EE 523: Power System Stability and Control Report

Aryan Ritwajeet Jha

011807182

Washington State University, Pullman

Prof. Mani V. Venkatsumbramanian

05 May 2023

Summary of Work Completed:

	Туре 3	Type 2	Type 1	Remarks
Dynamic Initialization	V	V	V	
Small Signal Stability Analysis	V		V	
Transient Stability Analysis	V		•	
Small Signal Stability with PSS from chosen Project Paper	NA	NA		Proposed PSS is a higher order transfer function block. MATLABs fsolve seems to be unable to solve for double derivatives. Of course, suitable modifications could have been made, but due to lack of time, couldn't be implemented. A set of hand-written equations is presented which if implemented, should be sufficient for modelling the PSS in MATLAB.
Remarks		Infeasible Eigenvalu es for Type 2		

Legend:

✓	Implemented and Successfully Running
	Implemented but NOT giving expected results
♦	NOT Implemented

Questions for Assignment 08

Question 01:

Powerflow:

Consider the Kundur system in example 12.6 of Kundur book. Assume there are three lines connecting buses 7 and 8 and two lines connecting buses 8 and 9. Assume the capacities of the shunt capacitors have been increased to be 400 MVar each at buses 7 and 9. Resolve the power-flow using the Newton-Raphson algorithm.

CDF File:

??/??/?? UW ARCH	HIVE	100.0 IEEE 11 Bus	s Test Case								
BUS DATA FOLLO	WS	11 ITEMS									
1 Bus 1	HV 1 1 3 1.030	20.20	0.0	0.0	700.0 185.0	0.0 1.030	0.0	0.0 0.0	0.0	0	
2 Bus 2	HV 1 1 2 1.010	10.86	0.0	0.0	700.0 235.0	0.0 1.010	0.0	0.0 0.0	0.0	0	
3 Bus 3	HV 2 1 21.030	1.18	0.0	0.0	719.0 176.0	0.0 1.030	0.0	0.0 0.0	0.0	0	
4 Bus 4	HV 2 1 2 1.010	-8.88	0.0	0.0	700.0 202.0	0.0 1.010	0.0	0.0 0.0	0.0	0	
5 Bus 5	HV 1 1 0 1.020	13.90	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
6 Bus 6	LV 1 1 0 1.012	4.30	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
7 Bus 7	ZV 1 1 0 1.021 -	3.45	967.0	100.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	4.0	0
8 Bus 8	TV 3 1 0 1.010 -	11.46	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
9 Bus 9	LV 2 1 0 1.002 -2	23.60 1767.0	100.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	4.0	0	
10 Bus 10	LV 2 1 0 1.001 -1	15.51	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
11 Bus 11	LV 2 1 0 1.015 -	5.40	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
-999											
BRANCH DATA FO	DLLOWS	10 ITEMS									
1	5 1 1 1 0 0.0000	0 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
2	6 1 110 0.0000	0 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
3 11 2 1 1 0 0	.00000 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
4 10 2 1 1 0 0	.00000 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
5	6 1 1 1 0 0.0025	0 0.02500	0.04375	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
6	7 1 1 1 0 0.0010	0 0.01000	0.01750	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
7	8 1 1 1 0 0.0036	7 0.03667	0.57750	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
8	9 2 1 1 0 0.0055	0 0.05500	0.38500	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
9 10 2 1 1 0 0	.00100 0.01000	0.01750	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
10 11 2 1 1 0 0	0.00250 0.02500	0.04375	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
-999											
LOSS ZONES FOLL	LOWS	1 ITEMS									
1 IEEE 9 BUS											
-99											
INTERCHANGE DA	ATA FOLLOWS		1 ITEMS								
1	2 Bus 2	HV	0.0 999.99 IEEE1	1 IEEE 11 Bus Test (Case						
-9											

TIE LINES FOLLOWS 0 ITEMS
-999
END OF DATA

Power Flow Results Plots:

Power Flow Results Table:

 $resultTable = 11 \times 4 table$

	Р	Q	V	delta
1 Bus 1	6.9125	0.9763	1.0300	0
2 Bus 2	6.9999	0.2874	1.0100	-0.1631
3 Bus 3	7.1900	1.3188	1.0300	-0.3319
4 Bus 4	6.9999	0.9600	1.0100	-0.5076
5 Bus 5	-0.0003	0.0001	1.0203	-0.1099
6 Bus 6	0.0001	0.0004	1.0118	-0.2775
7 Bus 7	-9.6704	-0.9992	1.0213	-0.4128
8 Bus 8	-0.0002	0.0006	1.0095	-0.5526
9 Bus 9	-17.6690	-0.9991	1.0025	-0.7645
10 Bus 10	0.0003	0.0005	1.0008	-0.6233
11 Bus 11	0	0.0001	1.0153	-0.4467

Y_Bus values:

ybusSparse =

- (1,1) 0 59.988i
- (5,1) 0 + 59.988i
- (2,2) 0 59.988i

EE 523: Power System Stability and Control (Spring 2023)

(6,2) 0 + 59.988i

(3,3) 0 - 59.988i

(11,3) 0 + 59.988i

(4,4) 0 - 59.988i

(10,4) 0 + 59.988i

(1,5) 0 + 59.988i

(5,5) 3.9604 - 99.57i

(6,5) -3.9604 + 39.604i

(2,6) 0 + 59.988i

(5,6) -3.9604 + 39.604i

(6,6) 13.861 - 198.57i

(7,6) -9.901 + 99.01i

(6,7) -9.901 + 99.01i

(7,7) 12.603 - 121.71i

(8,7) -2.7022 + 27i

(7,8) -2.7022 + 27i

(8,8) 4.5024 - 44.52i

(9,8) -1.8002 + 18.002i

(8,9) -1.8002 + 18.002i

(9,9) 11.701 - 112.81i

EE 523: Power System Stability and Control (Spring 2023)

$$(4,10)$$
 0 + 59.988i

Question 02:

Small-signal stability:

For the Kundur system from above, we want to study the small-signal stability properties. Assume KD = 2 pu for all generators. Assume a first order exciter control model with KA=50 and TA = 0.01 sec. Assume Vrmin = -4 and VRmax = +4. Efdmin = 0 and Efdmax = 2.0. For the governor model, assume that Tsg = 100 and Ksg = 1 with Psgmin=0 and Psgmax = 1 pu. R=5%. Then carry out initialization and small-signal analysis for each of Type 1, 2 and 3 models. For Type 1, assume the loads to be 50% P and 50% Z. Represent the equations in the standard DAE form for Type 1 and ODE form for Type 2.

- 1) Starting from the power-flow solution, initialize the steady-state values of all the dynamic variables.
- 2) Linearize the equations and find the system Jacobian matrix. You can use numerical differencing to compute the Jacobian entries numerically.
- 3) Find all eigenvalues and eigenvectors.
- 4) Compute all the participation factors and analyze each mode.
- 5) Design Power System Stabilizers (PSSs) as needed to render the damping ratios of all modes to be over 5% for each of Type 1 and Type 2 models.

Type 3:
Type 3:

DynInit:

ode_Type3_Init =
$$\begin{pmatrix} 0 = 376.9911 \ \omega_2 - 376.9911 \\ 0 = 376.9911 \ \omega_3 - 376.9911 \\ 0 = 376.9911 \ \omega_4 - 376.9911 \\ 0 = 0.0085 \ P_{m2} - 0.1538 \ \omega_2 + 0.0940 \\ 0 = 0.0090 \ P_{m3} - 0.1619 \ \omega_3 + 0.0973 \\ 0 = 0.0090 \ P_{m4} - 0.1619 \ \omega_4 + 0.0990 \end{pmatrix}$$

 $resultGen = 4 \times 2 table$

	E'	theta
Gen 1	1.0300	0
Gen 2	1.0745	0.1465
Gen 3	1.1392	-0.0383
Gen 4	1.1045	-0.2068

yGenTable = 4×4 table

	1	2	3	4
	3.2168	1.6434 +	0.9492 +	1.3592 +
1	-11.5866i	7.9619i	1.0023i	1.3569i
	1.6434 +	1.3830	0.6581 +	0.9393 +
2	7.9619i	-10.5241i	0.6164i	0.8316i
	0.9492 +	0.6581 +	1.6473 -	1.9706 +
3	1.0023i	0.6164i	8.1778i	4.2053i
	1.3592 +	0.9393 +	1.9706 +	2.9049 -
4	1.3569i	0.8316i	4.2053i	9.8799i

Type 2:

DynInit:

unknowns0_Type2_Gens_Vals_Table = 36×1 table

	Values
1	0.7510
theta2	
2	1
omega2	
3	0.7998
E_prime_q2	
4	0.5411
E_prime_d2	
5	1.7154
V_R2	
6	6.9999
P_m2	
7	1.0443
V_ref2	
8	6.9999
P_C2	
9	0.6166
V_q2	
10	0.7999
V_d2	

EE 523: Power System Stability and Control (Spring 2023)

I_q2 12		
I_d2 13		4.2349
I_d2 13		
theta3 14		5.4936
omega3 15		0.5838
omega3 15	1.1	1
E_prime_q3 16 0.5525 E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		
E_prime_q3 16 0.5525 E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240	45	0.8151
E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		0.0101
E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240	16	0.5525
V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		
18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		1.7531
P_m3 19	V_110	
V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		7.1900
P_C3 21		1.0651
V_q3 22 0.8168 V_d3 23 4.3240		7.1900
V_d3 23 4.3240		0.6275
23		0.8168
		4.3240

EE 523: Power System Stability and Control (Spring 2023)

5.6277
0.4106
1
0.7986
0.5428
1.7249
6.9999
1.0445
6.9999
0.6134
0.8024
4.2482
5.5578

x0_Type2_Gens_Table = 18×1 table

	Values
1 theta2	0.7510
2 omega2	1
3	0.7998
E_prime_q2	0.5411
E_prime_d2	1.7154
V_R2	6.9999
P_m2	
7 theta3	0.5838
8 omega3	1
9 E_prime_q3	0.8151
10 E_prime_d3	0.5525
11 V_R3	1.7531
12 P_m3	7.1900

EE 523: Power System Stability and Control (Spring 2023)

13	0.4106
theta4	
14	1
omega4	
15	0.7986
E_prime_q4	
16	0.5428
E_prime_d4	
17	1.7249
V_R4	
18	6.9999
P_m4	

Small Signal Stability:

Jacobian:

	theta	2 omeg	a2	E_prim	ne_q2	E_prime_d2	V_R2	P_m2
theta3	omega3	E_prime_q3	E_prir	me_d3	V_R3	P_m3 theta	4	
omega4	E_prime_q4	E_prime_d4	V_R4	P_m4				
								

EE 523: Power System Stability and Control (Spring 2023)

		theta	2	0	376.9	9	0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0		
		omeg	a2	-0.07	25	-0.01	71	-0.09	5	0.026	3	0
0.008	5	0.004	ļ	0	-0.00	28	-0.00	69	0	0	0.003	37
0	-0.00	58	-0.00	86	0	0						
		E_prii	me_q2	-0.18	55	0	-0.34	43	-0.02	88	0.125)
0	0.018	35	0	0.010)4	-0.01	57	0	0	0.024	17	0
0.009	8	-0.02	42	0	0							
		E_prii	me_d2	1.461	.4	0	0.441	.8	-5.86	19	0	0
0.002	.9	0	0.240	1	0.159	2	0	0	0.081	.7	0	
0.371	.5	0.150)2	0	0							
		V_R2		-4439	9.9	0	-5316	5.6	377.5	54	-100	
0	-242.	38	0	-136.	03	205.1	.5	0	0	-323.	24	0
-128.	38	317.5	5	0	0							
		P_m2		0	-0.2		0	0	0	-0.01		0
0	0	0	0	0	0	0		0	0	0	0	
		theta	3	0	0		0	0	0	0	0	
376.9	9	0	0	0	0	0	0		0	0	0	0

