<u>Curs</u> 11

## Cuprins

- 1 Sisteme de rescriere abstracte
  - Terminare
  - Confluență. Perechi critice.
  - Algoritmul Knuth-Bendix
- 2 Programare logică ecuațională
- Recapitulare

# Sisteme de rescriere abstracte

## TRS - Term Rewriting System

- $\square$  O regulă de rescriere (peste Y) este formată din  $I, r \in T_{\Sigma}(Y)_s$  a.î.:
  - / nu este variabilă,
  - $2 Var(r) \subseteq Var(I) = Y.$
- Un sistem de rescriere (TRS) este o mulţime finită de reguli de rescriere.

```
t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta_s(I)] \text{ și}
t' \text{ este } c[z \leftarrow \theta_s(I)], \text{ unde}
c \in T_{\Sigma}(X \cup \{z\}) \text{ context},
I \to_s r \in R \text{ cu } Var(I) = Y,
\theta : Y \to T_{\Sigma}(X) \text{ substituție}
```

## Sisteme de rescriere abstracte

□ Terminarea unui sistem de rescriere este nedecidabilă.
 □ echivalentă cu oprirea maşinilor Turing
 □ Pentru sisteme de rescriere particulare putem decide asupra terminării.
 □ diverse metode
 □ Pentru sisteme de rescriere care se termină, confluența este decidabilă.
 □ algoritmul Knuth-Bendix

#### Arborele de reducere

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

- $\square$  Arborele de reducere al termenului t este definit astfel:
  - $\square$  rădăcina arborelui are eticheta t,
  - descendenții nodului cu eticheta u sunt etichetați cu termenii u' care verifică  $u \rightarrow_R u'$ .
- □ Orice nod al unui arbore de reducere are un număr finit de descendenți deoarece *R* este o mulțime finită.

#### Arborele de reducere

#### Exemplu

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- □ Arborele de reducere al termenului s(0) + s(0+0):



## Propoziție

#### Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural  $\mu(t) \in \mathbb{N}$  astfel încât  $t \to_R t'$  implică  $\mu(t) > \mu(t')$ .

## Propoziție

#### Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural  $\mu(t) \in \mathbb{N}$  astfel încât  $t \to_R t'$  implică  $\mu(t) > \mu(t')$ .

## Demonstrație

 $(2\Rightarrow 1)$   $\mathbb N$  nu conține lanțuri infinite  $n_1>n_2>\cdots>n_k>\cdots$ .

## Propoziție

#### Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural  $\mu(t) \in \mathbb{N}$  astfel încât  $t \to_R t'$  implică  $\mu(t) > \mu(t')$ .

#### Demonstrație

- $(2 \Rightarrow 1)$  N nu conține lanțuri infinite  $n_1 > n_2 > \cdots > n_k > \cdots$ .
- $(1\Rightarrow 2)$  Într-un sistem de rescriere noetherian orice termen are un arbore de reducere finit și definim

$$\mu(t) = \hat{n}$$
alţimea arborelui de reducere asociat lui  $t$ .

Evident 
$$t \to_R t' \Rightarrow \mu(t) > \mu(t')$$
.

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

## Definitie

O ordine strictă > pe  $T_{\Sigma}(X)$  se numește o ordine de reducere dacă:

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

#### **Definitie**

- O ordine strictă > pe  $T_{\Sigma}(X)$  se numește o ordine de reducere dacă:
  - □ este *well-founded*:
    - orice mulțime de termeni are un cel mai mic element în raport cu relația >

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

#### **Definitie**

- O ordine strictă > pe  $T_{\Sigma}(X)$  se numește o ordine de reducere dacă:
  - □ este *well-founded*:
    - orice mulţime de termeni are un cel mai mic element în raport cu relaţia >
    - este compatibilă cu operațiile:
      - □ dacă  $s_1 > s_2$ , atunci  $\sigma(t_1, \ldots, t_{i-1}, s_1, t_{i+1}, \ldots, t_n) > \sigma(t_1, \ldots, t_{i-1}, s_2, t_{i+1}, \ldots, t_n)$ , pentru orice  $\sigma: s_1 \ldots s_n \to s$

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

#### Definitie

- O ordine strictă > pe  $T_{\Sigma}(X)$  se numește o ordine de reducere dacă:
  - □ este *well-founded*:
    - orice mulțime de termeni are un cel mai mic element în raport cu relația >
  - □ este compatibilă cu operațiile:
    - dacă  $s_1>s_2$ , atunci  $\sigma(t_1,\ldots,t_{i-1},s_1,t_{i+1},\ldots,t_n)>\sigma(t_1,\ldots,t_{i-1},s_2,t_{i+1},\ldots,t_n),$  pentru orice  $\sigma:s_1\ldots s_n\to s$
  - este închisă la substituții:
    - $\square$  dacă  $s_1 > s_2$ , atunci  $\theta(s_1) > \theta(s_2)$ , pentru orice substituție  $\theta$

#### Exemplu

Relația de ordine strictă > pe  $T_{\Sigma}(X)$  definită prin

$$s > t$$
 ddacă  $|s| > |t|$ ,

unde |t| este lungimea termenului t (numărul de simboluri din t)

#### Exemplu

Relația de ordine strictă > pe  $T_{\Sigma}(X)$  definită prin

$$s > t$$
 ddacă  $|s| > |t|$ ,

unde |t| este lungimea termenului t (numărul de simboluri din t)

□ este well-founded și compatibilă cu operațiile

#### Exemplu

Relația de ordine strictă > pe  $T_{\Sigma}(X)$  definită prin

$$s > t$$
 ddacă  $|s| > |t|$ ,

unde |t| este lungimea termenului t (numărul de simboluri din t)

- □ este well-founded și compatibilă cu operațiile
- ☐ în general, nu este închisă la substituții:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

#### Exemplu

Relația de ordine strictă > pe  $T_{\Sigma}(X)$  definită prin

$$s > t$$
 ddacă  $|s| > |t|$ ,

unde |t| este lungimea termenului t (numărul de simboluri din t)

