

WALMART STORE SALES FORECASTING

회귀분석을활용한 월마트 주간 판매량 예측

INDEX

분석목적

a. 프로젝트 개요

데이터 소개

- a. 테이블 정보
- b. 테이블 스키마

데이터 탐색 및 전처리

- a. 데이터 탐색
- b. 상관관계 및 초기변수선택
- c. 데이터 표준화
- d. 데이터 인코딩

모델학습

- a. 모델 학습 세팅
- b. 학습 과정
- c. 최종 모델

결론

- a. 프로젝트 요약
- b. 대시보드

마무리

- a. 한계점과 개선사항
- b. 추후 분석 및 발전방향
- c. 프로젝트 후기

분석 목적

분적목적

대규모 소매점 데이터에 대한 팀원들의 높은 관심

☞ 목표

- 1. 스토어별 주간 판매량을 회귀 예측하는 모델 구축
- 2. 모델을 활용해 주간 보고서용 대시보드 구현하기

📦 기대효과

재고 관리 및 마케팅 전략 수립 시 필요한 인사이트를 제공

데이터 소개

테이블정보

Table 1 | Stores

45 (rows) X 3 (columns)

변수명	변수 설명	변수 타입	비고
Store	지점 번호	Int	1~45
Туре	매장 타입	Str	A, B, C
Size	매장 면적	Int	-

Table 2 | Train

421570 (rows) X 5 (columns) 2010-02-05 ~ 2012-10-26 (995 일간)

변수명	변수 설명	변수 타입	비고
Store	지점 번호	Int	1~45
Dept	부서 번호	Int	1~99 (81개)
Date	날짜	TimeSeries	'yyyy-mm-dd' 형태
Weekly_Sales	주간 매출	Float	-
IsHoliday	공휴일 여부	Boolean	-

Table 3 | features

8190 (rows) X 12 (columns) 2010-02-05 ~ 2013-07-26 (1268 일간)

변수명	변수 설명	변수 타입	비고
Store	지점 번호	Int	1~45
Date	날짜	TimeSeries	'yyyy-mm-dd' 형태
Temperature	주간 평균 기온	Float	경제지표
Fuel_Price	주간 평균 유가	Float	경제지표
MarkDown	홍보 마크다운	Float	1~5번 컬럼까지 존재 (결측치 존재)
СРІ	주간 소비자물가지수	Float	경제지표
Unemployment	주간 실업률	Float	_
IsHoliday	공휴일 여부	Boolean	-

테이블스키마

별첨자료 1 참고

데이터 탐색 및 전처리

사전전처리

상관관계 분석 위해 Type, IsHoliday 컬럼을 라벨 인코딩

Store	Dept	Date	Weekly_Sales	IsHoliday	Туре	Size	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4	MarkDown5	СРІ	Unemployment
1	1	2010-02- 05	24924.50	False	Α	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	2	2010-02- 05	50605.27	False	Α	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	3	2010-02- 05	13740.12	False	Α	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	4	2010-02- 05	39954.04	False	Α	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	5	2010-02- 05	32229.38	False	Α	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106

Store	Dept	Date	Year	Month	Day	Weekly_Sales	IsHoliday	Туре	Size	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4	MarkDown5	СРІ	Unemployment
1	1	2010-02-05	2010	2	5	24924.50	0	0	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	2	2010-02-05	2010	2	5	50605.27	0	0	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	3	2010-02-05	2010	2	5	13740.12	0	0	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	4	2010-02-05	2010	2	5	39954.04	0	0	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106
1	5	2010-02-05	2010	2	5	32229.38	0	0	151315	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	8.106

Date (YYYY-MM-DD) 컬럼을 Year, Month, Day로 분리 컬럼수 11개 ▶ 19개

데이터탐색

Weekly Sales는 계절성이 있음

Date를 기준으로 Weekly Sales의 합계를 확인 한 결과 계절성이 확인됨.

각 store별 수집된 날짜 구간은 상이하나 Holiday의 비율은 비슷

각 Store별 데이터가 수집된 날짜들이 상이하다는 사실을 확인, 그러나 Holiday의 비율 7% 로 비슷함. 분석 목적 모델 학습 모델 학습 결론 마무리

STORE SALES FORECASTING

데이터탐색

다음과 같이 각 월의 특정 주간은 Holiday주간 (IsHoliday = T/F)이다. 슈퍼볼 (2월), 노동절 (9월), 추수감사절(11월), 크리스마스(12월)

Holiday 주간의 매출은 평균적으로 일반적인 경우보다 높다.

