B.M.S. COLLEGE OF ENGINEERING BENGALURU

Autonomous Institute, Affiliated to VTU

Lab Record

MACHINE LEARNING

Submitted in partial fulfillment for the 6th Semester Laboratory

Bachelor of Technology in Computer Science and Engineering

Submitted by:

Arjun A.S

1BM18CS019

Department of Computer Science and Engineering B.M.S. College of Engineering Bull Temple Road, Basavanagudi, Bangalore 560 019 Mar-June 2021

B.M.S. COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the Machine Learning (20CS6PCMAL) laboratory has been carried out by Arjun A.S (1BM18CS019) during the 6th Semester Mar-June-2021.

Signature of the Faculty Incharge:

Prof. Saritha A.N Assistant Professor Department of Computer Science and Engineering B.M.S. College of Engineering, Bangalore

Table of Contents

Sl. No.	Program Details	Page No.
1	Implement and demonstrate the FIND-S algorithm for	4
	finding the most specific hypothesis based on a given set of	
	training data samples.	
2	For a given set of training data examples stored in a .CSV	6
	file, implement and demonstrate the Candidate-Elimination	
	algorithm to output a description of the set of all hypotheses	
	consistent with the training examples.	
3	Write a program to demonstrate the working of the decision	8
	tree based ID3 algorithm. Use an appropriate data set for	
	building the decision tree and apply this knowledge to	
	classify a new sample.	
4	Write a program to implement the naïve Bayesian classifier	11
	for a sample training data set stored as a .CSV file. Compute	
	the accuracy of the classifier, considering few test data sets	
5	Write a program to construct a Bayesian network considering	13
	training data. Use this model to make predictions.	
6	Apply k-Means algorithm to cluster a set of data stored in a	16
	.CSV file.	
7	Apply EM algorithm to cluster a set of data stored in a .CSV	20
	file. Compare the results of k-Means algorithm and EM	
	algorithm.	
8	Write a program to implement k-Nearest Neighbor algorithm	22
	to classify the iris data set. Print both correct and wrong	
	predictions.	
9	Implement the Linear Regression algorithm in order to fit	25
	data points. Select appropriate data set for your experiment	
	and draw graphs.	
10	Implement the non-parametric Locally Weighted Regression	27
	algorithm in order to fit data points. Select appropriate data	
	set for your experiment and draw graphs.	

Program 1:

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

```
#Program to implement find S algorithm
#most general hypothesis [?,?,?]
import pandas as pd
import numpy as np
data=pd.read csv("data.csv")
print(data)
H=np.array(data)[:,:-1]
t=np.array(data)[:,-1]
print("The attributes are : ")
print(H)
print("The target is : ")
print(t)
h=["*","*"] #most specific hypothesis
#H=[["rainy","Normal"],["sunny","Normal"],["cloudy","Normal"]] #data set
#t=["yes","yes","no"] #values for dataset
def training example(H,t):
    for z,x in list(enumerate(H)):
        if t[z]=="yes":
            for i in range(len(x)):
                if h[i] = "*" and x[i]:
                    h[i]=x[i]
                elif h[i]!= x[i] and h[i]!="?":
                        h[i]="?"
    return h
print("The Hypothesis is : ")
print(training_example(H,t))
```

Weather	Humidity	Goes
Rainy	Normal	yes
Sunny	Normal	yes
Cloudy	Normal	No

```
The attributes are :
[['Rainy' 'Normal']
  ['Sunny' 'Normal']
  ['Cloudy' 'Normal']]
The target is :
['yes' 'yes' 'No']

The Hypothesis is :
['?', 'Normal']
```

Program 2:

