This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Редактор А. Лежнина

Составитель А.Я Чал-Борю Техред М.Моргентал

Корректор М. Максимишинец

Заказ. 3662 ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(1) SU (11) 1687291

(si)s B 01 J 19/00

Jest Man U 6

OTHINE MSOBPETEINS

ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ

TIPM FKHT CCCP

ГОСУДАРСТВЕННЫЙ КОМИТЕТ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4758162/05 (22) 13.11.89 (46) 30.10.91, Бюл. № 40 (72) М.П.Вилянский, С.С.Пехтерев, В.Ю. Нахшунов, Г.А. Степанов и В.М. Степаненко (53) 66.023 (088.8) (55) Юкельсон И.И. Технология основного органического синтеза. М.: Госхимиздат.

ALA HARIA

производительности при получении гелеобразного полиакриламида. Для этого в полимеризаторе теплообменные рубашки выполнены эластичными для обеспечения возможности выдавливания геля из полимеризатор может быть снабжен размещенным в штуцере для выгрузки полимера шнековым гранулятором. Эластичные рубашки способствуют

N

ке в рубашки 6 (без подачи охлаждающей воды разогрев идет до 60–70°С).

давливается из цилиндрической части 20 из полимеризатора и гранулируется. При 40°С гелеобразный полимер выдавливается этом в полость между металлическими обе-После снижения температуры до 30чайками 2 и 3 корпуса 1 и раздувающейся внутрь рубашкой 6 по трубопроводу 7 при из верхней части полимеризатора вентиль 15-17 подается вода под давлением 4 атм. что создает перистальтическое перемеще открытом вентиле 14 и закрытых вентилях тяции полимера. После выдавливания геля интенсифицирует процесс выгрузки грануметаллической обечайкой 2 и раздувающейние геля в нижнюю часть полимеризатора, 14 закрывается и открывается вентиль 15. При этом заполняется водой полость между ся внутрь рубашкой 6. Оставшийся гель выполимеризатора.

После этого вода из рубашек сливается при открытых вентилях 16 и 17. Конус 10 полимеризатора остается заполненным гелем, который используется в качестве гид- 25 розатволя пли заполности.....

Притакой конструкции полимеризатора Продолжительность выгрузки составляет 1— 2 ч, что в 3—4 раза увеличивает производительность,

Кроме этого, применение гидравлической разгрузки полимеризатора является более безопасной по сравнению с пневматической (с использованием сжатого воздуха при давлении около 3 атм, заполняющего большой объем аппарата).

Оормулаизобретения

1. Полимеризатор, содержащий секционированный цилиндрический корпус со штуцерами для ввода мономерови выгрузки полимера и теплообменные рубашки, о тл и ч а ю щ и и с я тем. что, с целью повышания производительности и обеспечения возможности получения гелеобразного полиакриламида, теплообменные рубашки выполнены эластичными для обеспечения возможности выдавливания готового продукта геля из полимеризатора.

2. Полимеризатор по п.1. о т л.и ча ющийся тем, что он снабжен пазывшения

Изобретение относится к аппаратам для производства флокулянтов и может быть использовано при получении гелеобразных полимеров, в частности полиакрила-мидного геля,

Целью изобретения является повышение производительности и обеспечение возможности получения гелеобразного полиакриламида.

На чертеже изображен полимеризатор, общий вид.

Полимеризатор содержит секционированный ципиндрический корпус 1, состоящий из металлических обечаек 2 и 3 соштуцерами 4 и 5 для ввода мономера и выгрузки полимера, и теплообменные рубашки 6, соединенные с трубопроводами 7 и 8 для подвода и слива воды. Штуцер 4 смонтирован на крышке 9.

Теплообменные рубашки 6 выполнены эластичными для выдавливания геля из по-

В нижней части полимеризатора расположен конус 10, на котором размещен штучер 5 для выгрузки полимера

LA T. WILL ST.

Полимеризатор также снабжен размещенным в штуцере 5 шнековым гранулятором 11 с посадкой 12 для грануляции и выгрузки гранулированного полимера и штуцерам 13 для подачи на фильеру всасывающего раствора.

Кроме того, полимеризатор имеет вен-

Полимеризатор работает следующим образом.

Исходный водный раствор, содержащий 7% мономера акриламида и 1% от мономера персульфата аммония, при 28°C подается через штуцер 4 в полимеризатор, состоящий из секционированного цилиндрического корпуса 1. Начало полимеризации отмечается подъемом температуры до 40-50°C и продолжается при охлаждении реакционной массы подачей воды на прото-