Теория и реализация языков программирования. Задание 2: НКА и алгоритмы поиска подстрок

Сергей Володин, 272 гр.

задано 2013.09.18

Упражнение 1

Пусть $\sim \subset X \times X$. $C(x) = \{z \in X | x \sim z\}$, $C(y) = \{w \in X | y \sim z\}$. Пусть $\exists z \in C(x) \cap C(y)$. Тогда $x \sim z, y \sim z$, и $w \in C(x) \overset{\text{def}}{\Leftrightarrow} x \sim w \overset{z \sim x}{\overset{\text{гран.}}{\Leftrightarrow}} z \sim w \overset{y \sim z}{\overset{\text{reg.}}{\Leftrightarrow}} y \sim w \overset{\text{def}}{\Leftrightarrow} w \in C(y)$, то есть, C(x) = C(y).

В противном случае $](\exists z \in C(x) \cap C(y)) \Leftrightarrow C(x) \cap C(y) = \emptyset$. Получаем, что возможны два случая:

- 1. $C(x) \cap C(y) = \emptyset$ (не пересекаются)
- 2. C(x) = C(y) (совпадают)

Упражнение 2

Пусть $\varphi \colon \Sigma^* \supseteq X \longrightarrow \Delta^*$. $\varphi(\sigma_i) \stackrel{\text{def}}{=} \delta_i \in \Delta^*$, $|\sigma_i| = 1$.

1. $(e\partial uncm eenhocm b)$ Предположим, что существует такое φ — морфизм. Тогда $\forall w=w_1...w_n\in X, |w_i|=1\hookrightarrow \varphi(w)\equiv \varphi(w_1...w_n)=\varphi(w_1)\cdot \varphi(w_2...w_n)=...=\varphi(w_1)\cdot ...\cdot \varphi(w_n)\in \Delta^*$. Для $w=\varepsilon$ получаем $\varphi(\varepsilon)=\varepsilon$, так как φ — морфизм: $w_0\stackrel{\mathrm{def}}{=}\varphi(\varepsilon)=\varepsilon$. $\varphi(\varepsilon)\equiv \varphi(\varepsilon\varepsilon)=\varphi(\varepsilon)\varphi(\varepsilon)=w_0w_0\Rightarrow w_0=w_0w_0\Rightarrow |w_0|=|w_0||w_0|\Rightarrow w_0=\varphi(\varepsilon)=\varepsilon$.

Таким образом, получаем, что такой морфизм единственный (если существует).

- 2. (существование) Докажем, что определенное выше отображение φ морфизм: пусть $x, y \in X$. Рассмотрим случаи:
 - a. $|x| = 0, |y| = 0 \Rightarrow \varphi(xy) = \varphi(\varepsilon\varepsilon) = \varphi(\varepsilon) = \varepsilon = \varepsilon\varepsilon = \varphi(\varepsilon)\varphi(\varepsilon)$
 - b. $|x| = 0, |y| > 0 \Rightarrow \varphi(xy) = \varphi(y) = \varepsilon \varphi(y) = \varphi(x)\varphi(y)$
 - c. $|x| > 0, |y| = 0 \Rightarrow \varphi(xy) = \varphi(x) = \varphi(x)\varepsilon = \varphi(x)\varphi(y)$
 - d. $|x| > 0, |y| > 0 \Rightarrow \varphi(xy) = \varphi(x_1...x_my_1...y_n) = \varphi(x_1)...\varphi(x_m) \varphi(y_1)...\varphi(y_n) = \varphi(x)\varphi(y)$.

Таким образом, если заданы значения $\varphi(\sigma_i), \sigma_i \in X \subset \Sigma$, то морфизм $\varphi \colon \Sigma^* \supseteq X \longrightarrow \Delta^*$ с этими значениями существует и единственнен.

