近世代数 (H) 第七周作业

涂嘉乐 PB23151786

2025年4月11日

Exercise 1 证明: $\mathbb{Q}(\sqrt[3]{2})$ 有一组 \mathbb{Q} -基 $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$

Proof 考虑赋值映射

$$\begin{array}{c} \operatorname{ev} \sqrt[3]{2} : \mathbb{Q}[x] \longrightarrow \mathbb{Q}[\alpha] \\ \\ x \longmapsto \sqrt[3]{2} \\ \\ q \longmapsto q, \forall q \in \mathbb{Q} \end{array}$$

注意到 x^3-2 为 $\sqrt[3]{2}$ 在 $\mathbb Q$ 上的最小多项式 (它在 $\mathbb Q$ 上不可约了),下证明 Ker $\operatorname{ev}_{\sqrt[3]{2}}=(x^3-2)$,首先显然有 $(x^3-2)\subseteq\ker\operatorname{ev}_{\sqrt[3]{2}}$,其次,对 $\forall g(x)\in\ker\operatorname{ev}_{\sqrt[3]{2}}$,对 x^3-2 做带余除法得

$$g(x) = q(x)(x^3 - 2) + r(x), \quad \deg r \le 2$$

作用 $\operatorname{ev}_{\sqrt[3]{2}}$ 得 $r(\sqrt[3]{2})=0$,这与 x^3-2 的最小性矛盾! 因此 r(x)=0,故 $g(x)=q(x)(x^3-2)\Longrightarrow x^3-2\mid g(x)$,故 Ker $\operatorname{ev}_{\sqrt[3]{2}}\subseteq (x^3-2)$,因此二者相等

且显然 $\operatorname{ev}_{\sqrt[3]{2}}$ 是满射,由同态基本定理我们有域同态(因为 x^3-2 不可约,故 (x^3-2) 是极大理想,故 $\mathbb{Q}[x]/(x^3-2)$ 是域)

$$\overline{\operatorname{ev}}_{\sqrt[3]{2}} : \mathbb{Q}[x]/(x^3 - 2) \longrightarrow \mathbb{Q}[\sqrt[3]{2}]
\overline{f(x)} \longmapsto f(\sqrt[3]{2})$$
(1)

由 (1) 知, $\forall q \in \mathbb{Q}[\sqrt[3]{2}]$, 均 $\exists f(x) \in \mathbb{Q}[x]/(x^3-2)$, s.t. $f(\sqrt[3]{2}) = q$, 而对 f(x) 作带余除法有

$$f(x) = g(x)(x^3 - 2) + r(x), \quad \deg r \le 2$$

则 $\overline{r} = \overline{f} \Longrightarrow r(\sqrt[3]{2}) = f(\sqrt[3]{2})$,故 $\forall q \in \mathbb{Q}[\sqrt[3]{2}], \exists r \in \mathbb{Q}[x], \deg r \leq 2, \text{s.t. } r(\sqrt[3]{2}) = q$,设 $r(x) = a_2x^2 + a_1x + a_0$,则

$$q = r(\sqrt[3]{2}) = a_2\sqrt[3]{4} + a_1\sqrt[3]{2} + a_0, \quad \forall q \in \mathbb{Q}[\sqrt[3]{2}]$$

下面证明 $\{1,\sqrt[3]{2},\sqrt[3]{4}\}$ 线性无关,若它们线性相关,则 $\exists \lambda_0,\lambda_1,\lambda_2 \in \mathbb{Q}, \text{s.t.} \ \lambda_0 + \lambda_1\sqrt[3]{2} + \lambda_2\sqrt[3]{4} = 0$,故 $h(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2$ 满足 $h(\sqrt[3]{2}) = 0$,这与 f(x) 是最小多项式矛盾! 因此 $\lambda_0,\lambda_1,\lambda_2$ 是线性 无关,故它是 $\mathbb{Q}[\sqrt[3]{2}]$ 的一组 \mathbb{Q} -基

最后证明 $\mathbb{Q}[\sqrt[3]{2}] = \mathbb{Q}[\sqrt[3]{2}]$, 由 (1) 知 $\mathbb{Q}[\sqrt[3]{2}]$, 而我们有

$$\operatorname{Frac}(\mathbb{Q}[\sqrt[3]{2}]) = \mathbb{Q}(\sqrt[3]{2})$$

上面的等号其实是同构关系,但是我们可以等同起来,而域的分式域是它自身,故 $\mathbb{Q}[\sqrt[3]{2}]=\mathbb{Q}(\sqrt[3]{2})$,故 $\mathbb{Q}(\sqrt[3]{2})$ 有一组 \mathbb{Q} -基 $\{1,\sqrt[3]{2},\sqrt[3]{4}\}$

Exercise 2 证明:记 $\omega = e^{\frac{2\pi i}{3}}$,则作为域扩张有

$$\mathbb{Q}(\sqrt[3]{2}\omega)/\mathbb{Q} \cong \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$$

