FUNDAMENTALS OF MACHINE LEARNING

DECISION TREES

CSCI3320

Prof. John C.S. Lui, CSE Department, CUHK Introduction to Machine Learning

Decision Tree

- An efficient non-parametric method for supervised learning,
 which is often used for classification and regression
- Decision tree is a hierarchical data structure which relies on divide-and-conquer strategy
- We will explore various learning algorithms to build the tree from a given labeled training sample
- Also will learn how to convert a tree to a set of rules
- Parametric method: define a model over whole input space, learn its parameters from all training data
- Nonparametric method: divide input space into regions (clusters) defined by some distance measure. For each input, the corresponding local model computed from the training data in that region is used.

Tree Uses Nodes and Leaves

Decision tree: nonparametric method

3

Divide and Conquer

- □ Internal decision nodes
 - \blacksquare Univariate: Uses a <u>single attribute</u> (or single dimension), x_i
 - Numeric x_i : Binary split: $x_i > w_m$
 - **Discrete** x_i : n-way split for n possible values (example)
 - lacktriangle Multivariate: Uses all attributes, x
- Leaves
 - Classification: Class labels, or proportions
 - **Regression**: Numeric; r average, or local fit
- Learning is greedy: find the ``best'' split recursively

Univariate Classification Trees (ID3,CART,C4.5)

- For classification tree, the goodness of a split is measured by the impurity measure.
- \square N=# of instances in the root, $N_m=\#$ of instances at node m, $N_m^i=\#$ of instances of N_m belongs to class C_i
- $lue{}$ The probability of class C_i is

$$\hat{P}(C_i|\mathbf{x},m) \equiv p_m^i = \frac{N_m^i}{N_m}$$

- \square Node m is pure if p_m^i is 0 or 1
- Measure of impurity is entropy

$$\mathcal{I}_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$

Univariate Classification Trees (ID3,CART,C4.5)

- There are many possible measures.
- \square For a two class problem, we have $p^1 \equiv p$ and $p^2 = 1 p$,
- □ A nonnegative function to measure impurity of a split

$$\phi(p, 1-p)$$

□ The function needs to satisfy:

 $\phi(1/2, 1/2) \ge \phi(p, 1-p)$, for any $p \in [0, 1]$.

 $\phi(0,1) = \phi(1,0) = 0.$

 $\phi(p, 1-p)$ is increasing in p on [0, 1/2] and decreasing in p on [1/2, 1].

Possible functions

- Entropy: $\phi(p, 1-p) = -p \log_2 p (1-p) \log_2 (1-p)$
- **□ Gini Index:** $\phi(p, 1-p) = 2p(1-p)$
- Misclassification error: $\phi(p, 1-p) = 1 \max(p, 1-p)$

Best Split for univariate classification tree

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively
- lacksquare Define impurity **after split**: N_{mj} of N_m take branch j. N^i_{mj} belong to C_i

$$\hat{P}(C_i|\mathbf{x},m,j) \equiv p_{mj}^i = \frac{N_{mj}^i}{N_{mj}} \qquad \qquad I_m' = -\sum_{j=1}^n \frac{N_{mj}}{N_m} \sum_{i=1}^K p_{mj}^i \log_2 p_{mj}^i$$

- For discrete attributes, there are n outcomes
- Find the variable and split that minimize impurity (among all variables -- and split positions for numeric variables)

How to do the splitting?

- \square Consider doing a splitting on feature x_i
- We have the following training instances

- Computer impurity for different configurations using previous formula
- Choose the configuration which has the minimum
- Note: There are many ways to do splitting: exhaustive,
 binary search...etc

```
GenerateTree(\chi)
    If NodeEntropy(\chi)< \theta_I /* equation 9.3 */(or entropy)
      Create leaf labelled by majority class in X
      Return
                                                          complexity
    i \leftarrow \mathsf{SplitAttribute}(\mathcal{X})
                                                           parameter
    For each branch of x_i
      Find X_i falling in branch
      GenerateTree(X_i)
                                                                    Why is
SplitAttribute(X)
    MinEnt← MAX
                                                                      this a
    For all attributes i = 1, ..., d
                                                                  heuristic?
        If x_i is discrete with n values
          Split X into X_1, \ldots, X_n by x_i
          e \leftarrow SplitEntropy(X_1, \dots, X_n) /* equation 9.8 */ (or I'_m)
          If e<MinEnt MinEnt ← e; bestf ← i
        Else /* x_i is numeric */
          For all possible splits
               Split X into X_1, X_2 on x_i
              e \leftarrow SplitEntropy(X_1, X_2)
               If e<MinEnt MinEnt ← e; bestf ← i
    Return bestf
```

Univariate Regression Trees

- Construction is similar to classification tree, except replace entropy by some regression measures
- Let \mathcal{X}_m be the set of instances which reached node m. We also define error (or variance) at node m as:

$$b_{m}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{X}_{m} : \mathbf{x} \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases} \quad \text{where } N_{m} = |\mathcal{X}_{m}| = \sum_{t} b_{m}(\mathbf{x}^{t})$$

$$E_{m} = \frac{1}{N_{m}} \sum_{t} (r^{t} - g_{m})^{2} b_{m}(\mathbf{x}^{t}) \qquad g_{m} = \frac{\sum_{t} b_{m}(\mathbf{x}^{t}) r^{t}}{\sum_{t} b_{m}(\mathbf{x}^{t})}$$

