

Integrative Bioinformatics and Systems Biology

Dr. Mohamed Hamed

Lecture 11

Introduction to Machine Learning I

Prerequisites

- Basic mathematics
- Basic programming skills
- Linear algebra
- Basic knowledge in statistics

Machine Learning Definition

 Machine learning concerns How to construct computer programs that automatically improve with experience. "Tom Mitchel"

 Machine Learning studies models that can learn to make predictions from data instead of using static instructions

Training Stage:

Production Stage:

5

6

Learning from examples

Learning from examples

Learning from examples

General Approach:

Given training data $T_D = \{y, \mathbf{x}\} = (y,x)_1...(y,x)_N$

function space {f} and a
constraint on these functions

Teach a machine to learn the **mapping** y = f(x)

```
trained_model <- model(data, known_quantity)
predicted_quantity <- trained_model(new_data)</pre>
```

Examples for applications

- Medical: Predicted whether a patient will have a second heart attack
 Data: demographic, diet, clinical measurements
- Business/Economics: Predict the price of stock 6 months from now.
 - Data: company performance, economic data
- Vision: Identify hand-written ZIP codes
 - Data: Model hand-written digits
- Medical: Amount of glucose in the blood of a diabetic
 - Data: Infrared absorption spectrum of blood sample
- Medical: Risk factors for prostate cancer
 - Data: Clinical, demographic

Data Types

- Two basically different types of data
 Quantitative (numerical): e.g. stock price
 Categorical (discrete, often binary): cancer/no cancer
- Data are predicted
 on the basis of a set of features (e.g. diet or clinical measurements)
 from a set of (observed) training data on these features
 For a set of objects (e.g. people).
 Input features for the problems are also called predictors
 or independent variables
- Outputs are also called responses or dependent variables
 The prediction model is called a learner or estimator
- Supervised learning: learn on outcomes for observed features
- Unsupervised learning: no output values available

Matrix representation

WHAT IS **FEATURE ENGINEERING**?

II FEATURE ENGINEERING

After feature engineering, your dataset will be a big matrix of numerical values.

Copyright @Charles Vestur

A

Raw data

Machine Learning Types

Supervised learning

Training your machine to learn a <u>function</u> by showing couples of <u>input</u> and corresponding <u>output</u> (target)

→ Classification and Regression

Unsupervised learning

Training your machine to learn <u>structure</u> or <u>relationships</u> by presenting to it a set of <u>inputs</u>

→ Clustering and Dimensionality reduction

Machine Learning Types

Supervised learning

Training your machine to learn a <u>function</u> by showing couples of <u>input</u> and corresponding <u>output</u> (target)

→ Classification and Regression

Unsupervised learning

Training your machine to learn <u>structure</u> or <u>relationships</u> by <u>presenting to it a set of inputs</u>

→ Clustering and Dimensionality reduction

Application Examples for ML Types

Gene Expression Matrix

23

Control samples

Study samples

	Sample1	Sample2	Sample3	Sample4	Sample5	Sample6	Sample7	Sample8
Gene 1	12	11	15	13	1	2	4	5
Gene 2	7	6	4	0.5	23	21	23	22
Gene 3	5	2	5	6	12.4	14	12	15.5
	18	15	15	20	3	2	3	4
	19	18	11	17	11	14	12	17
Gene n	5	13	14	22	12	11	23	10

T (Gene Expression Matrix)

24

	gene1	gene2	gene3	gene4	gene5	gene6	gene7	Туре
Sample1	12	11	15	13	1	2	4	N
Sample2	7	6	4	0.5	23	21	23	N
Sample3	5	2	5	6	12.4	14	12	N
Sample4	18	15	15	20	3	2	3	Т
Sample5	19	18	11	17	11	14	12	Т
Sample6	5	13	14	22	12	11	23	Т

Supervised learning: Classification Task

Label/ outcom

	gene1	gene2	gene3	gene4	gene5	gene6	gene7	Туре
Sample1	12	11	15	13	1	2	4	N
Sample2	7	6	4	0.5	23	21	23	N
Sample3	5	2	5	6	12.4	14	12	N
Sample4	18	15	15	20	3	2	3	Т
Sample5	19	18	11	17	11	14	12	Т
Sample6	5	13	14	22	12	11	23	Т

