

Tecnologias de Reforço da Privacidade

Anonimização de Datasets

- com Privacidade, Utilidade e Análise de Risco -

Maria Sousa Carreira up202408787 Matilde Isabel da Silva Simões up202108782

Conteúdo

1	\mathbf{Sele}	eção, Importação e Objetivo do $Dataset$	2
	1.1	Dataset Escolhido	2
		1.1.1 Distribuição do <i>Dataset</i>	2
		1.1.2 Sanitização	3
	1.2	Objetivo de Divulgação do Dataset	3
	1.3	Requisitos de Privacidade	3
		1.3.1 Limite de Supressão	4
		1.3.2 Coding Model	4
		1.3.3 Peso de Atributos e Métrica de Utilidade	4
		1.3.4 Modelos Selecionados	4
2	Car	racterização do <i>Dataset</i> e <i>Coding Models</i>	4
	2.1	Caracterização de Atributos	4
	2.2	Riscos de Privacidade do Dataset	6
	2.3	Distribuição de Atributos	7
	2.4	Criação de Hierarquias	8
	2.5	Peso de Atributos	9
3	Mo	delos de Privacidade: Utilidade, Privacidade e Avaliação de Risco	9
	3.1	k -Anonimity e ℓ -Diversity	9
	9	3.1.1 Escolha de k (para $\ell=2$)	9
		, ,-	11
			12
	3.2		13
			13
			14
			15
4	Ane	exos	17
_	4.1	Distribuição do <i>Dataset</i>	
			10

1 Seleção, Importação e Objetivo do *Dataset*

1.1 Dataset Escolhido

Para realizar este projeto, foi escolhido o dataset **Predicting Churn for Bank Customers**, disponível no Kaggle.

Este dataset contém dados pessoais e financeiros sobre clientes de um banco, portanto torna-se apropriado para aplicar técnicas de anonimização devido à natureza das informações presentes e à necessidade de proteção de dados sensíveis.

O dataset possui as seguintes características:

- Número de registos: 10.000 clientes.
- Número de atributos: 14.
- Atributos detalhados:
 - RowNumber: Número sequencial da linha.
 - CustomerId: Identificador único do cliente.
 - Surname: Apelido do cliente.
 - CreditScore: "Pontuação financeira" do cliente.
 - Geography: País de origem do cliente.
 - Gender: Género do cliente.
 - Age: Idade do cliente (em anos).
 - Tenure: Tempo de ligação do cliente com o banco (em anos).
 - Balance: Saldo bancário do cliente (em euros).
 - NumOfProducts: Número de produtos do banco que o cliente possui.
 - HasCrCard: Indica se o cliente tem cartão de crédito (1 tem cartão de crédito; 0 não tem cartão de crédito).
 - IsActiveMember: Indica se o cliente é um membro ativo (1 é um membro ativo; 0
 não é um membro ativo).
 - EstimatedSalary: Salário anual estimado do cliente (em euros).
 - Exited: Indica se o cliente abandonou o banco (1 abandonou o banco; 0 não abandonou o banco).

1.1.1 Distribuição do Dataset

A distribuição do *dataset* foi realizada em Python e pode ser consultada na Sec.4. O objetivo deste passo foi analisar a distribuição geral do *dataset* para verificar se os dados seguiam padrões esperados e se iam ao encontro dos requisitos de uma *base de dados* realista.

- CreditScore: Segue uma distribuição aproximadamente normal entre 400 e 850.
- Geography: A maioria dos clientes vive na França, seguida pela Espanha e pela Alemanha.
- Gender: A variável está balanceada entre homens e mulheres.
- Age: Apresenta uma distribuição assimétrica, com maior concentração de clientes entre os 25 e 50 anos, aproximadamente.

- Tenure: Está distribuído de forma uniforme, sem grandes picos.
- Balance: Um número significativo de clientes tem saldo nulo, enquanto os restantes possuem valores distribuídos.
- NumOfProducts: A maioria dos clientes possui 1 ou 2 produtos, enquanto valores mais elevados, como 3 ou 4 produtos, são menos frequentes.
- EstimatedSalary: É uniforme, indicando ampla diversidade entre os clientes.

