Geometría Diferencial

Primer Cuatrimestre – 2019 Segundo Parcial

Guido Arnone

Sobre la Resolución

Con la intención de hacer más legible el examen, algunos argumentos están escritos en forma de lemas que preceden a cada ejercicio. También incluyo (sin demostración) los resultados vistos en clase que utilicé.

Ejercicio 1. Sea M una variedad riemanniana, sea ∇ la conexión de Levi-Civita de M y sea $f: M \to \mathbb{R}$ una función diferenciable.

(a) Muestre que existe un campo vectorial diferenciable $grad(f) \in \mathfrak{X}(M)$ y uno solo con la propiedad de que para cada campo $Y \in \mathfrak{X}(M)$ se tiene que

$$\langle \operatorname{grad}(f), Y \rangle = \operatorname{df}(Y).$$

@A Encuentre una expresión en coordenadas para el campo grad(f).

(b) La función

$$X \in \mathfrak{X}(M) \mapsto \nabla_X \operatorname{grad}(f) \in \mathfrak{X}(M)$$

es autoadjunta: cada vez que X e Y son elementos de $\mathfrak{X}(M)$ se tiene que

$$\langle \nabla_X \operatorname{grad}(f), Y \rangle = \langle X, \nabla_Y \operatorname{grad}(f) \rangle.$$

(c) Muestre que si el campo grad(f) tiene norma constante, entonces para todo $X \in \mathfrak{X}(M)$ se tiene que $\langle \nabla_{\operatorname{grad}(f)} \operatorname{grad}(f), X \rangle = 0$. Deduzca de esto que bajo esa condición las curvas integrales de grad(f) son geodésicas.

Demostración. Hago cada inciso por separado.

(a) Notemos en primer lugar que la función f induce una 1-forma df que en cada punto $p \in M$ vale $d_p f : v \in T_p M \mapsto v(f) \in \mathbb{R}$, el diferencial de f bajo la identificación $T_p \mathbb{R} \simeq \mathbb{R}$.

Fijemos ahora $p \in M$. Como $d_p f \in (T_p M)^*$ es un elemento del espacio dual de $T_p M$, y este último es un \mathbb{R} -espacio vectorial de dimensión finita equipado con un producto interno (inducido por la métrica de M), el teorema de representación de Riesz nos asegura que existe un único vector tangente $v_p \in T_p M$ tal que

$$\langle v_{p}, w \rangle = d_{p}f(w) = w(f) \quad (\forall w \in T_{p}M).$$
 (1)

Si definimos grad_p(f) := ν_p para cada $p \in M$, reescribiendo la anterior igualdad es

$$\langle \operatorname{grad}(f)_{\mathfrak{p}}, w \rangle = \operatorname{d}_{\mathfrak{p}} f(w) \quad (\forall w \in \mathsf{T}_{\mathfrak{p}} \mathsf{M}).$$

y éste es el único campo con tal propiedad. En particular, si $Y \in \mathfrak{X}(M)$ entonces para cada $\mathfrak{p} \in M$ es

$$(\langle \operatorname{grad}(f), Y \rangle)_{\mathfrak{p}} = \langle \operatorname{grad}(f)_{\mathfrak{p}}, Y_{\mathfrak{p}} \rangle = d_{\mathfrak{p}} f(Y_{\mathfrak{p}}) = (\operatorname{df}(Y))_{\mathfrak{p}}$$

y por lo tanto $\langle \operatorname{grad}(f), Y \rangle \equiv \operatorname{df}(Y)$.

Para ver la unicidad, recordemos que para cada $p \in M$ y $v \in T_pM$ existe $Y^v \in \mathfrak{X}(M)$ con $Y^v_p = v$. Efectivamente, podemos tomar una carta (U,ϕ) con $U \ni p$ de forma que existan coeficientes a_1,\ldots,a_n tales que $v = \sum_{1 \leq i \leq n} a_i \frac{\partial}{\partial \phi^i}|_p$ y luego tomar el campo

$$Y^{\nu} = h \cdot \sum_{i=1}^{n} a_{i} \frac{\partial}{\partial \phi^{i}}$$

con $h \in C^{\infty}(M)$ una función *bump* (tal que valga 1 en un entorno abierto $V \subset U$ de \mathfrak{p} y 0 en un abierto $W \supset U^c$).

A partir de esto, podemos concluir que cualquier otro campo $Z \in \mathfrak{X}(M)$ que cumpla $\langle Z, Y \rangle \equiv df(Y)$ para todo $Y \in \mathfrak{X}(M)$ deberá satisfacer

$$\langle Z_{\mathfrak{p}}, \nu \rangle = \langle Z_{\mathfrak{p}}, Y_{\mathfrak{p}}^{\nu} \rangle = d_{\mathfrak{p}} f(Y_{\mathfrak{p}}^{\nu}) = \nu(f)$$

para todo $p \in M$ y $v \in T_pM$. La unicidad de (1) nos dice entonces que $Z_p = v_p = grad_p(f)$ en todo punto $p \in M$.

Para terminar, veamos una expresión de $\operatorname{grad}_p(f)$ en coordenadas. De aquí se tendrá que el gradiente depende localmente de funciones suaves, y es por lo tanto diferenciable.

Una vez más, fijamos $p \in M$ y consideramos (ϕ, U) una carta de M tal que $U \ni p$. Como los ganchos $\{\frac{\partial}{\partial \phi^1}|_p, \ldots, \frac{\partial}{\partial \phi^n}|_p\}$ son una base de T_pM , sabemos que existen únicos coeficientes $c_1, \ldots, c_n \in \mathbb{R}$ tales que

$$v_{p} = \sum_{j=1}^{n} c_{j} \cdot \frac{\partial}{\partial \phi^{j}} \Big|_{p}.$$

Si ahora tomamos el producto interno de v_p con $\frac{\partial}{\partial \varphi^i}|_p$, es

$$\left. \frac{\partial f}{\partial \phi^i} \right|_p = \frac{\partial}{\partial \phi^i} \Big|_p (f) = \left\langle \nu_p, \frac{\partial}{\partial \phi^i} \right|_p \right\rangle = \sum_{j=1}^n c_j \cdot \left\langle \frac{\partial}{\partial \phi^j} \right|_{p'}, \frac{\partial}{\partial \phi^i} \Big|_p \right\rangle = \sum_{j=1}^n c_j \cdot (g_p)_{ji}$$

para cada $j \in [n]$, y notando $c = (c_1, ..., c_n)$ esto es equivalente a

$$c \cdot g_p = \left(\frac{\partial f}{\partial \phi^1} \Big|_{p'}, \dots, \frac{\partial f}{\partial \phi^n} \Big|_{p} \right).$$

Por lo tanto debe ser $c=(\frac{\partial f}{\partial \phi^1}\big|_p,\ldots,\frac{\partial f}{\partial \phi^n}\big|_p)(g_p)^{-1}$ y

$$c_{j} = \sum_{i=1}^{n} \frac{\partial f}{\partial \phi^{i}} \Big|_{p} (g_{p})^{ij}.$$

Volviendo a la expresión original, obtenemos finalmente

$$\operatorname{grad}_{\mathfrak{p}}(f) = \nu_{\mathfrak{p}} = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \frac{\partial f}{\partial \varphi^{i}} \Big|_{\mathfrak{p}} (g_{\mathfrak{p}})^{ij} \right) \cdot \frac{\partial}{\partial \varphi^{j}} \Big|_{\mathfrak{p}} = \sum_{i,j} (g_{\mathfrak{p}})^{ij} \frac{\partial f}{\partial \varphi^{i}} \Big|_{\mathfrak{p}} \cdot \frac{\partial}{\partial \varphi^{j}} \Big|_{\mathfrak{p}}.$$

Esto prueba que para todo $p \in U$ se tiene (contrayendo indices) que

$$grad(f) = g^{ij} \frac{\partial f}{\partial \omega^i} \frac{\partial}{\partial \omega^j}.$$

Como afirmamos, esto prueba además que grad(f) es diferenciable, ya que para cada punto tenemos un abierto donde este es un campo suave.

