Fisica Quantistica 2 Prof. S. Forte, a.a. 2024-25

Leonardo Cerasi¹, Lucrezia Bioni ${\it Git Hub \; repository: \; Leonardo Cerasi/notes}$

 $^{^{1}{\}rm leo.cerasi@pm.me}$

Indice

Indice			ii
Introduzione			
Ι	\mathbf{M}	eccanica Quantistica in più Dimensioni	2
1	Sist	temi Quantistici Multidimensionali	3
	1.1	Spazio prodotto diretto	3
	1.2	Sistemi multidimensionali	3
		1.2.1 Coordinate cartesiane	4
	1.3	Separabilità	5
		1.3.1 Problemi separabili in coordinate cartesiane	5
		1.3.2 Hamiltoniane separabili	5
	1.4	Problema dei due corpi quantistico	7
		1.4.1 Trasformazioni lineari di coordinate	8
	1.5	Problemi centrali	8
2	Mo	mento Angolare	12
	2.1	Momento angolare e rotazioni	12
	2.2	Proprietà	13
		2.2.1 Espressione esplicita	13
		2.2.2 Commutatori	13
	2.3	Spettro del momento angolare	14
		2.3.1 Costruzione dello spettro	14
		2.3.2 Autofunzioni sulla base delle coordinate	16

Introduzione

La fisica quantistica è una teoria stocastica, non probabilistica, poiché permette di prevedere la probabilità che il sistema si trovi in un determinato stato e non le probabilità dei singoli eventi: questi avvengono con la misura, la quale fa cambiare l'informazione sul sistema in modo discontinuo. L'evoluzione temporale dello stato del sistema è data da trasformazioni unitarie che permettono di prevedere lo stato futuro del sistema.

La generalizzazione della meccanica quantistica unidimensionale a sistemi in più dimensioni e con più corpi introduce una notevole complessità nella trattazione che porta a sviluppi formali legati ai principi della fisica quantistica.

La teoria quantistica si sviluppa in direzioni diverse in base a due tipi di sistemi:

- sistemi riducibili, i quali vengono ricondotti a problemi più semplici a bassa dimensionalità (analogamente alla separazione del problema dei due corpi nel problema del baricentro e in quello del moto relativo), introducendo di conseguenza nuove osservabili associate alle trasformazioni possibili del sistema (studio dei gruppi di simmestria del sistema);
- sistemi irriducibili, che invece non possono essere semplificati per via di fenomeni come l'entanglement (*Verschränkung*) che emergono nei sistemi a più corpi.

La trattazione di sistemi complessi può essere semplificata in vari modi:

- limite classico: formulazione completamente diversa della meccanica quantistica introdotta da Feynman e basata sul concetto di integrale di cammino (path integral), permette di capire la relazione tra fisica classica e quantistica;
- metodi perturbativi: permettono di trovare soluzioni approssimate e non esatte; in particolare, si usano due classi di metodi perturbativi in base al sistema considerato:
 - indipendenti dal tempo, importanti per lo studio degli stati legati (es. atomo di elio);
 - dipendenti dal tempo, utilizzati per studiare gli stati del continuo (es. teoria d'urto).

Parte I Meccanica Quantistica in più Dimensioni

Sistemi Quantistici Multidimensionali

1.1 Spazio prodotto diretto

Per definire formalmente i sistemi quantistici in più dimensioni, è necessario definire prima il prodotto diretto tra spazi di Hilbert.

Definizione 1.1.1. Dati due spazi di Hilbert \mathscr{H} e \mathscr{K} con basi $\{|e_i\rangle\}$ e $\{|\tilde{e}_j\rangle\}$, si definisce il loro prodotto diretto come $\mathscr{H} \otimes \mathscr{K} := \{|\psi\rangle = \sum_{i,j} c_{ij} |e_i\rangle \otimes |\tilde{e}_j\rangle\}$. In questo spazio si definisce il prodotto scalare tra due vettori $|\psi_1\rangle = |e_{i_1}\rangle \otimes |\tilde{e}_{j_1}\rangle$ e $|\psi_2\rangle = |e_{i_2}\rangle \otimes |\tilde{e}_{j_2}\rangle$ come $\langle \psi_1|\psi_2\rangle = \langle e_{i_1}|e_{i_2}\rangle \langle \tilde{e}_{j_1}|\tilde{e}_{j_2}\rangle$.

Per semplificare la scrittura, si adotta la notazione $|e_i\rangle \otimes |e_j\rangle \equiv |e_ie_j\rangle$ (o si sottintende \otimes). Si noti che osservabili relative a spazi diversi sono sempre compatibili.

In generale, il generico $|\psi\rangle \in \mathcal{H} \otimes \mathcal{K}$ non è scrivibile come prodotto diretto $|\psi\rangle = |\phi\rangle \otimes |\tilde{\phi}\rangle$, con $|\phi\rangle \in \mathcal{H}$ e $|\tilde{\phi}\rangle \in \mathcal{K}$, poiché in generale non è detto che c_{ij} sia fattorizzabile in α_i e $\tilde{\alpha}_j$: in questo caso si dice che lo stato è entangled.

Definizione 1.1.2. Uno stato $|\psi\rangle \in \mathcal{H} \otimes \mathcal{K}$ si dice entangled se non è fattorizzabile.

Esempio 1.1.1. Dati due qubit, uno stato entangled è $|\psi\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$, dato che il generico stato fattorizzabile è $(a\,|0\rangle + b\,|1\rangle) \otimes (c\,|0\rangle + d\,|1\rangle) = ac\,|00\rangle + ad\,|01\rangle + bc\,|10\rangle + bd\,|11\rangle$.

La probabilità $P_{ij} = |c_{ij}|^2$ è detta probabilità congiunta: in generale essa non è il prodotto delle probabilità dei singoli eventi per i fenomeni di interferenza quantistica, i quali rendono tale probabilità dipendente dallo stato dell'intero sistema.

1.2 Sistemi multidimensionali

Per generalizzare la meccanica quantistica in d dimensioni, si introduce l'operatore posizione $\hat{\mathbf{x}}$:

$$\hat{\mathbf{x}} := \begin{pmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_d \end{pmatrix} \tag{1.1}$$

Ciascuna componente di questo vettore è un operatore hermitiano che agisce su uno spazio di Hilbert, mentre il vettore $\hat{\mathbf{x}}$ agisce sul loro prodotto diretto $\mathscr{H} := \mathscr{H}_1 \otimes \cdots \otimes \mathscr{H}_d$. Su ciascuno spazio \mathscr{H}_j viene definita la base delle posizioni da $\hat{x}_j | x_j \rangle = x_j | x_j \rangle$, dunque la base delle posizioni in \mathscr{H} sarà $|\mathbf{x}\rangle := |x_1\rangle \otimes \cdots \otimes |x_d\rangle$: data $|\psi\rangle \in \mathscr{H}$, la sua rappresentazione sulla base delle posizioni è

 $\langle \mathbf{x} | \psi \rangle \equiv \psi(\mathbf{x})$, con $\psi : \mathbb{R}^d \to \mathbb{C}$, il cui modulo quadro dà una densità di di probabilità d-dimensionale $dP_{\mathbf{x}} = |\psi(\mathbf{x})|^2 d^d \mathbf{x}$.

