

C 2.2 Trajectory planning

Gauthier ROUSSEAU

gauthier.rousseau.cs@gmail.com

Global to local planning

Motion planning hierarchization

Case study 1

Mission details

Problem

Considering a quadrotor initially at rest at $\mathbf{p}_{\text{start}}$, generate trajectory of duration T, free, such that

- The quadrotor ends resting at \mathbf{p}_{end}
- The trajectory is collision-free
- The ground speed of the quadrotor v does not exceed $v_{\rm max} = 5 {\rm m/s}$
- The angle of the quadrotor relatively to the ground α does not exceed $\alpha_{\rm max}=20^{\circ}$
- The rotation speed Ω of the quadrotor does not exceed $\Omega_{max}=100^{\circ}/\text{s}$

Hypothesis

- 2D problem (constant altitude)
- No movement on the yaw axis

Case study 1

Mission details

Introduction

Introduced in the sixties for CAD

- 1958 Paul de Casteljau (ENS), engineer at Citröen
- 1962 Pierre Bezier (Arts&Metiers/Supelec), engineer at Renault

Intuitive way to parameterize polynomials - focused on the shape of the curve

Definition

Set of (n + 1) control points

$$\mathbb{P} = \{\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n\}$$

Bézier curve = polynomial curve of degree n

$$\mathbf{\mathcal{B}}_{\mathbb{P}} = \begin{pmatrix} [0,1] & \rightarrow & \mathbb{R}^d \\ \tau & \mapsto & \sum_{i=0}^n b_{i,n}(\tau) \mathbf{p}_i \end{pmatrix}$$

Bernstein polynomials of degree n

$$b_{i,n}(\tau) = \binom{n}{i} \tau^i (1-\tau)^{n-i} = \frac{n!}{i! (n-i)!} \tau^i (1-\tau)^{n-i}$$

Affine parameter transformation

Affine parameter transformation to change the interval of definition

$$\tau = \begin{pmatrix} [t_0, t_1] & \to & [0,1] \\ t & \mapsto & \frac{t - t_0}{t_1 - t_0} \end{pmatrix}$$

$$\zeta(t) = \mathcal{B}_{\mathbb{P}}(\tau(t))$$

Remember to include it in the derivative/integrals!

$$\frac{\mathrm{d}^{l} \boldsymbol{\zeta}}{\mathrm{d}t^{l}}(t) = \frac{1}{(t_{1} - t_{0})^{l}} \frac{\mathrm{d}^{l} \boldsymbol{\mathcal{B}}_{\mathbb{P}}}{\mathrm{d}\tau^{l}} (\tau(t)) \qquad \int_{a}^{b} \boldsymbol{\zeta}(t) \mathrm{d}t = (t_{0} - t_{1}) \int_{\tau(a)}^{\tau(b)} \boldsymbol{\mathcal{B}}_{\mathbb{P}} (\nu) \mathrm{d}\nu$$

Barycenter interpretation

Partition of unity

$$\forall \tau \in [0,1]: \begin{cases} \forall i \in \llbracket 0,n \rrbracket \ b_{i,n}(\tau) \geq 0 \\ \sum_{i=0}^{n} b_{i,n}(\tau) = 1 \end{cases}$$

Barycenter interpretation

Partition of unity

$$\forall \tau \in [0,1]: \begin{cases} \forall i \in \llbracket 0,n \rrbracket \ b_{i,n}(\tau) \geq 0 \\ \sum_{i=0}^{n} b_{i,n}(\tau) = 1 \end{cases}$$

Barycenter interpretation

Partition of unity

$$\forall \tau \in [0,1]: \begin{cases} \forall i \in \llbracket 0,n \rrbracket \ b_{i,n}(\tau) \geq 0 \\ \sum_{i=0}^{n} b_{i,n}(\tau) = 1 \end{cases}$$

Barycenter interpretation

Partition of unity

$$\forall \tau \in [0,1]: \begin{cases} \forall i \in \llbracket 0,n \rrbracket \ b_{i,n}(\tau) \geq 0 \\ \sum_{i=0}^{n} b_{i,n}(\tau) = 1 \end{cases}$$

Barycenter interpretation

Partition of unity

$$\forall \tau \in [0,1]: \begin{cases} \forall i \in \llbracket 0,n \rrbracket \ b_{i,n}(\tau) \geq 0 \\ \sum_{i=0}^{n} b_{i,n}(\tau) = 1 \end{cases}$$

Barycenter interpretation

Partition of unity

$$\forall \tau \in [0,1]: \begin{cases} \forall i \in \llbracket 0,n \rrbracket \ b_{i,n}(\tau) \geq 0 \\ \sum_{i=0}^{n} b_{i,n}(\tau) = 1 \end{cases}$$

Convex hull property

A Bézier curve lies within the convex hull of its control points

$$\forall \tau \in [0,1] \quad \boldsymbol{\mathcal{B}}_{\mathbb{P}}(\tau) \in \text{Conv}(\mathbb{P})$$

- Direct consequence of convex combination result
- Can be used to constrain curve into a convex region (only a sufficient condition)

De Casteljau algorithm

$$\mathbf{\mathcal{B}}_{\mathbb{P}}(\tau) = \sum_{i=0}^{n} b_{i,n}(\tau) \; \mathbf{p}_{i}^{0} = \sum_{i=0}^{n-1} b_{i,n-1}(\tau) \; \mathbf{p}_{i}^{1} = \dots = \sum_{i=0}^{n} b_{i,n}(\tau) \; \mathbf{p}_{i}^{n} = \mathbf{p}_{i}^{n}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = (1-\tau)\mathbf{p}_i^{j-1} + \tau\mathbf{p}_{i+1}^{j-1}$

De Casteljau algorithm

$$\mathbf{\mathcal{B}}_{\mathbb{P}}(\tau) = \sum_{i=0}^{n} b_{i,n}(\tau) \; \mathbf{p}_{i}^{0} = \sum_{i=0}^{n-1} b_{i,n-1}(\tau) \; \mathbf{p}_{i}^{1} = \dots = \sum_{i=0}^{0} b_{i,n}(\tau) \; \mathbf{p}_{i}^{n} = \mathbf{p}_{i}^{n}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = (1- au)\mathbf{p}_i^{j-1} + au\mathbf{p}_{i+1}^{j-1}$

