Nan	ne: MatrNr.:
	Klausur: Grundlagen der Elektronik WS 14/15
Kui	zfragen ohne Unterlagen (Bearbeitungszeit: 30 min)
1)	Die Steilheit eines MOSFETs kann erhöht werden, wenn man
2)	Welche der Aussagen zu einem Halbleiter im thermodynamischen Gleichgewicht sind richtig?
3)	Welche der Aussagen zu einer Doppelheterostruktur-LED sind richtig?
4)	Betrachten Sie die nebenstehende Schaltung mit einem idealen Operationsverstärker. Bestimmen Sie die Ausgangsspannung $u_{\rm a}$ in Abhängigkeit von den Eingangsspannungen $u_{\rm 1}$ und $u_{\rm 2}$ sowie den Widerständen.
	Wie lässt sich die Funktion der Schaltung beschreiben?
5)	Welche der Aussagen zur Kapazität C einer pn -Diode mit abruptem Übergang, homogenen Dotierungen und Vorspannung U_0 zwischen p - und n -Bereich sind zutreffend?
6)	Wie groß ist in einem Diamantgitter mit der Gitterkonstante $a=1/2$ nm
	der Abstand zweier nächstbenachbarter Gitteratome (Formel)?
	die Konzentration der Gitteratome (Formel und Zahlenwert)?
7)	Gegeben ist das Bändermodell $W(x)$ von Si. Markieren Sie für den Fall der n -Dotierung das Ferminiveau $W_{\mathbb{F}}$. Skizzieren Sie die Zustandsdichten der Elektronen im Leitungsband und der Löcher im Valenzband $D(W)$ in parabolischer Näherung, sowie bei Raumtemperatur die Fermi-Verteilung $f(W)$ und die Elektronen- und Löcherkonzentrationen im Leitungs- bzw. Valenzband $n(W)$, $p(W)$ in den vorbereiteten Koordinatensystemen.
8)	Welche digitalen Verknüpfungen werden hier realisiert (vereinfachen Sie möglichst die Ausdrücke) ?
	Welches Gatter wird dabei ausschließlich verwendet?
9)	Welche der Aussagen zu dem gezeigten Bändermodell mit den Bandkanten $W_{\rm v}$ und $W_{\rm L}$ sowie den beiden Quasi-Ferminiveaus $W_{\rm Fn}$ und $W_{\rm Fn}$ für die Elektronen und Löcher sind richtig unter der Voraussetzung gleicher effektiver Zustandsdichten im Leitungs- und Valenzband?

10) Ergänzen Sie bei $T=T_0$ den Proportionalitätsfaktor zwischen den abgeleiteten Eigenschaften zweier Halbleiter A und B, die sich nur in ihrer effektiven Masse der Elektronen im Leitungsband unterscheiden $(m_A^* = 2m_B^*)$:

Name:

Klausur: Grundlagen der Elektronik WS 14/15

Aufgaben ohne Unterlagen (Bearbeitungszeit: 2 Std.)

- Abb. 1 zeigt eine ideale Metall-Oxid-p-Halbleiter (MOS)-Struktur mit am metallartigen Poly-Silizium-Gate anliegender Spannung Ug. Gehen Sie, wie bei 300 K üblich, davon aus, dass die Dotierstoffe vollständig ionisiert sind und die beweglichen Ladungsträger in der Sperrschicht (0 ≤ x ≤ w) keine Rolle spielen.
 - a) Skizzieren Sie das vereinfachte Kapazitäts-Ersatzschaltbild der MOS-Struktur mit den Beiträgen der Oxidschicht C_{ox} und der Sperrschicht C_{S} . (Hinweis: Kapazitätsbelag C = e/d, mit der Dielektrizitätskonstanten ε und der Dieke d). Abb. 1 Ermitteln Sie den Gesamtkapazitätsbelag der Struktur C bezogen auf C_{ox} in Abhängigkeit von der Sperrschichtausdehnung w. Skizzieren Sie für niedrige Frequenzen den Verlauf von C/C_{ox} in Abhängigkeit von U_g . Markieren Sie die Bereiche der Anreicherung, Verarmung und Inversion sowie den Flachbandfall $(C/C_{ox})_{FB}$.
 - c) Skizzieren Sie in der Vorlage die Verläufe der Raumladung, der elektrischen Feldstärke und der Bandkanten für den Fall des Einsetzens der schwachen Inversion (1) mit W_s = W_i W_F und der starken Inversion (2) mit W_s = 2(W_i W_F). Markieren Sie W_s, W_i, W_F, W_L und W_V.
 - b) Bestimmen Sie die Bandaufwölbung W_s im Halbleiter in Abhängigkeit von der Dotierungskonzentration N_A und der Eigenleitungskonzentration n_i (Formel) mit:

$$p = N_A = N_V \exp\left(\frac{W_V - W_F}{kT}\right)$$
; $n_i = N_V \exp\left(\frac{W_V - W_i}{kT}\right)$

