Gesamtschule Scharnhorst

Fundamentalsatz der Analysis

geschrieben von

Benno Schörmann

Thema der Facharbeit:

Eine vollständige Definition und ein vollständiger Beweis des Fundamentalsatzes der Analysis

Inhaltsverzeichnis

I Einleit	tung	2
II Gesch	nichtliche Zusammenfassung	2
III Alle w	vichtigen Begriffe erklärt	2
III.1 W	Vas ist Differentialrechnung?	2
II	II.1.1 Wie wird eine Funktion abgeleitet?	2
III.2 W	Vas ist Integralrechnung?	2
II	II.2.1 Wie wird eine Funktion integriert?	2
III.3 W	Vas ist der Mittelwertsatz?	3
III.4 W	Vas ist eine stetige Funktion?	3
IV Haupt	tsatz der Differential- und Integralrechnung	3
IV.1 E	Erster Satz	3
IV.2 K	Corollar	6
V Auswi	irkungen auf die Mathematik	6

I Einleitung

(Die Einteilung steht übrigens noch absolut nicht fest, habe sie gestern abend im Halbschlaf angefertigt)

In dieser Facharbeit werde ich über Den Fundamentalsatz der Analysis und die dazugehörigen Nebenpunkte schreiben.

II Geschichtliche Zusammenfassung

Newton/Gauss Fight

Jahreszeiten, Semi guter Beweis am Anfang?

1

III Alle wichtigen Begriffe erklärt

Anschauliche Beispiele? (Scipy Einbindung?)

III.1 Was ist Differentialrechnung?

-eines der am einfachsten zu begreifenden Themen der Analysis ermöglicht dieser Teil der Analysis das finden von Extrema und das generelle Beschreiben von Funktionsverläufen.

III.1.1 Wie wird eine Funktion abgeleitet?

Text

III.2 Was ist Integralrechnung?

Text

III.2.1 Wie wird eine Funktion integriert?

 Text

¹Omar A. Hernandez Rodriguez (University of Puerto Rico) and Jorge M. Lopez Fernandez (University of Puerto Rico), "Teaching the Fundamental Theorem of Calculus: A Historical Reflection - Integration from Cavalieri to Darboux," Convergence (Januar 2012)

III.3 Was ist der Mittelwertsatz?

Text

III.4 Was ist eine stetige Funktion?

Text

IV Hauptsatz der Differential- und Integralrechnung

Der Hauptsatz der Dieefrential- und Integralrechnung ist in zwei Hauptsätze und einen Nebensatz aufgeteilt. Der erste Satz stellt den Zusammenhang zwischen Integral und Differential dar.

IV.1 Erster Satz

Satz IV.1.1. Sei f eine stetige, der Zahlenmenge \mathbb{R} angehörige Funktion in einem geschlossenen Intervall [a,b]. Sei F definiert für alle x im Intervall [a,b] durch

$$F(x) = \int_{a}^{x} f(t)dt \tag{1}$$

Dann ist F gleichmäßig stetig auf dem Intervall [a,b] und differenzierbar auf dem offenen Intervall (a,b), und

$$F'(x) = f(x) \tag{2}$$

Für alle x in (a,b), sodass F eine Stammfunktion von f ist.

Der Hauptsatz wird oftmals benutzt, um das Integral einer Funktion f zu berechnen, dessen Stammfunktion F bekannt ist. Wenn $f \in \mathbb{R}$, stetig auf dem Intervall [a,b] und F eine Stammfunktion im Intervall [a,b] ist, dann

$$\int_{a}^{b} f(t)dt = F(b) - F(a) \tag{3}$$

Dieser Satz setzt Stetigkeit auf dem ganzen Intervall voraus.

