Package 'gtregression'

August 18, 2025

Type Package

Title Tools for Creating Publication-Ready Regression Tables

Version 1.0.0

Description Simplifies regression modeling in R by integrating multiple modeling and summarization tools into a cohesive, user-friendly interface. Designed to be accessible for researchers, particularly those in Low- and Middle-Income Countries (LMIC). Built upon widely accepted statistical methods, including logistic regression (Hosmer et al. 2013, ISBN:9781118548429), log-binomial regression (Spiegelman and Hertzmark 2005 <doi:10.1093/aje/kwi188>), Poisson and robust Poisson regression (Zou 2004 <doi:10.1093/aje/kwh090>), negative binomial regression (Hilbe 2011, ISBN:9780521179515), and linear regression (Kutner et al. 2005, ISBN:9780071122214). Leverages multiple dependencies to ensure high-quality output and generate reproducible, publication-ready tables in alignment with best practices in epidemiology and applied statistics.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 4.1.0)

Imports dplyr, gtsummary, risks, purrr, MASS, rlang, stats, lmtest, patchwork, ggtext, ggplot2, tidyr, utils, sandwich, tibble, broom, broom.helpers, gt, officer, flextable

VignetteBuilder knitr

Suggests testthat (>= 3.0.0), knitr, rmarkdown, mlbench, car, forcats, pkgdown

RoxygenNote 7.3.2

Config/testthat/edition 3

URL https://thinkdenominator.github.io/gtregression/

BugReports https://github.com/ThinkDenominator/gtregression/issues

NeedsCompilation no

Author Rubeshkumar Polani [aut, cre] (ORCID:

<https://orcid.org/0000-0002-0418-7592>),

2 Contents

Salin K Eliyas [aut] (ORCID: https://orcid.org/0000-0002-8020-5860), Manikandanesan Sakthivel [aut] (ORCID: https://orcid.org/0000-0002-5438-3970), Yuvaraj Krishnamoorthy [aut] (ORCID: https://orcid.org/0000-0003-4688-510X), Marie Gilbert Majella [aut] (ORCID: https://orcid.org/0000-0003-4036-5162)

Maintainer Rubeshkumar Polani <rubesh@thinkdenominator.com>

Repository CRAN

Date/Publication 2025-08-18 14:50:13 UTC

Contents

Index

check_collinearity	3
check_convergence	3
data_birthwt	5
data_epilepsy	6
data_gt_quin	7
data_infertility	7
data_lungcancer	8
data_PimaIndiansDiabetes	9
descriptive_table	9
dissect	. 1
identify_confounder	.2
interaction_models	3
merge_tables	.4
modify_table	6
multi_reg	.7
plot_reg	9
plot_reg_combine	<u>'</u> C
save_docx	!2
save_plot	13
save_table	!4
select_models	!5
stratified_multi_reg	:6
stratified_uni_reg	:7
uni_reg	8.5

30

check_collinearity 3

check_collinearity

Check Collinearity Using VIF for Fitted Models

Description

Computes Variance Inflation Factors (VIF) for fitted models returned by uni_reg(), multi_reg(), uni_reg_nbin(), or multi_reg_nbin(). Returns one VIF table per model. For multivariate models only

Usage

```
check_collinearity(model)
```

Arguments

model

A fitted model object with class "uni_reg", "multi_reg", "uni_reg_nbin", or "multi_reg_nbin".

Value

A tibble containing VIF values and interpretation. For multivariable models, returns one tibble. For univariate models, an error is raised indicating VIF is not applicable.

Examples

```
if (requireNamespace("gtregression", quietly = TRUE) &&
  requireNamespace("mlbench", quietly = TRUE) &&
  getRversion() >= "4.1.0") {
  data(PimaIndiansDiabetes2, package = "mlbench")
  pima <- PimaIndiansDiabetes2 |> dplyr::filter(!is.na(diabetes))
  pima$diabetes <- ifelse(pima$diabetes == "pos", 1, 0)
  fit <- multi_reg(pima,
    outcome = "diabetes",
    exposures = c("age", "mass", "glucose"),
    approach = "logit"
  )
  check_collinearity(fit)
}</pre>
```

check_convergence

Check Convergence for a Regression Model

Description

Assesses model convergence and provides diagnostics for each exposure (in univariate mode) or for the full model (in multivariable mode), depending on the regression approach used.

4 check_convergence

Usage

```
check_convergence(
  data,
  exposures,
  outcome,
  approach = "logit",
  multivariate = FALSE
)
```

Arguments

data A data frame containing the dataset.

exposures A character vector of predictor variable names. If multivariate = FALSE, each

exposure is assessed separately. If multivariate = TRUE, exposures are in-

cluded together.

outcome A character string specifying the outcome variable.

approach A character string specifying the regression approach. One of: "logit", "log-binomial",

"poisson", "robpoisson", or "negbin".

multivariate Logical. If TRUE, checks convergence for a multivariable model; otherwise, per-

forms checks for each univariate model.

