Lab 2. 시뮬레이션 및 FPGA 프로그래밍

2017 Fall Logic Design Lab

Department of Computer Science and Engineering

Seoul National University

Outline

- 1. FPGA 및 Xilinx ISE 소개
- 2. Xilinx ISE를 이용한 회로 설계 및 시뮬레이션
- 3. SNU Logic Design 보드 실습
- 4. XOR 게이트 설계 및 시뮬레이션
- 5. 복잡한 논리식 설계 및 시뮬레이션

FPGA 및 Xilinx ISE 소개

- FPGA (Field Programmable Gate Array)
 - 내부 논리 기능 및 연결을 직접 프로그램이 가능한 반도체 소자로 전자 회로 개발 시 설계 및 검증과정에서 주로 사용
 - Spartan-3AN TQG144: Xilinx 사의 FPGA 모델로, 순차 로직이나
 조합 로직을 구현할 수 있는 CLB (Configurable Logic Block)들로 구성됨

Xilinx ISE

- Xilinx에서 만든 하드웨어설계, 합성 및 분석 용 소프트웨어
- 회로도 및 HDL (Hardware Description Language) 등을 이용하여
 시스템을 설계하고 시뮬레이션, 실제 디바이스 합성 등 하드웨어 설계
 과정에 필요한 전반적인 기능 지원

Xilinx ISE 를 이용한 회로도(Schematic) 설계 (1)

Xilinx ISE 실행 후 File - New Project 클릭

Xilinx ISE 를 이용한 회로도(Schematic) 설계 (2)

Xilinx ISE 실행 후 File - New Project 클릭

프로젝트 설정

■ 프로젝트 셋팅을 다음과 같이 설정

소스 파일 추가 (1)

2. Target device 마우스 우 클릭 후 "New Source..." 선택

소스 파일 추가 (2)

Source type 중 Schematic 선택 후 파일명 입력

소스 파일 추가 (3)

Source type 중 Schematic 선택 후 파일명 입력

Schematic에 새로운 심볼 추가 (1)

Schematic에 새로운 심볼 추가 (2)

And2 게이트 추가

I/O 시그널 추가

게이트 Pin 모두 I/O Marker 추가

I/O 시그널 이름 설정 (1)

I/O 시그널 이름 설정 (2)

그림과 같이 InputA, InputB, OutputA로 이름 설정

Xilinx ISE를 통한 시뮬레이션

Test fixture는 HDL (Hardware Description Language)로 작성
 되는 파일로, UUT (Unit Under Test) 컴포넌트의 동작을 기술함

Test Fixture 파일 추가 (1)

Verilog Test Fixture 선택 후 파일 이름 입력

Test Fixture 파일 추가 (2)

■ Test fixture과 연결할 schematic 파일 선택

Test Fixture 파일 추가 (3)

Test fixture 파일이 생성되고 기본소스가 작성된 Verilog 창이 열림

Test Fixture 코드 작성

```
// Verilog test fixture created
2
                                                   Timescale 정의(e.g., #1 = 1ns)
    timescale 1ns / 1ps
 3
   module Hello Hello sch tb();
   // Inputs
      reg InputA;
      reg InputB;
10
   // Output
11
      wire OutputA;
12
13
   // Bidirs
14
                                                  UUT 및 I/O 시그널 파라미터 정의
15
   // Instantiate the UUT
16
      Hello UUT (
17
         .InputA(InputA),
18
         .InputB(InputB),
19
         .OutputA (OutputA)
20
      );
21
                                             두 입력 모두 0으로 초기화
   // Initialize Inputs
22
      initial begin
23
            InputA = 0;
24
            InputB = 0;
25
            #100
26
            InputA = 1;
27
                                               100 ns 대기
            #100
28
            InputA = 0;
29
            InputB = 1;
30
            #100
31
            InputA = 1;
32
            InputB = 1;
33
34
      end
   endmodule
```

시뮬레이션을 통한 기능 검증

시뮬레이션 결과

SNU Logic Design 보드 실습

- SNU Logic Design Board
 - Spartan-3AN TQG144 FPGA 탑재

Power connector

JTAG Header

6 output LEDs

6 7-segment LEDs

DIP switch

Push button

Mode select switch

User Constraints File (UCF)

- 사용자 constraints를 기술하기 위한 ASCII text 파일
- 모듈 포트 신호들이 어떻게 물리적인 핀에 연결되어야 하는지 기술
 - 보드 전체 핀 연결은 SNU Logic Design Board User's Manual 참고

UCF 파일 추가

■ Implementation Constraints File 선택 후 파일 이름 입력

UCF 파일 편집

선언한 I/O 포트를 Push button과 User LED로 연결

올바른 I/O 포트 이름 확인

1 NET "InputA" LOC = P47;
2 NET "InputB" LOC = P48;
3 NET "OutputA" LOC = P87;
4

G.			1						
	Pin Num		Component			Pin Num		Component	
		3		A	٦		48	Tactile Switch [SW2]	
		4		В			49	Tactile Switch [SW3]	
		5	7-Segment	С			50	Tactile Switch [SW4]	
		6	Display	D			51	Tactile Switch [SW5]	
		7	[J1]	Е			54	Tactile Switch [SW6]	
		8		F			55		A
		10		G			58		В
	—	11		A			59	7-Segment	С
핀 번호 확인		12		В			60	Display	D
		13	7-Segment	С			62	[J4]	Е
		15	Display	D			63		F
	-	16	[J2]	E			64		G
		18		F			68		A
		19		G			69	7-Segment	В
		20		A			70		С
	P1	21	7-Segment	В		P2	71	Display	D
		24	-	С			72	[J5]	Е
		25	Display	D			75		F
		27 28	[J3]	E F			76 77		G A
	-	29		G			78		B
	-	30		1			79	7-Segment	С
	-	31		2			82	Display	D
	-	32		3			83		E
		33	DIP	4			84	[J6]	F
	ŀ	41		5			85		G
	ł	42	Switch	6			87	LED [D1]	Red
		43	[DipSW1]	7			88	LED [D2]	Yellow
	j	44		8			90	LED [D3]	Green
	ļ	45		9			91	LED [D4]	Red
		46		10			92	LED [D5]	Yellow
		47	Tactile Switch [SW1]				93	LED [D6]	Green

SNU Logic Design Board User's Manual

프로그래밍 파일 생성

Design 탭 – Generate Programming File 실행

 정상적으로 수행 시 콘솔 창에 Process "Generate Programming File" completed successfully 메시지가 출력됨

타겟 디바이스 설정 (1)

Design 탭 – Configure Target Device 실행

타겟 디바이스 설정 (2)

Design 탭 – Configure Target Device 실행

29/41

전원 케이블 제작

- 선을 같은 색끼리 꼬고, 꼬인 줄끼리 다시 꼰 뒤 방향에 맞게 포트에 연결
- 전선 피복 제거

실습 보드와 컴퓨터 JTAG 연결

- TDI, TDO, TCK, TMS, VREF, GND 신호를 기판에 표시된 대로 연결

타겟 보드 Boundary Scan

프로그램할 FPGA Bit File 선택

프로그램 모드 설정 (1)

- FPGA 에만 프로그램 하는 경우
 - 프로그래밍 속도가 빠름
 - 전원 차단될 시 프로그램한 내용이 삭제됨
- 보드의 딥 스위치를 아래와 같이 설정

프로그램 모드 설정 (2)

- FPGA 와 Flash에 프로그램 하는 경우
 - 프로그래밍 속도가 느림
 - 전원이 차단돼도 프로그램한 내용이 삭제되지 않음
- 보드의 딥 스위치를 아래와 같이 설정

FPGA 프로그램

Push button과 LED를 통해 결과 확인

실험 후 유의사항

■ 실습 완료 후, 불필요한 파일들을 제거

실험 1 - AND/OR/NOT/NAND/NOR/XOR 시뮬레이션

- 목표
 - AND/OR/NOT/NAND/NOR/XOR 게이트의 결과값 확인
- 실험 내용
 - Xilinx ISE 14.7를 이용하여 아래의 schematic 구현
 - 시뮬레이션 결과와 진리표 확인
- 제출 사항
 - 구현한 schematic과 시뮬레이션 결과 스크린샷
 - 시뮬레이션 결과에 따른 각 게이트들의 진리표
- Schematic

실험 2 – AND/OR/INV 게이트를 이용한 XOR 게이트 구현

목표

 2-input AND, 2-input OR, Inverter 게이트를 이용하여 2-input XOR 게이트 구현

■ 실험 내용

- Xilinx ISE 14.7를 이용하여 2-input XOR 게이트 schematic 구현
- 시뮬레이션 결과 확인

■ 제출 사항

- 구현한 XOR 게이트 schematic과 시뮬레이션 결과 스크린샷
- 시뮬레이션에 따른 2-input XOR 게이트의 진리표

실험 3 - 복잡한 논리식 구현

- 목표
 - De Morgan 법칙을 이용해서 식 완성

$$\overline{a \cdot b + c} = (+) \cdot ()$$

①, ②번 식을 각각 2-input AND, 2-input OR, Inverter 게이트를 이용해 구현하고, 시뮬레이션을 통해 결과 확인

- 실험 내용
 - De Morgan 법칙을 이용하여 ②번 식 유도
 - Xilinx ISE 14.7를 이용하여 ①, ②번 식 각각 schematic 구현
 - 시뮬레이션 결과 확인
- 제출 사항
 - De Morgan 법칙을 이용한 ①, ②번 식 유도 과정
 - ①, ②번 식 각각에 대해 schematic과 시뮬레이션 결과 스크린샷
 - ①번 식에 대한 진리표

실험과제 제출 안내

보고서 포함 사항

- 실험 1 schematic과 시뮬레이션 결과 스크린샷, 진리표
- 실험 2 schematic과 시뮬레이션 결과 스크린샷, 진리표
- 실험 3 De Morgan 법칙을 이용한 식 유도 과정, schematic과 시뮬레이션 결과 스크린샷, 진리표
- 추가적인 내용은 자유롭게 작성
- 하나의 문서로 정리

■ 제출 방법 및 기한

- ETL **과제 게시판**에 팀별로 제출
- 일요일 오후 6시까지