Welcome to CHE 384T: Computational Methods in Materials Science

Introduction to Computational Materials Science

Programming Day 4

Programming Day Agenda

Some numerical aspects:

- Numerical Derivatives
- Checking your structure
- Convergence
- Fluctuations in MD simulations

Time for HW4 questions or final project proposal questions

Visualizing your Results

Numerical Derivatives

Central Difference Derivative

$$\frac{d\phi_i}{dx} = \frac{\phi_{i+1} - \phi_{i-1}}{2a}$$

Numerical Derivatives

Central Difference Derivative (non-compact form)

$$\frac{d^{2}\phi_{i}}{dx^{2}} = \frac{\frac{d\phi_{i+1}}{dx} - \frac{d\phi_{i-1}}{dx}}{2a}$$

$$= \frac{\frac{\phi_{i+2} - \phi_{i}}{2a} - \frac{\phi_{i} - \phi_{i-2}}{2a}}{2a}$$

$$= \frac{\phi_{i+2} + \phi_{i-2} - 2\phi_{i}}{4a^{2}}$$

Central Difference Derivative (compact form)

$$\frac{d^{2}\phi_{i}}{dx^{2}} = \frac{\frac{d\phi_{i+1/2}}{dx} - \frac{d\phi_{i-1/2}}{dx}}{a}$$

$$= \frac{\frac{\phi_{i+1} - \phi_{i}}{a} - \frac{\phi_{i} - \phi_{i-1}}{a}}{a}$$

$$= \frac{\phi_{i+1} + \phi_{i-1} - 2\phi_{i}}{a^{2}}$$

Numerical Derivatives

Figure I.5 Comparison of discrete and exact derivatives of $\phi=\tanh(\gamma x)$, shown as the solid black lines. (a) $d\phi/dx$ from Eq. (I.10): dashed line with a grid size of 1 and dotted line with a grid size of 1/2. (b) $d^2\phi/dx^2$ from the non-compact form in Eq. (I.11): dot-dashed line with a grid size of 1 and dotted line with a grid size of 1/2; $d^2\phi/dx^2$ from the compact form in Eq. (I.12): small-dashed line with a grid size of 1 and large-dashed line with a grid size of 1/2. (c) $d^4\phi/dx^4$ from Eq. (I.13): dashed line with a grid size of 1 and dotted line with a grid size of 1/2.

Second-order (non-compact & compact)

- Exact
- Grid size =
$$1/\gamma$$

- Grid size = $1/2\gamma$

$$\phi(x) = \tanh(\gamma x)$$

Inspecting your calculation

Monitor the energies and the structure

Look at intermediate quantities, e.g., initial positions, velocities

Inspecting your calculation

Reduced units

$$\phi^*(r^*) = 4\left[\left(\frac{1}{r^*}\right)^{12} - \left(\frac{1}{r^*}\right)^6\right]$$

$$\phi^* = \phi/\epsilon$$
$$r^* = r/\sigma$$

Table 6.1 Reduced units in Lennard-Jones systems

Value	In reduced units
Potential energy	$U^* = U/\epsilon$
Temperature	$T^* = k_B T / \epsilon$
Density	$\rho^* = \rho \sigma^3$
Pressure	$P^* = P\sigma^3/\epsilon$
Time	$t^* = t/t_o$, where $t_o = \sigma \sqrt{m/\epsilon}$

 $[\]epsilon$ and σ are defined in Eq. (6.21). All energies are in units of ϵ , e.g., $E^* = E/\epsilon$, $K^* = K/\epsilon$.

A note on convergence

When is the calculation converged enough?

Numerical errors are a few orders of magnitude smaller than the quantity of interest

structural accuracy (e.g., bond length) ~ 0.01 -0.001 Angstroms

chemical accuracy (e.g., diffusion barriers, formation energies, free energies) ~ 1 kcal/mol ~ 0.043 eV ~ 0.0016 Hartree

Energies converge relatively quickly Forces and stresses are generally a more stringent criteria for convergence

Basics: Ensembles

Thermodynamic ensembles^[17]

	Microcanonical	Canonical	Grand canonical
Fixed variables	E,N,V	T,N,V	T,μ,V
Microscopic	Number of microstates	Canonical partition function	Grand partition function
features	W	$Z = \sum_k e^{-E_k/k_B T}$	$\mathcal{Z} = \sum_k e^{-(E_k - \mu N_k)/k_B T}$
Macroscopic	Boltzmann entropy	Helmholtz free energy	Grand potential
function	$S = k_B \log W$	$F = -k_BT\log Z$	$\Omega = -k_BT\log\mathcal{Z}$

Wikipedia

NVE: maximize entropy *S* at equilibrium

NVT: minimize Helmholtz free energy *F* at equilibrium

Basics: Stat Mech

Temperature fluctuations, e.g., in NVE ensemble

Total energy is fixed while kinetic energy (and T) fluctuate by equal and opposite values

