فصل سوم

فضاهای برداری

۳–۱ مقدمه

در فصل سوم به مفهوم میدان و فضاهای برداری اشاره شده و زیرفضاهای برداری معروف و پرکاربرد معرفی می گردند. مفاهیم پایه ای چون استقلال و وابستگی خطی بردارها، رتبه، پایه و بُعد همراه با مثال های کاربردی و دستورات MATLAB بیان شده است. سپس به معرفی چهار زیرفضای اساسی یک ماتریس و کاربرد آنها در تشخیص پاسخ معادلات جبری خطی پرداخته و نحوه بدست آوردن آنها بوسیله نرم افزار بیان می شود. در مبحث پایانی به معرفی تبدیل های خطی همراه با مثال های کاربردی پرداخته شده است.

۳-۲ فضاهای برداری

در مطالعه مفاهیم جبرخطی و دستگاه معادلات جبری مفهوم میدان و فضای برداری ٔ از اهمیت ویژه ای برخوردار است و اساس کلیه تحلیل های جبرخطی را تشکیل می دهد.

۳-۲-۲ مفهوم میدان

یک میدان مجموعه ای از اسکالرها است به طوریکه همراه با دو عمل جمع و ضرب شرایط زیر را برآورده می سازد،

۱- برای هر اسکالر a و b متعلق به میدان F یک اسکالر متناظر a+b در a+b وجود دارد، که مجموع - a+b و a نامیده می شود. (بسته بودن مجموعه نسبت به عمل جمع)

۲- برای هر اسکالر a_b و جود دارد، که حاصلضرب -۲ و متعلق به میدان a_b یک اسکالر متناظر a_b و متعلق به میدان a_b و a_b نامیده می شود. (بسته بودن مجموعه نسبت به عمل ضرب)

۳- برای هر اسکالر a و b ، a متعلق به میدان F قوانین زیر برقرار می باشند،

$$a+b=b+a$$
 , $ab=ba$. $a+b=b+a$. $ab=a$

2.
$$(a+b)+c=a+(b+c)$$
, $(ab)c=a(bc)$

3.
$$a(b+c) = ab + ac$$

4.
$$\forall a \in F$$
, $\exists 0 \in F \rightarrow a+0=a$

5.
$$\forall a \in F$$
, $\exists 1 \in F \rightarrow 1a = a$

6.
$$\forall a \in F$$
, $\exists b \in F \rightarrow a+b=0$

7.
$$\forall a \in F$$
, $\exists b \in F \rightarrow ab = 1$

مثال ۲-۱

مجموعه های زیر با دو عمل جمع و ضرب معمولی تشکیل یک میدان می دهند،

 (\mathfrak{R}) مجموعه اعداد حقیقی (\mathfrak{R}) ،

(C) مجموعه اعداد مختلط -۲

(Q) مجموعه اعداد گویا -

لیکن مجموعه اعداد صحیح (Z) با قواعد جمع و ضرب معمولی تشکیل یک میدان نمی دهد زیرا شرط هفتم را برآورده نمی سازد.

$$\beta \in Z \to \frac{1}{\beta} \notin Z$$

^{&#}x27; Field

[†] Vector Space

۳-۲-۲ فضای برداری

یک فضای برداری مانند V بر روی میدان F، مجموعه ای از بردارها است که با دو عمل جمع و ضرب شرایط زیر را برآورده می سازد،

- 1. $\forall \mathbf{u}, \mathbf{v} \in V \rightarrow \mathbf{u} + \mathbf{v} \in V$
- 2. $\forall \mathbf{u} \in V$, $\forall c \in F \rightarrow c\mathbf{u} \in V$
- 3. $\forall \mathbf{u}, \mathbf{v} \in V \rightarrow \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 4. $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V \rightarrow \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 5. $\forall \mathbf{u} \in V$, $\exists \mathbf{0} \in V \rightarrow \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$
- 6. $\forall \mathbf{u} \in V$, $\exists -\mathbf{u} \in V \rightarrow \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$
- 7. $\forall \mathbf{u}, \mathbf{v} \in V$, $\forall a, b \in F \rightarrow (a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- 8. $\forall \mathbf{u} \in V$, $\forall a, b \in F \rightarrow a(b\mathbf{u}) = (ab)\mathbf{u}$
- 9. $\forall \mathbf{u} \in V$, $\exists \mathbf{l} \in F \rightarrow \mathbf{l} \mathbf{u} = \mathbf{u}$

فضایی را که مجهز به نُرم باشد، فضای اندازه دار اگویند.

مثال ۲-۲

مجموعه های زیر نمونه هایی از فضاهای برداری هستند،

- مجموعه \mathfrak{R}^n (بردارهای n تایی حقیقی) به روی میدان اعداد حقیقی،
- ، مجموعه $M_{n imes n}$ مجان اعداد حقیقی میدان اعداد حقیقی $M_{n imes n}$
 - مجموعه ماتریس های متقارن n imes n مختلط بر روی میدان اعداد مختلط،
- مجموعه $P_n(\mathfrak{R})$ چند جمله ای های مرتبه n به فرم n به فرم n چند جمله ای های مرتبه n بر روی میدان اعداد حقیقی،

مثال ۳-۳

ثابت کنید مجموعه \mathfrak{n}^n که شامل تمام بردارهای n تایی به شکل $\mathbf{u}=[u_1,\cdots,u_n]$ است، بر روی میدان \mathfrak{n} تشکیل یک فضای برداری می دهند.

- برای بررسی شرط اول و دوم برای هر بردار
$$u$$
 و v در \mathfrak{R}^n و \mathfrak{R} و داریم، $\mathbf{u}+\mathbf{v}=[u_1+v_1,\ldots,u_n+v_n]$, $c\mathbf{u}=[cu_1,\ldots,cu_n]$ همانطور که مشخص است $c\mathbf{u}\in\mathfrak{R}^n$ و $c\mathbf{u}\in\mathfrak{R}^n$ می باشند.

^{&#}x27; Metric

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, \dots, u_n + v_n] = [v_1 + u_1, \dots, v_n + u_n] = \mathbf{v} + \mathbf{u}$$

9

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) =$$

$$= [u_1, ..., u_n] + [v_1 + w_1, ..., v_n + w_n] = [u_1 + (v_1 + w_1), ..., u_n + (v_n + w_n)]$$

$$= [(u_1 + v_1) + w_1, ..., (u_n + v_n) + w_n] = [u_1 + v_1, ..., u_n + v_n] + [w_1, ..., w_n]$$

$$= (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

از این رو شرط سوم و چهارم نیز برآورده می شود.

- برای بررسی شرط پنجم و ششم یک بردار صفر بصورت $\mathbf{0} = [0,...,0]$ در نظر می گیریم، $\mathbf{u} + \mathbf{0} = [u_1 + 0,...,u_n + 0] = [u_1,...,u_n] = [0 + u_1,...,0 + u_n] = \mathbf{0} + \mathbf{u}$

$$\mathbf{u} + (-\mathbf{u}) = [u_1 + (-u_1), \dots, u_n + (-u_n)]$$

$$= [0, \dots, 0]$$

$$= [(-u_1) + u_1, \dots, (-u_n) + u_n]$$

$$= (-\mathbf{u}) + \mathbf{u}$$

همانطور که پیداست این شرایط نیز صدق می کنند.

- برای بررسی شرایط هفتم، هشتم و نهم بصورت زیر می توان عمل کرد،

$$c(\mathbf{u} + \mathbf{v}) = c[u_1 + v_1, ..., u_n + v_n] = [c(u_1 + v_1), ..., c(u_n + v_n)]$$

= $[cu_1 + cv_1, ..., cu_n + cv_n] = [cu_1, ..., cu_n] + [cv_1, ..., cv_n]$
= $c\mathbf{u} + c\mathbf{v}$

. 9

$$(a+b)\mathbf{u} = (a+b)[u_1,...,u_n] = [(a+b)u_1,...,(a+b)u_n]$$

= $[au_1 + bu_1,...,au_n + bu_n] = [au_1,...,au_n] + [bu_1,...,bu_n]$
= $a\mathbf{u} + b\mathbf{u}$

9

$$(ab)\mathbf{u} = (ab)[u_1, \dots, u_n] = [(ab)u_1, \dots, (ab)u_n] = [a(bu_1), \dots, a(bu_n)] = a(b\mathbf{u})$$

9

$$1\mathbf{u} = 1[u_1, \dots, u_n] = [1u_1, \dots, 1u_n] = [u_1, \dots, u_n] = \mathbf{u}$$

بنابراین با برآورده شدن شرایط هفتم، هشتم و نهم مشخص می شود که مجموعه \mathfrak{R}^n که شامل تمام برداری بردارهای n تایی به شکل $\mathbf{u}=[u_1,\cdots,u_n]$ می باشد، بر روی میدان \mathfrak{R} تشکیل یک فضای برداری را می دهند.

П

مثال۳-۴

ثابت کنید مجموعه P_k که شامل تمام چند جمله ای هایی است که به فرم زیر می باشد، بر روی ثابت کنید مجموعه $p_0,p_1,\ldots,p_k\in\Re$ و $k\in N$). میدان $p_0,p_1,\ldots,p_k\in\Re$ و $p_0+p_0+p_0$

- برای بررسی شرط اول و دوم، دو چندجمله ای متعلق به مجموعه $c\in\Re$ و R و کیریم، $q(x)=q_0+q_1x+\cdots+q_kx^k$ و $p(x)=p_0+p_1x+\cdots+p_kx^k$

$$p(x)+q(x)=(p_0+q_0)+(p_1+q_1)x+\cdots+(p_k+q_k)x^k$$
 و
$$cp(x)=cp_0+cp_1x+\cdots+cp_kx^k$$
 بدیهی است که $p(x)=(p_0+q_0)+(p_1+q_1)x+\cdots+(p_k+q_k)x^k$ می باشد.

- برای بررسی شرط سوم و چهارم داریم،

$$p(x) + q(x) = (p_0 + p_1 x + \dots + p_k x^k) + (q_0 + q_1 x + \dots + q_k x^k)$$

$$= (p_0 + q_0) + (p_1 + q_1) x + \dots + (p_k + q_k) x^k$$

$$= (q_0 + p_0) + (q_1 + p_1) x + \dots + (q_k + p_k) x^k$$

$$= (q_0 + q_1 x + \dots + q_k x^k) + (p_0 + p_1 x + \dots + p_k x^k)$$

$$= q(x) + p(x)$$

و

$$p(x) + (q(x) + r(x)) =$$

$$= (p_0 + p_1 x + \dots + p_k x^k) + ((q_0 + r_0) + (q_1 + r_1) x + \dots + (q_k + r_k) x^k)$$

$$= (p_0 + (q_0 + r_0)) + (p_1 + (q_1 + r_1)) x + \dots + (p_k + (q_k + r_k)) x^k$$

$$= ((p_0 + q_0) + r_0) + ((p_1 + q_1) + r_1) x + \dots + ((p_k + q_k) + r_k) x^k$$

$$= ((p_0 + q_0) + (p_1 + q_1) x + \dots + (p_k + q_k) x^k) + (r_0 + r_1 x + \dots + r_k x^k)$$

$$= (p(x) + q(x)) + r(x)$$

لذا شرایط سوم و چهارم نیز برقرار هستند.

- برای بررسی شرط پنجم و ششم چندجمله ای صفر را بصورت $\mathbf{0} = 0 + 0x + \cdots + 0x^k$ در نظر می گیریم،

$$p(x) + \mathbf{0} = (p_0 + 0) + (p_1 + 0)x + \dots + (p_k + 0)x^k$$
$$= (0 + p_0) + (0 + p_1)x + \dots + (0 + p_k)x^k$$
$$= \mathbf{0} + p(x) = p(x)$$

$$p(x) + (-p(x)) = (p_0 + (-p_0)) + (p_1 + (-p_1))x + \dots + (p_k + (-p_k))x^k$$

$$= (p_0 - p_0) + (p_1 - p_1)x + \dots + (p_k - p_k)x^k$$

$$= 0 + 0x + \dots + 0x^k$$

$$= \mathbf{0}$$

از این رو شرایط پنجم و ششم نیز برقرار می باشند.

ر برای بررسی شرایط هفتم، هشتم و نهم بصورت زیر می توان عمل کرد،
$$c(p(x)+q(x)) = c((p_0+q_0)+(p_1+q_1)x+\dots+(p_k+q_k)x^k)$$

$$= c(p_0+q_0)+c(p_1+q_1)x+\dots+c(p_k+q_k)x^k$$

$$= (cp_0+cq_0)+(cp_1+cq_1)x+\dots+(cp_k+cq_k)x^k$$

$$= (cp_0+cp_1x+\dots+cp_kx^k)+(cq_0+cq_1x+\dots+cq_kx^k)$$

$$= cp(x)+cq(x)$$

$$(a+b)p(x) = (a+b)p_0 + (a+b)p_1x + \dots + (a+b)p_kx^k$$

$$= (ap_0 + bp_0) + (ap_1 + bp_1)x + \dots + (ap_k + bp_k)x^k$$

$$= (ap_0 + ap_1x + \dots + ap_kx^k) + (bp_0 + bp_1x + \dots + bp_kx^k)$$

$$= ap(x) + bp(x)$$

$$(ab) p(x) = (ab) p_0 + (ab) p_1 x + \dots + (ab) p_k x^k$$

$$= a(bp_0) + a(bp_1) x + \dots + a(bp_k) x^k$$

$$= a(bp_0 + bp_1 x + \dots + bp_k x^k)$$

$$= a(bp(x))$$

$$1p(x) = 1p_0 + 1p_1x + \dots + 1p_kx^k = p_0 + p_1x + \dots + p_kx^k = p(x)$$

 $\mathfrak R$ با برآورده شدن شرایط هفتم، هشتم و نهم، می توان نتیجه گرفت که مجموعه تشکیل یک فضای برداری می دهد.

مثال۳-۵

اگر $(\Re)_{2\times 2}$ مجموعه تمامی ماتریس های 2×2 با عناصر حقیقی باشد، نشان دهید، این مجموعه همراه با عملیات جمع ماتریس ها و ضرب اعداد حقیقی در ماتریس ها تشکیل یک فضای برداری بر روی میدان اعداد حقیقی می دهد.

- برای این منظور باید شرایط فضای برداری را بررسی نماییم،

1.
$$\forall P, Q \in \mathcal{M}_{2\times 2}(\mathfrak{R}) \rightarrow P + Q \in \mathcal{M}_{2\times 2}(\mathfrak{R})$$

$$P+Q = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} = \begin{bmatrix} p_{11}+q_{11} & p_{12}+q_{12} \\ p_{21}+q_{21} & p_{22}+q_{22} \end{bmatrix} \in \mathbf{M}_{2\times 2}(\Re)$$

2.
$$\forall P \in \mathcal{M}_{2\times 2}(\mathfrak{R}), \forall c \in \mathfrak{R} \to cP \in \mathcal{M}_{2\times 2}(\mathfrak{R})$$

$$cP = c \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} cp_{11} & cp_{12} \\ cp_{21} & cp_{22} \end{bmatrix} \in \mathbf{M}_{2\times 2}(\mathfrak{R})$$

3.
$$\forall P, Q \in M_{2\times 2}(\Re) \rightarrow P + Q = Q + P$$

$$P + Q = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} = \begin{bmatrix} p_{11} + q_{11} & p_{12} + q_{12} \\ p_{21} + q_{21} & p_{22} + q_{22} \end{bmatrix}$$
$$= \begin{bmatrix} q_{11} + p_{11} & q_{12} + p_{12} \\ q_{21} + p_{21} & q_{22} + p_{22} \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = Q + P$$

4.
$$\forall P, Q, R \in M_{2 \times 2}(\mathfrak{R}) \rightarrow P + (Q + R) = (P + Q) + R$$

$$P + (Q + R) = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} + \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} q_{11} + r_{11} & q_{12} + r_{12} \\ q_{21} + r_{21} & q_{22} + r_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + q_{11} + r_{11} & p_{12} + q_{12} + r_{12} \\ p_{21} + q_{21} + r_{21} & p_{22} + q_{22} + r_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + q_{11} & p_{12} + q_{12} \\ p_{21} + q_{21} & p_{22} + q_{22} \end{bmatrix} + \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} + \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = (P + Q) + R$$

5.
$$\forall P \in M_{2\times 2}(\Re), \quad \exists \mathbf{O} \in M_{2\times 2}(\Re) \rightarrow P + \mathbf{O} = \mathbf{O} + P = P$$

$$P + \mathbf{O} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} p_{11} + 0 & p_{12} + 0 \\ p_{21} + 0 & p_{22} + 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 + p_{11} & 0 + p_{12} \\ 0 + p_{21} & 0 + p_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \mathbf{O} + P$$

6.
$$\forall P \in M_{2\times 2}(\mathfrak{R}), \quad \exists -P \in M_{2\times 2}(\mathfrak{R}) \to P + (-P) = (-P) + P = \mathbf{O}$$

$$P + (-P) = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} -p_{11} & -p_{12} \\ -p_{21} & -p_{22} \end{bmatrix} = \begin{bmatrix} p_{11} - p_{11} & p_{12} - p_{12} \\ p_{21} - p_{21} & p_{22} - p_{22} \end{bmatrix}$$

$$= \begin{bmatrix} -p_{11} + p_{11} & -p_{12} + p_{12} \\ -p_{21} + p_{21} & -p_{22} + p_{22} \end{bmatrix} = \begin{bmatrix} -p_{11} & -p_{12} \\ -p_{21} & -p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$= (-P) + P = \mathbf{O}$$

7.
$$\forall P, Q \in M_{2\times 2}(\mathfrak{R}), \quad \forall a, b \in \mathfrak{R} \to (a+b)P = aP + bP, \quad a(P+Q) = aP + aQ$$

$$(a+b)P = (a+b)\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$= \begin{bmatrix} (a+b)p_{11} & (a+b)p_{12} \\ (a+b)p_{21} & (a+b)p_{22} \end{bmatrix} = \begin{bmatrix} ap_{11} + bp_{11} & ap_{12} + bp_{12} \\ ap_{21} + bp_{21} & ap_{22} + bp_{22} \end{bmatrix}$$

$$= \begin{bmatrix} ap_{11} & ap_{12} \\ ap_{21} & ap_{22} \end{bmatrix} + \begin{bmatrix} bp_{11} & bp_{12} \\ bp_{21} & bp_{22} \end{bmatrix} = aP + bP$$

$$a(P+Q) = a \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} = a \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} + a \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$
$$= \begin{bmatrix} ap_{11} & ap_{12} \\ ap_{21} & ap_{22} \end{bmatrix} + \begin{bmatrix} aq_{11} & aq_{12} \\ aq_{21} & aq_{22} \end{bmatrix} = aP + bQ$$

8.
$$\forall P \in M_{2\times 2}(\mathfrak{R}), \quad \forall a, b \in \mathfrak{R} \to a(bP) = (ab)P$$

$$a(bP) = a \left(b \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \right) = a \begin{bmatrix} bp_{11} & bp_{12} \\ bp_{21} & bp_{22} \end{bmatrix}$$

$$= \begin{bmatrix} abp_{11} & abp_{12} \\ abp_{21} & abp_{22} \end{bmatrix} = ab \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = (ab)P$$

9.
$$\forall P \in M_{2\times 2}(\mathfrak{R}), \exists l \in \mathfrak{R} \rightarrow 1P = P$$

$$1P = 1 \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} 1 \times p_{11} & 1 \times p_{12} \\ 1 \times p_{21} & 1 \times p_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = P$$

لذا $M_{2\times 2}(\Re)$ همراه با عملیات جمع ماتریس ها و ضرب اعداد حقیقی در ماتریس ها تشکیل یک فضای برداری بر روی میدان اعداد حقیقی می دهد.

L

مثال۳-۶

مجموعه های زیر فضای برداری نیستند،

- مجموعه ماتریس های 2×2 مختلط غیرمنفرد یک فضای برداری نیست، زیرا جمع دو ماتریس غیرمنفرد ممکن است ماتریسی منفرد باشد.

$$P+Q = \begin{bmatrix} 2 & 5 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 2 & 2 \end{bmatrix}$$

- مجموعه بردارهای دوتایی در ربع اول صفحه مختصات،

برای این منظور کافی است که یک مثال نقض بیاوریم،

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \in S \longrightarrow \begin{bmatrix} -3 \\ -1 \end{bmatrix} \notin S$$

۳-۲-۳ زیر فضای برداری

V فرض کنیم S یک فضای برداری بر روی میدان S و S یک زیر مجموعه غیر تهی از S باشد. S را یک S را یک S می نامند هرگاه،

1.
$$\forall \mathbf{s}, \mathbf{t} \in S \rightarrow \mathbf{s} + \mathbf{t} \in S$$

(1-4)

2.
$$\forall \mathbf{s} \in S, \forall a \in F \rightarrow a\mathbf{s} \in S$$

بطور مثال فضای برداری \mathfrak{R}^n یک زیرفضا از فضای برداری C^n به روی میدان n می باشند.) فضای n بعدی اقلیدسی و n فضای n بعدی اقلیدسی و n

مثال۳-۷

نشان دهید، در فضای برداری دو بعدی \Re^2 هر خط راستی که از مبدأ عبور کند، یک زیر فضای برداری از \Re^2 است،

شکل(۳-۲) - خطی که از مبدا مختصات می گذرد

برای بررسی باید برقراری شرایط (۱-۳) را بررسی کنیم،

$$(x, y) \in S \to ax + by = 0$$

$$(u, v) \in S \to au + bv = 0$$

$$\rightarrow a(x+u) + b(y+v) = 0$$

بنابراین نتیجه می گیریم که S می باشد و شرط اول بر قرار است.

$$(x, y) \in S \rightarrow ax + by = 0 \rightarrow a(cx) + b(cy) = 0$$

از این رو S از میداً می باشد و شرط دوم نیز برقرار است و هر خط راستی که از مبدأ عبور کند، یک زیر فضای برداری از \Re^2 می باشد.

^{&#}x27; Subspace

مثال۳-۸

 \Re^2 آیا در فضای برداری دو بعدی \Re^2 هر خط راستی که از مبدأ عبور نکند، یک زیر فضای برداری از \Re^2 است؟

شرایط زیرفضا بودن را بررسی کنیم،

$$(x, y) \in S \to ax + by = k$$

$$(u, v) \in S \to au + bv = k$$

$$\rightarrow a(x + u) + b(y + v) = 2k$$

بنابراین نتیجه می گیریم که $S \not\in S$ بنابراین نتیجه می گیریم که $(x+u,y+v) \not\in S$ نیازی به بررسی شرط دوم نیست. لذا هر خط راستی که از مبدأ عبور نکند، یک زیر فضای برداری از \Re^2 نمی باشد

مثال ۳-۹

آیا مجموعه S یک زیر فضا از $M_{2 imes2}(\mathfrak{R})$ می باشد؟

$$S = \begin{cases} \begin{bmatrix} 2 & a_{12} \\ 0 & a_{22} \end{bmatrix} \end{cases}$$
 ماتریس ها به فرم a_{22} تمامی ماتریس ها به فرم a_{22} برای زیر فضا بودن باشد شرایط زیر را داشته باشد،

1. $\forall A, B \in S \rightarrow A + B \in S$

$$A + B = \begin{bmatrix} 2 & a_{12} \\ 0 & a_{22} \end{bmatrix} + \begin{bmatrix} 2 & b_{12} \\ 0 & b_{22} \end{bmatrix} = \begin{bmatrix} 4 & a_{12} + b_{12} \\ 0 & a_{22} + b_{22} \end{bmatrix} = \begin{bmatrix} 4 & c_{12} \\ 0 & c_{22} \end{bmatrix} \notin S$$

2. $\forall A \in S$, $\forall a \in \Re$ \rightarrow $aA \in S$

از آنجاییکه شرط اول را برآورده نمی کند، لذا نیازی به بررسی شرط دوم نیست و این مجموعه یک زیر فضا برای $M_{2\times 2}(\mathfrak{R})$ نیست.

۳-۲-۳ زیرفضای ستون های یک ماتریس

یکی از زیرفضاهای مهم و پرکاربرد در مباحث جبر خطی **زیرفضای ستون های ا**یک ماتریس است. این زیرفضا مجموعه ای از ترکیبهای خطی ستون های ماتریس مذکور است که با نماد C(A) نمایش داده می شود و همواره زیرفضایی از فضای برداریی است که بردارهای ستونی ماتریس مذکور به آن تعلق دارند.

 $A_{m \times n} = egin{bmatrix} {f a}_1 & {f a}_2 & \cdots & {f a}_n \end{bmatrix} & o & C(A) = ig\{ lpha_1 {f a}_1 + lpha_2 {f a}_2 + \cdots + lpha_n {f a}_n ig\} \$ (۲-۳) یکی از مهمترین کاربردهای این زیرفضا در بدست آوردن مجموعه جواب دستگاه معادلات جبری خطی است.

نکته ا: اگر بردارهای $\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_n$ متعلق به فضای برداری V باشد، آنگاه کلیه ترکیبهای خطی این بردارها یک زیرفضای برداری از V می باشد.

مثال۳- ۱۰

ماتریس A را در نظر بگیرید،

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix}$$

فرض کنید مجموعه C(A) فضای ستون های ماتریس A که شامل تمامی ترکیب های خطی ستون های ماتریس A است بصورت زیر تعریف شود،

$$C(A) = \left\{ \alpha \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \beta \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} \right\}$$

نشان دهید که C(A) یک زیرفضا از فضای برداری \mathfrak{R}^3 است.

باید دو شرط زیر فضا بودن را بررسی نماییم، شرط اول،

1.
$$\forall A, B \in S$$
 $\rightarrow A + B \in S$

$$\alpha \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \beta \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha + 3\beta \\ 2\alpha + 3\beta \\ 4\alpha + \beta \end{bmatrix} \in C(A) , \quad \gamma \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \varphi \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} \gamma + 3\varphi \\ 2\gamma + 3\varphi \\ 4\gamma + \varphi \end{bmatrix} \in C(A)$$

-

^{&#}x27;Column Space

$$\begin{bmatrix} \alpha + 3\beta \\ 2\alpha + 3\beta \\ 4\alpha + \beta \end{bmatrix} + \begin{bmatrix} \gamma + 3\varphi \\ 2\gamma + 3\varphi \\ 4\gamma + \varphi \end{bmatrix} = \begin{bmatrix} (\alpha + \gamma) + 3(\beta + \varphi) \\ 2(\alpha + \gamma) + 3(\beta + \varphi) \\ 4(\alpha + \gamma) + (\beta + \varphi) \end{bmatrix} = \begin{bmatrix} m + 3n \\ 2m + 3n \\ 4m + n \end{bmatrix} \in C(A)$$

لذا شرط اول برقرار است. حال شرط دوم را بررسی می نماییم،

2. $\forall A \in S, \forall a \in \Re \rightarrow aA \in S$

$$\begin{bmatrix} \alpha + 3\beta \\ 2\alpha + 3\beta \\ 4\alpha + \beta \end{bmatrix} = \begin{bmatrix} (c\alpha) + 3(c\beta) \\ 2(c\alpha) + 3(c\beta) \\ 4(c\alpha) + (c\beta) \end{bmatrix} = \begin{bmatrix} k+3l \\ 2k+3l \\ 4k+l \end{bmatrix} \in C(A)$$

بنابراین C(A) یک زیرفضا از فضای برداری \mathfrak{R}^3 است.

П

مثال۳-11

به ازای چه مقادیری از بردار ${f b}$ دستگاه معادلات ${f A}{f x}={f b}$ جواب دارد؟

$$A\mathbf{x} = \mathbf{b} \longrightarrow \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

هدف بدست آوردن مجموعه جواب دستگاه می باشد. ابتدا بردار \mathbf{b} را بصورت ترکیب خطی از ستون های ماتریس A نمایش می دهیم،

$$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} x_1 + \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} x_2 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

لذا دستگاه معادلات $\mathbf{ax} = \mathbf{b}$ زمانی جواب دارد که بردار \mathbf{b} را بتوان بصورت ترکیب خطی از ستون های ماتریس A نمایش داد. یعنی باید دستگاه معادلات مذکور به ازای آن بردار \mathbf{b} سازگار باشد و لازمه این کار آن است که $\mathbf{b} \in C(A)$ باشد. نمایش هندسی زیرفضای C(A) در شکل(\mathbf{m} -1) آورده شده است. به لحاظ هندسی فضای ستون های ماتریس A صفحه ای در فضای بردارهایی مانند \mathbf{b} است که از مبدا عبور کرده و بردار ستون های ماتریس A را شامل گردد، لذا تمامی بردارهایی مانند \mathbf{d} که درون این صفحه قرار دارند جزء فضای ستون های ماتریس A هستند و می توان آنها را بصورت ترکیب خطی از ستون های ماتریس A نمایش داد و برای این بردارها دستگاه معادلات $\mathbf{dx} = \mathbf{b}$ سازگار است و جواب دارد. اگر بردار \mathbf{d} طوری انتخاب شود که خارج از این صفحه قرار گیرد، دستگاه معادلات $\mathbf{dx} = \mathbf{b}$ ناسازگار بوده و جواب ندارد.

A شکل (۴-۳) – نمایش هندسی زیرفضای ستون های ماتریس

مثال۳-۱۲

ماتریس A و بردارهای \mathbf{b}_1 و \mathbf{b}_2 را در نظر بگیرید،

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \quad , \quad \mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \\ -7 \end{bmatrix} \quad , \quad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

با توجه به فرم سطری پلکانی کاهش یافته، دستگاه معادلات $A\mathbf{x} = \mathbf{b}_1$ یک دستگاه سازگار است و جواب دارد،

$$\begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 \\ 2 & 3 & -1 \\ 4 & 1 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{cases} x_1 = -2 \\ x_2 = 1 \end{cases}$$

لذا $\mathbf{b}_1 \in C(A)$ و می توان بردار \mathbf{b}_1 را بصورت ترکیب خطی از ستون های ماتریس \mathbf{b} نمایش داد،

$$(-2)\begin{bmatrix} 1\\2\\4 \end{bmatrix} + (1)\begin{bmatrix} 3\\3\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\-7 \end{bmatrix}$$

حال دستگاه معادلات $A\mathbf{x}=\mathbf{b}_2$ را در نظر می گیریم، این دستگاه معادلات ناسازگار است و جواب ندارد،

$$\begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 \\ 2 & 3 & 1 \\ 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

لذا $\mathbf{b}_2
ot\in \mathcal{C}(A)$ و نمی توان بردار \mathbf{b}_2 را بصورت ترکیب خطی از ستون های ماتریس \mathbf{b} نمایش داد.

Ш

مثال۳-۱۳

فضای ستون های ماتریس های زیر را بدست آورید.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 الف)

فضای ستون های ماتریس A زیر فضایی از \Re^3 بوده و شامل تمامی ترکیبهای خطی ممکن ستون های ماتریس A است.

$$C(A) = \left\{ \mathbf{b} \in \mathfrak{R}^3 \mid \mathbf{b} = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right\}$$

از آنجاییکه ستون های ماتریس A وابسته خطی هستند، لذا می توان نمایش فضای ستون های ماتریس A را بصورت زیر خلاصه کرد،

$$C(A) = \left\{ \mathbf{b} \in \Re^3 \mid \mathbf{b} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} \qquad \text{i.s.} \qquad C(A) = \operatorname{sp} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

حطی است در فضای برداری \Re^3 که شامل بردار $\begin{bmatrix} lpha \\ 0 \\ 0 \end{bmatrix}$ است، که همان محور x ها خواهد بود. C(A)

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} (\psi$$

فضای ستون های ماتریس A زیر فضایی از \mathfrak{R}^3 بوده و شامل تمامی ترکیبهای خطی ممکن ستون های ماتریس A است. از آنجاییکه ستون های ماتریس A مستقل خطی هستند، C(A) را می توان به شکل زیر نمایش داد.

$$C(A) = \left\{ \mathbf{b} \in \mathfrak{R}^3 \mid \mathbf{b} = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right\} \qquad \qquad \qquad \qquad \qquad C(A) = \operatorname{sp} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right\}$$

سفحه ای در
$$\Re^3$$
 است که شامل دو بردار $\begin{bmatrix} 0\\2\\0\end{bmatrix}$ و تمامی ترکیبهای خطی آن دو است، $C(A)$

که همان صفحه xy خواهد بود.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$
 (z

فضای ستون های ماتریس A زیر فضایی از \mathfrak{R}^2 بوده و شامل تمامی ترکیبهای خطی ممکن ستون های ماتریس A است.

$$C(A) = \left\{ \mathbf{b} \in \mathfrak{R}^2 \mid \mathbf{b} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$$

از آنجاییکه ستون اول و دوم ماتریس A وابسته خطی هستند، می توان نمایش فضای ستون های ماتریس A را بصورت زیر خلاصه کرد،

$$C(A) = \left\{ \mathbf{b} \in \Re^2 \mid \mathbf{b} = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\} \qquad \text{i.} \qquad C(A) = \operatorname{sp} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$$

صفحه ای در \Re^2 است که توسط دو بردار $\begin{bmatrix}1\\0\end{bmatrix}$, $\begin{bmatrix}3\\4\end{bmatrix}$ اسپن می شود که در واقع تمامی C(A) فضای \Re^2 خواهد بود.

۳-۲-۳ مفهوم اسپن

 $S=\left\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n
ight\}$ اگر $S=\left\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n
ight\}$ مجموعه ای از بردارها در فضای برداری $S=\left\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\right\}$ از بردارهای ترکیبهای خطی از بردارهای $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n$ باشد، در اینصورت $S=\left\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\right\}$ است، که بصورت زیر نمایش داده می شود،

[\] Span

$$W = \operatorname{sp}(S) \quad , \quad W = \operatorname{sp}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

$$W = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n : c_1, c_2, \dots c_n \in \Re\}$$

$$(\Upsilon - \Upsilon)$$

همچنین می توان گفت، که بردارهای $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ زیر فضای W را اسین می کنند.

