

[Chap.6-1] The Memory Hierarchy

Young Ik Eom (<u>yieom@skku.edu</u>, 031-290-7120)

Distributing Computing Laboratory

Sungkyunkwan University

http://dclab.skku.ac.kr

Contents

- **■**Introduction
- **■** Storage technologies
- Locality
- **■** The memory hierarchy
- Cache memories
- **■** Writing cache-friendly code
- **■** Impact of caches on program performance

- Hierarchy of storage devices with different capacities, costs, and access times
 - CPU registers (can be accessed in 0 cycles)
 - Cache memories (can be accessed in 4~75 cycles)
 - Main memory (can be accessed in hundreds of cycles)
 - Hard disk (can be accessed in tens of millions of cycles)
 - Etc

■ Memory system

Hierarchy of storage devices

■ Memory system

- Locality
 - Programs with good locality
 - ✓ Tend to access the same set of instructions and data items over and over again
 - ✓ Tend to access more instructions and data items from the upper levels of memory hierarchy than programs with poor locality
 - ✓ Run faster than programs with poor locality

■ Memory system

- Cache memory
 - Have the most impact on application program performance
 - Focuses on ...
 - ✓ Analyzing programs for locality
 - ✓ Improving locality

- RAM (Random Access Memory)
 - SRAM (Static RAM)
 - Faster and more expensive
 - Used for cache memories
 - DRAM (Dynamic RAM)
 - Used for main memory and frame buffer of a graphic system
 - Both are volatile
 - Lose information if the supply voltage is turned off

ES MI HELLE B

SRAM and DRAM

	Trans. per bit	Access time	Needs refresh?	Sensitive?	Cost	Applications
SRAM	6	1×	No	No	1,000×	Cache M
DRAM	1	10×	Yes	Yes	1×	Main M, Frame buffers

SRAM

- Persistent
 - ✓ No refresh is necessary
- Faster than DRAM
- Not sensitive to disturbances such as light and electrical noise
- Lower density
- Consumes more power
- More expensive

Conventional DRAMs

- DRAM chip
 - Partitioned into **d** supercells, each consisting of **w** DRAM cells
 - A d×w DRAM can store d·w bits
 - Supercells organized as a rectangular array with r rows and c columns (d = r·c)
- MC(Memory Controller)
 - Transfers w bits at a time to/from DRAM chip
 - For reading supercell (**i**, **j**),
 - ✓ MC sends row address i (RAS(Row Access Strobe) request), and then column address j (CAS(Column Address Strobe) request)
 - ✓ RAS and CAS shares the same address pins

DRAM chip

■ Conventional DRAMs

Reading (step-1)

■ Conventional DRAMs

Reading (step-2)

Memory modules

64 MB memory module consisting of eight 8M×8 DRAMs

■ supercell (i,j)

Enhanced DRAMs

- FPM DRAM (Fast page mode)
 - Allows reuse of row addresses (quick access)

$$\checkmark$$
 Eg) RAS \rightarrow CAS \rightarrow CAS

- EDO DRAM (Extended data out)
- SDRAM (Synchronous)
 - Uses a conventional clock signal instead of asynchronous control
- DDR SDRAM (Double data-rate synchronous)
 - Double edge clocking sends two bits per cycle per pin
 - DDR2, DDR3 (used in Intel Core i7)
- VRAM (Video)
 - Used in frame buffers of graphics system

■ Nonvolatile memories

- Retain their information even when they are powered off
- ROMs
 - PROM, EPROM, EEPROM
- Flash memory (SSD)
- Hard disk (HDD)
- NVRAM(Non-Volatile RAM)
 - PRAM, STT-MRAM

- Nonvolatile memories: ROMs (Read-Only Memories)
 - ROM
 - Programmed during production
 - PROM (Programmable ROM)
 - Can be programmed exactly once
 - EPROM (Erasable PROM)
 - Can be erased and reprogrammed on the order of 1,000 times
 - Erasing by shining ultraviolet light
 - Programming is done by using a special device
 - EEPROM (Electrically Erasable PROM)
 - Can be programmed in-place on printed circuit cards
 ✓ No separate programming device
 - Can be reprogrammed on the order of 10,000 times

- Fast and durable nonvolatile storages for many electronic devices, including smart phones, tablets, laptops, desktops, and digital cameras
- Asymmetric read-write speed
- No in-place writes
- Wares out after about 100,000 erasings
- NAND flash
- NOR flash
- SSD (Solid State Disk)

- Bus
 - Collection of parallel wires that carry address, data, and control signals
 - Typically shared by multiple devices

- Read transaction (movq A,%rax)
 - (Step-1) CPU places the address **A** on the system bus

- Read transaction (movq A,%rax)
 - (Step-2) Main memory reads **A** from the memory bus, retrieves word **x**, and places it on the bus

- Read transaction (movq A,%rax)
 - (Step-3) CPU reads word x from the bus and copies it into register %rax

- Write transaction (movq %rax,A)
 - (Step-1) CPU places address **A** on bus; Main memory reads it and waits for the corresponding data word to arrive