1.1.2 Sanitização

A análise da conformidade e da qualidade dos dados foi, também, realizada em Python e pode ser consultada na Sec.4. Desta forma, verificamos que o dataset original não contém valores em falta e que todos os valores estão em conformidade com o formato esperado. Também foi verificado que não existem registos duplicados, logo cada cliente só aparece uma vez no dataset. Assim, concluímos que o dataset está pronto para ser processado no ARX sem ser necessário realizar sanitização.

1.2 Objetivo de Divulgação do *Dataset*

O objetivo definido para divulgar o *dataset* anonimizado é permitir a análise da relação entre a faixa etária e o salário, sem comprometer a privacidade dos clientes. Na prática, deseja-se possibilitar estudos sobre como a idade influencia a média salarial dos clientes, garantindo que possíveis atacantes não consigam reidentificar indivíduos específicos.

A análise estatística inicial dos dados, também, foi realizada em Python e pode ser consultada na Sec.4. A Tab.1 apresenta os resultados obtidos antes da anonimização:

Faixa Etária	Média do Salário
18 - 25	102,093.90
25 - 30	100,637.99
30 - 35	$99,\!171.20$
35 - 40	$99,\!540.70$
40 - 45	$101,\!615.20$
45 - 50	102,793.88
50 - 55	99,767.00
55 - 93	96,209.07

Tabela 1: Média dos salários por faixa etária.

Os intervalos escolhidos têm em conta a distribuição de Age e correspondem aos intervalos iniciais escolhidos para a hierarquia deste atributo, na Sec.2.4.

1.3 Requisitos de Privacidade

Nesta secção definem-se os requisitos de privacidade necessários para **garantir a proteção** dos dados dos clientes enquanto se **mantém a utilidade** do *dataset*.

1.3.1 Limite de Supressão

Inicialmente, decidiu-se que será aplicado um **limite de supressão** de aproximadamente 3% dos registos. Este valor foi definido com base na necessidade de equilibrar a proteção da privacidade com a preservação da utilidade dos dados, uma vez que a supressão atua como uma **medida eficaz** para **eliminar** *outliers* ou **combinações de atributos** que possam expor os indivíduos. Na Sec.3, durante a anonimização, ir-se-á tentar cumprir esse limite e perceber se o mesmo é razoável.

1.3.2 Coding Model

Adicionalmente, é importante ter em conta o *trade-off* entre generalização e supressão ao aplicar técnicas de anonimização. A **generalização** permite **preservar uma maior quantidade de informação útil** nos dados. No entanto, essa técnica pode **não ser suficiente** para proteger registos que continuam a ser identificáveis mesmo após a generalização. Nestes casos, a **supressão torna-se necessária** para garantir a privacidade.

Dá-se inicialmente preferência à generalização, por preservar melhor a utilidade dos dados, recorrendo-se à supressão apenas quando esta não é suficiente para atingir os requisitos de privacidade definidos.

Figura 1: Trade-off entre generalização e supressão.

1.3.3 Peso de Atributos e Métrica de Utilidade

A métrica de utilidade escolhida para avaliar a qualidade da informação após anonimazação é a **Loss**.

Para além disso, durante o processo de anonimização, será necessário atribuir diferentes pesos aos atributos. A **idade**, em particular, terá de receber um **peso mais elevado**, dado que está diretamente relacionada com o **objetivo principal** da divulgação do *dataset* e pretende-se que perda desta informação (*loss*) seja minimizada.

1.3.4 Modelos Selecionados

Os modelos a utilizar consistem em: **k-Anonymity**, ℓ -**Diversity** e **t-Closeness**. Os **parâmetros** de cada um **serão ajustados** conforme o necessário, mais uma vez, de modo a garantir equilíbrio entre proteção da privacidade e preservação da estrutura dos dados.

2 Caracterização do Dataset e Coding Models

2.1 Caracterização de Atributos

De modo a caracterizar cada um dos 14 atributos, inicialmente considerou-se as seguintes categorias:

• Identificadores: Atributos que identificam diretamente um indivíduo.

Neste categoria, estão inseridos os atributos CustomerId e Surname.

• Sensíveis: Atributos que podem revelar informações privadas acerca de um indivíduo. Incluiu-se, nesta categoria, os atributos CreditScore, Balance, NumOfProducts e EstimatedSalary. Desta forma, atributos que revelem um *score* pessoal, valores de saldo bancário ou de salário e um número de produtos de um cliente são referentes a dados que um indivíduo desejaria manter como privados.

De seguida, as próximas categorias a considerar seriam atributos **Quasi-identificadores** (QID) e Insensíveis. Atributos que, de forma individual ou combinada, podem reidentificar um indivíduo e atributos que não comprometem a privacidade de um indivíduo, respetivamente.

Recorreu-se ao ARX para determinar os melhores candidatos a QID e, consequentemente, classificar os restantes como Insensíveis.

Na Fig.2, apresentam-se os resultados de **distinção** e **separação** de cada atributo. É notório que todos os valores de distinção são extremamente baixos, o que se deve ao baixo número de valores únicos de cada atributo no *dataset*. Posto isto, decidiu-se destacar inicialmente, com base nos altos valores de separação, os atributos **Tenure** e **Age**.

Exited	0.02%	32.44451%
HasCrCard	0.02%	41.55811%
Gender	0.02%	49.58726%
IsActiveMember	0.02%	49.95939%
Geography	0.03%	62.43544%
Tenure	0.11%	90.39774%
Age	0.7%	96.89822%

Figura 2: Análise individual dos valores de distinção e separação.

Na Fig.3, são observáveis os valores obtidos para atributos combinados em pares. Mais uma vez, os valores de distinção mantiveram-se reduzidos, no entanto, aumentaram nos pares destacados, principalmente para a combinação Age e Tenure.

Para além do par anterior, destacam-se os pares Age e IsActiveMember, Age e HasCrCard, Gender e Age e, por fim, Geography e Age, pois são os conjuntos de atributos com os maiores valores de distinção e separação conjugados. Para serem considerados, é importante observar o seu comportamento em combinações maiores e diferentes, como na Fig.4.

Gender, Tenure	0.22%	95.15336%
Tenure, IsActiveMember	0.22%	95.19248%
Geography, Tenure	0.33%	96.38668%
Age, Exited	1.28%	97.65632%
Age, IsActiveMember	1.31%	98.44353%
Age, HasCrCard	1.35%	98.17721%
Gender, Age	1.35%	98.42979%
Geography. Age	1.96%	98.81936%
Age, Tenure	6.5%	99.70316%

Figura 3: Análise dos valores de distinção e separação para pares de atributos.

Por fim, como se demonstra na Fig.4, ainda se consideraram conjuntos de três atributos.

Neste caso, a distinção apresenta valores mais elevados, pelo que se decidiu tomar estes valores como pontos decisivos na classificação dos atributos Age, Tenure e Geography como QID. Isto justifica-se pelos resultados anteriores de distinção e separação dos dois primeiros atributos e pelo aumento significativo de distinção do conjunto, quando é adicionado o atributo Geography. Mais ainda, é razoável considerar Geography como QID, pois, na Fig.3, ele está presente no segundo conjunto com maiores valores.

Age, Tenure, Exited	10.92%	99.77542%
Age, Tenure, IsActiveMember	11.48%	99.85126%
Age, Tenure, HasCrCard	11.52%	99.82574%
Gender, Age, Tenure	11.72%	99.84915%
Geography, Age, Tenure	15,95%	99.88705%

Figura 4: Análise dos valores de distinção e separação para trios de atributos.

Contudo, em relação aos atributos Gender, IsActiveMember e HasCrCard, foi necessário aprofundar a análise tendo em conta diferentes combinações.

Em primeiro lugar, considerou-se combinações com o atributo Exited, já que é o único a ser excluído dos candidatos a QID. Na Fig.5, é observável que a separação de qualquer combinação com os atributos Gender e IsActiveMember aumenta significativamente quando comparada com a do atributo Exited individualmente.

Exited	0.02%	32.44451%
HasCrCard	0.02%	41.55811%
Gender	0.02%	49.58726%
IsActiveMember	0.02%	49.95939%
HasCrCard, Exited	0.04%	60.45612%
Gender, Exited	0.04%	65.53113%
lsActiveMember, Exited	0.04%	65.68887%

Figura 5: Combinações dos candidatos a QID com o atributo Exited.

Para além disso, olhando para os resultados obtidos na Fig.6 através de combinações com um QID (com valores de distinção e separação não muito altos, inicialmente), o atributo Geography, conclui-se que os candidatos Gender e IsActiveMember podem trazer uma diferença significativa em comparação com um não QID.

