CRITICAL STABILITY CONSTANTS

Volume 4: Inorganic Complexes

CRITICAL STABILITY CONSTANTS

Volume 1 • Amino Acids

Volume 2 • Amines

Volume 3 • Other Organic Ligands

Volume 4 • Inorganic Complexes

CRITICAL STABILITY CONSTANTS

Volume 4: Inorganic Complexes

by Robert M. Smith and Arthur E. Martell

Department of Chemistry College of Science Texas A & M University College Station, Texas

Library of Congress Cataloging in Publication Data

Martell, Arthur Earl, 1916-

Critical stability constants.

On vol. 2 and 4 Smith's name appears first on t.p.

Includes bibliographical references.

CONTENTS: v. 1. Amino acids.-v. 2. Amines.-v. 3. Other organic ligands-v. 4. Inorganic complexes.

1. Chemical equilibrium-Tables, etc. 2. Complex compounds-Tables, etc. I. Smith, Robert Martin, 1927joint author. II. Title. [DNLM:

1. Amino acids. 2. Chemistry, Physical. QD503 M376c]

QD503.M37 541',302 74-10610 ISBN 978-1-4757-5508-4 ISBN 978-1-4757-5506-0 (eBook)

DOI 10.1007/978-1-4757-5506-0

© 1976 Springer Science+Business Media New York Originally published by Plenum Press, New York in 1976 Softcover reprint of the hardcover 1st edition 1976

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher.

PREFACE

Over the past fifteen years the Commission on Equilibrium Data of the Analytical Division of the International Union of Pure and Applied Chemistry has been sponsoring a noncritical compilation of metal complex formation constants and related equilibrium constants. This work was extensive in scope and resulted in the publication of two large volumes of *Stability Constants* by the Chemical Society (London). The first volume, edited by L. G. Sillen (for inorganic ligands) and by A. E. Martell (for organic ligands), was published in 1964 and covered the literature through 1962. The second volume, subtitled Supplement No. 1, edited by L. G. Sillen and E. Hogfeldt (for inorganic ligands) and by A. E. Martell and R. M. Smith (for organic ligands), was published in 1971 and covered the literature up to 1969. These two large compilations attempted to cover all papers in the field related to metal complex equilibria (heats, entropies, and free energies). Since it was the policy of the Commission during that period to avoid decisions concerning the quality and reliability of the published work, the compilation would frequently contain from ten to twenty values for a single equilibrium constant. In many cases the values would differ by one or even two orders of magnitude, thus frustrating readers who wanted to use the data without doing the extensive literature study necessary to determine the correct value of the constant in question.

Because of difficulties of this nature, and because of the general lack of usefulness of a noncritical compilation for teaching purposes and for scientists who are not sufficiently expert in the field of equilibrium to carry out their own evaluation, we have decided to concentrate our efforts in this area toward the development of a critical and unique compilation of metal complex equilibrium constants. Although it would seem that decisions between available sets of data must sometimes be arbitrary and therefore possibly unfair, we have found the application of reasonable guidelines leads directly to the elimination of a considerable fraction of the published data of doubtful value. Additional criteria and procedures that were worked out to handle the remaining literature are described in the *Introduction* of this book. Many of these methods are quite similar to those used in other compilations of critical data.

In cases where a considerable amount of material has accumulated, it is felt that most of our critical constants will stand the test of time. Many of the data listed, however, are based on only one or a very few literature references and are subject to change when better data come along. It should be fully understood that this compilation is a continually changing and growing body of data, and will be revised from time to time as new results of these systems appear in the literature.

The scope of these tables includes the heats, entropies, and free energies of all reactions involving organic and inorganic ligands. The magnitude of the work is such that far more than a thousand book pages will be required. In order that the material be available in convenient form, the amino acid complexes are presented in Volume 1 and amine complexes (which do not contain carboxylic acid functions) are included in Volume 2. The remaining organic complexes are the subject of Volume 3. Volume 4 comprises the inorganic complexes.

vi PREFACE

We are grateful to Sten Ahrland, Charles F. Baes, Jr., Gregory R. Choppin, George H. Nancollas, and Reino Näsänen for reviewing portions of the manuscript and making valuable comments. We are also indebted to Charles F. Baes, Jr. for a prepublication copy of his book on the hydrolysis of cations (76BM).

Texas A&M University College Station, Texas

Robert M. Smith Arthur E. Martell

CONTENTS

I.	Inti	oduction	ix
II.	Ino	ganic ligands	
	Α.	Water	
		1. Hydroxide ion	1
	В.	Transition metal ligands 2. Hydrogen vanadate 3. Hydrogen chromate. 4. Hydrogen molybdate. 5. Hydrogen wolframate 6. Rhenate(VII) ion. 7. Hydrogen hexacyanoferrate(II).	15 17 18 19 20 21
			24
	C.	Group III ligands 10. Hydrogen borate	25
	D.	12. Hydrogen cyanate	26 2 8 29 35 36 36 37
	E.	20. Hydrazine 21. Hydroxylamine 22. Hydrogen azide 23. Hydrogen nitrite 24. Nitrate ion 25. Hydrogen hyponitrite 26. Hydrogen hypophosphite 27. Hydrogen phosphite 28. Hydrogen phosphate	40 43 44 45 48 53 54 55 56

viii CONTENTS

	30.	Hydrogen triphosphate
	31.	Hydrogen tetraphosphate 66
	32.	Hydrogen trimetaphosphate
	33.	Hydrogen tetrametaphosphate 69
	34.	Hydrogen hexametaphosphate 70
	35.	Hydrogen octametaphosphate
	36.	Hydrogen imidodiphosphate
	37.	Hydrogen diimidotriphosphate
	38.	Cyclo-tri- μ -imidotris(dioxophosphate)
	39.	Hydrogen diphosphate (III, V) 72
	40.	Hydrogen hypophosphate
	41.	Hydrogen peroxodiphosphate
	42.	Hexafluorophosphate ion
	43.	Hexafluoroarsenate ion
	F. Group	VI ligands
	44.	Hydrogen peroxide
	45.	Hydrogen sulfide
	46.	Hydrogen sulfite
	47.	Hydrogen sulfate ion
	48.	Hydrogen thiosulfate
	49.	Selenosulphate ion
	50.	Hydrogen amidosulphate
	51.	Hydrogen peroxodisulfate
	52.	Hydrogen selenide
	53.	Hydrogen selenite
	54.	Hydrogen selenate ion
	55.	Hydrogen telluride 94
	56.	Hydrogen tellurite
	G. Grou	p VII ligands
	57.	Hydrogen Fluoride
	58.	Chloride ion
	59.	Chlorate ion
	60.	Perchlorate ion
	61.	Bromide ion
	62.	Bromate ion
	63.	lodide ion
	64.	Hydrogen iodate
	65.	Hydrogen periodate
Ш.	Protonation	on values for other ligands
IV.	Ligands co	onsidered but not included
	_	
V.	Bibliograp	hy
VI.	•	nd formula index

INTRODUCTION

Purpose

This compilation of metal complex equilibrium (formation) constants and the corresponding enthalpy and entropy values represent the authors' selection of the most reliable values among those available in the literature. In many cases wide variations in published constants for the same metal complex equilibrium indicate the presence of one or more errors in ligand purity, in the experimental measurements, or in calculations. Usually, the nature of these errors is not readily apparent in the publication, and the reader is frequently faced with uncertainties concerning the correct values. In the course of developing noncritical compilations of stability constants, the authors have long felt that these wide variations in published work constitute a serious impediment to the use of equilibrium data. Thus these critical tables were developed in order to satisfy what is believed to be an important need in the field of coordination chemistry.

Scope

These tables include all organic and inorganic ligands for which reliable values have been reported in the literature. The present volume is restricted to inorganic ligands.

Values determined in nonaqueous solutions as well as values involving two or more different ligands (i.e., "mixed ligand" complexes) have not been included in this compilation but may be included in a subsequent volume. Mixed ligand complexes containing hydrogen or hydroxide ions are included since these ions are derived from the solvent and are therefore potentially always available. In general, data were compiled for only those systems that involve metal ion equilibria. Data on potentially important ligands for which only acid—base equilibria are presently available are given in a separate table.

Selection Criteria

When several workers are in close agreement on a particular value, the average of their results has been selected for that value. Values showing considerable scatter have been eliminated. In cases where the agreement is poor and few results are available for comparison, more subtle methods were needed to select the best value. This selection was often guided by a comparison with values obtained for other metal ions with the same ligand and with values obtained for the same metal ion with similar ligands.

While established trends among similar metal ions and among similar ligands were valuable in deciding between widely varying values, such guidelines were used cautiously, so as not to overlook occasionally unexpected real examples of specificity or anomalous behavior.

When there was poor agreement between published values and comparison with other metal ions and ligands did not suggest the best value, the results of more experienced research groups who had supplied reliable values for other ligands were selected. When such assurances were lacking, it was sometimes

× INTRODUCTION

possible to give preference to values reported by an investigator who had published other demonstrably reliable values obtained by the same experimental method.

In some cases the constants reported by several workers for a given group of metal ions would have similar relative values, but would differ considerably in the absolute magnitudes of the constants. Then a set of values from one worker near the median of all values reported were selected as the best constants. By this method it is believed that internal consistency was preserved to a greater extent than would be obtained by averaging reported values for each individual metal ion. When an important constant was missing from the selected set of values, but was available in another set of values not selected for this compilation, the missing constant was obtained by adjusting the nonselected values by a common factor, which was set so as to give the best agreement between the two groups of data.

Values reported by only one investigator are included in these tables unless there was some reason to doubt their validity. It is recognized that some of these values may be in error, and that such errors will probably not be detected until the work is repeated by other investigators, or until more data become available for analogous ligands or other closely related metal ions. Some values involving unusual metal ions have been omitted because of serious questions about the form of their complexes.

Papers deficient in specifying essential reaction conditions (e.g., temperature, ionic strength, nature of supporting electrolyte) were not employed in this compilation. Also used as a basis for disqualification of published data is lack of information on the purity of the ligand. Frequent deficiencies are lack of calibration of potentiometric apparatus, and failure to define the equilibrium quotients reported in the paper. Papers in which both temperature and ionic strength are not controlled have been omitted from the bibliography.

A bibliography for each ligand is included so that the reader may determine the completeness of the literature search employed in the determination of critical values. The reader may also employ these references to make his own evaluation if he has any questions or reservations concerning this compilation.

Arrangement

The arrangement of the tables is based on the periodic table position of the central atom of the ligand except that the hydroxide ion is placed first because of its importance in considering equilibria involving other ligands. This is followed by transition metal ligands and then those of groups III through VII of the periodic table. Within each group of tables involving the same atom, the arrangement is from the lowest oxidation state to higher ones. Next there is a table of protonation constants for ligands for which no stability constants or only questionable metal stability constants are reported. Finally, there is a list of other ligands considered but not included in the tables for various reasons.

Metal Ions

The metal ions within each table are arranged in the following order: hydrogen, alkali metals, alkaline earth metals, lanthanides (including Sc and Y), actinides, transition metals, and posttransition metals. Within each group the arrangement is by increasing oxidation state of the metal, and within each oxidation state the arrangement follows the periodic table from top to bottom and from left to right. An exception is that Cu⁺, Ag⁺, Pd²⁺, and Pt²⁺ are included with the posttransition metals.

Equilibrium

An abbreviated equilibrium quotient expression in the order products/ reactants is included for each constant, and periods are used to separate distinct entities. Charges have been omitted as these can be determined from the charge of the metal ion and the abbreviated ligand formulas (such as HL) given

INTRODUCTION xi

after the name. Water has not been included in the equilibrium expressions since all of the values cited are for aqueous solutions. For example, $M_4L_4/M^4\cdot L^4$ for Mg^{2+} and hydroxide ion would represent the equilibrium: $4Mg^{2+} + 4OH^- \rightleftharpoons Mg_4(OH)_4^{4+}$. The symbol M represents the metal ion given in the first column and may include more than one atom as in the case of Hg_2^{2+} . The symbol H_{-1} (H_{-2} , etc.) is used for the ionization of a proton from the ligand alone at high pH.

Equilibria involving protons are written as stability constants (protonation constants) rather than as ionization constants to be consistent with the metal complex formation constants. Consequently the $\triangle H$ and $\triangle S$ values have signs opposite to those describing ionization constants.

Solids and gases are identified by (s) and (g) respectively and are included for identification purposes even though they are not involved in the equilibrium quotient.

Log K Values

The log K values are the logarithms of the equilibrium quotients given in the second column at the specified conditions of temperature and ionic strength. The selected values are those considered to be the most reliable of the ones available. In some cases the value is the median of several values and in other cases it is the average of two or more values. The range of other values considered reliable is indicated by + or - quantities describing the algebraic difference between the other values and the selected value. The symbol ± 0.00 indicates that there are one or more values which agree exactly with the stated value to the number of significant figures given. Values considered to be of questionable validity are enclosed in parentheses. Such values are included when the evidence available is not strong enough to exclude them on the basis of the above criteria. Values concerning which there is consierable doubt have been omitted.

The log K values are given for the more commonly reported ionic strengths. The ionic strengths most used for inorganic ligands are 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, and 0. Zero ionic strength is perhaps more important from a theoretical point of view, but several assumptions are involved in extrapolating or calculating from the measured values. The Davies equation is often used to calculate constants to zero from low-ionic-strength measurements. It was established from results obtained with monovalent and divalent ions and its extension to trivalent ions is extremely questionable.

The temperature of 25° C was given preference in the tables because of its widespread use in equilibrium measurements and reporting other physical properties. When available, enthalphy changes ($\triangle H$) were used to calculate log K at 25° C when only measurements at other temperatures were available.

Other temperatures frequently employed are 20° C, 30° C, and 37° C. These are not included in the tables when there is a lack of column space and $\triangle H$ is available, since they may be calculated using the $\triangle H$ value. Values at other temperatures, especially those at 20° C and 30° C, were converted to 25° C to facilitate quantitative comparisons with the 25° C values listed.

Equilibria involving protons have been expressed as concentration constants in order to be more consistent with the metal ion stability constants which involve only concentration terms. Concentration constants may be determined by calibrating the electrodes with solutions of known hydrogen ion concentrations or by conversion of pH values using the appropriate hydrogen ion activity coefficient. When standard buffers are used, mixed constants (also known as Bronsted or practical constants) are obtained which include both activity and concentration terms. Literature values expressed as mixed constants have been converted to concentration constants by using the hydrogen ion activity coefficients determined in KCl solution before inclusion in the tables. In some cases, papers were omitted because no indication was given as to the use of concentration or mixed constants. Some papers were

xii INTRODUCTION

retained despite this lack of information when it could be ascertained which constant was used by comparing to known values or by personal communication with the authors. For those desiring to convert the listed protonation constants to mixed constants, the following values should be added to the listed values at the appropriate ionic strength (the tabulation applies only to single proton association constants):

Ionic strength	Increase in log K
0.05	0.09
0.10	0.11
0.15	0.12
0.2	0.13
0.5	0.15
1.0	0.14
2.0	0.11
3.0	0.07

The values in the tables have not been corrected for complexation with medium ions for the most part. There are insufficient data to make corrections for most of the ligands, and in order to make values between ligands more comparable, the correction has not been made in the few cases where it could be made. In general the listed formation constants at constant ionic strength include competition by ions from KNO₃ and NaClO₄ and are somewhat smaller than they would be if measured in solutions of tetraalkylammonium salts.

Limited comparisons were made between values at different ionic strengths using observed trends. With inorganic ligands the stability constants usually decrease with ionic strength until a minimum is reached and then increase with increasing ionic strength. The minimum is often at about 0.5 ionic strength when hydrogen or hydroxide ion is involved but may change with other ions. With basic ligands such as ammonia there is a continuing increase with ionic strength and no maximum or minimum is generally observed. With phosphorous compounds containing oxygen donors there is a continuing decrease with ionic strength because of the increased competition from sodium ions in the background electrolyte.

The solubility products of precipitates frequently become more negative with longer digestive times. This is apparently due to conversion to less soluble forms of the precipitate with time. Since various digestive times have been used to measure solubility products, their comparison becomes rather tenuous, except for rough approximations. With lanthanide hydroxides, the solubility products have been measured as a function of time at constant temperature in some cases, and the values listed in the table have been corrected to the fresh or active precipitate by using the average change with time of the lanthanide hydroxides as a whole.

The hydrolysis of highly charged metal ions, such as Th⁴⁺, apparently leads to different polymerization products in different media. Consequently the species formed may be different with a change in the background electrolyte if the background electrolyte becomes part of the polymeric ions.

Enthalpy Values

The enthalpy of complexation values ($\triangle H$) listed in the tables have the units kcal/mole because of the widespread use of these units by workers in the field. These may be converted to SI units of kj/mole by multiplying the listed values by 4.184.

Calorimetrically determined values and temperature-variation-determined values from cells without liquid junction were considered of equal validity for the tables. Other temperature-variation-determined values were rounded off to the nearest kcal/mole and were enclosed in parentheses because of their reduced accuracy. Other values considered to be reliable but differing from the listed value were

INTRODUCTION

indicated by + or - quantities describing the algebraic difference between the other value and the selected value.

The magnitude of $\triangle H$ may vary with temperature and ionic strength, but usually this is less than the variation between different workers and little attempt has been made to show $\triangle H$ variation with changing conditions except for certain carefully measured equilibria such as the protonation of hydroxide ion and of ammonia. These $\triangle H$ values may be used for estimating log K values at temperatures other than those listed, using the relationship

$$\frac{\Delta H}{2.303RT^2} = \frac{d \log K}{dT}$$

or, at 25°C,

$$\log K_2 = \log K_1 + \triangle H(T_2 - T_1)(0.00246).$$

This assumes that $\triangle C_p = 0$, which is not necessarily the case. The greater the temperature range employed, the greater the uncertainty of the calculated values.

Entropy Values

The entropy of complexation values ($\triangle S$) listed in the tables have the units cal/mole/degree and have been calculated from the listed log K and $\triangle H$ values, using the expression

$$\triangle G = \triangle H - T \triangle S$$

or, at 25°C,

$$\triangle S = 3.36 \ (1.363 \log K + \triangle H).$$

These entropy values have been rounded off to the nearest cal/mole/degree, except in cases where $\triangle H$ values were quite accurate.

Bibliography

The references considered in preparing each table are given at the end of the table. The more reliable references are listed after the ions for which values are reported. In some tables groups of similar metal ions have been grouped together for the bibliography. The term "Other references" is used for those reporting questionable values, or values at conditions considerably different from those used in the tables, or values for metal ions not included in the tables because of questionable knowledge about the forms of their complexes. These additional references are cited to inform the reader of the extent of the literature search made in arriving at the selected values.

The bibliographical symbols used represent the year of the reference and the first letter of the surnames of the first two listed authors. In cases of duplication, letters a, b, c, etc., or the first letter of the third author's name are employed. The complete reference is given in the bibliography at the end of each volume.

In a work of this magnitude, there will certainly be errors and a few pertinent publications will have been overlooked by the compilers. We should like to request those who believe they have detected errors in the selection process, know of publications that were omitted, or have any suggestions for improvement of the tables, write to:

A. E. Martell, Head
Department of Chemistry
Texas A&M University
College Station, Texas 77843, U.S.A.

It is the intention of the authors to publish more complete and accurate revisions of these tables as demanded by the continually growing body of equilibrium data in the literature.

OH-

но-			Hydroxide	ion		L ⁻
Metal ion H ⁺	Equilibrium HL/H.L	Log K 25°, 0.5 13.74 ±0.02 13.78 ^a ±0.01 13.95 ^h 13.96 ^d ±0.01	Log K 25°, 1.0 13.79 ±0.02 14.18 ^e ±0.04	Log K 25°, 0 13.997±0.003	$^{\Delta H}$ $^{25^{\circ}, 0}$ -13.34 ± 0.01 $-13.55^{b} \pm 0.05$ $-13.08^{e} \pm 0.03$ -12.69^{p}	ΔS 25°, 0 19.3 17.7 ^b 21.0 ^e
Li ⁺	ML/M.L		-0.18 ^e	0.36	(0) ^r	(2)
Na ⁺	ML/M.L			-0.2	(0) ^s	(-1)
K ⁺	ML/M.L			-0.5		
Be ²⁺	ML/M.L ML ₂ /M.L ²	8.3 ^h (16.5) (16.7) ^h	(17.5) ^e	8.6 (14.4)		
	$ML_3/M.L^3$ $ML_4/M.L^4$, ,		18.8 18.6		
	M ₂ L/M ² .L	10.54 10.68 ^d	10.95 ^e	(10.0)	-8.9 ^e -24.8 ^e	20 ^e 72 ^e
	$M_3L_3/M^3.L^3$	32.41 32.98 ^d	33.88	33.1		
	M ₆ L ₈ /M ⁶ .L ⁸			(85)	(-58) ^t	(200)
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s}, \mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s}, \mathrm{M})$			-21.0 -21.31		
	$M.L^2/ML_2(s, M.L^2/ML_2(s, $			-21.7		
Mg ²⁺	ML/M.L M ₄ L ₄ /M ⁴ .L ⁴ M.L ² /ML ₂ (s)		1.85 ^e 16.93 ^e	2.58 ±0.0 16.3 -11.15 ±0.2		
Ca ²⁺	ML/M.L M.L ² /ML ₂ (s)		0.64 ^e	1.3 ±0.1 -5.19 ±0.2	2.0 -4.3	13 -38
Sr ²⁺	ML/M.L		0.23 ^e	0.8 ±0.1	1.2	8

a 25°, 0.1; b 25°, 0.5; d 25°, 2.0; e 25°, 3.0; h 20°, 0.1; p 40°, 0; r 15-35°, 0; s 0-50°, 0; t 0-60°, 1.0 molal

Metal ion Ba ²⁺	Equilibrium ML/M.L	Log K 25°, 0.5 0.4 ^a	Log K 25°, 1.0 0.00 ^e	Log K 25°, 0 0.6 ±0.1	ΔH 25°, 0 1.1 ±0.1	ΔS 25°, 0 9
Ба	M.L ² /ML ₂ (H ₂ 0) ₈		0.00	-3.6	13.7	29
Sc ³⁺	ML/M.L	9.06 9.31 ^a ±0.00	8.63 ±0.02	9.7	(2) ^t	(50) ^c
	2	9.1 ^h				
	$ML_2/M.L^2$	17.4 ^h	17.4	18.3		
	$ML_3^2/M.L^3$	24.9 ^h		25.9		
	ML ₄ /M.L ⁴	01 50		30	(10) t	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$M_2L_2/M^2.L^2$	21.50 21.53 ^a	21.49 ±0.03	22.0	(-12) ^t	(60) ^c
	$M_3L_5/M^3.L^5$	51.69 51.88 ^a	51.55 ±0.07	53.8	(-28) ^t	(150) ^c
	M.L ³ /MOL(s)		-30.9	-32.7		
_Y 3+	ML/M.L	5.39 ^u	5.1 ^e	6.3		
	$M_2L_2/M^2.L^2$		14.06 ^e	13.8		
	$M_{3}^{2}L_{5}^{2}/M^{3}.L^{5}$		37.1 ^e	38.4		
	M.L ³ /ML ₃ (s)			-23.2		
La ³⁺	ML/M.L	4.67 ^u	4.1 ^e	5.5		
	M ₂ L/M ² .L		(4.2) ^e			
	$M_{5}^{-}L_{9}/M^{5}.L^{9}$		56.2 ^e	54.8		
	$M.L^3/ML_3(s)$			-20.7		
Ce ³⁺	$M_3L_5/M^3.L^5$		35.1 ^e	36.5		
	$M.L^3/ML_3(s)$			-21.2		
Pr ³⁺	ML/M.L	5.18 ^u				
	M.L ³ /ML ₃ (s)			-21.5		
Nd ³⁺	ML/M.L	5.30 ^u	4.8 ^e	6.0		
	$ML_4/M.L^4$			18.6		
	$M_2L_2/M^2.L^2$		14.43 ^e	14.1		
	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$			-23.1 ± 0.0		
Sm ³⁺	ML/M.L	5.39 ^u				
	M.L ³ /ML ₃ (s)			-25.4		

a 25°, 0.1; c 25°, 1.0; e 25°, 3.0; h 20°, 0.1; t 10-40°, 1.0 molal; u 25°, 0.3

A. WATER 3

Metal ion Eu ³⁺	Equilibrium ML/M.L	Log K 25°, 0.5 5.42 ^u	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
<u>Ju</u>	M.L ³ /ML ₃ (s)	J. 42		-25.6		
Gd ³⁺	ML/M.L M ₂ L ₂ /M ² .L ²	5.38 ^u	5.0 ^e 14.13 ^e			
2т	$\mathrm{M.L}^3/\mathrm{ML}_3(s)$			-25.7		
ть3+	ML/M.L M.L ³ /ML ₃ (s)	5.57 ^u		-25.5		
Dy 3+	ML/M.L	5.63 ^u		23.3		
	M.L ³ /ML ₃ (s)			-25.6		
Но ³⁺	ML/M.L M.L ³ /ML ₃ (s)	5.69 ^u		-25.9		
Er ³⁺	ML/M.L M.L ³ /ML ₃ (s)	5.74 ^u		-24.9		
Tm ³⁺	ML/M.L	5.78 ^u		-24.9		
_{Yb} 3+	ML/M.L	5.81 ^u				
	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$			-25.0		
Lu ³⁺	ML/M.L	5.83 ^u				
21	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$	_		-26.1		
Pu ³⁺	ML/M.L	6.7 ^a		7.0		
Am ³⁺	ML/M.L	7.9 ^a				
Cm ³⁺	ML/M.L	$7.9^{a} - 0.1$				
Bk ³⁺	ML/M.L	8.2 ^a				
Cf ³⁺	ML/M.L	8.2 ^a				
Ce ⁴⁺	ML/M.L		13.17 ^k		$(-8)^{z}$	(30) ^k
	$M_2L_3/M^2.L^3$		40.9 ^{e,n}			
	$M = 1/M^2 \cdot 1.4$		54.5 ^{e,n}			
	$M_6L_{12}/M^6.L^{12}$		168.4 ^{e,n}			

a 25°, 0.1; e 25°, 3.0; e 25°, 1.5, assuming HL/H.L = 13.87; e NaNO₃ used as background electrolyte; e 25°, 0.3; e 10-25°, 1.5

Metal <u>ion</u>	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Th ⁴⁺	ML/M.L		9.6	10.8	(-8) ^t	(20) ^c
	M /M . 2		9.1 ^{e,y}		÷	0
	$ML_2/M.L^2$ $M_2L_2/M^2.L^2$		19.89	21.1	(-13) ^t	(50) ^c
	^M 2 ^L 2 ^{/M} ·L		22.97 23.58 ^{e,y}	(21.9)	(-12) ^t	(60) ^c
	$M_2L_3/M^2.L_5$		33.8 ^e ,y			
	M ₂ L ₅ /M ² .L ⁵		(53.7) ^{e,y}			
	M ₃ L/M ³ .L		(12.7) ^{e,y}			
	$M_3L_3/M^3.L^3$		(35.7) ^{e,y}			
	M ₄ L ₈ /M ⁴ .L ⁸		91.2	(90.9)	(-51) ^t	(250) ^c
	$M_c L_{1/}/M^6 \cdot L^{14}$		162.1 ^{e,y}	(5005)	(31)	(230)
	$M_6L_{15}^{14}/M^6.L^{15}$		169.8	173.2	(-96) ^t	(470) ^c
	$M.L^4/ML_{\Delta}(s)$			-44.7°	, ,	(,
	$M.L^4/MO_2^7(s)$			-49.7		
Pa ⁴⁺	ML/M.L		14.04 ^e	14.8		
	$\mathrm{ML}_{2}/\mathrm{M.L}_{2}^{2}$		27.84 ^e	28.0		
	$ML_3^2/M.L^3$		40.7 ^e			
	ML ₄ /M.L ⁴		51.4 ^e			
u ⁴⁺	ML/M.L	12.24	12.23 -0.01	13.3	(-2) ^r	(50)
		12.50 ^a			· -/	(30)
		12.31 ^d ±0.03	(12.1) ^e			
	$^{\rm M}6^{\rm L}_{15}/^{\rm M}_{\rm s}.^{\rm L}^{15}$		196.1 ^e	192.8		
	ML ₅ /M.L ³			54.0		
	$M.L^4/MO_2(s)$			-56.2		
Np ⁴⁺	ML/M.L	11.7 ^d		12.5		
Pu ⁴⁺	ML/M.L	12.14	12.1			
		12.23 ^d			(-6) ^w	(40) ^d
	$M.L^4/ML_4(s)$			-47.3		

^a 25°, 0.1; ^c 25°, 1.0; ^d 25°, 2.0; ^e 25°, 3.0; ^o 22°, 0; ^r 10-43°, 0; ^t 0-95°, 1.0 molal; ^w 15-25°, 2.0; ^y NaCl used as background electrolyte.

A. WATER 5

Metal ion Pa(V)	Equilibrium ML ₄ /ML ₃ .L	Log K 25°, 0.5	Log K 25°, 1.0 13.13 ^e	Log K 25°, 0 14.5	ΔH 25°, 0	ΔS 25°, 0
	ML ₅ /ML ₄ .L		9.68 ^e	9.5		
UO ₂ 2+	ML/M.L	8.0 ±0.0 (7.7) ^a	8.1 ^e	8.2	(-2) ^x	(30) ^b
	M ₂ L/M ² .L		9.6			
	$M_2L_2/M^2.L^2$	21.55 ±0.02	21.64 ±0.02	22.4		
		21.73 ^a	22.32 ^e		16.7 ^e	46 ^e
	$M_3L_4/M^3.L^4$		42.4 43.5 ^e			
	$M_3L_5/M^3.L^5$	52.4 ±0.1	52.6 ±0.1	54.4		
	5 5		54.4 ^e		41.1 ^e	111 ^e
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$			-22.4		
NpO_2^{2+}	ML/M.L		8.6	8.9		
2	$M_2L_2/M^2.L^2$		20.9	21.6		
	$M_{3}^{2}L_{5}^{2}/M^{3}.L^{5}$		50.7	52.5		
PuO ₂ ²⁺	ML/M.L		7.8 7.9 ^e	8.4		
	$M_2L_2/M^2.L^2$		19.1 20.1 ^e	19.6		
	$M_3L_5/M^3.L^5$		46.8 49.3 ^e	48.4		
Mn ²⁺	ML/M.L	2.9 ^a +0.1 3.5 ^d	3.0	3.4	(0) ^r	(20)
	ML ₄ /M.L ⁴	_		7.7		
	M ₂ L/M ² .L	4.1 ^d		(3.4)		
	$M_2L_3/M^2.L^3$	16.4 ^d		18.1		
_	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$			-12.8 +0.1		
Fe ²⁺	ML/M.L		4.3	4.5		
	$ML_2/M.L_2^2$			(7.4)		
	$ML_3^{-}/M.L_4^{3}$			10.0		
	ML ₄ /M.L ⁴			9.6		
	M.L ² /ML ₂ (s)			-15.1		

a 25°, 0.1; b 25°, 0.5; d 25°, 2.0; e 25°, 3.0; r 15-42°, 0; x 25-95°, 0.5

Metal ion 2+ Co	Equilibrium ML/M.L	Log K 25°, 0.5 (3.9)	Log K 25°, 1.0 (3.9)	Log K 25°, 0 4.3	ΔH 25°, 0	ΔS 25°, 0
	ML ₂ /M.L ²		4.2 ^e 8.5	8.4		
	ML ₃ /M.L ³		9.7	9.7		
	$ML_4/M.L^4$		4.7 ^e	10.2		
	M ₂ L/M ² .L		4.7 27.5 ^e ±0.0	(2.7)		
	M ₄ L ₄ /M ⁴ .L ⁴			(25.6)		
2.1	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	_	-14.6	-14.9	-	
Ni ²⁺	ML/M.L	3.7 ^a	3.8 -0.1	4.1	(-1) ^r	(20)
	$ML_2/M.L_2^2$			8		
	$ML_3/M.L^3$			11		
	M ₂ L/M ² .L		4.2 ^e	(3.3)	0	0
	$M_4L_4/M^4.L^4$		29.37 ^e ±0.03	28.3	-12.8 ^e	92 ^e
	$M.L/ML_2(s)$			-15.2		
Cu ²⁺	ML/M.L			6.3		
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$		12.8			
	$ML_3^2/M.L_1^3$		14.5			
	ML ₄ /M.L ⁴		15.6	16.4		
	$M_2L_2/M^2.L^2$	17.02 ^h ±0.03	17.28 ^j	17.7		
	2 2		17.8 ^e		-10.4 ^e	47 ^e
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	-18.48 ^q	-18.9	-19.32	13.2 ^d	-40q
	$\mathrm{M.L}^2/\mathrm{MO}(\mathrm{s})$	-19.51 ^q		-20.35		
Ti ³⁺	ML/M.L	11.8	11.5 ^e ±0.1	12.7		
	$M_2L_2/M^2.L^2$		24.8 ^e ±0.3			
v ³⁺	ML/M.L		11.01 ^j	11.7	(-4) ^z	(40) ^c
	2 2		11.11 ^e			
	$M_2L_2/M^2.L^2$		23.8 ^j	24.2		
	2 2		23.43 ^e			
	${\rm M_2L_3/M^2.L^3} \ {\rm M.L^3/ML_3(s)}$		34.5 ^e			
	$M.L^3/ML_3(s)$			-34.4		

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; h 20°, 0.1; j 20°, 1.0; q 25°, 0.2 r 15-42°, 0; z 25-50°, 1.4

A. WATER 7

Metal ion Cr ³⁺	Equilibrium ML/M.L	Log K 25°, 0.5 9.41 ⁱ	Log K 25°, 1.0 9.41	Log K 25°, 0 10.07 ±0.02	ΔH 25°, 0 -1.0	ΔS 25°, 0 43
	ML ₂ /M.L ² M ₂ L ₂ /M ² .L ² M ₄ L ₄ /M ⁴ .L ⁴ M ₄ L ₆ /M ⁴ .L ⁶	9.77 ^h ±0.03 17.3 ^h 24.6 ^d 50.7 ^d 72.8 ^d	24.1		(4.5)	(94) ^h
	M.L ³ /ML ₃ (s)	$-29.8^{a} \pm 0.1$				
Mn ³⁺	ML/M.L			14.4 ^f	(-8) ^m	(40) ^f
Fe ³⁺	ML/M.L	11.01 ±0.07 11.17 ^a ±0.09 11.14 ^d	11.09 ±0.1 11.21 ^e ±0.08	11.81 ±0.03	-2 ^e	(45) ^e
	ML ₂ /M.L ²	11.14	21.9 ^j 22.1 ^e	22.3		
	$ML_4/M.L^4$			34.4		
	M ₂ L ₂ /M ² .L ²	24.7 24.7 ^a 25.3 ^d	24.9 -0.1 $25.6^{e} \pm 0.2$	25.1	-16.2 ^e	(63) ^e
	$M_3L_4/M^3.L^4$	23.3	51.0 ^e	49.7	-38 ^e	(106) ^e
	$M.L_3^{3/ML}$ (s)		-38.6 ^e	-38.8 ± 0.2		` ,
	M.L ³ /MOOH(s,	x)	-41.1 ^e	41.5		
	$M.L^{3}/(M_{2}O_{3})^{0}$. ⁵ (s,α)		-42.7		
Co ³⁺	ML/M.L		13.52 ^e			
	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$			-44.5°	(18) ^r	(-140)°
Rh ³⁺	ML/M.L		10.671		(-9) ^v	(20) ¹
Ti(IV)	ML ₄ /ML ₂ .L ²	22.6 ^a				
Zr ⁴⁺	ML/M.L			14.3		
	vr. /v 5			13.9 ^f		
	ML ₅ /M.L ⁵	50.5 ^d		54.0 55.4		
	M ₃ L ₄ /M ³ .L ⁴ M ₄ L ₈ /M ⁴ .L ⁸	103.4 ^d		106.0		
	$^{\rm H}_4^{\rm L}_8^{\rm M}$.L $^{\rm M}_2^{\rm L}$ (s)	103.7	-52.0 ^j	-54.1		
		h	i i	. i	1	

a 25, 0.1; d 25°, 2.0; e 25°, 3.0; h 20°, 0.1; i 20°, 0.5; j 20°, 1.0; l 25°, 2.5; m 1-35°, 4.0; o 19°, 0; r 19-81°, 0; v 25-60°, 2.5

Metal ion Hf	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 13.7	ΔH 25°, 0	ΔS 25°, 0
	ML ₅ /M.L ⁵ M.L ⁴ /MO ₂ (s)			13.3 ^f 52.8 -54.8		
vo ²⁺	ML/M.L ML ₂ /M.L ² M ₂ L ₂ /M ² .L ²		7.9 ^e 18.31 ^e 28.35 ^e	8.3		
Tc0 ²⁺	M.L ² /ML ₂ (s) ML/M.L ML ₂ /M.L ²	12.6 ^h 24.2 ^h		-23.5		
0s0 ₄	ML/M.L ML ₂ /M.L ²		1.8 1.1			
Cu ⁺ Ag ⁺	M.L/(M ₂ 0) ^{0.5} (s) ML/M.L			-14.7 +0.1	-1.5 ⁱ	- 72
лg	ML ₂ /M.L ² M.L/(M ₂ 0) ^{0.5} (s)	-7.37 ^u -7.15 ^d	3.55 ^e -7.18 -7.42 ^e	2.0 3.99 -7.71 ±0.02	8.1	-8
Hg ₂ ²⁺	ML/M.L	8.7				
сн ₃ нg ⁺	ML/M.L M ₂ L/ML.M	9.24 ^a ±0.02 2.37 ^a			-8.5 ^h	14 ^a
T1 ⁺	ML/M.L ML ₂ /M.L ²	0.30	0.26 0.08 ^e (-0.8) ^e	0.79 -0.10 ^g	0.4 (1.8) ^e (6.8) ^e	5 (6) ^e (19) ^e
(CH ₃) ₂ T1	$M_2L_2/M^2.L^2$			1.05 1.23		
(CH ₃) ₃ Sn ⁴	ML/M.L M ₂ L/M ² .L M ₂ L ₂ /M ² .L ²	7.54 ^d 8.5 ^d 14.1 ^d	7.58 ^e			
(C ₂ H ₅) ₃ Sr	t ML/M.L		7.37 ^e			

a 25°, 0.1; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0, assuming HL/H.L = 14.4; g 25°, 5.0; h 20°, 0.1; i 19°, 0.25; u 25°, 0.3

Metal ion	Equilibrium n ⁺ ML/M.L	Log K 25°, 0.5 9.2 ^q	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
		7.7 ^q				
	b ⁺ ML/M.L					
Pd ²⁺	ML/M.L	12.4 ^a		13.0		
	$ML_{2}/M.L^{2}$	25.2 ^a		25.8		
	M.L ² /ML ₂ (s)			-28.5		
Zn ²⁺	ML/M.L			5.0 ±0.0	(0) ^r	(25)
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$		8.3 ^e	(11.1)		
	$ML_3^2/M.L^3$		13.7 ^e	13.6		
	ML ₄ /M.L ⁴		18.0 ^e	(14.8)		
	$M_2L/M^2.L$		5.5	5.0		
	M.L ² /ML ₂ (s,amo	orphous)	-14.82 ^q	-15.52	7.5 ^d	-43
	$\mathrm{M.L}^2/\mathrm{ML}_2^2(\mathrm{s},\beta_1)$)	-15.54 ^q	-16.24		
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s},\beta_2)$		-15.50 ^q	-16.20		
	$\mathrm{M.L}^{2}/\mathrm{ML}_{2}(\mathrm{s},\gamma)$		-15.56 ^q	-16.26		
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s},\delta)$		-15.45 ^q	-16.15		
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s},\varepsilon)$		-15.77 ^q	-16.46 ±0.04		
	$M.L^2/MO(s)$		-15.96 ^q	-16.66	5.4 ^d	-55
Cd^{2+}	ML/M.L		4.1 ^e ±0.2	3.9	0.0 ^e	19 ^e
	$ML_2/M.L^2$		7.7 ^e	7.7		
	$ML_3^2/M.L^3$		10.3 ^e			
	ML,/M.L ⁴		12.0 ^e	(8.7)		
	$M_2L/M^2,L$		5.08 ^e	4.6	-2.2 ^e	16 ^e
	$M_4^2L_4/M^4.L^4$		24.9 ^e	23.2	-11.8 ^e	74 ^e
	$\text{M.L}^{\frac{1}{2}}/\text{ML}_{2}(s,\beta)$		-14.29 ^e	-14.35	4.1	-52
	$\mathrm{M.L}^2/\mathrm{ML}_2^2(\mathrm{s},\gamma)$		-14.10 ^e			
Hg ²⁺	ML/M.L	10.0	10.1	10.6		
J	·		10.8 ^e ±0.2		-5.9 ^e	30 ^e
	$\mathrm{ML}_2/\mathrm{M.L}^2$	21.0 ±0.2	21.1 ±0.2	21.8 +0.1		
	2	21.2 ^a				
		21.6 ^d	22.2 ^e ±0.2		-16.4 ^e	47 ^e
	$ML_3/M.L^3$			20.9		
	M ₂ L/M ² .L		11.5 ^e	10.7	-10.0 ^e	19 ^e
	$M_3L_3/M^3.L^3$		36.1 ^e	35.6		
	M.L ² /MO(s,red))		-25.44	7.9 ^c	-93 ^e
a _{25°} 0.	1; ^c 25°, 1.0; ^c		25°. 3.0: ^q	25°. 0.2: ^r 15-4	2°. 0:	

Metal ion Ge ²⁺	Equilibrium ML ₂ /MO(s,brown)	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 -3.7	ΔH 25°, 0	ΔS 25°, 0
Sn ²⁺	ML/M.L		10.4 ^e ±0.1			
	M ₂ L ₂ /M ² .L ²		23.9 ^e			
	$M_3^2 L_4^2/M^3.L^4$		49.93 ^e ±0.03			
	$M.L^2/MO(s)$			-26.2		
(CH ₃) ₂ Sn	2+ ML/M.L	10.53 ^a	10.63 ^e			
3 2	ML ₂ /M.L ²	19.04 ^a	19.36 ^e			
	ML ₃ /M.L ³	29.8 ^a				
	ML ₄ /M.L ⁴	43.4 ^a				
	$M_2L_2/M^2.L^2$	22.6 ^a	23.8 ^e			
	$M_4L_6^2/M^4.L^6$	65.8 ^a	68.9 ^e			
(C ₂ H ₅) ₂ S ₁	n ²⁺ ML/M.L		11.25			
2 3 2			10.78 ^e			
	$ML_2/M.L^2$		20.31			
	$M_2L_2/M^2.L^2$		23.8			
	0 0		24.0 ^e			
	$M_2L_3/M^2.L^3$		34.1			
(C ₂ H ₇) ₂ Sr	n ²⁺ ML/M.L		11.26 ^e			
3 / 2	$M_2L_2/M^2.L^2$		24.8 ^e			
Pb ²⁺	ML/M.L	6.0 ^u	6.3 ^e	6.3		
	ML ₂ /M.L ²	10.3 ^u	10.9 ^e	10.9		
	$ML_3^2/M.L^3$	13.3 ^u	13.7 ^e	13.9		
	M ₂ L/M ² .L		7.9 ^e	7.6		
	$M_{2}L_{I}/M^{3}.L^{4}$	31.7 ^u	33.8 ^e	32.1	-25.9 ^e	63 ^e
	$M_LL_A/M^4.L^4$	35.1 ^u	37.5 ^e	(35.1)	-32.3 ^e	68 ^e
	M ₆ L ₈ /M ⁶ .L ⁸	67.4 ^u	71.3 ^e	68.4	-55.4 ^e	141 ^e
	$M.L^2/(M_2OL_2)^{0.5}$	s)		-14.9		
	M.L ² /MO(s,yellow))		-15.1		
	M.L ² /MO(s,red)			-15.3		
(CH ₃) ₂ Pb ²	2+ ML ₂ /M.L ²		12.82 ^e			
J	$ML_3/M.L^3$		14.0 ^e			
	$M_2L_2/M^2.L^2$		17.53 ^e			
	ML ₃ /M.L ³ M ₂ L ₂ /M ² .L ² M ₃ L ₄ /M ³ .L ⁴		32.4 ^e			
a 250 0	1; ^e 25°, 3.0; ^u	250 0 0				
25, 0.	1; 23, 3.0;	²⁵ , 0.3				

A. WATER

Metal _ion_	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Au(III)	ML ₄ /ML ₃ .L			2.3		
	ML ₅ /ML ₄ .L			0.6		
	ML ₃ /ML ₃ (s)			-5.5		
A1 ³⁺	ML/M.L	8.48 ^a +0.5	8.31	9.01 ±0.03	(-1) ^r	(40)
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	(17.6) ^a		(18.7)		
	ML ₃ /M.L ³	$(25.7)^{a}$		(27.0)		
	ML ₄ /M.L ⁴			33.0		
	M ₂ L ₂ /M ² .L ²		20.0	20.3	(-9) ^t	(60) ^c
	$M_3L_4/M^3.L^4$		42.5	42.1	(-19) ^t	(130) ^c
	$M_{13}^{0}_{4}L_{24}.H^{8}/M^{13}$	3.L ³²	336.5	349.2	(-156) ^t	(1020) ^c
	$M.L^3/ML_3(s,\alpha)$			-33.5		
Ga ³⁺	ML/M.L	10.8		11.4		
		10.9 ^a ±0.2				
	ML ₂ /M.L ²	21.5 ^a		22.1		
	ML ₃ /M.L ³	30.9 ^a		31.7		
	ML ₄ /M.L ⁴			39.4		
	M.L3/ML3(s,amo	rphous)		- 37		
	M.L ³ /MOL(s)			-39.1		
In ³⁺	ML/M.L	(10.5) ^a	9.76 ^e ±0.0	10.0	-8.2 ^e	17 ^e
	ML ₂ /M.L ²	$(20.3)^{a}$	19.6 ^e +0.5	20.2		
	$ML_3/M.L^3$	(29.3) ^a		29.6		
	ML ₄ /M.L ⁴			33.9		
	$M_3L_4/M^3.L^4$		47.4 ^e	50.2		
	$M.L^3/ML_3(s)$			-36.9		
	$M.L^{3}/(M_{2}^{3}O_{3})^{0.5}$	(s)		-35.9		
T1 ³⁺	ML/M.L	$(12.8)^{a}$	13.02 ^e ±0.02	13.4	(11) ^e	(100) ^e
	$ML_2/M.L^2$	(25.3) ^a	25.75 ^e ±0.02	26.4	(23) ^e	(200) ^e
	$ML_2/M.L^3$	(37.6) ^a		(38.7)		
	$ML_4/M.L^4$ $M.L^3/(M_2O_3)^{0.5}$		40.0 ^e	41.0		
	$M.L^{3}/(M_{2}O_{3})^{0.5}$	(s)	-45.0 ^e	-45.2		

^a 25°, 0.1; ^c 25°, 1.0; ^e 25°, 3.0; ^r 0-40°, 0; ^t 63-153°, 1.0 molal

Metal ion	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	∆S 25° , 0
Sb(III)	ML ₂ /ML.L(in HN		15.5 ^g			
	ML ₃ /ML ₂ .L	J		12.8		
	ML ₄ /ML ₃ .L			2.2		
	$M_2L_2/(ML_2)^2.H^2$	(in HC10 ₄)	0.7 ^g			
	$ML_2/H.(M_2O_3)^{0}$	(s,rhombic)	-3.06g	-3.09		
	$ML_2/H.(M_2O_3)^{0.5}$ $ML_2/H.(M_2O_3)^{0.5}$	(s,cubic)	-3.18 ^g			
Bi ³⁺	ML/M.L	12.36 ^a	12.60 ^e	12.9		
	мг ₃ /м.г ³	31.9 ^a		33.1		
	ML ₄ /ML ₃ .L		0.95	1.1		
	$M_{6}^{L_{12}/M^{6}.L^{12}}$		164.95			
	0 12		170.49 ^e			
	$M_9L_{20}/(M_6L_{12})^1$.5 _{.L} 2				
	<i>y</i> 20 0 12	23.9 ^a ±0.2				
	$^{\mathrm{M}_{9}^{\mathrm{L}}_{21}/\mathrm{M}_{9}^{\mathrm{L}}_{20}.\mathrm{L}}$	10.6^a ± 0.0				
	M ₉ L ₂₂ /M ₉ L ₂₁ .L	$11.1^a \pm 0.1$				
	$ML_2/(M_2O_3)^{0.5}$	s,α)	-5.34	-5.4		

^a 25°, 0.1; ^e 25°, 3.0; ^g 25°, 5.0, assuming HL/H.L = 14.6

Bibliography:

H ⁺	17LB,23LR,290,30R,33HH,36W,55A,57AG,	La ³⁺	60AS,61BC,66FK,76BM
	57IL,58A,59L,60CO,60NM,63GL,63HIa,63VS,		59AS,64BN,76BM
	64FB,67A,67AK,67AKa,67EHP,67GL,67VLa,	Pr ³⁺ ,Lu	³⁺ 63A,66FK
	68GH,69VL,70G0,72CB,72CK,72JW,720,73DH,	Nd ³⁺	59TG,63A,66FK,73BL,76BM
	74BA,74SM,74SS	Sm ³⁺	60ASa,66FK
Li ⁺ -	к ⁺ 640,76ВМ	Eu ³⁺ ,Tb	³⁺ ,Ho ³⁺ 61AE,66FK
Be ²⁺	56GG,56KS,60SG,61COa,62COa,63FS,64HS,	Gd ³⁺	63A,66FK,74NBa
	67BT,67MB,670K,68LC,68PG,69SW,73CG,	Dy ³⁺	60ASb,66FK
	76BM	Er ³⁺ ,Yb	3+ 60Aa,66FK
Mg ²⁺	29K,48SD,61PB,63FS,63Hb,63L,67YM,76BM	Tm ³⁺	66FK
Ca ²⁺	34K,49BPa,51DH,53BG,54GMa,56BPa,59BBC,	Pu ³⁺	49KD,69DH
	60G,61CO,61PB,63FS,65HW,76BM	Am ³⁺ -Cf	3+ 69DH,69GM
Sr ²⁺	52CM,54GMa,61CO,67H,76BM	Ce ⁴⁺	51HR,660S,67D,74AM
Ba ²⁺	49BPa,54GMa,61CO,65HWb,67H,76BM	Th ⁴⁺	54KH,61KB,65BM,68HS,76BM
Sc ³⁺	56BK,66A,68AN,71AO,76BM	Pa ⁴⁺	65G,68Ga,76BM
_Y 3+	60AS,64BC,66FK,76BM	U ⁴⁺	50KN,55KN,56DZ,59SH,64MW

```
Np<sup>4+</sup>
                                                                   (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>Sn<sup>+</sup>, (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>Pb<sup>+</sup>
Pd<sup>2+</sup> 67IF
         59SHC, 76BM
Pu<sup>4+</sup>
         49H, 50KN, 60RK, 65Pa
                                                                   Zn<sup>2+</sup>
Pa(V) 66Ga, 68Gb, 76BM
                                                                             53SL,55SL,60DF,62Bb,62Pb,62SA,63PE,
UO<sub>2</sub>2+
         54AHS, 56DZ, 60GR, 62BM, 62Sc, 63DH, 63DS,
                                                                             63SA,64SA,65Sd,72DS,76BM
                                                                   Cd<sup>2+</sup>
         63HR, 63RJ, 68ASa, 69VO, 76BM
                                                                             59Sf,59SLa,62BC,62DL,63Sd,64SM,
Np0<sub>2</sub>2+
           72CMT, 76BM
                                                                             67AKa, 76BM
                                                                   Hg 2+
Pu0<sub>2</sub>
           71S,72CMP,76BM
                                                                             38GH, 52HS, 54G, 58ASP, 59SL, 61AH, 61DT,
Mn<sup>2+</sup>
         41FS, 42Na, 52CC, 62Pa, 68FB
                                                                             62A,63FS,67AK,70CGM,76BM
Fe<sup>2+</sup>
                                                                   Ge<sup>2+</sup>
                                                                             52JL
         53H,53LK,56GW,76BM
Co<sup>2+</sup>
                                                                   Sn<sup>2+</sup>
         42Nb, 50GG, 62BA, 63BPa, 63SD, 67CB, 70BZ,
                                                                             41GH, 42GL, 59T, 74G
                                                                   (CH_3)_2 Sn^{2+}
                                                                                    64TY,64TYa,65TF
         70GHa, 76BM
Ni<sup>2+</sup>
                                                                   (C_2H_5)_2Sn^{2+}
         49GG,52CC,63SD,64P,65BLa,65BLS,66BI,
                                                                                      66TF,68AC
                                                                   (C_3H_7)_2Sn^{2+}
         68A,73KO,76BM
                                                                                      66TF
Cu<sup>2+</sup>
         53SL,56B,60P,64Wa,65SAH,68AP,70GH,76BM
                                                                             39GV,60C0,600,63C0,62P0,76BM
Ti<sup>3+</sup>
                                                                   (CH<sub>3</sub>)<sub>2</sub>Pb<sup>2+</sup>
                                                                                    66FT
         62PF,68PGa,70KB
v<sup>3+</sup>
         50FG,53Ga,63P,68MB,76BM
                                                                   Au(III)
                                                                                38JL
Cr<sup>3+</sup>
                                                                   A1<sup>3+</sup>
         10B, 27BK, 54W, 58BJ, 63TU, 64SM, 64Wa, 67SKV,
                                                                             54ST,55Ka,56Kf,62FP,65Ab,69NN,71MB,
         68ML,73MS
                                                                             71VP,76BM
Mn 3+
                                                                   Ga<sup>3+</sup>
         67WD
                                                                             52WT,57F,68NA,73BN
Fe<sup>3+</sup>
                                                                   In<sup>3+</sup>
         34BH, 41Ba, 51BB, 51SV, 52T, 52WT, 53Ha, 54CT,
                                                                             56Ba, 56RR, 59ASa, 61Sc, 63FS, 69BNR,
         55MV, 56CH, 57BS, 57Ma, 58La, 59P, 60RS, 62Sd,
                                                                             72Fa,76BM
                                                                   T1<sup>3+</sup>
         63FS,63PL,63SM,68AS,69F,72S
                                                                             51Sa,53B,58S,61RW,64KY,69BNT,73KK,
Co<sup>3+</sup>
         53Se,66CN
                                                                             76BM
Rh<sup>3+</sup>
         66SHa
                                                                   Sb(III)
                                                                                52GG,74AB
                                                                   Ri 3+
                                                                             570,590,60Tb,71Ba,72DN,76BM
Ti(IV)
          76BM
7.r<sup>4+</sup>
         56ZC,61PM,69NM,73Na
                                                                   Other references:
                                                                                               00A,00D,00KH,00L,00N,
Hf<sup>4+</sup>
         62Pa,71NAa,73Na
                                                                             01L,02NK,02S,03AC,03B,05G,05SA,06B,
vo 2+
         53Ga,55RR,66Ba
                                                                             06GE,07K,07L,07P,08B,08D,08M,09A,
Tc0<sup>2+</sup>
         69GK
                                                                             09LB,09S,10A,10B,10NK,10W,13K,16V,
Cu<sup>+</sup>
         53SL,63FS,76BM
                                                                             17K, 19L, 20F, 21G, 21LF, 22AR, 23B, 23H,
Ag<sup>+</sup>
         27L, 37PS, 60AD, 60AHS, 60BH, 60BS, 60NM
                                                                             23K,24JG,24JJ,24RK,24S,24Ba,25G,25H
н<sub>2</sub>2+
          52FH
                                                                             25Sa, 25W, 25WR, 26Ba, 27Da, 27DJ, 27S,
CH<sub>2</sub>Hg<sup>+</sup>
           65SS,66GD,73LR,74A
                                                                             28BV, 28FM, 28Pa, 28Pb, 28RS, 29B, 29BU,
         53BG,56BP,70KY,73KK,76BM
                                                                             29S, 29T, 30E, 30NB, 30R, 31KE, 31KK, 31P,
(CH<sub>2</sub>)<sub>2</sub>T1<sup>+</sup>
               74LP
                                                                             32BR, 32E, 32IS, 32M, 32RF, 33BW, 33FM, 33J,
              66TF,68AC
                                                                             33KA,34Bb,34BH,34La,34M,35D,36H,
(C_2H_5)_3Sn^+
                 64TY
                                                                             36HD, 36MJ, 36SE, 36SH, 37C, 37CB, 37P,
```

