数值分析

第五章 函数的插值 与最佳平方逼近

§5 函数的插值与最佳平方逼近

- §5.1 多项式插值
- §5.2 分段多项式插值及样条插值
- §5.3 数据的最小二乘拟合
- §5.4 函数的最佳平方逼近

众所周知,反映自然规律的数量关系的函数有三种表示方法:

• 解析表达式

$$f(x) = x^3 - 2x - 5$$
 $x = y - \varepsilon \sin y$

$$x = y - \varepsilon \sin y$$

图象法

• 表格法

0.928 -0.003822324 0.932 0.000343434 0.936 0.005532443	X	у
0.932 0.000343434 0.936 0.005532443	0.924	-0.008513725
0.936 0.005532443	0.928	-0.003822324
5.555	0.932	0.000343434
0.042076642	0.936	0.005532443
J.940 0.012976643	0.940	0.012976643

插值法是广泛应用于理论研究和生产实践的重要数值方 法, 它是 用简单函数(特别是多项式或分段多项式) 为各种离 散数据建立连续模型;为各种非有理函数提供好的逼近方法。

为什么要学习插值理论?

- ▶ 许多数据都是用表格法给出的(如观测和实验而得到的函数数据表格),可是,从一个只提供离散的函数值去进行理论分析和进行设计,是极不方便的,甚至是不可能的。因此需要设法去寻找与已知函数值相符,并且形式简单的插值函数(或近似函数)。
- ▶ 另外一种情况是,函数表达式完全给定,但其形式不适宜计算机使用,因为计算机只能执行算术和逻辑操作,因此涉及连续变量问题的计算都需要经过离散化以后才能进行。如数值积分方法、数值微分方法、差分方程以及有限元法等,都必须直接或间接地应用到插值理论和方法。

总之,许多数据都是用表格给出的;数据要利用计算机或 应用理论作分析与计算。

多项式插值问题的一般提法

当精确函数 y = f(x) 非常复杂或未知时,在一系列节点 $x_0 \dots x_n$ 处测得函数值

$$y_0 = f(x_0), \dots, y_n = f(x_n),$$

由此构造一个简单易算的近似函数

$$p(x) \approx f(x)$$
,满足条件: $p(x_i) = f(x_i)$ ($i = 0, ..., n$)。
这里的 $p(x)$ 称为 $f(x)$ 的插值函数。

最常用的插值函数是 ...?

代数多项式、三角多项式、有理分式...

插值函数 p(x) 作为 f(x) 的近似,可以选自不同类型的函数,如 p(x) 为代数多项式、三角多项式、有理分式; 其函数性态可以是光滑的、亦可以是分段光滑的。 其中,代数多项式类的插值函数占有重要地位:

- (a) 结构简单、计算机容易处理、任何多项式的导数和积分 也易确定,并且仍是多项式。
- (b) 著名的 Weierstrass 逼近定理(定义在闭区间上的任何连续函数 f(x), 存在代数多项式 p(x) 一致逼近 f(x), 并达到所要求的精度)。

因此,我们主要考虑代数多项式的插值问题。

• 基本概念

 x_0, x_1, \ldots, x_n 插值节点,

函数 P(x) 称为函数 y=f(x) 的插值函数, 区间 [a,b] 称为插值区间。 **秒题**: 已知函数 f(x) 有如下数据:

求 f(x) 的插值多项式 p(x), 并求 f(x) 在 x = 0.5 处的近似值。

解:

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

其中 $,a_0,a_1,\cdots,a_4$ 为待定系数.

由给定的条件有:

$$P(0) = a_0 = 0 = f(0)$$

$$P(1) = a_0 + a_1 + a_2 + a_3 + a_4 = 1 = f(1)$$

$$P(2) = a_0 + 2a_1 + 4a_2 + 8a_3 + 16a_4 = 1 = f(2)$$

$$P'(0) = a_1 = 0 = f'(0)$$

$$P'(1) = a_1 + 2a_2 + 3a_3 + 4a_4 = 1 = f'(1)$$

联立上式得:

$$a_0 = 0$$
 $a_1 = 0$ $a_2 = \frac{9}{4}$ $a_3 = -\frac{3}{2}$ $a_4 = \frac{1}{4}$ $P(x) = \frac{9}{4}x^2 - \frac{3}{2}x^3 + \frac{1}{4}x^4$ $f(0.5) \approx P(0.5) = 0.3906$

插值的几何意义

从几何上看,插值就是求一条曲线 y = P(x)

使其通过给定的n+1个点 (x_i, y_i) , $(i=0,1,\dots,n)$

并且与已知曲线 y = f(x) 有一定的近似度。

插值方法的研究问题

- (1) 满足插值条件的P(x)是否存在唯一?
- (2) 若满足插值条件的P(x)存在,如何构造P(x)?
- (3) 如何估计用P(x)近似替代f(x) 产生的误差?

§ 5.1 多项式插值

求
$$n$$
 次多项式 $P_n(x) = a_0 + a_1 x + \cdots + a_n x^n$

使得:
$$p_n(x_i) = y_i, i = 0, 1, \dots, n$$

条件: 无重合节点, 即 $i \neq j \Longrightarrow x_i \neq x_i$

根据插值条件,有:

$$\begin{cases} P(x_0) = a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ P(x_1) = a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ \vdots \\ P(x_n) = a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$$

其系数矩阵的行列式为

的行列式为
$$V_n(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix}$$

注意到插值节点 $x_i(i=0,1,2,\cdots,n)$ 两两相异,而

$$V_n(x_0, x_1, \dots, x_n) = \prod_{0 \le i < j \le n} (x_j - x_i) \ne 0$$

故方程组(1)有惟一解 $a_0, a_1, \cdots a_n$.

于是满足插值条件的多项式存在且惟一。

由 n+1 个不同插值节点 x_0, x_1, \dots, x_n

存在惟一性

可以惟一确定一个 n 次多项式

$$P_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

满足插值条件 $P_n(x_i) = y_i$

插值多项式的惟一性定理 另一种证明方法

已知插值条件且次数不高于n的插值多项式是惟一的。

证: 设 p(x)和 q(x)是两个次数不高于 n 且都经过插值 样点的多项式,

即,
$$p(x_i)=q(x_i)=y_i$$
, $i=0,1,2,...,n$
从而多项式 $p(x)-q(x)$ 有 $n+1$ 个零点 $x_0,x_1,...,x_n$,但由于 $p(x)$ 和 $q(x)$ 均为次数不超过 n 的多项式,所以,

p(x) - q(x)亦为次数不高于 n 的多项式, 于是与 n 次多项式只有 n 个零点的代数基本定理矛盾.

故
$$p(x) \equiv q(x)$$

§ 5.1 插值多项式

1. 构造线性插值基函数的方法:

$$n=1$$
 已知 x_0 , x_1 ; y_0 , y_1 , 求 $L_1(x) = a_0 + a_1 x$ 使得 $L_1(x_0) = y_0$, $L_1(x_1) = y_1$

可见 $L_1(x)$ 是过 (x_0, y_0) 和 (x_1, y_1) 两点的直线。

$$L_{1}(x) = y_{0} + \frac{y_{1} - y_{0}}{x_{1} - x_{0}}(x - x_{0})$$

$$= \frac{x - x_{1}}{x_{0} - x_{1}} y_{0} + \frac{x - x_{0}}{x_{1} - x_{0}} y_{1} = \sum_{i=0}^{1} l_{i}(x) y_{i}$$

$$l_{0}(x)$$

$$l_{1}(x)$$

线性插值
基函数

> 线性插值与其基函数示意图

$$n=2$$
 日知 $x_0, x_1, x_2 \ y_0, y_1, y_2$, 求 $L_2(x)$.

