Licence (L3) Année 2016/2017

ALGÈBRE

Exercices sur les groupes

A. CHAMBERT-LOIR

EXERCICE 1

Soit *A* un groupe fini opérant dans un ensemble fini *X*. Pour tout $a \in A$, on pose $X^a = \{x \in X; a \cdot x = x\}$ (ensemble des points fixes de a).

1 En comptant de deux façons l'ensemble des couples $(a, x) \in A \times X$ tels que $a \cdot x = x$, démontrer que l'on a

$$\sum_{a \in A} \operatorname{Card}(X^a) = \sum_{x \in X} \operatorname{Card}(A_x).$$

2 En déduire la « formule de Burnside » (1) :

$$\operatorname{Card}(X/A) = \frac{1}{\operatorname{Card}(A)} \sum_{a \in A} \operatorname{Card}(X^a).$$

- 3 Soit *n* et *q* deux entiers. On s'intéresse à des colliers de *n* perles pour lesquelles on dispose de *q* modèles. Combien y a-t-il de colliers possibles lorsqu'on identifie deux colliers qui se déduisent l'un de l'autre par une rotation?
- 4 On suppose que A opère transitivement dans X. Démontrer qu'il existe un élément $a \in A$ tel que $a \cdot x \neq x$ pour tout x. (2)

EXERCICE 2

Soit p un nombre premier et soit A un groupe fini, non réduit à $\{e\}$, dont le cardinal est une puissance de p.

- 1 Démontrer que le centre de *A* n'est pas trivial.
- 2 Soit K un corps fini de caractéristique p, soit V un K-espace vectoriel de dimension finie et soit p une représentation linéaire de A dans V, c'est-à-dire un homomorphisme de groupes de A dans GL(V). Démontrer qu'il existe un vecteur non nul $v \in V$ tel que $p(a) \cdot v = v$ pour tout $a \in A$.
- 3 (*suite*) Démontrer qu'il existe une base de V telle que pour tout $a \in A$, la matrice de $\rho(a)$ dans cette base soit triangulaire supérieure, à diagonale formée de 1.

EXERCICE 3

On reprend les notations de l'exemple $\ref{eq:normalize}$. Pour chacun des trois ensembles générateurs, trouver un entier N, si possible minimal, tel que tout élément soit un produit d'au plus N éléments parmi les générateurs donnés et leurs inverses. Quels éléments de \mathfrak{S}_n atteignent cette borne?

EXERCICE 4

Soit a et b des élements de $\{1,...,n\}$; pour que le n-cycle (1 ... n) et la transposition (a b) engendrent \mathfrak{S}_n , il faut et il suffit que $\operatorname{pgcd}(n,b-a)=1$.

^{1.} Attribuée à Frobenius (1887) par Burnside (1897), cette formule était déjà connue de Cauchy (1845).

^{2.} C'est un théorème de C. JORDAN (1872).

Si un ensemble *S* de transpositions engendre \mathfrak{S}_n , on a Card(*S*) $\geqslant n-1$.

EXERCICE 6

Soit A un groupe et soit B un sous-groupe. Démontrer que B est un sous-groupe distingué de A si et seulement toute classe à droite modulo B est une classe à gauche modulo B.

EXERCICE 7 (Lemme de Zassenhaus)

Soit G un groupe, soit A, B des sous-groupes de G. Soit A' un sous-groupe distingué de A et soit B' un sous-groupe distingué de B.

- 1 Démontrer que $A' \cdot (A \cap B)$ est un sous-groupe de G et que $A' \cdot (A \cap B')$ en est un sous-groupe distingué.
- **2** Démontrer de même que $(A \cap B) \cdot B'$ est un sous-groupe de G dont $(A' \cap B) \cdot B'$ est un sous-groupe distingué.
- **3** Démontrer que $(A' \cap B) \cdot (A \cap B')$ est un sous-groupe distingué de $A \cap B$.
- 4 Démontrer que les trois groupes quotients

$$(A' \cdot (A \cap B)) / (A' \cdot (A \cap B')),$$
$$((A \cap B) \cdot B') / ((A' \cap B) \cdot B'),$$
$$(A \cap B) / ((A' \cap B) \cdot (A \cap B'))$$

sont isomorphes.

EXERCICE 8 (Jordan-Hölder)

Soit A un groupe. On dit qu'une suite $(A_0, ..., A_n)$ de sous-groupes de A est une *suite de composition* si $A_0 = \{e\}$, $A_n = A$ et si A_{i-1} est un sous-groupe distingué de A_i pour tout $i \in \{1, ..., n\}$; l'entier n est appelé sa *longueur*.

- Soit $(A_0, ..., A_n)$ une suite de composition de A. Démontrer que les propriétés suivantes sont équivalentes :
 - (i) Pour tout $i \in \{1, ..., n\}$, le groupe quotient A_i / A_{i-1} est simple;
 - (ii) Pour tout $i \in \{1, ..., n\}$, A_{i-1} est un sous-groupe distingué maximal de A_i ;
 - (iii) Il n'existe pas de suite de composition $(B_0,...,B_m)$ de A et d'application $f: \{0,...,n\} \to \{0,...,m\}$ telle que m > n et $A_i = B_{f(i)}$ pour tout i.

Si elles sont vérifiées, on dit que la suite $(A_0, ..., A_n)$ est une *suite de Jordan-Hölder*.

- **2** On suppose que *A* est fini. Démontrer qu'il possède une suite de Jordan-Hölder.
- 3 Soit n un entier; décrire toutes les suites de Jordan-Hölder du groupe $\mathbb{Z}/n\mathbb{Z}$.
- Soit $(A_0,...,A_n)$ et $(B_0,...,B_m)$ des suites de Jordan-Hölder de A. On pose f(0)=0; pour $i \in \{1,...,n\}$, soit f(i) le plus petit entier j tel que $A_{i-1} \cdot (A_i \cap B_j) = A_i$. Démontrer que f est une bijection de $\{0,...,n\}$ sur $\{0,...,m\}$ (en particulier, n=m) et que pour tout $i \in \{1,...,n\}$, les groupes A_i/A_{i-1} et $B_{f(i)}/B_{f(i)-1}$ sont isomorphes.

EXERCICE 9

Soit *Q* le groupe quaternionique d'ordre 8.

- 1 Démontrer que tout sous-groupe de Q est distingué, bien que ce groupe ne soit pas commutatif.
- **2** Quels sont les sous-groupes caractéristiques de *Q* ?

Identifier les groupes engendrés par générateurs et relations suivants : $\langle x \mid x^n \rangle$ (pour $n \in \mathbb{N}$); $\langle x, y \mid xyx^{-1}y^{-1} \rangle$; $\langle i, j \mid jiji^{-1}, ijij^{-1} \rangle$.

EXERCICE 11

Soit G le groupe défini par l'ensemble générateur $\{x_1,\ldots,x_n\}$ et les relations x_i^2 (pour $1\leqslant i\leqslant n$), $x_ix_jx_i^{-1}x_i^{-1}$ (pour $1\leqslant i,j\leqslant n$ et $j-i\geqslant 2$), $(x_ix_{i+1})^3$.

- Démontrer qu'il existe un unique homomorphisme de groupes φ de G dans \mathfrak{S}_{n+1} qui applique x_i sur la transposition $(i \ i+1)$, pour tout $i \in \{1,...,n\}$. Démontrer que φ est surjectif.
- **2** Démontrer que l'on a $G/H = \{H, x_n H, x_{n-1} x_n H, ..., x_1 ... x_n H\}$.
- **3** En déduire que par récurrence sur n que $Card(G) \le (n+1)!$, puis que φ est un isomorphisme.

EXERCICE 12

Démontrer qu'un groupe libre est sans torsion.

EXERCICE 13

Soit n un entier. Démontrer que l'ensemble des homomorphismes du groupe libre F_n dans le groupe $\mathbb{Z}/2\mathbb{Z}$ est fini et calculer son cardinal. En déduire que si m et n sont des entiers distincts, les groupes F_m et F_n ne sont pas isomorphes.

