Decidable (Ac)counting with Parikh and Muller: Adding Presburger Arithmetic to Monadic Second-Order Logic over Tree-Interpretable Structures

Luisa Herrmann ⊠ 😭 📵

Computational Logic Group, TU Dresden, Germany Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Germany

Sebastian Rudolph ☑ 😭 📵

Computational Logic Group, TU Dresden, Germany Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Germany

Ahstract

We propose ω MSO \bowtie BAPA, an expressive logic for describing countable structures, which subsumes and transcends both Counting Monadic Second-Order Logic (CMSO) and Boolean Algebra with Presburger Arithmetic (BAPA). We show that satisfiability of ω MSO \bowtie BAPA is decidable over the class of labeled infinite binary trees. This result is established by an elaborate multi-step transformation into a particular normal form, followed by the deployment of *Parikh-Muller Tree Automata*, a novel kind of automaton for infinite labeled binary trees, integrating and generalizing both Muller and Parikh automata while still exhibiting a decidable (in fact PSPACE-complete) emptiness problem. By means of MSO-interpretations, we lift the decidability result to all tree-interpretable classes of structures, including the classes of finite/countable structures of bounded treewidth/cliquewidth/partitionwidth. We observe that satisfiability over (finite or infinite) labeled trees becomes undecidable even for a rather mild extension of ω MSO \bowtie BAPA.

2012 ACM Subject Classification Theory of computation \rightarrow Logic; Theory of computation \rightarrow Tree languages; Theory of computation \rightarrow Automate over infinite objects; Theory of computation \rightarrow Automated reasoning

Keywords and phrases MSO, BAPA, Parikh-Muller tree automata, decidability, MSO-interpretations

Funding BMBF (SCADS22B) and SMWK by funding ScaDS.AI Dresden/Leipzig Sebastian Rudolph: European Research Council, Consolidator Grant DeciGUT (771779)

1 Introduction

Monadic second-order logic (MSO) is a popular, expressive, yet computationally reasonably well-behaved logical formalism to deal with diverse classes of finite or countable structures. Going beyond first-order logic, its mild recursion allows for expressing relevant structural properties like connectedness or reachability, meeting crucial modeling demands in verification, database theory, knowledge representation, and other fields of computational logic. The well-understood link between MSO and automata theory has been fertile in theory and practice.

Unfortunately, MSO's native capabilities to express cardinality relationships are very limited, and essentially restricted to fixed thresholds (e.g. "there are at least 10 leaves"). Counting MSO [5, 4], denoted CMSO, extends MSO by modulo counting and a finiteness test over sets (e.g. "there is an even number of nodes"). CMSO is strictly more powerful in general, but can be simulated in plain MSO over finite and infinite words or trees. In contrast, enriching MSO with cardinality constraints [23, 24] (as in "all nodes have as many incoming as outgoing edges") increases the expressivity drastically, but causes satisfiability to become undecidable even for the case of finite words. Decidability (over finite words, trees,

or graphs of bounded treewidth [25]) can be recovered when confining set variables occurring in cardinality constraints to the ones existentially quantified in front (MSO^{\exists Card}). One way to show this is through *Parikh automata* extending finite automata by adding finitely many counters and exploiting the relationship of Presburger arithmetic and semilinear sets [15]. Very recently, Parikh word automata were extended to infinite words [19, 16, 17], and the impact of various acceptance conditions investigated, but without a logical characterization.

A different, orthogonal logical approach for describing sets and their cardinalities, motivated by tasks from program analysis and verification, combines the first-order theory of *Boolean algebras* (BA) with *Presburger arithmetic* (PA), resulting in the theory of *BAPA* [26, 27]. As opposed to computationally benign extensions of MSO, BAPA provides stronger support for arithmetic (one can talk about "all selections with the same number of blue and red nodes" or even "all selections with a share of 70% to 80% red nodes", modeling statistical information). BAPA usually assumes a finite universe, but can be extended to the countable setting [28]; satisfiability is decidable in either case. However, very regrettably, BAPA lacks non-unary relations, which is outright fatal when it comes to expressing structural properties.

To the rescue, we introduce ω MSO×BAPA ['o:mzoll_bapa], a logic for countable structures, extending CMSO by BAPA's set operations and Presburger statements, allowing for sophisticated structural-arithmetic statements (cf. Example 4). We warrant computational manageability by gently controlling the usage of variables, noting that satisfiability turns undecidable otherwise. By means of an elaborate transformation, we prove that ω MSO×BAPA formulae over trees can be brought into a very restricted tree normal form (TNF). We then show that the sets of infinite labeled trees satisfying TNF formulae coincide with the sets of trees recognized by Parikh-Muller Tree Automata, a novel, specifically designed generalization of both Muller and Parikh automata, exhibiting a PSPACE-complete emptiness problem. The decidability of ω MSO×BAPA over the class of labeled infinite binary trees thereby obtained is then lifted to all tree-interpretable classes, including vast and practically relevant classes of finite or countable structures that are bounded in terms of certain width measures.

Summarizing our contributions, we introduce a novel, highly $expressive\ logic$ (with native CMSO, BAPA, and MSO^{\exists Card} support), and prove $satisfiability\ decidable$ over a broad range of classes of countable structures by establishing a characterization in terms of the first-ever $automaton\ model$ on infinite trees capable of testing Parikh conditions.

2 Preliminaries

As usual, for any $n \in \mathbb{N}$, let $[n] := \{1, \ldots, n\}$. In order to **count to infinity**, we use \mathbb{N} extended by (countable) infinity ∞ , with arithmetics lifted in the usual way; in particular, $\infty + n = \infty + \infty = (n+1) \cdot \infty = \infty$ and $0 \cdot \infty = 0$ as well as $n \leq \infty$ and $\infty \leq \infty$. For countable sets A, let |A| denote the element of $\mathbb{N} \cup \{\infty\}$ that corresponds to their cardinality.

To define **countable structures**, assume the following countable, pairwise disjoint sets: a set \mathbb{C} of (individual) constants, denoted by $\mathbf{a}, \mathbf{b}, \mathbf{c}, ...,$ and, for every $n \in \mathbb{N}$, a set \mathbb{P}_n of n-ary predicates, denoted by $\mathbb{P}, \mathbb{R}, \mathbb{Q},$ The set of all predicates will be denoted by $\mathbb{P} := \bigcup_{i \in \mathbb{N}} \mathbb{P}_n$, and we let ar : $\mathbb{P} \to \mathbb{N}$ such that $\operatorname{ar}(\mathbb{Q}) = n$ iff $\mathbb{Q} \in \mathbb{P}_n$. A (relational) signature \mathbb{S} is a union $\mathbb{S}_{\mathbb{C}} \cup \mathbb{S}_{\mathbb{P}}$ of finite subsets of \mathbb{C} and \mathbb{P} , respectively. An \mathbb{S} -structure is a pair $\mathfrak{A} = (A, \cdot^{\mathfrak{A}})$, where A is a countable, nonempty set, called the domain of \mathfrak{A} and $\cdot^{\mathfrak{A}}$ is a function that maps every $\mathbf{a} \in \mathbb{S}_{\mathbb{C}}$ to a domain element $\mathbf{a}^{\mathfrak{A}} \in A$, and every $\mathbb{Q} \in \mathbb{S}_{\mathbb{P}}$ to an $\operatorname{ar}(\mathbb{Q})$ -ary relation $\mathbb{Q}^{\mathfrak{A}} \subseteq A^{\operatorname{ar}(\mathbb{Q})}$.

We define **infinite trees** starting from a finite, non-empty set Σ , called *alphabet*. A (full) infinite binary tree (often simply called a tree) labeled by some alphabet Σ is a mapping

 $\xi \colon \{0,1\}^* \to \Sigma$. We denote the set of all trees labeled by Σ by T_{Σ}^{ω} . A finite tree is a mapping $\xi \colon X \to \Sigma$ where X is a finite, prefix-closed subset of $\{0,1\}^*$. The set of all finite trees over Σ will be denoted by T_{Σ} . We sometimes refer to the domain X of ξ by $pos(\xi)$, whose elements we call positions or just nodes of ξ . Given a tree $\xi \in T_{\Sigma}^{\omega}$ and a finite prefix $X \subseteq \{0,1\}^*$, we denote by $\xi_{|X}$ the finite tree in T_{Σ} that has X as domain and coincides with ξ on X.

An (infinite) path π is an infinite sequence $\pi = \pi_1 \pi_2 \dots$ of positions from $\{0,1\}^*$ such that $\pi_1 = \varepsilon$ and, for each $i \geq 1$, $\pi_{i+1} \in (\pi_i \cdot \{0,1\})$. Given a tree $\xi \in T_{\Sigma}^{\omega}$ and a path π , we denote by $\xi(\pi)$ the infinite word $\xi(\pi_1)\xi(\pi_2)\dots$ obtained by concatenating the labels of ξ along π . We denote by $\inf(\xi(\pi))$ the set of all labels occurring infinitely often in $\xi(\pi)$.

We will also find it convenient to represent trees over some given alphabet $\Sigma = \{a_1, \dots, a_n\}$ as structures over the signature $\mathbb{S}=\mathbb{S}_{\mathbf{P}}=\{\succ_0,\succ_1,\mathbb{P}_{a_1},\ldots,\mathbb{P}_{a_n}\}$: Thereby, a tree $\xi\in T^\omega_\Sigma$ will be represented by the structure \mathfrak{A}_ξ with $A_\xi=\{0,1\}^*$, where $\succ_0^{\mathfrak{A}_\xi}=\{(w,w0)\mid w\in\{0,1\}^*\}$ and $\succ_1^{\mathfrak{A}_\xi}=\{(w,w1)\mid w\in\{0,1\}^*\}$ while $\mathbb{P}_{a_i}^{\mathfrak{A}_\xi}=\{u\in\{0,1\}^*\mid \xi(u)=a_i\}$ for each $i\in[n]$. When there is no danger of confusion, we will simply write ξ instead of \mathfrak{A}_{ξ} .

3 Syntax and Semantics of ω MSO \bowtie BAPA

We now introduce the logic ω MSO \bowtie BAPA. The underlying "design principles" for this logical formalism are to have a language that syntactically subsumes and tightly integrates CMSO and BAPA, while still exhibiting favorable computational properties, even over countably infinite structures. To this end, we will first define the language ω MSO·BAPA and then obtain ω MSO \bowtie BAPA by imposing some syntactic restrictions on the usage of variables.

- ▶ **Definition 1** (Syntax of ω MSO·BAPA). Given a signature $\mathbb{S} = \mathbb{S}_{\mathbf{C}} \cup \mathbb{S}_{\mathbf{P}}$, together with three countable and pairwise disjoint sets $\mathbf{V}_{\mathrm{ind}}$ of individual variables (denoted x, y, z, ...), $\mathbf{V}_{\mathrm{set}}$ of set variables (denoted X, Y, Z, ...), and \mathbf{V}_{num} of number variables (denoted $k, \ell, m, n...$), we define the following sets of expressions by mutual induction:
- the set \mathbf{I} of individual terms: $\iota := \mathbf{a} \mid x$
- the set S of set terms (P being a unary predicate): $S := \{a\} \mid P \mid X \mid S^c \mid S_1 \cap S_2 \mid S_1 \cup S_2 \mid S_2 \cup S_2 \mid S_1 \cup S_2 \mid S_2 \cup S_2 \cup S_2 \mid S_2 \cup S_2 \cup S_2 \mid S_2 \cup S_2 \cup$
- the set \mathbf{N} of number terms:¹ $t := \mathbf{n} \mid \mathbf{\infty} \mid \mathcal{R} \mid \#S \mid \mathbf{m} t \mid t_1 + t_2$ (with $n \in \mathbb{N}$ and $m \in \mathbb{N} \setminus \{0\}$; we use typewriter font to indicate that we mean an explicit representation of a constant natural number n or m rather than the symbol "n" or "m")
- the set \mathbf{F} of (unrestricted) formulae:

$$\varphi ::= \mathbb{Q}(\iota_1, \dots, \iota_n) \mid S(\iota) \mid t \leq_{\text{fin}} t' \mid t \leq t' \mid \#S \equiv_{\text{n}} \text{m} \mid \text{Fin}(S) \mid \textbf{true} \mid \textbf{false} \mid$$
$$\neg \varphi \mid \varphi \wedge \varphi' \mid \varphi \vee \varphi' \mid \exists x. \varphi \mid \forall x. \varphi \mid \exists X. \varphi \mid \forall X. \varphi \mid \exists \pounds. \varphi \mid \forall \pounds. \varphi$$

The first six types of atomic formulae will be referred to as predicate atoms, set atoms, classical Presburger atoms, modern Presburger atoms, modulo atoms, and finiteness atoms, respectively. We use Presburger atoms and write $t \leq_{(fin)} t'$ to jointly refer to the classical and modern variants. A Presburger atom $t \leq_{(fin)} t'$ is called simple, if it contains at most one occurrence of a term of the shape #S and no occurrences of number variables.

Note that, for notational homogeneity, we choose to write $X(\iota)$ instead of $\iota \in X$. While the original syntax of ω MSO·BAPA does not provide an explicit equality predicate, both individual and set equality can be expressed (see further below).

In the following, we will consider all number terms that can be obtained from each other through basic transformations (reordering, factoring, summarizing, rules for ∞) as syntactically equal, which allows us to focus on simplified expressions.

- ▶ **Definition 2** (Semantics of ω MSO·BAPA). A variable assignment (for a structure \mathfrak{A}) is a function ν that maps
- every individual variable $x \in \mathbf{V}_{ind}$ to a domain element $\nu(x) \in A$,
- every set variable $X \in \mathbf{V}_{\mathrm{set}}$ to a subset $\nu(X) \subseteq A$ of the domain, and
- every number variable $k \in V_{num}$ to a number $\nu(k) \in \mathbb{N} \cup \{\infty\}$.

We write $\nu_{x\mapsto a}$, $\nu_{X\mapsto A'}$, and $\nu_{\hbar\mapsto n}$ to denote ν updated in the way indicated in the subscript. Given an interpretation \mathfrak{A} and a variable assignment ν , we let the function $\mathfrak{A}^{\mathfrak{A},\nu}$ map

- I to A by letting $\mathbf{a}^{\mathfrak{A},\nu} \coloneqq \mathbf{a}^{\mathfrak{A}}$ and $x^{\mathfrak{A},\nu} \coloneqq \nu(x)$,
- \blacksquare S to 2^A by letting

N to $\mathbb{N} \cup \{\infty\}$ by letting

$$\begin{array}{lll}
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n & \qquad & \qquad & \qquad & \qquad & \\
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n & \qquad & \qquad & \qquad & \qquad & \\
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n & \qquad & \qquad & \qquad & \qquad & \\
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n & \qquad & \qquad & \qquad & \qquad & \\
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n & \qquad & \qquad & \qquad & \\
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n \cdot t^{\mathfrak{A},\nu} \\
\mathbf{n}^{\mathfrak{A},\nu} \vDash n \cdot t^{\mathfrak{A},\nu} \\
\mathbf{n}^{\mathfrak{A},\nu} \coloneqq n \cdot t^{\mathfrak{A},\nu} \\
\mathbf{n}^{\mathfrak{A},\nu} \vDash n \cdot t^{\mathfrak{A},\nu} \\
\mathbf{n}^{\mathfrak{A},\nu}$$

Finally we define satisfaction of formulae from F as follows: \mathfrak{A}, ν satisfies

Plus, we always let $\mathfrak{A}, \nu \models \mathbf{true}$ and $\mathfrak{A}, \nu \not\models \mathbf{false}$. For a formula φ , its free variables (denoted free(φ)) are defined as usual; φ is a sentence if free(φ) = \emptyset . For sentences, ν does not influence satisfaction, which allows us to write $\mathfrak{A} \models \varphi$ and call \mathfrak{A} a model of φ in case $\mathfrak{A}, \nu \models \varphi$ holds for any ν . We call φ satisfiable if it has a model.

Where convenient , we will also make use of the Boolean connectives \Rightarrow and \Leftrightarrow as abbreviations with the usual meaning.

- ▶ **Definition 3** (Syntax of ω MSO \rtimes BAPA). From now on, we will make the following assumption (which is easily obtainable via renaming): In every formula, all quantifications use different variable names and these are disjoint from the names of free variables. Given an ω MSO·BAPA formula φ satisfying this assumption, we analyze its constituents as follows:
- A (set or individual) variable is called assertive, if it is free, or it is existentially quantified and the quantification does not occur inside the scope of a negation or of a universal (set, individual, or number) quantifier.
- The set of delicate individual and set variables is the smallest set of (non-assertive) variables satisfying the following:
 - Every non-assertive set variable occurring in a non-simple Presburger atom is delicate.
 - If some atom contains a delicate (individual or set) variable, then all of this atom's non-assertive (individual or set) variables are delicate.

Then, φ is an ω MSO \bowtie BAPA formula iff each of its predicate atoms $\mathbb{Q}(\cdots)$ contains at most one delicate variable (possibly in multiple occurrences).

It is easy to see that, despite the above restrictions, ω MSO \bowtie BAPA entirely encompasses CMSO and MSO $^{\exists Card}$ (no delicate variables) as well as BAPA (no predicates of arity >1).

