Curso de Verão de Álgebra Linear Parte 2 - Aula 03

Cleber Barreto dos Santos

31 de janeiro de 2020

Observação 1. A partir de agora todos os espaços vetoriais considerados serão \mathbb{K} -espaços vetoriais, onde $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Teorema 2. Seja $T: V \longrightarrow V$ um operador linear no espaço vetorial $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Seja E_j a projeção associada a W_j . Então cada E_j é invariante por T se, e somente se, $TE_j = E_j T$ para cada $j \in \{1, 2, \dots, k\}$.

Demonstração. Suponha que T comuta com cada E_j . Seja $w_j \in W_j$. Então $T(w_j) = T(E_j(w_j)) = E_j(T(w_j))$. Logo cada $T(w_j)$ está em $Im(E_j) = W_j$.

Por outro lado, suponhamos que cada W_j seja invariante por T. Seja $v \in V$ um vetor. Então $T(v) = TE_1(v) + TE_2(v) + \cdots + TE_k(v)$. Como $E_j(v) \in W_j$ e W_j é invariante por T, temos que $T(E_j(v)) = E_j(w_j)$ para algum vetor w_j . Então $E_iTE_j(v) = E_iE_j(w_j)$ temos que $E_iT(v) = E_iTE_1(v) + E_iTE_2(v) + \cdots + E_iTE_k(v) = E_i(w_i) = TE_i(v)$.

Observação 3. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V de dimensão arbitrária. Se $p,q\in\mathbb{K}[x]$ são polinômios na variável x com coeficientes em \mathbb{K} , definimos os operadores (p+q)(T) e $(p\cdot q)(T)$ da seguinte forma

$$(p+q)(T) \doteq p(T) + q(T) : V \longrightarrow V \text{ e } (p \cdot q)(T) = p(T) \cdot q(T) : V \longrightarrow V.$$

Definição 4. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V. Dizemos que $p\in\mathbb{K}[x]$ anula T se p(T)=0.

Observação 5. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V. O conjunto $\{p\in\mathbb{K}[x]\mid p(T)=0\}$ é um ideal de $\mathbb{K}[x]$. Logo $\{p\in\mathbb{K}[x]\mid p(T)=0\}$ é gerado por um único polinômio mônico.

Exemplo 6. Seja V um espaço vetorial e $T:V\longrightarrow V$ um operador linear. É possível que o conjunto $\{p\in\mathbb{K}[x]\mid p(T)=0\}$ seja trivial. De fato, tomando o espaço das sequências de números reais $V=\{(x_n)\mid x_n\in\mathbb{R}\}$ e $T:V\longrightarrow V$ o operador

$$T(x_1, x_2, \dots, x_n, \dots) = (0, x_1, x_2, \dots, x_{n+1}, \dots)$$

o único polinômio que anula T é o polinômio nulo.

Observação 7. Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial V de dimensão finita n. Considere o subconjunto $\{I,T,T^2,\cdots,T^{n^2}\}$ de $M_n(\mathbb{K})$. Como a dimensão de $M_n(\mathbb{K})$ é n^2 , existem escalares $a_0,a_1,\cdots,a_{n^2}\in\mathbb{K}$ tais que $a_0I+a_1T+a_2T^2+\cdots+a_{n^2}T^{n^2}=0$, com algum $a_i\neq 0$.

Definição 8. Seja $T: V \longrightarrow V$ um operador linear em um espaço vetorial V. O **polinômio** minimal de T é o polinômio mônico $q_T(x)$ que gera o ideal $\{p \in \mathbb{K}[x] \mid p(T) = 0\}$.

Lema 9. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V. O polinômio $f(x)\in\mathbb{K}[x]$ é o polinômio minimal de T se, e somente se, temos que f(x) é um polinômio mônico que anula T e, dentre os polinômios que anulam T, possui o menor grau possível.

Demonstração. De fato, se f(x) é o polinômio minimal de T então, por definição, f é mônico e anula T. Além disso, seja $g \in \mathbb{K}[x]$ um polinômio que anule T. Como f(T) é o polinômio gerador do ideal $\{p \in \mathbb{K}[x] \mid p(T) = 0\}$, existe algum polinômio $h \in \mathbb{K}[x]$ para o qual g(x) = f(x)h(x), donde segue que $grau(g) \geqslant grau(f)$.

