MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 9 de julio de 2020.

Total Dual Integral (TDI)

Sea G = (V, E) un grafo conexo y no dirigido. El objetivo de este problema es probar que el sistema que define al polítopo de los bosques de G, $B(G) = \{x \in \mathbb{R}^E : x(E(S)) \le |S| - 1, \forall \emptyset \ne S \subseteq V, x \ge 0\}$ es TDI.

(a) Escriba el dual (D) del problema máx $\{c^Tx: x \in B(G)\}$, usando variables $\{y_S\}_{S \subset V, S \neq \emptyset}$.

Solución: El primal y dual son:

$$(L(c)) \text{ máx } c^T x$$

$$(D(c)) \text{ mín } \sum_{\emptyset \neq S \subseteq V} y_S(|S| - 1)$$

$$x(E(S)) \leq |S| - 1 \quad \forall \emptyset \neq S \subseteq V$$

$$\sum_{S: \{u,v\} \subseteq S} y_S \geq c_{uv} \qquad \forall uv \in E$$

$$x_e \geq 0 \qquad \forall e \in E$$

$$y_S \geq 0 \qquad \forall \emptyset \neq S \subseteq V$$

(b) Considere una solución dual óptima y^* que minimice la cantidad $\Psi(y) = \sum_{S \subseteq V, S \neq \emptyset} y_S |S| |V \setminus S|$ y pruebe que el soporte \mathcal{L} de y^* es una familia **laminar**, es decir que no existen dos conjuntos A, B intersectantes en su soporte¹. ¡Cuidado! Recuerde que no existe la variable y_{\emptyset} .

Solución: Sea \mathcal{L} el soporte de $y^* \in \mathbb{R}^{2^V}$ y supongamos por contradicción que $A, B \in \mathcal{L}$ son intersectantes. Como A y B son intersectantes, $A \cap B \neq \emptyset$ así que no hay problema con hablar de la variable $y^*_{A \cap B}$.

Sea $0 < \varepsilon \le \min\{y_A^*, y_B^*\}$ y definamos \hat{y} como el vector obtenido de y^* bajando en ε el valor de y_A^*, y_B^* y subiendo en ε el valor de $y_{A \cap B}^*, y_{A \cup B}^*$.

Paso 1: Veamos que \hat{y} es dual factible:

Por definición de \hat{y} tenemos que $\hat{y}_S \ge 0$. En lo que sigue usamos la notación de indicatriz p = 1 si y solo si p es verdadero. Para $uv \in E$ notamos que

$$\Delta := \sum_{S: \{u,v\} \subseteq S} (\hat{y}_S - y_S^*) = \varepsilon(\{u,v\} \subseteq A \cup B + \{u,v\} \subseteq A \cap B - \{u,v\} \subseteq A - \{u,v\} \subseteq B)$$

$$\tag{1}$$

Veamos que el lado derecho de (1) es al menos 0. Lo más sencillo es analizar los términos negativos:

Si se tienen ambos $\{u,v\} \subseteq A$ y $\{u,v\} \subseteq B$, entonces también se tienen $\{u,v\} \subseteq A \cap B$ y $\{u,v\} \subseteq A \cup B$ por lo que el lado derecho es 0.

Si solo uno de $\{u,v\} \subseteq A$ y $\{u,v\} \subseteq B$ es cierto, entonces también tenemos $\{u,v\} \subseteq A \cup B$ y luego el lado derecho es 2-1 o 1-1, en cualquier caso es mayor o igual que 0.

Si ninguno de $\{u,v\}\subseteq A$ y $\{u,v\}\subseteq B$ es cierto, los términos del lado derecho son mayores o iguales que 0.

Usando (1) se concluye que $\sum_{S:\{u,v\}\subseteq S} \hat{y}_S = \Delta + \sum_{S:\{u,v\}\subseteq S} y_S^* \ge c_{uv}$. Como esto es para todo $uv \in E$ tenemos que \hat{y} es dual factible.

