	12	0.12	0.31	198.0	3267.0
17.0 - 18.0	17.5	13	0.13	0.44	227.5	3981.25
18.0 - 19.0	18.5	16	0.16	0.6	296.0	5476.0
19.0 - 20.0	19.5	11	0.11	0.71	214.5	4182.75
20.0 - 21.0	20.5	11	0.11	0.82	225.5	4622.75
21.0 - 22.0	21.5	10	0.1	0.92	215.0	4622.5
22.0 - 23.0	22.5	8	0.08	1.0	180.0	4050.0
	\sum	n = 100	1		1843.0	34527.0

 $_{\rm B})$

Эмпирическая функция распределения

г) Вычислим среднюю арифметическую:

$$\overline{x} = \frac{\sum x_i f_i}{n} = 18.43$$

$$D = \frac{\sum x_i^2 f_i}{n} - \overline{x} = 5.61$$

д) Найдем значение теоретических частот f_i^T используя формулу: $f_i^T=\frac{hn}{\sigma}f(t)$ где $f(t)=\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}, t=\frac{x_i-\overline{x}}{\sigma}$ $\sigma=\sqrt{D}=2.37$ Расчетная таблица

x_i	t_i	$f(t_i)$	f_i^T
14.5	-1.66	0.1	4
15.5	-1.24	0.19	8
16.5	-0.81	0.29	12
17.5	-0.39	0.37	16
18.5	0.03	0.4	17
19.5	0.45	0.36	15
20.5	0.87	0.27	11
21.5	1.3	0.17	7
22.5	1.72	0.09	4

Расчетное значение критерия вычислим по формуле: $\chi^2 = \sum_{i=1}^l \frac{(f_i - f_i^T)^2}{f_i^T}$. где l - количество интервалов

Расчетная таблица

f_i	f_i^T	χ^2
0.1	4	4.0
0.19	8	1.12
0.29	12	0.0
0.37	16	0.56
0.4	17	0.06
0.36	15	1.07
0.27	11	0.0
0.17	7	1.29
0.09	4	4.0

Таким образом $\chi^2 = 12.1$.

Теоретическое значение критерия возьмем из таблицы. Оно равно 14.4. Таким образом $\chi^2=12.1<14.4$, то есть на уровне значимости $\alpha=0.025$ принимаем нулевую гипотезу о том, что генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение.

e`

Доверительный интервал истинного значения генеральной средней вычислим по формуле

$$\overline{x} - \frac{t_{\gamma}\sigma}{\sqrt{n}} < \tilde{x} < \overline{x} + \frac{t_{\gamma}\sigma}{\sqrt{n}}$$

Выберем уровень доверительной вероятности $\gamma = 0.05$. По таблице распределения Стъюдента находим $t_{\gamma} = 2.31$.

Вычислим точность оценки:

$$\frac{t_{\gamma}\sigma}{\sqrt{n}} \approx 0.55$$

Таким образом

$$17.88 < \tilde{x} < 18.98$$

с вероятностью 95% данный интервал накроет истинное значение \tilde{x} генеральной средней.

Доверительный интервал для генерального среднего квадратического отклонения определяется по формуле

$$\frac{\sqrt{2n}}{\sqrt{2n}-3+t_{\gamma}}\sigma<\tilde{\sigma}<\frac{\sqrt{2n}}{\sqrt{2n}-3-t_{\gamma}}\sigma$$

Таким образом

$$2.05 < \tilde{\sigma} < 2.86$$

с вероятностью 95% данный интервал накроет истинное значение $\tilde{\sigma}$ генерального среднего квадратического отклонения.