gexp:

유전자 마커 발굴 소프트웨어 (machine learning 기반 gene marker 통합 분석 library)

팀명: 센서쟁이

팀원: 김예지, 한채은, 강서연, 이선우

목차

• 시연 시나리오 1

폐암 아종 유전자 마커 분석 소개 p.3 gexp를 사용한 폐암 마커 분석 p.4

• 시연 시나리오 2

유방암 아종 유전자 마커 분석 p.7 gexp를 사용한 유방암 마커 분석 p.8

• <부록> gexp 함수 매뉴얼 p.11

download_data
load_labeled_data
biomarker_rank
plot_stepwise_accuracy
describe_genes
normalize
plot_heatmap

폐암 아종 소개

폐암의 아종(subtype)은 형태 및 위치에 따라 소세포암, 비소세포암으로 나뉩니다. 또, 비소세포암은 폐 선암(LUAD), 폐 편평상피세포암(LUSC), 큰 세포암으로 나뉩니다.

그림 1 각 폐 암 종류의 따른 형태

특히, 이 중에서 폐 선암과 폐 편평상피세포암의 비중이 높습니다. 그런데 폐 선암의 표적 치료제가 많이 개발되어 있는 것에 비해 폐 편평피상피 세포암의 표적치료제의 개발은 아직 부족합니다.

그림 2. 폐 선암의 표적치료제는 많이 개발되어 있다.

이러한 폐 편평상피세포암의 특징을 이해하는데 바이오 마커 분석이 유의한 결과를 얻을 수 있을 것으로 기대합니다.

본 시연 시나리오는 두 종류의 폐암 아종(폐 선암, 폐 편평상피세포암)에 대한 바이오 마커 유전자를 gexp library로 분석하는 과정입니다.

시연 시나리오 1) 폐암 아종 유전자 마커 분석

1. Data download

사용자가 입력한 암(LUAD(폐 선암), LUSC(폐 편평상피세포암))에 대한 원시 데이터를 data_source를 참고하여 data_dir에 다운로드 합니다.

- >>> from gexp import download_data
- >>> download_data(cancer_list=['LUAD','LUSC'], data_dir ='./Data')

The LUAD is downloaded successfully The LUSC is downloaded successfully

<result>

- LUAD.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt
- LUSC.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt

2. Data load

다운로드 받은 데이터에서 정상세포 데이터를 제외하고 Target 변수를 추가하여 pandas 데이터 프레임으로 데이터를 로드합니다.

- >>> from gexp import load_labeled_data
- >>> binary_data=load_labeled_data(data_dir = './Data', label_list=['LUAD','LUSC'])
- >>> binary_data

0.0000	LUA
	LUAL
0.0000	LUA
600	55
1.2417	LUSC
0.0000	LUS
0.0000	LUSC
0.0000	LUSC
0.0000	LUSC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 0.0000 0.0000 1.2417 0.0000 0.0000 0.0000

1018 rows × 20532 columns

3. Rank biomarker gene

라벨 인코딩을 수행하고, 지정한 머신러닝 모델(예시에서는 RF(RandomForest), XGB(XGBoost), Ada(AdaBoost))을 사용하여 유전자에 대한 중요도 순위를 계산합니다.

>>> from gexp import biomarker_rank
>>> data = binary_data.copy()
>>> data['Target'] = data['Target'].map({'LUAD':0, 'LUSC':1}) #함수 사용전 라벨인코딩을 한다.
>>> rank, importances = biomarker_rank(data, models=[['RF', 'default'],['XGB', {'colsample_bytree': 0.5, 'n_estimators': 200, 'subsample': 0.75}],['Ada','recommended'}])

		RF	XGB	Ada			RF	XGB	Ada
	Hybridization REF				Hybridizat	tion REF			
	KRT74 121391	1	172	156	KRT74	121391	0.025327	0.000000	0.000000
	FAM181B 220382	2	172	156	FAM181B	220382	0.018782	0.0000000	0.000000
	DSC3 1825	3	3	9	DSG	C3 1825	0.017703	0.060717	0.013089
	LASS3 204219	4	1	110	LASS3	204219	0.015998	0.343053	0.004774
<rank></rank>	BNC1 646	5	148	156	<importances></importances>	NC1 646	0.013963	0.000199	0.000000
	***			***		***			

4. Visualization stepwise accuracy

계산한 유전자 순위에 대해서 단계별로(예시에서는 1부터 40까지 5step씩 증가) 상위 N개를 바이오 마커로 가정했을 때의 정확도 성능을 평가하고, 시각화합니다.

