# Документация по проекту AR Navigation

Сопрачёв Андрей

Версия: 0.1.4 March 9, 2020

# Contents

| 1  | Ocı         | новное описание проекта                   | į |  |
|----|-------------|-------------------------------------------|---|--|
| 1  | Сис         | стема Event                               | 5 |  |
| II | Д           | еление на модули                          | 9 |  |
| 2  | Вст         | упление                                   | 9 |  |
| 3  | Независимые |                                           |   |  |
|    | 3.1         | AR Unit                                   | 4 |  |
|    |             | 3.1.1 Некоторые примитивы                 | 5 |  |
|    |             | 3.1.2 ARInterface                         | 5 |  |
|    |             | 3.1.3 Эмуляция AR сессии                  | 6 |  |
|    |             | 3.1.3.1 AREventRecorder                   | 6 |  |
|    |             | 3.1.4 Алгоритм создания AR сцены в Unity  | 6 |  |
|    |             | 3.1.5 Пример AR сцены                     | 7 |  |
|    | 3.2         | GPS Unit                                  | 7 |  |
|    |             | 3.2.1 GPSInterface                        | 7 |  |
|    |             | 3.2.2 Алгоритм создания GPS сцены в Unity | 7 |  |
|    |             | 3.2.3 Пример GPS сцены                    | 7 |  |
|    | 3.3         | POS Unit                                  | 7 |  |
|    |             | 3.3.1 Задача позиционирования             | 7 |  |
| 4  | Над         | цстройки                                  | 8 |  |
|    | 4.1         | Pos + AR subUnit                          | 8 |  |
|    |             | 4.1.1 Описание                            | 8 |  |
|    |             | 4.1.2 ARMapTool                           | 8 |  |
|    |             | 4.1.3 Использование                       | 8 |  |
|    |             | 4.1.3.1 Создание ARMapScriptable          | 8 |  |
|    | 4.2         | Pos + GPS + AR subUnit                    | Ć |  |
|    |             | 4.2.1 Описание                            | ć |  |
|    |             | 4.2.2 GPSMapTool                          | G |  |
|    |             | 4.2.3 Использование                       | Ć |  |
|    |             | 4.2.3.1 Создание GPSMapScriptable         | ( |  |

## Part I

# Основное описание проекта



## 1 Система Event

# Part II

# Деление на модули

# 2 Вступление

Работа приложения разделена на несколько функциональных модулей, некоторые из которых являютя независимыми, а остальные – надстройками.

#### Независимые:

- 1. AR Unit модуль дополненной реальности, прослойка между нативными плагинами и общей системы
- 2. GPS Unit модуль позиционирования по GPS
- 3. Pos Unit модуль решающий задачу перевода координат из локальной в глобальную системы координат

#### Надстройки:

- 1. Pos + AR SubUnit надстройка над Pos Unit и AR Unit для проброски ивентов между ними
- 2. Pos + GPS + AR SubUnit надстройка над Pos + AR SubUnit и GPS Unit для проброски ивентов между ними



## 3 Независимые

#### 3.1 AR Unit

Задача AR Unit — предоставить приложению уровень абстракции над ARKit и ARCore плагинами Unity.

Является независимым модулем.

Модуль реализован на системе Events и предоставляет в использование **ARInterface** Для работы модуля на сцене необходим префаб **ARStarter** с дочерними **ARKitTracker** и **AR-CoreTracker**.

При запуске сцены  $\mathbf{ARStarter}$  активирует "Tracker" соответствующий текущей платформе (ios — ARKitTracker, android — ARCoreTracker).

Tracker выполняет функцию проброски арі между нативным Unity Plugin'ом и ARInterface. На объекте Tracker выполняются настройки для запуска AR сессии конкретной платформы.



#### 3.1.1 Некоторые примитивы

#### ARTransform

 $\begin{array}{l} {\rm position}: {\rm Vector} 3 \\ {\rm rotation}: {\rm Quaternion} \end{array}$ 

#### **ARImage**

name : String position : Vector3 rotation : Quaternion

#### **ARPlane**

identifier : String
position : Vector3
rotation : Quaternion
extent : Vector3

#### **ARStatus**

Stopped Initializing Running Unsupported Failed

#### ARTrackingState

ARTrackingStateUnSupported ARTrackingStateNotAvailable ARTrackingStateLimited ARTrackingStateNormal

#### 3.1.2 ARInterface

Разделён на две логические части — делегаты состояний и функции их вызывающие. Делегаты:

- 1. OnARTransformUpdate(ARTransform) обновление координаты устройства в пространстве
- 2. OnARCameraProjectionMatrixUpdate(Matrix4x4) обновление параметров камеры (fov etc)
- 3. On ImageAdd(AR<br/>Image) — первое появление AR метки в сцене
- 4. OnImageUpdate(ARImage) обновление положения существующей AR метки
- 5. OnImageRemoved(ARImage) удаление AR метки со сцены (≠ выход за пределы экрана, обычно вызывается в ARKit при остановке сцены)
- 6. OnPlaneAdd(ARPlane) первое появление ARPlane в сцене
- 7. OnPlaneUpdate(ARPlane) обновление положения существующей ARPlane
- 8. OnPlaneRemoved(ARPlane) обновление положения существующей ARPlane
- 9. OnStatusChange(ARStatus) изменение статуса AR сцены
- 10. OnTrackingStateChange(ARTrackingState) изменение статуса позиционированя
- 11. OnTrackingStateReasonChange(ARTrackingStateReason) информация о текущем статусе позиционирования (например: недостаточно освещения)
- 12. OnStartSession() запксе сессии
- 13. OnReStartSession() перезапуск сессии на лету
- 14. OnStopSession() остановка сессии
- 15. OnSessionFaild() критическая ошибка в сесии приводящая к её остановке (например: запрещён доступ к камере)
- 16. OnChangePaneMode(bool) изменение состояния трекинга плоскостей

#### 3.1.3 Эмуляция AR сессии

AR Unit предоствыляет объекты для полной эмуляции всех событий AR сесии.

Все необходимые файлы находятся в Assets/Units/ARUnit/Fake все дальнейшие пути указаны относительно этой директории.

Для полной эмуляции перетащить в сцену Prefabs/FAKE\_AR. Его дочерние объекты определяют поведение симуляции.

- 1. FakeARMain отвечает за эмуляуию статусоы сесии
- 2. Camera position AR generator отвечает за эмуляуию положения камеры в пространстве
- 3. FakeImage отвечает за эмуляцию трекинга картинки
- **3.1.3.1** AREventRecorder Объект позволяющий записать и сохранить в файл все события происходящие во время AR сесии, а после этот файл воспроизводить. Для использования добавить на сцену Prefabs/SessionRecorder.

#### 3.1.4 Алгоритм создания AR сцены в Unity

Bce необходимые файлы находятся в Assets/Units/ARUnit все дальнейшие пути указаны относительно этой директории.

#### 1. Создание сцены:

- (a) Перетащить на сцену префаб /Prefabs/ARUnit
- (b) При необходимости отключить объект ARFloorCalculate отвечающий за рассчёт уровня пола
- (c) На основную камеру добавить скрипт ARCamMoover и указать эту камеру в настройках ARKitTracker и ARCoreTracker

#### 2. Настройка:

- (a) IOS
  - і. Создать в проекте Unity ARKit<br/>Plugin/ARReferens Images Set и перетащить его на ARKit<br/>Tracker в соотвтетсвующие поле
  - ii. Создать в проекте UnityARKitPlugin/ARReferensImage для каждой желаемой метки, и указать ей текстуру и физический размер (ширину). Заполнить ими созданный ReferensImagesSet.
  - ііі. На объект трекинга добавить скрипт ARImageMover и в его имя указать имя метки
- (b) Android
  - i. Создать в проекте GoogleARCore/SessionConfig и перетащить его на ARCoreTracker в соотвтетсвующие поле
  - ii. В проекте выделить необходимые метки и создать GoogleARCore/AugmentedDataBase. Перетащить получившийся объект на созданный SessionConfig.
  - ііі. На объект трекинга добавить скрипт ARImageMover и в его имя указать имя метки
- 3. Запуск

Вызвать функцию ARInterface.StartARSession() из UI или другого скрипта. После инициализации ARInterface.ARStatus перейдёт в состояние Running и сессия будет успешно запущена.

#### 4. Остановка

Для остановки сессии вызвать функцию ARInterface.StopARSession()

#### 3.1.5 Пример AR сцены

Пример сцены расположен в Assets/Units/ARUnit/Example/FullARUnitExample в нём реализованы все возможности ARUnit

#### 3.2 GPS Unit

Задача GPS Unit предоставить уровень абстракции над location servise. Модуль реализован на системе Events и предоставляет в использование GPSInterface. Для работы модуля на сцене необходим префаб GPSTracker.

