0.1 Ringe

Wiederholung. $(R, 0, 1, +, \cdot)$ ist ein **Ring** \iff (R, 0, +) ist eine Gruppe, $(R, 1, \cdot)$ ist ein Monoid und es gelten die Distributivgesetze.

$$R^{\times} = \{ r \in R \mid \exists s \in R : rs = sr = 1 \}$$

ist die Einheitengruppe von R

Beispiel. (Übung)
$$\mathbb{Z}_n^{\times} = \{ \overline{a} \mid \operatorname{ggT}(a, n) = 1 \}$$
, wobei $\mathbb{Z}_n = \mathbb{Z}/_{n\mathbb{Z}} = \mathbb{Z}/_{(n)}$

Definition 0.1 (Ringhomomorphismus). Seien R, R' Ringe, eine Abbildung $\varphi: R \to R'$ heißt Ringhomomorphismus wenn:

- $\varphi:(R,0,+)\to (R',0',+')$ ist ein Gruppenhomomorphismus.
- $\varphi: (R, 1, \cdot) \to (R', 1', \cdot')$ ist ein Monoidhomomorphismus.

 φ ist ein Ringisomorphismus $\iff \varphi$ ist bijektiver Ringhomomorphismus \iff Übung $\exists \varphi': R' \xrightarrow{\text{Ringhom.}} R$, sodass $\varphi \circ \varphi' = \text{id}_{R'}$ und $\varphi' \circ \varphi = \text{id}_R$. In diesem Fall schreibe $R \cong R'$ (R isomorph zu R').

Beispiel. R heißt Nullring \iff $0_R = 1_R \iff_{\text{Übung}} R = \{0_R\}$ (alle Nullringe sind isomorph.)

Beispiel. (Übung) Sei R beliebig $\implies \exists !$ Ringhomomorphismus $\varphi: \mathbb{Z} \to R$ nämlich

$$\varphi: \mathbb{Z} \to R, n \mapsto \varphi(n) = n \cdot 1_R$$

(wegen $\varphi(1) = 1_R$)

Definition 0.2 (Unterring). $S \subseteq R$ heißt Unterring, falls

- $1 \in S$
- $S S = \{s_1 s_2 \mid s_1, s_2 \in S\} \subset S$
- $S + S = \{s_1 + s_2 \mid s_1, s_2 \in S\} \subset S$

Definition (**Produkt von Ringen**). Seien R_1, R_2 Ringe, dann ist $(R_1 \times R_2, (0,0), (1,1), +, \cdot)$ ein Ring mit komponentenweiser Addition und Multiplikation.

$$+: (R_1 \times R_2)^2 \to R_1 \times R_2, (r_1, r_2) + (s_1, s_2) = (r_1 + s_1, r_2 + s_2)$$
$$\cdot: (R_1 \times R_2)^2 \to R_1 \times R_2, (r_1, r_2) \cdot (s_1, s_2) = (r_1 \cdot s_1, r_2 \cdot s_2)$$

Bemerkung (Übung).

- (a) Sei R ein kommutativer Ring, $S \subseteq R$ ein Unterring, dann ist S kommutativ.
- (b) Seien R_1, R_2 kommutative Ringe, so ist auch $R_1 \times R_2$ kommutativ.

Wiederholung. Seien I, X Mengen. Eine Folge/Familie in X über (Indexmenge) I, geschrieben $(x_i)_{i \in I}$ ist eine Abbildung $x : I \to X, i \mapsto x - I$. Schreibe X^I für die Menge aller Folgen in X über I (= Abb(I, X))

Beispiel 0.3 (Monoidring). Sei $R = (R, 0, 1, +, \cdot)$ ein kommutativer Ring und $M = (M, e, \circ)$ ein Monoid. Definiere

- (i) $R[M] := \{(a_m)_{m \in M} \in \mathbb{R}^M \mid (E) : \#\{m \in M : a_m \neq 0\} < \infty\}$
- (ii) $0 = \text{die Abbildung } M \to \{0\} \subseteq R$
- (iii) $\underline{1} = \text{die Folge } (\delta_{em})_{m \in M} \text{ mit } \delta_{em} = \begin{cases} 1, & m = e, \\ 0, & m \neq e. \end{cases}$
- (iv) Verknüpfungen $+, \cdot : R[M] \times R[M] \rightarrow R[M]$ durch:

$$(a_m)_{m \in M} + (b_m)_{m \in M} := (a_m + b_m)_{m \in M}$$

und

$$(a_m)_{m \in M} \cdot (b_m)_{m \in M} := (c_m)_{m \in M}$$

mit (Übung)

$$c_m := \sum_{\substack{(m',m'') \in M \times M \\ m' \cdot m'' = m}} a_{m'} \cdot b_{m''}$$

die Summe ist endlich wegen (E) und wegen (E) gilt: $\#\{m \mid c_{m\neq 0}\} < \infty$

Notation.

$$\sum_{m \in M} a_m \cdot m \text{ für } (a_m)_{m \in M} \in R[M]$$

Übung 0.4.

- (a) $(R[M], \underline{0}, \underline{1}, +, \cdot)$ ist ein Ring, (R[M] heißt **Monoidring** zu M über R)
- (b) Ist M abelsch, so ist R[M] kommutativ.
- (c) Ist $\varphi: R \to S$ ein Ringhomomorphismus und $\sigma: M \to (S,1,\cdot)$ ein Monoidhomomorphismus, so $\exists !$ Ringhomomorphismus $\psi: R[M] \to S$ mit $\psi|_R = \varphi$ und $\psi_M = \sigma$. (dabei wir identifizieren R mit $R \cdot e = R \cdot 1$ (1-Folge) und M mit $1_R \cdot M$), nämlich:

$$\psi \underbrace{\left(\sum a_m \cdot m\right)}_{\text{in } R[M]} = \underbrace{\sum \varphi(a_m) \cdot \sigma(m)}_{\text{in } S}$$

Konveniton. Ab nun seien alle Ringe R, R', S, R_i kommutativ, (und es Seien in §3 stets Ringe)

0.2 Polynomringe

Beispiel 0.5. Die folgenden Strukturen sind abelsche Monoide:

- (i) $(\mathbb{N}_0, 0, +) = \mathbb{N}_0$
- (ii) $(\mathbb{N}^n_0,(0,...,0),+)=\times_{i\in\{1,...,n\}}\mathbb{N}_0$ (Komponentenweise Addition)
- (iii) Für I eine beliebige Menge: $(\mathbb{N}_0^{(I)}, \underline{0}, \underline{+})$ mit

$$\mathbb{N}_0^{(I)} = \{(a_i)_{i \in I} \in \mathbb{N}_0 \text{ Folgen "uber } I \mid \#\{i \in I : a_i \neq 0\} < \infty\}$$

 $\underline{0} = 0$ -Folge und $\underline{+}$ komponentenweise Addition in $\mathbb{N}_0^{(I)}$.

