Sample Question Paper-3

CHEMISTRY (862)

Class-12

SOLVED

Time Allowed: 3 Hours

Maximum Marks: 70

This paper is divided into four sections - A, B, C and D. Answer all questions.

Section A consists of one question having sub-parts of one mark each.

Section B consists of ten questions of two marks each.

Section C consists of seven questions of three marks each, and

Section D consists of three questions of five marks each.

Internal choices have been provided in one question each in Section B, Section C and Section D.

All working, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer.

The intended marks for questions or parts of questions are given in brackets []. Balanced equations must be given wherever possible and diagrams where they

are helpful.

When solving numerical problems, all essential working must be shown.

In working out problems, use the following data: Gas constant R = 1.987 cal deg^{-1} mol⁻¹ = 8.314 JK⁻¹ mol⁻¹

 $= 0.0821 \text{ dm}^3 \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$

 $1 \, \text{l atm} = 1 \, \text{dm}^3 \, \text{atm} = 101.3 \, \text{J}. \, 1 \, \text{Faraday} = 96500 \, \text{coulombs}.$

Avogadro's number = 6.022×10^{23} .

Section - A

(14 Marks)

-						99
O		-		_	_	1
v	ш	C2	u	u	n	

tion 1			or of the bandy man as we was a	
(A)	Fill i	n the blanks by choosing the appropriate w	vord(s) from those given in the brackets.	[4 × 1]
	(i)	Aliphatic diazonium salts are highlyin solution at low temperature.	whereas arene diazonium salts are for a s	hort time
	(ii)	Chelates are formed when ais at	tached with ligands.	•
	(iii)	Aryl halides on reacting with sodium in c	dry ether is called asreaction.	AI
	(iv)	Anisole reacts with a mixture of concentrortho and para nitroanisole.	rated acid and acid to yield a m	ixture of
(B)	Selec	ct and write the correct alternative from the	e choices given below:	$[7 \times 1]$
	(i)	The unit of specific conductivity is:		AII
		* * * * * * * * * * * * * * * * * * *	(C) S cm ² mol ⁻¹ (D) S cm ⁻² mol	
	(ii)	The number of unidentate ligands in the	The state of the s	
		(A) EAN	(B) Coordination number	
		(C) Primary valency	(D) Oxidation number	
	(iii)	The transition elements have the ability to	o form complexes because they:	
		(A) have small size of an atom	(B) highly charged ion	
		(C) contain vacant d-orbitals	(D) All of these	
	(iv)	Acetyl chloride on heating with diethyl e	ther in the presence of anhydrous ZnCl2 gives:	AI
		(A) Ethyl alcohol and acetic acid	(B) Methyl chloride and methyl alcohol	
		(C) Methyl acetate and methyl alcohol	(D) Ethyl acetate and ethyl chloride	
	(v)	In positive deviation from Raoult's law:		
	,	(A) $\Delta H_{\text{mix}} > 0$	(B) $\Delta H_{mix} < 0$	
		(C) $1 > \Delta H_{\text{mix}} > 0$	(D) $1 < \Delta H_{\text{mix}} < 0$	
		7 . HILLA	Thu A	

