# **AI-Driven Smart Agriculture System Using IoT**

## **Objective**

Develop a precision agriculture platform that uses real-time sensor data and AI-based analytics to monitor crop health, optimize irrigation/fertilization, and predict crop yields with high accuracy.

## 1. Required IoT Sensors

**Sensor Type** Role in System

**Soil Moisture** Determines when irrigation is needed to avoid water stress

Air Temperature Affects germination, flowering, and ripening

**Humidity** Crucial for disease forecasting (fungal outbreaks)

**Light Intensity** Ensures optimal photosynthesis, adjusts shading or artificial lighting

**pH Sensor** Monitors soil acidity to maintain ideal growth conditions

Rain Sensor Helps avoid unnecessary irrigation after rainfall

CO<sub>2</sub> Sensor Measures greenhouse gas levels; useful for greenhouse crop management

**Leaf Wetness** Detects conditions for fungal disease like mildew or blight

## 2. AI Model for Crop Yield Prediction

- Model Type: Hybrid Model
  - Preprocessing: Scikit-learn pipelines for normalization, imputation
  - o Core AI: Random Forest Regressor or XGBoost for tabular sensor data
  - Optional Image Input: CNN (ResNet or MobileNet) for analyzing aerial/satellite imagery
  - o Alternative (Time-Series): LSTM for trend analysis and forecasting

#### • Inputs:

- o Real-time sensor data (daily or hourly)
- Historical weather data and crop yields
- Satellite images or drone photos (NDVI/NDRE)
- o Farmer practices (fertilizer use, planting date)

## • Output:

- Expected crop yield (e.g., tons/hectare)
- o Crop stress alerts (e.g., low water, nutrient imbalance)
- o Optimal irrigation/fertilization schedule

# 3. System Architecture & Data Flow

#### 1. Sensor Layer

→ Soil and environmental sensors placed in field

### 2. Edge Gateway (Optional)

→ Filters and aggregates data locally (e.g., on Raspberry Pi)

#### 3. Cloud Layer

- → Stores data in time-series DB (e.g., InfluxDB)
- → Triggers AI model processing (via Python, TensorFlow, or Scikit-learn)

#### 4. AI Model

→ Predicts yield and sends results to dashboard

### 5. Farmer Dashboard / App

→ Visualizes insights, sends irrigation or alert messages

#### 6. Actuator Integration (Optional)

→ Auto-controls pumps/valves based on AI recommendation

#### 4. Benefits

- Improved Yield Forecasting: Farmers can plan harvest and sales more efficiently.
- Sustainable Resource Use: Smart irrigation reduces water and fertilizer waste.
- **Disease Prevention**: Early detection of stress or fungal risks.
- **Decision Support**: Data-driven farming practices.

# **Data Flow Diagram**



Made with **Visily**