Bayesian Simulation: Analysis of Starbucks Queuing System Integration of Queuing Theory and Bayesian Methods

2024 Study Group Computer Simulation

December 2024

Why Bayesian Simulation?

Traditional vs. Bayesian Simulation

- Traditional: Parameters are fixed values
- Bayesian: Parameters are probability distributions

Advantages

- Incorporates parameter uncertainty
- Updates beliefs with new data
- Provides probability distributions for outputs

Example: Service Rate μ

Traditional: $\mu = 20 \text{ cust/hour}$ Bayesian: $\mu \sim \mathcal{N}(20, 2^2)$

Key Differences

- Uncertainty quantification
- Probabilistic predictions
- Data integration capability
- Robust decision support

Key Components of Bayesian Simulation

Prior Distribution

- Initial beliefs about parameters
- Example for arrival rate:

$$\lambda \sim \mathsf{Gamma}(\alpha, \beta)$$

Likelihood Function

- Measures data fit
- For queue length *n*:

$$P(n|\lambda,\mu,s) = f(n,\lambda,\mu,s)$$

Posterior Distribution

- Updated parameter beliefs
- Bayes' theorem:

$$P(\theta|D) \propto P(D|\theta)P(\theta)$$

MCMC Methods

- Sampling algorithms
- Metropolis-Hastings
- Gibbs sampling
- Hamiltonian Monte Carlo
- Used when analytical solutions unavailable

We use Starbucks as an example in study group

A Personal Perspective

- I like studying in a Cafe
- Perfect real-world example for today's study group

Application of Theory

- Queuing Theory
 - Customer arrivals
 - Service processes
 - Waiting times

MCMC Theory in Starbucks Staffing

MCMC Fundamentals

$$\pi(\theta|y) \propto \pi(\theta)L(y|\theta)$$

$$L(y|\theta) = \prod_{i=1}^{n} f(y_i|\theta)$$

Metropolis-Hastings Algorithm

- **1** Propose: $\theta^* \sim q(\theta|\theta^{(t)})$
- Accept with probability:

$$\alpha = \min \left(1, \frac{\pi(\theta^*|y)q(\theta^{(t)}|\theta^*)}{\pi(\theta^{(t)}|y)q(\theta^*|\theta^{(t)})} \right)$$

Application to Staffing

• Parameters:

$$\theta = (x_1, x_2)$$

$$x_1 \in \{0, 1, \dots, 4\}$$

$$x_2 \in \{0, 1, \dots, 4 - x_1\}$$

Target Distribution:

$$\pi(\theta|y) \propto \exp\left(-rac{1}{T}f(heta)
ight)$$

where:

- $f(\theta)$ is objective function
- T is temperature parameter
- Proposal Distribution:

MCMC Implementation Details

Key Algorithm Components

Objective:
$$f(\theta) = 25x_1 + 18x_2 + P(W_q > 5)$$

where $W_q = \frac{\rho(\lambda/\mu)^s}{s\mu(1-\rho)^2}$

- Initialize:
 - Start with feasible $\theta^{(0)} = (x_1^{(0)}, x_2^{(0)})$
 - Set temperature T and proposal std σ
- For each iteration:
 - Generate proposal $\theta^* = \theta^{(t)} + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$
 - Round to nearest integer and check constraints
 - Calculate acceptance probability α
 - Accept/reject based on α
- After convergence:
 - Discard burn-in samples
 - Calculate posterior means and probabilities
 - Choose optimal staffing configuration

Parameters Description

Key System Parameters

 $\lambda(t)$: Arrival rate (customers/hour)

Example: 40 customers/hour during morning peak (8-9am)

15 customers/hour during off-peak

 μ : Service rate (customers/hour/server)

Example: 20 orders/hour for experienced barista

15 orders/hour for new staff

s: Number of servers

Example: 3 servers during peak, 1 during quiet hours

System Characteristics

- Time-varying customer arrivals
 - → Morning rush: students before class
- Multiple parallel servers
 - → Different baristas making drinks simultaneously
- First-Come-First-Served discipline

