Convolution powers of complex-valued functions on \mathbb{Z}^d

Huan Q. Bui

Advisor: Professor Evan Randles

CLAS, April 28, 2021

Problem: A random walker takes a sequence of steps X_1, X_2, \ldots on \mathbb{Z}^d . Each X_i is independent of previous steps and follows some distribution ϕ .

$$\phi(x) = \mathbb{P}(X = x).$$

? What is the distribution which $S_n = X_1 + X_2 + \cdots + X_n$ follows?

$$S_1$$
 follows $\phi(x)$

$$S_2$$
 follows $\phi^{(2)}(x) = \sum_{y \in \mathbb{Z}^d} \phi(y)\phi(x-y)$

:

$$S_n$$
 follows $\phi^{(n)}(x) = \sum_{y \in \mathbb{Z}^d} \phi^{(n-1)}(y)\phi(x-y)$

Problem: A random walker takes a sequence of steps X_1, X_2, \ldots on \mathbb{Z}^d . Each X_i is independent of previous steps and follows some distribution ϕ .

$$\phi(x) = \mathbb{P}(X = x).$$

? What is the distribution which $S_n = X_1 + X_2 + \cdots + X_n$ follows?

$$S_1$$
 follows $\phi(x)$

$$S_2$$
 follows $\phi^{(2)}(x) = \sum_{y \in \mathbb{Z}^d} \phi(y)\phi(x-y)$

:

$$S_n$$
 follows $\phi^{(n)}(x) = \sum_{y \in \mathbb{Z}^d} \phi^{(n-1)}(y)\phi(x-y)$

How does $\phi^{(n)}$ behave as $n \to \infty$?

Example: Simple random walk in \mathbb{Z}^2

Example: Simple random walk in \mathbb{Z}^2 .

$$f(n) = \max_{\mathbb{Z}^d} \phi^{(n)}$$
 decays like $1/n$

 $^{\textcircled{m}}$ If ϕ is a "nice" probability distribution on \mathbb{Z}^d then

- $^{\textcircled{m}}$ If ϕ is a "nice" probability distribution on \mathbb{Z}^d then
 - Global decay: There are positive constants C_1 , C_2 for which

$$C_1 n^{-d/2} \le \|\phi^{(n)}\|_{\infty} \le C_2 n^{-d/2}, \quad \forall n \in \mathbb{N}_+.$$

 $^{\textcircled{m}}$ If ϕ is a "nice" probability distribution on \mathbb{Z}^d then

• **Global decay:** There are positive constants C_1 , C_2 for which

$$C_1 n^{-d/2} \le \|\phi^{(n)}\|_{\infty} \le C_2 n^{-d/2}, \quad \forall n \in \mathbb{N}_+.$$

• **Local description** for large *n* (like CLT!):

$$\phi^{(n)}(x) = \frac{1}{n^{d/2}} \Phi_{\phi}\left(\frac{x}{\sqrt{n}}\right) + o\left(\frac{1}{n^{d/2}}\right), \quad \text{uniformly for } x \in \mathbb{Z}^d$$

where Φ_{ϕ} is the generalized Gaussian associated with ϕ .

What if positivity is dropped?

Consider $\phi: \mathbb{Z}^d \to \mathbb{C}$ and define $\phi^{(n)}$ as before

$$\phi^{(n)}(x) = \sum_{y \in \mathbb{Z}^d} \phi^{(n-1)}(x-y)\phi(y).$$

About the asymptotic behavior of $\phi^{(n)}$ as $n \to \infty$, can we still ask for

- A global decay?
- A local description?

Example: Consider $\phi: \mathbb{Z}^2 \to \mathbb{C}$ given by

$$\phi(x,y) = \frac{1}{192} \times \begin{cases} 144 - 64i & (x,y) = (0,0) \\ 16 + 16i & (x,y) = (\pm 1,0) \text{ or } (0,\pm 1) \\ -4 & (x,y) = (\pm 2,0) \text{ or } (0,\pm 2) \\ i & (x,y) = \pm (1,1) \\ -i & (x,y) = \pm (1,-1) \\ 0 & \text{otherwise.} \end{cases}$$

$$f(n) = \max |\phi^{(n)}|$$

A different ϕ gives a completely different behavior.

What if positivity is dropped?

Consider $\phi: \mathbb{Z}^d \to \mathbb{C}$ and define $\phi^{(n)}$ as before

$$\phi^{(n)}(x) = \sum_{y \in \mathbb{Z}^d} \phi^{(n-1)}(x-y)\phi(y).$$

About the asymptotic behavior of $\phi^{(n)}$ as $n \to \infty$, can we still ask for

- A global decay? \leftarrow Focus of Bui and Randles (2021)
- A local description?

