

# **Space X Falcon 9 First Stage Landing Prediction**

## **Assignment: Machine Learning Prediction**

Estimated time needed: 60 minutes

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.



Several examples of an unsuccessful landing are shown here:



Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

## Objectives

Perform exploratory Data Analysis and determine Training Labels

- · create a column for the class
- · Standardize the data
- · Split into training data and test data
- -Find best Hyperparameter for SVM, Classification Trees and Logistic Regression
- · Find the method performs best using test data

## Import Libraries and Define Auxiliary Functions

```
[1]: import piplite
await piplite.install(['numpy'])
await piplite.install(['pandas'])
await piplite.install(['seaborn'])
```

We will import the following libraries for the lab

```
[2]: # Pandas is a software library written for the Python programming language for data manipulation and analysis.
     import pandas as pd
     # NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, al
     import numpy as np
     # Matplotlib is a plotting library for python and pyplot gives us a MatLab like plotting framework. We will use this in our p
     import matplotlib.pyplot as plt
     #Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractiv
     import seaborn as sns
     # Preprocessing allows us to standarsize our data
     from sklearn import preprocessing
     # Allows us to split our data into training and testing data
      from sklearn.model selection import train test split
     # Allows us to test parameters of classification algorithms and find the best one
     from sklearn.model selection import GridSearchCV
     # Logistic Regression classification algorithm
     from sklearn.linear model import LogisticRegression
     # Support Vector Machine classification algorithm
     from sklearn.svm import SVC
     # Decision Tree classification algorithm
     from sklearn.tree import DecisionTreeClassifier
     # K Nearest Neighbors classification algorithm
     from sklearn.neighbors import KNeighborsClassifier
```

This function is to plot the confusion matrix.

```
def plot_confusion_matrix(y,y_predict):
    "this function plots the confusion matrix"
    from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y, y_predict)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
    ax.set_xlabel('Predicted labels')
    ax.set_ylabel('True labels')
    ax.set_title('Confusion Matrix');
    ax.xaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_ticklabels(['did not land', 'landed'])
    plt.show()
```

#### Load the dataframe

Load the data

```
[4]: from js import fetch
import io

URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_2
resp1 = await fetch(URL1)
text1 = io.BytesIO((await resp1.arrayBuffer()).to_py())
data = pd.read_csv(text1)
```

[5]: data.head()

| [5]: | F | lightNumber | Date           | BoosterVersion | PayloadMass | Orbit | LaunchSite      | Outcome        | Flights | GridFins | Reused | Legs  | LandingPad | Block |
|------|---|-------------|----------------|----------------|-------------|-------|-----------------|----------------|---------|----------|--------|-------|------------|-------|
|      | 0 | 1           | 2010-<br>06-04 | Falcon 9       | 6104.959412 | LEO   | CCAFS SLC<br>40 | None<br>None   | 1       | False    | False  | False | NaN        | 1.0   |
|      | 1 | 2           | 2012-<br>05-22 | Falcon 9       | 525.000000  | LEO   | CCAFS SLC<br>40 | None<br>None   | 1       | False    | False  | False | NaN        | 1.0   |
|      | 2 | 3           | 2013-<br>03-01 | Falcon 9       | 677.000000  | ISS   | CCAFS SLC<br>40 | None<br>None   | 1       | False    | False  | False | NaN        | 1.0   |
|      | 3 | 4           | 2013-<br>09-29 | Falcon 9       | 500.000000  | РО    | VAFB SLC<br>4E  | False<br>Ocean | 1       | False    | False  | False | NaN        | 1.0   |
|      | 4 | 5           | 2013-<br>12-03 | Falcon 9       | 3170.000000 | GTO   | CCAFS SLC<br>40 | None<br>None   | 1       | False    | False  | False | NaN        | 1.0   |
|      | 4 |             |                |                |             |       |                 |                |         |          |        |       |            | •     |

```
[6]: URL2 = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_3
resp2 = await fetch(URL2)
text2 = io.BytesIO((await resp2.arrayBuffer()).to_py())
X = pd.read_csv(text2)
```

[7]: X.head(100)

|    | FlightNumber | PayloadMass  | Flights | Block | ReusedCount | Orbit_ES-<br>L1 | Orbit_GEO | Orbit_GTO | Orbit_HEO | Orbit_ISS | <br>Serial_B1058 |
|----|--------------|--------------|---------|-------|-------------|-----------------|-----------|-----------|-----------|-----------|------------------|
| 0  | 1.0          | 6104.959412  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |
| 1  | 2.0          | 525.000000   | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |
| 2  | 3.0          | 677.000000   | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       | 0.0       | 1.0       | <br>0.0          |
| 3  | 4.0          | 500.000000   | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |
| 4  | 5.0          | 3170.000000  | 1.0     | 1.0   | 0.0         | 0.0             | 0.0       | 1.0       | 0.0       | 0.0       | <br>0.0          |
|    |              |              |         |       |             |                 |           |           |           |           | <br>             |
| 85 | 86.0         | 15400.000000 | 2.0     | 5.0   | 2.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |
| 86 | 87.0         | 15400.000000 | 3.0     | 5.0   | 2.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>1.0          |
| 87 | 88.0         | 15400.000000 | 6.0     | 5.0   | 5.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |
| 88 | 89.0         | 15400.000000 | 3.0     | 5.0   | 2.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |
| 89 | 90.0         | 3681.000000  | 1.0     | 5.0   | 0.0         | 0.0             | 0.0       | 0.0       | 0.0       | 0.0       | <br>0.0          |

