```
In [1]: # Dependencies and Setup
        %matplotlib inline
        import matplotlib.pyplot as plt
        import pandas as pd
        import numpy as np
        # Hide warning messages in notebook
        import warnings
        warnings.filterwarnings('ignore')
        # File to Load (Remember to Change These)
        mouse_drug_data_to_load = "data/mouse_drug_data.csv"
        clinical_trial_data_to_load = "data/clinicaltrial_data.csv"
        # Read the Mouse and Drug Data and the Clinical Trial Data
        mouse_drug_data_df = pd.read_csv(mouse_drug_data_to_load)
        clinical trial data df = pd.read csv(clinical trial data to load)
        # Combine the data into a single dataset
        combined_mouse_clinical_df = pd.merge(clinical_trial_data_df,mouse_drug_data_d
        f, how='left', on='Mouse ID')
        # Display the data table for preview
        combined mouse clinical df.head()
```

Out[1]:

Drug	Metastatic Sites	Tumor Volume (mm3)	Timepoint	Mouse ID	
Capomulin	0	45.0	0	b128	0
Ketapril	0	45.0	0	f932	1
Ketapril	0	45.0	0	g107	2
Ketapril	0	45.0	0	a457	3
Ketapril	0	45.0	0	c819	4

Tumor Response to Treatment

```
In [2]: # Store the Mean Tumor Volume Data Grouped by Drug and Timepoint
    mean_tumor_volume = combined_mouse_clinical_df.groupby(['Drug','Timepoint'])[
    'Tumor Volume (mm3)'].mean()

# Convert to DataFrame
    mean_tumor_volume_df = pd.DataFrame(mean_tumor_volume)
    mean_tumor_volume_df

# Preview DataFrame
    mean_tumor_volume_df=mean_tumor_volume_df.reset_index()
    mean_tumor_volume_df.head()
```

Out[2]:

	Drug	Timepoint	Tumor Volume (mm3)
0	Capomulin	0	45.000000
1	Capomulin	5	44.266086
2	Capomulin	10	43.084291
3	Capomulin	15	42.064317
4	Capomulin	20	40.716325

```
In [3]: # Store the Standard Error of Tumor Volumes Grouped by Drug and Timepoint
    mean_tumor_volume_ste = combined_mouse_clinical_df.groupby(['Drug','Timepoint'
])['Tumor Volume (mm3)'].sem()

# Convert to DataFrame

mean_tumor_volume_std_error = pd.DataFrame(mean_tumor_volume_ste).reset_index
()

# Preview DataFrame

mean_tumor_volume_std_error.head()
```

Out[3]:

	Drug	Timepoint	Tumor Volume (mm3)
0	Capomulin	0	0.000000
1	Capomulin	5	0.448593
2	Capomulin	10	0.702684
3	Capomulin	15	0.838617
4	Capomulin	20	0.909731

```
In [4]: # Minor Data Munging to Re-Format the Data Frames

mean_tumor_volume_pivot_df = mean_tumor_volume_df.pivot_table('Tumor Volume (m m3)', ['Timepoint'], 'Drug')[["Capomulin", "Infubinol", "Ketapril", "Placebo"]]

# Preview that Reformatting worked

mean_tumor_volume_pivot_df
```

Out[4]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	45.000000	45.000000	45.000000	45.000000
5	44.266086	47.062001	47.389175	47.125589
10	43.084291	49.403909	49.582269	49.423329
15	42.064317	51.296397	52.399974	51.359742
20	40.716325	53.197691	54.920935	54.364417
25	39.939528	55.715252	57.678982	57.482574
30	38.769339	58.299397	60.994507	59.809063
35	37.816839	60.742461	63.371686	62.420615
40	36.958001	63.162824	66.068580	65.052675
45	36.236114	65.755562	70.662958	68.084082

In [5]: # Minor Data Munging to Re-Format the Data Frames mean_tumor_volume_pivot_error_df=mean_tumor_volume_std_error.pivot_table('Tumo r Volume (mm3)', ['Timepoint'], 'Drug')[["Capomulin", "Infubinol", "Ketapril", "Placebo"]] # Preview that Reformatting worked mean_tumor_volume_pivot_error_df.head()

