interrogation écrite1A: - Terminale spécialité- septembre 2024

Exercice 1:

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = u_n + 2n + 3$ et $u_0 = 1$.

Démontrer par récurrence que : $u_n = (n+1)^2$.

Exercice 2: On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier $n \ge 1$, $u_n = 3u_{n-1} - 2n + 6$.

- 1) Calculer u_1 , u_2 et u_3 .
- 2) La suite (u_n) est-elle arithmétique ? géométrique ?
- 3) Montrer par récurrence que $u_n \ge n$ pour tout $n \ge 0$.
- 4) Que peut -on conclure pour la limite de cette suite.

Exercice 3 : On considère la suite (u_n) définie par $u_0 = 6$ et pour tout entier naturel $n: u_{n+1} = -2u_n + 3$

- 1) Calculer u_1 et u_2 .
- 2) Ecrire un algorithme qui calcule le 20ème terme.
- 3) On pose, pour tout entier naturel n, $v_n = u_n 1$ Démontrer que la suite (v_n) est géométrique de raison -2.
- 4) En déduire une expression de v_n en fonction de n puis celle de u_n en fonction de n, pour tout entier naturel n.

Exercice 4: Déterminer, en utilisant la méthode appropriée, la limite de chaque suite dont le terme général est :

$$u_n = \frac{4n-2}{1-3n}$$
 ; $v_n = \frac{-2n^2 + 10n + 2}{5n+6}$; $w_n = \frac{\sqrt{n}}{n+1}$
 $x_n = -2^n + 3(-1)^n$; $y_n = \frac{1-\cos^2 n}{\sqrt{n}}$;

interrogation écrite1B: - Terminale spécialité- septembre 2024

Exercice 1:

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = u_n + 2n + 3$ et $u_0 = 1$.

Démontrer par récurrence que : $u_n = (n+1)^2$.

Exercice 2: On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier $n \ge 1$, $u_n = 3u_{n-1} - 2n + 6$.

- 1) Calculer u_1 , u_2 et u_3 .
- 2) La suite (u_n) est-elle arithmétique ? géométrique ?
- 3) Montrer par récurrence que $u_n \ge n$ pour tout $n \ge 0$.
- 4) Que peut -on conclure pour la limite de cette suite.

Exercice 3:

On considère la suite (u_n) définie par $u_0 = 6$ et pour tout entier naturell $n : u_{n+1} = 2u_n + 4$

- 1) Calculer u_1 , u_2 et u_3 . La suite est-elle arithmétique? géométrique?
- 2) Ecrire un algorithme qui calcule le 50ème terme.
- 3) On pose, pour tout entier naturel n, $v_n = u_n + 4$ Démontrer que la suite (v_n) est géométrique de raison 2.
- 4) En déduire une expression de v_n en fonction de n puis celle de u_n en fonction de n, pour tout entier naturel n.

Exercice 4:

Déterminer, en utilisant la méthode appropriée, la limite de chaque suite dont le terme général est :

$$u_n = \frac{4n-2}{1-3n} \qquad ; \qquad v_n = \frac{-2n^2 + 10n + 2}{5n+6} \qquad ; \qquad w_n = \frac{\sqrt{n}}{n+1}$$
$$x_n = -2^n + 3(-1)^n \quad ; \qquad y_n = \frac{1-\cos^2 n}{\sqrt{n}} \qquad ;$$