ALGEBRA Y GEOMETRIA ANALÍTICA Tema 2 Parcial parte A

Apellido y nombres: Tamborini Agustia Nro de Legajo 16.20122.

Profesor

1	2	3	4	5	Calificación
6	0	13	B/4	B/H	7 (see

1) Dado el haz de planos: $\alpha(x-y) + \beta(y+z+1) = 0$ Halle, si existe, el plano del haz que sea paralelo al plano: 4x-2y+2z+5=0Grafique el plano hallado.

2) Calcular $h \in \mathbb{R}$ para que la distancia entre las rectas $r: (x, y, z) = (h, 1, -1) + \lambda(2, 1, 2)$ y $s: \frac{x-1}{2} = y = \frac{z}{-3}$ sea $\sqrt{5}$

3) Sean A = (A₁ A₂ A₃) ∈ R^{3x3} / Det(A) = k ≠ 0 y B = (A₁ - 3 A₂ , α.A₂ + 2 A₃ , -A₁).
Verifique que B es inversible para cualquier α ∈ R y obtenga Det (B⁻¹) en función de k.

4) Sea (ℜ⁴, +, ℜ, ·) espacio vectorial

- a) Sea S = {(x, y, z, u) ∈ ℝ⁴ : x y + z + u = 0 ∧ -x + 2z = 0} subespacio vectorial de (ℝ⁴, +, ℝ, ·)
 Hallar una base y la dimensión de S
- b) Extender la base hallada de S a una base de \Re^4 utilizando una base de S^{\perp}

5) Sea $(\Re^3, +, \Re, \cdot)$ espacio vectorial. Justificar si $B = \{(2, -1, 0) (0, 1, 1) (3, 0, -1)\}$ es una base de \Re^3 . Si lo es, hallar la coordenadas de $\vec{u} = (5, 2, 1)$ en la base B