Geography, Exited	0.06%	73.71137%
Geography, HasCrCard	0.06%	78.03453%
Geography, Gender	0.06%	81.0494%
Geography, IsActiveMember	0.06%	81.19772%

Figura 6: Combinações dos candidatos a QID com o atributo Geography.

Em suma, voltando a referir os resultados da Fig.4, em combinações com dois QID "fortes" (Age e Tenure), ainda se observam diferenças entre os cadidatos a considerar e o atributo que não é um QID.

Decidiu-se não se classificar o atributo HasCrCard como QID, dado o destaque dos restantes candidatos em relação ao mesmo e, no geral, tendo em conta que não se evidencia nas várias combinações.

Concluiu-se a análise com a classificação dos seguintes atributos como QID: Geography, Gender, Age, Tenure, HasCrCard e IsActiveMember.

Como já referido, os restantes atributos RowNumber e Exited foram classificados como Insensíveis.

2.2 Riscos de Privacidade do *Dataset*

Nesta subsecção, serão analisados os **riscos de privacidade** do *dataset*, na sua forma original. Na Fig.7, o risco de reidentificação é calculado sob três modelos distintos de ataque – *Prosecutor Attacker Model*, *Journalist Attacker Model* e *Marketer Attacker Model*.

Cada modelo é avaliado em relação a três métricas principais – $Records\ at\ risk$, $Highest\ risk$ e $Success\ rate$.

Figura 7: Análise dos riscos de privacidade do dataset original.

Os valores apresentados mostram que os riscos não variam entre modelos, com maior vulnerabilidade no cenário de ataque de Prosecutor e Journalist, onde os registos em risco atingem 67.47% e o o risco máximo 100%.

2.3 Distribuição de Atributos

De forma a se decidir acerca da criação de hierarquias e pesos a atribuir a cada atributo, teve-se em conta a distribuição dos mesmos.

Excluindo atributos binários e um atributo com três valores únicos, foi importante verificar a distribuição de Age e Tenure.

• Age: Tal como referido em 1.1.1 e como se observa na Fig.8, este atributo concentra a maioria dos seus valores entre os 25 e 50 anos.

Figura 8: Distribuição do atributo Age (ARX).

• Tenure: Por sua vez, refere-se novamente que a distribuição do atributo Tenure, observável na Fig.9, apresenta um comportamento uniforme.

Figura 9: Distribuição do atributo Tenure (ARX).

2.4 Criação de Hierarquias

Através da subsecção 2.3, criaram-se as diferentes hierarquias para todos os QID.

Em primeiro lugar, para todos os atributos binários, ou seja, Gender e IsActiveMember, só existe uma forma de criar a hierarquia. Isto é, com um nível de generalização, que leva à supressão. As hierarquias criadas estão ilustradas na Fig.10.

Level-0	Level-1
Male	*
Female	*

Level-0	Level-1
0	*
1	*

Figura 10: Hierarquias criadas para os atributos Gender e IsActiveMember.

Para o atributo Geography, cujos valores únicos são *Spain*, *France* e *Germany*, agrupou-se, primeiramente, em *Southern Europe* e *Western Europe* e, finalmente, em *Europe*.

Level-0	Level-1	Level-2
France	Western Europe	Europe
Germany	Western Europe	Europe
Spain	Southern Europe	Europe

Figura 11: Hierarquia criada para o atributo Geography.

Para o atributo Tenure, dado que a sua distribuição é normal, decidiu-se utilizar uma hierarquia por intervalos, como ilustrada na Fig.12.

Figura 12: Hierarquia criada para o atributo Tenure.

Por fim, a hierarquia criada para o atributo Age teve em conta a sua distribuição não uniforme. Achou-se razoável iniciar com um intervalo que contivesse as idades até aos 25 anos,

alguns intervalos que contivessem as idades compreendidas entre os 25 anos e os 50 anos, um intervalo dos 50 aos 55 anos e, finalmente, um intervalo que englobasse as idades acima de 55. Para os seguintes níveis, juntaram-se intervalos dois a dois, como ilustra a Fig.13.

Figura 13: Hierarquia criada para o atributo Age.

