Basic facts about Hodge structures

Daniel Miller

August 7, 2016

Let K/k be a finite Galois extension with Galois group Γ . We write $\mathbf{S} = \mathrm{R}_{K/k} \, \mathbf{G}_{\mathrm{m}}$ and let $\mathrm{Hdg}(K/k) = \mathrm{Rep}_k(\mathbf{S})$. By definition, for any k-algebra A, we have

$$\mathbf{S}(A) = (A \otimes_k K)^{\times}.$$

Recall that there is a canonical k-algebra isomorphism $K \otimes_k K \to \prod_{\Gamma} K$, given by $x \otimes y \mapsto (x\gamma(y))_{\gamma}$. It induces a canonical isomorphism $\mathbf{S}_K \xrightarrow{\sim} \prod_{\Gamma} \mathbf{G}_m$, given on A-points by

$$a \otimes x \mapsto (a\gamma(x))_{\gamma}$$
.

Write $z_{\gamma}: \mathbf{S}_{K} \to \mathbf{G}_{\mathrm{m}}$ for the component $a \otimes x \mapsto a\gamma(x)$. Note that $X^{*}(\prod_{\Gamma} \mathbf{G}_{\mathrm{m}}) = \mathbf{Z}^{\Gamma}$. So $z: \mathbf{S}_{K} \xrightarrow{\sim} \prod_{\Gamma} \mathbf{G}_{\mathrm{m}}$ induces an isomorphism $z^{*}: \mathbf{Z}^{\Gamma} \xrightarrow{\sim} X^{*}(\mathbf{S}_{K})$.

There is a canonical homomorphism $w: \mathbf{G}_{\mathrm{m}} \to \mathbf{S}$ given by $w(a) = a \otimes 1$ on A-points. The induced map $w^*: \mathbf{X}(\mathbf{S}_K) \to \mathbf{Z}$ is just $(z_{\gamma}) \mapsto \sum z_{\gamma}$. If $V \in \mathrm{Hdg}(K/k)$, we write w^*V for the induced representation of \mathbf{G}_{m} . Note that there is a canonical decomposition

$$w^*V = \bigoplus_{\chi \in X^*(\mathbf{G}_{\mathrm{m}})} (w^*V)_{\chi}.$$

The weight of V, denoted $\operatorname{wt}(V)$, is by definition the set $\{\chi \in \operatorname{X}^*(\mathbf{G}_{\operatorname{m}}) : (w^*V)_{\chi} \neq 0\}$. We say that V is pure of weight n if $\operatorname{wt}(V) = \{n\}$.

If $V \in \mathrm{Hdg}(K/k)$, there is a decomposition

$$V_K = \bigoplus_{\chi \in X^*(\mathbf{S}_K)} V_{K,\chi}.$$

The type of V, denoted $\operatorname{tp}(V)$, is by definition the set $\{\chi \in \mathbf{Z}^{\Gamma} : (z^*V)_{\chi} \neq 0\}$. Alternatively, could think of $\operatorname{tp}(V)$ as being a subset of $X^*(\mathbf{S}_K)$.

It is a general theorem that $X_*(\mathbf{S}_K) = X^*(\mathbf{S}_K)^{\vee}$. Since \mathbf{Z}^{Γ} is self-dual as a representation of Γ , we have that $X_*(\mathbf{S}_K) = \mathbf{Z}^{\Gamma}$. For $\gamma \in \Gamma$, write $z_{\gamma}^{\vee} : \mathbf{G}_{\mathrm{m}} \to \mathbf{S}_K$ for the cocharacter dual to $z_{\gamma} : \mathbf{S}_K \to \mathbf{G}_{\mathrm{m}}$. Write $\mu_{\gamma,h} : \mathbf{G}_{\mathrm{m}} \to \mathrm{GL}(V_K)$ for the composite $\mu_{\gamma,h} = h \circ z_{\gamma}^{\vee}$. More generally, for $\chi \in \mathbf{Z}^{\Gamma}$, we have $\mu_{\chi,h} = h \circ \chi^{\vee} : \mathbf{G}_{\mathrm{m}} \to \mathrm{GL}(V_K)$.