Análise de dados de Acidentes Aereos (Período 2008-2018(Maio))

Objetivos

Identificar, através dos anos, quais os principais tipos de acidentes em cada região do país,e observar as rotas com maiores números de ocorrências. Para isso iremos levantar:

- •Identificar as cidades com maiores ocorrencias e colocar quais os principais tipos de acidentes, se houve óbitos, quais os principais tipos de aeronaves e o segmento;
- Relação entre os tipos de operação e a classificação da ocorrencia;
- · Classificação por regiões do país;
- · Mostrar as ocorrências no país inteiro, depois mostrar as regiões de maiores ocorrencias;
- Mostrar o numero de acidentes, quantidade de fatais, principais motivos e as principais áreas de atuação.

▼ Bibliotecas

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import itertools as it
```

```
trom itertools import product
import seaborn as sns
import plotly.offline as py
import plotly.graph_objs as go
import folium
import os

from decimal import Decimal
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import StandardScaler
```

▼ Funções

```
def tem numero(string): # Retornar se string possue numero
  return any(char.isdigit() for char in string)
def remove repetidos(array): # Remover Elementos Repetidos do Array
   1 = []
   for i in array:
        if i not in 1:
            1.append(i)
    1.sort()
    return 1
def numero em cima(rects, ax):
    for rect in rects:
        height = rect.get height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),
                    textcoords="offset points",
                    ha='center', va='bottom')
```

▼ Tratando Dados

▼ Dados Originais - Opendata AIG Brazil (Centro de Investigação e Prevenção de Acidentes Aeronáuticos - CENIPA)

```
dados = pd.read_csv('https://raw.githubusercontent.com/jhiltonsantos/ADS-Estatistica-IFPI/master/Projeto%20Final/accidents_table_type
dados.dataframeName = 'Accidents'
nRow, nCol, = dados.shape
dados.head(2)
```

₽		codigo_ocorrencia	ocorrencia_classificacao	ocorrencia_tipo	ocorrencia_dia	ocorrencia_horario	ocorrencia_cidade	ocorrenc
	0	201211159478138	ACIDENTE	FALHA DO MOTOR EM VOO	2012-11-15	12:40:00	ABADIA DE GOIAS	
	1	200912289948837	ACIDENTE	PERDA DE CONTROLE EM VOO	2009-12-28	17:30:00	ACEGUA	

2 rows × 116 columns

▼ Remover Dados Que Não Serão Manipulados (Fator_*)

```
remover_fator = []
for i in range(1, len(dados.columns)):
   if tem_numero(dados.columns[i]) == True:
      remover_fator.append(dados.columns[i])

dados.drop(columns=remover_fator, inplace=True)
dados.head(2)
```


	codigo_ocorrencia	ocorrencia_classificacao	ocorrencia_tipo	ocorrencia_dia	ocorrencia_horario	ocorrencia_cidade	ocorrenc
0	201211159478138	ACIDENTE	FALHA DO MOTOR EM VOO	2012-11-15	12:40:00	ABADIA DE GOIAS	
1	200912289948837	ACIDENTE	PERDA DE CONTROLE EM VOO	2009-12-28	17:30:00	ACEGUA	

▼ Adicionando Coluna "ano" aos Dados

```
data_ocorrencias = []
for i in range(len(dados)):
    data_ocorrencias.append(dados['ocorrencia_dia'][i])

anos_ocorrencias = []
ano = []
for i in range(len(data_ocorrencias)):
    ano.append(data_ocorrencias[i].split('-'))
    anos_ocorrencias.append(ano[i][0])

# Transformar anos para inteiro
anos_int = []
for i in range(len(anos_ocorrencias)):
    anos_int.append(int(anos_ocorrencias[i]))
anos_int

dados['ano'] = anos_int
dados.head(2)
```

▼ Dados de Latitude e Longitude (Decimal) dos Estados - IBGE

dados_lat_long = pd.read_csv('https://raw.githubusercontent.com/jhiltonsantos/ADS-Estatistica-IFPI/master/MunicipiosBrasil.csv')
dados lat long.head(2)

8		ID	LATITUDE	LONGITUDE	Mun/UF	MUNICIPIO	UF	Valor
	0	2.0	-10.94	-69.56	ASSIS BRASIL - AC	ASSIS BRASIL	AC	17.842.150.988.839
	1	3.0	-11.01	-68.74	BRASILEIA - AC	BRASILEIA	AC	9.337.339.431.323

```
# Esses Dados já foram inseridos em um novo CSV (DADO PRONTOS)

# Criando colunas latitude e longitude
#dados['latitude'] = -9.42
#dados['longitude'] = -30.89

# Passando valores de base_geo_br.csv para dados
#for i in range(len(dados_lat_long)):
# for k in range(len(dados)):
# if (dados['ocorrencia_cidade'][k] == dados_lat_long['MUNICIPIO'][i]) and (dados['ocorrencia_uf'][k] == dados_lat_long['UF'][i]):
# dados['latitude'][k] = dados_lat_long['LATITUDE'][i]
# dados['longitude'][k] = dados_lat_long['LONGITUDE'][i]
##export csv = dados.to csv(r'drive/My Drive/dados prontos.csv', index = None, header=True)
```

▼ Dados Prontos

```
dados_prontos = pd.read_csv('https://raw.githubusercontent.com/jhiltonsantos/ADS-Estatistica-IFPI/master/dados_prontos.csv')
dados prontos.head(2)
```

 \Box

	codigo_ocorrencia	ocorrencia_classificacao	ocorrencia_tipo	ocorrencia_dia	ocorrencia_horario	ocorrencia_cidade	ocorrenc
0	201211159478138	ACIDENTE	FALHA DO MOTOR EM VOO	2012-11-15	12:40:00	ABADIA DE GOIAS	
1	200912289948837	ACIDENTE	PERDA DE CONTROLE EM VOO	2009-12-28	17:30:00	ACEGUA	

▼ 1. Ocorrências no País

▼ Ocorrencias no Mapa

```
mapa br = folium.Map(location=[-12, -50],
                 zoom start = 4, control scale = True, prefer canvas=True)
for i in range (0, 5000, 5):
 if dados prontos['latitude'][i] != -9.42:
    folium.Marker(
        location=[dados prontos['latitude'][i], dados prontos['longitude'][i]],
        popup="Codigo da Ocorrencia: "+str(dados prontos['codigo ocorrencia'][i])+"<br>"
              +"<br>Estado(UF): "+dados prontos['ocorrencia uf'][i]+"<br>"
              +"<br>Cidade:"+dados prontos['ocorrencia cidade'][i]+"<br>"
              +"<br>Classificacao da Ocorrencia: "+dados prontos['ocorrencia classificacao'][i]+"<br>"
              +"<br>Tipo de Ocorrencia: "+dados prontos['ocorrencia tipo'][i]+"<br>"
              +"<br>Data:"+dados_prontos['ocorrencia_dia'][i]+"<br>"
              +"<br>Modelo Aeronave: "+dados_prontos['aeronave_modelo'][i]+"<br>"
              +"<br>Ano Fabricacao Aeronave: "+str(dados_prontos['aeronave_ano_fabricacao'][i])+"<br>"
        icon=folium.Icon(color='red', icon='info-sign'),
    ).add_to(mapa_br)
```

mapa_br

₽

500 km 500 mi

▼ Número de Fatalidades no Período de 2008 à 2018

Г⇒

•		RIO DE JANEIRO	SAO PAULO	BELO HORIZONTE	BRASILIA	GUARULHOS	ano
	0	4	0	4	0	0	2008
	1	0	0	0	0	0	2009
	2	6	1	2	0	0	2010
	3	3	0	0	0	0	2011
	4	4	3	0	0	0	2012
	5	0	1	0	0	0	2013
	6	2	0	0	2	0	2014
	7	0	0	3	0	0	2015
	8	4	7	0	0	0	2016
	9	0	0	0	0	0	2017
	10	0	0	0	0	0	2018

```
dados_m_anos = dados_m_anos.sort_values('mortes')
dados_m_anos
```

dados_	_m_aı	nos							
₽		ano	mortes						
	10	2018	25						
	9	2017	52						
	2	2010	55						
	0	2008	58						
	1	2009	63						
	7	2015	70						
	6	2014	80						
	5	2013	94						
	8	2016	94						
	3	2011	110						
	4	2012	110						
<pre>f, ax = plt.subplots() pallete = sns.cubehelix_palette(11, 3, 0.4, 0.60, 0.8, 0.6)</pre>									
sns.ba	<pre>sns.barplot(dados_m_anos['ano'], dados_m_anos['mortes'], palette=pallete)</pre>								
ax.se	t_yla t_ti	tle('M	Anos') Mortes") ortes po	ano')					

 \Box

▼ Relação de Acidentes x Incidentes

	ACIDENTE	INCIDENTE	INCIDENTE GRAVE	tipo
0	163	291	77	Nordeste
1	242	321	92	Norte
2	340	210	80	Centro Oeste
3	568	1405	238	Sudeste
4	353	466	113	Sul

C→

```
x = np.arange(5)
width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, dados_regioes['ACIDENTE'], width, label='ACIDENTE')
rects2 = ax.bar(x + width/2, dados regioes['INCIDENTE'], width, label='INCIDENTE')
rects3 = ax.bar(x + width, dados regioes['INCIDENTE GRAVE'], width, label='INCIDENTE GRAVE')
ax.set ylabel('Ocorrências')
ax.set title('REGIÕES\nACIDENTE vs INCIDENTE vs INCIDENTES GRAVES')
ax.set_xticks(x)
ax.set_xticklabels(dados_regioes['tipo'])
ax.legend()
numero_em_cima(rects1, ax)
numero_em_cima(rects2, ax)
numero em cima(rects3, ax)
fig.tight_layout()
plt.show()
```


▼ Box Plot do Número de Mortes por Ano

```
plt.text(40, 0.6, 'Mediana de mortes: %.2f'%(np.median(np.array(dados_m_anos['mortes']))))
plt.text(40, 0.7, 'Média de mortes: %.2f'%(np.mean(np.array(dados_m_anos['mortes']))))
plt.boxplot(dados_m_anos['mortes'], 0, 'rs', 0)
plt.title('BoxPlot do numero de mortes por ano')
plt.show()
```

C→

▼ Número do Tipos de Operações que mais ocorrem

```
ax.set xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e numero de incidentes ')
plt.show()
\Box
                           Tipos de operação e numero de incidentes
               VOO REGULAR
               VOO PRIVADO
                 TÁXI AÉREO -
           VOO DE INSTRUÇÃO
           OPERAÇÃO POLICIAL
           VOO EXPERIMENTAL
      OPERAÇÃO ESPECIALIZADA
           VOO NÃO REGULAR
          OPERAÇÃO AGRÍCOLA
                                           400
                                                    600
                                  200
                                                             800
                          0
                                                                     1000
                                      Quantidade de incidentes
f, ax = plt.subplots()
pallete = sns.cubehelix_palette(10, 5, 0.4, 0.60, 0.8, 0.6)
sns.barplot(qtd acidentes tipo['Acidentes'], qtd acidentes tipo['Tipo'], palette=pallete)
ax.invert_yaxis()
ax.set_xlabel('Quantidade de Acidentes')
ax.set ylabel("")
ax.set_title('Tipos de operação e numero de Acidentes ')
plt.show()
```

 \Box

▼ 2. Classificação por Estados

▼ Acidentes e Incidentes Por Estados

```
acidente = dados_prontos[dados_prontos.ocorrencia_classificacao == 'ACIDENTE']
incidente = dados_prontos[dados_prontos.ocorrencia_classificacao == 'INCIDENTE']
incidente_grave = dados_prontos[dados_prontos.ocorrencia_classificacao == 'INCIDENTE GRAVE']

#incidente = incidente + incidente_grave
plt.title('ACIDENTES X INCIDENTES X INCIDENTES GRAVES')
plt.xlabel('ESTADOS')
plt.ylabel('QUANTIDADE')

estado_aci = acidente['ocorrencia_uf']
estado_inc = incidente['ocorrencia_uf']
estado_inc_gra = incidente_grave['ocorrencia_uf']
```

estado_aci.hist(figsize=(15,8), alpha=0.5, label='Acidentes', color='#FF26E1')
estado_inc.hist(figsize=(15,8), alpha=0.5, label='Incidentes', color='#1084EC')
estado_inc_gra.hist(figsize=(15,8), alpha=0.5, label='Incidentes Graves', color='#17DC2C')
plt.legend(loc='upper right')

← <matplotlib.legend.Legend at 0x7f3b42fd8278>

▼ Bubble Map com a Quantidade de Ocorrência por Estados

