## 1 Induktion

## 1.1 Starke Induktion und das Wohlordnungsprinzip

**Satz 1.1.1** (starke Induktion). Seien A(n) Aussagen für  $n \in \mathbb{N}$ . Dann gilt

- 1. A(1) ist wahr
- 2.  $\forall n \in \mathbb{N} : A(1), \dots, A(n) \text{ wahr} \Rightarrow A(n+1) \text{ ist wahr}$
- $\Rightarrow \forall n \in \mathbb{N} \text{ ist } A(n) \text{ wahr}$

Beweis. Definiere die Aussage  $B(n) := \{ \text{alle } A(k) \text{ mit } k \leq n \text{ sind wahr} \} \Rightarrow$ 

- 1. B(1) ist wahr
- 2. Ist B(n) wahr für ein  $n \in \mathbb{N}$ , so ist B(n+1) wahr
- $\Rightarrow B(n)$  ist wahr für alle  $n \in \mathbb{N}$ .

Bemerkung.  $(\forall n \in \mathbb{N} : A(k) \forall k < n \Rightarrow A(n)) \Leftrightarrow \forall n \in \mathbb{N} A(n)$ .

Satz 1.1.2 (Wohlordnungsprinzip für  $\mathbb{N}$ ). Jede nichtleere Teilmenge der natürlichen Zahlen  $\mathbb{N}$  hat ein kleinstes Element.

Beweis. Sei  $A(n) := \{ \text{Jede Teilmenge } b \subset \mathbb{N} \text{ mit } m \in B \text{ hat ein kleinstes } Element \}.$ 

Müssen zeigen: A(n) ist wahr für alle  $n \in \mathbb{N}$ .

- 1. A(1) ist wahr, denn ist  $B \subset \mathbb{N}$  mit  $1 \in B$ , so folgt  $\forall k \in B : l \geq 1$ . Also ist 1 kleinstes Element in B.
- 2. Angenommen für  $n \in \mathbb{N}$  sind  $A(1), \ldots, A(n)$  wahr. Sei  $B \subset \mathbb{N}$  mit  $n+1 \in B$ .
  - 1. Fall:  $\{1,\ldots,n\}\cap B=\emptyset \Rightarrow n+1$  ist kleinstes Element in B.
  - 2. Fall:  $\{1,\ldots,n\}\cap B\neq\emptyset\Rightarrow \exists k\in\{1,\ldots,n\} \text{ mit } k\in B.$

Aus der Induktionsannahme folgt also A(k) ist wahr.  $\Rightarrow B$  hat ein kleinstes Element.

In beiden Fällen hat B ein kleinstes Element, also ist A(n+1) wahr.  $\stackrel{\text{Satz } 1}{\Rightarrow} \forall n \in \mathbb{N} A(n)$  wahr.

Notation:

Ganze Zahlen  $\mathbb{Z} := (-\mathbb{N}) \cup \mathbb{N}_0 = \{0, \pm 1, \pm 2, \ldots\} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$  Rationale Zahlen:  $\mathbb{Q} := \{\frac{m}{n} | n \in \mathbb{N}, m \in \mathbb{Z}\}.$ 

Korollar 1.1.3. Jede nichtleere, nach unten beschränkte Teilmenge in  $\mathbb{Z}$  hat ein kleinstes Element.

Beweis. Sei 
$$A \subsetneq \mathbb{Z}, A \neq \emptyset, A \geq \beta$$
 für  $B \in \mathbb{Z}$   
Setze  $B := A + \beta + 1 = \{\alpha + |\beta| + 1 | \alpha \in A\} \subsetneq \mathbb{N}, B \neq \emptyset$   
Satz  $\beta = \exists n_0 := \min B \Rightarrow z_0 := n_0 - |\beta| - 1 \in \mathbb{Z}$  ist kleinstes Element von  $A$ .  $\square$ 

## 1.2 Anwendungen

**Lemma 1.2.1.** Sei  $a \in \mathbb{R}$  mit a > 0. Dann existiert  $q \in \mathbb{N}_0$  mit  $q \le a < q+1$ 

Beweis. Ist 0 < a < 1, so nehme q = 0.

Also  $a \ge 1$  und setze  $B := \{ n \in \mathbb{N} | a < n \}.$ 

Da N nicht nach oben beschränkt ist (archim. Prinzip), gilt  $B \neq \emptyset$ .

 $\overset{\text{Satz 2}}{\Rightarrow} m := \min B$  existiert. Da  $m \in B$ , ist  $m > a \ge 1$ .

Somit gilt nach Satz 3.5.8, dass  $q := m - 1 \in \mathbb{N}$ .

Da m die kleinste natürliche Zahl mit m < a ist, folgt  $q = m - 1 \le a < m = q + 1$ .

