Parallel Backpropagation for Multilayer Neural Networks

Palash Goyal¹ Nitin Kamra¹ Sungyong Seo¹ Vasileios Zois¹

¹Department of Computer Science University of Southern California

May 8, 2016

Outline

- Problem statement
- Why mini batch?
- Parallelization Methods
 - POSIX Threads
 - CUDA
- Experiments
- Results and analysis

Problem statement

- Prevailing neural network architectures are implemented using several hidden layers, with each one consisting of thousands to millions of neurons in order to generalize well on diverse inputs.
- Can you imagine how many parameters need to be trained for every iterations?

Problem statement(contd.)

- Gradient Descent is the most commonly used optimization algorithm used to train neural networks in supervised settings.
- Having the gradient as a sum of partial gradients with respect to individual training examples opens up the possibility of parallelizing the gradient computation efficiently.

Gradient Descent

• Suppose we have some training set (x_i, y_i) for $i = 1, \dots, N$:

$$\mathcal{L}_{MSE}(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; \theta))^2$$

Then, the parameters are updated as follow:

$$\theta_j = \theta_j - \alpha \frac{\partial \mathcal{L}_{MSE}(\theta)}{\partial \theta_j}$$

Batch vs. Stochastic

- If the gradient is computed by using whole dataset (N), it is Batch Gradient Descent.
 - This is great for convex, or relatively smooth error manifolds.
 - Gradient is less noisy (averaged over a large number of samples).
 - For large or infinite datasets, batch gradient is impractical.
- Stochastic Gradient Descent(SGD) computes the gradient using a single example.
 - SGD works well for error manifolds that have lots of local maxima/minima because the somewhat noisy gradient helps to escape local minima into a region that hopefully is more optimal.
 - SGD may go "zig-zag" to a local minimum because of highly noisy gradient.

Alternative: Mini Batch

- Mini Batch Gradient Descent (MGD) is to compute the gradient against more than one training example at each step.
- M is the mini batch size.

$$\mathcal{L}_{MSE}^{k}(\theta) = \frac{1}{M} \sum_{i=s_{k}}^{s_{k}+M} (y_{i} - f(x_{i}; \theta))^{2}$$
$$\theta_{k} = \theta_{k} - \alpha \frac{\partial \mathcal{L}_{MSE}^{k}(\theta)}{\partial \theta_{k}}$$

 Parallelization: Distributing training examples across various processors and letting them compute a partial gradient over their own training examples.

Outline

- Problem statement
- Why mini batch?
- Parallelization Methods
 - POSIX Threads
 - CUDA
- 4 Experiments
- 6 Results and analysis

PThreads - POSIX Threads

- Low level multithreading API Threads are created and each task is assigned to each thread in parallel.
- TODO ABOUT Basic functions to show how Pthread is used in our project

Outline

- Problem statement
- Why mini batch?
- Parallelization Methods
 - POSIX Threads
 - CUDA
- 4 Experiments
- Results and analysis

Design Overview

- Neural Network Training Steps
 - Forward propagation:

$$A_{i+1} = f(W_i \cdot A_i)$$

Back propagation:

$$D_{L} = Y - A_{L},$$

$$D_{i} = (W_{i})^{T} \cdot D_{i+1} \circ d(W_{i-1} \cdot A_{i-1})$$

Weight update:

$$W_i = W_i + \frac{n}{b} \cdot \sum_{j=1}^b D_{i+1}^j \cdot A_i^j$$

GPU Implementation Details

- Training Kernels
 - Variants of tiled matrix multiplication
 - Each thread is responsible for computing a single matrix cell
 - On-chip memory for amplifying

GPU Implementation Details (2)

Optimization

- Coalesced access to global memory by iterating over the secondary dimension
- Same strategy eliminates shared memory bank conflicts

- Neural Network Customization
 - Single or double precision arithmetic
 - User preferred activation function
 - Abstract definition of network architecture and training parameters (i.e. batch size, learning rate)

MNIST dataset

- MNIST, handwritten digits, has a training set of 60,000 examples, and a test set of 10,000 examples.
- The digits have been size-normalized and centered in a fixed-size image to 28x28(784) image.
- 10,000 examples in 60,000 training set are used as validation set and left 50,000 images are used for training.
- The original labels values are 0 to 9 but it is vectorized by one-hot encoding.

Experiment parameters

Network structures

	# Layers	# Nodes	Bias
	(In, Hidden ,Out)	(In, Hidden ,Out)	
Network1	1, 1 ,1	784, 1024 ,10	Yes
Network2	1, 2 ,1	784, 1024,1024 ,10	Yes

Hyperparameters

Learning Rate	# Epochs	Size of Batch	Regularization
0.1	Let Me Know	2^n , $n \in [7, 12]$	None

Activation function

Sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Parallel experiments

- PThreads
 - About PThreads setting
- CUDA
 - About CUDA setting
- theano
 - About theano

Results

- Neural Networks 1
- Accuracy is 97.78%

Results (contd.)

- Neural Networks 2
- Accuracy is ???%

Results (contd.)

Neural Networks 1 - GFLOPS

Results (contd.)

Neural Networks 2 - GFLOPS

Analysis

Discussion