Artificial neuron

- · An artificial neuron is a linear classifier with activation
- A neuron fires if the weighted sum of inputs is above a threshold
- · A neural network is a collection of artificial neurons

Neural network layer

• A neural network with a single layer is a set of K artificial neuron classifiers

Neural network layer interpretation

- * Per torm limar discriminativy

 => each unit detinus a limar dession boundary
- a Perform template matching = each unit detance a template
- * perform projection into a new basis

 = 1 oach unit within a basis vector

Linear discrimination interpretation

- The rows of the weight matrix $heta^{ extsf{T}}$ represent parameters of K linear discriminant functions
- Each linear discriminant function separates one class from all others
- The discriminant function measures distance from a linear decision boundary. The distance is positive for examples belonging to the class and negative for all

Linear discriminants

Template matching interpretation

- The rows of the weight matrix represent templates
 With K rows we have K templates (one template per class)
 The product measures how well The input vector matches the template (dot product between vectors)
- . High similarity to the template of a particular class indicates membership in this

-	
-	
-	
-	
-	
·	
	

Projection into a new basis interpretation

- The rows of the weight matrix \$\theta^{\tau}\$ represent basis vectors
 By taking the dot product of X with each of the rows we move to a representation in a new basis and so transform the data

Linear classifiers

- What if delision boundaries are non-limar? - what it more tran our template is much per class? =) Combon multiple linear classifiers

Activation functions

- Combining linear classifiers in sequence can be reduced to a single layer (linear combination of linear combinations is just a different linear combination)
- · Therefore we need a nonlinear activation function between linear units

	non-lines octivation	19
9= h (linear contination	6, J

Activation functions

Signaid:
$$h(a) = \frac{1}{1 + \exp(-a)}$$

tomh:
$$h(a) = tonh(a) = \frac{\ell^{x} - \ell^{-x}}{\ell^{x} + \ell^{-x}}$$

Activation functions

(Meetitian Linear Units)

ELN:
$$h(\Lambda) = \begin{cases} \alpha & \alpha \geq 0 \\ \lambda(\ell^{\alpha}-1) & \alpha < 0 \end{cases}$$

Converting similarity to probability at the output layer

- G. Ven similarly score (or duision boundary distance sj) from a limar classifier (higher better), compute:

- In a 2- Unis Massification case:
$$\hat{y}_{j}^{(r)} = p(y=j|x^{(r)}) = Siymoid (s_{j}^{(r)})$$

- In a K-dass Chassification can

$$\hat{y}_{j}^{(i)} = P(j-j|X^{(i)}) = \frac{e^{x}p(S_{i}^{(i)})}{\sum_{\ell=1}^{K} e^{x}p(S_{\ell}^{(i)})}$$
 \leftarrow Softmax

Training the network

- . Training: find weights for all network layers
- Loss: difference between obtained expected output
- . Optimization: find the network parameters that will minimize the loss
- Select:
 - Lost function
 - Optimization framework

Given Training examples
$$\{(x^{(i)}, y^{(i)})\}_{i=1}^{n}$$

$$= \sum_{i=1}^{n} d(y^{(i)}, \hat{y}^{(i)}) \qquad \theta^* = \operatorname{argman} L(\theta)$$

Loss function

- The weights of are set to minimize loss:

$$\theta^* = \underset{\Theta}{\operatorname{argmin}} L(\theta)$$

$$= \underset{i=1}{\operatorname{argmin}} \frac{1}{M} \underset{i=1}{M} L_i(X^{(i)}, y^{(i)}; \theta)$$

$$= \frac{\alpha r_{3}m_{1}n_{1}}{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{i} \left(\underbrace{f(x^{\alpha i}; \theta)}_{\hat{y}^{\alpha i}}, y^{\alpha i} \right)$$

L1 and L2 loss

- In regression problems minimize distance between known and producted velous:

$$L_1: L_1(\theta) = \sum_{j=1}^{k} \left| \hat{y}_j^{(r)} - y_j^{(r)} \right|$$

$$L_2: L_1(\theta) = \sum_{j=1}^{K} \left(\hat{y}_j^{(i)} - y_j^{(i)}\right)^2$$

Huber loss

$$S_{\sigma}(d) = \begin{cases} \frac{1}{2} d^{2} & \text{if } |d| \leq \delta \\ \delta(d - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$$

Cross entropy loss

x In classification problems assume that the tru class label y" is one hot-encoded

* The outputs of the network are assumed to be the probabilities of belonging to each class

Cross entropy loss

- Probability of the true class:
$$f_{j=1}^{k} (\hat{y}_{j}^{(i)})^{y_{j}^{(i)}}$$

Cross entropy loss

- possible cross-entropy loss values:

- For random class assignment:

$$\hat{y}_{ij}^{(n)} = P(y = j \mid \chi^{(n)}) = \frac{1}{K}$$

$$\ell(\theta) = -\sum_{i=1}^{\infty} \sum_{j=1}^{k} y_{ij}^{(i)} \log \left(\frac{1}{k}\right) = -\sum_{i=1}^{\infty} -k = mk$$

$$\Rightarrow \text{ bad list value}$$

Regularization

- Occam's vacon: simpler explanations are better
- A simpler solution is when the weights € and hower (eg. when Di; => ove remove on cefficient).
- Smaller coefficients more stable solution that will generalize better

