Supplementary Tables

Solid-State Energetics and Electrostatics:

Madelung Constants and Madelung Energies

Leslie Glasser*

Nanochemistry Research Institute, Department of Chemistry

Curtin University, GPO Box U1987, Perth, WA 6845, Australia

E-mail: 1.glasser@curtin.edu.au

Values in italics in the Tables below (for CdI₂, BiI₃, VF₃, and Cr₂O₃) have been recalculated using the program GULP (Gale, J. D. *J. Chem. Soc., Faraday Trans.* **1997,** *93*).

Table S1: Collated crystal structural information on some ionic solids, and related Madelung constant data.

Ionic Solid	Space G	Group	V _m / nm³	Z	M _r	r _o / nm	M _r /r / nm ⁻¹	Ma	a / nm	M_a/a / nm ⁻¹	M _V	M_v/v ^{1/3} / nm ⁻¹
NaCl	С	225	0.0472	4	1.7476	0.2814	6.21	3.4951	0.5640	6.20		
CsCl	С	221	0.0702	1	1.7627	0.3571	4.94	2.0344	0.4123	4.93		
TIF	0	28	0.0433	4		0.2590		3.2804	0.5180	6.33		
TII	0	63	0.0777	4		0.3342		2.2290	0.4582	4.86		
		60	0.4040									45.44
BaBr ₂	0	62	0.1010	4							7.0370	15.11
Bal ₂	0	62	0.1260	4							7.0220	14.01
BaF ₂	С	225	0.0596	4	2.4676						7.3306	18.77
BaCl ₂ (CaF ₂ - type)	С	225	0.0977	4	2.4676				0.7311		7.3306	15.92
BaCl ₂ (PbCl ₂ - type)	0	62	0.0878	4							7.0400	15.84
BeCl ₂	0	72	0.0695	4	4.0860	0.2017	20.26					
CaF ₂ (fluorite)	С	225	0.5466	4	11.6366	0.5466	21.29	11.6366	0.4330	21.29	7.3306	21.29
CaCl ₂	0	58	0.0840	2	4.7276	0.2708	17.46	10.9179	0.6240	17.50	7.6730	17.52
CaBr ₂	0	58	0.0982	2							7.6700	16.62
Cal ₂	Н	154	0.1210	1							6.2230	12.58
CdCl ₂	R	166	0.0747	3	4.4890	0.2663	16.86	6.3414	0.3846	16.49		
CdI ₂	Н	156	0.1069	15	4.3819	0.2988	14.66	6.2330	0.4240	14.70		
CrCl ₂	0	58	0.0690	2				11.3260	0.5974	18.96		

