Matrix Algebra \mathbb{R}^n

Homework 1

1. Let $\mathbf{x} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$. Evaluate

a)
$$\mathbf{x} + \mathbf{y}$$

Answer:
$$\begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

b)
$$-3x$$

Answer:
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b) $-3x$
Answer: $\begin{pmatrix} -6 \\ 12 \end{pmatrix}$
c) $2x + 4y$

c)
$$2x + 4y$$

Answer:
$$\begin{pmatrix} 12 \end{pmatrix}$$

c) $2x + 4y$
Answer: $\begin{pmatrix} 16 \\ 12 \end{pmatrix}$
d) $x \cdot y$

d)
$$\mathbf{x} \cdot \mathbf{y}$$

Answer:
$$-14$$

Answer:
$$\sqrt{34}$$

Answer: $\sqrt{34}$ 2. Let $\mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$. Evaluate a) $\mathbf{x} + \mathbf{y}$

a)
$$\mathbf{x} + \mathbf{y}$$

Answer:
$$\begin{pmatrix} 6 \\ 5 \\ 0 \end{pmatrix}$$

Answer:
$$\begin{pmatrix} 8 \\ 12 \\ -4 \end{pmatrix}$$

c)
$$3x - 2y$$

Answer:
$$\begin{pmatrix} -2 \\ 5 \\ -5 \end{pmatrix}$$

d)
$$\mathbf{x} \cdot \mathbf{y}$$

e)
$$\|\mathbf{x}\|$$

Answer:
$$\sqrt{14}$$

3. Which of the following are subspaces of \mathbb{R}^3 ? (For the ones which aren't subspaces, explain why they aren't.)

a) The set of $\begin{pmatrix} 0 \\ y \\ z \end{pmatrix}$ where y and z can be anything. **Answer:** This is a subspace.

b) The set of $\begin{pmatrix} 1 \\ y \\ z \end{pmatrix}$ where y and z can be anything.

Answer: This is not a subspace.

c) The set of
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 with $x + y + z = 0$.

Answer: This is a subspace.

d) The set of $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ with x + y + z = 1.

Answer: This is not a subspace.

e) The set of $\begin{pmatrix} x \\ y \end{pmatrix}$ with x + 2y + 3z = 0.

Answer: This is a subspace.

f) The set of $\begin{pmatrix} x \\ y \end{pmatrix}$ with x + y = 0.

Answer: This is a subspace.

g) The set of $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ with x = y = 0.

Answer: This is a subspace.

h) The set of $\binom{x}{y}$ with x = 0, $y \ge 0$.

Answer: This is not a subspace.

- 4. Which of the following are subspaces of \mathbb{R}^4 ? (For the ones which aren't subspaces, explain why they aren't.)
 - a) The set of $\begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$ where x_1, x_2, x_3 can be anything.

Answer: This is a subspace.

b) The set of $\begin{pmatrix} 2 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ where x_2 , x_3 , x_4 can be anything.

Answer: This is not a subspace.

c) The set of $\binom{x_1}{x_2}_{x_3}$ with $x_1 = 0$ or $x_4 = 0$.

Answer: This is not a subspace.

d) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ with $x_1 = 0$ and $x_4 = 0$. **Answer:** This is a subspace.

e) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1 = 1$ or $x_4 = 1$.

Answer: This is not a subspace.

f) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1 = 1$ and $x_4 = 1$.

Answer: This is not a subspace.

g) The set of $\binom{x_1}{x_2}_{x_3}$ with $x_1 + x_2 + x_3 + x_4 = 0$. **Answer:** This is a subspace.

h) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1 + x_2 + x_3 + x_4 = 1$.

Answer: This is not a subspace.