Programação Linear e Grafos

Sistemas de Informação - UNISUL

Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 4)

Teoria de Grafos

Distância: dados dois vértices \mathbf{v}_i e \mathbf{v}_j pertencentes ao grafo \mathbf{G} , denomina-se **distância**, entre \mathbf{v}_i e \mathbf{v}_i , ao comprimento do menor caminho entre esses dois vértices.

No caso da não existência desse caminho, considera-se distância infinita.

Em um grafo conexo, **distância é uma métrica**, isto é, para todo vértice **u**, **v** e **w** de **G**, tem-se que:

- i) d(u,v) >= 0 com d(u,v) = 0 se e só se u = v
- ii) d(u,v) = d(v,u) ocorre apenas quando o grafo é não orientado.
- iii) d(u,v) + d(v,w) >= d(u,w)

Com a distância assim definida podemos conceituar:

Excentricidade: denotada pôr [e(v)], de um grafo G, e definida como: A excentricidade de um vértice v é a maior distância existente a partir de v, isto é, Max(d(v,u)).

Raio de um grafo: denotado pôr [r(G)], de um grafo G, é o MIN(e(v)) (é o mínimo das excentricidades dos vértices).

Centro de G é definido pelo conjunto de vértices \mathbf{v} tais que $\mathbf{e}(\mathbf{v}) = \mathbf{r}(\mathbf{G})$.

Matriz D

0	4	7	3	4	7
10	0	3	9	8	<i>10</i>
7	6	0	6	5	7
1	1	4	0	1	4
2	1	4	1	0	4
10	6	7	9	8	

Radio(G) = 4
$$\rightarrow$$
 Centro (V₄, V₅) (pôr linha)
Radio(G) = 6 \rightarrow Centro (V₂) (pôr coluna)

Matriz $D + D^T$

0	14	14	4	6	14
14	0	9	10	9	14
14	9	0	10	9	14
4	10	10	0	2	10
6	9	9	2	0	9

Radio(G) = 9
$$\rightarrow$$
 Centro (V₅)

Diâmetro de G é a maior das excentricidades, **vértice periférico** é o vértice de distancia igual ao diâmetro.

Mediana de G é um conjunto de vértices para a qual a soma das distancias aos demais vértices é mínima.

Anti-centro de G é um conjunto de vértices cuja menor distancia em relação a algum outro vértice é máxima.

	v1	v2	v3	v4	v5	v6	v7	v8	V9
v1	0	12	22	15			25		
v2	12	0	8		16				
v3	22	8	0			17			40
v4	15			0	15		14		
v5		16		15	0	10		16	
v6			17		10	0			18
v7	25			14			0	13	21
v8					16		13	0	11
V9			40			18	21	11	0

		•	•	•	•		1		
	v1	v2	v3	v4	v5	v6	v7	v8	V9
v1	0	12	20	15	28	37	25	38	46
v2	12	0	8	27	16	25	37	32	43
v3	20	8	0	35	24	17	45	40	35
v4	15	27	35	0	15	25	14	17	35
v5	28	16	24	15	0	10	29	16	27
v6	37	25	17	25	10	0	39	26	18
v7	25	37	45	14	29	39	0	13	21
v8	38	32	40	27	16	26	13	0	11
V9	46	43	35	35	27	18	21	11	0

Max	Soma	Min	
46	221	12	
43	200	8	
45	224	8	
35	193	14	
29	165	10	
39	197	10	
45	223	13	
40	203	11	
46	236	11	

Diâmetro = 46; Vértices Periféricos (V_1 e V_9); Centro (V_5); Mediana (V_5); Anti-centro (V_4);

As seguintes definições de árvores (sem orientação) são equivalentes. Uma árvore é:

- 1. Um grafo conexo de **n** vértices e (n-1) arestas;
- 2. Um grafo conexo sem ciclos;
- 3. Um grafo no qual cada par de vértices é ligado por um e somente um caminho simples (todos os vértices são distintos);
- 4. Um grafo conexo, porém, se qualquer de suas arestas for retirada, a conexidade fica interrompida;
- 5. Um grafo acíclico e conexo, porém, se dois vértices quaisquer, não adjacentes, forem ligados por uma aresta, então o grafo passará a ter um ciclo.

Um conjunto de vértices de uma árvore estão no **mesmo nível i**, se e somente se a distância da raiz até esse vértices for a mesma.

As folhas tem estão a mesma distância da raiz estão no nível zero.

Uma **floresta** é um conjunto de árvores. Portanto uma floresta de **k** árvores, possuindo **n** vértices, tem precisamente **n-k** arestas.

Se G é um grafo não dirigido, de **n** vértices, então uma **árvore expandida** T de G é definida por um subgrafo de G que forma uma árvore de acordo com as definições anteriores. Isto é, uma **árvore expandida** é uma árvore que contém todos os vértices de **V**.

Árvore de Custo Mínimo

Nos problemas de interligação, como redes de comunicação, redes de luz, de agua, esgotos, etc., existe interesse na interligação de todos os pontos atendidos com o consumo mínimo de meios.

Algoritmo de Kruskal: este algoritmo utiliza três conjuntos, Q, T e VS.

O conjunto T é usado para guardar as arestas da árvore expandida.

O conjunto VS contém todos os vértices de G, onde cada vértice é um conjunto de 1 elemento (o algoritmo começa com uma floresta de n arvores para chegar a uma única árvore).

As arestas são escolhidas de Q pela ordem crescente de custo.

Considere que a aresta (v,w) tenha sido escolhida. Se v e w pertencem ao mesmo conjunto VS, descarta-se a aresta. Se v e w estão em conjuntos distintos W1 e W2, faz-se o 'merge' de W1 e W2 e adiciona- se (v,w) a T, o conjunto de arestas da árvore expandida final.

Entrada: Um grafo G (V, E) com uma função de custo C associada as arestas.

Saída: S (V, T), uma árvore expandida de custo mínimo de G.

Inicio

```
Faça T ← 0; VS ← 0;
Construa uma fila de prioridade (Q) contendo todas as arestas de E;
Para cada vértice v ∈ V faça: adicione { v } em VS;
Enquanto | VS | > 1 faça
Escolha (v, w), uma aresta em Q de menor custo;
Apague (v, w) de Q;
Se v e w estão em conjuntos diferentes W1 e W2 pertencentes a VS, então:
Substitua W1 e W2 em VS por W1 ∪ W2; ( para evitar formar ciclos)
Adicione (v,w) a T;
```

Fim Se

Fim enquanto

Fim.

Grafos Planos

Grafos Planos

Um grafo G é dito planar se existir alguma representação geométrica de G que possa ser desenhada num plano, de tal modo que não existe cruzamento de arestas.

Algoritmo para Detectar se um Grafo é Planar

Passo 1. O algoritmo inicialmente acha o maior ciclo C existente no grafo. Se G não possuir ciclos, então G é evidentemente planar.

Passo 2. Para toda aresta do grafo não pertencente ao ciclo faça:

- Agrupe as arestas em sub-grafos planos;
- Inclua cada sub-grafo em uma face do ciclo C, ou a uma mesma face mas com a condição de nenhuma das arestas se interceptarem.

Programação Linear e Grafos

Sistemas de Informação - UNISUL

Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 4)