2021年11月7日

离散数学

吴天阳 2204210460

习题六

14. 解答.

- (1). 不是,因为 $(-1,-2),(2,1) \in R$,但 $(-1+2,1-2) = (1,-1) \notin R$,则 R 不是同余关系。
- (2). 不是,因为 $(-5,4) \in R$,但 $(-5-5,4+4) = (-10,8) \notin R$,则 R 不是同余关系。
- (3). 不是,因为 $(1,1),(-1,1)\in R$,但 $(1-1,1+1)=(0,2)\notin R$,则 R 不是同余关系。
- (4). 不是,因为 $(2,1) \in R$,但 $(1,2) \notin R$,则 R 不是对称的,所以 R 不是等价关系,更不是同余关系。
- 17. **解答**. 构造 $X \rightarrow Y$ 上的映射 σ 如下:

$$\sigma: \mathbb{N} \to \{0, 1\}$$

$$n \mapsto \begin{cases} 0, & n \text{ 为偶数;} \\ 1, & n \text{ 为奇数.} \end{cases}$$

下面证明 σ 是 $X \rightarrow Y$ 上的满同态。

设 $n_1, n_2, m_1, m_2 \in \mathbb{N}$, 其中 n_1, n_2 为偶数, m_1, m_2 为奇数, 所以

$$\sigma(n_1)\sigma(n_2) = 0 \times 0 = 0 = \sigma(n_1 n_2)$$

$$\sigma(n_1)\sigma(m_1) = 0 \times 1 = 0 = \sigma(n_1 m_1)$$

$$\sigma(m_1)\sigma(m_2) = 1 \times 1 = 1 = \sigma(m_1 m_2)$$

故 σ 保运算,又由于 $\sigma(0) = 0$, $\sigma(1) = 1$,所以 σ 是满同态。 综上,Y 是 X 的同态像。

证明. 由于 f_1, f_2 是 $\langle X, * \rangle \rightarrow \langle Y, \oplus \rangle$ 的同态函数,且 * 和 \oplus 满足交换律和结合律,则

补充题: 解答.

由二元运算表知, $\langle 2^A, \cap, \cup \rangle$, $\langle B, \wedge, \vee \rangle$ 都是 交换群, 则

$$h(\varnothing) \wedge h(\varnothing) = 1 \wedge 1 = 1 = h(\varnothing) = h(\varnothing \cup \varnothing)$$

$$h(\varnothing)\vee h(\varnothing)=1\vee 1=1=h(\varnothing)=h(\varnothing\cap\varnothing)$$

$$h(\varnothing) \wedge h(A) = 1 \wedge 0 = 0 = h(A) = h(\varnothing \cup A)$$

$$h(\varnothing) \lor h(A) = 1 \lor 0 = 1 = h(\varnothing) = h(\varnothing \cap A)$$

$$h(A) \wedge h(A) = 0 \wedge 0 = 0 = h(A) = h(A \cup A)$$

$$h(A) \lor h(A) = 0 \lor 0 = 0 = h(A) = h(A \cap A)$$

综上,h 是 $\langle 2^A, \cap, \cup \rangle \to \langle B, \wedge, \vee \rangle$ 上的同态函数,并且将运算 \cap 映射为 \vee , \cup 映射为 \wedge 。

23.

证明. 设 $x, y, z \in S$, 则

$$(x \oplus y) \oplus z = (x * a * y) \oplus z$$
$$= (x * a * y) * a * z$$
$$\underbrace{* 运算具有结合律}_{===} x * a * (y * a * z)$$
$$= x \oplus (y * a * z)$$
$$= x \oplus (y \oplus z)$$

故 \oplus 运算满足结合律,所以 $\langle S, \oplus \rangle$ 是半群。

证明. (1). 反设 x*x = y 且 $y \neq x$, 则 $x*y \neq y*x$, 但

$$y * x = (x * x) * x = x * (x * x) = x * y$$

与 $x * y \neq y * x$ 矛盾, 所以 x * x = x。

(2). 反设 x * y * x = z 且 $z \neq x$, 则 $x * z \neq z * x$, 但

$$x * z = x * (x * y * x) = x * y * x = (x * y * x) * x = z * x$$

与 $x*z \neq z*x$ 矛盾, 所以 x*y*x = x。

(3). 反设 x * y * z = a 且 $a \neq x * z$, 则 $x * z * a \neq a * x * z$, 但

$$x * z * a = x * z * (x * y * z)$$

$$= (x * z * x) * y * z = x * y * z = x * y * (z * x * z)$$

$$= (x * y * z) * x * z = a * x * z$$

与 $x*z*a \neq a*x*z$ 矛盾, 所以 x*y*z = x*z。

29.

证明. (1). 反设 $x*y \neq y*x$, 不妨令 x*y = x, y*x = y, 则

$$y = x * x = (x * y) * x = x * (y * x) = x * y = x$$

与 $x \neq y$ 矛盾,另一种情况 x * y = y, y * x = x,则

$$y = x * x = x * (y * x) = (x * y) * x = y * x = x$$

也与 $x \neq y$ 矛盾。

综上 x * y = y * x。

(2). 反设 y * y = x, 不妨令 x * y = y * x = x, 则

$$y * y = x$$

$$\Rightarrow x * y * y * x = x * x * x$$

$$\Rightarrow (x * y) * (y * x) = (x * x) * x$$

$$\Rightarrow x * x = y * x$$

$$\Rightarrow y = x$$

与 $x \neq y$ 矛盾, 若 x * y = y * x = y 同理可得出 x = y 矛盾。 综上 y * y = y。

30.

证明. $\diamondsuit x = a$, 则 $\exists u_0, v_0 \in S$, 使得 $a * u_0 = v_0 * a = a$ 。

当 $x \neq a$, 则 $\exists u_1, v_1 \in S$, 使得 $a * u_1 = v_1 * a = x$, 又有

$$x * u_0 = (v_1 * a) * u_0 = v_1 * (a * u_0) = v_1 * a = x$$

$$v_0 * x = v_0 * (a * u_1) = (v_0 * a) * u_1 = a * u_1 = x$$

故,对于 $\forall x \in S$,都有 $x = x * u_0 = v_0 * x$,分别令 $x = u_0, x = v_0$,得

$$u_0 = v_0 * u_0 = v_0$$

令 $e = u_0$, 则 $\forall x \in S$, 有 x * e = e * x = x, 所以 $\langle S, * \rangle$ 是含幺半群。