DEFINICIÓN 1:

Un <u>GRAFO O GRAFO NO ORIENTADO</u> es una terna $G = \{V, A, j \} con V \neq f$ donde:

 $V = \{v_1, v_2, ..., v_n\}$: conjunto finito de *vértices o nodos*. $A = \{a_1, a_2, ..., a_n\}$: conjunto finito de *aristas o lados* y $j : A \rightarrow X(V)$ función de incidencia, siendo $X(V) = \{X : X \subseteq V \land |X| = 1 \text{ ó } 2 \}$

Notación :Si \mathbf{j} (a) = {u,v}se dice que:

- u y v son los **extremos** de a
- u y v son vértices adyacentes
- la arista a es incidente en los vértices u y v.

DEFINICIÓN 2:

Un **<u>DIGRAFO O GRAFO ORIENTADO</u>** es una terna por la terna D = (V, A, j) con $V \neq f$ donde:

 $V = \{v_1, v_2, ..., v_n\}$: conjunto de *vértices o nodos*. $A = \{a_1, a_2, ..., a_n\}$: conjunto de *aristas o arcos* $j : A \rightarrow V \times V$ función de incidencia.

Notación: Si j(a) = (v, w) se dice que

- los vértices v y w son adyacentes
- a incide positivamente en w y negativamente en v.
- v es extremo inicial de la arista a, w es extremo final de a

DEFINICIONES RELATIVAS A GRAFOS (DIGRAFOS)

ARISTAS ADYACENTES: Aristas que tienen un solo extremo en común

ARISTAS PARALELAS O MÚLTIPLES:

Un grafo (digrafo) posee aristas paralelas sii \boldsymbol{j} no es inyectiva.

Es decir, dado $a_1 \in A$ y $a_2 \in A$, a_1 y a_2 son aristas paralelas sii $j(a_1) = j(a_2)$.

LAZO O BUCLE:
$$a \in A$$
: lazo sii $j(a) = \{v\}$ (En grafos) $a \in A$: lazo sii $j(a) = (v, v)$ (En digrafos)

GRAFO (DIGRAFO) SIMPLE: Grafo (digrafo) que carece de aristas paralelas y lazos.

GRAFO COMPLETO: es el grafo simple con mayor cantidad de aristas. Se indica con K_n si tiene n vértices.

Propiedad: Si
$$|V| = n \rightarrow |A_{K_n}| = \frac{n(n-1)}{2}$$

GRADO DE UN VÉRTICE O VALENCIA (EN GRAFOS)

GRADO DE UN VÉRTICE : g(v) es la cantidad de aristas incidentes en él, contando doble en el caso de lazo.

Obs: Si g(v) = 0 se dice que v es *vértice aislado*.

Propiedades:

1. En G = {**V**, A, **j**}
$$\sum_{v \in V} g(v) = 2|A|$$
.

Es decir: la suma de los grados de los vértices de un grafo es igual a al doble de la cantidad de aristas.

2. La cantidad de vértices **de grado impar** de un grafo $G = \{V, A, j\}$, es un número **par**.

GRADO DE UN VÉRTICE O VALENCIA (EN DIGRAFOS)

<u>GRADO POSITIVO DE UN VÉRTICE</u> : $g^+(v)$: es la cantidad de aristas que inciden positivamente en v.(flechas que llegan)

GRADO NEGATIVO DE UN VÉRTICE : $g^{-}(v)$ es la cantidad de aristas que inciden negativamente en v (flechas que salen).

Obs.: el lazo se cuenta como arista incidente positiva y negativamente en el vértice por lo tanto se lo cuenta en g^+ (v) y en g^- (v).

Obs: Si $g^+(v) = g^-(v) = 0$ se dice que v es *vértice aislado*.

GRADO TOTAL DE UN VÉRTICE : $g_t(v)$: $g(v) = g^+(v) + g^-(v)$

Propiedad:

1. En
$$D = (V, A, j)$$
, $\sum_{v \in V} g^+(v) = \sum_{v \in V} g^-(v) = |A|$.

Es decir: la suma de los grados positivos de los vértices es igual a la suma de los grados negativos y es igual a la cantidad de aristas del digrafo

GRAFO (DIGRAFO) k-REGULAR

- Un grafo G = (V, A, j) es k-regular sii $\forall v \in V$: g(v) = k
- Un dígrafo $D = (\mathbf{V}, \mathbf{A}, \mathbf{j})$ es **k-regular** sii $\forall v \in \mathbf{V}$: $g^+(v) = g^-(v) = \mathbf{k}$

