Package 'SeuratObject'

November 7, 2022

```
Version 4.1.3
Date 2022-11-07
Description Defines S4 classes for single-cell genomic data and associated
      information, such as dimensionality reduction embeddings, nearest-neighbor
      graphs, and spatially-resolved coordinates. Provides data access methods and
      R-native hooks to ensure the Seurat object is familiar to other R users. See
      Satija R, Farrell J, Gennert D, et al (2015) <doi:10.1038/nbt.3192>,
      Macosko E, Basu A, Satija R, et al (2015) <doi:10.1016/j.cell.2015.05.002>,
      and Stuart T, Butler A, et al (2019) <doi:10.1016/j.cell.2019.05.031> for
      more details.
URL https://mojaveazure.github.io/seurat-object/,
      https://github.com/mojaveazure/seurat-object
BugReports https://github.com/mojaveazure/seurat-object/issues
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Depends R (>= 4.0.0), sp (>= 1.5.0)
Imports future, future.apply, grDevices, grid, Matrix (>= 1.5.0),
      methods, progressr, Rcpp (>= 1.0.5), rlang (>= 0.4.7), stats,
      tools, utils
Suggests ggplot2, rgeos, testthat
Collate 'RcppExports.R' 'zzz.R' 'generics.R' 'graph.R' 'assay.R'
      'centroids.R' 'command.R' 'data.R' 'default.R' 'jackstraw.R'
      'dimreduc.R' 'segmentation.R' 'keymixin.R' 'molecules.R'
      'spatial.R' 'fov.R' 'logmap.R' 'neighbor.R' 'seurat.R'
      'utils.R'
LinkingTo Rcpp, RcppEigen
```

Type Package

Title Data Structures for Single Cell Data

NeedsCompilation yes

Author Rahul Satija [aut] (https://orcid.org/0000-0001-9448-8833),

Andrew Butler [aut] (https://orcid.org/0000-0002-7693-8957),

Paul Hoffman [aut, cre] (https://orcid.org/0000-0002-3044-0897),

Tim Stuart [aut] (https://orcid.org/0000-0001-6682-6743),

Shiwei Zheng [ctb] (https://orcid.org/0000-0001-6365-8254),

Patrick Roelli [ctb],

Yuhan Hao [ctb] (https://orcid.org/0000-0002-1810-0822)

Maintainer Paul Hoffman <seurat@nygenome.org>

Repository CRAN

Date/Publication 2022-11-07 18:50:02 UTC

R topics documented:

SeuratObject-package	4
AddMetaData	5
nggregate	6
as.Centroids	7
as.Graph	7
as.Neighbor	8
ns.Seurat	9
as.sparse	10
Assay-class	10
Assay-methods	11
AssayData	14
Assays	15
AttachDeps	16
Boundaries	17
Cells	18
CellsByIdentities	18
CellsByImage	19
Centroids-class	20
Centroids-methods	20
CheckGC	22
Command	23
CreateAssayObject	23
CreateCentroids	24
CreateDimReducObject	25
CreateFOV	26
CreateMolecules	27
	28
CreateSeuratObject	29
Crop	31
	31

DefaultDimReduc	
DefaultFOV	
DimReduc-class	
DimReduc-methods	
Distances	
Embeddings	
FetchData	
FilterObjects	
FOV-class	
FOV-methods	
GetImage	
GetTissueCoordinates	
Graph-class	
HVFInfo	45
dents	47
mages	50
ndex	50
ndices	51
sGlobal	52
sMatrixEmpty	52
sNamedList	53
ackStrawData-class	53
ackStrawData-methods	54
S	55
Key	56
Loadings	57
LogMap-class	58
LogSeuratCommand	
MatchCells	60
Misc	61
Molecules-class	62
Molecules-methods	63
Neighbor-class	64
Neighbor-methods	
Overlay	
PackageCheck	
bbmc_small	
Project	
Radius	
RandomName	
RenameAssays	
RenameCells	69
RowMergeSparseMatrices	71
4list	72
Segmentation-class	73
Segmentation-methods	73
et-if-na	75
Seurat-class	76
,	. , 0

93

Seurat-methods																									
SeuratCommand-cla	ss .	٠	 ٠	٠	•	 ٠	•	 ٠	٠	•	 ٠	٠	•	•	• •	•	٠	٠	•	•	•	•	•	•	•
SeuratCommand-me	thods	S .																							
Simplify																									
SpatialImage-class																									
SpatialImage-metho	ds .																								
Stdev																									
Theta																									
Tool																									
UpdateSeuratObject																									
UpdateSlots																									
Version																									
WhichCells																									

SeuratObject-package SeuratObject: Data Structures for Single Cell Data

Description

Index

Defines S4 classes for single-cell genomic data and associated information, such as dimensionality reduction embeddings, nearest-neighbor graphs, and spatially-resolved coordinates. Provides data access methods and R-native hooks to ensure the Seurat object is familiar to other R users. See Satija R, Farrell J, Gennert D, et al (2015) doi:10.1038/nbt.3192, Macosko E, Basu A, Satija R, et al (2015) doi:10.1016/j.cell.2015.05.002, and Stuart T, Butler A, et al (2019) doi:10.1016/j.cell.2019.05.031 for more details.

Author(s)

Maintainer: Paul Hoffman <seurat@nygenome.org> (ORCID)

Authors:

- Rahul Satija <rsatija@nygenome.org> (ORCID)
- Andrew Butler <abutler@nygenome.org> (ORCID)
- Tim Stuart <tstuart@nygenome.org> (ORCID)

Other contributors:

- Jeff Farrell < jfarrell@g.harvard.edu> [contributor]
- Shiwei Zheng <szheng@nygenome.org> (ORCID) [contributor]
- Christoph Hafemeister < chafemeister@nygenome.org > (ORCID) [contributor]
- Yuhan Hao <yhao@nygenome.org> (ORCID) [contributor]

AddMetaData 5

See Also

Useful links:

```
• https://mojaveazure.github.io/seurat-object/
```

- https://github.com/mojaveazure/seurat-object
- Report bugs at https://github.com/mojaveazure/seurat-object/issues

AddMetaData

Add in metadata associated with either cells or features.

Description

Adds additional data to the object. Can be any piece of information associated with a cell (examples include read depth, alignment rate, experimental batch, or subpopulation identity) or feature (ENSG name, variance). To add cell level information, add to the Seurat object. If adding feature-level metadata, add to the Assay object (e.g. object[["RNA"]])

Usage

```
AddMetaData(object, metadata, col.name = NULL)
## S3 method for class 'Assay'
AddMetaData(object, metadata, col.name = NULL)
## S3 method for class 'Seurat'
AddMetaData(object, metadata, col.name = NULL)
```

Arguments

object An object
metadata A vector, list, or data.frame with metadata to add

col.name A name for meta data if not a named list or data.frame

Value

object with metadata added

Examples

```
cluster_letters <- LETTERS[Idents(object = pbmc_small)]
names(cluster_letters) <- colnames(x = pbmc_small)
pbmc_small <- AddMetaData(
  object = pbmc_small,
  metadata = cluster_letters,
  col.name = 'letter.idents'
)
head(x = pbmc_small[[]])</pre>
```

6 aggregate

agg	reg	ate
uss	ເບຣ	acc

Aggregate Molecules into an Expression Matrix

Description

Aggregate Molecules into an Expression Matrix

Usage

```
## S3 method for class 'FOV'
aggregate(x, by = NULL, set = NULL, drop = TRUE, ...)
## S3 method for class 'Molecules'
aggregate(x, by, drop = TRUE, ...)
```

Arguments

X	An object with spatially-resolved molecule information
by	Name of a Segmentation within object or a Segmentation object
set	Name of molecule set to aggregate
drop	Drop molecules not present in a segmentation; if FALSE, adds a column called "boundless" consisting of molecule counts not in a segmentation
	Arguments passed to other methods

Value

An expression matrix

Progress Updates with progressr

This function uses **progressr** to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about **progressr**, please read vignette("progressr-intro")

Parallelization with future

This function uses **future** to enable parallelization. Parallelization strategies can be set using plan. Common plans include "sequential" for non-parallelized processing or "multisession" for parallel evaluation using multiple R sessions; for other plans, see the "Implemented evaluation strategies" section of ?future::plan. For a more thorough introduction to **future**, see vignette("future-1-overview")

as.Centroids 7

as.Centroids

Convert Segmentation Layers

Description

Convert Segmentation Layers

Usage

```
as.Centroids(x, nsides = NULL, radius = NULL, theta = NULL, ...)
as.Segmentation(x, ...)
## S3 method for class 'Segmentation'
as.Centroids(x, nsides = NULL, radius = NULL, theta = NULL, ...)
## S3 method for class 'Centroids'
as.Segmentation(x, ...)
```

Arguments

X	An object
nsides	The number of sides to represent cells/spots; pass Inf to plot as circles
radius	Radius of shapes when plotting
theta	Angle to adjust shapes when plotting
	Arguments passed to other methods

Value

```
as.Centroids: A Centroids object
as.Segmentation: A Segmentation object
```

as.Graph

Coerce to a Graph Object

Description

Convert a matrix (or Matrix) to a Graph object

8 as.Neighbor

Usage

```
as.Graph(x, ...)
## S3 method for class 'Matrix'
as.Graph(x, ...)
## S3 method for class 'matrix'
as.Graph(x, ...)
## S3 method for class 'Neighbor'
as.Graph(x, weighted = TRUE, ...)
```

Arguments

x The matrix to convert

... Arguments passed to other methods (ignored for now)

weighted If TRUE, fill entries in Graph matrix with value from the nn.dist slot of the

Neighbor object

Value

A Graph object

Examples

```
# converting sparse matrix
mat <- Matrix::rsparsematrix(nrow = 10, ncol = 10, density = 0.1)
rownames(x = mat) <- paste0("feature_", 1:10)
colnames(x = mat) <- paste0("cell_", 1:10)
g <- as.Graph(x = mat)

# converting dense matrix
mat <- matrix(data = 1:16, nrow = 4)
rownames(x = mat) <- paste0("feature_", 1:4)
colnames(x = mat) <- paste0("cell_", 1:4)
g <- as.Graph(x = mat)</pre>
```

as.Neighbor

Coerce to a Neighbor Object

Description

Convert objects to Neighbor objects

as.Seurat 9

Usage

```
as.Neighbor(x, ...)
## S3 method for class 'Graph'
as.Neighbor(x, ...)
```

Arguments

x An object to convert to Neighbor

... Arguments passed to other methods

Value

A Neighbor object

as.Seurat

Coerce to a Seurat Object

Description

Convert objects to Seurat objects

Usage

```
as.Seurat(x, ...)
```

Arguments

x An object to convert to class Seurat

... Arguments passed to other methods

Value

A Seurat object generated from x

10 Assay-class

as.sparse

Cast to Sparse

Description

Convert dense objects to sparse representations

Usage

```
as.sparse(x, ...)
## S3 method for class 'data.frame'
as.sparse(x, row.names = NULL, ...)
## S3 method for class 'Matrix'
as.sparse(x, ...)
## S3 method for class 'matrix'
as.sparse(x, ...)
## S3 method for class 'ngCMatrix'
as.sparse(x, ...)
```

Arguments

x An object

... Arguments passed to other methods

row.names NULL or a character vector giving the row names for the data; missing values are

not allowed

Value

A sparse representation of the input data

Assay-class

The Assay Class

Description

The Assay object is the basic unit of Seurat; each Assay stores raw, normalized, and scaled data as well as cluster information, variable features, and any other assay-specific metadata. Assays should contain single cell expression data such as RNA-seq, protein, or imputed expression data.

Assay-methods 11

Slots

```
counts Unnormalized data such as raw counts or TPMs
data Normalized expression data
scale.data Scaled expression data
key Key for the Assay
assay.orig Original assay that this assay is based off of. Used to track assay provenance
var.features Vector of features exhibiting high variance across single cells
meta.features Feature-level metadata
misc Utility slot for storing additional data associated with the assay
```

See Also

Assay-methods

Assay-methods

Assay Methods

Description

Methods for Assay objects for generics defined in other packages

```
## S3 method for class 'Assay'
x[i, j, ...]

## S3 method for class 'Assay'
x[[i, ..., drop = FALSE]]

## S3 method for class 'Assay'
dim(x)

## S3 method for class 'Assay'
dimnames(x)

## S3 method for class 'Assay'
head(x, n = 10L, ...)

## S3 method for class 'Assay'
merge(x = NULL, y = NULL, add.cell.ids = NULL, merge.data = TRUE, ...)

## S3 method for class 'Assay'
subset(x, cells = NULL, features = NULL, ...)
```

12 Assay-methods

```
## S3 method for class 'Assay'
tail(x, n = 10L, ...)

## S4 replacement method for signature 'Assay,ANY,ANY,ANY'
x[[i, j, ...]] <- value

## S4 method for signature 'Assay'
colMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Assay'
colSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Assay'
rowMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Assay'
rowSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Assay'
show(object)</pre>
```

Arguments

x, object An Assay object	x. ob	iect	An Assay	obiec
---------------------------	-------	------	----------	-------

i, features For [[: metadata names; for all other methods, feature names or indices

j, cells Cell names or indices

... Arguments passed to other methods

drop See drop

n an integer vector of length up to dim(x) (or 1, for non-dimensioned objects).

Values specify the indices to be selected in the corresponding dimension (or along the length) of the object. A positive value of n[i] includes the first/last n[i] indices in that dimension, while a negative value excludes the last/first abs(n[i]), including all remaining indices. NA or non-specified values (when length(n) < length(dim(x))) select all indices in that dimension. Must con-

tain at least one non-missing value.

