Sounding

Profiling

Profiling: Current and potential electrodes moved along a line (e.g. Real Section, Wenner and Schlumberger)

→ Lateral changes in resistivity

Sounding: Current and potential electrodes expanded symmetrically about a central point (e.g. Wenner and Schlumberger)

→ Vertical changes in resistivity

General Configuration: Uses a combination of profiling and sounding

→ Vertical and lateral changes in resistivity

- Visualize apparent resistivities when sounding and profiling
- Apparent resistivity (color scale) plotted as a function of electrode position
- Easy to interpret for simple geologies

- Compact bodies → arc signature for dipole-dipole survey
- Depth of arc signature → depth of target
- Thickness of arc → size of target

Today's Topics

- Processing and Interpretation
 - Geophysical Inversion
 - Inversion Requirements
 - Sensitivity

DCR Example: Mt. Isa

EOSC 350 '06 Slide 5

Processing and Interpretation

Reading on the GPG:

https://gpg.geosci.xyz/content/DC_resistivity/DC_interpre tation.html

Simple vs. Complex Geologies

- Complex geologies → Complex data
- How can we interpret in this case?

Geophysical Inversion

Geophysical Inversion

Goal of Inversion:

Find a resistivity (conductivity) model which:

- 1) Explains all the data
- 2) Is representative of the true geology

Geophysical Inversion

- Inversion does not recover true model
- Recovers a geologically approximate model
- Solution is non-unique
- Recovers structures represented in the data

Pseudo-Section vs Inversion

Inversion Requirements

1) A physical model (respect physics)

$$abla \cdot (\sigma
abla V) = -I\delta(r-r_s)$$

2) Field observations (must fit data)

$$data = V_N - V_M$$

- 3) A starting model (initial guess)
- 4) Reference model (impose structures)
- 5) Constraints
 - → geologically reasonable solution

Geologically representative resistivity model

Inversion Requirements

1) A physical model (respect physics)

$$abla \cdot (\sigma
abla V) = -I\delta(r-r_s)$$

2) Field observations (must fit data)

$$data = V_N - V_M$$

- 3) A starting model (initial guess)
- 4) Reference model (impose structures)
- 5) Constraints
 - → geologically reasonable solution

Geologically representative resistivity model

Q: If the recovered model

- doesn't fit the data
- is geologically reasonable

is it a good solution?

Inversion Requirements

1) A physical model (respect physics)

$$abla \cdot (\sigma
abla V) = -I\delta(r-r_s)$$

2) Field observations (must fit data)

$$data = V_N - V_M$$

- 3) A starting model (initial guess)
- 4) Reference model (impose structures)
- 5) Constraints→ geologically reasonable solution

Geologically representative resistivity model

Q: If the recovered model

- doesn't fit the data
- is geologically reasonable

is it a good solution?

Q: If the recovered model

- fits the data
- isn't geologically reasonable

is it a good solution?

Example 1: buried prism

• Pole-dipole; n=1,8; a=10m; N=316; $(\alpha_s, \alpha_x, \alpha_z)$ =(.001, 1.0, 1.0)

Example 2: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; $(\alpha_s, \alpha_x, \alpha_z)$ =(.001, 1.0, 1.0)

Example 3: UBC-GIF model

Pole-dipole; n=1,8; a=10m

The world is 3D

- Target
 - Size, shape, depth
- Background
 - Variable resistivity
- Questions
 - Where to put currents? 2D acquisition? 3D?
 - Where to make measurements?
 - Which measurements?
 - Effects of topography?
- These are survey design questions
- Crucial element is the sensitivity

Host

Water underground

Ore body

Topography

Sensitivity

Sensitivity and Inversion

- To recover a geological structure:
 - → Data must be sensitive to that structure (e.g. structure must generate signatures in data)
- Things to consider:
 - Are current and potential electrodes coupled with target? (e.g. see signatures in data)
 - Is electrode spacing large enough to see deep enough?
 - Does enough current pentrate the conductive overburden?

Example: Two Spheres

- Electrodes coupled with spheres
- Data sensitive to top of spheres
- Data not sensitive to bottom of spheres
 - \rightarrow why?

Sensitivity

Defines how a change in the model would change the data

Quantified by the sensitivity

$$G = \frac{\Delta d}{\Delta p} = \frac{\text{change in data}}{\text{change in model}}$$

- Collect the data that are sensitive to the target
 - Need to excite the target
 - Need to have sensor close to the target
 - → Need "good coupling"

Exciting the target

Measurements

Secondary charges: Q_s

Potential profile

Secondary potential: ϕ_s

Total potential: φ

Coupling: Gradient Array

Q: Do you expect to recover block 1? Why/why not?

Q: Do you expect to recover block 2? Why/why not?

Coupling: Gradient Array

- Q: Do you expect to recover block 1? Why/why not?
 - Yes
 - Creates signatures in data
 - Good coupling
- Q: Do you expect to recover block 2? Why/why not?
 - No
 - No signatures in data
 - Poor coupling of receivers

Coupling: Thin Plate

Different orientation → Different coupling → Different Data

Total currents: J

Conductive vs. Resistive Target

Conductive Target

Resistive Target

Secondary charges: Q_s

Secondary charges: Q_s

Summary: Sensitivity

- "Excite" the target
 - Drive currents to target
 - Need good coupling with target
- Measuring a datum
 - Proximity to target
 - Electrode orientation and separation

-5

-10

-25

-30

Surrent density (A/m^2)

Inversion and Sensitivity Recap

- Recovers geologically reasonable model that fits data
- Does not recover true model
- Easier to interpret than pseudo-section
- Only recovers structures sensitive to survey

Recap: Questions

What are reasons why survey might not be sensitive to a structure?

What do we mean by "solution is non-unique"?

DCR Example: Mt. Isa

Mt. Isa (Setup)

- Potential ore deposit (lead, zinc, silver, copper, gold?)
- Proposed survey with pole-dipole and dipolepole configurations

Simplified (log) conductivity distribution expected at Mount Isa (N:12200m).

Mt. Isa (Properties)

Rock Unit	Conductivity	Resistivity ($\Omega \cdot m$)
Native Bee Siltstone	Moderate	Moderate (~10)
Moondarra Siltstone	Moderate	Moderate (~10)
Breakaway Shale	Very High	Very Low (~0.1)
Mt Novit Horizon	High	Low (~1)
Surprise Creek Formation	Low	High (~1000)
Eastern Creek Volcanics	Low	High (~1000)

Q: Do you expect mineralization to be conductive or resistive?

Simplified (log) conductivity distribution expected at Mount Isa (N:12200m).

Mt. Isa (Synthetic Modeling)

Q: What happens to currents, charges and potentials if mineralization exists?

Mt. Isa (Synthetic Modeling)

Q: What happens to currents, charges and potentials if mineralization exists?

Q: Are data sensitive to mineralization?

Mt. Isa (Survey and Data)

Mt. Isa (Interpretation of Pseudo-Sections)

Q: How does the surface conductivity change from East to West?

Q: Are there obvious features running North to South?

Q: Is existance of mineralization obvious?

Mt. Isa (Inversion)

Mt. Isa (Inversion)

3D resistivity model

Animation

Mt. Isa (Interpretion using Inversion)

Q: What units show up in the inversion?

Q: Can we differentiate mineralization from breakaway shale? (both conductive)

Synthesis

- Identified a major conductor → black shale unit
- Some indication of a moderate conductor

Unit Activities

- Labs: (DC)
 - Monday, October 28th
 - Tuesday, October 29th
- Quiz:
 - Friday, November 1st