Details

For robpoisson, predicted probabilities (fitted values) may exceed 1, which is acceptable when estimating risk ratios but should not be interpreted as actual probabilities.

This function is useful for identifying convergence issues, especially for "log-binomial" models, which often fail to converge.

Value

A data frame summarizing convergence diagnostics, including:

Exposure Name of the exposure variable.

Model The regression approach used.

Converged TRUE if the model converged successfully; FALSE otherwise.

Max.prob Maximum predicted probability or fitted value in the dataset.

See Also

```
[identify_confounder()], [interaction_models()]
```

```
if (requireNamespace("gtregression", quietly = TRUE)) {
  data(data_PimaIndiansDiabetes, package = "gtregression")
  check_convergence(
```

data_birthwt 5

```
data = data_PimaIndiansDiabetes,
  exposures = c("age", "bmi"),
  outcome = "diabetes",
  approach = "logit"
)

check_convergence(
  data = data_PimaIndiansDiabetes,
  exposures = c("age", "bmi"),
  outcome = "diabetes",
  approach = "logit",
  multivariate = TRUE
)
}
```

data_birthwt

Birth Weight Data

Description

A dataset from the **MASS** package containing risk factors associated with low birth weight (LBW) in newborns. Originally collected at Baystate Medical Center, Springfield, Massachusetts, USA.

Usage

data_birthwt

Format

A data frame with 189 observations and 10 variables:

```
low Indicator for birth weight < 2500g (binary): ∅ = normal, 1 = low birth weight age Mother's age in years (numeric)

lwt Mother's weight in pounds at last menstrual period (numeric)

race Mother's race (factor): 1 = White, 2 = Black, 3 = Other

smoke Smoking status during pregnancy (binary): ∅ = No, 1 = Yes

ptl Number of previous premature labors (integer)

ht History of hypertension (binary): ∅ = No, 1 = Yes

ui Presence of uterine irritability (binary): ∅ = No, 1 = Yes

ftv no of physician visits during the 1st trimester (integer, 0–6)

bwt Birth weight in grams (numeric)
```

Details

The outcome variable is binary ('low'): birth weight < 2500g (yes = 1) or not (no = 0).

6 data_epilepsy

Source

Hosmer, D.W., Lemeshow, S. (1989). *Applied Logistic Regression.* New York: Wiley. Also available in **MASS** and described in detail in its documentation.

data_epilepsy

Epilepsy Treatment and Seizure Counts

Description

RCT on the effect of a drug on the seizures in patients with epilepsy. Contains repeated measures data with treatment groups, baseline seizure counts, and follow-up counts.

Usage

```
data_epilepsy
```

Format

A data frame with 236 observations and 9 variables:

y Number of seizures in a 2-week period (count)

trt Treatment group (factor): placebo or progabide

base Seizure count during baseline period (numeric)

age Age of patient (numeric)

V4 Indicator for 4th visit (binary)

subject Patient ID (factor)

period Follow-up period number (integer)

lbase Log of baseline seizures (numeric)

lage Log of age (numeric)

Source

MASS package. Original data from Thall and Vail (1990)

data_gt_quin 7

 $data_gt_quin$

Student Absenteeism in Rural Schools

Description

This dataset contains observations on the number of days absent from school for children in rural Australia, along with student characteristics. It's commonly used to demonstrate count models such as Poisson and Negative Binomial regression.

Usage

```
data_gt_quin
```

Format

A data frame with 146 observations and 5 variables:

```
Eth Ethnicity ("A" = Aboriginal, "N" = Non-Aboriginal)
```

Sex Sex ("F" or "M")

Age Age group ("F0", "F1", "F2", "F3")

Lrn Learner status ("AL" = average learner, "SL" = slow learner)

Days Number of days absent from school (count outcome)

Source

MASS package. See also Venables and Ripley (2002), *Modern Applied Statistics with S*.

data_infertility

Infertility Matched Case-Control Study

Description

investigating the relationship between infertility and abortions.

Usage

```
data_infertility
```

8 data_lungcancer

Format

```
A data frame with 248 observations and 8 variables:

education Education level (0 = 0-5 years, 1 = 6-11 years, 2 = 12+ years)

age Age in years

parity Number of prior pregnancies

induced Number of induced abortions

case Infertility case status (1 = case, 0 = control)

spontaneous Number of spontaneous abortions

stratum Matched set ID

pooled.stratum Pooled stratum ID used for conditional regression
```

Source

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/infert.html

data_lungcancer

Lung Cancer Trial Data

Description

Survival data from a clinical trial of lung cancer patients conducted by the Veteran's Administration.

