Algorítmica Numérica 1er parcial (nov 2016)

La publicación de notas y convocatoria de revisión se anunciarán a través de Moodle.

Ejercicio 1: Dado un sistema de representación en coma flotante donde los números máquina \hat{x} se almacenan de la siguiente forma:

$$\hat{x} = (\pm 1.a_1 a_2 ... a_m) 2^e$$

$$e \in \{0, -1, -2, ..., -n\}$$
 $a_i \in \{0, 1\} \forall i \quad n, m > 0$

Suponiendo que m=3 y n=2,

a) Escribir la representación $(\pm 1.a_1a_2...a_m)\cdot 2^e$ y el valor decimal de los siguientes

números máquina:

- Valor mínimo mayor que cero (V_{min})
- Valor máximo (V_{max})
- Números reales 1 y 0.4

$$V_{min} = +1.000 \ 2^{-2} = 0.25$$

$$V_{max} = +1.111 \ 2^0 = 1.875$$

$$1=+1.000 \ 2^0=1.0$$

$$0.4 = (0.0110...)_2 \sim +1.100 \, 2^{-2} = 0.375$$
 (si truncamos)

$$0.4 = (0.0110...)_2 \sim +1.101 \ 2^{-2} = 0.40625$$

(si redondeamos)

b) Calcular eps(1) y dar una cota del error relativo.

El siguiente valor representable al 1 es +1.001 2^{0} , luego eps(1) = +1.001 2^{0} - +1.000 2^{0} = 0.125.

Además $eps(1) = 2^{-(M-1)}$ y en este caso M = m+1=3+1=4 y $eps(1) = 2^{-(3)} = 0.125$

La cota del error relativo es
$$\frac{eps(1)}{2} = 0.0625$$

c) ¿Cuál es el error relativo al representar el número real 0.4? ¿Cuántas cifras decimales significativas se consiguen?

Para el número máquina obtenido truncando (0.375) el error relativo es:

Error _ *relativo* =
$$\left| \frac{0.4 - 0.375}{0.4} \right| = 0.0625$$

 $N\'umero_cifras_significativas = -\log 10(0.0625) \approx 1$

d) Para cualquier m y n, ¿Cuántos números máquina se pueden representar?

Signos posibles: 2

Mantisas posibles: 2^m

Total: $2 \times 2^m \times (n+1)$

Exponentes posibles : n+1

Ejercicio 2: (los 2 apartados son independientes)

a) Usando el método de Newton hallar el polinomio p(x) verificando que:

$$p(0) = 1$$
, $p(1)=0$, $p'(1)=-1$, $p(3)=2$

xk
 yk

 0
 1

 1
 0

 0
 -1

 1
 0

 1
 0

 1
 1

 3
 2

y el polinomio interpolador es
$$p(x) = 1 - x + \frac{x(x-1)^2}{3}$$

y el polinomio interpolador es
$$p(x) = 1 - x + \frac{x(x-1)^2}{3}$$

b) Sea el espacio de funciones a trozos
$$u(x) = \begin{cases} a + bx + c \cdot \cos(x) & x \in [-\frac{\pi}{2}, 0) \\ A + B \cdot \sin(x) & x \in [0, \frac{\pi}{2}] \end{cases}$$

1) Dar la expresión de u(x) si exigimos que la función y su 1^a derivada sean continuas.

Continuidad de función en 0 :
$$u(-->0) = a+c = A = u(0<--)$$

Continuidad de derivada en 0: $u'(-->0) = b = B = u'(0<--)$

Luego tenemos B=b y A= (a+c), quedando
$$u(x) = \begin{cases} a+bx+c\cdot\cos(x) & x\in[-\frac{\pi}{2},0)\\ (a+c)+b\cdot\sin(x) & x\in\left[0,\frac{\pi}{2}\right] \end{cases}$$

2) Dentro del espacio de funciones anteriores hallar la que interpola la siguiente tabla:

Х	-π/2	0	π/2
Υ	π/2	1	0

$$u(-\pi/2) = a - b\pi/2 = \pi/2$$

1er parcial (nov 2016)

Imponiendo ahora las condiciones de la tabla: u(0) = a + c = 1

$$u(0) = a + c = 1$$

$$u(\pi/2) = (a+c) + b = 0$$

Restando $3^a - 2^a$ ecuaciones --> b = -1. La 1^a ecuación queda a + $\pi/2 = \pi/2 --> a = 0$ Finalmente de la 2^a ecuación (a+c) = 1, al ser a=0 --> c=1

La solución es a = 0, b = -1, c = 1 y por lo tanto
$$u(x) = \begin{cases} -x + \cos(x) & x \in [-\frac{\pi}{2}, 0) \\ 1 - \sin(x) & x \in [0, \frac{\pi}{2}] \end{cases}$$

Algorítmica Numérica 1er parcial (nov 2016)

Ejercicio 3: Se quiere resolver el problema de ajustar por mínimos cuadrados los datos de la tabla:

x_i	-1	0	1	2
f_i	-2	-1	0	3

con funciones racionales de la forma: $y(x) = \frac{A + Bx}{1 + Cx^2}$

que verifiquen que su recta tangente en el origen tiene pendiente unidad (y'(0)=1)

Imponer la condición previa, linealizar el problema y escribir en forma matricial el sistema sobredeterminado resultante. Indicad las ecuaciones normales a resolver.

Nota:
$$\frac{d}{dx} \left(\frac{y_1(x)}{y_2(x)} \right) = \frac{y_1'(x)y_2(x) - y_1(x)y_2'(x)}{(y_2(x))^2}$$

Imponemos la condición/restricción y'(0) = 1

$$y'(x) = \frac{B(1+Cx^2)-(A+Bx)2Cx}{(1+Cx^2)^2}, \quad si\ y'(0) = 1 \rightarrow B = 1$$

La función racional para realizar el ajuste queda como:

$$y = \frac{A + x}{1 + Cx^2}$$

Esta función debe aproximar los datos de la tabla, es decir:

$$y(x_{\ell}) \otimes f_{\ell} \Rightarrow \frac{A + x_{\ell}}{1 + Cx_{\ell}^{2}} \otimes f_{\ell}; \ell = 1, 2, 3, 4$$

El problema se puede linealizar en la forma, no única, siguiente:

$$A + x_t \approx f_t(1 + Cx_t^2) \Longrightarrow A - (f_tx_t^2)C \approx f_t - x_t; t = 1, 2, 3, 4$$

que expresado que en forma matricial como un sistema sobredeterminado es:

$$\begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 0 \\ 1 & -12 \end{pmatrix} \begin{pmatrix} A \\ C \end{pmatrix} \approx \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$

Las ecuaciones normales a resolver (para un ajuste por mínimos cuadrados) para calcular AyC:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 0 & -12 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 0 \\ 1 & -12 \end{pmatrix} \begin{pmatrix} A \\ C \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 0 & -12 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$

Que son las mismas que se obtienen si se minimiza respecto a AyC la función:

$$E = \sum_{i=1}^{\infty} (A - (f_i x_i^2)C - (f_i - x_i))^2$$