Traditional vs. Bayesian Simulation: Starbucks Case

Traditional Simulation

- Fixed parameters:
 - $\lambda = 30$ customers/hour
 - $\mu = 20$ orders/hour
 - s = 2 servers
- Point estimates only
- Requires multiple runs with different parameters
- Limited uncertainty handling

Bayesian Simulation

- Probabilistic parameters:
 - $\lambda \sim N(30, 5^2)$
 - $\mu \sim N(20, 3^2)$
 - s based on time of day
- Full probability distributions
- Incorporates historical data
- Captures real-world variability

Traditional vs. Bayesian Simulation: Starbucks Case

Key Differences in Practice

- Peak hours: Traditional assumes fixed rates vs. Bayesian models time-varying patterns
- Staff breaks: Traditional uses schedules vs. Bayesian learns from historical patterns
- Service time: Traditional uses average versus Bayesian considers barista experience levels

Two Perspectives on Starbucks Queuing Problem

Classical Queuing Theory (M/M/s)

- Markovian arrival process
- Exponential service times
- Multiple identical servers
- Steady-state analysis
- Deterministic parameters

Key Formulas

$$P_0 = \left[\sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \frac{1}{1-\rho} \right]^{-1}$$

$$L_q = \frac{P_0(\lambda/\mu)^s \rho}{s!(1-\rho)^2}$$

$$W_q = \frac{L_q}{\lambda}$$

$$\rho = \frac{\lambda}{5u} < 1$$

where:

 P_0 : Probability system is empty

L_a: Average queue length

Average waiting time

Simulation Study Case Design

Research Question

- How to optimize staffing during peak hours (8:00-10:00) while:
 - Maintaining average wait time less than 5 minutes
 - Considering different barista experience levels
 - Balancing labor costs and service quality

Key Variables to Consider

$$\begin{split} & \mathsf{Staffing Cost} = \begin{cases} \$25/\mathsf{hr (experienced)} \\ \$18/\mathsf{hr (new staff)} \end{cases} \\ & \mathsf{Service Rate} = \begin{cases} \mu_1 \sim \mathit{N}(20, 2^2) \text{ (experienced)} \\ \mu_2 \sim \mathit{N}(15, 3^2) \text{ (new staff)} \end{cases} \\ & \mathsf{Arrival Rate} = \lambda(t) \sim \mathit{N}(35 + 10\sin(\frac{2\pi t}{24}), 5^2) \end{split}$$

Simulation Study Case Design

Wait a second!!

Please tell me how you gonna solve this by using traditional simulation methods

Let us chat a bit!

Traditional Simulation: Problem Definition

System Definition

- Time period: 8:00-10:00 (Peak hours)
- Queue discipline: FCFS
- No balking or reneging

Decision Variables

 x_1 : Number of experienced staff

 x_2 : Number of new staff

Objective Function

$$min Z = 25x_1 + 18x_2$$
 s.t. $E[W_q] \le 5$ minutes $x_1 + x_2 \le 4$ (space constraint) $x_1, x_2 \ge 0$, integer

Problem Definition Decision Variables

Decision Variables

- x₁: Number of experienced baristas to schedule
- x₂: Number of new baristas to schedule

Objective Function

Z: Total hourly labor cost

$$Z=25x_1+18x_2$$

where:

- \$25/hour: wage rate for experienced barista
- \$18/hour: wage rate for new barista

Example

- If $x_1 = 2$ (two experienced baristas)
- And $x_2 = 1$ (one new barista)
- Then Z = 2(25) + 1(18) = 68 dollars per hour

Traditional Simulation: Problem Definition

Constraints

$$x_1+x_2 \leq 4$$
 (maximum staff allowed) $W_q \leq 5$ minutes (service quality) $x_1,x_2 \geq 0$ and integer $ho = rac{\lambda}{20x_1+15x_2} < 1$ (stability)

Traditional Simulation Solution Approach

Solution Overview

- Enumerate all feasible staffing combinations (x_1, x_2)
 - Subject to $x_1 + x_2 < 4$
 - Both x_1, x_2 non-negative integers
- Por each combination:
 - Check stability condition: $\rho = \frac{\lambda}{20x_1 + 15x_2} < 1$
 - If stable, proceed with M/M/s analysis
 - If unstable, reject combination
- Calculate performance metrics:
 - Expected waiting time (W_a)
 - System utilization (ρ)
 - Total cost (Z)
- Select optimal solution:
 - Among combinations with $W_a \leq 5$ minutes
 - Choose lowest cost Z

Traditional M/M/s Solution Algorithm

Alg	gorithm	1	Tradi-
tio	nal_MM_Solu	ıtion	
Re	quire: $\lambda = 35$	$5, \mu_1 = 20$	
Re	quire: $\mu_2=1$.5, max_sta	ff = 4
Ens	sure: (x_1, x_2)		
1:	$best_cost \leftarrow$	∞	
2:	optimal_solut	$cion \leftarrow Nor$	ne
3:	for $x_1 \leftarrow 0$ to	o max_staf	f do
4:	for $x_2 \leftarrow$	0 to max_s	$\operatorname{staff} - x_1 \operatorname{do}$
5:	if x_1 -	$+x_2 > \max$	x_staff then
6:	co	ontinue	
7:	end if	f	
8:	end for		
9:	end for		

```
9: \mu_{\text{total}} \leftarrow 20x_1 + 15x_2
10: \rho \leftarrow \lambda/\mu_{\text{total}}
11: if \rho \geq 1 then
12: continue
13: end if
14: s \leftarrow x_1 + x_2
15: W_a \leftarrow
     calculate_MM_waiting_time(\lambda, \mu_{total}, s
16: if W_a > 5 then
         continue
17:
18: end if
19: cost \leftarrow 25x_1 + 18x_2
20: if cost < best_cost then
         best cost \leftarrow cost
21:
22: optimal_solution \leftarrow (x_1, x_2)
23: end if
24: return optimal_solution
```

M/M/s Formulas - Part 1

Key System Parameters

$$\lambda$$
 : arrival rate = 35 customers/hour $\mu_{total} = 20x_1 + 15x_2$ customers/hour $s = x_1 + x_2$ (total servers) $\rho = \frac{\lambda}{s\mu_{total}}$ (utilization)

Probability of Empty System

$$P_0 = \left[\sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!(1-\rho)} \right]^{-1}$$

M/M/s Formulas - Part 2

Queue Performance Metrics

$$L_q = \frac{P_0(\lambda/\mu)^s \rho}{s!(1-\rho)^2}$$

$$W_q = \frac{L_q}{\lambda}$$

$$L_s = L_q + \frac{\lambda}{\mu}$$

$$W_s = W_q + \frac{1}{\mu}$$

Solution Validation

- Check $W_a \leq 5$ minutes
- Ensure $\rho < 1$
- Calculate total cost $Z = 25x_1 + 18x_2$

Queueing System Optimization Results

Figure: Wait Time vs Cost Analysis

Optimal Solution

- Configuration: $2 \exp + 0$ new
- Total Cost: \$50/hour
- Wait Time: 2.45 min
- System Utilization: 87.5%

Key Insights

- Most cost-effective setup:
 - Only experienced staff
 - Below 5-min wait target
 - High utilization (87.5%)
- Trade-offs:
 - Cost vs Wait Time
 - Utilization vs Service Level

Sensitivity Analysis

$\overline{\lambda}$	ρ	Wait(min)	Cost(\$)
30	0.75	0.96	50
26	0.65	0.55	50
35	0.88	2.45	50