- □ este well-founded și compatibilă cu operațiile
- ☐ în general, nu este închisă la substituții:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

dar pentru substituția  $\theta(y) = f(x, x)$  avem

$$|\theta(f(f(x,x),y))| = |f(f(x,x),f(x,x))| = 7$$
  
 $|\theta(f(y,y))| = |f(f(x,x),f(x,x))| = 7$ 

#### Exemplu

Relația de ordine strictă > pe  $T_{\Sigma}(X)$  definită prin

$$s > t$$
 ddacă  $|s| > |t|$ ,

unde |t| este lungimea termenului t (numărul de simboluri din t)

- □ este well-founded și compatibilă cu operațiile
- ☐ în general, nu este închisă la substituții:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

dar pentru substituția  $\theta(y) = f(x, x)$  avem

$$|\theta(f(f(x,x),y))| = |f(f(x,x),f(x,x))| = 7$$
  
 $|\theta(f(y,y))| = |f(f(x,x),f(x,x))| = 7$ 

Deci nu este, în general, ordine de reducere.

## Exemplu

Relația de ordine strictă > pe  $T_{\Sigma}(X)$  definită prin

$$s > t$$
 ddacă  $|s| > |t|$  și  $nr_x(s) \ge nr_x(t)$ , pentru orice  $x \in X$ 

este o ordine de reducere.

#### Exemplu

#### Exemplu

Ordinea lexicografică  $>_{lpo}$  indusă pe mulțimea de termeni  $T_{\Sigma}(X)$  de o relație de ordine strictă > pe signatură este o ordine de reducere.

 $s>_{lpo}t$  ddacă

#### Exemplu

$$s>_{lpo}t$$
 ddacă (LPO1)  $t\in X$  și  $s
eq t$ , sau

#### Exemplu

```
s>_{lpo}t ddacă(	extstyle (	extstyle VPO1)\ t\in X\ 	extstyle i\ s
eq t, 	extstyle sau <math>(	extstyle (	extstyle VPO2)\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ 	extstyle i
```

#### Exemplu

#### Exemplu

```
s>_{lpo}t ddacă  (\mathsf{LPO1})\ t\in X\ \mathsf{si}\ s \neq t,\ \mathsf{sau}   (\mathsf{LPO2})\ s = f(s_1,\ldots,s_m),\ t = g(t_1,\ldots,t_n)\ \mathsf{si}   (\mathsf{LPO2a})\ \mathsf{exist}\ i,\ 1\leq i\leq m\ \mathsf{astfel}\ \mathsf{nncat}\ s_i\geq_{lpo}t,\ \mathsf{sau}   (\mathsf{LPO2b})\ f>g\ \mathsf{si}\ s>_{lpo}t_i,\ \mathsf{pentru}\ \mathsf{orice}\ j,\ 1\leq j\leq n
```

#### Exemplu

```
\begin{split} s>_{lpo}t & \text{ddacă}\\ & \text{(LPO1)}\ t\in X\ \text{si}\ s\neq t,\ \text{sau}\\ & \text{(LPO2)}\ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\ \text{si}\\ & \text{(LPO2a)}\ \text{există}\ i,\ 1\leq i\leq m\ \text{astfel}\ \text{încât}\ s_i\geq_{lpo}t,\ \text{sau}\\ & \text{(LPO2b)}\ f>g\ \text{si}\ s>_{lpo}t_j,\ \text{pentru}\ \text{orice}\ j,\ 1\leq j\leq n\\ & \text{(LPO2c)}\ f=g,\ s>_{lpo}t_j,\ \text{pentru}\ \text{orice}\ j,\ 1\leq j\leq n,\ \text{si}\ \text{există}\ i,\ 1\leq i\leq m\ \text{astfel}\ \text{încât}\ s_1=t_1,\ldots,s_{i-1}=t_{i-1}\ \text{si}\ s_i>_{lpo}t_i. \end{split}
```

#### Exemplu

```
□ Fie S = \{s\} şi \Sigma = \{f : s \ s \rightarrow s, i : s \rightarrow s, e : -s\}
□ Considerăm i > f > e.
□ Atunci avem:
□ f(x, e) >_{lpo} x din (LPO1)
□ i(e) >_{lpo} e din (LPO2a) deoarece e \ge_{lpo} e
□ i(f(x, y)) >_{lpo} f(i(y), i(x)) din (LPO2b) deoarece i > f si, din (LPO2c), avem i(f(x, y)) >_{lpo} i(y) şi i(f(x, y)) >_{lpo} i(x)
```

```
(LPO1) t \in X şi s \neq t, sau (LPO2) s = f(s_1, \ldots, s_m), t = g(t_1, \ldots, t_n) şi (LPO2a) există i, 1 \leq i \leq m astfel încât s_i \geq_{lpo} t, sau (LPO2b) f > g şi s >_{lpo} t_j, pentru orice j, 1 \leq j \leq n (LPO2c) f = g, s >_{lpo} t_j, pentru orice j, 1 \leq j \leq n, şi există i, 1 \leq i \leq m astfel încât s_1 = t_1, \ldots, s_{i-1} = t_{i-1} şi s_i >_{lpo} t_i.
```

## Teorema (\*)

Următoarele sunt echivalente:

- 11 Un sistem de rescrire R este noetherian.
- **2** Există o ordine de reducere > care satisface l > r pentru orice  $l \rightarrow r \in R$ .

Confluență. Perechi critice

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

## Definitie

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

## Definitie

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

#### **Definitie**

- există un subtermen t al lui  $l_1$  care nu este variabilă  $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

## **Definitie**

- 2 există un subtermen t al lui  $l_1$  care nu este variabilă  $(l_1 = c[z \leftarrow t]$ , unde  $nr_z(c) = 1$ , t nu este variabilă)
- 3 există  $\theta$  c.g.u pentru t și  $l_2$  (i.e.  $\theta(t) = \theta(l_2)$ ).

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.

#### **Definitie**

Fie  $l_1 \rightarrow r_1$ ,  $l_2 \rightarrow r_2 \in R$  astfel încât:

- 2 există un subtermen t al lui  $l_1$  care nu este variabilă  $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$
- 3 există  $\theta$  c.g.u pentru t și  $l_2$  (i.e.  $\theta(t) = \theta(l_2)$ ).

