New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VII-Semester

Departmental Elective - CS702 (A) Computational Intelligence

Course Outcomes:

After completing the course student should be able to:

- 1. Describe in-depth about theories, methods, and algorithms in computation Intelligence.
- 2. Compare and contrast traditional algorithms with nature inspired algorithms.
- 3. Examine the nature of a problem at hand and determine whether a computation intelligent technique/algorithm can solve it efficiently enough.
- 4. Design and implement Computation Intelligence algorithms and approaches for solving real-life problems.

Course Contents:

Unit1: Introduction to Computational Intelligence; types of Computational Intelligence, components of Computational Intelligence. Concept of Learning/Training model. Parametric Models, Nonparametric Models. Multilayer Networks: Feed Forward network, Feedback network.

Unit2. Fuzzy Systems: Fuzzy set theory: Fuzzy sets and operations, Membership Functions, Concept of Fuzzy relations and their composition, Concept of Fuzzy Measures; Fuzzy Logic: Fuzzy Rules, Inferencing; Fuzzy Control - Selection of Membership Functions, Fuzzyfication, Rule Based Design & Inferencing, Defuzzyfication.

Unit3. Genetic Algorithms: Basic Genetics, Concepts, Working Principle, Creation of Offsprings, Encoding, Fitness Function, Selection Functions, Genetic Operators-Reproduction, Crossover, Mutation; Genetic Modeling, Benefits.

Unit4. Rough Set Theory - Introduction, Fundamental Concepts, Set approximation, Rough membership, Attributes, Optimization. Hidden Markov Models, Decision tree model.

Unit5. Introduction to Swarm Intelligence, Swarm Intelligence Techniques: Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization etc. Applications of Computational Intelligence.

Recommended Books:

- 1. Russell C. Eberhart and Yuhui Shi, Computational Intelligence: Concepts to Implementations, Morgan Kaufmann Publishers.
- 2. Andries P. Engelbrecht, Computational Intelligence: An Introduction, Wiley Publishing.
- 3. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall.
- 4. David E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning, Pearson Education.
- 5. Jagdish Chand Bansal, Pramod Kumar Singh, Nikhil R. Pal, Evolutionary and Swarm Intelligence Algorithms, Springer Publishing, 2019.
- 6. S. Rajeskaran, G.A. VijaylakshmiPai, "Neural Networks, Fuzzy Logic, GeneticAlgorithms Synthesis and Applications".
- 7. J.S. Roger Jang, C.T.Sun, E. Mizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning & Machine Intelligence", PHI, 2002.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VII-Semester

Departmental Elective - CS702 (B) Deep & Reinforcement Learning

Pre-Requisite: Machine Learning

Course Outcomes:

After completing the course student should be able to:

- 5. Describe in-depth about theories, models and algorithms in machine learning.
- 6. Compare and contrast different learning algorithms with parameters.
- 7. Examine the nature of a problem at hand and find the appropriate learning algorithms and it's parameters that can solve it efficiently enough.
- 8. Design and implement of deep and reinforcement learningapproaches for solving real-life problems.

Course Contents:

- **Unit 1:** History of Deep Learning, McCulloch Pitts Neuron, Thresholding Logic, Activation functions, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, AdaGrad, RMSProp, Adam, Eigenvalue Decomposition. Recurrent Neural Networks, Backpropagation through time (BPTT), Vanishing and Exploding Gradients, Truncated BPTT, GRU, LSTMs, Encoder Decoder Models, Attention Mechanism, Attention overimages.
- **Unit 2:** Autoencoders and relation to PCA, Regularization in autoencoders, Denoisingautoencoders, Sparse autoencoders, Contractive autoencoders, Regularization: Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Batch Normalization, Instance Normalization, Group Normalization.
- **Unit 3**: Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Learning Vectorial Representations Of Words, Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Recent Trends in Deep Learning Architectures.
- **Unit 4:** Introduction to reinforcement learning(RL), Bandit algorithms UCB, PAC, Median Elimination, Policy Gradient, Full RL & MDPs, Bellman Optimality, Dynamic Programming Value iteration, Policy iteration, and Q-learning & Temporal Difference Methods, Temporal-Difference Learning, Eligibility Traces, Function Approximation, Least Squares Methods
- **Unit 5:** Fitted Q, Deep Q-Learning, Advanced Q-learning algorithms, Learning policies by imitating optimal controllers, DQN & Policy Gradient, Policy Gradient Algorithms for Full RL, Hierarchical RL,POMDPs, Actor-Critic Method, Inverse reinforcement learning, Maximum Entropy Deep Inverse Reinforcement Learning, Generative Adversarial Imitation Learning, Recent Trends in RL Architectures.

Text Books:

- 1. Deep Learning, An MIT Press book, Ian Goodfellow and YoshuaBengio and Aaron Courville
- 2. Pattern Classification- Richard O. Duda, Peter E. Hart, David G. Stork, John Wiley & Sons Inc.
- 3. Reinforcement Learning: An Introduction, Sutton and Barto, 2nd Edition.
- 4. Reinforcement Learning: State-of-the-Art, Marco Wiering and Martijn van Otterlo, Eds

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VII-Semester

Departmental Elective – CS702 (C) Wireless & Mobile Computing

COURSE OUTCOMES:

Students should be able to:

CO1: Design and create traditional networks

CO2: Understand the different issues in MAC and routing issues in multi hop wireless and ad-hoc networks and existing solutions for the same.

