Algoritmos de búsqueda sobre secuencias

Algoritmos y Estructuras de Datos I

Búsqueda lineal

s[0]	s[1]	s[2]	s[3]	s[4]	$ \ldots s[s -1]$
$= x? \neq x$		$= x? \neq x$			
\uparrow	\uparrow	\uparrow	\uparrow		\uparrow
i	i	i	i		i

▶ ¿Qué invariante de ciclo podemos proponer?

$$I \equiv 0 \le i \le |s| \land_L$$
$$(\forall j : \mathbb{Z})(0 \le j < i \rightarrow_L s[j] \ne x)$$

▶ ¿Qué función variante podemos usar?

$$fv = |s| - i$$

Búsqueda lineal

- ► Recordemos el problema de búsqueda por valor de un elemento en una secuencia.
- ▶ proc contiene(in $s : seq\langle \mathbb{Z} \rangle$, in $x : \mathbb{Z}$, out result : Bool){
 Pre {True}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)}}
 }$
- ▶ ¿Cómo podemos buscar un elemento en una secuencia?

Búsqueda lineal

► Invariante de ciclo:

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

► Función variante:

$$fv = |s| - i$$

▶ ¿Cómo lo podemos implementar en C++?

```
bool contiene(vector<int> &s, int x) {
   int i = 0;
   while( i < s.size() && s[i] != x ) {
        i=i+1;
   }
   return i < s.size();
}</pre>
```

► ¿Es la implementación correcto con respecto a la especificación?

Recap: Teorema de corrección de un ciclo

- ▶ **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,

... entonces la siguiente tripla de Hoare es válida:

$$\{P_C\}$$
 while B do S endwhile $\{Q_C\}$

Recap: Teorema de corrección de un ciclo

- 1. $P_C \Rightarrow I$
- 2. $\{I \land B\} S \{I\}$,
- 3. $I \wedge \neg B \Rightarrow Q_C$
- 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
- 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,

En otras palabras, hay que mostrar que:

- ▶ I es un invariante del ciclo (punto 1. y 2.)
- ► Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)
- ▶ La función variante es estrictamente decreciente (punto 4.)
- ► Si la función variante alcanza la cota inferior la guarda se deja de cumplir (punto 5.)

Búsqueda lineal

- ▶ Para este programa, tenemos:
 - $P_C \equiv i = 0$,
 - $Q_C \equiv (i < |s|) \leftrightarrow (\exists j : \mathbb{Z})(0 \le j < |s| \land_L s[j] = x).$
 - $B \equiv i < |s| \land_L s[i] \neq x$
 - $I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$
 - fv = |s| i
- ► Ahora tenemos que probar que:
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv < 0 \Rightarrow \neg B$.

Corrección de búsqueda lineal

; I es un invariante del ciclo?

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z})(0 \le j < i \rightarrow_L s[j] \ne x)$$

- ► La variable *i* toma el primer valor 0 y se incrementa por cada iteración hasta llegar a |s|.
- $ightharpoonup \Rightarrow 0 \le i \le |s|$
- ► En cada iteración, todos los elementos a izquierda de *i* son distintos de *x*
- $\Rightarrow (\forall j : \mathbb{Z})(0 \le j < i \to_L s[j] \ne x)$

Corrección de búsqueda lineal

¿Se cumple la postcondición del ciclo a la salida del ciclo?

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

$$Q_C \equiv (i < |s|) \leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)$$

- ▶ Al salir del ciclo, no se cumple la guarda. Entonces no se cumple i < |s| o no se cumple $s[i] \neq x$
 - Si no se cumple i < |s|, no existe ninguna posición que contenga x
 - ▶ Si no se cumple $s[i] \neq x$, existe al menos una posición que contiene a x

Corrección de búsqueda lineal

¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?

$$fv = |s| - i$$

$$B \equiv i < |s| \land_L s[i] \neq x$$

- ▶ Si $fv = |s| i \le 0$, entonces $i \ge |s|$
- ▶ Como siempre pasa que $i \le |s|$, entonces es cierto que i = |s|
- ▶ Por lo tanto i < |s| es falso.

Corrección de búsqueda lineal

¿Es la función variante estrictamente decreciente?

$$fv = |s| - i$$

- ▶ En cada iteración, se incremente en 1 el valor de *i*
- ▶ Por lo tanto, en cada iteración se reduce en 1 la función variante.

Corrección de búsqueda lineal

- ► Finalmente, ahora que probamos que:
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,
- ...podemos por el teorema concluir que el ciclo termina y es correcto.

Búsqueda lineal

► Implementación:

```
bool contiene(vector<int> &s, int x) {
    int i = 0;
    while( i < s.size() && s[i] != x ) {
        i=i+1;
    }
    return i < s.size();
}</pre>
```

▶ Analicemos cuántas veces itera este programa:

S	Х	# iteraciones
$\overline{\langle \rangle}$	1	0
$\langle 1 \rangle$	1	0
$\langle 1,2 angle$	2	1
$\langle 1,2,3 angle$	4	3
$\langle 1,2,3,4 \rangle$	4	3
$\langle 1,2,3,4,5 \rangle$	-1	5

Complejidad computacional

Definición. La función de complejidad de un algoritmo es una función $f: \mathbb{N} \to \mathbb{N}$ tal que f(n) es la cantidad de operaciones que realiza el algoritmo en el peor caso cuando toma una entrada de tamaño n.

Algunas observaciones:

- 1. Medimos la cantidad de operaciones en lugar del tiempo total.
- 2. Nos interesa el peor caso del algoritmo.
- 3. La complejidad se mide en función del tamaño de la entrada y no de la entrada particular.

Búsqueda lineal

- Les Cuántas veces se ejecuta el ciclo? Esto depende de
 - ▶ El tamaño de la secuencia
 - ▶ Si el valor buscado está o no contenido en la secuencia
- ¿Qué tiene que pasar para que la cantidad de ejecuciones sea máxima?
 - ► El elemento no debe estar contenido.
- ► Esto representa el **peor caso** en cantidad de iteraciones, ya que tarda mas
- ▶ Dado una secuencia cualquiera, ¿cuál es la cantidad máxima de iteraciones (el peor caso) que puede ejecutar el algortimo? En peor caso se ejecuta |s| veces.

Notación "O grande"

Definición. Si f y g son dos funciones, decimos que $f \in O(g)$ si existen $\alpha \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tales que

$$f(n) \leq \alpha g(n)$$
 para todo $n \geq n_0$.

Intuitivamente, $f \in O(g)$ si g(n) "le gana" a f(n) para valores grandes de n.

Ejemplos:

- ▶ Si f(n) = n y $g(n) = n^2$, entonces $f \in O(g)$.
- ▶ Si $f(n) = n^2$ y g(n) = n, entonces $f \notin O(g)$.
- ▶ Si f(n) = 100n y $g(n) = n^2$, entonces $f \in O(g)$.
- ▶ Si $f(n) = 4n^2$ y $g(n) = 2n^2$, entonces $f \in O(g)$ (y a la inversa).

Complejidad computacional

Utilizamos la notación "O grande" para especificar la función de complejidad f de los algoritmos.

- ▶ Si $f \in O(n)$, decimos que el algoritmo es lineal.
- ▶ Si $f \in O(n^2)$, decimos que el algoritmo es cuadrático.
- ▶ Si $f \in O(n^3)$, decimos que el algoritmo es cúbico.
- ▶ En general, si $f \in O(n^k)$, decimos que el algoritmo es polinomial.
- ▶ Si $f \in O(2^n)$ o similar, decimos que el algoritmo es exponencial.

El algoritmo de búsqueda lineal tiene complejidad O(n). ¿Se puede dar un algoritmo más eficiente?

Búsqueda sobre secuencias ordenadas

Podemos interrumpir la búsqueda tan pronto como verificamos que $s[i] \ge x$.

```
bool contieneOrdenada(vector < int \times) {
    int i=0;
    while( i < s.size() \&\& s[i] < \times) {
        i =i+1;
    }
    return (i < s.size() \&\& s[i] == \times);
    }
```

¿Cuántas veces se ejecuta el ciclo en peor caso?

Búsqueda sobre secuencias ordenadas

- ► Supongamos que la secuencia está ordenada.
- ▶ proc contieneOrdenada(in $s : seq\langle \mathbb{Z} \rangle$, in $x : \mathbb{Z}$, out result : Bool){

 Pre {ordenado(s)}

 Post {result = True $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)}}
 }$
- ▶ ¿Podemos aprovechar que la secuencia está ordenada para crear un programa más eficiente ?

Búsqueda sobre secuencias ordenadas

¿Cuántas veces se ejecuta el ciclo en peor caso?

S	X	# iteraciones	# iteraciones
		(contiene)	(contieneOrdenada)
$\langle \rangle$	1	0	0
$\langle 1 \rangle$	10	1	1
$\langle 1, 2 \rangle$	10	2	2
$\langle 1, 2, 3 \rangle$	10	3	3
$\langle 1, 2, 3, 4 \rangle$	10	4	4
$\langle 1,2,3,4,5 \rangle$	10	5	5
S	x ∉ s	s	s

En **peor caso** (cuando el elemento no está) ambos se ejecutan la misma cantidad de veces.

Búsqueda sobre secuencias ordenadas

- ▶ ¿Cómo podemos aprovechar que la secuencia está ordenada para mejorar el peor caso de ejecución?
 - ▶ ¿Necesitamos iterar si |s| = 0? Trivialmente, $x \notin s$
 - ¿Necesitamos iterar si |s| = 1?Trivialmente,
 - $s[0] == x \leftrightarrow x \in s$
 - ▶ ¿Necesitamos iterar si x < s[0]? Trivialmente, $x \notin s$
 - ▶ ¿Necesitamos iterar si $x \ge s[|s|-1]$? Trivialmente, $s[|s|-1] == x \leftrightarrow x \in s$

Búsqueda sobre secuencias ordenadas

Si $x \in s$, tiene que estar en la posición *low* de la secuencia.