Facts 0.6 (Übung).

- (i) $\mathbb{N}_0^n \cong \mathbb{N}_0^{(\{1,\dots,n\})}, (a_i)_{i \in \{1,\dots,n\}} \mapsto (a_i)_{i \in \{1,\dots,n\}}$
- (ii) Für $i \in I$ sei $e_i \in \mathbb{N}_0^{(I)}$ die Folge mit $e_i(j) = \begin{cases} 1, & j = i, \\ 0 & j \neq i. \end{cases}$

(betrachte $e_i: I \to \mathbb{N}_0$ als Abbildung) Damit ist jede Folge $\underline{a} = (a_i)_{i \in I} \in \mathbb{N}_0^{(I)}$ eindeutige Linearkombination mit Koeffizienten in \mathbb{N}_0 , nämlich:

$$\underline{a} = \sum_{i \in I} a_i \cdot e_i = \sum_{i \in I, a_i \neq 0} a_i \cdot e_i$$

Beachte: $\mathbb{N}_0^{(I)} \subseteq \mathbb{Q}^{(I)}$ (analog definiert, Folgen in \mathbb{Q} über I) mit Endlichkeitsbedingung (E). Und $(e_i)_{i\in I}$ ist eine Basis von $\mathbb{Q}^{(I)}$ als \mathbb{Q} -Vektorraum. Man sagt auch $\mathbb{N}_0^{(I)}$ ist freies abelsches Monoid über der Basis $(e_i)_{i\in I}$.

(iii) Ist M ein abelsches Monoid und $(m_i)_{i\in I}$ eine Folge in M, so $\exists !$ Monoid-homomorphismus

$$\varphi: \mathbb{N}_0^{(I)} \to M, \varphi(e_i) = m_i$$

Wiederholung. R[X] ist der Polynomring über R in Variablen X. Elemente sind $\sum_{n\geq 0} a_n X^n$, $(a_n \in R)$ nur endlich viele $a_n \neq 0$. $+, \cdot$ auf R[X] sind definiert durch

$$\sum a_i X^i + \sum b_i x^i = \sum (a_i + b_i) X^i$$
$$\left(\sum a_i X^i\right) \left(\sum b_i X^i\right) = \sum_i \left(\sum_{j=0}^i a_j b_{i-j}\right) X^i$$

Proposition 0.7. Die folgende Abbildung ist ein Ringisomorphismus.

$$\psi: R[\mathbb{N}_0] \to R[X], \sum_{i \in \mathbb{N}_0} r_i i \mapsto \sum_{i \in \mathbb{N}_0} r_i X^i$$

Beweis.

• ψ wohldefiniert und bijektiv:

$$R[\mathbb{N}_0] = \text{ Folgen } (r_i)_{i \in \mathbb{N}_0} \text{ mit } \#\{i \mid r_i \neq 0\} < \infty$$

$$R[X] = \text{ analog}$$

- Ringstruktur:
 - Addition (Übung)
 - Multiplikation

$$\underbrace{\left(\sum_{i \in \mathbb{N}_0} r_i \cdot i\right)}_{f \in R[\mathbb{N}_0]} \underbrace{\left(\sum_{j \in \mathbb{N}_0} s_j \cdot j\right)}_{\text{Nach Def.}} \underset{k \in \mathbb{N}_0}{=} \sum_{k \in \mathbb{N}_0} s_k \cdot k, \quad s_k$$

$$= \sum_{0 \le i, j, i+j=k} r_i s_j = \sum_{j=0}^k r_j s_{k-j}$$

$$\implies \psi(f \cdot g) = \psi\left(\sum_k s_k \cdot k\right) = \sum_k g_k X^k$$

$$= \sum_i a_i \cdot \sum_j b_j X^j = \psi(f) \psi(g).$$

Formal: $\{0,1,\cdots\} \to \{X^i \mid i \in \mathbb{N}_0\}.$

Proposition 0.8 (Universelle Eigenschaft von $K[X] \cong R[\mathbb{N}_0]$). $\forall \psi : R \to S$ Ringhomomorphismen und $\forall s \in S \exists !$ Ringhomomorphismus $\widehat{\psi} : R[X] \to S$ mit $\widehat{\psi}|_R = \psi$ und $\widehat{\psi}(X) = s$

1. Beweis. Definiere $\widehat{\psi}(\sum_{i\geq 0}r_iX^i):=\sum_{i\geq 0}\underbrace{\psi(r_i)}_{\in S}s^i$. Dann die Behauptung nachprüfen. \Box

2. Beweis. Facts 6(iii) \exists ! Monoidhomomorphismus $\sigma: \mathbb{N}_0 \to (S,1,\cdot)$ mit $\sigma(1) = s$ und Übung 4(c) (universelle Eigenschaft des Monoidrings) \exists ! Ringhomomorphismus $\widehat{\psi}: R[\mathbb{N}_0] \to S$ mit $\widehat{\psi}|_R = \psi$ und $\widehat{\psi}|_{\mathbb{N}_0} = 0$. Dieser erfüllt die Aussagen in Prop 8, denn $\widehat{\psi}(X) = \widehat{\psi}(1) = s$, X entspricht $1 \in \mathbb{N}_0$ (Unter Isomorphismus von Proposition 7). Für $n \geq 1$ Variable: $(n \in \mathbb{N})$

$$R[X_1, \dots, X_n] := (R[X_1, \dots, X_{n-1}])[X_n] = \dots = (\dots ((R[X_1])[X_2]) \dots)[X_n]$$

Satz 0.9. Sei $\varphi: \mathbb{N}_0^n \to (R[X_1, \dots X_n], 1, \cdot)$ der eindeutige Monoidhomomorphismus mit $\varphi(e_i) = X_i$, wobei $e_i = (\delta_{i,j})_j = (0, \dots, 1, \dots 0)$ für $i \in \{1, \dots, n\}$. Dann ist (nach 4(c) eindeutige) Ringhomomorphismus $\widehat{\psi}: R[\mathbb{N}_0^n] \to R[X_1, \dots, X_n]$ mit $\widehat{\psi}|_R = \mathrm{id}_R$ und $\widehat{\psi}|_{\mathbb{N}_0^n} = \varphi$ ein Ringisomorphismus.

