其解 $v(r) = [(P_1 - P_2)/4L\eta](R^2 - r^2)$ 。 体積流率 $\frac{dV}{dt} = \int_0^R 2\pi r dr \frac{(P_1 - P_2)}{4Ln} (R^2 - r^2) = \frac{\pi (P_1 - P_2)}{2Ln} \left(R^2 \int_0^R r dr - \int_0^R r^3 dr \right)$ = $[\pi(P_1 - P_2)/2L\eta](R^4/2 - R^4/4) = [\pi(P_1 - P_2)/8L\eta]R^4$ Poiseuille's law ° 註:對有黏性的流体,前例 Venturi meter 的計算只適用於中線 (r=0)。因流入必 等於流出,故流率 $dV/dt = [\pi(P_1 - P_2)/8L\eta]R^4 = const.$ for all R,故必須 $(P_1 - P_2)/L \propto 1/R^4$,故 $v(r) \propto (1/R^4)(R^2 - r^2) = (1 - r^2/R^2)/R^2$ 。一條流線經過處 的 $r/R \equiv c$ 應均相等,因為如此則 $r_1 = r_2(R_1/R_2)$,流入環狀區 $2\pi rdr$ 的會等於流出 的: $v_1(r_1)2\pi r_1 dr_1 = [const.(1-c^2)/R_1^2]2\pi (R_1/R_2)^2 r_2 dr_2 = v_2(r_2)2\pi r_2 dr_2$ 。故流線上 $v \propto (1-c^2)/R^2 \propto 1/A$,符合 $A_1v_1 = A_2v_2$ 。但只有在 r = 0 處無黏力(因 dv/dr = 0), 才可用 Bernoulli's eq.,即前面 Venturi meter 的分析只適用於中線。

H.W. : Prob. 1, 2, 3, 4, 8, 9, 10

Ch. 15 Oscillations

Simple Harmonic Motion (SHM,簡單諧和運動)

 $x(t) = A\sin(\omega t + \phi)$, $x_0 \equiv x(0) = A\sin(\phi)$

A :amplitude • ω : angular frequency • ϕ : phase constant •

Period $T: \omega T = 2\pi \Rightarrow T = 2\pi/\omega$

 $v(t) = dx/dt = A\omega\cos(\omega t + \phi)$, $v_0 \equiv v(0) = A\omega\cos(\phi)$

$$a(t) = dv/dt = -A\omega^2 \sin(\omega t + \phi)$$
, $a_0 = a(0) = -A\omega^2 \sin(\phi)$

When x = 0, $v = \pm \omega A$, a = 0; when $x = \pm A$, v = 0, $a = \pm \omega^2 A$

x(t) 滿足 eq. of motion for SHM: $d^2x/dt^2 + \omega^2x = 0$ $\Leftrightarrow x(t) = A\cos(\omega t + \phi)$

 $x_0/v_0 = (\tan \phi)/\omega$,故 $\phi = \tan^{-1}(\omega x_0/v_0)$ 。故 $A \& \phi$ 完全由起始條件 $x_0 \& v_0$ 決定。

例: spring-block $md^2x/dt^2 = -kx \implies d^2x/dt^2 + (k/m)x = 0 \implies \omega = \sqrt{k/m}$ °

例: vertical spring-block

 $kx_0 = mg \cdot F = m d^2x/dt^2 = m d^2(x - x_0)/dt^2 = m d^2x'/dt^2$

 $\nabla F = mg - kx = -k(x - x_0) = -kx' \cdot \text{id} \, md^2x'/dt^2 + kx' = 0$

 $\therefore \omega = \sqrt{k/m} \cdot T = 2\pi \sqrt{m/k} \circ$

 $\Delta U = \left[k(x'+x_0)^2/2 - mg(x'+x_0)\right] - \left[kx_0^2/2 - mgx_0\right]$ $=kx'^2/2+kx_0x'+kx_0^2/2-mgx'-kx_0^2/2=kx'^2/2$ •

Energy $E = mv^2/2 + kx^2/2 = (m\omega^2 A^2/2)\cos^2(\omega t + \phi) + (kA^2/2)\sin^2(\omega t + \phi)$

 $= kA^2/2 = const.$ 。 $dE/dt = mv \, dv/dt + kx \, dx/dt$ = mva + kxv = (ma + kx)v = 0 · 能量守恆。

