Unbiased estimates for linear regression via volume sampling

Michał Dereziński and Manfred Warmuth

UCSC, Applied Math Seminar, 10-9-17

Outline

Introduction

Overview of Results

Main Proof Method

Further Research Directions

Proof of Loss Expectation Formula

Appendix

Linear regression

Optimal solution

$$w^* = \underset{w}{\operatorname{argmin}} \sum_{i} (x_i w - y_i)^2$$

How many labels needed to get close to optimum?

- All x_i given
- But labels y_i unknown

Guess how many needed?

How many labels needed to get close to optimum?

- All x_i given
- But labels y; unknown

Guess how many needed?

Answer: 1 label

How good is 1 label?

Loss of estimate $= 2 \times Loss$ of optimum

- x_{max} (furthest from 0) is bad
- any deterministic choice is bad

$$\mathbb{E}_{i} \sum_{j} (\frac{y_{i}}{x_{i}} x_{j} - y_{j})^{2} = 2 \sum_{j} (w^{*}x_{j} - y_{j})^{2}$$

$$\mathbb{E}_{i} w_{i}^{*} = \sum_{i} \frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}} \frac{y_{i}}{x_{i}} = w^{*}$$

- x_{max} (furthest from 0) is bad
- any deterministic choice is bad

$$\mathbb{E}_{i} \sum_{j} (\underbrace{\frac{y_{i}}{x_{i}}}_{w_{i}^{*}} x_{j} - y_{j})^{2} = 2 \sum_{j} (w^{*}x_{j} - y_{j})^{2}$$

$$\mathbb{E}_{i} w_{i}^{*} = \sum_{i} \underbrace{\frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}}}_{i} \underbrace{\frac{y_{i}}{x_{i}}}_{w_{i}^{*}} = w^{*}$$

- x_{max} (furthest from 0) is bad
- any deterministic choice is bad

$$\mathbb{E}_{i} \sum_{j} (\underbrace{\frac{y_{i}}{x_{i}}}_{w_{i}^{*}} x_{j} - y_{j})^{2} = \underbrace{2}_{j} \sum_{j} (w^{*}x_{j} - y_{j})^{2}$$

$$\mathbb{E}_{i} w_{i}^{*} = \underbrace{\sum_{i} \frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}}}_{y_{i}^{*}} \underbrace{\frac{y_{i}}{x_{i}}}_{w_{i}^{*}} = w^{*}$$

- x_{max} (furthest from 0) is bad
- any deterministic choice is bad

$$\mathbb{E}_{i} \sum_{j} (\underbrace{\frac{y_{i}}{x_{i}}}_{x_{j}} x_{j} - y_{j})^{2} = 2 \sum_{j} (w^{*}x_{j} - y_{j})^{2}$$

$$\mathbb{E}_{i} w_{i}^{*} = \sum_{i} \underbrace{\frac{x_{i}^{2}}{\|\mathbf{x}\|^{2}}}_{i} \underbrace{\frac{y_{i}}{x_{i}}}_{x_{i}} = w^{*}$$

Given: n points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$

Goal: Minimize loss $L(\mathbf{w}) = \sum_{i} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i})^{2}$ over all n points

Strategy: Solve subproblem (X_5, y_5) , obtaining:

$$\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = \mathbf{X}_S^{+\top} \mathbf{y}_S$$
$$\mathbf{X}_S^+ = \mathbf{X}_S^\top (\mathbf{X}_S \mathbf{X}_S^\top)^{-1} - \text{pseudo-inverse of } \mathbf{X}_S$$

Given: n points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$

Select
$$S = \{4, 6, 9\}$$

Receive y_4, y_6, y_9

Goal: Minimize loss $L(\mathbf{w}) = \sum_{i} (\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i})^{2}$ over all n points

Strategy: Solve subproblem (X_S, y_S) , obtaining:

$$\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = \mathbf{X}_S^{+\top} \mathbf{y}_S$$
$$\mathbf{X}_S^+ = \mathbf{X}_S^\top (\mathbf{X}_S \mathbf{X}_S^\top)^{-1} - \text{pseudo-inverse of } \mathbf{X}_S$$

Given: n points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$

Select
$$S = \{4, 6, 9\}$$

Receive y_4, y_6, y_9

Goal: Minimize loss $L(\mathbf{w}) = \sum_{i} (\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i})^{2}$ over all n points

Strategy: Solve subproblem (X_5, y_5) , obtaining:

$$\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = \mathbf{X}_S^{+\top} \mathbf{y}_S$$
$$\mathbf{X}_S^+ = \mathbf{X}_S^\top (\mathbf{X}_S \mathbf{X}_S^\top)^{-1} - \text{pseudo-inverse of } \mathbf{X}_S$$

Given: n points $\mathbf{x}_i \in \mathbb{R}^d$ with hidden labels $y_i \in \mathbb{R}$

Select
$$S = \{4, 6, 9\}$$

Receive y_4, y_6, y_9

Goal: Minimize loss $L(\mathbf{w}) = \sum_{i} (\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i})^{2}$ over all n points

Strategy: Solve subproblem (X_S, y_S) , obtaining:

$$\mathbf{w}^*(S) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in S} (\mathbf{x}_i^\top \mathbf{w} - y_i)^2 = \mathbf{X}_S^{+\top} \mathbf{y}_S$$
$$\mathbf{X}_S^+ = \mathbf{X}_S^\top (\mathbf{X}_S \mathbf{X}_S^\top)^{-1} \quad \text{- pseudo-inverse of } \mathbf{X}_S$$

Claim

There is no good deterministic algorithm for selecting d labels.

1-dimensional example:

$$egin{array}{lll} \mathbf{X} &= egin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & & \mathbf{x}_n \ \mathbf{1} & 1 & \cdots & 1 \end{pmatrix} \ \mathbf{y}^ op &= egin{pmatrix} 0 & 1 & \cdots & 1 \end{pmatrix} \end{array}$$

 $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_n$ Deterministic pick $S = \{1\}$, receive $y_1 = 0$ $\mathbf{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}$ Deterministic predictor $\mathbf{w}^*(\{1\}) = 0$ Optimal predictor $\mathbf{w}^* = \frac{n-1}{n} = 1 - \frac{1}{n}$

$$L(\mathbf{w}^*(\{1\})) = n L(\mathbf{w}^*)$$

$$\frac{n-1}{n}$$

$$\frac{n-1}{n}$$

With uniform choice of S: |S| = 1, $\mathbb{E}[L(\mathbf{w}^*(S))] = 2L(\mathbf{w}^*)$

Claim

There is no good deterministic algorithm for selecting d labels.

1-dimensional example:

$$\mathbf{X} = egin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & & \mathbf{x}_n \ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$\mathbf{y}^{ op} = egin{pmatrix} 0 & 1 & \cdots & 1 \end{pmatrix}$$

Deterministic pick $S = \{1\}$, receive $y_1 = 0$

Deterministic predictor $\mathbf{w}^*(\{1\}) = 0$

Optimal predictor $\mathbf{w}^* = \frac{n-1}{n} = 1 - \frac{1}{n}$

$$L(\mathbf{w}^*(\{1\})) = n L(\mathbf{w}^*)$$

$$\frac{n-1}{n}$$

With uniform choice of S: |S| = 1, $\mathbb{E}[L(\mathbf{w}^*(S))] = 2L(\mathbf{w}^*)$

Our Result

Claim

There is no good deterministic algorithm for selecting d labels.

1-dimensional example:

$$\mathbf{X}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_n$$
 Deterministic pick $S = \{1\}$, receive $\mathbf{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}$ Deterministic predictor $\mathbf{w}^*(\{1\}) = 0$

$$\mathbf{y}^{ op} = egin{pmatrix} 0 & 1 & \cdots & 1 \end{pmatrix}$$

Deterministic pick $S = \{1\}$, receive $y_1 = 0$

Optimal predictor $\mathbf{w}^* = \frac{n-1}{n} = 1 - \frac{1}{n}$

$$L(\mathbf{w}^*(\{1\})) = n L(\mathbf{w}^*)$$

$$\frac{n-1}{n}$$

With uniform choice of S: |S| = 1, $\mathbb{E}[L(\mathbf{w}^*(S))] = 2L(\mathbf{w}^*)$

Claim

There is no good deterministic algorithm for selecting d labels.

1-dimensional example:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & & \mathbf{x}_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$\mathbf{y}^{ op} = egin{pmatrix} 0 & 1 & \cdots & 1 \end{pmatrix}$$

 $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_n$ Deterministic pick $S = \{1\}$, receive $y_1 = 0$ $\mathbf{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}$ Deterministic predictor $\mathbf{w}^*(\{1\}) = 0$

Optimal predictor $\mathbf{w}^* = \frac{n-1}{n} = 1 - \frac{1}{n}$

$$L(\mathbf{w}^*(\{1\})) = n L(\mathbf{w}^*)$$

$$\frac{n-1}{n}$$

With uniform choice of S: |S| = 1, $\mathbb{E}[L(\mathbf{w}^*(S))] = 2L(\mathbf{w}^*)$

Our Result

Towards Volume Sampling

Instances with larger norm $\|\mathbf{x}\|^2$ are more informative What generalizes $\|\mathbf{x}\|^2$?

Volume Sampling¹

Generalize norms to sets of examples

Distribution over all *d*-element subsets *S*:

$$P(S) = \det(\mathbf{X}_S \mathbf{X}_S^\top) / Z$$

Also well defined for any $|S| \ge d$.

Note: Normalization factor Z can be derived using Cauchy-Binet formula:

$$Z = \sum_{S:|S|=d} \det(\mathbf{X}_S \mathbf{X}_S^\top) = \det(\mathbf{X} \mathbf{X}^\top)$$

$$\mathbf{X}_{S} = \left(\begin{array}{ccc} | & | \\ \mathbf{x}_{i} & \mathbf{x}_{j} \\ | & | \end{array}\right)$$

 $det(\mathbf{X}_{S}\mathbf{X}_{S}^{\top}) =$ **squared** volume of parallelepiped $\mathcal{P}(\mathbf{x}_{i}, \mathbf{x}_{i})$

¹Deshpande, Rademacher, Vempala, Wang. 2006

Volume Sampling¹

Generalize norms to sets of examples

Distribution over all *d*-element subsets *S*:

$$P(S) = \det(\mathbf{X}_S \mathbf{X}_S^\top) / Z$$

Also well defined for any $|S| \ge d$.

Note: Normalization factor Z can be derived using Cauchy-Binet formula:

$$Z = \sum_{S:|S|=d} \det(\mathbf{X}_S \mathbf{X}_S^\top) = \det(\mathbf{X} \mathbf{X}^\top)$$

$$\mathbf{X}_{S} = \left(\begin{array}{cc} | & | \\ \mathbf{x}_{i} & \mathbf{x}_{j} \\ | & | \end{array} \right)$$

 $det(\mathbf{X}_{S}\mathbf{X}_{S}^{\top}) =$ **squared** volume of parallelepiped $\mathcal{P}(\mathbf{x}_{i}, \mathbf{x}_{j})$

¹Deshpande, Rademacher, Vempala, Wang. 2006

How many examples needed?

We will show that using volume sampling, d labels suffice to achieve a multiplicative approximation

Thm: For any full rank matrix **X**, d-1 labels do not suffice

Proof idea: Adversary has freedom to set the label of one additional point while $L(\mathbf{w}^*) = 0$ and algorithm has positive loss

Outline

Introduction

Overview of Results

Main Proof Method

Further Research Directions

Proof of Loss Expectation Formula

Appendix

Main results

For a volume-sampled d-element set S,

$$\mathbb{E}\left[L(\mathbf{w}^*(S))\right] = (d+1) L(\underbrace{\mathbf{w}^*}_{\mathbb{E}[\mathbf{w}^*(S)]},$$

if X is in general position

- Sampling distribution does not depend on the labels
- ► No range restrictions! **No dependence on** *n*

Recall model:

- Adversary picks X
- Learner picks subset of label indices
- Adversary picks all labels

Main Results in a Picture

