Stat 134: Section 19

Adam Lucas

April 9th, 2018

Problem 1

Suppose $X \sim \text{Unif } (-1,1)$, and $Y \sim \text{Unif } (0,1)$. Find the density of Z = X + Y, using:

- a. $P(Z \in dz)$, and drawing the relevant region;
- b. the C.D.F. of *Z*.

Problem 2

A system consists of two components. Each component is subject to failure at a constant rate λ , independently of the other, up to when the first component fails. After that, the remaining component is subject to additional load and to failure at constant rate 2λ .

- a. Find the distribution of the time until both components have failed.
- b. What are the mean and variance of this distribution?

Ex 5.4.4 in Pitman's Probability

Let X and Y be independent exponential variables with rates α and β , respectively. Find the C.D.F. of X/Y.

Ex 5.4.8 in Pitman's Probability

Problem 4

Suppose U_1 , $U_2 \stackrel{\text{i.i.d.}}{\sim}$ Unif (0,1). Let Z = Y - X, where $X = U_{(1)}$, $Y = U_{(2)}$. Note that Z represents the range of our random variables.

- a. Find the joint density f(x,y) of X,Y.
- b. Find the C.D.F. of Z, $F_Z(z)$.
- c. Use part (b) to find the density of *Z*.
- d. It can be shown that for the range $Z_n = U_{(n)} U_{(1)}$ of n i.i.d. Unif (0,1) random variables, the CDF of Z_n is given by $F_{Z_n}(z) = z^n + nz^{n-1}(1-z)$. Using what we know about order statistics, explain why this is the case.

Hint: Draw the region of interest. It may be easier to work with $P(Z \ge z)$.