Assignment - 1

AI24BTECH11003 - B. Vijaya Sreyas

17.Indefinite Integrals - Section B

5) The value of $\sqrt{2} \int \frac{\sin x dx}{\sin(x-\frac{\pi}{2})}$

(2008)

$$(a)x + \log\left|\cos\left(x - \frac{\pi}{4}\right)\right| + c$$

$$(b)x - \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + c$$

$$(c)x + \log \left[\sin\left(x - \frac{\pi}{4}\right)\right] + c$$

$$(d)x - \log \left|\cos\left(x - \frac{\pi}{4}\right)\right| + c$$

(d) $x - \log \left| \cos \left(x - \frac{\pi}{4} \right) \right| + c$ 6) If the $\int \frac{5 \tan x}{\tan x - 2} dx = x + a \ln \left| \sin x - 2 \cos x \right| + k,$ then a is equal to

- 2) 2
- 3) 1

7) If $\int f(x) dx = \psi(x)$, then $\int x^5 f(x^3) dx$ is equal

(a)
$$\frac{1}{3} \left[x^3 \psi \left(x^3 \right) - \int x^2 \psi(x^3) dx \right] + C$$

(b)
$$\frac{1}{3}x^3\psi(x^3) - 3\int x^3\psi(x^3)dx + C$$

(c)
$$\frac{1}{3}x^3\psi(x^3) - \int x^2\psi(x^3)dx + C$$

(d)
$$\frac{1}{3} \left[x^3 \psi(x^3) - \int x^3 \psi(x^3) dx \right] + C$$

8) The integral $\int (1+x-\frac{1}{x})e^{x+\frac{1}{x}}dx$ is equal to (JEE M 2014)

1)
$$(x+1)e^{x+\frac{1}{x}} + c$$
 3) $(x-1)e^{x+\frac{1}{x}} + c$ 2) $-xe^{x+\frac{1}{x}} + c$ 4) $xe^{x+\frac{1}{x}} + c$

3)
$$(x-1)e^{x+\frac{1}{x}}+c$$

2)
$$-xe^{x+\frac{1}{x}}+c$$

4)
$$xe^{x+\frac{1}{x}} + c$$

9) The integral $\int \frac{dx}{x^2(x^4+1)^{3/4}}$ equals:

(JEE M 2015)

1)
$$-(x^4 + 1)^{\frac{1}{4}} + c$$
 3) $(\frac{x^4 + 1}{x^4})^{\frac{1}{4}} + c$ 2) $-(\frac{x^4 + 1}{x^4}) + c$ 4) $(x^4 + 1)^{\frac{1}{4}} + c$

3)
$$\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + \epsilon$$

$$2) - \left(\frac{x^4+1}{x^4}\right) + c$$

4)
$$(x^4 + 1)^{\frac{1}{4}} + a$$

10) The integral $\int \frac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx$ is equal to

1)
$$\frac{x^5}{2(x^5-x^3+1)^2} + C$$
 3) $\frac{-x^5}{(x^5+x^3+1)^2} + C$
2) $\frac{-x^{10}}{2(x^5+x^3+1)^2} + C$ 4) $\frac{x^{10}}{2(x^5+x^3+1)} + C$

3)
$$\frac{-x^5}{(x^5+x^3+1)^2} + C$$

2)
$$\frac{-x^{10}}{2(x^5+x^3+1)^2} + C$$

4)
$$\frac{x^{10}}{2(x^5+x^3+1)}$$
 + (

where C is an arbitrary constant

11) Let $I_n = \int \tan^x dx$, (n > 1). $I_4 + I_6 = a \tan^5 x +$ $bx^5 + C$, where \tilde{C} is constant of integration, then the ordered pair (a, b) is equal to :

(JEE M 2017)

1) 2) 3)
$$\left(\frac{1}{5}, 0\right)$$
 $\left(\frac{1}{5}, 1\right)$ 4) $\left(\frac{1}{5}, -1\right)$

 $\int \frac{12)}{\sin^2 x \cos^2 x} \frac{\text{The}}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} dx \text{ is equal to}$ (JEE M 2018)

1)
$$\frac{-1}{3(1+\tan^3 x)} + C$$
 3) $\frac{-1}{1+\cot^3 x} + C$ 4) $\frac{1}{3(1+\tan^3 x)} + C$

3)
$$\frac{-1}{1+\cot^3 x} + C$$

$$2) \frac{1}{1+\cot^3 x} + C$$

$$n \in N \text{ (the set of natura}$$

13) For $x^2 \neq n\pi + 1$, $n \in \mathbb{N}$ (the set of natural numbers), the integral $\int x \sqrt{\frac{2\sin(x^2-1)-\sin 2(x^2-1)}{2\sin(x^2-1)+\sin 2(x^2-1)}} dx$ is equal to:

(JEE M 2019 - 9 Jan(M))

1)
$$\log_e \left| \frac{1}{2} \sec^2 \left(x^2 - 1 \right) \right| + 3$$
 $\frac{1}{2} \log_e \left| \sec^2 \left(\frac{x^2 - 1}{2} \right) \right| + C$

3)
$$\frac{1}{2} \log_e \left| \sec^2 \left(\frac{x^2 - 1}{2} \right) \right| +$$

2)
$$\frac{1}{2} \log_e \left| \sec^2 \left(\frac{x^2 - 1}{2} \right) \right| + 4$$
 $\log_2 \left| \sec \left(\frac{x^2 - 1}{2} \right) \right| + c$

4)
$$\log_2 \left| \sec \left(\frac{x^2 - 1}{2} \right) \right| + c$$

(where c is a constant of integration)

