2023~2024 学年度上期高中 2021 级入学联考

文科数学

考试时间 120 分钟, 满分 150 分

注意事项:

1. 答题前, 考生务必在答题卡上将自己的姓名、座位号、	、准考	证号用 0.5 毫	逐 米的黑色
签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡	上的	"贴条形码区	"。
	公盟 L	· hn siz zh zh	田姆山坡

签字	2笔填写清楚,考生考试	式条形码由监考老师粘贴	在答题卡上的"贴条形	码区"。
	2. 选择题使用 2B 铅笔:	连填涂在答题卡上对应题	目标号的位置上,如需	 改动,用橡皮擦
擦干	净后再填涂其它答案;	非选择题用 0.5 毫米的黑	黑色签字笔在答题卡的邓	寸应区域内作答,
		无效;在草稿纸上、试卷		
/	3. 考试结束后由监考老			
_,	选择题: 本题共 12 小	、题,每小题 5 分,共 60) 分。在每小题给出的四	9个选项中,只
•	有一项是符合题目要求			
1.	若复数 z 满足 $z=3+\sqrt{2}$			
	A. 2	B. $\sqrt{7}$	C. 3	D. $2\sqrt{3}$
2.	设集合 $U=\mathbf{R}$,若集合	$\triangle A = \{x \mid -1 < x < 1\}$, B	$= \{x \mid x \geqslant 0\}$, $\bigcup C_U(A \cup C_U)$	(B) =
	A. $\{x \mid x \ge -1\}$		B. $\{x \mid x \le -1\}$	
	C. $\{x \mid x \le 1\}$		D. $\{x \mid x < 0 $ 或 $x \ge 1\}$	
2		从按球车面和为	2. (","	
3.	边长为1的正方体的外	外按环水曲状内	2	
	Α. π	B. 3π	C. $\frac{3}{4}\pi$	D. $\frac{\pi}{4}$
		0.1 Fil	4	4
4.	已知 $a = \ln 0.9$, $b = \sqrt{2}$			
	2003 107 65 107007 50 9617 5140	B. $a < b < c$		
5.	养殖户在某池塘随机护	.捕捞了100条鲤鱼做好构	示记并放回池塘,几天	后又随机捕捞了
	100条鲤鱼,发现有3	3条鲤鱼被标记,据此估	计池塘里鲤鱼大约有	
	A. 1000条	B. 3000条	C. 3333条	D. 10000条
6.	若函数 $f(x) = (x+a)(2$	2* + 2 ^{-x}) 是定义域上的奇	所函数,则实数 a 的值为	J
	A. 0			D. 2
7			C. 1	D. 2
	若直线 $y = 2x$ 的倾斜角			
	1	3	4	