Perechea  $(\theta(r_1), \theta(c)[z \leftarrow \theta(r_2)])$  se numește pereche critică.



#### Exemplu

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

- $Var(f(f(x,y),u)) = \{x,y,u\} \text{ si } Var(f(i(x_1),x_1)) = \{x_1\}$
- 2 Luăm subtermenul t = f(x, y) al lui  $l_1 = f(f(x, y), u)$ 
  - $I_1 = c[z \leftarrow t]$  pt. contextul c = f(z, u)

3 
$$\theta = \{x \mapsto i(x_1), y \mapsto x_1\}$$
 c.g.u. pt.  $t \neq i_2 = f(i(x_1), x_1)$ .  
 $f(f(i(x_1), x_1), u)$ 

$$f(i(x_1), f(x_1, u))$$
 $f(i(x_1), f(x_1, u))$ 
 $f(e, u)$ 

Pereche critică:  $(f(i(x_1), f(x_1, u)), f(e, u))$ 

### Confluență și perechi critice

Fie  $(S, \Sigma)$  o signatură, Y mulțime de variabile și R un TRS.



#### Teorema (Teorema Perechilor Critice \*)

Dacă R este noetherian, atunci sunt echivalente:

- R este confluent,
- 2  $t_1 \downarrow_R t_2$  pentru orice pereche critică  $(t_1, t_2)$ .

### Consecință

#### Corolar

Confluența unui TRS noetherian este decidabilă.

#### Algoritm:

- $\cdot$  pt. or. pereche de reguli de rescriere  $\emph{l}_1 \rightarrow \emph{r}_1$  și  $\emph{l}_2 \rightarrow \emph{r}_2$
- · se încearcă generarea perechilor critice  $(t_1, t_2)$
- · pt. or. pereche critică  $(t_1,t_2)$ , se arată că  $t_1\downarrow_R t_2$

$$R = \{f(f(x)) \to x\}$$
 este confluent.

#### Exemplu

$$R = \{f(f(x)) \to x\}$$
 este confluent.

 $\square$  R este noetherian.

#### Exempli

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- □ R este noetherian.
- □ Determinăm perechile critice:

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- $\square$  R este noetherian.
- □ Determinăm perechile critice:

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- $\square$  R este noetherian.
- □ Determinăm perechile critice:
  - Regulile  $I_1 = f(f(x)) \to x = r_1$  și  $I_2 = f(f(y)) \to y = r_2$ . Subtermenii lui  $I_1$  care nu sunt variabile sunt f(f(x)) și f(x).

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- □ Determinăm perechile critice:
  - Regulile  $I_1 = f(f(x)) \to x = r_1$  și  $I_2 = f(f(y)) \to y = r_2$ . Subtermenii lui  $I_1$  care nu sunt variabile sunt f(f(x)) și f(x).
    - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică:  $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
  - Regulile  $I_1 = f(f(x)) \to x = r_1$  și  $I_2 = f(f(y)) \to y = r_2$ . Subtermenii lui  $I_1$  care nu sunt variabile sunt f(f(x)) și f(x).
    - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică:  $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
    - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică:  $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
  - Regulile  $I_1 = f(f(x)) \to x = r_1$  și  $I_2 = f(f(y)) \to y = r_2$ . Subtermenii lui  $I_1$  care nu sunt variabile sunt f(f(x)) și f(x).
    - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică:  $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
    - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică:  $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$
- $\square$  Perechile critice sunt (y, y) și (f(y), f(y)).

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
  - Regulile  $l_1 = f(f(x)) \rightarrow x = r_1$  și  $l_2 = f(f(y)) \rightarrow y = r_2$ . Subtermenii lui  $l_1$  care nu sunt variabile sunt f(f(x)) și f(x).
    - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică:  $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
    - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică:  $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$
- $\square$  Perechile critice sunt (y, y) și (f(y), f(y)).
- $\square$  Deoarece  $y \downarrow y$  și  $f(y) \downarrow f(y)$ , sistemul de rescriere R este confluent.

- □ Procedură pentru a completa un TRS noetherian.
- □ Intrare: R un sistem de rescriere (TRS) noetherian.
- ☐ leşire:
  - $\square$  T un sistem de rescriere (TRS) = completarea lui R.
  - eşec

□ INTRARE: R un sistem de rescriere (TRS) noetherian.

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

  - **2** Dacă  $t_1 \downarrow t_2$ , oricare  $(t_1, t_2) \in CP$ , atunci STOP (*T completarea lui R*).

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

  - lacktriangle Dacă  $t_1\downarrow t_2$ , oricare  $(t_1,t_2)\in \mathit{CP}$ , atunci  $\mathsf{STOP}$  (T completarea lui R).
  - 3 Dacă  $(t_1, t_2) \in CP$ ,  $t_1 \not\downarrow t_2$  atunci:
    - dacă  $fn(t_1) > fn(t_2)$  atunci  $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\},$
    - dacă  $fn(t_2) > fn(t_1)$  atunci  $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$ ,
    - altfel, STOP (completare eșuată).

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

  - **2** Dacă  $t_1 \downarrow t_2$ , oricare  $(t_1, t_2) \in CP$ , atunci STOP (*T completarea lui R*).
  - 3 Dacă  $(t_1, t_2) \in CP$ ,  $t_1 \not\downarrow t_2$  atunci:
    - dacă  $fn(t_1) > fn(t_2)$  atunci  $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\}$ ,
    - dacă  $fn(t_2) > fn(t_1)$  atunci  $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$ ,
    - altfel, STOP (completare eșuată).
- ☐ IEŞIRE: T completarea lui R sau eşec.