但作为 \mathbb{C} 的子集 $\mathbb{Q}(\sqrt[3]{2}\omega) \neq \mathbb{Q}(\sqrt[3]{2})$

Proof 因为 $x^3 - 2 = 0$ 的三个根分别为 $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$, 所以 $\sqrt[3]{2}$, 所以 $\sqrt[3]{2}$ 在 \mathbb{Q} 上的最小多项式均为 $x^3 - 2$ (三次多项式在 \mathbb{Q} 上无根,故不可约),所以 $\mathbb{Q}(\sqrt[3]{2})$ 有一组 \mathbb{Q} -基 $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$; $\mathbb{Q}(\sqrt[3]{2}\omega)$ 有一组 \mathbb{Q} -基 $\{1, \sqrt[3]{2}\omega, \sqrt[3]{4}\omega^2\}$

考虑 $\theta_1: \mathbb{Q} \to \mathbb{Q}(\sqrt[3]{2}), \theta_2: \mathbb{Q} \to \mathbb{Q}(\sqrt[3]{2}\omega)$, 其中 θ_1, θ_2 均为嵌入映射, 考虑

$$\phi: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2}\omega)$$

$$\sqrt[3]{2} \longmapsto \sqrt[3]{2}\omega$$

$$q \longmapsto q, \forall q \in \mathbb{Q}$$

下证 φ 是域同构:

①. $\phi(1) = 1$

②. 保加法、乘法: 因为 $\mathbb{Q}(\sqrt[3]{2})$ 有一组 \mathbb{Q} -基,所以 $\forall q \in \mathbb{Q}(\sqrt[3]{2}), \exists ! \lambda_0, \lambda_1, \lambda_2 \in \mathbb{Q}, \text{s.t. } q = \lambda_0 + \lambda_1 \sqrt[3]{2} + \lambda_2 \sqrt[3]{4},$ 即 $\exists ! f(x) = \lambda_2 x^2 + \lambda_1 x + \lambda_0 \in \mathbb{Q}[x], \text{s.t. } f(\sqrt[3]{2}) = q$,同理对于 $\forall q \in \mathbb{Q}(\sqrt[3]{2}\omega), \exists ! f(x) \in \mathbb{Q}[x], \text{s.t. } f(\sqrt[3]{2}\omega) = q$,且我们有

$$q = \lambda_0 + \lambda_1 \sqrt[3]{2} + \lambda_2 \sqrt[3]{4} \Longrightarrow \phi(q) = \lambda_0 + \lambda_1 \sqrt[3]{2}\omega + \lambda_2 \sqrt[3]{4}\omega^2$$

即若 $q=f(\sqrt[3]{2})$,则 $\phi(q)=f(\sqrt[3]{2}\omega)$,所以对 $\forall q_1,q_2\in\mathbb{Q}(\sqrt[3]{2}),\exists!f(x),g(x)\in\mathbb{Q}[x],\mathrm{s.t.}\ f(\sqrt[3]{2})=q_1,g(\sqrt[3]{2})=q_2$,因此

$$\begin{cases}
\phi(q_1 + q_2) = \phi(f(\sqrt[3]{2}) + g(\sqrt[3]{2})) = f(\sqrt[3]{2}\omega) + g(\sqrt[3]{2}\omega) = \phi(q_1) + \phi(q_2) \\
\phi(q_1 q_2) = \phi(f(\sqrt[3]{2})g(\sqrt[3]{2})) = f(\sqrt[3]{2}\omega)g(\sqrt[3]{2}\omega) = \phi(q_1)\phi(q_2)
\end{cases}$$
(2)

③. 双射: 域上的同态必然是单射,下面验证满射。对于每个 $a \in \mathbb{Q}(\sqrt[3]{2}\omega), \exists q_0, q_1, q_2 \in \mathbb{Q}, \text{s.t. } a = q_0 + q_1\sqrt[3]{2}\omega + q_2\sqrt[3]{4}\omega^2$,则它有原像 $b = q_0 + q_1\sqrt[3]{2} + q_2\sqrt[3]{4} \in \mathbb{Q}(\sqrt[3]{2}), \text{s.t. } \phi(b) = a$

则 ϕ 确实是域同构,且 $\phi \circ \theta_1|_{\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}} = \theta_2|_{\mathbb{Q}}$,则这两个域扩张是同构的

但作为 \mathbb{C} 的子集,显然 $\omega \in \mathbb{Q}(\sqrt[3]{2}\omega)$,但 $\omega \notin \mathbb{Q}(\sqrt[3]{2})$: 假设 $\omega \in \mathbb{Q}(\sqrt[3]{2})$,则 $\exists \lambda_0, \lambda_1, \lambda_2 \in \mathbb{Q}$, s.t. $\omega = \lambda_0 + \lambda_1 \sqrt[3]{2} + \lambda_2 \sqrt[3]{4}$,但是 $RHS \in \mathbb{Q}$, $LHS \notin \mathbb{Q}$,矛盾! 故作为 \mathbb{C} 的子集二者不相等 \square