- Write transaction (movq %rax,A)
 - (Step-2) CPU places data word **y** on the bus

- Write transaction (movq %rax,A)
 - (Step-3) Main memory reads data word **y** from the bus and stores it at address A

- **■** HDDs (Hard Disk Drives)
 - Inside the HDDs

[Image courtesy of Seagate Technology]

- Disks consist of platters, each with two surfaces
- Each surface consists of concentric rings called tracks
- Each track consists of sectors separated by gaps

■ HDDs

Aligned tracks form a cylinder

■ Disk capacity

- Maximum number of bits that can be stored
 - Vendors express capacity in units of gigabytes (GB), where $1GB \cong 10^9$ Bytes
 - Capacity factors
 - ✓ Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track
 - ✓ Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment
 - ✓ Areal density (bits/in²): product of recording and track density

■ Disk capacity

- Multiple zone recording
 - Modern disks partition tracks into disjoint subsets called recording zones
 - ✓ Each track in a zone has the same number of sectors, determined by the circumference of innermost track in the zone
 - ✓ Each zone has a different number of sectors per track

■ Disk capacity

```
Capacity = (# bytes/sector) × (avg. # sectors/track) × (# tracks/surface) × (# surfaces/platter) × (# platters/disk)
```

Example)

- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

Capacity = $512 \times 300 \times 20,000 \times 2 \times 5 = 30,720,000,000 = 30.72 \text{ GB}$

■ Disk operation

- Average time to access some target sector
 - $T_{access} = T_{avg-seek} + T_{avg-rotation} + T_{avg-transfer}$
 - Seek time (T_{avg-seek})
 - ✓ Time to position heads over cylinder containing target sector
 - ✓ Typical T_{avg-seek} is 3~9ms (Max 20ms)
 - Rotational latency (T_{avg-rotation})
 - ✓ Time waiting for first bit of target sector to pass under head
 - ✓ $T_{avg-rotation} = 1/2 \times 1/RPMs \times 60sec/1min$
 - ✓ Typical $T_{avg-rotation} = 1~4ms$
 - Transfer time (T_{avg-transfer})
 - ✓ Time to read the bits in the target sector
 - ✓ $T_{avg-transfer} = 1/RPM \times 1/(avg. \# sectors/track) \times 60secs/1min$

■ Disk operation

■ Disk operation

■ Disk operation: A scenario

After **BLUE** read

After reading blue sector

■ Disk operation: A scenario

After **BLUE** read

Red request scheduled next

■ Disk operation: A scenario

Seek to red's track

■ Disk operation: A scenario

Wait for red sector to rotate around

■ Disk operation: A scenario

Complete read of red

■ Disk operation: A scenario

■ Disk operation

- Example)
 - Given
 - ✓ Average seek time = 9ms
 - ✓ Rotational rate = 7,200 RPM
 - ✓ Avg. # sectors/track = 400
 - Derived

```
✓ T_{avg\text{-rotation}} = 1/2 \times (60 \text{secs}/7200 \text{RPM}) \times 1000 \text{ms/sec} = 4.17 \text{ms}
✓ T_{avg\text{-transfer}} = 1/(400 \text{sectors/track}) \times 60/7200 \text{RPM} \times 1000 \text{ms/sec}
= 0.02 ms
```

$$\checkmark T_{access} = 9ms + 4.17ms + 0.02ms = 13.19ms$$

Disk operation

- Notes)
 - Access time dominated by seek time and rotational latency
 - SRAM access time is about 4ns/doubleword (256ns for 512B),
 DRAM about 60ns (about 4,000ns for 512B)
 - ✓ Disk, which has roughly 10ms access time, is about 40,000 times slower than SRAM, and 2,500 times slower then DRAM

■ Logical disk blocks

- Modern disks present a simpler abstract view of the complex sector geometry
 - The set of available sectors is modeled as a sequence of **b**-sized logical blocks (0, 1, 2, ···)

Bo	B ₁	B_2	 B _{n-2}	B _{n-1}

- Mapping between logical blocks and physical sectors
 - Maintained by hardware/firmware device called disk controller
 - Converts requests for logical blocks into (track#, surface#, sector#) triples

Disk formatting

- Filling in the gaps between sectors with information that identifies the sector
- Identifying cylinders with surface defects and taking them out of action (but sector a out of action)
- Setting aside a set of cylinders in each zone as spares
 - Called into action when one or more cylinders in the zone goes to bad
- Accounts for the difference in formatted capacity and maximum capacity

- Connects I/O devices to the CPU and memory
- Designed to be independent of the underlying CPU
- Can accommodate a wide variety of 3rd-party I/O devices
- Eg) Intel's PCI (Peripheral Component Interconnect) bus

■ Host bus adapter

- Connects one or more disks to the I/O bus
- Host bus interface (Communication protocol for the connection)
 - SATA (supports only one drive)
 - SCSI (supports multiple drives, faster and more expensive)