CAMINOS, CIRCUITOS Y CICLOS (EN GRAFOS)

Definición:

En un grafo G = (V,A, j) una sucesión alternada de vértices y aristas $(v_0, a_1, v_1, a_2, v_2, ..., v_{n-1}, a_n, v_n),$

con nåN y \forall i 1 i n con \boldsymbol{j} (\boldsymbol{a}_i) = { v_{i-1} ; v_i } es un <u>CAMINO</u> entre v_{0y} , $v_{n de}$ **LONGITUD** n

El formalismo de la definición significa que se parte del vértice v_0 , se sigue la arista a_1 hasta v_1 , se sigue la arista a_2 hasta v_2 , y así sucesivamente.

<u>CIRCUITO O CAMINO CERRADO</u> es un camino en el cual $v_0 = v_n$

<u>CAMINO SIMPLE</u>: es un camino que *no repite vértices*.

Propiedad: $\forall v \ y \ w \in V \ \text{con } v \ w \ (\exists \ \text{camino de } v \ \text{a} \ w \ \exists \ \text{camino simple de } v \ \text{a} \ w)$

CIRCUITO SIMPLE: circuito que no repite vértices salvo el caso trivial $v_0 = v_n$

<u>CICLO</u>: circuito simple que *no repite aristas*.

Observación: El circuito simple de longitud 3 es ciclo.

GRAFO ACÍCLICO: grafo que carece de ciclo.

GRAFO CONEXO:

G = (V, A, j) es conexo sii $\forall v y w \in V (v \ w \ \exists un camino de v a w)$

Es decir, dados 2 vértices distintos v y w en G hay un camino que los une.

<u>CAMINO DIRIGIDO , CIRCUITO DIRIGIDO Y CICLO DIRIGIDO</u> <u>(EN DIGRAFOS)</u>

Definición:

En un digrafo D = (V, A, j) una sucesión alternada de vértices y aristas

$$(v_0, \boldsymbol{a}_1, v_1, \boldsymbol{a}_2, v_2, ..., v_{n-1}, \boldsymbol{a}_n, v_n),$$

con n∈ N y \forall i 1 i n con \boldsymbol{j} (\boldsymbol{a}_i) = (v_{i-1} ; v_i) es un **CAMINO DIRIGIDO** entre v_{0y} , $v_{n de}$ **LONGITUD n**

<u>CIRCUITO DIRIGIDO</u> es un camino dirigido en el cual $v_0 = v_n$

<u>CAMINO DIRIGIDO SIMPLE</u>: es un camino que *no repite vértices*.

Pág. 4

CIRCUITO DIRIGIDO SIMPLE: circuito dirigido que no repite vértices salvo el caso trivial $v_0 = v_n$

<u>CICLO</u>: circuito dirigido simple que *no repite aristas*.

DIGRAFO ACÍCLICO: digrafo que carece de ciclos.

DIGRAFO CONEXO: Un digrafo D = (V, A, j) es conexo sii el grafo subyacente (resulta de eliminar las direcciones a D) es conexo

DIGRAFO FUERTEMENTE CONEXO: Un digrafo D = (V, A, j) es fuertemente conexo sii $\forall v y w \in V (v \ w)$ \exists un camino dirigido de v a w)

SUBGRAFO

Grafos - Definiciones

Un grafo $G' = \{V', A', j'\}$ es un subgrafo del grafo $G = \{V, A, j'\}$ sii i) **V**' ⊆ **V** ii) $A' \subseteq A$ iii) $\forall a' \in A', j'(a') = j(a')$.

COMPONENTE CONEXA: Es un subgrafo $C = \{V', A', j'\}$ del **grafo** $G = \{V, A, j'\}$ tal que:

- $\triangleright \forall v, w \hat{I} \lor v', v \quad w \text{ existe un camino que los une en C}$
- $\triangleright \forall v \hat{I} \ V', \forall w \hat{I} \ V-V'$ no existe camino que los une

CAMINO, CIRCUITO Y GRAFO DE EULER

CAMINO DE EULER: Es un camino que *no repite aristas*.

<u>CIRCUITO DE EULER</u>: Es un circuito que *no repite aristas*

G = (V, A, j) es un **GRAFO de EULER** sii tiene G un camino o un circuito de Euler que posee todas las aristas y vértices del grafo.

TEOREMA DE EULER:

Sea G = (V,A, j) un grafo conexo.

