DIGITÁLIS MÉRÉSTECHNIKA

Fénysebesség mérése jegyzőkönyv

Mérést végezte: Koroknai Botond (AT5M0G) Mérés időpontja: 2023.11.9

Jegyzőkönyv leadásának időpontja: 2023.11.17

1. Ismerkedés a mérési elrendezéssel

1. kép. Az oszcilloszkóp képe a legtávolabbi tükörröl vissazvert jel esetén

Az ábrán az első csatornán (sárga) jelenik meg a led mögé kötött 5 Ω -os ellenálláson keletkezett jel. Míg a másodikon (kék) a fotodetektor által érzékelt, egy térvezérelt tranzisztorral erősített jele. Mint, ahogy az ábrán is látható a visszaérkező jelet erősen fel kell skálázni, hogy láthassuk.

2. Fénysebesség mérése

2.1. Adatgyűjtés

A fényt tükrök segítségével végig vezettem különböző úthoszakon és oszcilloszkópon mértem a visszaérkező jel késését (a kimenő és visszaérkező jel felfutása közti időt).

mérési pont	fényút (m)	időkülönbség (ns)
1	0.98	33.75
2	22.53	99
3	28.626	122.2
4	34.722	147
5	52.113	213

A távolság mérést úgy végeztem, hogy lemértem a padlón található 3 kocka hosszát és vettem az átlagukat, míg a hibájuk így a három mérés szórása lesz. A tükör és fényforrás, valamint tükör és detektor közti távolságot mérőszalaggal mértem le, mely 0.5 mm-es hibával rendelekzik.

Csempe hossza

mérés sorszáma	Csempe hossza [cm]
1	61
2	60.7
3	61.2

Az átlagos csempehoszz, így: 60.97 ± 0.21 cm volt. A fényforrás és tükör közti táv: 109 ± 0.005 cm, és a tükör és detektor közti táv: 103 ± 0.005 cm

2.2. Ábrázolás és a fénysebesség meghatározása

2. kép. Fénysebesség meghatározása

A illesztett modell: $t=T_0+\frac{1}{c}\cdot x$ volt, ahol T_0 az elektronika késleltetése, x a teljes fényút és c a fénysebesség. Az illesztett értékek:

	$\frac{1}{c} \left[\frac{ns}{m} \right]$	$\mid T_0 \text{ [ns]} \mid$
érték	3.51	25.31
hiba	0.15	4.76

Mivel $c=\frac{1}{\frac{1}{c}}$, ezért a hibaterjedés alapján c hibáját: $\Delta c=c\cdot\left(\frac{\Delta\frac{1}{c}}{\frac{1}{c}}\right)$ képlettel határoztam meg. Ez alapján a fénysebesség: $c\approx0.2849\,\frac{m}{ns}\approx2.849\pm0.118\cdot10^8\,\frac{m}{s}$. Az eredményünk nagyságrendileg stimmel, körülbelül 5%-al tér el a fénysebesség irodalmi értékétől. Az elektronika becsült késleltetése 25.31 ± 4.76 ns.

3. Az üvegszál vizsgálata

3. kép. Üvegszál vizsgálata

Mint az ábrán is látszik, elég zajos és gyenge jel érkezett vissza az üvegszál túloldalán. Mindenesetre a mért késleltetés 146.1 ns volt a kábel két végpontja között.

Az anyag törésmutatóját az alábbi képlet segítségével tippelhetjük meg: $t=\frac{n}{c}L$ Rendezzük át: $n=\frac{tc}{L}=\frac{1.46\cdot 10^{-7}\cdot 2.849\cdot 10^8}{20.06}=2.074\pm0.564$

A hibát a hibaterjedés képletével határoztam meg: $\Delta n = n \cdot \left(\frac{\Delta c}{c} + \frac{\Delta T_0}{T_0} + \frac{\Delta \frac{1}{c}}{\frac{1}{c}}\right) = 0.564$. sajnos L hibáját nem tudtam.

4. A propagációs idő mérése

4. kép. Koaxiális kábel vizsgálata

A mért időkülönbség 95.76 ns = $9.576\cdot10^{-8}$ s volt. A kábel hossza pedig 19.2 m. Ebből a jel terjedési sebessége a kábelben $v=\frac{s}{t}=\frac{19.2}{9.576\cdot10^{-8}}=20050125\,\frac{m}{s}$. Ez a fénysebesség irodalmi értékének körülbelül a 66.9%-a.

5. Visszaverődések vizsgálata koaxiális kábelben

A mérés során hét külöböző ellenállás melett feljegyeztem a gerjesztés, valamint a visszavert jel amplitudó nagyságainak arányát.

mérés száma	lezáró ellenállás $[\Omega]$	gerjesztési amplitudó [V]	visszavert amplitudó [V]	visszavert/gerjesztett aránya
1	0	3.016	-1.45	-0.481
2	10	3.021	-1	-0.331
3	43	3.025	-0.233	-0.77
4	94	3.025	0.450	0.149
5	314	3.041	1.16	0.381
6	824	3.032	1.391	0.459
7	∞	3.027	1.462	0.483

Ezt követően ábrázoltam a mért adatokat. Mivel végtelent nem tudtam ábrázolni, így azt kihagytam.

5. kép. Mért adatok hagyományosan valamint logaritmizálva

A méréshez tartozó leírást követve az alábbi modellt ilesztettem:

$$\frac{U_{vissza}}{U_{be}} = Q \cdot \frac{R - R_0}{R + R_0}$$

Az illesztésből kapott paraméterek:

paraméter	Q	$R_0 [\Omega]$
érték	0.506	52.58
hiba	0.011	2.79

Ahol Q jelöli a jel veszteségét, és ${\cal R}_0$ a hullámellenállást.