Contents

1. Pr	roperties of Expectation	2
1.1.	Linearity	
<i>1.2.</i>	Expectation of a Constant	
<i>1.3.</i>	Additivity	
1.4.	Multiplication by a Constant	
<i>1.5.</i>	Law of the Unconscious Statistician	
1.6.	Expectation of a Sum	
2. Pr	roperties of Conditional Expectation	2
3. Pr	roperties of Variance	2
4. Pr	robability Density (Mass) Functions	2
	aylor Series	
6. M	oment Generating Function	2
6.1.	Gaussian Distribution	
6.2.	Poisson Distribution	
6.3.	Bernoulli Distribution	
6.4.	Chi-Squared Distribution	
6.5.	First Two Raw Moments of the Gaussian Distribution	
7. St	tochastic Process Definitions	2
7.1.	Martingale	
7.2.	Brownian Motion	
8. Pr	ricing, Risk, & Hedging	3
8.1.	Put-Call Parity	
<i>8.2.</i>	Binomial Option Pricing	
8.3.	Hedging with Derivatives	
9. Li	near Regression Analysis	3
9.1.	Assumption 1	
9.2.	Assumption 2	
9.3.	Assumption 3	
9.4.	Ordinary Least Squares Estimator	

1. Properties of Expectation

1.1. Linearity

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

1.2. Expectation of a Constant

$$\mathbb{E}[c] = c$$

1.3. Additivity

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

1.4. Multiplication by a Constant

$$\mathbb{E}[cX] = c\mathbb{E}[X]$$

1.5. Law of the Unconscious Statistician

$$\mathbb{E}[g(x)] = \sum_{x} g(x)P(X = x) \quad \text{for discrete random variables}$$

$$\mathbb{E}[g(x)] = \int_{-\infty}^{\infty} g(x)f(x)dx \quad \text{for continuous random variables}$$

1.6. Expectation of a Sum

$$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$$

2. Properties of Conditional Expectation

- 1. Linear Operator: $\mathbb{E}(X + Z|g) = \mathbb{E}(X|g) + \mathbb{E}(Z|g)$
- 2. $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(X|g)) = \mathbb{E}(X)$
- 3. if $g = \{\emptyset, \Omega\}, \mathbb{E}(X|g) = \mathbb{E}(X)$

(no information)

4. if
$$g = \mathcal{F}$$
, $\mathbb{E}(X|g) = \mathbb{E}(X|\mathcal{F}) = X$ (full information)

- 5. if $X \in g$, $\mathbb{E}(X|g) = X$
- 6. if $Z \in g$, $\mathbb{E}(ZX|g) = Z\mathbb{E}(X|g)$
- 7. Tower Property (law of iteratied conditional expectation) $g_0 \le g \quad \mathbb{E}(\mathbb{E}(X|g)|g_0) = \mathbb{E}(X|g_0)$
- $g_0 \le g$ $\mathbb{E}(\mathbb{E}(X|g_0)|g) = \mathbb{E}(X|g_0)$ 8. if X is independent of g $\mathbb{E}(X|g) = \mathbb{E}(X)$
- 9. Jensen Inequality

if
$$f(\cdot)$$
 is convex, then $f(\mathbb{E}(X|g)) \leq \mathbb{E}(f(x)|g)$

3. <u>Properties of Variance</u>

$$\begin{split} Var(X) &= \mathbb{E}[X^2] - \mathbb{E}^2[X] \\ Var(cX) &= c^2 Var(X) \\ \mathbb{E}[XY] &= \mathbb{E}[X]\mathbb{E}[Y] + Cov(X,Y) \\ Var(X+Y) &= Var(X) + Var(Y) + 2Cov(X,Y) \\ Var(X-Y) &= Var(X) + Var(Y) - 2Cov(X,Y) \\ Cov(X,Y) &= 0 \ if \ X \ and \ Y \ are \ independent \end{split}$$

4. Probability Density (Mass) Functions

$$PDF_{Gaussian} = f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$PMF_{Poisson} = f_X(x) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$PMF_{Bernoulli} = f_X(x) = \begin{cases} q = 1 - p & if \ k = 0 \\ p & if \ k = 1 \end{cases}$$

$$PDF_{Chi-Squared} = f_X(x) = \frac{1}{\Gamma(x/2)} x^{(k/2)-1} e^{-x/2}$$

5. Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(c) (x - c)^n$$

6. Moment Generating Function

$$M_X(k) = \int_{-\infty}^{\infty} e^{kx} f_X(x) dx = \mathbb{E}[e^{kx}]$$

wher

 $k = k^{th}$ moment, x = random variable $P_x = PDF$ of the randmom variable

$$M_X(k) = \mathbb{E}[e^{kx}] = \mathbb{E}\left[1 + kx + \frac{1}{2!}k^2x^2 + \frac{1}{3!}k^3x^3 + \cdots\right]$$

