Integración y Series

Primera entrega de ejercicios

Agosto 31 de 2023

Juan Camilo Lozano Suárez

Los siguientes lemas serán usados en algunas soluciones:

Lema 1. Sea f una función monótona en [a,b]. Entonces $V_f(a,b) = |f(b) - f(a)|$.

Prueba. Analizamos dos casos:

■ Supongamos $f \nearrow en[a,b]$. Para cualquier partición $P \in \mathcal{P}[a,b]$ se tiene

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = f(b) - f(a) = |f(b) - f(a)|.$$

 \blacksquare Supongamos $f \searrow en [a,b].$ Para cualquier partición $P \in \mathcal{P} [a,b]$ se tiene

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} (f(x_{k-1}) - f(x_k)) = f(a) - f(b) = |f(b) - f(a)|.$$

En cualquier caso, se tiene $V_f(a,b) = \sup \{\sum (P) : P \in \mathcal{P}[a,b]\} = \sup \{|f(b) - f(a)|\} = |f(b) - f(a)|.$

Lema 2. Sea f una función continua en [a,b], tal que f' existe y es acotada en (a,b). Entonces $f \in VA[a,b]$.

Prueba. Existe $A \ge 0$ tal que $|f(c)| \le A$ para todo $c \in [a, b]$. Sea $P = \{x_0, x_1, \dots, x_n\} \in \mathcal{P}[a, b]$ cualquiera. Para cada $k=1,\dots, n$, por el teorema del valor medio para derivadas, existe $c_k \in [x_{k-1}, x_k]$ tal que

$$f'(c_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = \frac{\Delta f_k}{x_k - x_{k-1}}.$$

Luego, $\Delta f = f'(c_k)(x_k - x_{k-1})$. De este modo,

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k=1}^{n} (|f'(c_k)||x_k - x_{k-1}|)$$

$$\leq \sum_{k=1}^{n} A|x_k - x_{k-1}|$$

$$= A \sum_{k=1}^{n} (x_k - x_{k-1})$$

$$= A (b - a),$$

con lo cual $f \in VA[a, b]$.

Ejercicio 6.3. Probar que una función polinómica f es de variación acotada en todo intervalo compacto [a, b]. Describir un método que permita calcular la variación total de f en [a, b] conociendo los ceros de la derivada f'.

Prueba. Sea f una función polinómica en [a,b]. Sabemos que f es continua en [a,b] y que f' (que también es una función polinómica) existe y es acotada en (a,b). Por tanto f es de variación acotada en [a,b].

Si f es constante en [a,b], se tiene $V_f(a,b)=0$. Supongamos $\operatorname{grado}(f)>1$, de modo que $\operatorname{grado}(f')\geq 0$ y f' no es el polinomio nulo. Si f' no tiene ceros en [a,b], se sigue que f'(x)>0 para todo x en [a,b], o f'(x)<0 para todo x en [a,b] (si f'(c)>0 y f'(d)>0 para $c,d\in [a,b]$, por el teorema del valor intermedio f' tendría algún cero en [a,b]. En todo caso, f es monótona en [a,b] y $V_f(a,b)=|f(b)-f(a)|$. Supongamos que f' tiene ceros en [a,b]. Como f' tiene a lo más $\operatorname{grado}(f)\in\mathbb{Z}^+$ ceros en \mathbb{R} , podemos enumerarlos y ordenarlos. Así, sean $x_1< x_2< \cdots < x_m$ todos los ceros de f' en [a,b], y llamemos $x_0:=a$ y $x_{m+1}:=b$. Notemos que en cada subintervalo $[x_{k-1},x_k]$ (con $k\in\{1,\ldots,m+1\}$ la función f es monótona y por tanto $V_f(x_{k-1},x_k)=|f(x_k)-f(x_{k-1})|$. Por la propiedad aditiva de la variación total, se sigue que

$$V_f(a,b) = \sum_{k=1}^{m+1} V_f(x_{k-1}, x_k) = \sum_{k=1}^{m+1} |f(x_k) - f(x_{k-1})|.$$

Ejercicio 7.1. Probar que $\int_a^b d\alpha(x) = \alpha(b) - \alpha(a)$, directamente a partir de la definición de integral de Riemann-Stieltjes.