نکته۱: C(A) یا همان زیرفضای ستون های یک ماتریس فضایی است که توسط بردارهای ستونی آن

نشان دهید سه بردار
$$\mathbf{k}=\begin{bmatrix}0\\1\\0\end{bmatrix},\;\;\mathbf{j}=\begin{bmatrix}0\\1\\0\end{bmatrix},\;\;\mathbf{k}=\begin{bmatrix}0\\0\\1\end{bmatrix}$$
 نشان دهید سه بردار \mathbf{R}^3 را اسپن می کنند.

$$a\mathbf{i} + b\mathbf{j} + c\mathbf{k} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

بنابراین $sp\{{f i,j,k}\}$ تمامی بردارهای متعلق به فضای برداری ${\mathfrak R}^3$ است که به شکل خوامی بردارهای که کلیه فضای بردا م

کلیه فضای برداری \Re^3 را شامل می شود.

بررسی کنید که آیا بردارهای زیر فضای برداری \mathfrak{R}^3 را اسپن می کنند.

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
 (b)

یک ترکیب خطی از این دو بردار به شکل زیر می باشد،
$$a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = a \begin{bmatrix} 1\\2\\1 \end{bmatrix} + b \begin{bmatrix} 1\\1\\1 \end{bmatrix} + c \begin{bmatrix} 0\\2\\-1 \end{bmatrix} = \begin{bmatrix} a+b\\2a+b+2c\\a+b-c \end{bmatrix}$$

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} a+b \\ 2a+b+2c \\ a+b-c \end{bmatrix} \rightarrow \begin{cases} a+b=r_1 \\ 2a+b+2c=r_2 \\ a+b-c=r_3 \end{cases}$$

فرم ماتریسی این دستگاه معادلات بصورت زیر می باشد،

$$A\mathbf{x} = \mathbf{y} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

حال باید بررسی کنیم که این دستگاه معادلات سازگار است یا ناسازگار، برای این منظور باید ماتریس ${\bf r}$ غیر منفرد باشد، یعنی $|A| \neq 0$ باشد. از آنجائیکه |A| = 1 است، بنابراین، برای هر بردار دلخواه ${\bf r}$ می توان یک جواب پیدا کرد. لذا، بردارهای ${\bf u}, {\bf v}, {\bf w}$ فضای برداری ${\bf m}$ را اسپن می کنند.

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -3 \\ 8 \\ -5 \end{bmatrix}$$
 (ب

ک ترکیب خطی از این دو بردار به شکل زیر می باشد،

$$a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = a \begin{bmatrix} 1\\2\\-1 \end{bmatrix} + b \begin{bmatrix} 3\\-1\\1 \end{bmatrix} + c \begin{bmatrix} -3\\8\\-5 \end{bmatrix} = \begin{bmatrix} a+3b-3c\\2a-b+8c\\-a+b-5c \end{bmatrix}$$

اگر به مانند حالت قبل یک بردار \mathbf{r} در نظر بگیریم، فرم ماتریسی دستگاه معادلات حاصل به شکل زیر خواهد بود،

$$A\mathbf{x} = \mathbf{y} \rightarrow \begin{bmatrix} 1 & 3 & -3 \\ 2 & -1 & 8 \\ -1 & 1 & -5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

از آنجائیکه |A|=0 می باشد، لذا این دستگاه معادلات مذکور یک جواب منحصربفرد ندارد. لذا، بردارهایی در فضای برداری \Re^3 وجود دارند، که نمی توان آنها را بصورت ترکیب خطی از بردارهای بردارهای \Re^3 را اسپن نمی کنند. u, v, w

-2-7استقلال خطی و وابستگی خطی بردارها

بردارهای $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ را **مستقل خطی** کویند، اگر معادله ای به شکل زیر،

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_n \mathbf{u}_n = 0 \tag{f-r}$$

که در آن $c_1, c_2, \ldots = c_n = 0$ اسکالرهای ثابتی هستند، فقط به ازای شرط c_1, c_2, \ldots, c_n برقرار $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ ابشد. در غیر اینصورت بردارهای $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ را **وابسته خطی آ**گویند.

نکته۱: اگر بردارهای $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ مستقل خطی بوده ولی بردارهای $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ وابسته خطی باشند، در اینصورت می توان \mathbf{u}_{n+1} را بصورت یک ترکیب خطی از بردارهای \mathbf{u}_{n+1} بیان کرد.

نکته ۲: شرط لازم و کافی برای مستقل خطی بودن بردارهای $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ که هر یک دارای n تا عنصر هستند، آن است که دترمینان ماتریس ضرایب $n \times n$ حاصل از تعریف، مخالف صفر باشد.

مثال ٣-١٤

استقلال خطی یا وابستگی خطی بردارهای زیر را بررسی کنید.

$$\mathbf{u}_1 = \begin{bmatrix} -2\\1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -1\\-3 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 4\\-2 \end{bmatrix}$$
 (لف

با توجه به تعریف داریم،

$$c_{1} \begin{bmatrix} -2\\1 \end{bmatrix} + c_{2} \begin{bmatrix} -1\\-3 \end{bmatrix} + c_{3} \begin{bmatrix} 4\\-2 \end{bmatrix} = \mathbf{0} \longrightarrow \begin{bmatrix} -2c_{1} - c_{2} + 4c_{3}\\c_{1} - 3c_{2} - 2c_{3} \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

دستگاه معادلات مربوطه و فرم سطری پلکانی کاهش یافته آن به شکل زیر می باشد،

$$\begin{bmatrix} -2 & -1 & 4 \\ 1 & -3 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & (1) & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

با توجه به محل عناصر محوری متغیر c_3 آزاد است و بقیه متغیرها را می توان برحسب این متغیر آزاد نوشت،

$$c_1 = 2c_3$$
, $c_2 = 0$

همچنین عناصر محوری نشان می دهند که بردارهای $\mathbf{u}_1, \mathbf{u}_2$ مستقل خطی و بردار \mathbf{u}_3 به آنها وابسته است. پس در مجموع بردارهای $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ وابسته خطی می باشند.

Linear Dependent

-

Linear Independent

در نرم افزار MATLAB می توان از دستور [R,p] = rref(A) برای تشخیص استقلال خطی بردارها استفاده نمود. در اینجا R فرم سطری پلکانی کاهش یافته و \mathbf{p} برداری است که محل عناصر محوری و به عبارتی بردارهای مستقل خطی را نشان می دهد.

 $\mathbf{u}_1, \mathbf{u}_2$ ماتریس \mathbf{p} فرم سطری پلکانی کاهش یافته را نشان می دهد و بردار \mathbf{p} نشان می دهد که مستقل خطی و بردار \mathbf{u}_3 به آنها وابسته است.

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -4 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ 4 \\ 2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ -2 \end{bmatrix}$$
 (ب

ا توجه به تعریف داریم،

$$\begin{bmatrix} 1 \\ -2 \\ 3 \\ -4 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 3 \\ 4 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 - c_2 + c_3 \\ -2c_1 + 3c_2 + c_3 \\ 3c_1 + 4c_2 - 2c_3 \\ -4c_1 + 2c_2 - 2c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

فرم ماتریس افزوده و سطری پلکانی کاهش یافته آن را بدست می آوریم، ً

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ -2 & 3 & 1 & 0 \\ 3 & 4 & -2 & 0 \\ -4 & 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \rightarrow \begin{bmatrix} \widehat{1} & 0 & 0 & 0 \\ 0 & \widehat{1} & 0 & 0 \\ 0 & 0 & \widehat{1} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

برای حل این معادلات تنها جواب ممکن جواب بدیهی $c_1=c_2=c_3=0$ می باشد و با توجه به محل عناصر محوری بردارهای $\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3$ مستقل خطی هستند.

با استفاده از نرم افزار MATLAB داریم،

u1 = [1;-2;3;-4];

u2 = [-1;3;4;2];

u3 = [1;1;-2;-2];

[R,p] = rref([u1 u2 u3])

1

length(p)

ans =

بردار ${f p}$ نشان می دهد که ${f u}_1, {f u}_2, {f u}_3$ مستقل خطی هستند. اگر تعداد بردارهای داده شده زیاد باشد و فقط محاسبه تعداد بردارهای مستقل خطی مد نظر باشد دستور length(p) مستقیماً تعداد بردارهای مستقل خطی را نشان می دهد.

مثال۳-۱۷

به ازای چه مقداری از
$$\lambda$$
 بردارهای زیر مستقل خطی هـ
 $\mathbf{u} = \begin{bmatrix} -1 \\ \lambda \\ -1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \lambda \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -1 \\ -1, \\ \lambda \end{bmatrix}$ الف)

برای بردارهای داده شده شرط استقلال خطی را بررسی می نماییم،

$$c_{1}\mathbf{u} + c_{2}\mathbf{v} + c_{3}\mathbf{w} = \mathbf{0} \longrightarrow c_{1}\begin{bmatrix} -1\\ \lambda\\ -1 \end{bmatrix} + c_{2}\begin{bmatrix} \lambda\\ -1\\ -1 \end{bmatrix} + c_{3}\begin{bmatrix} -1\\ -1\\ \lambda \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

دستگاه معادلات حاصل بصورت زیر بدست می آید، که برای مستقل خطی بودن دترمینان ماتریس ضرایب باید مخالف صفر باشد،

$$\begin{cases} -c_1 + \lambda c_2 - c_3 = 0 \\ \lambda c_1 - c_2 - c_3 = 0 \\ -c_1 - c_2 + \lambda c_3 = 0 \end{cases} \rightarrow \begin{vmatrix} -1 & \lambda & -1 \\ \lambda & -1 & -1 \\ -1 & -1 & \lambda \end{vmatrix} = -(\lambda + 1)^2 (\lambda - 2)$$

$$\mathbf{u} = \begin{bmatrix} 1 - \lambda \\ 2 + \lambda \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 + \lambda \\ 1 - \lambda \end{bmatrix}$$
 (ب

شرط استقلال خطی را بررسی می نماییم،
$$c_1 \mathbf{u} + c_2 \mathbf{v} = \mathbf{0} \qquad \rightarrow \qquad c_1 \begin{bmatrix} 1-\lambda \\ 2+\lambda \end{bmatrix} + c_2 \begin{bmatrix} 2+\lambda \\ 1-\lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

دستگاه معادلات حاصل بصورت زیر بدست می آید،

$$\begin{cases} (1-\lambda)c_1 + (2+\lambda)c_2 = 0\\ (2+\lambda)c_1 + (1-\lambda)c_2 = 0 \end{cases} \rightarrow \begin{vmatrix} 1-\lambda & 2+\lambda\\ 2+\lambda & 1-\lambda \end{vmatrix} = -3-6\lambda$$

در این حالت برای مستقل خطی بودن باید $\dfrac{1}{2}
eq \lambda$ باشد

۳-۲-۶ مفهوم پایه و بُعد در فضای برداری

در یک فضای برداری مانند V، مجموعه بردارهای $\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n$ تشکیل یک پایه می دهند، اگر دو شرط زیر را داشته باشند،

$$V=\mathrm{sp}ig\{\!\mathbf{u}_1,\!\mathbf{u}_2,\!\ldots,\!\mathbf{u}_nig\}$$
 ان فضای برداری را اسپن کنند، -1

 $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ مستقل خطی باشند.

تعداد بردارهای پایه در یک فضای برداری مانند V را بُعد آن فضا می نامند و با نماد نشان می دهند. به عبارتی بُعد یک فضا برابر با حداکثر تعداد بردارهای مستقل خطی در آن $\dim(V)$ فضا است، بنابراین در یک فضای n بُعدی حداکثر بردارهای مستقل خطی n عدد می باشد.

نکته I: در فضای برداری I بعدی مانند V هر مجموعه بردارهای مستقل خطی در I را می توان به یک یایه تبدیل کرد.

Basis

Dimension

نکته ۲: بردارهای واحد $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ برای فضای برداری \Re^n تشکیل یک پایه می دهند و به آن پایه استاندار \mathbf{e}^1 برای \Re^n گفته می شود.

$$\mathbf{e}_1 = [1,0,\ldots,0], \qquad \mathbf{e}_2 = [0,1,\ldots,0], \qquad \cdots \qquad , \mathbf{e}_n = [0,0,\ldots,1]$$

لذا فضای برداری \Re^n را می توان بصورت زیر نمایش داد،

$$\mathfrak{R}^n = sp\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$$

نکته ۳: بردارهای $p_0, \mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$ برای فضای برداری P_n (چند جمله ای های با درجه n یا کمتر) تشکیل پایه استاندارد می دهند.

$$\mathbf{p}_0 = 1, \qquad \mathbf{p}_1 = x, \qquad \mathbf{p}_2 = x^2, \qquad \dots \qquad , \mathbf{p}_n = x^n$$

لذا فضای برداری P_n را می توان بصورت زیر نمایش داد،

$$P_n = sp\{1, x, x^2, \dots, x^n\}$$

نکته ۴: اگر فضای برداری V شامل تعداد محدودی بردار پایه باشد، آن را فضا با بُعد متناهی می نامیم در غیر اینصورت به آن فضا با بُعد نامتناهی می گوییم.

مثال ۲-۱۸

بررسی نمایید که آیا بردارهای زیر برای فضای برداری \Re^3 تشکیل یک پایه می دهند.

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$

برای این منظور دو شرط ذکر شده در تعریف پایه را بررسی می کنیم،

۱- برای اسپن کردن فضای برداری \Re^3 باید یک ترکیب خطی از این بردارها بنویسیم و آن را معادل با $\mathbf{r} = [r_1, r_2, r_3]$ یک بردار مانند

$$c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + c_{3}\mathbf{u}_{3} = c_{1}\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_{2}\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + c_{3}\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \end{bmatrix}$$

فرم ماتریسی دستگاه معادلات حاصل بصورت زیر می باشد،

$$\begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

Finite Dimension

^r Infinite Dimension

١

^{&#}x27; Standard Basis

چود سیستم مربعی است، شرط وجود جواب آن است که دترمینان ماتریس ضرایب مخالف صفر باشد و چود سیستم مربعی است، لذا دستگاه همواره جواب دارد و بردارهای $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ فضای برداری \mathbf{R}^3 را اسپن می کنند.

۲- برای بررسی مستقل خطی بودن بردارهای $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ از تعریف استقلال خطی استفاده می کنیم،

$$c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + c_{3}\mathbf{u}_{3} = c_{1} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + c_{3} \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

معادلات ماتریسی حاصل به صورت زیر می باشد،

$$\begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

از آنجائیکه دترمینان ماتریس ضرایب مخالف صفر است (|A|=-10)، بردارهای $\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3$ مستقل خطی هستند، لذا برای فضای برداری \Re^3 تشکیل یک دسته بردار پایه می دهند. لذا می توان نوشت،

$$\Re^3 = sp \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \right\}$$

مثال۳-۱۹

بررسی نمایید که آیا بردارهای زیر برای فضای برداری \mathfrak{R}^3 تشکیل یک پایه می دهند.

$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{u}_4 = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$$

برای این منظور دو شرط ذکر شده در تعریف پایه را بررسی می کنیم،

۱- برای اسپن کردن فضای برداری \mathfrak{R}^3 باید هر بردار دلخواه مانند $\mathbf{r} = [r_1, r_2, r_3]$ را بتوان بصورت نرکیب خطی از این چهار بردار نمایش داد،

$$\mathbf{r} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 \rightarrow \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = c_1 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + c_4 \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$$

فرم ماتریسی و ماتریس افزوده دستگاه معادلات حاصل بصورت زیر می باشد،

$$\begin{bmatrix} 0 & -1 & 1 & -1 \\ 1 & 1 & 2 & 0 \\ 1 & 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} \longrightarrow \begin{cases} -c_2 + c_3 - c_4 = r_1 \\ c_1 + c_2 + 2c_3 = r_2 \\ c_1 + 2c_2 - c_3 - c_4 = r_3 \end{cases}$$

فرم ماتریس افزوده و سطری پلکانی کاهش یافته آن به شکل زیر بدست می آید،

$$\begin{bmatrix} 0 & -1 & 1 & -1 & | r_1 \\ 1 & 1 & 2 & 0 & | r_2 \\ 1 & 2 & -1 & -1 & | r_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \rightarrow \begin{bmatrix} \widehat{1} & 0 & 0 & -4 & | \frac{5}{2}r_1 - \frac{1}{2}r_2 + \frac{3}{2}r_3 \\ 0 & \widehat{1} & 0 & 2 & | \frac{-3}{2}r_1 + \frac{1}{2}r_2 - \frac{1}{2}r_3 \\ 0 & 0 & \widehat{1} & 1 & | \frac{-1}{2}r_1 + \frac{1}{2}r_2 - \frac{1}{2}r_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}$$

 \mathfrak{R}^3 متغیر آزاد است و دستگاه معادلات بیشمار جواب دارد. بنابراین این چهار بردار فضای برداری c_4 را اسین می کنند.

۲- برای بررسی مستقل خطی بودن بردارهای $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ از تعریف آن استفاده می کنیم،

$$c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + c_{3}\mathbf{u}_{3} + c_{4}\mathbf{u}_{4} = c_{1}\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c_{2}\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} + c_{3}\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + c_{4}\begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

فرم ماتریس افزوده و سطری پلکانی کاهش یافته حاصل به صورت زیر می باشد،

$$\begin{bmatrix} 0 & -1 & 1 & -1 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 1 & 2 & -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \rightarrow \begin{bmatrix} \widehat{1} & 0 & 0 & -4 & 0 \\ 0 & \widehat{1} & 0 & 2 & 0 \\ 0 & 0 & \widehat{1} & 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}$$

 $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ متغیر آزاد است و دستگاه معادلات بیشمار جواب دارد، بردارهای c_4 متغیر مستقل خطی نیستند و نمی توانند برای فضای برداری \mathbf{R}^3 تشکیل پایه بدهند.

