Name:			
Student ID:			

Midterm CSE 5/7339 Computer System Security Mark D. Hoffman

Instructions: Please keep all answers as concise as possible while still conveying all necessary concepts. Please show all necessary work. An extra page is provided in the event that you need more room.

Using the following word bank, select fill in the blank with the term most directly related to the concepts below:

Authorization Cipher Text Public Key System	Authentication Kerckhoffs's Principle	Symmetric Key System Plain Text
provide Integrity to a messa		Message Authentication Code to
encryption system.	The scrambled vers	ion of the message in an
have something. Limited by and Multilevel Security Sys	such technologies as firewa	ng someone permission to do or Ills, Intrusion Detection Systems,
everything about the system		tosystem should be secure even it nowledge.
to a message.	Provides the ability	to add a secure 'digital signature'
modification to obfuscate th		ato an encryption system before
something is in fact, who or		rmining whether someone or

	Student ID:
1)	Briefly describe each of the three components of the C.I.A. Triad including what each is directed at protecting:
2)	A Feistel Cipher is a general format for one possible method of performing a block cipher. Describe the basic flow of a Feistel cipher being sure to include what primary mathematical operator is required to meet this format. (Be able to describe the flow. This can be a flow chart, series of algorithms, or textual description.).
3)	Compare and contrast Symmetric Key Systems vs. Public Key Systems:
4)	a. What are the three primary components of Public Key Infrastructure?
	b. Briefly describe one of the primary PKI Trust Models.

Name:

Name:		
Student ID:_		

5) What is the name given to the primary method of exchanging a Symmetric Key (not used for encrypting or signing) based on a discrete log problem where each user must find the exponent k given g, p, and g^k mod p, with each user selecting their own private value for k.

Name:			

Student ID:

6) Solve the following modular arithmetic problems:

$$11^{-1} \mod 8 =$$

$$4^{-1} \mod 9 =$$

Name:		
Student ID:		

7) Using the following word bank, select fill in the blank with the term most directly related to the Hashing concepts below:

		One-Way
Weak Collision Resistance	Strong Collision R	esistance
Avalanche Effect	Cyclic Redundancy	Check
value (x) such that $h(x) = y$	Given a value (y) it is in	feasible to find a corresponding
of x	Should be computational	lly easy to compute h(x) for any value
significantly smaller than th	*	functions that the resulting output be
improperly used as a metho	7	hic hash function that has been uivalency Protocol (WEP)
that $h(x) = h(y)$	given x and h(x), infeasible	le to find <i>any</i> x and y, with x ¹ y such
	given x and h(x), infeasible	le to find $y^1 x$ such that $h(y) = h(x)$
	a change to 1 bit of input	should affect about half of output bits

8) Using a Shift Cipher with a key of 5, solve the following substitution cipher:

Ymj fsxbjw yt szrgjw knaj nx Inkknj-Mjqqrfs.

9) During the first round of a DES encryption cycle, the 32-bits of R_0 are found to be:

 $R_0\!=000000000000000010101001100100$

This is ran through the expansion permutation box [E] below to generate 48-bit $E(R_0)$ Find $E(R_0)$.

E:	xpansi	on Pe	rmuta	ition (I	E)
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1
	I	$E(R_0)$	= _		

10) For this same iteration of DES, K_1 is found to be:

Using the solution, $E(R_0)$, from the previous question, and K_1 find the 48-bit input for the S-Boxes, (B).

B = ____

lame:				
_				

Student ID:

11) Using the solution, B, from the previous question, determine the proper input and solution to S-Box, S₁ below:

$$B_1 = \underline{\hspace{1cm}}$$

Name:		
Student ID:		

13) Given the example below, generate a unique key pair by selecting p, q, N, e, and d (DO NOT USE ANY OF THE VALUES LISTED BELOW FOR p or q)

□ Example of RSA

- o Select "large" primes p = 11, q = 3
- o Then N = pq = 33 and (p 1)(q 1) = 20
- o Choose e = 3 (relatively prime to 20)
- o Find d such that ed = 1 mod 20
 - We find that d = 7 works
- □ **Public key:** (N, e) = (33, 3)
- □ Private key: d = 7

 $p = \underline{\hspace{1cm}}, q = \underline{\hspace{1cm}}, N = \underline{\hspace{1cm}}, d = \underline{\hspace{1cm}}$

Name:		
Student ID:		

Extra Work (to be turned in with Exam).