Data Structure

Design 666

video-(13)

Facebook] -> code storywith MIK

(Twitter) > CS with MIK

codestorywith MIK >

Companies:

∞ Meta

1845. Seat Reservation Manager

Hint

Bruk Force =

Seats. 7. Unneserved = -1

> Keserved * Take an away to denote seats." revelve (// overay traversal // O(n) <)
// Pick smallest seat with -1 Unxerver (seart) of over [seed] = -1

Optimal Approach

Intuition -> Why -> where was the problem?

reverse () f

(mxn)

(way traversal (O(n)

(pick mallest seat with -1.

"We need a Data Structure which can find me the smallest seat in better time complexity" > "Min heap"

```
Seat = Pq. to
```

O (mx log(n))

Seat =
$$Pq$$
 top(); //1 \rightarrow 0(1)
 $\frac{Pq}{pop()}$ \leftarrow 0($\log(n)$)
 $\frac{Pq}{pop()}$ seat; //1

3 unreserve (seed)

Improvement:

Without Pre-filling the Pr.

```
Input
    "SeatManager", "reserve", "reserve", "unreserve", "reserve",
    "reserve", "reserve", "unreserve"]
    [5], [], [], [], [], [], [], [5]]
Output
    [null, 1, 2, null, 2, 3, 4, 5, null]
```

x h

Seat-marker =
$$\frac{1}{2}$$
 3

Seat-marker = $\frac{1}{2}$ 3

int reserve () {

if (!pq. empty()) {

Seat = $\frac{1}{2}$ top()) pq. p.p(); $\frac{1}{2}$ top()

seat = $\frac{1}{2}$ top(); $\frac{1}{2}$ top()

return Seat; $\frac{1}{2}$ top().

Void Universelve (int seat Number) {

Pg. Push (seathluber): //log(n).

