Outils Calculatoires

Feuille d'exercices 3

Institut Villebon-Charpak

Année 2017 - 2018

1 Résolutions de systèmes linéaires

On considère les systèmes linéaires suivants

$$(E_1) \begin{cases} x + y + z = 6 \\ 3x - y + 2z = 7 \\ 2x - 3y + 4z = 8 \end{cases} (E_2) \begin{cases} a + 3b + c = 0 \\ 3a - 2b + 2c = -1 \\ 2a - 3b + 4c = 2 \end{cases}$$

$$(E_3) \begin{cases} x + 2y + z = 8 \\ -2x - 4y - z = -4 \end{cases} (E_4) \begin{cases} p + 3q + r = 0 \\ 3p - 2q + 2r = -1 \\ -p - 8p = 1 \end{cases}$$

$$(E_5) \begin{cases} u + 2v - 3w = -4 \\ -2u + 5v + 4w = 20 \\ -u - 4v + 17w = 58 \end{cases} (E_6) \begin{cases} \alpha + 3\beta + \gamma = 0 \\ 3\alpha - 2\beta + 2\gamma = -1 \\ 2\alpha - 13\beta + 2\gamma = 2 \end{cases}$$

$$(E_7) \begin{cases} x + y + z - t = 2 \\ 3x - y + 2z + 2t = 15 \\ 4x - 3y + 4z - 3t = -2 \\ 2x - 3y + z + t = 3 \end{cases}$$

- 1. Résoudre ces systèmes (si la solution n'est pas unique, on donnera une description paramétrique de l'ensemble des solutions).
- 2. Donner l'écriture de ces systèmes sous forme matricielle.

2 Inversion de matrices par résolution d'un système linéaire

Déterminer si les matrices suivantes sont inversibles, et le cas échéant, calculer l'inverse.

$$A = \begin{pmatrix} -5 & 6 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} -5 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \qquad F = \begin{pmatrix} 1+3i & 1+2i \\ -1+2i & 1-3i \end{pmatrix} \qquad G = \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \qquad H = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

$$J = \begin{pmatrix} 1+2i & 1+i \\ 1+7i & 2+4i \end{pmatrix} \qquad K = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 10 \\ -1 & 1 & 3 \end{pmatrix}$$

$3 \quad (\star)$ Une matrice à paramètre

Soit $\lambda \in \mathbb{R}$ et

$$M(\lambda) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & \lambda \\ -\lambda & 0 & 1 \end{pmatrix}$$

- 1. Pour quelles valeurs du paramètre λ la matrice $M(\lambda)$ n'admet-elle pas d'inverse?
- 2. Hors de ces valeurs, calculer l'inverse de $M(\lambda)$.

4 Une matrice unipotente

On considère la matrice

$$U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- 1. Calculer U^{-1} .
- 2. Calculer U^2 , U^3 , et plus généralement U^n pour tout $n \ge 1$.

5 (\star) Matrice de Vandermonde et racines $n^{\rm \grave{e}mes}$ de l'unité

- 1. On note $j = e^{\frac{2i\pi}{3}}$. Montrer que $j^3 = 1$, et $1 + j + j^2 = 0$.

 Indication: Pour la dernière égalité, on pourra utiliser que $z^{n+1} 1 = (z-1)(1+z+\ldots z^n)$ (pour tout $n \ge 0$ et $z \in \mathbb{C}$).
- 2. Soient $a,b,c\in\mathbb{C}$ des nombres complexes quelconques, résoudre le système linéaire suivant.

$$\begin{cases} x + y + z = a \\ x + jy + j^2z = b \\ x + j^2y + jz = c \end{cases}$$

3. En déduire l'inverse de la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$$

4. (**) En procédant de manière similaire, calculer l'inverse de la matrice

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & 1 \\ 1 & -i & -1 & i \end{pmatrix}$$

5. $(\star \star \star)$ Soit $n \geq 1$, et $\omega = e^{\frac{2i\pi}{n}}$. Calculer l'inverse de la matrice

$$W = \left(\omega^{(i-1)(j-1)}\right)_{1 \le i,j \le n} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega & \dots & \omega^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix}$$

6 Diagonalisations

On considère les matrices suivantes

$$A = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$$

- 1. Calculer $A^2 2A + 3I_2$, $B^2 2B + 5I_2$ et $C^2 + C + I_2$.
- 2. Pour chacune des matrices A, B et C, déterminer les valeurs propres et les espaces propres associés.

$7 \quad (\star)$ Une matrice non diagonalisable

On considère la matrice

$$M = \begin{pmatrix} -10 & -3 & -12 \\ 5 & 0 & 7 \\ 6 & 2 & 7 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de M et les espaces propres associés.
- 2. $(\star\star)$ La matrice M est-elle diagonalisable?

8 (\star) Vecteur propre

Trouver toutes les valeurs possibles de $x,y\in\mathbb{C}$ tels que la matrice $\begin{pmatrix} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & 1 \end{pmatrix}$ admette $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ pour vecteur propre.

9 (**) Théorème de Cayley-Hamilton pour n=2

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$$
 une matrice 2×2 .

1. Montrer que pour tout $z \in \mathbb{C}$, on a

$$\chi_A(z) = \det(zI_2 - A) = z^2 - (a+d)z + (ad - bc)$$

2. Vérifier que $\chi_A(A) = A^2 - (a+d)A + (ad-bc)I_2 = 0$.

Remarque 9.1. Pour une matrice carrée $A \in \mathcal{M}_n(\mathbb{C})$ de taille $n \geq 1$. On définit son polynôme caractéristique par $\chi_A(z)$ (il s'agit d'un polynôme de degré n). Le théorème de Cayley Hamilton affirme que l'on a toujours l'égalité $\chi_A(A) = 0$ (que nous venons de vérifier pour les matrices de taille 2).