

Manual

HIMax®

X-AI 16 51

Analog Input Module

All of the HIMA products mentioned in this manual are trademark protected. This also applies for other manufacturers and their products which are mentioned unless stated otherwise.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® and FlexSILon® are registered trademarks of HIMA Paul Hildebrandt GmbH.

All of the technical specifications and information in this manual were prepared with great care and effective control measures were employed for their compilation. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

All the current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com.

© Copyright 2019, HIMA Paul Hildebrandt GmbH All rights reserved.

Contact

HIMA Paul Hildebrandt GmbH P.O. Box 1261 68777 Brühl

Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com

Document designation	Description	
HI 801 178 D, Rev. 11.00 (1941)	German original document	
HI 801 179 E, Rev. 11.00.00 (1948)	English translation of the German original document	

X-AI 16 51 Table of Contents

Table of Contents

1	Introduction	5
1.1	Structure and Use of This Manual	5
1.2	Target Audience	5
1.3	Writing Conventions	6
1.3.1 1.3.2	Safety Notices Operating Tips	6 7
2	Safety	8
2.1	Intended Use	8
2.1.1 2.1.2	Environmental Requirements ESD Protective Measures	8 8
2.2	Residual Risk	8
2.3	Safety Precautions	8
2.4	Emergency Information	8
3	Product Description	9
3.1	Safety Function	9
3.1.1	Response in the Event of a Fault	9
3.2	Scope of Delivery	10
3.3	Type Label	11
3.4	Structure	12
3.4.1 3.4.2	Analog Measuring Inputs Current sources	12 12
3.4.3	Block Diagrams	13
3.4.4	Indicators	16
3.4.5 3.4.6	Module Status Indicators System Bus Indicators	18 19
3.4.7	I/O Indicators	19
3.5	Product Data	20
3.6	Connector Boards	22
3.6.1	Mechanical Coding of Connector Boards	22
3.6.2 3.6.3	Coding of X-CB 024 53, X-CB 020 5X and X-CB 021 5X Connector Boards Mono Connector Board with Cable Plug, Open-Circuit Detection	23 24
3.6.4	Pin Assignment for X-CB 024 53 Connector Board with Cable Plug	25
3.6.5	Mono Connector Boards with Screw Terminals	26
3.6.6 3.6.7	Terminal Assignment for Connector Board with Screw Terminals Mono Connector Boards with Cable Plug	27 28
3.6.8	Pin Assignment for Connector Board with Cable Plug	29
3.7	System Cable X-CA 014	30
3.7.1	Cable Plug Coding	31
4	Start-Up	32
4.1	Mounting	32
4.2	Mounting and Removing the Module	33
4.2.1	Mounting a Connector Board	33
4.2.2	Module and Channel Modes of Operation	35
4.3	Module and Channel Modes of Operation	37

HI 801 179 E Rev. 11.00.00 Page 3 of 68

Table of Contents	X-AI 16 51

4.3.1	The Mode of Operation Module Settings	37
4.3.2	Channel Settings for Mode of Operation	37
4.3.3 4.3.4	System Parameters OC LOW and SC HIGH System Parameters SP LOW and SP HIGH	38 38
4.3.5	Output of Measured Values	38
4.4	Configuring the Module in SILworX	39
4.4.1	The Module Tab	40
4.4.2	The I/O Submodule Al16_51 Tab	41
4.4.3	The I/O Submodule Al16_51: Channels Tab	43 46
4.4.4 4.4.5	Description of Submodule Status [DWORD] Description of Diagnostic Status [DWORD]	46 46
4.5	Connection Variants	47
4.5.1	Input Wiring Variants	47
4.5.2	Connecting the Pt100 for Measuring the Cold Junction Temperature	48
4.5.3	Redundant Input Wiring Variants	50
4.5.4	Triple Redundant Input Wiring Variants	51
4.5.5 4.5.6	Connection of Thermocouples via X-FTA 002 02 and X-CB 024 53 Connection of Thermocouples via X-FTA 002 02 and X-CB 020 53	53 54
4.5.7	Connection of Sensors via Field Termination Assembly	55
4.5.8	Redundant Connection of Thermocouples via X-FTA 002 02	56
5	Operation	57
5.1	Handling	57
5.2	Diagnostics	57
6	Maintenance	58
6.1	Maintenance Measures	58
6.1.1	Proof Test	58
6.1.2	Loading of Enhanced Operating System Versions	58
7	Decommissioning	59
8	Transport	60
9	Disposal	61
	Appendix	63
	Applicable Thermocouples	63
	Glossary	64
	Index of Figures	65
	Index of Tables	66
	Index	67

Page 4 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 1 Introduction

1 Introduction

This manual describes the technical characteristics of the module and its use. It provides information on how to install, start up and configure the module in SILworX.

1.1 Structure and Use of This Manual

The content of this manual is part of the hardware description of the HIMax programmable electronic system.

This manual contains the following main chapters:

- Introduction
- Safety
- Product description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

Additionally, the following documents must be taken into account:

Document	Content	Document no.
HIMax system manual	Hardware description of the HIMax system	HI 801 001 E
HIMax safety manual	Safety functions of the HIMax system	HI 801 003 E
HIMax maintenance manual	Description of significant operational and maintenance actions.	HI 801 171 E
Communication manual	Description of safeethernet communication and of the available protocols.	HI 801 101 E
Automation security manual	Description of automation security aspects related to the HIMA systems.	HI 801 373 E
SILworX first steps manual	Introduction to SILworX	HI 801 103 E
SILworX online help (OLH)	Instructions on how to use SILworX	

Table 1: Additional Applicable Manuals

The current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com. Registered customers can download the product documentation from the HIMA Extranet.

1.2 Target Audience

This document is aimed at the planners, design engineers, programmers and the persons authorized to start up, operate and maintain the automation systems. Specialized knowledge of safety-related automation systems is required.

HI 801 179 E Rev. 11.00.00 Page 5 of 68

1 Introduction X-AI 16 51

1.3 Writing Conventions

To ensure improved readability and comprehensibility, the following writing conventions are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics Parameters and system variables, references.

Courier Literal user inputs.

RUN Operating states are designated by capitals.

Chapter 1.2.3 Cross-references are hyperlinks even if they are not specially marked.

In the electronic document (PDF): When the mouse pointer hovers over a hyperlink, it changes its shape. Click the hyperlink to jump to the

corresponding position.

Safety notices and operating tips are specially marked.

1.3.1 Safety Notices

Safety notices must be strictly observed to ensure the lowest possible risk.

The safety notices are represented as described below.

- Signal word: warning, caution, notice.
- Type and source of risk.
- Consequences arising from non-observance.
- Risk prevention.

The signal words have the following meanings:

- Warning indicates hazardous situations which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or moderate injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance.

Risk prevention.

NOTICE

Type and source of damage! Damage prevention.

Page 6 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 1 Introduction

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text giving additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

HI 801 179 E Rev. 11.00.00 Page 7 of 68

2 Safety X-AI 16 51

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

The product is operated with SELV or PELV. No imminent risk results from the product itself. Use in the Ex zone is only permitted if additional measures are taken.

2.1 Intended Use

HIMax components are designed for assembling safety-related controller systems.

When using the components in the HIMax system, comply with the following general requirements.

2.1.1 Environmental Requirements

All the environmental requirements specified in this manual must be observed when operating the HIMax system. The environmental requirements are listed in the product data.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace components.

NOTICE

Damage to the HIMax system due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear a grounding strap.
- If not used, ensure that the components are protected from electrostatic discharge, e.g., by storing them in their packaging.

2.2 Residual Risk

No imminent risk results from a HIMA system itself.

Residual risk may result from:

- Faults related to engineering.
- Faults in the user program.
- Faults related to the wiring.

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMA system is a part of the safety equipment of an overall system. If the controller fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMA system from operating safely is permitted.

Page 8 of 68 HI 801 179 E Rev. 11.00.00

3 Product Description

The X-Al 16 51 is an analog input module is intended for use in the programmable electronic system (PES) HIMax.

The module is used to evaluate up to 16 analog input signals.

The analog inputs can be configured for use in various modes of operation:

- Voltage/Temperature (voltage measurement in mV).
- Thermocouple Type x, see Table 25.
- Current.
- Pt100 (2-wire circuit, 4-wire circuit).

The module is equipped with two current sources (S1, S2) for measuring the cold junction temperature with a Pt100 (resistance thermometer) and for detecting open-circuits.