In questo caso, l'entanglement consiste nel fatto che, in generale, $\psi(\mathbf{x}) \neq \psi_1(x_1) \dots \psi_d(x_d)$.

Tale formalismo è generalizzabile al caso di n corpi in d dimensioni, nel qual caso si ha uno spazio prodotto diretto di nd spazi di Hilbert.

Esempio 1.2.1. Nel caso di 2 corpi in 3 dimensioni, si ha:

$$\hat{\mathbf{x}} = \begin{pmatrix} \hat{x}_{1,1} \\ \hat{x}_{1,2} \\ \hat{x}_{1,3} \\ \hat{x}_{2,1} \\ \hat{x}_{2,2} \\ \hat{x}_{2,3} \end{pmatrix}$$

In questo sistema, la funzione d'onda è $\langle \mathbf{x}_1 \mathbf{x}_2 | \psi \rangle = \psi(\mathbf{x}_1, \mathbf{x}_2)$.

$$\langle \mathbf{x}' | \mathbf{x} \rangle = \delta^{(d)}(\mathbf{x} - \mathbf{x}') \tag{1.2}$$

La $\delta^{(d)}$ è il prodotto di d delte di Dirac ed è definita da $\int_{\mathbb{R}^d} d^d \mathbf{x} \, \delta^{(d)}(\mathbf{x} - \mathbf{x}') f(\mathbf{x}) = f(\mathbf{x}')$ come distribuzione.

1.2.1 Coordinate cartesiane

Analogamente al caso monodimensionale, per definite l'operatore impulso si considera una traslazione spaziale; le componenti del vettore operatore impulso $\hat{\mathbf{p}}$ sulla base delle posizioni sono definite da:

$$\langle \mathbf{x} | \hat{p}_j | \psi \rangle = -i\hbar \frac{\partial}{\partial x_j} \psi(\mathbf{x})$$
 (1.3)

In forma vettoriale, è possibile scrivere:

$$\hat{\mathbf{p}} = -i\hbar\nabla\tag{1.4}$$

A questo punto, è facile definite le autofunzioni dell'impulso tali per cui $\hat{\mathbf{p}} | \mathbf{k} \rangle = \hbar \mathbf{k} | \mathbf{k} \rangle$:

$$\langle \mathbf{x} | \mathbf{k} \rangle = \frac{1}{(2\pi)^{d/2}} e^{i\mathbf{k}\cdot\mathbf{x}} \equiv \psi_{\mathbf{k}}(\mathbf{x})$$
 (1.5)

Il fatto che operatori su spazi diversi commutino tra loro implica che:

$$[\hat{p}_j, \hat{p}_k] = 0 \quad \forall j, k = 1, \dots, d \tag{1.6}$$

Dal punto di vista matematico, questo è ovvio per il lemma di Schwarz (assumendo una well-behaved ψ), mentre da quello fisico ciò esprime il fatto che traslazioni lungo assi diversi commutano tra loro: ciò non è scontato, infatti ad esempio le rotazioni rispetto ad assi diversi non commutano (dunque le componenti del momento angolare non commuteranno).

È facile vedere che $\hat{\mathbf{p}}^2 = -\hbar^2 \nabla^2$, dunque è possibile definire l'Hamiltoniana del sistema (e con essa la sua evoluzione temporale):

$$\mathcal{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) \tag{1.7}$$

Ricordando che $\hat{\mathcal{H}} |\psi\rangle = E |\psi\rangle$, si ottiene l'equazione di Schrödinger sulla base delle coordinate:

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{x}) + V(\mathbf{x})\psi(\mathbf{x}) = E\psi(\mathbf{x})$$
(1.8)

1.3 Separabilità

Nel caso di sistemi non-entangled, è possibile separare il problema multidimensionale in d problemi monodimensionali e scrivere la soluzione come prodotto delle soluzioni dei problemi ridotti.

1.3.1 Problemi separabili in coordinate cartesiane

Proposizione 1.3.1. In coordinate cartesiane, condizione sufficiente affinché il problema sia separabile è che:

$$V(\mathbf{x}) = V_1(x_1) + \dots + V_d(x_d) \tag{1.9}$$

In tal caso, l'Hamiltoniana del sistema è somma di d sotto-Hamiltoniane (e di conseguenza lo è anche l'evoluzione temporale):

$$\mathcal{H}_j = \frac{\hat{p}_j^2}{2m} + \hat{V}(\hat{x}_j) \tag{1.10}$$

dunque la determinazione dello spettro dell'Hamiltoniana si riduce a d problemi unidimensionali.

Proposizione 1.3.2. Data un'Hamiltoniana separabile \mathcal{H} , detti $\langle x_j | \psi_{k_j} \rangle = \psi_{k_j}(x_j)$ gli autostati della j-esima sotto-Hamiltoniana $\mathcal{H}_j | \psi_{k_j} \rangle = E_{k_j} | \psi_{k_j} \rangle$, sono autostati di \mathcal{H} gli stati prodotto:

$$\langle \mathbf{x} | \psi_{k_1 \dots k_d} \rangle = \psi_{k_1 \dots k_d}(\mathbf{x}) \equiv \psi_{k_1}(x_1) \dots \psi_{k_d}(x_d)$$
(1.11)

Dimostrazione. Si vede facilmente che:

$$\langle \mathbf{x} | \mathcal{H} | \psi_{k_1 \dots k_d} \rangle = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi_{k_1}(x_1)}{\partial x_1^2} \psi_{k_2}(x_2) \dots \psi_{k_d}(x_d) + V_1(x_1) \psi_{k_1}(x_1) \psi_{k_2}(x_2) \dots \psi_{k_d}(x_d) + \\ \vdots \\ -\frac{\hbar^2}{2m} \frac{\partial^2 \psi_{k_d}(x_d)}{\partial x_d^2} \psi_{k_1}(x_1) \dots \psi_{k_{d-1}}(x_{d-1}) + V_d(x_d) \psi_{k_d}(x_d) \psi_{k_1}(x_1) \dots \psi_{k_{d-1}}(x_{d-1}) \\ = E_{k_1} \psi_{k_1}(x_1) \dots \psi_{k_d}(x_d) + \dots + E_{k_d} \psi_{k_1}(x_1) \dots \psi_{k_d}(x_d) \\ = E_{k_1 \dots k_d} \psi_{k_1 \dots k_d}(\mathbf{x})$$

dove è stata definita $E_{k_1...k_d} \equiv E_{k_1} + \cdots + E_{k_d}$.

1.3.2 Hamiltoniane separabili

Si può vedere che, per un'Hamiltoniana separabile, le autofunzioni 1.11 sono le più generali. Innanzitutto, il commutatore canonico in d dimensioni si generalizza come:

$$[\hat{x}_j, \hat{p}_k] = i\hbar \delta_{jk}$$
 $[\hat{x}_j, \hat{x}_k] = 0$ $[\hat{p}_j, \hat{p}_k] = 0$ (1.12)

Da ciò segue che le Hamiltoniane 1.10 commutano tra loro, dunque sono diagonalizzabili simultaneamente e gli autovalori della loro somma sono la somma dei loro autovalori: di conseguenza, gli autostati di dell'Hamiltoniana del sistema sono tutti e soli quelli trovati nella Prop. 1.3.2.

