Chapter Six

Demand

Properties of Demand Functions

Comparative statics analysis of ordinary demand functions — the study of how ordinary demands $x_1^*(p_1,p_2,y)$ and $x_2^*(p_1,p_2,y)$ change as prices p_1 , p_2 and income y change.

How does $x_1^*(p_1,p_2,y)$ change as p_1 changes, holding p_2 and y constant? Suppose only p_1 increases, from p_1 ' to p_1 " and then to p_1 ".

Fixed p₂ and y.

The curve containing all the utility-maximizing bundles traced out as p_1 changes, with p_2 and y constant, is the p_1 - price offer curve.

The plot of the x_1 -coordinate of the p_1 - price offer curve against p_1 is the ordinary demand curve for commodity 1.

What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

Take

$$U(x_1,x_2) = x_1^a x_2^b$$
.

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 and
$$x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$$

Notice that x₂* does not vary with p₁ so the p₁ price offer curve is

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 and
$$x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$$

Notice that x₂* does not vary with p₁ so the p₁ price offer curve is flat

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 and
$$x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$$

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the ordinary demand curve for commodity 1 is a

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 and
$$x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$$

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the ordinary demand curve for commodity 1 is a rectangular hyperbola.

$$x_1^* = \frac{ay}{(a+b)p_1}$$

What does a p₁ price-offer curve look like for a perfect-complements utility function?

What does a p₁ price-offer curve look like for a perfect-complements utility function?

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

As
$$p_1 \rightarrow \infty$$
, $x_1^* = x_2^* \rightarrow 0$.

Fixed p₂ and y.

Own-Price Changes Fixed p_2 and y. X_2 $p_1 = p_1$ y/p₂ **p**₁' p₁'+ p₂ p₁+ p₂

$$\mathbf{x}_{1}^{*} = \frac{\mathbf{y}}{\mathbf{p}_{1}^{2} + \mathbf{p}_{2}} \mathbf{x}.$$

Own-Price Changes Fixed p_2 and y. X_2 $p_1 = p_1$ y/p₂ p₁" p₁' p₁"+ p₂

Ordinary Own-Price Changes demand curve Fixed p₂ and y. p₁"" for commodity 1 is X_2 p₁" p₁' $p_1 + p_2$

What does a p₁ price-offer curve look like for a perfect-substitutes utility function?

$$U(x_1,x_2) = x_1 + x_2.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$\begin{aligned} x_1^*(p_1,p_2,y) &= \begin{cases} 0 & \text{, if } p_1 > p_2 \\ y/p_1 & \text{, if } p_1 < p_2 \end{cases} \\ \text{and} \\ x_2^*(p_1,p_2,y) &= \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y/p_2 & \text{, if } p_1 > p_2. \end{cases} \end{aligned}$$

Fixed p_2 and y.

$$x_1^* = \frac{y}{p_1}$$
 x_1

$$\mathbf{x}_{2}^{*}=\mathbf{0}$$

$$\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1}$$
 \mathbf{x}

Fixed p₂ and y.

Fixed
$$p_2$$
 and y.
$$x_2^* = \frac{y}{p_2}$$

$$x_2^* = 0$$

p₁'

$$\mathbf{x}_1^* = \mathbf{0}$$
 $\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1}$

Own-Price Changes Fixed p₂ and y. X_2 $p_1 = p_1'' = p_2$ $p_2 = p_1"$ p₁' $0 \le x_1^* \le$ $\mathbf{x}_2^* = \mathbf{0}$

Own-Price Changes Fixed p₂ and y. X_2 $p_2 = p_1"$ p₁'

Ordinary Own-Price Changes demand curve Fixed p_2 and y. for commodity 1 X_2 $p_2 = p_1"$ p₁ price p₁' offer curve $0 \le x_1^* \le$

Usually we ask "Given the price for commodity 1 what is the quantity demanded of commodity 1?"
But we could also ask the inverse question "At what price for commodity 1 would a given quantity of commodity 1 be demanded?"

Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

A Cobb-Douglas example:

$$\mathbf{x}_1^* = \frac{\mathbf{ay}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_1}$$

is the ordinary demand function and

$$p_1 = \frac{ay}{(a+b)x_1^*}$$

is the inverse demand function.

A perfect-complements example:

$$x_1^* = \frac{y}{p_1 + p_2}$$

is the ordinary demand function and

$$\mathsf{p}_1 = \frac{\mathsf{y}}{\mathsf{x}_1} - \mathsf{p}_2$$

is the inverse demand function.

