Ch1
1. 在单处理机系统中实现并发技术后,
A.进程间在一个时间段内并行运行, CPU与外设间并行工作
B. 进程间在一个时刻点上并行运行, CPU与外设间并行工作
C. 进程间在一个时间段内并行运行, CPU与外设间串行工作
D. 进程间在一个时刻点上并行运行, CPU与外设间串行工作
A
Ch2
1. 一个多任务单处理机计算机系统,其操作系统是 UNIX, PCB表的规模是 100
行,则
任一时刻,最多可能有个进程处于运行态,最多可能有个进程处于
就绪态,最多可能有个进程处于等待态。
1个进程处于运行态 , 99个进程处于就绪态 , 100个进程处于等待态
2. 中央处理器处于目态时,执行()将产生"非法操作"事件。
A 特权指令 B 非特权指令 C 用户程序 D 访管指令
A
3.7个生产者与 8个消费者进程同步访问 6个缓冲区,则生产者之间及消费者
进程之间的对缓冲区指针的互斥信号量初值是()。
A.7 B.8 C.6 D.1
D
4. 每个用户创建进程数最大为 50 个,现有一用户执行某程序,该程序执行一个
死循环,每趟循环创建一新子进程。则当该进程创建了个子进程后将不能
再创建,该进程处于态。
49 阻塞
5. 在一个有 n 个 CPU的系统中,能够处于就绪、 运行、 阻塞状态的最大进程数各
为多少?
处于就绪、阻塞态的最大进程数没有限制。由于处于运行态的进程必须要占用 1
个 CPU, 而系统中有 n 个 CPU, 所以最多有 n 个进程处于运行态。
6. 在一个有 n 个 CPU的系统中,能够处于就绪、运行、阻塞状态的最小进程数
各为多少?
处于三种状态的进程个数都有可能为零。当所有的进程因等待 I/O 操作阻塞时,
就没有进程处于运行态和就绪状态。 当所有进程处于运行或就绪状态时, 就没有
进程处于阻塞状态。
Ch3.
1. 现有三个同时到达的作业 J1、J2 和 J3,它们的执行时间分别是 T1、T2、T3,
且 T1 < T2 < T3。系统按单道方式运行且采用 SJF,则平均周转时间是()。
解: B 系统采用 SJF,则作用执行顺序是 J1, J2, J3, J1 的周转时间为 T1, J2
的周转时间为 T1+T2, J3 的周转时间为 T1+T2+T3, 三者相加, 再求平均。
2. 一个作业 8:00 到达系统,估计运行时间为 1h,若 10:00 开始执行该作业,其
响应比是。
解:(2+1)/1=3
3. 下列进程调度算法中,综合考虑进程等待时间和执行时间的是()。

A时间片轮转调度算法 B 短进程优先调度算法 C先来先服务调度算法 D 高响应比调度算法

解: D

4. 下列选项中,满足短作业优先且不会发生饥饿现象的是()调度算法。

A先来先服务 B 高响应比优先 C 时间片轮转 D 非抢占式短作业优先解: HRP在等待时间相同的情况下,作业的执行时间越短则 RP越高,满足短作业优先。同时,随着等待时间增加,后备状态的作业其响应比也会增大,所以不会产生饥饿现象。 FCF\$ RR不符合短作业优先, NPSJF会饥饿。

Ch4.

1. 某系统有 2^{24} B 内存,固定分区大小为 65536 字节,进程表中的每个表项最少要用多少位来记录分配给进程的分区?

解: 2^{16} =65536 分区数 =内存大小 / 分区大小 = 2^{2^4} /2 1^6 = 2^8 。 需要 8 位表示 2^8 个分区

2. 某简单分页系统中,有 2^{24} B物理内存,256页的逻辑地址空间且页的大小为 2^{10} B,问逻辑地址有多少位?

解:18

3. 某简单分页系统中,有 2^{2^4} B 物理内存, 256 页的逻辑地址空间,且页的大小为 2^{10} B,问一个页框包含多少字节?

解: 1K 或 2¹⁰B

4. 某简单分页系统中,有 2^{24} B 物理内存, 256 页的逻辑地址空间,且页的大小为 2^{10} B,问物理地址有多少位用来指定页框 (物理地址空间)?

解: 24位 14+10

5. 某简单分页系统中,有 2^{2^4} B 物理内存, 256 页的逻辑地址空间,且页的大小为 2^{10} B,问页表中有多少项?

