Теория и реализация языков программирования. Задание 10: LL-анализ

Сергей Володин, 272 гр. задано 2013.11.13

Упражнение 1

Пусть G = (N, T, P, S). Занумеруем правила из $P: P = \{P_1, ..., P_n\}$. Определим синтаксический перевод $T_l = (N, T, T', R, S)$:

- 1. $T' = \{1, ..., n\}$
- 2. R определяется через P: каждому правилу $P\ni P_i=(X,Y_1...Y_n)$ сопоставим правила в R: пусть $Y_{j_1}...Y_{j_l}$ максимальная подпоследовательность из нетерминалов из слова $Y_1...Y_n$. Тогда $X\longrightarrow Y_1...Y_n, iY_{j_1}...Y_{j_l})\in P'$. По построению нетерминалы, входящие в $\alpha\equiv Y_1...Y_n$ входят также в $\beta\equiv Y_{j_1}...Y_{j_l}$, причем с той же кратностью.

Докажем, что слово $w \in L(G)$ переводится в левый вывод w. **TODO**

Упражнение 2

w = a*(a+a). Построим правый вывод по дереву вывода (из задания):

Чтобы получить правый вывод, обойдем дерево разбора в G' следующим образом:

- 1. Выпишем самого левого потомка (по структуре правил, это всегда будет номер правила из G)
- 2. Выполним разбор оставшихся потомков справа налево.

Получаем последовательность правил правого вывода w в G: $P_r=23514624646$.

Правый вывод (выделен раскрываемый нетерминал): $\underline{E} \stackrel{?}{\Rightarrow} \underline{T} \stackrel{\$}{\Rightarrow} T * (\underline{E}) \stackrel{1}{\Rightarrow} T * (E + \underline{T}) \stackrel{4}{\Rightarrow} T * (E + \underline{F}) \stackrel{6}{\Rightarrow} T * (\underline{E} + a) \stackrel{2}{\Rightarrow} T * (\underline{T} + a) \stackrel{4}{\Rightarrow} T * (\underline{F} + a) \stackrel{6}{\Rightarrow} \underline{T} * (a + a) \stackrel{4}{\Rightarrow} \underline{F} * (a + a) \stackrel{6}{\Rightarrow} a * (a + a) = w.$

По определению, правый разбор — примененные при правом выводе правила в обратном порядке: $(P_r)^R = 64642641532$.

Упражнение 3

Упражнение 4

Упражнение 5

Упражнение 6

Задача 1

 $w=((a))\in L(G)\colon \underline{E}\overset{2}{\Rightarrow}\underline{T}\overset{4}{\Rightarrow}\underline{F}\overset{5}{\Rightarrow}(\underline{E})\overset{2}{\Rightarrow}(\underline{T})\overset{4}{\Rightarrow}(\underline{F})\overset{5}{\Rightarrow}((E))\overset{2}{\Rightarrow}((\underline{T}))\overset{4}{\Rightarrow}((\underline{F}))\overset{6}{\Rightarrow}((a)).$

1. Построим дерево вывода w в G и соответствующее дерево в G':

- 2. Левый разбор: обойдем второе дерево в глубину, всегда выбирая самого левого непосещенного потомка: $P_l = 245245246$.
- 3. Правый разбор: обойдем второе дерево в глубину, как указано в решении упражнения 2: $(P_r)^R=245245246\Rightarrow P_r=642542542$.

Задача 2

1.
$$\Sigma' = \{0, 1, \$\}, \ N' = \{S', S\}.$$
 Пополненная грамматика $G' = (N', \Sigma', P', S'), \ P = \{\overbrace{S' \to S\$}, \overbrace{S \to 0S}, \overbrace{S \to 1S}, \overbrace{S \to 2S}, \overbrace{S \to$

2. Вычислим FIRST:

		$F_i(0)$	$F_i(1)$	$F_i(\$)$	$F_i(S)$	$F_i(S')$
0.	Определим F_0 :	Ø	Ø	Ø	Ø	Ø
0.1.	Терминалы: $F_0(0) \stackrel{\text{def}}{=} \{0\}, F_0(1) \stackrel{\text{def}}{=} \{1\}, F_0(\$) \stackrel{\text{def}}{=} \{\$\}.$	{0}	{1}	{\$}	Ø	Ø
0.2.	Есть правило $S \stackrel{(3)}{\to} \varepsilon \Rightarrow F_0(S) \stackrel{\text{\tiny def}}{=} \{ \varepsilon \}$	{0}	{1}	{\$}	$\{\varepsilon\}$	Ø
0.3.	Нет правила $S' oarepsilon\Rightarrow F_0(S')\stackrel{\scriptscriptstyle m def}{=}arnothing$	{0}	{1}	{\$}	$\{arepsilon\}$	Ø
1.	Определим $F_1 = F_0$	{0}	{1}	{\$}	$\{\varepsilon\}$	Ø
1.1.	Рассмотрим символы правой части правила $S' \stackrel{(0)}{\to} S\$$. 1. $\underline{S}\$$ $F_0(\underline{S}) = \{\varepsilon\} \ni \varepsilon$. $F_0(\underline{S}) \setminus \{\varepsilon\} = \varnothing \to F_1(S')$. 2. $\underline{S}\$$ $F_0(\underline{\$}) = \{\$\} \not\ni \varepsilon$. $F_0(\underline{\$}) \setminus \{\varepsilon\} = \{\$\} \to F_1(S')$.	{0}	{1}	{\$}	$\{arepsilon\}$	{\$}
1.2.	Рассмотрим правило $S \stackrel{(1)}{\to} \underline{0}S$. $F_0(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_1(S) \leftarrow \{0\}$	{0}	{1}	{\$}	$\{\varepsilon,0\}$	{\$}
1.3.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_0(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_1(S) \leftarrow \{1\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$}
1.4.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_1	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$}
2.	Определим $F_2 = F_1$:	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$}
2.1.	Рассмотрим символы правой части правила $S' \stackrel{(0)}{\to} S\$$. 1. $\underline{S}\$$ $F_1(\underline{S}) = \{\varepsilon, 0, 1\} \ni \varepsilon$. $F_1(\underline{S}) \setminus \{\varepsilon\} = \{0, 1\} \to F_2(S')$.	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
	2. $S\S F_1(\S) = \{\$\} \not\ni \varepsilon. F_0(\S) \setminus \{\varepsilon\} = \{\$\} \rightarrow F_2(S').$					
2.2.	Рассмотрим правило $S \xrightarrow{(1)} \underline{0}S$. $F_1(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_2(S) \leftarrow \{0\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
2.3.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_1(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_2(S) \leftarrow \{1\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
2.4.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_2	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.	Определим $F_3 = F_2$:	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	$\{\$, 0, 1\}$
3.1.	Рассмотрим символы правой части правила $S' \stackrel{(0)}{\to} S\$$. 1. $\underline{S}\$$ $F_2(\underline{S}) = \{\varepsilon, 0, 1\} \ni \varepsilon$. $F_2(\underline{S}) \setminus \{\varepsilon\} = \{0, 1\} \to F_3(S')$.	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
	2. $S\S F_2(\S) = \{\$\} \not\ni \varepsilon. F_2(\S) \setminus \{\varepsilon\} = \{\$\} \rightarrow F_3(S').$					
3.2.	Рассмотрим правило $S \stackrel{(1)}{\to} \underline{0}S$. $F_2(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_3(S) \leftarrow \{0\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.3.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_2(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_3(S) \leftarrow \{1\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.4.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_3	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.5.	Имеем $F_3 = F_2 \Rightarrow$ выход	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}

3. Вычислим FOLLOW:

		$F_i(S)$	$F_i(S')$
0.	Определим F_0 :	Ø	Ø
1.	Определим $F_1 = F_0$:	Ø	Ø
1.1.	Рассмотрим правило $S' \xrightarrow{(0)} \xrightarrow{\varepsilon} \xrightarrow{X} \xrightarrow{\beta}$ (a) FIRST(β) = {\$} \Rightarrow FIRST(β) \ { ε } = {\$} \Rightarrow FIRST(β).	{\$}	Ø
1.2.	Рассмотрим правило $S \xrightarrow{(1)} 0 S \varepsilon$ (a) FIRST $(\beta) = \{\varepsilon\} \Rightarrow \text{FIRST}(\beta) \setminus \{\varepsilon\} = \emptyset \rightarrow F_1(S)$. (b) $\varepsilon \in \text{FIRST}(\beta)$, поэтому $F_1(S) \leftarrow F_0(S) = \emptyset$	{\$}	Ø
1.3.	Рассмотрим правило $S \xrightarrow{(2)} 1 \xrightarrow{\alpha} S \xrightarrow{\varepsilon} FIRST(\beta) = \{\varepsilon\} \Rightarrow FIRST(\beta) \setminus \{\varepsilon\} = \varnothing \rightarrow F_1(S).$ (b) $\varepsilon \in FIRST(\beta)$, поэтому $F_1(S) \leftarrow F_0(S) = \varnothing$	{\$}	Ø
1.4.	Рассмотрим правило $S \xrightarrow{(3)} \varepsilon$. Оно не имеет вид $A \to \alpha X \beta$, не изменяем F_1	{\$}	Ø
2.	Определим $F_2 = F_1$:	{\$}	Ø
2.1.	Рассмотрим правило $S' \xrightarrow{(0)} \xrightarrow{\varepsilon} \xrightarrow{X} \xrightarrow{\beta}$ (a) FIRST(β) = {\$} \Rightarrow FIRST(β) \ { ε } = {\$} \Rightarrow FIRST(β) \ (b) $\varepsilon \notin FIRST(\beta)$.	{\$}	Ø
2.2.	(a) $FIRST(\beta) = \{\varepsilon\} \Rightarrow FIRST(\beta) \setminus \{\varepsilon\} = \emptyset \rightarrow$	{\$}	Ø
	Tacomorphia aparato	{Φ}	
	$(b) \ \varepsilon \in \text{FRST}(\beta), \text{ поэтому } F_3(\beta) \leftarrow F_1(\beta) = \{\emptyset\}$ $(a) \ \text{FIRST}(\beta) = \{\varepsilon\} \Rightarrow \text{FIRST}(\beta) \setminus \{\varepsilon\} = \varnothing \rightarrow F_2(S).$	{\$}	Ø
	(a) FIRST(β) = { ε } \Rightarrow FIRST(β) \{ ε } = \varnothing \Rightarrow		

