

信号与系统

扫一扫二维码, 加入群聊。

Signals and Systems

Southern University of Science and Technology

Autumn 2018

Signals and Systems

- The course is about using mathematical techniques to help <u>analyze and synthesize</u> <u>systems which process signals</u>.
 - Signals are variables that carry information.
 - Systems process input signals to produce output signals.

Typical examples of signals/systems 1) Communication systems

Typical examples of signals/systems 2) Image

Unblurred Image & No Noise

Typical examples of signals/systems 2) Image

Blurred Image (bad focus)

Typical examples of signals/systems 2) Image

Unblurred Image – With Noise

Typical examples of signals/systems 3) Human organ systems

Anatomy of the Ear

- "Signals and Systems",
 Oppenheim, Willsky and Nawab,
 2nd Edition, 1997, Prentice-Hall.
- This course only teach Chapters 1 to 8.
 - Two weeks for one chapter
 - Middle-term exam for Chapters 1 to 4

Three Pillars

Lectures (Tutorial)

Matlab Labs

Assignment/Quiz

Mid-term Exam

Final Exam

Lab Reports

Project Report & Presentation

Class Schedules for Class I (cont.)

- 1. Lab Session
 - ◆ Instructor: Dr. PENG, Cheng (彭诚)
- 2. Tutorials (attend one)
 - Monday, Tuesday, Wednesday, Thursday: 21:00-22:00
 - Teaching Building I, Room 306
- 3. Tutors
 - To be announced

- 4. Tutorial: Every week (no for week 1 & 2)
- Assignment: Every week (no for week 1)
 - Submit assignment in hardcopy after one week to tutor at Lab course.
 - Late submission will have 20% reduction each day for the assignment score.

6. Lab course

- Start from week 2
- Lab material will be distributed in the class.
- Submit lab report in hardcopy after one week to tutor at Lab course.
- Late submission will have 20% reduction each day for the lab report score.
- Projects at the second half of lab course.

Examples of Signals: Physical Meaning

- Electrical signals voltages and currents in a circuit
- Acoustic signals audio or speech signals,
 vibration intensity of sound source
- Video signals intensity variations in an image (e.g. a CT scan)
- Biological signals sequence of bases in a gene (e.g., '...ATGGCTGA...')
- We will treat noise as unwanted signals.

Signal Classification: 1) Type of Independent Variable

Time is often the independent variable.
 Example: the electrical activity of the heart recorded with chest electrodes — the electrocardiogram (ECG).

The variables can also be spatial

e.g. Breast MRI
 In this example, the signal is the intensity as a function of the spatial variables x and y.

Independent Variable Dimensionality

An independent variable can be 1-D (t in the ECG),
 2-D (x, y in an image), or 3-D (x, y, t in an video).

有文科技大学 SUSTC

- We focus on 1-D for mathematical simplicity but the results can be extended to 2-D or even higher dimensions.
- Also, we will use a generic time t for the independent variable, whether it is time or space.

Signal Classification: 2) Continuous-time (CT) Signals

 Most of the signals in the physical world are CT signals, since the time scale is infinitesimally fine, so are the spatial scales.
 E.g. voltage & current, pressure, temperature, velocity, etc.

Discrete-time (DT) Signals

x[n], n — integer, time varies discretely

- Examples of DT signals in nature:
 - DNA base sequence
 - Population of the nth generation of certain species
 - *
- Notation: x(t) CT, x[n] DT

Many Human-made Signals are DT

Weekly Dow-Jones industrial average

Digital image

 Why DT? — Can be processed by modern digital computers and digital signal processors (DSPs).

Signal Classification: 3) Deterministic Signal

- Each value of the signal is fixed, and can be determined by a mathematical expression, rule, or table.
- Future values of the signal can be calculated from past values with complete confidence.

Random Signal

- Having a lot of uncertainty about its behaviour.
- Future values cannot be accurately predicted, and can usually only be guessed based on the averages of sets of signals.

Time Shift

$$x(t) \rightarrow x(t-t_0)$$
 , $x[n] \rightarrow x[n-n_0]$

Time Reversal

$$x(t) \to x(-t)$$
 , $x[n] \to x[-n]$

Time Scaling

$$x(t) \rightarrow x(at)$$
 , $x[n] \rightarrow ?$

Combination

$$x(t) \rightarrow x(at+b)$$
 , $x[n] \rightarrow ?$

Time Scaling

Combination

$$x(t) \rightarrow x(at+b)$$

- Linearly stretched if |a| < 1, and linearly compressed if |a| > 1
- 2) Revered in time if a < 0
- 3) Shifted in time if $b \neq 0$

Suggested steps:

- First delay or advance x(t) with b, i.e. (3).
- Then scaling/reversing the resulting signal with factor a, i.e. (1) and (2).

Class problem

$$x(-2t+2)$$
 ?

Signals with Symmetry

Periodic Signals

• CT
$$x(t) = x(t + T)$$
 , T : period $x(t) = x(t + mT)$, m : integer

 T_0 : Fundamental period, the smallest positive value of T

N₀: fundamental period

Aperiodic: NO period

Signals with Symmetry (cont.)

True or false

• If a signal is periodic, its duration is infinity from $(-\infty, +\infty)$.

The period of continuous signal must be integer.

Signals with Symmetry (cont.)

- Even and Odd Signals
 - Even x(t) = x(-t) or x[n] = x[-n]

Example: cos(t)

- Odd x(t) = -x(-t) or x[n] = -x[-n]
 - x(0)=0, and x[0]=0 x(t)

Example: sin(t)

Signals with Symmetry (cont.)

 Any signals can be expressed as a sum of Even and Odd signals. That is:

$$x(t) = x_{even}(t) + x_{odd}(t),$$
 where:

$$x_{even}(t) = [x(t) + x(-t)]/2,$$

 $x_{odd}(t) = [x(t) - x(-t)]/2.$

Right- and Left-Sided Signals

- A right-sided signal is zero for t < T, and
- A left-sided signal is zero for t > T, where T can be positive or negative.

Bounded and Unbounded Signals

 Whether the output signal of a system is bounded or unbounded determines the stability of the system.

Exponential Signals

- A very important class of signals is presented as:
 - CT signals of the form $x(t) = e^{st}$
 - DT signals of the form $x[n] = z^n = e^{g_n}$, $z = e^{g_n}$ where s and z are complex numbers.
- For both exponential CT and DT signals, x is a complex quantity and has:
 - a real and imaginary part [i.e., Cartesian form], or equivalently
 - a magnitude and a phase angle [i.e., polar form].
- We will use whichever form that is convenient.

Exponential/Sinusoidal Signals

Euler's relation $j \times e = \omega = \omega \times x + j \sin x$

ω₀t is defined as phase

$$Re \left\{ e^{j\omega ot} \right\} = Coswot$$

$$Im \left\{ e^{j\omega ot} \right\} = sin \omega ot$$

Real and imaginary parts are periodic signals with the same period, but out of phase (90° phase difference)

Periodic Complex Exponential/Sinusoidal Signals

$$x(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$$

- -Fundamental frequency: ω_0
- -Fundamental period: $T_0 = \frac{2\pi}{\omega_0}$
- -In CT, $e^{j\omega_0 t}$ always periodic
- -Distinct signals for distinct values of ω_0 .
- -Rapid variation with large ω_0

Periodic Complex Exponential/Sinusoidal Signals (cont.)

 To express sinusoidal by periodic exponentials, e.g.,

$$cos(x) = Re(e^{jx}) = (e^{jx} + e^{-jx})/2$$

 $sin(x) = Im(e^{jx}) = (e^{jx} - e^{-jx})/2i$

Harmonically Related Signal Sets

Harmonically Related Signal Sets (cont.)

 A set of periodic exponentials which have a common period T₀.

$$\{\phi_k(t) = e^{jk\omega_0 t}, k = 0, \pm 1, \pm 2, \ldots\}$$
must be integer multiple

fundamental frequency $|k\omega_0|$

fundamental period
$$T_k = \frac{2\pi}{|k\omega_0|} = \frac{T_0}{|k|}, \quad T_0 = \frac{2\pi}{\omega_0}$$

• The kth harmonic $\phi_k(t)$ is periodic with period T_0 , as it goes through |k| of its fundamental periods T_k in duration of length T_0 .

