Hoja 1: Instrucciones de la shell de Linux, Literales y expresiones, Sangrado

Entregar en moodle el ejercicio 1 en un documento en formato pdf Reflexionar sobre las posibles soluciones a los ejercicios 2 y 3 para debatir en clase.

1. Instrucciones de la shell de Linux (evaluable)

Objetivos

Escribir instrucciones de la shell de Linux para copiar datos.

Descripción

Dentro del directorio del usuario se dispone de dos directorios llamados instrucciones y experimento. El directorio instrucciones contiene, entre otros, ficheros de texto (con extensión ".txt"). El directorio experimento contiene a su vez, entre otros, varios ficheros con datos binarios, acabados en ".data", varios ficheros de hojas de datos acabados en ".csv" y un directorio llamado pictures, que contiene imágenes con extensión ".png".

Suponiendo que el directorio de trabajo inicial es el del usuario, y utilizando exclusivamente rutas relativas, escribir las órdenes linux/unix necesarias para crear un resumen de los datos almacenados, realizando los siguientes pasos:

- a) crear en el directorio del usuario un nuevo directorio llamado resumen mkdir resumen
- b) copiar todos los ficheros acabados en ".txt" de instrucciones a resumen cp instrucciones/*.txt resumen/
- c) mover todos los ficheros acabados en ".csv" de experimento a resumen mv experimento/*.csv resumen/
- d) crear dentro de resumen un directorio llamado datos_binarios
 mkdir resumen/datos binarios
- e) copiar todos los ficheros acabados en ".data" de experimento a datos_binarios cp experimento/*.data resumen/datos_binarios/
- f) mover el directorio pictures de experimento a resumen
 mv experimento/pictures resumen/
- g) borrar todos los ficheros que estén todavía en experimento y sean del año pasado. Estos

26/02/24

ficheros tienen en su nombre la secuencia "2023" rm experimento/*2023*

2. Literales y expresiones

Objetivos

Familiarizarse con los literales y las expresiones de los tipos primitivos

Descripción

Escribir instrucciones (sueltas) Python que creen las variables x, y, z, r, s y t, y les den valores de acuerdo a las siguientes expresiones donde los números están descritos en castellano. No hacer simplificaciones. Utilizar notación científica (exponencial) cuando así se muestra.

$$x = \frac{33 \cdot 4, 3 \cdot 10^{3} + 2, 5 \cdot 10^{2} \cdot (27, 6 - 37, 8)}{12, 7 + 10^{-2} \cdot 4, 3}$$

$$y = (x - 23, 4)^{2}$$

$$z = y \cdot 102.350.000 \quad \text{(y por 102 millones trescientos cincuenta mil)}$$

$$r = \left| \frac{x + y * 10^{-3}}{100 - z} \right|$$

$$s = r + (2 + 3j)^{2} \quad \text{(r más el número complejo 2+3j elevado al cuadrado)}$$

$$t = 10^{22} \cdot s^{2} - 3 \cdot 10^{4} j \quad \text{(10}^{22} \text{ por s al cuadrado menos el número complejo 0+ } 3 \cdot 10^{4} \text{ j)}$$

$$Solución:$$

$$x:float = (33 * (4.3 * 10**3) + (2.5 * 10**2)) * (27.6 - 37.8) / (12.7 + 10**-2 * 4.3)$$

$$y:float = (x - 23.4) **2$$

$$z:float = y * 102350000$$

$$r:float = abs((x + y * 10**-3) / (100 - z))$$

$$s:complex = r + (2 + 3j) **2$$

$$t:complex = 10**22 * s**2 - 3 * 10**4j$$

3. Sangrado

Objetivos

Familiarizarse con el concepto de sangrado.

Descripción

Adaptar el siguiente módulo utilizando el sangrado que te parezca más adecuado. Tener en cuenta que

• El contenido de una función se sangra un nivel (4 espacios) a la derecha, respecto del encabezamiento.