Usage

```
data_lungcancer
```

Format

```
A data frame with 137 observations and 8 variables:
```

```
trt Treatment group (1 = standard, 2 = test)
celltype Cell type (squamous, smallcell, adeno, large)
time Survival time (in days)
status Censoring status (1 = died, 0 = censored)
karno Karnofsky performance score (higher = better)
diagtime Months from diagnosis to randomization
age Age in years
prior Prior therapy (0 = no, 10 = yes)
```

Source

```
https://CRAN.R-project.org/package=survival
```

References

Kalbfleisch JD and Prentice RL (1980). The Statistical Analysis of Failure Time Data.

data_PimaIndiansDiabetes

PimaIndians2 Diabetes Dataset

Description

A cleaned version of the original Pima Indians Diabetes dataset from the 'mlbench' package. Useful for demonstrating regression approaches for binary outcomes.

Usage

data_PimaIndiansDiabetes

Format

A data frame with 768 observations and 9 variables:

```
pregnant Number of times pregnant
```

glucose Plasma glucose concentration (glucose tolerance test)

pressure Diastolic blood pressure (mm Hg)

triceps Triceps skin fold thickness (mm)

insulin 2-Hour serum insulin (mu U/ml)

mass Body mass index (BMI)

pedigree Diabetes pedigree function

age Age in years

diabetes Factor indicating diabetes status (pos/neg)

Source

```
https://www.openml.org/d/37
```

descriptive_table

Descriptive Summary Table for Study Characteristics (User-Friendly)

Description

Creates a clean, publication-ready summary table using 'gtsummary::tbl_summary()'. Designed for beginner analysts, this function applies sensible defaults and flexible options to display categorical and continuous variables with or without stratification. It supports one-line summaries of dichotomous variables, handles missing data gracefully, and includes an optional "Overall" column for comparison.

10 descriptive_table

Usage

```
descriptive_table(
  data,
  exposures,
  by = NULL,
  percent = c("column", "row"),
  digits = 1,
  show_missing = c("ifany", "no"),
  show_dichotomous = c("all_levels", "single_row"),
  show_overall = c("no", "first", "last"),
  statistic = NULL,
  value = NULL
)
```

Arguments

data A data frame containing your study dataset.

A character vector specifying the variable names (columns) in 'data' that should exposures

be included in the summary table. These can be categorical or continuous.

Optional. A single character string giving the name of a grouping variable (e.g., by

outcome). If supplied, the table will show stratified summaries by this variable.

Character. Either "column" (default) or "row". - "column" calculates perpercent

centages within each group defined by 'by' (i.e., denominator = column total). - "row" calculates percentages across 'by' groups (i.e., denominator = row to-

tal). If 'by' is not specified, "column" is used and "row" is ignored.

digits Integer. Controls how many decimal places are shown for percentages and

means. Defaults to 1.

Character. One of "ifany" (default) or "no". - "ifany" shows missing value show_missing

counts only when missing values exist. - "no" hides missing counts entirely.

show_dichotomous

Character. One of "all_levels" (default) or "single_row". - "all_levels" displays all levels of binary (dichotomous) variables. - "single_row" shows only one row (typically "Yes", "Present", or a user-defined level), making the

table more compact.

Character. One of "no" (default), "first", or "last". If 'by is supplied: show_overall

"first" includes a column for overall summaries before the stratified columns. - "last" includes the overall column at the end. - "no" disables the overall

column.

Optional named vector of summary types for specific variables. For example, statistic

use 'statistic = c(age = "mean", bmi = "median")' to override default summaries.

Accepted values: "mean", "median", "mode", "count".

value Optional. A list of formulas specifying which level of a binary variable to show

when 'show_dichotomous = "single_row"'. For example, 'value = list(sex ~

"Female")' will report only the "Female" row.

dissect 11

Value

A 'gtsummary::tbl_summary' object with additional class '"descriptive_table"'. Can be printed, customized, merged, or exported.

Examples

dissect

Dissect a Dataset Before Regression

Description

Returns a tidy summary of each variable's structure, missingness, uniqueness, and suitability for use in regression models.

Usage

```
dissect(data)
```

Arguments

data

A data frame.

Value

A tibble with columns: Variable, Type, Missing (and Regression Hint.

```
dissect(data_birthwt)
```

12 identify_confounder

Description

Identifies whether one or more variables are confounders by comparing the crude and adjusted effect estimates of a primary exposure on an outcome. A variable is flagged as a confounder if its inclusion changes the estimate by more than a specified threshold (default = 10

Usage

```
identify_confounder(
  data,
  outcome,
  exposure,
  potential_confounder,
  approach = "logit",
  threshold = 10
)
```

Arguments

data A data frame containing the variables.

outcome The name of the outcome variable (character string).

exposure The primary exposure variable (character string).

potential_confounder

One or more variables to test as potential confounders.

approach The regression modeling approach. One of: "logit", "log-binomial", "poisson",

"negbin", "robpoisson", or "linear".

threshold Numeric. Percent change threshold to define confounding (default = 10). If the

absolute percent change exceeds this, the variable is flagged as a confounder.

