Recitation 5

- Feel free to solve this collaboratively during recitation, and ask (and answer) questions about this problem set on Piazza.
- This is an **optional** problem set; do not turn this in for grading.
- While you don't have to turn this in, be warned that this material can appear in a quiz or exam.
- 1. Indicate which of the following relationships are true and which are false, together with a brief explanation in words why you think that is the case:
- (a) $Z^+ \subseteq Q$.
- (b) $Q \subseteq Z$.
- (c) $Q \cap R = Q$.
- (d) $Z^+ \cap R = Z^+$.
- (e) $\emptyset \subset \mathbb{N}$.
- 2. Prove each of the following for all sets A, B, C in a universal set \mathbb{U} :
 - (a) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.
 - (b) $A \oplus \emptyset = A$.
 - (c) $A \oplus A = \emptyset$
 - (d) If $A \oplus C = B \oplus C$, then A = B.
- 3. Either prove the following statement, or disprove it using a counter-example.

For all sets
$$A, B, C$$
, if $B \cap C \subseteq A$, then $(A - B) \cap (A - C) = \emptyset$.

4. A pair of sets are called *disjoint* if their intersection is the empty set. Prove that two finite sets A and B are disjoint if and only if $|A| + |B| = |A \cup B|$.