Other references: 37Q,38CF,38LJ,380,39Ga, 39GH, 39H, 39L, 40BC, 41K, 41Ma, 42DM, 42H, 42MR, 42N, 42RS, 43B, 43N, 43P, 43SK, 44F, 44La, 44MK, 45P,46M,47GD,47HK,47M,48F,48GF,48HS,48KA, 48SP,49A,49B,49EP,49KDa,49KK,49KN,49L, 59NT, 490S, 49S, 50A, 50AF, 50BQ, 50BW, 50ET, 50MK, 51Ab, 51D, 51Da, 51DB, 51DC, 51FR, 51HD, 51Mc,51MF,51PN,51Q,51S,51V,52B,52GW, 52HH, 52J, 52Ja, 52KF, 52KH, 52KP, 52Lb, 52Se, 52VR, 53Ea, 53IY, 53KF, 53KP, 53M, 53MK, 53RS, 53VT,53WS,54AH,54BBS,54D,54F,54FH,54FSa, 54G,54GL,54H,54KP,54M,54NR,54Ra,55B,55BS, 55DC,55GL,55Kc,55MS,55PH,55PK,55R,55SC, 55V,55WW,55ZD,56C,56CK,56DP,56DZd,56GWb, 56H, 56IA, 56J, 56JP, 56Kd, 56Ke, 56KF, 56KSa, 560B,56PC,56SP,56SW,57B,57BG,57Ca,57GL, 57GW, 57HW, 57Kb, 57Kc, 57Kd, 57MO, 57MT, 57P, 57PP, 57R, 57TE, 57TMa, 57ZM, 58Ab, 58AS, 58B, 58BB,58Cb,58GTZ,58K,58KG,58MG,58MP,58TG, 58VP, 58VPa, 58VRa, 58VS, 59A, 59ASb, 59ASc,, 59BE,59EG,59GS,59HS,59HSa,59I,59KB, 59KGa, 59KL, 59MA, 59MV, 590H, 59W, 60Ba, 60BB, 60BK,60BN,60Cc,60F,60Gb,60GB,60JP,60S, 60SWa,61A,61B,61BL,61BP,61Ka,61KBa,61KT, 61MN,61Nc,61P,61PP,61PS,61RK,61RL,61WL, 62B,62DG,62IN,62KB,62KB,62La,62LG,62M, 62N,62PPC,62RB,62RF,62BA,62BG,63BF,63BJ, 63DD,63Hd,63Kb,63KBa,63KS,63LC,63PS,63SA, 63SB,64Aa,64Bb,63BSa,63Ca,64DSa,64FC, 64G,64H,64HSa,64KB,64LD,64NK,64NL,64Pa, 64PH,64Sa,64SAa,64SMa,64ST,64Ta,65AKP, 65BS,65F,65Ga,65GA,65GCa,65H,65KY,65NT, 65RD,65Sf,65SAP,65SSa,65ZS,66Ba,66BB, 66BM,66HF,66KA,66KS,660P,66Sa,66SI, 66SWa, 67AKE, 67Bc, 67C, 67GK, 67GP, 67GS, 67GSb, 67H, 67HC, 67La, 67LK, 67MP, 67PB, 67SI, 67SSd, 68DM, 68GS, 68HC, 68HM, 68KA, 68MG, 68RR,68SF,68SM,68SR,68WS,68ZL,68ZP,69BS,

69CR,69FT,69GA,69H,69LS,69M,69MGa,69MKa,69Nb,69RC,69RS,69SMK,69VB,69WS,70C,70EL,70GH,70HR,70IE,70Ld,70MS,70NK,700E,70SB,70SK,70VT,71BZ,71DB,71GD,71HR,711B,71KP,71KS,71Ma,71Mb,71MKK,71NA,72CB,72HH,72MB,72MG,73MV,720K,72SK,72US,73AK,73Ba,73BF,73FJ,73G,73GG,73GT,73HHb,73RR,73SB,74HI,74KY,74NB,74RN,74VZ

$^{\mathrm{H}_{3}\mathrm{O}_{4}\mathrm{V}}$		Hydrogen vanadate	(vanadic	acid)		H ₃ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 13.0 13.5 ^h	Log K 25°, 1.0	Log K 25°, 0 14.3 13.2 ^e	ΔH 25°, 0	∆S 25°, 0
	H ₂ L/HL.H	7.85 8.23 ^h	8.04 ^j 8.31 ^{h,r}	8.5		
	H ₃ L/H ₂ L.H VO ₂ /H ₃ L.H V ₂ O ₇ /(HL) ²	3.78 3.20 0.4		4.0 3.3 0.6		
	$HV_2O_7/(HL)^2.H$	10.58		11.0 10.93 ^e		
	V ₃ O ₉ /(HL) ³ .H ³ V ₄ O ₁₂ /(HL) ⁴ .H ⁴ V ₄ O ₁₂ /V ₄ O ₁₃ .H ² V ₃ O ₉ /(H ₂ L) ³ V ₄ O ₁₂ /(H ₂ L) ⁴ HV ₆ O ₁₇ /(H ₂ L) ⁶ V ₁₀ O ₂₇ /(H ₂ L) ¹⁰	8.9 7.14 ^s 10.10 ^s 13.04 ^s .H ⁶ 61.8 ^s	31.6 ^e	31.8		
	V ₂ /H. (V ₂ O ₅) V ₁₀ O ₂₇ . H ¹⁴ /(VO ₂ V ₁₀ O ₂₇ /HV ₁₀ O ₂₈	(s) 10 2) 10 4.34 ^h 4.45 ^{h,r} 4.39 ^s	4.5 ^{j,r}	-0.68 -5.5 ^e 3.5 ^e	4.2	11
	HV ₁₀ O ₂₈ /V ₁₀ O ₂₈	7.52 ^{h,r}	5.8 6.06 ^j 7.6 ^{j,r}			
Li ⁺	MV ₁₀ O ₂₈ /M.V ₁₀ O ₂₈ /M ₂ V ₁₀ O ₂₈ /MV ₁₀ O ₂₈ /M.HV ₁	28.M 0.6 ^{h,r}				

 $^{^{\}rm e}$ 25°, 3.0; $^{\rm h}$ 20°, 0.1; $^{\rm j}$ 20°, 1.0; $^{\rm r}$ (CH $_3$) $_4$ NC1 used as background electrolyte; $^{\rm s}$ 40°, 0.5

Hydrogen vanadate (continued)

Metal _ion_	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Na ⁺	MHL/M.HL		0.30 ^{j,r}			
	$^{MV}_{10}^{0}_{29}^{0}$ $^{M.}_{10}^{0}_{28}^{0}$ $^{M2}_{10}^{0}_{28}$ $^{M2}_{10}^{0}_{28}$ $^{M3}_{10}^{0}_{28}$	1.6 ^{h,r}				
	MHV ₁₀ 0 ₂₈ /M.HV ₁₀ 0 ₂₈	0.7 ^{h,r}				
к ⁺	MHL/M.HL		0.04 ^{j,r}			
	$^{\mathrm{MV}}{_{10}}^{\mathrm{O}}{_{28}}^{/\mathrm{M.V}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{M}}$ $^{\mathrm{M}}{_{2}}^{\mathrm{V}}{_{10}}^{\mathrm{O}}{_{28}}^{/\mathrm{MV}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{M}}$ $^{\mathrm{MHV}}{_{10}}^{\mathrm{O}}{_{28}}^{/\mathrm{M.HV}}{_{10}}^{\mathrm{O}}{_{28}}$	2.4 ^{h,r} 1.0 ^{h,r} 1.4 ^{h,r}				
Rb ⁺	$^{\mathrm{MV}}{_{10}}^{\mathrm{O}}{_{28}}^{/\mathrm{M.V}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{MMV}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{MHV}}$	2.8 ^{h,r} 1.8 ^{h,r}				
Cs ⁺	$^{\mathrm{MV}}{_{10}}^{\mathrm{O}}{_{28}}^{/\mathrm{M.V}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{MMV}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{M.HV}}{_{10}}^{\mathrm{O}}{_{28}}^{\mathrm{O}}$	3.18 ^{h,r} 2.20 ^{h,r}				
NH ₄ ⁺	M.H ₂ L/MVO ₃ (s)			-3.5	7.2	8

 $^{^{\}rm h}$ 20°, 0.1; $^{\rm j}$ 20°, 1.0; $^{\rm r}$ (CH $_3$) $_4$ NC1 used as background electrolyte.

Bibliography:

H⁺ 55LC,56RRa,58NL,59IB,60BI,63SG,64BI, Other references: 46SC,50SSa,56TS,57La,
64DS,66B,66BSW,76BM 58SPa,59NQ,60BC,60Ca,60Sa,63SZ,64DG,
Li⁺-Cs⁺ 63SG 64NH,64YK,65PSZ,66I,67TK,73R,74IG,
NH₄ 74VKL 74IGG

${\rm H_2O_4Cr}$		Hydrogen o	chromate (ch	romic acid)		H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 5.81	Log K 25°, 1.0 5.74	Log K 25°, 0 6.51 ±0.02	ΔH 25°, 0 0.7	ΔS 25°, 0 32
	H ₂ L/HL.H	6.09 ^a ±0.04 -0.7 ⁱ -0.6 ^h	5.90 ^e -0.7 ±0.1 -0.6 ^e	-0.2°	1.1 ^e (9) ^r	31 ^e (27) ^c
	Cr ₂ 0 ₇ /(HL) ²	1.84 1.72 ^a ±0.02	1.97 ±0.03 2.17 ^e ±0.03	1.53 ±0.02	-4.7 -4.8 ^e	-9 -6 ^e
K ⁺	ML/M.L			(0.57) ⁿ		
Ba ²⁺	M.L/ML(s)	-8.51 -8.96 ^a	-8.39	-9.67 ±0.01	(8) ^s	(-17)
Th ⁴⁺	ML.H/M.HL	0.67 ^t			(4) ^u	(15)
NpO_2^{2+}	ML.H/M.HL	1.81 ^t			(1) ^u	(12)
Cu ²⁺	M.L/ML(s)			-5.44		
Fe ³⁺	ML.H/M.HL	0.28 ^t			(3) ^u	(12)
Ag ⁺	$M^2.L/M_2L(s)$			-11.92 ±0.03	(15) ^v	(-4)
Hg ₂ ²⁺	M.L/ML(s)			-8.70		
T1 ⁺	M ² .L/M ₂ L(s)			-12.01		

a 25°, 0.1; e 25°, 3.0; h 20°, 0.1; i 20°, 0.5; n 18°, 0; o 20°, 0; r 15-35°, 1.0; s 18-28°, 0; t 25°, 0.2; u 1-25°, 0.2; v 20-40°, 0

Bibliography:

Ag

H⁺ 34NR, 53TK, 55DP, 58Hb, 58HN, 58SM, 60BC, 61Tb,62Sa,64HR,64T,65La,66TJ,67LB, 68HSa,68LJ,70Lc,72AJ,72LL κ^+ 31BR 43BR ,NpO₂²⁺,Fe³⁺

35CM,41M,54Pa

66MB,67JJ,68PW,73AB

29B

$^{\mathrm{H}}2^{\mathrm{O}}4^{\mathrm{Mo}}$		Hydrogen mol	ybdate (mol	ybdic acid)		H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 20°, 0.1	Log K 25°, 1.0 3.55	Log K 25°, 0 4.24°	ΔH 25°, 0	ΔS 25°, 0
	H ₂ L/H ² .L	7.75	3.89 ^e 7.20 7.50 ^e	8.24°	14 ^e	65 ^e
	Mo ₇ O ₂₄ /H ⁸ .L ⁷ HMo ₇ O ₂₄ /Mo ₇ O ₂₄ .	н	52.81 57.74 ^e 4.57		-56.0 ^e	76 ^e
	H ₂ Mo ₇ O ₂₄ /HMo ₇ O ₂		4.40 ^e 3.63		2.6 ^e	29 ^e
	H ₃ Mo ₇ O ₂₄ /H ₂ Mo ₇ O	24·H	3.54 ^e 2.38 2.53 ^e		0.8 ^e	19 ^e
0.	M ₁₉ O ₅₉ /H ³⁴ .L ¹⁹ H ² .L/MoO ₃ (s)		196.3 ^e	-12.1		
Ca ²⁺	M.L/ML(s) M ² .L/M ₂ L(s)			(-8.0) -11.55	(-0.7) 12.6	(-39) -11
Pb ²⁺	M.L/ML(s)	_		(-13.0)	(11.9)	(-20)

e 25°, 3.0; ° 20°, 0

Bibliography:

H⁺ 58SM,63RC,63AA,64SS,68ASb,68SS,76BM Ca²⁺,Pb²⁺ 58MH Ag⁺ 54Pb,56MH

Other references: 31N,34BG,53PH,54IK,
56DZc,57DB,58SS,58YA,60Da,61Sd,
61Ta,63CK,63F,63LZ,63SBa,63YR,65C,
65CO,67Ab,67HS,67VDa,68DK,69BW,
74JJ

$^{\mathrm{H}}2^{\mathrm{O}}4^{\mathrm{W}}$		Hydrogen w	olframate	(tungstic acid)		H ₂ L
Metal ion	<u>Equilibrium</u>	Log K 20°, 0.1	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
ion H	HL/H.L	3.5				
	н ₂ L/н ² .L	8.1	11.30 ^e			
	нw ₆ o ₂₁ /н ⁷ . L ⁶				-64.5	
	0 21		60.76 ^e		-62.5 ^e	68 ^e
	нw ₆ 0 ₂₁ /w ₆ 0 ₂₁ .н		8.30 ^e		-5 ^e	21 ^e
	W ₁₂ O ₄₁ /H ¹⁴ .L ¹²		123.2 ^e		127 ^e	138 ^e
	HW ₁₂ O ₄₁ /W ₁₂ O ₄₁ .H	6.28	5.0 ^j			
	H ₂ W ₁₂ O ₄₁ /HW ₁₂ O ₄₁ .	Н				
	- 12 11 12 12	5.27	4.3 ^j			
	H ₃ W ₁₂ O ₄₁ /H ₂ W ₁₂ O ₄₁	. Н				
		3.6				
	H ² .L/WO ₃ (s)			-14.05		
	H ² .L/H ₂ WO ₄ (s)				13.0	
Ag ⁺	M ² .L/M ₂ L(s)			-11.26	14.7	-2

e 25°, 3.0; ^j 20°, 1.0

Bibliography:

H⁺ 56DZa,58GH,58SM,62DK,62SG,69A,74AS Ag⁺ 54Pc,58GH

Other references: 33LH,34BG,58F,60Cb,64A, 64YP,65SP,65YR,69NP,71TM

ReO₄

O₄Re Rhenate (VII) ion

L-

 Metal
 Log K

 ion
 Equilibrium
 25°, 0

 K⁺
 ML/M.L
 (0.72)

Bibliography: 48M

Other references: 60BC,63SK,660A,700P

 $H_4^{Fe(CN)}_6$

C6H4N6F	4 ^N 6 ^{Fe} <u>Hydrogen hexacyanoferrate (II</u>)					$^{\rm H_4L}$
Metal <u>ion</u>	Equilibrium	Log K 25°, 0.2	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
H ⁺	HL/H.L	3.25		4.30 ±0.05	0.5	21
	H ₂ L/HL.H	1.79		2.6 ±0.4	1	15
K ⁺	ML/M.L	1.5 ^a		2.34 ±0.04	1.0	14
Mg ²⁺	ML/M.L			3.8		
Ca ²⁺	ML/M.L			3.8 -0.2	2.1 ^a	24
	M ₂ L/ML.M			1.4		
Ba ²⁺	ML/M.L			3.8		
La ³⁺	ML/M.L			5.1		
Ag ⁺	$M^4.L/M_4L(s)$			-44.07		
T1 ⁺	ML/M.L			3.00	(1) ^r	(17)
			0.82 ^e		-1.8 ^e	-2 ^e
Zn ²⁺	$M^2.L/M_2L(s)$			-15.68		
	M ² .L/M ₂ L(s)			-17.38		
Pb ²⁺	$M^2.L/M_2L(s)$			-18.02		
		accordances				

^a 25°, 0.1; ^e 25°, 3.0; ^r 25-50°, 0

Bibliography:

H⁺ 35KT,41NZ,57HH,67HI K⁺ 37D,57CP,66CL,67EG Mg²⁺,Ba²⁺ 57CP Ca²⁺ 49Ja,74HI La³⁺ 58PW Ag⁺,Zn²⁺-Pb²⁺ 64RP T1⁺ 58PW,67MKa

Other references: 34R,38PO,41LK,53BG,56TG, 57BLa,57BP,58BS,58DT,59BBD,59BS, 59BSB,60BR,61BS,62BB,62JE,66MD,66NS, 66SNa,68LM,69NS,70Bb

Fe(CN)₆³⁻

$^{\mathrm{C}}6^{\mathrm{N}}6^{\mathrm{Fe}^{\mathrm{3}}}$	Hexacyanoferrate (III) ion						
Metal ion H	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0 -0.3 ^e	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0	
к+	ML/M.L	-0.24 0.85 ^a	0.18 ^d 0.30 ^e	1.43 ±0.03	0.5	8	
Cs ⁺	ML/M.L		0.52 ^e				
Mg ²⁺	ML/M.L		0.04 ^e	2.79			
Ca ²⁺	ML/M.L		0.15 ^e	2.83 -0.2	1.6ª	18	
Sr ²⁺	ML/M.L		0.23 ^e	2.85			
Ba ²⁺	ML/M.L			2.88			
La ³⁺	ML/M.L			3.74 ±0.00	0.9 +1	20	
Pr ³⁺	ML/M.L			3.6	0.9	19	
Nd ³⁺	ML/M.L			3.74	0.8	20	
Sm ³⁺	ML/M.L			3.7	0.9	20	
Eu ³⁺	ML/M.L			3.7	1.0	20	
Gd ³⁺	ML/M.L			3.74	1.0	20	
Tb 3+	ML/M.L			3.8	0.9	20	
Dy ³⁺	ML/M.L			3.7	1.0	20	
Но ³⁺	ML/M.L			3.7	1.1	20	
Er ³⁺	ML/M.L			3.7	1.0	20	
Tm ³⁺	ML/M.L			3.7	1.1	20	
Yb ³⁺	ML/M.L			3.7	1.0	20	
Lu ³⁺	ML/M.L			3.7	1.0	20	
Fe ³⁺	ML/M.L	1.55 ±0.01	1.32				

a 25°, 0.1; d 25°, 2.0; e 25°, 3.0

B. TRANSITION METAL LIGANDS

Hexacyanoferrate (III) ion continued)

Bibliography:
Na⁺,Cs⁺ 67RM
K⁺ 49M,66CL,67EG,67RM
Mg²⁺-Ba²⁺ 52GMa,67RM,74HI
La³⁺-Lu³⁺ 48DJ,51DJ,63DK,72SC
Fe³⁺ 51ID,67SSb

Other references: 45D,50JMb,53BP,59GR, 61PF,62BBa,62JE,63LM,63HPS,65LW,66MR

II. INORGANIC LIGANDS B. TRANSITION METAL LIGANDS

$$Co(CN)_6^{3}$$

Hexacyanocobaltate (III) ion

_L3-

Metal ion	<u>Equilibrium</u>	Log K 20°, 0.1	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
ion K ⁺	ML/M.L		1.22	2	12
La ³⁺	ML/M.L		3.75 ±0.02	1.3	22
Ag ⁺	M ³ .L/M ₃ L(s)		-25.41		
Hg ₂ ²⁺	$M^3.L^2/M_3L_2(s)$		-36.72		
CH ₃ Hg ⁺	ML/M.L	4.15			
-	M ₂ L/ML.M	3.50			
Cd ²⁺	ML/M.L		4.17		

Bibliography:

Other references: 59DT,60A,62AY

B(OH)₃

H ₃ O ₃ B		Hydrogen	borate	(<u>boric acid</u>)		HL
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 8.97 ^a ±0.02	Log K 25°, 1.0 8.85 ^r	Log K 25°, 0 9.236 ±0.001	ΔH 25°, 0 -3.4 ±0.0	ΔS 25°, 0 31
	$B_{3}O_{3}(OH)_{4}/H^{2}.L^{3}$ $B_{3}O_{3}(OH)_{5}/H.L^{3}$ $B_{4}O_{5}(OH)_{4}/H^{2}.L^{4}$ $B_{5}O_{6}(OH)_{4}/H^{4}.L^{5}$	8.94 ^d ±0.07 19.62 ^a 38.1 ^a	8.97 ^e 20.07 ^e 10.4 ^e 20.9 ^e 38.2 ^e		-3.9 ^d	
Ag ⁺	ML/M.L M.(HL) ² /H.MHL ₂ (s)		0.45 ^e 4.5 ^e			

^a 25°, 0.1; ^d 25°, 2.0; ^e 25°, 3.0; ^r 25°, 0.7

Bibliography:

H⁺ 340,350,430K,44MD,57Ab,62I,63I,67Bb, 73BR,73DH Ag⁺ 70HS

Other references: OOWC,07L,09L,20K,22M, 24PW,27KB,30HK,30HKa,31FA,32BR,34BY, 38T,49KL,51Sb,53Ea,55L,57Ac,57La, 59D,59Sd,61Sb,61SB,63FU,63Sa,65Se, 66KG,67MN,68GL,72MBS,74BM 26

CHN		Hydrogen cya	nide (hydro	ocyanic acid)		HL
Metal ion +	Equilibrium HL/H.L	Log K 25°, 0.5 9.01 ^a 9.14 ^h	Log K 25°, 1.0 8.95 9.48 ^e	Log K 25°, 0 9.21 ±0.01	ΔH 25°, 0 -10.43 10.9 ^h -9.57 ^r	ΔS 25°, 0 7.2 5 ^a
Fe ²⁺	ML ₆ /M.L ⁶ ML ₅ /M.L ⁵ MHL ₅ /ML ₅ .H			35.4	-85.8 -61.5 -32.0	-126
Ni ²⁺	ML/M.L ML ₄ /M.L ⁴ MHL ₄ /ML ₄ .H MH ₂ L ₄ /MHL ₄ .H	30.5 ^a 5.4 ^a 4.5 ^a 2.6 ^a	7.03 ^e 31.06 ^e	30.22 ±0.1	-43.2	-7
Fe ³⁺	MH ₃ L ₄ /MH ₂ L ₄ .H ML ₆ /M.L ⁶ ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	2.0		43.6 16.26 21.6 ±0.1 23.1	-70.1 -29.1 -40.2 -51.4	-36 -23 -36 -67
Ag	ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ MOHL/M.OH.L M.L/ML(s)		20.0 20.3 ^s 20.8 ^s 12.7 -15.4	20.48 21.4 13.2 -15.66	-32.9 -33.5	-17 -13
2+ Hg ₂ CH ₃ Hg ⁺	M.L ² /ML ₂ (s) ML/M.L	13.8 ^a		-39.3	-22.1 ^h	-11 ^a
Pd ²⁺ Zn ²⁺	ML ₄ /M.L ⁴ ML ₅ /M.L ⁵ ML/M.L		5.3 ^e	42.4 45.3	-92.3 -92.5	-116 -103
ZII	ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ M.L ² /ML ₂ (s)		11.7 ^e 16.7 ^e 21.6 ^e -15.5 ^e	11.07 16.05 19.62	-11.0 -20.2 -27.9	14 7 -3

a 25°, 0.1; e 25°, 3.0; h 20°, 0.1; r 40°, 0; s 30°, 1.0

D. GROUP IV LIGANDS

Hydrogen cyanide (continued)

Metal ion Cd ²⁺	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Cd ²⁺	ML/M.L			6.01	-7.3	3
			5.55 ^e ±0.07		-7.4 ^e	1 ^e
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$			11.12	-13.0	7
	2		10.7 ^e ±0.1		-15.1 ^e	-2 ^e
	ML ₃ /M.L ³			15.65	-21.6	-1
	3		15.5^{e} ±0.3		-22.2 ^e	-4 ^e
	ML ₄ /M.L ⁴			17.92	-26.7	-8
	4		19.0 ^e ±0.2		-29.3 ^e	-11 ^e
Hg ²⁺	ML/M.L	18.00 ^h		17.00	-23.2	0
	ML ₂ /M.L ²	34.71 ^h	33.9 ^t	32.75	-46.6	-6
	$ML_3^2/M.L^3$	38.54 ^h	38.1 ^t	36.31	-53.4	-13
	ML ₄ /M.L ⁴	41.5 ^h	40.6 ^t	38.97	-59.7	-22
	MOHL/M.OH.L		28.9 ^t			

e 25°, 3.0; h 20°, 0.1; t 30°, 2.0

Bibliography:

57A,59Ab,62IC,65SS,66BK,70CJ,71P Fe^{2+} , Fe^{3+} 65WC Co²⁺ 68IW Ni²⁺ 59FSa,63CI,68KM,71IJ,71PH,74P Cu⁺ 67IJ,71PK,74KH Ag 56KSa,65ZP,67AD,67IJ,72GC Hg₂²⁺ 29B CH₃Hg⁺ 65SS Pd²⁺ 67IW Zn²⁺ 65IC,71IJ,71P Cd²⁺ 44L,66Gb,71IJ,71P Hg²⁺ 57A,58NC,59NH,65CI,71IJ

Other references: 00M,00T,00WC,25HW,30RH, 31BDa,32Br,47R,50H,50VK,53S,54W,55F, 56N,56PJ,56SM,57TM,58SWa,60MJ,61Mb, 61MB,63AS,63PB,64GH,64VHa,65FK,67BP, 67ZF,68AD,68EP,69KH,71DG,72CD,72HF, 72P,74Kc HNCO

CHON		Hydrogen cyanate	(cyanic acid)		HL
Metal ion H ⁺ Co ²⁺ Ag ⁺	Equilibrium HL/H.L ML ₄ /M.L ⁴ ML ₂ /M.L ² M.L/ML(s)	Log K 27°, 1.5	Log K 25°, 0 3.48 ±0.02 5.00° -6.64°	ΔH 25°, 0 -2.0	ΔS 25°, 0 9
r 30°,	0; ^s 19°, 0				
э_	graphy: 8C,58J,58M 6CCV		Ag 30BH,54C Other references:	56Aa,66BK	

HNCS

CHNS		Hydrogen thi	ocyanate	(thiocyanic acid)	1	HL
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 0.9 ±0.1	ΔH 25°, 0	ΔS 25°, 0
Be ²⁺	ML/M.L ML ₂ /M.L ²			-0.16 ^f -0.6 ^f		
Mg ²⁺	ML/M.L		-0.9 ^e			
Sc ³⁺	ML/M.L	0.20 ⁱ		0.8 ^m		
_Y 3+	ML/M.L	$(-0.07)^{i}$				
La ³⁺	ML/M.L		0.12 ^r	0.24 ^g		
Ce ³⁺	ML/M.L			0.59 ^g		
Sm ³⁺	ML/M.L	0.09 ⁱ				
Eu ³⁺	ML/M.L		0.15 ^r	0.7		
				$0.38^{8} \pm 0.06$	(1) ^s	(5) ^g
Gd ³⁺	ML/M.L	0.21 ⁱ				
Tb ³⁺	ML/M.L		0.23 ^r			
Dy ³⁺	ML/M.L	0.12 ⁱ				
Er ³⁺	ML/M.L	0.16 ⁱ				
Lu ³⁺	ML/M.L		0.20 ^r	0.45 ^g		
Ac ³⁺	ML/M.L		0.05			
Pu ³⁺	ML/M.L		0.46			
Am ³⁺	ML/M.L		0.43 ±0.07	0.59 ^g ±0.2	(3) ^s	(12) ^g
Cm ³⁺	ML/M.L		0.44 ±0.01	0.61 ^g	(3) ^s	(12) ^g
Bk ³⁺	ML/M.L		0.49	(0.86) ^g	(1) ^s	(6) ^g
Cf ³⁺	ML/M.L		0.57			
Es ³⁺	ML/M.L		0.56			
Th 4+	ML/M.L		1.08			
	$\mathrm{ML}_2/\mathrm{M.L}^2$		1.78			
	£				_	

e 25°, 3.0; f 25°, 4.0; g 25°, 4.0; i 20°, 0.6; m 20°, 4.0; r 30°, 1.0; s 10-55°, 5.0

Hydrogen thiocyanate (continued)

Metal ion U ⁴⁺	Equilibrium ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	Log K 25°, 0.5 1.49 ^d 2.11 ^d	Log K 25°, 1.0 1.49 ^j 1.95 ^j 2.2 ^j	Log K 25°, 0	$\frac{\Delta H}{25^{\circ}, 0}$ $(-6)^{t}$ $(-8)^{t}$	ΔS 25°, 0 (-13) ^d (-17) ^d
vo ₂ ²⁺	ML/M.L		0.75 0.72 ^u	0.93 0.71 ^f	-0.8 ^c	1 ^c
	$\mathrm{ML}_2/\mathrm{M.L}^2$		0.72 0.70 ^u	0.72 ^f	-2.1 ^c	-4 ^c
	$\mathrm{ML_3/M.L}^3$		0.18		-1.4 ^c	o ^c
v^{2+}	ML/M.L		1.43		(-5) ^v	(-10) ^c
Cr ²⁺	ML/M.L ML ₂ /M.L ²			1.09 0.77		
Mn ²⁺	ML/M.L	0.80 1.30 ^k	0.65	1.23	-0.9	3
Fe ²⁺	ML/M.L		0.81 ^e	1.31		
Co ²⁺	ML/M.L ML ₂ /M.L ²	1.11 ±0.04	0.98 ±0.03 1.27 ^e 1.32	1.72 -0.2	-1.6	3
Ni ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	1.23 ±0.02	1.13 ±0.01 1.34 ^e 1.58 -0.01 1.5 ±0.2	1.76 -0.09	-2.3 -2.9 ^c -5.0 ^c	0 -4 ^c -10 ^c -16 ^c
Cu ²⁺	ML/M.L	1.90 ^a	1.74 +0.02 1.91 ^e	2.33	-3.0 -3.0 ^c	1 -2 ^c
	$\mathrm{ML_2/M.L}^2$	3.00 ^a	2.74	3.65	-3.1 ^c	2 ^c
v ³⁺	ML/M.L		2.13 ±0.06		(-4) ^w	(-4) ^c
Cr ³⁺	ML/M.L ML ₂ /M.L ²		(1.87) (2.98)	3.08	(-2) ^x	(7)

a 25°, 0.1; ^c 25°, 1.0; ^d 25°, 2.0; ^e 25°, 3.0; ^f 23°, 4.0; ^j 20°, 1.0; ^k 20°, 1.5; ^t 10-40°, 2.0; ^u 23°, 2.5; ^v 11-45°, 0.8; ^w 5-37°, 1.0; ^x 10-40°, 0

D. GROUP IV LIGANDS 31

Hydrogen thiocyanate (continued)

Metal _ion_	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0 5°
Fe ³⁺	ML/M.L	2.14 ±0.03	2.10 ±0.03	3.02 ±0.01	25°, 0 -1.3°	5 ^c
	$\mathrm{ML}_2/\mathrm{M.L}^2$	3.3 ±0.2	$2.21^{e} \pm 0.03$ 3.2 ± 0.1		-0.6 ^d	
	2		3.64 ^e ±0.04			
	$ML_3/M.L^3$		5.0 ^e			
	ML,/M.L ⁴		6.3 ^e			
	ML ₅ /M.L ⁵ ML ₆ /M.L ⁶		6.2 ^e			
	ML ₆ /M.L ⁶		6.1 ^e			
vo ²⁺	ML/M.L	0.92		3.32	(-4) ^x	(-4)
	ML ₂ /M.L ²			3.68	(-1) ^x	(14)
Pd ²⁺	$ML_4/M.L^4$		27.2 ±1			
Cu ⁺	$\mathrm{ML}_{2}/\mathrm{M.L}_{2}^{2}$			11.00 ^g		
	$ML_3^2/M.L^3$			10.9 ^g		
	ML ₄ /M.L ⁴			10.4 ^g		
	M.L/ML(s)			-13.40 ^g		
Ag ⁺	ML/M.L	4.6 ^a		4.8		
	2			4.6 ^f		
	$\mathrm{ML}_2/\mathrm{M.L}^2$	8.06 ^a		8.23		
		8.18 ^d		8.29 ^f		
	$ML_3/M.L^3$	9.6 ^a		9.5		
	/1	9.3 ^d		10.0 ^f		
	ML ₄ /M.L ⁴	10.5 ^a		9.7		
	(()	10.0 ^d		11.3 ^f		
	M.L/M.(s)	-11.80 ^a		-11.97 ±0.03	22.6	21
Au ⁺	ML/M.L		15.27 ^e			
	$\mathrm{ML}_2/\mathrm{M.L}^2$		16.98 ^e			
Hg ₂ ²⁺	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$		-19.00	-19.52		
CH ₃ Hg ⁺	ML/M.L	6.05 ^h				
J	M ₂ L/ML.M	1.65 ^h				
C ₂ H ₅ Hg ⁺	ML ₂ /ML.L		-0.10			
_ 3	ML ₃ /ML ₂ .L		0.20			

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; g 25°, 5.0; h 20°, 0.1; n 18°, 0; x 10-40°, 0

Hydrogen thiocyanate (continued)

Metal ion T1	Equilibrium ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	Log K 25°, 0.5 0.24 0.12 ^d 0.00 -0.12 ^d	Log K 25°, 1.0 0.17 0.15 ^e ±0.05 -0.05 -0.12 ^e ±0.08 -0.4 -0.5 ^e ±0.1	-0.03 ^f ±0.03	ΔΗ 25°, 0	ΔS <u>25°, 0</u>
	M.L/ML(s)			-3.79 ±0.02 -3.16 ^f		
Zn ²⁺	ML/M.L	0.74 ^d	0.71	1.33 1.11 ^f	-1.4 ^c	-1 ^c
	$\mathrm{ML}_2/\mathrm{M.L}^2$	1.15 ^d	1.04	1.91 1.81 ^f	-1.8 ^c	-1 ^c
	ML ₃ /M.L ³	1.3 ^d	1.2	2.0 2.8 ^f	-2°	-1 ^c
	ML ₄ /M.L ⁴	1.7 ^d	1.5	1.6 2.8 ^f	-4 ^c	-6 ^c
Cd ²⁺	ML/M.L	1.35 -0.02 1.53 ^a	1.32 ±0.02	1.89	-2.3 ^c	-2 ^c
		1.34 ^d	1.41 ^e -0.05		-1.9 ^e	o ^e
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	2.04	1.99	2.78	-4.2 ^c	-5 ^c
	0	2.05 ^d	2.24 ^e -0.2		-3.7 ^e	-2 ^e
	$ML_3/M.L^3$	2.1	2.0	2.8	-6°	-12 ^c
		2.2 ^d	2.5 ^e ±0.1		-5.2 ^e	-6 ^e
	ML ₄ /M.L ⁴	2.0	1.9	2.3		
		2.0 ^d	2.5^{e} ± 0.0		-6.2 ^e	-10 ^e
Hg ²⁺	ML/M.L		9.08		-11.9 ^c	2 ^c
	$ML_2/M.L^2$	16.43 ^a	16.86	17.26	-24.0 ^c	-3 ^c
	$ML_{3}/M.L^{3}$	19.14 ^a	19.70	19.97	-29.0 ^c	-7 ^c
	ML ₄ /M.L ⁴	$21.2^{a} \pm 0.1$	21.7	21.8 ±0.1	-34.4 ^c ±0.4	-16 ^c
	M.L ² /ML ₂ (s)		-19.56			
Sn ²⁺	ML/M.L	1.17 ^k				
	$ML_2/M.L^2$	1.77 ^k				
	$ML_3/M.L^3$	1.74 ^k				

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; k 20°, 2.2

33 D. GROUP IV LIGANDS

Hydrogen thiocyanate (continued)

Metal ion	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
(CH ₃) ₂ S	Sn ²⁺ ML/M.L		0.43			
	$\mathrm{ML}_2/\mathrm{M.L}^2$		1.0			
Pb ²⁺	ML/M.L	0.54 ^d	0.78 ^e	1.08 ^f	0.3	$3^{\mathbf{d}}$
	$\mathrm{ML}_{2}/\mathrm{M.L}_{2}^{2}$	0.87 ^d	0.99 ^e	1.48 ^f		
	$\mathrm{ML}_{3}^{2}/\mathrm{M.L}^{3}$		1.0 ^e			
A1 ³⁺	ML/M.L			0.42°		
Ga ³⁺	ML/M.L	1.18 ⁱ		2.15 ^y		
In ³⁺	ML/M.L	2.34 ⁱ		3.15 ^y		
		2.56 ^d			-1.7 ^d	6 ^d
	$ML_2/M.L_2^2$	3.53 ^d			-5.5 ^d	-2 ^d
	$\mathrm{ML}_{3}^{2}/\mathrm{M.L}^{3}$	4.6 ^d			-3.1 ^d	11 ^d
CH ₃ Sn ³⁻	+ ML/M.L		1.48			
3	$\mathrm{ML}_{2}/\mathrm{M.L}_{2}^{2}$		2.20			
	ML ₃ /M.L ³		3.3			
Bi ³⁺	ML/M.L	1.67 ^a	1.32	2.21		
			$(1.28)^{e}$	2.02 ^f		
	$\mathtt{ML}_2/\mathtt{M.L}^2$	3.0 ^a	2.1	2.7		
	2	_	2.7 ^e	3.5 ^f		
	$\mathrm{ML_3/M.L}^3$	4.0 ^a	3.0	4.4 f		
	/	2	3.8 ^e	4.8 ^f		
	ML ₄ /M.L ⁴	4.8 ^a	(2.9)	5.2		
	. 5	a	5.3 ^e	6.3 ^f		
	ML ₅ /M.L ⁵	5.5 ^a	3.6	5.8		
	6	a	6.0 ^e	6.8 ^f		
	$^{\mathrm{ML}_{6}/\mathrm{M.L}^{6}}$	6.1 ^a	4.0 6.9 ^e	5.4 8.3 ^f		
			6.9	8.3		

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; k 20°, 2.2; y 30°, 0

Bibliography:

Hydrogen thiocyanate (continued)

```
u<sup>4+</sup>
           54AL,55DW
vo<sub>2</sub>2+
           49Aa,57DM,64VM,71AKa
v2∓
           68MSa,680P
Cr<sup>2+</sup>
           58YF
Mn<sup>2+</sup>
           58YK,63TC,64TCa,67NT,73HH
Fe<sup>2+</sup>
           58YK,67CS
Co<sup>2+</sup>
           51SS,58SP,58YK,62TZ,62W,63TC,64KS,
           67NT, 70MM, 71SM, 73HH
Ni<sup>2+</sup>
           58YK,62W,63TC,67NT,68MT,70MM,73HH,
           74K
Cu<sup>2+</sup>
           59TT,62W,67NT,70MM,73HH,74K
v<sup>3+</sup>
           51FG,67BSW,68KT
Cr<sup>3+</sup>
           54PB,55PK
Fe<sup>3+</sup>
           51MM, 51SS, 53BD, 55LR, 56L, 57YT, 58BCC,
           58P,61Y,64KS,65MR,67CS,68Ma,68PC,69VM
vo<sup>2+</sup>
           51FG,68SW
Cu<sup>+</sup>
           59FS
Ag<sup>+</sup>
           12K,54KT,54LN,55LN,56VS
Au<sup>+</sup>
           66K
Hg<sub>2</sub>
           29B,70CG
CH<sub>3</sub>Hg
            65SS
C2H5Hg+
             65BB
T1+
           52Sb, 57N, 58BC, 58PD, 60KM, 62KC, 65KM,
           660L,71FR
Pd<sup>2+</sup>
           63GKG,65FK,66BSA
Zn<sup>2+</sup>
           66MK, 70DSa, 71AKb, 73RS
Cd<sup>2+</sup>
           41L,57TH,63TC,64KS,66Gb,68G,68GJa,
           73HH,73RS
Hg<sup>2+</sup>
           56T,62TE,70CG,71AKb,74Kb
Sn<sup>2+</sup>
           61G0
(CH_3)_2 Sn^{2+}, CH_3 Sn^{3+}
Pb<sup>2+</sup>
           56LS,59TH,63MKT,67NT
A1<sup>3+</sup>
           63VM
Ga<sup>3+</sup>
           64KS,68DD
In<sup>3+</sup>
           54Sa,64KS,68DD,69R
\mathtt{Bi}^3
           71FKa
```

Other references: 26B,49KH,51HDC,52AP,
52YV,53BG,53CH,53FH,53J,56LS,56Ta,
57GS,57I,57TS,57YT,58HT,58PD,58SW,
60NA,61BT,61GS,61MD,61SN,62LY,62S,
62Va,63RS,64K,64VM,65HS,65MSW,65NH,
66CM,66SD,66VV,68P,69SMT,69SS,70FS,
70SGK,71BSB,71DD,71KN,71MO,71MS,71PT,
72HPB,72L,73CDa,73RT,74RB,74TM

NCSe⁻

CNSe _		<u> </u>	L			
Metal ion Ni ²⁺	Equilibrium	Log K 25°, 0.3	Log K 25°, 1.0	Log K 19°, 0	$^{\Delta H}_{25^{\circ}, 1.0}$	ΔS 25°, 1.0
Ni ²⁺	ML/M.L		0.99		-3.1	-6
	$\mathrm{ML_2/M.L}^2$		1.26		-6	-14
Ag ⁺	$ML_3/M.L^3$	13.90				
	M.L/ML(s)			-15.40		
Zn ²⁺	ML/M.L		0.44		-1.4	-3
	$\mathrm{ML_2/M.L}^2$		0.64		(-1.5)	(-2)
Cd ²⁺	ML/M.L		1.47		-2.4	-1
	ML ₂ /M.L ²		2.30		-6.3	-11
	$ML_3^2/M.L_3^3$		2.8		(-1)	(9)
	ML ₄ /M.L ⁴		4.04		-10	-15
Hg ²⁺	$ML_3/M.L^3$	26.4				
	ML ₃ /M.L ³ ML ₄ /M.L ⁴	28.9	28.7 ^r		-46.1	-23 ^r

r 25°, 0.8

Bibliography:

Ni²⁺ 74Ka Ag⁺ 30BH,56T Hg²⁺ 56T,74Kb Zn²⁺,Cd²⁺ 74AA

Other references: 59G,59GK,60GSa,60LC, 61GSa,61GSb,62GA,66BK,67HB,72MT,73RT

 $C(CN)_3$

 $c_4 N_3^-$

Tricyanomethane ion

L-

Metal **Equilibrium** <u>ion</u> M.L/ML(s)

Log K 19°, 0 -8.34

Bibliography: 30BH

 $N(CN_2)^-$

 $c_{2}N_{3}^{-}$

Dicyanimide ion

L⁻

Meta1 _ion_ Equilibrium M.L/ML(s)

Log K 19°, 0 -8.85

Bibliography: 30BH

О || НО-С-ОН

^H 2 ^O 3		Hydrogen	carbonate	(carbonic acid)		H ₂
etal ion	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°,
H ⁺	HL/H.L	10.00 ^a	9.57	10.329±0.01	-3.5 -0.1	36
			9.56 ^e			
	H ₂ L/HL.H	6.16 ^a	6.02 ±0.03	6.352+0.01	-2.0 ± 0.1	22
		5.97 ^d	6.33 ^e			
	H ₂ L/CO ₂ (g)		-1.51 -1.55 ^e	-1.464±0.01		
g2+	ML/M.L	(2.37) ^r		2.88	(3) ^s	(20)
	MHL/M.HL	0.77 ^r		0.95		
	M.L/ML(H ₂ 0) ₅ (s)			-4.54		
	M.L/ML(H ₂ 0) ₃ (s)			-4.67	+	
	M.L/ML(s)			-7.46	(5) ^t	(-20
a ²⁺	ML/M.L	3.00 ^r		3.15 ±0.05	(4) ^s	(30
	MHL/M.HL	0.81 ^r		1.0 ±0.0		
	M.L/ML(s,calcite) -8.01 ^r		-8.35 ±0.1	(2) ^u	(-30
	M.L/ML(s,aragoni	te)		-8.22		
r ²⁺	M.L/ML(s)			-9.03		
a ²⁺	ML/M.L			2.78		
	M.L/ML(s)			-8.30 ± 0.01		
3+	$M^2.L^3/M_2L_3(s)$			-30.6		
a ³⁺	$M^2.L^3/M_2L_3(s)$			-33.4		
d ³⁺	$M^2.L^3/M_2L_3(s)$			-33.0		
3+ m	$M^2.L^3/M_2L_3(s)$			-32.5		
d ³⁺	$M^2.L^3/M_2L_3(s)$			-32.2		
y3+	${\tt M}^2.{\tt L}^3/{\tt M}_2{\tt L}_3({\tt s})$			-31.5		
3+ b	$M^2.L^3/M_2L_3(s)$			-31.1		
2 + նո	MHL/M.HL		0.45 ^e	1.8		
	M.L/ML(s)		-9.68 ^e	-9.30		
e ²⁺	M.L/ML(s)			-10.68		

Hydrogen carbonate (continued)

Metal		Log K	Log K	Log K	$\Delta \mathbf{H}$	Δ\$
ion Co ²⁺	<u>Equilibrium</u>	25°, 0.5	25°, 1.0	25°, 0	25°, 0	25°, 0
	M.L/ML(s)			-9.98		
Ni ²⁺	M.L/ML(s)			-6.87		
Cu ²⁺	ML/M.L			6.75 ±0.02		
	ML ₂ /M.L ²	8.6 ^v		9.92 ± 0.09		
	M.L/ML(s)			-9.63		
	M. (OH) ² .L/M(OH) ₂ I	L(s)		- 15		
	M^2 . (OH) 2 L.L/M ₂ (OH)		ite)	-33.78		
	M^3 . (OH) 2 . L^2/M_3 (OH)	H) ₂ L ₂ (s,azuri	te)	-45.96		
Ag ⁺	M ² .L/M ₂ L(s)			-11.09		
Hg ₂ ²⁺	M.L/ML(s)			-16.05		
Zn ²⁺	M.L/ML(s)			-10.00		
cd ²⁺	M.L/ML(s)			-13.74		
Pb ²⁺	$\mathrm{ML}_2/\mathrm{M.L}^2$	8.2 ^v				
	M.L/ML(s)		-11.01	-13.13 -0.01		
	$(M(OH)_3)^3.L^2/(OH)$	⁷ .M ₃ (OH) ₂ L ₂ (s	s)	-5.10		

^v 18°, 1.7

Bibliography:

H+ 14MR, 25MM, 28SH, 35MB, 35SM, 35W, 37P, 38CH, 41HS, 43HD, 46N, 57MS, 58FN, 58NR, 59Ea, 60GL, 61NM,71Nb,73DH,73MC Mg^{2+} 41G,62H,63Ha,74RL Ca²⁺ 29FJ, 35HR, 37BH, 41G, 46Na, 62GT, 68La, 70Lb, 74JL,74RL 35KA Ba²⁺ 35KA,46Na,73BS $y^{3+}-y_b^{3+}$ 66ЈН 35KA,63H,70GK Fe²⁺,Ni²⁺,Zn²⁺,Cd²⁺ 35KA Co²⁺ Cu²⁺ 35KA,58Sb,59FB,68SRG Hg_2^{2+}

Other references: 00Bc,03AC,07P,09SL,11AV, 13AP,14W,15J,17SL,220,23M,26HB,29K, 30M,39HJ,42N,42Na,46KD,50M,51M,52Lb, 52Sf,55MB,56BC,57Sa,57Sb,57Sc,58LG,58MG,58ML,58VG,59E,59Kb,59KS,59U, 60BG,60BK,60R,61GM,61GT,61PK,62GM,62PNN,62SH,62WS,63E,63MG,63R,63SR,64FD,65BBa,65GSS,66BT,67Ba,68B,68BB,68Na,69Bc,69H,69NR,70HKS,71Na,72MV,

28RS,35KA,59FB,61NM

720S

Рь2+

${\rm H_4O_4Si}$		Hydrogen	silicate	(silicic acid)		H ₂ L
Metal ion H	Equilibrium HL/H.L H ₂ L/HL.H	Log K 25°, 0.5 12.56 9.46 ±0.00	Log K 25°, 1.0 12.71 ^e 9.47	Log K 25°, 0 13.1 9.86	ΔH 25°, 0 (-10) ^r (-5) ^r	$ \begin{array}{c} \Delta S \\ \underline{25^{\circ}. \ 0} \\ (24)^{b} \\ (27)^{b} \end{array} $
	H ₂ L ₂ /H ² .L ² H ₄ L ₄ /H ⁴ .L ⁴ H ₆ L ₄ /H ⁶ .L ⁴	75.51	9.43 ^e 26.16 ^e 56.08 ^e	55.9 78.2	(-20) ^r	(280) ^b
Mg ²⁺	H ₂ L/SiO ₂ (s,amorp	ohous)	-2.89 4.17	-2.74		
mg	ML/M.L MHL/M.HL M(HL) ₂ /M.(HL) ²		0.64 3.82			
	$M^{2}.(HL)^{3}/M_{2}(HL)_{3}$	3 ^{(H} 2 ^{O)} 4 ^(s)	3.02	-38.8 ^u		
Ca ²⁺	ML/M.L MHL/M.HL		3.09 0.39			
	M(HL) ₂ /M.(HL) ² M.L/ML(s)		2.89	-7.2		
uo ₂ ²⁺	MHL/M.HL	7.5 ^s			_	
Fe ³⁺	MHL/M.HL	8.9 ^a ±0.4			(4) ^t	(50) ^a

a 25°, 0.1; b 25°, 0.5; e 25°, 3.0 molal; r_{25-50°}, 0.5; s 25°, 0.2; t 18-32°, 0.1; u 51, 0

Bibliography:

H⁺ 57GP,58G,58SMa,59L,67BI,68J,74SS,76BM Mg²⁺ 73CH,74SS Ca²⁺ 65GC,74SS UO₂²⁺ 71PW

Fe³⁺ 65WS,71PW,7300

Other references: 27H, 27H,28RL,30HK,34FW, 40RE,430Ka,54Ma,54AHI,57TK,58AK,60GC, 61KT,62FR,62MF,65Ac,67R,73PE

NH3

н ₃ и			Ammonia			L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 9.32 ±0.03 9.29 ^a -0.01	Log K 25°, 1.0 9.40 ±0.04 9.49 ^d ±0.03	Log K 25°, 0 9.244±0.005 9.80 ^g	ΔH 25°, 0 -12.45 ±0.05 -13.51 ^e -12.75 ^r	ΔS 25°, 0 0.5
	HL/H.L(g)		11.11		(-11) ^s	(11) ^c
Li ⁺	ML/M.L	-0.3 ^t				
Mg ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	0.23 ^t 0.08 ^t -0.3 ^t		0.2	-1.2	-3
Ca ²⁺	ML/M.L ML ₂ /M.L ²	-0.2 ^t -0.8 ^t				
Mm ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	1.00 ^k 1.54 ^k 1.70 ^k 1.3 ^k				
Co ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₅ /M.L ⁵ ML ₆ /M.L ⁶	$2.10^{u} \pm 0.02$ $3.67^{u} \pm 0.07$ $4.78^{u} \pm 0.01$ $5.53^{u} \pm 0.02$ $5.75^{u} \pm 0.02$ $5.14^{u} \pm 0.03$		1.99° 3.50° 4.43° 5.07° 5.13° 4.39°	-3.2 ^v	-1 ^u
Ni ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₅ /M.L ⁵ ML ₆ /M.L ⁶	$2.81^{d} \pm 0.04$ $5.08^{d} \pm 0.06$ $6.85^{d} \pm 0.07$ $8.12^{d} \pm 0.05$ $8.93^{d} \pm 0.02$ $9.08^{d} \pm 0.04$		2.72 4.89 6.55 7.67 8.34 8.31	$-4.0^{d} \pm 0.0$ $-7.8^{d} \pm 0.2$ $-12.1^{d} + 0.1$ $-15.6^{d} \pm 0.4$ $-19^{d} \pm 1$ $-24^{d} \pm 1$	-1 ^d -3 ^d -9 ^d -15 ^d -22 ^d -39 ^d

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; g 25°, 5.0; k 20°, 2.0; o 20°, 0; r 40°, 0; s 25-40°, 1.0; t 23°, 2.0; u 30°, 2.0; v 27°, 2.0

E. GROUP V LIGANDS

Ammonia (continued)

Metal ion Cu ²⁺	Equilibrium ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₅ /M.L ⁵	Log K 25°, 0.5 4.24 ^d ±0.03 7.83 ^d ±0.04 10.80 ^d ±0.07 13.00 ^d ±0.05 12.43 ^d ±0.04	Log K 25°, 1.0 4.12 ±0.03 7.63 ±0.02 10.51 ±0.03 12.6 ±0.1	Log K 25°, 0 4.04 ±0.03 7.47 10.27 11.75	$ \begin{array}{c} \Delta H \\ \underline{25^{\circ}, 0} \\ -5.5^{d} \pm 0.1 \\ -11.1^{d} + 0.1 \\ -16.6^{d} \pm 0.1 \\ -22.0^{d} \pm 0.1 \\ -26^{d} \pm 1 \end{array} $	ΔS 25°, 0 1 ^d -1 ^d -6 ^d -14 ^d -30 ^d
Co ³⁺	ML ₅ /ML ₄ .L ML ₆ /ML ₅ .L ML ₆ /M.L ⁶	5.07 ^d 4.50 ^d 35.21 ^u	4.33 34.36 ^w	4.15	(-1.5) -6.9	(18). ^d -3 ^d
Cu ⁺	ML/M.L ML ₂ /M.L ²	5.93 ^x 10.58 ^d			(-16) ^y	(-5) ^d
Ag ⁺	ML/M.L	3.30 3.26 ^d	3.20 ^g	3.31 ±0.06	-4.9	-1
	ML ₂ /M.L ²	7.20 ^d	7.21 7.13 ^g	7.22 ±0.01	-13.4 ±0.1	-12
сн ₃ нв ⁺	ML/M.L	7.25 7.60 ^h				
T1 ⁺	ML/M.L	-0.9 ^t				
Pd ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴		9.6 18.5 26.0 32.8			
Zn ²⁺	ML/M.L	2.38 ^d ±0.03	2.32	2.21	-2.6 ^v	2 ^d
	$ML_2/M.L^2$	4.88 ^d ±0.2	4.81	4.50	-5.7 ^v	3 ^d
	ML ₃ /M.L ³ ML ₄ /M.L ⁴	7.43 ^d -0.3 9.65 ^d ±0.1	7.11 9.32	6.86 8.89	-9.6 ^v -14.8 ^v	2 ^d -6 ^d
Cd ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₅ /M.L ⁵ ML ₆ /M.L ⁶	2.72 ^d ±0.03 4.90 ^d ±0.05 6.32 ^d ±0.00 7.38 ^d ±0.08 7.02 ^d 5.41 ^d	2.62 -0.08 4.79 ±0.01 6.16 ±0.08 7.1 ±0.1 6.9	2.55 4.56 5.90 6.74	-3.5 ^v -7.0 ^v -10.5 ^v -14.0 ^v -17.5 ^v -21.0 ^v	1 ^d -1 ^d -6 ^d -13 ^d -27 ^d -46 ^d

d 25°, 2.0; g 25°, 5.0; h 20°, 0.1; t 23°, 2.0; u 30°, 2.0; v 27°, 2.0; w 30°, 1.0; x 18°, 2.0; y 18-25°, 2.0