(b) Como ∇ es la conexión de Levi-Civita, sabemos (por construcción) que esta es compactible con la métrica y libre de torsion. Concretamente, si X, Y, Z $\in \mathfrak{X}(M)$ entonces

$$X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle \tag{2}$$

y

$$\nabla_{X}Y - \nabla_{Y}X = [X, Y]. \tag{3}$$

Sean ahora $X, Y \in \mathfrak{X}(M)$ dos campos en M. Por (2) y (3) sabemos que

$$\begin{split} \langle \nabla_X \operatorname{grad}(f), Y \rangle &= X \langle \operatorname{grad}(f), Y \rangle - \langle \operatorname{grad}(f), \nabla_X Y \rangle \\ &= X \langle \operatorname{grad}(f), Y \rangle - \langle \operatorname{grad}(f), [X, Y] + \nabla_Y X \rangle \\ &= X \langle \operatorname{grad}(f), Y \rangle - \langle \operatorname{grad}(f), \nabla_Y X \rangle - \langle \operatorname{grad}(f), [X, Y] \rangle \\ &= X \langle \operatorname{grad}(f), Y \rangle - (Y \langle \operatorname{grad}(f), X \rangle - \langle \nabla_Y \operatorname{grad}(f), X \rangle) - \langle \operatorname{grad}(f), [X, Y] \rangle \\ &= \langle \nabla_Y \operatorname{grad}(f), X \rangle + X \langle \operatorname{grad}(f), Y \rangle - Y \langle \operatorname{grad}(f), X \rangle - \langle \operatorname{grad}(f), [X, Y] \rangle. \end{split}$$

En consecuencia, se tiene que $\langle \nabla_X \operatorname{grad}(f), Y \rangle = \langle X, \nabla_Y \operatorname{grad}(f) \rangle$ si y solo si

$$X\langle grad(f), Y\rangle - Y\langle grad(f), X\rangle = \langle grad(f), [X, Y]\rangle$$

o lo que es lo mismo,

$$Xdf(Y) - Ydf(X) = df([X, Y]).$$

Para terminar, observemos que esto ocurre siempre, pues

$$Xdf(Y) - Ydf(X) = XY(f) - YX(f) = (XY - YX)(f) = [X, Y](f) = df([X, Y]).$$

(c) Supogamos que grad(f) tiene norma constante. Entonces $\|\operatorname{grad}(f)\|^2 = \langle \operatorname{grad}(f), \operatorname{grad}(f) \rangle$ debe valer constantemente c para cierto $c \in \mathbb{R}$. Si ahora tomamos un campo $X \in \mathfrak{X}(M)$, para todo $\mathfrak{p} \in M$ debe ser

$$(X \| \operatorname{grad}(f) \|)_p = X_p(c) = 0,$$

y por lo tanto $X(\operatorname{grad}(f), \operatorname{grad}(f)) \equiv 0$.

Usando la compatibilidad con la métrica de la conexión de Levi-Civita, de la anterior igualdad se desprende que

$$0 = X\langle \operatorname{grad}(f), \operatorname{grad}(f) \rangle = \langle \nabla_X \operatorname{grad}(f), \operatorname{grad}(f) \rangle + \langle \operatorname{grad}(f), \nabla_X \operatorname{grad}(f) \rangle$$
$$= 2\langle \nabla_X \operatorname{grad}(f), \operatorname{grad}(f) \rangle$$

y por (b) es

$$\langle \nabla_{\operatorname{grad}(f)} \operatorname{grad}(f), X \rangle = \langle \nabla_X \operatorname{grad}(f), \operatorname{grad}(f) \rangle = 0.$$

Por último, si $\gamma:I\to M$ es una curva integral de grad(f), entonces es $\nabla_{\dot{\gamma}}\dot{\gamma}\equiv 0$ pues

$$\begin{split} \|\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t)\|^2 &= \langle \nabla_{\dot{\gamma}(t)}\dot{\gamma}(t), \nabla_{\dot{\gamma}(t)}\dot{\gamma}(t)\rangle \\ &= \langle \nabla_{grad(f)_{\gamma(t)}} grad(f)_{\gamma(t)}, \nabla_{grad(f)_{\gamma(t)}} grad(f)_{\gamma(t)}\rangle \\ &= (\langle \nabla_{grad(f)} grad(f), \nabla_{grad(f)} grad(f)\rangle)_{\gamma(t)} = 0 \end{split}$$

para todo $t \in I$. Vemos así que las curvas integrales de grad(f) resultan geodésicas.

Teorema 1. Sea M una variedad orientada, conexa y compacta de dimensión n. Entonces es $H^n(M) \simeq \mathbb{R}$ via el isomorfismo

$$[\omega] \in H^n(M) \longmapsto \int_M \omega \in \mathbb{R}.$$

Teorema 2. Sean M y N variedades orientadas compactas y conexas de dimensión n. Si $f: M \to N$ es un difeomorfismo que preserva (resp. invierte) la orientación y $\omega \in \Omega^n(N)$ es una n-forma, entonces $\int_M f^*(\omega) = \int_N \omega$ (resp. $-\int_N \omega$).

Lema 3. Sean M y N dos variedades y f : M \rightarrow N una función suave. Si q \in N es un valor regular y f⁻¹(q) = {p₁,...,p_k}, existe un entorno abierto W \subset N de q y abiertos conexos disjuntos U₁,...,U_k tales que:

- (i) para cada $i \in [k]$ es $U_i \ni p_i$,
- (ii) la preimagen de W por f es $f^{-1}(W) = \bigsqcup_{i=1}^{k} U_i$, y
- (iii) para cada $i \in [\![k]\!]$ la (co)restricción $f|_{U_i}: U_i \to W$ es un difeomorfismo.

Demostración. En primer lugar, como es dim $M=\dim N$ sabemos que en cada punto p_i el diferencial de f es un isomorfimo. Por el teorema de la función inversa, existen entonces abiertos $\widetilde{V}_i\ni p_i$ para cada i tales que $f(\widetilde{V}_i)$ es abierto $f(\widetilde{V}_i)$ un difeomorfismo. Achicando los abiertos si es necesario (usando que M es Hausdorff y localmente conexa) podemos suponer que son conexos y disjuntos dos a dos.

Notando $\widetilde{W} = \bigcap_{i=1}^n f(\widetilde{V}_i)$, definimos $\widetilde{U}_i := \widetilde{V}_i \cap f^{-1}(\widetilde{W})$. Ahora, como M es compacta y N es Hausdorff (pues es una variedad) sabemos que f es cerrada. Por lo tanto $f\left((\bigsqcup_{i=1}^n \widetilde{U}_i)^c\right)$ es cerrado g podemos definir $W := \widetilde{W} \setminus f\left((\bigsqcup_{i=1}^n \widetilde{U}_i)^c\right) y$ $U_i := \widetilde{U}_i \cap f^{-1}(W)$.

De aquí se ve que $f^{-1}(W) = U_1 \sqcup \cdots \sqcup U_k$ ya que es

$$\begin{split} f^{-1}(W) &= f^{-1}\left(\widetilde{W} \setminus f\left(\left(\bigsqcup_{i=1}^{n} \widetilde{U}_{i}\right)^{c}\right)\right) = \left(f^{|\widetilde{W}}\right)^{-1}\left(f\left(\left(\bigsqcup_{i=1}^{n} \widetilde{U}_{i}\right)^{c}\right)^{c}\right) \\ &= \left(f^{|\widetilde{W}}\right)^{-1}\left(f_{|\widetilde{W}}\left(\left(\bigsqcup_{i=1}^{n} \widetilde{U}_{i}\right)^{c}\right)\right)^{c} \subset \left(\bigsqcup_{i=1}^{n} \widetilde{U}_{i}\right)^{cc} = \bigsqcup_{i=1}^{n} \widetilde{U}_{i} \end{split}$$

de forma que

$$f^{-1}(W) \subset f^{-1}(W) \cap \bigsqcup_{i=1}^n \widetilde{U}_i = \bigsqcup_{i=1}^n \widetilde{U}_i \cap f^{-1}(W) = \bigsqcup_{i=1}^n U_i,$$

y la otra contención está dada por la definición de los abiertos $(U_i)_{i \in \llbracket n \rrbracket}$.

Por último, para ver que que cada (co)restricción $f|_{U_i}^W$ es un difeomorfismo basta ver que $f(U_i) = W$ pues ya sabemos que la (co)restricción es suave e inyectiva al serlo $f|_{\widetilde{V_i}}$. Por como definimos U_i , basta ver que $W \subset f(U_i)$.

En efecto, puesto que es $W\subset \widetilde{W}\subset f(\widetilde{V}_i)$, si $x\in W$ entonces existe $v_i\in \widetilde{V}_i$ con $f(v_i)=x$, y dado que además es $v_i\in f^{-1}(W)\subset f^{-1}(\widetilde{W})$, se obtiene que

$$\nu_i \in \widetilde{V}_i \cap f^{-1}(\widetilde{W}) = \widetilde{U}_i.$$

En consecuencia debe ser $\nu_i \in \widetilde{U}_i \cap f^{-1}(W) = U_i$, y así $x \in f(U_i)$.

Ejercicio 2. Sean M y N dos variedades compactas, conexas, orientadas y de la misma dimensión n y sea $f: M \to N$ una función diferenciable.

(a) Muestre que hay un número real $\lambda \in \mathbb{R}$ tal que para toda forma $\omega \in \Omega^n(N)$ se tiene

$$\int_M f^*(\omega) = \lambda \int_N \omega.$$

Lo llamamos *grado* de f y lo escribimos deg(f).

