Review of Technology

STA6349: Applied Bayesian Analysis

Spring 2025

Introduction

- Welcome to Applied Bayesian Analysis Spring 2025!
 - → Canvas set up
 - → Syllabus
 - → Discord
 - → R/RStudio
 - → Quarto
 - → GitHub
 - → Resources

Introduction

- General topics:
 - → Probability rules and distributions
 - → Bayes Theorem
 - → Prior distributions
 - → Posterior distributions
 - → Conjugate families
 - → Beta-Binomial, Normal-Normal, and Gamma-Poisson models
 - → Posterior simulation
 - → Posterior inference
 - → Linear regression
- This is an applied class.

GitHub

- Our course lectures and labs are posted on GitHub.
- Please bookmark the repository: GitHub for STA6349.
- You will want to look at my .qmd files for formatting / LATEX purposes.
- Feel free to poke around my GitHub to see materials for other classes.

R/RStudio

- We will be using R in this course.
 - → I use the RStudio IDE, however, if you would like to use another IDE, that is fine.
- It is okay if you have not used R before!
- Full disclosure: I am a **biostatistician** first, **programmer** second.
 - → This means that I focus on the application of statistical methods and not on "understanding" the innerworkings of R.
 - R is a tool that we use, like how SAS, JMP, Stata, SPSS, Excel, etc. are tools.
 - → Sometimes my code is not elegant/efficient, and that's okay! Because our focus is on the application of methods, we are interested in the code working.
 - → I have learned so much from my students since implementing R in the classroom.
 - → Do not be afraid to teach me new things!
- This is an applied class.

R/RStudio

- You can install R and RStudio on your computer for free.
 - → R from CRAN
 - → RStudio from Posit
- Alternative to installing: RStudio Server hosted by UWF HMCSE
- Do not use Citrix.
- I encourage you to install R on your own machine if you are able.
 - → In the "real world," you will not have access to the server.
 - → Installing on your own machine will help your future self troubleshoot issues.

Tidy Data

Journal article: *Tidy Data by Wickham* (2014, *Journal of Statistical Software*)

Book chapter: Data Tidying by Wickham, Çetinkaya-Rundel, and Grolemund

- There are three interrelated rules that make a dataset tidy:
 - 1. Each variable is a column; each column is a variable.
 - 2. Each observation is a row; each row is an observation.
 - 3. Each value is a cell; each cell is a single value.

- tibble for modern data frames.
- readr and haven for data import.
 - → readr is pulled in with tidyverse
 - → haven needs to be called in on its own
- tidyr for data tidying.
- dplyr for data manipulation.
- ggplot2 for data visualization.
- It is not possible for me to teach you everything you will ever need to know about programming in R.
 - → Good resource for tidyverse: data science in a box

- A major advantage of using tidyverse is the common "language" between the functions.
- Another advantage: the pipe operator, %>%.
 - → Yes, there is a pipe operator now included in base R. No, I do not use it.
 - → Here is a discussion of similarities and differences from Hadley himself.
 - → By default, %>% deposits everything that came before into the first argument of the next function.
 - → If we want to insert it elsewhere, we can indicate that with a "." in the function.

```
1 lm(body_mass_g ~ flipper_length_mm, data = penguins)
2
3 penguins %>% lm(body_mass_g ~ flipper_length_mm, data = .)
```

• If we try to use a function before calling its package in, we will see an error.

```
1 sw <- tibble(starwars) %>% filter(mass < 100)
```

Error in tibble(starwars) %>% filter(mass < 100): could not find function "%>%"

• We are good to go after calling in **tidyverse**.

```
1 library(tidyverse)
2 sw <- tibble(starwars) %>% filter(mass < 100)
3 head(sw, n=3)</pre>
```

name <chr></chr>	height <int></int>	mass hair_color <dbl> <chr></chr></dbl>	skin_color <chr></chr>	eye_color <chr></chr>	birth_year sex <dbl> <chr></chr></dbl>	gender <chr></chr>	•
Luke Skywalker	172	77 blond	fair	blue	19 male	masculine	
C-3PO	167	75 NA	gold	yellow	112 none	masculine	
R2-D2	96	32 NA	white, blue	red	33 none	masculine	

3 rows | 1-9 of 14 columns

Importing Data

• Let's import data from the **Jackson Heart Study**.

