EfficientNet

M. Tan et al, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, arXiv 2019

Recent Trends of CNNs

Repeating Base Blocks

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	28×28	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

- Scaling up ConvNets is widely used to achieve better accuracy.
 - ResNet can be scaled from ResNet 18 to ResNet 200 by using more layers.
 - ▶ GPipe achived 84.3% ImageNet top 1 accuracy by scaling up a baseline model 4 times larger.

What to Scale Up

of Layers: Depth

of Channels: Width

Size of Input Images: Resolution

What to Scale Up

- # of Layers: Depth
- # of Channels: Width
- Size of Input Images: Resolution

Why to Scale Up

- If a network has more layers
 - We can capture richer and more complex features
- If a network has more channels
 - We can have various patterns
- If an input image is bigger
 - We can use fine-grained patterns
 - Early networks used 224x224, but these days use 299x299, 331x331 or 480x480 (Gpipe)

Width, Depth, Resolution Scaling

Difficulties

Saturation

- ResNet 1000 has similar accuracy as ResNet 101 even though it has much more layers.
- Hard to capture good features if networks are shallow even though it is wider

Difficulties

- It is critical to balance width, depth and resolution
 - Scaling width w without changing depth (d=1.0) and resolution (r=1.0) results in quick saturation
 - With deeper (d=2.0) and higher resolution (r=2.0), width scaling achieves much better accuracy under the same FLOPS cost.

Idea for Best Compound Scaling

- 1. Find out a good baseline model
- Find out the golden ratio of width, depth and resolution for scaling
- Scaling up each dimension of the baseline model keeping the golden ratio of width, depth and resolution

Formulation

Recap: CNN

$$\mathcal{N} = \bigodot_{i=1...s} \mathcal{F}_i^{L_i} \left(X_{\langle H_i, W_i, C_i \rangle} \right)$$

Example

s: stage,

 F_i : operation of stage i,

 L_i : repetition of F_i ,

 $X_{\langle H_i, W_i, C_i \rangle}$: input

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	28×28	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Formulation

Compound Scaling

$$\begin{aligned} \max_{d,w,r} & Accuracy \big(\mathcal{N}(d,w,r) \big) \\ s.t. & \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \big(X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \big) \\ & \operatorname{Memory}(\mathcal{N}) \leq \operatorname{target_memory} \\ & \operatorname{FLOPS}(\mathcal{N}) \leq \operatorname{target_flops} \end{aligned}$$

s: stage

 F_i : operation of stage i,

 L_i : repetition of F_i ,

 $X_{\langle H_i, W_i, C_i \rangle}$: input

d: scale facor of depth

w: scale facor of width

r: scale facor of resolution

Assumption

> All stages and layers share the scaling factors to reduce the search space

Formulation

- ▶ FLOPS of a CNN is proportional to d, w², r²
 - Doubling depth doubles FLOPS
 - Doubling width or resolution increases FLOPS by four times
- So, following constraints are added to searching for d, w and r

depth:
$$d=\alpha^{\phi}$$
 $\qquad \pmb{\phi}$ is a user specific parameter width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\qquad \alpha\geq 1, \beta\geq 1, \gamma\geq 1$

Searching for Baseline Model

- By MNasNet
 - a multi objective neural architecture search that optimizes both accuracy and FLOPS
 - Optimization Goal :

$$ACC(m) \times [FLOPS(m)/T]^w$$

The found baseline model will be scaled up for better accuracy with less resources.

Searching for Baseline Model

Found Baseline Model

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	28×28	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Golden Ratio and Model Scaling

- ▶ Golden Ratio of α , β , γ by grid search
 - **Assuming twice more resources available, i.e.,** $\phi = 1$
 - ▶ The best values are α =1.2, β =1.1, γ =1.15
- Scaling the Baseline Model
 - ightharpoonup Choosing ϕ considering available resources
 - Scale the base model by $w = \alpha^{\phi}$, $d = \beta^{\phi}$, $r = \gamma^{\phi}$
 - They chose 7 different values for ϕ , i.e., generated 7 different networks by scaling.

ImageNet Classification

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet
EfficientNet-B0	76.3%	93.2%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	78.8%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	79.8%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.1%	95.5%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.6%	96.3%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.3%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.9%	43M	1x	19B	1x
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

ImageNet Classification

ImageNet Classification

Table 4. **Inference Latency Comparison** – Latency is measured with batch size 1 on a single core of Intel Xeon CPU E5-2690.

	Acc. @ Latency		Acc. @ Latency
ResNet-152	77.8% @ 0.554s 78.8% @ 0.098s	GPipe	84.3% @ 19.0s
EfficientNet-B1	78.8% @ 0.098s	EfficientNet-B7	84.4% @ 3.1s
Speedup	5.7x	Speedup	6.1x

Scaling Comparison

Figure 8. Scaling Up EfficientNet-B0 with Different Methods.

Scaling Comparison

Figure 7. Class Activation Map (CAM) (Zhou et al., 2016) for Different Models in Table 7 - Our compound scaling method allows the scaled model (last column) to focus on more relevant regions with more object details. Model details are in Table 7.

Baseline: MobileNet and RestNet

They have applied the same approach to scale MobileNet and ResNet

Model	FLOPS	Top-1 Acc.
Baseline MobileNetV1 (Howard et al., 2017)	0.6B	70.6%
Scale MobileNetV1 by width $(w=2)$ Scale MobileNetV1 by resolution $(r=2)$ compound scale $(d=1.4, w=1.2, r=1.3)$	2.2B 2.2B 2.3B	74.2% 72.7% 75.6%
Baseline MobileNetV2 (Sandler et al., 2018)	0.3B	72.0%
Scale MobileNetV2 by depth (d=4) Scale MobileNetV2 by width (w=2) Scale MobileNetV2 by resolution (r=2) MobileNetV2 compound scale	1.2B 1.1B 1.2B 1.3B	76.8% 76.4% 74.8% 77.4%
Baseline ResNet-50 (He et al., 2016)	4.1B	76.0%
Scale ResNet-50 by depth $(d=4)$ Scale ResNet-50 by width $(w=2)$ Scale ResNet-50 by resolution $(r=2)$ ResNet-50 compound scale	16.2B 14.7B 16.4B 16.7B	78.1% 77.7% 77.5% 78.8 %

Question and Answer