

Week 12, May 16th: Differential equations

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)
- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1. Solve the following differential equations.

- 1. $y' = te^y$,
- 2. $y'' + 3(y')^2 = 0$,
- 3. $y' = \sqrt{y}t^2$.

Exercise 2. We consider the differential equation $y' = ty^2 - y$.

- 1. Show that there exists a unique maximal solution $\phi_r:]a,b[\to \mathbb{R}$ such that $\phi_r(o) = r$.
- 2. What is ϕ_0 ? Show that ϕ_1 is the function $]-1,+\infty[\to \mathbb{R},\,t\mapsto \frac{1}{1+t}.$
- 3. For 0 < r < 1 we consider $\phi_r :]a, b[\to \mathbb{R}$. Show that for all a < t < b we have $0 \le \phi_r(t) \le \frac{1}{1+t}$.
- 4. Assume that $b < \infty$. Show that the solution ϕ_r can be extended to a solution defined on a Strictly bigger interval.
- 5. Show that fot all 0 < r < 1 the interal of definition of the maximal solution is $]-1,+\infty[$.

Exercise 3. Let $a: \mathbb{R} \to \mathbb{R}$ and $b: \mathbb{R} \to \mathbb{R}$ be two continuous functions. We consider the Cauchy problem $y' = a(t)y + b(t)y^{\alpha}$, $y(t_0) = y_0$.

- 1. Discuss, depending on the choice of α , what is the domain of the equation.
- 2. In the following, we assume $\alpha \in]0 + \infty[\setminus \{1\} \text{ and } y_0 > 0.$ Let $\phi : I \to \mathbb{R}$ be the maximal solution. Show that $\phi(t) > 0$ for all $t \in I$.
- 3. We set $\psi = \phi^{1-\alpha}$. What is the differential equation satisfied by ψ ?
- 4. Give a formula for ϕ , and determine the interval I.
- 5. Let $c : \mathbb{R} \to \mathbb{R}$ be an other continuous function. We consider now the differential equation $y' = a(t)y + b(t)y^2 + c(t)$. Assume that we know a particular solution $\phi_0 : \mathbb{R} \to \mathbb{R}$. Determine the set of solutions.

2 More involved exercises

Exercise 4. We consider the differential equation $y' + y + y^2 + 1 = 0$.

- 1. Look for a particular constant solution.
- 2. Determine all the maximal solutions wich are real valued.

Exercise 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. We assume that the differential equation y' = f(y) has a solution $\phi: \mathbb{R} \to \mathbb{R}$ which is bounded. Show that there exists t_0 such that $f(t_0) = 0$.