Capstone Cheatsheet @r2cp Page 1

 $E, \{P_{\theta}\}_{\theta \in \Theta}$ *E* is a sample space for *X* i.e. a set that contains all possible outcomes of *X*

 $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability dis-

tributions on E. Θ is a parameter set, i.e. a set consis-

 θ is the true parameter and unknown.

In a parametric model we assume that

 $\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$

 $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$

ting of some possible values of Θ .

1 Statistical models

 $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$. 1.1 Identifiability

 $\frac{\sum X_{i=1}^{n} - n\mu}{\sqrt{(n)\sqrt{(\sigma^{2})}}} \xrightarrow[n \to \infty]{(d)} N(0,1)$

 $\sum X_{i=1}^n \xrightarrow{(d)} N(n\mu, \sqrt{(n)}\sqrt{(\sigma^2)})$

Variance of the Mean: $Var(\overline{X_n}) = (\frac{\sigma^2}{n})^2 Var(X_1 + X_2, ..., X_n)$

Expectation of the mean:

 $E[\overline{X_n}] = \frac{1}{n} E[X_1 + X_2, ..., X_n]$

4 Ouantiles of a Distribution

 $\mathbb{P}(X \le q_{\alpha}) = q_{\alpha} = 1 - \alpha$

 $F_X(q_\alpha) = 1 - \alpha$

If the distribution is standard

Use standardization if a gaussian

has unknown mean and variance

 $X \sim N(\mu, \sigma^2)$ to get the quantiles by

using Z-tables (standard normal

 $=2\Phi(q_{\alpha/2})$

Let α in (0,1). The quantile of order $1 - \alpha$ of a random variable X is the number q_{α} such that:

 $\mathbb{P}(X \ge q_{\alpha}) = \alpha$

 $F_{\mathbf{v}}^{-1}(1-\alpha) = \alpha$

 $\mathbb{P}(|X| > q_{\alpha}) = \alpha$

 $\exists \theta \ s.t. \ \mathbb{P} = \mathbb{P}_{\theta}$

A Model is well specified if:

2 Estimators A statistic is any measurable function calculated with the data $(\overline{X_n}, max(X_i),$

An **estimator** $\hat{\theta}_n$ of θ is any statistic which does not depend on θ .

Estimators are random variables if they depend on the data (=

realizations of random variables). An estimator $\hat{\theta}_n$ is **weakly consistent**

if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$ or $\hat{\theta}_n \xrightarrow[n\to\infty]{P} \mathbb{E}[g(X)]$.

If the convergence is almost surely it

is strongly consistent. Asymptotic normality of an estima-

 $\sqrt{(n)}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$

 σ^2 is called the **Asymptotic Variance**

sample mean the Delta Method is

needed to compute the asymptotic

variance. Asymptotic Variance ≠ Va-

 $Bias(\hat{\theta}_n) = \mathbb{E}[\hat{\theta_n}] - \theta$

 $= Bias^2 + Variance$

Let $X_1,...,X_n \stackrel{iid}{\sim} P_u$, where $E(X_i) = \mu$

and $Var(X_i) = \sigma^2$ for all i = 1, 2, ..., n

 $\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow{P,a.s.} \mathbb{E}[g(X)]$

Central Limit Theorem for Mean:

 $\sqrt{(n)} \xrightarrow{\overline{X_n} - \mu} \xrightarrow{(d)} N(0, 1)$

 $\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow{(d)} N(0, \sigma^2)$

Central Limit Theorem for Sums:

Quadratic risk of an estimator

 $R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2]$

riance of an estimator.

Bias of an estimator:

3 LLN and CLT

and $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$.

Law of large numbers:

of the estimator $\hat{\theta}_n$. In the case of the sample mean it is the same variance as as the single X_i . If the estimator is a function of the

 $P(X \le t) = P(Z \le \frac{t-\mu}{2})$

 $=\Phi\left(\frac{t-\mu}{\sigma}\right)$

 $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

5 Confidence intervals Confidence Intervals follow the form:

(statistic) ± (critical value)(estimated

standard deviation of statistic)

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model based on observations $X_1, ... X_n$ and

assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$. Non asymptotic confidence interval of level $1 - \alpha$ for θ : Any random interval *I*, depending on

the sample $X_1, \dots X_n$ but not at θ and $\mathbb{P}_{\theta}[\mathcal{I} \ni \theta] \ge 1 - \alpha, \ \forall \theta \in \Theta$ Confidence interval of asymptotic level $1 - \alpha$ for θ . Any random interval *I* whose bounda-

ries do not depend on θ and such that: $\lim_{n\to\infty} \mathbb{P}_{\theta}[\hat{\mathcal{I}}\ni\theta] \geq 1-\alpha, \ \forall \theta\in\Theta$ 5.1 Two-sided asymptotic CI

Let $X_1, ..., X_n = \tilde{X}$ and $\tilde{X} \stackrel{iid}{\sim} P_{\theta}$. A twosided CI is a function depending on \tilde{X} giving an upper and lower bound in which the estimated parameter lies $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probability $\mathbb{P}(\theta \in \mathcal{I}) \ge 1 - q_{\alpha}$ and conversely Since the estimator is a r.v. depending on \tilde{X} it has a variance $Var(\hat{\theta}_n)$ and a

mean $\mathbb{E}[\hat{\theta}_n]$. Since the CLT is valid for

 $\mathcal{I} = [\hat{\theta}_n - \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}],$ Symmetric about zero and acceptan- $\hat{\theta}_{ii} + \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{1-|x_i|}}$ ce Region interval: This expression depends on the real Power of the test: variance $Var(X_i)$ of the r.vs, the va-

riance has to be estimated. Three possible methods: plugin (use sample mean or empirical variance), solve (solve quadratic inequality), conservative (use the theoretical maximum of the variance). 5.2 Sample Mean and Sample Va-

every distribution standardizing the

distributions and massaging the ex-pression yields an an asymptotic CI:

Let $X_1,...,X_n \stackrel{iid}{\sim} P_u$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for all i = 1, 2, ..., nSample Mean:

 $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ Sample Variance:

 $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

 $=\frac{1}{n}\left(\sum_{i=1}^{n}X_{i}^{2}\right)-\overline{X}_{n}^{2}$ Unbiased estimator of sample va-

 $\tilde{S}_n = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2$

5.3 Delta Method To find the asymptotic CI if the esti-

mator is a function of the mean. Goal is to find an expression that converges a function of the mean using the CLT.

Let Z_n be a sequence of r.v. $\sqrt{(n)}(Z_n \theta) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$ and let $g: R \longrightarrow R$ be continuously differentiable at θ ,

 $\sqrt{n}(g(Z_n)-g(\theta)) \xrightarrow{(d)}$ $\mathcal{N}(0, \sigma'(\theta)^2 \sigma^2)$

Example: let $X_1,...,X_n$ $exp(\lambda)$ where $\lambda > 0$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ denote the sample mean. By the CLT, we know that $\sqrt{n}\left(\overline{X}_n - \frac{1}{\lambda}\right) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$ for some value of σ^2 that depends on λ . If we set $g: \mathbb{R} \to \mathbb{R}$ and $x \mapsto 1/x$, then by the Delta method:

> $\xrightarrow[N\to\infty]{(d)} N(0,g'(E[X])^2 \text{Var}X)$ $\xrightarrow[n\to\infty]{(d)} N(0,g'\left(\frac{1}{\lambda}\right)^2 \frac{1}{\lambda^2})$ $\xrightarrow{(d)} N(0,\lambda^2)$

 $\sqrt{n}\left(g(\overline{X}_n) - g\left(\frac{1}{\lambda}\right)\right)$

6 Asymptotic Hypothesis tests Two hypotheses (Θ_0 disjoint set from $\int H_0 : \theta \epsilon \Theta_0$ Θ_1): $H_1: \theta \in \Theta_1$. Goal is to reject

 H_0 using a test statistic.

A test ψ has level α if $\alpha_{\psi}(\theta) \leq \alpha, \forall \theta \in \Theta_0$ and asymptotic **level** α if $\lim_{n\to\infty} P_{\theta}(\psi=1) \leq \alpha$.

