Section 7

Instrumental Variables

Sooahn Shin

GOV 2003

Oct 21, 2021

Overview

- Logistics:
 - Pset 6 released! Due at 11:59 pm (ET) on Oct 27
- Today's topics:
 - 1. Noncompliance in randomized experiments
 - 2. IV in observational studies using TSLS

Noncompliance in randomized experiments

- Motivation: What if there is unmeasured confounding?
- In randomized experiments: when treatment assignment is randomized but cannot intervene treatment uptake.
 - ¬ noncompliance (one- or two-sided)
- DAG example:

Noncompliance in randomized experiments

- Motivation: What if there is unmeasured confounding?
- In randomized experiments: when treatment assignment is randomized but cannot intervene treatment uptake.
 - ¬ noncompliance (one- or two-sided)
- DAG example:

• Estimand: LATE = ITT effect on the outcome for compliers

$$\mathsf{ITT}_{Y,\mathsf{co}} = \frac{1}{n_{\mathsf{co}}} \sum_{i: C_i = \mathsf{co}} Y_i(1, D_i(1)) - Y_i(0, D_i(0))$$

• Q: Why not ITT_Y?

Noncompliance in randomized experiments

- Motivation: What if there is unmeasured confounding?
- In randomized experiments: when treatment assignment is randomized but cannot intervene treatment uptake.
 - noncompliance (one- or two-sided)
- DAG example:

• Estimand: LATE = ITT effect on the outcome for compliers

$$\mathsf{ITT}_{Y,\mathsf{co}} = \frac{1}{n_{\mathsf{co}}} \sum_{i:C_i = \mathsf{co}} Y_i(1, D_i(1)) - Y_i(0, D_i(0))$$

- Q: Why not ITT_Y?
- Example (one- or two-sided)? Identification? Estimation?

One-sided example:

```
canvass assignment (Z_i) - canvass recieved (D_i) - turn out (Y_i)
```

- $D_i(0) = 0 \forall i$
- $D_i(1) = 0$ or 1 depending on compliance type

One-sided example:

```
canvass assignment (Z_i) - canvass recieved (D_i) - turn out (Y_i)
```

- $D_i(0) = 0 \forall i$
- $D_i(1) = 0$ or 1 depending on compliance type
- Compliance type by $D_i(1)$:
 - $D_i(1) = 1$: Compliers. If assigned to canvassing, I would recieve it.
 - $D_i(1) = 0$: Noncompliers. If assigned to canvassing, I would not receive it.
 - Q: Can we identify this by observing Z_i and D_i ? What can we know (hint: ITT_D)?

One-sided example:

```
canvass assignment (Z_i) - canvass recieved (D_i) - turn out (Y_i)
```

- $D_i(0) = 0 \forall i$
- $D_i(1) = 0$ or 1 depending on compliance type
- Compliance type by $D_i(1)$:
 - $D_i(1) = 1$: Compliers. If assigned to canvassing, I would recieve it.
 - D_i(1) = 0: Noncompliers. If assigned to canvassing, I would not receive it.
 - Q: Can we identify this by observing Z_i and D_i ? What can we know (hint: ITT_D)?
- Assumptions:
 - 1. Randomization of Z_i
 - 2. Presence of some compliers $\pi_{co} \neq 0$
 - 3. Exclusion restriction $Y_i(z, d) = Y_i(z', d)$ (i.e., Z_i only affects Y_i through D_i)

Identification: LATE Theorem under the previous assumptions

$$\tau_{\mathsf{LATE}} = \mathsf{ITT}_{Y,co} = \frac{\mathsf{ITT}_{Y}}{\mathsf{ITT}_{D}}$$

Identification: LATE Theorem under the previous assumptions

$$\tau_{\mathsf{LATE}} = \mathsf{ITT}_{Y,co} = \frac{\mathsf{ITT}_{Y}}{\mathsf{ITT}_{D}}$$

- Point estimation:
 - Wald or IV estimator

$$\widehat{\tau}_{iv} = \frac{\widehat{\mathsf{ITT}}_Y}{\widehat{\mathsf{ITT}}_D}$$

