DIFFERENTIAL GEOMETRY I SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Differential Geometry I* held at *ETH Zurich* by *Prof. Dr. William J. Merry* in autumn 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

The Category of Smooth Manifolds

Definition 1.1 (Topological Manifold). Let $n \in \mathbb{N}$. A topological space M is said to be a topological manifold of dimension n, iff

- (i) M is locally Euclidean of dimension n, that is, for every $x \in M$ there exist an open subset $U \subseteq M$ and a function $\varphi : U \to \mathbb{R}^n$ such that $\varphi(U) \subseteq \mathbb{R}^n$ is open and $\varphi : U \to \varphi(U)$ is a homeomorphism.
- (ii) M is Hausdorff and has at most countably many connected components.
- (iii) M is paracompact, that is, every open cover of M admits a locally finite open refinement.

Proposition 1.1 (Chain Rule). Let $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ be open, $F \in C^1(U, V)$ and $G \in C^1(V, \mathbb{R}^p)$. Then $G \circ F \in C^1(U, \mathbb{R}^p)$ and

$$\frac{\partial (G^i \circ F)}{\partial x^j}(x) = \frac{\partial G^i}{\partial y^k} \left(F(x) \right) \frac{\partial F^k}{\partial x^j}(x)$$

holds for all $x \in U$.

(Yannis Bähni) ETH Zurich, Rämistrasse 101, 8092 Zurich *E-mail address*: yannis.baehni@uzh.ch.