Ammonia (continued)

42

Metal ion Hg ²⁺	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
	ML/M.L ML ₂ /M.L ²	8.8 ^t 17.4 ^d	(17.8)		-24.7 ^V	-3 ^d
	ML ₃ /M.L ³ ML ₄ /M.L ⁴	18.4 ^d (19.3) ^a			-28.0 ^v	-10 ^d
	4	19.1 ^d			-31.6 ^v	-19 ^d
Au(III)	ML ₄ /ML ₃ .L		10.3			
	$^{\mathrm{ML}_{4}/\mathrm{MH}_{-1}\mathrm{L}_{4}.\mathrm{H}}$		7.48			

a 25°, 0.1; d 25°, 2.0; t 23°, 2.0; v 27°, 2.0

Bibliography:

H⁺ 30HO, 340a, 37P, 41B, 49BP, 50BL, 50BP, 53Sd,54EL,57KD,65PSV,67KZ,68RJ,68VK, 69ES,72VK,73CP,74RO Li⁺-Ca²⁺ 41B,54W Mn²⁺ 72KB Co²⁺ 41B,58YM,66LM Ni²⁺ 41B,43DV,57YMa,59Sb,66LM Cu²⁺ 31B, 32B, 34B, 41B, 44B, 44Na, 53SPa, 57YMa, 58E,59Sc,69ES,73CP Co³⁺ 41B,49YP Cu^+ 34B Ag⁺ 00BD, 37SBP, 41B, 41DS, 43VM, 44KN, 47N, 55Fa,66Ja CH₃Hg⁺ 65SS,74RO Pd²⁺ 68RJ

Zn²⁺ 41B,53SPa,57YM,66LM,72BP Cd²⁺ 41B,43L,43DV,53SP,57YM,58E,72BPa Hg²⁺ 41B,57YM,62TR,64WD Au³⁺ 74SB

43

 $^{\rm H_2NNH_2}$

$^{\rm H}4^{\rm N}2$	Hydrazine					
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 8.06 ±0.02 8.48 ^d	Log K 25°, 1.0 8.18	Log K 25°, 0 7.98 ±0.01	ΔH 18°,~0 -9.7	ΔS 25°, 0 4
	H ₂ L/HL.H			-0.9°		
Co ²⁺	ML/M.L		1.57			
	ML ₂ /M.L ²		2.15			
	$ML_3^2/M.L^3$		3.09			
Ni ²⁺	ML/M.L	2.76 ⁱ				
	ML ₂ /M.L ²	5.20 ⁱ				
	$ML_3^2/M.L_1^3$	7.35 ⁱ				
	ML ₄ /M.L ⁴	9.20 ⁱ				
	ML ₅ /M.L ⁵	10.75 ¹				
	ML ₆ /M.L ⁶	11.99 ⁱ				
Zn ²⁺	ML/M.L	2.4 ⁱ				
	$ML_2/M.L^2$	4.2 ⁱ				
	$\mathrm{ML}_{3}^{2}/\mathrm{M.L}^{3}$	5.5 ⁱ				

 $^{^{\}rm d}$ 25°, 2.3; $^{\rm i}$ 20°, 0.5 ${\rm N_2H_5BF_4};$ $^{\rm o}$ 20°, 0

Bibliography:

H⁺ 00Ba,36S,36WS,67SL,70AB,73KN,74KN Co²⁺ 73SS

 Ni^{2+} , Zn^{2+} 52SZ

Other references: 00Bb,28H,29G,41Y,53RL, 54R,54Sd,67BS,72AG,72AK

HONH₂

H ₃ ON	<u>Hydroxylamine</u>					L
Metal <u>ion</u> H	Equilibrium HL/H.L	Log K 25°, 0.5 6.00 6.21 ^d	Log K 25°, 1.0 6.06	Log K 25°, 0 5.96 ±0.02	ΔH 25°, 0 -9.3 +0.1	ΔS 25°, 0 -4
Mn ²⁺	ML/M.L	0.53 ⁱ				
Co ²⁺	ML/M.L	0.93 ⁱ				
Ni ²⁺	ML/M.L	1.47 ⁱ				
Cu ²⁺	ML/M.L ML ₂ /M.L ²	2.42 ⁱ 4.1 ⁱ				
vo ₂ +	ML/M.L		1.10			
Ag ⁺	ML/M.L	1.85 ⁱ				
Zn ²⁺	ML/M.L ML ₂ /M.L ²	0.48 ⁱ	0.40 1.01			

d 25°, 2.2; i 20°, 0.5

Bibliography:

H⁺ 00B,00T,270a,41H,61RB,63S,65LL Mm²⁺-Cu²⁺,Ag⁺ 63S VO₂⁺ 73B Zn²⁺ 55N, 63S

Other references: 01W,40IA,57MR,57MRH, 61Kb,65Fa,66FPS,66GS,68JD,68S,74IS

HN₃

HN ₃	Hydrogen azide (hydrazoic acid)					
Metal ion H	Equilibrium HL/H.L HL/HL(g)		Log K 25°, 1.0 4.44 ±0.00 4.78 ^e		ΔH 25°, 0 -3.6 -3.1°	ΔS 25°, 0 9 10 ^c
Co ²⁺	ML/M.L		0.72			
Ni ²⁺	ML/M.L		0.86 ±0.02 1.04 ^e		-0.2 ^c	3 ^c
	$ML_2/M.L^2$ $ML_3/M.L^3$		1.3		-1.0 ^c -3.5 ^c	2 ^c -6 ^c
Cu ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	2.44 ^h		2.86° 2.56 ^f 4.48 ^f 6.11 ^f 7.82 ^f -0.01		
	$M.L^2/ML_2(s)$				3.6	
Fe ³⁺ Cu ⁺ Ag ⁺	ML/M.L ML ₃ /M.L ³ M.L/ML(s) ML/M.L ML ₂ /M.L ²	4.49 ^a ±0.07	4.20 ±0.1	4.85 ±0.04 7.76 ^f -8.31 2.49 ^f 4.2 ^f	(-2) ^r	(16)
	ML ₃ /M.L ³ ML ₄ /M.L ⁴ M.L/ML(s)			4.2 ^f 3.7 ^f -8.56 ±0.02 -8.80 ^f	16.7	20
Hg ₂ 2+	M.L ² /ML ₂ (s)			-9. 15	29.9	58
T1 ²	ML/M.L			0.39	-1.3	-3
	M.L/ML(s)			-3.66	11.1	21
Zn ²⁺	ML ₃ /M.L ³ ML ₄ /M.L ⁴	0.78 ^d 1.34 ^d 2.3 ^d 2.9 ^d	2.2	f h h	0.6 ^c 1.2 ^c 3.0 ^c -1.8 ^c	6 ^c 10 ^c 20 ^c 5 ^c
ª 25°,	0.1; ^c 25°, 1.0); " 25°, 2.0;	25°, 3.0;	25°, 4.0; "2	0°, 0.1; ° 20°	, 0; ⁻ 20-58°,0

Hydrogen azide (continued)

Metal ion Cd ²⁺	Equilibrium ML/M.L	Log K 25°, 0.5 1.4 ^d	Log K 25°, 1.0 1.61 ^e	Log K 25°, 0	ΔH 25°, 0 -1.2 ^e	$\frac{25^{\circ}, 0}{3^{e}}$
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	2.6 ^d	2.78 ^e		-2.6 ^e	4 ^e
	$ML_3/M.L^3$	2.9 ^d	3.2 ^e		-4.3 ^e	0 ^e
	ML ₄ /M.L ⁴	3.0 ^d	3.9 ^e		-5.6 ^e	-1 ^e
Hg ²⁺	ML/M.L	7.42 ^a	6.98	7.80	-7.3 ^c	8 ^c
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	14.63 ^a	14.39	15.36	-16.1 ^c	12 ^c
Pd ²⁺	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s},\alpha)$			-8.57 ±0.03	15.9	14
T1 ³⁺	ML/M.L	3.00 ^k			(-2) ^s	(7) ^k
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	5.38 ^k			(-5) ^s	(8) ^k
	$\mathrm{ML}_{3}^{2}/\mathrm{M.L}^{3}$	6.90 ^k			(-13) ^s	(-12) ^k

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; k 20°, 2.0; s 13-50°, 2.0

Bibliography:

T1⁺ н+ 52Sa,56GW,57NN 41Ya,56GW,59BC,61BD,63DW,66BK,67MR, Zn²⁺ 70DSa,76AA 72NS, 76AA, Cd²⁺ co²⁺ 43L,61SN,66Gb,76AA 70SG Ni 2+ Hg²⁺ 67MRa,70SG,76AA 65MK,76AA Cu²⁺ Рь2+ 56GW,58SO,71N,72NS,72SN 52Sc,54FS,56GW T1³⁺ Fe³⁺ 65V 61BD,61WD,65MK,67CE,76AA Cu⁺ 53Sb,72SN Other references: 00H,00W,160,28H,32BR,40Q, Ag⁺ 38TN,52Sa,54LS,56GW 57BPa,59ES,61NP,61SA,62BS,68DS,73AA, ${\rm Hg}_2^{2+}$ 52Sc,56GW 74РЪ

 $^{\mathrm{HNO}}2$

но ₂ n		Hydroge	n nitrite	nitrite (nitrous acid)			
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 2.94 3.24 ^d	Log K 25°, 1.0 3.00	Log K 25°, 0 3.15	ΔH 25°, 0 (-2) ^r	ΔS 25°, 0 (7)	
Cu ²⁺	ML/M.L	1.34 1.26 ^d	1.19 +0.01 1.36 ^e	2.02			
	ML ₂ /M.L ²	1.68 1.45 ^d	1.43 ±0.01 1.54 ^e	3.03			
Ag ⁺	ML/M.L	1.70 1.31 ^k	1.56 ^j 1.14 ¹	2.32	(-7) ^r	(-14)	
	$\mathrm{ML}_2/\mathrm{M.L}^2$	2.07 2.06 ^k	2.15 ^j 2.00 ¹	2.51	(-11) ^r	(-26)	
	M.L/ML(s)	-3.72 ⁱ -3.36 ^k	-3.57^{j} -3.22^{1}	-4.13	(15) ^r	(30)	
T1 ⁺	ML/M.L			0.83			
Pd ²⁺	ML ₄ /M.L ⁴	20.3	21.6 +0.3				
Cd ²⁺	ML/M.L	a	1.7	2.4	٩	.e	
	2	1.78 ^d	1.80 ^e		-2.1 ^e -4.2 ^e	1 ^e -1 ^e	
	$ML_2/M.L^2$	2.9 ^d	3.0 ^e 3.1 ^t		-4.2	-1	
	$ML_3^2/M.L^3$	3.5 ^d	3.1 3.8 ^e		-5.8 ^e	-2 ^e	
Pb ²⁺	ML/M.L	1.89 1.91 ^d	1.90	2.51			
	ML ₂ /M _• L ²	2.7 ^u	2.4 ^t	3.0 ^v			
	$ML_2/M.L^2$ $ML_3/M.L^3$	3.0 ^u		3.2 ^v			

d 25°, 2.0; e 25°, 3.0; i 20°, 0.5; j 20°, 1.0; k 20°, 2.0; l 20°, 3.0; r 15-35°, 0; t 30°, 1.0; u 25°, 2.5; v 20°, 3.8

Bibliography:

$^{+}$	65LL,65LT,68TL	Cd ²⁺	43L,58VE,61TB,65JG,65SGa,66Gb		
Cu ²⁺	46KS,51F,71T	Pb ²⁺ 61TB,64GA,67JG,71TL			
Ag ⁺	72TL	Other 1	references: 00S,02B,06Ba,29KH,37SM,		
T1 ⁺	57NBC	571	H,58TW,59VK,60SW,60Ta,63BW,64PS,66SNb,		
Pd ²⁺	65FK,70SS	67	G,67SK,71Ta,71Tb,73CZ,73T		

NO₃

o ₃ n ⁻	Nitrate ion					
Metal ion H	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	$\frac{\text{Log K}}{25^{\circ}, 0}$ $(-0.6)^{n}$	ΔH 25°, 0	ΔS 25°, 0
к+	ML/M.L	-0.37 ^a		(-0.15)±0.05	(-3) ^r	(-12)
Cs ⁺	ML/M.L			(0.01) ⁿ		
Be ²⁺	ML/M.L			-0.6 ^f		
Ca ²⁺	ML/M.L	0.06 -0.02 ^d	-0.06 0.04 ^e	0.7 -0.5 0.08 ^f	(-6) ^s	(-17)
	ML ₂ /M.L ²	-0.3 -0.4 ^d	-0.5 -0.4 ^e	0.6 -0.4 ^f		
Sr ²⁺	ML/M.L	(0.06) 0.06 ^d	0.05 0.08 ^e	0.8 ±0.0 0.10 ^f	-2.4 ^b	-8 ^b
	ML ₂ /M.L ²	(-0.5) -0.2 ^d	-0.3 (-0.4) ^e	0.8 -0.2 ^f		
Ba ²⁺	ML/M.L	0.21 0.14 ^d	0.16 0.20 ^e	0.9 ±0.1 0.24 ^f	-3.2 ^b	-10 ^b
	ML ₂ /M.L ²	$0.1\\0.0^{\mathbf{d}}$	0.0 (-0.1) ^e	1.0 0.0 ^f		
Sc ³⁺	ML/M.L ML ₂ /M.L ²			0.28 ^f -0.3 ^f		
La ³⁺	ML/M.L		0.1 +0.1			
Ce ³⁺	ML/M.L		0.2 -0.1			
Pr ³⁺	ML/M.L		0.2			
Nd ³⁺	ML/M.L		0.3			
Pm ³⁺	ML/M.L		0.39 -0.1			
Sm ³⁺	ML/M.L		0.3			
Eu ³⁺	ML/M.L	0.44 0.26 ^d	0.31 ±0.0	1.23 0.2 ^f	(-1) ^t	(-1) ^c
	$\mathrm{ML}_2/\mathrm{M.L}^2$			-0.6 ^f		
Gd ³⁺	ML/M.L		0.0			
a 25°, 0.1; b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; n 18°, 0; r 25-39°, 0; s 18-25°, 0; t 0-55°, 1.0						

E. GROUP V LIGANDS 49

Metal		Log K	Log K	Log K	ΔΗ	ΔS
Tb 3+	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	<u>25°, 0</u>	<u>25°, 0</u>
	ML/M.L	0.10	0.05 -0.1	0.88		
Dy 3+	ML/M.L		-0.3			
Но 3+	ML/M.L		-0.2			
Er ³⁺	ML/M.L		-0.3			
Tm ³⁺	ML/M.L		-0.25 -0.1			
_{Yb} 3+	ML/M.L		-0.2			
Lu ³⁺	ML/M.L		-0.2			
Ac ³⁺	ML/M.L		0.1			
	$\mathrm{ML}_2/\mathrm{M.L}^2$		0.0			
Am ³⁺	ML/M.L	0.20 ^d	0.26 ±0.00			
Ce ⁴⁺	ML/M.L			0.32 ^u		
Th ⁴⁺	ML/M.L	0.67		0.45 ^g		
	$\mathrm{ML}_2/\mathrm{M.L}^2$			0.15 ^g		
Մ ⁴⁺	ML/M.L	0.20^{d}	0.28 ^e	1.6		
	$\mathrm{ML}_2/\mathrm{M.L}^2$	0.2 ^d	0.3 ^e			
	$ML_3^2/M.L_1^3$	0.0 ^d	0.2 ^e			
	ML ₄ /M.L ⁴	-0.5 ^d	-0.2 ^e			
Np ⁴⁺	ML/M.L	0.34 ^d	0.38	1.7°		
	$\mathrm{ML}_2/\mathrm{M.L}^2$	0.2 ^d	0.1 ^j			
	$ML_3^2/M.L^3$		-0.3 ^j			
Pu ⁴⁺	ML/M.L	0.46 ^d	0.54	1.8		
				0.74 ^m		
	$ML_2/M.L^2$			1.37 ^m		
	$ML_3^2/M.L^3$			1.2 ^m		
~	ML/M.L	-0.25 ^d				
2	ML/M.L	-0.6 ^d	-0.3 ^j		(-3) ^v	(-13) ^d
NpO ₂ 2+	ML/M.L	-0.9				
-		-0.4 ^d				

d 25°, 2.0; e 25°, 3.0; g 25°, 6.0; j 20°, 1.0; m 20°, 4.0; o 20°, 0; u 23°, 3.5; v 10-40°, 2.0

Metal ion 2+ Mn	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0 -0.43	Log K 25°, 0 0.2	ΔH 25°, 0	ΔS 25°, 0
	ML ₂ /M.L ²	-0.41 ^d -0.3 -0.9 ^d	-0.24 ^e -0.6 -0.8 ^e	-0.14 ^f 0.6 -0.7 ^f		
Co ²⁺	ML/M.L	(-0.46)	-0.46	0.2		
	$\mathrm{ML}_2/\mathrm{M.L}^2$	-0.48 ^d -0.3 -0.6 ^d	-0.60 ^e -0.4 -0.6 ^e	-0.38 ^f		
Ni ²⁺	ML/M.L	d	-0.22	0.4		
	ML ₂ /M.L ²	-0.44 ^d -0.5 ^d	-0.55 ^e -0.9 ^e	-0.30 ^f -0.6 ^f		
Cu ²⁺	ML/M.L	(-0.13) -0.06 ^d	-0.01 -0.02 ^e	0.5 0.11 ^f		
	$\mathrm{ML}_2/\mathrm{M.L}^2$	-0.6 ^d	-0.6 -0.5 ^e	-0.4 -0.4 ^f		
	$M.(OH)^{1.5}.L^{0.5}/$	M(OH) _{1.5} L _{0.5} (s)		-16.37		
Fe ³⁺	ML/M.L	-0.22 ^q	-0.5	1.00	(-9) ^y	(-30) ^c
Zr ⁴⁺	ML/M.L	0.3 ^d		0.34 ^m		
	ML ₂ /M.L ² ML ₃ /M.L ³			0.1 ^m -0.3 ^m		
	ML ₄ /M.L ⁴			-0.3 ^m		
Hf ⁴⁺	ML/M.L	0.34 ^d		0.40 ^m		
	$ML_2/M.L_3^2$	0.0^{d}		0.1 ^m		
_	$ML_3^2/M.L^3$	-0.7 ^d	4			
vo ₂ +	ML/M.L		-0.5 ^j			
Ag	ML/M.L	-0.34 ^d		$(-0.2) \pm 0.1$		
Hg ₂ 2+	ML/M.L ML ₂ /M.L ²	0.08	0.02 ^e -0.3 ^e			
T1 ⁺	ML/M.L		-0.48 ^e	0.33 ±0.00	-0.7	-1

^c 25°, 1.0; ^d 25°, 2.0; ^e 25°, 3.0; ^f 25°, 4.0; ^j 20°, 1.0; ^m 20°, 4.0; ^q 20°, 0.6; ^y 10-40°, 1.0

E. GROUP V LIGANDS 51

Metal ion Zn ²⁺	Equilibrium ML/M.L ML ₂ /M.L ²	Log K 25°, 0.5 -0.18 -0.14 ^d	Log K 25°, 1.0 -0.19 0.01 ^e -0.6 -1.1 ^e	Log K 25°, 0 0.4 0.11 ^f -0.3 -0.8 ^f	ΔΗ 25°, 0	ΔS 25°, 0
Cd ²⁺	ML/M.L ML ₂ /M.L ²	-0.11 0.02^{d} -0.4^{d}	-0.05 0.04 ^e ±0.07 -0.8 (-0.6) ^e	0.5 -0.1 0.08 ^f 0.2 0.0 ^f	-5.2	-15
Hg ²⁺	ML/M.L ML ₂ /M.L ²		0.11 ^e 0.0 ^e			
Pb ²⁺	ML/M.L	0.25 0.40 ^d ±0.1	0.33 ±0.02 0.51 ^e ±0.06	1.17 ±0.02	-0.6 -1.3 ^e	3 -2 ^e
	ML ₂ /M.L ²	$0.4 \\ 0.4^{d} \pm 0.2$	0.4 ±0.1 0.4 ^e ±0.1	1.4	-1.6 ^e	-4 ^e
	ML ₃ /M.L ³ ML ₄ /M.L ⁴		$0.2^{e} \pm 0.1$ - $0.3^{e} \pm 0.2$		(-2) ^w (-8) ^w	(-6) ^e (-28) ^e
In ³⁺	ML/M.L ML ₂ /M.L ²	0.18 ^q -0.3 ^q				
т1 ³⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³		0.90 ^e 0.1 ^e 1.1 ^e		0.0 ^e	4 ^e
Bi ³⁺	ML/M.L	0.72 (0.72) ^d	0.81 (0.72) ^e	1.7 0.92 ^f	(3) ^x	(13) ^d
	ML ₂ /M.L ²	(0.94) 0.98 ^d	0.90 0.96 ^e	2.5 1.23 ^f		
	ML ₃ /M.L ³	(0.2) ^d	0.7 (0.1) ^e	1.1 ^f		
	ML ₄ /M.L ⁴ M.L/MOL(s).H ²	(0.6) ^d	(-0.2) ^e	0.4 ^f -2.55		

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; q 20°, 0.7; w 2-64°, 3.0; x 5-55°, 2.0

```
Bibliography:
Na<sup>+</sup>
          27D
к<sup>+</sup>
          27D,270,37RD,66CL
Cs<sup>+</sup>
          31BR
Be<sup>2+</sup>
          71SK
Ca^{2+}-Ba^{2+}
                  30RD,63VV,64V,66MB,74FRa
Sc<sup>3+</sup>
          66SH
La^{3+}-Lu^{3+}, Am^{3+}
                           62PM,65CS,67K,67SS,69MK
Ac 3+
          68SMR
Ce<sup>4+</sup>
          65PF
Th 4+
          50DS,51ZA,56FM
u<sup>4+</sup>
          62EK,66SN
Np<sup>4+</sup>
          58SPS,66RY,66SN
Pu<sup>4+</sup>
          49Ha,51RL,60GN,66SN
NpO<sub>2</sub>+
          64GS
UO<sub>2</sub><sup>2+</sup> 51Aa,54DP,59VN
NpO<sub>2</sub><sup>2+</sup>
            66RY,70AW
Mn<sup>2</sup>+
          74FR
Co<sup>2+</sup>,Ni<sup>2+</sup> 73FS
Cu<sup>2+</sup>
          49NT,73FR
Fe<sup>3+</sup>
        51ID,52S,59M,69MS
        49CMa,57S
Hf<sup>4+</sup>
        63PA,69HS
vo<sub>2</sub>+
        66Ia
Ag+
        27D, 31BR, 37RD, 460A
T1<sup>+</sup>
        37RD, 57NN, 65KMa
```

```
zn<sup>2+</sup>
        73FR
Cd<sup>2+</sup>
        30RD,41L,61V,62V,74FRP
Hg<sub>2</sub><sup>2+</sup>,Hg<sup>2+</sup> 46IS
Pb 2+
       30RD,53HS,55BPR,55Na,56BD,63MK,63MKc,
       65Ha, 67FR, 69FRa, 72FR
In<sup>3+</sup>
       68FD
T1<sup>3+</sup>
       65KY,67MK
Bi<sup>3+</sup>
       51SG,71FKM
Other references: 01E,28HE,36RR,37R,38R,
      43RB, 45Na, 49BM, 49ZN, 51CM, 51Mc, 53Y,
      54Pd,55Kb,55Ra,56HS,56M,57BW,57MP,
      58FK,58MF,58PS,59CH,59ST,59T,59TC,
      59TS,60D,60HR,60LP,60PB,60PN,61Kc,
      61Ma,61NR,61TJ,62Hb,62MR,62NP,62PB,
      62SK,62ST,63Hc,63KB,63LK,63M,63NPa,
      63PF,63RSa,63SI,64BP,64DB,64FW,64HMF,
      64HP,64LP,64MW,64NKa,64S,64SD,64DK,
      65HD,64HS,65MS,66BA,66CK,66DO,66Gc,
      66R,67AS,67EME,67KR,67VD,67VG,68DF,
      68DP, 68TR,69FR,69KM,69MF,69RP,69SGM,
      70AS, 70AW, 70HK, 70KS, 70LK, 70MM, 70PH,
      71GF,71M,71PJ,73Ab,73CDa,73HH,74FG,
      74M,74MS
```

E. GROUP V LIGANDS 53

 $^{\mathrm{H}}2^{\mathrm{N}}2^{\mathrm{O}}2^{\mathrm{O}}$

^H 2 ^O 2 ^N 2		Hydrogen hyponitrite	(hyponitrous ac	<u>id</u>)	H ₂ L
Metal ion H	Equilibrium HL/M.L	Log K 25°, 1.0 10.85	Log K 25°, 0 11.54	ΔH 25°, 0 (-8) ^r	ΔS 25°, 0 (26)
	н ₂ L/нL.н	6.75	7.18 ±0.03	(-5) ⁸	(16)
Ag	M ² .L/M ₂ L(s)		-18.89		

r 25-45°, 0; s 15-45°, 0

Bibliography:

H⁺ 63BPa,63HS,63Pa

Ag⁺ 61PY

Other references: 39LZ,59Pc

$^{\rm H}{_3}^{\rm O}{_2}^{\rm P}$		Hydrogen hypopho	sphite	(<u>hypoph</u>	osphorous a	cid)	HL
Metal ion H ⁺ Eu ³⁺	Equilibrium HL/H.L ML/M.L	Log K 20°, 0.2	Log K 25°, 1.0	$\frac{2}{1}$.	Log K 5°, 0 23 ±0.2 2.27	ΔH 25°, 0 1.6	ΔS 25°, 0 11
Cr ³⁺	ML.H/M.HL		1.32 ^r				
Fe ³⁺ Zn ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML/M.L	4.01 6.79 8.96	0.54 ^f 0.2 ^f				
f 25°,	ML ₂ /M.L ² 4.0; r 45°, 1	.0	0.2				
	graphy:			2Т			
	OFa,54PM,59D			Fe ³⁺	67MAN		
Eu ³⁺ 6				Zn ²⁺	68HG		
Cr ³⁺ 6	6EB			Other	references:	20M,30Ma,34G	M,37N,64NM,
				ϵ	66CT,67MG,68	LN	

H ₃ O ₃ P		Hydrogen pho	osphite (p	hosphorous acid	<u>l</u>)	H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 6.08 6.34 ^a	Log K 25°, 1.0 6.01 6.00 ^d	Log K 25°, 0 6.79 +0.01 6.06 ^e	ΔH 25°, 0 2.2	ΔS 25°, 0 39
	H ₂ L/HL.H	1.1 ^r		1.5 ±0.1	2.2	14
Na ⁺	ML/M.L MHL/M.HL			1.05° 0.96°		
к ⁺	ML/M.L MHL/M.HL			0.80° 0.74°		
Ni ²⁺	MHL/M.HL MH ₂ L/M.H ₂ L	3.60 ^s 1.45 ^s				
Cu ²⁺	ML ₂ /M.L ² M.L/ML(s)		4.57 ^t -6.72 ^t			
Fe ³⁺	MHL/M.HL M(HL) ₂ /M.(HL) ²			4.92 7.84		
сн ₃ нд ⁺	ML/M.L	4.67 ^h				

^a 25°, 0.1; ^d 25°, 2.0; ^e 25°, 3.0; ^h 20°, 0.1; ^o 20°, 0; ^r 25°, 0.6; ^s 25°, 0.2; ^t 25°, 3.5

Bibliography:

H⁺ 30N,40GM,41TY,59D,68MS Fe³⁺ 66MA
Na⁺,K⁺ 64FP CH₃Hg⁺ 65SS
Ni²⁺ 70EE Other references: 20B,27K,30Ma,37N,50Fa,
Cu²⁺ 64N 65FP,66P,67PS,68HG

^H 3 ^O 4 ^P	Hydrogen phosphate (phosphoric acid)					
Metal <u>ion</u> H	Equilibrium HL/H.L	Log K 25°, 0.5 11.74 ^a ±0.08	Log K 25°, 1.0 10.79 ^e ±0.07	Log K 25°, 0 12.35 ±0.02	ΔH 25°, 0 -3.5 ±0.9	ΔS 25°, 0 45
	H ₂ L/HL.H	6.57 ±0.05 5.72 ^a ±0.05 6.79 ^r ,s	6.46 ±0.02 6.36 ^d 6.26 ^e ±0.02	7.199±0.002	-0.8 ±0.2 -1.2 ^a	30
	н ₃ г/н ₂ г.н	1.72 2.0 ^a ±0.1	1.70 ±0.02 1.86 ^e ±0.03		1.9 ±0.1	16
Li ⁺	MHL/M.HL	0.72 ^{r,s}			(6) ^{r,t}	(23) ^{r,s}
Na ⁺	MHL/M.HL	0.60 ^{r,s}			(8) ^{r,t}	(30) ^{r,s}
K +	MHL/M.HL	0.49 ^{r,s}			(6) ^{r,t}	(22) ^{r,s}
Mg ²⁺	ML/M.L		3.4 ^u			
	MHL/M.HL	1.7 ^a 1.88 ^{r,s}	1.8 ^u ±0.0 1.42 ^e	2.91	3	23
	MH ₂ L/M.H ₂ L		0.7 ^u 0.16 ^e			
	$M^3.L^2/M_3L_2(H_2O)_8$			-25.20		
Ca ²⁺	M.HL/MHL(H ₂ O) ₃ (s))		-5.82	V	
Ca	ML/M.L MHL/M.HL	1.50 ^s 1.70 ^{r,s}	1.3 ^u	6.46 2.74 -0.06	(3) ^v (3) ^v	(40) (23)
	MH ₂ L/M.H ₂ L		0.6 ^u	1.4 -0.6	(3) ^v	(17)
	M.HL/MHL(H ₂ O) ₂ (s))		-6.58 ±0.03	(1) ^w	(-28)
Sr ²⁺	ML/M.L MHL/M.HL	(4.2) ^h 1.2 ^h 1.52 ^r ,s				
	MH ₂ L/M.H ₂ L M.HL/MHL(s)	0.3 ^h		-6.92 ⁰		
Ba 2+	M.HL/MHL(s)			-7.40°		
y ³⁺	MH ₂ L/M.H ₂ L	1.84 ^x		2.65		
	d	_ _ h				

a 25°, 0.1; d 25°, 2.0; e 25°, 3.0; h 20°, 0.1; o 20°, 0; r (C₃H₇)₄NC1 used as background electrolyte; s 25°, 0.2; t 0-25°, 0.2; u 37°, 0.15; v 25-37°, 0; w 18-37°, 0; x 20°, 0.2

E. GROUP V LIGANDS 57

Hydrogen phosphate (continued)

Metal <u>ion</u>	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔΗ 25°, 0	ΔS 25°, 0	
13H La	MH ₂ L/M.H ₂ L	1.61					
	M.L/ML(s)	-22.43					
Ce ³⁺	ML/M.L	v		(18.52)			
0.1	MH ₂ L/M.H ₂ L	1.52 ^x		2.33			
Pm ³⁺	$^{\mathrm{MH}_{2}\mathrm{L}/\mathrm{M.H}_{2}\mathrm{L}}$	1.69 ^x		2.51			
Gd ³⁺	M.L/ML(s)	-22.26					
Ac ³⁺	MH ₂ L/M.H ₂ L	1.59					
Am ³⁺	MH ₂ L/M.H ₂ L	1.69 ^x		2.51			
Th 4+	MH ₂ L/M.H ₂ L	3.96 ^d					
	MH ₂ L/M.H ₂ L M(H ₂ L) ₂ /M.(H ₂ L) ²	7.5 ^d					
	$M^3.L^2/M_2L_2(s)$	-49.7 ⁱ					
_	M.HL/MHL(s)	-12.17 ⁱ					
Fe ²⁺	MHL/M.HL			3.6			
	MH ₂ L/M.H ₂ L			2.7			
	$M^{3}L^{2}/M_{3}L_{2}(H_{2}O)_{8}$	(s)		-36.0			
Co ²⁺	MHL/M.HL	2.18 ^a					
Ni ²⁺	MHL/M.HL	2.08 ^a	2.00 ^y				
Cu ²⁺	MHL/M.HL	3.2 ^a	3.3 ^u				
	$^{\mathrm{MH}_{2}\mathrm{L}/\mathrm{M.H}_{2}\mathrm{L}}$		1.3 ^u				
Fe ³⁺	MHL/M.HL	8.30					
	MH ₂ L/M.H ₂ L	3.47					
	M.L/ML(H ₂ 0) ₂ (s)			-26.4			
vo ²⁺	$M^3.L^2/M_3L_2(s)$	-24.01 ^a		-25.1			
Ag ⁺	M ³ .L/M ₃ L(s)			-17.55			
Hg ₂ 2+	M.HL/MHL(s)			-12.40			
CH ₃ Hg ⁺	MHL/M.HL	5.03 ^h					
Zn ²⁺	MHL/M.HL	2.4 ^a	2.4 ^u				
	MH ₂ L/M.H ₂ L		1.2 ^u				
	$M^{3}.L^{2}/M_{3}L_{2}(H_{2}O)_{4}$	(s)		-35.3			
a 25°, 0.1; d 25°, 2.0; h 20°, 0.1; i 20°, 0.3; u 37°, 0.15; x 20°, 0.2; y 15°, 0.1							

Hydrogen phosphate (continued)

Metal ion Pb ²⁺	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Pb ²⁺	MHL/M.HL			3.1		
	MH ₂ L/M.H ₂ L			1.5		
	$M^{3}L^{2}/M_{3}L_{2}(s)$			-43.53^{z}		
	M.HL/MHL(s)			-11.43		
Ga ³⁺	M.L/ML(s)		-21.0			
In ³⁺	MH ₂ L/M.H ₂ L		1.43 ^j			
	M.L/ML(s)		-21.63			

^j 20°, 0.9; ^z 38°, 0

Bibliography:

H⁺ 29BU, 32JP, 37P, 43BA, 51B, 55CD, 56Bb, 56MS, 56SA, 57DS, 57ET, 57Ta, 58Ga, 59D, 61DK, 61VQ, 62CI,63GS,63Sb,63SG,64SSL,65HC,66CI, 66IT,67SB,69C,69MKb,69PN,70BS,71Pa, 72MR,74HH,74MB $\text{Li}^+ - \text{K}^+$ 56SA Mg²⁺ 54CC,54HP,56SAa,63TF,70C,74HH Ca²⁺ 40GR, 49Bb, 53DH, 56SAa, 57SN, 60M, 66MG, 68CM, 70C Sr²⁺ 56SAa,62GG,66SM Ba²⁺ 66SM y^{3+}, Pm^{3+}, Am^{3+} 66BE La³⁺ 63TV,70RS Ce³⁺ 50MS,66BE Gd³⁺ 67TP Ac 3+ 70RS vo₂2+ 65VP Th4+ 51ZA Fe²⁺ 72N Co²⁺ 67SB Ni²⁺ 67SB,72FS Cu²⁺ 67SB,70C Fe³⁺ 63GS,72Na vo²⁺ 56ZK

Ag⁺ 70Bd Hg₂²⁺ 49DC CH₃Hg⁺ 65SS Zn²⁺ 67SB,70C,73N Pb²⁺ 32JP,72Nb Ga³⁺ 64TC In³⁺ 68DT

Other references: 03B,03RD,09AB,14MG,17B, 20B, 20K, 24PWa, 25DS, 25HL, 25MM, 26SN, 27B, 27C, 27K, 27SH, 29B, 29JM, 29Ka, 29MJ, 30HKa, 30Ma, 31BD, 31L, 32BR, 33N, 34GS, 34N, 36SE, 40GR, 42Ha, 42LK, 42TL, 42W, 44A, 56G, 45M, 46H,49Ka,50CJ,50Fa,51HM,51Z,51ZA,52TM, 53BS,53BSL,53GC,54BR,54HP,54TO,55C, 55KE,55KJ,56CS,57CJ,57D,57DS,57TV, 58ES,58KB,58KC,58Mb,58Mc,59LP,59SV, 60DM, 60FSA, 60GL, 60MM, 61BM, 61BN, 61CA, 61CAa,61EA,61ICa,61K,61KZ,61TG,61WL, 62AM, 62F, 62FE, 62L, 62ML, 62RD, 63G, 63MG, 63PG,63UK,64DRC,64LA,64MP,64WE,65HSE, 65PE,65PT,66DM,66GM,66LA,67DS,67KPb, 67ME,67MSP,67WW,68Ba,68Ca,68MD,69BPa, 69IVa, 70GM, 70GS, 70IV, 70LS, 71MM, 73FA, 73IV,73NM,73RM,73SZ,74Fa,74FGA,74IK, 74RM

H ₄ O ₇ P ₂		Hydrogen diph	nosphate (pyrophosphoric	acid)	H ₄ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.1 8.37 ±0.08 9.00°±0.05	Log K 25°, 1.0 7.43 +0.07 8.74 ^r ±0.04	Log K 25°, 0 9.40 ±0.1 7.17 ^e	ΔH 25°, 0 -0.39 ±0.0	ΔS 25°, 0 42
	H ₂ L/HL.H	6.04 ±0.04 6.19 ^r +0.07	5.41 ±0.05	6.70 ±0.1 5.29 ^e	-0.13 ±0.0	30
	н ₃ L/н ₂ L.н	1.8 2.0 ^r ±0.1	1.4 +0.1 1.7 ^r ±0.0	2.2 ±0.1 1.4 ^e	1.0	13
	н ₄ L/н ₃ L.н	0.8 ^r	0.8 0.7 ^r ±0.1	0.8 ±0.1	1.5	9
Li ⁺	ML/M.L		2.39 ^r	3.4 ±0.3	1.0 0.3 ^{c,r}	19 12 ^{c,r}
	MHL/M.HL		1.03 ^r	2.0	0.3 -0.2 ^{c,r}	10 4 ^{c,r}
+ Na	ML/M.L	0.21 ^d	1.00 ^r	2.29 ±0.07	1.4 0.5 ^{c,r}	15 6 ^{c,r}
	M ₂ L/ML.M MHL/M.HL	-0.8 ^d -0.5 ^d		1.9 ±0.6 1.4 ±0.1		
K ⁺	ML/M.L		0.80 ^r	2.1	1.7 0.7 ^{c,r}	15 6 ^{c,r}
Mg ²⁺	ML/M.L ML ₂ /M.L ² MHL/M.HL	5.45 3.18 ^s	5.42 ^r -0.01 7.80 ^r ±0.05 3.06 ^r -0.01	7.2	3 ^t	43
	MOHL/M.OH			2.1		
Ca ²⁺	ML/M.L MHL/M.HL	5.4 ^r 3.3 ^r	$4.9^{r} \pm 0.0$ $2.3^{r} -0.1$	6.8		
	MOHL/M.OH			2.1		
	ML.M/M ₂ L(s)			-7.9		

 $^{^{\}rm c}$ 25°, 1.0; $^{\rm d}$ 25°, 2.0; $^{\rm e}$ 25°, 3.0 Na $^{\rm +}$; $^{\rm r}$ (CH $_3$) $_4$ N salt used as background electrolyte; $^{\rm s}$ 15°, 0.1; $^{\rm t}$ 25°, var.

Hydrogen diphosphate (continued)

Metal	F- 4141 4	Log K	Log K 25°, 1.0	Log K 25°, 0	ΔΗ	ΔS
ion Sr ²⁺	Equilibrium ML/M.L	$\frac{25}{3.26^{\text{h}}}$	25 , 1.0	5.4	25°, 0	<u>25°, 0</u>
01	MOHL/ML.OH	3120		2.3		
	ML.M/M ₂ L(s)			-7.5		
La ³⁺	ML/M.L			16.72		
	ML ₂ /M.L ²			18.57		
	M ₂ L/M ² .L			19.59 ±0.06		
Ce ³⁺	ML/M.L			17.15		
Nd ³⁺	M ₂ L/M ² .L			19.98		
Sm ³⁺	M ₂ L/M ² .L			20.16		
Eu ³⁺	M ₂ L/M ² .L			20.27		
Gd ³⁺	M ₂ L/M ² .L			20.45		
Tb ³⁺	M ₂ L/M ² .L			20.50		
Dy ³⁺	M ₂ L/M ² .L			20.64		
Но ³⁺	M ₂ L/M ² .L			20.9		
Er3+	M ₂ L/M ² .L			21.29		
Yb ³⁺	ML/M.L			17.5		
	$ML_2/M.L^2$			19.4		
	M ₂ L/M ² .L			21.88		
	$M^{\overline{4}}.L^3/M_4L_3(s)$			(-75.0)		
Lu ³⁺	M ₂ L/M ² .L			22.23		
Ce ⁴⁺	ML/M.L	(18.41)				
	M.L/ML(s)	-23.36				
Co ²⁺	ML/M.L	6.1				
		7.36 ^r				
	MHL/M.HL	3.4				
		4.07 ^r				
Ni ⁺	ML/M.L	5.94			4.2 ^t	41 ^a
		7.01 ^r				
	$\mathrm{ML_2/M.L}^2$				2.0 ^t	
	MHL/M.HL	(3.71)				
		3.81 ^r				

h 20°, 0.1; r (CH₃)₄N salt used as background electrolyte; t 25°, var

Hydrogen diphosphate (continued)

Metal ion Cu ²⁺	Equilibrium ML/M.L	Log K 25°, 0.1	Log K 25°, 1.0 7.6 9.07 ^r	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
	ML ₂ /M.L ²		9.07 12.45 16.65 ^r		(-0.7) ^t	(55) ^c
	MHL/M.HL		4.45 5.37 ^r			
	MH ₂ L/M.H ₂ L		1.99 2.55 ^r			
	MHL ₂ /ML ₂ .H		4.9 6.61 ^r			
	MH ₂ L ₂ /MHL ₂ .H		4.7 5.63 ^r			
	MH ₃ L ₂ /MH ₂ L ₂ ·H		3.7 4.25 ^r 2.7			
	MH ₄ L ₂ /MH ₃ L ₂ .H MH ₅ L ₂ /MH ₄ L ₂ .H		3.06 ^r			
Mn ³⁺	ML/M.L ML ₂ /M.L ² MH ₂ L/M.H ₂ L M(H ₂ L) ₂ /M.(H ₂ L) ²	16.68 ^u 31.85 ^u 5.11 ^u 8.41 ^u				
Hg ₂ 2+	M(H ₂ L) ₃ /M.(H ₂ L) ³ ML ₂ /M.L ² MOHL/M.OH.L	11.24 ^u	12.38 ^v 15.64 ^v			
T1 ⁺	ML/M.L ML ₂ /M.L ²	1.69 ^w 1.9 ^w				
Zn ²⁺	ML/M.L ML ₂ /M.L ² MOHL/ML.OH			8.7 11.0 4.4	2.6 ^t	59
Cd ²⁺	ML/M.L MOHL/ML.OH			(8.7) 3.1		
Hg ²⁺	MOHL/M.OH.L		17.45 ^v			

^c 25°, 1.0; ^r (CH₃)₄N salt used as background electrolyte; ^t 25°, var.; ^u 25°, 0.3; ^v 27°, 0.75; ^w 35°, 2.0

Hydrogen diphosphate (continued)

Metal		Log K	Log K	Log K	ΔΗ	ΔS
<u>ion</u>	Equilibrium	25°, 0.1	25°, 1.0	25°, 0	<u>25°, 0</u>	<u>25°, 0</u>
Pb ²⁺	ML/M.L		7.3			
	$\mathrm{ML}_2/\mathrm{M.L}^2$		10.15		(-1.0) ^t	(43) ^c

c 25°, 1.0; t 25°, var.

Bibliography:

70GSM

 H^+ 28KB, 49M, 50SZ, 54BR, 55D, 57LW, 59WO, 60N, 611,611Ca,63JW,64HM,64WS,66IT,66MM,68BC, 68MHB,70VA,70VAa,72FS,73PS,73VAK Li⁺-K⁺ 49M,55D,57LW,59WO,73VA Mg²⁺ 57LWa,57V,59WO,61I,61IC,72FS Ca²⁺ 59WL,59WO,60IC 59WO,62GG La³⁺, Nd³⁺-Lu³⁺ 66SS,67SSc Ce³⁺ 50MS Ce⁴⁺ 67MSK Co²⁺ 63JW,64HM 56YVa,64HM,73PS 56YVa,63SS,68BC Mn³⁺

59YD,60YD T1[‡] 52SD zn^{2+} 56YVa,59W0 Cd^{2+} 59W0 Hg²⁺ 60YD Pb²⁺ 56YVa,68CFa Other references: 09AB, 28M, 30Ma, 32Ma, 47SF, 49E, 49RR, 50Ha, 50LO, 50VC, 53GC, 53LU, 53WA,54GC,54UL,56UL,56YV,56YVb,580, 58PT,58VR,60FSA,60FT,600a,62AM,62NM, 64GL,64SSa,64WE,65BCY,65HS,65PE,65SMc, 66ASS,66GL,66MI,66VV,67MNU,67SA,68MSb,

68PV,69SA,71BSb,71MM,72BPb,72LG,73RM

H ₅ O ₁₀ P ₃	3	Hydrogen trip	hosphate	(triphosphoric acid)		H ₅ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.1 8.00 ±0.1	Log K 25°, 1.0	Log K 25°, 0 9.25 ±0.01	ΔH 25°, 0 -0.1	ΔS 25°, 0 42
	H ₂ L/HL.H	8.70^{r} ± 0.1 5.50 ± 0.1 5.90^{r} ± 0.1	8.61 ^r ±0.0	9.54 ±0.07	-0.1 ^{h,r} 1.4 ±0.1	40 ^a ,r 35
	н ₃ L/н ₂ L.н	(2.6) 2.2 ^r -0.1	2.0 ^r ±0.0 1.0 ^r ±0.1			
Li ⁺	H ₄ L/H ₃ L.H ML/M.L MHL/M.HL		2.87 ^r	3.9		
Na ⁺	ML/M.L MHL/M.HL		1.64 ^r 0.77 ^r	2.7 ±0.1		
к+	ML/M.L		1.39 ^r			
Be ²⁺	ML/M.L MHL/ML.H	5.35 ^{h,r}			4,7 ^{h,r}	
Mg ²⁺	ML/M.L	5.76 ±0.1 7.11 ^r	5.82 ^r ±0.0	8.6	4.3 ^{h,r}	47 ^{a,r}
	MHL/M.HL	3.5 ±0.2 4.45 ^h ,r	3.35 ^r ±0.0			
0.1	MOHL/ML.OH			2.4		
Ca ²⁺	ML/M.L	5.20 ±0.2 6.38 ^r ±0.03	5.40 ^r ±0.0	8.1	3.3 ^{h,r}	40 ^{a,r}
	MHL/M.HL	3.04 +0.1 4.02 ^{h,r} -0.2	2.9 ^r ±0.1			
	MOHL/ML.OH			2.3		
Sr ²⁺	ML/M.L	4.10 ±0.2 5.50 ^r		7.2	3.3 ^{h,r}	36 ^{a,r}
	MHL/M.HL	2.53 ±0.3 3.56 ^{h,r}				
	MOHL/ML.OH			2.1		

a_{25°}, 0.1; h_{20°}, 0.1; r₄ (CH₃)₄N salt used as background electrolyte.

Hydrogen triphosphate (continued)

Metal ion 2+	<u>Equilibrium</u>	Log K 25°, 0.1	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Ba ²⁺	ML/M.L	3.3		6.3		
	MHL/M.HL	1.8				
	$ML.M/M_2L(s)$			-9.8		
Mn ²⁺	ML/M.L	7.15				
		8.08 ^r			2.8 ^{h,r}	46 ^{a,r}
	MHL/M.HL	3.77				
		5.08 ^{h,r}				
Co ²⁺	ML/M.L	6.94				
	·	8.01 ^r +0.1			4.5 ^{h,r}	52 ^{a,r}
	MHL/M.HL	3.81				
		4.93 ^{h,r}				
Ni ²⁺	ML/M.L	6.75				
MI	FIL/FI.L	7.86 ^r +0.04			5.0 ^{h,r}	53 ^{a,r}
	MHL/M.HL	3.65			3.0	23
	THIE, IT. HE	4.9 ^h ,r				
Cu ²⁺						
Cu ⁻	ML/M.L	8.3			4.9 ^{h,r}	59 ^{a,r}
	(9.36 ^r			4.9	59,-
	MHL/M.HL	4.34 6.1 ^{h,r}				
2.1	0	6.1				
Hg ₂ ²⁺	$\mathrm{ML}_2/\mathrm{M.L}^2$		11.23 ^t			
	MOHL/M.OH.L		15.00 ^t			
T1 ⁺	ML/M.L		1.34 ^u			
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$		2.26 ^u			
Zn ²⁺	M./M.L	7.5		(9.7)		
		8.43 ^r		(211)	6.3 ^{h,r}	60 ^{a,r}
	MHL/M.HL	3.92				
		5.13 ^{h,r}				
	MOHL/ML.OH			3.3		
Cd ²⁺	ML/M.L	6.58		9.8		
Cu	ML/M.L	8.13 ^r		9.0	2.7 ^{h,r}	46 ^{a,r}
	MHL/M.HL	3.60			2.1	46
	inili/ ri• IIL	4.97 ^{h,r}				
	MOHL/ML.OH	7.7/		2.8		
a 25°	0 1: h 20° 0	r (ou) v		2.0	t 278 0	

 $[\]overline{a}$ 25°, 0.1; h 20°, 0.1; r (CH₃)₄N salt used as background electrolyte; t 27°, 0.75; u 20°, 2.4

Hydrogen triphosphate (continued)

Bibliography:

Other references: 49T,50VC,53GC,55Lb,56Kc, 57Ka,57Mb,57PL,60G,62RK,62RKa,62SLW, 63Ka,64SSa,64SSG,64WS,65KS,66MI,67ASa, 68ASc,68SA,68WSa,71SB,74TR

H ₆ O ₁₃ P ₄	4	Hydrogen tetraphosphate	(tetraphosphoric acid)	H ₆ L
Metal ion H	Equilibrium HL/H.L H ₂ L/HL.H H ₃ L/H ₂ L.H H ₄ L/H ₃ L.H	Log K 25°, 1.0 8.34 ^r (6.63) ^r 2.23 ^r 1.4 ^r		
Li ⁺	ML/M.L MHL/M.HL	(2.64) ^r (1.59) ^r		
Na ⁺	ML/M.L MHL/M.HL	1.79 ^r 1.10 ^r		
к ⁺	ML/M.L MHL/M.HL	1.71 ^r (1.11) ^r		
Mg ²⁺	ML/M.L MHL/M.HL M ₂ L/ML.M	6.04 ^r 3.74 ^r 2.19 ^r		
Ca ²⁺	ML/M.L MHL/M.HL M ₂ L/ML.M	5.46 ^r -0.0 3.54 ^r -0.2 3.07 ^r +0.3		
Sr ²⁺	ML/M.L MHL/M.HL M ₂ L/ML.M	4.82 ^r 3.49 ^r 3.42 ^r		
Cu ²⁺	ML/M.L ML ₂ /M.L ² MHL/M.HL MH ₂ L/M.H ₂ L MOHL/ML.OH MHL ₂ /ML ₂ .H MH ₂ L ₂ /MHL ₂ .E MH ₃ L ₂ /MH ₂ L ₂ .	.H 4.52 ^r		
**	MH ₄ L ₂ /MH ₃ L ₂ .	7		

r (CH₃)₄NC1 used as background electrolyte.