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- $\square$  INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

  - Dacă  $t_1 \downarrow t_2$ , oricare  $(t_1, t_2) \in CP$ , atunci STOP (*T completarea lui R*).
  - 3 Dacă  $(t_1, t_2) \in CP$ ,  $t_1 \not\downarrow t_2$  atunci:
    - lacksquare dacă  $\mathit{fn}(t_1) > \mathit{fn}(t_2)$  atunci  $T := T \cup \{\mathit{fn}(t_1) \rightarrow \mathit{fn}(t_2)\}$ ,
    - dacă  $fn(t_2) > fn(t_1)$  atunci  $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$ ,
    - altfel, STOP (completare eșuată).
- ☐ IEŞIRE: T completarea lui R sau eşec.

Atenție! Succesul completării depinde de ordinea de reducere >.

- $\square$   $S := \{s\}, \ \Sigma := \{*: ss \to s\}, \ E := \{\forall \{x, y, v\}(x*y)*(y*v) = y\}$
- □ INIŢIALIZARE:
  - $T = R_E := \{(x * y) * (y * v) \rightarrow y\},\$
  - Ordine de reducere:
    - s>t ddacă |s|>|t| și  $nr_x(s)\geq nr_x(t)$ , pentru orice  $x\in X$

#### Exemplu

□ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

#### Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui  $l_1$  care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v).$$

#### Exemplu

□ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui  $l_1$  care nu sunt variabile:

$$(x*y), (y*v), (x*y)*(y*v).$$

□  $t := x * y, c = z * (y * v), \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\}$   $\theta(r_1) = y' * v', \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v)$ Perechea critică: (y' \* v', y' \* ((y' \* v') \* v)).

#### Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui  $l_1$  care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v).$$

- $\begin{array}{c} \blacksquare \ \ t := x * y, \ c = z * (y * v), \ \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\} \\ \theta(r_1) = y' * v', \ \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v) \\ \text{Perechea critică:} \ \ (y' * v', y' * ((y' * v') * v)). \end{array}$
- $\begin{array}{c} \blacksquare \ \ t := y * v, \ c = (x * y) * z, \ \theta := \{ y \leftarrow x' * y', v \leftarrow y' * v' \} \\ \theta(r_1) = x' * y', \ \theta(c)[z \leftarrow \theta(r_2)] = (x * (x' * y')) * y' \\ \text{Perechea critică:} \ \ (x' * y', (x * (x' * y')) * y'). \end{array}$

#### Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui  $l_1$  care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v).$$

- $\begin{array}{c} \blacksquare \ \ t := x * y, \ c = z * (y * v), \ \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\} \\ \theta(r_1) = y' * v', \ \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v) \\ \text{Perechea critică:} \ \ (y' * v', y' * ((y' * v') * v)). \end{array}$
- $\begin{array}{c} \blacksquare \ \ t := y * v, \ c = (x * y) * z, \ \theta := \{ y \leftarrow x' * y', v \leftarrow y' * v' \} \\ \theta(r_1) = x' * y', \ \theta(c)[z \leftarrow \theta(r_2)] = (x * (x' * y')) * y' \\ \text{Perechea critică:} \ \ (x' * y', (x * (x' * y')) * y'). \end{array}$
- $t := (x * y) * (y * v), c = z, \theta := \{x \leftarrow x', y \leftarrow y', v \leftarrow v'\}$   $\theta(r_1) = y', \theta(c)[z \leftarrow \theta(r_2)] = y'$ Perechea critică: (y', y').

#### Exemplu

□ Perechile critice:

1 
$$(y'*v', y'*((y'*v')*v)),$$

$$(x' * y', (x * (x' * y')) * y'),$$

(y', y').

- □ Perechile critice:

  - (x'\*y',(x\*(x'\*y'))\*y'),
  - (y', y').
- □ Avem

  - $\square (x*(v*y))*y>v*y$

#### Exemplu

- Perechile critice:
  - 1 (y' \* v', y' \* ((y' \* v') \* v)),2 (x' \* y', (x \* (x' \* y')) \* y'),
  - (y', y').
- □ Avem

  - $\square (x * (v * y)) * y > v * y$
- Considerăm

$$T := T \cup \{y * ((y * x) * v) \to y * x, (x * (v * y)) * y \to v * y\}$$

 $\square$  T este complet și este completarea lui  $R_E$ .

# Programare logică ecuațională

# Ce am studiat până acum

- $\square$   $(S, \Sigma)$  signatură multisortată și  $\Gamma$  mulțime de ecuații condiționate
- $\Box$  G o mulțime de ecuații de forma  $(\forall X)t \stackrel{.}{=}_s t', t,t' \in T_{\Sigma}(X)$ .
- ☐ În cursurile anterioare am răspuns la problema

$$\Gamma \models (\forall X)G$$
.

- $\square \mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } H:$ pt. or. morfism  $h: T_{\Sigma}(X) \to \mathcal{A}$ ,
  - $h_{s'}(u) = h_{s'}(v)$ , or.  $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow h_s(t) = h_s(t')$
- $□ A \models \Gamma:$   $A \models (∀X)t \stackrel{.}{=}_s t' \text{ if } H, \text{ or. } (∀X)t \stackrel{.}{=}_s t' \text{ if } H ∈ \Gamma$
- $\Gamma \models (\forall X)t \stackrel{\cdot}{=}_{s} t':$ or.  $\mathcal{A}$  a.î.  $\mathcal{A} \models \Gamma$ ,  $\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_{s} t'$
- or.  $A = (\forall X)G$ : or.  $A = \hat{I}$ ,  $A \models I$ ,  $A \models (\forall X)t \stackrel{\cdot}{=}_s t'$ , or.  $(\forall X)t \stackrel{\cdot}{=}_s t' \in G$

# Problema programării logice ecuaționale

- $\square$   $(S, \Sigma)$  signatură multisortată și  $\Gamma$  mulțime de ecuații condiționate
- $\Box$  G o mulțime de ecuații de forma  $(\forall X)t \stackrel{.}{=}_s t', t,t' \in T_{\Sigma}(X)$ .
- □ Problema programării logice ecuaționale:

$$\Gamma \models (\exists X)G$$
.

