## Grado en Ingeniería Informática

Explotación de la Información *Módulo 4. Clasificación y Agrupamiento de Información* 



## Antonio Ferrández Rodríguez







Grupo de Procesamiento del Lenguaje y Sistemas de Información

# Índice

- 1. Sistemas de clasificación de información
- 2. Clasificación basada en vocabulario
- 3. Clasificación utilizando árboles de decisión
- 4. Clasificación utilizando sistemas de reglas
- 5. Problema del overfitting. Sistemas de poda
- 6. Part of speech tagging
- 7. Sistemas de agrupamiento de información
- 8. Sistemas de agrupamiento de información en la Recuperación de Información
- 9. Sistemas de agrupamiento de información particionales (algoritmo *k-mean*)
- 10. Sistemas de agrupamiento de información jerárquicos



# 1. Sistemas de clasificación de Información

## # Clasificación automática/automated classification:

- Asignación de una categoría predefinida disjunta
  - Distinto del proceso de categorización (*categorization*):
    - # Se permite la asignación de más de una clase, etiqueta o categoría para cada instancia: p.ej. asignar temáticas a libros
- Resultado: ontologías, taxonomías, jerarquías, vocabularios controlados o tesauros
- ₱ Problemas: precisión, consistencia, etc.
- **Aplicaciones**:
  - RI como un problema de clasificación con las categorías documento relevante/no relevante
  - Detección de spam o detección de páginas con contenido violento
  - Detección de autor (*Authorship attribution*)
  - Part of speech tagging
  - # Fluency ranking en generación de texto



# 1. Sistemas de clasificación de Información

#### # Técnicas:

- Técnicas basadas en vocabulario:
  - Usan un tesauro o diccionario para determinar aquellos términos y sus variantes asociados a cada categoría
  - Problema: ambigüedad del lenguaje
- Árboles de decisión
- **■** Basadas en reglas
- Estadísticas: co-ocurrencia de términos, redes neuronales, etc.

2. Sist. clasificación información basadas en vocabulario ■ Ej.: categoría comida Personal Digital Assistant (Broader) baked goods Synonyms (Variant) (Related) Handheld Computer biscuits cheese 'Alternate" Spellings (Preferred) Persenal Digitel Asistent crackers Abbreviations / Acronyms (Related) (Variant) PDA party crisps **Broader Terms** planning Wireless, Computers (Narrower) **Narrower Terms** melba toast PalmPilot, PocketPC Related Terms WindowsCE, Cell Phones



# 2. Sist. clasificación información basadas en vocabulario

## # Ejercicio 1:

- Obtener las reglas y vocabulario para las siguientes categorías de tipo de pregunta de los sistemas de búsqueda de respuesta. Utilizad a modo de ejemplo las preguntas que aparecen en la siguiente transparencia:
  - En la siguiente URL se pueden encontrar ayudas de sinónimos y relaciones semánticas:
    - # http://adimen.si.ehu.es/cgi-bin/wei/public/wei.consult.perl

7

# Explotación de la información. Clasificación y Agrupamiento de Información

# 2. Sist. clasificación información basadas en vocabulario

entidad persona entidad persona cupida de se el creador de "doctor snuggles"?

entidad persona quien es el creador de "doctor snuggles"?

entidad persona quien se al lider bosnio?

entidad persona entidad persona cupidad persona cupidad persona quien es el lider del sinn fein?

entidad persona quien es el lider del sinn fein?

entidad persona quien es el lider del sinn fein?

entidad persona quien es el lider del sinn fein?

entidad persona quien es el presidente de la republica de italia?

entidad persona quien es el presidente de la republica de italia?

entidad persona quien es el presidente de la republica de italia?

entidad persona quien es el presidente de la republica de italia?

entidad persona quien es el presidente de la republica de italia?

entidad persona quien es el presidente de la republica de italia?

entidad persona quien es el presidente de la cia?

quien es el presidente de la republica francesa?

entidad persona quien es el presidente de la republica francesa?

entidad persona quien es el presidente de la republica francesa?

entidad persona quien es el presidente de la republica francesa?

entidad persona quien es el presidente de la republica francesa?

entidad persona quien es el presidente de la republica francesa?

entidad persona considente de presidente de la republica francesa?

entidad persona considente quien es el presidente de la cia?

quien es el presidente de prepidente de la republica francesa?

entidad persona considente quien es el presidente quien es el preside







# **# Técnicas de clasificación basadas en <u>árboles de</u> decisión:**

- Construyen un modelo, hipótesis o representación de la regularidad existente en los datos
- ► Ventajas respecto a las redes neuronales o las máquinas de vectores de soporte (Support Vector Machine, SVM):
  - Son modelos comprensibles porque se pueden expresar de una manera simbólica, en forma de conjunto de condiciones
  - Son eficientes por su característica de algoritmos "voraces" (siempre que quepan todos los ejemplos para aprender en memoria)
  - Hay múltiples implementaciones disponibles
- **■** Desventajas:
  - Son más dependientes del conjunto de ejemplos de aprendizaje

