밑바닥부터 시작하는 딥러닝1

4장. 신경망 학습

2024. 04. 09

신경망 학습

• 특징: 데이터 주도 학습

○ ML: 사람이 특징 추출에 개입

○ DL: 학습과정의 처음부터 끝까지 사람 개입 X

• 오버피팅 (overfitting): 한 데이터셋에 지나치게 최적화된 상태

손실함수 (loss function)

- 신경망 성능의 '나쁨'을 나타내는 지표
- 신경망 훈련 목표: 손실을 최소화 하는 것
- 대표적 손실함수
 - 『표적 근실업도 \circ **평균 제곱 오차** (Mean Squared Error, MSE) $E = \frac{1}{N} \sum_{i}^{N} (y_i \hat{y}_i)^2$

$$E = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

o 교차 엔트로피 오차 (Cross Entropy Error, CEE

$$E = -\sum_{i}^{class} y_i \cdot log \, \hat{y}_i$$

손실함수 (loss function)

회귀

○ 평균 제곱 오차 (Mean Squared Error, MSE)

$$E = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

분류

○교차 엔트로피 오차 (Cross Entropy Error, CEE)

$$E = -\sum_{i}^{class} y_i \cdot log \, \hat{y}_i$$

예

	개	고양이 닭		곰	
у	1	0	0	0	
y_hat	0.8	0.1	0.0	0.1	

손실: $E = -(1 \cdot log(0.8))$

- 데이터의 일부를 추려 전체의 '근사치'로 학습에 사용 ○ 예) 데이터 60,000개 중 무작위 100개만 사용
- 데이터가 N개일 때, 전체 훈련 데이터에 대한 Cross Entropy Error

$$E = -\frac{1}{N} \sum_{n}^{N} \sum_{i}^{class} y_{n,i} \cdot \log \hat{y}_{n,i}$$
기존 수식

- n: 전체 데이터 N개 중 n번째
- k (=클래스 개수): n번째 데이터의 k번째 클래스의 확률값
- 1/N: 평균 손실 구하기 위함

경사 하강법 (Gradient Descent method)

- 미분 (기울기)를 이용해 <u>손실함수의 최솟값</u>을 찾는 방법 ○기울기가 0일때가 최적의 파라미터(W, b)
 - 단, 항상 그런 것은 아님

Loss Function for some Machine Learning Model

경사 하강법 (Gradient Descent method)

- 예시) 딥러닝의 학습 과정을 하나씩 따라가보자
 - 풀어야 할 회귀 문제: y=3x
 - 식의 형태가 y=w·x 라고 했을 때 딥러닝이 찾아야될 가중치 w=?
 - w=1 부터 시작해보자

y y_hat	3	6	9		3N
V	3	6	9		3N
x	1	2	3	•••	N

- ightharpoonup 사용할 손실함수: $E = \frac{1}{N} \sum_{i}^{N} (y_i \hat{y}_i)^2$
- ▶ 계산해보자:

$$E = \frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2$$

경사 하강법 (Gradient Descent method)

- 미분 방법
 - 해석적 미분:
 - 수치적 미분:

$$\epsilon = 0.1$$

i) w+ ϵ = 1.1

Х	1	2	3	•••	N
у	3	6	9	•••	3N
y_hat	1.1	2.2	3.3	•••	1.1N

••\		\sim
ii)	W-∈=	0.9
11/	VV C—	\mathbf{O}

х	1	2	3	•••	N
у	3	6	9	•••	3N
y_hat	0.9	1.8	2.7	•••	0.9

확률적 경사하강법 Stochastic Gradient Descent

- 데이터를 미니 배치로 묶은 후 무작위 선정하는 방식
- 예)
 - ① 데이터셋 shuffle

② 미니배치로 묶기

③ 미니배치 단위로 무작위 선정하여 경사하강법에 사용 (= 확률적 경사하강법)