>>> from gexp import plot_stepwise_accuracy
>>> acc = plot_stepwise_accuracy(data, rank, list(np.arange(1,41,5), model = ['RF',
 "recommended"], accuracy_metric=['accuracy'], multi_class=False)
>>> acc

5. About gene list

성능 평가 결과를 가지고 가장 성능이 좋은 model의 유전자 수만큼 유전자의 설명을 보여준다.

- >>> from gexp import describe_genes
- >>> mx = acc.max()
- >>> mx_where = mx.argmax()
- >>> gene_list = rank.sort_values(by='RF').iloc[:acc.iloc[:,mx_where].argmax()].index
- >>> describe_genes(gene_list)

	GenelD	Symbol	type_of_gene	map_location	description	links
0	54848	ARHGEF38	protein- coding	4q24	Rho guanine nucleotide exchange factor 38	https://www.genecards.org/cgi-bin/carddisp.pl? gene=54848
1	408	ARRB1	protein- coding	11q13.4	arrestin beta 1	https://www.genecards.org/cgi-bin/carddisp.pl? gene=408
2	53637	S1PR5	protein- coding	19p13.2	sphingosine-1-phosphate receptor 5	https://www.genecards.org/cgi-bin/carddisp.pl? gene=53637
3	121391	KRT74	protein- coding	12q13.13	keratin 74	https://www.genecards.org/cgi-bin/carddisp.pl? gene=121391
4	646	BNC1	protein- coding	15q25.2	basonuclin 1	https://www.genecards.org/cgi-bin/carddisp.pl? gene=646
5	33 <mark>9</mark> 967	TMPRSS11A	protein- coding	4q13.2	transmembrane serine protease 11A	https://www.genecards.org/cgi-bin/carddisp.pl? gene=339967
6	348825	TPRXL	pseudo	3p25.1	tetrapeptide repeat homeobox like (pseudogene)	https://www.genecards.org/cgi-bin/carddisp.pl? gene=348825
7	4680	CEACAM6	protein- coding	19q13.2	CEA cell adhesion molecule 6	https://www.genecards.org/cgi-bin/carddisp.pl? gene=4680
8	221	ALDH3B1	protein- coding	11q13.2	aldehyde dehydrogenase 3 family member B1	https://www.genecards.org/cgi-bin/carddisp.pl? gene=221

6. Heatmap Visualization

상위 10개 바이오 마커 유전자에 대해서 정규화된 데이터를 사용하여 히트맵(heatmap)을 그려 시각화합니다.

- >>> from gexp import normalize, plot_heatmap
- >>> log1p_zscore_df = normalize(binary_data, methods = ['log1p', 'z_score'], exclude='Target')
- >>> plot_heatmap(log1p_zscore_df, gene_list)

유방암 아종에 대한 바이오 마커 분석

유방암 아종(subtype)은 분자적 분류에 따라 LuminalA, LuminalB, Her2, Basal(triple negative)로 나뉩니다.

이러한 아종 분류에 따라 예후(prognosis)와 치료법을 다르게 적용합니다. LuminalA<LuminalB<Her2<Basal 순서로 예후가 나쁘고 치료가 어렵습니다. 유방암에 아종을 분류하는 유전자에 대한 연구가 지속적으로 진행되어 왔습니다. 본 시연 시나리오는 네 종류의 유방암 아종에 대한 바이오 마커 유전자를 gexp library로 분석하는 과정입니다.

Journal List > Am J Cancer Res > v.5(10); 2015 > PMC4656721

Am J Cancer Res. 2015; 5(10): 2929-2943.

Published online 2015 Sep 15.

