Enfoque Bayesiano de la estadística

Mario Carranza

Comenzamos con una pregunta

 Dentro de la biología, ¿existen escuelas de pensamiento que estén enfrentadas o tengan controversias?

Enfoques en la estadística

- Fisher- Verosimilitud (intervalos de verosimilitud, p-valor)
- Frecuentista- Neyman/ Pearson (intervalos de confianza, error tipo I, error tipo II)
- Bayesiano (Intervalos de credibilidad, factor de Bayes)

Personajes relevantes

Thomas Bayes (1701 –1761)

Simon Laplace (1701 –1761)

Frank Ramsey (1903-1930)

Bruno de Finetti (1906-1985)

Dennis Lindley (1923-2013)

Leonard J. Savage (1917-1971)

El demonio de Laplace

Suponiendo el determinismo de Laplace

La ubicación y momento de cada partícula en el universo.

Las leyes de mecánica clásica

Todos sus valores pasados o futuros podrían calcularse.

Tres interpretaciones de la probabilidad

- Clásica: Resultados favorables/ Resultados posibles
- Frecuentista: límite de la razón de frecuencias.
- Subjetivista: Representación de la incertidumbre del tomador de decisiones

Otros casos de información previa

• Formula de Cochran para tamaños de muestra

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

$$n_0 = \frac{(Z_{\alpha/2})^2 S^2}{\epsilon^2}$$

$$n_0 = \frac{Z^2 p(1-p)}{e^2},$$

Teoría de la decisión con incertidumbre

Espacio de decisiones Espacio de estados de la naturaleza

Espacio de consecuencias

Ejemplo de problema de decisión del paraguas

Inferencia como problema de decisión

Distingamos la densidad de la acumulada

Problemas estadísticos

- Estimación puntual: Dar el mejor valor que aproxime un parámetro
- Estimación por intervalos: Dar una región (usualmente entre dos valores) que contenga al verdadero valor del parámetro.
- Prueba de hipótesis: Contrastar la plausibilidad de una afirmación.

¿Cómo calculamos probabilidades?

- $X = \{X_1, ..., X_n\} con X_i \sim P(A;\Theta)$: datos
- P(A;⊖) Modelo
- Vemos que si A=(a,b), $P(A;\Theta)=F(b;\Theta)-F(a;\Theta)$
- Hasta ahora ni pinta la f(x;Θ)

En resumen

Modelo P(X;θ)

Datos

X

Inferencia/ Inducción (Estadística)

Parámetros O

Pronóstico/ Predicción (Probabilidad)

Probabilidad [0,1]

Resulta que la densidad es muy útil para la inferencia

- Función de Θ , dados los datos x_1, \ldots, x_n
- Construimos una función multiplicando las densidades evaluadas en cada uno de los datos. (Si la muestra es independiente)
- $L(\Theta; X) = f(x_1; \Theta) * * f(x_n; \Theta)$

Densidades como función del parámetro

Esta función es muy útil en estimación

Componenetes de la verosimilitud caso Volados o Prevalencia

Probabilidades y densidades condicionales

Recordemos Densidad vs Acumulada

Regla multiplicativa

$$P(B \cap A) = P(B) * P(A|B) \text{ o bien } P(A|B) = \frac{P(B)}{P(B \cap A)}$$

Ley de probabilidad total

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Teorema de Bayes

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}$$

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{n} P(B|A_k)P(A_k)}$$

Teorema de Bayes para actualizar la previa

$$P(\theta|X) \propto P(\theta) * P(X|\theta)$$

$$f(\theta|X) \propto f(\theta) * f(X|\theta) = f(\theta) * L(\theta;X)$$

Prior Distributions

$$f(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

$$\rho(\pi|y) \propto \rho(y|\pi)\rho(\pi)
= \text{Binomial}(n,\pi) \times \text{Beta}(\alpha,\beta)
= \binom{n}{y} \pi^{y} (1-\pi)^{(n-y)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{(\alpha-1)} (1-\pi)^{(\beta-1)}
\propto \pi^{y} (1-\pi)^{(n-y)} \pi^{(\alpha-1)} (1-\pi)^{(\beta-1)}
\rho(\pi|y) \propto \pi^{y+\alpha-1} (1-\pi)^{n-y+\beta-1}$$

Mean	$\alpha/(\alpha+\beta)$
Median	$\approx (\alpha - 1/3)/(\alpha + \beta - 1/3)$, for $\alpha, \beta > 1$
Mode	$(\alpha - 1)/(\alpha + \beta - 2)$, for $\alpha, \beta > 1$
Variance	$\alpha\beta/[(\alpha+\beta)^2(\alpha+\beta+1)]$
Skewness	$2(\beta - \alpha)\sqrt{\alpha + \beta + 1}/[(\alpha + \beta + 2)\sqrt{\alpha\beta}]$
Kurtosis	$6[(\beta - \alpha)^{2}(\alpha + \beta + 1) - \alpha\beta(\alpha + \beta + 2)] / [\alpha\beta(\alpha + \beta + 2)(\alpha + \beta + 3)]$

Componenetes de la verosimilitud caso Volados o Prevalencia

stat_function(fun = dbeta,size=2, n = 101,color="red", args = list(shape1=1, shape2=1)) + stat_function(fun = dbeta,size=2, n = 101,color="green", args = list(shape1=1/2, shape2=1/2)) stat_function(fun = dbinom,size=2, n = 101,color="blue", args = list(x = 10, size=30))+ stat_function(fun = dbeta,size=2, n = 101,color="orange", args = list(shape1=11, shape2=21))+