$m Mихаил\ Цуканов \ st117303 \ st117303 @student.spbu.ru$

Homework Assignment 4 Алгебра и геометрия, 1 семестр

2023.10.13

Задача 546(b).

Выполнить деление с остатком $x^3 - 3x^2 - x - 1$ на $3x^2 - 2x + 1$.

Решение:

Задача 549(с).

Пользуясь схемой Горнера, разложить полином $f(x) = x^5$ по степеням x - 1.

Решение:

Задача 549(d).

Выполнить деление с остатком $x^3 - x^2 - x$ на x - 1 + 2i.

Решение:

Задача 557(е).

Определить наибольший общий делитель полиномов: $x^6 + 2x^4 - 4x^3 - 3x^2 + 8x - 5$ и $x^5 + x^2 - x + 1$.

Решение:

$$x^{6} + 2x^{4} - 4x^{3} - 3x^{2} + 8x - 5 = \left(x^{5} + x^{2} - x + 1\right) \quad \cdot \quad x \quad + \left(2x^{4} - 5x^{3} - 2x^{2} + 7x - 5\right)$$

$$x^{5} + x^{2} - x + 1 = \left(2x^{4} - 5x^{3} - 2x^{2} + 7x - 5\right) \cdot \left(\frac{1}{2}x + \frac{5}{4}\right) + \left(\frac{29}{4}x^{3} - \frac{29}{4}x + \frac{29}{4}\right)$$

$$2x^{4} - 5x^{3} - 2x^{2} + 7x - 5 = \left(\frac{29}{4}x^{3} - \frac{29}{4}x + \frac{29}{4}\right) \quad \cdot \quad \left(\frac{8}{29}x - \frac{20}{29}\right) \quad + 0$$
Motoro other: $2x - 5$

Задача 557(f).

Определить наибольший общий делитель полиномов: $x^5 + 3x^4 - 12x^3 - 52x^2 - 52x - 12$ и $x^4 + 3x^3 - 6x^2 - 22x - 12$.

Решение:

$$x^{5} + 3x^{4} - 12x^{3} - 52x^{2} - 52x - 12 = \left(x^{4} + 3x^{3} - 6x^{2} - 22x - 12\right) \cdot x + \left(-6x^{3} - 30x^{2} - 40x - 12\right) \cdot \left(x^{4} + 3x^{3} - 6x^{2} - 22x - 12\right) = \left(-6x^{3} - 30x^{2} - 40x - 12\right) \cdot \left(-\frac{1}{6}x + \frac{1}{3}\right) + \left(-\frac{8}{3}x^{2} - \frac{32}{3}x - 8\right) - 6x^{3} - 30x^{2} - 40x - 12 = \left(-\frac{8}{3}x^{2} - \frac{32}{3}x - 8\right) \cdot \left(\frac{9}{4}x + \frac{9}{4}\right) + \left(2x + 6\right) - \frac{8}{3}x^{2} - \frac{32}{3}x - 8 = \left(2x + 6\right) \cdot \left(-\frac{4}{3}x - \frac{4}{3}\right) + 0$$

Итого ответ: x+1

Задача 578(с).

Пользуясь алгоритмом Евклида, подобрать полиномы $M_1(x)$ и $M_2(x)$ так, чтобы $f_1(x)M_1(x)+f_2(x)M_2(x)=\delta(x)$, где $\delta(x)$ – наибольший общий делитель полиномов $f_1(x)$ и $f_2(x)$. $f_1(x)=x^6-4x^5+11x^4-27x^3+37x^2-35x+35,$ $f_2(x)=x^5-3x^4+7x^3-20x^2+10x-25.$

Решение:

Задача 578(d).

Пользуясь алгоритмом Евклида, подобрать полиномы $M_1(x)$ и $M_2(x)$ так, чтобы $f_1(x)M_1(x)+f_2(x)M_2(x)=\delta(x)$, где $\delta(x)$ – наибольший общий делитель полиномов $f_1(x)$ и $f_2(x)$. $f_1(x)=3x^7+6x^6-3x^5+4x^4+14x^3-6x^2-4x+4$, $f_2(x)=3x^6-3x^4+7x^3-6x+2$.

Решение:

Задача 583(b).

Определить полином наименьшей степени, дающий в остатке $x^2 + x + 1$ при делении на $x^4 - 2x^3 - 2x^2 + 10x - 7$ и $2x^2 - 3$ при делении на $x^4 - 2x^3 - 3x^2 + 13x - 10$.

Решение: