

SOC-SE-02-02
Contract NASW-3686

Final Review/Executive Summary

NASA CR-173,321

April 1983

Space Station Needs, Attributes, and Architectural Options Study

NASA-CR-173321
19840010205

LIBRARY COPY

APR 15 1984

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

MARTIN MARIETTA

NF01459

National Aeronautics and
Space Administration

FOREWORD

This document is submitted in accordance with the requirements of Contract NASW-3686, Schedule Article II, and Contractor Task 5.3 of Attachment A Statement of Work. This document is the briefing material for the final review.

N84-18273 #

Contract NASW-3686

April 1983

SPACE STATION NEEDS
ATTRIBUTES AND
ARCHITECTURAL OPTIONS

BRIEFING MATERIAL
FINAL REVIEW

Prepared For:

The National Aeronautics
and Space Administration (NASA)
and The Department of Defense (DOD)

Prepared By:

Martin Marietta Aerospace
Denver Aerospace
Space and Electronics Systems Division
P. O. Box 179
Denver, CO 80201

Program Manager: Sherman R. Schrock

Summary Results

Space Station Needs, Attributes

And

Architectural Options

Study

APRIL 5, 1983

1

MARTIN MARIETTA

Summary Results

Agenda

- Introduction
- Time Phased Mission Requirements & Attributes
- Program Evolution
- Space Station Architecture
- Key Technologies
- Associated Cost and Benefits
- Conclusions

Introduction

3

MARTIN MARIETTA

Space Station System Architecture

Location	Qty	Element
28.5 deg	1	Station
SS	2	OTV
SS	2	TMS/Servicers
28.5 deg	1	ASTR Platform
Polar	1	EO Platform
57 deg	1	ISTO Platform
28.5 deg	1-2	MP Platform
Polar	1	ASTO Platform

Functional Capabilities:

- Orbital Transfer/Retrieval
- Satellite Servicing
- Assembly
- Operational Services

Space Station Operations Architecture / Infrastructure

This Page Intentionally Left Blank

MODULAR CARGO BAY CONCEPT SPACE STATION

AFT CARGO CARRIER CONCEPT SPACE STATION

SHUTTLE DERIVED VEHICLE SPACE STATION

Time Phased Mission Requirements & Attributes

MARTIN MARIETTA

Affordable Mission Model Development

NASA Budget Projection – Affordability Analysis

Astronomy Affordability Analysis

User Functional Support Requirements

Mission Accommodation Allocation-28.5° Option

CATEGORY	ORBIT TRANSFER/ SUPPORT	SPACE STATION	PLATFORMS					TOTAL
			EARTH OBS	ISTO	ASTO	MAT PROC	ASTRONOMY	
PLANETARY	11	-	-	-	-	-	-	11
EARTH OBS	4	4(T→P)	6	-	-	-	-	14
SPACE PHYSICS	6	1	-	2	2	-	-	11
ASTRONOMY	15	2(T→P)	-	-	-	-	3	20
SOLAR ASTRONOMY	2	-	-	-	-	-	6	8
LIFE SCIENCES	-	14	-	-	-	-	-	14
MATERIAL PROC.	6	4	-	-	-	10	-	20
COMMUNICATIONS	63	1	-	-	-	-	-	64
TECHNOLOGY DEVELOP.	-	23	-	-	-	-	-	23
	107	49	6	2	2	10	9	185

MARTIN MARIETTA

Operations Concept

Mission Analysis Trades Summary

Summary

- o Launch Site - ELS
- o STS Selected Orbit Altitude - 250 NMi
- o Recommended SS Orbit Incl. - 28.5 deg

Altitude = 250 NMi

Location = ELS

Inclination = 28.5 deg

OTV Characterization Study

Program Evolution

Program Option Selection

Economic Benefits & STS Support

Comparison of A-1 & A-3 Options

ECONOMIC BENEFITS
AND STS FLIGHTS
SHOWN ARE CUMULATIVE
FOR 10 YEARS OF OPERATION

Recommended Evolution Plan

28.5° Space Station

User Support Matrix

DISCIPLINE	91	92	93	94	95	96	97	98-2000
COMMERCIAL COMM. SAT								
MATL. PROC.								
ASTRONOMY								
EARTH OBSERVATIONS						PAYLOADS TRANSFERRED TO EO PLATFORM		
SPACE PHYSICS								
SOLAR PHYSICS								
LIFE SCIENCES								

