Algorithms and Datastructures Balanced Trees (AVL-Trees, (a,b)-Trees, Red-Black-Trees)

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Algorithms and Datastructures, January 2017

Structure

Balanced Trees

Motivation

AVL-Trees

(a,b)-Trees Introduction

Runtime Complexity

Red-Black Trees

Motivation

Binary search tree:

- ▶ With BinarySearchTree we could perform an lookup or insert in O(d), with d being the depth of the tree
- ▶ Best case: $d = O(\log n)$
 - ▶ If the keys are inserted randomly
- ▶ Worst case: d = O(n)
 - ▶ if the keys are inserted in ascending / descending order (20, 19, 18,...)

Motivation

Gnarley trees:

▶ http://people.ksp.sk/~kuko/bak

Figure: Binary search tree with random insert [Gna]

Figure: Binary search tree with descending insert [Gna]

Motivation

Balanced trees:

- ▶ We do not want to rely on certain properties of our key set
- ▶ We explicitly want a depth of $O(\log n)$
- ▶ We rebalance the tree from time to time

Motivation

How do we get a depth of $O(\log n)$?

- AVL-Tree:
 - ▶ Binary tree with 2 children per node
 - Balancing via "rotation"
- ► (a,b)-Tree or B-Tree:
 - ▶ Node have between a and b children
 - Balancing through splitting and merging nodes
 - Used in data bases and file systems
- Red-Black-Tree:
 - Binary tree with "black" and "red" nodes
 - Balancing through "rotation" and "recoloring"
 - ► Can be interpreted as (2, 4)-tree
 - ▶ Used in C++ std::map, Java SortedMap

Balanced Trees AVI - Tree

AVL-Tree:

- ► Gregory Maximovich Adelson-Velskii, Yevgeniy Mikhailovlovich Landis (1963)
- Search tree with modified insert and remove operations while satisfying a depth condition
- Prevents degeneration of the search tree
- ▶ Height difference of left and right subtree is at maximum one
- ▶ With that the height of the search tree is always $O(\log n)$
- We can perform all basic operations in $O(\log n)$

AVL-Tree

Figure: Example of an AVL-Tree

AVL-Tree

Figure: Not an AVL-Tree

AVL-Tree

Figure: Another example of an AVL-Tree

AVL-Tree - Rebalancing

Rotation:

Figure: Before rotating

Figure: After rotating

- Central operation of rebalancing
- After rotation to the right:
 - ▶ Subtree *A* is a layer higher and subtree *C* a layer lower
 - ► The parent child relations between nodes *x* and *y* have been swapped

AVL-Tree - Rebalancing

AVL-Tree:

- ▶ If a height difference of ±2 occurs on an insert or remove operation the tree is rebalanced
- Many different cases of rebalancing
- **► Example:** insert of 1, 2, 3, . . .
- ▶ http://people.ksp.sk/~kuko/bak

Figure: Inserting $1, \ldots, 10$ into an AVL-tree [Gna]

AVL-Tree - Summary

Summary:

- ► Historical the first search tree providing guaranteed insert, remove and lookup in O(log n)
- ▶ However not amortized update costs of O(1)
- Additional memory costs: We have to save a height difference for every node
- ▶ Better (and easier) to implement are (a,b)-trees

(a,b)-Tree:

- Also known as b-tree (b for "balanced")
- Used in data bases and file systems

Idea:

- Save a varying number of elements per node
- So we have space for elements on an insert and balance operation

(a,b)-Trees Introduction

(a,b)-Tree:

- All leaves have the same depth
- ► Each inner node has ≥ a and ≤ b nodes (Only the root node may have less nodes)

- ▶ Each node with n children is called "node of degree n" and holds n-1 sorted elements
- Subtrees are located "between" the elements.
- ▶ We require: $a \ge 2$ and $b \ge 2a 1$

(a,b)-Trees Introduction

(2,4)-Tree:

Figure: Example of an (2,4)-tree

- ▶ (2,4)-tree with depth of 3
- ▶ Each node has between 2 and 4 children (1 to 3 elements)

Not an (2,4)-Tree:

Figure: **Not** an (2,4)-tree

- Invalid sorting
- ▶ Degree of node too large / too small
- ► Leaves on different levels

Implementation - Lookup

Searching an element: (lookup)

- ► The same algorithm as in BinarySearchTree
- Searching from the root downwards
- ► The keys at each node set the path

(a,b)-Trees
Implementation - Insert

Inserting an element: (insert)

- Search the position to insert the key into
- This position will always be an leaf
- Insert the element into the tree
- ► Attention: Nodes can have one element too many (Degree b+1)
- Then we split the node

Inserting an element: (insert)

