Machine Learning for Finance (FIN 570) Hyperparameter Tuning: Bias-Variance Tradeoff, Cross-Validation, and Evaluation Metric

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2018-19 Module 1 (Fall 2018)

Measuring quality of ML method

Given a ML method, we want to minimize the mean squared error (MSE) on **test data set** (expected test MSE).

$$\begin{split} E\Big(y-\hat{f}(x)\Big)^2 &= \mathrm{Bias}(\hat{f}(x))^2 + \mathrm{Var}(\hat{f}(x)) + \mathrm{Var}(\varepsilon) \\ &\quad \text{where}, \quad y = f(x) + \varepsilon \quad \text{(true pattern)} \end{split}$$

- By a given ML method, we mean that model (LR, SVM, etc) and hyper-parameter (C, γ , reduced dimension k for PCA/LDA, etc) are fixed. However fitted model parameters (i.e., \hat{f}) can change over training set.
- The expectation is made over repeatedly selecting different training vs test dataset. Therefore, the expectation is over \hat{f} as well as x.
- We need to minimize ${\sf Bias}(\hat{f}(x))^2$ and ${\sf Var}(\hat{f}(x))$ together while ${\sf Var}(\varepsilon)$ is fundamentally irreducible.

Bias and Variance

Bias

- Error from \hat{f} not correctly representing the true f (e.g. linear regression on non-linear data).
- A model has **high bias** when \hat{f} overly simply f (under-fitting), i.e., the used parameters are too few.

Variance

- ullet Error from variability or sensitivity (vs consistency) of the trained model \hat{f} against the selection of training dataset.
- A model has **high variance** when the model is too flexible (over-fitting), i.e., there are too many parameters, e.g. KNN with K=1, high-order polynomial regression, SVM/LR with large C (small λ), decision tree with many leaves, etc.

Bias and Variance (examples)

- Grey line: Bias vs the number of parameters
- Red line: MSE measured with the true f (black line).

Bias-Variance Tradeoff

- It is hard to reduce both bias and variance.
- As the model flexibility increase, bias decreases but variance increases. It is important to find a right trade-off.
- Bias-variance tradeoff is one of the most important theme in ML (and other fields!).
- In real problems, the true pattern f is unknown and the dataset size is limited. How can we efficiently measure the expected test MSE?

Cross-Validation(CV): Validation Set (Hold-out set)

- Divide observations into a training set and a validation (hold-out) set.
- Fit model on the training set and measure error on the validation set.
- Error rate is highly variable (sensitive to division) and over-estimated than the true test error rate as the model is trained on fewer observations.
- Training set is further divided into training and validation sets.
 Validation set is used for model selection and hyper-parameter funning.

Cross-Validation: Leave-One-Out (LOOCV) and k-Fold CV

- LOOCV: train model with one sample left out and measure the error on the sample. Error is close to the true test rate but computation is heavy (train *n* times).
- k-fold CV: divide the samples into k (typically 5 or 10) folds. Train model on k-1 training folds and measure error on the remaining test fold.

Evaluation Metrics

Confusion Matrix

Credit card		Predicted		
Default		P^*	N^*	Total
Actual	P	40	40	80
	N	10	910	920
	Total	50	950	1000

Predicted class					
	P^*	N^*			
P Actual class	True positives (TP)	False negatives (FN)			
	False positives (FP)	True negatives (TN)			

• Accuracy (ACC) =
$$\frac{\text{TP} + \text{TN}}{\text{ALL}} = \frac{40 + 910}{1000} = 95\%$$

• Error (ERR) =
$$1 - ACC = \frac{FP + FN}{ALL} = \frac{10 + 40}{1000} = 5\%$$

• However, accuracy/error may be misleading!

Evaluation Metrics

		Predicted		
		P^*	N^*	
Actual	P	TP (40)	FN (40)	
	N	FP (10)	TN (910)	

- Precision (PRE) = $\frac{\text{TP}}{P^*} = \frac{\text{TP}}{\text{TP} + \text{FP}} = \frac{40}{50} = 80\%$ Case: Spam mail filter (minimize FP)
- $\begin{array}{l} \bullet \ \ {\rm Recall} \ ({\rm REC}) = \frac{{\rm TP}}{P} = \frac{{\rm TP}}{{\rm TP} + {\rm FN}} = \frac{40}{80} = 50\% \\ {\rm Case:} \ \ {\rm Credit} \ \ {\rm approval, \ Cancer \ diagnosis} \ \ ({\rm minimize \ FN}) \\ \end{array}$
- $\bullet \ \, \text{F1-Score} \ (\text{F1}) = \frac{2 \ \text{PRE} \times \text{REC}}{\text{PRE} + \text{REC}} = 61.5\% \quad \left(\frac{2}{\text{F1}} = \frac{1}{\text{PRE}} + \frac{1}{\text{REC}}\right)$ The harmonic average of PRE and REC to ensure $0 \leq \text{F1} \leq 1$ A widely used accuracy for binary classification with imbalanced sample.

Receiver Operator Characteristic (ROC) Curve

- \bullet True Positive Rate (TPR=REC) = TP/P = 50%
- \bullet False Positive Rate (FPR) = $\mathrm{FP}/N = 10/920 = 1.1\%$
- ROC Curve: graph of (FPR, TPR) for varying classification threshold of the binary classification.
- Area Under Curve (AUC) give an overall accuracy of a classifier, summarizing over all possible threshold
- ullet The diagonal line is from random-guessing: ROC AUC = 0.5 A model with lower AUC than 0.5 is worthless.
- A perfect classifier (Γ -shaped lines): ROC AUC = 1.