14) The integral $\int \sec^{2/3} x \csc^{4/3} x dx$ is equal to (JEE M 2019 - 9 April (M))

1)
$$-3\tan^{-1/3} x + C$$
 3) $-3\cot^{-1/3} x + C$
2) $-\frac{3}{4}\tan^{-4/3} x + C$ 4) $3\tan^{-1/3} + C$

3)
$$-3\cot^{-1/3} x + C$$

2)
$$-\frac{3}{4} \tan^{-4/3} x + C$$

4)
$$3\tan^{-1/3} + C$$

(Here, C is a constant of integration)

18. Definite Integrals - Section B

31) The area of the region bounded by the parabola $(y-2)^2 = x-1$, the tangent of the parabola at the point (2,3) and the x-axis is:

(2009)

- 2) 9

32) $\int_0^{\pi} [\cot x] dx$, where [.] denotes the greatest integer function, is equal to

(2009)

1) 1		2) -1
33)	The	area	bounded
$\cos x$	and y	$= \sin$	x betwee
$x = \frac{3\pi}{2}$	is		

3) $-\frac{\pi}{2}$ 4) $\frac{\pi}{2}$

between the curves y =on the ordinates x = 0 and

(2010)

1)
$$4\sqrt{2} + 2$$

2) $4\sqrt{2} - 1$

3)
$$4\sqrt{2} + 1$$

4) $4\sqrt{2} - 2$

2)
$$4\sqrt{2} - 1$$

4)
$$4\sqrt{2}-2$$

34) Let p(x) be a function defined on **R** such that p'(x) = p'(1-x), for all $x \in [0,1]$, p(0) = 1 and p(1) = 41. Then $\int_0^1 p(x) dx$ equals

4)
$$\sqrt{41}$$

35) The value of $\int_0^1 \frac{8 \log(1+x)}{1+x^2} dx$ is

1)
$$\frac{\pi}{8} \log 2$$

1)
$$\frac{\pi}{8} \log 2$$
 2) $\frac{\pi}{2} \log 2$

4)
$$\pi \log 2$$

36) The area of the region enclosed by the curves $y = x, x = e, y = \frac{1}{x}$ and the positive x axis is

(2011)

- 1) 1 square unit
 2) ³/₂ square units

- 3) $\frac{5}{2}$ square units 4) $\frac{1}{2}$ square unit

37) The area between the parabolas: $x^2 = \frac{y}{4}$ and $x^2 = 9y$ and the straight line y = 2 is: (2012)

1)
$$20\sqrt{2}$$

2)
$$\frac{10\sqrt{2}}{3}$$

3)
$$\frac{20\sqrt{2}}{2}$$

2) $\frac{10\sqrt{2}}{2}$ 3) $\frac{20\sqrt{2}}{2}$ 4) $10\sqrt{2}$

38) If $g(x) = \int_0^x \cos 4t dt$, then $g(x + \pi)$ equals $(2012) \qquad 1) \quad \pi - \frac{4\sqrt{2}}{3}$ $2) \quad \frac{\pi}{2} - \frac{2\sqrt{2}}{3}$ $4) \quad \pi - \frac{4}{3}$

(a)
$$\frac{g(x)}{g(\pi)}$$

(c)
$$g(x) - g(\pi)$$

(a)
$$\frac{g(x)}{g(\pi)}$$

(b) $g(x) + g(\pi)$

(d)
$$g(x).g(\pi)$$

39) **Statement-1**: The value of the integral $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$ is equal to $\pi/6$

Statement-2: $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$.

- (a) Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (b) Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
 - (c) Statement-1 is true; Statement-2 is false
 - (d) Statement-1 is false; Statement-2 is true
- 40) The area (in square units) bounded by the curves $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis, and lying in the first quadrant is: (JEE M 2013)

1) 9

2) 36

3) 18 4) $\frac{27}{4}$

41) The integral $\int_0^{\pi} \sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2}} dx$ equals:

(JEE M 2014)

1) (a) $4\sqrt{3} - 4$ 3) (c) $\pi - 4$ 2) (b) $4\sqrt{3} - 4 - \frac{\pi}{3}$ 4) (d) $\frac{2\pi}{3} - 4 - 4\sqrt{3}$

42) The area of the region described by A = $\{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is:

(JEE M 2014)

1)
$$\frac{\pi}{2} - \frac{2}{3}$$
 2) $\frac{\pi}{2} + \frac{2}{3}$ 3) $\frac{\pi}{2} + \frac{4}{3}$ 4) $\frac{\pi}{2} - \frac{4}{3}$

2)
$$\frac{\pi}{2} + \frac{2}{3}$$

3)
$$\frac{\pi}{2}$$
 +

4)
$$\frac{\pi}{2} - \frac{4}{3}$$

43) The area (in sq. units) of the region described (2011) by $\{(x, y) : y^2 \le 2x \text{ and } y \ge 4x - 1\}$ is

(JEE M 2015)

1)
$$\frac{15}{64}$$
 2) $\frac{9}{32}$ 3) $\frac{7}{32}$

$$\frac{9}{32}$$

3)
$$\frac{7}{32}$$

4)
$$\frac{5}{64}$$

44) The integral $\int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log(36 - 12x + x^{2})} dx$ is equal

(JEE M 2015)

45) The area (in sq. units) of the region $\{(x, y): y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$ is

(JEE M 2016)

1)
$$\pi - \frac{4\sqrt{2}}{3\pi}$$

3)
$$\pi - \frac{4}{3}$$

2)
$$\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$$

4)
$$\pi - \frac{3}{2}$$