Control y Programación de Robots 4º curso del Grado en Electrónica, Robótica y Mecatrónica

Primera Parte: Trabajo de Control de Robots Manipuladores

Introducción

El objetivo de este trabajo dentro de la asignatura de Control y Programación de Robots es permitir al alumno poner en práctica los conocimientos teóricos adquiridos tanto en esta asignatura como en la asignatura Fundamentos de Robótica, a la vez que se familiariza con la herramienta de simulación de sistemas dinámicos MATLAB-Simulink.

Desarrollo del trabajo

Este trabajo trata los tres aspectos principales que componen los contenidos teóricos de la asignatura: análisis cinemático y análisis dinámico, estimación de parámetros y control de un robot manipulador.

Con objeto de personalizar el trabajo, cada alumno trabajará sobre un robot específico (brazo) que se le asigna, el cual consiste en una cadena cinemática abierta de tres grados de libertad. En el **apéndice A** pueden encontrarse la configuración del brazo que se empleará, así como algunos parámetros físicos que lo definen. La configuración particular que corresponde a cada grupo de alumnos puede encontrarse en el listado ubicado en el **apéndice B**. De este modo, cada grupo deberá desarrollar como mínimo los apartados que se describen, si bien, la calificación final del trabajo estará en relación con el volumen total del trabajo, valorándose todo el contenido de la asignatura que se haya aplicado al proyecto.

a) ANÁLISIS CINEMÁTICO Y DINÁMICO

- 1. Se calcularán las ecuaciones simbólicas del modelo cinemático directo e inverso que relacionan la posición del extremo del robot respecto a la base con las coordenadas articulares del mismo.
- 2. Se desarrollará un programa informático bajo *Matlab* utilizando cálculo simbólico para la obtención de las ecuaciones dinámicas del robot.

b) ESIMACIÓN DE PARÁMETROS DINÁMICOS DEL ROBOT

3. Partiendo del simulador del brazo proporcionado, el cual será considerado como robot real a partir de este punto, se añadirán elementos que simulen a medidas reales

de sensores. En concreto, se cuantizarán las medidas de posición a partir del número de pulsos por vuelta que se considere que va a tener el codificador de posición, y se añadirá un ruido aleatorio a la medida de la velocidad de un valor significativo del rango de dicha medida.

- 4. A partir de las pruebas que estime oportunas utilizando el robot real (incluido el sistema sensorial), se identificarán los parámetros dinámicos del mismo, realizando un análisis de fiabilidad de las estimaciones.
- 5. Con la estimación de dichos parámetros se creará un modelo estimado del robot, el cual será utilizado para la síntesis de los controladores.

c) CONTROL CINEMÁTICO

6. Se desarrollará un *Generador de Trayectorias Cartesianas punto a punto* y se implementará en una función ".m" para ser utilizada en *Simulink*.

En el desarrollo del generador se tendrán en cuenta el tiempo de inicio del movimiento, la duración del mismo, así como las coordenadas iniciales (X_{ini} , Y_{ini} , Z_{ini}) y finales (X_{fin} , Y_{fin} , Z_{fin}) en el espacio de la tarea (que deberán estar incluidas dentro del espacio de trabajo del robot). Para este generador de trayectorias se utilizará un interpolador trapezoidal.

Se presentarán gráficas temporales de simulación que corroboren el correcto funcionamiento del generador de trayectorias.

7. Se desarrollará un *Generador de Trayectorias Cartesianas Lineal* (esto es, se pretenderá que el extremo del robot realice una línea recta en el espacio de la tarea) y se implementará en una función ".m" para ser utilizada en *Simulink*.

En el desarrollo del generador se tendrán en cuenta el tiempo de inicio del movimiento, la duración del mismo, las coordenadas iniciales $(X_{ini}, Y_{ini}, Z_{ini})$ y finales $(X_{fin}, Y_{fin}, Z_{fin})$ en el espacio de la tarea (que deberán estar incluidas dentro del espacio de trabajo del robot), así como el número de puntos intermedios para poder interpolar la trayectoria. Para este generador de trayectorias se podrán utilizar tanto interpoladores polinómicos como perfiles trapezoidales de velocidad, con las condiciones de contorno en velocidad en los puntos intermedios que se consideren oportunas.