CuF ₂	М	14	0.0339	2		0.1942		10.8599	0.4590	23.66		
HgI_2	Т	137	0.1171	2		0.2779		6.5324	0.4356	15.00		
MgF_2	T	136	0.0326	2	4.7620	0.1968	24.20	11.1886			7.7320	24.22
$MgCl_2$	Н	166	0.0674	3							6.9570	17.09
$MgBr_2$	Н	166	0.0859	3							6.8780	15.59
Mgl_2	Н	164	0.0511	2							6.8520	18.47
PbCl ₂	0	62	0.0781	4		0.3076		14.9869	0.9030	16.60		
PbFCl	Т	129	0.0609	2		0.2511		7.5082	0.4106	18.29		
SrF ₂	С	225	0.0488	4	2.5195						7.3306	20.06
SrCl ₂	С	225	0.0848	4	2.5195						7.3306	16.68
SrBr ₂	T	85	0.0962	10	4.8441	0.3161	15.33				7.1700	15.65
Srl ₂	0	61	0.1243	8								
TiCl ₂	Н	164	0.0622	1	4.3474	0.2527	17.21	6.1270				
AICI ₃	М	12	0.0883	4	8.3030	0.2295	36.17	21.2386	0.5920	35.88		
Asl ₃	R	148	0.1596	6				22.3230	0.8250	27.06		
BiF ₃	С	225	0.0501	4				22.1220				
Bil ₃	R	148	0.1695	6		0.4560		21.5567	0.8163	26.41		
FeCl ₃	R	166	0.0917	3				22.2180	0.6758	32.88		
IrF ₃	R	167	0.0499	6				23.8340	0.5418	43.99		
LaCl ₃	Н	176	0.1059	2	9.1290	0.2950	30.94					
LaF ₃	Н	165	0.0558	6	9.1190	0.2353	38.75	15.6879	0.4148	37.82		
MoF ₃	R	162	0.1123	6				26.3470	0.5666	46.50		
PuBr ₃	0	63	0.1184	4				36.0270	1.2640	28.50		
ScF ₃	С	221	0.0645	1				17.9080				
UD_3	С	223	0.0364	8	8.7280	0.2058	42.40					
VF ₃	R	167	0.0517	6				24.4195	0.5373	47.25		
VI_3	R					0.3797		3.7970				
YF ₃	С	221	0.1798	1	8.2813	0.2163	38.29					
YCl ₃	М	12	0.1242	4	8.3130	0.2585	32.16					
	_											
AgO	С	216	0.0279	4		0.1819		17.4467	SG?			31.41

BaO	С	225	0.0416	4	6.9823						25.28
BeO	Н	186	0.0138	2	6.3676	0.1599	39.83	10.7461			39.84
CaO	С	225	0.0279	4	1.7465						29.12
CdO	С	225	0.0327	4	1.7469						
CeO	С	225	0.0329								27.44
CoO	С	225	0.0193								32.80
CuO	M	15	0.0200	4		0.2069		15.7335	0.4653	33.81	
CuO	M	15	0.0201								33.28
CuO	M	225	0.0200								33.45
EuO	С	225	0.0341								27.20
FeO	С	225	0.0200								32.40
LaO	С	225	0.0340								27.20
MgO	С	225	0.0188	4	1.7480						
NbO	С	225	0.0249								28.58
NbO	С	221	0.0249	3		0.2105		12.0342	0.4210	28.58	
NdO	С	221	0.0312								28.00
NiO	С	225	0.0183								33.52
PrO	С	225	0.0318								27.76
SnO	0	31	0.0297								27.04
SrO	С	225	0.0343	4	1.7490						27.20
TiO	С	225	0.0182								38.40
VO	С	225	0.0170								34.40
ZnO	Н	186	0.0239	2	5.9941	0.1796	33.37	10.6067	0.3250	32.64	33.37
ZnS (sphalerite cubic)	С	216	0.0394	4	6.5522	0.2341	27.99	15.1317	0.5409	27.97	
ZnS (wurtzite				_							
hexagonal)	Н	186	0.0390	8	6.5629	0.2339	28.06	10.7153	0.3811	28.12	
α -Al ₂ O ₃ (corundum)	R	167	0.0425	6	24.2420	0.1848	131.19	67.2580	0.5128	131.16	
Ce ₂ O ₃	н	164	0.0794	ŭ	2 112 120	0.10.10	131.13	07.2300	0.5120	131.10	103.20
				1		0.2405		20 0021	0.2000	00.00	103.20
Ce ₂ O ₂ S	Н	164	0.0954	1		0.2405		38.8031	0.3888	99.80	425.70
Cr ₂ O ₃	R	167	0.0480	6		0.2485		62.2570	0.5350	116.37	125.70
Cr ₂ O ₃	Н	167	0.0481			0.2485		62.2217	0.4952	125.65	
Eu_2O_3	Н	164	0.0701								107.40
Fe ₂ O ₃ - alpha	R	167	0.0499	6				67.3460	0.5414	124.40	124.20