分析:
$$L_2(x_0) = y_0$$
 $L_2(x_1) = y_1$ $L_2(x_2) = y_2$

显然, $L_2(x)$ 是过 (x_0,y_0) , (x_1,y_1) , (x_2,y_2) 三点的一条抛物线。

仿照线性插值基函数的构造方法,令

$$\begin{cases} l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \\ l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \\ l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \end{cases}$$

抛物线基函数

称其为抛物线插值基函数(如上右图所示)。

抛物线插值基函数

$$\begin{cases} l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \\ l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \\ l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \end{cases}$$

抛物线基函数

于是

$$L_2(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$$
$$= \sum_{i=0}^{2} l_i(x)y_i$$

> 一般情形

希望找到 $l_i(x)$, i = 0, ..., n 使得 $l_i(x_i) = \delta_{ij}$;

然后令
$$L_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$
, 则显然有 $L_n(x_i) = y_i$ 。

每个 l_i 有 n 个根 $x_0,...,x_i,...,x_n$

$$\Leftrightarrow l_k(x) = A(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n),$$

由 $l_k(x_k) = 1$, 得:

$$A = \frac{1}{(x_k - x_0)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)} \quad k = 0, 1, \dots, n.$$

$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}, \quad k = 0, 1, \dots, n.$$

$$L_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$

定理

(Lagrange) 插值多项式

设
$$y = f(x)$$
 函数表 $(x_i, f(x_i))(i = 0, 1, ..., n) (x_i \neq x_j, i \neq j)$, 则满足插值条件的多项式 $L_n(x_i) = f(x_i)$, $(i = 0, 1, ..., n)$.

$$L_n(x) = \sum_{i=0}^n f(x_i)l_i(x)$$

其中,
$$l_i(x) = \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{x - x_j}{x_i - x_j}, i = 0,1,\dots,n$$

说明:

- (1) 利用上述公式编写程序代码;
- (2) $L_n(x)$ 的次数可以小于n.

构造插值多项式的方法:

- (1) 先求插值基函数.
- (2) 构造插值多项式.

以下的问题:如何分析插值的余项?

例题

已知连续函数 f(x) 的函数表如下:

求方程 f(x)=0 在 (-1,2) 内的近似根。

例题

已知连续函数 f(x) 的函数表如下:

求方程 f(x)=0 在 (-1,2) 内的近似根。

解: 利用Lagrange插值法有

$$L_3(x) = \frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} \bullet (-2) + \frac{(x+1)(x-1)(x-2)}{(0+1)(0-1)(0-2)} \bullet (-2)$$

$$+ \frac{(x+1)(x-0)(x-2)}{(1+1)(1-0)(1-2)} \bullet (1) + \frac{(x+1)(x-0)(x-1)}{(2+1)(2-0)(2-1)} \bullet (2)$$

$$= \frac{1}{6} [-5x^3 + 9x^2 + 14x - 12]$$

解方程 $-5x^3 + 9x^2 + 14x - 12 = 0$

取初值 x=0.5,利用牛顿法求解可得 f(x) 在(-1,2)内的近似根为 0.67433。

► Lagrange插值法插值余项

设节点 $a \le x_0 < x_1 < \dots < x_n \le b$, 且 f 满足条件 $f \in C^n[a,b]$, $f^{(n+1)}$ 在 [a,b] 内存在,考察截断误差:

$$R_n(x) = f(x) - L_n(x)$$

Lagrange 插值法的插值余项

设节点 $a \le x_0 < x_1 < \dots < x_n \le b$, 且 f 满足条件 $f \in C^n[a,b]$,

 $f^{(n+1)}$ 在[a,b]内存在,截断误差(或插值余项):

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) , \ \xi \in (a,b)$$

其中,

$$w_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

Lagrange 插值法的插值余项定理

设节点 $a \le x_0 < x_1 < \dots < x_n \le b$, 且 f 满足条件 $f \in C^n[a,b]$,

 $f^{(n+1)}$ 在[a,b]内存在,截断误差(或插值余项):

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
 , $\xi \in (a,b)$

证明:由已知条件得到:

$$R_n(x_k) = 0, \ k = 0, 1, \dots, n$$

于是有:

$$R_n(x) = k(x)(x - x_0)(x - x_1) \cdots (x - x_n) = k(x)\omega_{n+1}(x)$$

其中k(x)是与x有关的待定函数。

任意固定 $x \neq x_i$ (i = 0, ..., n), 考察

$$\varphi(t) = f(t) - L_n(t) - k(x)(t - x_0)(t - x_1) \cdots (t - x_n)$$

根据插值条件及余项定义,可知

 $\varphi(t)$ 在点 x_0, x_1, \dots, x_n, x 处均为零,

故 $\varphi(t)$ 在 $\chi_{0},\chi_{0},\dots,\chi_{n}$ 上有 n+2 个零点,根据 Roll 定理

 $\varphi'(t)$ 在 $\varphi(t)$ 的每两个零点间至少有一个零点,故 $\varphi'(t)$

在 $\chi_{i},\chi_{i},...,\chi_{i}$ 内至少有 n+1 个零点, 对 $\varphi'(t)$ 再用Roll 定理,

可知 [a,b] 在 x_n,x_n,\dots,x_n,x 内至少有 n 个零点,依此类推,

 $\phi^{(n+1)}(t)$ 在 $\chi_0,\chi_1,\cdots,\chi_n,\chi$ 内至少有一个零点,记为 $\xi \in (a,b)$

$$k(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}, \ \xi \in (a,b)$$

》说明事项:

由于 ξ 是不能确定,因此我们并不能确定误差的大小但如能求出 $\max_{a < x < b} |f^{(n+1)}(x)| = M_{n+1}$,那么用 f(x)逼近 $L_n(x)$ 的截断误差限是:

$$\left| R_n(x) \right| \le \frac{M_{n+1}}{(n+1)!} \left| \omega_{n+1}(x) \right|$$

当
$$n=1$$
时,

$$R_1(x) = \frac{1}{2}f''(\xi)\omega_2(x) = \frac{1}{2}f''(\xi)(x - x_0)(x - x_1), \xi \in [x_0, x_1]$$

当
$$n=2$$
 时,

$$R_2(x) = \frac{1}{6}f'''(\xi)\omega_3(x) = \frac{1}{6}f'''(\xi)(x - x_0)(x - x_1)(x - x_2),$$

$$\xi \in [x_0, x_2]$$

> 特别要注意的是:

当f(x)为任一个次数 $\leq n$ 的多项式时, $f^{(n+1)}(x) \equiv 0$, 可知,

$$R_n(x) \equiv 0$$

即插值多项式对于次数 ≤ n 的多项式是精确的。

给定 $x_i = i + 1$, i = 0, 1, 2, 3, 4, 5.

下面哪个是 $l_2(x)$ 的图像?

算例1

已知 $\sin 0.32 = 0.314567$, $\sin 0.34 = 0.333487$ $\sin 0.36 = 0.352274$,

用线性插值及抛物线插值计算 sin 0.3367 的值并估计截断误差。

算例]

已知
$$\sin 0.32 = 0.314567$$
 , $\sin 0.34 = 0.333487$

$$\sin 0.36 = 0.352274$$

用线性插值及抛物线插值计算 sin 0.3367

的值并估计截断误差。

解: Sin(0.3367) 精确值: 0.33037 41915 5563

$$x_0 = 0.32$$
 $y_0 = 0.314567$

$$x_1 = 0.34$$
 $y_1 = 0.333487$

$$x_2 = 0.36$$
 $y_2 = 0.352274$

线性插值时取

$$x_0 = 0.32, x_1 = 0.34$$

 $\sin 0.3367 \approx L_1(0.3367)$

$$=0.314567 \frac{0.3367 - 0.32}{0.34 - 0.32} + 0.333487 \frac{0.3367 - 0.34}{0.32 - 0.34}$$