2.5 Peso de Atributos

Como referido em 1.3.3, de modo a garantir uma boa utilidade dos dados após a anonimização, e considerado o objetivo proposto, decidiu-se atribuir um peso igual a 1 ao atributo Age. Esta decisão deve-se ao facto de se tratar de um forte QID, sendo muito provável que todos os modelos venham a aplicar algum nível de generalização sobre este atributo.

3 Modelos de Privacidade: Utilidade, Privacidade e Avaliação de Risco

3.1 k-Anonimity $e \ell$ -Diversity

A primeira abordagem que se tomou combina os modelos k-Anonimity e ℓ -Diversity. Os principais parâmetros a ajustar são os valores de k e ℓ .

3.1.1 Escolha de k (para $\ell = 2$)

Dado que as combinações de possíveis valores de ℓ são bastantes, iniciou-se a análise com um ℓ fixo ($\ell = 2$), de modo a interpretar o comportamento de diferentes valores de k.

Para os valores iniciais, k=5, 10 e 15, como se observa na Fig.14, foram consideradas as seguintes métricas:

- Highest Risk e Success Rate;
- Loss Score: Perda (loss) de informação;
- *N.-U. Entropy*: Qualidade dos dados tendo em conta a semelhança entre a distribuição original e após anonimização;
- *Discernibility*: Qualidade dos dados tendo em conta o tamanho das classes de equivalência, penalizando a supressão;

• Qualidade dos dados tendo em conta Attribute/Record-level Squared Error;

Figura 14: Análise do valor de k, considerando a transformação ótima.

Em relação a todas as métricas de utilidade, é visível que apresentam valores piores quando se passa de k=5 para k=10. No entanto, a descida dos riscos de reidentificação é muito relevante.

Já na passagem de k = 10 para k = 15, as únicas alterações que podemos destacar são a descida considerável de $Highest\ Risk$ (desce de 10% para 6.25%) e um pequeno aumento de $Loss\ Score$ (de 8.74% para 10.06%).

Posto isto, decidiu-se que poderia ser vantajoso continuar a analisar os valores de k acima de k = 15, nomeadamente até k = 20, de modo a se perceber como se comportam os riscos de reidentificação e as métricas de utilidade.

Figura 15: Análise de outros valores de k, considerando a transformação ótima.

Na Fig.15, estão representados os resultados obtidos para k = 15, 18 e 20. Como já era expectável, com o aumento do valor de k, observa-se o aumento ligeiro de $Loss\ Score$ e alguma diminiução de $Highest\ Risk$.

Observou-se que k=18 proporcionava riscos de reidentificação relativamente baixos, sem prejudicar demasiado a utilidade dos dados na generalidade. Para além disso o valor de Sup-pressed Records é bastante mais reduzido do que para valores de k maiores.

3.1.2 Escolha de ℓ

Neste passo, foi necessário relembrar a percentagem de valores únicos dos atributos sensíveis, calculada em Python, que se na Sec.4.

- Os atributos Balance e EstimatedSalary têm uma grande percentagem de valores únicos, por isso admitem valores altos de ℓ ;
- O atributo CreditScore tem 460 valores únicos;
- \bullet O atributo Num
Of Products tem apenas 4 valores únicos, portanto o seu valor de
 ℓ não poderá ser muito elevado.

Para diversos valores de k, percebeu-se que as transformações propostas e os riscos de reidentificação **não se alteravam**, considerando **valores baixos de** ℓ . Para além disso, verificou-se que o **fator com mais peso** nos resultados da anonimização era o **valor de** ℓ atribuído ao atributo sensível NumOfProducts, o que se explica pelos seus reduzidos valores únicos.

Como se consegue observar na Fig.3.1.2, experimentaram-se várias combinações de diferentes valores de ℓ . Considere-se o tuplo $(k, \ell\text{-EstimatedSalary}, \ell\text{-Balance}, \ell\text{-CreditScore}, \ell\text{-NumOfProducts})$. As combinações apresentadas são $(\mathbf{5}, \mathbf{4}, \mathbf{4}, \mathbf{3}, \mathbf{2} \ / \ \mathbf{3})$, $(\mathbf{10}, \mathbf{9}, \mathbf{7}, \mathbf{6}, \mathbf{2} \ / \ \mathbf{3})$, $(\mathbf{15}, \mathbf{14}, \mathbf{10}, \mathbf{8}, \mathbf{2} \ / \ \mathbf{3})$, $(\mathbf{18}, \mathbf{17}, \mathbf{14}, \mathbf{10}, \mathbf{2} \ / \ \mathbf{3})$ e $(\mathbf{20}, \mathbf{19}, \mathbf{15}, \mathbf{12}, \mathbf{2} \ / \ \mathbf{3})$, sendo que os valores de ℓ foram escolhidos tendo em conta as conclusões acerca do **número de valores únicos** de cada atributo.