For convenience and better readability, we will make use of the following abbreviations.

$$\begin{array}{lll} x = y & \coloneqq \forall Z.Z(x) \Leftrightarrow Z(y) & \exists x \in S.\varphi & \coloneqq \exists x.S(x) \land \varphi \\ S \neq \emptyset & \coloneqq \exists z.S(z) & \forall x \in S.\varphi & \coloneqq \forall x.S(x) \Rightarrow \varphi \\ S \subseteq S' & \coloneqq \forall z.S(z) \Rightarrow S'(z) & t = t' & \coloneqq (t \leq t') \land (t' \leq t) \\ S = S' & \coloneqq (S \subseteq S') \land (S' \subseteq S) & t =_{\mathrm{fin}} t' & \coloneqq (t \leq_{\mathrm{fin}} t') \land (t' \leq_{\mathrm{fin}} t) \end{array}$$

An analysis of these abbreviations reveals that ω MSO \bowtie BAPA allows for the variables x, y and set variables in S, S' in these abbreviations to be delicate. We will also employ shortcuts specific to the signature $\{\succ_0, \succ_1, \mathsf{P}_a \mid a \in \Sigma\}$ for Σ -labeled trees. Contrary to above, in these shortcuts, the variables x, y, X, Y cannot be delicate.

$$\begin{array}{lll} X(x.i) \coloneqq \exists y.x \succ_i y \land X(y) & x \succ y \coloneqq (x \succ_0 y) \lor (x \succ_1 y) \\ \varphi_{\uparrow \text{clsd}}(X) \coloneqq \forall z.X(z.0) \lor X(z.1) \Rightarrow X(z) & \varphi_{\text{root}}(x) \coloneqq \neg \exists z.(z \succ x) \\ x \succ^* y \coloneqq \forall Z.Z(y) \land \varphi_{\uparrow \text{clsd}}(Z) \Rightarrow Z(x) & x \succ^+ y \coloneqq (x \succ^* y) \land (x \neq y) \\ \varphi_{\downarrow}(x,X) \coloneqq \forall z.\big(X(z) \Leftrightarrow x \succ^* z\big) \\ \varphi_{\text{path}}(X) \coloneqq X \neq \emptyset \land \varphi_{\uparrow \text{clsd}}(X) \land \forall z \in X.\big(X(z.0) \Leftrightarrow \neg X(z.1)\big) \\ \varphi_{\text{inf}}(X) \coloneqq \exists Z.\varphi_{\text{path}}(Z) \land \forall z \in Z.\exists z' \in X.(z \succ^+ z') \\ \varphi_{\text{inf}}^{\cap}(X,Y) \coloneqq \exists Z.Z \subseteq X \land Z \subseteq Y \land \varphi_{\text{inf}}(Z) \end{array}$$

- ▶ **Example 4.** We use ω MSO \bowtie BAPA to specify the class of all labeled infinite binary trees over the alphabet $\Sigma = \{\text{blue}, \text{red}, \text{green}, \text{yellow}, \text{black}\}$ satisfying the following property:
- "There is a path X and some node x on X such that the following hold:
- 1. For every infinite selection Y of blue nodes from the x-descendants on the path X, there is a selection Y' of red nodes from the whole tree, such that
 - a. Y and Y' contain the same number of nodes with infinitely many green descendants,
 - **b.** Y contains twice as many nodes as Y' having less than 10 yellow descendants.
- 2. For every finite selection Z of blue x-descendants, the total number of nodes lying on paths from x to nodes of Z is even."

$$\exists X. \exists x. \varphi_{\mathrm{path}}(X) \land X(x) \land \exists V_{0}.\varphi_{\downarrow}(x, V_{0}) \land$$

$$\left(\exists V_{1}. \left(\forall v_{1}. V_{1}(v_{1}) \Leftrightarrow \exists V_{\downarrow}^{v_{1}}.\varphi_{\downarrow}(v_{1}, V_{\downarrow}^{v_{1}}) \land \neg \mathrm{Fin}(V_{\downarrow}^{v_{1}} \cap \mathsf{P}_{\mathrm{green}}) \right) \land$$

$$\exists V_{2}. \left(\forall v_{2}. V_{2}(v_{2}) \Leftrightarrow \exists V_{\downarrow}^{v_{2}}.\varphi_{\downarrow}(v_{2}, V_{\downarrow}^{v_{2}}) \land \#(V_{\downarrow}^{v_{2}} \cap \mathsf{P}_{\mathrm{yellow}}) \leq \mathsf{10} \right) \land$$

$$\left(\forall Y. \left(\neg \mathrm{Fin}(Y) \land Y \subseteq X \cap V_{0} \cap \mathsf{P}_{\mathrm{blue}} \right) \Rightarrow$$

$$\exists Y'. Y' \subseteq \mathsf{P}_{\mathrm{red}} \land \#(Y \cap V_{1}) = \#(Y' \cap V_{1}) \land \#(Y \cap V_{2}) = 2 \#(Y' \cap V_{2}) \right) \right) \land$$

$$\left(\forall Z. \left(\mathrm{Fin}(Z) \land Z \subseteq V_{0} \cap \mathsf{P}_{\mathrm{blue}} \right) \Rightarrow$$

$$\exists V_{3}. \left(\forall v_{3}. V_{3}(v_{3}) \Leftrightarrow (x \succ^{+} v_{3} \land \exists z \in Z. v_{3} \succ^{*} z') \right) \land \#V_{3} \equiv_{2} \mathsf{0} \right)$$

Therein, we use set variables capturing all descendants of x (V_0); all nodes with infinitely many green descendants (V_1); all nodes with less than 10 yellow descendants (V_2); and all nodes between x and elements of Z (V_3). Analysing the variables yields that X, x, V_0 , V_1 , and V_2 are assertive, while Y and Y' are delicate due to their occurrence in the non-simple Presburger atoms in the fifth line. Delicacy is not inherited further, thus no two delicate variables occur in any predicate atom. Therefore the formula is indeed in ω MSO \bowtie BAPA.

It is crucial that V_1 and V_2 are defined "prematurely" outside the scope of $\forall Y$, so they become assertive and thus their occurrence in the (non-simple) Presburger atoms does not turn them delicate. This technique of "encapsulating" unary descriptions into assertive set variables unveils significant additional expressiveness of ω MSO \bowtie BAPA. See also Section 8 for a discussion on a handier syntax for this.

6

4 Mildly Extending ω MSO \bowtie BAPA Leads to Undecidability

Just slightly relaxing the syntax of ω MSO \bowtie BAPA allows us to express Hilbert's 10th Problem.

Definition 5 (Positive Diophantine Equation). A positive Diophantine equation \mathcal{D} is a tuple

 $(NV, M, (n_w)_{w \in M}, (m_w)_{w \in M})$ where NV is an ordered set $\{z_1, \ldots, z_{\hbar}\}$ of number variables; M (the variable products or monomials) is a finite, prefix-closed set of sorted variable sequences, i.e.,

$$M \subseteq \{\underbrace{\varkappa_1 \dots \varkappa_1}_{i_1} \dots \underbrace{\varkappa_k \dots \varkappa_k}_{i_k} \mid i_1, \dots, i_k \in \mathbb{N}\};$$

and all n_w and m_w are from $\mathbb N$ and encode the monomial coefficients on either side of the equation. A positive Diophantine equation is solvable if it admits a solution, where a solution for $\mathcal{D} = (NV, M, (n_w)_{w \in M}, (m_w)_{w \in M})$ is a variable assignment $\nu : NV \to \mathbb{N}$ satisfying

$$\sum\nolimits_{w=\mathtt{x}_1^{i_1}\ldots\mathtt{x}_k^{i_k}\in M}n_w\cdot\nu(\mathtt{x}_1)^{i_1}\cdot\ldots\cdot\nu(\mathtt{x}_k)^{i_k}=\sum\nolimits_{w=\mathtt{x}_1^{i_1}\ldots\mathtt{x}_k^{i_k}\in M}m_w\cdot\nu(\mathtt{x}_1)^{i_1}\cdot\ldots\cdot\nu(\mathtt{x}_k)^{i_k}\;.$$

Solvability of positive Diophantine equations is undecidable, which is a straightforward consequence of the undecidability of arbitrary Diophantine equations over integers [29].

We will show that for any \mathcal{D} , we can compute a ω MSO·BAPA sentence $\varphi_{\mathcal{D}}$ whose satisfiability over labeled trees coincides with solvability of \mathcal{D} , despite $\varphi_{\mathcal{D}}$ being only "minimally outside" ω MSO \bowtie BAPA — also noting that sentences of this shape still warrant decidable satisfiability over finite words [22, Thm. 8.13].

As detailed in Figure 1, we let $\varphi_{\mathcal{D}} := \varphi_{\text{lab}} \wedge \varphi_{\text{prod}} \wedge \varphi_{\text{sol}}$ characterize trees labeled by w and \hat{w} , for $w \in M$, such that each model ξ of $\varphi_{\mathcal{D}}$ corresponds to a solution ν of \mathcal{D} as follows: for each $z \in NV$, the number of nodes in ξ labeled with z (i.e., $\sharp P_z$) equals the number that ν assigns to \varkappa . Likewise, for each variable product $w\varkappa_i \in M$, we ensure that $\#P_{wz_i} = \#P_w \cdot \#P_{z_i}$. To this end, we stipulate via φ_{lab} that for any w, all w-labeled nodes are pairwise \succ ⁺-incomparable, and every wz-labeled node has exactly one w-labeled ancestor (using the label \hat{w} for "padding" between w and wz_i), and we enforce via φ_{prod} that for any $w, wz_i \in M$, each subtree rooted in a w-labeled node contains precisely as many wz_i -labeled nodes as there are \varkappa_i -labeled nodes in the whole tree. Finally, under the conditions enforced by φ_{lab} and φ_{prod} , φ_{sol} implements that the model indeed encodes a solution of the given \mathcal{D} .

While the first conjunct is pure MSO and the third conjunct is a variable-free Presburger atom, the second conjunct is not in ω MSOMBAPA: $\exists Z$ occurs inside the scope of $\forall y$, thus Z is not assertive. Yet, Z occurs in a non-simple Presburger atom and must therefore be delicate, as must be z due to the set atom Z(z). Yet, as discussed in Section 3, this is at odds with z occurring in $y >^+ z$.

▶ Proposition 6. For any positive Diophantine equation \mathcal{D} , satisfaction of $\varphi_{\mathcal{D}}$ over (finite or infinite) labeled trees coincides with solvability of D. Consequently, satisfiability of the class of $\omega MSO \cdot BAPA$ sentences of the shape $\varphi_{\mathcal{D}}$ is undecidable.

Figure 1 Illustration of the intended model structure and definition of $\varphi_{\mathcal{D}} := \varphi_{\text{lab}} \wedge \varphi_{\text{prod}} \wedge \varphi_{\text{sol}}$

5 Transformation into Normal Form

Toward establishing our decidability result, we show that ω MSONBAPA formulae can be transformed into a specific, very restricted normal form. To this end, we use a variety of techniques, mostly known from the literature, but with some adjustments to our setting; thus, due to space, we will restrict ourselves to a high-level description and examples. The normalization procedure is subdivided into two phases: The first phase, establishing the general normal form (GNF), is valid independently of the underlying class of structures. The second phase, yielding the tree normal form (TNF), is specific to the class of labeled trees.

Given an ω MSO×BAPA formula, substitute complex set expressions in modulo and finiteness atoms by new set variables (e.g. Fin(P \cap X) becomes $\exists Y.(Y = P \cap X) \wedge \text{Fin}(Y)$), remove set operations from set atoms (e.g. turning $(P^c \cap X)(y)$ into $\neg P(y) \wedge X(y)$), and rewrite all simple Presburger atoms into plain MSO (e.g. $2 \# P \le 3$ becomes $\forall xy.P(x) \wedge P(y) \Rightarrow x=y$). Then, skolemize all assertive variables (e.g. $\exists x.\exists X.\forall y.R(x,y)\Rightarrow X(y)$ becomes $\forall y.R(c_x,y)\Rightarrow P_X(y)$). Next "presburgerize" all non-Presburger atoms containing (only) delicate variables (e.g. replacing $\# X \equiv_3 1$ with $\exists \& \# X =_{\text{fin}} 3 \& + 1$), which may require to turn delicate individual into set variables (e.g. $\forall y.P(y) \Rightarrow X(y)$ becomes $\forall Y.(\# Y = 1) \wedge 1 \le \# (P \cap Y) \Rightarrow 1 \le \# (X \cap Y)$). The resulting formula exhibits a clear separation of variable usage: Presburger atoms use delicate and number variables, all other atoms use non-delicate variables. In a subsequent step, we "disentangle" the quantifiers, such that the scopes of quantified number or delicate variables are strictly separated from those of non-delicate variables.³

We next apply "vennification": a technique known from BAPA. In essence, we introduce new number variables to count the number of elements contained in every Venn region, that is, every possible combination of set (non-)memberships (with this, $\#(P \cup X) \leq \#P^c$ becomes $\hbar_{P \cap X} + \hbar_{P \cap X} + \hbar_{P \cap X} \leq \hbar_{P^c \cap X} + \hbar_{P^c \cap X^c}$). This allows us to remove all delicate set variables from our formula. We are now in the setting, where we can apply the well-known quantifier elimination for Presburger Arithmetic over the "purely arithmetic" subformulae (which may produce new modulo atoms) – since the latter is classically defined for \mathbb{N} instead of $\mathbb{N} \cup \{\infty\}$, we require a pre-processing step implementing a vast case-distinction as to which of the Venn regions are infinite. As a consequence, we obtain a formula free of number variables, with all Presburger atoms being classic and outside any quantifier scope.

Finally, we "de-skolemize": all constants and unary predicates introduced via the initial skolemization, but also by the intermediate transformation steps, are projected away from the signature, re-interpreting them as existentially quantified individual and set variables. We thus recover "proper" equivalence with the initial formula. Last, we bring the formula in disjunctive normal form and pull the trailing existential individual quantifiers inside.

▶ Definition 7 (General Normal Form). A Parikh constraint is a classical Presburger constraint without number variables and where in all occurring set terms are set variables. An ω MSO \bowtie BAPA formula is in general normal form (GNF), if it is of the shape

$$\exists X_1.\cdots \exists X_n. \bigvee_{i=1}^k \left(\varphi_i \wedge \bigwedge_{j=1}^{l_i} \chi_{i,j}\right),$$

where the φ_i are CMSO formulae,⁴ whereas the $\chi_{i,j}$ are (unnegated) Parikh constraints.

▶ **Theorem 8.** For every ω MSO \times BAPA formula φ , it is possible to compute an equivalent formula φ' in general normal form.

While this transformation is not very complicated technically, it may incur nonelementary blowup.

⁴ Recall that CMSO is MSO with modulo and finiteness atoms over set variables.

We now focus on the case of labeled trees. Very similar to the case of CMSO, under this assumption, we can equivalently transform the GNF formula into one without occurrences of modulo and finiteness atoms. We rewrite $X \equiv_{\mathbf{n}} \mathbf{m}$ into the formula

$$\operatorname{Fin}(X) \wedge \exists X_{0} \dots \exists X_{n-1} \cdot \left(\exists x \cdot \left(\varphi_{\operatorname{root}}(x) \wedge \bigwedge_{\substack{0 \leq i < n \\ i \neq m}} \neg X_{i}(x) \right) \wedge \forall x \cdot \left(\left(\exists y \in X . x \succ^{*} y \right) \vee X_{0}(x) \right) \wedge \left(\bigwedge_{i,j \in \{0,\dots,n-1\}} \forall z \cdot \left(X_{i}(z.0) \wedge X_{j}(z.1) \Rightarrow \left(\neg X(z) \Rightarrow X_{i \oplus j}(z) \right) \wedge \left(X(z) \Rightarrow X_{i \oplus j \oplus 1}(z) \right) \right) \right),$$

where \oplus denotes addition modulo n. Finally, we replace all occurrences of Fin(X) by $\varphi_{\text{fin}}(X)$, as defined in Section 3. Thus, when employing $\omega MSO \bowtie BAPA$ to describe labeled trees, we can confine ourselves to an even more restrictive normal form.

▶ **Definition 9** (Tree Normal Form). An ω MSO \times BAPA formula is in tree normal form (TNF), if it is of the shape

$$\exists X_1....\exists X_n. \bigvee_{i=1}^k \left(\varphi_i \wedge \bigwedge_{j=1}^{l_i} \chi_{i,j}\right),$$

where the φ_i are plain MSO formulae and the $\chi_{i,j}$ are (unnegated) Parikh constraints.

▶ Theorem 10. For every ω MSO×BAPA formula φ , it is possible to compute a formula φ' in tree normal form that is equivalent to φ over all labeled infinite binary trees.

6 Parikh-Muller Tree Automata

In this section, we introduce a novel type of automata, combining and generalizing Parikh tree automata and Muller tree automata. We prove that the tree languages recognized by this automaton type coincide with those definable by TNF formulae. Moreover, we show that the emptiness problem of this automaton model is decidable. In combination, this yields us decidable satisfiability of ω MSO \bowtie BAPA over labeled infinite binary trees.

Variable-adorned Trees, Semilinear Sets, and Extended Parikh Maps

Given a finite set $\mathbf{V} \subseteq (\mathbf{V}_{\text{ind}} \cup \mathbf{V}_{\text{set}})$, we denote by $\Phi_{\mathbf{V}}$ the set of all variable assignments of variables from V to elements/subsets of $\{0,1\}^*$. The set of V-models of a formula φ is the set $\mathcal{L}_{\mathbf{V}}(\varphi) = \{(\xi, \nu) \mid \xi \in T_{\Sigma}^{\omega}, \nu \in \Phi_{\mathbf{V}}, \xi, \nu \models \varphi\} \text{ and by } \mathcal{L}(\varphi) \text{ we mean } \mathcal{L}_{\text{free}(\varphi)}(\varphi). \text{ To represent } \mathcal{L}_{\text{free}(\varphi)}(\varphi) = \{(\xi, \nu) \mid \xi \in T_{\Sigma}^{\omega}, \nu \in \Phi_{\mathbf{V}}, \xi, \nu \models \varphi\} \text{ and by } \mathcal{L}(\varphi) \text{ we mean } \mathcal{L}_{\text{free}(\varphi)}(\varphi).$ V-models, it is convenient to encode variable assignments $\nu \in \Phi_{\mathbf{V}}$ into the alphabet. For this, we let $\Sigma_{\mathbf{V}} = \Sigma \times 2^{\mathbf{V}}$ be a new alphabet and identify Σ_{\emptyset} with Σ . We say that a tree $\xi \in T_{\Sigma_{\mathbf{V}}}^{\omega}$ is valid (i.e., it encodes a variable assignment) if for each individual variable x in \mathbf{V} there is exactly one position in ξ where x occurs. As there is a bijection between $T_{\Sigma}^{\omega} \times \Phi_{\mathbf{V}}$ and the set of all valid trees in $T_{\Sigma_{\mathbf{V}}}^{\omega}$, we use these two views interchangeably.

A set $C \subseteq \mathbb{N}^s$, $s \ge 1$, is linear if it is of the form $C = \{\vec{v}_0 + \sum_{i \in [l]} m_i \vec{v}_i \mid m_1, \dots, m_l \in \mathbb{N}\}$ for some $l \in \mathbb{N}$ and vectors $\vec{v}_0, \dots, \vec{v}_l \in \mathbb{N}^s$. Any finite union of linear sets is called *semilinear*. Given two vectors $\vec{v} = (v_1, \dots, v_s) \in \mathbb{N}^s$ and $\vec{v}' = (v'_1, \dots, v'_{s'}) \in \mathbb{N}^{s'}$, we define their concatenation $\vec{v} \cdot \vec{v}'$ as the vector $(v_1, \dots, v_s, v'_1, \dots, v'_{s'}) \in \mathbb{N}^{s+s'}$. This definition is lifted to sets by letting $C \cdot C' = \{\vec{v} \cdot \vec{v}' \mid \vec{v} \in C, \ \vec{v}' \in C'\} \subseteq \mathbb{N}^{s+s'}$ for $C \subseteq \mathbb{N}^s, C' \subseteq \mathbb{N}^{s'}$.

▶ Lemma 11 ([14, 15]). The family of semilinear sets of \mathbb{N}^s coincides with the family of Presburger sets of \mathbb{N}^s (i.e., sets of the form $\{(x_1,\ldots,x_s)\mid \varphi(x_1,\ldots,x_s)\}$ for a Presburger formula φ). Semilinear sets are closed under union, intersection, complement, and concatenation.

Given an alphabet Σ and some finite $D \subseteq \mathbb{N}^s$ for $s \geq 1$, our automaton model works with symbols from $\Sigma \times D$. Thus we use the projections $\Sigma : \Sigma \times D \to \Sigma$ with $(a,d)_{\Sigma} = a$ and $D : \Sigma \to D$ $\Sigma \times D \to D$ with $(a,d)_D = d$, which we will also apply to finite and infinite trees, resulting in a pointwise substitution of labels. Moreover, the extended Parikh map $\Psi: T_{\Sigma \times D} \to \mathbb{N}^s$ is defined for each finite, non-empty tree $\xi \in T_{\Sigma \times D}$ by $\Psi(\xi) = \sum_{i \in pos(\xi)} (\xi(i))_D$.

Automaton Model

We now formally introduce our notion of a *Parikh-Muller Tree Automaton (PMTA)*, which recognizes infinite trees employing a Muller acceptance condition while also testing some finite initial tree part for an arithmetic property related to Parikh's commutative image [30]. This is implemented by utilizing a finite number of global counters, which are "blindly" increased throughout the run, but are read off only once a posteriori – when it is verified whether the tuple of the final counter values belongs to a given semilinear set.

▶ **Definition 12** (Parikh-Muller Tree Automaton). Let Σ be an alphabet, let $s \in \mathbb{N} \setminus \{0\}$, let $D \subseteq \mathbb{N}^s$ be finite, and denote $(\Sigma \times D) \cup \Sigma$ by Ξ . A PMTA (of dimension s) is a tuple $A = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$ where $Q = Q_P \cup Q_\omega \cup \{q_I\}$ is a finite set of states with Q_P, Q_ω disjoint and q_I being the initial state, $\Delta = \Delta_P \cup \Delta_\omega$ is the transition relation with

$$\Delta_P \subseteq (Q_P \cup \{q_I\}) \times (\Sigma \times D) \times Q \times Q$$
 and $\Delta_\omega \subseteq (Q_\omega \cup \{q_I\}) \times \Sigma \times Q_\omega \times Q_\omega$,

 $\mathcal{F} \subseteq 2^{Q_{\omega}}$ is a set of final state sets, and $C \subseteq \mathbb{N}^s$ is a semilinear set named final constraint.

- ▶ Definition 13 (Semantics of PMTA). A run of \mathcal{A} on a tree $\zeta \in T_{\Xi}^{\omega}$ is a tree $\kappa_{\zeta} \in T_{Q}^{\omega}$ whose root is labeled with q_{I} and which respects Δ jointly with ζ . By definition of Δ , if a run exists, then $\zeta^{-1}(\Sigma \times D)$ is prefix-closed; we denote $\zeta_{|\zeta^{-1}(\Sigma \times D)}$ by ζ_{cnt} . A run κ_{ζ} is accepting if 1. if $\operatorname{pos}(\zeta_{\text{cnt}}) \neq \emptyset$, then $\Psi(\zeta_{\text{cnt}}) \in C$, and
- **2.** for each path π , we have $\inf(\kappa_{\zeta}(\pi)) \in \mathcal{F}$.

Note that, by the second condition, κ_{ζ} being accepting implies finiteness of ζ_{cnt} and, thus, well-definedness of the sum in $\Psi(\zeta_{cnt})$. The set of all accepting runs of A on ζ will be denoted by $Run_{\mathcal{A}}(\zeta)$. Then, the tree language of A, denoted by $\mathcal{L}(A)$, is the set

$$\mathcal{L}(\mathcal{A}) = \{ \xi \in T_{\Sigma}^{\omega} \mid \exists \zeta \in T_{\Xi}^{\omega} \text{ with } \operatorname{Run}_{\mathcal{A}}(\zeta) \neq \emptyset \text{ and } (\zeta)_{\Sigma} = \xi \}.$$

We highlight that, by choosing $\Delta_P = \emptyset$, we reobtain the well-known concept of a *Muller tree automaton (MTA)*. In this case, we can drop Q_P , D, Δ_P , and C from \mathcal{A} 's specification without affecting its semantics. Thus, we define an MTA \mathcal{A} by the tuple $(Q_{\omega}, \Sigma, q_I, \Delta_{\omega}, \mathcal{F})$.

For alphabets Σ, Γ , a relabeling (from Σ to Γ) is a mapping $\tau \colon \Sigma \to \mathcal{P}(\Gamma)$. We extend it to a mapping $\tau \colon T_{\Sigma}^{\omega} \to \mathcal{P}(T_{\Gamma}^{\omega})$ by letting $\xi' \in \tau(\xi)$ if and only if for each position $\varrho \in \{0,1\}^*$, we have $\xi'(\varrho) \in \tau(\xi(\varrho))$. Note that the reverse τ^{-1} of a relabeling τ is again a relabeling.

▶ Proposition 14. The set of tree languages recognized by Parikh-Muller tree automata is closed under union, intersection, and relabeling.

Proof (sketch). As the proof techniques are rather standard and some of them were already presented in earlier work [19], we only sketch the main ideas here. Let A_1 and A_2 be PMTA.

For the *union*, we construct a PMTA that starts in a fresh initial state. From there, it can either enter the transitions of \mathcal{A}_1 or of \mathcal{A}_2 ; we keep apart the final constraints of \mathcal{A}_1 and \mathcal{A}_2 by using one additional dimension. The *intersection* PMTA is constructed as the Cartesian product of \mathcal{A}_1 and \mathcal{A}_2 ; it uses the concatenation of final constraints of both given PMTA and, as \mathcal{A}_1 and \mathcal{A}_2 might not "arithmetically test" the same initial tree part, it can nondeterministically freeze parts of its counters on different paths. *Relabeling* is trivial.

Correspondence of PMTA and ω MSO \bowtie BAPA

We now provide a logical characterization of PMTAs, by showing that the tree language recognized by a PMTA precisely consists of the models of some ω MSO \bowtie BAPA sentence, and vice versa. This result also provides an answer to the generalized version of an open question posed in [17] for Parikh automata on infinite words (we show it for the Muller acceptance condition, which is at least as expressive as the Büchi acceptance condition considered there).

▶ **Proposition 15.** For any PMTA \mathcal{A} , there is an ω MSO \rtimes BAPA sentence φ with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$.

Proof. Given a PMTA $\mathcal{A}=(Q,\Xi,q_I,\Delta,\mathcal{F},C)$, we adopt (and slightly simplify) the idea from [24, Thm. 10] of how to encode counter values and the semilinear set C, and combine it with the usual construction to define the behavior of an MTA by means of an MSO formula: The existence of a run is defined by a sequence of existential set quantifiers representing the states of \mathcal{A} ; one additional universal set quantifier ranging over paths is used to encode the Muller acceptance condition. Furthermore, we (outermost) existentially quantify over "counter contributions" using set quantifiers $Z_1^0,\ldots,Z_1^K,\ldots,Z_s^0,\ldots,Z_s^K$ (with s being the number of counters and K the greatest counter increment occurring in \mathcal{A} 's transitions) – the presence of a variable $Z_i^{d_i}$ at a position indicates that d_i has to be added to the ith counter to simulate the extended Parikh map. Then we enforce satisfaction of the final constraint C by adding the conjunct φ_C defined as follows: By definition of C, there are $k,l \in \mathbb{N} \setminus \{0\}$ and linear polynomials $p_1,\ldots,p_k \colon \mathbb{N}^l \to \mathbb{N}^s$ such that C is the union of the images of p_1,\ldots,p_k . Assume $p_g(m_1,\ldots,m_l) = \vec{v}_0 + m_1\vec{v}_1 + \ldots + m_l\vec{v}_l$ with $\vec{v}_j = (v_{j,1},\ldots,v_{j,s})$. Then, using number variables m_1,\ldots,m_l , we encode p_g by

$$arphi_{p_g}\coloneqq \exists m_1\ldots \exists m_l. igwedge_{i=1}^s \Big(\sum_{d=0}^K \mathrm{d} \sharp Z_i^d =_{ t fin} \mathtt{v}_{0,i} + \mathtt{v}_{1,i} m_1 + \ldots + \mathtt{v}_{l,i} m_l \Big),$$

and let $\varphi_C := \left(\bigwedge_{i=1}^s \bigwedge_{d=0}^K \forall x. \neg Z_i^d(x) \right) \vee \varphi_{p_1} \vee \ldots \vee \varphi_{p_k}$. This finishes the construction of the overall sentence specifying $\mathcal{L}(\mathcal{A})$, which can be easily shown to be in ω MSO \bowtie BAPA. \blacktriangleleft

The other direction is proved by an induction on the structure of TNF formulae involving the closure properties of PMTA. The last piece that needs to be shown for this is the recognizability of the models of a Parikh constraint.

▶ **Lemma 16.** For each Parikh constraint χ there is a PMTA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\chi)$.

Proof. We assume w.l.o.g. that χ is of the form $\mathtt{c} + \sum_{i \in [r]} \mathtt{c_i} \, \sharp X_i \leq_{\mathtt{fin}} \mathtt{d} + \sum_{j \in [k]} \mathtt{d_j} \, \sharp Y_j$ where all X_i are pairwise distinct, and all Y_j likewise. Given a subset $\theta \subseteq \mathtt{free}(\chi)$, we denote by $|\theta|_X$ the number $\sum_{X_i \in \theta} c_i$ (and similar for $|\theta|_Y$). Then, assuming $\xi(\varrho) = (\sigma_\varrho^\xi, \theta_\varrho^\xi)$, we get

$$\mathcal{L}(\chi) = \{ \xi \in T^{\omega}_{\Sigma_{\text{free}(\chi)}} \mid c + \sum_{\varrho \in \text{pos}(\xi)} |\theta^{\xi}_{\varrho}|_{X} \le d + \sum_{\varrho \in \text{pos}(\xi)} |\theta^{\xi}_{\varrho}|_{Y} < \infty \}$$

and, by the condition $<\infty$, both sums can add up only finitely many non-zero elements. Therefore, $\xi \in \mathcal{L}(\chi)$ holds exactly if there is a non-empty, finite, prefix-closed $Z \subset \{0,1\}^*$ that comprises all positions holding variable assignments and for which $\xi|_Z$ satisfies χ . This condition can be verified by a PMTA defined in the following.

Let
$$D = \{(i,j) \mid 0 \leq i \leq \sum_{l \in [r]} c_l, 0 \leq j \leq \sum_{l \in [k]} d_l \}$$
. We construct the PMTA $\mathcal{A} = (\{q_I,q_f\},\Xi,q_I,\Delta,\{\{q_f\}\},C)$ with $\Xi = (\Sigma_{\mathrm{free}(\chi)} \times D) \cup \Sigma_{\mathrm{free}(\chi)}, \Delta = \Delta_P \cup \Delta_\omega$ where $\Delta_P = \{(q_I,((\sigma,\theta),(|\theta|_X,|\theta|_Y)),q',q') \mid (\sigma,\theta) \in \Sigma_{\mathrm{free}(\chi)},q' \in \{q_I,q_f\}\}$ and $\Delta_\omega = \{(q_f,(\sigma,\emptyset),q_f,q_f) \mid \sigma \in \Sigma\}$ and $C = \{(z_1,z_2) \mid c+z_1 \leq_{\mathrm{fin}} d+z_2\}$. Then, one can easily show that $\mathcal{L}(\chi) = \mathcal{L}(\mathcal{A})$.

▶ Proposition 17. For every ω MSO \bowtie BAPA formula φ there is a PMTA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$.

Proof. Let φ be an ω MSO \bowtie BAPA formula. By Theorem 10, we can assume that φ is in tree normal form, i.e., of the form $\exists X_1 \cdots \exists X_n . \bigvee_{i=1}^k \left(\varphi_i \wedge \bigwedge_{j=1}^{l_i} \chi_{i,j} \right)$, where φ_i are plain MSO sentences and the $\chi_{i,j}$ are (unnegated) Parikh constraints. The proof of the statement is an induction on the (now restricted) structure of φ using the well-known recognizability of MSO sentences [32], Lemma 16, and Proposition 14.

⁵ Note that by Lemma 11 we can use this description for a semilinear set.

Deciding Emptiness of Parikh-Muller Tree Automata

Our proof of decidability (and complexity) of the emptiness problem of PMTA rests on the respective results for the two components it combines, MTA and PTA. Thus, let us first recall the definition of Parikh tree automata [23, 22], slightly adjusted to our setting.

▶ Definition 18 (Parikh tree automaton [24]). Let Σ be an alphabet, let $s \ge 1$, and let $D \subseteq \mathbb{N}^s$ be finite. A Parikh tree automaton (PTA) is a tuple $\mathcal{A} = (Q, \Sigma \times D, \delta, q_I, F, C)$ where Q is a finite set of states, $\delta \subseteq Q \times (\Sigma \times D) \times Q \times Q$ is the transition relation, q_I is the initial state, $F \subseteq Q$ is a set of final states, and $C \subseteq \mathbb{N}^s$ is a semilinear set.⁶ Given finite tree $\xi \in T_{\Sigma \times D}$, a run of \mathcal{A} on ξ is a tree $\kappa_{\xi} \in T_Q$ with pos(κ_{ξ}) = {ε} ∪ {ui | u ∈ pos(ξ), i ∈ {0,1}} and $\kappa(\varepsilon) = q_I$ that respects the transition relation of \mathcal{A} . The run κ_{ξ} is said to be accepting if $\Psi(\xi) \in C$ and $\kappa_{\xi}(u) \in F$ for each leaf $u \in \text{pos}(\kappa_{\xi}) \setminus \text{pos}(\xi)$; we denote the set of all accepting runs of \mathcal{A} on ξ by Run_A(ξ). Finally, the tree language of \mathcal{A} , denoted $\mathcal{L}(\mathcal{A})$, is the set

$$\mathcal{L}(\mathcal{A}) = \{ \xi \in T_{\Sigma} \mid \exists \xi' \in T_{\Sigma \times D} \text{ with } \operatorname{Run}_{\mathcal{A}}(\xi') \neq \emptyset \text{ and } (\xi')_{\Sigma} = \xi \}.$$

It was shown in [22] that non-emptiness is decidable for PTA. The exact complexity can be obtained by adopting [13, Proposition III.2.] to the tree setting. This ultimately enables us to establish the desired result for our automaton model.

- ▶ Proposition 19 (based on [22, 13]). Given a PTA A, deciding $\mathcal{L}(A) \neq \emptyset$ is NP-complete.
- ▶ **Theorem 20.** Given a PMTA A, deciding $\mathcal{L}(A) \neq \emptyset$ is PSPACE-complete.

Proof (sketch). Let $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$ be a PMTA with $Q = Q_P \cup Q_\omega$, $\Xi = (\Sigma \times D) \cup \Sigma$, and $\Delta = \Delta_P \cup \Delta_\omega$. We observe that each tree in the language of \mathcal{A} can be seen as some finite tree over $\Sigma \times D$ (on which the Parikh constraint is tested), having infinite trees from T_{Σ} attached to all its leafs. This allows us to reduce PMTA non-emptiness testing to deciding non-emptiness of Muller tree automata and Parikh tree automata. To this end, consider

- the Muller tree automaton $\mathcal{A}_{q_I} = (Q_\omega \cup \{q_I\}, \Sigma, q_I, \Delta_\omega, \mathcal{F}),$
- the Muller tree automata $\mathcal{A}_q = (Q_\omega, \Sigma, q, \Delta_\omega, \mathcal{F})$ for all $q \in Q_\omega$, and
- the Parikh tree automaton $\mathcal{A}_P = (Q, \Sigma \times D, q_I, \Delta_P, F_P, C)$ with $F_P = \{q \in Q_\omega \mid \mathcal{L}(\mathcal{A}_q) \neq \emptyset\}.$

As deciding $\mathcal{L}(\mathcal{A}_q) \neq \emptyset$ is PSPACE-complete [32, 21], \mathcal{A}_P can be constructed in PSPACE and, by Proposition 19, its non-emptiness can be decided in NP. Thus, the overall PSPACE complexity follows from the observation that $\mathcal{L}(\mathcal{A}) \neq \emptyset$ iff $\mathcal{L}(\mathcal{A}_{q_I}) \neq \emptyset$ or $\mathcal{L}(\mathcal{A}_P) \neq \emptyset$.

▶ Corollary 21. Satisfiability of ω MSO×BAPA over labeled infinite binary trees is decidable.

7 Decidabilility over Tree-Interpretable Classes of Structures

Finally, we lift the obtained decidability result for labeled trees to much more general classes of structures, leveraging the well-known technique of MSO-interpretations (also referred to as MSO-transductions or MSO-definable functions in the literature [1, 6, 10, 7, 9]).

▶ Definition 22 (MSO-Interpretation). Given two signatures \mathbb{S} and \mathbb{S}' , an MSO-interpretation is a sequence $\mathcal{I} = (\varphi_{\mathrm{Dom}}(x), (\varphi_{\mathtt{a}}(x))_{\mathtt{a} \in \mathbb{S}_{\mathbf{C}}}, (\varphi_{\mathtt{R}}(x_1, \dots, x_{ar(\mathtt{R})}))_{\mathtt{P} \in \mathbb{S}_{\mathbf{P}}})$ of MSO-formulae over \mathbb{S}' (with free variables as indicated). We identify \mathcal{I} with the partial function satisfying $\mathcal{I}(\mathfrak{A}) = \mathfrak{B}$ for an \mathbb{S}' -structure \mathfrak{A} and an \mathbb{S} -structure \mathfrak{B} if $\{a \in A \mid \mathfrak{A}, \{x \mapsto a\} \models \varphi_{\mathrm{Dom}}(x)\} = B$ as well as $\{a \in B \mid \mathfrak{A}, \{x \mapsto a\} \models \varphi_{\mathtt{a}}(x)\} = \{\mathtt{c}^{\mathfrak{B}}\}$ for every $\mathtt{c} \in \mathbb{S}_{\mathbf{C}}$, and, for every $\mathtt{Q} \in \mathbb{S}_{\mathbf{P}}$, we have

⁶ We note that the PTAs defined in [24] were total, i.e., δ is a function of type $Q \times (\Sigma \times D) \to \mathcal{P}(Q \times Q)$. Each PTA as defined here can be made total by using an additional sink state.

 $\mathbf{Q}^{\mathfrak{B}} = \{(a_1, \dots, a_{ar(\mathbf{Q})}) \in B^{ar(\mathbf{Q})} \mid \mathfrak{A}, \{x_i \mapsto a_i\}_{1 \leq i \leq ar(\mathbf{Q})} \models \varphi_{\mathbf{Q}}(x_1, \dots, x_{ar(\mathbf{Q})})\}. \text{ For a class } \mathbf{S}$ of \mathbb{S}' -structures, let $\mathcal{I}(\mathcal{S}) \coloneqq \{\mathfrak{B} \mid \mathcal{I}(\mathfrak{A}) = \mathfrak{B}, \mathfrak{A} \in \mathcal{S}\}$. A class \mathcal{T} of \mathbb{S} -structures is tree-interpretable, if it coincides with $\mathcal{I}(T_{\Sigma}^{\omega})$ for some Σ and corresponding MSO-interpretation \mathcal{I} .

The key insight for our result is that the well-known rewritability of MSO formulae under MSO-interpretations can be lifted to ω MSO \times BAPA without much effort.

▶ Lemma 23. Let \mathcal{I} be an MSO-interpretation. Then, for every ω MSO \bowtie BAPA sentence φ over \mathbb{S} one can compute an ω MSO \bowtie BAPA sentence $\varphi^{\mathcal{I}}$ over \mathbb{S}' satisfying $\mathfrak{A} \models \varphi^{\mathcal{I}} \iff \mathfrak{B} \models \varphi$ for every \mathbb{S}' -structure \mathfrak{A} and \mathbb{S} -structure \mathfrak{B} with $\mathcal{I}(\mathfrak{A}) \cong \mathfrak{B}$.

This insight can be used to show that decidability is propagated through MSOinterpretations, and thus can be guaranteed for all tree-interpretable classes, thanks to Corollary 21.

▶ Theorem 24. Let & be a class of structures over which satisfiability of ω MSO \bowtie BAPA is decidable, let \mathcal{I} be an MSO-interpretation. Then satisfiability of ω MSO \bowtie BAPA over $\mathcal{I}(\mathcal{S})$ is decidable as well. In particular, ω MSO \rtimes BAPA is decidable over any tree-interpretable class.

This result allows us, in one go, to harvest several decidability results, as treeinterpretability is able to capture classes of (finite or countable) structures whose treewidth [33], cliquewidth [12, 9, 8, 18], or partitionwidth [2, 3, 11] is bounded by some value $k \in \mathbb{N}$.

▶ Corollary 25. Given a signature \mathbb{S} , satisfiability of ω MSO \rtimes BAPA is decidable over the classes of finite or countable S-structures of bounded treewidth, cliquewidth, and partitionwidth.

8 Conclusion

We have proposed $\omega MSO \bowtie BAPA$, a logic with a high combined structural and arithmetic expressivity, subsuming and properly extending existing popular formalisms for either purpose. We have established decidability of the satisfiability of ω MSO \rtimes BAPA formulae over arbitrary tree-interpretable classes of structures. A key role is played by Parikh-Muller Tree Automata, a novel type of automaton over labeled infinite binary trees with decidable emptiness.

For improving readability and succinctness, the syntax of our formalism could be extended by "comprehension expressions": set terms of the form $\{x \mid \psi\}$ with $x \in \mathbf{V}_{\text{ind}}$ and $\psi \in \mathbf{F}$, whose semantics is straightforwardly defined by $\{x \mid \psi\}^{\mathfrak{A},\nu} = \{a \in A \mid \mathfrak{A}, \nu_{x \mapsto a} \models \psi\}$. E.g., this allows us to write $2 \#\{x \mid \exists y. \mathbb{R}(x,y)\} = 3 \#\{y \mid \exists x. \mathbb{R}(x,y)\}$ rather than the more unwieldy

$$\exists V_1.(\forall x.V_1(x) \Leftrightarrow \exists y.\mathtt{R}(x,y)) \land \exists V_2.(\forall y.V_2(y) \Leftrightarrow \exists x.\mathtt{R}(x,y)) \land 2 \ \sharp V_1 = 3 \ \sharp V_2.$$

Note that comprehension expressions do not increase expressivity; they can be removed from a formula φ yielding an equivalent formula φ' as follows: Let χ be the largest subformula of φ that contains the expression $\{x \mid \psi\}$ but no quantifiers binding any of the free variables of ψ . Then, obtain φ' from φ by replacing χ by χ' , where $\chi' := \exists Z. (\forall x. Z(x) \Leftrightarrow \psi) \land \chi[\{x \mid \psi\} \mapsto Z]$. ω MSO \bowtie BAPA membership of such extended formulae can then be decided based on their "purified" variant, or by means of an elaborately refined analysis of variable interactions.

Concluding, we are quite confident that this paper's findings and techniques will prove useful as a generic tool for establishing decidability results for formalisms from various areas of computer science such as knowledge representation or verification. That said, in view of the non-elementary blow-ups abounding in our methods, we concede that they are unlikely to be helpful in more fine-grained complexity analyses, once decidability is established.

 $^{^7}$ The described removal technique is optimized toward producing formulae in $\omega {\rm MSO} \bowtie {\rm BAPA}.$

References

- 1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for tree-decomposable graphs (extended abstract). In Timo Lepistö and Arto Salomaa, editors, 15th International Colloquium on Automata, Languages and Programming (ICALP 1988), volume 317 of LNCS, pages 38–51. Springer, 1988. doi:10.1007/3-540-19488-6_105.
- Achim Blumensath. Structures ofboundedpartitionwidth.PhD RWTH URL: thesis, Aachen University, Germany, 2003. http://sylvester.bth.rwth-aachen.de/dissertationen/2003/256/index.htm.
- 3 Achim Blumensath. A model-theoretic characterisation of clique width. *Annals of Pure and Applied Logic*, 142(1-3):321-350, 2006. doi:10.1016/j.apal.2006.02.004.
- Bruno Courcelle. The monadic second-order logic of graphs, II: Infinite graphs of bounded width. *Mathematical Systems Theory*, 21(1):187–221, 1988. doi:10.1007/BF02088013.
- 5 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
- 6 Bruno Courcelle. The monadic second-order logic of graphs V. On closing the gap between definability and recognizability. *Theoretical Computer Science*, 80(2):153–202, 1991. doi:10.1016/0304-3975(91)90387-H.
- 7 Bruno Courcelle. Monadic second-order definable graph transductions: A survey. *Theoretical Computer Science*, 126(1):53–75, 1994. doi:10.1016/0304-3975(94)90268-2.
- 8 Bruno Courcelle. Clique-width of countable graphs: A compactness property. *Discrete Mathematics*, 276(1-3):127–148, 2004. doi:10.1016/S0012-365X(03)00303-0.
- 9 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2012. doi:10.1017/CB09780511977619.
- Joost Engelfriet. A characterization of context-free NCE graph languages by monadic second-order logic on trees. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, 4th International Workshop on Graph-Grammars and Their Application to Computer Science (Graph Grammars 1990), volume 532 of LNCS, pages 311–327. Springer, 1990. doi:10.1007/BFb0017397.
- 11 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Decidability of querying first-order theories via countermodels of finite width. 2023. arXiv:2304.06348.
- 12 Thomas Feller, Tim S. Lyon, Piotr Ostropolski-Nalewaja, and Sebastian Rudolph. Finite-cliquewidth sets of existential rules: Toward a general criterion for decidable yet highly expressive querying. In 26th International Conference on Database Theory (ICDT 2023), LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2023.
- Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness and Efficiency. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015), pages 329–340, 2015. doi:10.1109/LICS.2015.39.
- 14 Seymour Ginsburg and Edwin H. Spanier. Bounded Algol-Like Languages. Transactions of the American Mathematical Society, 113(2):333, 1964. doi:10.2307/1994067.
- Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages. Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:10.2140/pjm.1966.16.285.
- Mario Grobler, Leif Sabellek, and Sebastian Siebertz. Parikh Automata on Infinite Words, 2023. arXiv:2301.08969.
- Mario Grobler and Sebastian Siebertz. Büchi-like characterizations for Parikh-recognizable omega-languages, 2023. arXiv:2302.04087.
- Martin Grohe and György Turán. Learnability and definability in trees and similar structures. Theory of Computing Systems, 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

- 19 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh automata over infinite words. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022), volume 250 of LIPIcs, pages 40:1–40:20. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.40.
- Matthew Hague and Anthony Widjaja Lin. Synchronisation- and Reversal-Bounded Analysis of Multithreaded Programs with Counters. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, P. Madhusudan, and Sanjit A. Seshia, editors, Computer Aided Verification (CAV 2012), volume 7358 of LNCS, pages 260–276. Springer, 2012. doi:10.1007/978-3-642-31424-7_22.
- Paul Hunter and Anuj Dawar. Complexity Bounds for Regular Games. In Joanna Jędrzejowicz and Andrzej Szepietowski, editors, Mathematical Foundations of Computer Science (MFCS 2005), LNCS, pages 495–506. Springer, 2005. doi:10.1007/11549345_43.
- Felix Klaedtke. Automata-based decision procedures for weak arithmetics. PhD thesis, University of Freiburg, Freiburg im Breisgau, Germany, 2004. URL: http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html.
- 23 Felix Klaedtke and Harald Rueß. Parikh automata and monadic second-order logics with linear cardinality constraints. Technical Report 177, Albert-Ludwigs-Universität Freiburg, 2002. (revised version).
- 24 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and Programming, 30th International Colloquium (ICALP 2003), volume 2719 of LNCS, pages 681–696. Springer, 2003. doi:10.1007/3-540-45061-0_54.
- 25 Tomer Kotek, Helmut Veith, and Florian Zuleger. Monadic Second Order Finite Satisfiability and Unbounded Tree-Width. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages 13:1–13:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.13.
- Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, and Robert Nieuwenhuis, editors, Automated Deduction (CADE 2005), volume 3632 of LNCS, pages 260–277. Springer, 2005. doi:10.1007/11532231_20.
- Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding Boolean Algebra with Presburger Arithmetic. *Journal of Automated Reasoning*, 36(3):213–239, 2006. doi:10.1007/s10817-006-9042-1.
- Aless Lasaruk and Thomas Sturm. Effective Quantifier Elimination for Presburger Arithmetic with Infinity. In Vladimir P. Gerdt, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific Computing (CASC 2009), volume 5743 of LNCS, pages 195—212. Springer, 2009. doi:10.1007/978-3-642-04103-7_18.
- 29 Yuri V. Matiyasevich. Hilbert's Tenth Problem. Foundations of Computing. MIT Press, 1993.
- 30 Rohit J. Parikh. On Context-Free Languages. Journal of the ACM, 13(4):570–581, 1966. doi:10.1145/321356.321364.
- 31 Mojžesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, pages 92–101, 1929.
- 32 Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.

 *Transactions of the American Mathematical Society, 141:1–35, 1969. doi:10.2307/1995086.

- 33 Neil Robertson and P.D Seymour. Graph minors. III. Planar Serieswidth. Journal of Combinatorial Theory, B, 36(1):49-64, 1984. doi:https://doi.org/10.1016/0095-8956(84)90013-3.
- Bruno Scarpellini. Complexity of Subcases of Presburger Arithmetic. Transactions of the American Mathematical Society, 284(1):203-218, 1984. doi:10.2307/1999283.
- Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the Complexity of Equational Horn Clauses. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, and Robert Nieuwenhuis, editors, Automated Deduction (CADE 2005), volume 3632 of LNCS, pages 337–352. Springer, 2005. doi:10.1007/11532231_25.

A Stepwise Simplification of ω MSO \bowtie BAPA Formulae

Throughout the transformation, we will make use of formulae of the shape $\varphi_S(\iota)$ where S is a set term and ι is an individual term. This is defined inductively as follows:

```
\begin{split} \varphi_{\{\mathbf{a}\}}(\iota) &:= \{\mathbf{a}\}(\iota) \\ \varphi_{\mathbf{P}}(\iota) &:= \mathbf{P}(\iota) \\ \varphi_{X}(\iota) &:= X(\iota) \\ \varphi_{S^{c}}(\iota) &:= \mathbf{NNF}(\neg \varphi_{S}(\iota)) \\ \varphi_{S_{1} \cup S_{2}}(\iota) &:= \varphi_{S_{1}}(\iota) \land \varphi_{S_{2}}(\iota) \\ \varphi_{S_{1} \cap S_{2}}(\iota) &:= \varphi_{S_{1}}(\iota) \lor \varphi_{S_{2}}(\iota) \end{split}
```

It should be clear that $\varphi_S(\iota)$ and $S(\iota)$ are equivalent.

Now we describe the normalization process. In the course of our treatise, we will often speak of (and introduce) *fresh* variables or signature elements. By this, we mean symbols that are entirely new and have not been seen before; in particular, they are neither already present in the current formula, nor in any of the formula's previous "versions" throughout the normalization process.

A.1 Simplification and Skolemization

- Remove complex set terms from finiteness and modulo atoms:
 - Replace every $\operatorname{Fin}(S)$ where S is not a set variable by $\exists Z.Z = S \wedge \operatorname{Fin}(Z)$ where Z is a fresh set variable.
 - Replace every $\#S \equiv_{\mathtt{m}} \mathtt{n}$ where S is not a set variable by $\exists Z.Z = S \land \#Z \equiv_{\mathtt{m}} \mathtt{n}$ where Z is a fresh set variable.

We note that these replacements do not change the status of any variable inside S and the result will remain in ω MSO \bowtie BAPA.

- Remove set operations from set atoms by replacing every $S(\iota)$ by $\varphi_S(\iota)$, whenever S contains any of \cdot^c , \cap , \cup . Again, the transformation clearly preserves membership in ω MSO \bowtie BAPA.
- Remove simple Presburger atoms by the following subsequent equivalent transformations:
 - Evaluate all (simple) Presburger atoms without occurrence of any #S, and, depending on the result, replace them with **true** or **false**.
 - Replace all simple Presburger atoms of the shape $t \leq \infty$ by **true**.
 - Replace all simple Presburger atoms of the shape $t \leq_{\texttt{fin}} \infty$ by **false**.
 - Replace all simple Presburger atoms of the shape $t + n \leq_{(fin)} t' + m$ by

- * $t + k \leq_{(fin)} t'$ if n > m, and * $t \leq_{(fin)} t' + k$ otherwise, where k = |m - n|.
- $\begin{array}{l} = & \text{Replace } \mathtt{m} \leq_{(\mathtt{fin})} \mathtt{n} \, \# S \text{ by } \mathtt{k} \leq_{(\mathtt{fin})} \# S, \text{ where } k = \left \lceil \frac{m}{n} \right \rceil. \\ = & \text{Replace } \mathtt{n} \, \# S \leq_{(\mathtt{fin})} \mathtt{m} \text{ by } \# S \leq_{(\mathtt{fin})} \mathtt{k}, \text{ where } k = \left \lfloor \frac{m}{n} \right \rfloor. \end{array}$
- Replace $0 \le \#S$ and $0 \le \#S + n$ by true.
- Replace $0 \leq_{fin} \#S$ and $0 \leq_{fin} \#S + n$ by Fin(S).
- Replace $m \leq_{fin} \# S$ by $Fin(S) \land m \leq \# S$.
- Replace $m \leq \#S$ by

$$\exists x_1 \dots x_m. \bigwedge_{1 \le i \le m} \varphi_S(x_i) \land \bigwedge_{1 \le i < j \le m} x_i \ne x_j.$$

 $= \text{Replace } \#S \leq_{(\texttt{fin})} \texttt{n by}$

$$\forall x_1 \dots x_{n+1}. \bigvee_{0 \le i \le n+1} \varphi_{S^c}(x_i) \vee \bigvee_{0 \le i < j \le n+1} x_i = x_j.$$

(recall that the empty conjunction equals true and the empty disjunction equals false).

Replace $\infty \leq \#S$ by $\neg \text{Fin}(S)$.

It should be clear that this transformation produces an equivalent formula and entirely removes all simple Presburger atoms from the considered formula.

- Skolemize all assertive set and individual variables:
 - \blacksquare remove trailing $\exists X$ and $\exists x$
 - \blacksquare replace all free occurrences of X by P_X (fresh unary predicate)
 - replace all free occurrences of x by c_x (fresh individual constant)

This is a satisfiability-preserving transformation and afterward all assertive variables are gone. In particular, all variables that now still occur in Presburger atoms are delicate.