مثال۳-۲۰

کدامیک از دسته بردارها و مجموعه های زیر برای فضای برداری مورد نظر تشکیل یک پایه می دهند؟

$$(\mathfrak{R}^3$$
 ر فضای برداری $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} -1 \\ 4 \\ -4 \end{bmatrix}$ (الف)

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

ابتدا شرط استقلال خطى را بررسى مى نماييم،

$$c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + c_{3}\mathbf{v}_{3} = \mathbf{0} \rightarrow c_{1}\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} + c_{2}\begin{bmatrix} -1\\ 2\\ -2 \end{bmatrix} + c_{3}\begin{bmatrix} -1\\ 4\\ -4 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

$$\begin{cases} c_{1} - c_{2} - c_{3} = 0\\ -c_{1} + 2c_{2} + 4c_{3} = 0\\ c_{1} - 2c_{2} - 4c_{3} = 0 \end{cases} \rightarrow \begin{bmatrix} 1 & -1 & -1\\ -1 & 2 & 4\\ 1 & -2 & -4 \end{bmatrix} = 0$$

لذا بردارهای $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ مستقل خطی نیستند و نمی توانند برای فضای برداری $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ تشکیل پایه ده:

$$(P_k$$
 برداری $\mathbf{p}_1 = x - 3$, $\mathbf{p}_2 = x^2 + 2x$, $\mathbf{p}_3 = x^2 + 1$ (ب

ابتدا شرط استقلال خطى را بررسى مى نماييم،

$$c_1 \mathbf{p}_1 + c_2 \mathbf{p}_2 + c_3 \mathbf{p}_3 = 0 \rightarrow c_1(x-3) + c_2(x^2 + 2x) + c_3(x^2 + 1) = 0$$

 $(c_2 + c_3)x^2 + (c_1 + 2c_2)x + (-3c_1 + c_3) = 0x^2 + 0x + 0$

$$\begin{cases} c_2 + c_3 = 0 \\ c_1 + 2c_2 = 0 \\ -3c_1 + c_3 = 0 \end{cases} \rightarrow \begin{vmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ -3 & 0 & 1 \end{vmatrix} = 5 \neq 0$$

بنابراین چندجمله ای های $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ مستقل خطی هستند. حال شرط اسپن کردن فضای برداری $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ مستقل خطی هستند. حال شرط اسپن کردن فضای برداری P_2

$$c_{1}\mathbf{p}_{1} + c_{2}\mathbf{p}_{2} + c_{3}\mathbf{p}_{3} = r_{1}x^{2} + r_{2}x + r_{3}$$

$$c_{1}(x-3) + c_{2}(x^{2} + 2x) + c_{3}(x^{2} + 1) = r_{1}x^{2} + r_{2}x + r_{3}$$

$$(c_{2} + c_{3})x^{2} + (c_{1} + 2c_{2})x + (-3c_{1} + c_{3}) = r_{1}x^{2} + r_{2}x + r_{3}$$

$$\begin{cases} c_2 + c_3 = r_1 \\ c_1 + 2c_2 = r_2 \\ -3c_1 + c_3 = r_3 \end{cases} \rightarrow \begin{vmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ -3 & 0 & 1 \end{vmatrix} = 5 \neq 0$$

لذا هر چندجمله ای مرتبه دوم بصورت $\mathbf{r}_1x^2+\mathbf{r}_2x+\mathbf{r}_3$ را می توان بصورت ترکیب خطی از \mathbf{P}_2 جندجمله ای های $\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3$ برای فضای برداری $\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3$ برای فضای برداری تشکیل پایه می دهند. لذا می توان نوشت،

$$P_2 = sp\{x-3, \quad x^2 + 2x, \quad x^2 + 1\}$$

$$(\mathbf{M}_{2 \times 2}$$
 ج $)$ $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ (ج

ابتدا شرط استقلال خطى را بررسى مى نماييم،

$$c_{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_{2} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + c_{3} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + c_{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} c_{1} + c_{2} + c_{3} + c_{4} & c_{2} + c_{3} + c_{4} \\ c_{3} + c_{4} & c_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{cases} c_1 + c_2 + c_3 + c_4 = 0 \\ c_2 + c_3 + c_4 = 0 \\ c_3 + c_4 = 0 \\ c_4 = 0 \end{cases} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 1 \neq 0$$

لذا عناصر این مجموعه مستقل خطی هستند. حال شرط اسپن کردن فضای برداری $\mathbf{M}_{2 imes2}$ را بررسی می کنیم،

$$c_{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_{2} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + c_{3} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + c_{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$
$$\begin{bmatrix} c_{1} + c_{2} + c_{3} + c_{4} & c_{2} + c_{3} + c_{4} \\ c_{3} + c_{4} & c_{4} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$

$$\begin{cases} c_1 + c_2 + c_3 + c_4 = r_{11} \\ c_2 + c_3 + c_4 = r_{12} \\ c_3 + c_4 = r_{21} \\ c_4 = r_{22} \end{cases} \rightarrow \begin{cases} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{cases} = 1 \neq 0$$

بنابراین هر ماتریس 2×2 را می توان بصورت ترکیب خطی از این چهار ماتریس نمایش داد، لذا این مجموعه ماتریس ها برای فضای برداری $M_{2 imes2}$ تشکیل پایه می دهند. لذا می توان نوشت،

$$M_{2\times 2} = sp\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

۳-۲-۷ تغییر یایه در فضای برداری

در یک فضای برداری n بُعدی مانند V هر مجموعه از n بردار مستقل خطی می تواند تشکیل یک پایه بدهد. لذا بردارهای پایه منحصر بفرد نیستند، ولی نمایش هر بردار توسط این بردارهای پایه منحصربفرد است. در اینجا نشان می دهیم که می توان ارتباط بین این پایه ها را در قالب یک ماتریس تبدیل نمایش داد.

فرض کنید بردارهای $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ و بردارهای $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ دو دسته بردارهای پایه برای فضای برداری n بُعدی مانند V باشند. در اینصورت یک بردار متعلق به این فضا مانند u را به دو صورت زیر می توان نمایش داد،

$$\mathbf{u} = b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + \dots + b_n \mathbf{e}_n = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

که در آن c_1, c_2, \ldots, c_n و b_1, b_2, \ldots, b_n اسکالرهای متناسب با پایه های مربوطه می باشند که مقادیری منحصر بفرد هستند و به آنها مختصات بردار \mathbf{u} نسبت به هر پایه گفته می شود. این اسکالرها را می توان بصورت بردارهای زیر نمایش داد،

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \quad , \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

$$[\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_n]\mathbf{b} = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_n]\mathbf{c}$$

حال می خواهیم ارتباطی بین این دو نمایش با پایه های مختلف یا به عبارتی ارتباطی بین اسکالرهای متناسب با این پایه ها پیدا کنیم. برای این منظور بردارهای پایه $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ را بصورت یک ترکیب خطے، از بردارهای پایه $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n$ می نویسیم،

$$\mathbf{e}_1 = k_{11}\mathbf{v}_1 + k_{12}\mathbf{v}_2 + \dots + k_{1n}\mathbf{v}_n$$

$$\mathbf{e}_{2} = k_{21}\mathbf{v}_{1} + k_{22}\mathbf{v}_{2} + \dots + k_{2n}\mathbf{v}_{n}$$

$$\vdots \qquad \vdots$$

$$\mathbf{e}_{n} = k_{n1}\mathbf{v}_{1} + k_{n2}\mathbf{v}_{2} + \dots + k_{nn}\mathbf{v}_{n}$$

که نمایش ماتریسی آن بصورت زیر خواهد بود،

$$[\mathbf{e}_{1} \quad \mathbf{e}_{2} \quad \dots \quad \mathbf{e}_{n}] = [\mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \dots \quad \mathbf{v}_{n}] \begin{bmatrix} k_{11} & k_{21} & \cdots & k_{n1} \\ k_{12} & k_{22} & \cdots & k_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ k_{1n} & k_{2n} & \cdots & k_{nn} \end{bmatrix} \quad (\Delta-\Upsilon)$$

ماتریس ضرایب حاصل را K در نظر می گیریم،

$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} K$$

حال با جایگذاری در رابطه قبل روابط زیر بدست می آید،

$$[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_n] K \mathbf{b} = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_n] \mathbf{c}$$

$$K \mathbf{b} = \mathbf{c} \quad \rightarrow \quad \mathbf{b} = K^{-1} \mathbf{c}$$
(6-7)

به این ترتیب ارتباط بین ضرایب c_1,c_2,\ldots,c_n و c_1,c_2,\ldots,c_n در قالب یک ماتریس بدست می آید، که به آن **ماتریس تبدیل ضرایب** از پایه های $\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n$ به این تردار برحسب پایه دیگر را نمایش یک بردار برحسب یک مجموعه از پایه ها معلوم باشد، نمایش همان بردار برحسب پایه دیگر را می توان از معادلات بالا بدست آورد. با توجه به رابطه بین ماتریس تبدیل و بردارهای پایه داده شده برای بدست آوردن ماتریس تبدیل K می توان از روش گوس – جردن استفاده نمود،

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n | \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} I | K \end{bmatrix}$$

بر این اساس برنامه basistransfer در نرم افزار MATLAB به منظور بدست آوردن ماتریس تبدیل ضرایب بین یایه ها نوشت شده است،

% K is a transition matrix from basis T to basis S

function K = basistransfer(T, S)

[m, n] = size(T);

[p, q] = size(S);

if (m ~= p) | (n ~= q)

error('Matrices must be of the same dimension')

end

K = rref([S T]);

K = K(:,(m + 1):(m + n));

مثال۳-۲۱

مجموعه بردارهای $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ و $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ در فضای برداری \mathfrak{R}^3 تشکیل دو دسته پایه را می دهند.

$$E: \left\{ \mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

$$V: \left\{ \mathbf{v}_1 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3\\0\\-1 \end{bmatrix} \right\}$$

الف) ماتریس تبدیل متناظر برای تغییر از پایه $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ به پایه $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ را بیابید. برای این منظور ابتدا هر یک از بردارهای $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ را بصورت یک ترکیب خطی از بردارهای $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ می نویسیم،

$$\mathbf{v}_1 = [1, -1, 1] = (1)\mathbf{e}_1 + (-1)\mathbf{e}_2 + (1)\mathbf{e}_3$$

$$\mathbf{v}_2 = [0, 1, 2] = (0)\mathbf{e}_1 + (1)\mathbf{e}_2 + (2)\mathbf{e}_3$$

$$\mathbf{v}_3 = [3, 0, -1] = (3)\mathbf{e}_1 + (0)\mathbf{e}_2 + (-1)\mathbf{e}_3$$

بنابراین ماتریس تبدیل متناظر بصورت زیر بدست می آید،

$$K_1 = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$

از آنجائیکه بردارهای ${\bf e}_1, {\bf e}_2, {\bf e}_3$ بردارهای پایه استاندارد برای فضای برداری ${\bf v}_1, {\bf v}_2, {\bf v}_3$ می باشند. ستون های ماتریس تبدیل در این حالت همان بردارهای ${\bf v}_1, {\bf v}_2, {\bf v}_3$ می باشند.

ب) ماتریس تبدیل متناظر برای تغییر از پایه $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ به پایه $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ را بیابید. برای این منظور این بار بردارهای $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ را بصورت ترکیب خطی از بردارهای $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ می نویسیم،

$$\mathbf{e}_{1} = [1,0,0] = (\frac{1}{10})\mathbf{v}_{1} + (\frac{1}{10})\mathbf{v}_{2} + (\frac{3}{10})\mathbf{v}_{3}$$

$$\mathbf{e}_{2} = [0,1,0] = (\frac{-3}{5})\mathbf{v}_{1} + (\frac{2}{5})\mathbf{v}_{2} + (\frac{1}{5})\mathbf{v}_{3}$$

$$\mathbf{e}_{3} = [0,0,1] = (\frac{3}{10})\mathbf{v}_{1} + (\frac{3}{10})\mathbf{v}_{2} + (\frac{-1}{10})\mathbf{v}_{3}$$

این بار ماتریس تبدیل متناظر بصورت زیر بدست می آید،

$$\boldsymbol{K}_2 = \begin{bmatrix} \frac{1}{10} & \frac{-3}{5} & \frac{3}{10} \\ \frac{1}{10} & \frac{2}{5} & \frac{3}{10} \\ \frac{3}{10} & \frac{1}{5} & \frac{-1}{10} \end{bmatrix}$$

همانطور که مشاهده می شود $K_2 = (K_1)^{-1}$ می باشد.

. بیابید.
$$E$$
 بیابید U بردار \mathbf{u} در پایه V بیابید \mathbf{u} بیابید. \mathbf{u} بیابید \mathbf{u} بیابید. \mathbf{u} بیابید \mathbf{u} بیابید.

ابتدا باید بردار \mathbf{u} را برحسب پایه های $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ بنویسیم،

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = (-2) \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + (3) \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + (4) \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 0 \end{bmatrix}$$

با توجه به قسمت (الف) ماتریس تبدیل ضرایب از پایه V به پایه E را داریم، بنابراین،

$$K_1 \mathbf{c} = \mathbf{b} \longrightarrow \begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & 0 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 0 \end{bmatrix}$$

لذا نمایش بردار ${f u}$ در پایه E بصورت زیر خواهد بود،

$$\mathbf{u} = b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + b_3 \mathbf{e}_3 = (10) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (5) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + (0) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 0 \end{bmatrix}$$

باشد، ورت زیر می باشد، $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ برای تغییر از پایه $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ به پایه basistransfer اجرای برنامه $\mathbf{e}_1 = [1;0;0];$ $\mathbf{e}_2 = [0;1;0];$ $\mathbf{e}_3 = [0;0;1];$

$$v1 = [1;-1;1]; v2 = [0;1;2]; v3 = [3;0;-1];$$

 $T = [v1 \ v2 \ v3];$

 $S = [e1 \ e2 \ e3];$

K1 = basistransfer(T, S)

K1 =

1 0 3

-1 1 0

1 2 -1

اجرای برنامه برای تغییر از پایه $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ به پایه $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ بصورت زیر می باشد،

T = [e1 e2 e3];

 $S = [v1 \ v2 \ v3];$

K2 = basistransfer(T, S)

K2 =

0.1000 -0.6000 0.3000

0.1000 0.4000 0.3000

0.3000 0.2000 -0.1000

حال اگر بردار ${f u}$ در پایه اول بصورت K_1 می توان الار بردار ${f u}$ در پایه اول بصورت ${f u}$ حال اگر بردار ${f u}$ در پایه اول بصورت ${f u}$ حال الار بردار ${f u}$ در پایه اول بصورت ${f u}$ حال الار بردار ${f u}$ در پایه اول بصورت ${f u}$

تبدیل یافته آن برحسب پایه های دوم بدست آورد،

uv = [-2;3;4];

ue = K1 * uv

ue =

10

5

0

مثال ٣-٢٢

بردارهای مستقل خطی زیر را در فضای سه بُعدی \Re^3 در نظر بگیرید،

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

یک پایه بدیهی برای این فضا پایه های استاندارد $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ می باشند،

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

می دانیم که مجموعه بردارهای $\mathbf{u}_1, \mathbf{u}_2, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ وابسته خطی می باشند. بنابراین بردار \mathbf{e}_3 را می توان بصورت یک ترکیب خطی از بقیه بردارها نوشت،

$$\mathbf{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \left(\frac{-4}{3}\right) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \left(-2\right) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \left(\frac{1}{3}\right) \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

حال بردارهای ${f e}_1, {f e}_2, {f e}_1, {f e}_2$ را بصورت یک ترکیب خطی از بقیه بردارها می نویسیم،

$$\mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} [0,1,0] = \left(\frac{-1}{2}\right) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \left(\frac{1}{2}\right) \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \left(0\right) \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

لذا بردارهای باقی مانده $\mathbf{u}_1, \mathbf{u}_2, \mathbf{e}_1$ مستقل خطی بوده و تشکیل پایه برای فضای $\mathbf{u}_1, \mathbf{u}_2, \mathbf{e}_1$ می دهند. پس

$$\mathfrak{R}^{3} = sp \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

بردار
$$\mathbf{u}$$
 تحت بردارهای پایه های استاندارد $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ بصورت \mathbf{u} نمایش داده می شود. \mathbf{u}

$$\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathbf{e}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \longrightarrow \mathbf{u} = (1)\mathbf{e}_1 + (2)\mathbf{e}_2 + (3)\mathbf{e}_3 = (1)\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (2)\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + (3)\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathbf{e}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \rightarrow \mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = c_1 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

حال دستگاه معادلات مربوطه را بدست می آوریم،

$$\begin{cases} c_1+c_2-c_3=1\\ c_1-c_2+c_3=2\\ -c_1+c_2+c_3=3 \end{cases} \to c_1=1.5, \quad c_2=2, \quad c_3=2.5$$

$$c_1=1.5, \quad c_2=2.5$$

$$c_1=1.5, \quad c_1=1.5$$

$$c_1=1.5, \quad c_2=1.5$$

$$c_1=1.5, \quad c_2=1.5$$

$$c_1=1.5, \quad c_1=1.5$$

$$c_1=1.5, \quad c_2=1.5$$

$$c_1=1.5, \quad c_2=1.5$$

$$c_1=1.5, \quad$$

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \rightarrow \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = (1.5) \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + (2) \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + (2.5) \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow [\mathbf{u}]_{\mathbf{v}} = \begin{bmatrix} 1.5 \\ 2 \\ 2.5 \end{bmatrix}$$

ب) ماتریس تبدیل ضرایب از پایه های $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ به پایه های $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ را بدست آورید.

$$\mathbf{e}_1 = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3 \qquad \rightarrow \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + k_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{e}_{2} = k_{4}\mathbf{v}_{1} + k_{5}\mathbf{v}_{2} + k_{6}\mathbf{v}_{3} \rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = k_{4}\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + k_{5}\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + k_{6}\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{e}_{3} = k_{7}\mathbf{v}_{1} + k_{8}\mathbf{v}_{2} + k_{9}\mathbf{v}_{3} \rightarrow \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = k_{7}\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + k_{8}\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + k_{9}\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

با حل هر یک از این دستگاه معادلات ضرایب مورد نظر بدست می آید، $k_1 = 0.5, \quad k_2 = 0.5, \quad k_3 = 0$ $k_4 = 0.5$, $k_5 = 0$, $k_6 = 0.5$ $k_7 = 0$, $k_8 = 0.5$, $k_9 = 0.5$

وان نوشت،
$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} \begin{bmatrix} k_1 & k_4 & k_7 \\ k_2 & k_5 & k_8 \\ k_3 & k_6 & k_9 \end{bmatrix}$$

می توان نشان داد که اگر این ماتریس را در ضرایب نمایش ${f u}$ برحسب پایه های ${f e}_1, {f e}_2, {f e}_3$ ضرب کنیم، ضرایب نمایش ${f u}$ برحسب پایه های ${f v}_1,{f v}_2,{f v}_3$ بدست می آید،

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2 \\ 2.5 \end{bmatrix} \rightarrow [\mathbf{u}]_{\mathbf{e}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} , [\mathbf{u}]_{\mathbf{v}} = \begin{bmatrix} 1.5 \\ 2 \\ 2.5 \end{bmatrix}$$

جواب همان ضرایبی است که در قسمت (الف) بدست آمد.