A hypothesis-test has the form $\psi = \mathbf{1}\{T_n \ge c\}$

To get the asymptotic Variance use multivariate Delta-method. Consider $\hat{p}_x - \hat{p}_y = g(\hat{p}_x, \hat{p}_y); g(x, y) = x - y$, then Test rejects null hypothesis $\psi = 1$ but it is actually true $H_0 = TRUE$ also $\sqrt{(n)}(g(\hat{p}_x,\hat{p}_y) - g(p_x - p_y)) \xrightarrow[n \to \infty]{(d)}$ known as the level of a test. Type2 Error: $N(0, \nabla g(p_x - p_v)^T \Sigma \nabla g(p_x - p_v))$

Test does not reject null hypothesis $\psi = 0$ but alternative hypothesis is true $H_1 = TRUE$ **Example:** Let $X_1, \dots, X_n \overset{i.i.d.}{\sim} \operatorname{Ber}(p^*)$. Question: is $p^* = 1/2$. $H_0: p^* = 1/2$; $H_1: p^* \neq 1/2$

If asymptotic level α then we need to

standardize the estimated parameter

for some test statistic T_n and thres-

hold $c \in \mathbb{R}$. Threshold c is usually $q_{\alpha/2}$

 $R_{\psi} = \{T_n > c\}$

 $\psi = \mathbf{1}\{|T_n| - c > 0\}.$

 $\pi_{\psi} = \inf_{\theta \in \Theta_1} (1 - \beta_{\psi}(\theta))$

Where β_{tb} is the probability of making

a Type2 Error and inf is the maxi-

 $\mathbf{1}(|T_n| > q_{\alpha/2})$

 $\mathbf{1}(T_n < -q_\alpha)H_1 : \theta < \Theta_0$

 $H_1: \theta \neq \Theta_0$

Rejection region:

Two-sided test:

One-sided tests:

Type1 Error:

 $H_1: \theta > \Theta_0$

 $\mathbf{1}(T_n > q_\alpha)$

 $\hat{p} = \overline{X}_n$ first. $T_n = \sqrt{n} \frac{|\overline{X}_n - 0.5|}{\sqrt{0.5(1-0.5)}}$

 $\psi_n = \mathbf{1} \left(T_n > q_{\alpha/2} \right)$ where $q_{\alpha/2}$ denotes the $q_{\alpha/2}$ quantile of a standard Gaussian, and α is de-

termined by the required level of ψ . Note the absolute value in T_n for this two sided test.

Pivot: Let T_n be a function of the random samples $X_1, ..., X_n, \theta$. Let $g(T_n)$ be a random variable whose distribution is the same for all θ . Then, g is called a pivotal quantity or a pivot. Example: let X be a random variable with mean μ and variance σ^2 . Let X_1, \ldots, X_n be iid samples of X. Then,

 $g_n \triangleq \frac{\overline{X_n} - \mu}{2}$ is a pivot with $\theta = \left[\mu \ \sigma^2 \right]^T$ being the

parameter vector (not the same set of paramaters that we use to define a statistical model). 6.1 P-Value The (asymptotic) p-value of a test ψ_a is the smallest (asymptotic) level α

at which ψ_{α} rejects H_0 . It is random since it depends on the sample. It can also interpreted as the probability that the test-statistic T_n is realized given the null hypothesis. If pvalue $\leq \alpha$, H_0 is rejected by ψ_{α} at

the (asymptotic) level α The smaller the p-value, the more confidently one can reject H_0 .

Left-tailed p-values: $pvalue = \mathbb{P}(X \le x|H_0)$ $= \mathbf{P}(Z < T_{n,\theta_0}(\overline{X}_n)))$

 $=\Phi(T_{n,\theta_0}(\overline{X}_n))$

 $Z \sim \mathcal{N}(0,1)$

independent.

tribution:

two-sided): Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ and suppose we want to test $H_0: \mu = \mu_0 = 0$ vs. $H_1: \mu \neq 0$.

 $TV(\mathbf{P}, \mathbf{O}) + TV(\mathbf{O}, \mathbf{V})$ $T_n = n(\widehat{\theta}_n^{MLE} - \theta_0)^{\top} I(\widehat{\theta}_n^{MLE})(\widehat{\theta}_n^{MLE} - \theta_0)$ If the support of **P** and **Q** is disjoint:

 $TV(\mathbf{P}, \mathbf{V}) = 1$

 $\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$

If $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$, then sample

mean \overline{X}_n and the sample variance S_n are independent. The sum of squares

Right-tailed p-values:

 $pvalue = \mathbb{P}(X \ge x|H_0)$

Two-sided p-values: If asymptotic,

create normalized T_n using parameters from H_0 . Then use T_n to get to

 $pvalue = 2min\{\mathbb{P}(X \leq x|H_0), \mathbb{P}(X \geq x|H_0)\}$

6.2 Comparisons of two proporti-

Let $X_1, ..., X_n \stackrel{iid}{\sim} Bern(p_x)$ and

 $Y_1, \dots, Y_n \stackrel{iid}{\sim} Bern(p_v)$ and be X

independent of Y. $\hat{p}_x = 1/n \sum_{i=1}^n X_i$

and $\hat{p}_x = 1/n \sum_{i=1}^n Y_i$

 $H_0: p_x = p_v; H_1: p_x \neq p_v$

 $\Rightarrow N(0, p_x(1-px) + p_v(1-py))$

7.1 Chi squared

 $\mathcal{N}(0,1)$

If $V \sim \chi_k^2$:

 $Var(Z_1^2) = 2d$

Cochranes Theorem:

7 Non-asymptotic Hypothesis tests

The χ_d^2 distribution with d degrees of

freedom is given by the distribution

of $Z_1^2 + Z_2^2 + \cdots + Z_d^2$, where $Z_1, \ldots, Z_d \stackrel{iid}{\sim}$

 $Var(V) = Var(Z_1^2) + Var(Z_2^2) + ... +$

 $\mathbb{P}(|Z| > |T_{n,\theta_0}(\overline{X}_n)| = 2(1 - \Phi(T_n))$

 $Z \sim N(0.1)$

 $\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2$

of n variables follows a chi squared

distribution with (n-1) degrees of free-

If formula for unbiased sample

 $\frac{(n-1)S_n}{\sigma^2} \sim \chi_{n-1}^2$

7.2 Student's T Test Non-asymptotic hypothesis test for small samples (works on large

samples too), data must be gaussian.

Student's T distribution with d degrees of freedom: $t_d := \frac{Z}{\sqrt{V/n}}$

where $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_k^2$ are

Student's T test (one sample +

Wald test of level α :

Test statistic:

Test statistic follows Student's T dis- $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(\chi_d^2)\}$

 $\psi_{\alpha} = \mathbb{I}\{T_n > q_{\alpha}(\chi^2_{K-1})\}\$

7.8 Kolmogorov-Lilliefors test

Heavier tails: below > above the diagonal

diagonal. above the diagonal.

the diagonal.

8.1 Total variation distance The total variation distance TV between the propability measures P and

 $TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset F} |\mathbf{P}(A) - \mathbf{Q}(A)|,$ Calculation with f and g:

Positive: $TV(\mathbf{P}, \mathbf{Q}) \ge 0$

Triangle inequality: $TV(\mathbf{P}, \mathbf{V}) \leq$

Likelihood ratio test at level α :

MLE conditions are satisfied:

7.4 Likelihood Ratio Test

other r unspecified. That is:

Construct two estimators:

Test statistic:

 $H_0: (\theta_{r+1}, ..., \theta_d)^T = \theta_{r+1,...d} = \theta_0$

 $T_n = \frac{Z}{\bar{c}}$

 $\sqrt{\frac{\chi_{n-1}^2}{n-1}}$

Works bc. under H_0 the numerator

N(0,1) and the denominator

 $\frac{\tilde{S}_n}{\sigma^2} \sim \frac{1}{n-1} \chi_{n-1}^2$ are independent by

 $\psi_\alpha=\mathbf{1}\{|T_n|>q_{\alpha/2}(t_{n-1})\}$

Student's T test (one sample, one-

 $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(t_{n-1})\}\$

Student's T test (two samples, two-

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu_X,\sigma_X^2)$ and

 $Y_1,...,Y_n \stackrel{iid}{\sim} N(\mu_Y,\sigma_Y^2)$, suppose

we want to test $H_0: \mu_X = \mu_Y$ vs

 $T_{n,m} = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\frac{\hat{\sigma}^2 X}{X} + \frac{\hat{\sigma}^2 Y}{W}}}$

When samples are different sizes we need to finde the Student's T

Calculate the degrees of freedom for

 $N = \frac{\left(\frac{\hat{\sigma^2}_X}{n} + \frac{\hat{\sigma^2}_Y}{m}\right)^2}{\frac{\hat{\sigma^2}_X^2}{n} + \frac{\hat{\sigma^2}_Y^2}{n}} \ge \min(n, m)$

Squared distance of $\widehat{\theta}_{n}^{MLE}$ to true θ_{n}

using the fisher information $I(\widehat{\theta}_n^{MLE})$

Let $X_1, \dots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ for some true parameter $\theta^* \in \mathbb{R}^d$ and the maximum

Under H_0 , the asymptotic normality

likelihood estimator $\widehat{\theta}_{n}^{MLE}$ for θ^{*} .

