1 The Multiplicative Weights Update Method [1]

1.1 Setting

- At each time step t = 1, ..., T:
 - We must decide for one of m experts
 - Nature causes event x_t to occur
 - Event x incurs penalty $\mathbf{M}(e,x)$ to expert e. We suffer same penalty as chosen expert
- Goal: Difference between sum of our penalties and that of best expert should vanish

1.2 Multiplicative Weights Update Algorithm

- Input: Penalties $\mathbf{M}(e,x)$, number of rounds T, error parameter $\varepsilon \in (0,\frac{1}{2}]$
- i) Initialize $w_{1,e} := 1$ for all e
- ii) For t := 1, ..., T:
 - a) Randomly pick an expert according to distribution \mathcal{D}_t
 - b) Observe nature choosing event x_t
 - c) Multiplicative weights update: $w_{t+1,e} := w_{t,e} \cdot (1 \varepsilon \mathbf{M}(e, x_t))$ for all e

Table 1: Symbols and Implicit Definitions

Symbol / Definition	Meaning
m	Number of experts
$\mathbf{M}(e,x)$	Penalty for expert e when event x occurs
$w_{e,t}$	Weight of expert e at time step t
$W_t := \sum_{e=1}^m w_{t,e}$	Total weight of players at time step t
$d_{t,e} := \frac{w_{t,e}}{W_t}$	Probability of player e being picked at time step t
$\mathcal{D}_t := (d_{t,1}, \dots, d_{t,m})$	Probability distribution for picking expert at time step t

1.3 Guarantees

• Theorem: Define $\mathbf{M}(\mathcal{D}_t, x_t) := \mathbf{E}_{e \sim \mathcal{D}_t}[\mathbf{M}(e, x_t)]$. Suppose all penalties $\mathbf{M}(e, x) \in [-1, 1]$. Then, for any expert e:

$$\sum_{t=1}^{T} \mathbf{M}(\mathcal{D}_t, x_t) \le (1+\varepsilon) \sum_{t=1}^{T} \mathbf{M}(e, x_t) + (1-\varepsilon) \sum_{t=1}^{T} \mathbf{M}(e, x_t) + \frac{\ln m}{\varepsilon}$$

Subscripts ≥ 0 and < 0 refer to rounds t with $\mathbf{M}(e, x_t) \geq 0$ and < 0 respectively. Remark: Also holds when $\mathbf{M}(e, x)$ contains rewards instead of penalties.

• Note first:

$$W_{T+1} = \sum_{e=1}^{m} w_{T,e} \cdot (1 - \varepsilon \mathbf{M}(e, x_T)) = W_T \cdot (1 - \varepsilon \mathbf{M}(\mathcal{D}_T, x_T)) = \dots = n \cdot \prod_{t=1}^{T} (1 - \varepsilon \mathbf{M}(\mathcal{D}_t, x_t))$$

• We show inequality after multiplying with $(-\varepsilon)$ and applying $\exp(\cdot)$:

$$\exp\left(-\varepsilon \sum_{t=1}^{T} \mathbf{M}(\mathcal{D}_{t}, x_{t})\right) \geq \prod_{t=1}^{T} (1 - \varepsilon \mathbf{M}(\mathcal{D}_{t}, x_{t})) \qquad [\exp(x) \geq 1 + x]$$

$$= \frac{W_{T+1}}{n} \geq \frac{w_{T+1, e}}{n} = \frac{1}{n} \prod_{t} (1 - \varepsilon \mathbf{M}(e, x_{t}))$$

$$\geq \frac{1}{n} \cdot (1 - \varepsilon)^{\sum_{t \geq 0} \mathbf{M}(e, x_{t})} \cdot (1 + \varepsilon)^{-\sum_{t \geq 0} \mathbf{M}(e, x_{t})}$$

$$[1 - \varepsilon x \geq (1 - \varepsilon)^{x} \text{ for } x \in [0, 1]]$$

$$[1 - \varepsilon x \geq (1 + \varepsilon)^{-x} \text{ for } x \in [-1, 0]]$$

$$= \exp(-\ln n) \cdot \exp\left(\ln(1 - \varepsilon) \sum_{t \geq 0} \mathbf{M}(e, x_{t})\right)$$

$$\cdot \exp\left(-\ln(1 + \varepsilon) \sum_{t \geq 0} \mathbf{M}(e, x_{t})\right)$$

$$\geq \exp\left(-\varepsilon \left[(1 + \varepsilon) \sum_{t \geq 0} \mathbf{M}(e, x_{t}) + (1 - \varepsilon) \sum_{t \geq 0} \mathbf{M}(e, x_{t}) + \frac{\ln n}{\varepsilon}\right]\right)$$