(b) Supongamos que $q \in N$ es valor regular de f, de manera que, en particular, el conjunto $f^{-1}(q)$ es finito. Si $p \in f^{-1}(q)$ la diferencial es entonces un isomorfismo de espacios vectoriales y podemos considerar el número

$$sgn_f(p) = \begin{cases} +1 & \text{si } d_p f \text{ preserva la orientación} \\ -1 & \text{si la invierte} \end{cases}$$

ya que esas son las dos únicas posibilidades.

Muestre que

$$deg(f) = \sum_{p \in f^{-1}(q)} sgn_f(p).$$

Demostración. Observemos en primer lugar una consecuencia del Teorema 1 que usaremos a continuación: este nos dice que en una variedad orientada conexa y compacta, dos n-formas son cohomólogas si y sólo si sus integrales sobre la variedad coinciden.

(a) En vista del Teorema 1, sabemos que existe una n-forma ω de N tal que $\int_N \omega = 1$. De existir, el grado debe cumplir que $\int_M f^*(\omega) = deg(f) \cdot \int_N \omega = deg(f)$, por lo que definimos

$$\deg(f) := \int_{M} f^{*}(\omega).$$

Además deg(f) está bien definido pues no depende de la forma que elegimos: si η es otra n-forma de N que integra 1, entonces es $[\eta] = [\omega]$ y por tanto $[f^*(\omega)] = [f^*(\eta)]$, de lo que resulta $\int_M f^*(\omega) = \int_M f^*(\eta)$.

Veamos ahora que este número satisface la propiedad deseada. Consideremos una forma n-forma abritraria η de N. Una vez más por el Teorema 1, del isomorfismo $H^n(N) \simeq \mathbb{R}$ sabemos que existe $c \in \mathbb{R}$ de forma que $[\eta] = c[\omega] = [c\omega]$. En consecuencia existe $\kappa \in \Omega^{n-1}(N)$ tal que $\eta - c\omega = d\kappa$ y usando el teorema de Stokes 1 es

$$\int_N \eta = \int_N c \cdot \omega + d\kappa = c \cdot \int_N \omega + \int_N d\kappa = c \cdot \int_N \omega + \int_{\partial N} i^*(\kappa) = c$$

ya que N no tiene borde.

Por otro lado, como

$$f^*(\eta) = f^*(c \cdot \omega + d\kappa) = c \cdot f^*(\omega) + f^*(d\kappa) = c \cdot f^*(\omega) + df^*(\kappa)$$

y M tampoco tiene borde, volvemos a apelar al teorema de Stokes para obtener

$$\begin{split} \int_{M} f^{*}(\eta) &= c \cdot \int_{M} f^{*}(\omega) + \int_{M} df^{*}(\kappa) = c \cdot deg(f) + \int_{\partial M} i^{*}(f^{*}(\kappa)) \\ &= c \cdot deg(f) = deg(f) \cdot \int_{N} \eta \end{split}$$

como buscábamos.

(b) Será de utilidad la siguiente observación: para cualquier abierto $U\subset N$, existe una n-forma ω de N tal que $1=\int_N \omega=\int_U \omega$.

Para construirla, consideramos primero η una forma de volumen, una carta (V,ϕ) tal que $V\subset U$ y una función $\mathit{bump}\ h\in C^\infty$ no negativa que satisfaga sop $h\subset V$. De esta forma, en el abierto V la forma η tiene una escritura en coordenadas $\eta=g\cdot d\phi^1\wedge\cdots\wedge d\phi^n$ con g nunca nula

Definimos ahora $\widetilde{\omega}=h\eta$. Como $sop(\widetilde{\omega})\subset sop\ h\subset U$, es $\int_N\widetilde{\omega}=\int_U\widetilde{\omega}$. Además, en V la forma $\widetilde{\omega}$ tiene una expresión de la forma $hg\cdot d\phi^1\wedge\cdots\wedge d\phi^n$ así que

$$\int_{U} \widetilde{\omega} = \int_{V} hg \ d\phi^{i} \wedge \cdots \wedge d\phi^{n} = \int_{\phi(V)} (hg) \circ \phi^{-1} \ dx_{1} \dots dx_{n} = \int_{sop \ h} (hg) \circ \phi^{-1} \ dx_{1} \dots dx_{n} > 0$$

¹También podríamos apelar de vuelta al Teorema 1. De hecho, una pequeña modificación de la cuenta que sigue justifica que la aplicación del teorema está bien definida.

pues $(hg) \circ \varphi^{-1}$ es continua, nunca nula en sop h y no cambia de signo en $V \supset$ sop h. Basta tomar entonces $\omega := (\int_N \widetilde{\omega})^{-1} \cdot \widetilde{\omega}$.

Ahora sí, analicemos primero qué ocurre cuando $q \notin \text{im } f$. Como M es compacta y N es Hausdorff (pues es una variedad), la función f es cerrada. Por lo tanto la imagen de f es un cerrado, y en consecuencia existe un abierto $U \ni q$ contenido en $f(M)^c$.

Podemos tomar entonces una n-forma ω tal que sop $\omega \subset U$ y $\int_N \omega = 1$. Como sop $f^*(\omega) \subset f^{-1}(\text{sop }\omega) = \emptyset$, es

$$\deg(f) = \deg(f) \int_{N} \omega = \int_{M} f^{*}(\omega) = 0$$

lo que nos dice que

$$deg(f) = 0 = \sum_{p \in f^{-1}(q)} sgn_f(p).$$

Ahora sí, supongamos que $f^{-1}(q) = \{p_1, \ldots, p_k\} \subset M$ con $n \geq 1$. Usando el Lema 3, tomemos un abierto W de N y abiertos conexos disjuntos $U_i \ni p_i$ tales que $f^{-1}(W) = \bigsqcup_{i=1}^k U_i$ y cada (co)restricción $f|_{U_i}^W$ es un difeomorfismo.

En particular, como $sgn_f(p)$ varía suavemente con p y tiene codominio discreto, en cada abierto conexo U_i debe ser constante. Es decir, para cada $i \in [n]$ la función f preserva o invierte la orientación en todo el abierto U_i .

Una vez más, podemos considerar una n-forma ω tal que sop $\omega \subset W$ y $1 = \int_W \omega = \int_M \omega$. Por lo tanto, es

$$\begin{split} deg(f) &= \int_M f^*(\omega) = \int_{f^{-1}(\operatorname{sop} \omega)} f^*(\omega) = \int_{f^{-1}(W)} f^*(\omega) \\ &= \int_{\bigsqcup_{i=1}^n U_i} f^*(\omega) = \sum_{i=1}^k \int_{U_i} f^*(\omega). \end{split}$$

Usando el Teorema 2 para cada difeomorfismo $f|_{U_i}^W:U_i\to W$ y recordando que sgn_f es constante en U_i , es

$$\int_{U_i} f^*(\omega) = sgn_f(p_i) \cdot \int_W \omega = sgn_f(p_i).$$

Se obtiene así

$$deg(f) = \sum_{i=1}^{k} \int_{U_i} f^*(\omega) = \sum_{i=1}^{k} sgn_f(p_i).$$

Lema 4. Sea $\eta \in \mathbb{S}^1$ una 1-forma y $n \in \mathbb{N}$. Si definimos $\omega = \pi_1^*(\eta) \wedge \cdots \wedge \pi_n^*(\eta) \in \Omega^n(\mathbb{T}^n)$ con $\pi_i : \mathbb{T}^n \to \mathbb{S}^1$ la proyección a la i-ésima coordenada, entonces

$$\int_{\mathbb{T}^n} \omega = \left(\int_{\mathbb{S}^1} \eta \right)^n.$$

 $\textit{Demostración.} \ \ \text{Dadas proyecciones estereográficas} \ \{\phi_i: U_i \to \mathbb{R}\}_{i=1}^n \ \text{de } \mathbb{S}^1, \text{ tenemos una carta}$

$$\Psi := \phi_1 \times \cdots \times \phi_n : U_1 \times \cdots \times U_n \to \mathbb{R}^n$$

de \mathbb{T}^n que satisface $\pi_i(\Psi) = \varphi_i$ para cada $i \in [n]$. Más aún², para cada $i \in [n]$ es

$$d_p \pi_i \left(\frac{\partial}{\partial \Psi^j} \Big|_p \right) = \delta_{ij} \cdot \frac{\partial}{\partial \phi_i} \Big|_{p_i}.$$

