2014年"数理统计"期中考试试题

学号:

分数:

姓名:

– 、	填空题(6个小题,每空2分,共20分)
(1)	设随机变量 $X\sim\Gamma(\alpha,\lambda)$,则对于给定的正常数 c , $cX\sim$, $E(X)=$
(2)	对于给定的 $\alpha>0$,且 $m\neq n$,则 $F(m,n)$ 的上侧 α 分位数与 $F(n,m)$ 的上侧分位数间的关系为:
(3)	分布 $\Gamma(\alpha,\lambda)$ 的PDF为、特征函数为
(4)	设 X_1,\ldots,X_n 为来自正态总体 $N(0,\sigma^2)$ 的 iid 样本,则关于 σ^2 的UE的方差下界为:, σ^2 的UMVUE为
(5)	设 X_1, X_2, \cdots, X_n 为一组来自正态分布 $N(\mu, \sigma^2)$ 的 iid 样本,则 $\frac{\mu}{\sigma^2}$ 的MLE为
(6)	设 X_1,\ldots,X_n 为来自总体分布为 $F(x)$ 的iid样本,经验分布函数为 $F_n(x)$,则对于任给的 $x,E[F_n(x)]=$ 、 $\mathrm{Var}[F_n(x)]=$
二、	解答或证明题(7个小题, 共80分)
(7)	$(12分)$ 设 X_1, X_2, \ldots, X_n 是来自均匀分布 $U(0, \theta)$ 的 iid 样本,其中 $\theta > 0$ 为未知参数.
	(a) 求 θ 的MLE;
	(b) 验证上述MLE为充分完备统计量,并求θ的UMVUE.
(8)	$(10分)$ 设 X_1,\ldots,X_n 为来自指数分布 $E(\lambda)$,即 $\Gamma(\lambda,1)$ 的 iid 样本,求 $1/\lambda$ 的水平为 $1-\alpha$ 的置信下限.
(9)	$(12分)$ 设 X_1,X_2,\cdots,X_m 为来自 $N(\mu,\sigma_1^2)$ 的iid样本, Y_1,\ldots,Y_n 为来自 $N(\mu,\sigma_2^2)$ 的iid样本,且全样本独立,其中 σ_1^2,σ_2^2 均已知.求 μ 的UMVUE及水平 $1-\alpha$ 的置信区间.
(10)	$(12分)设X_1,X_2,\cdots,X_n$ 为来自PDF为 $f(x,\theta)=\theta x^{\theta-1}(0< x<1)$ 的iid样本,其中 $\theta>0$. 令 $T(\mathbf{X})=-\sum_{i=1}^n\log(X_i)/n$. 求 $-\log(X_1)$ 的PDF,并证明 T 是 $1/\theta$ 的有效估计.
(11)	$(12分)$ 称随机变量 X 的分布关于 μ 对称,如果其PDF $f(x)$ 满足: $f(\mu+x)=f(\mu-x)$. 证明:
	(a) 如 X 的分布关于 μ 对称,则 $E(X) = \mu$;
	(b) 如 X_1, \cdots, X_n 为来自某对称总体的 iid 样本,且总体三阶矩存在有限,则其样本均值与样本方差不相关.
(12)	(12分) 设 X_1, \ldots, X_n 为来自Pareto分布的iid样本. 记 $T(X) = \prod_{i=1}^n X_i$. 证明: $2\alpha(\log T - n\log \theta) \sim \chi^2(2n)$. (Pareto分布的PDF为: $\alpha\theta^{\alpha}x^{-(\alpha+1)}I_{\{x>\theta\}}$.)

(13) (10分)设 X_1, \ldots, X_n 为来自总体X的iid样本,且 $E(X^2)$ 存在,则证明: $\frac{2}{n(n+1)}\sum_{i=1}^n iX_i$ 是E(X)的相合估计.