Examining the methods for measuring Market Risk

Andreas Theodoulou

University of Bristol School of Mathematics

09 May 2018

Contents

- Motivation
- Problem
- Methods
- Limitations
- Backtesting
- Data & Methodology
- Results
- Conclusion
- References
- Appendix

Motivation

- Risks of Financial Institutions risks [4]
- Risk Management process
- Financial Risk and Market Risk
- Assessment: Value at Risk (VaR) and Expected Shortfall (ES) (Origins) [1]
- Importance [5]
- Project's Purpose

Definition

Let S_t is the final price at which a security is traded at time t, t refers to a specific market day. Then the **returns** (log-returns) are defined by [3]

$$R_{t+1} = ln(S_{t+1}) - ln(S_t)$$
 (1)

Definition

Let $R_{PF,t+1}$ denote the random variable of portfolio returns at time t. Then the $\mathbf{q} - \mathbf{\%VaR}$ is defined by [3]

$$(R_{PF,t+1} < -VaR_{t+1}^q) = q \tag{2}$$

Definition

Let $R_{PF,t+1}$ be defined as above. The $\mathbf{q} - \%\mathbf{ES}$ is defined by,[3]

$$ES_{t+1}^{q} = E_{t}[R_{PF,t+1} \mid R_{PF,t+1} < -VaR_{t+1}^{q}]$$
(3)

Risk Measures

Probability Density Function (%)

Figure: VaR and ES/CVaR on a probability density function of returns [6]

Financial Assets Characteristics

- Volatility Clustering [3]
 - high autocorrelation of daily volatility
- Leptokurtic Distributions [3]
 - ► Higher peak at 0
 - ► Fatter tails
- Leverage effect [3]
 - asymmetry of upward and downward movements.
- Uncorrelated daily returns and mean around 0. [3]

Figure: Uncorrelated Returns [3]

Figure: Volatility Clustering effect. [3]

Figure: Leptokurtic Distribution. [3]

6 / 16

Methods

1 Historical Simulation [3]

Let $\{R_{PF,t+1-\tau}\}_{\tau=1}^m$ denote the time series of returns, τ the times when VaR losses where greater than VaR.

$$\widehat{VaR_{t+1}^q} = -Percentile(\{R_{PF,t+1-\tau}\}_{\tau=1}^m, 100q)$$
(4)

$$\widehat{ES}_{t+1}^{q} = \frac{1}{\tau} \sum_{i=1}^{\tau} r_{i}$$
 (5)

7 / 16

Parametric method [3]

$$R_{t+1} = \mu_{t+1} + \sigma_{t+1} z_{t+1}$$
 with $z_{t+1} \sim D(0, 1)$ (6)

D(0,1) will be tested for a normal distribution and t-distribution. $\mu_{t+1} = 0$.

► FWMA

$$\sigma_{t+1}^2 = \lambda \sigma_t^2 + (1 - \lambda) R_t^2$$
, where $\lambda = 0.94$ [3] (7)

► GARCH

$$\sigma_{t+1}^2 = \omega + \alpha R_t^2 + \beta \sigma_t^2, \quad \text{with } \alpha + \beta < 1$$
 (8)

GJR-GARCH

$$\sigma_{t+1}^2 = \omega + \alpha R_t^2 + \alpha \theta \mathbb{1}_t R_t^2 + \beta \sigma_t^2 \qquad \text{for } \mathbb{1}_t = \begin{cases} 1, & \text{if } R_t < 0. \\ 0, & \text{otherwise.} \end{cases}$$
 (9)

Andreas Theodoulou Risk Theory 09 May 2018

Backtesting

• Backtesting VaR [3]

Let $L(\cdot)$ denote the likelihood function for an i.i.d. Bernoulli random variable, T_0 the number of days losses were greater than \widehat{VaR}_{t+1}^q , and T be the total VaR estimates. Also, let π be the proportion of VaR estimates failures, i.e $\hat{\pi} = T_1/T$.[2]

$$H_0: \pi = q \tag{10}$$

$$H_1: \pi \neq q \tag{11}$$

Test Statistic: $LR_{UC} = -2ln[L(q)/L(\hat{\pi})] \sim \chi_1^2$ (12)

• Backtesting ES [2]

