Centre No.				Paper Reference					Surname	Initial(s)	
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Tuesday 10 January 2006 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Green)

Items included with question papers

Nil

Calculators may NOT be used in this examination.

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Examiner's use only

Team Leader's use only

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 20 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited

 $\stackrel{\text{Printer's Log. No.}}{N20233A}$

W850/R6663/57570 7/3/3/3/3/45,000

Turn over

Total

$x^3 - 4x^2 + 3x.$	
	(3)

^	771		•	• , •	1				•	•	1
•	Iha	sequence	at n	OCITIVA	numbere	11.	11-	11-	10	OIVAN	hw.
⊿.	1110	Scauchec	$o_1 o$	OSILIVO	Humbers	u1.	un.	u3	. 13	211011	UV.
		1	- I			19	2)			0	-) -

$$u_{n+1} = (u_n - 3)^2, u_1 = 1.$$

(a) Find u_2 , u_3 and u_4 .

(3)

(b) Write down the value of u_{20} .

(1)

Q2

(Total 4 marks)

(a)	Show that the point $P(3, -1)$ lies on L .
	(1)
(b)	Find an equation of the line perpendicular to L , which passes through P . Give your answer in the form $ax + by + c = 0$, where a , b and c are integers.
	(4)

	7
eave	
10-1-	
blank	

4.	Given that $y = 2x^2 - \frac{6}{x^3}$,	$x \neq 0$
	\sim 4 dy	

(a) find $\frac{dy}{dx}$,

(2)

		•
(b)	find	v dx

(3)

	()

Q4

(Total 5 marks)

	(1)
(b) Express $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})}$ in the form $b+c\sqrt{5}$, where b and c are integers.	(5)

		Leav blar
Question 5 continued		
		Q5
	(Total 6 marks)	

Leave blank

6. Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the points (0, 3) and (4, 0) and touches the x-axis at the point (1, 0).

On separate diagrams sketch the curve with equation

(a)
$$y = f(x+1)$$
, (3)

(b)
$$y = 2 f(x)$$
, (3)

(c)
$$y = f\left(\frac{1}{2}x\right)$$
. (3)

On each diagram show clearly the coordinates of all the points where the curve meets the axes.

		Leave blank
Question 6 continued		
		Q6
	(Total 9 marks)	

On Alice's 11th birthday she started to receive an annual allowance. The first annual allowance was £500 and on each following birthday the allowance was increased by £200. (a) Show that, immediately after her 12th birthday, the total of the allowances that Alice had received was £1200. (b) Find the amount of Alice's annual allowance on her 18th birthday. (c) Find the total of the allowances that Alice had received up to and including her 18th birthday. (3) When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance. (7)	
had received was £1200. (b) Find the amount of Alice's annual allowance on her 18th birthday. (c) Find the total of the allowances that Alice had received up to and including her 18th birthday. (3) When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance.	
 (b) Find the amount of Alice's annual allowance on her 18th birthday. (c) Find the total of the allowances that Alice had received up to and including her 18th birthday. (3) When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance. 	
 (c) Find the total of the allowances that Alice had received up to and including her 18th birthday. (3) When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance. 	(1
 (c) Find the total of the allowances that Alice had received up to and including her 18th birthday. (3) When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance. 	(b) Find the amount of Alice's annual allowance on her 18th birthday.
birthday. (3) When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance.	(2
When the total of the allowances that Alice had received reached £32 000 the allowance stopped. (d) Find how old Alice was when she received her last allowance.	
stopped. (d) Find how old Alice was when she received her last allowance.	(3
	(d) Find how old Alice was when she received her last allowance.
	(7

Question 7 continued		Leave blank
	Question 7 continued	
		Q7
I IOIAI I,7 IIIAI KNI - -	(Total 13 marks)	

The curve with equation $y = f(x)$ passes through the point $(1, 6)$.	Given that
$f'(x) = 3 + \frac{5x^2 + 2}{x^{\frac{1}{2}}}, x > 0,$	
find $f(x)$ and simplify your answer.	
	(7)

		Leav
Question 8 continued		
		Q8
	(Total 7 marks)	

9.

Leave blank

Figure 2 shows part of the curve C with equation

$$y = (x - 1)(x^2 - 4)$$
.

The curve cuts the x-axis at the points P, (1, 0) and Q, as shown in Figure 2.

(a) Write down the x-coordinate of P, and the x-coordinate of Q.

(2)

(b) Show that $\frac{dy}{dx} = 3x^2 - 2x - 4.$

(3)

(c) Show that y = x + 7 is an equation of the tangent to C at the point (-1, 6).

(2)

The tangent to C at the point R is parallel to the tangent at the point (-1, 6).

(d) Find the exact coordinates of R.

(5)

	Leave blank
Question 9 continued	

		_
		-
		_

	Leave blank
Question 9 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_ Q9
(Total 12 marks	

10.	$x^2 + 2x + 3 \equiv (x + a)^2 + b.$
10.	$x^{2} + 2x + 3 \equiv (x + a)^{2} + b$.

(a) Find the values of the constants a and b.

(2)

(b) In the space provided below, sketch the graph of $y = x^2 + 2x + 3$, indicating clearly the coordinates of any intersections with the coordinate axes.

(3)

(c) Find the value of the discriminant of $x^2 + 2x + 3$. Explain how the sign of the discriminant relates to your sketch in part (b).

(2)

The equation $x^2 + kx + 3 = 0$, where k is a constant, has no real roots.

(d) Find the set of possible values of k, giving your answer in surd form.

(4)

	Leave
Question 10 continued	

	(T) (144))
 	(Total 11 marks) FOR PAPER: 75 MARKS