

Data preprocessing for (dyadic) longitudinal data

Introduction

Why it matters?

- ≈80% of your time → Organization saves time
- Insight on data quality:
 - Issues to encounter
 - Generalization issues
 - Model possibilities
 - Potential bias
 - Variability
 - etc.
- Failure to clean / repair = inaccurate results and models

Implications

- Pre-registration implications (see template from Kirtley et al., 2021)
- Its part of the process: don't rush into statistical modeling
- Inaccurate results and models: wrong conclusions
- Data cleaning/preprocessing is partly model-dependant
 - → Know the model you will use
- Sensitive analysis is possible

The notebook: What can you find?

- Introduction to useful packages/functions
- Preprocessing methods
- Introduction to common issues (time interval assumption, night break, etc.)
- Visualization: insight on data quality and time series
- Examples of functions (copy/paste)
- Structure:
 - Block1: General matters
 - Block2: Time series
 - Block3: Dyadic specification
- Note: data uncleaned

Summary of the notebook

- 1.Introduction
- 2.Import data
- 3.Useful packages
 - a) Bases functions
 - b) tidyverse
 - c) data.table
 - d) Ggplot2
 - e) Time: bases and lubridate
- 4.Block1: General matters
 - a) Types of variables
 - b) First insights
 - c) Look at NA
 - d) Specific cases
 - e) Descriptive
 - f) Response frequency and Compliance

- 5. Block2: Time matters
 - a) Data and variables structures
 - b) Handle date format
 - c) Sampling matters (apps and participant)
 - d) When missing beeps are not recorded
 - e) Night break
 - f) Compute scores
 - g) Check variable (histogram, etc.)
 - h) Time series visualization
 - i) Time series issues
- 6.Block3: Dyadic specification
 - a) Sampling matters (apps and participant)
 - b) Response frequency and Compliance
 - c) Compute score
 - d) Time series visualization
 - e) Final data management for models
- 7. Outro

Framework

- Be organized! Find your own way
- How I work, two files:
 - R Scripts: solves issues, general to specific ones
 - 1. Import data
 - Clean data
 - 3. Export data
 - Notebook: explore, find issues and keep tracks
 - 1. Import data from R scripts
 - 2. Note issues / changes in a list
 - 3. Explore with functions and plots

- Note issues / modifications / observations: in notebook or elsewhere
- Others: "mini-guide", google (/duckduckgo) and cheat sheets

Useful packages / functions

- Base: ifelse(), which()
- Tidyverse packages
 - dplyr: select(), filter(), case_when(), group_by(), summarize(), join functions
 - tidyr: nest(), unite(), complete(), expand_grid(), gather(), spread()
 - stringr: manipulate characters
 - lubridate: manipulate dates
- data.table package
- Plots:
 - ggplot2
 - plotly: ggplotly()

Schema

- Not linear
- Adapt:
 - Data structure (overall / pp / dyads)
 - Model-dependant
- Not exhaustive

Preprocessing your data

More in the notebook

Importation and first insight

- LOOK AT YOUR DATA!
- str()
- head() and tail()
- Add some randomness: use sample()
- skim() from skimr package

Variables types

- Variables:
 - Meaning of the values
 - Type: character, integer, factor, etc.
 - Range and distribution
- Type of variable in ESM context:
 - Subject identifier variables: Participants numbers, Distinguishable / Undistinguishable dyads
 - Design variables: day/beep number, experimental condition, answer time
 - Time-variant variables (e.g., positive / negative affects)
 - **Time-invariant variables** (e.g., depression score)
- Expectation according to the type of data (e.g., missing values expectations)
- Always take in account the structure of the data!

Numb	Variable	Label	Type ESM	Measurement level	Range	Code	Items	Observation
1	couple	Couple id	Subject identifier	Nominal	1-300	-	-	
2	beepnb	Beep number	Design variable	Ordinal	1-100	-	-	-
3	dep	Depression score	Time-invariant	Continuous	0-50	-	Mean of items	Note recorded for some particpants
4	angry	Affect: angry	Time-varying	Continuous	0-100	-	"angry"	
5	contact	Couple contact	Time-varying	Ordinal	0-3	0: no contact 1: less than 1h 2: between 1h and 6h 3: spend the day	"Rate the time spend with your partner today	

Codebook is important!

Introduction to missing data

- Hidden missing data: -999, 0, etc.
- Type of missing data
 - Missing completely at random (MCAR)
 - Missing at random (MAR)
 - Missing not at random (MNAR)
- Look for patterns / inconsistency
- Expectations in function of the type of variable
- Usefull packages: visdat, naniar

Short introduction to time

- Useful package: lubridate (see cheat sheet)
- Formats: Date, POSIXct, POSIXIt
- Time algebra (+, -)
- Be careful:
 - Origin
 - Time zone
 - Loosing format after transformation
- How to handle date format?
 - 1. Spread date (year, month, day, hour, etc.)
 - 2. Beeps number
 - 3. Continuous time variable

Response frequency and Compliance

- Definition
- Complete observation: to decide
- Multiple possibilities:
 - Overall
 - Per participant
 - Per dyad
 - Taking in account lag
- Questions: Enough data? Unbalanced between conditions? Some participants under/over-represented?