A vector or list of one or more objects to merge

add.cell.ids A character vector of length(x = c(x, y)); appends the corresponding values

to the start of each objects' cell names

merge.data Merge the data slots instead of just merging the counts (which requires renormal-

ization); this is recommended if the same normalization approach was applied

to all objects

value Additional metadata to add

na.rm logical. Should missing values (including NaN) be omitted from the calculations?

dims completely ignored by the Matrix methods.

slot Name of assay expression matrix to calculate column/row means/sums on

Assay-methods 13

Value

[: The data slot for features i and cells j
[[: The feature-level metadata for i
dim: The number of features (nrow) and cells (ncol)
dimnames: Feature (row) and cell (column) names
head: The first n rows of feature-level metadata
merge: Merged object
subset: A subsetted Assay
tail: The last n rows of feature-level metadata
[[<-: x with metadata value added as i
colMeans: The column (cell-wise) means of slot
colSums: The column (cell-wise) sums of slot
rowMeans: The row (feature-wise) means of slot
show: Prints summary to stdout and invisibly returns NULL

Functions

- [: Get expression data from an Assay
- [[: Get feature-level metadata
- dim(Assay): Number of cells and features for an Assay
- dimnames(Assay): Cell- and feature-names for an Assay
- head(Assay): Get the first rows of feature-level metadata
- merge(Assay): Merge Assay objects
- subset(Assay): Subset an Assay
- tail(Assay): Get the last rows of feature-level metadata
- `[[`(x = Assay, i = ANY, j = ANY) <- value: Add feature-level metadata
- colMeans(Assay): Calculate colMeans on an Assay
- colSums(Assay): Calculate colSums on an Assay
- rowMeans(Assay): Calculate rowMeans on an Assay
- rowSums(Assay): Calculate rowSums on an Assay
- show(Assay): Overview of an Assay object

14 AssayData

AssayData

Get and Set Assay Data

Description

General accessor and setter functions for Assay objects. GetAssayData can be used to pull information from any of the expression matrices (eg. "counts", "data", or "scale.data"). SetAssayData can be used to replace one of these expression matrices

Usage

```
GetAssayData(object, slot, new.data, ...)

## S3 method for class 'Seurat'
GetAssayData(object, slot = "data", assay = NULL, ...)

## S3 method for class 'Seurat'
SetAssayData(object, slot = "data", new.data, assay = NULL, ...)

## S3 method for class 'Assay'
GetAssayData(object, slot = c("data", "scale.data", "counts"), ...)

## S3 method for class 'Assay'
SetAssayData(object, slot = c("data", "scale.data", "counts"), new.data, ...)
```

Arguments

object	An object
slot	Specific assay data to get or set
	Arguments passed to other methods
new.data	New assay data to add
assay	Specific assay to get data from or set data for; defaults to the default assay

Value

```
GetAssayData: returns the specified assay data
SetAssayData: object with the assay data set
```

Examples

```
# Get assay data from the default assay in a Seurat object
GetAssayData(object = pbmc_small, slot = "data")[1:5,1:5]
# Set an Assay slot through the Seurat object
```

Assays 15

```
count.data <- GetAssayData(object = pbmc_small[["RNA"]], slot = "counts")
count.data <- as.matrix(x = count.data + 1)
new.seurat.object <- SetAssayData(
    object = pbmc_small,
    slot = "counts",
    new.data = count.data,
    assay = "RNA"
)

# Get the data directly from an Assay object
GetAssayData(pbmc_small[["RNA"]], slot = "data")[1:5,1:5]

# Set an Assay slot directly
count.data <- GetAssayData(pbmc_small[["RNA"]], slot = "counts")
count.data <- as.matrix(x = count.data + 1)
new.assay <- SetAssayData(pbmc_small[["RNA"]], slot = "counts", new.data = count.data)</pre>
```

Assays

Query Specific Object Types

Description

List the names of Assay, DimReduc, Graph, Neighbor objects

Usage

```
Assays(object, slot = NULL)

Graphs(object, slot = NULL)

Neighbors(object, slot = NULL)

Reductions(object, slot = NULL)
```

Arguments

object A Seurat object

slot Name of component object to return

Value

If slot is NULL, the names of all component objects in this Seurat object. Otherwise, the specific object specified

16 AttachDeps

Examples

```
Assays(object = pbmc_small)
Graphs(pbmc_small)
Reductions(object = pbmc_small)
```

 ${\tt AttachDeps}$

Attach Required Packages

Description

Helper function to attach required packages. Detects if a package is already attached and if so, skips it. Should be called in .onAttach

Usage

```
AttachDeps(deps)
```

Arguments

deps

A character vector of packages to attach

Value

Invisibly returns NULL

Examples

```
# Use in your .onAttach hook
if (FALSE) {
   .onAttach <- function(libname, pkgname) {
     AttachDeps(c("SeuratObject", "rlang"))
   }
}</pre>
```

Boundaries 17

Boundaries

Get, Set, and Query Segmentation Boundaries

Description

Get, Set, and Query Segmentation Boundaries

Usage

```
Boundaries(object, ...)

DefaultBoundary(object)

DefaultBoundary(object, ...) <- value

Molecules(object, ...)

## S3 method for class 'FOV'
Boundaries(object, ...)

## S3 method for class 'FOV'
DefaultBoundary(object)

## S3 replacement method for class 'FOV'
DefaultBoundary(object, ...) <- value

## S3 method for class 'FOV'
Molecules(object, ...)
```

Arguments

object An object

... Arguments passed to other methods

value The name of a segmentation boundary to set as default

Value

Boundaries: The names of all segmentation boundaries present within object

DefaultBoundary: The name of the default segmentation boundary

DefaultBoundary<-: object with the default segmentation boundary set to value

Molecules: The names of all molecule sets present within object

18 CellsByIdentities

Cells

Cell and Feature Names

Description

Get the cell and feature names of an object

Usage

```
Cells(x, ...)
Features(x, ...)
## Default S3 method:
Cells(x, ...)
## S3 method for class 'DimReduc'
Cells(x, ...)
## S3 method for class 'Neighbor'
Cells(x, ...)
```

Arguments

x An object

... Arguments passed to other methods

Value

Cell: A vector of cell names

Features: A vector of feature names

Examples

```
Cells(x = pbmc_small)
```

CellsByIdentities

Get cell names grouped by identity class

Description

Get cell names grouped by identity class

CellsByImage 19

Usage

```
CellsByIdentities(object, idents = NULL, cells = NULL, return.null = FALSE)
```

Arguments

object A Seurat object

idents A vector of identity class levels to limit resulting list to; defaults to all identity

class levels

cells A vector of cells to grouping to

return.null If no cells are request, return a NULL; by default, throws an error

Value

A named list where names are identity classes and values are vectors of cells belonging to that class

Examples

```
CellsByIdentities(object = pbmc_small)
```

CellsByImage

Get a vector of cell names associated with an image (or set of images)

Description

Get a vector of cell names associated with an image (or set of images)

Usage

```
CellsByImage(object, images = NULL, unlist = FALSE)
```

Arguments

object Seurat object

images Vector of image names

unlist Return as a single vector of cell names as opposed to a list, named by image

name.

Value

A vector of cell names

Examples

```
## Not run:
CellsByImage(object = object, images = "slice1")
## End(Not run)
```

20 Centroids-methods

Centroids-class

The Centroids Class

Description

The Centroids Class

Slots

```
cells (character [n]) A vector of cell names; there should be as many cell names as there are points and no duplicate names

nsides (integer [1L]) The number of sides to draw when plotting centroids; must be either 0L for circles or greater than 3

radius (numeric [1L]) The radius of the shape when plotting the centroids

theta (numeric [1L]) The angle in degrees to adjust the shape when plotting the centroids
```

See Also

Centroids methods: Centroids-methods
Segmentation layer classes: Molecules-class, Segmentation-class

Centroids-methods

Centroids Methods

Description

Methods for Centroids objects

```
## S3 method for class 'Centroids'
Cells(x, ...)

## S3 method for class 'Centroids'
GetTissueCoordinates(object, full = TRUE, ...)

## S3 method for class 'Centroids'
Radius(object)

## S3 method for class 'Centroids'
RenameCells(object, new.names = NULL, ...)

## S3 method for class 'Centroids'
Theta(object)
```

Centroids-methods 21

```
## S3 method for class 'Centroids'
is.finite(x)
## S3 method for class 'Centroids'
is.infinite(...)
## S3 method for class 'Centroids'
length(x)
## S3 method for class 'Centroids'
lengths(x, use.names = TRUE)
## S3 method for class 'Centroids'
subset(x, cells = NULL, ...)
## S4 method for signature 'Centroids, character, ANY, ANY'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'Centroids, numeric, ANY, ANY'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'Centroids'
show(object)
```

Arguments

x, object	A Centroids object
	Arguments passed to other methods
full	Expand the coordinates to the full polygon
new.names	vector of new cell names
use.names	Ignored
i, cells	A vector of cells to keep; if NULL, defaults to all cells
j, drop	Ignored

Details

GetTissueCoordinates: Get cell spatial coordinates

Radius: Get the centroid radius RenameCells: Update cell names Theta: Get the offset angle

is.finite, is.infinite: Test to see if the centroids are circular or polygonal

length: Get the number of sides for the polygonal centroid lengths: Generate a run-length encoding of the cells present

subset, [: Subset a Centroids object to certain cells

show: Display an object summary to stdout

22 CheckGC

Value

GetTissueCoordinates: A data frame with three columns:

"x": the x-coordinate "y": the y-coordinate "cell": the cell name

If full is TRUE, then each coordinate will indicate a vertex for the cell polygon; otherwise, each coordinate will indicate a centroid for the cell

Radius The radius of the centroids

RenameCells: object with the cells renamed to new.names

Theta: The offset angle in degrees

is.finite: TRUE if the centroids are polygonal, FALSE if circular

is.infinite: The opposite of is.finite

length: 0 if the centroids are circular, otherwise the number of sides of the polygonal centroid

lengths: An rle object for the cells

subset, [: x subsetted to the cells specified by cells/i

show: Invisibly returns NULL

See Also

Centroids-class

CheckGC

Conditional Garbage Collection

Description

Call gc only when desired

Usage

```
CheckGC(option = "SeuratObject.memsafe")
```

Arguments

option

Value

Invisibly returns NULL

Command 23

Command

Get SeuratCommands

Description

Pull information on previously run commands in the Seurat object.

Usage

```
Command(object, ...)
## S3 method for class 'Seurat'
Command(object, command = NULL, value = NULL, ...)
```

Arguments

object An object

... Arguments passed to other methods

command Name of the command to pull, pass NULL to get the names of all commands run

value Name of the parameter to pull the value for

Value

Either a SeuratCommand object or the requested parameter value

CreateAssayObject

Create an Assay object

Description

Create an Assay object from a feature (e.g. gene) expression matrix. The expected format of the input matrix is features x cells.

```
CreateAssayObject(
  counts,
  data,
  min.cells = 0,
  min.features = 0,
  check.matrix = FALSE,
  ...
)
```

24 CreateCentroids

Arguments

counts	Unnormalized data such as raw counts or TPMs
data	Prenormalized data; if provided, do not pass counts
min.cells	Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff.
min.features	Include cells where at least this many features are detected.
check.matrix	Check counts matrix for NA, NaN, Inf, and non-integer values
	Arguments passed to as.sparse

Details

Non-unique cell or feature names are not allowed. Please make unique before calling this function.

Value

A Assay object

Examples

```
## Not run:
pbmc_raw <- read.table(
    file = system.file('extdata', 'pbmc_raw.txt', package = 'Seurat'),
    as.is = TRUE
)
pbmc_rna <- CreateAssayObject(counts = pbmc_raw)
pbmc_rna
## End(Not run)</pre>
```

CreateCentroids

Create a Centroids Objects

Description

Create a Centroids Objects

Usage

```
CreateCentroids(coords, nsides, radius, theta)
```

Arguments

coords	The coordinates of cell/spot centroids
nsides	The number of sides to represent cells/spots; pass Inf to plot as circles
radius	Radius of shapes when plotting
theta	Angle to adjust shapes when plotting

Value

A Centroids object

CreateDimReducObject Create a DimReduc object

Description

Create a DimReduc object

Usage

```
CreateDimReducObject(
  embeddings = new(Class = "matrix"),
  loadings = new(Class = "matrix"),
  projected = new(Class = "matrix"),
  assay = NULL,
  stdev = numeric(),
  key = NULL,
  global = FALSE,
  jackstraw = NULL,
  misc = list()
)
```

Arguments

embeddings	A matrix with the cell embeddings
loadings	A matrix with the feature loadings
projected	A matrix with the projected feature loadings
assay	Assay used to calculate this dimensional reduction
stdev	Standard deviation (if applicable) for the dimensional reduction
key	A character string to facilitate looking up features from a specific DimReduc
global	Specify this as a global reduction (useful for visualizations)
jackstraw	Results from the JackStraw function
misc	list for the user to store any additional information associated with the dimensional reduction

Value

A DimReduc object

26 CreateFOV

Examples

```
data <- GetAssayData(pbmc_small[["RNA"]], slot = "scale.data")
pcs <- prcomp(x = data)
pca.dr <- CreateDimReducObject(
  embeddings = pcs$rotation,
  loadings = pcs$x,
  stdev = pcs$sdev,
  key = "PC",
  assay = "RNA"
)</pre>
```

CreateF0V

Create Spatial Coordinates

Description

Create Spatial Coordinates

```
CreateFOV(coords, ...)
## S3 method for class 'Centroids'
CreateFOV(
  coords,
 molecules = NULL,
  assay = "Spatial",
 key = NULL,
 name = NULL,
  . . .
)
## S3 method for class 'data.frame'
CreateFOV(
  coords,
  type = c("segmentation", "centroids"),
  nsides = Inf,
  radius = NULL,
  theta = 0L,
 molecules = NULL,
  assay = "Spatial",
  key = NULL,
  name = NULL,
)
```

CreateMolecules 27

```
## S3 method for class 'list'
CreateFOV(coords, molecules = NULL, assay = "Spatial", key = NULL, ...)
## S3 method for class 'Segmentation'
CreateFOV(
   coords,
   molecules = NULL,
   assay = "Spatial",
   key = NULL,
   name = NULL,
   ...
)
```

