Lycée La Martinière Monplaisir PSI*

Année 2025/2026 MATHÉMATIQUES

Feuille d'exercice n° 02 : **Séries numériques**

I. Révisions sur les suites ()

Classer par ordre de prépondérance (avec la relation o) Exercice 1 les suites de termes généraux :

1) $(\ln n)^3$

4) 2^n

7) $n^{\ln(\ln n)}$

2) $\ln(n^3)$

- **5**) $e^{n/2}$
- 8) $\frac{n}{\ln n}$

3) $\frac{3^n}{n^3}$

6) $(\ln(\ln n))^n$

Classer par ordre de prépondérance (avec la relation o) Exercice 2 les suites de termes généraux :

1) $\frac{1}{n^4}$

- 7) $\frac{\tan(1/n)}{1+\cos^3(1/n)}$

- $2) \frac{\ln n}{n^5}$
- $5) \, \frac{\ln(\ln n)}{\ln n + n}$
 - 8) $(\cos(1/n))^{\sin(1/n)} 1$

- $6) \ \frac{\ln n}{2^n + n^2}$

Soit (u_n) la suite définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} =$ Exercice 3 $1+\sqrt{u_n}$. Montrer que cette suite est toujours définie, et donner sa nature. Déterminer sa limite si elle existe.

Exercice 4 (\(\blacktrian\)

- 1) Montrer que l'équation $e^x = x^n$ admet deux racines positives $u_n < v_n$, pour n assez grand.
- 2) Montrer que $v_n \xrightarrow[n]{+\infty} +\infty$.
- 3) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 4) Trouver sa limite ℓ , montrer que $n(u_n \ell)$ tend vers 1.

Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}$ Exercice 5 $u_{n+1}=u_n+\frac{2}{u_n}$. En utilisant $v_n=\frac{u_n^2}{4}$, donner un équivalent de u_n . Indication : on montrera que $\lim_{n\to\infty}v_{n+1}-v_n=1$, on en déduira un équivalent de v_n puis de u_n .

II. Séries à termes réels positifs

Exercice 6 () Nature des séries de termes généraux suivants.

1)
$$\frac{-n^2+1}{n!2^n}$$

3)
$$a^{\sqrt{n}}$$

2)
$$\exp\left(\frac{(-1)^n}{n+(-1)^n \ln n}\right)$$
 4) $\cos\left(\arctan n + \frac{1}{n}\right)$

4)
$$\cos\left(\arctan n + \frac{1}{n}\right)$$

Exercice 7 () Déterminer la nature des séries de terme général (avec $\alpha \in \mathbb{R}$):

1)
$$\frac{2^n n}{n!}$$

4)
$$u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^{n} \ln^2 k, \ \alpha \in \mathbb{R}$$

$$2) \left(\frac{1}{\ln n}\right)^{\ln n}$$

(indication : grâce à un encadrement, trouver un équivalent de
$$u_n$$
).

$$3) \left(\frac{\sqrt{n}}{1+\sqrt{n}}\right)^n$$

Exercice 8 () Déterminer la nature des séries de terme général :

- 1) $\frac{\operatorname{ch}(n)}{\operatorname{ch}(na)}$, $a \in \mathbb{R}$
- $2) \ \frac{(n!)^k}{(kn)!}, k \in \mathbb{N}^*.$
- $\mathbf{3)} \ u_n = \left(\frac{n+3}{2n+1}\right)^{n\ln n}$
 - a) Montrer que u_n tend vers 0 quand n tend vers $+\infty$.
 - b) Trouver un équivalent de $ln(u_n)$.
 - c) Que dire de la convergence de $\ln(n^2u_n)$? Conclure.

Exercice 9 (Déterminer la nature de la série de terme général $u_n = n! \prod_{k=1}^n \ln\left(1 + \frac{x}{k+1}\right)$ avec x > 0.

