יריעות אלגבריות – הרצאה עשירית

דוגמא

נניח כי $X\subseteq\mathbb{C}^n$ היא יריעה אפינית ו

$$\pi:\mathbb{C}^n\to\mathbb{C}^{n-1}$$

ע"י הטלה על ה $\pi\mid_X$ נניח האחרונות. קוארדינטות קוארדינטות היא סופית. תהי הטלה עf=1 היא סופית. $f\in\mathbb{C}\left[x_1,\ldots,x_n\right]$

$$\pi\left(X\cap Z\left(f\right)\right)$$

היא קבוצה סגורה. נתאר זאת כעת באופן מפורש:

מקיים פולינום מתוקן $x_1\mid_X \Longleftarrow \pi\mid_X$

$$x_1^d + a_{d-1}(x_2, \dots, x_n) \cdot X_1^{d-1} + \dots + a_0(x_2, \dots, x_n) = 0$$

על X. לכל $\overrightarrow{t} \in \mathbb{C}^{n-1}$ נתבונן במרחב הוקטורי

$$V_t = \mathbb{C}[g]/(y^d + a_{d-1}(\overrightarrow{t})y^{d-1} + \dots + a_0(\overrightarrow{t}))$$

(מקומית (מקומית הפונקציות על $T^{-1}(t)$). אלו הן הפונקציות על ($\pi^{-1}(t)$). אלו הן הפונקציות על בסיס ל על המשתנה בצורה באורה אלינומיאלית. הבחירה בטופולוגיית אריצקי) בסיס ל

$$\left\{1, y, y^2, \dots, y^{d-1}\right\}$$

יות: הליניאריות בהעתקות לכל נתבונן הליניאריות: לכל המרחבים הוקטורים האלו. לכל המרחבים הוקטורים האלו.

$$T_t: V_t \longrightarrow V_t$$

ע"י

$$g + (\cdots) \longmapsto f \cdot g + (\cdots)$$

:כעת

.tב פולינומים שהם מקדמים עם מטריצה ע"י מטריצה נתונה T_t , זהו בסיס. 1

.2

$$\pi\left(Z\left(f\right)\right) = \left\{t \in \mathbb{C}^{n-1} \mid T_{t} \text{ not invertible}\right\}$$

נשם לב ש

$$\pi \left(X \cap Z \left(f \right) \right) = \pi \left(X \right) \cap Z \left(t \mapsto \det T_t \right)$$

משפט 0.1 אם $f\in\mathcal{O}_{X}\left(X
ight)$ ו $X\subseteq\mathbb{C}^{n}$ אם 0.1 משפט

$$\dim Z(f) = \dim(X) - 1$$

הוכחה: נוכיח באינדוקציה על n=1 . n ברור. אחרי מספר משחקים, ניתן להניח שההטלה

$$\pi: \mathbb{C}^n \to \mathbb{C}^{n-1}$$

היא סופית על X ראשית,

$$\dim X = \dim \left(\pi \left(X\right)\right)$$

 $\dim\left(X\cap Z\left(f
ight)
ight)=\dim\left(\pi\left(X\cap Z\left(f
ight)
ight)
ight)=\dim\left(\pi\left(X
ight)\cap Z\left(ext{one polynomial}
ight)
ight)\subseteq\mathbb{C}^{n-1}$ מהאינדוקציה, נקבל ש

$$\dim (X \cap Z(f)) = \dim (\pi(X)) - 1 = \dim X - 1.$$

הערה 0.2 כעת זה מאפשר לנו דרך נוספת להגדיר מימד, בתור אורך השרשרת המקסימלית של יריעות אי פריקות

$$X_k \subsetneq \cdots \subsetneq X_1 \subsetneq X$$

אבל זה מתאים לאידיאלים ראשוניים בחוג הקוארדינטות. זה מאפשר לנו להגדיר מימד (מימד קרול) לכל החוגים, ולא רק לאלגברות נוצרות סופית.

