

COMP4030 DATA MODELLING AND ANALYSIS (DMA)

Lecture 2: Introduction to Modelling (Examples)

CLASSIFICATION OF MODELS EXAMPLE: BOX OPTIMISATION

- ➤ A food company wants to maximise the amount of items they can ship on boxes they send to supermarkets.
- ➤ Create a model to calculate the space inside their current shipping boxes.
- ➤ You know the box's height (H), width (W), and length (L).
- > S? S_r? M? Q?
- ➤ What assumptions are we making?

2

CLASSIFICATION OF MODELS EXAMPLE: BOX OPTIMISATION

- ➤ Classification?
 - ➤ Phenomenological / mechanistic
 - ➤ Static / Dynamic
 - ➤ Linear/ Non-linear
 - ➤ Lumped / Distributed
 - ➤ Natural / artificial
 - > Stochastic / deterministic
 - ➤ Continuous / discrete
 - ➤ Direct/ Inverse
 - ➤ Research / Management
 - ➤ Field of application?

5

CLASSIFICATION OF MODELS: POPULATION CHANGES OF RED FOXES

- ➤ We want to model the population of urban (red) foxes in London.
 - ➤ Model changes in a monthly basis.
- ➤ Foxes reproduce quickly and die slowly, which carries a potential risk: overpopulation.
- ➤ In London:
 - ► Foxes reproduce at a monthly rate of r = 0.25
 - ➤ Foxes die at a monthly rate of d = 0.1
- ➤ Initial number of foxes in London is estimated at 150.
- \gt S? S_r? M? Q?
- ➤ What assumptions are we making?

4

CLASSIFICATION OF MODELS EXAMPLE: FOX POPULATION

- ➤ Classification?
 - ➤ Phenomenological / mechanistic
 - ➤ Static / Dynamic
 - ➤ Linear/ Non-linear
 - ➤ Lumped / Distributed
 - ➤ Natural / artificial
 - ➤ Stochastic / deterministic
 - ➤ Continuous / discrete
 - ➤ Direct/ Inverse
 - ➤ Research / Management
 - ➤ Field of application?

5