解: 256 项

6. 某简单分页系统中,有 2^{24} B 物理内存, 256 页的逻辑地址空间,且页的大小为 2^{10} B,假设每个页表项除页框号还包含一个有效 / 无效位,问页表中要用多少位来存储页表项(页表有多宽)?

解: 14+1

7. 某简单分页系统中,页表长度为 64,每个页表项有 11位(含有效/无效位),每页大小为 512字节,问逻辑地址中有多少位用来指定页号?逻辑地址中有多少位指定页内偏移量?物理地址有多少位?物理地址空间有多大?

解: 26=64 29=512

(11-1) +9=19 219 =512K

- 8 某段页式系统中,虚地址空间包含了 8 个段,段长为 2²⁹字节,寻址单元把每个段分成大小为 256字节的页,问虚地址中有多少位可以用于指定:
- (1)段号?

3

(2) 页号?

21

(3)页内地址/页内偏移量?

8

(4)整个虚地址?

32

9. 为什么分页比分段快?

分段方式中,偏移量须加上段的首地址,分页方式不需执行加操作。页框号和偏移量相连接形成物理地址。位连接比相加速度快。

10. 本题使用二进制值。页的大小为 2⁶B,页表如下:

进/出位	页 框 号		
进	00101		
串	00001		
进	11011		
进	11010		
串	1000E		
చ	10101		
进	11000		
进	00101		

下列哪些虚地址将产生缺页?对于那些不产生缺页的,转换后的物理地址是?

- (a)0000101101001
- (b)0000010010010
- (c)0000100010101
- (d)0000001110101

解:(a) page fault (b) 11011 010010 (c) page fault (d) page fault

11. 试给出一个 FIFO 置换算法的引用串 , 使得当固定分配的页框数从 3 个增加到 4 个时 , 造成 Belady 异常现象。

解:1,2,3,4,1,2,5,1,2,3,4,5

12. 某程序访问下列页面,

0,9,0,1,8, 1,8,7,8,7, 1,2,8,2,7, 8,2,3,8,3,

若程序有 3 个页框可用,且分别使用下列算法,将会产生多少次缺页:

1) FIFO置换算法; 2) LRU置换算法; 3) 最佳置换算法。

解:1)82)93)7

12 有请求页式系统,整型数占 4B,页大小为 256B,使用 LRU页面置换算法,每个进程分配 3 个页框。一个进程执行下列代码:

int [][]a=new int [200][200];

```
int i=0;
int j=0;
while (i++<200)
    { j=0;
    while(j++<200)
    a[i][i]=0;}</pre>
```

这段代码占用第 0页,由于每条指令都访问第 0页,所以第 0页总是被换入。 变量 i 和 j 都存储在快速寄存器中。

- (a) 假设数组的所有元素都存储在连续的内存区域,那么数组需要多少页?
- (b) 这个程序数组的操作中将产生多少个缺页?
- 解:(a) 200*200/64=625
 - (b)程序按照数组元素的存储顺序访问数组,因此,它将换入指令页,同时 625 个数据页每页对应一次换入,总共 626 次缺页。(若从指令页已换入开始计算,则有多少数据页,置换多少次,即 625次)
- 13.上题中,若将 a[i][j] 写成 a[j][i] ,缺页次数将会是多少? 40000+1
- 14. 课件习题:第 17 题。

Ch5

1. 假定某磁盘共有 200 个柱面,编号为 0~199。如果在为访问 143 号柱面的请求者服务后,当前正在为访问 125 号柱面的请求者服务, 同时有若干个请求者等待服务,它们依次要访问的柱面号为:

86 , 147 , 91 , 177 , 94 , 150 , 102 , 175 , 130 ,

请问:分别用先来先服务调度算法、最短寻道时间优先算法、电梯调度算法和单向扫描调度算法,实际的服务次序分别是?平均寻道数是?

