LATEX Tables for Bitcoin Mining Stock Analysis

Tim Dombrowski

April 3, 2025

1 Data Work and Project Background

See the miningstocks.Rmd R Notebook for a detailed write-up of the data work to generate these tables. More broadly, see this project's GitHub repository for more details on the project background and how to replicate the analysis.

2 Summary Statistics

2.1 Nominal Returns

Table 1: Summary Statistics for the Final Monthly Dataset. Asset nominal returns and growth rates are all annualized and measured in percentage units. Table generated with the stargazer R package (Hlavac, 2022).

Statistic	N	Mean	St. Dev.	Min	Max
INF	43	4.52	3.55	-0.54	15.44
RF	43	3.48	1.02	1.28	4.80
BTC	43	19.72	206.56	-569.18	435.21
MARA	43	-19.13	456.06	-875.59	1,066.74
CLSK	43	-14.64	387.64	-774.01	877.12
RIOT	43	-35.36	371.16	-883.32	737.94
CIFR	43	-24.79	372.69	-687.70	914.57
HUT	43	-13.18	423.12	-781.10	984.05
BTDR	43	6.62	372.04	-1,136.20	987.13
SPY	43	9.89	58.06	-116.40	105.71
Hashrate	43	58.31	58.59	-64.58	227.35
Difficulty	43	57.13	54.70	-56.53	198.74

2.2 Real Returns

Table 2: Summary Statistics for the Final Monthly Dataset. Asset real returns and growth rates are all annualized and measured in percentage units. Table generated with the stargazer R package (Hlavac, 2022).

Statistic	N	Mean	St. Dev.	Min	Max
RF	43	-0.87	3.84	-10.65	4.34
BTC	43	16.18	194.39	-506.41	410.95
MARA	43	-19.57	437.31	-853.49	1,073.04
CLSK	43	-17.48	367.56	-744.09	832.84
RIOT	43	-35.34	354.29	-848.54	686.06
CIFR	43	-24.17	355.38	-609.08	851.75
HUT	43	-13.57	403.91	-740.25	916.93
BTDR	43	2.22	363.06	-1,125.04	954.50
SPY	43	5.59	56.08	-115.61	106.82
Hashrate	43	58.31	58.59	-64.58	227.35
Difficulty	43	57.13	54.70	-56.53	198.74

2.3 Excess Returns

Table 3: Summary Statistics for the Final Monthly Dataset. Asset excess returns and growth rates are all annualized and measured in percentage units. Table generated with the stargazer R package (Hlavac, 2022).

Statistic	N	Mean	St. Dev.	Min	Max
BTC	43	17.05	193.46	-495.76	411.47
MARA	43	-18.70	436.63	-854.42	1,069.59
CLSK	43	-16.61	367.25	-742.28	833.35
RIOT	43	-34.48	353.42	-846.73	688.93
CIFR	43	-23.30	354.16	-598.43	854.63
HUT	43	-12.70	403.12	-741.19	919.81
BTDR	43	3.09	363.05	-1,128.71	953.87
SPY	43	6.46	55.25	-114.09	103.37
Hashrate	43	58.31	58.59	-64.58	227.35
Difficulty	43	57.13	54.70	-56.53	198.74

2.4 Nominal Return Correlations

 $\label{thm:correlation} \mbox{Figure 1: Correlation Matrix Heatmap for Nominal Monthly Returns} \\ \mbox{\bf Correlation Matrix}$

Correlation

1.0

0.5

0.0

-0.5

-1.0

3 Model Results

3.1 Marathon Digital Holdings (MARA)

Table 4: Factor Model Results for Marathon Digital Holdings (MARA). Table generated with the stargazer R package (Hlavac, 2022).

	$Dependent\ variable:$							
	MARA							
	(1)	(2)	(3)	(4)	(5)			
SPY	5.26*** (0.91)	2.64*** (0.85)	2.69*** (0.88)	2.60*** (0.87)	2.70*** (0.88)			
BTC		1.29*** (0.24)	1.26*** (0.26)	1.32*** (0.25)	1.26*** (0.26)			
Hashrate			$0.23 \\ (0.75)$		0.80 (1.00)			
Difficulty				-0.35 (0.77)	-0.89 (1.03)			
Constant	-71.16 (53.04)	-70.78^* (40.87)	-84.14 (60.12)	-51.05 (60.33)	-66.59 (63.69)			
Observations R ²	43 0.45	43 0.68	43 0.68	43 0.68	43 0.69			
Adjusted R ²	0.44	0.66	0.66	0.66	0.65			

Note:

3.2 Cleanspark (CLSK)

 $\begin{tabular}{l} Table 5: Factor Model Results for Cleanspark (CLSK). Table generated with the stargazer R package (Hlavac, 2022). \end{tabular}$

	$Dependent\ variable:$							
	CLSK							
	(1)	(2)	(3)	(4)	(5)			
SPY	3.46***	0.99	0.97	0.94	0.98			
	(0.89)	(0.85)	(0.88)	(0.87)	(0.89)			
BTC		1.22***	1.23***	1.25***	1.23***			
		(0.24)	(0.26)	(0.25)	(0.26)			
Hashrate			-0.08		0.33			
			(0.76)		(1.01)			
Difficulty				-0.42	-0.64			
, and the second				(0.77)	(1.04)			
Constant	-48.88	-48.52	-44.12	-24.91	-31.42			
	(51.91)	(40.93)	(60.28)	(60.35)	(64.16)			
Observations	43	43	43	43	43			
\mathbb{R}^2	0.27	0.56	0.56	0.56	0.56			
Adjusted R ²	0.25	0.53	0.52	0.53	0.51			

Note:

3.3 Riot Blockchain (RIOT)

Table 6: Factor Model Results for Riot Blockchain (RIOT). Table generated with the stargazer R package (Hlavac, 2022).

