Generative Grammars Informally

- Fix a vocabulary
 - A set of symbols
 - Some of these symbols, called terminals, play the tokens of the output stream of lexical analysis

- E.g. take the vocabulary {S, a, b} where "a" and "b" are terminals

One non-terminal symbol of the vocabulary is chosen as start symbol

- E.g., S in {S, a, b}

- Fix a set of productions
 - Rules for rewriting strings into strings
 - · Constraint:
 - the string to be replaced must contain at least a non-terminal

- E.g. $\{S \rightarrow aSb, S \rightarrow ab\}$

- These are the ingredients of a generative grammar
- A language of words of terminals can be generated from the start symbol:
 - Apply the rewriting rules in any possible way, as many times as possible
 - Each rewriting is called a derivation
 step

 LFC 2022, Paola Quaglia

5

Notation for the derivation relation \Rightarrow aSb, S \Rightarrow ab

- Is a one-step derivation from S
- "ab" is made up of terminals only
- Hence "ab" belongs to the language generated by the given grammar

$$\{S \rightarrow aSb, S \rightarrow ab\}$$

$$S \Rightarrow aSb \Rightarrow aabb$$

- Is a two-step derivation from S
- "aabb" is made up of terminals only
- Hence "aabb" belongs to the language generated by the given grammar

$$\{S \rightarrow aSb, S \rightarrow ab\}$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

- Is a two-step derivation of a string from S
- But "aaSbb" contains a non-terminal
- Hence "aaSbb" does not belong to the language generated by the given grammar Quaglia

$$\{S \rightarrow aSb, S \rightarrow ab\}$$

- Which is the language generated by this grammar?

$$- \{a^nb^n \mid n>0\}$$

Notation

- Capital letters for non-terminals

Convention

- Special character epsilon (ϵ) used to denote the empty word

- Length of ε is 0
 - 33≡3•
 - $\varepsilon \equiv b^0$ for every terminal b

```
S \rightarrow aAb

aA \rightarrow aaAb

A \rightarrow \epsilon
```

- Generated language: {anbn | n>0}
- OBSERVE: Different grammars can generate the same language

$$S \rightarrow AB$$

$$A \rightarrow aA$$

$$A \rightarrow a$$

$$B \rightarrow Bb$$

$$B \rightarrow b$$

- Generated language: {anbm | n,m>0}

$$S \rightarrow aSBc$$

$$S \rightarrow abc$$

$$cB \rightarrow Bc$$

$$bB \rightarrow bb$$

- Generated language: {anbncn | n>0}

$$S \rightarrow AB$$

$$A \rightarrow a$$

- Generated language: Ø

$$S \rightarrow \varepsilon$$

- Generated language: $\{\varepsilon\}$
- $-\{\varepsilon\} \neq \emptyset$

- $S \rightarrow aSb$
- $S \rightarrow \epsilon$

- Generated language:
 - $\{a^nb^n \mid n>0\} \cup \{\epsilon\} = \{a^nb^n \mid n\geq 0\}$

Example Notation for more productions with same left-hand side

$$C \rightarrow aCA \mid bCB$$

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

$$C \rightarrow \varepsilon$$

$$D \rightarrow \epsilon$$

$$S \rightarrow CD$$
 $C \rightarrow \alpha CA \mid bCB$
 $AD \rightarrow \alpha D$
 $BD \rightarrow bD$
 $A\alpha \rightarrow \alpha A$
 $Ab \rightarrow bA$
 $B\alpha \rightarrow \alpha B$
 $Bb \rightarrow bB$
 $C \rightarrow \epsilon$
 $D \rightarrow \epsilon$

$$S \Rightarrow CD$$
 $CD \Rightarrow D$
 $D \Rightarrow \varepsilon$

$$S \rightarrow CD$$
 $C \rightarrow aCA \mid bCB$
 $AD \rightarrow aD$
 $BD \rightarrow bD$
 $Aa \rightarrow aA$
 $Ab \rightarrow bA$
 $Ba \rightarrow aB$
 $Bb \rightarrow bB$
 $C \rightarrow \epsilon$
 $D \rightarrow \epsilon$

$$S \Rightarrow CD$$
 $CD \Rightarrow aCAD$
 $aCAD \Rightarrow aCaD$
 $aCaD \Rightarrow aaD$
 $aCaD \Rightarrow aaD$