The module is designed for operation in accordance with the standards for thermocouples (IEC 60584-1:2013) and Pt100 resistance thermometers (IEC 60751:2008). Table 25 specifies the tolerances for the thermocouples released for this module.

The module has been certified by the TÜV for safety-related applications up to SIL 1 (IEC 61508, IEC 61511 and IEC 62061).

A safety function in accordance with SIL 2 can be achieved with a 1002 modules structure (Chapter 4.5.3), while a 1003 structure (Chapter 4.5.4) ensures a safety function in accordance with SIL 3.

The module is interference-free, in particular with respect to EMC, electrical safety, communication to the X-SB and X-CPU modules, and the user program.

Module and connector boards are mechanically coded, see Chapter 3.6. Coding prevents installation of unsuitable I/O modules.

The module can be inserted into any of the base plate slots with the exception of the slots reserved for system bus modules. Refer to the system manual (HI 801 001 E) for details.

Refer to the HIMax safety manual (HI 801 003 E) for further information on the standards used to test and certify the modules and the HIMax system.

The certificates and the EU type test certificate are available on the HIMA website.

3.1 Safety Function

The module evaluates the voltage at the inputs and provides the corresponding values to the user program.

The safety function is performed in accordance with SIL 1.

3.1.1 Response in the Event of a Fault

If a fault occurs, the initial value (default value = 0) is transmitted to the user program for the process values. The initial values must be defined by the users. If the raw value is evaluated instead of the process value, users must program the monitoring function and the value in the event of faults from within the user program.

The module activates the *Error* LED on the front plate.

HI 801 179 E Rev. 11.00.00 Page 9 of 68

3.2 Scope of Delivery

To operate, the module must be installed on a matching connector board. If a field termination assembly (FTA) is used, a system cable is required to connect the connector board to the FTA. Connector boards, system cables and FTAs are not included within the scope of delivery.

The connector boards are described in Chapter 3.7, the system cables are described in Chapter 3.8. The FTAs are described in separate manuals.

Page 10 of 68 HI 801 179 E Rev. 11.00.00

3.3 Type Label

The type label specifies the following important details:

- Product name
- Mark of conformity
- Bar code (2D or 1D code)
- Part number (Part-No.)
- Hardware revision index (HW-Rev.)
- Operating system revision index (OS-Rev.)
- Supply voltage (Power)
- Ex specifications (if applicable)
- Production year (Prod-Year:)

Figure 1: Sample Type Label

HI 801 179 E Rev. 11.00.00 Page 11 of 68

3.4 Structure

The chapter contains the following sections:

- Analog measuring Inputs
- Current sources
- Block diagrams
- Indicators (module)
- Product data
- Connector boards
- System cables

The 1oo1 processor system (SIL 1, SIL CL 3) within the I/O module controls and monitors the I/O level. The data and states of the I/O module are provided to the processor modules via the redundant system bus. The system bus has a redundant structure for reasons of availability. Redundancy is only ensured if both system bus modules are inserted in the base plates and configured in SILworX.

3.4.1 Analog Measuring Inputs

The module is equipped with 16 analog measuring inputs. Galvanically separated inputs measures the voltage of thermocouples, sensors and a Pt100 (resistance thermometer). The latter is used to determine the cold junction temperature for thermocouples.

To perform measurements with thermocouples, connector board X-CB 024 53 must be used and the mode of operation must be configured in accordance with Chapter 4.2.1 (*Voltage / Temperature*). With connector board X-CB 024 53 open-circuit detection is additionally possible for each channel. If an open-circuit occurred, this induce a voltage exceeding the allowed range. This allows the module to detect a channel fault and safely switch off the affected channel. To allow measurements with thermocouples in connection with open-circuit detection, current source 1 and current source 2 must have been activated in SILworX. If the open-circuit detection function is not required, connector boards X-CB 020 may be used.

To perform measurements with sensors, connector board X-CB 021 must be used and the mode of operation must be configured in accordance with Chapter 4.3 (*Voltage / Temperature*).

The module is equipped with LEDs to indicate the status of the analog inputs, see Chapter 3.4.4.

3.4.2 Current sources

The module is equipped with two current sources (S1, S2), which are not galvanically separated. Current source 1 supplies current to odd inputs. Current source 2 supplies current to even inputs. Additionally, current source 2 supplies the current for measuring the cold junction temperature (Pt100) at the even inputs.

Page 12 of 68 HI 801 179 E Rev. 11.00.00

3.4.3 Block Diagrams

The following block diagrams illustrate the structure of the modules.

Block Diagram for Connecting Thermocouples via X-CB 024 53

To connect the thermocouples, use the X-CB 024 53 connector board with resistors for open-circuit detection.

Figure 2: Block Diagram for Connecting Thermocouples via X-CB 024 53

HI 801 179 E Rev. 11.00.00 Page 13 of 68

3 Product Description X-AI 16 51

Block Diagram for Connecting Thermocouples via X-CB 020 XX Connection of thermocouples for which the open-circuit detection function need not be used.

Figure 3: Block Diagram for Connecting Thermocouples via X-CB 020 XX

Page 14 of 68 HI 801 179 E Rev. 11.00.00

Block Diagram for Connecting Sensors

The X-CB 021 connector boards must be used for connecting sensors.

Figure 4: Block Diagram for Connecting Sensors

HI 801 179 E Rev. 11.00.00 Page 15 of 68

3.4.4 Indicators

The following figure shows the front view of the module with the LEDs:

Figure 5: Indicators

Page 16 of 68 HI 801 179 E Rev. 11.00.00

The LEDs indicate the operating state of the module. All LEDs should be considered together. The LEDs on the module are divided into the following groups:

- Module status indicators (Run, Error, Stop, Init)
- System bus indicators (A, B)
- I/O indicators (AI 1...16, Field)

After connecting the supply voltage, an LED test is performed and all the LEDs are lit for at least 2 s. The color of two-color LEDs changes once during the test.

Definition of blinking frequencies

The following table defines the blinking frequencies:

Definition	Blinking frequencies
Blinking1	Long (600 ms) on, long (600 ms) off.
Blinking2	Short (200 ms) on, short (200 ms) off, short (200 ms) on, long (600 ms) off.
Blinking-x	Ethernet communication: Blinking synchronously with data transmission.

Table 2: Blinking Frequencies of the LEDs

Some LEDs can report warnings (On) and faults or errors (Blinking1), see the following tables. The indication of errors or faults has priority over the indication of warnings. Warnings cannot be reported if errors or faults are being signaled.

HI 801 179 E Rev. 11.00.00 Page 17 of 68

3.4.5 Module Status Indicators

These LEDs are located on the upper part of the front plate.

LED	Color	Status	Description	
Run	Green	On	Module in the RUN state, normal operation.	
		Blinking1	Module state: STOP / LOADING OS	
		Off	Module not in the RUN state, observe the other status LEDs.	
Error	Red	On	System warning, for example: No license for additional functions (e.g., communication protocols), test mode. Temperature warning.	
		Blinking1	 System error, for example: Internal module faults detected by self-tests, e.g., hardware or voltage supply faults. Fault while loading the operating system. 	
		Off	No faults detected.	
Stop	Yellow	On	Module state: STOP / VALID CONFIGURATION	
		Blinking1	The module is in one of the following states: STOP / INVALID CONFIGURATION STOP / LOADING OS	
		Off	Module not in the STOP state, observe the other status LEDs.	
Init	Yellow	On	Module state: INIT	
		Blinking1	The module is in one of the following states: LOCKED STOP / LOADING OS	
		Off	Module is in none of the states described, observe the other status LEDs.	

Table 3: Module Status Indicators

Page 18 of 68 HI 801 179 E Rev. 11.00.00

3.4.6 System Bus Indicators

The system bus indicator LEDs are labeled Sys Bus.

LED	Color	Status	Description	
А	A Green On		Physical and logical connection to the system bus module in slot 1.	
		Blinking1	No physical connection to the system bus module in slot 1.	
	Yellow	Blinking1	The physical connection to the system bus module in slot 1 has been established.	
			No connection to a (redundant) processor module running in system operation.	
B Green On		On	Physical and logical connection to the system bus module in slot 2.	
Blinking1 No physical connection to the system bus mode slot 2.		No physical connection to the system bus module in slot 2.		
	Yellow	Blinking1	The physical connection to the system bus module in slot 2 has been established.	
			No connection to a (redundant) processor module running in system operation.	
A+B	Off	Off	Neither physical nor logical connection to the system bus modules in slot 1 and slot 2.	

