Battle of the Businesses in a Neighborhood

Applied Data Science Capstone Project

By Yashodhara Thakur

Why is it important to analyze different factors before starting a business

- New start-ups pop up every day all around the world, each of them hoping to get acquired by a larger company or make it big in their own right
- There are thousands which fall into obscurity
- The following picture shows the reason for which the startups fail and the top reason is "No market need".
- To avoid this analysis is necessary

Introduction to the project

- Building a model to determine best local business to start in a popular Neighborhood
- In addition to this, model also provides with most competitive and least competitive business
- In this project I am going to explore top -3 local businesses in the city of Toronto (as an example).
- It will help the business owners to analyse which location is best for which type of business
- The business owners can select whether they want to start a business which has huge competition because it is popular business or they want to start a business which has less competition and gain competitive advantage

Data Acquisition

- The data for "Toronto" was found on Wikipedia and the table was scraped
- Also the "Geospatial_Coordinates" data was used which was obtained during the course period. These 2 datasets were used in the model.

Data source: https://en.wikipedia.org/wiki/List of postal codes of Canada: M

Data Cleaning

- Data downloaded or scraped from multiple sources were combined into one table. There were a lot of missing values in the Toronto dataset. I decided to drop the values where Borough were 'Not assigned' and mask the Neighbourhood where values were 'Not assigned'.
- Second, multiple entries existed for similar Postal Code with different neighbourhoods. This cause their data to represent multiple samples with incomplete data. I wrote script to extract the unique Postal Code, I grouped the data according to the 'Postal Code' and 'Borough'.
- Now I wanted to merge the Toronto dataset with the Geospatial_Coordinates. To do this I merged them on the basis of 'Postal Code'.

After cleaning and merging the data

Et Voilà, we have our dataset ready!!!

```
In [7]: data.rename(columns = {'PostalCode':'Postal Code'}, inplace = True)
         df = pd.merge(df,data, how ='inner', on ='Postal Code')
         df.head()
   Out[7]:
                Postal Code
                                                                    Neighborhood Latitude Longitude
                                   Borough
                      M3A
                                  North York
                                                                       Parkwoods 43.753259 -79.329656
                      M4A
                                  North York
                                                                    Victoria Village 43.725882 -79.315572
                      M5A Downtown Toronto
                                                            Regent Park, Harbourfront 43.654260 -79.360636
                                  North York
                                                    Lawrence Manor, Lawrence Heights 43.718518 -79.464763
                      M6A
                      M7A Downtown Toronto Queen's Park, Ontario Provincial Government 43.662301 -79.389494
```

Data Analysis

- During this analysis I found out that there were 10 boroughs and 103 neighbourhoods
- Further analysing the data I found that "North York" was the top borough of all because it had the maximum neighbourhoods than all.
- Then I created a dataset which consist of only "North York" data as the below

North York map

• I also created a clusterd map of "North York" for visual representation.

Further analysis

- Now we wanted to find the best neighbourhoods in North York.
- To do that I used foursquare. I used foursquare to get the venues for all the neighbourhoods. Once this was done I had to get the top 2 neighbourhoods with maximum venues
- After computing the top 2 neighbourhoods were: [Fairview, Henry Farm, Oriole] and [Willowdale and Willowdale East].
- Now we had to find the popular businesses in these neighbourhoods.

To find popular businesses in the neighborhood

• To do that we first made 2 dataframes which consist the information of these 2 neighbourhoods and then grouped them according to the "Venue Category", which looked something like this

Out[31]:	Neighbor	hood	Neighborhood Latitude	Neighborhood Longitus	de Ven	ue	Venue Latitude	Venue Longitud	de
Venue C	ategory		noighborhood Editado	noighbonnood Longital	4011		Tondo Editado	vonuo Longitut	
American Re	staurant	1	1		1	1	1		1
Asian Re	staurant	1	1		1	1	1		1
	Bakery	2	2		2	2	2		2
	Bank	2	2		2	2	2		2
	Bar	1	1		1	1	1		1
Basel	all Field	1	1		1	1	1		1
E	outique	1	1		1	1	1		1
Burg	er Joint	1	1		1	1	1		1
Burri	to Place	1	1		1	1	1		1
Bus	Station	1	1		1	1	1		1
Chinese Re	staurant	1	1		1	1	1		1
Chocola	te Shop	1	1		1	1	1		1
Clothi	ng Store	8	8		8	8	8		8

Results

• Now we analysed the data to find the Top 3 most common business categories .The example of the output is shown below

```
Top 3 most common business categories
In [33]: b1 = top1ny['Venue Category'].value_counts()
       b1=b1.head(3)
  Out[33]: Clothing Store 8
          Coffee Shop
          Restaurant
         Name: Venue Category, dtype: int64
```


Let's see least competitive businesses in the area

The least competitve businesses are :

- Luggage store
- 2. Bar
- 3. Theater

• Now at last we append both the datasets as one to find the best neighbourhood cluster for business and plot it on the map as shown below

Conclusion and Further Direction

- In this study, I analysed the different neighbourhoods in the city of Toronto.
- Also analysed the popular boroughs and in those boroughs we further analysed the neighbourhoods
- We further analysed these neighbourhoods to find the best neighbourhood to start a business.
- . Not only that we also found out the most competitive and the least competitive local business categories in these neighbourhoods.
- This model will be very helpful for people who want to start their own business and want to do competitive analysis
- I have prepared this model on the basis of neighbourhoods / boroughs for a particular city. In future this model can be used to find the best city to start a business as well as a best country.
- Also further competitive analysis is possible using this model by adding and analysing the current businesses information