Mathematics for Robotics (ROB-GY 6013 Section A)

Week 1:

- Phone Flipping Activity
- Syllabus
- Notation
- Logic
- Direct Proof Techniques

• Week 2:

- Recap and finish Indirect Proofs
- Abstract Linear Algebra

Flip Phone

Made up symbol for this binary operation

→	I	H	V	T
I	I	Н	V	T
Н	Н	I	T	V
\overline{V}	\overline{V}	T	I	Н
T	T	V	Н	I

$$\mathcal{M} = \{I, H, V, T\}$$

- Let \mathcal{M} be the set of "moves"
 - *I* (Idle, don't move)
 - *H* (Flip phone horizontally)
 - *V* (Flip phone vertically)
 - T (Twist phone 180 degrees)

$$H \triangleright V = T$$

Klein four-group

$$S = \{1, 3, 5, 7\}$$

 Binary operation chosen as multiplication modulo 8

(×) mod 8	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

- Same pattern as before!
- Suggests deeper link between certain kinds of rotations and certain kinds of integer multiplication
 - They are both the Klein fourgroup!
 - Good way to start a Mathematics for Robotics course

Some recurring themes

- We live under the shadow of real analysis
 - Less emphasis on real analysis in this course, but that does not mean we are afraid of it
 - We will note when it pops up and move on
- We will try to think like a mathematician
 - Thoughtfulness
 - Patience
 - Precision

How to Argue with Mathematicians*

- Vocabulary (Notation)
- Grammar (More Notation/Logic)
- Writing (Proofs)

*As in how to structure mathematical arguments

Vocabulary: Common Sets

 $\mathbb{N} = \{1, 2, 3, \cdots\}$ Natural numbers or counting numbers

$$\mathbb{Z} = \mathcal{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$$
 Integers or whole numbers

$$\mathbb{Q} = \left\{ \frac{m}{q} \mid m,q \in \mathbb{Z}, q \neq 0, \text{no common factors (reduce all fractions)} \right\} \text{ Rational numbers}$$

 \mathbb{R} = Real numbers are extremely tricky to define/construct!

$$\mathbb{C} = \{ \alpha + j\beta \mid \alpha, \beta \in \mathbb{R}, j^2 = -1 \}$$
 Complex numbers

Vocabulary: Logic

∀ means "for every", "for all", "for each" Universal Quantifier

∃ means "for some", "there exist(s)", "there is/are", "for at least one" **Existential Quantifier**

 \in means "element of" as in " $x \in A$ ", i.e., x is an element of the set A

 \sim denotes "logical not". You will also often see \neg . We'll use both in these notes.

 $p \implies q$ means "if the logical or mathematical statement p is true, then the statement q is true"

 $p \iff q$ means "p is true if, and only if, q is true". While p iff q is another way to write $p \iff q$

Logical and: $p_1 \wedge p_2$ *Logical or*: $p_1 \vee p_2$

Intersection

Union

Vocabulary: Logic

 $p \iff q$ is logically equivalent to

- (a) $p \implies q$ and
- (b) $q \implies p$

The contrapositive of $p \implies q$ is $\sim q \implies \sim p$

The *converse* of $p \implies q$ is $q \implies p$. It is very important to note that in general, $(p \implies q)$ DOES NOT IMPLY $(q \implies p)$, and vice-versa. If they did, we would not need $p \iff q$.

Sentences

• "Every family has one family member that all other family members dislike"

$$\forall F \ \exists y \in F \ \text{such that} \ \forall x \in F \setminus \{y\} \ x \ \text{dislikes} \ y$$

• Every real number is arbitrarily close to a rational number

$$\forall x \in \mathbb{R} \text{ and } \forall (\epsilon \in \mathbb{R}, \epsilon > 0) \text{ , } \exists q \in \mathbb{Q} \text{ s.t. } |x - q| < \epsilon$$

 Every real number can be approximated by a rational number up to any numerical precision (number of decimal places)

$$\forall x \in \mathbb{R} \text{ and } \forall n \in \mathbb{N} \text{ , } \exists q \in \mathbb{Q} \text{ s.t. } |x-q| < 1/10^n$$

