4. Полиномиальная сводимость, временные классы за \mathcal{P} и \mathcal{NP}

- **1.** Определите, являются ли задачи выполнимости и тавтологичности булевой формулы в ДНФ \mathcal{P} , $\mathcal{NP}c$ или $co\mathcal{NP}c$.
- **2.** Под 3SAT обычно имеется в виду множество выполнимых КНФ с не более чем тремя переменными в каждом дизъюнкте. Покажите, что это полиномиально равнозначно EXACTLY3SAT, то есть с ровно тремя переменные в дизъюнкте.
- **3.** Докажите, что задача VERTEX- $COVER \in \mathcal{NP}c$.
- 4. Докажите, что задача ПРОТЫКАЮЩЕЕ-МНОЖЕСТВО $\in \mathcal{NP}c$.
- **5.** Покажите, что VERTEX- $COVER \leqslant_p SET$ -COVER.
- **6.**(Доп) Докажите, что задача max-2- $SAT \in \mathcal{NP}c$.
- 7. Докажите, что $\Sigma_k \cup \Pi_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.
- **8.**(Доп $^+$) Выберите какую-нибудь задачу отсюда, опишите её, приведите пример элемента из задачи, не из задачи, попробуйте свести $\Sigma_k SAT$ к ней.
- **9.** Докажите, что полиномиальная иерархия «схлопывается», если существует $\mathcal{PH}c$ задача.

Под схлопыванием имеется в виду $\exists k : \mathcal{PH} = \Sigma_k = \Pi_k$.