Naive Bayes & Advanced Algorithms

إجمالي النقاط 90/100

This assignment will challenge your understanding of Naive Bayes, Support Vector Machines (SVM), K-means, and Association Analysis.

تم تسجيل عنوان البريد الإلكتروني للمستجيب (amirah.2566@gmail.com) عند إرسال هذا النموذج.

10/10	* :In Naive Bayes, the assumption of feature independence means	✓
	Features are completely unrelated to each other	\bigcirc
✓	Features are conditionally independent given the class	•
	Features have equal importance in classification	0
10/10	* :The Naive Bayes algorithm calculates probabilities using	✓
✓	Maximum likelihood estimation	•
	Entropy-based splitting	\bigcirc
	Mean squared error	0
	Information gain	\bigcirc

0/10	*:SVM is a supervised learning algorithm used for	×
	Regression	
	Clustering	
✓	Classification	✓
	Association Analysis	
	الصحيحة	الإجابة
	Classification	✓
	Regression	✓
10/10	*:The objective of SVM is to	✓
	Maximize information gain	\bigcirc
✓	Maximize margin between different classes	•
	Minimize entropy	\bigcirc
	Minimize mean squared error	0
10/10	* :The kernel trick in SVM allows for	✓
	Feature selection	\bigcirc
✓	Non-linear classification boundaries	()
	Regularization	0

10/10	*:In SVM, support vectors are	✓
✓	Data points closest to the decision boundary	•
	Data points in the training set with the highest weight	0
	Misclassified data points	0
	Centroids of each cluster	0
10/10	* :K-means is an example of a(n)	✓
	Supervised learning algorithm	0
✓	Unsupervised learning algorithm	•
	Reinforcement learning algorithm	0
10/10	* :The value of K in K-means refers to	✓
	The number of features in the dataset	0
✓	The number of clusters to be formed	•
	The number of iterations in the algorithm	0
	The dimensionality of the data points	0

10/10*	The initialization of K-means algorithm can affect the final clustering result because	✓
	It determines the number of clusters	\bigcirc
✓	It influences the convergence of the algorithm	•
	It affects the choice of distance metric	\bigcirc
	It determines the feature weights	\bigcirc
10/10	*: The support of an itemset in association analysis is defined as	✓
✓	How frequent an item appears in the itemset.	•
	The confidence of the association rule	\bigcirc
	The lift of the association rule	\bigcirc
	The length of the itemset	0

تم إنشاء هذا النموذج داخل Zaka Al, Inc..

نماذج Google