A partir de esto último, afirmamos que $\pi_i^*(d\phi_i)=d\Psi^i$. Basta probar que en cada punto $p\in U_1\times\cdots\times U_n$ ambas 1-formas coinciden en una base de $T_p\mathbb{T}^n$. Tomando los $ganchos \left\{\frac{\partial}{\partial \Psi^i}\Big|_p\right\}$, efectivamente es

$$\begin{split} (\pi_i)_p^*(d\phi_i) \left(\frac{\partial}{\partial \Psi^j} \Big|_p \right) &= d_{p_i} \phi_i \left(d_p \pi_i \left(\frac{\partial}{\partial \Psi^j} \Big|_p \right) \right) = d_{p_i} \phi_i \left(\delta_{ij} \cdot \frac{\partial}{\partial \phi_i} \Big|_{p_i} \right) \\ &= \delta_{ij} d_{p_i} \phi_i \left(\frac{\partial}{\partial \phi_i} \Big|_{p_i} \right) = \delta_{ij} \cdot \delta_{ij} \\ &= \delta_{ij} = d_p \Psi^i \left(\frac{\partial}{\partial \Psi^j} \Big|_p \right). \end{split}$$

Como η es una 1-forma, para cada $i \in [n]$ existe una función suave $g_i \in C^\infty(S^1)$ tal que $\eta = g_i \cdot d\phi_i$, y se tiene³ entonces que $\pi_i^*(\eta) = g_i \circ \pi_i \cdot \pi_i^*(d\phi_i) = g_i \circ \pi_i \cdot d\Psi^i$. Reescribiendo, tenemos una expresión para ω en terminos de $d\Psi^1, \ldots, d\Psi^n$,

$$\omega = \pi_1^*(\eta) \wedge \cdots \wedge \pi_1^*(\eta) = g_1 \circ \pi_1 \cdot d\Psi^1 \wedge \cdots \wedge g_n \circ \pi_n \cdot d\Psi^n = \prod_{i=1}^n g_i \circ \pi_i \cdot d\Psi^1 \wedge \cdots \wedge d\Psi^n.$$

Tanto Ψ como cada carta ψ_i tienen dominio denso cuyo complemento es de medida cero, así que en vista de las anteriores caracterizaciones de ω y η podemos calcular sus integrales como

$$\int_{\mathbb{T}^n} \omega = \int_{\mathbb{R}^n} \prod_{i=1}^n g_i \circ \pi_i \cdot dx_1 \cdots dx_n \quad y \quad \int_{\mathbb{S}^1} \eta = \int_{\mathbb{R}} g_i(x) dx$$

para cada $i \in [n]$.

Finalmente usando el teorema de Fubini, es

$$\begin{split} \int_{\mathbb{T}^n} \omega &= \int_{\mathbb{R}^n} \prod_{i=1}^n g_i \circ \pi_i(x_1, \dots, x_n) \cdot dx_1 \cdots dx_n = \int_{\mathbb{R}^n} \prod_{i=1}^n g_i(x_i) \cdot dx_1 \cdots dx_n \\ &= \left(\int_{\mathbb{R}} g_1(x_1) dx_1 \right) \cdots \left(\int_{\mathbb{R}} g_n(x_n) dx_n \right) \\ &= \left(\int_{\mathbb{S}^1} \eta \right)^n. \end{split}$$

²Esta es una cuenta muy similar al ejercicio (1) de la práctica 1, que corresponde a la primera entrega.

³Estas propiedades son parte del ejercicio (8) de la práctica 4, que elegí resolver para la cuarta entrega.

Ejercicio 3. Muestre que cuando $n \ge 2$ el grado de toda función diferenciable $f: \mathbb{S}^n \to \mathbb{T}^n$ de la n-esfera al n-toro es nulo.

Demostración. Consideremos $η ∈ Ω^1(S^1)$ una forma de volumen. Definimos entonces

$$\omega = \pi_1^*(\eta) \wedge \dots \wedge \pi_n^*(\eta) \in \Omega^n(\mathbb{T}^n)$$

con $\pi_i:\mathbb{T}^n\to\mathbb{S}^1$ la proyección a la i-ésima coordenada.

Al ser $n \ge 2$ sabemos que $H^1(\mathbb{S}^n) = 0$, y por lo tanto para todo $i \in [n]$ resulta $[f^*\pi_i^*(\eta)] = 0 \in H^1(\mathbb{S}^n)$. Como $f^* : H^{\bullet}(\mathbb{T}^n) \to H^{\bullet}(\mathbb{S}^n)$ es un morfismo de álgebras, esto dice que

$$\begin{split} [f^*(\omega)] &= f^*([\omega]) = f^*([\pi_1^*(\eta) \wedge \dots \wedge \pi_1^*(\eta)]) \\ &= f^*([\pi_1^*(\eta)]) \wedge \dots \wedge f^*([\pi_1^*(\eta)]) \\ &= [0] \wedge \dots \wedge [0] = [0]. \end{split}$$

Vemos así que $f^*(\omega)$ es exacta y por lo tanto, existe $\zeta \in \Omega^{n-1}(\mathbb{T}^n)$ tal que $f^*(\omega) = d\zeta$. Por el teorema de Stokes, esto implica que

$$\int_{\mathbb{S}^n} f^*(\omega) = \int_{\mathbb{S}^n} d\zeta = \int_{\partial \mathbb{S}^n} i^*(\zeta) = 0$$

ya que Sⁿ no tiene borde.

Del Lema 4 y la definición de grado, obtenemos

$$0 = \int_{S^n} f^*(\omega) = \deg(f) \cdot \int_{\mathbb{T}^n} \omega = \deg(f) \cdot \left(\int_{S^1} \eta \right)^n.$$

Al ser η una forma de volumen de S^1 , su integral es no nula, y consecuentemente es deg(f) = 0. \square

Teorema 5 (dualidad de Poincaré). Sea M una variedad conexa y orientable de dimensión n. Entonces, para cada $k \in [\![n]\!]$ se tiene que $H^k_c(M) \simeq H^{n-k}(M)^*$ y el isomorfismo está dado por

$$\begin{split} p: H^k_c(M) &\longrightarrow H^{n-k}(M)^* \\ [\omega] &\mapsto \left([\eta] \mapsto (-1)^{|\omega|} \int_M \omega \wedge \eta \right) \end{split}$$

Ejercicio 4. Sea M una variedad compacta, orientable, conexa de dimensión n. Sabemos que la cohomología de De Rham de M tiene entonces dimensión total finita, y podemos en consecuencia considerar el entero

$$\chi(M) = \sum_{i=0}^{n} (-1)^{i} \operatorname{dim} H^{i}(M)$$

al que llamamos la característica de Euler de M.

- (a) Si la dimensión n de M es impar, entonces $\chi(M) = 0$.
- (b) Si la dimensión n de M es par y la de $H^{n/2}(M)$ es par, entonces $\chi(M)$ es un entero par.

Demostración. Notemos que como la variedad M es compacta, su cohomología a soporte compacto coincide con la cohomología de de Rham «a secas». Además, dado que la cohomología de una variedad compacta es finitamente generada, por el Teorema 5 se tiene que

$$H^i(M)=H^i_c(M)\simeq H^{n-i}(M)^*\simeq H^{n-i}(M)$$

para cada $i \in [n]_0$. En particular, si notamos $\beta_i := \dim H^i(M)$ a la dimensión del i-ésimo grupo de cohomología, debe ser $\beta_i = \beta_{n-i}$. Ahora,

(a) Si n es impar, entonces

$$\begin{split} 2\chi(M) &= \sum_{i=0}^{n} (-1)^{i} \beta_{i} + \sum_{i=0}^{n} (-1)^{i} \beta_{i} = \sum_{i=0}^{n} (-1)^{i} \beta_{i} + \sum_{i=0}^{n} (-1)^{n-i} \beta_{n-i} \\ &= \sum_{i=0}^{n} (-1)^{i} \beta_{i} + (-1)^{n} \sum_{i=0}^{n} (-1)^{-i} \beta_{n-i} \\ &= \sum_{i=0}^{n} (-1)^{i} \beta_{i} + (-1)^{n} \sum_{i=0}^{n} (-1)^{i} \beta_{i} \\ &= \chi(M)(1 + (-1)^{n}) = \chi(M) \cdot 0 = 0. \end{split}$$

Por lo tanto, es $\chi(M) = 0$.

(b) De una forma similar, si n y es par y $\beta_{n/2}$ también, entonces

$$\begin{split} \chi(M) &= \sum_{i=0}^n (-1)^i \beta_i = \sum_{i=0}^{n/2-1} (-1)^i \beta_i + \beta_{n/2} + \sum_{i=n/2+1}^n (-1)^i \beta_i \\ &= \sum_{i=0}^{n/2-1} (-1)^i \beta_i + \beta_{n/2} + \sum_{i=0}^{n/2-1} (-1)^{n-i} \beta_{n-i} \\ &= 2 \sum_{i=0}^{n/2-1} (-1)^i \beta_i + \beta_{n/2} \equiv \beta_{n/2} \equiv 0 \pmod{2}. \end{split}$$

En consecuencia, la característica de Euler de M es par.