Questo argomento è facilmente generalizzabile: si consideri un'Hamiltoniana generica \mathcal{H} che è possibile separare come somma di Hamiltoniane commutanti tra loro:

$$\mathcal{H} = \mathcal{H}_1 + \dots + \mathcal{H}_d \qquad [\mathcal{H}_j, \mathcal{H}_k] = 0 \tag{1.13}$$

Le \mathcal{H}_j sono allora diagonalizzabili simultaneamente:

$$\mathcal{H}_i | k_i \rangle = E_{k_i} | k_i \rangle \tag{1.14}$$

e tali autostati formano una base per gli autostati di \mathcal{H} :

$$|k_1 \dots k_d\rangle = |k_1\rangle \otimes \dots \otimes |k_d\rangle \tag{1.15}$$

mentre i suoi autostati sono:

$$E_{k_1...k_d} = E_{k_1} + \dots + E_{k_d} \tag{1.16}$$

Esempio 1.3.1. Un esempio tipico di problema tridimensionale separabile è la buca parallelepipedale di potenziale:

$$V_j(x_j) = \begin{cases} 0 & |x_j| < a_j \\ \infty & |x_j| \ge a_j \end{cases}$$

Ricordando la forma esplicita delle autofunzioni:

$$\langle x_j | \psi_{n_j} \rangle = \begin{cases} A_{n_j} \cos \left(k_{n_j} x_j \right) & n_j = 2n + 1 \\ B_{n_j} \sin \left(k_{n_j} x_j \right) & n_j = 2n \end{cases} \qquad k_{n_j} = \frac{n_j \pi}{2a_j}$$

è facile ricavare lo spettro dell'Hamiltoniana:

$$E_{n_1 n_2 n_3} = \frac{\hbar^2}{2m} \left(k_{n_1}^2 + k_{n_2}^2 + k_{n_3}^2 \right) = \frac{\hbar^2 \pi^2}{8m} \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} + \frac{n_3^2}{a_3^2} \right)$$

Se i valori degli a_j sono commensurabili, è possibile che lo spettro presenti delle degenerazioni: ad esempio, se si considerano $a_1 = a_2 = a_3 \equiv a$, lo stato fondamentale E_{111} non presenta degenerazioni, ma già il primo stato eccitato è triplamente degenere: $E_{211} = E_{121} = E_{112}$.

Esempio 1.3.2. Un esempio di particolare importanza è l'oscillatore armonico tridimensionale: con lo stesso ragionamento di prima, si trova lo spettro:

$$E_{n_1 n_1 n_3} = \hbar \left(n_1 \omega_1 + n_2 \omega_2 + n_3 \omega_3 + \frac{1}{2} \left(\omega_1 + \omega_2 + \omega_3 \right) \right)$$

Nel caso in cui $\omega_1 = \omega_2 = \omega_3 \equiv \omega$, si ha un potenziale a simmetria sferica $\hat{V}(\hat{\mathbf{x}}) = \frac{1}{2}m\omega^2\hat{\mathbf{x}}^2$ e lo spettro diventa:

$$E_{n_1 n_2 n_3} = \hbar \omega \left(n_1 + n_2 + n_3 + \frac{3}{2} \right) \equiv \hbar \omega \left(N + \frac{3}{2} \right)$$

È possibile calcolare la degenerazione dell'N-esimo stato eccitato: n_1 può essere scelto in N+1 modi, quindi n_2 può essere scelto in $N+1-n_1$ e, una volta scelti n_1 ed n_2 , n_3 è fissato, dunque la degenerazione d(N) è:

$$d(N) = \sum_{n_1=0}^{N} (N+1-n_1) = (N+1)^2 - \frac{1}{2}N(N+1) = \frac{1}{2}(N+1)(N+2)$$

1.4 Problema dei due corpi quantistico

Il problema dei due corpi è un sistema in cui due corpi interagiscono tramite un potenziale che dipende solo dalla loro separazione:

$$\mathcal{H} = \frac{\hat{\mathbf{p}}_1^2}{2m_1} + \frac{\hat{\mathbf{p}}_2^2}{2m_2} + \hat{V}(\hat{\mathbf{x}}_1 - \hat{\mathbf{x}}_2)$$
 (1.17)

Le variabili canoniche soddisfano la relazione di commutazione:

$$[\hat{x}_{j,a}, \hat{p}_{k,b}] = i\hbar \delta_{jk} \delta_{ab} \qquad [\hat{x}_{j,a}, \hat{x}_{k,b}] = 0 \qquad [\hat{p}_{j,a}, \hat{p}_{k,b}] = 0 \tag{1.18}$$

dove a, b = 1, 2 e j, k = 1, 2, 3.

Il problema è separabile definendo le coordinate relative e quelle del baricentro:

$$\hat{\mathbf{r}} := \hat{\mathbf{x}}_1 - \hat{\mathbf{x}}_2
\hat{\mathbf{R}} := \frac{m_1 \hat{\mathbf{x}}_1 + m_2 \hat{\mathbf{x}}_2}{m_1 + m_2}$$
(1.19)

A queste vanno associate i rispettivi impulsi congiunti:

$$\hat{\mathbf{p}} := \frac{m_2 \hat{\mathbf{p}}_1 - m_1 \hat{\mathbf{p}}_2}{m_1 + m_2}$$

$$\hat{\mathbf{P}} := \hat{\mathbf{p}}_1 + \hat{\mathbf{p}}_2$$
(1.20)

È pura algebra verificare che le variabili così definite soddisfino le relazioni di commutazione canoniche.

È altrettanto facile verificare che l'Hamiltoniana si può scrivere come:

$$\mathcal{H} = \frac{\hat{\mathbf{P}}^2}{2M} + \frac{\hat{\mathbf{p}}^2}{2\mu} + \hat{V}(\hat{\mathbf{r}}) \tag{1.21}$$

dove sono state definite la massa totale $M \equiv m_1 + m_2$ e quella ridotta $\mu^{-1} = m_1^{-1} + m_2^{-1}$. Questa Hamiltoniana è manifestamente separabile come $\mathcal{H} = \mathcal{H}_B(\hat{\mathbf{R}}, \hat{\mathbf{P}}) + \mathcal{H}_r(\hat{\mathbf{r}}, \hat{\mathbf{p}})$:

$$\mathcal{H}_{B}(\hat{\mathbf{R}}, \hat{\mathbf{P}}) = \frac{\hat{\mathbf{P}}^{2}}{2M}$$

$$\mathcal{H}_{r}(\hat{\mathbf{r}}, \hat{\mathbf{p}}) = \frac{\hat{\mathbf{p}}^{2}}{2u} + \hat{V}(\hat{\mathbf{r}})$$

$$[\mathcal{H}_{B}, \mathcal{H}_{r}] = 0$$
(1.22)

Lo spettro è facilmente determinabile poiché sono due problemi unidimensionali.

È importante capire che la scelta di variabili canoniche trasformate non è casuale, ma dettata dalla separabilità del termine potenziale, che fissa $\hat{\mathbf{r}}$, dalle relazioni di commutazione, che per ogni scelta di $\hat{\mathbf{R}}$ fissano gli impulsi coniugati, e dalla separabilità del termine cinetico che va a fissare di conseguenza $\hat{\mathbf{R}}$ poiché rende univoca la scelta degli impulsi.