Arguments

coords

... Arguments passed to other methods

molecules A data.frame with spatially-resolved molecule information or a Molecules object

assay Name of associated assay key Key for these spatial coordinates

Spatial coordinates

name When coords is a data.frame, Centroids, or Segmentation, name to store

coordinates as

type When providing a data.frame, specify if the coordinates represent a cell seg-

mentation or voxel centroids

nsides The number of sides to represent cells/spots; pass Inf to plot as circles

radius Radius of shapes when plotting
theta Angle to adjust shapes when plotting

Value

A FOV object

See Also

FOV-class

CreateMolecules Create a Molecules Object

Description

Create a Molecules Object

28 CreateSegmentation

Usage

```
CreateMolecules(coords, ...)
## S3 method for class 'data.frame'
CreateMolecules(coords, key = "", ...)
## S3 method for class 'Molecules'
CreateMolecules(coords, ...)
## S3 method for class 'NULL''
CreateMolecules(coords, ...)
```

Arguments

coords

Spatial coordinates for molecules; should be a data frame with three columns:

- "x": x-coordinates for each molecule
- "y": y-coordinates for each molecule
- "gene": gene name for each molecule

... Arguments passed to other methods

key A key to set for the molecules

Value

A Molecules object

CreateSegmentation

Create a Segmentation Objects

Description

Create a Segmentation Objects

Usage

```
CreateSegmentation(coords)
## S3 method for class 'data.frame'
CreateSegmentation(coords)
## S3 method for class 'Segmentation'
CreateSegmentation(coords)
```

Arguments

coords

The coordinates of cell segmentations

CreateSeuratObject 29

Value

A Segmentation object

CreateSeuratObject

Create a Seurat object

Description

Create a Seurat object from raw data

```
CreateSeuratObject(
  counts,
  project = "CreateSeuratObject",
  assay = "RNA",
 names.field = 1,
 names.delim = "_",
 meta.data = NULL,
)
## Default S3 method:
CreateSeuratObject(
  counts,
  project = "SeuratProject",
  assay = "RNA",
  names.field = 1,
 names.delim = "_",
 meta.data = NULL,
 min.cells = 0,
 min.features = 0,
  row.names = NULL,
)
## S3 method for class 'Assay'
CreateSeuratObject(
  counts,
  project = "SeuratProject",
  assay = "RNA",
 names.field = 1,
names.delim = "_",
 meta.data = NULL,
)
```

30 CreateSeuratObject

Arguments

counts	Either a matrix-like object with unnormalized data with cells as columns and features as rows or an Assay-derived object
project	Project name for the Seurat object
assay	Name of the initial assay
names.field	For the initial identity class for each cell, choose this field from the cell's name. E.g. If your cells are named as BARCODE_CLUSTER_CELLTYPE in the input matrix, set names.field to 3 to set the initial identities to CELLTYPE.
names.delim	For the initial identity class for each cell, choose this delimiter from the cell's column name. E.g. If your cells are named as BARCODE-CLUSTER-CELLTYPE, set this to "-" to separate the cell name into its component parts for picking the relevant field.
meta.data	Additional cell-level metadata to add to the Seurat object. Should be a data.frame where the rows are cell names and the columns are additional metadata fields. Row names in the metadata need to match the column names of the counts matrix.
	Arguments passed to other methods
min.cells	Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff.
min.features	Include cells where at least this many features are detected.
row.names	When counts is a data.frame or data.frame-derived object: an optional vec-

Value

A Seurat object

Note

In previous versions (<3.0), this function also accepted a parameter to set the expression threshold for a 'detected' feature (gene). This functionality has been removed to simplify the initialization process/assumptions. If you would still like to impose this threshold for your particular dataset, simply filter the input expression matrix before calling this function.

Examples

```
## Not run:
pbmc_raw <- read.table(
   file = system.file('extdata', 'pbmc_raw.txt', package = 'Seurat'),
   as.is = TRUE
)
pbmc_small <- CreateSeuratObject(counts = pbmc_raw)
pbmc_small
## End(Not run)</pre>
```

tor of feature names to be used

Crop 31

Crop

Crop Coordinates

Description

Crop Coordinates

Usage

```
Crop(object, x = NULL, y = NULL, coords = c("plot", "tissue"), ...)
## S3 method for class 'FOV'
Crop(object, x = NULL, y = NULL, coords = c("plot", "tissue"), ...)
```

Arguments

object

x, y

Range to crop x/y limits to; if NULL, uses full range of x/y

coords

Coordinate system to execute crop; choose from:

• "plot": Coordinates as shown when plotting

• "tissue": Coordinates from GetTissueCoordinates

...

Value

object cropped to the region specified by x and y

DefaultAssay

Default Assay

Description

Get and set the default assay

```
DefaultAssay(object, ...)
DefaultAssay(object, ...) <- value
## S3 method for class 'Graph'
DefaultAssay(object, ...)
## S3 replacement method for class 'Graph'</pre>
```

32 DefaultAssay

```
DefaultAssay(object, ...) <- value

## S3 method for class 'Assay'
DefaultAssay(object, ...)

## S3 replacement method for class 'Assay'
DefaultAssay(object, ...) <- value

## S3 method for class 'SeuratCommand'
DefaultAssay(object, ...)

## S3 method for class 'DimReduc'
DefaultAssay(object, ...)

## S3 replacement method for class 'DimReduc'
DefaultAssay(object, ...) <- value

## S3 method for class 'Seurat'
DefaultAssay(object, ...)

## S3 replacement method for class 'Seurat'
DefaultAssay(object, ...)</pre>
```

Arguments

object An object

... Arguments passed to other methods

value Name of assay to set as default

Value

DefaultAssay: The name of the default assay

DefaultAssay<-: An object with the default assay updated

Examples

```
# Get current default assay
DefaultAssay(object = pbmc_small)

# Create dummy new assay to demo switching default assays
new.assay <- pbmc_small[["RNA"]]
Key(object = new.assay) <- "RNA2_"
pbmc_small[["RNA2"]] <- new.assay
# switch default assay to RNA2
DefaultAssay(object = pbmc_small) <- "RNA2"
DefaultAssay(object = pbmc_small)</pre>
```

DefaultDimReduc 33

DefaultDimReduc

Find the default DimReduc

Description

Searches for DimReducs matching "umap", "tsne", or "pca", case-insensitive, and in that order. Priority given to DimReducs matching the DefaultAssay or assay specified (eg. "pca" for the default assay weights higher than "umap" for a non-default assay)

Usage

```
DefaultDimReduc(object, assay = NULL)
```

Arguments

object A Seurat object

assay Name of assay to use; defaults to the default assay of the object

Value

The default DimReduc, if possible

Examples

```
DefaultDimReduc(pbmc_small)
```

DefaultF0V

Get and Set the Default FOV

Description

Get and Set the Default FOV

```
DefaultFOV(object, ...)
DefaultFOV(object, ...) <- value

## S3 method for class 'Seurat'
DefaultFOV(object, assay = NULL, ...)

## S3 replacement method for class 'Seurat'
DefaultFOV(object, assay = NA, ...) <- value</pre>
```

34 DimReduc-class

Arguments

object A Seurat Object

... Arguments passed to other methods

value The name of the FOV to set as the default

assay Name of assay to get or set default FOV for; pass NA to get or set the global

default FOV

Value

DefaultFOV: The name of the default FOV

DefaultFOV<-: object with the default FOV set to value

DimReduc-class The Dimensional Reduction Class

Description

The DimReduc object stores a dimensionality reduction taken out in Seurat; each DimReduc consists of a cell embeddings matrix, a feature loadings matrix, and a projected feature loadings matrix.

Slots

cell.embeddings Cell embeddings matrix (required)

feature.loadings Feature loadings matrix (optional)

feature.loadings.projected Projected feature loadings matrix (optional)

assay.used Name of assay used to generate DimReduc object

global Is this DimReduc global/persistent? If so, it will not be removed when removing its associated assay

stdev A vector of standard deviations

key Key for the DimReduc, must be alphanumeric characters followed by an underscore

jackstraw A JackStrawData-class object associated with this DimReduc

misc Utility slot for storing additional data associated with the DimReduc (e.g. the total variance of the PCA)

DimReduc-methods 35

DimReduc-methods

DimReduc Methods

Description

Methods for DimReduc objects for generics defined in other packages

Usage

```
## S3 method for class 'DimReduc'
x[i, j, drop = FALSE, ...]
## S3 method for class 'DimReduc'
x[[i, j, drop = FALSE, ...]]
## S3 method for class 'DimReduc'
dim(x)
## S3 method for class 'DimReduc'
dimnames(x)
## S3 method for class 'DimReduc'
length(x)
## S3 method for class 'DimReduc'
merge(x = NULL, y = NULL, add.cell.ids = NULL, ...)
## S3 method for class 'DimReduc'
names(x)
## S3 method for class 'DimReduc'
print(x, dims = 1:5, nfeatures = 20, projected = FALSE, ...)
## S3 method for class 'DimReduc'
subset(x, cells = NULL, features = NULL, ...)
## S4 method for signature 'DimReduc'
show(object)
```

Arguments

x, object	A DimReduc object
i	For [: feature names or indices; for [[: cell names or indices
j	Dimensions to pull for
drop	See drop
	Arguments passed to other methods

36 DimReduc-methods

y A vector or list of one or more objects to merge

add.cell.ids A character vector of length(x = c(x, y)); appends the corresponding values

to the start of each objects' cell names

dims Number of dimensions to display

nfeatures Number of genes to display

projected Use projected slot

cells, features

Cells and features to keep during the subset

Value

[: Feature loadings for features i and dimensions j

[[: Cell embeddings for cells i and dimensions j

dim: The number of cells (nrow) and dimensions (ncol)

dimnames: The cell (row) and dimension (column) names

length: The number of dimensions

names: The names for the dimensions (eg. "PC_1")

print: Displays set of features defining the components and invisibly returns x

subset: x for cells cells and features features

show: Prints summary to stdout and invisibly returns NULL

Functions

- [: Pull feature loadings
- [[: Pull cell embeddings
- dim(DimReduc): The number of cells and dimensions for a DimReduc
- dimnames (DimReduc): The cell and dimension names for a DimReduc object
- length(DimReduc): The number of dimensions for a DimReduc object
- merge(DimReduc): Merge two or more DimReduc objects together
- names (DimReduc): The dimension names for a DimReduc object
- print(DimReduc): Prints a set of features that most strongly define a set of components; **note**: requires feature loadings to be present in order to work
- subset(DimReduc): Subset a DimReduc object
- show(DimReduc): Show basic summary of a DimReduc object

See Also

Distances 37

Distances

Get the Neighbor nearest neighbors distance matrix

Description

Get the Neighbor nearest neighbors distance matrix

Usage

```
Distances(object, ...)
## S3 method for class 'Neighbor'
Distances(object, ...)
```

Arguments

object An object

... Arguments passed to other methods

Value

The distance matrix

Embeddings

Get Cell Embeddings

Description

Get Cell Embeddings

Usage

```
Embeddings(object, ...)
## S3 method for class 'DimReduc'
Embeddings(object, ...)
## S3 method for class 'Seurat'
Embeddings(object, reduction = "pca", ...)
```

Arguments

object An object

... Arguments passed to other methods

reduction Name of reduction to pull cell embeddings for

38 FetchData

Value

The embeddings matrix

Examples

```
# Get the embeddings directly from a DimReduc object
Embeddings(object = pbmc_small[["pca"]])[1:5, 1:5]
# Get the embeddings from a specific DimReduc in a Seurat object
Embeddings(object = pbmc_small, reduction = "pca")[1:5, 1:5]
```

FetchData

Access cellular data

Description

Retrieves data (feature expression, PCA scores, metrics, etc.) for a set of cells in a Seurat object

Usage

```
FetchData(object, ...)
## S3 method for class 'DimReduc'
FetchData(
  object,
  vars,
  cells = NULL,
  slot = c("embeddings", "loadings", "projected"),
  ...
)

## S3 method for class 'Seurat'
FetchData(object, vars, cells = NULL, slot = "data", ...)
```

Arguments

object	An object
	Arguments passed to other methods
vars	List of all variables to fetch, use keyword "ident" to pull identity classes
cells	Cells to collect data for (default is all cells)
slot	Slot to pull feature data for

Value

A data frame with cells as rows and cellular data as columns

FilterObjects 39

Examples

```
pc1 <- FetchData(object = pbmc_small, vars = 'PC_1')
head(x = pc1)
head(x = FetchData(object = pbmc_small, vars = c('groups', 'ident')))</pre>
```

FilterObjects

Find Sub-objects of a Certain Class

Description

Get the names of objects within a Seurat object that are of a certain class

Usage

```
FilterObjects(object, classes.keep = c("Assay", "DimReduc"))
```

Arguments

object A Seurat object

classes.keep A vector of names of classes to get

Value

A vector with the names of objects within the Seurat object that are of class classes. keep

Examples

```
FilterObjects(pbmc_small)
```

FOV-class

The Field of View Object

Description

A modern container for storing coordinates of spatially-resolved single cells. Capable of storing multiple cell segmentation boundary masks. Supports coordinates for spatially-resolved molecule (FISH) data. Compatible with SpatialImage

Slots

molecules (list) A named list of Molecules objects defining spatially-resolved molecular coordinates

boundaries ([named]list {Segmentation, Centroids}) A named list of Segmentation and Centroids objects defining spatially-resolved boundaries

assay (character [1L]) A character naming the associated assay of the spatial coordinates key (character [1L]) The key for the spatial coordinates

40 FOV-methods

See Also

FOV-methods

FOV-methods

FOV Methods

Description

Methods for FOV objects

Usage

```
## S3 method for class 'FOV'
Cells(x, boundary = NULL, ...)
## S3 method for class 'FOV'
Features(x, set = NULL, ...)
## S3 method for class 'FOV'
FetchData(object, vars, cells = NULL, simplify = TRUE, ...)
## S3 method for class 'FOV'
GetTissueCoordinates(object, which = NULL, ...)
## S3 method for class 'FOV'
Keys(object, ...)
## S3 method for class 'FOV'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'FOV'
x$i, ...
## S3 method for class 'FOV'
x[i, j, ...]
## S3 method for class 'FOV'
x[[i, ...]]
## S3 method for class 'FOV'
length(x)
## S3 method for class 'FOV'
names(x)
## S3 method for class 'FOV'
subset(x, cells = NULL, features = NULL, ...)
```

