Special Topics on Basic EECS I VLSI Devices Lecture 14

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Energy band diagram, again

- Near the junction, smooth transitions of $E_{\it C}$ and $E_{\it V}$
 - Parabolic curves
 - Energy barrier seen by each carrier

Revisiting the depletion approximation

- Numerical solution ($N_d = 10^{20}$ cm⁻³ and $N_a = 10^{17}$ cm⁻³)
 - -The hole density does not drop abruptly. (Length scale: L_D)

Externally biased junctions

- Consider a positive bias applied to the p-type contact. (Forward-bias)
 - Boundary condition for the electrostatic potential

$$\phi(V = V_{app}) = \phi(V = 0) + V_{app}$$

Boundary condition for the quasi-Fermi potentials

$$\phi_n(V = V_{app}) = V_{app}$$

 $\phi_p(V = V_{app}) = V_{app}$

Energy band diagram

- We cannot define the Fermi level any more.
 - Still, quasi-Fermi potentials are available.
 - The total potential difference is

Depletion width at non-equilibrium

• Since the potential difference is $\phi_{bi} - V_{app}$,

$$W_d = \sqrt{\frac{2\epsilon(N_a + N_d)(\phi_{bi} - V_{app})}{qN_aN_d}}$$

- Example) $N_d = 10^{20} \, \mathrm{cm}^{-3}$ and $N_a = 10^{17} \, \mathrm{cm}^{-3}$

PN junction as a rectifier

- Forward biased: $\phi_{bi} V_{app}$ is lower than the equilibrium value.
- Reverse biased: $\phi_{bi} V_{app}$ is higher than the equilibrium value.

Space charge

• -0.5 V (Blue) and 0 V (Red)

Depletion-layer capacitance

- When 0.5 V is applied to the n-type region, we have additional positive charges in the n-type region.
 - The depletion-layer capacitance is

$$C_d \equiv \frac{d}{dV_{app}} \left[-qN_aW_d \frac{N_d}{N_a + N_d} \right] = -q \frac{N_aN_d}{N_a + N_d} \frac{dW_d}{dV_{app}}$$

- It is readily shown that $\frac{dW_d}{dV_{app}} = -\frac{\epsilon(N_a + N_d)}{qN_aN_d} \frac{1}{W_d}$.
- -Therefore,

$$C_d = \frac{\epsilon}{W_d}$$
 Taur, Eq. (2.83)

– Its physical interpretation?

GIST Lecture

Estimation

- Distance between two curves: ~ 10 nm (n-type) & ~ 15 nm (p-type)
 - -Then, for 0.5 V difference,

$$\Delta Q = q \times 4.8 \times 10^{-8} \text{ cm}^{-2}$$

-The capacitance becomes

Position (µm)

Thank you!