1 jhs_csv <- read_csv("/path/to/folder/analysislong.csv")</pre>

2 head(jhs_csv)

subjid <dbl></dbl>	visit VisitDate <dbl> <chr></chr></dbl>	DaysFromV1 <dbl></dbl>	YearsFromV1 ARIC <dbl> <chr></chr></dbl>	recruit <chr></chr>	ageIneligible <chr></chr>	FastHours <dbl></dbl>	age <dbl></dbl>
2054	1 06/30/2003	0	0 JHS-Only	Random	No	16.47	63.4
2054	2 07/17/2007	1478	4 JHS-Only	Random	No	16.87	67.5
2054	3 07/17/2010	2574	7 JHS-Only	Random	No	15.53	70.5
2013	1 09/30/2003	0	0 JHS-Only	Random	No	15.33	56.0
2013	2 07/04/2008	1739	5 JHS-Only	Random	No	14.02	60.8
2013	3 12/26/2010	2644	7 JHS-Only	Random	No	2.33	63.3

6 rows | 1-10 of 204 columns

Importing Data

- Be comfortable with Googling for help with code to import data.
- As a collaborative statistician, I have received the following file types:
 - → .sas7bdat
 - → .sav
 - → .dat
 - → .CSV
 - → .xls
 - → .xlsx
 - → .txt
 - → Google Sheet
 - → hand written

Importing Data

- There have been times where I have received data as a .xlsx, but I can't get it to import properly.
 - → Usually, the issue is that there is a character variable with too much text.
 - → Sometimes, it's that the variable type changes mid-dataset.
 - → i.e., both a number and a character stored in the same vector.
- Sometimes the solution is saving it as a different file type (I default to .csv).
- Get comfortable Googling error messages.
 - → I am still consulting Dr. Google for assistance on a daily basis!
- Try not to do any data management within the original file type!
 - → We want to be able to retrace our steps.
 - → Reproducible research!

- Functions:
 - → **select()**: Selecting columns.
 - → filter(): Filtering the observations.
 - → mutate(): Adding or transforming columns.
 - → **summarise()**: Summarizing data.
 - → group_by(): Grouping data for summary operations.
 - → %>%: Pipelines.

• select(): Selecting columns.

```
1 jhs_csv %>%
     select(subjid, visit, age, sex) %>%
    head(n=4)
                                     subjid
                                                                           visit
                                                                                                          age sex
                                     <dbl>
                                                                          <dbl>
                                                                                                         <dbl> <chr>
                                                                                                          63.4 Male
                                     2054
                                                                                                          67.5 Male
                                     2054
                                                                              2
                                     2054
                                                                                                          70.5 Male
                                                                              3
                                     2013
                                                                                                          56.0 Female
```

4 rows

jhs_csv %>%

2013

455

• filter(): Filtering rows.

```
filter(visit == 1) %>%
head(n=3)
                                                                                                           agelneligible
subjid
                                          DaysFromV1
           visit VisitDate
                                                              YearsFromV1 ARIC
                                                                                                                                                       age <dbl>
                                                                                          recruit
                                                                                                                                           FastHours
<dbl>
          <dbl> <chr>
                                                <dbl>
                                                                     <dbl> <chr>
                                                                                          <chr>
                                                                                                           <chr>
                                                                                                                                               <dbl>
             1 06/30/2003
                                                                                                                                               16.47
2054
                                                    0
                                                                        0 JHS-Only
                                                                                          Random
                                                                                                           No
                                                                                                                                                        63.4
                                                                        0 JHS-Only
```

0 JHS-Only

0

0

Random

Volunteer

No

No

15.33

15.17

56.0

56.5

3 rows | 1-10 of 204 columns

1 09/30/2003

1 01/03/2004

• mutate(): Adding or transforming columns.

• summarise(): Summarizing data.

n	mean_BMI	sd_BMI	n_female	pct_female
<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
2653	31.86	6.97	1673	63.06

1 row

• group_by(): Grouping data for summary operations.

```
jhs_csv %>%
filter(visit == 1) %>%
group_by(HTN) %>%
summarize(n = n(),
mean_BMI = round(mean(BMI, na.rm = TRUE),2),
sd_BMI = round(sd(BMI, na.rm = TRUE),2),
n_female = sum(sex == "Female", na.rm = TRUE),
pct_female = round(sum(sex == "Female", na.rm = TRUE)*100/n(),2))
```

HTN	n	mean_BMI	sd_BMI	n_female	pct_female
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
No	1237	30.76	6.84	742	59.98
Yes	1416	32.81	6.94	931	65.75

2 rows

Wrap Up

- Today we have gently introduced data management in R.
- I do not expect you to become an expert R programmer, but the more you practice, the easier it becomes.
- Today's activity: Assignment 0