Assignment -2

Assignment Date	26 September 2022
Student Name	Gowsik G
Student Roll Number	621319106022
Maximum Marks	2 Marks

Question-1 Download the dataset:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Question-2 Load the dataset

Question-3 perform below visualization

• Univariate Analysis

• Bi-variate Analysis

• Multi-variate Analysis

Question-4 perform descriptive statistics on the dataset.

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

Question-5 Handle the Missing values

Question-5	5 Handle the Missing values
ds.isnull().a	any()
RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	
RowNumber	
CustomerId	0
Surname	0
CreditScore	
Geography	0
Gender -	
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	
EstimatedSalary	0
Exited	θ
dtype: int64	

Question-6 Find the outliers and replace the outliers

```
ds.skew()

//usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only-None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

RowNumber 0.000000

CustomerId 0.001149

CreditScore -0.071607

Age 1.011320

Tenure 0.010991

Balance -0.141109

NumOfProducts 0.745568

HasCrCard -0.901812

IsActiveNember -0.060437

EstimatedSalary 0.002085

Exited 1.471611

dtype: float64
```


Question -7 Check for Categorical columns and perform encoding.

```
Check for Categorical columns and perform encoding

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct=ColumnTransformer([('oh',OneHotEncoder(),[1,2])],remainder='passthrough')
x=ct.fit_transform(x)
print(x.shape)

(10000, 13)

# saving the data
import joblib
joblib.dump(ct,"churnct.pkl")
```

Question-8 Split the data into dependent and independent variables.

```
x=ds.iloc[:,3:13].values
print(x.shape)
y=ds.iloc[:,13:14].values
print(y.shape)

(10000, 10)
(10000, 1)
```

Question-10 Split the data into training and testing

```
from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
    print(x_train.shape)
    print(x_test.shape)

(8800, 13)
(2000, 13)

from sklearn.preprocessing import StandardScaler
    sc-StandardScaler()
    x_train=sc.fit_transform(x_train)
    x_test=sc.transform(x_test)
    joblib.dump(sc,"churnsc.pkl")

['churnsc.pkl']
```