Teorema 6 (fórmula de Koszul). Si (M, g) es una variedad riemanniana y ∇ su conexión de Levi-Civita, entonces para todo $X, Y, Z \in \mathfrak{X}(M)$ es

$$2\langle \nabla_{X}Y,Z\rangle = X\langle Y,Z\rangle + Y\langle Z,X\rangle - Z\langle X,Y\rangle - \langle Y,[X,Z]\rangle - \langle X,[Y,Z]\rangle + \langle [X,Y],Z\rangle.$$

Ejercicio 5. Sea G un grupo de Lie de dimensión n, sea $\mathfrak{g} = T_e G$ su álgebra de Lie y fijemos un producto interno $g_e : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ sobre \mathfrak{g} .

- (a) Hay una única métrica riemanniana g sobre G que es invariante a izquierda y cuyo valor en $e \in G$ es g_e .
- (b) Sea $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de \mathfrak{g} y sean X_1, \dots, X_n los campos tangentes a G invariantes a izquierda que extienden a los elementos de \mathcal{B} . Muestre que para cada \mathfrak{i} , \mathfrak{j} , es *constante* la función $g_{\mathfrak{i},\mathfrak{j}} = g(X_{\mathfrak{i}}, X_{\mathfrak{j}})$.

Sabemos (porque el corchete de Lie de campos invariantes a izquierda es él mismo invariante a izquierda) que existen constantes $c_{i,i}^k$ tales que

$$[X_i, X_j] = \sum_k c_{i,j}^k X_k.$$

Calcule en términos de los escalares $c_{i,j}^k$ y $g_{i,j}$ los símbolos de Christoffel Γ_{ij}^k de la conexión de Levi-Civita de G con respecto a los campos X_1, \ldots, X_n , de manera que se tenga

$$\nabla_{X_i} X_j = \sum_k \Gamma_{ij}^k X_k.$$

(c) Sea $G = \mathbb{R}_{>0} \times \mathbb{R}$ el grupo de Lie con producto dado por

$$(a,b)\cdot(c,d)=(ac,ad+b)$$

para cada $(a,b),(c,d) \in G$, de manera que G es isomorfo de la forma evidente al grupo de matrices

$$\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a > 0, b \in \mathbb{R} \right\}.$$

El elemento neutro G es e=(1,0) y su álgebra de Lie $\mathfrak{g}=T_eG$ se identifica de manera natural (porque G es un abierto de \mathbb{R}^2) con \mathbb{R}^2 . Dotemos a G de su única métrica invariante a izquierda que en T_eG restringe al producto interno usual de \mathbb{R}^2 . Encuentre todas las geodésicas que pasan por e que pueda.

Calcule (las componentes en una carta del) tensor de curvatura R(X,Y)Z sobre G y la curvatura escalar

$$K(p) = \frac{1}{n(n-1)} \sum_{1 \le i,j \le n} g(R(z_i, z_j) z_i, z_j)$$

para cada $p \in G$, con $\{z_1, \dots, z_n\}$ una base ortonormal de T_pG .

Demostración. Hago cada inciso por separado.

(a) Definimos

$$g_h(v, w) := g_e(d_h L_{h^{-1}}(v), d_h L_{h^{-1}}(w)) \in \mathbb{R}$$

para cada $h \in G$ y $v, w \in T_hG$, que es suave pues es composición de funciones suaves.

Probamos primero que g es una métrica, es decir, que g_h es un producto interno en T_hG para cada punto h de la variedad. Fijamos entonces $h \in G$. Como el diferencial $d_hL_{h^{-1}}$ es una función lineal, así lo es $d_hL_{h^{-1}} \times d_hL_{h^{-1}} : T_hG \times T_hG \to \mathfrak{g} \times \mathfrak{g}$. Al ser g_e un producto interno, se sigue que $g_h = g_e \circ (d_hL_{h^{-1}} \times d_hL_{h^{-1}})$ es bilineal, y más aún es simétrica pues

$$g_h(\nu, w) = g_e(d_h L_{h^{-1}}(\nu), d_h L_{h^{-1}}(w)) = g_e(d_h L_{h^{-1}}(w), d_h L_{h^{-1}}(\nu)) = g_h(w, \nu).$$

Por último, g_h es definida positiva: si $v \in T_hG$, entonces

$$g_h(v, v) = g_e(d_h L_{h^{-1}}(v), d_h L_{h^{-1}}(v)) > 0$$

y como $d_h L_{h^{-1}}$ es un isomorfismo lineal,

$$g_h(\nu,\nu)=0\iff g_e(d_hL_{h^{-1}}(\nu),d_hL_{h^{-1}}(\nu))=0\iff d_hL_{h^{-1}}(\nu)=0\iff \nu=0.$$

Esto prueba la existencia de una tal métrica. Si \tilde{g} es otra métrica invariante a izquierda que vale g_e en la identidad, entonces como

$$d_e L_h \circ d_h L_{h^{-1}} = d_h (L_h \circ L_{h^{-1}}) = d_h (id_G) = id_{T_h G}$$

por invariancia es

$$\widetilde{g}_{h}(\nu, w) = \widetilde{g}_{he}(d_{e}L_{h}(d_{h}L_{h^{-1}}(\nu)), d_{e}L_{h}(d_{h}L_{h^{-1}}(w))) = \widetilde{g}_{e}(d_{h}L_{h^{-1}}(\nu), d_{h}L_{h^{-1}}(w)) \\
= g_{e}(d_{h}L_{h^{-1}}(\nu), d_{h}L_{h^{-1}}(w)) = g_{h}(\nu, w),$$

lo que prueba la unicidad.

(b) Recordemos que por definición es $(X_i)_h = d_e L_h(\nu_i)$ para cada $i \in [n]$ y $h \in G$. Por lo tanto, usando la invariancia a izquierda de la métrica es

$$(g(X_i, X_j))_h = g_h((X_i)_h, (X_j)_h) = g_h(d_eL_h(v_i)), d_eL_h(v_j)) = g_e(v_i, v_j)$$

para todo $h \in G$. Esto muestra que $\langle X_i, X_j \rangle := g(X_i, X_j)$ vale constantemente $g_{i,j} := g_e(\nu_i, \nu_j)$.

En particular, sabemos que para todo campo $Z \in \mathfrak{X}(M)$ es $Z\langle X_i, X_j \rangle \equiv 0$. Usando esto y la fórmula de Koszul, se obtiene que

$$\begin{split} 2\langle \nabla_{X_i} X_j, X_s \rangle &= \langle X_s, [X_i, X_j] \rangle - \langle X_j, [X_i, X_s] \rangle - \langle X_i, [X_j, X_s] \rangle \\ &= \sum_l \langle X_s, c^l_{i,j} X_l \rangle - \sum_l \langle X_j, c^l_{i,s} X_l \rangle - \sum_l \langle X_i, c^l_{j,s} X_l \rangle \\ &= \sum_l c^l_{i,j} g_{s,l} - \sum_l c^l_{i,s} g_{j,l} - \sum_l c^l_{j,s} g_{i,l}. \end{split}$$

Más compactamente, notando $(v_{i,j})_s := \langle \nabla_{X_i} X_j, X_s \rangle$ y contrayendo índices es

$$(\nu_{i,j})_s = \frac{1}{2} \left(c^l_{i,j} g_{s,l} - c^l_{i,s} g_{j,l} - c^l_{j,s} g_{i,l} \right).$$

Por otro lado si $\{\Gamma_{ij}^k\}_{i,j,k}$ son las funciones⁴ que satisfacen $\nabla_{X_i}X_j=\sum_k\Gamma_{ij}^kX_k$ en todo punto, haciendo el producto interno contra X_s en ambos lados debe ser

$$(\nu_{ij})_s = \sum_k \Gamma^k_{ij} g_{k,s}$$

o dicho de otra forma,

$$\frac{1}{2} \left(c_{i,j}^l g_{s,l} - c_{i,s}^l g_{j,l} - c_{j,s}^l g_{i,l} \right) = \Gamma_{i,j}^k g_{k,s}.$$

En conclusión, los símbolos de Christoffel se describen en términos las coordenadas de los productos internos y corchetes de Lie de los campos como

$$\Gamma^k_{ij} = \frac{1}{2}g^{k,s}\left(c^l_{i,j}g_{s,l} - c^l_{i,s}g_{j,l} - c^l_{j,s}g_{i,l}\right).$$

(c) Como la métrica en g extiende el producto interno en la identidad dado por el usual de \mathbb{R}^2 , es $g_{i,j} = \delta_{ij}$. Por otro lado, si fijamos la base ortonormal de T_eG que corresponde a los *ganchos* $\mathcal{B} = \{\partial_x|_e, \partial_y|_e\}$, veamos como quedan los campos (que notamos X e Y respectivamente) que extienden a estos vectores de forma G-invariante.