EXERCICE 14

Soit G un groupe, soit N un sous-groupe distingué de G; on suppose que G/N est isomorphe à un groupe libre. Démontrer qu'il existe un sous-groupe F de G tel que $G = F \cdot N$ et $F \cap N = \{e\}$.

EXERCICE 15 (« Ping-pong », Felix Klein)

Soit G un groupe opérant dans un ensemble E et soit a,b des éléments de G. On suppose qu'il existe des parties A,B de E, non vides, telles que $A \not\subset B$, et telles que $a^n \cdot A \subset B$ et $b^n \cdot B \subset A$ pour tout entier $n \in \mathbb{Z}$ tel que $n \neq 0$. Soit $\varphi \colon F(a,b) \to G$ l'homomorphisme canonique du groupe libre sur $\{a,b\}$ dans G qui applique a et b sur a et b respectivement.

- Soit $m \in M'(a, b)$ un mot réduit débutant et finissant par a ou a^{-1} . Démontrer que l'on a $\varphi(m) \cdot A \subset B$ et en déduire que $\varphi(m) \neq e$.
- **2** Démontrer que φ est injectif.

EXERCICE 16

On fait opérer GL(2, **C**) sur \mathbb{C}^2 de façon usuelle. Soit A (*resp.* B) l'ensemble des couples $(x, y) \in \mathbb{C}^2$ tels que |x| < |y| (*resp.* |x| > |y|). Soit u et v des nombres complexes tels que $|u| \ge 2$ et $|v| \ge 2$; on pose $a = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$ et $b = \begin{pmatrix} 1 & 0 \\ v & 1 \end{pmatrix}$.

- 1 Démontrer que $a \cdot A \subset B$ et $b \cdot B \subset A$.
- **2** Démontrer que l'unique homomorphisme de F(a,b) dans $GL(2, \mathbb{C})$ qui applique a et b sur a et b respectivement est injectif.

EXERCICE 17 (Jeu de taquin (3))

Le jeu de taquin, inventé dans les années 1870 et traditionnellement attribué à Sam Loyd, consiste en 15 pièces carrées placées à l'intérieur d'une boîte 4×4 ; il reste donc une case vide et chaque étape du jeu consiste à faire coulisser une des pièces vers la case vide. Le problème initial était, partant de l'agencement

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

de retrouver l'agencement initial

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

dans lesquels les cases 14 et 15 ont retrouvées leur place.

- 1 On considère un état du jeu comme une permutation d'un ensemble à 16 éléments, {1,2,...,15,□}, où □ représente la case vide. Démontrer que chaque étape du jeu consiste à multiplier la permutation précédente par une transposition. Évaluer la parité du nombre d'étapes effectuées en fonction de la position finale de la case vide. Que pensez-vous du problème posé par Sam Loyd?
- 2 Pour analyser le jeu plus précisément, et notamment déterminer l'ensemble des configurations qui permettent de remettre le puzzle dans son état initial, on décide de numéroter les pièces comme suit :

4	3	2	1
5	6	7	8
12	11	10	9
13	14	15	16

Une état du puzzle est alors la suite des 15 numéros des cases, lorsqu'on les lit comme dans la configuration précédente, et en omettant la case vide.

^{3.} Cet exercice est issu de la présentation de Michel Coste, http://agreg-maths.univ-rennes1.fr/documentation/docs/taquin.pdf.

- Vérifier que la position de la case vide n'a pas d'importance.
- 3 On considère ces suites comme des permutations de l'ensemble à 15 éléments, {1,...,15}. Démontrer qu'une étape du jeu consiste à multiplier la permutation précédente par un cycle de longueur impaire. En déduire que seules les permutations paires permettent de ranger le puzzle dans son état initial.
- 4 Soit i un entier tel que $1 \le i \le 13$. Trouver une suite d'étapes du jeu qui revient à multiplier une permutation à droite par le 3-cycle $(i \ i+1 \ i+2)$.
- Soit n un entier; démontrer que les permutations de la forme $(i \ i+1 \ i+2)$, pour $1 \le i \le n-2$, engendrent le groupe \mathfrak{A}_n .
- 6 Démontrer que les permutations qui permettent de ranger le puzzle dans son état initial sont exactement les permutations paires.

