Capitolo 6

Notazione posizionale

- Ci sono solo 10 tipi di persone al mondo:
 - quelle che conoscono la rappresentazione dei numeri in base 2, e
 - quelle che non la conoscono ...

Base 2

- Per capire fino in fondo come sono rappresentate le informazioni in un calcolatore occorre conoscere la rappresentazione dei numeri in base 2
- Il motivo è che le informazioni sono rappresentate come sequenze di bit, ossia cifre con due soli possibili valori

Basi e cifre 1/2

- Partiamo dalla rappresentazione di un numero in una generica base
- Cominciamo dalla rappresentazione dei numeri naturali

Basi e cifre 2/2

- Rappresentazione di un numero in una data base: <u>seguenza di</u> cifre
- Cifra: simbolo rappresentante un numero
- Base: numero (naturale) di valori possibili per ciascuna cifra
- In base b > 0 si utilizzano b cifre distinte, per rappresentare i valori 0, 1, 1 + 1, 1 + 1 + 1, ..., b - 1

 Programmazione I - Paolo Valente - 2020/2021

Cifre e numeri in base 10

- Es: in base 10 le cifre sono
- O che rappresenta il valore
- 1 che rappresenta il valore 1
- 2 che rappresenta il valore 1+1
- (3) che rappresenta il valore

Simbolo grafico

Concetto astratto di numero naturale

9 che rappresenta il valore

Notazione posizionale

Rappresentazione di un numero su n cifre in base b:

Posizioni
$$a_{n-1}a_{n-2}a_{n-3}+\cdots+a_1a_0$$

$$a_i \in \{0, 1, \dots, b-1\}$$

• Es: Notazione decimale: $b = 10, a_i \in \{0, 1, 2, ..., 9\}$ $345 => a_i = 3, a_i = 4, a_i = 5$

Notazione

 Per rendere esplicita la base utilizzata, si può utilizzare la notazione

$$\begin{bmatrix} x \end{bmatrix}_b$$

 $a_i \in \{0, 1, \dots, b-1\}$

dove x è una qualsiasi espressione, ed il cui significato è che ogni numero presente nell'espressione è rappresentato in base b

Esempi in base 10

$$[345]_{10}$$

$$[2*10+5*1]_{10}$$

Notazione posizionale

$$\begin{bmatrix} a_{n-1}a_{n-2}a_{n-3} \dots a_1a_0 \end{bmatrix}_b =$$

$$\begin{bmatrix} a_0*1 + a_1*b + a_2*b^2 + a_3*b^3 + \dots + a_{n-1}*b^{n-1} \end{bmatrix}_b$$

$$= \begin{bmatrix} \sum_{i=0, 1, \dots, n-1} a_i * b^i \end{bmatrix}_b \text{ Peso cifra i-esima}$$

• Es:
$$b = 10$$
, $a_i \in \{0, 1, 2, ..., 9\}$
 $[345]_{10} = [3*10^2 + 4*10 + 5*1]_{10}$

"yo cuento como un cero a la izquierda" ... io conto come uno zero a sinistra

Calcoli

- Si utilizzano degli algoritmi
- Esattamente quelli imparati alle elementari per la base 10
- Esempio: per sommare due numeri, si sommano le cifre a partire da destra e si utilizza il riporto

Notazione binaria

- Base 2, 2 cifre:
 - **0**, 1
- La cifra nella posizione i-esima ha peso 2ⁱ
- Esempi (configurazioni di bit):

```
[0]_{10} = [0]_{2}
[1]_{10} = [1]_{2}
[2]_{10} = [10]_{2} = [1*2 + 0*1]_{10}
[3]_{10} = [11]_{2} = [1*2 + 1*1]_{10}
```

Video

https://www.facebook.com/watch/? v=2484427684944430

Base 16

- Una base che risulta spesso molto conveniente è la base 16
- Vediamo prima di cosa si tratta, e poi come mai è molto utilizzata

Notazione esadecimale

- Base 16, 16 cifre:
 - 0, 1, 2, ..., 9, A, B, C, D, E, F
- Valore cifre in decimale:
 - **0**, 1, 2, ..., 9, 10, 11, 12, 13, 14, 15
- La cifra nella posizione *i-esima* ha peso 16ⁱ
- Esempi:

$$\begin{bmatrix} 0 \end{bmatrix}_{10} = \begin{bmatrix} 0 \end{bmatrix}_{16}$$
 $\begin{bmatrix} 10 \end{bmatrix}_{10} = \begin{bmatrix} A \end{bmatrix}_{16}$
 $\begin{bmatrix} 18 \end{bmatrix}_{10} = \begin{bmatrix} 12 \end{bmatrix}_{16}$

 $= [1*16 + 2*1]_{10}$

Motivazione Base 16 1/3

- Ogni cifra in base sedici corrisponde ad una delle possibili combinazioni di 4 cifre in base 2
- Quindi, data la rappresentazione in base 2 di un numero naturale, la sua rappresentazione in base 16 si ottiene dividendo la sequenza in base in sotto-sequenze consecutive da 4 cifre ciascuna, partendo da destra, e convertendo ciascuna sottosequenza di quattro cifre binarie nella corrispondente cifra in base 16

Motivazione Base 16 2/3

Esempio: Dato il numero [1000001111]₂

Dividiamo le cifre in gruppi da quattro da destra:
10 0000 1111
ed aggiungiamo due zeri all'inizio (senza modificare il valore del numero):
0010 0000 1111

In base 16 otteniamo: 2 0 F

Motivazione Base 16 3/3

- Viceversa, data la rappresentazione in base 16 di un numero naturale, il corrispondente numero in base 2 si ottiene convertendo semplicemente ciascuna cifra della rappresentazione in base 16 nella corrispondente sequenza di 4 cifre in base 2
- Invertendo il precedente esempio: $[20F]_{16} = [1000001111]_2$

Rappresentazione naturali

- In una cella di memoria o in una sequenza di celle di memoria si può memorizzare con facilità un numero naturale memorizzando la configurazione di bit corrispondente alla sua rappresentazione in base 2
- Questa è la tipica modalità con cui sono memorizzati i numeri naturali
- Coincide con gli esempi che abbiamo già visto in lezioni precedenti

Conversioni di base

- Come abbiamo visto, un numero (entità astratta) e la sua rappresentazione (sequenza di cifre scritta concretamente da qualche parte) sono due entità distinte
- Nelle slide precedenti abbiamo visto esempi di conversioni tra rappresentazioni
- Affrontiamo ora l'argomento in senso generale
- Per il caso più semplice: numeri naturali

Conversione numero/rappres.

- Il passaggio dalla rappresentazione in una base alla rappresentazione in un'altra base può essere realizzato utilizzando uno dei seguenti algoritmi di conversione, o combinandoli in sequenza, in base all'informazione iniziale di cui si dispone
 - Da un numero naturale N alla sua rappresentazione in una qualche base
 - Dalla rappresentazione di un numero naturale N in una qualche base al numero N

Assunzione

- Per entrambe le conversioni, assumiamo che il numero naturale N sia memorizzato in un elaboratore in grado di effettuare i calcoli richiesti dall'algoritmo
- Tale numero è quindi a sua volta rappresentato in qualche modo nella memoria dell'elaboratore
 - Ma non ci interessiamo di tale rappresentazione (astraiamo)
 - Assumiamo solo che l'elaboratore sia in grado di rappresentare tale numero, e di fare calcoli su tale numero

Esempio

- Un esempio è un numero naturale in un tipico elaboratore
- Il numero è rappresentato in base 2
- L'elaboratore è in grado di fare calcoli con i numeri naturali
 - Noi sfruttiamo questa proprietà per scrivere programmi con numeri naturali, senza aver bisogno di interessarci di come sono rappresentati esattamente tali numeri

Da numero a rappresentazione

- Data un qualsiasi base b, e la sua rappresentazione, come alla slide 7
- Il valore della cifra in posizione
 i-esima è data dalla seguente formula
 (di facile verifica):

 $(N / b^i) \% b$

 I calcoli nella formula sono effettuabili dall'elaboratore, come abbiamo assunto

Da valore a simbolo cifra 1/2

- Ovviamente la precedente formula ci da il valore della cifra, che a sua volta è un numero
 - Tale numero è memorizzato nell'elaboratore, in una qualche base
- A noi però interessa la cifra, ossia il simbolo relativo a quel valore
- Per ottenere tale simbolo potrebbe si utilizzare ad esempio una tabella, che fa corrispondere il carattere giusto a ciascun valore