Test $H_0: \theta^* = \mathbf{0} \text{ vs } H_1: \theta^* \neq \mathbf{0}$

of the MLE $\widehat{\theta}_{n}^{MLE}$ implies that:

 $\|\sqrt{n}\mathcal{I}(\mathbf{0})^{1/2}(\widehat{\theta}_n^{MLE}-\mathbf{0})\|^2 \xrightarrow[n\to\infty]{(d)} \chi_d^2$

N should be rounded down.

7.3 Walds Test

Welch-Satterthwaite formula:

distribution of: $T_{v_1,v_2} \sim t_N$

Cochran's Theorem.

Student's T test at level α :

Parameter space $\Theta \subseteq \mathbb{R}^d$ and H_0 is that parameters θ_{r+1} through θ_d have

values θ_c^{r+1} through θ_d^c leaving the

 $\widehat{\theta}_n^{MLE} = argmax_{\theta \in \Theta}(\ell_n(\theta))$

 $\widehat{\theta}_n^c = argmax_{\theta \in \Theta_0}(\ell_n(\theta))$

 $T_n = 2(\ell(X_1,..X_n|\widehat{\Theta}_n^{MLE}) - \ell(X_1,..X_n|\widehat{\Theta}_n^c)$

Wilk's Theorem: under H_0 , if the

 $T_n \xrightarrow{(d)} \chi_{d-r}^2$

 $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(\chi_{d-r}^2)\}\$

7.5 Implicit Testing

7.6 Goodness of Fit Discrete Distri-Let $X_1,...,X_n$ be iid samples from a categorical distribution. Test

 $H_0: p = p^0 \text{ against } H_1: p \neq p^0$ Example: against the uniform

Todo

distribution $p^0 = (1/K, ..., 1/K)^\top$. Test statistic under H_0 :

 $T_n = n \sum_{k=1}^{K} \frac{(\hat{p}_k - p_k^0)^2}{p_k^0} \xrightarrow[n \to \infty]{(d)} \chi_{K-1}^2$

Test at level alpha:

7.9 QQ plots

Lighter tails: above > below the

Left-skewed: below > above > below

8 Distances between distributions

Q with a sample space E is defined as:

 $TV(\mathbf{P}, \mathbf{O}) =$

 $TV(\mathbf{P}, \mathbf{V}) = 1$

 $\begin{cases} \frac{1}{2} \sum_{x \in E} |f(x) - g(x)|, \text{discr} \\ \frac{1}{2} \int_{x \in E} |f(x) - g(x)| dx, \text{cont} \end{cases}$

7.7 Kolmogorov-Smirnov test

Right-skewed: above > below >

Symmetry: $TV(\mathbf{P}, \mathbf{Q}) = TV(\mathbf{Q}, \mathbf{P})$

Definite: $TV(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$

TV between continuous and discrete

9.1 Fisher Information The Fisher information is the

Capstone Cheatsheet @r2cp Page 2

equal to the negative expectation 8.2 KL divergence of the Hessian of the loglikelihood The KL divergence (aka relative entrofunction and captures the negative py) KL between between probability of the expected curvature of the measures P and Q with the common loglikelihood function. sample space E and pmf/pdf functi-Let $\theta \in \Theta \subset \mathbb{R}^d$ and let $(E, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$ ons f and g is defined as: $KL(\mathbf{P}, \mathbf{Q}) =$

be a statistical model. Let $f_{\theta}(\mathbf{x})$ be the pdf of the distribution P_{θ} . Then, the Fisher information of the statistical $\begin{cases} \sum_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right), & \text{discr model is.} \\ \int_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right) dx, & \text{cont } \mathcal{I}(\theta) = Cov(\nabla \ell(\theta)) = \end{cases}$

The KL divergence is not a distance measure! Always sum over the support of
$$P!$$

Asymetric in general: $E[\nabla \ell(\theta)] \times [\nabla \ell(\theta)]^T] - \mathbb{E}[\nabla \ell(\theta)] \times [\nabla \ell(\theta)] = -\mathbb{E}[\Pi \ell(\theta)]$

Where $\ell(\theta) = \ln f_{\theta}(\mathbf{X})$. If $\nabla \ell(\theta) \in \mathbb{R}^d$ it $\mathbb{K}L(P,Q) \neq \mathbb{K}L(Q,P)$ is a $d \times d$ matrix. The definition when

the distribution has a pmf $p_{\theta}(\mathbf{x})$ is also the same, with the expectation taken with respect to the pmf. Let $(\mathbb{R}, \{\mathbb{P}_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous statistical model. Let $f_{\theta}(x)$ denote the pdf (probability density function) of

the continuous distribution P_{θ} . Assume that $f_{\theta}(x)$ is twice-differentiable as a function of the parameter θ .

Models with one parameter (ie.

Models with multiple parameters (ie.

 $\widehat{KL}(\mathbf{P}_{\theta_i}, \mathbf{P}_{\theta_i}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta_i}(X_i))$ Formula for the calculation of Fisher Information of X:

general:

Asymetric

 $KL(P, Q) \neq KL(Q, P)$

Nonnegative: $KL(\mathbf{P}, \mathbf{Q}) \ge 0$

Does not satisfy gle inequality in

 $KL(\mathbf{P}, \mathbf{V}) \leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$

Estimator of KL divergence:

 $KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right]$

Definite: if P = Q then KL(P,Q) = 0

9 Maximum likelihood estimation Let $\{E_{i}(\mathbf{P}_{\theta})_{\theta \in \Theta}\}$ be a statistical mo-

random variables $X_1, X_2, ..., X_n$. Assume that there exists $\theta^* \in \Theta$ such that The likelihood of the model is the

del associated with a sample of i.i.d.

product of the n samples of the

The maximum likelihood estimator

is the (unique) θ that minimizes

 $\widehat{\mathrm{KL}}(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta})$ over the parameter space.

(The minimizer of the KL divergence

is unique due to it being strictly con-vex in the space of distributions once

 $= \operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_i)$

Since taking derivatives of products

is hard but easy for sums and exp() is

very common in pdfs we usually ta-

ke the log of the likelihood function

Cookbook: set up the likelihood func-

tion, take log of likelihood function.

Take the partial derivative of the lo-

glikelihood function wrt. the parame-

ter(s). Set the partial derivative(s) to

If an indicator function on the

pdf/pmf does not depend on the para-

meter, it can be ignored. If it depends

on the parameter it can't be ignored

because there is an discontinuity in

the loglikelihood function. The maxi-

mum/minimum of the X_i is then the

maximum likelihood estimator.

zero and solve for the parameter.

before maximizing it.

 $= \operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_i) \right)$

 $\widehat{\theta}_{n}^{MLE} = \operatorname{argmin}_{\theta \in \Theta} \widehat{KL}_{n} \left(\mathbf{P}_{\theta^{*}}, \mathbf{P}_{\theta} \right)$

$$L_n(X_1,X_2,\dots,X_n,\theta) = \begin{cases} \prod_{i=1}^n p_\theta(x_i) & \text{if } E \text{ is discrete} \\ \prod_{i=1}^n f_\theta(x_i) & \text{if } E \text{ is continous} \end{cases}$$

Gaussians):

Bernulli):

 $\mathcal{I}(\theta) = Var(\ell'(\theta))$

 $\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$

 $\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$

Better to use 2nd derivative.

· Find loglikelihood

 $\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^{2}}{f_{\theta}(x)} dx$

- · Take second derivative (=Hessian if multivariate)
- · Massage second derivative or Hessian (isolate functions of X_i to use with $-\mathbf{E}(\ell''(\theta))$ or $-\mathbb{E}[\mathbf{H}\ell(\theta)].$
- Find the expectation of the functions of X_i and subsitute them back into the Hessian or the second derivative. Be extra careful to subsitute the right power back. $\mathbb{E}[X_i] \neq \mathbb{E}[X_i^{\bar{2}}].$
- · Don't forget the minus sign!

