11.4 Eigenvalues of Symmetric Matrices

Householder's Method

Each transformation in Jacobi's method produced two zero off-diagonal elements, but subsequent iterations might make them nonzero. Hence many iterations are required to make the off-diagonal entries sufficiently close to zero. We now develop a method that produces several zero off-diagonal elements in each iteration, and they remain zero in subsequent iterations. We start by developing an important step in the process.

Theorem 11.23 (Householder Reflection). If X and Y are vectors with the same norm, there exists an orthogonal symmetric matrix P such that

$$Y = PX,$$

where

$$(2) P = I - 2WW'$$

and

(3)
$$W = \frac{X - Y}{\|X - Y\|_2}.$$

Since P is both orthogonal and symmetric, it follows that

$$(4) P^{-1} = P.$$

Proof. Equation (3) is used and defines W to be the unit vector in the direction X - Y; hence

$$\mathbf{W}'\mathbf{W} = 1$$

and

$$Y = X + cW,$$

where $c = -\|X - Y\|_2$. Since X and Y have the same norm, the parallelogram rule for vector addition can be used to see that Z = (X + Y)/2 = X + (c/2)W is orthogonal to vector W (see Figure 11.4). This implies that

$$W'\left(X + \frac{c}{2}W\right) = 0.$$

Now we can use (5) to expand the preceding equation and get

(7)
$$W'X + \frac{c}{2}W'W = W'X + \frac{c}{2} = 0.$$

Figure 11.4 The vectors W, X, Y, and Z involved in the Householder reflection.

The crucial step is to use (7) and express c in the form

$$(8) c = -2(W'X).$$

Now (8) can be used in (6) to see that

$$Y = X + cW = X - 2W'XW$$
.

Since the quantity W'X is a scalar, the last equation can be written as

(9)
$$Y = X - 2WW'X = (I - 2WW')X$$
.

Looking at (9), we see that P = I - 2WW'. The matrix P is symmetric because

$$P' = (I - 2WW')' = I - 2(WW')'$$

= $I - 2WW' = P$.

The following calculation shows that P is orthogonal:

$$P'P = (I - 2WW')(I - 2WW')$$

= $I - 4WW' + 4WW'WW'$
= $I - 4WW' + 4WW' = I$,

and the proof is complete.

It should be observed that the effect of the mapping Y = PX is to reflect X through the line whose direction is Z, hence the name *Householder reflection*.

Corollary 11.3 (*k*th Householder Matrix). Let A be an $n \times n$ matrix, and X any vector. If k is an integer with $1 \le k \le n-2$, we can construct a vector W_k and matrix $P_k = I - 2W_kW_k'$ so that

(10)
$$P_{k}X = P_{k} \begin{bmatrix} x_{1} \\ \vdots \\ x_{k} \\ x_{k+1} \\ x_{k+2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{k} \\ -S \\ 0 \\ \vdots \\ 0 \end{bmatrix} = Y.$$

Proof. The key is to define the value S so that $||X||_2 = ||Y||_2$ and then invoke Theorem 11.23. The proper value for S must satisfy

(11)
$$S^2 = x_{k+1}^2 + x_{k+2}^2 + \dots + x_n^2,$$

which is readily verified by computing the norms of X and Y:

(12)
$$||X||_2 = x_1^2 + x_2^2 + \dots + x_n^2$$
$$= x_1^2 + x_2^2 + \dots + x_k^2 + S^2$$
$$= ||Y||_2.$$

The vector W is found by using equation (3) of Theorem 11.23:

(13)
$$W = \frac{1}{R}(X - Y)$$
$$= \frac{1}{R} [0 \cdots 0 (x_{k+1} + S) x_{k+2} \cdots x_n]'.$$

Less round-off error is propagated when the sign of S is chosen to be the same as the sign of x_{k+1} ; hence we compute

(14)
$$S = \operatorname{sign}(x_{k+1})(x_{k+1}^2 + x_{k+2}^2 + \dots + x_n^2)^{1/2}.$$

The number R in (13) is chosen so that $||W||_2 = 1$ and must satisfy

(15)
$$R^{2} = (x_{k+1} + S)^{2} + x_{k+2}^{2} + \dots + x_{n}^{2}$$
$$= 2x_{k+1}S + S^{2} + x_{k+1}^{2} + x_{k+2}^{2} + \dots + x_{n}^{2}$$
$$= 2x_{k+1}S + 2S^{2}.$$

Therefore, the matrix P_k is given by the formula

$$(16) P_k = I - 2WW',$$

and the proof is complete.

