修士論文

MEG II 実験におけるマルチピクセル陽電子タイミングカウンターの位置較正に関する研究

Research on Position Calibration of Multi-pixelated Positron Timing Counter in MEG II Experiment

東京大学大学院 理学系研究科 物理学専攻 素粒子物理国際研究センター 森研究室

35-196101

米本 拓

2020年1月

概要

標準理論を超える物理の 1 つである $\mu \to e\gamma$ 崩壊を世界最高感度で探索した国際共同実験 MEG では、崩壊分岐比に上限値 4.2×10^{-13} を与えたが発見には至らなかった。分岐比感度 $O(10^{-14})$ を目指し $\mu \to e\gamma$ 崩壊の発見へと至ろうとする後継実験 MEG II のために、多数のプラスチックシンチレータとシリコン光検出器 (SiPM) を搭載する新たなデザインの陽電子タイミングカウンターが製作された。

- ・pTC の新たなデザインの説明
- ・位置較正について
- ・成果

目次

第1章	序論	4
1.1	素粒子物理学における cLFV の探索	4
1.2	MEG II 実験における陽電子タイミングカウンター	4
1.3	本論文の構成について	4
第2章	$\mu o e \gamma$ 崩壊	5
2.1	標準理論において	5
2.2	標準理論を超える物理において	5
2.3	実験における信号・背景事象	5
第3章	MEG II 実験	6
3.1	MEG 実験	6
3.2	MEG II 実験	6
	3.2.1 MEG 実験からのアップグレード	6
	3.2.2 ドリフトチェンバー (CDCH)	6
	3.2.3 陽電子タイミングカウンター (pTC)	6
	3.2.4 液体キセノンガンマ線検出器 (LXe)	6
	3.2.5 輻射崩壞検出器 (RDC)	6
	3.2.6 DAQ	6
	3.2.7 展望	6
第4章	陽電子タイミングカウンター	7
4.1	背景	7
	4.1.1 MEG 実験での問題点	7
	4.1.2 MEG II 実験における新たなデザイン	7
4.2	マルチピクセル化された陽電子タイミングカウンター	7
	4.2.1 複数ヒットの仕組み	7
	4.2.2 時間分解能	7
	4.2.3 位置較正	7
4.3	ピクセル (小型カウンター)	7
	4.3.1 SiPM	7
	4.3.2 プラスチックシンチレータ	7
4.4	読み出し	7

4.5	解析	7
第5章	時間較正	8
5.1	レーザー較正	8
5.2	ミシェル較正	8
第6章	陽電子タイミングカウンターにおける位置情報	9
第7章	3D スキャンによる位置較正	10
7.1	3D スキャンにおける測量	10
7.2	実験エリアにおける測量	10
	7.2.1 測量基準点 (reference point)	10
7.3	スキャンデータの解析	10
7.4	結果	10
7.5	考察	10
第8章	軌跡再構成による位置較正の試み	11
8.1	原理	11
8.2	課題	11
8.3	考察	11
8.4	運用について	11
第9章	Physics Run に向けて	12
9.1	位置較正システムの運用	12
9.2	課題	12
	9.2.1 ドリフトチェンバーとの複合解析に向けて	12
第 10 章	考察とまとめ	13
第Ⅰ部	付録	15
付録 A	3D 測量機器について	16
付録 B	軌跡再構成について	17
B.1	カルマンフィルター	17
B.2	クラスタリング	17
B.3	ドリフトチェンバーとのマッチング	17
参考文献		18