A.2 Presburgerization: Separation of Variables

We "presburgerize" all non-Presburger atoms with delicate set variables. This may require to introduce further auxiliary unary predicates, extending the signature, and is done in two steps:

- 1. One by one, turn each delicate individual variable y into a fresh delicate set variable Ythrough the following procedure:
 - in case y is existentially quantified, replace the subformula $\exists y.\varphi$ by

$$\exists Y. ((\sharp Y = 1) \land \varphi_Y^y)$$

in case y is universally quantified, replace $\forall y.\varphi$ by

$$\forall Y. ((\sharp Y = 1) \Rightarrow \varphi_Y^y)$$

- thereby, given any formula φ with a free variable y, and any fresh set variable Y, we obtain φ_Y^y from φ as the end product of an exhaustive transformation sequence $\varphi = \varphi_0 \rightsquigarrow \varphi_1 \rightsquigarrow \ldots \rightsquigarrow \varphi_h = \varphi_Y^y$ where φ_{i+1} is obtained from φ_i by one of the following actions:
 - \blacksquare replacing any set atom S(y) by $1 \le \#(S \cap Y)$

 \blacksquare picking an atom $\mathbb{Q}(\iota_1,\ldots,\iota_n)$ in φ_i that contains y and letting

$$\varphi_{i+1} = \varphi_i' \wedge \forall y'.(\mathbb{Q}(\iota_1, \dots, \iota_n)[y \mapsto y'] \Leftrightarrow \mathbb{P}_{\mathbb{Q}(\iota_1, \dots, \iota_n)}(y')),$$

where y' is a fresh (and obviously non-delicate) individual variable and φ_i' is obtained from φ_i by replacing $\mathbb{Q}(\iota_1, \ldots, \iota_n)$ with $1 \leq \#(\mathbb{P}_{\mathbb{Q}(\iota_1, \ldots, \iota_n)} \cap Y)$.⁸

Under the given circumstances, the transformation produces an equivalent formula in which all delicate individual variables have been removed.

- 2. Turn all remaining non-Presburger atoms containing some delicate set variable (and for which then *all* contained individual and set variables must be delicate by definition) into subformulae with only Presburger atoms $t \leq_{(fin)} t'$:
 - Replace any $\#S \equiv_{\mathbf{n}} \mathbf{m}$ with delicate variables by

$$\exists k. (\#S = n k + m).$$

- replace any finiteness atom Fin(S) with delicate variables by $\neg(\infty \le \#S)$.
- replace any set atom of the shape S(a) with delicate variables and constant a by $1 \le \#(S \cap \{a\})$.

At the end of this sequence of transformations, we have obtained a separation of variable types: Next to number variables, Presburger atoms $t \leq_{(fin)} t'$ contain exclusively delicate set variables, while all other kinds of atoms contain neither delicate nor number variables.

A.3 Disentangling Quantifiers

An ω MSO·BAPA formula is said to be in *negation normal form* (short: NNF), if \neg only occurs directly in front of predicate, set, or finiteness atoms. Every ω MSO·BAPA formula can be equivalently transformed into NNF, using the commonly known equivalences plus:

$$\begin{array}{lll} \neg(t \leq_{\mathtt{fin}} t') & \equiv & (t'+1 \leq_{\mathtt{fin}} t) \vee (\infty \leq t+t') \\ \neg(t \leq t') & \equiv & (t'+1 \leq_{\mathtt{fin}} t) \vee ((\infty \leq t) \wedge (t' \leq_{\mathtt{fin}} t')) \\ \neg(\sharp S \equiv_{\mathtt{n}} \mathtt{m}) & \equiv & (\infty \leq \sharp S) \vee \bigvee_{\substack{k \in \{0, \dots, n-1\} \\ k \neq m \mod n}} \sharp S \equiv_{\mathtt{n}} \mathtt{k} \\ \end{array}$$

Also it is easy to see that the normal form of a ω MSO \bowtie BAPA formula is again in ω MSO \bowtie BAPA. For what follows, we assume that the considered formulas are in NNF.

The purpose of the "disentangeling" step of our normalization procedure is the following: While the previous transformations have ensured a variable separation between the different atom types (Presburger atoms use exclusively number and delicate set variables, whereas all other atoms use exclusively non-delicate individual and set variables), the scopes of the respective quantifiers are still containing atoms of either type. Our goal is to make sure that the quantifier scopes of number and delicate variables contain exclusively Presburger atoms, whereas the scopes of non-delicate variables contain none.

Consequently, we will call a formula *entangled*, if one or both of the following is the case:

- It contains a subformula of the form $\exists X.\psi$ or $\forall X.\psi$ with delicate X, or $\exists \pounds.\psi$ or $\forall \pounds.\psi$ such that ψ contains a predicate, set, modulo or finiteness atom.
- It contains a subformula of the form $\exists X.\psi$ or $\forall X.\psi$ with non-delicate X, or $\exists x.\psi$ or $\forall x.\psi$ such that ψ contains a Presburger atom.

⁸ Note that, by the assumption of ω MSO \bowtie BAPA (i.e., each predicate atom contains at most one delicate variable), y is the only variable occurring in $\mathbb{Q}(\iota_1, \ldots, \iota_n)$.

A formula is disentangled if it is not entangled. Also, we call a disentangled $\omega MSO \bowtie BAPA$ formula arithmetic if it only contains Presburger atoms, while we call it (plain) CMSO if it only contains predicate, set, modulo and finiteness atoms. It is not hard to see that, by virtue of the negation normal form, every disentangled sentence can be written as a positive Boolean combination of arithmetic and plain CMSO formulae. Applying the distributive law and intelligent grouping, we can be even more restrictive: every disentangled formula ψ allows for a disentangled disjunctive normal form (DDNF) as well as a disentangled conjunctive normal form (DCNF) with the shapes

$$\mathsf{DDNF}(\psi) = \bigvee_{i=1}^k \psi_{\vee i}^{\mathrm{arith}} \wedge \psi_{\vee i}^{\mathrm{plain}} \qquad \mathsf{DCNF}(\psi) = \bigwedge_{j=1}^l \psi_{\wedge j}^{\mathrm{arith}} \vee \psi_{\wedge j}^{\mathrm{plain}}$$

where the $\psi_{\vee i}^{\rm arith}$ and $\psi_{\wedge j}^{\rm arith}$ are arithmetic formulae while the $\psi_{\vee i}^{\rm plain}$ and $\psi_{\wedge j}^{\rm plain}$ are plain CMSO formulae.

Now, in order to disentangle an impure ω MSO \bowtie BAPA formula φ , we repeatedly do the following: We pick an occurrence of a minimal entangled subformula χ of φ (i.e., one all of whose proper subformulae are disentangled), and replace it with χ' , the "disentangled equivalent variant" of ψ . Obviously, this procedure terminates – the number of replacement steps needed is bounded by the number of quantifiers of φ – and produces a disentangled

It remains to provide a method to obtain χ' from χ . First observe that by assumption of minimality, χ must start with a quantifier followed by some disentangled formula ψ . We now make a case distinction depending on the quantifier: obtain χ' from χ through the following function (where X is delicate while Y isn't, and we assume $\mathsf{DDNF}(\psi)$ and $\mathsf{DCNF}(\psi)$ as above):

$$\begin{array}{llll} \exists \pounds.\psi & \mapsto & \bigvee_{i=1}^k \exists \pounds.\psi_{\vee i}^{\operatorname{arith}} \wedge \psi_{\vee i}^{\operatorname{plain}} & \forall \pounds.\psi & \mapsto & \bigwedge_{j=1}^l \forall \pounds.\psi_{\wedge j}^{\operatorname{arith}} \vee \psi_{\wedge j}^{\operatorname{plain}} \\ \exists X.\psi & \mapsto & \bigvee_{i=1}^k \exists X.\psi_{\vee i}^{\operatorname{arith}} \wedge \psi_{\vee i}^{\operatorname{plain}} & \forall X.\psi & \mapsto & \bigwedge_{j=1}^l \forall X.\psi_{\wedge j}^{\operatorname{arith}} \vee \psi_{\wedge j}^{\operatorname{plain}} \\ \exists x.\psi & \mapsto & \bigvee_{i=1}^k \psi_{\vee i}^{\operatorname{arith}} \wedge \exists x.\psi_{\vee i}^{\operatorname{plain}} & \forall x.\psi & \mapsto & \bigwedge_{j=1}^l \psi_{\wedge j}^{\operatorname{arith}} \vee \forall x.\psi_{\wedge j}^{\operatorname{plain}} \\ \exists Y.\psi & \mapsto & \bigvee_{i=1}^k \psi_{\vee i}^{\operatorname{arith}} \wedge \exists Y.\psi_{\vee i}^{\operatorname{plain}} & \forall Y.\psi & \mapsto & \bigwedge_{j=1}^l \psi_{\wedge j}^{\operatorname{arith}} \vee \forall Y.\psi_{\wedge j}^{\operatorname{plain}} \end{array}$$

Obviously, given the structure of ψ with the ensured variable separation, χ and χ' are equivalent, and χ' is indeed disentangled as claimed.

While it may seem rather innocuous at the first glance, it should be noted that disentangling a formula may incur non-elementary blowup caused by the alternating transformations into DDNF and DCNF.

A.4 Vennification: Eliminating Delicate Variables

The strategy for removing delicate variables is inspired by a very similar technique used for treating BAPA [26]. The basic idea is to replace them by number variables, exploiting the fact that Presburger atoms only talk about cardinalities. However, in order to properly account for set operations (and even the mere fact that sets can overlap in different ways), some pre-processing is required, where the interplay of sets is broken down to disjoint indivisible smallest subsets, usually referred to as *Venn regions*.⁹

Given some finite set $\mathbf{U} \subseteq \mathbf{P}_1 \cup \{\{\mathbf{a}\} \mid \mathbf{a} \in \mathbf{C}\} \cup \mathbf{V}_{\text{set}}$ of unary predicates, set variables, and constant-singleton sets, a *Venn region over* \mathbf{U} is a set term R that is an intersection containing for each $U \in \mathbf{U}$ either U^c or U. For convenience, we will consider any two Venn regions whose set expressions contain the same U and U^c as syntactically equal. We denote the set of all Venn regions over \mathbf{U} by $\mathrm{VR}(\mathbf{U})$. Given some $R \in \mathrm{VR}(\mathbf{U})$ and a set term S that is a Boolean combination of (a selection of) elements from \mathbf{U} (short: S is a set term over \mathbf{U}), we write $R \models S$ to denote that $R^{\mathfrak{A},\nu} \subseteq S^{\mathfrak{A},\nu}$ for all structures \mathfrak{A} and corresponding variable assignments ν . We note that $R \models S$ can be easily decided by solving the corresponding entailment problem for Boolean formulas. Furthermore $R \not\models S$ holds exactly if $R^{\mathfrak{A},\nu} \cap S^{\mathfrak{A},\nu} = \emptyset$ for all structures \mathfrak{A} and corresponding variable assignments ν . Likewise, for any $R_1, R_2 \in \mathrm{VR}(\mathbf{U})$ with $R_1 \neq R_2$, we have that $R_1^{\mathfrak{A},\nu} \cap R_2^{\mathfrak{A},\nu} = \emptyset$ holds for all structures \mathfrak{A} and corresponding variable assignments ν . These insights allow us to equivalently re-write, for any set term S over \mathbf{U} , the numerical term $\sharp S$ into

$$\sum_{\substack{R \in VR(\mathbf{U}) \\ R \models S}} \#R.$$

Given a sentence φ , in order to have direct "access" to the Venn regions over $\mathbf{U}(\varphi) := \mathbf{P}_1(\varphi) \cup \{\{\mathbf{a}\} \mid \mathbf{a} \in \mathbf{C}(\varphi)\}$, we introduce one auxiliary unary predicate \mathbf{V}_R for every $R \in \mathrm{VR}(\mathbf{U}(\varphi))$, and define the corresponding definitorial description as the sentence

$$\psi_{\varphi}^{\mathrm{VennDef}} := \bigwedge_{R \in \mathrm{VR}(\mathbf{U}(\varphi))} \forall x. (\mathbf{V}_R(x) \Leftrightarrow \varphi_R(x)).$$

Then, $\varphi' := \varphi \wedge \psi_{\varphi}^{\text{VennDef}}$ is a model-conservative extension of φ and every model \mathfrak{A} of φ' and every variable assignment ν satisfy the correspondency

$$V_R^{\mathfrak{A}} = V_R^{\mathfrak{A},\nu} = R^{\mathfrak{A},\nu}.$$

After these preparations, we finally remove the delicate variables from φ' . The intuitive idea behind this technique is to maintain a "histogram" storing all sizes of all Venn Regions constructible from the unary Predicates and "currently active variables". Thereby, the size of each Venn region R is "stored" in a number variable called k_R . Whenever a new (necessarily delicate) set variable X is supposed to be introduced via an existential or universal quantifier, we instead "refine" the histogram of Venn regions: every prior Venn region is split in two (depending on membership or non-membership in X), giving rise to newly introduced number variables $k_{R\cap X}$ and $k_{R\cap X^c}$ which need to add up to k_R . As discussed above, this numerical information is sufficient to provide enough information for evaluating the Presburger atoms.

Formally, this transformation is realized by replacing any of its arithmetic sub-sentences χ by

$$\left(\exists \mathbb{\mathring{R}}_{R}\right)_{R\in\mathrm{VR}(\mathbf{U}(\varphi))}.\bigg(\bigwedge_{R\in\mathrm{VR}(\mathbf{U}(\varphi))}\mathbb{\mathring{R}}_{R} = \sharp \mathbf{V}_{R}\bigg) \wedge \mathrm{transf}\big(\chi,\mathbf{U}(\varphi)\big),$$

where transf is recursively defined by

⁹ Another way to think of this is that the cardinality of each of these Venn regions is the number of elements realizing one complete unary type.

```
transf(\psi_1 \wedge \psi_2, \mathbf{U}) := transf(\psi_1, \mathbf{U}) \wedge transf(\psi_1, \mathbf{U})
transf(\psi_1 \lor \psi_2, \mathbf{U}) := transf(\psi_1, \mathbf{U}) \lor transf(\psi_1, \mathbf{U})
\mathsf{transf}(\ \exists \hbar.\psi\ , \mathbf{U}) := \exists \hbar.\mathsf{transf}(\psi, \mathbf{U})
transf( \forall k.\psi, \mathbf{U}) := \forall k.transf(\psi, \mathbf{U})
\mathsf{transf}(\ \exists X.\psi\ ,\mathbf{U})\ := (\exists \&_{R\cap X}.\exists \&_{R\cap X^c})_{R\in \mathrm{VR}(\mathbf{U})}.\big(\bigwedge_{R\in \mathrm{VR}(\mathbf{U})} \&_R = \&_{R\cap X} + \&_{R\cap X^c}\big)\ \land
                                                                                                                                                                          transf(\psi, \mathbf{U} \cup \{X\})
\mathsf{transf}(\ \forall X.\psi\ , \mathbf{U})\ := (\forall \&_{R\cap X}. \forall \&_{R\cap X^c})_{R\in \mathrm{VR}(\mathbf{U})}. \big(\bigvee_{R\in \mathrm{VR}(\mathbf{U})} \&_R \neq \&_{R\cap X} + \&_{R\cap X^c}\big) \ \lor \ \mathsf{var}(\mathbf{U})
                                           \mathsf{transf}(\ t_1 \le t_2 \ , \mathbf{U}) \ := \mathsf{transf}(t_1, \mathbf{U}) \le \mathsf{transf}(t_2, \mathbf{U})
                                           \mathsf{transf}(t_1 \leq_{\mathtt{fin}} t_2, \mathbf{U}) \; := \mathsf{transf}(t_1, \mathbf{U}) \leq_{\mathtt{fin}} \mathsf{transf}(t_2, \mathbf{U})
                                           transf(t_1 + t_2, \mathbf{U}) := transf(t_1, \mathbf{U}) + transf(t_2, \mathbf{U})
                                                                   mt , U) := m \operatorname{transf}(t_2, U)
                                           transf(
                                                                                 ,\mathbf{U}):=\mathtt{n}
                                           transf(
                                                                     n
                                                                                 ,\mathbf{U}):=\infty
                                           transf(
                                                                   \begin{array}{ll} \infty & , \mathbf{U}) & . \\ \mathbf{\mathring{k}} & , \mathbf{U}) & := \mathbf{\mathring{k}} \\ \# S & , \mathbf{U}) & := \sum_{R \in \mathrm{VR}(\mathbf{U}) \atop R \models S} \mathbf{\mathring{k}}_R \end{array}
                                           transf(
                                            transf(
```

After this transformation, we arrive at a modified φ wherein all arithmetic subsentences are entirely free of individual and set variables.

A.5 Eliminating Number Variables

In the next step, we will eliminate all number variables from arithmetic subsentences. To this end, we will use the well known quantifier elimination procedure from Presburger arithmetic. As classical Presburger arithmetic is defined over the natural numbers (without ∞), this requires another preprocessing step. Intuitively, this preprocessing implements a case distinction for every variable introduced through quantification, as to if the variable is instatiated by a natural number proper, or ∞ .

Clearly, via standard transformation (extended to ∞ in the straightforward way), every remaining number term can be written in summarized, maximally simplified form of the shape

$$\mathbf{n}_0 + \sum_{i=1}^k \mathbf{n}_i t_i^*$$
 or $\mathbf{\infty}$

where $n_0 \in \mathbb{N}$, each $n_i \in \mathbb{N} \setminus \{0\}$, and every t_i^* is either a number variable or of the form $\sharp P$. For any term t, let $\mathsf{NF}(t)$ denote the corresponding equivalent term of this form. For formulae φ , let $\mathsf{NF}(\varphi)$ denote φ with every maximal term t occurring in φ replaced by $\mathsf{NF}(t)$.

We now define the function smpl which simplifies arithmetic formulae as follows (where t^* , t_1^* , t_2^* stand for number terms whose NF is not ∞):

$$\begin{array}{lll} \mathbf{true} \mapsto \ \mathbf{true} \\ \mathbf{false} \mapsto \ \mathbf{false} \\ \varphi \wedge \varphi' \mapsto \ \mathbf{smpl}(\varphi) \wedge \mathbf{smpl}(\varphi') \\ \varphi \vee \varphi' \mapsto \ \mathbf{smpl}(\varphi) \vee \mathbf{smpl}(\varphi') \\ \exists \& \varphi \mapsto \ \mathbf{smpl}(\mathsf{NF}(\varphi[\& \mapsto \infty])) \vee \exists \& . \mathsf{smpl}(\varphi) \\ \forall \& \varphi \mapsto \ \mathbf{smpl}(\mathsf{NF}(\varphi[\& \mapsto \infty])) \wedge \forall \& . \mathsf{smpl}(\varphi) \end{array} \qquad \begin{array}{ll} t \leq_{\mathrm{fin}} \infty \mapsto \ \mathbf{false} \\ t \leq \infty \mapsto \ \mathbf{true} \\ \infty \leq_{\mathrm{fin}} t^* \mapsto \ \mathbf{false} \\ \infty \leq t^* \mapsto \ \mathbf{false} \\ t_1^* \leq_{(\mathrm{fin})} t_2^* \mapsto t_1^* \leq_{\mathrm{fin}} t_2^* \end{array}$$

This is an equivalent transformation when confining the attention to structures that map all occurring #P to finite numbers. Building on that, we define the function $smpl^*$ that equivalently rewrites arbitrary arithmetic subsentences as follows. For an arithmetic subsentence χ in NNF of the overall formula φ , let

$$\mathsf{smpl}^*(\chi) := \bigvee_{\mathbf{U} \subseteq \mathbf{U}(\varphi)} \Bigl((\bigwedge_{S \in \mathbf{U}} \neg \mathrm{Fin}(S) \Bigr) \wedge \bigl(\bigwedge_{S \in \mathbf{U}(\varphi) \backslash \mathbf{U}} \mathrm{Fin}(S) \bigr) \wedge \chi^{\mathbf{U}} \Bigr)$$

where

$$\chi^{\mathbf{U}} := \operatorname{smpl} \Big(\operatorname{NF} (\varphi \, [\sharp S \mapsto \infty]_{S \in \mathbf{U}}) \Big).$$

We note that every $\chi^{\mathbf{U}}$ can be seen as a formula of standard Presburger arithmetic, as all still occurring $\sharp P$ are constrained to be finite by the environment of $\chi^{\mathbf{U}}$ in $\mathsf{smpl}^*(\chi)$. This allows us to apply classical quantifier elimination [31] to each $\chi^{\mathbf{U}}$, yielding a sentence $\mathrm{QE}(\chi^{\mathbf{U}})$ free of any number variables, but possibly containing modulo atoms next to classical Presburger atoms. Letting $\mathrm{QE}(\mathsf{smpl}^*(\chi))$ denote $\mathsf{smpl}^*(\chi)$ with every subsentence $\chi^{\mathbf{U}}$ replaced by $\mathrm{QE}(\chi^{\mathbf{U}})$, we finally obtain the new formula φ by replacing all arithmetic subsentences χ by $\mathrm{QE}(\mathsf{smpl}^*(\chi))$. This yields us a sentence entirely free of number variables, which is a positive Boolean combination of sentences of the following two kinds:

- sentences containing (possibly negated) predicate, set, finiteness and modulo atoms, and
- unnegated classical Presburger atoms without variables.

Using distributivity, we can ensure that the obtained sentence has the form

$$\bigvee_{i=1}^{k} \left(\varphi_i \wedge \bigwedge_{j=1}^{l_i} \chi_{i,j} \right),$$

where the φ_i are CMSO sentences, i.e., MSO sentences with possible additional occurrences of modulo and finiteness atoms, while the $\chi_{i,j}$ are unnegated classical Presburger atoms without variables.

A.6 De-Skolemization

At this point, the formula (say, φ^{new}) we have arrived at uses a signature $\mathbb{S}(\varphi^{\text{new}})$ that is a superset of the signature $\mathbb{S}(\varphi^{\text{orig}})$ used by the original formula φ^{orig} . The initial Skolemization has introduced auxiliary constant and unary predicate names, and more unary predicates were introduced in the course of "Presburgerization" and "Vennization". The formula φ^{new} is then a model-conservative extension of the original formula φ^{orig} : every model of the obtained formula is a model of the original one and every model of the original one can be turned into a model of the current one by picking appropriate interpretations for the added signature elements. In order to re-gain equivalence with φ^{orig} we therefore need to "project away" these additional signature elements by conceiving them as individual and set variables and existentially quantifying over them. An exception is made for the representatives of the formerly free variables, which will be free again. Formally, we obtain

$$\varphi^{\text{free-again}} \coloneqq \varphi^{\text{new}} \big[\mathtt{P}_X \mapsto X \big]_{X \in \text{free}(\varphi^{\text{orig}}) \cap \mathbf{V}_{\text{set}}} \big[\mathtt{c}_x \mapsto x \big]_{x \in \text{free}(\varphi^{\text{orig}}) \cap \mathbf{V}_{\text{ind}}}$$

 $^{^{10}}$ In case the original formula had free variables, a similar statement holds where the models are accompanied by variable assignments.

and, with $\mathbb{S}^{\text{diff}} = \mathbb{S}(\varphi^{\text{new}}) \setminus \mathbb{S}(\varphi^{\text{orig}})$ we let

$$\varphi^{\text{de-skol}} \coloneqq \big(\exists X_{\mathtt{P}}\big)_{\mathtt{P} \in \mathbb{S}_{\mathbf{p}}^{\text{diff}}} \cdot \big(\exists x_{\mathtt{c}}\big)_{\mathtt{c} \in \mathbb{S}_{\mathbf{C}}^{\text{diff}}} \cdot \varphi^{\text{free-again}} \big[\mathtt{P} \mapsto X_{\mathtt{P}}\big]_{\mathtt{P} \in \mathbb{S}_{\mathbf{p}}^{\text{diff}}} \big[\mathtt{c} \mapsto x_{\mathtt{c}}\big]_{\mathtt{c} \in \mathbb{S}_{\mathbf{C}}^{\text{diff}}},$$

and conclude that $\varphi^{\text{de-skol}}$ is equivalent to φ^{orig} . Now having in mind that by construction, $\varphi^{\text{de-skol}}$ has the shape

$$\exists X_1....\exists X_n.\exists X_1....\exists x_m.\bigvee_{i=1}^k \left(\varphi_i \wedge \bigwedge_{j=1}^{l_i} \chi_{i,j}\right),$$

where all $\chi_{i,j}$ are free of individual variables, we see that we can pull the quantifier block $\exists x_1, \dots \exists x_m$ past the disjunction and then inside the φ_i . Last not least, we can, for every #P still occurring in some $\chi_{i,j}$, replace it by $\#X_P$ (where X_P is a fresh set variable), add the conjunct $X_P = P$ to every φ_i and put the quantifier $\exists X_P$ in front of the whole formula.

With this we have – at last – arrived at a formula in GNF as specified in Definition 7.

В Properties of PMTA

Given some $n \in \mathbb{N}$, a set A, and a tuple $a = (a_1, \ldots, a_n) \in A^n$, we let $\operatorname{pr}_i(a) = a_i$ for every $i \in [n]$, that is, pr_i denotes the i^{th} projection. Projections are lifted to sets of tuples as usual.

By writing $\xi[\xi_1,\ldots,\xi_k]$ we denote the composition of a finite tree ξ with trees ξ_1,\ldots,ξ_k in the usual way, i.e., we equip ξ with variables (two variables under each leaf and one variable under each position with only one successor) and we replace the $i^{\rm th}$ variable of ξ by the tree ξ_i – under the assumption that k corresponds to the number of variables ξ is equipped with. If $pos(\xi) = \emptyset$, we let $\xi[\xi_1] = \xi_1$.

B.1 Closure Properties

▶ Proposition 14. The set of tree languages recognized by Parikh-Muller tree automata is closed under union, intersection, and relabeling.

Proof. The result follows from the subsequent Lemmas 26, 27, and 28.

▶ Lemma 26. *PMTA* are closed under union.

Proof. Let $A_i = (Q_i, \Xi_i, q_{Ii}, \Delta_i, \mathcal{F}_i, C_i)$ for $i \in [2]$ be two PMTA with $Q_i = Q_{P,i} \cup Q_{\omega,i} \cup$ $\{q_{I,i}\}, \ \Xi_i = (\Sigma \times D_i) \cup \Sigma, \ \text{and} \ \Delta_i = \Delta_{P,i} \cup \Delta_{\omega,i}. \ \text{W.l.o.g.} \ \text{we can assume that} \ \mathcal{A}_1 \ \text{and} \ \mathcal{A}_2$ are both of dimension s for some $s \ge 1$ (semi-linear sets are closed under concatenation by Lemma 11), that Q_1 and Q_2 are disjoint, and that q_I is a fresh state not in $Q_1 \cup Q_2$.

We construct the PMTA $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$ where

- $Q = Q_1 \cup Q_2 \cup \{q_I\},$ $\Xi = \left(\Sigma \times (D_1 \cdot \{(0), (1)\} \cup D_2 \cdot \{(0), (2)\})\right) \cup \Sigma,$
- $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$
- $C = C_1 \cdot \{(1)\} \cup C_2 \cdot \{(2)\}, \text{ and }$
- $\Delta = \Delta_P \cup \Delta_\omega$ consists of the transitions
 - $\Delta_P = \{(q, (\sigma, \vec{d} \cdot (0)), q_1, q_2) \mid (q, (\sigma, \vec{d}), q_1, q_2) \in \Delta_{P,1} \cup \Delta_{P,2}\} \cup (q, (\sigma, \vec{d}), q_1, q_2) \in \Delta_{P,1} \cup \Delta_{P,2}\} \cup (q, (\sigma, \vec{d}), q_1, q_2) \in \Delta_{P,1} \cup \Delta_{P,2}\}$ $\{(q_I, (\sigma, \vec{d} \cdot (i)), q_1, q_2) \mid (q_{I,i}, (\sigma, \vec{d}), q_1, q_2) \in \Delta_{P,i} \text{ for some } i \in [2]\}$ and
 - $\Delta_{\omega} = \Delta_{\omega,1} \cup \Delta_{\omega,2} \cup \{(q_I, \gamma, q_1, q_2) \mid (q_{I,i}, \gamma, q_1, q_2) \in \Delta_{\omega,i} \text{ for some } i \in [2]\}.$

 $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2) \subseteq \mathcal{L}(\mathcal{A})$: Let $\xi \in \mathcal{L}(\mathcal{A}_i)$ for some $i \in [2]$. Then there exists some $\zeta \in T^{\omega}_{\Xi_i}$ s.t. $(\zeta)_{\Sigma} = \xi$ and there is an accepting run κ_{ζ} of \mathcal{A}_i on ζ . By def., $\kappa_{\zeta}(\varepsilon) = q_{I,i}$.

(1) Assume that $\zeta_{\text{cnt}} \neq \emptyset$. Consider the tree $\zeta' \in T_{\Xi}^{\omega}$ with

$$\zeta'(\varrho) = \begin{cases} (\sigma, \vec{d} \cdot (i)) & \text{if } \varrho = \varepsilon, \zeta(\varepsilon) = (\sigma, \vec{d}) \\ (\sigma, \vec{d} \cdot (0)) & \text{if } \varrho \in \text{pos}(\zeta_{\text{cnt}}) \setminus \{\varepsilon\}, \zeta(\varrho) = (\sigma, \vec{d}) \\ \zeta(\varrho) & \text{otherwise} \end{cases}$$

Clearly, $(\zeta')_{\Sigma} = (\zeta)_{\Sigma} = \xi$. Now consider the tree κ' with $\kappa'(\varepsilon) = q_I$ and $\kappa'(\varrho) = \kappa_{\zeta}(\varrho)$ for each $\varrho \in \{0,1\}^+$. By construction and as κ_{ζ} respects the transition relation of \mathcal{A}_i , $(q_I, \zeta'(\varepsilon), \kappa'(0), \kappa'(1)) \in \Delta$ and $(\kappa'(\varrho), \zeta'(\varrho), \kappa'(\varrho 0), \kappa'(\varrho 1)) \in \Delta$ for each $\varrho \in \{0,1\}^+$. Thus, κ' is a run of \mathcal{A} on ζ' . As $\Psi(\zeta'_{\text{cnt}}) = \Psi(\zeta_{\text{cnt}}) \cdot (i)$ and $\Psi(\zeta_{\text{cnt}}) \in C_i$, $\Psi(\zeta'_{\text{cnt}}) \in (C_i \cdot \{(i)\}) \subseteq C$. Finally, as $\inf(\kappa'(\pi)) = \inf(\kappa_{\zeta}(\pi))$ for each path π , we obtain that κ' is accepting. Hence, $\xi \in \mathcal{L}(\mathcal{A})$.

(2) Assume that $\zeta_{\text{cnt}} = \emptyset$. Similar argumentation as above.

 $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$: Let $\xi \in \mathcal{L}(\mathcal{A})$. Then there exists some $\zeta \in T_{\Xi}^{\omega}$ s.t. $(\zeta)_{\Sigma} = \xi$ and there is some accepting run κ_{ζ} of \mathcal{A} on ζ .

- (1) Assume $\zeta_{\text{cnt}} \neq \emptyset$. Then $\zeta(\varepsilon) = (\sigma, \vec{d} \cdot (i))$ for some $i \in [2]$, $\sigma \in \Sigma$, $\vec{d} \in D_i$, and, for each $\varrho \in \text{pos}(\zeta_{\text{cnt}}) \setminus \{\varepsilon\}$, $\zeta(\varrho) = (\sigma_{\varrho}, \vec{d}_{\varrho} \cdot (0))$ for some $\sigma_{\varrho} \in \Sigma$, $\vec{d}_{\varrho} \in D_i$. By construction of Δ .
- $(q_{I,i}, (\sigma, \vec{d}), \kappa_{\zeta}(0), \kappa_{\zeta}(1)) \in \Delta_{P,i},$
- $\kappa_{\zeta}(\varrho), (\sigma_{\varrho}, \vec{d}_{\varrho}), \kappa_{\zeta}(\varrho 0), \kappa_{\zeta}(\varrho 1)) \in \Delta_{P,i} \text{ for each } \varrho \in \text{pos}(\zeta_{\text{cnt}}) \setminus \{\varepsilon\}, \text{ and } \varepsilon \in \text{pos}(\zeta_{\text{cnt}}) \setminus \{\varepsilon\}, \varepsilon \in \mathbb{C}$
- $(\kappa_{\zeta}(\varrho'), \zeta(\varrho'), \kappa_{\zeta}(\varrho'0), \kappa_{\zeta}(\varrho'1)) \in \Delta_{\omega,i} \text{ for each } \varrho' \in \{0, 1\}^* \setminus \text{pos}(\zeta_{\text{cnt}}).$

It follows that the tree κ' with $\kappa'(\varepsilon) = q_{I,i}$ and $\kappa'(\varrho) = \kappa_{\zeta}$ for all $\varrho \in \{0,1\}^+$ is a run of \mathcal{A}_i on the tree ζ' obtained from ζ by cropping the last element of each $\vec{d} \in D_i \cdot \{(0), (i)\}$. Clearly, $(\zeta')_{\Sigma} = (\zeta)_{\Sigma} = \xi$. As $\Psi(\zeta_{\text{cnt}}) = \vec{w} \cdot (i)$ and $\Psi(\zeta_{\text{cnt}}) \in C_i \cdot \{(i)\}$, we obtain that $\Psi(\zeta'_{\text{cnt}}) = \vec{w} \in C_i$. Moreover, $\inf(\kappa'(\pi)) = \inf(\kappa_{\zeta}(\pi))$ for each path π . Thus, κ' is accepting and $\xi \in \mathcal{L}(\mathcal{A})$.

(2) Assume $\zeta_{\text{cnt}} = \emptyset$. Similar argumentation as above.

▶ Lemma 27. PMTA are closed under intersection.

Proof. Let, for each $i \in [2]$, $\mathcal{A}_i = (Q_i, \Xi_i, q_{I,i}, \Delta_i, \mathcal{F}_i, C_i)$ be a PMTA of dimension s_i with $Q_i = Q_{P,i} \cup Q_{\omega,i} \cup \{q_{I,i}\}$, $\Xi_i = (\Sigma \times D_i) \cup \Sigma$, and $\Delta_i = \Delta_{P,i} \cup \Delta_{\omega,i}$. W.l.o.g. we can assume that $(0)^{s_i} \in D_i$. Note that on a tree $\xi \in \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$, \mathcal{A}_1 and \mathcal{A}_2 might not test the same initial part of ξ arithmetically. In order to simulate this "superposition", we need to test a bigger initial part and let non-active counters "idle" using zero-increments $(0)^{s_i}$.

Thus, we define the Cartesian product $\mathcal{A} = (Q, \Xi, (q_{I,1}, q_{I,2}), \Delta, \mathcal{F}, C)$ where

- $Q_{\omega} = Q_{\omega,1} \times Q_{\omega,2}$, and $Q_P = (Q_1 \times Q_2) \setminus Q_{\omega}$,
- $\equiv \Xi = (\Sigma \times D_1 \cdot D_2) \cup \Sigma,$
- $\mathcal{F} = \{ F \subseteq Q_{\omega} \mid \operatorname{pr}_{1}(F) \in \mathcal{F}_{1} \text{ and } \operatorname{pr}_{2}(F) \in \mathcal{F}_{2} \},$
- $C = C_1 \cdot C_2,$

and $\Delta = \Delta_P \cup \Delta_\omega$ where

- Δ_P is the smallest set such that
 - for each $(q, (\sigma, \vec{d}), q_1, q_2) \in \Delta_{P,1}$ and $(q', (\sigma, \vec{d'}), q'_1, q'_2) \in \Delta_{P,2}$ we have $((q, q'), (\sigma, \vec{d} \cdot \vec{d'}), (q_1, q'_1), (q_2, q'_2)) \in \Delta_P$,
 - for each $(q, (\sigma, \vec{d}), q_1, q_2) \in \Delta_{P,1}$ and $(q', \sigma, q'_1, q'_2) \in \Delta_{\omega,2}$ we have $((q, q'), (\sigma, \vec{d} \cdot (0)^{s_2}), (q_1, q'_1), (q_2, q'_2)) \in \Delta_P$,

$$\Delta_{\omega} = \{((q, q'), \gamma, (q_1, q'_1), (q_2, q'_2)) \mid (q, \gamma, q_1, q_2) \in \Delta_{\omega, 1}, (q', \gamma, q'_1, q'_2) \in \Delta_{\omega, 2}\}.$$

 $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) \subseteq \mathcal{L}(\mathcal{A}) : \text{Let } \xi \in \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2). \text{ Then there are } \zeta_1 \in T_{\Xi_1}^{\omega}, \ \zeta_2 \in T_{\Xi_2}^{\omega}$ such that $(\zeta_1)_{\Sigma} = (\zeta_2)_{\Sigma} = \xi$ and for each $i \in [2]$ there exists an accepting run κ_i of A_i on ζ_i . Note that ζ_1 and ζ_2 might not have the same prefix enriched by Parikh vectors. Now consider the tree $\zeta \in T_{\Xi}^{\omega}$ with

$$\zeta(\varrho) = \begin{cases} (\sigma, \vec{d} \cdot \vec{d'}) & \text{if } \varrho \in \operatorname{pos}(\zeta_{1, \operatorname{cnt}}) \cap \operatorname{pos}(\zeta_{2, \operatorname{cnt}}), \zeta_{1}(\varrho) = (\sigma, \vec{d}), \zeta_{2}(\varrho) = (\sigma, \vec{d'}) \\ (\sigma, \vec{d} \cdot (0)^{s_{2}}) & \text{if } \varrho \in \operatorname{pos}(\zeta_{1, \operatorname{cnt}}) \setminus \operatorname{pos}(\zeta_{2, \operatorname{cnt}}), \zeta_{1}(\varrho) = (\sigma, \vec{d}), \zeta_{2}(\varrho) = \sigma \\ (\sigma, (0)^{s_{1}} \cdot \vec{d'}) & \text{if } \varrho \in \operatorname{pos}(\zeta_{2, \operatorname{cnt}}) \setminus \operatorname{pos}(\zeta_{1, \operatorname{cnt}}), \zeta_{1}(\varrho) = \sigma, \zeta_{2}(\varrho) = (\sigma, \vec{d'}) \\ \sigma & \text{if } \varrho \notin \operatorname{pos}(\zeta_{1, \operatorname{cnt}}) \cup \operatorname{pos}(\zeta_{2, \operatorname{cnt}}), \zeta_{1}(\varrho) = \zeta_{2}(\varrho) = \sigma \end{cases}$$

as well as the tree $\kappa \in T^{\omega}Q$ given by $\kappa(\varrho) = (\kappa_1(\varrho), \kappa_2(\varrho))$ for each $\varrho \in \{0,1\}^*$. As $\kappa_1(\varepsilon) = q_{I,1}$ and $\kappa_2(\varepsilon) = q_{I,2}$, $\kappa(\varepsilon) = (q_{I,1}, q_{I,2})$. Moreover, we obtain for each position ϱ • if $\varrho \in \text{pos}(\zeta_{1,\text{cnt}}) \cap \text{pos}(\zeta_{2,\text{cnt}})$, then $(\kappa_i(\varrho), \zeta_i(\varrho), \kappa_i(\varrho 0), \kappa_i(\varrho 1)) \in \Delta_{P,i}$ for each $i \in [2]$. By construction of Δ_P , $((\kappa_1(\varrho), \kappa_2(\varrho)), \zeta(\varrho), (\kappa_1(\varrho 0)\kappa_2(\varrho 0)), (\kappa_1(\varrho 1)\kappa_2(\varrho 1))) \in \Delta_{P,i}$, and for all other positions we can argue for the existence of the respective transition in a similar way. Hence, κ is a run of \mathcal{A} on ζ .