Beweis. (Übung) Hierbei wird $m=(m_1,...,m_n)\in\mathbb{N}_0^n$ identifiziert (unter $\widehat{\psi}$) mit $X_1^{m_1}\cdot\ldots\cdot X_n^{m_n}$

Definition 0.10. Der Polynomring in den Variablen $(X_i)_{i \in I}$ (I beliebige Menge) ist definiert als

$$R[X_i \mid i \in I] := R[\mathbb{N}_0^{(I)}]$$

Elemente in diesem Ring sind

$$\sum_{a \in \mathbb{N}_0^{(I)}} r_a \cdot a$$

mit $r_a \in R$ und es gilt $\{a \in \mathbb{N}_0^{(I)} \mid r_a \neq 0\} \leq \infty$.

Notation. Andere Notation: Für $a \in \mathbb{N}_0^{(I)}$ schreibe für a

$$X^a$$
 oder $\prod_{i \in I, a_i \neq 0} X_i^{a_i}$

Insbesondere ist $X^{e_i} = X_i$, wobei e_i die Folge in $\mathbb{N}_0^{(I)}$ mit $e_i(j) = \delta_{i,j}$ ist. Monoidaddition a + b entspricht

$$X^a \cdot X^b = X^{a+b}$$

(bilden a+b in $(\mathbb{N}_0^{(I)},\underline{0},+)$ und $(a_i)_{i\in I}+(b_i)_{i\in I}=(a_i+_{\mathbb{N}_0}b_i)_{i\in I})$ Also + ist nicht die Addition im Ring.

Definition (Primitive Monomen). Die Elemete in $R[\mathbb{N}_0^{(I)}]$ sind Summen

$$\sum_{a \in \mathbb{N}_0^{(I)}} r_a \cdot X^a$$

(Polynome wie gewohnt.) Die Elemente $X^a, a \in \mathbb{N}_0^{(I)}$ heißen primitive Monome. Jedes Element in $R[X_i \mid i \in I]$ ist eine eindeutige Linearkombination in den Monomen $X^a, a \in \mathbb{N}_0^{(I)}$, mit Koeffizienten r_a aus R, sodass $\#a \in \mathbb{N}_0^{(I)} \mid r_a \neq 0 \leq \infty$, d.h. als R-Modul ist $R[X_i \mid i \in I]$ frei über R mit Basis $X^a, a \in \mathbb{N}_0^{(I)}$

Beispiel. $(2,5,3) \in \mathbb{N}_0^3$ entspricht $X_1^2 X_2^5 X_3^3$

Satz 0.11 (Universelle Eigenschaft von $R[X_i \mid i \in I]$). Zu Ringhomomorphismus $\psi: R \to S$ und einer Folge $(s_i)_{i \in I}$ aus S über $I \exists !$ Ringhomomorphismus $\widehat{\psi}: T[X_i \mid i \in I] \to S$ mit $\widehat{\psi}|_R = \psi$ und $\widehat{\psi}(X_i) = s_i$

Facts

(a) Für $J\subseteq I$ existiert eindeutiger Monoidhomomorphismus $\mathbb{N}_0^{(J)}\to\mathbb{N}_0^{(I)}$ mit $e_j\mapsto e_j$ und ein induzierter Ringhomomorphismus (für $j\in J$)

$$\widehat{\psi}: R[\mathbb{N}_0^{(J)}] = R[X_i \mid j \in J] \to R[\mathbb{N}_0^{(I)}] = R[X_i \mid i \in I]$$

mit $\widehat{\psi}|_R=\operatorname{id}_R$ und $\widehat{\psi}(X_j)=X_j$ $(j\in J)$. Die Abbildung $\widehat{\psi}$ ist injektiv deswegen betrachten wir $R[X_j\mid j\in J]$ als Unterring von $R[X_i\mid i\in I]$

(b) Es gilt:

$$R[X_i \mid i \in I] = \bigcup_{J \subseteq I \text{ endl.}} R[X_j \mid j \in J]$$

d.h. jedes Polynom im Ring ist Polynom in nur endlich vielen Variablen.

Definition 0.12.

(a) Grad : $R[X] \to \mathbb{N}_0 \cup \{-\infty\}$ ist die eindeutige Abbildung mit

$$\operatorname{Grad}(f) = \operatorname{Grad}\left(\sum_{i \ge 0} r_i X^i\right) = \begin{cases} -\infty, & f = 0, \\ \max\{i \in \mathbb{N}_0 \mid r_i \ne 0\}, & f \ne 0 \end{cases}$$

- (b) Der Leitkoeffizient von $f \neq 0$ ist $a_{\text{Grad}(f)}$.
- (c) $f \neq 0$ heißt normiert $\iff a_{\text{Grad}(f)} = 1$.
- (d) Ist R = K ein Körper, so gelten außerdem

$$Grad(fg) = Grad(f) + Grad(g)$$

wobei $-\infty + n = n + -\infty = -\infty + (-\infty) = -\infty$ für $n \in \mathbb{N}_0$. Genügt: R ist Integritätsbereich.

(e) Falls R ein Körper (oder Integritätsbereich), so gilt

$$(R[X])^{\times} = \{ f \in R[X] \mid \exists g \in R[X] : fg = 1 \}$$

$$= \{ f \in R[X] \mid \operatorname{Grad}(f) = 0, \exists g \in R[X] : \operatorname{Grad}g = 0 : fg = 1 \}$$

$$= \{ f \in R \mid \exists g \in R : fg = 1 \} = R^{\times}$$

0.3 Symmetrische Polynome

Sei R ein kommutativer Ring, $n \in \mathbb{N}$ fest.

Bezeichnung. (a) Ein Monom in $R[X_1,...,X_n]$ ist ein Polynom der Form $aX^m = aX_1^{m_1} \cdot ... \cdot X_n^{m_n}$ für $a \in R \setminus \{0\}$ und $m = (m_i)_{i \in \{1,...,n\}} \in \mathbb{N}_0^n$ und X^m (falls a = 1) heißt primitives Monom.

- (b) Der (Total-)Grad des Monoms aX^m für $a \in R \setminus \{0\}$ und $m = (m_i)$ ist $|m| := \sum_i m_i$. Der (Total-)Grad von $f = \sum a_m X^m$ ist $\operatorname{Grad}(f) = \max\{|m| : a_m \neq 0\}$. $(\max(\emptyset) := -\infty)$
- (c) $f \in R[X_1, ... X_n]$ heißt homogen vom Grad $t \iff f$ ist Summe von Monomen aX^m , die alle vom Grad |m| = t sind.