Define the Fourier transform for $\phi: \mathbb{Z}^d \to \mathbb{C}$

$$\widehat{\phi}(\xi) = \sum_{x \in \mathbb{Z}^d} \phi(x) e^{ix \cdot \xi}$$

$$\mathsf{FT}\{\phi^{(n)}\} = (\mathsf{FT}\{\phi\})^n$$

The asymptotic behavior of $\phi^{(n)}$ is characterized by how $\widehat{\phi}$ behaves near where $|\widehat{\phi}|$ is maximized.

$$\Omega(\phi) = \left\{ \xi \in \mathbb{T}^d : \left| \widehat{\phi}(\xi) \right| \text{ is maximized} \right\}, \quad \mathbb{T}^d = (-\pi, \pi]^d$$

Huan Bui (Colby College)

 $^{^1}$ Actually, we take $\phi \in \mathcal{S}_d$ – a discrete analogue of the Schwartz class.

For each $\xi_0 \in \Omega(\phi)$, look at $\widehat{\phi}$ near ξ_0 ...

$$\widehat{\phi}(\xi + \xi_0) = \widehat{\phi}(\xi_0) e^{\Gamma_{\xi_0}(\xi)}$$

For each $\xi_0 \in \Omega(\phi)$, look at $\widehat{\phi}$ near ξ_0 ...

$$\widehat{\phi}(\xi + \xi_0) = \widehat{\phi}(\xi_0) e^{\Gamma_{\xi_0}(\xi)}$$

A
$$|\widehat{\phi}|$$
 on \mathbb{T}^2

$$\text{Recall } \widehat{\phi^{(n)}} = \widehat{\phi}^n. \text{ So, } \phi^{(n)} \sim \text{FT}^{-1} \left\{ \mathrm{e}^{n \Gamma_{\xi_0}(\xi)} \right\}.$$

 \implies The structure of Γ determines the asymptotic behavior of $\phi^{(n)}$.

For each $\xi_0 \in \Omega(\phi)$, look at $\widehat{\phi}$ near ξ_0 ...

$$\widehat{\phi}(\xi + \xi_0) = \widehat{\phi}(\xi_0)e^{\Gamma_{\xi_0}(\xi)}$$

A
$$|\widehat{\phi}|$$
 on \mathbb{T}^2

Recall
$$\widehat{\phi^{(n)}} = \widehat{\phi}^n$$
. So, $\phi^{(n)} \sim \mathsf{FT}^{-1} \left\{ e^{n\Gamma_{\xi_0}(\xi)} \right\}$.

 \implies The structure of Γ determines the asymptotic behavior of $\phi^{(n)}$.

So, Taylor expand Γ_{ξ_0} ...

$$\Gamma_{\xi_0}(\xi) = i\alpha_{\xi_0} \cdot \xi - P_{\xi_0}(\xi) + \text{ h.o.t.}, \quad P_{\xi_0} \text{ a polynomial}.$$

The nature of this expansion is characterizing.

In 1 dimension: 2 types

 ξ_0 is of **positive homogeneous type** if

$$\Gamma_{\xi_0}(\xi) = i\alpha_{\xi_0}\xi - \beta\xi^m + \text{ h.o.t.}, \quad \operatorname{Re}\{\beta\} > 0$$

 $\implies \phi^{(n)}$ is easy to estimate.

In 1 dimension: 2 types

 ξ_0 is of **positive homogeneous type** if

$$\Gamma_{\xi_0}(\xi) = i\alpha_{\xi_0}\xi - \beta\xi^m + \text{ h.o.t.}, \quad \operatorname{Re}\{\beta\} > 0$$

 $\implies \phi^{(n)}$ is easy to estimate.

 ξ_0 is of imaginary homogeneous type if

$$\Gamma_{\xi_0}(\xi) = i\alpha_{\xi_0}\xi - i\beta\xi^m + \text{ h.o.t.}, \quad \beta \in \mathbb{R} \setminus \{0\}$$

 $\implies \widehat{\phi}^n$ is highly oscillatory. $\phi^{(n)}$ is more difficult to estimate.

ullet These types are collectively exhaustive for f.s. ϕ 's (Thomée – 1965)

Randles & Saloff-Coste sorted out the 1-dimensional problem.

Theorem (Global decay estimate, Randles & Saloff-Coste – 2015)

Let $\phi: \mathbb{Z} \to \mathbb{C}$ be finitely supported and whose support contains more than one point. Then there is $\mathbb{N} \ni m \geq 2$, and A, C, C' > 0 such that

$$Cn^{-1/m} \le A^{-n} \|\phi^{(n)}\|_{\infty} \le C' n^{-1/m}, \quad \forall n \in \mathbb{N}.$$

Here, $A = \max |\widehat{\phi}(\xi)|$.

Example: $\phi: \mathbb{Z} \to \mathbb{C}$ defined below. $\|\phi^{(n)}\|_{\infty}$ decays like $n^{-1/2}$.

$$\phi(0) = \frac{5-2i}{8}$$
 $\phi(\pm 1) = \frac{2+i}{8}$ $\phi(\pm 2) = -\frac{1}{16}$ $\phi = 0$ otherwise.

How to generalize to *d* dimensions?

