PA152: Efektivní využívání DB 6. Zpracování dotazů

Vlastislav Dohnal

Poděkování

- Zdrojem materiálů tohoto předmětu jsou:
 - □ Přednášky CS245, CS345, CS345
 - Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom
 - Stanford University, California

Vyhodnocení dotazu

- Postup:
 - □ Dotaz
 - □ Strom dotazu
 - Logický plán
 - □ Úpravy plánu
 - □ Fyzický plán
 - □ Vyhodnocení

Příklad

- Relace
 - $\square R(A,B,C)$
 - \square S(C,D,E)
- Dotaz
 - □ select B,D from R,S where R.C=S.C and R.A='c' and S.E=2

Příklad

R	Α	В	С	S	С	D	E	
	а	1	10		10	X	2	
	b	1	20		20	У	2	
	С	2	10		30	Z	2	
	d	2	35		40	X	1	
	e	3	45		50	у	3	

... where R.C=S.C and R.A='c' and S.E=2

Příklad

R	Α	В	С	S	С	D	Е	
	а	1	10		10	X	2	
	b	1	20		20	У	2	
	С	2	10		30	Z	2	
	d	2	35		40	X	1	
	e	3	45		50	У	3	

Jak vyhodnotit tento dotaz?

1. způsob

- Kartézský součin
- Výběr záznamů
- Projekce

$R \times S$	R.A	R.B	R.C	S.C	S.D	S.E
	а	1	10	10	X	2
	а	1	10	20	У	2
	•					
	•					
	С	2	10	10	X	2
	•					
	•					

Popis plánů provedení dotazu

- Použití relační algebry
- Příklad plánu I:

$$\begin{array}{c|c} \Pi_{B,D} \\ \hline \sigma_{R.A=\text{`c'}\land S.E=2 \land R.C=S.C} \\ \hline \\ R & S \end{array}$$

Alternativně: $\Pi_{B,D}$ [$\sigma_{R.A='c'\land S.E=2\land R.C=S.C}$ (R×S)]

Popis plánů provedení dotazu

Příklad plánu II:

natural join

.

Fyzický plán

■ Příklad plánu II:

	R											S		
Α	В	С	σ	(R))		C	s(S)		С	D	E	
а	1	10	Α	В	С		С	D	Е		10	X	2	
b	1	20	С	2	10		10	X	2	4	20	У	2	
С	2	10					20	У	2		30	Z	2	
d	2	35					30	Z	2		40	X	1	
e	3	45		1			Y				50	У	3	
						> <								

Popis plánů provedení dotazu

- Plán III:
 - □ Použití indexů pro R.A a S.C
 - □ Použijeme index R.A k nalezení záznamů R splňující R.A = "c"
 - Pro každou nalezenou hodnotu R.C použijeme index S.C pro nalezení odpovídajících záznamů
 - Vypustíme záznamy S, kde S.E ≠ 2
 - □ Spojíme odpovídající záznamy R,S
 - □ Provedeme projekci na atributy B,D

×

м

další záznam: <c,7,15>

Přehled optimalizace dotazů

Příklad: SQL dotaz

Najdi filmy, ve kterých hrají herci narození v roce 1960:

```
SELECT title
FROM StarsIn
WHERE starName IN (
SELECT name
FROM MovieStar
WHERE birthdate LIKE '%1960'
);
```

100

Příklad: strom dotazu

7

Příklad: převod do relační algebry

Selekce má dva argumenty

□ Třeba převést…

Operátor IN

□ Tj. odstranění vnořených dotazů

Příklad: logický plán dotazu

Operátor IN nahrazen součinem

Příklad: vylepšení logického plánu

- Nahrazení součinu a selekce
 - □ Provedení spojení

- Další možnost
 - □ Posunout projekci k relaci StarsIn?

.

Příklad: odhad velikostí výsledků

- Před generováním fyzických plánů
- Ovlivňují odhad ceny provedení

Příklad: jeden fyzický plán

Příklad: ohodnocení plánů cenou

Optimalizace dotazu

- Úroveň relační algebry
- Úroveň podrobného plánu dotazu
 - □ Odhad ceny
 - Bez indexů
 - S indexy
 - □ Vytvoření a porovnání plánů

Optimalizace relační algebry

- Transformační pravidla
 - Musí zajistit ekvivalenci výsledků
 - □ Jaké transformace jsou vhodné?

