Chapitre 4

Limites

1/ Limites d'une fonction en l'infini

a) Limite réelle en l'infini, asymptote horizontale

_ Propriété .

Soit f une fonction définie sur un intervalle de la forme $[A ; +\infty[$. On dit que f tend vers ℓ lorsque x tend vers $+\infty$ si tout intervalle ouvert contenant ℓ contient aussi toutes les valeurs de f(x) pour x suffisamment grand.

On note $\lim_{x \to +\infty} f(x) = \ell$.

Remarque : on peut définir de même $\lim_{x \to -\infty} f(x)$.

Exemple : Soit f la fonction définie sur $[1 ; +\infty[$ par $f(x) = 1 + \frac{1}{x}$. Démontrer que $\lim_{x \to +\infty} f(x) = 1$.

Soit $a \in \mathbb{R}$.

$$\begin{split} f(x) \in]1-a \ ; \ 1+a[\Leftrightarrow 1-a < 1+\frac{1}{x} < 1+a \\ \Leftrightarrow -a < \frac{1}{x} < a \\ \Leftrightarrow x > \frac{1}{a} \quad \text{car x est positif.} \end{split}$$

Ainsi pour $x>\frac{1}{a},\ f(x)\in]1-a\ ;\ 1+a[$ donc $\lim_{x\to +\infty}f(x)=1.$

- Propriété -

Soit f une fonction définie sur un intervalle de la forme $[A ; +\infty[$ et $\mathscr C$ sa courbe représentative dans un repère. Si $\lim_{x\to +\infty} f(x) = \ell$ ou si $\lim_{x\to -\infty} f(x) = \ell$, on dit que la droite d'équation $y=\ell$ est asymptote à $\mathscr C$.

Limites usuelles

- Propriété -

$$\lim_{x\to +\infty}\frac{1}{x}=0\,;\qquad \lim_{x\to -\infty}\frac{1}{x}=0\,;\qquad \lim_{x\to +\infty}\frac{1}{x^2}=0\,;\qquad \lim_{x\to -\infty}\frac{1}{x^2}=0\,;\qquad \lim_{x\to +\infty}\frac{1}{\sqrt{x}}=0.$$

b) Limite infinie en l'infini

Propriété.

Soit f une fonction définie sur un intervalle de la forme $[A ; +\infty[$. On dit que f tend vers $+\infty$ lorsque x tend vers $+\infty$ si tout intervalle de la forme $]M ; +\infty[$ contient toutes les valeurs de f(x) pour x suffisamment grand.

On note
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

Remarque : on peut définir de même $\lim_{x \to +\infty} f(x) = -\infty$...

Exemple: Soit f la fonction définie sur $[1 ; +\infty[$ par $f(x) = x^2 + 3$. Démontrer que $\lim_{x \to \infty} f(x) = +\infty$.

Soit $M \in \mathbb{R}$.

$$f(x) > M \Leftrightarrow x^2 + 3 > M \Leftrightarrow x^2 > M - 3$$

 $\Leftrightarrow x > \sqrt{M - 3}$ pour $M > 3$.

Ainsi pour $x > \sqrt{M-3}$, f(x) > M donc $\lim_{x \to +\infty} f(x) = +\infty$.

Limites usuelles

- Propriété -

$$\lim_{x\to +\infty} x = +\infty\,;\ \lim_{x\to -\infty} x = -\infty\,;\\ \lim_{x\to +\infty} x^2 = +\infty\,;\ \lim_{x\to -\infty} x^2 = +\infty\,;\ \lim_{x\to +\infty} \sqrt{x} = +\infty.$$

2/ Limite d'une fonction en un point

a) Limite réelle en un point

_ Propriété .

Soit f une fonction définie sur un intervalle I et $a \in I$. On dit que f tend vers L lorsque x tend vers a si tout intervalle ouvert contenant L contient aussi toutes les valeurs de f(x) pour x suffisamment proche de a.

On note $\lim_{x \to x} af(x) = L$.

