Vedant Rajeon Manaelik Asu ID - 1222505793

Homework - 03

Problem 01

$$P_{12} = P_{12} + P_{13} + P$$

Consider the following

	<u> </u>				
	a,	al	Q3		
Water	8.07131	1730.62	233.426		
1,4 dioxare	7.43155	1554,679	240.337		

$$P_{\text{water}}^{\text{Sqf}} = \frac{(8.07131 - \frac{1730.63}{20 + 233.426})}{20 + 233.426}$$

$$P_{dioxage}^{Sat} = (7.43155 - \frac{1554.679}{20 + 240.337})$$

$$P = \times_{1} e \times P \left(A_{12} \left(\frac{A_{21} \times 2}{A_{12} \times_{1} + A_{21} \times_{2}} \right) \right)^{2} (17.47)$$

$$+ \times_{2} e \times P \left(A_{21} \left(\frac{A_{12} \times_{1}}{A_{12} \times_{1} + A_{21} \times_{2}} \right) \right)^{2} (28.82409)$$

```
#Homework 03
#Problem 01
import torch as t
from torch.autograd import Variable
import numpy as np
import math as m
from matplotlib import pyplot
import matplotlib
import matplotlib.cm as cm
import matplotlib.pyplot as plt
x_1 = np.array([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
x_2 = -x_1+1
Data p=np.array([28.1,34.4,36.7,36.9,36.8,36.7,36.5,35.4,32.9,27.7,17.5])
water_Psat = 17.469999884208
dioxane Psat = 28.824099527402
# Gradeint Descent
x = Variable(t.tensor([0.7, 0.3]), requires_grad=True)
#step Size
a = 0.001
for i in range(100):
    for i in range(0,11):
        obj = (((x_1[i]*t.exp(x[0]*((x[1]*x_2[i]))/(x[0]*x_1[i]+x[1]*x_2[i]))**2)*water_Psat)
        obj.backward()
    x.grad.numpy()
    with t.no_grad():
       x -= a * x.grad
       x.grad.zero ()
print(x.data.numpy())
print(obj.data.numpy())
r = []
for i in range(0,11):
  P_{\text{optimized}} = ((x_1[i] * m. exp(x[0] * ((x[1] * x_2[i]) / (x[0] * x_1[i] + x[1] * x_2[i])) * * 2) * water_Psat)
  #print("optimized p =",P optimized, "
                                             measured p =", Data p[i])
 #print("Error between optimuzed and measured P value =" , Data_p[i]-P_optimized)
  r.append(P optimized)
plt.plot(x 1,Data p)
plt.plot(x 1,r)
Гэ
```

[1.9586585 1.6894491] 0.0009000412

[<matplotlib.lines.Line2D at 0x7f17b0f67310>]

Colab paid products - Cancel contracts here

✓ 1s completed at 11:34 PM

×

from bayes_opt import BayesianOptimization

#Multiplying the function by -1 inorder to get the minimum value.

optimizer = BayesianOptimization(f=function,pbounds=pbounds,random_state=1)

optimizer.maximize(init_points=2,n_iter=20)
print(optimizer.max)

₽	iter	target	x_1	x_2
	1	0.265	-0.4979	0.8813
	2	-110.1	-2.999	-0.7907
	3	-0.4933	-0.3849	1.039
	4	-0.2833	1.599	-0.5696
	5	-162.9	3.0	2.0
	6	-47.77	0.3665	-2.0
	7	-150.9	3.0	-2.0
	8	-0.7638	0.4683	-0.02769
	9	-48.27	-2.043	2.0
	10	-2.236	1.314	0.6422
	11	-50.26	0.5766	2.0
	12	-52.97	-1.299	-2.0
	13	-1.06	-0.7025	-0.5363
	14	-7.993	2.197	0.07143
	15	-48.19	-0.8016	2.0
	16	-1.426	-1.507	0.2863
	17	-107.6	-3.0	1.181
	18	-2.305	1.361	-0.01254
	19	0.03573	0.4022	0.7855
	20	0.217	0.5131	-0.8858
	21	-1.746	-0.8282	0.09644
	22	-0.8247	-1.335	0.9693

{'target': 0.2650082867644827, 'params': {'x_1': -0.4978679717845562, 'x_2': 0.88129797

https://colab.research.google.com/drive/1R1teN7LDqTIGAvdbqvYK2Lml-cjTFbe5?authuser=1#printMode=true