Unidad 4: Relaciones Álgebra y Geometría Analítica I (R-111) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

Definiciones 1.

Dados dos conjuntos A y B, un **par ordenado** es un objeto de la forma (a, b) donde $a \in A y$ $b \in B$. Si (a,b) y (c,d) son dos pares ordenados, $(a,b) = (c,d) \iff a = c \land b = d$.

Dados dos conjuntos A y B, llamaremos **producto cartesiano**, $A \times B$, al conjunto formado por los pares ordenados (a,b) tales que $a \in A \land b \in B$. Es decir: $A \times B = \{(a,b) : a \in A, b \in B\}$.

Sean A, B, C conjuntos, entonces:

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$\bullet (A \cap B) \times C = (A \times C) \cap (B \times C)$$

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$\bullet (A \cup B) \times C = (A \times C) \cup (B \times C)$$

Una **relación** de un conjunto A en un conjunto B es un subconjunto R de $A \times B$. Si $(a,b) \in R$, se dice que a está relacionado con b por R, y se nota aRb.

Sea $R \subseteq A \times B$, el **dominio** de R es:

$$Dom(R) = \{a \in A : (a, b) \in R, \text{ para algun } b \in B\}$$

y la **imagen** de R es:

$$Im(R) = \{b \in B : (a, b) \in R, \text{ para algun } a \in A\}$$

Sea $R \subseteq A \times B$, y $X \subseteq A$, el **conjunto imagen** de X por R es:

$$R(X) = \{b \in B : (a, b) \in R, \text{ para algun } a \in X\}$$

y si $Y \subseteq B$, el **conjunto preimagen** de Y por R es:

$$R^{-1}(Y) = \{ a \in A : (a, b) \in R, \text{ para algun } b \in Y \}$$

......

Sea $R \subseteq A \times B$, la **inversa** de R, denotada como R^{-1} es una relación de B en A definida por:

$$R^{-1} = \{(x, y) : (y, x) \in R\}$$

......

Sea $R \subseteq A \times B, x \in A, X \subseteq A$, notar que:

- $R^{-1}(x)$ es la preimagen del elemento x por R.
- $R^{-1}(X)$ es la preimagen del subconjunto X por R.
- R^{-1} es la relación inversa de R.

Sea $R \subseteq A \times B$ y $S \subseteq B \times C$, la relación **composición** de R en S, notada como $S \circ R$, es una relación de A en C definida por $x(S \circ R)y \iff \exists u \in B : xRu \land uSy$

$$S \circ R = \{(x, y) \in A \times C : (x, u) \in R \land (u, y) \in S, \text{ para algun } u \in B\}$$

 $T \circ (S \circ R) = (T \circ S) \circ R$

$$(T \circ S)^{-1} = S^{-1} \circ T^{-1}$$

2. Relaciones en un conjunto

Sea $R \subseteq A \times A$, y $a, b, c \in A$, se dice que R es:

- Reflexiva: si $(a, a) \in R \forall a \in A$
- Simétrica: si $(a,b) \in R \Rightarrow (b,a \in A)$
- Antisimétrica: $(a,b) \in R \land a \neq b \Rightarrow (b,a) \notin R$, equivalentemente, $(a,b) \in R \land (b,a) \in R \Rightarrow a = b$
- Transitiva: si $(a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$

3. Relaciones de Orden

Una relación R en A es una relación de orden si es reflexiva, antisimétrica y transitiva (R.A.T.)

Si $(a,b) \in R$, se dice que a es anterior a b y se nota $a \prec b$.

Al par (A, R) o (A, \prec) se lo llama **conjunto ordenado**.

Sea (A, \prec) , dos elementos distintos $x, y \in A$ son **comparables** si $x \prec y$ o si $y \prec x$.

Un conjunto ordenado es **totalmente ordenado** si todo par de elementos es comparable, y se dice que es un **orden total**.

Sea (A, \prec) , y $B \subseteq A$, el **orden inducido** por R en B es $R_B = R \cap (B \times B)$, es decir, sea $x, y \in B$, $xR_By \iff xRy$. (B, S) es un **subconjunto ordenado** de (A, R) si $B \subseteq A$ y $S = R_B$.

Ademas, si R_B es un orden total en B, (B, R_B) se llama subconjunto ordenado de (A, R) o **cadena**.

Diagrama de Hasse: se dibuja como un grafo, y convenimos que no se dibujan las flechas correspondientes a (a, a), ni la flecha (a, c) cuando $a \prec b$ y $b \prec c$

Sea (A, \prec) y $B \subseteq A$:

- $a \in A$ es minimal si $\forall x \in A : x \prec a$, se tiene que x = a.
- $a \in A$ es maximal si $\forall x \in A : a \prec x$, se tiene que x = a.
- $a \in A$ es **mínimo** si $a \prec x \forall x \in A$
- $a \in A$ es máximo si $x \prec a \forall x \in A$
- $a \in A$ es **cota inferior** para B si $a \prec x \ \forall x \in B$. Una cota inferior 'a es el **ínfimo** de B si $a \prec a'$ para toda cota inferior de B.
- $a \in A$ es **cota superior** para B si $x \prec a \ \forall x \in B$. Una cota superior 'a es el **supremo** de B si $a' \prec a$ para toda cota inferior de B.

Un conjunto puede tener más de un minimal o maximal, pero si tiene máximo, mínimo, supremo o ínfimo, estos es único. Además, si tiene alguna cota se dice que está acotado.

.....

4. Relaciones de Equivalencia

Una relación R en A es de equivalencia si es **reflexiva**, **simétrica** y **transitiva** (R.S.T.)

Si $(a, b) \in R$, se dice que a es equivalente a b y se nota $a \sim b$.

Dada una relación de equivalencia R en un conjunto A y $a \in A$, el conjunto R(a) se llama **clase** de equivalencia de a y se nota [a].

$$[a] = \{x \in A : (a, x) \in \mathbb{R}\}$$

Observemos que como es simétrica, $[a] = \{x \in A : (x, a) \in \mathbb{R}\}$ tambien vale. Todo elemento $x \in [a]$ se dice que es un **representante** de esa clase de equivalencia.

- $[a] \neq \emptyset$
- $\bullet (a,b) \in R \iff [a] = [b]$
- $\bullet (a,b) \not\in R \iff [a] \cap [b] = \emptyset$

Es decir, todo elemento de A pertenece a alguna clase y dos clases de equivalencia, o bien son iguales o son conjuntos disjuntos.

Una partición P de un conjunto A es una colección de conjuntos no vacios $\{X_1, X_2, ...\}$ tales que:

- $i \neq j \Rightarrow X_i \cap X_j = \emptyset$,
- $\forall a \in A, \exists X_i \in P : a \in X_i$

Sea P una partición de A, existe una única relación de equivalencia en A cuyas clases de equivalencia son los elementos de P.

Sea R una relación de equivalencia en A, llamamos **conjunto cociente** de A por R, y lo notamos $A|_R$ al conjunto cuyos elementos son las clases de equivalencia de A definidadas por R:

$$A|_R = \{[a] : a \in A\}$$