คู่มือ

การประเมินค่าปริมาณการไหลของน้ำ ด้วยวิธี Manning's formula

กลุ่มงานสารสนเทศและพยากรณ์น้ำ ส่วนอุทกวิทยา สำนักอุทกวิทยาและบริหารน้ำ พฤษภาคม 2553

สารบัญ

เรื่อง	หน้า	
1.คำนำ	1	
2.การคำนวณปริมาณการไหลของน้ำจากสูตร Manning's Formula	2	
3.กรณีที่ 1. สำรวจหาความลาดชันผิวน้ำจากคราบระดับน้ำสูงสุดได้	3	
4.กรณีที่ 2 ไม่ได้สำรวจหาค่าความลาดชันผิวน้ำ	5	
5.หลักการประเมินค่าสัมประสิทธิ์ความขรุขระ (n)	7	
6.ตารางค่าสัมประสิทธิ์ความขรุขระ n ในสมการ Manning's formula	8-9	
7.ราไประกอบ Manning's formula	11-16	

คำนำ

การสำรวจปริมาณน้ำได้ถูกเพิ่มความสำคัญมากขึ้นในรูปแบบหลากหลายภารกิจ ถูกนำไปใช้ ในด้านฐานข้อมูล รายงานสภาพน้ำ การพยากรณ์ปริมาณน้ำและการแจ้งเตือนภัย การสำรวจที่ดี ย่อมทำให้ข้อมูลได้รับการยอมรับและน่าเชื่อถือต่อสำนักอุทกวิทยาและบริหารน้ำโดยรวม ดังนั้นการ สำรวจปริมาณน้ำเพื่อสร้างเส้นโค้งปริมาณน้ำ (Rating Curve) จึงเป็นงานที่ต้องใช้ความพยายาม และอุตสาหะอย่างมากในการเก็บข้อมูลการสำรวจปริมาณน้ำ แต่ข้อจำกัดด้านจำนวนสถานีที่ รับผิดชอบและเวลาในการสำรวจปริมาณน้ำที่เร่งรีบ เพื่อให้ทันต่อการสำรวจ ทำให้บางสถานีไม่ สามารถทำการสำรวจปริมาณน้ำสูงสุดหรือในระดับน้ำสูงได้ เป็นผลทำให้สร้างเส้นโค้งปริมาณน้ำของสถานีที่ไม่มีจุดสำรวจปริมาณน้ำสูงสุดยากลำบากมากขึ้น การใช้การประเมินการไหลของน้ำด้วย สูตรแมนนิ่ง (Manning 's Formula) เป็นวิธีการหนึ่งในการแก้ปัญหาการสำรวจปริมาณน้ำสูงสุด ไม่ได้ ซึ่งผู้จัดทำคู่มือหวังว่า คู่มือเล่มน้ำจะเป็นประโยชน์ต่อเจ้าหน้าที่ในการแก้ปัญหาที่เกิดขึ้นได้

กลุ่มงานสารสนเทศและพยากรณ์น้ำ ส่วนอุทกวิทยา สำนักอุทกวิทยาและบริหารน้ำ พฤษภาคม 2553

การคำนวณปริมาณการไหลของน้ำจากสูตร Manning's Formula

สูตรแมนนิ่ง (Manning's formula) เป็นวิธีการใช้หลักพลังงาน (Principle of energy) ในการ ประมวลหาค่าความเร็วเฉลี่ยของลำน้ำ การคำนวณจะต้องใช้ข้อมูลหรือวัดความลาดเทของผิวน้ำตาม แนวลำน้ำเพื่อใช้เป็นค่าประมาณของความลาดชันของพลังงาน หรือ Energy gradient เป็นสูตรที่ นิยมใช้คำนวณค่าความเร็วเฉลี่ย

โดยที่ พื้นที่รูปตัด เส้นขอบเปียกและความลาดชันผิวน้ำ หาได้จากการสำรวจภายหลังที่ ปริมาณน้ำสูงสุดผ่านไปแล้ว ซึ่งสังเกตได้จากคราบของระดับน้ำสูงสุด

ในคู่มือเล่มนี้การใช้สูตรแมนนิ่ง(Manning) จะพิจารณา 2 กรณีคือ

- 1. กรณีที่สำรวจหาความลาดชันผิวน้ำจากคราบน้ำสูงสุดได้
- 2. กรณีไม่ได้สำรวจหาค่าความลาดชันผิวน้ำ

