SEQUENCE LISTING 23 SEP 2009

```
<110> Japan Science and Technology Agency
<120> Induction of Differentiation of Stem Cells, and Control of
       Differentiation Potency of Stem Cells
<130> K-1JST-OS
<150> JP2003/83106
<151> 2003-03-25
<150> JP2003/95242
<151> 2003-03-31
<160>4
<210> 1
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<222> Synthesized on the basis of a sequence of 1,108th
       to 1,521st bases of murine Nkx 2.5 gene.
<223> NCBI Accession No.NM008700
<400> 1
ccgccgcctc cgccaacagc aact
                                                                 24
<210> 2
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<222> Synthesized on the basis of a sequence of 1,108th
       to 1,521st bases of murine Nkx 2.5 gene.
<223> NCBI Accession No.NM008700
<400> 2
gggtgggtgg gcgacggcaa gaca
                                                                 24
<210> 3
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<222> Synthesized on the basis of a sequence of 5,630th to 5,931st
      bases of murine gene which encodes alpha myosin H chain.
<223> NCBI Accession No.M76601
```

	<400> 3 ggaagagtga gcggcgcatc aagg	24
	<210> 4 <211> 22 <212> DNA <213> Artificial Sequence	
	<220> Synthesized on the basis of a sequence of 5,630th to 5,931st bases of murine gene which encodes alpha myosin H chain. <223> NCBI Accession No.M76601	·
·	<400> 4 ctgctggaga ggttattcct cg	22

·

. .