

2011—2012 学年第一学期《概率论与数理统计》试卷

专业班级	
姓 名_	
学 号	
开课系室	基础数学系
考试日期	2012年1月3号

页码	_	$\vec{\Box}$	=	四	五.	六	七	总 分
满分	20	15	10	20	12	13	10	100
得分								
阅卷人								

备注: 1. 本试卷正文共7页;

- 2. 封面及题目所在页背面和附页为草稿纸;
- 3. 答案必须写在该题后的横线上或指定的括号内,解的过程写在下方空白处,不得写在草稿纸中,否则答案无效;
- 4. 最后附页不得私自撕下,否则作废.
- 5. 可能用到的数值 $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$

一、填空题(每空1分,共10分))	本页共 20 分
1. 设 $P(A) = 0.4$, $P(A \cup B) = 0.7$, 那么看	与 A,B 互不相容,则	得
P(B) =		分
2.设事件 A, B 满足: $P(B A) = P(\overline{B} \overline{A})$	$p = \frac{1}{3}, P(A) = \frac{1}{3}, \mathbb{N}$	$P(B) = \underline{\hspace{1cm}}$
3.某盒中有 10 件产品,其中 4 件次品,	今从盒中取三次产品,	一次取一件,不放
回,则第三次取得正品的概率为	; 第三次才取得正品的	概率为
4. 设随机变量 <i>X</i> 与 <i>Y</i> 相互独立, E	上都服从区间[0,3]上	的均匀分布,则
$P\{\max(X,Y)\leq 2\} = \underline{\hspace{1cm}}.$		
5.一批产品的次品率为 0.1, 从中任取 5	件产品,则所取产品中	的次品数的数学期
望为,均方差为		
6.设总体 $X \sim P(\lambda), X_1, X_2, \cdots, X_n$ 为来	自 X 的一个简单随机样	本, \bar{X} 为样本均值
,则 $Ear{X}$ =, $Dar{X}$ =	·	
二、选择题(每题2分,共10分)		
1.设 $P(A) = a, P(B) = b, P(A \cup B) = c$,	则 $P(A\overline{B})$ 等于().	
(A) $a-b$ (B) $c-b$	(C) $a(1-b)$	(D) $b-a$
2.设随机变量 X 的概率密度为 $f(x)$,且	f(-x) = f(x), $F(x)$ 是	X 的分布函数,则
对任意实数 a 有().		
(A) $F(-a) = 1 - \int_0^a f(x) dx$	(B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$	
(C) F(-a) = F(a)	(D) $F(-a) = 2F(a) - 1$	
3.设 $X \sim N(2,9), Y \sim N(2,1), E(XY) = 6$,	则 $D(X-Y)$ 之值为().
(A) 14 (B) 6	(C) 12 (I	D) 4
4.设随机变量 X 的方差为 25 ,则根据切出	∑雪夫不等式,有 <i>P</i> (<i>X</i> − .	EX < 10) ().
(A) ≤ 0.25 (B) ≤ 0.75	(C) ≥ 0.75 (D	(0.25)
5.维纳过程是().		
(A)连续型随机过程	(B)连续型随机序列	
(C)离散型随机过程	(D)离散型随机序列	

\equiv	计算题(共6个题目,	共 45 分)
 ,	们 异应()	<u> アマ せい ハ</u> ノ

1. (10 分) 设有相同的甲、乙两箱装有同类产品. 甲箱装 50 只其中 10 只正品; 乙箱装 20 只, 10 只正品. 今随机选一箱, 从中抽取 1 只产品, 求: (1) 取到的产品是次品的概率; (2) 若已知取到的产品是正品, 它来自甲箱的概率是多少?

本页	共 15 分
得 分	

2. (5分)已知某种电子元件的寿命 *X* (以小时计) 服从参数为1/1000的指数分布. 某台电子仪器内装有 5 只这种元件,这 5 只元件中任一只损坏时仪器即停止工作,则仪器能正常工作 1000 小时以上的概率为多少?

3.(5分)设粒子按平均率为每分钟 4 个的泊松过程到达某计数数器, N(t) 表示在[0,t]内到达计数器的粒子个数,试求:

本页共 10 分 得 分

- (1) N(t) 的均值、方差、自相关函数;
- (2) 相邻的两个粒子到达计数器的平均时间间隔.

4. (5 分) 设总体 $X \sim N(\mu, \sigma^2)$ 的方差为 1,根据来自 X 的容量为 100 的样本,测得样本均值 \overline{X} 为 5,求 μ 的置信度为 0.95 的置信区间(写出过程).

5. (10 分) 一质点在 1、2、3 三个点上做随机游动,其中 1、3 是两个反射壁,当质点位于 2 时,下一时刻处于 1、2、3 是等可能的. 规定每个时刻质点只走一步,用 $X_n, n \geq 0$ 表示第 n个时刻质点所处的位置,初始分布为

本页共 20 分		
得分		
/1		

$$P(X(0) = i) = \frac{1}{3}, i = 1, 2, 3$$

求: (1)一步转移概率矩阵和二步转移概率矩阵;

- (2) $P\{X(0) = 1, X(1) = 2, X(2) = 3\}$;
- (3) $P\{X(2)=2\}$.

6. (10 分) 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} 2x, & a < x < b \\ 0, & 其他 \end{cases}$,且 $EX^2 = 1$.

求: (1) a,b 的值; (2) $P\{|X|<1\}$.

四、(12 分) 设随机向量(X, Y)的概率密度为

$$f(x,y) = \begin{cases} Ae^{-(x+2y)}, & x > 0, y > 0 \\ 0, 其他 \end{cases}$$

本页	共 12 分
得 分	

求: (1)常数 A;

- (2) 关于 X、Y 的边缘概率密度, 并判断 X 与 Y 是否相互独立;
- (3) Z = X + 2Y 的概率密度.

五、(13 分) 已知分子运动的速度 X 具有概率密度

$$f(x) = \begin{cases} \frac{4x^2}{\alpha^3 \sqrt{\pi}} e^{-(\frac{x}{\alpha})^2}, & x > 0, & \alpha > 0, \\ 0, & x \le 0. \end{cases}$$

本页	共 13 分
得 分	

 $X_1, X_2, X_3, \dots, X_n$ 为X的简单随机样本,求:

- (1)未知参数 α 的矩估计和极大似然估计;
- (2) 验证所求得的矩估计是否为 α 的无偏估计.

六、(10 分) 从学校乘汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 2/5. 设 X 为途中遇到红灯的次数.求 X 的分布律、分布函数、数学期望和方差.

本页	共10分
得 分	