Por outro lado, suponhamos que $f \in \mathbb{K}[x]$ seja um polinômio mônico que anule T e que tenha o menor grau possível. Então $f \in \{p \in \mathbb{K}[x] \mid p(T) = 0\}$ e logo existe $h \in \mathbb{K}[x]$ tal que $f(x) = q_T(x)h(x)$. Logo $\operatorname{\mathsf{grau}}(q_T) \leqslant \operatorname{\mathsf{grau}}(f)$ e como o grau de f é o menor possível segue que $q_T = f$.

Lema 10. Sejam $T, U: V \longrightarrow V$ operadores lineares semelhantes no espaço vetorial V. Então os polinômios minimais de T e U coincidem.

Demonstração. Basta observar que, se $T=M^{-1}UM$ então $T^j=M^{-1}U^jM$.

Teorema 11. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V. Os polinômios característico e minimal de T possuem as mesmas raízes, a menos de multiplicidade.

Demonstração. Sejam $\lambda_1, \lambda_2, \ldots, \lambda_k$ os autovalores de T, i.e., as raízes de p_T . Suponhamos que $q_T(\alpha) = 0$. Então temos que $q_T(x) = (x - \alpha)f(x)$ para algum $f(x) \in \mathbb{K}[x]$. Logo $f(T) \neq 0$. Seja $v \in V$ um vetor tal que $w = f(T)(v) \neq 0$. Logo $0 = q_T(T)(v) = (T - \alpha I)f(T)(v) = (T - \alpha I)(w)$. Portanto α é um autovalor de T.

Por outro lado, seja λ_j um autovalor de T. Logo existe $v \in V$ não nulo tal que $T(v) = \lambda_j v$. Como $0 = q_T(T)(v) = q_T(\lambda_j)v$ temos que $q_T(\lambda_j) = 0$.

Observação 12. Se $T:V\longrightarrow V$ é um operador diagonalizável no espaço vetorial V com autovalores $\lambda_1,\lambda_2,\ldots,\lambda_k$, então existem inteiros m_1,m_2,\ldots,m_k tais que

$$q_T(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_k)^{m_k}.$$

Entretanto, podemos ver que $m_1 = m_2 = \cdots = m_k = 1$.

Exemplo 13. O polinômio minimal do operador dado por $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ é $q_T(x) = x^2 + 1$.

Teorema 14 (Cayley-Hamilton). Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial V de dimensão finita. Então o polinômio minimal de T divide o polinômio característico de T, ou seja, $p_T(T)=0$.

Demonstração. Seja $v \in V$ um elemento não nulo qualquer. Mostraremos que $p_T(T)(v) = 0$. Seja m o maior o maior natural tal que o conjunto $\mathcal{B} = \{v, T(v), T^2(v), \dots, T^{m-1}(v)\}$ seja linearmente independente. Então existem escalares a_0, a_1, \dots, a_{m-1} tais que

$$T^{m}(v) = a_{0}v + a_{1}T(v) + \dots + a_{m-1}T^{m-1}(v)$$

Então o subespaço $W = \operatorname{span}(\mathcal{B})$ é invariante por T. Desta forma, temos que

$$p_{T|_{W}}(x) = \det(xI - T|_{W}) = -a_{0} - a_{1}x - a_{2}x^{2} - \dots - a_{m-1}x^{m-1}.$$

Logo $p_{T|_W}(T)(v) = T^m(v) - a_0v - a_1T(v) - a_2T^2(v) - \cdots - a_{m-1}T^{m-1}(v) = 0$. Sejam $u_1, u_2, \dots, u_s \in V$ tais que $\{v, T(v), T^2(v), \dots, T^{m-1}(v), u_1, u_2, \dots, u_s\}$ seja uma base de V. Logo $p_T(x) = q(x) \cdot p_{T|_W}(x)$. Desta forma $p_T(T)(v) = q(T)p_{T|_W}(T)(v) = 0$. Portanto $p_T(T) = 0$.

Lema 15. Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial V cujo polinômio minimal seja $q_T(x)=(x-\lambda_1)^{m_1}(x-\lambda_2)^{m_2}\cdots(x-\lambda_k)^{m_k}$. Seja $W\subseteq V$ um subespaço **próprio** de V invariante por T. Então existe um vetor $v\in V$ tal que

(1) $v \notin W$;

(2) existe $j \in \{1, 2, ..., k\}$ tal que $(T - \lambda_j I)(v) \in W$.