Se presentarán gráficas temporales de simulación que corroboren el correcto funcionamiento del generador de trayectorias.

D) CONTROL DINÁMICO

Para el desarrollo de este apartado del trabajo se considerarán simultáneamente dos configuraciones de las reductoras de los motores del robot: una correspondiente a la indicada en el apéndice A y otra considerando que el robot es de accionamiento directo.

8. Se diseñarán y se implementarán las estrategias de control propuestas en la asignatura (PD/PIDs articulares independientes, PD/PIDs con precompensación de gravedad, controladores con precompensación dinámica, y controladores por par calculado).

La implementación de los controladores se realizará en un archivo ".m", simulando un controlador en tiempo discreto, que se ejecutará con un tiempo de muestreo apropiado.

- 9. Se realizarán pruebas de control utilizando los controladores dinámicos y el generador de trayectorias desarrollado en el apartado 9, y se presentarán resultados y conclusiones sobre el comportamiento proporcionado por los diversos controladores, atendiendo a las siguientes consideraciones:
 - Factores de reducción de las articulaciones
 - Incertidumbres del modelo (comparativas entre diseño con modelo perfecto y modelo estimado).
 - Implementación de controladores en tiempo continuo/discreto
 - Trayectorias deseadas
 - ...

APÉNDICE A.

CONFIGURACIÓN DEL BRAZO

Parámetros Geométricos Brazos	L ₀ (m)	L ₁ (m)	L ₂ (m)	L ₃ (m)
Grupo 1	1.10	0.65	0.90	0.50
Grupo 2	1.05	0.50	0.80	0.50
Grupo 3	1.00	0.40	0.70	0.50
Grupo 4	0.95	0.40	0.60	0.55
Grupo 5	0.90	0.45	0.70	0.60
Grupo 6	0.85	0.45	0.60	0.50
Grupo 7	0.80	0.50	0.80	0.55
Grupo 8	0.75	0.50	0.90	0.60
Grupo 9	0.70	0.55	0.80	0.70
Grupo 10	0.65	0.55	0.90	0.75
Grupo 11	0.60	0.60	1.00	0.80
Grupo 12	0.55	0.60	1.10	0.70
Grupo 13	0.50	0.65	1.00	0.75
Grupo 14	0.45	0.65	1.10	0.80
Grupo 15	0.40	0.50	1.00	0.50
Grupo 16	0.45	0.50	1.10	0.60

Control y Programación de Robots. Trabajo de curso 2018/19.

Notas:

- Los eslabones se considerarán cuasi unifilares, con densidad lineal (ρ en kg/m) **no constante**, por lo que el centro de masas no tiene por qué estar en el centro geométrico de los mismos.
- Los factores de reducción de los motores (iguales para todos los grupos) son:

$$R_1 = 50$$
, $R_2 = 30$, y $R_3 = 15$

• Las contantes de par de los motores (iguales para todos los grupos) son:

$$K_{t1} = 0.5 \text{ Nm/A}, K_{t1} = 0.4 \text{ Nm/A}, \text{ y } K_{t3} = 0.35 \text{ Nm/A}.$$

• El resto de parámetros dinámicos no especificados en la tabla anterior deben ser identificados, según se indica en enunciado del trabajo.

APÉNDICE B.

