Pregunta 1 (2.5 puntos) (1+1.5)

Sea E un conjunto no vacío y $f: \mathcal{P}(E) \to \mathbb{R}$ una aplicación tal que dados dos subconjuntos disjuntos cualesquiera de E, A y B, se cumple que $f(A \cup B) = f(A) + f(B)$.

- a) Demuestre que $f(\emptyset) = 0$.
- b) Demuestre que $\forall A, B \in \mathcal{P}(E)$ se cumple que $f(A \cup B) + f(A \cap B) = f(A) + f(B)$.

Pregunta 2 (3 puntos)

Se define en \mathbb{R}^2 la relación \ll dada por:

$$(x,y) \ll (x',y')$$
 si y sólo si $(x+y < x'+y')$ o $(x+y=x'+y')$ y $x \le x'$

- a) Demuestre que « es una relación de orden en \mathbb{R}^2 y determine si el orden es total o parcial.
- b) Represente en el plano el conjunto $A = \{(x,y) \in \mathbb{R}^2 \mid (1,1) \ll (x,y)\}$. Determine razonadamente, si existen, cotas superiores, supremo y máximo del conjunto $B = \{(1,y) \mid y \in \mathbb{R}\}$ y del triángulo CDE siendo C, D y E los puntos de coordenadas (-7,0), (0,7) y (2,5), respectivamente.

Pregunta 3 (2 puntos)

Sea $a \in \mathbb{R}$ tal que $a \geq 0$. Demuestre por inducción que para todo $n \in \mathbb{N}$ se tiene:

$$(1+a)^n \ge 1 + na$$

Pregunta 4 (2.5 puntos)

Sea el conjunto de los números primos estrictamente superiores a 2:

$$\mathbb{P} = \{ p \in \mathbb{N} \mid p \text{ es primo y } p > 2 \}$$

Se define en $\mathbb P$ la relación $\mathcal R$ dada por:

$$p\Re q$$
 si y sólo si $\frac{p+q}{2} \in \mathbb{P}$

Determine razonadamente si la relación es reflexiva, simétrica, antisimétrica o transitiva.

Se recuerda que todo número primo mayor que 2 tiene, en \mathbb{N} , únicamente dos divisores distintos, el propio número y el 1.