iTÜComputer Security

Trusted Computing and Multilevel Security

Dr. Şerif Bahtiyar

bahtiyars@itu.edu.tr

Fall 2015

Before Starting

US banks attacked, manipulated and left (heart) bleeding

In April 2014 the cybersecurity world was rocked by the discovery of Heartbleed, the name given to a vulnerability found in one of the systems we use to securely communicate over the internet.

http://www.bbc.com/news/technology-34783770

Outline

- Bell-LaPadula Model (BPL)
- Other Formal Models
- Trusted Systems
- Multilevel Security
- Trusted Computing and Trusted Platform Module

- Two fundamental security facts:
 - All complex software systems have <u>bugs</u> or <u>flaws</u>
 - Difficult to build a computer hardware/software system not vulnerable to security attacks.
- For example, Windows NT OS
 - Introduced in early 1990
 - Promised to have high degree of security
 - Did not deliver on this promise
 - Has wide range of security vulnerabilities

- Problems to provide strong security involve both design and implementation.
- Hence, there is desire to prove design and implementation that satisfy security requirements.
- Thus, develop <u>formal models of</u> <u>computer security</u> to verify security design and implementation

- The most influential security model
- Developed in the 1970 as a formal model for access control
- Each subject and each object is assigned to a security class
- Security classes form a strict hierarchy (security levels)
 - top secret -> secret -> confidential -> restricted -> unclassified
- A subject has a security clearance level
- An object has a security classification level
- Classes control how subject may access an object

Access modes

- Read: subject is allowed only read access to object
- Append: subject is allowed only write access to object
- Write: subject is allowed both read and write access to object
- **Execute**: subject is allowed neither read nor write access to object but may invoke the object for execution.

- Multilevel security: it is multiple categories or levels of data.
- In confidentiality-centered multilevel security, a subject at a high level may not convey information to a subject at a lower level unless that flow accurately reflects the will of an authorized user as revealed by an authorized declassification.

A multilevel secure system for confidentiality must enforce

 No read up: A subject can only read an object of less or equal security level known as simple security property (ss-property).

A multilevel secure system for confidentiality must enforce

 No write down: A subject can only write into an object of greater or equal security level known as *-property.

 ds-property: An individual (or role) may grant to another individual (or role) access to a document based on the owner's discretion.

Figure 13.1 Information Flow Showing the Need for the *-Property

- ss-property and *-property provide confidentiality form of mandatory access control.
- All of the three properties provide discretionary access control.

Formal description of the model

Based on the current state of the system (b, M, f, H)

- b: current access set that is (subject, object, access mode) = (s, o, a)
- M: Access matrix. The matrix element M_{ij} records the access modes in which subject S_i is permitted to access object O_i.
- f: Level function. Assigns a security level to each subject and object. $f_o(O_j)$ classification level of object O_j . $f_s(S_i)$ security clearance of subject S_i . $f_c(S_i)$ current security level of subject S_i .
- H: Hierarchy. A directed rooted tree whose nodes correspond to objects in the system.

Formal description of the model

Three BPL properties

- ss-property: $(S_i, O_j, read)$ has $f_c(S_i) \ge f_o(O_j)$
- *-property: $(S_i, O_j, append)$ has $f_c(S_i) \le f_o(O_j)$ and $(S_i, O_j, write)$ has $f_c(S_i) = f_o(O_j)$
- ds-property: (S_i, O_j, A_x) is current access (is in b) where access mode A_x is recorded in (S_i, O_j) element of M. (S_i, O_j, A_x) implies $A_x \in M[S_i, O_j]$

These properties are used to define confidentiality of secure system.