Furthermore, if $pos(\zeta_{1,cnt}) \cup pos(\zeta_{2,cnt}) \neq \emptyset$, we obtain by assuming $\zeta_{cnt}(j) = (\sigma_j, \vec{d_j} \cdot \vec{d_j}')$

$$\Psi(\zeta_{\rm cnt}) = \sum_{j \in {\rm pos}(\zeta_{\rm cnt})} \vec{d_j} \cdot \vec{d_j}' = (\sum_{j \in {\rm pos}(\zeta_{\rm cnt})} \vec{d_j}) \cdot (\sum_{j \in {\rm pos}(\zeta_{\rm cnt})} \vec{d_j}') = \Psi(\zeta_{1,{\rm cnt}}) \cdot \Psi(\zeta_{2,{\rm cnt}})$$

where the last equality holds since $pos(\zeta_{i,cnt}) \subseteq pos(\zeta_{cnt})$ and $\vec{d} + (0)^{s_i} = \vec{d}$ for each $i \in [2]$ and $\vec{d} \in \mathbb{N}^{s_i}$. As $\Psi(\zeta_{1,\text{cnt}}) \in C_1$ and $\Psi(\zeta_{2,\text{cnt}}) \in C_2$, we obtain $\Psi(\zeta_{1,\text{cnt}}) \cdot \Psi(\zeta_{2,\text{cnt}}) \in C_1 \cdot C_2$. Finally, let π be an arbitrary path. Then $\inf(\kappa_1(\pi)) = F_1$ and $\inf(\kappa_2(\pi)) = F_2$ for some

 $F_1 \in \mathcal{F}_1$ and $F_2 \in \mathcal{F}_2$. As $\operatorname{pr}_i(\kappa(\pi)) = \kappa_i(\pi)$ and $\operatorname{pr}_i(\inf(\kappa(\pi))) = \inf(\operatorname{pr}_i(\kappa(\pi)))$, we obtain that $\operatorname{pr}_i(\inf(\kappa(\pi))) = \inf(\kappa_i(\pi))$ for each $i \in [2]$. Thus, $\inf(\kappa(\pi)) \in \mathcal{F}$ and κ is accepting on ζ . As $(\zeta)_{\Sigma} = \xi$, $\xi \in \mathcal{L}(\mathcal{A})$.

 $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$: Similar. By construction of Δ , each ζ and accepting run $\kappa \in \operatorname{Run}_{\mathcal{A}}(\zeta)$ are of a particular form: ζ can be decomposed into

$$\hat{\zeta}[\zeta_1[\zeta_1^1,\ldots,\zeta_{m_1}^1],\ldots,\zeta_k[\zeta_1^k,\ldots,\zeta_{m_k}^k]]$$

where $\hat{\zeta}$ comprises all positions that are assigned by κ states from $Q_{P,1} \times Q_{P,2}$, each ζ_i consists completely of labels $(\sigma, \vec{d} \cdot (0)^{s_2})$ and the corresponding positions of κ assign states from $Q_{P,1} \times Q_{\omega,2}$ (or similar the other way around), and each ζ_v^u has labels from Σ and gets assigned states from Q_{ω} . From this, we easily can reconstruct two trees ζ'_1 and ζ'_2 with $(\zeta_1')_{\Sigma} = (\zeta_2')_{\Sigma} = (\zeta)_{\Sigma}$ and accepting runs $\kappa_1' \in \operatorname{Run}_{\mathcal{A}_1}(\zeta_1')$ and $\kappa_2' \in \operatorname{Run}_{\mathcal{A}_2}(\zeta_2')$.

▶ Lemma 28. PMTA are closed under relabeling.

Proof (sketch). Let Σ, Γ be alphabets, let $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$ be a PMTA with Q = $Q_P \cup Q_\omega$, $\Xi = (\Sigma \times D) \cup \Sigma$, and $\Delta = \Delta_P \cup \Delta_\omega$, and let $\tau \colon \Sigma \to \mathcal{P}(\Gamma)$ be a relabeling. We construct the WPT3 $\mathcal{A}' = (Q, \Xi', q_I, \Delta', \mathcal{F}, C)$ with $\Xi' = (\Gamma \times D) \cup \Gamma$ and $\Delta' = \Delta'_P \cup \Delta'_\omega$

B.2 Correspondence with ω MSO \bowtie BAPA

▶ **Proposition 15.** For any PMTA \mathcal{A} , there is an ω MSO \bowtie BAPA sentence φ with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$.

Proof. This proof adopts (and slightly simplifies) the idea in [24, Thm. 10] how to logically encode counter values and the semilinear set C to our setting and uses the well-known construction to define the behavior of a Muller tree automaton by means of an MSO formula.

Let Σ be an alphabet, let $D \subseteq \mathbb{N}^s$ be finite for some $s \geq 1$, and let $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$. W.l.o.g. assume $Q = \{1, \ldots, r\}$ for some $r \geq 1$. As usual, we use set variables X_1, \ldots, X_r to encode a run of \mathcal{A} on a tree ζ .

Let K be the maximal value occurring in vectors from D. Each position $i \in [s]$ of a vector $d = (d_1, \ldots, d_s) \in D$ carries a value $d_i \leq K$, in the following represented by the set variable $Z_i^{d_i}$. Thus, the presence of a variable $Z_i^{d_i}$ at a position x of ζ indicates that d_i has to be added to the ith counter to simulate the extended Parikh map $\Psi(\zeta)$.

Formally, let

$$\varphi := \exists Z_1^0 \dots Z_1^K \dots Z_s^K \exists X_1 \dots X_r \forall P. \varphi_{\text{part}_Q} \land \varphi_{\text{part}_Z} \land \varphi_{\text{run}} \land \varphi_{\text{acc}} \land \varphi_C$$

where

$$\begin{aligned} & = \varphi_{\mathrm{part}_{Q}} \coloneqq \forall x. \Big(\bigwedge_{p,q \in Q, p \neq q} \neg (X_{p}(x) \wedge X_{q}(x)) \Big) \\ & = \varphi_{\mathrm{part}_{Z}} \coloneqq \bigwedge_{1 \leq i \leq s} (\forall x. \bigwedge_{u,v \in \{0, \dots, K\}, u \neq v} \neg (Z_{i}^{u}(x) \wedge Z_{i}^{v}(x)) \Big) \\ & = \varphi_{\mathrm{run}} \coloneqq \forall x. \Big((\varphi_{\mathrm{root}}(x) \Rightarrow X_{q_{I}}(x)) \wedge (\varphi_{\mathrm{trans}_{P}} \vee \varphi_{\mathrm{trans}_{\omega}}) \Big) \\ & = \varphi_{\mathrm{trans}_{P}} \coloneqq \bigvee_{\substack{(q,(\sigma,\vec{d}),q_{0},q_{1}) \in \Delta_{P} \\ (q,\sigma,\vec{d}),q_{0},q_{1}) \in \Delta_{P}}} (X_{q}(x) \wedge \mathsf{P}_{\sigma}(x) \wedge X_{q_{0}}(x0) \wedge X_{q_{1}}(x1) \wedge \bigwedge_{\substack{1 \leq i \leq s \\ 0 \leq d \leq K}} \neg Z_{i}^{d}(x)) \\ & = \varphi_{\mathrm{acc}} \coloneqq \varphi_{\mathrm{path}}(P) \Rightarrow \bigvee_{F \in \mathcal{F}} (\bigwedge_{q \in F} \varphi_{\mathrm{inf}}^{\cap}(X_{q},P) \wedge \bigwedge_{q \notin F} \neg \varphi_{\mathrm{inf}}^{\cap}(X_{q},P)) \end{aligned}$$

and φ_C encodes the Parikh condition as follows. By definition of C, there exist some $k, \ell \geq 1$ and linear polynomials $p_1, \ldots, p_k \colon \mathbb{N}^\ell \to \mathbb{N}^s$ such that C is the union of the images of p_1, \ldots, p_k . Assume $p_g(m_1, \ldots, m_l) = \vec{v}_0 + m_1 \vec{v}_1 + \ldots + m_l \vec{v}_l$ with $\vec{v}_j = (v_{j,1}, \ldots, v_{j,s})$. Then, using number variables m_1, \ldots, m_l , we encode p_g by

$$\varphi_{p_g} \coloneqq \exists m_1 \ldots \exists m_l. \bigwedge_{i=1}^s \Bigl(\textstyle\sum_{d=0}^K \mathrm{d} \# Z_i^d =_{\mathrm{fin}} \mathrm{v}_{0,i} + \mathrm{v}_{1,i} m_1 + \ldots + \mathrm{v}_{l,i} m_l \Bigr),$$

and let $\varphi_C := \left(\bigwedge_{i=1}^s \bigwedge_{d=0}^K \forall x. \neg Z_i^d(x) \right) \vee \varphi_{p_1} \vee \ldots \vee \varphi_{p_k}$. This finishes the construction of the overall sentence specifying $\mathcal{L}(\mathcal{A})$, which can be easily shown to be in ω MSO \bowtie BAPA.

▶ **Lemma 16.** For each Parikh constraint χ there is a PMTA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\chi)$.

Proof. We assume w.l.o.g. that χ is of the form $\mathbf{c} + \sum_{i \in [r]} \mathbf{c_i} \, \sharp X_i \leq_{\text{fin}} \mathbf{d} + \sum_{j \in [k]} \mathbf{d_j} \, \sharp Y_j$ where all X_i are pairwise distinct, and all Y_j likewise. Given a subset $\theta \subseteq \text{free}(\chi)$, we denote by $|\theta|_X$ the number $\sum_{X_i \in \theta} c_i$ (and similar for $|\theta|_Y$). Then, assuming $\xi(\varrho) = (\sigma_{\varrho}^{\xi}, \theta_{\varrho}^{\xi})$, we get

$$\mathcal{L}(\chi) = \{\xi \in T^{\omega}_{\Sigma_{\mathrm{free}(\chi)}} \mid c + \sum_{\varrho \in \mathrm{pos}(\xi)} |\theta^{\xi}_{\varrho}|_{X} \leq d + \sum_{\varrho \in \mathrm{pos}(\xi)} |\theta^{\xi}_{\varrho}|_{Y} < \infty \}$$

and, by the condition $<\infty$, both sums have finite support. Thus, for each $\xi \in \mathcal{L}(\chi)$, there is a non-empty, finite, prefix-closed $Z \subset \{0,1\}^*$ that comprises all positions holding variable

assignments and for which $\xi|_Z$ satisfies χ ; if Z is a minimal such set, we denote $\xi|_Z$ in the following as ξ_{χ} . This can be tested by a PMTA as follows.

Let $D = \{(i,j) \mid 0 \leq i \leq \sum_{l \in [r]} c_l, 0 \leq j \leq \sum_{l \in [k]} d_l \}$. We construct the PMTA $\mathcal{A} = (\{q_I,q_f\},\Xi,q_I,\Delta,\{\{q_f\}\},C)$ with $\Xi = (\Sigma_{\mathrm{free}(\chi)} \times D) \cup \Sigma_{\mathrm{free}(\chi)}, \Delta = \Delta_P \cup \Delta_\omega$ where $\Delta_P = \{(q_I,((\sigma,\theta),(|\theta|_X,|\theta|_Y)),q,q) \mid (\sigma,\theta) \in \Sigma_{\mathrm{free}(\chi)},q \in \{q_I,q_f\}\}$ and $\Delta_\omega = \{(q_f,(\sigma,\emptyset),q_f,q_f) \mid \sigma \in \Sigma\}$ and $C = \{(z_1,z_2) \mid c+z_1 \leq_{\mathrm{fin}} d+z_2\}$.

 $\mathcal{L}(\chi) \subseteq \mathcal{L}(\mathcal{A})$: Let $\xi \in \mathcal{L}(\chi)$. We prove that there exists a tree $\zeta \in T_{\Xi}^{\omega}$ with $(\zeta)_{\Sigma_{\text{free}(\chi)}} = \xi$ and an accepting run κ of \mathcal{A} on ζ . Let ζ be such that, for each position ϱ ,

$$\zeta(\varrho) = \begin{cases} \left((\sigma, \theta), (|\theta|_X, |\theta|_Y) \right) & \text{if } \varrho \in \text{pos}\{\xi_\chi\}, \xi(\varrho) = (\sigma, \theta) \\ \xi(\varrho) & \text{otherwise} \end{cases}.$$

Clearly, $(\zeta)_{\Sigma_{\text{free}(\chi)}} = \xi$ and $pos(\zeta_{\text{cnt}}) = pos(\xi_{\chi})$. Moreover, define $\kappa \in T^{\omega}_{\{q_{I},q_{I}\}}$ such that

$$\kappa(\varrho) = \begin{cases} q_I & \text{if } \varrho \in \text{pos}\{\xi_\chi\} \\ q_f & \text{otherwise} \end{cases}$$

for each position ϱ . Due to the construction of Δ , κ is compatible with the transitions of \mathcal{A} in connection with ζ . As $\varepsilon \in \text{pos}\{\xi_\chi\}$ and, thus, $\kappa(\varepsilon) = q_I$, κ is a run of \mathcal{A} on ζ .

It remains to argue that κ is accepting. We can calculate, by assuming $\zeta(\varrho) = (\sigma_{\varrho}, \theta_{\varrho})$,

As $\operatorname{pos}(\zeta_{\operatorname{cnt}}) = \operatorname{pos}(\xi_X)$ and we know from ξ_X that $c + \sum_{\varrho \in \operatorname{pos}(\xi)} |\theta_\varrho|_X \leq d + \sum_{\varrho \in \operatorname{pos}(\xi)} |\theta_\varrho|_Y$, we obtain $\Psi(\zeta_{\operatorname{cnt}}) \in C$. Finally, as ξ_X is finite, we obtain for each path π that $\inf(\kappa(\pi)) = \{q_f\}$. Thus, κ is accepting and $\xi \in \mathcal{L}(\mathcal{A})$.

 $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\psi)$: Let $\xi \in \mathcal{L}(\mathcal{A})$. As \mathcal{A} recognizes all assignments of variables with transitions from Δ_P , it is clear that each variable is counted finitely often in ξ . Moreover, Δ_P only contains transitions where the counter values fit to the variable occurrences of each label in ξ . Thus, as $\Psi(\zeta_{\text{cnt}}) \in C$ for each ζ with $(\zeta)_{\Sigma_{\text{free}(\chi)}} = \xi$ and $\text{Run}_{\mathcal{A}}(\zeta) \neq \emptyset$, we obtain that $c + \sum_{\varrho \in \text{pos}(\xi)} |\theta_{\varrho}|_X \leq d + \sum_{\varrho \in \text{pos}(\xi)} |\theta_{\varrho}|_Y$ also holds for ξ_X . Thus, $\xi \in \mathcal{L}(\psi)$.

▶ Proposition 17. For every ω MSO \bowtie BAPA formula φ there is a PMTA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi)$.

Proof. Let φ be an ω MSO \bowtie BAPA formula. By Theorem 10, we can assume that φ is in tree normal form, i.e., of the form $\exists X_1 \cdots \exists X_n . \bigvee_{i=1}^k \left(\varphi_i \wedge \bigwedge_{j=1}^{l_i} \chi_{i,j} \right)$, where φ_i are plain MSO sentences and the $\chi_{i,j}$ are (unnegated) Parikh constraints. Then we proceed by induction on the (now restricted) structure of φ .

For the induction base, we consider the following cases: If φ is an MSO-formula, then, by [32], $\mathcal{L}(\varphi)$ can be recognized by an MTA. As MTA are an instance of PMTA, we obtain that $\mathcal{L}(\varphi)$ is PMTA-recognizable. Now let φ be a Parikh constraint. By Lemma 16 we obtain that $\mathcal{L}(\varphi)$ is PMTA-recognizable.

