Tax avoidance and evasion in a dynamic setting

Duccio Gamannossi degl'Innocenti¹ Rosella Levaggi² Francesco Menoncin²

¹Università Cattolica del Sacro Cuore, Milano, Italy

²Università di Brescia, Brescia, Italy

Table of contents

1. Introduction

2. Model

3. Analysis

4. Conclusion

Intro

Introduction

- · Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP (≈800B)in Europe (Murphy 2019) under-reporting is 18% in US (tax gap of ≈500B)
- Avoidance also significant: 4% of GDP in Europe (EPRS, 2015), latest IRS and Treasury claim figures up to 500 billion
- Tax Evasion and Avoidance tend to be stable in time, so consumption and saving decisions are likely to take non-compliance into account
- We develop a model to study the optimal evasion and avoidance decision in an inter-temporal setting

Related Literature

- · Contributions in a static framework (joint avoidance/evasion):
 - Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 - Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 - · Cowell (1990) investigates distributional impacts
 - · Neck (1990) studies interactions with labour supply
 - Gamannossi and Rablen (2016; 2017) explore the cases of bounded rationality and optimal enforcement
- · Contributions in a dynamic framework (only evasion):
 - Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion
 - Levaggi and Menoncin (2012; 2013) identify determinants of Yitzhaki puzzle
 - · Bernasconi et al. (2015; 2019) study roles of uncertainty and habit

Research Goals

- · Characterize optimal avoidance and evasion
- Analyze how deterrence instruments affect compliance and revenues
- Characterize optimal fiscal parameters for the government under various objectives
 - · minimizing evasion
 - · minimizing non-compliance
 - maximizing revenues
 - · maximizing growth

Model

Modelling features and assumptions

Avoidance and evasion differ in their level of sophistication

- Evasion is cost-less and carries a fine η if detected
 - · Evasion is correctly detected upon audit
- Avoidance costs f(a) but might be successful with probability β
 - f(a) increasing, convex and f(0) = 0
 - · Successful avoidance is not fined upon audit
 - $\cdot \ \mathsf{Successful} \ \mathsf{avoidance} \leftrightarrow \mathsf{undetected/unchallenged/deemed} \ \mathsf{legitimate}$

Both f and β depend on the fiscal and tax administration specifics

- Low vulnerability to avoidance (high f, low β) when:
 - Tax code is simpler and less-ambiguous
 - Legal/investigative resources of tax authorities are higher
 - · Courts have higher effectiveness

The agent suffers from fiscal illusion

· The effect of compliance on revenues is overlooked

Consumer's preferences

The agent's utility increases in the consumption of a **privately** produced good c_t and a publicly produced good g_t

The agent utility function is:

$$U = \frac{\left(c_t - c_m\right)^{1-\delta}}{1-\delta} + v\left(g_t\right)$$

- c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- $v(\bullet)$ is an increasing and concave function

Absolute risk-aversion $\frac{\delta}{c_t-c_m}$

- Lower risk aversion when c_t is higher (DARA)
- Higher risk aversion when either δ or c_m is higher

Capital Accumulation

Expected capital variation is equal to production minus expenses:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Production, y_t

• Deterministic function $y_t = Ak_t$, 0 < A < 1 (TFP)

Expenses:

- · Consumption, ct
- Linear tax on declared income $\tau y_t (1 e_t a_t)$
 - Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$
- Fine costs
 - Expected cost of fine in case of detection is $\eta \tau y_t [e_t + (1 \beta) a_t]$
 - · Audits follow a Poisson jump process $d\Pi_t$ with frequency λ

The optimization problem

$$\max_{\left\{c_{t},e_{t},a_{t}\right\}_{t\in\left[t_{0},\infty\right[}}\mathbb{E}_{t_{0}}\left[\int_{t_{0}}^{\infty}\frac{\left(c_{t}-c_{m}\right)^{1-\delta}}{1-\delta}e^{-\rho\left(t-t_{0}\right)}dt\right]$$

under the capital dynamics:

$$\mathbb{E}_{t} \left[dk_{t} \right] = \left[y_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$

$$\eta \tau y_{t} \left[e_{t} + \left(1 - \beta \right) a_{t} \right] d\Pi_{t}$$

Analysis

Optimal solution

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*,$$

$$C_t^* = C_m + (k_t - H) \left(\frac{\rho + \lambda}{\delta} + \frac{\delta - 1}{\delta} \left\{ \frac{1}{\eta} + A \left[(1 - \tau) + \tau \beta a^* - f(a^*) \right] \right\} - \frac{1}{\eta} (\lambda \eta)^{\frac{1}{\delta}} \right)$$

