

Graphical User Interface Design and Programming

Week 8
Interaction devices and human factors

Lecture overview

- Interaction devices overview
- Pointing devices.
- Writing recognition.
- Speech interfaces.
- GOMS and Fitts' law.
- Response time.

Interaction devices

- Tidak dapat memisahkan fungsi interface dari I/O interaction devices.
- Sebagian besar desain interfaces beroperasi dengan keyboard dan mouse.
- Interaction styles baru dan devices dibutuhkan untuk mensupport inputs seperti voice input, gesture recognition, 3-D pointing, haptic interaction, wearable computers.

An early input/output device: ASR33 teletype

Paper tape

Interaction devices

Seluruh tujuan dari desain adalah:

- 1. Reduce learning time
- 2. Increase performance speed
- 3. Reduce error rates of users
- 4. Support retention over time
- 5. Provide subjective satisfaction

Bagaimana tujuan ini akan dihubungkan dengan interaction devices?

Interaction devices

Devices harus

- mudah digunakan dan dipelajari dengan minimal kesalahan
- Nyaman jauh dari penggunaan yang melelahkan dan "health effect"
- meliputi physical actions yaitu dragging, clicking, typing, speaking, writing, dll.

Different devices have different affordances, and differing capacity for accuracy and feedback.

Common user input devices

Device	Input Characteristics	Sample Applications
Button	Simple discrete input	Command execution or attribute specification
Keyboard	Spatial array, small finger movement, allows combination keypresses, discrete	Open-ended continuous symbolic input
Mouse	Grasped with hand, one or more buttons, wheel, large arm movement, analog	Pointing and selecting in a 2D space
Trackball	Grasped and rolled with hand, constrained movement in horizontal plane, one or more buttons, analog	Panning (rolling over) large maps or other 2D surfaces
Joystick	Grasped with hand, pushed or twisted, one or more buttons, constrained movement in three dimensions, analog	Setting direction of movement in virtual space, continuous zooming
Data glove	Tracking of finger and hand position in three dimensions	Grabbing and positioning objects in virtual space

Modelling and measuring

- Interaksi dengan devices dapat dimodelkan dan diukur dengan Fitts' Law, GOMS.
- Engineering models (cf traditional, psychologically-oriented cognitive models) mendukung:
 - Kemampuan untuk membuat "performance predictions"
 - Kemampuan untuk dipelajari dan digunakan oleh user
 - specific task
 - approximation.

Interaction rates and delays

- User dapat bekerja lebih cepat daripada yang diijinkan oleh system. Hal ini menjadikan user frustasi, kesalahan dalam pekerjaan dan kehilangan produktivitas.
- Sebaliknya interaksi yang terlalu cepat juga dapat mengakibatkan kesalahan dalam input data, kegagalan dalam membaca perintah dll.

Response time

Bagaimana user menerima delay

0.1 second max : "instantaneous"

: user berpikir tidak terinterupsi tetapi seconds max

mengetahui kalau ada delay

10 Seconds

: batas untuk menjaga perhatian user yang difokuskan pada dialog/perintah

: user akan menginginkan melakukan task > 10 seconds

lain disaat menunggu

 2-4 seconds adalah maximum waktu tunggu bagi kebanyakan users dapat menerima delay. Beberapa user lain malah tidak toleran dengan delay (zero tolerant delay)

Designing: response time factor

- Users harus
 - diberitahu dengan eksak dan teliti estimasi dari "waiting time".
 - Diberi peringatan tentang adanya banyak variasi.
 - Diberi option untuk "quit" jika delay terlalu lama.
- Jika mungkin, response time harus konsisten dalam setiap bagian atau antar bagian daro system.

- Text input sangat penting, dan keyboard tetap menjadi "the most common" text input device.
- Classic QWERTY komputer keyboard diturunkan dari mesin ketik – didisain untuk "slow down typists" sehingga mereka tidak "kehilangan" keys.
- Experts dapat menginput >100 words per menit, tetapi dibatasi oleh jarak pergerakan jari.
- Kebanyakan user berpikir lebih cepat daripada apa yang mereka ketikan, maka keyboard adalah input device yang bersifat membatasi!

Dvorak keyboard

Keyboards for small devices

- Tablets, palm pilots atau electronic devices kecil yang lainnya menggunakan keyboards yang di-"reduce" secara besar-besaran dalam hal ukurannya.
- Menggunakan kombinasi antara static dan soft keys.
- Menggunakan "Predictive text".

Pointing devices

- Pointing devices biasanya "fast and easy to use".
- Dapat dibagi ke dalam
 - direct (touchscreen)
 - indirect (mouse) control devices.
- Kombinasi antara standard keyboard/mouse mampu memberikan pada user beberapa options.
- Indirect devices membutuhkan "translation" dari pergerakan tiga dimensi menjadi pergerakan dua dimensi.

Fitts' Law

- Memprediksi waktu yang digunakan suatu device pada obyek dengan perhitungan fungsi jarak dari target obyek dan ukuran obyek.
- Semakin jauh jarak dan semakin kecil obyek akan menjadikan semakin lama waktu yang dipakai untuk mengakses obyek dari device.
- Berguna untuk mengevaluasi system yang banyak menggunakan waktu sebagai dasar untuk mengakses suatu obyek.
 - penggunaan pointing device pada screens atau handheld devices seperti mobile phones.

Fitts' law

- Dapat mengurangi problem dengan mengkonstruksi :
 - Target yang lebih besar (icon + label)
 - Meletakkan target dekat dengan tepi screen (corners & screen edges)
 - Menimbulkan sound di dekat "legal" area
 - Cursor yang lebih besar.
 - "Sticky" cursor
- Dapat menghindari problem dengan menggunakan non-pointing device misal mouse wheel untuk scrolling, shortcut keys dan fixed buttons

Indirect pointing devices

- Mouse ditemukan oleh Doug Englebart tahun 1964. Saat ini ada berbagai macam mouse : physical, optical dan juga wireless versions.
- Trackball (upside down mouse).
- Touchpad
- Trackpoint
- Joystick

Tactile trackpoint

Mengijinkan user untuk "feel" icons, title bars, menu items, dan window borders lewat tactile feedback.

IBM Two handed trackpoint.

Device ini mengijinkan tangan kiri melakukan "selection" dan tangan kanan menggambar.

Direct pointing devices

- Problem yang terjadi
 - Light pen/stylus
 - Lelah, hand off keyboard.
 - Touchscreen (finger or stylus)
 - Sama seperti diatas, perintah langsung di screen, screen jadi coret-coret.
- Touchscreens terbaru
 - memberikan "precise cursor" dan "lift off" aktivasi.
 - Digunakan di Tablet PCs dan mobile devices.

GOMS

- GOMS model (Card, Moran, and Newell) user harus mempunyai cukup pengetahuan agar supaya dapat melakukan tasks pada device atau system.
- GOMS analysis menghasilkan prediksi secara quantitative dan qualitative dari bagaimana user akan menggunakan system yang ada.

GOMS

- Goals sesuatu yang ingin di coba-wujudkan kan oleh user. Sebagai contoh: mencari web site, menghapus file.
- Operators tindakan yang dilakukan oleh user. Sebagai contoh: click on button.
- Methods mempelajari urutan/langkahlangkah dari operator guna menghasilkan goal.
- Selection Rules digunakan untuk memilih "the best" method.

GOMS example

Menghapus paragraph dalam text editor:

- Gunakan mouse, tempatkan cursor di bagian awal paragraph
- Tekan mouse button down
- Drag ke bagian akhir paragraph
- Lepas mouse button (highlighting paragraph)
- Tekan delete key
- Urutan / langkah ini adalah satu method.

- GOMS telah diterapkan pada beberapa aplikasi seperti
 - Text and Graphics Editors
 - Spreadsheets
 - Information Browsers
 - Operating Systems
 - Ergonomic Design Systems
 - CAD Systems
 - WWW Pages.

