You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi 2015, CVPR2016

Contents

- Task and Contribution
- Object Detection
- 2 Stage Detector: R-CNN
- 1 Stage Detector : YOLO
 - Train: Bbox & Confidence & Class Prob.
 - Eval. : IOU Non maximum Suppression
- Limitation
- Results

Task and Contribution

- Object Detection
 - Localization + Classification
 - Bounding Box + Class Probability

- <u>Unified</u> (End to End) -> <u>Real-time</u>
 - Applying gradient-based learning to the system as a whole*

https://medium.com/analytics-vidhya/object-localization-using-keras-d78d6810d0be https://ratsgo.github.io/speechbook/docs/neuralam/e2eslu

Object Detection

Before YOLO...

Object Detection

- 2 Stage
 - 2 Output = Localization + Classification
 - E.g. R-CNN

(b) Basic architecture of a two-stage detector.

- 1 Stage
 - 1 Output = Localization & Classification
 - E.g. YOLO

(a) Basic architecture of a one-stage detector.

https://gaussian37.github.io/vision-detection-table/

2 Stage Detector: R-CNN

- R-CNN
 - 1. Region Proposal : Candidate Region (2K)
 - Hierarchy Clustering : Can not be trained
 - 2. Feature Extraction
 - CNN
 - 3. Classification
 - SVM
 - 4. Bounding box (Bbox) Regression
 - Linear Regression
 - Slow and Complicated
 - To solve: YOLO vs Fast R-CNN
 - Hard to Optimization
 - Different and Separated models

- YOLO Train
 - 1. SxS Gridded Bbox Location & Confidence & Class Probability

https://stackoverflow.com/questions/49707542/yolo-v1-bounding-boxes-during-training-step

- YOLO Train
 - 1. SxS Gridded Bbox Location & Confidence & Class Probability
 - Output designed to divide grid on Image and contain the feature for detection from each grid

https://zhanghanduo.github.io/post/yolo1/

https://stackoverflow.com/guestions/49707542/yolo-v1-bounding-boxes-during-training-step

- YOLO Train
 - 1. SxS Gridded Bbox Location & Confidence & Class Probability
 - 1 Grid = 1 Object*
 - 2 Bbox
 - 2 Confidence : Object Probability
 - 1 Class**
 - All Value 0~1 Normalized

*https://amrokamal-47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
**https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://deepbaksuvision.github.io/Modu_ObjectDetection/posts/04_02_Model.html

- YOLO Train
 - 1. SxS Gridded Bbox Location & Confidence & Class Probability

https://curaai00.tistory.com/8 https://deepbaksuvision.github.io/Modu_ObjectDetection/posts/04_02_Model.html

- YOLO Train
 - 1. SxS Gridded Bbox Location & Confidence & Class Probability
 - Bbox Loss
 - Bbox Position Loss
 - Bbox Scale Loss

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$+ \ \lambda_{\operatorname{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\operatorname{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

- Confidence Loss
 - Positive Confidence Loss
 - Negative Confidence Loss
- Class Probability Loss
 - Positive Class Probability Loss

$$+\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{\text{obj}}\left(C_i-\hat{C}_i\right)^2$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2$$

$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

• YOLO - Train

 $y = \sqrt{x}$

- SxS Gridded Bbox Location & Confidence & Class Probability
 - Coordinate Parameter(=5)
 - Localization > Classification
 - Object in Bbox == Positive
 - Calculate only Positive Bbox

Relative Scale Loss

Difference is more lethal for small boxes.

- No obj Parameter (=0.5)
 - Most of Grid has no object
- Class Probability Loss
 - Calculate only Negative Bbox

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$+\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i\right)^2$$

$$+\lambda_{ ext{noobj}}\sum_{i=0}^{s}\sum_{j=0}^{s}\mathbb{1}_{ij}^{s}\left(C_{i}+C_{i}\right) +\sum_{s}\mathbb{1}_{i}^{ ext{obj}}\sum_{j=0}^{s}\left(p_{i}(c)-\hat{p}_{i}(c)\right)$$

$$\sum_{i=0}^{S} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_{i}(c) - \hat{p}_{i}(c))^{2}$$

- YOLO Train
 - 1. SxS Gridded Bbox Location & Confidence & Class Probability

https://stackoverflow.com/questions/49707542/yolo-v1-bounding-boxes-during-training-step

- YOLO Eval.
 - 2. <u>IOU Non-maximum Suppression</u>

https://stackoverflow.com/questions/49707542/yolo-v1-bounding-boxes-during-training-step

- YOLO Eval.
 - 2. <u>IOU Non-maximum Suppression</u>
 - Need to Select Bbox -> mAP +2~3%
 - 1 Grid, 2 Bounding Box, 1 Object
 - By Confidence
 - N Grid, N Bounding Box 1 Object
 - By Confidence & IOU Non-maximum Suppression

- YOLO Eval.
 - 2. <u>IOU Non-maximum Suppression</u>

- Non-maximum Suppression
 - Leaves only the maximum value among those high IOU.

- YOLO Eval.
 - 2. <u>IOU Non-maximum Suppression</u>
 - Sorted by confidence
 - Calculate IOU

https://www.youtube.com/watch?v=L0tzmv--CGY

Limitation

- Grid
 - Maximum Detections = S * S
 - Problem of nearby object detection
 - Small objects that appear in groups

- Data
 - Struggle to generalize to object with unusual ratio
- Loss
 - Use same loss for small Bbox and large Bbox -> Localizing Error

Results

- Real Time
- Background Loss

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			-
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

