数值分析与计算软件

第2课

刘帆

南京大学工程管理学院

2020年2月24日

■ 在生产实践和科学技术中,常遇到一些高次代数方程或超越方程, 只能用数值方法求出根的近似值。

- 在生产实践和科学技术中,常遇到一些高次代数方程或超越方程, 只能用数值方法求出根的近似值。
- 记非线性方程的一般形式为

$$f(x) = 0 (1)$$

方程的解 x^* 称为根, 也称为 f(x) 的零点。

- 在生产实践和科学技术中,常遇到一些高次代数方程或超越方程, 只能用数值方法求出根的近似值。
- 记非线性方程的一般形式为

$$f(x) = 0 (1)$$

方程的解 x^* 称为根, 也称为 f(x) 的零点。

■ 当 $f(x) = a_0 + a_1x + ... + a_nx^n$ 时,公式(1)为代数方程。否则,公式(1)称作超越方程。。

■ 若 f(x) 可以表示为

$$f(x) = (x - x^*)^m g(x)$$
 (2)

其中, m 是正整数, 且 $g(x^*) \neq 0$, 则称 x^* 为 f(x) 的 m 重根。

■ 若 f(x) 可以表示为

$$f(x) = (x - x^*)^m g(x)$$
 (2)

其中, m 是正整数, 且 $g(x^*) \neq 0$, 则称 x^* 为 f(x) 的 m 重根。

■ 若 $f(x) \in C(a,b)$, 且 f(a) * f(b) < 0, 则 (a,b) 上至少存在 f(x) = 0 的一个实根。

数值方法求解方程(1)的解,一般通过以下两步进行逐步搜索

数值方法求解方程(1)的解,一般通过以下两步进行逐步搜索

- 确定根所在的区间,按照某个规则,不停缩小这个有根区间
- 不断重复上一步,有根区间的长度会逐渐趋近到零,这时,区间内的点逐渐逼近方程的根。

对于在区间 (a, b) 上连续,且满足 f(a) * f(b) < 0 的函数 f(x),通过不断地把函数 f(x) 的零点所在的区间(有根区间)一份为二,使区间的长度不断缩小,从而逐步逼近零点的方法叫做二分法。

二分法的算法

二分法的算法

- Step 0: 给定初始有根区间端点 a, b 的值,以及预设精度 e
- Step 1: 若 |b-a| > e, 则计算 f(x) 在区间 (a,b) 端点处的值 f(a) 和 f(b); 否则停止,此时 $\frac{a+b}{2}$ 即可作为近似根。
- Step 2: 计算 f(x) 在区间中点 $\frac{a+b}{2}$ 处的值 $f(\frac{a+b}{2})$
- Step 3: (1) 若 $f(\frac{a+b}{2}) = 0$,则停止, $\frac{a+b}{2}$ 是根。
 - (2) 若 $f(\frac{a+b}{2})f(a) < 0$, 则令 $b = \frac{a+b}{2}$, 返回 Step 1。
 - (3) 若 $f(\frac{a+b}{2})f(a) > 0$,则令 $a = \frac{a+b}{2}$,返回 Step 1。

收敛性

收敛性

上述算法中 Step 2 和 Step 3,每执行一次就把新的区间分成两份,根的范围也缩小一半。记第 k 次二分后得到的区间为 (a_k, b_k) , x_k 为第 k 次循环后的近似解(即区间中点),准确值为 x^* ,则

$$|x_k - x^*| = \left| \frac{a_{k-1} + b_{k-1}}{2} - x^* \right| \le \frac{b_{k-1} - a_{k-1}}{2} = \frac{b - a}{2^k}$$
 (3)

明显, 当循环次数 k 趋于无穷大时, 近似解的误差限会趋向于 0。

例 1

■ 使用二分法求方程 $f(x) = x^3 - x - 1 = 0$ 在区间 (1,2) 内的实根,设置误差不超过 10^{-2} 。

■ 使用二分法求方程 $f(x) = x^3 - x - 1 = 0$ 在区间 (1,2) 内的实根,设置误差不超过 10^{-2} 。解:令 k 为循环次数,误差不超过 10^{-2} 要求

$$\frac{b-a}{2^k} \le 10^{-2} \tag{4}$$

可以解出 $k \geq 7$ 。二分法经过 7 次循环的结果,如下表所示:

例 1

结果

k	a_k	b_{k}	\mathcal{X}_k	$f(x_k)$ 的符号
0	1	2	1.5	+
1	1	1.5	1.25	-
2	1.25	1.5	1.375	+
3	1.25	1.375	1.3125	-
4	1.3125	1.375	1.3438	+
5	1.3125	1.3438	1.3281	+
6	1.3125	1.3281	1.3203	-
7	1.3203	1.3281	1.3242	-

