9 Lecture 9, Feb 2

Announcements

- HW1 graded. Feedback:
 - Sketch of solution: http://hua-zhou.github.io/teaching/biostatm280-2016winter/hw01sol.html. Please compare to your code carefully and understand why.
 - Q2: Rounding to even rule in R.
 - Q5: be familiar with R functions: crossprod, tcrossprod, outer, row, col, rowSums, colSums, ...
 - Q6: vectorize code (no looping necessary).
 - Code style. Be professional!
 - Frequent commits in git. I want to see how you developed the solutions.
- HW2 due today @ 11:59PM.
- HW3 posted. Due Feb 11 @ 11:59PM. http://hua-zhou.github.io/teaching/biostatm280-2016winter/biostat_m280_2016_hw3.pdf
- Quiz 2 this Thu Feb 4. In class, closed book.

Last time

- Linear regression by Cholesky. $np^2 + p^3/3$ flops for $\widehat{\beta}$ or more for s.e.
- Linear regression by QR X = QR.
- QR by MGS. $2np^2$ flops to obtain \mathbf{Q}_1 and \mathbf{R} .
- QR by Householder. $2np^2 2p^3/3$ flops to overwrite X by R and Householder vectors. It is the algorithm R uses for linear regression.
- QR by Givens. $3np^2 p^3$ to overwrite **X** by **R** and Givens rotations.

Today

- Sweep operator.
- Summary of numerical methods for linear regression.
- Summary of solving linear equations.
- Iterative methods for solving linear equations.

Sweep operator

Assume $A \succeq \mathbf{0}_{n \times n}$.

- The popular statistical software SAS uses sweep operator for linear regression and matrix inversion.
- Read KL 7.4-7.6 for introduction.

Also see "A tutorial on the SWEEP operator" by James H. Goodnight. http://www.jstor.org/stable/2683825

• Sweep on the k-th diagonal entry $a_{kk} \neq 0$ yields \hat{A} with entries

$$\hat{a}_{kk} = -\frac{1}{a_{kk}}$$

$$\hat{a}_{ik} = \frac{a_{ik}}{a_{kk}}$$

$$\hat{a}_{kj} = \frac{a_{kj}}{a_{kk}}$$

$$\hat{a}_{ij} = a_{ij} - \frac{a_{ik}a_{kj}}{a_{kk}}, \quad i \neq k, j \neq k.$$

 n^2 flops (taking into account of symmetry).

• Inverse sweep sends \boldsymbol{A} to $\check{\boldsymbol{A}}$ with entries

$$\begin{array}{rcl}
 \check{a}_{kk} & = & -\frac{1}{a_{kk}} \\
 \check{a}_{ik} & = & -\frac{a_{ik}}{a_{kk}} \\
 \check{a}_{kj} & = & -\frac{a_{kj}}{a_{kk}} \\
 \check{a}_{ij} & = & a_{ij} - \frac{a_{ik}a_{kj}}{a_{kk}}, \quad i \neq k, j \neq k.
 \end{array}$$

 n^2 flops (taking into account of symmetry).

- \bullet $\hat{\hat{A}} = A$.
- Successively sweeping all diagonal entries of ${m A}$ yields $-{m A}^{-1}$.
- Exercise: invert a 2×2 matrix, say $\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$ on paper using sweep operator.
- ullet Block form of sweep: Let the symmetric matrix $oldsymbol{A}$ be partitioned as $oldsymbol{A}$ $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$. If possible, sweep on the diagonal entries of A_{11} yields

$$\hat{m{A}} = egin{pmatrix} -m{A}_{11}^{-1} & m{A}_{11}^{-1}m{A}_{12} \ m{A}_{21}m{A}_{11}^{-1} & m{A}_{22} - m{A}_{21}m{A}_{11}^{-1}m{A}_{12} \end{pmatrix}.$$

Order dose not matter. The block $A_{22} - A_{21}A_{11}^{-1}A_{12}$ is recognized as the Schur complement of A_{11} .

