FIT3152 Data analytics. Tutorial 02: Visualizing data

1. Try and reproduce the graphics from Lecture 2. Note – the 'iris' data set comes as part of the base R installation. To reproduce the lattice plots, you will need to load lattice. To reproduce the ggplot2 graphics you will need to install and load ggplot2 – this will then give you access to the 'diamonds' data which are required for question 2. Commands are below:

```
library(lattice)
install.packages("ggplot2")
library(ggplot2)
# note help site for ggplot2 is http://docs.ggplot2.org/current/
```

2. The 'diamonds' data set comes packaged with ggplot2 and contains data about the price of diamonds as well as information on size as well as the 4 Cs affecting diamond price: carat (size), cut, colour and clarity. The diagram below, copied from Wickham, *Ggplot2: Elegant graphics for data analysis*, gives you the details.

carat	cut	color	clarity	depth	table	price	х	у	Z
0.2	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
0.2	Premium	\mathbf{E}	SI1	59.8	61.0	326	3.89	3.84	2.31
0.2	Good	\mathbf{E}	VS1	56.9	65.0	327	4.05	4.07	2.31
0.3	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
0.3	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.2	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48

Table 2.1: diamonds dataset. The variables depth, table, x, y and z refer to the dimensions of the diamond as shown in Figure 2.1

Fig. 2.1: How the variables x, y, z, table and depth are measured.

(a) Taking a random sample using the code below, create a subset of the diamonds data set: 'dsmall' to use in the following analysis.

```
set.seed(9999) # Random seed to make subset reproducible
dsmall <- diamonds[sample(nrow(diamonds), 1000), ] # sample of 1000 rows</pre>
```

- (b) Using the data 'dsmall' investigate the factors affecting diamond price. Using a variety of graphs and/or tables, show systematically the effect of the 4 Cs on diamond price. Which single variable has the greatest effect on price? Which has the least? *Use ggplot2 for your graphics*.
- The file "body.dat.csv" contains data from a study on the relationship between body dimensions. The study measured 500+ active individuals. A legend to the data is below.

Column	Measuring (cm unless stated)
ShoulderWidth	Biacromial diameter
Pelvis	Pelvic Breadth
Hips	Bitrochanteric diameter
ChestDepth	Chest depth at nipple level, full expiration
ChestDiam	Chest diameter at nipple level, mid-expiration
ElbowDiam	Elbow diameter, sum of two elbows
WristDiam	Wrist diameter, sum of two wrists
KneeDiam	Knee diameter, sum of two knees
AnkleDiam	Ankle diameter, sum of two ankles
ShoulderGirth	Shoulder girth over deltoid muscles
Chest	Chest girth
Waist	Waist girth, narrowest part of torso below the rib cage
Abdomen	Navel (or "Abdominal") girth
HipGirth	Hip girth at level of bitrochanteric diameter
ThighGirth	Thigh girth below gluteal fold
Bicep	Bicep girth, flexed
Forearm	Forearm girth, extended, palm up
KneeGirth	Knee girth over patella, slightly flexed position
CalfGirth	Calf maximum girth
AnkleGirth	Ankle minimum girth
WristGirth	Wrist minimum girth
Age	Age (years)
Weight	Weight (kg)
Height	Height (cm)
Gender	Male, Female

The data was obtained from http://www.amstat.org/publications/jse/jse data archive.htm

A related article is http://www.amstat.org/publications/jse/y11n2/datasets.heinz.html

Using the data, investigate the following:

- (a) Which variables are the best predictors of height? Does this vary between men and women? For examples, are some variables better at predicting height in one gender over the other?
- (b) Using the same approach, which variables are best for predicting weight in each gender?

- (c) Which variables are most highly correlated? Are the same variables most highly correlated for men and women?
- (d) Which measure is the best means of distinguishing between men and women? Show your results and analysis graphically.
- The data file "Dunhumby1-20.csv" is a cut down and modified set of test data from the Kaggle competition to predict when consumers would next visit a Dunnhumby supermarket and how much they would spend. See: http://www.kaggle.com/c/dunnhumbychallenge for more information. The current modified data set contains the customer ID, Date of visit, Date since last visit, and Spend for 20 customers from the test set.

Tell me as much as you can about those customers using descriptive statistics. Using one or more graphics – such as histograms, boxplots, scatterplots or anything else you can think of make a visual display to show the differences and similarities between the customers. Are there particular customers whose next visit, and spend, would be easier or harder to predict than the cohort in general? *Use ggplot2 for your graphics*.