		(vi)	Assertion: Molar conductivity at infinite solution is called limiting molar conductivity	/. AI
			Reason: Catalyst alters Gibbs free energy in a reaction.	44
			(A) Both Assertion and Reason are true and Reason is the correct explanation of Asser	ertion.
			(B) Both Assertion and Reason are true but Reason is not the correct explanation for	Assertion.
			(C) Assertion is true but Reason is false.	
			(D) Assertion is false but Reason is true.	
		(vii)	Assertion: Aniline undergoes Friedel crafts reaction.	
			Reason: Aniline forms a salt with ammonium chloride on alkylation.	Oran -
			(A) Both Assertion and Reason are true and Reason is the Aniline forms a salt with chloride on alkylation correct explanation of Assertion.	ammonium
			(B) Both Assertion and Reason are true but Reason is not the correct explanation for	Assertion.
			(C) Assertion is true but Reason is false.	
			(D) Assertion is false but Reason is true.	
	(C)	Read	the passage given below carefully and answer the questions that follow:	[3 × 1]
		as ne	very dilute solution, a solute molecule will (with rare exceptions) have only solve ear neighbours, and the probability of escape of a particular solute molecule into the cted to be independent of the total concentration of solute molecules.	nt molecules gas phase is
		(i)	State Henry's law.	
		(ii) (iii)	What is the effect of temperature on the solubility of a gas in a liquid? Henry's law constant for the molality of methane in benzene at 298 K is 4.27 × Calculate the solubility of methane in benzene at 298 K under 760 mm Hg.	10 ⁵ mm Hg.
			Section - B	(20 Marks)
	2		Section - D	[2]
Questi		o one	chemical test to distinguish between	,-,
			opanol and 2-propanol.	
	(i)			AI
discourse.	(ii)	n-ox	calic acid and benzoic acid	(2)
Quest			and belongs the following equations:	olnuž
			and balance the following equations:	(0)
	(i)	KM	$\text{InO}_4 + \text{H}_2\text{SO}_4 + \text{H}_2\text{C}_2\text{O}_4 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ $\text{Ir}_2\text{O}_7 + \text{H}_2\text{SO}_4 + \text{KI} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	
	(ii)	K ₂ C	r ₂ O ₇ + H ₂ SO ₄ + Kl → +	(11:)
Quest		TATL	ich alled beliefe Gere the following pair is chiral and undergoes factor 5. 2 reaction?	[2]
	(i)	WIL	ich alkyl halide from the following pair is chiral and undergoes faster S _N 2 reaction?	
		(a)	/	
r.			/ V N Br	ini ondami
			e dan Brit Doorse Established de Pas de Santa (P. C.)	
	(ii)	Out	of S _N 1 and S _N 2 reaction occurs with:	
	7.7		ersion of configuration	
	(a)		emisation	Constant 19
Quest	(b)	Rac	Rangoo san ta daminin '' listin 2 an santhadham marain aire an aghair ar tamh an na ta	(1)
Quest		lain th	ne following observations:	[2]
			ny of the transition elements are known to form interstitial compounds.	
	(i)		The state of the s	(8)
	(ii)		numbers of the actinoid series exhibit a larger number of oxidation states than the observed the lanthanoid series.	~
Quest	ion 6	mer	noers of the faithfailoid series.	A11
Quest	(i)	Fvn	lain why: too win and wound tree agreementary sets and tree gauges began and a bit measure of and	જો વહેલાં (2]
	(1)			
	(III)		H ₂ O) ₆ 1 ³⁺ is strongly paramagnetic whereas [Fe(CN) ₆ 1 ³⁻ is weakly paramagnetic.	
Quest	(ii)	The	p-complexes are known for transition elements only.	188
Ance		A ~	erront of 10 A is passed for 90 min and 27 seconds through a 11 min in a little to the	[2]
	(i)		arrent of 10 A is passed for 80 min and 27 seconds through a cell containing dilute su	ipnunc acia.
		(a)	Calculate the weight of oxygen liberated?	
	40.00	(b)	How many moles of oxygen gas will be liberated at the anode?	
	(ii)	Calc con	culate the amount of zinc deposited at the cathode when another cell containing Zn nected in series (Zn=65).	SO₄ solution is

[2] **Question 8** Write the formula of reagents used in the following reactions: (i) Bromination of phenol to 2, 4, 6-tribromo-phenol Hydroboration of propene and then oxidation to propanol. Write the chemical equations for the dehydration of ethanol with conc. H₂SO₄ at 140°C and 170°C. (ii) **Question 9** 100 mg of a protein is dissolved in just enough water to make 10.0 mL of solution. If this solution has an osmotic pressure of 13.3 mm Hg at 25°C, what is the molar mass of the protein? $(R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1} \text{ and } 760 \text{ mm Hg} = 1 \text{ atm.})$ Question 10 [2] Give balanced equations for the following reactions: Benzaldehyde reacts with hydrazine (i) Acetic acid reacts with phosphorus pentachloride (ii) **Question 11** [2] Out of Cr3+ and Mn3+, which is a stronger oxidising agent and why? (i) Why is zinc not regarded as a transition element? (At. no. Zn = 30) (ii) Section - C (21 Marks) **Ouestion 12** [3] For the reaction: 2H, +2NO= 2H₂O+N₂, the following rate data was obtained: [NO] mol L-1 Rate: mol L-1 s-1 S.No. [H2] mol L-1 1 0.40 4.6×10^{-3} 0.402 0.80 0.40 18.4×10^{-3} 3 0.40 0.80 9.2×10^{-3} Calculate the following: The overall order of reaction. The rate law. (ii) The value of rate constant (k). (iii) Question 13 [3] Give balanced chemical equations for the following reactions: Ethylamine with nitrous acid. (i) Diethyl ether with phosphorus pentachloride (ii) Aniline with acetyl chloride. (iii) Question 14 [3] What are essential amino acids? Give two examples. (i) What are non-essential amino acids? Give two examples (ii) (iii) What are the hydrolysis products of sucrose? **Question 15** [3] The molecular weight of an organic compound is 58 g mol⁻¹. What will be the boiling point of a solution (i) containing 48 gram of the solute in 1200 gram of water? [K_b for water = 0.513 °C kg mol⁻¹; Boiling point of water = 100°C] 0.76 g of glucose (molecular mass = 180 g mol⁻¹) is dissolved in 20 mL of aqueous solution at 298 K. What is the molarity of the glucose solution? $(R = 0.0821 \text{ L-atm } \text{K}^{-1} \text{ mol}^{-1})$ Question 16 [3] (i) Write balanced chemical equations for the following and name the reactions occurring in each case: Benzaldehyde reacts with an alcoholic solution of potassium cyanide. Propanone is treated with iodine and excess of alkali and warmed. (ii) Predict the product in the given reaction.

