# Computational Learning Theory

TM Chapter 7

#### Outline

- Computational learning theory
- Setting 1: Active learner selects input instances to query teacher
- Setting 2: Teacher selects training examples for learner
- Setting 3: Randomly generated training instances to be labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis (VC) Dimension

## Why Study Computational Learning Theory?

What general laws govern/constrain inductive learning?

#### Computational learning theory aims to relate

- Probability of successful learning
- Number of training examples
- Complexity/size of hypothesis space
- Quality of approximating target concept
- Manner in which training examples are presented

#### Concept Learning for EnjoySport

#### Given

- Instance space X: Each instance  $x \in X$  is represented by input attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast
- Hypothesis space H: Each hypothesis  $h \in H$   $(h : X \to \{0, 1\})$  is represented by a conjunction of constraints on input attributes (e.g.,  $\langle Sunny, ?, ?, Strong, ?, Same \rangle$ )
- Unknown target concept/function *EnjoySport*:  $c: X \rightarrow \{0, 1\}$
- Noise-free training examples D of the form  $\langle x, c(x) \rangle$ : +ve and -ve training examples of the target concept c

Determine a hypothesis  $h \in H$  that is consistent with D

Determine a hypothesis  $h \in H$  that is consistent with  $\{\langle x, c(x) \rangle\}_{x \in X}$ ?

## Sample Complexity

How many training examples suffice to learn the target concept c?

- 1. Active learner repeatedly selects input instance x to query a teacher for c(x)
- 2. Teacher (who knows c) selects training examples  $\langle x, c(x) \rangle$  for learner
- 3. Some random process (e.g., nature) repeatedly generates input instance x to query a teacher for c(x)

### Sample Complexity: Setting 1

Active learner repeatedly selects input instance x to query a teacher for c(x) (assume c is in learner's H)

#### Optimal query strategy?

- Select input instance *x* that satisfies exactly half of hypotheses in version space (if possible)
- Version space reduces by half with each training example, hence requiring at least  $\lceil \log_2(VS_{H,D}) \rceil$  examples to find target concept c

### Sample Complexity: Setting 2

Teacher (who knows c) selects training examples  $\langle x, c(x) \rangle$  for learner (assume c is in learner's H)

Optimal teaching strategy? Depends on H used by learner

- Consider H = conjunctions of up to n Boolean literals and their negations
- How many training examples suffice to learn c?

### Sample Complexity: Setting 3

#### Given

- Set *X* of input instances
- Set *H* of hypotheses
- Set C of possible target concepts/functions
- Training instances randomly generated by a fixed, unknown probability distribution *Q* over *X*

Learner observes a set D of noise-free training examples of the form  $\langle x, c(x) \rangle$  of some target concept  $c \in C$  where training instance x is randomly sampled from Q to query teacher for c(x)

Learner has to output a hypothesis h to approximate c where h is evaluated by its performance on new input instances randomly sampled from Q

## True Error of a Hypothesis

**Definition.** The **true error**  $error_Q(h)$  of hypothesis h w.r.t. target concept c and distribution Q is the probability that h misclassifies an input instance x randomly sampled from Q:

$$error_{Q}(h) = P_{x \sim Q}(h(x) \neq c(x))$$
.

#### Instance space X



#### Two Notions of Error

**True error**  $error_Q(h)$  of hypothesis h w.r.t. target concept c

• How often  $h(x) \neq c(x)$  over input instances randomly sampled from Q

**Training error**  $error_D(h) = (1/|D|) \sum_{\langle x, c(x) \rangle \in D} (1 - \delta_{h(x),c(x)})$  of hypothesis h w.r.t. target concept c where  $\delta_{h(x),c(x)}$  is of value 1 if h(x) = c(x), and 0 otherwise

• How often  $h(x) \neq c(x)$  over training instances

Key question. Can the **true error** of h be bounded given the **training error** of h?

• First consider when **training error** of *h* is 0 (i.e.,  $h \in VS_{H,D}$ )

### Exhausting the Version Space

**Definition.** The version space  $VS_{H,D}$  is said to be  $\epsilon$ -exhausted w.r.t. c and Q iff every hypothesis  $h \in VS_{H,D}$  has error less than  $\epsilon$  w.r.t. c and Q:

$$\forall h \in VS_{H,D} \ error_{Q}(h) < \epsilon$$
.

Hypothesis space H



**Theorem 1 (Haussler 1988).** If H is finite and D is a set of independent random examples ( $|D| \ge 1$ ) of some target concept c, then for any  $0 \le \epsilon \le 1$ , the probability that  $VS_{H,D}$  is not  $\epsilon$ -exhausted (w.r.t. c) is at most  $|H| \exp(-\epsilon |D|)$ .

#### Proof.

- 1.  $VS_{H,D}$  is not  $\epsilon$ -exhausted iff  $\exists h \in H \ h \in VS_{H,D} \land error_{Q}(h) \geq \epsilon$  w.r.t. c
- 2.  $error_Q(h) = P_{x \sim Q}(h(x) \neq c(x)) \geq \epsilon$
- 3.  $P_{x \sim Q}(h(x) = c(x)) \le 1 \epsilon$ . That is, the probability that h with  $error_Q(h) \ge \epsilon$  is consistent with one random example is at most  $1 \epsilon$

Proof (Cont'd).

