2013年全国统一高考化学试卷(大纲版)

一、选择题(每小题6分.在每小题给出的四个选项中,只有一项是符合题目要	符合题目要求的	·项是符合	只有一	在每小题给出的四个选项中,	在	6分.	(伍小颙	选择题	—,
-------------------------------------	---------	-------	-----	---------------	---	-----	------	-----	----

1.	下面有关发泡塑料饭盒的叙述,	不正确的是	()
----	----------------	-------	---	---

- A. 主要材质是高分子材料
- B. 价廉、质轻、保温性能好
- C. 适用于微波炉加热食品
- D. 不适于盛放含油较多的食品
- 2. 反应 $X(g) + Y(g) \rightleftharpoons 2Z(g)$; △H<0, 达到平衡时,下列说法正确的是(
 - A. 减小容器体积, 平衡向右移动
- B. 加入催化剂, Z 的产率增大
- C. 增大 c(X), X 的转化率增大
- D. 降低温度, Y 的转化率增大
- 3. 下列关于同温同压下的两种气体 $^{12}C^{18}O$ 和 $^{14}N_{2}$ 的判断正确的是 ()
 - A. 体积相等时密度相等
- B. 原子数相等时具有的中子数相等
- C. 体积相等时具有的电子数相等 D. 质量相等时具有的质子数相等
- 4. 电解法处理酸性含铬废水(主要含有 Cr₂O₂²□) 时,以铁板作阴、阳极,处理过程中存在反应 Cr₂O₇^{2□}+6Fe²⁺+14H⁺=-2Cr³⁺+6Fe³⁺+7H₂O,最后 Cr³⁺以 Cr(OH)₃形式除去,下列说法不正确的 是()
 - A. 阳极反应为 Fe□2e□—Fe²+
 - B. 电解过程中溶液 pH 不会变化
 - C. 过程中有 Fe (OH) 3 沉淀生成
 - D. 电路中每转移 12mol 电子,最多有 1mol Cr₂O₇^{2□}被还原
- 5. 下列操作不能达到目的是()

选项	目的	操作		
Α.	配制 100 mL 1.0 mol/L CuSO ₄ 溶液	将 25 g CuSO₄•5H₂0 溶于 100 mL 蒸馏水		
		中		
В.	除去 KNO ₃ 中少量 NaCl	将混合物制成热的饱和溶液,冷却结		
		晶,过滤		
c.	在溶液中将 MnO4º完全转化为	向酸性 KMnO ₄ 溶液中滴加 H ₂ O ₂ 溶液至紫		
	Mn ²⁺	色消失		
D.	确定 NaCl 溶液中是否混有	取少量溶液滴加 CaCl ₂ 溶液,观察是否出		

	Na ₂ CO ₃		现白色浑浊
Α.	A B. B	C. C	D. D

- 6. 能正确表示下列反应的离子方程式是()
 - A. 用过量氨水吸收工业尾气中的 SO₂: 2NH₃•H₂0+SO₂=2NH₄++SO₃^{2□}+H₂O
 - B. 氯化钠固体与浓硫酸混合加热: $H_2SO_4+2C1^{\square}$ ——— $SO_2\uparrow+Cl_2\uparrow+H_2O$
 - C. 磁性氧化铁溶于稀硝酸: 3Fe²⁺⁺4H⁺+NO₃□─3Fe³⁺+NO↑+3H₂O
- D. 明矾溶液中滴入 Ba(OH)₂溶液使 SO₄²□恰好完全沉淀: 2Ba²++3OH□+Al³++2SO₄²□━

$2BaSO_4\downarrow +Al (OH)_3\downarrow$

7. 如图表示溶液中 $c(H^+)$ 和 $c(OH^-)$ 的关系,下列判断错误的是(

- A. 两条曲线间任意点均有 c(H⁺)×c(OH□)=Kw
- B. M 区域内任意点均有 c (H⁺) < c (OH□)
- C. 图中 T₁<T₂
- D. XZ 线上任意点均有 pH=7
- 8. 某单官能团有机化合物,只含碳、氢、氧三种元素,相对分子质量为58,完全燃烧时产生等 物质的量的 CO_2 和 H_2O . 它可能的结构共有(不考虑立体异构)()
 - A. 4种
- B. 5种
- C. 6种
- D. 7种