กรณีที่ 1. สำรวจหาความลาดชั้นผิวน้ำจากคราบระดับน้ำสูงสุดได้

ตัวอย่าง บ้านกุยมั่ง อ.ทองผาภูมิ จ.กาญจนบุรี (K.60) จุดสำรวจน้ำสูงสุดที่สำรวจได้ (อท. 02) ในปี 2008 คือ 10 ส.ค. 2551 ที่ระดับน้ำ 75.705 เมตร(รทก.) เวลาสำรวจ 16.15 – 16.30 ความกว้างผิวน้ำ 15.37เมตร พื้นที่รูปตัด 23.151 ม.² ความเร็วเฉลี่ย 0.609 เมตร/วินาที ปริมาณน้ำ 14.09 เมตร³/วินาที

(สมมุติ) ช่างสำรวจได้ทำการเดินระดับคราบน้ำสูงสุดที่ 77.83 เมตร (รทก.) ได้ค่าความ ลาดชันผิวน้ำ 1: 380 และสรุปข้อมูลดังนี้

ความลาดชันผิวน้ำ (S) = 0.002632 (1:380) (จากการสำรวจ (สมมุติ))

พื้นที่รูปตัด (A) = 70.486 ม.² (จากการคำนวณหน้า 14)

เส้นขอบเปียก (P) = 29.713 เมตร (จากการคำนวณหน้า 14)

ค่าสัมประสิทธิ์ความขรุขระ"n" = 0.1 (ประเมินจากรูปตัดขวางและตารางค่า"n")

รัศมีชลศาสตร์ $(\frac{A}{P})$ = 2.37722 เมตร

 $\overline{v} = 0.914$ เมตร/วินาที

จาก Q = A·V = 70.486 x 0.914

= 64.42 ลูกบาศก์เมตร /วินาที

หากต้องการหาค่า"n" ก่อน สามารถหาได้จากสูตรดังนี้

$$n = \frac{1}{v} R^{\frac{2}{3}} S^{\frac{1}{2}}$$

v = 0.609 เมตร/วินาที (จาก อท.02)

A = 23.151 เมตร² (จาก อท.02)

P = 18.559 เมตร (จากการคำนวณหน้า 13)

S = 0.002632 (ได้จากการเก็บคราบระดับน้ำ)

R = 23.151/18.559 = 2.37722

แทนค่า

$$n = \frac{1}{0.609} x(2.37722)^{\frac{2}{3}} x(0.002632)^{\frac{1}{2}}$$

$$n = 1.642x1.7817x0.0513$$

$$n = 0.150$$

จากนั้นนำค่า n ไปแทนค่าในสูตร $\stackrel{-}{v}=\frac{1}{n}R^{\frac{2}{3}}S^{\frac{1}{2}}$ โดย n ที่ได้ต้องมีการปรับลดลงเล็กน้อย เนื่องจากวัชพืช หรือสิ่งกีดขวางในลำน้ำก่อนเกิดปริมาณน้ำสูงสุด ได้ถูกทำให้ราบเรียบโดยปริมาณ น้ำที่ไหลก่อนเกิดปริมาณน้ำสูงสุดแล้ว

กรณีที่ 2 ไม่ได้สำรวจหาค่าความลาดชันผิวน้ำ

ตัวอย่าง กรณีตัวอย่าง K.60 สถานีบ้านกุยมั่ง อ.ทองผาภูมิ จ.กาญจนบุรี โดยจุดสำรวจ ปริมาณน้ำสูงสุดที่สำรวจได้ในปี 2008 คือ วันที่ 10 ส.ค. 2551 ที่ระดับน้ำ 75.705 เมตร(รทก.) เวลาสำรวจ 16.15 – 16.30 ความกว้างผิวน้ำ 15.37 เมตร พื้นที่รูปตัด 23.151 ม.² ความเร็ว เฉลี่ย 0.609 เมตร/วินาที และปริมาณน้ำที่ได้ 14.09 ม.³/วินาที

1. จากผลการสำรวจดังกล่าวสามารถหาค่าต่างๆ ได้ดังนี้

ความลาดเทลำน้ำ(S) = ยังไม่ทราบค่า

พื้นที่รูปตัด(A) = 23.151 ม.² (จาก อท.02)

ความยาวเส้นขอบเปียก(P) = 18.559 เมตร (จากการคำนวณหน้า 13)

ความเร็วเฉลี่ย(v) = 0.609 เมตร/วินาที

ค่ารัศมีชลศาสตร์(R) = 23.151/18.559 = 1.2474

ค่าสัมประสิทธิ์ความขรุขระ(n) ≈ 0.1 (ดูรูปประกอบหน้า 12 และตารางค่า n)

ค่าสัมประสิทธิ์ความขรุขระเมื่อพิจารณาจากรูปตัด (รูปประกอบหน้า 12) จะพบว่าด้านท้าย แนวสำรวจมีวัชพืชและต้นไม้ขึ้นเป็นจำนวนมากดังนั้นเมื่อพิจารณาจากตารางค่าสัมประสิทธิ์ความ ขรุขระจะได้ค่าประมาณ 0.10 – 0.12

นำค่าความลาดเทที่คำนวณได้ไปแทนค่าในสูตรแมนนิ่งที่ระดับน้ำสูงสุด(Peak)ในกรณี
 นี้คือ สถานี K.60 สถานีบ้านกุยมั่ง อ.ทองผาภูมิ จ.กายจนบุรี ระดับน้ำสูงสุดเวลา16.00 น. ที่
 77.83 เมตร (รทก.)

ค่า A ที่ระดับ 77.83 ม. = 70.486 ม. (จากการคำนวณหน้า 14) ค่า P ที่ระดับ 77.83 ม. = 29.713 ม. (จากการคำนวณหน้า 14) ค่า n ที่ระดับ 77.83 ม. = 0.1 (จากการประเมินค่า) ค่า S ที่ระดับ 77.83 ม. = 0.002383 (ผลการคำนวณข้อ 1) ค่า R = A/P = 3.57561 ม.

แทนค่าในสูตร

$$\bar{v} = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$$

$$\overline{v} = \frac{1}{0.1} (3.57561)^{\frac{2}{3}} x (0.002383)^{\frac{1}{2}}$$

$$\overline{v} = 10x2.3393x0.04881$$

$$\overline{v} = 1.142$$

จาก
$$Q = A \cdot V$$
 $Q = 70.486 \times 1.142$ $Q = 80.40$ ม. $^3/$ วินาที

หลักการประเมินค่าสัมประสิทธิ์ความขรุขระ (n)

จากการวิจัยพบว่าสัมประสิทธิ์ความขรุขระแมนนิ่งขึ้นอยู่กับปัจจัยหลายประการและปัจจัย เหล่านี้ยังมีความสัมพันธ์เกี่ยวเนื่องกันอีกด้วย ซึ่งปัจจัยต่างๆ มีดังต่อไปนี้

