Omnipredictors¹: One Predictor to Rule Them All Heavily adapted from P. Gopalan's Talk at IAS

J. Setpal

April 18, 2024

We'll start with an overview of supervised learning paradigm:

1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$?

We'll start with an *overview* of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

We'll start with an *overview* of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

We'll start with an *overview* of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\boldsymbol{\theta}}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! $\theta = \theta + \alpha \cdot \frac{\partial L}{\partial \theta}$

Iterate (5) until convergence.

We'll start with an *overview* of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! $\theta = \theta + \alpha \cdot \frac{\partial L}{\partial \theta}$

Iterate (5) until convergence.

L is minimized over \mathcal{D} , not over the real world.

We'll start with an *overview* of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N$; $N \ll \infty$; $\mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! $\theta = \theta + \alpha \cdot \frac{\partial L}{\partial \theta}$ Iterate (5) until convergence.

L is minimized over \mathcal{D} , not over the real world. This is **empirical risk**:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(f_{\theta}(x_i), y_i)$$
 (1)

Generalization Error

We also split ${\mathcal D}$ into training, validation, test splits to minimize overfitting.

Generalization Error

We also split ${\mathcal D}$ into training, validation, test splits to minimize overfitting.

Usually $L_{valid} \not\approx L_{train}$ after training. That's our generalization gap.

4□ > 4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 9 < 0

Problem: Different loss functions typically have divergent geometries.

4/8

²usually, local

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a **different**² **optima** for two such functions, despite sharing minima for θ s.t. $\hat{y} \approx y$.

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a **different**² **optima** for two such functions, despite sharing minima for θ s.t. $\hat{y} \approx y$.

Let's evaluate this empirically on ℓ_1 and ℓ_2 losses, which optimize for median and mean respectively:

$$\ell_1 = |y - \hat{y}|, \ \ell_2 = (y - \hat{y})^2$$
 (2)

$$x \sim f(\epsilon \sim \mathcal{U}[0,1]) := \begin{cases} 0 & \epsilon \leq 0.4 \\ \mathcal{U}[0.8,1] & \text{otherwise} \end{cases}$$
 (3)

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a **different**² **optima** for two such functions, despite sharing minima for θ s.t. $\hat{y} \approx y$.

Let's evaluate this empirically on ℓ_1 and ℓ_2 losses, which optimize for median and mean respectively:

$$\ell_1 = |y - \hat{y}|, \ \ell_2 = (y - \hat{y})^2$$
 (2)

$$x \sim f(\epsilon \sim \mathcal{U}[0,1]) := \begin{cases} 0 & \epsilon \leq 0.4 \\ \mathcal{U}[0.8,1] & \text{otherwise} \end{cases}$$
 (3)

Omnipredictors provides a framework for rigorous guarantees, deriving $\tilde{p} \approx p^*$: a predictor that is able to *simultaneously minimize* a family of convex loss functions.

²usually, local

Multigroup Fairness

We can split \mathcal{D} into various *subgroups* based on **shared characteristics**. These can be explicit or implicit (i.e. subgroups we don't know of):

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

Multigroup Fairness

We can split \mathcal{D} into various *subgroups* based on **shared characteristics**. These can be explicit or implicit (i.e. subgroups we don't know of):

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

Empirical Risk is only 0.0492, but inference is unreliable for subgroups 2-4.

Multigroup Fairness

We can split \mathcal{D} into various *subgroups* based on **shared characteristics**. These can be explicit or implicit (i.e. subgroups we don't know of):

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

Empirical Risk is only 0.0492, but inference is unreliable for subgroups 2-4.

One notion of fairness stipulates equal risk for every subgroup. However, finding subgroups is hard for high-dimensional data.

Let *C* be the collection of subsets. We probe it further for correlations.

Let *C* be the collection of subsets. We probe it further for correlations.

 \tilde{p} is (C, α) -multiaccurate if:

$$\max_{c \in C} |\mathbb{E}[c(x)(y - \tilde{p}(x))]| \le \alpha \tag{4}$$

Let *C* be the collection of subsets. We probe it further for correlations.

