K-Nearest Neighbors

Original Slides by:

Courtney Anne Ngo Daniel Stanley Tan, PhD Arren Antioquia

Updated (AY 2023 – 2024 T3) by:

Thomas James Tiam-Lee, PhD

K-Nearest Neighbors (KNN)

- The most "naïve" kind of supervised machine learning model.
- It makes a
 prediction based on
 similarity to its
 closest neighbors.

Sample Data 1

	Y	
temperature	humidity	weather
1	24	snowy
8	30	snowy
7	21	snowy
22	30	snowy
5	14	sunny
20	10	sunny
16	4	sunny
26	23	rainy
21	25	rainy
17	14	rainy
34	29	rainy

KNN: Training

- Not much "training" to be done.
- KNN simply memorizes
 the entire dataset and
 uses that as the model!

temperature	humidity	weather
1	24	snowy
8	30	snowy
7	21	snowy
22	30	snowy
5	14	sunny
20	10	sunny
16	4	sunny
26	23	rainy
21	25	rainy
17	14	rainy
34	29	rainy

Sample Data 1

1	Υ		
temperature	humidity	weather	
1	24	snowy	
8	30	snowy	
7	21	snowy	
22	30	snowy	
5	14	sunny	
20	10	sunny	
16	4	sunny	
26	23	rainy	
21	25	rainy	
17	14	rainy	
34	29	29 rainy	

temp	humidity	weather
21	17	?

KNN: Prediction

 To make a prediction on an unknown instance, find the most similar object and copy its class label!

temp	humidity	weather
21	17	?

temperature	humidity	weather	
1	24	snowy	
8	30	snowy	
7	21	snowy	
22	30	snowy	
5	14	sunny	
20	10	sunny	
16	4	sunny	
26	23	rainy	
21	25	rainy	
17	14	rainy	
34	29	rainy	

Measures of Similarity

- Similarity of an instance z to the i-th training instance $X^{(i)}$
- Euclidean Distance (L2-Distance):

$$dist(z, X^{(i)}) = \sqrt{\sum_{j=1}^{d} \left(z_j - X_j^{(i)}\right)^2}$$

Manhattan Distance (L1-Distance):

$$dist(z, X^{(i)}) = \sum_{j=1}^{d} |z_j - X_j^{(i)}|$$

The Hyperparameter k

- A hyperparameter is an option that you manually decide on when training an ML model.
- k is the number of nearest neighbors to consider before making a prediction.

Sample Data 2

temperature	humidity	bacterial growth
1	24	4
8	30	10
7	21	6
22	30	10
5	14	2
20	10	8
16	4	4
26	23	8
21	25	10
17	14	10
34	29	2

temp	humidity	bacterial growth	
21	17	?	

Deciding the Final Prediction

If k > 1...

Deciding the Final Prediction

If k > 1...

ture

K-Nearest Neighbors (KNN)

- Assumes all dimensions correspond to points in a d-dimensional space \mathbb{R}^d .
 - temperature, humidity (\mathbb{R}^2)
- Features may be discrete or continuous.
- Labels can be continuous (regression) or categorical (classification) as well.

The Distance Function Matters!

- Other less-commonly used distance functions:
 - Minkowski Distance
 - generalization of Euclidean and Manhattan distance
 - Cosine distance
 - similarity between two vectors
 - Hamming distance
 - similarity between two strings

How to Choose *k*?

Hyperparameter Tuning

Hyperparameter Tuning with Cross-fold Validation

Training set / Validation set					Test set
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Test

KNN Advantages and Disadvantages

- Advantages
 - Fast training time
 - Straightforward and easy to implement

- Disadvantages
 - Model is large
 - Prediction is slow if dataset is large
 - Considers all features equally, regardless of whether they are relevant or not