FOV-methods 41

```
## S4 replacement method for signature 'FOV, character, missing, Centroids'
x[[i, j, ...]] <- value

## S4 replacement method for signature 'FOV, character, missing, Molecules'
x[[i, j, ...]] <- value

## S4 replacement method for signature 'FOV, character, missing, `NULL`'
x[[i, j, ...]] <- value

## S4 replacement method for signature 'FOV, character, missing, Segmentation'
x[[i, j, ...]] <- value

## S4 method for signature 'FOV'
show(object)</pre>
```

Arguments

x, object	A FOV object
boundary, set	Name of segmentation boundary or molecule set to extract cell or feature names for; pass NA to return all cells or feature names
	Arguments passed to other methods
vars	A vector of variables to fetch; can be the name of a segmentation boundary, to get tissue coordinates, or molecule names, to get molecule coordinates
simplify	If only returning either boundary or molecule coordinates, return a single data frame instead of a list
which	Name of segmentation boundary or molecule set
new.names	vector of new cell names
i, cells	For [[and [[<-, the name of a segmentation or "molecules"; for FetchData, subset. and [, a vector of cells to keep
j, features	For subset and [, a vector of features to keep; for [[<-, not used
value	For [[<-, a replacement Molecules, Centroids, or Segmentation object; otherwise NULL to remove the boundary stored at i

Details

The following methods are defined for interacting with a FOV object:

Cells: Get cell names

Features: Get spatially-resolved molecule names

FetchData: Fetch boundary and/or molecule coordinates from a FOV object

GetTissueCoordinates: Get boundary or molecule coordinates from a FOV object

Keys: Get the keys of molecule sets contained within a FOV object

RenameCells: Update cell names

\$, [[: Extract a segmentation boundary

42 FOV-methods

length: Get the number of segmentation layers in a FOV object

names: Get the names of segmentation layers and molecule sets

subset, [: Subset a FOV object

[[<-: Add or remove segmentation layers and molecule information to/from a FOV object

show: Display an object summary to stdout

Value

Cells: A vector of cell names

Features: A vector of spatially-resolved molecule names; if no molecular information present, returns NULL

FetchData: If both molecule and boundary coordinates are requested, then a two-length list:

- "molecules": A data frame with the molecule coordinates requested. If molecules requested are keyed, the keys are preserved in the data frame
- "coordinates": A data frame with coordinates from the segmentation boundaries requested

If simplify is TRUE and only one data frame is generated, then only the data frame is returned. Otherwise, a one-length list is returned with the single data frame generated

GetTissueCoordinates: ...

Keys: A named vector of molecule set keys; names are the names of the molecule sets and values are the keys for the respective molecule set

RenameCells: object with the cells renamed to new.names

\$, [[: The segmentation boundary or spatially-resolved molecule information stored at i

length: The number of segmentation layers (Segmentation or Centroids objects)

names: A vector of segmentation boundary and molecule set names

subset: x with just the cells and features specified

[[<-: Varies depending on the class of value:

- If value is NULL, returns x with the boundary i removed; also allows removing molecules; does not allow removing the default segmentation
- If value is a Molecules, returns x with value stored in molecules; requires that i is "molecules"
- Otherwise, stores value as a segmentation boundary named i

show: Invisibly returns NULL

See Also

FOV-class

GetImage 43

GetImage

Get image data

Description

Get image data

Usage

```
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
## S3 method for class 'Seurat'
GetImage(
  object,
  mode = c("grob", "raster", "plotly", "raw"),
  image = NULL,
  ...
)
```

Arguments

object	An object
mode	How to return the image; should accept one of "grob", "raster", "plotly", or "raw"
	Arguments passed to other methods
image	Name of SpatialImage object to pull image data for; if NULL, will attempt to select an image automatically

Value

Image data, varying depending on the value of mode:

```
"grob" An object representing image data inheriting from grob objects (eg. rastergrob)
```

"raster" An object of class raster

"plotly" A list with image data suitable for Plotly rendering, see plotly::layout for more details

"raw" The raw image data as stored in the object

See Also

layout

Graph-class

GetTissueCoordinates Get tissue coordinates

Description

Get tissue coordinates

Usage

```
GetTissueCoordinates(object, ...)
## S3 method for class 'Seurat'
GetTissueCoordinates(object, image = NULL, ...)
```

Arguments

object An object

... Arguments passed to other methods

image Name of SpatialImage object to get coordinates for; if NULL, will attempt to

select an image automatically

Value

A data frame with tissue coordinates

Graph-class The Graph Class

Description

The Graph class inherits from dgCMatrix. We do this to enable future expandability of graphs.

Slots

assay.used Optional name of assay used to generate Graph object

See Also

```
dgCMatrix-class
```

HVFInfo 45

HVFInfo

Highly Variable Features

Description

Get and set variable feature information for an Assay object. HVFInfo and VariableFeatures utilize generally variable features, while SVFInfo and SpatiallyVariableFeatures are restricted to spatially variable features

Usage

```
HVFInfo(object, selection.method, status = FALSE, ...)
VariableFeatures(object, selection.method = NULL, ...)
VariableFeatures(object, ...) <- value
SVFInfo(object, selection.method, status, ...)
SpatiallyVariableFeatures(object, selection.method, ...)
## S3 method for class 'Seurat'
HVFInfo(object, selection.method = NULL, status = FALSE, assay = NULL, ...)
## S3 method for class 'Seurat'
VariableFeatures(object, selection.method = NULL, assay = NULL, ...)
## S3 replacement method for class 'Seurat'
VariableFeatures(object, assay = NULL, ...) <- value</pre>
## S3 method for class 'Seurat'
SVFInfo(
  object,
  selection.method = c("markvariogram", "moransi"),
  status = FALSE,
  assay = NULL,
)
## S3 method for class 'Seurat'
SpatiallyVariableFeatures(
  object.
  selection.method = "markvariogram",
  assay = NULL,
  decreasing = TRUE,
)
```

46 HVFInfo

```
## S3 method for class 'Assay'
HVFInfo(object, selection.method, status = FALSE, ...)
## S3 method for class 'Assay'
SpatiallyVariableFeatures(
 object,
  selection.method = "markvariogram",
  decreasing = TRUE,
)
## S3 method for class 'Assay'
SVFInfo(
  object,
  selection.method = c("markvariogram", "moransi"),
  status = FALSE,
)
## S3 method for class 'Assay'
VariableFeatures(object, selection.method = NULL, ...)
## S3 replacement method for class 'Assay'
VariableFeatures(object, ...) <- value
```

Arguments

object An object

selection.method

Which method to pull. For HVFInfo and VariableFeatures, choose one from one of the following:

- "vst"
- "sctransform" or "sct"
- "mean.var.plot", "dispersion", "mvp", or "disp"

For SVFInfo and Spatially Variable Features, choose from:

- "markvariogram"
- "moransi"

status Add variable status to the resulting data frame

... Arguments passed to other methods

value A character vector of variable features

Name of assay to pull highly variable feature information for

decreasing Return features in decreasing order (most spatially variable first).

Idents 47

Value

HVFInfo: A data frame with feature means, dispersion, and scaled dispersion
VariableFeatures: a vector of the variable features
SVFInfo: a data frame with the spatially variable features
SpatiallyVariableFeatures: a character vector of the spatially variable features

Examples

```
# Get the HVF info from a specific Assay in a Seurat object
HVFInfo(object = pbmc_small, assay = "RNA")[1:5, ]
# Get the HVF info directly from an Assay object
HVFInfo(pbmc_small[["RNA"]], selection.method = 'vst')[1:5, ]
```

Idents

Get, set, and manipulate an object's identity classes

Description

Get, set, and manipulate an object's identity classes

Usage

```
Idents(object, ...)
Idents(object, ...) <- value
RenameIdents(object, ...)
ReorderIdent(object, var, ...)
SetIdent(object, ...)
StashIdent(object, save.name, ...)
## S3 method for class 'Seurat'
Idents(object, ...)
## S3 replacement method for class 'Seurat'
Idents(object, cells = NULL, drop = FALSE, ...) <- value
## S3 method for class 'Seurat'
ReorderIdent(
   object,
   var,</pre>
```

48 Idents

```
reverse = FALSE,
  afxn = mean,
  reorder.numeric = FALSE,
)
## S3 method for class 'Seurat'
RenameIdents(object, ...)
## S3 method for class 'Seurat'
SetIdent(object, cells = NULL, value, ...)
## S3 method for class 'Seurat'
StashIdent(object, save.name = "orig.ident", ...)
## S3 method for class 'Seurat'
droplevels(x, ...)
## S3 method for class 'Seurat'
levels(x)
## S3 replacement method for class 'Seurat'
levels(x) <- value
```

Arguments

... Arguments passed to other methods; for RenameIdents: named arguments as

old.ident = new.ident; for ReorderIdent: arguments passed on to FetchData

value The name of the identities to pull from object metadata or the identities them-

selves

var Feature or variable to order on

save.name Store current identity information under this name

cells Set cell identities for specific cells

drop Drop unused levels reverse Reverse ordering

afxn Function to evaluate each identity class based on; default is mean

reorder.numeric

Rename all identity classes to be increasing numbers starting from 1 (default is

FALSE)

x, object An object

Value

Idents: The cell identities

Idents<-: object with the cell identities changed

RenameIdents: An object with selected identity classes renamed

Idents 49

ReorderIdent: An object with

SetIdent: An object with new identity classes set StashIdent: An object with the identities stashed

Examples

```
# Get cell identity classes
Idents(pbmc_small)
# Set cell identity classes
# Can be used to set identities for specific cells to a new level
Idents(pbmc_small, cells = 1:4) <- 'a'</pre>
head(Idents(pbmc_small))
# Can also set idents from a value in object metadata
colnames(pbmc_small[[]])
Idents(pbmc_small) <- 'RNA_snn_res.1'</pre>
levels(pbmc_small)
# Rename cell identity classes
# Can provide an arbitrary amount of idents to rename
levels(pbmc_small)
pbmc_small <- RenameIdents(pbmc_small, '0' = 'A', '2' = 'C')</pre>
levels(pbmc_small)
## Not run:
head(Idents(pbmc_small))
pbmc_small <- ReorderIdent(pbmc_small, var = 'PC_1')</pre>
head(Idents(pbmc_small))
## End(Not run)
# Set cell identity classes using SetIdent
cells.use <- WhichCells(pbmc_small, idents = '1')</pre>
pbmc_small <- SetIdent(pbmc_small, cells = cells.use, value = 'B')</pre>
head(pbmc_small[[]])
pbmc_small <- StashIdent(pbmc_small, save.name = 'idents')</pre>
head(pbmc_small[[]])
# Get the levels of identity classes of a Seurat object
levels(x = pbmc_small)
# Reorder identity classes
levels(x = pbmc_small)
levels(x = pbmc_small) <- c('C', 'A', 'B')
levels(x = pbmc_small)
```

50 Index

Images

Pull spatial image names

Description

List the names of SpatialImage objects present in a Seurat object. If assay is provided, limits search to images associated with that assay

Usage

```
Images(object, assay = NULL)
```

Arguments

object A Seurat object

assay Name of assay to limit search to

Value

A list of image names

Examples

```
## Not run:
Images(object)
## End(Not run)
```

Index

Get Neighbor algorithm index

Description

Get Neighbor algorithm index

Usage

```
Index(object, ...)
Index(object, ...) <- value
## S3 method for class 'Neighbor'
Index(object, ...)
## S3 replacement method for class 'Neighbor'
Index(object, ...) <- value</pre>
```

Indices 51

Arguments

object An object

... Arguments passed to other methods;

value The index to store

Value

Returns the value in the alg.idx slot of the Neighbor object

Idents<-: A Neighbor object with the index stored

Indices

Get Neighbor nearest neighbor index matrices

Description

Get Neighbor nearest neighbor index matrices

Usage

```
Indices(object, ...)
## S3 method for class 'Neighbor'
Indices(object, ...)
```

Arguments

object An object

... Arguments passed to other methods;

Value

A matrix with the nearest neighbor indices

52 IsMatrixEmpty

IsGlobal

Is an object global/persistent?

Description

Typically, when removing Assay objects from an Seurat object, all associated objects (eg. DimReduc, Graph, and SeuratCommand objects) are removed as well. If an associated object is marked as global/persistent, the associated object will remain even if its original assay was deleted

Usage

```
IsGlobal(object, ...)
## Default S3 method:
IsGlobal(object, ...)
## S3 method for class 'DimReduc'
IsGlobal(object, ...)
```

Arguments

object An object

... Arguments passed to other methods

Value

TRUE if the object is global/persistent otherwise FALSE

Examples

```
IsGlobal(pbmc_small[['pca']])
```

IsMatrixEmpty

Check if a matrix is empty

Description

Takes a matrix and asks if it's empty (either 0x0 or 1x1 with a value of NA)

Usage

```
IsMatrixEmpty(x)
```

Arguments

Х

A matrix

IsNamedList 53

Value

Whether or not x is empty

Examples

```
IsMatrixEmpty(new("matrix"))
IsMatrixEmpty(matrix())
IsMatrixEmpty(matrix(1:3))
```

 ${\tt IsNamedList}$

Check List Names

Description

Check to see if a list has names; also check to enforce that all names are present and unique

Usage

```
IsNamedList(x, all.unique = TRUE, allow.empty = FALSE, pass.zero = FALSE)
```

Arguments

x A list

all.unique Require that all names are unique from one another

allow.empty Allow empty (nchar = 0) names

pass.zero Pass on zero-length lists

Value

TRUE if ..., otherwise FALSE

JackStrawData-class

The JackStrawData Class

Description

The JackStrawData is used to store the results of a JackStraw computation.