11



# 3. Clasificación utilizando árboles de decisión

## # Árbol de decisión:

- ► Conjunto de condiciones exhaustivas y excluyentes organizadas en una estructura jerárquica
  - **■** Exhaustivo: cada condición ha de cumplirse una de sus opciones (edad > 50 ó edad  $\le 50$ )
  - Excluyente: las particiones del árbol han de ser disjuntas
- La decisión final a tomar se puede determinar siguiendo las condiciones que se cumplen desde la raíz del árbol hasta alguna de sus hojas

|                                                                                     |                      | decis    | sión        |          |       |      |
|-------------------------------------------------------------------------------------|----------------------|----------|-------------|----------|-------|------|
|                                                                                     | #Ejemplo:            | Outlook  | Temperature | Humidity | Windy | Play |
|                                                                                     | <b>.</b> .           | Sunny    | Hot         | High     | False | No   |
|                                                                                     | <b>™</b> Elección    | Sunny    | Hot         | High     | True  | No   |
| 4                                                                                   | de "Play"            | Overcast | Hot         | High     | False | Yes  |
|                                                                                     | •                    | Rainy    | Mild        | High     | False | Yes  |
|                                                                                     | http://csie.org/~dm/ | Rainy    | Cool        | Normal   | False | Yes  |
| ζ΄<br>>-                                                                            |                      | Rainy    | Cool        | Normal   | True  | No   |
|                                                                                     |                      | Overcast | Cool        | Normal   | True  | Yes  |
|                                                                                     |                      | Sunny    | Mild        | High     | False | No   |
|                                                                                     |                      | Sunny    | Cool        | Normal   | False | Yes  |
|                                                                                     |                      | Rainy    | Mild        | Normal   | False | Yes  |
|                                                                                     |                      | Sunny    | Mild        | Normal   | True  | Yes  |
|                                                                                     |                      | Overcast | Mild        | High     | True  | Yes  |
| באניסות כפין מיווין ווומרוסון. כומאון וכמכיסון אַ אמן טאמווויפרוס בפי אוויסי וומכיס |                      | Overcast | Hot         | Normal   | False | Yes  |
|                                                                                     |                      | Rainy    | Mild        | High     | True  | No   |





## # Algoritmo para construir AD a partir de datos:

- Técnica de partición (divide y vencerás):
  - El espacio de instancias se va partiendo de arriba abajo utilizando cada vez una partición o conjunto de condiciones excluyentes y exhaustivas
  - Una vez elegida la partición, dicha partición no se puede cambiar: *criterio de partición*

15



# 3. Clasificación utilizando árboles de decisión

#### Algoritmo partición (N:nodo; E:conj ejemplos)

Si todos los ejemplos E son de la misma clase c

Entonces

Asignar clase c al nodo N

Salir

//N es hoja

// Llamada recursiva

Sino

particiones = generarPosiblesParticiones

 $Mejor Partici\'on = seleccionar Mejor Partici\'on Seg\'un\_criterio\_partici\'on$ 

Para cada condición i de la partición elegida

Añadir un nodo hijo i a N y asignar los ejemplos consistentes  $(E_i)$ 

partición  $(i, E_i)$ 



## # generarPosiblesParticiones:

- Tipos de particiones:
  - Nominales  $(x_i)$ : aquellos que tienen un conjunto de posibles valores  $\{v_1, v_2, ..., v_k\}$ 
    - # Si solo se permiten árboles binarios, la partición será:
      - $(x_i=v_1, x_i\neq v_1), (x_i=v_2, x_i\neq v_2), (x_i=v_3, x_i\neq v_3), \dots$
    - $\sharp$  Caso contrario:  $(x_i=v_1, x_i=v_2, ..., x_i=v_k)$
  - Numéricas (x<sub>i</sub>): aquellos que tienen un conjunto de posibles valores numéricos y continuos. Las particiones: (x<sub>i</sub>≤a, x<sub>i</sub>>a), con a una constante numérica elegida entre un conjunto finito de constantes obtenidas de los ejemplos:
    - # Si x<sub>i</sub> presenta los valores {0,2 0,3 0,7 0,1 0,8 0,45 0,33 0,1 0,8 0}
    - # Se ordenan, eliminan repetidos {0 0,1 0,2 0,3 0,33 0,45 0,7 0,8} y se obtienen los valores intermedios {0,05 0,15 0,25 0,315 0,39 0,575 0,75} generando particiones binarias:
      - $\begin{array}{l} \blacksquare \ \ (x_i\!\!\le\!\!0,\!05,x_i\!\!>\!0,\!05) \ (x_i\!\!\le\!\!0,\!15,x_i\!\!>\!\!0,\!15) \ (x_i\!\!\le\!\!0,\!25,x_i\!\!>\!\!0,\!25) \ (x_i\!\!\le\!\!0,\!315,x_i\!\!>\!\!0,\!315) \ (x_i\!\!\le\!\!0,\!39,x_i\!\!>\!\!0,\!39) \ (x_i\!\!\le\!\!0,\!575,x_i\!\!>\!\!0,\!575) \ (x_i\!\!\le\!\!0,\!75,x_i\!\!>\!\!0,\!75) \end{array}$

17



# 3. Clasificación utilizando árboles de decisión

## # Ejercicio 2:

- Sobre el ejemplo anterior de elección de "Play", a partir de la tabla de ejemplos, obtener las particiones
- ► Para *n* atributos y *m* valores posibles para cada atributo, ¿cuántas particiones se generarían?



