6 Reziprokes Gitter

Ausgabe: Fr, 17.11.2017 Abgabe: Fr, 24.11.2017 Besprechung: Mo, 27.11.2017

Aufgabe 11: Netzebenenabstand

Gegeben sei eine Ebene hkl eines Kristallgitters.

- a) Beweisen Sie, dass der reziproke Gittervektor $\vec{G} = h\vec{A} + k\vec{B} + l\vec{C}$ senkrecht auf dieser Ebene steht.
- b) Zeigen Sie, das der Abstand d(h,k,l) zwischen zwei aufeinanderfolgenden parallelen Ebenen des Gitters $d(h,k,l)=2\pi/|\vec{G}|$ beträgt.
- c) Zeigen Sie, dass für ein einfaches kubisches Gitter mit Gitterkonstante a gilt:

$$d^2(h,k,l) = \frac{a^2}{h^2 + k^2 + l^2}$$

Aufgabe 12: reziprokes hexagonales Gitter

Die primitive Einheitszelle des hexagonalen Gitters kann definiert werden durch die Basisvektoren \vec{a}_1 und \vec{a}_2 (Betrag a), welche im Winkel $\phi=60^{\circ}$ zueinander stehen, sowie dem Basisvektor \vec{a}_3 (Betrag c).

- a) Berechnen Sie die Basisvektoren des reziproken Gitters. Zeigen Sie, dass diese ebenfalls ein hexagonales Gitter beschreiben und geben Sie dessen Gitterkonstanten an.
- b) Berechnen Sie das Volumen der reziproken Einheitszelle V^* . Welcher Zusammenhang besteht zum Volumen V der realen Einheitszelle?