 $\pi \approx 3.14159...$

True Sentences

- Truth Tables and Venn Diagrams
- De Morgan's Laws (basically flip everyone)

$$\sim (A \land B) = (\sim A \lor \sim B)$$

$$\sim (A \vee B) = (\sim A \wedge \sim B)$$

- Existential and Universal quantifiers are negations of each other
 - "All swans are white" vs. "Some/at least one swan is black"
- Inverse, Converse, Contrapositive
 - Contrapositive is equivalent to original conditional statement

Definitions

- Definitions are biconditionals (if and only type statements)
 - They say the same thing in two (or more) different-sounding ways
- Definition of odd number:

$$(n \text{ is odd}) \Leftrightarrow (\exists k \in \mathbb{Z} \mid n = 2k + 1)$$

Definition of even number:

$$(n \text{ is even}) \Leftrightarrow (\exists k \in \mathbb{Z} \mid n = 2k)$$

• In a proof, we might start with the left-hand side of the definition to get to the right-hand side (e.g., trying to show something is even) or the opposite direction (e.g., we know something is odd and are trying to get something out of that knowledge)

Proofs: Recipes for Truth

Example 1.3 Provide a direct proof that the sum of two odd integers is even.

Proof: Let n_1 and n_2 be odd integers. Then by the definition of odd, there exist integers k_1 and k_2 such that

$$n_1 = 2k_1 + 1$$
$$n_2 = 2k_2 + 1.$$

Then using the rules of arithmetic,

$$n_1 + n_2 = (2k_1 + 1) + (2k_2 + 1) = 2(k_1 + k_2 + 1).$$

Because $k_1 + k_2 + 1$ is the sum of three integers, it is also an integer, and therefore $2(k_1 + k_2 + 1)$ is by definition, an even integer. Because $n_1 + n_2 = 2(k_1 + k_2 + 1)$, it is even.

 Build outward from things you know/assume to be true: axioms, definitions, and theorems with some exceptions when you temporarily assume things that you don't know to be true as part of the proof techniques

Style

- Abbreviations
 - iff (if and only if, for biconditionals)
 - s.t. or I (such that)

- End your proof with style!
 - End with QED (stands for quod erat demonstratum, Latin for "which was to be demonstrated")
 - End with also known as Halmos or tombstone

Special Direct Proof Techniques

- Proof by Exhaustion (Four-color Theorem, Theorems involving Rubik's Cubes)
- Proof by Mathematical Induction
 - First Principle or Standard Induction (Sum of $1 + 3 + ... + (2n 1) = n^2$)
 - Second Principle or Strong Induction (Fundamental Theorem of Arithmetic)
 - Both are equivalent but are used in different cases!

First Principle of Induction (Standard Induction)

Let P(n) denote a statement about the natural numbers with the following properties:

- (a) **Base case:** Prove that P(1) is true
- (b) **Induction step:** Assume **induction hypothesis** (P(k)) is true. Prove that if P(k) is true, then P(k+1) must be true.

By the <u>(first)</u> principle of mathematical induction the statement P(n) holds for every natural number n. **QED**.

Example 1.6 Let's prove the Claim: For all $n \ge 1$, $1 + 3 + 5 + \cdots + (2n - 1) = n^2$.

Proof:

- Step 0: Write down P(k): $1 + 3 + 5 + \cdots + (2k 1) = k^2$.
- Step 1: Check the base case, P(1): For k=1, we have that $1=1^2$, and hence the base case is true.
- Step 2: Show the induction hypothesis is true. That is, using the fact that P(k) is true, show that P(k+1) is true. Often, this involves re-writing P(k+1) as a sum of terms that show up in P(k) and another term.

For us,

$$P(k+1): 1+3+5+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2.$$

For the induction step, we assume that

$$P(k) := 1 + 3 + 5 + \dots + (2k - 1) = k^2$$

is true and thus P(k+1) is true if, and only if

$$k^{2} + (2(k+1) - 1) = (k+1)^{2}$$
.

Using the known (and accepted) rules of algebra, we check that

$$k^{2} + (2(k+1) - 1) = k^{2} + 2k + 2 - 1 = k^{2} + 2k + 1 = (k+1)^{2},$$

and hence P(k+1) is true. Because we have shown that P(1) is true and for all $k \ge 1$, $P(k) \implies P(k+1)$, by the Principle of Induction, we conclude that for all $k \ge 1$,

$$1+3+5+\cdots+(2k-1)=k^2$$
.

