

UO STRUCTURES 1 - ASSESSMENT

Assessment Name	Assessment – Truss Design Report		
Test Available from			
Test Due			
Weighting	% of the total grade for this course		
File Type to submit	One *.doc or *.docx file, with a maximum file size of 100MB		

TRUSS ANALYSIS AND DESIGN REPORT TEST COURSE OBJECTIVES:

It is beneficial to familiarise yourself with the relationship between the assessment and the course objectives.

- CO1: acting on structures and determine costs and use this to justify design decisions.
- CO2: support reactions, shear forces, bending moments and deflections.

ASSESSMENT SUMMARY:

COMPONENTS	COURSE OBJECTIVES	WEIGHTING	DUE DATE	DETAILS	SUBMISSION PROCESS
2 Questions	CO 1, 2	%			Online

ASSESSMENT DESCRIPTION

In this test, please apply the relevant concepts covered in this course. In the first question, design different members of a truss. Where relevant, reference the relevant Australian Standard Loading Codes AS1170 and ASI Design Capacity Tables for Structural Steel.

Resources from weeks 1 - 10 will be a valuable reference.

Student ID Student name Page 1

UO Structures 1 Test Instructions

Read this page in detail

- The Test is out of 100 marks and is worth 35% of overall course grade
- Answer All Questions
- All Calculations must be typed, preferably using the Word Equation Editor. Handwritten calculations will not be assessed.
 - * Preferably, type the calculations using equation editor in MS Word.
 - *Excel spreadsheets and software analysis tools will not be accepted for submission.
- Word document submission only
 - o Excel spreadsheets and software analysis tools will not be accepted for submission
- Where relevant, <u>diagrams must be included</u> with calculations (e.g. Free body diagrams, tributary areas) and these can be hand drawn and scanned in.
 - o Clear and informative diagrams can help the assessor follow your calculations and reasoning.
- For **full marks** for any part of a question, working must be displayed and units must be correct at every step of working.
 - For example, in Question 1 Part A the correct support reactions with no working or free body diagram(s) to show how the support reactions were obtained, will only score 1 out of 10 for that part.
- The marks for each part are <u>underlined in bold font</u>
- Answers are to be correct to 2 decimal place.
 - For example, an answer of "The force in member YZ is 125.367 kN (Compression)" can be written as The force in member YZ is 125.37 kN (Compression)
 - For example, an answer of "The force in member YZ is 300.00 kN (Compression)" can be written as The force in member YZ is 300 kN (Compression)
- The <u>Design Properties and Capacity Tables</u> can be found in Course Information section and also in the **Assessment 2** Section on the Course website.
- You will need to access the Australian Standards, especially AS/NZS 1170.1:2002 via <u>Techstreet at the UniSA</u> <u>Library</u>.

Student ID Student name Page 2

Student Name: Benjamin Clark

Student Email: ben.clark@example.com

QUESTION 1:

A simple pin-jointed truss is loaded with a vertical force of 1000â€N at joint C. Using the method of

joints, determine the internal forces in members AC, BC, and CD. Indicate whether the forces are

tensile or compressive.

QUESTION 2:

For the truss shown, with support A pinned and support E on a roller, calculate the support reactions

at A and E. The truss carries a uniform vertical load on joint C. Assume all members are weightless.

QUESTION 3:

Using the method of sections, determine the forces in members EF, DF, and DE of the loaded truss.

A vertical load of 1200†N is applied at joint F. Clearly show your section and assumptions.

QUESTION 4:

A Pratt truss is subjected to vertical loads at the top and bottom chords. Explain how zero-force

members are identified in a truss structure and identify all zero-force members in the given

configuration.

QUESTION 5:

Given a Warren truss with a span of 6†m and equal panel lengths, determine the maximum force

in any member when a point load of 1500â€N is applied at the center-top joint. Use symmetry in

your analysis.

QUESTION 6:

Design an appropriate cross-section for a truss member experiencing a compressive force of

18â€kN. The material is structural steel with a yield strength of 250â€MPa, and a factor of safety of

1.5 is required. Show all calculations including buckling checks.

Parameter Table

Parameter Value

	1	
LoadAtJointC_N	942	
LoadAtJointF_N	1100	
UniformLoadAtJointC_N	972	
PointLoadAtTopCenterJoint_N	1377	
TrussSpan_m	4	
CompressiveForce_kN	16	
YieldStrength_MPa	297	
FactorOfSafety	1.55	
	•	

Figure 1: Steel Truss with bolted connections