G es un grafo de Euler \leftrightarrow G tiene exactamente dos vértices de grado impar (camino) ó ningún vértice de grado impar (circuito).

CAMINO DIRIGIDO, CIRCUITO DIRIGIDO Y DIGRAFO DE EULER

<u>CAMINO DIRIGIDO DE EULER:</u> Se llama camino dirigido de Euler a todo camino dirigido que *no repite aristas*.

<u>CIRCUITO DIRIGIDO DE EULER</u>: es un circuito dirigido que *no repite aristas*.

Un digrafo D = (V,A,j) es un **DIGRAFO de EULER** sii tiene un camino dirigido o un circuito dirigido de Euler que posee todas las aristas y vértices del digrafo.

TEOREMA DE EULER: Sea un digrafo $D = \{V, A, j\}$ conexo y $A \neq f$

 $D = \{V, A, j\}$ es un dígrafo de Euler si y solo si

a)
$$\forall v \in \mathbf{V}: g^+(v) = g^-(v)$$
 (circuito dirigido de Euler) ó

b)
$$\begin{cases} g^{-}(v) = g^{+}(v) + 1 \\ g^{+}(w) = g^{-}(w) + 1 \\ \forall u \in \mathbf{V} - \{v, w\}: g^{+}(u) = g^{-}(u) \end{cases}$$
 (camino dirigido de Euler de v a w)

CAMINO DE HAMILTON

Camino que pasa exactamente una vez por cada uno de los vértices del grafo. (Puede no usar todas las aristas).

CIRCUITO DE HAMILTON

Es un camino de Hamilton en el cual los vértices inicial y final coinciden.

REPRESENTACIÓN MATRICIAL EN GRAFOS Y DIGRAFOS

Dados $G = \{\mathbf{V}, \mathbf{A}, \mathbf{j}\}$ y $D = \{\mathbf{V}, \mathbf{A}, \mathbf{j}\}$ con $|\mathbf{A}| = m$ y $|\mathbf{V}| = n$. Se definen:

MATRIZ DE ADYACENCIA

 $M_a(G) = [\boldsymbol{b}_{ij}]_{nxn} / \boldsymbol{b}_{ij}$: cantidad de aristas con extremos $\{v_i, v_j\}$ (cuadrada simétrica).

 $M_a(D) = [\boldsymbol{b}_{ij}]_{nxn} / \boldsymbol{b}_{ij}$: cantidad de aristas con extremos (v_i, v_j) (cuadrada y no necesariamente simétrica).

MATRIZ DE ADYACENCIA BOOLEANA

$$\mathbf{M}_{a}(G) = [\boldsymbol{b}_{ij}]_{nxm} = \left\{ \begin{array}{ll} 1 & \text{si } \exists \boldsymbol{a} \in A : \boldsymbol{j} \ (\boldsymbol{a}) = \{v_{i}, v_{j}\} \\ 0 & \text{en otro caso} \end{array} \right.$$

$$\mathbf{M}_{\mathbf{a}}(D) = [\boldsymbol{b}_{\mathbf{i}\mathbf{j}}]_{\mathrm{nxm}} = \begin{cases} 1 & \text{si } \exists \boldsymbol{a} \in \mathbf{A} : \boldsymbol{j} \ (\boldsymbol{a}) = (v_{\mathbf{i}}, v_{\mathbf{j}}) \\ 0 & \text{en otro caso} \end{cases}$$

MATRIZ DE INCIDENCIA

$$\mathbf{M}_{i}(G) = [\boldsymbol{b}_{ij}]_{\text{nxm}} / \boldsymbol{b}_{ij} = \begin{cases} 2 & \text{si } \boldsymbol{a}_{j} \text{ es lazo con extremo en } v_{i} \\ 1 & \text{si } v_{i} \text{ y } \boldsymbol{a}_{j} \text{ son incidentes y } \boldsymbol{a}_{j} \text{ no es lazo} \\ 0 & \text{si } v_{i} \text{ y } \boldsymbol{a}_{j} \text{ no son incidentes} \end{cases}$$

$$\mathbf{M}_{i}(D) = [\boldsymbol{b}_{ij}]_{\text{nxn}} / \boldsymbol{b}_{ij} := \begin{cases} * & \text{si } \boldsymbol{a}_{j} \text{ es lazo con extremo en } v_{i}, con * 0 \\ 1 & \text{si } \boldsymbol{a}_{j} \text{ incide positivamente en } v_{i} \text{ y } \boldsymbol{a}_{j} \text{ no es lazo} \\ -1 & \text{si } \boldsymbol{a}_{j} \text{ incide negativamente en } v_{i} \text{ y } \boldsymbol{a}_{j} \text{ no es lazo} \\ 0 & \text{si } v_{i} \text{ y } \boldsymbol{a}_{j} \text{ no son incidentes} \end{cases}$$