Slots

```
empirical.p.values Empirical p-values
fake.reduction.scores Fake reduction scores
empirical.p.values.full Empirical p-values on full
overall.p.values Overall p-values from ScoreJackStraw
```

54 JackStrawData-methods

JackStrawData-methods JackStrawData Methods

Description

Methods for JackStrawData objects for generics defined in other packages

Usage

```
## S3 method for class 'JackStrawData'
.DollarNames(x, pattern = "")
## S3 method for class 'JackStrawData'
x$i, ...
## S3 method for class 'JackStrawData'
as.logical(x, ...)
## S4 method for signature 'JackStrawData'
show(object)
```

Arguments

```
    x, object A JackStrawData object
    pattern A regular expression. Only matching names are returned.
    i A JackStrawData slot name
    ... Ignored
```

Value

```
$: Slot i from x as.logical: TRUE if empirical p-values have been calculated otherwise FALSE show: Prints summary to stdout and invisibly returns NULL
```

Functions

- .DollarNames(JackStrawData): Autocompletion for \$ access on a JackStrawData object
- \$: Access data from a JackStrawData object
- as.logical(JackStrawData): Have empirical p-values for a JackStrawData object been calculated
- show(JackStrawData): Overview of a JackStrawData object

JS 55

JS

Get and set JackStraw information

Description

Get and set JackStraw information

Usage

```
JS(object, ...)
JS(object, ...) <- value

## S3 method for class 'JackStrawData'
JS(object, slot, ...)

## S3 replacement method for class 'JackStrawData'
JS(object, slot, ...) <- value

## S3 method for class 'DimReduc'
JS(object, slot = NULL, ...)

## S3 replacement method for class 'DimReduc'
JS(object, slot = NULL, ...) <- value</pre>
```

Arguments

object	An object
	Arguments passed to other methods
value	JackStraw information
slot	Name of slot to store JackStraw scores to Can shorten to 'empirical', 'fake', 'full', or 'overall'

Value

```
JS: either a JackStrawData object or the specified jackstraw data
```

JS<-: object with the update jackstraw information

56 Key

Key

Get and set object keys

Description

Get and set object keys

Usage

```
Key(object, ...)
Key(object, ...) <- value

Keys(object, ...)
## S3 method for class 'Assay'
Key(object, ...)
## S3 replacement method for class 'Assay'
Key(object, ...) <- value
## S3 method for class 'DimReduc'
Key(object, ...)
## S3 replacement method for class 'DimReduc'
Key(object, ...)
## S3 method for class 'Seurat'
Key(object, ...)
## S3 method for class 'Seurat'
Key(object, ...)</pre>
```

Arguments

object An object
... Arguments passed to other methods
value Key value

Value

Key: the object key

Key<-: object with an updated key

Keys: a named vector of keys of sub-objects

Loadings 57

Examples

```
# Get an Assay key
Key(pbmc_small[["RNA"]])

# Set the key for an Assay
Key(pbmc_small[["RNA"]]) <- "newkey_"
Key(pbmc_small[["RNA"]])

# Get a DimReduc key
Key(object = pbmc_small[["pca"]])

# Set the key for DimReduc
Key(object = pbmc_small[["pca"]]) <- "newkey2_"
Key(object = pbmc_small[["pca"]])

# Show all keys associated with a Seurat object
Key(object = pbmc_small)
Keys(object = pbmc_small)</pre>
```

Loadings

Get and set feature loadings

Description

Get and set feature loadings

Usage

```
Loadings(object, ...)

Loadings(object, ...) <- value

## S3 method for class 'DimReduc'
Loadings(object, projected = FALSE, ...)

## S3 replacement method for class 'DimReduc'
Loadings(object, projected = TRUE, ...) <- value

## S3 method for class 'Seurat'
Loadings(object, reduction = "pca", projected = FALSE, ...)
```

Arguments

object	An object
	Arguments passed to other methods
value	Feature loadings to add
projected	Pull the projected feature loadings?
reduction	Name of reduction to pull feature loadings for

58 LogMap-class

Value

```
Loadings: the feature loadings for object
Loadings<-: object with the updated loadings
```

Examples

```
# Get the feature loadings for a given DimReduc
Loadings(object = pbmc_small[["pca"]])[1:5,1:5]

# Set the feature loadings for a given DimReduc
new.loadings <- Loadings(object = pbmc_small[["pca"]])
new.loadings <- new.loadings + 0.01
Loadings(object = pbmc_small[["pca"]]) <- new.loadings
# Get the feature loadings for a specified DimReduc in a Seurat object
Loadings(object = pbmc_small, reduction = "pca")[1:5,1:5]</pre>
```

LogMap-class

A Logical Map

Description

A simple container for storing mappings of values using logical matrices. Keeps track of which values (rows) are present in which observations (columns). LogMap objects can be created with LogMap(); queries can be performed with [[<--

Usage

```
LogMap(y)
## $4 method for signature 'LogMap,character,missing'
x[[i, j, ...]]
## $4 method for signature 'LogMap,missing,missing'
x[[i, j, ...]]
## $4 method for signature 'LogMap, `NULL`,missing'
x[[i, j, ...]]
## $4 replacement method for signature 'LogMap,character,missing,character'
x[[i, j, ...]] <- value
## $4 replacement method for signature 'LogMap,character,missing,integer'
x[[i, j, ...]] <- value
## $4 replacement method for signature 'LogMap,character,missing,integer'
x[[i, j, ...]] <- value</pre>
```

LogMap-class 59

```
x[[i, j, ...]] <- value
## S4 replacement method for signature 'LogMap, character, missing, numeric'
x[[i, j, ...]] <- value
## S4 method for signature 'LogMap'
show(object)</pre>
```

Arguments

y A character vector

x, object A LogMap object

i A character vector of length 1, or NULL

j Not used

... Ignored

value A character or integer vector of values to record in the map for i, or NULL to remove the record for i

Value

LogMap: A new LogMap object with zero columns and length(x = x) rows; rownames are set to x = x rows; rows; rownames are set to x = x rows; rows; rownames are set to x = x rows; rows; rownames are set

Slots

.Data A logical matrix with at least one row

Examples

```
# Create a LogMap
map <- LogMap(letters[1:10])
map

# Get the names of values in the LogMap
map[[NULL]]
rownames(map)

# Add an observation to the LogMap
map[['obs']] <- c(1, 3, 7)
map

# Get the names of observations in the LogMap
colnames(map)

# Fetch an observation from the LogMap
map[['obs']]</pre>
```

60 MatchCells

```
# Get the full logical matrix
map[[]]
# Remove an observation from the LogMap
map[['obs']] <- NULL
map</pre>
```

LogSeuratCommand

Log a command

Description

Logs command run, storing the name, timestamp, and argument list. Stores in the Seurat object

Usage

```
LogSeuratCommand(object, return.command = FALSE)
```

Arguments

object Name of Seurat object
return.command Return a SeuratCommand object instead

Value

If return.command, returns a SeuratCommand object. Otherwise, returns the Seurat object with command stored

See Also

Command

MatchCells

Match Cells

Description

Match Cells

Misc 61

Usage

```
MatchCells(new, orig, ordered = FALSE)
## S3 method for class 'character'
MatchCells(new, orig, ordered = FALSE)
## S3 method for class '`NULL`'
MatchCells(new, orig, ordered = FALSE)
## S3 method for class 'numeric'
MatchCells(new, orig, ordered = FALSE)
```

Arguments

new A vector of new cells
orig A vector of existing cells

ordered Sort the result to the same order as orig

Value

A numeric vector with new cells in order of the original cells; if no match can be found, returns NULL

Misc

Get and set miscellaneous data

Description

Get and set miscellaneous data

Usage

```
Misc(object, ...)
Misc(object, ...) <- value
## S3 method for class 'Assay'
Misc(object, slot = NULL, ...)
## S3 replacement method for class 'Assay'
Misc(object, slot, ...) <- value
## S3 method for class 'DimReduc'
Misc(object, slot = NULL, ...)
## S3 replacement method for class 'DimReduc'</pre>
```

62 Molecules-class

```
Misc(object, slot, ...) <- value
## S3 method for class 'Seurat'
Misc(object, slot = NULL, ...)
## S3 replacement method for class 'Seurat'
Misc(object, slot, ...) <- value</pre>
```

Arguments

object An object

... Arguments passed to other methods

value Data to add

slot Name of specific bit of meta data to pull

Value

Miscellaneous data

An object with miscellaneous data added

Examples

```
# Get the misc info
Misc(object = pbmc_small, slot = "example")
# Add misc info
Misc(object = pbmc_small, slot = "example") <- "testing_misc"</pre>
```

Molecules-class

The Spatial Molecules Class

Description

The Spatial Molecules Class

Slots

```
.Data A list of SpatialPoints objects key The key for the Molecules
```

See Also

Molecules methods: Molecules-methods

Segmentation layer classes: Centroids-class, Segmentation-class

Molecules-methods 63

Molecules-methods

Molecules Methods

Description

Methods for Molecules objects

Usage

```
## S3 method for class 'Molecules'
Features(x, ...)

## S3 method for class 'Molecules'
GetTissueCoordinates(object, features = NULL, ...)

## S3 method for class 'Molecules'
subset(x, features = NULL, ...)

## S4 method for signature 'Molecules'
show(object)
```

Arguments

x, object A Molecules object

... Arguments passed to other methods

features A vector of molecule names to keep; if NULL, defaults to all molecules

Details

Features: Get spatially-resolved molecule names

GetTissueCoordinates: Get spatially-resolved molecule coordinates

subset: Subset a Molecules object to certain molecules

show: Display an object summary to stdout

Value

Features: A vector of spatially-resolved molecule names; if no molecular information present, returns NULL

GetTissueCoordinates: A data frame with three columns:

- "x": the x-coordinate of a molecule
- "y": the y-coordinate of a molecule
- "molecule": the molecule name

subset: x subsetted to the features specified by features

show: Invisibly returns NULL

Neighbor-methods

See Also

Molecules-class

Neighbor-class

The Neighbor class

Description

The Neighbor class is used to store the results of neighbor finding algorithms

Slots

```
nn.idx Matrix containing the nearest neighbor indices
```

nn. dist Matrix containing the nearest neighbor distances

alg.idx The neighbor finding index (if applicable). E.g. the annoy index

alg.info Any information associated with the algorithm that may be needed downstream (e.g. distance metric used with annoy is needed when reading in from stored file).

cell.names Names of the cells for which the neighbors have been computed.

Neighbor-methods

Neighbor Methods

Description

Methods for Neighbor objects for generics defined in other packages

Usage

```
## $3 method for class 'Neighbor'
dim(x)
## $4 method for signature 'Neighbor'
show(object)
```

Arguments

x, object A

A Neighbor object

Value

dim Dimensions of the indices matrix

show: Prints summary to stdout and invisibly returns NULL

Functions

- dim(Neighbor): Dimensions of the neighbor indices
- show(Neighbor): Overview of a Neighbor object

Overlay 65

Overlay

Overlay Spatial Objects Over One Another

Description

Create an overlay of some query spatial object (x) against some target object (y). Basically, find all components of a query that fall within the bounds of a target spatial region

Usage

```
Overlay(x, y, invert = FALSE, ...)
## S4 method for signature 'Centroids,SpatialPolygons'
Overlay(x, y, invert = FALSE, ...)
## S4 method for signature 'Segmentation,SpatialPolygons'
Overlay(x, y, invert = FALSE, ...)
## S4 method for signature 'Molecules,SpatialPolygons'
Overlay(x, y, invert = FALSE, ...)
## S4 method for signature 'FOV,Spatial'
Overlay(x, y, invert = FALSE, ...)
## S4 method for signature 'FOV,SpatialPolygons'
Overlay(x, y, invert = FALSE, ...)
## S4 method for signature 'FOV,FOV'
Overlay(x, y, invert = FALSE, ...)
```

Arguments

Х	Query Spatial object
У	Target Spatial object
invert	Invert the overlay and return only the components of x that fall $outside$ the bounds of y
	Ignored

Value

x with only the components that fall within the bounds of y

pbmc_small

PackageCheck

Check the existence of a package

Description

Check the existence of a package

Usage

```
PackageCheck(..., error = TRUE)
```

Arguments

.. Package names

error If true, throw an error if the package doesn't exist

Value

Invisibly returns boolean denoting if the package is installed

Examples

```
PackageCheck("SeuratObject", error = FALSE)
```

pbmc_small

A small example version of the PBMC dataset

Description

A subsetted version of 10X Genomics' 3k PBMC dataset

Usage

```
pbmc_small
```

Format

A Seurat object with the following slots filled

assays Currently only contains one assay ("RNA" - scRNA-seq expression data)

counts - Raw expression data

- data Normalized expression data
- scale.data Scaled expression data
- var.features names of the current features selected as variable

Project 67

```
    meta.features - Assay level metadata such as mean and variance
    meta.data Cell level metadata
    active.assay Current default assay
    active.ident Current default idents
    graphs Neighbor graphs computed, currently stores the SNN
    reductions Dimensional reductions: currently PCA and tSNE
    version Seurat version used to create the object
```

commands Command history

Source

```
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
```

Project

Get and set project information

Description

Get and set project information

Usage

```
Project(object, ...)
Project(object, ...) <- value
## S3 method for class 'Seurat'
Project(object, ...)
## S3 replacement method for class 'Seurat'
Project(object, ...) <- value</pre>
```

Arguments

object An object

... Arguments passed to other methods

value Project information to set

Value

Project information

An object with project information added

68 RandomName

Radius

Get the spot radius from an image

Description

Get the spot radius from an image

Usage

```
Radius(object)
```

Arguments

object

An image object

Value

The radius size

RandomName

Generate a random name

Description

Make a name from randomly sampled lowercase letters, pasted together with no spaces or other characters

Usage

```
RandomName(length = 5L, ...)
```

Arguments

length How long should the name be... Extra parameters passed to sample

Value

A character with nchar == length of randomly sampled letters

See Also

sample

RenameAssays 69

Examples

```
set.seed(42L)
RandomName()
RandomName(7L, replace = TRUE)
```

RenameAssays

Rename assays in a Seurat object

Description

Rename assays in a Seurat object

Usage

```
RenameAssays(object, ...)
```

Arguments

```
object A Seurat object
... Named arguments as old.assay = new.assay
```

Value

object with assays renamed

Examples

```
RenameAssays(object = pbmc_small, RNA = 'rna')
```

RenameCells

Rename cells

Description

Change the cell names in all the different parts of an object. Can be useful before combining multiple objects.

