CLAIMS

1. A compound of the general formula (I)

5

wherein

A is

10

m is 0 or 1,

n is 0, 1, 2 or 3,

15

with the proviso that m and n must not both be 0,

R¹ is hydrogen, fluoro or -(CH₂)_o-OR²,

20 o is 0 or 1,

 \mbox{R}^2 is hydrogen, $\mbox{C}_{\mbox{\scriptsize 1-6}}\mbox{-alkyl},$ $\mbox{C}_{\mbox{\scriptsize 1-6}}\mbox{-alkyl},$ aryl or aryl- $\mbox{C}_{\mbox{\scriptsize 1-6}}\mbox{-alkyl},$

25 X is N, CH or C with a double bond to one substituent,

$$\begin{split} Z \text{ is } -CR^3R^4\text{-, -}(C=O)\text{-}(NR^5)\text{-}(C_{1\text{-}6}\text{-}alkyl)_{K^-}, -(C=O)\text{-}O\text{-}(C_{1\text{-}6}\text{-}alkyl)_{K^-}, -(C=O)\text{-}(C_{1\text{-}6}\text{-}alkyl)_{K^-}, -(C=O)\text{-}(C_{1\text{-}6}\text{-}alkyl)_{K^-}, -(C=O)\text{-}(C_{2\text{-}6}\text{-}alkenyl)_{K^-}, -($$

wherein k is 0 or 1,

R3, R4 and R5 are independently selected from hydrogen, C1-6-alkyl or aryl,

5 Y is $-(C_{1-6}$ -alkyl)_s-(C=O)- $(C_{1-6}$ -alkyl)_t-, $-(C_{1-6}$ -alkenyl)_s-(C=O)- $(C_{1-6}$ -alkyl)_t-, $-C_{1-6}$ -alkyl-, $-C_{2-6}$ -alkenyl-, or $-CR^6R^7$ -

wherein s and t independently are 0 or 1;

wherein R⁶, R⁷ and R⁸ independently are selected from hydrogen, C₁₋₆-alkyl and aryl;

D is aryl or heteroaryl, which may optionally be substituted with one or more substituents R^{16} , R^{17} , R^{18} , R^{19} , R^{20} and R^{21} , wherein

- 15 R¹⁶, R¹⁷, R¹⁸ and R¹⁹ independently are
- hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃,
 -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR²², -NR²²R²³, -SR²², -NR²²S(O)₂R²³,
 -S(O)₂NR²²R²³, -S(O)NR²²R²³, -S(O)R²², -S(O)₂R²², -C(O)NR²²R²³, -OC(O)NR²²R²³,
 -NR²²C(O)R²³, -CH₂C(O)NR²²R²³, -OCH₂C(O)NR²²R²³, -CH₂OR²², -CH₂NR²²R²³,
 -OC(O)R²², -C(O)R²² or -C(O)OR²²,
 - C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,
- which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²², -NR²²R²³ and C₁₋₆-alkyl,
- C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkylthio,
 C₃₋₈-cycloalkyl-C₂₋₆-alkenyl, C₃₋₈-cycloalkyl-C₂₋₆-alkynyl, C₄₋₈-cycloalkenyl-C₁₋₆-alkyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkenyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkynyl, heterocyclyl-C₁₋₆-alkyl, heterocyclyl-C₂₋₆-alkenyl, heterocyclyl-C₂₋₆-alkynyl, aryl, aryloxy, aryloxycarbonyl, aroyl, aryl-C₁₋₆-alkoxy, aryl-C₁₋₆-alkyl, aryl-C₂₋₆-alkenyl, aryl-C₂₋₆-alkynyl, heteroaryl, heteroaryl-C₁₋₆-alkyl, heteroaryl-C₂₋₆-alkenyl or heteroaryl-C₂₋₆-alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, $-C(O)OR^{22}$, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{22}$, $-NR^{22}R^{23}$ and C_{1-6} -alkyl,