Now assume that φ is of the form $\varphi_1 \wedge \varphi_2$. Then $\mathcal{L}(\varphi) = \mathcal{L}_{free(\varphi)}(\varphi_1) \cap \mathcal{L}_{free(\varphi)}(\varphi_2)$ and, by induction hypothesis, $\mathcal{L}(\varphi_1)$ and $\mathcal{L}(\varphi_1)$ both are PMTA-recognizable. But then also $\mathcal{L}_{free(\varphi)}(\varphi_1)$ and $\mathcal{L}_{free(\varphi)}(\varphi_1)$ are PMTA-recognizable¹², respectively. Finally,

 $^{^{11}}$ Note that by Lemma 11 we can use this description for a semilinear set.

¹² It can be shown by a standard construction involving a relabeling that, for each $\mathcal{V} \supseteq \text{free}(\varphi)$, $\mathcal{L}(\varphi)$ is recognizable iff $\mathcal{L}_{\mathcal{V}}(\varphi)$ is recognizable.

by Proposition 14, $\mathcal{L}_{free(\varphi)}(\varphi_1) \cap \mathcal{L}_{free(\varphi)}(\varphi_2)$ is PMTA-recognizable. With a similar argumentation and with help of Proposition 14 we obtain that $\varphi_1 \vee \varphi_2$ is PMTA-recognizable.

Now assume that φ is of the form $\exists X.\varphi_1$. In the usual way, we define the relabeling $\tau \colon \Sigma_{\operatorname{free}(\varphi_1) \cup \{X\}} \to \mathcal{P}(\Sigma_{\operatorname{free}(\varphi)})$ given by $\tau(\sigma, \theta) = \{(\sigma, \theta \cap \operatorname{free}(\varphi))\}$ and observe that $\mathcal{L}(\varphi) = \tau(\mathcal{L}_{\operatorname{free}(\varphi_1) \cup \{X\}}(\varphi_1))$. By induction hypothesis, using the same argumentation as above, and by Proposition 14, we obtain that $\exists X.\varphi_1$ is PMTA-recognizable.

B.3 Emptiness

▶ **Proposition 19** (based on [22, 13]). Given a PTA \mathcal{A} , deciding $\mathcal{L}(\mathcal{A}) \neq \emptyset$ is NP-complete.

Proof. Let $\mathcal{A} = (Q, \Sigma \times D, \delta, q_I, F, C)$ be a PTA of dimension s where all numbers are encoded in binary. W.l.o.g. assume that $D = \{d_1, \ldots, d_n\}$ with $d_i \in \mathbb{N}^s$. Moreover, let $\mathcal{A}' = (Q, \Sigma \times D, \delta, q_I, F)$ be a tree automaton¹³ over $\Sigma \times D$. It is easy to observe that $\mathcal{L}(\mathcal{A}) \neq \emptyset$ iff $\Psi(\mathcal{L}(\mathcal{A}')) \cap C \neq \emptyset$. Our aim is to show that $\Psi(\mathcal{L}(\mathcal{A}))$ can be encoded by a Presburger formula.

Following and slightly adjusting [22, proof of Lm. 8.15], in a first step we construct a context-free grammar that generates all words obtained by "flattening" the trees in $\mathcal{L}(\mathcal{A}')$ and where the symbols from $\Sigma \times D$ are projected to their D-component. We let $G' = (Q, D, q_i, R)$ where R consists of the following rules:

- if $(q, (\sigma, d), q_1, q_2) \in \delta$, then $q \to q_1 dq_2 \in R$, and
- if $q \in F$, then $q \to \varepsilon \in R$.

We observe that $\Psi(\mathcal{L}(\mathcal{A}')) = \Psi(\mathcal{L}(G'))$ (where we sum on the right-hand side over string positions and assume that $(d)_D = d$).

Now we proceed as in [13, Proposition III.2.]: as the result used, to construct a Presburger formula for the language of an automaton, was stated for context-free grammars, it works in our more general setting as well.

By [35, Theorem 4] (which had originally a small mistake fixed in [20]) we can construct in linear time an existential Presburger formula $\varphi_{G'}^P(\varkappa_1,\ldots,\varkappa_n)$ encoding the Parikh image (counts of occurrences of each symbol) of $\mathcal{L}(G')$. Also due to [35, proof of Theorem 4], one can obtain from $\varphi_{G'}^P(\varkappa_1,\ldots,\varkappa_n)$ in polynomial time an existential Presburger formula $\varphi_{G'}(y_1,\ldots,y_s)$ representing $\Psi(\mathcal{L}(G'))$. Moreover, by [35, Lemma II.1], an existential Presburger formula $\varphi_C(y_1,\ldots,y_s)$ describing C can be built in linear time. Finally, satisfiability of the Presburger sentence $\exists y_1,\ldots,y_s.\varphi_{G'}(y_1,\ldots,y_s) \land \varphi_C(y_1,\ldots,y_s)$ over \mathbb{N} can be tested in \mathbb{NP} [34]. \mathbb{NP} -hardness follows directly from the word case.

▶ Theorem 20. Given a PMTA A, deciding $\mathcal{L}(A) \neq \emptyset$ is PSPACE-complete.

Proof. Let $\mathcal{A} = (Q, \Xi, q_I, \Delta, \mathcal{F}, C)$ be a PMTA with $Q = Q_P \cup Q_\omega$, $\Xi = (\Sigma \times D) \cup \Sigma$, and $\Delta = \Delta_P \cup \Delta_\omega$. As each tree in the language of \mathcal{A} can be decomposed into some finite tree over $\Sigma \times D$, on which the Parikh constraint is tested, and a number of infinite trees from T_{Σ} , we can reduce PMTA non-emptiness testing to deciding non-emptiness of Muller tree automata and Parikh tree automata. To this end, consider

- the Muller tree automaton $\mathcal{A}_{q_I} = (Q_\omega \cup \{q_I\}, \Sigma, q_I, \Delta_\omega, \mathcal{F}),$
- the Muller tree automata $\mathcal{A}_q = (Q_\omega, \Sigma, q, \Delta_\omega, \mathcal{F})$ for all $q \in Q_\omega$, and

¹³ In our setting, a tree automaton \mathcal{A} over $\Sigma \times D$ is defined to be a PTA with $C = \mathbb{N}^s$ which simplifies $\mathcal{L}(\mathcal{A})$ to $\{\xi \in T_{\Sigma \times D} \mid \operatorname{Run}_{\mathcal{A}}(\xi) \neq \emptyset\}$.

¹⁴ This was not explicitly stated in [35, proof of Theorem 4], however, their proof is based on this assumption.

■ the Parikh tree automaton $\mathcal{A}_P = (Q, \Sigma \times D, q_I, \Delta_P, F_P, C)$ with $F_P = \{q \in Q_\omega \mid \mathcal{L}(\mathcal{A}_q) \neq \emptyset\}.$

As deciding $\mathcal{L}(\mathcal{A}_q) \neq \emptyset$ is PSPACE-complete [32, 21], \mathcal{A}_P can be constructed in PSPACE and, by Proposition 19, its non-emptiness can be decided in NP. Thus, the overall PSPACE complexity follows from the observation that $\mathcal{L}(\mathcal{A}) \neq \emptyset$ iff $\mathcal{L}(\mathcal{A}_{q_I}) \neq \emptyset$ or $\mathcal{L}(\mathcal{A}_P) \neq \emptyset$, shown next.

 \Rightarrow : Assume that $\mathcal{L}(\mathcal{A}) \neq \emptyset$. Then there exist some $\xi \in T_{\Sigma}^{\omega}$, $\zeta \in T_{\Xi}^{\omega}$ with $(\zeta)_{\Sigma} = \xi$, and $\kappa \in \operatorname{Run}_{\mathcal{A}}(\zeta)$. We distinguish the following two cases:

Assume $(\zeta)_{\Sigma} = \zeta$. Then $\kappa(u) \in Q_{\omega}$ for each $u \in \text{pos}(\zeta) \setminus \{\varepsilon\}$ and, hence, ζ is recognized by \mathcal{A} only with transitions from Δ_{ω} . But then, $\kappa \in \text{Run}_{\mathcal{A}_{q_I}}(\zeta)$ and, thus, $\mathcal{L}(\mathcal{A}_{q_I}) \neq \emptyset$.

Now assume $(\zeta)_{\Sigma} \neq \zeta$. Then ζ is of the form $\zeta_{\text{cnt}}[\zeta_1, \ldots, \zeta_m]$ for some $m \in \mathbb{N}$ and, similarly, κ can be decomposed into $\bar{\kappa}[\kappa_1, \ldots, \kappa_m]$ with $\operatorname{pos}(\bar{\kappa}) = \operatorname{pos}(\zeta_{\operatorname{cnt}})$, $\bar{\kappa}$ is labeled with states from $Q_P \cup \{q_I\}$, and κ_i is labeled with states from Q_{ω} for each $i \in [m]$. As, for each $i \in [m]$ and each path π reaching κ_i , we have that $\inf(\kappa(\pi)) \in \mathcal{F}$, also $\inf(\kappa_i(\pi \setminus \bar{\kappa})) \in \mathcal{F}$ with $\pi \setminus \bar{\kappa}$ being the path obtained by cutting the initial part going through $\bar{\kappa}$ from π . Thus, $\kappa_i \in \operatorname{Run}_{A_{\kappa_i(\varepsilon)}}(\zeta_i)$ and $\kappa_i(\varepsilon) \in F_P$. Moreover, we obtain by construction of A_P that $\kappa' = \bar{\kappa}[\kappa_1(\varepsilon), \ldots, \kappa_m(\varepsilon)]$ is a run of A_P on $\zeta_{\operatorname{cnt}}$. Finally, as $\Psi(\zeta_{\operatorname{cnt}}) \in C$, κ' is accepting and, thus, $(\zeta_{\operatorname{cnt}})_{\Sigma} \in \mathcal{L}(A_P)$. Hence, $\mathcal{L}(A_P) \neq \emptyset$.

 \Leftarrow : First assume that $\mathcal{L}(\mathcal{A}_{q_I}) \neq \emptyset$. Then there exists some $\xi \in T^{\omega}_{\Sigma}$ and $\kappa \in \operatorname{Run}_{\mathcal{A}_{q_I}}(\xi)$. But then, by construction of \mathcal{A}_{q_I} , we also have $\kappa \in \operatorname{Run}_{\mathcal{A}}(\xi)$. Thus, $\mathcal{L}(\mathcal{A}) \neq \emptyset$.

Now assume $\mathcal{L}(\mathcal{A}_P) \neq \emptyset$. Then there is some $\xi \in T_{\Sigma}$, $\zeta \in T_{\Sigma \times D}$ with $(\zeta)_{\Sigma} = \xi$, and run $\kappa \in \operatorname{Run}_{\mathcal{A}_P}(\zeta)$. By construction of \mathcal{A}_P we can decompose κ into $\bar{\kappa}[q_1, \ldots, q_m]$ for some $m \in \mathbb{N}$ such that $\operatorname{pos}(\bar{\kappa}) = \operatorname{pos}(\zeta)$, $\bar{\kappa}$ is labeled with states from $Q_P \cup \{q_I\}$, and $q_1, \ldots, q_m \in Q_{\omega}$. As κ is accepting, $q_1, \ldots, q_m \in F_P$ and, hence, $\mathcal{L}(\mathcal{A}_{q_i}) \neq \emptyset$ for each $i \in [m]$. Thus, there are trees $\xi_1, \ldots, \xi_m \in T_{\Sigma}^{\omega}$ and runs $\kappa_i \in \operatorname{Run}_{\mathcal{A}_{q_i}}(\xi_i)$ starting in q_i . But then, $\bar{\kappa}[\kappa_1, \ldots, \kappa_m]$ is also a run of \mathcal{A} on $\zeta' = \zeta[\xi_1, \ldots, \xi_m]$. Obviously, $\zeta'_{\operatorname{cnt}} = \zeta$ and, thus, $\Psi(\zeta'_{\operatorname{cnt}}) \in C$. Finally, as $\inf(\kappa_i(\pi)) \in \mathcal{F}$ for each path π and this transfers to κ , we obtain that $\kappa \in \operatorname{Run}_{\mathcal{A}}(\zeta')$. Hence, $\xi[\xi_1, \ldots, \xi_m] \in \mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A}) \neq \emptyset$.

C Details on MSO-Interpretations

▶ Lemma 23. Let \mathcal{I} be an MSO-interpretation. Then, for every ω MSO \bowtie BAPA sentence φ over \mathbb{S} one can compute an ω MSO \bowtie BAPA sentence $\varphi^{\mathcal{I}}$ over \mathbb{S}' satisfying $\mathfrak{A} \models \varphi^{\mathcal{I}} \iff \mathfrak{B} \models \varphi$ for every \mathbb{S}' -structure \mathfrak{A} and \mathbb{S} -structure \mathfrak{B} with $\mathcal{I}(\mathfrak{A}) \cong \mathfrak{B}$.

Proof. The proof uses a variant of the well-known construction for plain MSO. W.l.o.g. we assume that the ω MSOMBAPA sentence φ is in GNF (cf. Definition 7), i.e. of the shape

$$\exists X_1.\cdots \exists X_n. \bigvee_{i=1}^k (\varphi_i \wedge \bigwedge_{i=1}^{l_i} \chi_{i,i}),$$

where the φ_i are CMSO formulae, whereas the $\chi_{i,j}$ are (unnegated) Parikh constraints. We then define $\varphi^{\mathcal{I}}$ to be the ω MSO \bowtie BAPA formula

$$\bigwedge_{\mathbf{a} \in \mathbb{S}_{\mathbf{C}}} \big(\forall z. \varphi_{\mathbf{a}}(z) \Leftrightarrow z = \mathbf{a} \big) \wedge \exists Z_{\mathrm{Dom}}. \Big(\big(\forall z. Z_{\mathrm{Dom}}(z) \Leftrightarrow \varphi_{\mathrm{Dom}}(z) \big) \wedge \varphi' \Big),$$

with
$$\varphi' := \exists X_1 \subseteq Z_{\text{Dom}} \cdots \exists X_n \subseteq Z_{\text{Dom}} . \bigvee_{i=1}^k \left(\varphi_i' \wedge \bigwedge_{i=1}^{l_i} \chi_{i,j} \right)$$

where φ'_i is obtained from φ_i by (inside out) replacing

```
all Q(\iota_1, \ldots, \iota_m) by \varphi_Q(\iota_1, \ldots, \iota_m)
all \forall x.\psi by \forall x \in Z_{\text{Dom}}.\psi as well as all \exists x.\psi by \exists x \in Z_{\text{Dom}}.\psi and
all \forall X.\psi by \forall X \subseteq Z_{\text{Dom}}.\psi as well as all \exists X.\psi by \exists X \subseteq Z_{\text{Dom}}.\psi
```

While $\varphi^{\mathcal{I}}$ is not in GNF, it is easy to check that it is indeed in ω MSO \bowtie BAPA (as all set variables occurring in all $\chi_{i,j}$ are assertive). Moreover, an easy induction shows $\mathfrak{A} \models \varphi^{\mathcal{I}} \iff \mathfrak{B} \models \varphi$ (assuming such an appropriate \mathfrak{B} exists).

We note that this proof gives no garantees for $\varphi^{\mathcal{I}}$ in case $\mathcal{I}(\mathfrak{A})$ is undefined. We also want to point out that in the literature, there are subtle differences as to how MSO-interpretations are defined. Sometimes, an MSO-interpretation is also stipulated to feature an extra MSO formula $\varphi_{=}(x,y)$ with two free variables, which imposes an equality predicate (and thus a factorization on the elements of \mathfrak{A} , whose equivalence classes become the elements of \mathfrak{B}). Under such circumstances, however, finiteness and modulo atoms cannot be faithfully translated any more. This justifies our more conservative choice of MSO-interpretation.

▶ **Theorem 24.** Let \mathcal{S} be a class of structures over which satisfiability of ω MSO \rtimes BAPA is decidable, let \mathcal{I} be an MSO-interpretation. Then satisfiability of ω MSO \rtimes BAPA over $\mathcal{I}(\mathcal{S})$ is decidable as well. In particular, ω MSO \rtimes BAPA is decidable over any tree-interpretable class.

Proof. Given an MSO-interpretation \mathcal{I} , we make use of the auxiliary formula

$$\varphi_{\mathcal{I}}^{\mathrm{def}} := \exists z. \varphi_{\mathrm{Dom}}(z) \wedge \bigwedge_{\mathtt{a} \in \mathbb{S}_{\mathbf{C}}} \left(\exists z. \varphi_{\mathtt{a}}(z) \wedge \forall z' \forall z''. \varphi_{\mathtt{a}}(z') \wedge \varphi_{\mathtt{a}}(z'') \Rightarrow z' = z'' \right).$$

It is easy to see that $\varphi_{\mathcal{I}}^{\text{def}}$ is satisfied by some \mathbb{S}' -structure \mathfrak{A} exactly if $\mathcal{I}(\mathfrak{A})$ is defined. Also, $\varphi_{\mathcal{I}}^{\text{def}}$ is in plain MSO and hence in ω MSO \bowtie BAPA.

Let now φ be an ω MSO \bowtie BAPA formula whose satisfiability over $\mathcal{I}(\mathcal{S})$ we want to check. We then obtain, with the help of Lemma 23, that $\mathcal{I}(\mathcal{S})$ contains a model \mathfrak{B} of φ if and only if there is an $\mathfrak{A} \in \mathcal{S}$ with $\mathfrak{B} = \mathcal{I}(\mathfrak{A})$ and $\mathfrak{A} \models \varphi^{\mathcal{I}}$. This, in turn, is equivalent to the existence of some $\mathfrak{A} \in \mathcal{S}$ with $\mathfrak{A} \models \varphi^{\mathrm{def}}_{\mathcal{I}} \wedge \varphi^{\mathcal{I}}$. Therefore, satisfiability of φ over $\mathcal{I}(\mathcal{S})$ coincides with satisfiability of $\varphi^{\mathrm{def}}_{\mathcal{I}} \wedge \varphi^{\mathcal{I}}$ over \mathcal{S} . As $\varphi^{\mathrm{def}}_{\mathcal{I}} \wedge \varphi^{\mathcal{I}}$ is in ω MSO \bowtie BAPA, this is a decidable problem by assumption, which concludes the proof of our claim.

The particular case for tree-interpretable classes of structures is now a straightforward consequence of Corollary 21.

 $^{^{15}}$ We recall that we assume a model theory that requires nonempty domains, but note that this choice does not substantially affect our results.