De Casteljau algorithm

$$\mathbf{\mathcal{B}}_{\mathbb{P}}(\tau) = \sum_{i=0}^{n} b_{i,n}(\tau) \; \mathbf{p}_{i}^{0} = \sum_{i=0}^{n-1} b_{i,n-1}(\tau) \; \mathbf{p}_{i}^{1} = \dots = \sum_{i=0}^{0} b_{i,n}(\tau) \; \mathbf{p}_{i}^{n} = \mathbf{p}_{i}^{n}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = (1- au)\mathbf{p}_i^{j-1} + au\mathbf{p}_{i+1}^{j-1}$

De Casteljau algorithm

$$\mathbf{\mathcal{B}}_{\mathbb{P}}(\tau) = \sum_{i=0}^{n} b_{i,n}(\tau) \; \mathbf{p}_{i}^{0} = \sum_{i=0}^{n-1} b_{i,n-1}(\tau) \; \mathbf{p}_{i}^{1} = \dots = \sum_{i=0}^{n} b_{i,n}(\tau) \; \mathbf{p}_{i}^{n} = \mathbf{p}_{i}^{n}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = (1- au)\mathbf{p}_i^{j-1} + au\mathbf{p}_{i+1}^{j-1}$

Polynomial interpretation

Bernstein polynomials of degree n are a basis of the vector space of polynomials of degree n and less

Bézier curve = Projection of a polynomial curve on the Bernstein basis (control points = corresponding coordinates)

Derivatives and integrals

Derivative

- Derivative is also a Bézier curve
- Degree n-1
- Control points obtained by linear combination

Integral

- Integral is also a Bézier curve
- Degree n+1
- Control points obtained by linear combination

$$m{\mathcal{B}}_{\mathbb{P}}' = m{\mathcal{B}}_{\mathbb{P}^{(1)}}$$
 $orall i \in \llbracket 0, n-1
rbracket \mathbf{p}_i^{(1)} = n(\mathbf{p}_{i+1} - \mathbf{p}_i)$

$$\int \boldsymbol{\mathcal{B}}_{\mathbb{P}} = \boldsymbol{\mathcal{B}}_{\mathbb{P}^{(-1)}}$$

$$\forall i \in \llbracket 0, n \rrbracket \quad \mathbf{p}_{i+1}^{(-1)} = \frac{1}{n+1} \mathbf{p}_i + \mathbf{p}_i^{(-1)}$$
 with $\mathbf{p}_0^{(-1)}$ initial condition

A powerful tool

Convex hull property

Derivatives and integral are Bézier curve, their control points are linear combinations of the original ones

Powerful tool for constraining a trajectory and its derivatives/integrals in convex regions

Examples: flight corridors, obstacle free convex regions, speed/acceleration limitations, ...

Limitations

Each control point impact the entire curve

+1 control point degree +1

Limitations

"Simple" polynomial

Generate a minimum-time, rest-to-rest trajectory

- Distance d
- Maximum speed $v_{
 m max}$
- Maximum acceleration a_{\max}

Simple piecewise degree 2 polynomial

Limitations

"Simple" polynomial

Generate a minimum-time, rest-to-rest trajectory

- Distance d
- Maximum speed $v_{
 m max}$
- Maximum acceleration $a_{
 m max}$

Simple piecewise degree 2 polynomial

Limitations

"Simple" polynomial

Generate a minimum-time, rest-to-rest trajectory

- Distance d
- Maximum speed $v_{
 m max}$
- Maximum acceleration a_{\max}

Simple piecewise degree 2 polynomial

Piecewise trajectory = more degrees of freedom

Introduction

Introduced in the **forties** (Isaac J. Schoenberg)

Developed in the **seventies for CAD and computer graphics** (Carl R. de Boor, Maurice Cox, Richard Riesenfeld, Wolfgang Boehm)

Extension of Bezier curves to **piecewise polynomials**

Introduction

Bézier curve

- Degree given by number of control points
- Defined on [0,1]
- Each control point impacts the shape of the whole curve

B-spline curve

- Degree can be lower than number of control points
- Defined on arbitrary interval
- Piecewise, with adjustable continuity at the connections
- Local influence of control points

Definition - Curve

- Set of (n + 1) control points $\mathbb{P} = \{\mathbf{p}_0, \mathbf{p}_1, ..., \mathbf{p}_n\}$
- Polynomial degree $k \leq n$
- Vector of (m + 1) = n + k + 2 increasing knots $\mathbf{\tau} = (\tau_0, \tau_1, ..., \tau_m)$

Instants where the polynomial representation changes

B-spline curve = piecewise polynomial curve of degree k

$$\mathbf{\mathcal{B}}_{\mathbb{P}, \mathbf{\tau}} = \begin{pmatrix} [\tau_k, \tau_{n+1}] & \to & \mathbb{R}^d \\ t & \mapsto & \sum_{i=0}^n N_{i,k}^{\mathbf{\tau}}(t) \mathbf{p}_i \end{pmatrix}$$

 $N_{i,k}^{\tau}(t)$ Basis-spline (B-spline) functions of degree k and knots τ

Definition – Basis functions

 $N_{i,k}^{\tau}(t)$ Basis-spline (B-spline) functions of degree k and knots τ

$$\forall i \in [0, n] \quad \forall t \in \mathbb{R}$$

If k = 0

$$N_{i,k}^{\mathbf{\tau}}(t) = f(x) = \begin{cases} 1 & \text{if } \tau_i \le t < \tau_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Else

$$N_{i,k}^{\mathbf{\tau}}(t) = \omega_{i,k}^{\mathbf{\tau}}(t)N_{i,k-1}^{\mathbf{\tau}}(t) + \left(1 - \omega_{i,k}^{\mathbf{\tau}}(t)\right)N_{i+1,k-1}^{\mathbf{\tau}}(t)$$

with

$$\omega_{i,k}^{\mathbf{\tau}}(t) = \begin{cases} \frac{t - \tau_i}{\tau_{i+k} - \tau_i} & \text{if } \tau_{i+k} > \tau_i \\ 0 & \text{otherwise} \end{cases}$$

