Sistema Respiratório

Fisiologia do Sistema Respiratório

- A respiração pode ser interpretada como um processo de trocas gasosas entre o organismo e o meio, ou como um conjunto de reações químicas que faz parte do metabolismo energético (respiração celular).
- Dessa forma, o termo respiração pode ser empregado em basicamente dois níveis: Celular e Orgânico

Respiração celular

- Conjunto de reações químicas em que ocorre liberação de energia a partir de um combustível, para ser utilizada no trabalho celular (reações exotérmicas).
- O principal combustível para a célula é a glicose.
- A respiração celular apresenta 3 fases e ocorre no hialoplasma e nas mitocôndrias.

Fases da respiração celular

Glicólise (hialoplasma)
 C₆H₁₂O₆ → 2 ác. pirúvico + 2NADH₂ + 2 ATP

- Ciclo de Krebs (matriz mitocondrial)
 2 ác. pirúvico → 6CO₂ + 8NADH₂ + 2FADH₂ + 2ATP

Equação geral da respiração celular

$$C_6H_{12}O_6 + 6O2 \longrightarrow 6CO_2 + 6H_2O + 30 ATP$$

eletromicrografia

Equação geral da respiração celular

$$C_6H_{12}O_6 + 6O2 \longrightarrow 6CO_2 + 6H_2O + 30 ATP$$

Respiração cutânea

- <u>Superfície corpórea:</u> poríferos, cnidarios, platelmintes, nematelmintes.

Respiração cutânea

- Superfície corpórea: poríferos, cnidarios, platelmintes, nematelmintes.
- Pele vascularizada: anelídeos, moluscos ("pulmão") e anfíbios (adultos).

Respiração branquial

- Anelídeos, moluscos, crustáceos, equinodermas, peixes e anfíbios (larvas)

Respiração pulmonar

- Anfíbios (adultos), répteis, aves e mamíferos

Respiração traqueal

- Insetos, aracnídeos, quilópodes e diplópodes

Tipo de estruturas de trocas:

- Superfície corpórea: O₂ entra a partir da epiderme e se difunde para as demais células. Ex: protozoários, esponjas, cnidários, vermes;
- Cutânea: trocas via superfície do corpo, mas com o sistema circulatório associado. Ex: anfíbios, minhocas;
- Branquial: pequenas evaginações da pele altamente vascularizadas, adaptadas para a respiração na água. Ex: peixes, girino;

- Traqueal: tubos aéreos revestidos por quitina que conduzem o ar diretamente a superfície do corpo. O ar entra pelos espiráculos. Ex: insetos;
- Filotraquéias ou pulmões foliáceos: invaginação da parede abdominal, formando uma bolsa onde várias lamelas paralelas vascularizadas realizam as trocas diretamente com o ar. Ex: aracnídeos;

 Pulmões: estruturas elásticas, ocas, compostas por estruturas finas de trocas denominados alvéolos pulmonares. Ex: mamíferos, aves répteis.

Sistema respiratório humano

Sistema Respiratório do homem

constituído por

Vias Respiratórias

- fossas nasais;
- faringe
- laringe;
- traqueia;
- brônquios;
- bronquíolos;

Pulmões

- alvéolos pulmonares
- pulmão direito (3 lobos)
- pulmão esquerdo (2 lobos)
- a membrana pleura (protege)
- são elásticos, esponjosos.

Vias Respiratórias:

- fossas nasais:
- faringe
- laringe;
- traqueia;
- brônquios;
- bronquíolos;

Pulmões:

- alvéolos pulmonares
- pulmão direito (3 lobos)
- pulmão esquerdo (2 lobos)
- a membrana pleura (protege)
- são elásticos, esponjosos.

Respiração Humana

- Cavidades nasais: duas aberturas anteriores, narinas. Na cavidade nasal encontramos pêlos. Fossas nasais vascularizadas;
- Faringe: conduto que se comunica com a boca, com as fossas nasais e com a laringe;
- Laringe: conduto cartilaginoso, tem como função produzir sons e fechar a traquéia durante a deglutição (epiglote);

Narinas e fossas nasais

- Entrada e saída de ar do organismo
- Aquecimento, umidificação e filtração do ar (vibrissas nasais e muco)

Faringe

- Cavidade comum ao sistema digestório e respiratório.

Laringe

- Epiglote bloqueio da entrada de alimentos no sistema respiratório.
- Pregas vocais produção de sons durante a passagem de ar.

- Traquéia: se ramifica para formar os brônquios. Paredes reforçadas por anéis de cartilagem, para suportar a diferença de pressão;
- Brônquios: se encontram no interior dos pulmões e vão se ramificando até formar os bronquíolos, estes terminam em sacos menores, os alvéolos pulmonares;
- Pulmões: o direito tem 3 lobos desenvolvidos e o esquerdo 2. Elásticos, revestidos pela pleura.

Traqueia

- Formada por anéis cartilaginosos.
- Presença de epitélio ciliado com glândulas caliciformes (produção de muco).
- As impurezas se aderem ao muco e os cílios removem o muco com impurezas em direção à faringe.

Brônquios e bronquíolos

- Brônquios são duas ramificações da porção final da traquéia que penetram nos pulmões
- Bronquíolos são ramificações dos brônquios que terminam nos alvéolos pulmonares
- Apresentam a mesma constituição da traquéia

Vias Respiratórias

- As vias respiratórias são um conjunto de órgãos que captam o ar do exterior e o fazem chegar aos pulmões.
- Nas fossas nasais o ar é aquecido, filtrado e humedecido

Pulmões

 Os pulmões são os órgãos esponjosos e elásticos, de cor rosado, situados na cavidade torácica.

