Skład grupy:

Spodządził: Maciej Oziębły

Paweł Ruszkiewicz

Michał Bartkowski

Notatka służbowa

Temat laboratorium: Sieć Profibus DP - Master z oddalonymi kasetami wejść/wyjść.

Oprogramowanie

Do pracy w laboratorium wykorzystaliśmy oprogramowanie STEP7 SP2 v. 5.5

Sprzet

Wykorzystaliśmy następujące jednostki centralne:

- Siemens Simantic s7-300
- VIPA 353-1DP01 (DPV0)
- VIPA 253-1DP01(DPV0)
- VervaMax
- BL20-GW-V1 TURCK

Jednostki były podłączone w następującej konfiguracji w sieci PROFIBUS:

Konfiguracja modułu Siemens Siemantic s7-300 (modułu głównego):

Slot	Module Module	Order number	Firmware	MPI address	Laddress	Q address
1	PS 307 2A	6ES7 307-1BA00-0AA0				
2	CPU 315-2 DP	6ES7 315-2AF00-0AB0		6		
X2	■ DP				1023**	
3						
4	■ DI16xDC24V	6ES7 321-1BH00-0AA0			01	
5	A14/A02x8/8Bit	6ES7 334-0CE00-0AA0			272279	272275
6	■ A04x12Bit	6ES7 332-5HD00-0AB0				288295
7	DI16xDC24V	6ES7 321-1BH00-0AA0			1213	
8	D08xRelay	6ES7 322-1HF80-0AA0				16

Konfiguracja modułu VIPA 353:

	Slot	■ DPID	Order Number / Designation	LAddress	Q Address
1	1	4	Config for Slot1		
ı	2	4	Config for Stat2		
ı	3	4	Config for Slot3		
ı	4	194	6ES7 334-0CE00-0AA0 4AE/2AA	256263	256259
ı	5	194	6ES7 323-1BH00-0AA0 8DX	2	0
ı	C				

Konfiguracja modułu VIPA 253:

	Slot	■ DPID	Order Number / Designation	LAddress	Q Address
1	0	68	221-1BF00 D18xDC24V	3	
ı	1	132	222-1BF00 D 08xD C24V		1
	_				

Konfiguracja modułu BL-GW-V1 TURCK:

Slo	DPID	Order Number / Designation	LAddress	Q Address
1	195	BL20-1 CNT-24VDC(C)	264271	260267
2	131	BL20-4D0-24VDC-0.5A-P		2
3	67	BL20-E-8DI-24VDC-P	4	

Konfiguracja modułu VersaMax:

	Slot	■ DPID	Order Number / Designation	LAddress	Q Address
1	0	16DX	VersaMax Profibus NIU	67	45
ı	1	192	16pt In/8pt Out	89	6
ı	2	4.4.1	4ch Analog In	284291	
п	$\overline{}$				

W celu dodania kaset do modułów trzeba dodać moduł do sieci PROFIBUS, a następnie wejść w "HW Config" dodanej jednostki i wyszukiwać na liście jej kasety (warto użyć filtra, bo przyspiesza to poszukiwanie).

Trzeba pamiętać, żeby po stworzeniu konfiguracji przy zapisie wybrać opcję "save and compile". Inaczej program zapisze się, ale zmiany nie zostaną wprowadzone.

Co ciekawe urządzenia w sieci można dodawać w kilku miejscach. W HW Config – standardowym miejscu tworzenia konfiguracji – lub w NetPro. Po dodaniu modułów w dowolnym z tych miejsc zmiany są widoczne od razu w całym programie.

Przy adresacji wejść trzeba pamiętać, że odwzorowanie wejść w układzie jest dostępne tylko dla adresów mniejszych od 128 (dla tego Siemens Siemantic s7-300 – dla innych ta wartośćmoże być inna). W niektórych sytuacjach warto zastanowić się czy nie opłaca się zmienić domyślnych adresów nadawanych przez oprogramowanie tak, aby były one mniejsze od progowej wartości, gdyż odwzorowanie wejść bardzo pomaga w pracy i powinno być dostępne dla kluczowych układów.

Oprogramowanie układu

W celu sprawdzenia poprawności naszej konfiguracji sprzętowej napisaliśmy prosty program włączający diody w kilku miejscach sali po odebraniu odczytu z sensora odległości w sterowniku TURCK:

Dalsza część programu miała za zadanie odczyt wartości z 2 urządzeń pomiarowych w standardzie 4-20mA symulowanych przez zadajniki prądowe:

Przesyłanie programu do sterowanika:

W celu przesłania programu do sterownika wykorzystaliśmy port COM. Po podłączeniu kabla do sterownika i komputera znaleźliśmy w "Menagerze urządzeń" komputera numer portu, który został podłączony ("COM 3") i ustawiliśmy tą wartość w ustawieniach sieci w programie STEP7.

Mieliśmy sporo problemów z przesłaniem programu, ponieważ co chwilę pojawiał się nam komunikat mówiący o przerwaniu połąćzenia i nieudanej transmisji programu . W takim przypadku należy sprawdzić czy komunikat ten pojawia się już po przesłaniu danych do sterownika – jeśli tak było nie należy się zrażać i po prostu sprawdzić czy program działa na sterowniku. Prawdopodobnie wszystko będzie w porządku, ponieważ komunikat ten występuje także w sytuacji, kiedy sterownik traci synchronizację z komputerem po wgraniu do swojej pramięci nowego orpgorwamowania.

Po przesłaniu programu okazało się, że aplikacja nie reaguje na zmiany na jednym z zadajników prądowych – okazało się, żę nasz adres był źle ustawiony, dało nam to nauczkę, że trzeba dokładnie sprawdzać adresy urządzeń przy wprowadzaniu ich do programu.

Gdy poprawiliśmy ten adres wzsystkie urządzenia działały tak jak powinny – diody reagowały na zmianę sygnału na sensorze odległości, a w programie widoczne były zmiany na obu zadajnikach prądowych.