Mathematics Extension I CSSA HSC Trial Examination 2003 Guidelines

Question 1 1(a) Outcomes Assessed: H3

Marking Guidelines

Г	Criteria	Marks
Γ	· rearranging limit	1
1	 finding answer 	1

Answer

$$\lim_{n \to \infty} \frac{5(10^{n}) + 3}{2(10^{n}) + 1} = \lim_{n \to \infty} \frac{5 + 3(10^{-n})}{2 + 1(10^{-n})} = \frac{5 + 0}{2 + 0} = \frac{5}{2}$$

1(b) Outcomes Assessed: H5

Marking Guidelines

	Criteria	Marks
┌	finding x coordinate	1
•	finding y coordinate	1

Answer

$$x = \frac{2(7)+1(-2)}{2+1} = 4$$
, $y = \frac{2(-1)+1(5)}{2+1} = 1$

1(c) Outcomes Assessed: PE3

Markino Guidelines

	Criteria	Marks
·	finding cubic inequality	1
-	factoring cubic expression	1
-	using diagram	1 1
•	finding answer	1 [

ver

$$\frac{2}{x} > x-1$$
 , $\frac{2}{x} \times x^2 > (x-1) \times x^2$, $2x > x^3 - x^2$, $x^3 - x^2 - 2x < 0$, $x(x^2 - x - 2) < 0$, $x(x+1)(x-2) < 0$

$$y = x(x+1)(x-2)$$

 $x < -1 \text{ or } 0 < x < 2$

1(d) Outcomes Assessed : (i) / (ii) PE3 (iii) PE2
Marking Guidelines

	Criteria	Marks
(i)	copying diagram	0
• (ii)	stating alternate segment theorem	1
• (iii)	showing that BAC + MNC = 180°	1
· ` `	showing that $\widehat{MBC} + \widehat{MNC} = 180^{\circ}$	1
•	giving a reason why MNCB is cyclic	1

Answer

- (i) /
- (ii) The angle between the tangent BM and the chord BC is equal to the angle in the alternate segment.
- (iii) BÂC + MNC = 180° (cointerior angles supplementary BA parallel to MN)

 MÂC + MNC = 180° (MBC = BÂC)

 MNCB is cyclic (a pair of opposite interior angles is supplementary)

Question 2

2(a) Outcomes Assessed: PE5

Marking Guidelines

	Criteria	Marks
•	finding first derivative	1
١.	finding second derivative	1

Answer

$$\frac{dy}{dx} = 5(x^2 + 1)^4 \times 2x = 10x(x^2 + 1)^4$$

$$\frac{d^2y}{dx^2} = 10x \times 4(x^2 + 1)^3 \times 2x + (x^2 + 1)^4 \times 10 = 10(x^2 + 1)^3(9x^2 + 1)$$

2(b) Outcomes Assessed: PE3, PE6

Marking Guidelines

_		
	Criteria	Marks
•	writing as a sum of four binomial coefficients	1
ŀ	finding answer	1 1

Answer $\Sigma_{n=2}^{n=5}$ $^{n}C_2 = {}^{2}C_2 + {}^{3}C_2 + {}^{4}C_2 + {}^{5}C_2 = 1 + 3 + 6 + 10 = 20$

2(c) Outcomes Assessed: (i) P4, H5 (li) P4, H5
Marking Guidelines

	Criterla	Marks
• (i)	expanding LHS	1
•	showing answer	1
• (ii)	using A = 15 to find value of RHS	1
•	finding answer	1

Answer

(i)
$$(\sin A - \cos A)^2 = \sin^2 A + \cos^2 A - 2 \sin A \cos A = 1 - \sin 2A$$

(ii)
$$(\sin 15^\circ - \cos 15^\circ)^2 = 1 - \sin 30^\circ = 1 - \frac{1}{2} = \frac{1}{2}$$

 $\sin 15^\circ - \cos 15^\circ = \frac{-1}{\sqrt{2}}$ (since $\sin 15^\circ < \cos 15^\circ$)

2(d) Outcomes Assessed: (i) PE4 (ii) H5, PE3
Marking Guidelines

~		
L	Criteria	Marks
١.	(i) finding gradient of tangent	1 1
•	(ii) finding gradient of FT	1 1
•	finding initial expression for tan 0	1 1
Ŀ	finding final expression for tan 0] 1

