Wine Terroir Data Processing

Andrew Lemke

This notebook transforms the raw wine terroir data into a usable form for causal inference.

The data

In this example, we have historical data from many wines produced the same way over a series of decades in California. The grapes and regions are recorded along with a selection of common wine attributes. This data is combined with historical weather data distilled to three weather indexes.

Our dataset contains 5 regions. The northern regions all have very similar climate while the climate is hotter in the southern regions.

The wine data

Feature Name	Feature Explanation	Units	If Used
Table.No.	Number of table in the originial report where data were extracted.	-	
Cultivar	Name of cultivar	-	х
Color	Skin color of each cultivar	-	
Recommend	Recommend types: particularly recommended, limited recommended, not recommended	-	х
RecReg	Recommended planting regions for the cultivar	-	
Reg	Actual planting regions for each cultivar	-	х
Harvest date	Grape harvest date of each cultivar in different regions	yy/mm/dd	х
DCY Day of	year for grape harvest date d	Days	
Must.Brix	Total soluble solids of each cultivar in different regions	oBrix	х
Must.Tacid	Must total acid of each cultivar in different regions	g/100cc	Х
Must.pH	Must pH of each cultivar in different regions	-	х
Wine.Alcohol	Wine alcohol of each cultivar in different regions	% (v/v)	Х
Wine.Facid	Wine fixed acid of each cultivar in different regions (wine fixed acid equals to wine total acid minus volatile acid)	g/100cc	х
Wine.Extract	Wine extract of each cultivar in different regions	g/100cc	
Wine.Tannin	Wine tannin of each cultivar in different regions	g/100cc	х
Wine.Tasting	Wine tasting notes (evaluate the cultivars based on the merits and defects of wine)		Х

The Weather Data

We have one weather dataset for each of the 5 wine growing regions in California. Each dataset has the following features.

Feature Name	Feature Explanation	Units	If Used
GST	Growing season average temperature from April to October	deg C	х
WI	Winkler index	deg C * d	Х
HI	Huglin index	deg C * d	x

Imports

Pandas and a regex library are needed to import the data. A regex library is used to extract usable data from descriptions of the wines.

```
In [1]: import pandas as pd import numpy as np import re import matplotlib.pyplot as plt
```

The data is loaded from an online source. The data origionally comes from here,

Here, we load all of the regional weather data and perform some processing.

```
In [4]: all_regions.head()
```

```
HI Region
Out[4]:
           Year
        0 1911 15.073364 1099.050000 967.254052
        1 1912 15.752336 1246.550000 1146.450272
         2 1913 16.722430 1446.300000 1276.779404
         3 1914 15.678579 1217.966001 1103.276910
         4 1915 15.950196 1277.291993 1133.617078
```

Wine Data

The wine data requires a bit more work as it is more complex. Processing will be done on this dataframe, the weather and wine dataframes will be merged, then more processing will occur.

```
In [5]: wine_data = pd.read_excel(
    r'https://gitlab.com/Lemke/colab-data/-/raw/02bbb076dc364989414edc1a1161d8b92a3a7a08/WineData/Subset1.xls',
    sheet_name = 'data',
In [6]: # drop cols we don't use
          wine_data = wine_data.drop(columns=['RecReg', 'Wine.Extract', 'DOY'])
          while data is missing
wine_data = wine_data.dropna()
# extract the year from the date feild
          wine_data['year'] = wine_data['Harvest date'].dt.year
In [7]: wine_data.head()
                                                    Recommend Reg Harvest date Must.Brix Must.Tacid Must.pH Wine.Alcohol Wine.Facid Wine.Tannin
                                                                                                                                                                                        Wine.Tasting year
                    9 Chardony White Particularly recommended
                                                                    3
                                                                         1936-09-08
                                                                                                                3.88
                                                                                                                               15.6
                                                                                                                                                                       Very distinct; good, but alcoholic 1936
         2 9 Chardony White Particularly recommended 1 1937-10-01
                                                                                          22.1
                                                                                                      0.72
                                                                                                                3.38
                                                                                                                               12.0
                                                                                                                                           0.52
                                                                                                                                                        0.03
                                                                                                                                                                 Light body; fruity; distinct; good quality 1937
                    9 Chardony White Particularly recommended
                                                                         1937-09-11
                                                                                          24.6
                                                                                                      0.63
                                                                                                                3.69
                                                                                                                               12.8
                                                                                                                                           0.49
                                                                                                                                                        0.03
                                                                                                                                                                       Flat; tends to oxidize; but distinct 1937
          4 9 Chardony White Particularly recommended 1 1938-09-14
                                                                                      19.8
                                                                                                      0.78
                                                                                                               3.19
                                                                                                                              10.5
                                                                                                                                           0.68
                                                                                                                                                        0.07 Tart, but palatable; distinct; picked too early 1938
                    9 Chardony White Particularly recommended
                                                                 3 1938-09-25
                                                                                                                               14.8
                                                                                                                                                                       Soft; very rich; distinct; very good 1938
                                                                                                      0.62
                                                                                                                                          0.59
```

As the weather data is per region per year, we will use this to make a key for merging the tables.

```
In [8]: wine_data['RegionYearKey'] = [''.join(str(i)) for i in zip(wine_data['Reg'], wine_data['year'])]
all_regions['RegionYearKey'] = [''.join(str(i)) for i in zip(all_regions['Region'], all_regions['Year'])]
 In [9]: data = wine data.merge(
                     right=all_regions,
how='left',
on='RegionYearKey'
In [10]: data[data['Reg'] != data['Region']].head()
```

Out[10]: Harvest Must.Brix Must.Tacid Must.pH Wine.Alcohol Wine.Facid Wine.Tannin Table.No. Wine.Tasting year RegionYearKey Year GST WI HI Region Cultivar Color Recommend Reg date Cahernet Particularly 1937-08-Flat; little varietal 42 10 Red 5 229 0.65 3.48 11.2 0.49 0.11 1937 (5, 1937) NaN NaN NaN NaN NaN Particularly 1937-08-Distinct flavor; thin; 11.7 0.03 (5, 1937) NaN NaN NaN NaN 124 Semillon White 23.2 0.68 3.89 0.50 not balanced recommended Rich, but flat; note 5 1936-08-Particularly very early harvest. 1936 23.6 11.9 (5, 1936) NaN NaN NaN NaN 165 12 Petite Sirah Red 0.61 3.99 0.45 0.21 NaN recommended Desse.. Particularly 1937-09-Fruity; astringent;

12.6

16.8

0.52

0.32

0.23

1937

Distinct muscat; rich, luscious flavor; good

(5, 1937) NaN NaN NaN NaN

(5, 1936) NaN NaN NaN NaN

NaN

Region 5 is missing some data, so we will drop these rows and then reset the default integer index for the dataframe to clean up.

5 1936-08-

Particularly

recommended

23.1

25.1

0.52

0.54

```
In [11]: data = data.dropna()
          data.reset_index(
              drop=True,
              inplace=True
         data.shape
```

3.64

3.92

Out[11]: (1135, 20)

170

207

12

Petite Sirah Red

Muscat Canelli White

```
In [12]: # verify all the rest of the merged rows match the origional tables
              no_error = True
for i in data.index:
                    check_data = data.loc[i, ['year', 'Reg', 'GST', 'WI', 'HI']]
yr, rg = check_data[0:2]
#print('merged:\n{}'.format(check_data[2:]))
                    #print()
                    #print(all_regions)
                    reg_data = all_regions.loc[(all_regions['Region'] == rg) & (all_regions['Year'] == yr), ['GST', 'WI', 'HI']]
if (reg_data == check_data[2:]).sum().sum() != 3:
    print('error')
                          no error = False
              if no_error:
    print('check complete')
```

check complete

```
In [13]: # merging gave us duplicate region and year columns, remove them
             columns=['year', 'Region'],
             inplace=True
```

Volatile acid in wine is the fixed acid minus the total acid. We will compute this feature.

```
In [14]: data['Vacid'] = data['Must.Tacid'] - data['Wine.Facid']
```