Symplectic Geometry

Regoon Wang, ChemE@UNSW wang.regoon@gmail.com

Abstract

This is a note on Ana Cannas's Lectures on Symplectic Geometry. However, it's not just a copy. It contains my understanding, questions and solutions to homework.

Contents

1	Notations
2	Symplectic Forms
2.1	Skew-Symmetric Bilinear Maps
2.2	Symplectic Vector Space
2.3	Symplectic Manifolds
2.4	Symplectomorphisms
2.5	Homework
3	Symplectic Form on the Cotangent Bundle
3.1	Cotangent Bundle
3.2	Tautological and Canonical Forms in Coordinates
3.3	Coordinate-Free Definitions
3.4	Naturality of the Tautological and Canonical Forms
3.5	Homework

1 Notations

In order to keep the text short, common used notations are introduced here.

- V be an m-dimensional vector space over \mathbb{R} .
- $\Omega: V \times V \to \mathbb{R}$ be a bilinear map.

2 Symplectic Forms

Def 1. The map Ω is skew-symmetric if $\Omega(u,v) = -\Omega(v,u), \forall u,v \in V$.

Thm 1 (Standard Form for Skew-symmetric Bilinear Map). $\exists \ a \ basis \ u_1, \cdots, u_k, e_1, \cdots, e_n, f_1, \cdots, f_n$ of $V \ s.t. \ \forall i,j \ and \ v \in V$

$$\Omega(u_i, v) = \Omega(e_i, e_j) = \Omega(f_i, f_j) = 0, \quad \Omega(e_i, f_j) = \delta_{ij}$$

Remark 1. 1. The basis is not unique, though it is traditionally also called a "canonical" basis.

2. In matrix notation with respect to such basis, we have

$$\Omega(u,v) = \begin{bmatrix} - & u & - \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & -I_n & 0 \end{bmatrix} \begin{bmatrix} | \\ v \\ | \end{bmatrix}$$

and all normed linear independt enginvectors are basis.

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt process. Let $U := \{u \in V \mid \Omega(u,v) = 0, \forall v \in V\}$. Choose a basis u_1, \dots, u_k , and choose a complementary space W, $V = U \oplus W$

- 2.1 Skew-Symmetric Bilinear Maps
- 2.2 Symplectic Vector Space
- 2.3 Symplectic Manifolds
- 2.4 Symplectomorphisms
- 2.5 Homework
- 3 Symplectic Form on the Cotangent Bundle
- 3.1 Cotangent Bundle
- 3.2 Tautological and Canonical Forms in Coordinates
- 3.3 Coordinate-Free Definitions
- 3.4 Naturality of the Tautological and Canonical Forms
- 3.5 Homework