Crew Activities & Sizing

20

MARTIN MARIETTA

Space Station Architecture

Architectural/Configuration Options

OPTION	PRESS. VOLUME	STS FLIGHTS	ADVANTAGES	DISADVANTAGES
MODULAR 14' DIA.	23,700 FT ³	12	<ul style="list-style-type: none">• MODULE COMMONALITY• FAVORABLE MASS PROPERTIES	<ul style="list-style-type: none">• COMPLEX BUILD-UP• ARRAY SHADOWING
MODULAR AFT CARGO CARRIER	30,500 FT ³	10	<ul style="list-style-type: none">• UTILIZES AFT CARGO CARRIER (ACC) VOLUME	<ul style="list-style-type: none">• COMPLEX BUILD-UP
SHUTTLE DERIVED VEHICLE	33,000 FT ³	8	<ul style="list-style-type: none">• REDUCED ORBITAL BUILD-UP• CREW SAFETY & COMFORT	<ul style="list-style-type: none">• DEVELOPMENT COSTS

ACC Launch Configuration

SDV Launch Configuration

PAYLOAD MODULE

OVERALL LENGTH 162.0 FT

DIAMETER 27.6 FT

PAYOUT BAY 25 FT DIA X 90 FT LONG

INERT WEIGHT 47,650 LBS

USEABLE VOLUME - 48,000 FT

- HABITABLE AREAS
- ENERGY SECTION
- HANGAR (PARTIAL)
- OTHER SPECIAL COMPARTMENTS

Mature Configuration (STS)

1995

25

MARTIN MARIETTA

Early Configuration

Modular 14' Dia.

Intermediate Configuration

Modular 14' Dia.

STS FLIGHT 7
(1991)

REPOSITION PAYLOADS
TO LOWER PORT PRIOR
TO ENERGY SECTION
INSTALLATION

STS FLIGHT 8
(1992)

27

MARTIN MARIETTA

Mature Configuration (ACC)

Modular ACC Option

Early Configuration

Modular ACC Option

STS FLIGHT 2
1991

STS FLIGHT 4
1992

CB = CARGO BAY
ACC = AFT CARGO CARRIER

Intermediate Configuration

Modular ACC Option

MOVE AIRLOCK AND
PAYLOADS TO ENERGY
SECTION PRIOR TO TUNNEL
INSTALLATION. REINSTALL
PAYLOADS ON TUNNEL MODULE

STS FLIGHT 7

1993

30

MARTIN MARIETTA

Mature SDV Configuration

1995

31

MARTIN MARIETTA

Early SDV Configuration

Intermediate SDV Configuration

STS FLIGHT 4
(1991)

MARTIN MARIETTA

Platform Approach

- PLATFORM DESIGN EMPHASIZES COMMONALITY WITH SPACE STATION
 - ENERGY SECTION
 - SOLAR ARRAY
 - SUBSYSTEMS
- REDUCES ACQUISITION COSTS
- COMPONENT INTERCHANGEABILITY SIMPLIFIES SPARE PARTS LOGISTICS
- APPLICABLE TO ASTRONOMY PLATFORM

