UFV- CCE - DET

EST 105 – 3^a avaliação - 1^0 semestre de 2017 - 01/julho/17

Nom	e:			Matrícula:				
Assir	natura: _			Favor	r apresentar docu	ımento com foto		
		es, tabelas e formul FERIR ANTES D			das de 1 a 11, to	tal de 40 pontos		
	ENÇÃO: . cema SAPI	Assinale (X) em q ENS).	ual turma es	stá matricu	lado (sua nota se	erá divulgada no		
		 HORÁRIO 						
() T1 3ª	08-10 5 a 10-12	PVB300 Ce	econ				
($10-12 6^{\underline{a}} 8-10$ $14-16 5^{\underline{a}} 16-18$		•	l			
() T4 2ª	14-16 4ª 16-18	PVB107 Ca	ırol				
(•	$20:30-22:10 6^{\underline{a}}$						
(•	14-16 6 ^a 16-18			rdenador			
(•	$16-18 5^{\underline{a}} 14-16$						
(•	^{<u>a</u> 18:30-20:10 4^{<u>a</u>}}						
() T20=E	ST085 T1 2ª 16	PVA134,T2	2 2ª 18:30	PVA348(Leísa,	monitor II)		

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- PODE UTILIZAR A CALCULADORA, porém mostre os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA !!!.

FORMULÁRIO

Para
$$k = 1, 2, ..., n < \infty$$
 $E(X^k) = \sum_x x^k P(x)$ ou $E(X^k) = \int x^k f(x) dx$
$$E(XY) = \sum_x \sum_y xy P(x, y)$$
 ou $E(XY) = \int \int xy f(x, y) dx dy$

$$COV(X,Y) = E(XY) - E(X)E(Y), \quad \rho_{X,Y} = \frac{COV(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X) = E(X^2) - [E(X)]^2$$

Para $a, b \in c$ constantes finitas, $X \in Y$ variáveis aleatórias,

$$E(aX - bY + c) = aE(X) - bE(Y) + c$$

$$V(aX - bY + c) = a^2V(X) + b^2V(Y) - 2abCOV(X, Y)$$

$$P(X = x) = \binom{N}{x} p^{x} (1 - p)^{N - x} \quad E(X) = Np \quad V(X) = Np(1 - p) \quad \binom{N}{x} = \frac{N!}{x!(N - x)!}$$

$$P(X = x) = \frac{e^{-m}m^{x}}{x!} \qquad E(X) = V(X) = m$$

$$X \sim N\left(\mu; \sigma^{2}\right) \implies Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$\overline{X} \sim N\left(\mu; \frac{\sigma^{2}}{n}\right) \implies Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\sum_{i=1}^{n} X_{i} \qquad S_{X}^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}{n - 1}$$

$$\chi_{n}^{2} = \sum_{i=1}^{h} \sum_{j=1}^{k} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \qquad n = (h - 1)(k - 1)$$

$$t_{\nu} = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{s^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} \qquad s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

