RND. Nombres réels. Exercices. Corrigés

Exercice 1: Vrai / Faux

Q.1: VRAI. Voir le cours.

Q.2: FAUX. Voir le cours.

Q.3 : VRAI. Chacun des nombres peut être codé de manière exacte en flottant.

Q.4 : VRAI. Il y a en tout $2^1 \times 2^3 \times 2^6$ possibilités soient 1024.

Q.5: FAUX. On peut prendre 0,15 comme contre-exemple.

Q.6: VRAI. Avec 52 bits pour la mantisse, la précision n'est que de 2⁻⁵².

Exercice 2: QCM

<u>Q.1</u>: Réponse 2. 0,625 = 0,5 + 0,125 = 2^{-1} + 2^{-3} .

Q.2: Réponse 4. 0,5 = 2^{-1} .

Q.3: Réponse 1. 0,1 n'étant pas codé exactement, une somme de 0,1 ne fera jamais 1,0 précisément.

<u>Q.4</u>: Réponse 1. $100_2 = 4_{10}$ et 0,011₂= 0 x 2^{-1} + 1 x 2^{-2} + 1 x 2^{-3} = 0,375₁₀.

Q.5: Réponse 2. $5_{10} = 101_2$ et $0.75_{10} = 0.5 + 0.25 = 2^{-1} + 2^{-2} = 0.11_2$

Exercice 3 : Représentation de nombres en flottants.

a) $45_{10} = 32 + 8 + 4 + 1 = 101101_2$ et $0,125_{10} = 2^{-3} = 0,001_2$.

On obtient alors $101101,001_2$ soit = $1,01101001_2$ x 2^5 .

Signe: positif, le premier bit vaut 0.

Exposant décalé : 5 + 127 = 132. $132_{10} = 10000100_2$.

Pseudo-Mantisse: 010110010 0 (23 bits en tout).

b) $12_{10} = 8 + 4 = 1100_2$ et $0.625_{10} = 0.5 + 0.125 = 2^{-1} + 2^{-3} = 0.101_2$.

On obtient alors $1100,101_2$ soit = $1,100101_2$ x 2^3 .

Signe : négatif, le premier bit vaut 1.

Exposant décalé : 3 + 127 = 130. $130_{10} = 10000010_2$.

Pseudo-Mantisse: 100101 0 (23 bits en tout).

lecture).

c) $10_{10} = 8 + 2 = 1010_2$ et $0.875_{10} = 0.5 + 0.25 + 0.125 = 2^{-1} + 2^{-2} + 2^{-3} = 0.111_2$.

On obtient alors $1010,111_2$ soit = $1,010111_2 \times 2^3$.

Signe: positif, le premier bit vaut 0.

Exposant décalé : 3 + 127 = 130. $130_{10} = 10000010_2$.

Pseudo-Mantisse: 0101110 0 (23 bits en tout).

Exercice 4 : Représentation de nombre en flottant.

La première étape est de convertir le nombre donnée en base deux.

 $C1220000_{16} = (1100\ 0001\ 0010\ 0010\ 0000\ 0000\ 0000\ 0000)_2$

Selon la norme IEEE-754 en précision simple (32 bits) :

- <u>Signe</u>: premier bit, donc nombre négatif.
- <u>Exposant</u>: sur 8 bits donc 10000010. Cela donne 130 mais il faut enlever 127 (exposant décalé). Il vaut donc 130 127 soit 3.
- Pseudo-Mantisse: 0100010 ... 0 soit 010001 pour les bits significatifs. La mantisse est de 1,010001.

On trouve alors que le nombre vaut $1,010001_2 \times 2^3 = 1010,001_2$.

<u>Partie entière</u>: $1010_2 = 10$ soit **-10** car le nombre est négatif.

<u>Partie décimale</u> : $0,001_2 = 2^{-3} = 0,125$.

C1220000₁₆ représente -10,125.

Exercice 5 : Première guerre du golfe (1990-1991).

La première étape est de convertir le nombre donnée en base deux.

a) On procède par multiplication par 2 successives

$0.1 \times 2 = 0.2$	=> 0 en partie entière
$0.2 \times 2 = 0.4$	=> 0 en partie entière
$0.4 \times 2 = 0.8$	=> 0 en partie entière
$0.8 \times 2 = 1.6$	=> 1 en partie entière
$0.6 \times 2 = 1.2$	=> 1 en partie entière
$0.2 \times 2 = 0.4$	=> 0 en partie entière
0,2 x 2 = 0,4	-> o en partie entiere
$0.4 \times 2 = 0.4$ $0.4 \times 2 = 0.8$	=> 0 en partie entière
-	•

Etc.

On voit qu'il y a une période (partie grisée) : on ne peut pas représenter 0,1 de façon exacte en binaire.

 $0,1_{10} \approx 0,000110011001100110011001100110_2$

- b) Sur 23 bits: $0.1 = 0.00011001100110011001100_2 = 0.099999904632568359375$
- c) L'erreur commise est donc : $1 099999904632568359375 \approx 9,537 \times 10^{-8}$.
- d) En 100h de fonctionnement, le Patriot reçoit $100 \times 10 \times 3600 = 3,6 \times 10^6$ signaux.
- e) Au bout de 100 heure, le missile est décalé de 9,537 x 10^{-8} x 3,6 x 10^{6} \approx 0,3433 sec.
- f) Le missile se déplaçant à 1676 m/s, ces 0,3433 secondes correspondent à 575,4 mètres. Le Patriot ne peut donc pas atteindre sa cible (575 > 500).
- g) Le mieux aurait été de régler les signaux toutes les 0,125 seconde (valeur exacte). Redémarrer le matériel est aussi une solution mais elle n'empêche pas les erreurs. De même que passer à une plus grande précision (52 bits par exemple au lieu de 23).