```
data = pd.DataFrame ({
    'lat' : [-23.52, -22.9, -19.81, -25.42, -30.03, -16.67, -1.45, -15.59, -3.1, -12.97, -27.59, -15.78, -20.44, -8.05,
    'lon': [-46.63, -43.2, -43.95, -49.27, -51.23, -49.25, -48.5, -56.09, -60.02, -38.51, -48.54, -47.93, -54.64, -34.88,
    'name' : ['SP', 'RJ', 'MG', 'PR', 'RS',
                                                  'GO', 'PA', 'MT',
                                                                                'BA',
                                                                                        'SC', 'DF',
                                                                                                         'MS',
                                                                         'AM',
    'value' : [1191, 496,
                                                                238,
                            458,
                                   428,
                                           344,
                                                   263.
                                                         244,
                                                                        216.
                                                                                206.
                                                                                         160,
                                                                                                 154,
                                                                                                         129.
})
map br = folium.Map(location=[-12, -50],
                zoom start = 4, control scale = True, prefer canvas=True)
data['value']=data.value.astype(float)
for i in range(0,len(data)):
  folium.Circle(
     location=[data.iloc[i]['lat'], data.iloc[i]['lon']],
     popup="<br/>"+data.iloc[i]['name']+"<br/>br>OUANTIDADE DE OCORRENCIAS: " + str(int(data['value'][i])),
     radius=data.iloc[i]['value']*300,
     color='crimson',
     fill=True,
     fill color='crimson'
   ).add to(map br)
map_br
C→
```

-3.

-38

'CE

71

'PE',

87,

▼ Quantidade de Acidentes por Estados

→ 3. Classificação por Cidades

▼ Mapa com as Dez Cidades com Maiores Números de Ocorrência

	fatalidade	lat	lon	cidade	regiao	estado	acidentes
0	21	-22.90	-43.20	RIO DE JANEIRO	SUDESTE	RJ	239
1	12	-23.54	-46.63	SAO PAULO	SUDESTE	SP	202
2	0	-23.46	-46.53	GUARULHOS	SUDESTE	SP	137
3	9	-19.81	-43.95	BELO HORIZONTE	SUDESTE	MG	133
4	2	-15.78	-47.93	BRASILIA	CENTRO-OESTE	DF	123
5	19	-23.31	-51.16	LONDRINA	SUL	PR	100
6	0	-22.90	-47.06	CAMPINAS	SUDESTE	SP	96
7	0	-30.03	-51.23	PORTO ALEGRE	SUL	RS	78
8	2	-16.67	-49.25	GOIANIA	CENTRO-OESTE	GO	76
9	1	-12.97	-38.51	SALVADOR	NORDESTE	ВА	75

```
).add_to(mapa_incidente)
mapa_incidente
```


▼ Número de Fatalidades nas Cinco Cidades com Maiores Ocorrências

```
trace bh = go.Scatter(x=dados anos['ano'],
                    y=dados anos['BELO HORIZONTE'],
                     mode = 'lines+markers',
                     name='BELO HORIZONTE',
                     line={'color': '#341f97',
                            'dash': 'dash'})
trace rj = go.Scatter(x=dados anos['ano'],
                     y=dados anos['RIO DE JANEIRO'],
                     mode = 'lines+markers',
                     name='RIO DE JANEIRO',
                     line={'color': '#F15230',
                            'dash': 'dash'})
trace sp = go.Scatter(x=dados anos['ano'],
                    y=dados_anos['SAO PAULO'],
                     mode = 'lines+markers',
                     name='SAO PAULO',
                     line={'color': '#F1C40F',
                            'dash': 'dash'})
trace br = go.Scatter(x=dados anos['ano'],
                    y=dados_anos['BRASILIA'],
                     mode = 'lines+markers',
                     name='BRASILIA',
                     line={'color': '#F130EE',
                            'dash': 'dash'})
trace_gu = go.Scatter(x=dados_anos['ano'],
                     y=dados_anos['GUARULHOS'],
                     mode = 'lines+markers',
                     name='GUARULHOS',
                     line={'color': '#0C701B',
                            14--61. 14--6131
```

Número de Fatalidades nas Cinco Cidades com Majores Ocorrências


```
f, ax = plt.subplots()
pallete = sns.cubehelix_palette(10, 3, 0.4, 0.60, 0.8, 0.6)

sns.barplot(qtd_operacao_rj['Ocorrencia'], qtd_operacao_rj['Tipo'], palette=pallete)

ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade do Rio de Janeiro ')

plt.show()
```

Tipos de operação e Numero de Ocorrencias na Cidade do Rio de Janeiro


```
pallete = sns.cubehelix_palette(10, 3, 0.4, 0.60, 0.8, 0.6)
sns.barplot(qtd_operacao_rj['Ocorrencia'], qtd_operacao_rj['Tipo'], palette=pallete)
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade do Belo Horizonte ')
plt.show()
```

Tipos de operação e Numero de Ocorrencias na Cidade do Belo Horizonte


```
sns.barplot(qtd_operacao_rj['Ocorrencia'], qtd_operacao_rj['Tipo'], palette=pallete)
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade do São Paulo')
plt.show()
```

Tipos de operação e Numero de Ocorrencias na Cidade do São Paulo


```
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade de Brasilia')
plt.show()
```

Tipos de operação e Numero de Ocorrencias na Cidade de Brasilia


```
ax.invert_yaxis()
ax.set_xlabel('Quantidade de incidentes')
ax.set_ylabel("")
ax.set_title('Tipos de operação e Numero de Ocorrencias na Cidade de Guarulhos')
plt.show()
```

Tipos de operação e Numero de Ocorrencias na Cidade de Guarulhos

