Intermediates with Copper-Carbon Bonds Formed by the Reaction of Aliphatic Free Radicals with a Copper-Peptide Complex in Aqueous Solutions

By William A. Mulac and Dan Meyerstein*†
(Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439)

Summary The reactions of •CH₂CO₂ and •CH₂CMe₂OH with a copper-peptide complex in neutral aqueous

solutions yield relatively long lived intermediates with copper–carbon σ bonds.

† Visiting scientist from the Chemistry Departments, Nuclear Research Center Negev and Ben Gurion University of the Negev, Beer-Sheva, Israel.

RECENTLY it was shown that Cu^{II} peptide complexes can be easily oxidized to Cu^{III} peptide complexes in aqueous solutions at physiological pH,¹ and it has also been shown that aliphatic free radicals react with Cu²⁺ ions in aqueous solutions according to the mechanism in equation (1).²

$$\begin{array}{cccc} \bullet RH \; + \; Cu_{aq}^{2+} & \longrightarrow \; [Cu^{III} - RH]_{aq} & \stackrel{H_2O}{\longrightarrow} \; Cu_{aq}^+ \; + \; RHOH \\ & \text{(or other oxidation products)} \end{array} \ \ \, (1)$$

The intermediates Cu^{III}—RH are relatively long lived for aliphatic radicals like •CH₂CO₂, •CH₂CH₂OH, and CH₂CMe₂OH.² These results have led us to investigate the possibility that aliphatic free radicals would react with a copper peptide complex *via* a similar mechanism. Such reactions are of special interest as copper ions sensitize radiation damage under oxidizing conditions, though it is difficult to believe that •OH radicals will react directly with the copper ions and not with the organic compounds present in biological media.

Nitrous oxide-saturated solutions containing 1—5 imes10⁻⁴ м copper(II) sulphate triglycine complex, Cu^{II} (GGG)⁻ $(GGGH_3 = NH_2CH_2CONHCH_2CONHCH_2CO_2H)$ in the pH range 6-10.2, maintained using 0.01 M sodium phosphate or sodium borate, and 0.01 m NaBr, 1.0 m Me₃COH, or 1 M MeCO₂Na were irradiated by a 4-40 ns pulse of 15 MeV electrons from the linear accelerator at (In all solutions the concentration ratio $[GGGH_3]/[CuSO_4] = 1.1$ was maintained.) Under these conditions $6 \times 10^{-6} - 6 \times 10^{-5}$ m of the free radicals Br₂•-,3 •CH₂CMe₂OH,⁴ and •CH₂CO₂-4 were formed in the solutions containing NaBr, Me₃COH, and MeCO₂Na respectively. (In all these solutions hydrogen atoms were also formed with a yield of ca. 10% of the total free radical yield.5) The formation of relatively long lived unstable intermediates with absorption bands in the near u.v. was observed

Figure. Absorption spectra 180 μs after a 3 \times 104 rad pulse into a 5 cm cell as observed using a streak camera. Arbitrary absorbance scale. Solution composition: (A) $2\cdot 5\times 10^{-4}$ M Cu^II(GGG)-, pH 7·3, 1 \times 10-2 M NaBr, N₂O saturated; (B) 5 \times 10-4 M Cu^II(GGG)-, pH 7·3, 1·0 M Me₃COH, N₂O saturated.

under these conditions. The Figure shows the absorption spectra observed in the NaBr and Me₃COH containing solutions. In the former the transient has λ_{max} 385 \pm 5 nm (ϵ_{max} 4200 \pm 600 l mol⁻¹ cm⁻¹). This spectrum is attributed to Cu^{III}(GGG)² formed in reaction (2). After

$$\text{Br}_{2^{\bullet-}} + \text{Cu}^{\text{II}}(\text{GGG})^{-} \longrightarrow \text{Cu}^{\text{III}}(\text{GGG}) + 2\text{Br}^{-}$$

$$k_{2} = (1 \cdot 6 \pm 0 \cdot 2) \times 10^{8} \, \text{l mol}^{-1} \, \text{s}^{-1}$$
(2)

this reaction a further reaction with $k\ ca.\ 10^3\ s^{-1}$ occurred. This reaction caused a slight $(ca.\ 10^9\!\!/_\odot)$ decrease in the absorbance, and could therefore not be studied in detail.‡ The Cu^{III}(GGG) complex thus formed decomposes slowly in a first-order reaction the rate of which increases with pH: $k=ca.\ 0.02,\ ca.\ 0.08,\ 0.25\ \pm\ 0.05,\ 3.0\ \pm\ 0.5$, and $10\ \pm\ 1$ at pH 6·2, 7·3, 7·8, 9·0, and $10\cdot0$ respectively, in accord with the reported properties of Cu^{III}(peptide) complexes.¹

