# Spectral Clustering with Graph Neural Networks for Graph Pooling

F. M. Bianchi\*, D. Grattarola\*, C. Alippi

#### This talk

- 1. Executive summary
- 2. Method details
- 3. Experiments

# Pooling in Graph Neural Networks



Reduce the number of nodes.

#### Pooling in Graph Neural Networks

#### Model-free

- Task-agnostic
- Pre-defined strategy
- Graph theory
- [1], [2]

#### Model-based

- Task-specific
- Learning to pool
- Heuristics
- [3], [4]

<sup>[1]</sup> I. S. Dhillon et al., "Weighted graph cuts without eigenvectors a multilevel approach," 2007.

<sup>[2]</sup> F. M. Bianchi et al., "Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling," 2019.

<sup>[3]</sup> Z. Ying et al., "Hierarchical graph representation learning with differentiable pooling," 2018.

<sup>[4]</sup> S. J. Hongyang Gao, "Graph U-nets," 2019.

# Spectral clustering



Standard spectral clustering.



Can we improve it?

- Learn to cluster with a neural network
- Find similar clusters to SC: use **minimum cut** as loss



- Spectral clustering: non differentiable, expensive, edges only.
- Minimum cut objective as loss for NN
- NN can find balance between MinCut loss and task loss

# **Details**

# $\textbf{Spectral clustering} \leftrightarrow \textbf{MinCut}$

Minimum cut: find K groups of nodes s.t.

- volume between clusters is minimized
- volume within clusters is maximized



#### Spectral clustering ← MinCut

MinCut optimization is written as

$$\text{maximize} \ \ \frac{1}{K} \sum_{k=1}^K \frac{\mathbf{C}_k^T \mathbf{A} \mathbf{C}_k}{\mathbf{C}_k^T \mathbf{D} \mathbf{C}_k}, \ \ \text{s.t.} \underbrace{\mathbf{C} \mathbf{1}_K = \mathbf{1}_N}_{1 \ \text{node}} \longleftrightarrow 1 \ \text{cluster}$$

 $\mathbf{C} \in \{0,1\}^{N imes K}$  is a discrete clustering matrix

# $\textbf{Spectral clustering} \leftrightarrow \textbf{MinCut}$

#### Relaxed formulation

$$\begin{aligned} & \underset{\mathbf{Q} \in \mathbb{R}^{N \times K}}{\text{max}} \quad \frac{1}{K} \sum_{k=1}^{K} \mathbf{Q}_{k}^{T} \mathbf{A} \mathbf{Q}_{k}, \\ & \text{s.t. } \mathbf{Q} = \mathbf{C} (\mathbf{C}^{T} \mathbf{D} \mathbf{C})^{-\frac{1}{2}}, \ \underbrace{\mathbf{Q}^{T} \mathbf{Q} = \mathbf{I}_{K}}_{\text{Orthogonal}}, \ \underbrace{\mathbf{C} \mathbf{1}_{K} = \mathbf{1}_{N}}_{\text{Nodes split}} \end{aligned}$$

 $\mathbf{C} \in \mathbb{R}^{N \times K}$  is a continuous clustering matrix

 ${f D}$  is the degree matrix

# Spectral clustering $\leftrightarrow$ MinCut

Optimal solution:

$$\mathbf{Q}^* = \mathbf{U}_K \mathbf{O}$$

 $\mathbf{U}_{\mathcal{K}}$  is the eigenbasis of the top  $\mathcal{K}$  eigenvalues

O is an orthogonal transformation

#### Spectral clustering

K-means on rows of  $U_K$  to get discrete C.

#### Learn to cluster:

- **S** = MLP(**X**)
- Softmax  $\implies$   $\mathbf{S1}_K = \mathbf{1}_N$



MinCut loss:

$$\mathcal{L}_c = -\frac{Tr(\mathbf{S}^T \mathbf{A} \mathbf{S})}{Tr(\mathbf{S}^T \mathbf{D} \mathbf{S})}$$

Optimal cluster assignments ( $\mathcal{L}_c = -1$ ):

- $\mathbf{s}_i = [0.25, 0.25, 0.25, 0.25] \leftarrow \text{This is bad}$
- $\mathbf{s}_i = [1.00, 0.00, 0.00, 0.00]$

Orthogonality loss (prevents bad minima og  $\mathcal{L}_c$ ):

$$\mathcal{L}_o = \left\| \frac{\mathbf{S}^T \mathbf{S}}{\|\mathbf{S}^T \mathbf{S}\|_F} - \frac{\mathbf{I}_K}{\sqrt{K}} \right\|_F$$

$$\mathcal{L}_{u} = \mathcal{L}_{c} + \mathcal{L}_{o} = \underbrace{-\frac{Tr(\mathbf{S}^{T}\tilde{\mathbf{A}}\mathbf{S})}{Tr(\mathbf{S}^{T}\tilde{\mathbf{D}}\mathbf{S})}}_{\mathcal{L}_{c}} + \underbrace{\left\|\frac{\mathbf{S}^{T}\mathbf{S}}{\|\mathbf{S}^{T}\mathbf{S}\|_{F}} - \frac{\mathbf{I}_{K}}{\sqrt{K}}\right\|_{F}}_{\mathcal{L}_{o}}$$

Final loss of the MinCutPool layer.