• It is biased, but consistent for τ_{LATE}

Identification: LATE Theorem under the previous assumptions

$$\tau_{\mathsf{LATE}} = \mathsf{ITT}_{Y,co} = \frac{\mathsf{ITT}_{Y}}{\mathsf{ITT}_{D}}$$

- Point estimation:
 - Wald or IV estimator

$$\widehat{\tau}_{iv} = \frac{\widehat{\mathsf{ITT}}_Y}{\widehat{\mathsf{ITT}}_D}$$

- It is biased, but consistent for τ_{LATE}
- Equivalent to the TSLS estimator under binary instrument and binary treatment
 - 1. Regress D_i on Z_i and get fitted values \widehat{D}_i
 - 2. Regress Y_i on \widehat{D}_i and get the slope
 - Intuitively, TSLS retains only the variation in D_i that is generated by the instrument Z_i in the first stage.
 - → use AER::ivreg() in practice.

- Variance estimation:
 - Wald estimator: Use delta method to find the asymptotic variance

$$\mathbb{V}\left[\widehat{\tau}_{iv}\right] \approx \frac{1}{\mathsf{ITT}_D^2} \mathbb{V}\left[\widehat{\mathsf{ITT}}_Y\right] + \frac{\mathsf{ITT}_Y^2}{\mathsf{ITT}_D^4} \mathbb{V}\left[\widehat{\mathsf{ITT}}_D\right] - 2\frac{\mathsf{ITT}_Y}{\mathsf{ITT}_D^3} \mathsf{cov}\left[\widehat{\mathsf{ITT}}_Y, \widehat{\mathsf{ITT}}_D\right]$$

TSLS estimator: Don't use SEs from second step (see MHE section 4.6.1 2SLS Mistakes) → use ivpack::robust.se() in practice.

- Two-sided example: encouragement (Z_i) - treatment (D_i) - outcome (Y_i)
 - Or, testing habitual voting (Coppock and Green 2016):
 GOTV canvassing (2006) turn out (2006) turn out (2008)
 - LATE: Habitual voting for those who would vote iif they are contacted by a canvasser in this election

- Two-sided example:
 encouragement (Z_i) treatment (D_i) outcome (Y_i)
 - Or, testing habitual voting (Coppock and Green 2016):
 GOTV canvassing (2006) turn out (2006) turn out (2008)
 - LATE: Habitual voting for those who would vote iif they are contacted by a canvasser in this election
- Compliance type by $(D_i(0), D_i(1))$:
 - (0,1): Complier
 - (1,1): Always-taker
 - (0,0): Never-taker
 - (1,0): Defier
 - Q: Can we identify this by observing Z_i and D_i? What can we know (hint: ITT_D)?

- Two-sided example:
 - encouragement (Z_i) treatment (D_i) outcome (Y_i)
 - Or, testing habitual voting (Coppock and Green 2016):
 GOTV canvassing (2006) turn out (2006) turn out (2008)
 - LATE: Habitual voting for those who would vote iif they are contacted by a canvasser in this election
- Compliance type by $(D_i(0), D_i(1))$:
 - (0,1): Complier
 - (1,1): Always-taker
 - (0,0): Never-taker
 - (1,0): Defier
 - Q: Can we identify this by observing Z_i and D_i ? What can we know (hint: ITT_D)?
- Assumptions: 1-3 from the previous setup, and
 - 4. Monotonicity: $D_i(1) \ge D_i(0)$, $\forall i$ (no defiers)
 - Q: What does exclusion restriction/monotonicity imply in words?

Same identification result:

$$\tau_{\mathsf{LATE}} = \mathsf{ITT}_{Y,co} = \frac{\mathsf{ITT}_{Y}}{\mathsf{ITT}_{D}}$$

Same estimation as before.

