# MAT 350 Engineering mathematics

Modeling with 2<sup>nd</sup> order ODE: Mass-Spring System.

**Lecture: 5** 

Dr. M. Sahadet Hossain (MtH)
Associate Professor
Department of Mathematics and Physics, NSU.

# Modeling of Free Oscillations of a Mass-Spring System

Linear ODEs with constant coefficients have important applications in mechanics, and in electrical circuits.

In this section we model and solve a basic mechanical system consisting of a mass on an elastic spring (a so-called "mass-spring system," Fig. below), which moves up and down.





$$F = ky$$
 (1)

$$Mass \times Acceleration = my'' = Force$$
 (2)

If the damping is small and the motion of the system is considered over a relatively short time, we may disregard damping.

Then Newton's law with F=-F<sub>1</sub> gives the model

$$my'' = -F_1 = -ky;$$

$$my'' + ky = 0. (3)$$

This is a homogeneous linear ODE with constant coefficients. A general solution is obtained as

$$y(t) = A \cos \omega_0 t + B \sin \omega_0 t$$

$$\omega_0 = \sqrt{\frac{k}{m}}.$$
 (4)

This motion is called a **harmonic oscillation**. Its frequency is  $f = \omega_0/2\pi$  Hertz

(= cycles/sec) because cos and sin in (4) have the period  $2\pi/\omega_0$ .

The frequency *f* is called the **natural frequency of the system.** 

Please note, 
$$y'(t) = -A\omega_0 \sin \omega_0 t + B\omega_0 \cos \omega_0 t$$

$$y'(0) = B\omega_0$$

An alternative representation of (4), which shows the physical characteristics of amplitude and phase shift of (4), is

$$y(t) = C\cos(\omega_0 t - \delta)$$



Fig. 34. Typical harmonic oscillations (4) and (4\*) with the same y(0) = A and different initial velocities  $y'(0) = \omega_0 B$ , positive 1, zero 2, negative 3

### Modeling of Free Oscillations of a Mass-Spring System

**Example 1**: If a mass–spring system with an iron ball of weight W=98 nt (about 22 lb) can be regarded as undamped, and the spring is such that the ball stretches it 1.09 m (about 43 in.), how many cycles per minute will the system execute?

What will its motion be if we pull the ball down from rest by 16 cm (about 6 in.) and let it start with zero initial velocity?

**Solution.** Hooke's law with W as the force and 1.09 meter as the stretch gives

$$W = 1.09 \text{ k (since W=ky, y displacement)}$$
  
 $k = W/1.09 = 98/1.09 = 90 \text{ [kg/sec}^2\text{]} = 90 \text{ [nt/meter]}.$ 

The mass is 
$$m = W/g = 98/9.8 = 10$$
 [kg].

$$my'' + ky = 0.$$

Generate mathematical model

Frequencey, 
$$f = \omega_0/(2\pi) = \sqrt[5]{k/m}/(2\pi)$$
  
=  $3/(2\pi) = 0.48$  [Hz] = 29 [cycles/min].

Initial conditions y(0) = A = 0.16 [meter] and  $y'(0) = \omega_0 B = 0$ .

Note that we have,  $y'(t) = -A\omega_0\sin\omega_0t + B\omega_0\cos\omega_0t$ . Hence  $y'(0) = B\omega_0$ 

Hence B=0, and  $\delta = \tan^{-1} (B/A) = 0$ ,

Therefore, the general solution is:

$$y(t) = C\cos(\omega_0 t - \delta)$$

 $v(t) = 0.16 \cos 3t$  [meter]

Here, 16 cm=0.16 m  $C=sqrt(A^2+B^2)$ 



Fig. 35. Harmonic oscillation in Example 1

# **ODE of the Damped System**



$$my'' = -ky$$

$$F_2 = -cy',$$

$$my'' + cy' + ky = 0.$$

The characteristic equation is

$$\lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0.$$

$$\lambda_1 = -\alpha + \beta, \quad \lambda_2 = -\alpha - \beta,$$

where 
$$\alpha = \frac{c}{2m}$$
 and  $\beta = \frac{1}{2m}\sqrt{c^2 - 4mk}$ .

It is now interesting that depending on the amount of damping present—whether a lot of damping, a medium amount of damping or little damping—three types of motions occur, respectively:

Case I. 
$$c^2 > 4mk$$
. Distinct real roots  $\lambda_1, \lambda_2$ . (Overdamping)

Case II. 
$$c^2 = 4mk$$
. A real double root. (Critical damping)

Case III. 
$$c^2 < 4mk$$
. Complex conjugate roots. (Underdamping)

#### Case I. Overdamping

If the damping constant c is so large that  $c^2 > 4mk$ , then  $\lambda_1$  and  $\lambda_2$  are distinct real roots.