Paso 2: Veamos que \hat{y} es dual óptimo. Esto se tiene pues la diferencia en objetivo es

$$\sum_{\emptyset \neq S \subseteq V} (\hat{y}_S(|S|-1) - y^*(|S|-1)) = \varepsilon[(|A \cup B|-1) + (|A \cap B|-1) - (|A|-1) - (|B|-1))] = 0.$$

 $^{^1}A, B$ se dicen intersectantes si $A \setminus B, B \setminus A, A \cap B$ son todos no vacíos.

(la igualdad a 0 se tiene por propiedad de cardinales: $|A \cup B| = |A| + |B| - |A \cap B|$)

Paso 3: Veamos que \hat{y} tiene menor potencial que y^* . Esto se tiene pues (esto se vio en clase, no es necesario probar nuevamente la segunda igualdad)

$$\Psi(\hat{y}) - \Psi(y^*) = \varepsilon[|A \cup B||V \setminus (A \cup B)| + |A \cap B||V \setminus (A \cap B)| - |A||V \setminus A| - |B||V \setminus B|]$$
$$= -2\varepsilon|A \setminus B||B \setminus A|$$

y esto es menor que 0 pues $A \setminus B, B \setminus A$ son no vacíos.

(c) Sea W un conjunto finito, $\mathcal{L} \subseteq 2^W$ una familia laminar y $\mathcal{E} \subseteq 2^W$ una familia de conjuntos. Pruebe que la matriz $M \in \{0,1\}^{\mathcal{E} \times \mathcal{L}}$ dada por $M_{I,J} = \begin{cases} 1 & \text{si } I \subseteq J, \\ 0 & \text{en otro caso,} \end{cases}$ es totalmente unimodular (TU)

Indicación: Use Ghouila-Houri asignando signos en las columnas adecuadamente.

Solución:

Sea $\mathcal{L}' \subseteq \mathcal{L}$ un subconjunto de columnas de la matriz M y notamos que \mathcal{L}' sigue siendo laminar. Asignemos valor 1 a todos los conjuntos X que están incluidos en un número par de conjuntos de \mathcal{L}' y -1 a todos los conjuntos incluidos en un número impar. En un dibujo, esto se ve asi:

Para cualquier I fijo, los conjuntos de \mathcal{L}' que contienen a I forman una cadena: $J_1 \subseteq J_2 \subseteq \cdots \subseteq J_k$ y los signos de J_1, J_2, \ldots, J_k alternan por definición. Luego $\sum_J \operatorname{signo}(J) M_{I,J}$ es 0, 1 o -1. Por Ghoulia-Houri, la matriz M es totalmente unimodular.

(d) Usando las partes (b) y (c), pruebe que el sistema que define B(G) es totalmente dual integral (TDI). Concluya que B(G) es integral.

Solución:

El sistema que define a B(G) tiene datos racionales. Sea $c \in \mathbb{Z}^E$ una función objetivo con coeficientes enteros, tal que L(c) es finito. De la parte (b) concluimos que el dual D(c) tiene una solución y^* con soporte \mathcal{L} laminar. El sistema D'(c) obtenido de D(c) al restringirnos a las variables del soporte es de la forma $\min\{\sum_{S\in\mathcal{L}}y_S(|S|-1)\colon My\geq 0, y\in\mathbb{R}_+^{\mathcal{L}}\}$ para cierta matriz $M\in\{0,1\}^{E\times\mathcal{L}}$ que cumple $M_{\{u,v\},S}=1$ si y solo si $\{u,v\}\subseteq S$. Considerando E como una familia de conjuntos (de cardinal 2) de V, tenemos que M es de la forma considerada en la parte (c), y luego M es totalmente unimodular.

Se concluye que D'(c) tiene alguna solución óptima \bar{y} entera. Como además el óptimo de D(c) es factible en D'(c) se concluye que \bar{y} es óptima en D(c), y luego el sistema original es TDI.

Para terminar notamos que el sistema que define a B(G) tiene vector lado derecho entero. Como el sistema es TDI se concluye que B(G) es polítopo integral.