MASALAH NILAI AWAL DARI PERSAMAAN DIFERENSIAL BIASA

Heri Purnawan (T. Elektro UNISLA)

Diberikan masalah nilai awal sebagai berikut

$$\frac{dy}{dt} = y - t^2 + 1, \qquad 0 \le t \le 2, \qquad y(0) = 0.5$$

Hitung nilai y(1) dengan h = 0.5 Solusi eksak adalah $y(t) = (t+1)^2 - 0.5e^t$

Metode Euler

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i))$$

i	t_i	$y(t_i)$	Nilai eksak	Absolute Error
0	0	0,5	0,5	0
1	0,5	1,25	1,425639365	0,175639365
2	1	2,25	2,640859086	0,390859086
3	1,5	3,375	4,009155465	0,634155465
4	2	4,4375	5,305471951	0,867971951

Metode Heun

Prediktor: $\hat{y}(t_{i+1}) = y(t_i) + hf(t_i, y(t_i))$

Korektor: $y(t_{i+1}) = y(t_i) + \frac{h}{2} [f(t_i, y(t_i)) + f(t_{i+1}, \hat{y}(t_{i+1}))]$

i	t_i	$y(t_i)$		Nilai eksak	Absolute Error
		Prediktor	Korektor	Iviiai eksak	Ausolule Litoi
0	0	0,5	0,5	0,5	0
1	0,5	1,25	1,375	1,425639365	0,050639365
2	1	2,4375	2,515625	2,640859086	0,125234086
3	1,5	3,7734375	3,775390625	4,009155465	0,23376484
4	2	5,038085938	4,916259766	5,305471951	0,389212185

Terlihat *absolute error* metode Heun lebih kecil dibandingkan metode Euler, sehingga metode Heun lebih baik dari metode Euler

Metode Runge-Kutta Orde 4

$$k_1 = hf(t_i, y(t_i))$$

$$k_2 = hf(t_i + \frac{h}{2}, y(t_i) + \frac{1}{2}k_1)$$

$$k_3 = hf(t_i + \frac{h}{2}, y(t_i) + \frac{1}{2}k_2)$$

$$k_4 = hf(t_{i+1}, y(t_i) + k_3)$$

$$y(t_{i+1}) = y(t_i) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

i	t_i	k_j		$y(t_i)$	Nilai eksak	Absolute Error
0	0			0,5	0,5	0
1	0,5	k_1	0,75	1,425130208	1,425639365	0,000509156
		k_2	0,90625			
		k_3	0,9453125			
		k_4	1,09765625			
2	1	k_1	1,087565104	2,639602661	2,640859086	0,001256425
		k_2	1,20320638			
		k_3	1,232116699			
		k_4	1,328623454			
3	1,5	k_1	1,319801331	4,00681897	4,009155465	0,002336495
		k_2	1,368501663			
		k_3	1,380676746			
		k_4	1,385139704			
4	2	k_1	1,378409485	5,301605229	5,305471951	0,003866721
		k_2	1,316761856			
		k_3	1,301349949			
		k_4	1,15408446			

Terlihat bahwa metode Runge-Kutta Orde 4 mempunyai absolute error yang paling kecil jika dibandingkan dengan metode Euler dan Heun. Oleh karena itu, metode Runge-Kutta orde 4 adalah metode yang paling baik diantara metode Euler dan Heun.

h = 0.2

i	t_i	$y(t_i)$	Nilai eksak	Absolute Error
0	0	0,5	0,5	0
1	0,2	0,8	0,829298621	0,029298621
2	0,4	1,152	1,214087651	0,062087651
3	0,6	1,5504	1,6489406	0,0985406
4	0,8	1,98848	2,127229536	0,138749536
5	1	2,458176	2,640859086	0,182683086