Beispiel. (a) $f = X_1^3 X_2^2 X_3$ ist primitiver Monom mit Grad(f) = 11

(b) $g = X_1^3 X_2^2 + X_1 X_2^4$ ist homogen vom Grad 5

Lemma 0.13. (a) $\forall \sigma \in S_n \exists !$ Ringhomomorphismus $\widetilde{\sigma} : R[X_1, \ldots, X_n] \rightarrow R[X_1, \ldots, X_n]$ mit $\widetilde{s}|_R = \operatorname{id}_R$ und $\widetilde{\sigma}(X_i) = X_{\sigma(i)}$ für $i \in \{1, \ldots, n\}$

- (b) $\widetilde{id} = id_{R[X_1,...,X_n]}$ (für $id \in S_n$ die Eins).
- (c) $\forall \sigma, \tau \in S_n : \widetilde{\sigma \circ \tau} = \widetilde{\sigma} \circ \tau$ Ringhomomorphismen.

Beweis. (a) $\tilde{\sigma}$ existiert und ist eindeutig nach universeller Eigenschaft (Satz 10) für $R[X_1, \dots X_n]$.

- (b) $\alpha := \operatorname{id}_{R[X_1, \dots, X_n]}$ ist ein Ringhomomorphismus $R[X_1, \dots, X_n] \to R[X_1, \dots, X_n]$ mit $\alpha|_R = \operatorname{id}_R$ und $\alpha(X_i) = X_i \stackrel{(a)}{\Longrightarrow} \alpha = \operatorname{id}_R$.
- (c) Wende universelle Eigenschaft von $R[X_1, \dots, X_n]$ an. Wir haben:

$$\widetilde{\sigma \circ \tau}|_R \underset{\text{Def. in (a)}}{=} \mathrm{id}_R = \mathrm{id}_R \circ \mathrm{id}_R = \widetilde{\sigma}|_R \circ \widetilde{\tau}|_R = \widetilde{\sigma} \circ \widetilde{\tau}|_R$$

und

$$\widetilde{\sigma \circ \tau}(X_i) = X_{\sigma \circ \tau(i)} = X_{\sigma(\tau(i))} = \widetilde{\sigma}(X_{\tau(i)}) = \widetilde{\sigma}(\widetilde{\tau}(X_i)) = (\widetilde{\sigma} \circ \widetilde{\tau})(X_i)$$

$$\stackrel{\text{Eindeutigkeit}}{\underset{\text{in (a)}}{\Longrightarrow}} \widetilde{\sigma \circ \tau} = \widetilde{\sigma} \circ \widetilde{\tau}.$$

Bemerkung (Übung). Ist $\alpha : R \to R$ ein Ringhomomorphismus, so ist $R^{\alpha} := \{r \in R \mid \alpha(r) = r\}$ ein Unterring von R.

Korollar 0.14.
$$R[X_1,\ldots,X_n]^{S_n}:=\{f\in R[X_1,\ldots,X_n]\mid \widetilde{\sigma}(f)=f, \forall \sigma\in S_n\}=\bigcap_{\sigma\in S_n}R[X_1,\ldots,X_n]^{\widetilde{\sigma}} \text{ ist ein Unterring von }R[X_1,\ldots,X_n].$$

Definition 0.15 (Symmetrische Polynom). Die Elemente in $R[X_1, \ldots, X_n]^{S_n}$ heißen symmetrische Polynome.

Korollar 0.16. Die Abbildung

$$\widetilde{\cdot}: S_n \to \operatorname{Aut}(R[X_1, \dots, X_n]), \sigma \mapsto \widetilde{\sigma}$$

ist wohl-definiert und ein injektiver Gruppenhomomorphismus.

Beweis.

1) $\widetilde{\cdot}$ wohl-definiert: Zu zeigen $\widetilde{\sigma}$ ist Automorphismus (bijektiver Ringhomomorphismus). Dazu beachte

$$\widetilde{\sigma} \circ \widetilde{\sigma^{-1}} = \widetilde{\sigma} \circ \widetilde{\sigma^{-1}} = \widetilde{\mathrm{id}} = \mathrm{id}_{R[X_1, \dots, X_n]} = \dots = \widetilde{\sigma^{-1}} \circ \widetilde{\sigma}$$

folglich: $\tilde{\sigma}$ ist Ringautomorphismus.

- 2) Gruppenhomomorphismus: folgt aus 12(c)
- 3) $\sigma \mapsto \widetilde{\sigma}$ injektiv: Denn verschiedene σ, τ wirken unterschiedlich auf $\{X_1, \dots, X_n\}$

Bemerkung (Ziel von diesem Abschnitt). Explizite Beschreibung von $R[X_1, \ldots, X_n]^{S_n}$

0.4 Elementar symmetrische Polynome

Proposition. $Zu \sigma \in S_n$ erweitern $\widetilde{\sigma}$ $zu \sigma'$ Ringautomorphismus von $R[X_1, \ldots, X_n][X]$ durch

$$\sigma'|_R = \mathrm{id}_R, \sigma'(X_i) = X_{\sigma(i)} \text{ und } \sigma'(X) := X$$

Behauptung: $g := \prod_{i=1}^{n} (X - X_i) \stackrel{!}{\in} R[X_1, \dots, X_n]^{S_n} = R[X_1, \dots, X_n]^{S_n}[X].$

Beweis. $\sigma'(g) = \prod_{i=1}^n (\sigma'(X) - \sigma'(X_i)) = \prod_{i=1}^n (X - X_{\sigma(i)}) = \prod_{i=1}^n (X - X_i) = g$ da $\widetilde{\sigma}$ eine Bijektion auf $\{X_1, ..., X_n\}$ definiert.

Bemerkung. Schreibe g als Polynom in X mit Koeffizienten s_i in

$$R[X_1,...,X_n] \implies g = \sum_{i=0}^n (-1)^{n-i} X^i s_{n-i}(X_1,...,X_n)$$

$$= X^{n} - s_{1}(X_{1},...,X_{n})X^{n-1}i + s_{2}(X_{1},...,X_{n})X^{n-2} \mp \cdots + (-1)^{n}s_{n}(X_{1},...,X_{n})$$

Das definiert $s_1, ..., s_n \in R[X_1, ..., X_n]^{S_n}$

Insbesondere:

- (i) $s_1, ..., s_n \in R[X_1, ..., X_n]^{S_n}$
- (ii) s_i ist homogen vom Grad i, denn g ist homogen vom Grad $n \implies \text{Koeffizient von } X^{n-i}$ in g ist homogen vom Grad i.

