Regresión Lineal

Algunos consideraciones para el análisis de datos en los cursos de laboratorio de Física

Regresión Lineal

- 1 El problema de la regresión lineal
- La regresión lineal simple
- Método de mínimos cuadrados
- Coeficiente de regresión
- Oceficiente de correlación lineal
- El contraste de regresión
- Inferencias acerca de los parámetros
- Inferencias acerca de la predicción
- Los supuestos del modelo de regresión lineal
- Un ejemplo en donde no se cumplen los supuestos

2/4

Héctor F. Hernández G. Regresión Lineal 29 de mayo de 2024

El problema de la regresión lineal

- El análisis de regresión es una técnica estadística para investigar y modelar relaciones entre variables.
- Las relaciones estadísticas difieren de las funcionales porque no son perfectas; las observaciones no caen directamente sobre una curva.
- Se supone una relación entre una respuesta cuantitativa y y k predictores x_1, x_2, \ldots, x_k de la forma general:

$$y = f(x) + \varepsilon,$$

donde f es una función desconocida de $x_1, \ldots, x_k, y_\varepsilon$ es un término de error aleatorio independiente de x con media cero.

- ullet f representa la información sistemática que x proporciona sobre y.
- ullet El método paramétrico más utilizado asume que f es lineal en x :

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k.$$

• Para ajustar el modelo lineal, se estiman los parámetros $\beta_0, \beta_1, \dots, \beta_k$ de manera que:

$$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k.$$

Gráficos

OLS Regression Results						
Dep. Variable:		у	R–squ	 ared:		0.963
Model:	OLS			Adj. R-squared:		
Method:	Least Squares			tistic:		205.7
Date:	Mon, 27 May 2024			(F-statistic):	5.45e-07
Time:	10:18:42			ikelihood:		-3.7692
No. Observations:		10	AIC:			11.54
Df Residuals:		8	BIC:			12.14
Df Model:		1				
Covariance Type:	nonro	bust				
coe	f std err	=====	t	P> t	[0.025	0.975]
const 0.736	 2		3.254	0.012	0.215	 1.258
x1 5.884	4 0.410	1	14.343	0.000	4.938	6.831
Omnibus:	: :	===== 1.614	===== Durbi	======= n-Watson:		 1.076
Prob(Omnibus):	(0.446	Jarqu	e-Bera (JB):		0.806
Skew:		218	Prob(JB):		0.668
Kurtosis:	:	1.679	Cond.	No.		4.04