Limit determination - Emphasis on arbitrariness

E. Busato

December 3, 2013

Outline

- Introduction
- Single channel No uncertainties
- Multiple channels No uncertainties
- Uncertainties

- Not addressed in this presentation
 - Shapes
 - Profiling

Standard cut&count problem

Notations

- One or more backgrounds: $\sum b_i$
- Signal with unknown x-sec: s (free parameter)
- Total expectation: $s + \sum b_i$
- Observed number of events: Nobs
- When $N_{\rm obs}$ agrees with background yield, infer upper limit $s_{\rm up}$

- To set limit one needs to

Standard cut&count problem

Notations

- One or more backgrounds: $\sum b_i$
- Signal with unknown x-sec: s (free parameter)
- Total expectation: $s + \sum b_i$
- Observed number of events: Nobs
- ullet When $N_{
 m obs}$ agrees with background yield, infer upper limit $s_{
 m up}$

 $s_{up} = yield$ above which total expectation and observation disagree

- To set limit one needs to
 - ► Know how Nobe is distributed
 - ► Have a quantitative measure of the agreement between data and total expectation

Standard cut&count problem

Notations

- One or more backgrounds: $\sum b_i$
- Signal with unknown x-sec: s (free parameter)
- Total expectation: $s + \sum b_i$
- Observed number of events: Nobs
- When $N_{\rm obs}$ agrees with background yield, infer upper limit $s_{\rm up}$

 $s_{up} = yield$ above which total expectation and observation disagree

- To set limit one needs to
 - ► Know how Nobs is distributed
 - ► Have a quantitative measure of the agreement between data and total expectation

Distribution of $N_{\rm obs}$ - Terminology

Distribution of observation described by likelihood \mathcal{L} :

$$\mathscr{L} = \operatorname{proba}(N_{\operatorname{obs}}; s + \sum_{i} b_{i})$$

Likelihood also called statistical model or model

Two central problems to be addressed

- Build statistical model
- ② Infer s_{up} from statistical model (i.e. quantify agreement between observation and total expectation for each s)

Two central problems to be addressed

- Build statistical model
- ② Infer s_{up} from statistical model (i.e. quantify agreement between observation and total expectation for each s)

Multiple channels - No uncertainties

Important point: no unique solution to these problems

 \rightarrow upper limit is a somewhat subjective notion (always relative to the choices made to solve these problems)

Softwares

 Throughout the presentation, three softwares implementing solutions to previous problems will be discussed/compared/studied

Multiple channels - No uncertainties

- McLimit: hybrid frequentist-bayesian
- CLsGenerator: hybrid frequentist-bayesian
- BayesianMCMC: bayesian (Markov Chain Monte Carlo)

 HistFactory and various RooStats implementations (almost) not described

CLsGenerator and BayesianMCMC

- Use exactly the same statistical model
 - Difference is on how inference is made

- Take same files as input
 - Comparison straightforward

Single channel - No uncertainties

Statistical model and inference

Statistical model In our experiments, $N_{\rm obs} \sim Binomial^1 \rightarrow Approximated by Poisson$

$$\mathcal{L} = \frac{\left(s + \sum_{i} b_{i}\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\left(s + \sum_{i} b_{i}\right)}$$

Multiple channels - No uncertainties

- - ► Two families of methods: frequentist and bayesian

 $^{^{1}\}sim$ means "is distributed according to"

Statistical model and inference

Statistical model In our experiments, $N_{\rm obs} \sim Binomial^1 \rightarrow Approximated by Poisson$

$$\mathcal{L} = \frac{\left(s + \sum_{i} b_{i}\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\left(s + \sum_{i} b_{i}\right)}$$

Multiple channels - No uncertainties

- Inference of s_{up}
 - ► Two families of methods: frequentist and bayesian

 $^{^{1}\}sim$ means "is distributed according to"

• Consider the case: $N_{\mathrm{obs}} = 1$ and $\sum\limits_{i} b_{i} = 0.82$

• Consider the case: $N_{\mathrm{obs}} = 1$ and $\sum\limits_{i} b_{i} = 0.82$

• Consider the case: $N_{\rm obs}=1$ and $\sum b_i=0.82$

• Consider the case: $N_{\rm obs}=1$ and $\sum b_i=0.82$

• Quantitative measure of agreement: p-value

$$p-value = \underbrace{\sum_{N=0}^{N_{\text{obs}}} \mathscr{P}(N; s + \sum_{i} b_{i})}_{\text{c. d. f.}} = \underbrace{\sum_{N=0}^{N_{\text{obs}}} \frac{\left(s + \sum_{i} b_{i}\right)^{N}}{N!}}_{N!} e^{-\left(s + \sum_{i} b_{i}\right)}$$

• Remark: this p-value is also called CL_{s+b}

- For which values of *s* does the observation disagree with total expectation ?
 - ▶ Usually we take values for which $p-value \le \alpha$ with $\alpha=0.05$
- Upper limit s_{up} is the smallest of all values for which observation and total expectation disagree

$$CL_{s+b}(s_{\sf up}) = \alpha$$

• Previous example: $s_{up} = 3.92$

- For which values of s does the observation disagree with total expectation?
 - ▶ Usually we take values for which $p-value \le \alpha$ with $\alpha=0.05$
- ullet Upper limit s_{up} is the smallest of all values for which observation and total expectation disagree

$$CL_{s+b}(s_{\sf up})=\alpha$$

• Previous example: $s_{up} = 3.92$

Multiple channels - No uncertainties

Frequentist solution - CL_{s+b} method

- For which values of s does the observation disagree with total expectation?
 - ▶ Usually we take values for which $p-value \le \alpha$ with $\alpha=0.05$
- Upper limit s_{up} is the smallest of all values for which observation and total expectation disagree

$$CL_{s+b}(s_{\sf up})=\alpha$$

• Previous example: $s_{up} = 3.92$

Single channel - No uncertainties

ullet Even though CL_{s+b} seems a valid method, it's has a problem

- \rightarrow downward fluctuation leads to $s_{up} < 0$!
- A fix could be to impose $s_{up} \ge 0$
 - \rightarrow Not satisfactory: all models predicting signal (even those predicting very small yield) are excluded with 5% probability

• Even though CL_{s+b} seems a valid method, it's has a problem

- \rightarrow downward fluctuation leads to $s_{up} < 0$!
- A fix could be to impose $s_{up} \ge 0$
 - \rightarrow Not satisfactory: all models predicting signal (even those predicting very small yield) are excluded with 5% probability

Multiple channels - No uncertainties

Frequentist solution - CL_s method

- Solution to previous issue: CL_s
- Instead of defining s_{up} by $CL_{s+b}(s_{up}) = \alpha$, define it by

$$CL_s(s_{\sf up}) = \alpha$$

where $CL_s = \frac{CL_{s+b}}{CL_b}$, with

$$CL_b = \sum_{N=0}^{N_{\text{obs}}} \frac{(\sum b_i)^N}{N!} e^{-\sum b_i}$$

Frequentist solution - CL_s method

8.0

Frequentist solution - CL_s method

• Remark: upper limit always worse with CL_s (in this example: $s_{up} = 4.19$)

Frequentist solution - CL_s method

Comments

- ▶ Other solutions than CL_s exist to solve $s_{up} \le 0$ problem (e.g. PCL)
- CL_s is the current recommendation in ATLAS
- Previous CL_s procedure is what CLsGenerator and McLimit do in single channel/no uncertainties case

- Comments
 - Other solutions than CL_s exist to solve $s_{up} \leq 0$ problem (e.g. PCL)
 - CL_s is the current recommendation in ATLAS
 - Previous CL_s procedure is what CLsGenerator and McLimit do in single channel/no uncertainties case

- Comments
 - ▶ Other solutions than CL_s exist to solve $s_{up} \le 0$ problem (e.g. PCL)
 - CL_s is the current recommendation in ATLAS
 - ▶ Previous *CL_s* procedure is what CLsGenerator and McLimit do in single channel/no uncertainties case

Reminder: Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \propto P(B|A)P(A)$$

- ightarrow Bayesian methods use this theorem to make inference
- Bayes' theorem applied to previous example

$$\underbrace{f(s|N_{\text{obs}})}_{\text{posterior}} \propto \underbrace{P(N_{\text{obs}}|s)}_{\text{likelihood}} \underbrace{\pi(s)}_{\text{prior}} = \frac{\left(s + \sum\limits_{i} b_{i}\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\left(s + \sum\limits_{i} b_{i}\right)} \pi(s)$$