EE 523: Power System Stability and Control (Spring 2023)

		omeg	ja3	0.006	51	0	-0.00	04405	6	-0.00	3	0
0	-0.04	79	-0.01	8	-0.08	18	0.003	33	0	0.009	0.032	5
0	-0.00	06466	9	-0.04	11	0	0					
		E_pri	me_q3	0.017	2	0	0.014	19	-0.01	14	0	0
-0.13	34	0	-0.29	54	-0.03	43	0.125	5	0	0.087	4	0
0.079	92	-0.05	55	0	0							
		E_pri	me_d3	-0.08	88	0	0.174	15	0.229	2	0	0
0.699	98	0	0.526	2	-5.11	23	0	0	-0.50	79	0	
0.851	16	1.214	18	0	0							
		V_R3		-225.	72	0	-196.	24	149.4	.5	0	0
-503	7.2	0	-5969	9.5	450.6	63	-100		0	-1147	7	0
-1040	0.3	729.2	24	0	0							
		P_m3	3	0	0		0	0	0	0	0	-0.2
	0	0	0	-0.01		0	0		0	0	0	0
		theta	4	0	0		0	0	0	0	0	0
0	0	0	0	0	376.9	9	0	0	0	0		
		omeg	ja4	0.009	2	0	0.000	99266	-0.01	09	0	0
0.038	34	0	0.013	1	-0.03	81	0	0	-0.06	18	-0.01	8
-0.09	92	0.009	9	0	0.009)						

EE 523: Power System Stability and Control (Spring 2023)

		E_pri	me_q4	0.022	25	0	0.022	29	-0.01	27	0	0
0.072	22	0	0.093	34	-0.02	.53	0	0	-0.13	31	0	
-0.33	80	-0.06	05	0.125	5	0						
		E_pri	me_d4	-0.17	53	0	0.194	12	0.350)6	0	0
-0.95	23	0	0.388	36	1.431	L7	0	0	1.358	35	0	
0.927	'9	-5.65	61	0	0							
		V_R4		-296.	41	0	-301.	22	166.8	31	0	0
-951.	76	0	-1230	0.1	333.8	35	0	0	-497	7.2	0	
-5522	2.2	797.2	27	-100		0						
		P_m4	ļ	0	0		0	0	0	0	0	0
0	0	0	0	0	-0.2		0	0	0	-0.01		

Je_Type2_Gens_Table = 18×18 table

	het a2		_prim e_d2	_m 2		_prim e_q3		_m 3	het a4	_prim e_q4	_R4	_m 4
thet		76.9 911										

EE 523: Power System Stability and Control (Spring 2023)

om	0.07	0.01	0.095	.0263		.00	.004		0.002	0.006		.003	0.005	0.008	
ega	25	71	0			85	0		8	9		7	8	6	
2															
E n	0.18		0.344	0.028	.12		.018		.0104	0.015		.024	.0098	0.024	
rim	55		3				5			7		7		2	
e_q															
2															
E_ p	.461		.4418	5.861			.002		.2401	.1592		.081	.3715	.1502	
rim	4			9			9					7			
e_d															
2															
v_	4.43		5.316	77.54	100		242.		136.0	05.14		323.	128.3	17.49	
R2	99e		6e+03	12			376		339	94		236	760	83	
	+03						0					6			
P_		0.20				0.0									
m2		00				100									
thet								76.9							
a3								911							
om	.006		4.405	0.008			0.04	0.01	0.081	.0033	.00	.032	6.466	0.041	
ega	1		6e-04	0			79	80	8		90	5	9e-04	1	
3															

EE 523: Power System Stability and Control (Spring 2023)

E_p rim e_q	.017	.0149	0.011	0.13		0.295	0.034	.12 50		.087		.0792	0.055 5	
3	0.08	.1745	.2292	.699		.5262	5.112			0.50		.8516	.2148	
E_p rim e_d 3	88			8			3			79				
1 V_ R3	225. 715 6	196.2 388	49.45 09	5.03 72e +03		5.969 5e+03	50.62 72	100		114		1.040 3e+03	29.24 41	
2 P_ m3					0.20				0.0					
3 thet a4											76.9 911			
4 om ega 4	.009	.9266 e-04	0.010	.038		.0131	0.038			0.06	0.01	0.099	.0099	.00

EE 523: Power System Stability and Control (Spring 2023)

5 E_p rim e_q 4	.022	.0229	0.012	.072	.0934	0.025	0.13		0.330	0.060	.12 50	
6 E_p rim e_d 4	0.17 53	.1942	.3506	0.95	.3886	.4317	.358		.9279	5.656		
7 V_ R4	296. 406 3	301.2 165	66.81 43	951. 760 5	1.230 1e+03	33.84 73	4.97 72e +03		5.522 2e+03	97.27	100	
8 P_ m4								0.20				0.0

lambdasType2 = 18×1 complex

-90.3864 + 0.0000i

-92.8899 + 0.0000i

-93.8844 + 0.0000i

3.7230 + 0.0000i

EE 523: Power System Stability and Control (Spring 2023)

-3.3880 + 5.0894i

-3.3880 - 5.0894i

-4.0915 + 4.2569i

-4.0915 - 4.2569i

-5.8262 + 3.0605i

-5.8262 - 3.0605i

So eigenvalues are coming in the RHP, which makes it small signal unstable.

Type 1:

Jacobian:

1.0e+03 *

Columns 1 through 15

		0	0	0	0.37	770	0	0	0	0	0	0
0	0	0	0	0								
		0	0	0	0	0.37	770	0	0	0	0	0
0	0	0	0	0								
		0	0	0	0	0	0.37	770	0	0	0	0
0	0	0	0	0								

EE 523: Power System Stability and Control (Spring 2023)

-	0.0002	-0.0000	-0.0000	-0.0000)	0	0 -0	0.0002	-0.0000
-0.0000	0.00	01	0.0000	0.000	00	0	0	0	
-	0.0000	-0.0002	-0.0000	0 -0	.0000		0 -0	0.0000	-0.0002
-0.0000	-0.0000	0.0001	-0.0000	0	0	0			
-	0.0000	0.0000	-0.0002	0	0 -0	0.0000	-0.00	00 -0.	0000
-0.0002	-0.0000	-0.000	0.00	001	0	0	0		
-	0.0005	0.0001	0.00	001	0	0	0 -0	0.0006	0.0001
0.0001	0.00	01 -0.00	001 -0.00	001	0.00	01	0	0	
	0.00	00 -0.00	0.00	000	0	0	0	0.000	00 -0.0006
0.0001	0.00	00	0.0002	0.000)1	0	0.000	01	0
	0.00	00 -0.00	000 -0.00	005	0	0	0	0.000	00
0.0001 -	-0.0005	0.0000	0.00	001	0.00	01	0	0	0.0001
	0.00	33	0.0016	0.001	15	0	0	0	0.0020
0.0014	0.00	13 -0.00	064 -0.00	007 -0.0	0007	0	0	0	
	0.00	01	0.0025	0.000)4	0	0	0	0.0003
0.0018	0.00	15	0.0002 -0	0.0057	0.000	06	0	0	0
	0.00	01 -0.00	0.00	036	0	0	0	0.000)4
0.0009	0.00	28	0.0002	0.000	08 -0.	0062	0	0	0
-	0.1090	-1.9626	-1.8677	0	0	0 -2	.4383	-1.69	78 -1.5995
-1.5720	0.84	48	0.8507 -0	0.1000	0	0			

EE 523: Power System Stability and Control (Spring 2023)

0.8937 -0.5186 0 0 0 -0.3998 -2.2298 -1.7629 -0.0826 -0.1898 -2.4640 -0.6783 0 -0.1000 -0.1110 0.2445 -0.4961 0 0 0 -0.5376 -1.0931 -3.3175 -0.2552 -1.0086 -1.7798 0 0 -0.1000 0 -0.0002 0 -0.0002 0 0 -0.0002 0

Columns 16 through 18

EE 523: Power System Stability and Control (Spring 2023)

0	0	0

Eigenvalues:

lambdas_Type1 = 18×1 complex

-4.4652 - 2.2061i

-2.4172 + 0.0000i

-1.6255 + 0.0000i

-0.0100 + 0.0000i

-0.0100 + 0.0000i

-0.0100 + 0.0000i

Type 1:

Set of ODEs for DynInit.

$$\begin{array}{c} 0 = 376.9911\,\omega_2 - 376.9911\\ 0 = 376.9911\,\omega_3 - 376.9911\\ 0 = 376.9911\,\omega_4 - 376.9911\\ 0 = 0.0085\,P_{\mathrm{m}2} - 0.0171\,\omega_2 - 0.0427\\ 0 = 0.0090\,P_{\mathrm{m}3} - 0.0180\,\omega_3 - 0.0467\\ 0 = 0.0090\,P_{\mathrm{m}4} - 0.0180\,\omega_4 - 0.0450\\ 0 = 0.1250\,V_{\mathrm{R}2} - 0.0208\,I_{\mathrm{d}2} - 0.1250\,E'_{\mathrm{q}2}\\ 0 = 0.1250\,V_{\mathrm{R}3} - 0.0208\,I_{\mathrm{d}3} - 0.1250\,E'_{\mathrm{q}3}\\ 0 = 0.1250\,V_{\mathrm{R}4} - 0.0208\,I_{\mathrm{d}4} - 0.1250\,E'_{\mathrm{q}4}\\ 0 = 0.3194\,I_{\mathrm{q}2} - 2.5000\,E'_{\mathrm{d}2}\\ 0 = 0.3194\,I_{\mathrm{q}3} - 2.5000\,E'_{\mathrm{d}3}\\ 0 = 0.3194\,I_{\mathrm{q}4} - 2.5000\,E'_{\mathrm{d}4}\\ 0 = 5000\,V_{\mathrm{ref}2} - 100\,V_{\mathrm{R}2} - 5050\\ 0 = 5000\,V_{\mathrm{ref}3} - 100\,V_{\mathrm{R}3} - 5150\\ 0 = 5000\,V_{\mathrm{ref}4} - 100\,V_{\mathrm{R}4} - 5050\\ \end{array}$$

$$\begin{array}{c} 0 = 0.0100 \, P_{\text{C2}} - 0.0100 \, P_{\text{m3}} - 0.2000 \, \omega_2 + 0.2000 \\ 0 = 0.0100 \, P_{\text{C3}} - 0.0100 \, P_{\text{m3}} - 0.2000 \, \omega_3 + 0.2000 \\ 0 = 0.0100 \, P_{\text{C4}} - 0.0100 \, P_{\text{m4}} - 0.2000 \, \omega_4 + 0.2000 \\ 0 = I_{\text{d2}} - 6.9364 \, \sin \left(\theta_2 + 0.1631\right) \\ 0 = I_{\text{d3}} - 7.0970 \, \sin \left(\theta_3 + 0.3319\right) \\ 0 = I_{\text{d4}} - 6.9954 \, \sin \left(\theta_4 + 0.5076\right) \\ 0 = I_{\text{q2}} - 6.9364 \, \cos \left(\theta_2 + 0.1631\right) \\ 0 = I_{\text{q3}} - 7.0970 \, \cos \left(\theta_3 + 0.3319\right) \\ 0 = I_{\text{q4}} - 6.9954 \, \cos \left(\theta_4 + 0.5076\right) \\ 0 = V_{\text{q2}} - 1.0100 \, \cos \left(\theta_2 + 0.1631\right) \\ 0 = V_{\text{q3}} - 1.0300 \, \cos \left(\theta_3 + 0.3319\right) \\ 0 = V_{\text{q4}} - 1.0100 \, \sin \left(\theta_2 + 0.1631\right) \\ 0 = V_{\text{d3}} - 1.0300 \, \sin \left(\theta_3 + 0.3319\right) \\ 0 = V_{\text{d4}} - 1.0100 \, \sin \left(\theta_3 + 0.3319\right) \\ 0 = V_{\text{d4}} - 1.0100 \, \sin \left(\theta_4 + 0.5076\right) \\ \end{array}$$

$$0 = I_{d2} - 30 E_{q2} + 30 V_{q2}$$

$$0 = I_{d3} - 30 E_{q3} + 30 V_{q3}$$

$$0 = I_{d4} - 30 E_{q4} + 30 V_{q4}$$

$$0 = 16.3636 E_{d2}' + I_{q2} - 16.3636 V_{d2}$$

$$0 = 16.3636 E_{d3}' + I_{q3} - 16.3636 V_{d3}$$

$$0 = 16.3636 E_{d4}' + I_{q4} - 16.3636 V_{d4}$$

Participation Factors and remarks on inter-area oscillation:

EE 523: Power System Stability and Control (Spring 2023)

Mode	Type of Oscillation	Coupling State Variables
1.062 Hz	Local oscillation	Theta 2 vs Omega 2
0.892 Hz	Local oscillation	Theta 3 vs Omega 3
0.452 Hz	Inter-area oscillation	Theta 4 vs Theta 2

Project: Implement a PSS in the Type 1 System

Inputs of the PSS: Current flowing between the two areas 1 and 2. Here, the current between buses 7 and 8 is chosen as the input to the PSS.

The first block is a washout filter which negates any steady state values (DC Offset) in the line current, and only allows high frequency signal noise to pass through.

The second block can actually be thought of as two separate lead compensator blocks.

Both Type 1 and Type 2 do not require PSS.

Question 03:

Transient Stability:

We want to study a fault on one of the transmission lines between buses 7 and 8. Assume a solid fault in the middle of the line. Assume Euler integration method with a step size of 1 msec.

- 1) For tc = 3 cycles, check if the system is stable.
- 2) Find the critical clearing time.

Repeat for each of Type 1, Type 2 and Type 3 models from your small-signal stability homework solutions.

Type 3: yGen during Fault:

 $yGenTable = 4 \times 4 table$

	1	2	3	4
	1.8186	0.6173+	0.2689 +	0.3889 +
1	-14.5133i	6.1083i	0.3831i	0.5223i
	0.6173 +	0.6414	0.1903 +	0.2740 +
2	6.1083i	-11.6926i	0.2393i	0.3253i
	0.2689 +	0.1903 +	1.4033 -	1.6277 +
3	0.3831i	0.2393i	8.2672i	4.0905i
	0.3889 +	0.2740 +	1.6277 +	2.4236
4	0.5223i	0.3253i	4.0905i	-10.0261i

```
 \begin{array}{l} \text{ode\_Type3\_TransientFaultOn} = \\ & 0 = 376.9911 \,\, \omega_2 - 376.9911 \\ & 0 = 376.9911 \,\, \omega_3 - 376.9911 \\ & 0 = 376.9911 \,\, \omega_3 - 376.9911 \\ & 0 = 376.9911 \,\, \omega_4 - 376.9911 \\ & 0 = 0.0706 - 0.0043 \, \cos(\theta_4 - \theta_2 + 0.8707) - 0.0032 \, \cos(\theta_3 - \theta_2 + 0.8988) - 0.0581 \, \cos(\theta_2 - 1.4701) - 0.0171 \,\, \omega_2 \\ & 0 = 0.0663 - 0.0498 \, \cos(\theta_4 - \theta_3 + 1.1921) - 0.0034 \, \cos(\theta_2 - \theta_3 + 0.8988) - 0.0049 \, \cos(\theta_3 - 0.9587) - 0.0180 \,\, \omega_3 \\ & 0 = 0.0544 - 0.0498 \, \cos(\theta_3 - \theta_4 + 1.1921) - 0.0045 \, \cos(\theta_2 - \theta_4 + 0.8707) - 0.0067 \, \cos(\theta_4 - 0.9307) - 0.0180 \,\, \omega_4 \\ \end{array}
```

```
\begin{aligned} \text{ode\_Type3\_TransientPostFault} &= \\ & 0 = 376.9911 \, \omega_2 - 376.9911 \\ & 0 = 376.9911 \, \omega_3 - 376.9911 \\ & 0 = 376.9911 \, \omega_3 - 376.9911 \\ & 0 = 376.9911 \, \omega_4 - 376.9911 \\ & 0 = 0.0629 - 0.0116 \cos(\theta_4 - \theta_2 + 0.6973) - 0.0086 \cos(\theta_3 - \theta_2 + 0.7254) - 0.0787 \cos(\theta_2 - 1.3658) - 0.0171 \, \omega_2 \\ & 0 = 0.0626 - 0.0537 \cos(\theta_4 - \theta_3 + 1.1187) - 0.0090 \cos(\theta_2 - \theta_3 + 0.7254) - 0.0133 \cos(\theta_3 - 0.7853) - 0.0180 \, \omega_3 \\ & 0 = 0.0475 - 0.0537 \cos(\theta_3 - \theta_4 + 1.1187) - 0.0122 \cos(\theta_2 - \theta_4 + 0.6973) - 0.0179 \cos(\theta_4 - 0.7572) - 0.0180 \, \omega_4 \\ \end{aligned}
```

yGen after clearing the fault:

 $yGenTable = 4 \times 4 table$

	1	2	3	4
	3.2766	1.6935 +	0.8894 +	1.2717 +
1	-11.3047i	8.1434i	0.8893i	1.2020i
	1.6935 +	1.4228	0.6147 +	0.8762 +
2	8.1434i	-10.4077i	0.5451i	0.7340i
	0.8894 +	0.6147 +	1.7186 -	2.0714 +
3	0.8893i	0.5451i	8.1324i	4.2656i
	1.2717 +	0.8762 +	2.0714 +	3.0475 -
4	1.2020i	0.7340i	4.2656i	9.8000i

Transient Simulation

Critical Clearing Time was found to be 7 cycles.

Transient simulation for Type 2 blew up.

Transient simulation for Type 1 was NOT implemented for lack of time.

References

Kundur, P. S., & Malik, O. P. (2022). Power System Stability and Control. McGraw-Hill

Education. Retrieved from

https://www.accessengineeringlibrary.com/content/book/9781260473544

EE 523: Power System Stability and Control (Spring 2023)

Appendix:

68 KWSPN X Kusto - 1+5Taz VPS

1+5Tws SS

1+5Tbz

VPS

1+5Tbz = 1 E - DIL, + KWPSE x Kcomp x IL3 IL= 473(V7-18) = (+5Tbi) . BILL STLIZ(145 Tai) a DTLI+ 1 TO(BILI) = BILL + TBI-(BILI) delta-In This & -DIL + DIL + Tay. (DIL) (Vess) The Exposition VPSS = 1 & Ton 2 Ton 2 Ton 2 (STLL)3

EE 523 Power System Stability and Control Algorithms

Preamble and Control Inputs

```
tic;
if strcmp(getenv('USERNAME'), 'aryan')
    cd C:\Users\aryan\Documents\documents general\dablab files\ee521 and ee523
end
```

```
you may continue as usual
 addpath functions\
 systemName = "ieee11-caseTwo-"
 systemName =
 "ieee11-caseTwo-"
 powerFlowMethod =
                     "NRPF"
 powerFlowMethod =
 "NRPF"
 modelType = "Type3" %Synchronous Machine Model Type
 modelType =
 "Type3"
 useReducedLoadsForPowerFlow = false; %only needed if Type 2 or 3
 displayYGen = true; %Show YGen
 displayYNet = false; %Show YNet
 displayYBus = false;
 saveYBus = true;
 saveYGenMatrices = true; %Save YNet, Ygr, Yrg, Yrr, YGen
 runTransientSimulation = false;
 saveTransientRunValues = true;
 saveTransientRunPlots = true;
 showInternalMatrices = false; %Show Ygg, Ygr, Yrg, Yrr
 numIterations = 20; %I don't wait for the system to converge,
 printPowerFlowConvergenceMessages = false;
 % neither do I care if the system converges earlier.
 toleranceLimit = 1e-3; %mean of absolute values of
 % corrections should be less than this for convergence to be achieved.
 displayRawData = false;
 displayRawDataForYNet = false;
 displayTables = true; %show busData, branchData ybus,
 % basically data structures which are not the final output.
 saveBusDataAndBranchData = false;
 saveBusDataAndBranchDataNet = false;
 printJacobians = false ; %Print Jacobians during NRPF iterations? Does not work if
 displayTables is off.
 printMismatches = false; %Print Mismatches during NRPF iterations? Does not work if
 displayTables is off.
 printCorrections = false;
```

```
disableTaps = false; %Disable Tap-changers when commputing YBus?
showPlots = false;
displayResults = false;
reducedBranchColumnsCDFReading = true;
verboseCDFReading = false; %Will give a verbose output when reading CDF files.
MVAb = 100; %Currently the same for all systems in database.
```

Transient Run Parameters

```
bus1 = 7;
bus2 = 8;
numLinesBeforeFault = 3;
relativeDistance = 0.5;
h = 1e-3;
clearingCycles = 3;
f0 = 60;
clearingTime = clearingCycles/f0;
numStepsFaultOn = ceil(clearingTime/h);
postFaultTime = 30;
numStepsPostFault = ceil(postFaultTime/h);
```

Housekeeping.

```
folder_rawData = "rawData/"; %location of CDF .txt file for the system
file_rawData = strcat(folder_rawData, systemName, "cdf.txt"); %Exact location of
CDF .txt file for the system
folder_processedData = "processedData/";
% Should configure it to be read from the CDF file later.
latex_interpreter %for LaTeX typesetting in plots

if contains(systemName, 'ieee11')
    systemName1 = 'ieee11';
else
    systemName1 = systemName;
end
```

Read CDF file and store the data in neat MATLAB tables: busData and branchData.

```
[busData, branchData, N, numBranchNet] = ...
readCDF(file_rawData, reducedBranchColumnsCDFReading, verboseCDFReading);
```

Optionally display the system data.

```
if displayRawData
    displayRawDataAsTables(busData, branchData, N, numBranchNet);
end
if saveBusDataAndBranchData
    fileType = '.csv';
```

```
filenameBusData = strcat(folder_processedData, systemName1, "/busData",
fileType);
  writetable(busData, filenameBusData);
  filenameBranchData = strcat(folder_processedData, systemName1, "/branchData",
fileType);
  writetable(branchData, filenameBranchData);
end
```