Exercise 3 设有域扩张塔 $k \subset E \subset K$, E/k 有 k-基 $\{u_1, \dots, u_n\}$, K/E 有 E-基 $\{v_1, \dots, v_m\}$, 求证 K 有一组 k-基

$$\{u_i v_i | 1 \le i \le n, 1 \le j \le m\}$$

Proof $\forall a \in K, \exists \lambda_1, \cdots, \lambda_m \in E, \text{s.t.}$

$$a = \lambda_1 v_1 + \dots + \lambda_m v_m$$

対 $\lambda_i \in E, 1 \leq i \leq m, \exists \mu_{1i}, \cdots, \mu_{ni} \in k, \text{s.t.}$

$$\lambda_i = \mu_{1i}u_1 + \dots + \mu_{ni}u_n$$

因此

$$a = \sum_{i=1}^{m} \lambda_i v_i = \sum_{i=1}^{m} v_i \sum_{j=1}^{n} \mu_{ji} u_j = \sum_{i,j} \mu_{ji} v_i u_j$$

即 $\forall a \in K$,均可被 $\{u_i v_i\}$ 线性表出,下面证明它们线性无关,假设 $\exists \{\gamma_{ii}\} \in k, \text{s.t.}$

$$\sum_{i,j} \gamma_{ij} u_i v_j = 0$$

则 $\sum\limits_{j=1}^{m}\left(\sum\limits_{i=1}^{n}\lambda_{ij}u_{i}\right)v_{j}=0$, 由 $\{v_{j}\}$ 是一组 E-基知, $\forall 1\leq j\leq m,\sum\limits_{i=1}^{n}\lambda_{ij}u_{i}=0$,再由 $\{u_{i}\}$ 是一组 k-基知, $\lambda_{ij}=0,\forall i,j$,故 $\{u_{i}v_{j}\}$ 线性无关

Exercise 4 设 K/k 是有限维域扩张, $\alpha \in K$ 在 k 上的最小多项式为 f(x), 求证 $\deg f \mid \dim_k K$

Proof 考虑域扩张塔

$$k \subseteq k(\alpha) \subseteq K$$

由维数公式知

$$\dim_k k(\alpha) \cdot \dim_{k(\alpha)} K = \dim_k K$$

而 $\dim_k k(\alpha) = \deg f$,因此 $\deg f \mid \dim_k K$

Exercise 5 设 F/K 为域扩张, $u \in F$ 是 K 上奇次代数元素, 求证 $K(u) = K(u^2)$

Proof 显然我们有 $K(u^2) \subseteq K(u)$, 我们有如下域扩张塔

$$K \subseteq K(u^2) \subseteq K(u) = K(u^2)(u)$$

假设 $K(u) \neq K(u^2)$,则 $u \notin K(u^2)$ 。考虑 $f(u) = x^2 - u^2 \in K(u^2)[x]$,因为 f(u) = 0,所以 u 是 $K(u^2)$ 上的代数元,因为 $x^2 - u^2 = 0$ 的两个根为 $\pm u \notin K(u^2)$,所以 u 在 $K(u^2)$ 上的最小多项式为 $f(x) = x^2 - u^2$,即

$$[K(u^2):K(u)]=2$$

因为 u 是 K 上奇次代数元素, 所以 [K(u):K] 为奇数, 由维数公式知

$$[K(u):K] = [K(u):K(u^2)][K(u^2):K]$$

上式左边为奇数,右边为偶数,矛盾!因此 $K(u) = K(u^2)$

Exercise 6 求元素 a 在域 K 中的最小多项式, 其中

- 1. $a = \sqrt{2} + \sqrt{3}, K = \mathbb{Q}$
- 2. $a = \sqrt{2} + \sqrt{3}, K = \mathbb{Q}(\sqrt{2})$
- 3. $a = \sqrt{2} + \sqrt{3}, K = \mathbb{Q}(\sqrt{6})$

Proof 1. 上次作业求过了,为 $x^4 - 10x^2 + 1$

- 2. 因为 $x^4 10x^2 + 1 = (x^2 1 + 2\sqrt{2}x)(x^2 1 2\sqrt{2}x)$, 经过计算发现 $f(x) = x^2 2\sqrt{2}x 1$ 是 $\sqrt{2} + \sqrt{3}$ 的零化多项式,且它的根为 $\sqrt{2} + \sqrt{3}$, 它们均不在 $\mathbb{Q}(\sqrt{2})$ 中,因此 f(x) 是 $\mathbb{Q}(\sqrt{2})$ 中不可约多项式,为 $\sqrt{2} + \sqrt{3}$ 在 $\mathbb{Q}(\sqrt{2})$ 中的最小多项式
- 3. 注意到 $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$,所以 $g(x) = x^2 (5 + 2\sqrt{6})$ 是 $\sqrt{2} + \sqrt{3}$ 的零化多项式,且它的根为 $\sqrt{2} + \sqrt{3}$, $-\sqrt{2} \sqrt{3}$,它们均不在 $\mathbb{Q}(\sqrt{6})$ 中,因此 g(x) 是 $\mathbb{Q}(\sqrt{6})$ 中的不可约多项式,为 $\sqrt{2} + \sqrt{3}$ 在 $\mathbb{Q}(\sqrt{6})$ 中的最小多项式

