Лабораторная работа №4.3.1 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА

0.1 А. Дифракция Френеля

В средней волновой зоне число темных полос выражается через число зон френеля:

$$n = m - 1$$

Рассчитаем число зон френеля для щели и построим график $2z_m = f(m)$

N	Μ	L, sm
1	2	50.1
2	3	50.8
3	4	51.2
4	5	51.3
5	6	51.4

0.2 В. Дифракция Фраунгофера

Для дальней волновой зоны фазовые соотношения значительно упрощаются: m-ый дифракционный минимум наблюдается под таким углом, что

$$\lambda = \delta = r_2 - r_1 = D\sin\theta \approx D\theta$$

Если мы наблюдаем дифракцию в фокальной плоскости линзы, то каждому углу соотвествует точка на расстоянии

$$x = f \tan \theta$$

И для т-ого минимума:

$$X_m = f_2 m \frac{\lambda}{D}$$

m	L, 0,2 mm	
-1	1,8	
0	3	
1	4,2	
2	5	

Рассчитав среднее растояние м/у минимумами можно найти ширину щели:

$$\Delta X = f_2 \frac{\lambda}{D} \Rightarrow D = f_2 \frac{\lambda}{\Delta X} = 0.26 \ mm \pm 0.2 \ mm$$

0.3 С. Дифракция на двух щелях

Две щели - самая маленькая дифракционная решетка; При дифракции на двух узких щелях с расстоянием d, для дифракционных максимумов имеем:

$$d\theta = m\lambda$$

или расстояние м/у ними: $\delta = f_2 \frac{\lambda}{d}$ Тогда число полос в области центрального максимума

$$n = 2d/D$$

Внесем дополнительную щель для изучения влияния дифракции на ней. Ширина шели, при которой две щели неразличимы $b = 0.09 \ mm$ а d = 35 делений; Расчетная ширина по критерию Релея:

$$D_0 = \frac{\lambda f_1}{l} = \frac{\lambda f_1}{d\delta} = 0.078 \pm 0.003 \ mm$$