Support

$$N_{i,k}^{\mathbf{\tau}}(t) = 0$$
 outside of $[\tau_i, \tau_{i+k+1}]$

Special case

If
$$\tau=(\underbrace{0,\ \dots,\ 0}_{k+1\ \text{knots}},\ \underbrace{1,\ \dots,\ 1}_{k+1\ \text{knots}})$$
 then $N_{i,k}^{\pmb{\tau}}(t)=b_{i,k}$

Examples

$$\tau = (0, 3, 4, 7, 8, 10, 12, 13)$$

Examples

$$au=(0,1,2,3,4,5,6,7,8,9,10)$$
 - $k=3$ \mathbf{P}_5 \mathbf{P}_6 \mathbf{P}_6 \mathbf{P}_7

$$\mathbb{P} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 7 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 8 \\ 3 \end{pmatrix}, \begin{pmatrix} 9 \\ 1.5 \end{pmatrix} \right\}$$

Examples

$$\tau = (0, 10, 20, 30, 31, 32, 33, 40, 50, 60, 70) - k = 3$$

$$\mathbb{P} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 7 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 8 \\ 3 \end{pmatrix}, \begin{pmatrix} 9 \\ 1.5 \end{pmatrix} \right\}$$

$$\tau = (0,1,2,3,20,30,40,51,52,53,54) - k = 3$$

$$\mathbf{P}_{2}$$

$$\mathbf{P}_{3}$$

$$\mathbf{P}_{4}$$

$$\mathbf{P}_{1}$$

Convex hull property

Partition of unity

$$\begin{cases} \forall i \in [0, n] & N_{i,k}^{\tau} \ge 0 \\ \forall j \in [k, n] & \forall t \in [\tau_{j}, \tau_{j+1}[& \sum_{i=0}^{n} N_{i,k}^{\tau}(t) = \sum_{i=j}^{j+k+1} N_{i,k}^{\tau}(t) = 1 \end{cases}$$

Convex hull property

$$\forall j \in [k, n] \quad \forall t \in [\tau_j, \tau_{j+1}] \quad \mathcal{B}_{\mathbb{P}, \tau}(t) \in \text{Conv}(\{\mathbf{p}_i \mid i \in [j-k, j]\})$$

Internal knots

$$(\tau_0, \dots, \tau_{k-1}, \tau_k, \tau_{k+1}, \dots, \tau_n, \tau_{n+1}, \tau_{n+2}, \dots, \tau_m)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$k \text{ knots} \qquad \text{start} \qquad n-k \qquad \text{end} \qquad k \text{ knots}$$

$$\text{knot} \qquad \text{internal knots} \qquad \text{knot}$$

Convex hull property

de Boor – Cox algorithm

Extension of de Casteljau algorithm to B-splines

$$\forall j \in [\![k,n]\!] \quad \forall t \in [\tau_j,\tau_{j+1}[\!]$$

$$\mathcal{B}_{\mathbb{P},\tau}(t) = \sum_{i=j-k}^{J} N_{i,k}^{\tau}(t) \, \mathbf{p}_{i}^{0}$$

$$= \sum_{i=j-k+1}^{J} N_{i,k-1}^{\tau}(t) \, \mathbf{p}_{i}^{1}$$

$$= \cdots$$

$$= \sum_{i=j}^{J} N_{i,0}^{\tau}(t) \, \mathbf{p}_{i}^{k} = \mathbf{p}_{i}^{k}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = \omega_{i,k-1}^{\mathbf{\tau}}(t) \ \mathbf{p}_i^{j-1} + \left(1 - \omega_{i,k-1}^{\mathbf{\tau}}(t)\right) \mathbf{p}_{i-1}^{j-1}$

de Boor – Cox algorithm

Extension of de Casteljau algorithm to B-splines

$$\forall j \in [\![k,n]\!] \quad \forall t \in [\tau_j,\tau_{j+1}[\!]$$

$$\mathcal{B}_{\mathbb{P},\tau}(t) = \sum_{i=j-k}^{J} N_{i,k}^{\tau}(t) \, \mathbf{p}_{i}^{0}$$

$$= \sum_{i=j-k+1}^{J} N_{i,k-1}^{\tau}(t) \, \mathbf{p}_{i}^{1}$$

$$= \cdots$$

$$= \sum_{i=j}^{J} N_{i,0}^{\tau}(t) \, \mathbf{p}_{i}^{k} = \mathbf{p}_{i}^{k}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = \omega_{i,k-1}^{\mathbf{\tau}}(t) \; \mathbf{p}_i^{j-1} + \left(1 - \omega_{i,k-1}^{\mathbf{\tau}}(t)\right) \mathbf{p}_{i-1}^{j-1}$

de Boor – Cox algorithm

$$\forall j \in [\![k,n]\!] \quad \forall t \in [\tau_j,\tau_{j+1}[\!]$$

$$\mathcal{B}_{\mathbb{P},\tau}(t) = \sum_{i=j-k}^{J} N_{i,k}^{\tau}(t) \, \mathbf{p}_{i}^{0}$$

$$= \sum_{i=j-k+1}^{J} N_{i,k-1}^{\tau}(t) \, \mathbf{p}_{i}^{1}$$

$$= \cdots$$

$$= \sum_{i=j}^{J} N_{i,0}^{\tau}(t) \, \mathbf{p}_{i}^{k} = \mathbf{p}_{i}^{k}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = \omega_{i,k-1}^{\mathbf{\tau}}(t) \ \mathbf{p}_i^{j-1} + \left(1 - \omega_{i,k-1}^{\mathbf{\tau}}(t)\right) \mathbf{p}_{i-1}^{j-1}$