Exercise 7 设 F/K 为域的代数扩张, D 为整环且 $K \subseteq D \subseteq F$, 求证: D 为域

Proof 即证明 $\forall 0 \neq d \in D, d^{-1} \in D$, 若 $d \in K$, 则由 K 是域知 $d^{-1} \in K \subseteq D$; 若 $d \notin K$, 因为 $d \in F \setminus K$, 由代数扩张知, d 在 K 上代数, 故 $\exists f(x) = a_n x^n + \cdots + a_0 \in K[x], \text{s.t. } f(d) = 0$, 即

$$a_n d^n + \dots + a_1 d + a_0 = 0$$

记 $k = \min\{i | 0 \le i \le n, a_i \ne 0\}$, 若 k = 0, 即 $a_0 \ne 0$, 由 K 是域知它可逆, 则

$$d(a_n d^{n-1} + \dots + a_1) = -a_0 \Longrightarrow d^{-1} = -(a_n d^{n-1} + \dots + a_1)a_0^{-1}$$

而 $a_0, \dots, a_n, d \in D$,由整环对加、乘封闭知 $d^{-1} \in D$ 若 $k \neq 0$,则

$$a_n d^n + \dots + a_k d^k = 0 \Longrightarrow a_n d^{n-k} + \dots + a_k = 0 \Longrightarrow d^{-1} = -(a_n d^{n-k-1} + \dots + a_{k-1})a_k^{-1}$$

同理可知 $d^{-1} \in D$. 故 D 是域

- 1. 求证: $[\mathbb{Q}(u):\mathbb{Q}]=3$
- 2. 试将 u^4 , $(u+1)^{-1}$, $(u^2-6u+8)^{-1}$ 表示成 $1, u, u^2$ 的线性组合

Proof

1. 取 p = 3, 由 Eisenstein 判别法知 $f(x) = x^3 - 6x^2 + 9x + 3$ 在 $\mathbb{Z}[x]$ 中不可约, 进而在 $\mathbb{Q}[x]$ 中不可约, 故 $u \notin \mathbb{Q}$, 且 u 在 \mathbb{Q} 上代数, 最小多项式 $f(x) = x^3 - 6x^2 + 9x + 3$, 所以

$$[\mathbb{Q}(u):\mathbb{Q}]=\deg f=3$$

2. • 因为 $u^3 = 6u^2 - 9u - 3$, 所以

$$u^{4} = 6u^{3} - 9u^{2} - 3u$$
$$= 6(6u^{2} - 9u - 3) - 9u^{2} - 3u$$
$$= 27u^{2} - 57u - 18$$

• 由 $x^3 - 6x^2 + 9x + 3$ 不可约知, $(x+1, x^3 - 6x^2 + 9x + 3) = 1$, 计算 Bezout 等式得

$$(x+1) \cdot \frac{1}{13}(x^2 - 7x + 16) - (x^3 - 6x^2 + 9x + 3) = 1$$

将 u 代入上式得

$$(1+u)^{-1} = \frac{1}{13}(u^2 - 7u + 16)$$

• 同理有 $(x^2 - 6x + 8, x^3 - 6x^2 + 9x + 3) = 1$, 由辗转相除法

$$x^3 - 6x^2 + 9x + 3 = x(x^2 - 6x + 8) + (x + 3)$$

$$x^{2} - 6x + 8 = (x - 9)(x + 3) + 35$$

则有 Bezout 等式

$$\frac{1}{35}(x^2 - 9x + 1)(x^2 - 6x + 8) - (x - 9)(x^3 - 6x^2 + 9x + 3) = 1$$

将u代入上式得

$$(u^2 - 6u + 8)^{-1} = \frac{1}{35}(u^2 - 9u + 1)$$

Proof 因为 $x^3 = u(x+1)$, 所以 $f(t) = t^3 - ut - u$ 是 x 在 $\mathbb{Q}(u)$ 上的一个零化多项式, 而它在 $\mathbb{Q}(t)$ 上有分解

$$f(t) = (t - x)(t^2 + xt + x^2 - u)$$

因为 $x \notin \mathbb{Q}(u)$, 所以若 f(t) 在 $\mathbb{Q}(u)$ 上可约, 只能是 $t^2 + xt + x^2 - u$ 在 $\mathbb{Q}(u)$ 上可约, 则它可以分 解为 $\mathbb{Q}(u)$ 上两个一次因式的乘积, 即

$$t^{2} + xt + x^{2} - u = (t - t_{1})(t - t_{2})$$
 in $\mathbb{Q}(u)[x]$

展开得 $t_1 + t_2 = -x \notin \mathbb{Q}(u)$, 但这显然是矛盾的, 因为根据假设 $t - t_1, t - t_2 \in \mathbb{Q}(u)[x] \Longrightarrow t_1, t_2 \in \mathbb{Q}(u)$ $\mathbb{Q}(u) \Longrightarrow x \in \mathbb{Q}(u)$, 但是 $x \notin \mathbb{Q}(u)$, 矛盾!