PMCID: PMC4656721

PMID: 26693050

Breast cancer intrinsic subtype classification, clinical use and future trends

Xiaofeng Dai, ¹ Ting Li, ¹ Zhonghu Bai, ¹ Yankun Yang, ¹ Xiuxia Liu, ¹ Jinling Zhan, ¹ and Bozhi Shi²

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

그림 4 유방암 아종(subtype)을 분류하는 유전자에 대한 연구는 지속적으로 진행되고 있다.

시연 시나리오 2) 유방암 아종 유전자 마커 분석

1. Data download

사용자가 입력한 암 데이터들을 다운로드 해줍니다.

- >>> from gexp import download_data
- >>> multi_data=download_data(data_dir = './Data', cancer_list=['BRCA'])
- >>> multi_data

The BRCA is downloaded successfully

<result>

BRCA.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt

2. Data load

암 이름으로 라벨링을 하여 하나의 데이터 프레임으로 합칩니다.

- >>> from gexp import load_labeled_data
- >>> # 유방암 옵션은 ['LumA, 'Her2', 'LumB', 'Basal']
- >>> multi_data = load_labeled_data(data_dir = './Data', label_list=['BRCA_LUMA', 'BRCA_LUMB', 'BRCA_HER2', 'BRCA_BASAL'], patient_type = './BRCApatients_type.csv')
- >>> multi_data

	? 100130426	? 100133144	? 100134869	? 10357	? 10431	? 136542	? 155060	? 26823	? 280660	? 317712		ZXDB 158586	psiTPTE22 387590	tAKR 389932	Target
TCGA- 3C- AAAU- 01A- 11R- A41B- 07	0.0000	16.3644	12.9316	52.1503	408.0760	0.0	1187.0050	0.0000	0.0	0.0		1007.7824	1.7233	0.0000	BRCA_LUMA
TCGA- 3C- AALK- 01A- 11R- A41B- 07	0.0000	12.0894	11.0799	143.8643	865.5358	0.0	552.7513	0.4137	0.0	0.0	•••	437.7327	66.6115	0.0000	BRCA_LUMA
TCGA- 4H- AAAK- 01A- 12R- A41B- 07	0.0000	6.8468	14.4298	84.2128	766.3830	0.0	260.8511	0.4255	0.0	0.0	3000	424.2553	187.2340	0.0000	BRCA_LUMA
TCGA- 5L- AATO- 01A- 12R- A41B- 07	0.0000	3.9889	13.6090	114.2572	807.7431	0.0	276.2868	0.0000	0.0	0.0		643.4961	85.0565	0.0000	BRCA_LUMA
TCGA- 5L- AAT1- 01A- 12R- A41B- 07	0.0000	0.0000	10.5949	115.9984	1108.3945	0.0	208.6390	0.0000	0.0	0.0	3000	568.0522	57.8647	0.0000	BRCA_LUMA
	***		3***	(***)		***		***		***			***		
TCGA- PL- A8LV- 01A- 21R- A41B- 07	0.4618	20.0732	33.8820	72.5789	964.3347	0.0	545.9534	0.0000	0.0	0.0	•••	302.6978	372.6566	0.0000	BRCA_BASAL

3. Rank biomarker gene

라벨 인코딩을 하여 모델별로 상위 중요도 유전자를 나타냅니다.

- >>> from gexp import biomarker_rank
- >>> data = multi_data.copy()
- >>> data['Target'] = data['Target'].map({'BRCA_LUMA':0, 'BRCA_LUMB':1, 'BRCA_HER2':2, 'BRCA_BASAL':3})
- >>> rank, importances = biomarker_rank(data, models=[['RF', 'default'],['XGB', {'colsample_bytree': 0.5, 'n_estimators': 200, 'subsample': 0.75}],['Ada', 'recommended']])

		RF	XGB	Ada		RF	XGB	Ada
	TPX2 22974	1	789	108	TPX2 22	74 0.011072	0.000000	0.000000
	CCNB2 9133	2	789	108	CCNB2 9	33 0.007005	0.000000	0.000000
	NCAPH 23397	3	789	108	NCAPH 23	97 0.006822	0.000000	0.000000
	AURKA 6790	4	27	108	AURKA 6	90 0.006796	0.006119	0.000000
<rank></rank>	MLPH 79083	5	2	32	<pre><importances></importances></pre>	83 0.006722	0.036483	0.008554
					•		252	***

4. Visualization stepwise accuracy

상위 중요도 유전자 수에 따른 정확도 성능을 평가하여 시각화합니다.

