Segmenting and Clustering Neighborhoods in Toronto - Part 3

For this assignment, you will be required to explore and cluster the neighborhoods in Toronto.

- Step 1: Load the data to the dataframe
- Step 2: Process the data
 - 2.1. Ignore rows with a Borough that is "Not assigned"
 - 2.2. Combine neighborhoods that has the same postcode
 - 2.3. Name "Not assigned" neighbourhood after the Borough
- · Step 3. Load and include the geospatial data

Result of Part 3: Visualize the data on map

- Vis 1: Show all the Boroughs and Neighbourhoods
- Vis 2: Show all Boroughs that contains the word "Toronto"
- Vis 3: Show all the Boroughs

Step 1: Load the data to a dataframe

```
In [5]: #Load necessary libraries
        import pandas as pd
        import requests
In [6]: from bs4 import BeautifulSoup
        url="https://en.wikipedia.org/wiki/List of postal codes of Canada: M"
        soup = BeautifulSoup(requests.get(url).text,'lxml')
        My_table = soup.find('table',{'class':'wikitable sortable'})
        table_rows = My_table.find_all('tr')
        t=[]
        for tr in table_rows:
            td = tr.find_all('td')
            row = [tr.text.rstrip('\n') for tr in td]
            t.append(row)
        df=pd.DataFrame(t)
        df.columns=['Postcode','Borough','Neighbourhood']
        df.drop([0],axis=0,inplace=True)
        df.reset index()
        df.head()
```

Out[6]:

Postcode		Borough	Neighbourhood	
1	M1A	Not assigned	Not assigned	
2	M2A	Not assigned	Not assigned	
3	МЗА	North York	Parkwoods	
4	M4A	North York	Victoria Village	
5	M5A	Downtown Toronto	Harbourfront	

A different way to load the table

► Click here to see...

Step 2. Process the data

2.1. Ignore rows with a Borough that is "Not assigned"

```
In [7]: df.drop(df[df['Borough'] == 'Not assigned'].index, inplace = True)
         #re-index the dataframe
         df = df.reset_index(drop=True)
         df.head()
Out[7]:
            Postcode
                             Borough
                                      Neighbourhood
                 МЗА
                            North York
                                          Parkwoods
                                       Victoria Village
                 M4A
                            North York
          2
                 M5A Downtown Toronto
                                         Harbourfront
```

2.2. Combine neighborhoods that has the same postcode

Regent Park

North York Lawrence Heights

M5A Downtown Toronto

M6A

```
In [8]: df_new = df.groupby("Postcode").agg(lambda x:', '.join(set(x)))
        df_new = df_new.reset_index()
        df_new.loc[51:55]
```

Out[8]:

a	Neignbournoo	Borougn	Postcode	
'n	St. James Town, Cabbagetow	Downtown Toronto	M4X	51
y	Church and Wellesle	Downtown Toronto	M4Y	52
k	Harbourfront, Regent Par	Downtown Toronto	M5A	53
ct	Ryerson, Garden Distric	Downtown Toronto	M5B	54
'n	St. James Tow	Downtown Toronto	M5C	55

2.3. Name "Not assigned" neighbourhood after the Borough

```
In [9]: for index, row in df_new.iterrows():
                  if df_new.loc[index, 'Neighbourhood'] == "Not assigned":
    df_new.loc[index, 'Neighbourhood'] = df_new.loc[index, 'Borough']
                       print(index)
            85
In [10]: df_new.shape
Out[10]: (103, 3)
```

Step 3. Load and include the geospatial data

```
In [11]: g_data = pd.read_csv("https://cocl.us/Geospatial_data")
         g_data.head()
Out[11]:
```

	Postal Code	Latitude	Longitude
0	M1B	43.806686	-79.194353
1	M1C	43.784535	-79.160497
2	M1E	43.763573	-79.188711
3	M1G	43.770992	-79.216917
4	M1H	43.773136	-79.239476

```
In [12]: df g = df new
           df_g['Latitude'] = g_data['Latitude'].values
           df_g['Longitude'] = g_data['Longitude'].values
           df_g.head()
Out[12]:
              Postcode
                          Borough
                                                   Neighbourhood
                                                                  Latitude Longitude
                  M1B Scarborough
                                                   Rouge, Malvern 43.806686 -79.194353
           1
                  M1C Scarborough Rouge Hill, Port Union, Highland Creek 43.784535 -79.160497
                                      Guildwood, West Hill, Morningside 43.763573 -79.188711
           2
                  M1E Scarborough
                  M1G Scarborough
                                                         Woburn 43.770992 -79.216917
           3
                  M1H Scarborough
                                                       Cedarbrae 43.773136 -79.239476
In [62]: df_g.shape
Out[62]: (103, 5)
```