=0.330365

$$|R_1(x)| = \frac{M_2}{2} |(x - x_0)(x - x_1)|,$$

其中,

$$M_2 = \max_{x_0 \le x \le x_1} \left| f''(\xi) \right|$$

因为

$$f(x) = \sin x$$
, $f''(x) = -\sin x$

可取

$$M_2 = \max_{x_0 \le x \le x_1} |\sin x| = \sin x_1 \le 0.3335$$

于是:

$$|R_1(0.3367)| = |\sin 0.3367 - L_1(0.3367)|$$

$$\leq \frac{1}{2} \times 0.3335 \times 0.0167 \times 0.0033 \leq 0.92 \times 10^{-5}$$

Sin(0.3367) 精确值: 0.33037 41915 5563

用抛物线插值时,取所有节点,得到

 $\sin 0.3367 \approx L_2(0.3367)$

$$= 0.314567 \frac{(0.3367 - 0.34)(0.3367 - 0.36)}{(0.32 - 0.34)(0.32 - 0.36)} + 0.333487 \frac{(0.3367 - 0.32)(0.3367 - 0.36)}{(0.34 - 0.32)(0.34 - 0.36)} + 0.352274 \frac{(0.3367 - 0.32)(0.3367 - 0.34)}{(0.36 - 0.32)(0.36 - 0.34)}$$

$$= 0.314567 \times \frac{0.7689 \times 10^{-4}}{0.0008} + 0.333487 \times \frac{3.89 \times 10^{-4}}{0.0004} + 0.352274 \frac{-0.5511 \times 10^{-4}}{0.0008}$$

$$= 0.330374$$

$$|R_2(x)| = \frac{M_3}{6} |(x - x_0)(x - x_1)(x - x_2)|,$$

$$M_2 = \max_{x_0 \le x \le x_1} |f'''(x)| = \cos x_0 \le 0.828$$

$$|R_2(0.3367)| = |\sin 0.3367 - L_2(0.3367)|$$

 $\leq \frac{1}{6} \times 0.828 \times 0.0167 \times 0.033 \times 0.0233$
 $< 0.178 \times 10^{-6}$

算例

利用 100, 121 的开方计算 $\sqrt{115}$.

解: 由于:

6x0	100	121
\sqrt{x}	10	317

利用Lagrange插值法有

$$L_1(x) = \frac{x - 121}{100 - 121} \cdot 10 + \frac{x - 100}{121 - 100} \cdot 11$$

于是,
$$\sqrt{115} \approx L_1(115) = \frac{115 - 121}{100 - 121} \cdot 10 + \frac{115 - 100}{121 - 100} \cdot 11$$

$$= 10.71428$$

 $\sqrt{115}$ 的精确值为 10.72380529...,

因此, 近似值 10.71428 有3 位有效数字.■

```
1 -
         x = [0 \ 0.5 \ 1.0 \ 1.5
                                     2.0 2.5 3.0];
         y = [0 \ 0.4794 \ 0.8415 \ 0.9975 \ 0.9093 \ 0.5985 \ 0.1411];
   2 -
   3 -
         [f,f0] = m NA lagrangeInterp(x,v,1.6); % 计算输出的拉格朗日插值多项式。
   4 -
         f
         f0
   5 -
      = function [f, f0] = m_NA_lagrangeInterp(x, y, x0) |_{18} - |_{f = 0, 0} 
     白% 求已知数据点的 lagrange 插值多项式:
                                               19 -
                                                    \Box for (i = 1: NLen)
       % x 已知数据点的 x 坐标向量:
                                               20 -
                                                        yp = y(i);
          y 已知数据点的 y 坐标向量:
                                                    for(j = 1: i-1)
                                               21 -
       % x0 插值点的 x 坐标;
                                                             yp = yp*(t-x(j))/(x(i)-x(j)):
                                               22 -
       % f 求得的 lagrange 插值多项式;
                                               23 -
                                                        end:
      -% f0 x0处的插值.
                                                        for(j = i+1:NLen)
                                               24 -
                                               25 -
                                                             yp = yp*(t-x(j))/(x(i)-x(j));
                                                                                         % 计算拉格朗日基函数
                                                          end:
9 -
       syms t;
                                               26 -
                                               27
                                                                                     % 计算拉格朗日插值函数
                                                         f = f + yp:
11 -
       if (length(x) == length(y))
                                               28 -
                                                          simplify(f);
                                                                                     % 化简
          NLen = length(x);
                                               29 -
12 -
                                               30 -
                                                      end
13 -
       else
          disp('x和y的维数不相等!');
                                               31 -
14 -
                                               32 -
                                                      if (nargin == 3)
15 -
         return:
                                                                                         % 将插值多项式展开
                                                      f = collect(f):
                                      % 检错
                                               33 -
16 -
       end
                                                                                         % 计算插值点的函数值
                                                      fp = subs(f,'t',x0);
                                               34 -
17
                                                                                         % 将插值多项式的系数化成6位精度的小数
                                               35 -
                                                      f0 = vpa(fp, 10);
                                               36 -
                                                      else
                                                      f = collect(f);
                                                                                         % 将插值多项式展开
                                               37 -
```

38 -

∟ end

2

3

5

6

8

10

> 差商

Lagrange 插值虽然易算,但若要增加一个节点时,

全部基函数 $l_i(x)$ 都需重新算过。

由线性代数的知识可知:任何一个n次多项式都可以表示成

1,
$$x-x_0$$
, $(x-x_0)(x-x_1)$,..., $(x-x_0)(x-x_1)\cdots(x-x_{n-1})$

 $\ddagger n+1$ 个线性无关的多项式的线性组合。

那么,是否可以将这 n+1 个多项式作为插值基函数呢?

> 寻求如下形式的插值多项式:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots$$
$$+ a_n(x - x_0) \cdots (x - x_{n-1})$$

其中的 *a*,为待定系数,由插值条件确定.

设插值多项式P(x)具有如下形式:

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots$$
$$+ a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

$$P(x)$$
应满足插值条件: $P(x_i) = f_i, i = 0,1,\dots,n$

有:
$$P(x_0) = f_0 = a_0$$

$$P(x_1) = f_1 = a_0 + a_1(x_1 - x_0)$$

$$P(x_2) = f_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$a_0 = f_0$$

$$a_1 = \frac{f_1 - f_0}{x_1 - x_0}$$

$$a_2 = \frac{f_2 - f_0}{x_2 - x_0} - \frac{f_1 - f_0}{x_1 - x_0}$$
$$x_2 - x_1$$

再继续下去,待定系数的形式将更复杂,为此引入 差商 的概念.

> 差商的概念

记函数f(x) 在 x_i 的值 $f[x_i] = f(x_i)$, 称 $f[x_i]$ 为 f(x) 关于 x_i 的零阶差商。

从零阶差商出发,归纳地定义各阶差商:

称
$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

为函数 f(x) 关于点 x_i, x_{i+1} 的一阶差商.

一般地, f(x) 关于 $x_i, x_{i+1}, \dots, x_{i+k}$ 的 k 阶差商:

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

▶ n 阶差商的概念

一般地, f(x) 关于 x_0, x_1, \dots, x_n 的 n 阶差商:

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

差商的基本性质

性质1: 差商可表示为函数值的线性组合,即:

$$f[x_0, x_1, \dots, x_n] = \sum_{j=0}^{n} \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

可用归纳法证明

性质2: 差商关于所含节点是对称的,即:

$$f[x_0, x_1, \dots, x_n] = f[x_1, x_0, \dots, x_n] = \dots = f[x_n, x_{n-1}, \dots, x_n]$$

差商的基本性质

性质3:

$$f[x_0, \dots, x_{i-1}, x_m] = \frac{f[x_1, \dots, x_{i-2}, x_m] - f[x_0, x_1, \dots, x_{i-1}]}{x_m - x_{i-1}}$$

性质4: 设 f(x) 在 [a,b] 存在 n 阶导数,且 $x_j \in [a,b]$

则 $\exists \xi \in (a,b)$, 使得:

$$f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}$$

》差商的计算-差商表

X_i	$f(x_i)$	一阶差商	二阶差商	三阶差商	四阶差商
x_0	$f(x_0)$				
X_1	$f(x_1)$	$f[x_0, x_1]$			
X_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f(x_3)$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
X_4	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, x_2, x_3, x_4]$
	•	•	•	•	: :

