NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 7

1. Let

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -1 \\ 1 \\ 3 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 4 \\ 5 \\ -6 \\ -1 \end{pmatrix}.$$

- (a) Show that $\{u_1, u_2\}$ is a linearly independent set. Is $\{u_1, u_2\}$ a basis for span $\{u_1, u_2\}$? What is the dimension of span $\{u_1, u_2\}$? Write down a basis for span $\{u_1, u_2\}$.
- (b) Show that $\{u_1, u_2, u_3\}$ is a linearly dependent set. What is the dimension of span $\{u_1, u_2, u_3\}$? Write down a basis for span $\{u_1, u_2, u_3\}$.
- (c) Find a vector u_4 such that the dimension of span $\{u_1, u_2, u_4\}$ is 3.
- (d) Find a basis for \mathbb{R}^4 that contains u_1 and u_2 .
- 2. Let V and W be subspaces of \mathbb{R}^n . Suppose S_1 and S_2 are two sets such that $\operatorname{span}(S_1) = V$ and $\operatorname{span}(S_2) = W$. Define the set V + W as

$$V+W=\{\boldsymbol{v}+\boldsymbol{w}\mid\boldsymbol{v}\in V,\boldsymbol{w}\in W\}.$$

- (a) Show that $S_1 \cup S_2$ spans V + W, that is, $V + W = \text{span}(S_1 \cup S_2)$. This would establish the result that V + W is always a subspace.
- (b) For each of the following,
 - (i) Find S_1 and S_2 that spans V and W respectively. Check if S_1 and S_2 are bases for V and W respectively. What is the dimension of V and W?
 - (ii) Write V + W as a linear span. Find a basis for V + W and state its dimension.
 - (iii) Is $V \cap W$ a subspace of \mathbb{R}^n ? Explain your answer. If $V \cap W$ is a subspace, find a basis for $V \cap W$ and state its dimension.
 - (1) $V = \{(s,0) \mid s \in \mathbb{R}\}, W = \{(0,t) \mid t \in \mathbb{R}\}.$
 - (2) $V = \{(x, y, z) \mid 2x y + 3z = 0\}, W = \{(a, a, a) \mid a \in \mathbb{R}\}.$
 - (3) $V = \{(a, b, c, d) \mid a 2b + c d = 0 \text{ and } 2a + c + 2d = 0\},\ W = \{(r, 2r, r, -r) \mid r \in \mathbb{R}\}.$
- 3. For each of the following cases, write down a matrix \boldsymbol{A} with the required property or explain why no such matrix exists.

1

- (a) The column space of \boldsymbol{A} contains vectors $(1,0,0)^T$, $(0,0,1)^T$ and the row space of \boldsymbol{A} contains vectors (1,1), (1,2).
- (b) The column space $= \mathbb{R}^4$ and the row space $= \mathbb{R}^3$.
- (c) The column space of $2\mathbf{A}$ = the row space of $-\mathbf{A} = \text{span}\{(1,2,3)\}$.
- (d) \boldsymbol{A} is a square matrix of order 2 where the column space of \boldsymbol{A} is the solution space of the homogeneous linear system $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$.
- 4. In \mathbb{R}^4 , let X be the subspace of all vectors of the form $(x_1, x_2, 0, 0)$ and let Y be the subspace of all vectors of the form $(0, y_1, y_2, 0)$. What are the dimensions of X, Y, $X \cap Y$, X + Y? Find a basis for each of these four subspaces.
- 5. Is it possible to find two subspaces V and W of \mathbb{R}^3 such that $V \cap W = \{0\}$ (meaning that these two subspaces have only the zero vector in common)? Explain your answer.