# Supervised Machine Learning: Regression Time Series Prediction

- Time series is a sequential set of data points, measured typically over successive times
- Time series data are simply a collection of observations gathered over time
- Time series is a time oriented sequence of observations on a variable of interest
- It is clearly structured and numeric in nature
- Time series data is collected at some intervals
  - These intervals can be as large as years or as small as seconds
- Example:
  - Weekly sales time interval is week
  - Daily temperature in Kamand time interval is day

- Time series is a sequential set of data points, measured typically over successive times
- Time series data are simply a collection of observations gathered over time
- Time series is a time oriented sequence of observations on a variable of interest
- It is clearly structured and numeric in nature
- Example:
  - Weekly sales time interval is week
  - Daily temperature in Kamand time interval is day
- Time series data is collected at some intervals

- These intervals can be as large as years or as small as seconds | Seconds | Temperature | Pressure | Radio Interestry | Accelerations (g) | Force | Accelerations (g) |

| Date/<br>Time              | (C)/ Humidity<br>(%) | (Pa)   | (inches) | intensity<br>(lux) | Accelerations (g)                            | (N)  | (%)   |
|----------------------------|----------------------|--------|----------|--------------------|----------------------------------------------|------|-------|
| 2017-09-<br>06<br>18:44:32 | 23.00,56.00          | 617.64 | 0.01     | 3                  | 0.52,0.31,-0.80,0.00,0.00,0.00,31.36,-159.01 | 0.02 | 81.00 |
| 2017-09-<br>06<br>18:33:32 | 24.00,58.00          | 619.47 | 0.01     | 12                 | 0.52,0.30,-0.79,0.00,0.00,0.00,31.45,-159.12 | 0.02 | 82.00 |
| 2017-09-<br>06<br>18:22:39 | 24.00,58.00          | 623.37 | 0.00     | 71                 | 0.52,0.31,-0.80,0.00,0.00,0.00,31.35,-158.88 | 0.02 | 83.00 |
| 2017-09-<br>06<br>18:11:31 | 25.00,60.00          | 627.02 | 0.05     | 194                | 0.51,0.31,-0.80,0.00,0.00,0.00,30.80,-159.00 | 0.02 | 81.00 |

Time series data is given as:

$$\mathbf{X} = (x_1, x_2, ..., x_t, ..., x_T)$$

- $-x_t$  is the observation at time t
- -T be the number of observations
- Scope: We consider single variable  $x_t$

- Trend: Shows how data moves over a period of time
  - COVID positive cases in India between 22 Jan 2020 to 31 March 2020



- Trend: Shows how data moves over a period of time
  - Daily temperature at IIT Mandi from June-Nov 2018



- Seasonality: A type of pattern which repeats over a specific period of time
  - Daily temperature recorded in IIT Mandi for 3 years
    - Duration of recorded: July-Nov (2017-2019)



- Random or error: Series does not have any trend, seasonality or cyclic component
  - Daily temperature recorded in IIT Mandi (1 July 30 August 2019)



### **Stationary Time Series**

- Stationary time series:
  - Statistical properties remain same at any given interval of time
  - Time independent kind of series
  - Mean and variance should be time independent
    - Mean and variance computed at any one part of the series should be similar to that of the mean and variance computed at another part
  - Stationary time series are easier to predict
- Example:
  - Daily temperature recorded in IIT Mandi (1 July 30 August 2019)



### **Non-stationary Time Series**

- Non-stationary time series: Time series having trends or seasonality
  - Mean and variance are not time independent
- Example:

COVID positive cases in India between 22 Jan 2020 to

31 March 2020



Daily temperature recorded in IIT Mandi for 3 years



### **Differencing**

- Non-stationary time series are made stationary by differencing
  - Difference between the original series and the lag series
  - Lag is the shift in the time series by a given number of observations
    - Lag 1: Shift by one time step
    - Lag 2: Shift by two time step
  - By differencing, non-stationary time series become more stationary



### **Differencing**

- Non-stationary time series are made stationary by differencing
  - Difference between the original series and the lag series
  - Lag is the shift in the time series by a given number of observations
    - · Lag 1: Shift by one unit
    - Lag 2: Shift by two unit
  - By differencing, non-stationary time series become more stationary
    - Mean and variance become almost same in the different parts
  - Example: Daily temperature recorded in IIT Mandi for 3 years



