Appl. No. 10/042,626

Amdt. Dated July 22, 2004

Reply to Office action of Aug. 17, 2004

Amendments to the Claims: (Clean copy)

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

Claim 1 (currently amended): A total design system for planet-type roller gears. This

system is also known as cyclo gear torque multiplier. The basic geometrical relationships

evolve around the "cyclo module", the radius, "R" of the cyclo tooth. These relations are

shown in Table 2. The simplifications and improvements of the cyclo gear axis system

are the basic features of these claims.

Claim 2 (currently amended): A geometric design arrangement for planet type roller gear

according to claim 1 wherein: the roller radius has the given relation to the cyclo-module

as shown in FIG. 1.9.

Claim 3 (currently amended): A geometric design arrangement for planet type roller

gears to claim 2 wherein the roller size R, the roll-up diameter D2, provide the three

tangent points to generate the tooth cup radius "r" of the cyclo disk as illustrated under

Figure 1.9 and Table 2.

Claim 4 (currently amended): A geometric design arrangement for planet type roller

gears according to claim 3 wherein the eccentric has a geometric relation to the cyclo

module as shown in Figure 1.9 and Table 2.

Claim 5 (currently amended): A geometric design arrangement for planet type roller

Page 29 of 33

Appl. No. 10/042,626 Amdt. Dated July 22, 2004 Reply to Office action of Aug.17, 2004

gears according to claim 4 wherein the wave disk has a geometric relation to claim 2 and 3 and Figure 1.9 and Table 2.

Claim 6 (currently amended): A geometric design arrangement for planet type roller gears according to claim 5 wherein three eccentrics are indexed equally around the center as shown in drawings Figure 1.1, 1.2, 1.8, 1.10.

Claim 7 (currently amended): A geometric design arrangement for planet type roller gears according to claim 6 wherein the number of eccentrics shown are 1, 2, or 3 as drawn in Figure 2.1, 2.2, 2.3.

Claim 8 (currently amended): A geometric design arrangement for planet type roller gears according to claim 7 wherein the eccentrics are spaced to drive the high torque generated by the cyclo gear and wave disk in connection with the containing flanges as shown in Figure 1.1, 1.2..

Claim 9 (currently amended): A geometric design arrangement for planet type roller gears according to claim 8 wherein the two drive-out flanges are driven by the eccentrics play-free bearings as in Figure 1, 2.

Claim 10 (currently amended): A geometric design arrangement for planet type roller gears according to claim 9 wherein flange and housing bearings form a complete unit axis-cyclo-gear-assembly with taped mounting holes, as shown in Figure 1.1, 1.2.

Claim 11 (currently amended): A geometric design arrangement for planet type roller gears according to claim 10 wherein six hollow torque stabilizing bars with sleeves, stabilize the two drive-out flanges as shown in Figures 2.1, 2.2, 2.3.

Appl. No. 10/042,626 Amdt. Dated July 22, 2004 Reply to Office action of Aug.17, 2004

Claim 12 (currently amended): A geometric design arrangement for planet type roller gears according to claim 11 wherein a pair of deep groove or cross-roller bearing is used to stabilize the high torque flange to the gear housing, as in Figures 1.1, 2.1, 2.2, 2.3, to make the gear assembly an axis or turntable.

Claim 13 (currently amended): A geometric design arrangement for planet type roller gears according to claim 12 wherein all cyclo rollers are reset or hallowed and pinned as shown in Figure 2.1, 2.2, 2.3.

Claim 14 (currently amended): A geometric design arrangement for planet type roller gears according to claim 1 through 13 wherein the rotating position is further enhanced by controlling its position at any time by adding an absolute shaft encoder to the gear axis drive-in as shown on Figure 5.

Claim 15 (currently amended): A geometric design arrangement for planet type roller gears according to claim 14 wherein a two channel absolute angular encoder with up/down counter is continuously powered to make it an absolute position smart axis as shown on FIG. 5.

Claim 16 (currently amended): A geometric design arrangement for planet type roller gears according to claim 15 wherein the analog summing circuits and feedback servo circuit may feed back data misdirecting the summing results and servo action. The Figure 3 frequency and servo filter counteracts extraneous signals and enhances further the productivity and performance of the cyclo torque multiplier and cyclo gear axis as shown in Figure 4.

END OF CLEAN COPY FOR CLAIMS