Synchronous Machine Parameters

```
[~, ~, ~, ~, ...
        1PQ, 1PV, ~, nPV, ...
        ~] = initializeVectors(busData, MVAb);
kVB = 230;
kVB Gen = 20;
kVB Gen side = 20;
MVAb\_Gen = 900;
H = [6.5; 6.5; 6.175; 6.175] * (MVAb_Gen/MVAb);
Xd_prime = 0.3* ones(nPV+1, 1) * (MVAb/MVAb_Gen) * (kVB_Gen/kVB_Gen_side)^2;
Xq_prime = 0.55* ones(nPV+1, 1) * (MVAb/MVAb_Gen) * (kVB_Gen/kVB_Gen side)^2;
Xq = 1.7* \text{ ones}(nPV+1, 1) * (MVAb/MVAb Gen) * (kVB Gen/kVB Gen side)^2;
Xd = 1.8* ones(nPV+1, 1) * (MVAb/MVAb_Gen) * (kVB_Gen/kVB_Gen_side)^2;
Tq0_prime = 0.4 * ones(nPV+1, 1);
Td0 prime = 8.0 * ones(nPV+1, 1);
w_s = 2*pi*60;
% K D = 2*ones(nPV+1, 1) * (MVAb Gen/MVAb);
KD = 2*ones(nPV+1, 1);
k_A = 50*ones(nPV+1, 1);
T A = 0.01*ones(nPV+1, 1);
EfdMax = 2.0*ones(nPV+1, 1);
Efdmin = 0.0*ones(nPV+1, 1);
VRmin = -4*ones(nPV+1, 1);
VRMax = 4*ones(nPV+1, 1);
Tsg = 100*ones(nPV+1, 1);
Ksg = 1*ones(nPV+1, 1);
PsgMax = 1*ones(nPV+1, 1);
Psgmin = 0*ones(nPV+1, 1);
R = 5*1/100*ones(nPV+1, 1);
```

PSS Parameters

```
Kwpss = 10;
Twpss = 10;
Kcomp = 0.1;
Tacomp1 = 0.49;
Tbcomp1 = 0.24;
Tacomp2 = Tacomp1;
Tbcomp2 = Tbcomp1;
```

Powerflow

Extract Y_{Bus} , Adjacency List E from the branchData table for Type I OR Make Y_{Bus} (reduced loads only), Y_{Net} , Y_{Gen} for Type II and Type III models.

Then Run Newton Raphson Power Flow and obtain a steady state snapshot of the system variables $P_i, Q_i, V_i, \delta_i \ \forall$ buses $i \in [1, N], i \in \mathbb{N}$

```
if ~strcmp(modelType, "Type1")
    X_prime = 0.5* (Xd_prime + Xq_prime);
    [busDataNet, busDataReducedLoads, busDataGen, branchDataNet, NNet,
numBranchNet] = ...
        modifyForYNet(busData, branchData, N, ...
        numBranchNet, 1PV, nPV, ...
       X_prime, MVAb, displayRawDataForYNet);
    if saveBusDataAndBranchDataNet
       fileType = '.csv';
        filenameBusDataNet = strcat(folder processedData, systemName1, "/
busDataNet", fileType);
       writetable(busData, filenameBusData);
        filenameBranchDataNet = strcat(folder processedData, systemName1, "/
branchDataNet", fileType);
       writetable(branchDataNet, filenameBranchDataNet);
    end
    [ybus, BMatrix, E, PSpecified, QSpecified, V, delta, listOfPQBuses, 1PV,
nPQ, nPV, listOfNonSlackBuses] = generateYBusForType2(useReducedLoadsForPowerFlow,
busData, busDataReducedLoads, branchData, MVAb);
    [yNet, ~, ~, ~, ~, EdgesNet] = ybusGenerator(busDataNet, branchDataNet);
    [yGen, BMatrixGen, EdgesGen, listOfResidualBuses] = constructYGen(yNet, 1PV,
NNet, displayYNet, showInternalMatrices, displayYGen, saveYGenMatrices);
    [P, Q, V, delta] = solveForPowerFlow(PSpecified, QSpecified, V, delta,
ybus, BMatrix, E, nPQ, nPV, listOfPQBuses, listOfNonSlackBuses, numIterations,
toleranceLimit, powerFlowMethod, displayTables, printJacobians, printMismatches,
printPowerFlowConvergenceMessages);
    [busDataNetFaultOn, branchDataNetFaultOn, busDataNetPostFault,
branchDataNetPostFault] = modifySystemDuringAndPostFault(busDataNet, branchDataNet,
bus1, bus2, numLinesBeforeFault, relativeDistance);
    yNetFaultOn = ybusGenerator(busDataNetFaultOn, branchDataNetFaultOn);
    % saveAndDisplayYBus(yNetFaultOn, displayYBus, saveYGenMatrices,
folder processedData, systemName1, 'yNet FaultOn');
    yGenFaultOn = constructYGen(yNetFaultOn, 1PV, NNet, displayYNet,
showInternalMatrices, displayYGen, saveYGenMatrices, 'FaultOn');
```

```
yNetPostFault = ybusGenerator(busDataNetPostFault, branchDataNetPostFault);
    % saveAndDisplayYBus(yNetPostFault, displayYBus, saveYGenMatrices,
folder_processedData, systemName1, 'yNet_FaultOn');
    % PG_computedUsingYGen = array2table(double(subs(PG_Type3, theta,
theta0_Type3)), 'VariableNames', {'P_G'}, 'RowNames', namesGenBuses)
    yGenPostFault = constructYGen(yNetPostFault, lPV, NNet, displayYNet,
showInternalMatrices, displayYGen, saveYGenMatrices, 'PostFault');
else
    [ybus, BMatrix, ~, ~, ~, E] = ybusGenerator(busData, branchData);
    [PSpecified, QSpecified, V, delta, ...
        listOfPQBuses, lPV, nPQ, nPV, ...
        listOfNonSlackBuses] = initializeVectors(busData, MVAb);
    [P, Q, V, delta] = solveForPowerFlow(PSpecified, QSpecified, V, delta,
ybus, BMatrix, E, nPQ, nPV, listOfPQBuses, listOfNonSlackBuses, numIterations,
toleranceLimit, powerFlowMethod, displayTables, printJacobians, printMismatches,
printPowerFlowConvergenceMessages);
    [busDataFaultOn, branchDataFaultOn, busDataPostFault, branchDataPostFault]
= modifySystemDuringAndPostFault(busData, branchData, bus1, bus2,
numLinesBeforeFault, relativeDistance);
    ybusFaultOn = ybusGenerator(busDataFaultOn, branchDataFaultOn);
    saveAndDisplayYBus(ybusFaultOn, displayYBus, saveYBus, folder_processedData,
systemName1, 'ybus FaultOn');
    ybusPostFault = ybusGenerator(busDataPostFault, branchDataPostFault);
    saveAndDisplayYBus(ybusPostFault, displayYBus, saveYBus, folder_processedData,
systemName1, 'ybus PostFault');
end
```

$yGenTable = 4 \times 4 table$

	1	2	3	4
11	3.2168 -11.5866i	1.6434 + 7.9619i	0.9492 + 1.0023i	1.3592 + 1.3569i
22	1.6434 + 7.9619i	1.3830 -10.5241i	0.6581 + 0.6164i	0.9393 + 0.8316i
3 3	0.9492 + 1.0023i	0.6581 + 0.6164i	1.6473 - 8.1778i	1.9706 + 4.2053i
4 4	1.3592 + 1.3569i	0.9393 + 0.8316i	1.9706 + 4.2053i	2.9049 - 9.8799i

Convergence using NRPF achieved in 4 iterations. vGenTable = 4×4 table

	,				
	1	2	3	4	
11	1.8186 -14.5133i	0.6173 + 6.1083i	0.2689 + 0.3831i	0.3889 + 0.5223i	
22	0.6173 + 6.1083i	0.6414 -11.6926i	0.1903 + 0.2393i	0.2740 + 0.3253i	
3 3	0.2689 + 0.3831i	0.1903 + 0.2393i	1.4033 - 8.2672i	1.6277 + 4.0905i	
4 4	0.3889 + 0.5223i	0.2740 + 0.3253i	1.6277 + 4.0905i	2.4236 -10.0261i	

 $yGenTable = 4 \times 4 table$

	1	2	3	4
11	3.2766 -11.3047i	1.6935 + 8.1434i	0.8894 + 0.8893i	1.2717 + 1.2020i
22	1.6935 + 8.1434i	1.4228 -10.4077i	0.6147 + 0.5451i	0.8762 + 0.7340i
3 3	0.8894 + 0.8893i	0.6147 + 0.5451i	1.7186 - 8.1324i	2.0714 + 4.2656i
4 4	1.2717 + 1.2020i	0.8762 + 0.7340i	2.0714 + 4.2656i	3.0475 - 9.8000i

```
listOfGenBuses = [1; lPV];
saveAndDisplayYBus(ybus, displayYBus, saveYBus, folder_processedData, systemName1);
```

Compare obtained snapshot values of V_i and δ_i against the ones given in the CDF file.

```
resultTable = displayPowerFlowResults(P, Q, V, delta, displayResults);
plotPowerFlowResults(showPlots, V, busData, systemName, powerFlowMethod, delta);
```

Post-Powerflow

```
P_i_Gen_Vals = P(listOfGenBuses);
Q_i_Gen_Vals = Q(listOfGenBuses);
S_i_Gen_Vals = P_i_Gen_Vals + 1i*Q_i_Gen_Vals;
PGVals = P_i_Gen_Vals + busData.PL(listOfGenBuses)/MVAb;
QGVals = Q_i_Gen_Vals + busData.QL(listOfGenBuses)/MVAb;
SGVals = PGVals + 1i*QGVals;
ViVals = V(listOfGenBuses);
delta_i_Vals = delta(listOfGenBuses);
[Vi_CartesiansReal, Vi_Cartesian_Imag] = pol2cart(delta_i_Vals, ViVals);
V_Gen_Cartesian = Vi_CartesiansReal + 1i*Vi_Cartesian_Imag;
IGenVals = conj(SGVals./V_Gen_Cartesian);
theta = sym('theta', [nPV+1, 1]);
theta(1) = delta_i_Vals(1);
omega = sym('omega', [nPV+1, 1]);
PG = sym('P_G', [nPV+1, 1]);
QG = sym('Q_G', [nPV+1, 1]);
Eq_primeSymbols = arrayfun(@(i) sprintf('E_prime_q%d', i), 1:nPV+1,
'UniformOutput', false);
Eq_prime = str2sym(Eq_primeSymbols');
Eq prime(1) = ViVals(1);
Ed_primeSymbols = arrayfun(@(i) sprintf('E_prime_d%d', i), 1:nPV+1,
'UniformOutput', false);
```

```
Ed prime = str2sym(Ed primeSymbols');
Ed_prime(1) = 0;
Pm = sym('P_m', [nPV+1, 1]);
Id = sym('I_d', [nPV+1, 1]);
Iq = sym('I_q', [nPV+1, 1]);
V_i = sym('V_i', [N, 1]);
V i(1) = V(1);
delta_i = sym('delta_i', [N, 1]);
delta_i(1) = delta(1);
P_i = sym('P_i', [N, 1]);
Q_i = sym('Q_i', [N, 1]);
P_L = sym('P_L', [N, 1]);
Q_L = sym('Q_L', [N, 1]);
Vq = sym('V_q', [nPV+1, 1]);
Vd = sym('V_d', [nPV+1, 1]);
P_C = sym('P_C', [nPV+1, 1]);
V_R = sym('V_R', [nPV+1, 1]);
Vref = sym('V_ref', [nPV+1, 1]);
```

