Input: Matrices G, S, W

Output: Dimension $n' \leq n$ of the smallest affine subspace \mathcal{K} that contains K^* if n' < n, then $\mathcal{K} = \{x \in \mathbb{R}^n \ Tx = Z\}$

discard the true inequalities from the constraints in (1.12);

if no inequality is left then $\mathcal{K} \leftarrow \mathbb{R}^n$;

else

let $\mathcal{P}_a \triangleq \{(z,x): G_az - S_ax = W_a\}$ be the affine subspace obtained

by collecting the remaining non-true inequalities;

15 let $\{u_1, \ldots, u_{k'}\}$ be a basis of the kernel of G'_a ;

if k'=0 then $\Pi_{\mathbb{R}^n}(\mathcal{P}_a)$ and (by Proposition (1.1)) K^* are full-dimensional, $\mathcal{K}\leftarrow\mathbb{R}^n$:

else $\mathcal{K} \leftarrow \{x | Tx = Z\}$, where

$$T = - egin{bmatrix} u_1' \ dots \ u_{k'}' \end{bmatrix} S_a, \, Z = egin{bmatrix} u_1' \ dots \ u_{k'}' \end{bmatrix} W_a;$$

 $8 \quad \mathbf{end} \ .$

 γ