Homework 1 Report

Yash Agarwal CWID: A20392372

Classification and Evaluation

Train Method

```
Code for Training Naïve Bayes:
def Train(self, X, Y):
    #TODO: Estimate Naive Bayes model parameters
    positive indices = np.argwhere(Y == 1.0).flatten()
    negative indices = np.argwhere(Y == -1.0).flatten()
    self.num positive reviews = len(positive indices)
    self.num_negative_reviews = len(negative_indices)
    self.count_P = np.ix_(positive_indices)
    self.count N = np.ix (negative indices)
    self.count positive = self.count positive + csr matrix.sum(X[self.count P], axis=0) + self.ALPHA
    self.count_negative = self.count_negative + csr_matrix.sum(X[self.count_N], axis=0) + self.ALPHA
    self.total positive words = csr matrix.sum(X[self.count P])
    self.total negative words = csr matrix.sum(X[self.count N])
    self.deno_pos = float(self.total_positive_words + self.ALPHA * X.shape[1])
    self.deno neg = float(self.total negative words + self.ALPHA * X.shape[1])
    return
```

PredictLabel Method

This method is used to predict the class of all the reviews. The class is predicted by comparing only the numerator for a given review. The numerator is calculated by using log to avoid floating point underflows.

Code for PredictLabel Method:

```
def PredictLabel(self, X):
    #TODO: Implement Naive Bayes Classification

P_review= float(self.num_positive_reviews)
    N_review= float(self.num_negative_reviews)
    P_review= math.log(P_review)
    N_review= math.log(N_review)
    self.P_positive = P_review - (P_review + N_review)
    self.P_negative = N_review - (P_review + N_review)
    pred_labels = []
```

```
sh = X.shape[0]
for i in range(sh):
  z = X[i].nonzero()
  P_positive_c= self.P_positive
  P negative c=self.P negative
  for j in range(len(z[0])):
    \#col = z[1][j]
    x = X[i, z[1][j]]
    p = self.count_positive[0, z[1][j]]
    n = self.count_negative[0, z[1][j]]
    positive_score = math.log(p) - math.log(self.deno_pos)
    negative_score = math.log(n) - math.log(self.deno_neg)
    P_positive_c = P_positive_c + x * positive_score
    P_negative_c = P_negative_c + x * negative_score
  if P_positive_c > P_negative_c:
    pred_labels.append(1.0)
  else:
    pred_labels.append(-1.0)
return pred_labels
```

The table below illustrates accuracy for various values of ALPHA. We observe the maximum accuracy when ALPHA is 10.0:

ALPHA	ACCURACY
0.1	0.81131
0.5	0.82148
1.0	0.82284
5.0	0.82272
10.0	0.82812

Probability Prediction

PredictProb Method

The probabilities are estimated for first 10 reviews.

Code for PredictProb Method:

def PredictProb(self, test, indexes):

```
for i in indexes:
```

TO DO: Predict the probability of the i_th review in test being positive review

TO DO: Use the LogSum function to avoid underflow/overflow

```
predicted label = 0
      z = test.X[i].nonzero()
      P_positive_c= self.P_positive
      P_negative_c=self.P_negative
      for j in range(len(z[0])):
        x = \text{test.X}[i, z[1][j]]
        p = math.log(self.count_positive[0, z[1][j]])
        n = math.log(self.count_negative[0, z[1][j]])
        P_positive_c = P_positive_c + x * p
        P_negative_c = P_negative_c + x * n
      #predicted_prob_positive = 0.5
      #predicted_prob_negative = 0.5
      predicted_prob_positive = exp(P_positive_c - self.LogSum(P_positive_c, P_negative_c))
      predicted_prob_negative = exp(P_negative_c - self.LogSum(P_positive_c, P_negative_c))
      sum_positive=P_positive_c
      sum_negative=P_negative_c
      if sum_positive > sum_negative:
        predicted label = 1.0
      else:
         predicted_label = -1.0
      #print test.Y[i], test.X_reviews[i]
      # TO DO: Comment the line above, and uncomment the line below
      print (test.Y[i], predicted_label, predicted_prob_positive, predicted_prob_negative,
test.X reviews[i])
```

