

Heart Attack Prediction Report

By Samith Lakka Springboard Capstone 2 Project

Problem

- Can machine learning predict the likelihood of heart attacks?
- Identify key risk factors.
- Assist in early diagnosis and prevention.

Project Goals

- Develop a predictive model for heart attacks.
- Use machine learning to analyze risk factors.
- Evaluate model performance using accuracy, precision, recall, and F1-score.

Data Collection and Preprocessing

- Dataset: Kaggle's Heart.csv.
- Features include Age, Sex, Blood Pressure, Cholesterol, etc.
- Steps:
 - Handled missing values.
 - Encoded categorical variables.
 - Normalized numerical features.
 - Split into training & testing sets.

Exploratory Data Analysis

- Initial insights from the dataset.
- Identification of key predictors.
- Understanding data distribution.

BMI Distribution and Heart Attack Risk

- Majority of individuals fall in Overweight/Obese categories.
- High BMI correlates with heart attack risk.

Impact of Physical Activity on Heart Disease

• Individuals with no physical activity tend to have higher BMI and greater heart attack risk.

Statistically significant differences in BMI between active and inactive

groups.

General Health and Heart Attack Risk

- Poorer self-reported health correlates with higher heart attack occurrences.
 - Subjective health ratings provide key insights for prediction.

Baseline Modeling

- Logistic Regression:
 - Accuracy: 75.55%
 - Struggles with high-risk cases.
- Random Forest (Default):
 - Accuracy: 96.13%
 - Completely fails to classify high-risk cases.

Random Forest	: Model Evaluation:					
	precision	recall	f1-score	support		
False	0.961354	1.000000	0.980296	128235.000000		
True	0.000000	0.000000	0.000000	5155.000000		
accuracy	0.961354	0.961354	0.961354	0.961354		
macro avg	0.480677	0.500000	0.490148	133390.000000		
weighted avg	0.924201	0.961354	0.942412	133390.000000		

True

False

False True accuracy

Improving Model Performance on RFM

- Applied SMOTE to oversample high-risk cases.
- Adjusted class weights to prioritize minority class.
- Optimized model parameters with GridSearchCV.
- Best Parameters:
 - max_depth: 20
 - o max features: 'sqrt'
 - min_samples_split: 2
 - o n_estimators: 100
 - Accuracy improved to 92%.
 - High-risk cases still challenging.

Best Parameters for Random Forest with SMOTE: {'max_depth': 20, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}

Classification	Report: precision	recall	f1-score	support
Low Risk High Risk	0.97 0.19	0.94 0.35	0.96 0.24	128235 5155
accuracy macro avg weighted avg	0.58 0.94	0.65 0.92	0.92 0.60 0.93	133390 133390 133390

Key Findings

- The optimized model improved performance but struggled with high-risk classifications.
- Accuracy and F1-scores were good for low-risk cases but weak for high-risk cases.

Conclusion and Next Steps

- Incorporate more clinically relevant features.
- Test advanced techniques (deep learning, ensemble models).
- Improve data balancing techniques.
- Deploy interpretability tools (SHAP, LIME).

Recommendations for StakeHolders

- Healthcare Professionals: Use the model as a supplementary tool.
- Researchers: Focus on class imbalance solutions.
- Policymakers: Promote awareness campaigns.
- Patients: Use predictions as part of preventive care.