FCFS: 86, 147, 91, 177, 94, 150, 102, 175, 130,

SSTF: 130,147,150,175,177,102,94,91,86

Scan:102,94,91,86,130,147,150,175,177

CScan: :102,94,91,86,177,175,150,147,130

Ch7

- 1. 按逻辑结构划分,文件主要有两类: (1)(2)。文件系统的主要目的是(3)。
- (1)(2): A. 网状文件 B 只读文件 C 读写文件
- D记录式文件 E 索引文件 F 流式文件 (3): A 实现文件的按名存取 B 实现虚拟存储器
 - C 提高外围设备的输入输出速度 D 用于存储用户文件

DFA

DFDF

- 2. 在文件系统中是利用(1)来管理文件,为了允许不同用户的文件使用相同的文件名,通常在文件系统中采用(2);在目录文件中的每个目录通常就是(3);在 UNIX系统中的目录项则是(4)。
- (1) A文件控制块 B 索引结点 C 符号名表 D 目录
- (2)A重名翻译 B多级目录 C 文件名到文件物理地址的映射表 D 索引

表					
(3), (4) A.FCB	B文件表指针	C索引结点	D 文件名和文件物		
理地址					
E文件名	和索引结点指针				
DBAE					
(1)D (2)B (3)A (4)E				
	打开文件 (Open) 系统	高调用的基本操作是	(1),关闭(Close)		
系统调用的基本操作是	<u> </u>	5 W 3 V 13 K 17 V C			
(1) A 把文件信息从外					
	理信息从外存读到内存	<u> </u>			
C把文件的 FAT表信息从外存读到内存 D把磁盘的超级块从外存读到内存					
(2)A 把文件的最新信					
	制管理信息从内存写入	外左			
C把位示图从内存		./\`\ T			
	·与四外行 ·信息从内存写回外存				
	后总从内计与四次计				
B B					
(1) BB (2) B	计大平轨 机质点大取机	≠ #0			
	法有两种:顺序存取和	存取。			
A流式 B串联 C顺	ア しゅん				
D					
D = \10\14\4\7\16\10\10\10\10\10\10\10\10\10\10\10\10\10\	+===*				
5 设当前工作目录的	· · · ·				
A节省外存空间		· + :			
	夏 D加快文件的i	读与速度			
C					
	,每访问一个文件,都	要从树根廾始,直给	创树叶为止,包括		
各中间	┷┸┸┸┸┸┸┸┸	m 4- EE	`		
	方问控制信息存储的合理 5、"(4)5755) 		
A文件控制块	B文件分配表C	C用户口令表	D系统注册表		
Α					
A					
7 设文件 F1 的当前	引用计数值为 1, 先建	立文件 F1 的符号	链接(软链接)文件		
F2, 再建立文件 F1	的硬链接文件 F3,然/	后删除文件 F1。此	比时,文件 F2 和文件		
F3 的引用计数值分别	是()				
A 0 、 1 B 1、	、1 C1、2	D 2、1			
В					
В					
8. 一个树形结构的文件	件系统如下图所示,该	图中框表示目录,[圈表示文件。		
(1)可否进行下列擦	操作:				
A. 在目录 D中建立-	一个文件,取名为 A;				
B. 将目录 C改名为	A _o				
(2)若 E和 G分别:	为两个用户的目录:				
A. 用户 E 欲共享文件	件 Q,应有什么条件,	如何操作?			

- B. 在一段时间内,用户 G主要使用文件 S和 T。为简单操作和提高速度,应如何处理?
- C. 用户 E 欲对文件 I 加以保护,不允许别人使用,能否实现?如何实现?

答:(1)

A由于目录 D中没有已命名为 A的文件,因此,可以建立。

B因为在文件系统的根目录下已经存在一个取名为 A的目录,所有根目录下的目录 C不能改名为 A

(2)

A 用户 E 欲共享文件 Q,需要用户 E 由访问文件 Q 的权限。给出访问路 径: $\frac{1}{D}\frac{D}{G}\frac{D}{K}$

B为了提高文件访问的速度,可以再目录 G下建立两个链接文件,分别链接到文件 S和 T上。这样用户 G就可以直接访问这个两个文件了。

C在文件 I 的存取控制表中,只留下用户 E 的访问权限,其他用户对该文件无操作权限,从而达到不让其他用户访问的目的。

或者 chmod 700 I

或者 chmoh go-rwx I 或者 chod go-rwx I

修改权限 修改权限(续) ■ 字母形式 ■ 数字形式(八进制数字) chmod [ugoa][+-=][rwx] 文件名表 u--user 文件主的权限 674 xyz1 xyz2 例: chmod g--group 同组用户的权限 o--other 其他用户权限 八进制: a--all 所有上述三级权限 二进制: 例: chmod u+rw * 110 111 100 chmod go-rwx *.[ch] 权限: rwrwx r-chmod a+x batch chmod u=rx try2 注: 只允许文件主和超级用户修改文件权限