$$[\ln(1 + x) \geq x(1 - x) \text{ for } x \geq -0.68 \dots]$$

- Assume from now on that all $\mathbf{M}(e,x) \in [-\ell,\varrho]$ where $0 \le \ell \le \varrho$.
- Corollary: The previous bound remains valid (simply scale all $\mathbf{M}(e, x)$ down by ϱ) except that the ln-term gets an additional factor ϱ .
- Note that

$$(1 - \varepsilon) \sum_{0} \mathbf{M}(e, x_t) \le (1 + \varepsilon) \sum_{0} \mathbf{M}(e, x_t) + 2\varepsilon \ell T$$

and

$$(1+\varepsilon)\frac{\sum_{t}\mathbf{M}(e,x_{t})}{T} \leq \frac{\sum_{t}\mathbf{M}(e,x_{t})}{T} + \varepsilon\varrho$$

• Corollary: Let $\delta > 0$. With $\varepsilon = \frac{\delta}{4\varrho}$ (w.l.o.g., $\varepsilon \leq \frac{1}{2}$), we have after $T = \frac{16\varrho^2 \ln n}{\delta^2}$ rounds, for every expert e:

$$\frac{\sum_{t} \mathbf{M}(\mathcal{D}_{t}, x_{t})}{T} \leq \frac{\sum_{t} \mathbf{M}(e, x_{t})}{T} + \underbrace{\frac{\varrho \ln n}{\varepsilon T} + 2\varepsilon\ell + \varepsilon\varrho}_{=\delta/4 + (\delta\ell)/(2\varrho) + \delta/4 \leq \delta}$$

When $\ell = 0$, sufficient to choose $\varepsilon = \frac{\delta}{2\varrho}$ and $T = \frac{4\varrho^2 \ln n}{\delta^2}$.

1.4 Examples

- Kalai and Vempala [3]: Event $x_t = cost(\cdot, t) \in [0, 1]^m$ and penalty $\mathbf{M}(e, x_t) = cost(e, t)$. Note: Equivalent guarantees as "follow the perturbed leader".
- Weighted-Majority Algorithm [4] is a deterministic variant: Event $x_t \in \{0, 1\}$ and $\mathbf{M}(e, x_t) = 1 x_t$. Derandomized in that the majority gets all probability.

2 Applications

2.1 The Plotkin-Shmoys-Tardos Framework [5]

• Multiplicative weights method to determine approximate feasibility of linear program

$$Ax \ge (1\dots 1)^T, \quad x \in P$$

where $A \in \mathbb{R}^{m \times n}$ and $P \subseteq \mathbb{R}^n$ is a convex set. Note: Optimization via binary search.

- Input: Error parameter $\delta > 0$, A, P, parameters $0 \le \ell \le \varrho$, a subroutine
- Output: $x \in P$ with $A_e x \ge 1 \delta$ for all rows $A_e \in \mathbb{R}^{1 \times n}$, or prove system infeasible
- Intuition: Expert = constraint, nature = subroutine, event = vector in P
- The subroutine ("oracle"):
 - Input: Probability distribution $\mathcal{D} = (d_1, \dots, d_m)$
 - Output: Vector $x \in P$ with $\sum_{e=1}^{m} d_e A_e x \ge 1$, or (correctly) say "infeasible"
 - For all points x possibly returned assume for all constraints e that $A_e x \in [-\ell, \varrho]$
- Adapt multiplicative weights update method as follows:
 - $-\mathbf{M}(e,x) := A_e x$. Rationale: Reduce weight of well-satisfied constraints \to similar in spirit to Langrangian relaxation
 - If subroutine ever returns "infeasible" return that system is infeasible: If x with $Ax \ge (1...1)^T$ existed, then $\sum_{e=1}^m d_e A_e x \ge 1$ in particular.
 - Otherwise, return $x := \frac{1}{T} \sum_t x_t$. With ε, T as in corollary, we have for all constraints e':

$$0 \le \frac{\sum_{t} \left(\sum_{e=1}^{m} d_{t,e} A_{e} x_{t} - 1\right)}{T}$$
 [all x_{t} were feasible]
$$= \frac{\sum_{t} \mathbf{M}(\mathcal{D}_{t}, x_{t})}{T} - 1 \le \frac{\sum_{t} A_{e'} x_{t}}{T} + \delta - 1 = A_{e'} x - (1 - \delta)$$
 [Theorem]

2.2 Multicommodity Flow

• Maximum multicommodity flow (let \mathcal{P} be union of all paths for every commodity):

$$\max \sum_{p \in \mathcal{P}} x_p$$
s.t.
$$\frac{1}{c_e} \sum_{p \ni e} x_p \le 1 \quad \forall e \in E$$

