

介绍

HBASE定位

- HBASE是存储
- 基于HDFS
- 实时随机读写

HBASE特性

- 线性扩展
- 行操作的强一致性
- 自动分表
- 支持MapReduce
- Java, Thrift, REST-ful接口

HBASE基本性能参数

- 3台RegionServer.每台8G内存,8核
- 1亿行

	Row/s	MB/s	Row/s Per node	BigTable Row/s per node
随机写	14789	14.789	4930	8850
随机写 (noLog)	22180	22.180	7393	8850
随机读	1996	1.996	665	1212
顺序读	10678	10.678	3559	4425

目录

- HBASE模型
- 架构设计
- 使用技巧
- 运维技巧
- 测试分析

HBASE模型

Hbase数据模型

- Table
- Region
- ColumnFamily
- Row
- Column
- Version
- Value

HBASE操作

- Put
 - Delete
 - 原子操作
 - WAL
- Scan
 - Get
 - Filter
 - Cache/Batch
- 批量操作
- 行锁

HBASE架构设计

总体结构

- Master
 - Region之上的操作
 - Put/Get不经过Master
- RegionServer
 - Region之下的操作
- HDFS
 - HFile
 - HLog
- ZooKeeper
 - 状态信息

RegionServer结构

HFile结构

- DataBlock
 - 存储Key-Value
- MetaBlock(可选)
 - 存储BloomFilter
- DataBlockIndex
 - Key到Block Offset
- Read
 - 占用内存,加载缓慢
- Write

Total Size of Trailer: 4xLong + 5xInt + 8Bytes = 60 Bytes

Hfile性能测试

	none	gz	Izo
Write	20718	23885	55147
Full Scan	41436	94937	100000
Random Seek	600	989	956
Random Short Scan	12241	25568	25655

存储分布

- 寻找RegionServer
 - ZooKeeper
 - -- ROOT-(单Region)
 - .META.
 - 用户表

UserTable 1

Put/Get操作

- PUT
- DELETE
- GET
- SCAN

Region操作

- Flush MemStore
- Compact
- Major Compact
- Split

使用技巧

Schema设计

- Column Family的数量
 - 最好为1
- Key的设计
 - 避免单调递增
 - -最小化
- 最小化Column

Schema设计

- Column Family的数量
 - 最好为1
- Key的设计
 - 避免单调递增
 - -最小化
- 最小化Column

Schema设计

- Column Family的数量
 - 最好为1
- Key的设计
 - 避免单调递增
 - -最小化
- 最小化Column

MapReduce结合

- Mapper
 - Region数=Mapper数
- Reducer
 - Region数=Reducer数
 - Reducer写Hfile,再 BulkLoad
- Hive/Pig

建立索引

- 单列索引
- 组合索引
- Join?
 - Key <=> Kind:ID

Index	Key
Column:Value	Key
	单列索引

Index	Key
Column:Value/Column:Value	Key

组合索引

开发调优

- Table属性
 - BlockSize
 - BloomFilter
 - BlockCache
 - InMemory
- 尽可能使用Bulk Load
- Put使用客户端Cache
- Scan使用Cache/Batch

运维技巧

HBASE 部署

- Hadoop版本
 - Hadoop 0.20.x
 - Append补丁
- ZooKeeper
- Metric
- 内存
 - RegionServer 12GB
 - MemStore <=40%
 - HFile DataIndex
 - BlockCache <= 20%
 - Master 4GB
 - ZooKeeper 1GB

Region管理

- 预创建Region
- Region的大小
 - hbase.hregion.max.filesize=256MB,1GB,4GB
 - 手动Split,交错负载
- Region合并
 - hbase.hstore.compactionThreshold=3
 - hbase.hstore.blockingStoreFiles=7(阻塞,超时)
 - hbase.hstore.compaction.max=10
 - hbase.hregion.majorcompaction=86400,0
- MemStore Flush
 - hbase.regionserver.global.memstore.upperLimit
 - hbase.regionserver.global.memstore.lowerLimit

运维调优

- Java GC
 - JVM GC调整(ParNewGC+CMS)
 - Full GC-10s/GB
 - MemStore本地分配(2MB,减少碎片)
- LZO压缩
 - 压缩单位为Block
 - 提高性能
- 并发数调整
 - hbase.regionserver.handler.count
- Cache设置
 - hfile.block.cache.size

测试分析

随机Get测试

• Get波动不是很大

Put测试

Performance Test for Insert Rows (Batch = 500)

Insert Speed (Zookeeper: gms02,gms06,gms10)

- Put有波动
- Region操作导致阻塞

Put测试

- Client重试波动
- HLog拖慢速度
- Split波动
- Compact波动

不同Server参数下写速度的对比