Hydrogen tetraphosphate (continued)

Bibliography:

H⁺ 63WS Li⁺-K⁺ 67WM

Mg²⁺-Sr²⁺ 68WM,69WKa

Cu²⁺ 68WM

Other references: 68WS,68MHB

H ₃ O ₉ P ₃	3	Hydrogen trimetapho	sphate	(<u>trimetap</u>	hosphoric	c acid)	H ₃ L
Metal ion H	Equilibrium HL/H.L	Log K 20°, 0.1 1.35	Log K 25°, 1	.0 25	og K °, 0		
Na ⁺	ML/M.L			1.4	0 -0.2		
Mg ²⁺	ML/M.L	1.11		3	.31		
Ca ²⁺	ML/M.L	2.06	1.64	r 3.4	7 ±0.02		
Sr ²⁺	ML/M.L	1.99 ^s ±0.04		3	.35		
Ba ²⁺	ML/M.L			3	.35		
La ³⁺	ML/M.L			5	.70		
Pm ³⁺	ML/M.L	3.80 ^s		5	.74		
Am ³⁺	ML/M.L	3.48 ^s		6	.06		
Cm ³⁺	ML/M.L	3.64 ^s		5	.92		
Mn ²⁺	ML/M.L			3	.57		
Ni ²⁺	ML/M.L			3	.22		
Cu ²⁺	ML/M.L ML ₂ /H.L ²		1.58 2.2 ^r				
Zn ²⁺	ML/M.L	1.94 ^s					
r (CH ₃	$_{4}^{\mathrm{NNO}}$ used a	s background electro	olyte; s	20°, 0.2			
	graphy:			_			
	49DM,49Z,69WK			La ³⁺ 52Ma			
ე	49DM,69GN 49JM,49Z			$Pm^{3+}-Cm^{3+}$ Cu^{2+} 69WK			
Ca ²⁺	495М,49Z 49DM,49JM,69W	Ka,74KO		Zn 2+ 74KC			
Sr ²⁺ 5	52M,62GG,74KO n ²⁺ ,Ni ²⁺ 49J					53GC,58I,62RK,65	IM,68WSa

H ₄ O ₁₂ P	4	Hydrogen	tetrametapho	osphate (etrametaphosphoric	acid)	H ₄ L
Metal ion H ⁺	Equilibr HL/H.L	ium	Log K 20°, 0.1	Log K 25°, 1.0 1.53 ^r	Log K 25°, 0 2.76 ±0.02		
Na ⁺	ML/M.L			0.81 ^{r,}	2.10 ±0.05		
Mg ²⁺	ML/M.L				5.17		
Ca ²⁺	ML/M.L		3.28 2.90 ^s	3.1 ^r	5.37 ±0.05		
	$\mathrm{ML}_2/\mathrm{M.L}^2$				8.02 ±0.1		
Sr ²⁺	ML/M.L ML ₂ /M.L ²		2.80 ^t		5.12 7.54		
Ba ²⁺	ML/M.L				4.99		
La ³⁺	ML/M.L				6.66		
Mn ²⁺	ML/M.L				5.74		
Co ²⁺	ML/M.L		2.62 ^s				
Ni ²⁺	ML/M.L ML ₂ /M.L ²	!		2.63 ^r , 3.48 ^r ,			
Cu ²⁺	ML/M.L			3.04 ^r 3.18 ^r ,	и		
	ML ₂ /M.L ²	!		4.28 ^r 4.64 ^r ,			
Zn ²⁺	ML/M.L		2.86 ^s				
r (CH ₃	3)4 ^{NNO} 3 use	ed as back	ground elect	rolyte; ^s 20	°, 0.2; ^t 20°, 0.1	5; ^u 30°, 1.0	
Diblia	graphy:						
H+	49DM,54BR,	,69WK		L	a ³⁺ 52Ma		
Na ⁺	49DM,55GG,)	C	o ²⁺ ,Zn ²⁺ 74KO		
Mg ²⁺ ,E	3a ²⁺ ,Mn ²⁺	50JMa			i ²⁺ 50JMa,55GG		
	49DM,50JMa	1,69WKa,74	KO		u ²⁺ 55GG,69WK		
Sr ²⁺	52M,62GG			C	ther references:	53GC,62RK,65IM	

H ₆ O ₁₈ P ₆	Hydro	gen hexametapho	sphate (hexa	ametaphosphoric acid)	H ₆ L
Metal ion Na	Equilibrium ML/M.L	Log K 20°, 0.1	Log K 25°, 0.2	Log K 25°, 0 4.3	
Ca ²⁺	ML/M.L	4.59	4.11	6.9°	
Sr ²⁺	ML/M.L		3,73		
Co ²⁺	ML/M.L		3.65		
Zn ²⁺	ML/M.L		3.95		
° 20°,	0				
Bibliog	graphy: Na ⁺ 72	ко	Ca ²⁺	-Zn ²⁺ 74K0	

но оно он)
0=P-0-P-0-P-0-I	-OH
1	1
o ()
1	
HO-P-O-P-O-P-O-I	?=0
/\ /\	
о но оно о	OΗ

H ₈ O ₂₄ P	8 Hydro	ogen octametapho	osphate (oct	ametaphosphoric acid)	н8г
Metal ion Na	Equilibrium ML/M.L	Log K 20°, 0.1	Log K 25°, 0.2	Log K 25°, 0 4.6	
Ca ²⁺	ML/M.L	5.18	4.62	8.1°	
Sr ²⁺	ML/M.L		4.30		
Co ²⁺	ML/M.L		4.80		
Zn ²⁺	ML/M.L		5.02		
° 20°,	0				

Bibliography: Na⁺ 72KO

 $Ca^{2+}-Zn^{2+}$ 74KO

^H 5 ^O 6 ^{NP} 2	<u>H</u>	ydrogen imidodipho	osphate (imi	dodiphosphori	c acid)	$^{\rm H_4L}$
Metal ion H	Equilibrium	Log K 25°, 0.1	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
H ⁺	HL/H.L	10.22	10.36			
	H ₂ L/HL.H	7.3	7.6			
	н ₃ г/н ₂ г.н	2.66	3.1			
	н ₄ L/н ₃ L.н	1.5	1.5			
Ca ²⁺	ML/M.L	5.59	4.59	6.1	(-6) ^r	(0)
	MHL/M.HL	3.33	3.15	3.4		
r 25-50)°, 0					
Bibliog	graphy: H ⁺	61ICa	Ca ²⁺	61IC		

0 	0	0 	
HO-P-NE	I-P-NI	H-P-OH	
1	1	1	
ÓН	ÓН	OH	

H ₇ O ₈ N ₂ 1	P ₃ Hydroge	en diimidotripho	osphate (dii	midotriphosph	oric acid)	H ₅ L
Metal ion	<u>Equilibrium</u>	Log K 25°, 0.1	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
ion H	HL/H.L	9.84	10.00			
	н ₂ г/нг.н	6.61	6.86			
	- Н ₃ L/Н ₂ L.Н	3.03	3.36			
	H _A L/H ₃ L.H	2	2.0			
	н ₅ L/н ₄ L.н	1	1.0			
Ca ²⁺	ML/M.L	6.7	5.7	7.1	(-9) ^r	(-6)
	MHL/M.HL	4.44	4.16	4.6		

r 25-50°, 0

Bibliography: H⁺ 61ICa Ca²⁺ 61IC

 $^{\mathrm{H}}_{6}^{0}_{6}^{\mathrm{N}}_{3}^{\mathrm{P}}_{3}$ Cyclo-tri- μ -imidotris(dioxophosphate) (trimetaphosphimic acid) $^{\mathrm{H}}_{3}^{\mathrm{L}}$

Metal <u>ion</u>	Equilibrium	Log K 20°, 0.1
$^{+}$	L/H ₋₁ L.Н	12.19
	HL/H.L	3.23
Mg ²⁺	ML/M.L	1.28

Bibliography: 49Z

H ₄ O ₆ P ₂	Hydrogen	diphosphate (<u> </u>	isohypophosphoric acid)	H ₃ L
Metal ion H	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	
H'	HL/H.L	6.10 ^r 6.14 ^{a,r}	6.19 ^r	6.26	
	H ₂ L/HL.H	1.35 ^r 1.56 ^a ,r	1.57 ^r	1.67	
Li ⁺	ML/M.L	0.82 ^r			
Na ⁺	ML/M.L	0.50 ^r			
K ⁺	ML/M.L	0.36 ^r			
Mg ²⁺	ML/M.L	2.65 ^r			
Ca ²⁺	ML/M.L	2.27 ^r			

a 25°, 0.1; r (CH₃)₄NC1 used as background electrolyte.

Bibliography: 67CM

H ₄ O ₆ P	2	Hydrogen hypophosphat	e (hypop	hosphoric acid)	H ₄ I	
Metal ion H	<u>Equilibrium</u>	Log K 25°, 0.1		Log K 25°, 0		
H.	HL/H.L	9.48				
	H ₂ L/HL.H	6.77				
	н ₃ L/н ₂ L.н	2.1				
Na ⁺	ML/M.L			2.31		
	MHL/M.HL			1.32		
Bibli	ography:					
$^{\rm H}$	50SZ		Na ⁺	67NS		
		0 HO-P HO	-O-O-P-OH			-

H ₄ O ₈ P ₂		Hydrogen peroxodiphosphate			
Metal <u>ion</u> H	Equilibrium HL/H.L H ₂ L/HL.H	25°, 1.0 2 7.19 ^r	Log K 5°, 0 7.68 5.18		
Li ⁺	ML/M.L MHL/M.HL	1.34 ^r 0.70 ^r			
Na ⁺	ML/M.L MHL/M.HL	1.02 ^r 0.25 ^r			
K ⁺	ML/M.L	1.01 ^r			
Mg ²⁺	ML/M.L MHL/M.HL M ₂ L/M ² .L	3.33 ^r 1.76 ^r 1.32 ^r			

Bibliography: 60CE

r (CH₃)₄NC1 used as background electrolyte.

F6P

Hexafluorophosphate ion

 $_{
m L}^-$

Meta1

ion Equilibrium ML/M.L

 $\mathrm{M_2L_2/\left(ML\right)}^2$

Log K 25°, 0 0.38

0.5

(-8)

r 25-50°, 0

Bibliography: 61RSS

AsF₆

F6As

Hexafluoroarsenate ion

L

Meta1 ion

Equilibrium ML/M.L

Log K 25°, 0 (0.25)

Bibliography:

60AH

H-0-0-H

H ₂ O ₂			Hydrogen peroxic	<u>le</u>		H ₂ L
	Equilibrium H ₂ L/HL.H H ₄ L ₂ /(H ₂ L) ² H ₄ L ₂ /H ₃ L ₂ .H H ₃ L ₂ /H ₂ L ₂ .H	Log K 25°, 0.5	Log K 25°, 1.0 12.13 ^r -0.96 ^r 10.89 ^r 13.86 ^r	Log K 25°, 0 11.65 ±0.03	ΔH 25°, 0 -7.4 ^a	ΔS 25°, 0 29
Pu ⁴⁺ UO ₂ ²⁺	M ₂ OHL.H ³ /M ² .H ₂ L M ₂ L ₂ .H ⁴ /M ² .(H ₂ L) ² MHL/H.ML(s)			-1.4		
- Fe ³⁺	MOHL/OH.ML(s) MHL/M.HL	9.31 ^h		-2.0	(2) ^s	(50) ^h
TiO ²⁺	MH ₂ L/M.H ₂ L	3.94 ^d	3.86 ±0.0 4.01 ^e		-10.5 ^c	-18 ^c
	$M(H_2L)_2/M.(H_2L)^2$ $VOL/M.H_2L$		6.3 4.53 ^u			
HCrO ₄	$\operatorname{Cro}_5/M.(\operatorname{H}_2L)^2$	7.73 ^v				
Mo ₂ 0 ₇	MH ₂ L/M.H ₂ L M(H ₂ L) ₂ .H ² /M.(H ₂ I	3.42 a) ² 3.30				
в(ОН) ₄	B(OH) ₃ HL/M.H ₂ L B(OH) ₂ (HL) ₂ /M.(H ₂	1.52 L) ²		1.32 1.53		
GeO(OH)) ₃ M(H ₂ L) ₂ /M.(H ₂ I	=				
H ₅ TeO ₆	- MH ₂ L/M.H ₂ L	-0.15 ^a		-0.17		
•	0.1; ^c 25°, 1.0; ^c 1.0; ^v 10°, 0.09	ī 25°, 2.1;			.0; s 8-40°,	0.1;
Biblio	graphy:			, ²⁻ 69AY		
	49EU,57MRa,57SM,640	CH		53Eb,55Ab,5	5Kd	
Pu ⁴⁺				OH) 60AR		
UO ₂ 2+				59EF,61AT		075
Fe ³⁺			Other	references: 1		
	60Gb,68VV,70VV			51M, 53EM, 56TS, 5		
vo ₂ -				60Ca,60CLa,63DL	,03FL,03LK,04	nk, opi,
HCrO ₄	57E			670W		

н₂s

н ₂ s		Hydrogen s	ulfide (hyd	rosulfuı	ric acid)		H ₂ S
Metal _ion	<u>Equilibrium</u>	Log K 20°, 0.1	Log K 25°, 1.0	Lo 25°	og K °, 0	ΔΗ 25°, Ο	ΔS 25°, 0
H ⁺	HL/H.L		13.8		±0.1	-12	23
	H ₂ L/HL.H	6.83	6.61	7.02	2 ±0.04	-5.3	14
	H ₂ L/H ₂ L(g)			-(0.99		
Mn ²⁺	M.L/ML(s,pink)			-10) 5		
	M.L/ML(s,green)			-13.5		5	-45
Fe ²⁺	M.L/ML(s)			-18.1		10	- 49
Co ²⁺	M.L/ML(s,α)						
	$M.L/ML(s,\beta)$			-21 -25			
Ni ²⁺							
NI	$M.L/ML(s,\alpha)$			-19			
	$M.L/ML(s,\beta)$ $M.L/ML(s,\gamma)$			-24			
Cu ²⁺	M.L/ML(s)			-26		0.5	4.0
	_			-36.1		35	-48
Cu ⁺	M ² .L/M ₂ L(s)			-48.5	-0.5	52	-48
Ag	MHL/M.HL	13.6	13.30 ^j				
	$M(HL)_2/M.(HL)^2$	17.7	17.17 ^j				
	MHL/ML.H	8.3					
	$M(HL)_2/MHL_2.H$	9.5					
	$^{\text{M}}2^{\text{H}}2^{\text{L}}3^{\text{H}}2^{\text{L}}/(\text{M(HI)}$	(2) ₂) ²	3.2 ^j				
	$M^2.L/M_2L(s)$		-49.7 ^j	-50.1	±0.0	66	-8
CH ₃ Hg ⁺	ML/M.L	21.0					
	M ₂ L/ML.M	16.3					
	M ₃ L/M ₂ L.M	7					
T1 ⁺	MHL/M.HL		2.27				
	M ₂ HL/MHL.M		5.77				
	M_2^2 OH(HL) ₃ / M^2 .OH.	(HL) ³	14.96				
	$M_2(OH)_2(HL)_2/M^2$.	$(OH)^2.(HL)^2$	16.70				
	M ² .L/M ₂ L(s)		-21.1	-21.2	+0.3		
Zn ²⁺	ML/M.OH.HL		19.0				
	$M.L/ML(s,\alpha)$		-24.4	-24.7	±0.0	20	-46
	$M.L/ML(s,\beta)$			-22.	.5		

Hydrogen sulfide (continued)

Metal ion	Equilibrium_	Log K 20°, 0.1	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
$\frac{\text{ion}}{\text{Cd}^2}$	MHL/M.HL		7.6			
	$M(HL)_2/M.(HL)^2$		14.6			
	$M(HL)_3^2/M.(HL)^3$		16.5			
	$M(HL)_4/M.(HL)^4$		18.9		•	
	M.L/ML(s)		-25.8	-27.0 ±0.1	25	-40
Hg ²⁺	$M(HL)_2/M.(HL)^2$		37.71 ^j			
	M(HL) ₂ /MHL ₂ .H		6.19 ^j			
	MHL ₂ /ML ₂ .H		8.30 ^j			
	M.L/ML(s,black)		-51.0 ^j	-52.7	63	-30
	M.L/ML(s,red)			-53.3		
Sn ²⁺	M.L/ML(s)			-25.9		
Pb ²⁺	M.L/ML(s)			-27.5 -0.6	31	-22
In ³⁺	$M^2.L^3/M_2L_3(s)$			-69.4		
	(M(OH) ₂) ² .L ³ /M ₂ L	₃ (s)		-90.8		
Bi ³⁺	$M^2.L^3/M_2L_3(s)$			-100 +1		
j 20°,	1.0	_				

Bibliography:

H⁺ 46K,52L,53KZ,58SG,59EGa,59Md,61LH,

61MSa,62Pc,66SW,67EM

Mn²⁺-Cu⁺,Sn²⁺,Pb²⁺,Bi³⁺ 53R,59C

Ag⁺ 52GGF,53R,58SG,59C,66SW

CH₃Hg⁺ 65SS

T1⁺ 53R,59KK,66GK,72GR

Zn²⁺ 53R,59C,67GSa

Cd²⁺ 53R,59C,64ST

In³⁺ 62TS

Sb(III) 52Lb,53R

Other references: OOP,OOWC,04A,06K,09BZ,
14TG,22JC,31K,32WM,33J,34ZR,38E,49KLa,
50SS,51Y,53A,56BL,56KR,57TMb,58Gb,
60ASc,60Bb,60MTF,60ZK,61EAa,63CMa,
62DGa,63Ca,64GM,64WSa,65D,66AD,
66KGS,67Gb,67GR,68HRa,71EGa,71G

H ₂ O ₃ S		Hydrogen	sulfite	(sulfurous acid)		H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 6.79 ^h	Log K 25°, 1.0 6.34	Log K 25°, 0 7.18 ±0.03	ΔH 25°, 0 (3) ^r	ΔS 25°, 0 43
	н ₂ L/нL.н	1.62 ^a	6.36 ^e 1.37 1.72 ^e	1.91 ±0.02	4.0	22
	H ₂ L/SO ₂ (g)		0.03 0.06 ^e	0.09	(-6) ^s	(-20)
Ca ²⁺	M.L/ML(s)		-4.80 -5.04 ¹	-6.5		
Ce ³⁺	ML/M.L			8.04		
Cu ⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³		7.85 8.7 9.4			
Ag ⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ M ² .L/M ₂ L(s)	5.4 ^d 7.8 ^d		5.60 8.68 9.00 -13.82		
СН ₃ Нд ⁺ Сd ²⁺ Нд ²⁺	2	8.11 ^h	4.2 22.85 ¹	24.07 ⁿ 25.96 ⁿ		
a 25°, s 25-50		e 25°, 3.0;	^h 20°, 0.1;	¹ 18°, 3.0; ⁿ 18°	, 0; ^r 10-50°, ();
Ca ²⁺ 5 Ce ³⁺ 5	graphy: 12L,26SN,32RZ,34 58FN,58NR,63Sb,64 58RB 50MS 55TSR 55TSR,56CD 65SS		•		04D,07KB,11J,2 2BR,32D,38BC,55F 0Ga,61EA,64DR,65	Rb,56FP,

HSO₄

HO ₄ s		Hydrogen sı	ılfate ion	(sulfuric acid)		HL_
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 1.32 ±0.06 1.55 ^a ±0.05	Log K 25°, 1.0 1.10 ±0.08 1.01 ^d ±0.07	Log K 25°, 0 1.99 ±0.01 0.91 ^e ±0.02	$^{\Delta H}_{25^{\circ}, 0}_{5.4 \pm 0.3}_{5.6^{\circ}}$	ΔS 25°, 0 27 24 ^c
Li ⁺	ML/M.L			0.64	0.0	3
Na ⁺	ML/M.L			0.70 ±0.05	1.1	7
к+	ML/M.L	0.4 ^a		0.85 ±0.1	3	14
NH ₄	ML/M.L			1.11 ⁿ		
Be ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	0.72 ⁱ	1.78 2.08	1.95	·	
Mg ²⁺	ML/M.L		1.01 ^q	2.23 ±0.02	1.4 ±0.1	15
Ca ²⁺	ML/M.L M.L/ML(s)		1.03 ^q -2.92 -3.16 ^e	2.31 -0.01 -4.62 ±0.02	1.6 ±0.1 0.3	16 -20
Sr ²⁺	ML/M.L M.L/ML(s)	1.14		2.55 -6.50 ±0.05	0.5	-28
Ba ²⁺	ML/M.L ML ₂ /M.L ² M.L/ML(s)		0.66 1.42	2.7 -9.96 ±0.03	5.5	-46
Ra ²⁺	M.L/ML(s)			-10.37°		
Sc ³⁺	ML/M.L ML ₂ /M.L ²	2.59 3.96		4.20 5.7	7.5 13	44 70
_Y 3+	ML/M.L	1.24 ^d		3.47	4.8 4.0 ^d	32 19 ^d
	ML ₂ /M.L ²	1.68 ^d		5.3	7 5.5 ^d	48 26 ^d

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; i 18°, 0.5; n 18°, 0; o 20°, 0; q 25°, 0.7

Metal ion la	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0 1.43 ±0.03	Log K 25°, 0 3.64 ±0.02	ΔH 25°, 0 4.4	ΔS 25°, 0 31
	$\mathrm{ML_2/M.L}^2$	1.29 ^d	2.46	5.29	3.7 ^d 5.7	18 ^d 43
Ce ³⁺	ML/M.L	1.77 ±0.02 1.24 ^d		3.59	4.6 4.3 ^d	32 20 ^d
	ML ₂ /M.L ²	2.90		5.2	6.2	20 45
Pr ³⁺	ML/M.L	1.27 ^d		3.62	4.7	32
	$\mathrm{ML_2/M.L}^2$	1.27 ^d		4.92	3.9 ^d 10.4	19 ^d 57
Nd ³⁺	ML/M.L	1.26 ^d		3.64	4.7 4.2 ^d	32
	ML ₂ /M.L ²	1.26 1.79 ^d		5.1	4.2 8	19 ^d 50
Pm ³⁺	ML/M.L ML ₂ /M.L ²	1.34 ^d 1.88 ^d			(4) ^r	(20) ^d
Sm ³⁺	ML/M.L	1.30 ^d		3.67 ±0.01	4.9 4.3 ^d	33 20 ^d
	$\mathrm{ML_2/M.L}^2$	1.91 ^d		5.2	7.0	47
Eu ³⁺	ML/M.L	1.87 2.23 ^a 1.37 ^d	1.54	3.67	4.9 3.9 ^d	33 19 ^d
	$\mathrm{ML_2/M.L}^2$	2.73 1.96 ^d	(2.69)	5.41	7.1 6.3 ^d	49 30 ^d
Gd ³⁺	ML/M.L	1.90 1.33 ^d		3.66	4.8 4.0 ^d	33 20 ^d
	$\mathrm{ML}_2/\mathrm{M.L}^2$	2.84 1.75 ^d		5.21	7.4 5.7 ^d	49 27 ^d
Tb ³⁺	ML/M.L	1.27 ^d		3.64	4.7 4.2 ^d	33 20 ^d
	ML ₂ /M.L ²	1.89 ^d		5.15	7.8 5.8 ^d	50 28 ^d

^a 25°, 0.1; ^d 25°, 2.0; ^r 0-55°, 2.0

Metal ion	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Dy ³⁺	ML/M.L	1.23 ^d		3.62	4.9 4.4 ^d	33 20 ^d
	ML ₂ /M.L ²	1.72 ^d		4.8	10 5.7 ^d	56 27 ^d
Ho 3+	ML/M.L	1.24 ^d		3.59	4.9 4.2 ^d	33 20 ^d
	ML ₂ /M.L ²	1.76 ^d		4.9	9 5.9 ^d	53 28 ^d
Er ³⁺	ML/M.L	1.23 ^d		3.59	4.9 4.2 ^d	33 20 ^d
	ML ₂ /M.L ²	1.71 ^d		5.1	8 5.7 ^d	50 27 ^d
Tm ³⁺	ML/M.L	1.15 ^d		3.59	4.8 4.2 ^d	33 19 ^đ
	ML ₂ /M.L ²	1.59 ^d		5.14	7 5.2 ^d	47 25 ^d
Yb ³⁺	ML/M.L	1.15 ^d		3.58 ±0.02	4.7 4.1 ^d	32 19 ^d
	ML ₂ /M.L ²	1.59 ^d		5.2	7 5.3 ^d	47 25 ^d
Lu ³⁺	ML/M.L	1.09 ^d	1.29	3.52	4.7 4.2 ^d	32 19 ^d
	ML ₂ /M.L ²	1.61 ^d	1.9	5.3	6 5.8 ^d	44 27 ^d
Ac ³⁺	ML/M.L ML ₂ /M.L ²		1.20 1.85			
Pu ³⁺	ML/M.L M(HL) ₂ /M.(HL) ²		1.26 1.00			
Am ³⁺	ML/M.L	1.86 1.43 ^d	1.57		(4) ^s	(20) ^d
	$\mathrm{ML}_2/\mathrm{M.L}^2$	2.82 1.85 ^d	2.66		\ · /	(20)
d 25°,	2.0; ^s 0-55°, 2.					

Metal ion Cm ³⁺	Equilibrium ML/M.L	Log K 25°, 0.5 1.86	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0 (4) ^s	$\frac{^{\Delta_S}}{^{25^{\circ}}, 0}$ $(20)^{d}$
	ML ₂ /M.L ²	1.34 ^d 2.7 1.86 ^d				
Cf ³⁺	ML/M.L ML ₂ /M.L ²	1.36 ^d 2.07 ^d			(5) ⁸	(20) ^d
Th ⁴⁺	ML/M.L ML ₂ /M.L ²	3.22 ^d ±0.01 5.53 ^d ±0.06			5.0 ^d 9.6 ^d	32 ^d 58 ^d
U ⁴⁺		3.42 ^d +0.1 5.82 ^d ±0.07				
Np ⁴⁺	ML/M.L ML ₂ /M.L ²	3.51 ^d -0.07	3.41 ^e 5.42 ^e	3.53 ^m 5.92 ^m		
Pu ⁴⁺	ML/M.L		3.66			
Pa(V)	MOOHL/MOOH.L		2.21 ^e			
UO ₂ 2+	ML/M.L	1.65 ^t	1.81 ±0.0	2.95	5.0 4.4 ^c	30 24 ^c
	ML ₂ /M.L ² ML ₃ /M.L ³		2.5 ±0.2 3.7 ^j	4.0	8.4 ^c	41 ^c
NpO ₂ ²⁺	ML/M.L	2.07 2.20 ^a	1.82 ^j	3.27		
	ML ₂ /M.L ²	3.4 3.8 ^a	2.62 ^j			
Mn ²⁺	ML/M.L			2.26 -0.02	2.1 ±0.1	17
Fe ²⁺	ML/M.L			2.2	1.6	15
Co ²⁺	ML/M.L		0.23 ^e	2.36 +0.05	1.4 ±0.1	16
Ni ²⁺	ML/M.L	1.0 ^k	0.57 0.26 ^e	2.32	1.5 -0.1	16
	$\mathrm{ML}_2/\mathrm{M.L}^2$		1.42			

a 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 23°, 3.0; j 20°, 1.0; k 20°, 2.0; m 20°, 4.0 assuming HL/H.L = 0.83; s 0-55°, 2.0; t 25°, 2.7

Metal ion Cu	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0 0.95 0.70 ^e	Log K 25°, 0 2.36 ±0.03	$ \begin{array}{c} \Delta H \\ 25^{\circ}, 0 \\ 2.1 \pm 0.4 \\ 1.7^{d} \end{array} $	ΔS 25°, 0 18
	$M.(OH)^{1.5}.L^{0.2}$	²⁵ /M(OH) _{1.5} L _{0.2}	5 ^(s) -16.86 ^j	-17.16 ±0.04	(8) ^y	(-50)
Ru ²⁺	ML/M.L	1.88 ⁱ 1.30 ^k	1.70 ^j	2.72°	(0) ^v	(10)
v ³⁺	M./M.L		1.45			
Cr ³⁺	ML/M.L		2.60 ^x			
Mn ³⁺	ML/M.L	1.20 ^t	1.63 ^f	1.90 ^g		
Fe ³⁺	ML/M.L	2.24 ±0.1	2.02 ±0.1 1.93 ^e	4.04 ±0.1	(6) ^w	(30) ^b
	$\mathrm{ML_2/M.L}^2$		2.11 ^e	5.38		
Ru ³⁺	ML/M.L ML ₂ /M.L ²	2.04 ^d 3.57 ^d				
Ti0 ²⁺	ML/M.L		2.15 ^e 2.26 ^f	2.5 2.47 ⁸		
Zr ⁴⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	3.67 ^d 6.40 ^d 7.4 ^d		3.68 ^m 6.4 ^m 7.5 ^m		
Hf ⁴⁺	ML/M.L ML ₂ /M.L ²	3.04 ^d 5.44 ^d				
vo ²⁺	ML/M.L ML/M.L		0.97 ^j	2.44 ±0.04	4.1	25
Ag +	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	0.31 ^d 0.19 ^d 0.40 ^d	0.23 ^e 0.00 ^e	1.3	1.5	11
	M ² .L/M ₂ L(s)	31 ,3		-4.83 ±0.03	4.1	-8
Hg ₂ 2+	ML/M.L ML ₂ /M.L ²	1.30 3.54				
-	M.L/ML(s)	productions		-6.13 ±0.04	1.3	-24
k 20°,		O, assuming HL/	H.L = 0.83;	3 25°, 5.0; i 20°, 0 20°, 0; t 23°, 2		

Metal ion T1 ⁺	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 1.37 ±0.07	ΔH 25°, 0 -0.2	ΔS 25°, 0 6
Zn ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	0.93 0.76 ^d 1.9 1.2 ^d (1.1) ^d	0.89 0.70 ^e 1.2 0.7 ^e 1.7 0.9 ^e 1.7	2.38	1.5 ±0.1	16
Ca ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	1.08 0.86 ^d 2.0 1.3 ^d 2.7 1.6 ^d	0.95 0.71 ^e ±0.01 1.6 0.9 ^e ±0.1 1.8 1.0 ^e ±0.1 (2.3) 1.0 ^e ±0.1	2.46	2.3 ±0.1 1.9 ^d	19 10 ^d
Hg ²⁺	ML/M.L ML ₂ /M.L ² ML/M.L ML ₂ /M.L ²	1.34	(0.74) ^e 1.99 ^e	2.75 -0.1		
In ³⁺	M.L/ML(s) ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	1.78 ^k 1.88 ^k 2.36 ^k	-6.20 1.85 ^j 2.60 ^j 3.00 ^j	-7.79 ±0.02	(3) ^y	(-26)
T1 ³⁺ Bi ³⁺	ML/M.L ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₅ /M.L ⁵		2.27 ^e 1.98 ^e 3.41 ^e 4.08 ^e 4.34 ^e 4.60 ^e		-2.7 ^e (3) ^z (7) ^z (11) ^z (13) ^z	1 ^e (19) ^e (39) ^e (56) ^e (64) ^e

d 25°, 2.0; e 25°, 3.0; j 20°, 1.0; k 20°, 2.0; y 0-50°, 0; z 15-65°, 3.0

```
Bibliography:
                                                              Ru<sup>3+</sup>
H<sup>+</sup>
       10NS, 37P, 40S, 51M, 51ZA, 52DJ, 54S, 55ER,
                                                                        681.K
                                                              Ti0<sup>2+</sup>
       56R.58NNa.59Z.61RS.62AMa.63DS.62YI.63RF.
                                                                        69VV
                                                               Zr<sup>4+</sup>
       64F,65KYa,66CI,66MJ,66VL,67VLe,68Aba,
                                                                        49CMa, 63AK, 69N
                                                               Hf4+
       69ZL,71AKa,71EM,72CG,73CD,73P,73S,74T
                                                                        63Pa,65DK,67EME
                                                               vo<sup>2+</sup>
Li<sup>+</sup>-K<sup>+</sup>
          30RD,50JM,62AMa,66CL,68TH,69IE,74MV
                                                                        63SW,66KW,71BL
                                                              vo<sub>2</sub>+
NH,
        31BR
                                                                        66I
                                                                        30RD, 43VM, 52L, 54TO, 60SL, 65HWa,
Be^{2+}
       62BK,66KW,67SSa
                                                                        67CC,67LH
                                                              Hg<sub>2</sub><sup>2+</sup>
{\rm Mg}^{2+}
       27D, 40MS, 51DJ, 58NN, 66AP, 68KP, 69IEa, 70L,
                                                                        46IS,53L,57BL,70SP
                                                               T1<sup>∓</sup>
       73AM, 73HP, 73P
                                                                        30BD, 30RD, 53BG
                                                               Zn^{2+}
       32MD, 33LHS, 53BG, 58NR, 69KP, 70GG, 70L, 73A,
                                                                        27D,58NN,69IEa,70L,71FCK,73AM,
        74MVa
                                                                        73FC,73HP,73P
                                                              Cd<sup>2+</sup>
Sr<sup>2+</sup>
        23B,56SZ,68CS
                                                                        27D,69BG,69IEa,70L,71FCK,71FCM,
Ba<sup>2+</sup>
       10M, 23B, 33LHS, 40CB, 58R, 60T, 65L, 66SSH
                                                                        73FC,73P
                                                              Hg<sup>2+</sup>
Ra<sup>2+</sup>
        33NT
                                                                        46IS,57PT
Sc 3+_L<sub>11</sub>3+
                                                               Pb<sup>2+</sup>
              30Da,50JM,51CM,51M,54SJ,62Bc,62MM,
                                                                        31CL, 31LP, 34L, 46TM, 53L, 55S, 60RKa,
       65Sa,66AM,66AMa,66AP,67CC,67FD,67KI,
                                                                        61RS, 70GNa, 72BH
                                                               In 3+
       68ALN, 69IEa, 72HS, 73FP, 74Pa
                                                                        54S,54Sc,66DR,68AL
Ac 3+
                                                               т1 3+
       68SMR
                                                                        67MK
P113+
                                                               Bi 3+
       67NR
                                                                        71FK
Am^{3+}-Cf^{3+}
             65Sa,67CC,68ALN
                                                               Other references: 03B,07P,29B,30LM,32HJ,
Th 4+
        51ZA,59Z
                                                                    32MD, 38D, 41L, 42Nc, 50N, 52F, 52JM, 52S,
114+
       52SH,55DW
                                                                    53CT,53Na,53NA,53SK,54BB,54D,54DP,
Np<sup>4+</sup>
        54SH,62ST,63Ma,66AB
                                                                    54K,54NK,54Se,55LR,56HD,56Ka,57BM,
Pu<sup>4+</sup>
                                                                    57K, 58Aa,58Ja,58KV,58MF,59K,59Ka,
Pa(V) 66Ga
                                                                    59PL,59WL,60C,60H,60LP,60LS,60PB,
UO<sub>2</sub> 2+ 49BM,51A,57DM,60Mb,71AKa,71BL
                                                                    61BT,61HA,61MC,61S,62AY,62BS,62BW,
     2+
          68ABa,70AWa
NpO
                                                                    62ET,62JP,62NA,62RE,63AM,63BL,62Hc,
Mn<sup>2+</sup>-Cu<sup>2+</sup>
             27D, 380G, 47J, 49NT, 50F, 51NL, 56BD,
                                                                    63KV,63LM,63NP,63TU,63VRa,64BM,64BP,
       58BB,58Sb,59NN,60BB,61PF,61TO,63TS,
                                                                    64LP,65AK,65HS,65LB,65NT,65P,64T,
       65SMb,68MM,69BG,69IEa,70L,70MM,73AM,
                                                                    66BA,66E,66Fa,66MB,66MS,66NH,66S,
                                                                    67LN,67Ma,67VLd,67W,68M,68N,68P,
       73HP,73P
Ru<sup>2+</sup>
        66VL,67VLc
                                                                    68PS,68WSa,69BMN,69FP,69MN,69NPa,
v<sup>3+</sup>
                                                                    69PK,69RP,69SPa,69SS,69VS,69YM,70M,
        72KMN
Cr<sup>3+</sup>
        62FT
                                                                    70PH, 70TR, 71MD, 71MKA, 72MC, 72TSa, 73Ab,
Mn^{3+}
                                                                    73IVa,73PR,73PRa,73RM,74FP,74HI,74MC,
        73GT
Fe<sup>3+</sup>
        53WD,59M,60K,62DS,63W,67M,73NP
                                                                    74MS
```

H₂S₂O₃

H ₂ O ₃ S ₂		Hydrogen th	iosulfate	(thiosulfuric acid)		H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 1.0 1.3 ^a	Log K 25°, 1.0 0.8	Log K 25°, 0 1.6 ±0.1	ΔH 25°, 0	ΔS 25°, 0
	н ₂ L/нL.н			0.6		
Na ⁺	ML/M.L	0.04		0.53 ±0.05	1.1 ^b	4 ^b
K +	ML/M.L	0.28		0.96 ±0.04	2.0 ^b	8 ^b
Mg ²⁺	ML/M.L	0.56		1.82 ±0.03	0.4 ^b	4 ^b
Ca ²⁺	ML/M.L	0.70		1.98 ±0.07	0.6 ^b	5 ^b
Sr ²⁺	ML/M.L			2.04		
Ba ²⁺	ML/M.L M.L/ML(s)			2.27 ±0.06 -4.79	2.6	19
La ³⁺	ML/M.L		0.8	2.99		
Mn ²⁺	ML/M.L	0.67		1.95	0.5 ^b	5 ^b
Co ²⁺	ML/M.L	0.77		2.05	0.5 ^b	5 ^b
Ni ²⁺	ML/M.L	0.78		2.06	0.4 ^b	5 ^b
Fe ³⁺	ML/M.L	1.98 ^a	1.18 ^r			
Cu ⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³		10.35 ^s 12.27 ^s 13.71 ^s			
Ag ⁺	ML/M.L			8.82° 7.36 ^f		
	ML ₂ /M.L ²	12.78 ^d	12.63	13.67° 12.72 ^f	-19	-2
	ML ₃ /M.L ³	13.1 ^d	12.8	14.2° 13.5 ^f		
	$^{M}2^{L}4/^{M}^{2}.L^{4}$			26.3 ^f		
	$^{M_{2}L_{4}/M^{2}.L^{4}}_{M_{3}L_{5}/M^{3}.L^{5}}_{M_{6}L_{8}/M^{6}.L^{8}}$			39.8 ^f 78.6 ^f		
CH_Hg+		10.75 ^a		, , , ,	-11.7 ^h	10 ^a
	0.1; b 25°, 0.5		f 25°, 4.0;	h 20°, 0.1; ° 20°, 0		

Hydrogen thiosulfate (continued)

Equilibrium ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ M ₂ L ₄ /M ² .L ⁴	25°, 0.5	25°, 1.0	Log K 25°, 0 0.86 ^f 0.72 ^f 0.2 ^f 2.54 ^f	ΔΗ 25°, 0	ΔS 25°, 0
M ² .L/M ₂ L(s)			-4.54 ^f		
ML/M.L	(1.12)	(0.62) 0.96 ^e	2.35 ±0.06	3.1 2.2 ^b	21 (13) ^b
$ML_3/M.L^3$		3.3 ^e 5.84 ^e			
ML/M.L	3.2 ^u	2.82 2.74 ^e ±0.00	3.92 ±0.03	1.3 0.0 ^b	22 15 ^b
$ML_2/M.L^2$		4.57 4.70 ^e ±0.05	6.3 ±0.1	-1.5 ^c	16 ^c
ML ₃ /M.L ³ ML ₄ /M.L ⁴		6.4 6.9 ^e ±0.1 7.1 ^e		-3.4 ^c	18 ^c
$M_2L_2/M^2.L^2$		11.18 ^e			
ML ₂ /M.L ² ML ₂ /M.L ³		(29.93) (33.26)	29.23 ±0.05 30.6 ±0.3	-38.5 ^c	(23) ^c
ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³		2.42 ^e 4.86 ^e 6.2 ^e	30.0 _0.3	30.3	(23)
	ML ₃ /M.L ³ M ₂ L ₄ /M ² .L ⁴ M ² .L/M ₂ L(s) ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ M ₂ L ₂ /M ² .L ² ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ M ₂ L ₂ /M ² .L ² ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ² ML ₂ /M.L ² ML ₂ /M.L ² ML ₃ /M.L ³	ML ₃ /M.L ³ M ₂ L ₄ /M ² .L ⁴ M ² .L/M ₂ L(s) ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ M ₂ L ₂ /M ² .L ² ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ² ML ₂ /M.L ² ML ₂ /M.L ² ML ₂ /M.L ² ML ₃ /M.L ³ ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

b 25°, 0.5; c 25°, 1.0; e 25°, 3.0; f 25°, 4.0; u 30°, 0.1

	YH,51DM,53Pb
	49DW,51DM,55GM,74Aa
La ³⁺ 511	
	51DM,74Aa
Fe ³⁺ 309	5,57MN
Cu ⁺ 557	rsl .
Ag + 460	OA,53CP,54W,57CHP,58N,67BP
CH ₃ Hg ⁺	65SS

Bibliography:

T1⁺ 58Na
Zn²⁺ 51DM,55GM,70P,74Aa,74MS
Cd²⁺ 51DM,55GM,56Y,57YG,59MG,65HS,70P,74Aa,
Hg²⁺ 54T,61NS,70MSS,74Kb
Pb²⁺ 59DP
Other references: 11J,31CR,49Ba,53J,54NS,
54P,56A,56NM,57KP,57NM,57T,58D,58SW,
59Pb,59SD,64CL,68GF,68JG,72PR

SeSO₃²⁻

03SSe2-

Selenosulfate ion

L²⁻

Meta1

Equilibrium _ion_ $ML_2/M.L^2$

 ${\tt Log}\ {\tt K}$ 25°, 1.0 36.8

Bibliography: 57T

 H_3O_3NS

Hydrogen amidosulfate

(sulfamic acid)

HL

Metal

ion H Equilibrium HL/H.L H.L/HL(s)

Log K 25°, 2.0

Log K 25°, 0 0.988

-0.92

 $\Delta \mathbf{H}$ 25°, 0 -0.25

ΔS <u>25°, 0</u> 3.7

Pu⁴⁺ ML/M.L

0.11

Bibliography:

52KK,65HW,68C 68C

Other references: 55HB,58Sc,58Sd,59S,

65HSE

H ₂ O ₈ S ₂	<u>H</u>	ydrogen peroxodisulfate	(peroxodisulfuric	acid)	H ₂ L
Metal	Equilibrium ML/M.L	Log K	Log K	ΔH	ΔS
<u>ion</u>		25°, 0.1	25°, 0	25°, 0	25°, 0
K		0.52	0.92	(2) ^r	(11)

r 25-39°, 0

Bibliography: 66CL

н₂Se

H ₂ Se	<u>;</u>	Hydrogen selenide	(<u>hydrose</u>	elenic acid)		H ₂ L
Metal ion H	Equilibrium	Log 25°, (11.	1.0	Log K 25°, 0 15.0°		
п	HL/H.L H ₂ L/HL.H	•	48	3.89		
Mn ²⁺	2					
Mn	ML/M.OH.HL M.L/ML(s)	8. -12.		(-11.5)		
2+						
Fe ²⁺	M.L/ML(s)		((-26.0)		
Co ²⁺	M.L/ML(s)		((-31.2)		
Ni ²⁺	M.L/ML(s)		((-32.7)		
Cu ²⁺	M.L/ML(s)		((-48.1)		
Cu ⁺	$M^2.L/M_2L(s)$		((-60.8)		
Ag ⁺	-	48.	5			
	M ₂ L/M ² .OH.HL MOHL ₂ /M.OH.L ²	24.	1			
	M ² .L/M ₂ L(s)	-53.	8 ((-63.7)		
T1 ⁺	M ² .L/M ₂ L(s)		((-33.1)		
Zn ²⁺	M.L/ML(s)		((-29.4)		
Cd ²⁺	M.L/ML(s)		((-35.2)		
Hg ²⁺	ML/M.OH.HL	51.	2			
	$\mathrm{ML}_2/\mathrm{M.(OH)}^2.(\mathrm{HL})^2$					
	$MHL_2/M.OH.(HL)^2$	52.	8			
	M.L/ML(s)	-56.	6 ((-64.5)		
Sn ²⁺	M.L/ML(s)		((-38.4)		
Pb ²⁺	M.L/ML(s)		((-42.1)		
o 22°,	0					
Biblio	graphy:					
	41Ha,58W,70MG		Ag ⁺	64BU,70MG		
	64BU,70MGa	_	Hg ²⁺	64BU,71MG		
Fe ²⁺ -C	u ⁺ ,T1 ⁺ ,Zn ²⁺ ,Sn ²⁺ ,Pb	2+ 64BU	Other	references:	13B,23Ha,42L,48LN,	57W

0 || HO-Se-OH

$^{\mathrm{H}}2^{\mathrm{O}}3^{\mathrm{Se}}$		Hydrogen	selenite	(selenous acid)		H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.3 7.94	Log K 25°, 1.0 7.78 8.05 ^e	Log K 25°, 0	ΔH 25°, 0 -1.20° -1.26 ^e	ΔS 25°, 0 31.6 ^c 32.6 ^e
	H ₂ L/HL.H	2.35	2.27 2.61 ^e		1.5 ^c	15 ^c
	$H_2L_2/(HL)^2$	1.6	0.17 -0.61 ^e		1.2 ^c -0.9 ^e	5 ^c -6 ^e
	H ₂ L ₂ /HL ₂ ·H	8.0	7.7 7.70 ^e		-0.6 ^c -1.1 ^e	33 ^c 32 ^e
	H ₃ L ₂ /H ₂ L ₂ .H	2.8	2.97 3.53 ^e		1.3 ^c 1.4 ^e	18 ^c 21 ^e
	^Н 4 ^L 2 ^{/Н} 3 ^L 2.Н	2.4	2.10 1.89 ^e		1.5 ^c -0.1 ^e	15 ^c 8 ^e
Mg ²⁺	M.L/ML(H ₂ O) ₆ (s)			-5.36°		
Sr ²⁺	M.L/ML(s)			-6.10°		
Ba ²⁺	M.L/ML(s)			-6.57		
Mn ²⁺	M.L/ML(s)			-7.27°		
Co ²⁺	M.L/ML(s)			-7.08°		
Cu ²⁺	M.L/ML(H ₂ 0) ₂ (s)			-7.78°		
Fe ³⁺	MHL/M.HL		2.81		(6) ^r	(30) ^c
Ag ⁺	ML/M.L		2.4			
	ML ₂ /M.L ² M ² .L/M ₂ L(s)		3.76	- 15.55	10.7	- 35
Cd ²⁺	$\mathrm{ML}_2/\mathrm{M.L}^2$		5.1			
Hg ²⁺	ML ₂ /M.L ²		12.5			
	M.L/ML(s)		-13.82			

c 25°, 1.0; e 25°, 3.0; o 20°, 0; r 20-40°, 1.0

Hydrogen selenite (continued)

Bibliography:

H⁺ 66SC,71BSa,72AB Mg²⁺ 66LSa Sr²⁺ 63SL Ba²⁺ 65LA Mn²⁺ 66LS Co²⁺ 64SLM Cu²⁺ 65LS

Fe³⁺ 65HI

Ag⁺ 62SLK,69MG

 Cd^{2+}, Hg^{2+} 57T

Other references: 09RP,20B,21RK,31BR,

32BR, 33R, 39Ha, 52Lb, 57KC, 59Me, 61LPa,

66PD,67KM,68RV,68SI

HSeO₄

HO ₄ Se		Hydrogen s	elenate ion	(selenic acid)		HL-
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 1.70 ±0.05	ΔH 25°, 0 5.6 ±0.1	ΔS 25°, 0 27
Ca ²⁺	M.L/ML(s)			-3.09	-2.0	-21
Sr ²⁺	M.L/ML(s)			-4.40	0.1	-20
Ba ²⁺	M.L/ML(s)			-7.46	5.4	-16
Sc ³⁺	ML/M.L ML ₂ /M.L ²	1.78 2.64			(-2) ^r	(1) ^b
Mn ²⁺	ML/M.L			2.43	3.5	23
Co ²⁺	ML/M.L			2.70	2.9	22
Ni ²⁺	ML/M.L			2.67	3.5	23
Ag ⁺	$M^2.L/M_2L(s)$			-8.91	(-10.4)	(-76)
T1 ⁺	M ² .L/M ₂ L(s)			-4.00	(10.3)	(16)
Zn ²⁺	ML/M.L ML ₂ /M.L ²		0.73 1.35	2.19		
Cd ²⁺	ML/M.L			2.27		
Pb ²⁺	M.L/ML(s)			-6.84	3.8	-19
b 25°,	0.5; r 25-45°,	0.5				
Bibliog	graphy: 54Na,65CD,70GN,	7/MRa		T1 ⁺ 58Sa		
Ca ²⁺ 5	59SS	, 4riba		717 3654 Zn ²⁺ 34Ba,74MS		
Sr ²⁺ 5	59SZ , 63Sc			Cd ²⁺ 34Ba		
	88SSa,59SK			Pb ²⁺ 55Sb,59SK		
•	L ²⁺ 70GN			Other references:	42GK,50PA,53SK	a,59Ba,
	57KI			68WSa		
Ag + 59	SZF					

 $^{\rm H_2^{\rm Te}}$

H ₂ Te		Hydrogen telluride	(hydrotelluric acid)	H ₂ L
Metal ion 2+	Equilibrium M.L/ML(s)		Log K 25°, 0 (-15.9)	
Fe ²⁺	M.L/ML(s)		(-30.0)	
Co ²⁺	M.L/ML(s)		(-37.4)	
Ni ²⁺	M.L/ML(s)		(-38.1)	
Cu ⁺	M ² .L/M ₂ L(s)		(-62.3)	
Ag ⁺	M ² .L/M ₂ L(s)		(-71.7)	
T1 ⁺	M ² .L/M ₂ L(s)		(-39.2)	
Zn ²⁺	M.L/ML(s)		(-33.3)	
Cd ²⁺	M.L/ML(s)		(-41.5)	
Hg ²⁺	M.L/ML(s)		(-69.6)	
Sn ²⁺	M.L/ML(s)		(-44.7)	
Pb ²⁺	M.L/ML(s)		(-46.3)	
Biblio	graphy: 64BU		Other references:	13B,23Ha,48LN,52Lb,

Te(OH)₄

H ₄ O ₄ Te		Hydrogen tellurite (tellurous acid)			H ₂ L
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 9.00 9.36 ^a	Log K 25°, 1.0 8.60	Log K 25°, 0	
Ag ⁺	M ² .L/M ₂ L(s)			-2.43	

^a 25°, 0.1

Bibliography:

H⁺ 73NS Other references: 20B,24K,25S,54IA,56DZb,
Ag⁺ 65GP 68NKa,68SI,71BG,71GB,74MB,74NK

HF

HF		Hydrogen f	luoride (hyd	rofluoric acid)		HL
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5 2.93 ±0.02 2.92 ^a ±0.03	Log K 25°, 1.0 2.96 ±0.02	Log K 25°, 0 3.17 ±0.01	$^{\Delta H}$ 25°, 0 3.20 ±0.02 2.89 c ±0.03	ΔS 25°, 0 25.3 23.3°
	HL ₂ /HL.L	3.13 ^d ±0.02 0.59 ±0.02	3.30 ^e ±0.02 0.59 ±0.1 0.86 ^e ±0.2	0.5 ±0.1	1.0 0.9 ^c ±0.1	5 6 ^c
Li ⁺	M.L/ML(s)			-2.77	1.1	-9
Be ²⁺	ML/M.L	4.71 4.99 ^k	4.99		(0) ^s	(20) ^c
	$\mathrm{ML}_2/\mathrm{M.L}^2$	8.32 8.78 ^k	8.80		(-1) ^s	(40) ^c
	${\rm ML_3/M.L}^3$	11.1 11.7 ^k	11.6		(-2) ^s	(40) ^c
	ML ₄ /M.L ⁴	13.4 ^k	13.1		(-2) ^s	(50) ^c
Mg ²⁺	ML/M.L	1.31 ±0.01 1.46 ^a	1.32 ±0.06	1.8	3.2 ^c	17 ^c
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	2010		-8.18	(-2) ^r	(-40)
Ca ²⁺	ML/M.L M.L ² /ML ₂ (s)	0.6 ±0.1	0.58 ±0.05	1.1 -10.41	3.5 ^c (4) ^r	15 ^c (-30)
Sr ²⁺	ML/M.L M.L ² /ML ₂ (s)		0.1 ±0.1	-8.54	4 ^c (1) ^r	14 ^c (-40)
Ba ²⁺	ML/M.L M.L ² /ML ₂ (s)		-0.3 ±0.1	-5.76	(4) ^t (1) ^r	(12) ^c (-20)
Sc ³⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	6.18 ±0.01 11.46 ±0.02 15.5 ±0.0 18.4 +0.1		7.1 12.9 17.4 20.3	(0) ^u (-1) ^u (-2) ^u	(30) ^b (50) ^b (60) ^b
y ³⁺	ML/M.L ML ₂ /M.L ² ML ₂ /M.L ³	3.90 ±0.03 7.13 ±0.03 10.3 ±0.0	3.60	4.8 8.5 12.1	8.3 ^c	44 ^C

a 25°, 0.1; b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; k 20°, 2.0; r 0-27°, 0; s 0-60°, 1.0; t 15-60°, 1.0; u 15-35°, 0.5

Metal _ion_	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
La ³⁺	ML/M.L	2.69 ±0.01	2.67	3.6	4.0 ^c	26 ^c
Ce ³⁺	ML/M.L	3.13	2.81	4.0	4.8 ^c	29 ^c
Pr ³⁺	ML/M.L		3.01		5.7 ^c	33 ^c
Nd ³⁺	ML/M.L		3.09		6.8 ^c	37 ^c
Pm ³⁺	ML/M.L		(3.16)			
Sm ³⁺	ML/M.L		3.12		9.4 ^c	46 ^c
Eu ³⁺	ML/M.L	3.40 -0.01	3.19		9.2 ^c	45 ^c
Gd ³⁺	ML/M.L	3.40 ±0.03	3.31	4.3	8.9 ^c	45 ^c
_{Tb} 3+	ML/M.L		3.42		7.5 ^c	41 ^c
Dy ³⁺	ML/M.L		3.46		7.0 ^c	39 ^c
Ho 3+	ML/M.L		3.52		7.3 ^c	40 ^c
Er ³⁺	ML/M.L		3.54		7.4 ^c	41 ^c
7m 3+	ML/M.L		3.56		8.7 ^c	45 ^c
_{Yb} 3+	ML/M.L		3.58		9.6 ^c	48 ^c
Lu ³⁺	ML/M.L		3.61		9.5°	48 ^c
Ac 3+	ML/M.L	2.72				
	$ML_2/M.L^2$	5.22				
	$ML_3^2/M.L^3$	7.9				
Am ³⁺	ML/M.L	3.39				
	$\mathrm{ML}_2/\mathrm{M.L}^2$	6.11				
	$ML_3^2/M.L^3$	9.0				
Cm ³⁺	ML/M.L	3.34				
	$\mathrm{ML}_{2}/\mathrm{M.L}_{2}^{2}$	6.18				
	$ML_3^2/M.L^3$	9.1				
	=					

c 25°, 1.0

Metal ion Th	Equilibrium ML/M.L	Log K 25°, 0.5 7.59 ±0.04	Log K 25°, 1.0 7.80 ^e	Log K 25°, 0 8.44 ±0.2	ΔH 25°, 0 (-1) ^r	ΔS 25°, 0 (40)
	ML ₂ /M.L ²	13.44 ±0.02	13.82 ^e	8.2 ^m 15.08 ±0.2 14.7 ^m	(-2) ^r	(70)
	ML ₃ /M.L ³ ML ₄ /M.L ⁴	17.9	18.8 ^e	19.8 ±0.4 23.2	(-3) ^r (-4) ^r	(90) (100)
	M.L4/ML ₄ (s)		-28.3 ^e			
Pa ⁴⁺	ML/M.L ML ₂ /M.L ²		8.03 ^e 14.86 ^e			
u ⁴⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³			9.0 ^m 15.7 ^m 21.2 ^m		
Np ⁴⁺	ML/M.L ML ₂ /M.L ²			8.3 ^m 14.5 ^m		
	ML ₃ /M.L ³ ML ₄ /M.L ⁴			20.3 ^m 25.1 ^m		
Pu ⁴⁺	ML/M.L		6.77			
Pa(V)	MOL/M(OH) ₃ .HL MOL/ ₂ MOL.L MOL ₃ /MOL ₂ .L		3.56 ^e 7.39 ^e 6.56 ^e			
vo ₂ ²⁺	ML/M.L	4.3 4.55 ^d	4.54 -0.1	5.0 ^f	0.4 ^c	22 ^c
	$ML_2/M.L_2^2$		7.97 -0.08		0.5 ^c	38 ^c
	ML ₃ /M.L ³ ML ₄ /M.L ⁴		10.55 -0.09 12.0 -0.2		0.6 ^c 0.1 ^c	51 ^c 55 ^c
NpO ₂ ²⁺	ML/M.L	4.04 4.12 ^a	3.85 ^j	4.6		
	$\mathrm{ML}_2/\mathrm{M.L}^2$	7.00 7.01 ^a	6.97 ^j			
Mn ²⁺	ML/M.L		0.7 ±0.1			
Fe ²⁺	ML/M.L		0.8			
a 0.50	0 1 C 050 5	d	e ore of	059 / 0		

 $[\]overline{a}$ 25°, 0.1; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4,0, assuming HL/H.L = 3.5; f 20°, 1.0; f 20°, 4.0 f 4.0 f 5-45°, 0

Metal ion Co ²⁺	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0 0.4	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Ni ²⁺	ML/M.L		0.5 ±0.1			
Cu ²⁺	ML/M.L	(0.7)	0.9 ±0.1	(1.2)	(1) ^t	(7) ^b
Cr ³⁺	ML/M.L	4.36		5.2		
	$\mathrm{ML}_{2}/\mathrm{M.L}_{2}^{2}$	7.70				
	$ML_3^2/M.L^3$	10.2				
Mn ³⁺	ML/M.L	5.65 ^d				
Fe ³⁺	ML/M.L	5.18 ±0.04	5.18	6.0	2.3 ^b	31 ^b
	$ML_2/M.L^2$	9.13 ±0.04	9.07		3.5 ^b	54 ^b
	$ML_3^2/M.L^3$	11.9 ±0.1	12.1		4.4 ^b	69 ^b
vo ²⁺	ML/M.L		3.37 -0.09		1.9 ^c	22 ^c
	$ML_2/M.L_2^2$		5.74 -0.3		3.5 ^c	38 ^c
	ML ₃ /M.L ³		7.29 -0.2		4.9 ^c	50 ^c
	ML ₄ /M.L ⁴		8.1 -0.7		6.4 ^c	59 ^c
Zr ⁴⁺	ML/M.L			9.8		
		8.94 ^d		9.4 ^m		
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	16.4 ^d		17.2 ^m		
	ML ₂ /M.L ³	22.4 ^d		23.7 ^m		
	ML,/M.L ⁴			29.5 ^m		
	$ML_5^7/M.L_5^5$			23.5 ^m		
	$ML_6^{/M.L}^6$			28.3 ^m		
Hf ⁴⁺	ML/M.L			9.0 ^m		
	ML ₂ /M.L ²			16.5 ^m		
	ML ₂ /M.L ³			23.1 ^m		
	ML ₄ /M.L ⁴ ML ₅ /M.L ⁵			28.8 ^m		
	ML ₅ /M.L ³			34.0 ^m		
	ML ₆ /M.L ⁶			38.0 ^m		
vo ₂ +	ML/M.L			3.04 ^j		
_	$ML_2/M.L_3^2$			5.60 ^j		
	ML ₃ /M.L ³			6.9 ^j		
	ML ₄ /M.L ⁴			7.0 ^j		