Second Principle of Induction (Strong Induction)

Let P(n) denote a statement about the natural numbers with the following properties:

- (a) **Base case:** Prove that P(1) is true
- (b) Induction step: Assume induction hypothesis (P(j) is true for $1 \le j \le k$). Prove that if P(j) is true for $1 \le j \le k$, then P(k+1) must be true.

By the **(second)** principle of mathematical induction the statement P(n) holds for every natural number n. **QED.**"

Example 1.11 Let's prove the **Theorem**: (Fundamental Theorem of Arithmetic) Every natural number $n \geq 2$ can be factored as a product of one or more primes.

Proof:

- Step 0: We write down the statements. For $k \geq 2$, P(k): there exist $i_k \geq 1$ and prime numbers $p_1, p_2, \ldots, p_{i_k}$ such that the product $p_1 \cdots p_{i_k} = k$.
- Step 1: Check the base case, P(2): For k=2, we have that 2=2, and hence the base case is true.
- Step 2: Show the induction hypothesis is true. That is, using the fact that P(j) is true for $1 \le j \le k$, show that P(k+1) is true, that is, k+1 can be expressed as a product of primes. There are two cases:
 - (a) Case 1: k + 1 is prime. In this case, we are done because k + 1 is already the product of one prime, namely itself.
 - (b) Case 2: k + 1 is composite. Then, there exist two natural numbers a and b, $0 \le a$, such that $k + 1 = a \cdot b$.

Because a and b are natural numbers that are greater than or equal to 2 and less than or equal to k, by the induction step:

$$P(a) \implies a = p_1 \cdot p_2 \cdot \dots \cdot p_{i_a}$$
, for some primes p_i
 $P(b) \implies b = q_1 \cdot q_2 \cdot \dots \cdot q_{j_b}$, for some primes q_j

Hence, $a \cdot b = (p_1 \cdot p_2 \cdot \dots \cdot p_{i_a}) \cdot (q_1 \cdot q_2 \cdot \dots \cdot q_{j_b})$, which is a product of primes.

Proposition Any postage of 8¢ or more is possible using 3¢ and 5¢ stamps.

Proof. We will use strong induction.

- (1) This holds for postages of 8, 9 and 10 cents: For 8¢, use one 3¢ stamp and one 5¢ stamp. For 9¢, three 3¢ stamps. For 10¢, two 5¢ stamps.
- (2) Let $k \ge 10$, and for each $8 \le m \le k$, assume a postage of m cents can be obtained exactly with $3 \notin$ and $5 \notin$ stamps. (That is, assume statements S_8, S_9, \ldots, S_k are all true.) We must show that S_{k+1} is true, that is, (k+1)-cents postage can be achieved with $3 \notin$ and $5 \notin$ stamps. By assumption, S_{k-2} is true. Thus we can get (k-2)-cents postage with $3 \notin$ and $5 \notin$ stamps. Now just add one more $3 \notin$ stamp, and we have (k-2)+3=k+1 cents postage with $3 \notin$ and $5 \notin$ stamps.

Note on our Strong Induction proofs

- We genuinely needed the strong induction part to "reach back" into some P(j) where j was not k.
- The Fundamental Theorem of Arithmetic actually says that any factorization natural number greater than or equal to 2 has a <u>unique</u> prime factorization. But we are going by the textbook.

Standard and Strong Induction are Equivalent

Equivalence of Strong and Ordinary Induction: Let P(k) be the set of logical statements that are used with Strong Induction. Then the induction step is equivalent to

$$(P(1) \land P(2) \land \dots \land P(k)) \implies P(k+1), \tag{1.1}$$

because we assume that P(j) is true for $1 \le j \le k$. Next, you can note that (1.1) is equivalent to

$$P(1) \wedge P(2) \wedge \cdots \wedge P(k) \implies P(1) \wedge P(2) \wedge \cdots \wedge P(k) \wedge P(k+1), \tag{1.2}$$

because if $P(1) \wedge P(2) \wedge \cdots \wedge P(k) = \mathbf{T}$, then

$$(P(1) \land P(2) \land \cdots \land P(k) \land P(k+1) = \mathbf{T}) \iff (P(k+1) = \mathbf{T}).$$

It follows that Ordinary Induction on

$$Q(k) := P(1) \land P(2) \land \cdots \land P(k)$$

is equivalent to Strong Induction on P(k).

