

planetmath.org

Math for the people, by the people.

Gram-Schmidt orthogonalization

Canonical name GramSchmidtOrthogonalization

Date of creation 2013-03-22 12:06:14 Last modified on 2013-03-22 12:06:14

Owner akrowne (2) Last modified by akrowne (2)

Numerical id 9

Author akrowne (2) Entry type Algorithm Classification msc 65F25

Synonym Gram-Schmidt decomposition Synonym Gram-Schmidt orthonormalization

Synonym Gram-Schmidt process

Related topic HouseholderTransformation

Related topic GivensRotation
Related topic QRDecomposition

Related topic An Example For Schur Decomposition

Any set of linearly independent vectors v_1, \ldots, v_n can be converted into a set of orthogonal vectors q_1, \ldots, q_n by the Gram-Schmidt process. In three dimensions, v_1 determines a line; the vectors v_1 and v_2 determine a plane. The vector q_1 is the unit vector in the direction v_1 . The (unit) vector q_2 lies in the plane of v_1, v_2 , and is normal to v_1 (on the same side as v_2 . The (unit) vector q_3 is normal to the plane of v_1, v_2 , on the same side as v_3 , etc.

In general, first set $u_1 = v_1$, and then each u_i is made orthogonal to the preceding $u_1, \ldots u_{i-1}$ by subtraction of the projections of v_i in the directions of u_1, \ldots, u_{i-1} :

$$u_i = v_i - \sum_{j=1}^{i-1} \frac{u_j^T v_i}{u_j^T u_j} u_j$$

The *i* vectors u_i span the same subspace as the v_i . The vectors $q_i = u_i/||u_i||$ are orthonormal. This leads to the following theorem:

Theorem.

Any $m \times n$ matrix A with linearly independent columns can be factorized into a product, A = QR. The columns of Q are orthonormal and R is upper triangular and invertible.

This "classical" Gram-Schmidt method is often numerically unstable, see [Golub89] for a "modified" Gram-Schmidt method.

References

• Originally from The Data Analysis Briefbook (http://rkb.home.cern.ch/rkb/titleA.html

Golub89 Gene H. Golub and Charles F. van Loan: Matrix Computations, 2nd edn., The John Hopkins University Press, 1989.