- d) Bestimmen Sie die bei (2) erreichte maximale Ausdeh- $w_{\text{max}} = \sqrt{\frac{2 \, \varepsilon_8 \, \varepsilon_0 \, W_s}{q^2 N_A}}$ nung der Sperrschicht w_{max} mit:
 - und daraus die minimale relative Kapazität $(C/C_{\rm ex})_{\rm min}$ (Formeln und Zahlenwerte für beide Größen). Folgende Daten sind gegeben: $N_{\rm A}=4\cdot10^{15}~{\rm cm}^{-3}$; $d=30~{\rm nm}$; $\varepsilon_{\rm ex}=2.96$; $\varepsilon_{\rm S}=11.7$; $\varepsilon_{\rm 0}=8.854\cdot10^{-12}~{\rm As/(Vm)}$; ${\rm q}=1.6\cdot10^{-19}~{\rm C}$; $n_{\rm i}=10^{10}~{\rm cm}^{-3}$; ${\rm k}=8.62\cdot10^{-5}~{\rm eV/K}$.
- 2) Die Stromdichte-Spannungs-Charakteristik J_e(U_{eb}) des npn-Transistors mit Emitter-Basis-Kurzschluss in Abb. 2 bei T = 300 K soll bestimmt werden. Thermische Generation/Rekombination von Ladungsträgern in den Verarmungszonen (schraffiert) und Spannungsabfälle über den Bahngebieten sind zu vernachlässigen. Die Kontakte sind ideal ohmsch.

Folgende Daten sind bekannt: $n_i = 10^9$ cm⁻³, kT = 26 meV, $q = 1,6\cdot10^{-19}$ C und $\varepsilon = 10^{-12}$ As/(Vcm) sowie:

Emitter	Basis	Kollektor
$N_{\rm Dc} = 10^{18} \rm cm^{-3}$	$N_{\rm Ab} = 10^{16} \rm cm^{-3}$	$N_{\rm De} = 10^{14} \rm cm^{-3}$
$d_{\rm e0} = 10 \; \mu \rm m$	$d_{b0} = 4 \mu \text{m}$	$d_{c0} = 500 \; \mu \text{m}$
$L_{\rm pc} = 0.2 \; \mu {\rm m}$	$L_{\rm nb} = 100~\mu{\rm m}$	$L_{pc} = 1 \ \mu \text{m}$
$\mu_{pe} = 80 \text{ cm}^2/\text{Vs}$	$\mu_{\rm nb} = 1000 {\rm cm}^2/{\rm Vs}$	$\mu_{\rm ps} = 150 {\rm cm^2/Vs}$

Hinweis: Am pn-Übergang (mit dem Spannungspfeil von p nach n) gilt allgemein:

$$\begin{split} w &= \sqrt{\frac{2\varepsilon(U_\mathrm{D} - U)}{\mathrm{q}} \left(\frac{1}{N_\mathrm{A}} + \frac{1}{N_\mathrm{D}}\right)} = w_\mathrm{n} + w_\mathrm{p} \ ; \ N_\mathrm{A} w_\mathrm{p} = N_\mathrm{D} w_\mathrm{n} \\ U_\mathrm{D} &= \frac{\mathrm{k}T}{\mathrm{q}} \ln \left(\frac{N_\mathrm{D}}{n_\mathrm{p0}}\right) \ ; \ n_\mathrm{p0} N_\mathrm{A} = n_\mathrm{i}^2 \ ; \ n_\mathrm{p} \langle x_\mathrm{p} \rangle = n_\mathrm{p0} \exp \left(\frac{\mathrm{q}\,U}{\mathrm{k}\,T}\right) \ . \end{split}$$