Prueba. Sea $\varepsilon > 0$ cualquiera. Tomemos $P_{\varepsilon} = \{a,b\} \in \mathcal{P} [a,b]$ y $f:[a,b] \to \mathbb{R}$ la función constante en 1. Si $P \supseteq P_{\varepsilon}$ tenemos

$$|S(P, f, \alpha) - (\alpha(b) - \alpha(a))| = \left| \left(\sum_{k=1}^{n} f(t_k) \Delta \alpha_k \right) - (\alpha(b) - \alpha(a)) \right|$$

$$= \left| \left(\sum_{k=1}^{n} \alpha(x_k) - \alpha(x_{k-1}) \right) - (\alpha(b) - \alpha(a)) \right|$$

$$= |(\alpha(x_n) - \alpha(x_0)) - (\alpha(b) - \alpha(a))|$$

$$= |(\alpha(b) - \alpha(a)) - (\alpha(b) - \alpha(a))|$$

$$= 0$$

$$< \varepsilon,$$

lo que prueba $\int_{a}^{b} d\alpha (x) = \alpha (b) - \alpha (a)$.

Ejercicio 7.2. Si $f \in \mathcal{R}(\alpha)$ en [a,b] y si $\int_a^b f \ d\alpha = 0$ para cada f monótona en [a,b], probar que α es constante en [a,b].

 $Prueba. \text{ Sea } c \in (a,b) \text{ cualquiera. Definimos } f:[a,b] \to \mathbb{R} \text{ vía } f(x) = \begin{cases} 0 & \text{ si } x \leq c \\ 1 & \text{ si } x > c \end{cases} \text{ para todo } x \in [a,b].$

Claramente f es monótona en [a,b], así que por hipótesis $f \in \mathcal{R}(\alpha)$ en [a,b] y $\int_a^b f \ d\alpha = 0$. Como $f \in \mathcal{R}(\alpha)$ entonces $\alpha \in \mathcal{R}(f)$ en [a,b]. Veamos que $\int_a^b \alpha \ df = \alpha(c)$:

Sea $\varepsilon > 0$ cualquiera. Existe $P_{\varepsilon} \in \mathcal{R}(\alpha)$ tal que si $P \supseteq P_{\varepsilon}$, para cualquier elección $t_k \in [x_{k-1,x_k}]$ se tiene $|S(P,\alpha,f) - \int_a^b \alpha \ df| < \varepsilon$. Tomemos $P = P_{\varepsilon} \cup \{c\} = \{x_0 = a, \dots, x_{\gamma} = c, \dots, x_n = b\} \subseteq P_{\varepsilon}$ conla elección $t_k = x_{k-1} \in [x_{k-1}, x_k]$. Se tiene

$$S(P, \alpha, f) = \sum_{k=1}^{n} \alpha(x_{k-1}) \Delta f_k$$
$$= \sum_{k=1}^{n} \alpha(x_{k-1}) (f(x_k) - f(x_{k-1})).$$

Para $1 \le k \le \gamma$ tenemos $f(x_k) - f(x_{k-1}) = 0 - 0 = 0$; para $k = \gamma + 1$ tenemos $f(x_{\gamma} + 1) - f(x_{\gamma}) = f(x_{\gamma} + 1) - f(c) = 1 - 0 = 0$; para $\gamma + 2 \le k \le ntenemosf(x_k) - f(x_{k-1}) = 1 - 1 = 0$. De este modo $S(P, \alpha, f) = \alpha(x_{\gamma}) = \alpha(c)$. Así, $\left|\alpha(c) - \int_a^b \alpha \, df\right| = \left|S(P, \alpha, f) - \int_a^b \alpha \, df\right| < \varepsilon$. Como esto se tiene para $\varepsilon > 0$ arbitrario, se sigue que $\left|\alpha(c) - \int_a^b \alpha \, df\right| = 0$ y $\int_a^b \alpha \, df = \alpha(c)$.

