

Problema de asignación cuadrática

¡HOLA! OS Somos el Grupo 3

Gregorio Carvajal Expósito

Gema Correa Fernández

Jonathan Fernández Mertanen

Eila Gómez Hidalgo

Elías Méndez García

Alex Enrique Tipán Párraga

7. ANALISIS DEL PROBLEMA

Explicación

PROBLEMA

En el QAP, disponemos de *n* unidades y *n* localizaciones.

En nuestro caso, las localizaciones harán referencia a las habitaciones, y las unidades a los oficinistas.

MATRIZ DE DISTANCIAS

Habitaciones	H1	H2	Н3	H4	H5
H1	0	7	14	20	3
H2	4	0	10	17	49
Н3	51	1	0	43	91
H4	7	3	10	0	20
H5	90	101	47	3	0

MATRIZ DE FLUJOS

Oficinistas	01	02	03	04	O5
01	0	4	7	4	1
02	0	0	10	3	21
О3	0	0	0	47	3
04	41	21	7	0	9
05	21	43	32	27	0

ANÁLISIS DEL PROBLEMA

Nuestro objetivo es encontrar una asignación de unidades a localizaciones, tal que se minimice el coste dado por la siguiente expresión:

$$p^* = \min_{p} \left\{ \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{p(i)p(j)} d_{ij} \right\}$$

- f_{p(i)p(j)}: es el flujo que circula entre la unidad i y la j
 d_{ij}: es la distancia existente entre la localización i y la j

2. DISEÑO DE LA SOLUCIÓN

Datos del Problema

LISTA DE CANDIDATOS

Todas las parejas $unidad_i$ en $localización_j$ posibles. En nuestro caso, será una lista formada por parejas de oficinista y habitación.

CONJUNTO SOLUCIÓN

Cuando todas las unidades hayan sido asignadas a una localización.

Dependerá del beneficio de los candidatos.

 $beneficio_{ij} = |distancia_potencial_i - flujo_potencial_j|$

FUNCIÓN DE FACTIBILIDAD

Un candidato será factible si aún no se ha asignado esa unidad a una localización, y la localización no se ha asignado a ninguna otra unidad.

ARCHIVO ENTRADA DEL PROGRAMA

Obtenemos los flujos potenciales:

01	O2	О3	04	05
fpO1	fpO2	fpO3	fpO4	fpO5

N-1	
	C
Z^{J}	ij
j=0	

Obtenemos las distancias potenciales:

H1	H2	Н3	H4	H5
dpH1	dpH2	dpH3	dpH4	dpH5

Obtenemos una matriz de beneficio de cada una de las asignaciones

H1	H2	Н3	H4	H5
dpH1	dpH2	dpH3	dpH4	dpH5

01	O2	О3	04	O 5
fpO1	fpO2	fpO3	fpO4	fpO5

	01	O2	О3	04	O 5
н	dpH1-fpO1	dpH1-fpO2	dpH1-fpO3	dpH1-fpO4	dpH1-fpO5
H2	dpH2-fpO1				
Н3	dpH3-fpO1				
H4	dpH4-fpO1				
Н5	dpH5-fpO1				

Seleccionamos el mayor de los beneficios y asignamos la pareja a la solución.

O3 **!**

	01	02		<u>03</u>	04		•)5
<u>H1</u>	dpH1-fpO1	dpH1-fpO2		dpH1-fpO3	dpH1-fp	04	dpH	-fpO5
H2	dpH2-fpO1							
Н3	dpH3-fpO1							
H4	dpH4-fpO1							
Н5	dpH5-fpQ]							
	i →	H1	H2	2 H3	H4		H5	