Soit A un groupe et soit B un sous-groupe de A.

- 1 On pose $N = \bigcap_{a \in A} aBa^{-1}$; démontrer que N est un sous-groupe distingué de A.
- 2 On suppose que B est d'indice fini dans A. Démontrer que N est d'indice fini dans A.
- 3 On suppose que A est un groupe fini et que l'indice de B dans A est égal au plus petit facteur premier de Card(A) (par exemple, que (A: B) = 2). Démontrer que B est un sous-groupe distingué de A.

EXERCICE 19

Déterminer « tous » les groupes abéliens de cardinal ≤ 100 .

EXERCICE 20

- 1 Déduire du théorème de structure des groupes abéliens finis qu'un sous-groupe fini du groupe multiplicatif d'un corps commutatif est cyclique.
- 2 Observer que le groupe quaternionique d'ordre 8 est un sous-groupe fini du corps **H** des quaternions mais n'est pas cyclique.

EXERCICE 21

Soit n un entier.

- 1 Soit $\sigma \in \mathfrak{S}_n$. Déterminer l'ordre de σ et sa signature en fonction de son type.
- **2** Quels sont les ordres des éléments de \mathfrak{S}_5 ?
- 3 Quel est le plus petit entier n tel que \mathfrak{S}_n contienne un élément d'ordre 12 ? deux éléments d'ordre 12 qui ne soient pas conjugués l'un de l'autre?

EXERCICE 22

Soit *n* un entier.

- Soit $\pi = (m_1, ..., m_r)$ une partition de n; pour tout $i \ge 1$, soit p_i le nombre d'indices j tel que $m_j = i$. Vérifier que $\sum i p_i = n$.
- **2** Combien y a-t-il de permutations de type π ?
- 3 Soit $\sigma \in \mathfrak{S}_n$ une permutation de type π et soit Z_{σ} son centralisateur. Démontrer que $\operatorname{Card}(Z_{\sigma}) = \prod_{i=1}^n p_i! i^{p_i}$.

- 1 Faire la liste des différentes classes de conjugaison du groupe \mathfrak{A}_5 et, pour chacune d'entre elles, calculer leur cardinal
- 2 Démontrer que $\{e\}$ est la seule partie de \mathfrak{A}_5 vérifiant les propriétés suivantes : elle contient e, elle est une réunion de classes de conjugaisons, et son cardinal divise celui de \mathfrak{A}_5 .
- **3** En déduire que le groupe \mathfrak{A}_5 est simple.
- 4 Soit $n \ge 6$ et soit N un sous-groupe distingué de \mathfrak{A}_n tel que $N \ne \{e\}$. Soit g un élément de $N \{1\}$; trouver un élément $h \in \mathfrak{A}_n$ tel que $[g,h] \ne e$ mais [g,h] fixe un élément de $\{1,\ldots,n\}$. En déduire par récurrence que $N = \mathfrak{A}_n$.

EXERCICE 24

Soit *n* un entier ≥ 5 .

- 1 Soit A un sous-groupe distingué de \mathfrak{S}_n . Démontrer que $A = \{e\}$, $A = \mathfrak{A}_n$ ou $A = \mathfrak{S}_n$.
- 2 Soit A un sous-groupe de \mathfrak{S}_n et soit $a=(\mathfrak{S}_n:A)$. Déduire de l'action par translations à gauche de \mathfrak{S}_n sur l'ensemble \mathfrak{S}_n/A des classes à droite modulo A un homomorphisme de \mathfrak{S}_n dans $\mathfrak{S}(\mathfrak{S}_n/A)$. En déduire l'alternative : soit $A=\mathfrak{A}_n$, soit $A=\mathfrak{S}_n$, soit $a\geqslant n$.
- 3 Soit A un sous-groupe de \mathfrak{S}_n tel que $(\mathfrak{S}_n : A) = n$. Démontrer que l'homomorphisme de la question précédente induit un isomorphisme de groupes de A sur le fixateur de la classe A dans $\mathfrak{S}(\mathfrak{S}_n/A)$. En particulier, A est isomorphe à \mathfrak{S}_{n-1} .

