A CLEAN TITLE

LUCAS KERBS

A Fun Subtitle February 2022 – LucasThesis v1

Ohana means family. Family means nobody gets left behind, or forgotten.

— Lilo & Stitch

Dedicated to the loving memory of Rudolf Miede.

1939 – 2005

ABSTRACT

Short summary of the contents in English...a great guide by Kent Beck how to write good abstracts can be found here:

https://plg.uwaterloo.ca/~migod/research/beck00PSLA.html

We have seen that computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty.

— Donald E. Knuth [3]

ACKNOWLEDGMENTS

Put your acknowledgments here.

Many thanks to everybody who already sent me a postcard!

Regarding the typography and other help, many thanks go to Marco Kuhlmann, Philipp Lehman, Lothar Schlesier, Jim Young, Lorenzo Pantieri and Enrico Gregorio¹, Jörg Sommer, Joachim Köstler, Daniel Gottschlag, Denis Aydin, Paride Legovini, Steffen Prochnow, Nicolas Repp, Hinrich Harms, Roland Winkler, Jörg Weber, Henri Menke, Claus Lahiri, Clemens Niederberger, Stefano Bragaglia, Jörn Hees, Scott Lowe, Dave Howcroft, José M. Alcaide, David Carlisle, Ulrike Fischer, Hugues de Lassus, Csaba Hajdu, Dave Howcroft, and the whole LATEX-community for support, ideas and some great software.

Regarding LyX: The LyX port was intially done by Nicholas Mariette in March 2009 and continued by Ivo Pletikosić in 2011. Thank you very much for your work and for the contributions to the original style.

¹ Members of GuIT (Gruppo Italiano Utilizzatori di TEX e LATEX)

CONTENTS

Ι	Part	I: *Name*						
1	Intro	Introduction 3						
	1.1	Functional Calculus 3						
	1.2	Extending Multi-Variable Functions 5						
	1.3 The Natural Involution on nc-Polynomials 5							
	1.4 Matrix Universes 5							
	1.5	The Topology of Matrix Universes 5						
	1.6	Tracial Functions and Uniqueness of the Gradient 6						
п	The Showcase							
Ш	III Appendix							
	Bibliography 13							

LIST OF FIGURES									

LIST OF TABLES

Part I

PART I: *NAME*

1

1.1 FUNCTIONAL CALCULUS

Functional Calculus refers to the process of extending the domain of a function on \mathbb{R} to include matrices (or in some cases operators). The most basic formulation uses the fact that the space $n \times n$ matrices forms a ring and so there is a natural way to evaluate polynomials $f \in \mathbb{C}[x]$. If we require that $A \in M_n(\mathbb{C})$ is self-adjoint—and hence diagonalizable as $A = U\Lambda U^*$ —then it is a standard result that:

$$f(A) = a_n A^n + \dots + a_1 A + a_0$$

$$= a_n (U \Lambda U^*)^n + \dots + a_1 U \Lambda U^* + a_0$$

$$= a_n U \Lambda^n U^* + \dots + a_1 U \Lambda U^* + a_0$$

$$= U (a_n \Lambda^n + \dots + a_1 \Lambda + a_0) U^*$$

$$= U (f(\Lambda)) U^*$$

Further, since Λ is diagonal and f is a polynomial,

$$f\left(\begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}\right) = \begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{bmatrix}$$

Therefore, given a self-adjoint matrix A and a polynomial $f \in \mathbb{C}[x]$

$$f(A) = Uf(\Lambda)U^* = U \operatorname{diag}\{f(\lambda_1), \dots, f(\lambda_n)\} U^*$$

Since self-adjoint matrices play such a vital role in free analysis, we will let $\mathbb{H}_n \subset M_n(\mathbb{C})$ denote the set of $n \times n$ -matrices over \mathbb{C} . With the polynomial case in mind, we can extend a function $g:[a,b] \to \mathbb{C}$ to a function on self adjoint (normal?) matrices with their spectrum in [a,b]. Let A be such a matrix (diagonalized by the unitary matrix U), and define

$$g(A) = U \begin{bmatrix} g(\lambda_1) & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} U^*$$

Thus, for each $n \in \mathbb{N}$, g induces a function on the self-adjoint $n \times n$ matrices with spectrum in [a,b]. The natural ordering explain why natural? on self-adjoint matrices is called the **Loewner Order**:

Definition i.1 (Loewner Ordering). For like size self-adjoint matrices, we say that $A \leq B$ if B - A is positive semidefinite and $A \prec B$ is B - A is positive definite.