算例 已知

x_i	1	2	4	7
$f(x_i)$	0	2	15	12

计算三阶差商 [1,2,4,7]

解: 列表计算

x_i	$f(x_i)$	一阶差商	二阶差商	三阶差商
1	0			
2	2	2		
4	15	13/2	3/2	
7	12	-1	-3/2	-1/2

$$f[1,2,4,7] = -1/2$$

> 牛顿插值公式

根据差商的定义,把x 看成 [a,b]上的一点,可得:

$$f(x) = f(x_0) + f[x, x_0](x - x_0)$$

$$f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1)$$

$$f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, x_1, \dots, x_n](x - x_n)$$

4.4 牛顿插值公式

根据差商的定义,把 x 看成[a,b]上的一点,可得:

 $f(x) = f(x_0) + f[x, x_0](x - x_0)$

$$f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1)$$

$$\vdots$$

$$f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, x_1, \dots, x_n](x - x_n)$$

$$\begin{split} f(x) &= f(x_0) + f[x_0, x_1](x - x_0) &$$
 把后一式代入前一式
$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots \\ &+ f[x_0, x_1, \cdots, x_n](x - x_0) \cdots (x - x_{n-1}) \\ &+ f[x, x_0, x_1, \cdots, x_n] \omega_{n+1}(x) = N_n(x) + R_n(x) \end{split}$$

其中
$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

 $+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$
 $+ f[x_0, x_1, \cdots, x_n](x - x_0) \cdots (x - x_{n-1})$
 $R_n(x) = f(x) - N_n(x) = f[x, x_0, x_1, \cdots, x_n] \mathbf{\omega}_{n+1}(x)$
 $= \frac{f^{n+1}(\xi)}{(n+1)!}(x - x_0) \cdots (x - x_n)$

显然 $N_n(x)$ 满足插值条件,且次数不超过n,

它就是插值多项式,其系数为:

$$a_i = f[x_0, x_1, \dots, x_i], \quad i = 0, 1, \dots, n$$

我们称 $N_n(x)$ 为牛顿插值多项式.

算例 已知 f(x) 的函数表,求 4 次牛顿插值多项式, 并求 f(0.596).

х	f(x)
0.40	0.41075
0.55	0.57815
0.65	0.69675
0.80	0.88811
0.90	1.02652
1.05	1.25382

算例 已知f(x)的函数表,求 4 次牛顿插值多项式, 并求 f(0.596).

解: 列表计算

0.40	0. 41075					
0. 55	0. 57815	1. 11600				
0.65	0. 69675	1. 18600	0. 28000			
0.80	0. 88811	1. 27573	0. 35893	0. 19733		
0. 90	1. 02652	1. 38410	0. 43348	0. 21300	0. 03134	
1.05	1. 25382	1. 51533	0. 52493	0. 22863	0. 03126	-0.00012

从表中可以看到 5 阶差商几乎为0, 故取4次插值多项式即可,

于是:
$$N_4(x) = 0.41075 + 1.166(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$

 $+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$
 $+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8)$
 $f(0.596) \approx N_4(0.596) = 0.63192$

学⑦ 已知 f(x)的函数表,求**4** 次牛顿插值多项式, 并求 f(0.596).

解: 列表计算

0.40	0. 41075					
0. 55	0. 57815	1. 11600				
0.65	0. 69675	1. 18600	0. 28000			
0.80	0.88811	1. 27573	0. 35893	0. 19733		
0.90	1. 02652	1. 38410	0. 43348	0. 21300	0. 03134	
1.05	1. 25382	1. 51533	0. 52493	0. 22863	0.03126	-0.00012

$$N_4(x) = 0.41075 + 1.166(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$
$$+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$$
$$+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8)$$
$$f(0.596) \approx N_4(0.596) = 0.63192$$

截断误差为:
$$|R_4(x)| \approx |f[x_0, \dots, x_4] \omega_5(0.596)| \leq 3.63 \times 10^{-9}$$

```
x = [0.4 	 0.5 	 0.6 	 0.7];
 1 -
 ^{2} ^{-}
        y = [0.38942 \ 0.47943 \ 0.56464 \ 0.64422];
        [f,f0] = m NA newtonDiffInterp(x,y,0.57891); % 计算输出的 newton 均差插值多项式。
 3 -
 4
        %x = [1 \ 2 \ 3 \ 4 \ 5 \ 6]:
 5
        %v = [0 0.6931 1.0986 1.3863 1.6094 1.7918]:
 6
        %[f,f0] = m NA newtonDiffInterp(x,y,1.5); % 计算输出的 newton 均差插值多项式.
 7
 8 -
        f0
 9 -
                                                        18 -
                                                                f = y(1);
     \Box function [f, f0] = m NA newtonDiffInterp(x, y, x0)
1
                                                        19 -
                                                                a = 0:
     白% 求已知数据点的均差形式的牛顿插值多项式
2
                                                        20 -
                                                                yp = 1;
       % x 已知数据点的 x 坐标向量:
 3
                                                        21
       % v 已知数据点的 v 坐标向量:
                                                              for(i = 1: nLen-1)
                                                        22 -
       % x0 插值点的 x 坐标;
 5
                                                                   for(j = i+1: nLen)
              求得的均差形式的 newton 插值多项式:
                                                        23 -
       % f
                                                                       a(j) = (y(j)-y(i))/(x(j)-x(i));
                                                        24 -
      -% f0 x0 处的插值.
                                                        25 -
                                                                    end
8 -
       syms t;
                                                                   c(i) = a(i+1):
                                                        26 -
9
                                                                   vp = vp*(t-x(i)):
                                                        27 -
       if(length(x) == length(y))
10 -
                                                                   f = f + c(i)*vp:
                                                        28 -
          nLen = length(x):
11 -
                                                                   simplify(f); % 化简
                                                        29 -
           c(1:nLen) = 0.0:
12 -
                                                        30 -
                                                                   v = a:
13 -
       else
           disp(' x 和 y 的维数不相等!');
                                                        31 -
                                                                end
14 -
                                                                f
                                                        32 -
15 -
           return:
                                                        33
16 -
       end
17
                                                        34 -
                                                                if (nargin == 3)
                                                        35 -
                                                                f = collect(f); % 将插值多项式展开
                                                                fp = subs(f,'t',x0); % 计算插值点的函数值
                                                        36 -
                                                                 f0 = vpa(fp, 10): % 将插值多项式的系数化成6位精度的小数
                                                        37 -
                                                        38 -
                                                                else
                                                                 f = collect(f): % 将插值多项式展开
                                                        39 -
```

40 -

– end

Newton插值和Lagrange插值比较

一、 $L_n(x)$ 和 $N_n(x)$ 均是 n 次多项式,且均满足插值条件:

$$L_n(x_i) = N_n(x_i) = f(x_i), \quad i = 0, 1, \dots, n$$

由多项式的唯一性, $L_n(x) \equiv N_n(x)$

因而,两个公式的余项是相等的,即

$$f[x, x_0, x_1, \dots, x_n] w_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} w_{n+1}(x)$$

- 二、当插值多项式从 n-1 次增加到 n 次时,
 - 拉格朗日型插值必须重新计算所有的基本插值多项式;
 - 而对于牛顿型插值,只需用表格再计算一个 *n* 阶差商, 然后加上一项即可。

5.2 分段插值公式

在区间 [a, b] 上用插值多项式 P 逼近函数 f 时, f 和 P 在每个节点上的差异(理论上)应该为零。

自然,我们期望在一切中间点上也能很好地逼近 ƒ , 并且当插值点增加时这种逼近效果应该越来越好。

但上述的期望不可能实现的。当认识到这一点时,在数学界曾引起强烈的震动。

20 世纪初,Runge 就给出了一个等距节点插值多项式 $L_n(x)$ 不收敛到 f(x) 的例子。

设函数
$$f(x) = \frac{1}{1+x^2}, x \in [-5,5]$$
 ,

在该区间 [-5,5] 上取 n+1 个等距节点,构造 f(x) 的 n 次

$$x_i = -5 + 10\frac{i}{n}$$
 $(i = 0, 1, \dots, n)$

$$L_n(x) = \sum_{i=0}^n \left[\frac{1}{1+x_i^2} \cdot \prod_{\substack{j=0 \ j \neq i}}^n \frac{(x-x_j)}{(x_i-x_j)} \right] \qquad n = 2, 4, 6, 8, 20$$

