Assignment 4

Name: Shihab Muhtasim

ID: 21301610

sec: 3

course : CSE 330

We know,

know,

$$n \geq \frac{\log(1b-a1) - \log(C)}{\log(2)} - 1$$

$$\log(2)$$

$$\gamma \ge \frac{\log(8.5) - \log(10^{-2})}{\log(2)} - 1$$

Minimum numbers of iterations required = 9

Ansto or 1 (b)

K	an	bu	mk	Hans	1/1/1/2		[a,b]
0	-10			(du)	F(bu)	f (mu	(d a b)
50			010	- 864	0.875	1-13810	U r
1		1 2	-3623	-138.04	0.875	-23.99	[21/26 11/2]
2	-3.622	-1.2	-2·56	-23.99	0.872	-4.01	[-2'5625,-1'5]
9	25	-1.5	-2.03 125	-4.01	0.875	-0'129	[-2.03152-1.2]
9	-2:03 125	-1.2	-1'76 5625	-0'129	0.875	0'6757	[-2.03125) -1.765625]

. X = -1.765625

Ans to or 1 (c)

$$\pi 00ts$$
, $\chi_1 = 2$, $\chi_2 = -1$, $\chi_3 = -2$

Let,
$$\chi^{3} + \chi^{4} - 4\chi - 4 = 0$$

$$= \chi^{3} + \chi^{4} - 4 \qquad (i)$$

Again,

$$\chi' = 4\chi + 4 - \chi^{3}$$

$$= \chi = \pm \sqrt{4\chi + 4 - \chi^{3}}$$

$$= \chi = \sqrt{4\chi + 4 - \chi^{2}} - (ii)$$

(1)
$$g(x) = \sqrt{\frac{x^3 + x^2 - 4}{4}}$$

$$g'(2) = 4$$

since 4×1 , this most is diverying for this g(n)

Agoln,
$$g(x) = \sqrt{4x+4-x^3}$$

$$g'(2) = |-2| = 2$$

since 2 x 1, this most is diverging for the g(n)

for
$$x_2 = -1$$
,

:- gince 0.5 < 1, this is converging

$$g'(-2) = |-2| = 2$$

since 2 \$1, this is diverging.

Ans to or 2 (a)

We know,

$$\chi_{K+1} = \chi_K - \frac{f(\chi_K)}{f'(\chi_K)}$$

Given,
$$f(x) = xe^{x} - 1$$
 $x_0 = 1.5$
 $f(x) = xe^{x} + e^{x}$

P	V	XK
F	0	Xo = 1.2
-	1	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.9893$
	2	$\chi_2 = \chi_1 - \frac{f(\eta_1)}{f'(\eta_1)} = 0.6789$
- Charles	3	N3 = 0.5766
	9	x4 = 0.2672

Ans to or 2 (b)

$$g(n) = \frac{2x+1}{\sqrt{x+1}}$$

$$g'(n) = \frac{2x+3}{2(x+1)\sqrt{x+1}}$$

$$g'(-3/2) = \frac{-3+3}{2(-3/2+1)\sqrt{-3/2+1}}$$

$$=$$
 0

- To be super linearly converged the root must satisfy xx = -3/2

Ans to or 3 (a)

$$f(x) = x^{\nu} - x + 1$$

We know, $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

K	XX
0	1
1	$\gamma_0 - \frac{f(\gamma_0)}{f'(\gamma_0)} \cdot 1 - \frac{1}{1} = 0$
2	$0 - \frac{1}{-1} - 1$
3	$1 - \frac{1}{1} = 0$
4	0 1 = 1
5	1-1=0
6	0-1-1=1

Actual solution -

$$\chi = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

We can see that this function from No in Newton's method fails to approach it's noot as it herps getting same value.

Ans to 3(b)

tel,
$$f(n) = \cos(2\pi) - \sin \chi = 0$$

Given $x_0 = 0$, $\chi_{k+1} = \chi_k - \frac{f(\chi_k)}{f'(\chi_k)}$

Atiken Acceleration,

$$\lambda_{k+2} = \lambda_k - \frac{\chi(k+1) - \lambda_k}{2k+2 - 2kk+1} + \lambda_k$$

U	γu	f(xu)
0	$\chi_0 = 0$	1
1	X1 = 1	-1.25761
2	x2 = 0.46686	0014476
102	2 = 0.0686-2 = 0.62226	-0"3438
43	×3 = 0. 52604	-6.346X10-3
	Xq = 0.523710	-2·8897×10-4

: Solution, X = 0.52371