⇒ Need positive homogeneous functions

Definition

Let $P: \mathbb{R}^d \to \mathbb{R}$ be continuous, positive definite, and $d \times d$ matrix E s.t.

$$P(r^{E}\eta) = rP(\eta), \quad r > 0, \ \eta \in \mathbb{R}^{d}.$$

If $S := \{ \eta \in \mathbb{R}^d : P(\eta) = 1 \}$ is compact, then we say that P is **positive** homogeneous*.

(*) see equivalent definitions in [BR21]

Examples:

(a)
$$P_1(x,y) = x^2 + y^4$$

(a)
$$P_1(x,y) = x^2 + y^4$$
 (b) $P_2(x,y) = x^2 + 3xy^2/2 + y^4$

In d dimensions:

 ξ_0 is of **positive homogeneous type** if

$$\Gamma_{\xi_0}(\xi) = i\alpha_{\xi_0} \cdot \xi - P_{\xi_0}(\xi) + \text{ h.o.t.}$$

 ξ_0 is of imaginary homogeneous type if

$$\Gamma_{\xi_0}(\xi) = i\alpha_{\xi_0} \cdot \xi - iP_{\xi_0}(\xi) + \text{ h.o.t.}$$

where $P_{\xi_0}(\xi)$ is a positive homogeneous *polynomial*.

A partial answer in d dimensions is due to Randles & Saloff-Coste.

Theorem (Global decay estimate, Randles & Saloff-Coste – 2017)

Let $\phi \in \mathcal{S}_d$ be such that $\sup |\widehat{\phi}| = 1$ and suppose that each $\xi_0 \in \Omega(\phi)$ is of positive homogeneous type. There are μ_{ϕ} , C, C' > 0 for which

$$C'n^{-\mu_{\phi}} \leq \|\phi^{(n)}\|_{\infty} \leq Cn^{-\mu_{\phi}}, \quad \forall n \in \mathbb{N}_{+}.$$

We extend this to include points of imaginary homogeneous type.

Theorem (B, Randles – 2021)

Let $\phi \in \mathcal{S}_d$ be such that $\sup |\widehat{\phi}| = 1$ and suppose that each $\xi_0 \in \Omega(\phi)$ is of positive homogeneous or imaginary homogeneous type* for $\widehat{\phi}$. Then, for any compact set K, there are C_K , $\mu_{\phi} > 0$ for which**

$$\left|\phi^{(n)}(x)\right| \le C_K n^{-\mu_\phi}, \quad \forall x \in K, \ n \in \mathbb{N}_+.$$

- (*) and some additional conditions
- (**) see [BR21] for how to calculate μ_{ϕ}

Example: From earlier...

•
$$\sup |\widehat{\phi}|=1$$
 and $\Omega(\phi)=\{\xi_0\}=\{(0,0)\}$

$$\Gamma_0(\xi) = -i\left(\frac{\tau^2}{24} - \frac{\tau\zeta^2}{96} + \frac{\zeta^4}{96}\right) + \text{ h.o.t.}$$

• $\mu_{\phi} = 3/4$

Let
$$K = [-300, 300] \times [-300, 300]$$
 and with $C = 2$,

$$f(n) := \max_{K} \left| \phi^{(n)} \right| \le 2n^{-\mu_{\phi}} = 2n^{-3/4}$$

Example: Ω has more than one point...

$$|\widehat{\phi}|$$
 on $(-\pi,\pi]\times(-\pi,\pi]$

• $\sup |\widehat{\phi}|=1$ and $\Omega(\phi)=\{\xi_0,\xi_1\}=\{(0,0),(\pi,\pi)\}$

$$\Gamma_0(\xi) = -i\left(\frac{\tau^6}{128} + \frac{\zeta^2}{8}\right) + \dots$$
 $\Gamma_1(\xi) = +i\left(\frac{3\tau^2}{8} + \frac{\zeta^2}{4}\right) + \dots$

• $\mu_{\phi} = 2/3$

Let $K = [-500, 500] \times [-500, 500]$ and with C = 1,

$$f(n) := \max_{K} \left| \phi^{(n)} \right| \le n^{-\mu_{\phi}} = n^{-2/3}$$

Applications?

- Numerical solutions to PDEs
 - Approximate solutions via convolution power schemes

2 ...

Applications?

- Numerical solutions to PDEs
 - Approximate solutions via convolution power schemes
- **2** ...
- IT'S NICE.

What's next?

Classical result (for probability distributions):

What's next?

Classical result (for probability distributions):

New conjecture: No positivity? No problem.

References

- Huan Q Bui and Evan Randles, A generalized polar-coordinate integration formula with applications to the study of convolution powers of complex-valued functions on \mathbb{Z}^d , arXiv preprint arXiv:2103.04161 (2021).
- Evan Randles and Laurent Saloff-Coste, *On the Convolution Powers of Complex Functions on* ℤ, J. Fourier Anal. Appl. **21** (2015), no. 4, 754–798.
 - Matemática Iberoam. **33** (2017), no. 3, 1045–1121.