9.2 Asymptotic normality of the ma-

 $\ell((X_1, X_2, ..., X_n, \theta)) = ln(L_n(X_1, X_2, ..., X_n, \theta))$ ximum likelihood estimator Under certain conditions the MLE is $= \sum_{i=1}^{n} ln(L_i(X_i, \theta))$ asymptotically normal and consistent. This applies even if the MLE is not the sample average. Let the true parameter $\theta^* \in \Theta$. Necessary assumptions:

- · The parameter is identifiable
- For all $\theta \in \Theta$, the support \mathbb{P}_{θ} does not depend on θ (e.g. like in $Unif(0,\theta)$);
- θ^* is not on the boundary of
- Fisher information $\mathcal{I}(\theta)$ is invertible in the neighborhood

covariance matrix of the gradient of the loglikelihood function. It is The asymptotic variance of the MLE is the inverse of the fisher information. $\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$ 10 Method of Moments

Let $X_1, \dots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$, for some $d \ge 1$ Population moments:

· A few more technical condi-

$$m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$$

Empirical moments:

$$\widehat{m_k}(\theta) = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$$
Convergence of empirical moments:

$$\widehat{m_k} \frac{P,a.s.}{n \to \infty} m_k \\
(\widehat{m_1}, \dots, \widehat{m_d}) \frac{P,a.s.}{n \to \infty} (m_1, \dots, m_d)$$

MOM Estimator
$$M$$
 is a map from the parameters of a model to the mo-

ments of its distribution. This map is invertible, (ie. it results into a system of equations that can be solved for the true parameter vector θ^*). Find the moments (as many as parameters), set up system of equations, solve for parâméters, use empirical moments to estimate. $\psi:\Theta\to\mathbb{R}^d$

$$\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta))$$
$$M^{-1}(m_1(\theta^*), m_2(\theta^*), \dots, m_d(\theta^*))$$

The MOM estimator uses the empirical moments: $M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i},\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2},\ldots,\frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$ 11.4 Bayes estimator

$$M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}, \dots, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)$$

Assuming M^{-1} is continuously diffe-

rentiable at M(0), the asymptotical variance of the MOM estimator is:

$$\sqrt(n)(\widehat{\theta_n^{MM}}-\theta)\xrightarrow[n\to\infty]{(d)}N(0,\Gamma)$$

 $\Gamma(\theta)$ $\left[\left. \frac{\partial M^{-1}}{\partial \theta} (M(\theta)) \right]^T \Sigma(\theta) \left[\left. \frac{\partial M^{-1}}{\partial \theta} (M(\theta)) \right] \right.$ $\Gamma(\theta) = \nabla_{\theta} (M^{-1})^T \Sigma \nabla_{\theta} (M^{-1})$

 Σ_{θ} is the covariance matrix of the random vector of the moments $(X_1^1, X_1^2, \dots, X_1^d).$ 11 Bayesian Statistics

Bayesian inference conceptually

amounts to weighting the likelihood $L_n(\theta)$ by a prior knowledge we might have on θ . Given a statistical model we technically model our parameter θ as if it were a random variable. We therefore define the prior distribution (PDF):

$$\pi(\theta)$$

Let $X_1,...,X_n$. We note $L_n(X_1,...,X_n|\theta)$ the joint probability distribution of $X_1,...,X_n$ conditioned on θ where $\theta \sim$ π . This is exactly the likelihood from the frequentist ápproach. 11.1 Bayes' formula

. The posterior distribution verifies:

$$\begin{aligned} \forall \theta \in \Theta, \pi(\theta|X_1,...,X_n) &\propto \\ \pi(\theta)L_n(X_1,...,X_n|\theta) \end{aligned}$$

The constant is the normalization factor to ensure the result is a proper distribution, and does not depend on $\pi(\theta|X_1,...,X_n) = \frac{\pi(\theta)L_n(X_1,...,X_n|\theta)}{\prod_{\pi(\theta)L_n(X_1,...,X_n|\theta)} \prod_{\theta \in \Pi(\theta)L_n(X_1,...,X_n|\theta)} \pi(\theta|X_1,...,X_n|\theta)}$

i.e. a prior that is not a proper probability distribution (whose integral diverges), and still get a proper posterior. For example, the improper prior $\pi(\theta) = 1$ on Θ gives the likelihood as a posterior. 11.2 Jeffreys Prior

We can often use an **improper prior**,

$$\pi_I(\theta) \propto \sqrt{det I(\theta)}$$
 where $I(\theta)$ is the Fisher information.

This prior is invariant by reparameterization, which means that if we have $\eta = \phi(\theta)$, then the same prior gives us a probability distribution for η verifying: $\tilde{\pi}_I(\eta) \propto \sqrt{\det \tilde{I}(\eta)}$

 $\tilde{\pi}_I(\eta) = det(\nabla \phi^{-1}(\eta)) \pi_I(\phi^{-1}(\eta))$

11.3 Bavesian confidence region Let $\alpha \in (0,1)$. A *Bayesian confidence region with level α^* is a random sub-

set
$$\mathcal{R} \subset \Theta$$
 depending on $X_1,...,X_n$ (and the prior π) such that:

$$P[\theta \in \mathcal{R}|X_1,...,X_n] \geq 1-\alpha$$

Bayesian confidence region and confidence interval are distinct notions. The Bayesian framework can be used to estimate the true underlying parameter. In that case, it is used to build a new class of estimators, based on the posterior distribution.

(MAP):

$$\hat{\theta}_{(\pi)} = \int_{\Theta} \theta \pi(\theta|X_1,...,X_n) d\theta$$
Maximum a posteriori estimator

 $\hat{\theta}_{(\pi)}^{MAP} = argmax_{\theta \in \Theta} \pi(\theta|X_1,...,X_n)$

the prior is uniform. Given two random variables X and Y, how can we predict the values of Y

consider $(X_1, Y_1), \dots, (X_n, Y_n)$ \sim^{iid} \mathbb{P} where P is an unknown joint distribution. P can be described entirely by:

$$g(X) = \int f(X,y)dy$$
$$h(Y|X = x) = \frac{f(x,Y)}{g(x)}$$

where f is the joint PDF, g the marginal density of X and h the conditional density. What we are interested in is Regression function: For a partial de-

scription, we can consider instead the conditional expection of Y given X =

$$x \mapsto f(x) = \mathbb{E}[Y|X = x] = \int yh(y|x)dy$$

We can also consider different descriptions of the distribution, like the median, quantiles or the variance. Linear regression: trying to fit any

function to $\mathbb{E}[Y|X=x]$ is a nonparametric problem; therefore, we restrict the problem to the tractable one of linear function: $f: x \mapsto a + bx$

Theoretical linear regression: let

X.Y be two random variables with

two moments such as V[X] > 0. The

theoretical linear regression of Y on

 $(a^*, b^*) = \operatorname{argmin}_{(a,b) \in \mathbb{R}^2} \mathbb{E} [(Y - a - bX)^2]$

 $b^* = \frac{Cov(X,Y)}{\mathbb{V}[X]}, \quad a^* = \mathbb{E}[Y] - b^*\mathbb{E}[X]$

Noise: we model the noise of Y

around the regression line by a ran-

dom variable $\varepsilon = Y - a^* - b^*X$, such

 $\mathbb{E}[\varepsilon] = 0$, $Cov(X, \varepsilon) = 0$

We have to estimate a^* and b^* from the data. We have n random pairs

 $(X_1, Y_1), ..., (X_n, Y_n) \sim_{iid} (X, Y)$ such

 $Y_i = a^* + b^* X_i + \varepsilon_i$

The Least Squares Estimator (LSE)

of (a^*, b^*) is the minimizer of the squa-

 $\hat{b}_n = \frac{\overline{XY} - \overline{XY}}{\overline{Y^2} - \overline{Y}^2}, \quad \hat{a}_n = \overline{Y} - \hat{b}_n \overline{X}$

The Multivariate Regression is given

 $Y_i = \sum_{j=1}^p X_i^{(j)} \beta_j^* + \varepsilon_i = \underbrace{X_i^\top}_{1 \times p} \underbrace{\beta^*}_{p \times 1} + \varepsilon_i$

We can assuming that the $X_i^{(1)}$ are 1

 $Cov(X_i, \varepsilon_i) = 0$

the sum of square errors:

and $\epsilon = (\epsilon_1, \dots, \epsilon_n)^{\top}$.

regression is given by:

The Multivariate Least Squares Esti-

mator (LSE) of β^* is the minimizer of

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - X_i^\top \beta)^2$

Matrix form: we can rewrite these ex-

pressions. Let $Y = (Y_1, ..., Y_n)^\top \in \mathbb{R}^n$,

 $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in \mathbb{R}^{n \times p}$

X is called the **design matrix**. The

 $Y = X\beta^* + \epsilon$

• the ε_i is the noise, satisfying

for the intercept.

