

Collège Sciences et Technologies UF Mathématiques et Interactions - Informatique

Codes LDPC

Corentin Banier Maher Karboul

Licence Mathématiques Informarique

2020 - 2021

Projet tutoré

Table des matières

1	Introduction	3
2	Formalisation du problème	3
3	Modélisation du problème	3
4	Algorithmes de résolution	3
5	Expérimentations et résultats	3
6	Conclusion	4

1 Introduction

La figure 1 présente le logo de l'université.

FIGURE 1 – Le logo de l'université

L'état de l'art de APPLEGATE et al. (2006) sur le problème de voyageur de commerce est une référence sur ce sujet.

Dans la suite du document, la section 2 présente la formalisation du problème. Dans la section 3, nous modélisons celui-ci comme un programme linéaire en nombre entiers. Nous introduisons plusieurs algorithmes de résolutions du problème dans la section 4

2 Formalisation du problème

Le problème se définit de la mnière suivante

3 Modélisation du problème

Un programme linéaire en nombre entiers pour le problème de sac-à-dos est le suivant :

$$\max \sum_{i=1}^{n} p_i x_i \tag{1}$$

$$sc \sum_{i=1}^{n} w_i x_i \leqslant W \tag{2}$$

$$x_i \in \{0, 1\} \qquad \forall i = 1...n \tag{3}$$

L'objectif (1) consiste à maximiser le profit associé aux objets sélectionnés. La contrainte (2) prend en compte la capacité du sac lors de la sélection des objets. La contrainte (3) définit le domaine des variables de décisions.

4 Algorithmes de résolution

Pour écrire des algorithmes, le paquetage suivant est très utile : http://tug.ctan.org/macros/latex/contrib/algorithm2e/doc/algorithm2e.pdf

5 Expérimentations et résultats

La Table 1 présente un résumé des résultats de nos expérimentations.

Table 1 – Comparaison des différentes méthodes

1715 1 Comparaison des différences incolodes								
Algorithme	Temps CPU (ms)		Gap MS		#Données MS			
Algorithme	Moyenne	Ecart type	Moyenne	Ecart type	#Donnees MS			
Heuristique PPV	29	96	8.4%	36%	6/38			
Heuristique MI	16984	78093	1.3%	42%	$\mathbf{30/38}$			

6 Conclusion

C'est la fin.

Références

APPLEGATE, David L et al. (2006). The traveling salesman problem : a computational study. Princeton Series in Applied Mathematics.