MC723/MC733

Projeto 2:

Desempenho do Processador

Matheus Y. Figueiredo 137036 Klaus Rollmann 146810 Carlos Gregoreki 104721

- ★ Estrutura do Pipeline
- ★ Forwarding de Dados
- ★ Configurações de Cache
- **★** Branch Predictor

Forwarding de dados

- ★ Sem forwarding
 - o RAW 1 ou 2 stalls
- ★ Com forwarding
 - o RAW load 1 stall

Branch Predictor

- ★ Sem predictor:
 - o 2 ou 3 stalls sempre
- ★ Com branch predictor
 - 3 stalls se errar

Processador superescalar

RAW, WAR, WAW

★ Dobro de instruções por ciclo

Configurações

Configurações de Cache:

Configuração	L1usize	L1block	Associatividade L1	L2usize	L2block	Associatividade L2
1	32	64	2	256	1024	2
2	64	128	2	512	1024	2
3	128	128	2	1024	2048	2
4	128	128	2	1024	2048	4

Configurações

- 1. Pipeline de 5 estágios (P5) escalar (ES)
- 2. Pipeline de 7 estágios (P7) ES
- 3. Pipeline de 13 estágios (P13) ES
- 4. P5 superescalar (SES) com forwarding (FW) e branch predictor always not taken (ANT), e configuração 1 de cache (C1)

Configurações

- 5. P5-ES-FW-ANT-C1
- 6. P5-ES-FW-ANT-C2
- 7. P5-ES-FW-ANT-C3
- 8. P5-ES-FW-ANT-C4
- 9. P5-ES-FW-1bitIndicator-C1
- 10. P5-ES-sem forward-ANT-C1
- 11. P5-ES-sem forward-no branch predictor-C1

Medidas

- Número de ciclos
- Número total de instruções
- Número de stalls de Dados
- Número de stalls de Branch
- Número de stalls de Jump
- Quantidade de acertos do Branch predictor
- Simulation Speed

- Total de miss na cache L1
- Miss rate na cache L1
- Total de miss na cache L2
- Miss rate na cache L2
- Total de ciclos
- Tempo
- CPI

Cálculos

Total de ciclos (ES) = ciclos + 10 * miss l1 + 600 * miss l2

Total de ciclos (SES) = 1/2(ciclos + jump stalls + branch stalls) + 10*miss l1 + 600* miss l2

Dados obtidos

Dados obtidos

Configurações de Cache

★ Comportamento semelhante de L2 em C5, C6, C7, C8, exceto em *BasicMath* C5 e C8,

★ Menor número de ciclos totais: C8.

Processador Superescalar

- ★ Maior número de Stalls (40%)
- ★ Menor número de cíclos (15%)

Forwarding de Dados

- ★ Sem forwarding: 20% mais ciclos
- ★ Sem forwarding: 4x mais stalls
- ★ Sem forwarding: 50x mais stalls de dados

Branch Predictor

- ★ Sem branch predictor: 40% mais stalls
- ★ Sem branch predictor: 10% mais ciclos
- ★ Always Not Taken: 44% a 55% de corretude
- ★ 1BitIndicator: 55% a 65% de corretude
- ★ 1BitIndicator: até 21% menos ciclos

Conclusão

- ★ Acesso à memória é custoso: adoção de cache adequada.
- ★ Variação simples de configurações podem levar até mesmo 100% de variação no total de ciclos.
- ★ Adoção de branch predictors: redução do número de ciclos.
- ★ Pipelines sofisticados: aumento do número de hazards.
- ★ Superescalar: 4x stalls, 10% melhoria de desempenho.

MC723/MC733

Projeto 2:

Desempenho do Processador

Matheus Y. Figueiredo 137036 Klaus Rollmann 146810 Carlos Gregoreki 104721