综上
$$f(t)$$
 不可约, 故 x 在 $\mathbb{Q}(u)$ 上的最小多项式次数为 3 , 即 $[\mathbb{Q}(x):\mathbb{Q}(u)]=3$

Exercise 10 设有域同构 $\sigma: k \to k'$, 设有域扩张 $E/k, E'/k', \alpha \in E$ 在 k 上的最小多项式为 f(x),则对任意域同态 $\tilde{\sigma}: k(\alpha) \to E'$,若 $\tilde{\sigma}|_k = \sigma$,求证 $\tilde{\sigma}(\alpha) \in \operatorname{Root}_{E'}(\sigma(f))$

Proof 假设 $f(x) = a_n x^n + \dots + a_1 x + a_0 \in k[x]$, 则 $f(\alpha) = a_n \alpha^n + \dots + a_1 \alpha + a_0 = 0$, 同时作用 $\tilde{\sigma}$ 得

$$\tilde{\sigma}(a_n\alpha^n + \dots + a_1\alpha + a_0) = \sigma(a_n)\tilde{\sigma}(\alpha)^n + \dots + \sigma(a_1)\tilde{\sigma}(\alpha) + \sigma(a_0) = 0$$

所以
$$\tilde{\sigma}(\alpha) \in E'$$
 是 $\sigma(f) = \sigma(a_n)x^n + \dots + \sigma(a_1)x + \sigma(a_0)$ 的根,即 $\tilde{\sigma}(\alpha) \in \operatorname{Root}_{E'}(\sigma(f))$

Exercise 11 考虑 $\mathbb{F}_2 \hookrightarrow \mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, 求证 $\mathbb{F}_4/\mathbb{F}_2$ 是 x^2+x+1 在 \mathbb{F}_2 上的分裂域

Proof 记 $f(x) = x^2 + x + 1$, 因为在 \mathbb{F}_4 中, $u = \overline{x}$ 满足 f(u) = 0, 所以在 \mathbb{F}_4 中 f(x) spilt (见下式)

$$f(x) = (x - u)(x + (1 + u)) \Longrightarrow u \in \operatorname{Root}_{\mathbb{F}_a}(f), -(1 + u) = 1 + u \in \operatorname{Root}_{\mathbb{F}_a}(f)$$

下面证明 $\mathbb{F}_4 = \mathbb{F}_2(u, 1+u)$, 我们有域扩张塔

$$\mathbb{F}_2 \subset \mathbb{F}_2(u) \subset \mathbb{F}_2(u, 1+u) \subset \mathbb{F}_4$$

因为 \mathbb{F}_4 有一组 \mathbb{F}_2 -基 $\{1,u\}$, 所以 $\dim_{\mathbb{F}_2}\mathbb{F}_4=2$, 又因为 u 在 \mathbb{F}_2 中的最小多项式为 x^2+x+1 , 次数为 2, 所以 $\dim_{\mathbb{F}_2}\mathbb{F}_2(u)=2$, 由维数公式

$$\dim_{\mathbb{F}_2(u)} \mathbb{F}_2(u, 1+u) = \dim_{\mathbb{F}_2(u, 1+u)} \mathbb{F}_4 = 1$$

我们证明一个引理: 域扩张 K/k 的维数是 1 时, 有 K=k

首先显然有 $k \subset K$, 其次对 $\forall \alpha \in K \setminus k$, 我们有 $k \subset k(\alpha) \subset K$, 故由维数公式可知 $\dim_k k(\alpha) = 1$, 这说明 $k(\alpha)$ 的 k-基为 $\{1\}$, 即 $\exists \beta \in k$, s.t. $\alpha = \beta \cdot 1$, 即 $\alpha = \beta \in k$, 这与 $\alpha \in K \setminus k$ 矛盾! 故 $K \setminus k = \emptyset$, 即 K = k

因此
$$\mathbb{F}_2(u) = \mathbb{F}_2(u, 1+u) = \mathbb{F}_4$$
, 这就说明 $\mathbb{F}_4/\mathbb{F}_2$ 是 $f(x)$ 在 \mathbb{F}_2 上的分裂域

Exercise 12 考虑 $\mathbb{F}_3 \hookrightarrow \mathbb{F}_9 = \mathbb{F}_3[x]/(x^2+1)$, 求证 $\mathbb{F}_9/\mathbb{F}_3$ 是 x^2+1 在 \mathbb{F}_3 上的分裂域,也是 x^2+2x+2 在 \mathbb{F}_3 上的分裂域