Propiedad

Sea un grafo o digrafo con matriz de adyacencia M_a , entonces el total de caminos diferentes de longitud $\mathbf{k}\Omega$ desde v_i a v_j es igual al elemento i,j de la matriz $M_{(a)}^k$.

MATRIZ DE CONEXIÓN: Dados $G = \{V, A, j\}$ con |A| = m y |V| = n. Se define la siguiente relación : $\forall v, w \in V$ vRw $(v = w \lor \exists un camino de v a w)$

$$M_c(G) = [\boldsymbol{b}_{ij}]_{nxn} = \begin{cases} 1 & \text{si } vR \ w \\ 0 & \text{en otro caso} \end{cases}$$

GRAFO COMPLEMENTARIO DE G:

Sea un grafo $G = \{ \mathbf{V}, \mathbf{A}, \mathbf{j} \}$ con |V| = n. Se llama GRAFO COMPLEMENTARIO DE G al subgrafo de Kn $\overline{G} = \{ \mathbf{V}^{'}, \mathbf{A}^{'}, \mathbf{j}^{'} \}$ tal que

$$\triangleright$$
 V'=V

$$A' = A_{Kn} - A$$

GRAFOS ISOMORFOS

Sean $G_1 = \{\mathbf{V}_1, \mathbf{A}_1, \mathbf{j}_1\}$ y $G_2 = \{\mathbf{V}_2, \mathbf{A}_2, \mathbf{j}_2\}$ se dicen ISOMORFOS sii existe una función f: $\mathbf{V}_1 \rightarrow \mathbf{V}_2$ tal que

> f es biyectiva

$$\forall v, w \in V_{1: (a=\{v,w\} \in A_1 \leftrightarrow \{f(v), f(w)\} \in A_2.)}$$

Propiedad:

Dos grafos simples G_1 y G_2 son isomorfos si y sólo si para cierto orden de sus vértices las matrices de adyacencia son iguales.

Un grafo $G = \{\mathbf{V}, \mathbf{A}, \mathbf{j} \}$ es **<u>BIPARTITO</u>** sii $\mathbf{V} = \mathbf{V}_1 \cup \mathbf{V}_2$; $\mathbf{V}_1 \cap \mathbf{V}_2 \neq \emptyset$, cada arista de G es de la forma $\{a, b\}$ con $a \in \mathbf{V}_1$ y $b \in \mathbf{V}_2$.

Si cada vértice de V_1 está unido con cada vértice de V_2 se tiene un grafo **BIPARTITO COMPLETO.** En este caso si $|V_1| = m$, $|V_2| = n$ el grafo se nota con Km,n.

GRAFOS O DIGRAFOS PESADOS O PONDERADOS

Un grafo (digrafo) es pesado sii $\exists p : A \to R$ la cual a cada arista $a \in A$ le asigna un número real p(a)llamado peso o capacidad de la arista.

CAMINOS MÍNIMOS

Llamamos $d(v,w) = Min \{p(c)/c: camino de v a w\}, con p(c) = \sum_{a \in C} p(a)$ (peso del camino).

Algoritmo BFS (Breadth First Search) (Búsqueda por nivel a lo ancho)

Dado un grafo finito con aristas de peso = 1, a través de esta técnica se calcula la distancia entre dos vértices específicos.

- 1) Etiquetar s con '0': I(s) = 0
- 2) I \rightarrow 0 (contador de nivel)
- 3) Buscar todos los vértices adyacentes a los ya etiquetados con i. Si no hay, parar.
- 4) Etiquetar los vértices hallados en 3) con i+1. ($\mathbf{1}(v) = i+1$), si no fueron etiquetados antes.
- 5) Si el vértice *t* fue etiquetado, parar.
- 6) $i \to i+1$ e ir a 3).

Algoritmo de DIJKSTRA

Dado un grafo o digrafo con pesos no negativos, calcula caminos mínimos del vértice a todos los vértices.