Übung 0.17. Es gelten:

$$s_1 = \sum_{i=1}^n X_i, \quad s_n \prod_{i=1}^n X_i$$
$$s_i(X_1, ..., X_n) = \sum_{1 \le j_1 < j_2 < \dots < j_i \le n} X_{j_1} X_{j_2} \cdots X_{j_i}$$

$$(n = 3, i = 2 \leadsto s_2 = X_1 X_2 + X_1 X_3 + X_2 X_3)$$

Definition 0.18. Die Polynome $s_1, ..., s_n \in R[X_1, ..., X_n]^{S_n}$ sind die elementar symmetrischen Polynome in $X_1, ..., X_n$ (homogen vom Grad 1, 2, ..., n) ($s_i = i$ -tes elementar symmetrisches Polynom)

Satz 0.19. Sei $\psi: R[Y_1, \dots, Y_n] \to R[X_1, \dots, X_n]$ der Ringhomomorphismus

$$h(Y_1, ..., Y_n) \mapsto h(s_1, ..., s_n)$$

Dann gilt

- (a) ψ ist Ringhomomorphismus mit $\psi|_R = \mathrm{id}_R$ und $\psi(Y_i) = s_i$ und $\mathrm{Kern}(\psi) \subseteq R[X_1, ..., X_n]^{S_n}$
- (b) ψ definiert einen Ringisomorphismus

$$R[Y_1,\ldots,Y_n]\to R[X_1,\ldots,X_n]^{S_n}$$

Beispiel. $n = 4, f = X_1^2 + X_2^2 + X_3^2 + X_4^2$

$$\underbrace{(X_1 + \dots + X_4)^2 - 2(X_1 X_2 + X_1 X_3 + X_2 X_3 + X_1 X_4 + X_2 X_4 + X_3 X_4)}_{s_1}$$

$$= s_1^2 - 2s^2 = h(s_1, s_2), h = Y_1^2 - 2Y_2$$

Wiederholung.

(a) $R[X_1, \ldots, X_n] \subseteq R[X_1, \ldots, X_n]^{S_n}$ symmetrische Polynome.

(b) Elementar symmetrische Polynome $s_1, \ldots, s_n \in K[X_1, \ldots, X_n]^{S_n}$ mit

$$s_i(X_1, \dots, X_n) = \sum_{1 \le j_1 < \dots < j_i \le n} \prod_{1 \le k \le i} X_{j_k} = \sum_{1 \le j_1 < \dots < j_i \le n} X_{j_1} \cdot \dots \cdot X_{j_i}$$

Beweis. (zu Satz 3.19)

Teil (a) Klar

$$\operatorname{Kern}(\psi) = \left\{ \sum_{m \in \mathbb{N}_0} \underbrace{a_m}_{\in R} \cdot \underbrace{s_1^{m_1} \cdot \ldots \cdot s_n^{m_n}}_{\text{symm. Pol.}} \right\}$$

Teil (b) benötigt Vorbereitungen.

Bemerkung. Sei R = K ein Körper, $\alpha_1, \ldots, \alpha_n$ die Nullstellen von $f = X^n - \alpha_1 X^{n-1} + a_2 X^{n-2} \mp \cdots + (-1)^n a_n \in K[X]$, dann gilt $\alpha_i = s_i(\alpha_1, \ldots, \alpha_n)$, denn: $f = (X - \alpha_1) \cdot \ldots \cdot (X - \alpha_n)$. (hatten s_i erhalten als die Koeffizienten von $(-1)^i X^{n-i}$ in $(X - X_1) \cdot \ldots \cdot (X - X_n)$)

Definition 0.20 (Lex-Ordnung).

(a) Definiere auf \mathbb{N}_0^n die Relation \leq durch $\ell = (\ell_1, \dots, \ell_n) \leq m = (m_1, \dots, m_n)$: $\iff \ell = m \text{ oder } \exists i \in \{1, \dots, n\} \text{ mit } \ell_1 = m_1, \dots \ell_{i-1} = m_{i-1}, \ell_i < m_i.$ Dies definiert eine Totalordnung auf \mathbb{N}_0^n , die lexikographische Ordnung. Schreibe $\ell < m$ für $\ell \leq m$ und $\ell \neq m$. Für primitive Monome schreibe

$$X^{\ell} \leq X^{m} \iff \ell \leq m$$

(b) Der leitgrad von $f = \sum_{m \in \mathbb{N}_0^n} a_m X^m$ ist $\operatorname{in}(f) := \max\{m \in \mathbb{N}_0^n \mid a_m \neq 0\} \in \mathbb{N}_0^n \cup \{-\infty\}$ (mit der Konvention $\operatorname{in}(0) = -\infty$) der Leitkoeffizient von $f \neq 0$ ist $a_{\operatorname{in}(f)}$.

Beispiel. in
$$\underbrace{(X_1^3X_2^2 + X_1^4X_3)}_{\in R[X_1, X_2, X_3]} = (4, 0, 1) \in \mathbb{N}_0^3$$

Proposition 0.21. Seien $f = \sum_{\ell \in \mathbb{N}_0^n} a_\ell X^\ell$, $g = \sum_{m \in \mathbb{N}_0^n} b_m X^m$, $\ell_0 = \operatorname{in}(f)$, $m_0 = \operatorname{in}(g)$. Dann:

(a) Für $m, \ell, m', \ell' \in \mathbb{N}_0^n$ gilt

$$m \ge \ell, m' \ge \ell' \implies m + m' \ge \ell + \ell'$$

(gilt dabei $m \neq \ell$ oder $m' \neq \ell'$, so folgt $m + m' > \ell + \ell'$)

- (b) $\operatorname{in}(f \cdot g) \leq \ell_0 + m_0$ und es gilt $\operatorname{in}(f \cdot g) = \ell_0 + m_0$ falls die Leitkoeffizierten $a_{\ell_0} \cdot b_{m_0} \neq 0$.
- (c) $\operatorname{in}(f \cdot g) \leq \operatorname{max} \operatorname{in}(f), \operatorname{in}(g)$ und es gilt Gleichheit falls $\operatorname{in}(f) \neq \operatorname{in}(g)$.

(d)
$$\operatorname{in}(s_i) = (\underbrace{1, \dots, 1}_{i \ Terme} \underbrace{0, \dots, 0}_{n-i \ Terme}) =: \xi_i \in \mathbb{N}_0^n \ f\ddot{u}r \ i \in \{1, \dots, n\}.$$

(e) ξ_1, \ldots, ξ_n sind linear unabhängig als Elemente von \mathbb{Q}^n , und also ist φ_i : $\mathbb{N}_0^n \to \mathbb{N}_0^n, (a_i) \mapsto \sum a_i \xi_i$ injektiv und φ^{-1} ist durch die Formel (für Elemente im Bild)

$$(b_i) \mapsto (b_1 - b_2, b_2 - b_3, \dots, b_{n-1} - b_n, b_n)$$

- Beweis. (a) (Übung) Es genügt zu zeigen $m \ge \ell \implies m + m' \ge \ell + m'$ (mit $> \implies >$) genügt mit Induktion zu zeigen: $m \ge \ell \implies m + e_j \ge \ell + e_j$, $(e_j = (0, \ldots, 0, 1, 0, \ldots 0))$
- (b) $f \cdot g = (\sum a_{\ell} X^{\ell})(\sum b_m X^m) = \sum_{\ell,m} a_{\ell} b_m X^{\ell+m}$ falls $a_{\ell} b_m \neq 0$ (nur solche Terme tragen zu $f \cdot g$ bei), so folgt $\ell \leq \ell_0$ und $m \leq m_0, \, \ell_0, m_0$ die Leitkoeffizienten. $\Longrightarrow_{(a)} \ell + m \geq \ell_0 + m_0 \Longrightarrow \operatorname{in}(f \cdot g) \leq \ell_0 + m_0$.

