Julia Tutorial Series - IV

Recommender System with Julia

Abhijith Chandraprabhu

February 1, 2014

Overview

Introduction

What is Recommender System?

Recommender system is a subclass of Information Filtering, where it predicts how the constituent members of 2 different groups, unfamiliar with each other interact.

GroupA			GroupB	
NETFLIX :	[Users]	\longrightarrow	[Movies]	
Linkedin:	[Users]	\longrightarrow	[Connections], [Groups]	
Amazon :	[Customers]	\longrightarrow	[Products]	
<i>Vewspaper</i> :	[Readers]	\longrightarrow	[Articles]	
Coursera :	[Students]	\longrightarrow	[Courses]	

Types of Recommender Systems

Explicit				Imp	licit		
	NET	FLIX			Ama	azon	
	M1	M2	M3		P1	P2	P3
U1	5	?	2	U1	Yes	?	No
U2	?	?	4	U2	?	?	Yes
U3	4	1	?	U3	Yes	No	?
Rat	ings :	5, 4, 3	, 2, 1	Purcha	aseHist	ory:	Yes, No

NFTFIIX

- Netflix, Inc is a company based in USA, which provides internet streaming media on-demand.
- 33 million members view over 1 billion hours of TV shows and movies through NETFLIX per month.
- Personalized service through recommendations based on previous ratings.
- ▶ In October 2006, NETFLIX announced a prize of 1 Million USD to beat *Cinematch* by 10%
- ► ACM conference RecSys started from 2007.

Example: Let us consider a simple toy example of 4 users and 4 movies.

	Titanic	Braveheart	The Lion King	Dreamcatcher
John	5	5	2	2
Dave	2	?	3	4
Alice	4	5	?	3
Bob	3	4	2	5

where ? denotes the *user-movie* combinations which has to be predicted.

Dataset

$$R = \begin{pmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{pmatrix} \qquad D = \begin{pmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \ddots & \vdots \\ d_{m1} & \cdots & d_{mn} \end{pmatrix}$$

- ▶ The values of R are $\{r_{mn}: 1 \le r_{mn} \le 5 | r_{mn} \text{ is an integer}\}$
- ▶ The values of D are $\{d_{mn}:1 \le d_{mn} \le 2243 | d_{mn} \text{ is an integer}\}$
- ▶ The values d_{mn} are in the matlabs Serial Date Number, which is offset from some starting date.

Training and Test datasets

- ► The *Training dataset*, consists of 99,077,112 ratings, plus 1,408,395 as probe set.
- Qualifying dataset, consists of 2,817,131 ratings, of which test dataset is 1,408,789 ratings, and quiz dataset is 1,408,342 ratings.

Problem Formulation

To perform matrix completion through low-rank approximation, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.

$$R \in \mathbb{R}^{u,m}$$
 $U \in \mathbb{R}^{u,k}$ $M \in \mathbb{R}^{m,k}$

$$\hat{\mathbf{r}}_{ij} = \mathbf{u}_i \cdot \mathbf{m}_j$$

- Matrix Factorization characterizes the users in U and movies in M.
- ▶ By mapping the users and movies into a joint latent factor space of *k* dimension.
- Singular Value Decomposition(SVD)
- ▶ 90% of *R* is unknown, SVD is unsuitable
- Alernating Least Squares(ALS)

Movie Means Vs Time

Movie Means Vs Time

- Movie specific temporal plot.
- ▶ Sudden increase of mean at around 1500 days mark.
- ► The transient information is real and not artificially induced.
- ► The general trend is that the mean ratings tend to increase with time.

Movie: Darkwolf(2003)

Figure: Weekly and Monthly Means for movies 129

Series: Six Feet Under: Season 4 (2004)

Figure: Weekly and Monthly Means for movie 1476

Singular Value Decomposition

Theorem (SVD)

For any matrix $A \in \mathcal{R}^{m \times n}$, with m > n, there exists two orthogonal matrices $U = (u_1, \ldots, u_m) \in \mathcal{R}^{m \times m}$ & $V = (v_1, \ldots, v_n) \in \mathcal{R}^{n \times n}$ such that

$$A = U \left(\begin{array}{c} \Sigma \\ 0 \end{array} \right) V^T,$$

where $\Sigma \in \mathcal{R}^{n \times n}$ is diagonal matrix, i.e., $\Sigma = (\sigma_1, ..., \sigma_n)$, with $\sigma_1 \geq \sigma_2 \geq \geq \sigma_n \geq 0$. $\sigma_1, ..., \sigma_n$ are called the singular values of A. Columns of U & V are called the right and left singular vectors of A respectively.