- >>> from gexp import plot_stepwise_accuracy
- >>> acc = plot_stepwise_accuracy(data, rank, list(np.arange(1,41,5)), model = ['MLP', "recommended"], accuracy_metric=['accuracy'], multi_class=True)
- >>> acc

5. About gene list

성능 평가 결과를 가지고 가장 성능이 좋은 model의 유전자 수만큼 유전자를 보여주고, 유전자에 대한 정보도 함께 알 수 있다.

- >>> from gexp import describe_genes >>> mx = acc.max() >>> mx_where = mn.argmax() >>> gene_list = rank.sort_values(by='RF').iloc[:acc.iloc[:,mx_where].argmax()].index

>>> describe_genes(gene_list)
---------------------	------------

31	123099	DEGS2	protein- coding	14q32.2	delta 4-desaturase, sphingolipid 2	https://www.genecards.org/cgi- bin/carddisp.pl?gene=123099
32	51678	PALS2	protein- coding	7p15.3	protein associated with LIN7 2, MAGUK p55 family member	https://www.genecards.org/cgi- bin/carddisp.pl?gene=51678
33	10551	AGR2	protein- coding	7p21.1	anterior gradient 2, protein disulphide isomerase family member	https://www.genecards.org/cgi- bin/carddisp.pl?gene=10551
34	4001	LMNB1	protein- coding	5q23.2	lamin B1	https://www.genecards.org/cgi- bin/carddisp.pl?gene=4001
35	83540	NUF2	protein- coding	1q23.3	NUF2 component of NDC80 kinetochore complex	https://www.genecards.org/cgi- bin/carddisp.pl?gene=83540
36	81930	KIF18A	protein- coding	11p14.1	kinesin family member 18A	https://www.genecards.org/cgi- bin/carddisp.pl?gene=81930
37	983	CDK1	protein- coding	10q21.2	cyclin dependent kinase 1	https://www.genecards.org/cgi- bin/carddisp.pl?gene=983
38	79000	AUNIP	protein- coding	1p36.11	aurora kinase A and ninein interacting protein	https://www.genecards.org/cgi- bin/carddisp.pl?gene=79000

6. Normalize & Heatmap

상위 10개 바이오 마커 유전자에 대해서 정규화된 데이터를 사용하여 히트맵(heatmap)을 그려 시 각화합니다.

- >>> from gexp import normalize, plot_heatmap
- >>> log1p_zscore_df = normalize(multi_data, methods = ['log1p', 'z_score'], exclude='Target')
- >>> plot_heatmap(log1p_zscore_df, gene_list)

<부록> 함수 매뉴얼

gexp.download_data

def download_data(cancer_list, data_dir='./Data', data_source='./Metadata/cancer_link.csv')

Description

The Cancer Genome Atlas(TCGA)의 cancer_list 암에 대한 암 유전체 mRNAseq2 데이터를 data_source의 주소를 참고하여 data_dir에 다운받는다. (필요한 메타 데이터는 Metadata파일 안에 자동으로 다운 받는다.)

parameter:: cancer_list: list, len(list) <= 37 ["ACC", "BLCA", "BRCA", "CESE", "CHOL", "COAD", "COADREAD", "DLBC", "ESCA", "GBM", "GBMLGG", "HNSC", "KICH", "KIPAN", "KIRC", "KIRP", "LAML", "LGG", "LIHC", "LUAD", "LUSC", "MESO", "OV", "PAAD", "PCPG", "PRAD", "READ", "SARC", "SKCM", "STAD", "STES", "TGCT", "THCA", "THYM", "UCEC", "UCS", "UVM"] 원하는 TCGA data 암 종류를 리스트 형식의 Argument로 입력 data_source: default = './Metadata/cancer_link.csv' package 사용 시 제공되는 cancer_link 파일 ("firebrowse" 사이트 내에 존재하는 cancer별 TCGA 데이터의 다운로드 경로 파일) data_dir: default = './Data' 데이터 다운로드 경로 지정 path 경로 설정 시: 데이터가 다운 받아지는 경로 조정 default = './Data': 현재 위치에 Data 파일을 만들고 다운로드