ETCLS Evolution

IOC

91 92 93 94 95 96 97 98 99 2000

Early ETCLS System

- RESUPPLY DRINKING WATER
- USE CONDENSATE FOR HYGIENE WATER
- REGENERABLE CO₂ REMOVAL

ETCLS —
Environmental Thermal Control
& Life Support

Intermediate ETCLS System

- LIMITED CLOTHES WASHING
- EVALUATE WASTEWATER PROCESSING

Mature ETCLS System

- CLOSED LOOP WATER & OXYGEN
- FULL HYGIENE CAPABILITY
- MINIMAL RESUPPLY

Power Requirements Growth

Heat Rejection Capability

Hydrazine Usage

ET Scavenging Concept Feasibility

SUMMARY

- SIGNIFICANT BENEFITS
- TECHNICALLY FEASIBLE
- NASA/MMC STUDIES

BENEFITS

- 9000 LBS PROPELLANT AVAILABLE FOR SCAVENGING
- ESTIMATED SAVINGS 2-4 STS FLIGHTS PER YEAR (6-9%)
1994-2000

- MANIFESTING ET PROPELLANT PAYLOAD WITH VOLUME LIMITED STS PAYLOADS INCREASES PROPELLANTS AVAILABLE AT SPACE STATION

REQUIREMENTS

RELATED ACTIVITIES

IR&D

- MMC/MICHoud-ET PROPELLANT UTILIZATION
- MMC/DENVER AEROSPACE- CRYOGENIC FLUID TECHNOLOGY

CONTRACTS

- MSFC/JSC-PROPELLANT SCAVENGING (NEAR-TERM RFP)
 - JOINTLY COORDINATED AND FUNDED ET SCAVENGING- CARGO BAY AND ACC
- LeRC-CRYOGEN FLUID MANAGEMENT FACILITY (CFMF)
 - DETAILED DESIGN OF FLIGHT READY CFMF
 - THERMAL/FLUID DYNAMICS- CRYOGENICS IN SPACE

39

MARTIN MARIETTA

Subsystem Concepts

Propulsion

- HYDRAZINE USED FOR SS ORBIT MAINTENANCE AND ATTITUDE CONTROL
 - USES 8 BOOM-MOUNTED 30 LB THRUSTERS
- HYDRAZINE STORAGE (15000 LBS) IN LOGISTICS MODULE
- INTER-MODULE HYDRAZINE TRANSFER CAPABILITY
- CRYOGEN STORAGE OF 70000 LBS PROVIDED TO RESUPPLY OTV

Attitude Control

- GRAVITY GRADIENT ATTITUDE CONTROL OF PITCH AND ROLL AXES
 - PROVIDES COARSE STABILIZATION
- FINE POINTING PROVIDED SEPARATELY FOR PAYLOADS
- EARLY CONFIGURATION MAY AUGMENT RCS WITH CMGs
- ORBITAL RATE (PITCH AXIS) PROVIDES GYROSCOPIC STABILIZATION IN YAW AND ROLL AXES

Subsystem Concepts (Cont.)

Data Processing

- DISTRIBUTED ARCHITECTURE
- END-TO-END SYSTEM INTERFACING SS DATA BUS WITH GROUND PROCESSORS
- ESTIMATE DATA STORAGE IN THE RANGE OF
 1.2×10^{10} TO 1.2×10^{11} IS REQUIRED
- NEED EXISTS FOR SIGNIFICANT DATA REDUCTION OF USER DATA

Communications

- NUMEROUS RF INTERFACES MAY REQUIRE OPERATIONS AT UHF, L, S & Ku BANDS, AT 40-60 GHz, AND AT LASER WAVELENGTH
- HIGH USER DATA RATES AND VOLUME DRIVES NEED FOR STORE & DUMP APPROACH
- DATA DUMPS AS FREQUENT AS EVERY ORBIT MAY BE NECESSARY
- RF LINKS MAINTAINED WITH CO-ORBITING PLATFORMS

Key Technologies

MARTIN MARIETTA

Technology Assessment

Key Technologies

Potential High Payoff Technologies

INCREASED EFFICIENCY SOLAR CELLS
(GaAs, THIN CELLS, MULTIBAND, CONCENTRATORS)
FUEL CELL/ELECTROLYSIS UNITS

CRYOGEN FUELED TMS
ET PROPELLANT SCAVENGING
ELECTRIC THRUSTERS

TWO PHASE ISOTHERMAL HEAT TRANSFER SYSTEM
CONTACT HEAT EXCHANGERS

TETHER UTILIZATION

Areas Of Uncertainty – Analyses & Trades

Associated Cost and Benefits

Programmatic Approach To Low Cost Space Station

TRADITIONAL APPROACH

QUAL. BACKUP FLIGHT	NUMBER OF UNITS	PROTOFLIGHT
SMALL MODULES RESULTING IN HIGH COST PER POUND	SIZE OF MODULES	STS CAPABILITY PERMITS LARGE MODULES WITH ECONOMY OF SCALE
INTENSIVE GROUND SUPPORT	MODE OF OPERATION	AUTONOMOUS OPERATION ALLOWS SIGNIFICANTLY REDUCED GND MISSION OPS

