

Faculdade de Engenharia Elétrica e de Computação

EA 044 Prova 2 Nome: ______ RA: _____

Prof. Vinícius Obs.: É obrigatório devolver as questões da Prova.

Questão 1. (3,0 pontos)

Considere o seguinte PL:

$$\max z = 5x_1 + 3x_2 + 4x_3$$

s.a
$$2x_1 + x_2 + x_3 \le 18$$
$$3x_1 + x_2 + 2x_3 \le 30$$
$$x_1, x_2, x_3 \ge 0$$

- a) (1 ponto) Formule o problema dual do PL.
- b) (0,5 ponto) Calcule a solução ótima do problema dual graficamente.
- c) (1,5 ponto) Use folgas complementares para resolver o problema de maximização.

Questão 2. (4,5 pontos)

Considere o seguinte PL e seu quadro ótimo:

$$\max z = -5x_1 + 5x_2 + 13x_3$$
s.a $x_1 + x_2 + 3x_3 \le 20$

$$12x_1 + 4x_2 + 10x_3 \le 90$$

$$x_1, x_2, x_3 \ge 0.$$

X ₁	X ₂	X ₃	$\mathbf{s_1}$	\mathbf{S}_2	LD	VB
10	0	2	5	0	100	Z
1	1	3	1	0	20	x_2
8	0	-2	-4	1	10	s_2

Considere as modificações abaixo e faça análise de sensibilidade. Nas letras b), c), d) e e), mostre o quadro final e a nova solução ótima. Não é permitido reiniciar a otimização.

- a) (0,5 ponto) Qual o lucro mínimo de x_3 para que seja competitivo com x_2 ?
- b) **(1 ponto)** $(c_1, a_{11}, a_{21}) = (24, 2, 5)$
- c) (1 ponto) Nova variável: $(c_4, a_{14}, a_{24}) = (20, 5, 5)$
- d) (1 ponto) $(c_2, a_{12}, a_{22}) = (10, 1/2, 1)$
- e) (**1 ponto**) Nova restrição: $2x_1 + 2x_2 + 5x_3 \le 30$

Questão 3 (2,5 pontos). Uma empresa produz mensalmente 300 unidades de um produto na cidade 1 e 500 unidades do mesmo produto na cidade 2. O custo unitário de produção na cidade 1 é \$800 e na cidade 2 é \$900. Esta produção deve atender as demandas das cidades 3 e 4 que estão situadas nos intervalos [250, 300] e [300, 400], respectivamente. As unidades do produto podem ser enviadas diretamente para as cidades 3 e 4 ou por meio de um centro de distribuição, denotado como nó 5, com capacidade de armazenagem de 200 unidades. A tabela abaixo mostra os custos unitários de transporte entre pares de cidades.

	raia					
De	5	3	4			
1	80	220	280			
2	100	140	170			
5	-	40	50			

Doro

- a) (1,5 ponto) Desenhe a rede do problema de fluxo em redes.
- b) (1 ponto) Escreva o modelo matemático do problema de fluxo em redes.

Dados

Relações entre os Problemas Primal e Dual						
	minimizar	maximizar				
	$\geq b_i$	≥ 0				
restrições	$\leq b_i$	≤ 0	variáveis			
	$=b_i$	livre				
	≥ 0	$\leq c_j$				
variáveis	≤ 0	$\geq c_j$	restrições			
	livre	$= c_j$				

Custo reduzido: $\overline{c} = c - c_B B^{-1} A$

Variável que entra na base no dual simplex

problema de minimização
$$\frac{y_{0k}}{y_{rk}} = \min_{j \in NB} \left\{ \frac{y_{0j}}{y_{rj}}, y_{rj} < 0 \right\}$$

problema de maximização
$$\frac{y_{0k}}{y_{rk}} = \max_{j \in NB} \left\{ \frac{y_{0j}}{y_{rj}}, y_{rj} < 0 \right\}$$