With this ordering in place, we can extend many of the familiar function theoretic properties (monotonicity, convexity) to these matrix-values functions. In fact, these properties are defined identically to their classical counterpart: We say that a function is *matrix-monotone* if $A \leq B$ implies that $f(A) \leq f(B)$ and *matrix-convex* (or *nc-convex*) if

$$f\left(\frac{X+Y}{2}\right) \preceq \frac{f(X)+f(Y)}{2}$$

for every pair of like-size matrice for which f is defined. These condition are rather restrictive (since the must hold for matrices of *all* sizes) so many functions which are convex/monotone (in the traditional sense) fail to be matrix-convex/monotone. For example, $f(x) = x^4$ fails to be nc-convex. Below is an example from FCAC (Helton). What is the best way to refer to this?

Indeed, if

$$X = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Then

$$\frac{X^4 + Y^4}{2} - \left(\frac{1}{2}X + \frac{1}{2}Y\right)^4 = \begin{bmatrix} 164 & 120\\ 120 & 84 \end{bmatrix}$$

Which is not positive definite! Thus x^4 fails to be convex on even 2×2 matrices.

nc-positive if positive for all matrices

Further, a number of the standard constructions lift identically in this functional calculus.

Definition i.2 (Directional Derivative). *The derivative of* f *in the direction* H *is*

$$Df(X)[H] = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t}$$

where H and X are like-size self-adjoint matices.

Often, the best way to compute these directional derivatives is via an equivalent formulation:

$$Df(X)[H] = \left. \frac{df(X+tH)}{dt} \right|_{t=0}$$

This version allows us to more easily define higher order derivatives

$$D^{(k)}f(X)[H] = \frac{d^{(k)}f(X+tH)}{d^{(k)}t} \bigg|_{t=0}^{k}$$

Despite nc-convexity being so restrictive, Lemma 12 in [2] shows that the standard characterization of convexity via the second derivative: a function f is convex if and only if $D^2f(X)[H]$ is nc-positive. Unlike the classical case, however, the only convex polynomials are of degree 2^1

¹ See [2] for details.

1.2 EXTENDING MULTI-VARIABLE FUNCTIONS

We can extend this same functional calculus to functions of several variables, although the details are a bit more subtle. We could simply "plug in" at tuple of matrices to a standard multivariable polynomial ring over \mathbb{R} or \mathbb{C} , but this ignores the noncommutativity of $M_n(\mathbb{C})$. In light of this, let $x=(x_1,\ldots x_g)$ be a g-tuples of noncommuting formal variables. The formal variables x_1,\ldots,x_n are *free* in the sense that there are no nontrivial relations between them.² A **word** in x is a product of these variables (e. $g.x_1x_3x_1x_4^2$ or $x_1^2x_5^3$). An **nc-polynomial** in x is a formal finite linear combination of words in x with coefficients in your favorite field. We use $\mathbb{R}\langle x\rangle$ and $\mathbb{C}\langle x\rangle$ to denote the set of nc-polynomials in x over \mathbb{R} or \mathbb{C} respectively.

With $\mathbb{C}\langle x\rangle$ constructed, we can define the functional calculus. Given a word $w(x)=x_{i_1}^{p_1}\cdots x_{i_d}^{p_d}$ and a g-tuple of self-adjoint matrices, X, we can evaluate w on X via $w(X)=X_{i_1}^{p_1}\cdots X_{i_d}^{p_d}$. Since our nc-polynomials are linear combinations of these words, we can extend this evaluation to evaluation of entire polynomials. Algebriacly, we have a natural evaluation map: Given some $f\in\mathbb{C}\langle x\rangle$ and $X=(X_1,\ldots,X_n)$ a g-tuple of self-adjoint matrices, define

$$\varepsilon_f: \mathbb{H}_n^g \longrightarrow M_n(\mathbb{C})$$

 $X \longmapsto f(X).$

In the context of these multivariate functions, our definition of the Directional Derivative still makes sense (although our direction *H* now becomes a tuple of directions). We also inherit (from multi-variable calculus) a notion of the **gradient** of a function—but this will require a bit more work.