Figura 16: Análise dos valores de ℓ , considerando a transformação ótima.

É possível concluir-se que se **perde bastante utilidade** quando é considerado $\ell = 3$, não sendo compensada pela diminuição dos riscos de reidentificação. Na verdade, a partir de k = 15, os valores de *Highest Risk* são bastante semelhantes.

Apesar de em 3.1.1 se ter considerado k=18 a melhor solução, neste caso, atribuindo diferentes combinações de ℓ ao modelo, conseguiu-se que k=20 apresenta-se valores de Highest Risk e Success Rate ainda mais baixos, nomeadamente, 3.70% e 0.94% e, ainda, uma percentagem muito baixa de Suppressed Records de 0.38%.

3.1.3 Resultados

Por fim, escolhendo k=20 e $\ell=19, 15, 12$ e 2 para EstimatedSalary, Balance, CreditScore e NumOfProducts, respetivamente, é aplicada uma transformação que generaliza o atributo Age com Nível 2 e o atributo Tenure, igualmente, com Nível 2, , sem generalizar os restantes.

Para além disso, conseguiram-se os seguintes valores de **métricas de utilidade** (Tab.2) e **riscos** (Fig.17):

Métrica	(20,19,15,12,2)	
NU. entropy (%)	51.88	
Discernibility (%)	98.17	
Record-level squared error (%)	74.89	
Attribute-level squared error (%)	92.54	
Loss score $(\%)$	12.89	
Suppressed Records (%)	0.38	

Tabela 2: Resultados obtidos para o tuplo (20, 19, 15, 12, 2).

Figura 17: Riscos de reidentificação do modelo.

Faixa Etária	Média Salário (Anonimizado)	Média Salário (Original)
[18, 30[100,855.25	101,365.94
[30, 40]	98,616.32	99,355.95
[40, 50[103,543.08	$102,\!204.54$
[50, 93]	96,803.87	97,988.03

Tabela 3: Comparação entre salários médios do *dataset* anonimizado e original por faixa etária.

Na Tab.3, são apresentados os resultados obtidos no recalculo da estatística inícial, isto é, a média de salários por faixa etária.

É possível observar que a anonimização manteve a utilidade dos dados, com mínimas diferenças salariais entre faixas etárias, garantindo equilíbrio entre privacidade e qualidade. Iremos avaliar o desempenho do próximo modelo.

3.2 k-Anonimity e t-Closeness

A segunda abordagem que se tomou combina os modelos k-Anonimity e t-Closeness. Os principais parâmetros a ajustar são os valores de k e t.

3.2.1 Escolha de t

Inicialmente, procurou-se compreender o comportamento das métricas ao longo do intervalo de k entre 5 e 15, para os valores de t considerados: 0.1, 0.15 e 0.2. O objetivo desta análise preliminar foi identificar quais são as combinações de t e k que oferecem um melhor trade-off entre privacidade e utilidade, de forma a aprofundar a análise nestas combinações. Depois de encontrar o t mais relevante, vamos então testar mais valores de k, em 3.2.2.

Figura 18: Valor das métricas para combinações de k e t.

Primeiramente, observa-se que o **Highest Risk** diminui significativamente entre k = 5 e k = 10, para todos os valores de t. Neste intervalo, os valores das **métricas de utilidade mantêm-se** relativamente estáveis, sem grandes variações, também, para todos os valores de t. Assim, a redução do risco de privacidade justifica-se, uma vez que é alcançada sem comprometer a utilidade dos dados.

No intervalo entre k = 10 e k = 15, verifica-se uma continuação da tendência de redução do $Highest\ Risk$ para todos os valores de t. No entanto, neste caso, já se observam alterações significativas nas métricas de utilidade para cada t.

