Obtendo ER de AF

Vimos anteriormente como construir AF equivalentes a uma ER. Agora veremos como obter uma expressão regular a partir de um autômato. Para isso, vamos definir o conceito de diagrama ER. Um diagrama ER é um diagrama de estados em que as transições ocorrem sob expressões regulares, ao invés de símbolos do alfabeto. Além disso, pode haver no máximo uma transição entre dois estados.

📮 Exemplo: Podemos ter a seguinte transição em um diagrama ER

$$e$$
 $(0+1)1(0+1)*0$ e'

Essa transição pode ser interpretada como: há uma transição de e para e' com qualquer palavra denotada pela expressão regular. Ou seja, entende-se que exista uma sub-máquina, para a qual há uma transição de e para seu estado inicial, que, de alguma forma, reconhece as palavras da linguagem denotada pela ER e de cujo estado final haja uma transição para e'.

Seja $M = (Q, \Sigma, \delta, I, F)$ o autômato que se deseja obter uma expressão regular equivalente. O método possui os seguintes passos:

1. Obtenha um AFN λ $M' = (Q \cup \{i, f\}, \Sigma, \delta', \{i\}, \{f\})$ a partir de M. Esse autômato é obtido acrescentando-se um único estado inicial e um único final a M. Além disso, são acrescentadas transições lambda desse novo estado inicial para os estados iniciais de M, e transições lambda dos seus estados finais para f.

- 2. O próximo passo consiste em obter um diagrama ER a partir do AFN λ acima. Para isso, todas as transições sob múltiplos símbolos do alfabeto ou lambda são transformadas em uma única transição da forma $a_1+a_2+\cdots+a_n$.
- 3. O terceiro passo consiste em eliminar sucessivamente todos os estados de M' até que restem somente os estados i e f. A eliminação de um estado e se dá da seguinte forma:
 - a. Para cada par de estados $[e_1,e_2]$ tais que exista transição de e_1 para e, e de e para e_2 , crie uma transição de e_1 para e_2 da forma:
 - i. $r_0 + r_1 r_2^* r_3$ se existia transição entre os estados anteriormente
 - ii. $r_1r_2^*r_3$ caso contrário

As expressões r_0 , r_1 , r_2 , r_3 são respectivamente as transições entre $e_1 - e_2$,

Exemplo: Seja a linguagem $L = \{w \in \{a,b\}^* | |w| \mod 2 \neq 0 \land \eta_b(w) = 1\}$. O AFD abaixo reconhece essa linguagem. Obtenha uma ER equivalente usando o método acima

$$\rightarrow (i) \xrightarrow{(aa)^*(b+b)(aa)^*} f$$

$$(aa)^*(b+aba)(aa)^*$$

$$PO-PIZ$$
 ab
$$PO-PIZ$$
 ab
$$PO-iI = aba$$

$$iI - iI = aa$$