Transformační pravidla

- Přirozené spojení
 - □ Protože jsou všechny atributy zachovány, není pořadí důležité
- Příklad: $R \bowtie S = S \bowtie R$ $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Transformační pravidla

Stejné pro kartézský součin a sjednocení

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R \cup S = S \cup R$$

 $R \cup (S \cup T) = (R \cup S) \cup T$

Transformační pravidla

Selekce

$$\sigma_{p1 \wedge p2}(R) = \sigma_{p1} [\sigma_{p2}(R)]$$

$$\mathbf{\sigma}_{p1\vee p2}(R) = [\mathbf{\sigma}_{p1}(R)] \cup [\mathbf{\sigma}_{p2}(R)]$$

Problém duplicit

- Množiny nebo multimnožiny?
 - □ Relace jsou multimnožiny
- Příklad
 - \square R = {a,a,b,b,b,c}
 - \square S = {b,b,c,c,d}
 - $\square R \cup S = ?$
- Možnost 1: SUM
 - \square R \cup S = {a,a,b,b,b,b,c,c,c,d}
- Možnost 2: MAX
 - \square R \cup S = {a,a,b,b,b,c,c,d}

Možnost 1: SUM

- Sjednocení dvou relací
 - $\square R \cup S$
- Příklad
 - □ Poslanci(id, rok, partaj, ...)
 - □ Senátoři(id, rok, partaj, …)
 - \square R = $\pi_{rok,strana}(Senátoři)$ S = $\pi_{rok,strana}(Poslanci)$

rok	partaj
1997	ODS
2003	ČSSD
2007	SZ

rok	partaj
1997	ODS
1998	KDU
1996	ČSSD

100

Možnost 2: MAX

Rozklad selekce:

$$\sigma_{p1\vee p2}(R) = \sigma_{p1}(R) \cup \sigma_{p2}(R)$$

- Příklad: R={a,a,b,b,b,c}
 - □p1 splňují a,b; p2 splňují b,c

$$\sigma_{p1 \lor p2}(R) = \{a,a,b,b,b,c\}$$

$$\sigma_{p1}(R) = \{a,a,b,b,b\}$$

$$\sigma_{p2}(R) = \{b,b,b,c\}$$

$$\sigma_{p1}(R) \cup \sigma_{p2}(R) = \{a,a,b,b,b,c\}$$

Volba správné možnosti

- Pragmatické rozhodnutí
 - □ Použití "SUM" pro sjednocení multimnožin
 - □ Některá pravidla nemůžeme pro multimnožiny použít

Transformační pravidla

- Značení:
 - □ X = množina atributů
 - □ Y = množina atributů
 - $\square XY = X \cup Y$
- Projekce

$$\pi_{xy}(R) = \pi_x[\pi_y(R)]$$

Transformační pravidla

- Kombinace selekce a přirozeného spojení
- Nechť

p = výraz obsahující pouze atributy Rq = výraz obsahující pouze atributy Sm = výraz obsahující atributy R a S

$$\sigma_{p}(R \bowtie S) = [\sigma_{p}(R)] \bowtie S$$

$$\sigma_{q}(R \bowtie S) = R \bowtie [\sigma_{q}(S)]$$

.

Transformační pravidla

- Kombinace selekce a přirozeného spojení
 - □ Další pravidla lze odvodit

$$\sigma_{p \land q} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)]$$

$$\sigma_{p \land q \land m} (R \bowtie S) =$$

$$\sigma_{m}\left[\left(\sigma_{p}\left(R\right)\right)\bowtie\left(\sigma_{q}\left(S\right)\right)\right]$$

$$\sigma_{p \vee q} (R \bowtie S) =$$

$$\left[\left(\sigma_{p} \left(R \right) \right) \bowtie S \right] \cup \left[R \bowtie \left(\sigma_{q} \left(S \right) \right) \right]$$

Příklad odvození pravidla

$$\sigma_{p \land q} (R \bowtie S) =$$

$$\sigma_p [\sigma_q (R \bowtie S)] =$$

$$\sigma_p [R \bowtie \sigma_q(S)] =$$

$$[\mathbf{O}_{\mathsf{P}}(\mathsf{R})]\bowtie [\mathbf{O}_{\mathsf{q}}(\mathsf{S})]$$