70 RenameCells

Usage

```
RenameCells(object, ...)
## S3 method for class 'Assay'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'DimReduc'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'Neighbor'
RenameCells(object, old.names = NULL, new.names = NULL, ...)
## S3 method for class 'Seurat'
RenameCells(
   object,
   add.cell.id = NULL,
   new.names = NULL,
   for.merge = FALSE,
   ...
)
```

Arguments

object	An object
	Arguments passed to other methods
new.names	vector of new cell names
old.names	vector of old cell names
add.cell.id	prefix to add cell names
for.merge	Only rename slots needed for merging Seurat objects. Currently only renames the raw.data and meta.data slots.

Details

If add.cell.id is set a prefix is added to existing cell names. If new.names is set these will be used to replace existing names.

Value

An object with new cell names

Examples

```
# Rename cells in an Assay
head(x = colnames(x = pbmc_small[["RNA"]]))
renamed.assay <- RenameCells(
    pbmc_small[["RNA"]],
    new.names = paste0("A_", colnames(x = pbmc_small[["RNA"]]))
)</pre>
```

```
head(x = colnames(x = renamed.assay))
# Rename cells in a DimReduc
head(x = Cells(x = pbmc_small[["pca"]]))
renamed.dimreduc <- RenameCells(
    object = pbmc_small[["pca"]],
    new.names = paste0("A_", Cells(x = pbmc_small[["pca"]]))
)
head(x = Cells(x = renamed.dimreduc))
# Rename cells in a Seurat object
head(x = colnames(x = pbmc_small))
pbmc_small <- RenameCells(object = pbmc_small, add.cell.id = "A")
head(x = colnames(x = pbmc_small))</pre>
```

RowMergeSparseMatrices

Merge Sparse Matrices by Row

Description

Merge two or more sparse matrices by rowname.

Usage

```
RowMergeSparseMatrices(mat1, mat2)
```

Arguments

mat1 First matrix

mat2 Second matrix or list of matrices

Details

Shared matrix rows (with the same row name) will be merged, and unshared rows (with different names) will be filled with zeros in the matrix not containing the row.

Value

Returns a sparse matrix

72 s4list

s4list

S4/List Conversion

Description

Convert S4 objects to lists and vice versa. Useful for declassing an S4 object while keeping track of it's class using attributes (see section **S4 Class Definition Attributes** below for more details). Both ListToS4 and S4ToList are recursive functions, affecting all lists/S4 objects contained as sub-lists/sub-objects.

Usage

```
S4ToList(object)
IsS4List(x)
ListToS4(x)
## Default S3 method:
S4ToList(object)
## S3 method for class 'list'
S4ToList(object)
```

Arguments

object An S4 object

x A list with an S4 class definition attribute

Value

S4ToList: A list with an S4 class definition attribute

 ${\tt IsS4List:} \ {\tt TRUE} \ if \ x \ is \ a \ list \ with \ an \ S4 \ class \ definition \ attribute$

ListToS4: An S4 object as defined by the S4 class definition attribute

S4 Class Definition Attributes

S4 classes are scoped to the package and class name. In order to properly track which class a list is generated from in order to build a new one, these function use an attribute to denote the class name and package of origin. This attribute is stored as "classDef" and takes the form of "package:class".

Segmentation-class 73

Segmentation-class The Segmentation Class

Description

The Segmentation Class

See Also

Segmentation methods: Segmentation-methods
Segmentation layer classes: Centroids-class, Molecules-class

Segmentation-methods Segmentation *Methods*

Description

Methods for Segmentation objects

Usage

```
## S3 method for class 'Segmentation'
Cells(x, ...)
## S3 method for class 'Segmentation'
GetTissueCoordinates(object, full = TRUE, ...)
## S3 method for class 'Segmentation'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'Segmentation'
lengths(x, use.names = TRUE)
## S3 method for class 'Segmentation'
subset(x, cells = NULL, ...)
## S4 method for signature 'Segmentation, ANY, ANY, ANY'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'Segmentation'
coordinates(obj, full = TRUE, ...)
## S4 method for signature 'Segmentation'
show(object)
```

Arguments

x, object, obj A Segmentation object

... Arguments passed to other methods

full Expand the coordinates to the full polygon

new.names vector of new cell names

use.names Ignored

i, cells A vector of cells to keep; if NULL, defaults to all cells

j, drop Ignored

Details

Cells: Get cell names

GetTissueCoordinates, coordinates: Get tissue coordinates

RenameCells: Update cell names

lengths: Generate a run-length encoding of the cells present

subset, [: Subset a Segmentation object to certain cells

show: Display an object summary to stdout

Value

Cells: A vector of cell names

GetTissueCoordinates, coordinates: A data frame with three columns:

- "x": the x-coordinate
- "y": the y-coordinate
- "cell" or "ID": the cell name

If full is TRUE, then each coordinate will indicate a vertex for the cell polygon; otherwise, each coordinate will indicate a centroid for the cell. Note: GetTissueCoordinates

RenameCells: object with the cells renamed to new.names

lengths: An rle object for the cells

subset, [: x subsetted to the cells specified by cells/i

show: Invisibly returns NULL

Progress Updates with progressr

The following methods use **progressr** to render status updates and progress bars:

• RenameCells

To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about **progressr**, please read vignette("progressr-intro")

set-if-na 75

Parallelization with future

The following methods use **future** to enable parallelization:

• RenameCells

Parallelization strategies can be set using plan. Common plans include "sequential" for non-parallelized processing or "multisession" for parallel evaluation using multiple R sessions; for other plans, see the "Implemented evaluation strategies" section of ?future::plan. For a more thorough introduction to **future**, see vignette("future-1-overview")

See Also

Segmentation-class

set-if-na

Set if NA

Description

Set a default value depending on if an object is NA

Usage

```
x %NA% y
```

x %na% y

x %!NA% y

x %!na% y

Arguments

x An object to test y A default value

Value

```
For %NA%: y if x is NA; otherwise x
For %!NA%: y if x is not NA; otherwise x
```

Examples

```
1 %NA% 2
NA %NA% 2
1 %!NA% 2
NA %!NA% 2
```

Seurat-class

The Seurat Class

Description

The Seurat object is a representation of single-cell expression data for R; each Seurat object revolves around a set of cells and consists of one or more Assay objects, or individual representations of expression data (eg. RNA-seq, ATAC-seq, etc). These assays can be reduced from their high-dimensional state to a lower-dimension state and stored as DimReduc objects. Seurat objects also store additional metadata, both at the cell and feature level (contained within individual assays). The object was designed to be as self-contained as possible, and easily extendable to new methods.

Slots

assays A list of assays for this project

meta.data Contains meta-information about each cell, starting with number of features detected (nFeature) and the original identity class (orig.ident); more information is added using AddMetaData

active.assay Name of the active, or default, assay; settable using DefaultAssay

active.ident The active cluster identity for this Seurat object; settable using Idents

graphs A list of Graph objects

neighbors ...

reductions A list of dimensional reduction objects for this object

images A list of spatial image objects

project.name Name of the project

misc A list of miscellaneous information

version Version of Seurat this object was built under

commands A list of logged commands run on this Seurat object

tools A list of miscellaneous data generated by other tools, should be filled by developers only using Tool<-

Seurat-methods

Seurat Methods

Description

Methods for Seurat objects for generics defined in other packages

Usage

```
## S3 method for class 'Seurat'
.DollarNames(x, pattern = "")
## S3 method for class 'Seurat'
x$i, ...
## S3 replacement method for class 'Seurat'
x$i, ... <- value
## S3 method for class 'Seurat'
x[i, j, ...]
## S3 method for class 'Seurat'
x[[i, ..., drop = FALSE]]
## S3 method for class 'Seurat'
dim(x)
## S3 method for class 'Seurat'
dimnames(x)
## S3 method for class 'Seurat'
head(x, n = 10L, ...)
## S3 method for class 'Seurat'
merge(
 x = NULL
 y = NULL,
 add.cell.ids = NULL,
 merge.data = TRUE,
 merge.dr = NULL,
 project = "SeuratProject",
)
## S3 method for class 'Seurat'
names(x)
## S3 method for class 'Seurat'
subset(
  х,
  subset,
  cells = NULL,
  features = NULL,
  idents = NULL,
  return.null = FALSE,
```

```
## S3 method for class 'Seurat'
tail(x, n = 10L, ...)

## S4 replacement method for signature 'Seurat, ANY, ANY, ANY'
x[[i, j, ...]] <- value

## S4 method for signature 'Seurat'
colMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Seurat'
colSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Seurat'
rowMeans(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Seurat'
rowSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Seurat'
rowSums(x, na.rm = FALSE, dims = 1, ..., slot = "data")

## S4 method for signature 'Seurat'
show(object)</pre>
```

Arguments

x, object

pattern	A regular expression. Only matching names are returned.
i, features	Depends on the method
	[, subset Feature names or indices
	\$, \$<- Name of a single metadata column
	[[, [[<- Name of one or more metadata columns or an associated object; associated objects include Assay, DimReduc, Graph, SeuratCommand, or SpatialImage objects

. . . Arguments passed to other methods

A Seurat object

value Additional metadata or associated objects to add; **note**: can pass NULL to remove

metadata or an associated object

j, cells Cell names or indices

drop See drop

n The number of rows of metadata to return

y A single Seurat object or a list of Seurat objects

add.cell.ids A character vector of length(x = c(x, y)); appends the corresponding values

to the start of each objects' cell names

merge . data Merge the data slots instead of just merging the counts (which requires renormal-

ization); this is recommended if the same normalization approach was applied

to all objects

merge.dr Merge specified DimReducs that are present in all objects; will only merge the

embeddings slots for the first N dimensions that are shared across all objects.

project name for the Seurat object

subset Logical expression indicating features/variables to keep

idents A vector of identity classes to keep

return.null If no cells are request, return a NULL; by default, throws an error

na.rm logical. Should missing values (including NaN) be omitted from the calculations?

dims completely ignored by the Matrix methods.

slot Name of assay expression matrix to calculate column/row means/sums on

Value

\$: metadata column i for object x; **note**: unlike [[, \$ drops the shape of the metadata to return a vector instead of a data frame

\$<-: object x with metadata value saved as i

[: object x with features i and cells j

[[: If i is missing, the metadata data frame; if i is a vector of metadata names, a data frame with the requested metadata, otherwise, the requested associated object

dim: The number of features (nrow) and cells (ncol) for the default assay; **note**: while the number of features changes depending on the active assay, the number of cells remains the same across all assays

dimnames: The feature (row) and cell (column) names; **note**: while the features change depending on the active assay, the cell names remain the same across all assays

head: The first n rows of cell-level metadata

merge: Merged object

names: The names of all Assay, DimReduc, Graph, and SpatialImage objects in the Seurat object

subset: A subsetted Seurat object

tail: The last n rows of cell-level metadata

[[<-: x with the metadata or associated objects added as i; if value is NULL, removes metadata or associated object i from object x

show: Prints summary to stdout and invisibly returns NULL

Functions

- .DollarNames(Seurat): Autocompletion for \$ access on a Seurat object
- \$: Metadata access for Seurat objects
- `\$`(Seurat) <- value: Metadata setter for Seurat objects
- [: Simple subsetter for Seurat objects
- [[: Metadata and associated object accessor
- dim(Seurat): Number of cells and features for the active assay
- dimnames(Seurat): The cell and feature names for the active assay

- head(Seurat): Get the first rows of cell-level metadata
- merge(Seurat): Merge two or more Seurat objects together
- names(Seurat): Common associated objects
- subset(Seurat): Subset a Seurat object
- tail(Seurat): Get the last rows of cell-level metadata
- `[[`(x = Seurat, i = ANY, j = ANY) <- value: Add cell-level metadata or associated objects
- colMeans(Seurat): Calculate colMeans on a Seurat object
- colSums(Seurat): Calculate colSums on a Seurat object
- rowMeans(Seurat): Calculate rowMeans on a rowMeans object
- rowSums(Seurat): Calculate rowSums on a Seurat object
- show(Seurat): Overview of a Seurat object

Merge Details

When merging Seurat objects, the merge procedure will merge the Assay level counts and potentially the data slots (depending on the merge.data parameter). It will also merge the cell-level meta data that was stored with each object and preserve the cell identities that were active in the objects pre-merge. The merge will optionally merge reductions depending on the values passed to merge.dr if they have the same name across objects. Here the embeddings slots will be merged and if there are differing numbers of dimensions across objects, only the first N shared dimensions will be merged. The feature loadings slots will be filled by the values present in the first object. The merge will not preserve graphs, logged commands, or feature-level metadata that were present in the original objects. If add.cell.ids isn't specified and any cell names are duplicated, cell names will be appended with _X, where X is the numeric index of the object in c(x, y).

