مدارهای الکتریکی و الکترونیکی فصل نهم: پاسخ فرکانسی

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- تشدید 🗆
- □ پاسخ فركانسى و تابع انتقال
 - □ فيلتر فركانس

تشدید

□ رزونانس یا تشدید پدیدهای است که در آن یک نیروی خارجی باعث میشود سیستم با دامنه بیشتری نوسان کند.

□ به فركانسى كه در آن تشديد اتفاق مىافتد فركانس تشديد گويند.

Tacoma bridge, 1940, US

تشديد الكتريكي

در مدار زیر، فرکانس منبع سینوسی چقدر باشد تا نسبت $\frac{V}{I}$ بیشینه شود (تشدید رخ دهد)؟

$$\square \frac{V}{I} = Z_{eq} = \frac{R}{1 + jR(c\omega - \frac{1}{L\omega})} \to Z_{max} = R$$

- است. $\omega_0=rac{1}{\sqrt{LC}}$ است. \square
- □ سلف و خازن شروع به تبادل انرژی بین خود میکنند و دیگر از منبع انرژی نمی گیرند.

تشدید

□ در مثال قبل دیدید زمانی که تشدید رخ میدهد، قسمت موهومی امپدانس صفر میشود.

□ این امر برای همه مدارهای RLC صادق است. یعنی تشدید وقتی رخ میدهد که قسمت موهومی امپدانس یا ادمیتانس صفر شود.

 \Box در این حالت جریان و ولتاژ مدار هم فاز میشوند (چون امپدانس معادل مدار یک عدد حقیقی است و مانند یک مقاومت عمل می کند)

تشدید: مثال

□ در مدار RLC سری، فرکانس تشدید چقدر است؟

$$\square Z_{eq} = R + j\omega L + \frac{1}{j\omega C}$$

$$\square Img(Z_{eq}) = 0 \to \omega_0 = \frac{1}{\sqrt{LC}}$$

پاسخ فرکانسی

- □ در یک مدار مرتبه n با ورودی سینوسی، تحلیل پاسخ فرکانسی عبارت است از یافتن:
- یند. A نسبت دامنه خروجی به ورودی مدار $(\frac{I_m}{V_m})$ که به آن بهره A میگویند.
 - $(\phi \theta)$ و اختلاف فاز آنها ($\phi \theta$) در فرکانسهای مختلف

□ برای این کار از تابع انتقال استفاده می کنیم.

تابع انتقال

یند. $\mathbf{H}(j\omega)$ نسبت فازور خروجی به فازور ورودی را تابع انتقال

$$V_m \cos(\omega t + \theta)$$
 \sim
 N
 $I_m \cos(\omega t + \phi)$

$$\square \mathbf{H}(j\omega) = \frac{I_m e^{j\phi}}{V_m e^{j\theta}}$$

$$\Box A = |\mathbf{H}(j\omega)| = \frac{I_m}{V_m}$$

 $Phase = H(j\omega) = -\theta$

هر سه تابعی از فرکانس هستند.

فیلتر پایین گذر RC

$$V_{out} = \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C} + R} V_{in} = \frac{1}{1 + j\omega RC} V_{in}$$

$$\frac{1}{j\omega C} + R V_{in} = \frac{1}{1 + j\omega RC} V_{in}$$

□ با فرض ولتاژ خازن به عنوان خروجی مدار، تابع انتقال برابر است با:

$$\mathbf{H}(j\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega RC}$$

Bode Diagram

دیاگرام بود

- □ دیاگرام بود نموداری است که اندازه و زاویه تابع انتقال را بر حسب فرکانس و در مقیاس لگاریتمی نشان میدهد.
 - □ محور افقی بیانگر فرکانس و در مقیاس لگاریتمی است.
 - است. \square محور عمودی نمودار اندازه در مقیاس دسیبل (dB) است.
 - □ محور عمودی نمودار زاویه در مقیاس خطی است.

$$H_{dB} = 20 \log |\mathbf{H}(j\omega)|$$

دیاگرام بود فیلتر پایین گذر RC

$$\Box \mathbf{H}(j\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega RC}$$

$$|\mathbf{H}(j\omega)| = \frac{1}{\sqrt{1+\omega^2 R^2 C^2}}$$

□
$$\not$$
H $(j\omega) = -\tan^{-1} \omega RC$

فرکانس قطع: جایی که اندازه تابع انتقال برابر با $\frac{1}{\sqrt{2}}$ برابر ماکزیمم آن می شود.

$$f_c = \frac{1}{2\pi RC}$$

فيلتر بالاگذر RC

□ تابع انتقال:

$$\mathbf{H}(j\omega) = \frac{V_{out}}{V_{in}} = \frac{j\omega RC}{1 + j\omega RC}$$

دیاگرام بود فیلتر بالاگذر RC

$$\square \mathbf{H}(j\omega) = \frac{V_{out}}{V_{in}} = \frac{j\omega RC}{1 + j\omega RC}$$

$$|\mathbf{H}(j\omega)| = \frac{\omega RC}{\sqrt{1+\omega^2 R^2 C^2}}$$

□ فركانس قطع:

$$f_c = \frac{1}{2\pi RC}$$

فیلتر میانگذر RLC

$$V_{out} = \frac{R}{j\omega L + \frac{1}{j\omega C} + R} V_{in}$$

□ تابع انتقال:

$$\mathbf{H}(j\omega) = \frac{V_{out}}{V_{in}} = \frac{j\omega RC}{1 + j\omega RC - \omega^2 LC}$$

دیاگرام بود فیلتر میانگذر RLC

Shift

$$|\mathbf{H}(j\omega)| = \frac{\omega RC}{\sqrt{(1-\omega^2 LC)^2 + \omega^2 R^2 C^2}}$$

- را f_H و f_L وطع الماريد.
- پهنای باند: فاصله میان دو فرکانس $BW=2\pi(f_H-f_L)$ قطع: