Анализ выживаемости. Продолжение

Вспоминаем предыдущее занятие

Есть пациенты, больные раком. Некоторые умирают, некоторые излечиваются. А некоторые пропадают с радаров: они перестают ходить на ежегодные осмотры к врачу

Для анализа вводим две функции:

- ullet Survival function: $s(t)=\mathbb{P}\left\{T\geqslant t
 ight\}=1-F_T(t)$
- ullet Hazard function: $h(t)=\limrac{\mathbb{P}\{t< T\leqslant t+\Delta t\mid T\geqslant t\}}{\Delta t}$. Является некоторым аналогом мгновенной функции.

Свойства:

• $h(t) = -\frac{d}{dt} \log s(t)$

Как оценивать survival function?

Live-table estimate

- ullet n_i сколько людей есть в i-ом интервале времени
- d_i сколько людей умерло в i-ом интервале
- c_i сколько людей наблюдались последний раз в i-ом интервале

Actual assumption:

$$s^*(t) = \prod_{j=1}^k \left(1-rac{d_j}{n_j'}
ight), \quad n_j' = n_j - rac{c_j}{2}$$

На самом деле непонятно, почему не считать n_j' как $n_j - \frac{c_j + d_j}{2}$ - видимо чисто исторические причины

Kaplan-Meier estimate

Этот подход, в отличие от предыдущего, реально используется на практике.

Пусть t_j - момент смерти j-го пациента. Тогда в качестве оценки s можно взять

$$\hat{s}(t) = \prod_{j=1}^k \left(1 - rac{d_j}{n_j}
ight)$$

По сути все отличие от предыдущей формулы в том, что мы вместо n_j' написали n_j . Объясним, почему так можно сделать:

$$\mathbb{P}\left\{T>t_{(k)}\right\}=\mathbb{P}\left\{T>t_{(k)}\mid T>t_{(k)}-\delta\right\}\cdot\mathbb{P}\left\{T>t_{(k)}-\delta\mid T>t_{(k-1)}\right\}\cdot\mathbb{P}\left\{T>t_{(k-1)}\right\}$$

Между красными моментами никто не умирал. Тогда

$$\underbrace{\mathbb{P}\left\{T>t_{(k)}\mid T>t_{(k)}-\delta\right\}}_{1-\mathbb{P}\left\{T=t_{(k)}\right\}=1-\frac{d_k}{n_k}}\cdot\underbrace{\mathbb{P}\left\{T>t_{(k)}-\delta\mid T>t_{(k-1)}\right\}}_{=1}\cdot\mathbb{P}\left\{T>t_{(k-1)}\right\}$$

Расписывая по индукции последнее слагаемое получаем требуемую формулу.

Если посмотреть на формулу, то может возникнуть вопрос: а куда делись цензурируемые события? На самом деле, если положить $c_k=0$, то получим:

$$(\ldots) = rac{n_k - d_k}{n_k} \cdot rac{n_{k-1} - d_{k-1}}{n_{k-1}} \cdot \cdots \cdot rac{n_1 - d_1}{n_1} = rac{n_{k-1}}{n_k} \cdot \cdots \cdot rac{n_2}{n_1} = rac{n_{k+1}}{n_1}$$

Пример из статьи

Изучается женская болезнь: рак матки. После того, как пациентке сделали операцию, он зачастую хочет родить ребенка. Исследуется вероятность возникновения рецидива (повторного возникновения болезни) в зависимости от некоторых факторов:

- тип диагноза [А]
- роды ребенка проводятся по специальной технологии [В]
- факт рождения ребенка [С]
- применяется специальный курс лечения [D]

Соответственно, мы хотим проверить 4 гипотезы.

Посмотрим на графики. Черточки - это моменты цензуирования. Те моменты, когда кривая прыгает - это либо момент наступления рецидива, либо же момент, когда человек перестает обследоваться.