Figure: Splitting a node

- ▶ If the degree is higher than b+1 we split the node
 - ► This results in a node with $\operatorname{ceil}\left(\frac{b-1}{2}\right)$ elements, a element for the parent node, and a node with floor $\left(\frac{b-1}{2}\right)$ elements
 - ▶ Thats why we have the limit $b \ge 2a 1$

(a,b)-Trees Implementation - Insert

Inserting an element: (insert)

- ▶ If the degree is higher than b+1 we split the node
- Now the parent node can be of a higher degree than b+1
- We split the parent nodes the same way
- If the node to split is the root we split it and create a new root node

(The tree is now one level deeper)

- ▶ Search the element in $O(\log n)$ time
- ▶ Case 1: The element is contained by a leaf, remove it
- ▶ Case 2: The element is contained by an inner node
 - ► Search the successor in the right subtree
 - ► The successor is always contained by a leaf
 - Replace the element with its successor and delete the successor from the leaf
- ▶ Attention: The leaf might be too small (degree of a-1)
 - \Rightarrow We rebalance the tree

- ▶ Attention: The leaf might be too small (degree of a-1)
 - ⇒ We rebalance the tree
 - ► Case a: If the left or right neighbour node has a degree greater than a we borrow one element from this node

Figure: Borrowing an element

- Attention: The leaf might be too small (degree of a-1) \Rightarrow We rebalance the tree
 - ▶ Case b: We combine the node with its right or left neighbour

Figure: Combining two nodes

- ▶ Now the parent node can be of degree a-1
- We combine parent nodes the same way
- ▶ If the root has only one child left we take the child as new root (The tree shrinks one level)

(a,b)-Trees Runtime Complexity

Runtime complexity of lookup, insert and remove:

- ▶ All operations in O(d) with d being the depth of the tree
- ► Each node (except the root) has more than a children $\Rightarrow n \geq a^{d-1}$ and $d \leq 1 + \log_a n = O(\log_a n)$
- If we look closer:
 - ▶ lookup always takes $\Theta(d)$
 - insert and remove often require only O(1) time
 - Only in the worst case we have to split or combine all nodes on a path up to the root
 - We want to analyse in detail
 - ▶ Therefore instead of $b \ge 2 a 1$ we need $b \ge 2 a$.
 - ► Here is a counter-example for (2,3)-trees, analysis of (2,4)-trees

Runtime Complexity - Counter-example for (2,3)-Tree

(2,3)-Tree:

► Before executing delete(11)

Figure: Normal (2,3)-Tree

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executing delete(11)

Figure: (2,3)-Tree - Delete step 1

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executing delete(11)

Figure: (2,3)-Tree - Delete step 2

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executing delete(11)

Figure: (2,3)-Tree - Delete step 3

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executed delete(11)

Figure: (2,3)-Tree - Delete step 4

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executing insert(11)

Figure: (2,3)-Tree - Insert step 1

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executing insert(11)

Figure: (2,3)-Tree - Insert step 2

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executing insert(11)

Figure: (2,3)-Tree - Insert step 3

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

► Executed insert(11)

Figure: (2,3)-Tree - Insert step 4

Runtime Complexity - Counter example for (2,3)-Tree

(2,3)-Tree:

- We are exactly where we started
- If b = 2 a − 1 then we can create a sequence of insert and remove operations where each operation costs O(log n)
- ► We need $b \ge 2a$ instead of b > 2a 1

Figure: (2,3)-Tree

(2,4)-Tree:

- ▶ If all nodes have 2 children we have to combine the nodes up to the root on a remove operation
- ▶ If all nodes have 4 children we have to split the nodes up to the root on a insert operation
- ▶ If all nodes have 3 children it takes some time to reach one of the previous two states
- ⇒ Nodes of degree 3 are harmless
 Neither an insert nor a remove operation trigger rebalancing operations

(2,4)-Tree:

- ► Idea:
 - ▶ After an expensive operation the tree is in a stable state
 - ▶ It takes some time until the next expensive operation occurs
- Like with dynamic arrays:
 - Reallocation is expensive but it takes some time until the next expensive operation occurs
 - ▶ If we overallocate clever we have an amortized runtime of O(1)

Terminology:

- ▶ We analyze a sequence of *n* operations
- Let Φ_i be the potential of the tree after the *i-th* operation
- ▶ = is the number of nodes with degree 3

Example:

► Nodes of degree 3 are highlighted

Figure: Tree with potential $\Phi = 4$

Terminology:

- ▶ Let *c_i* be the costs = runtime of the *i*-th operation
- We will show:
 - Each operation can maximally destroy one harmless node
 - For each further step, that incurs cost, the operation creates a further harmless node
- The costs for operation i are coupled to the difference of the potential levels

$$c_i \le A \cdot (\Phi_i - \Phi_{i-1}) + B, \quad A > 0 \text{ and } B > A$$

Number of harmless (degree 3) nodes at operation i. Can be -1, but not smaller than -1