Dynamic Initialization

```
ode theta = diff(theta) == (omega-1)*w s;
ode thetaEquilibrium = 0 == rhs(ode theta(1PV));
namesGenBuses = arrayfun(@(i) sprintf('Gen %d', i), 1:nPV+1, 'UniformOutput',
false);
if strcmp(modelType, 'Type3')
    EprimeCartesian = V Gen Cartesian + 1i*X prime.*IGenVals;
    [thetaVals, E_primeVals] = cart2pol(real(EprimeCartesian),
imag(EprimeCartesian));
    thetaVals(1) = delta_i_Vals(1);
    E_primeVals(1) = ViVals(1);
    resultGen = array2table([E_primeVals, thetaVals], 'VariableNames', {'E''',
'theta'}, 'RowNames', namesGenBuses)
    ode omegaType3 = diff(omega) == (1./(2*H)).*(Pm - PG - K D.*(omega - 1));
    ode_omegaType3_Equilibrium = 0 == rhs(ode_omegaType3(1PV));
    ode omegaType3 Init = subs(ode omegaType3 Equilibrium, PG, PGVals);
    ode_Type3_Init = [ode_thetaEquilibrium; ode_omegaType3_Init];
```

```
display(ode Type3 Init);
    unknowns_Type3 = [omega(1PV); Pm(1PV)];
   init_params_Type3 = [ones(nPV, 1); PGVals(lPV)];
    unknowns0_Type3_Vals = solveAndExtract(ode_Type3_Init, unknowns_Type3,
init params Type3);
   omega0_Type3 = unknowns0_Type3_Vals(genSVIndices(nPV, 1));
    Pm0_Type3 = unknowns0_Type3_Vals(genSVIndices(nPV, 2));
   theta0 Type3 = thetaVals;
   x0_Type3 = [theta0_Type3; omega0_Type3];
elseif strcmp(modelType, 'Type2') || strcmp(modelType, 'Type1')
   ode omegaType2 = diff(omega) == (1./(2*H)).*(Pm - PG - K D.*(omega - 1));
    ode_omegaType2_Equilibrium = 0 == rhs(ode_omegaType2(1PV));
   ode_omegaType2_Init = subs(ode_omegaType2_Equilibrium, PG, PGVals);
   ode omegaType1 Init = subs(ode omegaType2 Equilibrium, PG, PGVals.*(0.5 +
0.5*ViVals.^2));
    eqn Id PowerFlow = Id == abs(IGenVals).*sin(theta - delta i Vals);
    egn Id PowerFlow Init = 0 == lhs(egn Id PowerFlow(lPV)) -
rhs(eqn Id PowerFlow(1PV));
   eqn Iq PowerFlow = Iq == abs(IGenVals).*cos(theta - delta i Vals);
    eqn_Iq_PowerFlow_Init = 0 == lhs(eqn_Iq_PowerFlow(1PV)) -
rhs(eqn Iq PowerFlow(1PV));
   eqn_Vq = Vq == ViVals.*cos(theta - delta_i_Vals);
   eqn_Vq_Init = 0 == lhs(eqn_Vq(lPV)) - rhs(eqn_Vq(lPV));
   egn Vd = Vd == ViVals.*sin(theta - delta i Vals);
   eqn Vd Init = 0 == lhs(eqn Vd(lPV)) - rhs(eqn Vd(lPV));
   eqn_Id_KVL = Id == (Eq_prime - Vq)./Xd_prime;
   egn Id KVL Init = 0 == lhs(eqn Id KVL(lPV)) - rhs(eqn Id KVL(lPV));
   eqn_Iq_KVL = Iq == (Ed_prime - Vd)./(-Xq_prime);
   eqn_Iq_KVL_Init = 0 == lhs(eqn_Iq_KVL(1PV)) - rhs(eqn_Iq_KVL(1PV));
   V_R = (1./T_A).*(-V_R + k_A.*(Vref - V_i(list0fGenBuses)));
   ode VRType2 = diff(V R) == V R dot;
   ode_VRType2_Equilibrium = 0 == rhs(ode_VRType2(1PV));
   ode VRType2 Init = subs( ode VRType2 Equilibrium, V i(1PV), ViVals(1PV) );
   ode_EqprimeType2 = diff(Eq_prime) == (1./Td0_prime) .* ( -Eq_prime - (Xd -
Xd_prime).*Id + V_R);
   ode_EqprimeType2_Equilibrium = 0 == rhs(ode_EqprimeType2(1PV));
   ode EqprimeType2 Init = ode EqprimeType2 Equilibrium;
```

```
ode EdprimeType2 = diff(Ed prime) == (1./Tq0 prime) .* ( -Ed prime + (Xq -
Xq_prime).*Iq );
    ode EdprimeType2 Equilibrium = 0 == rhs(ode EdprimeType2(1PV));
    ode_EdprimeType2_Init = ode_EdprimeType2_Equilibrium;
    P_m_dotType2 = (1./Tsg) .* ( -Pm + Ksg.*( P_C - (1./R).*(omega - 1) ) );
    ode PmType2 = diff(Pm) == P m dotType2;
    ode_PmType2_Equilibrium = 0 == rhs(ode_PmType2(1PV));
   ode_PmType2_Init = ode_PmType2_Equilibrium;
    ode_Type2_Init = [ode_thetaEquilibrium; ode_omegaType2_Init; ...
        ode EqprimeType2 Init; ode EdprimeType2 Init; ...
        ode VRType2 Init; ode PmType2 Init; ...
        eqn_Id_PowerFlow_Init; eqn_Iq_PowerFlow_Init; ...
       % eqn_Eq_prime_Init; eqn_Ed_prime_Init; ...
        eqn Vq Init; eqn Vd Init; ...
        eqn_Id_KVL_Init; eqn_Iq_KVL_Init];
    display(ode Type2 Init)
    unknowns Type2 = ...
        [theta(1PV); omega(1PV); ...
        Eq prime(1PV); Ed prime(1PV); ...
       V_R(1PV); Pm(1PV); ...
       Vref(1PV); P C(1PV); ...
       Vq(1PV); Vd(1PV); ...
        Iq(1PV); Id(1PV)];
    init_params_Type2 = ...
        [delta_i_Vals(lPV); ones(nPV, 1); ...
        1.1*ViVals(lPV); 0.1*ViVals(lPV); ...
       1.8*ones(nPV, 1); PGVals(1PV); ...
       ViVals(1PV); PGVals(1PV)./Ksg(1PV); ...
        1.0*ones(nPV, 1); 1.0*ones(nPV, 1); ...
        real(IGenVals(1PV)); imag(IGenVals(1PV))];
    unknowns0_Type2_Vals = solveAndExtract(ode_Type2_Init, unknowns_Type2,
init_params_Type2);
    unknowns0_Type2_Gens_Vals = sortByGenerators(unknowns0_Type2_Vals, nPV);
    namesUnknowns_Type2 = string([theta(1PV); omega(1PV); Eq_prime(1PV);
Ed_prime(1PV); V_R(1PV); Pm(1PV); Vref(1PV); P_C(1PV); Vq(1PV); Vd(1PV); Iq(1PV);
Id(1PV)]);
    namesUnknowns Type2 Gens = sortByGenerators(namesUnknowns Type2, nPV);
    unknowns0_Type2_Vals_Table = array2table(unknowns0_Type2_Vals, 'RowNames',
namesUnknowns_Type2, 'VariableNames', {'Values'});
    unknowns0_Type2_Gens_Vals_Table = array2table(unknowns0_Type2_Gens_Vals,
'RowNames', namesUnknowns_Type2_Gens, 'VariableNames', {'Values'});
    % display(unknowns0_Type2_Vals_Table);
    display(unknowns0 Type2 Gens Vals Table);
```

```
theta0 Type2 = unknowns0 Type2 Vals(genSVIndices(nPV, 1));
    omega0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 2));
    Eq prime0 Type2 = unknowns0 Type2 Vals(genSVIndices(nPV, 3));
    Ed_prime0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 4));
    V_R0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 5));
    Pm0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 6));
    Vref0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 7));
    P_C0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 8));
   Vq0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 9));
   Vd0 Type2 = unknowns0 Type2 Vals(genSVIndices(nPV, 10));
    Iq0 Type2 = unknowns0 Type2 Vals(genSVIndices(nPV, 11));
    Id0_Type2 = unknowns0_Type2_Vals(genSVIndices(nPV, 12));
    x0_Type2 = [theta0_Type2; omega0_Type2; Eq_prime0_Type2; Ed_prime0_Type2;
V_R0_Type2; Pm0_Type2];
    x0_Type2_Gens = sortByGenerators(x0_Type2, nPV);
    namesSVs = string([theta(1PV); omega(1PV); Eq prime(1PV); Ed prime(1PV);
V_R(1PV); Pm(1PV)]);
    namesSVs Gens = sortByGenerators(namesSVs, nPV);
    x0_Type2Table = array2table(x0_Type2, 'RowNames', namesSVs, 'VariableNames',
{'Values'});
    x0_Type2_Gens_Table = array2table(x0_Type2_Gens, 'RowNames', namesSVs_Gens,
'VariableNames', {'Values'});
    % display(x0_Type2Table);
    display(x0_Type2_Gens_Table);
else
    error('This statement shouldn''t be reached.');
end
```

$resultGen = 4 \times 2 table$

	E'	theta
1 Gen 1	1.0300	0
2 Gen 2	1.0745	0.1465
3 Gen 3	1.1392	-0.0383
4 Gen 4	1.1045	-0.2068

