BEQ: 相等时转移

	31 2	26 2	25 21	20	16	15 0					
编码	beq 000100		rs	rt		offset					
	6		5	5		16					
格式	beq rs,	rt,	offset								
描述	if (GPR[rs] == GPR[rt]) then 转移										
操作		PC	== GPR[rt + 4 + sig + 4		d(of	ffset $\ 0^2$)					
示例	例 beq \$s1, \$s2, -2										
其他											

BGTZ: 大于 0 时转移

	31 26	25 21	20 16	15	0						
编码	bgtz 000111	rs	0 00000	offset							
	6	5	5	16							
格式	bgtz rs, offset										
描述	if (GPR[rs] > 0) then 转移										
操作	if (GPR[rs PC ← P else PC ← P	C + 4 + sig	n_extend(of	fset 0 ²)							
示例	bgtz \$s1, -2										
其他											

BGEZ: 大于等于 0 时转移

	31	26	25	21	20	16	15		0)		
编码	00000	01	rs	rs		bgez 00001		offset				
	6 haez rs		5	5 5				16				
格式	bgez rs, offset											
描述	if (GPR[rs] >= 0) then 转移											
操作	PC else	← P	C + 4 + C + 4	sig	n_extend	d(of	fset $\ 0^2$)					
示例	bgez \$s1, -2											
其他												

BLTZ: 小于 0 时转移

	31	26	25	21	20	16	15		0			
编码	0000	001	rs	i	blt 000			offset				
	6		5		5		16					
格式	bltz											
描述	if (GPR[rs] < 0) then 转移											
操作	P(else	C ← P	C + 4	+ sig	n_exte	nd(of	fset 0²)					
示例	bltz \$s1, -2											
其他												

DIV: 符号除

	31	26	25	21	20		16	15			6	5		0
编码	spec 0000			rs					0 00 0000 0000			div 011010		
	6			5	5				10				6	
格式	div rs, rt													
描述	(HI, LO) ← GPR[rs] / GPR[rt] 商存放在LO寄存器,余数存放在HI寄存器													
操作	LO← G	PR[rs]div	GPR[rt]									
沐正	HI← G	PR[rs]mod	GPR[rt]									
示例	div \$s1, \$s2													
其他	如果 GPR[rt]为 0,则 HI/LO 结果不可预料。													

ERET: 异常返回

	31	26	25	21	20	16	15	11	10	6	5	0	
编码	COP0 010000				1000	80 0000 00	000 000 000	0000			eret 011000		
	6 20 6												
格式	eret												
描述	eret 将保存在 CP0 的 EPC 寄存器中的现场(被中断指令的下一条地址)写入 PC,从而实现从中断、异常或指令执行错误的处理程序中返回。												
操作	PC ← CP	PC ← CP0[epc]											

示例	eret
其他	当程序被硬件中断、执行 sc 指令、指令执行异常(如除 0)时,PC 将被保存在 EPC 中。 【注意】如果是硬件中断和 SC, EPC 中保存的 PC+4; 如果是指令执行异常(如除零、异常等),则保存 PC。

J: 跳转

	31 26	25 0										
编码	j 000010	instr_index										
	6	26										
格式	j target											
描述	j 指令是 PC 相关的转移指令。当把 4GB 划分为 16 个 256MB 区域, j 指令可以在当前 PC 所在的 256MB 区域内任意跳转。											
操作	PC ← PC31	28 instr_index 0 ²										
示例	j Loop_End											
其他	如果需要跳转	范围超出了当前 PC 所在的 256MB 区域内时,可以使用 JR 指令。										

JAL: 跳转并链接

	31 26	25 0									
编码	jal 000011	instr_index									
	6	26									
格式	jal target										
描述	jal 指令是函数指令, PC 转向被调用函数,同时将当前 PC+4 保存在 GPR[31]中。当把 4GB 划分为 16 个 256MB 区域,jal 指令可以在当前 PC 所在的 256MB 区域内任意跳转。										
操作	PC ← PC31. GPR[31] ←	$28 \ instr_index \ 0^2$ PC + 4									
示例	jal my_function_name										
其他	jal 与 jr 配套使用。jal 用于调用函数,jr 用于函数返回。当所调用的函数地址超出了当前 PC 所在的 256MB 区域内时,可以使用 jalr 指令。										

JALR: 跳转并链接

	31	26	25	21	20	16	15		11	10	6	5		0
编码	speci 00000			rs	0 0000	0		rd		0	0000		jalr 001001	
	6			5	5			5			5		6	
格式	jalr rd, rs													
描述	jalr 指令是函数指令, PC 转向被调用函数(函数入口地址保存在 GPR[rs]中),同时将当前 PC+4 保存在 GPR[rd]中。													
操作	PC ← GPR[rs] GPR[rd] ← PC + 4													
示例	jalr \$	ss1,	\$31											

JR: 跳转至寄存器

	31	26	25	21	20		11	10	6	5		0
编码	speci 00000			rs		0 00 0000 0000		00	0 0000	jr 001000		
	6		5		10		5	6				
格式	jr rs											
描述	PC ←	GPR[:	rs]									
操作	PC ←	GPR[:	rs]									
示例	jr \$31											
其他	jr与 jal/	jalr 配	套使周	月。 jal/jal	用于	调用函数,jr用于函	函数返	口。				

LB: 加载字节

	31 26	25 2	1 20	16	15		0				
编码	lb 100000	base		rt		offset					
	6	5		5		16					
格式	lb rt, offset(base)										
描述	GPR[rt] ← memory[GPR[base]+offset]										
操作	Addr GPR[base] + sign_ext(offset) memword memory[Addr] byte Addr ₁₀ GPR[rt] sign_ext(memword _{7+8*byte8*byte})										
示例	lb \$v1, 3(\$s0)	_									

LUI: 立即数加载至高位

	31	26	25	21	20		16	15		0	
编码	lui 001111		0 0000	0		rt			immediate		
	6		5			5			16		
格式	lui rt, immediate										
描述	$GPR[rt] \leftarrow immediate 0^{16}$										
操作	$GPR[rt] \leftarrow immediate 0^{16}$										
示例	lui \$s1, 0x55AA										
其他											

LW: 加载字

	31 26	25 21	20 16	15	0						
编码	lw 100011	base	rt	offset							
	6	5	5	16							
格式	lw rt, offset(base)										
描述	GPR[rt] ← memory[GPR[base]+offset]										
操作	Addr ← GPR[base] + sign_ext(offset)										

	GPR[rt] ← memory[Addr]
示例	lw \$v1, 8(\$s0)
约束	Addr 必须是 4 的倍数(即 Addr _{1.0} 必须为 00), 否则产生地址错误异常

SLL: 逻辑左移

编码	31	26	25	21	20		16	15		11	10		6	5		0
	special	0			rt			rd			S		(sll 000000		
	6		0000	00		5			5			5			6	
格式	sll rd, rt, s															
描述	GPR[rd] ← GPR[rt] << s															
操作	GPR[rd] ← GPR[rt] _{(31-s)0} 0°															
示例	sll \$s1, \$s2, 5															
其他	sll \$0 , 该指令有														指令)	0

SW: 存储字

	31	31 26 25		21		20 16			0		
编码	sw 101011		base		rt			offset			
	6		5			5	16				
格式	sw rt, offset(base)										
描述	memory[GPR[base]+offset]										
操作	Addr GPR[base] + sign_ext(offset) memory[Addr] GPR[rt]										
示例	sw \$v1, 8(\$s0)										
约束	Addr 必须是 4 的倍数(即 Addr ₁₀ 必须为 00), 否则产生地址错误异常										