X is the line $a^* + b^*x$ where

Which gives:

Least squares estimator: setting
$$\nabla F(\beta) = 0$$
 gives us the expression of regions:

 $\nabla F(\beta) = 2X^{\top}(Y - X\beta)$

 $\hat{\beta} = (X^\top X)^{-1} X^\top Y$

Geometric interpretation: $X\hat{\beta}$ is

 $R_{\alpha}^{(S)} = \bigcup R_{\alpha/K}^{(j)}$

$$R_{\alpha}^{(3)} = \bigcup_{j \in S} R_{\alpha/K}^{(j)}$$

 $\psi_{\alpha}^{(S)} = \max_{j \in S} \psi_{\alpha/K}^{(j)}$

where K = |S|. The rejection region

This test has nonasymptotic level at

$$\P_{H_0}\Big[F$$

 $\P_{H_0}\left[R_{\alpha}^{(S)}\right] \leq \sum_{i \in S} \P_{H_0}\left[R_{\alpha/K}^{(j)}\right] = \alpha$

ting (for example, $\beta_1 \geq \beta_2$).

 $g(\mu(\mathbf{x})) = \mathbf{x}^T \boldsymbol{\beta}$

 $B(\boldsymbol{\theta})$

Integration limits only have to be over the support of the pdf. Discrete

the orthogonal projection of Y onto the subspace spanned by the columns

 $X\hat{\beta} = PY$

where
$$P = X(X^{T}X)^{-1}X^{T}$$
 is the expression of the projector.

sion of the projector. Statistic inference**: let us suppose * The design matrix X is deterministic and rank(X) = p. * The model is **homoscedastic**: $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d. *

The noise is Gaussian: $\epsilon \sim N_n(0, \sigma^2 I_n)$.

 $Y \sim N_n(X\beta^*, \sigma^2 I_n)$ Properties of the LSE:

We therefore have:

red sum:
$$\hat{\beta} \sim N_p(\beta^*, \sigma^2(X^\top X)^{-1})$$

$$(\hat{a}_n, \hat{b}_n) = argmin_{(a,b) \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - a - bX_i)^{\text{The quadratic risk of } \hat{\beta} \text{ is given by:}$$

The estimators are given by: $\mathbb{E}\left[\|\hat{\beta} - \beta^*\|_2^2\right] = \sigma^2 Tr\left((X^\top X)^{-1}\right)$

The prediction error is given by:
$$\mathbb{E}\Big[\|Y-X\hat{\beta}\|_2^2\Big] = \sigma^2(n-p)$$

The unbiased estimator of σ^2 is:

$$\hat{\sigma^2} = \frac{1}{n-p} \|Y - X\hat{\beta}\|_2^2 = \frac{1}{n-p} \sum_{i=1}^n \hat{\varepsilon}_i^2$$

• If $\beta^* = (a^*, b^* \top)^\top$, $\beta_1^* = a^*$ is the intercept.

$$\gamma_j = (X)$$

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 \gamma_j}} \sim t_{n-p}$$

$$T_n^{(j)} = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \gamma_i}}$$

$$\psi_{\alpha}^{(j)} = \mathbf{1}\{|T_n^{(j)}| > q_{\alpha/2}(t_{n-p})\}$$

me level α for each of them. We must use a stricter test for each of them. Let us consider $S \subseteq \{1, ..., p\}$. Let us consi-

 $\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X|Y = y] dy$

This test also works for implicit tes-

13 Generalized Linear Models We relax the assumption that μ is linear. Instead, we assume that $g \circ \mu$ is linear, for some function g:

The function g is assumed to be known, and is referred to as the link function. It maps the domain of the dependent variable to the entire real

ble and its range is all of R 13.1 The Exponential Family A family of distribution $\{P_{\theta}: \theta \in \Theta\}$

where the parameter space $\Theta \subset \mathbb{R}^k$

is -k dimensional, is called a k-parameter exponential family on $\mathbb{R}^{\bar{1}}$ if the pmf or pdf $f_{\Theta}: \mathbb{R}^q \to \mathbb{R}$ of P_{θ} can be written in the form:

 $h(\mathbf{y}) \exp (\eta(\boldsymbol{\theta}) \cdot \mathbf{T}(\mathbf{y}) - B(\boldsymbol{\theta}))$ where $\left| \eta(\theta) = \begin{bmatrix} \vdots \\ \eta_k(\theta) \end{bmatrix} : \mathbb{R}^k \to \mathbb{R}^k$

 $: \mathbb{R}^q \to \mathbb{R}^k$

 $T_k(\mathbf{y})$

if k = 1 it reduces to:

 $\mathbb{E}\left[g\left(X\right)\right] = \int_{-inf}^{+inf} g\left(x\right) \cdot f_X\left(x\right) dx$

 $\mathbb{E}[X|Y=y] = \int_{-inf}^{+inf} x \cdot f_{X|Y}(x|y) dx$

r.v. same as continuous but with sums

Significance test: let us test H_0 : $\beta_j = 0$ against $H_1: \beta_j \neq 0$. Let us call

We can define the test statistic for our

$$\psi_{\alpha}^{(j)} = \mathbf{1}\{|T_n^{(j)}| > q_{\alpha/2}(t_{n-p})\}$$

Bonferroni's test: if we want to test

and the LSE is given by: $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} ||Y - X\beta||_2^2$

Let us suppose
$$n \ge p$$
 and $rank(X) = p$.
If we write: $H_0: \forall j \in S, \beta_j = 0, \quad H_1: \exists j \in S, \beta_j \ne 0$

The *Bonferroni's test* with signifi-

cance level α is given by:

 $F(\beta) = ||Y - X\beta||_2^2 = (Y - X\beta)^{\top}(Y - X\beta)$

 $(n-p)\frac{\hat{\sigma^2}}{2} \sim \chi^2_{n-p}, \quad \hat{\beta} \perp \hat{\sigma^2}$

 $\gamma_i = ((X^T X)^{-1})_{i:i} > 0$

The test with non-asymptotic level α

 $\psi_{\alpha}^{(j)} = \mathbf{1}\{|T_n^{(j)}| > q_{\alpha/2}(t_{n-p})\}$

the significance level of multiple tests

at the same time, we cannot use the sa-

 $\mathbb{E}[a] = a$

Product of **dependent** r.vs *X* and *Y* :

 $: \mathbb{R}^k \to \mathbb{R}$

 $: \mathbb{R}^q \to \mathbb{R}$

 $f_{\theta}(y) = h(y) \exp(\eta(\theta)T(y) - B(\theta))$

14 Expectation

and pmfs.

Total expectation theorem:

Law of iterated expectation:

Expectation of constant a:

