Problem ID: maxima Left-to-Right Maxima

A permutation of length N is an ordering of the numbers 1, 2, ..., N. For example, 321 and 213are both permutations of length 3. A number in a permutation that's greater than everything to its left is called a *left-to-right maxima*. The permutation 213 has two left-to-right maxima (2 and 3), but the permutation 321 only has one (3).

We can put a permutation into canonical cycle form by breaking it into groups starting at each left-to-right maxima. The canonical cycle form of 213 is then (21)(3) (2 and 1 are in the same group, 3 is in a group by itself). Here's another more complicated permutation written in canonical cycle form (note that the left-to-right maxima are all bolded):

$$312548976$$
 $(312)(54)(8)(976)$

The canonical cycles forms of length 3 permutations are:

123	(1)(2)(3)
132	(1)(32)
312	(3 12)
321	(321)
213	(21)(3)
231	(2)(31)

For this problem, we would like to know how many permutations of length N have both iand j in the same group.

Input

The input will begin with a line containing a single positive integer, t, representing the number of test cases to process. Each test case will consist of three space-separated integers N, $i, \text{ and } j \ (1 \le i, j \le N \le 19).$

Output

For each test case print the number of permutations of length N that have i and j in the same groups when put into canonical cycle form, on its own line.

Sample Input	Sample Output
2	1
2 1 2	6
3 1 1	12
4 3 4	