Required Libraries

os, pandas, requests, shutil, targile

gexp.load_labeled_data

def load_labeled_data(data_dir, label_list, patient_type='./Metadata/BRCApatients_type.csv')

Description

label_list에 들어있는 암에 대해서 pandas 데이터 프레임 형식으로 데이터를 불러온다

parameter::

data_dir : path, default = './Data'

TCGA 데이터를 압축 해제한 txt파일들이 들어 있는 경로

data_source : list

binary-class dataframe : ["ACC", "BLCA"]

mulit-class dataframe : ["UCEC", "UCS", "UVM"]

BRCA subtype dataframe: ['BRCA_LUMA', 'BRCA_LUMB', 'BRCA_HER2']

- subtype = ['LumA, 'Her2', 'LumB', 'Basal']

patient_type : default = './Metadata/BRCApatients_type.csv',

BRCA의 Subtype 분류를 위한 csv 파일 ('./BRCApatients_type.csv')

출처: dataon의 ~~을 사용해 일부 subtype으로 사용함

Required Libraries

os, pandas, numpy

Examples

>>> from gexp import load_labeled_data

>>> Binary_df = load_labeled_data(data_dir = './Data', label_list=['LUAD', 'LUSC'])

load :LUAD.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt load :LUSC.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt

Hybridization REF	? 100130426	? 100133144	? [100134869	? 10357	?[10431	? 136542	? [155060	? 26823	? 280660	? 317712		ZYG11B 79699	ZYX 7791	ZZEF1 23140	ZZZ3 26009	psiTPTE22 387590	tAKR 389932	Target
TCGA-05- 4244-01A- 01R-1107-07	0.0	10.0113	11,2820	49,5994	848.9397	0.0	345.2308	1.0472	0.0000	0.0	(44)	1088.0531	2837,9440	871,2802	575.2683	6.6323	0.0000	LUAD
TCGA-05- 4249-01A- 01R-1107-07	0.0	7.1957	12,4436	90.5117	924.0158	0.0	145.2025	1.6098	0.0000	0.0	724	787.5061	2351.2500	1138.1170	690.2752	179.9738	0.0000	LUAE
TCGA-05- 4250-01A- 01R-1107-07	0.0	7,2453	6.0184	49.5366	1140,6781	0.0	51.7284	0.0000	0.0000	0.0	.09	475,1720	5437,4534	1170,5214	532,8691	6.3003	0.0000	LUAC
TCGA-05- 4382-01A- 01R-1206-07	0.0	11.3311	7.5740	82.8303	807.1729	0.0	240.0221	0.4786	0.2393	0.0	744	908.1593	6770.1537	1169.2401	663.8297	35.1777	0.0000	LUAI
TCGA-05- 4384-01A- 01R-1755-07	0.0	3.2254	3.4942	72.5351	562.0037	0.0	274.2822	0.6109	0.0000	0.0		778.8638	3341,4783	1737.3244	723.2743	378.1307	0,0000	LUA
144	(22)	24.7		6220	722		122	144	11.7	22	724	-	(1777	(77)	-	-		
TCGA-02- A52S-01A- 11R-A262-07	0.0	19.9503	47.1026	176.7177	1188.3278	0.0	226.8212	1,6556	0.0000	0.0		580.2980	2681.7053	1069,5364	783.1126	5.3808	1.2417	LUS
TCGA-02- A52V-01A- 31R-A262-07	0.0	30.0872	15.2957	188.7215	1248.0303	0.0	147.4945	0.4202	0.0000	0.0	724	845.8872	6094.3376	663.9353	778.6532	2.1011	0.0000	LUS

gexp.biomarker_rank

def biomarker rank(df, models, test size=0.2)