Assim, para k = 10, observa-se que o valor do $Highest\ Risk$ é de 10% para todos os valores de t. No entanto, o caso com t = 0.10 apresenta sistematicamente uma pior utilidade em todas as métricas, pelo que não será considerado uma opção viável.

Verifica-se, também, que é em k=15 que se atinge o menor valor de risco. Neste cenário, o valor t=0.20 destaca-se por manter melhores resultados na maioria das métricas de utilidade, com exceção da Discernibility e do Attribute-level Squared Error, onde apresenta ligeiras desvantagens face ao t=0.15. Ainda assim, importa referir que o Loss

Score associado ao t=0.20 é consideravelmente **inferior**. Deste modo, conclui-se que o valor de t=0.20 representa a melhor escolha.

Considerou-se que a configuração com k = 15 e t = 0.20 já representava uma boa opção, uma vez que apresentava valores reduzidos de risco: 6,25% no $Highest\ Risk$ e 1,76% no $Success\ Rate$ e bons valores na utilidade. No entanto, dado que k = 15 corresponde ao maior valor testado inicialmente, decidiu-se estender a análise para k = 20, com o objetivo de observar a evolução das métricas para valores superiores.

Paralelamente, optou-se também por testar os valores 0.25, 0.30 e 0.35 (os resultados de 0.30 são iguais aos de 0.35 para cada k, logo só vão ser representados os valores para 0.30) de t, de forma a comparar diretamente com o t = 0.20.

Figura 19: Valor das métricas para combinações de k e t

Observa-se que os **riscos** de privacidade se mantêm praticamente **inalterados** entre os diferentes valores de t, tanto no **Highest Risk** como no **Success Rate**. No entanto, nas métricas de utilidade, o valor t = 0.30 destaca-se por apresentar os melhores resultados na maioria das métricas, com exceção da **Discernibility**, que sofre uma ligeira diminuição. Além disso, o **Loss Score** associado ao t = 0.30 é **inferior** ao dos restantes, apesar da tendência de crescimento desta métrica entre k = 15 e k = 20. Concluiu-se, então, que o melhor valor de t será 0.30.

Verifica-se ainda que, nesse mesmo intervalo de k, a Discernibility tende a diminuir, enquanto a quantidade de supressão aplicada aumenta consideravelmente — passa de 1,75% em k=15 para 3,99% em k=20 — valor acima do limite proposto nos requisitos de privacidade. Assim, podemos inferir que valores de k demasiado próximos de 20 não são vantajosos, dado o aumento significativo da supressão e o consequente impacto na utilidade dos dados. Um ponto de equilíbrio mais adequado deve situar-se entre k=15 e k=18.

3.2.2 Escolha do k

Será realizada a análise com valores de k entre 15 e 18, mantendo t = 0.30, com o objetivo de identificar com maior precisão qual o valor de k que proporciona o melhor **equilíbrio** entre utilidade e privacidade. Os valores de 16, 17 e 19 mostraram-se muito iguais aos de 15 e 18, portanto vão ser só representados esses, na Tab.4.

Atributo	k = 15	k = 18
NU. entropy (%)	59.00	58.46
Discernibility (%)	97.50	96.36
Record-level squared error (%)	80.93	80.20
Attribute-level squared error (%)	91.81	91.09
Loss score (%)	9.90	10.89
Highest Risk (%)	6.25	5.55
Success Rate (%)	1.79	1.74
NU. entropy Age (%)	34.61	34.27
Suppressed Records ($\%$)	1.75	2.89

Tabela 4: Comparação dos atributos de privacidade e utilidade entre k = 15 e k = 18.

Após a análise comparativa dos resultados, optou-se pela escolha do k=18. Embora o valor k=15 apresente **melhores resultados** nas métricas de **utilidade**, a melhoria observada em termos de **privacidade** com k=18 foi considerada **mais relevante** para os objetivos da anonimização. Além disso, a **perda de utilidade** associada mostrou-se **pouco significativa**, permanecendo dentro de limites aceitáveis (por exemplo, um **Loss Score** de **10.89%** e **supressão** inferior a **3%**). Assim, a escolha de k=18 reflete um compromisso equilibrado entre utilidade e privacidade, privilegiando uma ligeira **melhoria na segurança sem comprometer a qualidade** dos dados.