de Boor – Cox algorithm

$$\forall j \in [\![k,n]\!] \quad \forall t \in [\tau_j,\tau_{j+1}[\!]$$

$$\mathcal{B}_{\mathbb{P},\tau}(t) = \sum_{i=j-k}^{J} N_{i,k}^{\tau}(t) \, \mathbf{p}_{i}^{0}$$

$$= \sum_{i=j-k+1}^{J} N_{i,k-1}^{\tau}(t) \, \mathbf{p}_{i}^{1}$$

$$= \cdots$$

$$= \sum_{i=j}^{J} N_{i,0}^{\tau}(t) \, \mathbf{p}_{i}^{k} = \mathbf{p}_{i}^{k}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = \omega_{i,k-1}^{\mathbf{\tau}}(t) \; \mathbf{p}_i^{j-1} + \left(1 - \omega_{i,k-1}^{\mathbf{\tau}}(t)\right) \mathbf{p}_{i-1}^{j-1}$

de Boor – Cox algorithm

$$\forall j \in [\![k,n]\!] \quad \forall t \in [\tau_j,\tau_{j+1}[\!]$$

$$\mathcal{B}_{\mathbb{P},\tau}(t) = \sum_{i=j-k}^{J} N_{i,k}^{\tau}(t) \, \mathbf{p}_{i}^{0}$$

$$= \sum_{i=j-k+1}^{J} N_{i,k-1}^{\tau}(t) \, \mathbf{p}_{i}^{1}$$

$$= \cdots$$

$$= \sum_{i=j}^{J} N_{i,0}^{\tau}(t) \, \mathbf{p}_{i}^{k} = \mathbf{p}_{i}^{k}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = \omega_{i,k-1}^{\mathbf{\tau}}(t) \ \mathbf{p}_i^{j-1} + \left(1 - \omega_{i,k-1}^{\mathbf{\tau}}(t)\right) \mathbf{p}_{i-1}^{j-1}$

de Boor – Cox algorithm

$$\forall j \in [\![k,n]\!] \quad \forall t \in [\tau_j,\tau_{j+1}[\!]$$

$$\mathbf{\mathcal{B}}_{\mathbb{P},\tau}(t) = \sum_{i=j-k}^{J} N_{i,k}^{\tau}(t) \mathbf{p}_{i}^{0}$$

$$= \sum_{i=j-k+1}^{J} N_{i,k-1}^{\tau}(t) \mathbf{p}_{i}^{1}$$

$$= \cdots$$

$$= \sum_{i=j}^{J} N_{i,0}^{\tau}(t) \mathbf{p}_{i}^{k} = \mathbf{p}_{i}^{k}$$

with
$$\mathbf{p}_i^0 = \mathbf{p}_i$$
 and $\mathbf{p}_i^j = \omega_{i,k-1}^{\mathbf{\tau}}(t) \ \mathbf{p}_i^{j-1} + \left(1 - \omega_{i,k-1}^{\mathbf{\tau}}(t)\right) \mathbf{p}_{i-1}^{j-1}$

Derivatives

- Derivative is also a B-spline curve
- Degree k-1
- Same knots
- n+1 Control points given by linear combination

Knots multiplicity and continuity

Multiplicity

The number of repetition of a knot τ_i in the knot vector is called its **multiplicity** $\mu_i \in \mathbb{N}^*$

Continuity

For $i \in [0, m-k-1]$ and $j \in [i, i+k]$

$$N_{i,k}^{\mathbf{\tau}}$$
 is \mathcal{C}^{∞} in $]\tau_j, \tau_{j+1}[$

 $N_{i,k}^{\mathbf{\tau}}$ is $\mathcal{C}^{k-\mu_j}$ in a neighborhood of au_j

 $N_{i,k}^{\tau}$ is $\mathcal{C}^{k-\mu_{j+1}}$ in a neighborhood of τ_{j+1}

Clamped B-spline curve

If

- first k+1 knots are equal
- last k + 1 knots are equal
- B-spline curve "clamped" to first and last control points

$$(\tau_k, \dots, \tau_k, \tau_{k+1}, \dots, \tau_n, \tau_{n+1}, \dots, \tau_{n+1})$$
 $k+1 \text{ knots}$ $n-k \text{ knots}$ $k+1 \text{ knots}$

A B-spline can be converted into a clamped one by knot insertion (Boehm's algorithm)

Clamped B-spline curve - Definition

lf

- first k+1 knots are equal
- last k + 1 knots are equal
- B-spline curve "clamped" to first and last control points

$$(\tau_k, \dots, \tau_k, \tau_{k+1}, \dots, \tau_n, \tau_{n+1}, \dots, \tau_{n+1})$$
 $k+1 \text{ knots}$ $n-k \text{ knots}$ $k+1 \text{ knots}$

A B-spline can be converted into a clamped one by knot insertion (Boehm's algorithm)

$$au = (1,1,2,3,4,5,6,6)$$
 - $k=2$

$$au = (2, 2, 2, 3, 4, 5, 5, 5)$$
 - $k = 2$

Clamped B-spline curve - Derivatives

- Derivative is also a B-spline curve
- Degree k-1
- Same knots
- n+1 Control points given by linear combination

$$(\tau_k, \dots, \tau_k, \tau_{k+1}, \dots, \tau_n, \tau_{n+1}, \dots, \tau_{n+1})$$
 $k+1 \text{ knots}$ $n-k \text{ knots}$ $k+1 \text{ knots}$

$$\mathbf{\mathcal{B}}_{\mathbb{P},\tau}^{(1)} = \mathbf{\mathcal{B}}_{\mathbb{P}^{(1)},\tau} \quad \text{with} \quad \begin{cases} \mathbf{p}_{0}^{(1)} = \frac{k}{\tau_{k} - \tau_{0}} \mathbf{p}_{0} \\ \forall i \in \llbracket 1, n \rrbracket \quad \mathbf{p}_{i}^{(1)} = \frac{k}{\tau_{i+k} - \tau_{i}} (\mathbf{p}_{i} - \mathbf{p}_{i-1}) \\ \mathbf{p}_{n+1}^{(1)} = \frac{-k}{\tau_{n+k+1} - \tau_{n+1}} \mathbf{p}_{n} \end{cases}$$

