Teorema de Farkas

Sea A una matriz $m \times n$ y c un vector de R^n . Exactamente uno de los dos sistemas siguientes tiene solución:

I)
$$Ax \le 0$$
 y $c^t x > 0$ para algún $x \in \mathbb{R}^n$,

II)
$$y^t A = c^t$$
 e $y \ge 0$ para algún $y \in \mathbb{R}^m$.

Corolario (Teorema de Gordan)

Sea A una matriz m×n. Exactamente uno de los dos sistemas siguientes tiene solución:

I)
$$Ax < 0$$
 para algún $x \in \mathbb{R}^n$,

II)
$$y^t A = 0$$
 e $y \ge 0$ para algún $y \in \mathbb{R}^m$ no nulo.

Se considera el problema:

$$(P) \begin{cases} Min f(x) \\ g_i(x) \le 0 \quad i = 1, ..., m \\ x \in \mathbb{R}^n \end{cases}$$

siendo
$$f: \mathbb{R}^n \to \mathbb{R}$$
 y $g_i: \mathbb{R}^n \to \mathbb{R}$ para $i = 1, ..., m$.

Se denota por S el conjunto de soluciones factibles del problema (P):

$$S = \{x \in \mathbb{R}^n | g_i(x) \le 0 \quad i = 1, \dots, m\}.$$

Definición

Sea S el conjunto de soluciones factibles del problema (P) y sea $\bar{x} \in S$. El cono de direcciones factibles de S en \bar{x} , denotado por $D(\bar{x})$, se define por:

$$D(\bar{x}) = \{d \in \mathbb{R}^n | d \neq 0, \ \bar{x} + \lambda d \in S \ \forall \lambda \in (0, \delta) \ para \ algún \ \delta > 0\}.$$

Cada vector $d \in D(\bar{x})$ se denomina una dirección factible. Además, dada la función $f: \mathbb{R}^n \to \mathbb{R}$; el cono de direcciones de mejora (o de descenso) en \bar{x} , denotado por $F(\bar{x})$, se define por:

$$F(\bar{x}) = \{ d \in \mathbb{R}^n | f(\bar{x} + \lambda d) < f(\bar{x}) \ \forall \lambda \in (0, \delta) \ para \ algún \ \delta > 0 \}.$$

Cada vector $d \in F(\bar{x})$ se denomina una dirección de mejora o dirección descendente de f en \bar{x} .

Teorema 1

Sea $f: \mathbb{R}^n \to \mathbb{R}$ diferenciable en \bar{x} . Si existe un vector $d \in \mathbb{R}^n$ tal que $\nabla f(\bar{x})^t d < 0$, entonces existe un $\delta > 0$, tal que $f(\bar{x} + \lambda d) < f(\bar{x})$ para todo $\lambda \in (0, \delta)$, por tanto d es una dirección descendente de f en \bar{x} .

Teorema 2

Se considera el problema $min\{f(x)|x \in S\}$, siendo $f: R^n \to R$ y S un subconjunto no vacío de R^n . Sea $f: R^n \to R$ diferenciable en $\bar{x} \in S$. Si \bar{x} es un óptimo local, entonces $\bar{F}(\bar{x}) \cap D(\bar{x}) = \emptyset$, siendo

$$\bar{F}(\bar{x}) = \{ d \in R^n | \nabla f(\bar{x})^t d < 0 \}$$

y $D(\bar{x})$ el cono de direcciones factibles de S en \bar{x} .

Lema 3

Dada una solución factible $\bar{x} \in S$, sea $I = \{i \mid g_i(\bar{x}) = 0\}$ el conjunto de índices para las restricciones activas de \bar{x} . Se supone que g_i , para cada $i \in I$, es diferenciable en \bar{x} , y que g_i , para cada $i \notin I$, es continua en \bar{x} . El conjunto:

$$\overline{D}(\overline{x}) = \{ d \in \mathbb{R}^n | \nabla g_i(\overline{x})^t d < 0 \text{ para cada } i \in I \}.$$

verifica

$$\overline{D}(\overline{x}) \subset D(\overline{x})$$
.