The table below shows the predicted probabilities for the 10 movie reviews when

ALPHA=0.5

Given Class	Predicted Class	Predicted Probability Positive	Predicted Probability Negative	Reviews
-1.0	-1.0	0.00927	0.990729	I went and saw this at my movie last night after being coaxed
-1.0	-1.0	2.979127e-08	0.99999	Actors turned directed Bill Paxton follows up his promosing
-1.0	-1.0	0.986705	0.0132944	As a recreational golfer with some knowledge of the soprt's

-1.0	-1.0	0.0503312767	0.9496687	I saw this film in a sneak preview, and it is delightful
-1.0	-1.0	0.000640133	0.9993598	Bill Paxton has taken the true story of the 1913
-1.0	-1.0	2.66900e-19	1.0	I saw this film on September 1 st , 2005 in Indianapolis
-1.0	-1.0	1.151108e-14	1.0	Maybe I'm reading into this too much, but I wonder how much
1.0	1.0	1.0	5.371760e-17	I felt this film did have many good qualities. The cinematography was certainly
-1.0	-1.0	1.82320641e- 08	0.9999	This movie is amazing because the fact that the real people portray themselves and
-1.0	-1.0	0.3840485	0.61595149	"Quitting" may be as much about exiting a pre-ordained identity as about drug withdrawal

Precision and Recall

EvalPrecision

Code for EvalPrecision Method:

```
def EvalPrecision(self, target, predict):
```

```
tp=0
fp=0
for i in range(len(target)):
   if (target[i] ==1 and predict[i] == 1):
      tp= tp+1
   elif (target[i] ==1 and predict[i] == -1):
      fp = fp+1
```

```
self.precision= tp/(tp+fp)
    return self.precision
EvalRecall
Code for EvalRecall Method:
def EvalRecall(self, target, predict):
    fn=0
    tn=0
    tp=0
    for i in range(len(target)):
      if (target[i] == -1 and predict[i] == 1):
        fn=fn+1
      elif (target[i] == -1 and predict[i] == -1):
        tn = tn+1
      elif (target[i] == 1 and predict[i] == 1):
        tp = tp + 1
    self.recall= tp/(tp+fn)
    return self.recall
Modified PredictLabel for handling Threshold
def PredictLabel threshold(self, X,probThresh):
    #TODO: Implement Naive Bayes Classification
    P_review= float(self.num_positive_reviews)
    N review= float(self.num negative reviews)
    P_review= math.log(P_review)
    N_review= math.log(N_review)
    self.P_positive = P_review - (P_review + N_review)
    self.P_negative = N_review - (P_review + N_review)
    pred_labels = []
    sh = X.shape[0]
    for i in range(sh):
      z = X[i].nonzero()
       P_positive_c= self.P_positive
       P_negative_c=self.P_negative
      for j in range(len(z[0])):
        \#col = z[1][i]
        x = X[i, z[1][j]]
         p = self.count_positive[0, z[1][j]]
         n = self.count_negative[0, z[1][j]]
         positive_score = math.log(p) - math.log(self.deno_pos)
         negative_score = math.log(n) - math.log(self.deno_neg)
```

```
P_positive_c = P_positive_c + x * positive_score
         P_negative_c = P_negative_c + x * negative_score
        #percentage = P_positive_c / (P_positive_c + P_negative_c)
         percentage = exp(P_positive_c - self.LogSum(P_positive_c,P_negative_c))
      if percentage > probThresh:
         pred_labels.append(1.0)
      else:
         pred_labels.append(-1.0)
    return pred_labels
Modified PredictProb for implementing EvalPrecision and EvalRecall:
I= (0.22,0.32,0.42,0.52,0.62)
    precision_list=[]
    recall_list=[]
    for i in range(len(l)):
      Y pred 1 = self.PredictLabel threshold(test.X,I[i])
      #ev = Eval(Y pred 1, test.Y)
      #Y_pred1 = self.PredictProb(test.X)
      precision_prob = self.EvalPrecision(Y_pred_1,test.Y)
      recall_prob = self.EvalRecall(Y_pred_1,test.Y)
      #print ("Precision:",precision_label)
      #print ("Recall:",recall_label)
      print ("Precision:",precision prob)
      print ("Recall:",recall prob)
      precision list.append(precision prob)
      recall list.append(recall prob)
    plt.plot(precision_list,recall_list)
    plt.xlabel("Precision")
    plt.ylabel("Recall")
    plt.savefig("graph.png")
```