Proof 记 $f(x) = x^2 + 1$, 因为在 \mathbb{F}_9 中, $u = \bar{x}$ 满足 f(u) = 0, 所以在 \mathbb{F}_9 中 f(x) spilt (见下式)

$$f(x) = (x+u)(x-u) \Longrightarrow u, -u \in \text{Root}_{\mathbb{F}_9}(f)$$

下面证明 $\mathbb{F}_9 = \mathbb{F}_3(u, -u)$, 我们有域扩张塔

$$\mathbb{F}_3 \subset \mathbb{F}_3(u) \subset \mathbb{F}_3(u,-u) \subset \mathbb{F}_9$$

因为 $\dim_{\mathbb{F}_2} \mathbb{F}_3(u) = \deg f = 2$, 而 \mathbb{F}_9 有一组 \mathbb{F}_3 -基 $\{1, u\}$, 故 $\dim_{\mathbb{F}_2} \mathbb{F}_9 = 2$, 由维数公式

$$[\mathbb{F}_9 : \mathbb{F}_3(u, -u)] = [\mathbb{F}_3(u, -u) : \mathbb{F}_3(u)] = 1$$

近世代数 (H) 第七周作业

因此 $\mathbb{F}_3(u) = \mathbb{F}_3(u, -u) = \mathbb{F}_9$, 这就说明 $\mathbb{F}_9/\mathbb{F}_3$ 是 f(x) 在 \mathbb{F}_3 上的分裂域 记 $g(x) = x^2 + 2x + 2$, 因为在 $\mathbb{F}_9 = \mathbb{F}_3/(x^2 + 1)$ 中,g(x) spilt (见下式)

$$g(x) = (x - (u+2))(x + (u+1)) \Longrightarrow u + 2 \in \text{Root}_{\mathbb{F}_9}(g), -u - 1 = 2u + 2 \in \text{Root}_{\mathbb{F}_9}(g)$$

下面证明 $\mathbb{F}_9 = \mathbb{F}_3(u+2,2u+2)$, 我们有域扩张塔

$$\mathbb{F}_3 \subset \mathbb{F}_3(u+2) \subset \mathbb{F}_3(u+2,2u+2) \subset \mathbb{F}_9$$

因为 u+2 在 \mathbb{F}_3 上的最小多项式为 x^2+2x+2 , 所以 $\dim_{\mathbb{F}_3}\mathbb{F}_3(u+2)=2$, 又因为 $\dim_{\mathbb{F}_3}\mathbb{F}_9=2$, 由维数公式

$$[\mathbb{F}_9 : \mathbb{F}_3(u+2, 2u+2)] = [\mathbb{F}_3(u+2, 2u+2) : \mathbb{F}_3(u+2)] = 1$$

因此 $\mathbb{F}_3(u+2,2u+2)=\mathbb{F}_9$,这就说明 $\mathbb{F}_9/\mathbb{F}_3$ 是 g(x) 在 \mathbb{F}_3 上的分裂域

Exercise 13 $E = \mathbb{Q}(\sqrt[3]{2}, \omega), \delta_{i,j} \in \operatorname{Aut}(E/\mathbb{Q}) = \operatorname{Aut}(E)$, $i \not = \delta_{i,j}^{-1}$, $i \not = \delta_{i,j}^{-1}$, $i \not = \delta_{i,j}^{-1}$

Solution 由课上定义, σ_i , $i = 0, 1, 2, \delta_{i,j}$, i = 0, 1, 2; j = 1, 2 分别如下:

$$\sigma_0: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2}) \qquad \sigma_1: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2}\omega) \qquad \sigma_2: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2}\omega^2)$$

$$\sqrt[3]{2} \longmapsto \sqrt[3]{2} \qquad \qquad \sqrt[3]{2} \longmapsto \sqrt[3]{2}\omega$$

$$q \longmapsto q, \forall q \in \mathbb{Q} \qquad q \longmapsto q, \forall q \in \mathbb{Q} \qquad q \longmapsto q, \forall q \in \mathbb{Q}$$

以下 $E = \mathbb{Q}(\sqrt[3]{2})(\omega)$

$$\begin{split} \delta_{0,1} : E &\longrightarrow E & \delta_{1,1} : E \longrightarrow E & \delta_{2,1} : E \longrightarrow E \\ & \omega &\longmapsto \omega & \omega &\longmapsto \omega \\ & q &\longmapsto \sigma_0(q), \forall q \in \mathbb{Q}(\sqrt[3]{2}) & q &\longmapsto \sigma_1(q), \forall q \in \mathbb{Q}(\sqrt[3]{2}) & q &\longmapsto \sigma_2(q), \forall q \in \mathbb{Q}(\sqrt[3]{2}) \\ \delta_{0,2} : E &\longrightarrow E & \delta_{1,2} : E \longrightarrow E & \delta_{2,2} : E \longrightarrow E \\ & \omega &\longmapsto \omega^2 & \omega &\longmapsto \omega^2 & \omega &\longmapsto \omega^2 \end{split}$$