• Remark: philosophically very different from frequentist methods

 $\rightarrow s$ considered as a random variable²

²hence the notation $P(N_{obs}|s) = P(N_{obs};s)$

• Reminder: Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \propto P(B|A)P(A)$$

- ightarrow Bayesian methods use this theorem to make inference
- Bayes' theorem applied to previous example

$$\underbrace{f(s|N_{\text{obs}})}_{\text{posterior}} \propto \underbrace{P(N_{\text{obs}}|s)}_{\text{likelihood}} \underbrace{\pi(s)}_{\text{prior}} = \frac{\left(s + \sum\limits_{i} b_{i}\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\left(s + \sum\limits_{i} b_{i}\right)} \pi(s)$$

• Remark: philosophically very different from frequentist methods $\rightarrow s$ considered as a random variable²

²hence the notation $P(N_{obs}|s) = P(N_{obs};s)$

Multiple channels - No uncertainties

Bayesian solution

• Reminder: Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \propto P(B|A)P(A)$$

- Bayesian methods use this theorem to make inference
- Bayes' theorem applied to previous example

$$\underbrace{f(s|N_{\text{obs}})}_{\text{posterior}} \propto \underbrace{P(N_{\text{obs}}|s)}_{\text{likelihood}} \underbrace{\pi(s)}_{\text{prior}} = \frac{\left(s + \sum\limits_{i} b_{i}\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\left(s + \sum\limits_{i} b_{i}\right)} \pi(s)$$

- Remark: philosophically very different from frequentist methods
 - $\rightarrow s$ considered as a random variable²

²hence the notation $P(N_{obs}|s) = P(N_{obs};s)$

Bayesian solution

• Upper limit s_{up} defined by

$$\int_0^{s_{\rm up}} f(s|N_{\rm obs}) \mathrm{d}s = 1 - \alpha$$

• For previous example ($N_{\rm obs} = 1$, $\sum b_i = 0.82$) with uniform prior

Frequentist Vs Bayesian

- CL_s and bayesian with uniform prior strictly equivalent in simple situation considered here
- Proof

$$f(s|N_{obs}) = \frac{P(N_{obs}|s)}{\int_0^\infty P(N_{obs}|s)ds}$$
it can be shown that $\int_0^\infty P(N_{obs}|s)ds = CL_b$

$$1 - \alpha = \int_0^{s_{up}} f(s|N_{obs})ds = \frac{1}{CL_b} \int_0^{s_{up}} P(N_{obs}|s)ds$$
it can be shown that $\int_0^{s_{up}} P(N_{obs}|s)ds = CL_b - CL_{s+b}(s_{up})$

$$\Rightarrow \alpha = \frac{CL_{s+b}(s_{up})}{CL_s} = CL_s(s_{up})$$

Frequentist Vs Bayesian

- CL_s and bayesian with uniform prior strictly equivalent in simple situation considered here
- Proof

$$f(s|N_{obs}) = \frac{P(N_{obs}|s)}{\int_0^\infty P(N_{obs}|s)ds}$$

it can be shown that $\int_0^\infty P(N_{\rm obs}|s)ds = CL_b$

►
$$1 - \alpha = \int_0^{s_{up}} f(s|N_{obs}) ds = \frac{1}{CL_b} \int_0^{s_{up}} P(N_{obs}|s) ds$$

it can be shown that $\int_0^{s_{up}} P(N_{obs}|s) ds = CL_b - CL_{s+b}(s_{up})$
$$\Rightarrow \alpha = \frac{CL_{s+b}(s_{up})}{CL_b} = CL_s(s_{up})$$

Analytical solution

No need to run sophisticated tools to compute previous limits

→ Analytical solutions exist

- Analytical solutions (proofs on next slide)
 - ► *CL*_{s+b}:

$$s_{\text{up}} = 0.5 \times F_{\chi^2}^{-1} (1 - \alpha; 2(N_{\text{obs}} + 1)) - \sum b_i$$

0.5*ROOT::Math::chisquared_quantile(1- α ,2*($N_{\rm obs}$ +1))-b

► *CL*_s and bayesian with uniform prior

$$s_{up} = 0.5 \times F_{\chi^2}^{-1} \left(1 - \alpha \left[1 - F_{\chi^2} \left(2 \sum b_i; 2 \left(N_{obs} + 1 \right) \right) \right]; 2 \left(N_{obs} + 1 \right) \right) - \sum b_i$$

Analytical solution

• No need to run sophisticated tools to compute previous limits

→ Analytical solutions exist

- Analytical solutions (proofs on next slide)
 - ► *CL*_{s+b}:

$$s_{up} = 0.5 \times F_{\chi^2}^{-1} (1 - \alpha; 2(N_{obs} + 1)) - \sum b_i$$

0.5*ROOT::Math::chisquared_quantile(1- α ,2*(N_{obs} +1))-b

CL_s and bayesian with uniform prior :

$$s_{up} = 0.5 \times F_{\chi^2}^{-1} \left(1 - \alpha \left[1 - F_{\chi^2} \left(2 \sum b_i; 2 \left(N_{obs} + 1 \right) \right) \right]; 2 \left(N_{obs} + 1 \right) \right) - \sum b_i$$

0.5*ROOT::Math::chisquared_quantile(1- α *(1-

Analytical solution

- Demonstration of previous relations
 - ▶ Consider first a $\mathit{CL}_{\mathsf{s+b}}$ limit. Upper limit μ_{up} at $1-\alpha$ confidence level given by

$$CL_{s+b} = \sum_{n=0}^{Nobs} \mathscr{P}(N; s + \sum b_i) = \alpha$$

Poisson c. d. f. given by

$$\sum_{n=0}^{N_{\mathrm{obs}}} \mathscr{P}(N; s+\sum b_i) = 1 - F_{\chi^2}(2(s+\sum b_i); 2(N_{\mathrm{obs}}+1))$$

Thus

$$s_{\rm up} = 0.5 \times F_{\chi^2}^{-1} (1 - \alpha; 2(N_{\rm obs} + 1)) - \sum b_i$$

▶ For CL_s , just need to replace α by $\alpha \times CL_b$ (since CL_b is independent of signal)

Remark

• Note that previous CL_{s+b} formula is the one used in SS analysis to set upper limit for samples with yield=0

$$Yield_{up} = 0.5 \times F_{\chi^2}^{-1}(0.68; 2(0+1)) \simeq 1.14$$

Summary of methods discussed so far

	Method	Comment
Frequentist	CL_{s+b}	unphysical when downward fluctuation
	CL_s	equivalent to bayesian w/ uniform prior
	PCL	maybe solution of the future
Bayesian	Bayesian (uniform prior)	equivalent to CL_s
	Bayesian (other priors)	

ightarrow Quite a lot of solutions for such a simple problem

It's just the beginning

Summary of methods discussed so far

	Method	Comment
Frequentist	CL_{s+b}	unphysical when downward fluctuation
	CL_s	equivalent to bayesian w/ uniform prior
	PCL	maybe solution of the future
Bayesian	Bayesian (uniform prior)	equivalent to CL_{s}
	Bayesian (other priors)	

 \rightarrow Quite a lot of solutions for such a simple problem

It's just the beginning!

Sensitivity of an analysis

- Sensitivity of an analysis not given by $s_{\rm up}$ but by some quantity measuring by how much $s_{\rm up}$ differs from some nominal signal expectation $s_{\rm nom}$
 - ightharpoonup Example: SUSY predicts s_{nom} sgluon events after selection
 - if $s_{up} < s_{nom}$: sgluon excluded
 - if $s_{up} \ge s_{nom}$: sgluon not excluded
- Sensitivity usually given by

$$\mu_{
m up}=rac{s_{
m up}}{s_{
m nom}}$$

If $\mu_{\text{HD}} \gg 1$, analysis not sensitive

Sensitivity of an analysis

- Sensitivity of an analysis not given by s_{up} but by some quantity measuring by how much s_{up} differs from some nominal signal expectation s_{nom}
 - \triangleright Example: SUSY predicts s_{nom} sgluon events after selection
 - if $s_{up} < s_{nom}$: sgluon excluded
 - if $s_{up} \ge s_{nom}$: sgluon not excluded
- Sensitivity usually given by

$$\mu_{\rm up} = \frac{s_{\rm up}}{s_{\rm nom}}$$

If $\mu_{\rm up} \gg 1$, analysis not sensitive

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b}/s_{\sf nom}$

In order to compute sensitivities fast, people sometimes use

$$\mu_{\mathrm{up}} = 1.64 \frac{\sqrt{b}}{s_{\mathrm{nom}}}$$
 (b: total background)