 $\nu = \text{Graus de liberdade} = n_1 + n_2 - 2$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	$0,\!1026$	$0,\!1064$	0,1103	0,1141
0,3	0,1179	$0,\!1217$	$0,\!1255$	0,1293	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	$0,\!1517$
0,4	$0,\!1554$	$0,\!1591$	0,1628	0,1664	0,1700	0,1736	0,1772	$0,\!1808$	0,1844	$0,\!1879$
0,5	0,1915	0,1950	$0,\!1985$	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	$0,\!2257$	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	$0,\!2486$	$0,\!2517$	$0,\!2549$
0,7	$0,\!2580$	$0,\!2611$	$0,\!2642$	0,2673	0,2703	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	$0,\!2852$
0,8	$0,\!2881$	$0,\!2910$	$0,\!2939$	$0,\!2967$	$0,\!2995$	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	$0,\!3212$	0,3238	$0,\!3264$	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	$0,\!3531$	$0,\!3554$	$0,\!3577$	$0,\!3599$	$0,\!3621$
1,1	0,3643	$0,\!3665$	$0,\!3686$	$0,\!3708$	$0,\!3729$	$0,\!3749$	0,3770	$0,\!3790$	0,3810	$0,\!3830$
1,2	0,3849	$0,\!3869$	$0,\!3888$	0,3907	0,3925	0,3944	0,3962	$0,\!3980$	0,3997	$0,\!4015$
1,3	0,4032	0,4049	$0,\!4066$	0,4082	0,4099	$0,\!4115$	$0,\!4131$	$0,\!4147$	0,4162	$0,\!4177$
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	$0,\!4279$	$0,\!4292$	0,4006	$0,\!4319$
1,5	$0,\!4332$	$0,\!4345$	$0,\!4357$	$0,\!4370$	$0,\!4382$	$0,\!4394$	$0,\!4406$	$0,\!4418$	0,4429	$0,\!4441$
1,6	$0,\!4452$	0,4463	$0,\!4474$	0,4484	$0,\!4495$	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	$0,\!4545$
1,7	$0,\!4554$	$0,\!4564$	$0,\!4573$	$0,\!4582$	$0,\!4591$	$0,\!4599$	$0,\!4608$	$0,\!4616$	0,4625	$0,\!4633$
1,8	0,4641	0,4649	$0,\!4656$	$0,\!4664$	$0,\!4671$	$0,\!4678$	$0,\!4686$	$0,\!4693$	0,4699	$0,\!4706$
1,9	$0,\!4713$	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	$0,\!4744$	$0,\!4750$	$0,\!4756$	$0,\!4761$	$0,\!4767$
2,0	$0,\!4772$	0,4778	$0,\!4783$	$0,\!4788$	$0,\!4793$	$0,\!4798$	$0,\!4803$	$0,\!4808$	$0,\!4812$	$0,\!4817$
2,1	0,4821	$0,\!4826$	$0,\!4830$	$0,\!4834$	$0,\!4838$	$0,\!4842$	$0,\!4846$	$0,\!4850$	$0,\!4854$	$0,\!4857$
2,2	0,4861	$0,\!4864$	$0,\!4868$	$0,\!4871$	$0,\!4875$	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	$0,\!4898$	0,4901	0,4904	$0,\!4906$	$0,\!4909$	$0,\!4911$	0,4913	$0,\!4916$
2,4	0,4918	0,4920	$0,\!4922$	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	$0,\!4936$
2,5	0,4938	0,4940	$0,\!4941$	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	$0,\!4952$
2,6	$0,\!4953$	0,4955	$0,\!4956$	0,4957	0,4959	$0,\!4960$	$0,\!4961$	$0,\!4962$	0,4963	$0,\!4964$
2,7	$0,\!4965$	$0,\!4966$	$0,\!4967$	$0,\!4968$	$0,\!4969$	0,4970	0,4971	$0,\!4972$	0,4973	$0,\!4974$
2,8	0,4974	0,4975	$0,\!4976$	0,4977	0,4977	0,4978	0,4979	$0,\!4979$	$0,\!4980$	$0,\!4981$
2,9	$0,\!4981$	0,4982	$0,\!4982$	0,4983	0,4984	0,4984	$0,\!4985$	$0,\!4985$	$0,\!4986$	$0,\!4986$
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

Tabela 2: Valores χ^2 na distribuição de qui-quadrado com n graus de liberdade tais que $P(\chi_n^2 \ge \chi^2) = p \times 100\%$.

n	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n
1	$0.0^3 16$	$0.0^3 63$	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,706	3,841	4,218	5,024	5,412	6,635	9,550	10,827	1
2	0,020	0,040	0,051	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	$6,\!438$	7,378	7,824	9,210	12,429	13,815	2
3	0,115	$0,\!185$	0,216	$0,\!352$	0,584	1,005	1,424	2,366	3,665	4,642	$6,\!251$	7,815	8,311	9,348	9,837	11,345	14,796	16,266	3
4	0,297	0,429	0,484	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	10,026	11,143	11,668	13,277	16,924	18,467	4
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	11,644	$12,\!832$	$13,\!388$	$15,\!086$	18,907	20,515	5
6	0,872	$1,\!134$	1,237	1,635	2,204	3,070	3,828	5,348	7,231	$8,\!558$	10,645	$12,\!592$	13,198	14,449	15,033	$16,\!812$	20,791	22,457	6
7	1,239	1,564	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	16,013	16,622	18,475	22,601	24,322	7
8	1,646	2,032	2,180	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	15,507	16,171	$17,\!534$	18,168	20,090	24,352	26,125	8
9	2,088	2,532	2,700	3,325	4,168	$5,\!380$	6,393	8,343	10,656	12,242	14,684	16,919	17,608	19,023	19,679	$21,\!666$	26,056	27,877	9
10	2,558	3,059	3,247	3,940	4,865	$6,\!179$	7,267	9,342	11,781	13,442	15,987	18,307	19,021	20,483	21,161	23,209	27,722	29,588	10
11	3,053	3,609	3,816	4,575	$5,\!578$	6,989	8,148	10,341	$12,\!899$	14,631	17,275	19,675	20,412	21,920	22,618	24,725	29,354	31,264	11
12	3,571	$4,\!178$	4,404	5,226	6,304	7,807	9,034	11,340	14,011	$15,\!812$	$18,\!549$	21,026	21,785	23,337	24,054	26,217	30,957	32,909	12
13	4,107	4,765	5,009	$5,\!892$	7,042	8,634	9,926	12,340	15,119	16,985	19,812	22,362	23,142	24,736	25,472	$27,\!688$	32,535	34,528	13
14	4,660	$5,\!368$	5,629	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	23,685	24,485	26,119	$26,\!873$	29,141	34,091	36,123	14
15	5,229	5,985	6,262	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	$25,\!816$	$27,\!488$	28,259	$30,\!578$	35,628	37,697	15
16	5,812	6,614	6,908	7,962	9,312	11,152	12,624	15,338	$18,\!418$	20,465	$23,\!542$	26,296	27,136	$28,\!845$	29,633	32,000	37,146	39,252	16
17	6,408	7,255	7,564	8,672	10,085	12,002	$13,\!531$	16,338	$19,\!511$	21,615	24,769	27,587	28,445	30,191	30,995	33,409	$38,\!648$	40,790	17
18	7,015	7,906	8,231	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	28,869	29,745	$31,\!526$	32,346	$34,\!805$	40,136	42,312	18
19	7,633	$8,\!567$	8,906	10,117	11,651	13,716	$15,\!352$	18,338	$21,\!689$	23,900	27,204	30,144	31,037	$32,\!852$	33,687	36,191	41,610	43,820	19
20	8,260	9,237	9,591	10,851	12,443	14,578	16,266	19,337	22,775	25,038	28,412	31,410	32,321	34,170	35,020	$37,\!566$	43,072	45,315	20
21	8,897	9,915	10,283	$11,\!591$	13,240	15,445	17,182	20,337	$23,\!858$	26,171	29,615	32,671	33,597	35,479	36,343	38,932	$44,\!522$	46,797	21
22	9,542	10,600	10,982	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	$34,\!867$	36,781	37,659	40,289	45,962	48,268	22
23	10,196	$11,\!293$	11,688	13,091	14,848	17,187	19,021	22,337	26,018	$28,\!429$	32,007	35,172	36,131	38,076	38,968	41,638	$47,\!391$	49,728	23
24	10,856	11,992	$12,\!401$	13,848	15,659	18,062	19,943	23,337	27,096	$29,\!553$	33,196	36,415	$37,\!389$	39,364	40,270	42,980	$48,\!812$	51,179	24
25	11,524	12,697	13,120	14,611	16,473	18,940	20,867	24,337	28,172	30,675	$34,\!382$	37,652	38,642	40,646	$41,\!566$	$44,\!314$	50,223	52,620	25
26	12,198	13,409	$13,\!844$	$15,\!379$	17,292	19,820	21,792	$25,\!336$	29,246	31,795	$35,\!563$	$38,\!885$	39,889	41,923	42,856	$45,\!642$	$51,\!627$	54,052	26
27	12,879	14,125	$14,\!573$	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	43,194	44,140	46,963	53,022	$55,\!476$	27
28	13,565	$14,\!847$	$15,\!308$	16,928	18,939	21,588	23,647	27,336	$31,\!319$	34,027	37,916	41,337	$42,\!370$	44,461	45,419	$48,\!278$	$54,\!411$	56,893	28
29	14,256	$15,\!574$	16,047	17,708	19,768	22,475	24,577	$28,\!336$	$32,\!461$	35,139	39,087	$42,\!557$	43,604	45,722	46,693	$49,\!588$	55,792	58,302	29
30	14,953	16,306	16,791	18,493	20,599	23,364	$25,\!508$	29,336	$33,\!530$	$36,\!250$	$40,\!256$	43,773	44,834	46,979	47,962	$50,\!892$	57,167	59,703	30
n	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n