### **Time Series Data and Dependence**

Time series data is given as:

$$\mathbf{X} = (x_1, x_2, ..., x_t, ..., x_T)$$

- $-x_t$  is the observation at time t
- -T be the number of observations
- In time series data, value of each element at time t  $(x_t)$  is dependent on the values elements at previous p time steps  $(x_{t-1}, x_{t-2}, ..., x_{t-p}) p$  time lag
  - -Lag is the shift in the time series by a given number of observations

### **Time Series Data and Dependence**

- Example: Data series in i.i.d
  - $-x_t$  is a random number drawn from N(0,1)
- Each element at time t ( $x_t$ ) is not dependent on the values elements at previous p time steps ( $x_{t-1}$ ,  $x_{t-2}$ , ...,  $x_{t-p}$ ) p time lag

0.54 | 1.83 | -2.26 | 0.86 | 0.32 | -1.31 | -0.43 | 0.34 | 3.58 | 2.77 | -1.35 | 3.03 | 0.73 | -0.06 | 0.71



### **Time Series Data and Dependence**

- Example: Daily temperature at IIT Mandi
- Each element at time t ( $x_t$ ) is dependent on the values elements at previous p time steps ( $x_{t-1}$ ,  $x_{t-2}$ , ...,  $x_{t-p}$ ) p time lag
  - Temperature recorded for 15 days (1 Sept. 2019 15 Sept. 2019)

25.47 26.19 25.17 24.3 24.07 21.21 23.49 21.79 25.09 25.39 23.89 22.51 22.9 21.72 23.18



### **Checking Dependency**

- It's not always easy to just look at a time-series plot and say whether or not the series is independent
- $x_t$  in a series is independent means that knowing previous values doesn't help you to predict the next value
- Knowing  $x_{t-1}$  doesn't help to predict  $x_t$
- More generally, knowing  $x_{t-1}$ ,  $x_{t-2}$ , ...,  $x_{t-p}$  doesn't help to predict  $x_{t}$ 
  - p is the number of previous time step (time lag)
- Dependency of each element at time t ( $x_t$ ) with the values of elements at previous p time steps ( $x_{t-1}$ ,  $x_{t-2}$ , ...,  $x_{t-p}$ ) is observed using autocorrelation

### **Checking Dependency - Autocorrelation**

- The relationship between variables is called correlation
- Autocorrelation: The correlation calculated between the variable and itself at previous time steps
- Example: Data series in i.i.d
  - Autocorrelation between  $x_t$  and  $x_{t-p}$  Pearson correlation coefficient between original series and lag-p series

Series

Original

| $x_{t}$     | 0.54     | 1.83 | -2.26 | 0.86  | 0.32 | -1.31 | -0.43 | 0.34  | 3.58 | 2.77 | -1.35 | 3.03  | 0.73 | -0.06 | 0.71  |
|-------------|----------|------|-------|-------|------|-------|-------|-------|------|------|-------|-------|------|-------|-------|
| Lag-        | 1 Series | 0.54 | 1.83  | -2.26 | 0.86 | 0.32  | -1.31 | -0.43 | 0.34 | 3.58 | 2.77  | -1.35 | 3.03 | 0.73  | -0.06 |
| <i>l</i> -1 |          |      |       |       |      |       |       |       |      |      | , ,   |       |      |       |       |

– Autocorrelation:

|           | $x_t$   | $X_{t-1}$ |
|-----------|---------|-----------|
| $x_t$     | 1       | -0.1242   |
| $X_{t-1}$ | -0.1242 | 1         |



### **Checking Dependency - Autocorrelation**

- The relationship between variables is called correlation
- Autocorrelation: The correlation calculated between the variable and itself at previous time steps
- Example: Daily temperature at IIT Mandi
- $\frac{Original}{Series}$  Autocorrelation between  $x_t$  (original series) and  $x_{t-1}$

 $X_{t-1}$  25.47 26.19 25.17 24.3 24.07 21.21 23.49 21.79 25.09 25.39 23.89 22.51 22.9 21.72