- x_p bezeichnet den Rand des p-Bahngebietes zur Verarmungszone, $w_{n,p}$ die Ausdehnung der Verarmungszone im n-Bahngebiet/p-Bahngebiet.
- a) Berechnen Sie die Diffusionsspannungen U_{Deb} und U_{Deb} und die Ausdehnung der neutralen Basis $d_b = x_3 x_2$ (Formeln) sowie zahlenmäßig für $U_{\text{cb}} = 6.7 \text{ V}$.
- b) Ermitteln Sie die Minoritätsladungsträgerkonzentration n_b an den Rändern der neutralen Basis x_2 und x_3 für $U_{cb} = 6,7$ V. Skizzieren Sie hierfür den Verlauf von $n_b(x)$ in der neutralen Basis. Markieren Sie die Gleichgewichtskonzentration n_{b0} .
- c) Stellen Sie eine Differentialgleichung (DGL) für den stationären Zustand von $n_b(x)$ in

der neutralen Basis auf. Nutzen Sie hierfür die Stromgleichung:

$$J_{\rm n} = J_{\rm nD} = qD_{\rm n} \frac{\mathrm{d}n_{\rm b}}{\mathrm{d}x} \text{ mit } D_{\rm n} = kT\mu_{\rm n}/q$$

und die Kontinuitätsgleichung:

$$\frac{\mathrm{d}n_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{\mathrm{q}} \frac{\mathrm{d}J_{\mathrm{n}}}{\mathrm{d}x} - \frac{n_{\mathrm{b}} - n_{\mathrm{b}0}}{\tau_{\mathrm{n}}} \text{ mit } L_{\mathrm{n}} = \sqrt{D_{\mathrm{n}}\tau_{\mathrm{n}}}$$

d) Lösen Sie die DGL mit den Randbedingungen aus b) in Abhängigkeit von $U_{\rm eb}$ und dem Ansatz

$$n_{\rm b} = A \cdot \sinh \left(\frac{x_3 - x}{L_{\rm nb}} \right) + B \cdot \sinh \left(\frac{x - x_2}{L_{\rm nb}} \right) + n_{\rm b0} \ . \label{eq:nb}$$

- e) Berechnen Sie die Minoritätsladungsträger-Stromdichte an den Rändern der neutralen Basis $J_n(x_2)$ und $J_n(x_3)$ (Formeln und Werte) und den Basistransportfaktor $\beta_T = J_n(x_3)/J_n(x_2)$ (Formel und Wert).
- 3) Analysieren Sie die Schaltung in <u>Abb. 3a</u>. Der Transistor ist durch das Kennlinienfeld in <u>Abb. 3 b</u> charakterisiert. Folgende Betriebsparameter sind gegeben: U_B = 15 V, U_{de} = 11 V, U_{es} = -1,5 V, I_e ≈ 0, R₁ = 100 kΩ, R_G = 80 kΩ, R_L = 2 kΩ.

Name:....

a) Welcher Transistortyp liegt vor? Zeichnen Sie das Gleichstromersatzschaltbild. Tragen Sie die Arbeitspunkte (AP) und die Arbeitsgerade (AG) in das Kennlinienfeld (Abb. 3b) ein. Lesen Sie I_d ab und ermitteln Sie U_S, U_R und die Widerstände R₂ und R_S.

b) Führen Sie eine Wechselstromanalyse durch. Welcher Schaltungstyp liegt vor? Zeichnen Sie hierzu die Ersatzschaltung unter Verwendung des Kleinsignal-Ersatzschaltbildes für den Transistor (Abb. 3c). Die Kondensatoren stellen hierbei Kurzschlüsse dar.

c) Ermitteln Sie aus dem Kennlinienfeld (Abb. 3b) im AP die Ersatzschaltbild-Parameter $g_{\rm m}=|\Delta I_d/\Delta U_{\rm gs}|_{\rm AP}$ und $r_{\rm d}=|\Delta U_{\rm ds}/\Delta I_{\rm d}|_{\rm AP}$. Bestimmen Sie aus b) mit Hilfe der in a) ermittelten Werte den Eingangswiderstand $R_{\rm e}=u_{\rm e}/i_{\rm e}$, die Leerlaufspannungsverstärkung $v_{\rm uL}=u_{\rm s}/u_{\rm e}$ ($i_{\rm a}=0$), die Spannungsverstärkung $v_{\rm u}=u_{\rm s}/u_{\rm e}$ ($i_{\rm a}\neq0$) und den Ausgangswiderstand $R_{\rm a}=u_{\rm s}/i_{\rm a}$ ($u_{\rm G}=0$) der Schaltung formel- und zahlenmäßig. Benennen Sie ein Anwendungsbeispiel.

Impedons wou der

$$\begin{array}{l} \begin{array}{l} \mathcal{P}_{0} = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 45 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 45 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 45 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 45 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{Nbe}{Nbe} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 45 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{Nbe}{Nbe} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 1 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{Nbe}{Nbe} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = 0, 1 \, \text{V} \\ \\ \mathcal{P}_{0} = \frac{Nbe}{I_{1,0}} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4} \ln \left(\frac{Nbe}{I_{1,0}} \right) = \frac{1}{4}$$