Measurements of the Hall effect

Magnus F. Ivarsen (1) and Róbert K. Lárusson (2) University of Iceland. 1) mfi2@hi.is 2) rkl@hi.is

April 30, 2014

Abstract:

The Hall effect

The basic principle in the Hall effect is the Lorentz force F on a charged particle (with charge q) moving with velocity v in a magnetic field B,

$$\boldsymbol{F} = q\boldsymbol{v} \times \boldsymbol{B},\tag{1}$$

in a semiconductor material. As an introduction to the effect, consider a P-type semiconductor slab depicted in fig REF, with a current of holes going through it in the y-direction. Then, the velocity of the charged particles (holes) is

$$v = \frac{j}{qp},\tag{2}$$

where j is the current density and p is the concentration of holes in the semiconductor. Furthermore, at time t=0 a magnetic field in z-direction is turned on. Then, according to the Lorentz force law, a force in the x-direction amounting to

$$F = -qvB = iB/p$$

will change the trajectory of the holes to a parabolic course into the side of the semiconductor bar. The accumulation of holes causes an electric field in the x-direction to appear, which will oppose the magnetic field:

$$E = jB/qp$$
.

In the fullness of time, the current will continue undirected in the y-direction, with a measurable voltage V_H between the sides perpendicular to the current flow. The voltage can be deduced from the electric field, and amounts to

$$\frac{IB}{qpd}$$
, (3)

where d is the thickness of the semiconductor bar. Hall himself showed empirically that this can be written as

$$V_H = R_H \frac{IB}{d},\tag{4}$$

where R_H is called the Hall coefficient, which according to the theoretical value for V_H [eq. (3)] has the value

$$R_H = \frac{1}{qp}. (5)$$

A plot of V_H for a cryostat-cooled graphene sample as a function of temperature is exhibited in figure ??. To

generalize, repetition of the argument with a N-doped semiconductor with electron concentration n leads to a Hall coefficient having the value

$$R_H = -\frac{1}{an}. (6)$$

It is then prudent to define the Hall mobility as

Figure 1: title

$$\sigma_{n,p} = \frac{\mu_{n,p}}{R_H},\tag{7}$$

for the different doping respectively, given that $\sigma_n = q\mu_n n$ and vice versa for p. In figure ?? a plot of $\ln \mu_p = \ln[\sigma_p/pe]$ versus $\ln T$ exhibiting a dependency

$$\mu_p \propto T^{\alpha} \Leftrightarrow \ln \mu_p \propto \alpha \ln T$$
,

for the linear parts of the graph in figure ??, where initially $\alpha = 213$ and then $\alpha = -8.15$.

Ionization energy

Doped semiconductors, the concentrations of occupied donors, n_D and p_A with doping concentrations N_D and N_A are

$$n_D = \frac{N_D}{1 + \frac{1}{g_D} \exp\left(\frac{E_D - E_F}{kT}\right)},\tag{8}$$

and

$$p_A = \frac{N_D}{1 + \frac{1}{g_A} \exp\left(\frac{E_F - E_A}{kT}\right)},\tag{9}$$

where E_F is the Fermi energy level, kT the thermal energy, $g_{A,D}$ doping degeneracy levels, while E_D and E_A are the donor and acceptor doping energy level respectively. Generally, the concentration of holes and electrons in the valence and conduction bands can be expressed as

$$n = 2 \int_{E_C}^{\infty} \frac{N_C(E)}{1 + \exp\left(\frac{E_F - E}{kT}\right)} dE, \qquad (10)$$

Figure 2: A plot of the natural logarithm of T as a function of the natural logarithm of carrier mobility μ , with two linear portions marked with straight lines from which α was calculated.

Figure 3: A plot of V_H against T in a cryostat-cooled graphene sample.

Figure 4: Approximation of $\ln[n(T)T^{-3/2}]$ in a N-doped semiconductor as a function of $(kT)^{-1}$, the graph is approximated by straight lines with slopes $-E_g/2$, $-E_d/2$ and $-E_d$. E_g is the energy gap of the semiconductor and E_d is explained in the text.

and

$$p = 2 \int_{-\infty}^{E_V} \frac{N_V(E)}{1 + \exp\left(\frac{E - E_F}{kT}\right)} dE, \qquad (11)$$

where $N_V(E)$ and $N_C(E)$ are valence and conduction band density of states respectively, while E_C and E_V (the conduction and valence band energy level respectively) are related to E_A and E_D through

$$E_d = E_C - E_D \text{ and}$$

$$E_a = E_A - E_V,$$

where E_a and E_d are distances in energy space. Bringing all these concentrations together is the semiconductor neutrality relation

$$n + n_D - p - p_A = N_D - N_A. (12)$$

To solve for n, p, n_D and p_A numerical simulation is in order. However, some very important simplification makes things easier; as figure ?? shows, concentration exhibits different behaviour for certain intervals of reciprocal thermal energy $(kT)^{-1}$, that is, for certain temperatures. As seen in figure 5 shows, this behaviour is rather more opaque in our measurements. We conclude that, perhaps unsurpiringly, graphene does not exhibit the same behaviour as that of gold-doped silicone.

Figure 5: A plot of $\ln[p(T)T^{-3/2}]$ against $(kT)^{-1}$ for a cryostat-cooled graphene sample.