- # seleccionarMejorParticiónSegún\_criterio\_partición:
  - Objetivo: buscar particiones que discriminen más
  - **■** Criterio: elegir la partición s con mayor valor *I(s)*

$$I(s) = \sum_{j=1..n} p_j \cdot f(p_j^1, p_j^2, ..., p_j^c)$$

- n: número de nodos hijos de la partición
- $p_i$ : probabilidad de caer en el nodo j de la partición s
- $p_i$ : proporción de elementos de la clase I en el nodo j
- **■** *c*: número de clases del problema

10

# 3. Clasificación utilizando árboles de decisión

# Método basado en entropía C4.5 [Quinlan,93]:

$$I(s) = \sum_{j=1...n} p_j \times f(p_j^1, p_j^2, ..., p_j^c) = \sum_{j=1...n} \left( p_j \times \sum_{k=1..c} \left( p_j^k \times \log_2(p_j^k) \right) \right)$$
$$= \left( \frac{5}{14} \right) \times \left( \frac{2}{5} \times \log_2 \frac{2}{5} + \frac{3}{5} \times \log_2 \frac{3}{5} \right) + \left( \frac{4}{14} \right) \times 0 + \left( \frac{5}{14} \right) \times (-0.971) = -0.693$$





## # Ejercicio 3 (evaluación continua):

- Sobre el ejemplo anterior de predicción del tiempo, calcula *I*(*s*) para el resto de particiones
- ► ¿Qué partición quedaría como raíz del árbol de decisión final?

21



# 3. Clasificación utilizando árboles de decisión

## # Ejercicio 4:

► Aplica el algoritmo *partición* para comprobar que se genera el árbol de decisión mostrado anteriormente



## # Ejercicio 5: Calcula el árbol de decisión

|             | Class                                     |        |     |        |      |  |
|-------------|-------------------------------------------|--------|-----|--------|------|--|
| Education   | Education Annual Income Age Own House Sex |        |     |        |      |  |
| College     | High                                      | Old    | Yes | Male   | Good |  |
| High school |                                           | Middle | Yes | Male   | Good |  |
| High school | Middle                                    | Young  | No  | Female | Good |  |
| College     | High                                      | Old    | Yes | Male   | Poor |  |
| College     | High                                      | Old    | Yes | Male   | Good |  |
| College     | Middle                                    | Young  | No  | Female | Good |  |
| High school | High                                      | Old    | Yes | Male   | Poor |  |
| College     | Middle                                    | Middle |     | Female | Good |  |
| High school | Middle                                    | Young  | No  | Male   | Poor |  |



# 4. Clasificación utilizando sistemas de reglas

## # Sistemas de reglas:

- Generalización de los árboles de decisión en el que no se exige exclusión ni exhaustividad en las condiciones de las reglas:
  - Se podría aplicar más de una regla (reglas 1, 3, 5) o ninguna
  - Se agrupan diferentes ramas del árbol en una sola condición: "en otro caso"

#### **■** Algoritmo:

Se generan reglas sucesivamente, descartándose ejemplos ya cubiertos por las reglas ya obtenidas, y con los ejemplos que quedan se empieza de nuevo





| age            | spectacle<br>prescription | astigmatism | tear production rate | recommende<br>lenses |
|----------------|---------------------------|-------------|----------------------|----------------------|
| young          | туоре                     | по          | reduced              | none                 |
| young          | туоре                     | no          | normal               | soft                 |
| young          | myope                     | yes         | reduced              | none                 |
| young          | myope                     | yes         | normal               | hard                 |
| young          | hypermetrope              | ne          | reduced              | none                 |
| young          | hypermetrope              | fig         | normal               | soft                 |
| young          | hypermetrope              | yes         | reduced              | none                 |
| voung          | hypermetrope              | ves         | normal               | hard                 |
| pre-presbyopic | myope                     | ΠO          | reduced              | none                 |
| pre-presbyopic | myope                     | na          | normal               | soft                 |
| pre-presbyopic | туоре                     | yes         | reduced              | none                 |
| pre-presbyopic | myope                     | ves         | normal               | hard                 |
| pre-presbyopic | hypermetrope              | по          | reduced              | none                 |
| pre-presbyopic | hypermetrape              | ng.         | normal               | soft                 |
| pre-presbyopic | hypermetrope              | ves         | reduced              | none                 |
| pre-presbyopic | hypermetrope              | ves         | normal               | none                 |
| presbyopic     | myope                     | no          | reduced              | none                 |
| presbyopic     | myope                     | no          | normal               | попе                 |
| presbyopic     | птуоре                    | ves         | reduced              | none                 |
| presbyopic     | myope                     | ves         | normal               | hard                 |
| presbyopic     | hypermetrope              | по          | reduced              | none                 |
| presbyopic     | hypermetrape              | na          | normal               | soft                 |
| presbyopic     | hypermetrope              | yes         | reduced              | none                 |
| presbyopic     | hypermetrope              | yes         | normal               | none                 |