3.2.3 Resultados

Para finalizar, o melhor **equilíbrio** entre entre privacidade e utilidade foi conseguido com k = 18 e t = 0.30, e a transformação aplicada generaliza o atributo Age com Nível 2 e o atributo Tenure, com Nível 1, sem generalizar os restantes.

Apresenta-se, na Fig.20, os riscos de reidentificação finais.

Figura 20: Riscos após da anonimização com 18-anonimity e 0.3-closeness.

Os resultados obtidos são, à primeira vista um pouco **contraintuitivos**, pois não se esperava que este modelo apresentasse riscos de privacidade maiores que o anterior. Contudo, este comportamento pode ser justificado pelo facto de o *t-Closeness* se focar na **similaridade**

das distribuições, neste caso, com alta variabilidade de valores sensíveis, sem garantir necessariamente uma diversidade de valores sensíveis dentro de cada classe de equivalência, ao contrário do *l-Diversity*.

Faixa Etária	Média Salário (Anonimizado)	Média Salário (Original)
[18, 30[101,338.05	101,365.94
[30, 40[98,616.32	99,355.95
[40, 50[$103,\!526.27$	$102,\!204.54$
[50, 93[96,829.42	97,988.03

Tabela 5: Comparação entre salários médios do dataset anonimizado e original por faixa etária.

A comparação realizada entre os salários do dataset anonimizado e os valores reais demonstra que a anonimização preservou com eficácia a utilidade dos dados. As diferenças entre os valores são mínimas em todas as faixas etárias, o que indica que a aplicação das transformações de anonimização não distorceu os dados. Desta forma, confirma-se que é possível atingir um equilíbrio entre proteção da privacidade e preservação da qualidade dos dados.

4 Anexos

4.1 Distribuição do Dataset

4.2 Qualidade e Conformidade dos Dados

#Contagem de Valores Nulos
data.isnull().sum()

data.isna().sum()

Coluna	Valores Nulos
RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
Is Active Member	0
EstimatedSalary	0
Exited	0

Conforme é possível verificar, o dataset não contem valores nulos nem N/A, pelo que não existem valores em falta.

#Contagem de Valores Unicos
data.nunique()

Coluna	Valores Únicos
RowNumber	10000
CustomerId	10000
Surname	2932
CreditScore	460
Geography	3
Gender	2
Age	70
Tenure	11
Balance	6382
NumOfProducts	4
HasCrCard	2
Is Active Member	2
EstimatedSalary	9999
Exited	2

#Valores Unicos de Geography
data['Geography'].unique()

array(['France', 'Spain', 'Germany'], dtype=object)

```
#Valores Unicos de Gender
data['Gender'].unique()
```

```
array(['Female', 'Male'], dtype=object)
```

```
#Valores Unicos de HasCrCard data['HasCrCard'].unique()
```

```
array([1, 0])
```

```
#Valores Unicos de IsActiveMember data['IsActiveMember'].unique()
```

```
array([1, 0])
```

```
#Valores Unicos de Exited data['Exited'].unique()
```

```
array([1, 0])
```

```
#Valores Unicos de NumOfProducts
print(sorted(data['NumOfProducts'].unique()))
```

```
[1, 2, 3, 4]
```

```
#Valores Unicos de Tenure
print(sorted(data['Tenure'].unique()))
```

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

```
#Contagem de Linhas Duplicadas
num_duplicados = data.duplicated().sum()
```

Número de registos duplicadas no dataset: 0.

Através da descrição dos dados anteriormente efetuada e da análise de valores únicos em cada coluna, também é possível constatar que:

- O intervalo de valores para CreditScore é [350, 850];
- Os valores dos atributos Tenure e NumOfProducts, ao variarem, respetivamente, de 0 a 10 e de 1 a 4, são razoáveis;
- As colunas categóricas não contêm erros de codificação, dado que Geography só toma os valores France, Spain e Germany, enquanto Gender só toma os valores Male ou Female;
- Os atributos binários assumem unicamente os valores 0 e 1, tal como esperado;
- Não existem registos duplicados, ou seja, cada cliente só aparece uma vez no dataset.

Tudo isto indica que não existem erros de medição nem inconsistências de valores/codificação nos dados constantes no dataset original.