NASA Budget Projection – Affordability Analysis

Space Station Costs By Phase – Modular Concept

Space Station Costs By Phase – SDV Concept

SDV Space Station Affordability Analysis – Baseline Science Budget

SDV Space Station Affordability Analysis – Constant Science Budget

Space Station Cost By Evolution Increment – Modular Concept

Space Station Cost By Evolution Increment – SDV Concept

Space Station Cost Tall Poles

Marginal Costs And Economic Benefits By Capability Increment

Cost/Benefit Breakeven Analysis – Modular Space Station 28.5°

Cost/Benefit Breakeven Analysis – SDV Space Station 28.5°

Space Station Benefits Summary

ECONOMIC

IN 10 YEARS OF OPERATION SPACE STATION PROVIDES:

- A SPACE TRANSPORTATION BASE THAT SAVES \$8.6B
- A SUBSYSTEMS UTILITIES BASE THAT SAVES \$3.6B
- A SPACE SERVICING CENTER THAT SAVES \$3.0B

PERFORMANCE

SPACE STATION PROVIDES LONG TERM, UNIQUE CAPABILITY FOR:

- OBSERVATION
- MATERIALS PROCESSING RESEARCH
- LIFE SCIENCE RESEARCH
- REPAIR AND SERVICING
- LARGE VOLUME STRUCTURAL ASSEMBLY

SOCIAL

- PROMOTES INTERNATIONAL COOPERATION IN SPACE SCIENCE, RESEARCH AND TECHNOLOGY
- MAINTAINS NATIONAL TECHNOLOGY ADVANCEMENT AND SPACE LEADERSHIP

Conclusions

Summary Conclusions

- SPACE STATION SYSTEM PROVIDES BOTH ECONOMIC AND PERFORMANCE BENEFITS
- SPACE STATION SYSTEM IS AFFORDABLE WITHIN PROJECTED NASA BUDGET CONSTRAINTS:
 - ACQUISITION OF SPACE STATION SYSTEM
 - EXPANDED SCIENCE AND APPLICATIONS PROGRAMS
- STS SUPPORT REQUIRED BY SPACE STATION IS WITHIN CURRENT FLEET CAPABILITIES
- EARLY MANNED PRESENCE IN LEO STATION IS JUSTIFIED:
 - TO SATISFY EXISTING USER REQUIREMENTS
 - MAXIMIZE PERFORMANCE AND ECONOMIC BENEFITS
 - PERFORM COMPLEX AND UNIQUE ASSEMBLY, C/O AND MAINTENANCE OPERATIONS

Space Station Payoffs

Equivalent to Two Additional Orbiters

Extended Time Onorbit

SPACE STATION
A
CAPABILITY
MULTIPLIER

Provides Significant Economic Benefit as Launch and Utilities Base

Provides Basing Comparable to Dozens of Free-Flying Spacecraft

Benefits Exceed Cost Within Lifetime of System

Provides Long-Term, Unique Capability for

- Observation
- Materials Processing Research
- Life Science Research
- Repair & Servicing
- Large Volume Structural Assembly

Summary Conclusions (Continued)

- SINGLE SPACE STATION AT 28.5° SUPPORTS 80% OF USER MISSIONS --
A SECOND STATION AT HIGH INCLINATION CAPTURES AN ADDITIONAL
5% OF THE USERS AT A 50% INCREASE IN COST
- EARLY SPACE STATION ARCHITECTURE SHOULD INCLUDE:
 - REUSABLE OTV WITH AEROBRAKING
 - TMS WITH TELEPRESENCE SERVICER
 - OTV/TMS REFUELING AND SERVICING CAPABILITY
 - ATTACHED RESEARCH LABORATORIES
(LIFE SCI. & MTLs PROC.)

End of Document