!? 어떤 Holiday 주간의 Weekly Sales가 높을까?

- 평균적으로 Weekly Sales가 높은 주간은 Thanksgiving 기간이다.
- 평균 Weekly Sales가 가장 낮은 주간은 Christmas 기간이다.

상관관계및 초기변수탐색

별첨자료 2 참고

초기변수

Store Dept Year Month Day Size Weekly Sales

IsHoliday_le Fuel_Price Temperature CPI Unemployment

두 컬럼이 높은 관계성을 가진 것을 확인.

SIZE와 TYPE 중 Weekly Sales와 관계성이 더 높은 Size만 선택

상관관계 | MARKDOWN

마크다운 결측치 : 전체의 64%

컬럼 정보 부족 & 다량의 결측치

MarkDown1~5 의 데이터 수집이 짧은 기간 진행되어 유의미한 분석이 불가능 할 것으로 판단

데이터표준화

단, 적용 시 Join 후 테이블이 아닌 기존 'Store'와 'Feature' 테이블에서 Fitting 후 스케일링 적용

원 분포를 활용하기 위해 'Store'와 'Feature' 테이블에서 Fitting 후 스케일링 적용

데이터인코딩

별첨자료 3 참고

범주형 인코딩

Year IsHoliday (Boolean) Store Dept

LabelEncoding 적용

두 가지 이상의 클래스를 가진 변수

인코딩	One-Hot	기존 형식 유지
방식	Encoding	(1-45/1-99)
Feature 개수	135개	11개

One-Hot Encoding시, Feature의 개수 영향으로 성능 저하 예상 → **기존 데이터 형식 유지**

	Store	Dept	Year_le	Month	Day	IsHoliday_le	Size_sd	Temperature_sd	Fuel_Price_sd	CPI_sd	Unemployment_sd
0	1	1	0	2	5	0	0.333175	-0.912661	-1.933624	0.972312	0.148726
1	1	2	0	2	5	0	0.333175	-0.912661	-1.933624	0.972312	0.148726
2	1	3	0	2	5	0	0.333175	-0.912661	-1.933624	0.972312	0.148726
3	1	4	0	2	5	0	0.333175	-0.912661	-1.933624	0.972312	0.148726
4	1	5	0	2	5	0	0.333175	-0.912661	-1.933624	0.972312	0.148726
										•••	
421565	45	93	2	10	26	0	-0.191193	-0.027102	1.103633	0.499502	0.447586
421566	45	94	2	10	26	0	-0.191193	-0.027102	1.103633	0.499502	0.447586
421567	45	95	2	10	26	0	-0.191193	-0.027102	1.103633	0.499502	0.447586
421568	45	97	2	10	26	0	-0.191193	-0.027102	1.103633	0.499502	0.447586
421569	45	98	2	10	26	0	-0.191193	-0.027102	1.103633	0.499502	0.447586

421570 rows × 11 columns

최종 선택된 컬럼

모델 학습

모델학습세팅

Random State = 73 고정

Train - Test 분리

Train(70%), Test(30%)

IsHoliday 기준 **층화추출(Stratify)***

평가 지표

본 프로젝트에서는 RMSE, R^2 , WMAE* 세 가지 평가지표를 사용합니다.

* 층화추출

각클래스의비율을 맞추어 샘플을 선택함으로써, 효과적인클래스별분석과모델학습을 가능하게 하는 샘플 추출법

WMAE

$$WMAE = \frac{1}{\sum \omega_i} \sum_{i=1}^n \omega_i |y_i - \hat{y}_i|$$

- *n*:행의수
- \hat{y}_i : 예측 가격
- y_i : 실제 가격
- ω_i : 가중치

Holiday 주간인 경우 가중치로 5를 적용하고, 아닌 경우 1으로 한다.

선형회귀모델

별첨자료 4 참고

!	
성능이 매우 낮음	

WMAE	RMSE	R-Squared
14793.8502	21663.8066	0.0845

사용한 변수 간 비선형 관계가 강하게 보임

Store, Dept, Year, Month, Day, IsHoliday, Size, Temperature, Fuel_Price, CPI, Unemployment

학습에 사용한 모든 독립변수들과 종속변수 간 피어는 상관계수가 절댓값 0.3 미만으로 선형 관계가 약함

Ramsay RESET Test 결과, 독립변수들과 종속변수 간 관계가 비선형성을 강하게 띄고 있음을 확인 가능

→ 선형 기반 회귀 모델은 비선형 관계 포착에 한계가 있음.

