Homework 5

Clearly describe the reasoning behind the work done in each problem.

SOLVE 5 OF ANY OF THE FOLLOWING PROBLEMS.

Problem 1: (20 points)

The plot below shows the signal v(t). Determine: V_{DC} , A, f, and θ . Write v(t) in the form of: $v(t) = V_{DC} + A\cos(2\pi f\,t + \theta)$.

Problem 2: (20 points)

For the plot below, find voltage peak to peak V_{p-p}, DC voltage V_{DC}, period T, and frequency f.

Problem 3: (20 points)

For the circuit below the input is a -6V to +6V rectangular pulse train with 75% duty cycle. Plot $V_R(t)$, $V_D(t)$, and $i_D(t)$. $V_Y = 2 \text{ V}$.

Problem 4: (20 points)

In the circuit below, $v_s(t) = 20 \cos(200t)$. Find i(t) and the DC value of this current.

Problem 5: (20 points)

Find the DC value of the current $i(t) = [12 \cos^2(10t) + 6 \cos^2(20t) + 24 \cos(30t)] \text{ mA}.$

Problem 6: (30 points)

For the circuit below plot $i_D(t)$ using the given $v_s(t)$. $V\gamma$ = 1 V.

Problem 7: (30 points)

For the circuit below plot $v_D(t)$ using the given $i_s(t)$. $V\gamma = 1.5 \text{ V}$.

Problem 8: (30 points)

Solve for $v_x(t)$, and the DC value of v_x .

Problem One

$$V_{DC} = 2v$$
 $A = 1v$
 $f = \frac{1}{1ms}$
 $= 1000s$
 $0 = 0s$
 $V(t) = 2 + (cs)(2000\pi t)$

Problem Two

 $V_{pp} = 7v$
 $T = 1.4 \text{ US}$
 $f = 0.714 \text{ US}$
 $V_{bc} = \frac{-\frac{1}{2}(0.4 \cdot 3) + (0.6 \cdot 2) + \frac{1}{2}(0.2 \cdot 2)}{1.4}$
 $= 0.571v$

Vode Voltage
Kel at W.
$I_1 + \frac{\sqrt{R-0}}{2000} + i_0 = 0$
$0.602 + \frac{V_{5}12}{2000} + i_{p} = 0$
4 + Vs + 2 + 2000 i p = 0
$i_{D} = \frac{-V_{s} - 6}{2000}$
D = 2000
Selve for Vo
$V_{\rm D} = V_{\rm R} - V_{\rm S}$
= V _S + 2 - V _S
=2v
When Vs is 6 diede is CFF and
V _R = -4 v
$V_{\rm D} = -10_{\rm V}$
ip= OA

5 hode - 1 grand - 4 veltage severs = 0 in them is

$$V_1 = 0$$
 v

 $V_2 = 20$ v

 $V_3 = V_5$
 $V_5 = V_5 - 5$
 $V_6 = I_1 + I_2$
 $V_7 = I_2 + I_3$
 $V_8 = I_8 + I_8$
 $V_8 = I_8 + I_8$

$$\begin{aligned} 2i &= 13 - 28\cos(200t) \\ i &= \frac{13}{2} - 14\cos(200t) \end{aligned}$$

$$| i &= \frac{13}{2} - 14\cos(200t) + \frac{1}{2}\cos(200t) + \frac{1}$$