Out[5]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.448593	0.235102	0.264819	0.218091
10	0.702684	0.282346	0.357421	0.402064
15	0.838617	0.357705	0.580268	0.614461
20	0.909731	0.476210	0.726484	0.839609

```
In [6]: # Generate the Plot (with Error Bars)
        plt.errorbar(mean tumor volume pivot df.index, mean tumor volume pivot df['Cap
        omulin'],
                     yerr=mean tumor volume pivot error df['Capomulin'],
                      color='red', marker='+', markersize=5, linestyle='-', linewidth=1
         ,label='Capomulin')
        plt.errorbar(mean tumor volume pivot df.index, mean tumor volume pivot df['Inf
        ubinol'],
                      yerr=mean_tumor_volume_pivot_error_df['Infubinol'],
                      color='blue', marker='o', markersize=5, linestyle='-', linewidth=
        1,label='Infubinol')
        plt.errorbar(mean tumor volume pivot df.index, mean tumor volume pivot df['Ket
        april'],
                      yerr=mean tumor volume pivot error df['Ketapril'],
                      color='green', marker='x', markersize=5, linestyle='-', linewidth
        =1, label='Ketapril')
        plt.errorbar(mean tumor volume pivot df.index, mean tumor volume pivot df['Pla
        cebo'],
                     verr=mean tumor volume pivot error df['Placebo'],
                      color='black', marker='^', markersize=5, linestyle='-', linewidth
        =1,label='Placebo')
        # Create labels for the X and Y axis
        plt.xlabel("Time(Days)")
        plt.ylabel("Tumor Volume (mm3")
        plt.title("Tumor Response to Treatment")
        plt.xlim(0,50)
        plt.ylim(35,75)
        plt.grid()
        # Set our legend to where the chart thinks is best
        plt.legend(loc='best')
        # Save the Figure
        plt.savefig(".../Pymaceuticals/Images/tumor_response.png")
        # Show the Figure
        plt.show()
```


Tumor Response to Treatment

Metastatic Response to Treatment

```
In [7]: # Store the Mean Met. Site Data Grouped by Drug and Timepoint

mean_met_site = combined_mouse_clinical_df.groupby(['Drug','Timepoint'])['Meta static Sites'].mean()
 mean_met_site

# Convert to DataFrame

mean_met_site_df = pd.DataFrame(mean_met_site)

# Preview DataFrame

mean_met_site_df.head()
```

Out[7]:

Metastatic Sites

Drug	Timepoint	
	0	0.000000
	5	0.160000
Capomulin	10	0.320000
	15	0.375000
	20	0.652174

```
In [8]: # Store the Standard Error associated with Met. Sites Grouped by Drug and Time
    point

mean_met_site_err = combined_mouse_clinical_df.groupby(['Drug','Timepoint'])[
    'Metastatic Sites'].sem()
    mean_met_site_err

# Convert to DataFrame

mean_met_site_err_df = pd.DataFrame(mean_met_site_err)

# Preview DataFrame

mean_met_site_err_df
```

Out[8]:

Metastatic Sites

Drug	Timepoint	
	0	0.000000
	5	0.074833
Capomulin	10	0.125433
	15	0.132048
	20	0.161621
	25	0.236621
	30	0.248168
Zoniferol	35	0.285714
	40	0.299791
	45	0.286400

100 rows × 1 columns

```
In [9]: # Minor Data Munging to Re-Format the Data Frames

rows_to_column_met_pivot = mean_met_site_df.pivot_table('Metastatic Sites', [
    'Timepoint'], 'Drug')[["Capomulin", "Infubinol", "Ketapril", "Placebo"]]
    mean_met_site_pivot_df = pd.DataFrame(rows_to_column_met_pivot)

# Preview that Reformatting worked
    mean_met_site_pivot_df.head()
```

