三次样条插值函数

1 三次样条插值

虽然分段低次插值函数都具有一致收敛性,但光滑性较差,对于像高速飞机的机翼形线,船体放样等型值线往往要求有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(所谓样条)用压铁固定在样点上,在其他地方让其自由弯曲,然后画下长条的曲线,称为样条曲线。它实际是由分段三次曲线连接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到了数学样条这一概念。下面讨论最常用的三次样条函数。

1.1 三次样条函数

定义: 函数 $S(x) \in C^2[a,b]$, 且在每个小区间 $[x_i, x_{i+1}]$ 上是三次多项式,其中 $a = x_0 < x_1 < \ldots < x_n = b$ 是给定节点,则称 S(x) 是节点 x_0, x_1, \ldots, x_n 上的三次样条函数。

若在节点 x_i 上给定函数值 $y_i = f(x_i)(i = 0, 1, ..., n)$,并成立:

$$S(x_i) = y_i \ (i = 0, 1, \dots, n)$$

则称 S(x) 为三次样条插值函数。

从定义知要求出 S(x),在每个小区间 $[x_i,x_{i+1}]$ 上要确定 4 个待定系数,共有 n 个小区间,故应确定 4n 个参数。

根据 S(x) 在 [a,b] 上二阶导数连续, 在节点 x_i (i = 1, 2, ..., n-1) 处应满足连续性条件:

$$S(x_i - 0) = S(x_i + 0),$$

$$S'(x_i - 0) = S'(x_i + 0),$$

$$S''(x_i - 0) = S''(x_i + 0)$$

共有 3n-3 个条件,再加上 S(x) 满足插值条件 $S(x_i)=y_i$ $(i=0,1,\ldots,n)$,共 4n-2 个条件,因此还需要两个条件才能确定 S(x)。

通常可在区间 [a,b] 端点 $a=x_0,b=x_n$ 处各加一个条件(称为边界条件),可根据实际问题的要求给定。常见的有以下三种:

1. 已知两端的一阶导数值, 即:

$$S'(x_0) = f'_0, \ S'(x_n) = f'_n$$

2. 已知两端的二阶导数值, 即:

$$S''(x_0) = f_0'', \ S''(x_n) = f_n''$$

其特殊情况:

$$S''(x_0) = S''(x_n) = 0$$

称为自然边界条件

3. 当 f(x) 是以 $x_n - x_0$ 为周期的周期函数时,则要求 S(x) 也是周期函数。这时边界条件应满足:

$$S(x_0 + 0) = S(x_n - 0),$$

$$S'(x_0 + 0) = S'(x_n - 0),$$

$$S''(x_0 + 0) = S''(x_n - 0)$$

而此时 $y_0 = y_n$ 。这样确定的样条函数 S(x),称为周期样条函数。

1.2 三弯矩方程

我们将在区间 $[x_i, x_{i+1}]$ 上表示 S(x) 的多项式记为 $S_i(x)$, 现在我们来推导区间 $[x_i, x_{i+1}]$ 上 $S_i(x)$ 的表达式。首先,我们定义一组数 $M_i = S''(x_i)$ 。由于 $S_i(x)$ 是 $[x_i, x_{i+1}]$ 上的三次多项式,因此 $S_i''(x)$ 是满足 $S_i''(x_i) = M_i$ 和 $S_i''(x_{i+1}) = M_{i+1}$ 的线性函数,所以说 $S_i''(x)$ 也是 M_i 和 M_{i+1} 之间的直线:

$$S_i''(x) = \frac{M_i}{h_i}(x_{i+1} - x) + \frac{M_{i+1}}{h_i}(x - x_i)$$

其中 $h_i = x_{i+1} - x_i$, 把这个函数积分两次, 其结果就是 S_i :

$$S_i(x) = \frac{M_i}{6h_i}(x_{i+1} - x)^3 + \frac{M_{i+1}}{6h_i}(x - x_i)^3 + C(x - x_i) + D(x_{i+1} - x)$$

其中 C 和 D 是积分常数, 将插值条件 $S_i(x_i) = y_i$ 和 $S_i(x_{i+1}) = y_{i+1}$ 作用在 S_i 上就可以确定 C 和 D, 结果为:

$$S_i(x) = \frac{M_i}{6h_i}(x_{i+1} - x)^3 + \frac{M_{i+1}}{6h_i}(x - x_i)^3 + (\frac{y_{i-1}}{h_i} - \frac{M_{i+1}h_i}{6})(x - x_i) + (\frac{y_i}{h_i} - \frac{M_ih_i}{6})(x_{i+1} - x)$$
(1)

上式称为三次样条插值函数的三弯矩方程。所以一旦确定了 M_0, M_1, \ldots, M_n 的值以后,可以用上式算出 S(x) 在区间 $[x_0, x_n]$ 内任意一点 x 处的值。

下面,我们用 S'(x) 的连续性条件来确定 M_0, M_1, \ldots, M_n ,在内节点 x_i 上,一定有 $S'_{i-1}(x_i) = S'_i(x_i)$ 。 对(1)式求微分可得 $S'_i(x)$,然后做替换 $x = x_i$ 并化简得:

$$S_i'(x_i) = -\frac{h_i}{3}M_i - \frac{h_i}{6}M_{i+1} - \frac{y_i}{h_i} + \frac{y_{i+1}}{h_i}$$
(2)

同理,可由(1)式得到 $S'_{i-1}(x)$,我们有:

$$S'_{i-1}(x_i) = \frac{h_{i-1}}{6} M_{i-1} + \frac{h_{i-1}}{3} M_i - \frac{y_{i-1}}{h_{i-1}} + \frac{y_i}{h_{i-1}}$$
(3)

当(2)和(3)右端项建立一个等式时, 其结果可写为:

$$h_{i-1}M_{i-1} + 2(h_i + h_{i-1})M_i + h_iM_{i+1} = \frac{6}{h_i}(y_{i+1} - y_i) - \frac{6}{h_{i-1}}(y_i - y_{i-1})$$
(4)

这个等式仅仅对 $i=1,2,\ldots,n-1$ 成立,从而给出了一个含有 n+1 个未知量 M_0,M_1,\ldots,M_n 的 n-1 次方程的线性方程组。这时,我们取自然边界条件,即 $M_0=M_n=0$,由此得到的样条函数称为自然三次样条。

对于 $1 \le i \le n-1$,以及 $M_0 = M_n = 0$,方程组(4)是对称的、三对角的和对角占优的,它具有下列形式:

$$\begin{pmatrix} u_1 & h_1 & & & & \\ h_1 & u_2 & h_2 & & & & \\ & h_2 & u_3 & h_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & h_{n-3} & u_{n-2} & h_{n-2} \\ & & & & h_{n-2} & u_{n-1} \end{pmatrix} \begin{pmatrix} M_1 \\ M_2 \\ M_3 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-2} \\ v_{n-1} \end{pmatrix}$$

其中:

$$h_{i} = x_{i+1} - x_{i}$$

$$u_{i} = 2(h_{i} + h_{i-1})$$

$$b_{i} = \frac{6}{h_{i}}(y_{i+1} - y_{i})$$

$$v_{i} = b_{i} - b_{i-1}$$