Distributed Computer Systems Engineering

CIS 508: Lecture 8
Wireless Sensor Networks

Lecturer: Sid C.K. Chau Email: ckchau@masdar.ac.ae

What is Wireless Sensor Network

- Spatially distributed autonomous devices
- Integrated with sensing, computing, communication modules
- Flexible for a variety of applications
 - Security, intrusion, military surveillance
 - Environmental monitoring
 - Air pollution, water quality monitoring
 - Natural disaster, forest fire, landslide detection
 - Industrial monitoring
 - Machine health, structural health monitoring
 - Data logging
 - Water/Waste water monitoring

Wireless Sensor Networks

Sensor Network Requirements

- Low power consumption
 - Only by internal batteries or energy harvesting
- Ability to cope with node failures
 - Cheap components or unpredictable environment
- Mobility of nodes
- Communication failures
- Scalability to large scale of deployment
 - Add or remove nodes without re-configuration
- Ability to withstand harsh environmental conditions
 - Temperature, water, damages by external factors
- Ease of use

Wireless Sensor Architecture

Wireless Sensor Mote

- Transceiver 400 MHz
 - Line-of-sight
 - Short range
 - Unlicensed spectrum operation
- Microcontroller
 - ATmega 128 16 MHz, 128KBFlash, 4 KB RAM
 - Low power, sleep modes
- TinyOS
 - Energy-efficient OS
 - For event-driven programming

Crossbow mote with battery

802.15.4 Platforms

- Focused on low power
- Sleep Majority of the time
 - Telos: 2.4mA
 - MicaZ: 30mA
- Wakeup
 - Telos: 290ns typical, 6ms max
 - MicaZ: 60ms max internal oscillator, 4ms external
- Process
 - Telos: 4MHz 16-bit
 - MicaZ: 8MHz 8-bit
- TI MSP430
 - Ultra low power
 - 1.6mA sleep, 460mA active, 1.8V operation
- Standards Based
 - IEEE 802.15.4, USB
- IEEE 802.15.4
 - CC2420 radio, 250kbps, 2.4GHz ISM band
- Program over USB, Standard connector header

Xbow MicaZ

Tmote Sky

- Standards
 - USB
 - IEEE 802.15.4
 - CC2420, 250kbps at 2.4GHz
- Features
 - TI MSP430
 - 10kB RAM, 4Mhz 16-bit RISC, 48K Flash
 - 12-bit ADC and DAC (200ksamples/sec)
 - DMA transfers while CPU off
 - Integrated antenna
 - Standard IDC connectors

Power Consumption

Operation	Telos	Mica2	MicaZ
Minimum Voltage	1.8V	2.7V	2.7V
Mote Standby (RTC on)	$5.1 \mu A$	19.0 μ A	$27.0 \mu A$
MCU Idle (DCO on)	$54.5 \mu A$	3.2 mA	3.2 mA
MCU Active	1.8 mA	8.0 mA	8.0 mA
MCU + Radio RX	21.8 mA	15.1 mA	23.3 mA
MCU + Radio TX (0dBm)	19.5 mA	25.4 mA	21.0 mA
MCU + Flash Read	4.1 mA	9.4 mA	9.4 mA
MCU + Flash Write	15.1 mA	21.6 mA	21.6 mA
MCU Wakeup	$6 \mu \mathrm{s}$	$180~\mu \mathrm{s}$	$180~\mu \mathrm{s}$
Radio Wakeup	$580~\mu\mathrm{s}$	$1800~\mu { m s}$	$860~\mu \mathrm{s}$

Operating Systems for Wireless Sensor

- Less complex than general-purpose operating systems
 - Resemble embedded systems
 - Need for low costs and low power (access to low-power microcontrollers)
 - Lacks sophisticated memory management
- TinyOS is first operating system specifically designed for wireless sensor networks
 - Event-driven programming model, instead of multithreading
 - Programs composed of event handlers and tasks with run-to-completion semantics
 - When external event occurs (e.g. an incoming data packet or a sensor reading) TinyOS signals the appropriate event handler to handle the event
 - Event handlers can post tasks that are scheduled by the TinyOS kernel some time later.
- Other WSN OSes: LiteOS, Contiki, RIOT

Evolution of Wireless Sensor

- Advances in wireless technology
 - Cost effective and small footprint hardware: MEMS, VLSI
 - Efficient wireless communication design, like ZigBee
- Boom of applications (military, civilian, environmental)
- Cultural changes
 - Wireless devices are everywhere
 - Emerging network embedded systems, cyber-physical systems, internet-of-things
 - Open source software
- Advances in Computer Science
 - Efficient small operating system
 - Efficient compilers

