

TEORIA DA LIGAÇÃO QUÍMICA FICHA 3

Estruturas de Lewis. Teoria de Repulsão Electrónica dos Pares de Valência (VSEPR) e Teoria do Enlace de Valência (EV). Momento dipolar.

1. Construa as seguintes formas não ionizadas de alguns oxo-ácidos. Preste atenção ao tamanho e à forma. Inclua ligações duplas quando julgar necessário (use o seu conhecimento acerca das estruturas de Lewis.

	Desenhe a Estrutura	Classifique a Geometria
H ₂ CO ₃		
H ₃ BO ₃		
H ₂ SO ₄		
H ₂ SO ₃		
HNO₃		
HNO ₂		
H₃PO₄		
HClO ₄		
HClO ₃		
HClO ₂		
HClO		

- 2. As formas alotrópicas do oxigénio são o oxigénio diatómico e o ozono triatómico. Desenhe a molécula de O₃. Contrua a melhor estrutura de Lewis, desenhe a molécula e classifique a sua geometria. Justifique.
- **3.** Contrua a melhor estrutura de Lewis para a molécula de ácido acético CH₃COOH, desenhe a molécula e classifique a sua geometria. Justifique.

TEORIA DA LIGAÇÃO QUÍMICA FOLHA 3

- 4. No âmbito da Teoria de Enlace de Valência responda às seguintes questões:
- 4.1 Descreva as ligações da molécula AsH3.
- 4.2 Qual a hibridação do átomo de Si nas moléculas de SiH4 e H3Si-SiH3?
- 4.3 Descreva a ligação na molécula de CO, explicitando a hibridação dos átomos de carbono e oxigénio, o número e tipo de ligações existentes (σ, π, δ, etc.) e de pares de electrões não ligantes.
- 5. Considere a molécula de CO.
- 5.1 Escreva a estrutura de Lewis da molécula.
- 5.2 Determine as cargas formais nos átomos.
- 5.3 Em sentido está orientado o momento dipolar da molécula. Justifique a resposta.
- 6. Considere as seguintes moléculas e iões:

BF₃ CO₂ CH₄ SO₂ SO₃ CO₃₂-

- 6.1 Escreva as respectivas estruturas de Lewis.
- 6.2 Para quais das moléculas ou iões existem estruturas de ressonância? Represente-as.
- 6.3 As ligações C-O são principalmente iónicas ou covalentes? Justifique a resposta.
- 6.4 Qual é a geometria das moléculas CO2 e SO2?
- 6.5 Alguma das moléculas CO2 e SO2 apresenta momento dipolar? Se sim, qual?
- 7. Descreva a ligação na molécula de NH $_3$ utilizando a Teoria de Enlace de Valência, explicitando a hibridação do átomo de azoto, o número e tipo de ligações existentes (σ , π , δ , etc.) e em que tipo de orbital estão os pares de electrões não ligantes, se existirem.
- **8.** Escreva a estrutura de Lewis do ião NO₃₋, indicando os híbridos de ressonância se for esse o caso, e as cargas formais nos átomos. Diga qual é a geometria do ião NO₃₋.
- 9. Considere do ião CN-.
- 9.1 Represente a estrutura de Lewis do ião.
- 9.2 Descreva a ligação química do ião utilizando a teoria do enlace de valência. Refira a hibridação dos átomos de carbono e azoto, o número e tipo de ligações existentes (σ , π , δ , etc.), e diga em que tipo de orbital se encontram os electrões não ligantes, se existirem.
- 10. A teoria da repulsão dos pares electrónicos de valência (VSEPR) pode ser usada para prever a forma das moléculas. Esta teoria diz que a molécula covalente mais estável é aquela na qual os pares de electrões em torno do átomo central se arranjam de forma a minimizar a repulsão electrostática. Há duas coisas que é necessário distinguir: a geometria das orbitais em torno do átomo central e a geometria

TEORIA DA LIGAÇÃO QUÍMICA FOLHA 3

da molécula. A geometria das orbitais em torno do átomo central depende do número total de electrões de valência do átomo central. A geometria da molécula refere-se apenas ao arranjo dos átomos ligados. Em alguns casos, a geometria das orbitais é igual à geometria da molécula, mas em muitos casos são coisas distintas. Há muitos compostos em que existem pares de electrões de valência que não são partilhados com outros átomos. Nestes casos a forma da molécula pode ser diferente, dependendo do sítio onde se situam estes pares de electrões não ligantes. Nestes casos o arranjo de energia mínima é aquele em que os pares de electrões não ligantes podem ocupar o máximo volume angular.

10.1 A tabela 1 contém exemplos de algumas combinações possíveis de pares não ligantes e pares ligantes que ocorrem com frequência em moléculas com ligações simples. Complete a tabela desenhando a melhor geometria possível das moléculas usando VSEPR. Mostre outras posições possíveis que os pares não ligantes podem ocupar nos casos em que existe mais de uma posição (indicado entre parênteses à frente da fórmula). Por exemplo as três estruturas possíveis para o CIF3 são as seguintes:

TEORIA DA LIGAÇÃO QUÍMICA FOLHA 3

	#pares não ligantes	#pares ligantes	Hibridação do átomo central	Geometria das orbitais	Melhor estrutura prevista
BeF ₂	igaires				
BF ₃					
NH ₃					
PH ₃					
CH ₄					
H ₂ O					
H ₂ S					
SF ₄ (2) nl-eq					
SF ₄ nl-ax					
ClF ₅					
SF ₀					
ClF ₃ (3) nl-eq-eq					
ClF ₃ nl-eq-ax					
ClF ₃ nl-ax-ax					
I ₃ (3) nl-eq- eq-eq					
eq-eq I ₃ ' nl-eq- eq-ax					
I ₃ nl-ax- eq-ax					
BrF4 (2) nl-ax-ax					
BrF4 nl-ax-eq					

11. Preveja qual das moléculas deve ter momento dipolar, desenhe a geometria das moléculas e a direcção do momento dipolar nos casos em que existe.

TEORIA DA LIGAÇÃO QUÍMICA FOLHA 3

Molécula	
BeF ₂	
BF ₃	
NH ₃	
PH ₃	
CH ₄	
H ₂ O	
H ₂ S	
ClF ₃	
SF ₄	
,	
SeF ₄	
PCl ₅	
PF5	
ClF ₅	
PCl ₃	
PBr ₃	
SF ₆	

12. Descreva a ligação química do etino, C₂H₂, e do eteno, C₂H₄, utilizando a Teoria do Enlace de Valência.