- 1) $I(s) \rightarrow 0$ y $\forall v \neq s$; $I(v) \rightarrow \infty$ (se asignan etiquetas a todos los vértices).
- 2) $T \rightarrow V$ (se define el conjunto de vértices cuya etiqueta no es aún definitiva).
- 3) Se busca un vértice $u \in T$ con etiqueta mínima: I(u) (inicialmente s tiene etiqueta mínima).
- 4) Si u = t parar.

5) Para toda arista
$$u \leftarrow a \quad v \text{ si } v \in T \text{ y } \mathbf{1}(v) > \mathbf{1}(u) + p(a)$$

$$u \xrightarrow{a} \quad v$$

entonces $I(v) \rightarrow I(u) + p(a)$ y se coloca un puntero a u.

6)
$$T \to T - \{u\}$$
 ir 3)

Algoritmo de FORD

En un digrafo finito, este algoritmo permite calcular la distancia de todos los vértices a un vértice s.

Admite aristas de longitud negativa pero no admite ciclos de longitud negativa (los detecta).

No hay camino mínimo de *s* a *t*.

- 1) $I(s) \rightarrow 0$; $I(v) \rightarrow \infty \ \forall v \neq s$ (numerar las aristas arbitrariamente).
- 2) $j \rightarrow 1$ (contador de vueltas).
- 3) Mientras exista una arista $u \xrightarrow{a} v$ tal que I(v) > I(u) + p(a), reemplazar I(v) por I(u) + p(a), colocando un puntero a u.
- 4) $j \rightarrow j+1$ ir 3) hasta que j = |V| o hasta que en 3) no haya modificaciones según el orden establecido.

Observación

- Si en j = |V| hay modificaciones es porque es evidencia la presencia de un ciclo negativo.
- Si I(v) es finita habrá un camino de longitud I(v) de s a v. (No necesariamente de longitud mínima).
- No admite el digrafo ciclos de longitud negativa, terminado el proceso $\mathbf{I}(v) = d(s, v) \quad \forall v \in \mathbf{V}$

Procedimiento de etiquetado (algoritmo de Ford Fulckerson)

Paso1: Dada una red N, definimos un flujo inicial F en N como f(e) = 0 para cada e de E.

(Esta función satisface las condiciones de la definición de flujo).

- Paso 2: Etiquetamos la fuente con un $(-, \infty)$.
 - Esta etiqueta indica que podemos disponer en la fuente a de todo el material necesario para obtener un flujo máximo.
- Paso 3: Para cualquier vértice x adyacente a a, etiquetamos a x como sigue.
 - a) Si c(a,x) f(a,x) > 0 definimos $\Delta x = c(a,x) f(a,x)$ y etiquetamos el vértice $x \text{ con } (a^+, \Delta x)$.
 - b) Si c(a,x) f(a,x) = 0 dejamos el vértice x sin etiquetar.
 - [La etiqueta $(a^+, \Delta x)$ indica que el flujo precedente de "a" a x puede incrementarse mediante la cantidad Δx , con Δx unidades adicionales proporcionadas desde la fuente a.]
- Paso 4: Mientras exista $(x \neq a)$ en **V** tal que x esté etiquetado y exista una arista (x,y) tal que y no esté etiquetado, etiquetemos el vértice y como sigue:
 - a) Si c(x,y) f(x,y) > 0 definimos $\Delta y = \min \{ \Delta x, c(x,y) f(x,y) \}$ y etiquetamos el vértice y como $(x^+, \Delta y)$.
 - b) Si c(x, y) f(x, y) = 0 dejamos el vértice y sin etiquetar.
 - [La etiqueta $(x^{-}, \Delta y)$ indica que diminuye el flujo presente en el vértice y puede incrementarse mediante la cantidad Δy tomada del vértice x].
- Paso 5: De forma análoga, mientras exista un vértice $x \neq a$ tal que x esté etiquetado y exista una arista (x,y) tal que y no esté etiquetado, etiquetamos el vértice y como sigue:
 - a) Si f(x,y) > 0 etiquetamos el vértice y como $(x, \Delta(y))$ donde $\Delta y = \min \{\Delta x, f(x,y)\}$
 - b) Si f(x,y) = 0 dejamos el vértice sin etiquetar.
 - La etiqueta $(x, \Delta(y))$ indica que al disminuir el flujo de y a x, el total del flujo que sale de y a los vértices etiquetados puede ser disminuido en $\Delta(y)$. Estas $\Delta(y)$ unidades pueden utilizarse entonces para aumentar el flujo total de y a los vértices no etiquetados.