TCP connection establishment (3-way handshake):

- \bullet X, Y are chosen randomly
 - \rightarrow sequence number prediction
- piggybacking

2-person consensus problem: are A and B in agreement about the state of affairs after 3-way handshake?

- \longrightarrow in general: impossible
- \longrightarrow can be proven
- → "acknowledging the ACK problem"
- → also TCP session ending
- \longrightarrow lunch date problem

TCP connection termination:

- full duplex
- \bullet half duplex

More generally, finite state machine representation of TCP's control mechanism:

 \longrightarrow state transition diagram

Features to notice:

- Connection set-up:
 - client's transition to **ESTABLISHED** state without ACK
 - how is server to reach ESTABLISHED if client ACK is lost?
 - ESTABLISHED is macrostate (partial diagram)
- Connection tear-down:
 - three normal cases
 - special issue with TIME WAIT state
 - employs hack

Issues:

How to let sender know of change in receiver window size after AdvertisedWindow becomes 0?

- trigger ACK event on receiver side when AdvertisedWindow becomes positive
- sender periodically sends 1-byte probing packet
 - → design choice: smart sender/dumb receiver
 - \longrightarrow same situation for congestion control

Silly window syndrome: Assuming receiver buffer is full, what if application reads one byte at a time with long pauses?

- can cause excessive 1-byte traffic
- if AdvertisedWindow < MSS then set AdvertisedWindow $\leftarrow 0$

Do not want to send too many 1 B payload packets.

Nagle's method:

- rule: connection can have only one such unacknowledged packet outstanding
- while waiting for ACK, incoming bytes are accumulated (i.e., buffered)
- ... compromise between real-time constraints and efficiency.
- → useful for telnet/ssh-type interactive applications

Sequence number wrap-around problem: recall sufficient condition

$${\tt SenderWindowSize} < ({\tt MaxSeqNum} + 1)/2$$

 \longrightarrow 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around important due to possibility of roaming packets.

bandwidth	time until wrap-around †
T1 (1.5 Mbps)	6.4 hrs
Ethernet (10 Mbps)	57 min
T3 (45 Mbps)	13 min
F/E (100 Mbps)	6 min
OC-3 (155 Mbps)	4 min
OC-12 (622 Mbps)	$55 \mathrm{sec}$
OC-24 (1.2 Gbps)	$28 \mathrm{sec}$