【僅供參考,不考】 用能量守恆導 $x(t) = A\cos(\omega t + \phi)$

$$\frac{mv^{2}/2 = k(A^{2} - x^{2})/2}{\int_{0}^{t} \sqrt{k/m} dt' = \int_{x_{0}}^{x} |dx'| / \sqrt{A^{2} - x'^{2}}} \Rightarrow \sqrt{k/m} t = \int_{x_{0}}^{x} |dx'| / \left[A\sqrt{1 - (x'/A)^{2}} \right] \circ$$

定義 $x'/A \equiv \sin \theta'$, $dx'/A = \cos \theta' d\theta'$,代入得 $\sqrt{k/m} \ t = \int_{\theta_0}^{\theta} \left|\cos \theta' d\theta'\right| / \left[A\sqrt{1-\sin^2 \theta'}\right] = \int_{\theta_0}^{\theta} d\theta' = \theta - \theta_0$ 。

<mark>Simple Pendulum(單擺)</mark>

弧長 $s = L\theta$ · 切線力 $m_I d^2 s/dt^2 = m_I L d^2 \theta/dt^2 = -m_G g \sin \theta$ $\Rightarrow d^2 \theta/dt^2 + (m_G g/m_I L) \sin \theta = 0$ 。

當 θ 很小 $\sin \theta \approx \theta$ · 則 $d^2\theta/dt^2 + (m_G g/m_I L)\theta \approx 0$ ·

故 $\omega = \sqrt{m_G g/m_I L}$ · $T = 2\pi/\omega = 2\pi\sqrt{m_I L/m_G g}$ 。

牛頓以此証明所有物体的 m_{G}/m_{I} 均相同,並輕鬆量出g。

取 $m_G = m_I$ 後 · $T = 2\pi\sqrt{L/g}$ 。

若
$$\theta$$
不小、則 $T = 2\pi\sqrt{L/g}\left(1 + \frac{1^2}{2^2}\sin^2\frac{\Theta}{2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2}\sin^4\frac{\Theta}{2} + \cdots\right)$ 、 $\Theta \equiv \theta_{\text{max}}$ 。

Physical Pendulum (複擺)

$$I\alpha = \tau \implies Id^2\theta/dt^2 = -mgD\sin\theta$$

當 θ 很小 $\sin \theta \approx \theta$,則 $d^2\theta/dt^2 + (mgD/I)\theta \approx 0$ 。

故 $\omega = \sqrt{mgd/I}$ · $T = 2\pi/\omega = 2\pi\sqrt{I/mgD}$ 。

比較:(1)長L的無質量細棒,下端有質量m;(2)長L、質量m的均勻細棒。

(1)
$$I = mL^2 \cdot D = L \implies T = 2\pi \sqrt{mL^2/mgL} = 2\pi \sqrt{L/g}$$

$$(2) I = mL^2/3 \cdot D = L/2 \Rightarrow$$

$$(mL^2/2)/(mRL/2) \Rightarrow$$

$$T = 2\pi \sqrt{(mL^2/3)/(mgL/2)} = 2\pi \sqrt{2L/3g}$$

Torsional Pendulum (扭擺)

$$I\alpha = \tau$$
 \Rightarrow $Id^2\theta/dt^2 = -\kappa\theta$ \Rightarrow $d^2\theta/dt^2 + (\kappa/I)\theta = 0$ \Rightarrow $\delta \omega = \sqrt{\kappa/I}$ \cdot $T = 2\pi\sqrt{I/\kappa}$ \circ

其它(求ω)

例:

- $(1) \quad m\ddot{x} = -kx f \quad ;$
- (2) $I(\ddot{x}/R) = fR \implies (2') (I/R^2)\ddot{x} = f$

(1)+(2')得
$$(m+I/R^2)\ddot{x} + kx = 0$$
 · 故 $\omega = \sqrt{k/(m+I/R^2)}$ 。

例:

- (1) $m\ddot{x} = mg T = kx_0 T$;
- (2) $I(\ddot{x}/R) = (T kx)R \implies (2') (I/R^2)\ddot{x} + kx = T$
- (1)+(2') $(|x|/R^2)\ddot{x} + kx kx_0 = 0 \cdot x x_0 = x'$ $(|x'| < x_0) \cdot$
- 即 $(m+I/R^2)\ddot{x}'+kx'=0$ · 故 $\omega=\sqrt{k/(m+I/R^2)}$ 。