Außerdem: (Koeffizient von $X^{\ell_0+m_0}=?$) gilt $\ell+m=\ell_0=m_0$, so muss wegen (a) $\ell=\ell_0$ und $m=m_0$ gelten, falls $a_\ell\neq 0$ und $b_m\neq 0\Longrightarrow$ Koeffizient von $X^{\ell_0+m_0}$ ist $a_{\ell_0}\cdot b_{m_0}$. Also in $(fg)=m_0+\ell_0$, falls $a_{\ell_0}b_{m_0}\neq 0$.

(c) $f + g = \sum_m (a_m + b_m) X^m$: Im Fall $a_m + b_m \neq 0$, so folgt $a_m \neq 0$ oder $b_m \neq 0 \implies m \leq \ell_0$ oder $m \leq m_0 \implies m \leq \max\{\ell_0, m_0\}$.

Für Zusatz: Gelte o.E. $\ell_0 < m_0$, dann ist der Koeffizient von X^{m_0} gleich $a_{m_0} + b_{m_0} \neq 0$, wobei $a_{m_0} = 0$ wegen $m_0 \geq \operatorname{in}(f)$, und $b_{m_0} \neq 0$, da $m_0 = \operatorname{in}(f)$. Also folgt $\operatorname{in}(f+g) = \max\{\ell_0, m_0\}$.

- (d) $s_i = \sum_{i \leq j_1 < j_2 < \dots < j_i \leq n} X_{j_1} \cdot \dots \cdot X_{j_i}$ größtes Monom (mit Koeffizient $\neq 0$) in der Summe ist $X_1 \cdot \dots \cdot X_i \implies \operatorname{in}(s_i) = (1, \dots, 1, 0, \dots 0) = (\delta_{j \leq i})_{1 \leq j \leq n}$.
- (e) (Übung) zur linearen Algebra, φ hat Darstellungsmatrix

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 \end{pmatrix}$$

und φ^{-1}

$$\begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \\ & & & & 1 \end{pmatrix} : \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_{n-1} \\ t_n \end{pmatrix} \mapsto \begin{pmatrix} t_1 - t_2 \\ t_2 - t_3 \\ \vdots \\ t_{n-1} - t_n \\ t_n \end{pmatrix}. \qquad \Box$$

Beweis von Satz 3.19.

Definition 0.22. Die Diskriminante von $f(X) = X^n - a_1 X^{n-1} + a_2 X^{n-2} \mp \cdots + (-1)^n a_n \in R[T]$ ist $D(f) := d_n(a_1, \ldots, a_n)$ Polynom in n-Variablen über R.

Bedeutung. Sei R ein Körper und seien $\alpha_1, \ldots \alpha_n$ die Nullstellen von f, so dass $\alpha_i = s_i(\alpha_1, \ldots, \alpha_n)$, dann folgt:

$$D(f) = d_n(s_1(\alpha_1, \dots, \alpha_n), \dots, s_n(\alpha_1, \dots, \alpha_n))$$

$$= D_n(\alpha_1, \dots, \alpha_n) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

d.h. D(f) erkennt ob merhfache Nullstelle vorliegt. Jedes symmetrische Polynom in den Nullstellen von f lässt sich schreiben als ein Polynom in den Koeffizienten von f.

Wiederholung 0.23. Sei R ein kommutativer Ring (im Weiteren), $I \subseteq R$ ist ein Ideal von R, falls $RI \subseteq I, I+I \subseteq I$.

Notation. Für $a \in R$ sei (a) = Ra das Hauptideal in R, Erzeuger a. Für $a_1, \ldots, a_n \in R$ sei $(a_1, \ldots, a_n) = Ra_1 + Ra_2 + \ldots + Ra_n \subseteq R$ Ideal.

Bemerkung (Übung). Für $I \subseteq R$ ein Ideal: $1 \in I \iff I = R$, für $S \subseteq R$ Unterring: $S = R \iff RS \subseteq S$.

Proposition 0.24. Sei $\varphi: R \to R'$ ein Ringhomomorphismus, dann gelten:

- (i) Ist $I' \subseteq R'$ ein Ideal, so ist $\varphi^{-1}(I') \subseteq R$ ein Ideal.
- (ii) Kern $\varphi = \varphi^{-1}(\{0\}) \subseteq R$ ist ein Ideal.
- (iii) $\operatorname{Kern}(\varphi) = \{ \varphi(r) \mid r \in R \} \subseteq R' \text{ ist ein Unterring.}$
- (iv) Ist φ surjektiv und $I \subseteq R$ ein Ideal, so ist $\varphi(I) \subseteq R'$ ein Ideal.

Beweis. nur (iv)

(iv)
$$\varphi(I) + \varphi(I) = \{ \underbrace{\varphi(a) + \varphi(b)}_{\varphi(a+b)} \mid a, b \in I \} = \varphi(I+I) \subseteq_{I+I \subseteq I} \varphi(I)$$

(benötigt nicht, dass φ surjektiv)

$$R' \cdot \varphi(I) \underset{\varphi \text{ surj.}}{=} \varphi(R) \varphi(I) = \{ \varphi(r) \varphi(a) \mid r \in R, a \in I \} = \varphi(RI) \underset{R \overrightarrow{I} \subset I}{\subseteq} \varphi(I)$$

Also
$$\varphi(I) \subseteq R'$$
 ist ein Ideal.

Definition 0.25 (Charakteristik). Die Charakteristik von R ist

$$\operatorname{char}(R) := \begin{cases} 0, & n \cdot 1_R \neq 0_R, \forall n \in N \\ \min\{n \in \mathbb{N} \mid n \cdot 1_R = 0_R\}, & \exists n \in \mathbb{N} : n \cdot 1_R = 0_R \end{cases}$$

Beispiel.

$$\operatorname{char}(\mathbb{Z}) = 0, \operatorname{char}(\mathbb{Z}/_{nZ}) = n, n \in \mathbb{N}$$

Bemerkung (Übung). (a) Sei ord (1_R) die Ordnung von 1_R in $(R, 0_R, +)$, dann

$$\operatorname{char}(R) = \begin{cases} \operatorname{ord}(1_R), & \operatorname{ord}(1_R) \neq \infty \\ 0, & \operatorname{ord}(1_R) = \infty \end{cases}$$

(b) Sei $\varphi: \mathbb{Z} \to R$ der eindeutige Ringhomomorphismus

$$\varphi(1_{\mathbb{Z}}) := 1_R \implies \varphi(n_{\mathbb{Z}}) = n \cdot 1_R, \forall n \in \mathbb{Z}$$

Dann gilt: $\operatorname{char}(R)$ ist der (eindeutige) Erzeuger in \mathbb{N} von $\operatorname{Kern}(\varphi) \subseteq \mathbb{Z}$ (ein Ideal) ("Grund für die Definition von $\operatorname{char}(R)$ ")

Proposition 0.26. Ist K ein Körper, so ist char K Null oder eine Primzahl.