Other Notes on Induction

• The Base Case should start at P(1) but we can replace the 1 with another positive integer and the machinery of the inductive proof still works

Non-obvious Inductive Proof

Theorem: The sum of the angles in any convex polygon with n vertices is $(n-2)\cdot 180^{\circ}$

Things we have:

- **Definition:** A convex polygon is a polygon where, for any two points in or on the polygon, the line between those points is contained within the polygon.
- **Theorem:** Any line drawn through a convex polygon splits that polygon into two convex polygons.
- Theorem: Angles in a triangle add up to 180°

Indirect Proof Techniques

- Proof by Contrapositive
- Proof by Contradiction
- Art and craft of proofs: picking which proof techniques to try

Proof by Contrapositive

Proposition: If n^2 is even, then n is even.

Proof by Contrapositive

Proposition: If n^2 is even, then n is even.

Proof. We will prove the **contrapositive**. \leftarrow (If *n* is *not* even, then n^2 is not even.)

Let n be an integer.

Suppose that *n* is not even, and thus odd.

Then, there exists an integer k such that n = 2k + 1

Then,
$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Since $2k^2 + 2k$ is an integer, we see that n^2 is odd and therefore not even.

Proof by Contradiction

A logical contradiction is an assertion that is false for all possible values of its variables:

$$R \wedge (\sim R) = T$$

If I assume a statement is true, and then derive a logical contradiction from that assumption, the assumption must be false.

We can use the above to our advantage!

$$(p \implies (\exists R \text{ such that } R \land (\sim R) = \mathbf{T})) \iff p = \mathbf{F}.$$

Euclid's Proof that $\sqrt{2}$ is irrational

- We define $p:\sqrt{2}$ is an irrational number.
- We start with the assumption ($\sim p = T$), that is, $\sqrt{2}$ is a rational number.
- Based on that assumption, we can deduce there exist integers m and n, $n \neq 0$, such that $\sqrt{2} = \frac{m}{n}$ and m and n do not have a common factor.
- We now define (R:m and n do not have a common factor) and know that $R=\mathbf{T}$.
- However, from $\sqrt{2} = \frac{m}{n}$, we show that m and n have 2 as a common factor.
- We now have $\sim R = T$.
- Hence, $(R \wedge (\sim R)) = T$, which is a contradiction.
- Conclusion: $\sim p = \mathbf{T}$ is impossible, and therefore $\sim p = \mathbf{F}$.
- Hence, $p = \mathbf{T}$ and we have proved that $\sqrt{2}$ is irrational. Pretty cool!

Proof: Our statement is $p:\sqrt{2}$ is irrational. We assume $\sim p:\sqrt{2}$ is rational. We seek to show that this leads to the existence of a statement R that is both true and false, a contradiction.

If $\sqrt{2}$ is rational, then there exist natural numbers m and n such that

- m and n have no common factors,
- $n \neq 0$, and

$$\sqrt{2} = \frac{m}{n}.\tag{1.3}$$

All we have done is apply the definition of a rational number. Next, we square both sides of (1.3) to arrive at

$$\left(2 = \frac{m^2}{n^2}\right) \implies \left(2n^2 = m^2\right) \implies \left(m^2 \text{ is even}\right).$$

From our result in Example 1.4, we deduce that m must be even, and hence there must exist an integer k such that m = 2k.

From $2n^2 = m^2$, we deduce that

$$(2n^2 = (2k)^2) \implies (2n^2 = 4k^2) \implies (n^2 = 2k^2) \implies n^2$$
 is even.

Once again appealing to our result in Example 1.4, we deduce that n must be even, and hence there must exist an integer j such that n = 2j.

Because both m and n are even, they have 2 as a common factor, which is a contradiction to m and n have no common factors.

Because we arrived at this contradiction from the statement " $\sqrt{2}$ is rational", we deduce that " $\sqrt{2}$ is rational" must be false. Hence, $\sqrt{2}$ is irrational.

Proof by Contradiction

"It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game."

— G.H. Hardy

What is a...

- Scalar
- Vector
- Linear Combination
 - Linear Independence/Dependence

What is a scalar? A user's perspective

- Quantity with only magnitude but no direction
- Practicality (\$):

What is a scalar field?

