WiFi Basics & Security

Matthias Vallentin

vallentin@net.in.tum.de

Vorlesung "Internetprotokolle" SS06 Prof. Anja Feldmann, Ph.D.

Outline

- ▶ 802.11 ("WiFi") Basics
 - Standards: 802. I I {a,b,g,h,i}
 - ▶ CSMA/CA
- WiFi Security
 - WEP
 - ▶ 802.11i
 - DoS

Outline

I. 802.11 Basics
I.I.Standards
I.2.CSMA/CA

- ▶ 802.11 ("WiFi") Basics
 - Standards: 802. I I {a,b,g,h,i}
 - ▶ CSMA/CA
- WiFi Security
 - WEP
 - ▶ 802.IIi
 - DoS

IEEE 802 Family

802.11 Standards

	802.11	802.11b	802.11a/h	802.11g	802.IIn
Enstehungsjahr	1997	1999	1999/2002	2003	vorauss. Ende 2006
Frequenzband	2,4 GHz	2,4 GHz	5 GHz	2,4 GHz	5 GHz
Bruttotransfer	2 MBit/s	II MBit/s	54 MBit/s	54 MBit/s	~600 MBit/s
Akzeptanz	veraltet	stark verbreitet	gering	verbreitet	-
Sicherheit	-	WEP	WEP	WEP,WPA	

802. I I i ist ein Amendment (Erweiterung / Nachtrag)

802.11 Betriebsmodi

I. 802.11 Basics
I.I.Standards
I.2.CSMA/CA

Infrastructure mode

- Access Point (AP) stellt Schnittstelle zum Kabel-Netzwerk dar
- ▶ Basic Service Set (BSS) enthält
 - wireless Hosts
 - Access Point (ad hoc mode: nur Hosts)

Ad hoc mode

keine Access Points, Devices können nur mit Devices in gleicher Reichweite kommunizieren

Wireless Link Characteristics

1. 802.11 Basics 1.1.Standards 1.2.CSMA/CA

Unterschiede des Mediums...

- geringere Signalstärke: Radio Signal verflüchtigt sich während der Ausbreitung (path loss)
- Interferenz von anderen Quellen: 2,4 GHz ISM Band wird auch von anderen Geräten verwendet (Bluetooth, ...).
- Multipath Propagation: Radio Signal reflektiert an Objekten (Wände, Boden) und trifft beim Ziel u.U. mehrmals ein.

...machen die Kommunikation (sogar point-to-point) erheblich komplizierter.

Wireless Network Characteristics

1. 802.11 Basics
1.1.Standards
1.2.CSMA/CA

 Mehrere drahtlose Sender und Empfänger schaffen weitere Probleme (zusätzlich zu CSMA)

hidden terminal/node

- ▶ A und B hören sich
- ▶ B und C hören sich
- A hört nicht C
- → Interferenz bei B

signal fading

- ▶ A und B hören sich
- ▶ B und C hören sich
- A hört nicht C
- → Interferenz bei B

IEEE 802.11 Multiple Access

- 1. 802.11 Basics 1.1.Standards 1.2.CSMA/CA
- ▶ 802.11 Carrier Sense Mulitple Access vor dem Senden "lauschen"
 - um nicht mit aktiven Übertragungen zu kollidieren
- ▶ 802.11: keine Collision Detection (CD)!
 - ▶ Erkennung von Kollisionen erfordert gleichzeitiges Senden (eigene Daten) und Empfangen (sensing collisions) → teuer!
 - Alle Kollisionen können sowieso nicht erkannt werden → hidden node, signal fading
- Ziel: Kollisionen vermeiden:
 - CSMA/C(ollision)A(voidance)

802.11 MAC Protocol: CSMA/CA

I. 802.11 Basics
I.I.Standards
I.2.CSMA/CA

802.11 Sender

```
I if (sense channel idle for DIFS)
transmit entire frame (no CD)

2 if (sense channel busy) {
start random backoff timer
timer counts down while channel idle
transmit when timer expires
if (no ACK) {
increase random backoff interval
repeat 2
}

}
```