Transformační pravidla

- Kombinace projekce a selekce
- Nechť

x = podmnožina atributů R

z = atributy použité ve výrazu P (podmnožina R)

$$\pi_{x}[\sigma_{P}(R)] = (\sigma_{P}[\pi_{x}(R)])$$

Transformační pravidla

- Kombinace projekce a selekce
- Nechť

x = podmnožina atributů R

z = atributy použité ve výrazu P (podmnožina R)

$$\pi_{x}[\sigma_{P}(R)] = \pi_{x}(\sigma_{P}[\pi_{x}(R)])$$

10

Transformační pravidla

- Kombinace projekce a přirozeného spojení
- Nechť

x = podmnožina atributů R

y = podmnožina atributů S

z = průnik atributů R,S

$$\pi_{xy}(R \bowtie S) =$$

$$\pi_{xy}([\pi_{xz}(R)] \bowtie [\pi_{yz}(S)])$$

Transformační pravidla

Kombinace navíc se selekcí

$$\pi_{xy} (\sigma_p (R \bowtie S)) =$$

$$\pi_{xy} (\sigma_p [\pi_{xz'}(R) \bowtie \pi_{yz'}(S)])$$

$$z' = z \cup \{\text{atributy použité v P}\}$$

Transformační pravidla

 Kombinace projekce, selekce a kartézského součinu

$$\pi_{xy}(\sigma_{P}(R \times S)) = ?$$

re.

Transformační pravidla

Kombinace selekce a sjednocení

$$\sigma_{P}(R \cup S) = \sigma_{P}(R) \cup \sigma_{P}(S)$$

Kombinace selekce a rozdílu

$$\sigma_{P}(R - S) = \sigma_{P}(R) - S = \sigma_{P}(R) - \sigma_{P}(S)$$

- □ Selekci je možné aplikovat i na S
 - Může být vhodné pro zmenšení relace před provedením rozdílu
- Otázka: Musí P něco splňovat?

Volba vhodné transformace

Volba transformace

- Projekce co nejdříve
- Příklad:
 - □ R(A,B,C,D,E,F,G,H,I,J) výsledek={E}
 - ☐ Filtr P: (A=3) and (B="cat")

$$\pi_{E}(\sigma_{P}(R))$$
 vs. $\pi_{E}(\sigma_{P}(\pi_{ABE}(R)))$

Volba transformace (2)

- Máme indexy
 - □ Pro A i pro B

Průnik seznamu ukazatelů přímo dává výsledek

Volba transformace (3)

- Obecná pravidla:
 - □ Bez transformací neuděláme chybu
 - □ Většinou výhodné
 - Selekce nejblíže relacím

- Eliminace společných podvýrazů
- Eliminace duplicit

Zpracování dotazu: přehled

- Úroveň relační algebry
 - □ Transformační pravidla
 - Volba vhodných pravidel
- Úroveň podrobného plánu dotazu
 - □ Odhad ceny
 - Vytvoření a porovnání plánů

Odhad ceny plánu dotazu

- Odhad velikosti výsledku operace
- Odhad počtu V/V operací

Odhad velikosti výsledku operace

- Statistiky pro relaci R
 - □T(R) počet záznamů
 - □ S(R) velikost záznamu v bajtech
 - □ B(R) počet obsazených bloků
 - □ V(R, A) počet unikátních hodnot atributu A
- Pro správné odhady
 - □ Statistiky musí být aktuální

Příklad statistik

Relace R

- □ Atribut A řetězec, 20 bajtů
- □ Atribut B celé číslo, 4 bajty
- □ Atribut C datum, 8 bajtů
- □ Atribut D řetězec, 5 bajtů

Α	В	С	D
cat	1	10.2.98	a
cat	1	20.3.98	b
dog	1	30.4.98	а
dog	1	14.6.98	С
bat	1	15.6.98	d

Statistiky

$$\Box T(R) = 5$$

$$S(R) = 37$$

$$\square V(R,A) = 3$$

$$V(R,B) = 1$$

$$\square V(R,C) = 5$$

$$V(R,D) = 4$$

- Kartézský součin W = R₁ × R₂
 - $\Box T(W) = T(R_1) \cdot T(R_2)$
 - $\square S(W) = S(R_1) + S(R_2)$

- Selekce W = $\sigma_{Z=val}(R)$
 - $\square S(W) = S(R)$
 - $\Box T(W) = ?$

■ W = $\sigma_{A='cat'}(R)$

$$T(W) = \frac{T(R)}{V(R,A)} = 5/3$$

Α	В	С	D
cat	1	10.2.98	а
cat	1	20.3.98	b
dog	1	30.4.98	а
dog	1	14.6.98	С
bat	1	15.6.98	d

- Předpoklad předchozího odhadu
 - Rovnoměrné rozložení hodnot mezi hodnotami v R!
 - Tj. f(val) = T(R) / V(R,Z)

- Alternativní předpoklad
 - Rovnoměrné rozložení hodnot v celé doméně
 - Počet hodnot v doméně označujeme DOM(R,Z)