Tabela 3: Valores positivos t na distribuição t_n de Student com n graus de liberdade em níveis de 10% a 0,1% de probabilidade = $2 \times P(t_n \ge t)$, tabela bilateral.

	nível de probabilidade bilateral							
n	10%	5%	2%	1%	0,5%	0,1%		
1	6,31	12,71	31,82	63,66	127,32	636,62		
2	2,92	4,30	6,97	9,92	14,09	31,60		
3	$2,\!35$	3,18	$4,\!54$	5,84	$7,\!45$	12,94		
4	$2,\!13$	2,78	3,75	4,60	$5,\!60$	8,61		
5	2,02	$2,\!57$	$3,\!37$	4,03	4,77	6,86		
6	1,94	2,45	3,14	3,71	4,32	5,96		
7	1,90	2,36	3,10	3,50	4,03	$5,\!41$		
8	1,86	2,31	2,90	3,36	3,83	5,04		
9	1,83	$2,\!26$	2,82	$3,\!25$	3,69	4,78		
10	1,81	2,23	2,76	$3,\!17$	$3,\!58$	4,59		
11	1,80	2,20	2,72	3,11	3,50	$4,\!44$		
12	1,78	2,18	2,68	3,06	3,43	4,32		
13	1,77	2,16	$2,\!65$	3,01	$3,\!37$	4,22		
14	1,76	2,14	2,62	2,98	3,33	4,14		
15	1,75	2,13	2,60	2,95	3,29	4,07		
16	1,75	2,12	$2,\!58$	2,92	$3,\!25$	4,02		
17	1,74	2,11	$2,\!57$	2,90	$3,\!22$	3,97		
18	1,73	2,10	$2,\!55$	2,88	3,20	3,92		
19	1,73	2,09	$2,\!54$	2,86	$3,\!17$	3,88		
20	1,73	2,09	$2,\!53$	2,84	$3,\!15$	3,85		
21	1,72	2,08	$2,\!52$	2,83	$3,\!14$	3,82		
22	1,72	2,07	$2,\!51$	2,82	3,12	3,79		
23	1,71	2,07	$2,\!50$	2,81	3,10	3,77		
24	1,71	2,06	2,49	2,80	3,09	3,75		
25	1,71	2,06	2,49	2,79	3,08	3,73		
26	1,71	2,06	2,48	2,78	3,07	3,71		
27	1,70	2,05	$2,\!47$	2,77	3,06	3,69		
28	1,70	2,05	$2,\!47$	2,76	3,05	3,67		
29	1,70	2,04	2,46	2,76	3,04	3,66		
30	1,70	2,04	2,46	2,75	3,03	$3,\!65$		
40	1,68	2,02	$2,\!42$	2,70	2,97	$3,\!55$		
60	1,67	2,00	2,39	2,66	2,92	3,46		
120	1,65	1,98	2,36	2,62	2,86	$3,\!37$		
$-\infty$	1,65	1,96	2,33	2,58	2,81	3,29		

1.(5 pontos) Seja (X,Y) uma variável aleatória discreta bidimensional com distribuição conjunta de probabilidades dada na tabela a seguir. Pede-se: calcule COV(X,Y), a covariância entre as variáveis $X \in Y$.

		Y	
X	0	1	2
0	0,20	0,12	0,08
_1	0,30	0,18	0,12

Note que

$$P(x,y) = P(x) \cdot P(x), \forall (x,y) \in \mathbb{R}^2,$$

logo Xe Ysão independentes, e desta forma $\operatorname{cov}\left(X,Y\right)=0.$ Ou

$$cov (X, Y) = E (XY) - E (X) E (Y)$$

$$E (X) = \sum xP(x) = 0 \cdot 0, 40 + 1 \cdot 0, 60 = 0, 60$$

$$E (Y) = \sum yP(y) = 0 \cdot 0, 50 + 1 \cdot 0, 30 + 2 \cdot 0, 20 = 0, 70$$

$$E (XY) = \sum \sum xyP(x, y) = 1 \cdot 1 \cdot 0, 18 + 1 \cdot 2 \cdot 0, 12 = 0, 42$$

$$cov (X, Y) = 0, 42 - 0, 60 \cdot 0, 70 = 0, 42 - 0, 42 = 0$$

2.(5 pontos) Seja (X,Y) uma variável aleatória contínua bidimensional com a seguinte função densidade de probabilidade conjunta,

$$f(x,y) = \begin{cases} K(x+y) &, & 0 \le x \le 1 \text{ e } 0 \le y \le 2 \\ 0 &, & \text{outros valores} \end{cases}$$

Pede-se: calcule o valor da constante K.