其 matlab 的 runge-lagrange.m 文件及相关图形如下.

```
% lagrange.m
function y=lagrange (x0,y0,x)
n = length(x0); m = length(x);
for i=1:m
 z=x(i);s=0;
 for k=1:n
                                     Lagrange插值多项式
   L=1;
                                     求插值的Matlab程序.
   for j=1:n
     if j~=k
      L=L*(z-x0(j))/(x0(k)-x0(j));
     end
   end
   s=s+L*y0(k);
 end
 y(i)=s;
end
у;
```

比较不同的插值多项式次数对插值的影响

```
%Compare_Runge.m
x=-5:0.1:5; z=0*x; y=1./(1+x.^2);
plot(x,z,'k',x,y,'r')
axis([-5 5 -1.5 2]); pause; hold on
for n=2:2:20
 x0=linspace(-5,5,n+1); y0=1./(1+x0.^2);
 x=-5:0.1:5; y1=lagrange(x0,y0,x);
 plot(x,y1); pause
end
y2=1./(1+x0.^2); y=interp1(x0,y2,x);
plot (x,y,'k'); hold off
gtext('n=2'); gtext('n=4'); gtext('n=6')
gtext('n=8'); gtext('n=10')
gtext('f(x)=1/(1+x^2)')
```

不同次数的Lagrange插值多项式的比较图

 $\Rightarrow x_{n-1/2} = \frac{1}{2}(x_{n-1} + x_n)$, $\text{ MJ} \quad x_{n-1/2} = 5 - \frac{5}{n}$, $n = 2, 4, \dots, 20$

下表列出了 $L_n(x_{n-1/2})$ 和 $R(x_{n-1/2})$ 的值。

n	$f(x_{n-1/2})$	$L_n(x_{n-1/2})$	$R(x_{n-1/2})$
2	0. 137931	0.759615	-0.621684
4	0.066390	-0.356826	0.423216
6	0.054463	0.607879	-0.553416
8	0.049651	-0.831017	0.880668
10	0.047059	1.578721	-1.531662
12	0.045440	-2.755000	2.800440
14	0.044334	5. 332743	-5. 288409
16	0.043530	-10. 173867	10. 217397
18	0.042920	20. 123671	-20.080751
20	0.042440	-39. 952449	39. 994889

n	$f(x_{n-1/2})$	$L_n(x_{n-1/2})$	$R(x_{n-1/2})$
2	0. 137931	0.759615	-0.621684
4	0.066390	-0.356826	0.423216
6	0.054463	0.607879	-0.553416
8	0.049651	-0.831017	0.880668
10	0.047059	1.578721	-1.531662
12	0.045440	-2.755000	2.800440
14	0.044334	5.332743	-5. 288409
16	0.043530	-10.173867	10. 217397
18	0.042920	20. 123671	-20.080751
20	0.042440	-39.952449	39. 994889

结果表明,随着n的增加, $R(x_{n-1/2})$ 的绝对值几乎成倍地增加,这说明当 $n \to \infty$ 时 L_n 在 [-5,5]上不收敛。

Runge证明了,存在一个常数 $c \approx 3.63$,使得当 $|x| \le c$ 时, $\lim_{n \to \infty} L_n(x) = f(x)$;而当 |x| > c 时 { $L_n(x)$ } 发散。

说明:并不是插值多项式的次数越高,插值效果越好,精度也不一定是随次数的提高而升高,这种现象在上个世纪初由Runge发现,故称为Runge现象.

4.5.1 分段线性插值

分段线性插值特别简单,从几何上看,就是用折线逼近 曲线。

定义段线性插值的数学定义

设f(x)是区间[a,b]上的函数,在节点 $a=x_0 < x_1 < \cdots < x_n = b$ 上的函数值为 f_0, f_1, \cdots, f_n ,

求一分段折线函数P(x)满足:

(1)
$$P(x_i) = f_i, i = 0, 1, \dots, n$$

(2) 在[x_{i-1}, x_i]上, P(x) 是一次多项式。 $P(x) \in C[a,b]$ 则称 P(x)为 [x_{i-1}, x_i] 的分段线性插值函数。

易知, P(x) 是个折线函数, 在每个区间

$$[x_i, x_{i+1}] \perp, i = 0, 1, \dots, n-1$$

有
$$p(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} y_i + \frac{x - x_i}{x_{i+1} - x_i} y_{i+1}$$

P(x)在 [a,b] 上是连续的,但其一阶导数是不连续的.

4.5.1 分段线性插值的基函数

当
$$i = 0$$
时,
$$l_0(x) = \begin{cases} \frac{x - x_1}{x_0 - x_1} & x \in [x_0, x_1] \\ 0 & x \notin [x_0, x_1] \end{cases}$$

$$\exists i = 1, 2, \dots, n-1 \text{ 时}, \qquad l_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}} & x \in [x_{i-1}, x_i] \\ \frac{x - x_{i+1}}{x_i - x_{i+1}} & x \in (x_i, x_{i+1}] \\ 0 & x \notin [x_{i-1}, x_{i+1}] \end{cases}$$

$$\exists i = n \text{ D}, \qquad l_n(x) = \begin{cases} 0 & x \notin [x_{n-1}, x_n] \\ \frac{x - x_{n-1}}{x_n - x_{n-1}} & x \in [x_{n-1}, x_n] \end{cases}$$

显然P(x)是 $l_i(x)$ 的线性组合:

$$P(x) = \sum_{i=0}^{n} f_i l_i(x)$$

在区间[x_{i-1}, x_i]上的值为:

$$P(x) = f_{i-1} \frac{x - x_i}{x_{i-1} - x_i} + f_i \frac{x - x_{i-1}}{x_i - x_{i-1}} \quad x_{i-1} \le x \le x_i$$

表达式 P(x) 在区间 $[x_{i-1}, x_i]$ 上,只有

 $l_{i-1}(x)$, $l_i(x)$ 是非零的,其它基函数均为零。即

$$P(x) = f_{i-1} l_{i-1}(x) + f_i l_i(x)$$

算例

已知函数 $y = f(x) = \frac{1}{1+x^2}$ 在区间 [0,5] 上取等距插值

节点(如下表),求区间上分段线性插值函数,并利用它求出 f(4.5) 近似值。

~	x_i	0	\A\?	ر 2رد	(3/	347	V5
_	y_i		0.5	0.2	0.1	0.05882	0.03846

I	x_i	0	4	ر کری	(3/	347	15
	y_i	人	0.5	0.2	0.1	0.05882	0.03846

解: 在每个分段区间 [k,k+1]

$$P(x) = \frac{x - (k+1)}{k - (k+1)} y_k + \frac{x - k}{(k+1) - k} y_{k+1}$$

$$= -y_k (x - k - 1) + y_{k+1} (x - k)$$

$$P(x) = \begin{cases} -(x-1) + 0.5x, & x \in [0,1] \\ -0.5(x-2) + 0.2(x-1), & x \in [1,2] \\ -0.2(x-3) + 0.1(x-2), & x \in [2,3] \\ -0.1(x-4) + 0.05882(x-3), & x \in [3,4] \\ -0.05882(x-5) + 0.03846(x-4), x \in [4,5] \end{cases}$$

于是, $P(4.5) = -0.05882 \times (4.5-5) + 0.03846 \times (4.5-4) = 0.04864$

实际值: f(4.5) = 0.04705882352941

当n=7 时,P(4.5)=0.04762270321996;当n=10时,P(4.5)=0.04705882352941由此可见,对于光滑性要求不高的插值问题,分段线性插值的效果非常好! 计算也简单!