Out[9]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.160000	0.280000	0.304348	0.375000
10	0.320000	0.666667	0.590909	0.833333
15	0.375000	0.904762	0.842105	1.250000
20	0.652174	1.050000	1.210526	1.526316

In [10]: # Minor Data Munging to Re-Format the Data Frames

```
rows_to_column_met_err_pivot = mean_met_site_err_df.pivot_table('Metastatic Si
tes', ['Timepoint'], 'Drug')[["Capomulin", "Infubinol", "Ketapril", "Placebo"]]
mean_met_site_pivot_err_df = pd.DataFrame(rows_to_column_met_err_pivot)

# Preview that Reformatting worked
mean_met_site_pivot_err_df.head()
```

Out[10]:

Drug	Capomulin	Infubinoi	Ketaprii	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.074833	0.091652	0.098100	0.100947
10	0.125433	0.159364	0.142018	0.115261
15	0.132048	0.194015	0.191381	0.190221
20	0.161621	0.234801	0.236680	0.234064

```
In [11]:
         # Generate the Plot (with Error Bars)
         plt.errorbar(mean met site pivot df.index, mean met site pivot df['Capomulin'
         ], yerr=mean met site pivot err df['Capomulin'],
                       color='red', marker='+', markersize=5, linestyle='-', linewidth=1
         ,label='Capomulin')
         plt.errorbar(mean met site pivot df.index, mean met site pivot df['Infubinol'
         ], yerr=mean met site pivot err df['Infubinol'],
                       color='blue', marker='o', markersize=5, linestyle='-', linewidth=
         1,label='Infubinol')
         plt.errorbar(mean met site pivot df.index, mean met site pivot df['Ketapril'],
         yerr=mean_met_site_pivot_err_df['Ketapril'],
                       color='green', marker='x', markersize=5, linestyle='-', linewidth
         =1, label='Ketapril')
         plt.errorbar(mean met site pivot df.index, mean met site pivot df['Placebo'],
         yerr=mean_met_site_pivot_err_df['Placebo'],
                       color='black', marker='^', markersize=5, linestyle='-', linewidth
         =1,label='Placebo')
         # Create labels, Limits for the X and Y axis
         plt.xlabel("Treatment Duration (Days)")
         plt.ylabel("Met.Sites")
         plt.title("Matastatic Spread During Treatment")
         plt.xlim(0,50)
         plt.ylim(0,4)
         plt.grid()
         plt.legend(loc="best")
         # Save the Figure
         plt.savefig(".../Pymaceuticals/Images/Matastatic_Spread.png")
         # Show the Figure
         plt.show()
```


Metastatic Spread During Treatment

Survival Rates

```
In [12]: # Store the Count of Mice Grouped by Drug and Timepoint (W can pass any metri
c)

mice_count = combined_mouse_clinical_df.groupby(['Drug','Timepoint'])['Mouse I
D'].count()
mice_count

# Convert to DataFrame

mice_count_df = pd.DataFrame(mice_count).reset_index()

# Preview DataFrame

mice_count_df.head()
```

Out[12]:

	Drug	Timepoint	Mouse ID
0	Capomulin	0	25
1	Capomulin	5	25
2	Capomulin	10	25
3	Capomulin	15	24
4	Capomulin	20	23

```
In [13]: # Minor Data Munging to Re-Format the Data Frames

rows_to_column_mice_pivot = mice_count_df.pivot_table('Mouse ID', ['Timepoint'
], 'Drug')\
[["Capomulin", "Infubinol", "Ketapril", "Placebo"]]

mice_count_format_df = pd.DataFrame(rows_to_column_mice_pivot)

# Preview the Data Frame
mice_count_format_df
```

Out[13]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	25	25	25	25
5	25	25	23	24
10	25	21	22	24
15	24	21	19	20
20	23	20	19	19
25	22	18	19	17
30	22	17	18	15
35	22	12	17	14
40	21	10	15	12
45	21	9	11	11

In [14]: mice_count_format_first= mice_count_format_df.iloc[0,1]