Bemerkung. Dieselbe Beweisidee zeigt auch

$$\forall a \in \mathbb{R} \exists q \in \mathbb{Z} \text{ mit } q \leq a < q + 1.$$

**Satz 1.2.2** ( $\mathbb{Q}$  ist dicht in  $\mathbb{R}$ ). Seien  $a, b \in \mathbb{R}, a < b$ . Dann existiert  $r \in \mathbb{Q}$  mit a < r < b.

Beweis. O.B.d.A.  $b \ge 0$ , ansonsten betrachte a' = -a, b' = -b.

Weiter können wir  $a \ge 0$  annehmen, sonst nehme r = 0. Also sei  $0 \le a < b \stackrel{\text{Archimedes}}{\Rightarrow} \exists n \in \mathbb{N} : n(b-a) > 1$ .

Setze  $B := \{l \in \mathbb{N} | l > na\} \subset \mathbb{N}.$ 

$$\stackrel{\text{Satz 5.1.2}}{\Rightarrow} m = \min B \text{ existient.}$$

Da  $m = \min B$  ist, gilt

$$m - a \le na < m$$
,

somit gilt auch

$$na < m = \underbrace{m-1}_{< na} + \underbrace{1}_{< n(b-a)} = nb$$

$$\Rightarrow na < m, nb \Leftrightarrow a < \frac{m}{n} < b.$$

## Exkurs

Beh.:  $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ .

Beweis. [Beweis durch Widerspruch] Sei  $r^2 = 2$  mit  $r = \frac{m}{n}, n \in \mathbb{N}, m \in \mathbb{Z}$ . Wir definieren

$$A := \{ n \in \mathbb{N} | \exists m \in \mathbb{Z} \frac{m^2}{n^2} = 2 \} \neq \emptyset$$

$$\stackrel{\text{Satz 5.1.2}}{\Rightarrow} n_* = \min A \in \mathbb{N}$$

Also existiert  $m \in \mathbb{Z}_+$  mit

$$m^2 = 2 \cdot m_*^2 \Rightarrow m > n_*$$

Außerdem gilt

$$m = \sqrt{2}n_* \overset{\sqrt{2} > 1}{\Leftrightarrow} 0 < \underbrace{m - n_*}_{\in \mathbb{N}} = \underbrace{(\sqrt{2} - 1)}_{<1} n_* < n_*$$

Nun gilt:

$$\sqrt{2} = \frac{m}{n_*} = \frac{m(m - n_*)}{n_*(m - n_*)} \stackrel{m^2 = 2n_*^2}{=} \frac{2n_*^2 - mn_*}{n_*(m - n_*)} = \frac{2n_* - m}{m - n_*}$$

 $f2n_* - m \in \mathbb{Z}, m - n_* < n_*, \text{ aber } n_* = \min A$ Somit kann kein  $m \in \mathbb{Z}$  existieren, sodass  $\frac{m^2}{n^2} = 2$  für beliebiges  $n \in \mathbb{N}$ . Also ist  $\sqrt{2}$  per Definition der rationalen Zahlen in  $\mathbb{R} \setminus \mathbb{Q}$ .

**Satz 1.2.3.** Sei  $k \in \mathbb{N}$ , dann gilt entweder  $\sqrt{k} \in \mathbb{N}$  oder  $\sqrt{k} \in \mathbb{R} \setminus \mathbb{Q}$ .

Beweis. Sei  $k \in \mathbb{N}$  und  $\sqrt{k} \notin \mathbb{N}$ . Angenommen  $\sqrt{k} \in \mathbb{Q}$ , also  $\sqrt{k} = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$  $A := \{n \in \mathbb{N} | \exists m \in \mathbb{Z} \frac{m^2}{n^2} = k\}$ 

$$\stackrel{\text{Satz 5.1.2}}{\Rightarrow} \exists n_* = \min A \in \mathbb{N}$$

Sei  $\frac{m}{n_*} = \sqrt{k}$ , dann gilt

$$m - n_* = \underbrace{(\sqrt{k} - 1)}_{<1} n_*$$

Aber wähle  $q \in \mathbb{N}$ :  $q \leq \sqrt{k} < q+1$ Existiert nach Lemma 5.2.1. Da  $\sqrt{k} \notin \mathbb{N}$  gilt  $q < \sqrt{k} < q+1$ . Also gilt:

$$0 \stackrel{q < \sqrt{k}}{\leq} \underbrace{m - qn_*}_{\in \mathbb{N}} = \underbrace{(\sqrt{k} - q)n_*}_{\leq 1} n_* < n_*$$

Somit

$$\sqrt{k} = \frac{m}{n_*} = \frac{m(m - qn_*)}{n_*(m - qn_*)} = \frac{kn_*^2 - mqn_*}{n_*(m - qn_*)} = \frac{kn_* - mq}{m - qn_*}$$

 $\mathbf{\ell} n_* = \min A, m - q n_* < n_*$ Somit muss  $\sqrt{k} \in \mathbb{R} \setminus \mathbb{Q}$  sein.