3.6.1

Спектральный анализ электрических сигналовюю Егор Берсенев

1 Цель работы

Изучение спектрального состава периодических электрических сигналов.

2 Оборудование

Анализатор спектра, генератор прямоугольных сигналов, генератор сигналов специальной формы, осциллограф.

3 Теоретическая часть

В работе изучается спектральный состав различных типов сигналов: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных колебаний.

3.1 Периодическая последовательность прямоугольных импульсов

Пусть амплитуда V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов. Найдем среднее значение амплитуды:

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-r/2}^{r/2} V_0 dt = \frac{\tau}{T} V_0$$

Коэффициенты при косинусах равны:

$$a_n = \frac{2}{T} \int_{-r/2}^{r/2} V_0 \cos(n\omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \simeq \frac{\sin x}{x}$$

3.2 Периодическая последовательность цугов

Рассмотрим цуги гармонического колебания $V_0\cos{(\omega_0 t)}$ с длительностью цуга τ и периодом повторения T. Коэффициент при n-й гармонике равен:

$$a_n = \frac{2}{T} \int_{-r/2}^{r/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt = V_0 \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_0 - n\Omega_1\right)\frac{r}{2}\right]}{\left(\omega_0 - n\Omega_1\right)\frac{r}{2}} + \frac{\sin\left[\left(\omega_0 + n\Omega_1\right)\frac{r}{2}\right]}{\left(\omega_0 + n\Omega_1\right)\frac{r}{2}} \right)$$

3.3 Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых меняется с частотой $\Omega,$ $(\Omega \ll \omega)$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega t$$

т называется глубиной модуляции. Простым тригонометрическим преобразованием найдем спектр таких колебаний:

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\Omega + \omega_0) t + \frac{A_0 m}{2} \cos (w_0 - \Omega) t$$

4 Ход работы

4.1 Периодическая последовательность прямоугольных импульсов

Соберем экспериментальную установку:

Спектры:

Проведем измерения:

Таблица 1: Прямоугольные импульсы

τ , MKC	25	50	100	125	150	170
х, дел	6	4	2	1.6	0.8	0.4
$\Delta \nu$, к Γ ц	40	20	10	8	4	2
$1/ au$, к Γ ц	40	20	10	8	6.7	5.9

Огибающие:

1к Γ ц, 50мкс

1к Γ ц, 100мкс

Построим график:

Отсюда убеждаемся, что соотношение неопределенностей справедливо.

4.2 Исследование спектра периодической последовательности цугов гармонических колебаний

Соберем экспериментальную установку:

Установим несущую частоту $\nu_0=25$ к Γ ц и получим спектры:

1к Γ ц, 50мкс, $\nu_0=25$ к Γ ц

1к Γ ц, 50мкс $\nu_0 = 10$ к Γ ц

1к Γ ц, 100мкс, $\nu_0=25$ к Γ ц

1к Γ ц, 50мкс $\nu_0=40$ к Γ ц

Сделаем измерения:

$f_{\text{повт}}$, к Γ ц	1	2	3	4	5	6	7	8
х, дел	0.5	1	1.5	2	2.27	3	3.8	4.1
$\Delta \nu$, к Γ ц	1	2	3	4	5.5	6	7.6	8.2

Построим график:

Отсюда также убеждаемся в справедливости соотношения неопределенностей.

4.3 Исследование спектра амплтиудно-модулированных гармонических колебаний

Соберем установку:

Сделаем измерения:

$2A_{min}$	0	0.04	0.04	0	0.06
$2A_{max}$	0.24	0.20	0.16	0.44	0.14
a_{60K}	2.17	1.33	1	2.50	0.80
a_{och}	4.33	4.33	4.33	4.00	4.00
\overline{m}	1	0.67	0.6	1	0.4
$a_{\rm 6ok}/a_{\rm och}$	0.5	0.31	0.23	0.63	0.2

Построим график:

5 Вывод

Фурье-анализ позволяет получать спектр периодических электрических сигналов, что дает возможность исследовать большое количество свойств