由于 E/\mathbb{Q} 的一组 \mathbb{Q} -基为 $\{1,\omega,\omega^2,\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^2\}$,且 $\delta_{i,j}|_{\mathbb{Q}}=\mathrm{Id}_{\mathbb{Q}}$,所以 $\delta_{i,j}$ 完全由这组基所决定,我们只需考虑这组基在 $\delta_{i,j}$ 下的像即可,因为

 $q \longmapsto \sigma_0(q), \forall q \in \mathbb{Q}(\sqrt[3]{2})$ $q \longmapsto \sigma_1(q), \forall q \in \mathbb{Q}(\sqrt[3]{2})$ $q \longmapsto \sigma_2(q), \forall q \in \mathbb{Q}(\sqrt[3]{2})$

$$\begin{cases} \delta_{0,1}(1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) = (1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) \\ \delta_{0,2}(1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) = (1,\omega^{2},\omega,\sqrt[3]{2},\sqrt[3]{2}\omega^{2},\sqrt[3]{2}\omega) \\ \delta_{1,1}(1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) = (1,\omega,\omega^{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2},\sqrt[3]{2}\omega) \\ \delta_{1,2}(1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) = (1,\omega^{2},\omega,\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) \\ \delta_{2,1}(1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) = (1,\omega,\omega^{2},\sqrt[3]{2}\omega^{2},\sqrt[3]{2}\omega) \\ \delta_{2,2}(1,\omega,\omega^{2},\sqrt[3]{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega^{2}) = (1,\omega^{2},\omega,\sqrt[3]{2}\omega^{2},\sqrt[3]{2}\omega,\sqrt[3]{2}\omega) \end{cases}$$

所以

1.
$$\delta_{0,1} = \operatorname{Id}_{\operatorname{Aut}(E)}, \delta_{0,1}^{-1} = \delta_{0,1}$$

2.
$$\delta_{0,2} \circ \delta_{0,2} = \mathrm{Id}_{\mathrm{Aut}(E)}, \delta_{0,2}^{-1} = \delta_{0,2}$$

3.
$$\delta_{1,1} \circ \delta_{2,1} = \mathrm{Id}_{\mathrm{Aut}(E)}, \delta_{1,1}^{-1} = \delta_{2,1}, \delta_{2,1}^{-1} = \delta_{1,1}$$

4.
$$\delta_{1,2} \circ \delta_{1,2} = \mathrm{Id}_{\mathrm{Aut}(E)}, \delta_{1,2}^{-1} = \delta_{1,2}$$

5.
$$\delta_{2,2} \circ \delta_{2,2} = \mathrm{Id}_{\mathrm{Aut}(E)}, \delta_{2,2}^{-1} = \delta_{2,2}$$

Aut(E) 的乘法表如下(复合时列在左,行在右)

0	$\delta_{0,1}$	$\delta_{0,2}$	$\delta_{1,1}$	$\delta_{1,2}$	$\delta_{2,1}$	$\delta_{2,2}$
$\delta_{0,1}$	$\delta_{0,1}$	$\delta_{0,2}$	$\delta_{1,1}$	$\delta_{1,2}$	$\delta_{2,1}$	$\delta_{2,2}$
$\delta_{0,2}$	$\delta_{0,2}$	$\delta_{0,1}$	$\delta_{2,2}$	$\delta_{2,1}$	$\delta_{1,2}$	$\delta_{1,1}$
$\delta_{1,1}$	$\delta_{1,1}$	$\delta_{1,2}$	$\delta_{2,1}$	$\delta_{2,2}$	$\delta_{0,1}$	$\delta_{0,2}$
$\delta_{1,2}$	$\delta_{1,2}$	$\delta_{1,1}$	$\delta_{0,2}$	$\delta_{0,1}$	$\delta_{2,2}$	$\delta_{2,1}$
$\delta_{2,1}$	$\delta_{2,1}$	$\delta_{2,2}$	$\delta_{0,1}$	$\delta_{0,2}$	$\delta_{1,1}$	$\delta_{1,2}$
$\delta_{2,2}$	$\delta_{2,2}$	$\delta_{2,1}$	$\delta_{1,2}$	$\delta_{1,1}$	$\delta_{0,2}$	$\delta_{0,1}$

表 1: Aut(E) 的乘法表

Exercise 14 $\stackrel{*}{\!\!\!\!/} \operatorname{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$

Solution 因为在 \mathbb{Q} 上的自同构只有 $\mathrm{Id}_{\mathbb{Q}}$,所以 $\mathrm{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})=\mathrm{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3}))$,首先 $|\mathrm{Aut}(E)|\leq \dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2},\sqrt{3})=4$,考虑

$$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})\subset \mathbb{Q}(\sqrt{2},\sqrt{3})$$

