7. 관계 데이타 구조

❖ 애트리뷰트와 도메인

- ◆ 테이블 ≒ 릴레이션
- ◆ 도메인(domain)
 - 애트리뷰트가 취할 수 있는 값(value)들의 집합
- ◆ 애트리뷰트(attribute)
 - 도메인의 역할 이름
 - 애트리뷰트 이름들은 모두 달라야 함
- ◆ 단순 도메인 (simple domain)
 - → 단순 애트리뷰트 : 원자값
- ◆ 복합 도메인 (composite domain)
 - → 복합 애트리뷰트 : 복합값
 연,월,일 ⇒ 날짜:<연,월,일>

Note

• 애트리뷰트 이름과 도메인 이름은 같을 수도 있음

❖ 릴레이션의 개념

학생(student) 테이블: 릴레이션

학번	이름	학년	학과
(SNO)	(SNANE)	(YEAR)	(DEPT)
100	나 연 묵	4	컴퓨터
200	이 찬 영	3	전기
300	정 기 태	1	컴퓨터
400	호 병 송	4	컴퓨터
500	박 종 화	2	산공

```
DCL
              DSNO
                     INTEGER;
     DOMAIN
DCL
                     CHAR(10);
     DOMAIN
              NAME
DCL
     DOMAIN
              DYEAR
                     INTEGER;
DCL
     DOMAIN
              DEPT
                    CHAR(6);
DCL
     RELATION STUDENT
        (SNO
               DOMAIN
                        DSNO,
         SNAME DOMAIN
                        NAME,
         YEAR
               DOMAIN
                        DYEAR,
                        DEPT);
         DEPT
               DOMAIN
```

DCL RELATION STUDENT (SNO INTEGER. SNAME CHAR(10), YEAR INTEGER. DEPT CHAR(6));

도메인 명세가 생략된 릴레이션 STUDENT의 정의

▶ 릴레이션(Relation) R

i. 수학적 정의

릴레이션 R: 카티션 프러덕트의 부분집합

 $R \subseteq D_1 \times D_2 \times ... \times D_n$

즉 n-투플 <v₁, v₂, ..., v_n>의 집합

단 Di: i번째 도메인

$$v_i \subseteq D_i$$
, $i = 1,2,...,n$

n: R의 차수(degree: 일차, 이차, 삼차, ..., n차)

투플의 수: 카디날리티(cardinality)

학번 x 과목번호

(SNO x CNO)

<100,C412>

<100,C123>

<100,C312>

<200,C412>

<200.C123>

200,C312>

ii. 개념적 정의

릴레이션 스킴 + 릴레이션 인스턴스

▶ 릴레이션 스킴 (relation scheme)

◆ 릴레이션 내포 (Intension)

◆ 릴레이션 스키마

```
릴레이션 이름 + 애트리뷰트 이름  R(A_1, A_2, ..., A_n), \quad A_i \Leftrightarrow D_i \\ \equiv R(\{A_1, A_2, ..., A_n\})
```

- ◆ 정적 성질:시간에 무관
 - 릴레이션 타입

▶ 릴레이션 인스턴스 (relation instance)

◆ 릴레이션 외연 (Extension): 릴레이션 R

◆ 릴레이션 인스턴스

어느 한 시점에 릴레이션 R이 포함하고 있는 투플들의 집합 $\{<v_1,v_2,...,v_n>\}$ $v_i \in D_i$

• {(attr₁= v_1 , attr₂= v_2 , ..., attr_n= v_n)}

◆ 동적 성질

- 삽입, 삭제, 갱신
- 시간에 따라 변함
- 릴레이션 값(보통 릴레이션)

※ 릴레이션

❖ 릴레이션의 특성 (1)

i. 투플의 유일성

릴레이션 = 서로 다른 투플들의 "집합"

ii. 투플들의 무순서

릴레이션: 추상적 개념

테이블: 구체적개념

iii. 애트리뷰트들의 무순서

릴레이션 스킴 → 애트리뷰트들의 "집합"

투플: <attr:value>쌍의 집합

❖ 릴레이션의 특성 (2)

iv. 애트리뷰트의 원자값(atomic value) (분해 불가능)

- 정규화 릴레이션 (normalized relation)
 - ◆ 비정규화 릴레이션은 분해로 정규화
 - ◆ 동등한 의미 유지
- 널값은 원자값 (null value; unknown, inapplicable)
- 단순 도메인
- 복합 도메인 : 값을 하나의 단위로 취급

❖ 관계 데이타베이스

- ◆ 관계 데이타베이스
 - 데이타베이스를 시간에 따라 그 내용(상태)이 변할 수 있는 테이블 형태로 표현
- ◆ 관계 데이타베이스 스키마 = {릴레이션 스킴} + {제약조건}
- ◆ 관계 데이타 모델 ⇔ 프로그래밍 시스템

릴레이션 ⇔ 화일 투플 ⇔ 레코드 (어커런스) 애트리뷰트 ⇔ 필드

Notes

 관계 데이타베이스는 데이타가 꼭 물리적 테이블 형태로 저장되는 것을 의미하지는 않음

* example

◆ 대학(University) 관계 데이타베이스

학생 (STUDENT)

학번	이름	학년	학과
(SNO)	(SNANE)	(YEAR)	(DEPT)
100	나 연 묵	4	컴퓨터
200	이 찬 영	3	전기
300	정 기 태	1	컴퓨터
400	호 병 송	4	컴퓨터
500	박 종 화	2	산공

과목 (COURSE)

과목번호	과목이름	학점	학과	담당교수
(CNO)	(CNANE)	(CREDIT)	(DEPT)	(PRNAME)
C123	프로그래밍	3	컴퓨터	김성기
C312	자료 구조	3	컴퓨터	황수찬
C324	파일 처리	3	컴퓨터	이규철
C413	데이타 베이스	3	컴퓨터	이석호
C412	반 도 체	3	전자	홍봉희

* example

◆ 대학(University) 관계 데이타베이스(cont'd)

등록 (ENROL)

학번 (SNO)	과목번호 (CNO)	성적 (GRADE)	중간성적 (MIDTERM)	기말성적 (FINAL)
100	C413	Α	90	95
100	E412	Α	95	95
200	C123	В	85	80
300	C312	Α	90	95
300	C324	C	75	75
300	C413	Α	95	90
400	C312	Α	90	95
400	C324	Α	95	90
400	C413	В	80	85
400	E412	C	65	75
500	C312	В	85	80