ARELLANO GRANADOS ANGEL MARIANO 16/03/2021

A) Reflexiva y antisimétrica

TAREA 1.4

¿Cuáles propiedades tiene cada una de las siguientes relaciones binarias? A=(a,b)(b,c)(c,b)(d,a)A) $\mathbf{R} \mid a \mid B \mid c \mid d$ B) $\mathbf{S} \mid a \mid b \mid c \mid d$ C) $T \mid a \mid b \mid c \mid d$ E) $\mathbf{V} \mid a \quad b \quad c \quad d$ D U | a b c dа а а а а b b b b b $\sqrt{}$ cС С cС d d d d d Reflexiva, antisimétrica, no transitiva C Reflexiva, simétrica, no transitiva Е Reflexiva, simétrica, transitiva В Irreflexiva, antisimétrica, transitiva D Irreflexiva, simétrica, no transitiva Α Sean las siguientes relaciones sobre el conjunto $A = \{1,2,3\}$. Relacione las columnas colocando la letra correcta para indicar las propiedades de cada relación. A) $\{(a, b) \text{ tal que } a \le b\} = (1,1)(1,2)(1,3)(2,2)(2,3)(3,3)$ Reflexiva, simétrica C I B) $\{(a, b) \text{ tal que } a > b\} = (2,1)(3,1)(3,2)$ Reflexiva, antisimétrica A] C) $\{(a, b) \text{ tal que } a = b\} = (1,1)(2,2)(3,3)$ Irreflexiva, antisimétrica В Simétrica D) $\{(a, b) \text{ tal que } a + b \le 3\} = (1,2)(2,1)$ [D] Escriba una V si la afirmación es verdadera y una F si es falsa. Si **R** es simétrica, entonces **R**⁻¹ es simétrica ٧ Si **R** y **S** son transitivas, entonces **R**o **S** es transitiva F ſ Si $\mathbf{R} \setminus \mathbf{S}$ son reflexivas, entonces $\mathbf{R} \cap \mathbf{S}$ es reflexiva V Escriba una V si la afirmación es verdadera y una F si es falsa. Si $\mathbf{R} \vee \mathbf{S}$ son transitivas, entonces $\mathbf{R} \cup \mathbf{S}$ es transitiva F Si \mathbf{R} es reflexiva, entonces \mathbf{R}^{-1} es reflexiva V Si $\mathbf{R} \vee \mathbf{S}$ son reflexivas, entonces $\mathbf{R} \cup \mathbf{S}$ es reflexiva V Relacione las columnas indicando las propiedades que tiene cada una de las siguientes relaciones binarias sobre $A=\{1,2,3,4\}.$ 12 A) {(1,2),(2,3),(1,3)} Reflexiva, antisimétrica y transitiva В B) $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),(4,4)\}$ Irreflexiva, antisimétrica y transitiva Α C) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ Reflexiva, simétrica v transitiva С Sea L el conjunto de las rectas del plano. Coloque una S si la relación correspondiente es transitiva sobre L o una N en caso contrario.47 $\overline{\mathbf{U} = L_1} \mathbf{R} L_2 \text{ si } L_1 \text{ es paralela a } L_2$ Ν $T = L_1 R L_2 \text{ si } L_1 \text{ es perpendicular a } L_2$ S Una relación es simétrica sobre un conjunto A si [D] A) $(x, y) \in \mathbf{R} \to (y, x) \notin \mathbf{R} \ \forall x \forall y \in \mathbf{A}$ B) $(x, x) \in \mathbf{R} \ \forall x \in \mathbf{A}$ C) $(x, y) \notin \mathbf{R} \to (y, x) \in \mathbf{R} \ \forall x \forall y \in \mathbf{A}$ D) $(x, y) \in R \rightarrow (y, x) \in R \forall x \forall y \in A$ 8. La relación dada por el siguiente grafo dirigido (dígrafo) es: C (1,2)(2,1)(2,3)(3,2)(2,4)(4,2)

B) Irreflexiva e antisimétrica C) Irreflexiva y simétrica

D) Reflexiva y simétrica

В 9. Una relación es irreflexiva sobre un conjunto A si: A) $(x, y) \in \mathbf{R} \to (y, x) \notin \mathbf{R} \ \forall x \forall y \in \mathbf{A}$ B) $(x, x) \notin \mathbf{R} \ \forall x \in \mathbf{A}$ C) $(x, y) \notin \mathbf{R} \rightarrow (y, x) \in \mathbf{R} \ \forall x \forall y \in \mathbf{A}$ D) $(x, y) \in \mathbf{R} \to (y, x) \in \mathbf{R} \ \forall x \forall y \in \mathbf{A}$ 10. La relación dada por el grafo dirigido [D] es: (1,1)(1,2)(2,1)(2,2)(2,3)(2,4)(3,2)(3,3)(4,2)(4,4)B) Irreflexiva e antisimétrica A) Reflexiva y antisimétrica C) Irreflexiva y simétrica D) Reflexiva y simétrica 11. Sean A = $\{a, b, c, d\}$ y $\mathbf{R} = \{(a, b), (b, c), (c, b), (c, d)\}$. Encontrar \mathbf{R}_1 . С A) $\{(a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)\}$ B){ (a, b), (b, b), (b, c), (c, b), (c, c)} C) $\{(a, b), (a, c), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)\}$ D) $\{(a, b), (a, c), (b, c), (b, d), (c, b), (c, d)\}$ Sea el conjunto $A = \{1, 2, 3, 4\}$, determine cual matriz de relaciones representa una relación irreflexiva: [D $B) \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$ $[0 \ 1 \ 1 \ 1]$ $[0 \ 1 \ 1 \ 1]$ D) A) 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1

0 1 1 1

1 1 1 0

1 1 1 0

0 0 0 1