משפט 0.3 יהי X o T מורפיזם של יריעות ונניח כי X כי פריקה. אזי:

על אז f על אז

$$\dim f^{-1}(y) \ge \dim X - \dim Y.$$

מתוחה התמונה אזי יש קבוצה פתוחה היצקי) אזי יש קבוצה פתוחה בוצה פתוחה ל בוצה פתוחה בוf אזי יש כד $U\subset Y$

$$\dim f^{-1}(y) = \dim X - \dim Y$$

 $y \in U$ לכל

הוכחה:

y בהנתן $Y \to \mathbb{C}^{\dim Y}$ סופית העתקה העתקה $Y \subset \mathbb{C}^n$ בהנתן .1 בלי הגבלת בלינומים $\dim Y$ כך ש

$$Z(f_1,\ldots,f_d)$$

y את המכילה המכילה של נקודות המכילה את

$$Z(g_1 \circ f, \dots, g_{\dim Y} \circ f) \subseteq X$$

 $\dim (\operatorname{each component of } Z(\cdots)) = \dim X - \dim Y.$

$$\dim Z\left(g_1\circ f,\ldots,g_{\dim(Y)}\circ f,g_{\dim Y}\circ f\right)$$

ומכיוון ש $f^{-1}\left(Y
ight)$ מתאפס על מתאפס אדול/שווה מ $g_{\dim(Y)}\circ f$ ומכיוון מ

$$\dim Z\left(g_1\circ f,\ldots,g_{\dim Y-1}\circ f\right)-1$$

בלי הגבלת הכלליות X,Y אפיניים.

יהי . $\operatorname{Rat}\left(Y\right)\subset\operatorname{Rat}\left(X\right)\Leftarrow$ יהי .2

$$c = \dim X - \dim Y$$
.

אזי יש

$$t_1,\ldots,t_c\in\mathcal{O}_X\left(X\right)$$

כד ש

$$\operatorname{Rat}(Y)(t_1,\ldots,t_c)\subset\operatorname{Rat}(X)$$

 מקיים f_i ,
iלכל . $\mathcal{O}_X\left(X\right)$ של f_1,\ldots,f_N יוצרים נבחר נבחר אלגברית.
נבחר יוצרים מהצורה מהצורה

(*)
$$a_0(t_1,...,t_c) + a_i^i(t_1,...,t_c) \cdot f_i + \cdots + a_{d_i}^i(\overrightarrow{t}) \cdot f_i^{d_i}$$

 $y\in U$ הם פולנומים עם מקדמים ב $\mathcal{O}_{Y}\left(Y\right)$ תהי מקדמים עם פולנומים משל a_{j}^{i} הם עבורם עבורם

$$a_{d_{i}}^{i}\left(y\right)\neq0$$

אם $\mathcal{O}_{f^{-1}(y)}\left(f^{-1}\left(y\right)\right)$ את יוצרים אז $f_i\mid_{f^{-1}(y)}$ אזי אזי $y\in U$ אם $f_i\mid_{f^{-1}(y)}$ יוצרים אהם פולינומית עבור $f_i\mid_{f^{-1}(y)}$ עם מקדמים שהם שהם הביא לנו משוואה פולינומית עבור $f_i\mid_{f^{-1}(y)}$ הוא אלגברי פולינומים ב $t_i\mid_{f^{-1}(y)}$. בפרט נקבל שכל איבר ש $\mathcal{O}_{f^{-1}(y)}f^{-1}\left(y\right)$ הוא אלגברי מעל $t_i\mid_{f^{-1}(y)},\ldots,t_c\mid_{f^{-1}(y)}$

$$\operatorname{Rat}\left(f^{-1}\left(y\right) \right)$$

יש דרגת טרנצנדנטיות לכל היותר .c. לכן .c. אבל מהחלק יש דרגת טרנצנדנטיות לכל היותר .dim $f^{-1}\left(y\right) \leq c$ הקודם, נקבל ש