Lecture 26: Weak law of large numbers & Central limit theorem Part II

Satyajit Thakor IIT Mandi

Example

- Example (application of Chebyshev inequality): The time taken to serve a customer at a fast-food restaurant has a mean of 75.0 seconds and a standard deviation of 7.3 seconds. Use Chebyshev inequality to calculate the time interval that has 75% at least probability of containing a particular service time.
- Chebysher inequality: P(1x-11) = a) \ \frac{6}{\alpha^2}.
- _ Let X be the time taken to serve a customer. - Find a time interval trat has 75% Prob. of

Containing a particular service time.

- Note that, $P((x-M)\geq a)=1-P((x-M)< a)$ $\Rightarrow 1 - P(|X - M| < 9) < \frac{6^2}{a^2}$ $\Rightarrow P(|X - M| < 9) \ge 1 - \frac{6}{a^2}$

Example - To find the desired interval, lef $1 - \frac{6^2}{a^2} = 6.75 \implies \alpha^2 = \frac{(7.3)^2}{.25} = 213.16$ \Rightarrow a = 14.6- Hence, p(1x-14.6) > 0.75 $\Rightarrow P(-14.6 < X - 75 < 14.6) \ge 0.75$ $\Rightarrow P(60.4 (X (89.6) \ge 0.75.$ -Thus, for X in the interval (60.4, 89.6) the probability is at least 75% (by chebysher inequality)

- Consider a sequence X_1, \ldots, X_n of independent identically distributed random variables. Suppose that $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for $i = 1, \ldots, n$.
- If we define average Y.V.: $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$ proved in Lecture 25. then $E(\bar{X}) = \mu$ and $Var(\bar{X}) = \frac{\sigma^2}{n}$.
- The central limit theorem states that regardless of the actual distribution of the individual random variables X_i , the distribution of their average \bar{X} is closely approximated by a $\mathcal{N}(\mu, \sigma^2/n)$ distribution.
- That is, average of a set of independent identically distributed random variables is always approximately normally distributed.
- \triangleright The accuracy of the approximation improves as n increases.

Central limit theorem (CLT)

If X_1, \ldots, X_n is a sequence of independent identically distributed random variables with a mean μ and a variance σ^2 , then the distribution of their average \bar{X} can be approximated by

$$\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

This is equivalent to: If X_1, \ldots, X_n is a sequence of independent identically distributed random variables with a mean μ and a variance σ^2 , then the distribution of the sum $X_1 + \ldots + X_n$ can be approximated by

$$\mathcal{N}(n\mu, n\sigma^2).$$

The proof is beyond the scope of this course. We will study the statement with examples.

theorem statement

$$f_{X}(x) = \lambda e^{\lambda x}, x \ge 0.$$
 $\mu_{X} = \frac{\lambda}{\lambda}, \quad \leq = \frac{1}{\lambda^{2}}.$

 \triangleright Numeral exponential distribution: X_i

 $Source: https://digitalfirst.bfwpub.com/stats_applet/stats_applet_3_cltmean.html$

Numeral exponential distribution: $(X_1 + X_2 + X_3)/3$

Numeral exponential distribution: $(X_1 + \ldots + X_4)/4$

Numeral exponential distribution: $(X_1 + \ldots + X_8)/8$

Numeral exponential distribution: $(X_1 + \ldots + X_{30})/30$

Example: CLT

Pecall Problem 2, Assignment 6: Milk containers have label printed "2 liters". But, the PDF of the amount of milk deposited in a milk container by a dairy factory is

$$f_X(x) = \begin{cases} 40.976 - 16x - 30e^{-x}, & 1.95 \le x \le 2.20; \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Is f_X a valid PDF?
- (b) What is the probability that a container produced by the dairy factory is underweight?
- ► Recall that the probability of "a container produced by the dairy factory is underweight" is .261 (solution of 2(b)).

Example: CLT

Example: What is the distribution of the number of underweight containers X in a box of 20 containers? Find the (a) exact and (b) approximate (using CLT) value of the probability "a box contains no more than three underweight containers". A container is underweight, with prob. .261. denote as r.v. W: this is a Bernoulli r.v. with p=0.261. W=1 (underweight) With Prob. P W=0 (not underweight) With Prob. 1-P. No. of underweight containers in a box of 20. denote as r.v. X: this is a Binomial r.v. B(20, 261) Recall: sum of iid Bernoulli r. v.s is Binomial.

Very close to the exact value.

(a) $P(X \le 3) = \sum_{k=0}^{3} {20 \choose k} (.261)^{k} (1-.261)^{20-k} = 0.1934$

(b) Note that a Binomial r.v. with the distribution B(n/p)

Example: CLT