Ahlfors Exercises

Charles Yang

Last updated: June 1, 2022

Contents

1	Con	nplex 1	Numbers	3		
	1.1 The Algebra of Complex Numbers					
		1.1.1	Arithmetic Operations	3		
		1.1.2	Square Roots	4		
		1.1.3	Justification	5		
		1.1.4	Conjugation, Absolute Value	5		
		1.1.5	Inequalities	5		
	1.2 The Geometric Representation of Complex Numbers					
		1.2.1	Geometric Addition and Multiplication	5		
		1.2.2	The Binomial Equation	5		
		1.2.3	Analytic Geometry	5		
		1.2.4	The Spherical Representation	5		

ii CONTENTS

CONTENTS 1

2 CONTENTS

Chapter 1

Complex Numbers

1.1 The Algebra of Complex Numbers

1.1.1 Arithmetic Operations

1.1.1.1

$$(1+2i)^3 = 1+6i-12-8i = \boxed{-11-2i}$$
$$\frac{5}{-3+4i} = \frac{-15-20i}{25} = \boxed{-\frac{3}{5}-\frac{4}{5}i}$$
$$\left(\frac{2+i}{3-2i}\right)^2 = \left(\frac{4+7i}{13}\right)^2 = \boxed{-\frac{33}{169} + \frac{56}{169}i}$$

From the binomial expansion of the LHS, and cancelling odd powers of i,

$$(1+i)^n + (1-i)^n = 2\sum_{m=0}^{n/2} \binom{n/2}{2m} (-1)^m$$

1.1.1.2

$$\operatorname{Re} z^{4} = x^{4} - 6x^{2}y^{2} + y^{4}$$

$$\operatorname{Re} \frac{1}{z} = \frac{x}{x^{2} + y^{2}}$$

$$\operatorname{Re} \frac{z - 1}{z + 1} = \frac{x^{2} - 1}{(x + 1)^{2} + y^{2}}$$

$$\operatorname{Re} \frac{1}{z^{2}} = \operatorname{Re} \frac{1}{x^{2} - y^{2} + 2xyi} = \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{4}}$$

1.1.1.3

$$\left(\frac{-1 \pm i\sqrt{3}}{2}\right)^3 = -\frac{1}{8} \pm \frac{3\sqrt{3}}{8}i + \frac{9}{8} \mp \frac{3\sqrt{3}}{8}i = 1$$

$$\left(\frac{\pm 1 \pm i\sqrt{3}}{2}\right)^6 = \frac{1}{64} + \frac{6\sqrt{3}}{64}i - \frac{45}{64} - \frac{60\sqrt{3}}{64}i + \frac{135}{64} + \frac{54\sqrt{3}}{64}i - \frac{27}{64}i - \frac{135}{64}i - \frac{135$$

1.1.2 Square Roots

1.1.2.1

$$a^{2} - b^{2} = 0 \quad 2ab = 1 \implies a = b = \pm \frac{1}{\sqrt{2}} \implies \sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$$
$$a^{2} - b^{2} = 0 \quad 2ab = -1 \implies a = b = \pm \frac{i}{\sqrt{2}} \implies \sqrt{-i} = \pm \left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$$

sub b = 1/2a so

$$a^2 = \frac{1}{2} \pm \frac{1}{\sqrt{2}}$$

$$b^2 = -\frac{1}{2} \pm \frac{1}{2} \sqrt{2}$$

enforcing the condition that

$$ab = \frac{1}{2}$$

we obtain

$$\pm \left(\sqrt{\frac{1}{2} + \frac{1}{\sqrt{2}}} + i\sqrt{-\frac{1}{2} + \frac{1}{\sqrt{2}}}\right)$$

I really cannot be bothered to do this...

1.1.2.2

Cuz i'm lazy:

$$\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$$

1.1.2.3

do i really have to using the fact that $\sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$ and $i^4 = 1$,

$$\sqrt{\sqrt{i}} = \sqrt{\frac{1}{2\sqrt{2}} + \frac{1}{2} +} + i\sqrt{-\frac{1}{2\sqrt{2}} + \frac{1}{2}}$$

multiplying by i, i^2, i^3 , we obtain the other three solutions.

$$-\sqrt{\frac{1}{2\sqrt{2}}+\frac{1}{2}+}+i\sqrt{-\frac{1}{2\sqrt{2}}+\frac{1}{2}},-\sqrt{\frac{1}{2\sqrt{2}}+\frac{1}{2}+}-i\sqrt{-\frac{1}{2\sqrt{2}}+\frac{1}{2}},\sqrt{\frac{1}{2\sqrt{2}}+\frac{1}{2}+}-i\sqrt{-\frac{1}{2\sqrt{2}}+\frac{1}{2}}$$

- 1.1.3 Justification
- 1.1.4 Conjugation, Absolute Value
- 1.1.5 Inequalities
- 1.2 The Geometric Representation of Complex Numbers
- 1.2.1 Geometric Addition and Multiplication
- 1.2.2 The Binomial Equation
- 1.2.3 Analytic Geometry
- 1.2.4 The Spherical Representation