CS240: Homework 11

Sahit Mandala

December 17, 2015

Section 313, 9069858745

Problem 1

$\mathbf{A})$

 $\epsilon |1|0|(01)|(10)|(11)|(00)$

B)

00(0|1)*0

C)

Assuming that there does not have to be at least a single "1" (e.g. the empty string is valid): $(0|100)^*$

D)

(0*10*10*)*

Note by order of operations that this is equivalent to: ((0)*1(0)*1(0)*)*

Problem 2

$\mathbf{A})$

There 26 total capital letters, so we have 26 choices for each initial in a 3-letter initial; hence, we have 26 * 26 * 26 * 26 = 17576 possibilities.

B)

We have 26 choices for the first, 25 for the second (since we can't choose whichever the first was), and 24 for the last one (again, since we can't choose the 2 letters from earlier), so 26 * 25 * 24 = 15600 possibilities.

C)

If A is the first letter, than we only have freedom in the last 2 letters; each has 26 possible letters, so we have 26 * 26 = 676 possibilities.

D)

The intials which have at least 1 "A" can be broken down into several catagories: Initials with exactly 1 "A", Initials with exactly 2 "A"s, Initials with all 3 "A"s.

Clearly, there is only 1 string with all As (namely AAA), so we have 1 for that catagory.

Next, for exactly 2 As, notice that the string can take one of the following forms: XAA, AXA, AXA. Here, X is any non-A letter. In each case, we have 25 choices for X, so we have a total of 25 + 25 + 25 = 75 choices for strings with exactly 2 As.

Next, for exactly 1 "A", notice that the string can take one of the following forms: XXA, AXX, XAX. Here, X is any non-A letter. In each case, we have 25 choices for X and thus each form has 25 * 25 total possibilities; so we have a total of 25 * 25 + 25 * 25 + 25 * 25 = 1875 choices for strings with exactly 1 "A".

In total, we have 1 + 75 + 75 + 1875.

Problem 3

A)

We assume ordering does not apply to poker hands.

If the hand has exactly 2 queens, we have to choose 2 cards from the 4 total queens, so the number of ways to pick 2 queens from 4 is $\binom{4}{2} = 6$. The rest of 3 cards which can be any among the rest of the 52 - 4 = 48 non-queen cards. So we have $\binom{48}{3} = 17296$ choices here. Total we have 6*17296 choices.

If the hand has exactly 3 queens, we have to choose 3 cards from the 4 total queens, so the number of ways to pick 3 queens from 4 is $\begin{pmatrix} 4 \\ 3 \end{pmatrix} = 4$. The rest of 2 cards which can be any among the rest of the 52 - 4 = 48 non-queen cards. So we have $\begin{pmatrix} 48 \\ 2 \end{pmatrix} = 1128$. choices here. Total we have 6*1128 choices.

If the hand has 4 queens, then we have 48 possible choices for the last card, so we have 48 choices here.

Total, we have 6*17296+6*1128+48=110592 choices for poker hands with at least 2 queens.

B)

The hands with the two of clubs without the 2 of spades has 50 total cards (excluding the afformentioned 2) to choose the other 4 cards from, so there are $\begin{pmatrix} 50 \\ 4 \end{pmatrix} = 230300$ such hands.

The hands with the two of spades without the 2 of clubs has 50 total cards (excluding the afformentioned 2) to choose the other 4 cards from, so there are $\begin{pmatrix} 50 \\ 4 \end{pmatrix} = 230300$ such hands.

The hands with the two of spades and the 2 of clubs has 50 total cards (excluding the afformentioned 2) to choose the other 3 cards from, so there are $\begin{pmatrix} 50 \\ 3 \end{pmatrix} = 19600$ such hands.

Note these hands are exclusive from the others. In total, we have 230300 + 230300 + 19600 = 480200

Problem 4

A)

Assuming anyone can be goalkeeper, we can choose any 11 of the 15 players where ordering on the choice does not matter; hence, we have $\begin{pmatrix} 15\\11 \end{pmatrix} = 1365$ possible configurations.

$\mathbf{B})$

If 11 players are on the field, any choice of 5 from the 11 can be defenders, any choice of 3 from the remaining 6 can be midfielders and any choice of 2 of the remaining 3 can be forwards (last one becomes goalie). So we have $\begin{pmatrix} 11 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = (462)(20)(3) = 27720$

\mathbf{C})

If 11 players are on the field, any choice of 4 from the 11 can be defenders, any choice of 4 from the remaining 7 can be midfielders and any choice of 2 of the remaining 3 can be forwards (last one becomes goalie). So we have $\begin{pmatrix} 11 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = (330)(35)(3) = 34650$.