- or.  $\mathcal{A}$  a.î.  $\mathcal{A} \models \Gamma$ ,  $\mathcal{A} \models (\exists X)G$ .
- $\square \mathcal{A} \models (\exists X)G$ : există un morfim  $h: T_{\Sigma}(X) \to \mathcal{A}$  a.î.  $h_s(t) = h_s(t')$ , or.  $(\forall X)t \stackrel{.}{=}_s t' \in G$ .

#### Teoremele lui Herbrand

- Fundamentale pentru demonstrarea automată.
- □ Reduce problema satisfacerii în toate modelele, doar la satisfacerea în modelul iniţial.

#### Teorema

Fie G o mulțime de ecuații de forma  $(\forall X)t \stackrel{.}{=}_s t'$ ,  $t,t' \in T_{\Sigma}(X)$ . Sunt echivalente:

- $\Gamma \models (\exists X)G$
- 2  $T_{\Sigma,\Gamma} \models (\exists X)G$ ,
- **3** există un morfism  $\psi: T_{\Sigma}(X) \to T_{\Sigma}$  a.î.  $\Gamma \models (\forall \emptyset) \psi(G)$ .

#### Teoremele lui Herbrand

#### Demonstrație (\*)

$$1 \Rightarrow 2$$
:  $\Gamma \models (\exists X)G \Rightarrow T_{\Sigma,\Gamma} \models (\exists X)G$ 

- $\square$  Ştim  $\Gamma \models (\exists X)G$ : or.  $\mathcal{A}$  a.î.  $\mathcal{A} \models \Gamma$ ,  $\mathcal{A} \models (\exists X)G$ .
- $\square$  Dar  $T_{\Sigma,\Gamma}$  este  $\Gamma$ -algebră inițială, deci  $T_{\Sigma,\Gamma} \models \Gamma$ .
- $\square$  În concluzie,  $T_{\Sigma,\Gamma} \models (\exists X)G$ .

#### Teoremele lui Herbrand

## Demonstrație (\*) (cont.)

$$2 \Rightarrow 3$$
:  $T_{\Sigma,\Gamma} \models (\exists X)G \Rightarrow \text{ex. } \psi : T_{\Sigma}(X) \to T_{\Sigma} \text{ a.î. } \Gamma \models (\forall \emptyset)\psi(G)$ 

- □ Ştim  $T_{\Sigma,\Gamma} \models (\exists X)G$ : ex.  $h: T_{\Sigma}(X) \to T_{\Sigma,\Gamma}$  a.î.  $h_s(t) = h_s(t')$ , or.  $(\forall X)t \stackrel{\cdot}{=}_s t' \in G$ .
- $\square \ \eta: T_{\Sigma} \to T_{\Sigma,\Gamma} := T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}} \ \text{morfism}$  surjectiv.
- Obţinem că există  $\psi: T_{\Sigma}(X) \to T_{\Sigma}$  a.î.  $\psi; \eta = h$ .
  - $\square$  Deci  $\eta_s(\psi_s(t)) = \eta_s(\psi_s(t'))$ , or.  $(\forall X)t \stackrel{\cdot}{=}_s t' \in G$ .



#### Teoremele lui Herbrand

## Demonstrație (\*) (cont.)

$$2\Rightarrow 3$$
:  $T_{\Sigma,\Gamma}\models (\exists X)G\Rightarrow \mathsf{ex.}\ \psi:T_{\Sigma}(X)\to T_{\Sigma}\ \mathsf{a.i.}\ \Gamma\models (\forall\emptyset)\psi(G)$ 

- □ Cum  $\eta: T_{\Sigma} \to T_{\Sigma,\Gamma}$  este morfismul de factorizare, obţinem  $\psi_s(t) \equiv_{\Gamma,T_{\Sigma}} \psi_s(t')$ , or.  $(\forall X)t \stackrel{.}{=}_s t' \in G$ .
  - $\square \text{ Dar } \equiv_{\Gamma, \mathcal{T}_{\Sigma}} := \bigcap \{ Ker(g) \mid g : \mathcal{T}_{\Sigma} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$
  - Deci  $\psi_s(t) \equiv_{\Gamma, T_{\Sigma}} \psi_s(t')$  înseamnă  $g_s(\psi_s(t)) = g(\psi_s(t'))$ , or.  $g: T_{\Sigma} \to \mathcal{B} \models \Gamma$ .
  - Trebuia să arătăm  $\Gamma \models (\forall \emptyset) \psi(G)$ : or.  $\mathcal{B} \models \Gamma$ , or.  $g: T_{\Sigma} \to \mathcal{B}$ ,  $g_s(\psi_s(t)) = g(\psi_s(t'))$ , or.  $(\forall X)t \stackrel{.}{=}_s t' \in G$ .

#### Teoremele lui Herbrand

## Demonstrație (\*) (cont.)

$$3 \Rightarrow 1$$
: ex.  $\psi : T_{\Sigma}(X) \to T_{\Sigma}$  a.î.  $\Gamma \models (\forall \emptyset) \psi(G) \Rightarrow \Gamma \models (\exists X) G$ 

- $\square$  Fie  $\mathcal{M}$  ο Γ-algebră. Arătăm că  $\mathcal{M} \models (\exists X)G$ .
  - lacksquare există  $h:T_\Sigma(X) o\mathcal{M}$  a.î.  $h_s(t)=h_s(t')$ , or.  $(orall X)t\stackrel{.}{=}_s t'\in G$ .
- $\square$  Fie  $\alpha_{\mathcal{M}}: \mathcal{T}_{\Sigma} \to \mathcal{M}$  unicul morfism de la  $\mathcal{T}_{\Sigma}$  la  $\mathcal{M}$ .
- $\square$  Arătăm că pentru  $\psi$ ;  $\alpha_{\mathcal{M}}$  :  $T_{\Sigma}(X) \to \mathcal{M}$ ,

$$(\psi; \alpha_{\mathcal{M}})_s(t) = (\psi; \alpha_{\mathcal{M}})_s(t')$$
, or.  $(\forall X)t \stackrel{\cdot}{=}_s t' \in G$ .

