Bridging the Gap between Scientific Workflow Tool to High-End Computing Capability

Course: Architecture and Design, 96-705

Semester: Fall 2012

Instructor: Jia Zhang

Collaborator: Petr Votava

Owen Chu, Clyde Li, David Liu, Kate Liu, Norman Xin

- Background
- Motivation & Goals
- Design
- Implementation
- Conclusions

NASA Earth Exchange Platform

A collaborative compute platform that improves the availability of Earth science data, models, analysis tools and scientific results through a centralized environment that fosters knowledge sharing, collaboration, innovation and direct access to compute resources.

- Background
- Motivation & Goals
- Design
- Implementation
- Conclusions

Single Access Point

Workflow Context

Scientific Social and Knowledge Network

Terrestrial Ecology
Land Use/Land Cover
Carbon Cycle Science
Ecological Forecasting
Biodiversity
Data Mining
Machine Learning
Climate Change Impacts

Collaborative Knowledge Management

Audio/Video Real-time Collaboration

Development

SANDBOX - PROTOTYPING
(Models, Tools, Data, Software Utilities)

Supercomputing (NASA HEC resources)

NASA Pleiades System

DATA COLLECTIONS
(Climate, Satellite, Model data)

Project Motivation and Goal

- Motivation:
 - Vistrails is a scientific workflow management system
 - NEX scientists are currently using VisTrails workflow management system, but VisTrails does not link to HECC directly
- Goal: Bridge the gap between VisTrails and HECC
- Advantages
 - Leverage the supercomputing capabilities
 - Automate the process of moving code and computation from development environment to supercomputing environment
 - Scientists focus on science
 - NEX released from technical support

Bridge Between VisTrails & HECC

Workflow Design using VisTrails

Full-scale Execution

On-Line Result Sharing and Process Re-use

- Background
- Motivation & Goals
- Design
- Implementation
- Conclusions

HECC Environment

- Types of Nodes
 - Secure Front-End (SFE) Nodes
 - Pleaides Front-End (PFE) and Bridge Nodes
 - Portable Batch System (PBS) Nodes
 - Four Types of Compute Nodes
- Access Limitation
 - Users can only access the computing platform through SFE
- PBS
 - Users can access PBS using qsub/qstat commands from PFE or bridge nodes

NAS Architecture

- 1. Inbound traffic going to the NAS bastions: SFEs, SUP, or DMZ;
- 2. Inbound traffic from an SFE or SUP to a Pleiades or Columbia front-end system (bridge, PFE or cfe2);
- 3. Outbound file transfers through the DMZ
- 4. Outbound traffic from Pleiades or Columbia directly to remote systems.

Issues, Constraints, and Strategies

Issues & Constraints

- Security (only SSH access from outside)
- HECC access only through a PBS scheduler
- Handle a large group of users and work items
- 4 different types of nodes running on Pleiades
 - Differ in CPU types, number of nodes, memory size/node, speed

Strategies

- Identified relevant quality attributes
- Design the system around the identified attributes
- Validate our design with ATAM
- Gather feedback from our client

Strategy: ATAM Attributes

Quality Attribute	Description
Security	The system is protected from unauthorized access and data confidentiality is ensured.
Reliability	The system is stable and data integrity is guaranteed.
Availability	The system service is available on a 24/7 basis.
Usability	The system is easy to configure and use.
Performance	The system effectively utilizes computing resources.
Scalability	The system can accommodate a large number of users and data.
Extensibility	The system's functionalities are easy to extend and enhance.
Interoperability	The system can interface with different scientific workflow management software and commodity hardware.
Asynchronous Mode	The client can asynchronously retrieve job execution result from the system.

Architectural model

Front Tier

Middle Tier

Back Tier

Deployment View

- Background
- Motivation & Goals
- Design
- Implementation
- Conclusions

Prototype

- Background
- Motivation & Goals
- Design
- Implementation
- Conclusions

Conclusions

- The project will help We provide a working base to future teams
 - Collect relevant information
 - Design and create prototype
 - Prototype 1: Run VisTrails in an external server, Monitor job statuses,
 Retrieve job results, UI Mockup
 - Prototype 2 (Current): Login module, Front-End node connection, Job completion notification, PBS conficuration
 - Release Candidate 1
- Long-term goals
 - Gain more accessibility to NASA's resources
 - Increase the number of scientists adopting NASA's computing ecosystem