با استفاده از برنامه basistransfer ماتریس تبدیل از پایه های $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ به محاسبه می کنیم، سیس نمایش \mathbf{u} تحت پایه های $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ را بدست می آوریم

```
e1 = [1;0;0]; e2 = [0;1;0]; e3 = [0;0;1];
v1 = [1;1;-1]; v2 = [1;-1;1]; v3 = [-1;1;1];
T = [e1 \ e2 \ e3];
S = [v1 \ v2 \ v3];
K1 = basistransfer(T, S)
K1 =
    0.5000
                0.5000
    0.5000
                           0.5000
                0.5000
                           0.5000
ue = [1;2;3];
uv = K1 * ue
uv =
    1.5000
     2.0000
     2.5000
```

ج) با استفاده از ماتریس تبدیل بدست آمده، بردارهای زیر را برحسب پایه های $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ نمایش دهید.

$$[\mathbf{w}]_{\mathbf{e}} = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}, \ [\mathbf{s}]_{\mathbf{e}} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \ [\mathbf{t}]_{\mathbf{e}} = \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$$

$$[\mathbf{w}]_{\mathbf{e}} = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \rightarrow \mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = c_1 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$

در واقع باید ضرایب c_1, c_2, c_3 را بدست آوریم. لیکن این بار به جای حل دستگاه معادلات همانند قسمت (الف)، از ماتریس تبدیل ضرایب استفاده می نماییم،

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1.5 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \longrightarrow \mathbf{w} = -0.5\mathbf{v}_1 + 1.5\mathbf{v}_2 + \mathbf{v}_3$$
$$[\mathbf{w}]_{\mathbf{v}} = \begin{bmatrix} -0.5 \\ 1.5 \\ 1 \end{bmatrix}$$

برای بردارهای
$$[\mathbf{s}]_{\mathbf{e}} = egin{bmatrix} 1 \ -2 \ 0 \end{bmatrix}, & [\mathbf{t}]_{\mathbf{e}} = egin{bmatrix} 4 \ -1 \ 1 \end{bmatrix}$$
 هم همانند قبل عمل می کنیم،

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 0.5 \\ -1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \longrightarrow \mathbf{s} = -0.5\mathbf{v}_1 + 0.5\mathbf{v}_2 - \mathbf{v}_3$$

$$[\mathbf{s}]_{\mathbf{v}} = \begin{bmatrix} -0.5\\0.5\\-1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2.5 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \longrightarrow \mathbf{t} = 1.5\mathbf{v}_1 + 2.5\mathbf{v}_2 + 0\mathbf{v}_3$$

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}_{\mathbf{v}} = \begin{bmatrix} 1.5 \\ 2.5 \\ 0 \end{bmatrix}$$

با استفاده از برنامه basistransfer نوشته شده در نرم افزار MATLAB داریم، we = [0;-1;3]; se = [1;-2;0]; te = [4;-1;1];

wv = K1 * we

wv =

-0.5000

1.5000

1.0000

sv = K1 * se

sv =

-0.5000

0.5000

-1.0000

tv = K1 * te

v =

1.5000

2.5000

0

-X-Y-رتبه ماتریس ها

بنابر تعریف **رتبه** ٔ یک ماتریس $A_{m imes n}$ برابر با ماکزیمم تعداد ستون های (یا سطرهای) مستقل خطی در آن ماتریس است، که با نماد $\operatorname{rank}(A)$ نشان داده می شود. برای بدست آوردن ستون های مستقل خطی یک ماتریس می توان از فرم سطری پلکانی کاهش یافته آن کمک گرفت.

از آنجائیکه رتبه یک ماتریس بصورت بزرگترین درجه کلیه کهادهای غیر صفر آن ماتریس تعریف می شود، می توان نتیجه گرفت که رتبه یک ماتریس مربعی مانند $A_{n imes n}$ حداکثر می تواند برابر n باشد و این زمانی است که تمامی ستون های (یا سطرهای) ماتریس مستقل خطی باشند و در اینصورت $0 \neq |A|$ یعنی، ماتریس $A_{n \times n}$ غیر منفرد است. در چنین حالتی ماتریس $A_{n \times n}$ را رتبه کامل می نامند و اگر |A|=0 باشد ماتریس منفرد بوده و تعدادی از ستون های آن وابستگی خطی دارند، چنین ماتریسی نقص رتبه تم دارد.

برای ماتریس های $A_{m \times n}$ غیر مربعی، $\min(m,n) \leq \min(M,n)$ است، که در صورت مساوی بودن می گوئیم ماتریس $A_{m \times n}$ رتبه کامل است و اگر کوچکتر باشد ماتریس $A_{m \times n}$ نقص رتبه دارد.

نکته۱: ضرب یک ماتریس غیرمنفرد در ماتریس $A_{m \times n}$ رتبه آن را تغییر نمی دهد.

مثال ۲۴-۳

رتبه ماتریس های A و B را بدست آورید.

$$A = \begin{bmatrix} 5 & 9 & 3 \\ 3 & -5 & -6 \\ 1 & 5 & 3 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & -8 \\ 4 & -3 & -7 \\ 1 & 12 & -3 \end{bmatrix}$$

ے فرم سطری پلکانی کاهش یافته ماتریس
$$A$$
 بصورت زیر می باشد،
$$A = \begin{bmatrix} 5 & 9 & 3 \\ 3 & -5 & -6 \\ 1 & 5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 0 & -0.75 \\ 0 & \boxed{1} & 0.75 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \operatorname{rank}(A) = 2$$

با توجه به محل عناصر محوری می توان فهمید که ستون های اول و دوم استقلال خطی دارند و ستون سوم وابسته خطی است. لذا ماتریس A فقط دو ستون مستقل خطی دارد و رتبه آن دو می باشد و لذا این ماتریس نقص رتبه دارد.

در نرم افزار MATLAB از دستور rank(A) برای بدست آوردن رتبه ماتریس استفاده مے، شود،

Rank

Full Rank

Rank Deficiency

A = [5 9 3;3 -5 -6;1 5 3];

rank(A)

ans =

از طرفی رتبه ماتریس برابر است با تعداد عناصر محوری در فرم سطری پلکانی کاهش یافته ماتریس لذا می توان از دستور rref نیز استفاده نمود،

A = [5 9 3;3 -5 -6;1 5 3];

[R,p] = rref(A)

R =

p =

1

length(p)

ans =

در اینجا دستور length(p) رتبه ماتریس را می دهد و p با تعیین محل عناصر محوری نشان می دهد که کدام ستون ها مستقل خطی هستند.

پلکانی کاهش یافته ماتریس
$$B$$
 نیز بصورت زیر می باشد،
$$B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & -8 \\ 4 & -3 & -7 \\ 1 & 12 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \operatorname{rank}(B) = 3$$

B مستند. لذا رتبه ماتریس محوری هر سه ستون ماتریس مستقل خطی هستند. لذا Bبرابر سه است و رتبه کامل دارد.

با نرم افزار MATLAB داریم،

 $B = [1 \ 1 \ 2; 1 \ 3 \ -8; 4 \ -3 \ -7; 1 \ 12 \ -3];$

rank(B)

ans =

3

۳-۲-۳ فضای گستره ماتریس ها

صورت کلی دستگاه معادلات را می توان به شکل زیر در نظر بگیرید،

$$A_{m\times n}\mathbf{x}_{n\times 1}=\mathbf{b}_{m\times 1}$$

ماتریس A را می توان بصورت یک نگاشتی در نظر گرفت که فضای nبعدی V_1 بر روی میدان T را به فضای mبعدی V_2 بر روی میدان F می نگارد.

 ${f b}$ بنابر تعریف **فضای گستره** ${f v}$ یک نگاشت خطی مانند ${f A}$ مجموعه ای است شامل عناصر در فضای mبعدی V_2 که برای آنها حداقل یک بردار مانند ${f x}$ در فضای nبعدی از وجود دارد، که رابطه $A\mathbf{x} = \mathbf{b}$ را برآورده سازد و آن را با نماد R(A) نشان می دهند. به راحتی می توان نشان داد که این فضای گستره یک زیر فضا از فضای mبعدی V_2 است.

$$R(A) = \left\{ \mathbf{b} \in V_2 \mid \exists \mathbf{x} \in V_1 \to A\mathbf{x} = \mathbf{b} \right\}$$
 (Y-\(\mathbf{r}\))

نکته۱: فضای گستره یک ماتریس همان فضای ستون های ماتریس است.

 $\dim[R(A)] = \operatorname{rank}(A)$. نکته ۲: رتبه یک ماتریس معادل با بُعد فضای گستره آن ماتریس است.

مثال ۲۵-۳

فضای گستره و رتبه ماتریس های زیر را بدست آورید،
$$A_{4\times 5} = \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 1 & 4 & -7 & 3 & -2 \\ 1 & 5 & -9 & 5 & -9 \\ 0 & 3 & -6 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} \widehat{1} & 0 & 1 & 0 & 1 \\ 0 & \widehat{1} & -2 & 0 & 3 \\ 0 & 0 & 0 & \widehat{1} & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (الف

می دانیم فضای گستره ماتریس A کلیه ترکیبهای خطی ممکن کلیه ستون های A است. اگر فرم سطری پلکانی کاهش یافته ماتریس A را بدست آوریم، با توجه به محل عناصر محوری می توان فهمید که ستون های اول، دوم و چهارم مستقل خطی هستند. لذا R(A) بصورت زیر تعریف می شود،

^{&#}x27;Range Space

$$R(A) = sp \left\{ \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\5\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\5\\2 \end{bmatrix} \right\}$$

به عبارتی R(A) برابر است با تمامی ترکیبهای خطی ستون های اول، دوم و چهارم ماتریس A. از طرفی چون ماتریس A سه ستون مستقل خطی دارد، لذا R(A)=3 است و ماتریس نقص رتبه دارد.

در دستور (R,p]=rref(A) نرم افزار (R,p]=rref(A) بردار بردار وانشان می دهد، لذا می توان با استفاده از آن پایه های فضای گستره را بدست آورد،

$$A = [1 \ 3 - 5 \ 1 \ 5; 1 \ 4 - 7 \ 3 - 2; 1 \ 5 - 9 \ 5 - 9; 0 \ 3 - 6 \ 2 - 1];$$

A(:,p)

ans =

1 3 1 1 4 3

. . .

length(p)

ans =

3

ابتدا ماتریس A را به فرم سطری پلکانی کاهش یافته تبدیل می کنیم، با توجه به محل عناصر محوری ستون های اول و سوم مستقل خطی هستند و فضای گستره ماتریس A فضایی است که توسط این دو ستون اسپن می شود. چون دو بردار مستقل خطی دارد، لذا رتبه ماتریس A که همان بُعد فضای گستره می باشد دو است.

$$R(A) = sp\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\} , \quad \operatorname{rank}(A) = 2$$

با استفاده از نرم افزار MATLAB داريم،

 $A = [1 \ 1 \ 1 \ 1; 1 \ 1 \ -1 \ -1; 0 \ 0 \ 1 \ 1];$

[R,p] = rref(A);

A(:,p)

ans =

1 1

1 -1

0 1

length(p)

ans =

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \\ 0 & 2 & 1 \\ 3 & 8 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

ابتدا ماتریس A را به فرم سطری پلکانی کاهش یافته تبدیل می کنیم، با توجه به محل عناصر محوری ستون های اول و دوم مستقل خطی هستند، لذا رتبه ماتریس A دو است و R(A) فضایی است که توسط این بردارهای ستونی اسپن می شود،

$$R(A) = sp \begin{cases} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \\ 8 \end{bmatrix} \end{cases}, \quad rank(A) = 2$$

با استفاده از نرم افزار MATLAB داریم،

A = [1 2 0;-1 0 1;0 2 1;3 8 1];

[R, p] = rref(A);

A(:,p)

ans =

1 2

-1 (

0 2

3 8

length(p)

ans =

2

نکته ۳: با توجه به مفاهیم فضای گستره و رتبه ماتریس، دستگاه معادلات $\mathbf{A}_{m\times n}\mathbf{x}_{n\times 1}=\mathbf{b}_{m\times 1}$ با توجه به مفاهیم فضای گستره و رتبه ماتریس، دستگاه معادلات $\mathbf{b}_{m\times 1}\in R(A)$ باشد، در اینصورت داریم، rank(A)=r $rank(A\mid \mathbf{b})=r$

اگر معادله $\mathbf{k}_{m \times n} \mathbf{x}_{n \times 1} = \mathbf{b}_{m \times 1}$ را بصورت زیر بسط دهیم،

$$A\mathbf{x} = \mathbf{b} \longrightarrow x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \mathbf{b}$$

برای آنکه دستگاه معادلات جواب داشته باشد باید بتوان بردار $\mathbf{b}_{m \times 1}$ را بصورت ترکیب خطی از ستون های ماتریس ماتریس $A_{n \times n}$ نوشت، به عبارتی بردار $\mathbf{b}_{m \times 1}$ باید در فضای اسپن شده توسط ستون های ماتریس $A_{m \times n}$ قرار داشته باشد. در چنین حالتی افزودن ستون بردار $\mathbf{b}_{m \times 1}$ به ماتریس $\mathbf{b}_{m \times n}$ رتبه آن را تغییر نخواهد داد، لذا $\mathbf{b}_{m \times 1}$ $\mathbf{b}_{m \times 1}$ می باشد.

مثال۳-۲۶

بدون حل معادلات وجود یا عدم وجود جواب را برای دستگاه معادلات زیر بررسی نمایید.

$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 2 \\ 2x_1 + x_2 + x_3 - x_4 = 4 \\ 5x_1 + 4x_2 + x_3 - x_4 = 9 \end{cases} \rightarrow A\mathbf{x} = \mathbf{b} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 1 & 1 & -1 \\ 5 & 4 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 9 \end{bmatrix}$$

 $\mathrm{rank}(A)=2,\mathrm{rank}(A\mid\mathbf{b})=3\to\mathbf{b}\notin R(A)$ سیستم ناسازگار است و دستگاه جواب ندارد MATLAB داریم،

$$A = [1 \ 2 \ -1 \ 1; 2 \ 1 \ 1 \ -1; 5 \ 4 \ 1 \ -1];$$

b = [2;4;9];

rank(A)

ans =

2

rank([A b])

ans =

$$(-x_1 + 2x_2 + 4x_3 = 2)$$

$$(x_1 + 2x_2 + x_3 = 1)$$

$$(3x_1 + 5x_2 + x_3 = 3)$$

$$A\mathbf{x} = \mathbf{b} \rightarrow \begin{bmatrix} -1 & 2 & 4 \\ 1 & 2 & 1 \\ 3 & 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

 ${
m rank}(A) = {
m rank}(A \, | \, {f b}) = 3$ \longrightarrow سیستم سازگار است و یک جواب منحصر بفرد دارد. ${f b} \in R(A)$ و ماتریس ضرایب مربعی و رتبه کامل دارد.