二、解答题(共4小题,满分60分)

- 9. (15分) 五种短周期元素 A、B、C、D、E的原子序数依次增大, A和C同族, B和D同 族, C 离子和 B 离子具有相同的电子层结构. A 和 B、D、E 均能形成共价型化合物. A 和 B 形成的化合物在水中呈碱性, C和E形成的化合物在水中呈中性. 回答下列问题:
- (1) 五种元素中,原子半径最大的是,非金属性最强的是(填元素符号);
- (2) 由 A 和 B、D、E 所形成的共价型化合物中, 热稳定性最差的是 (用化学式表

示);

- (3) A和E形成的化合物与A和B形成的化合物反应,产物的化学式为_____,其中存在的化学键类型为 ;
- (4) D 最高价氧化物的水化物的化学式为 ;
- (5) 单质 D 在充足的单质 E 中燃烧,反应的化学方程式为______; D 在不充足的 E 中燃烧,生成的主要产物的化学式为 ;
- (6) 单质 E 与水反应的离子方程式为_____.
- 10. (15分)制备氮化镁的装置示意图如图所示:

回答下列问题:

- (1) 检查装置气密性的方法是_____, a 的名称是_____, b 的名称是_____;
- (2) 写出 NaNO₂和(NH₄)₂SO₄反应制备氮气的化学方程式;
- (3) C的作用是_____, D的作用是_____, 是否可以把 C和 D的位置对调并说明理由 ;
- (4) 写出 E 中发生反应的化学方程式 ;
- (5)请用化学方法确定是否有氮化镁生成,并检验是否含有未反应的镁,写出实验操作及现象_____.
- 11. (15 分)铝是一种应用广泛的金属,工业上用 Al_2O_3 和冰晶石(Na_3AlF_6)混合熔融电解制 得.
- ①铝土矿的主要成分是 Al₂O₃和 SiO₂等. 从铝土矿中提炼 Al₂O₃的流程如图 1 所示:

②以萤石(CaF₂)和纯碱为原料制备冰晶石的流程如图 2 所示:

回答下列问题:

- (1) 写出反应 1 的化学方程式 ;
- (2) 滤液I中加入 CaO 生成的沉淀是 , 反应 2 的离子方程式为 ;
- (3) E 可作为建筑材料, 化合物 C 是 , 写出由 D 制备冰晶石的化学方程式
- (4) 电解制铝的化学方程式是 ,以石墨为电极,阳极产生的混合气体的成分是
- 12. (15 分) 芳香化合物 A 是一种基本化工原料,可以从煤和石油中得到. OPA 是一种重要的有机化工中间体. A、B、C、D、E、F 和 OPA 的转化关系如下所示:

- (1) A 的化学名称是 ;
- (2) 由 A 生成 B 的反应类型是_____. 在该反应的副产物中,与 B 互为同分异构体的化合物的结构简式为_____;
- (3) 写出 C 所有可能的结构简式 ;
- (4) D(邻苯二甲酸二乙酯)是一种增塑剂.请用 A、不超过两个碳的有机物及合适的无机试剂

为原料,经两步反应合成 D. 用化学方程式表示合成路线_____;

(5) OPA 的化学名称是______, OPA 经中间体 E 可合成一种聚酯类高分子化合物 F,由 E 合成 F 的 反 应 类 型 为 _______, 该 反 应 的 化 学 方 程 式 为 ______. (提 示 2\leftarrow CH2OH+\leftarrow COOH

(6) 芳香化合物 G 是 E 的同分异构体,G 分子中含有醛基、酯基和醚基三种含氧官能团,写出 G 所有可能的结构简式_____.