Supervised learning: Regression Task

Label/ outcom

	gene1	gene2	gene3	gene4	gene5	gene6	gene7	OSR
Sample1	12	11	15	13	1	2	4	0.6
Sample2	7	6	4	0.5	23	21	23	0.7
Sample3	5	2	5	6	12.4	14	12	0.5
Sample4	18	15	15	20	3	2	3	0.8
Sample5	19	18	11	17	11	14	12	0.8
Sample6 	5	13	14	22	12	11	23	0.4

ML types: based on the research problem

ML types: based on the research problem

Quick outlook

Machine Learning Algorithms (sample)

	Unsupervised	Supervised
Continuous	 Clustering & Dimensionality Reduction SVD PCA K-means 	Regression Linear Polynomial Decision Trees Random Forests
Categorical	 Association Analysis Apriori FP-Growth Hidden Markov Model 	Classification KNN Trees Logistic Regression Naive-Bayes SVM

Quick outlook

Machine Learning Algorithms (sample)

Unsupervised Machine Learning 1- Clustering

Clustering Gene expressions

Predict:

Which genes show similar expression over the samples

Which samples show similar expression over the genes (unsupervised learning problem)

Which genes are highly over or under expressed in certain cancers (supervised learning problem)

Bi-clustering

Bi cluster I Homogeneity Separation wt0 wt30 wt120 at0 at120 ht0 ht20 ht120

clustering

Universitätsmedizin Rostock

Bi-clustering

Bioinformatics. 2006 May 15;22(10):1282-3. Epub 2006 Mar 21.

BicAT: a biclustering analysis toolbox.

Barkow S¹, Bleuler S, Prelic A, Zimmermann P, Zitzler E.

Author information

Abstract

SUMMARY: Besides classical clustering methods such as hierarchical clustering, in recent years biclustering has become a popular approach to analyze biological data sets, e.g. gene expression data. The Biclustering Analysis Toolbox (BicAT) is a software platform for clustering-based data analysis that integrates various biclustering and clustering techniques in terms of a common graphical user interface. Furthermore, BicAT provides different facilities for data preparation, inspection and postprocessing such as discretization, filtering of biclusters according to specific criteria or gene pair analysis for constructing gene interconnection graphs. The possibility to use different biclustering algorithms inside a single graphical tool allows the user to compare clustering results and choose the algorithm that best fits a specific biological scenario. The toolbox is described in the context of gene expression analysis, but is also applicable to other types of data, e.g. data from proteomics or synthetic lethal experiments.

AVAILABILITY: The BicAT toolbox is freely available at http://www.tik.ee.ethz.ch/sop/bicat and runs on all operating systems. The Java source code of the program and a developer's guide is provided on the website as well. Therefore, users may modify the program and add further algorithms or extensions.

BiCAT bi-clustering algorithms

Bi-clustering is a special case of Clustering. But on certain set of samples and genes.

Could be used for building the Association map in Radiogenomics

BiCat: ETH Zürich

No further maintenance nor development

WGCN: an R package for weighted correlation network analysis

- Useful package for clustering and it provides nice visualization
- https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpack ages/WGCNA/

WGCNA: an R package for weighted correlation network analysis

Peter Langfelder and Steve Horvath with help of many other contributors

Semel Institute for Neuroscience and Human Behavior, UC Los Angeles (PL), Dept. of Human Genetics and Dept. of Biostatistics, UC Los Angeles (SH)

Peter (dot) Langfelder (at) gmail (dot) com, SHorvath (at) mednet (dot) ucla (dot) edu

BMC Bioinformatics, 2008 9:559 (link opens in a new tab/window)

WGCN:

-detects clusters/ co-expression modules/network modules.

