Miniapps for Enabling Architecture-Application Co-design for Exascale Supercomputing

Naoya Maruyama

nmaruyama at riken.jp
RIKEN Advanced Institute for Computational Science

19th Workshop on Sustained Simulation Performance March 28, 2014

HPCI Application Feasibility Study

Objective

- Identify social and scientific challenges for next 5 to 10 years → Computational Science Roadmap
 - Based on the 2011 Computational Science Roadmap
 - Involves a wide range of domains with particular focus on cross-cutting issues
- 2. Present requirement and tools for evaluating architectures
 - Social and scientific challenges as computational problems
 - Effectiveness to solve the social and scientific challenges

Organization

Roadmap Development:

Led by major computational science researchers in Japanese universities and national labs

System Evaluation:

■ Led by RIKEN AICS and Tokyo Institute of Technology in partnering with major HPC centers in Japan

HPCI Application Feasibility Study

Objective

- Identify social and scientific challenges for next 5 to 10 years → Computational Science Roadmap
 - Based on the 2011 Computational Science Roadmap
 - Involves a wide range of domains with particular focus on cross-cutting issues
- 2. Present requirement and tools for evaluating architectures
 - > Social and scientific challenges as computational problems
 - Effectiveness to solve the social and scientific challenges

Organization

Roadmap Development:

Led by major computational science researchers in Japanese universities and national labs

System Evaluation:

■ Led by RIKEN AICS and Tokyo Institute of Technology in partnering with major HPC centers in Japan

Miniapp?

A tool for application and architecture codesign

- *Small* applications
 - Lines of code < 1,000
 - Simplified program organization
- Not too small applications
 - Retain essential characteristics of the original applications
 - What is essential?
- Simple process to "Download → Compile → Execute"
 - Open-source licenses
 - Easy compilation steps
 - Documentation of program execution input and parameters
 - Packaging of necessary input files

Existing Miniapp Projects

- Mantevo
 - US Sandia NL
 - http://mantevo.org
 - PDE, MD, etc.
- ExaCT
 - US DoE Codesign center
 - http://exactcodesign.org/
 - Combustion miniapp
- LULESH
 - US Lawrence Livermore NL
 - Hydrodynamics
 - Many variants: Serial, MPI, OpenMP, CUDA, OpenACC, Chapel, Charm++, Listz
- New projects at EU

FiBER Mini-App Suite

- A suite of miniapps derived from the full-scale applications for the future computational science challenges
 - Supported by the HPCI Application FS
- Originally developed and used on high-end machines such as the K supercomputers
- Mainly developed at AICS with collaboration with the full-app developers

		処理量 /1PE	処理量 /1チップ	1stepの時間 (演算の時間)	実効効率	性能 /1チップ	性能 /1グル ー プ	ホストへの データ送受信 (双方向の計)
1億原子	構成A (12.3Tflops)	原子数6 (1セル)	原子数24,576 (16x16x16)	0.75ms (0.61ms)	39.7%	4.88 Tflops	20.0 Pflops	0.18ms
	構成B (8.2Tflops)	原子数12 (1セル)	原子数24,576 (16x16x8)	1.02ms (0.86ms)	41.0%	3.36 Tflops	13.8 Pflops	0.18ms
2.5億原子	構成A (12.3Tflops)	原子数15 (1セル)	原子数61,440 (16x16x16)	2.02ms (1.79ms)	43.4%	5.33 Tflops	21.8 Pflops	0.44ms
	構成B (8.2Tflops)	原子数30 (2セル)	原子数61,440 (16x16x16)	3.04ms (2.68ms)	43.2%	3.53 Tflops	14.5 Pflops	0.44ms

E.g., Evaluation results of a MD miniapp at the TSUKUBA FS

Development & Usage

- Call for full-apps
 - 17 full-apps submitted to RIKEN
 - Being converted to mini-apps at RIKEN
- Call for mini-apps
 - 8 mini-app-like small apps submitted to RIKEN
 - Packaged as mini-apps at RIKEN
- Provided to the System Architecture FS for evaluating their systems
 - University of Tohoku, University of Tsukuba,
 University of Tokyo

Submitted Applications (1/3)