- □ If at node m, the error is acceptable (or $E_m < \theta_r$), then a leaf node is created and it stores the g_m value
- \Box If the error is not acceptable, data reaching node m is split further to reduce the sum of errors in the branches

Univariate Regression Trees

- To split at a node, we look for the attribute (and split threshold for a numeric attribute) that minimizes the error. Then continue recursively.
- \square Let \mathcal{X}_{mj} be the subset of \mathcal{X}_m taking branch $j: \cup_{j=1}^n \mathcal{X}_{mj} = \mathcal{X}_m$
- Define error as:

$$b_{mj}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{X}_{mj} : \mathbf{x} \text{ reaches node } m \text{ and takes branch } j \\ 0 & \text{otherwise} \end{cases}$$

$$g_{mj} = \frac{\sum_{t} b_{mj}(\mathbf{x}^{t}) r^{t}}{\sum_{t} b_{mj}(\mathbf{x}^{t})} \qquad E'_{m} = \frac{1}{N_{m}} \sum_{j} \sum_{t} (r^{t} - g_{mj})^{2} b_{mj}(\mathbf{x}^{t})$$

 \Box Find lowest E'_m . For tree construction, replace entropy calculation with E'_m in the alg, and $heta_I$ by $heta_r$

Pruning Trees

- Remove sub-trees for better generalization (decrease variance)
 - Pre-pruning: Early stopping
 - Post-pruning: Grow the whole tree then prune subtrees that overfit on the pruning set
- Pre-pruning is faster, post-pruning is more accurate (requires a separate pruning set)

Rule Extraction from Trees


```
R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
```

R2: IF (age>38.5) AND (years-in-job
$$\leq$$
 2.5) THEN $y = 0.6$

R3: IF (age
$$\leq$$
 38.5) AND (job-type='A') THEN $y = 0.4$

R4: IF (age
$$\leq$$
 38.5) AND (job-type='B') THEN $y = 0.3$

R5: IF (age
$$\leq$$
 38.5) AND (job-type='C') THEN $y = 0.2$

Learning Rules from Data Directly

- Rule induction is similar to tree induction but
 - tree induction is breadth-first,
 - rule induction is depth-first; one rule at a time
- Rule set contains rules; rules are conjunctions of conditions on discrete or numeric attributes
- Rule is said to cover an example if all terms of the rule evaluate to true for that example
- Once a rule is added to the rule base, all training samples covered by the rule are removed, the process continues
- Sequential covering: Generate rules one at a time until all positive examples are covered
- IREP (Fürnkrantz and Widmer, 1994), Ripper (Cohen, 1995)

```
Ripper(Pos,Neg,k)
   RuleSet ← LearnRuleSet(Pos,Neg)
   For k times
       RuleSet ← OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
   RuleSet \leftarrow \emptyset
   DL ← DescLen(RuleSet,Pos,Neg)
   Repeat
       Rule ← LearnRule(Pos,Neg)
       Add Rule to RuleSet
       DL' ← DescLen(RuleSet,Pos,Neg)
       If DL'>DL+64
         PruneRuleSet(RuleSet,Pos,Neg)
         Return RuleSet
       If DL'<DL DL ← DL'
         Delete instances covered by Rule from Pos and Neg
   Until Pos = \emptyset
   Return RuleSet
```

```
PruneRuleSet(RuleSet,Pos,Neg)
   For each Rule ∈ RuleSet in reverse order
      DL ← DescLen(RuleSet,Pos,Neg)
      DL' ← DescLen(RuleSet-Rule,Pos,Neg)
      IF DI '<DI Delete Rule from RuleSet
   Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)
   For each Rule ∈ RuleSet
       DL0 ← DescLen(RuleSet,Pos,Neg)
       DL1 ← DescLen(RuleSet-Rule+
             ReplaceRule(RuleSet,Pos,Neg),Pos,Neg)
       DL2 ← DescLen(RuleSet-Rule+
             ReviseRule(RuleSet,Rule,Pos,Neg),Pos,Neg)
       If DL1=min(DL0,DL1,DL2)
              Delete Rule from RuleSet and
                    add ReplaceRule(RuleSet,Pos,Neg)
       Else If DL2=min(DL0,DL1,DL2)
              Delete Rule from RuleSet and
                    add ReviseRule(RuleSet,Rule,Pos,Neg)
   Return RuleSet
```

Multivariate Trees

- Unlike univariate tree, at a decision node, ALL input dimensions can be used
- □ When all inputs are numeric, a binary linear multivariate node is defined as: $f_m(\mathbf{x})$: $\mathbf{w}_m^T \mathbf{x} + \mathbf{w}_{m0} > 0$
- The above equation defines a hyperplane (see figure)
- For discrete attributes should be represented by 0/1 dummy numeric variables
- Keep dividing until we have leaf nodes which are defined by a polyhedra in the input space

Multivariate Trees

Linear multivariate hyperplane

20

Multivariate Trees

- Instead of linear multivariate discriminant, we can use nonlinear multivariate discriminant at a node.
- Example: quadratic multivariate discriminant

$$f_m(\mathbf{x}): \mathbf{x}^T \mathbf{W}_m \mathbf{x} + \mathbf{w}_m^T \mathbf{x} + \mathbf{w}_{m0} > 0$$

□ Example: sphere node

$$f_m(\mathbf{x}): \|\mathbf{x} - \mathbf{c}_m\| \leq \alpha_m$$

Many other discriminant methods, but note that these are all "heuristics"