[3]

[5]

[3]

[2]

and

[2]

[5]

Sample Question Papers **Question 17** How will you obtain the following? (Give balanced equation.) Ethyl chloride from diethyl ether (a) (b) Anisole from phenol (c) Ethanol from formaldehyde OR The following is not an appropriate reaction for the preparation of tert-butyl ethyl ether. $C_2H_5ONa + (CH_3)_3C-CI \rightarrow (CH_3)_3C-OC_2H_5$ What would be the major product of the given reaction? (b) Write a suitable reaction for the preparation of tert-butyl ethyl ether, specifying the names of reagents used. Justify your answer in both cases. **Question 18** A first order reaction has a rate constant of 0.0051 min-1. If we begin with 0.10 M concentration of the (i) reactant, what concentration of reactant will remain in solution after 3 hours? (ii) For reaction $2N_2O_5 \rightarrow 2NO_2 + O_2$, the rate and rate constants are 1.02×10^{-4} mol L⁻¹ s⁻¹ and 3.4×10^{-5} s⁻¹ respectively. Calculate the concentration of N₂O₅ at that time. Section - D (15 Marks) Question 19 Convert (i) Benzoic acid to benzaldehyde (b) Ethyl benzene to benzoic acid Propanone to propene (c) Arrange the following in an increasing order of their acidic strength: (ii) Benzoic acid, 4-Nitrobenzoic acid, 3, 4-Dinitrobenzoic acid, 4-Methoxybenzoic acid **Question 20** Identify the type of hybridisation, magnetic behaviour and spin only magnetic value in [Mn(CN)6] [Co(NH₃)₆]3+ (ii) Explain why an aqueous solution of potassium hexacyanoferrate (II) does not give the test for ferrous Question 21 A voltaic cell is set up at 25°C with the following half cells:

 $E_{AVAJ}^{0}^{3+} = -0.25 \text{ V} \text{ and } E_{Ni+2/Ni}^{0} = -1.66 \text{ V}$

Write an equation for the reaction that occurs when the cell generates an electric current and determine the cell potential. [3]

The cell in which the following reaction occurs:

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(s)$$

where E⁰cell = 0.236 V at 298 K. Calculate the Standard gibbs energy and the equilibrium constant of the cell reaction.

- The following curve is obtained when molar conductivity, Λ_m is plotted against the square root of concentration, C1/2 along y and x-axis respectively for the two electrolytes X and Y.
 - What can you say about the nature of these two electrolytes?
 - How do you account for the increases in Λ_m for the electrolytes X and Y with dilution?
 - (iii) How can you determine Λ_m^{∞} for these electrolytes?
- Calculate the degree of dissociation (a) of acetic acid if its molar conductivity (Λ_m) is 39.05 S cm² mol⁻¹.

