

¿Qué es Machine Learning?

Machine Learning es una rama de la inteligencia artificial en donde se le brinda a los computadores la habilidad de aprender sin ser explícitamente programados.

(Arthur Samuel, 1959)

Se dice que un computador aprende de la experiencia E, con respecto a una tarea T y una medida de performance P, si su performance en T, medido por P, mejora con la experiencia E.

(Tom Mitchell, 1998)

Un poco de historia

Historia de la IA: Frank Rosenblatt y el Mark I Perceptrón, el primer ordenador fabricado específicamente para crear redes neuronales en 1957.

Un poco de historia

Enfoque de Computación Tradicional

¿Logra emular el fenómeno?

Enfoque Machine Learning

Modelo (reglas)

Imitación del fenómeno con alto nivel de similitud

Problemas Regresivos

Tipos de ML

¿Qué es una tarea de regresión?

Supongamos que tenemos información histórica de los precios de bienes raíces de la ciudad, y lo que queremos es realizar un modelo que nos permita predecir el valor de una propiedad a partir de sus características.

Α	В	C	D	E	F	G	Н	1	J	K	L	M
date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basem	r_built
02-05-2014 0:00	313000.0	3.0	1.5	1340	7912	1.5	0	0	3	1340	0	1955
02-05-2014 0:00	2384000.0	5.0	2.5	3650	9050	2.0	0	4	5	3370	280	1921
02-05-2014 0:00	342000.0	3.0	2.0	1930	11947	1.0	0	0	4	1930	0	1966
02-05-2014 0:00	420000.0	3.0	2.25	2000	8030	1.0	0	0	4	1000	1000	1963
02-05-2014 0:00	550000.0	4.0	2.5	1940	10500	1.0	0	0	4	1140	800	1976
02-05-2014 0:00	490000.0	2.0	1.0	880	6380	1.0	0	0	3	880	0	1938
02-05-2014 0:00	335000.0	2.0	2.0	1350	2560	1.0	0	0	3	1350	0	1976
02-05-2014 0:00	482000.0	4.0	2.5	2710	35868	2.0	0	0	3	2710	0	1989
02-05-2014 0:00	452500.0	3.0	2.5	2430	88426	1.0	0	0	4	1570	860	1985
02-05-2014 0:00	640000.0	4.0	2.0	1520	6200	1.5	0	0	3	1520	0	1945
02-05-2014 0:00	463000.0	3.0	1.75	1710	7320	1.0	0	0	3	1710	0	1948
02-05-2014 0:00	1400000.0	4.0	2.5	2920	4000	1.5	0	0	5	1910	1010	1909
02-05-2014 0:00	588500.0	3.0	1.75	2330	14892	1.0	0	0	3	1970	360	1980
02-05-2014 0:00	365000.0	3.0	1.0	1090	6435	1.0	0	0	4	1090	0	1955
02-05-2014 0:00	1200000.0	5.0	2.75	2910	9480	1.5	0	0	3	2910	0	1939
02-05-2014 0:00	242500.0	3.0	1.5	1200	9720	1.0	0	0	4	1200	0	1965
02-05-2014 0:00	419000.0	3.0	1.5	1570	6700	1.0	0	0	4	1570	0	1956
02-05-2014 0:00	367500 0	4.0	3.0	3110	7231	2.0	0	0	3	3110	0	1997

¿Qué es una tarea de regresión?

Una tarea de regresión es aquella que realiza el proceso de predicción de una cantidad (Y), a partir de sus features (X).

La variable target, corresponde a una variable numérica real, que puede ser entera o decimal.

- Existen varios tipos de regresión que nos permiten resolver tareas de este tipo, dentro de los cuales se encuentran:
 - Regresiones Lineales Simples
 - Regresiones Lineales Multivariadas
 - Regresiones Polinomiales
 - Series de Tiempo
 - Otras...

El siguiente, es un ejemplo de una **Regresión Lineal Simpl**e. Es simple, porque utiliza sólo un feature (superficie) y es lineal porque en este modelo el precio responde de forma lineal respecto a la superficie.

El siguiente, es un ejemplo de una **Regresión Polinomial**. Nótese que la respuesta del precio es no lineal respecto a la superficie en dicho modelo.

El siguiente, también es un ejemplo de una **Regresión Polinomial**. Nótese este modelo tiene un nivel de complejidad mayor que los anteriores y podría, por lo tanto, presentar sobreajuste.

Lo mismo este modelo **Regresivo No Lineal**, otro ejemplo.

El siguiente gráfico, corresponde a una Serie de Tiempo. Nótese que en el eje X el feature corresponde a la variable Tiempo, y en el eje Y se encuentra el valor de la serie. En una serie de tiempo, los modelos predictivos se les llama pronósticos

Algoritmos de Regresión

- Hay múltiples algoritmos para resolver problemas regresivos, a continuación se mencionan algunos:
 - Regresión Lineal OLS
 - Regresión Lasso y Ridge
 - Árboles Regresivos
 - Support Vector Regression
 - Redes Neuronales

Gracias