= 1 + $k\mathbb{E}[x] + \frac{1}{2!}k^2\mathbb{E}[x^2] + \frac{1}{3!}k^3\mathbb{E}[x^3] + \cdots$ for $\mu = 0$

6.1. Gaussian Distribution

$$M_{x}(k) = e^{k\mu + \frac{1}{2}\sigma^{2}k^{2}}$$

6.2. Poisson Distribution

$$M_{r}(k) = e^{\lambda(e^{k}-1)}$$

6.3. Bernoulli Distribution

$$M_{r}(k) = q + pe^{k}$$

6.4. Chi-Squared Distribution

$$M_r(k) = (1-2t)^{-k/2}$$
 for $0 < t < \sqrt{e}$

6.5. First Two Raw Moments of the Gaussian Distribution

$$\frac{\partial M_{\chi}(k)}{\partial k} = e^{k\mu + \frac{1}{2}\sigma^2 k^2} (\mu + \sigma^2 k) = \mu = \mathbb{E}[X] \quad for \ k = 0$$

$$\frac{\partial^2 M_X(k)}{\partial^2 k} = (\mu + \sigma^2 k)^2 e^{k\mu + \frac{1}{2}\sigma^2 k^2} + \sigma^2 e^{k\mu + \frac{1}{2}\sigma^2 k^2}$$
$$= \mu^2 + \sigma^2 = \mathbb{E}^2[X] + Var(X) \quad \text{for } k = 0$$

7. Stochastic Process Definitions

7.1. Martingale

A stochastic process $X = (X_t : t \ge 0)$ is a martingale relative to (\mathbb{F}, \mathbb{P}) if:

- 1. $\mathbb{E}|X_t| < \infty \quad \forall \ t \geq 0$;
- 2. $\mathbb{E}(X_t|\mathbb{F}_s) = X_s \quad \forall s \leq t$

therefore:

$$\mathbb{E}(X_t - X_s | \mathbb{F}_s) = 0 \quad \forall \ s \le t$$

7.2. Brownian Motion

The process $W := \{W_t : t \ge 0\}$ on $(\Omega, \mathbb{F}, \mathbb{F}_t, \mathbb{P})$ is called a standard brownian motion if:

- 1. $W_0 = 0$
- 2. $W_t W_s$

is independent of the past history of W unitl time $s \forall s \le t$

- 3. $W_t W_s \stackrel{D}{\Leftrightarrow} W_{t-s} \sim N(0, t-s) \quad \forall \ 0 \le s \le t$
- 4. W has continuous sample paths
- 5. $W_t \stackrel{D}{\Leftrightarrow} Z\sqrt{t} \quad Z \sim N(0,1)$
- $6. \quad tW_{\frac{1}{t}} = W_t$

Page 76

5.2 Itô processes and stochastic calculus

Definition 37 (Itô processes) Let W be a one dimensional standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}_t)$. A one dimensional Itô process is a stochastic process X on $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}_t)$ of the form

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s,$$
 (15)

where X_0 is a \mathbb{F}_0 -measurable random variable, b_t is a \mathbb{F}_t -adapted process such that

$$\int_0^t |b_s| \, ds < \infty \ a.s. \ \forall t \ge 0,$$

 σ_t is a \mathbb{F}_t -adapted process such that

$$\int_0^t |\sigma_s|^2 \, ds < \infty \ a.s. \ \forall t \ge 0.$$

The shorthand notation for the above is

$$dX_t = b_t dt + \sigma_t dW_t,$$

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t.$$

$$W_t =
ho X_t + \sqrt{1-
ho^2} B_t$$

5.2 Itô processes and stochastic calculus

Definition 37 (Itô processes) Let W be a one dimensional standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}_t)$. A one dimensional Itô process is a stochastic process X on $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}_t)$ of the form

