Power Electronics Lab Experiment-2

-Swarnendu Paul 19EE3FP18

Part-A:

1.

Circuit:

Output voltage:

 V_{avg} =5.313V

MOSFET voltage:

Mean = 20V MOSFET current:

Mean=1.416A

Diode Voltage:

Mean = 5.313V

Diode current:

Mean= 5.313A

Load resistance is varied keeping everything else the same.

R _{Load}	V _{out}	Mode
1	7.825	CCM
1.5	7.826	CCM
2	7.826	ССМ
2.5	8.526	DCM
3	9.338	DCM
3.5	10.008	DCM

Vout vs R_{Load} plot:-

4.

Vout vs. RLoad

Part B:

Circuit:

Steady state voltage across switch:

Voltage across Snubber capacitor:

Power dissipation in R_d:

Average voltage across Snubber capacitor = 25.96V

So power dissipated across
$$R_d = \frac{25.96^2}{5000} = 0.1348W$$

----X----X