Investigating the metabolic underpinnings of early changes relevant to dementia

Becki Green, 3rd year PhD student, King's College London

Supervisors: Dr Petra Proitsi & Prof Marcus Richards

• Impairment in cognitive functioning impeding on day to day life

Livingston et al., 2020

- Impairment in cognitive functioning impeding on day to day life
- 50 million people affected worldwide

- Impairment in cognitive functioning impeding on day to day life
- 50 million people affected worldwide
- No treatments

- Impairment in cognitive functioning impeding on day to day life
- 50 million people affected worldwide
- No treatments
- Long prodrome with lifelong influences
- = great opportunity to prevent or delay pathology

- Impairment in cognitive functioning impeding on day to day life
- 50 million people affected worldwide
- No treatments
- Long prodrome with lifelong influences
- = great opportunity to prevent or delay pathology
- Little known about early mechanisms

MRC 1946 British Birth Cohort Study | Insight 46

- World's longest continually running birth cohort
- 5362 participants born in March 1946 LC-MS metabolomics data (N=1800), Insight 46 (brain imaging) (N=500)
- Deeply phenotyped
- Broadly representative of the population in mainland Britain at that time
- Key age

 Products of metabolism – life sustaining chemical reactions occurring in your body

- Products of metabolism life sustaining chemical reactions occurring in your body
- Small molecules, some can travel into the brain

- Products of metabolism life sustaining chemical reactions occurring in your body
- Small molecules, some can travel into the brain
- Real-time snapshot into what is going on in the body

- Products of metabolism life sustaining chemical reactions occurring in your body
- Small molecules, some can travel into the brain
- Real-time snapshot into what is going on in the body
- Accessible and potentially modifiable

- Products of metabolism life sustaining chemical reactions occurring in your body
- Small molecules, some can travel into the brain
- Real-time snapshot into what is going on in the body
- Accessible and potentially modifiable
- Relevant

- Products of metabolism life sustaining chemical reactions occurring in your body
- Small molecules, some can travel into the brain
- Real-time snapshot into what is going on in the body
- Accessible and potentially modifiable
- Relevant

Limitations – clinical or small studies, lifestyle influences, reverse causation, replication

PhD aims

Identify metabolic markers and mechanisms relevant to early dementia, untangling the influence of life course factors

Study 2: Do key metabolites and modules also associate with brain imaging measures?

Study 3: Ascertain whether associations lie on the causal pathway

Investigate causality and interrogate the nature of life course relationships using statistical genetics approaches

Study 4: Do related phenotypes have overlapping molecular underpinnings?

Step 1 Step 2 Step 3 **Explore the** Life metabolic course Metabolic networks Single metabolites Metabolic pathways underpinnings of factors (Childhood cognitive cognition function across and social factors; the 7th decade of Lifestyle life factors) Step 4 Integrate results to highlight key, functionally important, metabolites for further study

Study 2: Do key metabolites and modules also associate with brain imaging measures?

Study 2: Do key metabolites and modules also associate with brain imaging measures?

Study 2: Do key metabolites and modules also associate with brain imaging measures?

Step 1

Step 2

Identify modules and key metabolites associated with brain imaging measures

Study 2: Do key metabolites and modules also associate with brain imaging measures?

course

Investigate causality and interrogate the nature of life course relationships using statistical genetics approaches

Green et al., under review

Key results (study 1):

Explore the metabolic underpinnings of aspects of cognitive function across the 7th decade of life

- 155 metabolites, 10 pathways, 5 network modules
- Some associations unique to particular cognitive domains
- 28 key metabolites belonging to the 5 modules

