Programación en Ingeniera.

Practica 1.

Determinantes de series de constantes y de Taylor.

Alumnos:

Michel A. Ramos Soto Ricardo Romero Vega Naim Tejeda Díaz

NUA:

768935 389765 145154

Correo:

michel.ramos@ugto.mx

Maestro:

Dr. Mario Alberto Ibarra Manzano

Correo:

mibarram@gmail.com

Fecha de entrega:

10/10/18

Introducción

En esta primera practica aplicaremos los conocimientos adquiridos en clase para emplearlos en los ejercicios planteados en los ejercicios en la práctica, hacerlos lo más eficientes posibles y lo más limpio posible, el lenguaje C es un lenguaje de programación originalmente desarrollado por Dennis Ritchie entre 1969 y 1972 en los Laboratorios Bell, como evolución del anterior lenguaje B, a su vez basado en BCPL.

Al igual que B, es un lenguaje orientado a la implementación de Sistemas operativos, concretamente Unix. C es apreciado por la eficiencia del código que produce y es el lenguaje de programación más popular para crear software de sistemas.

El bucle for es una estructura de control en programación en la que se puede indicar de antemano el número mínimo de interacciones. Está disponible en casi todos los lenguajes de programación imperativos.

Objetivos

- Determinar los valores de las constantes.
- Emplear lo aprendido en clase.
- Hacer los ejercicios lo más eficaces y eficientes posibles.
- Hacer las simulaciones necesarias para llegar al resultado más exacto.
- Trabajar en equipo.

$$ln(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

Ciclos:

```
#include <stdio.h>
int main()

int i,x,sig;
    float ln=0,lnf=0;
    do{
    printf("Obtener el resultado del logartimo natural de ln (2)\n");
    printf("\nIngrese el numero de iteracciones: ");
    scanf("%d",&x);
    }while(x<0);
    for(i=0;i<x;i++)
    {
        sig = (1-((2)*(i%2)));
        ln =((sig)*(1.0/(i+1)));
        printf("%+.3f ",ln);
        lnf +=ln;
    }
    printf("\nEl ln(2) es: %.3f\n",lnf);

***return 0.**</pre>
```

Inicio Ingresar X numero de iteracciones Ejecuta x numero de iteracciones Inicializar Ciclo For para x numero de Iteracciones Valor de Ln(2)

Recurrencia:

```
#include <stdio.h>
float resultado(int n);
int main()
    int n;
    float Inf=0;
    printf("Obtener el resultado del logartimo natural de (2) mediante iteracciones:\n");
    printf("\nIngrese el numero de iteracciones: ");
    scanf("%d",&n);
    |while(n<0);
   Inf=resultado(n);
    printf("\nEl ln(2) es: %.3f\n",lnf);
 float resultado(int n)
        float ln;
        int i,den,sig;
for(i=0;i<n;i++)</pre>
            sig=(1-((2)*(i%2)));
den=(i+1);
ln+=(sig*1.0/den);
        return ln;
```


Programa 1: In(2) n	n=x	fn(x)	Fn(x)-fn-1(x)	Calculadora
1	2	1	-0.50	1
2	2	0.50	-0.25	0.5
4	2	0.58		
8	2	0.63	-0.13	0.58
16	2	0.66	-0.07	0.63
32	2	0.68	-0.03	0.66
64	2	0.69	-0.01	0.68
128	2	0.69	-0.01	0.69
				0.6

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots \tag{2}$$

Ciclos

n				ladora
1	PI/4	1		0.7885
2	PI/4	0.6666	-0.3334	0.7885
4	PI/4	0.7238	-0.2762	0.7885
8	PI/4	0.7542	-0.2458	0.7885
16	PI/4	0.7697	-0.2303	0.7885
32	PI/4	0.7775	-0.2225	0.7885
64	PI/4	0.7814	-0.2186	0.7885
128	PI/4	0.7834	-0.2166	0.7885

Recurrencia

```
#include<stdio.h>
float resultado(int n);
int main()
    float pi=0;
    do{
        printf("PI/4 mediante n iteracciones.\nIngrese
    scanf("%d",&n);
}while(n<0);
    pi=resultado(n);
    printf("\nPI/4 con %d iteracciones es: %f\n",n,pi);
   return 0;
float resultado(int n)
    int i,sig,den;
   float pi2=0;
    for(i=0,den=0;i<n;i++)
        sig=(1-(2*(i%2)));
        den=(2*(i)+1);
pi2+=((sig)*(1.0/den));
    return pi2;
```


$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \tag{3}$$

```
2
     int main()
 4 {
 5
6
         float pi2;
         int i,n;
 7
         //Ecuacion 3 (Pi^2)/6
 8
         printf("Series de Constantes: Calculo de (PI^2)/6");
         printf("\n\nIngrese la presicion o el numero de iteraciones: ");
scanf("%d",&n);
 9
10
11
         for(i=1;i<n+1;i++)
12
13
14
             pi2+=(1.0/((i)*(i)));
15
         printf("\n\n(Pi^2)/6 = %f.\n\n",pi2);
16
17
         return 0;
18 L
```

n	x	$f_n(x)$
1	$\pi^2/6$	1.000000
2	$\pi^2/6$	1.250000
4	$\pi^2/6$	1.423611
8	$\pi^2/6$	1.527422
16	$\pi^2/6$	1.584347
32	$\pi^2/6$	1.614167
64	$\pi^2/6$	1.629431
128	$\pi^2/6$	1.637152

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$
 (4)

Ciclos:

Recurrencia:

```
#include<stdio.h>
                                                                  #include<stdio.h>
int main()
                                                                  float resultado(int x);
   int i,x,den;
                                                                  int main()
   float r=0,rpf=0;
                                                                       int x;
                                                                       float rpf=0;
   printf("Obtener el resultado de PI^2/8 mediante iteracciones\n");
                                                                       do{
   printf("\nNumero de iteracciones: ");
                                                                       printf("Obtener el resultado de PI^2/8:\n");
   scanf("%d",&x);
                                                                       printf("\nNumero de iteracciones: ");
   }while(x<0);
                                                                       scanf("%d",&x);
   for(i=0,den=0;i<x;i++)
                                                                       }while(x
                                                                       <0);
       den=((2*(i)+1)*(2*(i)+1));
                                                                       rpf=resultado(x);
       r=(1.0/den);
                                                                       printf("\nEl resultado de Pi^2/8 es: %.3f\n",rpf);
       printf("%+.6f",r);
                                                                    float resultado(int x)
       rpf+=r:
                                                                  } {
                                                                         int i,den;
                                              pf);
                                                                         float rp=0;
                           Inicio
                                                                         for(i=0,den=0;i<x;i++)
                                                                              den=((2*(i)+1)*(2*(i)+1));
                    ingresar x numero de iteracciones
                                                                              rp+=(1.0/den);
                                                                                           Inicio
                                                                                     Declaración Float resultado (int x)
```

Tabla de programa 4:

n	n=x	fn(x)	Fn(x)-fn-1(x)	En
1	$\pi^2/8$	1		1
2	$\pi^2/8$	1.1111	0.1111	1.1111
4	$\pi^2/8$	1.171519	0.020408	1.1715
8	$\pi^2/8$	1.202491	4.444x10-3	1.20
16	$\pi^2/8$	1.218081	1.041x10-3	1.218081
32	$\pi^2/8$	1.225889	2.52x10-4	1.225889
64	$\pi^2/8$	1.229794	1.000062	1.229794
128	$\pi^2/8$	1.231748	1.6x10-5	1.231748

$$\frac{1}{2} = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \frac{1}{7 \times 9} + \dots$$
 (5)

