PH211- Electronics Lab Anithmetic & Amplifier Gravets using Opanes.

Name-Robit Ramabhadran Rollno. 220121072

49 50

Expt. No - 3 Expt. Name - Anithmetic & Amplificer livracity using Opensor Date - 21/08/23 (c) adder circuit and (d) subtractor circuit using 741 granzy.

Circuit Diagram:

(a) Non Investing Gerall

of orulestal (d)

1 sound

Counulas & expected output wavefour:

(a) Non-inverting amplifier
line voltage at inverting and non-inverting terminal equal = v;

Using KCL at inventing terminal $\frac{1}{2} \frac{1}{2} \frac{1}$

Voltage Gain $A_V = \frac{V_0}{V_1} = (1 + \frac{R_2}{R_1}) > 1 \Rightarrow \text{ same phone but amplified}$

Expected Output

(b) Investing Amplifier

 $A_{V} = \frac{V_{O}}{V_{i}} = -\frac{R_{2}}{R_{i}}$

since voltage at inverting terminal - Voltage at non inventing = Using KCC Vi-0 = 0-Vo

Vo:-V1×R2 →180° phase charge

Yout (phase change 180°, : R2>R1)

(C) Adden General

using superposition theorem suppose by V2

$$V_{01} = -\frac{R_3}{R_1} V, \qquad V_{02} = -\frac{R_3}{R_2} V_{2}$$

$$V_{01} = -\frac{R_3}{R_1} V, \qquad V_{02} = -\frac{R_3}{R_2} V_{2}$$

 $V_0 = V_{01} + V_{02} = -K_5 \left(\frac{k_1}{K_1} + \frac{V_2}{K_2} \right) = -\frac{R_3}{R} \left(V_1 + V_2 \right) \left[\text{ Since } R_1 = R_2 = R \right]$

180° phase shift

Vo= Vo, + Voz

Observation:

Sno.	inverting amplemaly V_i feed back $R_2(\Omega)$	Theoretical Voltage Cair	Theory trad voltage of (v)	Objected (V)	Overwed
Ocholo			4.0	4.17	2.085
2	1 K 2.2 K	2.0	6.4	6.70	3.350
3	4.7k	5.7	11-4	12.00	6.000
Who very	shopping duet	il superfice	ed entrance due o		

A : C	Av= Analysis —	Vi L K	2 , R=1 KD, V=1	V(P+)	Alexand	
S.no	Frequency (XIV2)	Theoritical Voltage gain	Theoretical (V)	Output (V)	Observed	
Carr	15	2 2	2.00	2.00	2.00	
2	2	2	2.00	1.96	1.96	
\$ 3	25	2	2.00	1.96	1.96	
4 100	210	2	2:00	1.92	1.92	

6) Inverting Amplifier

D.C Analysis -> Vi=2V, Ri=1KA, R3=10KA

1808	8. No	feedback Resiston Kr(a)	Theoritical Voltage Gain (4)	Theoritical voltage (V)	Observed Voltage of P(V)	Goin -1.04
A	1	85.41K	-1 7.4-	-2	-2.08	-1.04
	2	2.2 K	-2.23	- 4.40	-4.60	-2.3
	3	4.7K.	-4.7	- 9.40	-9.93	-4.96

time a rabbil (1)

AC-Analysis -> Vi=1 km R= 1ka, R=1KA

S.No	Forequency (KHZ)	Theoretical Voltage Gain	Theoretical Voltage of P(V)	Overved voltage of (V)	Observed
NI	1	- P	-1	1,	List I
2	5201:15	= St= 13 = S	-1	2-1-1	-1
3	Vo Eurosiment	wed tied (V)	Vo Mu	-0.96	-0-96
	69-4-	4.5	x ~	20.10	7
4	10.8	-1 7.8	- 1	-0.92	-0.92

2.7 4 -

7.2 -

JYOUVE VIEW

bushers (Harpeter Crown Lotter)

nactar dispay Bullings multinders Vindin consider

Miltigle realer supply considers will completed

Appointed their

(c) Adden Gacwit

V = 4.5 V . R = 10 KA	, Rz=10KD, R= 40KD
Als I a A Milda	

warting throughten

	Alstan	1,14	F IASTERNATION AND IN	11 Charles	-1
S-Nb	V2LV)	Vo No No	Theoritical (V1	Vo Expariment	W(V)
S-Nb	80.0	.4	-4.5	-4.58	
2	-4.60	0441 -	- 5.5	-5.71	
3.3	8920-	046-	-6.5	7 6.76	8
4	3		-7.5,3/57-	-7.74	
5	4		-8.5	-8.77	

(d) Subtractor Gound.