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
import csv
data=[]
print("The Data Set is: ")
with open("enjoysport.csv",'r') as csvfile :
          fdata = csv.reader(csvfile)
          for x in fdata:
               data.append(x)
               print(x)
num att = len(data[0]) - 1
print('----')
S = ['0']*num att #Specific Boundary
G = ['?']*num att #General Boundary
print("S0= ",S)
print("G0= ",G)
temp = []
for i in range(0, num att):
    S[i] = data[1][i]
print('----')
for i in range(1, len(data)):
    if data[i][num att] == 'Yes':
           for j in range(0, num att):
               if S[j]!=data[i][j]:
                   S[j]='?'
           for j in range(0, num att):
               for k in range(0, len(temp)):
                   if temp[k][j]!=S[j] and temp[k][j]!='?':
                       del temp[k]
    if data[i][num att] == 'No':
        for j in range(0, num att):
           if data [i][j]!=S[j] and S[j]!='?':
                G[j] = S[j]
                temp.append(G)
                G = ['?']*num att
    print("S",i,"= ",S)
    if len(temp) == 0:
            print ("G",i," =",G)
            print("G",i," =",temp)
   print("----")
```

36	arch this file									
ŀ	Sky	Airtemp	Humidity	Wind	Water	Forecast	Enjoysport			
2	Sunny	Warm	Normal	Strong	Warm	Same	Yes			
3	Sunny	Warm	High	Strong	Warm	Same	Yes			
ŀ	Rainy	Cold	High	Strong	Warm	Change	No			
į	Sunny	Warm	High	Strong	Cool	Change	Yes			

```
The Data Set is:
['Sky', 'Airtemp', 'Humidity', 'Wind', 'Water', 'Forecast', 'Enjoysport']
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']
['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes']
['Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'No']
['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes']
S0= ['0', '0', '0', '0', '0', '0']
GO= ['?', '?', '?', '?', '?', '?']
S 1 = ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
G 1 = ['?', '?', '?', '?', '?', '?']
S 2 = ['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
G 2 = ['?', '?', '?', '?', '?', '?']
S 3 = ['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same']
G 3 = [['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', 'Same']]
S 4 = ['Sunny', 'Warm', '?', 'Strong', '?', '?']
G 4 = [['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]
```

Program 3:

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
import pandas as pd
import math
import numpy as np
data=pd.read csv("dataset tennis.csv")
print(data)
features = [feat for feat in data]
features.remove("answer")
class Node:
    def init (self):
       self.children = []
        self.value = ""
        self.isLeaf = False
        self.pred = ""
def entropy(examples):
    positive = 0.0
    negative = 0.0
    for , row in examples.iterrows():
        if row["answer"] == "yes":
            positive += 1
        else:
            negative += 1
    if positive == 0.0 or negative == 0.0:
        return 0.0
    else:
        p = positive / (positive + negative)
        n = negative / (positive + negative)
        return -(p * math.log(p, 2) + n * math.log(n, 2)) #formula to calcu
late Entropy
def gain calc(examples, attr): #Function to Calculate Gain for a given attr
    uniq = np.unique(examples[attr])
    gain = entropy(examples)
    for u in uniq:
        subdata = examples[examples[attr] == u]
        sub e = entropy(subdata)
        gain -= (float(len(subdata)) / float(len(examples))) * sub e
```

```
return gain
def ID3(examples, attrs):
    root = Node()
    max gain = 0
    max feat = ""
    for feature in attrs:
        gain = gain calc(examples, feature)
        if gain > max gain:
            max gain = gain
            max feat = feature
    root.value = max feat
    uniq = np.unique(examples[max feat])
    for u in uniq:
        subdata = examples[examples[max feat] == u]
        if entropy(subdata) == 0.0:
            newNode = Node()
            newNode.isLeaf = True
            newNode.value = u
            newNode.pred = np.unique(subdata["answer"])
            root.children.append(newNode)
        else:
            dummyNode = Node()
            dummyNode.value = u
            new attrs = attrs.copy()
            new attrs.remove(max feat)
            child = ID3(subdata, new attrs)
            dummyNode.children.append(child)
            root.children.append(dummyNode)
    return root
def printTree(root: Node, depth=0):
    for i in range(depth):
        print("\t", end="")
    print(root.value,"", end="")
    if root.isLeaf:
        print("-> ", root.pred)
    print()
    for child in root.children:
        printTree(child, depth + 1)
root = ID3(data, features)
printTree(root)
```

