Highlights from Class #3 — Andrew Gregovich Today's highlights on Friday — Madeleine Lucas Warm-up question (break-out) —

- What does Quality Q mean?
- What is it useful for?

Class-prep answers (break-out)

• Discuss your explanations of energy dissipation (or not) in cyclical springs and dash-pots.

For Friday class

Please read Mase, Smelser, and Mase, CH 2 through Section 2.3

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

A model for idealized real materials

Forces are balanced

Each element feels the same force F

Rheological tests

Creep tests

- Apply a constant stress σ e.g. put a weight on top of a sample
- Measure strain e(t) or strain rate $\dot{e}(t)$

Relaxation tests

- Apply an abrupt strain e, then hold it constant e.g. abrupt shortening in a vice.
- Measure stress o(t) as sample adjusts.

Constant strain-rate tests

- Apply a constant strain rate
 e.g. with a motor-driven vice
- Measure stress $\sigma(t)$

Models for linear solids

Those springs and dashpots ...

Viscoelastic model μ_2 μ_2

Called *Maxwell Solid*, if $\eta_1 = \infty$, $\mu_1 = \infty$ Called *Kelvin-Voigt Solid*, if $\eta_2 = \infty$, $\mu_2 = \infty$ Called *Standard Linear Solid*, if $\eta_2 = \infty$

Creep Test with Viscoelastic model

Viscoelastic behavior in real materials

Changes in the microstructure at the crystal level inside the sample can alter the effective viscosity after significant strain as the test progresses.

- e.g. crystal basal planes align for easy glide
- microcracks may develop, allowing internal slip

Maxwell solid

Also Homework set #1

- Is there a characteristic time for the material?
- η/μ ?

Kelvin-Voigt solid

- Is there a characteristic time for the material?
- η/μ ?

A shock absorber can be modeled as a delayed elasticity Kelvin-Voigt solid

Kelvin-Voigt Response

Spring and dashpot together support stress σ

$$\sigma(t) = \mu \ e(t) + \eta \ \dot{e}(t)$$

- At t = 0, spring hasn't shortened; dashpot supports all the stress σ , so e(0) = 0 (*)
- At $t = \infty$, dashpot has stopped; spring supports all the stress σ , so $e(\infty) = \sigma/\mu$ (**)
- The transition is probably a decaying exponential.
- $\tau = \eta/\mu$ must be the time constant defining the transition.

$$e(t) = \frac{\sigma}{\mu} + A \exp\left(-\frac{\eta}{\mu}t\right)$$

With the boundary conditions (*) and (**), A can be found, and solution is ...

$$e(t) = \frac{\sigma}{\mu} \left[1 - \exp\left(-\frac{\mu}{\eta}t\right) \right]$$

Generalized linear viscoelastic solid

Response to constant loading σ

$$e(t) = \frac{\sigma}{\eta_2}t + \frac{\sigma}{\mu_2} + \frac{\sigma}{\mu_1}\left[1 - \exp\left(-\frac{\mu_1}{\eta_1}t\right)\right]$$

Viscous

Elastic

Delayed Elastic

How did we get that?!

$$e(t) = \frac{\sigma}{\eta_2}t + \frac{\sigma}{\mu_2} + \frac{\sigma}{\mu_1}\left[1 - \exp\left(-\frac{\mu_1}{\eta_1}t\right)\right]$$
Viscous Elastic Delayed Elastic

Each element feels the same stress σ ,

We just added up the strains in each element

The Raymond notes also give creep functions and relaxation functions for step changes in stress or strain

$$\sigma(t) = \begin{cases} 0 & t=0 \\ 1 & t \ge 0 \end{cases} \quad \sigma'(t) = \delta(t) \quad \text{Applied stress } \sigma$$

Creep

test
$$e(t) = \int_0^t C(t-t')\delta(t')dt' = C(t)$$

C(t-t') is the creep function

$$e(t) = \begin{cases} 0 & t=0 \\ 1 & t \geq 0 \end{cases} e'(t) = \delta(t)$$

Applied strain σ

Relaxation test

$$\sigma(t) = \int_0^t k(t-t')\delta(t')dt' = k(t)$$

k(t-t') is the relaxation function

At t=0:

- The spring μ_1 in the K-V element is prevented from deforming, due to η_1 .
- All applied strain e is taken up initially in the spring μ_2 . So $\sigma(0) = \mu_2 e$ (Do you agree that (*) shows this?)
- Stress o(0) also acts on the K-V element, so it also begins to strain.