总结

总结

- 简单易用, 总是收敛。
- 收敛慢,不能求复根和偶数重根,一次只能求一个根。

总结

- 简单易用, 总是收敛。
- 收敛慢,不能求复根和偶数重根,一次只能求一个根。
- 常用于求根的初始近似值, 然后再使用其它的方法求根。

迭代算法是数值计算方法中一种逐次逼近的方法。

迭代算法是数值计算方法中一种逐次逼近的方法。

- 构造 f(x) = 0 的一个等价方程: $\phi(x) = x$ (一定可以构造出来)。
- f(x) = 0 的根 (即 f(x) 的零点), 称为 $\phi(x)$ 的不动点。

基本思想

基本思想

■ 给定初始值 xo, 构造如下迭代公式:

$$x_{k+1} = \phi(x_k), k = 0, 1, 2, 3, \cdots$$
 (5)

■ 若迭代收敛,且 $\lim_{k\to\infty} x_k = x^*$,则 x^* 为不动点,也即是原方程的根。

基本思想

■ 给定初始值 *x*₀,构造如下迭代公式:

$$x_{k+1} = \phi(x_k), k = 0, 1, 2, 3, \cdots$$
 (5)

- 若迭代收敛,且 $\lim_{k\to\infty} x_k = x^*$,则 x^* 为不动点,也即是原方程的根。
- 这种方法叫做不动点迭代。

不动点迭代算法

不动点迭代算法

Step 0: 给定迭代初值 x_0 和预设精度 e

Step 1: 计算迭代值 $x_1 = \phi(x_0)$.

Step 2: (1) 若 $|x_1 - x_0| \ge e$, 则令 $x_0 = x_1$, 返回 Step 1。

若 $|x_1 - x_0| < e$,则停止,取 x_1 为所求的结果。

几何含义: 迭代求曲线 $y = \phi(x)$ 与 y = x 的交点

几何含义: 迭代求曲线 $y = \phi(x)$ 与 y = x 的交点

例 2

■ 求 $f(x) = x - 10^x + 2 = 0$ 在区间 (0, 1) 中的根,计算结果保留 4 位有效数字

■ 求 $f(x) = x - 10^x + 2 = 0$ 在区间 (0, 1) 中的根,计算结果保留 4 位有效数字

解 1: 因为 f(0) * f(1) < 0,所以 (0, 1) 为有根区间。

构造迭代公式:

$$x_{k+1} = log_{10}(x_k + 2) (6)$$

取初始值 $x_0 = 1$, 可以逐次算得

$$x_1 = 0.4771$$
, $x_2 = 0.3939$, $x_3 = 0.3791$, $x_4 = 0.3764$,

$$x_5 = 0.3759$$
, $x_6 = 0.3758$,

解 2:实际上一个方程可以转化的不动点迭代公式是不唯一的。比如,本例子中,也可以构造如下的不动点迭代公式

$$x_{k+1} = 10^{x_k} - 2 (7)$$

你们可以取初值 $x_0 = 1$ 计算,会发现结果开始发散。 这个例子说明,我们在构造不动点迭代的时候,要选取合适的 $\phi(x)$ 。

收敛性

收敛性

定理

设迭代函数 $\phi(x) \in C^1(a,b)$, 如果对任意的 $x \in (a,b)$, 满足

(1) $\phi(x)$ ∈ (a,b); (2) 存在常数 0 < L < 1, $|\phi'(x)| \le L < 1$; 则 $\phi(x)$

在 (a,b) 上有唯一不动点,记为 x^* ; 且对任意初值 $x_0 \in (a,b)$,不动点

迭代 $X_{l+1} = \phi(X_l)$ 收敛。其误差估计如下:

$$|x_k - x^*| \le \frac{L}{1 - L} |x_k - x_{k-1}|$$
 (8)

$$|x_k - x^*| \le \frac{L^k}{1 - I} |x_1 - x_0| \tag{9}$$

从该定理中, 可以得到

从该定理中, 可以得到

- 只要 |x_k x_{k-1}| 充分小,就可以保证近似误差 |x_k x*| 足够小,因此在算法中用前后两次计算的差值来作为判定终止的条件;
- L 值越小, 迭代收敛的越快;

从该定理中, 可以得到

- 只要 |x_k x_{k-1}| 充分小,就可以保证近似误差 |x_k x*| 足够小,因此在算法中用前后两次计算的差值来作为判定终止的条件;
- L 值越小, 迭代收敛的越快;
- 在上述定理的条件下,迭代公式在 (a,b) 区间上全局收敛。