The transient formed in the solutions containing Me_3COH (λ_{max} 320 nm; ϵ_{max} 5000 \pm 700 l mol⁻¹ cm⁻¹) was identified as compound (1) formed in reaction (3). The transient (1) is clearly different from $Cu^{III}(GGG)$ as can be deduced

$$\begin{array}{c} \mathrm{Cu^{II}(GGG)^{-}} + \mathrm{^{\bullet}CH_{2}CMe_{2}OH} \longrightarrow \\ \mathrm{Cu^{III}(GGG) - CH_{2}CMe_{2}OH^{-}} \\ \mathrm{(1)} \end{array} \tag{3}$$

$$k_3 \,=\, (2 \!\cdot\! 6 \,\pm\, 0 \!\cdot\! 4) \,\times\, 10^7 \,\mathrm{l} \;\mathrm{mol}^{-1} \,\mathrm{s}^{-1}$$

from their respective spectra (Figure) and from the differences in their rates of decomposition (see later). It is also not $\text{Cu}^1(\text{GGG})$, as the yield of (1) in He-saturated solutions, where only HO• is effective in producing the aliphatic radical, is only ca. 40% of that observed in N₂O-saturated solutions where both the primary radiolysis products, e_{aq}^- , as well as HO•, do so (the former via N₂O scavenging, N₂O + e_{aq}^- + H⁺ \rightarrow N₂ + HO•). The rate of decomposition of (1) in the He saturated solutions is slightly higher than in the N₂O saturated solutions. The mechanism of decomposition of (1) is believed to be as shown in reaction (4), by analogy with the mechanism of decomposition of

$$\label{eq:cuiii} \begin{array}{ccc} {\rm Cu^{III}(GGG)\text{--}CH_2CMe_2OH^-} & \xrightarrow{\rm H_2O} & {\rm Cu^I(GGG)} & + \\ & & {\rm HOCH_2CMe_2OH} & & (4) \end{array}$$

 $(\mathrm{H_2O})_n\mathrm{Cu^{III}}$ -RH.² $k_4=0.75\pm0.10,\,1.5\pm0.2,\,2.3\pm0.3$, and 2.5 ± 3 at pH 7.3, 7.8, 9.0, and 10.2 respectively. The product of reaction (4) cannot be $\mathrm{Cu^{III}}(\mathrm{GGG})$ as the rate of decomposition of the latter at pH 7.3 and 7.8 is considerably lower than k_4 . At 380 nm the absorption coefficient of $\mathrm{Cu^{III}}(\mathrm{GGG})$ is considerably larger than that of $\mathrm{Cu^{III}}(\mathrm{GGG})$ -CH₂CMe₂OH⁻; reaction (4) causes a decrease and not an increase in absorption at 380 nm.

In solutions containing 1 m MeCO₂Na instead of Me₃COH similar results were observed: $k[\text{Cu}^{\text{II}}(\text{GGG}) + \cdot \text{CH}_2\text{CO}_2^-] = (1\cdot6 \pm 0\cdot2) \times 10^7 \, \text{l mol}^{-1} \, \text{s}^{-1}$. The absorption band of the transient in these solutions is broader, with $\lambda_{\text{max}} < 350 \, \text{nm}$. The decomposition of the transient identified as $\text{Cu}^{\text{III}}(\text{GGG}) - \text{CH}_2\text{CO}_2^-$ consists of two consecutive steps; the ratio of the relative contribution of the first to that of the second reaction decreases with pH, from 50% at pH 7·8 to 20% at pH 10·2. The rate constant of the first

‡ One possibility is that first Cu^{III}(GGG)Br is formed and that the reaction observed is the loss of Br-.

step is 7.6 s⁻¹ at pH 7.8 and 3.5 s⁻¹ at pH 10.2 while that of the second step is 0.89 and 0.06 s⁻¹ at these pH values. The exact nature of these two reactions is not clear; however, the decomposition of (CuIII_CH2CO2)aq also consists of two steps.2 It is also of interest that the rate of decomposition of Cu^{III}(GGG)-CH₂CO₂ decreases with increasing pH while that of CuIII(GGG) and CuIII(GGG)-CH₂CMe₂OH⁻ increases.

The results obtained in this study indicate that copper proteins might act as scavengers of 'non-reducing' aliphatic free radicals via the formation of relatively long-lived intermediates containing copper-carbon σ bonds. This mechanism might also contribute to the role of copper ions as radio-sensitizers.

The experimental assistance of P. D. Walsh and R. M. Clarke is gratefully acknowledged.

(Received, 4th May 1979; Com. 478.)

- ¹ D. L. Margerum, K. L. Chellappa, F. P. Bossu, and G. L. Burce, *J. Amer. Chem. Soc.*, 1975, 97, 6894; F. P. Bossu, K. L. Chellappa, and D. L. Margerum, *ibid.*, 1977, 99, 2195.
 - M. Breiberg and D. Meyerstein, J.C.S. Chem. Comm., 1977, 127 and results to be published.
 M. S. Matheson, W. A. Mulac, J. L. Weeks, and J. Rabani, J. Phys. Chem., 1966, 70, 2092.
 M. Anbar, M. Bambenek, and A. B. Ross, NSRDS, National Bureau of Standards, 1973, Vol. 43.
 M. S. Matheson and L. M. Dorfman, 'Pulse Radiolysis,' M.I.T. Press, Cambridge, Massachusetts, 1969.
 C. Cadar, W. A. Mulac, K. H. Shmidt, P. K. Sichler, and J. C. Sullivan, Lower, Chem. 1079, 17, 200.

 - S. Gordon, W. A. Mulac, K. H. Shmidt, R. K. Sjoblem, and J. C. Sullivan, Inorg. Chem., 1978, 17, 294.