Bringing Old Films Back to Life

CVPR 2022

Presenter: Munkhsoyol Ganbat

Vision Study Seminar 2022/08/29

Tasks

Video Restoration

• Quality enhancement of the videos with blurriness, noises, scratches, cracks, dirt or dust and artifacts.

Tasks

Video Colorization

• Automatic colorization, user-guide colorization and <u>reference-based colorization</u>.

Contributions

• Recurrent Transformer Network (RTN)

- Robust to real-world old film degradation of large scratches and cracks
- Same architecture for both restoration and colorization
- Bidirectional RNN: effectively reduces old film flickering

Model

Recurrent Transformer Network (RTN)

- F: Temporal Aggregation Module
- R: Spatial Restoration Transformer

Model

Model Pipeline

- F: Temporal Aggregation Module
- R: Spatial Restoration Transformer
- D: Pixel Reconstruction Decoder

Model

Video Colorization

- Convert input color space RGB to LAB
- Compare semantic similarity to predict AB channel
- AB channel will be concatenated with gray input frame.

Training

Loss

o L1 Loss:

Pixel-wise reconstruction loss between restored & GT frames

$$\mathcal{L}_1 = \frac{1}{T} \sum_{t=1}^{T} \left\| \mathbf{y}_t - \hat{\mathbf{y}}_t \right\|_1.$$

Perceptual Loss:

Perceptual loss between activation maps of VGG19 p: selected layer (relu2_2 to relu5_2) w: importance of different layers

$$\mathcal{L}_{perc} = \frac{1}{T} \sum_{t=1}^{T} \sum_{p \in P} \omega_{p} \left\| \Phi_{p}^{\mathbf{y}_{t}} - \Phi_{p}^{\hat{\mathbf{y}}_{t}} \right\|,$$

Spatial-Temporal Adversarial Loss:

Temporal-PatchGAN
Discriminator D (3D Conv): distinguish each spatial temporal feature as real or fake by hinge loss

$$\begin{split} \mathcal{L}_{\mathrm{D}} &= \mathbb{E}_{\mathbf{y} \sim Y}[\mathtt{ReLU}(1 - D(\mathbf{y}))] + \mathbb{E}_{\hat{\mathbf{y}} \sim \hat{Y}}\left[\mathtt{ReLU}\left(1 + D(\hat{\mathbf{y}})\right)\right], \\ \mathcal{L}_{\mathrm{G}} &= -\mathbb{E}_{\mathbf{v} \sim Y}[D(\mathbf{y})]. \end{split}$$

$$\circ$$
 Full Objective: $\mathcal{L}_{total} = \lambda_1 \mathcal{L}_1 + \lambda_p \mathcal{L}_{perc} + \lambda_G \mathcal{L}_G.$

Training

Video Degradation Model

- Contaminant Blending: 1k+ texture templates from internet and augmentation (rotation, crop, contrast change)
- Video Quality Degradation:
 - Gaussian noise and Speckle noise,
 - Isotropic and anisotropic Gaussian blur kernels
 - Random JPEG compression level, downsampling and upsampling, brightness & contrast.
- Temporal Frames Rendering: apply degradation for random consecutive temporal frames

Experiments

Baselines

- Old Photo Restoration + TS: Restore photo and blind temporal smoothing.
- BasicVSR: Video super resolution method.
- **Video Swin**: Attention mechanisms in both spatial and temporal dimensions.
- **DeepRemaster**: State-of-the-art old film restoration method using 3D convolutions.
- **DeOldify**: An open-source tool for restoring old films.

Implementation

- \circ 20 epochs using the ADAM optimizer, learning rate 2e-4 for the first 20 epochs, batch size 4
- Flow estimation:
 - RAFT (Recurrent All-Pairs Field Transforms for Optical Flow),
 - Fix parameters for first 5 epochs
- Dataset: REDS video deblurring and super-resolution dataset (randomly crop 256 patches)
- Training time: ~2 days on 4 RTX 2080Ti

Quantitative Result

Method	PSNR↑	SSIM↑	LPIPS↓	$E_{warp} \downarrow$
Input	19.982	0.699	0.456	0.0167
Old Photo+TS [23, 40]	21.962	0.768	0.315	0.0041
BasicVSR [4]	23.363	0.808	0.328	0.0053
Video Swin [29]	22.758	0.774	0.319	0.0061
DeepRemaster [17]	20.634	0.728	0.427	0.0066
DeOldify [1]	20.051	0.708	0.436	0.0149
Ours	24.465	0.840	0.192	0.0019
Ours w/o bi-direction	24.251	0.831	0.207	0.0036
Ours w/o soft mask	24.297	0.827	0.243	0.0025
Ours w/o transformer	24.342	0.830	0.229	0.0023

Table 1. Quantitative restoration comparisons on synthetic dataset. Our method achieves better performance on all metrics.

Method	PSNR↑	SSIM↑	LPIPS↓	FID↓
Input	27.100	0.945	0.189	110.559
DeOldify* [1]	26.271	0.937	0.149	59.686
DeepExemplar [51]	30.064	0.952	0.091	37.971
DeepRemaster [17]	29.253	0.950	0.127	40.385
Ours	32.838	0.977	0.065	31.992

Table 2. Quantitative <u>colorization comparisons</u> on REDS [33] dataset. DeOldify*: Non-reference based video colorization.

Method	NIQE↓	BRISQUE↓
Input	18.9907	53.6776
Old Photo+TS [23,40]	17.5110	48.1470
BasicVSR [4]	17.6842	62.7381
Video Swin [29]	18.9462	52.4758
DeepRemaster [17]	17.9697	49.9638
DeOldify [1]	17.9062	51.2813
Ours	15.4254	42.1422

Table 3. Quantitative restoration comparisons on real old films.

Qualitative Result: Video Restoration

• Qualitative Result: Video Colorization

13

Ablation Study

Limitation

- Content and noise ambiguity
- Synthesize inadequate high-frequency details and artifacts
- Still challenging to restore severely degraded frames

Conclusion

Video Restoration

- Temporal Bi-directional RNN: reduces flicker artifact of old films.
- Learnable Guided Mask: accurate and effective to restore real-world noises.
- Recurrent Spatial Transformer: Improved restoration ability for mixed degradations.
- More stabilized training than CNN networks.

Video Colorization

- Not specifically designed for video colorization.
- But more temporal consistent and reduced color bleeding.

Bringing Old Films Back to Life

Ziyu Wan¹, Bo Zhang², Dongdong Chen³, Jing Liao¹

¹City University of Hong Kong, ²Microsoft Research, ³Microsoft Cloud+Al CVPR 2022

Thank you