EXERCICE 25

Soit *n* un entier tel que $n \ge 7$.

- Soit τ une transposition. Quel est l'ordre de $\varphi(\tau)$? Quel est le cardinal du centralisateur de $\varphi(\tau)$? En utilisant alors la formule de l'exercice, démontrer que $\varphi(\tau)$ est une transposition.
- 2 (*suite*) Pour $i \in \{2, ..., n\}$, soit τ_i la transposition (1 i). Démontrer qu'il existe une suite $(a_1, ..., a_n)$ d'entiers deux à deux distincts tels que $\varphi(\tau_i) = (a_1 a_i)$. En déduire que φ est un automorphisme intérieur.
- **3** (*suite*) Conclure que l'homomorphisme canonique Int: $\mathfrak{S}_n \to \operatorname{Aut}(\mathfrak{S}_n)$ est un isomorphisme.

EXERCICE 26

Soit A un groupe fini et soit p un nombre premier. Soit $\sigma: A^p \to A^p$ l'application donnée par $\sigma(a_1, ..., a_p) = (a_2, ..., a_p, a_1)$.

- 1 Quels sont les points fixes de σ ? Démontrer que les orbites de σ ont pour cardinal 1 ou p.
- 2 On note X l'ensemble des $(a_1, ..., a_p) \in A^p$ tels que $a_1 ... a_p = e$. Démontrer que σ induit par restriction une permutation de X.
- 3 Calculer Card(X). Si p divise Card(A), déduire des questions précédentes qu'il existe un élément $a \in A \{e\}$ tel que $a^p = e$.
- 4 Démontrer que pour tout élément $a \in \mathbb{N}$ qui n'est pas multiple de p, $a^{p-1}-1$ est multiple de p.

EXERCICE 27

Soit p un nombre premier et soit n un entier naturel.

- 1 On suppose que que n < 2p; déterminer les p-sous-groupes de Sylow de \mathfrak{S}_n .
- 2 On suppose que p est impair et que $2p \le n < p^2$. Décrire un p-sous-groupe de Sylow de \mathfrak{S}_n . Démontrer en particulier qu'ils sont commutatifs.
- **3** Décrire un p-sous-groupe de Sylow de \mathfrak{S}_{p^2} ; observer qu'il n'est pas commutatif.

Soit G un groupe fini de cardinal 60. Si p est un nombre premier, on note σ_p le nombre de p-sousgroupes de Sylow de G. On suppose dans la suite que $\sigma_5 \neq 1$; le but de l'exercice est de prouver que G est simple. On raisonne par l'absurde en considérant un sous-groupe distingué H de G, distinct de $\{e\}$ et de G.

- 1 Quel peut être le cardinal de H?
- **2** Démontrer que $\sigma_2 \in \{1,3,5,15\}$, $\sigma_3 \in \{1,4,10\}$ et $\sigma_5 = 6$. Combien G contient-il d'éléments d'ordre 5?
- 3 On suppose que Card(H) est multiple de 5. Démontrer que Card(H) = 30. Observer que H possède 20 éléments d'ordre 3 et en déduire que H possède un unique 5-sous-groupe de Sylow. Pourquoi cette assertion est-elle absurde?
- 4 On suppose que $Card(H) \le 4$. Prouver que G/H possède un unique sous-groupe d'ordre 5. En déduire que G possède un sous-groupe distingué H', distinct de G mais dont le cardinal est multiple de 5. En déduire une contradiction.
- 5 On suppose que Card(H) = 6 ou 12. Si H possède un unique 3-sous-groupe de Sylow, démontrer que c'est un sous-groupe distingué de G et en déduire une contradiction. Sinon, démontrer que H possède un unique 2-sous-groupe de Sylow et en déduire encore une contradiction.

EXERCICE 29

Soit *G* un groupe simple de cardinal 60.

