INF01046 - Fundamentos de Processamento Imagens

Aula 10 - Filtros no domínio da fregüência

Horacio E. Fortunato

Instituto de Informática Universidade Federal de Rio Grande do Sul Porto Alegre - RS

hefortunato@inf.ufrgs.br

Link do curso: http://www.inf.ufrgs.br/~hefortunato/cursos/INF01046

23 de setembro de 2009

O (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 1 / 22

Transformada de Fourier unidimensional

Seja f(x) uma função contínua de variável real xA transformada de Fourier (FT) de f(x) , é definida pela equação

o E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009

Transformada de Fourier bidimensional e sua inversa

Para sinais bidimensionais contínuos o par de Fourier é:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)}dudv$$

f deve ser contínua e integrável e F deve ser integrável

(UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 5 / 22

Transformada de Fourier bidimensional discreta e sua inversa

DFT:
$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{yv}{N}\right)} \qquad u = 0,1,2...\text{M-1} \\ v = 0,1,2...\text{N-1}$$

IDET

$$f(x,y) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} F(u,v) e^{-j2\pi \left(\frac{ux}{M} + \frac{yy}{N}\right)} \qquad \begin{array}{c} x = 0,1,2...\text{M--}1 \\ y = 0,1,2...\text{N--}1 \end{array}$$

ınf

Processamento Digital de Imagens - Nesta disciplina

Sensores e Aquisição de imagens

- nistograma Filtragem espacial
- Modalidade de Imagens
 - Filtragem espacial Filtragem no domínio da frequência estauração de imagens Remoção de ruído Remoção de borramen
 - :os de Cores ens em Alta Faixa Dinâr

INF01046 - Fundamentos de Processame 23 de setembro de 2009 2 / 22

Transformada de Fourier unidimensional e sua inversa

Dado F(u), transformada de Fourier de f(x)

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux}dx$$

$$f(x) \text{ pode ser obtida calculando-se}$$
 a transformada inversa de Fourier (IFT)
$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} \ du$$

Estas equações chamadas conjuntamente de 'par de Fourier' existem se f(x) for contínua e integrável e F(u) for integrável.

Transformada de Fourier unidimensional discreta e sua inversa

Seja f(x) função discreta de uma variável x = 0, 1, 2....M-1 a transformada de Fourier de f(x) (DFT) será:

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M}$$
 $u = 0, 1, 2...M-1$

e a transformada inversa de Fourier (IDFT) será:

$$f(x) = \sum_{u=0}^{M-1} F(u) e^{j2\pi ux/M}$$
 x = 0, 1, 2....M-1

- O domínio de F(u) é chamado "domínio da freguência"
- Para f com valores finitos a DFT e sua inversa sempre existem

nato (UFRGS) INFO1046 - Fundamentos de Processame 23 de setembro de 2009

DFT - Exemplo

F(u,v) =
$$\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{yy}{N}\right)}$$
 $u = 0,1,2...M-1$ $v = 0,1,2...M-1$

Exemplo:

$$M$$
= 512 N = 1024 u = 0,1,2...511 v = 0,1,2...1023

Para u = 2 e v = 3

$$F(2,3) = \frac{1}{512 \cdot 1024} \sum_{x=0}^{511} \sum_{y=0}^{1023} f(x,y) e^{-j2\pi \left(\frac{2x}{512} + \frac{3y}{1024}\right)}$$

$$F(2,3) = \frac{1}{512 \cdot 1024} \left(f(0,0) + f(0,1) e^{-j2\pi \left(\frac{3}{1024}\right)} + \cdots \right)$$

$$\cos() + j \sin()$$

racio E. Fortunato (UFRGS) INFO1046 - Fundamentos de Processame 23 de setembro de 2009 7 / 22 Horacio E. Fortunato (UFRGS) NF01046 - Fundamentos de Processame 23 de setembro de 2009 8 / 22

Transformada de Fourier bidimensional discreta

Algumas definições:

Sejam R(u,v) e I(u,v) a parte real e a parte imaginaria de F(u,v)(uma DFT)

Espectro da TF
$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

$$\underline{ \hat{\mathbf{A}} \mathbf{ngulo} \ \mathbf{de} \ \mathbf{fase} } \qquad \qquad \boldsymbol{\phi}(u,v) = \tan^{-1} \left(\frac{I(u,v)}{R(u,v)} \right)$$

Espectro de potência
$$\rightarrow P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$

(UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 9 / 22

Propriedades da DFT

Separabilidade:

$$F(u,v) = \frac{1}{M} \sum_{x=0}^{M-1} e^{-j2\pi\left(\frac{ux}{M}\right)} \times \frac{1}{N} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi\left(\frac{yy}{N}\right)} \underbrace{\begin{array}{c} u = 0,1,2...M-1 \\ v = 0,1,2...N-1 \end{array}}_{v=0,1,2...N-1}$$

E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009

DFT - Exemplo

Original

Log do Espectro de Fourier (centrado)