8

Same identification result:

$$\tau_{\mathsf{LATE}} = \mathsf{ITT}_{Y,co} = \frac{\mathsf{ITT}_{Y}}{\mathsf{ITT}_{D}}$$

- Same estimation as before.
- Further issues:
 - What if exclusion restriction/monotonicity is violated? Can we still use IV estimand for LATE? [Pset 6 Q2]
 - Detecting weak instruments? [Pset 6 Q3 (c)]

In R: Wald estimator

```
# *Recall what we did in Neyman's approach*
my_data # data includes Z, D, and Y
# Proportion of compliers (using ITT_D)
pi_co <- mean(my_data$D[my_data$Z == 1]) - mean(my_data$D[my_data$Z == 0])</pre>
# Compute ITT's
ITT_Y <- mean(my_data$Y[my_data$Z == 0]) - mean(my_data$Y[my_data$Z == 0])</pre>
ITT_D <- mean(my_data$D[my_data$Z == 1]) - mean(my_data$D[my_data$Z == 0])</pre>
\# (ITT_D = pi_co)
# TODO 1: Compute Wald estimator
Wald est <- NULL
```

In R: Wald estimator

```
# TODO 2: Compute variance
# TODO 2-1: Compute variance terms using neyman estimator
Var ITT Y est <- NIII I
Var ITT Y est <- NIII I
# Compute covariance term
# demean
demeaned_y \leftarrow my_data\$Y[my_data\$Z == 1] - mean(my_data\$Y[my_data\$Z == 1])
demeaned_d \leftarrow my_data D[my_data = 1] - mean(my_data D[my_data = 1])
# denominator
denom <- sum(my_data$Z)*(sum(my_data$Z) - 1)
Covar_est <- (demeaned_y %*% demeaned_t)/denom
# TODO 2-2: Compute the estimate of the formula in p.6
Var Wald est <- NULL
```

In R: TSLS estimator

```
ivmodel <- AER::ivreg(Y ~ D | Z, data = my_data)
ivpack::robust.se(ivmodel)</pre>
```

- Motivation: What if there is unmeasured confounding?
- In observational studies: In case where
 - treatment is not randomized and there exist unmeasured confounder;
 - can find instrumental variable;
 - exogenous covariates (\mathbf{X}_i) : may exist observable confounders between Z_i , D_i , and Y_i
- DAG example:

- TSLS is the classical approach to IV
 - w/o covariates

$$D_i = \delta + \gamma Z_i + \eta_i$$
$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

- TSLS is the classical approach to IV
 - w/o covariates

$$D_i = \delta + \gamma Z_i + \eta_i$$

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

w/ covariates

$$D_{i} = \delta + \gamma Z_{i} + \mathbf{X}'_{i} \beta_{d} + \eta_{i}$$

$$Y_{i} = \alpha + \tau D_{i} + \mathbf{X}'_{i} \beta_{y} + \varepsilon_{i}$$

- TSLS is the classical approach to IV
 - w/o covariates

$$D_i = \delta + \gamma Z_i + \eta_i$$
$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

w/ covariates

$$D_{i} = \delta + \gamma Z_{i} + \mathbf{X}'_{i} \beta_{d} + \eta_{i}$$

$$Y_{i} = \alpha + \tau D_{i} + \mathbf{X}'_{i} \beta_{y} + \varepsilon_{i}$$

- Recall the four canonical IV assumptions.
- Suppose we have binary treatment and binary instrument.
 - w/o covariates, TSLS estimand $(\tau) = \text{LATE} (\tau_{\text{LATE}})$ and TSLS estimator = Wald estimator

- TSLS is the classical approach to IV
 - w/o covariates

$$D_i = \delta + \gamma Z_i + \eta_i$$
$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

w/ covariates

$$D_{i} = \delta + \gamma Z_{i} + \mathbf{X}'_{i} \beta_{d} + \eta_{i}$$

$$Y_{i} = \alpha + \tau D_{i} + \mathbf{X}'_{i} \beta_{y} + \varepsilon_{i}$$

- Recall the four canonical IV assumptions.
- Suppose we have binary treatment and binary instrument.
 - w/o covariates, TSLS estimand $(\tau) = \text{LATE} (\tau_{\text{LATE}})$ and TSLS estimator = Wald estimator
 - w/ covariates, we need **constant effects** so that TSLS estimand $(\tau) = \text{LATE} (\tau_{\text{LATE}})$
 - ullet Otherwise, au is an odd weighted function of causal effects

In R: TSLS estimator w/ exogenous covariates

```
ivmodel <- AER::ivreg(Y ~ X1 + X2 + D | X1 + X2 + Z, data = my_data)
# Or, equivalently: Y ~ X1 + X2 + D | . -D + Z
ivpack::robust.se(ivmodel)
# For clustered error: use ivpack::cluster.robust.se()</pre>
```