Ga₂O₃ - beta	М	12	0.0524	4	4.0740						
In ₂ O ₃ (corundum)	R	167	0.0631	6	4.0831						114.90
In ₂ O ₃ (cubic)	С	206	0.0647	16	4.0553						
La_2O_3	Н	164	0.0827	1	24.1787	0.2371	101.97	40.1496	0.3937	101.97	102.00
LaAlO ₃	R	167	0.0545	6				44.5550			
Mn ₂ O ₃ -beta	0	61	0.0522								124.80
Nd_2O_3	Н	164	0.0765	1	4.0215			40.1435			105.00
Pb_2O_3	М	14	0.0377	4				75.3200	0.7050	106.84	
Rh_2O_3	R	167	0.0526								122.15
Sc_2O_3	С	206	0.0596	16	4.1784						118.20
Ti_2O_3	R	167	0.0522	6				65.9340	0.5431	121.40	121.50
V_2O_3	R	167	0.0495								120.30
V_2O_3	R	167	0.0544	6	4.0583			67.9290	0.5647	120.29	
Y_2O_3	Н	164	0.0766	1	8.8990	0.2253	39.49				110.10
Yb_2O_3	С	206	0.0710								111.60
$MgAl_2O_4$	С	227	0.0635	8		0.1917					
	•	225	0.0206								05.03
CeO ₂	C	225	0.0396	4							85.92
CrO ₂	T	136	0.0285	2				44.0200	0.4205	402.22	100.80
GeO ₂ (rutile)	T	136	0.0276	2				44.9300	0.4395	102.23	101.76
MnO ₂ -beta	T	136	0.0279								101.76
MoO ₂	M	14	0.0329								93.84
NbO ₂	T	136	0.0352	4		0.2167		42.0557	0.4047	00.05	92.88
PbO ₂	0	60	0.0405	4		0.2167		43.9557	0.4947	88.85	0F 20
PrO ₂	C	225	0.0410								85.20
RhO ₂	T	136	0.0311								98.16
RuO ₂	T	136	0.0313								97.68
SiO ₂	T	136	0.0233	2	17.0004	0.1610	100.76	FO 0134	0.5010	101.63	109.92
SiO ₂ - beta	H	152	0.0394	3	17.6094	0.1619	108.76	50.9121	0.5010	101.62	02.50
SnO ₂	T	136	0.0358	2		0.2022		44.3844	0.4737	93.69	93.60
TeO ₂	T	92	0.0439	4		0.2030		42.6396	0.4805	88.74	

TiO ₂ (anatase)	Т	141	0.0341	4	19.0691	0.1937	98.42	37.2462	0.3785	98.40	98.16
TiO ₂ (brookite)	0	61	0.0322	8	18.0660	0.1842	98.06	90.0560	0.9184	98.06	
TiO ₂ (rutile)	Т	136	0.0312	2	19.0803	0.1945	98.09	45.0541	0.4594	98.08	
VO ₂	T	136	0.0296								99.60
VO ₂	0	62	0.0337	4		0.2099		54.8347	0.5743	95.48	
ZrO ₂	T	136	0.0332								91.44
ZrO ₂	M	14	0.0351	4	19.7328	0.2030	97.21	46.7065	0.5207	89.70	
ZrO ₂	С	225	0.0338	4							
ZrS ₂	Н	164	0.0667	1		0.3092		24.5121	0.3662	66.94	
ReO ₃	С	221	0.0527	1				71.6318			
WO ₃	Т	130	0.0546	4							
BaBiO ₃	С	225	0.0862	8							
BaTiO ₃	С	221	0.0683	1				49.5099			
NaTaO ₃	С	221	0.0585	1				58.5355	0.3881	150.83	
SrTiO ₃	С	221	0.0596	1				49.5120	0.3905	126.79	
FeOCI	0	59	0.0495	2		0.2149		14.6608	0.3750	39.10	
LaOCl	T	129	0.0585	2	10.9230	0.2396	45.58				
LaOF - beta	R	166	0.0479	6	11.4710	0.2419	47.41				
LaOF - gamma	T	129	0.0489	2	11.3914	0.2421	47.04	13.8672	0.4091	33.90	
YOF	R	166	0.0393	6		0.2204		27.0561			
YOCI						0.2284					
CuFeO ₂	R							36.7040	0.5959	61.59	
CuFeO ₂	Н							44.6360	0.3028	147.41	
LiCrO ₂	R							36.6110	0.5100	71.79	
NaFeO ₂	R	166	0.0140	3				42.0570	0.5590	75.24	
BaLiF ₃	С	221	0.0638	1				10.9177			

