An Introduction to Number Plate Data and Relevant Research Applications

Pedro Pinto da Silva

Supervisors: Stephen McGough, Matthew Forshaw

EPSRC CDT in Cloud Computing for Big Data, Newcastle University

January 10, 2018

Outline

1. Context

2. Identifying trips in number plate data

3. Research Applications

4. Future Work

Context

The Urban Traffic Management Centre

Responsible for monitoring traffic, road works, incidents, car parks, ...

Figure 1: Location of automatic number plate recognition (ANPR) cameras in Tyne and Wear.

The automatic number plate recognition database ANPR

The UTMC has kindly provided a subset of the database:

► Number of tables: 82

► Time period: First 6 months of 2017

► Size in disk: ≈ 350 GB

▶ Many tables with static information: e.g Cameras, Nodes, CameraType . . .

▶ 1 major table: Number plate data

Number plate data

Tag	Timestamp	Camera Id	Timestamp Error	Tag Confidence	Vehicle Direction	
12862943	2016-02-01 00:00:00	18	8	61	Towards	
169239	2016-02-01 00:00:00	1031	0	100	Away	
1862361	2016-02-01 00:00:35.080	19	22	83	Away	

Table 1: Sample of number plate data

Identifying trips in number plate data

Sighting

A vehicle observed by a ANPR camera

Definition

The *ith* sighting of vehicle k can be defined as:

$$sighting_i^k = (camera, time)$$
 (1)

Constraints

Consider S^k the set of sightings of vehicle k.

Then, S^k is valid if:

$$\cdots < time_{i-1}^k < time_{i+1}^k < \cdots, \ \forall i \in S^k$$
 (2)

Assuming that all camera clocks are synchronised.

Trip

A sequence of sightings

Definition

The *uth* trip of vehicle k is a sequence (n-tuple) of sightings of k:

$$trip_{u}^{k} = \left(sighting_{1}^{k}, sighting_{2}^{k}, \dots, sighting_{n}^{k}\right)$$
(3)

where n is the number of sightings, i.e. length of the trip.

Constraints

- ▶ $n \ge 1$ The length of a trip has to be equal or greater than 1
- \blacktriangleright Every two consecutive sightings in a trip occur within a maximum time interval τ .

Journey time

A sequence of travel times

Definition

From the *uth* trip of vehicle k, we can calculate the corresponding journey time sequence, of length n-1:

journey
$$time_u^k = \left(time_2^k - time_1^k, \dots, time_n^k - time_{n-1}^k\right)$$
 (4)

Valid Trip

A trip of length \geq 2 is valid if all partial journey times are lower than a threshold τ :

journey time
$$_{ui}^k < \tau$$
, $\forall i \in journey time_u^k$ (5)

Note: Realistically there should also be a lower bound for each journey time.

Example of a trip of length 4

Origin-destination matrix

Let P be the set of origins and Q the set of destinations:

$$flow_p = \sum_{q \in Q} flow_{pq}$$
 (6) $flow_q = \sum_{p \in P} flow_{pq}$ (7)

where $flow_{pq}$ is the number of trips originating at p and terminating at q.

Trip Matrix =
$$\begin{bmatrix} flow_{11} & flow_{12} & \dots & flow_{1q} \\ flow_{21} & flow_{22} & \dots & flow_{2q} \\ \dots & \dots & \dots & \dots \\ flow_{p1} & flow_{p2} & \dots & flow_{pq} \end{bmatrix}$$
(8)

Applications Transportation planning and forecasting.

Trip data

Vehicle	Trip	Sighting	Length	Tau	Camera	Journey Time	Trip Id
2362920	1	1	4	600	1014	NA	21
2362920	1	2	4	600	1044	82 secs	21
2362920	1	3	4	600	35	64 secs	21
2362920	1	4	4	600	32	126 secs	21

Table 2: Sample of trip data

Additional variables: Timestamp, Traffic Count, Time Period, Duplicates, Duplicate Time Difference, Starting Camera, Ending Camera

Challenge 1 – Choosing τ

- ▶ Should τ be fixed or vary over time and edge?
- ▶ How do we estimate τ ?

Simple solution

Pick a fixed threshold (e.g. 5 min, 10 min, ...)

Future work

- ightharpoonup Estimate au for each edge in the trip graph as a function of the journey times in that edge.
- \blacktriangleright Study how varying τ affects the generation of trip data, and as a consequence, the outcome of the research (e.g. inference on trip matrices, trip graphs, . . .)

Distribution of trip lengths by $\boldsymbol{\tau}$

Challenge 2 – Errors in plate scanning

There is a probability (confidence) associated with each sighting.

Types of errors

- ► A different plate number was detected instead
- ► No plate number was detected at all

Simple solution

Filter all sightings with confidence less than e.g. 0.75.

Future work

- Methods to detect and address the two types of errors
- ► Model the probability that a trip is missing sightings

Distribution of plate scan confidence

Challenge 3 – Duplicate Scannings

A vehicle can be scanned by the same camera multiple times in a single trip.

Simple solution

For each trip:

► A sighting is a duplicate if the previous sighting occurs at the same location.

$$(1044, 32, 32, 35) (1044, 32, 35, 32)$$

 $\approx 5\%$ of sightings are duplicates

Future Work

► A sighting is duplicated if there is a previous sighting at the same location and there isn't a significant time interval between them.

Research Applications

Application 1 – Transportation Modelling

Traffic Assignment Problem

How do od-flows disaggretate among the road network?

Applications Traffic forecasting, transportation planning, traffic simulators

Application 2 – Abnormal Vehicle Behavior Detection

Law enforcement ocasionally uses the ANPR database to link vehicles to crimes.

Current workflow

Limitations

- ► Lack of technical knowledge
- ► Time-expensive manual procedure

Application 2 – Abnormal Vehicle Behavior Detection

Improved workflow

Future Work

Scaling up

Probabilistic queries on trip graphs

Which route is likelier to be faster?

Conditional Probability Distribution = ?

Applications Variable message signs with real time route info. and recommendations

Thank you

A special thank you to Phil Blythe in Civil Engineering and Ray King from the Tyne and Wear Urban Traffic and Management Centre (UTMC) for providing guidance and a copy of the Automatic Number Plate Recognition (ANPR) database.

Trip graph

Consider the mapping of trips of length ≥ 2 to trip-pairs of length = 2. Let G(V, E) be the trip graph. V is the set of cameras and E is the set of trip-pairs.

Weights: Distribution of journey times, $flow_{pq}$, routing info, probabilities, ...

Trips are walks on the trip graph.

Considerations

Choosing τ

- \blacktriangleright Should τ be fixed or vary over time and camera-pair?
- Estimating τ from observed journey times

Errors in number plate recognition

- ► How to detect and address errors?
- ▶ What is the probability that a trip is missing sightings?

Duplicate sightings

- ► A sighting is a duplicate if the previous sighting occurs at the same location.
- What about trips containing cycles?

[EXTRA][DRAFT] More on trip graphs...

- ► How does the structure and properties of trip graphs vary over time (node connectivity, centrality, . . .)?
- ► How to incorporate/address the time component on trip graphs? For instance, on bayesian networks. Do these methods capture the time-variance of trip choices?
- ▶ How good is the distribution of cameras on the road network?
- ▶ Does traffic congestion explain particular routing choices made by vehicles?
- ► Estimate the Markov matrix from an observed set of finite markov chains (a.k.a random walks)
- ► Compute a trip graph per hour/day/week/month. Compute properties/structure (connectivity, centrality). Cluster the graphs based on these metrics.