Damped Oscillation (阻泥振盪)

假設有水阻力 $f = -\gamma v$,則 $md^2x/dt^2 = -kx - \gamma dx/dt$, x 是自平衡點起算,向下為正。

Try $x(t) = Ae^{-\alpha t} \cos(\omega t + \phi)$,代入 eq. 並整理成

 $Ae^{-\alpha t}[C_1(\alpha,\omega,m,\gamma,k)\cos(\omega t+\phi)]$

 $+ C_2(\alpha, \omega, m, \gamma, k) \sin(\omega t + \phi)] = 0$ for all t \circ

故須 $C_1(\alpha, \omega, m, \gamma, k) = 0 = C_2(\alpha, \omega, m, \gamma, k)$

由此可解得 $\alpha = \gamma/2m$ 與 $\omega = \sqrt{k/m - (\gamma/2m)^2}$ ·

故 $x(t) = Ae^{-\gamma t/2m}\cos(\omega t + \phi)$.

A & *ϕ* 由 *x*(0) & *v*(0) 決定。

Case (A) underdamping : $k/m - \gamma^2/4m^2 > 0$ · 即 $\gamma < 2\sqrt{mk}$ · ω 實數 · 有振盪 ·

Case (B) critically damping:
$$k/m - \gamma^2/4m^2 = 0$$
.

即
$$\gamma = 2\sqrt{mk}$$
 · $x(t) = (C + Dt)e^{-\mu/2m}$ · 無振盪 ·

Case (C) overdamping:
$$k/m - \gamma^2/4m^2 \equiv -a^2 < 0$$
.

$$\exists \Gamma \gamma > 2\sqrt{mk} \cdot x(t) = (Ce^{+at} + De^{-at})e^{-\gamma t/2m}$$

Energy $dE/dt = mv \, dv/dt + kx \, dx/dt = mva + kxv = (ma + kx)v = (-\gamma v)v$ \Box power by damping force °

Forced Oscillation (驅動振盪)

當有外來 driving force $F\cos(\omega_d t)$ 時 ·

$$md^{2}x/dt^{2} = -\gamma dx/dt - kx + F\cos(\omega_{d}t)$$

Steady 時,Try
$$x(t) = A\cos(\omega_d t + \phi)$$
, $A \& \phi$ 未知,

並且用 $\cos(\omega_d t) = \cos(\omega_d t + \phi - \phi)$

$$= \cos(\omega_d t + \phi)\cos(\phi) + \sin(\omega_d t + \phi)\sin(\phi) .$$

代入 eq. 並整理成
$$[C_1(A, \phi, m, \gamma, k, F, \omega_d) \cos(\omega_d t + \phi)]$$

$$+C_2(A, \phi, m, \gamma, k, F, \omega_d) \sin(\omega_d t + \phi)] = 0$$
 for all t °

故須
$$C_1(A, \phi, m, \gamma, k, F, \omega_d) = 0 = C_2(A, \phi, m, \gamma, k, F, \omega_d)$$
 ·

由此解得
$$A = (F/m) / \sqrt{(\omega_d^2 - k/m)^2 + (\gamma/m)^2 \omega_d^2} \cdot \phi = \cdots$$
 (略)。

當 ω_d 在 $\omega_0 \equiv \sqrt{k/m}$ (自然頻率)附近時, A最大,稱共振。

H.W.: Prob. 1, 4, 5, 7, 9, 13, 14

Ch. 18 Temperature, Thermal Expansion, Ideal Gas Law

Temperature: ◆ Locke,一手熱水一手冷水再一齊放溫水中... ◆ Galilei 1595,玻璃球下管插水中,管中水上升... ◆ 17 世紀中,酒精溫度計 ◆ Fahrenheit 1724 ◆Celsius 1742。

Thermal Equilibrium: 所有的 flows (mass, heat, ...) 皆停止。

Zeroth law of thermodynamics

Form (a): 存在熱平衡,而且若 A、B 分別與 C

達成熱平衡,則A與B也會達成熱平衡。

Form (b): 每一物体都有一性質叫溫度, 二物會達成 平衡 ⇔ (若且唯若)它們有相同的溫度。

