CSC 430/530 : DATABASE MANAGEMENT SYSTEMS/ DATABASE THEORY

Lecture 5: Relations and Relational Algebra

149

Overview

- Relations
 - · Domains of Attributes
 - Constraint: Domain Constraints
 - Keys
 - Constraint: Foreign Key Constraints
 - Relational Algebra
 - Operators

151

Domain of an attribute

- The set of allowed values for each attribute is called the domain of the attribute
- Example of a student relation (r) and its attributes:
 - CWID: 8-digit number
 - First Name, Last Name: Alpha String
 - DoB: Date
 - SSN: 9-digit number
 - Passport: String (Letter followed by 7 digits) nullable
 - Program: Alpha String

CWID	First Name	Last Name	DoB	SSN	Passport	Program
11122333	Jack	Smith	27-Mar- 1987	733-34-272	L456781	Computer Science
22233444	Mary	Doe	13-May- 1994	555-22-123	Null	Cyber Engineering

Domain of an attribute

- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value *null* is a member of every domain. Indicated that the value is "unknown"
- IMPORTANT: The null value causes complications in the definition of many operations

CWID	First Name	Last Name	DoB	SSN	Passport	Program
11122333	Jack	Smith	27-Mar- 1987	733-34-272	L456781	Computer Science
22233444	Mary	Doe	13-May- 1994	555-22-12`	Null	Cyber Engineering

153

Relation Schema and Instance

- Let A_1 , A_2 , ..., A_n are attributes, and D_1 , D_2 , D_n are the domains of the attributes
- We represent the set of attributes as a relation $R = (A_1, A_2, ..., A_n)$, using the relation schema

Example:

INSTRUCTOR = (ID, name, dept_name, salary)

 Formally, given sets D₁, D₂, D_n a relation R at a given instance of time is a subset of

 $D_1 \times D_2 \times ... \times D_n$

Thus, a relation is a set of *n*-tuples of $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$

- The current values (**relation instance**) of a relation are specified by a table
- An element *t* of *R* is a *tuple*, represented by a *row* in a table

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: INSTRUCTOR relation with unordered tuples

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

155

Keys

- Let an attribute K ⊆ R
- *K* is a **superkey** of the Relation *R* if values for *K* are sufficient to identify a unique tuple.
 - Example: {SSN}, {CWID} and {CWID,name} are superkeys of *a* student at LaTech.
- Superkey K is a candidate key if K is minimal
 - Example: {SSN}, {CWID} is a candidate key for STUDENT
- One of the candidate keys is selected to be the **primary key**.
 - · which one?

Exercise:

CWID	First Name	Last Name	DoB	SSN	Passport	Program
11122333	Jack	Smith	27-Mar- 1987	733-34-272	L456781	Computer Science
22233444	Mary	Doe	13-May- 1994	555-22-122	Null	Cyber Engineering
33344555	Danny	Do	13-May- 1996	123-45-276	Null	BioMED
44455666	Farah	Mendez	13-May- 1994	346-09-987	Z6541113	Electrical
55566777	Kyle	Patrick	23-Aug- 2007	876-56-423	A129331	Computer Science

• Task: Identify the super keys, candidate keys, and primary keys

157

Exercise:

CWID	First Name	Last Name	DoB	SSN	Passport	Program
11122333	Jack	Smith	27-Mar- 1987	733-34-272	L456781	Computer Science
22233444	Mary	Doe	13-May- 1994	555-22-122	Null	Cyber Engineering
33344555	Danny	Мо	13-May- 1996	123-45-276	Null	BioMED
44455666	Farah	Mendez	13-May- 1994	346-09-987	Z6541113	Electrical
55566777	Kyle	Patrick	23-Aug- 2007	876-56-423	A129331	Computer Science

• Super keys: CWID,{CWID,DoB}, SSN, {First Name, Last Name}

• Candidate Keys: CWID, SSN

Primary Key: your choice of Candidate Key

Keys

- Foreign key constraint: Value in one relation must appear in another
 - Referencing relation
 - Referenced relation
 - Example dept_name in instructor is a foreign key from instructor referencing department

160

Points to remember: Equivalent Representations

- We know Relation is a set of tuples and not a list of tuples.
 - Order in which we present the tuples does not matter.