Details

Supports logistic, log-binomial, Poisson, robust Poisson, negative binomial, and linear regression approaches.

This method does not evaluate effect modification. Use causal diagrams (e.g., DAGs) and subject-matter knowledge to supplement decisions.

Value

If one confounder is provided, prints crude and adjusted estimates with a confounding flag. If multiple are given, returns a tibble with:

covariate Name of potential confounder.

crude_est Crude effect estimate.

interaction_models 13

adjusted_est Adjusted estimate including the confounder.

pct_change Percent change from crude to adjusted.

is_confounder Logical: whether confounding threshold is exceeded.

See Also

```
[check_convergence()], [interaction_models()]
```

Examples

```
data <- data_PimaIndiansDiabetes
identify_confounder(
  data = data,
  outcome = "glucose",
  exposure = "insulin",
  potential_confounder = "age_cat",
  approach = "linear"
)</pre>
```

interaction_models

Compare Models With and Without Interaction Term

Description

This function fits two models—one with and one without an interaction term between an exposure and a potential effect modifier— and compares them using either a likelihood ratio test (LRT) or Wald test. It is useful for assessing whether there is statistical evidence of interaction (effect modification).

Usage

```
interaction_models(
  data,
  outcome,
  exposure,
  covariates = NULL,
  effect_modifier,
  approach = "logit",
  test = c("LRT", "Wald"),
  verbose = TRUE
)
```

14 merge_tables

Arguments

data A data frame containing all required variables.

outcome The name of the outcome variable

exposure The name of the main exposure variable.

covariates character vector of additional covariates to adjust for

effect_modifier

The name of the variable to test for interaction

approach The regression modeling approach to use. One of: "logit", "log-binomial",

"poisson", "robpoisson", "negbin", or "linear".

test Type of statistical test for model comparison. Either: "LRT" (likelihood ratio

test, default) or "Wald".

verbose Logical; if TRUE, prints a basic interpretation of whether interaction is likely

present (default = FALSE).

Value

A list with the following elements:

• model_no_interaction: The model without the interaction term.

• model_with_interaction: The model with the interaction term.

• p_value: The p-value for interaction (based on selected test).

• interpretation: A brief text interpretation if verbose = TRUE.

Examples

data <- data_PimaIndiansDiabetes</pre>

merge_tables	Merge Multiple gtsummary Tables (Descriptive, Univariate, Multi-
	variable)

Description

Flexibly merges any 2 or more 'gtsummary' tables (e.g., from 'descriptive_table()', 'uni_reg()', 'multi_reg()') into a single table using 'tbl_merge()'. Automatically applies column spanners based on the order of inputs.

Usage

```
merge_tables(..., spanners = NULL)
```

merge_tables 15

Arguments

... Two or more 'gtsummary' table objects to merge.

spanners Optional character vector of column header titles. If not supplied, defaults to '"Table 1"', '"Univariate"', '"Multivariable"' etc.

Value

A merged 'gtsummary::tbl_merge' object.

```
if (requireNamespace("mlbench", quietly = TRUE)) {
 data("PimaIndiansDiabetes2", package = "mlbench")
 library(dplyr)
 library(gtregression)
 # Prepare data
 pima <- PimaIndiansDiabetes2 |>
   mutate(
      diabetes = ifelse(diabetes == "pos", 1, 0),
      bmi_cat = cut(
       mass,
       breaks = c(-Inf, 18.5, 24.9, 29.9, Inf),
       labels = c("Underweight", "Normal", "Overweight", "Obese")
     )
   )
 # Descriptive table
 desc_tbl <- descriptive_table(pima,</pre>
                                exposures = c("age", "bmi_cat"),
                                by = "diabetes")
 # Univariate logistic regression
 uni_tbl <- uni_reg(</pre>
   data = pima,
   outcome = "diabetes",
   exposures = c("age", "bmi_cat"),
   approach = "logit"
 )
 # Multivariable logistic regression
 multi_tbl <- multi_reg(</pre>
   data = pima,
   outcome = "diabetes",
   exposures = c("age", "bmi_cat"),
   approach = "logit"
 # Merge descriptive + univariate + multivariate
 merge_tables(desc_tbl, uni_tbl, multi_tbl)
```

16 modify_table

```
# Merge with custom spanners
merge_tables(desc_tbl, uni_tbl, spanners = c("Summary", "Crude"))

# Merge just uni and multi
merge_tables(uni_tbl, multi_tbl)
}
```

modify_table

Modify Regression Table Labels and Layout

Description

Allows customization of labels, headers, and layout of regression tables created using 'gtsummary'. Designed for tables from functions like 'uni_reg()', 'multi_reg()', etc.

