Wang Tiandus 1002963 Problem Set 1 Exercise 1 Heap Sort

- 1. Given the height of a heap is h.
 minimum number of elements is 2h
 maximum number of elements is 2h-1
- 2. For both Sorted array in increasing order and sorted array in decreasing order, running time of Heap Sort is O(nlgn) because new heap needs to be built from array for every iteration.
- 3. The biggest element can be found in any of the leaves (if the size of heap is n, then the biggest element could be found in the range $A[\frac{n}{2}]+1$... n])

Exercise 2 Binary Search Tree.

Hence, (a) cannot be a sequence of Keys examined

Exercise & Sorting.

1. les, the algorithm will book properly offer modification Reason: The order that elements are taken out of C and put into B does not affect the placement of elements with the same key.

2. The algorithm will start by preprocessing exactly as counting-sort so that C[i] contains the number of elements less than or equal to i in the array. When queried about how many integers fall into a range [a...b], simply compute C[b]-C[a-1]. This takes O(1) times and yields desired output.

3.	hat	tea	rag	bat
	ten	one	· pan	box
	hen	rag	· hat	hat
	two	two	rat	hen
	pan	ten	·bat	One
	one ->	hen ->	\rightarrow tea \rightarrow	pan
	tea	pan	ten	rag
	rat	hat	· hen	r at
	rag	rat	· box	tea
	box	bat	·one	ten
	bat	box	+wo	+ w

Exercise 5. Hashing.

Step 1. The initial position probed would be $\bar{l}_0 = T[h'(k)]$, $\hat{j}_0 = 0$

Step 2.
$$\bar{l}_1 = (T lh'(k) l + \hat{j}_1) \% m$$

 $= (\hat{l}_0 + l) \% m$
 $\hat{j}_1 = \hat{j}_0 + l = 0 + l = l$

Step 3.

Step 4.

$$(\hat{j}_3)\% m = (\hat{i}_2 + \hat{j}_3)\% m = (\hat{i}_2 + \hat{j}_2 + 1)\% m$$

$$= (\hat{i}_1 + \hat{j}_2 + \hat{j}_1 + 2)\% m$$

$$= (\hat{i}_0 + 1 + 2 + 3)\% m$$

$$\hat{j}_0 = 0, \hat{j}_1 = 1, \hat{j}_2 = 2.$$

From the above Steps, we may conclude in Step i.

$$h(k,i) = (T[h(k)] + \overline{(i+i)}) \% m$$

$$= (T[h(k)] + \overline{(i+i)}) \% m$$

$$= (T(h(k)) + C_i \overline{i} + C_i \overline{i}^2$$

$$= C_i = \frac{1}{2}, C_i = \frac{1}{2}$$