3. WORK & HEAT

THERMODYNAMIC ANALYSIS OF WORK:

General Definition of Work $Work = F dx$ F= Force $dx = Distance$	e
---	---

Thermodynamic Work: External to the system can be reduced to raising of weights. In Actual, Weight may be raised may not be raised. But the effect is equivalent to raising of weight.

Boundary Phenomena	It's Transit.
Transient Form of energy	If no Energy crosses the boundary no work.

CLOSED SYSTEM WORK/ MOVING BOUNDARY WORK/ DISPLACEMENT WORK:

Note:		C.	2	It's Derived from piston movement in cylinder.
Closed System	Reversible Process	$W_{1-2}(in \mathbf{J}) = $	P dV	Where, P =Pressure inside cylinder,
		J_1		V = volume of the Cylinder.
Work Done by The System			Work Done on The System	
+ve (Expansion	Process)		-ve (0	Compression Process)

WORK TRANSFER IN VARIOUS NON-FLOW PROCESSES:

Processes	Work Done	e/ Work	Transfer	
Constant Volume or Isochoric or Isometric			0	
Constant Pressure or Isobaric or Isopiestic	$P(V_2 -$	V_1)	$mR(T_2)$	(T_1)
Constant Temperature or Isothermal	$P_iV_i\ln\left(\frac{1}{2}\right)$	$\left(\frac{V_2}{V_1}\right)$	$P_i V_i \ln \left(\frac{P_1}{P_2}\right)$	$P_i V_i = mRT_i$
Adiabatic Process or Polytropic Process	$\frac{P_1V_1-P_1}{n-1}$		$\frac{mR(T_1 - T_2)}{n - 1}$	$\frac{mRT_1}{n-1} \left(1 - \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} \right)$
Isochore: Constant Volume line in P-V Diagram.		Isothe	rm: Constant Temperature	e line in P-V Diagram.
Isobar: Constant Pressure line in P-V Diagram.				

Closed System Work Transfer on P-V Diagram: Area under the process when projected to volume axis represents closed system reversible work transfer.

$W_1 \neq W_2$ (Depends on the path)	Work transfer is path function	ſ²
Work transfer is inexact differential.	It denoted by dW or δW	$\int_{1} W = W_{1-2}$
Work transfer is not property.		

TYPES OF WORK TRANSFERS:

Moving Boundary	Electrical Work	Paddle Wheel Work Transfer	Spring Work Transfer
Work	Transfer		
$\int_{-\infty}^{2}$	$W_{ele}(in \mathbf{W}) = VI$	$W_{pad}(in \mathbf{W}) = T \times \omega = 2\pi NT$	$W_{*}(in I) = \frac{1}{[x^2 \ x^2]}$
$W_{1-2}(in \mathbf{J}) = \int_1^1 P dV$	$W_{ele}(in \mathbf{J}) = VIt$	$W_{pad}(in \mathbf{J}) = T \times \omega = 2\pi NTt$	$W_{Sp}(in \mathbf{J}) = \frac{1}{2} [x_2^2 - x_1^2]$
		Where, $N = RPM$ or No. of Revolution	

Net Work Transfer: $W_{net} = \sum W_i$

Net Work Transfer on P-V diagram: The Area Enclosed in the cycle on P-V diagram represents Net Work Transfer.

SPECIAL CASE OF WORK TRANSFERS:

Free Expansion Process	Paddle Wheel Work	Work Transfer in increasing P&V
It's gas expansion against vacuum.	It's Paddle Wheel work in	It's arrangement of spring-loaded Piston
No Resistance from vacuum.	closed rigid chamber filled	Cylinder Arrangement.
$W_{net} = 0$, But $P dV \neq 0$	with fluid.	Here, Spring is liner. hence, PV diagram is
It's irreversible process.	$W_{net} \neq 0$, But $P dV = 0$.	like linear curve because of increasing P&V.
_	It's irreversible process.	$Area = W_{net} = (1/2)(P_1 + P_2)(V_2 - V_1)$

THERMODYNAMIC ANALYSIS OF HEAT:

Heat: Heat is a form of energy which crosses the boundary due to temperature difference.

zamov mono no unorgi winom orospos uno communi, due to temporatore dimensione.		
Boundary Phenomena	It's Transit.	
Transient Form of energy.	No ΔT across the boundary no Heat Flow.	
Heat Supplied to The System	Heat Supplied by The System	
+ve (Expansion Process)	-ve (Compression Process)	

	Generalised Equation of Heat Transfer: 0	$D = mc\Delta T$	Specific Heats of Substances: $C = Q/m\Delta T$
--	--	------------------	--

Generalised form of heat transfer can be applied to Solid, Gas & Liquid.

Specific Heat (c)(in J/kg K or J/kg °C):

It's Amount of heat required to raise unit mass of substance through one-degree temperature difference.

c_P = Specific Heat at constant Pressure	c_P = Specific Heat at constant Temperature
For Gases: $c_P \ge c_V$	For Solid & Liquid: $c_P \cong c_V \cong c$

Heat Capacity (C)(in J/K or $J/^{\circ}C$)	C = cm

HEAT GENERATION:

Electrical energy directly converts into heat energy (100% conversion). Hence, $Q_{gen} = W_{ele}$

HEAT EXCHANGING PROCESS:

Due to Temperature Difference, Heat Flows from higher energy to low energy region.

DIFFERENCE BETWEEN HEAT & WORK TRANSFER	SIMILARITIES BETWEEN HEAT & WORK
It's completely depends on the selection of the boundary.	Both are Boundary Phenomena.
E.g. Arrangement of insulated vessel filed with fluid and putting	• Both are Transit.
heater inside.	• Both are Transient Form of energy.
	• Both are Path function.
	• Both are not properties.
	Both are inexact differentials.