26/02/24

- En los comentarios de documentación, los argumentos se describen debajo de la palabra "Args:" o "Arguments:" o "Parameters:" y se ponen sangrados un nivel a la derecha.
- También en la documentación el valor retornado se pone debajo de la palabra "Returns:" y también se coloca sangrado un nivel a la derecha.
- Las líneas de continuación que tengan el salto de línea dentro de un paréntesis se sangran poniendo el texto de continuación justo un carácter a la derecha del paréntesis (de apertura.

```
# -*- coding: utf-8 -*-
Simula el movimiento oscilatorio de una masa que
pende de un muelle, sin considerar rozamientos
Se usan unidades del sistema internacional:
@author: Michael
@date : ene-2022
from typing import Final
# Constantes:
     CTE ELASTICA: Constante elástica del muelle, en N/m
#
     G: Gravedad terrestre, en m/s^2
CTE ELASTICA: Final[float] = 0.52
G: Final[float] = 9.8
def fuerza_muelle(alt: float) -> float:
Calcula la fuerza que ejerce el muelle
dada la altura de su extremo
Aras:
alt: la altura del extremo del muelle, en m
Returns:
la fuerza que ejerce el muelle, en N
# Retornamos la fuerza calculada por medio de la ley de Hooke
return -CTE ELASTICA*alt
def avanza_tiempo(alt: float, vel: float, masa: float,
tiempo: float) -> tuple[float, float]:
Calcula la nueva altura y velocidad de la masa,
transcurrido un tiempo especificado
El tiempo debe ser pequeño, para poder considerar la
aceleración constante en ese intervalo
alt: la altura actual del extremo del muelle, en m
```

26/02/24

```
vel: la velocidad actual del extremo del muelle, m/s
masa: la masa del cuerpo que pende del muelle, en Kg
tiempo: el tiempo transcurrido, en s
Returns:
la nueva altura y velocidad de la masa,
después de transcurrido un tiempo t
# Calculamos la fuerza aplicada sobre la masa, en N
fuerza = fuerza muelle(alt) - masa*G
# Aceleración por la ley de newton
aceleracion = fuerza/masa
# Ecuacion del movimiento uniformemente acelerado
return (alt + vel*tiempo + (aceleracion*tiempo**2)/2,
vel + aceleracion*tiempo)
def main():
Simula el movimiento de una masa suspendida de un
muelle durante un tiempo, y pone en pantalla
altura y velocidad. Unidades del S.I.
masa: float = 0.25
incremento: float = 0.01
alt: float = 0.2
vel: float = 0
# Avanzar la simulación y mostrar resultados
print("Altura=", alt, "m. Velocidad=", vel, "m/s")
alt, vel = avanza_tiempo(alt, vel, masa, incremento)
print("Altura=", alt, "m. Velocidad=", vel, "m/s")
alt, vel = avanza_tiempo(alt, vel, masa, incremento)
print("Altura=", alt, "m. Velocidad=", vel, "m/s")
Solución:
# -*- coding: utf-8 -*-
Simula el movimiento oscilatorio de una masa que
pende de un muelle, sin considerar rozamientos
Se usan unidades del sistema internacional:
@author: Michael
@date : ene-2022
from typing import Final
# Constantes:
```

CTE ELASTICA: Constante elástica del muelle, en N/m

26/02/24 4

G: Gravedad terrestre, en m/s^2

```
CTE ELASTICA: Final[float] = 0.52
G: Final[float] = 9.8
def fuerza muelle(alt: float) -> float:
  Calcula la fuerza que ejerce el muelle
  dada la altura de su extremo
  Args:
  alt: la altura del extremo del muelle, en m
  Returns:
  la fuerza que ejerce el muelle, en N
  # Retornamos la fuerza calculada por medio de la ley de Hooke
  return -CTE ELASTICA*alt
def avanza tiempo(alt: float, vel: float, masa: float, tiempo: float) -> tuple[float, float]:
  Calcula la nueva altura y velocidad de la masa,
  transcurrido un tiempo especificado
  El tiempo debe ser pequeño, para poder considerar la
  aceleración constante en ese intervalo
  Args:
  alt: la altura actual del extremo del muelle, en m
  vel: la velocidad actual del extremo del muelle, m/s
  masa: la masa del cuerpo que pende del muelle, en Kg
  tiempo: el tiempo transcurrido, en s
  Returns:
  la nueva altura y velocidad de la masa,
  después de transcurrido un tiempo t
  # Calculamos la fuerza aplicada sobre la masa, en N
  fuerza = fuerza muelle(alt) - masa*G
  # Aceleración por la ley de newton
  aceleracion = fuerza/masa
  # Ecuacion del movimiento uniformemente acelerado
  return (alt + vel*tiempo + (aceleracion*tiempo**2)/2,vel + aceleracion*tiempo)
def main():
```

26/02/24 5

```
pass
```

Simula el movimiento de una masa suspendida de un muelle durante un tiempo, y pone en pantalla altura y velocidad. Unidades del S.I.

masa: float = 0.25 incremento: float = 0.01

alt: float = 0.2 vel: float = 0

Avanzar la simulación y mostrar resultados print("Altura=", alt, "m. Velocidad=", vel, "m/s") alt, vel = avanza_tiempo(alt, vel, masa, incremento) print("Altura=", alt, "m. Velocidad=", vel, "m/s") alt, vel = avanza_tiempo(alt, vel, masa, incremento) print("Altura=", alt, "m. Velocidad=", vel, "m/s")

26/02/24 6