Regularization

- Alternative Regularization (L.):

- -Lz Regularization minimizes weights while spreading them (8.5. $0.5^2 + 0.5^2 < 1^2 + 0^2$)
- 4 Regularitation does not have two property and may concentrate weights (eig. lois)+|015|=(11+101)

Optimization

- To Minimize the loss (objective) solve:

- If DL(0) is not liman it is Now to four on explicit solution => numerial iterative solution

(ky. Graniel Ascent)

Gradient descent

- * I terative optimitation algorithm
- , start with guess Do
- * Repeat: $\theta^{(i+1)} \leftarrow \theta^{(i)} \eta \nabla L(\theta^{(i)})$

Gradient descent

* The learning rate has to be selected correctly

* Obes not work on precedise constant functions (e.g. emplrical loss)

Stochastic gradient descent (SGD)

- * Randomly order examples
- * for j=1.. m bss of j-th example

 O(171)
 O(171)
 O(171)
- x Mora frequent but less accurate appliates

Data normalization

- Features with brigh values have more interest and different features require a different larning mode.

- Data normalization:

$$\tilde{X}_j = \frac{1}{m} \sum_{i=1}^{m} X_j^{(i)}$$

$$X_{j}^{(0)} = \frac{X_{j}^{(0)} - \overline{X}_{j}}{\Gamma_{j}}$$

Learning rate decay

- Learning rate need not be fixed
- Make learning smaller as iterations progress
- * Strntzgils:
 - 1) step du cay:

 every k iterations M < M/2

2)	exprential	delay herely rate	10000
	n=n l-	*/+ em itention when	1000

Additional optimization methods

- Newton's method:
 - compute learning rate instead of specifying it
 - second order derivatives (Hessian matrix)
- Ada Grad.
 - replace Hessian computation (expensive) with approximation
- RMSPnp:
- and dicay to Adabiand
- ADAM:
- add gradient momentum to RMSProp
- Quasi-Newton methods (e.g. 13+65)
 approximate Hessian inverse (faster)

Weight initialization

Ð = constant -> all outputs identical

→ no learning

→ remolour mitichization

8: large - Suthrated activations,

- zero gradients

+ no learning

- initialize don to zero

=) Initidite at rundom dur to zero

Weight initialization

× Charot (Xavier) normal initalization

- Draw weights from normal obistrisation with:

Var [wi] = (

Fan-M+tm_out)

* Charot uniform initialization

- Once weights from uniform distribution

- Orac weights from writhin distribution within [-lim, lim]
$$\lim_{n \to \infty} \left(\frac{6}{f_{0n,1h} + f_{0m,0ut}} \right)^{V_2}$$

Computing gradients using Backpropagation

Backpropagation

Backpropagation

- Represent the network using a computational graph
- · Because each node is simple, it has a simple explicit expression for its derivative
- Forward pass: push input to compute all intermediate node values
- Backward pass: starting with end nodes, push gradients towards the beginning
- Multiply backpropagated gradients (front back) by current gradient and propagate this to the next node

Backpropagation example

hetwork

Computational graph

nodes can be simple or complex

Backpropagation example

* Forward PESI

$$\begin{bmatrix} \Theta_0, \Theta_1, \Theta_2 \end{bmatrix} = \begin{bmatrix} 1, 2, 3 \end{bmatrix} = \begin{cases} \text{constant} \\ \text{parameters} \end{cases}$$

$$\begin{bmatrix} \times, X_2 \end{bmatrix} = \begin{bmatrix} 4, 5 \end{bmatrix} = \begin{cases} \text{constant} \\ \text{constant} \end{cases}$$

$$S = 2L = \text{constant}$$

push numbers through nedwork from start to end

Backpropagation example

- * Ba(kword pass (compute graduluts)
 - 1. For each node: write derivative of output west each input
 - 2. Compute gradient at input of each node (hing toward values)
 - 3. multiply gradients along paths

(-) (y-y) (-)	- N	-4
6) 6-8) = 2(8-8) (1)		- 61
D 05/00=1	****. ******	1
Ø 05/8c=1	355	
\$ dc/da=1	9877	\$
1=96/26 (1)	, agent	1
1x=108/00 @	400°	4
18 = 1xe/ve	300	2.
M 26/22 -V		C

Backpropagation example

* Backworn pass (contd.)

(1-1) (ig -g) = 2(g-g)	,000 ·	-4
6) 64/08 = 5(8-8)(1)	233	-4
D 05/00=1	10pp	
Ø 05/8c=1	338	
\$ dc/da=1	unt	1
9c/se = 1	,000	-
D ga/ge = x1	0000 10000	4
18 = 1xe/ve	300	2
@ 26/282=X2	C	S
10 36/342= 02	300	3