1.3 THE NATURAL INVOLUTION ON NC-POLYNOMIALS

Short section on the involution. Could also put this in the algebra errata

1.4 MATRIX UNIVERSES

Be sure to include the "dot product" here

1.5 THE TOPOLOGY OF MATRIX UNIVERSES

How much detail here? Just what we are doing or the basics of the other topologies? This could also talk about the nc varieties/singular sets

² This becomes important in the eventual functional calculus—matrices *do* have non-trivial relations. See section [ALGEBRAIC CONSTRUCTION] for the details.

1.6 TRACIAL FUNCTIONS AND UNIQUENESS OF THE GRADIENT

Now that we have \mathcal{M}^d , we can work with general functions on our matrix universe. As a whole, free analysis is concerned with so-called *free functions*, which respect the direct sums and unitary conjugation. Do they need to be graded?

Definition i.3 (Free Function). A function $f: D \to \mathcal{M}^{something}$ is called *free* if

- 1. $f(X \oplus Y) = f(X) \oplus f(Y)$
- 2. $f(UXU^*) = f(U)f(X)f(U^*)$ where X and U are like-size and U is unitary.

The two other classes of functions we are concerned with are those that act like the trace and the determinant:

Definition i.4 (Determinantal Free Function). *A function* $f: D \to \mathbb{C}$ *is a determinantal free function if*

- 1. $f(X \oplus Y) = f(X)f(Y)$
- 2. $f(UXU^*) = f(X)$ where X and U are like-size and U is unitary.

Definition i.5 (Tracial Free Function). *A function* $f: D \to \mathbb{C}$ *is a tracial free function if*

- 1. $f(X \oplus Y) = f(X) + f(Y)$
- 2. $f(UXU^*) = f(X)$ where X and U are like-size and U is unitary.

It is only these tracial functions which inherit the gradient mentioned above. Similarly to traditional multivariable calculus we define the gradient via its relationship to the directional derivative:

Definition i.6 (Free Gradient). Given a tracial free function f, the free gradient, ∇f , is the unique free function satisfying

$$\operatorname{tr}(H \cdot \nabla f(X)) = \operatorname{tr} Df(X)[H]$$

It is not-at-all obvious that such a ∇f should be unique—after all any linear combination of commutator is has trace zero. should I explain this? In the case that f is a single-variable function we can replace ∇f with the traditional derivative, f', as seen in [4, Thm 3.3].

Theorem i.7. Let $f:(a,b) \to \mathbb{R}$ be a C^1 function. Then

$$\operatorname{tr} Df(X)[H] = \operatorname{tr} (Hf'(X))$$

The proof in [4] simply asserts the uniqueness of a function g(X) and then shows that g(x) = f'(x) for $x \in (a,b)$. Instead, we can construct such a g and recover the theorem along the way:

Proof. We start with a construction from Bhatia's Matrix Analysis: Let $f \in C^1(I)$ and define $f^{[1]}$ on $I \times I$ by

$$f^{[1]}(\lambda,\mu) = \begin{cases} \frac{f(\lambda) - f(\mu)}{\lambda - \mu} & \lambda \neq \mu \\ f'(\lambda) & \lambda = \mu. \end{cases}$$

We call $f^{[1]}(\lambda,\mu)$ the first divided difference of f at (λ,μ) . If Λ is a diagonal matrix with entries $\{\lambda_i\}$, We may extend f to accept Λ by defining the (i,j)-entry of $f^{[1]}(\Lambda)$ to be $f^{[1]}(\lambda_i,\lambda_j)$. If A is a self adjoint matrix with $A=U\Lambda U^*$, then we define $f^{[1]}(A)=Uf^{[1]}(\Lambda)U^*$. Now we borrow a theorem from Bhatia [1]:

Theorem i.8 (Bhatia V.3.3). *Theorem numbering?* Let $f \in C^1(I)$ and let A be a self adjoint matrix with all eigenvalues in I. Then

$$Df(A)[H] = f^{[1]}(A) \circ H,$$

where \circ denotes the Schur-product³ in a basis where A is diagonal.