In this case the corresponding general solution of (5) is

$$y(t) = c_1 e^{-(\alpha - \beta)t} + c_2 e^{-(\alpha + \beta)t}.$$

We see that in this case, damping takes out energy so quickly that the body does not oscillate. For t > 0 both exponents in (7) are negative because  $\alpha > 0$ ,  $\beta > 0$ , and  $\beta^2 = \alpha^2 - k/m < \alpha^2$ . Hence both terms in (7) approach zero as  $t \to \infty$ . Practically





Typical motions (7) in the overdamped case

- (a) Positive initial displacement
- (b) Negative initial displacement

# Case II. Critical Damping

It occurs if the characteristic equation has a double root, that is, if  $c^2 = 4mk$ , so that  $\beta = 0$ ,  $\lambda_1 = \lambda_2 = -\alpha$ .

Then the corresponding general solution

$$y(t) = (c_1 + c_2 t)e^{-\alpha t}.$$

This solution can pass through the equilibrium position y = 0 at most once because  $e^{-\alpha t}$  is never zero and  $c_1 + c_2 t$  can have at most one positive zero.

Note that they look almost like those in the previous figure.





Fig. 38. Critical damping [see (8)]

#### Case III. Underdamping

It occurs if the damping constant c is so small that  $c^2 < 4mk$ . Then  $\beta$  is no longer real but pure imaginary, say,

$$\beta = i\omega^*$$
 where  $\omega^* = \frac{1}{2m} \sqrt{4mk - c^2} = \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}}$  (>0).  $\lambda_1 = -\alpha + i\omega^*$ ,  $\lambda_2 = -\alpha - i\omega^*$  with  $\alpha = c/(2m)$ ,

Hence the corresponding general solution is

$$y(t) = e^{-\alpha t} (A \cos \omega^* t + B \sin \omega^* t) = Ce^{-\alpha t} \cos (\omega^* t - \delta)$$
  
where  $C^2 = A^2 + B^2$  and  $\tan \delta = B/A$ .

This represents **damped oscillations**. Their curve lies between the dashed curves  $y = Ce^{-\alpha t}$  and  $y = -Ce^{-\alpha t}$  in Fig. 39, touching them when  $\omega^* t - \delta$  is an integer multiple of  $\pi$  because these are the points at which  $\cos(\omega^* t - \delta)$  equals 1 or -1.

The frequency is  $\omega^*/(2\pi)$  Hz (hertz, cycles/sec).

If c approaches 0,

then  $\omega^*$  approaches  $\omega_0 = \sqrt{k/m}$ , giving the harmonic oscillation whose frequency  $\omega_0/(2\pi)$  is the natural frequency of the system.



39. Damped oscillation in Case III [see (10)]

**Examples**: from Zill 10<sup>th</sup> edition.

**Example 2:** A mass weighing 2 pounds stretches a spring 6 inches. At *t*=0 *the mass is released* from a point 8 inches below the equilibrium position with an upward velocity of 4/3 ft/s.

Determine the equation of motion.

#### SOLUTION:

Because we are using the engineering system of units, the measurements given in terms of inches must be converted into feet

6 in. = 
$$\frac{1}{2}$$
 ft; 8 in. =  $\frac{2}{3}$  ft.

In addition, we must convert the units of weight given in pounds into units of mass.

From 
$$m = W/g$$
 we have  $m = \frac{2}{32} = \frac{1}{16}$  slug.

Also, from Hooke's law, 
$$2 = k(\frac{1}{2})$$
  $k = 4 \text{ lb/ft.}$ 

$$\frac{1}{16}\frac{d^2x}{dt^2} = -4x \qquad \text{or} \qquad \frac{d^2x}{dt^2} + 64x = 0.$$

$$\frac{d^2x}{dt^2} + 64x = 0.$$

The initial displacement and initial velocity are  $x(0) = \frac{2}{3}$ ,  $x'(0) = -\frac{4}{3}$ ,

Here the negative sign in the last condition is a consequence of the fact that the mass is given an initial velocity in the negative, or upward, direction.

Now  $\omega^2 = 64$  or  $\omega = 8$ , so the general solution

$$x(t) = c_1 \cos 8t + c_2 \sin 8t.$$

Applying the initial conditions to x(t) and x'(t) gives

$$c_1 = \frac{2}{3}$$
 and  $c_2 = -\frac{1}{6}$ .

Thus, the equation of motion is

$$x(t) = \frac{2}{3}\cos 8t - \frac{1}{6}\sin 8t.$$



Simple harmonic motion

#### Example 3: Overdamped motion

Consider the overdamped motion described by the equation below. The mass is initially released from a position 1 unit *below the equilibrium* position with a *downward velocity of 1 ft/s*.