第1章

序論

素粒子物理学とは、物質を構成する最小単位から物理法則を記述する試みである。現代素粒子物理学においては、実験的事実と良く整合する『標準模型』が理論的な枠組みの基本となる。2012 年に LHC でヒッグス粒子が発見され、標準模型の主張は盤石なものとなったが、未だにニュートリノ振動やミューオン異常時期能率からのずれなど、標準模型では説明の付かない実験的事実は存在する。これらを説明するため、ひいてはあらゆるエネルギー領域の物理を説明するような、『標準模型を超える物理(BSM)』の研究が盛んに行われている。MEG 実験及びその後継の MEG II 実験では、標準理論を超える物理の1つである『荷電レプトンフレーバーの破れ (cLFV)』という現象のうち $\mu \to e \gamma$ 崩壊について探索し、BSM の手がかりを掴もうとしている。

1.1 素粒子物理学における cLFV の探索

 $\mu \rightarrow e \gamma$

 $\mu \rightarrow eN$

 $\mu \rightarrow eee$

・過去・国内外での探索

1.2 MEG II 実験における陽電子タイミングカウンター

MEG 実験における陽電子検出の課題として...

1.3 本論文の構成について

本論文は、物理的背景(2章)、MEGII 実験における陽電子タイミングカウンターについて(3,4,5章)、位置較正についての測定・解析・結果(6,7,8章)から構成され、展望を交えつつ 9章でまとめる。

第2章

$\mu \to e \gamma$ 崩壊

2.1 標準理論において

ミューオンの基本性質を以下にまとめる。

質量 105.6583745 ± 0.0000024 MeV 寿命 (2.1969811 ± 0.0000022 ×10⁻⁶) s

表 2.1: ミューオンの性質 [1]

標準理論において、

図 2.1: 標準理論における素粒子 [2]

- 2.2 標準理論を超える物理において
- 2.3 実験における信号・背景事象

第3章

MEG II 実験

- 3.1 MEG 実験
- 3.2 MEG II 実験
- 3.2.1 MEG 実験からのアップグレード
- 3.2.2 **ドリフトチェンバー** (CDCH)
- 3.2.3 **陽電子タイミングカウンター** (pTC)
- 3.2.4 液体キセノンガンマ線検出器 (LXe)
- 3.2.5 輻射崩壊検出器 (RDC)
- 3.2.6 DAQ
- 3.2.7 展望

第4章

陽電子タイミングカウンター

- 4.1 背景
- 4.1.1 MEG 実験での問題点
- 4.1.2 MEG II 実験における新たなデザイン
- 4.2 マルチピクセル化された陽電子タイミングカウンター
- 4.2.1 複数ヒットの仕組み
- 4.2.2 時間分解能
- 4.2.3 位置較正
- 4.3 ピクセル (小型カウンター)
- 4.3.1 SiPM
- 4.3.2 プラスチックシンチレータ
- 4.4 読み出し
- 4.5 解析

第5章

時間較正

- 5.1 レーザー較正
- 5.2 ミシェル較正

第6章

陽電子タイミングカウンターにおける位置 情報

第7章

3D スキャンによる位置較正

- 7.1 3D スキャンにおける測量
- 7.2 実験エリアにおける測量
- 7.2.1 測量基準点 (reference point)
- 7.3 スキャンデータの解析
- 7.4 結果
- 7.5 考察

第8章

軌跡再構成による位置較正の試み

- 8.1 原理
- 8.2 課題
- 8.3 考察
- 8.4 運用について

第9章

Physics Run に向けて

- 9.1 位置較正システムの運用
- 9.2 課題
- 9.2.1 ドリフトチェンバーとの複合解析に向けて

第 10 章

考察とまとめ

謝辞

第Ⅰ部

付録

付録 A

3D 測量機器について

付録 B

軌跡再構成について

- B.1 カルマンフィルター
- B.2 クラスタリング
- B.3 ドリフトチェンバーとのマッチング

参考文献

- [1] P.A. Zyla et al. Review of Particle Physics. *Progress of Theoretical and Experimental Physics*, Volume 2020, Issue 8, August 2020, 083C01.
 - doi: https://doi.org/10.1093/ptep/ptaa104
- $[2] \ CERN \ website. \ https://home.cern/science/physics/standard-model\ ,\ cited\ 14th\ December\ 2020.$