| young myope yes normal hard young hypermetrope yes normal hard pre-presbyopic myope yes normal hard pre-presbyopic hypermetrope yes normal none presbyopic myope yes normal hard none presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none hard hard presbyopic hypermetrope yes reduced none                                                                                                                                                                                   |                |                   |                    | regl            | as     |                    |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------|-----------------|--------|--------------------|-----|
| spectacle prescription astigmatism rate tear production rate age=pre-presbyopic 1/4  goung myope yes reduced none hypermetrope yes normal hard pre-presbyopic myope yes normal hard pre-presbyopic hypermetrope yes normal hard pre-presbyopic hypermetrope yes normal none presbyopic myope yes reduced none presbyopic hypermetrope yes normal none presbyopic myope yes reduced none presbyopic hypermetrope yes normal none presbyopic myope yes reduced none presbyopic myope yes normal none presbyopic myope yes normal hard presbyopic myope yes normal none presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none tear production rate=reduced none tear production rate=reduced                                                                     |                |                   |                    |                 |        | refinarla:         |     |
| young myope yes reduced none young myope yes normal hard young hypermetrope yes normal hard pre-presbyopic myope yes normal hard hypermetrope yes normal hard pre-presbyopic myope yes normal hard hypermetrope yes normal hard pre-presbyopic myope yes normal hard hypermetrope yes normal hard pre-presbyopic hypermetrope yes normal none presbyopic myope yes reduced none presbyopic myope yes normal none presbyopic myope yes normal none presbyopic myope yes reduced none presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic myope yes normal hard none presbyopic myope yes reduced none presbyopic myope yes reduced none presbyopic hypermetrope yes reduced none hypermetrope yes reduced none rate=reduced hypermetrope yes reduced none                                                                                                                                     | Table 4.8      | Part of the conta | ct lens data for w | hich astigmatis | m=yes. | age=young          | 2/4 |
| young myope yes normal hard young hypermetrope yes normal hard young hypermetrope yes normal hard young hypermetrope yes normal hard pre-presbyopic myope yes reduced none pre-presbyopic hypermetrope yes normal none presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none hard presbyopic hypermetrope yes reduced none hard presbyopic hypermetrope yes reduced none                                                                                                                                                                                                                                                   | age            |                   | astigmatism        |                 |        | age=pre-presbyopic | 1/4 |
| young hypermetrope yes reduced none young hypermetrope yes normal hard pre-presbyopic myope yes normal hard pre-presbyopic hypermetrope yes normal none presbyopic myope yes reduced none presbyopic myope yes normal none presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic hypermetrope yes normal hard presbyopic hypermetrope yes reduced none hard hard presbyopic hypermetrope yes reduced none hard hard presbyopic hypermetrope yes reduced none                                                                                                                                                      | young          | myope             | yes                | reduced         | none   | age=presbyopic     | 1/4 |
| young hypermetrope yes reduced none hypermetrope yes normal hard pre-presbyopic myope yes reduced none pre-presbyopic hypermetrope yes normal none pre-presbyopic myope yes reduced none pre-presbyopic hypermetrope yes normal none presbyopic myope yes normal none presbyopic myope yes normal hard presbyopic hypermetrope yes normal hard presbyopic hypermetrope yes reduced none hypermetrope yes reduced none hard presbyopic hypermetrope yes reduced none hard hard presbyopic hypermetrope yes reduced none hard hard presbyopic hypermetrope yes reduced none hard hard hard presbyopic hypermetrope yes reduced none hard hard hard hard hard hard hard hard | young          | myope             | yes                | normal          | hard   | spectacle          | 3/6 |
| pre-presbyopic myope yes reduced none pre-presbyopic myope yes normal none pre-presbyopic hypermetrope yes normal none pre-presbyopic myope yes normal none pre-presbyopic myope yes normal none pre-presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none hypermetrope yes reduced none rate=reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oung/          | hypermetrope      | yes                | reduced         | none   | •                  | 3/0 |
| pre-presbyopic myope yes normal hard pre-presbyopic hypermetrope yes normal none pre-presbyopic myope yes normal none presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes reduced none hypermetrope yes reduced none rate=reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | young          | hypermetrope      | yes                | normal          | hard   | prescription-myope |     |
| pre-presbyopic myope yes normal hard prescription=hypermet rope  pre-presbyopic hypermetrope yes normal none presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes reduced none hypermetrope yes reduced none rate=reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pre-presbyopic | myope             | yes                | reduced         | none   | spectacle          | 1/6 |
| pre-presbyopic hypermetrope yes reduced none rope  pre-presbyopic hypermetrope yes normal none presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none rate=reduced none rate=reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pre-presbyopic | myope             | yes                | normal          | hard   | -                  |     |
| presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic hypermetrope yes normal hard presbyopic hypermetrope yes reduced none hypermetrope yes reduced none hypermetrope yes reduced none rate=reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pre-presbyopic | hypermetrope      | yes                | reduced         | none   |                    |     |
| presbyopic myope yes normal hard presbyopic hypermetrope yes reduced none rate=reduced 0/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pre-presbyopic | hypermetrope      | yes                | normal          | none   | Tope               |     |
| presbyopic myope yes normal hard rate=reduced none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | presbyopic     | myope             | yes                | reduced         | none   | tear production    | 0/6 |
| presbyopic hypermetrope yes reduced none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | presbyopic     | myope             | yes                | normal          | hard   | -                  | 0,0 |
| presbyogic hypermetrope yes normal none toor production 4/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | presbyopic     | hypermetrope      | yes                | reduced         | none   | rate-reduced       |     |
| FASTER   TEXT   DIO(111C11011   4/0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | presbyopic     | hypermetrope      | yes                | normal          | none   | tear production    | 4/6 |



