MPI Parallelization

Shrikant Vinchurkar Mayank Chaudhary

MPI Parallelization

- Started with sequentially fastest version of Jacobi and Gauss
- Jacobi with loop interchange, avoid copy & modified residual calculation
- Gauss with red black approach, modified residual calculation

MPI Blocked Communication (4x1)

MPI Non Blocking communication (4x1)

MPI Communication overhead

- Measurement for 4x1 topology
 - Communication overhead of 0.03 sec in a total running time of 1.89 sec
- Overlapping communication would not give huge boost up
- Theoretically, peak of 5765 MFlops should increase to 5856 MFlops (actual-5878 MFlops)

Gauss parallelization - different topologies

Jacobi Parallelization - different topologies

Results with 256 and 4096 (4x1)

Communication pattern comparison (4x1)

Results for finer granularity grids

Gauss Parallelization 1xD

Gauss Parallelization DxD

Gauss Parallelization Dx1

Jacobi Parallelization 1xD

Jacobi Parallelization DxD

Jacobi Parallelization Dx1