	Cyan (n=22)	Green (n=59)	Black (n=45)	Brown (n=130)	Greenyellow (n=30)	Yellow (n=70)	Pink (n=35)	Red (n=47)	Turquoise (n=192)	Tan (n=26)	Salmon (n=25)	Blue (n=132)	Magenta (n=34)	Purple (n=33)
Memory – short–term (60–64y)	0.23	0.043	0.03	-0.075	0.063	0.099	-0.0081	-0.039	-0.12	-0.053	-0.003	-0.051	-0.034	-0.03
	(0)	(0.08)	(0.2)	(0.002)	(0.009)	(4e-05)	(0.7)	(0.1)	(5e-07)	(0.03)	(0.9)	(0.03)	(0.2)	(0.2)
Memory – short-term (69y)	0.21	0.033	-0.0065	-0.063	0.022	0.061	0.0039	-0.0012	-0.12	-0.031	0.022	-0.021	-0.011	-0.022
	(3e–15)	(0.2)	(0.8)	(0.02)	(0.4)	(0.02)	(0.9)	(1)	(7e-06)	(0.2)	(0.4)	(0.4)	(0.7)	(0.4)
Memory – delayed (60–64y)	0.18	0.016	-0.00054	-0.032	0.043	0.091	0.015	-0.025	-0.09	-0.046	-0.0058	-0.039	0.0012	-0.013
	(1e–13)	(0.5)	(1)	(0.2)	(0.07)	(2e-04)	(0.5)	(0.3)	(2e-04)	(0.05)	(0.8)	(0.1)	(1)	(0.6)
Clinical screening measure	0.18 (1e–09)	0.081 (0.004)	-0.031 (0.3)	-0.066 (0.02)	0.031 (0.3)	0.085 (0.003)	0.0029 (0.9)	0.00038	-0.11 (2e-04)	-0.041 (0.2)	0.015 (0.6)	-0.018 (0.5)	-0.026 (0.4)	-0.045 (0.1)
Processing speed (60–64y)	0.11	0.021	-0.008	-0.07	0.035	0.041	0.014	-0.037	-0.048	-0.0089	0.025	-0.034	-0.036	-0.06
	(4e–06)	(0.4)	(0.7)	(0.004)	(0.1)	(0.09)	(0.6)	(0.1)	(0.05)	(0.7)	(0.3)	(0.2)	(0.1)	(0.01)
Processing speed (69y) -	0.06 (0.02)	-0.00089 (1)	-0.0054 (0.8)	-0.059 (0.02)	-0.0058 (0.8)	0.011 (0.7)	0.014 (0.6)	-0.059 (0.02)	-0.037 (0.2)	0.026 (0.3)	0.033 (0.2)	-0.032 (0.2)	-0.063 (0.02)	-0.086 (0.001)

	Cyan	Green	Black	Brown	Greenyellow	Yellow	Pink	Red	Turquoise	Tan	Salmon	Blue	Magenta	Purple
	(n=22)	(n=59)	(n=45)	(n=130)	(n=30)	(n=70)	(n=35)	(n=47)	(n=192)	(n=26)	(n=25)	(n=132)	(n=34)	(n=33)
Memory – short-term (60–64y) -	0.23	0.043	0.03	-0.075	0.063	0.099	-0.0081	-0.039	-0.12	-0.053	-0.003	-0.051	-0.034	-0.03
	(0)	(0.08)	(0.2)	(0.002)	(0.009)	(4e-05)	(0.7)	(0.1)	(5e-07)	(0.03)	(0.9)	(0.03)	(0.2)	(0.2)
Memory – short–term (69y) -	0.21	0.033	-0.0065	-0.063	0.022	0.061	0.0039	-0.0012	-0.12	-0.031	0.022	-0.021	-0.011	-0.022
	(3e-15)	(0.2)	(0.8)	(0.02)	(0.4)	(0.02)	(0.9)	(1)	(7e-06)	(0.2)	(0.4)	(0.4)	(0.7)	(0.4)
Memory – delayed (60–64y) -	0.18	0.016	-0.00054	-0.032	0.043	0.091	0.015	-0.025	-0.09	-0.046	-0.0058	-0.039	0.0012	-0.013
	(1e-13)	(0.5)	(1)	(0.2)	(0.07)	(2e-04)	(0.5)	(0.3)	(2e-04)	(0.05)	(0.8)	(0.1)	(1)	(0.6)
Clinical screening measure -	0.18	0.081	-0.031	-0.066	0.031	0.085	0.0029	0.00038	-0.11	-0.041	0.015	-0.018	-0.026	-0.045
	(1e-09)	(0.004)	(0.3)	(0.02)	(0.3)	(0.003)	(0.9)	(1)	(2e-04)	(0.2)	(0.6)	(0.5)	(0.4)	(0.1)
Processing speed (60–64y) -	0.11	0.021	-0.008	-0.07	0.035	0.041	0.014	-0.037	-0.048	-0.0089	0.025	-0.034	-0.036	-0.06
	(4e-06)	(0.4)	(0.7)	(0.004)	(0.1)	(0.09)	(0.6)	(0.1)	(0.05)	(0.7)	(0.3)	(0.2)	(0.1)	(0.01)
Processing speed (69y) -	0.06	-0.00089	-0.0054	-0.059	-0.0058	0.011	0.014	-0.059	-0.037	0.026	0.033	-0.032	-0.063	-0.086
	(0.02)	(1)	(0.8)	(0.02)	(0.8)	(0.7)	(0.6)	(0.02)	(0.2)	(0.3)	(0.2)	(0.2)	(0.02)	(0.001)