 $[\]frac{1}{6}$ 25°, 0.5; $\frac{1}{6}$ 25°, 1.0; $\frac{1}{6}$ 25°, 2.0; $\frac{1}{6}$ 20°, 1.0; $\frac{1}{6}$ 20°, 4.0 H⁺, assuming HL/H.L = 3.5; $\frac{1}{6}$ 15-35°, 0.5

Metal <u>ion</u> Nb(OH)	Equilibrium 3+ ML ₅ /ML ₄ .L	Log K 25°, 0.5	Log K 25°, 1.0 2.51 ^e	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
	ML/M.L	-0.17	-0.32	0.4	(-3) ^s	(-10) ^b
	ML/M.L	1.50 ^h				
T1 ⁺	ML/M.L			0.10		
(CH ₃) ₃	Sn ⁺ ML/M.L		2.28			
3 3	$\mathrm{ML}_2/\mathrm{M.L}^2$		2.89			
(CH ₃) ₃	Pb ⁺ ML/M.L		0.81			•
(C ₂ H ₅)	3 ^{Pb+} ML/M.L		0.54			
Zn ²⁺	ML/M.L	0.73	0.78 ±0.03	1.15	3.8	18
			0.8 ^e		2.0 ^c	10 ^c
					1.8 ^e	10 ^e
Cd ²⁺	ML/M.L		0.46		1.2 ^c	6 ^c
			0.57 ^e		1.0 ^e	6 ^e
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$		0.53		0.5 ^c	4 ^c
	2		0.85 ^e			
Hg ²⁺	ML/M.L	1.03		1.6	(1) ^s	(8) ^b
Sn ²⁺	ML/M.L		4.08			
	$ML_2/M.L^2$		6.68			
	$ML_3^2/M.L^3$		9.5			
(CH ₂) ₂	Sn ²⁺ ML/M.L		3.70			
3 2	$ML_2/M.L^2$		6.57			
	$ML_3^2/M.L^3$		8.0			
Pb ²⁺	ML/M.L	1.26 ^d	1.44 ±0.04			
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	2.55 ^d	2.54			
		-6.60 ^d	-6.26	-7.44	(5) ^r	(-20) ^d
	Pb ²⁺ ML/M.L		1.73			
(C ₂ H ₅)	2 ^{Pb²⁺ ML/M.L}		1.54			
(C ₃ H ₇)	Pb ²⁺ ML/M.L		1.61			
J	- -					

b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; h 20°, 0.1; r 9-27°, 0; s 15-35°, 0.5

Metal ion B(III)	Equilibrium M(OH) ₃ L/M(OH M(OH) ₂ L ₂ .OH MOHL ₃ .(OH) ² ML ₄ .(OH) ³ /M	H) ₃ .L /M(OH) ₃ .L ² /M(OH) ₃ .L ³	Log K 25°, 1.0 -0.30 -6.27 -14.2 -21.6	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
A1 ³⁺	ML/M.L	6.11 ±0.03	6.09	7.0	0.7 ^c	30 ^c
		6.43 ^a ±0.03			1.1 ^a	33 ^a
	$\mathrm{ML}_2/\mathrm{M.L}^2$	11.12 ±0.1		12.6		
	_	11.63 ^a ±0.04			2.0 ^a	60 ^a
	$\mathrm{ML}_{3}/\mathrm{M.L}^{3}$	15.0 ±0.3		16.7		
	,	$15.5^{a} \pm 0.0$			2.2 ^a	78 ^a
	ML ₄ /M.L ⁴	18.0 ±0.8		19.1		
		$18.3^{a} \pm 0.4$			2.2 ^a	91 ^a
	ML ₅ /M.L ⁵	19.4			1.8 ^a	97 ^b
	$ML_6^{/M.L}^6$	19.8				
Ga ³⁺	ML/M.L	4.49	4.38	5.9	2.5 ^c	28 ^c
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	8.00				
	$ML_3^2/M.L^3$	10.5				
In ³⁺	ML/M.L	3.75	3.70 ±0.03	4.6	2.6	30
		3.74 ^d			2.2 ^c ±0.0	24 ^c
	$\mathrm{ML_2/M.L}^2$	6.5 ±0.1	6.4 ±0.1	8.1	5	50
	2.	6.6 ^d			3 ^c ±1	40 ^c
	$\mathrm{ML_3/M.L}^3$	8.6	8.6 ±0.0	10.3	7	70
		9.0 ^d			5 ^c ±2	60 ^c
	ML ₄ /M.L ⁴	9.9	9.8 +0.1	11.5	9	80
	. 7	10.3 ^d			8 ^c	70 ^c
CH ₂ Sn ³⁺	H ML/M.L	5.10				
3	$ML_2/M.L^2$	9.85				
	$ML_3^2/M.L^3$	14.0				
	$ML_4/M.L^4$	17.1				
	ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₅ /M.L ⁵	19.3				
a 25°,		0.5; ^c 25°, 1.0;	d 25°, 2.0			

Hydrogen fluoride (continued)

Metal _ion_	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
ion Sb ³⁺	ML/M.L	3.0 ^v				
	$ML_2/M.L^2$	5.7 ^v				
	$ML_3/M.L^3$	8.3 ^v				
	ML ₄ /M.L ⁴	10.9 ^v				
Bi ³⁺	ML/M.L	1.42 ^v				
Ge(IV)	$ML_{\Delta}/M(OH)_{\Delta}.(HL)^{\Delta}$	7.30				
	ML ₄ /M(OH) ₄ .(HL) ⁴ MHL ₅ /M(OH) ₄ .(HL)	⁵ 8.94				

^v 30°, 2.0

```
Bibliography:
          42B, 43BW, 47BD, 53HJ, 53HW, 54AL, 54CT, 56AL,
          58AN, 59KP, 63C, 63Ea, 63EMK, 64FR, 65BC, 65CG,
          65SS,67WC,69B,70HW,70PM,70W,71AK,71Nc.
          72B,73KB,73VK
Li<sup>+</sup>
          64SH
 Be<sup>2+</sup>
         61HG,65BG
 Mg<sup>2+</sup>-Ba<sup>2+</sup> 23B,54CT,55P,68TW,69AL,69GS,70E,
         71BH.71CV
sc<sup>3+</sup>
         55P,59KP,69ALa
         59KP,59Se,61PG,67WC,69AL,69ALa
La<sup>3+</sup>-Lu<sup>3+</sup> 55P,57KH,67WC,69AL,70AL
Ac 3+
         70AL
Am<sup>3+</sup>,Cm<sup>3+</sup> 69ALa
         49DR,50DS,51ZA,69Na,70Bc,71KMF
Pa<sup>4+</sup>,Pa(V) 66Ga
u<sup>4+</sup>
         69GV,69Na
Np<sup>4+</sup>
         66AB
Pu 4+
         49Mb,55P
UO<sub>2</sub> 2+
         54ALa,54DP,56AL,69GV,71AK
NpO<sub>2</sub> 2+
           68AB, 70AWa
Mn<sup>2‡</sup>
         65CG,72BHa
Fe<sup>2+</sup>,Co<sup>2+</sup> 72BHa
Ni<sup>2+</sup>
         56AR, 72BHa
```

56AR, 58CP, 72BHa

```
Cr<sup>3+</sup>
              52WT,55P
 Mn 3+
              48T
 Fe<sup>3+</sup>
             42BG, 49DR, 53HW, 53Sc, 55P, 55Y, 56CH,
              59Se,61Y,67WC
vo<sup>2+</sup>
             58AN,71AK
Zr<sup>4+</sup>
             49CMa,55P,63AK,67Na,69N,72B
Hf<sup>4+</sup>
 vo<sub>2</sub>+
             69IV
Nb (OH) 2 71Nc
             52LM,61CP
CH_3Hg^+
               65SS
T1+
             53BG
 (CH_3)_3 Sn^+, (CH_3)_2 Sn^{2+}, CH_3 Sn^{3+} 66CP
 (CH<sub>3</sub>)<sub>3</sub>Pb<sup>+</sup>, (C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>Pb<sup>+</sup>, (CH<sub>3</sub>)<sub>2</sub>Pb<sup>2+</sup>,
      (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>Pb<sup>2+</sup>, (C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>Pb<sup>2+</sup> 70PM
             56AR,58CP,63MHa,69G,71CD
cd<sup>2+</sup>
             43L,66G
Hg<sup>2+</sup>
             55P
\operatorname{Sn}^{2+}
             61CP,70BT
Pb<sup>2+</sup>
             23B,61SR,64MH,65BC,71B,72H
B(III) 71GH
A1^{3+}
             43B0,53LJ,55P,59KG,69B,71AM,71WT
Ga<sup>3+</sup>
             55Y,55P,71WT
In<sup>3+</sup>
             54HK,54Sa,55P,68AL,69R,71WT,74VK
```

Hydrogen fluroide (continued)

Sb³⁺ 70Ba Bi³⁺ 69Ba Ge(IV) 63BP

Other references: 12P,24DH,25RH,27A,31KP,
36RB,37J,37RP,39L,39R,41ID,46R,46Ra,
48RS,48W,49L,49TD,50K,50MKa,50TK,51Da,
51EU,51MS,51W,52JK,52K,52WT,53HJ,54BBa,
54Fa,54JK,54SD,54SE,55DW,55M,55RU,56Kg.
56TK,57Sd,57TV,58PL,59KGb,59Ta,59TL,

59WP,60CC,60Ka,60KG,60KV,60SB,60TV,61D,61Kd,61MF,61TD,62Ba,62CM,62LN,62NL,62SE,62VF,63MHa,63TN,63VH,63VR,64FC,64RK,64VH,65DK,65HS,65SG,64SK,65VW,66BF,66LN,66N,66PP,67Aa,67BN,67HR,67I,67KR,67LD,67LN,67MF,67PM,67VK,67VS,68FH,68HSb,68IZ,68K,68Ka,68KK,68KKa,68KKb,68PM,68SR,68V,69B,69Bb,69DK,69KK,69KKP,69SG,69VSa,70B,70BH,70BO,71B,71NL,71PMP,72B,72H,72LO,73J,73MSa,74MG

C1

C1			Chloride io	<u>n</u>		L-
Metal ion K	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 (-0.7)	ΔH 25°, 0	ΔS 25°, 0
Rb ⁺	ML/M.L			(-0.55) ±0.2		
Cs ⁺	ML/M.L			(-0.39) ±0.1		
(CH ₃) ₄	N ⁺ ML/M.L			(0.04)		
(C ₄ H ₉)	4N ⁺ ML/M.L			(0.40)		
Be ²⁺	ML/M.L ML ₂ /M.L ²	-0.3 ^q		(-0.8) ^f -0.7 ^f		
Mg ²⁺	ML/M.L		-1.0 ^e			
Ba ²⁺	ML/M.L			(-0.13) ⁿ		
Sc 3+	ML/M.L ML ₂ /M.L ²	0.04 ^q -0.1 ^q		-0.12 ^f -0.8 ^f		
_Y 3+	ML/M.L		-0.1			
3+ La	ML/M.L ML ₂ /M.L ²		-0.1 ±0.0	-0.2 ^f -0.6 ^f	1.2	4 ^c
Ce ³⁺	ML/M.L ML ₂ /M.L ²		-0.1 ±0.0 -0.5			
Pr ³⁺	ML/M.L		-0.1 ^j			
Eu ³⁺	ML/M.L ML ₂ /M.L ²		-0.1 ±0.0 -0.7 ±0.2	-0.15 ^f -0.7 ^f	(0) ^s	(0) ^c
Tm ³⁺	ML/M.L		-0.1 ^j			
Yb 3+	ML/M.L		-0.2 ^j			
Lu ³⁺	ML/M.L ML ₂ /M.L ²		-0.4 ^j	-0.35 ^f		
Ac ³⁺	ML/M.L ML ₂ /M.L ²		-0.1 -0.6	-0.04 ^f		
_{Pu} 3+	ML/M.L		-0.1	(1.0)		
c 25°.	1.0; e 25°, 3.0	; f 25°, 4.0;	^j 20°, 1.0; ^q 2	0°, 0.7; ⁿ 18°,	0; ^s 0-48°, 1.	0

Metal ion Am ³⁺	Equilibrium ML/M.L ML ₂ /M.L ²	Log K 25°, 0.5	Log K 25°, 1.0 -0.1 ^j ±0.1	Log K 25°, 0 -0.15 ^f -0.7 ^f	ΔH 25°, 0	ΔS 25°, 0
Bk ³⁺	ML/M.L		-0.02			
Es ³⁺	ML/M.L		-0.02			
Th ⁴⁺	ML/M.L	0.30 ±0.05 0.08 ^d	0.18	1.38 0.17 ^f ±0.06		
	$\mathrm{ML_2/M.L}^2$	-1.0 ^d		-0.9 ^f ±0.0		
Pa ⁴⁺	$\mathrm{ML}_2/\mathrm{M.L}^2$		0.0 ^e			
u ⁴⁺	ML/M.L	0.26 ^d	0.30 ^j		(-5) ^t	(- 16) ^d
Np ⁴⁺	ML/M.L	0.15 ⁱ 0.04 ^k	-0.04 ^j			
	$ML_2/M.L^2$ $ML_3/M.L^3$	-0.15 ^k	-0.24 ^j -0.5 ^j			
Pu ⁴⁺	ML/M.L ²		0.14 -0.17	0.15 ^m 0.08 ^m		
	$ML_3^2/M.L^3$			-1.0 ^m		
uo ₂ 2+	ML/M.L	-0.06 ^d	-0.10 ^j	0.21	(4) ^t	(13) ^d
NpO ₂ ²⁺	ML/M.L ML ₂ /M.L ²	-0.3	-0.09 ^u -0.8 ^u			
PuO ₂ 2+	ML/M.L ML ₂ /M.L ²	0.10 ^d -0.01 -0.35 ^d -0.07			(2) ^t (4) ^t	(7) ^d (12) ^d
Mn ²⁺	ML/M.L		0.04			
Co ²⁺	ML/M.L	-0.14 ^d	-0.05 -0.26 ^e ±0.02		0.5 ^d	1 ^d
Ni ²⁺	ML/M.L	-0.21 ^d ±0.04	0.00 -0.57 ^e		0.5 ^d	1^{d}
Cu ²⁺	ML/M.L	0.09 ^d		0.40	1.6 ^d	6 ^d
ou		.5/M(OH) _{1.5} L _{0.5} (-0.00 (s) -17.16	-17.3 ±0.1	(9) ^r	(-50)

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; i 20°, 0.5; j 20°, 1.0; k 20°, 2.0; m 20°, 4.0; r 25-75°, 0; t 10-40°, 2,0; u 10°, 3.0

Metal ion	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
ion Re ²⁺	ML/M.L	2.0			<u> </u>	<u> </u>
Ti ³⁺	ML/M.L	0.34 ^v				
Cr ³⁺	ML/M.L	-0.4 ^d	-0.5	0.05 ^f	6.6 ^g	22 ^f
Mn ³⁺	ML/M.L	0.9 ^d	1.12 ^e			
Fe ³⁺	ML/M.L	0.64 0.7 ^d	0.63 ±0.03 0.8 ^e	1.48 ±0.00 1.0 ^f	5.6 4.3 ^c	26 17 ^c
	ML ₂ /M.L ² ML ₃ /M.L ³		0.75 ±0.05 -0.7	2.13	,,,,	1,
Co ³⁺	ML/M.L		1.42 ^e			
vo ²⁺	ML/M.L		0.04 ^j			
Zr ⁴⁺	ML/M.L	0.30 ^d		0.92 ^w		
	$ML_2/M.L_3^2$			1.32 ^w		
	ML ₃ /M.L ³ ML ₄ /M.L ⁴			1.51 ^w 1.2 ^w		
Hf 4+	4 ML/M.L	0.38 ^d	0.341			
	$ML_2/M.L^2$	0.07 ^d	-0.02 ¹			
	$ML_3^2/M.L^3$	-0.6 ^d				
Cu ⁺	ML/M.L			2.70 ^g		
	$\mathrm{ML_2/M.L}^2$	5.19 ^h		5.5°		
	. 3			6.00 ^g		
	$ML_3/M.L^3$			5.7°		
	$M_2L_4/M^2.L^4$			6.0 ^g 13.1 ^g		
	M.L/ML(s)			-6.73		
	. ,			-7.38 ^g		

^c 25°, 1.0; ^d 25°, 2.0; ^e 25°, 3.0; ^f 25°, 4.0; ^g 25°, 5.0; ^h 20°, 0.1; ^j 20°, 1.0; ¹ 20°, 3.0 HClO₄; ^o 20°, 0; ^v 40°, 0.5; ^w 20°, 6.5 H⁺

Metal ion	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Ag	ML/M.L	3.08 ^a	3.36	3.31 ± 0.00		
•			3.45 ^m	3.70 ^g		
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	5.08 ^a	5.20	5.25 ±0.01		
	_		5.67 ^m	5.62 ^g		
	$ML_3/M.L^3$		6.0 ^m	6.4 ^g		
	ML ₄ /M.L ⁴		6.0 ^m	6.1 ^g		
	M.L/ML(s)	-9.62	-9.74	-9.74 ±0.00	15.7	8
			-10.05 ^e	-10.40 ^m		
Hg ₂ ²⁺	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	-16.88		-17.91 ±0.03	22 ^s ±3	-8 ^b
CH ₃ Hg ⁺	ML/M.L	5.18 ^a	5.32		-6.0 ^h	4 ^a
T1 ⁺	ML/M.L	0.11 ±0.00	0.04 ±0.04	0.49 ±0.03	-1.5 ±0.1	-3
		$-0.10^{d} \pm 0.02$	-0.1 ^e ±0.1	0.0 ^f ±0.1		
	$\mathrm{ML}_2/\mathrm{M.L}^2$		-0.1 ±0.3	0.0 ±0.2		
	2	-0.6^{d} ±0.5	-1.0 ^e ±0.1	-0.8^{f} ±0.5		
	M.L/ML(s)			-3.74 ± 0.02	(10) ^r	(15)
				-3.04 ^f		
(CH ₃) ₃ H	Pb ⁺ ML/M.L		0.32			
(C ₂ H ₅)	3Pb ⁺ ML/M.L		0.57			
Pd ²⁺	ML/M.L		4.47 -0.5	6.1 -0.1	-3.0 ^c	10 ^c
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$		7.74 -0.3	10.7 -0.1	-5.6 ^c	17 ^c
	$ML_3^2/M.L_3^3$		10.2 -0.4	13.1 ±0.0	-8.2 ^c	19 ^c
	ML ₄ /M.L ⁴		11.5 ±0.6	15.4 ±0.3	-11.6 ^c	14 ^c
Pt ²⁺	ML ₂ /ML.L	4.0				
	ML ₂ (cis)/ML ₂	(trans)0.08				
	ML ₃ /ML ₂ .L	2.96			0	1
	$ML_4/ML_3.L$	1.90	•		(-4) ⁸	(-5) ^b

a 25°, 0.1; b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; g 25°, 5.0; h 20°, 0.1; m 20°, 4.0; r 0-50°, 0; s 7-40°, 0.5

Metal ion	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Zn ²⁺	ML/M.L	ı	0.11	0.43	_	
		-0.49 ^d	-0.19 ^e	0.30 ^f	1.3 ^e	4 ^e
	2	a	0	0.61	•	•
	$\mathrm{ML}_{2}/\mathrm{M.L}_{3}^{2}$	0.02 ^d	-0.6 ^e	0.0 ^f	9 ^e	27 ^e
	$ML_3^2/M.L^3$	đ		0.5 f	Δ.	0
	4	-0.1 ^d	0.1 ^e	1.0 ^f	0 ^e	1 ^e
	ML ₄ /M.L ⁴			0.2		
	150	ς.		-1 ^f		
	M. (OH) 1.3.L	·5/M(OH) _{1.5} L _{0.5}	(s)	-13.4		
Cd ²⁺	ML/M.L	1.35 ±0.02	1.35 ±0.02	1.98 ±0.03	0.3 ^b	7 ^b
		1.44 ^d ±0.02	1.54 ^e ±0.05	1.66 ^f ±0.1	-0.1 ^e	7 ^e
	$\mathrm{ML}_2/\mathrm{M.L}^2$	1.7 ±0.1	1.7 ±0.1	2.6 ±0.1	0.9 ^b	11 ^b
	_	1.9 ^d ±0.1	2.2 ^e ±0.1	2.4 ^f ±0.1	0.0 ^e	10 ^e
	$\mathrm{ML}_3/\mathrm{M.L}^3$		1.5 ±0.2	2.4 ±0.1	2.4 ^c	15 ^c
	-	1.9 ^d ±0.1	2.3 ^e ±0.1	$2.8^{f} \pm 0.3$	1.9 ^e	17 ^e
	$\mathrm{ML_4/M.L}^4$			1.7		
	4		1.6 ^e	2.2 ^f +0.3	6.1 ^f	31 ^f
Hg ²⁺	ML/M.L	6.74 -0.1	6.72		-4.8	
			7.07 ^e		-5.7^{b} ±0.2	12^{b}
					-5.8 ^e	13 ^e
	$\mathrm{ML}_2/\mathrm{M.L}^2$	13.22 -0.2	13.23		-12.8^{b} ±0.0	18^{b}
	_		13.98 ^e		-12.3 ^e	23 ^e
	ML ₃ /M.L ³	14.1 ±0.2	14.2		-15.0 ^b	14 ^b
			14.7 ^e ±0.0		-13.3 ^e	23 ^e
	ML ₄ /M.L ⁴	15.1 ±0.1	15.3		-14.9 ^b	19 ^b
	•		16.2 ^e ±0.1		-14.8 ^e	25 ^e
	ML/MOHL.H		3.1			
	MOHL.L/ML2.01	H	4.23	4.09	-1.2	15
	M(OH) ₂ .L/MOHI	L.OH	3.8	3.77	-1.2	13

b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0

Metal ion 2+	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 1.51	ΔH 25°, 0	ΔS 25°, 0
311		1.08 ^d	1.17 ^e ±0.02	1.45 ^f	(3) ^x	(15) ^e
	ML ₂ /M.L ²	1.72 ^d	1.72 ^e ±0.02	2.25 2.35 ^f	(3) ^x	(20) ^e
	ML ₃ /M.L ³	1.5 ^d	1.7 ^e ±0.0	2.0 2.5 ^f	(6) ^x	(30) ^e
	ML ₄ /M.L ⁴			1.5 2.3 ^f		
(CH ₃) ₂ S	Sn ²⁺ ML/M.L ML ₂ /M.L ²		0.38 ^e -0.1 ^e			
Pb ²⁺	ML/M.L	0.9 -0.07 1.02 ^d ±0.02	0.90 ±0.06 1.17 ^e ±0.03	1.59 ±0.02 1.29 ^f ±0.06	4.4	22
	$\mathrm{ML}_2/\mathrm{M.L}^2$	1.3 -0.1	1.3 ±0.1	1.8		
	ML ₃ /M.L ³	1.4 ^d ±0.0	1.7 ^e ±0.1 1.4 ±0.2	1.7		
	ML ₄ /M.L ⁴	1.5 ^d ±0.1	1.9 ^e ±0.1	2.3 ^f ±0.2		
	M.L ² /ML ₂ (s)	0.7 ^d ±0.2	1.2 ^e ±0.2 -5.0 ^e	1.7 ^f ±0.2 -4.78 ±0.02		
(CH ₃) ₂ I	Pb ²⁺ ML/M.L		0.76			
	ML ₂ /M.L ²		1.31			
(C ₂ H ₅) ₂	2 ^{Pb²⁺ ML/M.L}		0.96			
	ML ₂ /M.L ²		1.74			
(C ₃ H ₇) ₂	2 ^{Pb²⁺ ML/M.L}		0.99			
	ML ₂ /M.L ²		1.84			
Au(III)) M(OH)3 ^L /M(OH)	4.H.L		8.51°		
	M(OH) ₂ L ₂ /M(OH MOHL ₃ /M(OH) ₄ ,) ₄ .H ² .L ²		16.57°		
	MOHL ₃ /M(OH) ₄ . ML ₄ /M(OH) ₄ .H ⁴	н ^у . L ⁻ т ⁴		23.6° 29.6°		
Ga ³⁺	ML/M.L	0.01 ^q		27.0		

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; o 20°, 0; q 20°, 0.7; x 0-45°, 3.0

110 INORGANIC LIGANDS

Metal _ion_	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
In ³⁺	ML/M.L	2.32 ^q ±0.05	2.20 ^j			_
	0	2.45 ^d	2.58 ^e		1.2 ^d	15 ^d
	$^{\mathrm{ML}}_{2}/\mathrm{M.L}^{2}$	3.62 ^q ±0.05	3.56 ^j		,	1
	2	3.4 ^d	3.84 ^e		0.8 ^d	18 ^d
	$^{\mathrm{ML}_3/\mathrm{M.L}^3}$	$4.0^{q} \pm 0.2$				9
		3.7 ^d	4.2 ^e		8 ^d	44 ^d
	MOHL/ML.OH		10.3 ^e			
	M ₂ OHL/MOHL.M		1.6 ^e			
_{T1} 3+	ML/M.L	6.72		7.72	-5.5 ^e	14 ^e
			7.10 ^e ±0.06	7.46 ^f	-6.0 ^f	14 ^f
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	11.76 ±0.07		13.48	-9.9 ^e	24 ^e
	2		12.46 ^e ±0.1	13.25 ^f	-10.1 ^f	27 ^f
	$ML_3/M.L^3$	14.4 ±0.0		16.5	-11.0 ^e	35 ^e
	3		15.8 ^e ±0.3	16.7 ^f	-11.2 ^f	39 ^f
	ML ₄ /M.L ⁴	16.3 ±0.1		18.3	-11.3 ^e	45 ^e
	•		18.0^{e} ± 0.3	19.4 ^f	-11.3 ^f	51 ^f
	ML/MOHL.H		1.87 ^e			
As(III)	м(он) ₂ L/м(он))L		-1.07		
	MOHL ₂ /M(OH) ₂ .	.H ² .L ²		-4.54		
	MOHL ₂ /M(OH) ₃ , ML ₃ /M(OH) ₃ .H	3.L ³		-8.7		
sb ³⁺	ML/M.L			2.3 ^f		
55	$ML_2/M.L^2$			3.5 ^f		
	$ML_3/M.L_3$			4.2 ^f		
	ML ₄ /M.L ⁴			4.7 ^f		
	ML ₅ /M.L ⁵			4.7 ^f		
	ML ₆ /M.L ⁶			4.1 ^f		
	6, 2					

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; j 20°, 1.0; q 20°, 0.7

Chloride ion (continued)

Metal <u>ion</u>	Equilibrium	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
ion Bi ³⁺	ML/M.L	(2.36) ^k	2.2 ^e		4.0	
					0.5 ^f	12 ^e
	ML ₂ /M.L ²	3.5 ^k	3.5 ^e		(4) ^x	(30) ^e
	$ML_3^2/M.L^3$	5.4 ^k	5.8 ^e		(5) ^x	(40) ^e
	ML ₄ /M.L ⁴	6.1 ^k	6.8 ^e		(4) ^x	(50) ^e
	$\mathrm{ML}_{5}^{4}/\mathrm{M.L}^{5}$	6.7 ^k	7.3 ^e			
	ML ₆ /M.L ⁶	6.6 ^k	7.4 ^e			
	MOL(s).H ² /M.L		-6.47	-7.80	(1) ^r	(-30)
		-6.59 ^d ±0.05	-6.75 ^e		(4) ^t	(-20) ^d

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; k 20°, 2.0; r 15-25°, 0; t 15-25°, 2.0; x 25-65°, 3.0

Bibliography: Ni²⁺ 71PJ 57KL,60LR,66KL,70MM,74BL Cu²⁺ Rb⁺ 12NF,66MB,72DJ 49NT,51Ma,51NL,58BB,60BB,66KL, Cs⁺ 12NF, 27D, 54GMa, 71PJ 68MM,69MM Re²⁺ $_{\Lambda}N^{+}$, $(C_{\Lambda}H_{\Omega})_{\Lambda}N^{+}$ 65PY Ti³⁺ 65MJ,71SK 54D0 Mg³⁺ Cr³⁺ 73HHa 58SK,64BK,66AS,67HK Ba²⁺ Mn³⁺ 35MD 48T,74RN Sc³⁺ Fe³⁺ 64RSM,66SH 39L, 42RS, 55LR, 61SRD, 61WK, 62WG, 63HC, Y³⁺-Lu³⁺ 51M,62PM,63CU,64La,65S,67SS,71KN 67VLb,69F,71MH Co³⁺ 68SMR,69SS 66CN vo÷ Pu³⁺ 58AN 53CM Am³⁺ Zr⁴⁺ 62G,62PM,65S,71KN 49CMa,57S Hf⁴⁺ Bk³⁺,Es³⁺ 72HP 63PA,67HP Th⁴⁺ Cu^+ 50DS,51ZA,52WS 38L,61H,68ST,70AR,70GZ Pa⁴⁺,Pa(V) 66Ga Ag+ 380B,52GM,52JMa,54GM,54KT,55DJ, u⁴⁺ 55Fb,57CH,57L,61K,64AJ,64WG,71AB 54AL,55DW Np⁴⁺ Hg₂²⁺ 29B,46L,47JQ,55DG,63HI 66SN Pu⁴⁺ CH₃Hg⁺ 58RA,60GN 65SS,73BI UO₂ 2+ T1⁺ 26BH, 27D, 270, 28RV, 30BD, 34CL, 37RD, 51Aa,54DP,57DM NpO₂ 53BG,55Aa,57N,57NN,58H,61KMF,61NR, 55CS, 70AW PuO₂ 62Se,63KM,67Ka,67KPa,69BP,71BS, 57NB,61RMa Mn²+ 71FR,72FI 74BL $(C_6H_5)_3Sn^+, (C_6H_5)_3Pb^+$ 65SM 60LR,66KL,67MS,70MM,74BL

Chloride ion (continued)

 $(CH_2)_2Pb^+, (C_2H_5)_2Pb^+$ 71PM 57DBF,63GKG,64BS,64W,65FK,66SB,68L, 68LMV,72E,72R Pt²⁺ 66EL,67DE,70Ea Zn²⁺ 44SL,57KL,58AS,64MK,68SM,69G,71FCK,74BL Cd^{2+} 30RD, 36HF, 41L, 49K, 53E, 53VD, 57KL, 58TF, 59Ma, 62BD, 63MKN, 65M, 66G, 66M, 67MF, 68GJ, 68P,69SP,71FCK,72FKM,73HH,74BL,74EM, 74FRP Hg²⁺ 47LJ,57M,58E,60GK,61MP,63EM,63HI,64CI, 65A,65PI,66VS,68CG 28P,50DC,52VR,61RM,61TH,62HZ $(CH_3)_2 Sn^{2+}$ 30RD, 44NG, 55BPP, 55K, 55Na, 57KL, 57PC, 61M,63MKc,64AP,64MK,64MKb,64SM,65MKF, 66VSe,70FS,71V,72RSL,73V Au(III) 48B Ga³⁺ 67MA In³⁺ 54CI,54S,54Sb,54Sc,59BK,69R,72F,72Fa T1³⁺ 60B,63AG,64LR,64WG,64KMb,71BS As(III) 57Ad sb³⁺ 59PD Bi³⁺ 57AG,63KMa,67VL,68VG

Other references: 03S,04BE,10M,23B,23P, 26LD, 30W, 31F, 31FL, 32N, 33HJ, 33NS, 34BH, 34CC, 35BM, 35DH, 36R, 37M, 38G, 38PS, 39G, 42Ba, 42GN, 42Nc, 430, 440, 45B, 56Na, 48C, 49B, 49DJ, 49GGa, 49Hb, 49Jb, 49RP, 50B, 50KN,50MD,50N,51MS,51NK,51RL,51SSW, 52La,53BGa,53BL,53CT,53G,53GT,53N, 53P,53Pa,53WS,54SE,55GE,55M,55RC, 55WW,56G,56P,56PV,55Tb,57KS,57SL, 57TS,58Da,58GK,58Jb,58MW,58SPS,58SW, 58ZB,59CN,59Kc,59Mb,59Mc,59MC,59TC, 60BT,60FSS,60GG,60GS,60L,60Ma,60TZ, 61BT,61Ha,61MA,61MS,61S,61SM,62AP, 62BS,62DC,62FSD,62FT,62M,62MR,62MS, 62MSa,62P,62PPL,62Sb,62ST,63FD,63GK, 63KB,63MF,63MMa,63ND,64Ba,64BMa,64BP, 64ID,64NU,64SAb,64SB,64SM,64VR,65AB, 65BW,65GS,64HA,65HE,64HP,65HS,65JL, 65MRS,65NPG,66CP,66DO,66F,66L,66MSY, 66SG,66SHa,66WD,67BP,67EME,67ES,67Ga, 67IW,67KR,67L,67NK,68CF,68EPa,68L, 68LM,68MH,68NK,68NM,69BM,69Ca,69CPK, 69J,69KS,69MA,69MNM,69MP,69NPS,69PB, 69SB,69SM,69ST,70AW,70DS,70HV,70KBM, 70PH, 70RG, 71BHa, 71BN, 71D, 71DC, 71KB, 71KM, 71MKA, 71MM, 71PB, 71PJ, 71PS, 72BA, 72BBM, 72DJ, 72J, 73SB, 72TS, 73GS, 73L, 73Pa,74AC,74BC,74FKa,74GW,74MS,74SP

C10₃

			3			
o ₃ c1			Chlorate	ion		L ⁻
Metal ion Li	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 (-1.2)	ΔH 25°, 0	ΔS 25°, 0
Na ⁺	ML/M.L			(-0.49) ±0.1		
K ⁺	ML/M.L			(-0.15) +0.1		
Rb ⁺	ML/M.L			(-0.10)		
Ba ²⁺	ML/M.L			(0.7)		
sc^3	ML/M.L		-0.02		(0) ^r	(0) ^c
La ³⁺	ML/M.L		-0.2			
Eu ³⁺	ML/M.L	0.02 ^a			(-5) ^s	(-17) ^a
_{Tb} 3+	ML/M.L	-0.05 ^a			(-4) ^s	(-14) ^a
Th ⁴⁺	ML/M.L	0.26				
Cu ²⁺	M.(OH) ^{1.5} .L ^{0.5}	5 /M(OH) _{1.5} L _{0.5} (s) -15.69	-15.89		
Fe ³⁺	ML/M.L	1.5 0.5	-0.40			
Ag ⁺	ML/M.L			(0.22)		
T1 ⁺	ML/M.L			0.47		
Cd ²⁺	ML/M.L		-0.26	-0.30 ^e		
Pb ²⁺	ML/M.L		-0.32			
	$\mathrm{ML}_2/\mathrm{M.L}^2$		-0.6			
a 25°.	0.1° c 25° 1.0	o; e 25°, 3.0; r	15-30° 1	0. s 2-40° 0.1		
Biblio		,, 23 , 310,	13 30 , 10	2 40 , 0.1		
Li ⁺				Cu ²⁺ 63LL		
Na ⁺ -Rb	+ 31BR,66MB,72D	DD .		Fe ³⁺ 71MH		
Ba ²⁺ :	35MD			Ag ⁺ 48M		
Sc ³⁺				T1 ⁺ 30BD		
La ³⁺ :				Cd ²⁺ 43L,56Kb		
	b ³⁺ 72RC			Pb ²⁺ 56Kb		
Th ⁴⁺	50DS			Other references	: 65РҮ,73НН	

C10₄

0 ₄ C1 Pe	Perchlorate ion					
	Log K 25°, 1.0	Log K 25°, 0 (-0.01) ±0.00	ΔH 25°, 0	ΔS 25°, 0		
Rb ⁺ ML/M.L		(0.13)				
(CH ₃) ₄ N ⁺ ML/M.L		0.27	0.2	2		
(C ₂ H ₅) ₄ N ⁺ ML/M.L		-0.08	0.0	0		
(C ₃ H ₇) ₄ N ⁺ ML/M.L		0.05	2.5	9		
Ce ³⁺ ML/M.L	0.15 ^s	-0.21 ^t	(-17) ^u	(-60) ^s		
Am^{3+} ML/M.L -0.07^d						
Cu^{2+} M.(OH) ^{1.7} .L ^{0.3} /M(OH) _{1.7} L _{0.3} (s)		-17.2				
Fe ³⁺ ML/M.L 0.4 ±0.1		1.15				
T1 ⁺ ML/M.L		0.0 ±0.2	(2) ^v	(7)		
d 25°, 2.0; s 25°, 1.1; t 25°, 5.1; u 1	8-40°, 1.1	; ^v 23-80°, 0				

Bibliography:

114

K ⁺ 45J,71Da	Fe ³⁺ 54Se,58Ha,59Sa,60RS,69F
Rb ⁺ 71Da	T1 ⁺ 37RD,66MB,67ZB
Rb 71Da $(CH_3)_4N^+$, $(C_2H_5)_4N^+$, $(C_3H_7)_4N^+$ 691E Ce^{3+} 56SW	Other references: 48M,52Se,54HR,55HB,
	60HR,61H,63FP,63Hc,64S,65HD,65JB,
Am ³⁺ 72BC	66LV,66R,68D,680A,70KS,73J,74J
Cu ²⁺ 49NT	

Br⁻

Br ⁻			Bromide ion			L-
Metal ion Cs	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 (0.03)	ΔH 25°, 0	ΔS 25°, 0
(CH ₃) ₄	N ⁺ ML/M.L			(0.16) ±0.07		
	4 ^{N⁺ ML/M.L}			(0.38)		
(C ₃ H ₇)	4N ⁺ ML/M.L			(0,49)		
Be ²⁺	ML/M.L ML ₂ /M.L ²	-0.4 ^q		-0.7 ^f -0.8 ^f		
Mg ²⁺	ML/M.L		-1.4 ^e			
Sc ³⁺	ML/M.L ML ₂ /M.L ²	-0.07 ^q -0.3 ^q				
y ³⁺	ML/M.L		-0.15			
Ce ³⁺	ML/M.L		-0.2			
Pr ³⁺	ML/M.L		-0.2 ^e			
Sm ³⁺	ML/M.L		-0.2 ^e			
Eu ³⁺	ML/M.L ML ₂ /M.L ²		-0.2 -0.4			
но ³⁺	ML/M.L		(-0.6) ^e			
Er ³⁺	ML/M.L		-0.5 ^e			
Ac 3+	ML/M.L		-0.2			
	$\mathrm{ML_2/M.L}^2$		-0.5			
u ⁴⁺	ML/M.L		0.18 ^j			
UO ₂ 2+	ML/M.L		-0.3 ^j	-0.2		
Co ²⁺	ML/M.L	-0.13 ^q			,	,
	$\mathrm{ML}_2/\mathrm{M.L}^2$	(-0.11) ^d -0.4 ^q	-0.7 ^e		0.1 ^d	$0^{\mathbf{d}}$
	ML/M.L				0.1^{d}	$0^{\mathbf{d}}$
Cu ²⁺	ML/M.L M.(OH) ^{1.5} .L ^{0.5}	-0.07 ^d 5/M(OH), ₅ L ₀ 5(-0.5 ^e ±0.1 s) -16.70	-0.03 -17.15 [°]	0.9 ^d	3 ^d
			^j 20°, 1.0; ° 20		.7	

Bromide ion (continued)

Metal ion 3+ Fe	Equilibrium ML/M.L ML ₂ /M.L ²	Log K 25°, 0.5	Log K 25°, 1.0 -0.2 ±0.1 -0.5 ±0.1	Log K 25°, 0 0.6 ±0.0	ΔH 25°, 0 (6) ^r	ΔS 25°, 0 (20)
Hf ⁴⁺ Cu ⁺	ML/M.L ML ₂ /M.L ² M.L/ML(s)		-0.1	5.9 -8.3		
Ag ⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	4.30 ^a 6.64 ^a 8.1 ^a	7.23 ^g 8.3 9.2 ^g 9.5 ^g	4.68 ⁿ (7.7) ⁿ 8.7 ±0.2		
	M.L/ML(s)	-12.10 ^a	-11.92 -12.62 ^g	-12.30 ±0.02	20.2	11
Hg ₂ 2+	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	-21.29		-22.25 ±0.01	31 ^s ±1	$2^{\mathbf{b}}$
СН _З Нg ⁺	ML/M.L	6.49 ^a			-9.9 ^h	-4 ^a
T1 ⁺	ML/M.L ² ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴	0.48 0.38 ^d	0.41 0.34 ^e	0.91 ± 0.03 0.33 $^{f}\pm 0.01$ 0.17 $^{f}\pm 0.04$ -0.1 $^{f}\pm 0.2$ -0.6 f	-3.0 ±0.5 -5 ^f	-6 -15 ^f
	M.L/ML(s)			-5.44 ±0.03 -4.81 ^f -0.01	(14) ^t	(22)
0 3 3	Sn ⁺ ML/M.L	3.3 ^p				
(C ₆ H ₅) ₃ Pd ²⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³	5.7 ^p	5.17 9.42 12.7		-5.1 ^c	7 ^c
	ML ₄ /M.L ⁴		14.9 ±1		-13.1 ^a	24 ^c
Zn ²⁺	ML/M.L		-0.59 ^e ±0.02		0.4 ^e	-1 ^e

a 25°, 0.1; b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; g 25°, 5.0; b 20°, 0.1; l 20°, 3.0; n 18°, 0; p 30°, 0.1; r 30-40°, 0; s 7-40°, 0.5; t 5-45°, 0

Bromide ion (continued)

Metal ion	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25° 0
Cd ²⁺	ML/M.L	1.55 ±0.05	1.57 ±0.01	2.14 ±0.02	-0.8 ^b	25°, 0
		1.63 ^d ±0.05	1.74 ^e ±0.09		-1.0 ^e ±0.0	5 ^e
	$\mathrm{ML}_2/\mathrm{M.L}^2$		2.1 ±0.1	3.0 ±0.1	-0.8 ^b	7 ^b
	_	2.2^{d} ±0.1	2.4 ^e ±0.1		-1.6 ^e -1	6 ^e
	$\mathrm{ML}_3/\mathrm{M.L}^3$		2.6 ±0.1	3.0 ±0.1	0.0 ^b	12 ^b
	4	2.8 ^d ±0.2	3.3 ^e ±0.2		0.2 ^e -1	16 ^e
	$\mathrm{ML}_4/\mathrm{M.L}^4$	d	2.6 ±0.2	2.9 ±0.2	_	
2.		$3.2^{d} \pm 0.2$	$3.8^{e} \pm 0.2$		0.5 ^e -1	19 ^e
Hg ²⁺	ML/M.L	9.00 ±0.06	9.40 ^e		-10.6	
					-10.2 ^b +0.1	7 ^b
	2				-9.6 ^e	11 ^e
	$ML_2/M.L^2$	17.1 ±0.2	17.98 ^e		-20.9	•
					$-21.0^{b} \pm 0.2$	8 ^b
	3		e		-19.2 ^e	18 ^e
	ML ₃ /M.L ³	19.4 ±0.2	20.7 ^e		-23.8 ^b	9 ^b
	ML ₄ /M.L ⁴	21.0 ±0.2	22.23 ^e		-21.8 ^e	22 ^e
	ML ₄ /M.L	21.0 ±0.2	22.23		-25.9 $-27.8^{b} \pm 0.1$	3 ^b
					$-2/.8^{\circ} \pm 0.1$ -25.2°	3° 17 ^e
	M.L ² /ML ₂ (s)	-18.9			-25.2 25	-3 ^b
Sn ²⁺	2	10.7			23	-3
Sn	ML/M.L	0.50 ^d ±0.07	0.74	1.16 ±0.05	11	۵
	$\mathrm{ML}_2/\mathrm{M.L}^2$	0.50 ±0.07	0.75 ^e ±0.03	$0.88^{f} \pm 0.03$	(1) ^u	(7) ^e
	2/11.1	(1.19) ^d	0.9 1.15 ^e ±0.02	1.7 ±0.1 1.43 ^f	(3) ^u	(20) ^e
	$^{\mathrm{ML}_{3}/\mathrm{M.L}^{3}}$	(1.13)	$1.13^{\pm 0.02}$ 1.2^{e} ± 0.1	1.43 1.5 ^f	(3) (2) ^u	(20) ^e
	ML ₄ /M.L ⁴		0.4 ^e	1.0 ^f	(2)	(20)
(CU) C	Sn ²⁺ ML/M.L		-1.0 ^e	1.0		
(Cn ₃)2 ^S	on ML/M.L		-1.0			

b 25°, 0.5; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; u 0-45°, 3.0

118 INORGANIC LIGANDS

Bromide ion (continued)

Metal _ion	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Pb ²⁺	ML/M.L	1.06	1.10 ±0.06	1.77 ±0.1		
	·	1.20 ^d	1.29 ^e ±0.01	1.48 ^f ±0.03	(-1) ^v	(3) ^e
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	1.8	1.8	2.6	(-/	(-)
	2	2.0 ^d	2.2 ^e +0.1	2.5 ^f	(-1) ^v	(7) ^e
	$\mathrm{ML}_{3}/\mathrm{M.L}^{3}$	2.0	2.2 ±0.0	3.0		
	-	$2.5^{d} \pm 0.1$	2.9 ^e ±0.1	3.5 ^f	(-1) ^v	(10) ^e
	ML ₄ /M.L ⁴		2.0	2.3		
		2.6 ^d	3.1 ^e	3.5 ^f	(-4) ^v	(1) ^e
	$ML_{50}/M.L^{5}$	$1.6^{ ext{d}}$	2.4 ^e	2.7 ^f		
	M.L ² /ML ₂ (s)			-5.68 ^f		
Ga ³⁺	ML/M.L	-0.10 ^q				
In ³⁺	ML/M.L	2.04 ^q	1.93			
		1.99 ^d		2.08 ^f	0.5 ^d	$11^{ extsf{d}}$
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	3.1 ^q	2.6			
	_	2.6 ^d		3.4 ^f	1.4 ^d	17 ^d
	$ML_3/M.L^3$	3.4 ^q		4.0 ^f		
	ML ₄ /M.L ⁴			4.8 ^f		
T1 ³⁺	ML/M.L	8.3 ⁱ	8.9	9.7 ⁿ		
			9.28 ^e	9.51 ^f	-9.0 ^f	13 ^f
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	14.6 ¹	16.4	16.6 ⁿ		
			16.70 ^e	16.88 ^f	-15.1 ^f	27 ^f
	$\mathrm{ML}_3/\mathrm{M.L}^3$	19.2 ⁱ		21.2 ⁿ		
			22.1 ^e	22.3 ^f	-19.6 ^f	36 ^f
	ML ₄ /M.L ⁴	22.3 ⁱ		23.9 ⁿ		
	7		25.7 ^e	26.4 ^f	-21.8 ^f	48 ^f

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; i 20°, 0.4; n 18°, 0; q 20°, 0.7; v 5-65°, 3.0

Bromide ion (continued)

Metal		Log K	Log K	Log K	ΔΗ	ΔS
ion Bi ³⁺	<u>Equilibrium</u>	25°, 0.5	25°, 1.0	25°, 0	<u>25°, 0</u>	25°, 0
Bi ^{3∓}	ML/M.L	2.37	2.22	3.06 +0.2	3.3	25
		2.32 ^d ±0.04	2.63 ^e	3.12 ^f	0.0 ^f	14 ^f
					0.7 ^w	
	$\mathrm{ML}_2/\mathrm{M.L}^2$	4.2	(4.4)	5.6		
		$4.4^{d} \pm 0.1$	5.0 ^e	5.7 ^f		
	$\mathrm{ML}_{3}/\mathrm{M.L}^{3}$	5.9	6.2	7.4		
	_	$6.3^{d} \pm 0.1$	6.7 ^e	8.2 ^f		
	ML ₄ /M.L ⁴	7.3	(7.2)	8.6		
	·	$7.8^{d} \pm 0.1$	8.1 ^e	10.0 ^f		
	ML ₅ /M.L ⁵	8.2	8.7	(9.2)		
		$9.2^{d} \pm 0.1$	(9.0) ^e	11.9 ^f		
	ML ₆ /M.L ⁶	8.3	8.8	(8.7)		
	· ·	9.5 ^d ±0.2	9.8 ^e	11.8 ^f		
	M.L/H ² .MOL(s)	-6.24 ^d				
		-6.52 ^k				

^d 25°, 2.0; ^e 25°, 3.0; ^f 25°, 4.0; ^k 20°, 2.0; ^w 50°, 4.0

Bibliography	
--------------	--

Cs ⁺	68HF
(CH ₃)	$_{4}N^{+}, (C_{2}H_{5})_{4}N^{+}, (C_{3}H_{7})_{4}N^{+}$ 65Lb,67Wa
Be ²⁺	65MJ,71SK
Mg ²⁺	73нна
Sc ³⁺	64MR
Y ³⁺ , C	e ³⁺ ,Eu ³⁺ 63CU
	Sm ³⁺ ,Er ³⁺ 73KP
_{Но} 3+	66MSY,73KP
Ac ³⁺	68SMR
บ ⁴⁺	54AL
υο ₂ 2+	51Aa,57DM 61LW,65FM,66KL
Co ²⁺	61LW,65FM,66KL
Ni ²⁺	61LW,66KL
Cu ²⁺	50Na,51NL,60LR,66KL,68MM,70MM
Fe ³⁺	39L,42RS,55LR,57YT,67M,71MH
Hf ⁴⁺	67HP
Cu ⁺	38L

Ag⁺ 380B,53BLa,53GM,54GM,54KT,54LP,54PV, 57L,67BP Hg₂²⁺ 29B,48BJ,63HI $CH_3^2Hg^+$ 65SS T1+ 23B,33IT,55Aa,56Ca,57N,57NN,58Ma, 60KMa,62SD,69CP,74FRI $(C_6H_5)_3Sn^+, (C_6H_5)_3Pb^+$ 65SM Pd²⁺ 63GKG,64SB,64FK,66BSA,66SB,67IW, 72E,72R Zn²⁺ 44SL,69G 39B,41L,53E,53F,57KE,62BD,65HS,66G, 67SG,73HH,74EM,74FK Hg²⁺ 39G,49BJ,57M,58E,58ST,60GK,61MP, 63BS,64CI,65A 28P,51DP,52V,62Ha,69FB $(CH_3)_2 Sn^{2+}$ 65FMT

119

Bromide ion (continued)

Pb²⁺ 55BPR,55PP,56K,61KMT,63MKb,68FS,70FS,
72FSL,73HH

Ga³⁺ 67MA

In³⁺ 54CI,54S,54Sc,57BH,69R

T1³⁺ 49B,56PV,60BT,63AG,64LR,67YK

Bi³⁺ 53BGa,57AG,65JL,67LD,67VL,71FKS

Other references: 03S,31FL,51MS,52Fa,53G,
54CV,54SE,54W,55M,55Na,56C,56SL,

57SL,58Da,60EK,60FSS,60GS,61Ha,61Mc, 61SM,62FSD,62P,63EM,63ND,64MKa,64PB, 64SLI,65MRI,65SMa,66DO,66LB,67KP,67MF, 67NP,67TG,68KTa,68SRR,69MA,69MM,69SGM, 70DS,70Eb,71BHa,71D,71EG,71KSa,71MO, 71PJ,71TS,72BH,72CP,72V,72Va,73GS,73SP, 73V Bro3

0 ₃ Br			Bromate i	on		L
Metal ion Li	Equilibrium ML/M.L	Log K 25°, 0.5 -0.77 ^r	Log K 25°, 1.0 -0.82 ^s	Log K 25°, 0 -0.5	ΔH 25°, 0	ΔS 25°, 0
Na ⁺	ML/M.L			(-0.4) ±0.1		
K ⁺	ML/M.L			(-0.3)°		
Ba ²⁺	ML/M.L M.L ² /ML ₂ (H ₂ 0)(s) -5.11		(0.86)°		
Sc ³⁺	ML/M.L ML ₂ /M.L ²		0.65 0.75		(-8) ^t	(-24) ^c
Eu ³⁺	ML/M.L	0.58 ^a			(-3) ^v	(-8) ^a
Tb ³⁺	ML/M.L	0.49 ^a			(-4) ^v	(-11) ^a
Th ⁴⁺	ML/M.L ML ₂ /M.L ²	0.81 0.91				
Cu ²⁺	$M.(OH)^{1.5}.L^{0.5}$	/M(OH) _{1.5} L _{0.5} (s) -16.13	-16.53		
Fe ³⁺	ML/M.L		0.36		(4) ^t	(15) ^c
Ag ⁺	M.L/ML(s)			-4.26 ±0.02	19.3	45
T1 ⁺	ML/M.L M.L/ML(s)			0.3 ^u -3.78 ^u -0.07	12	23
Cd ²⁺	ML/M.L		0.06 ^e			
Pb ²⁺	ML/M.L M.L ² /ML ₂ (s)			1.85 -5.10		
	0.1; ^c 25°, 1.0 0; ^v 2-40°, 0.1		° 18°, 0; ° 2	5°, 0.15; ^s 25°, 0.	20; ^t 15-35,	1.0;
Sc ³⁺ : Eu ³⁺ ,Th Cu ²⁺ (63RSa 31BR,57FK + 31BR 72MH b ³⁺ 72RC			Fe ³⁺ 71MH Ag ⁺ 23B,49TL,5 T1 ⁺ 23B,68K,69 Cd ²⁺ 43L Pb ²⁺ 36MH Other references:		

ı-

ı-			<u>Iodide ion</u>			L_
Metal ion K	Equilibrium ML/M.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 (-0.19)	ΔH 25°, 0 (1) ^r	ΔS 25°, 0 (2)
Rb ⁺	ML/M.L			(0.04)		
Cs ⁺	ML/M.L			(-0.03)		
(CH ₃) ₄ N	N ⁺ ML/M.L			(0.31)		
(C ₂ H ₅) ₄	N ⁺ ML/M.L			(0.46)		
(C ₃ H ₇) ₄	N ⁺ ML/M.L			(0.66)		
(C ₄ H ₉) ₄	N ⁺ ML/M.L			(0.78)		
Eu ³⁺	ML/M.L		-0.4			
Hf ⁴⁺	ML/M.L		-0.5 ¹			
Cu ⁺	ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ M.L/ML(s)			8.9 9.4 ^g 9.7 ^g -12.0		
Ag ⁺	ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ M ₂ L ₆ /M ² .L ⁶ M ₃ L ₈ /M ³ .L ⁸	13.6 ^d 14.2 ^d	(8.1) ^f 11.0 ^f 13.8 ^f 14.3 ^f 29.7 ^f 46.4 ^f	6.58 ⁿ (11.7) ⁿ (13.1) ⁿ 14.1 ^t 14.4 ^t	-29	(-37) ⁿ
	M.L/ML(s)		-16.35 ^f	-16.08	26.5	15
¹ Hg ₂ ²⁺ СН ₃ Hg ⁺	M.L ² /ML ₂ (s) ML/M.L ML ₂ /M.L ² M.L/ML(s)	-27.47 8.60 ^h 8.86 ^h -11.46 ^h		-28.33 ±0.02	39 ^s ±4	5 ^b