Como f(x,y) é uma f.d.p. conjunta devemos ter

i)
$$f(x,y) \geq 0$$
 para todo $(x,y) \in \mathbb{R}^2,$ logo $K \geq 0;$ e

ii)
$$1 = \int_0^2 \int_0^1 K(x+y) \, dx \, dy$$
.

De ii) segue que

$$1 = \int_0^2 \int_0^1 K(x+y) \, dx dy = K \int_0^2 \int_0^1 (x+y) \, dx dy = K \int_0^2 \left(\frac{x^2}{2} + xy\right) \Big|_{x=0}^1 \, dy$$
$$= K \int_0^2 \left(\frac{1}{2} + y\right) \, dy = K \left(\frac{y}{2} + \frac{y^2}{2}\right) \Big|_{y=0}^2 = K (1+2) = 3K$$
$$3k = 1 \Rightarrow K = \frac{1}{3}$$

3.(8 pontos) Sejam X e Y duas variáveis aleatórias tais que,

$$E(X) = 0,50 \quad V(X) = 0,25 \quad E(Y) = 1,2 \quad V(Y) = 0,56 \quad \text{e} \quad COV(X,Y) = -0,20.$$

Seja W uma variável aleatória definida como,

$$W = \frac{X}{2} - 5Y + 1$$

Pede-se:

a.(4 pts) O valor médio de W.

$$E(W) = \frac{1}{2}E(X) - 5E(Y) + 1$$

$$= \frac{1}{2} \cdot 0,50 - 5 \cdot 1,2 + 1 = 0,25 - 6 + 1$$

$$= -4,75$$

b.(4 pts) A variância de W.

$$var(W) = var\left(\frac{X}{2} - 5Y\right)$$

$$= \frac{1}{4}var(X) + 25var(Y) - 2 \cdot \frac{1}{2} \cdot 5 \cdot cov(X, Y)$$

$$= \frac{1}{4} \cdot 0, 25 + 25 \cdot 0, 56 - 5 \cdot (-0, 20) = 0, 0625 + 14 + 1$$

$$= 15,0625$$

4.(5 pontos) Uma tecelagem produz diariamente 600 metros de tecido com um processo de produção que resulta em média um defeito a cada 500 metros de tecido. Se for considerada a produção de 20 dias, utilize o modelo Poisson para calcular em quantos destes dias espera-se uma produção diária com nenhum (zero) defeito no tecido.

Seja X: "número de defeitos em 600 metros". Queremos determinar P[X=0]. Se é esperado 1 defeito a cada 500m então espera-se 600/500=1,2 defeitos em 600m (regra de três), desta forma:

$$P[X = 0] = \frac{e^{-1,2}1, 2^0}{0!} = \frac{0,3012 \times 1}{1}$$

= 0,3012.

A probabilidade de zero defeitos em 600m por Poisson é igual a 0,3012 ou 30,12%. Portanto em 30,12% dos 20 dias espera-se nenhum defeito,isto é, espera-se nenhum defeito em $20 \cdot 0,3012 = 6,0239 \approx 6$ dias.

5.(5 pontos) Admita que o tempo de execução de uma tarefa por um funcionário, em uma linha de montagem, seja uma variável aleatória normalmente distribuída com média igual a 25 minutos e desvio padrão 3 minutos. Se 200 funcionários executam tal tarefa, quantos funcionários espera-se que executem a tarefa com um tempo máximo de 28,51 minutos? Calcule com base no modelo normal.

Temos que $X \sim N (\mu = 25; \sigma^2 = 9)$.

$$P[X < 28, 51] = P\left[\frac{X - \mu}{\sigma} < \frac{28, 51 - 25}{3}\right]$$

$$= P[Z < 1, 17] = 0, 5 + P[0 \le Z \le -1, 17]$$

$$= 0, 5 + 0, 379$$

$$= 0, 879.$$

Desta maneira, $P\left[X<28,51\right]=0,879$ ou 87,9% de 200 dias. Logo, espera-se que $200\cdot0,879=175,8\approx176$

dos 200 funcionários executem a tarefa com um tempo máximo de 28,51 minutos.

