모두의 딥러닝 개정 2판 정오표 (최종 수정 : 2022년 3월 23일)

8쇄	페이지	수정 전	수정 후
	292	상단 코드 내 주석	(삭제)
	121	최대치가 0.3	최대치가 0.25
	99	만약 여기에 입력값이 추가되어 세 개 이상의 입력	만약 여기에 <mark>출</mark> 력값이 추가되어 세 개 이상의 <mark>출</mark> 력
	68	yi 는 xi 가 대입되었을 때 직선의 방정식 (여기서는	ŷi 는 xi 가 대입되었을 때 직선의 방정식 (여기서는
	00	p=3x+76)	y=3x+76)
	77	여기서 yi은 xi 를 집어 넣었을 때의 값이므로	여기서 ŷi는 xi 를 집어 넣었을 때의 값이므로

7쇄	페이지	수정 전	수정 후
	331	가중합3 = w31yh1+w31yh2=1(바이어스)	가중합3 = w31yh1+w3 <mark>2</mark> yh2=1(바이어스)
	332	w31yh2과 바이어스 (분모) 가중합	w3 <mark>2</mark> yh2와 바이어스 (분모) 가중합 <mark>3</mark>

6쇄	페이지	수정 전	수정 후
	25	pip install jupyter를 입력해 주피터 노트북을 설치합니다.	conda activate py37을 입력해 py37 작업환경을 열어줍니다. 그리고 pip install jupyter를 입력해 주피터 노트북을 설치합니다.
	72	print("MSE 최종값: " + str(mse_val(predict_result,y)))	print("MSE 최종값: " + str(mse_val(<mark>y,predict_result</mark>)))
	154	from tensorflow.keras.utils import np_utils	import tensorflow as tf
	193	y_acc=history.history['acc']	y_acc=history.history['accuracy']
	284	generator.add(Conv2D(128, kernel_size=3,)	generator.add(Conv2D(<mark>64</mark> , kernel_size= <mark>5</mark> ,)
	284	커널 크기를 3으로 해서 3x3 크기의	커널 크기를 <mark>5</mark> 로 해서 5x5 크기의

4쇄	페이지	수정 전	수정 후
	38	epochs=30	epochs=100
	327	w31 값은 이미 알고 있으므로	삭제
	336	밑에서 8째줄, 7째줄, 3째줄 $(\delta y_{o1}\cdot y_{o1})+\delta y_{o2}(y_{o2})y_{h1}(1-y_{h1})\cdot x_1$	$(\delta y_{\scriptscriptstyle o1} \cdot w_{\scriptscriptstyle 31} + \delta y_{\scriptscriptstyle o2} \cdot w_{\scriptscriptstyle 41}) y_{\scriptscriptstyle h1} (1-y_{\scriptscriptstyle h1}) \cdot x_1$

	페이지	수정 전	수정 후
1~3 쇄 공 통		1. <u>2020년 8월</u> 부로 아나콘다 가 업그레이드 되었고, <u>2</u> 2. 현재 1~3쇄 를 보고 계시다면, 길벗 자료실에 첨부: 1-3쇄만_해당22-26p_업데이트.pdf 1-3쇄만_해당350-359p_업데이트.pdf	

3쇄	페이지	수정 전	수정 후
	83	$a1_diff = -(1/len(x_data)) \sim$	$a1_diff = -(2/len(x_data)) \sim$
	0.5	$a2_diff = -(1/len(x_data)) \sim$	a2_diff = -(<mark>2</mark> /len(x_data)) ~

84	b_diff = -(1/len(x_data)) ~	b_diff = -(<mark>2</mark> /len(x_data)) ~
	Ir = 0.05	Ir = 0.02
85	a1_diff = -(1/len(x_data)) ~	a1_diff = -(<mark>2</mark> /len(x_data)) ~
03	$a2_diff = -(1/len(x_data)) \sim$	$a2_diff = -(2/len(x_data)) \sim$
	$b_diff = -(1/len(x_data)) \sim$	$b_diff = -(2/len(x_data)) \sim$
221	(맨 아래식에서) 가중합3 =	가중합3 = w31yh1+w <mark>3</mark> 1yh2=1(바이어스)
331	w31yh1+w41yh2=1(바이어스)	
332	(7번째 줄) w41yh2	w 3 1yh2
335	(중간) (y01-yot)	(y01-y t1)
	파이썬 3.7이상	파이썬 3.7
9	아나콘다 파이썬버전 3.7	텐서플로 2.0.0
	텐서플로 2.0	케라스 2.3

2쇄

Ηĺ	페이지	수정 전	수정 후
•		model.fit(padded_x, labels, epochs=20)	model.fit(padded_x, classes, epochs=20)
	31,35,38, 163	loss='mean_squared_error'	loss=' <mark>binary_crossentropy</mark> '
	43	→그림 2-4	y = x ²
	47	→그림 2-7 y=ax^2	y=a^x
	72		def mse(y , y_hat): return((y-y_hat)**2).mean()) def mse_val(y,predict_result): return mse(np.array(y), np.array(predict_result)) print("mse 최종값: " + str(mse_val(y,predict_result)))
	78	O CC	$\frac{\partial}{\partial a}MSE(a,b)$
	78	$\frac{a}{\partial a}MSE(a,b)$	$\frac{\partial}{\partial b}MSE(a,b)$
	78		$\frac{2}{n} \sum_{i} (ax_i + b - y_i) [(ax_i + b - y_i)]'$
	78, 80	b_diff = -(1/len(x_data)) * sum(y_data - y_pred)	b_diff = -(1/len(x_data)) * sum(error)
	79	lr = 0.05	lr = 0.03
	80	a_diff = -(1/len(x_data)) ~ b_diff = -(1/len(x_data)) ~	a_diff = -(<mark>2</mark> /len(x_data)) ~ b_diff = -(<mark>2</mark> /len(x_data)) ~
	235	그림 16-9, Y_hi에서 512개의 노드	128 개의 노드
	235	→그림 16-9 두번째 드롭아웃(25%) 상자	드롭아웃(50%)

252	그림 17-1	
253	model.add(Embedding(16,4)	model.add(Embedding(16,4))
312	(10째 줄) model.add(Activation('sigmoid'))	model.add(Activation('softmax'))
329	$(y_{t1} - y_{o1})'$	$(y_{t2} - y_{o2})'$
330	그러면 가중합3을 y01에 대해~~	그러면 y01을 가중합3에 대해~~
331	$f(x) = x^2$	$f(x) = x^a$
355	from goolgle.colab	from google.colab

1쇄

H	페이지	수정 전	수정 후
	84, 85	b_new = -(1/len(x1_data)) * sum(y_data - y_pred)	<pre>b_diff = -(1/len(x1_data)) * sum(y_data - y_pred)</pre>
	98	plt.scatter(x, y)	plt.scatter(x_data, y_data)
	148	→6번째 줄 np.random.seed(3)	numpy.random.seed(3)
	251	→상단 소스 코드 word_size = len(t.word_index)+1	word_size = len(token.word_index)+1