Optimizing Research Payoff, 2: The Quest for an Optimal Alpha

Rolf Ulrich
Department of Psychology
University of Tübingen
Germany

Jeff Miller
Department of Psychology
University of Otago
New Zealand

Overview of Talk

- 1. Current controversy about critical α level
- 2. Optimizing research payoff and α level
- 3. Optimal α level should maximize overall research payoff

Current Debate

- Benjamin et al. (72 authors)
 - $-\alpha = 0.5\%$ instead of 5%
 - lower rate of false positives
 - higher replication rate
- Lakens et al. (88 authors)
 - negative consequences
 - higher rate of false negatives

Choosing the Optimal a Level

- Optimal α depends on
 - Base rate of true effects
 - Effect size and sample size

- But also on resources and payoff values
 - Gains associated with TP and TN
 - Losses associated with FP and FN

A Statistical Model of the Research Process

Two Researchers

2-sample t-test
Base rate = 10%
Effect size = 0.5
Power = 80%
1,900 Ss

	Researcher 1	Researcher 2
α (1-tailed)	5%	0.5%
# Ss per experiment	100	190
# Experiments, k	19	10
Total payoff	1.4	1.6

Two Researchers

2-sample t-test
Base rate = **20%**Effect size = 0.5
Power = 80%
1,900 Ss

	Researcher 1	Researcher 2
α (1-tailed)	5%	0.5%
# Ss per experiment	100	190
# Experiments, k	19	10
Total payoff	2.8	2.2

$$Ss = 10,000$$

Outcome	Pay _i
TP	1
FP	-1
TN	0
FN	0

$$Ss = 10,000$$

Outcome	Pay _i
TP	1
FP	-1
TN	0
FN	0

Ss = 10,000

Outcome	Pay _i
TP	1
FP	-1
TN	0
FN	0

$$Ss = 10,000$$

Outcome	Pay _i
TP	1
FP	-1
TN	0
FN	-0.5

Optimal a

 $(\alpha_{opt}, n_{opt}) = argmax_{\alpha,n} \ Total \ Payoff(\alpha, n, d, \pi, Pay_{fp}, Pay_{tp}, Pay_{fn}, Pay_{tn})$

Conclusion

- 1. Using the wrong α lowers total payoff
- 2. Optimal α depends on:
 - base rate
 - outcome payoffs
- 3. Implication: these values must be estimated for any rational selection of α