PHY101: Introduction to Physics I

Monsoon Semester 2024 Lecture 29

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR

Previous Lecture

Kinetic theory of gases

This Lecture

Kinetic theory of gases - continued Photon gas

- Consider a box with a frictionless piston filled with some gas.
- We are interested in finding out the force on the piston due to the particles (atoms/molecules) constituting the gas.

- This force, however, is not localized at a single point but rather distributed over the entire area of the piston.
- A convenient way to measure it would be to talk about force per unit area, i.e., Pressure:

$$P = \frac{F}{A}$$

- Consider a particle which has a mass m and velocity v. If the x-component of the velocity is v_x , then when the atom hits the piston (elastic collision), this component gets reversed.
- The change in momentum is

$$\triangle P = m\left((-v_x) - (v_x)\right)$$

(-ve sign represents the loss in momentum)

- \bullet Momentum delivered to the piston because of this single collision . $=2mv_x$
- For simplicity let us assume that **all the atoms have the same velocity**. (We will generalize this to the case of unequal velocities soon).
- Let us consider a small time interval Δt . In this interval, **only the** particles which lie within the distance $v_x \Delta t$ from the wall will be able to hit the wall. Others won't be able to reach the wall in Δt .

- If A is the area of the piston, then the particles which lie within the volume $Av_x\Delta t$ will be able to hit the piston.
- If n is the number of particles per unit volume:

$$n = \frac{N}{V} \,,$$

The number of particles that hit the wall in time Δt is:

$$nAv_x\Delta t$$

Thus, total momentum imparted to the piston in this interval is

$$=(nAv_x\Delta t)(2mv_x)$$

• The **force** on the piston is therefore:

$$F = \frac{(nAv_x\Delta t)(2mv_x)}{\Delta t} = 2nmv_x^2 A$$

(The result does not change if we take the limit $\Delta t \rightarrow 0$).

• Hence, the **pressure** is:

$$P = \frac{F}{A} = 2mnv_x^2.$$

- Now let us generalize to arbitrary velocities for the particles.
 However, we are considering identical particles, so masses are same for all.
- For that we need to replace v_x^2 by the **average velocity** in the x-direction. So,

$$v_x^2 o \frac{1}{2} \left\langle v_x^2 \right\rangle$$

• The factor of half must be introduced because $\langle v_x^2 \rangle$ counts contribution from both v_x and $-v_x$, whereas we are focusing on v_x only.

Thus,

$$P = 2mnv_x^2 \to mn\langle v_x^2 \rangle$$

 But now there is nothing special about the x-direction, we might as well consider y and z directions. Since there is no preferred direction for the particles, for the averages we must have:

$$\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle$$
.

• Now if v^2 is the velocity squared of the particles (in general different for all), then $v^2=v_x^2+v_y^2+v_z^2$.

We can write

$$P = \frac{1}{3}nm \left\langle v^2 \right\rangle = \frac{2}{3}n \left\langle \frac{1}{2}mv^2 \right\rangle.$$

- \bullet Clearly $\left\langle \frac{1}{2}mv^2\right\rangle$ represents the average kinetic energy for the particles.
- Now using n=N/V, we obtain:

$$PV = \frac{2}{3}N\left\langle \frac{1}{2}mv^2 \right\rangle.$$

This is truly a remarkable relation. It relates the average of microscopic property, to the macroscopic observable, the pressure exerted by the gas on the piston/wall.

- For a **monatomic gas**, e.g. Helium or Argon, i.e. molecules with just single atom in them, it is reasonable to assume that there is no other internal motion (rotation, vibration).
- Thus, the kinetic energy as obtained in the previous slide will represent the total energy. We will represent it by U, the total internal energy of the gas.
- Hence, we have

$$U = N \left\langle \frac{1}{2} m v^2 \right\rangle \,,$$

$$PV = \frac{2}{3}U.$$

- We might have a situation for a gas with complex molecules, then we need to consider the contributions from internal motion such as rotation, vibration etc.
- Therefore, for generality, we write

$$PV = (\gamma - 1)U \tag{1}.$$

- \bullet For a monatomic gas like Helium we have $\gamma=\frac{5}{3}$, resulting PV=(2/3)U .
- Taking the differential of equation (1) we get:

$$PdV + VdP = (\gamma - 1)dU \qquad (2).$$

- Let us now examine the compression of the gas when we apply force on the piston.
- If we assume that the process is adiabatic: No heat energy is added or removed. The change in internal energy is then:

$$dU = -Fdx = -\frac{F}{A}(Adx) = -PdV.$$

From equation (2) we get

$$PdV + VdP = -(\gamma - 1)PdV.$$

Rearranging we obtain

$$\gamma \frac{dV}{V} + \frac{dP}{P} = 0.$$

• Assuming that γ is a constant, as it is for a monatomic gas, we can integrate the above equation to get:

$$\gamma \ln V + \ln P = \ln C,$$

where In C is the constant of integration.

Exponentiating both sides we obtain

$$PV^{\gamma} = C$$
 (constant).

Photon Gas

- Consider a photon gas. We will avoid talking in terms of mass in this case as we are dealing with a relativistic system, and it has a very different behavior in the relativistic domain.
- However, F = dp/dt still holds. Redoing the analysis and working with p we arrive at

$$P = 2np_x v_x .$$

 Introducing the averaged quantities and considering the three directions we obtain:

$$P = \frac{1}{3} n \left\langle \vec{p} \cdot \vec{v} \right\rangle$$

Or,
$$PV = rac{1}{3} N \left\langle ec{p} \cdot ec{v}
ight
angle$$

Photon Gas

- The momentum \vec{p} and \vec{v} are in the same direction. Hence, $\vec{p} \cdot \vec{v} = pv$.
- Now for a photon v=c, the speed of light. Thus $\vec{p}\cdot\vec{v}=pc$.
- Special theory of relativity tells that pc for a photon is actually its total energy E.
- Thus, the internal energy of the photon gas is:

$$N \langle \vec{p} \cdot \vec{v} \rangle = NE = U$$
.

• Finally, we get $PV = rac{1}{3}U$.

Photon Gas

• Comparing with $PV = (\gamma - 1)U$, we find:

$$\gamma = \frac{4}{3}$$

Therefore, the photon gas obeys (radiation in a box):

$$PV^{\gamma} = \text{constant}$$
.

 Thus, we know about the behaviour of the radiation. This can be applied to radiation of hot stars!