- GOMS model dikembangkan lebih jauh kedalam quantitative model - the keystroke level model (KLM).
- Model ini mampu memprediksi berapa jumlah langkah yang dilakukan oleh expert user untuk menjalankan task dengan menggunakan pre-established keystroke-level primitive operators sebagai prediksi

Keystroke Level Model example

Operator	Description	Time (sec)
K	Pressing a single key or button:	
	Average skilled typist (55 wpm)	0.22
	Average non-skilled typist (40 wpm)	0.28
	Pressing shift or control key	0.08
	Typist unfamiliar with the keyboard	1.20
Р	Pointing with a mouse or other device on a	0.40
	display to select an object.	
	This value is derived from Fitts' Law	
	Clicking the mouse or similar device	
P1		0.20
Н	Bring 'home' hands on the keyboard or other	0.40
	device	
M	Mentally prepare/respond	1.35
R(t)	The response time is counted only if it causes	t
	the user to wait.	

GOMS advantages

- GOMS models telah diujicoba dan dapat menghasilkan prediksi yang akurat.
- GOMS dapat menemukan usability problems yang tidak ditemukan oleh forms analysis yang lain.
- Untuk mencapai "Goals and Methods" dalam GOMS dibutuhkan analisa struktur dari task yang dapat dilihat oleh user dengan tujuan untuk menemukan adanya inkonsistensi.

GOMS disadvantages

- Terbatas, karena task harus disajikan dalam format procedural – tidak cukup baik untuk problem-solving, exploration...
- Mengandaikan error-free performance
- Tidak dapat diterapkan pada user pemula
- Belum dicobakan pada new interface technologies – bisa jadi akhirnya operators menjadi gestures, spoken commands, eye movements.

"Ubiquitous/mobile computing"

- Sub-field dari computer science dan electrical engineering yang memfokuskan diri pada non-desktop computing (laptop dan PDA).
- Pertimbangan pertama adalah "disappearing computer" – dimana computational device, dan fungsi-fungsinya bercampur jadi satu ke dalam environment dan tidak lagi menjadi primary factor dari pengalaman user.

"Ubiquitous/mobile computing"

- Masa depan computing devices akan sangat berbeda dalam hal GUI dengan desktop systems saat ini.
- Kemungkinan devices akan :
 - Menjadi sangat kecil
 - Menjadi satu dengan environment
 - Menggunakan I/O interactions yang berbeda no mouse, no pointing device, no screen.

"Ubiquitous/mobile computing"

- Handheld devices PDA's, mobile phones
- Pen-based interaction (handwriting recognition)
- Voice recognition
- Wearable computers
- Virtual reality environments

Pen computing

- Penggunaan Pen sebagai input device yang utama adalah sangat berguna bagi:
 - Casual note taking dalam meetings.
 - Menggunakan ideographic languages seperti Chinese.
 - Menggunakan non-letter entries seperti graphics dan gestures.

Handwriting recognition

- Pengembangan pen computers dan PDA menarik perhatian para expert untuk masalah handwriting recognition.
- Namun, "automatic recognition of handwritten input (HWR)" tetap belum optimal dan problem user interface tetap belum terpecahkan.

Handwriting recognition

Speech input

- Semakin kecil devices berarti semakin sulit I/O, khususnya penggunaan keyboard.
- Manusia berbicara rata-rata 90 wpm, potensial dipakai untuk speech input
- Secara keseluruhan command system dijalankan lewat suara. Tangan / mata bebas digunakan untuk yang lain.
- Speech input adalah cara komunikasi yang sangat alamiah.

Speech recognition

- Speech recognition meliputi penulisan teks atau syntax commands ke system.
- Tidak hanya dipakai untuk menterjemahkan dari suara ke teks tetapi juga dapat menangkap arti dan menjalankannya.
 - User bicara: "select star from city" maka system langsung menjalankan query database yang diminta.
 - User bicara: "rename final dot txt to initial dot txt" maka system akan me-rename file final.txt menjadi initial.txt

Recognition problems

- Poor recognition:
 - humans < 1% error rate on dictation</p>
 - top recognition systems menghasilkan 2-10% error rates
- Background noise:
 - even worse recognition rates (20-40% error)
- Slow tetapi dengan hardware yang lebih powerful maka didapat hasil yang lebih cepat. Beberapa speech systems saat ini sudah ada di laptops atau PDA.