How does the value of $x_1^*(p_1,p_2,y)$ change as y changes, holding both p_1 and p_2 constant?

Fixed p_1 and p_2 .

Fixed p_1 and p_2 .

A plot of quantity demanded against income is called an Engel curve.

Income Changes and Cobb-Douglas Preferences

An example of computing the equations of Engel curves; the Cobb-Douglas case.

$$U(x_1,x_2) = x_1^a x_2^b$$
.

The ordinary demand equations are

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Income Changes and Cobb-Douglas Preferences

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Rearranged to isolate y, these are:

$$y = \frac{(a+b)p_1}{a}x_1^*$$
 Engel curve for good 1

$$y = \frac{(a+b)p_2}{b}x_2^*$$
 Engel curve for good 2

Income Changes and Cobb-Douglas Preferences

Income Changes and Perfectly-Complementary Preferences

Another example of computing the equations of Engel curves; the perfectly-complementary case.

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

The ordinary demand equations are

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Income Changes and Perfectly-Complementary Preferences

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Rearranged to isolate y, these are:

$$y = (p_1 + p_2)x_1^*$$
 Engel curve for good 1
 $y = (p_1 + p_2)x_2^*$ Engel curve for good 2

$$\mathbf{y} = (\mathbf{p}_1 + \mathbf{p}_2)\mathbf{x}_2^*$$

$$y = (p_1 + p_2)x_1^*$$

Another example of computing the equations of Engel curves; the perfectly-substitution case.

$$U(x_1,x_2) = x_1 + x_2.$$

The ordinary demand equations are

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases}$$

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases}$$

Suppose $p_1 < p_2$. Then

$$\begin{aligned} \textbf{x}_1^*(\textbf{p}_1, \textbf{p}_2, \textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ \textbf{x}_2^*(\textbf{p}_1, \textbf{p}_2, \textbf{y}) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases}$$

Suppose
$$p_1 < p_2$$
. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases}$$

Suppose
$$p_1 < p_2$$
. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

$$y = p_1 x_1^* \text{ and } x_2^* = 0.$$

In every example so far the Engel curves have all been straight lines? Q: Is this true in general?

A: No. Engel curves are straight lines if the consumer's preferences are homothetic.

Homotheticity

A consumer's preferences are homothetic if and only if

$$(x_1,x_2) \prec (y_1,y_2) \Leftrightarrow (kx_1,kx_2) \prec (ky_1,ky_2)$$

for every $k > 0$.

That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin.

Income Effects -- A Nonhomothetic Example

Quasilinear preferences are not homothetic.

$$U(x_1,x_2) = f(x_1) + x_2.$$

For example,

$$U(x_1,x_2) = \sqrt{x_1} + x_2.$$

Quasi-linear Indifference Curves

Income Changes; Quasilinear Utility

Income Changes; Quasilinear Utility

Income Changes; Quasilinear

Income Changes; Quasilinear

Income Effects

A good for which quantity demanded rises with income is called normal.

Therefore a normal good's Engel curve is positively sloped.

Income Effects

A good for which quantity demanded falls as income increases is called income inferior.

Therefore an income inferior good's Engel curve is negatively sloped.

Income Changes; Goods

Ordinary Goods

A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

Ordinary Goods

Fixed p_2 and y.

Fixed p_2 and y.

Downward-sloping demand curve Good 1 is ordinary

Giffen Goods

If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

Fixed p_2 and y.

Fixed p_2 and y.

Fixed p₂ and y.

If an increase in p₂

- -increases demand for commodity 1 then commodity 1 is a gross substitute for commodity 2.
- reduces demand for commodity 1 then commodity 1 is a gross complement for commodity 2.

A perfect-complements example:

so
$$x_1^* = \frac{y}{p_1 + p_2}$$
$$\frac{\partial x_1^*}{\partial p_2} = -\frac{y}{(p_1 + p_2)^2} < 0.$$

Therefore commodity 2 is a gross complement for commodity 1.

A Cobb- Douglas example:

$$x_2^* = \frac{by}{(a+b)p_2}$$

SO

A Cobb- Douglas example:

so
$$x_2^* = \frac{by}{(a+b)p_2}$$
$$\frac{\partial x_2^*}{\partial p_1} = 0.$$

Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.