 \bullet From this formula one often predicts that sensitivity should scale as $1/\sqrt{\text{Lumi}}$

```
ightarrow Where does this come from ?

ightarrow What approximations are behind ?

ightarrow Can we do better ?

ightarrow Is the 1/\sqrt{\text{Lumi}} scaling correct ?
```

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b/s_{\sf nom}}$

In order to compute sensitivities fast, people sometimes use

$$\mu_{\rm up} = 1.64 \frac{\sqrt{b}}{s_{\rm nom}}$$
 (b: total background)

- From this formula one often predicts that sensitivity should scale as $1/\sqrt{Lumi}$
 - \rightarrow Where does this come from ?
 - \rightarrow What approximations are behind?
 - \rightarrow Can we do better?
 - \rightarrow Is the $1/\sqrt{\text{Lumi scaling correct ?}}$

Gaussian approximation

- Analytical solution in gaussian approximation
 - ▶ When $s + \sum b_i$ is large, poisson \simeq gaussian with $\sigma = \sqrt{s + \sum b_i}$
 - We can show that, for CL_{s+b} (see next slide)

$$s_{\rm up} = N_{\rm obs} - \sum b_i + \frac{\left[\Phi^{-1}(1-\alpha)\right]^2}{2} \left[1 + \sqrt{1 + 4\frac{N_{\rm obs}}{\left[\Phi^{-1}(1-\alpha)\right]^2}}\right]$$

where Φ is the c. d. f. of the standard normal distribution

Gaussian approximation

- Analytical solution in gaussian approximation
 - ▶ When $s + \sum b_i$ is large, poisson \simeq gaussian with $\sigma = \sqrt{s + \sum b_i}$
 - We can show that, for CL_{s+b} (see next slide)

$$s_{\text{up}} = N_{\text{obs}} - \sum b_i + \frac{\left[\Phi^{-1}(1-\alpha)\right]^2}{2} \left[1 + \sqrt{1 + 4\frac{N_{\text{obs}}}{\left[\Phi^{-1}(1-\alpha)\right]^2}}\right]$$

where Φ is the c. d. f. of the standard normal distribution

Gaussian approximation - Demonstration

• For CL_{s+b} , we have by definition

$$CL_{s+b} = \int_{0}^{N_{obs}} G\left(N; s_{up} + \sum b_{i}, \sqrt{s_{up} + \sum b_{i}}\right) dN = \alpha$$

$$\Rightarrow \int_{0}^{\frac{N_{obs} - (s_{up} + \sum b_{i})}{\sqrt{s_{up} + \sum b_{i}}}} G(N; 0, 1) dN = \alpha$$

$$\Rightarrow \Phi\left(\frac{N_{obs} - (s_{up} + \sum b_{i})}{\sqrt{s_{up} + \sum b_{i}}}\right) = \alpha$$

$$\Rightarrow N_{obs} - (s_{up} + \sum b_{i}) = -\sqrt{s_{up} + \sum b_{i}} \times \Phi^{-1}(1 - \alpha)$$

Solving for s_{up} gives expression on previous slide

• For CL_s , just need to replace α by $\alpha \times \Phi\left(\frac{N_{\text{obs}-\sum b_i}}{\sqrt{\sum b_i}}\right)$ (as for Poisson)

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b/s_{\sf nom}}$

$$\mu_{\rm up} = \frac{N_{\rm obs} - \sum b_i}{s_{\rm nom}} + \frac{\left[\Phi^{-1}(1-\alpha)\right]^2}{2s_{\rm nom}} \left[1 + \sqrt{1 + 4\frac{N_{\rm obs}}{\left[\Phi^{-1}(1-\alpha)\right]^2}}\right] \quad (\star)$$

- Let's assume that
 - 1 $N_{\text{obs}} = \sum b_i$ (i.e. expected limit)
 - ② $\sum b_i \gg \left[\Phi^{-1}(1-\alpha)\right]^2/4$
 - note that $\Phi^{-1}(1-\alpha)=1.64$ for $\alpha=0.05$, corresponding to $\sum b_i\gg 0.7$
 - this assumption corresponds more or less to the gaussian approx

Then, one sees directly from (*) tha

$$\mu_{
m up} \simeq \Phi^{-1} (1-lpha) rac{\sqrt{\sum b_i}}{s_{
m nom}} = 1.64 rac{\sqrt{\sum b_i}}{s_{
m nom}}$$

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b/s_{\sf nom}}$

$$\mu_{\rm up} = \frac{N_{\rm obs} - \sum b_i}{s_{\rm nom}} + \frac{\left[\Phi^{-1}(1-\alpha)\right]^2}{2s_{\rm nom}} \left[1 + \sqrt{1 + 4\frac{N_{\rm obs}}{\left[\Phi^{-1}(1-\alpha)\right]^2}}\right] \quad (\star)$$

- Let's assume that

 - **2** $\sum b_i \gg \left[\Phi^{-1}(1-\alpha)\right]^2/4$
 - note that $\Phi^{-1}(1-\alpha)=1.64$ for $\alpha=0.05$, corresponding to $\sum b_i\gg 0.7$
 - this assumption corresponds more or less to the gaussian approx.

Then, one sees directly from (\star) that

$$igg| \mu_{\mathsf{up}} \simeq \Phi^{-1} (1-lpha) rac{\sqrt{\sum b_i}}{s_{\mathsf{nom}}} = 1.64 rac{\sqrt{\sum b_i}}{s_{\mathsf{nom}}}$$

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b/s_{\sf nom}}$

- Where does this come from ? What approximations are behind ?
 - $\rightarrow CL_{s+b}$ method under gaussian approximation

- Can we do better?
 - \rightarrow Yes: use analytical CL_s poisson solution (no more complicated to use and more correct)

$$s_{\text{up}} = 0.5 \times F_{\chi^2}^{-1} \left(1 - \alpha \left[1 - F_{\chi^2} \left(2 \sum b_i; 2 \left(N_{\text{obs}} + 1 \right) \right) \right]; 2 \left(N_{\text{obs}} + 1 \right) \right) - \sum b_i$$

 $0.5*ROOT::Math::chisquared_quantile(1-\alpha*(1-\alpha))$

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b/s_{\sf nom}}$

- Where does this come from ? What approximations are behind ?
 - $\rightarrow CL_{s+b}$ method under gaussian approximation

- Can we do better?
 - \rightarrow Yes: use analytical CL_s poisson solution (no more complicated to use and more correct)

$$s_{up} = 0.5 \times F_{\chi^2}^{-1} \left(1 - \alpha \left[1 - F_{\chi^2} \left(2 \sum b_i; 2 \left(N_{obs} + 1 \right) \right) \right]; 2 \left(N_{obs} + 1 \right) \right) - \sum b_i$$

0.5*ROOT::Math::chisquared_quantile(1- α *(1-

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b/s_{\sf nom}}$

- Where does this come from ? What approximations are behind ?
 - $\rightarrow CL_{s+b}$ method under gaussian approximation

- Can we do better?
 - \rightarrow Yes: use analytical CL_s poisson solution (no more complicated to use and more correct)

$$s_{up} = 0.5 \times F_{\chi^2}^{-1} \left(1 - \alpha \left[1 - F_{\chi^2} \left(2 \sum b_i; 2 \left(N_{obs} + 1 \right) \right) \right]; 2 \left(N_{obs} + 1 \right) \right) - \sum b_i$$

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b}/s_{\sf nom}$

- Where does this come from ? What approximations are behind ?
 - $\rightarrow CL_{s+b}$ method under gaussian approximation

- Can we do better?
 - \rightarrow Yes: use analytical CL_s poisson solution (no more complicated to use and more correct)

$$s_{up} = 0.5 \times F_{\chi^{2}}^{-1} \left(1 - \alpha \left[1 - F_{\chi^{2}} \left(2 \sum b_{i}; 2(N_{obs} + 1) \right) \right]; 2(N_{obs} + 1) \right) - \sum b_{i}$$

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b}/s_{\sf nom}$

• Consider example with b = 0.82, $s_{nom} = 2.49$ for Lumi= 1

Comments on historical $\mu_{\sf up} = 1.64 \sqrt{b}/s_{\sf nom}$

• Is the $1/\sqrt{\text{Lumi}}$ scaling correct ?