R²² and R²³ independently are hydrogen, C₁₋₆-alkyl, aryl-C₁₋₆-alkyl or aryl, or R²² and R²³ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the groups R^{16} to R^{19} when placed in adjacent positions together may form a bridge $-(CR^{24}R^{25})_a$ -O- $(CR^{26}R^{27})_c$ -O-,

a is 0, 1 or 2,

15

10

c is 1 or 2,

R²⁴, R²⁵, R²⁶ and R²⁷ independently are hydrogen, C₁₋₆-alkyl or fluoro,

20 R^{20} and R^{21} independently are hydrogen, C_{1-6} -alkyl, C_{3-8} -cycloalkyl or C_{3-8} -cycloalkyl, alkyl- C_{1-6} -alkyl,

E is

- C_{3-8} -cycloalkyl or C_{4-8} -cycloalkenyl, which may optionally be substituted with one or two substituents R^{28} and R^{29} , which are independently selected from
 - hydrogen, halogen, -CN, -CF₃, -OR³³, -NR³³R³⁴, C₁₋₆-alkyl, C₃₋₈-cycloalkyl, C₄₋₈-cycloalkyl, heteroaryl and aryl,

wherein the heteroaryl and aryl groups optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -NO₂, -OR³³, -NR³³R³⁴ and C₁₋₆-alkyl,

R³³ and R³⁴ independently are hydrogen or C₁₋₆-alkyl,

or R³³ and R³⁴ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

5

aryl, heteroaryl, aryl- C_{2-6} -alkenyl or aryl- C_{2-6} -alkynyl, of which the cyclic moieties may optionally be substituted with one to three substitutents R^{30} , R^{31} and R^{32} , which are independently selected from

- 10
- hydrogen, halogen, -CHF₂, -CF₃, -OCF₃, -OCH₂, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -OR³⁵, -NR³⁵R³⁶, -SR³⁵, -S(O)R³⁵, -S(O)₂R³⁵, -C(O)NR³⁵R³⁶, -OC(O)NR³⁵R³⁶, -OC(O)NR³⁵R³⁶, -C(O)R³⁵ and -C(O)OR³⁵.
- C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

15

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -SCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶ and C₁₋₆-alkyl,

20

C₃₋₈-cycloalkyl, C₄₋₈-cycloalkenyl, heterocyclyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈-cycloalkyl-C₂₋₆-alkenyl, C₃₋₈-cycloalkyl-C₂₋₆-alkynyl, C₄₋₈-cycloalkenyl-C₁₋₆-alkyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkenyl, C₄₋₈-cycloalkenyl-C₂₋₆-alkynyl, heterocyclyl-C₁₋₆-alkyl, heterocyclyl-C₂₋₆-alkynyl, aryl, aryloxy, aroyl, aryl-C₁₋₆-alkoxy, aryl-C₁₋₆-alkyl, aryl-C₂₋₆-alkenyl, aryl-C₂₋₆-alkynyl, heteroaryl, heteroaryl-C₁₋₆-alkyl, heteroaryl-C₂₋₆-alkynyl,

25

of which the cyclic moieties optionally may be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -SCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶ and C_{1-6} -alkyl,

30

wherein R³⁵ and R³⁶ independently are hydrogen, C₁₋₆-alkyl or aryl,

or R³⁵ and R³⁶ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

or two of the substituents R^{30} , R^{31} and R^{32} when attached to the same ring carbon atom or different ring carbon atoms together may form a radical -O-(CH₂)₁-CR³⁷R³⁸-(CH₂)₁-O-, -(CH₂)₁-CR³⁷R³⁸-(CH₂)₁- or -S-(CH₂)₁-CR³⁷R³⁸-(CH₂)₁-S-,

5

t and I independently are 0, 1, 2, 3, 4 or 5,

R³⁷ and R³⁸ independently are hydrogen or C₁₋₆-alkyl,

- as well as any diastereomer or enantiomer or tautomeric form or mixture thereof, or a pharmaceutically acceptable salt thereof.
 - 2. A compound according to claim 1, wherein A is