<u>Dataset:</u>

	Α	В	С	D	E
1	Outlook	Temperature	Humidity	Wind	answer
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no

Program 4:

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```
import pandas as pd
import numpy as np
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB
from sklearn import metrics
#This program takes certain parameters from patients and identifies whether
they have diabetes are not
dataf = pd.read csv("./bayes classifier data.csv")
feature_col_names = ['num_preg', 'glucose_conc', 'diastolic_bp', 'thickness'
, 'insulin', 'bmi', 'diab_pred', 'age']
predicted class names = ['diabetes']
X = dataf[feature col names].values
y = dataf[predicted class names].values
print(dataf.head)
xtrain, xtest, ytrain, ytest=train test split(X, y, test size=0.33)
print ('\nThe total number of Training Data:',ytrain.shape)
print ('The total number of Test Data:', ytest.shape)
classif = GaussianNB().fit(xtrain,ytrain.ravel())
predicted = classif.predict(xtest)
predictTestData= classif.predict([[5,148,72,35,0,32.6,0.543,50]])
print('\nConfusion matrix')
print(metrics.confusion matrix(ytest,predicted))
print('\nAccuracy of the classifier:', metrics.accuracy score(ytest, predicted
) )
print('The value of Precision:', metrics.precision score(ytest,predicted))
print('The value of Recall:', metrics.recall score(ytest,predicted))
print("Predicted Value for individual Test Data:", predictTestData)
```

num_preg	glucose_conc	diastolic_bp	thickness	insulin	bmi	diab_pred	age	diabetes
6	148	72	35	0	33.6	0.627	50	
1	85	66	29	0	26.6	0.351		0
8	183	64		0	23.3	0.672	32	
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	
5	116	74		0	25.6	0.201	30	0
3	78	50	32	88		0.248	26	
10	115			0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	

The entire dataset can be found in this link:

https://github.com/ArjunAS861/ML_1BM18CS019/blob/main/ML_Lab4/bayes_classifier_data.csv

```
<bound method NDFrame.head of</pre>
                                  num_preg glucose_conc diastolic_bp thickness insulin
                                                                                          bmi \
0
                       148
           6
                                      72
                                                35
                                                          0 33.6
1
           1
                        85
                                      66
                                                29
                                                          0
                                                             26.6
2
                                                         0 23.3
           8
                       183
                                     64
                                                 0
3
                                     66
                                                23
                                                         94 28.1
           1
                       89
4
           0
                       137
                                     40
                                                35
                                                        168 43.1
                       ...
                                     ...
                                                . . .
763
                                                        180 32.9
          10
                       101
                                     76
                                                48
764
           2
                       122
                                     70
                                                27
                                                         0 36.8
765
                                     72
                                                23
                                                        112 26.2
           5
                       121
766
                       126
                                     60
                                                         0 30.1
                                     70
767
           1
                        93
                                                31
                                                          0 30.4
     diab_pred age diabetes
0
        0.627
                50
                           1
        0.351
1
                31
2
        0.672
                32
                           1
3
        0.167
                21
                           0
4
        2.288
                33
                           1
763
        0.171
               63
764
        0.340
                27
                           0
765
        0.245
                           0
                30
766
        0.349
                47
                           1
767
        0.315
                23
                           0
[768 rows x 9 columns]>
The total number of Training Data: (514, 1)
The total number of Test Data: (254, 1)
Confusion matrix
[[147 29]
 [ 34 44]]
Accuracy of the classifier: 0.7519685039370079
The value of Precision: 0.6027397260273972
The value of Recall: 0.5641025641025641
Predicted Value for individual Test Data: [1]
```

Program 5:

Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
heart Disease = pd.read csv('/home/bayes heart disease dataset.csv')
heart Disease = heart Disease.replace('?', np.nan)
print('Sample instances from the dataset are given below')
print(heart Disease.head())
print('\n Attributes and datatypes')
print(heart Disease.dtypes)
model= BayesianModel([('age','heartdisease'),('sex','heartdisease'),('exang'
, 'heartdisease'), ('cp', 'heartdisease'), ('heartdisease', 'restecg'), ('heartdis
ease','chol')])
print('\nLearning CPD using Maximum likelihood estimators')
model.fit(heart Disease, estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
Heart Disease test infer = VariableElimination(model)
print('\n 1. Probability of HeartDisease given evidence= restecg')
q1=Heart Disease test infer.query(variables=['heartdisease'],evidence={'rest
ecq':1})
print(q1)
print('\n 2. Probability of HeartDisease given evidence= cp ')
q2=Heart Disease test infer.query(variables=['heartdisease'],evidence={'cp':
2})
print(q2)
```

