力学

最終コンパイル 平成 30 年 4 月 25 日

目 次

第1章	メモ	5
第I部	古典力学	6
第2章	ケプラーの法則	7
第3章	剛体の運動	8
3.1	剛体	8
3.2	運動方程式	8
第4章	万有引力の法則	9
4.1	重力	9
4.2	重心	9
4.3	力とモーメント	9
	4.3.1 力のモーメント	9
	4.3.2 慣性モーメント	9
4.4	仕事	9
第5章	運動方程式	10
第II部	。 3 解析力学	11
	ラグランジュの運動方程式	12
第 III I	部 材料力学	13
	ヤング率	14
第6章	いろいろな断面定数	15

第 IV	部 熱力学	16
第 7 章 7.1	熱 基本法則	1 7
第Ⅴ音	ß 流体力学	18
第8章	完全流体	20
8.1	流体力学の基礎方程式	20
	8.1.1 流体の定義と状態	20
	8.1.2 流れを表す量	20
8.2	連続の式	20
	8.2.1 オイラーの方法	20
	8.2.2 ラグランジュの方法	20
8.3	ベルヌーイの定理	20
8.4	ナビエ-ストークスの方程式	20
第 9 章	非完全流体	21
第 10 章	治	22
第 11 章	北中の剛体	23
11.1	浮力	23

第1章 メモ

```
粘性
カム
シャフト
ベアリング
ボールネジ
ネジ
エーテル理論
ギア
ウォームギア
ラック・アンド・ピニオン
遊星歯
カリの力
遠心力
慣性力
```

第Ⅰ部

古典力学

第2章 ケプラーの法則

第3章 剛体の運動

- 3.1 剛体
- 3.2 運動方程式

定理 3.2.1 (ニュートンの運動方程式).

$$F = m\mathbf{a} = m\frac{d^2r}{dt^2} \tag{3.1}$$

第4章 万有引力の法則

$$F = mg[N] (4.1)$$

$$F = G\frac{Mm}{r^2}[N] \tag{4.2}$$

- 4.1 重力
- 4.2 重心
- 4.3 力とモーメント
- 4.3.1 力のモーメント

定義 4.3.1 (力のモーメント).

$$N = r \times F \tag{4.3}$$

4.3.2 慣性モーメント 定義 4.3.2 (慣性モーメント).

4.4 仕事

第5章 運動方程式

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{v})\boldsymbol{v} + D(\boldsymbol{v})\boldsymbol{v} + g(\boldsymbol{\eta}) = \boldsymbol{\tau}$$
 (5.1)

- 1. 慣性力
- 2. コリオリの力

第II部

解析力学

5.1 ラグランジュの運動方程式

最小作用の原理

第III部

材料力学

5.2 ヤング率

第6章 いろいろな断面定数

1. 断面積

$$A = \int \int_{S} dx dy \tag{6.1}$$

2. 断面 1 次モーメント

$$S_{x} = \int \int_{S} y dx dy$$

$$S_{y} = \int \int_{S} x dx dy$$
(6.2)

3. 断面 2 次モーメント

$$I_{x} = \int \int_{S} y^{2} dx dy$$

$$I_{y} = \int \int_{S} x^{2} dx dy$$
(6.3)

4. 断面相乗モーメント

$$I_{xy} = \int \int_{S} xy dx dy \tag{6.4}$$

第IV部

熱力学

第7章 熱

7.1 基本法則

カルノーサイクル エントロピー エンタルピー 状態量 第V部

流体力学

レイノルズ数粘性完全流体

第8章 完全流体

- 8.1 流体力学の基礎方程式
- 8.1.1 流体の定義と状態

定義 8.1.1 (流体). 液体と気体のことを流体という.

- 8.1.2 流れを表す量
- 8.2 連続の式
- 8.2.1 オイラーの方法
- 8.2.2 ラグランジュの方法
- 8.3 ベルヌーイの定理

ピトー管

8.4 ナビエ-ストークスの方程式

第9章 非完全流体

第10章 渦

第11章 水中の剛体

11.1 浮力

定義 11.1.1.

$$F_B = \rho g V[N] \tag{11.1}$$