System Behavior

• Base arrival rate: 35/hour

• Stable range: 20-35/hour

• Critical point: $\lambda = 35$

Performance Impact

• Arrival Rate (λ)

• $\lambda \uparrow$: Wait time $\uparrow \uparrow$

• $\lambda \downarrow$: Wait time \downarrow

System Stability

• ρ < 0.9: Stable

Best range: 0.7-0.85

Recommendations

Monitor peak hours

• Plan for $\lambda > 30$

Consider flex staffing

Findings

Key Issues Identified

- Late period capacity insufficient
- Queue length becomes unstable after 60 minutes
- Wait time exceeds target for significant customer portion

Optimization Results Analysis

Key Findings

- Optimal Configuration:
 - 2 experienced staff $(x_1 = 2)$
 - 0 new staff $(x_2 = 0)$
 - Lowest cost: \$50/hour
- System Performance:
 - Total service rate $(\mu_{total}) = 40/\text{hour}$
 - System utilization (ρ) = 87.5%
 - Average wait time = 2.45 minutes

Alternative Configurations

- 10 viable configurations identified
- Trade-off between:
 - Cost: \$50 \$100/hour
 - Wait time: 0.004 2.45 minutes
 - System utilization: 43.8% 87.5%

Sensitivity Analysis & Recommendations

Sensitivity Analysis Results

- Arrival Rate Impact (λ):
 - Stable performance for λ 30
 - Critical point at $\lambda = 35$ (current)
 - Wait time increases exponentially above $\lambda = 30$
- System Stability:
 - Optimal at 87.5% utilization
 - Maintains sub-3-minute wait times
 - Cost-effective solution

Final Results

- Implement optimal (2,0) configuration
- Monitor system when λ greater than 30/hour

Bayesian Perspective on Starbucks Staffing

Model Thinking

Instead of fixed parameters, we consider:

Arrival Rate: $\lambda(t)$ changes over time

Service Rate: μ varies by barista and conditions

Performance: W_a Queue Waiting Time - as a distribution

Advantages

- Captures uncertainty in arrival and service patterns
- Provides probabilistic insights for decision-making

Bayesian Approach to Starbucks Staffing Problem

Step 1: Define Parameter Distributions

$$\lambda(t) \sim \mathcal{N}(35+10\sin(rac{2\pi t}{24}),5^2) \ \mu_1 \sim \mathcal{N}(20,2^2) ext{ (experienced)} \ \mu_2 \sim \mathcal{N}(15,3^2) ext{ (new staff)}$$

Step 2: Define Decision Problem

- Objective: min $E[25x_1 + 18x_2]$
- Constraint: $P(W_a > 5) < 0.05$
- Where $W_a = f(\lambda(t), \mu_1, \mu_2, x_1, x_2)$

Step 3: Solution Method

- MCMC sampling for system parameters
- 2 For each staffing combination (x_1, x_2) :
 - Sample arrival and service rates
 - Calculate waiting time distribution
 - Evaluate probability of meeting target

Bayesian Solution Implementation

```
Algorithm 2 Bayesian Staffing Op-
  timization
Require: N_{samples}, max_staff = 4
  Ensure: Optimal (x_1, x_2)
              1: for all combinations (x_1, x_2) do
                                                                                   if x_1 + x_2 < \max_{x \in \mathbb{R}} x_1 + x_2 < \max_{x
            3:
                                                                                                                             Init empty array W_a
                                                                                                                         for i \leftarrow 1 to N_{samples} do
            5:
                                                                                                                                                                      \lambda_i \leftarrow \mathcal{N}(35 +
                                              10\sin(\frac{2\pi t}{24}), 5^2
                                                                                                                           end for
            6:
                                                                                   end if
            7:
```

```
11: \mu_{1i} \leftarrow \mathcal{N}(20, 2^2)
  12: \mu_{2i} \leftarrow \mathcal{N}(15, 3^2)
  13: W_a \leftarrow
        MM_{queue}(\lambda_{i}, \mu_{1i}, \mu_{2i}, x_{1}, x_{2})
  14: Append W_{a_i} to W_a
  15: P_{exceed} \leftarrow \text{mean}(W_a > 5)
  16: Cost \leftarrow 25x_1 + 18x_2
  17: if P_{\text{exceed}} < 0.05 then
18: Store (x_1, x_2) as feasible
  19: end if
  20: return min Cost config =0
```

