

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Sistemi Operativi A.A. 2019/20

HARDWARE

Docente:

Output

Domenico Daniele

Domenico Daniele Bloisi

- Ricercatore RTD B
 Dipartimento di Matematica, Informatica
 ed Economia
 Università degli studi della Basilicata
 http://web.unibas.it/bloisi
- SPQR Robot Soccer Team
 Dipartimento di Informatica, Automatica e Gestionale Università degli studi di Roma "La Sapienza"

http://spqr.diag.uniroma1.it

Ricevimento

- In aula, subito dopo le lezioni
- Martedì dalle 11:00 alle 13:00 presso:
 Campus di Macchia Romana
 Edificio 3D (Dipartimento di Matematica,
 Informatica ed Economia)
 Il piano, stanza 15

Email: domenico.bloisi@unibas.it

Programma – Sistemi Operativi

- Introduzione ai sistemi operativi
- Gestione dei processi
- Sincronizzazione dei processi
- Gestione della memoria centrale
- Gestione della memoria di massa
- File system
- Sicurezza e protezione

Servizi di un sistema operativo

• Un sistema operativo offre un ambiente in cui eseguire i programmi e fornire i seguenti servizi.

Servizi di un sistema operativo

Allocazione delle risorse

Logging

Protezione e sicurezza

Servizi di un sistema operativo

Figura 2.1 Panoramica dei servizi del sistema operativo.

Interfaccia con l'utente del sistema operativo

Figura 2.2 La shell bash, l'interprete dei comandi utilizzato in macOS.

Interprete dei comandi

Interfaccia con l'utente del sistema operativo

- 1. interfaccia a riga di comando o interprete dei comandi
- 2. Interfaccia grafica con l'utente o GUI
- 3. Interfaccia touch-screen

Figura 2.3 Il touch-screen di un iPhone.

Interfaccia con l'utente del sistema operativo

Figura 2.4 Interfaccia grafica di macOS.

Chiamate di sistema

- Programming interface to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Mostly accessed by programs via a high-level Application Programming Interface (API) rather than direct system call use
- Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)

Chiamate di sistema

Le **chiamate di sistema** (*system call*) costituiscono un'interfaccia per i servizi resi disponibili dal sistema operativo.

Figura 2.5 Esempio d'uso delle chiamate di sistema.

API - Interfaccia per la programmazione di applicazioni

API: Specifica un insieme di funzioni a disposizione del programmatore

e dettaglia i parametri necessari all'invocazione di queste funzioni, insieme ai valori restituiti.

System call - implementazione

- Typically, a number associated with each system call
 - System-call interface maintains a table indexed according to these numbers
- The system call interface invokes the intended system call in OS kernel and returns status of the system call and any return values
- The caller need know nothing about how the system call is implemented
 - Just needs to obey API and understand what OS will do as a result call
 - Most details of OS interface hidden from programmer by API
 - Managed by run-time support library (set of functions built into libraries included with compiler)

API, system call e SO

Figura 2.6 Gestione della chiamata di sistema open () invocata da un'applicazione utente.

System call – passaggio dei parametri

Per passare parametri al sistema operativo si usano tre metodi generali.

- 1. in *registri*
- 2. in un blocco o tabella di memoria
- 3. nello *stack* da cui sono prelevati (*pop*) dal sistema operativo

System call – passaggio dei parametri

- Often, more information is required than simply identity of desired system call
 - Exact type and amount of information vary according to OS and call
- Three general methods used to pass parameters to the OS
 - Simplest: pass the parameters in registers
 - In some cases, may be more parameters than registers
 - Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a register
 - This approach taken by Linux and Solaris
 - Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating system
 - Block and stack methods do not limit the number or length of parameters being passed

Passaggio dei parametri in forma di tabella

Figura 2.7 Passaggio di parametri in forma di tabella.

