Számításelmélet 4. gyakorlat

Cél: Predikátum logika nyelvének megismerése. Mondatok formalizálása.

<u>Fogalmak:</u> univerzum (alaphalmaz, individuum halmaz), individuum konstansok, - változók, függvények, term, predikátum, atomi formula, kvantorok, predikátum formula, prímformula, közvetlen részformula, prímkomponens, zárt és nyílt formulák, interpretáció, változókiértékelés, formula kiértékelés, elsőrendű értéktábla, formalizálás

<u>Feladat:</u> Válasszuk ki, hogy melyik formula nyílt, illetve melyik zárt! Jelölje, hogy melyik kvantor melyik változót köti! Karikázza be a szabad változókat!

1.	$\forall y \exists x \ (\ Q(x,y) \to \exists x \forall y \exists z \forall v (\ R(x,y,z,v) \land \neg \ \forall x Q(x,y) \) \)$	<u>zárt</u> / nyílt
2.	$\exists x \forall y Q(x,y) \rightarrow \exists x \neg \exists z \forall v R(x,y,z,v)$	zárt / <u>nyílt</u>
3.	$\neg \exists z \forall y Q(\mathbf{x}, y) \rightarrow \exists x (\forall y \exists z \forall v R(x, y, z, v) \land P(x))$	zárt / <u>nyílt</u>
4.	$\exists x \forall y \neg (Q(x,y) \rightarrow \exists x \neg \exists z \forall v R(x,y,z,v))$	<u>zárt</u> / nyílt
5.	$\neg \exists x \forall y Q(x,y) \rightarrow \exists x \exists z (\forall v R(x,y,z,v) \land P(v))$	zárt / nyílt

<u>Feladat:</u> Adott az alábbi formula egy L(P;f,a) formalizált nyelven, melynek (2;2,0) a típusa(szignatúrája).

$$\exists x \forall y (\neg P(y,x) \lor P(f(x,y),a))$$

a)Hány lehetséges interpretációja lehet ennek a nyelvnek az {1,2} individuum halmazon? (512)

b)Az alábbi lehetséges interpretációban számítsuk ki a formula értékét!

$$\exists x \forall y ((y \ge x) \lor (\min(x,y) < 1))$$

x=1 estén $\forall y (y \ge 1)$ igaz, így ebben az interpretációban a formula igaz.

<u>Feladat:</u> $L(P_1,P_2,P_3;f,a)$ egy elsőrendű nyelv. A típusa (2,1,2;1,0). Egy interpretációja pedig a következő:

 $D = \{1,2\}$ az alaphalmaz;

P₁ predikátumnak az egyenlőség,

P₂ predikátumnak a következő definíció:

$$P_2(1) = h \text{ és } P_2(2) = i$$

P₃ predikátum pedig a < reláció;

az f függvény legyen az identitás függvény, az a konstans legyen 1.

Írjuk fel az alábbi formulákat a fenti interpretációban, és értékeljük ki őket szabad változóik összes lehetséges behelyettesítésével. A kiértékeléseket táblázatba is foglalhatjuk.

a) $P_2(f(f(x))$

X	$P_2(f(f(x)))$
1	$P_2(f(f(1)) = P_2(1)$, ami hamis
2	$P_2(f(f(2)) = P_2(2)$, ami igaz

b)
$$P_1(x,a) \rightarrow P_3(f(x),y) \land P_2(a)$$
 (gyakorlás)

c) $\forall x P_2(x) \rightarrow P_3(a,y)$

у	$\forall x \ P_2(x) \rightarrow P_3(a,y)$
1	$\forall x P_2(x) \rightarrow 1 < 1$, ami igaz
2	$\forall x P_2(x) \rightarrow 1 < 2$, ami igaz

Elsőrendű logikai törvények:

- (a) ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,
- (b) $\forall x \forall y A \sim \forall y \forall x A \text{ és } \exists x \exists y A \sim \exists y \exists x A$,
- (c) $\neg \exists xA \sim \forall x \neg A \text{ és } \neg \forall xA \sim \exists x \neg A$,
- (d) ha x nem szabad változója A-nak

$$A \land \forall xB \sim \forall x(A \land B) \text{ és } A \land \exists xB \sim \exists x(A \land B),$$

 $A \lor \forall xB \sim \forall x(A \lor B) \text{ és } A \land \exists xB \sim \exists x(A \lor B),$
 $A \to \forall xB \sim \forall x(A \to B) \text{ és } A \to \exists xB \sim \exists x(A \to B),$
 $\forall xB \to A \sim \exists x(B \to A) \text{ és } \exists xB \to A \sim \forall x(B \to A),$

(e) $\forall xA \land \forall xB \sim \forall x(A \land B)$ és $\exists xA \lor \exists xB \sim \exists x(A \lor B)$.