Let $P_{t+1}^{[q]}$ denote the actual cumulative distribution of returns, $F_{t+1}^{[q]}$ our estimated one and I_t be equal to 1 when $R_{PF,t+1} < \widehat{VaR}_{t+1}^q$ and 0 otherwise.[2]

$$H_0: P_{t+1}^{[q]} = F_{t+1}^{[q]}, \quad \text{for all t}$$
 (13)

$$H_1: ES_{t+1,q}^P \ge ES_{t+1,q}^F$$
 (14)

8 / 16

Test Statistic: $Z_2 = \frac{1}{qT} \sum_{t=0}^{T} \frac{R_{PF,t+1} I_t}{ES_{t+1}^q} + 1$ (15)

Data & Methodology

Data

- 10 stock indices presented in Appendix. Each represents a portfolio.
- Estimation periods Crisis and Post-Crisis.
- Time window past 1000 trading days for GARCH and 250 for HS.

Methodology

- Methods All the above as introduced.
- Confidence interval of Backtests 95%.
- ES backtesting of t-distribution methods assume 15 degrees of freedom.
- Volatility models coefficients Estimated by MLE by a MATLAB function.

Ranking Statistics

- \bullet n_w : Frequency of best estimation Methods and Distributions
- $\sum LR$, $\sum |Z|$: Average performance Methods
- $\sum \sum LR$, $\sum \sum |Z|$: Average performance Distributions

Data & Methodology

Hypotheses

- Parametric method Does each model captures the asset characteristics?
- Performance in "difficult" forecasting periods vs "easy" forecasting periods.
- Is a single model capable to capture best both the 95% and 99% quantile of the returns distribution?
- O Do ES estimates differ in terms of accuracy over VaR?

Figure: S&P500 daily returns. Illustration of our approach to testing Hypothesis no.2. Source: Google

Andreas Theodoulou Risk Theory 09 May 2018 10 / 16

Overall Performance

Figure: Frequency of best ranking statistic over all results

	Average performance	Frequency of Best estimation
EWMA	7/8	7/8
HS	1/8	1/8

Figure: Frequency of worst average performance and Total frequency of best estimation over all results

	Worst average performance	Frequency of best estimation
GJR	5/8	5/80
HS	2/8	14/80
GARCH	0/8	15/80
EWMA	1/8	46/80

Figure: Frequency of best ranking statistic over all results

	Best average performance	Frequency of best estimation	
Normal	6/8	5/8	1
Student's	2/8	3/8	

Ranking Statistics Results

Figure: 95%-VaR estimates

$\sum n_{\omega}$
4
0
)))

Figure: 95%-ES estimates

		Crisis			Post-Crisis				
		$\sum Z $	$\sum \sum Z $	\mathbf{n}_{ω}	$\sum n_{\omega}$	$\sum Z $	$\sum \sum Z $	n_{ω}	$\sum n_{\omega}$
	HS	9.57		0		1.26		3	
	EWMA	1.77		2		0.45		7	
Normal	GARCH	2.85	9.67	1	3	2.56	8.27	0	7
	GJR	5.05		0		5.26		0	
	EWMA	1.25		4		1.35		0	
Student's t	GARCH	1.76	8.18	2	7	2.65	9.98	0	0
	GJR	5.17		1		5.98		0	

- 99% VaR estimates
- 99% ES estimates

Results Discussion

- Hypothesis 1 ability of capturing asset characteristics
- Hypothesis 2 "difficult" vs "easy" forecasting periods
- Hypothesis 3 99% vs 99%
- Hypothesis 4 ES vs VaR model performance

Conclusion

- Aim 1 Best models for estimating VaR and ES
- Aim 2 Illustrating the extent to which the use of the two measures is different.

Recommendations for further research

- Best distribution for financial asset returns
- Backtesting ES
- Volatility forecasting with adaptable coefficients

Thank you!

References I

- P. F. Christoffersen, Elements of Financial Risk Management, 2012.
- K. Dowd, Beyond value at risk: the new science of risk management, John Wiley Sons, 1998.
- B. for Internaltional Settlements, Revised framework for market risk capital requirements issued by the basel committee.
- D. Kidd, Value at risk and condition value at risk: A comparison, Investment Risk and Performance Articles 2012.1, (2012).

Appendix

Table: List of the 10 Stock Indices, each representing a portfolio to be tested.

Stock Index	No. of Stocks	Region	
S&P 500	500	USA	
FTSE 100	100	UK	
Nikkei 225	225	Japan	
EuroNext 100	100	Europe	
DAX	30	Germany	
HSI	50	Hong Kong	
ASX 200	200	Australia	
S&P BSE	30	India	
IBOVESPA	60	Brazil	
IPC	35	Mexico	