Table 4: System Bus Indicators

3.4.7 I/O Indicators

The LEDs of the I/O indicators are labeled Channel.

LED	Color	Status	Description	
AI 116	Yellow	On	Depending on the mode of operation, see	
		Blinking2	Chapter 4.3.	
		Off		
Field	Red	Blinking2	Field fault on at least one channel, e.g., short-circuit, depending on the configured threshold.	
		Off	No faults at the field level	

Table 5: I/O Indicators

HI 801 179 E Rev. 11.00.00 Page 19 of 68

3.5 Product Data

General information	
Supply voltage	24 VDC, -15+20 %, r _p ≤ 5 %
	SELV, PELV
Current consumption	350 mA at 24 VDC (current sources S1, S2)
Module cycle time	2 ms
Protection class	Protection class III in accordance with IEC/EN 61131-2
Ambient temperature	0+60 °C
Transport and storage	-40+70 °C
temperature	
Humidity	Max. 95 % relative humidity, non-condensing
Pollution	Pollution degree II in accordance with IEC/EN 60664-1
Installation height	< 2000 m
Degree of protection	IP20
Dimensions (H x W x D) in mm	310 x 29.2 x 230
Weight	Approx. 1.4 kg

Table 6: Product Data

Figure 6: Views

Page 20 of 68 HI 801 179 E Rev. 11.00.00

Analog inputs	
Number of inputs (number of channels)	16, galvanically separated
Operating range	
Current measurement	0/420 mA
Voltage measurement	-280+280 mV
Digital resolution	16-bit
Shunt for current measurement	12.5 Ω, mounted on connector board X-CB 021
Maximum permitted current via shunt	50 mA
Withstand voltage of the input	30 VDC
Interference voltage suppression	> 60 dB (common mode 50/60 Hz)
Metrological accuracy	
Metrological accuracy across the entire temperature range (-10+70 °C).	±0.4 % of full scale
Settling time to 99 % of the process value when the input signal changes	15 ms

Table 7: Specifications for the Analog Inputs

Table 25 specifies the tolerances for the thermocouples released for this module.

Metrological accuracy			
	Temperature range	Tolerance 25 °C	Tolerance (060 °C)
Pt100, sensors	-200+850 °C	±2 °C	±2 °C

Table 8: Metrological Accuracy

Current sources				
Number of current sources	2			
Max. output voltage of the current	28.5 VDC			
sources				
Output current, current sources	0.5 mA ±0.015 %			

Table 9: Product Data for the Current Sources

HI 801 179 E Rev. 11.00.00 Page 21 of 68

3.6 Connector Boards

A connector board connects the module to the field level. Module and connector board together form a functional unit. Insert the connector board into the appropriate slot prior to mounting the module.

The following connector board must be used for connecting thermocouples with open-circuit detection function:

Connector board	Description
X-CB 024 53	Mono connector board with cable plug

Table 10: Connector Board for Connecting Thermocouples in Connection with Open-Circuit Detection

The following connector boards may be used for connecting thermocouples if the open-circuit detection function is not required:

Connector board	Description
X-CB 020 51	Mono connector board with screw terminals
X-CB 020 53	Mono connector board with cable plug

Table 11: Connector Boards Available for Connecting Thermocouples

The following connector boards must be used for connecting sensors:

Connector board	Description
X-CB 021 51	Mono connector board with screw terminals
X-CB 021 53	Mono connector board with cable plug

Table 12: Connector Boards Available for Connecting Sensors

3.6.1 Mechanical Coding of Connector Boards

The module and corresponding connector boards are mechanically coded starting with hardware revision index (HW-Rev.) 00. Coding avoids installation of improper I/O modules thus preventing negative effects on redundant modules and the field level.

Apart from that, improper equipment has no effect on the HIMax system since only I/O modules properly configured in SILworX can enter the RUN state.

I/O modules and the corresponding connector boards have a mechanical coding in the form of wedges. The coding wedges in the female connector of the connector board match with the male connector recesses of the I/O module plug, see Figure 7.

Coded I/O modules can only be plugged in to the corresponding connector boards.

Page 22 of 68 HI 801 179 E Rev. 11.00.00

Figure 7: Coding Example

Coded I/O modules can be plugged in to uncoded connector boards. Uncoded I/O modules cannot be plugged in to coded connector boards.

3.6.2 Coding of X-CB 024 53, X-CB 020 5X and X-CB 021 5X Connector Boards The following table specifies the position of the coding wedges on the I/O module plug:

a7	a13	a20	a26	e7	e13	e20	e26
	X					X	X

Table 13: Position of Coding Wedges

HI 801 179 E Rev. 11.00.00 Page 23 of 68

3.6.3 Mono Connector Board with Cable Plug, Open-Circuit Detection

Mono

X-CB 024 53

- 1 I/O module plug
- Connection to the field level (cable plug in row 1)
- Connection to the field level (cable plug in row 32)
- 4 Coding of cable plugs

Figure 8: X-CB 24 53 Connector Board with Cable Plug

Page 24 of 68 HI 801 179 E Rev. 11.00.00

3.6.4 Pin Assignment for X-CB 024 53 Connector Board with Cable Plug HIMA provides ready-made system cables for use with this connector board, see Chapter 3.7.

1 Connector pin assignment!

The following table describes the connector pin assignment of the system cable plug.

The wire color coding complies with IEC 60304. The color abbreviations used are in accordance with IEC 60757.

D		С		b		а
Row	Signal	Color	Signal	Color	Signal	Color
1					Reserved	PKRD
2					Reserved	GYRD
3					Reserved	PKBU
4					Reserved	GYBU
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17	Al16+	YEBU	Al16-	GNBU		
18	Al15+	YEPK	AI15-	PKGN		
19	Al14+	YEGY	AI14-	GYGN		
20	Al13+	BNBK	AI13-	WHBK		
21	Al12+	BNRD	Al12-	WHRD		
22	Al11+	BNBU	Al11-	WHBU		
23	AI10+	PKBN	AI10-	WHPK		
24	Al9+	GYBN	Al9-	WHGY		
25	Al8+	YEBN	Al8-	WHYE		
26	Al7+	BNGN	AI7-	WHGN		
27	Al6+	RDBU	Al6-	GYPK		
28	Al5+	VT	AI5-	BK		
29	Al4+	RD	Al4-	BU	S2-	YEBK
30	Al3+	PK	Al3-	GY		GNBK
31	Al2+	YE	Al2-	GN	S2+	YERD
32	Al1+	BN	Al1-	WH		GNRD

Table 14: Pin Assignment for the System Cable Plug

HI 801 179 E Rev. 11.00.00 Page 25 of 68

3 Product Description X-AI 16 51

3.6.5 Mono Connector Boards with Screw Terminals

Mono X-CB 020 51 X-CB 021 51 1 \bigcirc X-CB 51 2

1/O module plug

(screw terminals)

2 Connection to the field level

Figure 9: Connector Board with Screw Terminals

Page 26 of 68 HI 801 179 E Rev. 11.00.00

3.6.6 Terminal Assignment for Connector Board with Screw Terminals

Pin no.	Designation	Signal	Pin no.	Designation	Signal
1	101	S1+	1	102	S2+
2	1a	Al1+	2	2a	Al2+
3	1b	Al1-	3	2b	Al2-
4	3a	Al3+	4	4a	Al4+
5	3b	Al3-	5	4b	Al4-
6	5a	AI5+	6	6a	Al6+
7	5b	AI5-	7	6b	Al6-
8	7a	AI7+	8	8a	Al8+
9	7b	AI7-	9	8b	Al8-
Pin no.	Designation	Signal	Pin no.	Designation	Signal
	Designation 09a	Signal Al9+	Pin no.	Designation 10a	Signal Al10+
Pin no.		_			_
Pin no.	09a	Al9+	1	10a	AI10+
Pin no. 1 2	09a 09b	AI9+ AI9-	1 2	10a 10b	Al10+ Al10-
Pin no. 1 2 3	09a 09b 11a	AI9+ AI9- AI11+	1 2 3	10a 10b 12a	Al10+ Al10- Al12+
Pin no. 1 2 3 4	09a 09b 11a 11b	AI9+ AI9- AI11+ AI11-	1 2 3 4	10a 10b 12a 12b	Al10+ Al10- Al12+ Al12-
Pin no. 1 2 3 4 5	09a 09b 11a 11b 13a	AI9+ AI9- AI11+ AI11- AI13+	1 2 3 4 5	10a 10b 12a 12b 14a	Al10+ Al10- Al12+ Al12- Al14+
Pin no. 1 2 3 4 5	09a 09b 11a 11b 13a 13b	AI9+ AI9- AI11+ AI11- AI13+ AI13-	1 2 3 4 5 6	10a 10b 12a 12b 14a 14b	AI10+ AI10- AI12+ AI12- AI14+ AI14-

Table 15: Terminal Assignment for Connector Board with Screw Terminals

Cable plugs attached to the connector board pin headers are used to connect to the field level.