Movimentos respiratórios

Inspiração

Expirações

Características do ar Inspirado

Rico em O2 (oxigénio) Pobre em CO2

Temperatura variável

Características do ar

Expirado

Rico em CO2

Rico em Vapor de Água

Temperatura +/- 37°c

Pobre em O2

Inspiração

Expiração

Hematose pulmonar

Hematose Pulmonar

- Hematose pulmonar é a troca gasosa que se dá nos alvéolos pulmonares (pulmões) e que permite a oxigenação do sangue.
- O oxigénio passa para o sangue e o dióxido de carbono passa para os alvéolos pulmonares. Ou seja, trocamos CO2 (dióxido de Carbono) por O2 (oxigénio)

- Importância:
 - A partir da utilização de oxigênio é possível oxidar substâncias orgânicas e produzir energia na forma de ATP.
- Uma estrutura de trocas deve ser úmida, permeável e fina.

Pulmões

 Diafragma: músculo membranoso que separa o tórax do abdômen e auxilia os movimentos respiratórios.

inspiração

expiração

- Contração dos músculos intercostais e diafragma
- Aumento do volume da caixa torácica
- Diminuição da pressão intrapulmonar

Entrada de ar

- Relaxamento dos músculos intercostais e diafragma
- Diminuição do volume da caixa torácica
- Aumento da pressão intrapulmonar

Saída de ar

Mecânica da Ventilação Pulmonar

• inspiração

expiração

Trocas gasosas

- Difusão do O₂ e CO₂ entre os alvéolos pulmonares e capilares sangüíneos, que se dá graças as diferenças de pressões parciais desses gases no sangue e nos alvéolos.
- O ar que entra no pulmão no processo de inspiração contém 0,04% de CO₂, 20,94% de O₂ e 79,02% de N₂.Ao sair do pulmão contém 16,5% de O₂,4,48% de CO₂, e 79,02% de N₂.

Transporte de Gases

Oxigênio

- 97% ligado à hemoglobina (oxiemoglobina)
- 3% dissolvido no plasma

Gás carbônico

- 25% ligado à hemoglobina (carboemoglobina)
- 5% dissolvido no plasma
- 70% na forma de íon bicarbonato (plasma)

Transporte de Gases

- Monóxido de Carbono (CO)
- Gás liberado durante a combustão de combustíveis fósseis e queimadas que apresenta afinidade com a hemoglobina 210 vezes maior que o oxigênio, formando um composto estável (carboxiemoglobina) podendo levar o organismo à asfixia

Transporte de gases respiratórios

 Transporte de O₂: maior parte transportada junto com a hemoglobina (parte é dissolvida no plasma), formando a oxiemoglobina.

$$4Hb + 4O_2 \longrightarrow 4HbO_2$$

A pressão parcial de O_2 é maior no sangue do que nos tecidos, ocorrendo a difusão daquele para esses.

O sangue rico em O₂ denomina-se arterial.

- Transporte de CO₂: a pressão arterial de CO₂
 é maior nos tecidos do que no sangue, dessa
 forma o gás sai dos tecidos e vai para o
 sangue. O Transporte de CO₂ ocorre de 3
 maneiras:
- 5% fica absorvido no plasma;
- 25% se associam à hemoglobina formando a carboemoglobina:

$$Hb + CO_2 \longrightarrow HbCO_2$$

 A maior parte (cerca de 70%), reage com a água e forma H₂CO₃, que se dissocia em H⁺ (associado à hemácia) + HCO₃⁻ (vai para o plasma).

Alvéolo Capilar Eritrócito sem oxigênio Dióxido de carbono Oxigênio Eritrócito com oxigênio

Observações:

- O CO liga-se à hemoglobina formando a carboxiemoglobina em uma reação estável, onde o composto não se desfaz, inutilizando a molécula de Hb, que não consegue mais transportar O₂.
- Nos fetos a demanda de oxigênio é muito maior do que na mãe, isso graças a elevada taxa metabólica associada à necessidade de rápido crescimento.

Regulação do ritmo respiratório

 O controle da respiração é feito automaticamente por um centro nervoso localizado no bulbo, de onde partem os nervos responsáveis pela contração dos músculos respiratórios.

Controle da frequência respiratória

O controle involuntário da respiração é realizado pelo bulbo

- O principal mecanismo de regulação depende da concentração de CO₂ no sangue. Quando ocorre maior formação desse gás aumenta a quantidade de H+ no sangue, provocando uma diminuição no pH.
- Com isso o bulbo é sensibilizado e estimula o aumento da frequência respiratória, permitindo a maior quantidade de eliminação de CO₂ e aumenta a captação de O₂.

```
Concentração † conc. - ↓ freq. respir de oxigênio ↓ conc. - ↑ freq. respir
```

Problemas respiratórios

- Enfisema pulmonar: as fibras elásticas que são importantes na constituição dos alvéolos e bronquíolos perdem a elasticidade caracterizando a obstrução crônica do fluxo de ar, acompanhada por uma reação inflamatória.Grande parte causada por tabagismo.
- Asma: caracterizada pela constrição do calibre das ramificações dos brônquios. A alergia é a causa mais comum. Uso de drogas para dilatar os brônquios.

- Pneumonia: causada por bactérias (pneumococos) na maioria dos casos. Sintomas são: febre, dispnéia, tosses, dores no tórax,... Tratamento com antibióticos.
- Sinusite: processo inflamatório dos seios da face.
- Rinite alérgica: não há infecção, mas a mucosa nasal fica inflamada e ocorre edema. Ocorre o aumento da liberação de coriza.