Ahora, haciendo integración por partes tenemos

$$0 + \alpha(c) = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} \alpha \, df = f(b) \alpha(b) - f(a) \alpha(a) = \alpha(b),$$

y $\alpha\left(c\right)=\alpha\left(b\right)$, para $c\in\left(a,b\right)$ cualquiera. Como además la función constante en 1 es monótona en [a,b], tenemos $\alpha\left(b\right)-\alpha\left(a\right)=\int_{a}^{b}d\alpha=0$, y $\alpha\left(a\right)=\alpha\left(b\right)$, completando la prueba de que α es constante en [a,b].

Ejercicio 7.11. Si $\alpha \nearrow en [a,b]$, probar que se verifica :

a) $\bar{\int}_a^b f \ d\alpha = \bar{\int}_a^c f \ d\alpha + \bar{\int}_c^b f \ d\alpha, \ (a < c < b),$

b) $\int_a^b (f+g) d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$,

c) $\int_a^b (f+g) d\alpha \ge \int_a^b f d\alpha + \int_a^b g d\alpha$.

Prueba. a) Sea $P \in \mathcal{P}[a, b]$ cualquiera. Tomamos $P' = P \cup \{c\}$. Supongamos $P' = \{a = x_0, \dots, x_{\gamma} = c, \dots, x_n = b\}$. Tomemos $P'_1 = \{a = x_0, \dots, x_{\gamma} = c\} \in \mathcal{P}[a, c]$ y $P'_2 = \{c = x_{\gamma}, \dots, x_n = b\} \in \mathcal{P}[c, b]$. Notemos que

$$U(P'_{1}, f, \alpha) + U(P'_{2}, f, \alpha) = \sum_{k=1}^{\gamma} M_{k}(f) \Delta \alpha_{k} + \sum_{k=\gamma+1}^{n} M_{k}(f) \Delta \alpha_{k}$$
$$= \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}$$
$$= U(P', f, \alpha).$$

Como $P' \supseteq P$ tenemos $U(P', f, \alpha) \le U(P, f, \alpha)$, y por tanto $U(P'_1, f, \alpha) + U(P'_2, f, \alpha) \le U(P, f, \alpha)$. Ya que $P'_1 \in \mathcal{P}[a, c]$ y $P'_2 \in \mathcal{P}[c, b]$, se sigue

$$\int_{a}^{c} f \ d\alpha \leq U\left(P_{1}', f, \alpha\right), \quad y, \quad \int_{c}^{b} f \ d\alpha \leq U\left(P_{2}', f, \alpha\right).$$

Por tanto

$$\int_{a}^{c} f \ d\alpha + \int_{c}^{b} f \ d\alpha \leq U\left(P_{1}', f, \alpha\right) + U\left(P_{2}', f, \alpha\right) \leq U\left(P, f, \alpha\right).$$

Como lo anterior se tiene para $P \in \mathcal{P}[a,b]$ arbitraria, $\bar{\int}_a^c f \ d\alpha + \bar{\int}_c^b f \ d\alpha$ es cota inferior del conjunto $\{U(P,f,\alpha): P \in \mathcal{P}\}$, y por tanto

$$\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha \le \int_{a}^{b} f \, d\alpha.$$
(1)

Ahora, sea $\varepsilon > 0$ cuaquiera. Entonces $\frac{\varepsilon}{2} > 0$ y existen $P_1 \in \mathcal{P}\left[a,c\right]$ y $P_2 \in \mathcal{P}\left[c,b\right]$ tales que

$$U(P_1, f, \alpha) < \int_a^c f \ d\alpha + \frac{\varepsilon}{2}, \quad y, \quad U(P_2, f, \alpha) < \int_c^b f \ d\alpha + \frac{\varepsilon}{2},$$

luego,

$$U(P_1 \cup P_2, f, \alpha) = U(P_1, f, \alpha) + U(P_2, f, \alpha) < \int_a^c f \ d\alpha + \int_a^b f \ d\alpha + \epsilon.$$