AEH 196 50 (25.5%) EC 143 51 (35.6%) (1.07-2.35) 0.02 ART 89 23 (25.8%) ART 250 78 (31.2%) (0.50-1.27) 0.3 O.3 O.3 O.3 O.5 O.5 O.5 O.5		n	Events (%)	HR (95% CI)	Log Rank Pvalue		n	Events (%)	HR (95% CI)	Log Rank P value
Number at risk Number at risk	AEH	196	50 (25.5%)	1.59	0.02	ART+	89	23 (25.8%)	0.80	0.3
C. Part Property Property	EC	143	51 (35.6%)	(1.07-2.35)	0.02	ART-	250	78 (31.2%)	(0.50-1.27)	0.3
Birth+ 97 11 (11.3%) Birth- 242 90 (37.2%) (0.11-0.40) 0.0001 LNG IUD+ 80 8 (10%) LNG IUD- 259 93 (35.9%) (0.12-0.51) 0.0001	Number at	t risk	ii io io io io	19 8 3 3 9 7 6 6	2 1	Number at ri	sk	102 80 53 29	Total follov	y-up (months)
irth- 242 90 (37.2%) (0.11-0.40) 0.0001 LNG IUD- 259 93 (35.9%) (0.12-0.51) 0.0001							20 90			
ENG IUD- 259 93 (35.9%)	С.	n	Events (%)			D.		Events (%)		
130- 471- 439- 439- 439- 439- 439- 439- 439- 439	C.	n 97	Events (%)	HR (95% CI)	Log Rank P value	D.	80	Events (%) 8 (10%)	HR (95% CI)	Log Rank P value
	C.	n 97	Events (%)	HR (95% CI)	Log Rank P value	D.	80	Events (%) 8 (10%)	HR (95% CI)	Log Rank P value
	C. Birth+ Birth-	n 97 242	Events (%)	(95% CI) (0.11-0.40)	Log Rank P'value	LNG IUD+ LNG IUD- 1.000	80 259	Events (%) 8 (10%)	(95% CI) (0.12-0.51)	Log Rank P value

Оценка hazard function

Еще раз определение:

$$h(t) = \lim rac{\mathbb{P}\left\{t < T \leqslant t + \Delta t \mid T \geqslant t
ight\}}{\Delta t}$$

Live-table estimate

$$h^*(t) = rac{d_j}{n_j' \cdot (t_{j+1} - t_j)}, \; orall t \in [t_j, t_{j+1}], \quad n_j' = n_j - rac{d_j + c_j}{2}$$

Kaplan-Meier

$$\hat{h}(t) = rac{d_j}{n_j \cdot (t_{j+1} - t_j)}$$

Что получилось в статье

Смысл hazard function - вероятность наступления рецидива, если раньше его не случалось. Видно, что для нашей задачи рецидив часто наступает через 1 год и через 7 лет.

Сравнение групп

Есть две группы: 1 и 2. Их hazard functions: h_1,h_2 .

Proportional hazard model:

$$h_2(t) = C \cdot h_1(t), \quad C > 0, \neq 1$$

В терминах функции выживаемости: соответствующие функции выживаемости s_1, s_2 не пересекаются во всех точках, где они одновременно не равны нулю или единице

$$h(t) = -rac{d}{dt}\log s(t) \ \Rightarrow \ s(t) = \exp\left\{-\int_0^t h(u)\,du
ight\}$$
 $\Rightarrow \ s_2(t) = \exp\left\{-\int_0^t h_2(u)\,du
ight\} = \exp\left\{-\int_0^t C\cdot h_1(t)\,dt
ight\} = (s_1(t))^2$

Если $s_1(t)=(s_1(t))^C \Rightarrow s_1(t)$ либо 0, либо 1 (а это крайние значения). Значит, при предположении $h_2(t)=C\cdot h_1(t)$ графики s(t) не пересекаются.

Для пациента номер i:

$$h_i(t)=e^{eta x_i}h_0(t), \quad x_1=egin{cases} 0, & ext{в первой группе} \ 1, & ext{во второй группе} \end{cases}, \quad e^eta=C, \quad h_0=h_1$$

По сути получили универсальный вид функции. Функцию h_0 часто называют baseline hazard.