- Formal definition of confidentiality
 - Current state (b, M, f, H) is secure if and only if every element of b satisfies the 3 properties.
 - The security state of the system is changed by any operation that causes a change any of the four components of the system, (b, M, f, H).
 - A secure system remains secure so long as any state change does not violate the 3 properties.
- BPL gives formal theorems
 - Theoretically possible to prove system is secure
 - In practice usually not possible

BPL rules based on abstract operations

- Get access: add a triple (S,O,A) to current access set b.
- Release access: remove a triple (S,O,A) from the current access set b.
- Change object level: change f_o(O_i)
- Change current level: change f_c(S_i)
- Give access permission: Add an access mode to some entry of the access permission matrix M.
- Rescind (cancle) access permission: Delete an access mode from some entry of M.
- Create an object: Attach an object to the current tree structure H
 as a leaf.
- Delete a group of objects: Detach from H an object and all other objects beneath it in the hierarchy.

(a) Two new files are created: f1: c1-t; f2: c1-s

(c) An exam is created based on an existing template: f4: c1-t

(d) Carla, as student, is permitted acess to the exam: f4: c1-s

(e) The answers given by Carla are only accessible for the teacher: f5: c1-t

BPL limitations

- No provision for downgrading
- Can only edit a file at one security level while reading at same or lower level
- Classification creep occurs if a documents consolidates from many sources and levels
- Usability and implementation problems

Biba Integrity Model

- BPL deals with confidentiality and is concerned with unauthorized disclosure of information, whereas, Biba model deals with integrity and is concerned with the unauthorized modification of data.
- In Biba, data are visible to users at multiple or all security levels but should only be modified by authorized agents.
- Each subject and object is assigned an integrity level, denoted as I(S) and I(O).

Biba Integrity Model

Access Modes

Modify: write or update

Observe: read

Execute

• Invoke: communication from one subject to another

Biba Integrity Model

The strict integrity policy rules:

- Simple Integrity: A subject can modify an object only if I(S)≥I(O)
- Integrity confinement: A subject can read an object only if I(S)≤I(O)
- Invocation property: A subject can invoke another subject only if I(S₁) ≥ I(S₂)

Figure 13.4 Contamination with Simple Integrity Controls

Clark-Wilson Integrity Model

- Clark-Wilson Model (CWM) is aimed at commercial rather than military applications and it closely models real commercial operations.
- The concepts of CWM
 - Well-formed transactions: A user should not manipulate data arbitrarily, but only in constrained ways that preserve the integrity.
 - Separation of duty among users: Any person permitted to create or certify a well-formed transaction may not be permitted to execute it.

Clark-Wilson Integrity Model

- The principle components of the model:
 - Constrained data items (CDIs): Subject to strict integrity controls
 - Unconstrained data items (UDIs): Unchecked data items
 - Integrity verification procedures (IVPs): Assure that all CDIs conform to some application specific model of integrity and consistency
 - Transformation procedures (TPs): Transactions that change the set of CDIs from one consistent state to another.
- CWM enforces integrity by means of certification and enforcement rules of TPs.

Chinese Wall Model

 The model was developed for commercial applications in which conflict of interests can arise.

- Does not assign security levels -> not true multilevel security.
- Uses history of a subject's previous accesses to determine access control.

Chinese Wall Model

The elements of the model

- Subjects: users and processes
- Information: corporate information with a hierarchy of three levels
 - Objects: items of information, each concerning a single corporation
 - Dataset (DS): all objects
 - Conflict of interest (CI) class: all datasets whose corporations are in competition
- Access rules

Chinese Wall Model

- Early 1970s
- U.S. Department of Defense
- Initially did not gain a serious foothold in the commercial market
- Recently, the interest reemerged

- Trust: the extent to which someone who relies on a system can have a confidence that the system meets its specifications.
- Trusted system: A system believed to enforce a given set of attributes to a stored degree of assurance.
- Trustworthiness: Assurance that a system deserves to be trusted, such that the trust can be guaranteed in some convincing way, such as through formal analysis or code review.

Reference Monitors a controlling element in the hardware and OS of a computer that regulates the access of subjects to objects on the basis security parameters of the subject and the object.