^b 25°, 0.5; ^d 25°, 2.0; ^f 25°, 4.0; ^g 25°, 5.0; ^h 20°, 0.1; ¹ 20°, 3.0; ⁿ 18°, 0; ^r 5-55°, 0; ^s 7-40°, 0.5; ^t 25°, 7.0

Iodide ion (continued)

Metal ion	<u>Equilibrium</u>	Log K 25°, 0.5	Log K 25°, 1.0	Log 25°,	K 0	ΔH 25°, 0	ΔS 25°, 0
C ₂ H ₅ Hg	ML ₂ /ML.L		-0.67				
2 3	ML ₃ /ML ₂ .L		0.75				
	M.L/ML(s)		-4.11				
T1 ⁺	ML/M.L		0.74 ^f ±0.02				
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$		0.90 ^f ±0.00				
	$ML_3^2/M.L^3$		1.06 ^f ±0.02				
	M.L/ML(s)		-6.73 ^f	-7.23	±0.04	18 ^r	27
(C ₆ H ₅)3	Sn ⁺ ML/M.L	3.7 ^p					
)	7.3 ^p					
	ML ₄ /M.L ⁴		24.5 ±0.5				
Zn ²⁺	ML/M.L		-1.5 ^e				
Cd ²⁺	ML/M.L	1.86 ±0.04	1.89 ±0.02	2.28	±0.1	-2.3 -0.1	3
		1.99 ^d ±0.02	2.13 ^e ±0.07			-2.5° ± 0.0	0 ^c
						-2.2^{e} ±0.1	2 ^e
	$\mathrm{ML_2/M.L}^2$	3.2 ±0.1	3.2 ±0.1	3.92	±0.1	-3.0 ^c	5 ^c
		$3.4^{d} \pm 0.1$	3.6^{e} ±0.1			-2.5 ^e	8 ^e
	ML ₃ /M.L ³	4.4 ±0.1	4.5 ±0.1	5.0	±0.1		6 ^c
	-	$4.8^{d} \pm 0.1$	5.1^e ±0.1			-3.2 ^e	13 ^e
	ML ₄ /M.L ⁴	5.5 ±0.1	5.6 ± 0.1	6.0	±0.1		-3 ^c
		$6.1^{d} \pm 0.1$	6.6^{e} ± 0.1			-7.0 ^e	7 ^e
Hg ²⁺	ML/M.L	12.87				-17.1 ±0.5	
						-18.0 ^b	-2 ^b
	$ML_2/M.L^2$	23.82				-34.2 ^b	-6 ^b
	ML ₂ /M.L ³	27.6 -0.1					
	ML ₄ /M.L ⁴	29.8 ±0.1				-43.3 ±0.3	_
						-44.3 ^b	-12 ^b
	ML/MOHL.H	4.0				L	, L
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	-27.95				41.1 ^b	10 ^b

b 25°, 0.5; c 25°, 1.0; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; p 30°, 0.1; r 10-26°, 0

Iodide ion (continued)

Metal ion 2+ Sn	Equilibrium ML/M.L ML ₂ /M.L ² ML ₃ /M.L ³ ML ₄ /M.L ⁴ ML ₆ /M.L ⁶ ML ₈ /M.L ⁸ M.L ² /ML ₂ (s)	Log K 25°, 0.5	Log K 25°, 1.0 0.70 ^f 1.13 ^f 2.1 ^f 2.3 ^f 2.6 ^f 2.1 ^f -5.08 ^f	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
Pb ²⁺	ML/M.L	1.30 ^d	1.26 1.69 ^e	1.92 ±0.1		
	$ML_2/M.L_2^2$	2.4 ^d	2.8	3.2		
	ML ₂ /M.L ³	3.1 ^d	3.4	3.9		
	ML ₄ /M.L ⁴	4.4 ^d	3.9 5.3 ^g	4.5		
	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$	-7.61 ^d		-8.10 ±0.09	(15) ^r	(10)
Ga ³⁺	ML/M.L	-0.2 ^q				
In ³⁺	ML/M.L	1.64 ^q 0.99 ^d			-0.7 ^d	2 ^d
	ML ₂ /M.L ²	2.56 ^q 2.26 ^d			0.8 ^d	14 ^d
T1 ³⁺	ML ₄ /M.L ⁴		35.7 ^f			
Bi ³⁺	ML/M.L ML ₄ /M.L ⁴ ML ₅ /M.L ⁵ ML ₆ /M.L ⁶ M.L ³ /ML ₃ (s)	3.63 15.0 ^k 16.8 ^k 18.8 ^k -18.09 ^k				

d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; g 25°, 5.0; k 20°, 2.0; q 20°, 0.7; r 0-60°, 0

Iodide ion (continued)

```
Bibliography:
                                                                          Hg<sup>2+</sup>
к+
          68AT
Rb<sup>+</sup>
          64FF
                                                                          sn<sup>2+</sup>
Cs<sup>+</sup>
          68HF
 (CH_3)_4N^+, (C_2H_5)_4N^+, (C_3H_7)_4N^+, (C_4H_9)_4N^+
                                                                          Pb<sup>2+</sup>
Eu3+
Hf<sup>4+</sup>
                                                                          Ga<sup>3+</sup>
         67HP
                                                                                     67MA
Cu<sup>+</sup>
                                                                          In<sup>3+</sup>
         59FS
Ag+
                                                                          т13+
         380B,54KT,54W,56La,56LP,57L,62FSV
                                                                                     66J
Hg<sub>2</sub><sup>2+</sup> 29B,38L,49QS,63HI
                                                                          Bi 3+
                                                                                     57AG,57FH
CH_3Hg^+
          63Sb,65SS
C2H5Hg+
              65BB
T1+
         21JS, 23B, 37DR, 57N, 60KMa
(C_6^{H_5})_3^{Sn}^+, (C_6^{H_5})_3^{Pb}^+
                                    65SM
Pd<sup>2+</sup>
         63GKG,65FK
Zn<sup>2+</sup>
         69G
                                                                                    69EP,71BHa,71K,71PJ,72FKS,72FSa,
Cd<sup>2+</sup>
         38BV,41L,56QP,60AM,64VG,66G,67SG,67VM,
                                                                                    72FSb
         68G,68GJ,69FD,69VP,70DS,74EM,74FK
```

39G, 49QS, 52YA, 54W, 57M, 57MV, 58E, 60GK,61MP,63EM,63HI,64CI,73Aa 31F,44N,45N,55BPR,55PP,56KE,60FSS, 60HT,60NM,61T,70FS 54CI,54S,69R Other references: 03S,23B,31FL,33HJ,36HB, 49SBa,51MS,53G,54CV,54SE,54YS,55M, 56SL,57KM,57TS,60CL,60GG,60L,60TM, 64BL,64EH,65HS,65NP,65SL,67BP,67CP, 67EH, 67LD, 67MF, 67MFR, 67PI, 68GY,

0 || HO-I=0

HO ₃ I		Hydrog	gen iodate	(iodic acid)		HL
Metal ion H	Equilibrium HL/H.L	Log K 25°, 0.5	Log K 25°, 1.0	Log K 25°, 0 0.77 ±0.03	ΔH 25°, 0 2.4	ΔS 25°, 0 12
Na ⁺	ML/M.L			(-0.48)		
к ⁺	ML/M.L			(-0.26)±0.04		
Mg ²⁺	ML/M.L			0.72 ±0.00		
Ca ²⁺	ML/M.L M.L ² /ML ₂ (s)	-5.07 -4.70 ^d	-4.89 -4.84 ^e	0.89 -6.15 ±0.02 -5.06 ^f	21	43
Sr ²⁺	ML/M.L			1.00		
	M.L ² /ML ₂ (s)	-5.40 -5.29 ^d	-5.29 -5.30 ^e	-6.48 -5.37 ^f		
Ba ²⁺	ML/M.L			1.10		
	M.L ² /ML ₂ (s)	-7.76 -7.43 ^d	-7.60 -7.35 ^e	-8.81 ±0.01 -7.39 ^f		
y ³⁺	M.L ³ /ML ₃ (s)			-10.15 +0.2	2.2 ^r	-39
La ³⁺	M.L ³ /ML ₃ (s)			-10.99 +0.07	6.9 ^r	-27
Ce ³⁺	ML/M.L M.L ³ /ML ₃ (s)	1.22 ^a		1.90 -10.86	6.8 ^r	-27
Pr ³⁺	ML/M.L	1.18 ^a			r	
Nd ³⁺	M.L ³ /ML ₃ (s)			-10.89 +0.2	6.7 ^r	27
	M.L ³ /ML ₃ (s)	9		-11.02 +0.1	6.4 ^r	-29
Pm 3+	ML/M.L	1.12 ^a		1.81	_	
Sm ³⁺	M.L ³ /ML ₃ (s)			-11.30 +0.1	5.8 ^r	-32
Eu ³⁺	ML/M.L	1.15 ^a -0.2		1.83	(3) ^s	(16) ^a
	M.L ³ /ML ₃ (s)			-11.41 +0.1	5.1 ^r	-35
Gd ³⁺	M.L ³ /ML ₃ (s)			-11.37 +0.2	4.2 ^r	-38

a 25°, 0.1; d 25°, 2.0; e 25°, 3.0; f 25°, 4.0; r 25°, 0.2; s 0-40°, 0.1

Hydrogen iodate (continued)

Metal ion Tb ³⁺	Equilibrium ML/M.L	Log K 25°, 0.5 1.20 ^a -0.3	Log K 25°, 1.0	Log K 25°, 0	ΔH 25°, 0	ΔS 25°, 0
	$M.L^3/ML_3(s)$			-11.19 +0.08	4.1 ^r	-38
Dy ³⁺	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$			-11.04 +0.1	3.6 ^r	-39
Но ³⁺	$M.L^3/ML_3(s)$			-10.87 +0.2	3.2 ^r	-39
Er ³⁺	ML/M.L	1.26 ^a		1.96		
	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$			-10.71 +0.3	3.1 ^r	-39
Tm ³⁺	ML/M.L	1.33 ^a		2.02		
	$\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})$			-10.55 +0.2	2.6 ^r	-40
Yb ³⁺	ML/M.L	1.18 ^a		1.88		
	$^{\mathrm{M.L}^3/\mathrm{ML}_3(\mathrm{s})}$			-10.40 +0.2	2.3 ^r	-40
Lu ³⁺	M.L ³ /ML ₃ (s)			-10.25	2.0 ^r	-40
Th ⁴⁺	ML/M.L	2.88				
	$ML_2/M.L^2$	4.80				
	$ML_3/M.L^3$	(7.17)				
	$\mathrm{M.L}^4/\mathrm{ML}_4(\mathrm{s})$	-14.62				
UO ₂ 2+	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$	2.73 ^r				
2	$ML_3^2/M.L^3$	3.67 ^r				
	M.L ² /ML ₂ (s)					
Cu ²⁺	M.L ² /ML ₂ (s)			-7.13 ±0.01	6.8	-10
	$M.(OH)^{1.5}.L^{0.5}$	5 /M(OH) _{1.5} L _{0.5} (s	s)	-17.56		
Cr ³⁺	2	2.11				
	$M.L^{2}3/ML_{3}(s)$	-5.3				
Ag ⁺	ML/M.L		0.19	0.63	5.1	20
	$\mathrm{ML}_{2}/\mathrm{M.L}^{2}$			1.90	-5.2	-9
	M.L/ML(s)		-7.08	-7.51 ±0.01	12	-6
Hg ₂ ²⁺	$\mathrm{M.L}^2/\mathrm{ML}_2(\mathrm{s})$			-17.89		
T1 ⁺	ML/M.L		0.15			
	M.L/ML(s)			-5.51 ±0.00	13	19
Zn ²⁺	M.L ² /ML ₂ (s)			-5.41		

a 25°, 0.1; r 25°, 0.2

Hydrogen iodate (continued)

Metal		Log K	Log K	Log K	$\Delta \mathbf{H}$	ΔS
ion	Equilibrium	25°, 0.5	25°, 1.0	<u>25°, 0</u>	25°, 0	25°, 0
ion Cd ²⁺	ML/M.L		0.51			
	ML ₂ /M.L ² M.L ² /ML ₂ (s)		1.52			
	$\mathrm{M.L}^{2}/\mathrm{ML}_{2}(\mathrm{s})$			-7.64		
Pb ²⁺	M.L ² /ML ₂ (s)	-11.48 ^t		-12.61		

t 35°, 0.3

Bibliography:

H ⁺	270,34AR,34K,39NR,41LLa,44HB,67PP	Cu ²⁺	48K,51LW,51Ma,62LL,63RB
$^{Na^{+}}$	31BR	Cr ³⁺	69МН
к+	31BR,48M,59S	Ag ⁺	23B,38KL,41DS,41LL,51Mb,56RM,
Mg ²⁺	30D,38WD	Hg ₂ 2+	29B
Ca ²⁺	34K,38WD,49DW,53BG,74FRa	T1 [‡]	29LG,53BG,72BH
Sr ²⁺	52CM,74FRa	Zn ²⁺	50S
Ba ²⁺		Cd ²⁺	50S,72BH
Y ³⁺ -Y		Pb ²⁺	23B,64SM
Th ⁴⁺	50DS,61SF	Other	references: 02NK,03RD,05S,09HS,12S,
ຫວ ₂ 2+	59KSN		43T,52Sd,53NA,59B,59HJ,59R,62ML,
_			65DB,65K,67KR,72BBa,74GF

^H5^{IO}6

^H 5 ^O 6 ^I	Ну	drogen periodate	(peri	odic acid)		н ₅ г
Metal ion	<u>Equilibrium</u>			Log K 25°, 0	ΔH 25°, 0 (2) ^r	ΔS 25°, 0
ion H	[H ₄ L + 10 ₄]/H ₃ L.H			8.29 ±0.04	(2) ^r	(45)
	$H_5L/[H_4L + IO_4]$			1.58 ±0.03		
	IO ₄ /H ₄ L			1.45 ±0.02	(11) ^s	(44)
K ⁺	MIO ₄ /M.IO ₄			(0.24)		
	M.IO ₄ /MIO ₄ (s)			-3.43	15.1	35
Cs ⁺	M.IO ₄ /MIO ₄ (s)			-2.65	13.1	32
Cu ²⁺	M ² .(OH) ³ .H ₄ L/M ₂ HL(s)			-42.6		
	$M^{5}.(OH)^{8}.(H_{4}L)^{2}/M_{5}L_{2}($			-110.1		
Cd ²⁺	M ² .(OH) ³ .H ₄ L/M ₂ HL(s) M ⁵ .(OH) ⁸ .(H ₄ L) ² /M ₅ L ₂ (-42.0		
	$M^5.(OH)^8.(H_4L)^2/M_5L_2($	s)		-109.5		
r 25-4	5°, 0; ^s 5-45°, 0					
Biblio	graphy:					
н+	54N,65BL,66SV,68KD		Cu ²⁺	54N		
K ⁺	48M,51CH		Cd ²⁺	55Rc		
Cs ⁺	68KD			references:	03RD,48IN,53S	H,60LY,61L,

64LW,69HSc,68MF,69BWa

III. PROTONATION VALUES FOR OTHER LIGANDS

Ligand Hydrogen niobate* (H ₈ Nb ₆ O ₁₉), H ₈ L	Equilibrium HL/H.L H2L/HL.H	Log K 25°, 0 13.8 ^e 10.88 ^e	ΔH 25°, 0	ΔS 25°, 0	Bibliography 64Nb, other references: 56LPa,60LSV
Hydrogen trithiocarbonate (H_2CS_3) , H_2L	нг/н.г н _э г/нг.н	8.22° 2.68°	(-3) ^r	(30)	63GKa
Hydrogen perthiocarbonate (H_2CS_4) , H_2L	HL/H.L	7.24	(-10) ^r	(0)	66GW
Hydrogen triselenocarbonate $(H_2^{CSe}_3), H_2^{L}$	нг/н.г н ₂ г/нг.н	7.13 1.16 ^s	(-10) ^r	(-1)	67GD
Hydrogen germanate $(Ge(OH)_4)$, H_2L	HL/H.L	12.6 11.7 ^c 12.4 ^e			26M,29P,31SH,32LM, 63Ia,63IS,64HK, 74MB, other
	H ₂ L/HL.H	9.3 9.02 ^b ±0.00 9.02 ^c			references: 26RS, 32GM,48C,55La,57A, 58KT,60A,62NF,64GZ,
	H ₁₃ L ₈ /(H ₂ L) ⁸ .				66AN
	:	29.3 ^b ±0.2 30.4 ^c			
	H ₂ L/GeO ₂ (s,	nexagonal) -1.37 +0.01			
	H ₂ L/GeO ₂ (s,	tetragonal) -4.37			
Hydrogen peroxophosphate (H ₃ PO ₅), H ₃ L	HL/H.L H ₂ L/HL.H H ₃ L/H ₂ L.H	12.8 ^a 5.5 ^a 1.1 ^a			60FB,65BE

 $[\]overline{a}$ 25°, 0.1; \overline{b} 25°, 0.5; \overline{c} 25°, 1.0; \overline{e} 25°, 3.0; \overline{o} 20°, 0; \overline{r} 0-25°, 0; \overline{s} 0°, 0; \overline{m} metal constants were also reported but are not included in the compilation of stability constants.

III. Protonation Values (continued)

<u>Ligand</u> Hydrogen thiophosphate	Equilibrium HL/H.L	Log K 25°, 0 9.99 ⁱ	ΔH 25°, 0	ΔS 25°, 0	Bibliography 69MKb,69PN
(H ₃ PO ₃ S), H ₃ L	H ₂ L/HL.H	5.83			other reference:
(-3-3-7, -3-	22,	5.38 ^a			65NS
		5.23 ^b			03115
		5.25 ⁱ			
		5.04 ^c			
	н ₃ г/н ₂ г.н	1.52 ⁱ			
Hydrogen tetrathiophosphate	HL/H.L	6.5^{i}			69PN
(H ₃ PS ₄), H ₃ L	H ₂ L/HL.H	3.4 ⁱ			
	н ₃ L/н ₂ L.н	1.7 ⁱ			
Hydrogen amidophosphate $({\rm ^{H_2}NPO_3^{H_2}})$, ${\rm ^{H_2}L}$	HL/H.L	8.63 8.02 ⁱ	(-5) ^t	(-20)	611Ca,68LW,69PN
		8.28 ^{c,u}	t		
	H ₂ L/HL.H	3.08 2.59 ⁱ	(0) ^t	(-10)	
		(3.3) ^{c,u}			
		_			•
Hydrogen diamidophosphate	HL/H.L	4.85 ⁱ			69PN
((NH ₂) ₂ PO ₂ H), HL	H ₂ L/HL.H	1.03 ¹			
Hydrogen diamidothiophosphate	HL/H.L	4.2 ⁱ			69PN
((NH ₂) ₂ PSOH), HL	H ₂ L/HL.H	$\textbf{1.9}^{\mathbf{i}}$			
Hydrogen fluorophosphate*	HL/H.L	5.12			61RT
(H ₂ PO ₃ F), HL	·	4.72 ^v	(2) ^w	(30)	other reference:
- 3		4.47 ^c	. ,	` '	29L
Hydrogen arsenite	HL/H.L	9.29	-6.6	20	50JW,59AR,61AT,
(arsenous acid)		9.13 ^a			64SSW, other
(As(OH) ₃), HL		9.09 ^b			references: 13WS,
-		9.11 ^x			28H,40GH,40IA
	HL/(As ₄ 0 ₆) ^{0.25}	(s)			
		-0.69			

a 25°, 0.1; b 25°, 0.5; c 25°, 1.0; d 20°, 0.5; d 0-40°, 0.5; d (CH₃)₄NBr used as background electrolyte; d 25°, 0.25; d 0-65°, 0.25; d 25°, 1.5; d metal constants were also reported but are not included in the compilation of stability constants.

III. Protonation Values (continued)

Ligand Hudrogen arsenate* Hudrogen H		n (1)	Log K	ΔΗ	ΔS	D.1.1.		
(arsenic acid)	Ligand *	Equilibrium				<u>Bibliography</u>		
(H ₂ AsO ₄), H ₃ L (H ₃ AsO ₄), H ₃ L (H ₃ L/H ₂ L.H (Antimonic acid) (Sb(OH) ₅), HL (Sb(OH) ₅), HL (Sb ₁₂ (OH) ₆₄ ·H ⁴ /(HL) ¹² (Sb ₁₂ (OH) ₆₄ ·Sb ₁₂ (OH) ₆₅ ·H (Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ ·H (Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ ·H (Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ ·H (Sb ₂ A ₁), H ₂ L (H ₂ S ₄), H ₂ L (H ₂ S ₅), H ₂ L (H ₂ C ₁ H) ₁ C ₁ H (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₂ H), H ₂ L (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₂ H), H ₂ L (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₂ H), H ₂ C (H ₂ C ₃), H ₂ L (H ₂ C ₁ H) ₁ C ₂ H (H ₂ C ₃ H), H ₂ C (H	Hydrogen arsenate				38	53AA,58Mc,59FM,		
Hydrogen antimonate HL/H.L 2.24 ±0.06 Hydrogen antimonate HL/H.L 2.72 (antimonic acid) (Sb(OH) ₅), HL Sb ₁₂ (OH) ₆₄ .H ⁴ /(HL) ¹² 20.34 23.06 ^b , u Sb ₁₂ (OH) ₆₄ /Sb ₁₂ (OH) ₆₅ .H 3.62 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₆ .H 4.83 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ .H 5.82 Hydrogen tetrasulfide (H ₂ S ₄), H ₂ L Hydrogen pentasulfide HL/H.L 4L/HL.H 3.8 ^h Hydrogen pentasulfide HL/H.L 5.7 ^h (H ₂ S ₅), H ₂ L Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	(arsenic acid)	н ₂ L/нL.н		-0.8	29	64SSL,64SSW, other		
Hydrogen antimonate (antimonic acid) (Sb(OH) ₅), HL (Sb(OH) ₅), HL (Sb ₁₂ (OH) ₆₄ .H ⁴ /(HL) ¹² 20.34 23.06 ^{b,u} Sb ₁₂ (OH) ₆₄ /Sb ₁₂ (OH) ₆₅ .H 3.62 Sb ₁₂ (OH) ₆₅ /Sb ₁₂ (OH) ₆₆ .H 4.83 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ .H 5.82 Hydrogen tetrasulfide (H ₂ S ₄), H ₂ L Hydrogen pentasulfide (H ₂ S ₅), H ₂ L Hydrogen pentasulfide (H ₂ S ₅), H ₂ L Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 60SF (Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (Hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	(H_3AsO_4) , H_3L		6.39 ^c			references: 13WS,		
Hydrogen antimonate (Antimonic acid) (Sb(OH) ₅), HL (Sb(OH) ₆), Sb ₁₂ (OH) ₆ , Sb ₁₂ (н ₃ L/н ₂ L.н	2.24 ±0.06	1.7	16	28H,42TL,56C,56Ca,		
(antimonic acid) 2.47 ^b , u (Sb(OH) ₅), HL Sb ₁₂ (OH) ₆₄ .H ⁴ /(HL) ¹² 20.34 23.06 ^b , u Sb ₁₂ (OH) ₆₄ /Sb ₁₂ (OH) ₆₅ .H 3.62 Sb ₁₂ (OH) ₆₅ /Sb ₁₂ (OH) ₆₆ .H 4.83 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ .H 5.82 Hydrogen tetrasulfide HL/H.L 6.3 ^h (H ₂ S ₄), H ₂ L H ₂ L/HL.H 3.8 ^h Hydrogen pentasulfide HL/H.L 5.7 ^h (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,		3 2				56CS		
(antimonic acid) 2.47 ^b , u (Sb(OH) ₅), HL Sb ₁₂ (OH) ₆₄ .H ⁴ /(HL) ¹² 20.34 23.06 ^b , u Sb ₁₂ (OH) ₆₄ /Sb ₁₂ (OH) ₆₅ .H 3.62 Sb ₁₂ (OH) ₆₅ /Sb ₁₂ (OH) ₆₆ .H 4.83 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ .H 5.82 Hydrogen tetrasulfide HL/H.L 6.3 ^h (H ₂ S ₄), H ₂ L H ₂ L/HL.H 3.8 ^h Hydrogen pentasulfide HL/H.L 5.7 ^h (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	Hydrogen entimonate	ш /н т	2 72			631 Ma 7/MR		
$(Sb(OH)_{5}), HL \qquad Sb_{12}(OH)_{64}.H^{4}/(HL)^{12} \\ 20.34 \\ 23.06^{b}, u \\ Sb_{12}(OH)_{64}/Sb_{12}(OH)_{65}.H \\ 3.62 \\ Sb_{12}(OH)_{65}/Sb_{12}(OH)_{66}.H \\ 4.83 \\ Sb_{12}(OH)_{66}/Sb_{12}(OH)_{67}.H \\ 5.82 \\ Hydrogen tetrasulfide \qquad HL/H.L \qquad 6.3^{h} \\ (H_{2}S_{4}), H_{2}L \qquad H_{2}L/HL.H \qquad 3.8^{h} \\ Hydrogen pentasulfide \qquad HL/H.L \qquad 5.7^{h} \\ (H_{2}S_{5}), H_{2}L \qquad H_{2}L/HL.H \qquad 3.5^{h} \\ Hydrogen hydroxylamidosulfate \qquad HL/H.L \qquad 1.48^{y} \qquad 65CW \\ (hydroxylamine-O-sulfonic acid) \\ (H_{2}NOSO_{3}H), HL \\ Hydrogen peroxosulfate \qquad HL/H.L \qquad 9.86^{n} \qquad 65Ka,$		1111/111-11		i		OSLITA, 7 4FID		
$\begin{array}{c} 20.34 \\ 23.06^{b}, u \\ \\ \text{Sb}_{12}(\text{OH})_{64}/\text{Sb}_{12}(\text{OH})_{65}. \text{H} \\ 3.62 \\ \\ \text{Sb}_{12}(\text{OH})_{65}/\text{Sb}_{12}(\text{OH})_{66}. \text{H} \\ 4.83 \\ \\ \text{Sb}_{12}(\text{OH})_{66}/\text{Sb}_{12}(\text{OH})_{67}. \text{H} \\ 5.82 \\ \\ \text{Hydrogen tetrasulfide} & \text{HL/H.L} & 6.3^h & 60SF \\ (\text{H}_2\text{S}_4), \text{H}_2\text{L} & \text{H}_2\text{L/HL.H} & 3.8^h \\ \\ \text{Hydrogen pentasulfide} & \text{HL/H.L} & 5.7^h & 60SF \\ (\text{H}_2\text{S}_5), \text{H}_2\text{L} & \text{H}_2\text{L/HL.H} & 3.5^h \\ \\ \text{Hydrogen hydroxylamidosulfate} & \text{HL/H.L} & 1.48^y & 65CW \\ (\text{hydroxylamine-O-sulfonic acid)} \\ (\text{H}_2\text{NOSO}_3\text{H}), \text{ HL} \\ \\ \text{Hydrogen peroxosulfate} & \text{HL/H.L} & 9.86^n & 65Ka, \\ \end{array}$		g1 (OH) H						
$\begin{array}{c} 23.06^{b}, u \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	(Sb(OH) ₅), HL	Sb ₁₂ (OH) ₆₄ .H						
Sb ₁₂ (OH) ₆₄ /Sb ₁₂ (OH) ₆₅ .H 3.62 Sb ₁₂ (OH) ₆₅ /Sb ₁₂ (OH) ₆₆ H 4.83 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ ·H 5.82 Hydrogen tetrasulfide HL/H.L 6.3 ^h (H ₂ S ₄), H ₂ L Hydrogen pentasulfide HL/H.L 5.7 ^h 60SF (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,								
3.62 Sb ₁₂ (OH) ₆₅ /Sb ₁₂ (OH) ₆₆ ·H 4.83 Sb ₁₂ (OH) ₆₆ /Sb ₁₂ (OH) ₆₇ ·H 5.82 Hydrogen tetrasulfide HL/H.L 6.3 ^h (H ₂ S ₄), H ₂ L H ₂ L/HL.H 3.8 ^h Hydrogen pentasulfide HL/H.L 5.7 ^h (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,			23.06	•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Sb ₁₂ (OH) ₆₄ /S						
## 4.83 ### 4.83 ### 5.82 ### 5.82 ### 60SF (#2S4), #2L ### 4.83 #### 60SF (#2S4), #2L #### 3.8 ###################################		3.62						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Sb ₁₂ (OH) ₆₅ /S	Sb ₁₂ (OH) ₆₆ .H					
Hydrogen tetrasulfide HL/H.L 6.3h (H ₂ S ₄), H ₂ L Hydrogen pentasulfide HL/H.L 5.7h (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,			4.83					
Hydrogen tetrasulfide HL/H.L 6.3h (H ₂ S ₄), H ₂ L Hydrogen pentasulfide HL/H.L 5.7h (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,		Sb ₁₂ (OH) ₆₆ /S	Sb ₁₂ (OH) ₆₇ .H					
(H ₂ S ₄), H ₂ L H ₂ L/HL.H 3.8 ^h Hydrogen pentasulfide HL/H.L 5.7 ^h 60SF (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,		12 00	12 0,					
(H ₂ S ₄), H ₂ L H ₂ L/HL.H 3.8 ^h Hydrogen pentasulfide HL/H.L 5.7 ^h 60SF (H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	771	777 /77 7	, ah			COOF		
Hydrogen pentasulfide HL/H.L 5.7h (H ₂ S ₅), H ₂ L Hydrogen hydroxylamidosulfate (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 60SF 60SF 65CW 65CW						00Sr		
(H ₂ S ₅), H ₂ L H ₂ L/HL.H 3.5 ^h Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	(H ₂ S ₄), H ₂ L	H ₂ L/HL.H						
Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	Hydrogen pentasulfide	HL/H.L	5.7 ^h			60SF		
Hydrogen hydroxylamidosulfate HL/H.L 1.48 ^y 65CW (hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	(H ₂ S ₅), H ₂ L	H ₂ L/HL.H	3.5 ^h					
(hydroxylamine-O-sulfonic acid) (H ₂ NOSO ₃ H), HL Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,	2 3 2	-	1 4 g y			65CU		
$({\rm H_2NOSO_3H})$, HL Hydrogen peroxosulfate HL/H.L 9.86 $^{\rm n}$ 65Ka,			1.40			OJCW		
Hydrogen peroxosulfate HL/H.L 9.86 ⁿ 65Ka,		icia)						
	(H ₂ NOSO ₃ H), HL							
$(\mathrm{H_2SO_5})$, $\mathrm{H_2L}$ other reference:	Hydrogen peroxosulfate	HL/H.L	9.86 ⁿ			65Ka,		
	(H ₂ SO ₅), H ₂ L					other reference:		
63GR	2					63GR		

 $^{^{}b}$ 25°, 0.5; c 25°, 1.0; h 20°, 0.1; n 19°, 0; u (CH $_{3}$) $_{4}$ NC10 $_{4}$ used as background electrolyte; y 45°, 1.0; * metal constants were also reported but are not included in the compilation of stability constants.

III. Protonation Values (continued)

Ligand *	Equilibrium		ΔH 25°, 0	ΔS 25°, 0	Bibliography
Hydrogen tellurate	HL/H.L	11.00 ±0.05	(-9) ^r	(20)	57Aa,59EF,60AT,
(telluric acid)		10.46 ^c	r		62EE,66Bb,71KBa,
(Te(OH) ₆), H ₂ L	H ₂ L/HL.H	7.66 ±0.05	(-7)	(10)	72KMB,73KM,
		7.30 ^c			other references:
	$H_3L_2.H/(H_2L)$	-6.84			20B,32BR,48F,53La,
		-6.31 ^c			53ST,61L,62LYa,
	н ₃ г ₂ /н ₂ г ₂ .н	7.14 ^c			66KC,71BG
	$\mathrm{H_{2}L_{2}/HL_{2}.H}$	9.48 ^c			
Hydrogen hypochlorite	HL/H.L	7.53 ±0.02	-3.3	23	37P,40H,46AM,57C,
(hypochlorous acid)					66Ma, other
(HOC1), HL					references: 04S,
					22NW,24Sa,33BD,
					33D,33G,33IM,33RA,
					37SB,38SG,40Ha,
					42Hb, 42S, 52Lc,
					57MF,58Fa,58FM
Hydrogen chlorite*	HL/H.L	1.95 ±0.01	4.1	23	37P,65LP,68HR
(chlorous acid)		1.66 ^b			other references:
(HOC10), HL		1.61 ^c			44T,56H,52Lc,54Da,
					64GK
Hydrogen hypobromite	HL/H.L	8.63 ±0.03	(-7) ^r	(15)	56KT,58AT,64FM,
(hypobromous acid)					other references:
(HOBr), HL					38SG,39KH,57MF
Hydrogen hypoiodite	HL/H.L	10.64			51BG,58Ca,
(hypoiodous acid)	I/HL.H	1.54			other references:
(HOI), HL					22F,25M,42Sa,

 $^{^{}b}$ 25°, 0.5; c 25°, 1.0; r 10-60°, 0; * metal constants were also reported but are not included in the compilation of stability constants.

IV. LIGANDS CONSIDERED BUT NOT INCLUDED

Ligand	Bibliography
Hydrogen tantalate (Ta(OH) ₅)	60LSV,63BLN
Hydrogen octacyanowolframate (IV) (H ₄ W(CN) ₈)	71SKa
Hydrogen octacyanowolframate (V) (H ₃ W(CN) ₈)	71SKa
Hydrogen manganate (VI) (H ₂ MnO ₄)	24SS,60LYa
Manganate (VII) ion (permanganate ion) (MnO ₄)	43L,56C,60BC
Hydrogen technetate (VII) (pertechnetic acid) (HTcO4)	53CS,63RH,63SK
Hydrogen pentacarbonylmanganate (-I) (HMn(CO) ₅)	58HW
Hydrogen tetracarbonylferrate (-II) $(H_2Fe(C0)_4)$	49KS,52HHa
Hexachloroiridate(III) ion (IrCl ₆ ³⁻)	73KT
Hexachloroiridate(III) ion (IrCl ₆ ³⁻) Hexabromoiridate(III) ion (IrBr ₆ ³⁻)	70KT
Cyanamide (C(NH) ₂)	54SS
Nitrogen oxide (NO)	24MH,61Tc
Nitramide (NO ₂ NH ₂)	27BKa
Hydrogen α -oxyhyponitrite $(H_2N_2O_3)$	63SRM
Hydrogen pentaphosphate (H ₇ P ₅ O ₁₆)	50VC
Hydrogen hexaphosphate (H ₈ P ₆ O ₁₉)	60IC,61I,61ICa
Hydrogen tetradecaphosphate (H ₁₆ P ₁₄ O ₄₃)	60IC,61I
Hydrogen hexacontaphosphate $(H_{62}P_{60}O_{121})$	60IC,61I,61ICa
Hydrogen μ-disulfidohexaoxodiphosphate (H ₂ O ₃ PS ₂ PO ₃ H ₂)	65NS
Hydrogen fluorotriphosphate $(H_4P_3O_9F)$	65Fb
Hydrogen dithionite (H ₂ S ₂ O ₄)	11J,64LRC,67BC
Hydrogen imidobis(fluorosulfate) (NH(SO ₂ F) ₂)	65Ra

Russian translations have the page of the original in parentheses.

- 00A S. Arrhenius, Z. Phys. Chem., 1893, 11, 805
- 00B M. Berthelot, Ann. Chim. Phys., 1877, 10, 433
- 00Ba R. Bach, Z. Phys. Chem., 1892, 9, 241
- 00Bb G. Bredig, Z. Phys. Chem., 1894, 13, 289
- 00Bc G. Bodlander, Z. Phys. Chem., 1900, 35, 23
- 00BD D. Berthelot and M. Delepine, Compt. Rend. Soc. Chim. France, 1899, 129, 326
- 00D F. Dolezalek, Z. Elektrochem., 1899, 5, 533
- 00H A. Hantzsch, Chem. Ber., 1899, 32, 3066
- 00KH F. Kohlrausch and A. Heydweiller, <u>Ann. Phys.</u>, 1894, <u>53</u>, 209; <u>Z. Phys. Chem</u>., 1894, <u>14</u>, 317
- 00L H. Ley, Z. Phys. Chem., 1899, 30, 193
- 00M J. L. R. Morgan, Z. Phys. Chem., 1895, <u>17</u>, 513
- 00N W. Nernst, Z. Phys. Chem., 1894, 14, 155
- 00P T. Paul, Chem. Ztg., 1899, 23, 535
- 00S M. Schumann, <u>Chem. Ber.</u>, 1900, <u>33</u>, 527
- J. Thomsen, Thermochemische Untersuchungen I, Leipzig, 1882, 162, 403
- 00W C. A. West, J. Chem. Soc., 1900, 77, 705
- 00WC J. Walker and W. Cormack, J. Chem. Soc., 1900, 77, 5
- 01B G. Bodlander, Festschrift fur R. Dedekind, Braunschweig, 1901, p. 153
- 01E C. L. von Ende, Z. Anorg. Allg. Chem., 1901, 26, 129
- 01L M. G. Levi, Gazz. Chim. Ital., 1901, 31, No. 2, 1

- 01W K. Winkelblech, Z. Phys. Chem., 1901, 36, 546
- 02B A. A. Blanchard, Z. Phys. Chem., 1902, 41, 681
- 02BF G. Bodlander and R. Fittig, Z. Phys. Chem., 1902, 39, 597
- 02NK A. A. Noyes and D. A. Kohr, Z. Phys. Chem., 1902, 42, 336
- 02S K. Schick, Z. Phys. Chem., 1902, 42, 155
- 03AC R. Abegg and A. J. Cox, Z. Phys. Chem., 1903, 46, 1
- 03B W. Bottger, Z. Phys. Chem., 1903, 46, 521
- 03E H. Euler, Chem. Ber., 1903, 36, 1854, 3400
- 03RD V. Rothmund and C. Drucker, Z. Phys. Chem., 1903, 46, 827
- 03S M. S. Sherrill, Z. Phys. Chem., 1903, 43, 705; 1904, 47, 103
- 04A F. Auerbach, Z. Phys. Chem., 1904, 49, 217
- 04BE G. Bodlander and W. Eberlein, Z. Anorg. Allg. Chem., 1904, 39, 197
- 04D K. Drucker, Z. Phys. Chem., 1904, 49, 563
- 04S J. Sand, Z. Phys. Chem., 1904, 48, 610; ibid, 1905, 50, 465
- 05AS R. Abegg and H. Schafer, Z. Anorg. Allg. Chem., 1905, 45, 293
- 05G H. Grossmann, Z. Anorg. Allg. Chem., 1905, 43, 356
- 05S V. Sammet, Z. Phys. Chem., 1905, 53, 641
- 05SA J. F. Spencer and R. Abegg, Z. Anorg. Allg. Chem., 1905, 44, 379 (see also 64SM)
- 06B N. Bjerrum, <u>Kgl. Danske Vid. Selsk.</u>, <u>Nat. Math. Afd.</u>, 1906, <u>4</u>, 1; <u>Z. Phys. Chem.</u>, 1907, <u>59</u>, 336
- 06Ba E. Bauer, Z. Phys. Chem., 1906, 56, 215
- 06GE H. Goldschmidt and M. Eckhardt, Z. Phys. Chem., 1906, 56, 385
- 06K J. Knox, Z. Elektrochem., 1906, 12, 477
- 07K C. W. Kanolt, J. Amer. Chem. Soc., 1907, 29, 1402
- 07KB W. Kerp and E. Bauer, Arb. Kaiser Gesundh., 1907, 26, 297
- 07L H. Lunden, J. Chim. Phys., 1907, 5, 574
- 07P M. Pleissner, Arb. Kaiser Gesundh., 1907, 26, 384
- 07S M. S. Sherrill, J. Amer. Chem. Soc., 1907, 29, 1641
- 08B N. Bjerrum, Diss., Copenhagen, 1908
- 08D H. G. Denham, J. Chem. Soc., 1908, 93, 41

- 08M E. Muller, Z. Elektrochem., 1908, 14, 76
- 09A A. J. Allmand, J. Chem. Soc., 1909, 95, 2151
- 09AB G. A. Abbott and W. C. Bray, J. Amer. Chem. Soc., 1909, 31, 729
- 09BZ L. Bruner and J. Zawadzki, <u>Z. Anorg. Allg. Chem</u>., 1909, <u>65</u>, 136; <u>ibid</u>, 1910, <u>67</u>, 454
- 09HS A. E. Hill and J. P. Simmons, Z. Phys. Chem., 1909, 67, 594
- 09L J. Lundberg, Z. Phys. Chem., 1909, 69, 442
- 09LB R. Lorenz and A. Bohi, Z. Phys. Chem., 1909, 66, 733
- 09RP A. Rosenheim and M. Pritze, Z. Anorg. Allg. Chem., 1909, 63, 275
- 09SF 0. Sackur and E. Fritzmann, Z. Elektrochem., 1909, 15, 842
- 09SL J. M. Spencer and M. LePla, Z. Anorg. Allg. Chem., 1909, 65, 10
- 10A A. J. Allmand, Z. Elektrochem., 1910, 16, 254
- 10B N. Bjerrum, Z. Phys. Chem., 1910, 73, 724
- 10BS K. Beck and P. Stegmuller, Arb. Kaiser Besundh., 1910, 34, 446
- 10M A. C. Melcher, <u>J. Amer. Chem. Soc.</u>, 1910, <u>32</u>, 50
- 10NK A. A. Noyes, Y. Kato, and R. B. Sosman, Z. Phys. Chem., 1910, 73, 1
- 10NS A. A. Noyes and M. A. Stewart, J. Amer. Chem. Soc., 1910, 32, 1133
- 10W J. K. Wood, J. Chem. Soc., 1910, 97, 878
- 11AV F. Ageno and E. Valla, Atti. Accad. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1911, 20, 706
- 11J K. Jellinek, Z. Phys. Chem., 1911, 76, 257
- 12J R. A. Joyner, Z. Anorg. Allg. Chem., 1912, 77, 103
- 12K A. Kirschner, Z. Phys. Chem., 1912, 79, 245
- 12L J. Lindner, Monat. Chem., 1912, 33, 613
- 12NF A. A. Noyes and K. G. Falk, J. Amer. Chem. Soc., 1912, 34, 454
- 12P H. Pick, Nernst-Festschrift, Halle, 1912, p. 360
- 12S J. F. Spencer, Z. Phys. Chem., 1912, 80, 701
- 13AP F. Auerbach and H. Pick, Arb. Kaiser Gesundh., 1913, 45, 113
- 13B L. Bruner, Z. Elektrochem., 1913, 19, 861
- 13K C. Kullgren, Z. Phys. Chem., 1913, 85, 466
- 14MG L. Michaelis and T. Garmendia, Biochem. Z., 1914, 67, 431

- 14MR L. Michaelis and P. Rona, Biochem. Z., 1914, 67, 182
- 14TG A. Thiel and H. Gessner, Z. Anorg. Allg. Chem., 1914, 86, 1
- 14W G. Weissenberger, Z. Phys. Chem., 1914, 88, 257
- 15J J. Johnston, J. Amer. Chem. Soc., 1915, 37, 2001
- 160 E. Oliveri-Mandala, Gazz. Chim. Ital., 1916, 46, 298
- 16V K. A. Vesterberg, Z. Anorg. Allg. Chem., 1916, 94, 371
- 17B H. Bassett, Jr., J. Chem. Soc., 1917, 111, 620
- 17K I. M. Kolthoff, Chem. Weekblad, 1917, 14, 1016
- 17LB G. N. Lewis, T. B. Brighton, and R. L. Sebastian, <u>J. Amer. Chem. Soc.</u>, 1917, <u>39</u>, 2245
- 17SL C. A. Seyler and P. V. Lloyd, J. Chem. Soc., 1917, 111, 138, 994
- 19K I. M. Kolthoff, Chem. Weekblad , 1919, 16, 1154
- 19L N. Lofman, Z. Anorg. Allg. Chem., 1919, 107, 241
- 20B E. Blanc, J. Chim. Phys., 1920, 18, 28
- 20F G. Fuseya, J. Amer. Chem. Soc., 1920, 42, 368
- 20K I. M. Kolthoff, Pharm. Weekblad, 1920, <u>57</u>, 514
- 20LL A. B. Lamb and A. T. Larson, J. Amer. Chem. Soc., 1920, 42, 2024
- 20M A. D. Mitchell, J. Chem. Soc., 1920, 117, 957
- 21G S. Glasstone, J. Chem. Soc., 1921, 119, 1689, 1914
- 21JS G. Jones and W. C. Schumb, Proc. Amer. Acad. Sci., 1921, 56, 199 (see also 64SM)
- 21LF A. B. Lamb and G. R. Fonda, J. Amer. Chem. Soc., 1921, 43, 1154
- 21RK A. Rosenheim and L. Krause, Z. Anorg. Allg. Chem., 1921, 118, 177
- 22AR M. P. Applebey and R. D. Reid, J. Chem. Soc., 1922, 121, 2129
- 22F A. Furth, Z. Elektrochem., 1922, 28, 57
- 22JC K. Jellinek and J. Czerwinski, Z. Phys. Chem., 1922, 102, 438
- 22M H. Menzel, Z. Phys. Chem., 1922, 100, 276
- 22NW A. A. Noyes and T. A. Wilson, J. Amer. Chem. Soc., 1922, 44, 1630
- 220 Y. Osaka, Mem. Coll. Sci. Kyoto, 1922, 5, 131
- W. Bottger, Landolt-Bornstein Tabellen, 1923, Hw II, 1185
- 23H J. Heyrovsky, Trans. Faraday Soc., 1923, 19, 692
- 23Ha M. de Hlasko, J. Chim. Phys., 1923, 20, 167

- 23K I. M. Kolthoff, Rec. Trav. Chim., 1923, 42, 973
- 23LR G. N. Lewis and M. Randall, Thermodynamics, McGraw-Hill, New York, 1923, p. 487
- 23M A. E. Mitchell, J. Chem. Soc., 1923, 123, 1887
- 23Ma H. Menzel, Z. Phys. Chem., 1923, 105, 402
- 23P H. C. Parker, J. Amer. Chem. Soc., 1923, 45, 2017
- 24B H. T. S. Britton, J. Chem. Soc., 1924, 125, 1572
- 24DH C. W. Davies and L. J. Hudleston, J. Chem. Soc., 1924, 125, 260
- 24JG K. Jellinek and H. Gordon, Z. Phys. Chem., 1924, 112, 207
- 24JJ F. Jirsa and H. Jelinek, Z. Elektrochem., 1924, 30, 286, 534
- 24K J. Kasarnowsky, Z. Phys. Chem., 1924, 109, 287
- 24Ka E. Klarmann, Z. Anorg. Allg. Chem., 1924, 132, 289
- 24MH W. Manchot and H. Haunschild, Z. Anorg. Allg. Chem., 1924, 140, 22
- 24PW E. B. R. Prideaux and A. T. Ward, J. Chem. Soc., 1924, 125, 69
- 24PWa E. B. R. Prideaux and A. T. Ward, J. Chem. Soc., 1924, 125, 423
- 24RK H. Remy and A. Kuhlmann, Z. Anal. Chem., 1924, 65, 161
- 24S R. Schuhmann, J. Amer. Chem. Soc., 1924, 46, 52
- 24Sa F. G. Soper, J. Chem. Soc., 1924, 125, 2227
- 24SS H. I. Schlesinger and H. B. Siems, J. Amer. Chem. Soc., 1924, 46, 1965
- 25B J. Breszina, Rec. Trav. Chim., 1925, 44, 520
- 25Ba H. T. S. Britton, J. Chem. Soc., 1925, 127, 2110, 2148, 2796, 2956
- 25DS M. K. Domonovitsch and O. V. Sarubina, Biochem. Z., 1925, 163, 464
- 25G J. K. Gjaldbaek, Z. Anal. Chem. 1925, 144, 269
- 25H J. Heyrovsky, Chem. Listy, 1925, 19, 168
- 25HL L. E. Holt, Jr., V. K. LaMer, and H. B. Chown, J. Biol. Chem., 1925, 64, 509
- 25HW R. W. Harman and F. P. Worley, Trans. Faraday Soc., 1925, 20, 502
- 25M H. D. Murray, J. Chem. Soc., 1925, 127, 882
- 25MM L. Michaelis and M. Mizutani, Z. Phys. Chem., 1925, 116, 135
- 25S R. Schuhmann, J. Amer. Chem. Soc., 1925, 47, 356
- 25Sa S. J. Smrz, Rec. Trav. Chim., 1925, 44, 580
- 25W H. J. deWijs, <u>Rev. Trav. Chim.</u>, 1925, <u>44</u>, 663

25WR W. G. Whitman, R. P. Russell, and G. H. B. Davis, J. Amer. Chem. Soc., 1925, 47, 70

- N. Bjerrum, Ergebn. Exakt. Naturwiss., 1926, 5, 125
- 26Ba W. Bottger, Landolt-Bornstein Tabellen, 1926, Eg I, 662
- 26BH J. A. V. Butler and E. S. Hiscocks, J. Chem. Soc., 1926, 2554
- 26H G. Hagg, Z. Anorg. Allg. Chem., 1926, 155, 21
- 26HB F. L. Hahn and K. Brunngasser, Z. Anorg. Allg. Chem., 1926, 153, 88
- 26LD E. Lange and F. Durr, Z. Phys. Chem., 1926, 121, 361
- 26M J. H. Muller, Proc. Amer. Phil. Soc., 1926, 65, 183
- 26RH A. G. Rees and L. J. Hudleston, J. Chem. Soc., 1926, 1334
- 26RS W. A. Roth and O. Schwartz, Chem. Ber., 1926, 59, 338
- 26SN M. S. Sherrill and A. A. Noyes, J. Amer. Chem. Soc., 1926, 48, 1861
- 27A M. Aumeras, Comp. Rend. Acad. Sci. Paris, 1927, 184, 1650
- 27B H. T. S. Britton, J. Chem. Soc., 1927, 614
- 27BK J. N. Bronsted and C. V. King, Z. Phys. Chem., 1927, 130, 699
- 27BKa J. N. Bronsted and C. V. King, J. Amer. Chem. Soc., 1927, 49, 193
- 27C E. J. Cohn, J. Amer. Chem. Soc., 1927, 49, 173
- 27D C. W. Davies, Trans. Faraday Soc., 1927, 23, 351
- 27Da H. M. Dawson, J. Chem. Soc., 1927, 1290
- 27DJ H. G. Dietrich and J. Johnston, J. Amer. Chem. Soc., 1927, 49, 1419
- 27H R. W. Harman, <u>J. Phys. Chem.</u>, 1927, <u>31</u>, 616
- 27K I. M. Kolthoff, Rec. Trav. Chim., 1927, 46, 350
- 27KB I. M. Kolthoff and W. Bosch, Rec. Trav. Chim., 1927, 46, 180
- 27L E. Lane, Z. Anorg. Allg. Chem., 1927, 165, 325
- 270 L. Onsager, Phys. Z., 1927, 28, 277
- 270a A. Olander, Z. Phys. Chem., 1927, 129, 1
- 27S E. Sadolin, Z. Anorg. Allg. Chem., 1927, 160, 133
- 27SH J. Sendroy, Jr. and A. B. Hastings, <u>J. Biol. Chem.</u>, 1927, 71, 783
- 27WB A. C. Walker, U. B. Bray, and J. Johnston, <u>J. Amer. Chem. Soc.</u>, 1927, 49, 1235
- 28BV J. N. Bronsted and K. Volqvartz, <u>Z. Phys. Chem.</u>, 1928, <u>134</u>, 97
- 28FM R. Fricke and K. Meyring, Z. Anorg. Allg. Chem., 1928, <u>176</u>, 325

- 28H W. S. Hughes, J. Chem. Soc., 1928, 491
- 28HE H. von Halban and J. Eisenbrand, Z. Phys. Chem., 1928, 132, 401
- 28J P. Job, Ann. Chim. (France), 1928, 9, 113
- 28Ja P. Job, Compt. Rend. Acad. Sci. Paris, 1928, 186, 1546
- 28KB I. M. Kolthoff and W. Bosch, Rec. Trav. Chim., 1928, 47, 826
- 28M C. Morton, J. Chem. Soc., 1928, 1401
- 28P M. Prytz, Z. Anorg. Allg. Chem., 1928, 172, 147
- 28Pa J. Piater, Z. Anorg. Allg. Chem., 1928, 174, 321
- 28Pb M. Prytz, Z. Anorg. Allg. Chem., 1928, 174, 355
- 28RL A. J. Rabinowitsch and E. Laskin, Z. Phys. Chem., 1928, 134, 387
- 28RS M. Randall and H. M. Spencer, J. Amer. Chem. Soc., 1928, 50, 1572
- 28RV M. Randall and W. V. A. Vietti, J. Amer. Chem. Soc., 1928, 50, 1526
- 28S R. N. J. Saal, Rec. Trav. Chim., 1928, 47, 264
- 28SH W. C. Stadie and E. R. Hawes, J. Biol. Chem., 1928, 77, 241
- 29B A. E. Brodsky, Z. Elektrochem., 1929, 35, 833
- 29BU N. Bjerrum and A. Unmack, Kgl. Danske Vid. Selsk., Math. Fys. Medd., 1929, 9, No. 1
- 29FJ G. L. Frear and J. Johnston, J. Amer. Chem. Soc., 1929, 51, 2082
- 29G E. C. Gilbert, <u>J. Phys. Chem.</u>, 1929, <u>33</u>, 1235
- 29JM M. Jowett and H. Millet, J. Amer. Chem. Soc., 1929, 51, 1004
- 29K W. D. Kline, J. Amer. Chem. Soc., 1929, 51, 2093
- 29Ka I. N. Kugelmass, Biochem. J., 1929, 23, 587
- 29Kb V. A. Kargin, Z. Anorg. Allg. Chem., 1929, 183, 77
- 29KH A. Klemenc and E. Hayek, Monat. Chem., 1929, 53/54, 407
- 29L W. Lange, Chem. Ber., 1929, 62, 793
- 29LG V. K. LaMer and F. H. Goldman, J. Amer. Chem. Soc., 1929, 35, 833
- 29MJ H. Millet and M. Jowett, J. Amer. Chem. Soc., 1929, 51, 997
- 290 A. Olander, Z. Phys. Chem., 1929, 144, 49
- 29P W. Pugh, J. Chem. Soc., 1929, 1994
- 29S B. Schrager, Coll. Czech. Chem. Comm., 1929, 1, 275; Chem. News, 1929, 138, 354
- 29T H. Topelmann, J. Prakt. Chem., 1929, <u>121</u>, 320