6.(6 pontos) Os dados (frequências observadas no estudo) apresentados na tabela a seguir sugerem que a exposição aos raios UVA e UVB no período entre 11:00 e 15:00h (fator de risco) e o câncer de pele facial (doença), sejam independentes? Responda com base em um teste de hipótese a 1% conforme os itens a seguir.

	Câncer de Pele				
Exposição	SIM	NÃO			
SIM	37	13			
NÃO	17	53			

a.(2 pts) Valor tabelado.

$$\nu = (2-1)(2-1) = 1$$
 e $\chi^2_{\text{tab}} = \chi^2_{(1;1\%)} = 6,635$

b.(2 pts) Estatística do teste (valor calculado).

		G^ 1 D 1	Expo	sição		
		Câncer de Pele	SIM	NÃO	Total	
		SIM	37(22,5)	13(27,5)	(50)	
		NÃO	17(31,5)	53(38,5)	(70)	
			(54)	(66)	(120)	
$\chi^2_{ m cal}$	=	$\frac{(37-22,5)^2}{22,5} + {}$	(13 - 27, 5)	$\frac{2}{1} + \frac{(17 - 1)^2}{1}$	$31,5)^2$	$+\frac{(53-38,5)^2}{}$
∧cal					,5	38, 5
	=	9,3444+7,6455	6+6,6746-	+5,461		
	\cong	29. 1255				

c.(2 pts) Decisão quanto à hipótese de nulidade e também o que deve ser concluído em termos da ocorrência da doença e o fator de risco.

 $\begin{cases} H_0: & \text{Exposição e Câncer de Pele são independentes} \\ H_1: & \text{Exposição e Câncer de Pele não são independentes} \end{cases}$

Como $\chi^2_{\rm cal} \in RRH_0$, rejeitamos H_0 ao nível de 1% de significância. Desta forma, há indícios que Exposição e Câncer de Pele não são variáveis independentes, e possuem algum tipo de relação.

7.(6 pontos) O teste de impacto (crash test) consiste no impacto de veículos automotores contra barreiras indeformáveis (blocos de concreto ou ferro) ou deformaveis (bloco deformavel metálico). Tem por objetivo avaliar a segurança automotiva para verificar se cumprem determinadas normas de segurança de proteção à colisão em situações de acidente de trânsito. Duas amostras aleatórias de tamanhos $n_A = 6$ e $n_B = 8$, de veículos com acessórios de segurança das classes A e B, foram avaliados. O objetivo era verificar se os valores médios dos danos podem ser considerados iguais $(H_0: \mu_A = \mu_B)$ ou se devemos considerar os acessórios da condição A melhores $(H_1: \mu_A < \mu_B)$. Um resumo dos resultados é apresentado na tabela a seguir. Conclua com base em um teste de hipóteses a $\alpha = 5\%$ conforme os itens abaixo.

Classe	Média	Variância
\overline{A}	67,10	400
B	84,93	361

a.(2 pts) Valor tabelado.

$$\nu = 6 + 8 - 2 = 12 \text{ e } t_{\text{tab}} = t_{(12.5\%)} = 1,78.$$

b.(2 pts) Estatística do teste (valor calculado).

Temos que

$$\bar{X}_A = 67, 1,$$

$$\bar{X}_B = 84, 93,$$

$$S_A^2 = (20)^2 = 400,$$

$$S_B^2 = (19)^2 = 361,$$

$$S_c^2 = \frac{(6-1) \times 400 + (8-1) \times 361}{6+8-2}$$

$$= \frac{4527}{12} = 377, 25,$$

$$t_{\text{cal}} = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{S_c^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} = \frac{67, 1-84, 93}{\sqrt{377, 25\left(\frac{1}{6} + \frac{1}{8}\right)}} = \frac{-17, 83}{10, 4896} = -1, 7.$$

c.(2 pts) Decisão quanto à hipótese de nulidade e também o que deve ser concluído em termos de qual classe de acessórios de segurança deve ser considerada melhor.

Como $t_{cal} \in RNRH_0$, não há indícios para rejeitarmos H_0 ao nível de 5% de significância. Desta forma, o valor médio dos danos é estatisticamente o mesmo para os dois grupos e, portanto, a diferença observada nas médias das amostras é resultado de uma variação ao acaso.