(Fluctuations in total energy will happen practically due to finite timestep in integration but should be small relative to the fluctuations in K)

$$\langle \sigma_T^2 \rangle = \langle T^2 \rangle - \langle T \rangle^2 = \frac{k_B T^2}{N C_V}$$

For large systems, fluctuations in T is negligible

Basics: Stat Mech

Energy fluctuations, e.g., <u>in NVT ensemble</u>

Temperature is fixed while total energy is allowed to fluctuate

$$\langle E \rangle = -\frac{\partial \ln \mathcal{Z}}{\partial \beta}$$
 $\langle E^m \rangle = \frac{1}{\mathcal{Z}} \sum_j E_j^m e^{-\beta E_j}$

Can show that:

$$\langle (E - \langle E \rangle)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \sigma_E^2 = \frac{\partial^2 \ln \mathcal{Z}}{\partial \beta^2}$$

Basics: Ensembles

Equivalence of ensembles for the thermodynamic limit

Integrating Newton's equations with MD naturally corresponds to NVE ensemble

But other ensembles such as NVT are more convenient (e.g., better correspondence with experimental conditions)

Is there still valid dynamical information from these other ensembles?

Yes, up to a point, but practically always dealing with finite sized systems

e.g., NVT approaches NVE in thermodynmic limit (fluctuations in *E* vanish)

$$\frac{\sigma_E}{\langle E \rangle} = \frac{\sqrt{\langle E^2 \rangle - \langle E \rangle^2}}{\langle E \rangle} \sim \frac{\sqrt{N}}{N} \to 0 \quad \text{for } N \to \infty$$

STARTING TIPS: MAKING FIGURES AND IMAGES

Wang Materials Group Meeting Tutorials

Wennie Wang
Wang Materials Group (https://wangmaterialsgroup.com)
The University of Texas at Austin, McKetta Department of Chemical Engineering

Why bother making a nice figure?

- A figure is worth a thousand words
- •It is often the first impression you make to the reader
- •Visual communication is just as powerful a form of communication as written!

Good design is memorable

Example: Warming stripes, Ed Hawkins Annual average global temperature 1850-2010

Figures are a form of visual design

- Design with intent
- Do not just directly copy a figure in a paper into a presentation
- The visual design will not always translate
 - adjust the relative scale of axes labels, tick marks, etc.
 - break down a complex or information dense figure

A bad figure

Ok for quick visualization Not ok for paper figure

A bad figure

Meaningless key!

A better figure

Clear lines with contrasting, complementary colors!

A better figure

Clear lines with contrasting, complementary colors!

Make it scalable

The font size is scaled to match the scaling of the figure

You can save space without compromising on the readability of the figure!

Some things of personal choice

Dark Background?

It can work, but you need to be careful of visibility

Color is important

Complementary colors

seaborn color palettes

Color Maps

Avoid default jet (rainbow) setting... not great

https://youtu.be/xAoljeRJ3IU

Viridis, Parula are better!

https://bids.github.io/colormap/

Perceptually uniform, Translates well to greyscale, Better for the colorblind,...

Example Tools (open source!)

- GIMP (bitmap images)
- Inkscape (vector image)
- Xmgrace, gnuplot (plotting from terminal or script)
- Python, matplotlib, seaborn
- VESTA, Xcrysden, ASE (visualize structure); Ovito (animations)
- Blender (3D rendering and animation)
- TikZ, Asymptote (vector graphics for textbook-like schematics, scriptable)
- · ...many, many more

R. Schmied. Using Mathematica for Quantum Mechanics: A Student's Manual. https://arxiv.org/pdf/1403.7050.pdf

Python matplotlib

Example Figures

VESTA + Pixabay + GIMP

VESTA + GIMP + Quantum Espresso

Example Figures

Tikz (TeX)

- surface recombination

Vector graphics

Example scripts and presentation:

https://github.com/wangmatgroup/tutorials

TOC graphics

https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02552

https://href.li/?https://pubs.acs.org/doi/10.1021/acsbiomedchemau.1c00068

https://href.li/?https://www.sciencedirect.com/science/article/pii/S0022328X21004721?dgcid=rss_sd_all

Random tips

- Save in the native file format of the editing program
- Save several intermediate files- there will be times you need to slightly modify a figure
- Save a final high-resolution version that can be converted to other file formats
- Ask for feedback on your plots

Other resources on visual design

- Jean-Luc Doumont, Felice Frankel
- MRS Science as art
- Ram Seshadri's Preparing Figures

Fundamentals of graphic design—essential tools for effective visual science communication

Authors: Karen J. Murchie and Dylan Diomede Authors INFO & AFFILIATIONS

Publication:FACETS · 11 June 2020 · https://doi.org/10.1139/facets-2018-0049