<u>Feladat:</u> Okoskodással lássuk be, hogy a bal oldalon felsorolt formulák érvényesek, míg jobb oldali párjaik pedig nem érvényesek!

érvényes formula

nem érvényes formula

a)
$$\forall x (P(x) \rightarrow P(x))$$
 $\forall x (P(x) \rightarrow P(a))$
b) $\forall x P(x) \rightarrow P(a)$ $P(a) \rightarrow \forall x P(x)$

c)
$$P(a) \rightarrow \exists x P(x)$$
 $\exists x P(x) \rightarrow P(a)$

d)
$$\forall x P(x) \rightarrow \exists x P(x)$$
 $\exists x P(x) \rightarrow \forall x P(x)$

$$e) \ \exists y \forall x R(x,y) \to \forall x \exists y R(x,y) \qquad \qquad \forall x \exists y R(x,y) \to \exists y \forall x R(x,y)$$

Formalizálás

Feladat: Formalizálja predikátum kalkulusban az alábbi szöveget!

Minden egyetemista becsületes. János nem becsületes. Tehát János nem egyetemista.

Alaphalmaz: emberek

Predikátumok:

B(x): igaz, ha x becsületes ember.

E(x): igaz, ha x egyetemista.

Konstans: Jánost jelöljük *a*-val.

Feltételek formalizálása:

$$F_1: \forall x (E(x) \rightarrow B(x))$$

 F_2 : $\neg B(a)$

Állítás: G: ¬E(a)

Bizonyítás okoskodással:

A1-ből következik, hogy $E(a) \rightarrow B(a)$. Ha az utófeltétel hamis és az implikáció igaz, akkor az előfeltételnek hamisnak kell lenni, azaz $\neg E(a)$ igaz.

Rezolúcióval:

F₁ ∧ F₂ ∧ ¬G *Skolem normálformájá*hoz tartozó klózok segítségével.

A feldat Skolem normálformája:

$$\forall x ((E(x) \rightarrow B(x)) \land \neg B(a) \land E(a))$$

Klózhalmaz = $\{ \neg E(x) \lor B(x), \neg B(a), E(a) \}$

Levezetés:

- 1. $\neg E(x) \lor B(x)$
- 2. E(a)
- 3. B(a) rez(1,2) x/a helyettesitéssel
- 4. $\neg B(a)$
- 5. \square rez(3,4)

Alaprezolúció

Előállítjuk az első rendű klózok magjainak összes alappéldányát és az alapklózok halmazán *ítéletlogikai* rezolúcióval levezetjük az üres klózt.

Példa: Lássuk be, hogy a következő elsőrendű formulahalmaz kielégíthetetlen!

$$\forall x \forall y (P(x) \lor \neg Q(x,f(y))), \quad \forall z \forall v (\neg P(g(z)) \lor \neg P(v)), \quad \forall u Q(g(u),u)$$

Az elsőrendű klózhalmaz formulák magja. Az alapkózók a konkrét behelyettesített példányok. Herbrand univerzum: a, f(a), g(a), f(f(a)), g(g(a)), g(g(a)), ...

Néhány alapklóz:

X	у	Z	v	u	$P(x) \lor \neg Q(x,f(y))$	$\neg P(g(z)) \lor \neg P(v)$	Q(g(u),u)
a	a	a	a	a	$P(a) \vee \neg Q(a, f(a))$	$\neg P(g(a)) \lor \neg P(a)$	Q(g(a),a)
g(a)	a	a	g(a)	a	$P(g(a)) \lor \neg Q(g(a), f(a))$	$\neg P(g(a)) \lor \neg P(g(a))$ /= $\neg P(g(a))$ /	Q(g(a),a)
g(a)	a	a	g(a)	f(a)	$P(g(a)) \vee \neg Q(g(a), f(a))$	$\neg P(g(a))$	Q(g(f(a)), f(a))
g(f(a))	a	f(a)	g(f(a))	f(a)	$P(g(f(a))) \lor \neg Q(g(f(a)), f(a))$	$\neg P(g(f(a)))$	Q(g(f(a)), f(a))

alaprezolúció

1. $Q(g(f(a)), f(a))$	u/f(a)
2. $P(g(f(a))) \vee \underline{\neg Q(g(f(a)), f(a))}$	x/g(f(a)), y/a
3. P(g(f(a)))	rez(1,2)
$4. \neg P(g(f(a)))$	z/f(a), $v/g(f(a))$
5. □	rez(3,4)