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 0, \quad x(0) = 1, \quad x'(0) = 1$$

$$x(t) = \frac{5}{3}e^{-t} - \frac{2}{3}e^{-4t}.$$



#### **Example 4: Critically damped**

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force numerically equal to 2 times the instantaneous velocity acts on the system, determine the equation of motion if the mass is initially released from the equilibrium position with an upward velocity of 3 ft/s.

**SOLUTION** From Hooke's law we see that 8 = k(2) gives k = 4 lb/ft and W = mg gives  $m = \frac{8}{32} = \frac{1}{4}$  slug. The differential equation of motion is then

$$\frac{1}{4}\frac{d^2x}{dt^2} = -4x - 2\frac{dx}{dt} \qquad \text{or} \qquad \frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = 0.$$

Auxiliary equation is:

$$m^2 + 8m + 16 = (m + 4)^2 = 0$$
, so  $m_1 = m_2 = -4$ .

Hence the system is critically damped, and

$$x(t) = c_1 e^{-4t} + c_2 t e^{-4t}.$$

Applying the initial conditions x(0) = 0 and x'(0) = -3, we find, in turn, that  $c_1 = 0$  and  $c_2 = -3$ . Thus the equation of motion is

$$x(t) = -3te^{-4t}.$$



**FIGURE 5.1.10** Critically damped system in Example 4

## Example: (Underdamped condition)

A mass weighing 16 pounds is attached to a 5-foot-long spring. At equilibrium the spring measures 8.2 feet. If the mass is initially released from rest at a point 2 feet above the equilibrium position, find the displacements x(t) if it is further known that the surrounding medium offers a resistance numerically equal to the instantaneous velocity.

# The Three Cases of Damped Motion

Consider the motion in Example 1 (of free oscillation) change if we change the damping constant *c* from one to another of the following three values

(I) 
$$c = 100 \text{ kg/sec}$$
, (II)  $c = 60 \text{ kg/sec}$ , (III)  $c = 10 \text{ kg/sec}$ .

(I) With m = 10 and k = 90, as in Example 1, the model is the initial value problem

$$10y'' + 100y' + 90y = 0$$
,  $y(0) = 0.16$  [meter],  $y'(0) = 0$ .

The characteristic equation is  $10\lambda^2 + 100\lambda + 90 = 10(\lambda + 9)(\lambda + 1) = 0$ .

It has the roots -9 and -1.

$$y = c_1 e^{-9t} + c_2 e^{-t}$$
. We also need  $y' = -9c_1 e^{-9t} - c_2 e^{-t}$ .

$$c_1 + c_2 = 0.16$$
,  $-9c_1 - c_2 = 0$ . The solution is  $c_1 = -0.02$ ,  $c_2 = 0.18$ .

$$y = -0.02e^{-9t} + 0.18e^{-t}.$$

(II) The model is as before, with c = 60 instead of 100.

$$10\lambda^2 + 60\lambda + 90 = 10(\lambda + 3)^2 = 0.$$

It has the double root -3.

$$y = (c_1 + c_2 t)e^{-3t}.$$

We also need  $y' = (c_2 - 3c_1 - 3c_2t)e^{-3t}$ .

$$y(0) = c_1 = 0.16, y'(0) = c_2 - 3c_1 = 0, c_2 = 0.48.$$

Hence in the critical case the solution is

$$y = (0.16 + 0.48t)e^{-3t}.$$

It is always positive and decreases to 0 in a monotone fashion.

(III) The model now is 10y'' + 10y' + 90y = 0.

Since c = 10 is smaller than the critical c, we shall get oscillations.

$$10\lambda^{2} + 10\lambda + 90 = 10[(\lambda + \frac{1}{2})^{2} + 9 - \frac{1}{4}] = 0.$$

$$\lambda = -0.5 \pm \sqrt{0.5^{2} - 9} = -0.5 \pm 2.96i.$$

$$y = e^{-0.5t}(A\cos 2.96t + B\sin 2.96t).$$

Thus y(0) = A = 0.16. We also need the derivative  $y' = e^{-0.5t}(-0.5A\cos 2.96t - 0.5B\sin 2.96t - 2.96A\sin 2.96t + 2.96B\cos 2.96t).$ Hence y'(0) = -0.5A + 2.96B = 0, B = 0.5A/2.96 = 0.027. This gives the solution  $y = e^{-0.5t}(0.16\cos 2.96t + 0.027\sin 2.96t)$   $= 0.162e^{-0.5t}\cos (2.96t - 0.17).$ 



Fig. 40. The three solutions in Example 2