Como $P_1 \cup P_2 \in \mathcal{P}[a, b]$, tenemos $\bar{\int}_a^b f \ d\alpha \leq U(P_1 \cup P_2, f, \alpha)$, y

$$\int_{a}^{b} f \ d\alpha \le \int_{a}^{c} f \ d\alpha + \int_{c}^{b} f \ d\alpha + \varepsilon.$$

Lo anterior vale para $\varepsilon > 0$ arbitrario, por lo que obtenemos

$$\int_{a}^{b} f \ d\alpha \le \int_{a}^{c} f \ d\alpha + \int_{c}^{b} f \ d\alpha. \tag{2}$$

De (1) y (2) se concluye $\bar{\int}_a^b f \ d\alpha = \bar{\int}_a^c f \ d\alpha + \bar{\int}_c^b f \ d\alpha$.

b) Sea $\varepsilon > 0$ cualquiera. Entonces $\frac{\varepsilon}{2} > 0$. Existen $P_1, P_2 \in \mathcal{P}[a, b]$ tales que

$$U(P_1, f, \alpha) < \int_a^{\overline{b}} f \ d\alpha + \frac{\varepsilon}{2}, \quad y, \quad U(P_2, g, \alpha) < \int_a^{\overline{b}} g \ d\alpha + \frac{\varepsilon}{2}.$$

Entonces $U\left(P_{1},f,\alpha\right)+U\left(P_{2},g,\alpha\right)<\bar{\int}_{a}^{b}f\ d\alpha+\bar{\int}_{a}^{b}g\ d\alpha+\varepsilon$. Como $P_{1}\cup P_{2}\in\mathcal{P}\left[a,b\right]$ y es más fina que P_{1} y que P_{2} , entonces $U\left(P_{1}\cup P_{2},f,\alpha\right)+U\left(P_{1}\cup P_{2},g,\alpha\right)\leq U\left(P_{1},f,\alpha\right)+U\left(P_{2},g,\alpha\right)$.

Ahora bien, notemos que en cada subintervalo $[x_{k-1}, x_k]$ de $P_1 \cup P_2$ tenemos

$$\begin{split} M_k \left(f + g \right) & \leq \sup \left\{ f \left(x \right) + g \left(x \right) : x \in [x_{k-1}, x_k] \right\} \\ & \leq \sup \left\{ f \left(x \right) : x \in [x_{k-1}, x_k] \right\} + \sup \left\{ g \left(x \right) : x \in [x_{k-1}, x_k] \right\} \\ & = M_k \left(f \right) + M_k \left(g \right), \end{split}$$

por tanto,

$$U(P_1 \cup P_2, f + g, \alpha) = \sum_{k=1}^{n} M_k (f + g) \Delta \alpha_k$$

$$\leq \sum_{k=1}^{n} (M_k (f) + M_k (g)) \Delta \alpha_k$$

$$= \sum_{k=1}^{n} M_k (f) \Delta \alpha_k + \sum_{k=1}^{n} M_k (g) \Delta \alpha_k$$

$$= U(P_1 \cup P_2, f, \alpha) + U(P_1 \cup P_2, g, \alpha).$$

También, $\bar{J}_a^b\left(f+g\right)\ d\alpha \leq U\left(P_1 \cup P_2, f+g, \alpha\right)$. Por consiguiente,

$$\int_a^b (f+g) \ d\alpha \le \int_a^b f \ d\alpha + \int_a^b g \ d\alpha + \varepsilon.$$

Como esto se tiene para $\varepsilon > 0$ arbitrario, concluimos

$$\int_{a}^{b} (f+g) \ d\alpha \leq \int_{a}^{b} f \ d\alpha + \int_{a}^{b} g \ d\alpha.$$

c) Sea $\varepsilon > 0$ cualquiera. Entonces $\frac{\varepsilon}{2} > 0$. Existen $P_1, P_2 \in \mathcal{P}[a, b]$ tales que

$$\int_{a}^{b} f \ d\alpha - \frac{\varepsilon}{2} < L\left(P_{1}, f, \alpha\right), \quad y, \quad \int_{a}^{b} g \ d\alpha - \frac{\varepsilon}{2} < L\left(P_{2}, g, \alpha\right).$$

Entonces $\int_a^b f \ d\alpha + \int_a^b g \ d\alpha - \varepsilon < L\left(P_1, f, \alpha\right) + L\left(P_2, g, \alpha\right)$. Como $P_1 \cup P_2 \in \mathcal{P}\left[a, b\right]$ y es más fina que P_1 y que P_2 , entonces $L\left(P_1, f, \alpha\right) + L\left(P_2, g, \alpha\right) \le L\left(P_1 \cup P_2, f, \alpha\right) + L\left(P_1 \cup P_2, g, \alpha\right)$.