<u>Dataset:</u>

1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
2	63			145	233			150		2.3	3	0	6	
3	67		4	160	286	0		108		1.5	2	3	3	
4	67		4	120	229	0		129		2.6	2	2	7	
5			3	130	250	0		187		3.5	3	0	3	
6	41	0	2	130	204	0		172		1.4		0	3	
7	56		2	120	236	0		178		0.8		0	3	
8	62	0	4	140	268	0		160		3.6	3	2	3	
9		0	4	120	354	0		163		0.6		0	3	
10	63	1	4	130	254	0	2	147	0	1.4	2	1	7	2

The entire dataset can be found in this link:

 $https://github.com/ArjunAS861/ML_1BM18CS019/blob/main/ML_Lab6/bayes_heart_disease_dataset.csv$

Output:

_ _

Attributes	and datatypes
age	int64
sex	int64
ср	int64
trestbps	int64
chol	int64
fbs	int64
restecg	int64
thalach	int64
exang	int64
oldpeak	float64
slope	int64
ca	object
thal	object
heartdisease	int64
dtype: objec	t

Fig 5.1 Attributes

Learning CPD using Maximum likelihood estimators

```
Finding Elimination Order: : 100%| | 5/5 [00:00<00:00, 740.49it/s]
Eliminating: age: 100%| | 5/5 [00:00<00:00, 75.39it/s]
```

Inferencing with Bayesian Network:

1. Probability of HeartDisease given evidence= restecg

4	
heartdisease	phi(heartdisease)
heartdisease(0)	
heartdisease(1)	:
heartdisease(2)	:
heartdisease(3)	
heartdisease(4)	0.4581

Fig 5.2 Query 1

2. Probability of HeartDisease given evidence= cp

Fig 5.3 Query 2

Program 6:

Apply k-Means algorithm to cluster a set of data stored in a .CSV file.

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
from sklearn import datasets
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy score, confusion matrix
iris = datasets.load iris()
print(iris['data'])
print(iris['target'])
sepal X = iris.data[:, :2]
petal X = iris.data[:, 2:]
y = iris.target
categories = len(iris.target names)
fig, axes = plt.subplots(1, 2, figsize=(16,8))
axes[0].scatter(sepal X[:, 0], sepal X[:, 1], c=y, cmap='gist rainbow', edge
color='k', s=150)
axes[1].scatter(petal X[:, 0], petal X[:, 1], c=y, cmap='gist rainbow', edge
color='k', s=150)
axes[0].set xlabel('Sepal length', fontsize=18)
axes[0].set ylabel('Sepal width', fontsize=18)
axes[1].set xlabel('Petal length', fontsize=18)
axes[1].set ylabel('Petal width', fontsize=18)
axes[0].tick params(direction='in', length=10, width=5, colors='k', labelsiz
e = 20)
axes[1].tick params(direction='in', length=10, width=5, colors='k', labelsiz
e = 20)
axes[0].set title('Sepal', fontsize=18)
axes[1].set title('Petal', fontsize=18)
plt.show()
model sepal = KMeans(n clusters=3)
model sepal.fit(sepal X)
model petal = KMeans(n clusters=3)
model petal.fit(petal X)
def plot centers(sepal centers, petal_centers):
   plt.scatter([point[0] for point in sepal centers], [point[1] for point i
n sepal centers])
    plt.title('Sepal KMeans Centers')
    plt.show()
    plt.scatter([point[0] for point in petal centers], [point[1] for point i
n petal centers])
```

