Diseño de Circuitos Integrados utilizando Herramientas de Software Libre

Leandro Marsó

FLISol Villa María, IFDC, 2015

Temario

- Introducción
 - Definiciones generales
 - Planteamiento del problema y motivación
 - Diseño físico

2 Conclusiones

Temario

- Introducción
 - Definiciones generales
 - Planteamiento del problema y motivación
 - Diseño físico

2 Conclusiones

¿Qué es un circuito integrado?

Figura: Obleas de silicio de 150, 200 y 300 mm de diámetro, de un proceso CMOS.

¿Qué es un circuito integrado?

Figura: Encapsulado del chip (a) y (b) una vista aumentada.

¿Qué es un circuito integrado?

- 1 Bare die
- 2 DIP
- 3 PGA
- 4 Small-outline IC
- 5 Quad flat pack
- 6 PLCC
- 7 Leadless carrier

Figura: Algunos tipos de encapsulados comunes.

¿Qué es un circuito integrado?

¿Cómo accedemos a fabricar circuitos integrados?

Fabrica	Proceso CMOS
TSMC	28 nm - 180 nm
Globalfoundries	14 nm - 180 nm
IBM	32 nm - 250nm
ON Semi	0.35 um - 0.7 um
Austria Micro Systems	180 nm - 0.35 um

Tabla: Procesos disponibles por medio de MOSIS

¿Qué es un circuito integrado?

¿Cómo accedemos a fabricar circuitos integrados?

Fabrica	Proceso CMOS	
STMicroelectronics	28 nm - 130 nm	
Austria Micro Systems	180 nm - 0.35 um	

Tabla: Procesos disponibles por medio de CMP

¿Qué es un circuito integrado?

¿Cuánto podemos integrar?

CMOS 350 nm de AMS

- 18 kGates/mm²
- 650 €/mm²
- Área mínima 3 mm²
- 25 chips

CMOS 180 nm de AMS

- 118 kGates/mm²
- 1200 €/mm²
- Área mínima 5 mm²
- 25 chips

¿Qué es el Software Libre?

Definición

«Software libre» es el software que respeta la libertad de los usuarios y la comunidad. A grandes rasgos, significa que los usuarios tienen la libertad de ejecutar, copiar, distribuir, estudiar, modificar y mejorar el software. Es decir, el «software libre» es una cuestión de libertad, no de precio.

Las cuatro libertades del Software Libre

- La libertad de ejecutar el programa
- La libertad de estudiarlo
- La libertad de redistribuir copias
- La libertad de distribuir copias de sus versiones modificadas

Las cuatro libertades del Software Libre

- La libertad de ejecutar el programa
- La libertad de estudiarlo
- La libertad de redistribuir copias
- La libertad de distribuir copias de sus versiones modificadas

Las cuatro libertades del Software Libre

- La libertad de ejecutar el programa
- La libertad de estudiarlo
- La libertad de redistribuir copias
- La libertad de distribuir copias de sus versiones modificadas

Las cuatro libertades del Software Libre

- La libertad de ejecutar el programa
- La libertad de estudiarlo
- La libertad de redistribuir copias
- La libertad de distribuir copias de sus versiones modificadas

Planteamiento del problema y motivación

Temario

- Introducción
 - Definiciones generales
 - Planteamiento del problema y motivación
 - Diseño físico
- 2 Conclusiones

¿Cómo diseñar circuitos integrados con herramientas flexibles y accesibles para todo tipo de uso: académico e industrial?

Económico

Factibilidad de proyectos según la escala

Académico

Oportunidad de abordaje multidisciplinario

Otras razones

Soberanía tecnológica

Temario

- Introducción
 - Definiciones generales
 - Planteamiento del problema y motivación
 - Diseño físico

2 Conclusiones

Flujo de diseño físico

Flujo de diseño físico - Herramientas

http://opencircuitdesign.com/qflow/

Selección del proceso de fabicación

Podemos trabajar con tecnologías de hasta 130nm:

- Existen herramientas de software libre para estas tecnologías.
- Posibilidad de integrar sistemas de gran complejidad y alta performance, o simples y de bajo costo de fabricación.

Selección del proceso de fabicación

Ejemplos de microprocesadores que fueron fabricados en 180nm:

Procesador	Año de lanzamiento
Intel Coppermine E	1999
AMD Athlon Thunderbird	2000
Intel Celeron (Willamette)	2002
Motorola PowerPC 7445 y 7455 (Apollo 6)	2002

Tabla: Procesadores fabricados en CMOS 180nm

Mapeo de lógica a compuertas

Mapeo de una función lógica a una celda estándar

Librería de celdas estándar

Figura: Conjunto de celdas estándar

Celdas estándar

Grilla de interconexionado y riel de alimentación de las celdas estándar de 128λ

Layout de todas las arquitecturas y tamaños

Flujo para simulaciones analógicas

Conclusiones

- Metodología flexible
 - Selección de la herramienta según la necesidad
 - Integración del flujo con modificaciones simples
 - Todos los procesos son automáticos
- Resultados del mismo orden de magnitud que otros estudios
 - Sumadores de cualquier tamaño
 - Sumadores rápidos, eficientes o de bajo consumo
- Metodología para circuitos combinacionales
 - Unidades aritméticas, decodificadores, codificadores, funciones lógicas
 - También diseños analógicos

Conclusiones

Hemos encontrado una metodología completa de trabajo que nos permite ir desde la descripción funcional de sistemas digitales hasta el diseño del circuito integrado listo para ser enviado a fábrica.

Desafíos futuros

- Implementar una ALU
- Implementar un circuito digital mayor, por ejemplo el openMSP430 (8kGates)
- Crear una batería de simulaciones para caracterizar celdas estándar en formato Liberty de forma automática
- Aportar al desarrollo del simulador gnucap, Yosys o Electric

¡Gracias!