802.11 Empfänger

```
if (frame received OK) return ACK after SIFS
```

ACK wird wegen hidden terminal Problem benötigt

Kollisionen vermeiden

- Idee: dem Sender erlauben, den Kanal zu "reservieren" anstatt randomisierten Zugang zu Medium zu gewähren
- Sender schickt kleine Request-To-Send (RTS) Pakete zum AP mit CSMA
 - ▶ RTS können noch immer kollidieren (sind aber klein!)
- AP schickt einen broadcast Clear-To-Send (CTS) als Antwort auf RTS
- ▶ RTS/CTS wird von allen Devices gehört
 - Sender überträgt Data Frame
 - alle anderen Devices warten mit ihren Übertragungen bis der Kanal wieder frei ist
- Data Frame Kollisionen durch kleine Reservierungspakete vollständig vermeiden!

CSMA/CA: RTS-CTS exchange

I. 802.11 Basics I.I.Standards I.2.CSMA/CA

Outline

- ▶ 802.11 ("WiFi") Basics
 - Standards: 802. I I {a,b,g,h,i}
 - CSMA/CA
- WiFi Security
 - WEP
 - ▶ 802.11i
 - DoS

2.3.DoS

WiFi Security

- Aspekte von wireless Security
 - Vertraulichkeit (Confidentiality)
 - Authetizität (Authenticity)
 - ▶ Integrität (Integrity)
 - Verfügbarkeit (Availability)
- ▶ Adressieren die existierenden Sicherheits-Protokolle (WEP, WPA, WPA2) diese Aspekte?

IEEE 802 Familie

Wired Equivalent Privacy (WEP)

2.WiFi Security 2.1.WEP 2.2.802.11i 2.3.DoS

- Protokoll aus dem 802.11 Standard
 - Aufgabe: den MAC Layer schützen
- ▶ 3 Designziele:
 - Confidentiality: Vetraulichkeit durch Verschlüsselung
 - ▶ Access Control: Zugangskontrolle zur Netzwerk-Infrastruktur
 - ▶ Data Integrity: Schutz der Integrität durch eine Checksumme (CRC32)
- ▶ Stream Cipher generieren einen pseudozufälligen Keystream, der mit dem Klartext/Plaintext via XOR (i.Z. ⊕) verknüpft wird
 - WEP verwendet RC4 ("arcfour") als Streamcipher
 - Input-Parameter: Initialisierungsvektor v und geheimer Schlüssel k
 - ▶ **RC4(v,k)** ist der Keystream (v wird auch als seed bezeichnet)

100

010

=

110

2.WiFi Security **2.1.WEP**

WEP

2.2.802.11i 2.3.DoS

Angriffe auf WEP

- Bruteforce
- Keystream Reuse
 - ▶ IV Dictionary
- Weak IVs
- Frame Injection
- Fragmentation Attack

Keystream Reuse

- Wiederverwendung eines bereits benutzten Keystreams RC4(v,k)
- ▶ Keystream Space: 24 bit = 2²⁴ IVs
- Angreifer kann Pakete mit gleichem Keystream entschlüsseln
- mit nur einem validen Keystream kann ein Angreifer beliebige Frames in das Netz senden
 - ▶ 802.11b bietet keinen Schutz gegen Replay Angriffe

RC4(v,k)

Plaintext = Ciphertext

Keystream Reuse (cont'd)

- IV Dictionary: Speichern aller IVs zusammen mit jeweiligem Keystream
- mit einem vollständigem Dictionary kann ein Angreifer den gesamten Verkehr entschlüsseln
- Wie bekommt man gültige Keystreams?
 - Shared Key Authentication (deprecated)
 - Known-Plaintext
 - Fragementation Attack
 - Relaying Broadcast Frames
 - Chop-Chop (Keystream "raten")

$$RC4(v,k) = P \oplus C$$

- Der geheime Schlüssel k kann errechnet werden
 - RC4 Schwachstelle war bereits 4 Jahre (!) vor der Veröffentlichung von WEP bekannt
 - "schwache" IVs: offenbaren zu 5% ein korrektes Byte vom Schlüssel k
- Hardware Patches von Herstellern: Filtern von schwachen IVs
 - ▶ Problem nur noch schlimmer: Reduzierung des Keystream Space: $< 2^{24}$
 - ▶ Legacy Host kann gesamtes Netzwerk kompromittieren

