

Danton J. F. Villas Bôas, M.Sc.

Instituto de Aeronáutica e Espaço - IAE Departamento de Ciência e Tecnologia Aeroespacial - DCTA

Primeiros Foguetes

China (c 1100), Konstantin Tsiolkovsky (1903),

Robert Goddard (1926), Alemanha V-2 (década 1930)

Propulsão dos Foguetes

Os princípios físicos básicos dos fogos de artifício são os mesmos que lançam uma nave no espaço: o combustível é misturado com um material chamado oxidante, que é rico em oxigênio, que é o gás necessário para a combustão. Essa mistura é chamada de propelente, e é queimada formando gases quentes que se expandem e escapam violentamente por um orifício fazendo o foguete subir.

A Física do Foguete

Esse efeito físico é descrito na Terceira Lei do Movimento, Isaac Newton (século XVIII)., que explica que a cada ação (os gases escapando) há uma reação em sentido contrário e de mesmo valor (a força que movimenta o foguete).

Propulsão de Foguetes

Propulsão de Foguetes

Propulsão de Foguetes

Propulsão Líquida

Em um propulsor líquido, o combustível e o oxidante são armazenados em tanques e bombeados e injetados na câmara de combustão onde são misturados e ocorre a combustão. A combustão produz grandes quantidades de gás de exaustão com alta temperatura e pressão. Os gases quentes são ejetados através de uma tubeira que serve para acelerar o fluxo. O empuxo é então produzido de acordo com a terceira lei de Newton. Os propelentes líquidos podem ser do tipo hipergólico em que o simples contato do combustível e oxidante é suficiente para iniciar a combustão. Nos outros casos é necessário o uso de um sistema de ignição semelhante aos usados nos propulsores sólidos.

Propulsão Sólida

Em um propulsor sólido, o combustível e o oxidante são misturados formando o propelente sólido que é inserido em um cilindro. Sob condições de temperatura normais, o propulsor não se queima, mas a combustão se iniciará quando exposto a uma fonte externa do calor. Um dispositivo de ignição, chamado de ignitor, é usado iniciar a queima do propelente sólido, e é instalado normalmente em uma das extremidades do motor. Durante a queima o gás de exaustão será produzido e esta prosseguirá até que todo o propelente tenha sido consumido. Normalmente os blocos de propelentes têm o centro oco, para que a combustão ocorra nesta região aumentando a área de queima.

Tiros em Banco Propulsor VLS-1

Forças Atuantes em um Foguete

Terceira Lei do Movimento (Issac Newton): A cada ação (os gases escapando) há uma reação em sentido contrário e de mesma magnitude (a força que movimenta o foguete).

Onde Acaba a Gravidade?

21 milhões de km

$$v = \sqrt{\frac{G.M}{R_T + h}}$$

v = 7.7 km/s = 27.816 km/h !!!!!

Newton e a teoria da gravitação universal

G=constante gravitacional universal = 6,673 . $10^{\text{-}11}$ Nm² / kg² , M=massa da Terra = 5,98 . 10^{24} kg G M = 3,986.10 14 m³ / s²

Newton e a teoria da gravitação universal

G=constante gravitacional universal = 6,673 . $10^{-11}\ Nm^2\ /\ kg^2$, M=massa da Terra = 5,98 . $10^{24}\ kg$ G M = $3.986.10^{14}\ m^3\ /\ s^2$

Estágios de um Foguete

antes da separação

depois das separações

$$F= m.a => a=F/m$$

$$a=F/m$$

Equação Tsiolkovsky

Em 1896, o cientista russo Konstantin Tsiolkovsky estabeleceu a equação básica que rege o ganho de velocidade dos foguete

 $v = Isp g ln (m_0/m_f)$

		Msat=	300	kg	<u> </u>
		isp=	270	S	
		Massas (kg)			
Estágio	Estrutura	Propelente	mo	mf	Incr. Vel (m/s)
1	6.000	40.000	55.500	15.500	3.444
2	1.000	7.000	9.500	2.500	3.605
3	200	1.000	1.500	500	2.966
				Total	10.015
	Mono Estagio				
	7.200	48.000	55.500	7.500	5.404

V=10.015 m/s

V=5.404 m/s (mono estágio)

