Missouri University of Science & Technology

Department of Computer Science

Fall 2018

CS 2500: Algorithms

Homework 5: Graph Algorithms (Part II) & NP Completeness

Instructor: Sid Nadendla **Due:** November 27, 2018

In this homework, we will focus our attention to finding shortest-paths and maximum flow on graphs, and NP Completeness.

Problem 1: Shortest Path

40 points

- 1. If $p = \{v_1, \dots, v_n\}$ is the shortest path between v_1 and v_n , then prove that any subpath $p_{ij} = \{v_i, \dots, v_j\}$ in p is the shortest path between v_i and v_j . (20 points)
- 2. Write the pseudocode to find a negative weight cycle in a directed graph G=(V,E) with the weight function $w:E\to\mathbb{R}$. (20 points)

Bonus Problem (20 points):

- 1. Demonstate Dijkstra's algorithm on the following graph.
- 2. Implement Dijkstra's algorithm in Python, and validate your code on the following graph.

Problem 2: Flow Networks

20 points

- 1. Define slack (residual flow) in an edge $(u,v) \in E$ in a the residual graph of a given graph G=(V,E). (10 points)
- 2. Demonstrate the Ford-Fulkerson algorithm on this following flow network, where each edge is labeled with its flow capacity. (10 points)

Bonus Problem (10 points):

Implement Edmonds-Karp algorithm in Python, and test your code on the given graph.

Problem 3: NP Completeness

40 points

- 1. Prove that there are uncountable number of unsolvable binary decision problems. Furthermore, give an example of an unsolvable binary decision problem. (10 points)
- 2. Define NP, NP-Hard and NP-Complete classes, and give one problem in each of these complexity classes. (10 points)
- 3. Assuming that Hamiltonian circuit problem is NP-Complete, prove that traveling salesman problem is NP-Complete via reduction. (20 points)