- -It provides nice visualization and
- -further association analysis for each module

Construct a gene co-expression network

Rationale: make use of interaction patterns among genes

Tools: correlation as a measure of co-expression

Identify modules

Rationale: module (pathway) based analysis

Tools: hierarchical clustering, Dynamic Tree Cut

Mariata carana

Relate modules to external information

Array Information: clinical data, SNPs, proteomics

Gene Information: ontology, functional enrichement

Rationale: find biologically interesting modules

Study module relationships

Rationale: biological data reduction, systems-level view

Tools: Eigengene Networks

Find the key drivers in *interesting* modules

Rationale: experimental validation, biomarkers

Tools: intramodular connectivity, causality testing

Unsupervised Learning

- 1. Unsupervised learning
 - 1. Clustering
 - 1. Subgroups within the data
 - 2. Distance based
 - 1. Dimensionality reduction
 - 1. Pattern identification in features
 - 2. Facilitate visualisation
 - 3. Pre-processing before supervised

Clustering based on distance metrics

- Cluster analysis is the task of partitioning the dataset into subsets, so that: the points in each subset are more similar to each other than those from different subsets
- Based on distance metrics:

Euclidean (L2 norm)
$$\sqrt{(q_1-p_1)^2+(q_2-p_2)^2+\cdots+(q_n-p_n)^2} \ = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}.$$
 Manhattan (L1 norm)
$$\sum_{i=1}^n |p_i-q_i|$$
 Minkowski
$$(\sum_{i=1}^n |p_i-q_i|^c)^{1/c}$$

K-Means algorithm

Algorithm

- Choose k centroids randomly.
- Calculate the distance from each point in the dataset to be classified to each centroid.
- Assign each point to the nearest centroid.
- Calculate the centroids of the resulting clusters.
- Repeat until the centroids don't move too much.

K-Means algorithm

K-means clustering aims at partitioning n observations into a fixed number of k clusters. Detecting homogeneous clusters

K-Means algorithm

2- Hierachical clustering (HCL)

Algorithm:

- 1. Initialization:
 - Assign each of the n points its own cluster
- 2. Iteration:
 - Find two nearest cluster, join them, leading to n-1 cluster
 - Continue merging cluster process, until a single cluster is left
- 3. Termination:
 - All observations are grouped within a single cluster

2- Hierachical clustering (HCL)

Initialisation:

- Numbers are the clusters

First iteration:

- Colours are the clusters

Hierachical clustering (HCL) - Dendrogram

Cluster Dendrogram

dist(xr) hclust (*, "complete")

Hierachical clustering – Defining clusters

Cut the tree (dendrogram) at a specific height to defined the clusters

> Results: 2 clusters

Unsupervised Machine Learning 2- Dimensionality reduction

Point:

1 dimension

Representation of the space:

Point:

 $\mathbf{x}_{\mathbf{1}}$

 $X_1 X_2$

1 dimension

2 dimensions

Representation of the space:

Point:

 $\mathbf{x}_{\mathbf{1}}$

x₁ x₂

 $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$

1 dimension

2 dimensions

3 dimensions

Representation of the space:

X₁

 $x_1 \quad x_2$

 $x_1 \quad x_2 \quad x_3$

 $x_1 x_2 x_3 x_4$

1 dimension

2 dimensions

3 dimensions

4 dimensions

Representation of the space:

7

Principle component analysis (PCA) rotation in multi dimensional space

Orthogonal linear transformation of the data to a new coordinate system such that the greatest variance comes to lie on the first coordinate (first PCA component) and the second greatest variance on the second coordinate, so on.

Principal components = Eigenvectors of covariance matrix Amount of contributed variance = Eigenvalues

Principle component analysis: rotation in multi dimensional space

- Useful technique for exploratory data analysis
- visualize the variation present in your dataset with many variables.
- Low dimensional (2D or 3D) representation of a high dimensional data set.
- Detect structure in features
- Pre-process for other ML algorithms
- Aids in visualization

PCA plot

PCA

Heatmaps and Clustering

Heatmap:

 visualizes the clustered pairwise distances between samples / genes via a false color representation

Hierarchical clustering:

- starts with as many clusters as there are samples
- successively merges samples that are close to each other
- merging process is visualized as a tree like graphic –a dendogramm

Heatmaps vs PCA

 Heatmaps: visualizes the clustered pairwise distances between samples / genes via a false color representation

YOUR TURN START WITH THE TUTORIALS