Demonstração. Por (1) e (2), temos que o polinômio T-condutor de v em W tem grau 1. Seja $u \in V$ um vetor qualquer que não esteja em W. Seja $g \in K[x]$ o polinômio T-condutor de u em W. Logo g divide q_T . Como $u \notin W$, o polinômio g é não constante. Desta forma, existem inteiros não-negativos c_1, c_2, \ldots, c_k tais que $g(x) = (x - \lambda_1)^{c_1}(x - \lambda_2)^{c_2} \cdots (x - \lambda_k)^{c_k}$, sendo algum $c_j \neq 0$. Temos então que $g(x) = (x - \lambda_j)h(x)$. Logo $v \doteq h(T)(u) \notin W$ e

$$(T - \lambda_i)(v) = (T - \lambda I)h(T)(u) = g(T)(u) \in W.$$

Definição 16. Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial V. Dizemos que o operador $T:V\longrightarrow V$ é **triangularizável** se existe uma base ordenada \mathcal{B} para a qual a matriz $[T]_{\mathcal{B}}$ seja triangular (superior).

Teorema 17. Seja V um espaço vetorial de dimensão finita e seja $T:V\longrightarrow V$. Então T é triangularizável se, e somente se, q_T é produto de fatores lineares.

Demonstração. Se T é triangularizável, então existe uma base \mathcal{B} na qual a matriz $A = (a_{ij}) = [T]_{\mathcal{B}}$ é triangular superior. Logo $p_T(x) = (x - a_{11})(x - a_{22}) \cdots (x - a_{nn})$. Pelo Teorema de Cayley-Hamilton segue que $q_T(x)$ é produto de fatores lineares.

Por outro lado, suponhamos que $q_T(x)$ seja produto de fatores lineares da forma

$$q_T(x) = (x - \alpha_1)^{r_1} (x - \alpha_2)^{r_2} \cdots (x - \alpha_k)^{r_k}$$

Aplicando o lema anterior ao subespaço $W_0 = \{0\}$ encontramos $v_1 \in V$ tal que $v_1 \notin W_0 = \{0\}$ e $(T - \lambda_{j_1})(v_1) = 0$ para algum autovalor λ_{j_1} . Logo $T(v_1) = \lambda_{j_1}(v_1)$. Considerando agora $W_1 = \operatorname{span}(v_1)$, existe $v_2 \notin W_1$ tal que $(T - \lambda_{j_2}I)v_2 \in W_1$, ou seja, $T(v_2) = a_{12}v_1 + \lambda_{j_2}v_2$. Procedendo desta forma, encontramos uma base $\mathcal{B} = \{1, 2, \dots, n\}$ na qual a matriz de T é triangular.

Corolário 18. Se V é um espaço vetorial sobre um corpo algebricamente fechado então todo operador linear em V é triangularizável.

Demonstração. Segue diretamente do fato de que todo polinômio com coeficientes em um corpo algebricamente fechado é produto de fatores lineares.

Teorema 19. Seja $T:V\longrightarrow V$ um operador linear em um espaço vetorial de dimensão finita V. Então T é diagonalizável se, e somente se, o polinômio q_T é da forma

$$q_T(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_k)$$

onde $\lambda_1, \lambda_2, \dots, \lambda_k$ são os autovalores distintos de T.

Demonstração. É fácil ver que se T é diagonalizável, então o polinômio minimal de T é produto de fatores lineares.

Suponhamos então que $q_T(x)$ seja produto de fatores lineares. Seja $W = \sum_{j=1}^k \mathsf{Aut}_T(\lambda_j)$. Se

W=V então a existência de uma base de autovetores de V é imediata. Suponhamos então que $W\subseteq V$ seja um subespaço próprio. Neste caso, aplicando o lema anterior ao subespaço W existe um vetor $v\in V$ tal que $v\not\in W$ e $w=(T-\lambda_s I)(v)\in W$ para algum $s\in\{1,2,\ldots,k\}$. Pela definição de W, existem $w_j\in \operatorname{Aut}_T(\lambda_j)$ tais que $w=w_1+w_2+\cdots+w_k$. Para qualquer polinômio $h\in K[x]$ temos que

$$h(T)(w) = h(\lambda_1)w_1 + h(\lambda_2)w_2 + \dots + h(\lambda_k)w_k.$$

Mas $q_T(x) = (x - \lambda_s)q(x)$ para algum polinômio q(x). Também temos que $q_T(x) - q(\lambda_s) = (x - \lambda_s)h(x)$ para algum $h \in K[x]$. Logo

$$q(T)(v) = q(\lambda_s)(v) = h(T)(T - \lambda_s I)(v) = h(T)(w) \in W.$$

Como $0 = q_T(T)(v) = (T - \lambda_s)Iq(T)(v)$, o vetor $q(T)(v) \in W$. Logo $q(\lambda_s)v \in W$ e então $q(\lambda_s) = 0$ pois $v \notin W$. Isso contradiz o fato de que q_T tem raízes distintas.