 \tilde{p} is (C, α) -multiaccurate if:

$$\max_{c \in C} |\mathbb{E}[c(x)(y - \tilde{p}(x))]| \le \alpha \tag{4}$$

 \tilde{p} is (C, α) -multicalibrated if:

$$\max_{c \in C} E[|\mathbb{E}[c(x)(y - \tilde{p}(x))]|] \le \alpha \tag{5}$$

Let *C* be the collection of subsets. We probe it further for correlations.

 \tilde{p} is (C, α) -multiaccurate if:

$$\max_{c \in C} |\mathbb{E}[c(x)(y - \tilde{p}(x))]| \le \alpha \tag{4}$$

 \tilde{p} is (C, α) -multicalibrated if:

$$\max_{c \in C} E[|\mathbb{E}[c(x)(y - \tilde{p}(x))]|] \le \alpha \tag{5}$$

If we can find correlation with the error, there's some advantage to be gained. We minimize this to train a **weak agnostic learner**.

If we know p^* , it is easy for us take take the optimal action.

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors.

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors. Specifically, it trains $g_{\theta} \approx p^*$.

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L,C)-omnipredictors. Specifically, it trains $g_{\theta} \approx p^*$.

Intuitively: the idea is to extract the predictive power of the data.

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors. Specifically, it trains $g_{\theta} \approx p^*$.

Intuitively: the idea is to extract the predictive power of the data.

Let L_{cvx} be a set of Lipschitz, convex, bounded losses.

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L,C)-omnipredictors. Specifically, it trains $g_{\theta} \approx p^*$.

Intuitively: the idea is to extract the predictive power of the data.

Let L_{cvx} be a set of Lipschitz, convex, bounded losses. If f_{θ} is C-multicalibrated with some error α , it is an (L_{cvx}, C, α) -omnipredictor.

If we know p^* , it is easy for us take take the optimal action.

For $y \in \{0,1\}, \ y \sim \mathsf{Bernoulli}(p^*).$ We denote optimal action $t := k_\ell^* \circ p^*$

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors. Specifically, it trains $g_{\theta} \approx p^*$.

Intuitively: the idea is to extract the predictive power of the data.

Let L_{cvx} be a set of Lipschitz, convex, bounded losses. If f_{θ} is C-multicalibrated with some error α , it is an (L_{cvx}, C, α) -omnipredictor.

Multicalibration implies omniprediction for all convex loss functions.

Training Agnostic Predictors

We can use this framework to train a predictor s.t. a new model trained just on <u>one loss function</u> performs equivalently to the omnipredictor.

$$C = \{c : \mathcal{X} \to \mathcal{Y}\}\tag{6}$$

$$w: (0,1] \to (0,1] \ s.t. \ w(\alpha) \le \alpha$$
 (7)

Training Agnostic Predictors

We can use this framework to train a predictor s.t. a new model trained just on <u>one loss function</u> performs equivalently to the omnipredictor.

$$C = \{c : \mathcal{X} \to \mathcal{Y}\}\tag{6}$$

$$w: (0,1] \to (0,1] \ s.t. \ w(\alpha) \le \alpha$$
 (7)

We then train with the following objective:

$$\min_{\boldsymbol{\theta}} \mathbf{Cov}_{\mathcal{D}}[c(x), y] \tag{8}$$

Then, with probability $1 - \delta$ the weak learner returns c s.t.

 $\mathbf{Cov}_{\mathcal{D}}[c(x), y] \geq w(\alpha).$

Training Agnostic Predictors

We can use this framework to train a predictor s.t. a new model trained just on <u>one loss function</u> performs equivalently to the omnipredictor.

$$C = \{c : \mathcal{X} \to \mathcal{Y}\}\tag{6}$$

$$w: (0,1] \to (0,1] \ s.t. \ w(\alpha) \le \alpha$$
 (7)

We then train with the following objective:

$$\min_{\boldsymbol{\theta}} \mathbf{Cov}_{\mathcal{D}}[c(x), y] \tag{8}$$

Then, with probability $1 - \delta$ the weak learner returns c s.t.

 $\mathbf{Cov}_{\mathcal{D}}[c(x), y] \geq w(\alpha).$

We use this to compute an α -multicalibrated partition by a layered branching program that runs in $\mathcal{O}(\frac{l}{w(\alpha/2)})^{\mathcal{O}(l)}$.

Thank you!

Have an awesome rest of your day!

Slides:

https://cs.purdue.edu/homes/jsetpal/slides/omnipredictors.pdf