Exercice 10 (Règle de Raab-Duhamel:

- 1) Soit (u_n) une série à termes > 0 telle que $\frac{u_{n+1}}{u_n} = \frac{1}{n \to +\infty}$ $\frac{1}{1+a/n+O(1/n^2)}$, pour un certain $a \in \mathbb{R}$. On considère la suite (v_n) définie par $v_n = \ln(n^a u_n)$, ainsi que la série de terme général $w_n = v_{n+1} v_n$.
 - a) Donner un DL de w_n en $O(1/n^2)$.
 - b) Quelle est la nature de la série $\sum w_n$?
 - c) En déduire que la suite (v_n) converge, et que la suite $\exp(v_n)$ converge vers une limite strictement positive.
 - **d)** Montrer alors qu'il existe $\lambda > 0$ tel que $u_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n^a}$.
 - e) Quelle est la nature de la série de terme général u_n ?

2) Application:

Soient a et b deux réels positifs tels que (b-a) > 1. Soit (u_n) la suite définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}.$

- a) Donner la nature de la série de terme général u_n en appliquant la règle de Raab-Duhamel.
- **b)** Calculer $\sum_{k=0}^{+\infty} u_n$.

Exercice 11 (\circlearrowleft) On étudie la suite (u_n) définie par $: u_0 \in]0, \pi/2[$ et $u_{n+1} = \sin(u_n)$.

- 1) Montrer que (u_n) est une suite à termes positifs, et qu'elle est convergente.
- 2) Déterminer la limite de (u_n) .
- 3) a) Donner un DL à l'ordre 3 de u_{n+1} en fonction de u_n , quand n tend vers $+\infty$. En déduire un équivalent de u_n^3 en fonction de $(u_{n+1} u_n)$.
 - b) Déterminer la nature de la série de terme général u_n^3 .
- 4) Déterminer la nature de la série de terme général $\ln \left(\frac{u_{n+1}}{u_n} \right)$.
- 5) a) Donner un équivalent de $\ln\left(\frac{u_{n+1}}{u_n}\right)$ en fonction de u_n , quand n tend vers $+\infty$.
 - b) En déduire la nature de la série de terme général u_n^2

Exercice 12 Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites d'éléments de \mathbb{R}_+ telles que $\sum b_n$ converge et pour tout $n\in\mathbb{N}$, $a_{n+1}\leqslant a_n+b_n$. Montrer que (a_n) converge.

Exercice 13 (Sommation des relations de comparaison dans le cas de divergence : On considère deux séries convergentes $\sum x_n$ et $\sum y_n$ à termes généraux positifs, vérifiant : $x_n \sim y_n$.

Montrer que lorsque n tend vers $+\infty$ on a $: \sum_{k=n+1}^{+\infty} x_k \sim \sum_{k=n+1}^{+\infty} y_k$.

Exercice 14 (\circlearrowleft) Soit (u_n) la suite définie par $u_0 \in \mathbb{R}_+^*$ et pour tout $n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \operatorname{Arctan} u_n.$

- 1) Pour tout n, on pose $v_n = 2^n u_n$. Montrer que la suite (v_n) converge. On notera λ sa limite.
- 2) Donner un équivalent de $\frac{1}{u_{n+1}^2} \frac{4}{u_n^2}$.
- 3) Montrer que $\lambda > 0$.
- 4) Donner un développement asymptotique de u_n à deux termes.

Soit $a \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ et $v_n = a^{u_n}$. Déterminer la nature de la série de terme général v_n .

Exercice 16 () Soit $\alpha \in \mathbb{R}^*$. On pose, pour $n \in \mathbb{N}^*$: $u_n = \frac{1}{n}$.

Nature de la série de terme général u_n ?

Exercice 17 Soit a > 0, b > 0 et pour $n \in \mathbb{N}^*, A_n = \frac{1}{n} \sum_{i=1}^n (a+bk), B_n = 0$ $\prod_{n=1}^{n} (a+bk)^{1/n}$. Trouver $\lim_{n\to\infty} \frac{B_n}{A_n}$ en fonction de e.

III. Séries à termes quelconques

Exercice 18 ($^{\circ}$) Si $q \in \mathbb{R}$, on appelle

- première dérivée de la série géométrique de raison q la série $\sum_{i=1}^n nq^{n-1}$;
- \bullet deuxième dérivée de la série géométrique de raison q la série $\sum_{n\geq 2} n(n-1)q^{n-2}.$

Étudier la nature de chacune de ces séries et, dans les cas de convergence, déterminer leurs sommes.

