

Listado 12: Valores y vectores propios. Subespacios propios. Matrices diagonalizables.

Los problemas marcados con (P) serán resueltos en práctica.

1. Determine si los $\lambda \in \mathbb{R}$ especificados son valores propios de la matriz y, de serlo, determine: multiplicidad algebraica de λ , un vector que sea vector propio de la matriz asociado a λ y uno que no sea vector propio de la matriz.

(a)
$$\begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
, $\lambda = 4$,

(c)
$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{pmatrix}$$
, $\lambda = -2$,

(b)
$$\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
, $\lambda \in \{1, 2, 3\}$,

(d) **(P)**
$$\begin{pmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \lambda = 4.$$

2. Determine si el vector v especificado es vector propio de la matriz y, de serlo, determine: valor propio asociado a él, otro vector que sea vector propio de la matriz y uno que no sea vector propio de la matriz.

(a)
$$\begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
, $v = \begin{pmatrix} -1, & -1, & -1 \end{pmatrix}^{\mathrm{T}}$, (c) $\begin{pmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{pmatrix}$, $v = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^{\mathrm{T}}$,

(c)
$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{pmatrix}$$
, $v = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^{\mathrm{T}}$

(b)
$$\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
, $v = \begin{pmatrix} \frac{1}{2}, & -\frac{1}{2}, & -\frac{1}{2} \end{pmatrix}^{\mathrm{T}}$

(b)
$$\begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
, $v = \begin{pmatrix} \frac{1}{2}, & -\frac{1}{2}, & -\frac{1}{2} \end{pmatrix}^{\mathrm{T}}$, (d) $(\mathbf{P}) \begin{pmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$, $v = \begin{pmatrix} -2, & 1, & 1, & 0 \end{pmatrix}^{\mathrm{T}}$.

3. Sea $A \in \mathcal{M}_3(\mathbb{R})$ una de las siguientes matrices: determine el polinomio característico de A y calcule todas sus raíces, decida cuáles de ellas son valores propios de A y determine, justificadamente, si A es diagonalizable. En los casos en que lo sea, determine P, invertible, y D, diagonal, de modo que AP = PD.

(a)
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{3} & 0 & 1 \end{pmatrix}$$
,

(a)
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
, (c) $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{3} & 0 & 1 \end{pmatrix}$, (e) $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{pmatrix}$,

(b)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, (d) $A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$, (f) **(P)** $A = \begin{pmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$.

4. (P-solo A) Considere

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{pmatrix}.$$

- (a) Determine, sin calcular, una base para im(A) y una para im(B). ¿Tienen ambas matrices la misma imagen?
- (b) Justifique, sin calcular $p_A(\lambda)$ y $p_B(\lambda)$, por qué cero es valor propio de ambas matrices.
- (c) Encuentre, sin calcular $p_A(\lambda)$ y $p_B(\lambda)$, un segundo valor propio para ambas matrices.

5. Sea
$$A = \begin{pmatrix} 1 & 2 & \alpha \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$
, con $\alpha \in \mathbb{R}$.

- (a) Encuentre $\alpha \in \mathbb{R}$ de modo que $\lambda = 1$ sea un valor propio de A. ¿Cuál es la multiplicidad algebraica de λ ?
- (b) Determine, con α igual al valor determinado antes, los restantes valores propios de A y sus multiplicidades algebraicas.
- (c) Determine, con α igual al valor determinado antes, los subespacios propios de A y una base para cada uno de ellos.
- (d) ¿Es A diagonalizable? En caso de serlo, determine P, invertible, y D, diagonal, de modo que AP = PD.
- 6. Diagonalice, si es posible, las siguientes matrices con coeficientes reales. Determine además si ellas son invertibles.

(a)
$$\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$
, (b) $\begin{pmatrix} 2 & 6 & -6 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{pmatrix}$, (c) $\begin{pmatrix} -1 & -1 \\ 6 & 4 \end{pmatrix}$, (d) $\begin{pmatrix} 2 & 0 & 6 \\ 0 & 2 & 4 \\ 0 & 0 & 4 \end{pmatrix}$.

7. **(P)** Sea
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & a & a+1 \\ 0 & 0 & 1 \end{pmatrix}$$
, con $a \in \mathbb{R}$.

- (a) Determine para qué valores de a se cumple que A es invertible. Justifique su respuesta.
- (b) Determine para qué valores de a se cumple que A es diagonalizable. Justifique su respuesta.
- 8. Sean $A \in \mathcal{M}_n(\mathbb{R})$ y $\lambda \in \mathbb{R}$ un valor propio de A.
 - (a) Demuestre que λ^2 es valor propio de A^2 .
 - (b) Demuestre que $2 + \lambda$ es valor propio de A + 2I.
- 9. (P) Sea $A \in \mathcal{M}_n(\mathbb{R})$ tal que $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ (no necesariamente distintos entre sí) son valores propios de A. Entonces $\det(A \lambda I) = p_A(\lambda) = (\lambda_1 \lambda)(\lambda_2 \lambda) \cdots (\lambda_n \lambda)$.

2

- (a) Muestre, utilizando la expresión anterior para $p_A(\lambda)$, que el determinante de A es el producto de sus valores propios.
- (b) Suponga ahora que $A \in \mathcal{M}_3(\mathbb{R})$ es tal que 0, 1 y 2 son los valores propios de A. Responda y justifique:
 - ullet ¿Es A diagonalizable?
 - ¿Es A invertible?
 - ¿Cuáles son la nulidad y el rango de A?