Fijado un punto (x, y), la multiplicación por esta a izquierda es

$$L_{(x,y)}(z,w) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \cdot \begin{pmatrix} z \\ w \end{pmatrix} + \begin{pmatrix} 0 \\ y \end{pmatrix}$$

y por lo tanto su diferencial se identifica con la transformación lineal de \mathbb{R}^2 que se corresponde con multiplicación por $x \cdot I_2 \in M_2\mathbb{R}$. Esto nos dice que $X \equiv x \partial_x$ e $Y \equiv x \partial_y$.

Para conocer los coeficientes c_{ij}^k , calculamos los corchetes de Lie de X e Y. Ya sabemos que [X,X]=[Y,Y]=0 y por antisimetría es -[Y,X]=[X,Y], así que calculamos este último,

$$\begin{split} [x\partial_x, x\partial_y] &= \partial_x(x)\partial_y + x[\partial_x, x\partial_y] \\ &= \partial_x(x)\partial_y - x[x\partial_y, \partial_x] = \partial_x(x)\partial_y - x(\partial_y(x)\partial_x + x[\partial_y, \partial_x]) \\ &= \partial_x(x)\partial_y - x\partial_y(x)\partial_x = \partial_y. \end{split}$$

⁴En principio, estas funciones existen por el solo hecho de que los campos $X_1, ..., X_n$ en cada punto $h \in G$ dan una base de $T_h G$. Sin embargo, veremos *a posteriori* que son suaves.

Por lo tanto se tiene⁵ $c_{11}^k = c_{22}^k = 0$ para todo k y

$$c_{12} = (0, 1/x), \quad c_{21} = (0, -1/x).$$

Volviendo a la expresión de los simbolos de Christoffel, como $g_{i,j} = \delta_{i,j}$ queda

$$\Gamma_{ij}^{k} = \frac{1}{2}(c_{ij}^{k} - c_{ik}^{j} - c_{jk}^{i}).$$

Concretamente,

$$\begin{split} \Gamma_{11} &= (0,0), \quad \Gamma_{22} = (1/x,0), \ y \\ \Gamma_{12} &= (0,0), \quad \Gamma_{21} = (0,-1/x). \end{split}$$

Ahora sí, calculo todas las geodésicas posibles alrededor de $e \in G$. Como en este caso la carta global es la identidad, aplicando la ecuación de las geodésicas

$$(x^k)'' + \frac{1}{2}(\Gamma_{ij}^k + \Gamma_{ji}^k)(x^i)'(x^j)' = 0$$

a una curva $\gamma(t) = (x(t), y(t))$ resulta

$$\begin{cases} x \cdot x'' = -(y')^2 \\ x \cdot y'' = x' \cdot y' \end{cases}$$

En particual, las curvas que cumplen $x''=-\alpha^2x$ e $y'=\alpha x$ satisfacen la ecuación, por lo que las curvas

$$\gamma(t) = (c\sin(\alpha t) + d\cos(\alpha t), d\sin(\alpha t) - c\cos(\alpha t) + b)$$

son soluciones. Además pedimos $(d,b-c)=\gamma(0)=e=(1,0)$ por lo que debe ser d=1,c=b. Por otro lado, es $\gamma'(0)=(\alpha c,\alpha)$. Por unicidad local, tenemos finalmente que la geodésica que pasa por e y tiene velocidad $\lambda_1 \partial_x + \lambda_2 \partial_y$ es

$$\gamma_{\lambda_1,\lambda_2}(t) = (\cos(\lambda_2 t), \sin(\lambda_2 t)) + \frac{\lambda_1}{\lambda_2}(\sin(\lambda_2 t), -\cos(\lambda_2 t) + 1)$$

si $\lambda_2 \neq 0$ y $\gamma_{\lambda_1}(t) = (\lambda_1 t + 1, 0)$ en caso contrario.

Me faltó calcular las coordenadas del tensor de curvatura y la curvatura escalar.

 $^{^5}$ Notar que $(x,y)\mapsto 1/x$ es suave pues el abierto $G\subset\mathbb{R}^2$ no contiene ningún punto de primera coordenada nula.

Lema 7. Sea M una variedad de dimensión n y $\omega, \eta \in \Omega^{\bullet}(M)$. Si ω y η son cerradas y ω es exacta, entonces $\omega \wedge \eta$ es exacta. Más aún, si $\omega = d\kappa$ entonces es $\omega \wedge \eta = d((-1)^{|\omega|}\omega \wedge \kappa)$.

Demostración. Por un cálculo directo, es

$$\begin{split} d((-1)^{|\omega|}\omega\wedge\kappa) &= (-1)^{|\omega|}d\omega\wedge\kappa + (-1)^{|\omega|}(-1)^{|\omega|}\omega\wedge d\kappa \\ &= 0\wedge\kappa + (-1)^{2|\omega|}\omega\wedge\eta = \omega\wedge\eta. \end{split}$$

Teorema 8 (fórmula de Künneth). Sean N y M dos variedades compactas, conexas y orientables. Entonces, para cada $n \in N$ tenemos un isomorfismo

$$H^n(M\times N)\simeq \bigoplus_{r+s=n} H^r(M)\otimes H^s(N)$$

inducido por las funciones bilineales

$$([\omega],[\eta])\in H^r(M)\times H^s(N)\mapsto [\pi_1^*(\omega)\wedge \pi_2^*(\eta)]\in H^n(M\times N)$$

para cada $r, s \in \mathbb{N}_0$ tales que r + s = n.

Ejercicio 6. Sea M una variedad compacta y orientable de dimensión 4k.

(a) Muestre que hay una función bilineal no degenerada y simétrica

$$\beta:H^{2k}(M)\times H^{2k}(M)\to \mathbb{R}$$

tal que si ω y η son elementos cerrados de $\Omega^{2k}(M)$ entonces

$$\beta([\omega], [\eta]) = \int_{M} \omega \wedge \eta.$$

Llamamos la signatura de la forma bilineal β la signatura de M.

(b) Determine la signatura de S^4 , de $S^2 \times S^2$, del toro T^4 , del espacio proyectivo P_C^2 y el producto $P_C^2 \times P_C^2$.

Demostración. Resuelvo cada inciso por separado.

(a) Como la aplicación $(\omega,\eta)\in\Omega(M)^{2k}\times\Omega(M)^{2k}\mapsto\omega\wedge\eta\in\Omega(M)^{4k}$ es bilineal, y la integral (que es existe y es finita para toda forma pues M es compacta y orientable) es lineal, tenemos definida una aplicación

$$b:(\omega,\eta)\in\Omega^{2k}(M)\times\Omega^{2k}(M)\mapsto\int_M\omega\wedge\eta.$$

Si ω y η son dos 2k-formas cerradas y α , β son dos (2k-1)-formas cualesquiera, se tiene que

$$(\omega + d\alpha) \wedge (\eta + d\beta) = \omega \wedge \eta + \omega \wedge d\beta + d\alpha \wedge \eta + d\alpha \wedge d\beta.$$

Como todos los términos del lado derecho excepto el primero son el wedge de dos formas cerradas con una de ellas exacta, por el Lema 7 en definitiva existe $\kappa \in \Omega^{4k-1}(M)$ tal que

$$(\omega + d\alpha) \wedge (\eta + d\beta) = \omega \wedge \eta + d\kappa.$$

Ahora, aplicando b y usando el teorema de Stokes es

$$b(\omega + d\alpha, \eta + d\beta) = \int_{M} \omega \wedge \eta + \int_{M} d\kappa = \int_{M} \omega \wedge \eta + \overbrace{\int_{\partial M} i^{*}(\kappa)}^{=0} = b(\omega, \eta)$$

ya que M no tiene borde.

Esto termina de mostrar que la restricción de b a las formas cerradas en ambas coordenadas pasa al cociente por la identificación de formas cohomólogas, induciendo así una aplicación \mathbb{R} -bilineal

$$\beta: ([\omega], [\eta]) \in H^{2k}(M) \times H^{2k}(M) \mapsto \int_M \omega \wedge \eta \in \mathbb{R}.$$

Veamos ahora que tanto b como β son simétricas pues la operación wedge lo es en $\Omega^{2k}(M) \times \Omega^{2k}(M)$. Si $\sigma \in S_{4k}$, entonces $\widetilde{\sigma} = \sigma(1\ 4k)(2\ (4k-1))\cdots(2k\ (2k+1))$ tiene el mismo signo que σ ya que ambas permutaciones difieren en 2k transposiciones. Además la aplicación $\sigma \mapsto \widetilde{\sigma}$ es inversible pues corresponde a multiplicar a derecha por un elemento de S_{4k} .