Da valore a simbolo cifra 2/2

 Ad esempio, se le base b è 16, possiamo utilizzare la seguente tabella

```
[0]_{10}
[1]_{10}
[2]_{10}
[9]_{10}
[10]_{10}
                           A
[11]_{10}
[15]_{10}
```

Esempio

- Quanto detto finora può essere utilizzato, ad esempio, per convertire facilmente un numero in base 10 in un numero in un'altra base, nel caso del linguaggio C/C++
- Infatti, sia il compilatore che le funzioni di libreria per l'ingresso si aspettano che i numeri siano scritti in base 10
 - Tali numeri sono poi rappresentati tipicamente in base 2 nell'elaboratore, ma non ci interessiamo di questo dettaglio
- Quindi, una volta inserito o letto un numero in base 10 nel programma o nel processo, basta utilizzare la precedente formula per ottenere le cifre di tale numero in una qualsiasi base

Esercizio

 Trovate la traccia completa di un esercizio di conversione da base 10 a base 2 nel file base2.txt, tra i compiti per casa della esercitazione 5

Da rappresentazione a numero

- Questa volta si dispone solo della rappresentazione, ossia della sequenza di cifre (simboli) in una qualche base b
- Con una tabella inversa rispetto a quella che abbiamo utilizzato per ottenere le cifre (caratteri) dai numeri, traduciamo ciascuna cifra nel corrispondente numero naturale
- L'elaboratore può fare calcoli su tali numeri naturali (che sono rappresentati in qualche modo dentro l'elaboratore)
- Basta quindi sostituire tali valori delle cifre nella formula alla slide 10

Esempio

- Questo algoritmo può essere utile, ad esempio, per calcolare i numeri corrispondenti a rappresentazioni scritte in basi numeriche che non ci è consentito utilizzare nei programmi in C/C++
- Una tale base è la base 2
- Quindi possiamo utilizzare questo algoritmo per convertire
 - da rappresentazioni in base 2
 - a numeri memorizzabili nei nostri programmi
- Trovate un esempio di tale conversione tra le tracce in base2.txt

Rappresentazione interi 1/2

- Come rappresentare però numeri con segno?
- Non esiste un elemento all'interno delle celle, che sia destinato a memorizzare il segno
- Come potremmo cavarcela?

Rappresentazione interi 2/2

- Un'idea sarebbe quella di utilizzare uno dei bit per il segno
 - 0 per i valori positivi
 - 1 per i valori negativi
- Il problema è che <u>sprechiamo una</u> <u>configurazione di bit</u>, perché avremmo <u>due</u> diverse <u>rappresentazioni per</u> il numero <u>0</u>
 - Una col segno positivo
 - Una col segno negativo

Idea

- Rappresentare i numeri positivi semplicemente in base 2
- Non rappresentare i numeri negativi direttamente, ma sommargli prima una costante, che fa si che diventino positivi
- Il trucco starà nel far sì che i veri numeri positivi cadano in un intervallo di valori diverso da quello in cui cadono i falsi numeri positivi (ossia quelli ottenuti sommando una costante)
- Questa idea è alla base della rappresentazione in complemento a 2

Complemento a 2

- Se i è un numero maggiore di 0, si memorizza la sua rappresentazione in base 2
- Se i è un numero minore di 0, allora, anziché memorizzare il numero originale i, si memorizza, in base 2, il numero naturale risultante dalla somma algebrica 2^N + i dove N è il numero di bit su cui si intende memorizzare il numero i

Condizioni da rispettare

- Il vincolo da rispettare, affinché si possa correttamente rappresentare un numero i negativo, in complemento a 2 su N bit, è che il risultato della somma
 2^N + i
 - Sia un numero positivo
 - Sia rappresentabile sugli N bit di cui si dispone per rappresentare il numero
- Inoltre, per evitare ambiguità nella rappresentazione, i valori che può assumere i quando è positivo non devono mai sovrapporsi ai valori possibili che può assumere 2^N + i quando i è invece negativo

