WillPressLeverForFood at DeepHack.RL

CRAIG SWANSON @ WWW. PERSPICUITY. COM

Alexander Guschin, Sergey Korolev, Sergey Ovcharenko, Sergey Sviridov, Max Kharchenko

Moscow 2017

What is DeepHack

- State-of-art problem
- 7 days of programming and lectures from top notch researchers
- Bleeding edge technologies and developments
- And still hackathon and team challenge

Atari Games

OpenAl Gym and Reinforcement learning

Emulator of environments (including Atari 2600 games)

Markov Decision Process

Setup

- Set of states: S
- Set of actions: A
- Immediate reward: $R_a(s,s')$
- ullet Transitions: $P_a(s,s') = \Pr(s_{t+1} = s' \mid s_t = s, a_t = a)$
- Discount factor: $\gamma \in [0,1]$

Goal

Find a policy that maximizes the expected future rewards

Q-learning

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

Deep Q-Networks

Double DQN and Dueling DQN

Policy gradient methods

Represent policy by deep network with weights u

$$a = \pi(a|s, \mathbf{u}) \text{ or } a = \pi(s, \mathbf{u})$$

Define objective function as total discounted reward

$$L(\mathbf{u}) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \mathbf{u})\right]$$

- Optimise objective end-to-end by SGD
- ▶ i.e. Adjust policy parameters u to achieve more reward

Actor-critic and a3c

Actor is updated towards target

$$\frac{\partial I_u}{\partial \mathbf{u}} = \frac{\partial \log \pi(a_t|s_t, \mathbf{u})}{\partial \mathbf{u}}(q_t - V(s_t, \mathbf{v}))$$

Critic is updated to minimise MSE w.r.t. target

$$I_{v} = (q_{t} - V(s_{t}, \mathbf{v}))^{2}$$

- Each worker has own copy of environment
- During rollout worker accumulate gradients
- After rollout worker update global network

M# 11 82135 ACTIVISION. 17 0:12.38

Deephack Games

Preliminary stage

Skiing-v0

Main stage

MsPacman-v0

Code Freeze stage

Centipede-v0

Expected behaviour

Reality: Skiing

Reality: Pacman

Models selection

- DQN-networks were bad :(
- Two a3c models
 - GPU implementations w/o LSTM
 - CPU implementation with LSTM
- Random actor as backup strategy
- Metaestimator for model selection (by max score)

Conv 2D, 32, 3 x 3 stride 2 x 2 ELU

Conv 2D, 32, 3 x 3 stride 2 x 2 **ELU**

Conv 2D, 32, 3 x 3 stride 2 x 2 ELU

Conv 2D, 32, 3 x 3 stride 2 x 2 ELU

LSTM, 512

Input 84 x 84 x 12

Conv 2D, 32, 5 x 5 ReLU MaxPool 2 x 2

Conv 2D, 32, 5 x 5 ReLU MaxPool 2 x 2

Conv 2D, 64, 4 x 4 ReLU MaxPool 2 x 2

Conv 2D, 64, 3 x 3 ReLU

FC, 512, PReLU

Hyperparameters optimization

- Preprocessing tweaking
 - A3C preprocessed images to grayscale made it RGB
 - A3C cropped images and deleted some parts on labyrinth in Pacman
- Gamma tuning $\gamma \in [0,1]$

Nagibator style: Skiing

Nagibator style: Pacman

Results

ЛУЧШИЙ РЕЙТИНГ ПО 3-М ИГРАМ

	Skiing	Ms. Pac-man	Centepide	Avrg.Rating
WPLFF	-3493	5512	7512	0.790
5vision	-4489	2716	17130	0.753
w0rms	-8493	2311	20328	0.680
bad_skiers_evolved	-8387	2352	17294	0.636
ModestKoalaGrad	-9013	1715	17130	0.579
sw1sh	-16699	2522	5684	0.246
Generation Gap	-9013	-	-	0.194
miptcap	-9013	-	-	0.194
State of the Art	-10853	7534	6297	
	Prioritized DQN	PGQ	Gorila	

Summary

- Try simple methods first
- Don't be afraid to use already existing solutions
- But don't think that these solutions have no mistakes
- Try to dig deeper into model and understand why it performs one way or another

References

- https://github.com/libfun/deephack3 our solution
- https://universe.openai.com/envs OpenAl environments
- https://github.com/openai/universe-starter-agent CPU a3c agent with LSTM
- https://medium.com/emergent-future/simple-reinforcement-learning-with-tenso rflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0#.4ruk zup4m - RL tutorials with TensorFlow
- https://github.com/ppwwyyxx/tensorpack/tree/master/examples/A3C-Gym -GPU a3c without LSTM
- https://arxiv.org/pdf/1602.01783.pdf Asynchronous Methods for Deep Reinforcement Learning