1.3 Representing a Qubit on the Bloch Sphere

1.	Draw	Out	a.	Bloch	S	phere	and	plot	the	foll	owing	aubit	states
т.	DIGW	\circ u	α	Diocii	\sim	DIICIC	and	DIO	ULIC	1011	OW III	quoi	DUGUUCD

- (a) $|0\rangle$ (b) $|1\rangle$ (c) $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
 - 2. On the Bloch Sphere, if a qubit is higher up vertically, what does that mean?
 - 3. On the Bloch Sphere, if a qubit is lower down vertically, what does that mean?

Answers

1.

- (a) $|0\rangle$ lies straight up on the north pole
- (b) $|1\rangle$ lies straight down on the south pole
- (c) $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ has an even chance of being measured as 0 and 1, so it lies on the equator
 - 2. The qubit has a higher probability of measuring 0 when measured
 - 3. The qubit has a higher probability of measuring 1 when measured