 $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

 $\mathbb{E}[X] = \int_{-inf}^{+inf} x \cdot f_X(x) dx$

 $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$

Product of **independent** r.vs X and Y

it has to be strictly increasing, it has to be continuously differentia-

Capstone Cheatsheet @r2cp Page 3	$\mathbb{E}[X] = p$	Multinomial Parameters $n > 0$ and $p_1,, p_r$.	$f_{\theta}(y) = \exp(y\theta - (-\ln(-\theta)) + \underbrace{0})$	$\mathbb{E}[X^4] = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	"Out of <i>n</i> people, we want to form a committee consisting of a chair and	Σ = $Cov(X)$ =
	Var(X) = p(1-p)	$p_x(x) = \frac{n!}{x_1! \dots x_n!} p_1, \dots, p_r$	$b(\theta)$ $c(y,\phi)$	Quantiles:	other members. We allow the commit- tee size to be any integer in the range	$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \end{bmatrix}$
$\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$	Likelihood n trials:	$\mathbb{E}[X_i] = n * p_i$	$\theta = -\lambda = -\frac{1}{\mu}$	Uniform Parameters a and b , continuous.	1,2,,n. How many choices do we have in selecting a committee-chair	
$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	$L_n(X_1,\ldots,X_n,p) = \sum_{n=1}^n X_n$	$Var(X_i) = np_i(1 - p_i)$	$\phi = 1$ Shifted Exponential	$f_{\mathbf{x}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \end{cases}$	combination?"	$[\sigma_{d1} \sigma_{d2} \dots \sigma_{dd}]$
Linearity of Expectation where a and	$= p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i}$	Likelihood:	Parameters λ , $a \in \mathbb{R}$, continuous	(0, o.w.	$\sum_{n=1}^{n} (n)$	The covariance matrix Σ is a $d \times d$ matrix. It is a table of the pairwise
c are given scalars:	Loglikelihood n trials:	$p_x(x) = \prod_{j=1}^n p_j^{T_j}, \text{ where}$	$f_x(x) = \begin{cases} \lambda exp(-\lambda(x-a)), & x >= a \\ 0, & x <= a \end{cases}$	$\mathbf{F}_{\mathbf{x}}(x) = \begin{cases} 0, & for x \le a \\ \frac{x-a}{b-a}, & x \in [a,b) \end{cases}$	$n2^{n-1} = \sum_{i=0}^{n} \binom{n}{i} i.$	covariances of the elements of the random vector. Its diagonal elements are the variances of the elements of
$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	$\ell_n(p) = \\ = \ln(p) \sum_{i=1}^n X_i +$	$T^j = \mathbb{1}(X_i = j)$ is the count	$F_{x}(x) =$	$(1, x \ge b)$	18.2 Finding Joint PDFS	the random vector, the off-diagonal elements are its covariances. Note
If Variance of X is known:	$\left(n - \sum_{i=1}^{n} X_i\right) \ln\left(1 - p\right)$	how often an outcome is seen in trials.	$\begin{cases} 1 - exp(-\lambda(x-a)), & if x >= a \\ 0, & x <= a \end{cases}$	$\mathbb{E}[X] = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)^2}{12}$	$f_{X,Y}(x,y) = f_X(x)f_{Y X}(y \mid x)$	that the covariance is commutative e.g. $\sigma_{12} = \sigma_{21}$
$\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]$	MLE:	Loglikelihood:	$\mathbb{E}[X] = a + \frac{1}{\lambda}$	Likelihood:	19 Random Vectors A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$	Alternative forms:
15 Variance Variance is the squared distance from	$\hat{p}_{MLE} = \frac{\sum_{i=1}^{n} (X_i)}{n}$	$\ell_n = \sum_{j=2}^n T_j \ln(p_j)$	$Var(X) = \frac{1}{\lambda^2}$	$L(x_1 \dots x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$	A random vector $\mathbf{X} = (X^{(1)},, X^{(n)})$ of dimension $d \times 1$ is a vector-valued	$\Sigma = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T =$
the mean.	Fisher Information:	Poisson Parameter λ . discrete, approximates	Likelihood:	Loglikelihood:	function from a probability space ω to \mathbb{R}^d :	$= \mathbb{E}[XX^T] - \mu_X \mu_X^T$
$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$	$I(p) = \frac{1}{p(1-p)}$	the binomial PMF when n is large, p is small, and $\lambda = np$.	$L(X_1 X_n; \lambda, \theta) =$	Cauchy	$\mathbf{X}:\Omega\longrightarrow\mathbb{R}^d$	Let the random vector $X \in \mathbb{R}^d$ and A and B be conformable matrices of
$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$	Canonical exponential form:		$\lambda^n \exp\left(-\lambda \sum_{i=1}^n (X_i - a)\right) 1_{\min_{i=1,\dots,n}(X_i) \geq a}.$ Loglikelihood:	continuous, parameter m , $f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$		constants.
Variance of a product with constant <i>a</i> :	$f_{\theta}(y) = \exp(y\theta - \ln(1 + e^{\theta}) + 0)$	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda) \frac{\lambda^{k}}{k!} \text{ for } k = 0, 1, \dots,$	$\ell(\lambda, a) := n \ln \lambda - \lambda \sum_{i=1}^{n} X_i + n\lambda a$	$\mathbb{E}[X] = notdefined!$	$\begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \end{pmatrix}$	Cov(AX + B) = Cov(AX) =
$Var(aX) = a^2 Var(X)$	$b(\theta) \qquad c(y,\phi)$	$\mathbb{E}[X] = \lambda$	MLE: $\hat{\lambda}_{MLE} = \frac{1}{\bar{X}_v - \hat{a}}$	Var(X) = notdefined!	$\omega \longrightarrow$.	$ACov(X)A^T = A\Sigma A^T$ Every Covariance matrix is positive
Variance of sum of two dependent r.v.:	$\theta = \ln\left(\frac{p}{1-p}\right)$	$Var(X) = \lambda$	$\hat{a}_{MLE} = \overline{X}_{n} - \hat{a}$ $\hat{a}_{MLE} = \min_{i=1,\dots,n} (X_i)$	med(X) = P(X > M) = P(X < M) = 1/2 = $\int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$	$\left(egin{array}{c} dots \ X^{(d)}(\omega) \end{array} ight)$	definite. $\Sigma < 0$
Var(X + Y) = Var(X) + Var(Y) +	$\phi = 1$	Likelihood: $L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i} e^{-n\lambda}$	Univariate Gaussians	Chi squared	where each $X^{(k)}$, is a (scalar) random variable on Ω .	Gaussian Random Vectors
2Cov(X,Y)	Binomial Parameters p and n , discrete.	Loglikelihood:	Parameters μ and $\sigma^2 > 0$, continuous $f(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	The χ_d^2 distribution with <i>d</i> degrees of freedom is given by the distribution	PDF of X: joint distribution of its	A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$
Variance of sum/difference of two independent r.v.:	Describes the number of successes in n independent Bernoulli trials.	$\ell_n(\lambda) = \\ = -n\lambda + \log(\lambda)(\sum_{i=1}^n x_i) - \log(\prod_{i=1}^n x_i!)$	$\mathbb{E}[X] = \mu$	of $Z_1^2 + Z_2^2 + \dots + Z_d^2$, where $Z_1, \dots, Z_d \stackrel{iid}{\sim}$	components $X^{(1)}, \ldots, X^{(d)}$.	is a Gaussian vector, or multivariate Gaussian or normal variable, if any li-
Var(X+Y) = Var(X) + Var(Y)	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0,,n$	MLE:	$Var(X) = \sigma^2$	$\mathcal{N}(0,1)$ If $V \sim \chi_k^2$:	CDF of X:	near combination of its components is a (univariate) Gaussian variable or
Var(X - Y) = Var(X) + Var(Y)	$p_X(k) = \binom{k}{k} p^n (1-p) , k = 0,,n$ $\mathbb{E}[X] = np$	$\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (X_i)$	CDF of standard gaussian:	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$	$\mathbb{R}^d o [0,1]$	a constant (a "Gaussian" variable with zero variance), i.e., if $\alpha^T \mathbf{X}$ is (univaria-
16 Covariance	E[X] = np $Var(X) = np(1-p)$	Fisher Information:	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$	$Var(V) = Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_n^2) + \dots +$	$\mathbf{x} \mapsto \mathbf{P}(X^{(1)} \le x^{(1)}, \dots, X^{(d)} \le x^{(d)}).$	te) Gaussian or constant for any constant non-zero vector $\alpha \in \mathbb{R}^d$.
The Covariance is a measure of how much the values of each of	Likelihood:	$I(\lambda) = \frac{1}{\lambda}$	Likelihood:	$Var(Z_d^2) = 2d$	The sequence $X_1, X_2,$ converges	Multivariate Gaussians
two correlated random variables determine each other	$L_n(X_1,,X_n,\theta) =$	Canonical exponential form:	$L(x_1X_n; \mu, \sigma^2) =$ $= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$	Student's T Distribution $T_n := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$, and Z	in probability to X if and only if each component of the sequence	The distribution of, X the d-dimensional Gaussian or nor-
$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$	$= \left(\prod_{i=1}^{n} {X_{i} \choose X_{i}} \right) \theta^{\sum_{i=1}^{n} X_{i}} (1-\theta)^{nK-\sum_{i=1}^{n} X_{i}}$	$f_{\theta}(y) = \exp(y\theta - e^{\theta} - \ln y!)$	$-\frac{1}{(\sigma\sqrt{2\pi})^n}\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(X_i-\mu)^i\right)$ Loglikelihood:	and V are independent 18.1 Useful to know	$X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability	mal distribution, is completely specified by the vector mean