Controllo dei processi

Gestione dei file

Gestione dei dispositivi

Gestione delle informazioni, comunicazioni e protezione

Controllo dei processi

- creazione e arresto di un processo
- caricamento, esecuzione
- terminazione normale e anormale
- esame e impostazione degli attributi di un processo
- attesa per il tempo indicato
- attesa e segnalazione di un evento
- assegnazione e rilascio di memoria

Gestione dei file

- creazione e cancellazione di file
- apertura, chiusura
- lettura, scrittura, posizionamento
- esame e impostazione degli attributi di un file

Gestione dei dispositivi

- richiesta e rilascio di un dispositivo
- lettura, scrittura, posizionamento
- esame e impostazione degli attributi di un dispositivo
- inserimento logico ed esclusione logica di un dispositivo

Gestione delle informazioni, comunicazioni e protezione

- Gestione delle informazioni
 - esame e impostazione dell'ora e della data
 - esame e impostazione dei dati del sistema
 - esame e impostazione degli attributi dei processi, file e dispositivi
- Comunicazione
 - creazione e chiusura di una connessione
 - invio e ricezione di messaggi
 - informazioni sullo stato di un trasferimento
 - inserimento ed esclusione di dispositivi remoti
- Protezione
 - visualizzazione dei permessi di un file
 - impostazione dei permessi di un file

Esempi di chiamate di sistema

	ESEMPIO DI CHIAMATE DI SISTEMA DI WINDOWS E UNIX	
	Windows	UNIX
Controllo dei processi	<pre>CreateProcess() ExitProcess() WaitForSingleObject()</pre>	<pre>fork() exit() wait()</pre>
Gestione dei file	<pre>CreateFile() ReadFile() WriteFile() CloseHandle()</pre>	<pre>open() read() write() close()</pre>
Gestione dei dispositivi	<pre>SetConsoleMode() ReadConsole() WriteConsole()</pre>	<pre>ioctl() read() write()</pre>
Gestione delle informazioni	<pre>GetCurrentProcessID() SetTimer() Sleep()</pre>	<pre>getpid() alarm() sleep()</pre>
Comunicazione	<pre>CreatePipe() CreateFileMapping() MapViewOfFile()</pre>	<pre>pipe() shm_open() mmap()</pre>
Protezione	<pre>SetFileSecurity() InitializeSecurityDescriptor() SetSecurityDescriptorGroup()</pre>	<pre>chmod() umask() chown()</pre>

Standard C Library Example

C program invoking printf() library call, which calls write() system call

Controllo dei processi

Arduino è una semplice piattaforma hardware composta da un microcontrollore e da sensori di ingresso che rispondono a diversi eventi

Esempio di un sistema monoprogrammato

memoria libera boot loader (a) memoria libera programma utente (sketch) boot loader (b) La creazione di un programma per Arduino prevede:

- 1) la scrittura del programma su un PC
- 2) Il caricamento del programma compilato (noto come *sketch*) dal Pc alla memoria flash di Arduino tramite una connessione USB.

Figura 2.9 Esecuzione in Arduino. (a) All'avviamento del sistema. (b) Durante l'esecuzione di un programma.

Controllo dei processi

FreeBSD (derivato da UNIX Berkeley) è un esempio di sistema multitasking.

Figura 2.10 Esecuzione di più programmi nel sistema operativo FreeBSD.

Servizi di sistema/utilità di sistema

Linker e loader

Figura 2.11 Il ruolo di linker e loader.

Perchè le applicazioni dipendono dal sistema operativo

- 1. Fondamentalmente le applicazioni compilate su un sistema operativo *non sono* eseguibili su altri sistemi operativi.
- 2. Ogni sistema operativo fornisce un insieme univoco di chiamate di sistema.

Tre modi per consentire a un'applicazione di essere resa disponibile per l'esecuzione su più sistemi operativi.

• Può essere scritta in un linguaggio interpretato che ha un interprete disponibile per più sistemi operativi.

• Può essere scritta in un linguaggio che utilizza una macchina virtuale contenente l'applicazione in esecuzione

• Lo sviluppatore di un'applicazione può utilizzare un linguaggio o un'API standard in cui il compilatore genera binari nel linguaggio specifico del sistema operativo e della macchina.

Struttura del sistema operativo

Struttura monolitica

Un sistema
monolitico viene
anche chiamato
sistema
strettamente
accoppiato
(tightly coupled).
In alternativa è
possibile progettare
un sistema
debolmente
accoppiato
(loosely coupled)

Figura 2.12 Struttura del sistema UNIX.

Struttura del sistema Linux

Il sistema operativo **Linux** è basato su UNIX ed è strutturato in modo simile

Figura 2.13 Struttura del sistema Linux.

Approccio stratificato

Un sistema monolitico viene anche chiamato sistema strettamente accoppiato (tightly coupled). In alternativa è possibile progettare un sistema debolmente accoppiato (loosely coupled).

Vi sono molti modi per rendere modulare un sistema operativo. Uno di essi è l'approccio stratificato.

Figura 2.14 Struttura a strati di un sistema operativo.

Microkernel

Verso la metà degli anni '80 fu realizzato un sistema operativo, **Mach**, con il kernel strutturato in moduli secondo il cosiddetto **orientamento a microkernel**.

Lo scopo principale del microkernel → fornire funzioni di comunicazione tra i programmi client e i vari servizi, anch'essi in esecuzione nello spazio utente.

Figura 2.15 Architettura tipica di un microkernel.

macOS e iOS

Il sistema operativo macOS di Apple è progettato per funzionare principalmente su computer desktop e laptop, mentre iOS è un sistema operativo mobile progettato per iPhone e iPad.

- Strato dell'interfaccia utente (user experience).
- Strato degli ambienti applicativi
- Ambienti di base (core).
- Ambiente kernel (noto anche come Darwin)

Figura 2.16 Architettura dei sistemi operativi macOS e iOS di Apple.

Darwin

Darwin è un sistema a strati costituito principalmente dal microkernel Mach e dal kernel BSD UNIX.

Apple ha rilasciato il sistema operativo Darwin come open-source

Figura 2.17 La struttura di Darwin.

Android

Mentre iOS è progettato per funzionare su dispositivi mobili di Apple ed è un software proprietario, (Google) **Android** gira su una varietà di piattaforme mobili ed è opensource.

Poiché Android può essere eseguito su un numero quasi illimitato di dispositivi, Google ha scelto di astrarre l'hardware attraverso uno strato di astrazione hardware detto HAL (hardware abstraction layer).

Figura 2.18 Architettura di Google Android.

Generare e avviare un OS

Scrivere il codice sorgente del sistema operativo (o ottenere il codice sorgente già scritto)

Configurare il sistema operativo per il sistema su cui verrà eseguito

Compilare il sistema operativo

Installare il sistema operativo

Avviare il computer e il nuovo sistema operativo

Avvio del sistema operativo

Il processo di avvio di un computer, caricando il kernel del sistema operativo, è noto come **boot**.

System boot

- When power initialized on system, execution starts at a fixed memory location
 - Firmware ROM used to hold initial boot code
- Operating system must be made available to hardware so hardware can start it
 - Small piece of code bootstrap loader, stored in ROM or EEPROM locates the kernel, loads it into memory, and starts it
 - Sometimes two-step process where boot block at fixed location loaded by ROM code, which loads bootstrap loader from disk
- Common bootstrap loader, GRUB, allows selection of kernel from multiple disks, versions, kernel options
- Kernel loads and system is then running

Debugging

Debugging → l'attività di individuare e risolvere errori hardware e software nel sistema, i cosiddetti **bachi** (*bug*) *ma anche*

- regolazione delle prestazioni (performance tuning)
- colli di bottiglia (bottleneck) del sistema

Se il *debugging di processi* a livello utente è una sfida, a livello del kernel del sistema operativo è un'attività ancora più difficile a causa della dimensione e della complessità del kernel, del suo controllo dell'hardware e della mancanza di strumenti per eseguire il debugging a livello utente.

Un guasto nel kernel viene chiamato crash

"Il debugging è due volte più complesso rispetto alla stesura del codice. Di conseguenza, chi scrive il codice nella maniera più intelligente possibile non è, per definizione, abbastanza intelligente per eseguirne il debugging."

Prestazioni

Tracing o tracciamento gli

strumenti di tracing raccolgono i dati relativi a uno specifico evento Contatori contano per esempio il numero di chiamate di sistema effettuate o il numero di operazioni eseguite su un dispositivo o su un disco di rete

Figura 2.19 II task manager di Windows 10.

BCC (BPF compiler collection)

Strumenti di tracing bcc/eBPF di Linux

Figura 2.20 Gli strumenti di tracing BCC ed eBPF.

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Sistemi Operativi A.A. 2019/20

Docente:

Output

Domenico Daniele