Ahora bien, notemos que en cada subintervalo $[x_{k-1}, x_k]$ de $P_1 \cup P_2$ tenemos

$$m_k(f) + m_k(g) = \inf \{ f(x) : x \in [x_{k-1}, x_k] \} + \inf \{ g(x) : x \in [x_{k-1}, x_k] \}$$

 $\leq \inf \{ f(x) + g(x) : x \in [x_{k-1}, x_k] \}$
 $= m_k(f + q),$

por tanto,

$$L(P_1 \cup P_2, f, \alpha) + L(P_1 \cup P_2, g, \alpha) = \sum_{k=1}^{n} m_k(f) \Delta \alpha_k + \sum_{k=1}^{n} m_k(g) \Delta \alpha_k$$
$$= \sum_{k=1}^{n} (m_k(f) + m_k(g)) \Delta \alpha_k$$
$$\leq \sum_{k=1}^{n} m_k(f + g) \Delta \alpha_k$$
$$= L(P_1 \cup P_2, f + g, \alpha).$$

También, $L(P_1 \cup P_2, f+g, \alpha) \leq \int_a^b (f+g) d\alpha$. Por consiguiente,

$$\int_{a}^{b} f \ d\alpha + \int_{a}^{b} g \ d\alpha - \varepsilon \le \int_{a}^{b} (f + g) \ d\alpha,$$

$$\int_a^b f \ d\alpha + \int_a^b g \ d\alpha \leq \int_a^b (f+g) \ d\alpha + \epsilon.$$

Como esto se tiene para $\varepsilon > 0$ arbitrario, concluimos

$$\int_{a}^{b} f \ d\alpha + \int_{a}^{b} g \ d\alpha \le \int_{a}^{b} (f+g) \ d\alpha.$$

Ejercicio 7.12. Dar un ejemplo de una función acotada f y de una función creciente α definidas en [a,b] tales que $|f| \in \mathcal{R}(\alpha)$ pero para las que $\int_a^b f \ d\alpha$ no exista.

Solución. Tomemos

$$f:[0,1]\to\mathbb{R}$$

$$x\longmapsto f(x)=\begin{cases} 1 & \text{si }x\in\mathbb{Q}\\ -1 & \text{si }x\in\mathbb{I} \end{cases}$$

у

$$\alpha: [0,1] \to \mathbb{R}$$

$$x \longmapsto \alpha(x) = x.$$

Tenemos que |f| es la función constante en 1 en [0,1] y por el Ejercicio 7.1 se sigue que $|f| \in \mathcal{R}(\alpha)$ en [0,1]. Sin embargo, $f \notin \mathcal{R}(\alpha)$ en [0,1]: para cualquier partición $P \in \mathcal{P}[a,b]$ podemos tomar una elección con cada t_k racional, de modo que $S(P,f,\alpha) = \sum_{k=1}^n f(t_k) \Delta \alpha_k = \sum_{k=1}^n \Delta \alpha_k = \sum_{k=1}^n (\alpha(x_k) - \alpha(x_{k-1})) = \sum_{k=1}^n (x_k - x_{k-1}) = 1;$ pero también podemos considerar una elección con cada t_k irracional, de modo que $S(P,f,\alpha) = \sum_{k=1}^n f(t_k) \Delta \alpha_k = \sum_{k=1}^n -\Delta \alpha_k = -\sum_{k=1}^n \Delta \alpha_k = -1$. De lo anterior, $\int_a^b f \ d\alpha$ no existe.