Given: $\lambda^{\circ}_{(H^+)} = 349.6 \text{ S cm}^2 \text{ mol}^{-1} \text{ and } \lambda^{\circ}_{(CH_3COO^-)} = 40.9 \text{ S cm}^2$

ANSWERS

Sample Question Paper-3

CHEMISTRY (862)

Section - A

- 1. (A) (i) Unstable, stable
 - (ii) central metal atom, polydentate
 - (iii) Fittig
 - (iv) sulphuric, nitric
 - (B) (i) Option (C) is correct.
 - (ii) Option (B) is correct. Explanation: The number of ions, molecules and ligands attached to central metal is called coordination number.
 - (iii) Option (D) is correct.

 Explanation: The transition elements have the ability to form complexes.

 This is because these elements:
 - (a) have small highly charged ions, and
 - (b) contain vacant d-orbitals.
 - (iv) Option (D) is correct. Explanation: Acetyl chloride react with ethers in presence of ZnCl₂ to form alkyl halide and ester.
 - (v) Option (A) is correct. Explanation: Positive deviation take place when vapour pressure of a solution is greater than pure components.
 - (vi) Option (C) is correct. Explanation: Catalyst does not alter Gibbs free energy. It is used to change the reaction rates.
 - (vii) Option (D) is correct.

 Explanation: Aniline forms a salt with ammonium chloride on alkylation and thus do not undergo Friedel crafts reaction.
 - (C) (i) Henry's law states that, "The solubility of a gas in a liquid at a particular temperature is directly proportional to the pressure of the gas in equilibrium with the liquid at that temperature."
 - (ii) Solubility of gas decreases with increase of temperature at the same pressure.

(iii) P = 760 mm Hg, $k_{\rm H}$ = 4.27×10⁵ mm Hg According to Henry's law $p = k_{\rm H}x$ $x = p/k_{\rm H}$ = 760 mm Hg/4.27×10⁵ mm Hg = 178×10⁻⁵ = 1.78×10⁻³ It is the mole fraction of methane in benzene

Section - B

- 2. (i) Lucas test: When Lucas reagent (conc. HCl + ZnCl₂) is added to 2-propanol, turbidity appears within five minutes whereas with 1 propanol, no turbidity appears and remains clear.
 - Oxalic acid decolourises hot solution of acidified KMnO₄ whereas benzoic acid does not.
- 3. (i) $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \rightarrow K_2SO_4 + 2Mn_2SO_4 + 8H_2O + 10CO_2$
 - (ii) $K_2Cr_2O_7 + 7H_2SO_4 + 6KI \rightarrow 4K_2SO_4 + Cr_2(SO_4)3 + 7H_2O + 3I_2$
- 4. (i) (a) undergoes faster S_N2 reaction and

(b) $S_N 1$

compounds.

- (b) is chiral 2
 (ii) (a) S_N2
- **5.** (i) Due to presence of unpaired electrons in the *d*-orbital. Transition elements have vacant interstitial sites and are able to trap small atoms like H, C or N to form such
 - (ii) Actinoids exhibit a large number of oxidation states because 5f, 6d and 7s levels have almost comparable energies (very small energy difference between sub-shells) than the energy difference between 4f and 5d orbitals in case of lanthanoids.

Examiner's Comment

Some students do not give proper reasoning.

Answering Tip

- Teach students to use correct reasoning.
 Students must practice for characteristics of lanthanoid and actinoid series.
 - 6. (i) Due to the presence of a strong field ligand (CN⁻), the 3d electrons pair up leaving only one unpaired electron. Thus, hybridisation is d²sp³ forming inner orbital complex. Therefore, it is weakly paramagnetic whereas due to the presence of weak field ligand (H₂O), 3d electrons do not pair up. Thus, hybridisation involved is sp³d² forming an outer orbital complex. As it contains five unpaired electrons so it is strongly paramagnetic.
 - (ii) Due to presence of empty d-orbitals in transition metals, they can accept electron pairs from ligands containing p electrons and hence can form coordinate bond complexes.
 - 7. (i) i = 10 A, t = 80 min 27 s= $80 \times 60 + 27 \text{ s} = 4827 \text{ s}$ Q = $i \times t = 10 \times 4827 \text{ C} = 48270 \text{ C}$ Equivalent weight of oxygen = 8
 - (a) Weight of O_2 liberated = $\frac{8 \times 48270}{96500} = 4 \text{ g}$
 - (b) Moles of oxygen = $\frac{\text{Weight}}{\text{Molecular weight}}$

$$=\frac{4}{32}=0.125$$
 moles of O_2

(ii) According to Faraday's Second Law of Electrolysis,

$$\frac{\text{Mass of O}_2}{\text{Mass of Zn}} = \frac{\text{Equivalent weight of O}_2}{\text{Equivalent weight of Zn}}$$

Let x be the amount of Zn deposited

$$\frac{4}{x} = \frac{8}{65/2}$$

$$x = 4 \times \frac{65}{2 \times 8} = 16.25 \text{ g}$$

Examiner's Comment

 Students make mistakes in using correct formula. Some students wrote wrong formula.