因为 $\sqrt{2}$ 在 \mathbb{Q} 上的最小多项式为 $f(x)=x^2-2$, 而在 $\mathbb{Q}(\sqrt{2},\sqrt{3})$ 上, f(x) 的根集为 $\mathrm{Root}_{\mathbb{Q}(\sqrt{2},\sqrt{3})}(f)=\{\sqrt{2},-\sqrt{2}\}$,所以存在两个 $\mathrm{Id}_{\mathbb{Q}}$ 的延拓

$$\sigma_0: \mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{2}) \qquad \sigma_1: \mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(-\sqrt{2}) = \mathbb{Q}(\sqrt{2})$$

$$\sqrt{2} \longmapsto \sqrt{2} \qquad \qquad \sqrt{2} \longmapsto -\sqrt{2}$$

$$q \longmapsto q, \forall q \in \mathbb{Q} \qquad q \longmapsto q, \forall q \in \mathbb{Q}$$

又因为在 $\mathbb{Q}(\sqrt{2})$ 上, $\sqrt{3}$ 的最小多项式为 $g(x)=x^2-3$,而在 $\mathbb{Q}(\sqrt{2},\sqrt{3})$ 上,g(x) 的根集为 $\mathrm{Root}_{\mathbb{Q}(\sqrt{2},\sqrt{3})}(g)=\{\sqrt{3},-\sqrt{3}\}$,所以对每个 $\sigma_i,i=0,1$,存在两个延拓

$$\delta_{0,1}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \qquad \delta_{0,2}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$\sqrt{3} \longmapsto \sqrt{3} \qquad \sqrt{3} \longmapsto -\sqrt{3}$$

$$q \longmapsto \sigma_0(q), \forall q \in \mathbb{Q}(\sqrt{2}) \qquad q \longmapsto \sigma_0(q), \forall q \in \mathbb{Q}(\sqrt{2})$$

$$\delta_{1,1}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \qquad \delta_{1,2}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$\sqrt{3} \longmapsto \sqrt{3} \qquad \sqrt{3} \longmapsto -\sqrt{3}$$

$$q \longmapsto \sigma_1(q), \forall q \in \mathbb{Q}(\sqrt{2}) \qquad q \longmapsto \sigma_1(q), \forall q \in \mathbb{Q}(\sqrt{2})$$

所以 $\operatorname{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3})) = \{\delta_{0,1},\delta_{0,2},\delta_{1,1},\delta_{1,2}\}$,其中 $\delta_{i,j}|_{\mathbb{Q}} = \operatorname{Id}_{\mathbb{Q}}, \forall i,j$,且对 \mathbb{Q} -基 $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$,有

$$\begin{cases} \delta_{0,1}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,\sqrt{2},\sqrt{3},\sqrt{6}) \\ \delta_{0,2}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,\sqrt{2},-\sqrt{3},-\sqrt{6}) \\ \delta_{1,1}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,-\sqrt{2},\sqrt{3},-\sqrt{6}) \\ \delta_{1,1}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,-\sqrt{2},-\sqrt{3},\sqrt{6}) \end{cases}$$

Exercise 15 \sharp Aut($\mathbb{F}_4/\mathbb{F}_2$)

Solution 因为 \mathbb{F}_2 到自身的自同构只能是 $\mathrm{Id}_{\mathbb{F}_2}$,所以 $\mathrm{Aut}(\mathbb{F}_4/\mathbb{F}_2)=\mathrm{Aut}(\mathbb{F}_4)$;由于 $\mathrm{Exercise}\ 11$ 中已经证明 $\mathbb{F}_4=\mathbb{F}_2(u)$,其中 u 在 \mathbb{F}_2 上的最小多项式为 $f(x)=x^2+x+1$,而在 \mathbb{F}_4 上,f(x) 的根集 $\mathrm{Root}_{\mathbb{F}_4}(f)=\{u,1+u\}$,所以存在两个 $\mathrm{Id}_{\mathbb{F}_2}$ 的延拓

$$\sigma_0: \mathbb{F}_2(u) \longrightarrow \mathbb{F}_2(u) \qquad \sigma_1: \mathbb{F}_2(u) \longrightarrow \mathbb{F}_2(1+u) = \mathbb{F}_2(u)$$

$$u \longmapsto u \qquad \qquad u \longmapsto 1+u$$

$$a \longmapsto a, \forall a \in \mathbb{F}_2 \qquad \qquad a \longmapsto a, \forall a \in \mathbb{F}_2$$

由于 $\mathbb{F}_4=\mathbb{F}_2(u)$,所以 $\mathrm{Aut}(\mathbb{F}_4)=\{\sigma_0,\sigma_1\}$,其中 $\sigma_i|_{\mathbb{F}_2}=\mathrm{Id}_{\mathbb{F}_2}, orall i$,且对 \mathbb{F}_2 -基 $\{1,u\}$,有

$$\begin{cases} \sigma_0(1, u) = (1, u) \\ \sigma_1(1, u) = (1, 1 + u) \end{cases}$$