– Autocorrelation:

|           | $X_{t}$    | $X_{t-1}$  |
|-----------|------------|------------|
| $x_{t}$   | 1          | 0.405<br>4 |
| $x_{t-1}$ | 0.405<br>4 | 1          |



18

## **Autoregression (AR)**

### **Autoregression (AR)**

- Regression on the values of same attribute
- Autoregression is a time series model that
  - uses observations from previous time steps as input to a linear regression equation to predict the value at the next time step
    - Output variable: value at next time step
    - Input variable: observations from previous time step
  - Output variable is a linear function of input variables

20

### **Autoregression (AR)**

- Autoregression (AR): Regression on the values of same attribute
  - It is a time series model
  - Linear regression model that uses observations from previous p time steps as input to predict the value at the next time step
  - It makes an assumption that the observations at previous time steps are useful to predict the value at the next time step
  - The autocorrelation statistics help to choose which lag variables (p) will be useful in a model
  - Dependency of each element at time t ( $x_t$ ) with the values of elements at previous p time steps ( $x_{t-1}$ ,  $x_{t-2}$ , ...,  $x_{t-p}$ ) is observed using autocorrelation
  - Autocorrelation: The correlation calculated between the variable and itself at previous time steps

### **Autoregression (AR) Model**

- Autoregression (AR) is a linear regression model that uses observations from previous time steps as input to predict the value at the next time step
- An autoregression (AR) model makes an assumption that the observations at previous time steps are useful to predict the value at the next time step
- The autocorrelation statistics help to choose which lag variables (p) will be useful in a model
- Interestingly, if all lag variables  $(x_{t-1}, x_{t-2}, ..., x_{t-p})$  show low or no correlation with the output variable  $(x_t)$ , then it suggests that the time series problem may not be predictable
- This can be very useful when getting started on a new dataset

### **Autoregression (AR) Model**

- Building an AR model depends on how many time lag
   (p) is considered
- AR(1) model: AR model using one time lag (p=1)
  - uses  $\boldsymbol{x}_{t\text{--}1}$  i.e. value of previous time step to predict  $\boldsymbol{x}_t$

# Illustration AR(1) Model – Prediction of Temperature

| Date   | <b>Temp</b> (x <sub>t-1</sub> ) | Temp $(x_t)$ | Date    |
|--------|---------------------------------|--------------|---------|
|        |                                 | 25.47        | Sept 1  |
| Sept 1 | 25.47                           | 26.19        | Sept 2  |
| Sept 2 | 26.19                           | 25.17        | Sept 3  |
| Sept 3 | 25.17                           | 24.30        | Sept 4  |
| Sept 4 | 24.30                           | 24.07        | Sept 5  |
| Sept 5 | 24.07                           | 21.21        | Sept 6  |
| Sept 6 | 21.21                           | 23.49        | Sept 7  |
| Sept 7 | 23.49                           | 21.79        | Sept 8  |
| Sept 8 | 21.79                           | 25.09        | Sept 9  |
| Sept 9 | 25.09                           | 25.39        | Sept 10 |
|        |                                 |              |         |
| Oct 28 | 22.76                           | 23.06        | Oct 29  |
| Oct 29 | 23.06                           | 23.72        | Oct 30  |
| Oct 30 | 23.72                           | 23.02        | Oct 31  |

• *T*, the number of observations = 61

#### Independent variable:

- Temperature at the time*t*-1
- Dependent variable:
  - Temperature at the timet

### AR(1) Model

- AR(1) model: AR model using one time lag (p=1)
  - uses  $x_{t-1}$  i.e. value of previous time step to predict  $x_t$
- Given: Time series data:  $X = (x_1, x_2, ..., x_t, ..., x_T)$ 
  - $-x_t$  is the observation at time t
  - T be the number of observations
- AR(1) model is given as:  $x_t = f(x_{t-1}, w_0, w_1) = w_0 + w_1 x_{t-1}$ 
  - The coefficients  $w_0$  and  $w_1$  are parameters of straight-line (regression coefficients) *Unknown*
- The regression coefficients are obtained as seen in simple linear regression (straight-line regression) using least square method