Clamped B-spline curve - Derivatives

- Derivative is also a clamped B-spline curve
- Degree k-1
- Multiplicity of first and last knots decremented by 1
- *n* Control points given by linear combination

$$\boldsymbol{\mathcal{B}}_{\mathbb{P},\boldsymbol{\tau}}' = \boldsymbol{\mathcal{B}}_{\mathbb{P}^{(1)},\boldsymbol{\tau}^{(1)}} \quad \text{with} \quad \begin{cases} \forall i \in \llbracket 0,n-1 \rrbracket & \boldsymbol{p}_i^{(1)} = \frac{k}{\tau_{i+k+1}-\tau_{i+1}} (\boldsymbol{p}_{i+1}-\boldsymbol{p}_i) \\ \boldsymbol{\tau}^{(1)} = (\underbrace{\tau_k,\ldots,\tau_k},\underbrace{\tau_{k+1},\ldots,\tau_n},\underbrace{\tau_{n+1},\ldots,\tau_{n+1}}) \end{cases}$$

Uniform B-spline curve

A B-spline is said uniform when its knots are equally distributed

Knot vector replaced by 2 parameter

- the step $\Delta \tau$ between 2 knots
- First knot τ_0

$$\mathbf{\tau} = (\tau_0, \tau_0 + \Delta \tau, \dots, \tau_0 + m \Delta \tau)$$

Only1 knot parameter if parameter if $au_0=0$

$$\mathbf{\tau} = (0, \Delta \tau, ..., m \Delta \tau)$$

Uniform clamped B-spline curve

Uniform + clamped = uniform clamped B-spline curve

$$(0, \dots, 0, \Delta \tau, \dots, (n-k)\Delta \tau, (n-k+1)\Delta \tau, \dots, (n-k+1)\Delta \tau)$$

$$k+1 \text{ knots} \qquad \qquad k+1 \text{ knots}$$

Uniform clamped B-spline curve - Derivatives

- Derivative is also a uniform clamped B-spline curve
- Degree k-1
- Multiplicity of first and last knots decremented by 1
- *n* Control points given by linear combination

$$\begin{cases} \forall i \in \llbracket 0, n-1 \rrbracket & \mathbf{p}_i^{(1)} = \frac{k}{\tau_{i+k+1} - \tau_{i+1}} (\mathbf{p}_{i+1} - \mathbf{p}_i) \\ \mathbf{\tau}^{(1)} = (\underline{\tau_k, \dots, \tau_k}, \underline{\tau_{k+1}, \dots, \tau_n}, \underline{\tau_{n+1}, \dots, \tau_{n+1}}) \end{cases}$$

$$k \text{ knots} \qquad n-k \text{ knots} \qquad k \text{ knots}$$

$$\mathbf{p}_0^{(1)} = \frac{k}{\Delta \tau} (\mathbf{p}_1 - \mathbf{p}_0)$$

$$\mathbf{p}_1^{(1)} = \frac{k}{2 \Delta \tau} (\mathbf{p}_2 - \mathbf{p}_1)$$

$$\mathbf{p}_{k-2}^{(1)} = \frac{k}{(k-1)\Delta\tau} (\mathbf{p}_k - \mathbf{p}_{k-1})$$

$$\mathbf{p}_{k-1}^{(1)} = \frac{1}{\Delta \tau} (\mathbf{p}_k - \mathbf{p}_{k-1})$$

$$\mathbf{p}_k^{(1)} = \frac{1}{\Delta \tau} (\mathbf{p}_{k+1} - \mathbf{p}_k)$$

Case study 1

Mission details

Obstacle bounded in a convex no fly zone (NFZ), with security margins

Case study 1

Strategy

B-spline trajectory generation in **2 steps**

- **Control points.** Choose the control points such that the **path** is smooth and collision-free, using the convex hull property
- **Knot vector.** Choose the duration of the **trajectory** so that it is feasible, by applying the convex hull property on the control points of its derivatives

Use uniform clamped B-spline curves as they are easy to work with

Strategy

One solution:

Shortest (in terms of length), collision-free B-spline curve joining the starting and the ending positions

3 parameters:

• Degree k

differentiability class

Control points P

collision-free curve

• Knots τ

uniform clamped B-spline

Continuity

Simple quadrotor model

$$\begin{cases} \ddot{\zeta}_z = g - \frac{f}{m} \cos(\alpha) \\ \ddot{\zeta}_{xy} = \frac{f}{m} |\sin(\alpha)| \end{cases}$$

Lateral motion

$$\ddot{\zeta}_z = 0 \Rightarrow f = \frac{mg}{\cos(\alpha)} \Rightarrow \ddot{\zeta}_{xy} = g \tan(\alpha)$$

Rotation speed limited \implies drone attitude continuous

$$\alpha = \arctan\left(\frac{\ddot{\zeta}_{xy}}{g}\right)$$

If the trajectory ζ is C^2 then α is continuous

Uniform B-spline \longrightarrow multiplicity = 1 for all knots $\longrightarrow \mathcal{C}^{k-1}$ curve

$$k = 3$$

Continuity

- Clamped B-spline starts on first control point, ends on last control point
- Derivative of a clamped B-spline = clamped B-spline

 \mathcal{C}^2 rest-to-rest trajectory

$$\begin{cases} \mathbf{p}_0 = \mathbf{p}_{\text{start}} \\ \mathbf{p}_n = \mathbf{p}_{\text{end}} \\ \mathbf{p}_0^{(1)} = \mathbf{p}_0^{(2)} = \mathbf{p}_n^{(1)} = \mathbf{p}_{n-2}^{(2)} = \mathbf{0} \end{cases}$$

$$\mathbf{p}_{i}^{(1)} = \frac{k}{\tau_{i+k+1} - \tau_{i+1}} (\mathbf{p}_{i+1} - \mathbf{p}_{i})$$

$$\begin{cases}
\mathbf{p}_0 = \mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p}_{\text{start}} \\
\mathbf{p}_n = \mathbf{p}_{n-1} = \mathbf{p}_{n-2} = \mathbf{p}_{\text{end}}
\end{cases}$$

