Билет 11: Пользуясь определением предела функции по Гейне и соответствующими свойствами сходящихся последовательностей, докажите теорему об арифметических операциях с функциями, имеющими конечный предел.

Теорема. Пусть функции f(x) и g(x) определены в некоторой проколотой окрестности $\overset{\circ}{O}_r(a)$ точки a.

Тогда, если
$$\lim_{x\to a} f(x) = A$$
, $\lim_{x\to a} g(x) = B$, то

- 1) $\lim_{x \to a} (f(x) + g(x)) = A + B,$
- 2) $\lim_{x \to a} f(x)g(x) = A \cdot B,$
- 3) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$, если $B \neq 0$ и $g(x) \neq 0$ при $x \in O_r(a)$.

Доказательство. Возьмем произвольную сходящуюся к a последовательность $\{x_n\}$ $(x_n \neq a)$. Из определения предела по Гейне следует, что $\lim_{n \to \infty} f(x_n) = A$ и $\lim_{n \to \infty} g(x_n) = B$. Тогда $\lim_{n \to \infty} (f(x_n) + g(x_n)) = A + B$ и $\lim_{n \to \infty} f(x_n)g(x_n) = A \cdot B$ для всех сходящихся к a (и не совпадающих с a) последовательностей $\{x_n\}$, то есть первые два утверждения доказаны. При $B \neq 0$ очевидна справедливость и третьего утверждения.