Continuous Theory

) 2D Square Elongation (youtube example)

- Calculate Fa

3D abstract Time-Dependent Motion (routube ex.)

- Calculate Fa

2) Assume

- F may not be symmetric. F is a f^n of X and t.

1) What are the steps involved in doing an elastic body simulation?

note: the subscript "C" means "per cell". and the subscript "V" means "per vertex".

Equivalent approach:

2 Calculate Fc.

Note: We have a different For each cell. Thus, Fi is piecewise constant.

(i) \vec{x}_i (flow map per vertex)

(ii) F (deform. grad.

(iii) C= FTF (induced metric)

(iv) $E_c = \frac{1}{2} (C_c - I) (\frac{\text{strain}}{\text{fensor}})$

(V) Find appropriate stress-strain relation. One possible choice: $S_c = 2\mu E_c + \lambda tr(E_c) I \left(\frac{\rho_{iolo}}{stress}\right)$

(vi) P= FSc (piglos)

(Vii) $f = \frac{1}{N} \sum_{c > V} P_c n_{c,V} A_{c,V}$ (= div (P_c) = discrete divergence)

(ix) $\vec{v}_v = f_v/m_v$ $\vec{x}_v = \vec{v}_v$

 $\chi_i = \phi(\chi_i)$ is the discrete (finite-dimensional) flow map.

 $\varphi = \varphi(\overline{Y})$ is the continuous (infinite-dimensional) flow map

 $F_{a} = \frac{\partial \phi_{i}}{\partial Y_{a}} = \frac{\partial \phi_{i}}{\partial$

Given
$$\begin{bmatrix} y^{\times} \\ y^{\times} \end{bmatrix} = \phi_{c}(\overrightarrow{Y}) = AB \begin{bmatrix} Y^{\times} \\ Y^{\times} \end{bmatrix}$$

$$A = \begin{bmatrix} \chi_0^* & \chi_1^* & \chi_1^* \\ \chi_0^* & \chi_1^* & \chi_2^* \\ 1 & 1 & 1 \end{bmatrix}$$

$$B = \begin{pmatrix} X_0^x & X_1^x & X_2^x \\ X_0^x & X_1^x & X_2^x \\ -1 & 1 & 1 \end{pmatrix}$$