Where:

$$H:=\frac{c_m}{A[\tau\beta a^*-f(a^*)+(1-\tau)]}$$

 $(f')^{-1}$

Inverse of the marginal cost of avoidance

PDV of future c_m discounted by TFP corrected by tax and avoidance

Optimal Avoidance and evasion

$$a^* = (f')^{-1} \tau \beta,$$

$$e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.$$

- · Avoidance balances marginal costs/benefits relative to evasion
- · Two risks: to be audited and avoidance to be (un)successful
- \cdot Risk to be audited affects equally a_t and e_t
 - · Optimal risk management uses the tool with higher correlation
 - Avoidance costs are independent of audit \rightarrow lower correlation
 - Evasion is used for managing the risk to be audited
- · Optimal avoidance manages just its risk of being unsuccessful

Evasion dynamics

Consumption dynamics

Comparative Statics

	a*	e_t^*	$E_t^* = a^* + e_t^*$	$\mathbb{E}_{t}\left[dT_{t}\right]$
λ	0	_	_	+
η	0	_	_	+
β	+	(+/-)	+	_
τ	+	_	+/-	(+/-)

∂Col ∂Row Derivatives of column with respect to row

Where:

$$\mathbb{E}_{t}[dT_{t}] = \tau y_{t} (1 - e_{t}^{*} - a_{t}^{*}) dt + \lambda \eta \tau y_{t} [e_{t}^{*} + (1 - \beta) a_{t}^{*}] dt$$

are expected revenues collected:

- · Revenues from declaration
- · Expected revenues from enforcement

Comparative Statics - Remarks on $rac{\partial e_t^*}{\partial eta}$

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \stackrel{\geq}{>} 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \stackrel{\leq}{>} \frac{1}{1-\beta}.$$

- If the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is high, e is decreasing in β
 - The semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$ is higher when β is bigger
- In countries where avoidance is more successful, reducing vulnerability to avoidance leads to more evasion

When $c_m > 0$ the increase in evasion is more likely than if $c_m = 0$

Comparative Statics - Remarks on $\frac{1}{dt} \frac{\partial \mathbb{E}_t [dT_t]}{\partial au}$

Also for the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{dt} \frac{\partial \mathbb{E}_t \left[dT_t \right]}{\partial \tau} \gtrless 0 \iff \tau \leqslant \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

Tax revenues display a Laffer curve behaviour

- When au is <u>low</u>, raising au <u>increases</u> revenues
- When au is high, raising au decreases revenues
- An increase of τ has three impacts on revenues:
 - 1. Positive Marginal tax increase
 - 2. Positive Reduction of evasion
 - 3. Negative Increase in avoidance
- \cdot The higher the β , the lower the revenue-maximizing tax rate

In countries where avoidance is more successful, the revenue-maximizing tax rate (and revenues) are lower

The Avoidance Laffer Curve

Ratio of expected revenues collected to capital by au and $f(a_t) = \omega a_t^{\gamma}$

Conclusion

Tax avoidance deterrence

Fines and audits are ineffective against tax avoidance \Rightarrow focus on f, β, τ

Avoidance costs *f*

- Increasing both f' and f lowers avoidance and evasion
- · Two components of avoidance costs:
 - Knowledge costs: Effort/Expertise to identify the "loophole" to exploit
 - · Set-up costs: To meet law requirements (e.g., creation of legal entities)
 - · Cannot be told apart from those of "intended" economic activities

Avoidance deterrence need to focus on knowledge costs alone

Measures to deter avoidance through f and β

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments
 - $\boldsymbol{\cdot}$ deductions, exemptions and preferential treatments
- Increasing the litigation budget of the tax administration
- · Implementing anti-avoidance reforms at (multi)national level

Tax avoidance deterrence

Avoidance deterrence might increase evasion:

- 1. Avoidance premium β :
 - Decreasing a low β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$
- 2. Tax rate τ :

Decreasing au reduces avoidance but the increasing effect on evasion eventually lowers compliance and revenues

Concluding Remarks

We develop the first dynamic model with joint avoidance/evasion Interaction of avoidance and evasion is of crucial importance:

- Leads to the emergence of a Laffer curve
- · Provides a possible interpretation for the Yitzhaki puzzle

Avoidance deterrence requires specific policies:

- Reduction of β or increase of f
 - Long-run: Fiscal/judiciary reforms
 - · Short-run: Increase of tax administration resources (legal)
- Reduction of au

Avoidance deterrence might entail an increase of evasion

Thank you!

Questions?