Key results (study 1):

2. Untangle influencing life course factors

- Many sensitive to earlier life cognitive and social factors, particularly childhood cognition
- Some independent relationships

	Cyan (n=22)	Green (n=59)	Black (n=45)	Brown (n=130)	Greenyellow (n=30)	Yellow (n=70)	Pink (n=35)	Red (n=47)	Turquoise (n=192)	Tan (n=26)	Salmon (n=25)	Blue (n=132)	Magenta (n=34)	Purple (n=33)
Memory – short–term (60–64y)	0.23	0.043	0.03	-0.075	0.063	0.099	-0.0081	-0.039	-0.12	-0.053	-0.003	-0.051	-0.034	-0.03
	(0)	(0.08)	(0.2)	(0.002)	(0.009)	(4e-05)	(0.7)	(0.1)	(5e-07)	(0.03)	(0.9)	(0.03)	(0.2)	(0.2)
Memory – short–term (69y)	0.21	0.033	-0.0065	-0.063	0.022	0.061	0.0039	-0.0012	-0.12	-0.031	0.022	-0.021	-0.011	-0.022
	(3e–15)	(0.2)	(0.8)	(0.02)	(0.4)	(0.02)	(0.9)	(1)	(7e-06)	(0.2)	(0.4)	(0.4)	(0.7)	(0.4)
Memory – delayed (60–64y)	0.18 (1e–13)	0.016 (0.5)	-0.00054 (1)	-0.032 (0.2)	0.043 (0.07)	0.091 (2e-04)	0.015 (0.5)	-0.025 (0.3)	-0.09 (2e-04)	-0.046 (0.05)	-0.0058 (0.8)	-0.039 (0.1)	0.0012	-0.013 (0.6)
Clinical screening measure	0.18	0.081	-0.031	-0.066	0.031	0.085	0.0029	0.00038	-0.11	-0.041	0.015	-0.018	-0.026	-0.045
	(1e–09)	(0.004)	(0.3)	(0.02)	(0.3)	(0.003)	(0.9)	(1)	(2e-04)	(0.2)	(0.6)	(0.5)	(0.4)	(0.1)
Processing speed (60–64y)	0.11	0.021	-0.008	-0.07	0.035	0.041	0.014	-0.037	-0.048	-0.0089	0.025	-0.034	-0.036	-0.06
	(4e–06)	(0.4)	(0.7)	(0.004)	(0.1)	(0.09)	(0.6)	(0.1)	(0.05)	(0.7)	(0.3)	(0.2)	(0.1)	(0.01)
Processing speed (69y)	0.06 (0.02)	-0.00089 (1)	-0.0054 (0.8)	-0.059 (0.02)	-0.0058 (0.8)	0.011 (0.7)	0.014 (0.6)	-0.059 (0.02)	-0.037 (0.2)	0.026 (0.3)	0.033 (0.2)	-0.032 (0.2)	-0.063 (0.02)	-0.086 (0.001)

