

UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO GENÉTICA E MELHORAENTO DE PLANTAS

PGM 848

AVANÇOS CIENTÍFICOS EM GENÉTICA E MELHORAMENTO DE PLANTAS I

VISÃO COMPUTACIONAL NO MELHORAMTENTO DE PLANTAS

Prof. Vinícius Quintão Carneiro

ROTEIRO DE ESTUDO ORIENTADO (REO) – 20/07/2020 a 31/07/2020

LISTA DE EXERCÍCIOS

Esta lista de exercício deve ser confeccionada pelos grupos do trabalho prático. Estes grupos deverão ser constituídos por grupos de 4 alunos. Para esta lista deve ser entregue o código com a solução dos exercícios e um relatório em Word apresentando os resultados obtidos. Todos os estudantes devem possuir no seu GITHUB a solução desta lista.

EXERCÍCIO 01:

Selecione uma imagem a ser utilizada no trabalho prático e realize os seguintes processos utilizando o pacote OPENCV do Python:

- a) Apresente a imagem e as informações de número de linhas e colunas; número de canais e número total de pixels;
- b) Faça um recorte da imagem para obter somente a área de interesse. Utilize esta imagem para a solução das próximas alternativas;
- c) Converta a imagem colorida para uma de escala de cinza (intensidade) e a apresente utilizando os mapas de cores "Escala de Cinza" e "JET";
- d) Apresente a imagem em escala de cinza e o seu respectivo histograma; Relacione o histograma e a imagem.
- e) Utilizando a imagem em escala de cinza (intensidade) realize a segmentação da imagem de modo a remover o fundo da imagem utilizando um limiar manual e o limiar obtido pela técnica de Otsu. Nesta questão apresente o histograma com marcação dos limiares utilizados, a imagem limiarizada (binarizada) e a imagem colorida final obtida da segmentação. Explique os resultados.
- f) Apresente uma figura contento a imagem selecionada nos sistemas RGB, Lab, HSV e YCrCb.
- g) Apresente uma figura para cada um dos sistemas de cores (RGB, HSV, Lab e YCrCb) contendo a imagem de cada um dos canais e seus respectivos histogramas.

- h) Encontre o sistema de cor e o respectivo canal que propicie melhor segmentação da imagem de modo a remover o fundo da imagem utilizando limiar manual e limiar obtido pela técnica de Otsu. Nesta questão apresente o histograma com marcação dos limiares utilizados, a imagem limiarizada (binarizada) e a imagem colorida final obtida da segmentação. Explique os resultados e sua escolha pelo sistema de cor e canal utilizado na segmentação. Nesta questão apresente a imagem limiarizada (binarizada) e a imagem colorida final obtida da segmentação.
- i) Obtenha o histograma de cada um dos canais da imagem em RGB, utilizando como mascara a imagem limiarizada (binarizada) da letra h.
- j) Realize operações aritméticas na imagem em RGB de modo a realçar os aspectos de seu interesse. Exemplo (2*R-0.5*G). Explique a sua escolha pelas operações aritméticas. Segue abaixo algumas sugestões.

Table. Available indices in FIELDimageR. Any other index can be implemented using the option myIndex and the new formula (FIELDimageR::fieldIndex).

Description	Index	Formula	Related traits	References
Brightness Index	BI	sqrt((R^2+G^2+B^2)/3)	Vegetation coverage, water content	Richardson and Wiegand (1977)
Soil Color Index	SCI	(R-G)/(R+G)	Soil color	Mathieu et al. (1998)
Green Leaf Index	GLI	(2*G-R-B)/(2*G+R+B)	Chlorophyll	Louhaichi et al. (2001)
Primary Colors Hue Index	HI	(2*R-G-B)/(G-B)	Soil color	Escadafal et al. (1994)
Normalized Green Red Difference Index	NGRDI	(G-R)/(G+R)	Chlorophyll, biomass, water content	Tucker (1979)
Spectral Slope Saturation Index	SI	(R-B)/(R+B)	Soil color	Escadafal et al. (1994)
Visible Atmospherically Resistant Index	VARI	(G-R)/(G+R-B)	Canopy, biomass, chlorophyll	Gitelson et al. (2002)
Overall Hue Index#	HUE	atan(2*(B-G-R)/30.5*(G-R))	Soil color	Escadafal et al. (1994)
Blue Green Pigment Index	BGI	B/G	Chlorophyll, LAI	Zarco-Tejada et al. (2005
Plant Senescence Reflectance Index	PSRI	(R-G)/(RE)	Chlorophyll, nitrogen, maturity	Merzlyak et al. (1999)
Normalized Difference Vegetation Index	NDVI	(NIR-R)/(NIR+R)	Chlorophyll, LAI, biomass, yield	Rouse et al. (1974)
Green Normalized Difference Vegetation Index	GNDVI	(NIR-G)/(NIR+G)	Chlorophyll, LAI, nitrogen, protein content, water content	Gitelson et al. (1996)
Ratio Vegetation Index	RVI	NIR/R	Biomass, water content, nitrogen	Pearson and Miller (1972
Normalized Difference Red Edge Index	NDRE	(NIR-RE)/(NIR+RE)	Chlorophyll	Gitelson and Merzlyak (1994)
Triangular vegetation index	TVI	0.5*(120*(NIR -G)-200*(R -G))	Green LAI, chlorophyll, canopy	Broge and Leblanc (2000
Chlorophyll vegetation index	CVI	(NIR*R)/(G^2)	Chlorophyll	Vincini et al. (2008)
Enhanced vegetation index	EVI	2.5*(NIR - R)/(NIR + 6*R - 7.5*B + 1)	Chlorophyll, biomass, nitrogen	Huete et al. (2002)
Chlorophyll index – green	CIG	(NIR/G) -1	Chlorophyll	Gitelson et al. (2003)
Chlorophyll index – red edge	CIRE	(NIR/RE) -1	Chlorophyll	Gitelson et al. (2003)
Difference Vegetation Index	DVI	NIR-RE	Nitrogen, chlorophyll	Jordan (1969)

[#] Index HUE was modified to capture better the soil color. Original equation: "atan(2*(R-G-B)/30.5*(G-B))" (Escadafal et al., 1994)