			· ·
feram	Nishimatsu	Ferroelectrics MD	OpenMP (with MPI for parameter survey), 3D FFT
MARBLE	Ikekuguchi	MD(PME)	MPI+OpenMP, 3D FFT
SMASH (para-TCCI)	Ishimura	Hartree-Fock	MPI+OpenMP, Sequential diagonalization of dense matrices
FFVC	Ono	Thermal-Fluid Analysis	MPI+OpenMP, SOR or GMRES
pSpatiocyte	Iwamoto	Signal propagation	MPI+OpenMP
NEURON_K+	Kazawa	Neural circuit simulation (Modified NEURON)	MPI+OpenMP, many ALL_GATHER, Translated to C from modeling language
GT5D	Idomura	5D plasma turbulence (5D FDM+2D FEM)	MPI+OpenMP, CG, 1D FFT
MODYLAS	Ando	MD(FMM)	MPI+OpenMP
STATE	Inagaki	First-Principles MD (DFT)	MPI+OpenMP (Replica paralle, k-point parallel, band or plane-wave parallel), FFT, eignevalue problem (RMM)
FrontFlow/blue	Yamade	Thermal-Fluid Analysis (Irregular mesh, FEM)	MPI+auto parallelization, BiCGSTAB
SiGN-L1	Tamada	Neural network (L1 regularization)	MPI+OpenMP, Bottleneck at file output
NTChem/RI- MP2	Katouda	Electron correlation	MPI+OpenMP, DGEMM, Some sequential computation, Memory usage O(N³)

Submitted Applications (2/3)

OpenFMO	Inadomi	Hartree-Fock FMO	MPI+OpenMP, Dynamic load balancing
CONQUEST	Miyazaki	First-principles MD, O(n) method	MPI+OpenMP SpMV, FFT
NGS Analyzer	Tamada	Genome sequence analysis	MPI I/O bound
DCPAM	Nishizawa	Climate model with spectral method	MPI+OpenMP
RSGDX	Hyodo	Earthquake simulation	

Submitted Applications (3/3)

Simplified versions submitted to the RIKEN FS

fft_check, fft_check_mpi	Nishimatsu	3D FFT benchmarking
ALPS/looper	Todo	Quantum monte carlo, linked lists, integer ops MPI+OpenMP
CCS QCD Solver Benchmark test program	Ishikawa	Lattice QCD benchmark, BiCGStab, MPI+OpenMP
ZZ-EFSI	Sugiyama	Fluid Structure Integration MPI+OpenMP
rmcsm bench nocore	Shimizu	Monte Carlo Nuclear Shell Model MPI+OpenMP
GCEED	Nobusada	DFT
NICAM-DC	Yashiro	Climate model (NICAM), dynamics, FVM MPI
mVMC	Imada	Strongly correlated matter

FiBER Mini-App Current Status

CCS QCD	Lattice QCD	→Tokyo FS, Tsukuba FS
MARBLE	MD(PME)	
MODYLAS	MD(FMM)	→Tokyo FS, Tsukuba FS
FFVC	Thermal-Fluid Analysis (Cartesian, FDM)	→Tohoku FS
NGS Analyzer	Genome Sequence Analysis	→Tokyo FS, Tsukuba FS
ALPS/looper	Quantum Monte Carlo	(Almost done)
CONQUEST	First-Principles MD (O(N))	(Almost done)
NICAM-DC	Climate	(Almost done)
FrontFlow/ blue	Thermal-Fluid Analysis (Irregular mesh, FEM)	(Under development)
mVMC	Variational Monte Carlo	(Under development)

Molecular Dynamics

- Two alternative algorithms for solving equivalent problems
 - Particle Mesh Ewald
 - Bottlenecked by all-to-all communications at scale
 - Example implementation: MARBLE (Ikeguchi et al.)
 - Fast Multipole Method
 - Tree-based problem formulation with no all-to-all communications
 - Example implementation: MODYLAS (Okazaki et al.)
- Allows algorithmic comparisons
 - FFT vs. FMM?

