Zadání semestrálního projektu IEL 2024/25

Vypracujte samostatně protokol, který bude obsahovat postup výpočtu, výsledky, Vaše jméno a login. V závěru protokolu uveď te přehlednou tabulku s čísly úloh, Vašimi variantami zadání a výsledky (za chybějící tabulku bude BODOVÁ SRÁŽKA!!!).

Tento protokol se odevzdává ve formátu PDF + zdrojové soubory (zabaleny v zipu, soubor je pojmenován podle loginu, např. xnovak00.zip). Odevzdání zdrojového programu v TEXu není povinné, ale bude garantovi předmětu sloužit při případném rozhodování o korekci výsledného hodnocení.

Veškeré výpočty provádějte v obecném tvaru a číselné hodnoty dosaď te až do výsledných vzorců. Z vypracovaného projektu musí být zřejmý obecný postup výpočtu. Výsledky uvádějte na 4 platná desetinná místa. Dbejte na správný převod jednotek úhlů (radiány na stupně - pozor na kvadrant u komplexního čísla!!!).

Za protokol je možné získat max. 12 bodů v závislosti na věcné správnosti postupu výpočtu a estetických kvalitách protokolu (9 bodů za správné řešení a 3 body za zpracování). Pro získání zápočtu v předmětu IEL je zapotřebí získat ze semestrálního projektu MINIMÁLNĚ 3 BODY!!! Protokol odevzdejte do 14. 12. 2024 prostřednictvím Moodle VUT (bude Vám umožněno odevzdat 2 soubory - hlavní 'xlogin00.pdf' soubor s vlastním řešením projektu + všechny "pomocné soubory" zdrojové soubory - .tex soubor, nakreslené obrázky, případně MATLAB výpočty apod. zabalené v 'xlogin00.zip' souboru. Maximální velikost souborů je nastavena na 10MB). Projekty odevzdané po tomto termínu nebudou hodnoceny.

Důležité upozornění: Projekty do předmětu IEL má plně v kompetenci pouze a jedině Dr. Václav Šátek (satek@fit.vut.cz). Neobtěžujte svými dotazy na projekt jiné vyučující.

 $\fbox{1}$ (2 body) Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190
В	95	115	650	730	340	330	410	830	340	220
C	100	80	450	810	190	220	220	720	260	180
D	105	85	420	980	330	280	310	710	240	200
Ε	115	55	485	660	100	340	575	815	255	225
F	125	65	510	500	550	250	300	800	330	250
G	130	60	380	420	330	440	450	650	410	275
Н	135	80	680	600	260	310	575	870	355	265

 $\fbox{\textbf{2}}$ (1 bod) Stanovte napětí U_{R4} a proud $I_{R4}.$ Použijte metodu Théveninovy věty.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	50	100	525	620	210	530	50
В	100	50	310	610	220	570	100
С	200	70	220	630	240	450	200
D	150	200	200	660	200	550	150
Е	250	150	335	625	245	600	300
F	130	180	350	600	195	650	80
G	180	250	315	615	180	460	120
Н	220	190	360	580	205	560	250

 $\fbox{\bf 3}$ (2 body) Stanovte napětí U_{R2} a proud $I_{R2}.$ Použijte metodu uzlových napětí ($U_A,\,U_B,\,U_C).$

sk.	U_1 [V]	U_2 [A]	I [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
A	120	50	0.7	53	49	65	39	32	48
В	150	70	0.8	49	45	61	34	34	55
С	110	100	0.75	44	31	56	20	30	60
D	115	60	0.9	50	38	48	37	28	45
Е	135	110	0.65	52	42	52	42	21	40
F	145	120	0.85	48	44	53	36	25	70
G	160	135	0.45	46	41	53	33	29	65
H	130	90	0.50	47	39	58	28	25	<u>35</u>

4 (2 body)

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_1} = U_{L_1} \cdot \sin(2\pi f t + \varphi_{L_1})$ určete $|U_{L_1}|$ a φ_{L_1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
A	3	5	12	14	120	100	200	105	70
В	2	4	11	15	100	85	220	95	80
C	3	4	10	13	220	70	230	85	75
D	4	5	13	15	180	90	210	75	85
Е	5	3	14	13	130	60	100	65	90
F	2	3	12	10	170	80	150	90	65
G	5	5	13	12	140	60	160	80	60
Н	5	6	10	10	160	75	155	70	95

$\boxed{\mathbf{5}}$ (2 body)

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
A	40	10	20	10
В	30	25	10	12
С	50	5	25	15
D	60	4	20	17
Е	40	30	120	13
F	25	10	50	8
G	20	2	100	5
Н	12	6	240	3