با استفاده از نرم افزار MATLAB داریم،

3

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ x_1 + 2x_2 + 2x_3 = 5 \\ 2x_1 + 3x_2 + x_3 = 6 \end{cases} \longrightarrow A\mathbf{x} = \mathbf{b} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

 $\mathrm{rank}(A) = \mathrm{rank}(A \,|\, \mathbf{b}) = 2$ \longrightarrow سیستم سازگار است و دستگاه بیشمار جواب دارد $\mathbf{b} \in R(A)$ و ماتریس ضرایب مربعی است و نقص رتبه دارد. MATLAB داریم،

A = [1 1 -1;1 2 2;2 3 1];
b = [1;5;6];
rank(A)
ans =
 2
rank([A b])
ans =
 2

۳-۲-۱۰ فضای پوچی ماتریس ها

بنابر تعریف فضای پوچی $^{\prime}$ یک نگاشت خطی $A_{m imes n}$ مجموعه ای است شامل کلیه بردارهای بنابر تعریف فضای پوچی با نماد N(A) نشان داده می شود، $A \mathbf{x} = \mathbf{0}$ را برآورده سازد. فضای پوچی با نماد $N(A) = \{\mathbf{x} \in V_1 \to A \mathbf{x} = \mathbf{0}\}$ (۸-۳)

بعد فضای پوچی را پوچی v(A) ماتریس A می نامند و با نماد v(A) یا v(A) نشان می دهند. $\dim[N(A)] = v(A)$

نكته ۱: فضاى پوچى N(A) مجموعه تمامى پاسخهاى معادله $\mathbf{A}\mathbf{x} = \mathbf{0}$ است.

نکته ۲: در صورتیکه تنها پاسخ معادله $A\mathbf{x} = \mathbf{0}$ همان پاسخ بدیهی (بردار صفر) باشد، بنابراین رتبه ماتریس A کامل است، به عبارتی کلیه بردارهای ستونی (یا سطری) این ماتریس مستقل خطی هستند.

نکته $oldsymbol{v}$: فضای پوچی، یک زیر فضا از فضای V_1 است، در حالیکه فضای گستره، یک زیر فضا از فضای V_2 است.

 $A_{m imes n}$ می توان نوشت، نکته*: برای ماتریس

$$rank(A) + nullity(A) = n$$
 (9-7)

مثال ۳-۲۷

ماتریس A را در نظر بگیرید،

$$A = \begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 1 & 4 & -7 & 3 & -2 \\ 1 & 5 & -9 & 5 & -9 \\ 0 & 3 & -6 & 2 & -1 \end{bmatrix}$$

می خواهیم فضای پوچی و پوچی این ماتریس را بدست آوریم، $\mathbf{A}\mathbf{x} = \mathbf{0}$ لذا باید جواب معادله $\mathbf{A}\mathbf{x} = \mathbf{0}$ را بدست آوریم،

$$\begin{bmatrix} 1 & 3 & -5 & 1 & 5 \\ 1 & 4 & -7 & 3 & -2 \\ 1 & 5 & -9 & 5 & -9 \\ 0 & 3 & -6 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

حال فرم سطری پلکانی کاهش یافته ماتریس را بدست می آوریم،

Nullity

^{&#}x27; Null Space

$$\begin{bmatrix} \widehat{1} & 0 & 1 & 0 & 1 \\ 0 & \widehat{1} & -2 & 0 & 3 \\ 0 & 0 & 0 & \widehat{1} & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

و دستگاه معادلات نهایی به فرم زیر بدست می آید.

$$\begin{cases} x_1 + x_3 + x_5 = 0 \\ x_2 - 2x_3 + 3x_5 = 0 \\ x_4 - 5x_5 = 0 \end{cases}$$

باید توجه کرد که تعداد این معادلات برابر با رتبه ماتریس A می باشد. از تعداد معادلات کمتر از مجهولات است، لذا دستگاه بیشمار جواب دارد و هر بردار $\mathbf{x} = [x_1, x_2, x_3, x_4, x_5]$ که سه معادله بالا را برآورده سازد یک بردار متعلق به فضای پوچی ماتریس A خواهد بود. تعداد بردارهایی که بدین ترتیب می توان انتخاب کرد نامحدود است، لیکن تعداد بردارهای مستقل خطی برابر با بُعد فضای پوچی می باشد.

$$\operatorname{nullity}(A) = n - \operatorname{rank}(A) = 5 - 3 = 2$$

بطور مثال دو بردار زیر مستقل خطی هستند و سه معادله بالا را برآورده می کنند، بنابراین هر پاسخ معادله $\mathbf{A}\mathbf{x}=\mathbf{0}$ باید به اسپن این دو بردار تعلق داشته باشد، به عبارتی، این دو بردار یک پایه برای N(A) تشکیل می دهند.

$$N(A) = sp \left\{ \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

در نرم افزار MATLAB دو دستور (A, r') و null(A, r') دو دارند. فضای پوچی ماتریس وجود دارند.

- در دستور $\operatorname{null}(A, r')$ همانند آنچه که در محاسبات دستی صورت می گیرد، پایه های فضای پوچی با توجه به فرم سطری پلکانی کاهش یافته ماتریس محاسبه می گردد.

- در دستور $\operatorname{null}(A)$ نرم افزار پایه های یکامتعامد شده فضای پوچی را که به روش عددی به دست آمده ارائه می دهد.

به اجرای این دو دستور برای ماتریس A توجه نمایید،

 $A = [1 \ 3 \ -5 \ 1 \ 5; 1 \ 4 \ -7 \ 3 \ -2; 1 \ 5 \ -9 \ 5 \ -9; 0 \ 3 \ -6 \ 2 \ -1];$

null(A,'r')

ans =

-1 -1

2 - 3

1 (

0

0 1

null(A)

ans =

-0.5050 0.1313

0.6504 0.5473

0.4331 0.0307

0.3596 - 0.8100

0.0719 -0.1620

مثال۳-۲۸

پوچی و فضای پوچی ماتریس های زیر را بدست آورید.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

از آنجاییکه $\operatorname{rank}(A)=2$ است، لذا پوچی ماتریس A برابر با دو می باشد،

$$\text{nullity}(A) = \nu(A) = \text{n-rank}(A) = 4 - 2 = 2$$

 $A\mathbf{x} = \mathbf{0}$ بنابراین فضای پوچی ماتریس A دو بردار مستقل خطی دارد. حال با حل دستگاه معادلات این دو بردار را بدست می آوریم،

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

بنابراین داریم،

$$\begin{cases} x_1 + x_2 = 0 \\ x_3 + x_4 = 0 \end{cases}$$

تعداد معادلات برابر با رتبه ماتریس است با حل این دستگاه بردارهای پایه N(A) بدست می آید،

$$N(A) = sp \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \right\}$$

با استفاده از نرم افزار MATLAB داریم،

 $A = [1 \ 1 \ 1 \ 1; 1 \ 1 \ -1 \ -1; 0 \ 0 \ 1 \ 1];$

null(A,'r')

ans =

$$B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \\ 0 & 2 & 1 \\ 3 & 8 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

از آنجاییکه $2 = \operatorname{rank}(B) = 1$ است، لذا پوچی ماتریس B برابر با یک می باشد، $\operatorname{rank}(B) = v(B) = \operatorname{rank}(B) = 3 - 2 = 1$

نابراین فضای پوچی ماتریس B فقط یک بردار مستقل خطی دارد که بصورت زیر بدست می آید،

$$B\mathbf{x} = 0 \longrightarrow \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \\ 0 & 2 & 1 \\ 3 & 8 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

با حل این دستگاه معادلات بردارهای پایه N(B) بدست می آید،

$$\begin{cases} x_1 - x_3 = 0 \\ x_2 + \frac{1}{2}x_3 = 0 \end{cases} \longrightarrow N(B) = sp \begin{cases} \begin{bmatrix} 1 \\ \frac{-1}{2} \\ 1 \end{bmatrix} \end{cases}$$

با استفاده از نرم افزار MATLAB داریم،

B = [1 2 0;-1 0 1;0 2 1;3 8 1]; null(B,'r')

ans =

1.0000

-0.5000

1.0000

۳-۲-۱۱ زیرفضاهای اساسی ماتریس ها

اساسی کی ماتریس $A_{m \times n}$ با رتبه min(m,n) و با رتبه $A_{m \times n}$ می توان چهار زیرفضای اساسی بصورت زیر تعریف کرد،

فضای ستون ها 7 : در واقع همان فضای گستره ماتریس A یا R(A) می باشد، که بُعد آن برابر P(A) است. این فضا مجموعه ای از ترکیبهای خطی ستون های ماتریس P(A) است، به عبارتی توسط ستون های ماتریس P(A) اسپن می شود. در فرم سطری پلکانی کاهشی ماتریس P(A) ستونهایی که عناصر محوری در آن قرار دارند مطابق با بردارهای پایه فضای ستون ها خواهد بود. بُعد فضای ستون ها برابر با رتبه ماتریس P(A) می باشد.

$$R(A) = \left\{ \mathbf{b} \in \mathfrak{R}^m \mid \exists \mathbf{x} \in \mathfrak{R}^n \to A\mathbf{x} = \mathbf{b} \right\} , \quad \dim[R(A)] = \operatorname{rank}(A)$$

فضای پوچی چپ $^{"}$: در واقع همان فضای پوچی ماتریس A^{T} است، که آن را با نماد $N(A^{T})$ نشان می دهند و بُعد آن برابر m-r است. این فضا مجموعه ای از $\mathbf{x} \in \mathfrak{R}^{m}$ است که عمود بر تمامی ستون های ماتریس A (یا سطرهای ماتریس A^{T}) هستند و از این جهت آن را مکمل متعامد فضای A نیز نشان می دهند. بُعد فضای پوچی چپ برابر با تعداد سطرها منهای رتبه ماتریس A است.

$$N(A^T) = \left\{ \mathbf{x} \in \mathfrak{R}^m \to A^T \mathbf{x} = \mathbf{0} \right\} \quad , \quad \dim[N(A^T)] = m - \operatorname{rank}(A) \quad (1 \cdot -7)$$

Left Nullspace

^{&#}x27; Four Fundamental Subspaces

Column Space

فضای سطرها A^T است، که با نماد فضای سطرها A^T است، که با نماد فضای سطرها در واقع زیرفضایی است که $R(A^T)$ نشان داده می شود و بُعد آن برابر A می باشد. فضای سطرها در واقع زیرفضایی است که توسط سطرهای ماتریس A اسپن می شود یا به عبارتی شامل کلیه ترکیب های خطی سطرهای ماتریس A می باشد. در فرم سطری پلکانی کاهشی ماتریس A سطرهای غیر صفر معادل با بردارهای پایه برای فضای سطرها می باشند. بُعد فضای سطرها برابر با رتبه ماتریس A می باشد.

$$R(A^T) = \left\{ \mathbf{b} \in \mathfrak{R}^n \mid \exists \mathbf{x} \in \mathfrak{R}^m \to A^T \mathbf{x} = \mathbf{b} \right\} \quad , \quad \dim[R(A^T)] = \operatorname{rank}(A) \, (11-7)$$

فضای پوچی: همانطور که قبلاً نیز مطرح گردید این فضا را با نماد N(A) نمایش می دهند، که بُعد A نمایش بوچی: همانطور که قبلاً نیز مطرح گردید این فضا را با نماد $\mathbf{x} \in \mathbb{R}^n$ است. این فضا مجموعه ای از $\mathbf{x} \in \mathbb{R}^n$ است که عمود بر تمامی سطرهای ماتریس $\mathbf{x} \in \mathbb{R}^n$ هستند و از این جهت آن را مکمل متعامد فضای $\mathbf{x} \in \mathbf{R}(A^T)$ یا گرنل $\mathbf{x} \in \mathbf{x}$ است. ماتریس $\mathbf{x} \in \mathbf{x}$ نامند. بُعد فضای پوچی برابر با تعداد ستون ها منهای رتبه ماتریس $\mathbf{x} \in \mathbf{x}$ است. $N(A) = \{\mathbf{x} \in \mathbb{R}^n \to A\mathbf{x} = \mathbf{0}\}$ dim[N(A)] = nullity(A) = n - rank(A)

نکته ا: در حل دستگاه معادلات $\mathbf{dx} = \mathbf{b}$ اگر $N(A^T)$ تهی باشد، آنگاه $\mathbf{b} \in R(A)$ است و سیستم $A\mathbf{x} = \mathbf{b}$ است که اگر $A\mathbf{x} = \mathbf{b}$ سازگار است و همواره حداقل یک جواب دارد و تهی بودن N(A) بیانگر آن است که اگر یاسخی وجود داشته باشد، آن پاسخ منحصر بفرد است.

مثال٣-٣٩

ماتریس زیر را در نظر بگیرید،

$$A = \begin{bmatrix} 1 & -2 & 1 & 0 & 2 \\ 1 & -1 & 4 & 1 & 3 \\ -1 & 3 & 2 & 1 & -1 \\ 2 & -3 & 5 & 1 & 5 \end{bmatrix}$$

در اینجا $\operatorname{rank}(A)=2$ و فرم سطری پلکانی کاهش یافته آن بصورت زیر می باشد،

همانطور که پیداست ستون های اول و دوم شامل عناصر محوری هستند. لذا فضای ستون ها یا همان فضای گستره بصورت زیر است،

Kernel

_

^{&#}x27;Row Space

$$R(A) = sp \begin{cases} \begin{bmatrix} 1\\1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -2\\-1\\3\\-3 \end{bmatrix} \end{cases}, \quad \dim[R(A)] = 2$$

فضای سطرها معادل با سطرهای غیر صفر در فرم سطری پلکانی کاهشی است،

$$R(A^{T}) = sp \begin{cases} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 7 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \\ 2 \end{bmatrix}, & \dim[R(A^{T})] = 2 \end{cases}$$

فضای پوچی معادل با مجموعه جواب معادله $\mathbf{A}\mathbf{x}=\mathbf{0}$ می باشد. این مجموعه جواب را هم می توان با استفاده از فرم سطری پلکانی کاهش یافته بدست آورد،

$$A_{R}\mathbf{x} = x_{1} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + x_{2} \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} + x_{3} \begin{bmatrix} 7\\3\\0\\0 \end{bmatrix} + x_{4} \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + x_{5} \begin{bmatrix} 4\\1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

دستگاه معادلات حاصل بصورت زیر بدست می آید،

$$\begin{cases} x_1 + 7x_3 + 2x_4 + 4x_5 = 0 \\ x_2 + 3x_3 + x_4 + x_5 = 0 \end{cases}$$

A همانطور که پیشتر نیز گفته شد تعداد این معادلات به بُعد فضای گستره یا همان رتبه ماتریس بستگی دارد. با حل این دستگاه فضای پوچی ماتریس A بصورت زیر بدست می آید،

$$N(A) = sp \begin{cases} \begin{bmatrix} -7 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{cases}, \quad \dim[N(A)] = 3$$

فضای پوچی چپ معادل با مجموعه جواب معادله $\mathbf{A}^T\mathbf{x}=\mathbf{0}$ می باشد. لذا ابتدا ماتریس A^T را بدست می آوریم و سپس آن را به فرم سطری پلکانی کاهشی تبدیل می کنیم و همانند بالا عمل می نماییم.

ستگاه معادلات حاصل بصورت زیر بدست می آید،

$$\begin{cases} x_1 - 2x_3 + x_4 = 0 \\ x_2 + x_3 + x_4 = 0 \end{cases}$$

تعداد معادلات برابر با بُعد $R(A^T)$ می باشد، با حل این دستگاه فضای پوچی ماتریس R بصورت زیر بدست می آید،

$$N(A^{T}) = sp \begin{cases} \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix} \end{cases}, \quad \dim[N(A^{T})] = 2$$

برنامه basis در نرم افزار MATLAB برای بدست آوردن پایه های چهار زیر فضای اصلی یک ماتریس نوشته شده است،

% Bases of four fundamenta vector spaces associated

% with the matrix A.

function[Column,Null,Row,Leftnull]= basis(A)

Column = 1

- 1

2

- 7

- 3

1

0

Null =

Row

اجرای برنامه برای ماتریس A بصورت زیر است،

A = [1 -2 1 0 2; 1 -1 4 1 3; -1 3 2 1 -1; 2 -3 5 1 5];[Column, Null, Row, Leftnull] = basis(A) - 2 - 1 3 - 3 - 2 - 1 - 1 0 0

1 0 0 1 7 3 2 1 0

1

Leftnull 2 - 1

> - 1 - 1

> > 0 1

0 1

مثال۳-۳۰

برای ماتریس A در مثال قبل، نشان دهید که فضای سطرها و فضای پوچی ماتریس A متعامد هستند و همچنین فضای ستون ها و فضای پوچی چپ ماتریس A نیز متعامد هستند،

$$R(A) \perp N(A^T)$$
, $R(A^T) \perp N(A)$

$$R(A^{T}) = sp \begin{cases} \begin{bmatrix} 1 \\ 0 \\ 7 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \\ 1 \\ 1 \end{bmatrix} \end{cases} = sp \{\mathbf{r}_{1}, \mathbf{r}_{2}\}$$

$$N(A) = sp \left\{ \begin{bmatrix} -7 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} = sp \left\{ \mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3 \right\}$$

برای بررسی متعامد بودن ضرب داخلی یک یک بردارهای پایه را بررسی می نماییم،

$$\langle \mathbf{r}_1, \mathbf{n}_1 \rangle = 1 \times (-7) + 0 \times (-3) + 7 \times 1 + 2 \times 0 + 4 \times 0 = 0$$

$$\langle \mathbf{r}_1, \mathbf{n}_2 \rangle = 1 \times (-2) + 0 \times (-1) + 7 \times 0 + 2 \times 1 + 4 \times 0 = 0$$

$$\langle \mathbf{r}_1, \mathbf{n}_3 \rangle = 1 \times (-4) + 0 \times (-1) + 7 \times 0 + 2 \times 0 + 4 \times 1 = 0$$

$$\langle \mathbf{r}_2, \mathbf{n}_1 \rangle = 0 \times (-7) + 1 \times (-3) + 3 \times 1 + 1 \times 0 + 1 \times 0 = 0$$

$$\langle \mathbf{r}_2, \mathbf{n}_2 \rangle = 0 \times (-2) + 1 \times (-1) + 3 \times 0 + 1 \times 1 + 1 \times 0 = 0$$

$$\langle \mathbf{r}_2, \mathbf{n}_3 \rangle = 0 \times (-4) + 1 \times (-1) + 3 \times 0 + 1 \times 0 + 1 \times 1 = 0$$

حاصل ضرب داخلی ها صفر است، لذا $N(A) \perp N(A) \perp R(A^T) \perp N(A)$ می باشد. به همین ترتیب می توان نشان داد که $R(A) \perp N(A^T)$ است.