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \tag{15}$$

where X_0 is a \mathbb{F}_0 -measurable random variable, b_t is a \mathbb{F}_t -adapted process such that

$$\int_0^t |b_s| \, ds < \infty \ a.s. \ \forall t \ge 0,$$

 σ_t is a \mathbb{F}_t -adapted process such that

$$\int_0^t |\sigma_s|^2 ds < \infty \ a.s. \ \forall t \ge 0.$$

The shorthand notation for the above is

$$dX_t = b_t dt + \sigma_t dW_t,$$

8. Pricing, Risk, & Hedging

8.1. Put-Call Parity

$$C_0 + ke^{-r_{\Delta t}} = P_0 + S_0$$

8.2. Binomial Option Pricing

8.2.1.Cox-Ross-Rubinstein (1979)

$$u = e^{\sigma \sqrt{\Delta t}}$$

$$d = 1/u$$

8.2.2.Log-Normal Tree (Jarrow and Rudd, 1983)

$$u = e^{\left(r - \frac{\sigma^2}{2}\right)\Delta t + \sigma\sqrt{\Delta t}}$$

$$d = e^{\left(r - \frac{\sigma^2}{2}\right)\Delta t - \sigma\sqrt{\Delta t}}$$

8.2.3.Risk Neutral Probability

$$\hat{p}_{UP} = \frac{e^{(rT)} - d}{u - d}$$

$$\hat{p}_{DOWN} = \frac{u - e^{(rT)}}{u - d} = 1 - \hat{p}_{UP}$$

8.2.4.Binomial Option Pricing Payoffs

$$C_N^i = \max(S_0 u^{N-i} d^i - K, 0)$$

where N = periods to maturity, $i = state \ 0 \le i \le N$, u = up movement, d = down movement

$$P_N^i = max(k - S_0 u^{N-i} d^i, 0)$$

where N = periods to maturity, $i = state \ \forall \ 0 \le i \le N$, u = up movement, d = down movement

8.2.5.European Options Risk Neutral Valuation (2 Period)

$$C_0 = e^{-r_{\Delta t}N}(\hat{p}^2 C_N^0 + 2\hat{p}(1-\hat{p})C_N^1 + (1-\hat{p})^2 C_N^2)$$

8.2.6.European Options Risk Neutral Valuation (No Dividends)

$$C_{0}, P_{0} = e^{-r_{\Delta t}N} \sum_{\substack{i=0\\N!}}^{N} \left(\left(C_{N}^{i}, P_{N}^{i} \right) {N \choose i} \hat{p}^{N-i} (1 - \hat{p})^{i} \right)$$

where $\binom{N}{i} = \frac{N!}{i! (N-i)!}$, N = periods to maturity, $i = state \ 0 \le i \le N$, k = strike price

8.3. Hedging with Derivatives

8.3.1. Hedging a Long Position with Futures

$$S_0 \cong S_1 + (F_0 - F_1) = F_0 + (S_1 - F_1) = F_0 - basis \ for F_t \cong S_t$$

8.3.2. Hedging a Short Position with Futures

$$S_0 \cong S_1 - (F_1 - F_0) = F_0 + (S_1 - F_1) = F_0 - basis \text{ for } F_t \cong S_t$$

8.3.3. Minimum Variance Hedge Ratio

$$N_F = -rac{V_p}{V_F}eta_p \quad where \ eta_p = rac{\sigma_{R_p,R_m}}{\sigma_{R_m}^2}$$

8.3.4.Leveraging Beta

$$N_F = rac{V_p}{V_F} ig(eta_d - eta_pig)$$
 where $eta_p = rac{\sigma_{R_p,R_m}}{\sigma_{R_m}^2}$, $eta_d = desired eta$

8.3.5.Single Index Model (SIM)

$$R_p = \alpha + \beta_p R_m + \varepsilon_p$$

8.3.6.Capital Asset Pricing Model (CAPM)

$$R_n - r = \alpha + \beta_n (R_m - r) + \varepsilon_n$$

8.3.7.Risk

$$\beta_p R_m, \beta_p (R_m - r) = Market (Systematic) Risk$$

 $\varepsilon_p = Specific (Idiosyncratic) Risk$

9. <u>Linear Regression Analysis</u>

9.1. Assumption 1

$$E(\varepsilon)=0$$

$$E(\varepsilon\varepsilon') = Var(\varepsilon) = \sigma^2 I = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$$

9.2. Assumption 2

$$E(X'\varepsilon)=0$$

9.3. Assumption 3

$$rank(X'X) = rank(x) = k$$

9.4. Ordinary Least Squares Estimator

$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$(X'X)^{-1}X' = P_x : R^T \to R^K$$

$$\hat{\beta} = P_x Y$$