9500 Gilman Drive, Mail Code 0404 La Jolla, CA 92093 geelon@ucsd.edu

https://geelon.github.io 773-621-9265

GEELON SO

Interests

Learning Theory, Theoretical Computer Science

EDUCATION

UNIVERSITY OF CALIFORNIA SAN DIEGO

La Jolla, CA

Ph.D. Student, Computer Science

Sep 2019—present

Relevant courses: Probability Theory, Stochastic Analysis, Computational Statistics, Unsupervised Learning, Continual Learning, Computational Neurobiology, Lattice Algorithms, Cybersecurity

COLUMBIA UNIVERSITY

New York, NY

M.S. Computer Science

May 2019

Relevant courses: Machine learning, Unsupervised Learning, Graph Theory, Learning Theory, Information Theory, Algorithms through Geometric Lens, Computer Networks, Privacy-Preserving Technologies

THE UNIVERSITY OF CHICAGO

Chicago, IL

B.S. Mathematics with Honors

Jun 2017

Relevant courses: Algebraic Geometry, Commutative Algebra, Algebraic Number Theory, Topology, Honors Analysis (real & functional analysis, measure theory), Markov Chains, Quantum Mechanics

ACADEMIC EXPERIENCE

M.S. Thesis

New York, NY

Columbia University

Jan 2018—Sep 2019

• Constructed a general framework to design and analyze active learning algorithms that disentangles the statistical and geometric components of learning; the framework easily extended a previous result to more general noise settings. *Title:* Active learning with noise, *Advisor:* Daniel Hsu

Reading Seminars

New York, NY

Columbia University

Sep 2018—May 2019

Presented and scribed lectures in a reading group focused on sums-of-squares optimization, generalization theory (Columbia, Jan—May 2018) and type theory (UChicago, Sep 2016—Jun 2017)

REUs/Research Internship

Chicago, IL

University of Chicago

Summers 2014, 2015, 2016

- Studied foundations of mathematics through intuitionistic type theory and category theory; advised by Prof. Stuart Kurtz. Wrote expository papers on symbolic dynamics and the mathematics of quantum computing; advised by Clark Butler, Tori Akin, and Prof. Peter May
- Attended summer courses, including discrete mathematics and combinatorics, algebraic topology, spectral geometry, random walks, ergodic theory

Summer School in Mathematics

Chicago, IL

University of Chicago

Summers 2015, 2016

• Attended two invitational graduate-level math seminars in analysis and topology

TEACHING EXPERIENCE

Teaching Assistant Fellowship

New York, NY

Columbia University

Sep 2018—Dec 2018

- Presented 15 hours of lectures on unsupervised learning techniques; designed 9 homework problems; taught over 100 hours during office hours and individual meetings; instructor: Prof. Nakul Verma
- Probability and statistics, Fall 2020, Sanjoy Dasgupta; Unsupervised Learning and Machine Learning, Summer 2018, Nakul Verma; Graph Theory, Spring 2018, Tim Sun; Geographic Information Systems, Fall 2017, Michael Parrott

Work EXPERIENCE

Data Science & Engineering Internship

Chicago, IL Jun 2019—Aug 2019

Home Partners of America

- Identified, planned and executed a high-impact project given limited resource and time constraints • Streamlined ETL for the analytics team by providing API to automatically join, transform and
- aggregate data, while performing data quality checks with statistical guarantees; eliminated need to understand how the history of business decisions affects the correct way to join tables
- Designed backend to API to be easily adaptable to future changes in data collection/database

Technology Consulting

New York, NY

Hacking 4 Defense (Department of Defense & Columbia University)

Sep 2018—Dec 2018

• Collaborated with team to perform research, interview subject matter experts, and design system that gives first responders situational awareness of surrounding HAZMATS, while developing project management and teamwork skills; sponsors: Col. Patrick Mahaney, Jason Cahill and Paul Blaer

Machine Learning Consulting

New York, NY

AumiPhyte Health (Healthcare Startup)

Feb 2018—Mar 2019

- Designed user-centric system and tools to analyze and process medical texts, presenting recommendations in a whitepaper that detailed motivation, implementation, rationale, and limitations
- Implemented rules- and machine-learning based text processing methods using python and spaCy to generate label data for small set of medical texts; estimated 0.9 accuracy with 0.9 confidence
- Developed GUI utilizing active learning techniques to help user rapidly label data

Nonprofit Consulting

Chicago, IL

campusCatalyst (Options for Youth & University of Chicago)

Mar-Jun 2016

• Conducted quantitative/qualitative impact assessment for a local nonprofit by (i) researching and building a model to estimate the return on investment and (ii) interviewing stakeholders and recording impact; provided actionable best practices for using impact assessment to target donors

SERVICE

Google+UCSD ExploreCSR Mentorship Program

San Diego, CA

Volunteer Mentor

Oct 2019—Jun 2020

• Designed/taught a computational thinking course for underserved population in computer science

Friends of Washington Park

Chicago, IL

Volunteer Mentor

Jan 2014—Jul 2017

• Tutored 5th-8th grader students in an after-school program in local neighborhood of Hyde Park

SKILLS

Technical: Python, TensorFlow, C, Haskell, Bash, Linux, GIS, SQL, technical writing

Awards

2019 Andrew P. Kosoresow Memorial Award for Excellence in Teaching and Service Awarded for outstanding contributions to teaching in the Department of Computer Science at Columbia University and exemplary service to the Department and its mission.

PUBLICATIONS

Preprints

• Convergence of online k-means. Sanjoy Dasgupta, Gaurav Mahajan, Geelon So.

Manuscript under review, 2021.

PRESENTATIONS Lectures for Courses/Reading Seminars

• Scalable sampling for discrete distributions	Nov 2021
• Graphical games	Nov 2021
• Active learning for maximum likelihood estimation	Oct 2021
• Stochastic calculus on manifolds: part 1, part 2	Aug 2021
• Linear system identification without mixing	Jun 2021
• Sequential kernel herding	Jun 2021
• Log-sobolev inequalities and concentration	Apr~2021

• Learning language games through interaction	Apr 2021
 Global non-convex optimization with discretized diffusion 	Apr 2021
• Model of conserved macroscopic dynamics predicts future motor commands	Feb 2021
• A theory of universal learning	Nov 2020
• Oja's rule for streaming PCA	Sep~2020
• Proving the lottery ticket hypothesis	Aug~2020
• Approximate guarantees for dictionary learning	Jun~2020
• k-SVD for dictionary learning	May 2020
 Proximal methods for hierarchical sparse coding 	May 2020
• Transformers are universal approximators	Apr 2020
• Using SVD to learn HMMs	Feb 2020
• Conditional mutual information and generalization	Feb 2020
• Generalization and adaptive data analysis	Jan~2020
Generalization and differential privacy	Nov 2019
• Invariant risk minimization	Nov 2019
• Complexity: beyond space and time	Aug 2019
• Zero-knowledge proofs from MPCs	Apr 2019
• Geometry of gradient descent and lower bounds	Feb 2019
Homomorphic encryption	Feb 2019
• Approximate nearest-neighbor search	Dec 2018
• Introduction to tensor decompositions	Dec 2018
• Sums-of-squares for robust estimation	Nov 2018
• Spectral graph theory, earlier version	Oct 2018
• Sums-of-squares for MAXCUT	Sep 2018
• Topological data analysis	Jul 2018
• Tensor decomposition for parametric estimation	Jul 2018
• PAC-Bayes for neural networks	Apr 2018
• Graph robustness and percolation theory	Mar 2018