با استفاده از نرم افزار MATLAB و نتایج بدست آمده از برنامه basis داریم، Column'*Leftnull

ans =

0 0

0 0

Row'*Null

ans =

0 0 0

0 0 0

مثال۳- ۳۱

در حالت کلی ثابت کنید برای ماتریس A داریم،

$$R(A^T) \perp N(A)$$
 (ب $R(A) \perp N(A^T)$ الف

ماتریس $A_{m imes n}$ را با بردارهای ستونی در نظر بگیرید،

$$A_{m \times n} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \dots & \mathbf{a}_n \end{bmatrix} \rightarrow A_{n \times m}^T = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \mathbf{a}_3^T \\ \vdots \\ \mathbf{a}_n^T \end{bmatrix}$$

باشد داریم،
$$\mathbf{q} \in N$$
 $\mathbf{a}_1^T \mathbf{q}$ $\mathbf{a}_2^T \mathbf{q}$ $\mathbf{a}_3^T \mathbf{q}$ $\mathbf{a}_3^T \mathbf{q}$ $\mathbf{a}_3^T \mathbf{q}$ $\mathbf{a}_n^T \mathbf{q}$

بنابراین بردار \mathbf{q} بر سطرهای ماتریس A^T عمود است و سطرهای ماتریس \mathbf{q} همان ستون های $\mathbf{q} \in N(A^T)$ ماتریس A هستند. لذا بردارهای A متعلق به A متعلق به ماتریس A

بنابراین بردار
$$\mathbf{q}$$
 بر سطرهای ماتریس A^T عمود است و سطرهای ماتریس \mathbf{q} بنابراین برداره و ستون های ماتریس A متعلق به \mathbf{q} هستند. لذا بردارهای \mathbf{q} است. \mathbf{q} ماتریس \mathbf{q} هستند. لذا بردارهای \mathbf{q} است. \mathbf{q} ماتریس \mathbf{q} هستند. لذا بردارهای \mathbf{q} است. \mathbf{q} است. \mathbf{q} است. \mathbf{q} است. \mathbf{q} است. \mathbf{q} است. \mathbf{q} ابنابراین \mathbf{q} ابنابراین \mathbf{q} است. \mathbf{q} ابنابراین $\mathbf{$

$$A\mathbf{z} = \mathbf{0} \rightarrow \begin{bmatrix} \mathbf{b}_1 \mathbf{z} \\ \mathbf{b}_2 \mathbf{z} \\ \mathbf{b}_3 \mathbf{z} \\ \vdots \\ \mathbf{b}_m \mathbf{z} \end{bmatrix} = \mathbf{0}$$

بنابراین بردار $oldsymbol{z}$ بر سطرهای ماتریس $oldsymbol{A}$ عمود است و سطرهای ماتریس $oldsymbol{z}$ همان ستون های $\mathbf{z} \in N(A)$ ماتریس $\mathbf{z} \in N(A)$ مستند. لذا بردارهای $\mathbf{z} \in N(A)$ متعلق به $\mathbf{z} \in N(A)$ عمودند بر بردارهای $\mathbf{w} \in R(A^T) \perp N(A)$ بنابراین $\mathbf{w} \in R(A^T)$ است.

٣-٣ تىدىل ھاي خطي

فرض کنیم V_1 و V_2 به ترتیب دو فضای برداری n و m بُعدی بر روی میدان V_1 باشند.

 V_2 فضای mبعدی

m یک تبدیل، نگاشتی است که یک بردار در فضای n بعدی V_1 را به یک بردار دیگر در فضای بعدی V_2 تبدیل کند. در این نگاشت تمامی نقاط بردار اولیه با نقاط نظیر در بردار ثانویه جایگزین می شود. تبدیل ها را می توان به دو دسته تبدیلات هندسی و تبدیلات مختصاتی تقسیم بندی نمود. در تبدیلات هندسی محورهای مختصات ثابت هستند و این بردار است که تغییر می کند ولی در تبدیلات مختصاتی بردار ثابت است و محورهای مختصات جابجا می شوند. بردار می تواند بیانگر یک منحنی، تصویر یا جسم باشد.

تابع $V_1 \to V_2$ را یک اپراتور خطی یا تبدیل خطی از V_1 به V_2 می نامیم، اگر تابع برای تمام بردارهای $oldsymbol{v}$ و تمام اسکالرهای $oldsymbol{v}$ متعلق به $oldsymbol{V}$ دو شرط زیر برآورده گردد،

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 -1

$$T(c\mathbf{u}) = cT(\mathbf{u})$$
 -

این دو رابطه را می توان بصورت زیر نیز خلاصه نمود،

$$T(c_1\mathbf{u} + c_2\mathbf{v}) = c_1T(\mathbf{u}) + c_2T(\mathbf{v}) \tag{17-7}$$

نکته۱: تبدیل خطی $T: V_1 \to V_2$ را یک به یک کویند اگر شرط زیر را داشته باشد،

$$\mathbf{v}_1, \mathbf{v}_2 \in V_1, \quad \mathbf{v}_1 = \mathbf{v}_2 \quad \Leftrightarrow \quad T(\mathbf{v}_1) = T(\mathbf{v}_2)$$
 (15-7)

نکته ۲: کرنل تبدیل خطی $T:V_1 \to V_2$ بصورت زیر تعریف می گردد،

$$kernel(T) = \{ \mathbf{v} \in V_1 \longrightarrow T(\mathbf{v}) = \mathbf{0} \}$$
 (15-7)

Geometric

Coordinate

Linear Transformation

One to one

نکته $T:V_1 \to V_2$ نصای گستره تبدیل خطی $T:V_1 \to V_2$ بصورت زیر تعریف می گردد،

$$range(T) = \{ \mathbf{w} \in V_2 \mid \exists \mathbf{v} \in V_1 \longrightarrow T(\mathbf{v}) = \mathbf{w} \}$$
 (1\D-\mathbf{v})

رابطه بین کرنل و فضای گستره یک تبدیل خطی بصورت زیر می باشد،

$$\dim[\ker(T)] + \dim[\operatorname{range}(T)] = \dim(V_1)$$
 (19-4)

مثال ۳-۳۲

?آیا تابع $\Re^2 o \Re^2$ با تعریف زیر یک تبدیل خطی می باشد

$$T(\mathbf{u}) = T \begin{pmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 4u_2 + u_3 \\ u_1 - 10u_2 \end{bmatrix}$$

رای این منظور باید دو شرط بالا را برسی نماییم. شرط اول بصورت زیر است،

$$T(\mathbf{u} + \mathbf{v}) = T \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix} = \begin{bmatrix} 4(u_2 + v_2) + (u_3 + v_3) \\ (u_1 + v_1) - 10(u_2 + v_2) \end{bmatrix} = \begin{bmatrix} 4u_2 + u_3 + 4v_2 + v_3 \\ u_1 - 10u_2 + v_1 - 10v_2 \end{bmatrix}$$

$$= \begin{bmatrix} 4u_2 + u_3 \\ u_1 - 10u_2 \end{bmatrix} + \begin{bmatrix} 4v_2 + v_3 \\ v_1 - 10v_2 \end{bmatrix} = T \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + T \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$=T(\mathbf{u})+T(\mathbf{v})$$

بنابراین شرط اول برقرار است. حال شرط دوم را بررسی می نماییم،

$$T(c\mathbf{u}) = T \begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix} = \begin{bmatrix} 4cu_2 + cu_3 \\ cu_1 - 10cu_2 \end{bmatrix} = c \begin{bmatrix} 4u_2 + u_3 \\ u_1 - 10u_2 \end{bmatrix} = cT \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = cT(\mathbf{u})$$

با برقراری شرط دوم می توان گفت که تابع مذکور یک تبدیل خطی است.

مثال ٣-٣

. آیا تابع
$$\mathfrak{R} o \mathfrak{R}^n o \mathfrak{R}$$
 با تعریف زیر یک تبدیل خطی می باشد آیا تابع

$$T(\mathbf{u}) = \|\mathbf{u}\|$$

برای این منظور باید دو شرط بالا را برسی نماییم. شرط اول بصورت زیر است،

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

از آنجاییکه $\|\mathbf{u} + \mathbf{v}\| \neq \|\mathbf{u}\| + \|\mathbf{v}\|$ شرط اول برقرار نمی باشد، لذا تبدیل مذکور یک تبدیل خطی

مثال۳-۳

آیا تبدیل خطی $\mathfrak{R}^2 \to \mathfrak{R}^2$ با تعریف زیر یک به یک است؟

$$L\left[\begin{bmatrix} x \\ y \end{bmatrix}\right] = \begin{bmatrix} x - y \\ x + y \end{bmatrix}$$

$$L\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x - y \\ x + y \end{bmatrix}$$
 بردارهای $\mathbf{v}_1, \mathbf{v}_2$ را در نظر بگیرید، $\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$
$$L(v_1) = L(v_2) \qquad \rightarrow \qquad \begin{bmatrix} x_1 - y_1 \\ x_1 + y_1 \end{bmatrix} = \begin{bmatrix} x_2 - y_2 \\ x_2 + y_2 \end{bmatrix}$$

$$x_1 - y_1 = x_2 - y_2 \\ x_1 + y_1 = x_2 + y_2 \end{cases} \qquad \rightarrow \qquad 2x_1 = 2x_2 \Rightarrow \qquad \begin{cases} x_1 = x_2 \\ y_1 = y_2 \end{cases} \qquad \mathbf{v}_1 = \mathbf{v}_2$$

۳-۳-۱- نمایش ماتریسی تبدیل های خطی

برای هر تبدیل خطی
$$T:V_1 \to V_2$$
 می توان یک ماتریس $A_{m \times n}$ بدست آورد بطوریکه،
$$T(\mathbf{u}) = A\mathbf{u}, \ \mathbf{u} \in V_1$$

ماتریس $A_{m\times n}$ بصورت زیر تعیین می گردد،

$$[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_m] A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)]$$
 (1A-T)

به ترتیب بردارهای پایه فضاهای n و m بعدی V_1 و و v_1, v_2, \ldots, v_m و v_1, v_2, \ldots, v_m برای بدست آوردن ماتریس A می توان از الگوریتم گوس- جردن کمک گرفت،

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_m | T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} I | A \end{bmatrix} \tag{19-4}$$

نکته ۱: برای یک تبدیل خطی با تعریف زیر،

$$T: \mathbb{R}^n \to \mathbb{R}^m, \ T(\mathbf{x}) = A_{m \times n} \mathbf{x}$$

کرنل و فضای گستره را می توان بصورت زیر تعریف کرد،

$$range(T) = C(A)$$
 $g ker(T) = N(A)$

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

مثال۳-۳۵

برای تبدیل خطی زیر یک ماتریس تبدیل بیابید.

$$T(\mathbf{u}) = T \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 4u_2 + u_3 \\ u_1 - 10u_2 \end{bmatrix} \quad , \quad T: \Re^3 \to \Re^2$$

ابتدا یایه های فضای برداری \Re^2 و \Re^2 را در نظر می گیریم،

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \qquad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

با توجه به تعریف داریم،

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) \end{bmatrix}$$

حال باید ابتدا $T(\mathbf{e}_i)$ ها را بدست آوریم، برای این کار از تعریف تبدیل خطی استفاده می کنیم،

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad T(\mathbf{e}_2) = \begin{bmatrix} 4 \\ -10 \end{bmatrix}, \quad T(\mathbf{e}_3) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

از این رو ماتریس تبدیل خطی مذکور با اعمال روش گوس– جردن بصورت زیر بدست می آید، $egin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 | T(\mathbf{e}_1) & T(\mathbf{e}_1) \end{bmatrix} & \Rightarrow & \begin{bmatrix} I | A \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & 1 & -10 & 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 0 & 4 & 1 \\ 1 & -10 & 0 \end{bmatrix}$$

لذا می توان نوشت

$$T(\mathbf{u}) = A\mathbf{u} \longrightarrow T \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 & 4 & 1 \\ 1 & -10 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

مشخص است که ماتریس تبدیل به انتخاب پایه ها بستگی دارد.

نمونه هایی از تبدیل های پرکاربرد عبارتند از،

۱- انتقال ۱: انتقال در فضای دو بعدی بصورت زیر تعریف می گردد،

_

[`]Translation

شکل(۳-۵) - انتقال در فضای دو بعدی

ماتریس انتقال در فضای دو بعدی بصورت زیر است،

$$\begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + \Delta x \\ y_1 + \Delta y \\ 1 \end{bmatrix} \longrightarrow A_T = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix}$$

بطور مشابه در فضای سه بعدی هم داریم،

$$\begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + \Delta x \\ y_1 + \Delta y \\ z_1 + \Delta z \\ 1 \end{bmatrix} \longrightarrow A_T = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

۲- انعکاس یا قرینه ۱: در فضای دو بعدی انعکاس می تواند سه حالت مختلف داشته باشد،

- . انعکاس نسبت به محور x مانند نقطه -
- B انعکاس نسبت به محور y مانند نقطه انعکاس
- $\cdot C$ انعکاس نسبت به مبدا مختصات مانند نقطه –

ماتریس انعکاس نسبت به محور xها، y ها و نسبت به نقطه مبدا در فضای دو بعدی بصورت زیر است،

$$A_{x} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad A_{y} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_{O} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{O} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

[\] Reflection

شکل(۳-۶) - انعکاس در فضای دو بعدی

بطور مشابه در فضای سه بعدی می توان قرینه را نسبت به یک صفحه، یک خط و یا یک نقطه مانند yz مبدا بدست آورد، بطور مثال ماتریس تبدیل برای قرینه سازی نسبت به نقطه مبدا و صفحات xz و xz بصورت : بدست می آبد،

$$A_{xz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{yz} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{O} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 * تغییر مقیاس : تغییر مقیاس در فضای دو بعدی با دو ضریب S_x و S_y مشخص می گردد و هدف از این تبدیل گسترش یا فشرده سازی ابعاد یک جسم نسبت به یک نقطه می باشد. ماتریس تغییر مقیاس در فضای دو بعدی بصورت زیر است،

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} s_x x_1 \\ s_y y_1 \end{bmatrix} \quad 9 \quad \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x_1 \\ s_y y_1 \\ 1 \end{bmatrix}$$

ماتریس تغییر مقیاس در فضای سه بعدی هم بصورت زیر بدست می اید،

$$\begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x_1 \\ s_y y_1 \\ s_z z_1 \\ 1 \end{bmatrix}$$

_

Scaling

۴- **دوران!**: مشخصه اصلی دوران در فضای دو بعدی زاویه چرخش و مبدا آن است و معمولاً مبدا دوران را مبدا مختصات در نظر می گیرند. دوران در خلاف ساعتگرد مثبت در نظر گرفته می شود.