Usage

```
modify_table(
  gt_table,
  variable_labels = NULL,
  level_labels = NULL,
  header_labels = NULL,
  caption = NULL,
  bold_labels = FALSE,
  bold_levels = FALSE,
  remove_N = FALSE,
  remove_N_obs = FALSE,
  remove_abbreviations = FALSE,
  caveat = NULL
)
```

Arguments

gt_table A 'gtsummary' table object. variable_labels A named vector for relabeling variable names. A named list for relabeling levels of variables. Should be structured as 'list(var1 level_labels = c(old1 = new1, old2 = new2), ...). header_labels A named vector for relabeling column headers. Names should match internal column names (e.g., "estimate", "p.value"). caption A character string used to set the table title. bold_labels Logical. If 'TRUE', bolds variable labels. bold_levels Logical. If 'TRUE', bolds factor level labels. Logical. If 'TRUE', hides the 'N' column in univariate regression tables ('uni_reg', remove_N 'uni_reg_nbin'). Ignored for other tables.

multi_reg 17

remove_N_obs Logical. If 'TRUE', removes the source note showing the no of observations in multivariable models ('multi_reg', 'multi_reg_nbin').

remove_abbreviations

Logical. If 'TRUE', removes default footnotes for estimate abbreviations.

caveat

A character string to add as a footnote (source note) below the table, e.g., "N may vary due to missing data."

Value

A customized 'gtsummary' table object with modified labels, layout, and options.

```
if (requireNamespace("mlbench", quietly = TRUE)) {
 data("PimaIndiansDiabetes2", package = "mlbench")
 library(dplyr)
 library(gtregression)
 # Prepare data
 pima <- PimaIndiansDiabetes2 |>
   mutate(
      diabetes = ifelse(diabetes == "pos", 1, 0),
      bmi_cat = cut(
       mass,
       breaks = c(-Inf, 18.5, 24.9, 29.9, Inf),
        labels = c("Underweight", "Normal", "Overweight", "Obese")
     )
   )
 # Descriptive table
 desc_tbl <- descriptive_table(pima,</pre>
                                exposures = c("age", "bmi_cat"),
                                by = "diabetes")
 # Univariate logistic regression
 uni_rr <- uni_reg(
   data = pima,
   outcome = "diabetes",
   exposures = c("age", "bmi_cat"),
    approach = "logit"
 )
}
```

18 multi_reg

Description

Fits multivariable regression models for binary, count, or continuous outcomes and returns a publication-ready summary table using 'gtsummary'. Depending on the specified 'approach', the function estimates adjusted Odds Ratios (OR), Risk Ratios (RR), Incidence Rate Ratios (IRR), or Beta coefficients.

Usage

```
multi_reg(data, outcome, exposures, approach = "logit")
```

Arguments

data A data frame containing the analysis variables.

outcome The name of the outcome variable. Must be a character string.

exposures A character vector of predictor variables to include.

approach Modeling approach to use. One of: - "logit" for logistic regression (OR), -

"log-binomial" for log-binomial regression (RR), - "poisson" for Poisson regression (IRR), - "robpoisson" for robust Poisson regression (RR), - "linear" for linear regression (Beta coefficients), - "negbin" for negative binomial re-

gression (IRR).

Value

An object of class 'multi_reg', extending 'gtsummary::tbl_regression'. Additional components can be accessed using:

- x\$models: List of fitted model objects.
- x\$model_summaries: List of summary outputs.
- x\$reg_check: Regression diagnostics (only for linear models).
- x\$table: Returns the main regression table.

Accessors

```
$models List of fitted model objects.
```

\$model_summaries A tibble of tidy regression summaries for each model.

See Also

```
[uni_reg()], [plot_reg()], [plot_reg_combine()]
```

```
if (requireNamespace("mlbench", quietly = TRUE)) {
  data(PimaIndiansDiabetes2, package = "mlbench")
  pima <- dplyr::mutate(PimaIndiansDiabetes2,
  diabetes = ifelse(diabetes == "pos", 1, 0))
  model <- multi_reg(
   data = pima,</pre>
```

plot_reg

```
outcome = "diabetes",
  exposures = c("age", "mass"),
  approach = "logit"
)
print(model)
}
```

plot_reg

Visualize a Regression Model as a Forest Plot

Description

Creates a forest plot from a 'gtsummary' object. Supports both univariate and multivariable models with hierarchical labels for categorical variables. Designed to work seamlessly with outputs from functions like 'uni_reg()' and 'multi_reg()'.

Usage

```
plot_reg(
   tbl,
   title = NULL,
   ref_line = 1,
   order_y = NULL,
   log_x = FALSE,
   xlim = NULL,
   breaks = NULL,
   point_color = "#1F77B4",
   errorbar_color = "#4C4C4C",
   base_size = 14,
   show_ref = TRUE
)
```

Arguments

tbl	A 'gtsummary' object from regression functions
title	Optional plot title (character).
ref_line	Numeric value for the reference line (default = 1).
order_y	Optional character vector to the customise y-axis order
log_x	Logical. If 'TRUE', uses a logarithmic x-axis (default = FALSE).
xlim	Optional numeric vector specifying x-axis limits
breaks	Optional numeric vector for x-axis tick breaks.
point_color	Color of the points (default is automatic).
errorbar_color	Color of the error bars (default is automatic).
base_size	Base font size for text elements.
show_ref	Logical. If 'TRUE', includes reference in the plot.

