Question
 Answer
 Marks
 Guidance

 10(a) Gradient of $AB = \frac{-5-3}{8-4}$ [=-2]
 $M1^*$

 Midpoint $AB = \left(\frac{8+4}{2}, \frac{-5+3}{2}\right)$ [(6,-1)]
 M1

 Gradient of normal = $-\frac{1}{-2}$ [= $\frac{1}{2}$] and an attempt to find the required equation
 DM1 Must be used to find equation of perpendicular through their (6,-1).

Equation of perpendicular bisector is $y+1=\frac{1}{2}(x-6)$, so $y=\frac{1}{2}x-4$

 $AC^2 = (a-4)^2 + (b-3)^2$, $BC^2 = (a-8)^2 + (b+5)^2$ both expanded

Alternative Method for Question 10(a)

Solving AC = BC [= 10]

a=2b+8, concluding $y=\frac{x}{2}-4$

Eliminating a^2 and b^2

A1 WWW

M1*

DM1

DM1

4

seen.

WWW

Only allow a single sign error.

May be awarded before the previous DM1.

AG - working involving the perpendicular bisector must be

PUBLISHED

PUBLISHED			
Question	Answer	Marks	Guidance
10(b)	Using the centre as $\left(a, \frac{1}{2}a - 4\right)$	М1	May see centre as $(2y + 8, y)$ OE. May be seen in an incorrect equation.
	$(4-a)^2 + (3-0.5a+4)^2 = 100$	M1	Sub in (4, 3) or (8, -5). Could use circle with (6,-1) and $r = \sqrt{80}$.
	$1.25a^2 - 15a - 35 = 0$ $\Rightarrow a^2 - 12a - 28 = 0$ (or $b^2 + 2b - 15 = 0$)	DM1	Obtain a 3-term quadratic in <i>their x</i> or <i>y</i> .
	$[(a-14)(a+2)=0] \Rightarrow a=14, a=-2$	A1	Or $[(b-3)(b+5)=[0]] \Rightarrow b=3, b=-5.$
	$\Rightarrow (x-14)^2 + (y-3)^2 = 100 \text{ and } (x+2)^2 + (y+5)^2 = 100$	A1	
	Alternative Method 1 for the first 3 marks:		
	Make a or b the subject from a circle centre (a,b) using A or B	M1	E.g. $b = \sqrt{100 - (y - 3)^2} + 4$ from circle through A. These equations may have been found in part (a).
	Form an equation in α or b only	M1	Substitute their a or b into their second circle equation.
	Simplify to a quadratic in a or b	DM1	Expect $a^2 - 12a - 28 = 0$ or $b^2 + 2b - 15 = 0$, OE.
	Alternative Method 2 for the first 3 marks:		
	Obtaining $CM(C, centre; M, mid-point of AB)$	М1	Expect $\sqrt{80}$. Must be clear this is CM , not AB .
	Using the triangle CMT , where CT is parallel to the x -axis, to find the vertical distance of C from M , MT	DM1	Expect $MT = 4$.
	Using the triangle CMT , where MT is parallel to the y-axis, to find the horizontal distance of C from M , CT	DM1	Expect $CT = 8$.
		5	