	Cyan	Green	Black	Brown	Greenyellow	Yellow	Pink	Red	Turquoise	Tan	Salmon	Blue	Magenta	Purple
	(n=22)	(n=59)	(n=45)	(n=130)	(n=30)	(n=70)	(n=35)	(n=47)	(n=192)	(n=26)	(n=25)	(n=132)	(n=34)	(n=33)
Memory – short–term (60–64y)	0.068	-0.0074	-0.0045	0.0079	-0.014	0.0071	-0.025	-0.022	-0.053	-0.0074	-0.012	-0.026	-0.02	-0.01
	(0.004)	(0.7)	(0.8)	(0.7)	(0.6)	(0.7)	(0.2)	(0.3)	(0.01)	(0.7)	(0.6)	(0.2)	(0.3)	(0.6)
Memory – short-term (69y) ·	0.066	-0.0078	-0.035	-0.0035	-0.043	-0.024	-0.015	0.0072	-0.068	0.0094	0.014	-0.011	-0.012	-0.013
	(0.02)	(0.7)	(0.1)	(0.9)	(0.1)	(0.3)	(0.5)	(0.8)	(0.006)	(0.7)	(0.6)	(0.6)	(0.6)	(0.6)
Memory – delayed (60–64y) -	0.042 (0.09)	-0.025 (0.3)	-0.022 (0.3)	0.029 (0.2)	-0.013 (0.6)	0.012 (0.6)	0.0017 (0.9)	-0.012 (0.6)	-0.046 (0.04)	-0.0083 (0.7)	-0.011 (0.6)	-0.016 (0.5)	0.0067 (0.8)	0.0041 (0.9)
Clinical screening measure -	0.013	0.032	-0.068	-0.021	-0.038	-0.014	-0.015	0.0036	-0.065	0.0084	0.011	-0.013	-0.032	-0.04
	(0.6)	(0.2)	(0.006)	(0.4)	(0.2)	(0.6)	(0.5)	(0.9)	(0.01)	(0.7)	(0.6)	(0.6)	(0.2)	(0.1)
Processing speed (60–64y) -	0.0084 (0.8)	-0.0021 (0.9)	-0.031 (0.2)	-0.02 (0.4)	-0.0079 (0.8)	-0.0011 (1)	0.0029 (0.9)	-0.023 (0.3)	-0.0095 (0.7)	0.013 (0.6)	0.018 (0.4)	-0.027 (0.3)	-0.026 (0.3)	-0.053 (0.03)
Processing speed (69y) -	-0.017	-0.013	-0.029	-0.026	-0.054	-0.02	0.0068	-0.049	-0.0093	0.037	0.023	-0.031	-0.059	-0.08
	(0.6)	(0.6)	(0.3)	(0.4)	(0.07)	(0.5)	(0.8)	(0.06)	(0.7)	(0.2)	(0.4)	(0.3)	(0.03)	(0.002)

Yellow (hippocampal volume), brown (whole brain volume)

5/5 showed nominal associations + 2 additional for whole brain volume 12 of the key metabolites + some extra identified

Associations persisted after adjusting for life course factors

Summary

- Metabolic mechanisms highlighted:
- Role of particular fatty acids in processing speed; role of vitamin A/C metabolites and modified nucleosides and amino acids in memory (part explained by life course factors)
- Role of sphingolipid metabolism in hippocampal volume, phospholipids in whole brain volume
- 30 key metabolites marker candidates?
- Life course factors reverse causation, other confounding?

Future directions

underpinnings?

for further study

Study 2: Do key metabolites and modules also associate with brain imaging measures?

Study 3: Ascertain whether associations lie on the causal pathway

Investigate causality and interrogate the nature of life course relationships using statistical genetics approaches

Study 4: Do related phenotypes have overlapping molecular underpinnings?

Thank you!

Thank you to my supervisors and coauthors who make this work possible:

Petra Proitsi Marcus Richards

Jodie Lord
Jin Xu
Min Kim
Jane Maddock
Andy Wong
Cristina Legido-Quigley
Richard Dobson
SGU Team

Funders 🛂

A special thanks to all MRC 1946 study members for their lifelong participation.

Twitter: @becki e green

Email: rebecca.e.green@kcl.ac.uk
Website: beckigreen.netlify.app