χ^2 test for multinomial data (part 2)

Lecture 17a (STAT 24400 F24)

1/12

Type of hypotheses for two-way tables

Hypothesis tests with equality constraints:

- On-campus students are twice as likely to be on a tennis team, compared to off-campus students.
- Housing preferences are the same for varsity vs intramural tennis.

Notes In practice we may be more interested in testing inequalities:

- On-campus students are more likely than off-campus students to be on the varsity tennis team.
- For on-campus students, varsity tennis is more popular than intramural tennis.

However, generalized LRT / Pearson's χ^2 cannot test such questions.

Two-way tables

In a two-way table, the data has the format:

	Col. 1	Col. 2		Col. <i>c</i>	Total
Row 1	X ₁₁	X ₁₂		X_{1c}	X_{1*}
Row 2	X_{21}	X_{22}		X_{2c}	X_{2*}
Row r	X_{r1}	X_{r2}		X_{rc}	X_{r*}
Total	X_{*1}	X _{*2}		X _{*c}	n

Example:

	Varsity	Intramural	Not on any
	tennis team	tennis team	tennis team
Students living on campus	32	22	102
Students living off campus	20	35	71

2/12

Testing independence

A common question for two-way tables—

Are row assignment & column assignment independent?

In other words, which row an individual belongs to, is independent from which column they belong to.

Examples:

- Row = live on/off campus,
 - col. = varsity tennis / IM tennis / none.
 - → testing if housing preference is the same in all 3 groups
- Row = vaccinated or unvaccinated,
 - col. = zip code of residence.
 - \rightsquigarrow testing if vaccination rate is the same in every zip code
- Row = patient age range,
 - col. = did the drug remove the infection.
 - ★ testing if the drug is equally effective for each age range

Testing independence

How to write independence as a constraint on parameters?

 $p_{ij} = \mathbb{P}(\text{an individual is assigned to row } i \& \text{ to col. } j)$ $= \mathbb{P}(\text{assigned to row } i) \cdot \mathbb{P}(\text{assigned to col. } j) = \mathbf{p}_i^R \cdot \mathbf{p}_i^C$ if independence is true

Reparameterize:

- Let $p_i^R = \mathbb{P}(\text{an individual is assigned to row } i)$
- Let $p_i^C = \mathbb{P}(\text{an individual is assigned to col. } j)$

5/12

7 / 12

Testing independence

Under the hypothesis of independence:

$$H_0: p_{ii} = p_i^R \cdot p_i^C$$
 for all i, j

What is the dimension d_0 for the null?

- r row probability param.'s p_1^R,\ldots,p_r^R with constraint $\sum_i p_i^R=1$ $\leadsto r-1$ free param.'s
- c row probability param.'s p_1^C, \ldots, p_c^C with constraint $\sum_i p_i^C = 1$ $\rightsquigarrow c-1$ free param.'s

$$\Rightarrow$$
 Total = $d_0 = (r-1) + (c-1)$

For the χ^2 test, the d.f. is

$$d - d_0 = (rc - 1) - ((r - 1) + (c - 1)) = (r - 1) \cdot (c - 1)$$

Testing independence

The hypothesis of independence (the null H_o)

$$H_0: p_{ij} = p_i^R \cdot p_j^C$$
 for all i, j
 $H_1: p_{ij} \neq p_i^R \cdot p_j^C$ for some i, j

What is the total dimension d?

ullet rc probability parameters p_{ij} with constraint $\sum_{ij} p_{ij} = 1$

$$\Rightarrow d = rc - 1$$

6/12

MLE for testing independence

Calculating the MLE under H_0 : (notation: $\prod_{ij} = \prod_{i} \prod_{j} = \prod_{i} \prod_{j}$)

Likelihood =
$$\frac{n!}{\prod_{ij} X_{ij}!} \cdot \prod_{ij} p_{ij}^{X_{ij}} = \frac{n!}{\prod_{ij} X_{ij}!} \cdot \prod_{ij} (p_i^R \cdot p_j^C)^{X_{ij}}$$

$$= \frac{n!}{\prod_{ij} X_{ij}!} \cdot \prod_{ij} (p_i^R)^{X_{ij}} \cdot \prod_{ij} (p_j^C)^{X_{ij}}$$

$$= \frac{n!}{\prod_{ij} X_{ij}!} \cdot \prod_{i} (p_i^R)^{X_{i*}} \cdot \prod_{j} (p_j^C)^{X_{*j}}$$

$$= \frac{n!}{\prod_{ij} X_{ij}!} \cdot \prod_{i} (p_i^R)^{X_{i*}} \cdot \prod_{j} (p_j^C)^{X_{*j}}$$

$$= \frac{n!}{\prod_{ij} X_{ij}!} \cdot \prod_{i} (p_i^R)^{X_{i*}} \cdot \prod_{j} (p_j^C)^{X_{*j}}$$

max achieved at $\hat{\rho}_i^R = \frac{X_{i*}}{n}$ max achieved at $\hat{\rho}_j^C = \frac{X_{*j}}{n}$

max achieved at
$$\hat{p}_j^C = \frac{X_{*j}}{n}$$

Back to original parameters $\Rightarrow \hat{p}_{ij} = \hat{p}_i^R \hat{p}_j^C = \frac{X_{i*}}{n} \cdot \frac{X_{*j}}{n}$

8/12

Example

Test H_0 = independence of rows & columns:

	Varsity	Intramural	Not on any	
	tennis team	tennis team	tennis team	
On campus	32	22	102	
Off campus	20	35	71	

• MLE under H_0 :

Rows:
$$\hat{p}_{on} = \frac{32 + 22 + 102}{282} = 0.5532, \ \hat{p}_{off} = \frac{20 + 35 + 71}{282} = 0.4468$$

$$\text{Columns: } \hat{p}_{\text{varsity}} = \frac{32 + 20}{282} = 0.1844, \ \hat{p}_{\text{IM}} = \frac{22 + 35}{282} = 0.2021, \ \hat{p}_{\text{none}} = 0.6135$$

• Expected counts under H_0 :

	Varsity	Intramural	Not on any
	tennis team	tennis team	tennis team
On campus	$n \cdot \hat{p}_{\text{on}} \cdot \hat{p}_{\text{varsity}} = 28.77$	$n \cdot \hat{p}_{\text{on}} \cdot \hat{p}_{\text{IM}} = 31.53$	$n \cdot \hat{p}_{\text{on}} \cdot \hat{p}_{\text{none}} = 95.70$
Off campus	$n \cdot \hat{p}_{\text{off}} \cdot \hat{p}_{\text{varsity}} = 23.23$	$n \cdot \hat{p}_{\text{off}} \cdot \hat{p}_{\text{IM}} = 25.47$	$n \cdot \hat{p}_{\text{off}} \cdot \hat{p}_{\text{none}} = 77.30$

9/12

Table format (cautionary cases)

<u>Caution</u>—multinomial data can be displayed in multiple different ways, and we should be careful to interpret them correctly.

These three data sets are all the same:

	Pos	Neg
IL	10	90
NY	30	100

	Pos	Total
IL	10	100
NY	30	130

	Pos	Neg	Total
IL	10	90	100
NY	30	100	130

- Only the first one is in the correct format for multinomial tests— Each individual in the data set appears in exactly one cell of the table
- In this example, r = 2 and c = 2

Example

Run Pearson's χ^2 test at level $\alpha = 0.05$:

Observed counts Oii

Expected counts E_{ii}

	Varsity	IM	None
On campus	32	22	102
Off campus	20	35	71

		Varsity	IM	None
On ca	ampus	28.77	31.53	95.70
Off c	ampus	23.23	25.47	77.30

Test statistic:

$$X^{2} = \sum_{ii} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \frac{(32 - 28.77)^{2}}{28.77} + \frac{(22 - 31.53)^{2}}{31.53} + \dots = 8.190259$$

Calculate d.f.:

$$d = rc - 1 = 2 \cdot 3 - 1 = 5$$
, $d_0 = (2 - 1) + (3 - 1) = 3$, $d - d_0 = 2$

$$\rightarrow$$
 p-value = 1 - $F_{\chi_2^2}(8.190259) = 0.01665 \Rightarrow$ reject H_0

10 / 12

Table format (invalid cases)

Another type of format that is *NOT* multinomial:

	Use bikeshare?	Use rideshare?	Use both?	Total
On campus	40	80	30	95
Off campus	45	40	35	60

the same individual may appear in multiple columns

A multinomial format for the same data:

	Bikeshare only	Rideshare only	Use neither	Use both
On campus	10	50	5	30
Off campus	10	5	10	35