- Deoarece  $\mathcal{M} \models \Gamma$ , din ipoteză obținem  $\mathcal{M} \models (\forall \emptyset) \psi(G)$ .
  - $\qquad \text{pt. or. } g: T_{\Sigma} \to \mathcal{M}, \ g_s(\psi_s(t)) = g_s(\psi_s(t')), \ \text{or. } (\forall X)t \stackrel{.}{=}_s t' \in G.$
- Pentru morfism  $\alpha_{\mathcal{M}}: T_{\Sigma} \to \mathcal{M}$  obţim  $(\alpha_{\mathcal{M}})_s(\psi_s(t)) = (\alpha_{\mathcal{M}})_s(\psi_s(t'))$ , or.  $(\forall X)t \stackrel{.}{=}_s t' \in G$ .
- $\square$  Deci  $\mathcal{M} \models (\exists X)G$ , or.  $\mathcal{M}$  o  $\Gamma$ -algebră. În concluzie,  $\Gamma \models (\exists X)G$ .

## Soluție

- $\square$   $(S, \Sigma)$  signatură multisortată și  $\Gamma$  mulțime de ecuații condiționate
- $\square$  G o mulțime de ecuații de forma  $(\forall X)t \stackrel{.}{=}_s t'$ ,  $t,t' \in T_{\Sigma}(X)$ .

## Soluție

- $\square$   $(S, \Sigma)$  signatură multisortată și  $\Gamma$  mulțime de ecuații condiționate
- $\square$  G o mulțime de ecuații de forma  $(\forall X)t \stackrel{.}{=}_s t'$ ,  $t,t' \in T_{\Sigma}(X)$ .

#### **Definitie**

Un morfism  $f: T_{\Sigma}(X) \to \mathcal{A}$  este soluție pentru  $(\exists X)G$  dacă

$$f(G) \subseteq \equiv_{\Gamma, A}$$

$$\equiv_{\Gamma,\mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}.$$

# Soluție

- $\square$   $(S, \Sigma)$  signatură multisortată și  $\Gamma$  mulțime de ecuații condiționate
- $\square$  G o mulțime de ecuații de forma  $(\forall X)t \stackrel{.}{=}_s t'$ ,  $t,t' \in T_{\Sigma}(X)$ .

#### Definitie

Un morfism  $f: T_{\Sigma}(X) \to \mathcal{A}$  este soluție pentru  $(\exists X)G$  dacă

$$f(G) \subseteq \equiv_{\Gamma, A}$$

$$\equiv_{\Gamma,\mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}.$$

- $\square$   $\triangle$  este o mulțime de egalități adevărate din  $T_{\Sigma}(X)$ .
- ☐ Compunerea a două soluții este tot o soluție.

#### Context extins

- $\square$   $(S, \Sigma)$  signatură și X mulțime de variabile
- $\square$  Un termen  $c \in T_{\Sigma}(X \cup \{z\})_s$  se numește context dacă  $nr_z(c) = 1$ .
- $\square$  Pentru un context  $c \in T_\Sigma(X \cup \{z\})$ , notăm  $c[z \leftarrow t_0] := \{z \leftarrow t_0\}(c).$

#### Context extins

- $\square$   $(S, \Sigma)$  signatură și X mulțime de variabile
- $\square$  Un termen  $c \in T_{\Sigma}(X \cup \{z\})_s$  se numește context dacă  $nr_z(c) = 1$ .
- $\square$  Pentru un context  $c \in \mathcal{T}_{\Sigma}(X \cup \{z\})$ , notăm  $c[z \leftarrow t_0] := \{z \leftarrow t_0\}(c).$
- ☐ Un context extins este o ecuație de forma

$$c\stackrel{\cdot}{=}_s t$$
 sau  $t\stackrel{\cdot}{=}_s c$  unde  $c\in T_\Sigma(X\cup\{z\})_s$  și  $t\in T_\Sigma(X)_s$ .

- □ Notăm un context extins cu C.
- $\square$  Observăm că  $(c \stackrel{.}{=}_s t)[z \leftarrow t_0]$  înseamnă  $c[z \leftarrow t_0] \stackrel{.}{=}_s t$ .
- □ Notăm  $C[z \leftarrow t_0]$  cu  $C[t_0]$ .

# Reguli de deducție

Regula Morfismului

 $oxed{G}{ \overline{ heta(G)} } \left| egin{array}{c} G ext{ mulţime de ecuaţii,} \ \overline{ heta: T_\Sigma(X)} 
ightarrow T_\Sigma(Y) \end{array} 
ight.$ 

# Reguli de deducție

Regula Morfismului

$$\frac{G}{\theta(G)}$$

 $\left. egin{array}{c|c} G & \text{multime de ecuații,} \\ \hline heta(G) & heta: T_\Sigma(X) 
ightarrow T_\Sigma(Y) \end{array} 
ight.$ 

$$\frac{G \cup \{I \stackrel{.}{=}_{s} r\}}{\theta(G)}$$

Regula Reflexiei extinse 
$$\boxed{ \begin{array}{c} G \cup \{I \stackrel{.}{=}_s r\} \\ \hline \theta(G) \end{array} } \quad \begin{array}{c} G \text{ mulțime de ecuații,} \\ \theta : T_\Sigma(X) \to T_\Sigma(Y) \text{ a.î.} \\ \theta_s(I) = \theta_s(r) \end{array}$$

# Reguli de deductie

$$\frac{G}{\theta(G)}$$

Regula Morfismului  $\left| \begin{array}{c} G \\ \overline{\theta(G)} \end{array} \right| \left| \begin{array}{c} G \text{ mulțime de ecuații,} \\ \theta: T_{\Sigma}(X) \to T_{\Sigma}(Y) \end{array} \right|$ 

$$\frac{G \cup \{I \stackrel{\cdot}{=}_{s} r\}}{\theta(G)}$$

Regula Reflexiei extinse  $\boxed{ \begin{array}{c} G \cup \{I \stackrel{.}{=}_s r\} \\ \theta(G) \end{array} } \boxed{ \begin{array}{c} G \text{ murring as } S_{-1}, \\ \theta : T_{\Sigma}(X) \rightarrow T_{\Sigma}(Y) \text{ a.i.} \\ \theta_s(I) = \theta_s(r) \end{array}$ 

$$\frac{G \cup \{I \stackrel{.}{=}_s r\}}{\theta(G)}$$

# Reguli de deductie

Regula Morfismului

$$\frac{G}{\theta(G)}$$

 $\frac{G}{\theta(G)} \mid G \text{ mulţime de ecuaţii,} \\ \theta: T_{\Sigma}(X) \to T_{\Sigma}(Y)$ 

