<u>SUITES – RÉCURRENCE – LIMITE</u>

Soit la suite (u_n) définie pour tout entier $n \ge 1$ par :

$$u_n = \frac{1}{3^1} + \frac{2}{3^2} + \dots + \frac{n}{3^n}.$$

PARTIE A

A.1)

n	1	2	3	100
u_n	$\frac{1}{3} = 0,333$	$\frac{5}{9} = 0,556$	$\frac{2}{3}$ = 0,666	0,749

A.2) On peut conjecturer que (u_n) est croissante.

A.3) On constate que
$$\left(\frac{3}{2}\right)^1 = \frac{3}{2} \ge 1$$
 et $\left(\frac{3}{2}\right)^2 = \frac{9}{4} \ge 2$. Montrons que si $\left(\frac{3}{2}\right)^n \ge n$, alors

$$\left(\frac{3}{2}\right)^{n+1} \ge n+1$$
 pour tout entier $n \ge 2$:

$$(2)$$
 $\geq n+1$ pour tout entrer $n \geq 2$

$$\left(\frac{3}{2}\right)^{n+1} = \frac{3}{2}\left(\frac{3}{2}\right)^n \ge \frac{3}{2} n \ge n+1 \text{ pour tout entier } n \ge 2. \text{ Par récurrence on en déduit que } \left(\frac{3}{2}\right)^n \ge n \text{ pour tout } n \ge 1.$$

A.4)
$$\left(\frac{3}{2}\right)^n \ge n \Rightarrow \frac{1}{2^n} \ge \frac{n}{3^n}$$
. On peut alors écrire que $: \sum_{k=1}^n \frac{1}{2^k} \ge \sum_{k=1}^n \frac{k}{3^k}$.

Le second membre de cette inégalité est u_n , et le premier est la somme des termes d'une

progression géométrique de premier terme $\frac{1}{2}$ et de raison $\frac{1}{2}$. Cette somme est égale à

$$1 - \left(\frac{1}{2}\right)^{n+1}$$
 et elle tend vers 1 lorsque *n* tend vers $+\infty$. On en conclut que :

$$u_n \le 1$$
 pour tout $n \ge 1$ et 1 est donc un majorant de u_n .

A.5) D'après A.3),
$$\left(\frac{3}{2}\right)^{n+1} \ge n+1 \Rightarrow \frac{1}{2^{n+1}} \ge \frac{n+1}{3^{n+1}}$$
. Or, $\frac{n+1}{3^{n+1}} = u_{n+1} - u_n$. On en déduit que

 $u_{n+1} - u_n \le \frac{1}{2^{n+1}}$, ce qui montre que $u_{n+1} - u_n$ tend vers 0 quand n tend vers $+\infty$ et prouve que u_n est convergente.

PARTIE B

B.1) On vérifie que :

$$n = 0: 3 > 0,$$

n = 1: 9 > 4 et

$$n = 2:27 > 18$$

On va démontrer par récurrence que pour tout entier naturel $n \ge 2$:

$$3^{n+1} > n(n+1)^2$$
. (1)

Si l'inégalité (1) est vraie pour n,

montrons que $3^{(n+1)+1} > (n+1)[(n+1)+1]^2$ pour tout $n \ge 2$:

D'après (1), on peut écrire :

$$3(3^{n+1}) = 3^{(n+1)+1} > 3n(n+1)(n+1)$$
. Comparons $3n(n+1)$ et $[(n+1)+1]^2$.

$$[(n+1)+1]^2 = (n+2)^2 = n^2 + 4n + 4 = 3n(n+1) - (2n^2 - n - 4).$$

En remarquant que $2n^2 - n - 4 > 1$ pour tout entier $n \ge 2$, on en déduit que :

$$3n(n+1) > [(n+1)+1]^2$$
, et donc que

$$3^{(n+1)+1} > 3n(n+1)^2 > (n+1)[(n+1)+1]^2$$
 pour tout entier $n \ge 2$.

Puisque l'inégalité (1) est vérifiée pour n = 0, n = 1 et n = 2, elle vraie pour tout entier naturel n.

B.2) Pour tout entier naturel $n \neq 0$, on pose $v_n = u_n + \frac{1}{n}$.

On a
$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{n+1} - \frac{1}{n} = \frac{n+1}{3^{n+1}} - \frac{1}{n(n+1)} = \frac{n(n+1)^2 - 3^{n+1}}{3^{n+1}n(n+1)}$$
.

Et puisque $3^{n+1} > n(n+1)^2$, alors $n(n+1)^2 - 3^{n+1} < 0$ et $v_{n+1} - v_n < 0$.

Ceci démontre que (v_n) est décroissante.

B.3) Puisque $\frac{1}{n}$ tend vers 0 quand n tend vers $+\infty$, la limite de (v_n) est celle de (u_n) , c'est à dire l.

B.4) On remarque que $u_n < l < v_n$ pour tout entier naturel n.

Avec la calculatrice, on trouve que $u_6 < l < v_{200}$ avec une amplitude de 10^{-2} soit : 0.745 < l < 0.755.