Convert mice_count_format_df to percentage
percentage_mice_count= (mice_count_format_df/mice_count_format_first)*100
percentage_mice_count

Out[14]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	100.0	100.0	100.0	100.0
5	100.0	100.0	92.0	96.0
10	100.0	84.0	88.0	96.0
15	96.0	84.0	76.0	80.0
20	92.0	80.0	76.0	76.0
25	88.0	72.0	76.0	68.0
30	88.0	68.0	72.0	60.0
35	88.0	48.0	68.0	56.0
40	84.0	40.0	60.0	48.0
45	84.0	36.0	44.0	44.0

```
In [15]:
         # Generate the Plot (Accounting for percentages)
         plt.errorbar(percentage mice count.index, percentage mice count['Capomulin'],
                       color='red', marker='+', markersize=5, linestyle='-', linewidth=1
         ,label='Capomulin')
         plt.errorbar(percentage_mice_count.index, percentage_mice_count['Infubinol'],
                       color='blue', marker='o', markersize=5, linestyle='-', linewidth=
         1,label='Infubinol')
         plt.errorbar(percentage mice count.index, percentage mice count['Ketapril'],
                       color='green', marker='x', markersize=5, linestyle='-', linewidth
         =1,label='Ketapril')
         plt.errorbar(percentage_mice_count.index, percentage_mice_count['Placebo'],
                       color='black', marker='^', markersize=5, linestyle='-', linewidth
         =1,label='Placebo')
         # Create labels, Limits for the X and Y axis, Chart title
         plt.title("Survival During Treatment")
         plt.xlabel("Treatment Duration (Days)")
         plt.ylabel("Survival Rate (%)")
         plt.grid()
         plt.legend(loc='best')
         # Save the Figure
         plt.savefig("../Pymaceuticals/Images/survival_treatment.png")
         # Show the Figure
         plt.show()
```


Metastatic Spread During Treatment

Summary Bar Graph

```
In [16]: # Calculate the percent changes for each drug
         change tumor volume first= mean tumor volume pivot df.iloc[0,:]
         #print(change tumor volume first)
         change_tumor_volume_end= mean_tumor_volume_pivot_df.iloc[-1,:]
         #print(change tumor volume end)
         percentage change tumor volume= ((change tumor volume end-change tumor volume
         first)/change_tumor_volume_first)*100
         # Display the data to confirm
         round(percentage_change_tumor_volume,5)
Out[16]: Drug
                    -19.47530
         Capomulin
         Infubinol
                      46.12347
         Ketapril
                      57.02879
                      51.29796
         Placebo
         dtype: float64
In [17]:
         percentage change tumor volume.index
         drug=tuple(percentage change tumor volume.index)
In [18]:
        value = list(percentage change tumor volume)
         value
         value2=[]
         [ ]
         for x in value:
             number=round(x,2)
             value2.append(number)
         value2
         value3 =tuple(value2)
         value3
Out[18]: (-19.48, 46.12, 57.03, 51.3)
```

```
In [19]: # Store all Relevant Percent Changes into a Tuple
         # Helped from TA in order to get the values in the graph
         print(drug)
         print(value3)
         # Splice the data between passing and failing drugs
         plt.bar(drug, value3, color=["green","red","red","red"], align="center")
         # Orient widths. Add labels, tick marks, etc.
         tick locations = [value for value in drug]
         plt.xticks(tick locations, drug)
         plt.xlim(-0.50, len(drug)-0.50)
         plt.ylim(-25, max(value)+5.0)
         plt.title("Tumor Change Over 45 Day Treatment")
         plt.ylabel("% Tumor Volume Change")
         plt.grid()
         # Use functions to label the percentages of changes
         for a,b in zip(drug, value3):
             plt.text(a, b+1, str(b))
         # Call functions to implement the function calls
         # Save the Figure
         plt.savefig("../Pymaceuticals/Images/tumor change.png")
         # Show the Figure
         plt.show()
```


Metastatic Spread During Treatment