See Also

```
subset WhichCells
```

Examples

```
# Get metadata using `$'
head(pbmc_small$groups)

# Add metadata using the `$' operator
set.seed(42)
pbmc_small$value <- sample(1:3, size = ncol(pbmc_small), replace = TRUE)
head(pbmc_small[["value"]])

# `[' examples
pbmc_small[VariableFeatures(object = pbmc_small), ]
pbmc_small[, 1:10]

# Get the cell-level metadata data frame
head(pbmc_small[[]])

# Pull specific metadata information</pre>
```

SeuratCommand-class 81

```
head(pbmc_small[[c("letter.idents", "groups")]])
head(pbmc_small[["groups", drop = TRUE]])
# Get a sub-object (eg. an `Assay' or `DimReduc')
pbmc_small[["RNA"]]
pbmc_small[["pca"]]
# Get the number of features in an object
nrow(pbmc_small)
# Get the number of cells in an object
ncol(pbmc_small)
# Get the feature names of an object
rownames(pbmc_small)
# Get the cell names of an object
colnames(pbmc_small)
# Get the first 10 rows of cell-level metadata
head(pbmc_small)
# `merge' examples
# merge two objects
merge(pbmc_small, y = pbmc_small)
\# to merge more than two objects, pass one to x and a list of objects to y
merge(pbmc_small, y = c(pbmc_small, pbmc_small))
names(pbmc_small)
# `subset' examples
subset(pbmc_small, subset = MS4A1 > 4)
subset(pbmc_small, subset = `DLGAP1-AS1` > 2)
subset(pbmc_small, idents = '0', invert = TRUE)
subset(pbmc_small, subset = MS4A1 > 3, slot = 'counts')
subset(pbmc_small, features = VariableFeatures(object = pbmc_small))
# Get the last 10 rows of cell-level metadata
tail(pbmc_small)
head(colMeans(pbmc_small))
head(colSums(pbmc_small))
head(rowMeans(pbmc_small))
head(rowSums(pbmc_small))
```

82 SeuratCommand-methods

Description

The SeuratCommand is used for logging commands that are run on a Seurat object; it stores parameters and timestamps

Slots

```
name Command name
time.stamp Timestamp of when command was tun
assay.used Optional name of assay used to generate SeuratCommand object
call.string String of the command call
params List of parameters used in the command call
```

SeuratCommand-methods SeuratCommand Methods

Description

Methods for SeuratCommand objects for generics defined in other packages

Usage

```
## S3 method for class 'SeuratCommand'
.DollarNames(x, pattern = "")
## S3 method for class 'SeuratCommand'
x$i, ...
## S3 method for class 'SeuratCommand'
x[i, ...]
## S3 method for class 'SeuratCommand'
as.list(x, complete = FALSE, ...)
## S4 method for signature 'SeuratCommand'
show(object)
```

Arguments

x, object	A SeuratCommand object
pattern	A regular expression. Only matching names are returned.
i	For a \$, a parameter name; for [, a SeuratCommand slot name
	Arguments passed to other methods
complete	Include slots besides just parameters (eg. call string, name, timestamp)

Simplify 83

Value

```
$: The value for parameter i
[: Slot i from x
as.list: A list with the parameters and, if complete = TRUE, the call string, name, and timestamp
show: Prints summary to stdout and invisibly returns NULL
```

Functions

- .DollarNames(SeuratCommand): Autocompletion for \$ access on a SeuratCommand object
- \$: Access a parameter from a SeuratCommand object
- [: Access data from a SeuratCommand object
- as.list(SeuratCommand): Coerce a SeuratCommand to a list
- show(SeuratCommand): Overview of a SeuratCommand object

Simplify

Simplify Geometry

Description

Simplify Geometry

Usage

```
Simplify(coords, tol, topologyPreserve = TRUE)
## S3 method for class 'Spatial'
Simplify(coords, tol, topologyPreserve = TRUE)
```

Arguments

coords

tol Numerical tolerance value to be used by the Douglas-Peuker algorithm topologyPreserve

Logical determining if the algorithm should attempt to preserve the topology of the original geometry

Value

...

SpatialImage-class The SpatialImage class

Description

The SpatialImage class is a virtual class representing spatial information for Seurat. All spatial image information must inherit from this class for use with Seurat objects

Slots

assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object

key Key for the image

See Also

SpatialImage-methods for a list of required and provided methods

SpatialImage-methods SpatialImage methods

Description

Methods defined on the SpatialImage class. Some of these methods must be overridden in order to ensure proper functionality of the derived classes (see **Required methods** below). Other methods are designed to work across all SpatialImage-derived subclasses, and should only be overridden if necessary

Usage

```
## S3 method for class 'SpatialImage'
Cells(x, ...)
## S3 method for class 'SpatialImage'
DefaultAssay(object, ...)
## S3 replacement method for class 'SpatialImage'
DefaultAssay(object, ...) <- value
## S3 method for class 'SpatialImage'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
## S3 method for class 'SpatialImage'
GetTissueCoordinates(object, ...)</pre>
```

SpatialImage-methods 85

```
## S3 method for class 'SpatialImage'
IsGlobal(object, ...)
## S3 method for class 'SpatialImage'
Key(object, ...)
## S3 replacement method for class 'SpatialImage'
Key(object, ...) <- value</pre>
## S3 method for class 'SpatialImage'
Radius(object)
## S3 method for class 'SpatialImage'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'SpatialImage'
x[i, ...]
## S3 method for class 'SpatialImage'
dim(x)
## S3 method for class 'SpatialImage'
subset(x, cells, ...)
## S4 method for signature 'SpatialImage'
show(object)
```

Arguments

x, object A SpatialImage-derived object
... Arguments passed to other methods

value Depends on the method:

DefaultAssay<- Assay that the image should be associated with

Key<- New key for the image

mode How to return the image; should accept one of "grob", "raster", "plotly", or

"raw"

new.names vector of new cell names
i, cells A vector of cells to keep

Value

[Override] Cells: should return cell names

DefaultAssay: The associated assay of a SpatialImage-derived object

DefaultAssay<-: object with the associated assay updated

[Override] GetImage: The image data from a SpatialImage-derived object

[Override] GetTissueCoordinates: ...

IsGlobal: returns TRUE as images are, by default, global

Key: The key for a SpatialImage-derived object

Key<-: object with the key set to value

Radius: The spot radius size; by default, returns NULL

[Override] RenameCells: object with the new cell names

[, subset: x/object for only the cells requested

[Override] dim: The dimensions of the image data in (Y, X) format

show: Prints summary to stdout and invisibly returns NULL

Functions

• Cells(SpatialImage): Get the cell names from an image ([Override])

- DefaultAssay(SpatialImage): Get the associated assay of a SpatialImage-derived object
- DefaultAssay(SpatialImage) <- value: Set the associated assay of a SpatialImage-derived object
- GetImage(SpatialImage): Get the image data from a SpatialImage-derived object
- GetTissueCoordinates(SpatialImage): Get tissue coordinates for a SpatialImage-derived object ([Override])
- IsGlobal(SpatialImage): Globality test for SpatialImage-derived object
- Key(SpatialImage): Get the key for a SpatialImage-derived object
- Key(SpatialImage) <- value: Set the key for a SpatialImage-derived object
- Radius(SpatialImage): Get the spot radius size
- RenameCells(SpatialImage): Rename cells in a SpatialImage-derived object([Override])
- [: Subset a SpatialImage-derived object
- dim(SpatialImage): Get the plotting dimensions of an image ([Override])
- subset(SpatialImage): Subset a SpatialImage-derived object ([Override])
- show(SpatialImage): Overview of a SpatialImage-derived object

Provided methods

These methods are defined on the SpatialImage object and should not be overridden without careful thought

- DefaultAssay and DefaultAssay<-
- Key and Key<-
- GetImage; this method *can* be overridden to provide image data, normally returns empty image data. If overridden, should default to returning a grob object
- IsGlobal
- Radius; this method can be overridden to provide a spot radius for image objects
- [; this method *can* be overridden to change default subset behavior, normally returns subset(x = x, cells = i). If overridden, should only accept i

Stdev 87

Required methods

All subclasses of the SpatialImage class must define the following methods; simply relying on the SpatialImage method will result in errors. For required parameters and their values, see the Usage and Arguments sections

Cells Return the cell/spot barcodes associated with each position

dim Return the dimensions of the image for plotting in (Y, X) format

GetTissueCoordinates Return tissue coordinates; by default, must return a two-column data. frame with x-coordinates in the first column and y-coordinates in the second

Radius Return the spot radius; returns NULL by default for use with non-spot image technologies

RenameCells Rename the cell/spot barcodes for this image

subset Subset the image data by cells/spots

These methods are used throughout Seurat, so defining them and setting the proper defaults will allow subclasses of SpatialImage to work seamlessly

See Also

```
DefaultAssay
GetImage
GetTissueCoordinates
IsGlobal
Key
RenameCells
```

Stdev

Get the standard deviations for an object

Description

Get the standard deviations for an object

Usage

```
Stdev(object, ...)
## S3 method for class 'DimReduc'
Stdev(object, ...)
## S3 method for class 'Seurat'
Stdev(object, reduction = "pca", ...)
```

88 Tool

Arguments

object An object

... Arguments passed to other methods

reduction Name of reduction to use

Value

The standard deviations

Examples

```
# Get the standard deviations for each PC from the DimReduc object
Stdev(object = pbmc_small[["pca"]])
# Get the standard deviations for each PC from the Seurat object
Stdev(object = pbmc_small, reduction = "pca")
```

Theta

Get the offset angle

Description

Get the offset angle

Usage

Theta(object)

Arguments

object An object

Tool

Get and set additional tool data

Description

Use Tool to get tool data. If no additional arguments are provided, will return a vector with the names of tools in the object.

Tool 89

Usage

```
Tool(object, ...)
Tool(object, ...) <- value
## S3 method for class 'Seurat'
Tool(object, slot = NULL, ...)
## S3 replacement method for class 'Seurat'
Tool(object, ...) <- value</pre>
```

Arguments

object	An object
	Arguments passed to other methods
value	Information to be added to tool list
slot	Name of tool to pull

Value

If no additional arguments, returns the names of the tools in the object; otherwise returns the data placed by the tool requested

Note

For developers: set tool data using Tool<-. Tool<- will automatically set the name of the tool to the function that called Tool<-,so each function gets one entry in the tools list and cannot overwrite another function's entry. The automatic naming will also remove any method identifiers (eg. RunPCA.Seurat will become RunPCA); please plan accordingly.

Examples

```
Tool(object = pbmc_small)
## Not run:
sample.tool.output <- matrix(data = rnorm(n = 16), nrow = 4)
# must be run from within a function
Tool(object = pbmc_small) <- sample.tool.output
## End(Not run)</pre>
```

90 UpdateSlots

UpdateSeuratObject

Update old Seurat object to accommodate new features

Description

Updates Seurat objects to new structure for storing data/calculations. For Seurat v3 objects, will validate object structure ensuring all keys and feature names are formed properly.

Usage

```
UpdateSeuratObject(object)
```

Arguments

object

Seurat object

Value

Returns a Seurat object compatible with latest changes

Examples

```
## Not run:
updated_seurat_object = UpdateSeuratObject(object = old_seurat_object)
## End(Not run)
```

UpdateSlots

Update slots in an object

Description

Update slots in an object

Usage

```
UpdateSlots(object)
```

Arguments

object

An object to update

Value

object with the latest slot definitions

Version 91

Version

Get Version Information

Description

Get Version Information

Usage

```
Version(object, ...)
## S3 method for class 'Seurat'
Version(object, ...)
```

Arguments

object An object

... Arguments passed to other methods

Examples

Version(pbmc_small)

WhichCells

Identify cells matching certain criteria

Description

Returns a list of cells that match a particular set of criteria such as identity class, high/low values for particular PCs, etc.

Usage

```
WhichCells(object, ...)
## S3 method for class 'Assay'
WhichCells(object, cells = NULL, expression, invert = FALSE, ...)
## S3 method for class 'Seurat'
WhichCells(
  object,
  cells = NULL,
  idents = NULL,
  expression,
```

92 WhichCells

```
slot = "data",
invert = FALSE,
downsample = Inf,
seed = 1,
...
)
```

Arguments

object An object

... Arguments passed on to CellsByIdentities

return.null If no cells are request, return a NULL; by default, throws an error

cells Subset of cell names

expression A predicate expression for feature/variable expression, can evaluate anything

that can be pulled by FetchData; please note, you may need to wrap feature names in backticks (``) if dashes between numbers are present in the feature

name

invert Invert the selection of cells

idents A vector of identity classes to keep

slot Slot to pull feature data for

downsample Maximum number of cells per identity class, default is Inf; downsampling will

happen after all other operations, including inverting the cell selection

seed Random seed for downsampling. If NULL, does not set a seed

Value

A vector of cell names

See Also

FetchData

Examples

```
WhichCells(pbmc_small, idents = 2)
WhichCells(pbmc_small, expression = MS4A1 > 3)
levels(pbmc_small)
WhichCells(pbmc_small, idents = c(1, 2), invert = TRUE)
```

Index

* assay	Segmentation-methods, 73
Assay-class, 10	* graph
Assay-methods, 11	as.Graph, 7
CreateAssayObject, 23	* jackstraw
* command	JackStrawData-methods, 54
LogSeuratCommand, 60	JS, 55
SeuratCommand-methods, 82	* neighbor
* data-access	as.Neighbor,8
AssayData, 14	Neighbor-methods, 64
Assays, 15	* segmentation
Cells, 18	Centroids-class, 20
CellsByIdentities, 18	Molecules-class, 62
CellsByImage, 19	Segmentation-class, 73
Command, 23	* seurat
DefaultAssay, 31	AddMetaData, 5
Distances, 37	as.Seurat,9
Embeddings, 37	CreateSeuratObject, 29
FetchData, 38	Idents, 47
GetImage, 43	Project, 67
<pre>GetTissueCoordinates, 44</pre>	RenameAssays, 69
HVFInfo, 45	RenameCells, 69
Images, 50	Seurat-methods, 76
Index, 50	UpdateSeuratObject, 90
Indices, 51	* spatialimage
IsGlobal, 52	Radius, 68
Key, 56	SpatialImage-methods, 84
Loadings, 57	* utils
Misc, 61	as.sparse, 10
Stdev, 87	AttachDeps, 16
Tool, 88	CheckGC, 22
Version, 91	DefaultDimReduc, 33
WhichCells, 91	FilterObjects, 39
* datasets	IsMatrixEmpty, 52
pbmc_small, 66	PackageCheck, 66
* dimreduc	RandomName, 68
CreateDimReducObject, 25	RowMergeSparseMatrices, 71
DimReduc-methods, 35	s4list, 72
* future	set-if-na, 75
aggregate. 6	UpdateSlots, 90