Below is plot for precision vs recall, when we vary the threshold for the negative and the positive classes, I have used the threshold as 0.22,0.32,0.42,0.52,0.62 for ALPHA=1.0.

We see that when the threshold value increases, there is a increase in precision and a decrease in recall:

Features getWords Method:

The getWords method is implemented to get top most 20 positive and negative words with their weights.

Code for getWords Method:

```
def getWords(self, X, vocab):
    self.P_positive = log(float(self.num_positive_reviews)) - log(float(self.num_positive_reviews +
self.num_negative_reviews))
    self.P_negative = log(float(self.num_negative_reviews)) - log(float(self.num_positive_reviews +
self.num_negative_reviews))
    ft_wt_pos = {}
    ft_wt_neg = {}
```

```
sh = X.shape[0]
for i in range(sh):
  z = X[i].nonzero()
  sum_positive = self.P_positive
  sum negative = self.P negative
  for j in range(len(z[0])):
    row index = i
    col_index = z[1][j]
    times = X[row_index, col_index]
    P_pos = log(self.count_positive[0, col_index]) - log(self.deno_pos)
    sum positive = sum positive + times * P pos
    P_neg = log(self.count_negative[0, col_index]) - log(self.deno_neg)
    sum negative = sum negative + times * P neg
    word = vocab.GetWord(int(col_index))
    if word not in ft_wt_pos:
      ft_wt_pos[word] = P_pos
    else:
      ft_wt_pos[word] += P_pos
    if word not in ft wt neg:
      ft_wt_neg[word] = P_neg
    else:
      ft_wt_neg[word] += P_neg
twenty_largest_p = sorted(ft_wt_pos, key=ft_wt_pos.get)[:100]
twenty_largest_n = sorted(ft_wt_neg, key=ft_wt_neg.get)[:100]
print("Top 20 Positive Words: ")
for i in twenty_largest_p:
  print(i, ft_wt_pos[i])
print("Top 20 Negative Words: ")
for i in twenty_largest_n:
  print(i, ft_wt_neg[i])
```

The following table illustrates the top 20 positive words with their weights:

Positive Words	Weight
wonderfully	187.354
7	164.304
07/10	158.717
rare	153.551
refreshing	150.008
subtle	147.056

perfect.	140.869
amazing.	136.819
favorite	135.566
noir	134.068
funniest	133.956
highly	133.914
perfect	130.863
surprisingly	129.797
delightful	129.407
8	128.823
excellent.	128.662
captures	128.608
excellent	127.284
perfect	126.323

The following table illustrates the top 20 negative words with their weights:

Negative Words	Weight
Poorly	-271.62
Worst	-267.19
Waste	-256.61
awful.	-202.82
Fails	-197
Boring	-187.27
disappointing	-180.15
annoying	-174.56
Lacks	-172.55
Lame	-168.66
terrible.	-164.46
Dull	-152.54
pointless	-151.53
04/10	-151.26
annoying.	-149.82
Badly	-149.17
disappointment	-148.84
Awful	-147.96
Mildly	-147.29
worse	-142.78