Description

데이터 안에 약 2만 개의 유전자에 대해서 models의 머신러닝 모델들을 사용하여 중요도와 순위를 계산한다.

```
df: dataframe
parameter::
                 gexp.load labeled data에서 cancer명이 라벨링 된 dataframe
               model : list [ Model , Hyperparameter], default = ['RF', "recommended"]
                 정확도 성능을 계산할 sklearn model 과 파라미터 지정
                 Model: {'RF, 'Ada', 'EXtra', 'DT', 'XGB'}
                    sklearn,ensemble,RandomForestClassifier
                    sklearn.ensemble.AdaBoostClassifier
                    sklearn.ensemble.ExtraTreesClassifier
                    sklearn.tree.DecisionTreeClassifier
                    xgboost.XGBClassifier
                 Hyperparameter : {'recommended', 'default', { } }
                   'recommended'는 최적화를 통해 얻은 추천 하이퍼 파라미터
                     RF : {'max_depth': 10, 'min_samples_leaf': 8, 'min_samples_split': 16,
                              'n_estimators': 200}
                     Ada: {'activation': 'identity', 'alpha': 0.001, 'hidden layer sizes': (400,),
                              'learning_rate': 'invscaling', 'max_iter': 3000, 'solver': 'adam'}
                      EXtra : {'criterion': 'gini', 'max_features': 'log2', 'min_samples_split':
                                   'n estimators': 500}
                     DT: {'max_depth': 1, 'min_samples_leaf': 1, 'min_weight_fraction_leaf': 0.0}
                     XGB : {'colsample_bytree': 0.5, 'n_estimators': 200, 'subsample': 0.75}
                   'default'는 sklearn model의 기본 default 설정 하이퍼 파라미터
                  { }는 직접 하이퍼 파라미터 옵션과 값 지정
               test_size : default = 0.2
                 train/test의 test의 비율을 설정하면 자동으로 train의 비율이 설정됨
```

Required Libraries

pandas, sklearn, ensemble

	?1100130426	2629	789	108	21100120426 0.000000 0.000000 0.0
		RF	XGB	Ada	RF XGB Ada
>>>	rank				>>> importance
				'n_estim	nators': 200, 'subsample': 0.75}],['Ada','recommended']]
>>>	rank, importance =	biomark	er_rank	data, mo	dels=[['RF', 'default'],['XGB' , {'colsample_bytree': 0.5,
>>>	from gexp import b	iomarke	r_rank		

	KF	XGB	Ada		RF	XGB	Ad
? 100130426	2629	789	108	? 100130426	0.000000	0.000000	0
? 100133144	4487	583	108	? 100133144	0.000000	0.000066	0
? 100134869	4487	307	108	? 100134869	0.000000	0.000528	0
? 10357	4487	353	108	? 10357	0.000000	0.000382	0
? 10431	4487	789	108	? 10431	0.000000	0.000000	0
/		111		***	(major)	ente.	

gexp.plot_stepwise_accuracy

def plot_stepwise_accuracy(df, ranking_df, step_num, model=['RF', 'recommended'], accuracy metric=['accuracy'], multi class=None)

Description

step_num의 값에 따라서 단계별로 상위 N개 유전자를 바이오 마커로 선택했을 때, 정확도 성능을 시각화한다.

```
df: dataframe
parameter::
                 gexp.load_labeled_data에서 cancer명이 라벨링 된 dataframe
               ranking_df: dataframe,
                 gexp.biomarker rank에서 얻은 method별 유전자 중요도 랭킹 순위 dataframe
               step_num: list , [1,2,3,4, ...100]
                 모델별 성능을 확인할 상위 유전자 개수가 담긴 리스트
               model: list [ Model , Hyperparameter], default = ['RF', "recommended"]
                 정확도 성능을 계산할 sklearn model 과 파라미터 지정
                 Model: {'RF, 'MLP'}
                    sklearn.ensemble.RandomForestClassifier
                    sklearn.neural network.MLPClassifier
                 Hyperparameter : {'recommended', 'default', { } }
                   'recommended'는 최적화를 통해 얻은 추천 하이퍼 파라미터
                     RF : {'max_depth': 10, 'min_samples_leaf': 8, 'min_samples_split': 16,
                              'n estimators': 200}
                     MLP: {'activation': 'identity', 'alpha': 0.001, 'hidden_layer_sizes': (400,),
                              'learning_rate': 'invscaling', 'max_iter': 3000, 'solver': 'adam'}
                  'default'는 sklearn model의 기본 default 설정 하이퍼 파라미터
                  { }는 직접 하이퍼 파라미터 옵션과 값 지정
               accuracy_metric : list , default = ['accuracy']
                 ['f1', 'accuracy', 'precision', 'recall', 'roc', 'aic', 'bic']
                 성능 평가의 지표 (sklearn.metrics)
                  multi_class = True
                    ['f1', 'accuracy', 'precision', 'recall', 'roc'], average='macro' 사용
                  multi class = None
                    ['f1', 'accuracy', 'precision', 'recall', 'roc', 'aic', 'bic'], average='binary'을 사용
               multi_class : {True, None} default = None
                Multi-Class Classification 시 True
```

