Universidade Federal do Cariri

Fundamentos de Matemática Discreta

Lista de exercícios 1

Professor: Thiago Marcilon

obs: O aluno pode usar a técnica que achar mais adequada para resolver as questões abaixo.

Exercício 1. Prove que $\frac{a+b}{2} \ge \sqrt{ab}$ para todo real positivo $a \in b$.

Exercício 2. Prove que se $n \in m$ são inteiros pares, $n \cdot m$ é divisível por 4.

Exercício 3. Prove que, se p é um número primo, então ele não pode ser escrito como a diferença dos quadrados de dois naturais não-consecutivos.

Exercício 4. Prove que $\sum_{i=0}^{n} q^i = \frac{q^{n+1}-1}{q-1}$ para todo inteiro $n \ge 0$.

Exercício 5. Prove que $\sum_{i=1}^{n} \frac{1}{i \cdot (i+1)} = \frac{n}{n+1}$ para todo inteiro $n \ge 1$.

Exercício 6. Prove que a+b e a^n+b^n têm a mesma paridade para todo a,b e n inteiros positivos.

Exercício 7. Seja $f(k,n) = \sum_{i=k}^{n} 1/i$ definido para $n \ge k$. Prove que $\sum_{i=1}^{n} f(i,n) = n$ para todo inteiro $n \ge 1$.

Exercício 8. Prove que 48 divide $7^{2n} - 1$ para todo natural n.

Exercício 9. Seja x um inteiro maior do que um. Prove que, se x não é divisível por nenhum número primo menor ou igual à sua raiz quadrada, então x é primo.

Exercício 10. Prove que não existe o menor número real positivo.

Exercício 11. Prove que $\sum_{i=1}^{n} i \cdot (i!) = (n+1)! - 1$ para todo inteiro $n \ge 1$.

Exercício 12. Prove que um tabuleiro de dimensões $n \times m$ pode ser ladrilhado por peças de dimensão 2×2 se e somente se n e m são ambos pares.

Exercício 13. Prove que, em todo conjunto de n números reais, existe um número que é maior ou igual à media aritmética dos n números.

Exercício 14. Seja

$$f(x) = \begin{cases} 0 & \text{se } x = 1\\ 2 \cdot f(\lfloor x/2 \rfloor) + x & \text{se } x > 1 \end{cases}$$

uma função definida nos inteiros positivos, onde $\lfloor x/2 \rfloor$ é o número x/2 arredondado para baixo. Prove que $f(x) \leq x \cdot \log_2 x$ para todo inteiro $x \geq 1$.