분석 목적 데이터 소개 데이터 탐색 및 전처리

모델학습 결론 마

STORE SALES FORECASTING

트리기반앙상블모델

따라서 비선형 관계를 잘 포착하는

트리기반 앙상블 모델* 사용

RandomForest, Gradient Boosting, XGBoost

앙상블 모델*

여러 개의 개별 모델을 조합하여 최적의 모델로 일반화하는 방법.

의사결정나무의 **과대적합 문제를 해결함.**

보팅(voting), 배깅(bagging), 부스팅(boosting), 스태킹(stacking)이 있음.

Ver 1

선택 변수 Store, Dept, Year_le Day, IsHoliday_le, Size_sd,

Temperature_sd , Fuel_Prie_sd , CPI_sd , Unemployment_sd

정규화 일부 변수(Store, Dpet, Month, Day) 제외

Sklearn.preprocessing.Standard Scaler 활용

인코딩 Year , IsHoliday 라벨 인코딩

	\mathbb{R}^2	RMSE	WMAE
GBM	0.7407	11529.9645	7143.3501
RF	0.9747	3604.8407	1602.6524
XgBoost	0.9393	5576.5045	3264.2371

모델학습타임라인

모델변수선택

√ 가설 1

Week가 Day보다 데이터의 시간성을 잘 반영할 것이다.

실제로는 2010년 10월 30일 부터 2010년 2월 5일까지의 **주간 판매량 데이터**

Store	Dept	Date	Weekly_Sales	Year	Month	Day	Week
1	1	2010-02-05	24924.50	2010	2	5	5
1	2	2010-02-05	50605.27	2010	2	5	5
1	3	2010-02-05	13740.12	2010	2	5	5
1	4	2010-02-05	39954.04	2010	2	5	5
1	5	2010-02-05	32229.38	2010	2	5	5

Week : 일년 중 해당 주간이 몇 번째 주간인지 숫자로 표기(1~52) e.g.해당 주의 경우 2010년의 5번째 주차

Ver 2

선택 변수 Store, Dept, Year_le Week, IsHoliday_le, Size_sd,

Temperature_sd, Fuel_Prie_sd, CPI_sd, Unemployment_sd

	\mathbb{R}^2	RMSE	WMAE
GBM	0.744	11456.2127	7086.2212 ▼
RF	0.9739 ▼	3657.4015	1657.7968
XgBoost	0.9446	5328.8998	3109.6522

Ver1 대비 증감(■ 성능 개선, ■ 성능 저하)

랜덤 포레스트 모델을 제외하고 나머지 모델에서 성능 개선

모델변수선택

√ 가설 2

경제 지표를 대표하는 CPI만 사용하면 모델의 성능이 개선될 것이다.

	CPI	Fuel_Price	Unemployment
CPI	1.000000	-0.164210	-0.299953
Fuel_Price	-0.164210	1.000000	-0.033853
Unemployment	-0.299953	-0.033853	1.000000

다른 지표 대비 **경제 지표 간의 상관성이 높다**.

Ver 3

선택 변수 Store, Dept, Year_le, Week, Day, IsHoliday_le, Size_sd,
Temperature_sd, CPI_sd

	\mathbb{R}^2	RMSE	WMAE
GBM	0.7434	11468.6906	7091.2188
RF	0.976	3507.1593	1579.366 ▼
XgBoost	0.9449 🔺	5316.2909	3106.3117

Ver1 대비 증감(■ 성능 개선, ■ 성능 저하)

모든 모델에서 성능 개선

모델변수선택

앞의 가설을 데이터의 시간성을 잘 반영하는 Week를 Month와 Day 대신 사용, 경제지표를 대표하는 CPI만 선택해 변수를 선정함.

Ver 4

선택 변수 Store, Dept, Year_le Week, IsHoliday_le, Size_sd,
Temperature_sd, CPI_sd

	\mathbb{R}^2		RMSE		WMAE	
GBM	0.7448	A	11438.6736	•	7115.2914	•
RF	0.975	A	3578.0588	•	1634.702	
XgBoost	0.95	A	5061.3442	•	3000.1364	•

Ver1 대비 증감(■ 성능 개선, ■ 성능 저하)

전반적으로 모든 모델에서 성능 개선

모델변수선택

√ 가설 3

경제 지표 중 CPI만으로는 주간 판매량을 예측하기 어려울 것이다.