Exercícios - 31 de janeiro de 2020

Nos exercícios a seguir, a menos de menção em contrário, $T:V\longrightarrow V$ denotará um operador linear em um espaço vetorial V de dimensão finita n.

Exercício 1. Calcule os polinômios minimal e característico dos operadores lineares nulo e identidade de V.

Exercício 2. Seja W um subespaço invariante por T de V. Prove que $q_{T|_W}$ divide q_T .

Exercício 3. Suponha que o polinômio característico de T seja um produto de fatores lineares distintos. Calcule o polinômio minimal de T e mostre que T é diagonalizável.

Exercício 4. Suponha que n=3 e que o polinômio característico de T seja da forma $p_T(x)=(x-\lambda_1)^2(x-\lambda)$.

Quais são os possíveis polinômios minimais de T? Para cada um desses polinômios minimais encontre um operador T que possua tal polinômio característico.

Exercício 5. Suponha que n=4 e que o polinômio minimal de T seja da forma $q_T(x)=(x-\lambda_1)^2(x-\lambda_2)$.

Quais são os possíveis polinômios característicos de T?

Exercício 6. Suponha que n=4 e que o polinômio minimal de T seja da forma

$$q_T(x) = (x - \lambda_1)(x - \lambda_2).$$

Quais são os possíveis polinômios característicos de T se $\mathbb{K} = \mathbb{R}$? Quais são os possíveis polinômios característicos de T se $\mathbb{K} = \mathbb{C}$?

Exercício 7. Suponha que exista um inteiro r para o qual T^r . Mostre que $T^n = 0$. Quais são os possíveis polinômios minimais de T?

Exercício 8. Seja $V = \mathcal{P}_n(\mathbb{K})$ o espaço de todos os polinômios na variável x com escalares em \mathbb{K} e seja $D: V \longrightarrow V$ o operador derivação. Calcule os polinômios minimais e característicos de T.

Exercício 9. Suponha que T seja uma projeção de V em um subespaço W de dimensão $k \leq n$. Quais são os polinômios característico e minimal de T?

Exercício 10. Suponha que V seja um \mathbb{R} -espaço vetroial de dimensão n ímpar. Mostre que $p_T(x)$ possui ao menos um autovalor.

Exercício 11. Seja $W = \sum_{j=1}^{k} \operatorname{Aut}_{T}(\lambda_{j})$ o subespaço T-invariante de T gerado pelos autovetores

associados aos autovalores distintos $\lambda_1, \lambda_2, \cdots, \lambda_k$. Mostre que se o polinômio q_T é produto de fatores lineares então V = W.

Exercício 12. Suponha no exercício anterior que $W \subseteq V$ é subespaço próprio. Seja $U \subseteq V$ um subespaço T-invariante de V para o qual $V = W \oplus V$. Mostre que $\dim(U) > 1$ e nesse caso calcule os possíveis polinômios minimais de T.

Exercício 13. Suponha que n=3. Mostre que se T não é triangularizável sobre $\mathbb{K}=\mathbb{R}$ então T é diagonalizável sobre \mathbb{C} .

Exercício 14. Suponha que $\mathbb{K} = \mathbb{C}$. Mostre que se μ é um autovalor de f(T) então existe algum autovalor λ de T para o qual $\mu = f(\lambda)$.

Exercício 15. Suponha que dim(V) = 2 e que a matriz de T na base canônica seja

$$\left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right).$$

Mostre que o subespaço W_1 gerado pelo vetor (1,0) é invariante por T. Mostre que não existe subespaço W_2 invariante por T tal que $V=W_1\oplus W_2$. Calcule os polinômios característico e minimal de T.

Exercício 16. Suponha que n=3 e que T não seja diagonalizável. Quais são os possíveis polinômios característico e minimal de T.

Exercício 17. Determine um operador T cujo polinômio minimal seja $q_T(x) = x^3 - 5x^2 + 8x - 4$.

Exercício 18. Suponha que T seja um operador linear que comuta com qualquer projeção. Mostre que existe $\lambda \in \mathbb{K}$ para o qual $q_T(x) = x - \lambda$.

Exercício 19. Suponha que a matriz que representa o operador T em uma base \mathcal{B} seja triangular superior com todas as entradas da diagonal ou acima dela distintas. Mostre que T é diagonalizável.

Exercício 20. Para quais valores de $a \in \mathbb{K}$ a matriz $\begin{pmatrix} 1 & 1 \\ 0 & a \end{pmatrix}$ é diagonalizável?

Para quais valores de $a \in \mathbb{K}$ a matriz $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ é diagonalizável?