Visualization: design and participants time variables

- Why is it important?
 - Checking possible issues
 - Descriptive insights about sampling
 - Future studies: hypothesis generation, methods, expectations
- Multiple point of view:
 Overall / per participant / per dyads
- Must be adapted to your study
- ggplot2 package

Insight on data collection procedure:

- Compare to expected sampling
- How many beeps per participant
- Time of beeps (filled / missed)

Insight on participant's behaviors:

- Time pp answer
- Beeps that are missed
- Time to launch survey
- Time spend to answer
- Time intervals between 2 answers
- Respect sampling
- Time interval between partner's beeps, answer and finished

Compute Scores

- Using summarize() and mutate() with group_by()
- Mean, standard deviation, etc.
- Centering:
 - Grand-mean centering
 - Person-mean centering
- Lag variable

Night break

 Time interval assumptions in discrete time models

Night break

- Time interval assumptions in discrete time models
- Solutions in function of the model / software / modeling approach
- Solutions:
 - 1. Add NAs
 - 2. Add a dummy variable (end of the day)
 - 3. NA imputation
 - → Not recommended

Day	Hour	beepnr	Υ	Y_lag
1	10	1	30	NA
1	15	2	34	30
1	20	3	59	34
1	24	4	NA	59
2	10	5	13	NA

Day	Hour	beepnr	Υ	Y_lag	Night
1	10	1	30	NA	0
1	15	2	34	30	0
1	20	3	59	34	0
2	10	5	13	59	1

Visualization: Time series

- Structure of the data
- Stationary: trend inspection
- ggplotly() function (plotly package)

Visualization: Time series

- Structure of the data
- Stationary: trend inspection
- ggplotly() function (plotly package)

From Hyndman & Athanasopoulos, 2018

Model specification

- Have in mind the model to set up your dataset.
- Data format (e.g., wide, long) is model/software/package dependant
- For instance:
 - Using nlme package in R
 - L-APIM, a linear mixed-model
 - Long format with partner's value as predictor

Final Data Management

1. Wide format with duplicated partner's rows side by side

dyad	time	pp	statut	Var1		Var1_lag	pp.part	var1.part		var1_lag.part
1	3	10	M	4	•••	2	11	5	•••	6
1	3	11	F	5	•••	6	10	4	•••	2
	•••									

2. Select variables for the model

dyad	time	рр	statut	Х	Υ	X_lag	Y_lag

Previous vs. new results

```
Random effects:
                                                                 Random effects:
 Formula: ~-1 + male + female | couple
                                                                  Formula: ~-1 + male + female | couple
 Structure: General positive-definite, Log-Cholesky parametri
                                                                  Structure: General positive-definite, Log-Cholesky parametrization
         StdDev Corr
                                                                                    Corr
male
        76.42864 male
                                                                           6.783301 male
                                                                 male
female 81.54977 0.988
                                                                 female 11.975776 -0.275
Residual 50.62911
                                                                 Residual 16.255577
Correlation Structure: Compound symmetry
                                                                 Correlation Structure: Compound symmetry
 Formula: ~1 | couple/beepnr
                                                                  Formula: ~1 | couple/beepnr
 Parameter estimate(s):
                                                                  Parameter estimate(s):
        Rho
                                                                        Rho
-0.07160316
                                                                 -0.1227169
Variance function:
                                                                 Variance function:
 Structure: Different standard deviations per stratum
                                                                  Structure: Different standard deviations per stratum
 Formula: ~1 | statut
                                                                  Formula: ~1 | statut
 Parameter estimates:
                                                                  Parameter estimates:
1.000000 0.838761
                                                                 1.0000000 0.7095191
Fixed effects: Y ~ -1 + male + male:Y lag pc + male:X lag pc
                  Value Std.Error
                                    DF t-value p-value
                                                                                   Value Std.Error
                                                                                  7.77471\0.7194548 9580/10.80639
male
                1.70047 7.699448 9648
                                                                 male
                                                                                 62.80546 1.2576094 9580 49.94036
female
                56.16722 8.224939 9648 6.828892 0.0000
                                                                 female
                                                                                 0.26185 0.0141265 9580 18.53594
male:Y lag pc 0.30474 0.013564 9648 22.466586 0.0000
                                                                 male:Y lag pc
male:X lag pc 0.29583 0.012053 9648 24.543381 0.0000
                                                                 male:X lag pc
                                                                                 -0.04523 0.0096137 9580 -4.70432
                                                                 Y lag pc:female 0.36777 0.0135852 9580 27.07156
Y lag pc:female -0.13527 0.014370 9648 -9.413613 0.0000
                                                                 X lag pc:female \-0.10286/0.0199764 9580 \-5.14903/
X lag pc:female 0.01891 0.016173 9648 1.168940 0.2425
```

Conclusion

Tips and Rules

- Look at your data
- Be careful of already preprocessed data (not done by yourself)
- Don't rush into statistical modeling
- Double check issues found
- Comment your code (for yourself and others)
- Have a backup & Never touch raw data
- Keep all the information but adapt the database to your statistical analysis

Conclusion

- Look at the notebook
- Cleaning and data quality inspection are IMPORTANT and TAKES TIME!
- Looks like an investigation: clues, suspects, crimes, etc.
- Visualization helps

Literature

- Viechtbauer, W. (2021). Chapter 8: Structuring, Checking, and Preparing the Data. In
 Dejonckheere, E., & Erbas, Y. (2021). The open handbook of experience sampling methodology: A
 step-by-step guide to designing, conducting, and analyzing ESM studies (2nd ed.)
- Kirtley, O. J., Lafit, G., Achterhof, R., Hiekkaranta, A. P., & Myin-Germeys, I. (2021). Making the Black Box Transparent: A Template and Tutorial for Registration of Studies Using Experience-Sampling Methods. *Advances in Methods and Practices in Psychological Science*. https://doi.org/10.1177/2515245920924686