Beweis. Annahme: char $K \in \mathbb{N}$ und ist keine Primzahl $\implies \exists n, m \in \mathbb{N}$ mit n > 1, m > 1, sodass char $K = n \cdot m > \max\{n, m\}$

Definition der Charakteristik gibt:

$$n \cdot m \cdot 1_K = 0_K \implies \underbrace{n \cdot 1_K}_{\neq 0 \ (*)} \cdot \underbrace{m \cdot 1_K}_{\neq 0 \ (*)} = 0$$

(*) da $n,m < n \cdot m = \operatorname{char} K$. Da K ein Körper $\implies K$ ist nullteilerfrei $\implies n \cdot 1_K = 0$ oder $m \cdot 1_K = 0$. Widerspruch zu (*).

Beispiel (Übung). Sei R ein Ring mit char(R) = p eine Primzahl, dann gelten:

- (a) $\varphi_R = R \to R, a \mapsto a^p$ ist ein Ringhomomorphismus.
- (b) Es gilt $\varphi_{\mathbb{F}_p} = \mathrm{id}_{\mathbb{F}_p}$, wobei $\mathbb{F}_p = \mathbb{Z}_{p\mathbb{Z}}$, d.h. $\forall a \in \mathbb{F}_p$ gilt $a^p = a$.

Wiederholung. Für $I \subseteq R$ ein Ideal, hatten Faktorring R_I und Faktorabbildung $\pi: R \to R_I$, $r \mapsto r + I$ (vgl. Satz 1.49)

Satz 0.27 (Homomorphiesatz für Ringe). Sei $\varphi : R \to R'$ ein Ringhomomorphismus und $I \subseteq \text{Kern}(\varphi)$ ein Ideal von R, dann:

(a) $\exists !$ Ringhomomorphismus $\overline{\varphi}: R_{/I} \to R'$ mit $\overline{\varphi}(r+I) = \varphi(r)$, d.h. folgendes Diagramm kommutiert:

(b) Ist $I = \text{Kern}(\varphi)$, so definiert $\overline{\varphi}$ aus (a) einen Ringisomorphismus

$$R_{\text{Kern}(\varphi)} \to \text{Kern}(\varphi) \subseteq R', r + \text{Kern}(\varphi) \mapsto \varphi(r)$$

Beweis. (Übung) analog zum Beweis vom Homomorphiesatz für Gruppen (Satz 1.45).

Satz 0.28 (Isomorphiesatz für Ringe). $Sei\ \varphi: R \to R'$ ein surjektiver Ringhomomorphismus $\left(R' \cong R_{\operatorname{Kern}(\varphi)}\right)$, seien $X = \{I \subseteq R \ Ideal \mid \operatorname{Kern}(\varphi) \subseteq I\}, X' = \{I' \subseteq R' \mid I' \ Ideal \}$. Dann gelten:

- (a) Die Abbildung $X' \to X, I' \to \varphi^{-1}(I')$ ist eine Bijektion mit Umkehrabbildung $X \to X', I \mapsto \varphi(I)$.
- (b) Für $I \subseteq R'$ einIdeal und $I = \varphi^{-1}(I')$ ist die Abbildung

$$R_{/I} \rightarrow R'_{/I'}, r + I \mapsto \varphi(r) + I'$$

ein Ringisomorphismus.

Beweis. (Übung) analog zum Beweis vom 2. Isomorphiesatz für Gruppen (Satz 1.51). $\hfill\Box$

Notation. Für $I,J\subseteq R$ sei $I\cdot J=\{\sum_i a_ib_i\mid a_i\in I,b_i\in J\}$, d.h. (Übung) $I\cdot J$ ist das kleinste Ideal in R, das $\{a\cdot b\mid a\in I,b\in J\}$ enthält.

Satz 0.29 (Chinesischer Restsatz). Seien $I_1, \ldots, I_t \subseteq R$ Ideale, die "paarweise Koprim" sind, d.h. $I_i + I_j = R$ für $i \neq j \in \{1, \ldots, t\}$. Dann gelten:

- (a) I_i und $\prod_{j\neq i\in\{1,...,t\}} I_j$ sind Koprim.
- (b) $I_1 \cdot \ldots \cdot I_t = \bigcap_{i \in \{1,\ldots,t\}} I_i$.
- (c) Die Abbildung

$$R_{\prod_{i \in \{1, \dots, t\}} I_i} = R_{I_1} \cdot \dots \cdot I_t \xrightarrow{\cong} \underset{i \in \{1, \dots, t\}}{\times} R_{I_i} = R_{I_1} \times \dots \times R_{I_t}$$

$$r + I_1 \cdot \dots I_t \mapsto (r + I_1, \dots r + I_t)$$

ist wohl-definiert und ein Ringisomorphismus. Also gilt

$$R_{/\prod_{i\in\{1,\dots,t\}}I_i}\cong \underset{i\in\{1,\dots,t\}}{\textstyle \times}R_{/I_i}$$

Beweis. In der LA2 für Rein Hauptidealring, allgemein: siehe Jantzen-Schwermer, Satz III.3.10 $\hfill\Box$

0.5 Ringe von Brüchen/Lokalisierung

Definition 0.30. Eine Teilmenge $S \subseteq R$ heißt multiplikativ abgeschlossen \iff S ist ein Untermonoid von $(R, 1, \cdot)$.

Beispiel. (i) $S = \mathbb{Z} \setminus \{0\} \subseteq \mathbb{Z}$ ist multiplikativ abgeschlossen.

- (ii) $S^p = \mathbb{Z} \setminus p\mathbb{Z} \subseteq \mathbb{Z}$ ist multiplikativ abgeschlossen.
- (iii) $S_p=\{p^n\mid n\in\mathbb{N}_0\}\subseteq\mathbb{Z}$ ist multiplikativ abgeschlossen. Es gilt $S=S^P\cdot S_p$

Definition 0.31. Definiere eine Äquivalenzrelation auf $R \times S$ ($S \subseteq R$ multiplikativ abgeschlossen) durch

$$(r,s) \sim (r',s') : \iff \exists t \in S : t(rs'-r's)$$

Denn:

 \sim reflexiv: $(r,s) \sim r, s$, da $1 \cdot (rs - rs) = 0$.