Remarque: $\lim_{x \to x} af(x) = L \Leftrightarrow \lim_{x \to h} 0f(a+h) = L$

Exemple: $\lim_{x \to 0} xx = 0$; $\lim_{x \to 0} xx^2 = 0$; $\lim_{x \to 0} x \frac{(1+x)^2 - 1}{x} = 2$.

b) Limite infinie en un point, asymptote verticale

Propriété -

Soit f une fonction définie sur un intervalle I et $a\in I$. On dit que f tend vers $+\infty$ lorsque x tend vers a si tout intervalle de la forme]M; $+\infty[$ contient toutes les valeurs de f(x) pour x suffisamment proche de a.

On note $\lim_{x \to x} af(x) = +\infty$.

Remarque : On peut définir de même $\lim_{x \to x} af(x) = -\infty$.

Exemple: Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x^2}$. Démontrer que $\lim_{x\to 0} xf(x) = +\infty$.

Soit $M \in \mathbb{R}$

$$f(x) > M \Leftrightarrow \frac{1}{x^2} > M \Leftrightarrow x^2 < \frac{1}{M}$$

$$\Leftrightarrow -\frac{1}{\sqrt{M}} < x < \frac{1}{\sqrt{M}}$$

Ainsi pour $-\frac{1}{\sqrt{M}} < x < \frac{1}{\sqrt{M}}, \ f(x) > M$ donc $\lim_{x \to 0} x f(x) = +\infty.$

- Propriété .

Soit f une fonction définie sur un intervalle I et $a \in I$. Soit $\mathscr C$ sa courbe représentative dans un repère.

Si $\lim_{x\to x}af(x)=+\infty$ ou $\lim_{x\to x}af(x)=-\infty,$ on dit que la droite d'équation x=a est asymptote à $\mathscr C.$

Limites usuelles

. Propriété

$$\lim_{\substack{x\to 0\\x>0}}\frac{1}{x}=+\infty;$$

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

$$\lim_{x\to 0}x\frac{1}{x^2}=+\infty\,;$$

$$\lim_{x \to 0} x \frac{1}{\sqrt{x}} = +\infty$$

3/ Asymptotes obliques

– Propriété –

Soit f une fonction définie sur un intervalle de la forme $[A ; +\infty[$ et $\mathscr C$ sa courbe représentative dans un repère. Soient a et b deux réels avec $a \neq 0$.

Si $\lim_{x\to +\infty} (f(x)-(ax+b))=0$ (resp. $\lim_{x\to -\infty} (f(x)-(ax+b))=0$), on dit que la droite d'équation y=ax+b est asymptote oblique à la courbe $\mathscr C$ en $+\infty$ (resp. en $-\infty$).

Interprétation graphique:

Le point M a pour coordonnées (x; f(x)) et le point N a pour coordonnées (x; ax + b).

La distance MN est donc égale à

$$|f(x)-(ax+b)|$$

Ainsi, si $\lim_{x\to +\infty} (f(x)-(ax+b))=0$ alors la longueur MN tend vers 0.

La courbe « se rapproche » de la droite et tend à « suivre la direction » de la droite.

Limites23

Exemple: Soit f la fonction définie sur \mathbb{R}^* par $f(x) = 2x - 1 + \frac{1}{x^2}$ et soit \mathscr{C} sa courbe représentative. Soit d la droite d'équation y = 2x - 1.

Démontrer que d est asymptote à $\mathscr C$ en $+\infty$.

Pour tout
$$x \neq 0$$
, $f(x) - (2x - 1) = \frac{1}{x^2}$.

Or
$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$

Or $\lim_{x \to +\infty} \frac{1}{x^2} = 0$. Ainsi, d est asymptote à $\mathscr C$ en $+\infty$.

