Lecture 3: Error Analysis

CS 182 Spring 2021 – Taught by Sergey Levine

Notes by Michael Zhu

Empirical Risk vs True Risk

Risk: probability that your output is wrong

This is quantified by expected value of loss under the distribution that your data comes from

True risk =
$$E_{x \sim p(x), y \sim p(y|x)}[L(x, y, \theta)]$$

NOT THE SAME AS TRAINING LOSS. During training, we can't sample $x \sim p(x)$. We just have dataset D and can't generate new samples during training.

Empirical risk (from training) =
$$\frac{1}{n} \sum_{i=1}^{n} L(x_i, y_i, \theta)$$

Empirical risk minimization

Supervised learning is usually *empirical* risk minimization.

Question: Is this the same as *true* risk minimization?

$$\frac{1}{n} \sum_{i=1}^{n} L(x_i, y_i, \theta) \approx E_{x \sim p(x), y \sim p(y|x)} [L(x, y, \theta)]$$

Not always. Since we are selecting θ based on the empirical risk, the θ we get from training will be biased to the empirical risk. This creates a potential issue where the empirical risk is no longer a good approximation of true risk. It possible that we end up with a low empirical risk but a high true risk after training (aka overfitting).

Overfitting: when empirical risk is low, but true risk is high

- training data fits well
- true function fits poorly
- learned function is very different for different training sets, even if the training sets come from the same distribution

Potential causes:

- can happen if dataset is to small
- can happen if the model is too high capacity (i.e. there are many possible function approximations that can match the data)

Underfitting: when empirical risk is high, and true risk is high

- traing data fits poorly
- true function fits poorly
- learned function stays the same for different training sets, even if you increase dataset size

Potential causes:

- can happen if the model is too low capacity (i.e. there are no function approximations that match the data well)
- can happen if optmizer is not configured well enough

Mathematical Derivation of Bias and Variance

Reminder:
$$p(D) = \prod_{i} p(x_i)p(y_i|x_i)$$

Consider the expected error of the algorithm with respect to the distribution of datasets.

$$E_{D \sim p(D)}[||f_D(x) - f(y)||^2]$$

Where $f_D(x)$ is the function found by the learning algorithm for dataset D and f(y) is the true function.

$$E_{D \sim p(D)}[||f_D(x) - f(y)||^2] = \sum_D p(D)||f_D(x) - f(y)||^2$$

Why is this value useful?

We want to understand how well our algorithm does independently of the particular (random) choice of dataset.

Note: this is a theoretical exercise, it's not practical to compute this in the real world

Let $\bar{f}(x) := E_{D \sim p(D)}[f_D(x)]$ the average function learned by our algorithm

$$E_{D \sim p(D)}[||f_{D}(x) - f(y)||^{2}]$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x) + \bar{f}(x) - f(y)||^{2}]$$

$$= E_{D \sim p(D)}[||(f_{D}(x) - \bar{f}(x)) + (\bar{f}(x) - f(y))||^{2}]$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x)||^{2}] + E_{D \sim p(D)}[||\bar{f}(x) - f(y)||^{2}] + E_{D \sim p(D)}[2(f_{D}(x) - \bar{f}(x))^{T}(\bar{f}(x) - f(y))]$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x)||^{2}] + E_{D \sim p(D)}[||\bar{f}(x) - f(y)||^{2}] + E_{D \sim p(D)}[2(0)(\bar{f}(x) - f(y))]$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x)||^{2}] + E_{D \sim p(D)}[||\bar{f}(x) - f(y)||^{2}] + 0$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x)||^{2}] + E_{D \sim p(D)}[||\bar{f}(x) - f(y)||^{2}]$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x)||^{2}] + ||\bar{f}(x) - f(y)||^{2}$$

$$= E_{D \sim p(D)}[||f_{D}(x) - \bar{f}(x)||^{2}] \rightarrow \text{Variance}$$

$$||\bar{f}(x) - f(y)||^{2} \rightarrow \text{Bias}^{2}$$

Expected Error = $Variance + Bias^2$

Variance:

How much does the algorithm's predicted function change with the dataset (difference from the average function)?