Frame Injection

- Weitere Klassen von schwachen IVs wurden veröffentlicht
 - zu 13% korrektes Byte des Schlüssels
- ▶ Hersteller integrieren keine weiteren IV-Filter
 - immer noch ≈ 500.000 1.000.000 Pakete benötigt
 - lange Wartezeiten für erfolgreichen Angriff
- ▶ **Beschleunigen** der Angriffe durch *replaying* von WEP Frames
 - nur Frames, die eine Antwort im Netzwerk erzeugen
 - z.B.ARP-Request (an fester Länge erkennbar)
- Gegenmaßnahme der Hersteller: EAP-basierte Lösungen, die schnelles rekeying implementieren
 - ► EAP = Extensible Authentication Protocol
 - Authentication Framework, kein spezieller Authentifizierungs-Mechanismus
 - enthält ca. 40 Methoden: EAP-MD5, EAP-OTP, EAP-GTP, ..., EAP-TLS, ...

Fragmentation Attack

- ▶ Neue Attacke, robust gegen häufiges re-keying, da in real-time
 - Daten in ein WEP Netzwerk senden
 - Entschlüsseln von WEP Daten
- ► Ansatz: 802.11 kann gegen WEP verwendet werden 🎉
 - ▶ 802.11 spezifiziert Fragmentierung auf dem MAC Layer
 - jedes Fragment ist einzelnd verschlüsselt
 - mehrere Fragmente können mit dem gleichen Keystream gesendet werden
 - max. 16 Fragmente, da 4 bit Feld für Frag No im Header

2.WiFi Security 2.1.WEP 2.2.802.11i 2.3.DoS

802.11 Fragmentation

- ▶ 8 bytes known plaintext in jedem Frame*
 - ▶ 802.11 Frames sind **LLC/SNAP** enkapsuliert (konstanter Header)

- ▶ Ether type = IP oder ARP
- implizit auch 8 bytes vom Keystream bekannt
 - $ightharpoonup \mathbf{P} \oplus \mathbf{C} = RC4(v,k)$
- ▶ (8 4) x 16 = 64 bytes Daten können mit Hilfe von Fragmentierung sofort injiziert werden
 - ▶ 4 bytes für CRC (daher 8 4)

Fragmentation Attack

- Was können wir damit erreichen?
 - andere Angriffe beschleunigen (Weak IV)
 - Keystream Angriffe
 - I. 8 bytes vom Keystream bestimmen
 - 2. **Keystream erweitern**: lange *Broadcast Frames* in mehreren Fragmenten schicken und Antwort vom AP entschlüsseln (**C** ⊕ **P** = RC4(v,k)). Solange wiederholen, bis 1500 bytes (MTU) vom Keystream bekannt sind
 - 3. IV Dictionary:
 - 3.1.Senden von 1500 byte Broadcasts
 - 3.2.AP wird das Paket (wahrscheinlich) weiterleiten
 - 3.3.Keystream für das Paket bestimmen und auf diese Weise alle weiteren Keystreams bestimmen
 - 4. Entschlüsseln von Paketen, deren Keystream bekannt ist
 - ▶ Entschlüsseln von Paketen in real-time...

- ▶ Entschlüsselung von Paketen in real-time
 - Voraussetzung: Internet Connectivity
 - ▶ Angreifer kann den AP zum Entschlüsseln verwenden
 - Mit Hilfe von 802. I I Fragmentierung kann ein zusätzlicher IP-Header vor das ursprüngliche Paket eingefügt werden
 - Das ursprüngliche Paket wird als letztes Fragment angefügt
 - AP reassembliert, entschlüsselt und schickt das Paket an die "gespoofte" IP Adresse

802.11 Termini

2.WiFi Security 2.1.WEP 2.2.802.11i 2.3.DoS

802.11 Sicherheit

	WEP	WPA	WPA2
Algorithmus	RC4	RC4	AES-CTR
Schlüssellänge	64/128 bit	I28 bit	I 28 bit
IV-Länge	24 bit	48 bit	48 bit
Datenintegrität	CRC-32	Michael	CBC-MAC
Headerintegrität	-	Michael	CBC-MAC
Authentifizierung	Shared Key	802.1X	802.1X
Key-Management	-	802.1X	802.1X
Replay-Attacken Schutz	-	IV-Sequenz	IV-Sequenz