The cable plugs feature the following characteristics:

Connection to the field level				
Cable plugs	4 pieces, with 9 poles			
Wire cross-section	0.21.5 mm ² (single-wire) 0.21.5 mm ² (finely stranded) 0.21.5 mm ² (with wire end ferrule)			
Stripping length	6 mm			
Screwdriver	Slotted 0.4 x 2.5 mm			
Tightening torque	0.20.25 Nm			

Table 16: Cable Plug Characteristics

HI 801 179 E Rev. 11.00.00 Page 27 of 68

3 Product Description X-AI 16 51

3.6.7 Mono Connector Boards with Cable Plug

Mono

X-CB 020 53

X-CB 021 53

- 1/O module plug
- Connection to the field level (cable plug in row 1)
- Connection to the field level (cable plug in row 32)
- 4 Coding of cable plugs

Figure 10: Connector Board with Cable Plug

Page 28 of 68 HI 801 179 E Rev. 11.00.00

3.6.8 Pin Assignment for Connector Board with Cable Plug

HIMA provides ready-made system cables for use with these connector boards, see Chapter 3.7.

Connector pin assignment!

The following table describes the connector pin assignment of the system cable plug.

The wire color coding complies with IEC 60304. The color abbreviations used are in accordance with IEC 60757.

Row		С	b		a	
KOW	Signal	Color	Signal	Color	Signal	Color
1						PKRD
2					Internal use	GYRD
3					1)	PKBU
4						GYBU
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17	Al16+	YEBU	AI16-	GNBU		
18	Al15+	YEPK	AI15-	PKGN		
19	AI14+	YEGY	AI14-	GYGN		
20	Al13+	BNBK	AI13-	WHBK		
21	Al12+	BNRD	Al12-	WHRD		
22	Al11+	BNBU	Al11-	WHBU		
23	AI10+	PKBN	AI10-	WHPK		
24	Al9+	GYBN	AI9-	WHGY		
25	Al8+	YEBN	Al8-	WHYE		
26	AI7+	BNGN	AI7-	WHGN		
27	Al6+	RDBU	Al6-	GYPK		
28	Al5+	VT	AI5-	BK		
29	Al4+	RD	Al4-	BU	S2-	YEBK
30	Al3+	PK	Al3-	GY	S1-	GNBK
31	Al2+	YE	Al2-	GN	S2+	YERD
32	Al1+	BN	Al1-	WH	S1+	GNRD
1) The	wires must be is	solated individu	ıally! No other ı	use is permitted	d!	

Table 17: Pin Assignment for the System Cable Plug

HI 801 179 E Rev. 11.00.00 Page 29 of 68

3.7 System Cable X-CA 014

System cable X-CA 014 is used to connect the X-CB 020 53, X-CB 021 53 and X-CB 024 53 connector boards to the field level via field termination assemblies or inline terminals.

General information	
Cable	LIYDY-CY TP 20 x 2 x 0.25 mm² (shielded).
Wire	Finely stranded
Average outer diameter (d)	Approx. 14.1 mm Max. 20 mm for all types of system cables
Minimum bending radius Fixed installation Flexible application	5 x d 10 x d
Burning behavior	Flame retardant and self-extinguishing in accordance with IEC 60332-1-2, IEC 60332-2-2.
Length	830 m
Color coding	Based on DIN 47100, see Table 14 and Table 17.

Table 18: Cable Data

1 Identical cable plugs

Figure 11: System Cable X-CA 014 01 n

The system cable is available in the following standard lengths:

System cables	Description	Length	Weight
X-CA 014 01 8	Coded cable plugs on both	8 m	2.5 kg
X-CA 014 01 15	sides.	15 m	5 kg
X-CA 014 01 30		30 m	10 kg

Table 19: Available System Cables X-CA 014

Page 30 of 68 HI 801 179 E Rev. 11.00.00

3.7.1 Cable Plug Coding

The cable plugs are equipped with three coding pins. Therefore, cable plugs only match connector boards and FTAs with the corresponding recesses, see Figure 8 and Figure 10.

HI 801 179 E Rev. 11.00.00 Page 31 of 68

4 Start-Up X-AI 16 51

4 Start-Up

This chapter describes how to install, configure and connect the module. For further details, refer to the HIMax system manual (HI 801 001 E).

The module with one channel is only approved for applications operating in low demand mode. Redundancy (1002, 1003) must be implemented for applications operating in high demand mode.

The safety-related application (SIL 1/SIL 2/SIL 3) of the inputs and the connected sensors must comply with the safety requirements.

4.1 Mounting

Observe the following points when mounting the module:

- Only operate the module with the appropriate fan components. For further details, see the system manual (HI 801 001 E).
- Only operate the module with the suitable connector board. For further details, see Chapter 3.6.
- The module, including its connected components, must be installed to ensure compliance with the requirements for degree of protection IP20 or higher in accordance with EN 60529:1991 + A1:2000.

NOTICE

Damage due to incorrect wiring!

Failure to comply with these instructions can damage the electronic components. Observe the following points.

- Plugs and terminals connected to the field level.
 - Take the appropriate grounding measures when connecting the plugs and terminals to the field level.
 - Use shielded cables with twisted pairs.
 - Use one twisted pair of shielded cables for each measuring inputs.
 - The shielding must be connected on both sides. On the module side, the shielding must be connected to the cable shield rail (use SK 20 shield connection terminal block or similar).
 - If finely stranded wires are used, HIMA recommends fastening ferrules to the wire ends.
 The terminals must be suitable for fastening the cross-sections of the cables in use.
- The range for the cold junction temperature is -40...+80 °C.
- If the current sources are used, the sources assigned to each input must be utilized (e.g., S1+ with Al1+).
- HIMA recommends using the current sources of the module.
 - If an external current source is malfunctioning, the affected module's measuring input can be overloaded and damaged. If an external current source is used, the zero and final values must be checked after a non-transient overload occurred at the measuring inputs.
- The inputs may be wired redundantly using the corresponding connector boards. For further details, see Chapter 3.6 and Chapter 4.4.1.

Page 32 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 4 Start-Up

4.2 Mounting and Removing the Module

This chapter describes how to replace an existing module or mount a new one.

When removing the module, the connector board remains in the HIMax base plate. This saves additional wiring effort at the clamp terminals since all field terminals are connected via the connector board of the module.

4.2.1 Mounting a Connector Board

Tools and utilities:

- Screwdriver, cross PH 1 or slotted 0.8 x 4.0 mm.
- Matching connector board.

To install the connector board

- 1. Insert the connector board into the guiding rail with the groove facing upwards (see following drawing). Fit the groove into the guiding rail pin.
- 2. Place the connector board on the cable shield rail.
- Secure the captive screws to the base plate. First screw in the lower screws than the upper ones.

To remove the connector board

- 1. Release the captive screws from the base plate.
- 2. Carefully lift the lower section of the connector board from the cable shield rail.
- 3. Remove the connector board from the guiding rail.

Figure 12: Example of how to Insert the Mono Connector Board

HI 801 179 E Rev. 11.00.00 Page 33 of 68

4 Start-Up X-AI 16 51

Figure 13: Example of how to Secure the Mono Connector Board with Captive Screws

These instructions also apply for redundant connector boards. The number of used slots varies in accordance with the connector board type. The number of captive screws depends on the connector board type.

Page 34 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 4 Start-Up

4.2.2 Mounting and Removing a Module

This chapter describes how to mount and remove the HIMax module. A module can be mounted and removed while the HIMax system is operating.

NOTICE

Damage to bus and power sockets due to module jamming! Failure to comply with these instructions can damage the controller. Always insert the module in the base plate carefully.

Tools and utilities:

- Screwdriver, slotted 0.8 x 4.0 mm.
- Screwdriver, slotted 1.2 x 8.0 mm.

To insert the modules

- 1. Open the cover plate on the fan rack:
 - ☑ Move the locks to the *open* position.
 - ☑ Lift the cover plate and insert it into the fan rack.
- 2. Insert the top of the module into the hook-in rail, see 1.
- 3. Swivel the lower edge of the module towards the base plate and apply light pressure to snap it into place, see 2.
- 4. Tighten the screws, see 3.
- 5. Pull the cover plate out of the fan rack and close it.
- 6. Lock the cover plate.

