Assessment of Hydrogen's Climate Impact Is Affected by Model OH Biases

Laura Yang

D. Jacob, H. Lin, R. Dang, K. Bates, J. East, K. Travis, D. Pendergrass, L. Murray

AGU 2024 December 9, 2024

Hydrogen (H₂) is an indirect climate forcer due to its atmospheric oxidation by OH

 H_2 total lifetime: 2.4 ± 0.3 years

H ₂ GWP-100	Model	References	
8 ± 2	2-D model	Derwent et al. (2023)	
10+7	Box model	Chen et al. (2024)	
11.6 ± 2.8	Ensemble of five 3-D models	Sand et al. (2023)	

Global 3-D models overestimate tropospheric OH by 10-30% as inferred by the methyl chloroform (MCF) proxy

CH₄ lifetime against tropospheric OH (years)

The OH biases in current models may lead to biases in the GWP estimates

^{1:} Prather et al. (2012), 2: Sand et al. (2023), 3: Hauglustaine et al. (2022),

⁴: Warwick et al. (2023), ⁵: Naik et al. (2013)

Underestimated OH reactivity (OHR) in the models may be driving an overestimation of OH and H₂ GWP

Modified GEOS-Chem with increased OHR makes H₂ less of a driver for OH loss and relaxes CH₄-H₂ coupling

- 1) Added volatile chemical product^{1,2} & oceanic³ emissions of NMVOCs
- 2) Added terminal OH sink over continents
- * The change in O_3 concentration is minor

Modified GEOS-chem shows improved agreement with observationally constrained OH values

0.1 0.2 0.3 0.4 0.5 0.6

¹: Prather et al. (2012), ²: Sand et al. (2023), ³: Hauglustaine et al. (2022), ⁶
⁴: Warwick et al. (2023), ⁵: Naik et al. (2013)

The roles that H₂ and CH₄ play in ozone production decrease in the modified GEOS-Chem

	Standard	Modified	
	GEOS-Chem	GEOS-Chem	
Chemical source (Tg O ₃ equivalent a ⁻¹)			
$NO + HO_2 \rightarrow NO_2 + OH$	3970	3590	
$NO + CH_3O_2 \rightarrow NO_2 + CH_3O$	1420	1320	
$NO + RO_2 \rightarrow NO_2 + RO$	330	900	
Total	5720	5810	
Chemical loss (Tg O ₃ equivalent a ⁻¹)			
$O(^1D) + H_2O \rightarrow 2OH$	2170	2290	
$O_3 + HO_2 \rightarrow OH + 2O_2$	1340	1360	
$O_3 + OH \rightarrow HO_2 + O_2$	660	500	
Others	1050	1140	
Total	5220	5290	
Lifetime against chemical loss (days)			
	24.2	24.8	
Tropospheric O ₃ burden (Tg)			
	346	359	

Modified GEOS-Chem

Increased contribution of RO_2 to P_{O_3} due to added NMVOCs

Decreased contributions of H₂ and CH₄ to P_{0_3}

O₃ concentrations in the modified model show little change from the standard model

> RO₂: Organic peroxy radicals NMVOCs: Non-methane VOCs P_{O_3} : O_3 production

Correcting OHR and OH biases in modified GEOS-Chem leads to 20% smaller hydrogen GWP-100

- GWP-100 calculation method, soil sink, and stratospheric H₂O follow Sand et al. (2023)
- Increasing OHR to match observations decreases the GWP regardless of how this OHR increase is implemented

Takeaways

Correcting the OHR underestimate in global 3-D models decreases the coupling between CH_4 and H_2 and reduces the effect of H_2 on O_3

OH and OHR biases may lead to a 20% overestimation of H₂ GWP-100 in current 3-D atmospheric chemistry models

Better understanding of the factors controlling global OH concentrations and OHR is needed for GWP estimates

Acknowledgements. The authors acknowledge funding support from the ExxonMobil Technology & Engineering Company, the NASA ACCDAM Program, and the NSF GRFP.

We thank B. Mignone, E. Reidy, O. Clifton, R. Skeie, L. Mickley, and T. Mooring for helpful discussions.

The views expressed in this work are solely those of the authors.