Intervalli di valori 1/3

- Nel complemento a 2 gli intervalli di valori positivi e negativi rappresentabili sono più bilanciati possibile
 - Ossia la lunghezze dei due intervalli sono le più vicine possibili
- In particolare
 - Valori positivi nell'intervallo [0, 2^{N-1}-1]
 - Valori negativi nell'intervallo [-2^{N-1}, -1]
- Vediamo come si arriva a questa suddivisione

Intervalli di valori 2/3

- Dati i vincoli esposti nella slide 35, e considerando che l'intervallo di numeri naturali che si possono rappresentare su N bit è [0, 2^N-1]
- Il modo più bilanciato di suddividere gli intervalli di rappresentabilità su N bit tra numeri positivi e numeri negativi (rappresentati come $2^N + i$) è il seguente
- Utilizzare, per i valori positivi di i, metà dell'intervallo massimo di rappresentabilità dei naturali su N bit
 - Ossia valori positivi nell'intervallo [0, 2^{N-1}-1]
- Utilizzare l'altra metà dell'intervallo massimo di rappresentabilità dei naturali su N bit per rappresentare i valori negativi di i, ossia per rappresentare il risultato della somma 2^N + i

Intervalli di valori 3/3

- Ossia l'intervallo di valori possibili per la somma 2ⁿ
 + i è [2ⁿ⁻¹, 2ⁿ-1]
- Invertendo la formula 2^N + i, si ottiene che l'intervallo di valori negativi di i rappresentabili è [2^{N-1} 2^N, 2^N-1 2^N] ossia, eseguendo le sottrazioni, è [-2^N-1, -1]
- Mettendo assieme l'intervallo di rappresentabilità dei valori positivi e quello di rappresentabilità dei valori negativi, si ottiene che, mediante rappresentazione in complemento 2, si possono rappresentare, con N bit, tutti i numeri interi nell'intervallo

$$[-2^{N-1}, 2^{N-1}-1]$$

Valore del bit più significativo

- Le rappresentazioni in base 2 su N bit utilizzate per rappresentare
 - 1) I numeri positivi in complemento a 2
 - Ossia le rappresentazioni dei numeri naturali nell'intervallo $[0, 2^{N-1}-1]$
 - Hanno tutte il bit *più significativo*, ossia quello in posizione *N-1* (ossia il primo bit da sinistra), uguale a 0
 - 2) I numeri negativi in complemento a 2
 - Ossia le rappresentazioni dei numeri naturali nell'intervallo successivo, $[2^{N-1}, 2^N-1]$
 - hanno tutte il bit più significativo uguale ad 1

Da rappresentazione a valore

- Di conseguenza, se una sequenza di N bit
 - è usata per rappresentare un numero intero in complemento a 2
 - rappresenta un valore naturale n se interpretata come rappresentazione di un numero naturale

Allora

- Se il primo bit è a 0, allora il numero intero i rappresentato dalla sequenza è uguale ad n
- Se il primo bit è ad 1, allora il numero intero i rappresentato dalla sequenza è uguale a n-2^N

Doppia interpretazione

- Quindi una configurazione di N bit con il bit più significativo ad 1 rappresenta
 - un valore positivo se interpretata come la rappresentazione di un numero naturale in base 2
 - un valore negativo se interpretata come la rappresentazione di un numero in complemento a 2

Domande

- Quale valore naturale in base 2 è rappresentato dalla configurazione di bit che invece rappresenta il valore -1 in complemento a 2
- E da quella che rappresenta il valore -2^{N-1} in complemento a 2?

Risposte

- $2^{N-1}-1$
- **■** 2^N-1

Vantaggi del complemento a 2

- C'è una sola rappresentazione per lo 0
 - Tutti i bit a 0
- Gli algoritmi di calcolo delle operazioni di somma, sottrazione, moltiplicazione e divisione sono gli stessi dei numeri naturali rappresentati in base 2

Rappresentazione int

- Gli oggetti di tipo int sono tipicamente rappresentati in complemento a 2
- Adesso dovrebbe esservi più chiaro perché è vero che:

"Ci sono solo 10 tipi di persone al mondo: quelle che conoscono la rappresentazione dei numeri in base 2, e quelle che non la conoscono"

Esercizi

- Completare la quinta esercitazione
- Link alla videoregistrazione: https://drive.google.com/file/d/1TKz1d m5x_f5bH9P_h88dl2da1wbt3nfT/view ?usp=sharing