1.4.1 Trasformazioni lineari di coordinate

È possibile definire una generica trasformazione lineare di coordinate tramite una matrice di trasformazione $M \in \mathbb{R}^{d \times d}$:

$$\hat{\mathbf{x}}' = \mathbf{M}\hat{\mathbf{x}} \tag{1.23}$$

ovvero in componenti $\hat{x}'_j = \sum_{k=1}^d M_{jk} \hat{x}_k$.

Proposizione 1.4.1. Data una trasformazione lineare di coordiante M, gli impulsi coniugati trasformano secondo:

$$\hat{\mathbf{p}}'^{\dagger} = \hat{\mathbf{p}}^{\dagger} M^{-1} \tag{1.24}$$

Dimostrazione. Considerando $\hat{\mathbf{p}}'^{\mathsf{T}} = \hat{\mathbf{p}}^{\mathsf{T}} \mathbf{N}$, in componenti $\hat{p}'_j = \sum_{k=1}^d \hat{p}_k N_{kj}$, dalle relazioni di commutazione canoniche si ha:

$$\left[\hat{x}_{j}', \hat{p}_{k}'\right] = \sum_{m=1}^{d} \sum_{n=1}^{d} M_{jm} N_{nk} \underbrace{\left[\hat{x}_{m}, \hat{p}_{n}\right]}_{i\hbar\delta_{mn}} = i\hbar \sum_{n=1}^{d} M_{jn} N_{nk} \doteq i\hbar\delta_{jk} \quad \Longleftrightarrow \quad MN = I_{d}$$

È possibile ricavare la trasformazione 1.24 anche partendo dai principi, costruendo gli impulsi coniugati come generatori di traslazioni spaziali. Nella rappresentazione delle coordinate:

$$\langle \hat{\mathbf{x}} | \hat{\mathbf{p}} | \hat{\mathbf{x}}' \rangle = -i\hbar \nabla_{\mathbf{x}} \delta(\mathbf{x} - \mathbf{x}')$$
 (1.25)

Con abuso di notazione si può scrivere $\hat{p}_j = -i\hbar\partial_j$, dunque la relazione di trasformazione è data dalla derivata composta:

$$\hat{p}'_{j} = -i\hbar \frac{\partial}{\partial x'_{j}} = -i\hbar \sum_{k=1}^{d} \frac{\partial x_{k}}{\partial x'_{j}} \frac{\partial}{\partial x_{k}}$$

$$\tag{1.26}$$

Dall'Eq. 1.23 si ha $\frac{\partial x_j'}{\partial x_k} = M_{jk}$, dunque $\frac{\partial x_k}{\partial x_j'} = M_{kj}^{-1}$, ovvero l'Eq. 1.24.

1.5 Problemi centrali

Un generico problema centrale è quello determinato da un'Hamiltoniana del tipo:

$$\mathcal{H} = \frac{\hat{\mathbf{p}}^2}{2m} + \hat{V}(\|\hat{\mathbf{x}}\|) \tag{1.27}$$

Ovvero il potenziale dipende solo dal modulo dell'operatore posizione.

Analogamente al caso classico, l'obbiettivo è quello di separare il moto angolare da quello radiale; per fare ciò, è preferibile lavorare in coordinate sferiche:

$$\begin{cases} x_1 = r \sin \theta \cos \varphi \\ x_2 = r \sin \theta \sin \varphi \\ x_3 = r \cos \theta \end{cases}$$
 (1.28)

In queste coordinare, si ha V = V(r).

In meccanica classica, dall'identità $(\mathbf{a} \cdot \mathbf{b})^2 = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 - \|\mathbf{a} \times \mathbf{b}\|^2$ si può scomporre il termine cinetico in parte radiale e parte angolare, ottenendo $\mathbf{p}^2 = p_r^2 + \frac{1}{r^2}\mathbf{L}^2$. Quantisticamente, ciò non è così immediato poiché $\hat{\mathbf{x}}$ e $\hat{\mathbf{p}}$ non commutano.

Per capire come procedere, conviene prima dimostrare l'identità vettoriale utilizzata.

Proposizione 1.5.1. Dati $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$, si ha $(\mathbf{a} \cdot \mathbf{b})^2 = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 - \|\mathbf{a} \times \mathbf{b}\|^2$.

Dimostrazione. Ricordando che $(\mathbf{a} \times \mathbf{b})_i = \sum_{j,k=1} 3\epsilon_{ijk} a_j b_k$, si ha:

$$\|\mathbf{a} \times \mathbf{b}\|^{2} = \sum_{i,j,k,l,m=1}^{3} \epsilon_{ijk} a_{j} b_{k} \epsilon_{ilm} a_{l} b_{m} = \sum_{i,j,k,l,m=0}^{3} (\delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}) a_{j} b_{k} a_{l} b_{m} = \|\mathbf{a}\|^{2} \|\mathbf{b}\|^{2} - \|\mathbf{a} \times \mathbf{b}\|^{2}$$

È necessario, inoltre, definire p_r ed **L** in ambito quantistico:

$$\tilde{p}_r := \frac{1}{r} \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} \tag{1.29}$$

dove il tilde sta ad indicare il fatto che \tilde{p}_r non è un operatore hermitiano, dunque non è associato ad un'osservabile fisica.

Proposizione 1.5.2. Nella rappresentazione delle coordinate, si ha:

$$\tilde{p}_r = -i\hbar \frac{\partial}{\partial r} \tag{1.30}$$

Dimostrazione. Nella rappresentazione delle coordinate:

$$\tilde{p}_r = -i\hbar \sum_{j=1}^3 \frac{x_j}{r} \partial_j = -i\hbar \sum_{j=0}^3 \frac{x_j}{r} \left(\partial_j r \frac{\partial}{\partial r} + \partial_j \vartheta \frac{\partial}{\partial \vartheta} + \partial_j \varphi \frac{\partial}{\partial \varphi} \right)$$
$$= -i\hbar \sum_{j=1}^3 \frac{x_j}{r} \frac{x_j}{r} \frac{\partial}{\partial r} = -i\hbar \frac{\partial}{\partial r}$$

dove si è usato il dato che $\sum_{j=1}^{3} x_j \partial_j \vartheta = \sum_{j=1}^{3} x_j \partial_j \varphi \ (\nabla \vartheta, \nabla \varphi \perp \mathbf{x} = r\mathbf{e}_r)$ e $\partial_j r = \frac{x_j}{r}$.

Proposizione 1.5.3. $[\hat{r}, \tilde{p}_r] = i\hbar$.

Dimostrazione.
$$[\hat{r}, \tilde{p}_r] \psi = -i\hbar \left(r \frac{\partial}{\partial r} - \frac{\partial}{\partial r}r\right) \psi = i\hbar \psi$$
.

Si evince quindi che \tilde{p}_r è canonicamente coniugato a \hat{r} , ovvero genera le traslazioni lungo la coordinata radiale.

