大学物理AI考试题A卷

2021年6月23日9:50-11:50

班级			学号			姓名			
	i姓名								
) 上又 I		斗	斗質 2	斗符 2	斗質 4	斗符 5	当 八	
得分	选择题	填空题	计算 1	计算 2	71 异 3	计算4	计算 5	总分	
14.11									
可能用到的数据:									
普适气体常量 $R = 8.31 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$, 玻耳兹曼常量 $k = 1.38 \times 10^{-23} \text{ J·K}^{-1}$ 万有引力常量 $G = 6.67 \times 10^{-11} \text{ N·m}^2 \cdot \text{kg}^{-2}$, 地球平均半径 $R_{\text{E}} = 6.37 \times 10^6 \text{ m}$									
刀角刀刀	7市里 G -	0.07 × 10	IN·III ·Kg	, IEIA	1 均十任	KE – 0.37	× 10 III		
一、选择题 (共 24 分 每题 3 分)									
1. (3分) 一质点在平面上运动,已知质点位置矢量的表示式为 $\vec{r} = at^2\vec{i} + bt^2\vec{j}$ (其中 a									
b 为常数),则该质	点作							
(A) 抛物线运动;			(B)	(B) 匀速直线运动;					
(C) 变速直线运动;			(D)	(D) 一般曲线运动。			[
2. (3 分) 一质点同时在几个力的作用下的位移为: $\Delta \vec{r} = 5\vec{i} + 6\vec{j}$ [SI],其中一个力是									
恒力 $\vec{F} = -4\vec{i} + 5\vec{j} + 9\vec{k}$ [SI]。则此力在该位移过程中所作的功为									
(A) 50J;			(B) 10J;	;					
(C) 25J;	(C) $25J;$ (D)			D) 75J。			[-	
3. (3 分))如图所表	r ,以一定	的角速度	ω 转动的	圆柱与静」	上的另一圆	柱的侧面 ⁶	慢慢相接	
触,因摩	擦而带动,	稳定后以	相同的线	速度绕各自	自轴转动,	忽略接触	过程中转轴	曲的移动,	
在此过程	皇中两圆柱	组成的系统	充的(这里	! 角动量是	指相对于	其中任一车	转轴的角 动	量)	
(A) 动量守恒,角动量不守恒;						$ \omega$			
(B) 动量守恒, 角动量守恒;									
(C) 动量	不守恒,汽	角动量不包	ř恒 ;			Ţ			
(D) 动量	不守恒,角	角动量守恒	Ī o					-	

二、填空题 (共30分)

9. (3 分)如图所示,水平桌面上放置 A、B 两物体,用一根不可伸长的绳索按如图的
装置把它们连接起来, O 点与桌面固定,已知物体 A 的加速度为 $0.5g(g)$ 为重力加速度),
则物体 B 的加速度为。 $ \begin{array}{c} B \\ \hline 0 \\ \hline 0.5g \end{array} $
10. $(4 \mathcal{G})$ 如图所示,一水平悬挂的均匀细棒 AB 质量为 M 。若剪断悬挂棒 B 端的绳子
BC ,则棒 AB 在竖直面内绕过 A 点的固定轴转动。则剪
断 BC 瞬间,细棒质心的加速度为; 竖直 D C
杆 AD 对棒作用力的大小为。(设重力加 A
速度为 g)
11. (3 分) 如图所示, 一质量为 <i>m</i> 、长为 2 <i>l</i> 匀质细棒,
以与棒长方向相垂直的速度 v ,在光滑水平面内平动时,与
前方一固定支点 0 发生完全非弹性碰撞,碰撞点位于距离
棒的一端 1/2 处;则细棒在碰撞后的瞬时,绕 0 点转动的
角速度为。
12. (4分) 2 mol 水蒸汽(为刚性分子理想气体)处于平衡状态,其分子按速率的分布
遵从麦克斯韦速率分布函数 $f(v)$, 其最概然速率为 v_p 、其摩尔质量为 M_{mol} ,试用所给物
理量及符号表示:水蒸汽系统速率 $v < v_p$ 的分子的平均速率为,该水蒸
汽系统的内能为。
13. (3分)如图所示,气缸的侧壁绝热,上面有一个绝热活塞,底板 ■
可自由导热。中间可自由滑动的绝热隔板把汽缸分为A,B两室,它
们各盛有 1mol 理想氮气。现将 500J 热量由底部缓缓传给气体,最上
面的活塞始终保持 $1atm$ 的压强。则 A 室内气体的温度变化了
K, B室内气体的温度变化了K。
14. (3 分) 在一个大气压下,一导热桶内放有 3.5kg 水和 0.5kg 冰的混合物,处于温度
为 0°C 平衡态,已知冰的熔化热λ=334J/g。将桶置于比 0°C 稍低的房间中使桶内达到水
和冰质量相等的平衡态。此过程中冰水混合物的熵变为J/K,冰水混
合物、桶和房间的总熵变为J/K。

15. (4分) 如图所示,O 和 N 为二相干波源(设初相分别为 φ_1 、 φ_2),假设它们能发出向各个方向传播的平面简谐波,其波长都为 $\lambda=10$ cm,其振幅分别为 $A_1=4$ cm, $A_2=3$ cm;已知 ON = 40cm,OM = 30cm。

(1)设 $\varphi_1=\pi/3$, $\varphi_2=4\pi/3$,则 M 点的振辐 A=______cm; (2)设 $\varphi_1=\varphi_2$,连线 OM 上(包括两端点)因干涉而振幅极 大的点的位置有 r=______cm(r 为 离开 O 点的距离,可以有多个答案)。

16.(3 分)如图所示,波长 λ =600nm 的单色光垂直照射在油膜上,观察反射光干涉条 纹。已知油膜的折射率 n_1 =1.2,玻璃的折射率 n_2 =1.5,

h=1200nm。能观察到干涉明条纹的条数为______; 油膜扩散时,干涉明条纹的数量_______(填增 多、减少或不变)

17. (3分)要使一束线偏光通过偏振片后,振动方向转 90°至少需要_____块理想偏振片,在此情况下,透射光强最多是原来光强的_______倍。

三、计算题 (共 46 分)

18.(10分)唱机的转盘绕着通过盘心的固定竖直轴转动,唱片放上去后将受转盘摩擦力的作用而随转盘转动,如图所示。设唱片为半径为R、质量为m的均匀圆盘,唱片和转盘间的摩擦系数为 μ k,转盘以角速度 ω 匀速转动。求:(1)唱片刚被放到唱盘上去时

受到的摩擦力矩为多大? (2) 唱片达到角速度 ω 需要多长时间? 在这段时间内,转盘保持角速度 ω 不变,驱动力矩共做了多少功? 唱片获得了多大的动能?

19(10 分)如图所示是某理想气体循环过程的 V–T 图。已知该气体的定压摩尔热容 $C_{P, m}$ =2.5R, 定体摩尔热容 $C_{V, m}$ =1.5R, V_c = 2 V_a ,且 ab 延长线通过原点 0。

- (1) 画出气体循环过程的 P-V 图;
- (2) 求循环过程的循环效率。

20.(10 分)一列沿 x 轴正方向传播的平面简谐波在 t_1 =0 和 t_2 =0.25s 时刻的波形曲线如图所示(此间波向前传播了不到一个波长的距离)。求: v_{\blacktriangle}

- (1) P处质元的振动方程;
- (2) 该简谐波的波函数。

21. $(10 \, f)$ 波长 λ =6000Å 单色平行光垂直照射在双缝上,如图所示, s_1 、 s_2 双缝到 OO'连线的距离均为 d=1.5mm,双缝至屏的距离 D = 2m,缝宽比 d 小得多。求:

- (1) 如果上缝 s_1 处覆盖一厚度为 5×10^{-6} m,折射率为 n 的薄膜,则条纹向什么方向移动?若发现第 5 级明条 纹恰好移到 O 点处,薄膜的折射率是多少?
- (2)若在双缝后放置一主光轴与 OO'连线重合的薄透镜,并在 s_1 、 s_2 中间开一条同样的狭缝,透镜焦距 f=1.5m,求位于透镜焦平面的屏上离中央 O 点最近的第一个极小的 x 坐标(只写出正值)。

22. (6分) 房间内有一按可逆卡诺循环工作的空调机,在连续工作时,每秒对该机作 W 焦耳的功。夏天该机从室内吸热释放至室外以降低室温。已知当室内、室外的温差为 ΔT 时,每秒由室外漏入室内的热量 $Q=A\Delta T$,A 为一常数。设室外的温度恒定为 T_1 ,夏天该机连续工作时,室内能维持的稳定温度 T_2 为何值?