1070 - Algebraic Problem

Given the value of $\mathbf{a}+\mathbf{b}$ and \mathbf{ab} you will have to find the value of $\mathbf{a}^{\mathbf{n}}+\mathbf{b}^{\mathbf{n}}$. \mathbf{a} and \mathbf{b} not necessarily have to be real numbers.

Input

Input starts with an integer T (\leq 10000), denoting the number of test cases.

Each case contains three non-negative integers, p, q and n. Here p denotes the value of a+b and q denotes the value of ab. Each number in the input file fits in a signed 32-bit integer. There will be no such input so that you have to find the value of 0^0 .

Output

For each test case, print the case number and (aⁿ+bⁿ) modulo 2⁶⁴.

Sample Input	Output for Sample Input
2	Case 1: 68
10 16 2	Case 2: 91
7 12 3	