To remove the modules

- 1. Open the cover plate on the fan rack:
 - ☑ Move the locks to the *open* position.
 - ☑ Lift the cover plate and insert it into the fan rack.
- Release the screw, see 3.
- 3. Swivel the lower edge of the module away from the base plate. Lift and apply light pressure to remove the module from the hook-in rail, see 2 and 1.
- 4. Pull the cover plate out of the fan rack and close it.
- 5. Lock the cover plate.

HI 801 179 E Rev. 11.00.00 Page 35 of 68

4 Start-Up X-AI 16 51

- Inserting and removing a module
- 2 Swiveling the module in and out
- 3 Securing and releasing a module

Figure 14: Mounting and Removing a Module

If the HIMax system is operating, do not open the cover plate of the fan rack for more than a few minutes (< 10 min) since this affects the forced cooling.

Page 36 of 68 HI 801 179 E Rev. 11.00.00

4.3 Module and Channel Modes of Operation

The mode of operation is configured in the Hardware Editor of the SILworX programming tool.

4.3.1 The Mode of Operation Module Settings

The *Mode of Operation* parameter in the *I/O Submodule Al16_51* tab provides the following options:

Voltage / Temperature

The *Voltage / Temperature* mode of operation is used to select the connection of thermocouples, sensors and Pt100 for the individual channels, see Chapter 4.3.2.

Current

In the channel properties, all channels are set to the *Voltage / Current* mode, see Chapter 4.3.2.

If the *Current* module operating mode is configured, the *Operating Mode* system parameter located in the channel settings is grayed out. All channels are set to *Voltage / Current* and the operating mode can no longer be changed.

4.3.2 Channel Settings for Mode of Operation

The *Mode of Operation* system parameter in the *I/O Submodule Al16_51: Channels* tab provides the following options:

Voltage / Current

If **Voltage / Current** is selected as mode of operation, this channel can be used for measuring the voltage or current.

Thermocouple

The Thermocouple mode of operation provides multiple types of thermocouples (Table 25), which take the cold junction temperature into account when determining the temperature. As soon as a thermocouple is used in a channel, the Cold Junction Temperature system parameter must be assigned the process value (global variable) of a temperature measuring channel (Pt100). This is used as thermo voltage reference point for all channels configured

as thermocouples in the channel settings. The cold junction temperature (Pt100) must be within -40...+80 °C.

Pt100

The **Pt100** mode of operation serves for determining the cold junction temperature. For supplying current to the Pt100 and ensuring that the odd channels are DC supplied, the Current Source 1 ON system parameter must be activated. Activate the *Current Source 2 ON* system parameter to ensure that the even channels are DC supplied.

If connector boards X-CB 024 53 with additional open-circuit detection is used, an even channel must be selected for the cold junction temperature. System parameter *Current Source 2 ON* must be activate to activate current source 2.

The cold junction can also be used for additional modules (X-Al 16 51) within a HIMax system.

The configuration is not accepted if odd channels are set to Pt100 measurement and *Current Source 1 ON* is deactivated or if even channels are set to Pt100 measurement and *Current Source 2 ON* is deactivated.

HI 801 179 E Rev. 11.00.00 Page 37 of 68

4.3.3 System Parameters OC LOW and SC HIGH

If the system parameters *OC Limit* and *SC Limit* are required, they are normalized as described in Chapter 4.3.5.

4.3.4 System Parameters SP LOW and SP HIGH

If the Boolean value -> Channel Value [BOOL] is required, the threshold values SP LOW and SP HIGH must be adjusted in accordance with the measured values, see Chapter 4.3.5.

4.3.5 Output of Measured Values

The measured values are displayed after normalization to the -> Raw Value [DINT] system parameter in accordance with the following rules:

- Voltages
 - -2 000 000 digits corresponds to -200 mV
 - +2 000 000 digits corresponds to +200 mV
 - 10 000 digits corresponds to 1 mV
- Temperatures
 - 10 000 digits corresponds to 1 °C
 - 0 digits corresponds to 0 °C
- Currents
 - 200 000 digits corresponds to 20 mA
 - 10 000 digits corresponds to 1 mA

Page 38 of 68 HI 801 179 E Rev. 11.00.00

4.4 Configuring the Module in SILworX

The module is configured in the Hardware Editor of the SILworX programming tool.

Observe the following points when configuring the module:

- To diagnose the module and channels, both the statuses and the measured value can be evaluated within the user program. For further details on the system parameters, refer to the following tables.
- If the 0 value is within the valid measuring range, the user program must evaluate the -> Channel OK status in addition to the -> Raw Value.
 - This and other diagnostic statuses (such as short-circuits and open-circuits) provide additional options for diagnosing the external wiring and configuring proper fault response in the user program.
- When scaling the input value -> Raw Value [DINT], users must make sure that the scaling
 result is within the range of values for the REAL data type. Representation of the scaling
 result must be possible with a REAL variable.
- For further details on these system parameters, refer to Table 21 and Table 22.
- If a redundancy group is created, its configuration is defined in the tabs. The tabs specific to the redundancy group differ from those of the individual modules, see the following tables.

To evaluate the system parameters in the user program, they must be assigned to global variables. Perform this step in the Hardware Editor using the module's detail view.

The following tables present the system parameters for the module in the same order as in the SILworX Hardware Editor.

TIP A scientific calculator such as the Windows® calculator with the corresponding view can be used to convert hexadecimal values to bit strings.

HI 801 179 E Rev. 11.00.00 Page 39 of 68

4.4.1 The **Module** Tab

The **Module** tab contains the following system parameters for the module:

System parameter	Data type	S 1)	R/W	Description		
Name			W	Module name.		
Spare Module		N	W	Activated: It is not considered a fault if a module of the redundancy group is missing in the base plate. Deactivated: It is considered a fault if a module of the redundancy group is missing in the base plate. Default setting: Deactivated It is only displayed in the redundancy group tab!		
Noise Blanking		N	W	Allow noise blanking performed by the process		
, and the second				module (Activated/Deactivated). Default setting: Activated		
				The processor module delays its response to transient interference until the safety time. The user program retains its last valid process value. Refer to the system manual (HI 801 001 E) for further details on noise blanking.		
System parameter	Data type	S 1)	R/W	Description		
The following statuses and	parameters	can be	assigr	ned global variables and used in the user program.		
Module OK	BOOL	N	R	 TRUE: Mono operation: No module faults. Redundancy operation: At least one of the redundant modules has no module fault (OR logic). FALSE: Module fault. Channel fault (no external faults). The module is not plugged in. Observe the <i>Module Status</i> parameter! 		
Module Status	DWORD	N	R	Status of the module. Coding Description		
				0x0000001 Module fault.¹) 0x00000002 Temperature threshold 1 exceeded. 0x00000004 Temperature threshold 2 exceeded. 0x00000008 Incorrect temperature value. 0x00000010 Voltage on L1+ is defective. 0x00000020 Voltage on L2+ is defective. 0x00000040 Internal voltage is defective. 0x80000000 No connection to the module. ¹) ¹) These faults affect the <i>Module OK</i> status and need not be separately evaluated in the user program.		
Timestamp [µs]	DWORD	N	R	Microsecond fraction of the timestamp. Point in time at which the analog inputs were measured.		
Timestamp [s]	DWORD	N	R	Second fraction of the timestamp. Point in time at which the analog inputs were measured.		
1) The operating system handles the system parameter in a safety-related manner, yes (Y) or no (N).						