Odhad velikosti: příklad

- Selekce W = $\sigma_{Z=val}(R)$
 - $\Box T(W) = ?$
- Odvození

$$\square W = \sigma_{C=val}(R)$$

■
$$T(W) = (1/10)1 + (1/10)1 + ...$$

= $5/10 = 0.5$

$$\square W = \sigma_{B=val}(R)$$

$$T(W) = (1/10)5$$

$$\square W = \sigma_{A=val}(R)$$

$$T(W) = 0.5$$

Α	В	С	D
cat	1	10.2.98	а
cat	1	20.3.98	b
dog	1	30.4.98	а
dog	1	14.6.98	С
bat	1	15.6.98	d

$$V(R,A) = 3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$DOM(R,A)=10$$

$$DOM(R,B)=10$$

$$DOM(R,C)=10$$

$$DOM(R,D)=10$$

- Selekce W = $\sigma_{Z=val}(R)$
 - □ Původní návrh

$$T(W) = \frac{T(R)}{V(R,Z)}$$

□ Alternativní návrh

$$T(W) = \frac{T(R)}{DOM(R,Z)}$$

Α	В	С	D
cat	1	10.2.98	а
cat	1	20.3.98	b
dog	1	30.4.98	а
dog	1	14.6.98	С
bat	1	15.6.98	d

- Selekce W = $\sigma_{7 \ge \text{val}}(R)$
 - □ Návrh 1
 - T(W) = T(R) / 2
 - □ Návrh 2
 - T(W) = T(R) / 3
 - □ Návrh 3
 - Podle velikosti rozsahu

re.

Odhad velikosti

Selekce – podle velikosti rozsahu

Vypočítej podíl hodnot (unikátních)

$$f = \frac{20-15+1}{20-1+1} = \frac{6}{20}$$

$$\Box T(W) = f \cdot T(R)$$

re.

Odhad velikosti

- Přirozené spojení W = R₁ ⋈ R₂
 - □Značení
 - X atributy R₁
 - Y atributy R₂
- Případ 1
 - $\square X \cap Y = \emptyset$
 - □ Stejné jako R₁ × R₂
- Případ 2
 - $\square X \cap Y = A$
 - □Viz dále...

$$R_1 \bowtie R_2$$

$$R_1 \bowtie R_2 \qquad R_1 \mid A \mid B \mid C \mid R_2 \mid A \mid D \mid$$

Předpoklad

- $\square V(R_1,A) \leq V(R_2,A)$
 - → každá hodnota A z R₁ je i v R₂
- $\square V(R_2,A) \leq V(R_1,A)$
 - → každá hodnota A z R₂ je i v R₁

 $V(R_1,A) \leq V(R_2,A)$

- 1 záznam se spojí s T(R₂) / V(R₂,A) záznamy
- Výsledek:

$$T(W) = \frac{T(R_2)}{V(R_2, A)} \cdot T(R_1)$$

100

Odhad velikosti: přirozené spojení

Shrnutí obou variant

$$\Box V(R_2,A) \le V(R_1,A)$$

$$T(W) = \frac{T(R_1)}{V(R_1,A)} \cdot T(R_2)$$

Rozdíl je pouze v děliteli

Obecný závěr

$$\square W = R_1 \bowtie R_2$$

$$T(W) = \frac{T(R_1) \cdot T(R_2)}{\max \{ V(R_1,A), V(R_2,A) \}}$$

- Alternativní definice
 - Rovnoměrné rozložení v doméně

- 1 zázn. se spojí s T(R₂)/DOM(R₂,A) záznamy
- Výsledek:

$$T(W) = \frac{T(R_1) \cdot T(R_2)}{DOM(R_2,A)} = \frac{T(R_1) \cdot T(R_2)}{DOM(R_1,A)}$$
předpokládáme stejné

$$\blacksquare$$
 W = R₁ \bowtie R₂

- Velikost záznamu
 - $\square S(W) = S(R_1) + S(R_2) S(A)$
 - □ Platí pro všechny varianty

ne.

Odhad velikosti: ostatní operace

- Projekce
 - \square $\Pi_{AB}(R)$, T(W)=T(R), S(W)=S(AB)
- Selekce
 - $\square \sigma_{A=a\vee B=b}(R)$, S(W)=S(R), nechť n=T(R)
 - $\Box T(W) = n \cdot (1 (1 m_1/n) \cdot (1 m_2/n))$
 - $m_1 = T(R) / V(R,A)$ $m_2 = T(R) / V(R,B)$
- Sjednocení, průnik, rozdíl
 - $\square \cup, \cap, -$
 - T(W) počítá se průměrná velikost

100

Odhad velikosti

- Pro složitější výrazy jsou třeba ostatní statistiky
- Příklad

$$\square W = [\sigma_{A=a}(R_1)] \bowtie R_2$$
označme jako U

■ $T(U) = T(R_1) / V(R_1,A)$ $S(U) = S(R_1)$ □ Pro výsledek potřebujeme i V(U,*)!