4. Таблица переходов для LL(1)-анализатора:

	0	1	\$
S'	$S' \stackrel{(0)}{\rightarrow} S\$$	$S' \stackrel{(0)}{\rightarrow} S\$$	$S' \stackrel{(0)}{\rightarrow} S\$$
S	$S \stackrel{(1)}{\rightarrow} 0S$	$S \stackrel{(2)}{\rightarrow} 1S$	$S \stackrel{(3)}{\rightarrow} \varepsilon$
0	ε	Err.	Err.
1	Err.	ε	Err.
\$	Err.	Err.	Acc.

(a) $(S',0)$: правило $S' \stackrel{(0)}{\rightarrow} S$ \$: FIRST $(S$ \$) = FII	$RST(S) \oplus FIRST(\$) = \{0, 1, \$\} \ni 0$
--	--

(b)
$$(S',1)$$
: правило $S' \stackrel{(0)}{\to} S\$$: FIRST $(S\$) = FIRST(S) \oplus FIRST(\$) = \{0,1,\$\} \ni 1$

(c)
$$(S',\$)$$
: правило $S'\stackrel{(0)}{\to} S\$$: FIRST $(S\$)=$ FIRST $(S)\oplus$ FIRST $(\$)=\{0,1,\$\}\ni\$$

(d)
$$(S,0)$$
: правило $S \stackrel{(1)}{\rightarrow} 0S$: FIRST $(0S) = \{0\} \ni 0$

(e)
$$(S,1)$$
: правило $S \stackrel{(2)}{\to} 1S$: FIRST $(1S) = \{1\} \ni 1$

(f)
$$(S,\$)$$
: правило $S \stackrel{(3)}{\rightarrow} \varepsilon$: FOLLOW $(S) = \{\$\} \ni \$$

Задача 3

Задача 4

- 1. $\Sigma' \stackrel{\text{def}}{=} \{0, 1, \$\}, \ N' \stackrel{\text{def}}{=} (S', S),$ пополненная грамматика $G' = (N', \Sigma', P', S).$ $P' \stackrel{\text{def}}{=} \{S' \stackrel{(0)}{\to} S\$, S \stackrel{(1)}{\to} aSaa, S \stackrel{(2)}{\to} bSba, S \stackrel{(3)}{\to} b, S \stackrel{(4)}{\to} \varepsilon\}$
- 2. Haйдем FIRST₁:

Trangem Titles II.					
i	$F_i(a)$	$F_i(b)$	$F_i(\$)$	$F_i(S)$	$F_i(S')$
0	$\{a\}$	{ <i>b</i> }	{\$}	$\{\varepsilon\}$	Ø
1	<i>{a}</i>	{b}	{\$}	$\{\varepsilon, a, b\}$	{\$}
2	<i>{a}</i>	{b}	{\$}	$\{\varepsilon, a, b\}$	$\{\$, a, b\}$
3	{a}	{b}	{\$}	$\{\varepsilon, a, b\}$	$\{\$, a, b\}$

- 3. Возьмем $\alpha=\$,\ \beta=\varepsilon$. Тогда $S'\stackrel{(1)}{\Rightarrow_l}\underbrace{\varepsilon}_w\underbrace{S}_\alpha$. Рассмотрим пару правил $\underbrace{S}_A\stackrel{(2)}{\rightarrow}\underbrace{bSba}_\beta,\ \underbrace{S}_A\stackrel{(3)}{\rightarrow}\underbrace{b}_\gamma$. Имеем FIRST($\beta\alpha$) \equiv FIRST(bSba\$) $=\{b\},$ FIRST($\gamma\alpha$) \equiv FIRST(b\$) $=\{b\}$. Получаем FIRST($\beta\alpha$) \cap FIRST($\gamma\alpha$) $=\{b\}\neq\varnothing\Rightarrow G'$ не LL(1)-грамматика.
- 4. Найдем FIRST₂:

Задача 5

Задача 6

Предположим, что $L\stackrel{\text{\tiny def}}{=} a^* \cup a^n b^n$ — LL-язык. Тогда $\exists k \exists G \colon L(G) = L$ и $G - \operatorname{LL}(k)$ -грамматика. Тогда $\exists \mathcal{A}$ — детерминированный МП-автомат с выходом.

1. Фиксируем $n. \, \not a^{nk} \in L, \, (a^{(nk)}\$, S\$, \varepsilon) \vdash^* (a^k, Y_1...Y_l\$, \cdot).$ Рассмотрим