On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance.

1. If x is m-bits long and y is n-bits long, the run time of the function is $O(m^*n)$. The function is called recursively n times (y/2 performs a right shift, so n bits requires n shifts to complete) and the addition operation x + 2z requires one operation for every bit in x. In summary, there are n recursive calls, each requiring m operations, for a total of $O(m^*n)$.

2. gcd(770,546)

Iteration	x', y' d	return value	
eE(770,546)	7,-17,14	-17,24,14	
eE(546,224)	-3,7,14	7,-17,14	
eE(224,98)	1,-3,14	-3,7,14	
eE(98,28)	0,1,14	1,-3,14	
eE(28,14)	1,0,14	0,1,14	
eE(14,0)		1,0,14	

return y', x' - floor(a/b)*y', d

- 3. $7^{7293} \mod 342 \equiv (7^3)^{2431} \mod 342 \equiv (343)^{2431} \mod 342 \equiv 1^{2431} \mod 342 \equiv 1$
- 4. Times from three runs of RSA encryption/decryption with different key lengths:

	Time to find keys	Time to Encrypt Message	Time to Decrypt Message
	(Including p, q, N, phi, e, and d)		
8 bit key	0.0002529621124	2.1457672e-06	2.8610229e-06
16 bit key	0.0008039474487	4.0531158e-06	3.0994415e-06
24 bit key	0.0021779537200	3.8146972e-06	1.5974044e-05