Answering Tip

 Practice numerical again and again. While solving the problems, write correct formula.
 Proceed systematically.

(b)

$$3CH_3 - CH = CH_2 \xrightarrow{B_2H_6} (CH_3 - CH_2 - CH_2)_3 - B$$

 $\xrightarrow{H_2O_2/3OH} 3CH_3 - CH_2 - CH_2OH$

2

At 140°C (413 K):

$$2CH_3CH_2OH \xrightarrow{conc.H_3SO_4}$$

Ethyl akohol

9.
$$w = 100 \text{ mg} = 0.100 = 0.1 \text{ g},$$

 $V = 10.0 \text{ mL} = 0.01 \text{ L}$
 $\pi = 13.3 \text{ mm Hg} = 13.3760 \text{ atm},$
 $T = 25^{\circ}\text{C} = 25 + 273 = 298 \text{ K}$
 $R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}, \text{ M} = ?$

Using formula:
$$M = \frac{wRT}{\pi V}$$

$$0.1 \times 0.0821 \times 298 \times 760$$

$$\Rightarrow M = \frac{0.1 \times 0.0821 \times 298 \times 760}{13.3 \times 0.01}$$
$$\Rightarrow M = \frac{1859.4008}{0.133} = 13980.4$$

$$M = 13980.4 \text{ g mol}^{-1}$$

10. (i)
$$C_6H_5 - C = O + NH_2NH_2 \rightarrow H$$

$$C_6H_5 - C = N.NH_3 + H_3O$$
Benzaldehyde hydrazone

- 11. (i) Mn^{3+} is stronger oxidising agent because Mn^{3+} is more stable due to its half-filled $(3d^5)$ configuration.
 - (ii) The orbitals in zinc are completely filled in the ground state as well as in their oxidation states. Therefore, Zn is not regarded as a transition element.

Section - C

- 12. For reaction $2NO + 2H_1 \rightarrow 2H_2O + N_1$ Rate = $k[NO]^{ij}[H_1]^{ij}$
 - (1) $4.6 \times 10^{-3} = k(0.4)^p (0.4)^q$
 - (2) $18.4 \times 10^{-3} = k(0.8)^{p}(0.4)^{q}$
 - (3) $9.2 \times 10^{-3} = k(0.4)^{p}(0.8)^{q}$ Dividing eq (ii) by eq (i)

$$\frac{18.4 \times 10^{-3}}{4.6 \times (2)^p} = \left(\frac{0.8}{0.4}\right)^p$$
$$4 = (2)^p$$
$$p = 2$$

Dividing eq (iii) by eq (i)

$$\frac{9.2 \times 10^{-3}}{4.6 \times 10^{-3}} = \left(\frac{0.8}{0.4}\right)^{4}$$
$$2 = (2)^{4}$$
$$q = 1$$

(i) Overall order of reaction

$$Rate = k[NO]^2[H_2]$$

Order of reaction = 2+1=3

- (ii) Rate law = rate = $k[NO]^2[H_2]^1$
- (iii) Rate constant (k) = $\frac{\text{rate}}{\Lambda^3} = \frac{4.6 \times 10^{-3}}{0.4^3}$ $k = 0.071875 \text{ mol}^{-2} \text{L}^2 \text{s}^{-1}$

[ISC Marking Scheme 2017]

- 13. (i) $C_2H_5NH_2 + HONO \rightarrow C_2H_5OH + N_2 + H.O$
 - (ii) $C_2H_5 O C_2H_5 + PCl_5 \rightarrow 2C_2H_5Cl + POCl_3$
 - (iii) $CH_3COCI + H NHC_6H_5 \rightarrow CH_3CONHC_6H_5 + HCI$

[ISC Marking Scheme 2016]

Examiner's Comments

- Incomplete equations was given by some candidates. A few candidates could not write C₂H₅OH as product.
- A number of candidates wrote wrong products such as C₂H₅COCl Or C₂Cl₅-O- C₂Cl₅ although correct answer was C₂H₅Cl and POCl₃.
- In some cases wrong formula of the product was written - Instead of C₆H₅NHCOCH₃, several candidates wrote C₆H₅NHCH₃CO.