BiOBr BiSCl	T O		0.0760			0.2723		18.1290 29.7134	0.3916	46.29	
Cu ₂ O	С	224	0.0396	2	4.4425	0.1841	24.13	10.2595	0.4270	24.03	
Hg_2Cl_2	Т		0.1089			0.2520		4.6665	0.4478	10.42	
NiAs	Н	194	0.0285	2	6.7701			10.0455	0.0000		
SbSI						0.3632		32.4235	0.8650	37.48	
SiF ₄					12.4890	0.1546	80.78				
V_2O_5	0	62	0.0896	4		0.1544					
Complex Oxides ^a											
LaCoO ₃	R	167	0.0568								116.70
LaCrO ₃	R	167	0.0591								113.70
LaCuO₃	R	167	0.0577								115.50
LaFeO ₃	С	62	0.0605								113.40
LaMnO₃	R	167	0.0584								114.90
LaNiO ₃	R	167	0.0576								116.10
LaRhO ₃	С	62	0.0623								110.70
LaRuO ₃	С	62	0.0623								110.40
LaTiO₃	С	62	0.0621								113.10
LaVO ₃	С	62	0.0601								114.00
LaYbO ₃											
SrCeO ₃	С	62	0.0795								115.20
SrCoO ₃	С	221	0.0566								128.32
SrCrO ₃	С	221	0.0557								129.60
SrMnO ₃	С	221	0.0522								124.48
SrMoO ₃	С	221	0.0628								124.48
SrSnO ₃	С	62	0.0657								122.56
SrTiO ₃	С	221	0.0595								125.44
SrVO₃	С	221	0.0567								128.96

La ₂ CoO ₄	0	64	0.0945	134.14
La ₂ CuO ₄	0	64	0.0951	135.28
La ₂ NiO ₄	Т	139	0.0944	135.28
LaSrCoO ₄	Т	139	0.0903	143.64
LaSrCrO ₄	Т	139	0.0931	142.88
LaSrCuO ₄	Т	139	0.0951	142.12
LaSrFeO ₄	Т	139	0.0952	140.22
LaSrNiO ₄	Т	139	0.0912	142.12
Sr_2MnO_4	T	139	0.0896	156.80
Sr_2MoO_4	T	139	0.0980	152.00
Sr ₂ RuO ₄	Т	139	0.0954	153.60
Sr ₂ SnO ₄	Т	139	0.1021	151.20
Sr ₂ TiO ₄	Т	139	0.0949	154.80
Sr ₂ VO ₄	Т	139	0.0916	155.20

^a The data for this set of complex oxides has been extracted from Torrance, J. B,Lacorre, P., Asavaroengchai, C., and Metzger, R. M. *Physica C*, **1991**,*182*, 351-362.

Table S2: Lattice and Madelung (electrostatic) Energies (in kJ mol⁻¹) for materials treated as ionic.

