例: 一长度为l,质量为m的绳索,一端系在轴上,另一端固结一质量为M的物体,它们在光滑水平面上以均匀的角速度 ω 转动,

求:绳中距离轴心为r处的张力T。

【解】

此题告诉了绳的质量不能忽略,绳中各部分的速度加速度都不相同,整个绳不能看成一个质点! 在绳的不同位置处,张力也不会相同。

下面求半径为r处的张力T=?

取距轴心r处,长度为dr的一段质元,

设 r 处, 张力为T, r+dr 处, 张力为T+dT

$$T+dT$$

$$a_{n}$$

$$T$$

由牛顿定律

$$T - (T + dT) = (dm)\omega^{2}r$$

$$dT = -m\omega^{2}r\frac{dr}{l}$$

$$\int_{T}^{T_{l}} dT = \int_{r}^{l} -m\omega^{2}r \frac{dr}{l} \qquad (注意上下限!)$$

$$T = M\omega^{2}l + m\omega^{2} \frac{l^{2} - r^{2}}{2l}$$

讨论: (1)量纲 正确

- (2) 特例

$$r=l$$
 时, $T=M\omega^2l$ 正确 $r=0$ 时, $T=M\omega^2l+m\omega^2l/2$ (最大)

例:

两根长度分别为 l_1 , l_2 的绳竖直悬挂两个质量分别 m_1 , m_2 的小球,突然打击球1,使之获得水平速度 v_0 ,求<u>该瞬时</u>两绳中的张力。

【解】: 以地面为参考系,来分析:

 m_1 作半径为 l_1 的圆周运动,

在打击 m_1 的瞬时,

其法向加速度为 a_{1n} ,法向力为 T_1

它还受到重力 m_1g 和下面绳的拉力 T_2

 m_{2}

对 m_1 列竖直方向的方程:

$$T_1 - T_2 - m_1 g = m_1 \frac{v_0^2}{l_1} \cdots (1)$$

以"m₁"为参考系,来分析:

(有向上加速度 a_{1n} 的平动非惯性系)

 v_0 在打击 m_1 的瞬时, m_2 作半径为 l_2 的 T_2 圆周运动,瞬时速度也是 v_0 (向左), a'_{2n} 设其法向加速度为 a'_{2n} ,法向力为 T_2 , m_2g 它除受到重力 m_2g 外,还受到惯性离心力 m_2a_{1n} (向下)。

$$\begin{array}{c|c}
l_1 \mathbf{a_{1n}} \\
m_1 \\
\hline
\nu_0 \\
l_2 \\
T_2 \\
m_2 \\
m_$$

$$T_2 - m_2 g - m_2 a_{1n} = m_2 a'_{2n}$$

即
$$T_2 - m_2 g - m_2 \frac{v_0^2}{l_1} = m_2 \frac{v_0^2}{l_2} \cdots (2)$$
 联立 (1) (2) 两式, 得

$$T_{2} = m_{2} \left(g + \frac{v_{0}^{2}}{l_{1}} + \frac{v_{0}^{2}}{l_{2}} \right)$$

$$T_{1} = \left(m_{1} + m_{2} \right) \left(g + \frac{v_{0}^{2}}{l_{1}} \right) + m_{2} \frac{v_{0}^{2}}{l_{2}}$$

检验:量纲?特例($v_0=0$)?

例. 水桶以ω旋转,水对桶静止。求水面形状?

解:任选水面一小质元,在切线方向静止

$$mg\sin\theta - mr\omega^2\cos\theta = 0$$

$$\tan \theta = \frac{r\omega^2}{g}$$
 为 $z(r)$ 曲线的斜率

由导数关系知
$$\frac{dz}{dr} = \frac{r\omega^2}{\varphi}$$

$$\int_{z_0}^{z} dz = \int_{0}^{r} \left(\frac{r\omega^2}{g}\right) dr$$

$$z = \frac{\omega^2}{2g}r^2 + z_0$$
 (旋转抛物面)

若已知不旋转时水深为h, 桶半径为R,

则由旋转前后水的体积不变,有:

$$\int_0^R z \cdot 2\pi r \, \mathrm{d} r = \pi R^2 h$$

$$\int_0^R \left(\frac{\omega^2}{2g} r^2 + z_0\right) 2\pi r \, \mathrm{d} r = \pi R^2 h$$

解得:
$$z_0 = h - \frac{\omega^2 R^2}{4g}$$

▲ 验结果:
$$z = \frac{\omega^2}{2g}r^2 + z_0 = \frac{\omega^2}{2g}r^2 - \frac{\omega^2}{4g}R^2 + h$$

• 单位的分析:
$$[\omega^2] = 1/s^2$$
, $[r] = m$, $[g] = m/s^2$

$$\left[\frac{\omega^2}{2g}r^2\right] = \left[\frac{\omega^2}{4g}R^2\right] = \frac{(1/s^2)\cdot m^2}{m/s^2} = m = [h] = [z], \quad \text{i.i.}$$

- 过渡到特殊情形: $\omega = 0$, 有 $z = z_0 = h$, 正确
- 看变化趋势: r 一定时, $\omega \rightarrow (z-z_0)$, $\phi \rightarrow (z-z_0)$