#### 3.2.1 GPSInterface

Разделён на две логические части — делегаты состояний и функции их вызывающие. Делегаты:

- 1. OnStartGPS(desiredAccuracyInMeters, updateDistanceInMeters) запусе GPS трекинга с заданными параметрами погрешности
- 2. OnStopGPS() остановка GPS трекинга
- 3. OnGPSStatusUpdate(GPSServiceStatus) событие обновления GPS статуса
- 4. OnGPSUpdate(GPSInfo) событие обновления координаты
- 5. OnStartCompass() запусе компаса
- 6. OnStopCompass() остановка компаса
- 7. OnGPSCompassUpdate(GPSCompassInfo) событие обновления азимута

#### 3.2.2 Алгоритм создания GPS сцены в Unity

Все необходимые файлы находятся в Assets/Units/GPSUnit все дальнейшие пути указаны относительно этой директории.

1. Создание сцены

Перетащить на сцену префаб /Prefabs/GPSTracker

2. Запсук

Вызвать функцию GPSInterface.StartGPS() для отслеживания позиционирования и GPSInterface.OnStartCompass() для отслеживания азимута

3. Отслеживание

Подписаться на события GPSInterface.OnGPSUpdate и GPSInterface.OnGPSCompassUpdate

4. Выключение

Вызвать функуию GPSInterface.StopGPS() и GPSInterface.StopCompass()

#### 3.2.3 Пример GPS сцены

Пример сцены расположен в Assets/Units/GPSUnit/Example/FullGPSUnitExample в нём реализованы все возможности GPSUnit

#### 3.3 POS Unit

#### 3.3.1 Задача позиционирования

Задачей позиционирования является вычисление матрицы перевода координат из локальной в глобальную систему координат.

Где локальна — система координат связанная с точкой запуска трекинга.

Глобальная — система координат связанная с положением на карте.

# 4 Надстройки

### 4.1 Pos + AR subUnit

#### 4.1.1 Описание

Задача надстройки — пробросить события между **ARUnit** и **PosUnit**. Состоит из двух объектов:

- 1. AREstimateGenerator отправляет событие OnEstimateAdd при обнаружение метки
- 2. ARToPositionTranslator отправляет событие обновления координаты устройства в локальной системе координат



#### 4.1.2 ARMapTool

Для корректной работы **AREstimateGenerator** необхрдимо знать координаты меток в глобальной системе координат, для этого используется **ARMapScriptable** настраевыемый с помощью **ARMap-Tool**.



#### 4.1.3 Использование

Для работы проброски ивентов перетащить префабы AREstimateGenerator и ARToPosition-Translator на сцену.

#### 4.1.3.1 Создание ARMapScriptable

- 1. Создать в проекте ARMapScriptable.
- 2. Создать на сцене GameObject и добавить на него компонент ARMapTool
- 3. Указать в TargetScriptable объект созданный в первом пункте
- 4. Перетащить нужное количество префабов A4 Target на сцену дочерним к ARMapTool
- 5. Назначить им названия и координаты на сцене
- 6. На объекте ARMapTool нажать кнопку **Set Anchors**

#### $4.2 \quad Pos + GPS + AR \quad subUnit$

#### 4.2.1 Описание

Задача надстройки — пробросить события между GPSUnit и PosUnit для этого используется AREstimateGenerator



## 4.2.2 GPSMapTool

Для корректной работы **GPSEstimateGenerator** необхрдимо знать свзязку между глобальной и геодезической системами координат, для этого используется **GPSMapScriptable** настраевыемый с помощью **GPSMapTool**.

# GPSMapScriptable latitude: float longitude: float altitude: float localPos: Vector3 width: float height: float filter: Texture2D

- 1. latitude широта
- 2. longitude долгота
- 3. altitude высота
- 4. localPos координата в локальной системе
- 5. width ширина карты в метрах
- 6. height высота карты в метрах
- 7. filter фильтр погрешности GPS, картинка в красный канал которой, записан коэффициент умножения текущей погрешности

#### 4.2.3 Использование

Для работы проброски ивентов перетащить префаб GPSEstimateGenerator на сцену.

#### 4.2.3.1 Создание GPSMapScriptable

- 1. Создать в проекте GPSMapScriptable.
- 2. Перетащить на сцену префаб GPSMapTool
- 3. Изменить спрайт карты на свой

- 4. Указать в TargetScriptable объект созданный в первом пункте
- 5. Указать в инспекторе координаты PivotMain и PivotScale
- 6. Объекты PivotMain и PivotScale установть на сцене в нужные координаты по спрайту карты
- 7. Нажать кнопку **Set size** для масштабирования карты и приведения её глобального размера к геодезическому
- 8. Нажать кнопку  $\mathbf{Set}$   $\mathbf{map}$  для записи в  $\mathbf{GPSMapScriptable}$