从该定理中, 可以得到

- 只要 |x_k x_{k-1}| 充分小,就可以保证近似误差 |x_k x*| 足够小,因此在算法中用前后两次计算的差值来作为判定终止的条件;
- L 值越小, 迭代收敛的越快;
- 在上述定理的条件下, 迭代公式在 (a,b) 区间上全局收敛。
- 若 $\phi(x)$ 不可导,则可用条件:对任意 $x, y \in (a, b)$,都有 $|\phi(x) \phi(y)| \le L|x y|$ 代替,结论仍然成立。

全局收敛条件比较苛刻,在实际应用时通常只考察不动点迭代在 f(x) = 0 的根的附近是否具有收敛性,即局部收敛性。

全局收敛条件比较苛刻,在实际应用时通常只考察不动点迭代在 f(x) = 0 的根的附近是否具有收敛性,即局部收敛性。

定义

设 x^* 是 $\phi(x)$ 的不动点,若存在 x^* 的某个领域 $U=(x^*-\delta,x^*+\delta)$,对任 意 $x_0 \in U$,不动点迭代 $x_{k+1} = \phi(x_k)$ 产生的点列都收敛到 x^* ,则称之为 局部收敛。

定理

设 x^* 是 $\phi(x)$ 的不动点,若 $\phi'(x)$ 在 x^* 的某个领域内连续,且 $|\phi'(x^*)| < 1$,则不动点迭代 $x_{k+1} = \phi(x_k)$ 局部收敛。

■ 求解 $f(x) = x^2 - 3 = 0$ 的正根,在以下三个迭代公式中,哪些是收敛的?

(1)
$$\phi(x) = x^2 - 3 + x$$
;

$$(2)\phi(x) = x - \frac{x^2 - 3}{4};$$

$$(3)\phi(x) = \frac{1}{2}(x + \frac{3}{x})$$

■ 求解 $f(x) = x^2 - 3 = 0$ 的正根,在以下三个迭代公式中,哪些是收敛的?

(1)
$$\phi(x) = x^2 - 3 + x$$
;

$$(2)\phi(x) = x - \frac{x^2 - 3}{4};$$

$$(3)\phi(x) = \frac{1}{2}(x + \frac{3}{x})$$

解:分别求 $\phi(x)$ 在 $\sqrt{3}$ 处的导数,判断其绝对值是否小于 1 即可。

为了衡量不动点迭代的速度, 我们作以下定义

定义

设迭代 $x_{k+1} = \phi(x_k)$ 收敛到 $\phi(x)$ 的不动点 x^* , 记 $e_k = x_k - x^*$, 若

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_{\nu}^{D}} = C \tag{10}$$

其中常数 $C \neq 0$,则称该迭代为p 阶收敛。特别的,

(1) 当 *p=1* 时,称为线性收敛,此时要求 |*C*| < 1; (2) 当 *p=2* 时,称为平方收敛; (3) 当 *p>1* 时,统称为超线性收敛。

可以通过以下定理来判断收敛速度

定理

设 x^* 是 $\phi(x)$ 的不动点,若 $\phi^{(p)}(x)$ 在 x^* 的某领域内连续,且

$$\phi'(x^*) = \phi''(x^*) = \dots = \phi^{(p-1)}(x^*) = 0, \phi^{(p)}(x^*) \neq 0$$
 (11)

则迭代 $X_{k+1} = \phi(X_k)$ 是 p 阶收敛。

例 4

■ 求解 $x^3 - x - 1 = 0$ 的正实根 x^3 , 当前后两次迭代结果相差小于 10^{-5} 时,计算停止。

■ 求解 $x^3 - x - 1 = 0$ 的正实根 x^3 , 当前后两次迭代结果相差小于 10^{-5} 时,计算停止。

解:很容易得到原方程只有一个正实根,且在(0,2)之间。我们这里列举两个迭代公式,来比较他们的收敛速度。

方法一: $\phi(x) = (x+1)^{\frac{1}{3}}$

方法二: $\phi(x) = \frac{2x^3+1}{3x^2-1}$

应当是第二种方法收敛更快。

例 4

结果如下:

迭代次数 $m{k}$	方法一	误差 x _k - x _{k-l}	方法二	误差 x _k - x _{k-i}
	1		1	
	1.259921	0.259921	1.5	0.500000
	1.312294	0.052373	1.347826	0.152174
	1.322354	0.010060	1.325200	0.022626
	1.324269	0.001915	1.324718	4.82225×10 ⁻⁴
	1.324633	3.63880×10 ⁻⁴	1.324718	2.16754×10 ⁻⁷
	1.324702	6.91233×10⁻⁵		
	1.324715	1.31299×10⁻⁵		
	1.324717	2.49399×10 ⁻⁶		

总结

- 1 二分法
- 2 不动点迭代

谢谢!

A&Q