Evolution of Industry

First Stage

..... 2002

2003

Proprietary Dominates

■ IEEE 802.15.4 Emerges

System Integrator Focus

Leading Edge OEMs

■ \$.1 - \$1B Industry

■ \$1,000 - \$100 Unit Cost

Second Stage

2004

2005

2006

Proprietary Fades

ZigBee Emerges

Semiconductor Focus

Early Adopter OEMs

■ \$1 - \$10B Industry

■ \$100 - \$10 Unit Cost

Third Stage

2007

2008

2009+

Standards Dominate

• IEEE 1451.5 Emerges

OEM Focus

Wireless Ubiquitous

■ \$10 - \$100B+ Industry

■ \$10 - \$1 Unit Cost

What is ZigBee

- Specification for a suite of high level communication protocols used to create personal area networks with small, low-power digital radios
- Based on an IEEE 802.15 standard
- For applications that require only a low data rate, long battery life, and secure networking
- Intended to be simpler and less expensive than other WPANs, such as Bluetooth or Wi-Fi
- Secured by 128 bit symmetric encryption keys
- Home automation applications, transmission distances range:
 10-100 meters line-of-sight

Applications of ZigBee

- Building Automation
 - Security, HVAC
 - Lighting Control, Access Control
- Personal Health Care
 - Patient Monitoring
 - Fitness Monitoring
- Industrial Control
 - Asset Management, Process Control
 - Environmental Energy Management
- Consumer Electronics
 - TV, DVD Remote
 - PC & Peripherals, Mouse, Keyboard
- Residential/Light Commercial Control
 - Security
 - Lawn & Garden Irrigation

IEEE 802.15.4 and ZigBee

Application

API

Security

32- / 64- / 128-bit encryption

Network

Star / Mesh / Cluster-Tree

MAC

PHY

868MHz / 915MHz / 2.4GHz

Customer

ZigBee Alliance

- Software
- Network, Security & Application layers
- Brand management

IEEE 802.15.4

- Hardware
- Physical & Media Access
 Control layers

IEEE 802.15.4

- Ultra Low complexity/cost/power consumption
- Data reliability
- Low data rate
 - Data rates of 20 kbps and up to 250 kbps
 - Star or Peer-to-Peer network topologies
 - Support for Low Latency Devices
 - CDMA-CA Channel Access
 - Handshaking
 - Low Power Usage consumption
 - 3 Frequencies bands with 27 channels
 - Extremely low duty-cycle (<0.1%)

802.15.4 Frequency Bands

	<u>BAND</u>	COVERAGE	DATA RATE	<u>CHANNELS</u>	
2.4 GHz	ISM	Worldwide	250 kbps	16	
915 MHz	ISM	Americas	40 kbps	10	
868 MHz		Europe	20 kbps	1	

Media Access Control

- Direct Sequence Spread Spectrum (DSSS)
 - 2.4 GHz
 - 32-chip PN codes, Chip modulation is MSK at 2.0 Mchips/s
 - 868/915 MHz
 - 15-chip m-sequence, Chip modulation is BPSK at 0.3 Mchips/s
- Code Division Media Access w/ Collision Avoidance (CDMA-CA)
- Bi-Directional Communications (Duplex)
- Dynamic Device Addressing
- Fully Handshaked Protocol
- Optional Guaranteed Time Slots
- 2.4 GHz 16-ary orthogonal
- 868/915 MHz differential encoding

Transceiver Characteristics

- Transmit Power
 - Capable of at least 1 mW
 - Power reductions capability required if > 16 dBm (reduce to < 4dBm in a single step)
- Receiver Sensitivity
 - -85 dBm (1 % Packet Error Rate)
- RSSI measurements
 - Packet Strength indication
 - Clear channel assessment
 - Dynamic channel selection

Basic Network Characteristics

- 65,536 network (client) nodes
- Optimized for timing-critical applications
 - Network join time: 30 ms
 - Sleeping slave changing to active: 15 ms
 - Active slave channel access time: 15 ms

Topology Models

- Star Networks (Personal Area Network)
 - Home automation
 - PC Peripherals
 - Personal Health Care
- Peer-to-Peer (ad hoc, self organizing & healing)
 - Industrial control and monitoring
 - Wireless Sensor Networks
 - Intelligent Agriculture

Device Classes

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

Comparisons

Feature(s)	IEEE 802.11b	Bluetooth	ZigBee	
Power Profile	Hours	Days	Years	
Complexity	Very Complex	Complex	Simple	
Nodes/Master	32	7	64000	
Latency	Enumeration upto 3 seconds	Enumeration upto 10 seconds	Enumeration 30ms	
Range	100 m	10m	70m-300m	
Extendability	Roaming possible	No	YES	
Data Rate	11Mbps	1Mbps	250Kbps	
Security	Authentication Service Set ID (SSID)	64 bit, 128 bit	128 bit AES and Application Layer user defined	

Packet Structure

Optional Frame Structure

Traffic Types

- Periodic data
 - Application defined rate (e.g. sensors)
- Intermittent data
 - Application/external stimulus defined rate (e.g. light switch)
- Repetitive low latency data
 - Allocation of time slots (e.g. mouse)

Programming with TinyOS

Stay tuned ...

References

- Course: Distributed Embedded Systems (UCLA)
 - http://nesl.ee.ucla.edu/courses/csm213b/2008sum/CSM213
 B %28Summer 2008%29/Lectures.html
 - Course: Wireless Sensor Networks (Michigan)
 - http://web.eecs.umich.edu/~prabal/teaching/eecs598-w10/
 - Course: Introduction to Wireless Sensor Networks (Ohio)
 - http://www.cse.ohio-state.edu/~anish/788-12.html