test paired data histribution of differences

$$X = \# \text{ of positive regults} = 14, n = 19$$
 (discard 0).

$$\dot{H}_{o}$$
: $\dot{\Theta} = \frac{1}{2}$ VS \dot{H}_{i} : $\dot{\Theta} > \dot{\dot{2}}$ $\dot{\Theta} = P(postive)$

$$\times \sim Bin(|a_1|^2)$$
 $P(x > |4) =$

use normal approximation (usually only use when 17,30

for one-sample t test (If we assume differences one normally dist)

$$\overline{\chi} = 12.9$$
 \Rightarrow $t = 3.95$ So p-value ≤ 0.01 \Rightarrow reject th.

pual in NP test as higher so power of NP test is lower

If X is about 7

Data histogram:

M>0 but x≈ \ 2 soparametric test is better.

but if data not normal, sign test is better.

\$16.3 Signed - rank test.

Like sign text but considers magnitude.

Assume population is symmetric about M.

test Ho: M=No VS Hi: M≠No ° 2 Mo

1: Lompute X; -us for each X;

2: rank /x:-Mal Vx; from 1 to N

- · Discord diffs of O
- · If true weties, take the average:

e.z. $|x_i-u_0| = 2.1 \text{ (.7 3.8 2.1)}$ 2.5 1 4 2.9

3: compute T^+ and T^- (sum of ranks for which $X_i - M_o > 0$ as $ZO \sim P$). $T = \min\{T^+, T^-\}$

Note $0: T^{+} + T = \sum_{i=1}^{n} i = \frac{n(n+i)}{2}$

So if we know one we know the other (and T).

larger T+ = = maller T etc.

2 T, T+, T- une discrete Rvs.

When assuming pop 13 cts, there are no ties.

Dist of T,T+,T- depends only on n.

Thus we can precompute the distribution,

H. $M \neq M_0$ reject H_0 if $T \leq T_\alpha$ $M > M_0$ reject H_0 if $T \leq T_\alpha = T_{2\alpha}$ $M \geq M_0$ reject H_0 if $T + \leq T_\alpha = T_{2\alpha}$