### AR(1) Model - Training

- The regression coefficients are obtained as seen in simple linear regression (straight-line regression) using least square method
- Minimize the squared error between the actual data  $(x_t)$  at time t and the estimate of linear function (predicted variable  $(\hat{x}_t)$ ) i.e. the function  $f(x_t, w_0, w_1)$

$$\hat{x}_{t} = f(x_{t-1}, w_0, w_1) = w_0 + w_1 x_{t-1}$$

minimize 
$$E(w_0, w_1) = \frac{1}{2} \sum_{t=2}^{T} (\hat{x}_t - x_t)^2$$

• The optimal  $\hat{w}_0$  and  $\hat{w}_1$  is given as

$$\hat{w}_1 = \frac{\sum_{t=1}^{T} (x_{t-1} - \mu_{t-1})(x_t - \mu_t)}{\sum_{t=1}^{T} (x_{t-1} - \mu_{t-1})^2}$$
•  $\mu_{t-1}$ : sample mean of variables at time  $t-1$ ,  $x_{t-1}$ 
•  $\mu_t$ : sample mean of variables at time  $t$ 

•  $\mu_{t-1}$ : sample mean of

variables at time t,  $x_t$ 

### **AR(1) Model: Testing**

• For any test example at time t-1,  $x_{t$ -1, the predicted value at time t,  $\hat{x}_t$  is given by:

$$\hat{x}_{t} = f(x_{t-1}, w_0, w_1) = \hat{w}_0 + \hat{w}_1 x_{t-1}$$

# **Evaluation Metrics for Time Series Prediction: Squared Error and Root Mean Squared Error**

- The prediction accuracy is measured in terms of squared error:  $E = (\hat{x}_t x_t)^2$ 
  - $-x_t$ : actual value
  - $-\hat{x}_{t}$ : predicted value
- Let  $T_{test}$  be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error (RMSE):

$$E_{\text{RMS}} = \sqrt{\frac{1}{T_{test}}} \sum_{t=1}^{T_{test}} (\hat{x}_t - x_t)^2$$

RMSE expressed in % as:

$$E_{\text{RMS}} = \sqrt{\frac{1}{T_{test}} \sum_{t=1}^{T_{test}} (\hat{x}_t - x_t)^2} *100$$

# **Evaluation Metrics for Time Series Prediction: Absolute Error and Mean Absolute Percentage Error (MAPE)**

- Absolute error:
- $E_a = \frac{\left| x_t \hat{x}_t \right|}{x_t}$
- $-x_t$ : actual value
- $-\hat{x}_{t}$ : predicted value
- Let  $T_{test}$  be the total number of test samples
- The prediction accuracy of regression model is measured in terms of mean absolute percentage error:

$$E_{\text{MAP}} = \left(\frac{1}{T_{test}} \sum_{t=1}^{T_{test}} \frac{\left|x_{t} - \hat{x}_{t}\right|}{x_{t}}\right) * 100$$

### Illustration AR(1) Model -**Prediction of Temperature: Training**

| <b>Temp</b> (x <sub>t-1</sub> ) | Temp $(x_i)$ | Date    |
|---------------------------------|--------------|---------|
|                                 | 25.47        | Sept 1  |
| 25.47                           | 26.19        | Sept 2  |
| 26.19                           | 25.17        | Sept 3  |
| 25.17                           | 24.30        | Sept 4  |
| 24.30                           | 24.07        | Sept 5  |
| 24.07                           | 21.21        | Sept 6  |
| 21.21                           | 23.49        | Sept 7  |
| 23.49                           | 21.79        | Sept 8  |
| 21.79                           | 25.09        | Sept 9  |
| 25.09                           | 25.39        | Sept 10 |
|                                 |              |         |
| 22.76                           | 23.06        | Oct 29  |
| 23.06                           | 23.72        | Oct 30  |
| 23.72                           | 23.02        | Oct 31  |