For a K-V element,
$$e(t) = \frac{\sigma}{\mu} \left[1 - \exp\left(-\frac{\mu}{\eta}t\right) \right]$$
 (strain $e(0) = 0$ \checkmark).

By differentiating with
$$\dot{e}(t) = \frac{\sigma}{\mu} \left[\left(\frac{\mu}{\eta} \right) \exp \left(-\frac{\mu}{\eta} t \right) \right] = \frac{\sigma}{\eta} \exp \left(-\frac{\mu}{\eta} t \right)$$

At
$$t=0$$
, the strain $rate$ in the K-V element is $\dot{e}(0) = \frac{\sigma}{\eta} = \frac{\mu_2 e}{\eta}$

At t > 0

- The K-V element is starting to strain at the rate $\dot{e}(0) = \frac{\mu_2 e}{\eta}$,
- K-V begins to take over some of the strain from the spring μ_2 .
- Strain e_1 increases in spring μ_1 and η_1 , and strain e_2 decreases in spring μ_2 $e_1 + e_2 = e$
- Because strain is decreasing in spring μ_2 , stress $\sigma(t)$ must be decreasing.
- Strain e_1 in spring μ_1 cannot exceed σ_{∞}/μ_1
- Dash-pot η_1 must eventually stop moving.
- This means there is no stress in the dash-pot at $t=t_{\infty}$
- There will be a time constant au that depends on $\mu_{2,}$ μ_{1} and η_{1}

$$\tau = \left[\frac{\eta_1}{\mu_1 + \mu_2} \right]$$

$$\sigma(t) = e^{\frac{\mu_1}{\mu_1} + \frac{\mu_2}{\mu_1}} \left\{ 1 + \frac{\mu_2}{\mu_1} \exp\left(-\frac{\mu_1 + \mu_2}{\eta_1}t\right) \right\} (*)$$
At $t = \infty$

- Strain e_1 in spring μ_1 cannot exceed σ_{∞}/μ_1
- Dash-pot η_1 must eventually stop moving.
- This means there is no stress in the dash-pot at $t=t_{\infty}$
- Both springs μ_1 and μ_2 then support the same stress σ_{∞} , so

$$e = \frac{\sigma_{\infty}}{\mu_1} + \frac{\sigma_{\infty}}{\mu_2}$$
 or $\frac{\sigma_{\infty}}{e} = \left[\frac{1}{\mu_1} + \frac{1}{\mu_2}\right]^{-1}$ is the limiting stress at $t = t_{\infty}$

Energy and Work

Work W is force **F** acting through a distance d

Work for point particles: W = F d

In Continuum – work done per unit volume:

$$\frac{W}{V} = \frac{Fd}{V} = \left(\frac{F}{A}\right) \cdot \left(\frac{d}{l}\right) = \sigma e = \text{stress} \times \text{strain}$$

Rate of doing work per unit volume

$$\frac{d}{dt}\left(\frac{W}{V}\right) = \frac{\dot{W}}{V} = \frac{F\dot{d}}{V} = \left(\frac{F}{A}\right) \cdot \left(\frac{\dot{d}}{l}\right) = \sigma \dot{e} = stress \times strain \ rate$$

(overdots indicate time derivatives)

Energy and Work

Total energy input between from time 0 to t

$$\Delta E(t) = \int_0^t \sigma(t')\dot{e}(t')dt'$$

For elastic material, substitute: $\sigma(t) = \mu e(t)$

$$\Delta E(t) = \int_0^t \mu e(t')\dot{e}(t') dt' = \frac{1}{2}\mu e^2(t) = \frac{\sigma^2(t)}{2\mu}$$

 $\Delta E(t)$ returns to zero whenever σ returns to zero.

All energy is recovered

Energy and Work

Total energy input between from time 0 to t

$$\Delta E(t) = \int_0^t \sigma(t')\dot{e}(t')dt'$$

For viscous material:

$$\sigma(t) = \eta \dot{e}(t)$$

$$\Delta E(t) = \int_0^t \eta \dot{e}(t)^2 dt'$$

The integrand is always positive.

- $\Delta E(t)$ can never return to zero if strain rate is ever nonzero
- energy is always lost if any strain has occurred.