- 4. The probability that h with  $error_Q(h) \ge \epsilon$  is consistent with |D| independent random examples is at most  $(1 \epsilon)^{|D|}$ :  $P(h \in VS_{H,D} \land error_Q(h) \ge \epsilon) \le (1 \epsilon)^{|D|}$
- 5.  $P(\exists h \in H \ h \in VS_{H,D} \land error_Q(h) \ge \epsilon) \le |H|(1 \epsilon)^{|D|}$ , by union bound
- 6.  $P(VS_{H,D} \text{ is not } \epsilon\text{-exhausted}) \leq |H|(1 \epsilon)^{|D|} \leq |H| \exp(-\epsilon|D|),$ by Step 1 and  $(1 - \epsilon) \leq \exp(-\epsilon)$  for any  $0 \leq \epsilon \leq 1$

**Theorem 1 (Haussler 1988).** If H is finite and D is a set of independent random examples ( $|D| \ge 1$ ) of some target concept c, then for any  $0 \le \epsilon \le 1$ , the probability that  $VS_{H,D}$  is not  $\epsilon$ -exhausted (w.r.t. c) is at most  $|H| \exp(-\epsilon |D|)$ .

Limitation. Bound is loose (useless) due to large (infinite) H Implication. This bounds the probability that a concept learning algorithm outputs a consistent hypothesis h with  $error_O(h) \ge \epsilon$ 

To determine the no. |D| of training examples required to reduce this probability to be at most  $\delta$ ,

$$|H| \exp(-\epsilon |D|) \le \delta$$
.

Then,  $|D| \ge (1/\epsilon) (\ln |H| + \ln (1/\delta))$ .

**Corollary 1.** Let  $0 < \epsilon, \delta \le 1$ . If H is finite and D is a set of independent random examples of some target concept c s.t.  $|D| \ge (1/\epsilon)$  ( $\ln |H| + \ln (1/\delta)$ ), then the probability that  $VS_{H,D}$  is  $\epsilon$ -exhausted (w.r.t. c) is at least  $1 - \delta$ :

$$P(\forall h \in VS_{H,D} \ error_Q(h) < \epsilon) \ge 1 - \delta$$
.

Example 1. H = conjunctions of up to n Boolean literals and their negations. Then,  $|H| = 3^n$  and  $|D| \ge (1/\epsilon)$   $(n \ln 3 + \ln (1/\delta))$ 

Example 2. *H* is as given in *EnjoySport* (|H| = 973). To guarantee with probability of at least .95 that  $VS_{H,D}$  contains only hypotheses with  $error_{Q}(h) < .1$ ,  $|D| \ge (1/.1)$  ( $\ln 973 + \ln (1/.05)$ ) = 98.76

## PAC Learning

Consider a class C of possible target concepts defined over a set X of input instances of length n, and a learner L using hyp. space H.

**Definition.** The concept class C is **PAC-learnable** by L using H iff for all  $c \in C$ , distributions Q over X, and  $0 < \epsilon, \delta \le 1$ , the probability that a learner L outputs a hypothesis  $h \in H$  with  $error_Q(h) \le \epsilon$  is at least  $1 - \delta$  in time that is polynomial in  $1/\epsilon, 1/\delta, n$ , and size(c).

Implication 1. Given that C is **PAC-learnable** by L, if L incurs some minimum time to process each training example, then L learns from a polynomial no. of training examples

Implication 2. To show that C is **PAC-learnable** by L, show that each  $c \in C$  can be learned from a polynomial no. of training examples using polynomial time per training example

## Conjunctions of Boolean Literals are PAC-Learnable

C = conjunctions of up to n Boolean literals and their negations.

**Theorem 2.** C is **PAC-learnable** by FIND-S using H = C.

Proof.

- 1. For all  $c \in C$ ,  $P(\forall h \in VS_{H,D} \ error_{Q}(h) < \epsilon) \ge 1 \delta$  in no. of training examples that is polynomial in n,  $1/\epsilon$ , and  $1/\delta$ , and independent of size(c), by Corollary 1 & Example 1 on page 15
- 2. For all  $c \in C$ , the probability that FIND-S outputs  $h \in VS_{H,D} \subseteq H$  with  $error_Q(h) < \epsilon$  is at least  $1 \delta$  in no. of training examples described in Step 1

## Conjunctions of Boolean Literals are PAC-Learnable

C = conjunctions of up to n Boolean literals and their negations.

**Theorem 2.** C is **PAC-learnable** by FIND-S using H = C.

Proof (Cont'd).

- 3. To process each training example, FIND-S incurs time that is linear in n and independent of  $1/\epsilon$ ,  $1/\delta$ , and size(c)
- 4. For all  $c \in C$ , the probability that FIND-S outputs  $h \in VS_{H,D} \subseteq H$  with  $error_Q(h) < \epsilon$  is at least  $1 \delta$  in time that is polynomial in n,  $1/\epsilon$ , and  $1/\delta$ , and independent of size(c), by Steps 2 and 3
- 5. C is PAC-learnable by FIND-S, by Implication 2 on page 16