Rudin Chapter 4: Continuity and Compactness

Alex L.

September 19, 2025

Definition: (Boundedness)

A mapping $f: E \to \mathbb{R}^k$ is **bounded** if there is some k where $|f(x)| \le k$ for all x in E.

Theorem:

Suppose that f is a continuous mapping of a compact metric space X to another metric space Y. Then f(X) is compact.

Proof:

Let's first get our definitions in order. f(x) is continuous meaning that for every $\epsilon > 0$, there is a p and δ such that all the points within δ of p are also within ϵ of f(p).

Compactness means that all coverings of X also have a finite subcovering which also covers X.

Let V be an open cover of f(X). Then the preimage of each open set in V is also open (as per a previous theorem in this chapter). We take the preimage of all these, and they do cover X, and we find a finite subcovering since X is compact. We then take the images of these and they do form a finite covering of f(X).

Theorem:

Suppose $f: X \to \mathbb{R}$ is a continuous function and X is compact. Then, $\sup_{p \in X} f(p)$ and $\inf_{p \in X} f(p)$ are in f(X).

Proof:

Since X is compact, so is f(X), and compact subsets of \mathbb{R}^k are closed and bounded by the Heine-Borel theorem. Since it is both closed and bounded, the range must contain its bounds.

Theorem:

Suppose that $f: X \to Y$ is a continuous 1-1 mapping between a compact metric space X and a metric space Y. Then, the inverse mapping, f^{-1} is a continuous mapping from Y to X.

Proof:

One way we can ascertain the continuity of a function f is that it is only continuous if $f^{-1}(V)$ is open in X for every open set V in Y.

So in this case, to show that f^{-1} is continuous, we want to show that f(V) is open in Y for every open V in X.

First, note that V^c is closed in X, since V is open. Closed subsets of compact spaces are compact, so V^c is compact. Since f is continuous, $f(V^c)$ is also compact, and closed in Y, since compact sets are closed.

Definition: (Uniformly Continuous)

Let f be a mapping of a metric space X into a metric space Y. f is **uniformly continuous** on X if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $d_Y(f(p), f(q)) < \epsilon$ for all p and q where $d_X(p, q) < \delta$

Theorem:

Every uniformly continuous function is continuous.

Proof:

Think about what uniformly continuous means. If I choose some $\epsilon > 0$, there will be a $\delta > 0$ such that any two points less than δ apart have images less than ϵ apart. Then, choose some f(p) in the image. All points that are less than ϵ from f(p) are less than δ from p, otherwise the function wouldn't be uniformly continuous, so the continuity criterion is fulfilled.

Theorem:

Let f be a continuous mapping of a compact metric space X to a metric space Y. Then, f is uniformly continuous on X.

Proof:

Choose some $\epsilon > 0$. Since f is continuous, we can associate every p in X to some positive number $\Phi(p)$ where $q \in X$ and $d_X(p,q) < \Phi(p)$ implies that $d_Y(f(p),f(q)) < \frac{\epsilon}{2}$. Basically, let $\Phi(p)$ be the distance that another point has to be from p such that the distance of their images is $\frac{\epsilon}{2}$.

Then, let J(p) be the set of all points q such that $d(p,q) < \frac{1}{2}\Phi(p)$. Since p is in J(p), the collection of all such J(p) is a neighborhood and forms an open cover of X, and since X is compact, there is a subset of this collection that covers X. Let δ be the smallest radius in this collection of J(p). $\delta > 0$ since there is a finite number of J(p).

Now let p, q be in X such that $d(p, q) < \delta$. p must be in at least some $J(p_m)$, and $d_X(p, p_m) \le d_X(p, q) + d_X(p, p_m)$, and $d_X(p, q) + d_X(p, p_m) < \delta + \frac{1}{2}\Phi(p_m) \le \Phi(p_m)$

And since $d_X(p,q) < \Phi(p)$ implies $d_Y(f(p),f(q)) \le \frac{\epsilon}{2}$, then $d_Y(f(p),f(q)) \le d_Y(f(p),f(q)) + d_Y(f(p),f(p)) < \epsilon$, so f is uniformly continuous.

Theorem:

Let E be a noncompact set in \mathbb{R}^1 . Then:

- 1. there exists a continuous function on E which is not bounded
- 2. there exists a continuous and bounded function on E which has no maximum.
- 3. If E is bounded, then there exists a continuous function on E which is not uniformly continuous

Proof:

Suppose E is bounded, so there is a limit point x_0 of E which is not a point of E. (A compact set is closed and bounded so if E is noncompact and bounded it must not be closed). $f(x) = \frac{1}{x-x_0}$ is not bounded, and not uniformly continuous, but is continuous. The function $g(x) = \frac{1}{1+(x-x_0)^2}$ is bounded but has no maximum. If E is unbounded, f(x) = x is continuous and unbounded, and $h(x) = \frac{x^2}{1+x^2}$ is continuous and bounded but has no maximum.