ProxyCLIP: Proxy Attention Improves CLIP for Open-Vocabulary Segmentation

Mengcheng Lan¹, Chaofeng Chen¹, Yiping Ke², Xinjiang Wang³, Litong Feng³, and Wayne Zhang^{3,4*}

 S-Lab, Nanyang Technological University
 CCDS, Nanyang Technological University
 SenseTime Research
 Guangdong Provincial Key Laboratory of Digital Grid Technology lanm0002@e.ntu.edu.sg {chaofeng.chen, ypke}@ntu.edu.sg {wangxinjiang, fenglitong, wayne.zhang}@sensetime.com https://github.com/mc-lan/ProxyCLIP

- Problem / objective
 - o CLIP 사용해서 Open-Vocabulary Semantic Segmentation
 - Recognition 잘하지만, localization을 못함
- Contribution / Key idea
 - o ProxyCLIP: OVSS using "VFM의 robust local consistency + CLIP의 zero-shot transfer capacity"
 - Localization 문제를 VFM의 spatial feature correspondence으로 보완
 - CLIP의 마지막 layer에 Proxy Attention Module(PAM) 적용

LAN, Mengcheng, et al. Proxyclip: Proxy attention improves clip for open-vocabulary segmentation. In: European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024. p. 70-88.

Motivation

- □ CLIP: Recognition 굿, but localization 별로
- UFM: Semantic understanding 별로, but spatial coherence 굿
- □ ProxyCLIP: CLIP의 단점을 VFM의 장점으로 극복
 - □ VFM의 feature correspondence를 CLIP에 proxy attention을 통해 사용
 - □ VFM의 feature correspondence 사용할때 2가지 전략
 - ☐ (1) Adaptive normalization
 - ☐ (2) Masking strategy

Motivation

- \square CLIP의 attention map $\operatorname{Attn}_{qk} \in \mathbb{R}^{L \times L}$
- VFM \mathfrak{P} feature correspondence map $F \in \mathbb{R}^{L_v \times D_v}$ $S_{ij} = \frac{F_i}{|F_i|} \frac{F_j}{|F_j|}$
- Semantic coherence $CLIP \supseteq vanilla attention (q-k) < self-self attention (q-q/k-k/v-v) < VFM \supseteq feature correspondence$

Fig. 1: Precision recall curves of different classifiers. Higher average precision (AP) indicates better semantic correspondence.

Motivation

- Semantic coherence $CLIP \supseteq vanilla attention (q-k) < self-self attention (q-q/k-k/v-v) < VFM \supseteq feature correspondence$
- □ 목표 VFM의 advanced spatial coherence와 CLIP의 semantic understanding 능력을 training-free framework 하에 결합하여, vision-language inference 성능을 향상시키겠다.

Fig. 2: Attention scores (maps) between CLIP, DINO and SAM using different seeds (in red). For CLIP's attention maps, we display only the first head of multi-head self-attention maps.

Overview

Fig. 3: Overview of the ProxyCLIP architecture. ProxyCLIP consists of two frozen image encoders and a novel proxy attention module (PAM). On the right, the flow of the proxy attention mechanism with an adaptive normalization and masking strategy is illustrated, corresponding to Eqs. (6) to (8).

ProxyCLIP

- ☐ Proxy Attention Module (PAM)
 - 쿼리, 키: VFM features, 밸류: CLIP features
 - 주의) Cross-attention 아니고, Self-attention 기반 Proxy 구조임.

$$Attn_p = SoftMax(\boldsymbol{x}\boldsymbol{x}^T), \qquad (4)$$

$$\boldsymbol{z} = Proj(Attn_p \cdot \boldsymbol{v}), \qquad (5)$$

- □ Normalization and Masking
 - 문제: 수식4에 기반한 proxy attention score가 다양한 VFM 간에 항상 좋은 일관성과 분리성을 보장하지 않는다.
 - 원인: 각 VFM의 visual representations의 서로 다른 inductive biases에 기인.

Fig. 4: The statistics of similarity matrix before (left) and after (right) normalization.

ProxyCLIP

- ☐ Normalization and Masking
 - 문제: 수식4에 기반한 proxy attention score가 다양한 VFM 간에 항상 좋은 일관성과 분리성을 보장하지 않는다.
 - 원인: 각 VFM의 visual representations의 서로 다른 inductive biases에 기인.
 - 해결: Normalization and Masking
 Masking matrix M가 Normalized similarity matrix A에서 negative similarities에 해당하는 패치들을 suppress함.
 (베타값 1.2, 감마값 3)
- □ Different resolution 공간 해상도 높게 (패치 개수 많게) proxy attention하고, interpolation을 통해 x와 v의 spatial resolution 맞춤.

$$A = \gamma (\boldsymbol{x}\boldsymbol{x}^T - \frac{\beta}{L_v^2} \sum_{i,j} [\boldsymbol{x}\boldsymbol{x}^T]_{ij}), \tag{6}$$

 $\mathcal{M}_{ij} = \begin{cases} 0, & A_{ij} \ge 0 \\ -\infty, & A_{ij} < 0 \end{cases} \tag{7}$

$$Attn_p = SoftMax(A + \mathcal{M}). \tag{8}$$

Fig. 5: Qualitative comparison of semantic segmentation results.

Experiments

Fig. 7: Qualitative comparison of different patch size. VFMs with smaller patch size of 8 helps ProxyCLIP to produce sharper boundaries.