CoursesTaken(Student, Course, Grade)

- The attribute in a schema is also a set.
 - Schema is the same irrespective of order of attributes.

CoursesTaken (Student, Grade, Course)

• We specify a "standard" order when we introduce schema.

162

Points to remember: Degree and Cardinality

CoursesTaken:

Student	Course	Grade
Amy, O'Brian	CSC-100	Α
Bob, Castillo	CSC-100	F
Candice, De Mello	CSC-101	Α
Darrel, West	CSC-101	В

- Degree: is the number of attributes in a schema
 - The degree for the above table is 3
- Cardinality: is the number of tuples in relation
 - The cardinality for the above table is 4

Questions

164

RELATIONAL ALGEBRA

Relational Query Languages

- Procedural vs .non-procedural, or declarative
- "Pure" languages:
 - · Relational algebra
 - Tuple relational calculus
 - · Domain relational calculus
- The above 3 pure languages are equivalent in computing power
- We will concentrate on relational algebra
 - consists of 6 basic operations

166

Queries in Relational Languages

- Each Query input is a table (or set of tables)
- Each Query output is a table.
- All data in the output table appears in one of the input tables
- Can we compute:
 - SUM
 - AVG
 - MAX
 - MIN

Select Operation – selection of rows (tuples)

Relation r

A Unary Operator

\boldsymbol{A}	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\sigma_{\left((A=B)\wedge(D>5)\right)}(r)$$

A	В	C	D
α	α	1	7
β	β	23	10

168

Project Operation – selection of columns (Attributes)

Relation r:

A Unary Operator

$$\begin{array}{c|cccc} A & B & C \\ \hline \alpha & 10 & 1 \\ \alpha & 20 & 1 \\ \beta & 30 & 1 \\ \beta & 40 & 2 \\ \hline \end{array}$$

$$\prod_{A,C} (r)$$

A	C		\boldsymbol{A}	C
α	1		α	1
α	1	=	β	1
β	1		β	2
β	2	1		

Union of two relations Relations r, s: $\begin{array}{c|cccc} \hline A & B \\ \hline \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \\ \hline r \end{array}$ r $r \cup s:$ $\begin{array}{c|cccc} \hline A & B \\ \hline \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \\ \hline \alpha & 2 \\ \beta & 1 \\ \hline \beta & 3 \\ \end{array}$

170

Cartesian-product – naming issue

Relations r, s:

A	В
α	1
β	2
1	

В	D	Ε
α	10	a
β	10	a
β	20	b
γ	10	b
	s	

 $r \times s$:

A	r.B	s.B	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

174

Renaming a Table

A Unary Operator

 Allows us to refer to a relation, (say E) by more than one name.

$$\rho_x(E)$$

returns the expression E under the name X

Relations r

 $r \times \rho_s(r)$

r.A	r.B	s.A	s.B
α	1	α	1
α	1	β	2
β	2	α	1
β	2	β	2

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(rxs)$

176

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(rxs)$

• r x s

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

 $\begin{array}{c|c}
A & B \\
\hline
\alpha & 1 \\
\beta & 2
\end{array}$

 C
 D
 E

 α
 10
 a

 β
 10
 a

 β
 20
 b

 γ
 10
 b

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r x s)$

• r x s

 $\begin{array}{c|c}
A & B \\
\hline
\alpha & 1 \\
\beta & 2
\end{array}$

C D E α 10 a β 10 a β 20 b γ 10 b

178

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(rxs)$

• r x s

A	В	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	ь
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
ß	2	γ	10	b
ب		-		

β

C D E
α 10 a
β 10 a
β 20 b
γ 10 b

• $\sigma_{A=C}(rxs)$

 A
 B
 C
 D
 E

 α
 1
 α
 10
 a

 β
 2
 β
 10
 a

 β
 2
 β
 20
 b