```
plt.title('Petal KMeans Centers')
    plt.show()
def plot actualvpredicted(X, y, predicted, part):
    fig, axes = plt.subplots(1, 2, figsize=(16,8))
    axes[0].scatter(X[:, 0], X[:, 1], c=y, cmap='gist rainbow', edgecolor='k
', s=150)
    axes[1].scatter(X[:, 0], X[:, 1], c=predicted, cmap='jet', edgecolor='k'
s=150
    axes[0].set xlabel(f'{part} length', fontsize=18)
    axes[0].set ylabel(f'{part} width', fontsize=18)
    axes[1].set_xlabel(f'{part} length', fontsize=18)
    axes[1].set ylabel(f'{part} width', fontsize=18)
    axes[0].tick params(direction='in', length=10, width=5, colors='k', labe
lsize=20)
    axes[1].tick params(direction='in', length=10, width=5, colors='k', labe
lsize=20)
    axes[0].set title('Actual', fontsize=18)
    axes[1].set title('Predicted', fontsize=18)
    plt.show()
def plot confusion(accuracy, confusion, part):
    print(f'{part} Accuracy: {accuracy}')
    fig, ax = plt.subplots()
    im = ax.imshow(confusion)
    ax.set xticks(range(categories))
    ax.set yticks(range(categories))
    ax.set xticklabels(iris.target names)
    ax.set yticklabels(iris.target names)
    plt.setp(ax.get xticklabels(), rotation=45, ha="right",
             rotation mode="anchor")
    for i in range(categories):
        for j in range(categories):
            text = ax.text(j, i, confusion[i, j],
                           ha="center", va="center", color="w")
    ax.set title(f"{part} Confusion Matrix (Actual / Predicted)")
    fig.tight layout()
    plt.show()
model sepal = KMeans(n clusters=3)
model_sepal.fit(sepal X)
model petal = KMeans(n clusters=3)
model petal.fit(petal X)
plot actualvpredicted(sepal X, y, sepal labels, 'Sepal')
plot actualvpredicted(petal X, y, petal labels, 'Petal')
```

```
sepal labels = model sepal.labels petal labels = model petal.labels print(
sepal labels, petal labels, sep='\setminus n')
for n clusters in range(1, 4):
    print(f'\n\n\n========={n clusters} clusters================================)
    model sepal = KMeans(n clusters=n clusters)
   model_sepal.fit(sepal_X)
    model petal = KMeans(n clusters=n clusters)
   model petal.fit(petal X)
   sepal centers = model sepal.cluster centers
   petal centers = model petal.cluster centers
   plot centers(sepal centers, petal centers)
    sepal labels = model sepal.labels
    petal labels = model petal.labels
   plot actualvpredicted(sepal X, y, sepal labels, 'Sepal')
   plot actualvpredicted(petal X, y, petal labels, 'Petal')
   sepal accuracy = accuracy score(y, sepal labels)
    petal accuracy = accuracy score(y, petal labels)
    sepal confusion = confusion matrix(y, sepal labels)
    petal confusion = confusion matrix(y, petal labels)
    plot confusion(sepal accuracy, sepal confusion, 'Sepal')
    plot confusion(petal accuracy, petal confusion, 'Petal')
```

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa

The entire dataset can be found in this link:

 $https://github.com/ArjunAS861/ML_1BM18CS019/blob/main/ML_Prog7/iris.csv$

Program 7:

Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import sklearn.metrics as metrics
names = ['Sepal Length','Sepal Width','Petal Length','Petal Width', 'Class']
dataset = pd.read csv("iris.csv", names=names)
print(dataset.head())
X = dataset.iloc[:, :-1]
label = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}
y = [label[c] for c in dataset.iloc[:, -1]]
plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])
# REAL PLOT
plt.subplot(1,3,1)
plt.title('Real')
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y])
# K-PLOT
model=KMeans(n clusters=3, random state=0).fit(X)
plt.subplot(1,3,2)
plt.title('KMeans')
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[model.labels ])
print('The accuracy score of K-Mean: ', metrics.accuracy score(y, model.label
print('The Confusion matrixof K-Mean:\n', metrics.confusion matrix(y, model.1
abels ))
# GMM PLOT
qmm=GaussianMixture(n components=3, random state=0).fit(X)
y cluster gmm=gmm.predict(X)
plt.subplot(1,3,3)
plt.title('GMM Classification')
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y cluster gmm])
print('The accuracy score of EM: ',metrics.accuracy score(y, y cluster gmm))
print('The Confusion matrix of EM:\n ', metrics.confusion matrix(y, y cluster
gmm))
```