Ciclos

```
#include<stdio.h>
int main()
{
    int i,n,den;
    float r=0,med=0;
    do{
        printf("1/2 mediante n iteracciones.\nIngrese e scanf("%d",&n);
    }while(n<0);
    for(i=0,den=0;i<n;i++)
    {
        den=((2*(i)+1)*(2*(i)+3));
        r=(1.0/den);
        med+=r;
    }
    printf("\n1/2 con %d iteracciones es: %f\n",n,med);
    return 0;
}</pre>
```


n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	0.5000	0.3333	0.6667	0.5000
2	0.5000	0.4000	0.6000	0.5000
4	0.5000	0.4444	0.5556	0.5000
8	0.5000	0.4706	0.5294	0.5000
16	0.5000	0.4848	0.5152	0.5000
32	0.5000	0.4923	0.5077	0.5000
64	0.5000	0.4961	0.5039	0.5000
128	0.5000	0.4981	0.5019	0.5000

Recursivos

$$\frac{3}{4} = \frac{1}{1 \times 3} + \frac{1}{2 \times 4} + \frac{1}{3 \times 5} + \frac{1}{4 \times 6} + \dots \tag{6}$$

```
2
     int main()
 4 ... {
 5
         float ec;
         int i,c=1,n;
 7
         //Ecuacion 6 (3/4)
         printf("Series de Constantes: Calculo de 3/4");
 8
 9
         printf("\n\nIngrese la presicion o numero de iteraciones: ");
10
         scanf("%d",&n);
11
         for(i=0;i<=n;i++,c+=1)
12
13
14
             ec+=(1.0)/(c*(c+2));
15
16
         printf("\n\n3/4 = \%f.\n\n",ec);
17
         return 0;
18 L
```

n	x	$f_n(x)$
1	3/4	0.458333
2	3/4	0.525000
4	3/4	0.595238
8	3/4	0.654545
16	3/4	0.695906
32	3/4	0.721008
64	3/4	0.734962
128	3/4	0.742337

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

Ciclos

}

(7)

Recurrencia

```
#include <stdio.h)
float potencia(float x,int n);
int main()
     int 1,j,n,de,sig;
float re=0,rexf=0,x,numero;
     float re=0,rext=0,x,numero;
do{
  printf("\nObtener el resultado de e^x\n");
  printf("\nIngrese el numero de iteracciones: ");
  scanf("%f",8n);
  printf("Ingrese el valor de x: ");
  scanf("%f",8x);
  }while(n<8);</pre>
      numero-potencia(x,n);
      for(1-0, sig=1;icn;i++)
           for(j=8,de=1;j<i;j++)
                 de*=(j+1);
           re=((sig*numero)/de);
printf("%+.3f",re);
            printf("\nEl resultado de e^%.2f es: %.3f\n",x,rexf);
           return a;
     float potencia(float x, int n)
            int is
           float numero;
            for(1-0, numero-1.0;1<n;1++)
                 numero-x;
            return numerc;
```

n	x	fn(x)	Fn(x)-fn-1(x)	Calculadora
1	2	1	-	1
2	2	3	2	3
4	2	6.3333	1.3333	6.33333
8	2	7.380953	0.025397	6.72063
16	2	7.389057	0	7.389057
32	2	7.389057	0	7.389057
64	2	7.389057	0	7.389057
128	2	7.389057	0	7.389057
1	5	1	-	1
2	5	6	5	6
4	5	39.333332	20.833332	39.333
8	5	128.619049	15.500999	138.3071677
16	5	148.402924	-0.276669	148.402924
32	5	148.413177	0	148.413177
64	5	-1	-2	-1
128	5	-1	-2	-1
1	3	1	-	1
2	3	4	3	4
4	3	13	4.5	13
8	3	19.846430	0	19.846430
16	3	20.085537	43393	20.085537
32	3	20.085539	0	20.085539
64	3	20.085539	0	20.085539
128	3	-1	0	-1

$$xe^x = x + \frac{2x^2}{2!} + \frac{3x^3}{3!} + \frac{4x^4}{4!} + \cdots$$

Ciclos

```
#include <stdio.h>
int main(int argc,char *argv[]){
    double fact, x, ex, res;
    long int i,n;
    printf("x*e^x mediante iteraciones\nIngr scanf("%lg %ld",&x,&n);
    for(i=0, ex=0,fact=1;i<n;i++)
    {
        ex+=fact;
        fact*=(x/(i+1));
        res=ex*x;
    }
    printf("exp^%lg*%lg = %lg\n",x,x,res);
    return 0;
}</pre>
```


(8)

Recursivos

```
float resultado(long int n,double x);
int main(int argc,char *argv[]){
    float res;
    printf("x*e^x mediante iteraciones\nIng
    scanf("%lg %ld",&x,&n);
    res=resultado(n,x);
    printf("exp^%lg*%lg = %f\n",x,x,res);
    return 0;
float resultado(long int n,double x){
   double fact, ex, r = 0.0;
    long int i;
    for(i=0, ex=0,fact=1;i<n;i++){</pre>
       ex+=fact;
        fact*=(x/(i+1));
       r=ex*x;
   return r;
```


n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	6.0000	6.0000	36.0000	2420.5700
2	6.0000	42.0000	324.0000	2420.5700
4	6.0000	366.0000	1434.8600	2420.5700
8	6.0000	1800.8600	618.4800	2420.5700
16	6.0000	2419.3400	1.2300	2420.5700
32	6.0000	2420.5700	0.0000	2420.5700
64	6.0000	2420.5700	0.0000	2420.5700
128	6.0000	2420.5700	-2420.5700	2420.5700

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	2.0000	2.0000	4.0000	14.7781
2	2.0000	6.0000	6.6667	14.7781
4	2.0000	12.6667	2.0952	14.7781
8	2.0000	14.7619	0.0162	14.7781
16	2.0000	14.7781	0.0000	14.7781
32	2.0000	14.7781	0.0000	14.7781
64	2.0000	14.7781	0.0000	14.7781
128	2.0000	14.7781	-14.7781	14.7781

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	4.0000	4.0000	16.0000	14.7781
2	4.0000	20.0000	74.6667	14.7781
4	4.0000	94.6667	112.5583	14.7781
8	4.0000	207.2250	11.1670	14.7781
16	4.0000	218.3920	0.0010	14.7781
32	4.0000	218.3930	0.0000	14.7781
64	4.0000	218.3930	0.0000	14.7781
128	4.0000	218.3930	-218.3930	14.7781

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots -1 < x \le 1$$
 (9)

```
int main()

float x, ln;
int i, n, s=1;

//Ecuacion 9 ln (l+x)
printf("Funciones Exponenciales y logaritmicas: Calculo de logaritmo natural de 1 * x");

do{
printf("\n\nIngrese el valor de x: ");
scanf("%f",&x);
printf("\n\nIndique la presicion o numero de iteraciones: ");
scanf("%d",&n);
hhile(x>1||x<-1||n<0);

for(i=1;i<n+1;i++)
{
    ln+=((x/i));
    x"=x;
}
printf("\n\nln = %f\n\n",ln);
return U;</pre>
```

n	$x(-1 < x \le 1)$	$f_n(x)$
1	-0.9876	-0.987600
2	-0.9876	-0.499923
4	-0.9876	0.043432
8	-0.9876	0.408630
16	-0.9876	0.413354
32	-0.9876	0.413354
64	-0.9876	0.413354
128	-0.9876	0.413354
1	0.1	0.100000
2	0.1	0.105000
4	0.1	0.105033
8	0.1	0.105033
16	0.1	0.105033

32	0.1	0.105033
64	0.1	0.105033
128	0.1	0.105033
1	0.9753	0.975300
2	0.9753	1.450905
4	0.9753	1.957171
8	0.9753	2.199990
16	0.9753	2.200174
32	0.9753	2.200174
64	0.9753	2.200174
128	0.9753	2.200174

$$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots -1 < x < 1$$
 (10)