A. $\frac{1}{2}$ B. $\frac{3}{5}$ C. $\frac{4}{5}$ D. 1

8. 过点 $P(0,\sqrt{3})$ 作圆 $x^2-2x+y^2=2$ 的两条切线,切点分别为 A , B ,则 $\angle APB=$

C. $\frac{\pi}{2}$ D. $\frac{2\pi}{3}$ A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$

	A. $(0,+\infty)$	B. $\left[\frac{1}{e}, +\infty\right)$	C. $(-\infty, 0]$	D. $(-\infty, -e]$
10.	殿顶.单檐庑殿顶主 类似五面体 FE - ABC	要有一条正脊和四 CD 的形状(如图②	的屋顶形式,分为单板条垂脊,前后左右都有 条垂脊,前后左右都有),若四边形 <i>ABCD</i> 是 = <i>FB</i> = <i>FC</i> = 3,则五面体	斜坡(如图①), 矩形, <i>AB // EF</i> ,
	垂脊		A D B	Ç
	A. 48	B. $32\sqrt{5}$	C. $16+16\sqrt{5}$	D. $32 + 16\sqrt{5}$
11.	若函数 $f(x) = 2\sin(x - x)$	$(-\frac{\pi}{3})$, $x \in [m,n]$ 的值	域为[-1,2],则 <i>n-m</i> 的	最小值为
	A. $\frac{4\pi}{3}$	Β. π	C. $\frac{2\pi}{3}$	D. $\frac{5\pi}{3}$
12.	已知 $\triangle ABC$ 的顶点在	抛物线 $y^2 = 2x$ 上,	若抛物线的焦点 F恰好	是 $\triangle ABC$ 的重心,
	则 FA + FB + FC	的值为		
	A. 1	B. 2	C. 3	D. 4
二、	填空题:本题共4小题	题,每小题 5 分,共	€20分。	
13.	若 $a = (1, -\sqrt{2})$, $b = (2)$	$(3,\sqrt{2})$, $\emptyset a \cdot (a+b)$	=	
14.	已知双曲线 $\frac{x^2}{m} - y^2 =$:1的一条渐近线方程	是为 $y = \frac{\sqrt{3}}{3}x$,则 $m = $	·
15. 勒洛三角形是分别以等边 △ABC 的每个顶点为圆心,以边长为半径的三段内角所对圆弧围成的曲边三角形,由德国机械工程专家勒洛首先发现,勒洛三角形因为其具有等宽性被广泛地应用于机械工程,如转子发动机,方孔钻机等. 如图,曲边三角形即是等边 △ABC 对应的勒洛三角形,现随机地在勒洛三角形内部取一点,则该点取自 △ABC 及其内部的概率为				
16.	在 $\triangle ABC$ 中,角 A ,	B, C 的对边分别为	为 a , b , c ,若∠ $A = \frac{\pi}{3}$	$, a=2$,则 $\triangle ABC$
	面积的最大值为	_·		

高中 2021 级文科数学试题 第 2 页 (共 4 页)

9. 若函数 $f(x) = ke^x - \ln x$ 在区间 (1,e) 上是增函数,则实数 k 的取值范围为

- 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
 - (一) 必考题: 共60分。

17. (12分)

已知等比数列 $\{a_n\}$ 的各项满足 $a_{n+1} > a_n$,若 $a_2 = 3$,且 $3a_2$, $2a_3$, a_4 成等差数列.

- (1) 求 {a_} 的通项公式;
- (2) 求数列 $\{a_n + n\}$ 的前 n 项和.

18. (12分)

如图,在四棱锥 P-ABCD 中, PA 上底面 ABCD , AD // BC , $AB \perp AD$, BC=3 , $PA=AB=\sqrt{3}AD=\sqrt{3}$.

- (1) 证明: BD 上 平面 PAC;
- (2) 求三棱锥 C-PBD 的体积.

0.010

0.005

10 20 30 40 50 60 分钟

(1)估算这100人当天体育锻炼时间的众数和平均数(每组中的数据用组中值代替);

图, 锻炼时间不少于40分钟的人称为"运动达人".

(2) 根据已知条件完成下面的 2×2 列联表,并据此判断是否有 95% 的把握认为"运动达人"与性别有关.

	非"运动达人"	"运动达人"	合计
男性		15	45
女性			
合计			

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $n=a+b+c+d$,

临界值表:

$p(K^2 \geqslant k)$	0.05	0.01
k	3.841	6.635

20. (12分)

已知函数 $f(x) = xe^{x+1}$.

- (1) 求 f(x) 过原点的切线方程;
- (2)证明: $\exists a \leq -2$ 时,对任意的正实数 x,都有不等式 $f(x)-ax+1>2\sin x$ 恒成立.

21. (12分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 过点 $(1, \frac{\sqrt{2}}{2})$,且上顶点与右顶点的距离为 $\sqrt{3}$.

- (1) 求椭圆C的方程;
- (2) 若过点 P(3,0) 的直线 l 交椭圆 $C \oplus A$, B 两点, x 轴上是否存在点 Q 使得 $\angle POA + \angle POB = \pi$,若存在,求出点 Q 的坐标;若不存在,请说明理由.
- (二)选考题:共10分。请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22. (10分)

在平面直角坐标系 xOy 中,直线 l 的参数方程为 $\begin{cases} x = \frac{\sqrt{3}}{2}t + m \\ y = \frac{t}{2} \end{cases}$ (t 为参数),以坐标

原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 $\rho^2 - \rho^2 \cos 2\theta + 3\rho \cos \theta = 3 \ .$

- (1) 求曲线C的直角坐标方程;
- (2) 若l与C有公共点,求实数m的取值范围.

23. (10分)

已知函数 f(x) = |x+1| + |x-m|.

- (1) 当m=2时,求不等式 $f(x) \leq 5$ 的解集;
- (2) 若 f(x) > -m , 求实数 m 的取值范围.