Purdue CS555 Cryptography Lecture 2

August 28, 2025

Two Types of Leakage

Intermediate Secrecy (Cryptography)

- Goal: Protect messages in transit between Alice and Bob
- Example: Alice sends encrypted message, Eve intercepts ciphertext
- Key idea: Key holders have a secret "trapdoor" that others don't
- Can achieve "free lunch" perfect utility AND perfect privacy
- Main research problems:
 - Find weaker assumptions (reduce to fundamental hard problems)
 - Improve computational efficiency
- Target: Perfect indistinguishability of ciphertexts

Output Secrecy (Information Theory)

- Goal: Release information publicly while protecting privacy
- NO free lunch always tradeoff between utility and privacy
- Main research problem: Find optimal utility-privacy tradeoff
- Must accept non-zero posterior advantage for adversaries

Symmetric Key Encryption

Setup

- ullet Alice and Bob meet beforehand to agree on secret key k
- Both use same key for encryption and decryption
- Eve (eavesdropper) tries to learn message from ciphertext

Three Components

A symmetric encryption scheme consists of:

- 1. Key Generation Gen(θ): Outputs key k
- 2. Encryption $\operatorname{Enc}(k,m)$: Takes key k and message m, outputs ciphertext c
- 3. **Decryption Dec**(k, c): Takes key k and ciphertext c, recovers message m All three algorithms can be probabilistic (use randomness).

One-Time Pad

Construction

• Key Generation: $k \leftarrow \{0,1\}^{\ell}$ (random ℓ -bit string)

• Encryption: $c = m \oplus k$ (XOR message with key)

• **Decryption:** $m = c \oplus k$ (XOR ciphertext with key)

Why One-Time Pad is Perfectly Secret

Theorem: One-time pad achieves perfect secrecy.

Proof idea: For any message m and ciphertext c of length ℓ :

$$\Pr_{k \sim \{0,1\}^\ell}[\operatorname{Enc}(k,m) = c] = \frac{1}{2^\ell}$$

• There's exactly one key $k = m \oplus c$ that maps m to c

• Since k is chosen uniformly at random from 2^{ℓ} possibilities

• Probability is $1/2^{\ell}$ for ANY message m

• Therefore: $\Pr[\operatorname{Enc}(k, m) = c] = \Pr[\operatorname{Enc}(k, m') = c]$ for any m, m'

• Ciphertext reveals nothing about which message was encrypted

Why Key Reuse Breaks Security

Two-Time Pad Attack

Theorem: Reusing one-time pad key does not achieve perfect indistinguishability.

Proof: We show probabilities differ for different message pairs.

Choose:

• $m_0 = m_1 = m$

• $m'_0 \neq m'_1$

• $c_0 = c_1 = c$ (observing same ciphertext)

Then:

$$\Pr[\operatorname{Enc}(k, m_0) = c \text{ and } \operatorname{Enc}(k, m_1) = c] = \frac{1}{2^{\ell}}$$

$$\Pr[\operatorname{Enc}(k, m_0') = c \text{ and } \operatorname{Enc}(k, m_1') = c] = 0$$

Why second probability is 0:

• If $m'_0 \oplus k = c$, then $k = m'_0 \oplus c$

• Then $m_1' \oplus k = m_1' \oplus m_0' \oplus c$

• Since $m'_0 \neq m'_1$, this cannot equal c

• So both encryptions can't produce same ciphertext

Since probabilities differ, perfect indistinguishability fails.

Fundamental Limitation of Perfect Secrecy

A Shorter Key?

Theorem: For any perfectly secure encryption scheme with key space \mathcal{K} and message space \mathcal{M} :

$$|\mathcal{K}| \ge |\mathcal{M}|$$

Note: Key must be at least as long as message.

Probabilistic Polynomial Time (PPT)

Definition: A PPT algorithm satisfies:

- Runs in time polynomial in input length: $poly(\ell)$
- Can use randomness during execution
- $\bullet\,$ Time bound holds for all possible random coin tosses

Intuition: PPT captures "realistic" adversaries with bounded computational resources. Assumes adversaries can't run for exponential time like 2^{100} years.

Negligible Functions

Definition: Function $\mu : \mathbb{N} \to \mathbb{R}$ is negligible if for every polynomial $p(\cdot)$, there exists n_0 such that for all $n \ge n_0$:

 $\mu(n) < \frac{1}{p(n)}$

Notation: $\mu(n) = o(1/p(n))$ for any polynomial p.

Intuition: Negligible means "smaller than any inverse polynomial" - vanishingly small.

Computational Indistinguishability

Initialization Vector

PROBLEM: deterministic encryption (same input always gives the same ouput)

SOLUTION: Initialization Vector (IV)

IV is a random piece of data that we use to randomize each message BEFORE encrypting it.

In IV encryption, the IV acts as a **one time pad** for each message.