Equivalence

1 Equivalence =

Let = denote equivalence

$$x_i = x_i \ \forall i$$

2 Is equal to ==

$$== \begin{bmatrix} x_i, x_j \end{bmatrix} :=$$

$$== \begin{bmatrix} x_i, x_j \end{bmatrix} \rightarrow \mathbb{T} \quad i = j$$

$$== \begin{bmatrix} x_i, x_j \end{bmatrix} \rightarrow \mathbb{F} \quad i \neq j$$

2.1 Alternate Notation

$$x_i == x_j$$

3 Is not equal to !=

$$! = [x_i, x_j] :=$$

$$! = [x_i, x_j] \rightarrow \mathbb{T} \quad i \neq j$$

$$! = [x_i, x_j] \rightarrow \mathbb{F} \quad i = j$$

3.1 Alternate Notation

$$x_i! = x_j$$

Set Theory

4 Element

Define element l

$$l = \{l\}$$

5 Identity

Define identity of element l

$$|l| := 1$$

6 Empty Set

Define Empty Set, the set containing no elements

$$\varnothing := \{\}$$

7 Null Identity

Define the null identity

$$|\emptyset| := 0$$

8 Union ∪

Define \cup the union of two elements

8.1 Translation

 \cup is often read as "and"

8.2 Comma,

In set notation the comma "," denotes union \cup

$$l_1 \cup l_2 = \{l_1\} \cup \{l_2\} = \{l_1, l_2\}$$

9 Intersection \cap

Define \cap , the intersection of two elements

$$l_1 \cap l_2 = \{l_1\} \cap \{l_2\}$$

$$\cap [l_i, l_j] \to \{l_i\} \ i = j$$

$$\cap [l_i, l_j] \to \emptyset \ i \neq j$$

10 Sets

10.1 Definition

Define set S as an ordered union of elements s_i

$$S := s_1 \cup s_2 \cup \ldots \cup s_{n-1} \cup s_n = \{s_1, s_2, \ldots s_N\}$$

10.2 Alternate Notation

$$S := s_i \in S : i = 1, 2, ..., N - 1, N$$

$$S = \{s_1, s_2, ..., s_{N-1}, s_N\}$$

10.3 Magnitude of a Set

$$|S| = |\{x_1, ..., x_N\}| = N$$

10.4 Counting

$$1, 2, ..., N = 1:N$$

10.5 Definition Unordered Set

Set S is unordered if

$$S = \{x_1, x_2, ..x_n\} := x_i, x_j \in S; \quad x_i = x_j; \quad \forall i, j \neq i$$

10.6 Definition of Unique Set

$$a_i, a_j \in S$$
$$a_i \neq a_j \quad \forall i, j \neq i$$

10.7 Definition of Countable/Uncountable set

Potentially just a line?

10.8 Define line \mathbb{L}

Define line \mathbb{L}

$$\begin{split} \mathbb{L} := \{l_0, l_1, l_2, ..., l_{N-1}, l_N, l_{N+1}, ... \\ \iff \exists l_i \in \mathbb{L} \ \forall i \end{split}$$

11 Hierarchy of Elements to Sets

Every element is a set, but not all sets are elements

12 Universal Set

12.1 Definition

Define Universe, the "Universal Set" containing all elements

$$\Omega := s_i \in \Omega, \forall i$$

13 Containment

13.1 Contains

13.2 Equals =

Define set equivalence =

$$S_1 \subseteq S_2; \quad S_2 \subseteq S_1 \iff S_1 = S_2$$

- 13.3 Subset
- 13.4 Proper Subset Citation
- 13.5 Definition of Complement

$$S = \{s_1, s_2, ..., s_N\}$$

$$S^C :=$$

$$s_j : \{s_j \in \Omega\} \cap \{s_j \notin S\}; \ \forall j$$

13.6 Alternate Notation

Wikipedia definition of complement

$$S^C = U - S = \{x \in \Omega : x \notin S\}$$
https://en.wikipedia.org/wiki/Complement_(set_theory)

Appendix

14 Proofs and Properties

- 1. $\Omega \subset \emptyset$
- $2. \quad \Omega \cap \Omega = \Omega$
- 3. $\Omega \cup \Omega = \Omega$
- 4. $\Omega \cup \emptyset = \Omega$
- 5. $\Omega \cap \emptyset = \emptyset$
- 6. $\Omega \cap S = S$
- 7. $\Omega \cup S = \Omega$
- 8. $\varnothing \subseteq \Omega$
- 9. $\emptyset \cup \emptyset = \emptyset$
- 10. $\emptyset \cap \emptyset = \emptyset$
- 11. $\emptyset \cap S = \emptyset$
- 12. $\emptyset \cup S = S$
- 13. $\emptyset = \emptyset$
- 14. $\emptyset = \Omega^C$
- 15. $\Omega \subseteq S$