

55 P(X) X) dA= Vol Recall that the average of a function + La, b] -> R is 1 +(xi) +f(xi) + ...+ +(xi) i. The average of flasb]x[cod] >R is $f_{av} = 1$ SS f(x)y) dA area(R) R

Properties of double integrals
1) SS $f(x)y)+g(x)y)dA = SSf(x)y)dA + SSg(x)y)dA$
27 SScf(x)y)JA= CSSf(x)y)dA R
3) if g(x)y)≥f(x)y) in #R Hon
SS g(x)y) dA = SS f(x)y)dA R
(4) $\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$ $\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$
SS f(x)y)JA= SSf(x)y)JA + SSf(x)y)JA Ri Ri

A CENTRE OF THE PROPERTY OF TH

Partial Integration Sc f(x)y) dy hold x fixed, integrate w.r.t x. $EX \qquad So \quad x^2y^2y = x^2Soy^2y = x^2x^3/o! = x^3$ $\int_{0}^{1} \int_{0}^{1} x^{2}y^{2} dy dx = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{2}y^{2} dy dx$ $=50 \times 31 = 311 = 4$ $500 \times y^2 dx dy = 500 \times 300 = 400 = 400$ Fubini's Theorem Ff flxxy) B continuous on R=[a,b]x[c,d] Hen SS f(x)y) dA = SS f(x) y) dydx

= SdSb flxxx) dx dy