Regula Reflexiei extinse

$$\frac{G \cup \{I \stackrel{\cdot}{=}_{s} r\}}{\theta(G)}$$

G mulțime de ecuații,  $\frac{G \cup \{I \stackrel{.}{=}_{s} r\}}{\theta(G)} \left| \begin{array}{c} G \text{ multime de ecuații,} \\ \theta : T_{\Sigma}(X) \to T_{\Sigma}(Y) \text{ a.î.} \end{array} \right|$  $\theta_{\epsilon}(I) = \theta_{\epsilon}(r)$ 

$$\frac{G \cup \{I \stackrel{.}{=}_s r\}}{\theta(G)}$$

G mulțime de ecuații, Regula Reflexiei  $\left| \begin{array}{c} G \cup \{I \stackrel{\cdot}{=}_s r\} \\ \theta(G) \end{array} \right| \left| \begin{array}{c} G \text{ interfine the ectuality,} \\ \theta : T_{\Sigma}(X) \rightarrow T_{\Sigma}(Y) \text{ a.î.} \end{array} \right|$  $\theta = cgu(l, r)$ 

Regula Pararescrierii

$$\frac{G \cup \{C[\theta_s(I)]\}}{G \cup \theta(H) \cup \{C[\theta_s(r)]\}} \qquad (\forall Y)I \stackrel{\cdot}{=}_s r \text{ if } H \in \Gamma, \\
\theta : T_{\Sigma}(Y) \to T_{\Sigma}(X)$$

G multime de ecuații,  $(\forall Y)I \stackrel{\cdot}{=}_s r \text{ if } H \in \Gamma,$ C context extins

## Reguli de deducție

Regula Paramodulatjei extinse

$$\frac{G \cup \{C[a]\}}{\theta(G \cup H \cup \{C[r]\})}$$

G multime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r$  if  $H \in \Gamma$ ,  $X \cap Y = \emptyset$ ,  $\theta : T_{\Sigma}(X \cup Y) \to T_{\Sigma}(Z)$  a.î.  $\theta_s(I) = \theta_s(a)$ ,  $a \in T_{\Sigma}(X)_s$  C context extins

## Reguli de deducție

Regula Paramodulatjei extinse

$$\frac{G \cup \{C[a]\}}{\theta(G \cup H \cup \{C[r]\})}$$

Regula Paramodulatjei

$$\frac{G \cup \{C[a]\}}{\theta(G \cup H \cup \{C[r]\})}$$

G multime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r$  if  $H \in \Gamma$ ,  $X \cap Y = \emptyset$ ,  $\theta : T_{\Sigma}(X \cup Y) \to T_{\Sigma}(Z)$  a.î.  $\theta_s(I) = \theta_s(a), \ a \in T_{\Sigma}(X)_s$  C context extins

G multime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r$  if  $H \in \Gamma$ ,  $X \cap Y = \emptyset$ ,  $\theta : T_{\Sigma}(X \cup Y) \to T_{\Sigma}(Z)$  a.î.  $\theta = cgu(I, a), \ a \in T_{\Sigma}(X)_s$  C context extins

## Regula narrowing

Regula Narrowing

$$\frac{G \cup \{C[a]\}}{\theta(G \cup H \cup \{C[r]\})}$$

G mulțime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r$  if  $H \in \Gamma$ , I nu este variabilă,  $X \cap Y = \emptyset$ ,  $a \in T_{\Sigma}(X)_s$ ,  $a \notin X$ ,  $\theta : T_{\Sigma}(X \cup Y) \to T_{\Sigma}(Z)$  a.î.  $\theta = cgu(I, a)$ , C context extins

□ Caz particular de Paramodulație.

# Legături între regulile de deducție



#### Exemplu

```
\square S = \{nat, nlist, list\}
```

$$\Gamma = \{(\forall \{E, L\}) head(E, L) = E, \\
(\forall \{E, L\}) cdr(E, L) = L, \\
(\forall \emptyset) \#(nil) = 0, \\
(\forall \{E, L\}) \#(E, L) = s(\#(L))\}$$

Căutăm o soluție pentru problema:

$$(\exists L)\{\#(L) \stackrel{.}{=} s(s(0)), head(L) \stackrel{.}{=} 0\}.$$

#### Exemplu

```
\square {#(L) \stackrel{.}{=} s(s(0)), head(L) \stackrel{.}{=} 0}
                                                                   G multime de ecuații,
                                                                   (\forall Y)I \stackrel{\cdot}{=}_{s} r \text{ if } H \in \Gamma
                                    G \cup \{C[a]\}
      Regula
                                                                   X \cap Y = \emptyset.
                             \overline{\theta(G \cup H \cup \{C[r]\})}
Paramodulatiei
                                                                   \theta: T_{\Sigma}(X \cup Y) \to T_{\Sigma}(Z) a.î.
                                                                   \theta = cgu(I, a), a \in T_{\Sigma}(X)_{s}
                                                                    C context extins
         \Box (\forall \{E1, L1\}) \# (E1, L1) \stackrel{\cdot}{=} s (\# (L1)) \in \Gamma
         \Box C: \bullet = s(s(0))
         □ a: #(L)
         \square \theta cgu pt \#(L) și \#(E1, L1): \theta(L) = E1, L1
  \square {s(\#(L1)) \stackrel{.}{=} s(s(0)), head (E1, L1) \stackrel{.}{=} 0} cu morfismul
      h_1: T_{\Sigma}(\{L\}) \to T_{\Sigma}(\{E1, L1\}), h(L) = E1, L1
```