Obstacle management

Use convex hull property to garantee the absence of collision

Forbid the convex hulls to contain any vertices of the convex NFZ

Obstacle management

This constraint can be hard to check

simpler formulation with convex obstacle-free regions (more conservative)

Region 1

$$p_i^x \le 3$$

Obstacle management

This constraint can be hard to check

simpler formulation with convex obstacle-free regions (more conservative)

Region 2

$$p_i^y \le -2$$

Obstacle management

This constraint can be hard to check

simpler formulation with convex obstacle-free regions (more conservative)

Obstacle management

Some control points are in the convex hulls of other control points in different convex, obstacle-free regions

these points are constrained in both regions

Region 1 & 2

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p_i^x \\ p_i^y \end{pmatrix} \le \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Region 2 & 3

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} p_i^x \\ p_i^y \end{pmatrix} \le \begin{pmatrix} -2 \\ -7 \end{pmatrix}$$

Control points

- 3 control points on start position
- n_1 control points in region 1
- k = 3 control points in region 1 & 2
- n_2 control points in region 2
- k = 3 control points in region 2 & 3
- n₂ control points in region 3
- 3 control points on end position

$$n + 1 = 6 + 2k + n_1 + n_2 + n_3$$

For
$$n_1 = n_2 = n_3 = 0$$
 $n = 11$

Knots

Uniform clamped B-spline

$$\mathbf{\tau} = (0, \dots, 0, \Delta \tau, \dots, (n-k)\Delta \tau, (n-k+1)\Delta \tau, \dots, (n-k+1)\Delta \tau)$$

$$k+1 \text{ knots} \qquad n-k \text{ knots} \qquad k+1 \text{ knots}$$

$$k = 3, n = 11$$

Only looking for a **path** \implies arbitrary $\Delta \tau = 1$

$$\mathbf{\tau} = (0,0,0,0,1,2,3,4,5,6,7,8,9,9,9,9)$$

Parameters and constraints

For a \mathcal{C}^L path

Parameters

```
• k = L + 1
```

•
$$n = 2(L+1) + 2k + n_1 + n_2 + n_3 - 1$$

•
$$\mathbf{\tau} = (0, \dots, 0, \Delta \tau, \dots, (n-k)\Delta \tau, (n-k+1)\Delta \tau, \dots, (n-k+1)\Delta \tau)$$

$$k+1 \text{ knots} \qquad n-k \text{ knots} \qquad k+1 \text{ knots}$$

Constraints

- $\forall i \in [0, L]$ $\mathbf{p}_i = \mathbf{p}_{\text{start}}$
- $\forall i \in \llbracket 0, L \rrbracket$ $\mathbf{p}_{n-i} = \mathbf{p}_{\text{end}}$
- $\forall i \in [L+1, L+n_1+k] \quad p_i^x \leq 3$
- $\forall i \in [L + n_1 + 1, L + n_1 + n_2 + 2k] \quad p_i^y \le -2$
- $\forall i \in [L + n_1 + n_2 + k + 1, n L 1] p_i^x \le 7$

Parameters and constraints

For a \mathcal{C}^2 path with $n_1=n_2=n_3=0$

Parameters

- k = 3
- n = 11
- $\tau = (0,0,0,0,1,2,3,4,5,6,7,8,9,9,9,9)$

Constraints

- $\mathbf{p}_0 = \mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p}_{\text{start}}$
- $\mathbf{p}_{11} = \mathbf{p}_{10} = \mathbf{p}_9 = \mathbf{p}_{end}$
- $\forall i \in [3,5] \quad p_i^x \le 3$
- $\forall i \in [3,8] \quad p_i^y \le -2$
- $\forall i \in [6,8] p_i^x \le 7$

12 free parameters

Criterion

Infinity of path verifying the constraints

- Choose the best path according to a criterion
- **➡** Shortest path = **minimal length**

Length \mathcal{L} of the path $\boldsymbol{\zeta}$

$$\mathcal{L} = \int_{\tau_k}^{\tau_{n+1}} \|\dot{\boldsymbol{\zeta}}(u)\| \mathrm{d}u$$

 $\dot{oldsymbol{\zeta}} = oldsymbol{\mathcal{B}}_{\mathbb{P}, oldsymbol{ au}}'$ has convex hull property

$$J_1 = \sum_{i=0}^{n-1} \left\| \mathbf{p}_i^{(1)} \right\|^2$$

Optimization problem

Control points obtained by solving an optimization problem

$$\mathbb{P}^* = \arg\min_{\mathbb{P} \in (\mathbb{R}^2)^{12}} \sum_{i=0}^{n-1} \left\| \mathbf{p}_i^{(1)} \right\|^2$$

s. t.
$$\begin{cases} \mathbf{p}_0 = \mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p}_{\text{start}} \\ \mathbf{p}_{11} = \mathbf{p}_{10} = \mathbf{p}_9 = \mathbf{p}_{\text{end}} \\ \forall i \in [3,5] \quad p_i^x \le 3 \\ \forall i \in [3,8] \quad p_i^y \le -2 \\ \forall i \in [6,8] \quad -p_i^x \le 7 \end{cases}$$

Optimization problem

Optimization vector

$$\mathbf{x} = \begin{pmatrix} p_0^x & p_1^x & \dots & p_n^x & p_0^y & p_1^y & \dots & p_n^y \end{pmatrix}^\mathsf{T}$$

 J_1 is a quadratic cost

$$J_1 = \sum_{i=0}^{n-1} \left\| \mathbf{p}_i^{(1)} \right\|^2$$

$$J_1 = \mathbf{x}^\mathsf{T} \mathbf{H}_1 \mathbf{x}$$

$$\mathbf{H}_{1} = \begin{pmatrix} \frac{1}{\Delta \tau} \mathbf{Q}_{1} & \\ & \frac{1}{\Delta \tau} \mathbf{Q}_{1} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \frac{1}{\Delta \tau} \mathbf{Q}_{1} & \\ & \frac{1}{\Delta \tau} \mathbf{Q}_{1} \end{pmatrix}$$