4/ Opérations sur les limites

Dans les tableaux suivants, a désigne un nombre réel, $+\infty$ ou $-\infty$.

a) Somme de fonctions

Si	$ \lim_{x \to x} af(x) = $	ℓ	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$
et	$ \lim_{x \to x} ag(x) = $	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
alors	$\lim_{x \to x} af(x) + g(x) =$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$???	$-\infty$

Remarque:??? signifie que l'on ne peut pas conclure. Cela ne signifie pas que la limite n'existe pas mais simplement qu'on ne peut pas la trouver directement. On parle de « forme indéterminée ».

$$\begin{aligned} &Exemple: D\acute{e}terminer \lim_{x \to +\infty} x^2 + \frac{1}{x}. \\ &\left\{ \begin{array}{ll} \lim\limits_{x \to +\infty} x^2 = +\infty \\ \lim\limits_{x \to +\infty} \frac{1}{x} = 0 \end{array} \right. & \text{donc } \lim\limits_{x \to +\infty} x^2 + \frac{1}{x} = +\infty \end{aligned}$$

b) Produit par une constante

k désigne un nombre réel différent de 0.

Si	$\lim_{x \to x} af(x) =$	ℓ	$+\infty$	$+\infty$	$-\infty$	$-\infty$
et			k > 0	k < 0	k > 0	k < 0
alors	$\lim_{x \to x} akf(x) =$	$k\ell$	$+\infty$	$-\infty$	$-\infty$	$+\infty$

c) Produit de fonctions

Si	$ \lim_{x \to x} af(x) = $	ℓ	$\ell \neq 0$	0	$+\infty$	$+\infty$	$-\infty$
et	$\lim_{x \to x} ag(x) =$	ℓ'	$\pm \infty$	$\pm \infty$	$+\infty$	$-\infty$	$-\infty$
alors	$\lim_{x \to x} af(x) \times g(x) =$	$\ell \times \ell'$	$\pm \infty$???	$+\infty$	$-\infty$	$+\infty$

Remarque : $\pm \infty$ signifie $+\infty$ ou $-\infty$. Dans le cas de la troisième ligne, c'est la règle des signes d'un produit qui permet de conclure.

Exemple: Déterminer
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) (x^2 + 2)$$
.

Exemple: Déterminer
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) (x^2 + 2)$$
.
$$\begin{cases} \lim_{x \to +\infty} \frac{1}{x} - 1 = -1 \\ \lim_{x \to +\infty} x^2 + 2 = +\infty \end{cases} \text{ donc } \lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) (x^2 + 2) = -\infty$$

d) Quotient de fonctions

Si	$\lim_{x \to x} af(x) =$	ℓ	ℓ	$\ell \neq 0$	0	$\pm \infty$	$\pm \infty$
et		$\ell' \neq 0$	$\pm \infty$	0	0	ℓ'	$\pm \infty$
alors	$\lim_{x \to x} a \frac{f(x)}{g(x)} =$	$\frac{\ell}{\ell'}$	0	$\pm \infty$???	$\pm \infty$???

Exemple: Déterminer
$$\lim_{x\to x} 1\frac{-3x+2}{(x-1)^2}$$
.

Exemple : Déterminer
$$\lim_{x \to x} 1 \frac{-3x + 2}{(x - 1)^2}$$
.
$$\begin{cases} \lim_{x \to x} 1 - 3x + 2 = -1 \\ \lim_{x \to x} 1(x - 1)^2 = 0^+ \end{cases} \quad \text{donc } \lim_{x \to x} 1 \frac{-3x + 2}{(x - 1)^2} = -\infty$$

e) Exemple d'étude d'une forme indéterminée

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 3x + 5$.

Pour tout
$$x \neq 0$$
, $f(x) = x^2 \left(1 - \frac{3}{x} + \frac{5}{x^2}\right)$

$$\begin{cases} \lim_{x \to +\infty} \frac{3}{x} = 0\\ \lim_{x \to +\infty} \frac{5}{x^2} = 0 \end{cases} \quad \text{donc } \lim_{x \to +\infty} 1 - \frac{3}{x} + \frac{5}{x^2} = 1$$

$$\text{De plus, } \lim_{x \to +\infty} x^2 = +\infty$$

$$\text{Ainsi } \lim_{x \to +\infty} f(x) = +\infty.$$

De plus,
$$\lim_{x \to +\infty} x^2 = +\infty$$

Ainsi
$$\lim_{x \to +\infty} f(x) = +\infty$$