- Pd and determinant: A is pd if and only if each diagonal entry can be swept in succession and is positive until it is swept. When a diagonal entry of a pd matrix A is swept, it becomes negative and remains negative thereafter. Taking the product of diagonal entries just before each is swept yields the determinant of \boldsymbol{A} .

$$\begin{array}{ll} \bullet \ \ \text{Linear regression by sweep. Sweep on} & \begin{pmatrix} \boldsymbol{X}^{\intercal}\boldsymbol{X} & \boldsymbol{X}^{\intercal}\boldsymbol{y} \\ \boldsymbol{y}^{\intercal}\boldsymbol{X} & \boldsymbol{y}^{\intercal}\boldsymbol{y} \end{pmatrix} \ \text{yields} \\ \\ & \begin{pmatrix} -(\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1} & (\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1}\boldsymbol{X}^{\intercal}\boldsymbol{y} \\ \boldsymbol{y}^{\intercal}\boldsymbol{X}(\boldsymbol{X}\boldsymbol{X})^{-1} & \boldsymbol{y}^{\intercal}\boldsymbol{y} - \boldsymbol{y}^{\intercal}\boldsymbol{X}(\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1}\boldsymbol{X}^{\intercal}\boldsymbol{y} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sigma^{2}}\mathrm{Var}(\hat{\boldsymbol{\beta}}) & \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\beta}}^{\intercal} & \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|_{2}^{2} \end{pmatrix}. \end{aligned}$$

In total $np^2 + p^3$ flops

- Sweep is useful for stepwise regression, (conditional) multivariate normal density calculation, MANOVA, ...
- LAPACK does not implement sweep operator. It is statisticians' secret tool.
- Warning: the sweep() function in R has nothing do to with the sweep operator here.
- Demo code: http://hua-zhou.github.io/teaching/biostatm280-2016winter/ sweep.html

Summary of linear regression: Table on KL p105

Method	Flops	Remarks	Software	Stability
Sweep	$np^2 + p^3$	$(\boldsymbol{X}^{\scriptscriptstyleT}\boldsymbol{X})^{-1}$ available	SAS	less stable
Cholesky	$np^2 + p^3/3$			less stable
QR by Householder	$2np^2 - 2p^3/3$		R	stable
QR by MGS	$2np^2$	$oldsymbol{Q}_1$ available		most stable

Table 1: Numerical methods for linear regression. In order of stability.

Remarks:

- When $n \gg p$, sweep and Cholesky are twice faster than QR and need less space.
- Sweep and Cholesky is based on the Gram matrix X^TX , which can be dynamically updated with incoming data. They can easily handle huge n, moderate p data sets that cannot fit into memory.
- QR methods are more stable and produce numerically more accurate solution.
- Although sweep is slower than Cholesky, it yields standard errors and so on.
- Sweep is useful for stepwise regression, multivariate normal calculation, and numerous other statistical applications.
- MGS appears slower than Householder, but it yields Q_1 .

There is simply no such thing as a universal 'gold standard' when it comes to algorithms.

anonymous reviewer

Summary of solving linear equations

Consider linear system Ax = b.

• We now know some good numerical methods for the least squares problem, which is essentially "solving" an overdetermined system (a tall A).

• Table 2 compares the flops of some methods (in order of stability) for solving a square (unstructured) $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Method	Flops	Stability
Gaussian elimination	$2n^{3}/3$	less stable
QR by Householder	$4n^{3}/3$	
QR by MGS	n^3	
SVD	$6n^3$	most stable

Table 2: Flops of different numerical methods for $n \times n$ square linear systems, assuming availability of the right hand side at time of decomposition.

