

Outline

- Spatial data Acquisition
 - Methods: Primary and secondary data capture
 - Collection process
 - Digital sources

- □Acquiring geographic data is an important part of and factor in any GIS and mapping effort.
- □Data acquisition, by some estimates, typically consumes 60 to 80 percent of the time and money spent on any given project.
- □Errors may be propagated and accrued at various stages of spatial data handling, including data acquisition.

Methods

- □Generally, there are two main methods of acquiring spatial data including:
 - Direct observation/ Primary data capture
 - Indirect/ Secondary data capture
- ☐The two methods can be further broken down into:
 - Collecting new data → Survey;
 - Converting/transforming legacy data → Maps/ records;
 - Sharing/exchanging data → Geoportals/ SDI; and
 - Purchasing data → Geoportals and mapping agencies

Primary data capture

- □A direct data acquisition methodology that is usually associated with some type of in-the-field or *in situ data collection* effort.
- □Can be through:
 - Ground-based survey
 - Remote sensors aboard satellites or airplanes
- □Data which is captured directly from the environment is known as *primary data*.

Primary data capture

□From a data type perspective:

- Primary raster data capture is via remote sensing observations.
- Information is derived from measurements of the amount of EM radiation reflected, emitted, or scattered from objects.
- Primary vector data capture is via classical survey (Chaining, EDM, total station, and GNSS) or nonscanning remote sensing e.g. LiDAR.
- Q. What are the limitations of primary data capture via remote sensing when compared to ground survey methods?

Secondary data capture

- □An indirect methodology that utilizes existing geospatial data available in both digital and hard-copy formats.
- □Any data which is not captured directly from the environment is known as secondary data and includes:
 - Data derived from existing paper maps
 - Data digitized from satellite imagery
 - Processed data purchased from data capture and dissemination firms/ agencies

Secondary data capture

□From a data type perspective:

- Secondary raster data capture is through scanning of hardcopy media using scanners
- Secondary vector data capture is through:
 - Vectorization
 - Photogrammetry
 - COGO data entry

Q. Distinguish digitization, rasterization and vectorization.

Spatial Data Acquisition:Primary & Secondary data capture

	Raster	Vector
Primary Data Capture	Digital remote sensing images	Total Station, GNSS Survey measurement
	Digital aerial photographs	Non-scanning remote sensing data e.g. LiDAR
Secondary Data Capture	Scanned maps	Vectorization
		Photogrammetry
		COGO data entry

Q. In the context of the various spatial data types, what are the spatial data preparation considerations?

Collection Process

- □Planning involves establishing user requirements, garnering resources, and developing a project plan.
- □Preparation involves obtaining data, redrafting poor –quality map sources, editing scanned map images, removing noise, and setting up appropriate GIS hardware and software systems to accept data.
- □Digitizing and transfer are the stages where the majority of the effort in mapping and GIS is expended.
- □Editing and improvement covers many techniques designed to validate data, as well as correct errors and improve quality.
- □Evaluation is the process of identifying project successes and failures.

Collection Process

Spatial Data Acquisition: *Methods*

- Generally, there are two main methods of acquiring spatial data including:
 - Direct observation/ Primary data capture
 - Indirect/ Secondary data capture
- □The two methods can be further broken down into:
 - Collecting new data → Survey;
 - Converting/transforming legacy data → Maps/ records;
 - Sharing/exchanging data → Geoportals/ SDI; and
 - Purchasing data → Geoportals and mapping agencies

Digital Sources

- ■Metadata is data about data.
- □Geospatial metadata commonly document geographic digital data resources and geospatial resources.
- □ Metadata record: An information file that captures the basic characteristics of a geographic data or information resource, and represents the who, what, when, where, why and how of the geodata or resource.

Digital Sources

Who

Created the data?

• Manages the data?

Where

• Is the study area?

• Can the data be accessed?

What

• Is the data content?

• Is the source data used?

How

• Was the data created?

• Is the data distributed?

When

• Is the time period of the content?

• Was the data created?

Why

• Was the data created?

Are the missing values?

Recap:

The Nature of Geographic Data

□ Attribute Accuracy/ Thematic accuracy:

- Sources of attribute error:
 - Blunders
 - Inappropriate model
- There are two types of attribute accuracy relating to the type of data/ measurement scale:
 - Labelling accuracy for nominal or categorical data e.g. land cover classes, road classes
 - Numerical accuracy for numerical data e.g. soil pollutant concentrations, height of trees
- Evaluation of attribute accuracy/ accuracy assessment depends on the data type.

Spatial Data Acquisition: *Digital Sources*

KEWI Water Test Results dataset

Α	В	C	D	E	F	G	Н	1	J	K	L	M	N
SAMPLE_N	NODATETYP	E_OF_H2	OCOUNTYT	YPE_OF_AN	IALYSISPH	ALKALINIT	Y_Mg/LCO	NDUCTIVI	Y?S/cmTot	al_Dissolv	ed_Solids(COLOUROB	JECTID
7012/19/2	012Boreho	leMachak	osFull Cher	mical Analy	sis8.95202	1670315							
7022/27/2	012Boreho	le Nairob	iFull Chemi	cal Analysi	s/Bacterio	logical An	alysis8.913	84052.516					
7032/27/2	012Nairobi	Full Chen	nical Analys	sis/Bacterio	logical Ar	alysis7.15	2295217						
7042/27/2	012Nairobi	Full Chen	nical Analys	sis/Bacterio	logical Ar	alysis6.98	2890218						
7052/27/2	012Boreho	leNairobi	Full Chemi	cal Analysis	/Bacterio	logical Ana	alysis7.811	23932.519					
7073/1/20	12Borehole	eMogadis	huFull Cher	mical Analy	sis7.78236	527901729.	8220						
7083/3/20	12River Ce	ntralFull (Chemical A	nalysis8983	25201.512	1							
7093/5/20	12Borehole	eLokichog	gioFull Che	mical Anal	ysis7.0825	675746922	22						
7103/12/2	012Tap + Bo	oreholeM	eruFull Che	emical Anal	ysis/Bacte	eriological	Analysis8.	517049330	6223				
7113/12/2	012Domes	ticMeruFu	ıll Chemica	Analysis/E	Bacteriolo	gical Analy	sis <mark>8.04681</mark>	0464.5324					

Q. In the above example of digital spatial data acquired from a geoportal, what needs to be done to make it fit for mapping purposes?

Digital Sources

Geoportals

☐The links below provide lists of geospatial data portals/ geoportals:

- https://guides.lib.utexas.edu/gis/lists-of-gis-dataportals
- https://data.opendatasoft.com/explore/dataset/opendata-sources%40public/table/?sort=code_en
- https://github.com/awesomedata/awesome-publicdatasets
- https://africanews.space/here-are-some-openaccess-geoportals-for-free-spatial-data-of-africa/
- http://www.fao.org/geospatial/resources/dataportals/en/

References

- □ https://2012books.lardbucket.org/books/geographic-information-system-basics/s09-01-geographic-data-acquisition.html
- □ https://www.usgs.gov/products/data-and-tools/data-management/data-acquisition-methods