Discrete differential geometry of surfaces. Variational principles, algorithms, and implementation

Stefan Sechelmann

November 26, 2012

CONTENTS CONTENTS

Contents

1	Introduction	5
Ι	Discrete Uniformization	5
2	Discrete Riemann surfaces	5
3	Discrete Uniformization	5
	3.1 Discrete conformal equivalence	5
	3.2 Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2	5
	3.3 Realization	6
4	Uniformization of surfaces of higher genus	6
	4.1 The cut-graph and fuchsian groups	6
	4.2 Minimal presentation	7
5	Canonical fundamental domains of fuchsian groups	7
	5.1 Separated handles	7
	5.2 Opposite sides identified	7
6	Uniformization of tori	7
	6.1 Elliptic Functions	7
	6.2 The modul space	7
	6.3 Numerical convergence analysis	7
	6.4 The modulus of the Wente torus	7
7	Uniformization of hyperelliptic surfaces	7
	7.1 Construction	7
	7.2 Weierstrass points on hyperelliptic surfaces	8
	7.3 Canonical domains	9
	7.4 Lawsons surface	9
8	Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)	9
	8.1 Selection of Branch Data	9
	8.2 Examples	9
9	Simply and multiply connected domains	9
	9.1 Variation of edge length	9

CONTENTS

	9.2 9.3	Examples	9
II	D	iscrete Surface Parameterization	9
10	Disc	crete quasiisothermic parametrizations	9
	10.1	Discrete quasiisothermic parameterizations	10
	10.2	Formulation as boundary value problem	10
	10.3	Global approach	10
	10.4	Variational principle for S-isothermic surfaces	10
	10.5	Constructing the associated family of apploximate minimal surfaces	10
	10.6	A discrete ellipsoid and its dual surface	10
	10.7	Applications in architecture	10
	10.8	Piece-wise projective interpolation for arbitrary parameterizations $\dots \dots$	10
11	Grie	dshells and Applications in Architecture	10
12	Refe	erences	10

LIST OF FIGURES LIST OF FIGURES

List of Figures

1	Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyper-	
	bolic motions	7
2	Slit domain to the circle	8

1 Introduction

Part I

Discrete Uniformization

2 Discrete Riemann surfaces

3 Discrete Uniformization

3.1 Discrete conformal equivalence

Definition 1. Two Euclidean triangulations T and \tilde{T} are discretely conformally equivalent if there is a map $u: V \to \mathbb{R}$ such that for any edge ij it is

$$l_{ij} = e^{u_i + u_j} \tilde{l}_{ij}$$

where l_{ij} is the length of the edge ij.

Definition 2. A discrete flat Euclidean metric is a map $l: E \to \mathbb{R}_+$ such that triangle inequalities are satisfied and angle sums around each inner vertex are equal to 2π .

3.2 Variational principles for discrete metrics in \mathbb{E}^2 , \mathbb{H}^2 , and \mathbb{S}^2

Construction of discrete flat metrics. A discrete Euclidean flat metric is the minimizer of a convex functional.

$$\lambda_{ij} := 2 \log l_{ij} \tag{1}$$

$$\tilde{\lambda}_{ij} := \lambda_{ij} + u_i + u_j \tag{2}$$

$$f_{Euc}(u_i, u_j, u_k) := \alpha_i \tilde{\lambda}_{jk} + \alpha_j \tilde{\lambda}_{ki} + \alpha_k \tilde{\lambda}_{ij} + 2\left(\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k)\right)$$
(3)

Definition 3.

$$E_{Euc}(u) := \sum_{ijk \in F} \left(f_{Euc}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i \tag{4}$$

This definition and the derivatives can be found in [BPS10]

