Analysis: Merge Cards

Test Set 1

In the i-th round, Panko will have $\bf N$ - i choices. In total, there are ($\bf N$ - 1)! possibilities. Using an exhaustive approach, the expected value can be computed by definition.

Test Set 2

After each round, the number on each card equals to the sum of a subarray of $\bf A$. In the last round, there are $\bf N$ - 1 cases:

The last round contributes a fixed number, $A_1 + A_2 + ... + A_N$, to the answer. But in each case, the part contributed by the previous rounds is actually the sum of the answers of two variants of the original problem:

- Replace **A** by **A**₁, **A**₂, ..., **A**_i
- Replace A by A_{i + 1}, A₂, ..., A_N

This part is then a weighted average of those **N** - 1 sums. However, each case is equally likely to occur. To reach a specific case in the last round, Panko has to avoid exactly one choice in each of the previous rounds. Thus arithmetic mean can be used here.

There are $O(N^2)$ different subproblems. The answer of each of subproblem can be computed in O(N) by <u>dynamic programming</u>. The overall time complexity is then $O(N^3)$.

Test Set 3

The above solution can be optimized to achieve $O(\mathbf{N}^2)$ time complexity by maintaining the prefix sums and suffix sums of the answers to the subproblems. But there is a faster approach that the $O(\mathbf{N}^2)$ part is in precomputation instead of having $O(\mathbf{N}^2)$ per test.

Let $solve_N(A_1, A_2, ..., A_N)$ be a function that takes the **N** numbers written on the cards as parameters and returns the expected total score. It can be expressed as the average of **N** - 1 numbers. Each corresponds to a different choice in the first round. In particular, they are:

By using mathematical induction with $solve_2(A_1, A_2) = A_1 + A_2$ as the base case, it can be shown that $solve_N(A_1, A_2, ..., A_N)$ is a linear combination of $A_1, A_2, ..., A_N$, which means $solve_N(A_1, A_2, ..., A_N) = k_{N, 1} \times A_1 + k_{N, 2} \times A_2 + ... + k_{N, N} \times A_N$ where $k_{i, j}$ are constants. If all $k_{i, j}$ are precomputed, the answer for each test can be computed in time complexity O(N).

Starting from $k_{2, 1} = k_{2, 2} = 1$, $k_{i, j}$ can be computed in increasing order of i. The transition formulas can be obtained by transforming the formula of solve_N(A_1 , A_2 , ..., A_N). For example, the transition formula of $k_{N, 1}$ can be obtained by replacing solve_{N - 1}(...) and solve_N(...) by the expressions with $k_{i, j}$, then comparing the coefficients of the A_1 term.

The j-th card will become either (part of) the (j-1)-th card or (part of) the j-th card after a round. Correspondingly, only the coefficients of the $k_{i-1, j-1}$ term, the $k_{i-1, j}$ term and the constant term can be non-zero in the transition formula of $k_{i, j}$. By grouping the like terms, the number of terms in each transition formula is reduced to at most 3. Then the overall time complexity becomes $O(N^2)$.

The error analysis is straightforward since A_i cannot be negative. It should not be a problem in most of the implementations.