Ubungen zu Analysis 1 für Ingenieure und Informatiker

(Abgabe: Dienstag, 10.05.2016, bis 14:15 Uhr, H22)

- 1. Es sei die Folge $(a_n)_{n\in\mathbb{N}_0}$ rekursiv definiert durch $a_0:=2$ und $a_{n+1}:=\frac{1}{2}\left(a_n+\frac{2}{a_n}\right)$ für $n \in \mathbb{N}_0$.
 - a) Zeige, dass $a_{n+1}^2 = 2 + (a_n a_{n+1})^2$.
 - b) Zeige, dass $a_n^2 \ge 2 \ \forall n \in \mathbb{N}_0$.
 - c) Zeige, dass $(a_n)_{n\in\mathbb{N}_0}$ monoton fallend ist.
 - d) Zeige, dass $\lim_{n\to\infty} a_n$ existiert.
 - e) Berechne den Grenzwert der Folge $(a_n)_{n\in\mathbb{N}_0}$.

(3+1+2+1+3 Punkte)

2. Untersuche die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

auf ihr Monotonieverhalten und Beschränktheit. Konvergiert $(a_n)_{n\in\mathbb{N}}$? (6 Punkte)

3. Bestimme die Häufungspunkte der nachstehenden Folgen $(a_n)_{n\in\mathbb{N}}$:

a)
$$a_n = n + (-1)^n 4 \left\lceil \frac{n}{4} \right\rceil$$
 b) $a_n = \frac{(-1)^n}{\sqrt{n}}$

$$b) a_n = \frac{(-1)^n}{\sqrt{n}}$$

c)
$$a_n = \frac{(-1)^n n^2 + 1}{n^2 + 3n + 2}$$

(3+2+3 Punkte)

4. Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei beschränkte Folgen. Zeige, dass dann

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

(7 Punkte)

5. a) Überprüfe mit der Definition 2.4.18, ob es sich bei den Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ um Cauchyfolgen handelt:

(i)
$$a_n = \sum_{k=1}^n \frac{1}{k}$$
 (ii) $b_n = \frac{1}{n^2 + n}$

b) Bestimme für die Cauchyfolge $(c_n)_{n\in\mathbb{N}}$ mit $c_n=\sum_{k=1}^n\frac{1}{k^2}$ für jedes $\epsilon>0$ eine Konstante $n_0(\epsilon)\in\mathbb{N}$, so dass das Cauchykriterium erfüllt ist.

Hinweis: Zeige zunächst, dass
$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$$
. ((2+3)+5 Punkte)