A questo punto, è possibile definire l'analogo quantistico di L:

$$\hat{\mathbf{L}} := \hat{\mathbf{x}} \times \hat{\mathbf{p}} \tag{1.31}$$

A priori, non si può dire che questo sia l'operatore quantistico associato al momento angolare, ma si dimostrerà essere tale. Sulla base delle coordinate:

$$L_{j} = -i\hbar \sum_{j,k=1}^{3} \epsilon_{ijk} x_{j} \frac{\partial}{\partial x_{k}}$$

$$\tag{1.32}$$

Proposizione 1.5.4. $[\hat{\mathbf{r}}, \hat{L}_j] = 0.$

Dimostrazione. Basta dimostrare che $\hat{\mathbf{L}}$ non ha componenti radiali:

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{L}} = \sum_{i=1}^{3} \hat{x}_i \hat{L}_i = \sum_{i,j,k=1}^{3} \epsilon_{ijk} \hat{x}_i \hat{x}_j \partial_k = \frac{1}{2} \sum_{i,j,k=1}^{3} \epsilon_{ijk} [\hat{x}_i, \hat{x}_j] \partial_k = \frac{1}{2} \sum_{i,j,k=1}^{3} \epsilon_{ijk} \delta_{ij} \partial_k = 0$$

Utilizzando lo stesso procedimento usato per dimostrare la Prop. 1.5.1:

$$\hat{\mathbf{L}}^{2} = \sum_{i,j,k,a,b=1}^{3} \epsilon_{ijk} \epsilon_{iab} \hat{x}_{j} \hat{p}_{k} \hat{x}_{a} \hat{p}_{b} = \sum_{i,j,k,a,b=1}^{3} (\delta_{ja} \delta_{kb} - \delta_{jb} \delta_{ka}) \hat{x}_{j} \hat{p}_{k} \hat{x}_{a} \hat{p}_{b} = \sum_{j,k=1}^{3} (\hat{x}_{j} \hat{p}_{k} \hat{x}_{j} \hat{p}_{k} - \hat{x}_{j} \hat{p}_{k} \hat{x}_{k} \hat{p}_{j})$$

$$= \sum_{j,k=1}^{3} (\hat{x}_{j} \hat{x}_{j} \hat{p}_{k} \hat{p}_{k} + \hat{x}_{j} [\hat{p}_{k}, \hat{x}_{j}] \hat{p}_{k} - \hat{x}_{j} \hat{x}_{k} \hat{p}_{k} \hat{p}_{j} - \hat{x}_{j} [\hat{p}_{k}, \hat{x}_{k}] \hat{p}_{j})$$

$$= \hat{\mathbf{x}}^{2} \hat{\mathbf{p}}^{2} - i\hbar \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} + \sum_{j,k=1}^{3} (-\hat{x}_{k} \hat{x}_{j} \hat{p}_{k} \hat{p}_{j} + i\hbar \delta_{kk} \hat{x}_{j} \hat{p}_{j})$$

$$= \hat{\mathbf{x}}^{2} \hat{\mathbf{p}}^{2} - i\hbar \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} - \sum_{j,k=1}^{3} (\hat{x}_{k} \hat{p}_{k} \hat{x}_{j} \hat{p}_{j} + \hat{x}_{k} [\hat{x}_{j}, \hat{p}_{k}] \hat{p}_{j}) + 3i\hbar \hat{\mathbf{x}} \cdot \hat{\mathbf{p}}$$

$$= \hat{\mathbf{x}}^{2} \hat{\mathbf{p}}^{2} + 2i\hbar \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} - (\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})^{2} - i\hbar \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} = \hat{\mathbf{x}}^{2} \hat{\mathbf{p}}^{2} - (\hat{\mathbf{x}} \cdot \hat{\mathbf{p}})^{2} + i\hbar \hat{\mathbf{x}} \cdot \hat{\mathbf{p}}$$

Rispetto al caso classico è presente un termine in più. Ricordando che $\hat{\mathbf{x}}^2 \equiv \hat{r}^2$:

$$\hat{\mathbf{p}}^{2} = \frac{1}{r^{2}}\hat{\mathbf{L}}^{2} + \frac{1}{r^{2}}(\hat{\mathbf{x}}\cdot\hat{\mathbf{p}})^{2} - \frac{i\hbar}{r^{2}}\hat{\mathbf{x}}\cdot\hat{\mathbf{p}} = \frac{1}{r^{2}}\hat{\mathbf{L}}^{2} - \frac{\hbar^{2}}{r^{2}}r\frac{\partial}{\partial r}r\frac{\partial}{\partial r} - \frac{\hbar^{2}}{r^{2}}r\frac{\partial}{\partial r}$$

$$= \frac{1}{r^{2}}\hat{\mathbf{L}}^{2} - \frac{\hbar^{2}}{r^{2}}r\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r} + 1\right) - \frac{\hbar^{2}}{r^{2}}r\frac{\partial}{\partial r} = \frac{1}{r^{2}}\hat{\mathbf{L}}^{2} - \frac{\hbar^{2}}{r^{2}}r^{2}\frac{\partial^{2}}{\partial r^{2}} - \frac{\hbar^{2}}{r^{2}}r\frac{\partial}{\partial r} - \frac{\hbar^{2}}{r^{2}}r\frac{\partial}{\partial r}$$

Data la Prop. 1.5.4, è indifferente l'ordine in cui si applicano $\frac{1}{r^2}$ e $\hat{\mathbf{L}}^2$, dunque:

$$\hat{\mathbf{p}}^2 = -\hbar^2 \frac{\partial^2}{\partial r^2} - 2\hbar^2 \frac{1}{r} \frac{\partial}{\partial r} + \frac{\hat{\mathbf{L}}^2}{r^2}$$
(1.33)

È possibile ricondurre l'Hamiltoniana in Eq. 1.27 alla sua forma separata classica hermitianizzando l'operatore \tilde{p}_r :

$$\tilde{p}_r^{\dagger} = \hat{\mathbf{p}}^{\dagger} \cdot \frac{\hat{\mathbf{x}}^{\dagger}}{\hat{r}^{\dagger}} = \hat{\mathbf{p}} \cdot \frac{\hat{\mathbf{x}}}{\hat{r}} = -i\hbar \sum_{i=1}^{3} \partial_i \frac{x_i}{r} = -i\hbar \sum_{i=1}^{3} \left(\frac{x_i}{r} \partial_i + \partial_i \left(\frac{x_i}{r} \right) \right) = \tilde{p}_r - \frac{2i\hbar}{\hat{r}}$$

Ricordando che l'hermitianizzazione avviene tramite $\hat{a} = \frac{1}{2}(\tilde{a} + \tilde{a}^{\dagger})$, si definisce l'impulso radiale autoaggiunto come:

$$\hat{p}_r := \hat{p}_r - \frac{i\hbar}{\hat{r}} \tag{1.34}$$

ovvero, sulla base delle coordinate:

$$\hat{p}_r = -i\hbar \left(\frac{\partial}{\partial r} + \frac{1}{r} \right) \tag{1.35}$$

Per esprimere $\hat{\mathbf{p}}^2$ in funzione di \hat{p}_r , si calcola:

$$\begin{split} \hat{p}_r^2 &= -\hbar^2 \left(\frac{\partial}{\partial r} + \frac{1}{r} \right) \left(\frac{\partial}{\partial r} + \frac{1}{r} \right) = -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial}{\partial r} \frac{1}{r} + \frac{1}{r^2} \right) \\ &= -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{1}{r^2} + \frac{1}{r^2} \right) = -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) \end{split}$$

Si trova dunque un'espressione che coincide con quella classica:

$$\hat{\mathbf{p}}^2 = \hat{p}_r^2 + \frac{\hat{\mathbf{L}}^2}{\hat{r}^2} \tag{1.36}$$

L'Hamiltoniana si separa come:

$$\mathcal{H} = \frac{\hat{p}_r^2}{2m} + \hat{V}(\hat{r}) + \frac{\hat{\mathbf{L}}^2}{2m\hat{r}^2}$$
 (1.37)

Questa Hamiltoniana non è separata in senso proprio, poiché i due termini non agiscono su spazi separati; tuttavia, si vede che $[\hat{\mathbf{L}}^2, \mathcal{H}] = 0$, dunque sono diagonalizzabili simultaneamente: una volta determinato lo spettro di $\hat{\mathbf{L}}^2$, il problema diventa unidimensionale (radiale).