Ciclos Recurrencia

```
#include<stdio.h)
Eincludecatella. In
Einclude rasta. In
                                                                                                                                                                                                                                                                                                                                                        Finclade (math.h)
                                                                                                                                                                                                                                                                                                                                                        float result(float n, int n);
ist sair()
         int i.j.dem.ru
flast s.k.l.ruserc.pot.rlovk.rlofsk;
                                                                                                                                                                                                                                                                                                                                                         int main()
       flast shill-names,pet./hed.ristic;

di

printi("nibrone of resultate in 1/2 del legaritma natural de (1-a/1-a) mediante iteranciones... 'ediempre y casado x sea napor a -1 y menor a 1/a");

printi("nibrone al valor de x: ");

printi("nibrone de iteractiones: "
                                                                                                                                                                                                                                                                                                                                                                   int n;
                                                                                                                                                                                                                                                                                                                                                                   float x,k,l,rlnf=0;
                                                                                                                                                                                                                                                                                                                                                                   printf("Obtener el resultado de 1/2 del logaritmo natural de (1-m/1-m) \nSiempre y cuando x sea mayor a -1 y menor a 1\mathbb{n}");
                                                                                                                                                                                                                                                                                                                                                                   printf("\ningrese el valor de x: ");
                                                                                                                                                                                                                                                                                                                                                                   scanf("M", Mx);
                                                                                                                                                                                                                                                                                                                                                                  printf("Numero de iteracciones: ");
scanf("Md",&n);
                  For (5-6, numero-1, pet-4) (4) (1-1) (5++)
                                                                                                                                                                                                                                                                                                                                                                  | while(x)1||x<-1|{n(!);
| rlnf=result(x,n);
                                                                                                                                                                                                                                                                                                                                                                   k=1+x3
                   des-(2*(1)+1))
                                                                                                                                                                                                                                                                                                                                                                   printf("\nEl resultado de 1/2 del la de (%.2f/%.2f) es: %.3f\n",k,l,rlaf);
                                                                                                                                                                                                                                                                                                                                                                   return &
        float result(float x, int n)
                                                                                                                                                                                                                                                                                                                                                                     int i, j, den;
                                                                                                                                                                                                                                                                                                                                                                     float numerc,pot,rln=8;
                                                                                                                                                                                                                                                                                                                                                                     for(i=0;i<n;i++)
                                                                                                                                                                                                                                                                                                                                                                                    for(j=0,numero=1,pot=0;j<(i+1);j++)
                                                                                                                                                                                                                                                                                                                                                                                                 pot=(2*(j)+1);
                                                                                                                                                                                                                                                                                                                                                                                                 numero=pow(x,pot);
                                                                                                                                                                                                                                                                                                                                                                                    den=(2*(i)+1);
                                                                                                                                                                                                                                                                                                                                                                                  rln+=(numero/den);
                                                                                                                                                                                                     Inicio
                                                                                                                                                                                                                                                                                                                                                                     return rln;
                                                                                                                                                                     x sea mayor a -1 y menor a 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Inicio
                                                                                                                                                                                         while pot | | xc-t | | ne0;
                               (x<1|[x<1][n>0) no valido
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Float result(float x, int n)
                                                                                                                                                                                                                                                                                                                                                       (e<1) | z<-1 | mob) no waldo
```

n	х	fn(x)	Calculadora
1	2	2	2
2	2	4.666667	4.666667
4	2	29.352381	29.352381
8	2	3087.110352	3087.110352
16	2	94602640.00	94602640.00
32	2	197387007477940220.00	197387007477940220.00
64	2	179589090500445940000	179589090500445940000
128	2	0000000000000000000000	0000000000000000000000
		1	1
1	3	3	3
2	3	12	12
4	3	373.028564	373.028564
8	3	1097898.375000	1097898.375000
16	3	22612497399808.000	22612497399808.000
32	3	205230741688976770000	205230741688976770000
64	3	00000000.0000	00000000.0000
128	3	1	1
		1	1
1	4	4	4
2	4	25.333334	25.333334
4	4	2570.704834	2570.704834
8	4	77158008.000	77158008.000
16	4	159418568868364290	159418568868364290
32	4	144351129262891660000	144351129262891660000
64	4	0000000000000000000000	000000000000000000000
128	4	1	1
		1	1

$$\ln(x) = 2\left\{ \left(\frac{x-1}{x+1}\right) + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^5 + \dots \right\} \quad x > 0$$
 (11)

Ciclos

Ingresar el valor de preciosion de 'n' Se realiza el ciclo con 'n' iteraciones Junto con el ciclo se realiza el algoritmo Imprime el valor de ln(x)

Recursividad

```
include <stdio.h>
Float resultado(float x,int n);
int main()
   float x,k,lnf=0;
        printf("ln(x) mediante iteracciones.\nIngresa e
   scanf("%f",&x);
printf("Ingrese el nu
scanf("%d",&n);
}while(x>=1||x<-1||n<0);</pre>
   lnf=resultado(x,n);
    k = 1+x;
   printf("\nEl resultado del ln(%f) es: %f\n",k,lnf);
loat resultado(float x,int n)
    int den,sig,i,j;
    float k,px,num,ln=0.0;
    for(i=0,ln=0; i<n; i++)
        sig=(1-((2)*(i%2)));
for(j=0,px=1;j<(i+1);j++)</pre>
             px*=x;
        num=px;
        den=(i+1);
        ln+=(sig*num)/(den);
    return ln;
```


n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	2.0000	0.6667	0.0247	0.6931
2	2.0000	0.6914	0.0018	0.6931
4	2.0000	0.6931	0.0000	0.6931
8	2.0000	0.6931	0.0000	0.6931
16	2.0000	0.6931	0.0000	0.6931
32	2.0000	0.6931	0.0000	0.6931
64	2.0000	0.6931	0.0000	0.6931
128	2.0000	0.6931	-0.6931	0.6931

_	v	- / \		
n	X	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	4.0000	1.2000	0.1440	1.3863
2	4.0000	1.3440	0.0391	1.3863
4	4.0000	1.3831	0.0032	1.3863
8	4.0000	1.3863	0.0000	1.3863
16	4.0000	1.3863	0.0000	1.3863
32	4.0000	1.3863	0.0000	1.3863
64	4.0000	1.3863	0.0000	1.3863
128	4.0000	1.3863	-1.3863	1.3863

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	6.0000	1.4286	0.2430	1.7918
2	6.0000	1.6715	0.1015	1.7918
4	6.0000	1.7730	0.0180	1.7918
8	6.0000	1.7910	0.0007	1.7918
16	6.0000	1.7918	0.0000	1.7918
32	6.0000	1.7918	0.0000	1.7918
64	6.0000	1.7918	0.0000	1.7918
128	6.0000	1.7918	-1.7918	1.7918

$$\ln(x) = \left(\frac{x-1}{x}\right) + \frac{1}{2}\left(\frac{x-1}{x}\right)^2 + \frac{1}{3}\left(\frac{x-1}{x}\right)^3 + \dots \quad x \ge \frac{1}{2}$$
 (12)

Tabla y Diagrama Programa 12 ~ $\ln(x)$ $x \ge \frac{1}{2}$

n	\boldsymbol{x}	$f_n(x)$
1	0.5050	-0.980198
2	0.5050	-0.499804
4	0.5050	-0.582946
8	0.5050	-0.633770
16	0.5050	-0.661439
32	0.5050	-0.675169
64	0.5050	-0.681063