Simulação de Trajetória: SKYNAV

	**************************************	Alcanta	ra (Four S						
SN3OPT: PARALLEL STAGED LAUNCHER WITH OPTIMIZED COASTING									
			-44.380						
	LATITUDE [deg]	:	-2.280						
LEO FINAL ORBIT	:	750.000							
	CIIDEDCTDCIII AD VELOCTTV [m/c]		.000						
	INCLINATION (+FROM,-TO EQUATOR) [deg]	:	-25.000						
FIRST STAGE:	IGNITION MASS [t]	:	35.100						
	BURNOUT MASS [t]	:	6.200						
	JET-VELOCITY (VACUUM) [m/s]	:	2530.000						
	JET-VELOCITY (SEA-LEVEL) [m/s]	:	2215.000						
	DRAG COEFFICIENT*SECTIONAL AREA [m2]		3.000						
SECOND STAGE:	IGNITION MASS [t]	:	8.940						
	BURNOUT MASS [t]	:	1.800						
	JET-VELOCITY (VACUUM) [m/s]	:	2738.000						
	JET-VELOCITY (SEA-LEVEL) [m/s]	:	2738.000						
	DRAG COEFFICIENT*SECTIONAL AREA [m2]	:	1.300						
THIRD STAGE:	IGNITION MASS [t]	:	5.700						
	BURNOUT MASS [t]	:	1.330						
	JET-VELOCITY (VACUUM) [m/s]	:	2656.000						
FOURTH STAGE:	IGNITION MASS [t]	:	.990						
	BURNOUT MASS [t]	:	.170						
	JET-VELOCITY (VACUUM) [m/s]	:	2765.000						
MAXIMUM AERODYN	NAMIC LIFT [N/mý]		4000.000						
PAYLOAD MASS []	.cg]	:	186.765]					
CONTROL DATA:	16.459402152 2.478973801	7093	.347829703						
TRAJECTORY CORN	NER INSTANTS:			7					
TIME T1 (END OF EXACT VERTICAL ASCENT, INPUT) [s]: 3.296									
TIME T2									
TIME T3 (124.913								
TIME T4 (183.180								
	(FOURTH STAGE IGNITION, INPUT) [s]		607.882						
TIME T6 ((FOURTH STAGE BURNOUT, OUTPUT) [s]	:	682.427						

Resultado da Simulação de Trajetória: Exemplo VLS do software SKYNAV

Principais Eventos de Vôo

- Ignições dos propulsores
- Separações de estágios e partes
- Controle de Atitude

Subsistemas, equipamentos, componentes

Delta II Launch of Mars Odyssey - YouTube

https://www.youtube.com/watch?v=4dDalRi8iqg

Capacidade de Transporte

Principais Centros de Lançamento no Mundo

Centro de Lançamento no Brasil

CLA: Centro de Lançamento de Alcântara - MA

CLBI: Centro de Lançamento da Barreira do Inferno - RN

- Em 1961, o presidente Jânio Quadros estabeleceu um grupo que objetivava a elaboração de um programa nacional para a exploração espacial.
- Em agosto de 1961 formou-se o Grupo de Organização da Comissão Nacional de Atividades Espaciais (GOCNAE), funcionando em São José dos Campos (SP).
- Técnicos brasileiros recebem treinamento no exterior, bem como adquirem experiência montando e lançando foguetes americanos e canadenses no CLBI.
- No final de 1965, é lançado do CLBI um foguete americano Nike-Apache.
- Em 1967 foi lançado do CLBI o 1. protótipo do Sonda I.
- Criação do IAE e INPE

Foguetes de Sondagem

Têm como missão:

- a) levar uma carga-útil até uma altitude requerida, ou
- b) prover uma certa permanência acima de determinada altitude.

Inicialmente utilizados como sondas atmosféricas e mais recentemente para realização de experimentos em ambiente de microgravidade.

Foguetes de Sondagem:

https://www.youtube.com/watch?v=BfOkhRRo5Tw Animação VSB-30

Histórico

VEÍCULOS	INICIO	1º VOO	PERÍODO DE DESENVOLVIMENTO	TOTAL DE LANÇAMENTOS
SII	1966	1972	6 ANOS	61
S III	1969	1976	7 ANOS	31
SIV	1976	1984	8 ANOS	4
VS-40	1990	1993	3 ANOS	3
VLS-1	1985	1997	12 ANOS	2
VS-30 VS-30/IO VS-31/IO	1996	1997	1 ANO	12 11 2
VSB-30	2001	2004	3 ANOS	19

Outubro 2015

MECB: Missão Espacial Completa Brasileira

VLS-1

nº de estágios: 4

massa na decolagem: 50 t

comprimento: 19,4 m

diâmetro: 1,0 m

massa total propelente: 41 t

missão típica: 350 kg, 300km equatorial

primeiro lançamento: Novembro de 1997

segundo lançamento: Dezembro de 1999

https://www.youtube.com/watch?v=r47_kwx5vS8 VLS-1 Animação Completa

VLS-1 Vôo V02

Créditos (Sons e Imagens)

Roscosmos (www.roscosmos.ru)

Corporação Energia (www.energia.ru)

RussianSpaceWeb (www.russianspaceweb.com)

Instituto de Aeronáutica e Espaço (DCTA-IAE)

Agência Espacial Brasileira (www.aeb.gov.br)

NASA (www.nasa.gov)

CECOMSAER (www.fab.mil.br)

O Espaço (CD ROM produzido pela Editora Globo)

Encyclopedia Astronautica (www.astronautix.com)

Boletim Em Órbita n. 62 (www.zenite.nu/orbita)

www.marcospontes.net

Livro Introdução à Tecnologia de Foguetes (A. F. Palmério)

dantondjfvb@iae.cta.br dantonvb@yahoo.com dantondjfvb@fab.mil.br

Encontre Mais Informações

http://aebescola.aeb.gov.br => REPOSITÓRIO

http://www.sindct.org.br/files/livrofoguetes.pdf -