In questo caso, quindi, le autofunzioni non sono esprimibili come prodotto di autofunzioni su spazi separati, ma la semplificazione del problema deriva da una simmetria: la simmetria per rotazioni.

Momento Angolare

2.1 Momento angolare e rotazioni

Caso classico Per il Th. di Noether, associate alle invarianze per rotazioni attorno ai tre assi coordianti si hanno tre cariche di Noether conservate.

Si considerino $\mathbf{x} = (r\cos\varphi, r\sin\varphi) \equiv (x_1, x_2)$ nel piano z = 0 ed una rotazione attorno all'asse z di un angolo infinitesimo ε : questa causa uno spostamento $\delta \mathbf{x}$ dato da:

$$\delta \mathbf{x} = (r\cos(\varphi + \varepsilon), r\sin(\varphi + \varepsilon)) - (r\cos\varphi, r\sin\varphi)$$
$$= (-r\varepsilon\sin\varphi, r\varepsilon\cos\varphi) + o(\varepsilon) = \varepsilon(-x_2, x_1) + o(\varepsilon)$$

Quindi, per una generica rotazione attorno ad un asse dato dal versore \mathbf{n} si ha:

$$\delta x_i = \varepsilon \sum_{j,k=1}^3 \epsilon_{ijk} n_j x_k \quad \Longleftrightarrow \quad \delta \mathbf{x} = \varepsilon \mathbf{n} \times \mathbf{x}$$
 (2.1)

Nel caso di una rotazione attorno al j-esimo asse coordinato $\delta x_i^{(j)} = \varepsilon \sum_{k=1}^3 \epsilon_{ijk} x_k$, quindi la carica di Noether associata è:

$$q_j := \sum_{i=1}^{3} \frac{\partial L}{\partial \dot{x}_i} \delta x_i^{(j)} = \varepsilon \sum_{i,k=1}^{3} \epsilon_{jki} x_k p_i = \varepsilon L_j$$
(2.2)

Dunque l'invarianza per rotazioni attorno ad un asse ha come quantità conservata associata la componente del momento angolare lungo tale asse.

Caso quantistico Bisogna innanzitutto verificare che $\hat{\mathbf{L}}$ definito in Eq. 1.31 sia effettivamente il momento angolare, ovvero il generatore delle rotazioni (a meno di un fattore \hbar): questo equivale a verificare che l'operatore \hat{R}_{ε} , definito come:

$$\hat{R}_{\varepsilon} = e^{i\frac{\varepsilon}{\hbar}\mathbf{n}\cdot\hat{\mathbf{L}}} = I_3 + i\frac{\varepsilon}{\hbar}\mathbf{n}\cdot\hat{\mathbf{L}} + o(\varepsilon)$$
(2.3)

realizzi una rotazione di angolo infinitesimo ε attorno all'asse \mathbf{n} , ovvero:

$$\langle \mathbf{x} | \hat{R}_{\varepsilon} | \psi \rangle = \psi(\mathbf{x} + \delta_{\mathbf{n}} \mathbf{x}) = \psi(\mathbf{x}) + \delta_{\mathbf{n}} \mathbf{x} \cdot \nabla \psi(\mathbf{x}) + o(\varepsilon)$$
 (2.4)

dove $\delta_{\mathbf{n}}\mathbf{x} = \varepsilon \mathbf{n} \times \mathbf{x}$. Calcolando gli elementi di matrice di \hat{R}_{ε} sulla base delle posizioni:

$$\langle \mathbf{x} | \hat{R}_{\varepsilon} | \psi \rangle = \psi(\mathbf{x}) + i \frac{\varepsilon}{\hbar} \cdot (-i\hbar) \sum_{i,j,k=1}^{3} n_i \epsilon_{ijk} x_j \partial_k \psi(\mathbf{x}) + o(\varepsilon)$$
 (2.5)

Confontando le Eq. 2.4 - 2.5, si vede che sono uguali, dunque $\hat{\mathbf{L}}$ è il generatore delle rotazioni.

2.2 Proprietà

2.2.1 Espressione esplicita

Innanzitutto si noti che dalla definizione in Eq. 1.31 discende subito che $\hat{\mathbf{L}}$ è hermitiano:

$$\hat{L}_{i}^{\dagger} = \sum_{j,k=1}^{3} \epsilon_{ijk} \hat{p}_{k} \hat{x}_{j} = \sum_{j,k=1}^{3} \epsilon_{ijk} \left(\left[\hat{p}_{k}, \hat{x}_{j} \right] + \hat{x}_{j} \hat{p}_{k} \right) = L_{i} + i\hbar \sum_{j,k=1}^{3} \epsilon_{ijk} \delta_{jk} = L_{i}$$
(2.6)

È anche possibile calcolare esplicitamente l'espressione di $\hat{\mathbf{L}}$ in coordinate sferiche:

$$\hat{L}_x = i\hbar \left(\sin \varphi \frac{\partial}{\partial \vartheta} + \frac{\cos \vartheta}{\sin \vartheta} \cos \varphi \frac{\partial}{\partial \varphi} \right) \tag{2.7}$$

$$\hat{L}_{y} = i\hbar \left(-\cos\varphi \frac{\partial}{\partial\vartheta} + \frac{\cos\vartheta}{\sin\vartheta} \sin\varphi \frac{\partial}{\partial\varphi} \right)$$
(2.8)

$$L_z = -i\hbar \frac{\partial}{\partial \varphi} \tag{2.9}$$

Si ha inoltre:

$$\hat{\mathbf{L}}^2 \equiv \hat{L}^2 = -\hbar^2 \left(\frac{\partial^2}{\partial \vartheta^2} + \frac{\sin \vartheta}{\cos \vartheta} \frac{\partial}{\partial \vartheta} + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right)$$
(2.10)

2.2.2 Commutatori

Sebbene in un sistema invariante per rotazioni il momento angolare commuti con l'Hamiltoniana, le componenti di $\hat{\mathbf{L}}$ non commutano tra loro

Lemma 2.2.1.
$$\hat{x}_i \hat{p}_j - \hat{x}_j \hat{p}_i = \sum_{k=1}^3 \epsilon_{ijk} \hat{L}_k$$
.

