Работа 4.8 A Резонанс токов

Шарапов Денис, Зелёный Николай, Б05-005

Содержание

1	Аннотация	2
2	Теоретические сведения	2
3	Ход работы	3
4	Результаты измерений и обработка данных	3
	4.1 Зависимости токов от положения сердечника	3
	4.2 Расчёт величин	4
	4.3 Векторная диаграмма	4
	4.4 Результаты работы	5
5	Вывол	5

1 Аннотация

Цель работы: изучение параллельной цепи переменного тока, наблюдение резонанса токов.

В работе используются: лабораторный трансформатор (ЛАТР), разделительный понижающий трансформатор, ёмкость, дроссель с переменной индуктивностью, три амперметра, вольтметр, реостат, электронный осциллограф, омметр, мост переменного тока.

2 Теоретические сведения

В работе изучается параллельный контур, одна из ветвей которого содержит индуктивность L, другая — ёмкость C. Через r_L обозначено активное сопротивление катушки, которое включает в себя как чисто омическое сопротивление катушки, так и сопротивление, связанное с потерями энергии при перемагничивании сердечника катушки. Активным сопротивлением ёмкостной ветви контура можно пренебречь, т. к. используемый в работе конденсатор обладает малыми потерями.

Экспериментальная установка

Схема экспериментальной установки приведена на рисунке 1. Напряжение от сети (220 В, 50 Γ ц) с помощью ЛАТР-а через понижающий трансформатор Тр подаётся на параллельный контур, содержащий конденсатор ($C=120~{\rm Mk\Phi}$) и катушку, индуктивность которой зависит от глубины погружения сердечника. Полный ток в цепи измеряется с помощью многопредельного амперметра A_1 ; для измерения токов в L- и C-ветвях используются два одинаковых амперметра A_2 и A_3 ; напряжение на контуре контролируется электронным вольтметром V. Последовательно с контуром включён резистор r — реостат с полным сопротивлением $\approx 100~{\rm Om}$.

Рис. 1: Схема для исследования резонанса токов

Для наблюдения за сдвигом фаз между полным током и напряжением на контуре используется осциллограф. Сигнал, пропорциональный току, снимается с резистора r и подаётся на вход Y осциллографа. На вход X подаётся напряжение непосредственно с контура. При наличии сдвига фаз между этими напряжениями на экране виден эллипс, а при нулевом сдвиге фаз эллипс вырождается в прямую.

В работе предлагается снять при постоянном напряжении U зависимости токов I_L , I_C и полного тока I от индуктивности катушки (глубины погружения сердечника), а также определить резонансные характеристики контура: полное сопротивление $R_{\rm pes}$, добротность Q, активное сопротивление r_L и индуктивность катушки $L_{\rm pes}$.

3 Ход работы

- 1. Снимем зависимости I, I_L, I_C от координаты сердечника при U=const.
- 2. Измерим резонансные значения трёх токов.
- 3. Измерим сопротивление витков катушки с помощью омметра.
- 4. Измерим активное сопротивление катушки r_L и резонансное значение индуктивности L с помощью моста.

4 Результаты измерений и обработка данных

4.1 Зависимости токов от положения сердечника

Поддерживая U=const, найдём зависимости токов $I,\,I_L,\,I_C$ от координаты сердечника x. Результаты измерений представлены в таблице 1:

Таблица	1: .	Результаты	измерений	зависимости	TOKOB OT	г координаты

x, MM	I, MA	I_L , MA	I_C , mA
10	270	0	330
12	245	50	320
15	210	80	310
20	185	90	310
25	160	100	310
30	140	120	300
35	130	180	310
40	110	200	300
45	90	210	310
50	70	230	310
55	50	250	310
60	25	270	300
65	10	300	310
67	10	320	320

По таблице 1 построим график зависимости токов от координаты:

Рис. 2: График зависимости токов от положения сердечника

4.2 Расчёт величин

Рассчитаем добротность контура через токи:

$$Q = \frac{I_C^{\rm pes}}{I^{\rm pes}} = \frac{I_L^{\rm pes}}{I^{\rm pes}} = 32,00 \pm 0,25,$$

где $I_{\mathrm{pes}} \approx 10$ мА, $I_C^{\mathrm{pes}} = 320$ мА, $I_L^{\mathrm{pes}} = 320$ мА.

Рассчитаем резонансное сопротивление через полный ток и напряжение:

$$R^{
m pes} = rac{U}{I^{
m pes}} pprox (1,00\pm 0,01)$$
 кОм,

где U = 10 B.

Рассчитаем индуктивность L^{pes} :

$$L^{\mathrm{pe3}} = \frac{1}{Q\omega_0^2} \approx (8, 5 \pm 0, 8) \cdot 10^{-2} \; \Gamma_{\mathrm{H}},$$

где $\omega_0 = 2\pi\nu$, $\nu = 50$ Гц.

Рассчитаем сопротивление r_L :

$$r_L = \frac{1}{Q\omega_0 C} \approx 8,3 \pm 0,8 \; \mathrm{Om}.$$

Рассчитаем индуктивность L:

$$L = \frac{U}{\omega_0 I_L^{
m pes}} pprox (10, 0 \pm 0, 9) \cdot 10^{-2} \; \Gamma_{
m H}.$$

4.3 Векторная диаграмма

Построим векторную диаграмму (масштаб нарушен в силу большого отличия модуля векторов; угол между векторами $\mathbf{I}^{\mathrm{pes}}$ и $\mathbf{U}_L^{\mathrm{pes}}$ ненулевой):

Рис. 3: Векторная диаграмма токов

С помощью векторной диаграммы рассчитаем значения величин r_L и $L_{\rm pes}$. Их результаты вместе со всеми измерениями работы занесём в таблицу 2.

4.4 Результаты работы

Результаты выполнения работы представлены в таблице 2.

Таблица 2: Результаты выполнения работы

	Омметр	Мост	$f(U^{\mathrm{pes}}, I_L^{\mathrm{pes}})$	f(Q)	Диаграмма
r_L , O _M	9,9	8,8	_	$8,3 \pm 0,8$	$3,0 \pm 0,9$
L , м Γ н	_	65, 2	$100, 0 \pm 9, 0$	$85,0 \pm 8,0$	$96,0 \pm 10,0$

5 Вывод

В работе была изучена параллельная цепь переменного тока, был изучен резонанс токов.

В ходе работы:

- 1. были изучены зависимости токов от координаты сердечника;
- 2. были измерены резонансные значения трёх токов;
- 3. были измерены индуктивность и сопротивление витков катушки тремя способами (таблица 2): с помощью моста и омметра; с помощью добротности системы; с помощью векторной диаграммы.