~ symmetrisch: Gelte $(r,s) \sim (r',s')$, d.h. $\exists t \in S : t(rs'-r's) = 0 \implies t(r's-rs') = 0 \implies (r',s') \sim (r,s)$.

 \sim transitiv: Gelte $(r,s)\sim(r',s')$ und $(r',s')\sim(r'',s''),$ d.h. $\exists t,t'\in S:t(rs'-r's)=0$ und t'(r's''-r''s')=0. Gemeinsamer Nenner tt'ss's''

$$\implies tt's''(rs'-r's) = 0, tt's(r's''-r''s) = 0$$

$$\implies tt's''rs' - tt'sr''s' = 0 = tt's'(rs'' - r''s) \implies (r,s) \sim (r'',s'')$$

Schreibe: $\frac{r}{s}$ für die Äquivalenzklasse von (r,s) und $S^{-1}R$ für $R\times S/\!\!\!\sim.$

Beachte: $\frac{r}{s} = \frac{r'}{s'} \iff \exists t \in S : \frac{ts'r}{tss'} = \frac{tsr'}{tss'}$ gilt ts'r = tsr', beachte zudem $\frac{r}{s} = \frac{tr}{ts}$, für $t \in S$.

Satz 0.32. Sei $S \subseteq R$ multiplikativ abgeschlossen, dann:

(a) Die Verknüpfungen +, · auf $S^{-1}R$ definiert durch

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}, \quad \frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$$

sind wohl-definiert.

- (b) $S^{-1}R = (S^{-1}R, \frac{0}{1}, \frac{1}{1}, +, \cdot)$ ist ein kommutativer Ring.
- (c) Die Lokalisierung von R an S

$$\varphi: R \to S^{-1}R, r \mapsto \frac{r}{1}$$

ist ein Ringhomomorphismus. (Klar aus dem Definition $von + und \cdot$)

(d) (Universelle Eigenschaft) Ist $\psi: R \to R'$ ein Ringhomomorphismus, sodass $\psi(S) \leq (R')^{\times}$, so existiert ein eindeutiger Ringhomomorphismus $\widehat{\psi}: S^{-1}R \to R'$ mit $\widehat{\psi}|_{R} = \psi$, nämlich $\widehat{\psi}(\frac{r}{s}) = \psi(r) \cdot \psi(s)^{-1}$.

Beispiel. $(\mathbb{Z} \setminus \{0\})^{-1}\mathbb{Z} = \mathbb{Q}, \mathbb{Z}^{-1}\mathbb{Z} = 0$ -Ring.

Beweis.

(a) + und · sind wohldefiniert: Gelte $\frac{r}{s} = \frac{a}{b}$ und $\frac{r'}{s'} = \frac{a'}{b'}$ mit $r, r', a, a' \in R, s, s', b, b' \in S$, zu zeigen ist:

$$\frac{rs' + r's}{ss'} = \frac{ab' + a'b}{bb'}$$

Voraussetzung: $\exists t, t' \in S : t(rb - as) = 0, t'(r'b' - a's') = 0$. Gemeinsamer Nenner: ss'bb'tt', also

$$tt'b's'(rb-as) = 0, \quad tt'sb(r's'-a's) = 0$$

$$\implies tt'b's'rb - tt'b's'as + tt'sbr'b' - tt'sba's' = 0$$

$$= tt'b'b(rs' + r's) - tt'ss'(ab' - a'b) \implies \frac{rs' + r's}{ss'} = \frac{ab' + a'b}{bb'}$$

(b) - (d) Siehe Jantzen Schwermer III.4.2 oder Übung.

Definition 0.33 (Nullteiler). (a) $x \in R$ heißt Nullteiler $\iff \exists y \in R \setminus \{0\}$ mit xy = 0

(b) R heißt Integritätsbereich (IB) \iff $0_R \neq 1_R$ und 0_R ist der einzige Nullteiler.

Bemerkung 0.34. R ist Itdentitätsbereich \iff man darf in R kürzen und $0_R \neq 1_R$

$$\underset{\ddot{\mathbf{U}}\mathbf{bung}}{\Longleftrightarrow} \forall a,b,c \in R: a \neq 0: a \cdot b = a \cdot c \implies b = c$$

Denn $ab = ac \iff a(b-c) = 0$

Beispiel. (i) Jeder Körper ist ein Integritätsbereich.

- (ii) $\mathbb{Z}, K[X]$ sind Integritätsbereich.
- (iii) Jeder Unterring eines Körpers ist ein Integritätsbereich.
- (iv) Jeder Unterring eines Integritätsbereichs ist ein Integritätsbereich.

Lemma 0.35. Sei $S \subseteq R$ multiplikativ abgeschlossen, dann gilt: enthält S keine Nullteiler, so ist

$$\varphi:R\hookrightarrow S^{-1}R,r\mapsto \frac{r}{1}$$

injektiv.

Beweis. Für $r \in R: \varphi(r) = 0 \iff \frac{r}{1} = \frac{0}{1} \iff \exists t \in S: t(r \cdot 1 - 0 \cdot 1) = 0 = tr$, da S nullteilerfrei $\iff r = 0$.

Korollar 0.36. Sei R ein Integritätsbereich, dann:

- (a) $S = R \setminus \{0\}$ multiplikativ abgeschlossen.
- (b) $S^{-1}R$ ist ein Körper.
- (c) $R \to S^{-1}R$ ist injektiv (also ist R Unterring des Körpers $S^{-1}R$)

Beweis. (a) Klar, $a, b \neq 0 \implies a \cdot b \neq 0$ (a, b keine Nullteiler)

- (b) Sei $\frac{r}{s} \in S^{-1}R \setminus \{\frac{0}{1}\}$, Behauptung: $r \neq 0$ (also $r \in S$) $\Longrightarrow \frac{s}{r}$ ist Inverses von $\frac{r}{s}$ Beweis der Behauptung: Angenommen $r = 0 \Longrightarrow \frac{0}{s} \neq \frac{0}{1}$, Widerspruch, da $\frac{0}{1} = \frac{0}{1}$ (1 · (0 · 1 0 · s) = 0)
- (c) Folgt aus Lemma 3.35.

Definition 0.37 (Quotientenkörper). $S^{-1}R = \text{Quot}(R)$ heißt Quotientenkörper von R.

Bemerkung. Jeder Integritätsbereich ist Unterring eines Körpers (seinem Quotientenkörpers).