Министерство науки и высшего образования Российской Федерации Московский Физико-технический институт (Государственный Университет) Физтех-школа прикладной математики и информатики Кафедра технологий цифровой трансформации

Выпускная квалификационная работа

"Развитие инструментов предиктивной аналитики в

целях повышения эффективности мониторинга

проектов в сфере жилищного строительства"

Студента 2-го курса Ефремова Сергея Владимировича

Научный руководитель кандидат экономических наук, доцент Помулев A. A.

#### Аннотация

Рассматривается задача улучшения инструментов предиктивной аналитики, использующихся при мониторинге проектов в сфере жилищного строительства. Исследованы предложенные ранее схемы решения этой проблемы, на основе изученных материалов разработан подход по улучшению оценки вероятности просрочки выплаты займа застройщиком на основании отчетности, публикуемой в открытом доступе и уровне зависимости от импортируемых комплектующих и материалов. Предложен, реализован и протестирован алгоритм, основанный на алгоритмах нейросетевого обучения с использованием чисел Шепли.

# Содержание

| 1 | Введение                     |                                                                     | 4          |
|---|------------------------------|---------------------------------------------------------------------|------------|
|   | 1.1                          | Цели и задачи работы                                                | 5          |
| 2 | Пос                          | становка задачи                                                     | 7          |
|   | 2.1                          | Мониторинг проектов                                                 | 7          |
|   | 2.2                          | Эффективность мониторинга                                           | 8          |
|   | 2.3                          | Предиктивная аналитика                                              | S          |
| 3 | Обзор действующей практики   |                                                                     | 11         |
|   | 3.1                          | Анализ существующих проектов                                        | 11         |
|   |                              | 3.1.1 Проект 1                                                      | 11         |
|   |                              | 3.1.2 Проект 2                                                      | 11         |
|   | 3.2                          | Текущее состояние финансирования в сфере жилищного строительства .  | 11         |
|   |                              | 3.2.1 Ключевой топик 1                                              | 11         |
|   |                              | 3.2.2 Ключевой топик 2                                              | 11         |
|   | 3.3                          | Процесс мониторинга проектов и методы оценки коммерческим банком .  | 11         |
|   | 3.4                          | Типы моделей предиктивной аналитики и их применение в кредитном     |            |
|   |                              | процессе                                                            | 11         |
| 4 | Формальная постановка задачи |                                                                     | 12         |
|   | 4.1                          | Ключевые проблемы процесса мониторинга проектов                     | 12         |
|   | 4.2                          | Возможности внедрения с учетом консервативности и систем безопасно- |            |
|   |                              | сти банка                                                           | 12         |
| 5 | Описание модели              |                                                                     | 13         |
|   | 5.1                          | Этап предобработки данных                                           | 13         |
|   | 5.2                          | Ядро модели                                                         | 13         |
| 6 | Результаты работы алгоритма  |                                                                     | <b>1</b> 4 |
|   | 6.1                          | Пример полученных результатов - ключевые атрибуты                   | 14         |
|   | 6.2                          | Сравнение результатов с другими методами                            | 14         |
|   | 6.3                          | Сравнение результатов с оценкой предложенной метрики качества       | 14         |
| 7 | Экс                          | Экономический эффект от внедрения модели                            |            |
| 8 | Зак                          | лючение                                                             | 16         |

## 1 Введение

#### 1.1 Цели и задачи работы

**Цель и задачи исследования.** Целью исследования является построение модели предиктивной аналитики, которая позволит повысить эффективность процесса мониторинга проектов коммерческим банком в сфере жилищного строительства и улучшить качество прогнозирования вероятности просрочки платежа по сравнению с существующими моделями. Для реализации этой цели были поставлены следующие задачи:

- изучить определение понятий: «мониторинг», «эффективность мониторинга», «предиктивная аналитика» для использования в настоящем исследовании;
- провести анализ существующих проектов и динамики их развития в сфере жилищного строительства;
- ознакомиться с текущим состоянием финансирования проектов в сфере жилищного строительства и нормативно-правовой базой;
- изучить процесс мониторинга проектов и методы их оценки коммерческим банком;
- исследовать типы моделей предиктивной аналитики и их применение в кредитном процессе;
- выделить основные проблемы процесса мониторинга проектов и определить возможности их решения с использованием инструментария предиктивной модели
- разработать алгоритм внедрения разработанного инструментария в бизнеспроцесс мониторинга
- рассчитать экономический эффект от внедрения модели

Научная новизна. Используется нейросетевой подход к определению вероятности банкротства заемщика с выделением признаков, вносящих максимальный вклад с помощью, чисел Шепли. В работе предлагается коэффициент, позволяющий оценить зависимость застройщика от импортных комплектующих и материалов, а также уровень потенциального риска, обусловленного политическими ограничениями.

**Методы исследования.** Алгоритмы реализованы на языке программирования Python с использованием библиотек |||.

**Практическая ценность.** Полученная модель может быть использована в качестве встраиваемого модуля. Например, с её помощью можно:

- корректировать оценку вероятности просрочки платежа застройщиком, учитывая его зависимость от импортируемых компонентов;
- дополнять существующие системы мониторинга объектов строительства показателем уровня зависимости от импортных компонентов и моделью оценки наиболее важных показателей, влияющих на просрочку.

## 2 Постановка задачи

### 2.1 Мониторинг проектов

изучить определение понятий: «мониторинг», «эффективность мониторинга», «предиктивная аналитика» для использования в настоящем исследовании

Мониторинг проекта - процесс измерения показателей выполнения проекта, сбора данных об исполнении проекта, информационного обслуживания управления проектом с целью выявления его соответствия желаемому результату и плану, с последующим представлением и распространением полученных данных.

Под контролем проекта понимается процесс сравнения фактических значений контрольных показателей с запланированными, последующего анализа отклонений, оценки тенденций и прогнозирования возможных альтернатив, разработки корректировок хода реализации проекта для улучшения прогноза.

Основными целями контроля и мониторинга инвестиционных проектов можно считать обеспечение:

- своевременного достижения целей проекта с учетом согласованной стоимости;
- срочности, возвратности, платности и целевого использования предоставляемых банком кредитных ресурсов для финансирования проекта;
- своевременного информирования руководства банка о выявленных проблемах, прогнозирования рисков реализации проекта и разработка мер по их снижению;
- достижения заложенных в проекте показателей социально-экономической эффективности.

Чаще всего при реализации проектов в сфере жилищного строительства выделяют следующие виды мониторинга:

- мониторинг хода реализации инвестиционного проекта (сроков выполнения работ, бюджета проекта, расчетного времени окончания работ и расчетной стоимости проекта, организация технадзора и контрольных проверок);
- финансовый мониторинг (финансово-экономического состояния заемщика, исполнителя проекта, поручителей, гарантов, обеспечения по кредиту/кредитной линии; денежного потока, коэффициентов покрытия, целевого использования средств, исполнения заемщиком обязательств перед банком);
- мониторинг эффективности инвестиционного проекта (показателей, которые предусмотрены положением об экспертизе проектов банка).

Такое разделение обуславливается необходимостью не только контролировать текущую операционную деятельность, ведущуюся по проекту, исполнение финансовых обязательств участниками проекта и целевое использование средств, но и конечные результаты этой деятельности, которые выражаются в достижении целей проекта и достигнутой социально-экономической значимости.

Основными элементами систем мониторинга инвестиционных проектов являются:

- финансовая, техническая и иная отчетность заемщика;
- экспертные оценки банковских специалистов по направлениям реализации проекта, независимые эксперты (технический надзор, финансовый аудит);
- календарно-сетевые графики работ, расчеты сроков ввода объекта в эксплуатацию и суммарной стоимости работ;
- данные автоматизированных информационных систем мониторинга инвестиционных проектов.