Búsqueda sobre secuencias ordenadas

Asumamos por un momento que $|s| > 1 \land_L (s[0] \le x \le s[|s|-1])$

Búsqueda sobre secuencias ordenadas

▶ ¿Qué invariante de ciclo podemos escribir?

$$I \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]$$

▶ ¿Qué función variante podemos definir?

$$fv = high - low - 1$$

Búsqueda sobre secuencias ordenadas

```
bool contieneOrdenada(vector<int> &s, int x) {
      // casos triviales
     if (s.size()==0 ) {
        return false:
      } else if (s.size()==1) {
        return s[0] = =x;
      } else if (x<s[0]) {
        return false:
      } else if (x>=s[s.size()-1]) {
        return s[s.size()-1]==x;
10
11
        // casos no triviales
12
13
14
15
```

Búsqueda binaria

Veamos ahora que este algoritmo es correcto.

```
\begin{array}{ll} P_C & \equiv & \textit{ordenada}(s) \land (|s| > 1 \land_L s[0] \leq x \leq [|s|-1]) \\ & \land & \textit{low} = 0 \land \textit{high} = |s|-1 \\ Q_C & \equiv & (s[\textit{low}] = x) \leftrightarrow (\exists i : \mathbb{Z})(0 \leq i < |s| \land_L s[i] = x) \\ B & \equiv & \textit{low} + 1 < \textit{high} \\ I & \equiv & 0 \leq \textit{low} < \textit{high} < |s| \land_L s[\textit{low}] \leq x < s[\textit{high}] \\ \textit{fv} & = & \textit{high} - \textit{low} - 1 \\ \end{array}
```

Búsqueda sobre secuencias ordenadas

A este algoritmo se lo denomina búsqueda binaria

Corrección de la búsqueda binaria

- ► ¿Es / un invariante para el ciclo?
 - ▶ El valor de *low* es siempre menor estricto que *high*
 - ► low arranca en 0 y sólo se aumenta
 - ▶ high arranca en |s| 1 y siempre se disminuye
 - ▶ Siempre se respecta que $s[low] \le x$ y que x < s[high]
- \triangleright ¿A la salida del ciclo se cumple la postcondicion Q_C ?
 - Al salir, se cumple que low + 1 = high
 - ▶ Sabemos que s[high] > x y s[low] <= x
 - ▶ Como s está ordenada, si $x \in s$, entonces s[low] = x

Corrección de la búsqueda binaria

- ▶ ¿Es la función variante estrictamente decreciente?
 - ► Nunca ocurre que *low* = *high*
 - ▶ Por lo tanto, siempre ocurre que low < mid < high
 - ▶ De este modo, en cada iteración, o bien high es estrictamente menor, o bien low es estrictamente mayor.
 - ▶ Por lo tanto, la expresión high low 1 siempre es estrictamente menor.
- ¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?
 - ▶ Si $high low 1 \le 0$, entonces $high \le low + 1$.
 - ▶ Por lo tanto, no se cumple (high > low + 1), que es la guarda del ciclo

Búsqueda binaria

► Una posibilidad **aún peor** (ni lo intenten!):

```
bool salir = false;

while( low+1 < high &&!salir ) {

int mid = (low+high) / 2;

if( s[mid] < x ) {

low = mid;

low = mid;

lese if( s[mid] > x ) {

high = mid;

lese {

salir = true; // Puaj!

}

return s[low] == x || s[(low+high)/2] == x;

}
```

Búsqueda binaria

- ▶ ¿Podemos interrumpir el ciclo si encontramos x antes de finalizar las iteraciones?
- ▶ Una posibilidad **no recomendada** (no lo hagan en casa!):

Búsqueda binaria

► Si queremos salir del ciclo, el lugar para decirlo es ... la guarda!

```
while( low+1 < high && s[low] != x ) {
    int mid = (low+high) / 2;
    if( s[mid] <= x ) {
        low = mid;
        } else {
            high = mid;
        }
        return s[low] == x;
    }
}</pre>
```

▶ Usamos fuertemente la condición $s[low] \le x < s[high]$ del invariante.

Búsqueda binaria

▶ ¿Cuántas iteraciones realiza el ciclo (en peor caso)?

Número de iteración	high — low
0	s -1
1	$\cong (s -1)/2$
2	$\cong (s -1)/4$
3	$\cong (s -1)/8$
:	i :
t	$\cong (s -1)/2^t$

► Sea *t* la cantidad de iteraciones necesarias para llegar a *high* − *low* = 1.

$$1 = (|s|-1)/2^t$$
 entonces $2^t = |s|-1$ entonces $t = \log_2(|s|-1)$.

Luego, la complejidad de la búsqueda binaria es $O(\log_2 |s| - 1) = O(\log_2 |s|)$.

Bibliografía

- ► David Gries The Science of Programming
 - Chapter 16 Developing Invariants (Linear Search, Binary Search)

Búsqueda binaria

▶ ¿Es bueno un algoritmo con complejidad logarítmica?

	Búsqueda	Búsqueda
n	Lineal	Binaria
10	10	4
10^{2}	100	7
10^{6}	1,000,000	21
$2,3 \times 10^{7}$	23,000,000	25
7×10^9	7,000,000,000	33
		•

► Sí! Un algoritmo con este orden es muy eficiente.