• T, the number observations = 61

$$\hat{w}_{1} = \frac{\sum_{t=1}^{60} (x_{t-1} - \mu_{t-1})(x_{t} - \mu_{t})}{\sum_{t=1}^{60} (x_{t-1} - \mu_{t-1})^{2}}$$

$$\hat{w}_0 = \mu_t - w_1 \mu_{t-1}$$

- $\mu_{t-1}$ : 22.81  $\hat{w}_1$ : 0.523  $\mu_t$  : 22.85  $\hat{w}_0$ : 10.861

# Illustration AR(1) Model – Prediction of Temperature: Test

Predict Temperature for Nov 2

Nov 1

•  $\hat{w}_1$ : 0.523

•  $\hat{w}_0$ : 10.861

| <b>Temp</b> (x <sub>t-1</sub> ) | <b>Temp</b> ( <i>x</i> <sub>t</sub> ) |
|---------------------------------|---------------------------------------|
| 22.30                           | -                                     |

Predicted Temperature for Nov 2: 22.52

Actual Temperature on Nov 2 : 21.43

• Squared error : 1.19

• Absolute error : **0.0509** 

### **Autoregression Model**

- AR(p) model: AR model using p time lags (p < T)
  - uses  $x_{t-1}$  ,  $x_{t-2}$ , ...,  $x_{t-p}$  i.e. value of previous p time step to predict  $x_t$

# Illustration AR(p) Model – Prediction of Temperature

| <b>Temp</b> ( <i>x</i> <sub>t-3</sub> ) | <b>Temp</b> (x <sub>t-2</sub> ) | <b>Temp</b> (x <sub>t-1</sub> ) | Temp $(x_t)$ | Date   |
|-----------------------------------------|---------------------------------|---------------------------------|--------------|--------|
|                                         |                                 |                                 | 25.47        | Sept 1 |
|                                         |                                 | 25.47                           | 26.19        | Sept 2 |
|                                         | 25.47                           | 26.19                           | 25.17        | Sept 3 |
| 25.47                                   | 26.19                           | 25.17                           | 24.30        | Sept 4 |
| 26.19                                   | 25.17                           | 24.30                           | 24.07        | Sept 5 |
| 25.17                                   | 24.30                           | 24.07                           | 21.21        | Sept 6 |
| 24.30                                   | 24.07                           | 21.21                           | 23.49        | Sept 7 |
| 24.07                                   | 21.21                           | 23.49                           | 21.79        | Sept 8 |
| 21.21                                   | 23.49                           | 21.79                           | 25.09        | Sept 9 |
|                                         |                                 |                                 |              |        |
| 22.83                                   | 23.98                           | 24.47                           | 22.76        | Oct 28 |
| 23.98                                   | 24.47                           | 22.76                           | 23.06        | Oct 29 |
| 24.47                                   | 22.76                           | 23.06                           | 23.72        | Oct 30 |
| 22.76                                   | 23.06                           | 23.72                           | 23.02        | Oct 31 |

- T, the number of observations = 61
- *p* = 3
- Independent variable:
  - Temperature at the time t-1, t-2 and t-3
- Dependent variable:
  - Temperature at the timet

### **Autoregression Model**

- AR(p) model: AR model using p time lags (p < T)
  - uses  $x_{t-1}$  ,  $x_{t-2}$ , ...,  $x_{t-p}$  i.e. value of previous p time step to predict  $x_t$
- Given: Time series data:  $X = (x_1, x_2, ..., x_t, ..., x_T)$ 
  - $-x_t$  is the observation at time t
  - T be the number of observations
- AR(p) model is given as:

$$x_{t} = f(x_{t-1}, x_{t-2}, ..., x_{t-p}, w_{0}, w_{1}, ..., w_{p}) = w_{0} + w_{1} x_{t-1} + ... + w_{p} x_{t-p}$$

$$x_{t} = f(\mathbf{x}, \mathbf{w}) = w_{0} + \sum_{j=1}^{p} w_{j} x_{t-j} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$
where  $\mathbf{w} = [w_{0}, w_{1}, ..., w_{p}]^{\mathsf{T}}$  and  $\mathbf{x} = [1, x_{t-1}, x_{t-2}, ..., x_{t-p}]^{\mathsf{T}}$ 

- The coefficients  $w_0$ ,  $w_1$ , ...,  $w_p$  are parameters of hyperplane (regression coefficients) - Unknown