■ I/O bus

- Reading a disk sector
 - [Step-1] CPU initiates a disk read by writing a command, logical block number, and destination memory address to a port (address) associated with disk controller (Memory-mapped I/O)
 - [Step-2] Disk controller reads the sector and performs a **DMA** (**Direct Memory Access**) transfer into main memory
 - [Step-3] When the DMA transfer completes, the disk controller notifies the CPU with an **interrupt** (i.e., asserts a special "interrupt" pin on the CPU)

■ Commercial disks

Seagate Cheetah 15K.4

Geometry attribute	Value
Platters	4
Surfaces (read/write heads)	8
Surface diameter	3.5 in.
Sector size	512 bytes
Zones	15
Cylinders	50,864
Recording density (max)	628,000 bits/in.
Track density	85,000 tracks/in.
Areal density (max)	53.4 Gbits/sq. in.
Formatted capacity	146.8 GB

Performance attribute	Value
Rotational rate	15,000 RPM
Avg. rotational latency	2 ms
Avg. seek time	4 ms
Sustained transfer rate	58-96 MB/s

■ Tool DIXtrac

- Developed at CMU
- Automatically discovers a wealth of low-level information about the geometry and performance of SCSI disks
- Example)DIXtrac on Seagate disk

Zone number	Sectors per track	Cylinders per zone	Logical blocks per zone
(outer) 0	864	3201	22,076,928
1	844	3200	21,559,136
2	816	3400	22,149,504
3	806	3100	19,943,664
4	795	3100	19,671,480
5	768	3400	20,852,736
6	768	3450	21,159,936
7	725	3650	21,135,200
8	704	3700	20,804,608
9	672	3700	19,858,944
10	640	3700	18,913,280
11	603	3700	17,819,856
12	576	3707	17,054,208
13	528	3060	12,900,096
(inner) 14		_	

■ SSDs (Solid State Disks)

- Based on flash memory
 - Consists of one or more flash memory chips and FTL
 - FTL(Flash Translation Layer) plays the role of disk controller
 - ✓ Translating requests for <u>logical blocks</u> into accesses of the underlying physical device
- Plugs into the standard disk slot on the I/O bus (USB or SATA)
- Behaves like any other disk

■ SSDs

Characteristics of SSDs

- Page size
 - 512B ~ 4KB
- Block size
 - 32 ~ 128 pages (16KB ~ 512KB)
- Data is read and written in units of pages
 - A page can be written only after its block has been erased
- A block wears out after 100,000 repeated writes

Characteristics of SSDs

Performance characteristics (Intel SSD 730)

Sequential read tput	550 MB/s
Random read tput (IOPS)	89,000
Random read tput (MB/s)	365 MB/s
Avg seq'l read access time	50 μs

Sequential write tput	470 MB/s
Random write tput (IOPS)	74,000
Random write tput (MB/s)	303 MB/s
Avg seq'l write access time	60 μs

- Why are random writes so slow?
 - Erasing a block is slow (around 1ms)
 - Writing a page triggers a copy of all useful pages in the block
 - ✓ Find a new block and erase it, if necessary
 - ✓ Write the page into the new block
 - ✓ Copy other pages from old block to the new block

- Advantages
 - No moving parts → faster, less power, more rugged
- Disadvantages
 - Have the potential to wear out
 ✓ Mitigated by "wear leveling logic" in FTL
 - About 30× more expensive per byte than in HDD
- Applications
 - Smart phones, laptops, digital cameras
 - Desktops and servers

■ Storage trends

SRAM

Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985
\$/MB	2,900	320	256	100	75	60	25	116 ↓
access (ns)	150	35	15	3	2	1.5	1.3	115 ↓

DRAM

Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985
\$/MB	880	100	30	1	0.1	0.06	0.02	44,000 ↓
access (ns)	200	100	70	60	50	40	20	10 ↓
typical size (MB)	0.256	4	16	64	2,000	8,000	16,000	62,500 ↑

HDD

Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985
\$/GB	100,000	8,000	300	10	5	0.3	0.03	3,333,333↓
access (ms)	75	28	10	8	5	3	3	25↓
typical size (GB)	0.01	0.16	1	20	160	1,500	3,000	300,000↑

Inflection point in computer history when designers hit the "Power Wall"

	1985	1990	1995	2003	2005	2010	2015	2015:1985
CPU	80286	80386	Pentium	P-4	Core 2	Core i7(n)	Core i7(h)	
Clock rate (MHz	<u>v</u>) 6	20	150	3,300	2,000	2,500	3,000	500 ↑
Cycle time (ns)	166	50	6	0.3	0.5	0.4	0.33	500 ↓
Cores	1	1	1	1	2	4	4	4 ↑
Effective cycle time (ns)	166	50	6	0.3	0.25	0.1	0.08	2,075 ↓

■ The CPU-memory gap

■ Notes)

- The gap between DRAM disk performance and CPU performance is widening
- Locality to the rescue!
 - The key to bridging this CPU-memory gap is a fundamental property of computer programs known as locality

Summary