Householder Transformation

Suppose that A is a symmetric $n \times n$ matrix. Then a sequence of n-2 transformations of the form PAP will reduce A to a symmetric tridiagonal matrix. Let us visualize the process when n=5. The first transformation is defined to be P_1AP_1 , where P_1 is constructed by applying Corollary 11.3, with the vector X being the first column of the matrix A. The general form of P_1 is

(17)
$$\mathbf{P}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & p & p & p & p \\ 0 & p & p & p & p \\ 0 & p & p & p & p \\ 0 & p & p & p & p \end{bmatrix},$$

where the letter p stands for some element in P_1 . As a result, the transformation P_1AP_1 does not affect the element a_{11} of A:

(18)
$$P_1 A P_1 = \begin{bmatrix} a_{11} & v_1 & 0 & 0 & 0 \\ u_1 & w_1 & w & w & w \\ 0 & w & w & w & w \\ 0 & w & w & w & w \\ 0 & w & w & w & w \end{bmatrix} = A_1.$$

The element denoted u_1 is changed because of premultiplication by P_1 , and v_1 is changed because of postmultiplication by P_1 ; since A_1 is symmetric, we have $u_1 = v_1$. The changes to the elements denoted w have been affected by both premultiplication and postmultiplication. Also, since X is the first column of A, equation (10) implies that $u_1 = -S$.

The second Householder transformation is applied to the matrix A_1 defined in (18) and is denoted P_2AP_2 , where P_2 is constructed by applying Corollary 11.3, with the vector X being the second column of the matrix A_1 . The form of P_2 is

(19)
$$\mathbf{P}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & p & p & p \\ 0 & 0 & p & p & p \\ 0 & 0 & p & p & p \end{bmatrix},$$

where p stands for some element in P_2 . The 2 × 2 identity block in the upper-left corner ensures that the partial tridiagonalization achieved in the first step will not be altered by the second transformation $P_2A_1P_2$. The outcome of this transformation is

(20)
$$P_2 A_1 P_2 = \begin{bmatrix} a_{11} & v_1 & 0 & 0 & 0 \\ u_1 & w_1 & v_2 & 0 & 0 \\ 0 & u_2 & w_2 & w & w \\ 0 & 0 & w & w & w \\ 0 & 0 & w & w & w \end{bmatrix} = A_2.$$

The elements u_2 and v_2 were affected by premultiplication and postmultiplication by P_2 . Additional changes have been introduced to the other elements w by the transformation.

The third Householder transformation, $P_3A_2P_3$, is applied to the matrix A_2 defined in (20), where the corollary is used with X being the third column of A_2 . The form of P_3 is

(21)
$$P_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & p & p \\ 0 & 0 & 0 & p & p \end{bmatrix}.$$

Again, the 3×3 identity block ensures that $P_3A_2P_3$ does not affect the elements of A_2 , which lie in the upper 3×3 corner, and we obtain

(22)
$$P_3 A_2 P_3 = \begin{bmatrix} a_{11} & v_1 & 0 & 0 & 0 \\ u_1 & w_1 & v_2 & 0 & 0 \\ 0 & u_2 & w_2 & v_3 & 0 \\ 0 & 0 & u_3 & w & w \\ 0 & 0 & 0 & w & w \end{bmatrix} = A_3.$$

Thus it has taken three transformations to reduce A to tridiagonal form.

For efficiency, the transformation PAP is not performed in matrix form. The next result shows that it is more efficiently carried out via some clever vector manipulations.

Theorem 11.24 (Computation of One Householder Transformation). If P is a Householder matrix, the transformation PAP is accomplished as follows. Let

$$(23) V = AW$$

and compute

$$(24) c = \mathbf{W}'\mathbf{V}$$

and

$$Q = V - cW.$$

Then

$$PAP = A - 2WQ' - 2QW'.$$

Proof. First, form the product

$$AP = A(I - 2WW') = A - 2AWW'.$$

Using equation (23), this is written as

$$(27) AP = A - 2VW'.$$

Now use (27) and write

(28)
$$\mathbf{PAP} = (\mathbf{I} - 2\mathbf{WW}')(\mathbf{A} - 2\mathbf{VW}').$$

When this quantity is expanded, the term 2(2WW'VW') is divided into two portions and (28) can be rewritten as