> 埃尔米特 (Hermite) 插值

- ✓ 拉格朗日和牛顿均只保证函数插值;
- ✓ 实际问题有时需要导数也插值;
- ▼ 满足这种需要的插值称为埃尔米特插值.

> 埃尔米特插值的一般提法

埃尔米特插值的一般提法为:

设函数在节点 x_0, x_1, \dots, x_n 的函数值与导数值为:

$$f(x_i) = f_i$$
, $f'(x_i) = f'_i$, ..., $f^{(m_i-1)}(x_i) = f_i^{(m_i-1)}$,

其中 $i=0,1,\dots,n$ 是正整数, 寻求一个次数尽可能低的多

项式 m_0, m_1, \cdots, m_n , 满足:

$$H^{(k)}(x_i) = f_i^{(k)}, \quad k = 0, 1, \dots, m_i - 1; \quad i = 0, 1, \dots, n$$

> 埃尔米特插值

拿例 以如下数据构建埃尔米特插值

x	у	<i>y</i> ′
x_0	\mathcal{Y}_0	$\boldsymbol{\mathcal{Y}}_{0}^{\prime}$
x_1	\mathcal{Y}_1	y_1'
x_2	\mathcal{Y}_2	y_2'
- - -	: :	- -
x_n	\mathcal{Y}_n	y'_n

> 埃尔米特插值

算例 以如下数据构建埃尔米特插值

x	<i>y y</i> '	共有 $2n+2$ 个条件,可唯一确定一个次数元
x_0	$y_0 y_0'$	超过 $2n+1$ 的多项式 $H_{2n+1}(x)$, 其形式为:
x_1	y_1 y_1'	$H_{2n+1}(x) = a_0 + a_1 x + \dots + a_{2n+1} x^{2n+1}$
\boldsymbol{x}_2	y_2 y_2'	目标:求出所有的 a_i , $(i=0,1,\cdots,n)$
:	: : 	方法:基函数法.
x_n	$y_n y'_n$	

可如下构造:
$$H_{2n+1}(x) = \sum_{i=0}^{n} y_i \alpha_i(x) + \sum_{i=0}^{n} y'_i \beta_i(x)$$

 $\alpha_i(x)$, $\beta_i(x)$ 均为 2n+1 次插值基函数.

x	У	<u>y'</u>	$\boldsymbol{\alpha}_{i}(x_{k}) = \boldsymbol{\delta}_{ik}, \boldsymbol{\alpha}'_{i}(x_{k}) = 0$
x_0	\mathcal{Y}_0	y_0'	$\boldsymbol{\beta}_{i}(x_{k}) = 0, \boldsymbol{\beta}_{i}'(x_{k}) = \boldsymbol{\delta}_{ik}$
x_1	\mathcal{Y}_1	y_1'	文样 $H_{2n+1}(x)$ 可表示为:
x_2	\mathcal{Y}_2	y_2'	$H_{2n+1}(x) = \sum_{i=1}^{n} [y_i \alpha_i(x) + y_i' \beta_i(x)]$
:	:	:	$\mathbf{H}_{2n+1}(\mathbf{x}) = \sum_{i=0}^{n} [y_i \mathbf{\alpha}_i(\mathbf{x}) + y_i \mathbf{\rho}_i(\mathbf{x})]$
x_n	\mathcal{Y}_n	y'_n	✓ 显然有:
			$H_{2n+1}(x_k) = y_k$ $H'_{2n+1}(x_k) = y'_k$

现在求 $\alpha_i(x)$ 及 $\beta_i(x)$,

$$\alpha_i(x) = (ax+b)l_i^2(x)$$

其中

具中
从而有:
$$l_i(x) = \frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}$$

$$\alpha_i(x_i) = (ax_i + b)l_i^2(x_i) = 1$$

由此得:

$$\alpha'_{i}(x_{i}) = l'_{i}(x_{i})[al_{i}(x_{i}) + 2(ax_{i} + b)l'_{i}(x_{i})] = 0$$

故:

$$(ax_i + b) = 1$$
 $a + 2l'_i(x_i) = 1$

$$a = -2l_i'(x_i)$$

$$b = 1 + 2x_i l_i'(x_i)$$

由
$$l_i(x)$$
 的表达式可得: $l_i'(x_i) = \sum_{\substack{k=0 \ k \neq i}}^n \frac{1}{x_i - x_k}$

于是得到:

$$\alpha_{i}(x) = \left(1 - 2(x - x_{i}) \sum_{\substack{k=0 \ k \neq i}}^{n} \frac{1}{x_{i} - x_{k}}\right) l_{i}^{2}(x)$$

同理可得

$$\beta_i(x) = (x - x_i)l_i^2(x)$$

算例:

已知
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
, $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

分别利用 $\sin x$ 的1次、2次 Lagrange 插值计算 $\sin 50^\circ$ 并估计误差。 精确值 $\sin 50^\circ = 0.7660444...$

解:

1. 利用 x_0, x_1 计算

列表如下:

$$\frac{\pi}{6} \qquad \frac{1}{2}$$

$$\frac{\pi}{4} \qquad \frac{1}{\sqrt{2}}$$

$$\frac{\pi}{3} \qquad \frac{\sqrt{3}}{2}$$

$$\mathbf{R}_{2}$$

$$\mathbf{Sin}_{3}$$

$$\mathbf{R}_{2}$$

$$\mathbf{So}_{0} = \frac{5\pi}{18}$$

$$\mathbf{E}_{1}$$

$$L_1(x) = \frac{x - \pi/4}{\pi/6 - \pi/4} \times \frac{1}{2} + \frac{x - \pi/6}{\pi/4 - \pi/6} \times \frac{1}{\sqrt{2}}$$

$$Sin(50^0) \approx L_1(x) = 0.77614$$

2. 利用 x_0, x_1, x_2 计算

$$L_2(x) = \frac{(x - \frac{\pi}{4})(x - \frac{\pi}{3})}{(\frac{\pi}{6} - \frac{\pi}{4})(\frac{\pi}{6} - \frac{\pi}{3})} \times \frac{1}{2} + \frac{(x - \frac{\pi}{6})(x - \frac{\pi}{3})}{(\frac{\pi}{4} - \frac{\pi}{6})(\frac{\pi}{4} - \frac{\pi}{3})} \times \frac{1}{\sqrt{2}} + \frac{(x - \frac{\pi}{6})(x - \frac{\pi}{4})}{(\frac{\pi}{3} - \frac{\pi}{6})(\frac{\pi}{3} - \frac{\pi}{4})} \times \frac{\sqrt{3}}{2}$$

 $Sin(50^0) \approx L_2(x) = 0.76543$

$$R_2(x) = \frac{-\cos \xi_x}{3!} (x - \frac{\pi}{6})(x - \frac{\pi}{4})(x - \frac{\pi}{3}); \quad \frac{1}{2} < \cos \xi_x < \frac{\sqrt{3}}{2}$$

$$\longrightarrow$$
 0.00044 < $R_2 \left(\frac{5\pi}{18} \right)$ < 0.00077

2次插值的实际误差≈0.00061

结论: 高次插值通常优于低次插值。

约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange) 1735~1813

法国数学家、物理学家。他在 数学、力学和天文学三个学科 领域中都有历史性贡献,其中 数学方面的成就最为突出。

数学分析的开拓者

- 1. 变分法
- 2. 微分方程.
- 3. 方程论.
- 4. 数论.
- 5. 函数和无穷级数.

1788年出版的《分析力学》

"···我在其中阐明的方法,既不要求作图,也不要求几何的或力学的推理,而只是一些按照一致而正规的程序的代数(分析)运算. 喜欢分析的人将高兴地看到,力学变成了它的一个新分支,并将感激我扩大了它的领域."