PA152, Vlastislav Dohnal, FI MUNI, 2011

Odhad počtu hodnot

- Odhady V(U,*)
 - $\Box U = \sigma_{A=a}(R_1)$
 - □ Předpokládejme, že R₁(A,B,C,D)

Odhad počtu hodnot: příklad

- Relace R₁
- $U = \sigma_{A=a}(R_1)$
- Výsledek

$$\square V(U,A) = 1$$

$$\square V(U,B) = 1$$

$$\Box V(U,C) = 1 .. (T(R_1) / V(R_1,A))$$

$$\Box V(U,D) = 1 .. (T(R_1) / V(R_1,A))$$

Α	В	С	D
cat	1	10.2.98	а
cat	1	20.3.98	b
dog	1	30.4.98	а
dog	1	14.6.98	С
bat	1	15.6.98	d

Odhad počtu hodnot: praxe

Obvyklé řešení

$$\Box U = \sigma_{A=a}(R_1)$$

$$\square V(U,A) = 1$$

$$\square V(U,^*) = V(R,^*)$$

Odhad počtu hodnot: spojení

- $\blacksquare U = R_1(A,B) \bowtie R_2(A,C)$
- Výsledek:
 - $\square V(U,A) = \min\{ V(R_1, A), V(R_2, A) \}$
 - $\square V(U,B) = V(R_1, B)$
 - $\square V(U,C) = V(R_2, C)$

Odhad počtu hodnot: spojení

Příklad

$$\square Z = R_1(A,B) \bowtie R_2(B,C) \bowtie R_3(C,D)$$

- $\Box T(R_1) = 1000 \ V(R_1,A)=50 \ V(R_1,B)=100$
- $\Box T(R_2) = 2000 \ V(R_2,B)=200 \ V(R_2,C)=300$
- $\Box T(R_3) = 3000 \ V(R_3,C)=90 \ V(R_3,D)=500$

.

Odhad počtu hodnot: spojení

Mezivýsledek

$$\square U = R_1(A,B) \bowtie R_2(B,C)$$

□ Výsledek:

■
$$T(U) = T(R_1) \cdot T(R_2) / max\{ V(R_1,B), V(R_2,B) \} =$$

= 1000 · 2000 / 200

•
$$V(U,A) = 50$$

•
$$V(U,B) = 100$$

•
$$V(U,C) = 300$$

Odhad počtu hodnot: spojení

Celkový výsledek

$$\square Z = U \bowtie R_3(C,D)$$

□ Výsledek:

$$T(Z) = 10\ 000 \cdot 3\ 000\ /\ 300$$

■
$$V(Z,A) = 50$$

■
$$V(Z,B) = 100$$

•
$$V(Z,C) = 90$$

•
$$V(Z,D) = 500$$

Odhad počtu hodnot: histogram

- Histogram hodnot atributu
 - □ Zpřesnění odhadů
- Počet různých hodnot
 - Málo → pro každou počet
 - ☐ Hodně → segmentace
 - Stejné intervaly
 - Percentily
 - Pouze pro nejfrekventovanější, ostatní dohromady

Shrnutí

Odhad velikosti výsledků je "umění"

Nezapomeňte:

- Pro korektní odhad potřebujeme korektní statistiky
 - → nutnost udržovat tabulky při modifikacích
- □ Jaké jsou náklady takové údržby?

Aktualizace statistik

- Statistiky se příliš nemění
 - v krátkém časovém úseku
- I nepřesné statistiky mohou být užitečné
- Okamžitá aktualizace statistik
 - Může být úzkým místem statistiky jsou velmi často používány
- → Neaktualizuj příliš často

r,e

Aktualizace statistik

- Prováděno periodicky
 - □ Po uplynutí určitého času
 - □ Po určitém počtu změn
- Pomalé pro V(R,A)
 - □ Zejména pokud se počítají histogramy
 - □ → Počítáno na vzorku dat
 - Pokud je většina hodnot různých → V(R,A)≈T(R)
 - Pokud je málo různých hodnot → pravděpodobně jsme většinu ze všech viděli

Odhad ceny plánu dotazu: přehled

- Odhad velikosti výsledku operace
 - □ Již probráno
- Odhad počtu V/V operací
 - □ Další přednáška

Vytvoření a porovnání plánů