ماتریس دوران دو بعدی به اندازه heta درجه حول مبدا در خلاف ساعتگرد بصورت زیر بدست می آید،

$$\begin{cases} x_2 = x_1 \cos\theta - y_1 \sin\theta \\ y_2 = x_1 \sin\theta + y_1 \cos\theta \end{cases} \rightarrow A_R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}, \quad A_R = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

دوران در فضای سه بعدی براساس زاویه چرخش و محور دوران مشخص می گردد. محور های اصلی دوران عبارت از دوران حول محور x و y است و دوران در خلاف ساعتگرد مثبت در نظر گرفته می شود. ماتریس دوران حول محور x بصورت زیر بدست می آید،

^{&#}x27; Rotation

$$\begin{cases} x_2 = x_1 \\ y_2 = y_1 \cos \theta - z_1 \sin \theta \\ z_2 = y_1 \sin \theta + z_1 \cos \theta \end{cases} \rightarrow R_x = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

به همین ترتیب دوران حول محور y و z نیز بدست می آیند،

$$\begin{cases} x_2 = x_1 \cos \theta + z_1 \sin \theta \\ y_2 = y_1 \\ z_2 = -x_1 \sin \theta + z_1 \cos \theta \end{cases} \rightarrow R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} x_2 = x_1 \cos \theta - y_1 \sin \theta \\ y_2 = x_1 \sin \theta + y_1 \cos \theta \end{cases} \rightarrow R_y = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

* - کشیدگی': کشیدگی در فضای دو بعدی می تواند در راستای هر دو محور یا یکی از محورها صورت گیرد. ماتریس کشیدگی در راستای محور x ها در فضای دو بعدی بصورت زیر بدست می آید،

$$\begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + ky_1 \\ y_1 \\ 1 \end{bmatrix} \longrightarrow A = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

شکل(۳-۹) - کشیدگی در راستای محور xها

ماتریس کشیدگی در راستای محور y ها در فضای دو بعدی نیز بصورت زیر می باشد،

_

^{&#}x27; Shearing

شکل(۳-۳) - کشیدگی در راستای محور y ها

بیضی E_1 در فضای دو بعدی بصورت زیر تعریف شده است، $X^2+rac{y^2}{4}=1$

$$x^2 + \frac{y^2}{4} = 1$$

ماتریس تبدیل A را با شرایط زیر بدست آورید و تبدیل یافته این جسم را رسم نمایید.

ها، و مقیاس 0.4 در راستای xها و 0.6 در راستای y ها، -1

$$A_{S} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.4 & 0 & 0 \\ 0 & 0.6 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

۲- دوران پادساعتگرد حول محور xها به اندازه 45 درجه،

$$A_{R} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos 45 & -\sin 45 & 0 \\ \sin 45 & \cos 45 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{T} = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

لذا ماتریس تبدیل کل بصورت زیر بدست می آید،

$$A = A_T A_R A_S$$

$$A = A_T A_R A_S = \begin{bmatrix} 0.2828 & 0.4243 & 1 \\ -0.2828 & 0.4243 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

رسم شده است، MATLAB رسم شده است، E_2 با استفاده از نرم افزار MATLAB رسم شده است، E_2 على E_1 على E_2 على E_1 على E_2 على E_2 على E_1 على E_2 على E_2 على E_2 على E_3 على E_3 على E_4 على E_2 على E_4 ع

شکل(۳-۱۱) - منحنی های مربوط به مثال ۳-۳۶

مثال۳-۳

یکی از کاربردهای تبدیل های خطی در رمزنگاری پیام های متنی است. در این روش از اعداد در رمز کردن پیام های متنی استفاده می شود و با احتساب فاصله بین کلمات و دو علامت نگارشی نقطه و علامت پرسشی می توان از جدولی به شکل زیر برای کدگذاری استفاده نمود.

	A ↓ 0	B ↓ 1	C ↓ 2	D ↓ 3	E ↓ 4	F ↓ 5	G ↓ 6	H ↓ 7	I ↓ 8	J ↓ 9	K ↓ 10	\downarrow	M ↓ 12	N ↓ 13	\downarrow	P ↓ 15	Q ↓ 1€	\downarrow	S ↓ 18	T ↓ 19	U ↓ 20	V ↓ 21	W ↓ 22	\downarrow	Y ↓ 24	↓ →	↓ 2€	? ↓ 27	→ ↓ 28
--	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------	---------	--------------	--------------

پيام متنى SINGULAR VALUE با استفاده از اين روش بصورت زير كد مى شود، 18 8 13 6 20 11 0 17 28 21 0 11 20 4 4

تا این مرحله توانستیم پیام متنی را بصورت کد ساده نمایش دهیم. لازم به ذکر است در انتهای پیام جهت تکمیل بردار نهایی می توان حرف آخر را به تعداد مورد نیاز تکرار نمود. در مورد این مثال حرف E در انتهای عبارت تکرار شده است.

حال برای رمزی کردن این پیام کد شده از یک ماتریس تبدیل 3×3 و معکوس پذیر به نام **ماتریس** کلیدی استفاده می نماییم،

$$A = \begin{bmatrix} 3 & 10 & 20 \\ 20 & 9 & 17 \\ 9 & 4 & 17 \end{bmatrix}$$

لذا ابتدا پیام کد شده را به بردارهای سه تایی تفکیک می نماییم،

پیام کد شده را می توان بصورت ماتریس زیر نمایش داد،

$$P = \begin{bmatrix} 18 & 6 & 0 & 21 & 20 \\ 8 & 20 & 17 & 0 & 4 \\ 13 & 11 & 28 & 11 & 4 \end{bmatrix}$$

^{&#}x27; key matrix

با ضرب ماتریس کلیدی A در ماتریس P کد رمز شده بدست می آید،

$$C = AP = \begin{bmatrix} 394 & 438 & 730 & 283 & 180 \\ 653 & 487 & 629 & 607 & 504 \\ 415 & 321 & 544 & 376 & 264 \end{bmatrix}$$

لذا گیرنده کد رمز شده ای بصورت زیر دریافت می کند،

394 653 415 438 487 321 730 629 544 283 607 376 180 504 264

برای بدست آوردن پیام متنی اصلی باید از معکوس ماتریس کلیدی استفاده نمود،

$$A^{-1} = \frac{1}{-1635} \begin{bmatrix} 85 & -90 & -10 \\ -187 & -129 & 349 \\ -1 & 78 & -173 \end{bmatrix}$$

لذا دریافت کننده باید کد رمز شده را به بردارهای سه تایی تفکیک کند و با داشتن ماتریس کلیدی پیام اصلی را استخراج نماید.

$$P = A^{-1}C$$

فرض کنید کد رمز شده ای بصورت زیر دریافت شده است،

373 513 352 352 369 325 304 747 439 78 173 87 51 340 153

دریافت کننده با داشتن ماتریس تبدیل کلیدی آن می تواند کد رمزشده را به کد ساده تبدیل کرده سپس پیام اصلی را استخراج نماید. با توجه به اینکه ماتریس کلیدی 3×3 است، کد رمز شده را به بردارهای سه تایی تفکیک می نماییم،

$$C = \begin{bmatrix} 373 & 352 & 304 & 78 & 51 \\ 513 & 369 & 747 & 173 & 340 \\ 352 & 325 & 439 & 87 & 153 \end{bmatrix}$$

حال با استفادہ از معکوس ماتریس کلیدی کد سادہ را بدست می آوریم،

$$P = A^{-1}C = \begin{bmatrix} 11 & 4 & 28 & 6 & 17 \\ 8 & 0 & 0 & 4 & 0 \\ 13 & 17 & 11 & 1 & 0 \end{bmatrix}$$

پس کد ساده بصورت زیر است و با استفاده از جدول می توان به راحتی متن پیام را بدست آورد، 11~8~13~4~0~17~28~0~11~6~4~1~17~0~0

LINEAR ALGEBRAA

برنامه code.m با استفاده از نرم افزار MATLAB برای انجام عمل رمزنگاری نوشته شده است. در اینجا پیغامی که باید کد شود بصورت یک رشته در نظر می گیریم و با استفاده از جدول نوشته شده آن را بصورت اعداد كد مي نماييم.(البته در نرم افزار MATLAB مي توان از دستور double نیز برای تبدیل رشته مذکور به یک دنباله از اعداد صحیح مثبت استفاده نمود.) سپس با ضرب کردن آن در یک ماتریس تبدیل غیرمنفرد پیام را رمز می کنیم. % String s is coded using a nonsingular matrix A. function C = code(s, A)T = ['A''B''C''D''E''F''G''H''I''J''K''L''M''N''O''P' 'Q''R''S''T''U''V''W''X''Y''X''.''?''']; for i = 1:length(s) for j=1:29 if T(j) = s(i)p(i) = j - 1;end end end [n,n] = size(A);r = rem(length(s),n); if r ~= 0 p = [p p(length(s))*ones(1,n-r)]'; end P = reshape(p,n,length(p)/n); C = A * P;C = C(:)'; اجرای برنامه بصورت زیر می باشد، s = 'SINGULAR VALUE'; $A = [3 \ 10 \ 20; 20 \ 9 \ 17; 9 \ 4 \ 17];$ C = code(s, A)C =

394 653 415 438 487 321 730 629 544 283 607 376 180 504 264

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU فرآیند رمز گشایی نیز عکس این حالت می باشد که در برنامه decode.m نوشته شده است.(در صورتیکه از دستور double برای کد کردن استفاده شود می توان دستور char را برای کدگشایی بکار برد.)

```
% Coded message, decoded with the nonsingular matrix A
function s = decode(C, A)
T = [ 'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N'
    'O' 'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W' 'X' 'Y' 'X' '. ' '?' ' ' ];
[n,n] = size(A);
C = reshape(C,n,length(C)/n);
P = inv(A)*C;
P = P(:);
for i = 1:length(P)
   s(i) = T(P(i)+1);
end
A = [3 10 20;20 9 17;9 4 17];
C = [394 653 415 438 487 321 730 629 544 283 607 376 180 504 264];
s = decode(C, A)
s =
SINGULAR VALUEE
                                      اجرای برای قسمت دوم مثال بصورت زیر است،
A = [3 \ 10 \ 20; 20 \ 9 \ 17; 9 \ 4 \ 17];
C = [373 513 352 352 369 325 304 747 439 78 173 87 51 340 153];
s = decode(C, A)
LINEAR ALGEBRAA
```

مسائل

۳-۱- نشان دهید که ماتریس های حقیقی به فرم زیر تشکیل یک میدان می دهند.

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad , \quad a, b \in \Re$$

 \mathfrak{R}^3 می باشند. زیر فضا بودن این مجموعه ها زیر که یک زیرمجموعه از \mathfrak{R}^3 می باشند. زیر فضا بودن این مجموعه ها در در در مجموعه ها

$$\{(x, y, z) \in \mathbb{R}^3 : xz = 0\} \text{ (لله)}$$

$$\{(x, y, z) \in \mathbb{R}^3 : x = y = z\} \text{ (ب}$$

$$\{(x, y, z) \in \mathbb{R}^3 : x + y = 0\} \text{ (x. } y, z) \in \mathbb{R}^3 : x + y = 0\} \text{ (x. } y, z)$$

۳-۳- استقلال خطی بردارهای زیر را بررسی نمایید.

$$\mathbf{u} = [1,0,1,2], \quad \mathbf{v} = [0,1,1,2], \quad \mathbf{w} = [1,1,1,3]$$
 (id)
 $\mathbf{u} = [7,-3,1], \quad \mathbf{v} = [2,1,-5], \quad \mathbf{w} = [1,-3,8]$ (i.)
 $\mathbf{u} = [1,-2,3,-4], \quad \mathbf{v} = [-1,3,4,2], \quad \mathbf{w} = [1,1,-2,-2]$ (i.)
 $\mathbf{p}_1 = x - 3, \quad \mathbf{p}_2 = x^2 + 2x, \quad \mathbf{p}_3 = x^2 + 1$ (i.)
 $\mathbf{p}_1 = x^2 + x, \quad \mathbf{p}_2 = x + 1, \quad \mathbf{p}_3 = x^2 + 1$ (i.)

 ${\bf v}={\bf v}={\bf$

 $\mathbf{u} = [4,4,0],$ $\mathbf{v} = [2,0,-1],$ $\mathbf{w} = [1,2,1]$ (المين مي كنند. $\mathbf{u} = [4,4,0],$ $\mathbf{v} = [2,0,-1],$ $\mathbf{w} = [1,2,1]$ (المن $\mathbf{u} = [1,2,1],$ $\mathbf{v} = [1,0,1],$ $\mathbf{v} = [0,2,0],$ $\mathbf{v} = [0,2,0]$

۳-۶- رتبه و پوچی ماتریس های زیر را تعیین نمایید و فضای پوچی و فضای گستره آنها را بدست آورید.

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & -1 & 1 & 1 \\ 3 & -1 & 4 & 1 \end{bmatrix} (4) \qquad A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} (4)$$

$$A = \begin{bmatrix} 1 & 2 & 4 & -1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ -1 & 2 & 3 & 1 & 1 \\ 0 & 4 & 7 & 0 & 2 \\ -1 & 6 & 10 & 1 & 3 \end{bmatrix} (5) \qquad A = \begin{bmatrix} 1 & 1 & 2 & 0 & 1 \\ 2 & 2 & 5 & 0 & 3 \\ 0 & 0 & 2 & 1 & 3 \\ 8 & 11 & 19 & 0 & 11 \end{bmatrix} (5)$$

ان را تحت پایه $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ بصورت زیر نمایش داده می شود. نمایش آن را تحت پایه $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ های $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ نشان دهید.

 $\mathbf{u} = [1,3,2]$ (الف

$$\mathbf{e_1} = [1,0,0], \quad \mathbf{e_2} = [0,1,0], \quad \mathbf{e_3} = [0,0,1]$$

$$\mathbf{v_1} = [1,1,-1], \quad \mathbf{v_2} = [1,-1,1], \quad \mathbf{v_3} = [-1,1,1]$$

$$\mathbf{u} = [1,2,-1] \quad (\because \mathbf{e_1} = [1,0,0], \quad \mathbf{e_2} = [0,1,0], \quad \mathbf{e_3} = [0,0,1]$$

$$\mathbf{v_1} = [2,1,-1], \quad \mathbf{v_2} = [1,3,0], \quad \mathbf{v_3} = [0,1,-1]$$

$$A = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{cases}$$

$$B = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix} \end{cases}$$

$$B = \begin{cases} 2, -4x, 5x^2 - 1 \end{cases}$$

$$A = \begin{bmatrix} 2 & 1 & -1 & 1 & 3 \\ 1 & 0 & 1 & 2 & -1 \\ 3 & 1 & 2 & 5 & -2 \end{bmatrix}$$

الف) در صورت وجود یک معکوس راست برای آن پیدا کنید.

ب) پایه های متعامد ستون های آن را بیابید و ستون پنجم ماتریس را بر حسب پایه ها بنویس

را در نظر بگیرید، A ماتریس A

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

الف) ماتریس A^T را بدست آورید. سپس رتبه، فضای گستره، پوچی و فضای پوچی ماتریس A^T را حساب کنید.

ب) نشان دهید $R(A^T) \perp N(A)$ و $R(A) \perp N(A^T)$ است.

دد. a و یکبار b و یکبار a و یکبار b و یکبار b و یکبار b و یکبار b

$$A = \begin{bmatrix} a & -3 & c \\ 1 & 3 & -1 \\ b & 9 & -3 \end{bmatrix}$$

۳-۱۲- نشان دهید هر یک از ماتریس های رتبه یک را می توان بصورت حاصلضرب دو بردار ستونی و سطری نمایش داد.

$$A = \begin{bmatrix} -6 & 3 & 9 \\ 2 & -1 & -3 \\ 4 & -2 & -6 \end{bmatrix}$$
 $()$
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -3 & -6 & -9 \\ 0 & 0 & 0 \end{bmatrix}$$
 $()$

$$A = \begin{bmatrix} 3 & 12 & -1 & -6 \\ 6 & 24 & -2 & -12 \\ -3 & -12 & 1 & 6 \end{bmatrix} (z)$$

۱۳-۳ برای چه مقادیری از بردار ${f b}$ دستگاه معادلات زیر سازگار است ${f c}$

$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} () \qquad \qquad \begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} ()$$

۱۴-۳- تبدیل خطی زیر را در نظر بگیرید،

$$T(x, y, z) = (3x + 2y + z, x + 3z, -y + 4z)$$

نمایش ماتریسی، فضای گستره و کرنل این تبدیل خطی را بیابید.

تبدیل خطی
$$\mathbb{R}^3 \to \mathbb{R}^3 \to \mathbb{R}^3$$
 را بصورت زیر تبدیل می کند،
$$T(1,0,0) = (1,\tfrac{-3}{2},2)$$

$$T(0,1,0) = (-3,\tfrac{9}{2},-6)$$

$$T(0,0,1) = (2,-3,4)$$
 تبدیل یافته بر دار $(5,1,-1)$ را تحت این نگاشت بدست آورید.

۳-۱۶ خطی بودن تیدیل های زیر را بررسی نمایید، در صورت خطی بودن فضای گستره و کرنل آنها را بدست آورید.

$$T: \Re^2 \to \Re^4: (x, y) \mapsto (2x - 3y, x - 7y, x + 2y + 1,5x - 2y)$$
 (iii)
$$T: \Re^3 \to \Re^4: (x, y, z) \mapsto (x - z, x + y, z - y, x - 2y)$$
(iii)
$$T: \Re^3 \to \Re^3: (x, y, z) \mapsto (x + 3y - 2z, x - 4z, x + 6y)$$
(7)

۳-۱۷- نشان دهید هر یک از مجموعه های زیر یک زیر فضای برداری برای فضای برداری مر بوطه هستند.

$$(\mathbf{M}_{2 \times 2}(\Re)$$
 (برای فضای برداری $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ (برای فضای برداری 2×2 بالا مثلثی به فرم $S = \{[x,y,z] \in \Re^3 \mid 2x-y+z=\mathbf{0}\}$ (برای فضای برداری $S = \{[x,y,z] \in \Re^3 \mid 2x-y+z=\mathbf{0}\}$ ج) مجموعه $S = \{\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \mid \begin{bmatrix} 1 & -\frac{4}{3} \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = 0 \}$ مجموعه جموعه و نام برداری $S = \{[x,y,z] \mid [x,y] \mid (x,y) \mid (x,y$