인공지능 개론 L02 Regression

국민대학교 소프트웨어융합대학원 박하명

지도학습 Supervised Learning

훈련 데이터(Training Data)로부터 하나의 함수를 유추해내기 위한 기계 학습 (Machine Learning)의 한 방법

Training Data

$$[1.2, 3.8, -1.4, ..., 4.1] \rightarrow 1.1$$

$$[3.2, -1.2, -0.2, ..., 2.1] \rightarrow 2.7$$

$$[2.8, -1.4, -0.3, ..., 2.3] \rightarrow 2.8$$

$$[1.2, 3.4, -1.5, ..., 4.2] \rightarrow 0.9$$

$$[4.2, 2.1, 2.8, ..., -0.5] \rightarrow -0.1$$

$$...$$

$$[3.2, 2.2, 2.2, ..., -0.4] \rightarrow -0.2$$

$$[1.3, 3.2, -1.5, ..., 4.1] \rightarrow$$
?

https://teachablemachine.withgoogle.com/

지도학습 예제: Teachable Machine

누구나 쉽게 **지도학습**을 할 수 있도록 구글에서 만든 온라인 서비스이미지, 소리, 자세 등을 입력으로 받아서 분류작업^{Classification} 수행

https://experiments.withgoogle.com/tiny-sorter/view

회귀분석 (Regression)

관찰된 연속형 변수들에 대해 두 변수 사이의 모형을 구한뒤 적합도를 측정해 내는 분석 방법 (출처: 위키피디아)

→ 지도 학습 방법 중 하나

선형회귀분석 (Linear Regression): 종속 변수 y와 한 개 이상의 독립 변수 (또는 설명 변수) X와의 선형 상관 관계를 모델링하는 회귀분석 기법 (출처: 위키피디아)

Linear Regression

입력이 복잡한 지도학습…

Training Data

[1.2, 3.8,
$$-1.4$$
, ..., 4.1] \rightarrow 1.1
[3.2, -1.2 , -0.2 , ..., 2.1] \rightarrow 2.7
[2.8, -1.4 , -0.3 , ..., 2.3] \rightarrow 2.8
[1.2, 3.4, -1.5 , ..., 4.2] \rightarrow 0.9
[4.2, 2.1, 2.8, ..., -0.5] \rightarrow -0.1
...

Test

$$[1.3, 3.2, -1.5, ..., 4.1] \rightarrow$$
?

쉬운 설명을 위해··· 단순한 예제.

Training Data

$$\begin{bmatrix}
 1.2 \end{bmatrix} \rightarrow 1.1 \\
 [3.2] \rightarrow 2.7 \\
 [2.8] \rightarrow 2.8 \\
 [1.2] \rightarrow 0.9 \\
 [4.2] \rightarrow -0.1 \\
 ... \\
 [3.2] \rightarrow -0.2$$

$$[1.3] \rightarrow ?$$

Linear Regression

Training Data

$$\begin{bmatrix}
 1.2 \end{bmatrix} \rightarrow 1.1 \\
 [3.2] \rightarrow 2.7 \\
 [2.8] \rightarrow 2.8 \\
 [1.2] \rightarrow 0.9 \\
 [4.2] \rightarrow -0.1 \\
 ... \\
 [3.2] \rightarrow -0.2$$

Linear Regression

가설과 비용 Hypothesis and Cost function

경사 하강법 Gradient Descent

우리의 목표: cost를 최소화 하자! = cost를 최소로 만드는 w, b 값을 찾자!

 $rg\min_{w,b} cost(w,b)$

경사 하강법 Gradient Descent

경사:
$$\left(rac{\partial cost(w,b)}{\partial w}, rac{\partial cost(w,b)}{\partial b}
ight)$$

Learning Rate $w=w-\alpha rac{\partial cost(w,b)}{\partial w}$ $b=b-\alpha rac{\partial cost(w,b)}{\partial b}$ 업데이트:

$$b = b - lpha rac{\partial cost(w,b)}{\partial b}$$

Linear Regression (2)

입력이 조금 더 복잡할 때?

Training Data

$$[1.2, 3.8] \rightarrow 1.1$$

$$[3.2, -1.2] \rightarrow 2.7$$

$$[2.8, -1.4] \rightarrow 2.8$$

$$[1.2, 3.4] \rightarrow 0.9$$

$$[4.2, 2.1] \rightarrow -0.1$$
...
$$[3.2, 2.2] \rightarrow -0.2$$

$$[1.3, 3.2] \rightarrow$$
?

$$H(x_1, x_2) = w_1x_1 + w_2x_2 + b$$

가설과 비용 (2) Hypothesis and Cost function (2)

$$\mathbf{w} = egin{bmatrix} w_1 \ w_2 \end{bmatrix} \quad \mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$H(x_1,x_2) = H(\mathbf{x}) = \mathbf{w}^\mathsf{T}\mathbf{x} + b$$

$$cost(\mathbf{w},b) = rac{1}{n} \sum_{i=0}^{n} \left(y_i - H(\mathbf{x}_i)
ight)^2$$

경사 하강법 (2) Gradient Descent (2)

우리의 목표: cost를 최소화 하자! = cost를 최소로 만드는 w, b 값을 찾자!

$$rg \min_{\mathbf{w}, b} cost(\mathbf{w}, b)$$

업데이트:

$$w_1 = w_1 - lpha rac{\partial cost(\mathbf{w},b)}{\partial w_1} \ w_2 = w_2 - lpha rac{\partial cost(\mathbf{w},b)}{\partial w_2} \
ightarrow \mathbf{w} = \mathbf{w} - lpha rac{\partial cost(\mathbf{w},b)}{\partial \mathbf{w}}$$

경사 (Gradient)

$$b = b - \alpha \frac{\partial cost(\mathbf{w}, b)}{\partial b}$$

Linear Regression (3)

입력이 조금 더 더 복잡할 때?

Training Data

[1.2, 3.8, -1.4, ..., 4.1]
$$\rightarrow$$
 1.1
[3.2, -1.2, -0.2, ..., 2.1] \rightarrow 2.7
[2.8, -1.4, -0.3, ..., 2.3] \rightarrow 2.8
[1.2, 3.4, -1.5, ..., 4.2] \rightarrow 0.9
[4.2, 2.1, 2.8, ..., -0.5] \rightarrow -0.1
...

$$[1.3, 3.2, -1.5, ..., 4.1] \rightarrow$$
?

가설과 비용 (3) Hypothesis and Cost function (3)

$$\mathbf{w} = \left[egin{array}{c} w_1 \ dots \ w_m \end{array}
ight] \quad \mathbf{x} = \left[egin{array}{c} x_1 \ dots \ x_m \end{array}
ight]$$

$$H(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x} + b$$

$$cost(\mathbf{w},b) = rac{1}{n} \sum_{i=0}^{n} \left(y_i - H(\mathbf{x}_i)
ight)^2$$

경사 하강법 (3) Gradient Descent (3)

우리의 목표: cost를 최소화 하자! = cost를 최소로 만드는 w, b 값을 찾자!

$$rg\min_{\mathbf{w},b} cost(\mathbf{w},b)$$

업데이트:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial cost(\mathbf{w}, b)}{\partial \mathbf{w}}$$

$$b = b - lpha rac{\partial cost(\mathbf{w}, b)}{\partial b}$$

그밖의 학습 방법들

경사하강법은 최적해를 찾기위한 한 가지 방법일 뿐, 다양한 업데이트 방법이 존재: [링크] Gradient Descent Optimization Algorithms 정리

Question?