 \rightarrow As before: b = 0.82, $s_{nom} = 2.49$ for Lumi= 1

 $\Rightarrow 1/\sqrt{\text{Lumi}}$ scaling rather good approximation when number of events not too small

Softwares

 No softwares needed, use analytical (unless you want bayesian w/ non-uniform prior or profile likelihood)

Validation of CLsGenerator and BayesianMCMC

Use analytical solution to validate CLsGenerator and BayesianMCMC

ightarrow CLsGenerator and BayesianMCMC validated in single channel - no uncertainties case

Generalizing frequentist methods

- Methods presented in simple "Single channel No uncertainties" case can be used as prototypes for more general cases
- What we did previously was to
 - Pick variable with discrimating power between background and signal+background hypothesis
 - Determine distribution of this variable
 - 3 Compute p-values as a function of signal yield s
 - \bullet Determine upper limit s_{up}
- All frequentist methods based on this general scheme

Generalizing frequentist methods

- Methods presented in simple "Single channel No uncertainties" case can be used as prototypes for more general cases
- What we did previously was to
 - Pick variable with discrimating power between background and signal+background hypothesis
 - Determine distribution of this variable
 - **3** Compute p-values as a function of signal yield s
 - **4** Determine upper limit s_{up}
- All frequentist methods based on this general scheme

Generalizing frequentist methods

How to choose variable ?

- Need single discriminating variable summarizing information from all channels
 - → Can't use observed yield anymore
 - → Use likelihood based variables

$$\mathcal{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathcal{L}_{\mathsf{c}}$$

- Discriminating power as good as possible
 - → Likelihood ratios are a good choice (Neyman-Pearson Lemma)
- Terminology: this variable is called test statistic or simply test

- How to choose variable ?
 - Need single discriminating variable summarizing information from all channels
 - → Can't use observed yield anymore
 - → Use likelihood based variables

$$\mathcal{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathcal{L}_{\mathsf{c}}$$

- Discriminating power as good as possible
 - → Likelihood ratios are a good choice (Neyman-Pearson Lemma)
- Terminology: this variable is called test statistic or simply test

- How to choose variable ?
 - Need single discriminating variable summarizing information from all channels
 - \rightarrow Can't use observed yield anymore
 - → Use likelihood based variables

$$\mathcal{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathcal{L}_{\mathsf{c}}$$

- Discriminating power as good as possible
 - → Likelihood ratios are a good choice (Neyman-Pearson Lemma)
- Terminology: this variable is called test statistic or simply test

- How to choose variable ?
 - Need single discriminating variable summarizing information from all channels
 - \rightarrow Can't use observed yield anymore
 - → Use likelihood based variables

$$\mathscr{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathscr{L}_\mathsf{c}$$

- Discriminating power as good as possible
 - → Likelihood ratios are a good choice (Neyman-Pearson Lemma)
- Terminology: this variable is called test statistic or simply test

- How to choose variable ?
 - Need single discriminating variable summarizing information from all channels
 - ightarrow Can't use observed yield anymore
 - → Use likelihood based variables

$$\mathscr{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathscr{L}_\mathsf{c}$$

- Discriminating power as good as possible
 - → Likelihood ratios are a good choice (Neyman-Pearson Lemma)
- Terminology: this variable is called test statistic or simply test

- How to choose variable ?
 - Need single discriminating variable summarizing information from all channels
 - ightarrow Can't use observed yield anymore
 - → Use likelihood based variables

$$\mathscr{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathscr{L}_\mathsf{c}$$

- Discriminating power as good as possible
 - → Likelihood ratios are a good choice (Neyman-Pearson Lemma)
- Terminology: this variable is called test statistic or simply test

• Once a test is chosen, apply the rest of the procedure as before

Multiple channels - No uncertainties

Generalizing frequentist methods - Test statistic

• Once a test is chosen, apply the rest of the procedure as before

Common test statistics

Test statistic	Comment	Software
$q_{\mu} = -2 \ln rac{\mathscr{L}(\mu)}{\mathscr{L}(\mu=0)}$	Used at LEP, Tevatron, LHC	McLimit, CLsGenerator, RooStats
(simple likelihood ratio)		
$q'_{\mu} = -2 \ln rac{\mathscr{L}(\mu)}{\mathscr{L}(\hat{\mu})}$	Used at LHC	RooStats
(profile likelihood ratio)		

- ullet Difference w. r. t. single channel case: test depends on μ
 - ightharpoonup Distribution under background hypothesis depends on μ
 - $ightharpoonup q_{\mu}^{\text{obs}}$ depends on μ

CLsGenerator/McLimit test statistic

- Number of channels: n_c
- Test

$$q_{\mu} = -2 \ln \frac{\mathcal{L}_{1}(\mu) \times \mathcal{L}_{2}(\mu) \times ... \times \mathcal{L}_{n_{c}}(\mu)}{\mathcal{L}_{1}(\mu=0) \times \mathcal{L}_{2}(\mu=0) \times ... \times \mathcal{L}_{n_{c}}(\mu=0)}$$

$$\Rightarrow \boxed{q_{\mu} = \sum_{c=1}^{n_{c}} q_{\mu}^{c}}$$

For each channel

$$q_{\mu}^{c} = -2\ln\left[rac{(\mu s_{\mathsf{nom}} + \sum b_{i})^{N_{\mathsf{obs}}} e^{-(\mu s_{\mathsf{nom}} + \sum b_{i})}}{(\sum b_{i})^{N_{\mathsf{obs}}} e^{-\sum b_{i}}}
ight]$$

$$q_{\mu}^{c} = 2\left(\mu s_{\mathsf{nom}} - N_{\mathsf{obs}} \ln\left(\frac{\mu s_{\mathsf{nom}} + \sum b_{i}}{\sum b_{i}}\right)\right)$$

CLsGenerator/McLimit test statistic

- ullet In single channel case, using q_{μ} or observed yield as test is equivalent
 - Everything we said for single channel case remains valid

Generalizing bayesian method

Reminder

posterior \propto likelihood \times prior

Multiple channels - No uncertainties

$$\int_{0}^{s_{\text{up}}} \mathsf{posterior} = 1 - \alpha$$

Multiple channels: use joint likelihood

$$\mathscr{L}_{\mathsf{joint}} = \prod_{c:\mathsf{channels}} \mathscr{L}_\mathsf{c}$$

Softwares

• CLsGenerator and BayesianMCMC can be used for multiple channels

Validation of CLsGenerator and BayesianMCMC

- We expect that increasing luminosity by factor N is equivalent to increasing number of channels (having the same sensitivity) by the same factor (see next two slides)
- Here we check that CLsGenerator and BayesianMCMC are in agreement with this expectation
 - Validates in both cases implementation of channel combination

Demonstration equivalence lumi/#channels (CLsGenerator)

- Single channel: $q_{\mu} = 2 \left[\mu s N_{\text{obs}} \ln \frac{\mu s + b}{b} \right]$
- N channels: $q_{\mu,1} = 2\left[\mu \sum_{c:channels} s_c \sum_{c:channels} N_{\text{obs}}^c \ln \frac{\mu s_c + b_c}{b_c}\right]$
 - Assume yields are the same in all channels ($s_c = s$, $b_c = b$, $N_{\rm obs}^c = N_{\rm obs}$): $q_{\mu,1} = 2 \left[\mu \, Ns N_{\rm obs} \ln \left(\prod_{c:channels} \frac{\mu s_c + b_c}{b_c} \right) \right] = N \times 2 \left[\mu s N_{\rm obs} \ln \frac{\mu s + b}{b} \right]$
- Multiplying lumi. by N: $q_{\mu,2}=2\left[\mu s'-N'_{\text{obs}}\ln\frac{\mu s'+b'}{b'}\right]$
 - s' = Ns, b' = Nb and $N'_{obs} = NN_{obs}$

$$\Rightarrow q_{\mu,2} = N imes 2 \left[\mu s - N_{
m obs} \ln rac{\mu s + b}{b}
ight] = N q_{\mu}$$

• Conclusion: $q_{\mu,1} = q_{\mu,2}$

 $\Rightarrow q_{\mu,1} = Na_{\mu}$

Demonstration equivalence lumi/#channels (BayesianMCMC)

- Single channel: $\mathscr{L}(\mu) = \frac{(\mu s + b)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s + b)}$
- N channels:

$$\mathscr{L}_{1}(\mu) = \prod_{c: channels} \mathscr{L}_{c}(\mu) = \prod_{c: channels} \frac{(\mu s_{c} + b_{c})^{N_{obs}^{c}}}{N_{obs}^{c} !} e^{-(\mu s_{c} + b_{c})}$$

Assume yields are the same in all channels ($s_c = s$, $b_c = b$, $N_{obs}^c = N_{obs}$):

$$\Rightarrow \mathcal{L}_1(\mu) = \left[\frac{(\mu s + b)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s + b)}\right]^N = \frac{1}{(N_{\text{obs}}!)^N} (\mu s + b)^{NN_{\text{obs}}} e^{-N(\mu s + b)}$$

