Disaster Tweet Classification

Eduardo Barros Innarelli - 170161 Victor Ferreira Ferrari - 187890 Vinícius Couto Espindola - 188115

Real or Not? NLP With Disaster Tweets

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

"Ablaze" is used metaphorically.

So, it is **not** a real disaster.

We classify it as **not real.**

Pre-Processing

Key Points

- Remove Superfluous Data | Keep What's Relevant
- Compress Remaining Data

er, between, beyond, both, bri considering, contain, contai dare, daren't, definitely, describ ing, done, don't, down, downwards, durit ending, enough, entirely, especially, et everything, everywhere, ex, exactly, example, e five, followed, following, follows, for, forever from, further, furthermore, get, gets, getting, given etings, had, hadn't, half, happens, hardly, has, hasn llo, help, hence, her, here, hereafter, hereby, herein, he im, himself, his, hither, hopefully, how, howbeit, however, mmediate, in, inasmuch, inc., inc., indeed, indicate, indic particular, particularly, past, per, perhaps, placed, please provided, provides, que, quite, qv, rather, rd, re, really, regardless, regards, relatively, respectively, right, round secondly, see, seeing, seem, seemed, seeming, seems, seen ly, seven, several, shall, shan't, she, she'd, she' mebody, someday, somehow, someone, something, somet specified, specify, specifying, still, sub, , thank, thanks, thanx, that, that'll, that en, thence, there, thereafter, thereby ere's, thereupon, there've, these, thirty, this, thorou underneath, undoing, unfortunat

```
to from was but

all if about a you

at my list on has its dont

what they not now an one

of is; by or out no this

wrote be which as

wrote in the it

and have the it

and have that
```

Stemming

Encoding

Key Points

- How to Avoid False Word Relations?
- How to Retain information Regarding Meaning?

Label Encoding

VS

One Hot Encoding

• False Numeric Gradient Relation

 Words Completely Independent Better!

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Word Embedding

Similar Numbers to Similar Words!
 Much Better!

Models

Implementation: Python

Pre-Processing: NLTK/Keras/BERT

Regression: Scikit-Learn

Neural Networks: Tensorflow (Keras)

Linear Regression Dense Neural Networks

- Simple to implement
- A good starting point
- <Results>
- Not very used in NLP

Recurrent & Convolutional Networks

- Getting the Context:
 - Recurrent considers the order
 - Convolutions associate words
- Worse results than the baseline

BERT

Bidirectional Encoder Representation from Transformers

- State-of-the-Art results on 11 NLP problems
- Why so special?

Intense Preprocessing & Pre-training The "Swiss army knife of BERT"

- Words are hard: Ambiguous, Polysemous, Synonymous...
- Good encoding and pre-training are necessary
- Huge Pre-trained Dataset: > 2,500,000,000 Words

Input Embedding

Not Just Meaning, but Also Position

- Three simultaneous embeddings
- Sum = Final Token Representation

Words Contextualized

Masked Language Model Pretraining

- Guess a word based in it's sentence
- Deeply Bidirectional

Sentences Contextualized

Next Sentence Prediction Pretraining

[CLS] Joel is giving a talk. [SEP] The audience is enthralled. [SEP] 99% is_next_sentence 1% is_not_next_sentence

[CLS] Joel is giving a talk. [SEP] The audience is falling asleep. [SEP] 1% is_next_sentence 99% is_not_next_sentence

Fine Tuning

Transfer Learning Strategy

- BERT is enormous = overfitting in smaller Datasets
- How to use it on other problems then? Fine Tuning
- Further BERT's pretraining on our Dataset
- Append dense and sigmoid layers for binary classification

Final results

Method	Training Acc.	Validation Acc.
Logistic Regression	91,9%	79,8%
Dense Neural Networks	83,0%	82,1%
Recurrent Neural Networks	74,2%	79,4%
RNN (Pooling)	75,5%	79,8%
RNN (Pooling & GloVe)	84,9%	80,6%
Convolutional Neural Networks	90,4%	79,8%
Self-Attention CNN	86,4%	79,8%
Quasi-Recurrent Neural Networks	83,5%	81,2%
Self-Attention QRNN	83,6%	81,4%
BERT	83,0%	84,1%

BERT achieved the highest validation accuracy.

Test set accuracy 83,02%

Conclusions

- Different models with similar results (intrinsic difficulty of the problem? Dirty dataset?)
- BERT achieved better results, but it's training was very slow (~4h per epoch)...

Future works

- Limit pre-processing combinations
- Continue testing BERT and concurrent models (like RoBERTa)

Thanks!