### AR (p) Model - Training

- The regression coefficients are obtained as seen in  $\frac{1}{p}$  multiple linear regression with p input variables using least square method
- Minimize the squared error between the actual data  $(x_t)$  at time t and the estimate of linear function (predicted variable  $(\hat{x}_t)$ ) i.e. the function  $f(\mathbf{x}, \mathbf{w})$

$$\hat{x}_t = f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^p w_j x_{t-j} = w_0 + \mathbf{w}^\mathsf{T} \mathbf{x}$$

$$\min_{\mathbf{w}} \text{minimize } E(\mathbf{w}) = \frac{1}{2} \sum_{t=p+1}^T (\hat{x}_t - x_t)^2$$

 The autocorrelation statistics help to choose which lag variables (p) will be useful in a model

### AR (p) Model - Training

• The optimal  $\hat{\mathbf{w}}$  is given as  $\left[\hat{\mathbf{w}} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{x}^{(t)}\right]$ 

$$\mathbf{X} = \begin{bmatrix} 1 & x_{t-p} & \dots & x_{t-3} & x_{t-2} & x_{t-1} \\ 1 & x_{(t+1)-p} & \dots & x_{t-2} & x_{t-1} & x_t \\ & & & & \\ 1 & x_{(t+n)-p} & \dots & x_{t+n-3} & x_{t+n-2} & x_{t+n-1} \\ & & & & \\ 1 & x_{T-p} & \dots & x_{T-3} & x_{T-2} & x_{T-1} \end{bmatrix} \qquad \mathbf{x}^{(t)} = \begin{bmatrix} x_t \\ x_{t+1} \\ - \\ x_{t+n} \\ - \\ x_T \end{bmatrix}$$

 ${f X}$  is data matrix with time lag p

 The autocorrelation statistics help to choose which lag variables (p) will be useful in a model

### **AR** (p) Model: Testing

• The value at time t,  $\hat{x}_t$  is predicted by taking values from past p time steps  $(x_{t-1}, x_{t-2}, ..., x_{t-n})$  as input:

$$\hat{x}_t = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{w}_0 + \sum_{j=1}^p \hat{w}_j x_{t-j} = \hat{\mathbf{w}}^\mathsf{T} \mathbf{x}$$

The prediction accuracy is measured in terms of squared error:

$$E = (\hat{x}_t - x_t)^2$$

- Let  $T_{test}$  be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{T_{test}}} \sum_{t=1}^{T_{test}} (\hat{x}_t - x_t)^2$$

 Mean absolute percentage error (MAPE) is also used as a measure

# Illustration AR(p) Model – Prediction of Temperature: Checking Dependency

| <b>Temp</b> ( <i>x</i> <sub>t-3</sub> ) | <b>Temp</b> (x <sub>t-2</sub> ) | <b>Temp</b> (x <sub>t-1</sub> ) | <b>Temp</b> ( <i>x</i> <sub>1</sub> ) | Date   |
|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------------|--------|
|                                         |                                 |                                 | 25.47                                 | Sept 1 |
|                                         |                                 | 25.47                           | 26.19                                 | Sept 2 |
|                                         | 25.47                           | 26.19                           | 25.17                                 | Sept 3 |
| 25.47                                   | 26.19                           | 25.17                           | 24.30                                 | Sept 4 |
| 26.19                                   | 25.17                           | 24.30                           | 24.07                                 | Sept 5 |
| 25.17                                   | 24.30                           | 24.07                           | 21.21                                 | Sept 6 |
| 24.30                                   | 24.07                           | 21.21                           | 23.49                                 | Sept 7 |
| 24.07                                   | 21.21                           | 23.49                           | 21.79                                 | Sept 8 |
| 21.21                                   | 23.49                           | 21.79                           | 25.09                                 | Sept 9 |
|                                         |                                 |                                 |                                       |        |
| 22.83                                   | 23.98                           | 24.47                           | 22.76                                 | Oct 28 |
| 23.98                                   | 24.47                           | 22.76                           | 23.06                                 | Oct 29 |
| 24.47                                   | 22.76                           | 23.06                           | 23.72                                 | Oct 30 |
| 22.76                                   | 23.06                           | 23.72                           | 23.02                                 | Oct 31 |

- *p* = 3
- T, the number of observations = 61
- Autocorrelation between  $x_t$  and  $x_{t-1}$ : 0.54
- Autocorrelation between  $x_t$  and  $x_{t-2}$ : 0.25
- Autocorrelation between  $x_t$  and  $x_{t-3}$ : -0.08
- An autocorrelation is deemed significant if

$$\left| \text{autocorrelation} \right| > \frac{2}{\sqrt{T}} = 0.25$$

• Time lag p=2 is sufficient as  $x_t$  is significant with  $x_{t-1}$  and  $x_t$ ?

