V. Formal Mereology

[Characteristics]:

[1]	l First-order	
111	i inst-oraci	

- [2] Classical.
- [3] Complete.
- [4] Consistent.

PΡ

Ο

U

P

 $[*_1]$ Parthood $Pxy \leftrightarrow \forall z[Ozx \rightarrow Ozy]$ $[*_2]$ Proper Part $PPxy \leftrightarrow (Pxy \land \neg Pyx)$ $[*_3]$ Overlap $Oxy \leftrightarrow \exists z[Pzx \land Pzy]$

[*₄] Underlap $Uxy \leftrightarrow \exists z[Pxz \land Pyz]$

[A₁] Reflexive Pxx

[A₂] Antisymmetric $(Pxy \land Pyx) \rightarrow x = y$

[A₃] Transitive $(Pxy \land Pyz) \rightarrow Pxz$

[A₄] Weak Supplementation $PPxy \rightarrow \exists z[Pzy \land \neg Ozx]$

[A₅] Strong Supplementation $\neg Pyx \rightarrow \exists z [Pzy \land \neg Ozx]$

[A₆] Atomistic Supplementation $\neg Pxy \rightarrow \exists z [Pzy \land \neg Ozy \land \neg \exists v [PPvz]]$

 $[A_7] Top \exists x \forall y [Pyx]$ $[A_8] Bottom \exists x \forall y [Pxy]$

[A₉] Sum $Uxy \rightarrow \exists z \forall v [Ovz \leftrightarrow (Ovx \land Ovy)]$

 $[A_{10}] \quad Product \qquad Oxy \rightarrow \exists z \forall v [Pvz \leftrightarrow (Pvx \land Pvy)]$

[A₆] Unrestricted Fusion Where $[\phi(x)]$ is a first-order wff and x a free variable:

 $\exists x [\varphi(x)] \to \exists z \forall y [\mathit{Oyz} \leftrightarrow \exists x [\varphi(x) \land \mathit{Oyx}]]$

[A₁₂] Atomicity $\exists y[Pyx \land \neg \forall z[PPzy]]$

Notes

 $[A_{11}]$ entails $[A_7]$

[A₈] is controversial

Systems

* {*₁, *₂, *₃, *₄}

M * \cup {A₁, A₂, A₃}

 $\begin{array}{ll} \textbf{MM} & \textbf{M} \cup \{A_4\} \\ \textbf{EM} & \textbf{M} \cup \{A_5\} \end{array}$

 $\begin{array}{ll} \textbf{CEM} & \quad \textbf{EM} \cup \{A_9, A_{10}\} \\ \textbf{GM} & \quad \textbf{M} \cup \{A_{11}\} \\ \textbf{AGEM} & \quad \textbf{M} \cup \{A_6, A_{11}\} \end{array}$