UNIVERSITETET I OSLO

INF3410 - Lab 2

Øystein Magnus Sørebø - Oysteims Kristian Nilsen - Kristgn Mikkel Mikkelsen - Mikkelmi

Prelab

Task 1.1

I denne oppgaven har vi plottet det aktive område for sterk og svak inversjon. Dette er gjort ved at vi har brukt V_{DS} verdier som er innafor det aktive område. For sterk inversjon er det V_{DS} verdier over V_{OV} , som i dette tilfelle er $VDD-V_{tn}=3.3V-0.57V=2.73V$, og $V_{GS}>V_{tn}$. For svak inversjon er kurvene i det aktive område når $V_{DS}>4V_{T}$ og $V_{GS}< V_{tn}$. Lineær plot av det aktive område er vist i Figur 1, og logaritmisk plot er vist i Figur 2. Figur 2 viser tydelig inversjonsområdene. Før V_{tn} er kurven i svak inversjon, etter den har nådd terskelspenningen går den over i sterk inversjon. Alle punktene i kurvene er i det aktive område, dette er gjort at verdier for V_{DS} oppfyller kravene for aktiv område.

Figur 1: Plot av I_D som funksjon av V_{GS} i det aktive område.

Figur 2: Logaritmisk plot av Figur 1.

Task 1.2

Her har vi plottet det samme som i Task 1.1, bare med andre verdier for V_{DS} . I dette tilfelle skal vi plotte for det lineære område. V_{DS} verdier for lineære område er gitt av $V_{DS} < V_{OV}$ for sterk inversjon, og $V_{DS} < 4V_T$ for svak inversjon. Lineær plot er vist i Figur 3, logaritmisk plot er vist i Figur 4. Alle punktene i kurvene skal være i det lineære område fordi verdiene for V_{DS} oppfyller kravene for lineære område.

Figur 3: Plot av I_D som funksjon av V_{GS} i det lineære område.

Figur 4: Semilogaritmisk plot av I_D som funksjon av V_{GS} i det lineære område.

Task 1.3

Her har vi plotta I_D som funksjon av V_{DS} . Punktene i kurvene er i sterk inversjon, fordi verdier valgt for V_{GS} er større enn V_{tn} . Lineær plot er vist i Figur 5, logaritmisk plot er vist i Figur 6. I Figur 5 kan vi se at kurvene i metningsområde er kvadratisk til V_{GS} .

Figur 5: Plot av ${\cal I}_D$ som funksjon av ${\cal V}_{DS}$ i sterk inversjon.

Figur 6: Semilogaritmisk plot av Figur 5.

Task 1.4

I denne oppgaven har vi plotta det samme som i Task 1.3, men bare i svak inversjon. Lineær plot er vist i Figur 7, logaritmisk plot er vist i Figur 8. Vi har valgt verdier for V_{GS} som er lavere enn V_{tn} , dette gjør at kurvene skal være i svak inversjon.

Figur 7: Plot av I_D som funksjon av V_{DS} i svak inversjon.

Figur 8: Semilogaritmisk plot av Figur 7.

Simulation

Task 2

Plot for Task 1.1 er vist i Figur 9. Plot for Task 1.2 er vist i Figur 10. Plot for Task 1.3 er vist i Figur 11. Plot for Task 1.4 er vist i Figur 12. Skjematikk av kretsen som ble simulert er vist i Figur 13.

Figur 9: Lineær plot fra simulering i cadence. Tilsvarer Figur 1.

Figur 10: Lineær plot fra simulering i cadence. Tilsvarer Figur 4.

Figur 11: Lineær plot fra simulering i cadence. Tilsvarer Figur 5.

Figur 12: Lineær plot fra simulering i cadence. Tilsvarer Figur 7.

Figur 13: Skjematikk av simulert krets.

Task 3

For I_D som funksjon av V_{GS} gir $V_{tn}=0.4V$ bedre tilpassing. Ved å endre λ og k_n vil man nesten ikke få noe merkbar forskjell i tilpassingen. Dette er vist i Figur 14. For I_D som funksjon av V_{DS} gir $V_{tn}=1.1V$ og $\lambda=0.03$ bedre tilpassing. Dette er vist i Figur 15. Dette er vist i Figur 14. I Figur 15 har den blå kurven ikke blitt matchet. Dette skjer fordi plottet fra cadence som vist i Figur 11 har jevne mellomrom mellom kurvene, mens plottet i Figur 5 har mellomrom som øker med V_{GS} . Metoden vi har brukt til å tilpasse kurvene er å prøve oss fram ved å endre verdier for λ , V_{tn} og k_n .

Figur 14: Plot av tilpasset EKV model og simulering fra cadence.

Figur 15: Plot av tilpasset EKV model og simulering fra cadence.

$Task \ 4$

I denne oppgaven har vi målt og plottet I_D på IC'en. Plott er vist i Figur 16, Figur 17, Figur 18. I Figur 17 går transistoren i breakdown når V_{DS} går litt over 3V for $V_{GS}=2.6V$. Dette skjer også for alle V_{GS} under 3V.

Figur 16: Plot av I_D som funksjon av V_{DS} med $V_{GS}=3.3V$.

Task 5

For I_D som funksjon av V_{GS} fikk vi veldig bra tilpassing med $V_{tn}=1V$ og $\lambda=1$. Dette er vist i Figur 19. For I_D som funksjon av V_{DS} fikk vi bedre tilpassing med $V_{tn}=0.2V,\,k_n=400e-6$ og $\lambda=5e-4$. Dette er vist i Figur 20.

Task 6

Plot av V_{OUT} som funksjon av V_{GS} er vist i Figur 21.

Figur 17: Plot av I_D som funksjon av V_{DS} med $V_{GS}=2.6V.$ Transistoren går i breakdown.

Figur 18: Plot av I_D som funksjon av V_{GS} med $V_{DS}=3.3V.\,$

Figur 19: Plot av EKV model tilpasset måling for $V_{DS}=3.3V.$

Figur 20: Plot av EKV model tilpasset måling for $V_{GS}=3.3V.$

Figur 21: Plot av V_{OUT} som funksjon av V_{GS} .

Linear range:

$$\begin{split} 1M\Omega &= 0.93V-1,13V\\ 150k\Omega &= 1V-1.33V\\ 22k\Omega &= 1.23V-1.7V \end{split}$$

Gain:

$$1M\Omega = -18.3471$$

 $150k\Omega = -13.6314$
 $22k\Omega = -7.0590$

$$A_D = A_R = \frac{V_{dd} - V_{out}}{R}$$

Strøm:

$$\begin{split} 1M\Omega:1, 5/1M &= 1, 5uA \\ 150k\Omega:1, 5/150k &= 0, 01mA \\ 22k\Omega:1/22K &= 0, 068mA \end{split}$$

 $1M\Omega$ gir høyest forsterkning, $22k\Omega$ gir høyest båndbrede.