Homework #2

2022 EE401 Digital Signal Processing

- 1. (110 pts)
 - a) The signal $\mathbf{x}_1(t)$ is passed through the LTI system whose impulse response $\mathbf{h}(t)$ where

$$x_1(t) = sinc^2\left(\frac{\omega_0 t}{2\pi}\right), \quad h(t) = sinc\left(\frac{\omega_0 t}{\pi}\right)$$

Find the output $y_1(t)$ of the LTI system (30 pts).

b) If the signal

$$x_2(t) = sinc^2 \left(\frac{\omega_0 t}{\pi}\right)$$

is passed through the LTI system with h(t) above, find the output signal $y_2(t)$ (30 pts).

- c) Draw the magnitude of the Fourier transform of $y_2(t)$. You should provide magnitude values and frequency at each important location on the plot (10 pts).
- d) If you digitize $y_2(t)$ at a sampling period of $1/3\omega_0$, draw the magnitude of the spectrum of $y_2[n]$. You should provide indices at each important location on the plot (20 pts).
- e) If you use 30 samples of $y_2[n]$ (n=0, 1, ..., 29) to obtain the magnitude of the spectrum of $y_2[n]$ by using a computer, draw the magnitude of the spectrum expected to display on a monitor. You should provide indices at each important location on the plot (20 pts).
- 2. (60 pts) Consider the real finite-length sequence x[n] shown in the figure below

- a) (20 pts) Sketch the finite-length sequence y[n] whose six-point DFT is $Y[k] = W_6^{4k} X[k],$ where X[k] is the six-point DFT of x[n].
- b) (20 pts) Sketch the finite-length sequence w[n] whose six-point DFT is $W[k] = Re\{X[k]\}.$
- c) (20 pts) Sketch the finite-length sequence q[n] whose three-point DFT is $Q[k] = X[2k], \quad k = 0, 1, 2.$

3. (40 pts) The following figures shows two finite-length sequences. Sketch their N-point circular convolution for N=6 and for N=10, respectively.