15

3. A compound according to claim 2, wherein A is

4. A compound according to claim 2, wherein A is

20

5. A compound according to claim 1, wherein A is

25

6. A compound according to claim 1, wherein D is

7. A compound according to claim 6, wherein D is

5

10

- 8. A compound according to claim 6, wherein R¹⁶, R¹⁷ and R¹⁸ independently are
 - hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃,
 -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR²², -NR²²R²³, -SR²², -NR²²S(O)₂R²³,
 -S(O)₂NR²²R²³, -S(O)NR²²R²³, -S(O)R²², -S(O)₂R²², -C(O)NR²²R²³, -OC(O)NR²²R²³,
 -NR²²C(O)R²³, -CH₂C(O)NR²²R²³, -OCH₂C(O)NR²²R²³, -CH₂OR²², -CH₂NR²²R²³,
 -OC(O)R²², -C(O)R²² or -C(O)OR²²,
 - C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from fluoro, -CN, -CF₃, -OCF₃, -OR²² and -NR²²R²³,
- C₃₋₈-cycloalkyl, which may optionally be substituted with one or more substituents selected from fluoro, -C(O)OR²⁴, -CN, -CF₃, -OCF₃, -OR²², -NR²²R²³ and C₁₋₆-alkyl,
 - aryl or aryloxy, which may optionally be substituted with one or more substituents selected from halogen, -C(O)OR²², -CN, -CF₃, -OCF₃, -NO₂, -OR²², -NR²²R²³ and C₁₋₆-alkyl,

 R^{22} and R^{23} independently are hydrogen, C_{1-6} -alkyl, aryl- C_{1-6} -alkyl or aryl, or R^{22} and R^{23} when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds,

 or two of the groups R¹⁶ to R¹⁸ when placed in adjacent positions together may form a bridge –(CR²⁴R²⁵)_a-O-(CR²⁶R²⁷)_c-O-,

a is 0, 1 or 2,

10

5

c is 1 or 2,

R²⁴, R²⁵, R²⁶ and R²⁷ independently are hydrogen, C₁₋₆-alkyl or fluoro.

- 9. A compound according to claim 8, wherein R¹⁶, R¹⁷ and R¹⁸ independently are
 - hydrogen, halogen, CN, -CF₃, -OCF₃, -SCF₃, -S(O) C₁₋₆-alkyl-, -C(O) C₁₋₆-alkyl-, C₁₋₆-alkyl, C₁₋₆-alkoxy, phenyl, cyclopentyl, cyclohexyl or phenoxy,
 - or two of the groups R¹⁶ to R¹⁸ when placed in adjacent positions together may form a bridge -O-(CF₂)₂-O-, -CF₂-O-CF₂-O- or -O-CH₂-O-.

20

10. A compound according to claim 1, wherein E is

$$R^{28} \qquad R^{31} \qquad R^{32} \qquad R^{32} \qquad R^{31} \qquad R^{32} \qquad R^{33} \qquad R^{34} \qquad R^{34} \qquad R^{35} \qquad R$$

20

11. A compound according to claim 10, wherein E is

- 12. A compound according to claim 10, wherein R³⁰, R³¹ and R³² independently are
- 5 hydrogen,
 - halogen, -OCF₃, -SCF₃, -OCHF₂ or -CF₃,
 - C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from fluoro, -CN, -CF₃, -OCF₃, -OR³⁵ and -NR³⁵R³⁶,
- C₃₋₈-cycloalkyl or C₄₋₈-cycloalkenyl, which may optionally be substituted with one or
 more substituents selected from fluoro, -CN, -CF₃, -OCF₃, -OR³⁵, -NR³⁵R³⁶ and
 C₁₋₆-alkyl,
 - aryl, heteroaryl, aryloxy or aryl-C₁₋₆-alkoxy, of which the aryl moieties may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -R³⁵, -NR³⁵R³⁶ and C₁₋₆-alkyl,

R³⁵ and R³⁶ independently are hydrogen, C₁₋₆-alkyl or aryl,

or R³⁵ and R³⁶ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulfur, and optionally containing one or two double bonds.

- 13. A compound according to claim 12, wherein R³⁰, R³¹ and R³² independently are
 - hydrogen,
- halogen, -OCF₃, -OCHF₂, -SCF₃, or -CF₃,
 - C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from fluoro, -CN, -CF₃, -OCF₃, -OR³⁵ and -NR³⁵R³⁶,
 - cyclohexyl or cyclohex-1-enyl, which may optionally be substituted with one or more substituents selected from fluoro, -CN, -CF₃, -OCF₃, -OR³⁵, -NR³⁵R³⁶ and C₁₋₆-alkyl,
- phenyl which may optionally be substituted with one or more substitutents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶ and C₁₋₆-alkyl,

- phenoxy or benzyloxy, of which the phenyl moieties may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶ and C₁₋₆-alkyl,
- thiadiazolyl,

5

R³⁵ and R³⁶ independently are hydrogen or C₁₋₆-alkyl.

