21BDS0340

Abhinav Dinesh Srivatsa

Digital Systems Design Lab

Task 1

S.	Components	Page	Student	RA
No.		No.	Check	Check
			Mark	Mark
1	Aim	1	✓	
2	Components Required and Tools Required	1	✓	
3	Procedure and Theory	1, 2	✓	
4	Truth Table	2	✓	
5	SOP Boolean expression in canonical form	2, 3	✓	
6	POS Boolean expression in canonical form	2, 3	✓	
7	Boolean simplification using Boolean laws	3, 4	✓	
8	Boolean simplification using KMAP simplification	5, 6	✓	
9	Simplified SOP expression in Standard form	6	✓	
10	Simplified POS expression in Standard form	6	✓	
11	Circuit diagram using AOI logic	6	✓	
12	Circuit diagram using OAI logic	7	✓	
13	Circuit diagram using NAND logic	7	√	
14	Circuit diagram using NOR logic	7	√	
15	Multisim live / Circuitverse.org Simulation link for SOP F	8	√	
	and F' circuit			
16	Multisim live / Circuitverse.org Simulation link for POS F	8	✓	
	and F' circuit			
17	Multisim live / Circuitverse.org Simulation link for NAND F and F' circuit	8	✓	
18	Multisim live / Circuitverse.org Simulation link for NOR F	8	√	
	and F' circuit			
19	Justification for optimized circuit NAND /NOR /XOR Logic	8	✓	
20	Verilog code: Gate Level	8	✓	
21	Verilog code: Data Flow	9	✓	
22	Test Bench	9	✓	
23	Snip of Output waveform with respective code	10	✓	
24	Online Verilog code Simulation links	10	✓	
25	Result	10	✓	
26	Inference	11	✓	

Aim

Using Reg.no. formulate expressions in SOP and POS for F and F'. Use K-Map and Boolean laws to simplify the expressions. Write a Verilog code to implement F and F' with a neat circuit diagram for all circuits designed using the following forms.

- a. SOP AND-OR-INV logic circuit
- b. POS OR-AND-INV logic circuit
- c. SOP NAND-NAND logic circuit
- d. POS NOR-NOR logic circuit

Use only two input logic elements for AND, OR, NAND and NOR logic gates.

Components Required

- a. AND, OR, NOT, NAND and NOR gates
- b. 5V voltage source
- c. Led indicator

Tools Required

- a. Multisim simulator
- b. Charlie-Coleman KMAP solver
 - https://charlie-coleman.com/experiments/kmap/
- c. Truth table display
 - http://www.32x8.com/
- d. Boolean algebra simplifier
 - https://www.boolean-algebra.com/

Theory

- a. K-maps
 - Karnaugh maps (K-maps) are graphical representations of Boolean functions.
- b. Don't care conditions
 - There may be a combination of input values which (i)will never occur, (ii)if they do occur, the output is of no concern.
- c. Canonical Forms
 - Any Boolean function F can be expressed as a unique sum of minterms and a unique product of maxterms (under a fixed variable ordering).
 - In other words, every function F() has two canonical forms:
 - Canonical Sum-Of-Products (sum of minterms)
 - Canonical Product-Of-Sums (product of maxterms)

Procedure

- 1. Write down the SOP and POS expression using registration numbers.
- 2. Implement the expression in K-map using Logic minimiser or Logic Friday.
- 3. Then design circuits using these expressions in Multisim using AND OR INV and 2 input NAND logic for Σ m expressions.
- 4. Similarly design ΠM expressions in OR AND INV Logic and 2- input NOR Logic.
- 5. Compare and contrast the circuits with the number of gates used.
- 6. Draw suitable conclusions and inference.
- 7. Implement one of these 8 circuits in hardware and cross check the results with the truth table.

Truth Table

F:

		Subm		Y			
	A	В	C	D	0	1	X
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0
2	0	0	1	0	0	0	0
3	0	0	1	1	0	0	0
4	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0
6	0	1	1	0	0	0	0
7	0	1	1	1	0	0	0
8	1	0	0	0	0	0	0
9	1	0	0	1	0	0	0
10	1	0	1	0	0	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	0	0	0
13	1	1	0	1	0	0	0
14	1	1	1	0	0	0	0
15	15 1 1 1 1 0 0						
	Submit						

F':

Submit					Y		
	A	В	C	D	0	1	X
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0
2	0	0	1	0	0	0	0
3	0	0	1	1	0	0	0
4	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0
6	0	1	1	0	0	0	0
7	0	1	1	1	0	0	0
8	1	0	0	0	0	0	0
9	1	0	0	1	0	0	0
10	1	0	1	0	0	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	0	0	0
13	1	1	0	1	0	0	0
14	1	1	1	0	0	0	0
15 1 1 1 1 0 0 0							
	Submit						

Functional Expression

 $F(A, B, C, D) = \Sigma m(0, 1, 2, 3, 4, B, D) = \Sigma m(0, 1, 2, 3, 4, 11, 13)$

 $= \Pi M(5, 6, 7, 8, 9, 10, 12, 14, 15)$

F = A'B'C'D' + A'B'C'D + A'B'CD' + A'B'CD + A'BC'D' + ABC'D (SOP form)

F = (A+B'+C+D') (A+B'+C'+D) (A+B'+C'+D') (A'+B+C+D) (A'+B+C+D') (A'+B+C'+D) (A'+B'+C'+D) (A'+B'+C'+D') (A'+B'+C'+D')

$$F'(A, B, C, D) = \Sigma m(5, 6, 7, 8, 9, 10, 12, 14, 15)$$

= $\Pi M(0, 1, 2, 3, 4, 11, 13)$

F' = A'BC'D + A'BCD' + A'BCD + AB'C'D' + AB'C'D + AB'CD' + ABCD' + A

F' = (A+B+C+D)(A+B+C+D') (A+B+C'+D) (A+B+C'+D') (A+B+C'+D') (A'+B+C'+D') (A'+B+C'+D') (POS form)

Simplified SOP Form

Start

 $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + \overline$

Apply the Distributive Law: AB+AC = AB+C

 $\overline{A}\overline{B}\overline{C}(\overline{D}+D)+\overline{A}\overline{B}C\overline{D}+\overline{A}\overline{B}CD+\overline{A}\overline{B}\overline{C}\overline{D}+A\overline{B}CD+AB\overline{C}D$

Apply the Complement Law: $A + \overline{A} = 1$

 $\overline{A}\overline{B}\overline{C}1 + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}\overline{D} + A\overline{B}CD + AB\overline{C}D$

Apply the Identity Law: A1 = A

 $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}\overline{D} + A\overline{B}CD + AB\overline{C}D$

Apply the Distributive Law: AB+AC = AB+C

 $\overline{A}\overline{B}(C\overline{D}+\overline{C})+\overline{A}\overline{B}CD+\overline{A}B\overline{C}\overline{D}+A\overline{B}CD+AB\overline{C}D$

Apply the Absorption Law: $AB + \overline{A} = B + \overline{A}$

 $\overline{A}\overline{B}(\overline{D}+\overline{C})+\overline{A}\overline{B}CD+\overline{A}B\overline{C}\overline{D}+A\overline{B}CD+AB\overline{C}D$

Apply the Distributive Law: AB+AC = AB+C

 $\overline{A}\overline{B}(\overline{D}+\overline{C})+\overline{B}CD(\overline{A}+A)+\overline{A}B\overline{C}\overline{D}+AB\overline{C}D$

Apply the Complement Law: $A + \overline{A} = 1$

 $\overline{A}\overline{B}(\overline{D}+\overline{C})+\overline{B}CD1+\overline{A}B\overline{C}\overline{D}+AB\overline{C}D$

Apply the Identity Law: A1 = A

 $\overline{A}\overline{B}(\overline{D}+\overline{C})+\overline{B}CD+\overline{A}B\overline{C}\overline{D}+AB\overline{C}D$

Apply: Distribution

 $\overline{A}\overline{B}\overline{D} + \overline{A}\overline{B}\overline{C} + \overline{B}CD + \overline{A}B\overline{C}\overline{D} + AB\overline{C}D$

Apply the Distributive Law: AB+AC = AB+C

 $\overline{A}\overline{B}\overline{C} + \overline{B}CD + \overline{A}\overline{D}(B\overline{C} + \overline{B}) + AB\overline{C}D$

Apply the Absorption Law: $AB + \overline{A} = B + \overline{A}$

 $\overline{A}\overline{B}\overline{C} + \overline{B}CD + \overline{A}\overline{D}(\overline{C} + \overline{B}) + AB\overline{C}D$

Apply: Distribution

 $\overline{A}\overline{B}\overline{C} + \overline{B}CD + \overline{A}\overline{D}\overline{C} + \overline{A}\overline{D}\overline{B} + AB\overline{C}D$

Simplified POS Form

$$\overline{y} = B.C + A.\overline{D} + \overline{A}.B.D + A.\overline{B}.\overline{C}$$

$$\overline{y} = \overline{B.C + A.\overline{D} + \overline{A}.B.D + A.\overline{B}.\overline{C}}$$

$$y = (B' + C') (A' + D) (A + B' + D') (A' + B + C)$$

K-Map Simplification

F:

Terms	Solutions:
Minterms:	Generic:
Comma separated list of numbers	f(a, b, c, d) = a'b' + a'c'd' + b'cd + abc'd
0,1,2,3,4,11,13	(a, b, c, a) a b a c a x b c a x abc a
Don't Cares:	
Comma separated list of numbers	

F':

Terms	Solutions:
Minterms:	Generic:
Comma separated list of numbers	f(a, b, c, d) = a'bd + bc + ab'c' + ad'
5,6,7,8,9,10,12,14,15	(a, b, c, a) – a ba · bc · ab c · ad
Don't Cares: Comma separated list of numbers	

Simplified Forms

F = A'B' + A'C'D' + B'CD + ABC'D = (B' + C') (A' + D) (A + B' + D') (A' + B + C)F' = BC + AD' + A'BD + AB'C' = (A + B) (A + C + D) (B + C' + D') (A' + B' + C + D')

SOP - AND-OR-INV Logic Circuit

POS - AND-OR-INV Logic Circuit

SOP - NAND-NAND Logic Circuit

Multisim Links to Circuit Diagrams

- a. SOP AND-OR-INV logic circuit
 - https://www.multisim.com/content/Dh2E5WYcPVSahgB6owGejF/21bds0340sop-aoi-f-and-f/open/
- b. POS OR-AND-INV logic circuit
 - https://www.multisim.com/content/jr8yKr5ADsHAasgvYdj5Fo/21bds0340-pos-oai-fand-f/open/
- c. SOP NAND-NAND logic circuit
 - https://www.multisim.com/content/qTEa9pUv3tVrEoDRh5juhG/21bds0340-sop-nand-f/open/
- d. POS NOR-NOR logic circuit
 - https://www.multisim.com/content/DtaT8SneEbofyLkTobGae7/21bds0340-pos-nor-f/open/

Justification for Optimized Circuit

The circuits constructed by NAND and NOR gates are optimised as those gates are cheaper and universal, meaning that they can replace any other gates.

Verilog Code: Gate Level

```
// Gate Level Model
module regno(a, b, c, d, f);
    input a, b, c, d;
    output f;
    not(nota, a);
    not(notb, b);
    not(notc, c);
    not(notd, d);
    and(prod1, nota, notb);
    and(prod2 1, nota, notc);
    and(prod2, prod2 1, notd);
    and(prod3_1, notb, c);
    and(prod3, prod3 1, d);
    and(prod4_1, a, b);
    and(prod4 2, notc, d);
    and(prod4, prod4_1, prod4_2);
    or(sum1, prod1, prod2);
    or(sum2, prod3, prod4);
    or(f, sum1, sum2);
endmodule
```

Verilog Code: Data Flow

```
// Data Flow Model
module design(a, b, c, d, f);
    input a, b, c, d;
    output f;
    assign nota = ~a;
    assign notb = ~b;
    assign notc = ~c;
    assign notd = ~d;
    assign prod1 = nota & notb;
    assign prod2_1 = nota & notc;
    assign prod2 = prod2 1 & notd;
    assign prod3_1 = notb & c;
    assign prod3 = prod3 1 & d;
    assign prod4_1 = a & b;
    assign prod4_2 = notc & d;
    assign prod4 = prod4_1 & prod4_2;
    assign sum1 = prod1 | prod2;
    assign sum2 = prod3 | prod4;
    assign f = sum1 | sum2;
endmodule
```

Test Bench

```
module testbench;
reg a, b, c, d;
wire f;
regno r(a, b, c, d, f);
initial begin
a = 0; b = 0; c = 0; d = 0;
#50
a = 0; b = 0; c = 0; d = 1;
#50
a = 0; b = 0; c = 1; d = 0;
a = 0; b = 0; c = 1; d = 1;
#50
a = 0; b = 1; c = 0; d = 0;
a = 0; b = 1; c = 0; d = 1;
#50
a = 0; b = 1; c = 1; d = 0;
```

```
#50
a = 0; b = 1; c = 1; d = 1;
#50
a = 1; b = 0; c = 0; d = 0;
a = 1; b = 0; c = 0; d = 1;
#50
a = 1; b = 0; c = 1; d = 0;
#50
a = 1; b = 0; c = 1; d = 1;
#50
a = 1; b = 1; c = 0; d = 0;
#50
a = 1; b = 1; c = 0; d = 1;
#50
a = 1; b = 1; c = 1; d = 0;
a = 1; b = 1; c = 1; d = 1;
end
endmodule
```

Snip of Output Waveform

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

Online Verilog Code Simulation Link

https://www.edaplayground.com/x/9BLy

Result

I have successfully completed and simulated the combinational circuit. The result of the circuit was as expected from the truth table. I have derived functional expressions from the truth table using Boolean laws and K-map and got the same results in both techniques. I have simulated the circuit using a Multisim online simulator.

17 two input NAND gates are used in SOP F circuit simulation and 13 two input NOR gates are used in POS F circuit simulation. Both SOP and POS are using the same number of logic gates so, we can use any one of them for circuit simulation

<u>Inference</u>

I have derived functional expressions using my registration number (21BDS0340) both in SOP and POS form. I have learnt to derive a truth table from functional expressions. I learnt Boolean expressions simplification using Boolean laws and K-map technique.