§ 6 三次样条 /* Cubic Spline */

定义 设 $a = x_0 < x_1 < ... < x_n = b$ 。 三次样条函数 $S(x) \in C^2[a,b]$,

且在每个 $[x_i, x_{i+1}]$ 上为三次多项式 /* cubic polynomial */。若它同时还满足 $S(x_i) = f(x_i)$,(i = 0, ..., n则称为 f 的三次样条插值函数 /* cubic spline interpolant */.

注: 三次样条与分段 Hermite 插值的根本区别在于S(x)自身光滑,不需要知道f的导数值(除了在2个端点可能需要);而Hermite插值依赖于f在所有插值点的导数值。

➤ 构造三次样条插值函数的三弯矩法 /* method of bending moment */

在 $[x_{j-1}, x_j]$ 上,记 $h_j = x_j - x_{j-1}$, $S(x) = S^{[j]}(x)$ for $x \in [x_{j-1}, x_j]$ 则 $S^{[j]}(x)$ 为 1 次多项式,需 2 个点的值确定之。

设
$$S^{[j]}$$
" $(x_{j-1}) = M_{j-1}$, $S^{[j]}$ " $(x_j) = M_j$ 对于 $x \in [x_{j-1}, x_j]$ 可得到
$$S^{[j]}$$
" $(x) = M_{j-1} \frac{x_j - x}{h_j} + M_j \frac{x - x_{j-1}}{h_j}$

积分2次,可得 $S^{[j]}(x)$ 和 $S^{[j]}(x)$:

$$S^{[j]}'(x) = -M_{j-1} \frac{(x_j - x)^2}{2h_j} + M_{j-1} \frac{(x - x_{j-1})^2}{2h_j} + A_j$$

$$S^{[j]}(x) = M_{j-1} \frac{(x_j - x)^3}{6h_j} + M_j \frac{(x - x_{j-1})^3}{6h_j} + A_j x + B_j$$
可解

$$A_{j} = \frac{y_{j} - y_{j-1}}{h_{j}} - \frac{M_{j} - M_{j-1}}{6} h_{j} \left[A_{j} x + B_{j} = (y_{j-1} - \frac{M_{j-1}}{6} h_{j}^{2}) \frac{x_{j} - x}{h_{j}} + (y_{j} - \frac{M_{j}}{6} h_{j}^{2}) \frac{x - x_{j-1}}{h_{j}} \right]$$

下面解决 M_i : 利用S'在 x_i 的连续性

$$[x_{j-1}, (x_j)]: S^{[j]}'(x) = -M_{j-1} \frac{(x_j - x)^2}{2h_j} + M_j \frac{(x - x_{j-1})^2}{2h_j} + f[x_{j-1}, x_j] - \frac{M_j - M_{j-1}}{6}h_j$$

$$(x_{j+1} - x)^2 - (x - x_j)^2 - M_{j+1} - M_j$$

$$(x_{j}), x_{j+1}]: S^{[j+1]}'(x) = -M_{j} \frac{(x_{j+1} - x)^{2}}{2h_{j+1}} + M_{j+1} \frac{(x - x_{j})^{2}}{2h_{j+1}} + f[x_{j}, x_{j+1}] - \frac{M_{j+1} - M_{j}}{6} h_{j+1}$$

利用 $S^{[j]'}(x_j) = S^{[j+1]'}(x_j)$,合并关于 M_{j-1} 、 M_j 、 M_{j+1} 的同类项,并

记
$$\lambda_j = \frac{h_{j+1}}{h_j + h_{j+1}}, \mu_j = 1 - \lambda_j, \ g_j = \frac{6}{h_j + h_{j+1}} (f[x_j, x_{j+1}] - f[x_{j-1}, x_j]),$$
整理

后得到:
$$\mu_j M_{j-1} + 2M_j + \lambda_j M_{j+1} = g_j$$

$$1 \le j \le n-1$$

即:有n+1 个未知数, n-1 个方程。

$$\begin{bmatrix} \mu_1 & 2 & \lambda_1 \\ \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \end{bmatrix} = \begin{bmatrix} g_1 \\ \vdots \\ \vdots \\ g_{n-1} \end{bmatrix}$$

还需2个边界条件 /* boundary conditions */

文 第1类边条件 /* clamped boundary */: $S'(a) = y_0'$, $S'(b) = y_n'$

[a,
$$x_1$$
]: $S^{[1]}'(x) = -M_0 \frac{(x_1 - x)^2}{2h_1} + M_1 \frac{(x - a)^2}{2h_1} + f[x_0, x_1] - \frac{M_1 - M_0}{6} h_1$

类似地利用[
$$x_{n-1}$$
, b]上的 $S^{[n]}(x)$

类似地利用[
$$x_{n-1}$$
, b] 上 { $2M_0 + M_1 = \frac{6}{h_1}(f[x_0, x_1] - y_0') = g_0$ 的 $S^{[n]}'(x)$ } { $M_{n-1} + 2M_n = \frac{6}{h_n}(y_n' - f[x_{n-1}, x_n]) = g_n$

》第2类边条件: $S''(a) = y_0'' = M_0$, $S''(b) = y_n'' = M_n$

这时: $\lambda_0 = 0$, $g_0 = 2y_0''$; $\mu_n = 0$, $g_n = 2y_n''$

特别地, $M_0 = M_n = 0$ 称为自由边界 /* free boundary */, 对应的样 条函数称为自然样条 /* Natural Spline */。

➣ 第3类边条件 /* periodic boundary */:

$$y_n = y_0$$
, $S'(a^+) = S'(b^-)$
 $\Rightarrow M_0 = M_n$

$$\begin{bmatrix} 2 & \lambda_1 & & & \mu_1 \\ \mu_2 & 2 & \lambda_2 & & & \\ \vdots & \vdots & & \vdots \\ \lambda_n & \mu_{n-1} & 2 & \lambda_{n-1} \\ \lambda_n & & \mu_n & 2 \end{bmatrix} \begin{bmatrix} M_1 \\ \vdots \\ \vdots \\ M_n \end{bmatrix} = \begin{bmatrix} g_1 \\ \vdots \\ \vdots \\ g_n \end{bmatrix}$$

- 注: 「另有三转角法得到样条函数,即设 $S^{[j]}(x_j) = m_j$,则 易知 $[x_{j-1}, x_j]$ 上的 $S^{[j]}(x)$ 就是Hermite函数。再利用S"的连续性,可导出关于 m_j 的方程组,加上边界条件即可解。
 - [©] Cubic Spline 由boundary conditions 唯一确定。
 - **少效性**: 若 $f \in C[a,b]$, 且 $\frac{\max h_i}{\min h_i} \le C < \infty$, 则 $-\frac{\infty}{S(x) \to f(x)} \quad as \quad \max h_i \to 0$

即:提高精度只须增加节点,而无须提高样条阶数。

稳定性:只要边条件保证 $|\mu_0|, |\lambda_0|, |\mu_n|, |\lambda_n| < 2$,则方程组系数阵为SDD阵,保证数值稳定。

例. 已知数据表

$\boldsymbol{\mathcal{X}}_i$	1	2	4	5
${\mathcal Y}_i$	1	3	4	2

求满足自然边界条件 S''(1) = S''(5) = 0 的三次样条函数 S(x),并计算 f(3) 的近似值。

解: 作差商表

i	x_{i}	\boldsymbol{y}_i	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$
0	1	1		
1	2	3	2	
2	4	4	0.5	-0.5
3	5	2	-2	-0.83333

由自然边界条件得, $M_0 = M_3 = 0$, 故有

$$\begin{bmatrix} 2 & \lambda_1 \\ u_2 & 2 \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = \begin{bmatrix} -3 \\ -4.99998 \end{bmatrix}$$

其中

$$\lambda_1 = \frac{h_2}{h_1 + h_2} = \frac{2}{1 + 2} = 0.66666$$
 $u_2 = \frac{h_2}{h_2 + h_3} = \frac{2}{2 + 1} = 0.66666$