- Multiplying lumi. by N: $\mathscr{L}_2(\mu) = \frac{(\mu s' + b')^{N'_{\text{obs}}}}{N'_{\text{obs}}!} e^{-(\mu s' + b')}$
 - s' = Ns, b' = Nb and $N'_{obs} = NN_{obs}$

$$\Rightarrow \mathscr{L}_2(\mu) = \frac{(\mu N s + N b)^{NN_{\text{obs}}}}{(NN_{\text{obs}})!} e^{-(\mu N s + N b)} = \frac{N^{NN_{\text{obs}}}}{(NN_{\text{obs}})!} (\mu s + b)^{NN_{\text{obs}}} e^{-N(\mu s + b)}$$

• Conclusion: $\mathscr{L}_1(\mu) \propto \mathscr{L}_2(\mu)$ so inference on μ is the same

Validation of CLsGenerator and BayesianMCMC

- As always, consider
 - $N_{obs} = 1$
 - b = 0.82
 - $s_{nom} = 2.49$
- Compare two limits
 - first one computed from one channel with
 - $-N_{obs}=1\times N$
 - $b = 0.82 \times N$
 - $s_{nom} = 2.49 \times N$

- second one computed from N identical channels with
 - $N_{obs} = 1$
 - -b = 0.82
 - $-s_{nom} = 2.49$

Multiple channels - No uncertainties

Validation of CLsGenerator and BayesianMCMC

→ Expectation verified in both CLsGenerator and BayesianMCMC

Uncertainties

Problematic

- Nominal signal and background yields $(s_{nom} \text{ and } b_i)$ not known with infinite precision
- Two types of uncertainties
 - Statistical (finite sample size)
 - Systematic (e.g. JES, JVF, etc.)
 - \rightarrow How to account for uncertainties in limit setting?

Consider treatment of stat. uncert. as done in McLimit, CLsGenerator and BayesianMCMC (HistFactory makes things differently)

- Signal and background are considered as random variables with

 - standard deviation = $\begin{cases} \text{stat. uncert. } (\sqrt{\sum w_i^2}) \text{ when nominal yield } \neq 0 \\ \text{upper limit (1.14 lumi rescaled) when yield } = 0 \end{cases}$

$$\mathscr{L}(\mu, s', \{b_i'\}) = \frac{(\mu s' + \sum_i b_i')^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \underbrace{f(s'; s_{\text{nom}}, \sigma_s)}_{\text{constraint signal}} \prod_i \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint background is}}$$

• Terminology: s' and $\{b'_i\}$ are called nuisance parameters

Statistical uncertainties

- Consider treatment of stat. uncert. as done in McLimit, CLsGenerator and BayesianMCMC (HistFactory makes things differently)
- Signal and background are considered as random variables with
 - average = nominal yields $(\sum w_i)$
 - standard deviation = $\begin{cases} \text{stat. uncert. } (\sqrt{\sum w_i^2}) \text{ when nominal yield } \neq 0 \\ \text{upper limit (1.14 lumi rescaled) when yield } = 0 \end{cases}$

Single channel

$$\mathscr{L}(\mu, s', \{b_i'\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \underbrace{f(s'; s_{\text{nom}}, \sigma_s)}_{\text{constraint signal}} \prod_i \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint background i}}$$

• Terminology: s' and $\{b'_i\}$ are called nuisance parameters

Statistical uncertainties

- Consider treatment of stat. uncert. as done in McLimit, CLsGenerator and BayesianMCMC (HistFactory makes things differently)
- Signal and background are considered as random variables with
 - average = nominal yields $(\sum w_i)$
 - standard deviation = $\begin{cases} \text{stat. uncert. } (\sqrt{\sum w_i^2}) \text{ when nominal yield } \neq 0 \\ \text{upper limit (1.14 lumi rescaled) when yield } = 0 \end{cases}$

Single channel

$$\mathscr{L}(\mu, s', \{b_i'\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \underbrace{f(s'; s_{\text{nom}}, \sigma_s)}_{\text{constraint signal}} \prod_i \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint background i}}$$

• Terminology: s' and $\{b'_i\}$ are called nuisance parameters

What McLimit/CLsGenerator/BayesianMCMC do?

Single channel

$$\mathscr{L}(\mu, s', \{b_i'\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \underbrace{f(s'; s_{\text{nom}}, \sigma_s)}_{\text{constraint signal}} \prod_i \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint background in the signal}} \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint ba$$

- McLimit/CLsGenerator toss pseudo-experiments in which
 - N_{obs} is sampled from marginal likelihood (hence the hybrid nature of the method)

$$\mathscr{L}(\mu) = \int \frac{(\mu s' + \sum_i b_i')^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} f(s'; s_{\text{nom}}, \sigma_s) \prod_i f(b_i'; b_i, \sigma_i) ds' \prod_i db_i' \quad (\square)$$

Test is computed using nominal values of nuisance parameters

$$\mathscr{L}(\mu, s' = s_{nom}, \{b'_i\} = \{b_i\}) = \frac{(\mu s_{nom} + \sum_i b_i)^{n_{obs}}}{N_{obs}!} e^{-(\mu s_{nom} + \sum_i b_i)}$$

 BayesianMCMC uses marginal likelihood (□) as posterior (integration done by Markov Chain Monte Carlo)

What McLimit/CLsGenerator/BayesianMCMC do?

Single channel

$$\mathscr{L}(\mu, s', \{b_i'\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \underbrace{f(s'; s_{\text{nom}}, \sigma_s)}_{\text{constraint signal}} \prod_i \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint background in the properties of the properti$$

- McLimit/CLsGenerator toss pseudo-experiments in which
 - $ightharpoonup N_{
 m obs}$ is sampled from marginal likelihood (hence the hybrid nature of the method)

$$\mathscr{L}(\mu) = \int \frac{(\mu s' + \sum_{i} b'_{i})^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_{i} b'_{i})} f(s'; s_{\text{nom}}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i} \quad (\Box)$$

► Test is computed using nominal values of nuisance parameters

$$\mathscr{L}(\mu, s' = s_{nom}, \{b'_i\} = \{b_i\}) = \frac{(\mu s_{nom} + \sum_i b_i)^{N_{obs}}}{N_{obs}!} e^{-(\mu s_{nom} + \sum_i b_i)}$$

 BayesianMCMC uses marginal likelihood (□) as posterior (integration done by Markov Chain Monte Carlo)

What McLimit/CLsGenerator/BayesianMCMC do?

Single channel

$$\mathscr{L}(\mu, s', \{b_i'\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \underbrace{f(s'; s_{\text{nom}}, \sigma_s)}_{\text{constraint signal}} \prod_i \underbrace{f(b_i'; b_i, \sigma_i)}_{\text{constraint background in the properties of the properti$$

- McLimit/CLsGenerator toss pseudo-experiments in which
 - $ightharpoonup N_{
 m obs}$ is sampled from marginal likelihood (hence the hybrid nature of the method)

$$\mathscr{L}(\mu) = \int \frac{(\mu s' + \sum_{i} b'_{i})^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_{i} b'_{i})} f(s'; s_{\text{nom}}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i} \quad (\Box)$$

► Test is computed using nominal values of nuisance parameters

$$\mathscr{L}(\mu, s' = s_{nom}, \{b_i'\} = \{b_i\}) = \frac{(\mu s_{nom} + \sum_i b_i)^{N_{obs}}}{N_{obs}!} e^{-(\mu s_{nom} + \sum_i b_i)}$$

 BayesianMCMC uses marginal likelihood (□) as posterior (integration done by Markov Chain Monte Carlo)

Visualization of Markov Chain

2-D Scatter Plot of Markov chain for mu, sigYield_ch1

Choice of constraint terms

- This choice is to some extend arbitrary
- However, care must be taken because some choices behave sometimes badly
- Common choices

Constraint p. d. f.	Available in	
Normal	McLimit, CLsGenerator, BayesianMCMC	
Log-normal	CLsGenerator, BayesianMCMC	
Gamma	CLsGenerator, BayesianMCMC	

Comparison of distributions

mean = 0.82

standard deviation = 0.5

normal
logN

— gamma

Effect of statistical uncertainty and constraint p. d. f.

- $N_{\text{obs}} = 1$, b = 0.82 and $s_{\text{nom}} = 2.49$
- Statistical uncertainty on b = 0, ..., 1.4

Single channel - No uncertainties

- CLsGenerator and BayesianMCMC give identical results
 - ► It can be shown that it's always the case when stat. uncert. on signal=0!

