

T-46-23-13

Description

The μ PD43256A is a 32,768-word by 8-bit static RAM fabricated with advanced silicon-gate technology. Its unique design uses CMOS peripheral circuits and N-channel memory cells with polysilicon resistors to make the μ PD43256A a high-speed device that requires very low power and no clock or refreshing.

Minimum standby power is drawn when $\overline{\text{CS}}$ is high, independent of the other inputs' levels. Data retention is guaranteed at a power supply voltage as low as 2 V. The $\mu\text{PD43256A}$ is available in standard 28-pin plastic DIP, 28-pin plastic miniflat, or 32-pin plastic TSOP packaging.

Features

- □ Single +5-volt power supply
- Fully static operation—no clock or refreshing required
- TTL-compatible inputs and outputs
- Common I/O using three-state outputs
- One CS pin and one OE pin for easy application
- Data retention of 2 V minimum
- Standard 28-pin plastic DIP and minifiat packaging
- Standard 32-pin plastic TSOP packaging (with either normal or reverse bent leads)

Pin Configurations

28-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function Address inputs						
A ₀ - A ₁₄							
I/O ₁ - I/O ₈	Data inputs and outputs						
CS	Chip select						
OE	Output enable						
WE	Write enable						
GND	Ground						
V _{CC}	+5-volt power supply						
NC No connection							
NC	No connection						

Ordering Information

Catalog Part Number	Access Time (max)	Data Retention Current (max) $T_A = 0$ to $70^{\circ}C(max)$	Package
μPD43256AC-85L	85 ns	50 μA	28-pin plastic DIP(600 mil)
C-10L	100 ns		
C-12L	120 ns		
C-15L	150 ns		
μPD43256AC-85LL	85 ns	20 μΑ	28-pin plastic DIP(600 mil)
C-10LL	100 ns		
C-12LL	120 ns		
C-15LL	150 ns		
μPD43256AGU-85L	85 ns	50 μA	28-pin plastic miniflat
GU-10L	100 ns		
GU-12L	120 ns		
GU-15L	150 ns		
μPD43256AGU-85LL	85 ns	20 μΑ	28-pin plastic miniflat
GU-10LL	100 ns		
GU-12LL	120 ns		
GU-15LL	150 ns		
μPD43256AGX-10L	100 ns	50 μA	32-pin plastic TSOP (normal pinouts)
GX-12L	1200 ns		
μPD43256AGX-10LL	100 ns	20 μA	-
GX-12LL	120 ns		
μPD43256AGXM-10L	100 ns	50 μA	32-pin plastic TSOP (reverse pinouts)
GXM-12L	1200 ns		
μPD43256AGXM-10LL	100 ns	20 μΑ	-
GXM-12LL	120 ns		

Block Diagram

Absolute Maximum Ratings

Supply voltage, V _{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, V _{IN} (Note 1)	-0.5 to V _{CC} + 0.5 V
Output voltage, V _{I/O} (Note 1)	-0.5 to V _{CC} + 0.5 V
Operating temperature, TOPR	0 to +70°C
Storage temperature, T _{STG}	-55 to +125°C
Power dissipation, P _D	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

(1) -3.0 V minimum (pulse width = 50 ns).

Capacitance

 $T_A = +25$ °C; f = 1 MHz; V_{IN} and $V_{OUT} = 0$ V

Parameter	Symbol	Min	Max	Unit
Input capacitance	G		5	pF
input/output capacitance	C _{VO}		8	ρF

Notes:

(1) This parameter is sampled and not 100% tested.

DC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V} \pm 10\%$

to +7.0 V	CS	ŌÊ	WE	Function	1/0	lcc
C + 0.5 V H X X		Not selected	High-Z	Standby		
C + 0.5 V	Ļ	Н	Н	Not selected	High-Z	Active
to +70°C	L	L	Н	Read	DOUT	Active
o + 125°C	L	X	L	Write	D _{IN}	Active
1.0 W	Notes		·			

(1) X = don't care.

Truth Table

Recommended Operating Conditions									
Parameter	Symbol	Min	Тур	Max	Unit				
Supply voltage	Vcc	4.5	5.0	5.5	٧				
Input voltage, low (Note 1)	ΥL	-0.3		8.0	٧				
input voltage, high	V _{iH}	2.2		V _{CC} + 0.5	٧				
Ambient temperature	TA	0		70	°C				

Notes:

(1) -3.0 V minimum (pulse width = 50 ns).

