

STL, Homework 1 due 18.03.2024, 08:00

Prerequisites

- Basics
 - Your programs must have been written and tested on Janus
 - Use subdirectories \$HOME/Exercises/HW1/1, \$HOME/Exercises/HW1/2, \$HOME/Exercises/HW2/3
 - Write your codes in C (preferred, other languages upon request), use GCC
 - No global variables
- Building
 - Include the following three arguments to compile (here: C):
 - -Wall -std=iso9899:2018 -pedantic
 - No warnings should be issued by the compiler
 - Use Makefiles

One for each exercise, no arguments (simply "make" should be sufficient for building)

Compilation and linking must be separate

Only files that have been altered shall be rebuilt.

- Submitting
 - Do not include object files, executables, libraries
 - Create a single xz'ed tar file of the following form:
 - <last name>_<matriculation number>.tar.xz
 - Upload only this single archive file to Moodle
- Presentation
 - You must be ready to present and discuss your submission
 - The files on Janus must match with your submission on Moodle

Exercises (10 points in total)

- 1: (2 points) Write a program in C (preferred) which includes a function "vec_mul" that multiplies each entry of a given vector of numbers by a given factor; use a pointer of data type "double *" to address the vector. Demonstrate its correct functionality (hardcoded values are fine).
 - Include the following files in your submission:
 - Makefile
 - Source code
- 2: (3 points) Use Gnuplot or another "scriptable" software to generate a figure which looks similar to the one on page 14, Figure 5 (b) of (Khan et al, 2021: https://doi.org/10.1145/3432261.3432263); create the data file(s) yourself; the output file must be in pdf, a Makefile must generate the pdf. Include the following files in your submission:
 - Makefile to generate this figure in pdf
 - (Gnuplot) script file, (Gnuplot) data files
 - Figure in pdf
- 3: (5 points) Demonstrate the functionality (e.g., wall clock time, CPU time, cache misses, ...) of *The Performance Application Programming Interface* (PAPI, https://icl.utk.edu/papi/) on Janus; version 6.0.0 is installed on Janus either use this or a newer version; hint: try to find an example code in the package. Include the following files in your submission:
 - Pdf that contains detailed steps including one or more screenshots
 - Make notes if some steps initially failed (e.g. broken library?)
 - Example source code