Molecular Dynamics

- Simplified problem settings
 - Only simulates water molecules in the NVE setting
 - Can reduce the codebase significantly
 - Easier to create input data sets of different scales
 - Whether it's sufficient is still under discussions
- Kernels: Pairwise force calculation + Longrange updates (FFT or FMM)
- Two reference implementations to study performance implications by algorithmic differences
 - MARBLE (12K SLOC)
 - MODYLAS (11K SLOC)

NGS Analyzer

- Genome analysis tool for cancer cell's mutation detection
 - Read the output genome data generated by a next-generation genome sequencer
 - Current: 500GB/human
 - In 2020: 100TB/human
 - The analysis pipeline consists of widely used genome analysis software, and performs sequence mapping, genotyping, etc.
 - BWA sequence mapping
 - SAM/BAM formatting software
 - Runs on K computer in parallel

Work Flow of NGS Analyzer

Workflow

- Split the input genome read, perform mapping on each of them and then split the results based on contigs
- Merge mapping results of each contig and run analysis process on each merged data
- The original NGS Analyzer runs this workflow by executing five separated jobs in turn

NGS Analyzer IO

- Input
 - Output of a next-generation sequencer
 - Reference genome
 - e.g.) whole genome of a Japanese individual
 - 490 GB of genome read,
 6.3GB of reference genome
- Output
 - Analysis results of each config
 - e.g.) Output of the above input: 874 MB
- Intermediate output
 - unsplit mapping results, results that contain duplicate sequence, etc.
 - e.g.) Intermediate output of the above input: 6 TB
- Though IO of "Mapping", "Split" and "Analyze" can be local, IO of "Merge" is global where all nodes exchange data
 - e.g.) Exchanged data of the above input: 617 GB

NGS Analyzer Performance

- Execution time for analyzing the whole genome of a Japanese individual: 4,129 sec
 - IO throughput is 1.6 GB/s(490GB + 874MB + 6TB) / 4129
 - Measured on the K computer using 4,160 nodes

IO Throughput(GB/s) under various number of nodes (weak scale)

NGS Analyzer Mini App

- Three serial programs that run individual steps of the workflow to measure both computational and IO performance of each step
 - Sequence mapping
 - Duplicate removal of the mapping results
 - Mutation detection
- Single program that runs the entire workflow in parallel to measure the overall performance

FFVC (FrontFlow/Violet Cartesian)

- 3D unsteady incompressible thermal fluid solver developed at University of Tokyo
- Regular Cartesian grids, Finite volume, Fractional Step method
- Mini-app version
 - 3D cavity flow cavity flow model
 - Outer boundary condition
 - Retain the original control flow

FFVC mini

- Algorithm (fixed)
 - Time step: Euler explicit method
 - Pressure Poisson: Red-black SOR
- Simplified program execution
 - No configuration nor input file necessary
- Code size
 100K SLOC → 10K SLOC (sloccount)

CONQUEST

Domain and method:

First-Principles computation with O(n) method Structural optimization, molecular dynamics

Author:

Tsuyoshi Miyazaki (National Institute for Materials Science), et al.

URL: http://www.order-n.org/

Programming language:

Fortran90

Program size:

115K SLOC

- Target problem size:
 - Ensemble simulations with 100K to 1M atoms
 - Simulation of 100M atoms

Program Loop Structure and Mini-App

```
Time Step {
                                                                MD
    Local orbital {
                                                             Full DFT
        Loop for Self-consistency {
            H computation
                                                          SC-AITB
            Loop for density matrices {
                                                       NSC-AITB
                Minimize E=Tr[K H]
```

- Compute NSC-AITB only as benchmark mode
 - The time for full DFT can be easily estimated from the time for NSC-AITB
- Approximately 25K SLOC

Strong Scaling (Atom Si32768)

FX10 (Oakleaf @ U-Tokyo)

Future Plan

- Need to be continuously developed and maintained as the Application Roadmap progresses
- Will be continued as part of the Exa-scale project at RIKEN AICS
 - Positions available! http://bit.ly/1nxl22L
- Wider coverage of application domains
- Optimization, porting, performance modeling
- First release
 - http://github.com/fiber-miniapp
 - miniapp at riken.jp
- Usage of miniapps
 - M. Kondo et al., "Evaluation of power dissipation of HPC systems using miniapps," SDHPC10