ode_Type3_Init =

$$0 = 376.9911 \omega_2 - 376.9911$$

$$0 = 376.9911 \omega_3 - 376.9911$$

$$0 = 376.9911 \omega_4 - 376.9911$$

$$0 = 0.0085 P_{m2} - 0.0171 \omega_2 - 0.0427$$

$$0 = 0.0090 P_{m3} - 0.0180 \omega_3 - 0.0467$$

$$0 = 0.0090 P_{m4} - 0.0180 \omega_4 - 0.0450$$

Small Signal Stability Analysis

```
if strcmp(modelType, 'Type3')
    PG_Type3 = generateSymbolicPowerFlowEquations(nPV, PG, QG, yGen, E_primeVals,
EdgesGen, theta);
    ode_omegaType3_SS = subs(ode_omegaType3(1PV), PG, PG_Type3);
    ode_Type3_SS = [ode_thetaEquilibrium; ode_omegaType3_SS];
    display(ode Type3 SS);
   x_Type3 = [theta(1PV); omega(1PV)];
    PG_computedUsingYGen = array2table(double(subs(PG_Type3, theta, theta0_Type3)),
'VariableNames', {'P_G'}, 'RowNames', namesGenBuses);
    display(PG_computedUsingYGen);
    J_Type3 = jacobian(rhs(ode_Type3_SS), x_Type3);
    Je_Type3 = double(subs(J_Type3, [theta; omega(1PV)], x0_Type3));
    [VType3, DType3, WType3] = eig(Je Type3);
    lambdas_Type3 = diag(DType3);
    display(lambdas_Type3);
   W T Type3 = WType3';
    for i = 1:size(VType3, 1)
       v_Type3_i = VType3(:, i);
       W_T_Type3_i = W_T_Type3(i, :);
        pMatrix_Type3 = v_Type3_i*w_T_Type3_i;
        pfactors Type3 = abs(diag(pMatrix Type3));
        pfactors_Type3_Normalized = pfactors_Type3./max(pfactors_Type3);
       fprintf('For mode \lambda = \%f + 1i* \%f', real(lambdas_Type3(i)),
imag(lambdas Type3(i)));
        display(pfactors_Type3_Normalized);
    end
elseif strcmp(modelType, 'Type2')
    E_prime_Type2 = sqrt(Eq_prime.^2 + Ed_prime.^2);
    E_prime_Type2(1) = ViVals(1);
    gamma Type2 = atan(Eq prime./Ed prime) + theta - pi/2;
    gamma_Type2(1) = delta_i_Vals(1);
    PG_Type2 = generateSymbolicPowerFlowEquations(nPV, PG, QG, yGen, E_prime_Type2,
EdgesGen, gamma_Type2);
    % display(PG_Type2)
    % PG computedUsingYGen = array2table(double(subs(PG Type2, [theta;
Eq_prime; Ed_prime], [ [0; theta0_Type2]; [ViVals(1); Eq_prime0_Type2]; [0;
Ed_prime0_Type2] ])), 'VariableNames', {'P_G'}, 'RowNames', namesGenBuses);
    % display(PG computedUsingYGen)
```

```
[Id Type2, Iq Type2] = generate dq CurrentsFrom dqVoltages(nPV, Id, Iq,
EdgesGen, yGen, theta, Eq_prime, Ed_prime);
    Id_computedUsingYGen = array2table(double(subs(Id_Type2, [theta(1PV);
Eq prime(1PV); Ed prime(1PV)], [ theta0 Type2; Eq prime0 Type2;
Ed_prime0_Type2] )), 'VariableNames', {'I_d'}, 'RowNames', namesGenBuses);
    Iq computedUsingYGen = array2table(double(subs(Iq Type2, [theta(1PV);
Eq_prime(1PV); Ed_prime(1PV)], [ theta0_Type2; Eq_prime0_Type2;
Ed_prime0_Type2] )), 'VariableNames', {'I_q'}, 'RowNames', namesGenBuses);
    display(Iq computedUsingYGen(1PV, :));
    display(Id_computedUsingYGen(1PV, :));
    display(Iq0 Type2);
    display(Id0 Type2);
    Vq_Type2 = V_i(listOfGenBuses) .* cos( theta(listOfGenBuses) -
delta i Vals(listOfGenBuses) );
    Vd Type2 = V_i(listOfGenBuses) .* sin( theta(listOfGenBuses) -
delta_i_Vals(listOfGenBuses) );
    % V_i_Type2 = subs( (Ed_prime + Iq.*Xq_prime)./sin(theta - delta_i_Vals), Iq,
Iq Type2);
    V_i_Type2 = subs( (Eq_prime - Id.*Xd_prime)./cos(theta - delta_i_Vals), Id,
Id_Type2);
    V_i_ComputedUsingFormula = array2table(double(subs(V_i_Type2, [theta(1PV);
Eq prime(1PV); Ed prime(1PV)], [theta0 Type2; Eq prime0 Type2; Ed prime0 Type2] )),
'VariableNames', {'V_i'}, 'RowNames', namesGenBuses);
    display(V i ComputedUsingFormula(1PV, :));
    display(ViVals(1PV));
   % PG_Type2 = subs(Vd.*Id + Vq.*Iq, [Vd, Vq, Id, Iq], [Vd_Type2, Vq_Type2,
Id_Type2, Iq_Type2]);
    % PG_Type2 = subs(PG_Type2, V_i(listOfGenBuses), V_i_Type2);
   % PG_computedUsingFormula = array2table(double(subs(PG_Type2, [theta;
Eq_prime; Ed_prime], [ [0; theta0_Type2]; [ViVals(1); Eq_prime0_Type2]; [0;
Ed_prime0_Type2] ])), 'VariableNames', {'P_G'}, 'RowNames', namesGenBuses);
    % display(PG_computedUsingFormula);
   % ode_thetaType2_SS = ode_thetaEquilibrium;
    ode_omegaType2_SS = subs(ode_omegaType2_Equilibrium, PG, PG_Type2);
    ode EqprimeType2 SS = subs(ode EqprimeType2 Equilibrium, Id, Id Type2);
    % display(ode_EqprimeType2_SS);
    ode_EdprimeType2_SS = subs(ode_EdprimeType2_Equilibrium, Iq, Iq_Type2);
    % display(ode EdprimeType2 SS);
    ode VRType2 SS = subs(ode VRType2 Equilibrium, [Vref(1PV); V i(listOfGenBuses);
Iq], [Vref0 Type2; V i Type2; Iq Type2]);
    % display(ode VRType2 SS);
    ode PmType2 SS = subs(ode PmType2 Equilibrium, P_C(1PV), P_C0 Type2);
    % display(ode_PmType2_SS);
```

```
ode Type2 SS = [ode thetaEquilibrium; ode omegaType2 SS; ode EqprimeType2 SS;
ode_EdprimeType2_SS; ode_VRType2_SS; ode_PmType2_SS];
    % display(ode Type2 SS)
    x_Type2 = [theta(1PV); omega(1PV); Eq_prime(1PV); Ed_prime(1PV); V_R(1PV);
Pm(1PV)];
    x Type2 Gens = sortByGenerators(x Type2, nPV);
    % display(x_Type2_Gens);
    ode Type2 SS Gens = sortByGenerators(ode Type2 SS, nPV);
    display(ode Type2 SS Gens)
    J_Type2 = jacobian(rhs(ode_Type2_SS), x_Type2);
    x0 Type2 Gens = sortByGenerators(x0 Type2, nPV);
    J_Type2_Gens = jacobian(rhs(ode_Type2_SS_Gens), x_Type2_Gens);
   % display(J_Type2)
    format shortG
    Je Type2 = double(subs(J Type2, x Type2, x0 Type2));
    Je_Type2_Gens = double(subs(J_Type2_Gens, x_Type2_Gens, x0_Type2_Gens));
    % display(Je_Type2);
    Je Type2 Table = array2table(Je Type2, 'VariableNames', namesSVs, 'RowNames',
namesSVs);
   % display(Je Type2 Table)
    format default
    % display(Je Type2 Gens)
    Je_Type2_Gens_Table = array2table(Je_Type2_Gens, 'VariableNames',
namesSVs Gens, 'RowNames', namesSVs Gens);
    display(Je_Type2_Gens_Table)
    [VType2, DType2, WType2] = eig(Je_Type2);
    lambdasType2 = diag(DType2);
    [VType2_Gens, DType2_Gens, WType2_Gens] = eig(Je_Type2_Gens);
    lambdasType2_Gens = diag(DType2_Gens);
    format shortG
    display(lambdasType2);
    display(lambdasType2_Gens)
    format default
   W_T_Type2 = WType2';
else
    Vq_Type1 = V_i(listOfGenBuses) .* cos( theta(listOfGenBuses) -
delta i Vals(listOfGenBuses) );
    Vd_Type1 = V_i(listOfGenBuses) .* sin( theta(listOfGenBuses) -
delta_i_Vals(listOfGenBuses) );
    Id_Type1 = subs( (Eq_prime - Vq)./Xd_prime, Vq, Vq_Type1);
    Iq_Type1 = subs( (Ed_prime - Vd)./(-Xq_prime), Vd, Vd_Type1);
    PG_Type1 = subs(Vd.*Id + Vq.*Iq, [Vd, Vq, Id, Iq], [Vd_Type1, Vq_Type1,
Id_Type1, Iq_Type1]);
    QG_Type1 = subs(Vq.*Id - Vd.*Iq, [Vd, Vq, Id, Iq], [Vd_Type1, Vq_Type1,
Id Type1, Iq Type1]);
```

```
ode omegaType1 SS = subs(ode omegaType2 Equilibrium, PG, PG Type1);
    ode_EqprimeType1_SS = subs(ode_EqprimeType2_Equilibrium, Id, Id_Type1);
    ode EdprimeType1 SS = subs(ode EdprimeType2 Equilibrium, Iq, Iq Type1);
    ode VRType1 SS = subs(ode VRType2 Equilibrium, Vref(1PV), Vref0 Type2);
    ode_PmType1_SS = subs(ode_PmType2_Equilibrium, P_C(1PV), P_C0_Type2);