- ความขรุขระของผิวหน้าทางน้ำ ซึ่งขึ้นอยู่กับขนาดและรูปร่างของวัสดุที่นำมาใช้สร้าง
 ผิวหน้าทางน้ำ โดยวัสดุที่มีเม็ดละเอียดก็จะให้ค่า n ต่ำ และวัสดุที่มีเม็ดหยาบก็จะให้ค่า
 n สูง ความขรุขระของผิวหน้าทางน้ำเป็นปัจจัยสำคัญในการกำหนดค่า n
- 2. พืชที่ขึ้นปกคลุมทางน้ำ เช่น หญ้า ซึ่งจะมีผลทำให้เกิดการต้านการไหลและจะลดอัตรา การไหล ผลของพืชที่ขึ้นปกคลุมจะมากหรือน้อยขึ้นอยู่กับ ความสูง ความหนาแน่น การ กระจายและชนิดของพืช
- 3. ความไม่สม่ำเสมอของทางน้ำ ในทางน้ำธรรมชาติความไม่สม่ำเสมอของทางน้ำจะ
 เกิดขึ้นจากหาดทราย หลุมและบ่อในท้องคลอง เป็นต้น จากการวิจัยพบว่า ถ้าทางน้ำ
 นั้นค่อยๆ เปลี่ยนแปลงที่ละน้อยอย่างสม่ำเสมอไม่ว่าการเปลี่ยนแปลงนั้นจะเป็นการ
 เปลี่ยนแปลงขนาดรูปร่างหรือหน้าตัดการไหล จะไม่มีผลกระทบต่อการเปลี่ยนแปลงค่า
 n มากนัก แต่ถ้าการเปลี่ยนแปลงนั้นเป็นการเปลี่ยนอย่างฉับพลันก็จะมีผลกระทบต่อ
 การเปลี่ยนแปลงค่า n อย่างมาก
- 4. แนวทางน้ำ ทางน้ำที่มีรัศมีส่วนโค้งของแนวทางน้ำมากและส่วนโค้งนั้น ราบเรียบจะมี ผลต่อการเปลี่ยนแปลงค่า n น้อยมาก แต่ถ้าทางน้ำนั้นมีรัศมีส่วนโค่งของแนวทางน้ำ น้อยหรือเป็นโค้งหักข้อศอกและโค้งกลับไปกลับมา จะทำให้ค่า n มีค่าเพิ่มขึ้นอย่างมาก ซึ่งบางครั้งอาจจะเพิ่มค่า n ได้ถึง 30% นายสโคบี (Scobey) ได้ทำการทดลองในราง น้ำ (flume) พบว่า n จะมีค่าเพิ่มขึ้น 0.001 ถ้ารางน้ำเบี่ยงเบนไปเป็นมุม 20 องศา และความยาวของรางน้ำ 30 เมตร
- 5. การกัดเซาะและการตกตะกอน จากการทดลองพบว่า การตกตะกอนจะทำให้ทางน้ำที่ ไม่สม่ำเสมอเปลี่ยนมาเสมอต้นเสมอปลายและค่า n จะลดลงในทางตรงกันข้าม ถ้าเกิด การกัดเซาะก็จะทำให้ทางน้ำไม่สม่ำเสมอและค่าของ n จะเพิ่มขึ้น อย่างไรก็ตาม การ ตกตะกอนจะขึ้นอยู่กับขนาดและชนิดของวัสดุที่ปะปนกับน้ำและทำให้ลักษณะการ ตกตะกอนแตกต่างกัน เช่น การตะกอนทำให้เกิดสันทรายก็จะเพิ่มค่า n เป็นต้น
- 6. สิ่งก็ดขวาง สิ่งก็ดขวางทางน้ำ เช่น ตอหม้อสะพาน จะทำให้ n มีค่าเพิ่มขึ้น การเพิ่มค่า n จะมากหรือน้อยขึ้นอยู่กับชนิด ขนาด รูปร่าง ปริมาณและการจัดวางตัวของสิ่งก็ดขวาง
- 7. ความลึกการไหลและอัตราการไหล โดยทั่วไปทางน้ำจะมีค่า n ลดลง เมื่อความลึกการ ไหลและอัตราการไหลมีค่ามากขึ้น ที่เป็นเช่นนี้อธิบายได้ว่า เมื่อทางน้ำมีความลึกการ ไหลน้อย ความไม่สม่ำเสมอของท้องคลองจะทำให้มีบางส่วนโผล่ขึ้นมาทำให้ n มีค่ามาก อย่างไรก็ตาม ทางน้ำอาจจะมีค่า n เพิ่มขึ้น เมื่อความลึกการไหลและอัตราการไหลมีค่า มากขึ้นก็ได้ ถ้าลาดตลิ่งของทางน้ำขรุขระ และมีหญ้าขึ้นรกรุงรัง

