Predicting Humor in Headlines

Christian Kavouras, James Blackburn, Joseph Nollette, Joshua Valdez

Task Description

- Implement a regression based model to predict humor in a dataset of headlines
- Dataset consists of headlines taken from the Humicroedit dataset
- https://competitions.codalab.org/competitions/20970#learn_the_det ails-overview

Task Description

- Single word edits to headlines for comedic effect
- Labeled scores on a 0-3 scale of "funniness"
- Averaged across 5 human scores

Approach

- We use a single regression pre-trained BERT model
- BERT then fine-tuned on our headline data
- Evaluated as a single-regression task with RMSE loss
- Note: Due to access to external GPUs, we are able to fine-tune BERT itself

Approach

Features

Inputs to the model are raw sentence embeddings

 Tokenized using vanilla BertTokenizer

Hyperparameters

Tuned models across varying epochs:

0 1, 2, 3, 4

• Tuned with various batch-sizes:

0 32, 16, 8, 4

Adam Optimizer

System Design

System Design

(Schematic of BERT architecture:)

In our case, labels are decimal values in [0, 3]

Results

results for subtask1:

baseline: 0.57471

BERT single regressor:

task A RMSE results:

epochs	batch=32	batch=16	batch=8	batch=4
1epochs	0.54199	0.54312	0.53396	0.53438
2epochs	0.53324	0.54381	0.5383	0.54047
3epochs	0.54728	0.54737	0.56014	0.55393
4epochs	0.55964	0.55747	0.56742	0.56569

Discussion

- For our primary task, our BERT model performs impressively well
 - (Butts up against the baseline)

- Can expand from a single regression
- Can further fine tune a downstream, feature based model on our input

System Improvement

- Explored possibilities for improvement of BERT
 - Conditional Random Field?
 - o Feed-Forward Neural Network?
- Used output embeddings from BERT as input to FFNN
- Adjusted five hyperparameters along three values each to measure improvements

System Improvement

Hyperparameters

Epochs	2	4	8
Batch Size	4	8	16
Learning Rate	2E-6	2E-5	2E-4
Dropout Rate	0.2	0.3	0.4
Hidden Layers	1	2	3

System Improvement

Best 3 results

RMSE	Epochs	Batch Size	Learning Rt	Dropout Rt	Hid. Layers
0.56156	8	4	2E-4	0.4	2
0.5634	8	4	2E-4	0.4	1
0.56541	4	8	2E-4	0.2	2

Adaptation Task

Can this system predict the humor content of Reddit posts?

Non-Humorous	Humorous		
r/news	r/Jokes		
r/worldnews	r/dadjokes		
r/askscience	r/TheOnion		
r/movies	r/oneliners		
r/politics	r/fifthworldproblems		
r/wallstreetbets	r/wheredidthesodago		

Adaptation Task

- Obtain top 1,000 posts of all time from each subreddit
- Normalize upvote scores to the range 0.0 to 3.0
- Calculate Spearman correlation of predicted humor and upvote score for each subreddit

 Prediction: stronger correlation in humorous subreddits than in non-humorous ones

Upvote Distribution

Adaptation Results

Spearman correlation: 0.001897

Spearman correlation: -0.034297

Future Improvements

Gold Annotations:

Gather human-valued annotations for reddit data

Pseudo-Labeling:

- Predict humor scores for additional reddit data (noisy labels)
- Feed noisy-labeled reddit data back into system for supplemental training

Related Reading

BERT paper: (Devlin et al., 2018) https://arxiv.org/pdf/1810.04805.pdf

Aspect-based sentiment analysis - ideas from a similar task domain (Xu, et al., 2019) https://arxiv.org/pdf/1904.02232.pdf

Winning Model for same task (Spanish Dataset) http://ceur-ws.org/Vol-2421/HAHA paper 3.pdf