

Sensitivity Analysis for Instrumental Variables

Tobias Freidling, Qingyuan Zhao

DPMMS and Cantab Capital Institute for the Mathematics of Information, University of Cambridge, UK

Goal: Estimation of and confidence interval for the causal effect $D \to Y$ under confounding ε via instrumental variables Z

Example:

► Y: wage

D: education

 \triangleright ε : ability

► Z: college proximity

Goal: Estimation of and confidence interval for the causal effect $D \to Y$ under confounding ε via instrumental variables Z

Example:

Y: wage

► D: education

 \triangleright ε : ability

► Z: college proximity

Definition

Assume i.i.d. data $Y \in \mathbb{R}^n$, $D \in \mathbb{R}^{n \times p}$, $Z \in \mathbb{R}^{n \times k}$.

$$Y = D\beta + \varepsilon_Y, \qquad D = Z\Gamma + \varepsilon_D, \qquad \varepsilon = [\varepsilon_Y \colon \varepsilon_D],$$

$$\mathbb{E}[\varepsilon_i|Z_i] = 0, \ \operatorname{Var}(\varepsilon_i|Z_i) = \Sigma$$

The parameters are $\beta \in \mathbb{R}^p$, $\Gamma \in \mathbb{R}^{k \times p}$ and $\Sigma \in \mathbb{R}^{(p+1) \times (p+1)}$.

Assumptions

- (A1) $\mathbb{E}[Z^TD]$ has rank p.
- (A2) $\mathbb{E}[Z^T Z]$ has rank k.
- (A3) $\mathbb{E}[Z^T \varepsilon] = 0$
 - (I) No other causal pathways.

Definition

Assume i.i.d. data $Y \in \mathbb{R}^n$, $D \in \mathbb{R}^{n \times p}$, $Z \in \mathbb{R}^{n \times k}$.

$$\begin{split} Y &= D\beta + \varepsilon_Y, \qquad D &= Z\Gamma + \varepsilon_D, \qquad \varepsilon = [\varepsilon_Y \colon \varepsilon_D], \\ \mathbb{E}[\varepsilon_i | Z_i] &= 0, \ \operatorname{Var}(\varepsilon_i | Z_i) = \Sigma \end{split}$$

The parameters are $\beta \in \mathbb{R}^p$, $\Gamma \in \mathbb{R}^{k \times p}$ and $\Sigma \in \mathbb{R}^{(p+1) \times (p+1)}$.

Assumptions

- (A1) $\mathbb{E}[Z^TD]$ has rank p.
- (A2) $\mathbb{E}[Z^T Z]$ has rank k.
- (A3) $\mathbb{E}[Z^T \varepsilon] = 0$.
 - (I) No other causal pathways.

Sensitivity Model

(A1) is widely researched and (A2) is easily satisified.

Definition (Linear IV Sensitivity Model)

Assume i.i.d. data $Y \in \mathbb{R}^n$, $D \in \mathbb{R}^{n \times p}$, $Z \in \mathbb{R}^{n \times k}$ and let $\Delta \subset \mathbb{R}^k$ bounded.

$$Y = D\beta + Z\delta + \varepsilon_Y,$$
 $D = Z\Gamma + \varepsilon_D,$ $\varepsilon = [\varepsilon_Y : \varepsilon_D],$ $\mathbb{E}[\varepsilon_i | Z_i] = 0, \ Var(\varepsilon_i | Z_i) = \Sigma$

The parameters are $\beta \in \mathbb{R}^p$, $\Gamma \in \mathbb{R}^{k \times p}$, $\delta \in \Delta$ and $\Sigma \in \mathbb{R}^{(p+1) \times (p+1)}$.

Sensitivity Region

The sensitivity model is overparametrised and thus β is only partially identified. Abbreviate $\Pi = (\Gamma, \Sigma)$ and denote the distribution of the model $\mathcal{F}_{\beta,\Pi,\delta}$. Two sets of parameters (β,Π,δ) and (β',Π',δ') are observationally equivalent if the corresponding distributions are equal, $\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta',\Pi',\delta'}$.

Definition (Sensitivity Interval/Region)

Any 1 $-\alpha$ sensitivity region S_{Δ} for the sensitivity set Δ must satisfy

$$\inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} \mathbb{P}_{\beta_0,\Pi_0,\delta_0} (\beta \in \mathcal{S}_{\Delta}) \ge 1 - \alpha, \quad \forall \beta_0,\Pi_0,\delta_0 \in \Delta$$

Sensitivity Region

The sensitivity model is overparametrised and thus β is only partially identified. Abbreviate $\Pi = (\Gamma, \Sigma)$ and denote the distribution of the model $\mathcal{F}_{\beta,\Pi,\delta}$. Two sets of parameters (β,Π,δ) and (β',Π',δ') are observationally equivalent if the corresponding distributions are equal, $\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta',\Pi',\delta'}$.

