Q1: Givens:
$$R = 4.3$$
 $\alpha = 5^{\circ}$
 $a_0 = \frac{dCl}{dd} = 0.1085 / Jeg$ curve slope

elliptical lift Jistribution (U=1)

Want CDi

CDi = C_c^2 since elliptical lift

 πR distribution

Need CL (3-D lift coefficient)

then convert 2D lift slope to

Note $a_0 = 0.1085 / Jegree = 6.216 / radians$
 $a_3D = \frac{a_0}{(1 + a_0 / \pi R)} = \frac{6.216}{77.4.3}$
 $a_1 = \frac{6.216}{77.4.3}$
 $a_2 = \frac{6.216}{77.4.3}$
 $a_3 = \frac{6.216}{77.4.3}$
 $a_4 = \frac{6.276}{77.4.3}$
 $a_5 = \frac{6.276}{77.4.3}$
 $a_6 = \frac{6.276}{77.4.3}$
 $a_7 = \frac{6.276}{77.4.3}$

Q2 Givens: Altitude = 60,000 ft, standard
$$M_{\infty} = 1.61$$

Dwave = 5,295 lb

& Dwave, thickness = $\frac{1}{2}$ Dwave

S = 900 ft, double wedge

Desired: $\frac{1}{2}$ C

Q = ($\frac{1}{2}$ 2) Pro $\frac{1}{2}$ (1.61)²

= 274 lb/ft²

Then CD, wave = $\frac{1}{2}$ Dwave ($\frac{1}{2}$ 3) $\frac{1}{2}$ 4 ($\frac{1}{2}$ 60,000 ft)

Then CD, wave, thickness = CD wave ($\frac{1}{2}$ 3) = 0.0215

CD, wave, thickness = CD wave ($\frac{1}{2}$ 4) = 0.0215

double wedge = $\frac{1}{2}$ 4 ($\frac{1}{2}$ 5) = 0.0107

 $\frac{1}{2}$ 6 = 0.0880

Givens: Mcc, 1=0 = 0.70 Q3: M_{∞} pesired $\approx 0.85 - 0.90$ Assume Mccs doesn't depend on a (m=1) Desired: A to acheive Mos, personed Since we want to cruise @ 0.85-190 Mach #, that is to say Mccs Should be around or slightly higher floor this $M_{CCA} = \frac{M_{CCA} = 0}{\cos A}$ $\cos^{-1}\left(\frac{M_{cc}}{M_{cc_{\Lambda}}}\right) = \Lambda$ Midpoint value $\cos \left(\frac{0.7}{0.87}\right) = 36.4^{\circ}$ closes+ value given in multiple choice ~ 38°

Q4. From definition of Mois, Mois occurs when SCD,c = 0.001 from graph, @ Cz = 0.3, CD in compressible = 0.02 then CD = 0.021 @ Mo = 0.85