

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ»

по курсу «Основы электроники»

Студент: Талышева Олеся Николаевн	на	
Группа: ИУ7-35Б		
Студент	подпись, дата	_ Талышева О. Н.
Преподаватель	подпись, дата	_ Оглоблин Д. И.
Оценка		

Оглавление

Сокращения терминов, аббревиатуры	3
Цель практикума	3
Номер варианта задания	3
Часть 1. Эксперимент 1	ŀ
Исследование ВАХ полупроводниковых диодов на модели лабораторного стенда в программе MICROCAP	Į.
Вывод данных решения MICROCAP во внешний текстовый	
файл	į
Чтение данных из текстового файла в MCXX в программу MATHCAD (MCAD)	
Построение графика ВАХ, заданного таблицей, в MCAD	}
Приближенный расчет параметров модели полупроводникового диода методом трех ординат	}
Точный расчет параметров модели полупроводникового диода методом GIVEN MINERR	
Построение ВАХ заданной таблицей и функциональной зависимостью на одном графике1	L

СОКРАЩЕНИЯ ТЕРМИНОВ, АББРЕВИАТУРЫ:

- ✓ ВАХ вольтамперная характеристика;
- ✓ ВФХ вольтфарадная характеристика;
- ✓ MSxx программная среда NI Multisim 12 или 14 версии;
- ✓ МСхх программная среда Місгосар версии 9 12.
- ✓ MCAD программная среда MathCAD версии 14, 15.

ЦЕЛЬ ПРАКТИКУМА:

Получение в программе схемотехнического анализа Місгосар XX и исследование статических характеристик кремниевого полупроводникового диода с целью определения по ним параметров модели полупроводниковых диодов. Освоение программы Mathcad для расчёта параметров модели полупроводниковых приборов на основе данных экспериментальных исследований.

НОМЕР ВАРИАНТА ЗАДАНИЯ:

* Variant 125

```
.MODEL D2C133B D (BV=3.371 CJO=220p FC=.5 IBV=47.97m IS=31.47f ISR=2.035n + M=.5959 NBV=3 RS=0.3655 VJ=.75)

* Ibvl=48.16m  
* Tbv1=-1.1m)
```

ЧАСТЬ. 1. ЭКСПЕРИМЕНТ 1

Исследование ВАХ полупроводниковых диодов на модели лабораторного стенда в программе MICROCAP

Для заданного варианта диода проведено моделирование лабораторного стенда получения ВАХ диода в программе Microcap 12 как на прямой ветви, так и на обратной ветви:

1) на прямой ветви

2) на обратной ветви

Формула для определения значений по оси X (напряжение V1) учитывает, что для построения графика зависимости тока диода от напряжения на диоде, необходимо учесть падение напряжения на миллиамперметре. В конкретном случае сопротивление миллиамперметра определено как 10 Ом, поэтому истинное напряжение на диоде и будет определяться выражением:

Ud = DCINPUT1 - I(RMA)*10.

Здесь DCINPUT1 – значение изменяемого напряжения

Variable 1, в качестве которого используется напряжение источника V1.

Ток через миллиамперметр определяется суммой двух токов — тока через диод и тока через милливольтметр. Поэтому для построения графика, связывающего ток диода (по оси Y) с напряжением на диоде (по оси X), используется выражение Id = I(RMA) - I(RMV). После записи выражений напряжения и тока по осям графика, нажимаем «Run» и получаем следующий результат:

В схеме определения обратного тока диода запись тока и напряжения на диоде меняются: поскольку ток через вольтметр с внутренним сопротивлением R1 значительно больше обратного тока диода, его надо исключить из измерений. При этом напряжение на амперметре очень мало (микро или нановольты), поскольку обратный ток диода очень мал.

Вывод данных решения MICROCAP во внешний текстовый файл.

Выводим только измерения прямого тока, осуществив программную настройку опций вывода только численных результатов расчёта и исправив формат на читаемый MCAD-ом десятичный:

Чтение данных из текстового файла в MCXX в программу MATHCAD (MCAD).

В MathCAD задается переменная VAX (вольтамперная характеристика), которой и был назначен результат чтения из файла данных:

VAX := READPRN("2.LIB")

		0	1
	0	0	0
	1	0.02	8·10 ⁻⁶
	2	0.04	1.6·10-5
	3	0.06	2.4·10 ⁻⁵
	4	0.08	3.2·10 ⁻⁵
	5	0.1	4·10 ⁻⁵
	6	0.12	4.8·10 ⁻⁵
VAX =	7	0.14	5.6·10 ⁻⁵
	8	0.16	6.4·10 ⁻⁵
	9	0.18	7.2·10 ⁻⁵
	10	0.2	8.01·10 ⁻⁵
	11	0.22	8.81·10 ⁻⁵
	12	0.24	9.61·10 ⁻⁵
	13	0.26	1.042 · 10 - 4
	14	0.28	1.123·10-4
	15	0.3	

Построение графика ВАХ, заданного таблицей, в МСАD

По оси X (напряжение U) – $VAX^{<0>}$, по оси Y (ток I) – $VAX^{<1>}$:

Приближенный расчет параметров модели полупроводникового диода методом трех ординат.

С помощью метода трассировки выбрали 4 точки на графике:

По указанным выше точкам приближённо вычисляем, при помощи метода трех ординат, параметры диода:

- 1) Іо обратный ток перехода,
- 2) Rb сопротивление базы,
- 3) NFt тепловой потенциал (зависит от температуры и материала).

$$Rb := \frac{(Ud1 - 2 \cdot Ud2 + Ud3)}{Id1} \qquad Rb = 0.032$$

$$NFt := \frac{[(3 \cdot Ud2 - 2 \cdot Ud1) - Ud3]}{ln(2)} \qquad NFt = 0.047$$

$$\frac{(Ud3 - 2 \cdot Ud2)}{NFt} \qquad Io = 0.92$$

Точный расчет параметров модели полупроводникового диода методом GIVEN MINERR.

Решение систем линейных и нелинейных уравнений и неравенств возможно с помощью вычислительного блока Given, в который входят функции Find, Minerr, Maximize, Minimize.

Minerr рекомендуется использовать, если система не может быть решена точно и следует найти наилучшее приближение, которое обеспечивает минимальную погрешность:

Функция Minner очень похожа на функцию Find (использует тот же алгоритм). Если в результате поиска не может быть получено дальнейшее уточнение текущего приближения к решению, Minner возвращает это приближение.

Построение BAX заданной таблицей и функциональной зависимостью на одном графике:

Сравнить результат моделирования и эксперимента можно, построив на одном графике BAX экспериментальную и BAX теоретическую. Использована модель диода с учетом объемного сопротивления базы. Свои параметры предыдущего расчета Rb, Is0, m и Ft выведены прямым присвоением, поскольку на они находятся в векторе:

На последнем графике необходимо совместить исходную кривую, представленную входными табличными данными и теоретический график модели, определенный формулой:

Проверить совпадение результатов можно с использованием приема трассировки графика средствами MCAD. Перемещая курсор внутри графика, определяются значения тока и напряжения первого и второго графика:

