- (1) If $g_1N = g'_1N$ and $g_2N = g'_2N$, then $g_1g_2N = g'_1g'_2N$, and
- (2) If $g_1N = g_2N$, then $g_1^{-1}N = g_2^{-1}N$.

As a consequence, we can define a group structure on the set G/\sim of equivalence classes modulo \sim , by setting

$$(g_1N)(g_2N) = (g_1g_2)N.$$

Definition 2.11. Let G be a group and N be a normal subgroup of G. The group obtained by defining the multiplication of (left) cosets by

$$(g_1N)(g_2N) = (g_1g_2)N, \quad g_1, g_2 \in G$$

is denoted G/N, and called the *quotient of* G *by* N. The equivalence class gN of an element $g \in G$ is also denoted \overline{g} (or [g]). The map $\pi \colon G \to G/N$ given by

$$\pi(g) = \overline{g} = gN$$

is a group homomorphism called the canonical projection.

Since the kernel of a homomorphism is a normal subgroup, we obtain the following very useful result.

Proposition 2.12. Given a homomorphism of groups $\varphi \colon G \to G'$, the groups $G/\operatorname{Ker} \varphi$ and $\operatorname{Im} \varphi = \varphi(G)$ are isomorphic.

Proof. Since φ is surjective onto its image, we may assume that φ is surjective, so that $G' = \operatorname{Im} \varphi$. We define a map $\overline{\varphi} \colon G/\operatorname{Ker} \varphi \to G'$ as follows:

$$\overline{\varphi}(\overline{g}) = \varphi(g), \quad g \in G.$$

We need to check that the definition of this map does not depend on the representative chosen in the coset $\overline{g} = g \operatorname{Ker} \varphi$, and that it is a homomorphism. If g' is another element in the coset $g \operatorname{Ker} \varphi$, which means that g' = gh for some $h \in \operatorname{Ker} \varphi$, then

$$\varphi(g') = \varphi(gh) = \varphi(g)\varphi(h) = \varphi(g)e' = \varphi(g),$$

since $\varphi(h) = e'$ as $h \in \text{Ker } \varphi$. This shows that

$$\overline{\varphi}(\overline{g'}) = \varphi(g') = \varphi(g) = \overline{\varphi}(\overline{g}),$$

so the map $\overline{\varphi}$ is well defined. It is a homomorphism because

$$\overline{\varphi}(\overline{g}\overline{g'}) = \overline{\varphi}(\overline{g}\overline{g'})
= \varphi(gg')
= \varphi(g)\varphi(g')
= \overline{\varphi}(\overline{g})\overline{\varphi}(\overline{g'}).$$

The map $\overline{\varphi}$ is injective because $\overline{\varphi}(\overline{g}) = e'$ iff $\varphi(g) = e'$ iff $g \in \operatorname{Ker} \varphi$, iff $\overline{g} = \overline{e}$. The map $\overline{\varphi}$ is surjective because φ is surjective. Therefore $\overline{\varphi}$ is a bijective homomorphism, and thus an isomorphism, as claimed.