Classification of ncRNAs using machine learning methods

Stefan Simm

31. March 2023

CONVOLUTIONAL NEURAL NETWORK

ANN or CNN?

- We know it is better to train on small models if possible.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning from images:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!
What about training a lot of such "small" detectors
and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	

	-1	1	-1
Filter 2	-1	1	-1
	-1	1	-1

: :

Each filter detects a small pattern (3 x 3).

Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0

Dot product 3 -1

6 x 6 image

.Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

3 -3

Convolution

1-1-1-11-1-1-11

Filter 1

stride=1

6 x 6 image

3 -1 -3 -1 -3 1 0 -3 -3 -3 1 0 -2 -2 3 -1

Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution vs. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

The whole CNN

cat dog **Fully Connected** Feedforward network

Flattened

Can repeat many times

Max Pooling

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

3 -1 -3 1	-3 -1 0 -3
	0 3
-3 -3	0 1

Why Pooling

Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

Max Pooling

6 x 6 image

New image but smaller

2 x 2 image

Each filter is a channel

The whole CNN

Smaller than the original image

The number of channels is the number of filters

The whole CNN

cat dog

Transfer on other data input

- How to deal with Text as input?
 - Transform to image?
 - Is the input parameter independent?

- Same requirements fitting?
 - Letters transform to integers?
 - Is the sequence order important?
 - Why smaller portions?

CNN in text classification

TYPES OF RNA AND THEIR SPECIFIC STRUCTURES

mRNA features / structure

- ■Comprises only 5% of the RNA in the cell
- ■Most heterogeneous in size and base sequence
- □All members of the class function as messengers carrying the information in a gene to the protein synthesizing machinery

tRNA features / structure

- ➤ Small RNA species (74 95 nucleotides)
- Transfer amino acid to translation machinery (easily soluble RNA)
- ➤ At least 20 species for 20 amino acids required

http://higheredbcs.wiley.com/legacy/college/boyer/047 1661791/structure/tRNA/trna_diagram_small.gif

rRNA features / structure

http://www.pnas.org/content/ 107/46/19748/F3.large.jpg

- Large and small ribosomal subunit:
- \Leftrightarrow 60S \rightarrow 5S, 5.8S and 28S rRNA
- 40S → 18S rRNA
- 5S is independently transcribed
- All other comes from 45S precursor

non-coding (nc) RNAs

(20-200nt) PASR Associated with gene regulatory elements (18nt) tiRNA (20-90nt) TSSa-RNA (18nt) PROMPTs Small non-coding RNAs (17-18nt) spliRNA (20-200nt) TASR (~21nt) endo-siRNA (88-98nt) vRNA (various) snRNA rasiRNA crasiRNA (26-31nt) piRNA Tel-sRNA (18-24nt) miRNA (60-300nt) snoRNA

Schonrock N et al. Circulation Research. 2012;111:1349-1362

Aim for todays lesson

CNN FOR SEQUENCE CLASSIFICATION

snoRNAs

scaRNAs

Canonical H/ACA box snoRNP

Canonical C/D box snoRNP

Canonical H/ACA box scaRNP

Canonical C/D box scaRNP

Tandem H/ACA box scaRNA

Tandem C/D box scaRNA

Hybrid H/ACA-C/D box scaRNA

scaRNAs vs snoRNAs

The dataset

RNAcentral

- snoRNA (C/D-box, H/ACA-box), scaRNA
- No hypotheticals, no partials

	snoRNA (H/ACA)	snoRNA (C/D)	scaRNA
Overall	89,522	152,235	6,747
Mammalia	57,640	34,286	4,094
Insecta	976	2,388	47
Fish (Actinopterygii)	7,320	11,530	752
Plants (Viridiplantae)	5,808	76,445	28
Fungi (Ascomycota)	5,375	7,835	1

Preprocessing step

- Clustered via CD-HIT to a max. of 0.9 (90%) similarity
- Balanced to 1913 sequences per class

Workflow

CNN our Standard Architecture

Let's Classify

