Calcul différentiel

7 octobre 2014

Table des matières

1	$\mathbf{Cal}_{\mathbf{c}}$	cul variationnel	2
	1.1	Cas scalaire	2
		Courbes paramétrées	

Calcul variationnel 1

1.1 Cas scalaire

Ici: recherche d'optimum non plus dans un espace de réels, mais dans un espace de fonctions. On cherche y^* tel que:

$$I(y^*) = \min_{y \in \mathcal{F}} I(y)$$

Considérons $y:[x_1,x_2]\to\mathbb{R}$ et $L:[x_1,x_2]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$. Parmis tous les y, dérivable et tel que $y(x_1)=y_1$ et $y(x_2) = y_2$, trouver la courbe minimisant :

$$I(y) = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$$
 (P)

Théorème: Euler-Lagrange

Si $y \in \mathcal{C}^1[x_1, x_2]$ minimise $\int_{x_1}^{x_2} L(x, y, y') dx$ parmi toutes les fonctions telles que $y(x_1) = y_1$ et $y(x_2) = y_2$ où $L \in \mathcal{C}^2$, alors y satisfait :

$$\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0$$

Idée de la démonstration : On prend y minimisant I, et on pose $Y = y + \varepsilon \eta$, avec $\eta(x_1) = \eta(x_2) = 0$, puis on reprend I dépendant de ε . I est minimal pour $\varepsilon = 0$, on dérive, on trouve ce qu'il faut!

g est une intégrale première de l'équation d'Euler-Lagrange si g est contante le long des solutions de l'équation d'Euler-Lagrange.

I Propriété:

1. Si
$$L = L(x, y')$$
, alors $\frac{\partial L}{\partial y'} = C$

1. Si
$$L = L(x, y')$$
, alors $\frac{\partial L}{\partial y'} = C$
2. Si $L = L(y, y')$ alors $L - y' \frac{\partial L}{\partial y} = C$.

△ Définition: Topologie dans $C([x_1, x_2])$

On définit une topologie dans $C^0([x_1, x_2])$:

$$\forall y \in \mathcal{C}^0; ||y||_{\mathcal{C}^0} = \max_{x \in [x_1, x_2]} ||y(x)||_2$$

$$\forall y \in \mathcal{C}^{0}([x_{1}, x_{2}]), \ V_{\varepsilon}^{0}(y) = \{\tilde{y} \in \mathcal{C}^{0}([x_{1}, x_{2}]); ||y - \tilde{y}||_{\mathcal{C}^{0}} < \varepsilon\}$$

On fait de même dans $C^1([x_1, x_2])$:

$$\forall y \in \mathcal{C}^1; ||y||_{\mathcal{C}^1} = \max_{x \in [x_1, x_2]} ||y(x)||_2 + \max_{x \in [x_1, x_2]} ||y'(x)||_2$$

$$\forall y \in \mathcal{C}^{1}([x_{1}, x_{2}]), \ V_{\varepsilon}^{1}(y) = \{\tilde{y} \in \mathcal{C}^{1}([x_{1}, x_{2}]); ||y - \tilde{y}||_{\mathcal{C}^{1}} < \varepsilon\}$$

On considère que le problème \mathbf{P} admet comme solution y^* . y^* est un minimum fort strict s'il existe un voisinage dans $\mathcal{C}^0([x_1,x_2])$ (ie $V^0_{\varepsilon}(y^*)$) tel que :

$$I(y^*) < I(y) \forall y \in V_{\varepsilon}^0(y^*)$$

C'est un maximum fort strict si :

$$I(y^*) > I(y) \forall y \in V_{\varepsilon}^0(y^*)$$

 $\exists V_{\varepsilon}^{1}(y^{*}); \ I(y^{*}) < I(y) \Rightarrow y * \text{ minimum faible strict}$

 $\exists V_{\varepsilon}^{1}(y^{*}); \ I(y^{*}) > I(y) \Rightarrow y * \text{ maximum faible strict}$

- Soit $D = [x_1, x_2] \times \mathbb{R}$. $y(x, C), C \in \mathbb{R}$ est un champ d'extrémales, si : 1. $(x, y(x, C)) \in D$, $\forall C \in \mathbb{R}$ 2. $\forall C \in \mathbb{R}$, y(x) satisfait les équations d'Euler-Lagrange.

Ce champ est dit propre si $\forall (x_0,y_0) \in D, \ \exists ! y(x,C)$ extrémale. Ce champ est dit central si $y(X,C)=y_1, \ \forall C \in \mathbb{R}$ et $y(x,C) \neq y(x,\tilde{C}), \ \forall C \neq \tilde{C}, \ \forall x \neq \tilde{x}.$

⇔ Théorème: Jacobi-Weierstrass

Supposons $L \in \mathcal{C}^3$. Considérons toujours le même problème de minimisation P. Si y^* satisfait :

- 1. $y^*(x_1) = y_1$ et $y^*(x_2) = y_2$
- 2. y^* peut être plongé dans un champ d'extrémale soit propre soit central
- 3. $\frac{\partial^2 L}{\partial y'^2}(x, y^*, (y^*)') > 0$ (resp < 0) Alors y^* est un minimum (resp. maximum) faible

 $\begin{array}{l} 4. \ \ \frac{\partial^2 L}{\partial y'^2}(x,y,y') > 0 \ (\text{resp} < 0) \ \forall y \in V^0_\varepsilon(y^*) \\ \text{Alors} \ y^* \ \text{est un minimum (resp. maximum) fort.} \end{array}$

1.2 Courbes paramétrées

On prend à présent $y:[x_1,x_2]\to\mathbb{R}^n,$ $P_1=(x_1,y_1),$ $P_2=(x_2,y_2),$ $y_i\in\mathbb{R}^n,$ i=1,2

$$L: [x_1, x_2] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

On veut minimiser $I(y) = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$

Si $y \in C^1[x_1, x_2]$ minimise $\int_{x_1}^{x_2} L(x, y, y') dx$ parmi toutes les fonctions telles que $y(x_1) = y_1$ et $y(x_2) = y_2$ où $L \in C^2$, alors y satisfait : $\partial L - d \partial L = 0, 1 \le i \le n$

$$\frac{\partial L}{\partial y_i} - \frac{d}{dx} \frac{\partial L}{\partial y_i'} = 0, \ 1 \le i \le n$$

On pose à présent :

$$p_{i} = \frac{\partial L}{\partial y_{i}}$$

$$H = -L + \sum_{i=1}^{n} y'_{i} p_{i}$$

En calculant dH, on arrive au système suivant :

$$\begin{cases} y_i' = \frac{\partial H}{\partial p_i} \\ p_i' = -\frac{\partial H}{\partial y_i} \end{cases}$$

ce qui est un système hamiltonnien.