Функцию h_i можно обобщить. Пусть $\overrightarrow{x_i}$ - вектор характеристик i-го пациента. Тогда

$$h_i(t) = e^{\langle ar{eta}, ar{x}_i
angle} h_0(t)$$

Обычно x_i выбирают так, что когда они равны нулю, мы получаем элемент из первой группы.

Если присмотреться, то мы получили нечто вроде задачи регрессии.

Как оценить β ?

Введем аналог функции правдоподобии. Пусть $t_{(1)} < \cdots < t_{(k)}$ - моменты когда кто-то умер (возник рецидив в нашей задаче). Рассмотрим функцию L:

$$L(\bar{\beta}) = \prod_{j=1}^n \mathbb{P} \left\{ \text{пациент c характеристикой } \bar{x}_j \text{ умер в момент времени } t_{(j)} \mid \text{в момент } t_{(j)} \in \mathbb{R} \right\}$$

$$= \prod_{j=1}^n \frac{\mathbb{P} \text{пациент c хар. } \bar{x}_j \text{ умер в момент } t_{(j)}}{\sum_{s \in R(t_{(j)})} \mathbb{P} \left\{ x_s \text{ умер в момент } t_{(j)} \right\}}$$
 где $R(t_{(j)})$ — пациент в зоне риска в момент $t_{(j)} - \delta$
$$(\dots) = \prod_{j=1}^n \frac{\mathbb{P} \text{пациент c хар. } \bar{x}_j \text{ умер в момент } t_{(j)} / \delta}{\sum_{s \in R(t_{(j)})} \mathbb{P} \left\{ x_s \text{ умер в } [t_{(j)} - \delta, t_{(j)}] \right\} / \delta}$$

где $R(t_{(j)})$ - пациент в зоне риска в момент $t_{(j)}-\delta$. Далее,

$$L(ar{eta}) = \prod_{j=1}^n rac{\sum_{s \in R(t_{(j)})} \underbrace{\mathbb{P}\left\{x_s ext{ умер в момент } t_{(j)}/\delta}_{\sum_{s \in R(t_{(j)})} \underbrace{\mathbb{P}\left\{x_s ext{ умер в } [t_{(j)} - \delta, t_{(j)}]\right\}/\delta}_{\rightarrow h_s(t_{(j)})}$$
 $ightarrow \prod_{j=1}^n rac{h_j(t_{(j)})}{\sum_{s \in R(t_{(j)})} h_s(t_{(j)})} = \left\{h_i(t) = e^{\langle ar{eta}, ar{x}_i \rangle} h_0(t)\right\}$ $= \prod_{j=1}^n rac{e^{\langle eta, x_j \rangle}}{\sum_{s \in R(t_{(j)})} e^{\langle eta, x_s \rangle}}$ $ightarrow \max_{eta}$

Чтобы оценить β надо максимизировать дробь по β . Допустим, мы научились максимизировать. Что делать дальше?

Логранговый критерий (logrank test, score test)

Вещь, которую мы получим ниже, является в некотором смысле фундаментальной. Можно прийти к нему разными способами

Способ 1

$$L(eta) = \prod_{j=1}^k rac{e^{eta x_j}}{\sum_{s=1}^{n_j} e^{eta x_j}}$$

где n_j - количество людей в риске в момент j. Логорифмируем:

$$\log L(eta) = eta \sum_{j=1}^n x_j - \sum_{j=1}^n \log \left(\sum_{s=1}^{n_j} e^{eta x_j}
ight)$$

Обозначим $d_2:=\sum_{j=1}^n x_j$ - общее количество умерших людей из второй группы. Вторую сумму распишем как $\sum_{j=1}^{n_j} e^{\beta x_s}=n_{1j}+n_{2j}e^{\beta}$. Поясняющая таблица:

group	death at j	number at rish at \boldsymbol{j}
1	d_{1j}	n_{1j}
2	d_{2j}	n_{2j}
	$d_i = \sum_j d_{ij}$	

В новых обозначениях получаем:

$$\log L(eta) = eta d_2 + \sum_{j=1}^n \log(n_{1j} + n_{2j}e^eta)$$

Score test проверяют гипотезу

$$\mathcal{H}_0: \quad \beta = 0$$

Статистика:

$$rac{rac{\partial}{\partial eta} \log L(eta) \Big|_{eta=0}}{-rac{\partial^2}{\partial eta^2} \log L(eta) \Big|_{eta=0}} \sim \mathcal{X}_1^2$$

Если $\beta = 0$, то получается группы одинаковые.