Por el mismo motivo que antes, de la multilinealidad de las formas es $\sigma \cdot \eta \otimes \omega = (-1)^{2k} \cdot \widetilde{\sigma} \cdot \omega \otimes \eta = \widetilde{\sigma} \cdot \omega \otimes \eta$ para toda $\omega, \eta \in \Omega^{2k}(M)$ y $\sigma \in \mathbb{S}_{4k}$. En consecuencia resulta

$$\begin{split} \eta \wedge \omega &= \frac{1}{2k!2k!} \sum_{\sigma \in S_{4k}} (-1)^{\sigma} \sigma \cdot \eta \otimes \omega = \frac{1}{2k!2k!} \sum_{\sigma \in S_{4k}} (-1)^{\widetilde{\sigma}} \widetilde{\sigma} \cdot \omega \otimes \eta \\ &= \frac{1}{2k!2k!} \sum_{\sigma \in S_{4k}} (-1)^{\sigma} \sigma \cdot \omega \otimes \eta = \omega \wedge \eta. \end{split}$$

Para terminar, fijemos $[\omega] \in H^{2k}(M)$. Como $(-1)^{|\omega|} = (-1)^{2k} = 1$, el Teorema 5 nos dice en particular que si $\beta([\omega], -)$ es la función nula, entonces $[\omega] = 0$. En otras palabras, la función bilineal β es no degenerada.

- (b) Calculo cada caso por separado,
 - $\underline{\mathbb{S}^4}$: en este caso sabemos que $H^2(\mathbb{S}^4)=0$, y por lo tanto β es nula. En consecuencia, la signatura de \mathbb{S}^4 es 0.
 - $\underline{\mathbb{S}^2 \times \mathbb{S}^2}$: en vista de la fórmula de Künneth sabemos que

$$H^2(\mathbb{S}^2 \times \mathbb{S}^2) \simeq H^2(\mathbb{S}^2) \otimes H^0(\mathbb{S}^2) \oplus H^0(\mathbb{S}^2) \otimes H^2(\mathbb{S}^2) \simeq H^2(\mathbb{S}^2) \oplus H^2(\mathbb{S}^2),$$

y más aún una base de $H^2(S^2 \times S^2)$ es $\mathcal{B} = \{[\pi_1^*(\omega)], [\pi_2^*(\omega)]\}$ con $\omega \in H^2(S^2)$ una forma de volumen. Más aún, el mapa de la fórmula de Künneth para grado 2k nos dice que $[\pi_1^*(\omega) \wedge \pi_2^*(\omega)]$ es no nula (y usando el Teorema 1, su integral es por tanto no nula).

Ahora como $H^4(\mathbb{S}^2) = 0$ es

$$\begin{split} [\pi_1^*(\omega)] \wedge [\pi_1^*(\omega)] &= [\pi_1^*(\omega \wedge \omega)] = 0, \\ [\pi_1^*(\omega)] \wedge [\pi_2^*(\omega)] &= [\pi_1^*(\omega) \wedge \pi_2^*(\omega)], \\ [\pi_2^*(\omega)] \wedge [\pi_1^*(\omega)] &= [\pi_2^*(\omega) \wedge \pi_1^*(\omega)] = [\pi_1^*(\omega) \wedge \pi_2^*(\omega)], \ y \\ [\pi_2^*(\omega)] \wedge [\pi_2^*(\omega)] &= [\pi_2^*(\omega \wedge \omega)] = 0, \end{split}$$

notando $\alpha:=\int_{S^2\times S^2}\pi_1^*(\omega)\wedge\pi_2^*(\omega)$ la matriz de β en la base $\mathcal B$ es

$$[\beta]_{\mathcal{B}} = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} = \alpha \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Por un cálculo directo, sabemos que $[\pi_1^*(\omega)] + [\pi_2^*(\omega)]$ y $[\pi_1^*(\omega)] - [\pi_2^*(\omega)]$ son autovectores de $[\beta]_{\mathcal{B}}$ de autovalores a y $-\alpha$ respectivamente, por lo que la signatura de $\mathbb{S}^2 \times \mathbb{S}^2$ es 0.

• \mathbb{T}^4 : una vez más, usamos la fórmula de Künneth. Vemos de esta forma que

$$\begin{split} H^2(\mathbb{T}^4) &\simeq H^0(\mathbb{T}^2) \otimes H^2(\mathbb{T}^2) \oplus H^2(\mathbb{T}^2) \otimes H^0(\mathbb{T}^2) \otimes H^1(\mathbb{T}^2) \otimes H^1(\mathbb{T}^2) \\ &\simeq H^2(\mathbb{T}^2) \oplus H^2(\mathbb{T}^2) \oplus (H^1(\mathbb{T}^2) \otimes H^1(\mathbb{T}^2)). \end{split}$$

Con un argumento similar se tiene que

$$H^2(\mathbb{T}^2) \simeq H^1(\mathbb{S}^1) \otimes H^1(\mathbb{S}^1) \text{ y } H^1(\mathbb{T}^2) \simeq H^1(\mathbb{S}^1) \oplus H^1(\mathbb{S}^1),$$

por lo que en definitiva es

$$\begin{split} H^2(\mathbb{T}^4) &\simeq H^2(\mathbb{T}^2) \oplus H^2(\mathbb{T}^2) \oplus (H^1(\mathbb{T}^2) \otimes H^1(\mathbb{T}^2)) \\ &\simeq (H^1(\mathbb{S}^1) \otimes H^1(\mathbb{S}^1)) \oplus (H^1(\mathbb{S}^1) \otimes H^1(\mathbb{S}^1)) \oplus [(H^1(\mathbb{S}^1) \oplus H^1(\mathbb{S}^1)) \otimes (H^1(\mathbb{S}^1) \oplus H^1(\mathbb{S}^1))]. \end{split}$$

Persiguiendo los isomorfismos del Teorema 7 y usando que proyectar de \mathbb{T}^4 a una copia de \mathbb{T}^2 y luego a la 1-esfera es como considerar directamente una proyección $\pi_i: \mathbb{T}^4 \to \mathbb{S}^1$, obtenemos una base de $H^2(\mathbb{T}^4)$ dada por

$$\mathfrak{B} = \{ \; [\pi_i^*(\eta) \wedge \pi_j^*(\eta)] \; \}_{1 \leq i < j \leq 4}$$

con η una forma de volumen de S^1 , ordenada según el orden lexicográfico de ij.

Como en el caso de $\mathbb{S}^2 \times \mathbb{S}^2$, sabemos que el wedge de dos elementos que «comparten un índice» de \mathcal{B} es nulo pues $H^2(\mathbb{S}^1)=0$. Para los otros casos, reordenando obtenemos $\pm[\pi_1^*(\eta)\wedge\pi_2^*(\eta)\wedge\pi_3^*(\eta)\wedge\pi_4^*(\eta)]$. Usando la fórmula de Künneth otra vez o apelando al Lema 4, sabemos que $\alpha:=\int_{\mathbb{T}^4}\pi_1^*(\eta)\wedge\pi_2^*(\eta)\wedge\pi_3^*(\eta)\wedge\pi_4^*(\eta)\neq 0$ y entonces por un cálculo directo es

$$[eta]_{eta} = lpha \cdot egin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Notando $\omega_{ij} = [\pi_i^*(\eta) \wedge \pi_j^*(\eta)]$ obtenemos que las clases de cohomología $[\omega_{14} + \omega_{23}]$, $[-\omega_{13} + \omega_{24}]$ y $[\omega_{12} + \omega_{34}]$ son autovectores de de $[\beta]_{\mathbb{B}}$ autovalor α ; y las clases de cohomología $[-\omega_{14} + \omega_{23}]$, $[\omega_{13} + \omega_{24}]$ y $[-\omega_{12} + \omega_{34}]$ son autovectores de $[\beta]_{\mathbb{B}}$ de autovalor $-\alpha$. Consecuentemente, la signatura de \mathbb{T}^4 es cero.

• P²_C: voy a usar algunos hechos sobre la chomología del espacio proyectivo complejo. En primer lugar, sabemos que es

$$H^k(P^2_{\mathbb{C}}) = \begin{cases} \mathbb{R} & \text{si } 2|k \text{ y } k \leq 4 \\ 0 & \text{en caso contrario} \end{cases}$$

y más aún, tenemos una 2-forma $\omega \in H^2(P^2_\mathbb{C})$ tal que $\omega \wedge \omega$ es una forma de volumen y $\alpha := \int_{P^2_\mathbb{C}} \omega \wedge \omega > 0$. En consecuencia, en la base de $H^2(P^2_\mathbb{C})$ dada por $\{\omega\}$ la matriz de β es simplemente (α) . Concluimos entonces que la signatura de $P^2_\mathbb{C}$ es 1.

• $P_C^2 \times P_C^2$: en vista de lo anterior y usando que

$$H^4(P^2_\mathbb{C}\times P^2_\mathbb{C})\simeq H^4(P^2_\mathbb{C})\oplus (H^2(P^2_\mathbb{C})\otimes H^2(P^2_\mathbb{C}))\oplus H^4(P^2_\mathbb{C}),$$

por el mismo argumento que antes vemos que una base de $H^4(P_C^2)$ proviene del pullback 4-formas y 2-formas de P_C^2 por cada proyección. Concretamente, si $H^2(P_C^2) = \langle [\omega] \rangle$ es la forma del inciso anterior, entonces

$$\mathcal{B} = \{ [\pi_1^*(\omega \wedge \omega)], [\pi_2^*(\omega \wedge \omega)], [\pi_1^*(\omega) \wedge \pi_2^*(\omega)] \}$$

es una base de $H^4(P^2_\mathbb{C}\times P^2_\mathbb{C})$. Como $[\omega\wedge\omega\wedge\omega]\in H^6(P^2_\mathbb{C})=0$, es

$$[\pi_1^*(\omega) \wedge \pi_2^*(\omega)] \wedge [\pi_1^*(\omega \wedge \omega)] = 0 \ y \ [\pi_1^*(\omega) \wedge \pi_2^*(\omega)] \wedge [\pi_2^*(\omega \wedge \omega)] = 0.$$

Del mismo modo tenemos que

$$[\pi_1^*(\omega \wedge \omega)] \wedge [\pi_1^*(\omega \wedge \omega)] = [\pi_2^*(\omega \wedge \omega)] \wedge [\pi_2^*(\omega \wedge \omega)] = 0$$

pues $H^8(P_{\mathbb{C}}^2) = 0$. Por último, usando queda

$$[\pi_1^*(\omega) \wedge \pi_2^*(\omega)] \wedge [\pi_1^*(\omega) \wedge \pi_2^*(\omega)] = [\pi_1^*(\omega) \wedge \pi_1^*(\omega)] \wedge [\pi_2^*(\omega) \wedge \pi_2^*(\omega)]$$
$$= [\pi_1^*(\omega \wedge \omega)] \wedge [\pi_2^*(\omega \wedge \omega)]$$

Notando $\mathfrak{a}=\int_{P_C^2\times P_C^2}\pi_1^*(\omega\wedge\omega)\wedge\pi_2^*(\omega\wedge\omega)>0$ es

$$[\beta]_{\mathcal{B}} = \alpha \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

que tiene a $[\pi_1^*(\omega \wedge \omega)] + [\pi_2^*(\omega \wedge \omega)]$ y $[\pi_1^*(\omega \wedge \omega)] + [\pi_2^*(\omega \wedge \omega)] + [\pi_1^*(\omega) \wedge \pi_2^*(\omega)]$ como autovectores de autovalor a y a $[\pi_1^*(\omega \wedge \omega)] - [\pi_2^*(\omega \wedge \omega)]$ como autovector de autovalor $-\alpha$. Por lo tanto, la signatura de $P_\mathbb{C}^2 \times P_\mathbb{C}^2$ es 1.

Ejercicio 7. Sea $M \subseteq \mathbb{R}^3$ una superficie orientada y sin borde dotada de su métrica riemanniana inducida por la de \mathbb{R}^3 y supongamos que hay un campo vectorial $Z \in \mathfrak{X}(M)$ sobre M que no se anula en ningún punto.

- (a) Muestre que existe una única forma de elegir campos $X, Y \in \mathfrak{X}(M)$ tales que para cada $p \in M$ se tiene que (X_p, Y_p) es una base ortonormal positiva de T_pM y $Z_p = \|Z_p\|X_p$.
- (b) Hay 1-formas $\alpha, \beta \in \Omega^1(M)$ tales que $\alpha(X) = \beta(Y) = 1$ y $\alpha(Y) = \beta(X) = 0$. Más aún, existe una forma $\eta \in \Omega^1(M)$ tal que

$$d\alpha = \eta \wedge \beta$$
, $d\beta = -\eta \wedge \alpha$.

La forma $\sigma = \alpha \wedge \beta$ no depende de la elección de Z, es una forma de volumen sobre M que determina su orientación y es, de hecho, la forma de volumen riemanniano sobre M.

(c) Existe una función diferenciable $K : M \to \mathbb{R}$ tal que

$$d\eta = -K \cdot \sigma$$

y esta función no depende de la elección del campo Z.

- (d) Si M es compacta, entonces $\int_M K \cdot \sigma = 0$.
- (e) Usando los resultados anteriores, muestre que no hay sobre S^2 un campo vectorial tangente que no se anula en ningún punto.

Demostración. Hago cada inciso por separado.

(a) Antes que nada, recordemos que para cualquier \mathbb{R} -espacio vectorial \mathbb{V} de dimensión 2 con producto interno y vector unitario $v \in \mathbb{V}$, existe un único vector unitario $w \in \mathbb{V}$ tal que $\{v, w\}$ es una base ortonormal orientada positivamente.

En efecto, al $\langle v \rangle^{\perp}$ tener dimensión 1, está generado por cierto vector $w_0 \in \mathbb{V}$. Luego, de existir w debe ser de la forma $\lambda \cdot w_0$ para cierto $\lambda \in \mathbb{R}$. Como $\{v, w\}$ será orientada positivamente si y sólo si es $1 = \det(v, \lambda w_0) = \lambda \det(v, w_0)$ y $\{v, w_0\}$ es base, podemos tomar $w := \det(v, w_0)^{-1}w_0$. Más aún, el anterior argumento garantiza que esta es la única elección posible.

Volviendo al ejercicio, como el campo Z es nunca nulo, la función $\frac{1}{\|Z\|}$ está bien definida y es suave, y lo mismo ocurre para el campo $X \in \mathfrak{X}(M)$ dado por

$$X_p := \frac{Z_p}{\|Z_p\|}$$

para cada $p \in M$. Notemos además que este es el único campo posible que satisface $Z \equiv \|Z\|X$.

Por la observación inicial, X induce entonces un único campo $Y: M \to TM$ tal que $\{X_p, Y_p\}$ es una base ortonormal orientada positivamente de T_pM para cada $p \in M$.

Me faltó ver que Y es un campo suave.

(b) Definimos $\alpha := \langle X, - \rangle$ y $\beta := \langle Y, - \rangle$. Estas son 1-formas pues en cada punto $\mathfrak{p} \in M$ dan una función lineal $\nu \mapsto \langle X_{\mathfrak{p}}, \nu \rangle$ ó $\nu \mapsto \langle Y_{\mathfrak{p}}, \nu \rangle$ de $T_{\mathfrak{p}}M$, y dependen suavemente de los campos y la métrica. Como $\{X,Y\}$ dá una base ortonormal en cada punto, se sigue que $\alpha(X) = \|X\| = 1 = \|Y\| = \beta(Y)$ y $\alpha(Y) = \beta(X) = \langle X,Y \rangle = 0$.

Por otro lado, su wedge $\sigma = \alpha \wedge \beta$ satisface

$$\sigma_{\mathfrak{p}}(X_{\mathfrak{p}}, Y_{\mathfrak{p}}) = \alpha(X_{\mathfrak{p}})\beta(Y_{\mathfrak{p}}) - \alpha(Y_{\mathfrak{p}})\beta(X_{\mathfrak{p}}) = 1$$

para cada $p \in M$. Como $\{X_p, Y_p\}$ es una base ortonormal de T_pM , la forma σ es necesariamente la forma de volumen riemanniano de M. En particular, está determinada por la métrica y no depende del campo Z.

Me faltó ver que η existe y no depende de Z.

(c) Como para cada punto $p \in M$ las funciones $(d\eta)_p$ y σ_p son funciones multilineales alternadas, y $Alt^2(T_pM)$ tiene dimension 1, sabemos que existe $K_p \in \mathbb{R}$ tal que $-K_p\sigma_p = (d\eta)_p$ para cada $p \in M$. Tenemos bien definida así una función $K: M \to R$. Para terminar, veamos que es suave.

Fijando un punto $p \in U$ y una carta (U, ϕ) con $U \ni p$, sabemos que en este abierto d η y σ se expresan como

$$\sigma = S \cdot d \, \phi_1 \wedge \phi_2 \, y \, \eta = E \cdot d\phi_1 \wedge d\phi_2$$

para ciertas $S, E \in C^{\infty}(M)$. Más aún, como $\sigma_p \not\equiv 0$ para todo $p \in M$, sabemos que S es nunca nula. Evaluando en cada punto de U, por como definimos K debe ser K = -E/S, Y esta última es una función suave.

(d) Si M es compacta, la forma σ tiene soporte compacto. Por lo tanto, tiene integral finita en M y más aún usando el teorema de Stokes es

$$\int_{M} K \cdot \sigma = -\int_{M} (-K \cdot \sigma) = -\int_{M} d\eta = -\int_{\partial M} i^{*}(\eta) = 0$$

pues M no tiene borde.