Answer

(i)
$$y = x^2/_4$$
, $dy/_{dx} = 2x/_4 = x/_2$

When x = 2t, dy/dx = 2t/2 = t. The tangent at T has gradient t

(ii) F is the point (0, 1). FT has gradient
$$(t^2-1)/2t$$

$$\tan \theta = \left| \frac{t - (t^2 - 1)/2t}{1 + t(t^2 - 1)/2t} \right| = \left| \frac{2t^2 - t^2 + 1}{2t + t^3 - t} \right| = \left| \frac{t^2 + 1}{t^3 + t} \right| = \frac{1}{|t|}$$

Question 3

3(a) Outcomes Assessed : (i) H6 (ii) PE3 (iii) HE4

warking Guidennes		
	Criteria	Marks
· (i)	showing function increasing	1
-	showing graph concave down	1 1
• (ii)	finding numerical expression for x intercept	1 1
•	finding answer	1
• (iii)	showing intercepts and asymptotes on graph	1
•	showing shape of graph	1
•	sketching graph of inverse function	1

(i)
$$f'(x) = 1 + e^{-x} > 0$$
 for all x , function increasing $f''(x) = -e^{-x} < 0$ for all x , graph concave down

(ii)
$$X = 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.5 - \frac{0.5 - e^{-0.5}}{1 + e^{-0.5}} = 0.6$$

3(b) Outcomes Assessed: (i) HE5 (ii) HE4 (iii) HE7

	marking duidennes	
	Criteria	Marks
· (i)	finding a interms of x	1
	finding x in terms of t	1
(ii)	sketching graph	1
· (iii)	describing motion	1
• ` ´	finding limiting position	1

Answer

(i)
$$a = \frac{d}{dx} (\frac{1}{2} v^2) = \frac{d}{dx} (\frac{1}{2} \cos^4 x) = -2 \cos^3 x \sin x$$

 $\frac{dx}{dt} = \cos^2 x$, $\frac{dt}{dx} = \sec^2 x$, $t = \int \sec^2 x \, dx$
 $t = \tan x + c$, $t = 0$, $x = 0$, $c = 0$, $t = \tan x$, $x = \tan^{-1} t$

(iii) The particle starts at O moving to the right (v>0 for $0 \le x < \pi/2$) and slowing down (v>0 and a<0 for $0 < x < \pi/2$). It approaches its limiting position of $\pi/2$ metres to the right of O.

Question 4

4(a) Outcomes Assessed: (i) HE4 (ii) H8 (iii) H8
Marking Guidelines

	marking diamentes	
	Criteria	Marks
· (i)	finding domain	1
• ···	finding range	1
-	sketching graph	1
(ii) ٠	finding numerical expression for area	1
• ``	finding answer	1
- (iii)	finding primitive	1
	finding answer	1

Answer

(i) domain: $-1 \le \sqrt{x} \le 1$, $0 \le \sqrt{x} \le 1$, $0 \le x \le 1$ range: $\cos^{-1} 1 \le y \le \cos^{-1} 0$, $0 \le y \le \frac{\pi}{2}$

(ii)
$$x = 0$$
 $\frac{1}{2}$ 1 Area = $\int_0^1 y \, dx$
 $y = \frac{\pi}{2} \frac{\pi}{4} = 0$ Area = $\frac{1}{2} \left\{ \frac{\pi}{2} + 4 \left(\frac{\pi}{4} \right) + 0 \right\} = \frac{\pi}{4} \text{ units}^2$

(iii) Area =
$$\int_{0}^{\pi/2} x \, dy = \int_{0}^{\pi/2} \cos^2 y \, dy = \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2y) \, dy$$

= $\left[\frac{1}{2} y + \frac{1}{4} \sin 2y \right]_{0}^{\pi/2} = \frac{\pi}{4} \text{ units}^2$

4(b) Outcomes Assessed : (i) HE3 (ii) HE3 (iii) HE3
Marking Guidelines

Criteria	Marks
(i) finding primitive	1 1
finding answer	1 1
(ii) finding period	1
 finding amplitude 	1
· (iii) finding answer	1

Answer

(i)
$$v^2 = \int 2\tilde{x} dx = \int (-8x + 16) dx = -4x^2 + 16x + c$$

 $x = 0$, $v = 0$, $c = 0$, $v^2 = -4x^2 + 16x$

(ii)
$$x = -(2)^2 (x-2)$$
, $n = 2$, period = $\frac{2\pi}{2} = \pi$ seconds.
When $v = 0$, $-4x^2 + 16x = 0$, $-4x(x-4) = 0$, $x = 0$ or $x = 4$
Centre at $x = 2$. Amplitude = 2 metres.