Definition (Sensitivity Interval/Region)

Any 1 $-\alpha$ sensitivity region S_{Δ} for the sensitivity set Δ must satisfy

Union Method

For any fixed $\delta \in \Delta$, we can apply standard IV theory by replacing Y with $Y-Z\delta$: estimation of $\beta(\delta)$ and asymptotic confidence interval $I^{(\delta)}=[L^{(\delta)},U^{(\delta)}]$. If the $I^{(\delta)}$ are congruent,

$$\bigcup_{\delta \in \Delta} I^{(\delta)} \subset \left[\inf_{\delta \in \Delta} L^{(\delta)}, \sup_{\delta \in \Delta} U^{(\delta)} \right]$$

is indeed a sensitivity interval. Hence, we must solve an optimisation problem.

Inversion of Tests

Suppose we can test H_0 : $\beta = \beta^*$ against H_1 : $\beta \neq \beta^*$ at level α for any β^* , i.e. under H_0

$$\mathbb{P}_{\beta^*,\Pi,\delta}(D \in A(\beta^*)) \ge 1 - \alpha, \quad \forall \Pi, \delta \in \Delta,$$

where *D* denotes the data and $A(\beta^*)$ is region of the test.

Define $S_{\Delta} = \{\beta^* : D \in A(\beta^*)\}$, then

$$\beta^* \in \mathcal{S}_{\Delta} \Leftrightarrow \mathcal{D} \in \mathcal{A}(\beta^*), \qquad \mathbb{P}_{\beta,\Pi,\delta}(\beta \in \mathcal{S}_{\Delta}) \geq 1 - \alpha, \quad \forall \beta,\Pi,\delta \in \Delta.$$

Take infimum over the observationally equivalent distributions:

$$\inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} \mathbb{P}_{\beta,\Pi,\delta} \left(\beta \in \mathcal{S}_{\Delta} \right) = \inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} \mathbb{P}_{\beta_0,\Pi_0,\delta_0} \left(\beta \in \mathcal{S}_{\Delta} \right)$$

$$\geq 1 - \alpha, \qquad \forall \beta_0, \Pi_0, \delta_0 \in \Delta.$$

Inversion of Tests

Suppose we can test H_0 : $\beta = \beta^*$ against H_1 : $\beta \neq \beta^*$ at level α for any β^* , i.e. under H_0

$$\mathbb{P}_{\beta^*,\Pi,\delta}(D \in A(\beta^*)) \ge 1 - \alpha, \quad \forall \Pi, \delta \in \Delta,$$

where D denotes the data and $A(\beta^*)$ is region of the test. Define $S_{\Delta} = \{\beta^* : D \in A(\beta^*)\}$, then

$$\beta^* \in \mathcal{S}_{\Delta} \Leftrightarrow D \in \mathcal{A}(\beta^*), \qquad \mathbb{P}_{\beta,\Pi,\delta}(\beta \in \mathcal{S}_{\Delta}) \geq 1 - \alpha, \quad \forall \beta,\Pi,\delta \in \Delta.$$

Take infimum over the observationally equivalent distributions:

$$\inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} \mathbb{P}_{\beta,\Pi,\delta} \left(\beta \in \mathcal{S}_{\Delta} \right) = \inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} \mathbb{P}_{\beta_0,\Pi_0,\delta_0} \left(\beta \in \mathcal{S}_{\Delta} \right)$$

$$\geq 1 - \alpha, \qquad \forall \beta_0, \Pi_0, \delta_0 \in \Delta.$$

Inversion of Tests

Suppose we can test H_0 : $\beta = \beta^*$ against H_1 : $\beta \neq \beta^*$ at level α for any β^* , i.e. under H_0

$$\mathbb{P}_{\beta^*,\Pi,\delta}(D \in A(\beta^*)) \ge 1 - \alpha, \quad \forall \Pi, \delta \in \Delta,$$

where D denotes the data and $A(\beta^*)$ is region of the test. Define $S_{\Delta} = \{\beta^* : D \in A(\beta^*)\}$, then

$$\beta^* \in \mathcal{S}_{\Delta} \Leftrightarrow D \in \mathcal{A}(\beta^*), \qquad \mathbb{P}_{\beta,\Pi,\delta}(\beta \in \mathcal{S}_{\Delta}) \geq 1 - \alpha, \quad \forall \beta,\Pi,\delta \in \Delta.$$