$$S \rightarrow CD$$
 $C \rightarrow \alpha CA \mid bCB$
 $AD \rightarrow \alpha D$
 $BD \rightarrow bD$
 $A\alpha \rightarrow \alpha A$
 $Ab \rightarrow bA$
 $B\alpha \rightarrow \alpha B$
 $Bb \rightarrow bB$
 $C \rightarrow \epsilon$
 $D \rightarrow \epsilon$

$$S \Rightarrow CD$$
 $CD \Rightarrow aCAD$
 $aCAD \Rightarrow abCBAD$
 $abCBAD \Rightarrow abCBA$
 $abCBAD \Rightarrow abBA$

$$S \rightarrow CD$$
 $C \rightarrow \alpha CA \mid bCB$
 $AD \rightarrow \alpha D$
 $BD \rightarrow bD$
 $A\alpha \rightarrow \alpha A$
 $Ab \rightarrow bA$
 $B\alpha \rightarrow \alpha B$
 $Bb \rightarrow bB$
 $C \rightarrow \epsilon$
 $D \rightarrow \epsilon$

$$S \Rightarrow CD$$
 $CD \Rightarrow aCAD$
 $aCAD \Rightarrow abCBAD$
 $abCBAD \Rightarrow abCBaD$
 $abCBaD \Rightarrow abCaBD$
 $abCaBD \Rightarrow abCabD$
 $abCabD \Rightarrow ababD$
 $abCabD \Rightarrow ababD$

Generative Grammars Formally

A grammar is a tuple(V,T,S,P)

- V vocabulary of terminals and nonterminals
- T set of terminals
- S start symbol in (V\T)
- P set of productions

Not

Zero or more repetitions of elements in the base set

alphabet

- Uppercase, early in ty
 - *A*,B,.... ∈ (V \ T)
- Uppercase, late in
 - X,Y,... ∈ V
- Lowercase, earl in the alphabet
 - a,b,.... ∈ T
- Lowercase, early in Greek alphabet
 - $\alpha, \beta, ... \in V^*$
- Strings of terminals
 - w,w₀,....

Productions

- General form:

One or more repetitions of elements in the base

$$\delta \rightarrow \beta$$

- $\delta \in V^+$
- ullet δ contains at least a non-terminal
- ullet δ called **driver** of the production
- β called **body** of the production

Generated Languages

$$-G = (V,T,S,P)$$

$$-L(G) = \{ w \mid w \in T^* \text{ and } S \Rightarrow^* w \}$$

$$T^* \text{ because w may just be } \epsilon$$

Hierarchy of Grammars

- Depending on the shape of productions

- Context-free grammars, or just free grammars:

$$A \rightarrow \beta$$

Context-free Languages

- L is a context-free language
- Iff
- There exists a context-free grammar G such that L=L(G)

Context-free Languages

Canonical Derivations

- Rightmost (Leftmost) derivation step:
 - Replace the rightmost (leftmost) nonterminal
- Canonical derivations of words in the language:
 - Either every step is rightmost
 - Or every step is leftmost

Derivation Trees

- Start symbol is the root
- For every derivation step under the production
- $-A \rightarrow X_1 X_2 ... X_n$
- Generate children X₁ X₂ ... X_n for node A
- Terminals are the leaves (and so is ε)

Derivation Trees

- The derived word is at the **frontier** of the tree

$$S \rightarrow aSb \mid \epsilon$$

Ambiguity in Natural Languages

· L'uomo guarda la donna con il binocolo

Ambiguity

- Grammar G is ambiguous
- Iff
- There exists $w \in L(G)$ that can be generated by two distinct canonical derivations, either both rightmost or both leftmost

$$E \rightarrow E+E \mid E*E \mid n$$

- Ambiguous?

$$E \rightarrow E+E \mid E*E \mid n$$

- Take w = n+n*n

$$E \Rightarrow E + E$$

$$\Rightarrow n + E * E$$

$$\Rightarrow n + n * E$$

$$\Rightarrow n + n * n$$

But also

$$E \rightarrow E+E \mid E*E \mid n$$

- Ambiguous!

 $S \rightarrow \text{if b then } S \mid \text{if b then } S \text{ else } S \mid \text{other}$

- Ambiguous?

 $S \rightarrow if b then S | if b then S else S | other$

- Take
- w = if b then if b then other else other

- Which "then" matches "else"?

 $S \rightarrow \text{if b then } S \mid \text{if b then } S \text{ else } S \mid \text{other}$

- Ambiguous!

Observation

- Ambiguity is undecidable

- No algorithm can be designed to decide whether a grammar is ambiguous or not