Dieser Satz wird oftmals ZweiterFundamentalsatzderAnalysis oder Newton-Leibniz axiom genannt Sei $f \in \mathbb{R}$ in einem geschlossenem Intervall [a,b] und F eine Stammfunktion von f in (a,b)

$$F'(x) = f(x) \tag{4}$$

Wenn f Riemann-integrierbar in [a,b] ist, dann gilt

$$\int_{a}^{b} f(t)dt = F(b) - F(a) \tag{5}$$

Beweis. —

Für ein gegebenes f(t) sei die Funktion F(x) definiert als

$$F(x) = \int_{a}^{x} f(t)dt \tag{6}$$

Für jegliche 2 Zahlen x_1 und Δx_1 im Intervall[a,b]ergibt sich

$$F(x_1) = \int_0^{x_1} f(f)dt \tag{7}$$

und

$$F(x_1 + \Delta x_1) = \int_a^{x_1 + \Delta x} f(t)dt \tag{8}$$

Wenn diese beiden Gleichungen nun subtrahiert werden, dann ergibt sich

$$F(x_1 + \Delta x_1) - F(x_1) = \int_a^{x_1 + \Delta x_1} f(t)dt - \int_a^{x_1} f(t)dt$$
 (9)

Die Summe beider Flächen ist

$$\int_{a}^{x_{1}} f(t)dt + \int_{x_{1}}^{x_{1} + \Delta x_{1}} f(t)dt = \int_{a}^{x_{1} + \Delta x_{1}} f(t)dt$$
 (10)

Die Umformung dieser Gleichungen gibt

$$\int_{a}^{x_1 + \Delta x_1} f(t)dt - \int_{a}^{x_1} f(t)dt = \int_{x_1}^{x_1 + \Delta x_1} f(t)dt$$
 (11)

Nun wird die Gleichung (n) eingesetzt.

$$F(x_1 + \Delta x) - F(x_1) = \int_{x_1}^{x_1 + \Delta x} f(t)dt$$
 (12)

Laut dem Mittelwertsatz gibt es eine Zahl c in $[x_1, x_1 + \Delta x]$, sodass

$$\int_{x_1}^{x_1+\Delta x} f(t)dt = f(c) * \Delta x \tag{13}$$

Nun wird die Gleichung (n) eingesetzt

$$F(x_1 + \Delta x) - F(x_1) = f(c) * \Delta x \quad | \div \Delta x$$
 (14)

Nun wird die Gleichung durch Δx dividiert

$$\frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = f(c) \tag{15}$$

Auffallend ist, dass auf die linke Seite zu einem Differenzeinquotienten umgeformt wurde. Wird nun $\lim_{\Delta x \to 0}$ angewandt, dann

$$\lim_{\Delta x \to 0} \frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = \lim_{\Delta x \to 0} f(c)$$
(16)

Und somit

$$F'(x_1) = \lim_{\Delta x \to 0} f(c) \tag{17}$$

Nun fehlt nur noch f(c).

Da $x_1 \le c \le x_1 + \Delta x$ ist und Δx gegen 0 läuft wird sich $c \to x_1$ nähern bis bei $\Delta x = 0$ auch $c = x_1$ ist, beziehungsweise $x_1 \le c \le x_1 + 0$ oder $x_1 = c = x_1$ ist.

Zusammenfassend ist also

$$\lim_{\Delta x \to 0} f(c) = f(x_1) \tag{18}$$

Und somit, wenn man (-1) und (-2) zusammenbringt

$$F'(x_1) = f(x_1) (19)$$

Damit ist der erste Satz der Differential- und Integralrechnung bewiesen.

IV.2 Korollar

Satz IV.2.1. —

Sei $f(x), x \to \in \mathbb{R}$ eine stetige Funktion auf dem Intervall [a,b] und F eine Stammfunktion von f im Intervall [a,b], dann gilt

$$\int_{a}^{b} f(t)dt = F(b) - F(a) \tag{20}$$

Das Korollar erfordert Stetigkeit auf dem ganzen Intervall.

Beweis. Sei F ein Stammfunktion von f mit Stetigkeit auf dem Intervall [a, b], dann sei

$$G(x) = \int_{a}^{x} f(t)dt \tag{21}$$

Durch den ersten Beweis ist bewiesen, dass G(x) eine Stammfunktion von f ist. Da F'(x) - G'(x) = 0 ist der Mittelwertsatz impliziert, dass F(x) - G(x) eine konstante Funktion ist, das heißt es gibt eine Zahl c, so dass G(x) = F(x) + c für alle x in [a, b]. Es gilt also

$$F(x) + c = G(x) = \int_{x}^{x} f(t)dt = 0$$
 (22)

V Auswirkungen auf die Mathematik