Задача 1

Определим $R_3: \mathsf{REG} \ni X \longrightarrow \mathbb{N} \cup \{0\}$ — количество применений правила 3 из определения регулярности X. В случае X = AB или $X = A|B, A, B \in \mathsf{REG}\ R_3(X) \stackrel{\mathrm{def}}{=} 1 + R_3(A) + R_3(B)$. В случае $X = A^*, A \in \mathsf{REG}$, определим $R_3(X) \stackrel{\mathrm{def}}{=} 1 + R_3(A)$. В случае $X = \emptyset$ или $X = \{\sigma\}$ определим $R_3(X) \stackrel{\mathrm{def}}{=} 0$. Функция $R_3(X)$ определена корректно, так как определение регулярного языка коррентное.

Пусть $\varphi \colon \Sigma^* \supset X \longrightarrow Y \subset \Delta^*$ — морфизм, $X \in \mathsf{REG}$. Докажем, что $Y \equiv \varphi(X) \in \mathsf{REG}$ индукцией по $R_3(X)$:

 $P(i) = (\forall X \in \mathsf{REG} \colon R_3(X) \leqslant i \ \forall \varphi - \mathsf{морфизм} \hookrightarrow \varphi(X) \in \mathsf{REG}).$

- 1. Докажем P(0): пусть $X \in \mathsf{REG} \colon R_3(X) = 0$. Тогда X получен без применения третьего правила. Значит, $\forall \varphi$ морфизм либо $X = \varnothing \Rightarrow \varphi(X) = \varnothing$, либо $X = \{\sigma\} \Rightarrow \varphi(X) = \{\varphi(\sigma)\} = \{w\}, w \in \Delta^*$.
 - Докажем, что $\Delta^* \supset \{w\} \in \mathsf{REG}$. $\{w\} \equiv \{\sigma_1...\sigma_n\} \equiv \{\sigma_1\} \cdot ... \cdot \{\sigma_n\}$. Поскольку $\{\sigma_i\} \in \mathsf{REG}$, и регулярные языки замкнуты относительно конкатенации (по определению), получаем требуемое.

Итак, $\varphi(X) \in \mathsf{REG} \blacksquare$

- 2. Пусть P(n). Докажем P(n+1). Пусть $\mathsf{REG} \ni X \colon R_3(X) \leqslant n+1$. Если $R_3(X) < n+1$, $P(n) \Rightarrow X \in \mathsf{REG}$. $\sphericalangle X \colon R_3(X) = n+1$. Возможны случаи:
 - а. $X=WZ,\,W,Z\in\mathsf{REG}.$ Тогда $\varphi(X)\equiv\varphi(WZ)=\{\varphi(wz)|w\in W,z\in Z\}=\{\varphi(w)\varphi(z)|w\in W,z\in Z\}=\{\varphi(w)|w\in W\}\cdot\{\varphi(z)|z\in Z\}=\varphi(W)\varphi(Z).$ $R_3(X)=1+R_3(W)+R_3(Z)=n+1\Rightarrow R_3(W),R_3(Z)\leqslant n\stackrel{P(n)}{\Rightarrow}\varphi(W),\varphi(Z)\in\mathsf{REG}\Rightarrow\varphi(X)=\varphi(W)\varphi(Z)\in\mathsf{REG}.$

- b. $X=W|Z,\,W,Z\in\mathsf{REG}.$ Тогда $\varphi(X)\equiv\varphi(W|Z)\equiv\varphi(W)|\varphi(Z).$ Аналогично $R_3(W),R_3(Z)\leqslant n\stackrel{P(n)}{\Rightarrow}\varphi(W),\varphi(Z)\in\mathsf{REG}\Rightarrow\varphi(X)=\varphi(W)|\varphi(Z)\in\mathsf{REG}.$
- с. $X = W^*, W \in \mathsf{REG}$. Тогда $R_3(X) = 1 + R_3(W) = n + 1 \Rightarrow R_3(W) = n \overset{P(n)}{\Rightarrow} \varphi(W) \in \mathsf{REG} \Rightarrow \varphi(W^*) = \varphi(\varepsilon|W|WW|...) = \varphi(\varepsilon)|\varphi(W)|\varphi(WW)... \overset{\varphi(\varepsilon)=\varepsilon}{=} \varepsilon|\varphi(W)|\varphi(WW)... = \varphi(W)^* \in \mathsf{REG}.$

Получаем $\forall i\geqslant 0\hookrightarrow P(i)\Rightarrow \forall X\in\mathsf{REG}\,\forall \varphi-\mathsf{мор}$ физм $\hookrightarrow \varphi(X)\in\mathsf{REG}\,\blacksquare$

Задача 2

- 1. Нет. Пусть $\Sigma = \{0,1\}$, $L = \Sigma^*$. Определим $\varphi \colon L \longrightarrow L \colon \forall w \in L \hookrightarrow \varphi(w) = \varepsilon$. В этом случае φ морфизм, так как $\forall x \in L \, \forall y \in L \hookrightarrow \varphi(xy) = \varepsilon = \varepsilon \varepsilon = \varphi(x)\varphi(y)$. Тогда $\forall \varnothing \neq X \subset L \hookrightarrow \varphi(X) = \{\varepsilon\}$, так как $\forall w \in L \hookrightarrow \varphi(w) = \varepsilon$. Поскольку $\varphi(\varepsilon) = \varepsilon \in L$, $\varphi^{-1}(\varepsilon) \ni \varepsilon \Rightarrow \varphi^{-1}(L) \supset \{\varepsilon\} \neq \varnothing \Rightarrow \varphi^{-1}(L) \neq \varnothing \Rightarrow \varphi(\varphi^{-1}(L)) = \{\varepsilon\} \neq L$. Таким образом, $\exists L \subseteq \Sigma^* \, \exists \varphi$ морфизм: $\varphi(\varphi^{-1}(L)) \neq L$.
- 2. Нет. Пусть $\Sigma=\{a,b\},\ L=\{b\}^*,\ \varphi(a)\stackrel{\mathrm{def}}{=}\varphi(b)\stackrel{\mathrm{def}}{=}a$. Доопределим φ так, чтобы оно было морфизмом (это возможно, см. упражнение 2). Тогда $\varphi(L)\equiv\varphi(\{b^*\})\ni\varphi(b)=a\Rightarrow\varphi^{-1}(\varphi(L))\supset\varphi^{-1}(a)\ni a\notin L\Rightarrow\varphi^{-1}(\varphi(L))\not\subseteq L\Rightarrow\varphi^{-1}(\varphi(L))\neq L$. Таким образом, $\exists L\subseteq\Sigma^*\,\exists\varphi$ морфизм: $\varphi^{-1}(\varphi(L))\neq L$.
- 3. Нет. Пусть $\Sigma = \{a,b\}, \ L = \{ab\}, \ \text{морфизм} \ \varphi \colon \Sigma^* \longrightarrow \Sigma^* \text{из предыдущего пункта. Тогда} \ \varphi(L) = \{\varphi(ab)\} = \{\varphi(a)\varphi(b)\} = \{aa\}, \ \varphi^{-1}(L) = \{x \in \Sigma^* | \varphi(x) \in \{ab\}\} = \{x \in \Sigma^* | \varphi(x) = ab\} = \varnothing, \ \text{так как} \ \varphi(\Sigma^*) = \varphi((a|b)^*) \stackrel{1.2.c}{=} (\varphi(a|b))^* = \{\varphi(a), \varphi(b)\}^* = \{a\}^* = a^* \not\ni ab. \ \text{Тогда} \ \varphi(\varphi^{-1}(L)) = \varphi(\varnothing) = \varnothing \not\ni aa \in \varphi^{-1}(aa) = \varphi^{-1}(\varphi(L)).$ Таким образом, $\exists L \subseteq \Sigma^* \exists \varphi \text{морфизм} \colon \varphi(\varphi^{-1}(L)) \neq \varphi^{-1}(\varphi(L)).$

Задача 3