CO3: Evaluate the transport layer issues in wireless networks due to error's and mobility of nodes and understand existing solutions for the same.

CO4: Explain the architecture of GSM.

CO5: Discuss the services, emerging issues and future trends in M-Commerce.

Unit 1: Review of traditional networks: Review of LAN, MAN, WAN, Intranet, Internet, and interconnectivity devices: bridges, Routers etc. Review of TCP/IP Protocol Architecture: ARP/RARP, IP addressing, IP Datagram format and its Delivery, Routing table format, ICMP Messages, Subnetting, Supernetting and CIDR, DNS. NAT: Private addressing and NAT, SNAT, DNAT, NAT and firewalls, VLANS: Concepts, Comparison with Real LANS, Type of VLAN, Tagging, IPV6: address structure, address space and header.

Unit 2: Study of traditional routing and transport: Routing Protocols: BGP- Concept of hidden network and autonomous system, An Exterior gateway protocol, Different messages of BGP. Interior Gateway protocol: RIP, OSPF. Multiplexing and ports, TCP: Segment format, Sockets, Synchronization, Three Way Hand Shaking, Variable window size and Flow control, Timeout and Retransmission algorithms, Connection Control, Silly window Syndrome. Example of TCP: Taho, Reno, Sack etc. UDP: Message Encapsulation, Format and Pseudo header.

Unit 3: Wireless LAN: Transmission Medium For WLANs, MAC problems, Hidden and Exposed terminals, Near and Far terminals, Infrastructure and Ad hoc Networks, IEEE 802.11- System arch, Protocol arch, Physical layer, Concept of spread spectrum, MAC and its management, Power management, Security. Mobile IP: unsuitability of Traditional IP; Goals, Terminology, Agent advertisement and discovery, Registration, Tunneling techniques. Ad hoc network routing: Ad hoc Network routing v/s Traditional IP routing, types of routing protocols, Examples: OADV, DSDV, DSR, ZRP etc.

Unit 4: Mobile transport layer: unsuitability of Traditional TCP; I-TCP, S-TCP, M-TCP. Wireless Cellular networks: Cellular system, Cellular networks v/s WLAN, GSM – Services, system architecture, Localization and calling, handover and Roaming.

Unit 5: Mobile Device Operating Systems: Special Constraints & Requirements, Commercial Mobile Operating Systems. Software Development Kit: iOS, Android etc.MCommerce: Structure, Pros & Cons, Mobile Payment System, Security Issues

TEXT BOOKS RECOMMENDED:

- 1. Comer, "Internetworking with TCP/ IP Vol-I", 5th edition, Addison Wesley, 2006.
- 2. Jochen Schiller "Mobile communication", 2nd edition, Pearson education, 2008

REFERENCE:

- 1. W. Richard Stevens, "TCP/IP Illustrated Vol-I", Addison-Wesley.
- 2. C.K.Toh, "AdHoc Mobile Wireless Networks", First Edition, Pearson Education.
- 3. Uwe Hansmann, LotharMerk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer
- 4. Android Developers: http://developer.android.com/index.html
- 5. Apple Developer : https://developer.apple.com/
- 6. Windows Phone Dev Center: http://developer.windowsphone.com/
- 7. BlackBerry Developer: http://developer.blackberry.com/.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VII-Semester

Departmental Elective - CS702 (D) Big Data

Course Outcomes:

- 1. Students should be able to understand the concept and challenges of Big data.
- 2. Students should be able to demonstrate knowledge of big data analytics.
- 3. Students should be able to develop Big Data Solutions using Hadoop Eco System
- 4. Students should be able to gain hands-on experience on large-scale analytics tools.
- 5. Students should be able to analyse the social network graphs.

Course Content

Unit1: Introduction to Big data, Big data characteristics, Types of big data, Traditional versus Big data, Evolution of Big data, challenges with Big Data, Technologies available for Big Data, Infrastructure for Big data, Use of Data Analytics, Desired properties of Big Data system.

Unit2: Introduction to Hadoop, Core Hadoop components, Hadoop Eco system, Hive Physical Architecture, Hadoop limitations, RDBMS Versus Hadoop, Hadoop Distributed File system, Processing Data with Hadoop, Managing Resources and Application with Hadoop YARN, MapReduce programming.

Unit3: Introduction to Hive Hive Architecture, Hive Data types, Hive Query Language, Introduction to Pig, Anatomy of Pig, Pig on Hadoop, Use Case for Pig, ETL Processing, Data types in Pig running Pig, Execution model of Pig, Operators, functions, Data types of Pig.

Unit4: Introduction to NoSQL, NoSQL Business Drivers, NoSQL Data architectural patterns, Variations of NOSQL architectural patterns using NoSQL to Manage Big Data, Introduction to MangoDB

Unit5: Mining social Network Graphs: Introduction Applications of social Network mining, Social Networks as a Graph, Types of social Networks, Clustering of social Graphs Direct Discovery of communities in a social graph, Introduction to recommender system.

Text Books:

- 1. RadhaShankarmani, M. Vijaylakshmi, "Big Data Analytics", Wiley, Secondedition
- 2. Seema Acharya, SubhashiniChellappan, "Big Data and Analytics", Wiley, Firstedition

Reference Books:

- **1.** KaiHwang,Geoffrey C., Fox. Jack, J. Dongarra, "Distributed and Cloud Computing", Elsevier, Firstedition
- 2. Michael Minelli, Michele Chambers, AmbigaDhiraj, "Big Data Big Analytics", Wiley