

The Infrared Absorption of Solutions of Hydroxides and Hydrolyzing Salts

E. K. Plyler and Walter Gordy

Citation: The Journal of Chemical Physics 2, 470 (1934); doi: 10.1063/1.1749512

View online: http://dx.doi.org/10.1063/1.1749512

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/2/8?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Infrared Absorption Spectrum of Lithium Hydroxide

J. Chem. Phys. 31, 863 (1959); 10.1063/1.1730540

Preparation of Thin Crystalline Samples of the Alkali Hydroxides for Infrared Absorption Studies

J. Chem. Phys. 29, 1197 (1958); 10.1063/1.1744694

Absorption Spectra in Molten Salt Solutions

J. Chem. Phys. 29, 1029 (1958); 10.1063/1.1744649

Near Infrared Absorption of Solutions of Hydroxides and Hydrolyzing Salts

J. Chem. Phys. 2, 621 (1934); 10.1063/1.1749362

The Infrared Absorption of Alcoholic Solutions of Hydroxides

J. Chem. Phys. 2, 565 (1934); 10.1063/1.1749532

The Infrared Absorption of Solutions of Hydroxides and Hydrolyzing Salts

E. K. Plyler and Walter Gordy, Department of Physics, University of North Carolina (Received May 21, 1934)

Absorption bands have been found at 3.65μ and 5.2μ in aqueous solutions of NaOH, KOH and LiOH. Solutions of ZnCl₂, ZnBr₂, NH₄C₂H₃O₂, Na₂CO₃, NaC₂H₃O₂, Na₂B₄O₇, Na₂SiO₃ and Al₂(SO₄)₃ were studied in the region from 2.8μ to 6μ and bands were observed at about 3.45μ , 4.5μ , 5.2μ and 5.6μ . The solutions which are acid in reaction had intense bands at 3.6μ and 5.2μ , while the basic solutions

gave a strong band at 5.6μ . This variation in intensity indicates that the absorption bands are due to undissociated molecules bound to water molecules. The band at 4.5μ is probably due to water which has been modified by the ions. The hydroxides showed the absorption bands at 3.6μ and 5.2μ when 0.1N solution was used.

GRANTHAM¹ measured the absorption of several hydroxides in aqueous solutions from 1μ to 3μ and found an intense band at 2.29μ for all the solutions except NH₄OH which had the maximum of absorption at 2.20μ .

tions and found that the intensity of the water absorption was changed. Small bands occurred at 0.96μ , 1.10μ , and 1.27μ for all the hydroxides in alcoholic solutions and these bands were thought to be due to the OH ion.

Fig. 1. The percent transmission of water and of NaOH and KOH solutions from 2.8 µ to 6.6 µ.

Because the absorption bands had the same wave-length Grantham concluded that the absorption was due to the OH ions. Collins² also measured the absorption of hydroxides in solu-

These bands appear to be part of a harmonic series which has a fundamental in the long wavelength region. The present work was undertaken to look for such bands and the region from 2.8μ to 6.5μ was studied. The measurement of the absorption bands was done in a way similar to

¹ G. E. Grantham, Phys. Rev. 18, 339 (1921).

² J. R. Collins, Phys. Rev. **20**, 486 (1922).

that employed by Plyler and Barr.³ In Fig. 1 is shown the percent transmission of $\rm H_2O$ and 7.5N NaOH and 7.5N KOH solutions. In the region of 4.2μ the spectrometer slits were changed and this caused breaks in some of the curves. The cell thickness was approximately 0.01 mm for each solution. The transmission is less than is found for water. In Fig. 2 the ratio of the percent transmission of the solutions to that of water is plotted. Intense bands are shown in the regions of 5.20μ and 3.65μ .

A 5N solution of LiOH also gives the same bands. In the region of 3.65μ the bands appear to be double with a less intense component on the long wave-length side. On account of the rapid change in the coefficient of absorption of water, it was difficult to determine the true shape or position of this band. The small band in the region of 4.2μ was not found in all determinations and may be due to observational

Fig. 2. The ratio of the transmission of solutions of KOH, NaOH, and LiOH as compared to water.

Fig. 3. The percent transmission of some hydrolyzing salts from 2.8μ to 6.6μ .

Fig. 4. The percent transmission of some hydrolyzing salts compared with water from 4.2μ to 6.0μ . (The curve labelled NaB₄O₇ should be Na₂B₄O₇; the curve NaSiO₃ should be Na₂SiO₃.)

errors. There is a strong band in this region due to CO₂ in the atmosphere and the deflections of the galvanometer are greatly reduced.