20 plot_reg_combine

Value

A 'ggplot2' object representing the forest plot.

Examples

```
if (requireNamespace("mlbench", quietly = TRUE)) {
  data("PimaIndiansDiabetes2", package = "mlbench")
  library(dplyr)
  library(gtregression)
  # Prepare data
  pima <- PimaIndiansDiabetes2 |>
   mutate(
      diabetes = ifelse(diabetes == "pos", 1, 0),
      bmi_cat = cut(
       mass,
       breaks = c(-Inf, 18.5, 24.9, 29.9, Inf),
       labels = c("Underweight", "Normal", "Overweight", "Obese"))
  )
  # Univariate logistic regression
  uni_rr <- uni_reg(
    data = pima,
   outcome = "diabetes",
   exposures = c("age", "bmi_cat"),
   approach = "logit"
plot_reg(uni_rr)
```

plot_reg_combine

Visualize Univariate and Multivariate Regression Side-by-Side

Description

Generates side-by-side plots to compare univariate & multivariable results

Usage

```
plot_reg_combine(
  tbl_uni,
  tbl_multi,
  title_uni = NULL,
  title_multi = NULL,
  ref_line = 1,
  order_y = NULL,
  log_x = FALSE,
  point_color = "#1F77B4",
```

plot_reg_combine 21

```
errorbar_color = "#4C4C4C",
base_size = 14,
show_ref = TRUE,
xlim_uni = NULL,
breaks_uni = NULL,
xlim_multi = NULL,
breaks_multi = NULL
```

Arguments

tbl_uni	A 'gtsummary' object from 'uni_reg()' etc.,
tbl_multi	A 'gtsummary' object from 'multi_reg()'.
title_uni	Optional plot title for the univariate model
title_multi	Optional plot title for the multivariable mode
ref_line	Numeric value for the reference line (default = 1).
order_y	Optional character vector to manually order the y-axis labels.
log_x	Logical. If 'TRUE', x-axis is log-transformed (default = FALSE).
point_color	Optional color for plot points.
errorbar_color	Optional color for error bars.
base_size	Numeric. Base font size for plot text elements.
show_ref	Logical. If 'TRUE', includes reference categories
xlim_uni	Optional numeric vector to set x-axis limits for uni plot.
breaks_uni	Optional numeric vector to set x-axis breaks for uni plot.
xlim_multi	Optional numeric vector to set x-axis limits for multi plot
breaks_multi	Optional numeric vector to set x-axis breaks- multi plot.

Value

A 'ggplot2' object with two forest plots displayed side-by-side.

```
if (requireNamespace("mlbench", quietly = TRUE)) {
   data("PimaIndiansDiabetes2", package = "mlbench")
   library(dplyr)
   library(gtregression)

# Prepare data
   pima <- PimaIndiansDiabetes2 |>
        mutate(
        diabetes = ifelse(diabetes == "pos", 1, 0),
        bmi_cat = cut(
        mass,
        breaks = c(-Inf, 18.5, 24.9, 29.9, Inf),
        labels = c("Underweight", "Normal", "Overweight", "Obese")
```

22 save_docx

```
),
    age_cat = cut(
      age,
      breaks = c(-Inf, 29, 49, Inf),
      labels = c("Young", "Middle-aged", "Older")
 )
# Univariate logistic regression
uni_rr <- uni_reg(</pre>
  data = pima,
 outcome = "diabetes",
  exposures = c("age_cat", "bmi_cat"),
  approach = "logit"
)
# Multivariable logistic regression
multi_rr <- multi_reg(</pre>
  data = pima,
 outcome = "diabetes",
 exposures = c("age_cat", "bmi_cat"),
  approach = "logit"
)
# Combined plot
plot_reg_combine(uni_rr, multi_rr)
```

save_docx

Save Multiple Tables and Plots to a Word Document

Description

Saves a collection of gtsummary tables and ggplot2 plots into a .docx file.

Usage

```
save_docx(tables = NULL, plots = NULL, filename = "report.docx", titles = NULL)
```

Arguments

tables A list of gtsummary tables.
plots A list of ggplot2 plot objects.

filename File name for the output (with or without .docx extension).

titles Optional. A character vector of titles.

Value

A Word document saved to a temporary directory (if no path is given). No object is returned.

save_plot 23

Examples

```
library(gtsummary)
library(ggplot2)
tbl <- tbl_regression(glm(mpg ~ hp + wt, data = mtcars))
p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
    geom_point()
save_docx(
    tables = list(tbl),
    plots = list(p),
    filename = file.path(tempdir(), "report.docx"),
    titles = c("Table 1: Regression", "Figure 1: Scatterplot")
)</pre>
```

save_plot

Save a Single Plot

Description

Saves a ggplot2 plot to a file in PNG, PDF, or JPG format.