$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	Loglikelihood:	$b(\theta) = \exp\left(ye - \frac{1}{c(y,\phi)}\right)$	$\ell_n(\mu, \sigma^2) =$	18.1.1 Min of iid exponential	to $X^{(k)}$. Expectation of a random vector	$\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$ and the $d \times d$ covariance matrix Σ . If Σ is
$Cov(X, Y) = \mathbb{E}[(X)(Y - \mu_Y)]$	$\ell_n(\theta) = C + \left(\sum_{i=1}^n X_i\right) \log \theta +$	$\theta = \ln \lambda$ $\phi = 1$	$=-nlog(\sigma\sqrt{2\pi})-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i-\mu)^2$	r.v Let $X_1,,X_nn$ be i.i.d. $Exp(\lambda)$ ran-	The expectation of a random vector is the elementwise expectation. Let X be	invertible, then the pdf of <i>X</i> is:
Possible notations:	$\left(nK - \sum_{i=1}^{n} X_i\right) \log(1-\theta)$	φ = 1 Poisson process:	MLE:	dom variables. Distribution of $min_i(Xi)$	a random vector of dimension $d \times 1$.	$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)},$
$Cov(X, Y) = \sigma(X, Y) = \sigma_{(X,Y)}$	MLE:	k arrivals in t slots	$ \hat{\mu}_M LE = \overline{X}_n \widehat{\sigma^2}_M LE = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 $	Distribution of $min_i(Xi)$	$\left(\mathbb{E}[X^{(1)}]\right)$	$\mathbf{x} \in \mathbb{R}^d$
Covariance is commutative:	Fisher Information:	$\mathbf{p_x}(k,t) = \mathbb{P}(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$	Fisher Information:	$\mathbf{P}(\min_i(X_i) \le t) =$	$\mathbb{E}[\mathbf{X}] = $.	Where $det(\Sigma)$ is the determinant of Σ , which is positive when Σ is invertible.
Cov(X, Y) = Cov(Y, X)	$I(p) = \frac{n}{p(1-p)}$	$\mathbb{E}[N_t] = \lambda t$	$I(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$	$= 1 - \mathbf{P}(\min_{i}(X_{i}) \ge t)$ $= 1 - (\mathbf{P}(X_{i} \ge t))(\mathbf{P}(X_{i} \ge t))$	$\mathbb{E}[X^{(d)}]$	If $\mu = 0$ and Σ is the identity matrix,
Covariance with of r.v. with itself is variance:	Canonical exponential form:	$Var(N_t) = \lambda t$ Exponential	Canonical exponential form:	$= 1 - (\mathbf{F}(X_1 \ge t))(\mathbf{F}(X_2 \ge t))$ $= 1 - (1 - F_X(t))^n = 1 - (1 -$	The expectation of a random matrix -is, the expected value of each of its	then X is called a standard normal random vector.
$Cov(X, X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$	$f_p(y) =$	Parameter λ , continuous	Gaussians are invariant under affine	Differentiate w.r.t x to get the pdf of	elements. Let $X = \{X_{ij}\}$ be an $n \times p$	If the covariant matrix Σ is diagonal, the pdf factors into pdfs of univariate Gaussians, and hence the components
$Cov(X,X) = \mathbb{E}[(X - \mu_X)^-] = Vur(X)$ Useful properties:	$exp(y(\ln(p) - \ln(1-p)) + n\ln(1-p) + \ln(($	$(y) = \begin{cases} 0, & \text{o.w.} \end{cases}$	transformation:	min _i (Xi):	$n \times p$ matrix of numbers (if they exist):	are independent.
Cov($aX + h, bY + c$) = $abCov(X, Y)$	$ heta ext{ } -b(heta) ext{ } c(y,$ Geometric	$\phi P(X > a) = exp(-\lambda a)$	$aX + b \sim N(X + b, a^2 \sigma^2)$	$f_{\min}(x) = (n\lambda)e^{-(n\lambda)x}$	$\mathbb{E}[X] = \mathbb{E}[Y_{-1}] \mathbb{E}[Y_{-1}] $	The linear transform of a gaussian $X \sim N_d(\mu, \Sigma)$ with conformable
Cov(X, X + Y) = Var(X) + cov(X, Y)	Number of <i>T</i> trials up to (and including) the first success.	$F_x(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	Sum of independent gaussians:		$\begin{bmatrix} \mathbb{E}[X_{11}] & \mathbb{E}[X_{12}] & \dots & \mathbb{E}[X_{1p}] \\ \mathbb{E}[X_{21}] & \mathbb{E}[X_{22}] & \dots & \mathbb{E}[X_{2p}] \end{bmatrix}$	matrices A and B is a gaussian:
Cov(aX + bY, Z) = aCov(X, Z) +	$p_T(t) = (1-p)^{t-1}, t = 1, 2,$	$\mathbb{E}[X] = \frac{1}{\lambda}$	Let $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$	18.1.2 Counting Committees		$AX + B = N_d (A\mu + b, A\Sigma A^T)$
bCov(Y,Z)	$\mathbb{E}[T] = \frac{1}{p}$	$\mathbb{E}[X^2] = \frac{2}{\lambda^2}$	If $Y = X + Z$, then $Y \sim N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$	Out of $2n$ people, we want to choose a committee of n people, one of whom will be its chair. In how many different ways can this be done?"	$\mathbb{E}[X_{n1}]$ $\mathbb{E}[X_{n2}]$ $\mathbb{E}[X_{np}]$	Multivariate CLT Let $X_1,,X_d \in \mathbb{R}^d$ be independent
If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are in-	$var(T) = \frac{1-p}{p^2}$ Pascal	$Var(X) = \frac{1}{\lambda^2}$	If $U = X - Y$, then $U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$	will be its chair. In how many diffe- rent ways can this be done?"	Let <i>X</i> and <i>Y</i> be random matrices of the same dimension, and let <i>A</i> and <i>B</i>	copies of a random vector X such that $\mathbb{E}[x] = \mu \ (d \times 1 \text{ vector of expectations})$
dependent their Covariance is zero	The negative binomial or Pascal distri-	Likelihood:		$n\binom{2n}{n} = 2n\binom{2n-1}{n-1}.$	be conformable matrices of constants.	and $Cov(X) = \Sigma$
The converse is not always true. It is only true if <i>X</i> and <i>Y</i> form a gaussian vector, ie. any linear combination	bution is a generalization of the geo- metric distribution. It relates to the random experiment of repeated inde-	$L(X_1 X_n; \lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n X_i\right)$	Symmetry: If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	(' ') (' ' - ')	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$	$\sqrt{(n)(\overline{X_n}-\mu)} \xrightarrow[n\to\infty]{(d)} N(0,\Sigma)$
$\alpha X + \beta Y$ is gaussian for all $(\alpha, \beta) \in \mathbb{R}^2$	pendent trials until observing <i>m</i> successes. I.e. the time of the kth arrival.	Loglikelihood: $\ell(1) = vlv(1) - 1\sum_{i=1}^{n} \ell(X_i)$	$\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$	"In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many	Covariance Matrix	$\sqrt{(n)}\Sigma^{-1/2}\overline{X_n} - \mu \xrightarrow[n \to \infty]{(d)} N(0, I_d)$
without {0, 0}. 17 correlation coefficient	$Y_k = T_1 + \dots T_k$	$\ell_n(\lambda) = nln(\lambda) - \lambda \sum_{i=1}^n (X_i)$ MLE:	P(X > x) = 2P(X > x) Standardization:	committee of n people. In how many ways can this be done?"	Let X be a random vector of dimensi-	Where $\Sigma^{-1/2}$ is the $d \times d$ matrix such that $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^1$ and I_d is the
$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X}Var(Y)}}$	$T_i \sim iidGeometric(p)$		Standardization: $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	$(2n) \sum_{n=1}^{n} (n) (n)$	on $d \times 1$ with expectation μ_X . Matrix outer products!	that $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^1$ and I_d is the identity matrix.
18 Important probability distributi- ons	$\mathbb{E}[Y_k] = \frac{k}{p}$	$\lambda_{MLE} = \frac{n}{\sum_{i=1}^{n} (X_i)}$ Fisher Information:	*	$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}$	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$	Multivariate Delta Method
Bernoulli Parameter $p \in [0,1]$, discrete	$Var(Y_k) = \frac{k(1-p)}{p^2}$ $p_{Y_k}(t) = \binom{t-1}{k-1} p^k (1-p)^{t-k}$	Fisher information: $I(\lambda) = \frac{1}{12}$	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t-\mu}{\sigma}\right)$ Higher moments:	"How many subsets does a set with 2n elements have?"		20 Algebra Absolute Value Inequalities:
$p_x(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$	$p_{Y_k}(t) = {t-1 \choose k-1} p^k (1-p)^{t-k}$	$I(\lambda) = \frac{1}{\lambda^2}$ Canonical exponential form:	$\mathbb{E}[X^2] = \mu^2 + \sigma^2$	29	$\mathbb{E}\begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \dots \\ X_d - \mu_d \end{bmatrix} [X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d]$	$\int_{a} f(x) < a \Rightarrow -a < f(x) < a$
$(1-p), \text{if } \mathbf{k} = 0$	$t = k, k + 1, \dots$	Canonical exponential form.	$\mathbb{E}[X^3] = \mu^3 + 3\mu\sigma^2$	$2^{2n} = \sum_{i=1}^{2n} \binom{2n}{i}$	$\lfloor X_d - \mu_d \rfloor$	$\int_{\mathbb{R}^{n}} x ^{2} dx \to \int_{\mathbb{R}^{n}} x ^{2} dx = 0$