Properties of Reference Monitor

- Complete mediation: security rules are enforced on every access.
- Isolation: protected from unauthorized modification.
- Verifiability: prove that the reference monitor does complete mediation and isolation correctly.

The Concept of Trusted Computing Trojan Horse Example

Multilevel Security

- Multilevel Secure (MLS): A class of system that has system resources at more than one security level and that permits concurrent access by users who differ in security clearance and need-to-know, but is able to prevent each user from accessing resources for which the user lacks authorization.
- Multilevel Security for RBAC: RBAC can implement BPL MLS rules given:
 - Security constraints on users
 - Constraints on read/write permissions
 - Read and write level role access definitions
 - Constraint on user-role assignment

Department Table - U				
Did	Name Mgr			
4	accts	Cathy		
8	PR	James		

Employee-R			
Name	Did	Salary	Eid
Andy	4	43K	2345
Calvin	4	35K	5088
Cathy	4	48K	7712
James	8	55K	9664
Ziggy	8	67K	3054

(a) Classified by table

Department Table					
Did - U Name - U Mgr - R					
4	accts	Cathy			
8	PR	James			

Employee				
Name - U	Did - U	Salary - R	Eid - U	
Andy	4	43K	2345	
Calvin	4	35K	5088	
Cathy	4	48K	7712	
James	8	55K	9664	
Ziggy	8	67K	3054	

(b) Classified by column (attribute)

Department Table					
Did Name Mgr					
4	accts	Cathy	R		
8	PR	James	U		

	Employee			
Name	Did	Salary	Eid	
Andy	4	43K	2345	U
Calvin	4	35K	5088	U
Cathy	4	48K	7712	U
James	8	55K	9664	R
Ziggy	8	67K	3054	R

(c) Classified by row (tuple)

Department Table				
Did	Name Mgr			
4 - U	accts - U	Cathy - R		
8 - U	PR - U	James - R		

Employee				
Name	Did	Salary	Eid	
Andy - U	4 - U	43K - U	2345 - U	
Calvin - U	4 - U	35K - U	5088 - U	
Cathy - U	4 - U	48K - U	7712 - U	
James - U	8 - U	55K - R	9664 - U	
Ziggy - U	8 - U	67K - R	3054 - U	

(b) Classified by element

Read Access

- DBMS enforces simple security rule (no read up)
- Easy if classification granularity of all database
- Inference problems if have common granularity
 - Query on restricted data
 SELECT Ename FROM Employee WHERE Salary > 50K
 - Solution is to check access of all data
- Problems with row granularity
 - null response indicates restricted/empty result

Write Access

- Enforce *-security rule (no write down)
- Have problem if a low clearance user wants to insert a row with a primary key that already exists in a higher level row:
 - can reject, but user knows row exists
 - can replace, compromises data integrity
 - can polyinstantiation and insert multiple rows with same key,
 creates conflicting entries
- Avoided by using a classification granularity of database or table

- Trusted Platform Module (TPM)
 - An industry standard developed by Trusted Computing Group
 - A hardware module
 - At the heart of a hardware/software approach of trusted computing

- Trusted Computing (TC) is used to refer such hardware and software
- TC employs a TPM chip in personal computer motherboard or a smart card or integrated into the main processor, together with HW and SW that in some sense has been approved or certified to work with the TPM.

- Trusted Computing Approach: TPM generates keys that it shares
 with vulnerable components that pass data around the system.
 The keys can be used to encrypt the data flow through the
 machine.
- TPM works with TC-enabled software to assure that data it receives are trustworthy.
- Trusted Computing Services
 - Authenticated boot
 - Certification
 - Encryption

Figure 13.12 TPM Component Architecture

Figure 13.13 Decrypting a File Using a Protected Key

Summary

- BPL security model
- Biba, Clark-Wilson, and Chinese Wall models
- The concept of trusted computing
- Multilevel security
- Trusted computing