Take infimum over the observationally equivalent distributions:

$$\begin{split} \inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} & \mathbb{P}_{\beta,\Pi,\delta} \big(\beta \in \mathcal{S}_{\Delta} \big) = \inf_{\mathcal{F}_{\beta,\Pi,\delta} \simeq \mathcal{F}_{\beta_0,\Pi_0,\delta_0}} & \mathbb{P}_{\beta_0,\Pi_0,\delta_0} \big(\beta \in \mathcal{S}_{\Delta} \big) \\ & \geq 1 - \alpha, \qquad \forall \, \beta_0,\Pi_0,\delta_0 \in \Delta. \end{split}$$

Likelihood Ratio Statistic

We consider an i.i.d. data sample and a parametric statistical model $\{\mathbb{P}_{\theta} \colon \theta \in \Theta\}$ with log-likelihood $\ell_n(\theta)$. The maximum likelihood estimator for $\Theta^* \subset \Theta$ is defined as

$$\hat{\theta}_{\Theta^*} = \operatorname*{argmax}_{\theta \in \Theta^*} \ell_n(\theta).$$

Let $\Theta_0 \subset \Theta_1 \subset \Theta$ be nested models. To test H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \in \Theta_1 \setminus \Theta_0$, we use the likelihood ratio statistic

$$\lambda_n = 2 \bigg(\sup_{\theta \in \Theta_1} \ell_n(\theta) - \sup_{\theta \in \Theta_0} \ell_n(\theta) \bigg) = 2 \left(\ell_n(\hat{\theta}_{\Theta_1}) - \ell_n(\hat{\theta}_{\Theta_0}) \right).$$

Constrained Statistical Inference

Under regularity assumptions, if Θ_0 and Θ_1 are linear spaces, then $\lambda_n \stackrel{\mathsf{D}}{\longrightarrow} \chi_d^2$ as $n \to \infty$, where $d = \dim(\Theta_1) - \dim(\Theta_0)$.

Proposition (Silvapulle and Sen (2005))

If Θ_0 is "nice", e.g. defined by polynomial inequalities and equations, and $\Theta_1=\Theta$, then

$$\lambda_n \stackrel{\mathcal{D}}{
ightarrow} \sum_{i=0}^{m(heta_0)} w_{m(heta_0)-i}(m(heta_0),V(heta_0))\,\chi^2_{r(heta_0)+i},\quad ext{as } n o\infty,$$

where θ_0 is the true value and $\sum_{i=0}^{m} w_{m-i} = 1$ for $w_{m-i} > 0$.

The asymptotic distribution depends on the unknown true value θ_0 Hence, we use the least favourable null.

Constrained Statistical Inference

Under regularity assumptions, if Θ_0 and Θ_1 are linear spaces, then $\lambda_n \stackrel{\mathsf{D}}{\longrightarrow} \chi_d^2$ as $n \to \infty$, where $d = \dim(\Theta_1) - \dim(\Theta_0)$.

Proposition (Silvapulle and Sen (2005))

If Θ_0 is "nice", e.g. defined by polynomial inequalities and equations, and $\Theta_1=\Theta$, then

$$\lambda_n \stackrel{D}{
ightarrow} \sum_{i=0}^{m(\theta_0)} w_{m(\theta_0)-i}(m(\theta_0), V(\theta_0)) \, \chi^2_{r(\theta_0)+i}, \quad \text{as } n
ightarrow \infty,$$

where θ_0 is the true value and $\sum_{i=0}^{m} w_{m-i} = 1$ for $w_{m-i} > 0$.

The asymptotic distribution depends on the unknown true value θ_0 . Hence, we use the least favourable null.

Original model

$$Y = D\beta + Z\delta + \varepsilon_{Y},$$

$$D = Z\Gamma + \varepsilon_{D}.$$

Reduced model

$$Y = Z\rho + \varepsilon_Y,$$

 $D = Z\Gamma + \varepsilon_D.$

The original and reduced model are linked via $\rho = \delta + \Gamma \beta$. Hence, the restrictions on the original model, $\delta \in \Delta$ and $\beta = \beta^*$, echo into the reduced model.

The reduced model is a classical linear regression. We assume a Gaussian distribution with parameters ρ , Γ and Σ .

Original model

$$Y = D\beta + Z\delta + \varepsilon_Y,$$

$$D = Z\Gamma + \varepsilon_D.$$

Reduced model

$$Y = Z\rho + \varepsilon_Y,$$

$$D = Z\Gamma + \varepsilon_D.$$

The original and reduced model are linked via $\rho = \delta + \Gamma \beta$. Hence, the restrictions on the original model, $\delta \in \Delta$ and $\beta = \beta^*$, echo into the reduced model.

The reduced model is a classical linear regression. We assume a Gaussian distribution with parameters ρ , Γ and Σ .

