Chapter 6.1

1. Since
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$, $\mathbf{u} \cdot \mathbf{u} = (-1)^2 + 2^2 = 5$, $\mathbf{v} \cdot \mathbf{u} = 4(-1) + 6(2) = 8$, and $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} = \frac{8}{5}$.

13. Since
$$\mathbf{x} = \begin{bmatrix} 10 \\ -3 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$, $\|\mathbf{x} - \mathbf{y}\|^2 = [10 - (-1)]^2 + [-3 - (-5)]^2 = 125$ and dist $(\mathbf{x}, \mathbf{y}) = \sqrt{125} = 5\sqrt{5}$.

- **16**. Since $\mathbf{u} \cdot \mathbf{v} = 12(2) + (3)(-3) + (-5)(3) = 0$, \mathbf{u} and \mathbf{v} are orthogonal.
- 19. a. True. See the definition of $\|\mathbf{v}\|$.
 - **b**. True. See Theorem 1(c).
 - c. True. See the discussion of Figure 5.
 - **d**. False. Counterexample: $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.
 - e. True. See the box following Example 6.
- **26**. Theorem 2 in Chapter 4 may be used to show that W is a subspace of \mathbb{R}^3 , because W is the null space of the 1×3 matrix \mathbf{u}^T . Geometrically, W is a plane through the origin.
- **30.** a. If \mathbf{z} is in W^{\perp} , \mathbf{u} is in W, and c is any scalar, then $(c\mathbf{z}) \cdot \mathbf{u} = c(\mathbf{z} \cdot \mathbf{u}) = c0 = 0$. Since \mathbf{u} is any element of W, $c\mathbf{z}$ is in W^{\perp} .
 - **b.** Let \mathbf{z}_1 and \mathbf{z}_2 be in W^{\perp} . Then for any \mathbf{u} in W, $(\mathbf{z}_1 + \mathbf{z}_2) \cdot \mathbf{u} = \mathbf{z}_1 \cdot \mathbf{u} + \mathbf{z}_2 \cdot \mathbf{u} = 0 + 0 = 0$. Thus $\mathbf{z}_1 + \mathbf{z}_2$ is in W^{\perp} .
 - c. Since $\mathbf{0}$ is orthogonal to every vector, $\mathbf{0}$ is in W^{\perp} . Thus W^{\perp} is a subspace.

Chapter 6.2

1. Since
$$\begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -4 \\ -7 \end{bmatrix} = 2 \neq 0$$
, the set is not orthogonal.

4. Since
$$\begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix} = 0$$
, the set is orthogonal.

7. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = 12 - 12 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. Since the vectors are non-zero, \mathbf{u}_1 and \mathbf{u}_2 are linearly independent by Theorem 4. Two such vectors in \mathbb{R}^2 automatically form a basis for \mathbb{R}^2 . So $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for \mathbb{R}^2 . By Theorem 5,

$$\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{x} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = 3\mathbf{u}_1 + \frac{1}{2}\mathbf{u}_2$$

- 12. Let $\mathbf{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. The orthogonal projection of \mathbf{y} onto the line through \mathbf{u} and the origin is the orthogonal projection of \mathbf{y} onto \mathbf{u} , and this vector is $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = -\frac{2}{5} \mathbf{u} = \begin{bmatrix} 2/5 \\ -6/5 \end{bmatrix}$.
- 13. The orthogonal projection of \mathbf{y} onto \mathbf{u} is $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = -\frac{13}{65} \mathbf{u} = \begin{bmatrix} -4/5 \\ 7/5 \end{bmatrix}$. The component of \mathbf{y} orthogonal to \mathbf{u} is $\mathbf{y} \hat{\mathbf{y}} = \begin{bmatrix} 14/5 \\ 8/5 \end{bmatrix}$. Thus $\mathbf{y} = \hat{\mathbf{y}} + (\mathbf{y} \hat{\mathbf{y}}) = \begin{bmatrix} -4/5 \\ 7/5 \end{bmatrix} + \begin{bmatrix} 14/5 \\ 8/5 \end{bmatrix}$.
- 21. Let $\mathbf{u} = \begin{bmatrix} 1/\sqrt{10} \\ 3/\sqrt{20} \\ 3/\sqrt{20} \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3/\sqrt{10} \\ -1/\sqrt{20} \\ -1/\sqrt{20} \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Since $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{w} = \mathbf{0}$, $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is an

orthogonal set. Also, $\|\mathbf{u}\|^2 = \mathbf{u} \cdot \mathbf{u} = 1$, $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v} = 1$, and $\|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w} = 1$, so $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is an orthonormal set.

35. [M] One can compute that $A^T A = 100I_4$. Since the off-diagonal entries in $A^T A$ are zero, the columns of A are orthogonal.

Chapter 6.3

1. The vector in Span $\{\mathbf{u}_4\}$ is $\frac{\mathbf{x} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4 = \frac{72}{36} \mathbf{u}_4 = 2\mathbf{u}_4 = \begin{bmatrix} 10 \\ -6 \\ -2 \\ 2 \end{bmatrix}$. Since

$$\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4, \text{ the vector } \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4 = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 10 \\ -6 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 4 \\ -2 \end{bmatrix} \text{ is in }$$

 $\operatorname{Span}\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}.$

7. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = 5 + 3 - 8 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. By the Orthogonal Decomposition

Theorem,
$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = 0 \mathbf{u}_1 + \frac{2}{3} \mathbf{u}_2 = \begin{bmatrix} 10/3 \\ 2/3 \\ 8/3 \end{bmatrix}, \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -7/3 \\ 7/3 \\ 7/3 \end{bmatrix} \text{ and } \mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}, \text{ where } \mathbf{y} = \mathbf{y} + \mathbf{z} = \mathbf{y} + \mathbf{y} = \mathbf{y} + \mathbf{z} = \mathbf{y} + \mathbf{z} = \mathbf{y} + \mathbf{y} + \mathbf{y} = \mathbf{y} + \mathbf{y} = \mathbf{y} + \mathbf{y} = \mathbf{y} + \mathbf{y} = \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y} = \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y} = \mathbf{$$

 $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

13. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. By the Best Approximation Theorem, the closest point in

Span
$$\{\mathbf{v}_1, \mathbf{v}_2\}$$
 to \mathbf{z} is $\hat{\mathbf{z}} = \frac{\mathbf{z} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{z} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{2}{3} \mathbf{v}_1 - \frac{7}{3} \mathbf{v}_2 = \begin{bmatrix} -1 \\ -3 \\ -2 \\ 3 \end{bmatrix}$.

17. **a.**
$$U^T U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $UU^T = \begin{bmatrix} 8/9 & -2/9 & 2/9 \\ -2/9 & 5/9 & 4/9 \\ 2/9 & 4/9 & 5/9 \end{bmatrix}$.

b. Since $U^TU = I_2$, the columns of U form an orthonormal basis for W, and by Theorem 10

$$\operatorname{proj}_{w} \mathbf{y} = UU^{T} \mathbf{y} = \begin{bmatrix} 8/9 & -2/9 & 2/9 \\ -2/9 & 5/9 & 4/9 \\ 2/9 & 4/9 & 5/9 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

- 21. e. True. See the relaulations for exin Example 1 or the Lexister Example 6 in Section 6.1.
 - **b**. True. See the Orthogonal Decomposition Theorem.
 - **c**. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the statement of Theorem 9.
 - d. True. See the box before the Best Approximation Theorem.
 - **e**. True. Theorem 10 applies to the column space *W* of *U* because the columns of *U* are linearly independent and hence form a basis for *W*.