

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

CIRCUITOS ELECTRICOS I

TEMA 5

MSc. Ing. Juan José Edgar MONTERO GUEVARA

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS

OBJETNYOS DE LA UNIDAD

- Establecer las transformaciones de Fuentes
- ☐ Establecer el Circuito Equivalente de Thevenin
- Establecer el Circuito Equivalente de Norton
- Establecer el Teorema de Máxima Transferencia de Potencia
- Establecer el Teorema de Superposición
- Aplicar a la solución de circuitos eléctricos.

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Introducción

SIMPLIFICAR CIRCUITOS

- Equivalentes Serie y Paralelo
- ✓ Transformación Estrella-Delta
- Divisor de Tensión y Corriente
- Método de Mallas
- Método de Nodos
- Transformación de fuentes
- Circuito Equivalente de Thevenin
- Circuito Equivalente de Norton
- Máxima Transferencia de Potencia
- Teorema de Superposición

TRANSFORMACIÓN DE FUENTES

Una transformación de Fuentes, permite sustituir una fuente de tensión en serie con una resistencia por una Fuente de Corriente en paralelo con la misma resistencia, o viceversa

Circuitos equivalentes que contienen una resistencia en paralelo con una fuente de tensión o en serie con una fuente de corriente

$$i_s = \frac{v_s}{R}$$

$$v_s = i_s R$$

TRANSFORMACIÓN DE FUENTES

Una transformación de Fuentes, permite sustituir una fuente de tensión en serie con una resistencia por una Fuente de Corriente en paralelo con la misma resistencia, o viceversa

Circuitos equivalentes que contienen una resistencia en paralelo con una fuente de tensión o en serie con una fuente de corriente

$$i_s = \frac{v_s}{R}$$

$$v_s = i_s R$$

Transformación de Fuentes

Se debe cumplir las siguientes relaciones:

§§ §§

 1.6Ω

PROBLEMA 1

Aplicando la técnica de transformación de fuentes se pide:

Encontrar la potencia relacionada con la fuente de 6[V] en el circuito de la figura. R.: 4.95[W]

Determinar si la fuente de 6[V] consume o suministra la potencia que se calculó en (a). R.: Consume

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de THEVELIIN

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de THEVENIN

PROBLEMA 6

Encuentre el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura. R.: 48[V]; $16[\Omega]$

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de THEVELIIN

La Rey en presencie de fuents. independientes - De sud ira un lan fronts: Frente de tensión -> Corto de to Funt de Corninte -> ceto abiento - Hellenn le Reguirdente Res-Rth Pab = 8 + 10(40) => R= 16[n] Ptn=16(N)

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de THEVENIN

PROBLEMA 7

☐ Calcular el circuito equivalente de Thevenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura.

R.: 32[V]; 8[Ω]

 □ Hallar el circuito equivalente de Norton. R.: 4[A]; 8[Ω]

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de NORTON

PROBLEMA 7

Calcular el circuito equivalente de Thevenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura.

R.: 32[V]; 8[Ω]

Hallar el circuito equivalente de Norton. R.: 4[A]; $8[\Omega]$

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de NORTON

PROBLEMA 7

Calcular el circuito equivalente de Thevenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura.

R.: 32[V]; 8[Ω]

Hallar el circuito equivalente de Norton. R.: 4[A]; $8[\Omega]$

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Circuito Equivalente de NORTON

PROBLEMA 7

Calcular el circuito equivalente de Thevenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura. R.: 32[V]; $8[\Omega]$ Hallar el circuito equivalente de Norton. R.: 4[A]; $8[\Omega]$

Lo que se pretende es Transferir Potencia entre una Fuente y una Carga, para lograr:

- Eficiencia en la transferencia de la potencia
- Cantidad de potencia transferida

Por la regle de H'ospital por maximo: de la =0

Lo que se pretende es Transferir Potencia entre una *Fuente* y una Carga, para lograr:

- Eficiencia en la transferencia de la potencia
- Cantidad de potencia transferida

Procediminato poro Mexima Transf de Potucio

1. Determinar el equivalente de therain @ Broto deto. >> Pth

2. R= Rth y Colombor Prest 4 Rth

PROBLEMA 17

- •En el circuito de la figura, encontrar el valor de " R_L ", que origine la Máxima Transferencia de Potencia a " R_L ". R.: 25[Ω]
- Calcular la máxima potencia que se puede suministrar a "R_L".

R.: 900[W]

•Al ajustar "R_L", para la Máxima Transferencia de Potencia, ¿qué porcentaje de la potencia suministrada por la fuente de 360[V] llega a "R_L"? R.: 35.71 %

PROBLEMA 18

■ Encuentre el valor de "R" que permite que el circuito de la figura suministre la Máxima Potencia a las terminales "a" y "b".

R.:
$$V_1 = 80[V]$$
; $V_a = 40[V]$;

$$V_{th} = 120[V]; I_{cc} = 40[A]; R = 3[\Omega]$$

□ Determine la máxima potencia administrada a "R".

R.: 1200[W]

PROBLEMA 18

■ Encuentre el valor de "R" que permite que el circuito de la figura suministre la Máxima Potencia a las terminales "a" y "b".

R.:
$$V_1 = 80[V]$$
; $V_a = 40[V]$;
 $V_{th} = 120[V]$; $I_{cc} = 40[A]$; $R = 3[\Omega]$

■ Determine la máxima potencia administrada a "R".

R.: 1200[W]

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Teorema de Superposición

El *Principio De Superposición establece que en un circuito lineal, se puede* determinar la respuesta total calculando la respuesta a cada fuente independiente por separado y sumando algebraicamente sus contribuciones.

- ✓ Paso 1. Anular todas las fuentes independientes excepto una. Como se ha comentado anteriormente, para anular una fuente de tensión se sustituye por un cortocircuito y una de corriente por un circuito abierto.
- ✓ Paso 2. Se calcula la variable que se pretende determinar, ya sea una tensión o una intensidad, utilizando las leyes de Kirchhoff. Se vuelve al paso 1 para cada una de las fuentes independientes.
- ✓ Paso 3. Se calcula la tensión o intensidad final sumando todas las contribuciones obtenidas de realizar el paso 2 para cada una de las fuentes independientes.

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS Teorema de Superposición

PROBLEMA 21

Aplicando el Principio de Superposición calcular las corrientes: i₁, i₂, i₃ e i₄.

R.: $V_1 = 18[V]$; $V_2 = -4[V]$; 17[A];

6[A]; 11[A]; -1[A]

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

CIRCUITOS ELECTRICOS I

FIN DE LA UNIDAD

iii GRACIAS !!!

MSc. Ing. Juan José Edgar MONTERO GUEVARA