Table 20: The **Module** Tab in the Hardware Editor

Page 40 of 68 HI 801 179 E Rev. 11.00.00

4.4.2 The **I/O Submodule Al16_51** Tab

The **I/O Submodule Al16_51** tab contains the following system parameters:

System parameter	Data type	S 1)	R/W	Description
Name			W	Tab name
Show Signal Overflow		N	W	Parameter without function!
				Default setting: Activated
Current Source 1 ON		N	W	Use current source 1 for the module.
				Activated: The current sources of odd channels (1, 315) are activated.
				Deactivated: The current sources of odd channels (1,
				315) are deactivated.
				Default setting: Activated
Current Source 2 ON		Ν	W	Use current source 2 for the module.
				Activated: The current sources of even channels (2,
				416) are activated.
				Deactivated: The current sources of even channels (2,
				416) are deactivated. Default setting: Activated
				Detault Setting. Activated
				X-CB 024 53: Current source S2 must have been
				activated for the cold joint temperature.
Mode of Operation		Υ	W	The following options are available:
				Voltage / Temperature
				Current
				Default setting: Voltage / Temperature
		- 1)		For further information, refer to 4.3.1.
System parameter	Data type	S 1)	R/W	Description
	i e			ned global variables and used in the user program.
Diagnostic Request	DINT	N	W	To request a diagnostic value, the appropriate ID must be sent to the module using the parameter <i>Diagnostic</i>
				Request (for coding details, see Chapter 4.4.5).
Diagnostic Response	DINT	N	R	As soon as <i>Diagnostic Response</i> returns the ID of
				Diagnostic Request (for coding details, see Chapter 4.4.5), Diagnostic Status contains the
				diagnostic value requested.
Diagnostic Status	DWORD	N	R	Requested diagnostic value in accordance with
2.agricolio cialdo	311310	'	'`	Diagnostic Response. The IDs of Diagnostic Request
				and Diagnostic Response can be evaluated in the
				user program. Diagnostic Status only contains the
				requested diagnostic value when both <i>Diagnostic</i>
Dealers and Test Cons	DOOL	N.	D	Request and Diagnostic Response have the same ID.
Background Test Error	BOOL	N	R	TRUE: Background test is faulty. FALSE: Background test is not faulty.
				FALSE. Dackground test is not faulty.

HI 801 179 E Rev. 11.00.00 Page 41 of 68

System parameter	Data type	S 1)	R/W	Description		
Restart on Error	BOOL	Y	W	The Restart on Error parameter can be used to cause any I/O module that is shut down permanently due to errors or faults to once again enter the RUN state. To do so, set the Restart on Error parameter from FALSE to TRUE. The I/O module performs a complete self-test and only		
				enters the RUN state if no faults are detected. Default setting: FALSE		
Submodule OK	BOOL	Y	R	TRUE: No submodule fault, no channel faults. FALSE: Submodule fault, channel faults (external faults included).		
Submodule Status	DWORD	Ν	R	Bit-coded submodule status. For coding details, see Chapter 4.4.4.		
Cold Junction Temperature	REAL	Υ	W	The Cold Junction Temperature system parameter must be assigned with the process value of a temperature measuring channel (Pt100). Range of values: -40+80 °C For further information, refer to Chapter 4.3.1.		
1) The operating system handles the system parameter in a safety-related manner, yes (Y) or no (N).						

Table 21: The I/O Submodule Al16_51 Tab in the Hardware Editor

Page 42 of 68 HI 801 179 E Rev. 11.00.00

4.4.3 The **I/O Submodule Al16_51: Channels** Tab

The **I/O Submodule Al16_51: Channels** tab contains the following system parameters for each analog input.

Global variables can be assigned to the system parameters with -> and used in the user program. The value without -> must be directly entered.

System parameter	Data type	S 1)	R/W	Description
Channel no.			R	Channel number, preset and cannot be changed.
-> Process Value [REAL]	REAL	Y	R	Process value = (Raw Value x Scal. Factor / 10 000) + Offset
Scaling Factor	LREAL	Y	W	Scaling factor that is multiplied by the raw value. Default setting: 1.0
Scaling Offset	LREAL	Y	W	Offset added to the raw value. Default setting: 0.0
-> Raw Value [DINT]	DINT	N	R	Unprocessed measured value of the channel, see Chapter 4.3.5. If the raw value is evaluated instead of the process value, users must program the monitoring function and the value in the event of faults from within the user program.
-> Channel OK [BOOL]	BOOL	Y	R	TRUE: Fault-free channel. The process value is valid. FALSE: Faulty channel. The process value is set to its initial value (default value = 0). The initial value must be configured by the users!
OC Limit	DINT	Y	W	Threshold in mA for detecting an open-circuit. If the process value falls under <i>OC Limit</i> , the module detects an open-circuit and switches off the <i>Channel</i> LED for this channel to Blinking2 and switches on the <i>Field</i> LED. Default setting: -20 000 000
-> OC [BOOL]	BOOL	Y	R	TRUE: Open-circuit present. FALSE: No open-circuit present. Defined through OC Limit
SC Limit	DINT	Y	W	Threshold in mA for detecting a short-circuit. If the process value exceeds SC Limit, the module detects a short-circuit and sets the Channel LED for this channel to Blinking2 and switches on the Field LED. Default setting: 20 000 000
-> SC [BOOL]	BOOL	Y	R	TRUE: Short-circuit present. FALSE: No short-circuit present. Defined through SC Limit.
SP LOW	DINT	Y	W	Low level upper limit. SP LOW (switching point LOW) is the limit value: if this limit is exceeded, the module detects LOW and switches off the Channel LED. Restriction: SP LOW ≤ SP HIGH Default setting: -10 000

HI 801 179 E Rev. 11.00.00 Page 43 of 68

System parameter	Data type	S 1)	R/W	Description
SP HIGH	DINT	Y	W	High level lower limit SP HIGH (switching point HIGH) is the limit value: if this limit is exceeded, the module detects a HIGH and switches on the Channel LED. Restriction: SP LOW ≤ SP HIGH Default setting: 10 000
-> Channel Value [BOOL]	BOOL	Υ	R	Boolean channel value in accordance with the limits. SP LOW and SP HIGH
T on [µs]	UDINT	Y	W	Time on delay The module only indicates a level change from LOW to HIGH if the high level is present for longer than the configured time ton. The time on delay cannot be extended by more than the cycle time of the module. This also results in a delayed evaluation of the -> Channel Value [BOOL] parameter. Range of values: 0(2 ³² -1) Granularity: 1000 μs, e.g., 0, 1000, 2000, Default setting: 0
Τ off [μs]	UDINT	Y	W	Time off delay The module only indicates a level change from HIGH to LOW if the low level is present for longer than the configured time toff. The time off delay cannot be extended by more than the cycle time of the module. This also results in a delayed evaluation of the -> Channel Value [BOOL] parameter. Range of values: 0(2 ³² -1) Granularity: 1000 μs, e.g., 0, 1000, 2000, Default setting: 0
Mode of Operation	BYTE	Y	W	The following options are available: Pt100 Voltage / Current Thermocouple Type B (not released!) Thermocouple Type E Thermocouple Type J Thermocouple Type K Thermocouple Type R (not released!) Thermocouple Type S (not released!) Thermocouple Type T Default setting: Voltage / Current For further information, refer to 4.3.2.
Filter parameter [ms]		Y	W	The Filter Parameter [ms] system parameter indicates the time used to average the measured value. Range of values: 21 000 [ms] with a granularity of 2 ms (2, 4, 6,). Default setting: 2

Page 44 of 68 HI 801 179 E Rev. 11.00.00

System parameter	Data type	S 1)	R/W	Description	
Redund.		Y	W	TRUE: Redundancy group created. FALSE: Module in mono operation. The redundancy group can only be created and deleted using the corresponding context menu.	
Redundancy Value	ВҮТЕ	Y	W	Settings for determining the redundancy value: • Min • Max • Average Default setting: Max If a module error occurs, the default setting applies. It is only displayed in the redundancy group tab!	
1) The operating system handles the system parameter in a safety-related manner, yes (Y) or no (N).					

Table 22: The I/O Submodule Al16_51: Channels Tab in the Hardware Editor

HI 801 179 E Rev. 11.00.00 Page 45 of 68

4.4.4 Description of **Submodule Status [DWORD]**

The following table specifies the coding of the Submodule Status parameter:

Coding	Description
0x00000001	Fault in hardware unit (submodule).
0x00000002	Reset of an I/O bus.
0x00000004	Fault detected while initializing the hardware.
0x00000008	Fault detected while checking the coefficients.
0x00000080	Reset of the chip select monitoring.

Table 23: Coding of Submodule Status [DWORD]

4.4.5 Description of **Diagnostic Status [DWORD]**

The following table specifies the coding of the *Diagnostic Status* parameter:

ID	Description					
0	Diagnostic values are indicated consecutively.					
100	Bit-coded ter	nperature status.				
	0 = normal.					
	Bit0 = 1: Tem	perature threshold 1 has been exceeded.				
		perature threshold 2 has been exceeded.				
		It in temperature measurement.				
101	Measured te	mperature (10 000 digits/ °C).				
200	Bit-coded vol	tage status.				
	0 = normal.					
		- (24 V) is faulty.				
	Bit1 = 1 : L2+ (24 V) is faulty.					
201	Not used!					
202						
203						
300	Comparator	24 V undervoltage (BOOL).				
10011016	Status of the	channels 116				
	Coding	Description				
	0x0001	Fault occurred in hardware unit (submodule).				
	0x0002	Channel fault due to internal fault.				
	0x0400	SC / OC limits violated or				
		channel/module fault.				
	0x1000	Cold junction temperature is out of the range of values.				
	0x2000	Underflow or overflow of the measured value.				
	0x4000	Channel not configured.				

