

Understanding Traffic

Anvita Nagireddi, Jenna Odom, Rankin Odister, Vaish Pulla

AGENDA

- Overview of the dataset
- Exploratory analysis
- Evaluation metrics
- K Nearest Neighbors
- Multiple Regression Models
- Arima Model

Traffic Dataset

- Traffic Prediction Data Set
- Columns: Time Date Day of the week CarCount BikeCount BusCount TruckCount Total Traffic Situation
- Potential Uses: transportation planning, congestion management, and traffic flow analysis.
- Important Notes: Traffic often changes based on the time of day on a specific day of the week. Thus, for this reason some form of categorization of the data may be beneficial.
- Kaggle description:

Exploratory Data Analysis

- Covariance
- Correlation
- Mean
- Median
- Standard deviation

Exploratory Data Analysis

- Correlation (Continued)
- Time variables
- Clear Correlation
 between variables that
 are related to time
 with regards to how it
 impacts traffic
 situation.
- Indicates that the time feature may be of importance considering different models

K Nearest Neighbors

Pairplot: Explored pairwise relationships among features and the target variable ('Total').

Distribution Plot: Examined the distribution of the target variable.

Correlation Heatmap: Visualized correlations among numeric columns, including non-numeric ones.

Box Plots: Investigated the relationship between each feature and the target variable.

Made predictions on both the training and testing sets.

Calculated R2 Scores for training and testing to evaluate model performance. (Training R2 Score: 0.9985725315666825 Testing R2 Score: 0.9977704145531208)

Displayed the evaluation metrics, showing the goodness of fit of the model.

Computed and visualized the correlation matrix.

Visualized the covariance matrix.

Analyzed relationships and patterns among variables

Multiple Regression Models

Linear, Quadratic, Cubic

Comparing count of automobile types on road vs. traffic situation
In the creation of these models, time was held constant which may explain poor fit.

Linear Regression

Coefficient indicates that 'CarCount', 'BikeCount', 'BusCount', 'TruckCount' all have an impact upon the Y-variable ('Traffic Situation'), but BusCount' and 'TruckCount' have a significantly larger impact per unit on the road in relation to the Traffic Variable

R^2 Values indicate that only a little over half of the x-variables' variation is captured by the model, in either training or testing format

```
Linear Regression

Coef = [0.00817537 0.00794831 0.02938121 0.04661421]

Intercept = -0.5084693064704002

Training R^2 = 0.5871946462014692

Testing R^2 = 0.5666406064788108
```

Quadratic Regression

R^2 Values indicate that only a little over half of the x-variables' variation is captured by the model, in either training or testing format

This is very close to the previous model's, but it is minutely lesser in capturing the variation of the X-variables.

Quadratic Regression Training R^2 = 0.5629358150134136 Testing R^2 = 0.5511084542908786

Cubic Regression

R^2 Values indicate that only a little over two-thirds of the x-variables' variation is captured by the model, in either training or testing format.

This is definitely better than the previous two regression models.

```
Cubic Regression
Training R^2 = 0.6671459670285883
Testing R^2 = 0.6637118406257296
```


ARIMA (p,d,q)

AR (Auto Regressive) - model linearly regressed on its own past values allows for the consideration of seasons (week to week)

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \epsilon_t$$

I (Integrated) - considers the difference between each time period

$$\delta y_t = y_t + y_{t-1}$$

MA (Moving Average): Considers the errors from previous prediction errors

ARIMA (p,d,q)

- pmdarima package
- Coefficient of determination is not appropriate because it is a time series.
- used stepwise function to optimize pdq and minimize AIC
- seasonality measured into the model
- To interpret the effectiveness used the AIC - Akaike Information Criterion

Training

Dep. V	ariable:		у	No. C	bservati	ions:	2231
	Model:	SARIM	AX(0, 0, 1)	Lo	g Likelil	nood -	-2652.773
	Date:	Tue, 28	Nov 2023			AIC	5311.547
	Time:		12:12:24			BIC	5328.677
S	Sample:		0		H	IQIC	5317.802
			- 2231				
Covarianc	e Type:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
intercept	1.3263	0.019	69.494	0.000	1.289	1.364	
ma.L1	0.0361	0.021	1.720	0.085	-0.005	0.077	
sigma2	0.6314	0.021	30.069	0.000	0.590	0.673	
Ljung-	-Box (L1)	(Q): 0	.00 Jarq	ue-Bera	a (JB):	118.50	
	Prol	b(Q): 0	.96	Pro	b(JB):	0.00	
Heteroske	dasticity	/ (H) : 1	.08	!	Skew:	0.56	
Prob(H)	(two-sic	ded): 0	.30	Kur	tosis:	2.94	

Testing Results

Dep. Variable:	Traffic Situation	No. Observations:	744
Model:	SARIMAX(0, 0, 1)	Log Likelihood	-1251.800
Date:	Tue, 28 Nov 2023	AIC	2507.601
Time:	12:41:06	BIC	2516.820
Sample:	0	HQIC	2511.155
	- 744		
Covariance Type:	ona		

	coef	std err	z	P> z	[0.025	0.975]
ma.L1	0.5172	0.037	13.920	0.000	0.444	0.590
sigma2	1.7089	0.097	17.607	0.000	1.519	1.899
Ljung-Box (L1) (Q): 161.38 Jarque-Bera (JB): 12.23						
	Pr	ob(Q):	0.00		Prob(JB	0.00
Heteros	kedastici	ity (H):	0.99		Skev	v: 0.26
Prob(H) (two-s	sided):	0.92		Kurtosis	s: 2.64

Summary of ARIMA Model

Training AIC: 5311.547

Testing AIC: 2516.820

ARIMA

- Notes about this model
- It seems to be a poor fit to the model as it is arrange right now as the Q-Q Norm Plot is not linear.
- Further improvements to the way seasonality is measured within the model may be beneficial.
- Currently with the way the model is fit it doesn't predict future data effectively.

Thank you! See you again soon!