Data Mining and Machine Learning

Assignment Project Exam Help

HMMs fo https://eduassistpro.greech

Recogniti Add WeChat edu_assist_pro

Peter Jančovič

Objectives

To understand

- Application of HMMs for automatic speech recognition

 Assignment Project Exam Help
- HMM assumhttps://eduassistpro.github.io/

Pattern Recognition

• Suppose we have a finite number of classes, $w_1, ..., w_C$ and the goal is to decide which class has given rise to represent the same of the same

https://eduassistpro.github.io/

The probabil w We Ghat edu_assist_ip called w posterior probability of the class w — denoted by P(w|x)

Bayes' Theorem

The form of Bayes' Theorem which we need for pattern recognition is:

Assignment Project Exam Help

ClassPrior probability

https://eduassistpro.github.io/ p(x|w)P(w)Ruly We Chat edu_assist_pro

Posterior probability

Automatic Speech Recognition

Given a sequence of acoustic feature vectors

$$Y = \{y_1,...,y_T\}$$
we want to find the sequence of words
Assignment Project Exam Help
 $W = \{w_1,...,$
such that the https://eduassistpro.github.io/
 $P(W/Y)$ Add WeChat edu_assist_pro
is maximized.

• If $M = \{M_1, ..., M_K\}$ is the sequence of HMMs which represents W, then P(W/Y) = P(M/Y)

Bayes' Theorem

• Computation of the probability $P(M \mid Y)$ is made possible using **Bayes' Theorem**

$$P(W) = P(Y) = P(Y)$$

https://eduassistpro.github.io/

- P(W) is the "language mo ility" Add WeChat edu_assist_pro
- p(Y/W) is the "acoustic model probability"

Mathematical Modelling

- Mathematical modelling for speech recognition
- Two conflicting requirements:
 - Faithful model of human speech
 Assignment Project Exam Help
 production perception
 - Mathemathttps://eduassistpro.githutatio/nally
 Useful Add WeChat edu_assist_pro
- HMMs are one of the best se at the moment

HMMs

Mathematics & Computing

Speech Science

'Divide and Conquer'

- One possible approach to ASR is sequential 'divide and conquer', e.g.
 - classif spiecuhent cloriest faxous like spatures'
 - classify se phonemes
 https://eduassistpro.github.io/
 - classify sequences edu_assistwords
 - classify sequences of words ...

DISASTER!!

Delayed Decision Making

Another name for this might be non-recoverable error propagation!

Assignment Project Exam Help

- Better to avo cisions until all sources of inhttps://eduassistpro.gethuthio/ perform classification and weethat edu_assist_offs delayed decision making
- Delayed Decision Making underlies HMM success

The 'HMM Compromise'

Assume that:

- A spoken utterance is a time-varying sequence which moves through a sequence of 'segments' Assignment Project Exam Help
- Underlying shttps://eduassistpro.githubelonstant w.r.t time – (Add WeChat edu_assist_pro
- Durations of segments vary (yes)
- All variations between different realizations of the segments are random – (no!)

Hidden Markov Model

• In a **hidden** Markov model, the relationship between the observation sequence and the state sequence is ambiguous.

Hidden Markov Models

A HMM consists of

- A set of states $S = \{s_1, ..., s_N\}$
- A state transition probability matrix an Incilois, in the point of the where a_{ij} =Pro https://eduassistpro.github.io/set of possible
- observations OAdd WeChat edu_assist_pro

$$b_{i}(o) = \text{Prob}(y_{t}=o \mid x_{t}=s_{i})$$

• b_i is called the **state output PDF** for state i (or the ith **state** output PDF)

10 state HMM of the digit 'zero'

Assignment Project Exam Help

https://eduassistpro.github.io/

6 state HMM of the digit 'zero'

Assignment Project Exam Help

https://eduassistpro.github.io/

HMM Assumptions

- Temporal Independence the observation y_t depends on the state x_t but is otherwise independent of the rest of the observation sequence $Y = \{y_t\}!$ Assignment Project Exam Help

 ... so, the pos

 t at time t is independenthttps://eduassistpro.gitlaub.io/
- Piecewise stationavity hathedu_assistepstructure of speech is a sequence of sta ments
- Random variability variations from this underlying structure are random

HMM State Duration Model

Constant segments correspond to the HMM states

Probability of state duration D is given by

$$P_{\rm i}(D) = (1 - a_{\rm ii})a_{\rm ii}^{\rm (D-1)}$$

Summary

 Introduction to application of HMMs for speech recognition – HMM assumptions

Assignment Project Exam Help

https://eduassistpro.github.io/