Customer Arrival Pattern Analysis (8:00-10:00)

Figure: Hourly Distribution

Figure: Time Series Pattern

Key Findings

- Peak Hours (8:20-8:45):
 - Maximum: 70+ customers
 - High variability
- Stable Period (9:30-10:00):
 - Average: 42.3 customers/hour
 - Lower variability
- Statistical Summary:

Metric	Value
Mean	42.3
Std Dev	8.7
Peak	71
Valley	20

MCMC in Starbucks Staffing Optimization

$$\lambda(t) \sim \mathcal{N}(35, 5^2)$$

 $\mu_{exp} \sim \mathcal{N}(20, 2^2)$
 $\mu_{new} \sim \mathcal{N}(15, 3^2)$

Role of MCMC

Parameter Uncertainty:

- Arrival rates vary by time
- Service rates differ by staff

Key Advantages:

- Captures parameter variations
- Updates beliefs with data

• Implementation:

- 1000 MCMC samples
- Prior distributions based on experience
- Posterior updates with observations
- Probability-based decisions

Starbucks Staffing Optimization: Analysis Results

Figure: Cost vs Success

Probability

Key Findings

- Cost-Performance Relationship:
 - Success probability increases with cost
 - Diminishing returns after \$86/hour
 - Clear threshold at 95% success rate
- Staffing Patterns:
 - Higher reliability with more experienced staff
 - Mixed staffing shows good balance

Performance

Figure: Distribution of Customer Wait Times

Wait Time Analysis

- Majority below 5-minute target
- Peak at 2-3 minutes

Performance Metrics

Metric	Value
Mean Wait	2.8 min
95th Percentile	4.7 min
Target Compliance	98.45%

Final Results

• **Implement** optimal 2+2 configuration

Bayesian Simulation Results: Data Analysis

Raw Data Analysis

- Customer Arrivals (8:00-10:00):
 - Average: 40-45 customers/hour
 - Peak: Up to 70 customers/hour
 - Valley: As low as 20 customers/hour
- Service Time Analysis:
 - Experienced Staff: 3 minutes/customer (± 0.25 min)
 - New Staff: 4 minutes/customer (± 0.5 min)
 - Key Difference: New staff shows 33% longer service time with higher variance

System Performance

- Optimal Configuration Found:
 - 2 Experienced Staff (\$25/hour each)
 - 2 New Staff (\$18/hour each)
 - Total Hourly Cost: \$86
- Service Quality:
 - 98.45% probability of keeping wait times under 5 minutes
 - Majority of customers wait less than 3 minutes.

Traditional vs Bayesian Simulation: Final Comparison

Traditional Simulation

- Approach:
 - Fixed parameters
 - Point estimates
 - Deterministic constraints
- Results:
 - Optimal: 2 experienced staff
 - Cost: \$50/hour
 - Wait time: 2.45 min
- Limitations:
 - No uncertainty quantification
 - Less robust to variations
 - Limited insight into risks

Bayesian Simulation

- Approach:
 - Probabilistic parameters
 - Distribution estimates
 - Probabilistic constraints
- Results:
 - Optimal: $2 \exp + 2 \text{ new}$ staff
 - Cost: \$86/hour
 - 98.45% success probability
- Advantages:
 - Uncertainty quantification
 - More robust solutions
 - Better risk management

Key Insight: Bayesian approach suggests higher staffing levels but provides better service reliability

Thank You!

Thank You!