Usage

```
save_plot(
  plot,
  filename = "plot",
  format = c("png", "pdf", "jpg"),
  width = 8,
  height = 6,
  dpi = 300
)
```

Arguments

plot A ggplot2 object.

filename Name of the file to save, with or without extension.

format Output format. One of "png", "pdf", or "jpg".

width Width of the saved plot in inches.

height Height of the saved plot in inches.

dpi Resolution of the plot in dots per inch (default is 300).

Value

Saves the file to a temporary directory (if no path is given).

24 save_table

Examples

```
library(ggplot2)
p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
   geom_point()
save_plot(p, filename = file.path(tempdir(), "scatterplot"), format = "png")</pre>
```

save_table

Save a Single Regression Table

Description

Saves a gtsummary table as a Word, PDF, or HTML file

Usage

```
save_table(tbl, filename = "table", format = c("docx", "pdf", "html"))
```

Arguments

tbl A gtsummary object (e.g., tbl_regression(), tbl_summary()).

filename File name to save the output. Extension is optional.

format Output format. One of "docx", "pdf", or "html".

Value

Saves the file to a temporary directory (if no path is given). Does not return an object.

```
model <- glm(mpg ~ hp + wt, data = mtcars)
tbl <- gtsummary::tbl_regression(model)
save_table(tbl, filename = file.path(tempdir(), "regression_table"), format = "docx")</pre>
```

select_models 25

select_models	Stepwise Model Selection with Evaluation Metrics
---------------	--

Description

Performs stepwise model selection using forward, backward, or both directions across different regression approaches. Returns a summary table with evaluation metrics (AIC, BIC, log-likelihood, deviance) and the best model.

Usage

```
select_models(
  data,
  outcome,
  exposures,
  approach = "logit",
  direction = "forward"
)
```

Arguments

A data frame containing the outcome and predictor variables.

A character string indicating the outcome variable.

exposures vector of predictor variables to consider in the model.

approach Regression method. One of: "logit", "log-binomial", "poisson", "robpoisson", "negbin", or "linear".

direction Stepwise selection direction. One of: "forward" (default), "backward", or "both".

Value

A list with the following components:

- results_table: A tibble summarising each tested model's metric (AIC, BIC, deviance, log-likelihood, adjusted R² if applicable).
- best_model: The best-fitting model object based on low AIC.
- all_models: A named list of all fitted models.

```
data <- data_PimaIndiansDiabetes
stepwise <- select_models(
  data = data,
  outcome = "glucose",
  exposures = c("age", "pregnant", "mass"),
  approach = "linear",</pre>
```

26 stratified_multi_reg

```
direction = "forward"
)
summary(stepwise)
stepwise$results_table
stepwise$best_model
```

Description

Performs multivariable regression with multiple exposures on a binary, count, or continuous outcome, stratified by a specified variable. NA values in the stratifier are excluded from analysis.

Usage

```
stratified_multi_reg(data, outcome, exposures, stratifier, approach = "logit")
```

Arguments

data A data frame containing the variables.

outcome name of the outcome variable.

exposures vector specifying the predictor (exposure) variables. stratifier A character string specifying the stratifying variable.

approach Modeling approach to use. One of: "logit" (Adjusted Odds Ratios), "log-

binomial" (Adjusted Risk Ratios), "poisson" (Adjusted IRRs), "robpoisson" (Adjusted RRs), or "linear" (Beta coefficients), "negbin" (Adjusted IRRs).

Value

An object of class 'stratified_multi_reg', which includes: - 'table': A 'gtsummary::tbl_stack' object of regression tables by stratum, - 'models': A named list of model objects for each stratum, - 'model_summaries': A list of tidy model summaries, - 'reg_check': Diagnostics results (if available for the model type).

Accessors

\$table Stacked table of stratified regression outputs.

\$models Named list of fitted models per stratum.

\$model_summaries Tidy summaries for each model.

\$reg_check Regression diagnostic checks (when applicable).

See Also

```
[multi_reg()], [stratified_uni_reg()], [plot_reg()]
```

stratified_uni_reg 27

Examples

```
if (requireNamespace("mlbench", quietly = TRUE) &&
 requireNamespace("dplyr", quietly = TRUE)) {
 data(PimaIndiansDiabetes2, package = "mlbench")
 pima <- dplyr::mutate(</pre>
   PimaIndiansDiabetes2,
    diabetes = ifelse(diabetes == "pos", 1, 0),
    glucose_cat = dplyr::case_when(
      glucose < 140 ~ "Normal",
      glucose >= 140 ~ "High"
 stratified_multi <- stratified_multi_reg(</pre>
    data = pima,
    outcome = "diabetes",
    exposures = c("age", "mass"),
    stratifier = "glucose_cat",
    approach = "logit"
 )
 stratified_multi$table
}
```

stratified_uni_reg

Performs univariate regression for each exposure on a binary, count, or continuous outcome, stratified by a specified variable. Produces a stacked 'gtsummary' table with one column per stratum, along with underlying models and diagnostics.

