1 Counting Sort (++++)

Counting sort é um algoritmo de ordenação estável cuja complexidade é O(n). As chaves podem tomar valores entre 0 e M-1. Se existirem k_0 chaves com valor 0, então ocupam as primeiras k_0 posições do vetor final: de 0 a k_{0-1} .

O procedimento para implementação do Counting Sort segue os seguintes passos:

- 1. Cria-se um vetor vCount[M+1] e vOrd[N-1], onde N é a quantidade de elementos a serem ordenador e M é o maior valor entre os elementos a serem ordenados.
- 2. Inicializa-se todas as posições de vCount com 0.
- 3. Percorre-se o vetor v e, para cada posição i de v faz-se vCount[v[i]]++, o que faz com que, no final, cada posição i de vCount contem a quantidade de vezes que a chave i aparece em V.
- 4. Acumula-se em cada elemento de vCount o elemento somado ao elemento anterior, desta forma, vCount[i] indica a posição-1 ordenada do primeiro elemento de chave i.
- 5. Guarda-se em vOrd os valores de V ordenados de acordo com vOrd[vCount[v[i]-1]=V[i]. E decrementa-se vCount[v[i]] de uma unidade.
- 6. Copia-se vOrd para v.

Esta implementação tem a desvantagem de precisar de vetores auxiliares. O Counting Sort ordena exclusivamente números inteiros pelo fato de seus valores servirem como índices no vetor de contagem.

Entrada

O programa possui vários casos de testes. A primeira de cada caso contem um inteiro N, $1 < N \le 10000$, representando o tamanho do vetor. A segunda linha conterá N inteiros entre 0 e 1000, representando os N elementos do vetor. A entrada termina quando N=0.

Saída

O programa gera uma linha de saída para cada entrada, contendo os valores recebidos na entrada ordenados de acordo com o Counting Sort. Entre cada valor há um espaço em branco. Antes do primeiro valor não deve-se imprimir nada e após ao último valor deve-se apenas quebrar uma linha.

Exemplo

Entrada										
10										
6	13	3 -	7 3	3 2	13	6	14	3	14	9
5										
9	8	7	6	5						
8										
0	1	2	3	4	5	6	7			
0										
Saída										
3	3	6	6	7	9	13	3 1	3 :	14	14
5	6	7	8	9						
0	1	2	3	4	5	6	7			