- Want to find flow x of volume X (if feasible)
- Define modified edge costs at time step t by $c'_{t,e} := \frac{d_{t,e}}{c_e}$
- Convex set $P = \{x \in \mathbb{R}^{\mathcal{P}}_{\geq 0} \mid \sum_{p \in \mathcal{P}} x_p = X\}$. Expert = constraint/edge. Subroutine: At time step t, finds flow (= event) $x \in P$ so that $\sum_{e} d_{t,e} \frac{1}{c_e} \sum_{p \ni e} x_p = \sum_{p} x_p \sum_{e \in p} c'_{t,e} \leq 1$ \rightarrow minimized by putting all flow on shortest path w.r.t. edge costs $c'_{t,e}$
- For $x \in P$, we can only guarantee $A_e x = \frac{1}{c_e} \sum_{p \ni e} x_p \le \frac{X}{\min_e c_e} =: \varrho$. Hence, number of rounds T only pseudo-polynomial.

2.3 The Garg-Könemann Algorithm for Multicommodity Flow [2]

- Expert = edge, event = shortest path p_t w.r.t. edge costs $c'_{t,e}$
- Denote by c_t^* the smallest capacity on path p_t . Rewards $\mathbf{M}(e, p_t) := \frac{c_t^*}{c_e}$ if $e \in p_t$ and 0 else
- Algorithm: In every round t, algorithm adds flow c_t^* on path p_t . Suppose f_e contains the current total amount of flow added to edge e. Then, the algorithm terminates after the round in which $\frac{f_e}{c_e} \geq \frac{\ln m}{\varepsilon^2}$ for some edge e. Return flow $(\max_e \{\frac{f_e}{c_e}\})^{-1} \cdot f$.
- Let F = |f| total flow, g some maximum flow, G = |g|. Immediately before return:

$$\begin{split} \frac{F}{G} &= \sum_{t} \frac{c_{t}^{*}}{G} \geq \sum_{t} \frac{c_{t}^{*} \sum_{e \in p_{t}} c_{t,e}'}{\sum_{q \in \mathcal{P}} g_{q} \sum_{e \in q} c_{t,e}'} & [p_{t} \text{ is shortest path w.r.t. } c_{t}'] \\ &= \sum_{t} \frac{c_{t}^{*} \sum_{e \in p_{t}} c_{t,e}'}{\sum_{e \in p_{t}} c_{t,e}'} \geq \sum_{t} c_{t}^{*} \sum_{e \in p_{t}} c_{t,e}' & \left[\sum_{q \ni e} \frac{g_{q}}{c_{e}} \leq 1, \text{ for } g \text{ is feasible}\right] \\ &= \sum_{t} \sum_{e \in E} d_{t,e} \mathbf{M}(e, p_{t}) \\ &= \sum_{t} \mathbf{M}(\mathcal{D}_{t}, p_{t}) \geq (1 - \varepsilon) \max_{e} \left\{\sum_{t} \mathbf{M}(e, p_{t})\right\} - \frac{\ln m}{\varepsilon} & [\text{Theorem with signs reversed}] \\ &= (1 - \varepsilon) \max_{e} \left\{\frac{f_{e}}{c_{e}}\right\} - \frac{\ln m}{\varepsilon} \geq (1 - 2\varepsilon) \max_{e} \left\{\frac{f_{e}}{c_{e}}\right\} & [\text{since } \frac{\ln m}{\varepsilon} \leq \varepsilon \max_{e} \left\{\frac{f_{e}}{c_{e}}\right\}] \end{split}$$

• Running time: Each edge can be minimum capacity edge at most $\lceil \frac{\ln m}{\varepsilon^2} \rceil$ times, therefore at most $m \cdot \lceil \frac{\ln m}{\varepsilon^2} \rceil$ iterations.

References

- [1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: A meta algorithm and its applications. Survey Paper, 2008. URL http://www.cs.princeton.edu/~satyen/papers/MW_SDP.pdf.
- [2] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM Journal on Computing, 37(2):630–652, 2007. DOI: 10.1137/S0097539704446232.
- [3] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. *Journal of Computer and System Sciences*, 71(3):291–307, 2005. DOI: 10.1016/j.jcss.2004.10.016.
- [4] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. *Information and Computation*, 108(2):212–261, 1994. DOI: 10.1006/inco.1994.1009.
- [5] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for fractional packing and covering problems. *Mathematics of Operations Research*, 20(2):257–301, 1995. DOI: 10.1287/moor.20.2.257.