(iii) In π seconds the particle travels 8 metres. In 1 minute the particle travels 60 \times ⁸/ π = 153 metres.

Question 5

5(a) Outcomes Assessed : PE3

	Marking Guidelines Criteria	Marks
•	finding numerical coefficient of x5	1
•	finding numerical coefficient of x6	1
•	finding equation for a	1
•	finding answer	11

(i)
$$(1+ax)^9 = 1 + \dots + {}^9C_5 (ax)^5 + {}^9C_6 (ax)^6 + \dots + (ax)^9$$

= $1 + \dots + 126 a^5 x^5 + 84 a^6 x^6 + \dots + a^9 x^9$
 $126 a^5 = 2 \times 84 a^6$, $a = {}^3/4$

5(b) Outcomes Assessed: HE6

Marking Guidelines

	marking daigonnes	
	Criteria	Marks
•	finding new integrand	1
١.	finding new limits	1
	finding primitive	1
	finding answer	1

Answer

Wer
$$\int_{1}^{49} \frac{1}{\sqrt{1+\sqrt{x}}} \frac{1}{\sqrt{x}} dx = \int_{2}^{8} \frac{1}{\sqrt{u}} 2du = [4\sqrt{u}]_{2}^{8} = 8\sqrt{2} - 4\sqrt{2} = 4\sqrt{2} = \sqrt{32}$$

5(c) Outcomes Assessed : (i) HE3 (ii) HE3
Marking Guideline

	Marking adiabilities	
	Criteria	Marks
· (i)	differentiating	1
. ``	showing answer	1 1
• (ii)	finding expression for k	1
	finding answer	1

Answer

(i)
$$V = A - Ae^{-kt}$$
, $Ae^{-kt} = A - V$
 $dV/dt = 0 - A(-ke^{-kt}) = Ake^{-kt} = k(Ae^{-kt}) = k(A - V)$

(ii) When
$$t = 2$$
, $V = \frac{A}{4} (= \frac{4A}{16})$
 $A/4 = A(1-e^{-2k})$, $1-e^{-2k} = \frac{1}{4}$, $e^{-2k} = \frac{3}{4}$
When $t = 4$, $V = A(1-e^{-4k}) = A(1-(e^{-2k})^2) = A(1-(\frac{3}{4})^2)$
 $= A(1-\frac{9}{16}) = \frac{7A}{16}$, $\frac{3}{16}$ of the container is filled in the next 2 minutes.

Question 6

6(a) Outcomes Assessed: H5

finding answer

 Marking Guidelines

 Criteria
 Marks

 finding AC and BC in terms of h using Pythagoras Theorem in Δ ABC 1
 1

 finding expression for h
 1

(i) In
$$\triangle$$
 ACD , $\tan 20^\circ = \frac{h}{AC}$, $AC = h \cot 20^\circ$
In \triangle BCD , $\tan 10^\circ = \frac{h}{BC}$, $BC = h \cot 10^\circ$
In \triangle CAB , $BC^2 = AB^2 + AC^2$, $(h \cot 10^\circ)^2 = 40^2 + (h \cot 20^\circ)^2$
 $h^2(\cot^2 10^\circ - \cot^2 20^\circ) = 40^2$, $h = \frac{40}{\sqrt{(\cot^2 10^\circ - \cot^2 20^\circ)}} = 8$

6(b) Outcomes Assessed: (i) HE3 (ii) HE3

Marking Guidelines

	Criteria	Marks
• (i)	using binomial probabilities	1
١٠	showing answer	1 1
• (ii)	using complementary probability	1
·	finding answer	1