For the hyperbolic case λ and $\tilde{\lambda}$ are defined as before. Further define

$$\beta_i := \frac{1}{2} (\pi + \alpha_i - \alpha_j - \alpha_k) \tag{5}$$

$$\beta_{j} := \frac{1}{2} (\pi - \alpha_{i} + \alpha_{j} - \alpha_{k})$$

$$\beta_{k} := \frac{1}{2} (\pi - \alpha_{i} - \alpha_{j} + \alpha_{k})$$

$$(6)$$

$$(7)$$

$$\beta_k := \frac{1}{2} (\pi - \alpha_i - \alpha_j + \alpha_k) \tag{7}$$

$$f_{Hyp}(u_i, u_j, u_k) := \beta_i \tilde{\lambda}_{jk} + \beta_j \tilde{\lambda}_{ki} + \beta_k \tilde{\lambda}_{ij}$$
(8)

$$+\Pi(\alpha_i) + \Pi(\alpha_j) + \Pi(\alpha_k) + \Pi(\beta_i) + \Pi(\beta_j) + \Pi(\beta_k)$$
(9)

$$+ \Pi \left(\frac{1}{2} (\pi - \alpha_i - \alpha_j - \alpha_k) \right) \tag{10}$$

Definition 4.

$$E_{Hyp}(u) := \sum_{ijk \in F} \left(f_{Hyp}(u_i, u_j, u_k) - \frac{\pi}{2} \left(\tilde{\lambda}_{jk} + \tilde{\lambda}_{ki} + \tilde{\lambda}_{ij} \right) \right) + \sum_{i \in V} \Theta_i u_i$$
 (11)

3.3 Realization

4 Uniformization of surfaces of higher genus

Triangulated surfaces of genus $g \geq 2$ without boundary can be equipped with a discretely conformally equivalent flat hyperbolic metric [BPS10]. By flat hyperbolic metric we mean that the edge length are hyperbolic and for any vertex the angle sum is 2π . To realize this metric in the hyperbolic plane e.g. in the Poicaré disk model one has to introduce cuts along a basis of the homotopy. This creates a simply connected domain in \mathbb{H}^2 . Matching cut paths are realated by a hyperbolic motion i.e. the Möbius transformations that leave the unit disk invariant (Figure 1).

4.1 The cut-graph and fuchsian groups

Want so say here: the number of transformations generated by the mapping of corresponding edges equals the number of path segments in the homotopy-cut-graph. They generate a fuchsian group with #vertices relations

Proposition 1.

Figure 1: Hyperbolic flat metric on a genus 2 surface and the axes of the associated hyperbolic motions.

4.2 Minimal presentation

5 Canonical fundamental domains of fuchsian groups

- 5.1 Separated handles
- 5.2 Opposite sides identified
- 6 Uniformization of tori
- 6.1 Elliptic Functions
- 6.2 The modul space
- 6.3 Numerical convergence analysis
- 6.4 The modulus of the Wente torus

7 Uniformization of hyperelliptic surfaces

7.1 Construction

Any hyperelliptic Riemann surface can be expressed as an algebraic curve of the form

$$\mu^2 = \prod_{i=1}^n (\lambda - \lambda_i)^2 \qquad n \ge 3, \quad \lambda_i \ne \lambda_j \forall i \ne j.$$

Here λ_i are the branch points of the doubly covered Riemann sphere.

Figure 2: Square with symmetric slit to the circle

7.2 Weierstrass points on hyperelliptic surfaces

A hyperelliptic surface comes together with a holomorphic involution h called the hyperelliptic involution. The branch points are fixed points under this transformation. For a hyperelliptic algebraic curve it is $h(\mu, \lambda) = (-\mu, \lambda)$

- 7.3 Canonical domains
- 7.4 Lawsons surface
- 8 Conformal Mapping to $\hat{\mathbb{C}}$ (Planned)
- 8.1 Selection of Branch Data
- 8.2 Examples
- 9 Simply and multiply connected domains
- 9.1 Variation of edge length
- 9.2 Examples
- 9.3 Comparison with Examples of the Schwarz-Christoffel community

Part II

Discrete Surface Parameterization

10 Discrete quasiisothermic parametrizations

The notion of quasiconformal parameterizations

- 10.1 Discrete quasiisothermic parameterizations
- 10.2 Formulation as boundary value problem
- 10.3 Global approach
- 10.4 Variational principle for S-isothermic surfaces
- 10.5 Constructing the associated family of apploximate minimal surfaces
- 10.6 A discrete ellipsoid and its dual surface
- 10.7 Applications in architecture
- 10.8 Piece-wise projective interpolation for arbitrary parameterizations

11 Gridshells and Applications in Architecture

12 References

[BPS10] Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Preprint; http://arxiv.org/abs/1005.2698, 2010.