5. ESQUELETO DEL ALGORITMO

Pseudocódigo

```
S:Solucion greedyQAP (L:localizaciones, U:unidades)
    para cada localizacion 11 {
          para cada localizacion 12 {
                distancia_potencial += distancia_entre(11, 12)
    para cada unidad u1 {
                                                                        Construir
          para cada unidad u2 {
                                                                         lista de
                flujo potencial += flujo entre(u1, u2)
                                                                       candidatos
    LC = \emptyset
    para cada localizacion 1
          para cada unidad u
                b = calcular_beneficio(1, u)
                añadir(LC, 1, u, b)
    // Seleccionamos los candidatos para la solución
    mientras (LC \neq \emptyset) Y NO solucion(S) hacer
          x = seleccionar(LC)
          insertar(S, x)
          eliminar(LC, x)
          eliminarNoFactibles(LC, x)
    devolver S
```


|distancia_potencial_i - flujo_potencial_j|

4.

FUNCIONAMIENTO DEL ALGORITMO

Veámoslo con un ejemplo

FUNCIONAMIENTO DEL ALGORITMO (I)

			→	
		Unidad 0	Unidad 1	Unidad 2
	Localizacion 0	0	1	-1
	Localizacion 1	1	0	-1
	Localizacion 2	-1	-1	-1
			5	e 2
		0	1	2
	SOLUCION		0	2
		8		
		Unidad 0	Unidad 1	Unidad 2
_				
	Localizacion 0	-1	-1	-1
	Localizacion 0 Localizacion 1	-1 1	-1 -1	-1 -1
				1
•	Localizacion 1	1	-1	-1
	Localizacion 1	1	-1	-1
•	Localizacion 1	1	-1	-1
	Localizacion 1	1 -1	-1	-1 -1
•	Localizacion 1 Localizacion 2	1 -1 Unidad 0	-1 -1 Unidad 1	-1 -1 Unidad 2
•	Localizacion 1 Localizacion 2 Localizacion 0	1 -1 Unidad 0	-1 -1 Unidad 1	-1 -1 Unidad 2
•	Localizacion 1 Localizacion 2 Localizacion 0 Localizacion 1	1 -1 Unidad 0	-1 -1 Unidad 1 -1 -1	-1 -1 Unidad 2 -1 -1
•	Localizacion 1 Localizacion 2 Localizacion 0 Localizacion 1	1 -1 Unidad 0	-1 -1 Unidad 1 -1 -1	-1 -1 Unidad 2 -1 -1

FUNCIONAMIENTO DEL ALGORITMO (II)

Unidad 0	Unidad
-1	-1
-1	-1
-1	-1
	-1 -1 -1

Unidad 0	Unidad 1	Unidad 2
-1	-1	-1
-1	-1	-1
-1	-1	-1

Lista de Candidatos Vacía

0	1	2
1	0	2

5. APLICACIÓN A UN CASO REAL

Utilidad en el mundo real

Un Problema Real

Queremos decidir dónde construir n fábricas y tenemos n posibles localizaciones en las que podemos construirlas.

Conocemos las distancias que hay entre cada par de fábricas y también el flujo de materiales que hay de una fábrica a otra.

El problema consiste en decidir dónde construir cada instalación de forma que se minimice el coste de transporte de materiales.

6. EFICIENCIA TEÓRICA

Orden de Eficiencia

```
\langle \qquad O(n^2) \rangle
for i hasta tam problema
  for j hasta tam problema
    // Calculamos distancias y flujos potenciales [O(1)]
for i hasta tam problema
  for j hasta tam problema
    // Calculamos beneficio de meter oficinista en habitación [O(1)]
while (NumLC > 0 && tam solucion < tam problema) {</pre>
  for i hasta tam problema
    for j hasta tam problema
      if (LC[i][j] > max)
        // Buscamos el beneficio más grande y guardamos los índices [O(1)]
  // Añadimos el candidato seleccionado a la solución [O(1)]
  for i hasta tam problema
       // Eliminamos los candidatos en la misma fila [O(1)]
                                                                 O(n)
  for i hasta tam_problema
      // Eliminamos los candidatos en la misma columna [O(1)]
```


¡GRACIAS A TODOS!

¿Preguntas?