- **Definition:** A **field** consists of a set, denoted by \mathcal{F} , of elements called **scalars** and two operations called **addition** "+" and **multiplication** " · "; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:
 - Field Axioms 1) 7

We have seen binary operations before.

Definition 2.1 (Chen, 2nd edition, page 8): A **field** consists of a set, denoted by \mathcal{F} , of elements called **scalars** and two operations called addition "+" and multiplication " \cdot "; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

- 1. To every pair of elements α and β in \mathcal{F} , there correspond an element $\alpha + \beta$ in \mathcal{F} called the sum of α and β , and an element $\alpha \cdot \beta$ (or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition and multiplication are respectively commutative: For any α and β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha \qquad \qquad \alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

- Definition, 2nd edition, page 8): A field consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations "+" and multiplication "\cdot"; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:
 - 1. To every pair of elements α and β in \mathcal{F} , there correspond an element $\alpha + \beta$ in \mathcal{F} called the sum of α and β , and an element $\alpha \cdot \beta$ (or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
 - 2. Addition and multiplication are respectively commutative: For any α and β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha \qquad \qquad \alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

- page 8): A field consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations tion "·"; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

 on α elements α and β in \mathcal{F} there correspond α .
- or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
 - 2.) Addition and multiplication are respectively commutative: For any α and β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha \qquad \qquad \alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

- page 8): A field consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations tion "·"; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

 on α elements α and β in \mathcal{F} there correspond to α .
 - or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition on a respectively commutative: For any α and β in \mathcal{F} , $\alpha + \beta = \beta + \alpha$

$$\alpha + \beta = \beta + \alpha$$

$$\alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

- Definition (a) in \mathcal{F} , and \mathcal{F} page 8): A field consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations are defined over \mathcal{F} such that they satisfy the following conditions:

 of elements α and β in \mathcal{F} , there correspond an element α in α in α in α .
 - or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition are interestively commutative: For any α and β in \mathcal{F} , $\alpha + \beta = \beta + \alpha$

$$\alpha + \beta = \beta + \alpha$$

$$\alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and third on are respectively associative: For any α , β , γ in \mathcal{F} , $(\alpha + \beta) + \gamma - \gamma + \beta = 0$

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

- Definition then, 2nd page 8): A field consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations tion "·"; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

 Confinition α and β in β , there correspond an element α in β .
 - or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition or a livity on are respectively commutative: For any α and β in \mathcal{F} , $\alpha + \beta = \beta + \alpha$

$$\alpha + \beta = \beta + \alpha$$

$$\alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and thirty on are respectively associative: For any α , β , γ in \mathcal{F} , $(\alpha + \beta) + \gamma = \alpha + \beta \alpha$

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5.) \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

Definition (a) page 8): A field consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations tion (a); the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

Compared to α and β in \mathcal{F} , there correspond an element α in α .

- or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition and a tivity on are respectively commutative: For any α and β in \mathcal{F} , $\alpha + \beta = \beta + \alpha$

$$\alpha + \beta = \beta + \alpha$$

$$\alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and thirty on are respectively associative: For any α , β , γ in \mathcal{F} , $(\alpha + \beta) + \gamma - \gamma + \zeta \gamma$

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .

- To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

Definition 2.1 (Chen, 2nd edition, page 8): A **field** consists of a set, denoted by \mathcal{F} , of elements called **scalars** and two operations called addition "+" and multiplication " \cdot "; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

- 1. To every pair of elements α and β in \mathcal{F} , there correspond an element $\alpha + \beta$ in \mathcal{F} called the sum of α and β , and an element $\alpha \cdot \beta$ (or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition and multiplication are respectively commutative: For any α and β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha \qquad \qquad \alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the additive inverse.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the multiplicative inverse.

Fields or Not?

Canonical Example:

• How to tell?

$$\mathbb{Z}, \mathbb{C}, \mathbb{Q}, \mathbb{N}$$

• Are all fields infinite?

Fields or Not?

Canonical Example:

• How to tell?

$$\mathbb{Z}, \mathbb{C}, \mathbb{Q}, \mathbb{N}, \mathbb{R}^{2 \times 2}$$

Fields or Not?