• Solve an underdetermined system (a flat $\mathbf{A} \in \mathbb{R}^{m \times n}$ of full row rank) by QR – version 1. First compute QR on \mathbf{A}^T

$$oldsymbol{A}^T = oldsymbol{Q} oldsymbol{R} = oldsymbol{Q} egin{pmatrix} oldsymbol{R}_1 \ oldsymbol{0}_{(n-m) imes m} \end{pmatrix}.$$

Then $\mathbf{A}\mathbf{x} = \mathbf{b}$ becomes

$$(oldsymbol{Q}oldsymbol{R})^Toldsymbol{x} = egin{pmatrix} oldsymbol{R}_1^T & oldsymbol{0}_{m imes(n-m)} \end{pmatrix} egin{pmatrix} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{pmatrix} = oldsymbol{b},$$

where

$$oldsymbol{Q}^Toldsymbol{x} = egin{pmatrix} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{pmatrix}.$$

 z_1 is determined from $R_1^T z_1 = b$. If we take $z_2 = 0_{n-m}$, then we obtain the minimum norm solution (why?).

• Solve an underdetermined system (a flat $A \in \mathbb{R}^{m \times n}$ of full row rank) by QR – version 2. First compute QR with column pivoting on A

$$oldsymbol{A}\Pi = oldsymbol{Q} egin{pmatrix} oldsymbol{R}_1 & oldsymbol{R}_2 \end{pmatrix},$$

where $\mathbf{R}_1 \in \mathbb{R}^{m \times m}$ is upper triangular and $\mathbf{R}_2 \in \mathbb{R}^{m \times (n-m)}$. Thus $\mathbf{A}\mathbf{x} = \mathbf{b}$ transforms to

$$egin{pmatrix} igg(oldsymbol{R}_1 & oldsymbol{R}_2igg) & igg(oldsymbol{z}_1\ oldsymbol{z}_2igg) = oldsymbol{Q}^Toldsymbol{b},$$

where

$$oldsymbol{\Pi}^T oldsymbol{x} = egin{pmatrix} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{pmatrix}.$$

One solution is obtained by $z_1 = R_1^{-1} Q^T b$ and $z_2 = 0_{n-m}$. It is not guaranteed to be of minimum norm.

Condition number for linear equations (matrix inversion)

- Assume $A \in \mathbb{R}^{n \times n}$ is nonsingular and consider the system of linear equation Ax = b. The solution is $x = A^{-1}b$. We want to know how the solution changes with a small perturbation of the input b (or A).
- Let $\tilde{\boldsymbol{b}} = \boldsymbol{b} + \Delta \boldsymbol{b}$. Then $\tilde{\boldsymbol{x}} = \boldsymbol{A}^{-1}(\boldsymbol{b} + \Delta \boldsymbol{b}) = \boldsymbol{x} + \Delta \boldsymbol{x}$. Thus

$$\|\Delta x\| = \|A^{-1}\Delta b\| \le \|A^{-1}\|\|\Delta b\|.$$

Because $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x}, \, \frac{1}{\|\boldsymbol{x}\|} \leq \|\boldsymbol{A}\| \frac{1}{\|\boldsymbol{b}\|}$. This results

$$\frac{\|\Delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\Delta b\|}{\|b\|}.$$

- $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$ is called the *condition number for inversion*. It depends on the matrix norm being used. κ_p means condition number defined from matrix-p norm.
- Large condition number means "bad".
- Some useful facts

$$\kappa(\boldsymbol{A}) = \kappa(\boldsymbol{A}^{-1})$$

$$\kappa(c\boldsymbol{A}) = \kappa(\boldsymbol{A})$$

$$\kappa(\boldsymbol{A}) \geq 1$$

$$\kappa_1(\boldsymbol{A}) = \kappa_{\infty}(\boldsymbol{A}^{\mathsf{T}})$$

$$\kappa_2(\boldsymbol{A}) = \kappa_2(\boldsymbol{A}^{\mathsf{T}}) = \frac{\sigma_1(\boldsymbol{A})}{\sigma_n(\boldsymbol{A})}$$

$$\kappa_2(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}) = \frac{\lambda_1(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A})}{\lambda_n(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A})} = \kappa_2^2(\boldsymbol{A}) \geq \kappa_2(\boldsymbol{A}).$$

The last fact says that the condition number of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ can be much larger than that of \mathbf{A} .

- The smallest singular value σ_n indicates the "distance to the trouble".
- Condition number for the least squares problem is more complicated. Roughly speaking, the method based on normal equation (Cholesky, sweep) has a condition depending on $\kappa_2(\mathbf{X})^2$. QR for a "small residuals" least squares problem has a condition depending on $\kappa_2(\mathbf{X})$.
- Numerically, consider the simple case

$$\boldsymbol{X} = \begin{pmatrix} 1 & 1 \\ 10^{-3} & 0 \\ 0 & 10^{-3} \end{pmatrix}.$$

Forming normal equation yields a singular Gramian matrix

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

if executed with a precision of 6 digits.

- In R, the kappa() function (wrapper of DTRCON in LAPACK and DTRCO in LIN-PACK) computes or approximates (default) the condition number of a matrix.
- In regression problems, standardizing the predictors could improve the condition. See demo on the Longley data http://hua-zhou.github.io/teaching/biostatm280-2016winter/longleycond.html.
- In design of experiments (DoE), people favor orthogonal design. Why?

Iterative method for solving linear equations: introduction

Mathematical **PageRanks** for a simple network, expressed as percentages. (Google uses a logarithmic scale.) Page C has a higher PageRank than Page E, even though there are fewer links to C; the one link to C comes from an important page and hence is of high value. If web surfers who start on a random page have an 85% likelihood of choosing a random link from the page they are currently visiting, and a 15% likelihood of jumping to a page chosen at random from the entire web, they will reach Page E 8.1% of the time. (The 15% likelihood of jumping to an arbitrary page corresponds to a damping factor of 85%.) Without damping, all web surfers would eventually end up on Pages A, B, or C, and all other pages would have PageRank zero. In the presence of damping, Page A effectively links to all pages in the web, even though it has no outgoing links of its own.

- Direct method (flops fixed a priori) vs iterative methods:
 - Direct method (GE/LU, Cholesky, QR, SVD): good for dense, small or moderate sized, unstructured \boldsymbol{A}
 - Iterative methods (Jacobi, Gauss-Seidal, SOR, conjugate-gradient, GM-RES): good for large, sparse, or structured linear system, parallel computing, warm start
- PageRank (HW3):
 - $-\boldsymbol{A} \in \{0,1\}^{n \times n}$ the connectivity matrix with entries

$$a_{ij} = \begin{cases} 1 & \text{if page } i \text{ links to page } j \\ 0 & \text{otherwise} \end{cases}.$$

 $n \approx 10^9$ in Feb 2016.

- $-r_i = \sum_j a_{ij}$ is the out-degree of page i.
- Larry Page: Imagine a random surfer wandering on internet according to following rules:
 - * From a page i with $r_i > 0$
 - · with probability p, (s)he randomly chooses a link on page i (uniformly) and follows that link to the next page
 - · with probability 1 p, (s)he randomly chooses one page from the set of all n pages (uniformly) and proceeds to that page
 - * From a page i with $r_i = 0$ (a dangling page), (s)he randomly chooses one page from the set of all n pages (uniformly) and proceeds to that page

The process defines a Markov chain on the space of n pages. Stationary distribution of this Markov chain gives the ranks (probabilities) of each page.

- Stationary distribution is the top left eigenvector of the transition matrix
 P corresponding to eigenvalue 1. Equivalently it can be cast as a linear equation.
- Largest matrix computation in world (?).
- GE/LU will take $2 \times (10^9)^3/3/10^{12} \approx 6.66 \times 10^{14}$ seconds $\approx 2 \times 10^7$ years on a tera-flop supercomputer!
- Iterative methods come to the rescue.

Jacobi method

Solve linear system Ax = b.

• Jacobi iteration:

$$x_i^{(t+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(t)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(t)}}{a_{ii}}.$$

- Requires non-zero diagonal element!
- One round costs $2n^2$ flops with an unstructured \boldsymbol{A} . Gain over GE/LU if converges in o(n) iterations. Saving is huge for *sparse* or *structured* \boldsymbol{A} . By structured, we mean the matrix-vector multiplication $\boldsymbol{A}\boldsymbol{v}$ is fast.
- Splitting: A = L + D + U.

$$m{x}^{(t+1)} = -m{D}^{-1}(m{L} + m{U}) m{x}^{(t)} + m{D}^{-1} m{b}.$$

Gauss-Seidel

• Gauss-Seidel iteration:

$$x_i^{(t+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(t+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(t)}}{a_{ii}}.$$

• With splitting, $(\boldsymbol{D} + \boldsymbol{L})\boldsymbol{x}^{(t+1)} = -\boldsymbol{U}\boldsymbol{x}^{(t)} + \boldsymbol{b}$, i.e.,

$$\boldsymbol{x}^{(t+1)} = -(\boldsymbol{D} + \boldsymbol{L})^{-1} \boldsymbol{U} \boldsymbol{x}^{(t)} + (\boldsymbol{D} + \boldsymbol{L})^{-1} \boldsymbol{b}.$$

- GS converges for any $x^{(0)}$ for symmetric and pd A.
- ullet Convergence rate of Gauss-Seidel is the spectral radius of the $({m D}+{m L})^{-1}{m U}$.
- Comparing Jacobi and GS, Jacobi is particularly attractive for parallel computing.

Successive over-relaxation (SOR)

• SOR:
$$x_i^{(t+1)} = \omega (b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(t+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(t)}) / a_{ii} + (1 - \omega) x_i^{(t)}$$
, i.e., $\mathbf{x}^{(t+1)} = (\mathbf{D} + \omega \mathbf{L})^{-1} [(1 - \omega) \mathbf{D} - \omega \mathbf{U}] \mathbf{x}^{(t)} + (\mathbf{D} + \omega \mathbf{L})^{-1} (\mathbf{D} + \mathbf{L})^{-1} \omega \mathbf{b}$.

• Need to pick $\omega \in [0,1]$ beforehand, with the goal of improving convergence rate.

Conjugate gradient method

Solving Ax = b is equivalent to minimizing the quadratic function $\frac{1}{2}x^TAx - b^Tx$. To do later, when we study optimization. Conjugate gradient and its variants are the top-notch iterative methods for solving huge, structured linear systems.

Table 1. Kershaw's results for a fusion problem.

Method	Number of iterations
Gauss Seidel	208,000
Block successive overrelaxation methods	765
Incomplete Cholesky conjugate gradients	25

A list of "easy" linear systems

Consider $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{n \times n}$. Or, consider matrix inverse (if you want). \mathbf{A} can be huge. Keep massive data in mind: 1000 Genome Project, NetFlix, Google PageRank, finance, spatial statistics, ... We should be alert to many easy linear systems. Don't waste computing resources by bad choices of algorithms!

• Diagonal: n flops.

- Tridiagonal/banded: Band LU, band Cholesky, ... roughly O(n) flops
- Triangular: n^2 flops
- Block diagonal: Suppose $n = \sum_{i} n_{i}$. $(\sum_{i} n_{i})^{3}$ vs $\sum_{i} n_{i}^{3}$.
- Kronecker product: $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$, $(C^{\mathsf{T}} \otimes A) \text{vec} B = \text{vec}(ABC)$ fits iterative method.
- Sparsity: iterative method, or sparse matrix decomposition.