Dimostrazione.
$$\sum_{k=1}^{3} \epsilon_{ijk} \hat{L}_k = \sum_{k,a,b=1}^{3} \epsilon_{ijk} \epsilon_{kab} \hat{x}_a \hat{p}_b = \sum_{k,a,b=1}^{3} \left(\delta_{ia} \delta_{jb} - \delta_{ib} \delta_{ja} \right) \hat{x}_a \hat{p}_b = \hat{x}_i \hat{p}_j - \hat{x}_j \hat{p}_i. \quad \Box$$

Proposizione 2.2.1. $[\hat{L}_i, \hat{L}_j] = i\hbar \sum_{k=1}^3 \epsilon_{ijk} \hat{L}_k$.

Dimostrazione. Usando nell'ultima uguaglianza il Lemma 2.2.1:

$$\begin{split} [\hat{L}_{i},\hat{L}_{j}] &= \sum_{a,b,l,m=1}^{3} \epsilon_{iab} \epsilon_{jlm} [\hat{x}_{a} \hat{p}_{b}, \hat{x}_{l} \hat{p}_{m}] = \sum_{a,b,l,m=1}^{3} \epsilon_{iab} \epsilon_{jlm} \left(\hat{x}_{l} [\hat{x}_{a}, \hat{p}_{m}] \hat{p}_{b} + \hat{x}_{a} [\hat{p}_{b}, \hat{x}_{l}] \hat{p}_{m} \right) \\ &= i\hbar \sum_{a,b,l=1}^{3} \epsilon_{bia} \epsilon_{jla} \hat{x}_{l} \hat{p}_{b} - i\hbar \sum_{a,b,m=1}^{3} \epsilon_{iab} \epsilon_{mjb} \hat{x}_{a} \hat{p}_{m} \\ &= i\hbar \sum_{a,b,l=1}^{3} \left(\delta_{bj} \delta_{il} - \delta_{bl} \delta_{ji} \right) \hat{x}_{l} \hat{p}_{b} - i\hbar \sum_{a,b,m=1}^{3} \left(\delta_{im} \delta_{aj} - \delta_{ij} \delta_{am} \right) \hat{x}_{a} \hat{p}_{m} \\ &= i\hbar \left(\hat{x}_{i} \hat{p}_{j} - \delta_{ij} \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} - \hat{x}_{j} \hat{p}_{i} + \hat{\mathbf{x}} \cdot \hat{\mathbf{p}} \delta_{ij} \right) = i\hbar \left(\hat{x}_{i} \hat{p}_{j} - \hat{x}_{j} \hat{p}_{i} \right) = i\hbar \sum_{k=1}^{3} \epsilon_{ijk} \hat{L}_{k} \end{split}$$

Si ricordi che il commutatore tra un operatore hermitiano \hat{G} , generatore della trasformazione (anch'essa hermitiana) $\hat{T} = e^{i\varepsilon \hat{G}}$, ed un generico operatore \hat{A} può essere calcolato da:

$$\hat{A}' = \hat{T}^{-1}\hat{A}\hat{T} = \left(\mathbf{I} - i\varepsilon\hat{G}\right)\hat{A}\left(\mathbf{I} + i\varepsilon\hat{G}\right) = \hat{A} + i\varepsilon[\hat{A}, \hat{G}] \implies [\hat{A}, \hat{G}] = \frac{1}{i\varepsilon}\delta\hat{A}$$
 (2.11)

Dunque dalla Prop. 2.2.1 è possibile vedere come trasforma \hat{L}_i sotto la rotazione data da \hat{L}_j , e confrontandola con l'Eq. 2.1 si vede che $\hat{\mathbf{L}}$ trasforma proprio come un vettore sotto rotazioni (cosa non scontata).

Ciò suggerisce naturalmente che \hat{L}^2 , essendo invariante per rotazioni, commuti con ciascuna \hat{L}_i :

$$[\hat{L}^2, \hat{L}_i] = \sum_{k=1}^{3} [\hat{L}_k \hat{L}_k, \hat{L}_i] = i\hbar \sum_{j,k=1}^{3} \epsilon_{kij} \left(\hat{L}_k \hat{L}_j + \hat{L}_j \hat{L}_k \right) = 0$$
(2.12)

nullo poiché prodotto di simbolo completamente antisimmetrico con operatore simmetrico.

2.3 Spettro del momento angolare

Sebbene le componenti del momento angolare non commutano tra loro, e quindi non sono diagonalizzabili simultaneamente, è possibile trovare una terna di operatori compatibili: l'Hamiltoniana \mathcal{H} , il modulo del momento angolare \hat{L}^2 e la componente \hat{L}_z ; in realtà poteva essere scelta qualsiasi componente del momento angolare, ma convenzionalmente si sceglie \hat{L}_z , principalmente per la sua semplice espressione in coordinate sferiche (Eq. 2.9).

Si definisce lo spettro di autofunzioni comuni di \hat{L}_z ed \hat{L}^2 come l'insieme di stati $|\ell,m\rangle$ tali che:

$$\hat{L}_z |\ell, m\rangle = \hbar m |\ell, m\rangle \tag{2.13}$$

$$\hat{L}^2 |\ell, m\rangle = \lambda_{\ell} |\ell, m\rangle \tag{2.14}$$

È inoltre lecito supporre che tali stati siano normalizzati in senso proprio, dato che l'operatore momento angolare, visto come operatore differenziale, agisce su un dominio compatto (una superficie omeomorfa a \mathbb{S}^2), quindi:

$$\langle \ell', m' | \ell, m \rangle = \delta_{\ell'\ell} \delta_{m'm} \tag{2.15}$$

2.3.1 Costruzione dello spettro

Per determinare lo spettro, è conveniente definire i seguenti operatori:

$$\hat{L}_{\pm} := \hat{L}_x \pm i\hat{L}_y \tag{2.16}$$

Proposizione 2.3.1. $(\hat{L}_{\pm})^{\dagger} = \hat{L}_{\mp}$.

Dimostrazione. Banale ricordando che ogni \hat{L}_i è hermitiana (Eq. 2.6).

Proposizione 2.3.2. $[\hat{L}_z, \hat{L}_{\pm}] = \pm \hbar \hat{L}_{\pm}$.

Dimostrazione.
$$[\hat{L}_z, \hat{L}_{\pm}] = [\hat{L}, \hat{L}_x] \pm i[\hat{L}_z, \hat{L}_{\pm}] = i\hbar \hat{L}_y \pm i(-i\hbar \hat{L}_x) = \pm \hbar(\hat{L}_x \pm i\hat{L}_y) = \pm \hbar \hat{L}_{\pm}.$$

Questi sono operatori di scala.

Proposizione 2.3.3. $\hat{L}_z\hat{L}_{\pm}|\ell,m\rangle = \hbar(m\pm 1)\hat{L}_{\pm}|\ell,m\rangle$.

Dimostrazione.
$$\hat{L}_z\hat{L}_{\pm}|\ell,m\rangle = \hat{L}_{\pm}\hat{L}_z|\ell,m\rangle + [\hat{L}_z,\hat{L}_{\pm}]|\ell,m\rangle = \hat{L}_{\pm}\hat{L}_z|\ell,m\rangle \pm \hbar\hat{L}_{\pm}|\ell,m\rangle.$$

Con questi operatori si dimostra che la scala degli stati si arresta in entrambe le direzioni.

