| 2准数の加賀 | 補数表現について              |
|--------|-----------------------|
|        | かまなん イス・カス・コープ しょうしょう |

[2 学期授業用プリント No.1]

教科書 P.78、79 学習ノート P.40、P.41

1年( )組( )番 名前(

☆目標☆

2進数の加算、補数表現について知る

1 次の中でコンピューターが計算できるものはどれ?

①3+6 ②4×3 ③7-2 ④10÷5



- ☆コンピュータの計算は論理回路の組み合わせで実現されています。論理回路を複雑に すると計算スピードが落ちるので、究極のシンプルな形を追い求めこうなりました
- 2 次の計算を足し算で表現してみよう。

 $(1)4 \times 3$ 

**27-2** 

答え

答え

- 3 補数について知ろう。 <u>補数とは・・・</u>元の数を足したときに桁上がりする「最小」の数のことを指しています。
  - 例) 10 進法における 4 に対する補数は 6 、 2 3 に対する補数は 7 7
  - 例) 7-2

10 進法: 7-2=7+8=15

補数

4 次の10進数を補数を使い求めてみよう。 (マイナスを使わずに足し算で求めてみよう)

05-3

(2)8-4

足し算を使った式:

足し算を使った式:

答え

答え

☆計算はすべて足し算で表現できる。この原理を使ってコンピュータは高速計算をしている。

| 5 それでは2進数で考えてみましょう。まず2進数の足し算はどうするのか?       |  |  |  |  |  |
|--------------------------------------------|--|--|--|--|--|
| ☆2進数の足し算ポイント                               |  |  |  |  |  |
| ①0+0=1 ②0+1=1 ③1+0=1 ④1+1=10 ⑤1+1+1=11     |  |  |  |  |  |
|                                            |  |  |  |  |  |
| 2進数の足し算(加算)をしてみよう。                         |  |  |  |  |  |
| ①1000 <sub>(2)</sub> +0101 <sub>(2)</sub>  |  |  |  |  |  |
|                                            |  |  |  |  |  |
|                                            |  |  |  |  |  |
|                                            |  |  |  |  |  |
| 答え <u></u>                                 |  |  |  |  |  |
| ② 0111 <sub>(2)</sub> +0101 <sub>(2)</sub> |  |  |  |  |  |
|                                            |  |  |  |  |  |
|                                            |  |  |  |  |  |
| <u>☆ポイントは桁上がりをする!</u>                      |  |  |  |  |  |
| 答え                                         |  |  |  |  |  |
| 6 次の2進数を加算して求められる答えは何か計算しなさい。              |  |  |  |  |  |
| ①1011 <sub>(2)</sub> +1101 <sub>(2)</sub>  |  |  |  |  |  |
|                                            |  |  |  |  |  |
|                                            |  |  |  |  |  |

答え\_\_\_\_\_

答え\_\_\_\_\_

| 7 | 補数の求め方について知ろう。 |
|---|----------------|
|---|----------------|

例) 7-2



10 進法で2の補数は8になります

10 進法で補数を求める方法は 10-2 をすれば求まります。

2進法でも同じように引き算をすれば求めることができます。

7-2を2進法にすると



2進法:0111 - 0010

2進法で補数を求める方法は  $10000_{(2)}$ - $0010_{(2)}$ をすれば求まります。 でもこれおかしくないですか?

8 2の補数の求め方について知ろう。

例) 0101 の場合の2の補数の求め方は



9 次の2進法の補数を求めなさい。

①0011<sub>(2)</sub>

200111000<sub>(2)</sub>

答え\_\_\_\_\_

答え\_\_\_\_\_

10 次の計算を、2の補数表現(補数)を使った足し算で求めよ。(教科書より。)

 $\bigcirc 0100_{(2)} - 0011_{(2)}$ 

手順①右側の2進法(00112)の2の補数を求める。

手順②左側の2進法数字(0100(2))+手順①

手順③下位4ビットだけとる

答え

 $20111_{(2)} - 0100_{(2)}$ 

 $30110_{(2)} - 0001_{(2)}$ 

答え\_\_\_\_\_

答え\_\_\_\_\_

## 11 補数でのマイナス表記について(符号あり、符号なし)

- ・コンピューターではマイナス表現をするために(① )を用いる。
- ・4ビットでは先頭のビットを見て0のときは(② )



- ・4ビットでは先頭のビットを見て1のときは(③)
- ・「1110」の表現するとこれが「-2」か「14」を表す数なのかわからない。そこで「符号付きビットで表限」のように断り書きが付くことが多い。

| 0<br>0000          |    |
|--------------------|----|
| 1 0001 ← → 1111 -1 |    |
| 2 0010             |    |
| 3 0011 ∢           | -3 |
| 4 0100 ← 1100      | -4 |
| 5 0101 ←           | -5 |

|   | 2 進法<br>表現 | 2の補数表現での    | 符号なし<br>整数での |  |  |
|---|------------|-------------|--------------|--|--|
| 5 | 4321       | 数値          | 数値           |  |  |
| 1 | 0111       | 7           | 7            |  |  |
| 1 | 0110       | 6           | 6            |  |  |
| 1 | 0101       | 6<br>5      | 5            |  |  |
| 1 | 0100       | 4<br>3<br>2 | 4<br>3       |  |  |
| 1 | 0011       | 3           |              |  |  |
| 1 | 0010       | 2           | 2            |  |  |
| 1 | 0001       | 1           | 1            |  |  |
| 1 | 0000       | 0           | 0            |  |  |
| 0 | 1111       | -1          | 15           |  |  |
| 0 | 1110       | -2          | 14           |  |  |
| 0 | 1101       | -2<br>-3    | 13           |  |  |
| 0 | 1100       | -4          | 12           |  |  |
| 0 | 1011       | -5          | 11           |  |  |
| 0 | 1010       | -6          | 10           |  |  |
|   | 1001       | -7          | 9            |  |  |
| 0 | 1000       | -8          | 8            |  |  |
|   |            |             |              |  |  |

教科書 P.53 参考

☆1を補数変換をして−1にするには0と1を反転して1を足す