• CL_s method

$$\alpha = CL_s(\mu_{up}) = \frac{CL_{s+b}(\mu_{up})}{CL_b} = \frac{\sum_{\substack{N=0 \ N \in \mathcal{S}\\N=b}}^{N_{obs}} \mathcal{L}(\mu_{up})}{\sum_{\substack{N=0 \ N \in \mathcal{S}\\N=b}}^{N_{obs}} \mathcal{L}(\mu=0)} = \frac{\int \sum_{N=0}^{N_{obs}} \mathcal{L}(\mu_{up})}{\sum_{N=0}^{N_{obs}} \mathcal{L}(\mu=0)} = \frac{\int \sum_{N=0}^{N_{obs}} \mathcal{L}(\mu_{up})}{\sum_{N=0}^{N_{obs}} \mathcal{L}(\mu=0)} = \frac{\int \sum_{N=0}^{N_{obs}} \frac{(\mu_{up}s' + \sum_i b'_i)}{N!} e^{-(\mu_{up}s' + \sum_i b'_i)} f(s'; s_{nom}, \sigma_s) \prod_i f(b'_i; b_i, \sigma_i) ds' \prod_i db'_i}{\int CL_{s+b}(\mu_{up}, s', \{b'_i\}) f(s'; s_{nom}, \sigma_s) \prod_i f(b'_i; b_i, \sigma_i) ds' \prod_i db'_i} = \frac{\int CL_{b}(\{b'_i\}) f(s'; s_{nom}, \sigma_s) \prod_i f(b'_i; b_i, \sigma_i) ds' \prod_i db'_i}{\int CL_{b}(\{b'_i\}) f(s'; s_{nom}, \sigma_s) \prod_i f(b'_i; b_i, \sigma_i) ds' \prod_i db'_i}$$

Bayesian w/ uniform prior

$$1 - \alpha = \frac{\int_{0}^{\mu_{up}} \mathcal{L}(\mu) d\mu}{\int_{0}^{\infty} \mathcal{L}(\mu) d\mu} = \frac{\int \left[\int_{0}^{\mu_{up}} \frac{\left(\mu s' + \sum_{i} b'_{i}\right)^{N_{obs}!}}{N_{obs}!} e^{-(\mu s' + \sum_{i} b'_{i})} d\mu \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\int_{0}^{\infty} \frac{\left(\mu s' + \sum_{i} b'_{i}\right)^{N_{obs}!}}{N_{obs}!} e^{-(\mu s' + \sum_{i} b'_{i})} d\mu \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}}) - \Gamma(N_{obs+1} : \mu_{up} s' + \Sigma^{b'_{i}})}{s' \Gamma(N_{obs}+1)} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs}+1)} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs}+1)} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs}+1)} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs}+1)} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b'_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b'_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma(N_{obs+1} : \Sigma^{b'_{i}})}{s' \Gamma(N_{obs+1} : \Sigma^{b'_{i}})} \right] f(s'; s_{nom}, \sigma_{s}) \prod_{i} f(b'_{i}; b'_{i}, \sigma_{i}) ds' \prod_{i} db'_{i}}{\int \left[\frac{\Gamma$$

Multiple channels - No uncertainties

Proof of equivalence between CL_s and Bayesian

Bayesian w/ uniform prior (continued)

$$\Rightarrow 1-\alpha = 1 - \frac{\displaystyle\int \left[\frac{\Gamma(N_{\text{obs}+1};\mu_{\text{lup}}s'+\sum b'_{l})}{s'\Gamma(N_{\text{obs}+1})}\right] f(s';\mathsf{s}_{\text{nom}},\sigma_{s}) \prod\limits_{i} f(b'_{i};b_{i},\sigma_{i}) \mathrm{d}s' \prod\limits_{i} \mathrm{d}b'_{i}}{\displaystyle\int \left[\frac{\Gamma(N_{\text{obs}+1};\sum b'_{l})}{s'\Gamma(N_{\text{obs}+1})}\right] f(s';\mathsf{s}_{\text{nom}},\sigma_{s}) \prod\limits_{i} f(b'_{i};b_{i},\sigma_{i}) \mathrm{d}s' \prod\limits_{i} \mathrm{d}b'_{i}}{\displaystyle\int \left[\frac{CL_{s+b}(\mu_{\text{lup}},s',\{b'_{l}\})}{s'}\right] f(s';\mathsf{s}_{\text{nom}},\sigma_{s}) \prod\limits_{i} f(b'_{i};b_{i},\sigma_{i}) \mathrm{d}s' \prod\limits_{i} \mathrm{d}b'_{i}}{\displaystyle\int \left[\frac{CL_{b}(\{b'_{l}\})}{s'}\right] f(s';\mathsf{s}_{\text{nom}},\sigma_{s}) \prod\limits_{i} f(b'_{i};b_{i},\sigma_{i}) \mathrm{d}s' \prod\limits_{i} \mathrm{d}b'_{i}}{\displaystyle\int \left[\frac{CL_{b}(\{b'_{l}\})}{s'}\right] f(s';\mathsf{s}_{\text{nom}},\sigma_{s}) \prod\limits_{i} f(b'_{i};b_{i},\sigma_{i}) \mathrm{d}s' \prod\limits_{i} \mathrm{d}b'_{i}}$$

• CL_s and bayesian w/ uniform prior are equivalent if signal perfectly known: $s' = s_{nom}$

Effect of statistical uncertainty and constraint p. d. f.

Effect of statistical uncertainty and constraint p. d. f.

- Truncation at 0 in normal case doesn't smear distributions but shifts them
 - ▶ Happens for both b and s+b distribs $\Rightarrow \mu$ doesn't change much
- ullet logN smears less than gamma \Rightarrow better μ for logN than for gamma
- What is the best choice ? logN ?

Multiple channels - No uncertainties

• $N_{\text{obs}} = 1$, b = 0.82 and $s_{\text{nom}} = 2.49$

Single channel - No uncertainties

• Statistical uncertainty on s_{nom} and b = 0, ..., 1.4

 CLsGenerator and BayesianMCMC give very different results for large uncertainties

Effect of statistical uncertainty and constraint p. d. f.

Effect of statistical uncertainty and constraint p. d. f.

- logN smears less than gamma \Rightarrow better μ for logN than for gamma (as in previous case)
- Normal case now very different from previous case
 - ▶ s+b distribution is now "more smeared" than b alone distribution ⇒ have to go to larger μ to reach given confidence level

Systematic uncertainties

- Systematic uncertainties more complicated than statistical ones
 - Correlations between samples and channels
 - Interpolation/extrapolation problem

- For one sample and one systematic we know
 - Nominal yield: N_{nom}
 - ightharpoonup Yield with systematic varied 1σ up: N_{\uparrow}
 - Yield with systematic varied 1σ down: N_{\downarrow}
- ullet But we need a continuous parametrization: $N(\eta)$
 - \triangleright η defined such that
 - $-N(\eta=0)=N_{\mathsf{nom}}$
 - $N(\eta = +1) = N_{\uparrow}$
 - $-N(n=-1)=N_1$
- How to interpolate and extrapolate ?

Multiple channels - No uncertainties

Interpolation/extrapolation of systematics

- For one sample and one systematic we know
 - Nominal yield: N_{nom}
 - Yield with systematic varied 1σ up: N_{\uparrow}
 - Yield with systematic varied 1σ down: N_{\downarrow}
- But we need a continuous parametrization: $N(\eta)$
 - $ightharpoonup \eta$ defined such that
 - $-N(\eta=0)=N_{nom}$
 - $N(\eta = +1) = N_{\uparrow}$
 - $N(\eta = -1) = N_{\downarrow}$
- How to interpolate and extrapolate?

- For one sample and one systematic we know
 - Nominal yield: N_{nom}
 - Yield with systematic varied 1σ up: N_{\uparrow}
 - Yield with systematic varied 1σ down: N_{\downarrow}
- But we need a continuous parametrization: $N(\eta)$
 - $ightharpoonup \eta$ defined such that
 - $N(\eta = 0) = N_{\text{nom}}$
 - $N(\eta = +1) = N_{\uparrow}$
 - $N(\eta = -1) = N_{\downarrow}$
- How to interpolate and extrapolate?