解此方程组得

$$M_1 = -0.750001$$
 $M_2 = -0.249999$

$$M_2 = -0.249999$$

可以求得

$$S(x) = -0.750001 \times \frac{(4-x)^3}{12} - 2.249999 \times \frac{(x-2)^3}{12} + 3.500001 \times \frac{4-x}{2} + 5.499999 \times \frac{x-2}{2}$$

在上式中, 令
$$x=3$$
 ,得

$$f(3) \approx S(3) = 4.25000$$

Sketch of the Algorithm: Cubic Spline

- ① 计算 μ_j , λ_j , g_j ;
- ② 计算 M_i (追赶法等);
- ③找到x所在区间(即找到相应的j);
- ④ 由该区间上的 $S^{[j]}(x)$ 算出 f(x) 的近似值。

插值法小结

- ◆ Lagrange : 给出 y_0 ... y_n , 选基函数 $l_i(x)$, 其次数为 节点数 -1 。
- ♦ Newton $\equiv L_n(x)$, 只是形式不同; 节点等距或渐增节点时 方便处理。
- ◆ Hermite: 带导数插值条件。
- ◆ Spline: 分段低次, 自身光滑, f 的导数只在边界给出。

> 5.3 曲线拟合的最小二乘法

> 拟合问题的数学提法

通过观测、测量或试验得到某一函数在 x_1, x_2, \dots, x_n

的函数值为 y_1, y_2, \dots, y_n 。

我们可以用插值的方法对这一函数进行近似。

而插值方法要求所得到的

注意: 插值多项式必须经过已知的这 n 个插值结点.

- \checkmark 在 n 比较大的情况下,插值多项式往往是高次多项式,这也就容易出现振荡现象;
- ✓ 虽然在插值结点上没有误差,但在插值结点之外插值误差 变得很大,从"整体"上看,插值逼近效果将变得"很差"。 于是,我们采用曲线拟合的方法。

因此,没必要取 $P(x_i) = y_i$,

而要使 $|P(x_i) - y_i|$ 总体上尽可能小。

》 常见做法:

(1) 使 $\max_{1 \leq i \leq m} |P(x_i) - y_i|$ 最小;

(2) 使
$$\sum_{i=1}^{m} |P(x_i) - y_i|$$
 最小;

(3) 使
$$\sum_{i=1}^{m} (P(x_i) - y_i)^2$$
 最小;

最小二乘法

1 直线拟合 (一次函数)

$$\min F(a_0, a_1) = \sum_{i=1}^{n} ((a_0 + a_1 x_i) - y_i)^2$$

即 求 a_0 , a_1 , 使误差平方和取最小值.

$$y = f(x) = a_0 + a_1 x$$

注意:

直线应该与所有点靠得比较近 所有点应该尽量靠近直线 x_i 点误差:

$$(a_0 + a_1 x_i) - y_i$$

误差向量: i = 1, 2, ..., n

残差尽量小 $\delta = [\delta_1, \delta_2, \dots, \delta_i, \dots, \delta_n]$ 90

l 直线拟合 (一次函数)

$$\min F(a_0, a_1) = \sum_{i=1}^{n} ((a_0 + a_1 x_i) - y_i)^2$$

即 求 a_0 , a_1 , 使误差平方和取最小值!

$$\begin{cases} \frac{\partial \mathbf{F}}{\partial a_0} = 2\sum_{i=1}^n ((a_0 + a_1 x_i) - y_i) \cdot 1 = 0 \\ \frac{\partial \mathbf{F}}{\partial a_1} = 2\sum_{i=1}^n ((a_0 + a_1 x_i) - y_i) \cdot x_i = 0 \end{cases}$$

$$\begin{cases} n a_0 + (\sum_{i=1}^n x_i) a_1 = \sum_{i=1}^n y_i \\ (\sum_{i=1}^n x_i) a_0 + (\sum_{i=1}^n x_i^2) a_1 = \sum_{i=1}^n x_i y_i \end{cases} \begin{cases} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{cases} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \end{pmatrix}$$

$$y = a_0 + a_1 x$$

解出 *a*₀ , *a*₁

\mathbf{y} 某种纤维的强度 \mathbf{y} 与 其拉伸倍数 \mathbf{x} 的关系如下表: 实验数据: 12个纤维样品

编 号	拉伸倍数 x_i	强 度 \mathcal{Y}_i	编号	拉伸倍数 x_i	强度y _i
1	1.9	1.4	13	5	5. 5
2	2	1.3	14	5. 2	5
3	2.1	1.8	15	6	5. 5
4	2. 5	2. 5	16	6. 3	6.4
5	2. 7	2.8	17	6. 5	6
6	2. 7	2.5	18	7. 1	5. 3
7	3. 5	3	19	8	6.5
8	3. 5	2. 7	20	8	7
9	4	4	21	8.9	8.5
10	4	3. 5	22	9	8
11	4. 5	4. 2	23	9.5	8. 1
12	4.6	3. 5	24	10	8.1

解:

$$\begin{pmatrix} 24 & 127.5 \\ 127.5 & 829.61 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 113.1 \\ 731.6 \end{pmatrix}$$

$$a_0 = 0.1505$$
, $a_1 = 0.8587$

$$a_1 = 0.8587$$

$$y = 0.1505 + 0.8587 x$$
 即为最小二乘解

其中平方误差为:

$$\|\delta\|_{2}^{2} = 5.6615$$

多项式拟合的最小二乘法

已知:
$$(x_i, y_i)$$
, $i = 1, 2, \dots, n$

求:
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m = \sum_{j=0}^m a_j x^j$$
 使 $\|\delta\|_2^2 = \sum_{i=1}^n \delta_i^2$ 取极小。

分析:

$$\mathbb{P} \quad \min \quad F(a_0, a_1, \dots, a_m) = \sum_{i=1}^n \left(\sum_{j=0}^m a_j x_i^j \right) - y_i$$

类似地 $\rightarrow m+1$ 元函数求极值

$$\frac{\partial \mathbf{F}}{\partial a_k} = \sum_{i=1}^n 2 \left(\sum_{j=0}^m a_j x_i^j - y_i \right) \cdot x^k = 0 \qquad k = 0, 1, \dots, m$$

$$\sum_{j=0}^{m} \left(\sum_{i=1}^{n} x_i^{k+j} \right) a_j = \sum_{i=1}^{n} y_i x_i^k, \quad k = 0,1,\dots,m$$

法方程组

$$\begin{pmatrix}
\sum_{i=1}^{n} 1 & \sum_{i=1}^{n} x_{i} & \cdots & \sum_{i=1}^{n} x_{i}^{m} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \cdots & \sum_{i=1}^{n} x_{i}^{m+1} \\
\vdots & \vdots & & \vdots \\
\sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \cdots & \sum_{i=1}^{n} x_{i}^{2m}
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{n} y_{i} \\
a_{1} \\
\vdots \\
a_{m}
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{n} y_{i} \\
\sum_{i=1}^{n} x_{i} y_{i} \\
\vdots \\
\sum_{i=1}^{n} x_{i}^{m} y_{i}
\end{pmatrix}$$

解出 a_0, a_1, \ldots, a_m 得:

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$$

算例

用最小二乘法求一个形如 $y=a+bx^2$ 的经验公式, 使与下列数据相拟合:

X	19	25	31	38	44
у	19.0	32.3	49.0	73.3	97.8

解:

$$\begin{pmatrix}
5 & \sum_{i=1}^{5} x_{i}^{2} \\
\sum_{i=1}^{5} x_{i}^{2} & \sum_{i=1}^{5} x_{i}^{4}
\end{pmatrix}
\begin{pmatrix}
a_{0} \\
a_{2}
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{5} y_{i} \\
a_{2}
\end{pmatrix}$$

得: a = 0.972577

$$b = 0.050035$$

 $y=0.972577+0.050035x^2$

思考题

已知
$$(x_i, y_i)$$
, $i = 1, 2, ..., m$, 如下表

如何构造拟合曲线?

$$P(x) = \frac{x}{ax+b}$$