|                    |                           | reglas                                     |                            |                       |
|--------------------|---------------------------|--------------------------------------------|----------------------------|-----------------------|
| ■ Segui  Table 4.9 |                           | do:<br>ct lens data for w<br>tion rate = n | /hich astigmatis<br>ormal. | sm = yes and          |
| age                | spectacle<br>prescription | astigmatism                                | tear production rate       | recommended<br>lenses |
| young              | myope                     | yes                                        | normal                     | hard                  |
| young              | hypermetrope              | yes                                        | normal                     | hard                  |
| pre-presbyopic     | туоре                     | yes                                        | normal                     | hard                  |
| pre-presbyopic     | hypermetrope              | yes                                        | normal                     | none                  |
| presbyopic         | myape                     | yes                                        | normal                     | hard                  |
| presbyopic         | hypermetrope              | yes                                        | normal                     | none                  |





# 4. Clasificación utilizando sistemas de reglas

## # Ejercicio 6:

■ Genera la regla para prescripción de lentes soft

## # Ejercicio 7:

■ Genera el árbol de decisión según el algoritmo *partición* visto anteriormente

## # Ejercicio 8:

■ Genera las reglas del ejercicio de elección de "play" visto anteriormente

33



# 5. Problema del *overfitting*. Sistemas de poda

## # Sistemas de poda:

- ▶ Puede darse situaciones de *overfitting*:
  - Que el modelo aprendido se ajuste en exceso a los ejemplos conocidos y funcione mal para los nuevos ejemplos
  - Especialmente cuando los ejemplos con los que se aprende contienen "ruido"
  - **■** Solución:
    - # Obtención de modelos más generales:
      - Eliminando condiciones de las ramas del árbol o de algunas reglas



# 5. Problema del *overfitting*. Sistemas de poda

#### # Prepoda:

- Se realiza durante la construcción del árbol o conjunto de reglas
- ► Se determina el criterio de parada para seguir especializando una rama o regla:
  - Nº de ejemplos por nodo, nº de excepciones respecto a la clase mayoritaria, etc.

#### # Pospoda:

- Después de la construcción del árbol o conjunto de reglas
- **★** Se eliminan nodos o reglas en sentido ascendente
- Es menos eficiente que la prepoda

#### # Prepoda + pospoda:

■ Algoritmo C4.5 con prepoda por cardinalidad y pospoda más sofisticada

35



# 6. Part of speech tagging

## **# Objetivo:**

- A/AT similar/JJ resolution/NN passed/VBD in/IN the/AT Senate/NN by/IN a/AT vote/NN of/IN 29-5/CD ./.
- **■** Desambiguar:
  - I wouldn't **trust** him.
  - He put money in the family **trust**

#### # Técnicas:

- Basadas en frecuencia de aparición del tag.
- **■** Basadas en n-gramas
- **™** Modelos estocásticos



# 6. Part of speech tagging

## # Basadas en frecuencia de aparición del tag:

- $P(t_i | w) = c(w,t_i)/(c(w,t_1) + ... + c(w,t_k))$ 
  - **c**(w,t<sub>i</sub>) = número de veces que w/t₁aparece en el corpus
- ► Éxito: 91% para inglés
- **■** Ejemplo:
  - heat :: noun/89, verb/5

37



# 6. Part of speech tagging

# # Transformation-based learning:

- A simple rule-based part of speech tagger. Brill. 1992
- **■** Método:
  - 1. Etiquetar cada token con el tag más frecuente
  - 2. Crear reglas que corrijan tags erróneos
    - old\_tag new\_tag NEXT-TAG tag
    - old\_tag new\_tag PREV-TAG tag
      - · TO IN NEXT-TAG AT
      - · NN VB PREV-TAG TO
  - 3. Contar cuántas correcciones con éxito y fracaso se realizan con cada regla
  - 4. Seleccionar la mejor regla que maximice: |éxito| |fracaso|
  - 5. Si no se alcanza un umbral, ir al paso 2



# 6. Part of speech tagging

## # Ejercicio 9:

- Sobre el texto etiquetado del ejercicio 2 del módulo 2, obtener reglas que resuelvan errores de etiquetado aplicando la técnica de *Transformation-based learning*.
  - Una descripción más detallada de las etiquetas léxicas se puede encontrar en la siguiente transparencia y en http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html

39



# 6. Part of speech tagging

## **# UPenn TreeBank II word tags:**

- CC Coordinating conjunction
- · CD Cardinal number
- DT Determiner
- EX Existential there
- FW Foreign word
- IN Preposition or subordinating conjunction
- JJ Adjective
- JJR Adjective, comparative
- · JJS Adjective, superlative
- · LS List item marker
- MD Modal
- NN Noun, singular or mass
- NNS Noun, plural
- NNP Proper noun, singular
- NNPS Proper noun, plural
- PDT Predeterminer
- POS Possessive ending
- PRP Personal pronoun