Ionio Colid	II (DIIE)	Madelung	138.94M _r /r	138.94M _a /a	$138.94M_{V}/v^{1/3}$
Ionic Solid	$U_{POT}(BHF)$	energy	130.741/1/1	130.54114/4	130.741414/
NaCl	790	846	863	861	
CsCl	670	686	686	686	
TlF	850	880		880	
TlI	710	676		676	
D o D m	1995				2100
BaBr ₂					2100
BaI ₂	1890				1946
BaF ₂	2373				2608
BaCl ₂ (CaF ₂ - type)	2069				2212
BaCl ₂ (PbCl ₂ - type)	2022	2017	2017		2201
BeCl ₂	3033	2815	2815	2050	20.50
CaF ₂ (fluorite)	2651	2967	2958	2958	2958
$CaCl_2$	2271	2427	2425	2431	2435
CaBr ₂	2132				2310
CaI_2	2087				1748
$CdCl_2$	2565	2342	2342	2291	
CdI_2	2455	2043	2037	2042	
$CrCl_2$	2601	2633		2634	
CuF_2	3102	3288		3287	
HgI_2	2624	2084		2084	
MgF_2	2978	3363	3362		3365
$MgCl_2$	2540				2375

$MgBr_2$	2451				2166
MgI_2	2340				2567
$PbCl_2$	2282			2306	
PbFCl		2540		2541	
SrF_2	2513				2788
$SrCl_2$	2170				2318
$SrBr_2$		2186	2130		2174
SrI_2	1976				
$TiCl_2$	2514	2391	2391		
$AlCI_3$	5513	5024	5026	4985	
AsI_3	5295	3758		3759	
BiF ₃		5242			
BiI_3	3774	3670		3670	
FeCl ₃	5436	4567		4568	
IrF_3	6112	6111		6112	
LaCl ₃	4242	4300	4299		
LaF ₃	4682	5385	5384	5255	
MoF_3	6459	6459		6461	
PuBr ₃	3959	3959		3960	
ScF ₃	5540	6203			
UD_3		5893	5891		
VF_3	5329	6375		6566	
VI_3	5136				
YF_3	4983		5320		
YCl ₃	4524	4470	4469		
AgO		4365			4365
BaO	3054				3513
BeO	4443	5536	5534		5536
CaO	3401				4047

CdO	3806				
CeO					3813
CoO	3910				4558
CuO		4648		4698	
CuO	4050				4625
CuO	4050				4648
EuO					3780
FeO	3865				4502
LaO					3780
MgO	3791				
NbO		4603			3972
NbO		3972		3971	
NdO					3891
NiO	4010				4658
PrO					3858
SnO	3652				3757
SrO	3223				3780
TiO	3811				5336
VO	3863				4780
ZnO	3971	4637	4636	4535	4637
ZnS (sphalerite cubic)		3890	3889	3887	
ZnS (wurtzite hexagonal)		3899	3898	3907	
α-Al ₂ O ₃ (corundum)	15916	18232	18228	18223	
Ce_2O_3	12661				14341
Ce_2O_2S		13818		13867	
Cr_2O_3	14957	17457		17460	17467
Cr_2O_3		17466		18866	
Eu_2O_3	12945				14924
Fe ₂ O ₃ - alpha	14774	17281		17285	17259
Ga ₂ O ₃ - beta	15220				17509
In ₂ O ₃ (corundum)	13928				15967

In ₂ O ₃ (cubic)					
La_2O_3		14169	14168	14168	14174
LaAlO ₃					
Mn_2O_3 - beta	15035				17342
Nd_2O_3	12736				14591
Pb_2O_3	14841	14841		14844	
Rh_2O_3					16974
Sc_2O_3	13708				16425
Ti_2O_3	14149	16864		16868	16884
V_2O_3	14520				16717
V_2O_3		16708		16713	
Y_2O_3	12705		5487		15299
Yb_2O_3					15508
$MgAl_2O_4$		22814			
CeO_2	9627				11939
CrO_2					14007
GeO ₂ (rutile)	12828	14201		14204	
MnO ₂ -beta	12970				14141
MoO_2	11648				13040
NbO_2					12907
PbO_2	11217	12347		12345	
PrO_2					11839
RhO_2					13640
RuO_2					13574
SiO_2	13125				15274
SiO_2 - beta		15114	15111	14119	
SnO_2	11807	13015		13018	13007
TeO_2		12331		12330	
TiO ₂ (anatase)	12150	13678	13675	13672	13640
TiO ₂ (brookite)		13627	13624	13624	