90 rows × 83 columns

4

-

Create a NumPy array from the column Class in data, by applying the method to\_numpy() then assign it to the variable Y, make sure the output is a Pandas series (only one bracket df['name of column']).

```
[8]: Y = data["Class"].to_numpy()
```

#### TASK 2

Standardize the data in X then reassign it to the variable X using the transform provided below.

```
[9]: # students get this
transform = preprocessing.StandardScaler()
X = transform.fit_transform(X)
```

We split the data into training and testing data using the function train\_test\_split. The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function GridSearchCV.

#### TASK 3

Use the function train\_test\_split to split the data X and Y into training and test data. Set the parameter test\_size to 0.2 and random\_state to 2. The training data and test data should be assigned to the following labels.

```
X train, X test, Y train, Y test
```

```
[10]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
```

we can see we only have 18 test samples.

```
[11]: Y_test.shape
[11]: (18,)
```

Create a logistic regression object then create a GridSearchCV object logreg\_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

We output the GridSearchCV object for logistic regression. We display the best parameters using the data attribute best\_params\_ and the accuracy on the validation data using the data attribute best\_score\_.

```
[15]: print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
print("accuracy :",logreg_cv.best_score_)

tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': 'l2', 'solver': 'lbfgs'}
accuracy : 0.8464285714285713
```

Calculate the accuracy on the test data using the method score :

```
[16]: print('Accuracy = ', logreg_cv.score(X_test, Y_test))

Accuracy = 0.83333333333334

Lets look at the confusion matrix:
```

[17]: yhat=logreg\_cv.predict(X\_test)
plot\_confusion\_matrix(Y\_test,yhat)



Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

#### TASK 6

Create a support vector machine object then create a GridSearchCV object svm\_cv with cv - 10. Fit the object to find the best parameters from the dictionary parameters .

#### TASK 7

Calculate the accuracy on the test data using the method score :

```
[22]: print('accuracy: ', svm_cv.score(X_test, Y_test))
accuracy: 0.83333333333334
```

```
[23]: yhat=svm_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



Create a decision tree classifier object then create a GridSearchCV object tree\_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

```
[24]: parameters = {'criterion': ['gini', 'entropy'],
           'splitter': ['best', 'random'],
           'max_depth': [2*n for n in range(1,10)],
           'max_features': ['auto', 'sqrt'],
           'min_samples_leaf': [1, 2, 4],
           'min_samples_split': [2, 5, 10]}
      tree = DecisionTreeClassifier()
[26]: gscv = GridSearchCV(tree,parameters, scoring='accuracy',cv=10)
      tree_cv = gsvc.fit(X_train, Y_train)
[24]: print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
      print("accuracy :",tree_cv.best_score_)
      NameError
                                                Traceback (most recent call last)
      Cell In[24], line 1
      ----> 1 print("tuned hpyerparameters : (best parameters) ", tree cv. best params_)
            2 print("accuracy :",tree_cv.best_score_)
      NameError: name 'tree_cv' is not defined
```

Calculate the accuracy of tree\_cv on the test data using the method score :

We can plot the confusion matrix

```
[30]: yhat = tree_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



Create a k nearest neighbors object then create a GridSearchCV object knn\_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

#### TASK 11

Calculate the accuracy of knn\_cv on the test data using the method score :

```
[34]: print("accuracy: ", knn_cv.score(X_test, Y_test))
accuracy: 0.83333333333334
```

#### We can plot the confusion matrix

```
[35]: yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



Find the method performs best:

```
algorithms = {'KNN':knn_cv.best_score_,'Tree':tree_cv.best_score_,'LogisticRegression':logreg_cv.best_score_}
bestalgorithm = max(algorithms, key=algorithms.get)
print('Best Algorithm is',bestalgorithm,'with a score of',algorithms[bestalgorithm])
if bestalgorithm == 'KNN':
    print('Best Params is :',knn_cv.best_params_)
if bestalgorithm == 'LogisticRegression':
    print('Best Params is :',logreg_cv.best_params_)
```

Best Algorithm is Tree with a score of 0.8642857142857142

#### **Authors**

Pratiksha Verma

## **Change Log**

| Date (YYYY-MM-DD) | Version | Changed By                     | Change Description                       |
|-------------------|---------|--------------------------------|------------------------------------------|
| 2022-11-09        | 1.0     | Pratiks <mark>h</mark> a Verma | Converted initial version to Jupyterlite |

IBM Corporation 2022. All rights reserved.