- PRP\$ Possessive pronoun
- · RB Adverb
- · RBR Adverb, comparative
- RBS Adverb, superlative
- RP Particle
- SYM Symbol
- TO to
- UH Interjection
- VB Verb, base form
- · VBD Verb, past tense
- VBG Verb, gerund or present participle
- · VBN Verb, past participle
- VBP Verb, non-3rd person singular present
- VBZ Verb, 3rd person singular present
- WDT Wh-determiner
- WP Wh-pronoun
- WP\$ Possessive wh-pronoun
- WRB Wh-adverb







# 6. Part of speech tagging. Basadas en n-gramas

#### **# Modelos ocultos de Markov:**

"La predicción del siguiente estado solo depende del estado actual"

$$p(w_n | w_{n-1}) = \frac{C(w_{n-1,n})}{C(w_{n-1})}$$

₱ Probabilidad de una oración utilizando bigramas:

$$p(w_{0..n}) = \prod_{i=0}^{n} p(w_n | w_{n-1})$$

e Información

# 6. Part of speech tagging. Basadas en n-gramas

## #Trigramas:

■ La estimación de máxima verosimilitud del trigrama "of the king":

$$P_{\rm MLE}({\rm KING} \mid {\rm OF\ THE}) = \frac{{\rm count}({\rm OF\ THE\ KING})}{\sum_w {\rm count}({\rm OF\ THE\ }w)} = \frac{{\rm count}({\rm OF\ THE\ KING})}{{\rm count}_{\rm hist}({\rm OF\ THE})}$$



# 6. Part of speech tagging

#### # Modelos estocásticos:

- Dada la secuencia de palabras de una oración:
  - $\mathbf{w} = \mathbf{w}_1, \, \mathbf{w}_2, \, ..., \, \mathbf{w}_n$
- **A**signar una secuencia de etiquetas:
  - $T = t_1, t_2, \dots, t_n$
- **■** Objetivo:
  - Encontrar T que maximice  $P(T|W) = P(W|T) P(T) / P(W) = \alpha P(W|T) P(T)$
- Forma de cálculo:
  - **■**  $P(T) = P(t_1) P(t_2 | t_1) P(t_3 | t_1, t_2) P(t_4 | t_1, t_2, t_3) \dots P(t_n | t_1, t_2, \dots t_{n-1})$  ≈  $P(t_1) P(t_2 | t_1) P(t_3 | t_2) \dots P(t_n | t_{n-1})$  # Utilizando second order Markov model:  $P(t_i | t_{i-2}, t_{i-1})$ ;
  - $P(W|T) = P(w_1 | t_1) P(w_2 | t_2) \dots P(w_n | t_n)$

15

# 6. Part of speech tagging. Modelos estocásticos

| not                                        |
|--------------------------------------------|
| $C_n$                                      |
| C(n                                        |
| C(n                                        |
| C(t)                                       |
| $C(t_1$                                    |
|                                            |
| $C(t_1$                                    |
| C(n                                        |
| $C_m(C_m(C_m(C_m(C_m(C_m(C_m(C_m(C_m(C_m($ |
| -111                                       |
|                                            |

| notation                  | counting the number of                                             |
|---------------------------|--------------------------------------------------------------------|
| $C_n$                     | all word tokens w                                                  |
| C(w)                      | occurrences of the word w                                          |
| C(w,t)                    | occurrences of the word w tagged with t                            |
| C(t)                      | occurrences of the tag t                                           |
| $C(t_1, t_2)$             | occurrences of the tag bigram $(t_1, t_2)$ ,                       |
|                           | that is the tag $t_1$ followed by the tag $t_2$                    |
| $C(t_1, t_2, t_3)$        | occurrences of the tag trigram $(t_1, t_2, t_3)$ ,                 |
|                           | that is the tag $t_1$ followed by $t_2$ followed by $t_3$          |
| $C(w_1,t_1,t_2)$          | occurrences of the wordtag-tag bigram $(w_1,t_1,t_2)$ ,            |
|                           | that is the word $w_1$ tagged with $t_1$ followed by the tag $t_2$ |
| $C_m(t)$                  | different word types tagged with tag t                             |
| $C_c(t)$                  | occurrences of capitalized words tagged with t                     |
| $C_m(w_{\text{end-i}},t)$ | different word types ending with the same i letters w              |
|                           | and tagged with t                                                  |

Table 1: Statistics to be collected.

| $P(t_i)$                 | $\equiv$ | $\frac{C(t_i)}{C_n}$                                   |
|--------------------------|----------|--------------------------------------------------------|
| $P(t_i t_{i-1})$         | =        | $\frac{C(t_{i-1},t_i)}{C(t_{i-1})}$                    |
| $P(t_i t_{i-2},t_{i-1})$ |          | $\frac{C(t_{i-2}, t_{i-1}, t_i)}{C(t_{i-1}, t_{i-2})}$ |

$$P(t_{i}|w_{i-1},t_{i-1}) = \frac{C(w_{i-1},t_{i-1},t_{i})}{C(w_{i-1},t_{i-1})}$$

$$P(w_{i}|t_{i}) = \frac{C(w_{i},t_{i})}{C(t_{i})}$$

$$P(t_{i}|w_{i}) = \frac{C(w_{i},t_{i})}{C(w_{i})}$$



# 6. Part of speech tagging. Modelos estocásticos

## # Para ampliar conocimientos:

- "Implementing an efficient part-of-speech tagger". Johan Carlberger, Viggo Kann. 24th March 1999
- **■** Google Books: Ngram Viewer
  - http://storage.googleapis.com/books/ngrams/books/datasetsv 2.html

47



# 6. Part of speech tagging. Modelos estocásticos

## # Ejercicio 10:

- Dadas las dos siguientes frases:
  - Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN
  - People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- **■** Y dadas las probabilidades de las bigramas:
  - P(NN|TO) = .021 P(race|NN) = .00041
  - P(VB|TO) = .34 P(race|VB) = .00003
- ► Calcular la etiqueta más probable para "race" según el modelo estocástico



# 6. Part of speech tagging. Modelos estocásticos

## # Añadiendo reglas:

■ Detección de nombres propios si la palabra empieza por mayúscula:

$$P_c(w,t) = \begin{cases} \gamma_1 & \text{if } t \text{ is not proper-noun tag and } w \text{ is capitalized,} \\ \gamma_2 & \text{if } t \text{ is proper-noun tag and } w \text{ is not capitalized,} \\ 1 & \text{otherwise.} \end{cases}$$

- $\Upsilon_1 = 0.028$  and  $\Upsilon_2 = 0.044$
- **E** En el caso de palabras desconocidas:  $\Upsilon_1 = 0.020 \ \Upsilon_2 = 0.048$

$$T(w_{1..n}) = \arg\max_{t_{1..n}} \prod_{i=1}^{n} P_{int}(t_i|t_{i-2},t_{i-1}) P(w_i|t_i) P_c(w_i,t_i)$$

6. Part of speech tagging.

Modelos estocásticos

## # Etiquetando palabras desconocidas:

■ Hay que estimar  $P_m(w \mid t)$  en lugar de  $P(w \mid t)$ : éxito del 45.5% en etiquetado de palabras desc.

$$P_m(w|t) = \frac{C_m(t)}{\sum_{\tau \in \text{tag set}} C_m(\tau)}$$

■ Se puede añadir frecuencias de terminaciones (L máximo de 5, éxito del 88.7%):

$$P_{e}(w|t) = \sum_{i=0}^{L} \alpha_{i} \cdot \frac{C(w_{\text{end-i}}, t)}{\sum_{\tau \in \text{tag set}} C(w_{\text{end-i}}, \tau)}$$



# 7. Sistemas de agrupamiento de Información

## # Agrupamiento (clustering):

- Separar en grupos basándose en las similitudes o relaciones existentes
- Diferencias con la clasificación automática:
  - Los grupos o categorías no están necesariamente predefinidos
  - Se pueden asignar uno o varios grupos
- **★** Aplicaciones:
  - Recuperación de información: organizar los resultados
  - Facilitar la navegación por una colección de documentos
  - **"** Creación de directorios Web (*Yahoo*)

5



# 7. Sistemas de agrupamiento de Información

## # Agrupamiento en la RI:

- **™** Objetivo:
  - Particionar una colección de documentos D en k subconjuntos o clusters  $D_1$ ,  $D_2$ , ...,  $D_k$ , de tal forma que se minimice la distancia intracluster o se maximice la semejanza intracluster:
    - # Utilizando el modelo vectorial:
      - Un clúster sería un *centroide* de los documentos
      - Objetivo:
        - Minimizar  $\sum_{i} \sum_{d \in D_i} \text{distancia}(d, \vec{D}_i)$  o maximizar  $\sum_{i} \sum_{d \in D_i} \text{semejanza}(d, \vec{D}_i)$
- Hipótesis de agrupamiento:
  - Los documentos fuertemente asociados tienden a ser relevantes para la misma consulta
  - \* Si un usuario está interesado en un doc de un grupo, también es probable que lo esté en los demás miembros del grupo



# 8. Sistemas de agrupamiento de Información en la RI

## # Tipos de agrupamiento en la RI:

- *Pre-retrieval document clustering*:
  - Se realiza en fase de indexación
  - Se elige un representante del grupo que sería con el que se compara la query (los restantes docs del grupo no se comparan)
  - Problema: creación de grupos estáticos en un entorno tan dinámico como es la Web
- ▶ Post-retrieval document clustering:
  - Se realiza en fase de presentación de resultados de la fase de búsqueda
  - Se agrupan los documentos devueltos por el motor de búsqueda
  - Problema: eficiencia del proceso en tiempo de búsqueda

53



# 8. Sistemas de agrupamiento de Información en la RI

## # Fases en el agrupamiento en la RI:

- Selección/extracción de características: representación de objetos
- Cálculo de la similitud entre objetos: medidas de distancia
- **■** Clustering o agrupamiento



# 8. Sistemas de agrupamiento de Información en la RI

#### # Técnicas de agrupamiento:

- **▼ No exclusivas**: un doc puede pertenecer a varios grupos
- **Exclusivas**: un doc solo pertenece a un grupo
  - Extrínsecas:
    - # Cuando los grupos están predefinidos y se tienen objetos que ya están agrupados en dichos clusters, los cuales son utilizados por el algoritmo para aprender a agrupar el resto de objetos