Answering Tip

- Write balanced equations with correct reactants and products.
- 14. (i) Essential amino acids: The amino acids which cannot be synthesised in the body and must be obtained through diet. Example: Valine, Lucine, etc. 1
 - (ii) Non-essential amino acids: The amino acids which can be synthesised in the body, are known as non-essential amino acids.

Example: Glycine, Alanine, etc

(iii) Sucrose on hydrolysis gives equimolar mixture of D(+) glucose and D(-) fructose.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6$$

Sucrose Glucose $+ C_6H_{12}O_6$
Fructose 1

15. (i) 1200 g of water contains 48 g of solute $1000 \text{ g contains } 48 \times \frac{1000}{1200} = 40 \text{ g of solute}$

Molality =
$$\frac{40}{58}$$
 = 0.689 mol/kg
 $\Delta T_b = K_b \text{ m} = 0.513 \times 0.689$
= 0.353°C

Boiling point = 100 + 0.353 = 100.353°C [ISC Marking Scheme 2016]

(ii)
$$C = \frac{\text{Moles of solute}}{\text{Volume of solution}}$$

$$C = \frac{0.76 \times 1000}{180 \times 20} = 0.21 \text{ M}$$

$$\xrightarrow{\text{alc. KCN}} \stackrel{\text{OH}}{\longleftrightarrow} \stackrel{\text{O}}{\longleftrightarrow} \stackrel{\text{$$

This reaction is Benzoin condensation.

(b) CH₃COCH₃+3l₂+4NaOH → Propanone

CHI₃ \downarrow + CH₃COONa + 3NaI + 4H₂O lodoform (yellow ppt.)

This reaction is iodoform reaction.

17. (i) (a)

$$C_2H_5OC_2H_5 + PCl_5 \rightarrow 2C_2H_5Cl + POCl_3$$

or
 $C_2H_5OC_2H_5 + SOCl_2 \rightarrow 2C_2H_5Cl + SO_2$
(b)

$$\begin{array}{c}
OH \\
\hline
NaOH \\
-H_2O
\end{array}$$

$$\begin{array}{c}
CH_3Br \\
\hline
ONa
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
Anisole
\end{array}$$
Anisole

(c) Ethanol is obtained from formaldehyde when treated with Grignard reagent.

 $HCHO + CH_3MgBr \longrightarrow$ $CH_3CH_2OMgBr \longrightarrow CH_3CH_2OH$ + MgBr(OH)Ethanol

Examiner's Comment

- Most of the candidates wrote unbalanced equations.
 - (i) For the conversion of C₂H₅-O-C₂H₅ to C₂H₅Cl, some candidates used Cl₂ instead of PCl₅ or SOCl₂. A few candidates did not write the by product.
 - (ii) For the conversion of phenol to anisole, many candidates converted phenol directly by reacting with CH₃Br. They did not convert phenol to phenoxide.
 - (iii) For the conversion of ethanol from formaldehyde, most of the candidates wrote incorrect structure of the product. Some candidates did not balance the equation

Answering Tip

Understand organic reactions and conversions with proper reactants, catalysts and conditions. Practice for the conversion of organic compounds with balanced equations. Write the by product in all organic reactions. OR

(ii) (a) Since, the alkyl halide is a 3° halide and C₂H₅ONa is a strong base, therefore elimination occurs preferably. The product obtained is 2-Methylprop-1-ene.

 $CH_3-C(CH_3)=CH_2$

(b) To prepare t-butyl ethyl ether, the alkyl halide should be 1°, i.e., chloroethane and the nucleophile should be sodium t-butoxide because the 3° nucleophile is able to attack 1° alkyl halide.

