

Alliance

MrBean: Aplicación Web para la Modelación de Ensayos de Campo

Sesión 2

Johan Aparicio & Daniel Ariza-Suarez

Asistentes de Investigación

j.aparicio@cigar.org d.ariza@cigar.org

Martes, Diciembre 1, 2020

TOC

- Chequeo instalación
- Introducción a MrBean
- Importando datos a **MrBean** (.csv, .txt, .excel)
- Visualización datos crudos y descriptivas
- Análisis de experimentos clásicos con MrBean
 - Diseño completamente al azar (DCA)
 - Diseño en bloques completos al azar (DBCA)
 - Diseño en bloques aumentados
 - Diseño alfa-lattice
- Análisis espacial (Single Trait)
 - Tendencia espacial
 - BLUPs/BLUEs
 - Datos atípicos

Mr. Bean Timeline

The App development history.

2018

Mr. Bean was born on December of 2018. Initially had a simple R-Shiny web inter-phase and it was powered by SpATs.

2019

Improvements to the GUI and addition of visualizations for both SpATs and LME4 were enabled. Spatial LMM and LMM without spatial corrections were enabled.

2020

Collaboration between Johan Aparicio, Dr. Salvador Gezan, and the BPDM team from NDSU iniciated on May 8, 2020. This collaboration yielded the addition of the ASReml-R modules and an interactive GUI designed to tailor the needs of plant breeders.

Today

- Data Input
- Descriptive Stats
- SpATs:
 - Single-Site
 - Many-Sites
 - Many-Traits
- · ASReml:
 - Single-Site
 - Unreplicated
 - Model Selector
 - Two Stage Analysis
 - MET
- LME4:
 - Traditional Analysis

MrBean

Mixed Models and Linear Models Main Libraries Using R

- SpatsSpatial Analysis Using Splines (Rodríguez-Alvarez et al. 2018)
- 2 ASRemI-R VSN International Ltd. (David Butler 2020)
- 3 Ime4 Fitting Linear Mixed-Effects Models (Douglas Bates et al. 2015)
- 4 Im (stats)
 Fitting Linear Models (R Core Team 2020)

Qué puede hacer MrBean por ti?

Data

example-data, ".csv", ".txt", ".xlsx", BMS conection

Análisis descriptivo

scatter-plot, boxplot, distribution, mean, variance, CV, skewness, kurtosis, ...

Análisis Espacial de un Sitio (SpATS)

Spatial analysis using splines, BLUPs/BLUEs, heritability, outliers, spatial-trend, variance-components, ...

Análisis Espacial Múltiples-Sitios (SpATS)

Spatial analysis for several sites, summary by site, outliers, predictions by site, pearson correlation, ...

Análisis Espacial Múltiples-Rasgos (SpATS)

Spatial analysis for several traits, summary by trait, outliers, predictions by trait, pearson correlation, ...

Análisis Espacial de un Sitio (ASReml)

Spatial analysis incorporating AR1xAR1 correlation, BLUPs/BLUEs, heritability, spatial-trend, variancecomponents, Unreplicated/Augmented Designs, ...

Selector de Modelos (ASReml)

Find the best spatial model for your data, ...

MET análisis (ASReml)

Two-stage approach, variance-covariance structures (FA, US, diag, corh, corv), principal components, ...

Diseños Tradicionales (Ime4-Im)

RCBD, CRD, alpha-lattice, BLUP/BLUE, heritability, outliers, ...

MrBean

Versión Web MrBean: https://beanteam.shinyapps.io/MrBean/ Página Web MrBean: https://mrpackages.netlify.app/mrbean.html Repositorio MrBean: https://apariciojohan.github.io/MrBeanApp/ Página del Curso: https://apariciojohan.github.io/Starting MrBean/

Importando datos a MrBean

- Archivos CSV (comma-separated values)
- Archivo TXT archivo de texto simple, texto sencillo o texto sin formato (también llamado texto llano o texto simple; en inglés «plain text»)
- Archivo **XLSX** documentos de salida de hoja de cálculo por defecto de las versiones más recientes de Microsoft Excel, comenzando con 2007.
- BMS (Breeding Management System)

Evitar

Cómo añadir valores faltantes?

- NA (not applicable or not available).
- Celdas en blanco.
- Cadena de **texto** en específica (999, 000, -)
- Evitar doble nombramiento de valores faltantes (NA, -, 99).

Ejemplo 1

- Diseño completamente al azar (DCA)
- Diseño en bloques completos al azar (DBCA)
- Diseño en bloques aumentados
- Diseño alfa-lattice
- Diseño fila-columna (Espacial)

Diseño completamente al azar (DCA)

v1	v1	v3	v2	v3	v2
v2	v3	v4	v4	v3	v2
v2	v3	v4	v1	v2	v4
v3	v1	v4	v1	v4	v1

Diseño completamente al azar (DCA)

Este considera datos publicados en Mead et al. (1993, p.52) de una prueba de rendimiento con melones. El ensayo contó con 4 variedades de melón (variety). Cada variedad fue probada en seis parcelas de campo (6 réplicas). La asignación de tratamientos (variedades) a unidades experimentales (parcelas) fue completamente aleatoria. Por lo tanto, el experimento se presentó como un diseño completamente aleatorio (DCA).

Diseño completamente al azar (DCA)

v1	v1	v3	v2	v3	v2
v2	v3	v4	v4	v3	v2
v2	v3	v4	v1	v2	v4
v3	v1	v4	v1	v4	v1

variety	yield	row	col
v1	25.12	4	2
v1	17.25	1	6
v1	26.42	4	1
v1	16.08	1	4
v1	22.15	1	2
v1	15.92	2	4
v2	40.25	4	4
v2	35.25	3	1
v2	31.98	4	6
v2	36.52	2	1
v2	43.32	2	5
v2	37.1	3	6
v3	18.3	2	2
v3	22.6	4	3
v3	25.9	3	5
v3	15.05	1	1
v3	11.42	3	2
v3	23.68	4	5
v4	28.55	1	5
v4	28.05	1	3
v4	33.2	2	3
v4	31.68	3	4
v4	30.32	3	3
v4	27.58	2	6

En términos generales

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

- Respuesta: yield
- Variable Explicatoria: variety
- Objetivo: Diferencias en el rendimiento de las variedades.

$$y_{ij} = \mu + \mathbf{variety}_i + \varepsilon_{ij} \quad ; \quad \varepsilon \sim N(0, \sigma_e^2)$$

- Número de niveles en el factor variety = ?
- Número de repeticiones por nivel = ?

Fijo o Aleatorio?

Five basic questions to consideration

Fixed vs. Random effect

http://www.biosci.global/customer-stories-en/faq-is-it-a-fixed-or-random-effect/?utm_source=linkedin&utm_medium=post&utm_campaign=genstat_teachnical&utm_content=is%20it%20a%20fixed%20or%20random%20effect

Thank you!

Johan Aparicio & Daniel Ariza-Suárez
Asistentes de Investigación

j.aparicio@cigar.org d.ariza@cigar.org