 Remark: Probably the easiest recognizable structure. Familiarize yourself with the sparse matrix computation tools in Julia, Matlab, R (Matrix package), MKL (sparse BLAS), ... as much as possible.
- Easy plus low rank: $U \in \mathbb{R}^{n \times m}$, $V \in \mathbb{R}^{n \times m}$, $m \ll n$. Woodbury formula

$$(A + UV^{\mathsf{T}})^{-1} = A^{-1} - A^{-1}U(I_m + V^{\mathsf{T}}A^{-1}U)^{-1}V^{\mathsf{T}}A^{-1}.$$

Keep HW2 Q5 in mind.

 \bullet Easy plus border: For \boldsymbol{A} pd and \boldsymbol{V} full row rank,

$$\begin{pmatrix} \boldsymbol{A} & \boldsymbol{V}^{\mathsf{T}} \\ \boldsymbol{V} & \boldsymbol{0} \end{pmatrix}^{-1} = \begin{pmatrix} \boldsymbol{A}^{-1} - \boldsymbol{A}^{-1} \boldsymbol{V}^{\mathsf{T}} (\boldsymbol{V} \boldsymbol{A}^{-1} \boldsymbol{V}^{\mathsf{T}})^{-1} \boldsymbol{V} \boldsymbol{A}^{-1} & \boldsymbol{A}^{-1} \boldsymbol{V}^{\mathsf{T}} (\boldsymbol{V} \boldsymbol{A}^{-1} \boldsymbol{V}^{\mathsf{T}})^{-1} \\ (\boldsymbol{V} \boldsymbol{A}^{-1} \boldsymbol{V}^{\mathsf{T}})^{-1} \boldsymbol{V} \boldsymbol{A}^{-1} & -(\boldsymbol{V} \boldsymbol{A}^{-1} \boldsymbol{V}^{\mathsf{T}})^{-1} \end{pmatrix}.$$

- Orthogonal: n^2 flops at most. Permutation matrix, Householder matrix, Jacobi matrix, ... take less.
- Toeplitz systems:

$$T = \begin{pmatrix} r_0 & r_1 & r_2 & r_3 \\ r_{-1} & r_0 & r_1 & r_2 \\ r_{-2} & r_{-1} & r_0 & r_1 \\ r_{-3} & r_{-2} & r_{-1} & r_0 \end{pmatrix}.$$

Tx = b, where T is pd and Toeplitz, can be solved in $O(n^2)$ flops. Durbin algorithm (Yule-Walker equation), Levinson algorithm (general b), Trench algorithm (inverse). These matrices occur in auto-regressive models and econometrics.

• Circulant systems: Toeplitz matrix with wraparound

$$C(oldsymbol{z}) = egin{pmatrix} z_0 & z_4 & z_3 & z_2 & z_1 \ z_1 & z_0 & z_4 & z_3 & z_2 \ z_2 & z_1 & z_0 & z_4 & z_3 \ z_3 & z_2 & z_1 & z_0 & z_4 \ z_4 & z_3 & z_2 & z_1 & z_0 \end{pmatrix},$$

FFT type algorithms: DCT (discrete cosine transform) and DST (discrete sine transform).

• Vandermonde matrix: such as in interpolation and approximation problems

$$\boldsymbol{V}(x_0,\ldots,x_n) = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{pmatrix}.$$

 $\boldsymbol{V}\boldsymbol{x} = \boldsymbol{b}$ or $\boldsymbol{V}^T\boldsymbol{x} = \boldsymbol{b}$ can be solved in $O(n^2)$ flops.

• Cauchy-like matrices:

$$\Omega A - A\Lambda = RS^T$$

where $\Omega = \operatorname{diag}(\omega_1, \ldots, \omega_n)$ and $\Lambda = (\lambda_1, \ldots, \lambda_n)$. O(n) flops for LU and QR.

- Structured-rank problems: semiseparable matrices (LU and QR takes O(n) flops), quasiseparable matrices, ...
- Fast multiple method (FMM) for kernel matrix.

• ...

Other computations such as matrix-vector multiplication with these "easy" matrices are typically fast too.

Bottom line: Don't blindly use solve().