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa

The entire dataset can be found in this link:

 $https://github.com/ArjunAS861/ML_1BM18CS019/blob/main/ML_Prog7/iris.csv$

Program 8:

Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

```
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split
from sklearn import metrics
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Clas
s']
# Read dataset to pandas dataframe
dataset = pd.read csv("iris.csv", names=names)
X = dataset.iloc[:, :-1]
y = dataset.iloc[:, -1]
print(X.head())
Xtrain, Xtest, ytrain, ytest = train test split(X, y, test size=0.10)
classifier = KNeighborsClassifier(n neighbors=5).fit(Xtrain, ytrain)
ypred = classifier.predict(Xtest)
print ("\n-----")
print ('%-25s %-25s %-25s' % ('Original Label', 'Predicted Label', 'Correct/
print ("----")
for label in ytest:
   print ('%-25s %-25s' % (label, ypred[i]), end="")
   if (label == ypred[i]):
     print (' %-25s' % ('Correct'))
   else:
     print (' %-25s' % ('Wrong'))
   i = i + 1
print ("-----")
print("\nConfusion Matrix:\n", metrics.confusion matrix(ytest, ypred))
print ("----")
print("\nClassification Report:\n", metrics.classification report(ytest, ypre
print ("-----")
print('Accuracy of the classifer is %0.2f' % metrics.accuracy score(ytest,yp
print ("----")
```

<u>Dataset:</u>

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa

The entire dataset can be found in this link:

 $https://github.com/ArjunAS861/ML_1BM18CS019/blob/main/ML_Prog7/iris.csv$

	sepal-length	sepal-width	petal-length	petal-width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Original Label	Predicted Label	Correct/Wrong
Original Label	Predicted Label Iris-virginica Iris-versicolor	Correct/Wrong Correct
Iris-versicolor Iris-setosa Iris-virginica Iris-virginica	Iris-versicolor Iris-setosa Iris-virginica Iris-virginica	Correct Correct

Fig 8.1 Output accuracy

```
Confusion Matrix:
 [[3 0 0]]
 [0 6 0]
 [0 0 6]]
Classification Report:
                precision recall f1-score support
   Iris-setosa
                                                   3
                    1.00
                            1.00
                                       1.00
Iris-versicolor
                    1.00
                             1.00
                                       1.00
                                                   6
 Iris-virginica
                    1.00
                             1.00
                                       1.00
      accuracy
                                       1.00
                                                  15
     macro avg
                   1.00
                            1.00
                                      1.00
                                                  15
  weighted avg
                    1.00
                                      1.00
                            1.00
                                                  15
Accuracy of the classifer is 1.00
```

Fig 8.2 Output accuracy

Program 9:

Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
dataset = pd.read csv('salary data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
X train, X test, y train, y test = train test split(X, y, test size=1/3, ran
dom state=0)
# Fitting Simple Linear Regression to the Training set
regressor = LinearRegression()
regressor.fit(X train, y train)
# Predicting the Test set results
y pred = regressor.predict(X test)
# Visualizing the Training set results
viz train = plt
viz_train.scatter(X_train, y_train, color='red')
viz train.plot(X train, regressor.predict(X train), color='blue')
viz train.title('Salary VS Experience (Training set)')
viz train.xlabel('Year of Experience')
viz train.ylabel('Salary')
viz train.show()
# Visualizing the Test set results
viz test = plt
viz test.scatter(X test, y test, color='red')
viz test.plot(X train, regressor.predict(X train), color='blue')
viz_test.title('Salary VS Experience (Test set)')
viz test.xlabel('Year of Experience')
viz test.ylabel('Salary')
viz test.show()
```

1 YearsExperience	Salary
2 1.1	39343
3 1.3	46205
4 1.5	37731
5 20	43525
6 22	39891
7 29	56642
8 3.0	60150
9 32	54445
10 32	64445

The entire dataset can be found in this link: $https://github.com/ArjunAS861/ML_1BM18CS019/blob/main/ML_Prog9/salary_data.csv$

Program 10:

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
import numpy as np
from bokeh.plotting import figure, show, output notebook
from bokeh.layouts import gridplot
from bokeh.io import push notebook
def local regression(x0, X, Y, tau):# add bias term
 x0 = np.r [1, x0] # Add one to avoid the loss in information
 X = np.c [np.ones(len(X)), X]
 # fit model: normal equations with kernel
 xw = X.T * radial kernel(x0, X, tau) # XTranspose * W
beta = np.linalq.pinv(xw @ X) @ xw @ Y #@ Matrix Multiplication or Dot Prod
uct
 # predict value
return x0 @ beta # @ Matrix Multiplication or Dot Product for prediction
def radial kernel (x0, X, tau):
return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
# Weight or Radial Kernal Bias Function
n = 1000
# generate dataset
X = np.linspace(-3, 3, num=n)
print("The Data Set ( 10 Samples) X :\n", X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y:\n",Y[1:10])
# jitter X
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X :\n", X[1:10])
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
def plot lwr(tau):
 # prediction through regression
 prediction = [local regression(x0, X, Y, tau) for x0 in domain]
 plot = figure(plot width=400, plot height=400)
plot.title.text='tau=%q' % tau
 plot.scatter(X, Y, alpha=.3)
 plot.line(domain, prediction, line width=2, color='red')
 return plot
show(gridplot([
[plot lwr(10.), plot lwr(1.)],
```

```
[plot_lwr(0.1), plot_lwr(0.01)]]))
```

```
The Data Set ( 10 Samples) X:

0 -2.993994
1 -2.987988
2 -2.981982
3 -2.975976
4 -2.969970
5 -2.963964
6 -2.957958
7 -2.951952
8 -2.945946
```

Fig 10.1 Dataset

```
The Data Set ( 10 Samples) X:
0 -2.993994
1 -2.987988
2 -2.981982
3 -2.975976
4 -2.969970
5 -2.963964
6 -2.957958
7 -2.951952
8 -2.945946
The Fitting Curve Data Set (10 Samples) Y:
[2.13582188 2.13156806 2.12730467 2.12303166 2.11874898 2.11445659
 2.11015444 2.10584249 2.10152068]
Normalised (10 Samples) X :
 [-2.76468351 -2.8892122 -2.90138442 -2.90382197 -3.03699931 -3.0209778
 -2.95438513 -3.0644698 -3.10680507]
 Xo Domain Space(10 Samples) :
 [-2.97993311 -2.95986622 -2.93979933 -2.91973244 -2.89966555 -2.87959866
 -2.85953177 -2.83946488 -2.81939799]
```

Fig 10.2 Output