Table 24: Coding of Diagnostic Status [DWORD]

Page 46 of 68 HI 801 179 E Rev. 11.00.00

4.5 Connection Variants

This chapter describes the proper wiring of the module in safety-related applications. The following connection variants are permitted.

The inputs are wired via connector boards. The universal FTAs, X-FTA 002 01 (mono) and X-FTA 002 02 (redundant) are available for connection via system cables.

4.5.1 Input Wiring Variants

Connector boards with shunt (12.5 Ω), X-CB 021 51 (with screw terminals) or X-CB 021 53 (with cable plug) must be used to wire sensors as described in Figure 15.

Figure 15: 1-Channel Connection of a Sensor

Connector boards X-CB 024 53 (with cable plug), X-CB 020 51 (with screw terminals) or X-CB 020 53 (with cable plug) must be used to wire thermocouples as described in Figure 16.

Figure 16: 1-Channel Connection of Thermocouples

HI 801 179 E Rev. 11.00.00 Page 47 of 68

4.5.2 Connecting the Pt100 for Measuring the Cold Junction Temperature

To determine the cold junction temperature, a Pt100 must be connected as described in Figure 17, Figure 18 or Figure 19.

Current source 2 must be activated in SILworX and the even inputs must be used to ensure that the Pt100 is supplied via X-CB 024 53.

Figure 17: Connection of Pt100 (4-Wire Circuit) to X-CB 024 53

Current source 1 or current source 2 must be activated in SILworX to ensure that the Pt100 is supplied via X-CB 020 5x. Activate current source 1 (S1) to supply power to the Pt100 at one of the 8 odd inputs and activate current source 2 (S2) to supply power to the Pt100 at one of the 8 even inputs.

Figure 18: Connection of Pt100 (2-Wire Circuit) to X-CB 020 5x

Page 48 of 68 HI 801 179 E Rev. 11.00.00

Figure 19: Connection of Pt100 (4-Wire Circuit) to X-CB 020 5x

HI 801 179 E Rev. 11.00.00 Page 49 of 68

4.5.3 Redundant Input Wiring Variants

A safety function in accordance with SIL 2 can be achieved with a 1002 modules structure. The 1002 module structure must be evaluated in the user program.

Connector boards X-CB 024 53 (with cable plug), X-CB 020 51 (with screw terminals) or X-CB 020 53 (with cable plug) must be used to perform the wiring as described in Figure 20 through Figure 21.

Figure 20: Redundant Connection of one Thermocouple

Figure 21: Redundant Connection of Redundant Thermocouples

Page 50 of 68 HI 801 179 E Rev. 11.00.00

4.5.4 Triple Redundant Input Wiring Variants

A safety function in accordance with SIL 3 can be achieved with a 1003 modules structure. The 1003 module structure must be evaluated in the user program.

Connector boards X-CB 024 53 (with cable plug), X-CB 020 51 (with screw terminals) or X-CB 020 53 (with cable plug) must be used to perform the wiring as described in Figure 22 through Figure 23.

Figure 22: Three-Fold Redundant Wiring of one Thermocouple

HI 801 179 E Rev. 11.00.00 Page 51 of 68

Figure 23: Three-Fold Redundant Wiring of Three-Fold Redundant Thermocouples

Page 52 of 68 HI 801 179 E Rev. 11.00.00

4.5.5 Connection of Thermocouples via X-FTA 002 02 and X-CB 024 53

The figure shows the connection of thermocouples via the universal X-FTA 002 02 and the X-CB 024 53 connector board with open-circuit detection function.

System parameter *Current Source 1 On* must be active in SILworX to ensure open-circuit detection via connector board X-CB 024 53.

Figure 24: Connection of Thermocouples via X-FTA 002 02 and X-CB 024 53

HI 801 179 E Rev. 11.00.00 Page 53 of 68

4.5.6 Connection of Thermocouples via X-FTA 002 02 and X-CB 020 53

The figure shows the connection of thermocouples (TC) via the universal X-FTA 002 01 and the X-CB 020 53 connector board, if the open-circuit detection function of thermocouples need not be used. A Pt100 connected to channel 16 is used to compensate the cold junction temperature. It is fed with the current source 2 for the even channels. For further information, refer to the X-FTA manuals.

Figure 25: Connection of Thermocouples via X-FTA 002 01

Page 54 of 68 HI 801 179 E Rev. 11.00.00

4.5.7 Connection of Sensors via Field Termination Assembly

The figure shows the connection of sensors via the universal X-FTA 002 01:

Figure 26: Connection of Sensors via X-FTA 002 01

HI 801 179 E Rev. 11.00.00 Page 55 of 68

4.5.8 Redundant Connection of Thermocouples via X-FTA 002 02

The following figure shows the redundant connection of thermocouples (TC) via the universal X-FTA 002 02 and the X CB 020 53 connector board, if the open-circuit detection function of thermocouples need not be used.

1 Thermocouples

3 System cable with cable plug

2 Analog inputs

Figure 27: Redundant Connection of Thermocouples via X-FTA 002 02

Page 56 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 5 Operation

5 Operation

The module runs within a HIMax base plate and does not require any specific monitoring.

5.1 Handling

Direct handling of the module is not foreseen.

The module is operated from within the PADT, e.g., for forcing the analog inputs. For further details, refer to the SILworX documentation.

5.2 Diagnostics

LEDs on the front side of the module indicate the module state, see Chapter 3.4.4.

The diagnostic history of the module can also be read out using SILworX. Chapter 4.4.4 and Chapter 4.4.5 describe the most important diagnostic statuses.

initialization phase indicating faults such as incorrect voltage values.

These messages only indicate a module fault if they occur after the system starts operation.

HI 801 179 E Rev. 11.00.00 Page 57 of 68

6 Maintenance X-AI 16 51

6 Maintenance

Defective modules must be replaced with modules of the same type or with approved replacement models.

When replacing modules, observe the instructions specified in the HIMax system manual (HI 801 001 E) and HIMax safety manual (HI 801 003 E).

6.1 Maintenance Measures

The following maintenance measures must be implemented for the modules:

- Proof testing.
- Loading of enhanced operating system versions.

6.1.1 Proof Test

The proof test interval for HIMax modules must be in accordance with the interval required by the application-specific safety integrity level (SIL). For further details, refer to the safety manual (HI 801 003 E).

6.1.2 Loading of Enhanced Operating System Versions

As part of product maintenance, HIMA is continuously improving the operating systems of the modules. HIMA recommends using system downtimes to load the current operating system versions into the modules.

The current operating system versions of modules are displayed in the SILworX Control Panel. The type label specifies the delivered module version, see Chapter 3.4.

Before loading operating systems into the modules, check the system compatibilities and restrictions of the operating system versions. To this end, use the applicable release notes. Use SILworX to load the operating systems into the modules and ensure that these are in the STOP state.

Page 58 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 7 Decommissioning

7 Decommissioning

To decommission the module, remove it from the base plate. For more details, refer to Chapter *Mounting and Removing the Module*.

HI 801 179 E Rev. 11.00.00 Page 59 of 68

8 Transport X-Al 16 51

8 Transport

To avoid mechanical damage, the components must be transported in packaging.

Always store the components in their original product packaging. This packaging also provides protection against electrostatic discharge (ESD). Note that the product packaging alone is not sufficient for transport.