    ode Type1 SS = [ode thetaEquilibrium; ode omegaType1 SS; ode EqprimeType1 SS;
ode_EdprimeType1_SS; ode_VRType1_SS; ode_PmType1_SS];
    % display(ode_Type1_SS)
    IL = sym('I_L', [1, 1]);
    delta_IL1 = sym('I_L1', [1, 1]);
    delta_IL2 = sym('I_L2', [1, 1]);
    V_{PSS} = sym('V_{PSS}', [4, 1]);
    ode deltaIL1 Equilibrium = 0 == (1./Twpss) .* ( -delta IL1 + Kwpss*Kcomp.*IL );
    ode_deltaIL2_SS = subs( ode_deltaIL1_Equilibrium, IL, -ybus(7, 8).*( V_i(7) -
V i(8) ));
    % ode deltaIL2 = 0 == (1./Tbcomp1) .* ( -delta IL2 + delta IL1 +
Tacomp1*diff(delta IL1) );
    ode deltaIL2 Equilibrium = 0 == (1./Tbcomp1) .* ( -delta IL2 + delta IL1 +
Tacomp1 .* rhs(ode deltaIL1 Equilibrium) );
    % ode deltaIL2 SS = subs(ode deltaIL2 Equilibrium, )
    % ode VPSS = 0 == (1./Tbcomp2) .* ( -V PSS + delta IL2 +
Tacomp2.*diff(delta IL2) );
    ode_VPSS_Equilibrium = 0 == (1./Tbcomp2) .* ( -V_PSS + delta_IL2 + Tacomp2 .*
rhs(ode deltaIL2 Equilibrium) );
    x_Type1 = x_Type2;
    x0_Type1 = x0_Type2;
   % x Type1 Gens = sortByGenerators(x Type1, nPV);
   % x0 Type1 Gens = sortByGenerators(x0 Type1, nPV);
   y_Type1 = [delta_i(2:N); V_i(2:N)];
   % y Type1 Gens = sortByGenerators(y Type1, N-1);
   y0_Type1 = [delta(2:N); V(2:N)];
   % y0_Type1_Gens = sortByGenerators(y0_Type1, N-1);
   % ode Type1 SS Gens = sortByGenerators(ode Type1 SS, nPV);
   A_Type1 = jacobian(rhs(ode_Type1_SS), x_Type1);
    % display(A Type1)
    format shortG
    Ae_Type1 = double( subs(A_Type1, [x_Type1; y_Type1], [x0_Type1; y0_Type1]) );
    % display(Ae Type1);
    % Ae_Type1_Table = array2table(Ae_Type1, 'VariableNames', namesSVs, 'RowNames',
namesSVs);
   % display(Ae Type1 Table)
   format default
```

```
B_Type1 = jacobian(rhs(ode_Type1_SS), y_Type1);
    Be Type1 = double(subs(B Type1, [x Type1; y Type1], [x0 Type1; y0 Type1]));
    % display(Be Type1);
    % Be_Type1_Table = array2table(Be_Type1, 'VariableNames', namesSVs, 'RowNames',
namesSVs);
    [P_i_Type1, Q i_Type1] = generateSymbolicPowerFlowEquations(N-1, P_i, Q i,
ybus, V_i, E, delta_i);
    P_L_Type1 = busData.PL/MVAb .* (0.5 + 0.5*V_i.^2);
    Q L Type1 = busData.QL/MVAb .* (0.5 + 0.5*V i.^2);
    g = sym('g', [2*(N-1), 1]);
    % g(lPV-1) = subs( PG(lPV) - busData.PL(lPV)/MVAb - P_i(lPV), [PG; P_i],
[PG Type1; P i Type1]);
    g(1PV-1) = subs(PG(1PV) - P_L(1PV) - P_i(1PV), [PG; P_L; P_i], [PG_Type1;
P_L_Type1; P_i_Type1]);
    % g(lPQ-1) = subs( -busData.PL(lPQ)/MVAb - P_i(lPQ), P_i, P_i_Type1);
    g(1PQ-1) = subs( -P_L(1PQ) - P_i(1PQ), [P_L; P_i], [P_L_Type1; P_i_Type1]);
    % g(1PV-1+N-1) = subs(QG(1PV) - busData.QL(1PV)/MVAb - Q i(1PV), [QG; Q i],
[QG Type1; Q i Type1]);
    g(1PV-1+N-1) = subs(QG(1PV) - Q_L(1PV) - Q_i(1PV), [QG; Q_L; Q_i], [QG_Type1;
Q_L_Type1; Q_i_Type1]);
    % g(1PQ-1+N-1) = subs(-busData.QL(1PQ)/MVAb - Q_i(1PQ), Q_i, Q_i_Type1);
    g(1PQ-1+N-1) = subs(-Q_L(1PQ) - Q_i(1PQ), [Q_L; Q_i], [Q_L_Type1; Q_i_Type1]);
    C_Type1 = jacobian(g, x_Type1);
    Ce_Type1 = double(subs(C_Type1, [x_Type1; y_Type1], [x0_Type1; y0_Type1]));
    D Type1 = jacobian(g, y Type1);
    De_Type1 = double(subs(D_Type1, [x_Type1; y_Type1], [x0_Type1; y0_Type1]));
    Je_Type1 = Ae_Type1 - Be_Type1/De_Type1 * Ce_Type1;
    % display(Je_Type1);
    [V_Type1, D_Type1, W_Type1] = eig(Je_Type1);
    lambdas_Type1 = diag(D_Type1);
    display(lambdas_Type1);
    W_T_Type1 = W_Type1';
    for i = 1:size(V Type1, 1)
        v_Type1_i = V_Type1(:, i);
        w_T_Type1_i = W_T_Type1(i, :);
        pMatrix_Type1 = v_Type1_i*w_T_Type1_i;
        pfactors_Type1 = diag(pMatrix_Type1);
```

```
pfactors Type1 Normalized = pfactors Type1./max(abs(pfactors Type1));
                                 fprintf('For mode \lambda = \%f + 1i* \%f', real(lambdas_Type1(i)),
imag(lambdas_Type1(i)));
                                  display(pfactors_Type1_Normalized);
                end
end
ode_Type3_SS =
                                                                                                                                                                0 = 376.9911 \,\omega_2 - 376.9911
                                                                                                                                                                0 = 376.9911 \omega_3 - 376.9911
                                                                                                                                                                0 = 376.9911 \omega_4 - 376.9911
    0 = 0.0085 P_{\text{m2}} - 0.0171 \omega_2 - 0.0127 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7246) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0769 \cos(\theta_4 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_4 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_4 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_4 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_3 - \theta_2 + 0.7527) - 0.0094 \cos(\theta_4 - \theta_2 + 0.7
    0 = 0.0090 P_{\text{m}3} - 0.0180 \omega_3 - 0.0526 \cos(\theta_4 - \theta_3 + 1.1326) - 0.0099 \cos(\theta_2 - \theta_3 + 0.7527) - 0.0146 \cos(\theta_4 - \theta_3 + 1.1326)
   0 = 0.0090 P_{\text{m4}} - 0.0180 \omega_4 - 0.0526 \cos(\theta_3 - \theta_4 + 1.1326) - 0.0134 \cos(\theta_2 - \theta_4 + 0.7246) - 0.0197 \cos(\theta_3 - \theta_4 + 1.1326)
PG computedUsingYGen = 4 \times 1 table
                                      P_G
   1 Gen
                                        6.9143
   2 Gen 2
                                        6.9998
   3 Gen 3
                                        7.1904
   4 Gen 4
                                       7.0018
lambdas Type3 = 6 \times 1 complex
      -0.0090 + 6.6736i
      -0.0090 - 6.6736i
      -0.0086 + 5.6071i
      -0.0086 - 5.6071i
      -0.0090 + 2.8447i
       -0.0090 - 2.8447i
For mode \lambda = -0.008999 + 1i* 6.673622
pfactors_Type3_Normalized = 6×1
             0.0024
             0.6885
             1.0000
             0.0024
             0.6885
             1.0000
For mode \lambda = -0.008999 + 1i^* -6.673622
pfactors_Type3_Normalized = 6×1
             0.0024
             0.6885
             1.0000
             0.0024
             0.6885
              1.0000
For mode \lambda = -0.008562 + 1i* 5.607053
pfactors_Type3_Normalized = 6×1
             1.0000
             0.0227
             0.0044
              1.0000
             0.0227
             0.0044
For mode \lambda = -0.008562 + 1i^* -5.607053
pfactors_Type3_Normalized = 6x1
```

```
1.0000
    0.0227
    0.0044
    1.0000
    0.0227
    0.0044
For mode \lambda = -0.008989 + 1i* 2.844733
pfactors_Type3_Normalized = 6×1
    0.0437
    1.0000
    0.7086
    0.0437
    1.0000
    0.7086
For mode \lambda = -0.008989 + 1i^* -2.844733
pfactors_Type3_Normalized = 6x1
    0.0437
    1.0000
    0.7086
    0.0437
    1.0000
    0.7086
```