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	l _L I	-1		1	μΑ	V _{IN} = 0 V to V _{CC}
I/O leakage current	lro	-1		1	μА	$V_{I/O} = 0 \text{ V to } V_{CC}; \overline{CS} \ge V_{IH} \text{ or } \overline{OE} \ge V_{IH}$ or $\overline{WE} \le V_{IL}$
Operating supply current	I _{CCA1}			45	mA	CS ≤ V _{IL} (min cycle); I _{I/O} = 0 V (Note 1)
	I _{CCA2}			10	mA	CS = VIL: IVO = 0 V
	ICCA3			10	mA	$\overline{\text{CS}} \le 0.2 \text{V}; \text{f} = 1 \text{MHz}; \text{I}_{\text{VO}} = 0 \text{V}; \text{V}_{\text{IL}} \le 0.2 \text{V}; \text{V}_{\text{IH}} \ge \text{V}_{\text{CC}} - 0.2 \text{V}$
Standby supply current	I _{SB}			3	ma	CS ≥ V _{IH}
	I _{SB1}		0.002	0.1	mA	CS ≥ V _{CC} - 0.2 V (Note 2)
Output voltage, low	VOL			0.4	٧	l _{OL} = 2.1 mA
Output voltage, high	V _{OH1}	2,4	•		٧	I _{OH} = -1.0 mA
	V _{OH2}	V _{CC} - 0.5			٧	I _{OH} = -0.1 mA

Notes:

- (1) μ PD43256A-10L/-10LL/-12L/-12LL = 40 mA (max). μPD43256A-15L/-15LL = 35 mA (max).
- (2) μ PD43256AGX-10LL/-12LL = 50 μ A (max).

μPD43256A

AC Characteristics (for L and LL Versions)

		μPD43256A-85		μPD43	256A-10	μPD43	256A-12	μPD433	256A-15	Unit	Test Conditions
Parameter Symbol	Min	Max	Min	Max	Min	Max	Min	Max			
Read Operation	n										
Read cycle time	t _{RC}	85		100		120		150		ns	
Address access	t _{AA}		85		100		120		150	ns	(Note 2)
Chip select access time	tacs		85		100	· 	120		150	ns	(Note 2)
Output enable to output valid	^t OE		40		50		60		70	ns	(Note 2)
Output hold from address change	ф	10		10		10		10		ns	
Chip select to output in low-Z	†CLZ	10		10		10		10		ns	(Note 3)
Output enable to output in low-Z	^t OLZ	5		5		5		5		ns	(Note 3)
Chip select to output in high-Z	[‡] CHZ		30		35		40		50	ns	(Note 3)
Output enable to output in high-Z	tонz		30		35		40		50	ns	(Note 3)
Write Operati	оп		•								
Write cycle time	twc	85		100		120		150		ns	
Chip select to end of write	†cw	70		80		85		100		ns	
Address valid to end of write	t _{AW}	70		80		85		100		ns	
Address setup time	t _{AS}	0		0		0		0		ns	
Write pulse width	₩P	65		70		70		90		ns	
Write recovery time	t wr	5	,	5		5		5		ns	
Data valid to end of write	t _{DW}	35		40		50		60		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write enable to output in high-Z	₩HZ		30		35		40		50	ns	(Note 3)
Output active from end of write	tow	10		10		10		10		ns	(R etoM)

Notes:

- (1) Input pulse levels = 0.8 to 2.2 V; input pulse rise and fall times = 5 ns; timing reference levels = 1.5 V.
- (2) See figure 1 for output load.
- (3) See figure 2 for output load.

Low V_{CC} Data Retention Characteristics $T_A = 0$ to $70^{\circ}C$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Data retention supply voltage	VCCDR	2.0		5.5	V	<u>CS</u> ≥ V _{CC} - 0.2 V
Data retention supply current	ICCDR		1	50	μА	V _{CC} = 3.0 V; CS ≥ V _{CC} - 0.2 V (Notes 1, 2)
Chip deselection to data retention	‡CDR	0			ns	55 17 100 112 1 (1005 1, 2)
Operation recovery time	t _R	t _{RC}			ns	

Notes:

- (1) For μ PD43256A-LL, I_{CCDR} = 20 μ A (max) at T_A = 0 to 70°C and 3 μ A (max) at T_A = 0 to 40°C.
- (2) For μ PD43256A-L, I_{CCDR} = 15 μ A (max) at T_A = 0 to 40°C.

Data Retention Timing

Figure 1. Output Load

ELECTIVITIES FOR

Figure 2. Output Load for t_{CLZ} , t_{OLZ} , t_{CHZ} , t_{OHZ} , t_{WHZ} , and t_{OW}

Timing Waveforms

Address Access Cycle

Chip Select Access Cycle

24a

Timing Waveforms (cont)

WE-Controlled Write Cycle