Page 60 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 9 Disposal

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

HI 801 179 E Rev. 11.00.00 Page 61 of 68

X-AI 16 51 Appendix

Appendix

Applicable Thermocouples

TC type	Matching	Input voltage	Temperature range	Tolerance 25 °C	Tolerance (060 °C)
E	CrNi/CuNi	-9.063+76.373 mV	-210150 °C -1500 °C 01000 °C	± 3.1 °C ± 2 °C ± 1.3 °C	± 4.5 °C ± 2.8 °C ± 2.3 °C
Υ	Fe/CuNi	-8.095+69.553 mV	-2100 °C 01200 °C	± 2 °C ± 1.7 °C	± 4.7 °C ± 2.7 °C
K	CrNi/NiAl	-6.035+54.819 mV	-210150 °C -150+1370 °C	± 3 °C ± 2 °C	± 4.1 °C ± 3.6 °C
Т	Cu/CuNi	-5.7531.003 mV	-210160 °C -160+400 °C	± 2.6 °C ± 1.3 °C	± 4.7 °C ± 2.5 °C
B 1)	Pt30%Rh/Pt6%Rh	0.09213.820 mV	1501820 °C		
R 1)	Pt13%Rh/Pt	-0.226+21.003 mV	-500 °C 01760 °C		
S 1)	Pt10%Rh/Pt	0.23618.609 mV	-500 °C 01760 °C		

¹⁾ Not released for use with X-Al 16 51! The results provided by the measured values are not sufficiently accurate.

Table 25: Thermocouple Tolerances

HI 801 179 E Rev. 11.00.00 Page 63 of 68

Appendix X-AI 16 51

Glossary

AI Analo AO Analo ARP Addre hardw COM Comm CRC Cyclic DI Digita DO Digita EMC Electr EN Europ ESD Electr FB Fieldt FBD Funct HW Hardw ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr	oription og input og output ess resolution protocol, network protocol for assigning the network addresses to ware addresses munication module c redundancy check al input al output romagnetic compatibility pean standard
AO Analo ARP Addre hardw COM Comm CRC Cyclic DI Digita DO Digita EMC Electr EN Europ ESD Electr FB Fieldt FBD Funct HW Hardw ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr	ess resolution protocol, network protocol for assigning the network addresses to ware addresses munication module c redundancy check al input al output romagnetic compatibility
ARP Addres hardword COM Common CRC Cyclic DI Digital DO Digital EMC Electron EN Europe ESD Electron FB Fields FBD Functor HW Hardword ICMP Internol Interference-free Inputs safety MAC Media PADT Program PELV Protes	ess resolution protocol, network protocol for assigning the network addresses to ware addresses munication module c redundancy check al input al output romagnetic compatibility
CRC Cyclic DI Digita DO Digita EMC Electr EN Europ ESD Electr FB Fieldb FBD Funct HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr	c redundancy check al input al output romagnetic compatibility
DI Digita DO Digita EMC Electr EN Europ ESD Electr FB Fields FBD Funct HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr	al input al output romagnetic compatibility
DO Digita EMC Electr EN Europ ESD Electr FB Fieldt FBD Funct HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	al output romagnetic compatibility
EMC Electr EN Europ ESD Electr FB Fieldb FBD Funct HW Hardv ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr	romagnetic compatibility
EN Europ ESD Electr FB Fieldt FBD Funct HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr	· · ·
ESD Electr FB Fieldt FBD Funct HW Hardv ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	pean standard
FB Fields FBD Funct HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	
FBD Funct HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	rostatic discharge
HW Hardy ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	bus
ICMP Intern IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	tion block diagrams
IEC Intern Interference-free Inputs safety MAC Media PADT Progr PELV Prote	ware
Interference-free Inputs safety MAC Media PADT Progr PELV Prote	net control message protocol, network protocol for status or error messages
MAC Media PADT Progr PELV Prote	national electrotechnical commission
PADT Progr PELV Prote	s are designed for interference-free operation and can be used in circuits with y functions
PELV Prote	a access control address, hardware address of one network connection
	ramming and debugging tool (in accordance with IEC 61131-3), PC with SILworX
DES Brogr	ective extra low voltage
FES Flogi	rammable electronic system
R Read	I, the variable is read out
R/W Read	l/Write, column title for system variable type
Rack ID Base	plate identification (number)
r _P Peak	value of a total AC component
SB Syste	em bus (module)
SC/OC Short	t-circuit/open-circuit
SELV Safety	ty extra low voltage
SFF Safe f	failure fraction, portion of faults that can be safely controlled
SIL Safety	ty integrity level (in accordance with IEC 61508)
SILworX Progr	ramming tool
SNTP Simpl	le network time protocol (RFC 1769)
SRS Syste	em.Rack.Slot, addressing of a module
SW Softw	vare
TMO Timed	out
W Write	the verifical receives a value of a frame the very receives
	e, the variable receives a value, e.g., from the user program
WDT Watcl	hdog, device for monitoring the system's correct operation. Signal for fault-free

Page 64 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 Appendix

Index of I	-igures	
Figure 1:	Sample Type Label	11
Figure 2:	Block Diagram for Connecting Thermocouples via X-CB 024 53	13
Figure 3:	Block Diagram for Connecting Thermocouples via X-CB 020 XX	14
Figure 4:	Block Diagram for Connecting Sensors	15
Figure 5:	Indicators	16
Figure 6:	Views	20
Figure 7:	Coding Example	23
Figure 8:	X-CB 24 53 Connector Board with Cable Plug	24
Figure 9:	Connector Board with Screw Terminals	26
Figure 10:	Connector Board with Cable Plug	28
Figure 11:	System Cable X-CA 014 01 n	30
Figure 12:	Example of how to Insert the Mono Connector Board	33
Figure 13:	Example of how to Secure the Mono Connector Board with Captive Screws	34
Figure 14:	Mounting and Removing a Module	36
Figure 15:	1-Channel Connection of a Sensor	47
Figure 16:	1-Channel Connection of Thermocouples	47
Figure 17:	Connection of Pt100 (4-Wire Circuit) to X-CB 024 53	48
Figure 18:	Connection of Pt100 (2-Wire Circuit) to X-CB 020 5x	48
Figure 19:	Connection of Pt100 (4-Wire Circuit) to X-CB 020 5x	49
Figure 20:	Redundant Connection of one Thermocouple	50
Figure 21:	Redundant Connection of Redundant Thermocouples	50
Figure 22:	Three-Fold Redundant Wiring of one Thermocouple	51
Figure 23:	Three-Fold Redundant Wiring of Three-Fold Redundant Thermocouples	52
Figure 24:	Connection of Thermocouples via X-FTA 002 02 and X-CB 024 53	53
Figure 25:	Connection of Thermocouples via X-FTA 002 01	54
Figure 26:	Connection of Sensors via X-FTA 002 01	55
Figure 27:	Redundant Connection of Thermocouples via X-FTA 002 02	56

HI 801 179 E Rev. 11.00.00 Page 65 of 68

Appendix X-Al 16 51

Index of 7	Tables Tables	
Table 1:	Additional Applicable Manuals	5
Table 2:	Blinking Frequencies of the LEDs	17
Table 3:	Module Status Indicators	18
Table 4:	System Bus Indicators	19
Table 5:	I/O Indicators	19
Table 6:	Product Data	20
Table 7:	Specifications for the Analog Inputs	21
Table 8:	Metrological Accuracy	21
Table 9:	Product Data for the Current Sources	21
Table 10:	Connector Board for Connecting Thermocouples in Connection with Open-Circuit Detection	22
Table 11:	Connector Boards Available for Connecting Thermocouples	22
Table 12:	Connector Boards Available for Connecting Sensors	22
Table 13:	Position of Coding Wedges	23
Table 14:	Pin Assignment for the System Cable Plug	25
Table 15:	Terminal Assignment for Connector Board with Screw Terminals	27
Table 16:	Cable Plug Characteristics	27
Table 17:	Pin Assignment for the System Cable Plug	29
Table 18:	Cable Data	30
Table 19:	Available System Cables X-CA 014	30
Table 20:	The Module Tab in the Hardware Editor	40
Table 21:	The I/O Submodule Al16_51 Tab in the Hardware Editor	42
Table 22:	The I/O Submodule Al16_51: Channels Tab in the Hardware Editor	45
Table 23:	Coding of Submodule Status [DWORD]	46
Table 24:	Coding of Diagnostic Status [DWORD]	46
Table 25:	Thermocouple Tolerances	63

Page 66 of 68 HI 801 179 E Rev. 11.00.00

X-AI 16 51 Appendix

Index

Block diagram	13	Light emitting diodes, LEDs	17
Connector board			
with cable plug	28	Safety function	9
with screw terminals			
Diagnostics		Current source	21
I/O indicators	19	Inputs	21
System bus indicators	19	Module	20

HI 801 179 E Rev. 11.00.00 Page 67 of 68

MANUAL **X-AI 16 51**

HI 801 179 E

For further information, please contact:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Phone: +49 6202 709-0 Fax +49 6202 709-107 E-mail: info@hima.com

Learn more about HIMax online:

tttps://www.hima.com/en/products-services/himax/