INF01046 - Fundamentos de Processame 23 de setembro de 2009 13 / 22

Filtragem no domínio da frequência

A convolução no domínio espacial é um produto no domínio da frequência

Propriedades da DFT

Separabilidade $f(x,y) = f(x)f(y) \Leftrightarrow F(u,v) = F(u)F(v)$

Trafos lineares $af(x,y) + bg(x,y) \Leftrightarrow aF(u,v) + bG(u,v)$

Rotação O par de funções rota o mesmo ângulo

 $f(x-x_0, y-x_0) \Leftrightarrow e^{-j2\pi(ux_0+vy_0)}F(u,v)$ Translação $e^{j2\pi(u_0x+v_0y)}f(x,y) \Leftrightarrow F(u-u_0,v-v_0)$

 $f(x,y) * g(x,y) \Leftrightarrow F(u,v)G(u,v)$

Convolução $f(x, y)g(x, y) \Leftrightarrow F(u, v) * G(u, v)$

Periodicidade F(u,v) = F(u+N,v) = F(u,v+M) = F(u+N,v+M)

Simetria conjugada $F(u,v) = F(-u,-v) \Rightarrow |F(u,v)| = |F(-u,-v)|$

ınf 10 / 22

.ınf

ınf

NF01046 - Fundamentos de Processame 23 de setembro de 2009

DFT - Exemplo

DFT - MATLAB: fftshift e ifftshift

Filtragem no domínio da frequência - procedimento

MATLAB: • $F(u,v) = \mathbf{DFT} (f(x,y))$ F = fft2(im in);

•
$$F_{\mathbf{c}}(u,v) = \mathbf{S}hift\left(F(u,v)\right)$$
 Fc = fftshift(F);

•
$$G(u,v) = H(u,v) \cdot F(u,v)$$
 GC = H .* FC;

•
$$G(u,v) = Shift^{-1}(G_{\mathbf{C}}(u,v))$$
 G = ifftshift(Gc);

•
$$g(x,y) = IDFT (G(u,v))$$
 im_out_s = ifft2(G)

•
$$g(x,y) = Real(g(x,y))$$
 im_out = real(im_out_s)

Filtragem no domínio da frequência

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Imagem extraída do livro: Digital image processing 2ed, Gonzales e woods

.inf

racio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 17 / 22

Notch Filter - Remoção da media (F(0,0))

.ınf

acio E. Fortunato (UFRGS) INFO1046 - Fundamentos de Processame 23 de setembro de 2009

Filtro passa altas mais Constante

FIGURE 4.8
Result of highpass filtering the image in Fig. 4.4(a) with the filter in Fig. 4.7(c), modified by adding a constant modified by adding a constant of one-half the filter height to the filter function. Compare with Fig. 4.4(a).

Imagem extraída do livro: Digital image processing 2 ed., Gonzales e woods

racio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 21 / 22

Notch Filter - Remoção da media (F(0,0))

Notch Filter: (orifício) remove uma freq. em particular

$$H(u, v) = \begin{vmatrix} 0 & \text{se } u = u_1 \text{ e } v = v_1 \\ 1 & \text{senão} \end{vmatrix}$$

Exemplo: remoção da média

$$F(0,0) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{0x}{M} + \frac{y0}{N}\right)} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)$$

H (u, v) =
$$\begin{vmatrix} 0 & \text{se u} = 0 \text{ e v} = 0 \\ 1 & \text{senão} \end{vmatrix}$$

cio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 18 / 22

Filtros passa baixas e passa altas

lmagem extraída do livro: Digital image processing 2 ed., Gonzales e woods.

racio E. Fortunato (UFRGS) INFO1046 - Fundamentos de Processame 23 de setembro de 2009 20 / 22

Processamento Digital de Imagens - Tarefas

Tarefas Acumuladas:

- Leia os Capítulo 1, 2, e 3 (aulas 01 a 09) do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)
- Faça os exercicios do Capítulos 1 a 3 do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)
- Estude as seções 1, 2 e 3 do tutorial do MATLAB http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf

Tarefas Novas

- Leia as seções 4.1, 4.2 do Capítulo 4 (aula 10) do livro Gonzalez, R. & Woods 2da Ed. (
- Faça os exercicios do Capítulo 4,(Problemas 4.1 até 4.3) do livro Gonzalez, R. & Woods 2da Ed. (em Inglês)

Nota Importante: No livro Gonzalez, R. & Woods em português os capítulos possuem número diferente

Livro Gonzalez, R. & Woods 2^a Ed. (em Inglês): Gonzalez, R. & Woods, R. Digital Image Processing 2^a Ed. Prentice Hall, 2002.

Link do curso: http://www.inf.ufrgs.br/~hefortunato/cursos/INF01046

Horacio E. Fortunato (UFRGS) INF01046 - Fundamentos de Processame 23 de setembro de 2009 22 / 22

.ınf