Последние и будут рассмотрены в первую очередь в данной работе. Ключевые этапы мониторинга проектов:

- этап подготовки проекта (начинается с момента одобрения займа/кредитной линии и заканчивается выделением финансовых средств);
- инвестиционная стадия проекта (непосредственное финансирование проекта);
- этап эксплуатации (следует до полного исполнения заемщиком платежных обязательств перед банком).

## 2.2 Эффективность мониторинга

Построением эффективных систем мониторинга занимались многие исследователи Д. Боуэр, Дж.Филлипс, Р.Фартел, Х.Керцнер[здесь будут ссылки на литературу]. Мониторинг в современных реалиях представляет из себя комплексную функцию проектного управления, в которую входит процедуры сбора, анализа и передачи информации о ходе реализации проекта, которая позволяет решить проблему своевременного принятия решений по проекту.

Основные задачи, которые решают системы мониторинга:

- определение совокупности отслеживаемых индикаторов;
- организация обработки и агрегирования полученной информации;

- генерация текущей отчетности по проекту;
- интеграция функции мониторинга в информационную архитектуру предприятия, реализующего проект.

Принятие управленческих решений о формировании и развитии системы мониторинга проектов, о требуемом кадровом, техническом и финансовом обеспечении неизбежно связано с дополнительными затратами. Однако, потенциальные угрозы от финансирования убыточных или высокорисковых проектов также способны привести к значительным издержкам. Все это остро ставит вопрос о необходимости эффективного мониторинга проектов.

Основными подходами к изучению эффективности проектов являются:

- целевой (предполагает анализ степени достижения целевых значений показателей);
- динамический (учитывает скорость изменения исследуемых показателей во времени и относительно друг друга);
- затратный (основан на сопоставлении затрат и результатов);
- ресурсный (исследует степень рациональности расходования ресурсов).

### 2.3 Предиктивная аналитика

Предиктивной аналитикой или продвинутой аналитикой называют ряд аналитических и статистических методов прогнозирования действий и поведения в будущем. В основе лежат статистические модели, позволяющие находить закономерности в исторических и транзакционных данных, что позволяет выделять потенциальные риски и возможности. Ключевые этапы составляющие процесс предиктивного анализа: подключение к данным, анализ и визуализация результатов исследований, развитие предложений и моделей данных, применение предиктивных моделей, оценка и прогнозирование будущих результатов.

В основе предиктивной аналитики лежит выявление связей между данными историческими и прогнозными результатами на их основе. Верхнеуровнево алгоритмы предиктивного анализа можно разделить на контролируемое и неконтролируемое обучение.

Контролируемое обучение принято разделять на две ключевые категории: регрессию для количественных ответов и классификацию для определения фактической принадлежности ответа к той или иной группе.

Неконтролируемое обучение применяется для получения выводов из входных данных без разметки. Наиболее распространенный вид такого анализа - кластеризация, которую используют для поиска скрытых закономерностей в данных.

- 3 Обзор действующей практики
- 3.1 Анализ существующих проектов
- 3.1.1 Проект 1
- 3.1.2 Проект 2
- 3.2 Текущее состояние финансирования в сфере жилищного строительства
- 3.2.1 Ключевой топик 1
- 3.2.2 Ключевой топик 2
- 3.3 Процесс мониторинга проектов и методы оценки коммерческим банком
- 3.4 Типы моделей предиктивной аналитики и их применение в кредитном процессе

- 4 Формальная постановка задачи
- 4.1 Ключевые проблемы процесса мониторинга проектов
- 4.2 Возможности внедрения с учетом консервативности и систем безопасности банка

- 5 Описание модели
- 5.1 Этап предобработки данных
- 5.2 Ядро модели

- 6 Результаты работы алгоритма
- 6.1 Пример полученных результатов ключевые атрибуты
- 6.2 Сравнение результатов с другими методами
- 6.3 Сравнение результатов с оценкой предложенной метрики качества