(CH₁)₁C-OCH₂CH₁+NaCl 3

18. (i) Using formula: $K = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$

$$K = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

$$0.0051 = \frac{2.303}{180} \log \frac{0.10}{[R]}$$

or
$$\log \frac{0.10}{[R]} = \frac{0.0051 \times 180}{2.303}$$

or
$$\log \frac{0.10}{[R]} = \frac{0.918}{2.303} = 0.3986$$

or
$$\frac{0.10}{[R]} = \text{antilog}(0.3986)$$

or
$$\frac{0.10}{[R]} = 2.503$$

$$[R] = \frac{0.10}{2.503} = 0.0399$$

(ii) Rate = $k[N_2O_5]$ $[N_2O_5]$ = rate/k $[N_2O_5]$ = $1.02 \times 10^{-4}/3.4 \times 10^{-5}$ = 3mol/L 3

Section - D

Ethyl benzene

Potassium benzoate

Benzoic acid

(c) O OH

$$| | |$$
 $CH_3 - C - CH_3 \xrightarrow{NaBH_4, CH_3OH} CH_3 - CH - CH_3$
 $(Reduction) \xrightarrow{Conc. H_2SO_4} CH_3 - CH = CH_2$
 $(Reduction) \xrightarrow{Propene} CH_3 - CH = CH_2$
 $(Reduction) \xrightarrow{Propene} CH_3 - CH = CH_2$

- (ii) The acidic order of the compounds are: 4-methoxybenzoic acid < benzoic acid < 4-nitrobenzoic acid < 3, 4-dinitrobenzoic acid.</p>
- 20. (i) $[Mn(CN)_6]^{3-}$ Type of hybridisation = d^2sp^3 hybridisation
 Magnetic behaviour = Paramagnetic, as
 two unpaired electrons are present.
 Spin only magnetic moment = Spin only
 magnetic moment (μ) = $\sqrt{2(2+2)}$ = $\sqrt{8}$ = 2.82 BM. $[Mn^3 + 3d^4]$

[Co(NH₃)₆]³⁺
[Co(NH₃)₆]³⁺
Type of hybridisation = d^2sp^3 hybridisation
Magnetic behaviour = Diamagnetic (as three paired electrons are present.)
Spin only magnetic moment = Spin only magnetic moment (μ) = $\sqrt{0}(0+2) = \sqrt{0} = 0$ $3d^6$

- - [ISC Marking Scheme, 2016]

21. (a)
$$Al \rightarrow Al^{+3} + 3e] \times 2$$

 $Ni^{+2} + 2e \rightarrow Ni] \times 3$
 $2Al + 3Ni^{+2} \rightarrow 2Al^{+3} + 3Ni$ $n = 6$
 $E_{cell}^{0} = E_{Cathode}^{0} - E_{Anode}^{0}$
 $\Rightarrow E_{cell}^{0} = 0.25 - (-1.66) = 1.41 \text{ V}$
 $E_{M^{0+}/M} = E_{cell}^{0} - \frac{0.0591}{6} \log \frac{\left[Al^{+3}\right]^{2}}{\left[Ni^{+2}\right]^{3}}$

Examiner's Comments

- Some students do not mention the formula or missed out on units.
 - Also practice how to calculate E⁰_{cell}.
- Some students got confused. Some made mistake in calculations.

Answering Tip

 Students must practice enough problems and calculations to avoid mistakes.
 Learn formula. Students must write correct formula and correct units to get full marks.

OR

- (a) (i) Electrolyte X is a strong electrolyte and Y is a weak electrolyte.
 - (ii) Molar conductivity, Λ_m of X (strong electrolyte) increase slowly with dilution. This is because interionic forces of attraction decrease on dilution, although the number of ions remain the same. As, a result ions move more freely and hence Λ_m increase with dilution.
 - (iii) On the other hand, for Y (weak electrolyte) Λ_m increases sharply with dilution. This is because, degree of dissociation increase on dilution resulting in greater number of ions on dilution. Hence Λ_m increase.
- (b) $\Lambda^{\circ}m_{(HAc)} = \Lambda^{\circ}_{H}^{+} + \Lambda^{\circ}_{Ac}^{-}$ $= \Delta^{\circ}CH_{3}COOH = \Lambda^{\circ}H + + \Delta^{\circ}CH_{3}COO = 349.6 \text{ S cm}^{2} \text{ mol}^{-1} + 40.9 \text{ S cm}^{2} \text{ mol}^{-1}$ $= 390.5 \text{ S cm}^{2} \text{ mol}^{-1}$ $\alpha = \frac{\Lambda_{m}}{\Lambda_{m}^{0}} = \frac{39.05 \text{ cm}^{2} \text{ mol}^{-1}}{390.05 \text{ cm}^{2} \text{ mol}^{-1}} = 0.1$