

# Twitter Sentiment & External Factors

Projects in Data Science: Python

Zach Bogart, Josh Feldman, Joe Gamse, Ramy Jaber, Pit Kauffmann

#### **INTRO**

What external factors influence how people tweet?

Eg can we create a weekly 'emotion forecast' for Twitter based on the weather forecast?



#### DATA

#### TWEETS

- Use tweepy streamer to stream tweets from specified locations – running on Google Cloud
- ~200k total tweets from 3 cities
- 18500-word list with sentiment scores between -1 and 1

#### WEATHER

- Get weather data for specific weather stations from NOAA (<u>ftp.ncdc.noaa.gov</u>), corresponding with specified locations for Tweets
- Includes temperature, wind speed, cloud coverage, precipitation

#### **METHODOLOGY**



TWEETS – Stream in for each location

SENTIMENT SCORE – calculate sentiment of each tweet using wordlist

WEATHER – add weather data for each tweet from closest weather station



TRAIN – train model on weather/tweet data using Random Forest, Extra Trees and Bagging Classifiers



PREDICT – use forecast weather data to predict change in sentiment by location







#### PRELIMINARY RESULTS

Goal: Classify each tweet as either positive, negative, or neutral sentiment

| Test Accuracy |      | Training Accuracy |       |
|---------------|------|-------------------|-------|
| Manhattan     | ~85K | 0.845             | 0.425 |
| Chicago       | ~65K | 0.818             | 0.4   |
| Detroit       | ~12K | 0.815             | 0.405 |

## PRELIMINARY RESULTS (cont'd)



### PRELIMINARY RESULTS (cont'd)

ALL FACTORS

Confusion Matrixes (Manhattan - testing on 25% of tweets)

| ALL FACTORS  | Predictions |         |          |          |      |  |
|--------------|-------------|---------|----------|----------|------|--|
| Actual       |             | Neutral | Positive | Negative |      |  |
|              | Neutral     | 1987    | 1966     | 1540     | 5493 |  |
|              | Positive    | 1715    | 4129     | 2607     | 8451 |  |
|              | Negative    | 1493    | 2977     | 2978     | 7448 |  |
|              |             | 5195    | 9072     | 7125     |      |  |
| WEATHER ONLY | Predictions |         |          |          |      |  |
|              |             | Neutral | Positive | Negative |      |  |
| Actual       | Neutral     | 0       | 5171     | 388      | 5559 |  |
|              | Positive    | 0       | 7919     | 608      | 8527 |  |
|              | Negotivo    | 0       | 6782     | 524      | 7306 |  |
|              | Negative    | 0       | 0102     | 024      | 1000 |  |

19872

1520

#### CONCLUSION & NEXT STEPS

- Collect tweets for even more locations and across a longer time period
- Run each classifier with more parameters to find the best fit
- Run more classifiers: K-means, Support Vector Machines,
  K-nearest neighbours, Naive Bayes
- Make sentiment analysis more granular & precise
- How do other factors, such as crime rates, sports events, etc.
  affect overall sentiment?

# QUESTIONS?