Canonical Example:

• How to tell?

$$\mathbb{Z}, \mathbb{C}, \mathbb{Q}, \mathbb{N}, \mathbb{R}^{2 \times 2}$$
 $5,6,7$ 2,7 Axioms Failed

More Fields

- Are all fields infinite?
- Are there interesting fields?

More Fields

- Are all fields infinite? No
- Are there "interesting" fields? Yes

Finite Field {0,1}

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

Levels of thinking

- Field Axioms
- Scalar as magnitude
- "Like ℝ"

Levels of thinking

Field Axioms: Thinking like a mathematician

What if I start dropping axioms — it is no longer a field — but do I get

something else?

• Yes, rings, groups, etc.

Scalar as magnitude

• "Like

™ "

Closure under addition Associativity of addition Additive identity:

Additive inverse:

Commutativity of addition: Closure under multiplication: Associativity of multiplication: Distributive laws:

Commutativity of multiplication: Multiplicative identity:

No zero divisors:

Multiplicative inverse:

What is a vector? A user's perspective

- Quantity with magnitude and direction
- Practicality (physics):

What is a vector (or linear) space?

- **Definition:** A **vector space** (or, **linear space**) over a field \mathcal{F} , denoted by $(\mathcal{X}, \mathcal{F})$, consists of a set, denoted by \mathcal{X} , of elements called **vectors**, a field \mathcal{F} , and two operations called **vector addition** and **scalar multiplication**. The two operations are defined over \mathcal{X} and \mathcal{F} such that they satisfy all the following conditions:
 - **Vector Axioms** 1) − 10)

- These axioms look familiar
- The definition of vectors builds on the definition of scalars

Definition 2.2 (Chen 2nd Edition, page 9) A vector space (or, linear space) over a field \mathcal{F} , denoted by $(\mathcal{X}, \mathcal{F})$, consists of a set, denoted by \mathcal{X} , of elements called vectors, a field \mathcal{F} , and two operations called vector addition and scalar multiplication. The two operations are defined over \mathcal{X} and \mathcal{F} such that they satisfy all the following conditions:

- 1. To every pair of vectors v^1 and v^2 in \mathcal{X} , there corresponds a vector $v^1 + v^2$ in \mathcal{X} , called the sum of v^1 and v^2 .
- 2. Addition is commutative: For any v^1 , v^2 in \mathcal{X} , $v^1 + v^2 = v^2 + v^1$.
- 3. Addition is associative: For any v^1 , v^2 , and v^3 in \mathcal{X} , $(v^1 + v^2) + v^3 = v^1 + (v^2 + v^3)$.
- 4. \mathcal{X} contains a vector, denoted by $\mathbf{0}$, such that $\mathbf{0}+v=v$ for every v in \mathcal{X} . The vector $\mathbf{0}$ is called the zero vector or the origin.
- 5. To every v in \mathcal{X} , there is a vector \bar{v} in \mathcal{X} , such that $v + \bar{v} = 0$.
- 6. To every α in \mathcal{F} , and every v in \mathcal{X} , there corresponds a vector $\alpha \cdot v$ in \mathcal{X} called the scalar product of α and v.
- 7. Scalar multiplication is associative: For any α, β in \mathcal{F} and any v in \mathcal{X} , $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$
- 8. Scalar multiplication is distributive with respect to vector addition: For any α in \mathcal{F} and any v^1, v^2 in \mathcal{X} , $\alpha \cdot (v^1 + v^2) = \alpha \cdot v^1 + \alpha \cdot v^2$.
- 9. Scalar multiplication is distributive with respect to scalar addition: For any α , β in \mathcal{F} and any v in \mathcal{X} , $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$.
- 10. For any v in X, $1 \cdot v = v$, where 1 is the element 1 in F.

¹We use superscripts v^1, v^2, v^3 to denote different vectors. The superscripts do not denote powers.

