Curso de
Regresión
Logística con
Python y
scikit-learn

Carlos Alarcón

¿Quién es Carlos Alarcón?

- Data Architect en Platzi.
- Especialista en ciencia de datos, bases de datos y Al.
- Profesor de data science y machine learning.

Requisitos previos

- Matemáticas para machine learning.
- Análisis exploratorio de datos con Python y Pandas.
- Visualización de datos con Matplotlib y Seaborn.
- Fundamentos de machine learning y regresión lineal.

¿Qué es la regresión logística?

Classical machine learning

Regression

Classification

Sigmoid function

Tu primera clasificación con regresión logística

¿Cuándo usar regresión logística?

- Fácil de implementar.
- Coeficientes interpretables.
- Inferencia de la importancia de cada característica.
- Clasificación en porcentajes.
- Excelentes resultados con datasets linealmente separables.
- Extendido a clasificación múltiple.

Desventajas

- Asume linealidad entre las variables dependientes.
- Overfitting sobre datasets de alta dimensionalidad.
- Le afecta la multicolinealidad de variables.
- Mejores resultados con datasets grandes.

¿Cuándo usarla?

- Sencillo y rápido.
- Probabilidades de ocurrencia sobre un evento categórico.
- Dataset linealmente separable.
- Datasets grandes.
- Datasets balanceados.

Linear regression vs. logistic

Fórmula de regresión logística

$$\rho = \frac{1}{1 + e^{-(x)}}$$

 $\frac{1}{1 + e^{-\log\left(\frac{p}{1-p}\right)}}$

Probabilidad que el evento sea exitoso / 1 - (Probabilidad que el evento sea exitoso)

0.80 / 1 - (0.80)

0.80 / 0.20 = 4

Odds of winning = 4/6 = 0.6666log(Odds of winning) = log(0.6666) = -0.176 Odds of losing = 6/4 = 1.5log(Odds of losing) = log(1.5) = 0.176

$$\frac{P}{1-P} = \beta_0 + \beta_1 X$$

$$\log\left(\frac{P}{1-P}\right) = \beta_0 + B_1 X$$

$$Y = \beta_0 + B_1 X$$

$$P = \beta_0 + B_1 X$$

$\frac{P}{1-P} = \beta_0 + \beta_1 X$

$$\log\left(\frac{P}{1-P}\right) = \beta_0 + B_1 X$$

$$\exp[\log(\frac{p}{1-p})] = \exp(\beta_0 + \beta_1 x)$$

$$e^{\ln\left[\frac{p}{1-p}\right]} = e^{(\beta_0 + \beta_1 x)}$$

$$\frac{p}{1-p} = e^{\left(\beta_0 + \beta_1 x\right)}$$

$$p = e^{\left(\beta_0 + \beta_1 x\right)} - pe^{\left(\beta_0 + \beta_1 x\right)}$$

$$p = p\left[\frac{e^{\left(\beta_0 + \beta_1 x\right)}}{p} - e^{\left(\beta_0 + \beta_1 x\right)}\right]$$

$$1 = \frac{e^{\left(\beta_0 + \beta_1 x\right)}}{p} - e^{\left(\beta_0 + \beta_1 x\right)}$$

$$p[1 + e^{\left(\beta_0 + \beta_1 x\right)}] = e^{\left(\beta_0 + \beta_1 x\right)}$$

$$p = \frac{e^{\left(\beta_0 + \beta_1 x\right)}}{1 + e^{\left(\beta_0 + \beta_1 x\right)}}$$

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Preparando los datos

Tipos de regresión logística

- Regresión binomial
- Regresión multinomial

Data pre-processing

- Eliminar duplicados.
- Evaluar valores nulos.
- Remover columnas innecesarias.
- Procesar datos categóricos.
- Remover outliers.
- Escalar data.

Análisis de correlación y escalabilidad de los datos

Análisis exploratorio de datos

Entrenamiento con regresión logística binomial

Evaluando el modelo (MLE)

Logistic regression

Projection

Probability of passing exam versus hours of studying

Projection

Probability of passing exam versus hours of studying


```
0.60 * 0.78 * 0.65 * 0.85 * 0.99 * (1-0.56) * (1-0.20) * (1-0.10) * (1-0.15) * (1-0.05) = 0.065
```

```
log(0.60) * log(0.78) * log(0.65) *log(0.85) * log(0.99) * log(1-0.56) * log(1-0.20) * log(1-0.10) * log(1-0.15) * log(1-0.05) = 1.039e-8
```


Gradient descent

Gradient descent

ID	Actual	Predicted Probabilities
ID6	1	0.94
ID1	1	0.9
ID7	1	0.78
ID8	0	0.56
ID2	0	0.51
ID3	1	0.47
ID4	1	0.32
ID5	0	0.1

ID	Actual	Predicted Probabilities	Corrected Probabilities
ID6	1	0.94	0.94
ID1	1	0.9	0.9
ID7	1	0.78	0.78
ID8	0	0.56	0.44
ID2	0	0.51	0.49
ID3	1	0.47	0.47
ID4	1	0.32	0.32
ID5	0	0.1	0.9