- 30BD H. E. Blayden and C. W. Davies, J. Chem. Soc., 1930, 949
- 30BH L. Birckenbach and K. Hutter. Z. Anorg. Allg. Chem., 1930, 190, 1
- 30CM W. B. Campbell and O. Maass, Canad. J. Res., 1930, 2, 42
- 30D C. W. Davies, J. Chem. Soc., 1930, 2410
- 30Da C. W. Davies, J. Chem. Soc., 1930, 2421
- 30E L. W. Elder, Jr., Trans. Electrochem. Soc., 1930, 57, 383
- 30HK F. L. Hahn and R. Klockman, Z. Phys. Chem., 1930, A146, 373
- 30HKa F. L. Hahn and R. Klockmann, Z. Phys. Chem., 1930, A151, 80
- 30HO H. S. Harned and B. B. Owen, J. Amer. Chem. Soc., 1930, 52, 5091
- 30K F. K. V. Koch, J. Chem. Soc., 1930, 2053
- 30LM E. Lange and J. Monheim, Z. Phys. Chem., 1930, A150, 349
- 30M K. Masaki, Bull. Chem. Soc. Japan, 1930, 5, 345
- 30Ma C. Morton, Quart. J. Pharm. Pharmacol., 1930, 3, 438
- 30N P. Nylen, Diss., Uppsala Univ., 1930
- 30NB R. F. Newton and M. G. Bolinger, J. Amer. Chem. Soc., 1930, 52, 921
- 30R E. J. Roberts, J. Amer. Chem. Soc., 1930, 52, 3877
- 30RD E. C. Righellato and C. W. Davies, Trans. Faraday Soc., 1930, 26, 592
- 30RH M. Randall and J. O. Halford, J. Amer. Chem. Soc., 1930, 52, 178
- 30S H. Schmid, Z. Phys. Chem., 1930, A148, 321
- 30W W. F. K. Wynne-Jones, J. Chem. Soc., 1930, 1064
- 31B J. Bjerrum, Kgl. Danske Vid. Selsk., Math. Fys. Medd., 1931, 11, No. 5
- 31BD N. Bjerrum and C. R. Dahm. Z. Phys. Chem., 1931, Bodenstein-Festband, 627
- 31BDa H. T. S. Britton and E. N. Dodd, J. Chem. Soc., 1931, 2332
- 31BR W. H. Banks, E. C. Righellato, and C. W. Davies, Trans. Faraday Soc., 1931, 27, 621
- 31CL I. A. Cowperthwaite and V. K. LaMer, J. Amer. Chem. Soc., 1931, 53, 4333
- 31CR E. Carriere and Raulet, Comp. Rend. Acad. Sci. Paris, 1931, 192, 423
- 31F H. Fromherz, Z. Phys. Chem., 1931, A153, 376
- 31FA E. H. Fawcett and S. F. Acree, J. Res. Nat. Bur. Stand., 1931, 6, 757
- 31FL H. Fromherz and K. H. Lih, Z. Phys. Chem., 1931, A153, 321, 376
- 31K I. M. Kolthoff, J. Phys. Chem., 1931, 35, 2711

- 31KE I. M. Kolthoff and R. Elmquist, J. Amer. Chem. Soc., 1931, 53, 1217
- 31KK I. M. Kolthoff and T. Kameda, J. Amer. Chem. Soc., 1931, 53, 832
- 31KP P. Kubelka and V. Pristoupil, Z. Anorg. Allg. Chem., 1931, 197, 391
- 31L J. W. H. Lugg, <u>Trans. Faraday Soc.</u>, 1931, <u>27</u>, 297
- 31LP V. K. LaMer and G. Parks, J. Amer. Chem. Soc., 1931, 53, 2040
- 31N A. V. Novoselova, Zh. Obsh. Khim., 1931, 1, 668
- 31MM O. M. Morgan and O. Maass, Canad. J. Res., 1931, 5, 162
- 31P M. Prytz, Z. Anorg. Allg. Chem., 1931, 197, 103; 200, 133
- 31SH R. Schwarz and E. Huf, Z. Anorg. Allg. Chem., 1931, 203, 188
- 32B J. Bjerrum, Kgl. Danske Vid. Selsk., Math. Fys. Medd., 1932, 11, No. 10
- 32BR H. T. S. Britton and R. A. Robinson, Trans. Faraday Soc., 1932, 28, 531
- 32D D. S. Davis, Chem. Met. Eng., 1932, 39, 615
- 32E G. Endres, Z. Anorg. Allg. Chem., 1932, 205, 321
- 32HJ K. Hass and K. Jellinek, Z. Phys. Chem., 1932, A162, 153
- 32IS F. Ishikawa and E. Shibata, Sci. Reports, Tohoku Univ., 1932, 21, 499
- 32JP M. Jowett and H. I. Price, Trans. Faraday Soc., 1932, 28, 668
- 32LM A. W. Laubengayer and D. S. Morton, J. Amer. Chem. Soc., 1932, 54, 2303
- 32M K. Murata, Kogyo Kagaku Zasshi, 1932, 35, Suppl., 523B
- 32Ma J. Muus, Z. Phys. Chem., 1932, A159, 268
- 32MD R. W. Money and C. W. Davies, Trans. Faraday Soc., 1932, 28, 609
- 32N E. W. Newman, J. Amer. Chem. Soc., 1932, 54, 2195
- 32RF M. Randall and M. Frandsen, J. Amer. Chem. Soc., 1932, 54, 40
- 32RZ W. A. Roth and H. Zeumer, Z. Elektrochem., 1932, 38, 164
- 32WM R. H. Wright and O. Maass, <u>Canad. J. Res.</u>, 1932, <u>6</u>, 94, 588
- 33AT M. Aumeras and A. Tamisier, Bull. Soc. Chim. France, 1933, 53, 97
- 33BD H. T. S. Britton and E. N. Dodd, Trans. Faraday Soc., 1933, 29, 537
- 33BW H. T. S. Britton and B. M. Wilson, J. Chem. Soc., 1933, 1050
- 33D G. F. Davidson, J. Textile Inst., 1933, 24, 185
- 33FM R. Fricke and K. Meyring, Z. Anorg. Allg. Chem., 1933, 214, 269
- 33G J. M. Gallart, An. Real. Soc. Espana Fis. Quim., 1933, 31, 422

- 33HH H. S. Harned and W. J. Hamer, J. Amer. Chem. Soc., 1933, 55, 2194, 4496
- 33HJ K. Hass and K. Jellinek, Z. Phys. Chem., 1933, A162, 153
- 33IM J. W. Ingham and J. Morrison, J. Chem. Soc., 1933, 1200
- 33IT F. Ishikawa and Y. Terui, Bull. Inst. Phys. Chem. Res. Tokyo, 1933, 12, 755
- 33J K. Jellinek, <u>Lehrbuch der physikalischen Chemie</u>, 3nd ed., Enke, Stuttgart, Vol IV, 1933, p. 62
- 33KA P. A. Kriukov and G. P. Awsejewitsch, Z. Elektrochem., 1933, 39, 884
- 33LH M. LeBlanc and O. Harnapp, Z. Phys. Chem., 1933, A166, 321
- 33LHS W. M. Latimer, J. F. G. Hicks, Jr., and P. W. Schufz, J. Chem. Phys., 1933, 1, 620
- 33N L. F. Nims, J. Amer. Chem. Soc., 1933, 55, 1946
- 33NS S. von Naray-Szabo and Z. Szabo, Z. Phys. Chem., 1933, A166, 228
- 33NT B. Nikitin and P. Tolmatscheff, Z. Phys. Chem., 1933, A167, 260
- 33R P. Rumpf, Compt. Rend. Acad. Sci. Paris, 1933, 197, 686
- 33RA A. Rius and V. Arnal, An. Real. Soc. Espana Fis. Quim., 1933, 31, 497
- 33T A. Tamisier, Bull. Soc. Chim. France. 1933, 53, 157
- 34AR E. Abel, O. Redlich, and P. Hersch, Z. Phys. Chem., 1934, A170, 112
- 34B J. Bjerrum, Kgl. Danske Vid. Selsk., Math. Frs. Medd., 1934, 12, No. 15
- 34Ba W. H. Banks, J. Chem. Soc., 1934, 1010
- 34Bb W. H. Bennett, J. Phys. Chem., 1934, 38, 573
- 34BG H. T. S. Britton and W. L. German, J. Chem. Soc., 1934, 1156
- 34BH W. C. Bray and A. V. Hershey, J. Amer. Chem. Soc., 1934, 56, 1889
- 34BY G. E. K. Branch, D. L. Yabroff, and B. Bettman, J. Amer. Chem. Soc., 1934, 56, 937
- 34CC K. S. Chang and Y. T. Cha, J. Chinese Chem. Soc., 1934, 2, 298
- 34CL I. A. Cowperthwaite, V. K. LaMer, and J. Barksdale, <u>J. Amer. Chem. Soc.</u>, 1934, <u>56</u>, 544
- 34FW E. P. Flint and L. S. Wells, J. Res. Nat. Bur. Stand., 1934, 12, 751
- 34GM R. O. Griffith and A. McKeown, Trans. Faraday Soc., 1934, 30, 530
- 34GS E. A. Guggenheim and T. D. Schindler, J. Phys. Chem., 1934, 38, 533
- 34JL H. F. Johnstone and P. W. Leppla, <u>J. Amer. Chem. Soc.</u>, 1934, <u>56</u>, 2233
- 34K G. Kilde, Z. Anorg. Allg. Chem., 1934, 218, 113
- 34L A. Lebettre, <u>J. Chim. Phys.</u>, 1934, <u>31</u>, 348

- 34La R. W. Lawrence, J. Amer. Chem. Soc., 1934, 56, 776
- 34LS G. N. Lewis and P. W. Schutz, J. Amer. Chem. Soc., 1934, 56, 1913
- 34M A. Maffei, Gazz. Chim. Ital., 1934, 64, 149
- 34N L. F. Nims, J. Amer. Chem. Soc., 1934, 56, 1110
- 34NR J. D. Neuss and W. Rieman, III, J. Amer. Chem. Soc., 1934, 56, 2238
- 340 B. B. Owen, <u>J. Amer. Chem. Soc.</u>, 1934, <u>56</u>, 1695
- 340a B. B. Owen, J. Amer. Chem. Soc., 1934, 56, 2785
- 34R A. Ringbom, Acta Acad. Aboensis, Math. Phys., 1934, 8, No. 5
- 34ZR H. Zeumer and W. A. Roth, Z. Elektrochem., 1934, 40, 777
- 35BM A. S. Brown and D. A. MacInnes, J. Amer. Chem. Soc., 1935, 57, 459
- 35BW H. T. S. Britton and W. C. Williams, J. Chem. Soc., 1935, 796
- 35CM J. Y. Cann and G. B. Mueller, J. Amer. Chem. Soc., 1935, 57, 2525
- 35D C. W. Davies, <u>J. Chem. Soc.</u>, 1935, 910
- 35DH T. DeVries and E. M. Hattox, Proc. Indiana Acad. Sci., 1935, 44, 138
- 35HR F. Halla and F. Ritter, Z. Phys. Chem., 1935, A175, 63, 396
- 35KA K. K. Kelley and C. T. Anderson, Bur. Mines Bull., No. 384, 1935
- 35KT I. M. Kolthoff and W. J. Tomsicek, J. Phys. Chem., 1935, 39, 955
- 35MB D. A. MacInnes and D. Belcher, J. Amer. Chem. Soc., 1935, 57, 1683
- 35MD G. Macdougall and C. W. Davies, J. Chem. Soc., 1935, 1416
- 350 B. B. Owen, J. Amer. Chem. Soc., 1935, 57, 1526
- 35SM T. Shedlovsky and D. A. MacInnes, J. Amer. Chem., Soc., 1935, 57, 1705
- 35W O. Weider, Chem. Ber., 1935, 68, 1423
- 36C M. Chatelet, J. Chim. Phys., 1936, 33, 313
- 36E E. Endredy, Math. Natur. Anz. Ungar. Akad. Wiss., 1936, 54, 459
- 36H A. Holmquist, Svenk Kem. Tidskr., 1936, 48, 106
- 36HB A. V. Hershey and W. C. Bray, J. Amer. Chem. Soc., 1936, 58, 1760
- 36HD E. M. Hattox and T. DeVries, J. Amer. Chem. Soc., 1936, 58, 2126
- 36HF H. S. Harned and M. E. Fitzgerald, J. Amer. Chem. Soc., 1936, 58, 2624
- 36MH F. H. MacDougall and E. J. Hoffman, J. Phys. Chem., 1936, 40, 317
- 36MJ L. A. McDowell and H. L. Johnston, J. Amer. Chem. Soc., 1936, 58, 2009

- 36R R. A. Robinson, Trans. Faraday Soc., 1936, 32, 743
- 36RB I. G. Ryss and N. P. Bakina, Dokl. Akad. Nauk. SSSR, 1936, 11, 107
- 36RR O. Redlich and P. Rosenfeld, Monat. Chem., 1936, 67, 223
- 36S G. Schwarzenbach, Helv. Chim. Acta, 1936, 19, 178
- 36SE G. Schwarzenbach, A. Epprecht, and H. Erlenmeyer, Helv. Chim. Acta, 1936, 19, 1292
- 36SH M. S. Sherrill and A. J. Haas, Jr., <u>J. Amer. Chem. Soc.</u>, 1936, <u>58</u>, 952
- 36W W. F. K. Wynne-Jones, Trans. Faraday Soc., 1936, 32, 1397
- 36WS G. C. Ware, J. B. Spulnik, and E. C. Gilbert, J. Amer. Chem. Soc., 1936, 58, 1605
- 37BH A. A. Browman and A. B. Hastings, J. Biol. Chem., 1937, 119, 241
- 37C L. H. N. Cooper, Proc. Roy Soc. (London), 1937, B124, 299
- 37CB J. A. Cranston and H. F. Brown, <u>J. Roy. Tech. Coll.</u> (Glasgow), 1937, 4, 54
- 37D C. W. Davies, <u>J. Amer. Chem. Soc.</u>, 1937, 59, 1760
- 37DR C. W. Davies and R. A. Robinson, Trans. Faraday Soc., 1937, 33, 633
- 37J A. T. Jensen, Z. Phys. Chem., 1937, A180, 93
- 37M M. Moller, J. Phys. Chem., 1937, 41, 1123
- 37N P. Nylen, Z. Anorg. Allg. Chem., 1937, 230, 385
- 37P K. S. Pitzer, J. Amer. Chem. Soc., 1937, 59, 2365
- 37PS K. S. Pitzer and W. V. Smith, <u>J. Amer. Chem. Soc.</u>, 1937, <u>59</u>, 2633
- 37Q M. Quintin, Compt. Rend. Acad. Sci. Paris, 1937, 204, 968
- 37R R. A. Robinson, <u>J. Amer. Chem. Soc.</u>, 1937, <u>59</u>, 84
- 37Ra M. E. Rumpf, <u>Ann. Chim</u>. (France), 1937, <u>8</u>, 456
- 37RD R. A. Robinson and C. W. Davies, J. Chem. Soc., 1937, 574
- 37RP W. A. Roth, H. Pahlke, A. Bertram, and E. Borger, Z. Elektrochem., 1937, 43, 350
- 37SB A. Skrabal and A. Berger, Monat. Chem., 1937, 70, 168
- 37SBP W. V. Smith, O. L. I. Brown, and K. S. Pitzer, <u>J. Amer. Chem. Soc.</u>, 1937, <u>59</u>, 1213
- 37SM H. Schmid, R. Marchgraber, and F. Dunkl, Z. Elektrochem., 1937, 43, 337.
- 38BC W. B. Beazley, W. B. Campbell, and O. Maass, <u>Dominion Forest Service Bull</u>., No. 93, 1938
- 38BV R. G. Bates and W. C. Vosburgh, <u>J. Amer. Chem. Soc.</u>, 1938, <u>60</u>, 137
- 38CF B. N. Cacciapuoti and F. Ferla, Atti Accad. Naz. Lincei, Rend. Classe Sci. Fis.

 Mat Nat., 1938, 28, 385

- 38CH J. Curry and C. L. Hazelton, J. Amer. Chem. Soc., 1938, 60, 2771, 2773
- 38D C. W. Davies, J. Chem. Soc., 1938, 2093
- 38E A. G. Epprecht, Helv. Chim. Acta, 1938, 21, 205
- 38EW D. H. Everett and W. F. K. Wynne-Jones, <u>Proc. Roy. Soc.</u> (London), 1938, <u>A169</u>, 190
- 38G E. Guntelberg, Thesis, Copenhagen, 1938
- 38GH A. B. Garrett and A. E. Hirschler, J. Amer. Chim. Soc., 1938, 60, 299
- 38JL H. L. Johnston and H. L. Leland, J. Amer. Chem. Soc., 1938, 60, 1439
- 38KL I. M. Kolthoff and J. J. Lingane, J. Phys. Chem., 1938, 42, 133
- 38L W. M. Latimer, Oxidation Potentials, Prentice-Hall, New York, 1938, 163, 171
- 38LJ A. B. Lamb and A. G. Jacques, J. Amer. Chem. Soc., 1938, 60, 1215
- 380 Y. Oka. Nippon Kagaku Zasshi, 1938, 59, 971
- 380B B. B. Owen and S. R. Brinkley, Jr., J. Amer. Chem. Soc., 1938, 60, 2233
- 380G B. B. Owen and R. W. Gurry, J. Amer. Chem. Soc., 1938, 60, 3074
- 38PO J. N. Pearce and L. D. Ough, J. Amer. Chem. Soc., 1938, 60, 80
- 38PS A. Pinkus and R. Schepmans, Bull. Soc. Chim. Belges, 1938, 47, 337
- 38R O. Redlich, Z. Phys. Chem., 1938, A182, 42
- 38SG E. A. Shilov and J. N. Gladtchikova, J. Amer. Chem. Soc., 1938, 60, 490
- 38T J. E. Thygesen, Z. Anorg. Allg. Chem., 1938, 237, 101
- 38TN A. C. Taylor and L. F. Nims, J. Amer. Chem. Soc., 1938, 60, 262 (see 64SM)
- 38WD W. C. Wise and C. W. Davies, J. Chem. Soc., 1938, 273
- 39B R. G. Bates, J. Amer. Chem. Soc., 1939, 61, 308
- 39G A. B. Garrett, <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 2744
- 39Ga M. Gorman, <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 3342
- 39GH A. B. Garrett and W. W. Howell, <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 1730
- 39GV A. B. Garrett, S. Vellenga, and C. M. Fontana, <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 367
- 39H H. Hagisawa, Bull. Inst. Phys. Chem. Res. Tokyo, 1939, 18, 260, 368
- 39Ha H. Hagisawa, <u>Bull. Inst. Phys. Chem. Res. Tokyo</u>, 1939, <u>18</u>, 648
- 39HJ E. Hogge and H. L. Johnston, <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 2154
- 39KH M. Kiese and A. B. Hastings, <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 1291
- 39L F. Lindstrand, Diss., Lund, 1939 (see 64SM)

- 39LZ W. M. Latimer and H. W. Zimmermann, J. Amer. Chem. Soc., 1939, 61, 1550
- 39NR S. Naidich and J. E. Ricci, J. Amer. Chem. Soc., 1939, 61, 3268
- 39R W. A. Roth, Ann. Chem., 1939, 542, 35
- 40BC H. F. Brown and J. A. Cranston, J. Chem. Soc., 1940, 578
- 40CB E. Cohen and J. J. A. Blekkingh Jr., Z. Phys. Chem., 1940, A186, 257
- 40GH A. B. Garrett, O. Holmes, and A. Laube, J. Amer. Chem. Soc., 1940, 62, 2024
- 40GM R. O. Griffith and A. McKeown, Trans. Faraday Soc., 1940, 36, 766
- 40GR I. Greenwald, J. Redish, and C. A. Kibrick, J. Biol. Chem., 1940, 135, 65
- 40H H. Hagisawa, Bull. Inst. Phys. Chem. Res. Tokyo, 1940, 19, 1220
- 40Ha G. Holst, Svensk Kem. Tidskr., 1940, <u>52</u>, 258
- 40IA F. Ishikawa and I. Aoki, Bull. Inst. Phys. Chem. Res. Tokyo, 1940, 19, 136
- 40KH M. Kiese and A. B. Hastings, J. Biol. Chem., 1940, 132, 267
- 40MS W. A. Mason and W. J. Shutt, Proc. Roy. Soc., (London), 1940, A175, 257
- 40Q M. Quintin, Compt. Rend Acad. Sci. Paris, 1940, 210, 625
- 40RE P. S. Roller, Jr., and G. Ervin, Jr., J. Amer. Chem. Soc., 1940, 62, 461
- 40S C. R. Singleterry, Thesis, Univ. Chicago, 1940 (see 62YI)
- 40SF M. von Stackelberg and H. von Freyhold, Z. Elektrochem., 1940, 46, 120
- 40Y N. Yui, Bull. Inst. Phys. Chem. Tokyo, 1940, 19, 1229
- J. Bjerrum, <u>Metal Amine Formation in Aqueous Solution</u>, P. Haase and Son, Copenhagen, 1941
- 41Ba C. Brosset, Svensk Kem. Tidskr., 1941, 53, 434
- 41DS P. F. Derr, R. M. Stockdale, and W. C. Vosburgh, <u>J. Amer. Chem. Soc.</u>, 1941, <u>63</u>, 2670
- 41FS R. K. Fox, D. F. Swinehart, and A. B. Garrett, J. Amer. Chem. Soc., 1941, 63, 1779
- 41G I. Greenwald, J. Biol. Chem., 1941, 141, 789
- 41GH A. B. Garrett and R. E. Heiks, J. Amer. Chem. Soc., 1941, 63, 562
- 41H H. Hagisawa, Bull. Inst. Phys. Chem. Res. Tokyo, 1941, 20, 251
- 41Ha H. Hagisawa, Bull. Inst. Phys. Chem. Res. Tokyo, 1941, 20, 384
- 41HS H. S. Harned and S. R. Scholes, Jr., J. Amer. Chem. Soc., 1941, 63, 1706
- 41ID R. W. Ivett and T. DeVries, J. Amer. Chem. Soc., 1941, 63, 2821
- 41K J. Kasper, Thesis, John Hopkins Univ., Baltimore, Md., 1941

- 41L I. Leden, Z. Phys. Chem., 1941, A188, 160
- 41LK O. E. Lanford and S. J. Kiehl, J. Phys. Chem., 1941, 45, 300
- 41LL N. C. C. Li and Y. T. Lo, J. Amer. Chem. Soc., 1941, 63, 394
- 41LLa N. C. C. Li and Y. T. Lo, <u>J. Amer. Chem. Soc.</u>, 1941, <u>63</u>, 397
- 41M I. G. Murgulescu, Bull. Sci. Ecole Polytech. Timisoara, 1941, 10, 379
- 41Ma T. Moeller, J. Amer. Chem. Soc., 1941, 63, 1206, 2625
- 41NZ B. V. Nekrasov and G. V. Zotov, Zh. Prik. Khim., 1941, 14, 264
- 41SW R. H. Stokes, J. M. Wilson, and R. A. Robinson, Trans. Faraday Soc., 1941, 37, 566
- 41TG H. V. Tartar and H. H. Garretson, J. Amer. Chem. Soc., 1941, 63, 808
- 41TY K. Takahashi and N. Yui, Bull. Inst. Phys. Chem. Res. Tokyo, 1941, 20, 521
- 41Y N. Yui, Bull. Inst. Phys. Chem. Res. Tokyo, 1941, 20, 256
- 41Ya N. Yui, Bull. Inst. Phys. Chem. Res. Tokyo, 1941, 20, 390
- 42B C. Brosset, Svensk Kem. Tidskr., 1942, 54, 155
- 42Ba C. Brosset, Diss., Stockholm, 1942
- 42BG C. Brosset and B. Gustaver, Svensk Kem. Tidskr., 1942, 54, 185
- 42D T. W. Davis, Ind. Eng. Chem. Anal., 1942, 14, 709
- 42DM L. S. Darken and H. F. Meier, J. Amer. Chem. Soc., 1942, 64 621
- 42GK R. W. Gelbach and G. B. King, J. Amer. Chem. Soc., 1942, 64, 1054
- 42GL M. Gorman and P. A. Leighton, J. Amer. Chem. Soc., 1942, 64, 719
- 42GN A. B. Garrett, M. V. Noble, and S. Miller, J. Chem. Educ., 1942, 19, 485
- 42H L. J. Heidt, J. Phys. Chem., 1942, 46, 624
- 42Ha J. Harbo, Farm. Tidende, 1942, No. 30
- 42Hb J. Hoye, Kgl. Norske Vid. Sel. For., 1942, 14, 1
- 42KP I. M. Kolthoff, R. W. Perlich, and D. Weiblen, J. Phys. Chem., 1942, 46, 561
- 42LK O. E. Lanford and S. J. Kiehl, <u>J. Amer. Chem. Soc</u>., 1942, <u>64</u>, 291
- 42MR T. Moeller and P. W. Rhymer, J. Phys. Chem., 1942, 46, 477
- 42N R. Nasanen, Z. Phys. Chem., 1942, A190, 183
- 42Na R. Nasanen, Z. Phys. Chem., 1942, A191, 54
- 42Nb R. Nasanen, Ann. Acad. Sci. Fenn., 1942, A59, No. 2
- 42Nc R. Nasanen, Ann. Acad. Sci. Fenn., 1942, A59, No. 7

- 42RS E. Rabinowitch and W. H. Stockmayer, J. Amer. Chem. Soc., 1942, 64, 335
- 42S A. Skrabal, Z. Elektrochem., 1942, 48, 314
- 42Sa A. Skrabal, Chem. Ber., 1942, 75, 1570
- 42SH T. Suzuki and H. Hagisawa, Bull. Inst. Phys. Chem. Res. Tokyo, 1942, 21, 601
- 42TL N. A. Tanandev and R. A. Lovi, Zh. Prik. Khim., 1942, 15, 214
- 42W R. C. Wells, J. Washington Acad. Sci., 1942, 32, 321
- 42YH N. Yui and H. Hagisawa, Bull. Inst. Phys. Chem. Res. Tokyo, 1942, 21, 597
- 43B D. Bezier, Bull Soc. Chim. France, 1943, 10, 329
- 43BA R. G. Bates and S. F. Acree, J. Res. Nat. Bur. Stand., 1943, 30, 129
- 43BO C. Brosset and J. Orring, Svensk. Kem. Tidskr., 1943, 55, 101
- 43BR G. L. Beyer and W. Rieman, III, J. Amer. Chem. Soc., 1943, 65, 971
- 43BW C. Brosset and U. Wahlberg, Svensk Kem. Tidskr., 1943, 55, 335
- 43DV P. F. Derr and W. C. Vosburgh, J. Amer. Chem. Soc., 1943, 65, 2408
- 43HD H. S. Harned and R. Davis, Jr., J. Amer. Chem. Soc., 1943, 65, 2030
- 43L I. Leden, Diss., Lund, 1943 (see 64SM)
- 43N R. Nasanen, Suomen Kem., 1943, B16, 1
- 430 H. Olerup, Svensk Kem. Tidskr., 1943, 55, 324
- 430K B. B. Owen and E. J. King, <u>J. Amer. Chem. Soc.</u>, 1943, <u>65</u>, 1612
- 430Ka Y. Oka, K. Kawagaki, and R. Kadoya, Nippon Kagaku Zasshi, 1943, 64, 718
- 43P K. J. Pedersen, Kgl. Danske Vid. Selsk., Mat. Fys. Medd., 1943, 20, No. 7
- 43RB O. Redlich and J. Bigeleisen, J. Amer. Chem. Soc., 1943, 65, 1883
- 43SK M. S. Sherrill, C. B. King, and R. C. Spooner, J. Amer. Chem. Soc., 1943, 65, 170
- 43T I. Takacs, Magyar Kem. Foly., 1943, 49, 33, 100
- 43TH H. Tabor and A. B. Hastings, J. Biol. Chem., 1943, 148, 627
- 43VM W. C. Vosburgh and R. S. McClure, J. Amer. Chem. Soc., 1943, 65, 1060
- 44A M. B. Alpert, Thesis, Yale Univ., 1944
- J. Bjerrum, Kgl. Danske Vid. Selsk., Math. Fys. Medd., 1944, 21, No. 4
- 44C C. S. Chu, J. Chinese Chem. Soc., 1944, 11, 113
- 44F W. Feitknecht, Helv. Chim. Acta, 1944, 27, 771
- 44HB H. v. Halban and J. Brull, Helv. Chim. Acta, 1944, 27, 1719

- 44KN S. Kilpi and R. Nasanen, Suomen Kem., 1944, B17, 9
- 44L I. Leden, Svensk. Kem. Tidskr., 1944, 56, 31
- 44La F. Lindstrand, Svensk. Kem. Tidskr., 1944, 56, 251, 282
- 44MD G. G. Manov, N. J. DeLollis, and S. F. Acree, <u>J. Res. Nat. Bur. Stand</u>., 1944, <u>33</u>, 287
- 44MK T. Moeller and H. E. Kremers, J. Phys. Chem., 1944, 48, 395
- 44N R. Nasanen, Suomen Kem., 1944, B17, 11
- 44Na R. Nasanen, <u>Suomen Kem.</u>, 1944, B17, 31
- 44NG M. V. Noble and A. B. Garret, J. Amer. Chem. Soc., 1944, 66, 231
- 440 H. Olerup, Diss., Lund, 1944
- 44SL L. G. Sillen and B. Liljequist, Svensk. Kem. Tidskr., 1944, 56, 85
- 44T K. Tachiki, Nippon Kagaku Zasshi, 1944, 65, 346
- 45B J. Bjerrum, Kem. Maanedsblad, 1945, 26, 24
- 45D C. W. Davies, J. Chem. Soc., 1945, 460
- 45G I. Greenwald, J. Biol. Chem., 1945, 161, 697
- 45H G. Holst, Svensk Papperstidn, 1945, 48, 23
- 45J J. H. Jones, <u>J. Amer. Chem. Soc.</u>, 1945, 67, 855
- 45M J. Mereadie, Comp. Rend. Acad. Sci. Paris, 1945, 221, 581
- 45N R. Nasanen, Suomen Kem., 1945, B18, 45
- 45Na R. Nasanen, Ann. Acad. Sci. Fenn., 1945, AII, No. 13
- 45P K. J. Pedersen, Kgl. Danske Vid. Selsk., Mat. Fys. Medd., 1945, 22, No. 10
- 46AM R. W. Asmussen and L. T. Muus, Trans. Danske Acad. Tech. Sci., 1946, 3
- 46H Y. Hentola, Diss., Helsinki-Helsingfors, 1946
- 46IS G. Infeldt and L. G. Sillen, Svensk. Kem. Tidskr., 1946, 58, 104
- 46K H. Kubli, Helv. Chim. Acta, 1946, 29, 1962
- 46KD A. F. Kapustinsky and I. P. Dezideryeva, Trans. Faraday Soc., 1946, 42, 69
- 46KS A. Kossiakoff and D. V. Sickman, J. Amer. Chem. Soc., 1946, 68, 442
- 46L J. T. Law, Thesis, Univ. New Zealand, 1946, p. 35
- 46M T. Moeller, J. Phys. Chem., 1946, 50, 242
- 46N R. Nasanen, <u>Suomen Kem.</u>, 1946, B19, 90
- 46Na R. Nasanen, Ann. Acad. Sci. Fenn., 1946, AII, No. 17

- 460A A. Olander and O. Adelsohn, Svensk. Kem. Tidskr., 1946, 58, 33
- 46R I. G. Ryss, Dokl. Akad. Nauk SSSR, 1946, 52, 417
- 46Ra I. G. Ryss, Zh. Obsh. Khim., 1946, 16, 331
- 46SC P. Souchay and G. Carpeni, Bull. Soc. Chim. France, 1946, 160
- 46TM I. V. Tananaev and I. B. Mizetskaya, Zh. Anal. Khim., 1946, 1, 6
- 47BD H. H. Broene and T. DeVries, J. Amer. Chem. Soc., 1947, 69, 1644
- 47GD M. Geloso and P. Deschamps, Compt. Rend. Acad. Sci. Paris, 1947, 225, 742
- 47HK W. E. Harris and I. M. Kolthoff, J. Amer. Chem. Soc., 1947, 69, 446
- 47J J. C. James, Thesis, Univ. London, 1947
- 47JQ A. Jonsson, I. Qvarfort, and L. G. Sillen, Acta Chem. Scand., 1947, 1, 461
- 47LJ B. Lindgren, A. Jonsson, and L. G. Sillen, Acta Chem. Scand., 1947, 1, 479
- 47ML D. A. MacInnes and L. G. Longsworth, MDDC-911, 1947
- 47N R. Nasanen, Acta Chem. Scand., 1947, 1, 763
- 47R F. Rivenq, Bull. Soc. Chim. France, 1947, 971
- 47SF P. Souchay and J. Faucherre, Bull. Soc. Chim. France, 1947, 529
- 48B N. Bjerrum, Bull. Soc. Chim. Belges, 1948, 57, 432
- 48BJ P. O. Bethge, I. Jonevall-westoo, and L. G. Sillen, Acta Chem. Scand., 1948, 2, 828
- 48C O. A. Chaltykyan, Zh. Obsh. Khim., 1948, 18, 1626
- 48DJ C. W. Davies and J. C. James, Proc. Roy. Soc. (London), 1948, A195, 116
- 48F J. Faucherre, Comp. Rend. Acad. Sci. Paris, 1948, 227, 1367
- 48GF M. Geloso and J. Faucherre, Compt. Rend. Acad. Sci. Paris, 1948, 227, 200, 430
- 48HS L. J. Heidt and M. E. Smith, J. Amer. Chem. Soc., 1948, 70, 2476
- 48IN M. F. Ivanova and M. B. Neiman, Dokl. Akad. Nauk. SSSR, 1948, 60, 1005
- 48K R. M. Keefer, J. Amer. Chem. Soc., 1948, 70, 476
- 48KA G. J. R. Krige and R. Arnold, J. S. African Chem. Inst., 1948, 1, 61
- 48LN J. J. Lingane and L. W. Niedrach, J. Amer. Chem. Soc., 1948, 70, 4115
- 48M C. B. Monk, J. Amer. Chem. Soc., 1948, 70, 3281
- 48RS I. G. Ryss, M. M. Slufskaya, and S. D. Palevskaya, Zh. Fiz. Khim., 1948, 22, 1322
- 48SD D. I. Stock and C. W. Davies, Trans. Faraday Soc., 1948, 44, 856
- 48SP P. Souchay and D. Peschanski, Bulla Soc. Chim. France, 1948, 439

- 48T H. Taube, J. Amer. Chem. Soc., 1948, 70, 3928
- 48W C. A. Wamser, J. Amer. Chem. Soc., 1948, 70, 1209
- 49A S. Ahrland, Acta Chem. Scand., 1949, 3, 374
- 49Aa S. Ahrland, Acta Chem. Scand., 1949, 3, 1067
- 49B R. Benoit, Bull. Soc. Chim. France, 1949, 518
- 49Ba T. E. Brehmer, Finska Kim. Medd., 1949, 58, 79
- 49Bb N. Bjerrum in <u>Niels Bjerrum Selected Papers</u>, Munksgaard, Copenhagen, 1949, p. 344 (see 64SM)
- 49BM R. H. Betts and R. K. Michels, J. Chem. Soc., 1949, S286
- 49BP R. G. Bates and G. D. Pinching, J. Res. Nat. Bur. Stand., 1949, 42, 419
- 49BPa R. P. Bell and J. E. Prue, J. Chem. Soc., 1949, 362
- 49CM R. E. Connick and W. H. McVey, J. Amer. Chem. Soc., 1949, 71, 1534
- 49CMa R. E. Connick and W. H. McVey, J. Amer. Chem. Soc., 1949, 71, 3182
- 49DC T. DeVries and D. Cohen, J. Amer. Chem. Soc., 1949, 71, 1114 (see 64SM)
- 49DJ C. W. Davies and A. L. Jones, Disc. Faraday Soc., 1949, 5, 103
- 49DM C. W. Davies and C. B. Monk, J. Chem. Soc., 1949, 413
- 49DR H. W. Dodgen and G. K. Rollefson, J. Amer. Chem. Soc., 1949, 71, 2600
- 49DW C. W. Davies and P. A. H. Wyatt, Trans. Faraday Soc., 1949, 45, 770
- 49E E. Eriksson, Kgl. Lantbruks-Hogskol Ann., 1949, 16, 39, 72
- 49EG M. G. Evans, P. George, and N. Uri, Trans. Faraday Soc., 1949, 45, 230
- 49EP U. R. Evans and M. J. Pryor, J. Chem. Soc., 1949, S157
- 49EU M. G. Evans and N. Uri, Trans. Faraday Soc., 1949, 45, 224
- 49GG K. H. Gayer and A. B. Garrett, J. Amer. Chem. Soc., 1949, 71, 2973
- 49GGa R. M. Garrels and F. T. Gucker, Jr., Chem. Rev., 1949, 44, 117
- 49H J. C. Hindman, Nat. Nucl. Ener. Ser., 1949, IV-14B, 370
- 49Ha J. C. Hindman, Nat. Nucl. Ener. Ser., 1949, IV-14B, 388
- 49Hb J. C. Hindman, Nat. Nucl. Ener. Ser., 1949, IV-14B, 405
- 49J W. Jaenicke, Z. Naturforsch, 1949, 4a, 353
- 49Ja J. C. James, Trans. Faraday Soc., 1949, 45, 855
- 49Jb J. C. James, J. Amer. Chem. Soc., 1949, 71, 3243
- 49JM H. W. Jones, C. B. Monk, and C. W. Davies, J. Chem. Soc., 1949, 2693

- 49K E. L. King, J. Amer. Chem. Soc., 1949, 71, 319
- 49Ka E. L. King, Nat. Nucl. Ener. Ser., 1949, IV-14B, 638
- 49KD K. A. Kraus and J. R. Dam, Nat. Nucl. Ener. Ser., 1949, IV-14B, 466
- 49KDa K. A. Kraus and J. R. Dam, Nat. Nucl. Ener. Ser., 1949, IV-14B, 478, 528
- 49KH W. D. Kingery and D. N. Hume, J. Amer. Chem. Soc., 1949, 71, 2393
- 49KK I. A. Korshunov and E. F. Khrulkova, J. Gen. Chem. USSR, 1949, 19, (2045)
- 49KL N. Konopik and O. Leberl, Monat. Chem., 1949, 80, 655
- 49KLa N. Konopik and O. Leberl, Monat. Chem., 1949, 80, 781
- 49KN K. A. Kraus, F. Nelson, and G. L. Johnson, J. Amer. Chem. Soc., 1949, 71, 2510
- 49KS P. Krumholz and H. M. A. Stettiner, J. Amer. Chem. Soc., 1949, 71, 3035
- 49L S. Lacroix, Ann. Chim. (France), 1949, 4, 5
- 49M C. B. Monk, J. Chem. Soc., 1949, 423
- 49Ma C. B. Monk, J. Chem. Soc., 1949, 427
- 49Mb C. K. McLane, Nat. Nucl. Ener. Ser., 1949, IV-14B, 414
- 49NT R. Nasanen and V. Tamminen, J. Amer. Chem. Soc., 1949, 71, 1994
- 490S A. R. Olson and T. R. Simonson, J. Chem. Phys., 1949, 17, 1322
- 49QS I. Qvarfort and L. G. Sillen, Acta Chem. Scand., 1949, 3, 505
- 49RP L. Riccoboni, P. Papoff, and G. Arich, Gazz. Chim. Ital., 1949, 79, 547
- 49RR L. B. Rogers and C. A. Reynolds, J. Amer. Chem. Soc., 1949, 71, 2081
- 49S J. Sutton, J. Chem. Soc., 1949, S275
- 49SB A. G. Stromberg and I. E. Bykov, J. Gen. Chem. USSR, 1949, 19, (245)
- 49SBa A. G. Stromberg and I. E. Bykov, J. Gen. Chem. USSR, 1949, 19, (1816)
- 49T B. Topley, Quart. Rev., 1949, 3, 345
- 49TD I. V. Tananaev and E. N. Deichman, <u>Izvest. Akad. Nauk. SSSR</u>, <u>Otdel. Khim. Nauk.</u>, 1949, 144
- 49TL I. V. Tananaev, Yu. L. Lelchuk, and B. Kh. Petrovitskay, <u>J. Gen. Chem. USSR</u>, 1949, 19, (1207)
- 49YP K. B. Yatsimirskii and L. L. Pankova, J. Gen. Chem. USSR, 1949, 19, 569 (617)
- 49Z J. Zurc., Diss., Univ. Zurich, 1949
- 49ZN E. L. Zebroski and F. K. Neumann, KAPL-184, 1949
- 50A T. V. Arden, <u>J. Chem. Soc.</u>, 1950, 882

- 50AF N. V. Akselrud and Ya. A. Fialkov, Ukr. Khim. Zh., 1950, 16, 283
- J. Badoz-Lambling, Bull. Soc. Chim. France, 1950, 552
- 50BL J. Bjerrum and C. G. Lamm, Acta Chim. Scand., 1950, 4, 997
- 50BP R. G. Bates and G. D. Pinching, J. Amer. Chem. Soc., 1950, 72, 1393
- 50BQ P. Bernheim and M. Quintin, Compt. Rend. Acad. Sci. Paris, 1950, 230, 388
- 50BW R. P. Bell and G. M. Waind, J. Chem. Soc., 1950, 1979
- 50CJ C. V. Cole and M. L. Jackson, Proc. Soil Sci. Soc. Amer., 1950, 15, 84
- 50DC F. R. Duke and W. G. Courtney, Iowa State Coll. J. Sci., 1950, 24, 397
- 50DS R. A. Day, Jr., and R. W. Stoughton, J. Amer. Chem. Soc., 1950, 72, 5662
- 50ET D. A. Everest and H. Terry, J. Chem. Soc., 1950, 2282
- 50F S. Fronaeus, Acta Chem. Scand., 1950, 4, 72
- 50Fa T. D. Farr, TVA Chem. Eng. Rept., No. 8, 1950, p. 26, 27, 52
- 50FG S. C. Furman and C. S. Garner, J. Amer. Chem. Soc., 1950, 72, 1785
- 50GG K. H. Gayer and A. B. Garrett, J. Amer. Chem. Soc., 1950, 72, 3921
- 50H T. Hirata, Reports Res. Sci. Dept. Kyushu Univ., 1950, 1, 199
- 50Ha B. C. Haldar, Curr. Sci., 1950, 19, 244, 283
- 50JM I. L. Jenkins and C. B. Monk, J. Amer. Chem. Soc., 1950, 72, 2695
- 50JMa H. W. Jones and C. B. Monk, J. Chem. Soc., 1950, 3475
- 50JMb J. C. James and C. B. Monk, Trans. Faraday Soc., 1950, 46, 1041
- 50JW E. Jozefowicz, S. Witekowa, and W. Zubranska, Rocz. Chem., 1950, 24, 64
- 50K K. E. Kleiner, <u>J. Gen. Chem. USSR</u>, 1950, <u>20</u>, (1747)
- 50KN K. A. Kraus and F. Nelson, J. Amer. Chem. Soc., 1950, 72, 3901
- 50L0 H. A. Laitinen and E. I. Onstott, J. Amer. Chem. Soc., 1950, 72, 4729
- 50M L. Meites, J. Amer. Chem. Soc., 1950, 72, 184
- 50MD H. McConnell and N. Davidson, J. Amer. Chem. Soc., 1950, 72, 3164, 3168
- 50MK T. Moeller and G. L. King, J. Phys. Chem., 1950, 54, 999
- 50MKa G. E. Moore and K. A. Kraus, ORNL-795, 1950
- 50MS S. W. Mayer and S. D. Schwartz, J. Amer. Chem. Soc., 1950, 72, 5106
- 50N R. Nasanen, Acta Chem. Scand., 1950, 4, 140
- 50Na R. Nasanen, Acta Chem. Scand., 1950, 4, 816

- 50PA A. V. Pamfilov and A. L. Agafonova, Zh. Fiz. Khim., 1950, 24, 1147
- 50S F. Saegusa, Nippon Kagaku Zasshi, 1950, 71, 223
- 50SS P. Souchay and R. Schaal, Bull. Soc. Chim. France, 1950, 819
- 50SSa P. Souchay and R. Schaal, Bull. Soc. Chim. France, 1950, 824
- 50SZ G. Schwarzenbach and J. Zurc, Monat Chem., 1950, 81, 202
- 50TK Sh. T. Talipov and V. A. Khadeev, <u>J. Gen. Chem. USSR</u>, 1950, <u>20</u>, (774), (783)
- 50VC J. R. Van Wazer and D. A. Campanella, J. Amer. Chem. Soc., 1950, 72, 655
- 50VK M. G. Vladimirova and I. A. Kakovskii, J. Appl. Chem. USSR, 1950, 23, (580)
- 50WS W. C. Waggener and R. W. Stoughton, ORNL-795, 1950
- 51A S. Ahrland, Acta Chem. Scand., 1951, 5, 1151
- 51Aa S. Ahrland, Acta Chem. Scand., 1951, 5, 1271
- 51Ab T. V. Arden, J. Chem. Soc., 1951, 350
- 51B R. G. Bates, J. Res. Nat. Bur. Stand., 1951, 47, 127
- 51BB W. G. Barb, J. H. Baxendale, P. George, and K. R. Hargrave, <u>Trans. Faraday Soc.</u>, 1951, 47, 591
- 51BG R. P. Bell and E. Gelles, J. Chem. Soc., 1951, 2734
- 51CH C. E. Crouthamel, A. M. Hayes, and D. S. Martin, J. Amer. Chem. Soc., 1951, 73, 82
- 51CM R. E. Connick and S. W. Mayer, J. Amer. Chem. Soc., 1951, 73, 1176
- 51D C. W. Davies, J. Chem. Soc., 1951, 1256
- 51Da L. P. Ducret, Ann. Chim. (France), 1951, 6, 705
- 51DB F. R. Duke and R. F. Bremer, <u>J. Amer. Chem. Soc.</u>, 1951, <u>73</u>, 5179
- 51DC P. Deschamps and B. Charreton, Comp. Rend. Acad. Sci. Paris, 1951, 232, 162
- 51DH C. W. Davies and B. E. Hoyle, <u>J. Chem. Soc.</u>, 1951, 233
- 51DJ H. S. Dunsmore and J. C. James, <u>J. Chem. Soc.</u>, 1951, 2925
- 51DM T. O. Denney and C. B. Monk, <u>Trans. Faraday Soc.</u>, 1951, <u>47</u>, 992
- 51DP F. R. Duke and R. C. Pinkerton, J. Amer. Chem. Soc., 1951, 73, 3045
- 51EU M. G. Evans and M. Uri, Symp. Soc. Exp. Biol., 1951, 5, 130
- 51F S. Fronaeus, Acta Chem. Scand., 1951, <u>5</u>, 139
- 51FG S. C. Furman and C. S. Garner, J. Amer. Chem. Soc., 1951, 73, 4528
- 51FR W. Feitknecht and R. Reinmann, Helv. Chim. Acta, 1951, 34, 2255

- 51HD G. Harbottle and R. W. Dodson, J. Amer. Chem. Soc., 1951, 73, 2442
- 51HDC D. N. Hume, D. D. DeFord, and G. C. B. Cave, J. Amer. Chem. Soc., 1951, 73, 5323
- 51HM E. Hayek, F. Mullner, and K. Koller, Monat. Chem., 1951, 82, 959
- 51HR T. J. Hardwick and E. Robertson, Canad. J. Chem., 1951, 29, 818
- 51ID J. A. Ibers and N. Davidson, J. Amer. Chem. Soc., 1951, 73, 476
- 51K N. P. Komar, Uchenye Zapiski Kharkov Univ., 1951, 37, 111
- 51KL I. A. Korshunov and L. V. Lipatova, J. Gen. Chem. USSR, 1951, 21, (615)
- 51LW M. Lloyd, V. Wycherley, and C. B. Monk, J. Chem. Soc., 1951, 1786
- 51M K. L. Mattern, UCRL-1407, 1951
- 51Ma C. B. Monk, Trans. Faraday Soc., 1951, 47, 285
- 51Mb C. B. Monk, Trans. Faraday Soc., 1951, 47, 292
- 51Mc W. H. McVey, HW-21487, 1951
- 51MF T. Moeller and N. Fogel, J. Amer. Chem. Soc., 1951, 73, 4481
- 51MM J. Y. Macdonald, K. M. Mitchell, and A. T. S. Mitchell, J. Chem. Soc., 1951, 1574
- 51MS S. W. Mayer and S. D. Schwartz, J. Amer. Chem. Soc., 1951, 73, 222
- 51NK F. Nelson and K. A. Kraus, J. Amer. Chem. Soc., 1951, 73, 2157
- 51NL R. Nasanen and P. Lumme, Acta Chem. Scand., 1951, 5, 13
- 51PC S. Peterson and O. W. Cooper, Trans. Kentucky Acad. Sci., 1951, 13, 146
- 51PN R. B. Peppler and E. S. Newman, <u>J. Res. Nat. Bur. Stand</u>., 1951, <u>46</u>, 121 (see also 64SM)
- 51Q M. Quintin, Comp. Rend. Acad. Sci. Paris, 1951, 232, 1303
- 51RL S. W. Rabideau and J. F. Lemons, J. Amer. Chem. Soc., 1951, 73, 2895
- 51S A. I. Stabrovskii, J. Gen. Chem. USSR, 1951, 21, (1223)
- 51Sa S. Suzuki, Nippon Kagaku Zasshi, 1951, 72, 265
- 51Sb D. Stetten, Jr., Anal. Chem., 1951, 23, 1177
- 51SG D. F. Swinehart and A. B. Garrett, <u>J. Amer. Chem. Soc.</u>, 1951, <u>73</u>, 507
- 51SS G. Saini and C. Sapetti, Atti. Accad. Sci. Torino, Classe Sci. Fis. Mat.-Nat., 1951, 86, 247
- 51SSW J. A. Schufle, M. F. Stubbs, and R. E. Witman, J. Amer. Chem. Soc., 1951, 73, 1013
- 51SV T. H. Siddall, III, and W. C. Vosburgh, J. Amer. Chem. Soc., 1951, 73, 4270
- 51V E. N. Vinogradova, Trudy. Komissii Anal. Khim. Akad. Nauk SSSR, 1951, 3, 127, 138

- 51W C. A. Wamser, J. Amer. Chem. Soc., 1951, 73, 409
- 51Y N. Yui, Sci. Reports Tohoku Univ., 1951, 35, 53
- 51Z F. G. Zharovskii, Trudy Komissii Anal. Khim. Akad. Nauk. SSSR, 1951, 3, 101
- 51ZA E. L. Zebroski, H. W. Alter, and F. K. Heumann, <u>J. Amer. Chem. Soc.</u>, 1951, <u>73</u>, 5646
- 52AP S. Aditya and B. Prasad, J. Indian Chem. Soc., 1952, 29, 293
- 52B C. Brosset, Acta Chem. Scand., 1952, 6, 910
- 52CC S. Chaberek, R. C. Courtney and A. E. Martell, J. Amer. Chem. Soc., 1952, 74, 5057
- 52CM C. A. Colman-Porter and C. B. Monk, J. Chem. Soc., 1952, 1312
- 52DJ C. W. Davies, H. W. Jones, and C. B. Monk, Trans. Faraday Soc., 1952, 48, 921
- 52F S. Fronaeus, Svensk Kem. Tidskr., 1952, 64, 317
- 52Fa P. S. Farrington, J. Amer. Chem. Soc., 1952, 74, 966
- 52Fb W. S. Fyfe, J. Chem. Soc., 1952, 2023
- 52FH W. Forsling, S. Hietanen, and L. G. Sillen, Acta Chem. Scand., 1952, 6, 901
- 52GG K. H. Gayer and A. B. Garrett, J. Amer. Chem. Soc., 1952, 74, 2353
- 52GGF J. R. Goates, M. B. Gordon, and N. D. Faux, J. Amer. Chem. Soc., 1952, 74, 835
- 52GM J. A. Gledhill and G. M. Malan, Trans. Faraday Soc., 1952, 48, 258
- 52GMa C. W. Gibby and C. B. Monk, <u>Trans. Faraday Soc.</u>, 1952, <u>48</u>, 632
- 52GW K. H. Gayer and L. Woontner, J. Amer. Chem. Soc., 1952, 74, 1436
- 52HH L. G. Hepler and Z. Z. Hugus, Jr., <u>J. Amer. Chem. Soc.</u>, 1952, 74, 6115
- 52HHa W. Hieber and W. Hubel, Z. Naturforseh, 1952, <u>7b</u>, 322; <u>Z. Elektrochem.</u>, 1953, <u>57</u>, 235
- 52HS S. Hietanen and L. G. Sillen, Acta Chem. Scand., 1952, 6, 747
- 52J C. E. Johnson, Jr., J. Amer. Chem. Soc., 1952, 74, 959
- 52Ja W. L. Jolly, Thesis, Univ. Calif. Berkeley, 1952; UCRL-1638
- 52JK J. S. Johnson and K. A. Kraus, J. Amer. Chem. Soc., 1952, 74, 4436
- 52JL W. L. Jolly and W. M. Latimer, J. Amer. Chem. Soc., 1952, 74, 5751
- 52JM H. W. Jones and C. B. Monk, Trans. Faraday Soc., 1952, 48, 929
- 52JMa J. H. Jonte and D. S. Martin, Jr., J. Amer. Chem. Soc., 1952, 74, 2052
- 52K K. E. Kleiner, J. Gen. Chem. USSR, 1952, 22, (17)
- 52KF I. M. Korenman, F. S. Frum, and V. G. Chebakova, <u>J. Gen. Chem. USSR</u>, 1952, <u>22</u>, (1731)

52KH Z. Ksandr and M. Hejtmanek, Sbornik I Celostatni Pracovni Konf. Anal. Chem., 1952, 42; Chem. Abs., 1956, 3150

- 52KK E. J. King and G. W. King, J. Amer. Chem. Soc., 1952, 74, 1212
- 52KP E. L. King and M. L. Pandow, J. Amer. Chem. Soc., 1952, 74, 1966
- 52L I. Leden, Acta Chem. Scand., 1952, 6, 971
- 52La I. Leden, Svensk Kem. Tidskr., 1952, 64, 249
- 52Lb W. M. Latimer, Oxidation Potentials, 2nd ed., Prentice Hall, New York, 1952
- 52Lc M. W. Lister, Canad. J. Chem., 1952, 30, 879
- 52LH W. Forsling, S. Hietanen, and L. G. Sillen, Acta Chem. Scand., 1952, 6, 901
- 52LM I. Leden and L. E. Marthen, Acta. Chem. Scand., 1952, 6, 1125
- 52M C. B. Monk, J. Chem. Soc., 1952, 1314
- 52Ma C. B. Monk, J. Chem. Soc., 1952, 1317
- 52S K. W. Sykes, <u>J. Chem. Soc.</u>, 1952, 124
- 52Sa S. Suzuki, Nippon Kagaku Zasshi, 1952, 73, 150
- 52Sb S. Suzuki, Nippon Kagaku Zasshi, 1952, 73, 153
- 52Sc S. Suzuki, Nippon Kagaku Zasshi, 1952, 73, 278
- 52Sd M. B. Shchigol, Zh. Obsh. Khim., 1952, 22, 721
- 52Se Sutton, Nature, 1952, 169, 71
- 52Sf M. Sahli, Diss., Bern, 1952
- 52SD P. Senise and P. Delahay, J. Amer. Chem. Soc., 1952, 74, 6128
- 52SH J. C. Sullivan and J. C. Hindman, J. Amer. Chem. Soc., 1952, 74, 6091
- 52SZ G. Schwarzenbach, and A. Zobrist, Helv. Chim. Acta, 1952, 35, 1291
- 52TM W. E. Trevelyan, P. F. E. Mann, and J. S. Harrison, Arch. Biochem. Biophys., 1952, 39, 440
- 52V C. E. Vanderzee, J. Amer. Chem. Soc., 1952, 74, 4806
- 52VR C. E. Vanderzee and D. E. Rhodes, J. Amer. Chem. Soc., 1952, 74, 3552
- 52WS W. C. Waggener and R. W. Stoughton, J. Phys. Chem., 1952, 56, 1
- 52WT A. S. Wilson and H. Taube, J. Amer. Chem. Soc., 1952, 74, 3509
- 52YA K. B. Yatsimirskii and A. A. Astasheva, Zh. Fiz. Khim., 1952, 26, 239
- 52YG K. B. Yatsimirskii and Z. M. Grafova, J. Gen. Chem. USSR, 1952, 22, (1726)
- 52YV R. P. Yaffe and A. F. Voigt, J. Amer. Chem. Soc., 1952, 74, 2500