Capstone Cheatsheet @r2cp Page 4	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T]$ = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T	$Var(N_{\tau}) = \lambda \tau$		
21 Matrix Algebra	= $\mathbb{E}[XX^T] - \mu_X \mu_X^T$ 24 Probability Unit 6: Derived distributions			
$\ \mathbf{A}\mathbf{x}\ ^2 = (\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}$	Z = X + Y (independent) $p_Z(z) = \sum_x p_X(x) p_Y(z - x)$			
22 Calculus	$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$			
Differentiation under the integral sign $\frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(x,t) dt \right) = f(x,b(x))b'(x) -$	Sum of independent normals is normal.			
$f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t) dt.$	Monotonic transformation: $Y = g(X)$			
Concavity in 1 dimension	$F_Y(y) = f_X(h(y)) \left \frac{dh}{dy}(y) \right , h(y) = g^{-1}(x)$			
If $g: I \to \mathbb{R}$ is twice differentiable in the interval I :	Unit 6: Deeper view of conditioning Law of iterated expectations $E[X] =$	Time until the first sucess/arrival T_1		
concave: if and only if $g''(x) \le 0$ for all $x \in I$	E[E[X Y]]. Law of total variance $Var(X) =$	(Exponential(λ)) $T_1 = \min\{i : X_i = 1\}$ (Geometric)		
strictly concave: if $g''(x) < 0$ for all $x \in I$	$\mathbf{E}[Var(X Y)] + Var(\mathbf{E}[X Y])$ Sum of a random number of independent r.v.'s: $Y = X_1 + + X_N$ $\mathbf{E}[Y] = \mathbf{E}[N] \cdot \mathbf{E}[X]$	$f_{T_1}(t) = \lambda e^{-\lambda t}, t \ge 0$ $\mathbf{E}[T_1] = \frac{1}{\lambda}$ $Var(T_1) = \frac{1}{\lambda^2}$		
convex: if and only if $g''(x) \ge 0$ for all $x \in I$	$Var(Y) = \mathbf{E}[N] Var(X) + (\mathbf{E}[X])^2 Var(N)$			
strictly convex if: $g''(x) > 0$ for all $x \in I$	Unit 8: Limit theorems and classical statistics			
Multivariate Calculus	Markov inequality: $X \ge 0$ and $a > 0$, then $P(X \ge a) \le \frac{E[X]}{a}$			
The Gradient ∇ of a twice differntiable function f is defined as:	Chebyshev inequality: $c > 0$, then $P(X - E[X] \ge c) \le \frac{Var(X)}{c^2}$			
$\nabla f: \mathbb{R}^d \to \mathbb{R}^d$	$P(X - E[X] \ge c) \le \frac{c}{c^2}$ Convergence in probability: for every			
$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \vdots \\ \theta_d \end{pmatrix} \mapsto \begin{pmatrix} \frac{\sigma_T}{\partial \theta_1} \\ \frac{\partial \sigma_T}{\partial \theta_2} \\ \vdots \\ \frac{\partial \sigma_T}{\partial \theta_d} \end{pmatrix}$	$\epsilon > 0$, $\mathbf{P}(X_n - a \ge \epsilon) \to 0$ Weak law of large numbers: X_i (i.i.d.),			
$\theta = \begin{bmatrix} \theta_2 \\ . \end{bmatrix} \mapsto \begin{bmatrix} \frac{1}{2} & \theta_2 \\ \vdots & \frac{1}{2} \end{bmatrix}$	$M_n = \frac{X_1 + + X_n}{n} \rightarrow \mathbf{E}[X]$ Central limit theorem: X_i			
	Central limit theorem: X_i (i.i.d.), CDF of $\frac{X_1 + + X_n - nE[X]}{\sqrt{n}}$ \rightarrow	Time of the k-th sucess/arrival:		
$\partial \theta_d \cap_{\theta}$	(i.i.d.), CDF of $\frac{X_1 + + X_n - n\mathbf{E}[X]}{\sqrt{n}\sigma_X} \rightarrow$ standard normal CDF	$Y_k = T_1 + + T_k$ (Erlang), T_i are iid Exponentials(λ)		
Hessian	Unit 9: The Bernoulli and Poisson pro- cesses	$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, y \ge 0$ $\mathbf{E}[Y_k] = \frac{k}{\lambda}$		
The Hessian of f is a symmetric matrix of second partial derivatives	Bernoulli process			
of f	Number of successes/arrivals <i>S</i> in <i>n</i> time slots:	$Var(Y_k) = \frac{k}{\lambda^2}$		
$\mathbf{H}h(\theta) = \nabla^2 h(\theta) = \frac{\partial^2 h}{\partial \theta} (\theta)$	$S = X_1 + + X_n$ (Binomial)			
$\frac{\partial \theta_1 \partial \theta_1}{\partial \theta_1 \partial \theta_d}(\theta)$ $\frac{\partial \theta_1 \partial \theta_d}{\partial \theta_1 \partial \theta_d}(\theta)$	$P(S = K) = \binom{k}{k} p^{k} (1 - p)^{k} n - K, K = 0,, n$			
$\begin{aligned} \mathbf{H}h(\theta) &= \nabla^2 h(\theta) = \\ \left(\begin{array}{ccc} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_1 \partial \theta_d}(\theta) \\ & \vdots & & \\ \frac{\partial^2 h}{\partial \theta_d \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\theta) \end{array} \right) \in \\ \mathbf{P}_{\mathbf{A},\mathbf{A},\mathbf{A}}^{\mathbf{A},\mathbf{A},\mathbf{A}} & \mathbf{P}_{\mathbf{A},\mathbf{A},\mathbf{A}}^{\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A}} & \mathbf{P}_{\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A}$	$P(S = k) = {n \choose k} p^k (1 - p)^k (n - k), k = 0,, n$ E[S] = np Var(S) = np(1 - p)			
$\left(\begin{array}{cc} \frac{\partial \ n}{\partial \theta_d \partial \theta_1}(\theta) & \cdots & \frac{\partial \ n}{\partial \theta_d \partial \theta_d}(\theta) \end{array}\right)$ $\mathbb{R}^{d \times d}$	Time until the first sucess/arrival T_1			
	$T_1 = \min\{i : X_i = 1\}$ (Geometric) $\mathbf{P}(T_1 = k) = (1 - p)^{(k-1)}p, k = 1, 2,$			
A symmetric (real-valued) $d \times d$ matrix A is:	$\mathbf{E}[T_1] = \frac{1}{p}$			
Positive semi-definite: $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^d$.	$Var(T_1) = \frac{1-p}{p^2}$			
Positive definite:	Time of the k -th sucess/arrival $Y_k = T_1 + + T_k$ (Pascal), T_i are iid	Merged process		
$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^d$	Geometric(p)	Poisson(λ_1) + Poisson(λ_2) = Poisson($\lambda_1 + \lambda_2$)		
Negative semi-definite (resp. negative	$p_{Y_k}(t) = {t-1 \choose k-1} p^k (1-p)^{t-k}, t = k, k+1, \dots$ $\mathbf{E}[Y_k] = \frac{k}{p}$	$P(k\text{-th arrival comes from first process}) = \frac{\lambda_1}{\lambda_1}$		
definite):	$Var(Y_k) = \frac{k(1-p)}{p^2}$	$\frac{\lambda_1}{\lambda_1 + \lambda_2}$ Independence for different arrivals		
$\mathbf{x}^T \mathbf{A} \mathbf{x}$ is negative for all $\mathbf{x} \in \mathbb{R}^d - \{0\}.$	Merged process	•		
Positive (or negative) definiteness implies positive (or negative)	Bernoulli (p) + Bernoulli (q) = Bernoulli $(p+q-pq)$			
semi-definiteness.	$ P(\text{arrival in first process} \text{arrival}) = \frac{p}{p+q-pq} $			
If the Hessian is positive definite	Splitting process			
then f attains a local minimum at a (convex).	Split arrivalssuccesses into two streams, using independent coin flips			
If the Hessian is negative definite at a,	of a coin with bias q: Resulting streams are Bernoulli,			
then f attains a local maximum at a (concave).	successes rates are pq and $p(1-q)$. The two streams are not independent			
If the Hessian has both positive and	The two streams are not mucpendent			
negative eigenvalues then a is a saddle point for f .	Poisson Process	Splitting process Split arrivals into two streams, using		
23 Covariance Matrix Let <i>X</i> be a random vector of dimensi-	Number of arrivals in interval τ : N_{τ}	independent coin flips of a coin with bias q:		
	(Poisson)	Resulting streams are Poisson, rates		
on $d \times 1$ with expectation μ_X . Matrix outer products!	$P(N_{\tau}=k,\tau)=\frac{(\lambda\tau)^{k}e^{-\lambda\tau}}{k!}, k=0,1,\ldots$	λq and $\lambda(1-q)$.		