Algorithm

First step is to understand what is happaning from the samples. For each sample image we:

- 1. split the image into RGB channels;
- 2. subtract G and B components from the doubled R component to measure the prevalence of red component over green and blue ones.

$$lightness_{RED} := 2R - G - B$$

Experiments show, that due to constant parameters of the light we can distinct every of three classes from the brightness of red channel.

- 3. Calculate the average value of all pixels in $lightness_{RED}$.
- 4. Compare average lightens with learn thresholds.

After the train step we do the following: For each image in test set:

- 1. Load test image;
- 2. Split the test image into channels;
- 3. Find $lightness_{RED}$ for the image;
- 4. Calculate the average value of all pixels in $lightness_{RED}$;
- 5. Compare average lightens with learned thresholds.

Illustration Here are a few results of image spliting:

From upside down: $lightness_{RED}$.

Performance measure According to confusion matrix:

	predicted 1	predicted 0	Total
real class 1	True Positive (TP)	False Negative (FN)	P
real class 0	False Positive (FP)	True Negative (TN)	N
Total	P'	N'	P+N

The formulas for precision, recall and accuracy:

$$1) \quad precision = \frac{TP}{TP + FP}$$

$$2) \quad recall = \frac{TP}{P}$$

3)
$$accuracy = \frac{TP+TN}{P+N}$$

The results of the program: For every class precision = recall = accuracy = 100