That is, if $A = U\Lambda U^*$, then

$$Df(A)[H]=U\left(f^{[1]}(\Lambda)\circ (U^*HU)\right)U^*.$$

To prove our claim, we need to take the trace of both sides. Since trace is invariant under a change of basis, it is clear that

$$\mathrm{tr} Df(A)[H] = \mathrm{tr} \left(f^{[1]}(\Lambda) \circ (U^*HU) \right).$$

If $U = u_{ij}$, $U^* = \overline{u}_{ij}$ and $H = h_{ij}$, then the (i, j)-entry of U^*HU is

$$(U^*HU)_{ij} = \overline{u}_{ik}h_{k\ell}u_{\ell j}$$

Where we sum over the duplicate indices k and ℓ . While the structure of $f^{[1]}(\Lambda)$ is a bit unruly, our diagonal entries are $f'(\lambda)$. This means that when we take the trace of the Schur product, we have

$$\sum_{k} \sum_{\ell} \sum_{i} f'(\lambda_{i}) \overline{u}_{ik} h_{k\ell} u_{\ell i}$$

Now consider the matrix product $U \operatorname{diag}\{f'(\lambda_1), \ldots, f'(\lambda_n)\} U^*H$. Since one of our terms is diagonal, the trace of this multiplication is simple:

tr
$$U \operatorname{diag}\{f'(\lambda_1), \dots, f'(\lambda_n)\}\ U^*H = \sum_k \sum_\ell \sum_i u_{ik} f'(\lambda_k) \overline{u}_{k\ell} h_{\ell i}$$

Since u_{ik} , $\overline{u}_{k\ell}$, $h_{\ell i} \in \mathbb{C}$ they commute. We can then relabel our indices $i \mapsto \ell \ \ell \mapsto k \ k \mapsto i$ to get

tr
$$U$$
 diag $\{f'(\lambda_1), \ldots, f'(\lambda_n)\}\ U^*H = \sum_k \sum_\ell \sum_i f'(\lambda_i) \overline{u}_{ik} h_{k\ell} u_{\ell i}$,

³ Entrywise

So, for every direction H, we have that $\operatorname{tr}(U\operatorname{diag}\{f'(\lambda_1),\ldots,f'(\lambda_n)\}U^*H)=\operatorname{tr}\left(f^{[1]}(\Lambda)\circ(U^*HU)\right)$. hbox :eyeroll: By picking the "correct" H^4 , we conclude that our unique quantity g(X) is $U\operatorname{diag}\{f'(\lambda_1),\ldots,f'(\lambda_n)\}U^*$. But, recall that $X=U\Lambda U$ so, in the functional calculus, g(X)=f'(X). This recovers theorem 3.3 of [4] as we have constructed a g such that

$$\operatorname{tr} Df(X)[H] = \operatorname{tr} Hg(X)$$

⁴ See example EXAMPLE NUMBER for details

Part II

THE SHOWCASE

You can put some informational part preamble text here. Illo principalmente su nos. Non message *occidental* angloromanic da. Debitas effortio simplificate sia se, auxiliar summarios da que, se avantiate publicationes via. Pan in terra summarios, capital interlingua se que. Al via multo esser specimen, campo responder que da. Le usate medical addresses pro, europa origine sanctificate nos se.

Part III

APPENDIX

BIBLIOGRAPHY

- [1] Rajendra Bhatia. *Matrix Analysis*. Vol. 169. Graduate Texts in Mathematics. New York, NY: Springer New York, 1997. ISBN: 978-1-4612-6857-4 978-1-4612-0653-8. DOI: 10.1007/978-1-4612-0653-8.
- [2] J. William Helton, Igor Klep, and Scott McCullough. "Free Convex Algebraic Geometry." In: (Apr. 2013). DOI: 10.48550/arXiv.1304.4272.
- [3] Donald E. Knuth. "Computer Programming as an Art." In: *Communications of the ACM* 17.12 (1974), pp. 667–673.
- [4] J. E. Pascoe. "Trace Minmax Functions and the Radical Laguerre-P\'olya Class." In: (Aug. 2020). DOI: 10.48550/arXiv.2008.05469.