▶ With that each operation has an amortitzed cost of O(1)

Case 1: *i-th* operation is an insert operation on a full node

Figure: Splitting a node on insert

- ► Each splitted node creates a node of degree 3
- ▶ The parent node receives an element from the splitted node
- ▶ If the parent node is also full we have to split it too

(a,b)-Trees

Runtime Complexity - (2,4)-Tree

Case 1: *i-th* operation is an insert operation on a full node

- ▶ Let *m* be the number of nodes split
- ▶ The potential rises by *m*
- ▶ If the "stop-node" is of degree 3 then the potential goes down by one

$$\Phi_i \ge \Phi_{i-1} + m - 1$$

$$\Rightarrow m \le \Phi_i - \Phi_{i-1} + 1$$

Costs:
$$c_i \le A \cdot m + B$$

$$\Rightarrow c_i \le A \cdot (\Phi_i - \Phi_{i-1} + 1) + B$$

$$c_i \le A \cdot (\Phi_i - \Phi_{i-1}) + \underbrace{A + B}_{B_i}$$

Case 2: *i-th* operation is an <u>remove</u> operation

- Case 2.1: Inner node
 - ▶ Searching the successor in a tree is $O(d) = O(\log n)$
 - Normally the tree is coupled with a doubly linked list \Rightarrow We can find the successor in O(1)

Figure: Tree with doubly linked list

Case 2: *i-th* operation is an <u>remove</u> operation

- ► Case 2.1: Borrowing a node
 - Creates no additional operations
 - ► Case 2.1.1: Potential rises by one

Figure: Borrowing an element case 2.1.1

Case 2: *i-th* operation is an <u>remove</u> operation

- ► Case 2.1: Borrowing a node
 - Creates no additional operations
 - ► Case 2.1.2: Potential lowers by one

Figure: Borrowing an element case 2.1.2

Case 2: *i-th* operation is an <u>remove</u> operation

Case 2.2: Merging a node

Figure: Merging two nodes

- Potential rises by one
- ▶ Parent node has one element less after the operation
- ► This operation propagates upwards until a node of degree > 2 or a degree 2 node, which can borrow from a neighbour
- ▶ The potential rises by *m*
- ▶ If the "stop-node" is of degree 2 then the potential eventually goes down by one
- ► Same costs as insert

Lemma:

▶ We know:

$$c_i \le A \cdot (\Phi_i - \Phi_{i-1}) + B$$
, $A > 0$ and $B > A$

With that we can conclude:

$$\sum_{i=0}^{n} c_i = O(n)$$

(a,b)-Trees

Runtime Complexity - (2,4)-Tree - Lemma - Proof

Proof:

$$\sum_{i=0}^{n} c_{i} \leq \underbrace{A \cdot (\Phi_{1} - \Phi_{0}) + B}_{\leq c_{1}} + \underbrace{A \cdot (\Phi_{2} - \Phi_{1}) + B}_{\leq c_{1}} + \cdots + \underbrace{A \cdot (\Phi_{n} - \Phi_{n-1})}_{\leq c_{n}}$$

$$= A \cdot (\Phi_{n} - \Phi_{0}) + B \cdot n \qquad | \text{ telescope sum}$$

$$= A \cdot \Phi_{n} + B \cdot n \qquad | \text{ we start with an empty tree}$$

$$< A \cdot n + B \cdot n = O(n) \qquad | \text{ number of degree 3 nodes}$$

$$= \text{ number of nodes}$$

Red-Black-Trees

Introduction

Red-Black Tree:

- Binary tree with red and black nodes
- Number of black nodes on path to leaves is equal
- ► Can be interpreted as (2,4)-tree (also named 2-3-4-tree)
- ► Each (2,4)-tree-node is a small red-black-tree with a black root node

Red-Black-Trees

Introduction

Figure: Example of an red-black-tree [Gna]

General

[CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Gnarley Trees

[Gna] Gnarley Trees
https://people.ksp.sk/~kuko/gnarley-trees/

► AVL-Tree

```
[Wik] AVL tree
https://en.wikipedia.org/wiki/AVL_tree
```

► (a,b)-Tree

[Wika] 2-3-4 tree https://en.wikipedia.org/wiki/2%E2%80%933% E2%80%934_tree

[Wikb] (a,b)-tree https://en.wikipedia.org/wiki/(a,b)-tree

▶ Red-Black-Tree

[Wik] Red-black tree https://en.wikipedia.org/wiki/Red%E2%80% 93black_tree