EXAMEN CALCUL DIFERENTIAL SI INTEGRAL SERIA 13

OFICIU: 1 punct

SUBIECTUL 1. (2 puncte)

Sa se studieze natura seriei $\sum_{n=0}^{\infty} \frac{a^n[(n+1)!]^2}{1^2 \cdot 3^2 \cdots (2n+1)^2}$, unde a>0.

SUBIECTUL 2. (2 puncte)

Sa se determine punctele de extrem local ale functiei $f:(0+\infty)\times(0,+\infty)\to$

 $\mathbb{R}, f(x,y) = x^2 + xy - 4\ln x - 2\ln y + 3 \ \forall (x,y) \in (0,+\infty) \times (0,+\infty).$

SUBIECTUL 3. (2 puncte)

Sa se studieze convergenta simpla si uniforma a sirului de functii $f_n: [1+$

- So we studied convergence simple of uniforms a situation of the following f_n : [1] $(x) \to \mathbb{R}$, $f_n(x) = \frac{\operatorname{arctg}(x^n)}{n+x} \ \forall x \in [1,+\infty), \forall n \in \mathbb{N}$. SUBIECTUL 4. (3 puncte)

 a) So we calculeze $\iint_D \frac{x}{\sqrt{x^2+y^1}} dx dy$, unde $D = \{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \leq 6, x \leq 0\}$.
- b) Sa se determine toate functiile continue $f:[0,+\infty)\to\mathbb{R}$ care verifica egalitatea $f(4x) + f(x) = 5x \ \forall x \in [0, +\infty).$