

Que pouvons-nous faire en attendant FTQC?

- Algorithme de Shor
- Algorithme de Grover
- Algorithme variationnel

Intuition: circuits variationnels

Réseau de neurones Circuit quantique

Intuition: circuits variationnels

Circuit quantique

$R(\alpha_{1}^{1}, \beta_{1}^{1}, \gamma_{1}^{1})$ $R(\alpha_{2}^{1}, \beta_{2}^{1}, \gamma_{2}^{1})$ $R(\alpha_{3}^{1}, \beta_{3}^{1}, \gamma_{3}^{1})$ $R(\alpha_{4}^{1}, \beta_{4}^{1}, \gamma_{4}^{1})$

Réseau de neurones

Algos variationnels : Convertir un problème en une tâche d'optimisation et utiliser un algorithme **classique** pour entraîner un modèle d'apprentissage **quantique** paramétré.

Algorithme quantique - classique (calcul hybride)

Envoyer une mesure

Envoyer les paramètres après un pas d'optimisation

Quantum Approximate
Optimization Algorithm (QAOA)

Ingrédients d'un circuit variationnel

- 1. Préparation d'un état initial $|\psi
 angle$
- 2. Circuit quantique paramétré U(heta)
- 3. Mesurer une observable

$$\langle \psi | U^{\dagger}(\theta) Z U(\theta) | \psi \rangle$$

Encodage de données classiques

1. Préparation d'un état initial $|\psi\rangle$

Comment introduire des données classiques dans un circuit variationnel?

Encodage exemples simples

Données discrètes (int)

Encoder une chaîne binaire dans l'état de base d'un qubit

Ex: $111 \rightarrow |111\rangle$

$$|0\rangle$$
 — X —

$$|0\rangle$$
 X

$$|0\rangle$$
 X

Données continues (float)

Encoder une valeur continue dans l'angle de rotation du qubit

Ex:
$$x \in \mathbb{R} \to R_x(x)|0\rangle$$

$$|0\rangle - R_X(X)$$

Il existe également des méthodes plus complexes. Chaque méthode présente des avantages et des inconvénients.

Circuit variationnel : ingrédients de la portion quantique

2. Circuit quantique paramétré U(heta)

Exemples : circuit quantique paramétré

Porte	Symbole	Action sur les états
CNOT		$CNOT 00\rangle = 00\rangle$ $CNOT 01\rangle = 01\rangle$ $CNOT 10\rangle = 11\rangle$ $CNOT 11\rangle = 10\rangle$
$\mathbf{R}\mathbf{X}(heta)$	$-R_x(\theta)$	$RX(\theta) 0\rangle = \cos\frac{\theta}{2} 0\rangle - i\sin\frac{\theta}{2} 1\rangle$ $RX(\theta) 1\rangle = -i\sin\frac{\theta}{2} 0\rangle + \cos\frac{\theta}{2} 1\rangle$

Ansatz: Exemple 1

Ce circuit n'est pas très expressif

 $R_x(\theta_2)$

$$|\psi
angle=$$
 ?

Porte	Symbole	Action sur les états
CNOT		$CNOT 00\rangle = 00\rangle$ $CNOT 01\rangle = 01\rangle$ $CNOT 10\rangle = 11\rangle$ $CNOT 11\rangle = 10\rangle$
$\mathbf{R}\mathbf{X}(heta)$	$-R_x(\theta)$	$RX(\theta) 0\rangle = \cos\frac{\theta}{2} 0\rangle - i\sin\frac{\theta}{2} 1\rangle$ $RX(\theta) 1\rangle = -i\sin\frac{\theta}{2} 0\rangle + \cos\frac{\theta}{2} 1\rangle$

Ansatz: Exemple 2

$$|\psi\rangle = \cos\left(\frac{\theta_1}{2}\right)\cos\left(\frac{\theta_2}{2}\right)|00\rangle - i\cos\left(\frac{\theta_1}{2}\right)\sin\left(\frac{\theta_2}{2}\right)|01\rangle - \sin\left(\frac{\theta_1}{2}\right)\sin\left(\frac{\theta_2}{2}\right)|10\rangle - i\sin\left(\frac{\theta_1}{2}\right)\cos\left(\frac{\theta_2}{2}\right)|11\rangle$$

Ce circuit est plus expressif!

Algorithme variationnel: quantique - classique

- Un ansatz de circuit variationnel
- 2. Une fonction de **coût**
- 3. Un algorithme d'apprentissage

Algorithme variationnel : Variational Quantum Eigensolver (VQE)

- Un ansatz de circuit variationnel Unitary coupled cluster singles and doubles excitations (UCCSD)
- 2. Une fonction de **coût**L'énergie d'une molécule (valeur d'attente de l'hamiltonien)
- 3. Un algorithme d'apprentissage Descente de gradient

Algorithme variationnel : Quantum approximate optimization algorithm (QAOA)

- Un ansatz de circuit variationnel Based on "cost" and "mixer" Hamiltonian time-evolution
- Une fonction de coût
 Valeur d'attente de l'hamiltonien de coût
- 3. Un algorithme d'apprentissage Descente de gradient

Optimiser un circuit quantique

Un circuit quantique peut être optimisé avec des méthodes de descente de gradient grâce à la règle de "parameter shift".

AdagradOptimizer	each dimension.
AdamOptimizer	Gradient-descent optimizer with adaptive learning rate, first and second moment.
AdaptiveOptimizer	Optimizer for building fully trained quantum circuits by adding gates adaptively.
GradientDescentOptimizer	Basic gradient-descent optimizer.
MomentumOptimizer	Gradient-descent optimizer with momentum.
NesterovMomentumOptimizer	Gradient-descent optimizer with Nesterov momentum.
QNGOptimizer	Optimizer with adaptive learning rate, via calculation of the diagonal or block-diagonal approximation to the Fubini-Study metric tensor.
RiemannianGradientOptimizer	Riemannian gradient optimizer.
RMSPropOptimizer	Root mean squared propagation optimizer.

Gradient-descent optimizer with past-gradient-dependent learning rate in

Perspectives d'avenir et limitations

Entraînement - "Barren plateau"

Un plateau stérile (barren plateau) est une région de l'espace des paramètres de la fonction de coût où le gradient de la fonction de coût devient exponentiellement petit avec le nombre de qubits.

Causes:

- Ansatz trop profond
- Fonction de coût globale
- Initialisation des paramètres
- Matériel quantique bruité

Latence - Calcul hybride peu efficace

Pause programmation

Notebook 5 : Circuits variationnels