Required Libraries

pandas, numpy, seaborn, matplotlib.pyplot, sklearn

Examples

>>> from gexp import plot_stepwise_accuracy

>>> score_df = plot_stepwise_accuracy(Multi_df, ranking_df[['RF','EXT']], step_num=list(np.arange(2,10,1)), model = ['MLP', "recommended"], accuracy_metric=['f1', 'recall'], multi_class=True)

>>> score_df

	RF_f1	RF_recall	EXT_f1	EXT_recall
2	0.318883	0.355490	0.408494	0.421401
3	0.446273	0.463224	0.361813	0.424850
4	0.381067	0.426907	0.350946	0.428431
5	0.333610	0.408322	0.344819	0.412090
6	0.389932	0.458843	0.429295	0.456068
7	0.398973	0.421852	0.374931	0.444177
8	0.381369	0.409663	0.481126	0.524211
9	0.425320	0.445697	0.397084	0.486767

gexp.describe_genes

def describe_genes(gene_list, gene_description='./Metadata/Homo_sapiens.gene_info')

Description

성능을 평가한 결과를 가지고 선택한 유전자 수만큼 유전자의 설명을 보여준다.

parameter::

gene_list:

성능을 평가한 결과를 가지고 가장 성능이 좋은 model의 유전자 수만큼의 유전자 이름

gene_description: **default** = './Metadata/Homo_sapiens.gene_info' 유전자의 정보가 담겨있는 메타 데이터

Required Libraries

pandas

- >>> from gexp import describe_genes
- >>> mx = acc.max()
- >>> mx_where = mx.argmax()
- >>> gene_list = score_df.iloc[:acc.iloc[:,mx_where].argmax()].index
- >>> describe_genes(gene_list)

links	description	map_location	type_of_gene	Symbol	GenelD	
https://www.genecards.org/cgi-bin/carddisp.pl? gene=54848	Rho guanine nucleotide exchange factor 38	4q2 4	protein- coding	ARHGEF38	54848	0
https://www.genecards.org/cgi-bin/carddisp.pl? gene=408	arrestin beta 1	11q13.4	protein- coding	ARRB1	408	1
https://www.genecards.org/cgi-bin/carddisp.pl? gene=53637	sphingosine-1-phosphate receptor 5	19p13.2	protein- coding	S1PR5	53637	2
https://www.genecards.org/cgi-bin/carddisp.pl? gene=121391	keratin 74	12q13.13	protein- coding	KRT74	121391	3
https://www.genecards.org/cgi-bin/carddisp.pl? gene=646	basonuclin 1	15q25.2	protein- coding	BNC1	646	4
https://www.genecards.org/cgi-bin/carddisp.pl? gene=339967	transmembrane serine protease 11A	4q13.2	protein- coding	TMPRSS11A	339967	5
https://www.genecards.org/cgi-bin/carddisp.pl? gene=348825	tetrapeptide repeat homeobox like (pseudogene)	3p25.1	pseudo	TPRXL	348825	6
https://www.genecards.org/cgi-bin/carddisp.pl? gene=4680	CEA cell adhesion molecule 6	19q13.2	protein- coding	CEACAM6	4680	7
https://www.genecards.org/cgi-bin/carddisp.pl? gene=221	aldehyde dehydrogenase 3 family member B1	11q13.2	protein- coding	ALDH3B1	221	8
https://www.genecards.org/cgi-bin/carddisp.pl? gene=163259	DENN domain containing 2C	1p13.2	protein- coding	DENND2C	163259	9
https://www.genecards.org/cgi-bin/carddisp.pl? gene=23650	tripartite motif containing 29	11q23.3	protein- coding	TRIM29	23650	10

gexp.normalize

def normalize(df, methods = ['log1p', 'z_xcore'], exclude = 'Target')

