副

财

뺫

+

仢

狱

盐

倒

昆明理工大学试卷(A)

考试科目: 大学物理 II 考试日期:2013 年 1 月 11 日 命题教师: 命题组

题号	选择题	填空题	计算题			总分
处与	以外干涉	央工戏	1	2	3	心力
评分						
阅卷人						

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7} \text{H/m}$; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31} \text{kg}$; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{eV} = 1.602 \times 10^{-19} \text{J}$; 基本电荷: $e=1.602\times10^{-19}$ C; 普朗克常数: $h=6.63\times10^{-34}$ J·s 摩尔气体常数 R=8.31 J/mol·K

- 一、选择题 (每题3分,共36分) 答案请填在 [1 中
- 1、根据热力学第二定律可知 [
- (A) 功可以全部转换为热,但热不能全部转换为功
- (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体
- (C) 不可逆过程就是不能向相反方向进行的过程
- (D) 一切自发过程都是不可逆的
- 2、在常温下有 1mol 的氢气和 1mol 的氦气各一瓶,若将它们升高相同的温度,
- (A) 氢气比氢气的内能增量大 (B) 氦气比氢气的内能增量大
- (C) 氢气和氦气的内能增量相同 (D) 不能确定哪一种气体内能的增量大
- 3、气缸内盛有一定量的氢气(可视作理想气体), 当温度不变而压强增大一倍 时,氢气分子的平均碰撞次数Z和平均自由程 λ 的变化情况是:[
- (A) Z 和 λ 都增大一倍 (B) Z 和 λ 都减为原来的一半
- (C) Z 增大一倍而 λ 减为原来的一半 (D) Z 减为原来的一半而 λ 增大一倍

9、如图所示,平行单色光垂直照射到薄膜上,经上、下两表面反射的两束光发生 干涉,若薄膜厚度为 e, 而且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的

A= _______,而C=_____

2、已知三个平面简谐波的波函数分别为: $y_1 = A\cos[\omega(t-\frac{x}{u})+\varphi_0]$, $y_2 = A\cos[\omega(t-\frac{x}{u})-\varphi_0]$ 和 $y_3 = A\cos[\omega(t+\frac{x}{u})+\varphi_0]$ 。则可与 y_1 叠加产生驻波 的简谐波是_____ 3、薄钢片上有两条紧靠着的平行细缝,用双缝干涉方法来测量两缝间距。如果用 波长 $\lambda = 546.1$ nm 的单色光照射,双缝与屏的距离D = 300 mm 。测得中央明条纹 两侧的两个第五级明条纹的间距为12.2 mm,则两缝间距离为 mm。 4、波长λ=600nm 的单色光垂直照射到牛顿环装置上,则第二级明纹与第五级明纹 所对应的空气膜厚度之差 $\triangle e$ =____nm。 5、单缝夫琅和费衍射中,来自单缝上、下两边缘的两条光线在观察屏上某点相会 时光程差恰好等于入射光波长 λ 的 2 倍,则观察屏上该点应该呈现 (填"明纹"、"暗纹"或"其它")。 6、两个偏振片堆叠在一起,偏振化方向间成 $\pi/4$ 的角度,若用一束强度为 I_0 的自 然光垂直入射,它穿过第一个偏振片后继续往前传,则它穿过第二个偏振片后的光 强应为。 7、迈克尔逊干涉仪因两反射镜不相互垂直 形成一劈尖形空气膜, 现移动动镜 M2观察 到干涉条纹向左移动,则在如图的等效光路 中,动镜 M_2 移动的方向为: _____ 。(填"向上靠近 M₁"或"向下远离 M₁") 8、要使描述微观粒子运动的波函数 $\Psi(\vec{r},t)$ 有意义,除必须满足归一化条件外, $\Psi(\vec{r},t)$ 还须满足的三个标准条件是____、___、

考试座位号		
课序号		
任课教师姓名		
学号		
姓名		
专业班级		
学院		

冥

+

乜

狱

卦

锹

9、一维运动的粒子,设其动量的不确定量 ΔP_x 等于它的动量 P_x ,则此粒子的位置不确定量 Δx 与它的德布罗意波长 λ 的关系为: Δx _____ λ 。(填" \leq "、"=" 或" \geq ";已知不确定关系式为 $\Delta p_x \Delta x \geq h$)

10、已知一粒子在一维无限深势阱中运动,其波函数可以表示为: $\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a} (0 \le x \le a, n = 1, 2, 3 \cdots) , 则粒子出现在 <math>x$ 处的概率密度为:

三、计算题(每题10分,共30分)

1、1mol 理想气体在 T_1 =400K 的高温热源与 T_2 =300K 的低温热源间作正卡诺循环(可逆的),已知在 400K 的等温线上起始体积为 V_1 =0.001m³,终止体积为 V_2 =0.005m³,试求此气体在每完成一次循环的过程中:(1)从高温热源吸收的热量 Q_1 ;(2)气体传给低温热源的热量 Q_2 ;(3)该循环的热机效率 η 。

2、一平面简谐波在媒质中以波速 u=5m/s 沿 x 轴正向传播,原点 O 处质元的振动曲线如图所示。求(1)原点 O 处质元的振动方程;(2)该波的波函数;(3)25m 处质元的振动方程。

3、若光栅透光缝的缝宽为 a,不透光刻痕的宽度为 b,现用波长为 λ =600nm 的单色光垂直入射到光栅上,测得第 2 级主极大的衍射角为 30°,且第三级缺级,问: (1) 光栅常数 (a+b) 是多少? (2) 透光缝可能的最小宽度 a 是多少? (3) 在选定了上述 (a+b) 与 a 值后,屏幕上可能出现的光栅衍射主极大共有几条?