https://www.kaggle.com/saidakbarp/facerecognition-part-1 (https://www.kaggle.com/saidakbarp/facerecognition-part-1)

```
In [9]: import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
#Visiulazation
import matplotlib.pyplot as plt
#image processing
import cv2
#extracting zippped file
import tarfile
#systems
import os
print(os.listdir("/home/hduser/jupyter"))
```

['winequality-red.csv', 'winequality-red_StratifieldKFold.csv', 'dt_0.bin', 'dt _1.bin', 'dt_3.bin', 'Face_Detection_with_OpenCV', 'Face_recognition_part_1.ipy nb', 'jupyter.csv', 'test.py', 'remte_server_testing.ipynb', '.ipynb_checkpoint s', 'testfile.csv', 'Untitled.ipynb', 'Categorical_Feature_Encoding_Challenge', 'Face_Comparison_deepface', 'dob_checker_file.csv', 'kaggle-Comprehensive data exploration with Python.ipynb', 'ageron_aurelien_math_linear_algebra.ipynb', 'a geron_aurelien_numpy.ipynb', 'ageron_aurelien_pandas.ipynb', 'cdp_demo_file_10 k.ipynb', 'data_visualization.ipynb', 'DOB_CHECKER.ipynb', 'IBM_DB2.ipynb', 'IB M_DB2_data_analysis.ipynb', 'IBM_DB2_final_initial.ipynb', 'IBM_DB2_final_new_l atest-Copy1.ipynb', 'IBM DB2 final new latest-Copy2.ipynb', 'IBM DB2 final new latest.ipynb', 'IBM_DB2_READ_WRITE.ipynb', 'IBM_DB2_testing.ipynb', 'myfirst no de book.ipynb', 'posilitics.ipynb', 'practice_stackoverflow.ipynb', 'Python dat a visualizations on the Iris dataset.ipynb', 'stackoverflow numpy.ipynb', 'test data_posilytics.ipynb', 'testdata_posilytics_ckecking-Copy1.ipynb', 'testdata_p osilytics_ckecking-Copy2.ipynb', 'testdata_posilytics_ckecking-Copy3.ipynb', 't estdata_posilytics_ckecking.ipynb', 'veera_initial_modified code.ipynb', 'index -of-my-kaggle-notebooks.ipynb', 'name tokenization my3.ipynb', 'posilitics2.ipy nb', 'Session 1.0 - Python-Installation (1).ipynb', 'Session 1.0 - Python-Insta llation.ipynb', 'IBM_DB2_final_new_latest_WITH_TIMESTAMP.ipynb', 'test', 'IBM_D B2_final_new_latest_WITH_TIMESTAMP_10l_testing-Copy1.ipynb', 'IBM_DB2_1lakh.ipy nb', 'Approaching_Almost_Any_Machine_Learning_Problem_4.ipynb', 'Face_Compariso n_deepface.ipynb', 'testdata_posilytics.csv', 'concrete_strength_ML_Prediction. ipynb', 'concrete data.csv', 'dt 4.bin', 'Face Detection with OpenCV.ipynb', 'U ntitled1.ipynb', 'IBM DB2 final new latest WITH TIMESTAMP 101 testing.ipynb', 'dt_2.bin', 'Approaching_Almost_Any_Machine_Learning_Problem_5.ipynb', 'posilit cs_10L_1.txt', 'Approaching_Almost_Any_Machine_Learning_Problem_1.ipynb', 'Appr oaching Almost Any Machine Learning Problem 2.ipynb', 'winequality-red n folds. csv', 'Approaching_Almost_Any_Machine_Learning_Problem_3.ipynb']

```
In [10]: #example
```

imgg="/home/hduser/jupyter/Face_Detection_with_OpenCV/b97ea33b5842c7894b804923c6c
imgg2 = "/home/hduser/jupyter/Face_Comparison_deepface/1.jpg"
celeb=cv2.imread(imgg2)

```
In [11]: def show_image(image):
    plt.figure(figsize=(8,5))
    #Before showing image, bgr color order transformed to rgb order
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.xticks([])
    plt.yticks([])
    plt.show()
```

In [12]: show_image(celeb)


```
In [13]: # Our face detection function that uses haarcascade from OpenCV
def face_detection(img):
    face_cascade = cv2.CascadeClassifier('/home/hduser/jupyter/face-recognition/k

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray)
    print('Number of faces detected:', len(faces))

    for (x,y,w,h) in faces:
        cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
        #img = img[y:y+h, x:x+w] # for cropping
    cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return cv_rgb
```

In [14]: #imgg2=cv2.imread("/kaggle/input/photos/ben.jpg") a=face_detection(celeb) plt.imshow(a) plt.show() # as shown below, the library is not detecting this particular face angle of Ben

Number of faces detected: 1

In [15]: plt.figure(figsize=(15,18))
 img=cv2.imread("/home/hduser/jupyter/Face_Detection_with_OpenCV/b97ea33b5842c7894
 c=face_detection(img)
 plt.imshow(c)
 plt.show()

Number of faces detected: 9