Definition 2.2 (Chen 2nd Edition, page 9) A vector space (or, linear space) over a field \mathcal{F} , denoted by $(\mathcal{X}, \mathcal{F})$, consists of a set, denoted by \mathcal{X} , of elements called vectors, a field \mathcal{F} , and two operations called vector addition and scalar multiplication. The two operations are defined over \mathcal{X} and \mathcal{F} such that they satisfy all the following conditions:

- 1. To every pair of vectors v^1 and v^2 in \mathcal{X} , there corresponds a vector $v^1 + v^2$ in \mathcal{X} , called the sum of v^1 and v^2 .
- 2. Addition is commutative: For any v^1 , v^2 in \mathcal{X} , $v^1 + v^2 = v^2 + v^1$.
- 3. Addition is associative: For any v^1 , v^2 , and v^3 in \mathcal{X} , $(v^1 + v^2) + v^3 = v^1 + (v^2 + v^3)$.
- 4. \mathcal{X} contains a vector, denoted by $\mathbf{0}$, such that $\mathbf{0}+v=v$ for every v in \mathcal{X} . The vector $\mathbf{0}$ is called the zero vector or the origin.
- 5. To every v in \mathcal{X} , there is a vector \bar{v} in \mathcal{X} , such that $v + \bar{v} = 0$.
- 6. To every α in \mathcal{F} , and every v in \mathcal{X} , there corresponds a vector $\alpha \cdot v$ in \mathcal{X} called the scalar product of α and v.
- 7. Scalar multiplication is associative: For any α, β in \mathcal{F} and any v in \mathcal{X} , $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$ Typo in book!
- 8. Scalar multiplication is distributive with respect to vector addition: For any α in \mathcal{F} and any v^1, v^2 in \mathcal{X} , $\alpha \cdot (v^1 + v^2) = \alpha \cdot v^1 + \alpha \cdot v^2$.
- 9. Scalar multiplication is distributive with respect to scalar addition: For any α , β in \mathcal{F} and any v in \mathcal{X} , $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$.
- 10. For any v in X, $1 \cdot v = v$, where 1 is the element 1 in F.

¹We use superscripts v^1, v^2, v^3 to denote different *vectors*. The superscripts *do not* denote powers.

Vector Spaces or not?

• Main Example:

$$(\mathbb{R}^n, \mathbb{R})$$

How to tell?

$$(\mathbb{R},\mathbb{C})$$
 (\mathbb{C},\mathbb{R}) (\mathbb{Q},\mathbb{R})

$$(\mathbb{R},\mathbb{R})$$
 (\mathbb{C},\mathbb{C}) (\mathbb{Q},\mathbb{Q})

Vector Spaces or not?

Main Example:

$$(\mathbb{R}^n, \mathbb{R})$$

• How to tell?

$$(\mathbb{R},\mathbb{C})$$
 (\mathbb{C},\mathbb{R}) (\mathbb{Q},\mathbb{R}) (\mathbb{R},\mathbb{R}) (\mathbb{C},\mathbb{C}) (\mathbb{Q},\mathbb{Q})

Vector Spaces $(\mathcal{X}, \mathcal{F})$

•
$$\mathcal{X} = \mathcal{F}^n$$

The set of n -tuples $\mathcal{F}^n := \left\{ \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \middle| \alpha_i \in \mathcal{F}, 1 \leq i \leq n \right\}$,

where vector addition and scalar multiplication are defined as:

(a) Vector Addition:
$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{bmatrix}$$

(b) Scalar Multiplication:
$$\alpha \cdot x = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

Vector Spaces $(\mathcal{X}, \mathcal{F})$

$$\begin{array}{lll} \bullet & \mathcal{X} = \mathcal{F}^{n \times m} \\ & \text{The set of } n \text{ x m matrices} & \mathcal{F}^{n \times m} \coloneqq \left\{ \begin{array}{ccc} A_{1,1} & \dots & A_{1,m} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \dots & A_{n,m} \end{array} \right| A_{i,j} \in \mathcal{F}, \ 1 \leq i \leq n, \ 1 \leq j \leq m \right\}, \\ \\ \bullet & A_{i,j} & \bullet & A_{i,j} & \bullet & A_{i,j} & \bullet \\ \end{array}$$

where vector addition and scalar multiplication are defined as:

$$[A+B]_{ij} := [A]_{ij} + [B]_{ij}$$

$$\alpha \in \mathbb{R}, \ [\alpha A]_{ij} := \alpha [A]_{ij}$$

Matrices can be viewed as vectors

Interesting Vector Spaces $(\mathcal{X}, \mathcal{F})$

•
$$\mathcal{X}=\mathcal{F}$$
 Every field forms a vector space over **itself**. $(\mathcal{F},\mathcal{F})$ e.g., (\mathbb{R},\mathbb{R}) (\mathbb{C},\mathbb{C}) (\mathbb{Q},\mathbb{Q})

