2^{ième} Année Master Maths Premier semestre, année 2021/2022 Mouvement Brownien et calcul stochastique

Feuille 2: Exercices sur le mouvement Brownien.

Exercice 1. Soit Z une variable aléatoire de loi normale centrée et réduite. Pour tout $t \geq 0$, nous posons $X_t = \sqrt{t}Z$. Le processus stochastique $X = (X_t)_{t \geq 0}$ a des trajectoires continues et $\forall t \geq 0$, X_t est de loi N(0,t). Est-ce que X est un mouvement Brownien? Justifiez votre réponse.

Exercice 2. Soit W et \widetilde{W} , deux mouvements Browniens standard indépendants l'un de l'autre, et ρ , une constante entre 0 et 1. Pour tout $t \geq 0$, nous posons $X_t = \rho W_t + \sqrt{1 - \rho^2 \widetilde{W}}$. Le processus stochastique $X = (X_t)_{t \geq 0}$ a des trajectoires continues et $\forall t \geq 0$, X_t est de loi N(0,t). Est-ce que X est un mouvement Brownien? Justifiez votre réponse.

Exercice 3. Soit W un mouvement Brownien standard construit sur l'espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P)$. Posons

$$X = \exp\left[\sigma W_t - \frac{\sigma^2}{2}t\right].$$

Montrer que $X = (X_t)_{t>0}$ est une martingale.

Exercice 4. Soit W un mouvement Brownien standard construit sur l'espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, P)$.

Montrer que $\{W_t^2 - t : t \ge 0\}$ est une martingale.

Exercice 5. Soit W un mouvement Brownien standard. Montrez que

$$Cov[W_t, W_s] = \min(s, t) = s \wedge t$$

Exercice 6. Soit W_t un mouvement Brownien standard. Montrez que

- (1) Pour tout s > 0, $\{W_{t+s} W_s : t \ge 0\}$
- (2) $\{-W_t : t \ge 0\}$
- $(3) \left\{ cW_{\frac{t}{c^2}} : t \ge 0 \right\}$
- (4) $\left\{ V_0 = 0 \text{ et } V_t = tW_{\frac{1}{t}} \text{ si } t > 0 : t \ge 0 \right\}$

sont des mouvements Browniens standard.