If variance is too high \rightarrow overfitting

$Bias^2$:

How far off is the algorithm's average function to the true function?

If bias is too high \rightarrow underfitting

Key Question: how to regulate the tradeoff between variance and bias?

Usually when you decrease one the other increases

Regularization

Bayesian interpretation: a prior belief about our parameters

When we have **high variance**, it's because the data **doesn't give enough information** to pick one of the many possible functions that are **equally good** based on empirical risk

We can provide **more information** to our model by adding regularization to the loss function.

Question: Given dataset D, what is the most likely θ ?

$$p(\theta|D) = \frac{p(\theta,D)}{p(D)} \propto p(\theta,D) = p(D|\theta)p(\theta)$$

Remember:
$$p(D|\theta) = \prod_{i} p(x_i) p_{\theta}(y_i|x_i)$$

So what is $p(\theta)$? It's the probability of θ before we've seen the dataset D (aka the prior)

Old loss func:
$$L(\theta) = -\sum_{i} \log p_{\theta}(y_i|x_i)$$

New loss func:
$$L(\theta) = -\sum_{i} \log p_{\theta}(y_{i}|x_{i}) + \log p(\theta)$$

We add regularization to the loss function in the form of the prior $\log p(\theta)$

How do we pick $p(\theta)$? To keep things simple, we can represent it as a **normal distribution** with a **mean** of zero.

$$p(\theta) = N(0, \sigma^2)$$

If we set
$$\log p(\theta) = \lambda ||\theta||^2$$
, we'll find that $\lambda = 1/2\sigma^2$

So λ is **one divided by variance times half**. You can derive this from the formula of $\log p(\theta)$ when $p(\theta) = N(0, \sigma^2)$

In practice, λ is a hyperparameter that we can pick to set the variance of the normal distribution of $p(\theta)$ based on our prior knowledge/bias that we want to impose on the loss function

This is also known as "L2 regularization" and "weight decay", because it generally forces θ to take on smaller values which makes the learned function smoother

$$L(\theta) = -\sum_{i} \log p_{\theta}(y_{i}|x_{i}) + \lambda ||\theta||^{2}$$

Other types of regularizers

- $\lambda |\theta|$ taking the **absolute value** of θ instead of its square
- also known as "L1 regularization"
- creates a preference for weight sparsity, meaning that it will try to zero out the less useful dimensions

Dropout: a special regularizer for neural networks where you randomly remove nodes during training

 ${\bf Gradient\ penalty:\ a\ special\ regularizer\ for\ GANs}$

And many more ...

Machine Learning Workflow

Define $L(\theta, D_{train})$ as loss on training set

Define $L(\theta, D_{val})$ as loss on validation set

Note that $L(\theta, D_{train})$ only gives us information on bias (underfitting) and not variance (overfitting), which is why we need $L(\theta, D_{val})$ to observe variance

- 1. Split dataset into training, validation, and test sets
 - training set \rightarrow used to select θ and optimizer hyperparameters (i.e. learning rate α)
 - validation set \rightarrow used to select model class (i.e. neural net architecture) and regularizer hyperparameters (i.e. λ)
 - $\mathbf{test} \ \mathbf{set} \to \mathbf{used} \ \mathbf{for} \ \mathbf{final} \ \mathbf{evaluation}$
- 2. Train θ with $L(\theta, D_{train})$
 - if $L(\theta, D_{train})$ is low \rightarrow underfitting \rightarrow decrease regularization, improve optimizer, etc
- 3. Observe $L(\theta, D_{val})$
 - if $L(\theta, D_{val}) >> L(\theta, D_{train}) \to \mathbf{overfitting} \to \text{increase regularization}$, tweak model class, etc.
- 4. Repeat steps 2 and 3 until you reach an acceptable loss or error (Reminder: error = variance + bias²)
- 5. Report final performance based on test set
 - Think about why we can't use training set or validation set to evaluate final performance (they're **unbiased estimators** now since we've used them for training and hyperparameter optimization!)