Theorem (Eckart-Young theorem)

For a matrix $A \in \mathbb{R}^{m \times n}$, with rank(A) = r > k. The Frobenius norm of the matrix approximation problem

$$\min_{rank(\hat{A})=k} \|A - \hat{A}\| \tag{1}$$

has the solution of

$$\hat{A} = U_k \Sigma_k V_k^T, \tag{2}$$

where
$$U_k = \begin{pmatrix} u_1 & u_2 & \cdots & u_k \end{pmatrix}$$
, $V_k = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix}$ and $\Sigma_k = diag(\sigma_1, \sigma_2, \dots, \sigma_k)$.

Low Rank Matrix Approximation using SVD

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^T \approx \sum_{i=1}^{k} \sigma_i u_i v_i^T =: A_k \qquad k < r$$

- ► The above approximation is based on the Eckart-Young theorem.
- ▶ It helps in removal of noise, solving ill-conditioned problems, and mainly in dimension reduction of data.

Alternating Least Squares

$$r_{ij} = \mathbf{u}_i \cdot \mathbf{m}_j$$

$$\mathbf{u}_i \in \mathbb{R}^k \quad \mathbf{m}_j \in \mathbb{R}^k$$

- ► Models *U*,as *User feature space* and *M*,as *Movie feature space*.
- ▶ Similar to $Ax \approx b$, but with matrix RHS.
- ► Initialize M
 - 1. Solve $\min_{U} ||R UM||$, update U
 - 2. Solve $\min_{M} ||R UM||$, update M
- ▶ Repeat steps 1 and 2 until convergence

Static Bias

Figure: User-Movie Interaction

Temporal Bias

- ▶ We have captured the *Temporal bias* w.r.t movies only.
- ► Total period is of around 300 weeks. 30 bins of 10 week length.
- ▶ Each rating r_{ui} will fall under some bin.
- $b_{i,Bin(t)} = \mu_i \mu_{Bin(t)}$
- ▶ Baseline Predictor, $b_{ui} = \mu + b_u + b_i + b_{i,Bin(t)}$

Initialization of M in ALS

We try different initialization techniques for M,

- Initialize the M matrix, by assigning the means of movies as the first row entry, and small random numbers in the remaining entries.
- 2. [U, S, V] = svd(R, 100) $M = SV^T$

Prediction Models

- 1. Non-bias model
- 2. NonTemp_{mu}, $b_{ui} = \mu + b_u + b_i$
- 3. $Temp_{mu}$, $b_{ui} = \mu + b_u + b_i + b_{i,Bin(t)}$
- 4. NonTemp_b, $b_{ui} = b_u + b_i$
- 5. $Temp_b$, $b_{ui} = b_u + b_i + b_{i,Bin(t)}$

		SVD	ALS-I	ALS-II
Ī	1	Model 1	Model 6	Model 9
	2	Model 3	-	Model 8
	3	Model 2	-	Model 7
	4	-	Model 4	-
	5	-	Model 5	-

Table: Different Models

Evaluation Metric

RMSE: Root Means Square Error

$$\textit{RMSE} = \left(rac{\sum_{r_{i,j} \in \mathcal{T}} (\hat{r}_{ij} - r_{ij})^2}{|\mathcal{T}|}
ight)^{1/2}$$

RMSE: Non Biased SVD and ALS on Original data

RMSE: Non Biased SVD

RMSE: Static Biased SVD

RMSE: Temporal Biased SVD

RMSE: Static Biased ALS-II

RMSE: Static Biased ALS-II

RMSE: Temporal Biased ALS-II

RMSE: Temporal Biased ALS-II

Conclusion

- Low-Rank approximation is useful for Collaborative Filtering.
- ▶ In case of SVD, best results are obtained for ranks \approx 50.
- ▶ In case of ALS, there is no overfitting, best results for very high ranks.
- Less number of iterations required with high number of factors.
- Removal of biases helps in collaborative filtering, since it is the interaction which we are trying to study and factorize.

The End