#### Exemplu

$$\Box$$
 { $s(\#(L1)) \doteq s(s(0)), head(E1, L1) \doteq 0$ }

Regula Pararescrierii

$$\frac{G \cup \{C[\theta_s(I)]\}}{G \cup \theta(H) \cup \{C[\theta_s(r)]\}}$$

G multime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r \text{ if } H \in \Gamma,$   $\theta : T_{\Sigma}(Y) \to T_{\Sigma}(X)$ C context extins

- $\square \ \forall \{E,L\}) head(E,L) \stackrel{.}{=} E \in \Gamma$
- $\Box$   $C: \bullet = 0$
- $\blacksquare$   $\theta: T_{\Sigma}(\{E, L\}) \rightarrow T_{\Sigma}(\{E1, L1\}), \ \theta(E) = E1 \ \text{si} \ \theta(L) = L1$

#### Exemple

#### Exemplu

```
\square \{s(\#(L1)) \stackrel{\cdot}{=} s(s(0))\}
```

### Regula Paramodulatjei

$$\frac{G \cup \{C[a]\}}{\theta(G \cup H \cup \{C[r]\})}$$

G multime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r$  if  $H \in \Gamma$ ,  $X \cap Y = \emptyset$ ,  $\theta : T_{\Sigma}(X \cup Y) \to T_{\Sigma}(Z)$  a.î.  $\theta = cgu(I,a), \ a \in T_{\Sigma}(X)_s$  C context extins

- $\Box a : \#(L1)$
- $\square$   $\theta(L1) = E, L$  este cgu pt #(E, L) si #(L1)
- $\square \{s(s(\#(L))) \stackrel{.}{=} s(s(0))\} \text{ cu morfismul } h_4: T_{\Sigma}(\{L1\}) \rightarrow T_{\Sigma}(\{E, L\}), h_4(L1) = E, L$

#### Exemplu

```
\square \{s(s(\#(L))) \stackrel{\cdot}{=} s(s(0))\}
```

Regula Paramodulatjei

$$\frac{G \cup \{C[a]\}}{\theta(G \cup H \cup \{C[r]\})}$$

G mulțime de ecuații,  $(\forall Y)I \stackrel{.}{=}_s r$  if  $H \in \Gamma$ ,  $X \cap Y = \emptyset$ ,  $\theta : T_{\Sigma}(X \cup Y) \rightarrow T_{\Sigma}(Z)$  a.î.  $\theta = cgu(I, a), \ a \in T_{\Sigma}(X)_s$  C context extins

- □ a: #(L)
- $\square$   $\theta(L) = nil$  este cgu pt #(nil) și #(L)

#### Exempli

 $\square$  Un morfism  $f:T_{\Sigma}(X) o \mathcal{A}$  este soluție pentru  $(\exists X)G$  dacă

$$f(G) \subseteq \equiv_{\Gamma, A}$$

- $\square$  Soluția cautată este:  $h_1$ ;  $h_2$ ;  $h_3$ ;  $h_4$ ;  $h_5$ :  $\mathcal{T}_{\Sigma}(\{L\}) o \mathcal{T}_{\Sigma}(\{E\})$ 
  - $\Box h_1: T_{\Sigma}(\{L\}) \to T_{\Sigma}(\{E1, L1\}), \ h(L) = E1, L1$
  - $\square h_2: T_{\Sigma}(\{E1,L1\}) \to T_{\Sigma}(\{E1,L1\})$
  - $\Box h_3: T_{\Sigma}(\{E1,L1\}) \to T_{\Sigma}(\{L1\}), h_3(E1) = 0$
  - $\square h_4: T_{\Sigma}(\{L1\}) \to T_{\Sigma}(\{E,L\}), h_4(L1) = E, L$

$$(h_1; h_2; h_3; h_4; h_5)(\#(L)) = (h_1; h_2; h_3; h_4; h_5)(s(s(0))) (h_1; h_2; h_3; h_4; h_5)(head(L)) = (h_1; h_2; h_3; h_4; h_5)(0)$$

#### Concluzii

#### Teorema

În cadrul ecuațional, rezoluția se poate obține din narrowing și eliminarea egalităților adevărate.

Rezoluție = Narrowing = Paramodulație

- □ Programare Logică cazul logicii clauzelor definite propoziționale
  - Logica propoziţională
  - ☐ Sistem de deducție pentru clauze definite

□ Programare Logică - cazul logicii clauzelor definite propoziționale
 □ Logica propozițională
 □ Sistem de deducție pentru clauze definite
 □ Programare Logică - cazul logicii Horn
 □ Logica de ordinul I (calculul cu predicate)
 □ Algoritmul de unificare
 □ Sistem de deducție backchain pentru logica Horn (clauze definite)
 □ Rezoluție SLD

| □ Algebre multisortate                                  |
|---------------------------------------------------------|
| Signaturi multisortate. Mulţimi şi funcţii multisortate |
| Algebre multisortate                                    |
| Morfisme de algebre multisortate                        |
| Izomorfisme de algebre multisortate                     |
| Tipuri abstracte de date                                |
| Termeni. Algebre de termeni                             |
| Algebre inițiale                                        |
| Algebre libere                                          |
| Congruențe                                              |
| Ecuații. Relația de satisfacere                         |
| □ Γ-algebre                                             |
| Specificații algebrice                                  |

- □ Logica ecuațională
  - Deducție ecuațională cazul necondiționat
  - Deducție ecuațională cazul condiționat
  - ☐ Corectitudinea logicii ecuaționale
  - Completitudinea logicii ecuaționale

☐ Rescrierea termenilor
 ☐ Contexte
 ☐ Sistem de rescriere
 ☐ Logica ecuațională și rescrierea termenilor
 ☐ Sisteme de rescriere abstracte. Diverse proprietăți
 ☐ Terminarea sistemelor de rescriere
 ☐ Confluență și perechi critice
 ☐ Algoritmul Knuth-Bendix

#### Tipuri de exerciții la seminar:

- Algoritmul de unificare
- Deducții ecuaționale (cazul necondiționat)
- Specificații algebrice
- Rezoluţie SLD
- 5 Sisteme de rescriere. Confluență

Baftă la examen!