Grupos	Alumnos
1	ARIAS SÁNCHEZ, ISIDRO
	YANES LUIS, SAMUEL
2	DORADO RUEDA, FERNANDO
	RODRÍGUEZ CARRIÓN, DANIEL
	RODRÍGUEZ RODAS, PEDRO
3	HERRERA CÍES, CARLOS
	RIVERO CIDES, ÁNGEL
4	BLANCO SOTO, FCO. JAVIER
	MARTÍN JIMÉNEZ, DANNY
	PASTOR ALFARO, ANDRÉS
5	GÁLVEZ DEL POSTIGO GALLEGO, LUCÍA
	GILIBERT VALDÉS, ANA
	QUERO GRANADO, PAULA
6	HENÁNDEZ RIVERA, ANDRÉS
	OJEDA ROLDÁN, ÁLVARO
	ROMANOS GARCÍA, CHISTIAN
7	ÁLVAREZ SANCHEZ, ÓSCAR
	CABELLO DE LOS COBOS RUZ, JOSÉ ANTONIO
	WADE, ABDOULAYE ABOU
8	OSUNA CAÑAS, ALFONSO
	ROMERO ORDIERES, SERGIO
9	SECO MORALES, DANIEL
	JIMÉNEZ GARCÍA, FRANCISCO
	NAZ GARCÍA, CARLOS
10	CARTES DOMÍNGUEZ, GUILLERMO
	GARCÍA UTRILLA, CARMEN
	GUTIÉRREZ VÁZQUEZ, ALEJANDRO
11	LOZANO ROMERO, DANIEL
	MÉRIDA FLORIANO, JAVIER
	MONTES GROVA, MARCO ANTONIO
12	ALCALÁ GUERRERO, ENRIQUE
	CABRERA PÉREZ, PABLO
13	LEÓN FUENTES, RUBÉN
	SABIDO CARRERO, AMADOR
14	GÓMEZ JIMENEZ, JUAN
	VERGARA FALCÓN, JESÚS
15	GONZÁLEZ DE LA ROSA, VÍCTOR
	HAES ELLIS, RICHARD
	SÁNCHEZ VERA, ÁFRICA
16	ANDREIANA, DORU STEFAN
	TAMARIT DOMINGUEZ, JESÚS

APÉNDICE C.

Tensor de inercia

$$A_{I} = \begin{pmatrix} I_{xx} & -P_{xy} & -P_{xz} \\ -P_{xy} & I_{yy} & -P_{yz} \\ -P_{xz} & -P_{yz} & I_{zz} \end{pmatrix}$$

$$I_{xx} = \iiint_{V} (y^{2} + z^{2})\rho dv \qquad P_{xy} = \iiint_{V} (xy)\rho dv$$

$$I_{yy} = \iiint_{V} (x^{2} + z^{2})\rho dv \qquad P_{xz} = \iiint_{V} (xz)\rho dv$$

$$I_{zz} = \iiint_{V} (x^{2} + y^{2})\rho dv \qquad P_{yz} = \iiint_{V} (yz)\rho dv$$

Teorema de Steiner (ejes paralelos)

$$I = I_{cdm} + m \left(\left\| r \right\|^{2} I_{3\times3} - r \otimes r \right) = I_{cdm} + m \begin{pmatrix} r_{y}^{2} + r_{z}^{2} & -r_{x}r_{y} & -r_{x}r_{z} \\ -r_{x}r_{y} & r_{x}^{2} + r_{z}^{2} & -r_{y}r_{z} \\ -r_{x}r_{z} & -r_{y}r_{z} & r_{x}^{2} + r_{y}^{2} \end{pmatrix}$$

- *I_{cdm}*: Tensor de Inercia en el centro de masas del cuerpo.
- *I*: Tensor de Inercia en un punto genérico con una posición $r = (r_x r_y r_z)^T$ respecto a la posición del centro de masas del cuerpo, y respecto a unos ejes paralelos a los considerados en el tensor I_{cdm} .
- m: masa del cuerpo
- I_{3x3} : Matriz identidad

Rotación del Tensor de Inercia

Sean dos marcos de referencia, A y B, con orígenes coincidentes pero con distinta orientación. Sea ^AR_B la matriz de rotación que relaciona ambos marcos, de manera que cualquier vector X respecto a B pueda expresarse respecto a A mediante la relación:

$$AX = AR_B BX$$

Si ^AI es el tensor de inercia de un cuerpo respecto al marco de referencia A, e ^BI es el tensor de inercia del mismo cuerpo respecto al marco B, entonces se cumple la siguiente relación entre ambos tensores:

$$AI = AR_B BI AR_B T$$