Answer

- (i) P(at most one even score) = P(5 or 6 odd scores) = ${}^{6}C_{5} p^{5} (1-p) + p^{6}$ = $6 p^{5} (1-p) + p^{6} = 6 p^{5} - 6p^{6} + p^{6} = 6 p^{5} - 5p^{6}$
- (ii) P(product of scores even) = 1 P(product of scores odd)= $1 - P(6 odd scores) = 1 - p^6$

6(c) Outcomes Assessed : (i) H5 (ii) HE5

narking databilites		
	Criteria	Marks
· (i)	using similar triangles to find expression for x	1
١٠	showing answer	1
• (ii)	using chain rule to find expression for dh/dt	1
<u> </u>	finding answer	1 1

Answer

- (i) Using similar triangles $\frac{X}{200} = \frac{h}{25}$, x = 8h $V = \frac{1}{2} \times h \times 400 = 1600h^2$
- (ii) $\frac{dh}{dt} = \frac{dV}{dt} + \frac{dV}{dh} = -16000 \div 3200h = \frac{-5}{h}$ When h = 10 , $\frac{dh}{dt} = \frac{-5}{10} = -0.5$.

The water level is falling at 0.5 cm s^{-1} .

Question 7

7(a) Outcomes Assessed : (i) HE3 (ii) HE3 (iii) HE3
Marking Guidelines

marking Guideimes	
Criteria	Marks
writing answers for particle from A	1
writing answers for particle from B	1
eliminating h	1 1
finding time of flight for particle from A	1 1
	1 1
showing answer	1
	Criteria writing answers for particle from A writing answers for particle from B eliminating h finding time of flight for particle from A finding time of flight for particle from B

(i)
$$X(A) = Ut$$
, $y(A) = 4h - \frac{1}{2}gt^2$
 $X(B) = V(t-10)$, $y(B) = h - \frac{1}{2}g(t-10)^2$

(ii) At impact
$$y(A) = y(B) = 0$$

 $4h = \frac{1}{2}gt^2$ and $h = \frac{1}{2}g(t-10)^2$, $4(t-10)^2 = t^2$
 $2(t-10) = t$ or $2(t-10) = -t$, $t = 20$ or $t = \frac{20}{3}$ (but $t > 10$)
Time of flight for particle from $A = 20$ seconds
Time of flight for particle from $B = 10$ seconds

(iii) At impact x(A) = x(B)20 U = 10 V , V = 2U

7(b) Outcomes Assessed : (i) HE2 (ii) H3 (iii) H5
Marking Guidelines

	marking Careenine	
	Criteria	Marks
• (i)	showing S(1) is true	1
•	using logarithm law	1
•	showing S(k) true implies S(k + 1) true	1
- (ii)	showing answer	1 1
• (iii)	using limiting sum	1
• ` `	showing answer	1

Answer

(i)
$$S(n) : \ln n! > n \text{ for all } n \ge 6$$

When $n = 6$, $\ln 6! = 6.58 > 6$. $S(1) \text{ is true}$
If $S(k)$ is true for some $k \ge 6$, i.e. if $\ln k! > k$ for some $k \ge 6$
then $\ln (k+1)! = \ln \{(k+1) \times k!\} = \ln (k+1) + \ln k!$
 $> \ln e + \ln k!$ (since $k+1 > e$) $> 1 + k$

and so S(k + 1) is also true It follows that S(n) is true for all $n \ge 6$

(ii) $\ln n! > n$ for all $n \ge 6$, $n! > e^n$ for all $n \ge 6$, $\frac{1}{n!} < \frac{1}{e^n}$ for all $n \ge 6$

(iii)
$$\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} + \frac{1}{9!}$$

 $< \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{1!} + \frac{1}{1} + \frac{1}{1} + \dots$
 $= \frac{206}{120} + \frac{1}{6!} \left(\frac{1}{1!} + \frac{1}{1!} + \frac{1}{1!} + \frac{1}{1!} + \dots \right)$

(fimiting sum of geometric series in brackets exists since $-1 < r = \frac{1}{e} < 1$)

$$< \frac{103}{60} + \frac{1}{e^6} \frac{1}{1 - \frac{1}{e}}$$

 $< \frac{103}{60} + \frac{1}{e^5(e - 1)}$