CA3
Amirhosein Yavarikhoo 810199514

Seyyed Alireza Saghaeian 810199438

Datapath of MIPS multi-cycle is shown below:

Controller corresponding to the datapath above is shown below:

ISA (instruction set architecture) for this processor is listed as below:

R-Type Instructions:

31	26	25 21	1	20 16	15	11	10	6	5	0
6'b0		R1		R2	Rd		ShAmnt		Func	

Function types is listed as below:

Function Opcode	Function
100000	Add
100011	Sub
100100	And
100101	Or
101010	Slt

Other Instructions (Except Jump):

31 26	5 75 71	20 16	15	0
Орс	R1	R2	adr	

Jump:

31	26	25	0
Орс		adr	

Instruction	Орс		
lw R2, adr(R1)	100011		
sw R2, adr(R1)	101011		
addi R2, R1, adr	001001		
slti R2, R1, adr	001010		
beq R1, R2, adr	000100		
j adr	000010		
jal ??	000011		
jr R1	000110		

MIPS assembly code for the test program is shown below:

```
addi R1,R0,1000 #first data location initialization
     lw R2,0(R) #loading first data and considering it the min value
     addi R3,R0,0 #R3: index of the min data in list
     addi R4,R0,0 #R4 : for loop index
     loop: addi R1,R1,4 #next data
     addi R4,R4,1 #i++
     slti R5,R4,20 #check to see if list is finished
     beq R5,R0,end #if i=20, program is done
     lw R6,0(R1) #loading data to compare it with current min
     slt R7,R6,R2 #comparing
     beq R5,R0,loop #if it is not lower than the current min, go to the next data
     add R2,R0,R6 #replacing new min value
     add R3,R6,R4 #replacing new index
     j loop
     end: sw R2,2000(R0) #storing min value
16
     sw R3,2004(R0) #storing index of the min value
```

We have to make a corresponding binary file according to this program and the ISA. This file is saved as instmem.txt .

Decimal values of memory data is shown below:

```
-74
      14
      46
      52
      -24
      -46
      -3
      76
      61
      44
11
      38
12
      100
      -58
      -55
      -26
16
      -13
      81
18
      -18
19
      -87
      48
20
```

This is the result of the testbench:

If we append the 8 bit words together, values below will be reached:

Mem[2003-2000]=-87

Mem[2007-2004]= 19