Proposizione 2.3.4. Fissato $\ell \in \mathbb{R}$, la successione $\{|\ell,m\rangle\}_{m\in\mathbb{R}}$ ha cardinalità finita.

Dimostrazione. Si definisca $|\phi_{\pm}\rangle \equiv \hat{L}_{\pm} |\ell, m\rangle$; naturalmente:

$$\langle \phi_{+} | \phi_{+} \rangle = \langle \ell, m | \hat{L}_{-} \hat{L}_{+} | \ell, m \rangle \ge 0$$
$$\langle \phi_{-} | \phi_{-} \rangle = \langle \ell, m | \hat{L}_{+} \hat{L}_{-} | \ell, m \rangle \ge 0$$

Considerando che:

$$\hat{L}_{\pm}\hat{L}_{\mp} = (\hat{L}_x \pm i\hat{L}_y)(\hat{L}_x \mp i\hat{L}_y) = \hat{L}_x^2 + \hat{L}_y^2 \mp i[\hat{L}_x, \hat{L}_y] = \hat{L}^2 - \hat{L}_z^2 \pm \hbar\hat{L}_z$$

si ha:

$$0 \le \langle \phi_+ | \phi_+ \rangle + \langle \phi_- | \phi_- \rangle = 2 \langle \ell, m | \hat{L}^2 - \hat{L}_z^2 | \ell, m \rangle = \lambda_\ell^2 - \hbar^2 m^2$$

Si ha quindi:

$$-\frac{|\lambda_{\ell}|}{\hbar} \le m \le \frac{|\lambda_{\ell}|}{\hbar}$$

che dimostra la tesi.

Dunque, per ℓ fissato devono esistere degli stati limite $|\ell, m_{\min}\rangle$, $|\ell, m_{\max}\rangle$ tali che:

$$\hat{L}_{-} |\ell, m_{\min}\rangle = 0$$

$$\hat{L}_{+} |\ell, m_{\max}\rangle = 0$$
(2.17)

Ciò determina univocamente i valori ammessi sia di λ_{ℓ} che di m. Infatti, applicando \hat{L}_{\pm} alle Eq. 2.17:

$$0 = \hat{L}_{+}\hat{L}_{-} |\ell, m_{\min}\rangle = (\hat{L}^{2} - \hat{L}_{z}^{2} + \hbar\hat{L}_{z}) |\ell, m_{\min}\rangle = (\lambda_{\ell} - \hbar^{2}m_{\min}^{2} + \hbar^{2}m_{\min}) |\ell, m_{\min}\rangle$$

$$0 = \hat{L}_{-}\hat{L}_{+} |\ell, m_{\max}\rangle = (\hat{L}^{2} - \hat{L}_{z}^{2} - \hbar\hat{L}_{z}) |\ell, m_{\max}\rangle = (\lambda_{\ell} - \hbar^{2}m_{\max}^{2} - \hbar^{2}m_{\max}) |\ell, m_{\max}\rangle$$

Sottraendo le due equazioni si ottiene:

$$m_{\text{max}}(m_{\text{max}} + 1) - m_{\text{min}}(m_{\text{min}} - 1) = 0$$

le cui soluzioni sono

$$m_{\text{max}} = \frac{-1 \pm (2m_{\text{min}} - 1)}{2} \in \{m_{\text{min}} - 2, -m_{\text{min}}\}$$

L'unica soluzione sensata è $m_{\text{max}} = -m_{\text{min}}$. Dato che \hat{L}_{\pm} sono operatori di scala, si deve avere $m_{\text{max}} = m_{\text{min}} + N, \ N \in \mathbb{N}$, dunque

$$m_{\text{max}} = \frac{N}{2}$$

che può essere intero o semi-intero.

Si ha inoltre che $\lambda_{\ell} = \hbar^2 m_{\text{max}}(m_{\text{max}} + 1)$, quindi, definendo $\ell \equiv \frac{N}{2}$ (fin'ora era arbitrario), si può scrivere:

$$\lambda_{\ell} = \hbar^2 \ell (\ell + 1)$$

In definitiva:

$$\hat{L}^2 |\ell, m\rangle = \hbar^2 \ell(\ell+1) |\ell, m\rangle \qquad \ell = \frac{N}{2}, N \in \mathbb{N}$$
(2.18)

$$\hat{L}_z |\ell, m\rangle = \hbar m |\ell, m\rangle \qquad -\ell \le m \le \ell \tag{2.19}$$

La normalizzazione propria degli stati è data da:

$$\langle \ell', m' | \ell, m \rangle = \delta_{\ell'\ell} \delta_{m'm} \tag{2.20}$$

Per normalizzare correttamente le autofunzioni, si calcola:

$$\hat{L}_{+}\hat{L}_{-}|\ell,m\rangle = \hbar^{2}(\ell(\ell+1) - m(m-1))|\ell,m\rangle
\hat{L}_{-}\hat{L}_{+}|\ell,m\rangle = \hbar^{2}(\ell(\ell+1) - m(m+1))|\ell,m\rangle$$

Ricordando la Prop. 2.3.3, si può definire pienamente la scala delle autofunzioni a ℓ fissato:

$$|\ell, m \pm 1\rangle = \frac{1}{\hbar\sqrt{\ell(\ell+1) - m(m \pm 1)}} \hat{L}_{\pm} |\ell, m\rangle$$
(2.21)

Quantizzazione È necessario fare delle osservazioni sugli autovalori di \hat{L}_z e \hat{L}^2 trovati. Innanzitutto, si vede che L_z è quantizzato in multipli interi o semi-interi di \hbar , il che è alquanto notevole, soprattutto se comparato alla fisica classica: quantisticamente, quindi, sebbene non abbia senso parlare di traiettorie (\hat{x} e \hat{p} non commutano), si possono descrivere le orbite quantizzate dei corpi, corrispondendi a valori discreti del momento angolare.

Un'altro fatto che viene confermato è che le componenti del momento angolare non sono compatibili tra loro: se è completamente determinata L_z , L_x ed L_y sono completamente indeterminate (e quindi non avrebbe senso parlare di un vettore tridimensionale); ciò è confermato dal fatto che, quando L_z assume il suo valore massimo $\hbar\ell$, questo è comunque strettamente minore del modulo del momento angolare $\hbar\sqrt{\ell(\ell+1)}$ (mentre classicamente si avrebbe $L_z^{(\max)}=L$).

2.3.2 Autofunzioni sulla base delle coordinate

È possibile definire le autofunzioni del momento angolare sulla base delle coordinate come:

$$\langle \vartheta, \varphi | \ell, m \rangle := Y_{\ell,m}(\vartheta, \varphi)$$
 (2.22)

Ricordando l'espressione di \hat{L}_z sulla base delle coordiante (Eq. 2.9), l'Eq. 2.19 diventa un'equazione differenziale:

$$-i\hbar \frac{\partial}{\partial \varphi} Y_{\ell,m}(\vartheta,\varphi) = \hbar m Y_{\ell,m}(\vartheta,\varphi)$$
 (2.23)

È possibile scrivere la soluzione generale come:

$$Y_{\ell,m}(\vartheta,\varphi) = \mathcal{N}_{\ell,m} e^{im\varphi} P_{\ell,m}(\cos\vartheta)$$
(2.24)