ID	Actual	Predicted Probabilities	Corrected Probabilities	Log
ID6	1	0.94	0.94	-0,02687
ID1	1	0.9	0.9	-0.04576
ID7	1	0.78	0.78	-0.10791
ID8	0	0.56	0.44	-0.35655
ID2	0	0.51	0.49	-0.3098
ID3	1	0.47	0.47	-0.3279
ID4	1	0.32	0.32	-0.49485
ID5	0	0.1	0.9	-0.04576

Log loss =
$$\frac{1}{N} \sum_{i=1}^{N} -(y_i * log(p_i) + (1-y_i) * log(1-p_i))$$

P(i) = Probabilidad de la clase 11- P(i) = Probabilidad de la clase 0

Predicted probability	Actual class	$y_i \times ln(p_i)$	$(1-y_i)\times ln(1-p_i)$	$y_i \times ln(p_i) + (1 - y_i) \times ln(1 - p_i)$
0.8	Positive (=1)	$1 \times ln0.8 = -0.2231$	$0 \times ln0.2 = 0$	-0.2231
0.15	Positive (=1)	$1 \times ln0.15 = -1.8971$	$0 \times ln0.85 = 0$	-1.8971
0.95	Negative (=0)	$0 \times ln0.95 = 0$	$1 \times ln0.05 = -2.9957$	-2.9957

Gradient descent

Análisis de resultados de regresión logística

Reducir la complejidad en el modelo.

Regularización

Regularización

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

L2 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$$
Loss function Regularization
Term

Regularización

Parameters::

penalty: {'11', '12', 'elasticnet', 'none'}, default='12'

Specify the norm of the penalty:

- 'none': no penalty is added;
- '12': add a L2 penalty term and it is the default choice;
- 'l1': add a L1 penalty term;
- · 'elasticnet': both L1 and L2 penalty terms are added.

Warning: Some penalties may not work with some solvers. See the parameter solver below, to know the compatibility between the penalty and solver.

New in version 0.19: 11 penalty with SAGA solver (allowing 'multinomial' + L1)

dual: bool, default=False

Dual or primal formulation. Dual formulation is only implemented for I2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features.

tol: float, default=1e-4

Tolerance for stopping criteria.

C: float, default=1.0

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

¿Cómo funciona la regresión logística multiclase?

One vs. rest

One-vs-all (one-vs-rest):

Class 1: Green

Class 2: Blue

Class 3: Red

Multinominal logistic classifier

Scikit-learn solvers

	Solvers				
Penalties	'liblinear'	'lbfgs'	'newton-cg'	'sag'	'saga'
Multinomial + L2 penalty	no	yes	yes	yes	yes
OVR + L2 penalty	yes	yes	yes	yes	yes
Multinomial + L1 penalty	no	no	no	no	yes
OVR + L1 penalty	yes	no	no	no	yes
Elastic-Net	no	no	no	no	yes
No penalty ('none')	no	yes	yes	yes	yes
Behaviors					
Penalize the intercept (bad)	yes	no	no	no	no
Faster for large datasets	no	no	no	yes	yes
Robust to unscaled datasets	yes	yes	yes	no	no

Scikit-learn

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) [source]

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.)

This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only supported by the 'saga' solver.

Read more in the User Guide.

Carga y preprocesamiento de datos

Regresión logística multinomial

Análisis exploratorio y escalamiento de datos

Regresión

logística multinomial

Entrenamiento y evaluación del modelo

Regresión logística multinomial

Proyecto final y cierre

Sigmoid function

$$\rho = \frac{1}{1 + e^{-(x)}}$$

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Projection

Probability of passing exam versus hours of studying

Gradient descent

Gradient descent

One vs. rest

One-vs-all (one-vs-rest):

Class 2: Blue

Class 3: Red

Multinominal logistic classifier

Proyecto final

Breast Cancer Wisconsin (Diagnostic) Data Set

Predict whether the cancer is benign or malignant

Data Code (2252) Discussion (49) Metadata

About Dataset

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu

cd math-prog/cpo-dataset/machine-learn/WDBC/

Also can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

Attribute Information:

Usability ①

8.53

License

CC BY-NC-SA 4.0

Expected update frequency

Not specified

Proyecto final

Activity Overview

ACTIVITY STATS

VIEWS

DOWNLOADS

1315679 225472

DOWNLOAD PER VIEW RATIO TOTAL UNIQUE CONTRIBUTORS

0.17

1976

NOTEBOOKS STATS

NOTEBOOKS

NOTEBOOK COMMENTS

2252

4012

UPVOTE PER NOTEBOOK RATIO

NOTEBOOK UPVOTES

5.94

13369

TOP CONTRIBUTORS

DATAI

Manish Kumar

Miri Choi

DISCUSSION STATS

TOPICS

TOTAL COMMENTS

46

82

UPVOTE PER POST RATIO

DISCUSSION UPVOTES

0.94

Carlos Andrés Alarcón