Exercice 19 (Nontrer la convergence et calculer la somme de :

1)
$$\sum_{n>0} e^{-2n} \operatorname{ch} n$$

4)
$$\sum_{n\geqslant 3} \frac{2n-1}{n^3-4n}$$

6)
$$\sum_{n\geq 2} \frac{n^2+n+2}{n!}$$

$$\mathbf{2)} \ \sum_{n\geqslant 2} \ln\left(1 - \frac{1}{n^2}\right)$$

3)
$$\sum_{n\geqslant 1} \frac{1}{n(n+1)(n+2)}$$

5)
$$\sum_{n \ge 2} \ln \left(1 + \frac{(-1)^n}{n} \right)$$

1)
$$\sum_{n\geqslant 0} e^{-2n} \operatorname{ch} n$$
 4) $\sum_{n\geqslant 3} \frac{2n-1}{n^3-4n}$ 6) $\sum_{n\geqslant 2} \frac{n^2+n+2}{n!}$ 2) $\sum_{n\geqslant 2} \ln\left(1-\frac{1}{n^2}\right)$ 7) $\sum_{n\geqslant 2} \frac{(\mathrm{i}-1)\sin\frac{1}{n}}{\sqrt{n}-1}$ 3) $\sum_{n\geqslant 1} \frac{1}{n(n+1)(n+2)}$ 5) $\sum_{n\geqslant 2} \ln\left(1+\frac{(-1)^n}{n}\right)$ 7) $\sum_{n\geqslant 2} \frac{(\mathrm{i}-1)\sin\frac{1}{n}}{\sqrt{n}-1}$ 0ù $\mathrm{i}^2=-1$.

Déterminer la nature des séries suivantes, dont on donne Exercice 20 les termes généraux.

1)
$$\frac{n-2}{2^n-1}$$

3)
$$\frac{\sqrt[n]{2}-1}{2n+3}$$
4) $\frac{n}{n+1}$

$$5) \ \frac{\cos(n!)}{n^3 + \cos(n!)}$$

1)
$$\frac{n-2}{2^n-1}$$
2) $\frac{(-1)^n}{n^2+1}$

4)
$$\frac{n}{n+1}$$

6)
$$\ln(1+n^{\alpha}), \ \alpha \in \mathbb{R}$$

Montrer la convergence puis calculer la somme des séries suivantes, dont on donne les termes généraux.

1)
$$\frac{2n(n+1)}{3^n}$$

3)
$$\frac{\binom{n}{k}}{n!}$$
, $k \in \mathbb{N}$ fixé

1)
$$\frac{2n(n+1)}{3^n}$$
 3) $\frac{\binom{n}{k}}{n!}$, $k \in \mathbb{N}$ fixé. 5) $\ln\left(\frac{n^3}{(n+2)(n-1)^2}\right)$

2)
$$\frac{n^2+n+1}{n!}$$

4)
$$\ln\left(1-\frac{1}{n^2}\right)$$

2)
$$\frac{n^2+n+1}{n!}$$
 4) $\ln\left(1-\frac{1}{n^2}\right)$ 6) $\ln\left(\cos\left(\frac{a}{2^n}\right)\right)$, $a \in \left]0, \frac{\pi}{2}\right[$

Exercice 22 (%) Convergence de la série de terme général

$$u_n = \sin\left(\pi\sqrt{n^2 + 1}\right).$$

Exercice 23 Étudier la nature de la série de terme général

$$u_n = \sin\left(\pi(2-\sqrt{3})^n\right)$$

puis en déduire celle de la série de terme général

$$v_n = \sin\left(\pi(2+\sqrt{3})^n\right).$$

On considère la série de terme général $u_n = \frac{(-1)^n}{n^{2/3} + \cos n}$. Exercice 24 Cette série est-elle absolument convergente ? Semi-convergente

Exercice 25 Pour $n \ge 1$, on pose

$$u_n = v_n = \frac{(-1)^n}{\sqrt{n}}$$

- 1) Montrer que les séries $\sum u_n$ et $\sum v_n$ convergent.
- 2) Montrer la divergence de la série produit de Cauchy des séries $\sum u_n$ et $\sum v_n$.

Exercice 26 Existence et calcul de

$$\sum_{n=0}^{+\infty} (n+1)3^{-n}$$

(On pourra écrire 3^{-n} comme une somme de la forme $\sum_{n=0}^{n} \dots$ et faire apparaître un produit de Cauchy.)