	Dependent variable:						
			RIOT				
	(1)	(2)	(3)	(4)	(5)		
SPY	3.49***	1.32	1.32	1.25	1.34		
	(0.84)	(0.83)	(0.86)	(0.84)	(0.86)		
BTC		1.07***	1.07***	1.12***	1.07***		
		(0.23)	(0.25)	(0.24)	(0.25)		
Hashrate			-0.01		0.72		
			(0.74)		(0.98)		
Difficulty				-0.66	-1.15		
v				(0.75)	(1.00)		
Constant	-69.90	-69.58^{*}	-68.86	-32.16	-46.18		
	(48.69)	(39.96)	(58.86)	(58.57)	(61.91)		
Observations	43	43	43	43	43		
\mathbb{R}^2	0.30	0.54	0.54	0.55	0.55		
Adjusted R ²	0.28	0.52	0.50	0.51	0.51		

Note:

3.4 Cipher Mining (CIFR)

Table 7: Factor Model Results for Cipher Mining (CIFR). Table generated with the stargazer R package (Hlavac, 2022).

	Dependent variable:								
		CIFR							
	(1)	(2)	(3)	(4)	(5)				
SPY	2.60*** (0.92)	$0.46 \\ (0.96)$	0.34 (0.98)	$0.29 \\ (0.94)$	0.37 (0.96)				
BTC		1.06*** (0.27)	1.12*** (0.29)	1.16*** (0.27)	1.12*** (0.29)				
Hashrate			-0.55 (0.84)		0.60 (1.10)				
Difficulty				-1.39 (0.84)	-1.80 (1.13)				
Constant	-50.46 (53.39)	-50.15 (45.95)	-18.30 (67.31)	29.05 (65.74)	17.34 (69.71)				
Observations R^2 Adjusted R^2	43 0.16 0.14	43 0.40 0.37	43 0.40 0.36	43 0.44 0.39	43 0.44 0.38				
Note:		*p<0.1; **p<0.05; ***p<0.01							

3.5 Hut 8 Mining (HUT)

Table 8: Factor Model Results for Hut 8 Mining (HUT). Table generated with the stargazer R package (Hlavac, 2022).

	$Dependent\ variable:$							
	HUT							
	(1)	(2)	(3)	(4)	(5)			
SPY	3.90*** (0.96)	1.16 (0.91)	1.26 (0.93)	1.07 (0.91)	1.28 (0.90)			
BTC		1.35*** (0.25)	1.30*** (0.27)	1.41*** (0.26)	1.29*** (0.27)			
Hashrate			$0.45 \\ (0.80)$		1.67 (1.03)			
Difficulty				-0.78 (0.81)	-1.91^* (1.06)			
Constant	-51.77 (55.97)	-51.37 (43.37)	-77.32 (63.63)	-7.02 (63.45)	-39.54 (65.32)			
Observations	43	43	43	43	43			
R^2 Adjusted R^2	$0.29 \\ 0.27$	$0.58 \\ 0.56$	$0.59 \\ 0.55$	$0.59 \\ 0.56$	$0.62 \\ 0.58$			

Note:

3.6 Bitdeer (BTDR)

Table 9: Factor Model Results for Bitdeer (BTDR). Table generated with the stargazer R package (Hlavac, 2022).

		$Dependent\ variable:$					
			BTDR				
	(1)	(2)	(3)	(4)	(5)		
SPY	1.68* (0.97)	2.07* (1.18)	1.93 (1.21)	2.09* (1.20)	1.92 (1.22)		
BTC		-0.19 (0.33)	-0.11 (0.36)	-0.20 (0.35)	-0.11 (0.36)		
Hashrate			-0.68 (1.04)		-1.34 (1.39)		
Difficulty				0.14 (1.08)	1.04 (1.43)		
Constant	-10.02 (56.22)	-10.08 (56.69)	29.04 (83.04)	-17.79 (83.87)	8.38 (88.21)		
Observations R^2 Adjusted R^2	43 0.07 0.05	43 0.08 0.03	43 0.09 0.02	43 0.08 0.01	43 0.10 0.004		
Note:			*p<0.1	; **p<0.05; '	***p<0.01		

9

4 Model Residual Correlations

4.1 Model (1): CAPM

Figure 2: Correlation Matrix Heatmap for CAPM Residuals

CAPM Residual Correlation Matrix BTC -0.65 0.63 0.59 0.53 0.64 -0.09 MARA -0.65 0.66 0.78 0.56 0.78 0.09 Correlation CLSK-0.63 0.66 1 0.64 0.51 0.56 -0.021.0 0.5 RIOT -0.59 0.78 0.64 1 0.64 0.61 -0.080.0 -0.5CIFR -0.53 0.56 0.51 0.64 0.04 0.66 -1.0HUT -0.64 0.78 0.56 0.61 0.66 1 0.2 BTDR --0.090.09 -0.02 -0.080.04 0.2 MARA-BTC: CLSK. CIFR RIOT

4.2 Model (2): CAPM + BTC

Figure 3: Correlation Matrix Heatmap for CAPM+BTC Residuals BTC-Factor Model Residual Correlation Matrix

MARA -0.43 0.65 0.33 0.62 0.19 CLSK-0.43 0.26 0.27 0.04 0.43 Correlation 1.0 RIOT -0.65 0.43 0.48 0.37 -0.040.5 0.0 CIFR -0.26 0.5 0.1 0.33 0.48 -0.5 -1.0HUT -0.62 0.27 0.37 0.5 0.34 BTDR -0.19 0.04 -0.040.1 0.34

CIFR.

BTDR-

RIOT-

CLSK

MARA -