Example : $N_{\text{nom}} = 15, \ N_{\uparrow} = 21, \ N_{\downarrow} = 10.5$

Example : $\textit{N}_{\text{nom}} = 15, \; \textit{N}_{\uparrow} = 21, \; \textit{N}_{\downarrow} = 10.5$

Interpolation/extrapolation of systematics

• Rather than using $N_{\text{nom},\uparrow,\downarrow}$, let's use

$$f^{\uparrow} = \frac{N_{\uparrow} - N_{\text{nom}}}{N_{\text{nom}}}$$

$$f^{\downarrow} = \frac{N_{\downarrow} - N_{\text{nom}}}{N_{\text{nom}}}$$

$$f^{\text{syst}}(\eta) = \frac{N(\eta)}{N_{\text{nom}}}$$

One has

•
$$f^{\text{syst}}(\eta = 0) = 1$$

• $f^{\text{syst}}(\eta = -1) = 1 + f$
• $f^{\text{syst}}(\eta = 1) = 1 + f^{\uparrow}$

 Goal: find an inter/extrapolation algorithm such that these relations are satisfied (at least approximately)

Interpolation/extrapolation of systematics

- Rather than using $N_{\text{nom},\uparrow,\downarrow}$, let's use

 - $f^{\uparrow} = \frac{N_{\uparrow} N_{\text{nom}}}{N_{\text{nom}}}$ $f^{\downarrow} = \frac{N_{\downarrow} N_{\text{nom}}}{N_{\text{nom}}}$ $f^{\text{syst}}(\eta) = \frac{N(\eta)}{N_{\text{nom}}}$
- One has
 - $f^{\text{syst}}(\eta = 0) = 1$
 - $f^{\text{syst}}(\eta = -1) = 1 + f^{\downarrow}$
 - $f^{\text{syst}}(n=1) = 1 + f^{\uparrow}$
- Goal: find an inter/extrapolation algorithm such that these relations

Interpolation/extrapolation of systematics

- Rather than using $N_{\text{nom},\uparrow,\downarrow}$, let's use

 - $f^{\uparrow} = \frac{N_{\uparrow} N_{\text{nom}}}{N_{\text{nom}}}$ $f^{\downarrow} = \frac{N_{\downarrow} N_{\text{nom}}}{N_{\text{nom}}}$ $f^{\text{syst}}(\eta) = \frac{N(\eta)}{N_{\text{nom}}}$
- One has
 - $f^{\text{syst}}(\eta = 0) = 1$
 - $f^{\text{syst}}(\eta = -1) = 1 + f^{\downarrow}$
 - $f^{\text{syst}}(n=1) = 1 + f^{\uparrow}$
- Goal: find an inter/extrapolation algorithm such that these relations are satisfied (at least approximately)

Interpolation/extrapolation of systematics

Inter/extrapolation algorithms investigated here

Algorithm	Available in		
mclimit	McLimit, CLsGenerator		
linear	CLsGenerator, BayesianMCMC, RooStats		
exponential	CLsGenerator, BayesianMCMC, RooStats		

Multiple channels - No uncertainties

- Remark: other choices available in RooStats and BayesianMCMC
 - RooStats default: polynomial interpolation/exponential extrapolation

First look at mclimit, linear and exponential algorithms

Closer look at mclimit algorithm

- What does mclimit give for $\eta = -1, 0, +1$?
 - $f^{\text{syst}}(\eta = 0) = 1$
 - if $f^{\uparrow} > 0$: $f^{\text{syst}}(\eta = +1) = 1 + f^{\uparrow}$
 - if $f^{\downarrow} \geq 0$: $f^{\mathsf{syst}}(\eta = -1) = 1 + f^{\downarrow}$
 - if $f^{\uparrow} < 0$: $f^{\text{syst}}(\eta = +1) = e^{f^{\uparrow}}$
 - if $f^{\downarrow} < 0$: $f^{\mathsf{syst}}(\eta = -1) = e^{f^{\downarrow}}$
- In the last two cases, $f^{\rm syst} \simeq 1 + f^{\uparrow(\downarrow)}$ only if $f^{\uparrow(\downarrow)} \simeq 0$ (if $f^{\uparrow(\downarrow)} \simeq -1$, difference can be large).

Closer look at mclimit algorithm

- What does mclimit give when uncertainties are symetric: $f^{\uparrow} = -f^{\downarrow}$?
 - $\eta > 0$:

-
$$f^{\uparrow} \ge 0$$
: $f^{syst} = 1 + \eta f^{\uparrow}$
- $f^{\uparrow} < 0$: $f^{syst} = e^{\eta f^{\uparrow}}$

-
$$f^{\downarrow} \geq 0$$
: $f^{syst} = 1 - \eta f^{\downarrow}$
- $f^{\downarrow} < 0$: $f^{syst} = e^{-\eta f^{\downarrow}}$

ullet mclimit is equivalent to linear for $\eta>0$ if $f^\uparrow\geq 0$ or $\eta<0$ if $f^\downarrow\geq 0$

Statistical model

- Consider treatment of syst. uncert. as done in McLimit, CLsGenerator and BayesianMCMC
- ullet For each systematic, introduce a nuisance parameter η_j
- Likelihood

Single channel

$$\mathscr{L}(\mu, \{\eta_j\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_{\substack{j \text{ constraint systematic } j}} \underbrace{g(\eta_j)}_{\text{constraint systematic } j}$$

where

$$b_i' = b_i'(\{\eta_j\}) = b_i \times \prod_j f_{ij}^{\text{syst}}(\eta_j)$$

$$ightharpoonup s' = s'(\{\eta_j\}) = s_{\mathsf{nom}} \times \prod_i f_j^{\mathsf{syst}}(\eta_j)$$

• $g(\eta_i) = \mathcal{N}(0,1)$ (standard normal distribution)

- Consider treatment of syst. uncert. as done in McLimit, CLsGenerator and BayesianMCMC
- For each systematic, introduce a nuisance parameter η_i
- Likelihood

$$\mathcal{L}(\mu, \{\eta_j\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_{j \text{ constraint systematic } j} \underbrace{g(\eta_j)}_{\text{constraint systematic } j}$$

$$b'_i = b'_i(\{\eta_j\}) = b_i \times \prod_j f_{ij}^{\text{syst}}(\eta_j)$$

$$ightharpoonup s' = s'(\{\eta_j\}) = s_{\text{nom}} \times \prod_i f_j^{\text{syst}}(\eta_j)$$

• $g(\eta_i) = \mathcal{N}(0,1)$ (standard normal distribution)

Statistical model

- Consider treatment of syst. uncert. as done in McLimit, CLsGenerator and BayesianMCMC
- For each systematic, introduce a nuisance parameter η_i
- Likelihood

Single channel

$$\mathscr{L}(\mu,\{\eta_j\}) = \frac{(\mu s' + \sum_i b_i')^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_{j \text{ constraint systematic } j} \underbrace{g(\eta_j)}_{\text{constraint systematic } j}$$

where

$$b'_i = b'_i(\{\eta_j\}) = b_i \times \prod_j f_{ij}^{\mathsf{syst}}(\eta_j)$$
$$s' = s'(\{\eta_j\}) = s_{\mathsf{nom}} \times \prod_j f_j^{\mathsf{syst}}(\eta_j)$$

$$ightharpoonup s' = s'(\{\eta_j\}) = s_{\mathsf{nom}} \times \prod_i f_j^{\mathsf{syst}}(\eta_j)$$

• $g(\eta_i) = \mathcal{N}(0,1)$ (standard normal distribution)

What McLimit/CLsGenerator/BayesianMCMC do?

Single channel

Introduction

$$\mathscr{L}(\mu,\{\eta_j\}) = \frac{(\mu s' + \sum_i b_i')^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_j \underbrace{\mathscr{g}(\eta_j)}_{\text{constraint systematic } j}$$

- McLimit/CLsGenerator toss pseudo-experiments in which
 - N_{obs} is sampled from marginal likelihood (hence the hybrid nature of the method)

$$\mathscr{L}(\mu) = \int rac{(\mu s' + \sum_i b_i')^{N_{
m obs}}}{N_{
m obs}!} e^{-(\mu s' + \sum_i b_i')} \prod_j g(\eta_j) \mathrm{d}\eta_j \quad (\triangle$$

► Test is computed using nominal values of nuisance parameters

$$\mathscr{L}(\mu, \{\eta_j\} = 0) = \frac{(\mu s_{\text{nom}} + \sum_i b_i)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s_{\text{nom}} + \sum_i b_i)}$$

 BayesianMCMC uses marginal likelihood (△) as posterior (integration done by Markov Chain Monte Carlo)

What McLimit/CLsGenerator/BayesianMCMC do?