TiO ₂ (rutile)		13632	13629	13627	12040
VO_2 VO_2				13266	13840
VO_2 ZrO_2	11188			13200	12707
ZrO_2	11100	12751	13506	12463	12707
ZrO_2		12598	13300	12 103	
ZrS_2		9540		9300	
-					
ReO_3		26553			
WO_3		26207			
D _o D;O		15572			
BaBiO ₃ BaTiO ₃		16829			
NaTaO ₃		20952		20956	
SrTiO ₃		20932 17612		20930 17616	
511103		1/012		17010	
FeOCl				5432	
LaOCl		6334	6333		
LaOF - beta		6589	6588		
LaOF - gamma		6538	6536	4710	
YOF					
YOCI		6641			
CuFeO ₂				8558	
CuFeO ₂				20481	
LiCrO ₂				9974	
NaFeO ₂		10451		10453	
11 41 00 ₂		10131		10133	
BaLiF ₃					
$KZnF_3$					
BiOBr				6432	

BiSCl	5302			
Cu ₂ O	3353	3352	3339	
Hg_2Cl_2	1448		1448	
NiAs				
SbSI			5208	
SiF ₄		11223		
V_2O_5	39899			
Complex Oxides ^a				
LaCoO ₃				16217
LaCrO ₃				15800
LaCuO ₃				16050
LaFeO ₃				15758
$LaMnO_3$				15967
LaNiO ₃				16133
LaRhO ₃				15383
LaRuO ₃				15341
LaTiO ₃				15716
$LaVO_3$				15841
LaYbO ₃				
SrCeO ₃				16008
$SrCoO_3$				17831
SrCrO ₃				18009
$SrMnO_3$				17298
$SrMoO_3$				17298
$SrSnO_3$				17031
SrTiO ₃				17431
$SrVO_3$				17920
La ₂ CoO ₄				18640

La_2CuO_4	18799
La_2NiO_4	18799
LaSrCoO ₄	19960
LaSrCrO ₄	19855
LaSrCuO ₄	19749
LaSrFeO ₄	19485
LaSrNiO ₄	19749
Sr_2MnO_4	21789
31 ₂ 1v111O ₄	
Sr ₂ MoO ₄	21122
_ · · · ·	21122 21344
Sr_2MoO_4	
Sr ₂ MoO ₄ Sr ₂ RuO ₄	21344
Sr ₂ MoO ₄ Sr ₂ RuO ₄ Sr ₂ SnO ₄	21344 21011

^a The data for this set of complex oxides has been extracted from Torrance, J. B,Lacorre, P., Asavaroengchai, C., and Metzger, R. M. *Physica C*, **1991**,*182*, 351-362.

Table S3: Lattice and Madelung (electrostatic) Energies (in kJ mol⁻¹) for partially-covalent materials with assumed integer charges.

Material	$U_{POT^{a}}$	$E_{M}^{}b}$
CuH	1196	1299
AuCl	1082	1069
AuBr	1073	971
Aul ^c	1020	869
LiH	918	1189
NaH	807	995
KH	713	852
RbH	684	804
CsH	653	760

^a $U_{POT} = U_{VS(calc)} - IDE$ from Glasser, L.; von Szentpály, L. "Born-Haber-Fajans Cycle Generalized: Linear Energy Relation between Molecules, Crystals and Metals", *J. Am. Chem. Soc.*, **2006**, *128*, 12314-12321.

^b The values for $E_{\mathbf{M}}$ have been calculated using the program GULP (Gale, J. D. *J. Chem. Soc.*, Faraday Trans. **1997**, 93), assuming integer charges.

^c U_{POT}(AuI) has been estimated using the correlation in Fig. 2 of the main text.