128	0.5050	-0.682899
1	48.963	0.979576
2	48.963	1.459361
4	48.963	2.002879
8	48.963	2.560152
16	48.963	3.077465
32	48.963	3.495733
64	48.963	3.761936
128	48.963	3.870638
1	377.531	0.997351
2	377.531	1.494706
4	377.531	2.072759
8	377.531	2.696765
16	377.531	3.338776
32	377.531	3.975444
64	377.531	4.581191
128	377.531	5.120628

$$a^{x} = e^{x \ln a} = 1 + x \ln a + \frac{(x \ln a)^{2}}{2!} + \frac{(x \ln a)^{3}}{3!} + \cdots$$
 (14)

Ciclos

Recursividad

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	2,2	2.3330	0.9221	3.8813
2	2,2	3.2551	0.5735	3.8813
4	2,2	3.8286	0.0526	3.8813
8	2,2	3.8812	0.0001	3.8813
16	2,2	3.8813	0.0000	3.8813
32	2,2	3.8813	0.0000	3.8813
64	2,2	3.8813	0.0000	3.8813
128	2,2	3.8813	-3.8813	3.8813

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	4,4	5.8000	12.9024	621.4116
2	4,4	18.7024	56.3751	621.4116
4	4,4	75.0775	114.7036	621.4116
8	4,4	189.7811	431.6305	621.4116
16	4,4	621.4116	0.0000	621.4116
32	4,4	621.4116	0.0000	621.4116
64	4,4	621.4116	0.0000	621.4116
128	4,4	621.4116	-621.4116	621.4116

n	x a	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	6,6	9.5714	42.9821	8477.6738
2	6,6	52.5535	549.2364	8477.6738
4	6,6	601.7899	7875.8839	8477.6738
8	6,6	8477.6738	0.0000	8477.6738
16	6,6	8477.6738	0.0000	8477.6738
32	6,6	8477.6738	0.0000	8477.6738
64	6,6	8477.6738	0.0000	8477.6738
128	6,6	8477.6738	-8477.6738	8477.6738

$$E_{2k} = i \sum_{m=1}^{2k+1} \sum_{j=0}^{m} {m \choose j} \frac{(-1)^j (m-2j)^{2k+1}}{2^m i^m m}$$

$$i^2 = -1$$
(17)

Ciclos

```
#include <stdio.h>
int main()
      int it, j, sig=-1, nden=3;
float div=0, pi=1, i, num, den=1,rest, fact=1, pot=2;
printf("Ingrese K ");
scanf("%d", &it);
printf("Ingrese n");
scanf("%f", &num);
num*=2;
rest=num;
      rest=num;
for(i=1;i<=num;i++)
            rest-=1;
pi*=3.1416;
             pot*=2;
      pi*=3.1416;
       pot*=2;
       fact*=pot;
       fact/=pi;
for (i=1;i<=it;i++)</pre>
             for(j=0;j<=num;j++)</pre>
                          den*=nden;
       div+=(sig*(1/den));
      den=1;
       sig*=-1;
       nden+=2;
      fact*=div;
printf("%f", fact);
return 0;
```


n	k	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	2.00	1.0021	3.9981	2.7183
2	2.00	5.0002	1379.9708	2.7183
4	2.00	1384.9709	#VALUE!	2.7183
8	2.00	inf	#VALUE!	2.7183
16	2.00	inf	#VALUE!	2.7183
32	2.00	inf	#VALUE!	2.7183
64	2.00	inf	#VALUE!	2.7183
128	2.00	inf	#VALUE!	2.7183

n	k	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	6.00	1.0006	4.0003	2.7183
2	6.00	5.0009	2299.2443	2.7183
4	6.00	2304.2452	#VALUE!	2.7183
8	6.00	inf	#VALUE!	2.7183
16	6.00	inf	#VALUE!	2.7183
32	6.00	inf	#VALUE!	2.7183
64	6.00	inf	#VALUE!	2.7183
128	6.00	inf	#VALUE!	2.7183

n	k	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	4.00	1.0005	3.9998	2.7183
2	4.00	5.0003	1297.3240	2.7183
4	4.00	1302.3243	#VALUE!	2.7183
8	4.00	inf	#VALUE!	2.7183
16	4.00	inf	#VALUE!	2.7183
32	4.00	inf	#VALUE!	2.7183
64	4.00	inf	#VALUE!	2.7183
128	4.00	inf	#VALUE!	2.7183

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 (18)

Tabla y Diagrama Programa 18.

```
int main()

int i,n,s=1,fac=1;
float x,aux,r,sen=0;

//Ecuacion 18 sen (x)

printf('Funciones Trigonometricas: Calculo de sen (x)');

//A precision varia mucho, dependiendo del vator de 'x' y del numero de iteraciones que el usuario ingrese
printf('Nolningrese el valor de x: ");

scanf('%',*",*");

printf('Nolningrese la precision o numero de Iteraciones: *);

scanf('%d',*n);

aux-x;
for(i=|;in=|;i++)
{
    fac*=1;
    if(iXi=0)
    {
        sen+-(aux*s)/fac;
        aux*=(x*x);
    }

    r-sen;
    printf('\n\nsen (%f) = %f',x,r);
    return 0;
}
```

n	x	$f_n(x)$
1	-2	-2.000000
2	-2	-2.00000
4	-2	-0.666667
8	-2	-0.907936
16	-2	-0.909284
32	-2	2.523191
64	-2	-1.#IND00
128	-2	-1.#IND00
1	0.4137	0.413700
2	0.4137	0.413700
4	0.4137	0.401899
8	0.4137	0.402000
16	0.4137	0.402000

32	0.4137	0.402000
64	0.4137	-1.#IND00
128	0.4137	-1.#IND00
1	19	19.000000
2	19	19.000000
4	19	-1124.166626
8	19	-157845.500000
16	19	-7554661888.000000
32	19	-1.#IND00
64	19	-1.#IND00
128	19	-1.#IND00

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
 (19)

Ciclos

```
#include <stdio.h>
int main()
{
    int n,i;
    float cos,fact,x;
    do{
        printf("Obtener el resultado de cos(x)\n");
        printf("\nIngrese el valor de x: ");
        scanf("%f",&x);
        printf("Ingrese el numero de iteracciones: ");
        scanf("%d",&n);
    }while(n<0| |x<0);
    for(i=0,fact=1,cos=0.0;i<n;i++)
    {
        cos+=fact;
        fact*=(-1.0)*((x/(4*i+3))*(x/(4*i+4)));
    }
    printf("\nEl resultado de cos(%.3f) es: %.5f\n",x,cos);
    return 0;</pre>
```

Recurrencia

```
#include <stdio.h>
float result(float x, int n);
int main()
     int n;
     float cos,x;
     do{
          printf("Obtener el resultado de cos(x) mediante iteracciones\n");
printf("\nIngrese el valor de x: ");
scanf("%f",&x);
     printf("Numero de iteracciones: ");
scanf("%d",&n);
}while(n<0||x<0);</pre>
     cos=result(x,n);
     printf("\nEl resultado de cos(%.3f) es: %.5f\n",x,cos);
     return 0;
float result(float x,int n)
     int i;
     float rcos, fact;
     for(i=0,fact=1,rcos=0.0;i<n;i++)</pre>
          rcos+=fact;
fact*=(-1.0)*((x/(4*i+3))*(x/(4*i+4)));
     return rcos;
```