Ver 5

유가(Fuel_Price) 컬럼 추가

선택 변수

Store, Dept, Year_le, Week, IsHoliday_le, Size_sd,

Temperature_sd , CPI_sd , Fuel_Prie_sd

	\mathbb{R}^2	RMSE	WMAE
GBM	0.7448 -	11438.6736 -	7115.2914 -
RF	0.9744 ▼	3619.3998 🔺	1651.4686
XgBoost	0.9456 ▼	5279.5781	3089.7855

Ver4 대비 증감(■ 성능 개선, ■ 성능 저하)

모든 모델에서 성능이 개선되지 않았다.

Ver 6

실업률(Unemployment) 컬럼 추가

선택 변수

Store, Dept, Year_le, Week, IsHoliday_le, Size_sd,

Temperature_sd , CPI_sd , Unemployment_sd

	\mathbb{R}^2	RMSE	WMAE	
GBM	0.744 ▼	11456.2127	7086.2212	
RF	0.9743 ▼	3627.1725	1643.6511	
XgBoost	0.9475 ▼	5188.031	3057.5611	

Ver4 대비 증감(■ 성능 개선, ■ 성능 저하)

모든 모델에서 성능이 개선되지 않았다.

모델변수선택

√ 가설 4

변수 Year를 라벨 인코딩한 것은 모델의 성능에 영향을 주지 않을 것이다.

Store	Dept	Date	Year_le
1	1	2010-02-05	0
1	2	2010-02-05	0
1	3	2010-02-05	0
1	4	2010-02-05	0
1	5	2010-02-05	0
45	93	2012-10-26	2
45	94	2012-10-26	2
45	95	2012-10-26	2
45	97	2012-10-26	2
45	98	2012-10-26	2

Dept	Date	Year
1	2010-02-05	2010
2	2010-02-05	2010
3	2010-02-05	2010
→ 2010	2010-02-05	2010
→ 2011	<mark>201</mark> 0-02-05	2010
→ 2012		
93	2012-10-26	2012
94	2012-10-26	2012
95	2012-10-26	2012
97	2012-10-26	2012
98	2012-10-26	2012
	1 2 3 → 2010 → 2011 → 2012 93 94 95 97	1 2010-02-05 2 2010-02-05 3 2010-02-05 → 2010 2010-02-05 → 2011 2010-02-05 → 2012 93 2012-10-26 94 2012-10-26 95 2012-10-26

Ver 7

Temperature_sd , CPI_sd

	\mathbb{R}^2		RMSE		WMAE	
GBM	0.7448	-	11438.6736	-	7115.2914	-
RF	0.975	-	3578.0588	-	1634.702	-
XgBoost	0.95	-	5061.3442	-	3000.1364	-

Ver4 대비 증감(■ 성능 개선, ■ 성능 저하)

모든 모델의 성능이 변하지 않았다. 고로, **연도(Year) 변수는 라벨링 하지 않아도 된다.**

모델최적화

하이퍼 파라미터 조정

앞의 가설을 데이터의 시간성을 잘 반영하는 Week를 Month와 Day 대신 사용,

경제지표를 대표하는 CPI만 선택해 변수를 선정,

변수 Year의 라벨 인코딩이 불필요하다고 판단해 인코딩 하지 않음.

| 랜덤 포레스트& 랜덤서치

	\mathbb{R}^2	RMSE	WMAE
rf7	0.9750	3578.06	1643.70
rf8	0.9309	5951.90	3127.57
rf9	0.9644	4274.06	1907.84

|세팅파라미터

rf 8 params

n_estimators=300, min_sample_split= 8, min_sample_leaf= 12, max_depth= 12

rf 9 params

n_estimators=300, min_sample_split= 8, min_sample_leaf= 12

rf8단계에서 랜덤서치 결과인 최적화한 파라미터 사용시 전반적으로 성능이 크게 저하되었다.

rf9단계에서 max depth만 'None'으로 설정하여 무한대로 늘린 경우, 부분적으로 성능이 회복되었지만 처음보다 과소적합이 진행되었다.