Description

Performs univariate regression for each exposure on a binary, count, or continuous outcome, stratified by a specified variable. Produces a stacked 'gtsummary' table with one column per stratum, along with underlying models and diagnostics.

Usage

```
stratified_uni_reg(data, outcome, exposures, stratifier, approach = "logit")
```

Arguments

data A data frame containing the variables.

outcome name of the outcome variable.

exposures A vector specifying the predictor (exposure) variables.

stratifier A character string specifying the stratifier

approach Modeling approach to use. One of: "logit" (Odds Ratios), "log-binomial"

(Risk Ratios), "poisson" (Incidence Rate Ratios), "robpoisson" (Robust RR),

"linear" (Beta coefficients), "negbin" (Incidence Rate Ratios),.

28 uni_reg

Value

An object of class 'stratified_uni_reg', which includes: - 'table': A 'gtsummary::tbl_stack' object with stratified results, - 'models': A list of fitted models for each stratum, - 'model_summaries': A tidy list of model summaries, - 'reg_check': A tibble of regression diagnostics (when available).

Accessors

```
$table Stacked stratified regression table.
$models List of fitted model objects for each stratum.
$model_summaries List of tidy model summaries.
$reg_check Diagnostic check results (when applicable).
```

See Also

```
[multi_reg()], [plot_reg()], [identify_confounder()]
```

Examples

```
if (requireNamespace("mlbench", quietly = TRUE) &&
 requireNamespace("dplyr", quietly = TRUE)) {
 data(PimaIndiansDiabetes2, package = "mlbench")
 pima <- dplyr::mutate(</pre>
   PimaIndiansDiabetes2,
    diabetes = ifelse(diabetes == "pos", 1, 0),
    glucose_cat = dplyr::case_when(
      glucose < 140 ~ "Normal",
      glucose >= 140 ~ "High"
    )
 stratified_uni <- stratified_uni_reg(</pre>
    data = pima,
    outcome = "diabetes",
    exposures = c("age", "mass"),
    stratifier = "glucose_cat",
    approach = "logit"
 )
 stratified_uni$table
}
```

uni_reg

Univariate regression (Odds, Risk, or Rate Ratios)

Description

Performs univariate regression for each exposure on a binary, continuous, or count outcome. Depending on 'approach', returns either Odds Ratios (OR), Risk Ratios (RR), or Incidence Rate Ratios (IRR).

uni_reg 29

Usage

```
uni_reg(data, outcome, exposures, approach = "logit")
```

Arguments

data A data frame containing the variables.

outcome variable (binary, continuous, or count).

exposures A vector of predictor variables.

approach Modeling approach to use. One of: "logit" (OR), "log-binomial" (RR),

"poisson" (IRR), "robpoisson" (RR), "linear" (Beta coefficients), "neg-

bin"' (IRR)

Details

This function requires the following packages: 'dplyr', 'purrr', 'gtsummary', 'risks'.

Value

A list of class 'uni_reg' and 'gtsummary::tbl_stack', including:

- A publication-ready regression table ('tbl_stack')
- Accessor elements:
 - '\$models': Fitted regression models for each exposure
 - '\$model_summaries': Tidy model summaries
 - '\$reg_check': Diagnostics (only for linear regression)

See Also

```
multi_reg, plot_reg
```

```
data(PimaIndiansDiabetes2, package = "mlbench")
library(dplyr)
pima <- PimaIndiansDiabetes2 |>
    dplyr::mutate(diabetes = ifelse(diabetes == "pos", 1, 0))
uni_reg(pima, outcome = "diabetes", exposures = "age", approach = "logit")
```

Index

```
* datasets
    data_birthwt, 5
    data_epilepsy, 6
    data_gt_quin, 7
    data_infertility, 7
    data_lungcancer, 8
    data_PimaIndiansDiabetes, 9
* regression functions
    uni_reg, 28
{\sf check\_collinearity}, {\sf 3}
check_convergence, 3
data_birthwt, 5
data_epilepsy, 6
data_gt_quin, 7
data_infertility, 7
data_lungcancer, 8
{\tt data\_PimaIndiansDiabetes}, 9
descriptive_table, 9
dissect, 11
identify_confounder, 12
interaction_models, 13
merge_tables, 14
modify_table, 16
multi_reg, 17, 29
plot_reg, 19, 29
\verb|plot_reg_combine|, 20|
save_docx, 22
save_plot, 23
save_table, 24
select_models, 25
stratified_multi_reg, 26
stratified_uni_reg, 27
uni\_reg, 28
```