Optimization problem

Optimization vector

$$\mathbf{x} = \begin{pmatrix} p_0^x & p_1^x & \dots & p_n^x & p_0^y & p_1^y & \dots & p_n^y \end{pmatrix}^{\mathsf{T}}$$

Linear equality constraints

- $\mathbf{p}_0 = \mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p}_{\text{start}}$
- $\mathbf{p}_{11} = \mathbf{p}_{10} = \mathbf{p}_9 = \mathbf{p}_{end}$

$$\mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq}$$

$$\mathbf{A}_{\mathrm{eq}} = \begin{pmatrix} \mathbf{C}_{\mathrm{eq}} & \\ & \mathbf{C}_{\mathrm{eq}} \end{pmatrix}$$

$$\mathbf{b}_{\text{eq}}^{x} = (p_{\text{start}}^{x} \quad p_{\text{start}}^{x} \quad p_{\text{start}}^{x} \quad p_{\text{end}}^{x} \quad p_{\text{end}}^{x} \quad p_{\text{end}}^{x})^{\mathsf{T}}$$

$$\mathbf{b}_{\text{eq}}^{y} = (p_{\text{start}}^{y} \quad p_{\text{start}}^{y} \quad p_{\text{start}}^{y} \quad p_{\text{end}}^{y} \quad p_{\text{end}}^{y} \quad p_{\text{end}}^{y})^{\mathsf{T}}$$

$$\mathbf{b}_{\text{eq}} = \begin{pmatrix} \mathbf{b}_{\text{eq}}^{x} \\ \mathbf{b}_{\text{eq}}^{y} \end{pmatrix}$$

Optimization problem

Optimization vector

$$\mathbf{x} = \begin{pmatrix} p_0^x & p_1^x & \dots & p_n^x & p_0^y & p_1^y & \dots & p_n^y \end{pmatrix}^\mathsf{T}$$

Linear inequality constraints

- $\forall i \in [3,5] \quad p_i^x \le 3$
- $\forall i \in [3,8]$ $p_i^y \leq -2$
- $\forall i \in [6,8] p_i^x \le 7$

$$\mathbf{A}_{\text{ineq}} \mathbf{x} \leq \mathbf{b}_{\text{ineq}}$$

Similar method as for ${f A}_{eq}$ and ${f b}_{eq}$

Optimization problem

Small, convex QP problem

$$\mathbf{x}^* = \arg\min_{\mathbb{P} \in \mathbb{R}^{24}} \mathbf{x}^\mathsf{T} \mathbf{H}_1 \mathbf{x}$$

s. t.
$$\begin{cases} \mathbf{A}_{eq} \ \mathbf{x} = \mathbf{b}_{eq} \\ \mathbf{A}_{ineq} \ \mathbf{x} \le \mathbf{b}_{ineq} \end{cases}$$

Fast and easy to solve

Collision free path!

Smooth path

Penalty on the jerk to smooth the path

$$J_3 = \sum_{i=0}^{n-1} \left\| \mathbf{p}_i^{(3)} \right\|^2$$

$$J_3 = \mathbf{x}^\mathsf{T} \mathbf{H}_3 \mathbf{x}$$

$$\mathbf{H}_{3} = \begin{pmatrix} \frac{1}{\Delta \tau} \mathbf{Q}_{3} & \\ & \frac{1}{\Delta \tau} \mathbf{Q}_{3} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \frac{1}{\Delta \tau} \mathbf{Q}_{3} & \\ & \frac{1}{\Delta \tau} \mathbf{Q}_{3} \end{pmatrix}$$

$$\mathbf{Q}_{1} = \begin{pmatrix} -6 & 10.5 & -5.5 & 1 & & & & & & \\ & -1.5 & 3.5 & -3 & 1 & & & & & \\ & & -1 & 3 & -3 & 1 & & & & \\ & & & -1 & 3 & -3 & 1 & & & \\ & & & & -1 & 3 & -3 & 1 & & \\ & & & & & -1 & 3 & -3.5 & 1.5 & \\ & & & & & & -1 & 5.5 & -10.5 & 6 \end{pmatrix}$$

Smooth path

Compromise length vs. smoothness $J = \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x} = \sigma \mathbf{x}^{\mathsf{T}} \mathbf{H}_1 \mathbf{x} + (1 - \sigma) \mathbf{x}^{\mathsf{T}} \mathbf{H}_3 \mathbf{x}$

$$\mathbf{x}^* = \arg\min_{\mathbb{P} \in \mathbb{R}^{24}} \mathbf{x}^\mathsf{T} \mathbf{H} \mathbf{x}$$

s. t.
$$\begin{cases} \mathbf{A}_{eq} \ \mathbf{x} = \mathbf{b}_{eq} \\ \mathbf{A}_{ineq} \ \mathbf{x} \le \mathbf{b}_{ineq} \end{cases}$$

$$\sigma = 0.8$$

From path to trajectory

Path + duration = trajectory

Path Derivatives

Strategy

Specification

$$v \le v_{\text{max}}$$

Feasibility

 $\alpha \le \alpha_{\max}$

 $\Omega \leq \Omega_{\max}$

Translate into constraints on the derivatives

use convex hull property

Dynamics constraints

Acceleration

$$a = g \tan(\alpha)$$
 \implies $a \le g \tan(\alpha_{\max}) \Rightarrow \alpha \le \alpha_{\max}$