V= 4.5V V= OV R= R= R3 = R4 = 10K1

S.No	V2(V)	Vo Theoritical(V)	Vo Experimental (V)
1	0	-+ 4.5	-4-69
2	19.0-	- + 3·5 - 5·5	-3.55 -5.51
34	2 -2	- + 2·5 - 6·5.	-2.56 -6.54
567	3 -3	- 1.5	-1.49
8	-3 4 -4	- 0.5	-0.51

=> Vo= V2-V1

018=10

Apparatus Used:
Digital storage Oscillougie, multimeter, function Generator,
Multiple power supply, connecting wines, Opany (16741),
Resistors (1KIL, 4.7KIZ, 2.2KIZ, 10KIZ)

alutation: Observation O: 1+Rz Observation @->
Theoritical gain: 1+Rz Observation @-> Theorytical $V_0 = 4(1) = 4V$ Theorical $V_0 = 3I(1) = 3IV$ Output 6.70 V
Experimental $V_0 = 4D = V$ Experimental = 320 V
Output 4-17 Output Av = 2. 085 A C- Analysis Observation O -Theoritical gain = 1+ 2, =) Volv; = 2

Theorytical = Vo=2Vi output = 2 Observed gain = 2.00 Observed Output = 2.00V for foreg=1KH2

Observation @->
Theoritical gain = (+ R2 Experimental $A_v = \frac{V_0}{V_1}$ gain $V_1 = \frac{2 \cdot 10}{2} \cdot 17$ $A_v = 2 \cdot 285$ Experimental $A_v = \frac{V_0}{V_1}$ $\frac{6 \cdot 70}{2}$ $= 3 \cdot 35$

Observation 2).
Theoritical gain = 1+ \frac{\mathcal{F}_2}{\mathcal{F}_2} 3VolV1 = 2 Theoritical = 2.000 Observed gain = 2.00 Observed Output = 2.00 V for foreg = 2KHZ

(b) Inventing Amplifier. Voltage Gain $Av = \frac{Vo}{V_i} = -R_2$ D. C. Analysis Observation (1): Theoritical gain=-Rz Vo/vi=-1=-1 Theoretical Vo= -2V Experimental: Vo = -2.08 Exposimental Gain = -1.0 4 A (Analysis . R,=Rz=1KSZ Observation (1) freez = 1 KUZ Theoritical fair = - Rz/R, Theorytical Vo = -1 Vp-p Obrewed gain = -- 1

Observed: No = - 1 Vp-p

Chercus & Cuty of 22.00 V

for Jug = 2KHZ

Observation 2:

in Non-Investing down

Islance your Ar . la =

Theoritical gain = - R2

2-2-2

Volvi = -2-2

Theoritical = -4.40

Out nut

Experimental = -4-60
Output
Experimental Gain = -2.3

Observation (2)

freq = 10 KHz

Theoretical Gain = -Rz/L;

= -1

Theoretical = Vo = -1Vp-p

Output

Observed Gain Av = -0.92

Observed Vo = -0.92 Vp-p

Output

Ebraned Output = 2000

Address Circuit V=45V = -(V1+V2) Vo Theoritical Obv. 1 = -(4.5 to) = -4.59V = - (45+1) =- \$ AND V 0612 = - (45+2) = +6ASTV 06v3 :-6.76

(d) Subtractor Gorant

Vo Theoretical =
$$V_2 - V_1$$
 ($V_1 = 4.5V$)
$$= 1 - 45 = -3.55 \text{ Obv } 1$$

$$= 2 - 4.5 = -2.56 \text{ Obv } 2$$

$$= 3 - 4.5 = -1.49 \text{ Obv } 3$$

Kounth

AV = - 2-08

18 Kz = [1824

10 -21 15-4-10 LOS

(3) be come conducted and ningled

it might domage anyward

(c) Ador

: Martinosas

Brief lumnary & Kesult:

y any short assault as

- 1 In Non-inverting circuit, the observed voltage gain differs from the theoritical gain by a range of (2002-2012) V
- 2 There is a fall in the observed voltage gain when frequency is increased in AC analysis of both investing & Mon-investing amplifier conjusts. amplifier circuits. classes
 - 3 In Inventing linewit, the observed gain differe from the theoretical gain by a mange of & (0.08-0.53) v
 - 4 bandwidth auchieved in inverting circuit during AC Analysis a (Not required)
 - Output Voltage achieved is very dore to the theoritical voltage Output -

Rosult

- (a) Non-Inventing $V_0 = -\frac{2-0.8}{4.17} \cdot 4.17V$ Av = -2.085 for $R_2 = 1 \times 2$
- (c) Adden for V,=4.5V, Vz=0V Vo=-4.58V
- (b) Inverting $V_0 = -2.08$ $A_V = -1.04$ for $R_2 = 1 \text{ K} \Omega$
 - (d) Subtractor for V1= 4.5 V, V2= 0 V V0= - 4.69 V

raign renta

Precaution:

- (1) Connect the Op. Amp pins convertly in the circuit to receiver any damage to it.
- (2) Use small value nevetory is feedback relivers
- (3) be course carreful and mindful of any short circuit as it might damage comprenents
- 4) be not connect DSO or other instrument at the gramp cipul terminal.

condition activity is uncertain count auxon to finday

in both the Adder and the hubbacker assure, to expense a

I trust littage addition is posed done to the thinking

trustical gain up a sange of L(c.os. p. 53)v

Those is a fall in the changes with with the self-