Способ 2

Вывод через гипергеометрическое распределение. Что это такое? Пусть есть N объектов, D из них отмечены. Мы берем n из них. Тогда вероятность, что d из них отмечены:

$$\mathbb{P}\left\{$$
отмеч. $=d
ight\}=rac{C_0^dC_{N-0}^{n-d}}{C_N^n}$ $\mathbb{E}[ext{отмеч}]=rac{n}{N}D$

Лирическое отступление про пользу гипергеометрического распределения

Допустим у нас есть пруд и мы хотим оценить количество рыбы в нем. Первым шагом мы ловим D рыб и отмечаем их, например вешая на них ленточку. Далее мы ловим n рыб и смотрим сколько среди них отмеченных - получаем d_1 . Повторяем эксперимент несколько раз - получаем числа $d_2, \ldots d_m$. Теперь мы имеем выборку $d_1, \ldots d_m$ и можем максимизировать функцию правдоподобия:

$$\prod_{i=1}^m p(d\mid n,D) o \max_N$$

В нашем случае

•
$$N = \bar{n}_i = n_{1i} + n_{2i}$$

$$\bullet \ \ D=\bar{d}_j=d_{1j}+d_{2j}$$

•
$$n = n_{1i}$$

Тогда

$$\mathbb{P}\left\{$$
количество смертей в первой группе $=d_{1j}
ight\}=rac{C_{ar{d}_j}^{d_{1j}}C_{ar{n}_j-ar{d}_j}^{n_{1j}-d_{1j}}}{C_{ar{n}_j}^{n_{1j}}}$ $\mathbb{E}[$ количество смертей в первой группе $]=rac{n_{1j}}{ar{n}_j}ar{d}_j$

Как померить отклонения наблюдаемых отклонений от ожидаемых?

$$U_L = \sum_{j=1}^n \left(d_{1j} - rac{n_{1j}}{ar{n}_j} ar{d}_j
ight) = d_1 - \sum_{j=1}^n rac{n_{1j}}{ar{n}_j} ar{d}_j$$

Можем вычислить некоторые статистики:

$$\mathbb{E} U_L = 0, \quad ext{Var} \, U_L = \sum_{j=1}^n rac{n_{1j} \, n_{2j} \, ar{d}_j (ar{n}_j - ar{d}_j)}{n_j^2 (n_j - 1)}$$

Утверждение

$$rac{U_L}{\sqrt{{
m Var}}U_L}
ightarrow \mathcal{N}(0,1)$$

Отсюда получаем

$$rac{U_L^2}{{
m Var}\,U_k}
ightarrow \mathcal{X}_1^2$$

Что отсюда можем получить? Если в каждый момент у нас ровно одна смерть (то есть $ar{d}_j=1$), то формула, получаемая из гипергеометрического распределения, полностью совпадает с формулой выше.

Пример из статьи

O.V. Novikova, V.B. Nosov, V.A. Panov et al.

A.

Наши функции не пересекаются до 120-го месяца. Вообще это плохо, но вроде как мы можем просто выкинуть эти наблюдения. Уровень значимости p-value=0.02, что говорит о различии групп. Эти графики были для уровня диагноза и выглядят логично: чем диагноз хуже, тем вероятнее рецидив.

В.

Уровень значимости больше 0.03, что говорит об одинаковости групп. Это соответствует мнению врачей: операция ЕКО не влияет на рецидив

Очень хороший уровень значимости. Лучше родить ребенка

Использование дополнительного лечения уменьшает вероятность рецидива. Это соответствует мнению врачей.

На этом курс закончен!