α	0	π6	π4	π3	π2	π	3π2	2π
cos α	1	$\sqrt{3}$ 2	$\sqrt{2}$ 2	12	0	-1	0	1

$$tan\left(x\right) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!}x^{2n-1} + \dots \quad |x| < \frac{\pi}{2}$$
(20)

```
#include <stdio.h>
int main(void)
{
    int i, n;
    float sx, x, nu,tan,cx;
    do{
        printf("Ingrese el numero de iteraciones: ");
        scanf("%d", &n);
    } while (n<1);
    printf("Ingrese el valor de x: ");
    scanf("%f", &x);
    for (i=0, sx=0, nu=x; i<n; i++, nu*=(-1*x*x/((2*i)*(2*i+1))))
        sx += nu;
    for (i=0, cx=0, nu=1; i<n; i++, nu*=(-1*x*x/((2*i-1)*(2*i))))
        cx += nu;
    tan=sx/cx;
    printf("tan(%f) = %f\n", x, tan);
    return 0;
}</pre>
```


n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	2.00	2.0000	-2.6667	-2.1850
2	2.00	-0.6667	-1.4837	-2.1850
4	2.00	-2.1504	-0.0347	-2.1850
8	2.00	-2.1850	0.0000	-2.1850
16	2.00	-2.1850	0.0000	-2.1850
32	2.00	-2.1850	0.0000	-2.1850
64	2.00	-2.1850	0.0000	-2.1850
128	2.00	-2.1850	2.1850	-2.1850

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	4.00	4.0000	-3.0476	1.1575
2	4.00	0.9524	-0.2679	1.1575
4	4.00	0.6845	0.4731	1.1575
8	4.00	1.1575	0.0000	1.1575
16	4.00	1.1575	0.0000	1.1575
32	4.00	1.1575	0.0000	1.1575
64	4.00	1.1575	0.0000	1.1575
128	4.00	1.1575	-1.1575	1.1575

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	6.00	1.5574	0.2073	-0.2910
2	6.00	1.7647	-1.0186	-0.2910
4	6.00	0.7461	-1.1300	-0.2910
8	6.00	-0.3839	0.0929	-0.2910
16	6.00	-0.2910	0.0000	-0.2910
32	6.00	-0.2910	0.0000	-0.2910
64	6.00	-0.2910	0.0000	-0.2910
128	6.00	-0.2910	0.2910	-0.2910

$$csc(x) = \frac{1}{x} + \frac{x}{6} + \frac{7x^3}{360} + \frac{31x^5}{15,120} +$$

Ciclos

```
#include <stdio.h>
Winclude <stdlib,h>
float potencia(float, float);
float factorial(float);
float sen(float);
int main(int argc, char** argv) {
      float x, seno, csc)
      printf("Funcion trigonometrica\n");
printf("Cosecante\n");
printf("Damen un numero\n");
scanf("%f", &x);
      csc = 1/sen(x);
printf("La cosecante de %.2f es %.2f", x;csc);
      return 8;
 float factorial(float k) (
      float z = 1;
      int i;
      for (1 - 1; i c+ k; i++) (
float potencia(float x, float k) {
  float z = 1}
    int i
    if (k -- 0) (
return (1);
    } else {
    for (1 = 0; 1 < k; 1++) {
        z *= x;
eturn (z);
lost sen(flost x) {
  float summa = 0, ax, error = 0.001;
int k;
        ax = (((potencia(-1, k) * potencia(x, 2 * k)) + 1) / factorial((2 * k) + 1));
suma += ax;
k++;
if (ax < 0) (
    ax = -ax;
           while (ax > error);
     return (summ);
```


Recurrencia

```
#include <stdio.h>
#include <stdlib.h>
   float potencia(float, float);
   float factorial(float);
float exponencial(float);
   float sen(float);
   float potencia(float x, float k) (
         float r = 1;
         int is
         if (k -- 0) (
               return (1);
         ) else (
for (i = 0; i < k; i++) (
                     2 *- N1
   return (z);
   float factorial(float k) (
         float I - II
        int i:
        for (i = 1; i <= k; i++) {
    z *- i;
         return (z);
floet superencial(floet x) (
floet sums = 0, ax, error = 0.0001)
int k = 0;
        ax - (potencia(x, k) / factorial(k)))
sima == ax;
k++;
lf (ax < 0) (
ax = -ax;
    ) while (ax > error);
return (summ);
float sem(float x) {
    float suma = 0, ax, error = 0.001;
    int k
    do (
    ax = (((petencia(-1, k) * petencia(s, 2 * k)) + 1) / factorial((2 * k) + 1));
    sums == ax;
    if (ax < 0) (
        ax = -ax;
    }
}</pre>
           while (ax > error);
     return (suma))
```

Tabla Cosecante:

Grados	0	30	45	60	90	135	180	225	270	315
Radianes	0	1/6π	1/4π	1/3π	1/2π	3/4π	π	5/4π	3/2π	7/4π
CSC	+-inf	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1	$\sqrt{2}$	+-inf	-√2	-1	-√2

$$sen^{-1}(x) = x + \frac{1}{2}\frac{x^3}{3} + \frac{1}{2}\frac{3}{4}\frac{x^5}{5} + \frac{1}{2}\frac{3}{4}\frac{5}{6}\frac{x^7}{7}$$

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	-1.00	-0.5000	-0.1250	-1.5797
2	-1.00	-0.6250	-0.1016	-1.5797
4	-1.00	-0.7266	-0.0771	-1.5797
8	-1.00	-0.8036	-0.0564	-1.5797
16	-1.00	-0.8601	-0.0406	-1.5797
32	-1.00	-0.9007	-0.0495	-1.5797
64	-1.00	-0.9502	-0.6295	-1.5797
128	-1.00	-1.5797	1.5797	-1.5797

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	-3.00	-1.5000	-3.3750	null
2	-3.00	-4.8750	-100.6172	null
4	-3.00	-105.4922	#VALUE!	null
8	-3.00	inf	#VALUE!	null
16	-3.00	inf	#VALUE!	null
32	-3.00	inf	#VALUE!	null
64	-3.00	inf	#VALUE!	null
128	-3.00	inf	#VALUE!	null

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	-6.00	-2.7500	-5.8150	null
2	-6.00	-8.5650	-201.9272	null
4	-6.00	-210.4922	#VALUE!	null
8	-6.00	inf	#VALUE!	null
16	-6.00	inf	#VALUE!	null
32	-6.00	inf	#VALUE!	null
64	-6.00	inf	#VALUE!	null
128	-6.00	inf	#VALUE!	null

$$\cos^{-1}(x) = \frac{\pi}{2} - sen^{-1}(x) = \frac{\pi}{2} - \left(x + \frac{1}{2}\frac{x^3}{3} + \frac{1}{2}\frac{3}{4}\frac{x^5}{5} + \cdots\right) \quad |x| < 1$$
 (24)

Tabla y Diagrama Programa 24 ~ cos^-1(x).

```
int main()
 4
5
6
7
8
9
10
11
12
13
14
             int i,n;
             float x,aux,cos=0,r,u=1,v=1,w=2,p;
            //Ecuacion 24 cos^-1 (x)
printf("Funciones Trigonometricas: Calculo de cos^-1 (x)");
printf("\n\nIngrese el valor de x (|x| < 1): ");</pre>
            scanf("%f",&x);
printf("\nIngrese la precision o numero de iteraciones: ");
             scanf("%d",&n);
             aux=x;
15
             for(i=1;i<n+1;i++)
16
17
                  if(i%2!=0)
18
19
20
21
22
23
24
25
26
27
28
                        cos+=(aux/i)*u;
                        aux*=(aux*aux);
                        u^*=(v/w);
                        V+=2;
                        W+=2;
             p=PI/2;
             r=p-cos;
printf("\n\ncos^-1 (%f) = %f",x,r);
             return 0;
```

n	x	$f_n(x)$
1	0.13487	1.435926
2	0.13487	1.435926
4	0.13487	1.435517
8	0.13487	1.435517
16	0.13487	1.435517
32	0.13487	1.435517
64	0.13487	1.435517
128	0.13487	1.435517