- 53A R. Akeret, Diss., Eidg. Techn. Hochschule, Zurich, 1953
- 53B G. Biedermann, Arkiv. Kemi, 1953, 5, 441
- 53Ba J. Badoz-Lambling, Ann. Chim. (France), 1953, 8, 586
- 53BD R. H. Betts and F. S. Dainton, <u>J. Amer. Chem.</u> Soc., 1953, 75, 5721
- 53BG R. P. Bell and J. H. B. George, Trans. Faraday Soc., 1953, 49, 619
- 53BGa A. K. Babko and A. M. Golub, Sbornik Stat. Obshchei. Khim. Akad. Nauk SSSR, 1953, 1, 64
- 53BL E. Berne and I. Leden, Svensk. Kem. Tidskr., 1953, 65, 88
- 53BLa E. Berne and I. Leden, Z. Naturforsch., 1953, 8a, 719
- 53BP D. Berg and A. Patterson, Jr., J. Amer. Chem. Soc., 1953, 75, 1484
- 53BS C. F. Baes, Jr., and J. M. Schreyer, ORNL-1579, 1953
- 53BSL C. F. Baes, Jr., J. M. Schreyer, and J. M. Lesser, ORNL-Y-12, ORNL-1577, 1953
- 53CH C. C. B. Cave and D. N. Hume, <u>J. Amer. Chem. Soc.</u>, 1953, <u>75</u>, 2893
- 53CM R. E. Connick and W. H. McVey, J. Amer. Chem. Soc., 1953, 75, 474
- 53CP H. Chateau and J. Pouradier, Sci. Ind. Phot., 1953, 24, 129
- 53CS J. W. Cobble, W. T. Smith, Jr., and G. E. Boyd, J. Amer. Chem. Soc., 1953, 75, 5777
- 53CT R. E. Connick and M. S. Tsao, 123rd Meeting Amer. Chem. Soc., 1953, p. 4p
- 53DH C. W. Davies and B. E. Hoyle, J. Chem. Soc., 1953, 4134
- 53E L. Eriksson, Acta Chem. Scand., 1953, 7, 1146
- 53Ea J. O. Edwards, J. Amer. Chem. Soc., 1953, 75, 6151
- 53Eb J. O. Edwards, J. Amer. Chem. Soc., 1953, 75, 6154
- 53EM A. J. Everett and G. Minkoff, Trans. Faraday Soc., 1953, 49, 410
- 53F S. Fronaeus, Svensk Kem. Tidskr., 1953, 65, 1
- 53Fa W. Feitknecht, "Loslichkeiten von Hydroxyden", report to Analytical Section, IUPAC, July 1953
- 53FH R. E. Frank and D. N. Hume, J. Amer. Chem. Soc., 1953, 75, 1736
- 53G A. M. Golub, Ukr. Khim. Zh., 1953, 19, 205, 467
- 53Ga R. M. Garrels, Amer. Min., 1953, 38, 1251
- 53GC R. E. Gosselin and E. R. Coghlan, Arch. Biochem. Biophys., 1953, 45, 301
- 53GJ G. A. Gamlen and D. O. Jordan, J. Chem. Soc., 1953, 1435
- 53GM J. A. Gledhill and G. M. Malan, <u>Trans. Faraday Soc.</u>, 1953, <u>49</u>, 166

- 53H B. O. A. Hedstrom, Arkiv Kemi, 1953, 5, 457
- 53Ha B. O. A. Hedstrom, Arkiv Kemi, 1953, 6, 1
- 53HJ L. G. Hepler, W. L. Jolly, and W. M. Latimer, J. Amer. Chem. Soc., 1953, 75, 2809
- 53HS H. M. Hershenson, M. E. Smith, and D. N. Hume, J. Amer. Chem. Soc., 1953, 75, 507
- 53HW J. Hudis and A. C. Wahl, J. Amer. Chem. Soc., 1953 75, 4153
- 53IY T. Ito and N. Yui, Sci. Reports Tohoku Univ., 1953, 37, 19, 185
- 53J W. Jaenicke, Z. Elektochem., 1953, 57, 843
- 53KF I. M. Korenman, F. S. Frum, and A. I. Kudinova, Sbornik Statei Obsh. Khim., 1953, 1, 83
- 53KP M. Kilpatrick and L. Pokras, J. Electrochem. Soc., 1953, 100, 85
- 53KZ J. W. Kury, A. J. Zielen, and W. M. Latimer, J. Electrochem. Soc., 1953, 100, 468
- 53L I. Leden, "Solubilities of Sulfates", Report to Anal. Sec., IUPAC, July 1953
- 53La M. W. Lister, Canad. J. Chem., 1953, 31, 638
- 53LJ W. M. Latimer and W. L. Jolly, J. Amer. Chem. Soc., 1953, 75, 1548
- 53LK D. L. Leussing and I. M. Kolthoff, J. Amer. Chem. Soc., 1953, 75, 2476
- 53LU A. J. Levin and E. A. Ukshe, Sbornik Stat. Obsh. Khim., 1953, 2, 798
- 53M L. Meites, J. Amer. Chem. Soc., 1953, 75, 6059
- 53MK T. Moeller and G. L. King, J. Amer. Chem. Soc., 1953, 75, 4852
- 53N R. Nasanen, Suomen Kem., 1953, B26, 37
- 53Na R. Nasanen, <u>Suomen Kem.</u>, 1953, <u>B26</u>, 67
- 53NA T. W. Newton and G. M. Arcand, J. Amer. Chem. Soc., 1953, 75, 2449
- 53P D. Peschanski, J. Chim. Phys., 1953, 50, 640
- 53Pa A. M. Posner, Nature, 1953, 171, 519
- 53Pb F. M. Page, J. Chem. Soc., 1953, 1719
- 53PH K. Pan and T. M. Hseu, <u>Bull. Chem. Soc. Japan</u>, 1953, 26, 126
- 53R A. Ringbom, "Solubilities of Sulfides", Report to Anal. Sect., IUPAC, July, 1953 (see 64SM)
- 53RL R. L. Rebertus, H. A. Laitinen, and J. C. Bailar, Jr., <u>J. Amer. Chem. Soc.</u>, 1953, <u>75</u>, 3051
- 53RS E. G. Rochow and D. Seyferth, J. Amer. Chem. Soc., 1953, 75, 2877
- 53S S. Suzuki, Sci. Reports Res. Inst. Tohoku Univ., 1953, A5, 311

- 53Sa S. Suzuki, Nippon Kagaku Zasshi, 1953, 74, 219
- 53Sb S. Suzuki, Nippon Kagaku Zasshi, 1953, 74, 269
- 53Sc G. Saini, Gazz. Chim. Ital., 1953, 83, 677
- 53Sd C. G. Spike, Thesis, Univ. Michigan, 1953
- 53Se S. I. Sobol, J. Gen. Chem. USSR, 1953, 23, 945 (906)
- 53SH P. Souchay and A. Hessaby, Bull. Soc. Chim. France, 1953, 599, 614
- 53SK N. M. Selivanova and A. F. Kapustinskii, Zh. Fiz. Khim., 1953, 27, 265
- 53SKa N. M. Selivanova and A. F. Kapustinskii, Zh. Fiz. Khim., 1953, 27, 565
- 53SL S. A. Shchukarev, L. S. Lilich, and V. A. Latysheva, <u>Dokl. Akad. Nauk SSSR</u>, 1953, 91, 273
- 53SP C. G. Spike and R. W. Parry, J. Amer. Chem. Soc., 1953, 75, 2726
- 53SPa C. G. Spike and R. W. Parry, J. Amer. Chem. Soc., 1953, 75, 3770
- 53TK J. Y. Tong and E. L. King, J. Amer. Chem. Soc., 1953, 75, 6180
- 53VD C. E. Vanderzee and H. J. Dawson, Jr., J. Amer. Chem. Soc., 1953, 75, 5659
- 53VT N. K. Vitchenko and A. S. Tikonov, Trudy Voronezh Univ., 1953, 32, 129
- 53WA J. I. Watters and A. Aaron, J. Amer. Chem. Soc., 1953, 75, 611
- 53WD R. A. Whiteker and N. Davidson, <u>J. Amer. Chem. Soc.</u>, 1953, <u>75</u>, 3081
- 53WS E. J. Wheelwright, F. H. Spedding, and G. Schwarzenbach, <u>J. Amer. Chem. Soc.</u>, 1953, 75, 4196
- 53Y K. B. Yatsimirskii, Sbornik Stat. Obsh. Khim., 1953, 1, 97
- 53Ya K. B. Yatsimirskii, Sbornik Stat. Obsh. Khim., 1953, 1, 193
- 54AHI G. B. Alexander, W. M. Heston, and R. K. Iler, J. Phys. Chem., 1954, 58, 453
- 54AHS S. Ahrland, S. Hietanen, and L. G. Sillen, Acta Chem. Scand., 1954, 8, 1907
- 54AL S. Ahrland and R. Larsson, Acta Chem. Scand., 1954, 8, 137
- 54ALa S. Ahrland and R. Larsson, Acta Chem. Scand., 1954, 8, 354
- 54BB R. D. Brown, W. B. Bunger, W. L. Marshall, and C. H. Secoy, <u>J. Amer. Chem. Soc.</u>, 1954, <u>76</u>, 1532
- 54BBa R. D. Brown, W. B. Bunger, W. L. Marshall, and C. H. Secoy, <u>J. Amer. Chem. Soc.</u>, 1954, 76, 1580
- 54BBS C. Brosset, G. Biedermann, and L. G. Sillen, Acta Chem. Scand., 1954, 8, 1917
- 54BR J. Benkenkamp, W. Rieman, III, and S. Lindenbaum, Anal. Chem., 1954, 26, 505
- 54C R. Cohen-Adad, Compt. Rend. Acad. Sci. Paris, 1954, 238, 810

54CC H. B. Clarke, D. G. Cusworth, and S. P. Datta, Biochem. J., 1954, 58, 146

- 54CI B. G. F. Carleson and H. Irving, J. Chem. Soc., 1954, 4390
- 54CT R. E. Connick and M. S. Tsao, J. Amer. Chem. Soc., 1954, 76, 5311
- 54CV D. Cozzi and S. Vivarelli, Z. Elektrochem., 1954, 58, 907
- 54D G. N. Dobrokhotov, <u>J. Appl. Chem. USSR</u>, 1954, <u>27</u>, (1056)
- 54Da G. F. Davidson, J. Chem. Soc., 1954, 1649
- 54DP R. A. Day, Jr., and R. M. Powers, J. Amer. Chem. Soc., 1954, 76, 3895
- 54DQ F. R. Duke and P. R. Quinney, J. Amer. Chem. Soc., 1954, 76, 3800
- 54EL D. H. Everett and D. A. Landsman, Trans. Faraday Soc., 1954, 50, 1221
- 54F J. Faucherre, Bull. Soc. Chim. France, 1954, 253
- 54Fa D. C. Feay, Thesis, Univ. Calif. Berkeley, 1954; UCRL-2547
- 54FH W. Feitknecht and L. Hartmann, Chimia (Switz.), 1954, 8, 95 (see also 63FS)
- 54FS W. Feitknecht and M. Sahli, Helv. Chim. Acta, 1954, 37, 1431
- 54FSa J. W. Fulton and D. F. Swinehart, J. Amer. Chem. Soc., 1954, 76, 864
- 54G G. W. Goward, Thesis, Princeton Univ., 1954
- 54GC J. D. McGilvery and J. P. Crowther, Canad. J. Chem., 1954, 32, 174
- 54GL K. H. Gayer and H. Leider, J. Amer. Chem. Soc., 1954, 76, 5938
- 54GM J. A. Gledhill and G. M. Malan, Trans. Faraday Soc., 1954, 50, 126
- 54GMa F. G. R. Gimblett and C. B. Monk, Trans. Faraday Soc., 1954, 50, 965
- 54H S. Hietanen, Acta Chem. Scand., 1954, 8, 1626
- 54HK L. G. Hepler, J. W. Kury, and Z. Z. Hugus, Jr., J. Phys. Chem., 1954, 58, 26
- 54HP L. E. Holt, Jr., J. A. Pierce, and C. N. Kajdi, J. Colloid Sci., 1954, 9, 409
- 54HR G. C. Hood, O. Redlich, and C. A. Reilly, J. Chem. Phys. 1954, 22, 2067
- 54IA I. M. Issa and S. A. Awad, J. Phys. Chem., 1954, 58, 948
- 54IK I. M. Issa and H. Khalifa, J. Indian Chem. Soc., 1954, 31, 91
- 54JK J. S. Johnson, K. A. Kraus, and T. F. Young, J. Amer. Chem. Soc., 1954, 76, 1436
- 54K I. M. Korenman, J. Gen. Chem. USSR, 1954, 24, (1910)
- 54KH K. A. Kraus and R. W. Holmberg, J. Phys. Chem., 1954, 58, 325
- 54KP M. Kilpatrick and L. Pikras, J. Electrochem. Soc., 1954, 101, 39
- 54KT J. Kratohvil, B. Tezak, and V. B. Vouk, Arhiv Kemi, 1954, 26, 191

- 54L R. Lloyd, Thesis, Temple Univ., Phila., Penn., 1954
- 54LN I. Leden and R. Nilsson, Svensk Kem. Tidskr., 1954, 66, 126
- 54LP K. S. Lyalikov and V. N. Piskunova, <u>Russ. J. Phys. Chem.</u>, 1954, <u>28</u>, (127), (595)
- 54LS I. Leden and N. H. Schoon, <u>Trans. Chalmers Univ. Technol. Gothenburg</u>, 1954, No. 144 (see 64SM)
- 54M G. Mattock, J. Amer. Chem. Soc., 1954, 76, 4835
- 54Ma W. Miedreich, Thesis, Frankfurt am Main, 1954
- 54N R. Nasanen, Acta Chem. Scand., 1954, 8, 1587
- 54NK R. Nasanen and B. Klaile, Suomen Kem., 1954, B27, 50
- 54NR M. S. Novakovskii and A. P. Ryazantseva, Uchenye Zap. Kharkov Univ., 1954, 54, 277
- 54NS M. S. Novakovskii and T. M. Shmaeva, Ukr. Khim. Zh., 1954, 20, 615
- 54P F. M. Page, Trans. Faraday Soc., 1954, 50, 120
- 54Pa K. Pan, <u>J. Chinese Chem. Soc.</u>, 1954, <u>1</u>, 1
- 54Pb K. Pan, J. Chinese Chem. Soc., 1954, 1, 16
- 54Pc K. Pan, J. Chinese Chem. Soc., 1954, 1, 26
- 54Pd D. Peschanski, Compt. Rend. Acad. Sci. France, 1954, 238, 2077
- 54PB K. G. Poulsen, J. Bjerrum, and I. Poulsen, Acta Chem. Scand., 1954, 8, 921
- 54PM R. A. Paris and J. C. Merlin, Colloquium IUPAC Munster, 1954, 237
- 54PV J. Pouradier, A. M. Venet, and H. Chateau, J. Chim. Phys., 1954, 51, 375
- 54R R. L. Rebertus, Diss., Univ. Illinois, 1954 (see 64SM)
- 54Ra F. W. Rakowsky, Thesis, Ohio State Univ., 1954
- 54S N. Sunden, Svensk Kem. Tidskr., 1954, 66, 20
- 54Sa N. Sunden, Svensk Kem. Tidskr., 1954, 66, 50
- 54Sb N. Sunden, Svensk Kem. Tidskr., 1954, 66, 173
- 54Sc N. Sunden, Svensk Kem. Tidskr., 1954, 66, 345
- 54Sd R. P. Seward, <u>J. Amer. Chem. Soc.</u>, 1954, 76, 4850
- 54Se K. W. Sykes, <u>The Kinetics and Mechanism of Inorganic Reactions in Solution</u>, Spec. Publ. No. 1, Chem. Soc., London, 1954, p. 64, (see 64SM)
- 54SD W. B. Schaap, J. A. Davies, and W. H. Nebergall, <u>J. Amer. Chem. Soc.</u>, 1954, <u>76</u>, 5226
- 54SE J. A. Schufle and H. M. Eiland, <u>J. Amer. Chem. Soc.</u>, 1954, <u>76</u>, 960

- 54SH J. C. Sullivan and J. C. Hindman, J. Amer. Chem. Soc., 1954, 76, 5931
- 54SJ F. H. Spedding and S. Jaffe, J. Amer. Chem. Soc., 1954, 76, 882
- 54SS M. Sato and J. Sato, J. Elektrochem. Soc., Japan, 1954, 22, 411
- 54ST R. K. Schofield and A. W. Taylor, J. Chem. Soc., 1954, 4445
- 54T V. T. Toropova, J. Gen. Chem. USSR, 1954, 24, (423)
- 54TK Y. P. Tong and E. L. King, J. Amer. Chem. Soc., 1954, 76, 2132
- 54TO Sh. T. Talipov and P. F. Obelchenko, <u>Trudy Sredneasiat Gosud. Univ.</u>, 1954, <u>55</u>, 3,
- 54UL E. A. Ukshe and A. I. Levin, <u>J. Gen. Chem. USSR</u>, 1954, <u>24</u>, (775); <u>ibid</u>., 1956, <u>26</u>, 2963 (2657)
- 54W R. J. P. Williams, J. Phys. Chem., 1954, 58, 121
- 54YS K. B. Yatsimirskii and A. A. Shutov, Zh. Fiz. Khim., 1954, 28, 30
- 55A A. Agren, Acta Chem. Scand., 1955, 9, 49
- 55Aa E. L. Anderson, Jr., Thesis, Washington State Coll., 1955
- 55Ab P. J. Antikainen, Suomen Kem., 1955, B28, 159; Acta Chem. Scand., 1956, 10, 756
- 55B R. H. Betts, Canad. J. Chem., 1955, 33, 1775
- 55BPP A. I. Biggs, M. H. Panckhurst, and H. N. Parton, <u>Trans. Faraday Soc.</u>, 1955, <u>51</u>, 802
- 55BPR A. I. Biggs, H. N. Parton, and R. A. Robinson, J. Amer. Chem. Soc., 1955, 77, 5844
- 55BS T. N. Bondareva and A. G. Stromberg, J. Gen. Chem. USSR, 1955, 25, (666)
- 55C J. S. Clark, Canad. J. Chem., 1955, 33, 1696
- 55CD M. Cher and N. Davidson, J. Amer. Chem. Soc., 1955, 77, 793
- 55CS D. Cohen, J. C. Sullivan, and J. C. Hindman, J. Amer. Chem. Soc., 1955, 77, 4964
- 55D J. A. Davis, Thesis, Indiana Univ., 1955
- 55DG M. E. Dry and J. A. Gledhill, Trans. Faraday Soc., 1955, 51, 1119
- 55DJ C. W. Davies and A. L. Jones, Trans. Faraday Soc., 1955, 51, 812
- 55DP W. G. Davies and J. E. Prue, Trans. Faraday Soc., 1955, 51, 1045
- 55DW R. A. Day, Jr., R. N. Wilhite, and F. D. Hamilton, <u>J. Amer. Chem. Soc.</u>, 1955, <u>77</u>, 3180
- 55ER E. Eichler and S. Rabideau, J. Amer. Chem. Soc., 1955, 77, 5501
- 55F S. N. Flengas, Trans. Faraday Soc., 1955, <u>51</u>, 62
- 55Fa W. S. Fyfe, J. Chem. Soc., 1955, 1347

- 55Fb V. V. Fomin, Zh. Fiz. Khim., 1955, 29, 1728
- 55GE L. F. Grantham, T. S. Elleman, and D. S. Martin, Jr., <u>J. Amer. Chem. Soc.</u>, 1955, 77, 2965
- 55GG R. J. Gross and J. W. Gryder, J. Amer. Chem. Soc., 1955, 77, 3695
- 55GL K. H. Gayer and H. Leider, <u>J. Amer. Chem. Soc.</u>, 1955, <u>77</u>, 1448
- 55GM F. G. R. Gimblett and C. B. Monk, Trans. Faraday Soc., 1955, 51, 793
- 55HB L. J. Heidt and J. Berestecki, J. Amer. Chem. Soc., 1955, 77, 2049
- 55IR H. Irving and F. J. C. Rossotti, J. Chem. Soc., 1955, 1946
- 55K P. Kivalo, Suomen Kem., 1955, B28, 155
- 55Ka J. Kenttamaa, Suomen Kem., 1955, B28, 172; Ann. Acad. Sci. Fenn., 1955, A2, No. 67
- 55Kb A. Krawetz, Thesis, Univ. Chicago, 1955 (see 60HR)
- 55Kc I. M. Korenman, J. Gen. Chem. USSR, 1955, 25, (1859)
- 55Kd D. M. H. Kern, J. Amer. Chem. Soc., 1955, 77, 5458
- 55KE Y. Kanko and S. Eyubi, <u>Tekn. Foren. Finland Forhandl.</u>, 1955, 263; <u>Chem.-Ztg.</u>, 1956, <u>80</u>, 130; <u>Oster. Chem. Z.</u>, 1957, <u>58</u>, 259; <u>Finska Kem. Medd.</u>, 1960, <u>69</u>, 104.
- 55KJ J. A. Kiltrick and M. L. Jackson, Proc. Soil Sci. Soc. Amer., 1955, 19, 455
- 55KN K. A. Kraus and F. Nelson, <u>J. Amer. Chem. Soc.</u>, 1955, <u>77</u>, 3721
- 55L M. Lourijsen-Teyssedre, Bull. Soc. Chim. France, 1955, 1111
- 55La M. Lourijsen-Teyssedre, Bull. Soc. Chim. France, 1955, 1118
- 55Lb E. D. Loughran, Thesis, Ohio State Univ., 1955
- 55LC M. J. LaSalle and J. W. Cobble, J. Phys. Chem., 1955, 59, 519
- 55LN I. Leden and R. Nilsson, Z. Naturforsch, 1955, 10a, 67
- 55LR M. W. Lister and D. E. Rivington, Canad. J. Chem., 1955, 33, 1603
- 55M J. C. McCoubrey, Trans. Faraday Soc., 1955, 51, 743
- 55MB L. A. McClaine, E. P. Bullwinkel, and J. C. Huggins, Proc. Int. Conf. Geneva, 1955, 8, 26
- 55MS L. N. Mulay and I. W. Selwood, J. Amer. Chem. Soc., 1955, 77, 2693
- 55MV R. M. Milburn and W. C. Vosburgh, J. Amer. Chem. Soc., 1955, 77, 1352
- 55N C. J. Nyman, J. Amer. Chem. Soc., 1955, 77, 1371
- 55Na G. H. Nancollas, J. Chem. Soc., 1955, 1458
- 55P A. D. Paul, UCRL-2926, 1955

- 55PH K. Pan and T. M. Hseu, Bull. Chem. Soc. Japan, 1955, 28, 162
- 55PK C. Postmus and E. L. King, J. Phys. Chem., 1955, 59, 1208, 1216
- 55PP M. H. Panckhurst and H. N. Parton, Trans. Faraday Soc., 1955, 51, 806
- 55R J. Rydberg, Arkiv Kemi, 1955, 8, 113
- 55Ra O. Redlich, Monat. Chem., 1955, 86, 329
- 55Rb S. Rydholm, Svensk Papperstidn, 1955, 58, 273
- 55Rc R. Nasanen, Suomen Kem., 1955, B28, 111
- 55RC S. W. Rabideau and H. D. Cowan, J. Amer. Chem. Soc., 1955, 77, 6145
- 55RR F. J. C. Rossotti and H. S. Rossotti, Acta Chem. Scand., 1955, 9, 1177
- 55RU I. G. Ryss and P. V. Ustyanova, Ukr. Khim. Zh., 1955, 21, 6
- 55S D. Singh, J. Sci. Res. Banaras Hindu Univ., 1955, 6, 131
- 55SB N. M. Selivanova and R. Ya. Boguslavskii, Zh. Fiz. Khim., 1955, 29, 128
- 55SC Z. G. Szabo, L. J. Csanyi, and M. Kavai, Z. Anal. Chem., 1955, 146, 401
- 55SG S. K. Siddhanta and M. P. Guha, J. Indian Chem. Soc., 1955, 32, 355
- 55SL S. A. Shchukarev, L. S. Lilich, and V. A. Latysheva, <u>J. Gen. Chem. USSR</u>, 1955, <u>25</u>, 1389 (1444)
- 55T L. C. Thompson, Thesis, Wayne Univ., Detroit, Mich., 1955
- 55TB V. F. Toropova and E. A. Belaya, <u>Uchenye Zapiski Kazanskogo Univ.</u>, 1955, <u>115</u>, No. 3, 61
- 55TSL V. F. Toropova, I. A. Sirotina, and T. I. Lisova; <u>Uchenye Zapiski Kazanskogo Univ.</u>, 1955, 115, No. 3, 43
- 55TSR V. F. Toropova, I. A. Sirotina, and V. B. Rotanova, <u>Uchenye Zapiski Kazanskogo Univ.</u>, 1955, <u>115</u>, No. 3, 53
- 55V A. A. Vlcek, Coll. Czech. Chem. Comm., 1955, 20, 400
- 55WW T. D. Waugh, H. F. Walton, and J. A. Laswick, J. Phys. Chem., 1955, 59, 396
- 55Y L. M. Yates, Thesis, Washington State Coll., 1955
- 55ZD N. de Zoubov, E. Deltombe, and M. Pourbaix, Cebelcor Rapp. Tech., No. 27, 1955
- J. Angeli, Comp. Rend. Acad. Sci. Paris, 1956, 242, 1021
- 56Aa A. R. Amell, J. Amer. Chem. Soc., 1956, 78, 6234
- 56AL S. Ahrland, R. Larsson, and K. Rosengren, Acta Chem. Scand., 1956, 10, 705
- 56AR S. Ahrland and K. Rosengren, Acta Chem. Scand., 1956, 10, 727
- 56B C. Berecki-Biedermann, Arkiv Kemi, 1956, 9, 175

- 56Ba G. Biedermann, Arkiv Kemi, 1956, 9, 277
- 56Bb C. F. Baes, Jr., J. Phys. Chem., 1956, 60, 878 (see 64SM)
- 56BC C. A. Blake, C. F. Coleman, K. B. Brown, D. G. Hill, R. S. Lowrie, and J. M. Schmitt, J. Amer. Chem. Soc., 1956, 78, 5978
- 56BD W. D. Bale, E. W. Davies, and C. B. Monk, Trans. Faraday Soc., 1956, 52, 816
- 56BK G. Biedermann, M. Kilpatrick, L. Pokras, and L. G. Sillen, Acta Chem. Scand., 1956, 10, 1327
- 56BL A. K. Babko and G. S. Lisetskaya, J. Inorg. Chem. USSR, 1956, 1, No. 5, 95 (969)
- 56BP R. P. Bell and M. H. Panckhurst, Rec. Trav. Chim., 1956, 75, 725
- 56BPa R. P. Bell and M. H. Panckhurst, J. Chem. Soc., 1956, 2836
- 56C B. Charreton, Bull. Soc. Chim. France, 1956, 323, 337, 347
- 56Ca L. G. Carpenter, Thesis, Columbia Univ., 1956
- 56CD H. Chateau, M. Durante, and B. Hervier, Sci. Ind. Photo., 1956, 27, 81, 257
- 56CH R. E. Connick, L. G. Hepler, Z. Z. Hugus, Jr., J. W. Kury, W. M. Latimer, and M. S. Tsao, J. Amer. Chem. Soc., 1956, 78, 1827
- 56CK F. Cuta, Z. Ksandr, and M. Hejtmanek, <u>Chem. Listy</u>, 1956, <u>50</u>, 1064; <u>Coll. Czech.</u> Chem. Comm., 1956, 21, 1388
- 56CS V. G. Chukhlantsev and S. I. Stepanov, <u>J. Inorg. Chem. USSR</u>, 1956, <u>1</u>, No. 3, 135 (478)
- 56DP E. Deltombe and M. Pourbaix, Cebelcor Rapp. Tech., No. 42, 1956
- 56DZ E. Deltombe, N. de Zoubov, and M. Pourbaix, Cebelcor Rapp. Tech., No. 31, 1956
- 56DZa E. Deltombe, N. de Zoubov, and M. Pourbaix, Cebelcor Rapp. Tech., No. 32, 1956
- 56DZb E. Deltombe, N. de Zoubov, and M. Pourbaix, Cebelcor Rapp. Tech., No. 33, 1956
- 56DZc E. Deltombe, N. de Zoubov, and M. Pourbaix, Cebelcor Rapp. Tech., No. 35, 1956
- 56DZd E. Deltombe, N. de Zoubov, and M. Pourbaix, Cebelcor Rapp. Tech., No. 41, 1956
- 56FM V. V. Fomin and E. P. Maiorova, <u>J. Inorg. Chem. USSR</u>, 1956, <u>1</u>, No. 8, 7 (1703); No. 12, 109 (2749)
- 56FP A. Fava and G. Pajaro, J. Amer. Chem. Soc., 1956, 78, 5203
- 56G H. S. Gates, Thesis, Univ. Wisconsin, 1956
- 56GG R. A. Gilbert and A. B. Garrett, J. Amer. Chem. Soc., 1956, 78, 5501
- 56GW P. Gray and T. C. Waddington, Proc. Roy. Soc., London, 1956, A235, 106
- 56GWa K. H. Gayer and L. Woontner, J. Phys. Chem., 1956, 60, 1569
- 56GWb K. H. Gayer and L. Woontner, J. Amer. Chem. Soc., 1956, 78, 3944

- 56H S. Hietanen, Acta Chem. Scand., 1956, 10, 1531; Rec. Trav. Chim., 1956, 75, 711
- 56HD R. E. Huffman and N. Davidson, J. Amer. Chem. Soc., 1956, 78, 4836
- 56HS S. Hietanen and L. G. Sillen, <u>Suomen Kem</u>., 1956, <u>B29</u>, 31; <u>Arkiv Kemi</u>., 1956, <u>10</u>, 103
- 56IA A. N. Ivanov and S. N. Aleshin, <u>Dokl. Moskov. Selskokhoz</u> <u>Akad. Nauch. Konf.</u>, 1956, 22, 386
- 56J C. K. Jorgensen, Acta Chem. Scand., 1956, 10, 500, 518
- 56JP P. K. Jena and B. Prasad, <u>J. Indian Chem. Soc.</u>, 1956, <u>33</u>, 122
- 56K P. Kivalo, <u>Suomen Kem.</u>, 1956, <u>B29</u>, 8
- 56Ka J. Kenttamaa, Suomen Kem., 1956, B29, 59
- 56Kb P. Kivalo, Suomen Kem., 1956, B29, 189
- 56Kc M. Kobayashi, Nippon Kagaku Zasshi, 1956, 77, 279
- 56Kd P. N. Kovalenko, J. Inorg. Chem. USSR, 1956, 1, No. 8, 22 (1717)
- 56Ke P. N. Kovalenko, Ukr. Khim. Zh., 1956, 22, 801
- 56Kf H. Kubota, Diss., Univ. Wisc. 1956, Diss. Abs., 1956, 16, 864
- 56Kg G. B. Kauffman, Thesis, Univ. Florida, 1956
- 56KE P. Kivalo and A. Ekman, Suomen Kem., 1956, B29, 139
- 56KF I. M. Korenman, F. S. Frum, and G. A. Tsyganova, <u>J. Gen. Chem. USSR</u>, 1956, <u>26</u>, 1945. (1558)
- 56KR P. Kivalo and A. Ringbom, Suomen Kem., 1956, B29 109
- 56KS H. Kakihana and L. G. Sillen, Acta Chem. Scand., 1956, 10, 985
- 56KSa I. M. Kolthoff and J. T. Stock, J. Amer. Chem. Soc., 1956, 78, 2081
- 56KT C. M. Kelley and H. V. Tartar, J. Amer. Chem. Soc., 1956, 78, 5752
- 56L G. S. Lawrence, Trans. Faraday Soc., 1956, 52, 236
- 56La I. Leden, Acta Chem. Scand., 1956, 10, 540, 812
- 56LP I. Leden and C. Parck, Acta Chem. Scand., 1956, 10, 535
- 56LPa A. V. Lapitskii and V. A. Pchelkin, <u>Vestnik Moskov. Univ.</u>, 1956, <u>11</u>, No. 5; <u>Ser. Fiz. Mat.</u>, No. 3, 69
- 56LS G. W. Leonard, M. E. Smith, and D. N. Hume, J. Phys. Chem., 1956, 60, 1493
- 56M H. A. C. McKay, Trans. Faraday Soc., 1956, 52, 1568
- 56MH C. N. Muldrow, Jr., and L. G. Hepler, <u>J. Amer. Chem. Soc.</u>, 1956, <u>78</u>, 5989
- 56MS A. E. Martell and G. Schwarzenbach, <u>Helv. Chim. Acta</u>, 1956, <u>39</u>, 653; <u>J. Phys. Chem.</u>, 1958, <u>62</u>, 886

- 56N L. Newman, Diss., Mass. Inst. Tech., 1956
- 56NM M. S. Novakovskii and M. G. Mushkina, Ukr. Khim. Zh., 1956, 22, 313
- 560B E. Orban, M. K. Barnett, J. S. Boyle, J. R. Heiks, and L. V. Jones, <u>J. Phys. Chem.</u>, 1956, 60, 413
- 56P P. Papoff, Suomen Kem., 1956, B29, 97
- 56PC H. M. Papee, W. J. Canady, and K. J. Laidler, Canad. J. Chem., 1956, 34, 1677
- 56PJ R. A. Penneman and L. H. Jones, J. Chem. Phys., 1956, 24, 293
- 56PV D. Peschanski and S. Valladas-Dubois, Bull. Soc. Chim. France, 1956, 1170
- 56GP M. Quintin and S. Pelletier, J. Chim. Phys., 1956, 53, 226
- 56R R. W. Ramette, J. Chem. Educ., 1956, 33, 610
- 56RM J. J. Renier and D. S. Martin, J. Amer. Chem. Soc., 1956, 78, 1833
- 56RR F. J. C. Rossotti and H. Rossotti, Acta Chem. Scand., 1956, 10, 779
- 56RRa F. J. Rossotti and H. S. Rossotti, <u>J. Inorg. Nucl. Chem.</u>, 1956, <u>2</u>, 201; <u>Acta Chem.</u> Scand., 1956, 10, 957
- 56SA R. M. Smith and R. A. Alberty, J. Phys. Chem., 1956, 60, 180
- 56SAa R. M. Smith and R. A. Alberty, J. Amer. Chem. Soc., 1956, 78, 2376
- 56SL S. A. Shchukarev, L. S. Lilich, and V. A. Latysheva, <u>J. Inorg. Chem. USSR</u>, 1956, <u>1</u>, No. 2, 36 (225)
- 56SM C. C. Stephenson and J. C. Morrow, J. Amer. Chem. Soc., 1956, 78, 275
- 56SP S. C. Sircar and B. Prasad, J. Indian Chem. Soc., 1956, 33, 361
- 56SW L. H. Sutcliffe and J. R. Weber, Trans. Faraday Soc., 1956, 52, 1225
- 56SZ N. M. Selivanova and G. A. Zubova, Trudy Moskov. Khim. Tek. Inst., 1956, 22, 38
- 56T V. F. Toropova, J. Inorg. Chem. USSR, 1956, 1, No. 2, 56 (243)
- 56Ta Ya. I. Turyan, <u>J. Anal. Chem. USSR</u>, 1956, <u>11</u>, (71)
- 56Tb Ya. I. Turyan, J. Inorg. Chem. USSR, 1956, 1, No. 10, 171 (2337)
- 56TG I. V. Tananaev, M. A. Glushkova, and G. B. Seifer, <u>J. Inorg. Chem. USSR</u>, 1956, <u>1</u>, No. 1, 72 (66)
- 56TK Sh. T. Talipov and O. F. Kutumova, Dokl. Akad. Nauk Uzbek. SSR, 1956, No. 8, 23
- 56TS V. N. Tolmachev and L. N. Serpukhova, Zh. Fiz. Khim., 1956, 30, 134
- 56UL E. A. Ukshe and A. I. Levin, J. Gen. Chem. USSR, 1956, 26, 2963 (2657)
- 56VS C. E. Vanderzee and W. E. Smith, J. Amer. Chem. Soc., 1956, 78, 721
- 56WL J. I. Watters, E. D. Longhran, and S. M. Lambert, <u>J. Amer. Chem. Soc.</u>, 1956, <u>78</u>, 4855

- 56WW M. Ward and G. A. Welch, J. Inorg. Nucl. Chem., 1956, 2, 395
- 56Y K. B. Yatsimirskii, J. Anal. Chem. USSR, 1956, 10, (344)
- 56YV K. B. Yatsimirskii and V. P. Vasilev, Zh. Fiz. Khim., 1956, 30, 28
- 56YVa K. B. Yatsimirskii and V. P. Vasilev, Zh. Fiz. Khim., 1956, 30, 901
- 56YVb K. B. Yatsimirskii and V. P. Vasilev, J. Anal. Chem. USSR, 1956, 11, (536)
- 56ZC A. J. Zielen and R. E. Connick, J. Amer. Chem. Soc., 1956, 78, 5785
- 56ZK V. L. Zolotavin and V. K. Kuznetsova, <u>J. Inorg. Chem. USSR</u>, 1956, <u>1</u>, No. 10, 87 (2257)
- 57A G. Anderegg, Helv. Chim. Acta, 1957, 40, 1022
- 57Aa P. J. Antikainen, Suomen Kem., 1957, B30, 22, 201
- 57Ab P. J. Antikainen, Suomen Kem., 1957, B30, 74
- 57Ac P. J. Antikainen, Ann. Acad. Sci. Fenn., 1957, AII, No. 56
- 57Ad G. M. Arcand, J. Amer. Chem. Soc., 1957, 79, 1865
- 57AG S. Ahrland and I. Grenthe, Acta Chem. Scand., 1957, 11, 1111; 1961, 15, 932
- 57B S. Broersma, J. Chem. Phys., 1957, 26, 1405
- 57BG B. D. Blaustein and J. W. Gryder, J. Amer. Chem. Soc., 1957, 79, 540
- 57BH E. A. Burns and D. N. Hume, J. Amer. Chem. Soc., 1957, 79, 2704
- 57BL S. A. Brown and J. E. Land, J. Amer. Chem. Soc., 1957, 79, 3015
- 57BLa A. Basinski and U. Ledzinska, Rocz. Chem., 1957, 31, 457
- 57BM C. H. Brubaker, Jr., and J. P. Mickel, J. Inorg. Nucl. Chem., 1957, 4, 55
- 57BP A. Basinski and S. Poczopko, Rocz. Chem., 1957, 31, 449
- 57BPa T. A. Bak and E. L. Praestgaard, Acta Chem. Scand., 1957, 11, 901
- 57BS G. Biedermann and P. Schindler, Acta Chem. Scand., 1957, 11, 731
- 57BW E. A. Burns and R. A. Whiteker, J. Amer. Chem. Soc., 1957, 79, 866
- 57BWa J. H. Baxendale and C. F. Wells, Trans. Faraday Soc., 1957, 53, 800
- 57C R. Caramazza, Gazz. Chim. Ital., 1957, 87, 1507
- 57Ca B. Charreton, Comp. Rend. Acad. Sci. Paris, 1957, 244, 1208
- 57CB F. Cuta, E. Beranek, and J. Pisecky, <u>Chem. Listy</u>, 1957, <u>51</u>, 1614; <u>Coll. Czech.</u> Chem. Comm., 1958, <u>23</u>, 1496
- 57CH H. Chateau and B. Hervier, J. Chim. Phys., 1957, 54, 637
- 57CHP H. Chateau, B. Hervier, and J. Pouradier, <u>J. Phys. Chem</u>., 1957, <u>61</u>, 250; <u>J. Chim</u>. <u>Phys.</u>, 1957, <u>54</u>, 246

- 57CJ S. C. Chang and M. L. Jackson, Proc. Soil Sci. Soc. Amer., 1957, 21, 265
- 57CP S. R. Cohen and R. A. Plane, J. Phys. Chem., 1957, 61, 1096
- 57D G. D'Amore, Atti. Soc. Peloritana Sci. Fis. Mat., 1956-7, 3, 95
- 57DB Y. Doucet and S. Bugnon, J. Chem. Phys., 1957, 54, 155
- 57DBF H. A. Droll, B. P. Block, and W. C. Fernelius, J. Phys. Chem., 1957, 61, 1000
- 57DM E. W. Davies and C. B. Monk, Trans. Faraday Soc., 1957, 53, 442
- 57DS J. Durell and J. M. Sturtevant, Biochim. Biophys. Acta, 1957, 26, 282
- 57E D. F. Evans, J. Chem. Soc., 1957, 4013
- 57ET F. Ender, W. Teltschik, and K. Schafer, Z. Elektrochem., 1957, 61, 775
- 57F N. R. Fetter, Thesis, Univ. Oregon, 1957
- 57FH L. J. Frolen, W. S. Harris, and D. F. Swinehart, J. Phys. Chem., 1957, 61, 1672
- 57FK R. M. Fuoss and C. A. Kraus, J. Amer. Chem. Soc., 1957, 79, 3304
- 57GL K. H. Gayer and H. Leider, Canad. J. Chem., 1957, 35, 5
- 57GP S. A. Greenberg and E. W. Price, J. Phys. Chem., 1957, 61, 1539
- 57GS A. M. Golub and V. M. Samoilenko, <u>Ukr. Khim. Zh.</u>, 1957, <u>23</u>, 17
- 57GW K. H. Gayer and L. Woontner, J. Phys. Chem., 1957, 61, 364
- 57H P. Hagenmuller, Compt. Rend. Acad. Sci. Paris, 1957, 244, 2061
- 57HH K. H. Hsu and S. H. Ho, Kexue Tongbao, 1957, 433; Chem. Abs., 1961, 21953b
- 57HN J. R. Howard and G. H. Nancollas, Trans. Faraday Soc., 1957, 53, 1449
- 57HW J. A. Hearne and A. G. White, J. Chem. Soc., 1957, 2168
- 571 A. Iwase, Nippon Kagaku Zasshi, 1957, 78, 1659
- 57IL N. Ingri, G. Lagerstrom, M. Frydman, and L. G. Sillen, <u>Acta Chem. Scand.</u>, 1957, <u>11</u>, 1034
- 57JS J. Jortner and G. Stein, Bull. Res. Council Israel, 1957, 6A, 239
- 57K J. Kenttamaa, Suomen Kem., 1957, B30, 9
- 57Ka M. Kobayashi, Nippon Kagaku Zasshi, 1957, 78, 611
- 57Kb A. Kleiber, Thesis, Univ. Strasbourg, 1957 (see also 64SM)
- 57Kc P. N. Kovalenko, <u>J. Appl. Chem. USSR</u>, 1957, <u>30</u>, (52)
- 57Kd P. N. Kovalenko, Khim. Nauka Prom., 1957, 2, 533
- 57KC E. I. Krylov and V. G. Chukhlantsev, J. Anal. Chem. USSR, 1957, 12, (451)
- 57KD Y. Kauko and S. Doger, Acta Chem. Scand., 1957, 11, 804

- 57KE P. Kivalo and P. Ekari, Suomen Kem., 1957, B30, 116
- 57KH J. W. Kury, Z. Z. Hugus, Jr., and W. M. Latimer, J. Phys. Chem., 1957, 61, 1021
- 57KL P. Kivalo and R. Luoto, Suomen Kem., 1957, B30, 163
- 57KM F. Ya. Kulba and V. E. Mironov, J. Inorg. Chem. USSR, 1957, 2, No. 8, 46 (1741)
- 57KP I. A. Korshunov, A. P. Pochinailo, and V. M. Tikhomirova, <u>J. Inorg. Chem. USSR</u>, 1957, 2, No. 1, 101 (68).
- 57KS J. J. Katz and G. T. Seaborg, <u>The Chemistry of the Actinide Elements</u>, Methuen & Co. Ltd., London, 1957, 264, 305, 313, 363
- 57L K. H. Lieser, Z. Anorg. Allg. Chem., 1957, 292, 97
- 57La J. Lefebvre, J. Chim. Phys., 1957, 74, 567
- 57Lb S. M. Lambert, Thesis, Ohio State Univ., 1957
- 57LW S. M. Lambert and J. I. Watters, J. Amer. Chem. Soc., 1957, 79, 4262
- 57LWa S. M. Lambert and J. I. Watters, J. Amer. Chem. Soc., 1957, 79, 5606
- 57M Y. Marcus, Acta Chem. Scand., 1957, 11, 599
- 57Ma R. M. Milburn, J. Amer. Chem. Soc., 1957, 79, 537
- 57Mb T. C. MacAvoy, Thesis, Univ. Cincinnati, 1957
- 57MF K. P. Mishchenko and I. E. Flis, J. Appl. Chem. USSR, 1957, 30, (665)
- 57MN G. Mahapatra, C. Nanda, and D. Patnaik, J. Indian Chem. Soc., 1957, 34, 457
- 57MO N. N. Mironov and A. I. Odnosevtsev, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 9, 342 (2202)
- 57MP R. N. Misra and S. Pani, <u>J. Indian Chem. Soc.</u>, 1957, <u>34</u>, 393
- 57MR S. S. Muhammad and T. N. Rao, J. Indian Chem. Soc., 1957, 34, 250
- 57MRa S. S. Muhammad and T. N. Rao, J. Chem. Soc., 1957, 1077
- 57MRH S. S. Muhammad, D. H. Rao, and M. A. Haleem, J. Indian Chem. Soc., 1957, 34, 101
- 57MS J. Meier and G. Schwarzenbach, Helv. Chim. Acta, 1957, 40, 907
- 57MT I. S. Morozov and G. M. Toptygina, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 7 , 286 (1629)
- 57MV H. C. Moser and A. F. Voigh, J. Inorg. Nucl. Chem., 1957, 4, 354
- 57N R. O. Nilsson, <u>Arkiv Kemi</u>, 1957, <u>10</u>, 363
- 57NB T . W. Newton and F. B. Baker, <u>J. Phys. Chem.</u>, 1957, <u>61</u>, 934
- 57NBC M. Nardelli, A. Braibanti, and I. Chierici, Gazz. Chim. Ital., 1957, 87, 510
- 57NM M. S. Novakovskii, M. G. Mushkina, and E. G. Vorobeva, <u>Trudy Khim. Fak. Kharkov Univ.</u>, 1957, <u>16</u>, 107 (see 64SM)

- 57NN V. S. K. Nair and G. N. Nancollas, J. Chem. Soc., 1957, 318
- 570 A. Olin, Acta Chem. Scand., 1957, 11, 1445
- 57P J. J. Podesta, Rev. Fac. Cienc. Quim. LaPlata, 1957, 30, 61
- 57PC P. Papoff, M. A. Caliumi, and G. Ferrari, Ric. Sci., 1957, 27, suppl. A; Polarografia, 3, 131
- 57PL A. V. Pamfilov, A. I. Lopushanskaya, and E. B. Gusel, Ukr. Khim. Zh., 1957, 23, 297
- 57PP A. L. Pitman, M. Pourbaix, and N. de Zoubov, Cebelcor Rapp. Tech., No. 55, 1957
- 57PT F. A. Posey and H. Taube, J. Amer. Chem. Soc., 1957, 79, 255
- 57R S. W. Rabideau, J. Amer. Chem. Soc., 1957, 79, 3765
- 57S A. S. Solovkin, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 3, 216 (611)
- 57Sa E. B. Shtemina, J. Inorg. Chem. USSR, 1957, 2, No. 4, 344 (933)
- 57Sb J. F. Scaife, Canad. J. Chem., 1957, 35, 1332
- 57Sc O. V. Serebrennikova, <u>Trudy Ural. Politekh. Inst.</u>, 1957, <u>58</u>, 57
- 57Sd W. M. Smith, Proc. Chem. Soc., 1957, 207
- 57SL S. A. Shchukarev, L. S. Lilich, and V. A. Latysheva, <u>Uch. Zap. Leningrad Univ.</u>, Ser. Khim. Nauk, 1957, No. 15 (211), 17
- 57SM K. Yu, Salnis, K. P. Mishchenko, and I. E. Flis, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 9, 1 (1985)
- 57SN B. S. Strates, W. F. Neuman, and G. J. Levinskas, J. Phys. Chem., 1957, 61, 279
- 57T V. F. Toropova, J. Inorg. Chem. USSR, 1957, 2, No. 3, 63 (515)
- 57Ta J. Thamer, J. Amer. Chem. Soc., 1957, 79, 4298
- 57TE V. M. Tarayan and L. A. Eliazyan, <u>Izvest. Akad. Nauk. Armyan SSR, Khim.</u>, 1957, <u>10</u>, 189
- 57TH H. G. Tsiang and K. H. Hsu, Acta Chim. Sinica, 1957, 23, 196
- 57TK E. Thilo and G. Kruger, Z. Elektrochem., 1957, 61, 24
- 57TM N. Tanaka and T. Murayama, Z. Phys. Chem. (Frankfurt), 1957, 11, 366
- 57TMa R. C. Turner and K. E. Miles, Canad. J. Chem., 1957, 35, 1002
- 57TMb T. A. Tumanova, K. P. Mishchenko, and I. E. Flis, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 9, 9 (1990)
- 57TS Ya. I. Turyan and G. F. Serova, J. Inorg. Chem. USSR, 1957, 2, No. 2, 165 (336)
- 57TSa T. Takahashi and K. Sasaki, J. Electrochem. Soc. Japan, 1957, 25, 58, 118
- 57TV I. V. Tananaev and A. D. Vinogradova, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 10, 276 (2455)

- 57V V. P. Vasilev, Zh. Fiz. Khim., 1957, 31, 692
- 57W R. H. Wood, Thesis, 1957, Univ. California Berkeley; UCRL-3751
- 57WL J. I. Watters, S. M. Lambert, and E. D. Loughran, <u>J. Amer. Chem. Soc.</u>, 1957, <u>79</u>, 3651
- 57YG K. B. Yatsimirskii and L. V. Guskova, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 9, 91 (2039)
- 57YM K. B. Yatsimirskii and P. M. Milyukov, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 5, 98 (1046)
- 57YMa K. B. Yatsimirskii and P. M. Milyukov, Zh. Fiz. Khim., 1957, 31, 842
- 57YT K. B. Yatsimirskii and V. D. Tetyushkina, <u>J. Inorg. Chem. USSR</u>, 1957, <u>2</u>, No. 2, 141 (320)
- 57ZM N. de Zoubov, J. van Muylder, and M. Pourbaix, Cebelcor Rapp. Tech., No. 60, 1957
- 58A T. Ackerman, Z. Elektrochem., 1958, 62, 411
- 58Aa K. A. Allen, J. Amer. Chem. Soc., 1958, <u>80</u>, 4133
- 58Ab F. Achenza, Ann. Chim. (Italy), 1958, <u>48</u>, 565
- 58AK M. Akabane and A. Kurosawa, Kogyo Kagaku Zasshi, 1958, 61, 303
- 58AN S. Ahrland and B. Noren, Acta Chem. Scand., 1958, 12, 1595
- 58AS N. V. Akselrud and V. B. Spivakovskii, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 2, 38 (269)
- 58ASP G. Anderegg, G. Schwarzenbach, M. Padmoyo, and O. F. Borg, Helv. Chim. Acta, 1958, 41, 988
- 58AT M. Anbar and H. Taube, J. Amer. Chem. Soc., 1958, 80, 1073
- 58B S. A. Brusilovskii, Dokl. Chem., 1958, 120, 343 (305)
- 58BB P. B. Barton, Jr., and P. M. Bethke, Econ. Geol., 1958, 53, 914
- 58BC A. Braibanti and I. Chierici, Gazz. Chim. Ital., 1958, 88, 793
- 58BCC J. F. Below, Jr., R. E. Connick, and C. P. Coppel, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 2961
- 58BS A. Basinski and W. Szymanski, Rocz. Chem., 1958, 32, 23
- 58C R. Caramazza, Gazz. Chim. Ital., 1958, 88, 308
- 58Ca Y. TiChia, UCRL-8311, 1958
- 58Cb J. W. Collat, Anal. Chem., 1958, 30, 1726
- 58CP R. E. Connick and A. D. Paul, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 2069
- 58CPC R. Cernatescu, I. Popescu, A. Craciun, M. Bostan, and N. Iorga, <u>Stud. Cercetari</u>, Chim., Filiala <u>Iasi</u>, 1958, <u>9</u>, 1

- 58D D. G. Davis, <u>Anal. Chem.</u>, 1958, <u>30</u>, 1729
- 58Da R. J. Dietz, Jr., Thesis, Mass. Inst. Tech., 1958 (see 64SM)
- 58DT C. Dragulescu and P. Tribunescu, <u>Studii Cercetari Sti. Chim.</u>, <u>Timisoara</u>, 1958, <u>5</u>, No. 3-4, 19
- 58E C. L. P. van Eck, Thesis, Leiden, 1958
- 58ES J. S. Elliot, R. F. Sharp, and L. Lewis, J. Phys. Chem., 1958, 62, 686
- 58F M. L. Freedman, J. Amer. Chem. Soc., 1958, 80, 2072
- 58Fa I. E. Flis, J. Appl. Chem. USSR, 1958, 31, (1194)
- 58FK V. V. Fomin, R. E. Kartushova, and T. I. Rudenko, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 9, 167 (2117)
- 58FM I. E. Flis, K. P. Michchenko, and N. V. Pakhomova, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 8, 72 (1772)
- 58FN M. Frydman, G. Nilsson, T. Rengemo, and L. G. Sillen, <u>Acta Chem. Scand</u>., 1958, <u>12</u>, 878
- 58G S. A. Greenberg, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 6508
- 58Ga A. K. Grzybowski, J. Phys. Chem., 1958, 62, 555
- 58Gb F. I. Golovin, Trudy Molod. Nauch Rabot. Akad. Nauk. Kirgiz SSR, 1958, 119
- 58GH R. L. Graham and L. G. Hepler, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 3538
- 58GK H. S. Gates and E. L. King, J. Amer. Chem. Soc., 1958, 80, 5011
- 58GT K. H. Gayer and L. C. Thompson, Canad. J. Chem., 1958, 36, 1649
- 58GTZ K. H. Gayer, L. C. Thompson, and O. T. Zajicek, Canad. J. Chem., 1958, 36, 1268
- 58H R. A. Horne, J. Inorg. Nucl. Chem., 1958, 6, 338
- 58Ha R. A. Horne, Nature, 1958, 181, 410
- 58Hb L. G. Hepler, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 6181
- 58HN J. R. Howard, V. S. K. Nair, and G. H. Nancollas, <u>Trans. Faraday Soc</u>., 1958, <u>54</u>, 1034
- 58HT K. H. Hsu and H. G. Tsiang, Acta Chim. Sinica, 1958, 24, 277
- 58HW W. Hieber and G. Wagner, Z. Naturforsch, 1958, 13b, 339
- 58I A. Indelli, Ann. Chim. (Italy), 1958, 48, 345
- 58J M. B. Jensen, Acta Chem. Scand., 1958, 12, 1657
- 58Ja L. