

Automatizační cvičení

A4	ACV_304_PLC s OP – Regulace rychlosti vzduchového okruhu				
Hudák Josef			1/6	Známka:	
15.2.2023		22.2.2023		Odevzdáno:	

Zadání:

Navrhněte program pro regulaci rychlosti proudění. Snímač rychlosti proudění kalibrujte pomocí anemometru. Regulační obvod ovládejte pomocí operátorského panelu (dále jen OP). Při řešení použijte jazyk GRAFCET (viz Návod k jazyku Grafcet PL7 Junior). Kalibrace na 0,5 m/s.

Postup:

- 1) Nastavíme OP Magelis
- 2) Zapneme PL-07 a zaškrtneme funkci GRAFCET
- 3) Vytvoříme si celkové schéma bloků a podmínek pro přechod bloků
- 4) Nastavíme si bloky do vyhovující funkce (dle vykonání funkce před, při, nebo po stisku tlačítka)
- 5) Naprogramujeme v LD jednotlivé bloky dle toho, jak je máme navrhlé
- (0. = vypnuto, 1. = zapni okruh a vypni, 2.=postupné zvyšování a snižování rychlosti, 3. = regulace)
- 6) Ozkoušíme program v praxi
- 7) Ukončíme cvičení
- 8) Vypracujeme technickou zprávu

Blokové schéma zapojení pracoviště:

Konfigurace a propojení:

Address	Function	Access
n+0	Function Keys	XTB->PLC
n+1	Number of pages to be processed	XTB->PLC
n+2	LEDs command	XTB->PLC

Nastavení modulu:

- 1. stránka: "Vypnuto: F1 = Ruční ovládání, F2 = Kalibrace rychlosti, F3= Regulace"
- 2. stránka: "Manuální ovládání: F1 = Zap., F2 = Vyp., F4 = Stop"
- 3. stránka: "Kalibrace: F1 = zvyš rychlost, F2 = sniž rychlost, U = (%MW0) mV, F4 = Stop"
- 4. stránka: "REGULACE, E= (%MW1) mV, W=(%MW2), F4 = Stop"

%MWi = nahrazeno jako pole, kde se zobrazují informace, které čteme z obvodu

Konfigurace PLC:

TSX 3722 - V3.3

<u>TSX DMZ28DT</u> – 16x digitální vstup a 12x digitální výstup (24 V DC / 0,5 mA)

<u>TSXAEZ414</u> – 4-kanálový modul analogových vstupů (16 bitů; vstupy: napětí (0-10 V), proud (4-20 mA), termočlánek

TSXAEZ200 – 2-kanálový výstup

Významy (popis):

V	stupy	Paměti	
%IW3.2	Hodnota z čidla	%M0	Paměťová cívka
%MW100:X1	1	%M1	Paměťová cívka
%MW100:X2	2	%ТМ0	Timer pro vzorky
%MW100:X3	3	%TM1	Timer pro vzorky
%MW100:X4	4	%MW0	Zobraz y(k)
Vý	ýstupy	%MW1	Zobraz e(k)
%QW4.1	Vzduchový okruh	%MW2	Zobraz w(k)
		%MW3	W

Výpis programu (GRAFCET):

Výpis programu (LD):

Podmínky pro přechody mezi bloky v LD:

Závěr:

Výsledek tohoto cvičení byl funkční I regulátor, náběh regulace trval delší dobu, jakmile začala regulace působit, její ustálení díky I regulátoru bylo velice dlouhé, ale po nějakém čase jsem dokázal zařídit, aby obvod kmital o +- 20 mV, což není vůbec špatná hodnota odchylky. Další funkce obsahovali ruční zapnutí a vypnutí vzduchového obvodu/okruhu a poslední funkce "kalibrace" zařizovala přidávání a snižování rychlosti vzduchu v obvodu.