14. A compound according to claim 10, wherein R³⁰ and R³² are both hydrogen, and R³¹ is different from hydrogen.

10

- 15. A compound according to claim 1, wherein Y is -C=O-, -CH2-.
- 16. A compound according to claim 1, wherein Z is $-CH_{2^-}$, -(C=O)-(NH), -(C=O)-O or $-(C=O)-CH_{2^-}$.

15

17. A compound of general formula (la);

wherein D is selected from the following:

and wherein E is selected from the following:

as well as any diastereomer or enantiomer or tautomeric form, or mixture thereof, or pharmaceutical acceptable salts thereof.

18. A compound of general formula (lb);

wherein D is selected from the following,

5

and wherein E is selected from the following:

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or pharmaceutical acceptable salts thereof.

19. A compound of general formula (Ic)

wherein D is selected from the following,

and wherein E is selected from the following,

$$R^{28} \longrightarrow R^{29} \qquad R^{31} \longrightarrow R^{32} \qquad R^{30} \longrightarrow R^{31} \longrightarrow R^{32} \qquad R^{31} \longrightarrow R^{32} \longrightarrow R^{31} \longrightarrow R^{32} \longrightarrow R^{31} \longrightarrow R^{31} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{31} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{31} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{31} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{32} \longrightarrow R^{31} \longrightarrow R^{32} \longrightarrow R$$

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or pharmaceutical acceptable salts thereof.

5 20. A compound of the general formula (Id):

wherein D is selected from the following:

and wherein E is selected from the following:

- 5 as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or pharmaceutical acceptable salts thereof.
 - 21. A compound according to claim 1, which has an IC $_{50}$ value of no greater than 5 μ M as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II) disclosed herein.

20

- 22. A compound according to claim 21, which has an IC_{50} value of less than 1 μ M, preferably of less than 500 nM and even more preferred of less than 100 nM as determined by the Glucagon Binding Assay (I) or Glucagon Binding Assay (II) disclosed herein.
- 23. A compound according to claim 1, which is an agent useful for the treatment of an indication selected from the group consisting of hyperglycemia, IGT, type 2 diabetes, type 1 diabetes, dyslipidemia and obesity.
- 24. A pharmaceutical composition comprising, as an active ingredient, at least one com pound according to claim 1 together with one or more pharmaceutically acceptable carriers or excipients.
 - 25. A pharmaceutical composition according to claim 24 in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and especially preferred from about 0.5 mg to about 200 mg of the compound.
 - 26. A method of treating disorders or diseases, wherein a glucagon antagonistic action is beneficial, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
 - 27. A method of treating glucagon-mediated disorders and diseases, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
- 28. A method of treating hyperglycemia, comprising administering to a subject in needthereof a therapeutically effective amount of a compound of claim 1.
 - 29. A method of lowering blood glucose in a mammal, comprising administering to the mammal in need of such treatment a therapeutically effective amount of a compound of claim 1.
 - 30. A method of treating IGT, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
- 31. A method of treating type two diabetes, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.

32. A method of delaying or prevention of the progression from non-insulin requiring type 2 diabetes to insulin requiring type two diabetes in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.

5

- 33. A method of delaying or prevention of the progression from IGT to type 2 diabetes in a subject, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
- 34. A method of treating type one diabetes, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
 - 35. A method of treating obesity, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.

15

- 36. A method of treating dyslipidemia, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
- 37. A method according to claim 26 wherein the subject is administered a further antidiabetic agent.
 - 38. A method according to claim 26 wherein the subject is administered a further antiobesity agent.
- 39. A method according to claim 26 wherein the subject is administered a further antihyper-lipidemic agent.
 - 40. A method according to claim 26 wherein the subject is administered a further antihypertensive agent.

30

41. A method of treating disorders or diseases, wherein a glucagon antagonistic action is beneficial, comprising administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition of claim 24.

42. The method according to claim 26, wherein the effective amount of the compound is in the range of from about 0.05 mg to about 2000 mg, preferably from about 0.1 mg to about 1000 mg and especially preferred from about 0.5 mg to about 500 mg per day.