#### **Intrínsecas**:

- # Los grupos se crean a partir de las características propias de los objetos sin conocer previamente los grupos
- # Tipos:
  - Jerárquicas: los grupos se consiguen mediante la separación o unión de grupos de documentos generando una estructura en árbol con grupos anidados
  - Particionales: se llega a un agrupamiento que optimiza un criterio predefinido o función objetivo, creando una estructura plana, sin grupos anidados

55



# 9. Sistemas de agrupamiento de información particionales

# # Técnicas de agrupamiento particionales (k-clustering, k-means, k-medoids):

- **■** Algoritmo:
  - **■** Se determina a priori el *número de grupos*:
    - # Se cogen los k primeros objetos, o
    - # Los k objetos más alejados entre sí, o
    - # *k* objetos aleatoriamente
  - Iterativamente se van asignando docs a estas particiones
  - Los docs se reasignan de acuerdo a una función objetivo
  - El proceso se repite hasta que se consigue un criterio de terminación
- ► Variaciones de los clusters:
  - Juntar grupos cuando la distancia entre sus centroides esté por debajo de un umbral
  - Dividir grupos cuando su varianza esté por encima de un umbral



# 9. Sistemas de agrupamiento de información particionales

## # Función objetivo:

- Internas: miden similitud *intra-cluster*:
  - Maximizar la suma de los promedios de las similitudes existentes entre los pares de docs asignados a cada cluster, teniendo en cuenta el tamaño de cada uno:
    - # k: nº de clusters; n: nº elementos de cada cluster; sim(d, e): función de similitud p.ej. el coseno

$$\max I_1 = \sum_{r=1}^{k} n_r \times \left( \frac{1}{n_r^2} \times \sum_{d_i, d_r \in S_r} sim(d_i, d_j) \right)$$

- Externas: miden distancia inter-cluster:
  - Minimizar similitud entre centroide de cada cluster y el centroide de la colección completa

$$\min \quad E_1 = \sum_{r=1}^k n_r \times sim(C_r, C)$$

57



#### # k-mean:

- Generar los k clusters iniciales con sus docs
- Inicializar los centroides de cada cluster
- Mientras sea posible realizar más mejoras
  - Para cada documento d
    - # Encontrar el cluster c cuyo centroide es más similar a d
    - # Asignar d al cluster c
  - Para cada cluster c
    - # Recalcular el centroide de c según los documentos asignados a c



# 9. Sistemas de agrupamiento de información particionales

- # Ejemplo de aplicación de *k-mean* (University of South Carolina Upstate, Angelina Tzacheva):
  - **E** Supongamos:
    - Los siguientes 8 vectores: A1(2, 10) A2(2, 5) A3(8, 4) A4(5, 8) A5(7, 5) A6(6, 4) A7(1, 2) A8(4, 9)
    - = k=3
    - **Clusters iniciales:** A1(2, 10), A4(5, 8), A7(1, 2)
    - Distancia entre dos vectores a=(x1, y1) y b=(x2, y2):  $\# \rho(a, b) = |x2-x1| + |y2-y1|$
    - Centroide de un grupo *n* de vectores: vector con el resultado de la media de los n vectores. Cada componente del vector centroide será la media aritmética de las casillas de todos los vectores

50



## # Iteración 1 de k-means:

|    |         | Cluster 1 (2, 10) | Cluster 2 (5, 8) | Cluster 3 (1, 2) |         |
|----|---------|-------------------|------------------|------------------|---------|
|    | Vector  | Dist Clust 1      | Dist Clust 2     | Dist Clust 3     | Cluster |
| A1 | (2, 10) | 0                 | 5                | 9                | 1       |
| A2 | (2, 5)  | 5                 | 6                | 4                | 3       |
| A3 | (8, 4)  | 12                | 7                | 9                | 2       |
| A4 | (5, 8)  | 5                 | 0                | 10               | 2       |
| A5 | (7, 5)  | 10                | 5                | 9                | 2       |
| A6 | (6, 4)  | 10                | 5                | 7                | 2       |
| A7 | (1, 2)  | 9                 | 10               | 0                | 3       |
| A8 | (4, 9)  | 3                 | 2                | 10               | 2       |











# 10. Sistemas de agrupamiento de información jerárquicos

## # Tipos de sistemas jerárquicos:

- **■** Aglomerativos:
  - Se comienza con los objetos o individuos de modo individual
  - Luego se van agrupando de modo que los primeros en hacerlo son los más similares
  - Al final, todos los subgrupos se unen en un único cluster
- **■** Divisivos:
  - Se actúa al contrario. Se parte de un grupo único con todas las observaciones y se van dividiendo según lo lejanos que estén

65



# 10. Sistemas de agrupamiento de información jerárquicos

## # Sistemas jerárquicos aglomerativos. Algoritmo:

- Empezar con N clusters (el número inicial de elementos) y una matriz  $N \times N$  simétrica de distancias o similitudes.  $D = [d_{ik}]_{ik}$ .
- Dentro de D, buscar aquella entre los clusters U y V (más próximos, más distantes o en media más próximos) que sea la menor entre todas, d<sub>uv</sub>
- Juntar U y V en uno solo. Actualizar D:
  - Borrando las filas y columnas de los clusters U y V
  - Formando la fila y columna de las distancias del nuevo cluster (UV) al resto de clusters
- $\blacksquare$  Repetir los pasos (2) y (3) un total de (N 1) veces