Transient Stability Analysis

Need to fix it to take modelType as argument (currently assumes that only Type 3 is running).

```
if runTransientSimulation
    transientSimulationScript(clearingCycles, saveTransientRunValues,
    saveTransientRunPlots, modelType, nPV, PG, QG, yGenFaultOn, E_primeVals, EdgesGen,
    theta, yGenPostFault, ode_omegaType3, lPV, Pm, PGVals, ode_thetaEquilibrium,
    numStepsFaultOn, numStepsPostFault, x0_Type3, omega, h, folder_processedData,
    systemName1);
end
```

Have a nice day!

In case you encounter a Java Heap Memory error, delete the above gif, or go to Preferences->General->Java Heap Memory and increase the allocated size.

```
function [P, Q, V, delta, J11] = solveForPowerFlow(PSpecified, QSpecified, ...
    V, delta, ...
    ybus, BMatrix, E, nPQ, nPV, ...
    listOfPQBuses, listOfNonSlackBuses, ...
    numIterations, toleranceLimit, powerFlowMethod, ...
    displayTables, printJacobians, printMismatches, ...
    printPowerFlowConvergenceMessages)
    N = size(ybus, 1);
    if strcmp(powerFlowMethod, 'NRPF')
        for itr = 1:numIterations
            desiredOutput = 'both';
            [PMismatch, QMismatch, P, Q] = ...
                computeMismatches(PSpecified, QSpecified, ...
                V, delta, ybus, BMatrix, E, ...
                listOfPQBuses, listOfNonSlackBuses, powerFlowMethod);
            mismatch = [PMismatch; QMismatch];
            if displayTables && printMismatches
                fprintf("Iteration Number %i Mismatches:\n", itr);
                disp(mismatch)
            end
            [J, JTable] = constructJacobian(P, Q, ...
                V, delta, N, ybus, BMatrix, E, ...
                nPQ, nPV, listOfPQBuses, listOfNonSlackBuses, powerFlowMethod,
desiredOutput);
            if displayTables && printJacobians
                fprintf("Iteration Number %i Jacobian:\n", itr);
                JTable %#ok<NOPRT>
            end
            correction = solveUsingLU(J, mismatch, 2*nPQ+nPV);
            delta = [delta(1); delta(listOfNonSlackBuses) + correction(1:nPQ+nPV)];
            V(listOfPQBuses) = V(listOfPQBuses).*( ones(nPQ, 1) +
correction(nPQ+nPV+1:end) );
            if mean(abs(correction)) < toleranceLimit</pre>
                fprintf("Convergence using %s achieved in %i iterations.\n",
powerFlowMethod, itr);
                break;
            else
                if printPowerFlowConvergenceMessages
                    fprintf("Convergence still not achieved in %i iterations as %f
is greater than %f\n", itr, mean(abs(correction)), toleranceLimit);
                end
            end
        end
```

```
elseif strcmp(powerFlowMethod, 'Decoupled NRPF') || strcmp(powerFlowMethod,
'Fast Decoupled NRPF')
       for itr = 1:numIterations
            desiredOutput = 'P';
            [PMismatch, \sim, P, Q] = ...
                computeMismatches(PSpecified, QSpecified, ...
                V, delta, ybus, BMatrix, E, ...
                listOfPQBuses, listOfNonSlackBuses, powerFlowMethod);
            if displayTables && printMismatches
                fprintf("Iteration Number %i P Mismatches:\n", itr);
                disp(PMismatch)
            end
            [J11, J11Table] = constructJacobian(P, Q, ...
                V, delta, N, ybus, BMatrix, E, ...
                nPQ, nPV, listOfPQBuses, listOfNonSlackBuses, powerFlowMethod,
desiredOutput);
            if displayTables && printJacobians
                fprintf("Iteration Number %i Jacobian J11:\n", itr);
                J11Table %#ok<NOPRT>
            end
            correctionDelta = solveUsingLU(J11, PMismatch, nPQ+nPV);
            delta = [delta(1); delta(listOfNonSlackBuses) + correctionDelta];
            desiredOutput = 'Q';
            [\sim, QMismatch, P, Q] = \dots
                computeMismatches(PSpecified, QSpecified, ...
                V, delta, ybus, BMatrix, E, ...
                listOfPQBuses, listOfNonSlackBuses, powerFlowMethod);
            if displayTables && printMismatches
                fprintf("Iteration Number %i Q Mismatches:\n", itr);
                disp(QMismatch)
            end
            [J22, J22Table] = constructJacobian(P, Q, ...
                V, delta, N, ybus, BMatrix, E, ...
                nPQ, nPV, listOfPQBuses, listOfNonSlackBuses, powerFlowMethod,
desiredOutput);
            if displayTables && printJacobians
                fprintf("Iteration Number %i Jacobians:\n", itr);
                J22Table %#ok<NOPRT>
            end
            correctionDeltaVByV = solveUsingLU(J22, QMismatch, nPQ);
```

```
V(listOfPQBuses) = V(listOfPQBuses).*( ones(nPQ, 1) +
correctionDeltaVByV );
            correction = [correctionDelta; correctionDeltaVByV];
            if mean(abs(correction)) < toleranceLimit</pre>
                fprintf("Convergence using %s achieved in %i iterations.\n",
powerFlowMethod, itr);
                break;
            else
                if printPowerFlowConvergenceMessages
                    fprintf("Convergence still not achieved in %i iterations as %f
is greater than %f\n", itr, mean(abs(correction)), toleranceLimit);
                end
            end
        end
    end
end
```

```
function [ybus, BMatrix, E, PSpecified, QSpecified, V, delta,
listOfPQBuses, listOfPVBuses, nPQ, nPV, listOfNonSlackBuses] =
generateYBusForType2(useReducedLoadsForPowerFlow, busData, busDataReducedLoads,
branchData, MVAb)
    if useReducedLoadsForPowerFlow
        [ybus, BMatrix, ~, ~, ~, E] = ybusGenerator(busDataReducedLoads,
branchData); %#ok<*UNRCH>
        [PSpecified, QSpecified, V, delta, ...
            listOfPQBuses, listOfPVBuses, nPQ, nPV, ...
            listOfNonSlackBuses] = initializeVectors(busDataReducedLoads, MVAb);
    else
        [ybus, BMatrix, ~, ~, ~, E] = ybusGenerator(busData, branchData);
        [PSpecified, QSpecified, V, delta, ...
            listOfPQBuses, listOfPVBuses, nPQ, nPV, ...
            listOfNonSlackBuses] = initializeVectors(busData, MVAb);
    end
end
```

```
function [yGen, BMatrixGen, EGen, listOfResidualBuses] = constructYGen(yNet,
listOfPVBuses, NNet, displayYNet, showInternalMatrices, displayYGen,
saveYGenMatrices, varargin)
    if ~isempty(varargin)
        nametag = strcat("_", varargin{1});
        nametag = "";
    end
    listOfGenBuses = [1; listOfPVBuses];
    yNetTable = array2table(yNet, VariableNames=[string(1:NNet)],
RowNames=[string(1:NNet)]);
    if displayYNet
       format shortG
        disp(sparse(yNet));
       format default
    end
    if saveYGenMatrices
       fileType = ".csv";
       filenameYNet = strcat("processedData\ieee11\yNet", nametag, fileType);
       writetable(yNetTable, filenameYNet);
    end
    listOfAllBuses = ones(NNet, 1);
    listOfAllBuses(listOfGenBuses) = 0;
    listOfResidualBuses = find(listOfAllBuses);
   ygg = yNet(listOfGenBuses, listOfGenBuses);
    ygr = yNet(listOfGenBuses, listOfResidualBuses);
   yrg = yNet(listOfResidualBuses, listOfGenBuses);
    yrr = yNet(listOfResidualBuses, listOfResidualBuses);
    yggTable = array2table(ygg, 'VariableNames', [string(listOfGenBuses)],
'RowNames', [string(listOfGenBuses)]);
   ygrTable = array2table(ygr, 'VariableNames', [string(listOfResidualBuses)],
'RowNames', [string(listOfGenBuses)]);
    yrgTable = array2table(yrg, 'VariableNames', [string(listOfGenBuses)],
'RowNames', [string(listOfResidualBuses)]);
    yrrTable = array2table(yrr, 'VariableNames', [string(listOfResidualBuses)],
'RowNames', [string(listOfResidualBuses)]);
    if showInternalMatrices
        display(yggTable);
        display(ygrTable);
        display(yrgTable);
        display(yrrTable);
    end
```

```
if saveYGenMatrices
        fileType = ".csv";
        filenameYgg = strcat("processedData\ieee11\Ygg", nametag, fileType);
       writetable(yggTable, filenameYgg);
       filenameYgr = strcat("processedData\ieee11\Ygr", nametag, fileType);
       writetable(ygrTable, filenameYgr);
       filenameYrg = strcat("processedData\ieee11\Yrg", nametag ,fileType);
       writetable(yrgTable, filenameYrg);
       filenameYrr = strcat("processedData\ieee11\Yrr", nametag, fileType);
       writetable(yrrTable, filenameYrr);
    end
    yGen = ygg - ygr/yrr * yrg;
    BMatrixGen = -imag(yGen);
    nPV = length(listOfPVBuses);
    EGen = cell(nPV + 1, 1);
    for i = 1: nPV+1
        EGen{i} = [1:i-1 i+1:nPV+1];
    end
    yGenTable = array2table(yGen, VariableNames=[string(listOfGenBuses)],
RowNames=[string(listOfGenBuses)]);
    if displayYGen
        display(yGenTable);
    end
    if saveYGenMatrices
        fileType = ".csv";
       filenameYGen = strcat("processedData\ieee11\yGen", nametag, fileType);
       writetable(yGenTable, filenameYGen);
    end
end
```

```
function [PG, QG] = generateSymbolicPowerFlowEquations(nPV, PG, QG, yGen,
E_primeVals, EdgesGen, theta)
    for i = 1:nPV+1
        PG(i) = real( yGen(i, i) ) * E_primeVals(i)^2;
        QG(i) = -imag( yGen(i, i) ) * E_primeVals(i)^2;
        for k = EdgesGen{i}
            PG(i) = PG(i) + abs(yGen(i, k)) * E_primeVals(i) * E_primeVals(k) *
cos( angle(yGen(i, k)) + theta(k) - theta(i) );
        QG(i) = QG(i) - abs(yGen(i, k)) * E_primeVals(i) * E_primeVals(k) *
sin( angle(yGen(i, k)) + theta(k) - theta(i) );
        end
    end
end
```

```
function transientSimulationScript(clearingCycles, saveTransientRunValues,
saveTransientRunPlots, modelType, nPV, PG, QG, yGenFaultOn, E_primeVals, EdgesGen,
theta, yGenPostFault, ode_omegaType3, lPV, Pm, PGVals, ode_thetaEquilibrium,
numStepsFaultOn, numStepsPostFault, x0_Type3, omega, h, folder_processedData,
systemName1)
    if clearingCycles ~= 3
        saveTransientRunValues = false;
        saveTransientRunPlots = false;
    end
   transientRunStart = tic;
    if strcmp(modelType, 'Type3')
       % error('Make sure to save results first! Only if clearing time is 3
cycles.')
        PG_FaultOn_Type3 = generateSymbolicPowerFlowEquations(nPV, PG, QG,
yGenFaultOn, E_primeVals, EdgesGen, theta);
        PG PostFault Type3 = generateSymbolicPowerFlowEquations(nPV, PG, QG,
yGenPostFault, E_primeVals, EdgesGen, theta);
        ode omegaType3 TransientFaultOn = subs(ode omegaType3(1PV), [PG, Pm],
[PG_FaultOn_Type3, PGVals]);
        ode_Type3_TransientFaultOn = [ode_thetaEquilibrium;
ode_omegaType3_TransientFaultOn];
        ode_Type3_TransientFaultOn = subs(ode_Type3_TransientFaultOn, theta(1), 0);
        display(ode_Type3_TransientFaultOn);
        ode_omegaType3_TransientPostFault = subs(ode_omegaType3(1PV), [PG, Pm],
[PG_PostFault_Type3, PGVals]);
        ode Type3 TransientPostFault = [ode thetaEquilibrium;
ode_omegaType3_TransientPostFault];
        ode Type3 TransientPostFault = subs(ode Type3 TransientPostFault, theta(1),
0);
        display(ode_Type3_TransientPostFault);
       thetaTransientVals = zeros(nPV, numStepsFaultOn + numStepsPostFault);
        omegaTransientVals = zeros(nPV, numStepsFaultOn + numStepsPostFault);
        xTransientVals = [thetaTransientVals; omegaTransientVals];
        xTransientVals(:, 1) = [x0_Type3(1PV); x0_Type3(nPV+1PV)];
        x Type3 = [theta(1PV); omega(1PV)];
       fxTransientVals = zeros(size(xTransientVals));
       for t = 2:numStepsFaultOn
            fxTransientVals(:, t-1) = double( subs(rhs(ode_Type3_TransientFaultOn),
x_Type3, xTransientVals(:, t-1) ) );
            xTransientVals(:, t) = xTransientVals(:, t-1) + h*fxTransientVals(:,
t-1);
        end
```

```
for t = numStepsFaultOn+1:numStepsFaultOn+numStepsPostFault
            fxTransientVals(:, t-1) =
double( subs(rhs(ode_Type3_TransientPostFault), x_Type3, xTransientVals(:, t-1) ) );
            xTransientVals(:, t) = xTransientVals(:, t-1) + h*fxTransientVals(:,
t-1);
        end
    elseif strcmp(modelType, 'Type2')
        error('Check Transient Stability for Type 2 again.\n')
        PG_FaultOn_Type2 = generateSymbolicPowerFlowEquations(nPV, PG, QG,
yGenFaultOn, E prime Type2, EdgesGen, theta);
        PG PostFault Type2 = generateSymbolicPowerFlowEquations(nPV, PG, QG,
yGenPostFault, E_prime_Type2, EdgesGen, theta);
        ode_omegaType2_TransientFaultOn = subs(ode_omegaType2(1PV), [PG, Pm],
[PG_FaultOn_Type2, PGVals]);
        ode Type2 TransientFaultOn = [ode thetaEquilibrium;
ode_omegaType2_TransientFaultOn; ode_EqprimeType2_SS; ode_EdprimeType2_SS;
ode_VRType2_SS; ode_PmType2_SS];
        ode_Type2_TransientFaultOn = subs(ode_Type2_TransientFaultOn, [theta(1),
Eq prime(1), Ed prime(1)], [0, 1, 0]);
        display(ode_Type2_TransientFaultOn);
        ode_omegaType2_TransientPostFault = subs(ode_omegaType2(1PV), [PG, Pm],
[PG PostFault Type2, PGVals]);
        ode_Type2_TransientPostFault = [ode_thetaEquilibrium;
ode_omegaType2_TransientPostFault; ode_EqprimeType2_SS; ode_EdprimeType2_SS;
ode VRType2 SS; ode PmType2 SS];
        ode_Type2_TransientPostFault = subs(ode_Type2_TransientPostFault,
[theta(1), Eq_prime(1), Ed_prime(1)], [0, 1, 0]);
        display(ode Type2 TransientPostFault);
        xTransientVals = zeros(nPV*6, numStepsFaultOn + numStepsPostFault);
       xTransientVals(:, 1) = x0_Type2;
       fxTransientVals = zeros(size(xTransientVals));
       for t = 2:numStepsFaultOn
            fxTransientVals(:, t-1) = double( subs(rhs(ode Type2 TransientFaultOn),
x_Type2, xTransientVals(:, t-1) ) );
            xTransientVals(:, t) = xTransientVals(:, t-1) + h*fxTransientVals(:,
t-1);
        end
        for t = numStepsFaultOn+1:numStepsFaultOn+numStepsPostFault
```

```
fxTransientVals(:, t-1) =
double( subs(rhs(ode_Type2_TransientPostFault), x_Type2, xTransientVals(:, t-1) ) );
            xTransientVals(:, t) = xTransientVals(:, t-1) + h*fxTransientVals(:,
t-1);
        end
    else
        error('Type 1 NOT modeled for TS!');
    end
    if saveTransientRunValues
        fileType = '.csv';
       filenameTransientRun = strcat(folder_processedData, systemName1, "/
xTransientRun_", modelType, fileType);
        save(filenameTransientRun, 'xTransientVals');
    end
   thetaValsTransient = xTransientVals(1:nPV, 1:t);
    figTheta = figure('Name', 'Transient Simmulation: Machine Rotor Angles');
    % figure('Name', 'Transient Simulation: Machine Rotor Angles');
    plot(1:t, thetaValsTransient);
    xlabel('Time [ms]');
    ylabel('$\theta$ [rad]');
    legend({'Gen02', 'Gen03', 'Gen04'});
    title('Transient Simulation: Machine Rotor Angles')
    omegaValsTransient = xTransientVals(nPV+1:2*nPV, 1:t);
    figOmega = figure('Name', 'Transient Simmulation: Machine Rotor Speeds');
    % figure('Name', 'Transient Simmulation: Machine Rotor Speeds');
    plot(1:t, omegaValsTransient);
    xlabel('Time [ms]');
    ylabel('$\omega$ [pu]');
    legend({'Gen02', 'Gen03', 'Gen04'});
    title('Transient Simulation: Machine Rotor Speeds')
    if saveTransientRunPlots
        filenameFigTheta = strcat(folder_processedData, systemName1, "/
transientRun_theta_", modelType, '.png');
        save(filenameFigTheta, 'figTheta');
        filenameFigOmega = strcat(folder_processedData, systemName1, "/
transientRun_omega_", modelType, '.png');
        save(filenameFigOmega, 'figOmega');
    end
   transientRunStop = toc(transientRunStart);
    display(transientRunStop);
end
```