- . $\mathcal{X}=\{f:D\to\mathbb{R}\}$ where $D\subset\mathbb{R}$, and $\mathcal{F}=\mathbb{R}$ The set of all real-valued functions on D, where vector addition and scalar multiplication are defined as:
- (a) $\forall f, g \in \mathcal{X}$, define $f + g \in \mathcal{X}$ by $\forall t \in D$, (f + g)(t) := f(t) + g(t); (b) $\forall f \in \mathcal{X}$ and $\alpha \in \mathbb{R}$, define $\alpha \cdot f \in \mathcal{X}$ by $\forall t \in D$, $(\alpha \cdot f)(t) := \alpha \cdot f(t)$.

Interesting Vector Spaces $(\mathcal{X}, \mathcal{F})$

• $\mathcal{X} = \{f : D \to \mathbb{R}\}$ where $D \subset \mathbb{R}$, and $\mathcal{F} = \mathbb{R}$

The set of all real-valued functions on D, where vector addition and scalar multiplication are defined as:

(a)
$$\forall f, g \in \mathcal{X}$$
, define $f + g \in \mathcal{X}$ by $\forall t \in D$, $(f + g)(t) := f(t) + g(t)$;

(b)
$$\forall f \in \mathcal{X} \text{ and } \alpha \in \mathbb{R}, \text{ define } \alpha \cdot f \in \mathcal{X} \text{ by } \forall t \in D, (\alpha \cdot f)(t) := \alpha \cdot f(t).$$

- Let's check Vector Axiom 8 $\alpha \cdot (f+g) = \alpha \cdot f + \alpha \cdot g$
 - We will use the definition of a function evaluated at a point t
 - And then rely on the known definitions about real numbers

Let $t \in D$, then

(a) LHS:
$$[\alpha \cdot (f+g)](t) := \alpha \cdot [f+g](t) = \alpha \cdot [f(t)+g(t)] = \alpha \cdot f(t) + \alpha \cdot g(t)$$

(b) RHS:
$$[\alpha \cdot f + \alpha \cdot g](t) := [\alpha \cdot f](t) + [\alpha \cdot g](t) = \alpha \cdot f(t) + \alpha \cdot g(t)$$

(c) Hence, LHS = RHS and we are done.

Levels of thinking

- Vector Axioms
- Vectors as magnitude with direction
- Expand your perspective to allow for functions

Subspaces

• **Definition:** Let (X, \mathcal{F}) be a vector space, and let Y be a subset of X. Then Y is a **subspace** if using the rules of vector addition and scalar multiplication defined in (X, \mathcal{F}) , we have that (Y, \mathcal{F}) is a vector space.

- Note on subsets (proper/strict vs. otherwise)
- The definition builds on definition of a vector space

Subspaces

• **Definition:** Let (X, \mathcal{F}) be a vector space, and let Y be a subset of X. Then Y is a **subspace** if using the rules of vector addition and scalar multiplication defined in (X, \mathcal{F}) , we have that (Y, \mathcal{F}) is a vector space.

- (Proposition 2.8 in the book) The following are equivalent (TFAE)
 - (a) $(\mathcal{Y}, \mathcal{F})$ is a subspace of $(\mathcal{X}, \mathcal{F})$.
 - (b) $\forall v^1, v^2 \in \mathcal{Y}, v^1+v^2 \in \mathcal{Y}$ (closed under vector addition), and $\forall y \in \mathcal{Y}$ and $\alpha \in \mathcal{F}, \alpha y \in \mathcal{Y}$ (closed under scalar multiplication).
 - (c) $\forall v^1, v^2 \in \mathcal{Y}, \forall \alpha \in \mathcal{F}, \alpha \cdot v^1 + v^2 \in \mathcal{Y}.$
 - (d) $\forall v^1, v^2 \in \mathcal{Y}, \forall \alpha_1, \alpha_2 \in \mathcal{F}, \alpha_1 \cdot v^1 + \alpha_2 \cdot v^2 \in \mathcal{Y}.$

Interesting Subspaces?

Think about it