Description

methods에 포함되어 있는 표준화 방법을 순차적으로 적용하여 데이터를 정규화한다.

parameter::

df: dataframe, df.shape = (caner.index의 합, len(gene))
gexp.load_labeled_data에서 cancer 이름으로 라벨링한 dataframe

methods: list , default = ["log1p", "z-score"] normalization 방법 중 log1p 또는 z-score 사용

exclude : str, column name, default = 'Target' labeling한 cancer의 column 이름 설정

Required Libraries

pandas

- >>> from gexp import normalize
- >>> Double_df = normalize(data_dir = './Data', label_list=['LUAD', 'LUSC'], patient_type = './BRCApatients_type.csv')
- >>> Double_df

Hybridization REF	7 100130426	7 100133144	7 [100134869	7 10357	7[10431	7 136542	7 155060	7 26823	7 280660	tAKR 389932	Target
TCGA-05- 4244-01A- 01R-1107-07	0.0	10.0113	11.2820	49.5994	848.9397	0.0	345.2308	1.0472	0.0000	0.0000	LUAD
TCGA-05- 4249-01A- 01R-1107-07	0.0	7.1957	12.4436	90.5117	924.0158	0.0	145.2025	1.6098	0.0000	 0.0000	WAD
TCGA-05- 4250-01A- 01R-1107-07	0.0	7.2453	6.0184	49.5366	1140.6781	0.0	51.7284	0.0000	0.0000	0.0000	LUAD

- >>> log1p_z_score_df = normalize(Double_df, methods = ['log1p', 'z_score'], exclude = 'Target')
- >>> log1p_z_score_df

Hybridization REF	7 100130426	7 100133144	7 100134869	7 10357	7 10431	7 136542	7 155060	7 26823
TCGA-05- 4244-01A- 01R-1107-07	-0.182676	-0.144887	-0.071501	-2.104974	-0.184009	-0.031342	1.125494	1.132595
TCGA-05- 4249-01A- 01R-1107-07	-0.182676	-0.466020	0.046895	-0.746134	0.045028	-0.031342	-0.004001	1.825106
TCGA-05- 4250-01A- 01R-1107-07	-0.182676	-0.459459	-0.804653	-2.107822	0.614456	-0.031342	-1.340139	-0.910915
TCGA-05- 4382-01A- 01R-1206-07	-0.182676	-0.021787	-0.542365	-0.947192	-0.320355	-0.031342	0.650936	0.204560
TCGA-05- 4384-01A- 01R-1755-07	-0.182676	-1.186442	-1.388645	-1.247687	-1.298489	-0.031342	0.825065	0.448985
	-	-	-		100	0440	E-6	-
TCGA-02- A525-01A- 11R-A262-07	-0.182676	0.554585	1.717102	0.775994	0.725095	-0.031342	0.577139	1.874726

gexp.plot_heatmap

def plot_heatmap(df, gene_list, vmin = -2, vmax = 2)

Description

gene_list에 포함되어 있는 유전자에 대해서 히트맵(heatmap)을 그려 시각화한다. rank가 높은 순으로 10개의 유전 자를 뽑고 환자들의 암종류에 따라 뽑은 유전자를 구분하는 시각화 함수

parameter:: df : dataframe, df.shape = (cancer.index의 합, len(gene))

암 label이 들어가 있는 dataframe

gene_list : list, len(list) = 10

상관관계 분석하고 싶은 상위 유전자 인덱스 리스트

vmin : default = -2 df.values의 최솟값

vmax : default = 2 df.values의 최댓값

Use Packages

pandas, sklearn, seaborn

