trash sorting the right wAl

Emma Baker Reynolds Raphael Weidemann

MOTIVATION

- Garbage sorting is a major issue and people often don't know how to correctly separate their recycling
- Make it easier to sort trash into the correct bin
- Use machine learning to create an image recogniser function

MACHINE LEARNING

WITH CONVOLUTIONAL NEURAL NETWORKS (CNN)

FEATURE DETECTION

Loopy pattern

Convolutional layers use different kinds of filters to detect features/patterns like: Vertical line filter - lines

Diagonal line

- shapes

Or to support layers to detect by:

- sharpening
- edge detection

filter

FEATURE DETECTION

By using different filters we can detect different elements

Through stacking the filtering layers we can detect complex structures like faces.

The CNN then combines these elements to make a classification.

BUILDING THE MODEL

Epoch	Training loss	Validation loss
1	9.830496	10.178691
5	7.177356	7.297019
10	4.249138	4.321951
15	2.557806	2.499118
20	1.715660	1.646037
25	0.633111	0.504662
30	0.328433	0.227507
35	0.211715	0.124314
40	0.225033	0.317374
45	0.179736	0.231164
50	0.168561	0.220994

Dataset consists of 2527 images of garbage against a plain background split into six categories

Used resnet18 (pre-trained model using pytorch framework) to perform transfer learning with our images

IMAGES COLLECTED MANUALLY BY GARY CHUNG AND MINDY YANG - GITHUB/GARYTHUNG/TRASHNET

RESULTS

True label: glass
Predicted label: glass

Predicted probabilities:
6.88 % cardboard
78.54 % glass
1.06 % metal
0.78 % paper
7.0 % plastic
0.06 % trash

Achieved an accuracy of 93% after 50 epochs and we see the improvement start to plateau

Percentages are shown of each category and the image gets sorted into the label with the highest value

DEMO