- Soit A un sous-groupe de G. Démontrer que $(G:A) \ge 5$. (Faire opérer G dans G/A.) Si (G:A) = 5, démontrer que G est isomorphe à \mathfrak{A}_5 .
- 2 Si p est un nombre premier, on note σ_p le nombre de p-sous-groupes de Sylow de G. Démontrer que $\sigma_2 \in \{5,15\}$, $\sigma_3 = 10$ et $\sigma_5 = 6$.
- 3 Si $\sigma_2 = 5$, démontrer que G est isomorphe à \mathfrak{A}_5 . (Faire opérer G dans l'ensemble de ses 5-sous-groupes de Sylow.)
- 4 On suppose que $\sigma_2 = 15$. Démontrer que G possède 24 éléments d'ordre 5. En déduire qu'il existe deux sous-groupes de 2-Sylow de G, P et Q, tels que $\operatorname{Card}(P \cap Q) = 2$. Soit $N = \operatorname{N}_G(P \cap Q)$. Prouver que (G:N) = 5 puis que G est isomorphe à \mathfrak{A}_5 , ce qui contredit l'hypothèse $\sigma_2 = 15$.

EXERCICE 30 (Argument de Frattini)

- Soit A un groupe opérant dans un ensemble X. Soit B un sous-groupe de A tel que l'opération de B dans X déduite de celle de A soit transitive. Démontrer que pour tout $x \in X$, on a $A = B \cdot A_X$.
- Soit A un groupe, soit G un sous-groupe fini de A et soit S un p-sous-groupe de Sylow de G. Démontrer que $A = G \cdot N_A(S)$.
- 3 Soit G un groupe fini, soit S un p-sous-groupe de Sylow de G et soit H un sous-groupe de G contenant $N_G(S)$. Démontrer que $H = N_G(H)$.

EXERCICE 31

1 Soit G un groupe fini, soit p un nombre premier; on suppose que le nombre de p-sous-groupes de Sylow de G n'est pas congru à 1 modulo p^2 . Démontrer qu'il existe deux p-sous-groupes de Sylow P et Q de G tels que $(P: P \cap Q) = (Q: P \cap Q) = p$.

2 Soit G un groupe fini d'ordre 1053. Démontrer qu'il existe deux 3-sous-groupes de Sylow de G, P et Q, tels que $\operatorname{Card}(P \cap Q) = 3^3$. Soit $N = \operatorname{N}_G(P \cap Q)$. Démontrer que P et Q sont des sous-groupes de N. En déduire que N = G et que G n'est pas simple.

EXERCICE 32 (Groupes nilpotents)

Soit *A* un groupe.

On définit par récurrence une suite (A_n) de sous-groupes distingués de A comme suit : $A_0 = \{e\}$ et, si A_n est défini, A_{n+1} est l'unique sous-groupe de A contenant A_n tel que A_{n+1}/A_n soit le centr de A/A_n .

On définit par récurrence une suite (A^n) de sous-groupes de A en posant $A^0 = A$ et, si A^n est défini, A^{n+1} est le sous-groupe de A engendré par $[A, A^n]$.

- 1 Démontrer que pour tout entier n, A_n et A^n sont des sous-groupes caractéristiques de A.
- 2 Démontrer que $A^m = \{e\}$ si et seulement si $A_m = A$. S'il existe un tel entier m, on dit que A est un groupe *nilpotent*.
- 3 On supose que $\{e\} = A^m \subsetneq A^{m-1}$. Démontrer que $A_{n-1} \subset A^{m-n} \subset A_n$ pour tout entier $n \in \{1, ..., m\}$.
- 4 On suppose que A est un p-groupe. Démontrer que A est nilpotent.

EXERCICE 33

Soit p et q des nombres premiers tels que p < q, soit G un groupe fini de cardinal pq. Soit P un p-sous-groupe de Sylow de G, soit Q un q-sous-groupe de Sylow de G.

- 1 Démontrer que P et Q sont des groupes cycliques, de même que le groupe Aut(Q) des automorphismes de Q.
- **2** Démontrer que *Q* est un sous-groupe distingué de *G*. En déduire que *G* est un produit semi-direct de *P* et *Q*.
- 3 On suppose que p ne divise pas q-1. Démontrer que G est isomorphe à $\mathbb{Z}/pq\mathbb{Z}$.
- 4 On suppose que p divise q-1. Démontrer qu'il existe un groupe non commutatif de cardinal pq, et que deux tels groupes sont isomorphes.