Recognition problems

- Beberapa word belum dikenali khususnya berkaitan dengan konteks khusus. Misal istilahistilah dalam dunia kedokteran atau farmasi.
- Segmentation word boundaries:
 - Noble versus no bull
- Spelling:
 - Piece vs. peace

"English is the craziest language"

Recognition problems

- Beberapa kesulitan lain :
 - Continuous speech
 - Accents and dialects
 - Very rapid speech
 - Whispering
 - Speech often misunderstood by people
 - Need big enough memory

Gesture interfaces

- Gesture banyak digunakan dalam komunikasi antar manusia.
- Linguists mengatakan "spontaneous gesturing" dan "signed language" selalu mendahului speech
- Contoh dari gesture application yaitu Control panel displayed dalam mobil:
 - user can control radio/CD player with gestures
 - "flip" through tracks
 - raise/lower volume with hand
 - user can also use speech commands

Gesture interfaces

Voice and gesture controlled cleaning robot

Gesture based programming

Haptic interfaces

Haptic interfaces

- Studi tentang Human factor menunjukkan bahwa kemampuan manusia untuk memanipulasi obyek terletak pada kemampuan untuk ber-"contact" (touch and force) dengan obyek information tersebut.
- Maka dari itu haptic feedback dapat menolong manusia untuk memanipulasi virtual objects lebih baik daripada visual feedback itu sendiri.

Other ways of inputting information

Eye-tracking

 kamera device dapat mengenali gerak mata user dan meneruskan ke system untuk menggerakkan cursor ke tempat lain.

Fingerprinting atau iris recognition

User dikenali lewat physical karakteristiknya.

Multimodal user interfaces

- Multimodal interfaces menggunakan multiple input modalitas (speech dan gesture) untuk menghindari error.
 - user bicara : "gerakkan mouse ke kanan " dengan menggerakkan tangannya kerah kanan.
 - Bagaimana dengan meng-copy file ????

Interaction devices and errors

- Interaction devices saat ini menyebabkan error, eye strain dll.
- Desain harus diusahakan untuk mengurangi semua kesalahan dan kekurangan tersebut.
- Kurangi potensial user melakukan slips
 - hitting wrong key, clicking on wrong icon
- Buat errors detectable: Multimodal feedback
 - visible, audible

Slips versus mistakes

Type of Error	Example Situation	Design Approach
Mistake: asking for non- existent function or object	Mistyping the name of a command so that its function can not be executed	Represent (e.g., in lists, icons) what is available
Mistake: over- generalizing an earlier experience	In a listserv, using "reply" when intending to reply only to the sender of a message	Present through training or documentation a more complete set of examples
Slip: doing something that is appropriate, but not in current mode	Trying to input text into a document while the Font dialog box is open	Minimize modes and when necessary mark well with status and feedback cues
Slip: making a request that is interpreted as something else	Using keyboard short-cut to turn off underline before adding space (in PowerPoint reverses existing underline)	Improve consistency of low-level controls within and across applications
Slip: completing an automated (but inappropriate) action	Deleting a text selection before the selection has been correctly specified	Predict locus of such errors and increase the amount of feedback (or alerts) provided

Human multitasking

- Bagaimana agar manusia mudah untuk
 - drive and talk? Drive and use mobile phone?
 - Speak or listen while reading complex texts?
 - write and listen to music?
- Dalam mendesain interaction devices, butuh juga dipertimbangkan kemampuan manusia untuk multitasking termasuk juga disini adanya gangguan dan sela dai orang lain / task yang lain.

References

- Cooper Chapter 19 & 20
- Shneiderman, B., & Plaisant, C. (2005).
 Designing the User Interface: Strategies for Effective Human-Computer Interaction.
 Chapter 12.
- Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User Interface Design and Evaluation. Chapter 13 & 14.