Single channel

$$\mathscr{L}(\mu,\{\eta_j\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_{j \text{ constraint systematic } j} \underbrace{\mathscr{g}(\eta_j)}_{\text{constraint systematic } j}$$

- McLimit/CLsGenerator toss pseudo-experiments in which
 - N_{obs} is sampled from marginal likelihood (hence the hybrid nature of the method)

$$\mathscr{L}(\mu) = \int \frac{(\mu s' + \sum_i b_i')^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_j g(\eta_j) d\eta_j \quad (\triangle)$$

► Test is computed using nominal values of nuisance parameters

$$\mathscr{L}(\mu, \{\eta_j\} = 0) = \frac{(\mu s_{\text{nom}} + \sum_i b_i)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s_{\text{nom}} + \sum_i b_i)}$$

• BayesianMCMC uses marginal likelihood (\triangle) as posterior (integration done by Markov Chain Monte Carlo)

What McLimit/CLsGenerator/BayesianMCMC do?

Single channel

$$\mathscr{L}(\mu,\{\eta_j\}) = \frac{\left(\mu s' + \sum_i b_i'\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_i b_i')} \prod_j \underbrace{\mathscr{g}(\eta_j)}_{\text{constraint systematic } j}$$

- McLimit/CLsGenerator toss pseudo-experiments in which
 - $ightharpoonup N_{
 m obs}$ is sampled from marginal likelihood (hence the hybrid nature of the method)

$$\mathscr{L}(\mu) = \int \frac{(\mu s' + \sum_{i} b'_{i})^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s' + \sum_{i} b'_{i})} \prod_{j} g(\eta_{j}) d\eta_{j} \quad (\triangle)$$

► Test is computed using nominal values of nuisance parameters

$$\mathscr{L}(\mu, \{\eta_j\} = 0) = \frac{(\mu s_{\text{nom}} + \sum_i b_i)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(\mu s_{\text{nom}} + \sum_i b_i)}$$

• BayesianMCMC uses marginal likelihood (\triangle) as posterior (integration done by Markov Chain Monte Carlo)

Single channel - No uncertainties

- $N_{\text{obs}} = 1$, b = 0.82 and $s_{\text{nom}} = 2.49$
- Systematic uncertainty on b: $f^{\uparrow} = -f^{\downarrow} = 0, 0.1, 0.2, \dots, 0.9$

 CLsGenerator and BayesianMCMC give identical results! (as for stat. uncert.)

- $N_{\text{obs}} = 100$, b = 100 and $s_{\text{nom}} = 20$
- Systematic uncertainty on b: $f^{\uparrow} = -f^{\downarrow} = 0, 0.1, 0.2, \dots, 0.9$

Multiple channels - No uncertainties

 CLsGenerator and BayesianMCMC give identical results! (as for stat. uncert.)

- $N_{\text{obs}} = 1$, b = 0.82 and $s_{\text{nom}} = 2.49$
- Systematic uncertainty on s_{nom} and b (100% correlated): $f^{\uparrow} = -f^{\downarrow} = 0, \dots, 0.6$

 CLsGenerator and BayesianMCMC give very different results for large systematics

- Comment on CLsGenerator:

 - When $f^{\downarrow} \ll 0$, $f^{syst} = 0$ quite frequently $\Rightarrow s = b = 0 \Rightarrow N_{obs} = 0 \Rightarrow q_{\mu} = 2\mu s$ (for both hypothesis) \Rightarrow CL_{s+b} and CL_s can't go to very low values as μ increases

• Consider the point $f^{\uparrow} = -f^{\downarrow} = 0.6$

$$\mu = 1$$

$$\mu = 10$$

$$\mu = 50$$

More realistic case: LHCP $\mu\mu$ channel

Including all stat. and syst. uncertainties

	mclimit	linear	expo
Expected median	1.70	1.70	1.69
Expected $\pm 1\sigma$	1.44-2.08	1.43-2.07	1.43-2.07
Expected $\pm 2\sigma$	1.26-3.52	1.27-3.53	1.27-3.54
Observed	1.67	1.68	1.67

 \rightarrow Not much difference

CPU time

 ran
 clgen.observedSigStrengthFor95excl(0,1e5,cls)
 in identical conditions several
 times to make this distrib

Understanding f^{syst} distribution: exponential case

• f^{syst} sometimes looks very weird. Let's consider exponential algo with $f^{\downarrow}=-0.1$ and $f^{\uparrow}=0.6$ (on the plot, Variation= f^{syst})

- Where does this funny looking shape comes from ?
 - We have $f^{
 m syst}=(1+f^\uparrow)^\eta$ for $\eta>0$ $((1+f^\uparrow)^{-\eta}$ for $\eta<0$) with $\eta\sim \mathscr{N}(0,1)$
 - ► Thus $f^{\text{syst}} \sim \frac{1}{\sqrt{2\pi}|\ln(1+f^{\uparrow(\downarrow)})|f^{\text{syst}}|} e^{-\frac{1}{2}\left(\frac{\ln f^{\text{syst}}}{\ln(1+f^{\uparrow(\downarrow)})}\right)^2}$, i.e. $f^{\text{syst}} \sim \text{piecewise } \log \mathcal{N}$
- Is such a shape desirable?

Understanding f^{syst} distribution: linear and mclimit cases

- linear case is obvious: $f^{\text{syst}} \sim \text{piecewise}$ gaussian truncated at 0. Using values of previous slide we have
- mclimit case: doesn't seem to be possible to determine analytic solution. Using values of previous slide we have

Extreme cases

• Consider the point $f^{\uparrow}=-f^{\downarrow}=0.9$ and $\mu=5.5$ with $N_{\rm obs}=100$, b=100 and $s_{\rm nom}=20$.

Using truncated piecewise gaussian (linear) and piecewise log N
 (expo) seems absurd →mclimit much more reasonable in such cases

Summary on inter/extrapolation

- mclimit, linear and exponential algorithms give similar results for small systematics
 - Any choice seems rather safe in this case
- Differences can be significant for large systematics
 - mclimit seems to be the "most reasonable" choice in this case

Summary on inter/extrapolation

- mclimit, linear and exponential algorithms give similar results for small systematics
 - Any choice seems rather safe in this case
- Differences can be significant for large systematics
 - mclimit seems to be the "most reasonable" choice in this case

Summary on inter/extrapolation

- mclimit
 - ▶ pros: f^{syst} smooth, $f^{syst}(\eta) \neq 0 \forall \eta$
 - cons: $f^{syst}(\eta = \pm 1) \neq 1 + f^{\uparrow(\downarrow)}$ when $f^{\uparrow(\downarrow)} < 0$,
- linear
 - pros: simple, fast
 - cons: $f^{syst}(\eta)$ =0 in some cases (\Rightarrow problem when signal syst large)
- expo
 - ▶ pros: simple, $f^{syst}(\eta) \neq 0 \forall \eta$
 - cons: f^{syst} can be very discontinuous for large $f^{\uparrow(\downarrow)}$, slow

Summary on inter/extrapolation

• Systematics are such a pain! It's good that we're not affected too much by them in the same-sign analysis

Summary of CLsGenerator, BayesianMCMC and McLimit

Full statistical model

Single channel

$$\mathcal{L}(\mu, s', \{b_i'\}, \{\eta_j\}) = \frac{\left(\mu s'' + \sum_i b_i''\right)^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\left(\mu s'' + \sum_i b_i''\right)} f(s'; s_{\text{nom}}, \sigma_s) \prod_i f(b_i'; b_i, \sigma_i) \prod_j g(\eta_j)$$

with

$$b_i'' = b_i''(\{\eta_j\}, b_i') = b_i' \times \prod_j f_{ij}^{\mathsf{syst}}(\eta_j)$$

$$s'' = s''(\{\eta_j\}, s') = s' \times \prod_j f_j^{\mathsf{syst}}(\eta_j)$$

- Marginal model: likelihood integrated over all nuisance parameters
- McLimit, CLsGenerator

► Test:
$$q_{\mu} = -2 \ln \frac{\mathscr{L}(\mu, s' = s_{\text{nom}}, \{b'_i\} = \{b_i\}, \{\eta_j\} = 0)}{\mathscr{L}(\mu = 0)}$$

- BayesianMCMC
 - Integrate marginal likelihood

Conclusion

- Limits are arbitrary in many ways
 - Make cross-checks!
- All checks performed to validate CLsGenerator and BayesianMCMC are successful so far
- CLsGenerator and Bayesian w/ uniform prior are equivalent in Single channel - No uncertainties case
- Analytical solutions exists in Single channel No uncertainties case
- CLsGenerator and Bayesian w/ uniform prior are equivalent in Single channel - No uncertainties case when no uncertainty on signal

Vrac

- Popper
- Construction Neyman
- Vizualisation Markov Chain