1	0.9831	0.587696
2	0.9831	0.587696
4	0.9831	0.429337
8	0.9831	0.336827
16	0.9831	0.328832
32	0.9831	0.328832
64	0.9831	0.328832
128	0.9831	0.328832
1	0.5555	1.015296
2	0.5555	1.015296
4	0.5555	0.986727
8	0.5555	0.986349
16	0.5555	0.986349
32	0.5555	0.986349
64	0.5555	0.986349
	0.5555	0.986349

$$tan^{-1}(x) = \begin{cases} x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots & |x| < 1\\ \pm \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots & [+ \text{ si } x \ge 1, - \text{ si } x \le -1] \end{cases}$$
 (25)

Ciclos:

Recurrencia:

```
Encludements. Yo
                                                                                                                                                                                                                                                                                                                                                                              Clust resultablificat s, but r)
Float resultablificat s, but a))
Float resultablificat s, but o))
main()
   int i,j,den,m,sig;
float x,numerc,pot,rtan=0.8,rtanf=0.8;
int mint)
                                                                                                                                                                                                                                                                                                                                                                                        by printfy Theorem of resolvable in the fact of be (x) mediants iteraccions... indicapre y cannot a sus meson a V(x^2)) printfy reference of value do (x^2-y)) scale V(x^2-y).
| Jubile(k>1|(ncm);
| for(1-8;[cn;]++)
                                                                                                                                                                                                                                                                                                                                                                                        printf("lagrese el nuevo de l'invectures; ");
scref("M",80);
               sig=(1-((2)*(152)));
for(j=0,*umero=1,pot=0;jc(i=1);j++)
                                                                                                                                                                                                                                                                                                                                                                                       | Selfie(0)| POD()|
| PlatforDoDDDDD()|
| PlatforDoDDDDD(), 9)|
| printf["odl resultate de tau"-1 de (8,24) es: 8.265a", s;rtanf]|
                      pot-(2*(j)-1);
numero-pox(x,pot);
                 den-(2*(1)+1);
                                                                                                                                                                                                                                                                                                                                                                                        Set op
flast y,rrangit;
              rten (aig numers/de
printf("%+f",rten);
rtenf++rten;
                                                                                                                                                                                                                                                                                                                                                                                        del printi "subtreer el resultats de la tari-l de (s) mellante invesciones..., 'edisepre y cando e un major o igual e fin');
printi "subspece el saler de se ");
sunt("si layres el samero de invesciones: ");
   printf("\ndl resultado de tao"-1 de (%.2f) es: %.3f\n",x;rtanf);
  ist k,l,e,cign;
Float y,denc,pote,rtang-0.8,rtangf-0.8,rtangfi-0.8;
Float y,dens,pote,pranged 0, Trangresse, no confidence in the confidence of the conf
                                                                                                                                                                                                                                                                                                                                                                                         rtaugfi-resultability.vii.
                                                                                                                                                                                                                                                                                                                                                                                         float resultado2(float y,int m)
                                                                                                                                                                                                                                                                                                                                                                                                           int k,l,sign;
     sign=(((2)*(k82))-1);
for(1-0,pote=0;lc(k+1);l++)
                                                                                                                                                                                                                                                                                                                                                                                                          float deno,pote,rtang=0.0,rtangf=0.0;
                                                                                                                                                                                                                                                                                                                                                                                                          for(k=0;k<m;k++)
              pote-(2*(1)+1);
deno-(2*(1)+1)*(pow(y,gote));
                                                                                                                                                                                                                                                                                                                                                                                                                            sign=(((2)*(k%2))-1);
                                                                                                                                                                                                                                                                                                                                                                                                                           for(l=0,pote=0;l<(k+1);l++)</pre>
  rtang=(sign*1.0/deno))
printf("%=",rtang);
rtangf==rtang);
rtangf==(rtang=1.570706327))
                                                                                                                                                                                                                                                                                                                                                                                                                                           pote=(2*(1)+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                            deno=(2*(1)+1)*(pow(y,pote));
intf("\nEl resultado de tan"-i de (%.2f) es: %.3f\n".yartangfi);
                                                                                                                                                                                                                                                                                                                                                                                                                           rtang+=(sign*1.0/deno);
                                                                                                                                                                                                                                                                                                                                                                                                                          rtangf=(rtang+1.570796327);
nt r.s.c.signc;
lost s.denos.poten.rtange=0.0,rtangef=0.0,rtangefi=0.0;
lost s_dence_poten, trange=0.0, rtange=0.0, rtange=0.0, trange=1.0.0)
|-|set("Nesultado de la tam"-1 de (x) mediante iteracciones... \nSimpre y coando x sea menor o igual a 1\n");
|-|set("\n'\ningrese el valor de xi ");
|set("\n'\ningrese el valor de xi ");
|-|set("\n'\ningrese el valor de xi ");
|-|set("\n'\ningrese el teracciones: ");
|-|set("\n'\ningrese el valor de xi ");
|-|set("\ningrese 
                                                                                                                                                                                                                                                                                                                                                                                                           return rtangf;
                                                                                                                                                                                                                                                                                                                                                                                         float resultado3(float z,int o)
                                                                                                                                                                                                                                                                                                                                                                                                          int r,s,signo;
                                                                                                                                                                                                                                                                                                                                                                                                          float denom,poten,rtange=0.0,rtangef=0.0,rtangefi=0.0;
                                                                                                                                                                                                                                                                                                                                                                                                           for(r=0;r<0;r++)
     signo-(((2)*(r%2))-1);
for(s-0,poten-0;sc(r+1);s++)
                                                                                                                                                                                                                                                                                                                                                                                                                           signo=(((2)*(r%2))-1);
                poten=(2*(x)+1);
                                                                                                                                                                                                                                                                                                                                                                                                                           for(s=0,poten=0;s<(r+1);s++)</pre>
               denom-(2*(s)+1)*(pox(r,poten));
   |
rtange=(signo"1.0/denom);
printf("%=",rtange);
rtange*==rtange;
rtange*==rtange=1.579796327);
                                                                                                                                                                                                                                                                                                                                                                                                                                           poten=(2*(s)+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                            denom=(2*(s)+1)*(pow(z,poten));
                                                                                                                                                                                                                                                                                                                                                                                                                         rtange+=(signo*1.0/denom);
rtangef=(rtange-1.570796327);
'intf("\nEl resultado de tan"-1 de (%.2f) es: %.3f\n",z;rtangefi);
etern 61
                                                                                                                                                                                                                                                                                                                                                                                                         return rtangef;
                                                                                                                                                                                                                                                                                                                                                                                                 let d;
float z,rtangefi;
                                                                                                                                                                                                                                                                                                                                                                                               doj
pristf("Ubtever el resultado de la tan'-i de (s) mediante iteraccianes... \#Siempre y cuando a sea menar a igual a l'a');
printf("Noingrese el valor de x: ");
acan("NF',Ar);
printf("Ngrese el numero de iteracciones: ");
scanf("NF',Ar);
                                                                                                                                                                                                                                                                                                                                                                                                 |while(pi||od|);
rhangefivresultadoN(z,o);
printf("Unil resultado de tan^-1 de (%.2F) es: %.3Fun*,z,rtangefi);
                                                                                                                                                                                                                                                                                                                                                                                      float resultado(float x,int n)
```

int i,j,den,mig: float num,pot,rtan=8.8; for(1-8;1:m;1:=)

> sig=(1-{{2}^(ik2}})) for(j=0,num=1,pot=0;j<(1+1),j++) (put=(2*(j)+1);

$$\sinh\left(x\right) = x + \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \frac{1}{7!}x^7 + \dots + \frac{1}{(2n+1)!}x^{2n+1} \tag{26}$$

