Data Science Bootcamp Capstone Project: Predictive Maintenance System

Presented by Shanti, Sean and Yog

Capstone Group 3

Project Summary

Overview of the project's objectives and goals:

- Implementing predictive maintenance to improve operational efficiency and reduce downtime.
- Leveraging historical sensor data for proactive maintenance.
- Explanation of the importance of predictive maintenance in industrial settings:
- Proactive identification of potential machine failures to avoid unplanned downtime.
- Cost savings by optimizing maintenance schedules based on predicted failure probabilities.
- Brief overview of the dataset and the problem statement:
- Dataset includes timestamped sensor readings and machine statuses.
- Problem: Develop a machine learning model to predict equipment failures based on sensor data.

Data Description

Description of the columns in the dataset: (from Kaggle)

- timestamp: Date and time of the sensor reading.
- sensor_00 to sensor_51: Various sensor readings from the industrial machine.
- machine_status: Target variable indicating the machine's status (NORMAL, RECOVERING, BROKEN).

Problem Statement

- Problem statement: Developing a predictive maintenance solution to identify machine failures before they occur.
- Explanation of the significance of proactive maintenance in reducing downtime and operational costs.
- Importance of accurate predictions for optimal maintenance scheduling.

Data Preprocessing

Data cleaning and handling missing values:

- Addressing missing data in sensor readings and machine status using imputation techniques.
- Exploring strategies for dealing with outliers in sensor data.
- Data transformation for time series analysis:
- Converting the timestamp into a time series format for temporal analysis.
- Resampling data to different time intervals (e.g., hourly, daily) for modeling.

Exploratory Data Analysis (EDA)

Visualizations of sensor data and machine status over time:

- Line plots and heatmaps showing trends and patterns in sensor readings.
- Distribution plots to visualize the frequency of different machine statuses.

Identification of patterns and anomalies in the data:

- Using statistical methods to detect sudden spikes or drops in sensor values.
- Unsupervised learning techniques for clustering abnormal machine behavior.

Insights gained from EDA to inform model selection:

- Correlations between sensor readings and machine status to identify relevant features.
- Understanding data characteristics for choosing appropriate models.

Feature Engineering:improves model performance by identifying patterns and anomalies

- Data Preparation: Convert 'timestamp' to datetime format for time-based feature engineering.
- Time-Based Features: Extract hour, day, and month from datetime to reveal patterns.
- Rolling Window Statistics: Calculate mean, std dev, max, min over time for trend detection.
- Lag Features: Use historical sensor readings to consider recent equipment behavior.

Model Selection

Comparison of different machine learning models:

- LSTM (Long Short-Term Memory) Suitable for time series analysis and capturing temporal dependencies.
- Random Forest Effective for handling high-dimensional feature importance.
- Gradient Boosting Ensemble technique for improved predictive performance.
- Support Vector Machines (SVM) Effective for binary classification tasks.

Explanation of the criteria for model evaluation:

- Accuracy, precision, recall, and F1-score as evaluation metrics.
- Cross-validation to assess model performance and avoid overfitting.

Model Evaluation

 Assessment of model performance using accuracy, precision, recall, and F1-score:

Evaluation results for each model on the test dataset.

Comparative analysis of model strengths and weaknesses.

HyperParameter Tuning

 Explanation of hyperparameter tuning to optimize model performance:

 Grid search and random search techniques for finding optimal hyperparameters.

Tuning hyperparameters specific to each model and their impact on performance.

Final Model Selection

Comparison of model performance metrics for LSTM, Random Forest, Gradient Boosting, and SVM:

- Detailed evaluation of each model's accuracy and predictive capabilities.
- Chosen Model: LSTM (Long Short-Term Memory) for predictive maintenance.

Reason for Choosing LSTM:

- LSTM's ability to capture long-term dependencies in sequential data.
- Handling of temporal patterns and trends in sensor readings.
- Suitable for capturing complex relationships in time series data.
- Superior performance in terms of accuracy and predictive capabilities.

Model Deployment

Deployment of the trained LSTM model in the production environment:

 Setting up a scalable infrastructure for real-time predictions.

 Integration with the existing maintenance system for automated alerts.

Monitoring and Maintenance

Continual monitoring of LSTM model performance:

 Tracking model drift and concept drift to ensure model remains accurate.

 Regular updates and retraining to adapt to changing data patterns.

Conclusion

- Summary of the project's objectives, achievements, and the chosen LSTM model for predictive maintenance in the sensor data project:
- Key takeaways from implementing predictive maintenance using LSTM.
- Emphasizing the value of proactive maintenance in industrial applications.

Thanks! Join hands for the future!

Infinite gratitude to our trainers, hosts and team for their extraordinary endeavors and contributions!