ตารางค่าสัมประสิทธิ์ความขรุขระ n ในสมการ Manning's formula

ชนิดและลักษณะทางน้ำ	ต่ำสุด	ปาน	สูงสุด
		กลาง	
1. ทางน้ำธรรมชาติ			
1.1 ลำน้ำย่อย (ความกว้างผิวน้ำที่เกิดอุทกภัย 100 ฟุต)			
1.1.1 ลำน้ำบนที่ราบ			
1.1.1.1 สะอาด ตรง ระดับสูง ไม่มีแยกและบ่อลึก	0.025	0.030	0.033
1.1.1.2 เหมือนข้อแรกแต่มีหินและวัชพืชมากกว่า	0.030	0.035	0.040
1.1.1.3 สะอาด คดเคี้ยว มีบ่อและแก่งใต้น้ำ	0.033	0.040	0.045
1.1.1.4 เหมือนข้อ 2.1.1.3 แต่มีวัชพืชและหิน	0.035	0.045	0.050
1.1.1.5 เหมือนข้อ 2.1.1.4 แต่ระดับต่ำกว่าความลาดเท			
และรูปตัดไม่แน่นอน	0.040	0.048	0.055
1.1.1.6 เหมือนข้อ 2.1.1.4 แต่มีหินมากกว่า	0.045	0.050	0.060
1.1.1.7 ช่วงที่ไหลช้า วัชพืช บ่อลึก	0.050	0.070	0.080
1.1.1.8 ช่วงที่มีวัชพืชมาก บ่อลึกหรือทางอุทกภัยที่มี			
ตันไม้	0.075	0.100	0.150
1.1.2 ลำน้ำในหุบเขาไม่มีวัชพืชในทางน้ำ ตลิ่งลาดชั้น			
ต้นไม้และพุ่มไม้ตามตลิ่งอยู่ใต้น้ำที่ระดับการไหลสูง			
1.1.2.1 กัน : กรวด ก้อนหิน และหินก้อนใหญ่ ๆ	0.030	0.040	0.050
เล็กน้อย			
1.1.2.2 กัน : ก้อนหิน หินก้อนใหญ่กว่าข้อแรก	0.040	0.050	0.070
1.2 ทาม			
1.2.1 ทุ่งหญ้า ไม่มีพุ่มไม้			
1.2.1.1 หญ้าสั้น	0.025	0.030	0.035
1.2.1.2 หญ้ายาว	0.030	0.035	0.050
1.2.2 พื้นที่เพาะปลูก			
1.2.2.1 ไม่มีพืช	0.020	0.030	0.040
1.2.2.2 พืชเป็นแถวที่แก่	0.025	0.035	0.045
1.2.2.3 พืชไร่ที่แก่	0.030	0.040	0.050

ชนิดและลักษณะทางน้ำ	ต่ำสุด	ปาน	สูงสุด
		กลาง	
1.2.3 ไม้พุ่ม			
2.2.3.1 ไม้พุ่มกระจัดกระจาย วัชพืชขึ้นหนา	0.035	0.050	0.070
1.2.4 ตันไม้			
1.2.4.1 พื้นที่ว่างเปล่ามีตอไม้ไม่มีหน่อ	0.030	0.040	0.050
1.2.4.2 เหมือนข้อ 2.2.4.1 แต่มีหน่อมาก	0.050	0.060	0.080
1.2.4.3 มีไม้ยืนต้นมาก มีไม้ล้มเล็กน้อย ต้นเล็กมีเล็กน้อย			
ระดับน้ำต่ำกว่ากิ่งก้าน	0.080	0.100	0.120
1.2.4.4 เหมือนซ้อ 2.2.4.3 แต่ระดับน้ำถึงกิ่งก้าน	0.100	0.120	0.160
1.3 ลำน้ำหลัก (ผิวน้ำเมื่อเกิดอุทกภัยกว้าง 100 ฟุต) ค่าน้อย			
กว่าลำน้ำย่อยที่มีลักษณะเหมือนกัน			
1.3.1 รูปตัดสม่ำเสมอ ไม่มีก้อนหินหรือไม้พุ่ม	0.025		0.060
1.3.2 ไม่สม่ำเสมอ และรูปตัดขรุขระ	0.035		0.100

ที่มา : Bruce R. el al., "Fundamentals of Fluid Mechanics", Iowa State University. Ames, Iowa, USA, 1990, 843 pp.

ตัวอย่างการคำนวณ

รูปตัดขวางลำน้ำที่แนวสำรวจของสถานี K.60 บ้านกุยมั่ง

รูปถ่ายแนวสำรวจของสถานี K.60 บ้านกุยมั่ง

กรมชลประหาน

ตัวอย่างการคำนวณพื้นที่รูปตัดขวางและเส้นขอบเปียก จากระดับน้ำสูงสุด (Peak)

กองอุทกวิท กรมช่อประทาน

0.N.2-03

กระดาษกร้าฟ 20 x 20 PER INCH (No. 340R-20)