Ciclo

```
#include <stdio.h>
int main()
{
    int n,i;
    float rsen,fact,x;
    do{
        printf("Sinh(x) mediante iteracciones.\n");
        printf("\nIngrese el valor de x: ");
        scanf("%f",8x);
        printf("Ingrese el numero de iteracciones: ");
        scanf("%d",8n);
    }while(n<0||x<0);
    for(i=0,fact=x,rsen=0.0;i<n;i++)
    {
        rsen+=fact;
        fact*=((x/(2*i+2))*(x/(2*i+3)));
    }
    printf("\nEl resultado de senh(%.3f) es: %.5f\n",x,rsen);
    return 0;</pre>
```

Ingresar el valor de preciosion de 'x' Se realiza el ciclo con 'n' iteraciones Junto con el ciclo se realiza el algoritmo Imprime el valor de sinh(x)

Recursiva

```
#include <stdio.hx

float resultado(float x,int n);

int main()
{
    int n;
    float rseno,x;
    do{
        printf("Sinh(x) mediante iteracciones\n");
        printf("\nIngrese el valor de x: ");
        scanf("%f",&x);
        printf("Ingrese el numero de iteracciones: ");
        scanf("%d",&n);
    }while(n<0||x<0);
    rseno=resultado(x,n);
    printf("\nEl resultado de senh(%.3f) es: %.5f\n",x,rseno);
    return 0;
}

float resultado(float x,int n)
{
    int i;
    float rsen,fact;
    for(i=0,fact=x,rsen=0.0;i<n;i++)
    {
        rsen+=fact;
        fact*=((x/(2*i+2))*(x/(2*i+3)));
    }
    return rsen;
}</pre>
```


n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	2.00	2.0000	1.3333	3.6268
2	2.00	3.3333	0.2921	3.6268
4	2.00	3.6254	0.0014	3.6268
8	2.00	3.6268	0.0000	3.6268
16	2.00	3.6268	0.0000	3.6268
32	2.00	3.6268	0.0000	3.6268
64	2.00	3.6268	0.0000	3.6268
128	2.00	3.6268	-3.6268	3.6268

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	4.00	4.0000	10.6667	27.2899
2	4.00	14.6667	11.7841	27.2899
4	4.00	26.4508	0.8391	27.2899
8	4.00	27.2899	0.0000	27.2899
16	4.00	27.2899	0.0000	27.2899
32	4.00	27.2899	0.0000	27.2899
64	4.00	27.2899	0.0000	27.2899
128	4.00	27.2899	-27.2899	27.2899

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	6.00	6.0000	36.0000	201.7131
2	6.00	42.0000	120.3429	201.7131
4	6.00	162.3429	39.3173	201.7131
8	6.00	201.6601	0.0530	201.7131
16	6.00	201.7131	0.0000	201.7131
32	6.00	201.7131	0.0000	201.7131
64	6.00	201.7131	0.0000	201.7131
128	6.00	201.7131	-201.7131	201.7131

$$\cosh(x) = 1 + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \frac{1}{6!}x^6 + \dots + \frac{1}{(2n)!}x^{2n}$$
 (27)

Tabla y Diagrama Programa 27 ~ cosh(x).

```
int main()

int i=1,n;
float cos=1,aux2=1,aux=1,x;

//Ecuacion 27 cosh (x)

printf("Funciones Hiperbolicas: Calcula de cosh (x)");

//AUMENTENCIAL Esta funcion tiende a infinito, entre mas grande sea el valor de x mayor sera el resultado

//se recomienda utilizar 'x' con valores entre -15 y 15 con iteraciones memores a 50, dependiendo del valor de x

printf("\n\nlngrese el valor de x: ");

scanf("%f',kx);
printf("\n\nlndigue la presicion o numero de iteraciones: ");

scanf("%d',8n);

while(i=1){
    aux2**i;
    if(ix==0)
    cos+=aux/aux2;
    i++;
    }

printf("\n\ncosh (%f) = %f\n\n",x,cos);

return 0;
```

n	χ	$f_n(x)$
1	3.56	1.000000
2	3.56	7.336800
4	3.56	14.029305
8	3.56	18.022564
16	3.56	17.595818
32	3.56	17.595819
64	3.56	17.595819
128	3.56	-1.#IND00
1	0.7225	1.000000
2	0.7225	1.261003
4	0.7225	1.272357
8	0.7225	1.272556
16	0.7225	1.272556
32	0.7225	1.272556
64	0.7225	1.272556
128	0.7225	1.272556
1	-8.3315	1.000000
2	-8.3315	35.706947
4	-8.3315	236.468964
8	-8.3315	1276.782715
16	-8.3315	2069.227051
32	-8.3315	2076.321045
64	-8.3315	-1.#IND00
128	-8.3315	-1.#IND00

$$\tanh\left(x\right) = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{17}{315}x^7 + \dots + \frac{B_{2n}4^n(4^n - 1)}{(2n)!}x^{2n - 1} \quad |x| < \frac{\pi}{2}$$
(28)

Ciclos

```
minclude (stdis.h)
int main()
      int n.i.
      float rsen, rcos, fact, k, tanh;
      do{
   printf("Obtener el resultado de senh(x) mediante iteracciones\n");
   printf("Antogrese el valor de κ: ");
   scanf("%4",6x);
   printf("Ingrese el numero de iteracciones: ");
   scanf("%4",6x);
]uhile(nc0|[xc0];
      for(i-0,fact-x,rien-0.0;isn;i++)
           rsem-fact;
           fact**((x/(2*1+2))*(x/(2*1+3))))
      printf("\nEl resultado de senh(%.3f) es: %.5f\n",x,rsen);
      de(
   printf("Obtemer el resultado de cosh(x) mediante iteracciones\n");
   printf("\mingrese el valor de x: ");
   scarf("A*, b.);
   printf("lagrese el numero de iteracciones: ");
   bcarf("A*, b.);
   public(ncil|se0];
   for(i=0, fect=1, ccq=0, E;i=n;i+)
           rcos+=fact;
fact*=((x/(4*1+3))*(x/(4*1+4)));
    printf("\nEl resultado de cosh(%.3f) es: %.5f\n",x,rcos);
    return 0;
           printf("Obtener el valor de tanh(x)");
          printf("\nIngrese el valor de x:");
scanf("\f",&x);
           printf("Ingrese el numero de iteracciones:");
           scanf("d",&n);
     }while(n<0 || x<0);
     for(i=0,fact=0 ,tanh=0.0;i<n;i++)
    printf("\nEl resultado de tanh(%.3f) es: %.5f\n",x,tanh);
    return 0;
```

Recursiva

```
Misclude sytdle,to
float resultedo(float x,ist n);
float resultadoJ(float x,ist n);
        Int =,1;
float raced,repose,s,tach;
       float resma_rrose_s_tanh;
do
printf("thingers el resultado de senh(s) endiante iteraccioses\n");
printf("thingers el valor de x: ");
printf("ingress el numero de literacciones: ");
printf("unif (es));
printf("unif (esultado de cenh(%.14) es: %.5f\n",s,rimma);
       do]
    printf("Diremer el resultado de cosh(s) modiante iteracciones\n");
    printf("Aningrese el value de s) ");
    printf("Ingrese el numero de iteracciones: ");
    scarf("M", de);
    philin(num) [ved);
    recuser-multado((v, s);
    printf("hot) resultado (v, s);
    printf("hot) resultado (v, s);
}
        da[
  printf('Obtessor al valor de tamb(x)')]
  printf('Unlayeas al valor de x:')]
  camf('MF.da')]
  printf('Ingress el masero de iteracciones:'))
  -camf('d'.8a');
            |uhile(not || xct);
|for(i=0, tanh=0.0; icn;i==)
                  tanherseno/reasea
              printf("\all resultado de tanh(%.3f) es: %.5f\n",s,tanh);
    flost resultsdo(flost spint n)
            int i;
float ruen, fact;
for(i=0, fact-x, ruen=0.0; icn; i=x)
                   rueni-fect) fact*=((s/(2*1*2))*(s/(2*1-2)));
          float resultado2(float x,int n)
     | {
                       int i;
                       float rcos, fact;
                       for(i=0,fact=1,rcos=0.0;i<n;i++)</pre>
                                    rcos+=fact:
                                   fact*=((x/(4*i+3))*(x/(4*i+4)));
                       return rcos;
      . }
```


