- 1. Do the following series converge or diverge? (If conv., absolutely or conditionally?)
- (a) $\sum_{n=1}^{\infty} \frac{n^2 1}{n^3 + 1}$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2-1)}{n^3+1}$

(c) $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2-1)}{n^2+1}$

(d) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n \ln(n)}}

(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n \ln(n)}}$

 $(f) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$

 $(9)\sum_{n=1}^{\infty}\frac{\sin(2n)}{1+2n}$

 $(h) \sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n}$

(i)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^4+1}}{n^3+n}$$

$$(j)$$
 $\sum_{n=1}^{\infty} \frac{n!}{e^{(n+1)}}$

$$(k) \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

(l)
$$\sum_{n=4}^{\infty} \frac{3}{n(n-3)}$$
 (what to?)

2. For which values of x is the series convergent or divergent?

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{x^n}{n}$$

(c)
$$\sum_{n=0}^{\infty} n x^n$$

3. For those in 2(a-c), find a sumless formula!