The bands reported by Collins² agree in position with harmonics of these bands. If the 3.65μ band is called ν_1 , and the 5.2μ band ν_2 , then $3\nu_1$ corresponds to 1.27μ and $4\nu_1$ to 0.95μ and $5\nu_2$ corresponds to 1.05μ . The combination of $\nu_1+\nu_2$ corresponds to a band at 2.3μ . This agreement is not very satisfactory as the observed band occurs at 2.2μ . By a study of hydrolyzing salts in this region it has been found that the 2.2μ band is a fundamental frequency and not a combination band.

A study of hydrolyzing salts was next made to see if the hydroxides formed in this way had bands at 3.65μ and 5.2μ . Solutions of 10N ZnCl₂,

10N ZnBr₂, 10N NH₄C₂H₃O₂ and 2.5N Na₂CO₃ were measured from 2.8μ to 6.6μ and the results are shown in Fig. 3. The percent transmission in this region is much less than that of water. The acid solutions have less transmission at 3.45μ and 5.2μ than the basic solutions but the basic solutions have less transmission at 5.6 \mu. This variation in intensity is readily seen when the ratio of the percent transmission of the solution compared to water is plotted. The results for the region from 4μ to 6μ are shown in Fig. 4. The first curves are for acid solutions and the band at about 5.6μ , which is characteristic for all acid solutions,3 is very weak. The band at 5.2μ , which has been found for all hydroxides, is intense. As an acid solution of a hydrolyzing salt indicates more H ions than OH ions, the 5.6μ acid band must be due to the

Fig. 5. The percent transmission of some hydrolyzing salts compared with water from 2.8μ to 4μ .

Fig. 6. Intensity of the hydroxide bands at 3.65μ and 5.2μ as affected by concentrations.

undissociated acid molecule attached to one or more water molecules and the 5.2μ band due to the undissociated hydroxide molecule attached to one or more water molecules. The four lower curves in Fig. 4 show the percent transmission of 7N NaC₂H₃O₂, 0.5N Na₂B₄O₇, 5N Na₂SiO₃, 2.5N Na₂CO₃ which are basic. The 5.6µ acid band is intense and the 5.2μ hydroxide band is weak. This result also shows that these bands are due to the undissociated molecule. Because of the strong hydroxide band at 5.2μ , the bands produced by the acids at 5.6μ are somewhat distorted. The NH₄C₂H₃O₂ solution acts similarly to acid solutions but this result may be produced by the absorption due to the NH4 ion in the region of 5.2μ .

Intense bands were found for all the hydrolyzing salts in the region of 4.5μ . These bands are not present in the solutions of acids or hydroxides and are to be attributed to energy levels characteristic of hydrolyzing salts. A strong absorption band is found in this region in all crystals having water of crystallization and it is possible that some of the water molecules of the solution are bound between the ions in a similar way to water in crystals. In Fig. 5 are shown the results for solutions of NH₄C₂H₃O₂, ZnBr₂, ZnCl₂, NaC₂H₃O₂ and Na₂CO₃ in the region from 2.8μ to 4μ . On account of the low transmission of water in this region, the position of the band could not be found so accurately. However, it was readily found that this region had an intense band at about 3.45μ .

The hydroxide bands at 3.65μ and 5.2μ have been found to arise in energy changes between the undissociated hydroxide molecule and one or more water molecules. Measurements were made on concentrations from 10N to 0.1N to see if the bands decreased rapidly in intensity as the concentration decreased. The intensity appeared to vary directly as the concentration and the bands were still present with 0.1N solutions. Curves for 0.1N and 0.25N solutions of NaOH are shown in Fig. 6.

The hydroxide solutions have been studied by means of the Raman spectra and shifts have been found which correspond to a band with a frequency of 3600 cm⁻¹. Neither of the bands at 3.65μ or 5.2μ was observed.

The intensity of the bands at 3.45μ , 5.2μ and 5.6μ is a measure of the hydration for the given concentration. Because of the thin cells it is difficult to obtain quantitative results. However, the harmonics of these bands, which occur in the region of 2μ , could be used to determine the degree of hydration. A study of this type has been made by Krishnamurti⁵ by the use of the Raman effect. He did not find any shifts which correspond to the bands observed in this work.

⁴ L. A. Woodward, Phys. Zeits. 32, 261 (1931).

C. C. Hatley and Dixon Callihan, Phys. Rev. 38, 909 (1931)

⁵ P. Krishnamurti, Ind. J. Phys. 6, 345 (1931).