Result of Part 3: Visualize the data on map

```
In [30]: !conda install -c conda-forge folium=0.5.0 --yes
    import folium # plotting library
    print('Folium installed')

Collecting package metadata: done
    Solving environment: done

# All requested packages already installed.
Folium installed
```

Vis 1. Show all the Boroughs and Neighbourhoods

```
In [80]: lat center = df g['Latitude'].mean()
         lon center = df_g['Longitude'].mean()
         #print("The center of the map is: (x: %s, y: %s)" % (lat_center, lon_center))
         #Draw the map
         map all = folium.Map(location=[lat center, lon center], tiles='cartodbpositron', zoom start=11)
         # add markers to map
         for lat, lng, borough, neighborhood, postcode in zip(df_g['Latitude'], df_g['Longitude'], df_g['Borough'],
         df_g['Neighbourhood'], df_g['Postcode']):
             label = '{}, {}'.format(neighborhood, borough, postcode)
             label = folium.Popup(label, parse_html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.6).add_to(map_all)
         # add a red circle marker to represent the Conrad Hotel
         folium.features.CircleMarker(
             [lat_center, lon_center],
             radius=10,
             color='red',
             popup='Center of the map',
             fill = True,
             fill color = 'red',
             fill_opacity = 0.6
         ).add_to(map_all)
         # display map
         map_all
```

Out[80]:

Vis 2: Show all Boroughs that contains the word "Toronto"

```
In [77]: df_toronto = df_g.set_index('Borough').filter(like='Toronto', axis=0)
    df_toronto = df_toronto.reset_index()
    df_toronto.head()
```

Out[77]:

_		Borough	Postcode	Neighbourhood	Latitude	Longitude
	0	East Toronto	M4E	The Beaches	43.676357	-79.293031
	1	East Toronto	M4K	Riverdale, The Danforth West	43.679557	-79.352188
	2	East Toronto	M4L	India Bazaar, The Beaches West	43.668999	-79.315572
	3	East Toronto	M4M	Studio District	43.659526	-79.340923
	4	Central Toronto	M4N	Lawrence Park	43.728020	-79.388790

```
In [84]: lat center t = df toronto['Latitude'].mean()
         lon_center_t = df_toronto['Longitude'].mean()
         map_toronto = folium.Map(location=[lat_center_t, lon_center_t], tiles='cartodbpositron', zoom_start=12)
         # add markers to map
         for lat, lng, borough, neighborhood, postcode in zip(df_toronto['Latitude'], df_toronto['Longitude'], df_t
         oronto['Borough'], df_toronto['Neighbourhood'], df_toronto['Postcode']):
             label = '{}, {}, {}'.format(neighborhood, borough, postcode)
             label = folium.Popup(label, parse_html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.6).add_to(map_toronto)
         # add a red circle marker to represent the Conrad Hotel
         folium.features.CircleMarker(
             [lat_center_t, lon_center_t],
             radius=10.
             color='red',
             popup='Center of the map',
             fill = True,
             fill color = 'red',
             fill_opacity = 0.6
         ).add_to(map_toronto)
         # display map
         map_toronto
```

Out[84]:

Vis 3: Show all the Boroughs

```
In [96]: df_borough = df_g.groupby(['Borough'],as_index=False).mean()
    df_borough = df_borough.reset_index()
    df_borough.head()
```

Out[96]:

	index Borough		Latitude	Longitude	
0	0	Central Toronto	43.701980	-79.398954	
1	1	Downtown Toronto	43.654169	-79.383665	
2	2	East Toronto	43.669436	-79.324654	
3	3	East York	43.700303	-79.335851	
4	4	Etobicoke	43.660043	-79.542074	

```
In [100]: lat center b = df borough['Latitude'].mean()
           lon_center_b = df_borough['Longitude'].mean()
           map_borough = folium.Map(location=[lat_center_b, lon_center_b], tiles='cartodbpositron', zoom_start=11)
           # add markers to map
           for lat, lng, borough in zip(df_borough['Latitude'], df_borough['Longitude'], df_borough['Borough']):
    label = 'Center of {}'.format(borough)
               label = folium.Popup(label, parse_html=True)
                folium.CircleMarker(
                   [lat, lng],
                   radius=5,
                   popup=label,
color='blue',
                    fill=True,
                    fill color='#3186cc',
                    fill opacity=0.6).add to(map borough)
           # add a red circle marker to represent the Conrad Hotel
           folium.features.CircleMarker(
               [lat_center_b, lon_center_b],
               radius=10,
               color='red',
               popup='Center of the map',
               fill = True,
                fill_color = 'red',
               fill opacity = 0.6
           ).add_to(map_borough)
           # display map
           {\tt map\_borough}
```

Out[100]:

