

Броење печурки (mushrooms)

Експертот за печурки Андреј истражува печурки што се карактеристични за Сингапур.

Како дел од неговото истражување, Андреј набрал n печурки означени од 0 до n-1. Секоја печурка е од еден од два вида, кои се именувани A и B.

Андреј знае дека **печурката** 0 **припаѓа на видот A**, но бидејќи двата вида имаат ист изглед, тој не го знае видот на печурките 1 до n-1.

За среќа, Андреј си има машина во својата лабораторија која може да му помогне во врска со ова. За користење на оваа машина, потребно е да се постават две или повеќе печурки во редица во внатрешноста на машината (во кој било редослед) и потоа да се вклучи машината. Потоа, машината го пресметува бројот на **соседни** парови од печурки кои се од различен вид. На пример, ако поставите печурки од видовите [A,B,B,A] (во тој редослед) во машината, резултатот ќе биде 2.

Сепак, со оглед на тоа дека оперирањето на машината е прилично скапо, машината може да се употреби ограничен број пати. Дополнително, вкупниот број на печурки поставени во машината низ сите употреби на истата не смее да надмине $100\ 000$. Искористете ја оваа машина за да му помогнете на Андреј да го најде бројот на печурки од видот A што ги набрал тој.

Имплементациски детали

Треба да ја имплементирате следнава процедура:

```
int count_mushrooms(int n)
```

- n: број на печурки што ги набрал Андреј.
- Оваа процедура се повикува точно еднаш, и треба да го врати бројот на печурки од видот А.

Горната процедура може да ја повикува следнава процедура:

```
int use_machine(int[] x)
```

- x: низа со должина помеѓу 2 и n (вклучително), која што ги опишува ознаките на печурките поставени во машината, во редослед на поставувањето.
- Елементите на x мора да бидат **различни** цели броеви од 0 до n-1 (вклучително).

- Нека d е должината на низата x. Тогаш, процедурата го враќа бројот на различни индекси j, такви што $0 \le j \le d-2$ и печурките x[j] и x[j+1] се од различни видови.
- Оваа процедура може да се повика најмногу $20\ 000$ пати.
- Вкупната должина на x што се предава на процедурата use_machine низ сите повици на истата не смее да надмине $100\ 000$.

Примери

Пример 1

Да разгледаме сценарио во кое што имаме 3 печурки од видовите [A,B,B], по редослед. Процедурата $count\ mushrooms\ ce\ повикува$ на следниот начин:

```
count_mushrooms(3)
```

Оваа процедура може да ја повика use_machine([0, 1, 2]), која што (во ова сценарио) враќа 1. Потоа таа може да ја повика use machine([2, 1]), која што враќа 0.

Во овој момент, има доволно информации за да се заклучи дека постои само 1 печурка од видот A. Па, процедурата $count_mushrooms$ треба да врати 1.

Пример 2

Да разгледаме сценарио во кое што имаме 4 печурки од видовите [A,B,A,A], по редослед. Процедурата $count_mushrooms$ се повикува вака:

```
count_mushrooms(4)
```

Оваа процедура може да ја повика $use_machine([0, 2, 1, 3])$, која што враќа 2. Потоа таа може да ја повика $use_machine([1, 2])$, која што враќа 1.

Во овој момент, има доволно информации за да се заклучи дека постојат 3 печурки од видот A. Според тоа, процедурата $count\ mushrooms\ треба$ да врати 3.

Ограничувања

• $2 \le n \le 20\ 000$

Бодување

Ако во кој било од тест случаите, повиците до процедурата $use_machine$ не се во согласност со правилата објаснети погоре, или ако повратната вредност на $count_mushrooms$ е неточна, резултатот на вашето решение ќе биде 0. Во спротивно, нека Q е максималниот број на

повици до процедурата use_machine низ сите тест случаи. Тогаш, резултатот ќе биде пресметан според следнава табела:

Услов	Резултат
$20\ 000 < Q$	0
$10~010 < Q \leq 20~000$	10
$904 < Q \leq 10\ 010$	25
$226 < Q \leq 904$	$rac{226}{Q} \cdot 100$
$Q \leq 226$	100

Во некои тест случаи однесувањето на оценувачот е адаптивно. Ова значи дека во овие тест случаи оценувачот нема фиксна низа од видови на печурки. Наместо тоа, одговорите што ги дава оценувачот може да зависат од претходните повици до use_machine. Но, се гарантира дека оценувачот одговара на таков начин што после секоја интеракција постои барем една низа од видови на печурки што е конзистентна со сите одговори дадени до тогаш.

Пример оценувач

Пример оценувачот чита низа s од цели броеви што ги дава видовите на печурките. За секое $0 \le i \le n-1$, s[i]=0 означува дека видот на печурката i е A, додека s[i]=1 означува дека видот на печурката i е B. Пример оценувачот го чита влезот во следниот формат:

- линија 1: п
- ullet линија 2: s[0] s[1] \dots s[n-1]

Излезот од пример оценувачот е во следниот формат:

- линија 1: повратната вредност на count mushrooms.
- линија 2: бројот на повици до use machine.

Да забележиме дека пример оценувачот не е адаптивен.