(29)
$$PAP = A - 2W(W'A) + 2W(W'VW') - 2VW' + 2W(W'V)W'.$$

Under the assumption that A is symmetric, we can use the identity (W'A) = (W'A') = V'. The tricky part is to observe that (W'V) is a scalar quantity; hence it can commute freely about in any term. Another scalar identity, W'V = (W'V)', is used to obtain the relation W'VW' = (W'V)W' = W'(W'V) = W'(W'V)' = (W'V)W' = (W'V)W'. These results are used in the terms of (29) in parentheses to get

(30)
$$PAP = A - 2WV' + 2W(W'VW)' - 2VW' + 2W'VWW'.$$

Now the distributive law is used in (30) and we obtain

(31)
$$PAP = A - 2W(V' - (W'VW)') - 2(V - W'VW)W'.$$

Finally, the definition for Q given in (25) is used in (31) and the outcome is equation (26), and the proof is complete.

Reduction to Tridiagonal Form

Suppose that A is a symmetric $n \times n$ matrix. Start with

$$(32) A_0 = A.$$

Construct the sequence P_1, P_2, \dots, P_{n-1} of Householder matrices, so that

(33)
$$A_k = P_k A_{k-1} P_k$$
 for $k = 1, 2, ..., n-2$,

where A_k has zeros below the subdiagonal in columns 1, 2, ..., k. Then A_{n-2} is a symmetric tridiagonal matrix that is similar to A. This process is called **Householder's** method.

Example 11.8. Use Householder's method to reduce the following matrix to symmetric tridiagonal form:

$$A_0 = \begin{bmatrix} 4 & 2 & 2 & 1 \\ 2 & -3 & 1 & 1 \\ 2 & 1 & 3 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$$

The details are left for the reader. The constants S = 3 and $R = 30^{1/2} = 5.477226$ are used to construct the vector

$$W' = \frac{1}{\sqrt{30}} [0 \ 5 \ 2 \ 1] = [0.000000 \ 0.912871 \ 0.365148 \ 0.182574].$$

Then matrix multiplication V = AW is used to form

$$V' = \frac{1}{\sqrt{30}} \begin{bmatrix} 0 & -12 & 12 & 9 \end{bmatrix}$$

= $\begin{bmatrix} 0.000000 & -2.190890 & 2.190890 & 1.643168 \end{bmatrix}$.

The constant c = W'V is then found to be

$$c = -0.9$$
.

Then the vector $\mathbf{Q} = \mathbf{V} - c\mathbf{W} = \mathbf{V} + 0.9\mathbf{W}$ is formed:

$$Q' = \frac{1}{\sqrt{30}} \begin{bmatrix} 0.000000 & -7.500000 & 13.800000 & 9.900000 \end{bmatrix}$$
$$= \begin{bmatrix} 0.000000 & -1.369306 & 2.519524 & 1.807484 \end{bmatrix}.$$

The computation $A_1 = A_0 - 2W Q' - 2QW'$ produces

$$A_1 = \begin{bmatrix} 4.0 & -3.0 & 0.0 & 0.0 \\ -3.0 & 2.0 & -2.6 & -1.8 \\ 0.0 & -2.6 & -0.68 & -1.24 \\ 0.0 & -1.8 & -1.24 & 0.68 \end{bmatrix}.$$

The final step uses the constants S = -3.1622777, R = 6.0368737, c = -1.2649111 and the vectors

$$W' = \begin{bmatrix} 0.000000 & 0.000000 & -0.954514 & -0.298168 \end{bmatrix},$$

 $V' = \begin{bmatrix} 0.000000 & 0.000000 & 1.018797 & 0.980843 \end{bmatrix},$
 $Q' = \begin{bmatrix} 0.000000 & 0.000000 & -0.188578 & 0.603687 \end{bmatrix}.$

The tridiagonal matrix $\mathbf{A}_2 = \mathbf{A}_1 - 2\mathbf{W}\mathbf{Q}' - 2\mathbf{Q}\mathbf{W}'$ is

$$A_2 = \begin{bmatrix} 4.0 & -3.0 & 0.0 & 0.0 \\ -3.0 & 2.0 & 3.162278 & 0.0 \\ 0.0 & 3.162278 & -1.4 & -0.2 \\ 0.0 & 0.0 & -0.2 & 1.4 \end{bmatrix}.$$

Numerical Methods Using Matlab, 4th Edition, 2004

John H. Mathews and Kurtis K. Fink ISBN: 0-13-065248-2

Prentice-Hall Inc.
Upper Saddle River, New Jersey, USA http://vig.prenhall.com/