Teorema 4

Se considera el problema:

$$\min f(x)$$

s.a.:
$$g_i(x) \le 0$$
 $i = 1, ..., m$
 $x \in \mathbb{R}^n$

siendo $f: R^n \to R$, $g_i: R^n \to R$, i = 1, ..., m. Sea $\bar{x} \in S$ una solución factible y sea $I = \{i \mid g_i(\bar{x}) = 0\}$. Se supone que f es diferenciable en \bar{x} , que g_i es diferenciable en \bar{x} , para cada $i \in I$, y que g_i es continua en \bar{x} , para cada $i \notin I$. Si \bar{x} es un óptimo local, entonces

$$\overline{F}(\overline{x}) \cap \overline{D}(\overline{x}) = \emptyset.$$

Teorema (Condiciones necesarias de Fritz – John)

Sean $f: \mathbb{R}^n \to \mathbb{R}$ $y \ g_i: \mathbb{R}^n \to \mathbb{R}$ para i=1,...,m. Se considera el problema (P):

$$\min f(x)$$

$$s.a.: \quad g_i(x) \le 0 \quad i = 1, ..., m$$

$$x \in \mathbb{R}^n$$

Sea \overline{x} una solución factible y sea $I=\{i \mid g_i(\overline{x})=0\}$. Se supone que f es diferenciable en \overline{x} , que g_i , para cada $i\in I$, es diferenciable en \overline{x} , y que g_i , para cada $i\notin I$, es continua en \overline{x} . Si \overline{x} resuelve localmente el problema (P), entonces existen $u_0\in R$ y $u_i\in R$, para $i\in I$, tales que

$$\begin{split} u_0 & \nabla f(\overline{x}) + \sum_{i \in I} u_i \nabla g_i(\overline{x}) = 0 \\ u_0 & \geq 0, u_i \geq 0 \quad para \ i \in \mathbf{I} \\ & \left(u_0, (u_i)_{i \in \mathbf{I}}\right) \neq \left(0, 0\right). \end{split}$$

Además, si cada g_i , para $i \notin I$, es también diferenciable en \overline{x} , entonces las condiciones de Fritz John pueden escribirse en la siguiente forma equivalente,

$$u_0 \nabla f(\overline{x}) + \sum_{i=1}^m u_i \nabla g_i(\overline{x}) = 0$$

$$u_i g_i(\overline{x}) = 0 \quad para \ i = 1, ..., m$$

$$u_0 \ge 0, u_i \ge 0 \quad para \ i = 1, ..., m$$

$$\left(u_0, (u_i)_{i=1,...,m}\right) \ne (0,0).$$

NOTA: Todo punto \bar{x} para el cual existan multiplicadores (\bar{u}_0, \bar{u}) tales que $(\bar{x}, \bar{u}_0, \bar{u})$ satisface las condiciones de Fritz John se denomina un punto de Fritz-John.

Teorema (Condiciones necesarias de Kuhn–Tucker)

Sean $f: \mathbb{R}^n \to \mathbb{R}$ $y \ g_i: \mathbb{R}^n \to \mathbb{R}$ para i=1,...,m. Se considera el problema (P):

$$\min f(x)$$

s.a.:
$$g_i(x) \le 0$$
 $i = 1, ..., m$
 $x \in \mathbb{R}^n$

Sea \overline{x} una solución factible y sea $I=\{i \mid g_i(\overline{x})=0\}$. Se supone que f es diferenciable en \overline{x} , que g_i , para cada $i \in I$, es diferenciable en \overline{x} , y que g_i , para cada $i \notin I$, es continua en \overline{x} . Además, se supone que los vectores $\nabla g_i(\overline{x})$, para $i \in I$, son linealmente independientes. Si \overline{x} resuelve localmente el problema (P), entonces existen $u_i \in R$, para $i \in I$, tales que

$$\nabla f(\overline{x}) + \sum_{i \in I} u_i \nabla g_i(\overline{x}) = 0$$

$$u_i \ge 0$$
 para $i \in I$.

Si, además, cada g_i , para $i \notin I$, es también diferenciable en \overline{x} , entonces las condiciones de Kuhn–Tucker pueden escribirse en la siguiente forma equivalente,

$$\nabla f(\overline{x}) + \sum_{i=1}^{m} u_i \nabla g_i(\overline{x}) = 0$$

$$u_i g_i(\overline{x}) = 0 \qquad para \ i = 1, ..., m$$

$$u_i \ge 0 \qquad para \ i = 1, ..., m.$$

NOTA: Todo punto \bar{x} para el cual existan multiplicadores \bar{u} tales que (\bar{x}, \bar{u}) satisface las condiciones de Kuhn–Tucker se denomina un punto de Kuhn–Tucker.