Jerk

$$\begin{cases} \ddot{\zeta} = -\frac{f}{m} \mathbf{R} \, \mathbf{z}_{\mathcal{W}} + g \, \mathbf{z}_{\mathcal{W}} & \longrightarrow \zeta^{(3)} = -\frac{\dot{f}}{m} \mathbf{R} \, \mathbf{z}_{\mathcal{W}} - \frac{f}{m} \mathbf{R} \widehat{\mathbf{\Omega}} \, \mathbf{z}_{\mathcal{W}} \\ \dot{\mathbf{R}} = \mathbf{R} \widehat{\mathbf{\Omega}} & \\ \mathbf{R}^{\mathsf{T}} \boldsymbol{\zeta}^{(3)} = -\frac{\dot{f}}{m} \, \mathbf{z}_{\mathcal{W}} - \frac{f}{m} \widehat{\mathbf{\Omega}} \, \mathbf{z}_{\mathcal{W}} \end{cases}$$

$$\mathbf{R}^{\mathsf{T}} \boldsymbol{\zeta}^{(3)} = -\frac{\dot{f}}{m} \, \mathbf{z}_{\mathcal{W}} - \frac{f}{m} \, \widehat{\mathbf{\Omega}} \, \mathbf{z}_{\mathcal{W}}$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \mathbf{R}^{\mathsf{T}} \boldsymbol{\zeta}^{(3)} = -\frac{f}{m} \begin{pmatrix} \Omega_{y} \\ -\Omega_{x} \end{pmatrix}$$

$$\Rightarrow f = \frac{mg}{\cos(\alpha)}$$

$$\begin{pmatrix} \Omega_{y} \\ \Omega_{x} \end{pmatrix} = \frac{\cos(\alpha)}{g} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \mathbf{R}^{\mathsf{T}} \boldsymbol{\zeta}^{(3)}$$

$$i < a\Omega \quad \Rightarrow 0 < 0$$

$$j \leq g\Omega_{\max} \Rightarrow \Omega \leq \Omega_{\max}$$

Dynamics constraints

Acceleration

$$a = g \tan(\alpha)$$
 \implies $a \le g \tan(\alpha_{\max}) \Rightarrow \alpha \le \alpha_{\max}$

Jerk

$$\begin{cases} \ddot{\zeta} = -\frac{f}{m} \mathbf{R} \, \mathbf{z}_{\mathcal{W}} + g \, \mathbf{z}_{\mathcal{W}} & \longrightarrow \zeta^{(3)} = -\frac{\dot{f}}{m} \mathbf{R} \, \mathbf{z}_{\mathcal{W}} - \frac{f}{m} \mathbf{R} \widehat{\mathbf{\Omega}} \, \mathbf{z}_{\mathcal{W}} \\ \dot{\mathbf{R}} = \mathbf{R} \widehat{\mathbf{\Omega}} & \\ \mathbf{R}^{\mathsf{T}} \boldsymbol{\zeta}^{(3)} = -\frac{\dot{f}}{m} \, \mathbf{z}_{\mathcal{W}} - \frac{f}{m} \widehat{\mathbf{\Omega}} \, \mathbf{z}_{\mathcal{W}} \end{cases}$$

$$j \leq g\Omega_{\max} \Rightarrow \Omega \leq \Omega_{\max}$$

Optimization problem

Minimum-time trajectory

$$\Delta \tau^* = \arg\min_{\Delta \tau \in \mathbb{R}} \Delta \tau$$

S. t.
$$\begin{cases} \Delta \tau > 0 \\ \forall i \in [0, n-1] \quad \left\| \mathbf{p}_i^{(1)} \right\| \le v_{\text{max}} \\ \forall i \in [0, n-2] \quad \left\| \mathbf{p}_i^{(2)} \right\| \le g \tan(\alpha_{\text{max}}) \\ \forall i \in [0, n-3] \quad \left\| \mathbf{p}_i^{(3)} \right\| \le g \Omega_{\text{max}} \end{cases}$$

Optimization problem

$$\mathbf{P} = egin{pmatrix} p_0^x & p_1^x & ... & p_n^x \ p_0^y & p_1^y & ... & p_n^y \end{pmatrix}^{\mathsf{T}}$$

$$\mathbf{P}^{(1)} = \frac{1}{\Delta \tau} \mathbf{Q}_1 \mathbf{P} = \frac{1}{\Delta \tau} \widetilde{\mathbf{P}}^{(1)}$$

$$\mathbf{P}^{(2)} = \frac{1}{\Delta \tau^2} \mathbf{Q}_2 \mathbf{P} = \frac{1}{\Delta \tau^2} \widetilde{\mathbf{P}}^{(2)}$$

$$\mathbf{P}^{(3)} = \frac{1}{\Delta \tau^3} \mathbf{Q}_3 \mathbf{P} = \frac{1}{\Delta \tau^3} \widetilde{\mathbf{P}}^{(3)}$$

$$\widetilde{\mathbf{P}}^{(1)}$$
, $\widetilde{\mathbf{P}}^{(2)}$, $\widetilde{\mathbf{P}}^{(3)}$ fixed

Optimization problem

Minimum-time trajectory

$$\Delta \tau^* = \arg\min_{\Delta \tau \in \mathbb{R}} \Delta \tau$$

s.t.
$$\begin{cases} \forall i \in [0, n-1] & \Delta \tau \geq \frac{\left\|\widetilde{\mathbf{p}}_{i}^{(1)}\right\|}{v_{\text{max}}} \\ \forall i \in [0, n-2] & \Delta \tau \geq \sqrt{\frac{\left\|\widetilde{\mathbf{p}}_{i}^{(2)}\right\|}{g \tan(\alpha_{\text{max}})}} \\ \forall i \in [0, n-3] & \Delta \tau \geq \sqrt{\frac{\left\|\widetilde{\mathbf{p}}_{i}^{(3)}\right\|}{g\Omega_{\text{max}}}} \end{cases}$$

$$\Delta \tau^* = \arg\min_{\Delta \tau \in \mathbb{R}} \Delta \tau$$

s. t.
$$\mathbf{1}_{3n-2}\Delta \tau \geq \Delta \tau_{\min}$$

$$\mathbf{1}_{i} = (\underbrace{1 \quad 1 \quad \dots \quad 1}_{i \text{ elements}})$$

Trivial solution

Optimization problem

Constraints

Feasible trajectory!

Optimization problem

$$n_1 = n_2 = n_3 = 2$$

$$\sigma = 0.5$$

Constraints

