

Circles Ex 16.5 Q5

Answer:

It is given that, ABCD is cyclic quadrilateral in which $AD \parallel BC$

We have to prove $\angle B = \angle C$

Since ABCD is cyclic quadrilateral

So

 $\angle B + \angle D = 180^{\circ} \text{ and } \angle A + \angle C = 180^{\circ} \dots (1)$

 \Rightarrow $\angle B + \angle A = 180^{\circ}$ and $\angle C + \angle D = 180^{\circ}$ (by property of || line intersect) (2)

From equation (1) and (2) we have

 $\angle B + \angle D + \angle B + \angle A = 360^{\circ}$ (3)

 $\angle A + \angle C + \angle C + \angle D = 360^{\circ} \dots (4)$

Here both right are 360° of equation (3) and (4)

Sc

 $2\angle B + \angle D + \angle A = 2\angle C + \angle A + \angle D$

 $2\angle B = 2\angle C$

 $\angle B = \angle C$

Hence $\angle B = \angle C$ Proved.

Circles Ex 16.5 Q6

Answer:

It is given that, $\angle AOC = 100^{\circ}$

We have to find $\angle CBD$

Since $\angle AOC = 100^{\circ}$ (given that)

So

$$\angle APC = \frac{1}{2} \angle AOC \ (\angle AOC \ \text{Is on center and } \angle APC \ \text{on circumference})$$

$$\Rightarrow \angle APC = \frac{1}{2} \times 100$$
$$= 50^{\circ}$$

Now

$$\angle APC = \frac{1}{2} \angle AOC$$
$$= 50^{\circ}$$

Now $\angle APC + \angle ABC = 180^{\circ}$ (opposite pair of angle of cyclic quadrilateral)

So

$$50^{\circ} + \angle ABC = 180^{\circ}$$

$$\angle ABC = 180^{\circ} - 50^{\circ}$$

= 130°

$$\Rightarrow \angle ABC = 130^{\circ} \dots (1)$$

$$\angle ABC + \angle CBD = 180^{\circ}$$
 (Linear angle at point D)

$$130^{\circ} + \angle CBD = 180^{\circ} (\angle ABC = 130^{\circ})$$

$$\angle CBD = 180^{\circ} - 130^{\circ}$$

$$=50^{\circ}$$

Hence
$$\angle CBD = 50^{\circ}$$