1. 某文件系统以硬盘作为文件存储器,物理块大小为 512B。有文件 A 包含 590 个逻辑记录,每个记录占 255B,每个物理块存放 2 个记录。文件 A 在该文件目录中的位置如图所示。 此树形目录结构由根目录节点、 作为目录文件的中间节点和作为信息文件的叶子节点组成。每个目录占 127B,每个物理块存放 4 个目录项。根目录的内容常驻内存。

- (1) 若文件采用链接分配方式,如果要将文件 A读入内存,至少需要存取几次 硬盘,为什么?
- (2) 若文件采用连续分配方式,如果要将文件 A的逻辑记录号为 480的记录读入内存,至少要存取几次硬盘,为什么?
- (3) 若文件采用索引分配方式,一个索引项占 4B,则至少需要几级索引可以 寻址文件 A?如果要将文件 A的逻辑记录号为 480的记录读入内存,至少需要存取几次硬盘?
- (4) 读文件 A 时,为最大限度减少启动硬盘的次数可采用什么方法?此时, 硬盘最多启动多少次?

解:(1)首先要检查索引文件 A,其路径是\root\usr\user1\mytext\A, 最好情况下:从内存的根目录找到目录 usr 的目录文件,读入内存,计第一次硬盘访问;从目录 user 的目录文件找到目录 user1 的目录文件,读入内存,计第二次硬盘访问;从目录 user1 的目录文件找到目录 mytext 的目录文件,读入内存,计第三次硬盘访问;从目录 mytext 的目录文件找到文件 A 的文件控制块,寻求 A 的文件物理地址,文件 A包含 590条记录,需要 590/2=295 个物理块。采用连接分配方式,所有物理快一个一个的读入,因此,每读入文件 A需要访问 295次,加上查目录的 3次,总共 298次。

- (2)采用连续分配方式,同前,需要 3次硬盘访问得到文件 A的起始块号 S,由于是连续文件,因此可以通过逻辑记录号计算出物理地址: S+480/2.要读入该记录只需访问硬盘一次,因此总次数是 3+1=4次。
- (3)一个磁盘块包含 512/4=128 个索引,文件 A占用了 295 个物理块,所以二次索引足以寻址文件 A,二次索引需要访问磁盘两次才能将二级索引表读入内存,最后读入文件 A的地 480 条记录所对应的盘块(第六次访问) 。3+2+1
- (4)由于文件的存储方式决定了磁盘的访问次数,无法改变,但可以减少目录文件的访问次数。 将文件 A 直接链接在根目录中, 这样就可以直接从内存中找到文件 A 的 FCB,可以减少前三次的目录访问次数。

解:(1)首先要检索文件 A,其路径是 \root\usr\user1\mytext\A ,最好情况下:

从内存的根目录找到目录 usr 的目录文件,读入内存,计第 1 次硬盘访问;

从目录 usr 的目录文件找到目录 user1 的目录文件, 读入内存, 计第 2 次硬盘访问;

从目录 user1 的目录文件找到目录 mytext 的目录文件,读入内存,计第3次硬盘访问;

从目录 mytext 的目录文件找到文件 A的文件控制块,寻求 A的文件物理地址,

文件 A 包含 590 条记录,需要 590/2=295 个物理块。采用链接分配方式,所有物理块一个一个的读入,因此,每读入文件 A 需要访问 295 次,加上查目录的 3 次,总共 295+3=298次。

- (2) 采用连续分配方式,同前,需要 3次硬盘访问得到文件 A的起始块号 S,由于是连续文件,因此可以通过逻辑记录号计算出物理地址: S+480/2。要读入该记录只需访问硬盘一次,因此总次数是 3+1=4次。
- (3)一个磁盘块包含 512/4=128 个索引,文件 A占用了 295 个物理块,所以二级索引足以寻址文件 A,二级索引需要访问磁盘两次才能将二级索引表读入内存,最后读入文件 A的第 480 条记录所对应的盘块 (第 6 次访问磁盘)。3+2+1
- (4)由于文件的存储方式决定了磁盘的访问次数,无法改变,但可以减少目录文件的访问次数。将文件 A 直接链接在根目录中,这样可以直接从内存中找到文件 A的 FCB,可以减少前 3次的目录访问次数。