# **Illustration AR(p) Model – Prediction of Temperature: Training**

| <b>Temp</b> ( <i>x</i> <sub>t-2</sub> ) | <b>Temp</b> ( <i>x</i> <sub>t-1</sub> ) | <b>Temp</b> ( <i>x</i> , ) | Date   |
|-----------------------------------------|-----------------------------------------|----------------------------|--------|
|                                         |                                         | 25.47                      | Sept 1 |
|                                         | 25.47                                   | 26.19                      | Sept 2 |
| 25.47                                   | 26.19                                   | 25.17                      | Sept 3 |
| 26.19                                   | 25.17                                   | 24.30                      | Sept 4 |
| 25.17                                   | 24.30                                   | 24.07                      | Sept 5 |
| 24.30                                   | 24.07                                   | 21.21                      | Sept 6 |
| 24.07                                   | 21.21                                   | 23.49                      | Sept 7 |
| 21.21                                   | 23.49                                   | 21.79                      | Sept 8 |
| 23.49                                   | 21.79                                   | 25.09                      | Sept 9 |
|                                         |                                         |                            |        |
| 23.98                                   | 24.47                                   | 22.76                      | Oct 28 |
| 24.47                                   | 22.76                                   | 23.06                      | Oct 29 |
| 22.76                                   | 23.06                                   | 23.72                      | Oct 30 |
| 23.06                                   | 23.72                                   | 23.02                      | Oct 31 |

- T, the number of observations = 59
- Multiple linear regression with number of input variables = 2

$$\hat{\mathbf{w}} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{x}^{(t)} ; \quad \hat{\mathbf{w}} \in \mathbf{R}^3$$

# **Illustration AR(p) Model – Prediction of Temperature: Test**

Predict Temperature for Nov 2

Oct 31 Nov 1

| $\hat{\mathbf{w}} =$ | $(\mathbf{X}^{T})$ | $\mathbf{X}$ $\Big)^{-1}$ | $\mathbf{X}^{T}$ | $\mathbf{X}^{(t)}$ | • | $\hat{\mathbf{w}}$ | $\in \mathbb{R}^3$ |
|----------------------|--------------------|---------------------------|------------------|--------------------|---|--------------------|--------------------|
|----------------------|--------------------|---------------------------|------------------|--------------------|---|--------------------|--------------------|

| <b>Temp</b> ( <i>x</i> <sub>t-2</sub> ) | <b>Temp</b> (x <sub>t-1</sub> ) | <b>Temp</b> ( <i>x</i> <sub>t</sub> ) |
|-----------------------------------------|---------------------------------|---------------------------------------|
| 23.02                                   | 22.30                           |                                       |

- AR(2) model:
- Predicted Temperature for Nov 2: 22.49
- Actual Temperature on Nov 2 : 21.43
- Squared error : 1.13
- Absolute error : 0.0495
- AR(1) model:
- Predicted Temperature for Nov 2: 22.52
- Actual Temperature on Nov 2 : 21.43
- Squared error : 1.19
- Absolute error : 0.0509

### **Summary: Autoregression**

- Autoregression (AR): Regression on the values of same attribute
  - It is a time series model
  - Linear regression model that uses observations from previous p time steps as input to predict the value at the next time step
  - It makes an assumption that the observations at previous time steps are useful to predict the value at the next time step
  - The autocorrelation statistics help to choose which lag variables (p) will be useful in a model
- AR model can be performed on time series data with single variable or with multiple variables
- In this course we are limited only on the time series data with single variable

#### **Text Books**

J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.

2. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.