모델최적화

하이퍼 파라미터 조정

│ Xgb & 그리드서치

	\mathbb{R}^2	RMSE	WMAE
Xgb7(M:6/N:100)	0.9500	5061.34	3000.14
Xgb8	0.9850	2774.57	1432.85
Xgb9(M:10/N:1,000)	0.9862	2660.32	1385.19

|세팅파라미터

Xgb 8 params

colsample_bytree=0.9, learning_rate=0.3, max_depth=10, min_child_weight=5, n_estimators=630

Xgb 9 params

colsample_bytree = 0.9, learning_rate = 0.3, max_depth = 10, min_child_weight = 5, n_estimators = 1000, lambda = 10, alpha = 2

Xgb 8에서 그리드 서치 결과 반영, max_depth & n_estimators의 영향으로 비약적인 성능 상승

원래 Xgb모델의 기본값 max depth = 6 ▶ 10

Xgb 9에서 성능 상승을 위해 n_estimators를 키우고,과적합 방지 목적으로 alpha, lambda를 통해 L1, L2 규제

분석 목적 모델 <mark>학습 모델 학습</mark> 의명 결론 마무리

STORE SALES FORECASTING

모델최적화

하이퍼 파라미터 조정

| 랜덤 포레스트

	\mathbb{R}^2	RMSE	WMAE
rf7	0.9750	3578.06	1643.70

Xgb			
	\mathbb{R}^2	RMSE	WMAE
Xgb9(M:10/N:1,000)	0.9862	2660.32	1385.19

| XGB9 RF7 의 성능차이

	\mathbb{R}^2	RMSE	WMAE
Xgb9 RF7 의 성능차이	0.0218	1613.74	522.65

모델최적화

최종 모델과의 비교

	Linear Regression	XgBoost (ver9)	
\mathbb{R}^2	0.0845	0.9862	▲ 91.43%
RMSE	21663.8066	2660.32	▼ 87.72%
WMAE	14793.8502	1385.19	▼ 90.64%

초기 선형회귀모델과 비교했을 때, 하이퍼파라미터 세팅을 마친 최종모델(Xgboost)의 예측 정확도가 높다.

결론

프로젝트요약

최종 모델 소개

R-squared 모델의 설명력

WMAE 공휴일을 반영한 오차(MAE)

98.62% 1385.118

Ver 9

선택 변수 Store, Dept, Year, Week, IsHoliday,

Size, Temperature, CPI

정규화 일부 변수(Store, Dept) 제외

Sklearn.preprocessing.Standard Scaler 활용

인코딩 IsHoliday 라벨 인코딩

최종 모델의 변수 중요도 (F-Score)

대시보드

최종 모델을 기반으로

월마트의 n번 매장의 주간 보고서를 목적으로 하는

대시보드를 다음과 같이 생성하였다.

	A Date	Week Week	IsHoliday	Weekly_Sales	<u>ш</u> MarkDown1	<u>ш</u> MarkDown2
1	2011-06-24	25	false	11570.03		
2	2011-07-01	26	false	10796.27		
3	2011-07-08	27	false	11346.06		
4	2011-07-15	28	false	12773.75		
5	2011-07-22	29	false	11090.63		
6	2011-07-29	30	false	12019.61		
7	2011-08-05	31	false	11745.45		
8	2011-08-12	32	false	11060.92		
9	2011-08-19	33	false	11096.27		
1	2011-08-26	34	false	12543.74		

Walmart Store No.45

주간 매출 보고서

80,000 100,000 Sum of Weekly_Sales

별첨자료1

데이터 기술통계량

	Chava	Dont	Data	Wookly Cales	Tuna	Ci=o	Tomanovatura	Fuel Drice			MarkDown			CDI	Un ampleyment	lallalidav
	Store	Dept	Date	Weekly_Sales	Type	Size	Temperature Fuel_Price		1	1 2 3 4		4	5	CPI	Unemployment IsHoliday	
count	421570	421570	421570	421570	421570	421570	421570	421570	150681	111248	137091	134967	151432	421570	421570	421570
unique	-	-	143	-	3	-	-	-	-	-	-	-	-	-	-	2
top	-	-	2011.12.23	-	Α	-	-	-	-	-	-	-	-	-	-	FALSE
freq	-	-	3027	-	215478	-	-	-	-	-	-	-	-	-	-	391909
mean	22.2005	44.2603	-	15981.2581	-	136727.9157	60.0901	3.3610	7246.4202	3334.6286	1439.4214	3383.1683	4628.9751	171.2019	7.9603	-
std	12.7853	30.4921	-	22711.1835	-	60980.5833	18.4479	0.4585	8291.2213	9475.3573	9623.0783	6292.3840	5962.8875	39.1593	1.8633	-
min	1	1	-	-4988.9400	-	34875	-2.06	2.472	0.27	-265.76	-29.1	0.22	135.16	126.064	3.879	-
25%	11	18	-	2079.6500	-	93638	46.68	2.933	2240.27	41.6	5.08	504.22	1878.44	132.0227	6.891	-
50%	22	37	-	7612.0300	-	140167	62.09	3.452	5347.45	192	24.6	1481.31	3359.45	182.3188	7.866	-
75%	33	74	-	20205.8525	-	202505	74.28	3.738	9210.9	1926.94	103.99	3595.04	5563.8	212.4170	8.572	-
max	45	99	-	693099.3600	-	219622	100.14	4.468	88646.76	104519.54	141630.61	67474.85	108519.28	227.2328	14.313	-

별첨자료2

마크다운 컬럼을 포함한 모델 검증

마크다운 컬럼의 정보가 존재하지 않지만,

마케팅과 연관된 매출데이터라고 판단하여 결측치가 없는 기간을 추출해 예측모델을 구축하였다.

| 사용데이터

MarkDown이 기록된 이후 데이터

Train: 106,002개 / Test: 45,430개

| 사용 컬럼

Xgb

Store, Dept, Year, Week, IsHoliday_le, Size_sd, Temperature_sd, CPI_sd

Xgb_s

XGB + Markdown_sum

Xgb_m

XGB + Markdown1~5

| 각XGB모델별평가지표

	\mathbb{R}^2	RMSE	WMAE
Xgb	0.9507	5115.6780	3125.6781
Xgb_s	0.9466 ▼	5323.0853	3215.9792 🛕
Xgb_m	0.9437 ▼	5469.6044 🔺	3316.4209 🛕

Xgb_s | MarkDown 컬럼들을 **연산(합, 평균)**하여 학습에 사용한 모델의 성능이기존 모델보다 전반적으로 하락하였다.

Xgb_m | MarkDown 컬럼들을 **모두 포함**하여 학습에 사용한 결과, 연산하여 사용한 경우보다 더 성능이 떨어졌다.

별첨자료3

원핫 인코딩 모델 검증

Store, Dept의 경우 각 매점, 부서별 번호이기 때문에, 범주형 데이터이다. 범주형의 경우 원핫 인코딩을 하는 것이 일반적이다.

프로젝트에서는 각 데이터 범위가 1~45, 1~99 이기 때문에, 컬럼 수가 비대해지는 것을 막기 위해 별도의 인코딩 없이 그대로 진행하였지만, 참고를 위해 one-hot 인코딩으로 모델을 확인한 A/B Test 의 성능을 기록하였다.

| 사용 컬럼

Xgb

Store, Dept, Year, Week, IsHoliday_le, Size_sd, Temperature_sd, CPI_sd

Xgb_oh

Store1~45, Dept1~99, Year, Week, IsHoliday_le, Size_sd, Temperature_sd, CPI_sd

| 각 XGB 모델별 평가지표

	\mathbb{R}^2	RMSE	WMAE
Xgb	0.9500	5061.3442	3000.1364
Xgb_oh	0.9356 ▼	5746.3508	3402.8074 🛕

Xgb_oh | 원핫 인코딩을 진행한 컬럼들을 학습에 사용한 모델의 성능이 기존 모델보다 전반적으로 하락하였다.

별첨자료4

선형 회귀가 적합하지 않은 이유

1. Ramsay RESET Test

 $Model: y = \beta_0 + \beta_1 x_1$

 $RESET\ Model: y = \beta_0 + \beta_1 x_1 + \delta_1 (\hat{\beta}_0 + \hat{\beta}_1 x_1)^2$ (다차항 삽입)

다차항의 회귀계수 δ_1 에 대한 유의성 판단

귀무가설 | 독립변수들과 종속변수는 비선형 관계를 띈다. (회귀계수 δ_1 가 유의) 대립가설 | 독립변수들과 종속변수는 선형 관계를 띈다. (회귀계수 δ_1 가 유의하지 않음)

F 통계량	P-Value
6516.895	< 0.05

귀무가설 채택, 독립변수들과 종속변수는 비선형관계

2. Q-Q Plot

대부분의 잔차가 직선 밖에 위치, 오차가 정규성을 만족하지 못함

해당 데이터는 선형 모델로 설명 하기 힘듦