х	x1	Diferencia, %
2	0.96403	51.79862
0.96403	0.74607	22.60927
0.74607	0.63280	15.18235
0.63280	0.55998	11.50794
0.55998	0.50796	9.28902
0.50796	0.46835	7.79701
0.46835	0.43687	6.72259
0.43687	0.41105	5.91095
0.41105	0.38936	5.27567

$$senh^{-1}(x) = x - \frac{1}{6}x^3 + \frac{3}{40}x^5 - \frac{5}{112}x^7 + \dots + \frac{(-1)^n(2n)!}{4^n(n!)^2(2n+1)}x^{2n+1} \quad |x| < 1$$
(29)

Ciclos

```
#include <math.h>
int main()
     int i,j,den,denk,n,sig;
     float x,pot,num,numk,pf,k=1.0,rsen=0.0,rsenf=0.0;
     printf("\nIngrese el valor de x: ");
   scanf("%f",&x);
   printf("Ingrese el numero de iteracciones: ");
   scanf("%d",&n);
}while(x>1||n<0);</pre>
     for(i=0;i<n;i++)
           sig=(1-((2)*(i%2)));
for(j=0;j<i+1;j++)</pre>
                numk=((2*(j)+1));
denk=((2*(j)+2));
                pot=((2*(j)+1));
                num=pow(x,pot);
                den=((2*(j)+1));
           k*=(numk/denk);
           pf=(num/den);
rsen=((sig)*(k*pf));
           rsenf+=rsen;
     printf("El resultado de senh^-1(%.3f) es: %.6f ",x,rsenf);
     return 0;
```

Recursiva

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	1.00	0.5000	-0.1250	0.4083
2	1.00	0.3750	0.0333	0.4083
4	1.00	0.4083	0.0000	0.4083
8	1.00	0.4083	0.0000	0.4083
16	1.00	0.4083	0.0000	0.4083
32	1.00	0.4083	0.0000	0.4083
64	1.00	0.4083	0.0000	0.4083
128	1.00	0.4083	-0.4083	0.4083

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	-1.00	-0.5000	0.1250	-0.4099
2	-1.00	-0.3750	-0.0349	-0.4099
4	-1.00	-0.4099	0.0000	-0.4099
8	-1.00	-0.4099	0.0000	-0.4099
16	-1.00	-0.4099	0.0000	-0.4099
32	-1.00	-0.4099	0.0000	-0.4099
64	-1.00	-0.4099	0.0000	-0.4099
128	-1.00	-0.4099	0.4099	-0.4099

n	x	Fn (x)	Fn (x) - Fn-1 (x)	Calculadora
1	-2.00	-1.0000	1.0000	inf
2	-2.00	0.0000	3.0000	inf
4	-2.00	3.0000	165330.5156	inf
8	-2.00	165333.5156	7435709.4844	inf
16	-2.00	###########	#VALUE!	inf
32	-2.00	inf	#VALUE!	inf
64	-2.00	inf	#VALUE!	inf
128	-2.00	inf	#VALUE!	inf

$$tanh^{-1}(x) = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \frac{1}{7}x^7 + \dots + \frac{1}{2n+1}x^{2n+1} \quad |x| < 1$$
 (30)

Tabla y Diagrama Programa 30 ~ tanh^-1 (x).

```
include <stdio.h>
 3
     int main()
 4 [
5
6
7
8
          int i,n;
          float x,aux=1,th=0;
          //Ecuacion 30 tanh^-1 (x)
          printf("Funciones Trigonometricas: Calculo de tanh^-1 (x)");
          do{
10
11
               printf("\n\nIngrese el valor de x (valores entre 0 y 1): ");
          scanf("%f",&x);
printf("\n\nIndique la presicion o numero de iteraciones: ");
scanf("%d",&n);
}while (x>1 || x<0 || n<0);</pre>
12
13
14
15
16
          for(i=1;i<n+1;i++)
17
18
               aux*=x; //Potencia de x
19
               if(i\%2!=0)
20
21
                   th+=aux/i;
22
23
24
          printf("\n^-1 (%f) = %f \n^-, x,th);
25
          return 0;
```

n	$\boldsymbol{\mathcal{X}}$	$f_n(x)$
1	0.0907	0.090700
\mathcal{Z}	0.0907	0.090700
4	0.0907	0.090949
8	0.0907	0.090950
16	0.0907	0.090950
32	0.0907	0.090950
64	0.0907	0.090950
128	0.0907	0.090950
1	0.5011	0.501100
2	0.5011	0.501100
4	0.5011	0.543042
8	0.5011	0.550495
16	0.5011	0.550773
32	0.5011	0.550774
64	0.5011	0.550774
128	0.5011	0.550774

1	0.91979	0.919790
2	0.91979	0.919790
4	0.91979	1.179175
8	0.91979	1.390406
16	0.91979	1.523964
32	0.91979	1.577781
64	0.91979	1.587281
128	0.91979	1.587661

#include(stdio.h)

$$\frac{\ln(1+x)}{1+x} = x - \left(1 + \frac{1}{2}\right)x^2 + \left(1 + \frac{1}{2} + \frac{1}{3}\right)x^3 - \dots \quad |x| < 1 \tag{31}$$

Programa 31:

```
#Includecatdin.he
float resultade(float x,iet n);
int main()
{
    int n;
    float x,rinf;
    do
        printf("Obtener el resultade del logaritmo matural de (l-x)/()!=x) \ntimegre y coundo x mea menor a 1 \n");
        printf("Marco de lateracioness ");
        scard("Na", %x); fflush(atdin))
        printf("Marco de lateracioness ");
        scard("Na", %x); fflush(atdin))
    printf("Marco de lateracioness ");
        scard("Na", %x); fflush(atdin))
    printf("Nati resultade de (in(%.2f))/%.2f ex; $.4f\n", l-x,l-x,rinf);
    return 0)
}
float resultado(float x,int n)
{
    int i, xig;
    float k, pot,rln=0.0;
    for(l=1,pot=1.0; ten; i-+)
        ig=(1-((2)*(%X2)));
        pot=sa;
        int (l-x);
        int (l-x);
        int (l-x);
        return flo;
        return flo;
        return flo;
        return flo;
}
```


Tabla de programa 31:

X	x1	Diferencia, %
2	0.36620	81.68980
0.36620	0.22840	37.63138
0.22840	0.16746	26.67928
0.16746	0.13262	20.80419
0.13262	0.10995	17.09296
0.10995	0.09398	14.52368
0.09398	0.08211	12.63503

Conclusión.

En esta práctica cumplimos los objetivos anteriormente establecidos, trabajamos en equipo y terminamos los códigos de la manera más eficiente, estos códigos pueden ser utilizados para futuros proyectos y es muy importante guardarlos ya que son muy exactos y pueden de ser de gran utilidad en un futuro, en mi opinión personal fue un trabajo bastante duro, pero todos estamos satisfechos, muchas gracias.

Bibliografía.

- 1.- https://sume.ugto.mx
- **2.-** https://es.wikipedia.org/wiki/C_(lenguaje_de_programaci%C3%B3n
- **3.-** https://es.wikipedia.org/wiki/Bucle_for