802. I I i - RSNA Overview

- ▶ 3 Entitäten bei der Robust Security Network Association (RSNA) beteiligt
 - Supplicant (WLAN Client)
 - Authenticator (Access Point)
 - Authentication Server (fast immer RADIUS Server)
- ▶ 6 Verbindungsphasen bis zum Datenaustausch
 - ▶ Phase I: Network and Security Capability Discovery
 - ▶ Phase 2: 802.11 Authentication and Association
 - ▶ Phase 3: EAP/802. I X/RADIUS Authentication
 - ▶ Phase 4: 4-Way Handshake
 - ▶ Phase 5: Group Key Handshake
 - Phase 6: Secure Data Communication
- → komplexer als WEP (zum Glück auch sicherer :)

RSNA (cont'd)

802. I Ii Schwachstellen

- ▶ PSK Dictionary Bruteforce Attack
- Security Level Rollback Attack
- ▶ Reflection Attack

802. I Ii PSK Brute Force

2.WiFi Security 2.1.WEP 2.2.802.11i 2.3.DoS

PSK = PMK = PBKDF2(passphrase, SSID, SSIDlength, 4096, 256)

- ▶ PSK = Pre-Shared Key
- ▶ PMK = Pairwise Master Key
- ▶ PBKDF2 = Verfahren aus PKCS#5 v2.0
- SSID = Service Set Identity
- ▶ SSIDlength = Länge der SSID
- ▶ 4096 = Anzahl der Hashdurchläufe
- ▶ 256 = Länge der Ausgabe

Security Level Rollback Attack

- Transient Security Network (TSN) als Kompatibilitätsmodus in heterogenen Umgebungen
 - für sanfte Migration auf WPA2 gedacht
 - erlaubt Pre-RSNA und RSNA Verbindungen
- Angreifer simuliert Pre-RSNA Authenticator
 - Senden von gespooften Probe-Requests / Beacons
 - Sicherheit schrumpft auf schwächste Komponente
 - Fallback to WEP :(

Security Level Rollback Attack

Reflection Attack

- Attacke funktioniert nur im Ad hoc mode
 - im Infrastrucutre mode sind Supplicant und Authenticator immer unterschiedliche Devices
- Angreifer verkörpert Supplicant und Authenticator in einem Device
 - I. 4-Way-Handshake (4WH) als Authenticator
 - 2. 4WH als Supplicant mit gleichem Parametern
- Anworten vom zweiten 4WH können als gültige Daten für den ersten 4WH verwendet werden
 - mutual authentication durchbrochen
 - Verschlüsselte Daten können gespeichert werden (offline Analyse)

2.WiFi Security 2.1.WEP 2.2.802.11i 2.3.DoS

Reflection Attack

Denial-of-Service (DoS)

- Frequency Jamming (PHY)
- Deauthentication / Disassociation Frame Spoofing
- ▶ CMCA/CA keine geschützten Management Frames
 - Standard ignorieren: kein "backoff"
 - virtual carrier-sensing (RTS mit hohem NAV)
- ARP-Cache Poisoning
- ▶ 802.1X
 - EAP-{Start, Logoff, Failure} Spoofing
 - ▶ EAP Identifier nur 8 bit: mehr als 255 Authentication Request gleichzeitig senden
- → DoS zu einfach (nicht von 802.11i adressiert!)
- → DoS Angriffe können weitere Attacken vereinfachen (Session-Hijacking, MitM)

Fazit

- WiFi wird ubiquitär / pervasive
- kontinuierliche Weiterentwicklung der Standards
- Sicherheitsaspekte
 - Shared Medium (!)
 - WEP liegt nun endgültig im Sarg
 - Verwendung sicherer Protokolle (SSH, IMAPS, HTTPS) über WLAN
 - sichere WPA/WPA2 Passphrase p wählen (p € Wörtbuch)
 - DoS (noch) zu einfach
 - Kabel verwenden, wenn es drauf ankommt :)

FIN

Fragen?

vallentin@net.in.tum.de