.DollarNames.JackStrawData	<pre>[[<-,LogMap,character,missing,numeric-method</pre>
(JackStrawData-methods), 54	(LogMap-class), 58
.DollarNames.Seurat(Seurat-methods), 76	<pre>[[<-,Seurat,ANY,ANY,ANY-method</pre>
.DollarNames.SeuratCommand	(Seurat-methods), 76
(SeuratCommand-methods), 82	\$.FOV (FOV-methods), 40
.onAttach, <i>16</i>	<pre>\$.JackStrawData</pre>
?future::plan, 6, 75	(JackStrawData-methods), 54
[, 86	\$. Seurat (Seurat-methods), 76
[,Centroids,character,ANY,ANY-method	<pre>\$.SeuratCommand</pre>
(Centroids-methods), 20	(SeuratCommand-methods), 82
[,Centroids,numeric,ANY,ANY-method	<pre>\$<seurat (seurat-methods),="" 76<="" pre=""></seurat></pre>
(Centroids-methods), 20	%!NA% (set-if-na), 75
[, Segmentation, ANY, ANY, ANY-method	%!na% (set-if-na), 75
(Segmentation-methods), 73	%NA% (set-if-na), 75
[.Assay (Assay-methods), 11	%na% (set-if-na), 75
[.DimReduc (DimReduc-methods), 35	
[.FOV (FOV-methods), 40	AddMetaData, 5, 76
[.Seurat (Seurat-methods), 76	AddSamples (Seurat-methods), 76
[.SeuratCommand	aggregate, 6
(SeuratCommand-methods), 82	as.Centroids, 7
[.SpatialImage (SpatialImage-methods),	as.Graph, 7
84	as.list.SeuratCommand
[[,LogMap,NULL,missing-method	(SeuratCommand-methods), 82
(LogMap-class), 58	as.logical.JackStrawData
[[,LogMap,character,missing-method	(JackStrawData-methods), 54
(LogMap-class), 58	as.Neighbor, 8
[[,LogMap,missing,missing-method	as.Segmentation(as.Centroids),7
(LogMap-class), 58	as.Seurat, 9
[[.Assay (Assay-methods), 11	as.sparse, 10, 24
[[.DimReduc (DimReduc-methods), 35	Assay, 11, 12, 14, 15, 24, 30, 45, 76, 78, 79
[[.FOV (FOV-methods), 40	Assay (Assay-class), 10
[[.Seurat (Seurat-methods), 76	Assay-class, 10
[[<-,Assay,ANY,ANY,ANY-method	Assay-methods, 11
(Assay-methods), 11	AssayData, 14
[[<-,FOV,character,missing,Centroids-method	Assays, 15
(FOV-methods), 40	AttachDeps, 16
[[<-,FOV,character,missing,Molecules-method	attribute, 72
(FOV-methods), 40	2 1 2
[[<-,FOV,character,missing,NULL-method	Boundaries, 17
(FOV-methods), 40	ant 26
[[<-,FOV,character,missing,Segmentation-meth	cat, 36
(FOV-methods), 40	Cells.Centroids (Centroids-methods), 20
[[<-,LogMap,character,missing,NULL-method	*
(LogMap-class), 58	Cells Fow (FOV-methods), 40
[[<-,LogMap,character,missing,character-meth	Cells.Segmentation od (Segmentation-methods), 73
(LogMap-class), 58	Cells.SpatialImage
[[<-,LogMap,character,missing,integer-method	•
(LogMap-class), 58	CellsBvIdentities. 18. 92
I EUELIUD CIUJOI. JU	CCTTOD 7 TUCITOT CTCO, 1U, /4

CellsByImage, 19	dimnames.Seurat(Seurat-methods),76	
Centroids, 7, 20, 21, 24, 25, 27, 39, 41, 42	DimReduc, 15, 25, 33, 35, 76, 78, 79	
Centroids-class, 20	DimReduc (DimReduc-class), 34	
Centroids-methods, 20	DimReduc-class, 34	
CheckGC, 22	DimReduc-methods, 35	
colMeans, 13, 80	Distances, 37	
colMeans, Assay-method (Assay-methods),	drop, 12, 35, 78	
11	droplevels. Seurat (Idents), 47	
colMeans, Seurat-method	, ,,	
(Seurat-methods), 76	Embeddings, 37	
colSums, 13, 80	3 ,	
colSums, Assay-method (Assay-methods), 11	Features (Cells), 18	
colSums, Seurat-method (Seurat-methods),	Features.FOV (FOV-methods), 40	
76	Features. Molecules (Molecules-methods),	
Command, 23, 60	63	
coordinates, Segmentation-method	FetchData, 38, 48, 92	
(Segmentation-methods), 73	FetchData.FOV (FOV-methods), 40	
CreateAssayObject, 23	FilterObjects, 39	
CreateCentroids, 24	FOV, 27, 34, 40, 41	
CreateDimReducObject, 25	FOV (FOV-class), 39	
CreateFOV, 26	FOV-class, 39	
CreateMolecules, 27	FOV-methods, 40	
CreateSegmentation, 28	1 ov methods, 40	
CreateSeuratObject, 29	GetAssayData (AssayData), 14	
Crop, 31	GetImage, 43, 86, 87	
ст ор, 31	GetImage, 15, 66, 67 GetImage. SpatialImage	
data.frame, 27, 30	(SpatialImage-methods), 84	
default assay, 14	GetTissueCoordinates, 31, 44, 87	
DefaultAssay, 31, 76, 86, 87	GetTissueCoordinates.Centroids	
DefaultAssay.SpatialImage	(Centroids-methods), 20	
(SpatialImage-methods), 84	GetTissueCoordinates.FOV (FOV-methods),	
DefaultAssay<- (DefaultAssay), 31	40	
DefaultAssay <spatialimage< td=""><td>GetTissueCoordinates.Molecules</td></spatialimage<>	GetTissueCoordinates.Molecules	
(SpatialImage-methods), 84	(Molecules-methods), 63	
DefaultBoundary (Boundaries), 17	GetTissueCoordinates.Segmentation	
DefaultBoundary<- (Boundaries), 17	(Segmentation-methods), 73	
DefaultDimReduc, 33	GetTissueCoordinates.SpatialImage	
DefaultFOV, 33		
DefaultFOV<- (DefaultFOV), 33	(SpatialImage-methods), 84	
dgCMatrix, 44	Graph, 7, 8, 15, 76, 78, 79	
dim, 87	Graph (Graph-class), 44	
dim. Assay (Assay-methods), 11	Graph-class, 44	
dim. DimReduc (DimReduc-methods), 35	Graphs (Assays), 15	
dim.Neighbor (Neighbor-methods), 64	grob, 86	
	hand Annu (Annu mathada) 11	
dim.Seurat (Seurat-methods), 76	head. Assay (Assay-methods), 11	
<pre>dim.SpatialImage</pre>	head. Seurat (Seurat-methods), 76	
dimnames.Assay (Assay-methods), 11	HVFInfo, 45	
dimnames.Assay (Assay-methods), 11 dimnames.DimReduc (DimReduc-methods), 35	Idents, 47, 76	
atimiames. Difficanc intillenactifications 1: 3.3	IUCIILO, 7/, /U	

Idents<- (Idents), 47	${\tt LogSeuratCommand, 60}$
Images, 50	
Index, 50	MatchCells, 60
Index<- (Index), 50	Matrix, 7
Indices, 51	matrix, 7, 30
Inf, 7, 24, 27	mean, 48
is.finite.Centroids	merge (Seurat-methods), 76
(Centroids-methods), 20	merge.Assay(Assay-methods), 11
is.infinite.Centroids	merge.DimReduc(DimReduc-methods), 35
(Centroids-methods), 20	MergeSeurat (Seurat-methods), 76
IsGlobal, 52, 86, 87	Misc, 61
IsGlobal.SpatialImage	Misc<- (Misc), 61
(SpatialImage-methods), 84	Molecules, 27, 28, 39, 41, 63
IsMatrixEmpty, 52	Molecules (Boundaries), 17
IsNamedList, 53	Molecules-class, 62
IsS4List (s4list), 72	Molecules-methods, 63
JackStrawData, 54, 55	NA, <i>75</i>
<pre>JackStrawData (JackStrawData-class), 53</pre>	names.DimReduc(DimReduc-methods), 35
JackStrawData-class, 53	names.FOV (FOV-methods), 40
JackStrawData-methods, 54	names.Seurat (Seurat-methods), 76
JS, 55	Neighbor, 8, 9, 15, 64
JS<- (JS), 55	Neighbor (Neighbor-class), 64
	Neighbor-class, 64
Key, 56, 86, 87	Neighbor-methods, 64
<pre>Key.SpatialImage</pre>	Neighbors (Assays), 15
(SpatialImage-methods), 84	
Key<- (Key), 56	Overlay, 65
Key <spatialimage< td=""><td>Overlay, Centroids, Spatial Polygons-method</td></spatialimage<>	Overlay, Centroids, Spatial Polygons-method
(SpatialImage-methods), 84	(Overlay), 65
Keys (Key), 56	Overlay, FOV, FOV-method (Overlay), 65
Keys.FOV (FOV-methods), 40	Overlay, FOV, Spatial-method (Overlay), 65
, , , , , , , , , , , , , , , , , , , ,	Overlay, FOV, SpatialPolygons-method
layout, <i>43</i>	(Overlay), 65
length.Centroids (Centroids-methods), 20	Overlay, Molecules, Spatial Polygons-method
length.DimReduc (DimReduc-methods), 35	(Overlay), 65
length.FOV (FOV-methods), 40	Overlay, Segmentation, SpatialPolygons-method
lengths.Centroids(Centroids-methods),	(Overlay), 65
20	
lengths.Segmentation	PackageCheck, 66
(Segmentation-methods), 73	pbmc_small, 66
levels.Seurat (Idents), 47	plan, $6, 75$
levels <seurat (idents),="" 47<="" td=""><td>plotly::layout,43</td></seurat>	plotly::layout,43
list, <i>39</i>	<pre>print (DimReduc-methods), 35</pre>
ListToS4 (s4list), 72	Project, 30, 67, 79
Loadings, 57	Project<- (Project), 67
Loadings<- (Loadings), 57	
LogMap (LogMap-class), 58	Radius, 68, 86, 87
LogMap-class, 58	${\tt Radius.Centroids}~({\tt Centroids-methods}),~20$

Radius.SpatialImage	SeuratObject-package, 4
(SpatialImage-methods), 84	show, Assay-method (Assay-methods), 11
RandomName, 68	show, Centroids-method
Reductions (Assays), 15	(Centroids-methods), 20
RenameAssays, 69	show, DimReduc-method
RenameCells, 69, 87	(DimReduc-methods), 35
RenameCells.Centroids	show, FOV-method (FOV-methods), 40
(Centroids-methods), 20 RenameCells.FOV (FOV-methods), 40	show, JackStrawData-method (JackStrawData-methods), 54
	*
RenameCells.Segmentation	show, LogMap-method (LogMap-class), 58
(Segmentation-methods), 73	show, Molecules - method
RenameCells.SpatialImage	(Molecules-methods), 63
(SpatialImage-methods), 84	show, Neighbor-method
RenameIdent (Idents), 47	(Neighbor-methods), 64
RenameIdents (Idents), 47	show, Segmentation-method
ReorderIdent (Idents), 47	(Segmentation-methods), 73
rle, 22, 74	show, Seurat-method (Seurat-methods), 76
rowMeans, <i>13</i> , <i>80</i>	show, SeuratCommand-method
rowMeans, Assay-method (Assay-methods),	(SeuratCommand-methods), 82
11	show,SpatialImage-method
rowMeans, Seurat-method	(SpatialImage-methods), 84
(Seurat-methods), 76	Simplify, 83
RowMergeSparseMatrices, 71	SpatialImage, <i>39</i> , <i>78</i> , <i>79</i> , <i>84</i>
rowSums, <i>13</i> , <i>80</i>	SpatialImage (SpatialImage-class), 84
rowSums, Assay-method (Assay-methods), 11	SpatialImage-class, 84
rowSums, Seurat-method (Seurat-methods),	SpatialImage-methods, 84
76	SpatiallyVariableFeatures (HVFInfo), 45
	SpatialPoints, 62
s4list, 72	StashIdent (Idents), 47
S4ToList (s4list), 72	Stdev, 87
sample, 68	stdout, 13, 36, 54, 64, 79, 83, 86
Segmentation, 6, 7, 27–29, 39, 41, 42, 73, 74	subset, <i>80</i> , <i>87</i>
Segmentation-class, 73	subset (Seurat-methods), 76
Segmentation-methods, 73	subset.Assay (Assay-methods), 11
set-if-na, 75	subset.Centroids (Centroids-methods), 20
SetAssayData (AssayData), 14	<pre>subset.DimReduc (DimReduc-methods), 35</pre>
<pre>SetDimReduction (CreateDimReducObject),</pre>	subset.FOV (FOV-methods), 40
25	subset. Molecules (Molecules-methods), 63
SetIdent (Idents), 47	subset.Segmentation
Seurat, 9, 15, 30, 33, 34, 39, 76, 78, 80	(Segmentation-methods), 73
Seurat (Seurat-class), 76	subset.SpatialImage
Seurat-class, 76	(SpatialImage-methods), 84
Seurat-methods, 76	SVFInfo (HVFInfo), 45
SeuratAccess (AddMetaData), 5	, , , , ,
SeuratCommand, 60, 78, 82	tail.Assay (Assay-methods), 11
SeuratCommand (SeuratCommand-class), 81	tail.Seurat(Seurat-methods), 76
SeuratCommand-class, 81	Theta, 88
SeuratCommand-methods, 82	Theta.Centroids (Centroids-methods), 20
SeuratObject (SeuratObject-package), 4	Tool, 76, 88

```
Tool<-(Tool), 88
Tools (Tool), 88
UpdateSeuratObject, 90
UpdateSlots, 90
VariableFeatures (HVFInfo), 45
VariableFeatures<-(HVFInfo), 45
Version, 91
WhichCells, 80, 91
with_progress, 6, 74
```