Parameters spaces for testing H_0 : $\beta = \beta^*$:

$$\Theta := \{ (\Gamma, \rho) \in \mathbb{R}^{k \times p} \times \mathbb{R}^{k} \},
\Theta_{1} := \{ (\Gamma, \rho) \in \mathbb{R}^{k \times p} \times \mathbb{R}^{k} \mid \exists \delta \in \Delta \exists \beta \in \mathbb{R}^{p} : \rho = \delta + \Gamma \beta \},
\Theta_{0} := \{ (\Gamma, \rho) \in \mathbb{R}^{k \times p} \times \mathbb{R}^{k} \mid \exists \delta \in \Delta : \rho = \delta + \Gamma \beta^{*} \}.$$

In Gaussian case, we can replace Σ with a consistent estimate $\widehat{\Sigma}$.

- ▶ O₀ vs. O₁: Assumption that sensitivity model is correctly specified; always non-empty sensitivity region; difficult limit distribution
- ▶ Θ_0 vs. Θ : Test for $\beta = \beta^*$ and correctness of sensitivity model; empty sensitivity region possible; easier limit distribution

Parameters spaces for testing H_0 : $\beta = \beta^*$:

$$\Theta := \{ (\Gamma, \rho) \in \mathbb{R}^{k \times p} \times \mathbb{R}^{k} \},
\Theta_{1} := \{ (\Gamma, \rho) \in \mathbb{R}^{k \times p} \times \mathbb{R}^{k} \mid \exists \delta \in \Delta \,\exists \beta \in \mathbb{R}^{p} \colon \rho = \delta + \Gamma \beta \},
\Theta_{0} := \{ (\Gamma, \rho) \in \mathbb{R}^{k \times p} \times \mathbb{R}^{k} \mid \exists \delta \in \Delta \colon \rho = \delta + \Gamma \beta^{*} \}.$$

In Gaussian case, we can replace Σ with a consistent estimate $\widehat{\Sigma}$.

- ▶ O₀ vs. O₁: Assumption that sensitivity model is correctly specified; always non-empty sensitivity region; difficult limit distribution
- ▶ Θ_0 vs. Θ : Test for $\beta = \beta^*$ and correctness of sensitivity model; empty sensitivity region possible; easier limit distribution

Sensitivity Sets

Goal: easy specification for user and consideration of limit distribution for special cases

Range definition: For every instrument Z_j the user stipulates a range $[\delta_I^{(j)},\delta_u^{(j)}]$ and chooses "interpolation" between instruments

- ► Ellipsoid (L^2 -ball like): limit distribution $0.5\chi_1^2 + 0.5\chi_0^2$
- ► Hypercube (L^{∞} -ball like): finite number of least favourable nulls
- ► Cross polytope (L¹-ball like): finite number of least favourable nulls

Sensitivity Sets - Combinations and Categorical IVs

Combination of hypercube and cross-polytope interpolation

Sensitivity set for a 3-level categorical instrument

Outlook

Short-term:

- Finish work on more complex sensitivity sets
- Implementation and empirical evaluation

Mid-term:

- R-package
- Moderate generalisation: simultaneous equations, spline IV
- Connection between constrained inference and post-selection inference literature

Long-term:

- ► Further theoretical development of adaptive constrained inference, cf. Al Mohamad et al. (2020)
- Major generalisation: semiparametric IV, kernel IV

References I

- Al Mohamad, Diaa, Erik W Van Zwet, Eric Cator, and Jelle J Goeman (2020). "Adaptive critical value for constrained likelihood ratio testing". In: *Biometrika* 107.3, pp. 677–688.
- Baiocchi, Michael, Jing Cheng, and Dylan S. Small (2014). "Instrumental variable methods for causal inference". In: *Statistics in Medicine* 33.13, pp. 2297–2340.
- Card, David (1995). "The Wage Curve: A Review". In: *Journal of Economic Literature* 33.2, pp. 785–799.
- Fukuda, Komei (2020). *Polyhedral computation*. Tech. rep. Department of Mathematics, Institute of Theoretical Computer Science ETH Zurich.
- Silvapulle, Mervyn J. and Pranab K. Sen (2005). *Constrained statistical inference. Inequality, order, and shape restrictions.* Hoboken, NJ: John Wiley & Sons, pp. xvii + 532.
- Wang, Xuran, Yang Jiang, Nancy R. Zhang, and Dylan S. Small (2018). "Sensitivity analysis and power for instrumental variable studies". In: *Biometrics* 74.4, pp. 1150–1160.

References II

- Wasserman, Larry, Aaditya Ramdas, and Sivaraman Balakrishnan (2020). "Universal inference". In: *Proceedings of the National Academy of Sciences* 117.29, pp. 16880–16890.
- Wooldridge, Jefrey M. (2010). *Econometric Analysis of Cross Section and Panel Data*. The MIT Press.
- Zhao, Qingyuan, Dylan S. Small, and Bhaswar B. Bhattacharya (2018). Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap. arXiv: 1711.11286.