7 Экономический эффект от внедрения модели

## 8 Заключение

## Список литературы

- [1] Adam M., Rossant F. et al. Eyelid localization for iris identification // Radioengineering. 2008. Vol. 17, no. 4. Pp. 82–85.
- [2] Adam M., Rossant F. et al. Reliable eyelid localization for iris identification // Advanced Concepts for Intelligent Vision Systems Conference Proceedings.— 2008.— Pp. 1062— 1070.
- [3] Ballard D. Generalizing the hough transform to detect arbitrary shapes // Pattern Recognition. 1981. Vol. 13, no. 2. Pp. 111–122.
- [4] Canny J. A computational approach to edge detection // IEEE Trans. Pattern Anal. Mach. Intell. 1986. Vol. 8, no. 6. Pp. 679–698.
- [5] Daugman J. High confidence visual recognition of persons by a test of statistical independence // IEEE Transactions on Pattern Analysis and Machine Intelligence.—
  1993. Vol. 15, no. 11. Pp. 1148–1161.
- [6] Daugman J. The importance of being random: statistical principles of iris recognition //
  Pattern Recognit. 2003. Vol. 36. Pp. 279–291.
- [7] Daugman J. How iris recognition works // IEEE Trans. Circuits Syst. Video Techn.— 2004.— Vol. 14.— Pp. 21–30.
- [8] Deans S. The radon transform and some of its applications // New York: John Wiley and Sons. 1983.
- [9] Future challenges based on the multiple biometric grand challenge // NIST information access division: Multiple biometric grand challenge. 2010.
- [10] Kang B., Park K. A robust eyelash detection based on iris focus assessment // Pattern Recognition Letters.— 2007.— Vol. 28, no. 13.— Pp. 1630–1639.
- [11] Masek L. Recognition of human iris patterns for biometric identification // Measurement. 2003. Vol. 32, no. 8. Pp. 1502–1516.
- [12] Min T., Park R. Comparison of eyelid and eyelash detection algorithms for performance improvement of iris recognition // Conference (International) on Image Processings Proceedings. — 2008. — Pp. 257–260.
- [13] Multiple biometric evaluation // http://www.nist.gov/itl/iad/ig/mbe.cfm. 2009.

- [14] Multiple biometric grand challenge // http://www.nist.gov/itl/iad/ig/mbgc.cfm.—2007.
- [15] Wildes R. Iris recognition: an emerging biometric technology // Proceedings of the IEEE.—1997.—Vol. 85, no. 9.—Pp. 1348–1363.
- [16] Xiangde Z., Qi W. et al. Noise detection of iris image based on texture analysis // Chinese Control and Decision Conference Proceedings.— 2009.— Pp. 2366–2370.
- [17] Yang L., Wu T. et al. Eyelid localization using asymmetric canny operator //
  Conference (International) on Computer Design and Applications Proceedings.—
  2010.—Pp. 533–535.
- [18] Вельховер Е.С., Шульпина Н.Б., Алиева З.А. и др. Иридодиагностика // М.: Медицина. 1988. Р. 240.
- [19] Гонсалес Р., Вудс Р. Цифровая обработка изображений // Техносфера. 2012.
- [20] Дъяконов В.П. Справочник по алгоритмам и программам на языке бейсик для персональных ЭВМ // М.:  $Hay\kappa a.-$  1987.
- [21] Смирнов Д.А., Матвеев И.А. Определение границ век на изображении глаза методом активных контуров // Труды ИСА РАН, Динамика неоднородных систем.— 2006.— Vol. 25.— Pp. 200–207.
- [22] Соломатин И.А., Матвеев И.А., Новик В.П. Определение видимой области радужки классификатором текстур с опорным множеством // Автоматика и телемеханика. 2018. Рр. 127–143.