#### Pooling:

- $A' = S^T A S$
- $\mathbf{X}' = \mathbf{S}^{\top} \mathbf{X}$
- ullet Sum auxiliary loss  $\mathcal{L}_u$  to supervised loss



- OK for end-to-end learning
- Accounts for node features
- Cheap inference
- $\bullet\,$  Balance between theoretical prior and task

# Experiments

# Clustering (point clouds)



GNN architecture for clustering and segmentation.



Clustering simple graphs.

# Clustering (citation networks)



| Dataset  | K | Spectral                   | clustering                        | Diff                         | Pool                       | MinCutPool                                |                                                 |  |
|----------|---|----------------------------|-----------------------------------|------------------------------|----------------------------|-------------------------------------------|-------------------------------------------------|--|
|          |   | NMI                        | CS                                | NMI                          | CS                         | NMI                                       | CS                                              |  |
| Cora     | 7 | $0.025~\pm~\textbf{0.014}$ | $0.126\ \pm\ \textbf{0.042}$      | $0.315\pm$ 0.005             | $0.309\pm\textbf{0.005}$   | $\textbf{0.404}\ \pm\ \textbf{0.018}$     | $\boldsymbol{0.392}  \pm  {\scriptstyle 0.018}$ |  |
| Citeseer | 6 | $0.014\pm$ о.ооз           | $0.033\ \pm\ \textbf{0.000}$      | $0.139\ \pm\ \textbf{0.016}$ | $0.153\pm\textbf{0.020}$   | $\boldsymbol{0.287}\ \pm\ \mathtt{0.047}$ | $\textbf{0.283}\ \pm\ \textbf{0.046}$           |  |
| Pubmed   | 3 | $0.182\pm\textbf{o.ooo}$   | $\textbf{0.261}\pm\textbf{0.000}$ | $0.079\pm\textbf{0.001}$     | $0.085~\pm~\textbf{0.001}$ | $\textbf{0.200}\pm\textbf{0.020}$         | 0.197 ± 0.019                                   |  |

# Image segmentation



Segmentation by clustering the nodes of the Region Adjacency Graph.

#### Autoencoder



# **Graph classification**



**Table 1:** Graph classification accuracy. Significantly better results (p < 0.05) are in bold.

| Dataset                                                   | WL                                                                        | Dense                                                                     | No-pool                                                                            | Graclus                                                                                                        | NDP                                            | DiffPool                               | Top-K                                                    | SAGpool                                         | MinCutPool                                                                                                                                                                             |
|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bench-easy<br>Bench-hard                                  | 92.6<br>60.0                                                              |                                                                           |                                                                                    |                                                                                                                |                                                |                                        | 82.4±8.9<br>42.7±15.2                                    |                                                 | $99.0 \scriptstyle{\pm 0.0} \\ 73.8 \scriptstyle{\pm 1.9}$                                                                                                                             |
| Mutagenicity<br>Proteins<br>DD<br>COLLAB<br>Reddit-Binary | $71.2 \pm \textbf{2.6} \\ 78.6 \pm \textbf{2.7} \\ 74.8 \pm \textbf{1.3}$ | $68.7 \pm \textbf{3.3} \\ 70.6 \pm \textbf{5.2} \\ 79.3 \pm \textbf{1.6}$ | $72.6 \pm \textbf{4.8} \\ 76.8 \pm \textbf{1.5} \\ \textbf{82.1} \pm \textbf{1.8}$ | $68.6{\scriptstyle \pm 4.6\atop }\atop 70.5{\scriptstyle \pm 4.8\atop }\atop 77.1{\scriptstyle \pm 2.1\atop }$ | $73.3 \pm 3.7 \\ 72.0 \pm 3.1 \\ 79.1 \pm 1.5$ | $72.7\pm3.8$ $79.3\pm2.4$ $81.8\pm1.4$ | 71.9±3.7<br>69.6±3.5<br>69.4±7.8<br>79.3±1.8<br>74.7±4.5 | $70.5\pm 2.6$<br>$71.5\pm 4.5$<br>$79.2\pm 2.0$ | $79.9{\scriptstyle\pm2.1}\atop \textbf{76.5}{\scriptstyle\pm2.6}\atop \textbf{80.8}{\scriptstyle\pm2.3}\atop \textbf{83.4}{\scriptstyle\pm1.7}\atop \textbf{91.4}{\scriptstyle\pm1.5}$ |

#### Conclusion

- Introduced MinCut pooling
- Learns how to pool graphs but is theoretically motivated
- Overcomes limitations of spectral clustering
- Works really well in practice

#### Presenter

Daniele Grattarola (@riceasphait)

#### Contacts

daniele.grattarola@usi.ch filippombianchi@gmail.com

#### Code

Available on Spektral and Pytorch Geometric.

https://github.com/FilippoMB/

Spectral-Clustering-with-Graph-Neural-Networks-for-Graph-Pooling