### **Objectifs**

Être capable:

- 1 de calculer une moyenne, un écart type;
- 2 de calculer une médiane, une étendue, un interquartile;
- 3 de calculer une fréquence conditionnelle;
- 4 de réaliser un ajustement affine par méthode graphique;
- 5 d'utiliser l'équation d'une droite d'ajustement fournie par un tableur.

# I. Statistiques à une variable (révisions)

### 1) Médiane et moyenne

### Définition

La médiane Me d'une série statistique est le nombre qui partage la série en deux séries ayant le même effectif.

La moitié (ou 50%) des valeurs de la série sont inférieures ou égales à la médiane et l'autre moitié (50%) lui sont supérieures ou égales.

#### Définition

On note  $x_1, x_2, ..., x_p$  les valeurs du caractère étudié et  $n_1, n_2, ..., n_p$  les effectifs correspondants.

La moyenne  $\bar{x}$  de la série statistique est  $\bar{x} = \frac{n_1x_1 + n_2x_2 + ... + n_px_p}{N} = \frac{\sum n_ix_i}{N}$ 

## 2) Étendue

### Définition

L'étendue e d'une série statistique est la différence entre la plus grande et la plus petite valeur de la série.

### 3) Quartiles

#### Définition

- Le premier quartile  $Q_1$ , est la plus petite valeur à laquelle un quart (ou 25%) des valeurs sont inférieures ou égales.
- Le troisième quartile  $Q_3$ , est la plus petite valeur à laquelle trois quarts (ou 75 %) des valeurs sont inférieures ou égales.
- L'écart interquartile  $Q_3 Q_1$  est la différence entre les  $3^e$  et  $1^{er}$  quartiles :  $Q_3 Q_1$ . Il regroupe au moins 50 % des effectifs de la série avec un nombre égal de valeurs réparties de part et d'autre de la médiane Me.

## 4) Écart type

### Définition

L'écart type  $\sigma$  (sigma), fourni par la calculatrice ou le tableur, mesure la dispersion de la série autour de la moyenne  $\bar{x}$ .

Plus l'écart type  $\sigma$  est grand, plus les valeurs sont «dispersées» autour de la moyenne.

Inversement, plus l'écart type  $\sigma$  est grand, plus les valeurs sont «resserrées» autour de la moyenne.

## II. Tableaux croisés d'effectifs

### 1) Rappel sur les fréquences

#### Définition

La fréquance f d'une population A dans une population E est le rapport des effectifs :

$$f = \frac{n_A \left( EffectifdeA \right)}{n_E \left( EffectifdeE \right)}$$

### Exemple

On considère les montant des achats, en euros de N=200 personnes dans une pharmacie un jour donné :

| Montant des achats | [0, 20[ | [20, 40[ | [40, 60[ | [60, 80[ |  |
|--------------------|---------|----------|----------|----------|--|
| Effectif $n_i$     | 52      | 110      | 30       | 8        |  |
| Fréquence $f_i$    | 0,26    | 0,55     | 0,15     | 0,04     |  |

### 2) Fréquence conditionnelle

### Activite Adhérents d'un club de sport

Parmi les 360 adhérents d'un club de sport, une enquête à donné les résultats suivants :

- 5 % des adhérents sont fumeurs et pratiquent la compétition;
- 54 sont des fumeurs;
- Les non-fumeurs ne pratiquant pas la compétition sont cinq fois plus nombreux que les fumeurs qui pratiquent la compétition.
- 1 Compléter le tableau suivant :

|                         | Compétition $(C)$ | Pas compétition $(\bar{C})$ | Total |
|-------------------------|-------------------|-----------------------------|-------|
| Fumeurs $(F)$           |                   |                             |       |
| Non fumeurs $(\bar{F})$ |                   |                             |       |
| Total                   |                   |                             |       |

- a) Quelle est la proportion, notée f(C) de personnes pratiquant la compétition?
  - b) Déterminer la proportion f(F) de fumeurs.
  - c) Quelle est la proportion, notée  $f(F \cap C)$  de personnes qui fument et pratiquent la compétition? (On l'appelle fréquence conjointe de F et C)
  - d) Déterminer la proportion, notée  $f_c(F)$  de fumeurs parmi les personnes pratiquant la compétition? (On l'appelle fréquence conditionnelle de F sachant C).
  - e) Quelle est la proportion, notée  $f(F \cup C)$ , des personnes qui fument ou qui pratiquent la compétition? (On l'appelle fréquence de la réunion de F et C).

|    |                         | Compétition $(C)$ | Pas compétition $(\bar{C})$ | Total |
|----|-------------------------|-------------------|-----------------------------|-------|
| 1) | Fumeurs $(F)$           | 18                | 36                          | 54    |
|    | Non fumeurs $(\bar{F})$ | 216               | 90                          | 306   |
|    | Total                   | 234               | 126                         | 360   |

2) a)

$$f(C) = \frac{Effectif \ de \ C}{Effectif \ total}$$
$$f(C) = \frac{234}{360}$$
$$f(C) = 0,65$$

La proportion de personnes pratiquant la compétition est 0,65.

b)

$$f(F) = \frac{Effectif \ de \ F}{Effectif \ total}$$
$$f(F) = \frac{54}{360}$$
$$f(F) = 0.15$$

La proportion de fumeurs est 0,15.

**c**)

$$f(F \cap C) = \frac{Effectif \ des \ fumeurs \ pratiquant \ la \ compétition}{Effectif \ total}$$
 
$$f(F \cap C) = \frac{18}{360}$$
 
$$f(F \cap C) = 0.05$$

La proportion de personnes qui fument et pratiquent la compétition est 0,05.

d)

$$f_C(F) = \frac{Effectif\ des\ fumeurs\ pratiquant\ la\ compétition}{Effectif\ des\ personnes\ pratiquant\ la\ compétition}$$
 $f_C(F) = \frac{18}{234}$ 
 $f_C(F) \approx 0.08$ 

La proportion de fumeurs parmi les personnes pratiquent la compétition est 0,08.

**e**)

$$f(F \cup C) = \frac{fumeurs + pratiquants - fumeurs pratiquants}{Effectif total}$$

$$f(F \cup C) = \frac{54 + 234 - 18}{360}$$

$$f(F \cup C) = \frac{270}{360}$$

$$f(F \cup C) = 0.75$$

La proportion de personnes qui fument ou pratiquent la compétition est 0,75.

### Á retenir

A et B sont deux sous-populations d'une population E.

• f(B) est la fréquence marginale de B:

$$f(B) = \frac{Effectif \ de \ B}{Effectif \ de \ E}$$

•  $f(A \cap B)$  est la fréquence conjointe de A et B:

$$f(A \cap B) = \frac{Effectif \ du \ croisement \ de \ A \ et \ de \ B}{Effectif \ de \ E}$$

•  $f(A \cup B)$  est la fréquence de la réunion de A et B:

$$f(A \cup B) = \frac{Eff. \ de \ A + Eff. \ de \ B - Eff. \ du \ croisement \ de \ A \ et \ de \ B}{Effectif \ de \ E}$$

011

$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

•  $f_B(A)$  est la fréquence conditionnelle de A sachant B:

$$f_B(A) = \frac{Effectif\ du\ croisement\ de\ A\ et\ de\ B}{Effectif\ de\ B}$$

ou

$$f_B(A) = \frac{f(A \cap B)}{f(B)}$$

# III. Statistiques à deux variables

## 1) Définition et représentation graphique

### Á retenir

- Lorsqu'on étudie deux caractères statistiques sur une même population, on obtient une série statistique double.
- La représentation d'une série statistique double forme un nuage de points.
- Le point moyen G d'un nuage de points a pour coordonnées  $(\bar{x}; \bar{y})$ .

#### Exemple

Le tableau suivant donne, dans une population féminine, la moyenne de la tension artérielle en fonction de l'âge :

| Âge en années : $x_i$    | 36   | 42   | 48 | 54   | 60   | 66   |
|--------------------------|------|------|----|------|------|------|
| Tension maximale : $y_i$ | 11,8 | 13,2 | 14 | 14,4 | 15,5 | 15,1 |

- La moyenne des abscisses est :  $\bar{x} = 51$ ;
- La moyenne des ordonnées est :  $\bar{y} = 14$
- Les coordonnées du point moyen G sont donc : (51; 14).



# 2) Ajustement affine

#### Á retenir

- Si le nuage de points a une forme «allongée», on peut calculer un ajustement affine du nuage.
- On obtient ainsi une **droite d'ajustement** (ou droite de régression) qui passe par le point moyen G et au plus près des autres points du nuage.

### Exemple

La droite d'ajustement obtenue grâce au tableur passe par le point moyen G dont nous avons calculé les coordonnées.



### 3) Prévisions

### Méthode

- La droite d'ajustement donne la «tendance» de l'évolution de la grandeur y en fonction de celle de x.
- En supposant que la tendance se poursuive, il est possible d'estimer une valeur future par lecture graphique ou à partir de l'équation de la droite.

### Exemple

En prolongeant la droite d'ajustement obtenue on peut tenter d'estimer la tension artérielle à un âge plus avancé.

