Problem set 2

- 1. Look up Euler's equidimensional equation of second order, and its solutions, on Wikipedia.
 - (a) Write Euler's equidimensional equation using an operator.
 - (b) Think carefully about the domain and codomain of the operator. (How) do the solutions of Euler's equidimensional equation change depending on the domain?
- 2. Complete example 1.4.2.

Hint: Follow example 1.4.1.

3. Complete example 1.4.3. You can use either S or $C_0^{\infty}[0,1]$.

Hint: Just as in the previous examples, you have to integrate by parts.

4. Let

$$\Phi = \{ \phi \in C^{\infty}[0,1] \text{ s.t. } \phi(0) = 0, \ \phi(1) = 0 \}$$

and let $L: \Phi \to C^{\infty}[0,1]$ be the Schrödinger operator with real valued potential $V \in C^{\infty}_{\mathbb{R}}[0,1]$.

(a) Show that L is formally selfadjoint.

What if V is not real valued?

(b) Is L selfadjoint?

What if boundary condition $\phi(1) = 0$ is replaced with $\phi'(1) = 0$.

- (c) What are the boundary forms in this example?
- 5. The operator L is given by \mathcal{D}^3 on

$$\Phi = \{ \phi \in C^{\infty}[0,1] \text{ s.t. } \phi(0) = 0, \ \phi(1) = 0, \ \phi'(0) = 0 \}.$$

Find L^* , Φ^* , if $\Psi = C^{\infty}[0,1]$.

- 6. Let $\Psi = \mathcal{S}[0,\infty)$, $\Phi = \{\phi \in \Psi \text{ s.t. } \phi(0) = 0\}$, and Δ be given by Δ_{formal} . Show that Δ is selfadjoint.
- 7. Let $\Psi = C^{\infty}[0,1]$, $\beta \in \mathbb{C}$, $\Phi = \{\phi \in \Psi \text{ s.t. } \phi(0) = 0, \ \phi(1) = 0, \ \phi'(0) = \beta \phi'(1)\}$, and Δ be given by \mathcal{D}^3 . Find L^* , Φ^* , if $\Psi = C^{\infty}[0,1]$.
- 8. Let $n \in \mathbb{N}$ and $\lambda \in \mathbb{C} \setminus \{0\}$. Then $e^{i\lambda x}$ is a formal eigenfunction of the formal differential operator \mathcal{D}^n with formal eigenvalue λ^n .
 - (a) Find all the other formal eigenfunctions with the same eigenvalue; hence show that the eigenspace has dimension n.
 - (b) Explain how imposing a boundary form on the domain of the operator reduces the dimension of the eigenspace by one.
 - (c) Find all n eigenfunctions of this operator with eigenvalue 0.

Optional extra problems

- 9. Implement example 1.4.1 in S.
- 10. Let $\Psi = \mathcal{S}[0,\infty)$, $\Phi = \{\phi \in \Psi \text{ s.t. } \phi'(0) = 0\}$, and Δ be given by Δ_{formal} . Show that Δ is selfadjoint.