

A combined fit to the Higgs branching ratios at ILD

Jonas Kunath, on behalf of the ILD concept group

Laboratoire Leprince-Ringuet, École Polytechnique

Schematic overview

1. Event selection

Solely information from recoiling Z boson is used: Independent of Higgs decay.

Currently only with $Z \to \mu^+ \mu^-$, $Z \to e^+ e^-$

Higgsstrahlung events as signal channels.

- ► Golden channels due to
- $M_{\text{recoil}}^2 = s + M_Z^2 2\sqrt{s} \cdot E_Z$. ► IsolatedLeptonTagger:

recoil mass method,

Lepton pair with same type and opposite charge.

- ► Final state radiation: Add photons with $\cos\theta_{l\gamma} > 0.99.$
- ► Selection cuts shown on the right.

2. Sample creation

- ▶ Events without the part identified as from the recoiling Z boson.
- ► Create bins inspired by the expected decays, with established tools.
- ► E.g. bb_tight: No Isolated leptons or photons in event. Require LCFIPlus btag1 > 0.8 for event clustered into two jets.

3. Branching ratio (BR) fit

BRs from minimization of $\vec{S} = M \cdot \vec{B} = \vec{f}(\vec{B})$ through MINUIT/iminuit.

- $ightharpoonup \vec{S}$: The signal counts per category (S = data bkg).
- ightharpoonup M: The probability matrix from simulations per bkg and decay mode.
- $ightharpoonup \vec{B}$: The target: branching ratios. Use e.g. the SM BRs as fit starting values.
- ► Cost function: Multinomial log-likelihood.

$$-\ln \mathcal{L} = -N_{\text{data}} \sum_{i} S_{i} \ln \left(\sum_{j} M_{ij} B_{j} \right).$$

References

- ► The International Linear Collider: Technical Design Report (2013).
- ► The International Large Detector: Interim Design Report: arXiv:2003.01116.

Implementation

Full simulation study at $\sqrt{s} = 250$ GeV (MC2020 ILD mass production).

- \blacktriangleright $\sqrt{s} = 250$ GeV ideal for the Higgsstrahlung process.
- ► Considered backgrounds: Standard Model (SM) processes with 2 or 4 fermions in the final state.
- ≥ 400 k simulated events/SM Higgs decay mode.
- ► Polarized initial beams: 80% left (30% right) polarized electron (positron) beam.
- \triangleright 2000 fb⁻¹ integrated luminosity.

Toy validation

Draw toys from Multinomial (N_{data} fixed). The histogram stores the $H o b ar{b}$ branching ratio at the fit minimum. The distribution can be described by a Gaussian with mean and varaince obtained from the fit on the expected event counts.

Extraction of major branching ratios from single analysis. \rightarrow Full statistical correlation matrix.

- ▶ Independent of σ_{ZH} and $\sigma_{VV-fusion}$.
- ► Can automatically adapt to BR scenarios drastically different from SM.

	SM BR $\sigma_{ m sta}$	_ at
$H \rightarrow bb$	57.72 0.8	6
$H \to WW$	21.76 1.3	4
$H \to gg$	8.55 1.2	5
$H \to \tau \tau$	6.20 1.3	0
$H \to cc$	2.72 0.5	5
$H \to ZZ$	2.62 1.9	3
$H \to \gamma \gamma$	0.24 0.1	7
$H \to Z \gamma$	0.17 0.3	5
$H \to \mu\mu$	0.03 0.1	4

Table 1: Fit on the expected event counts. In percent. ILD preliminary.

Results

Figure 1: Statistical correlations from NLL minimization.

Figure 2: Relative BR uncertainty.

Figure 3: Higgs branching ratios and their uncertainty (assuming expected/SM values).

5-10 September 2021 **PANIC 2021 Conference** kunath@llr.in2p3.fr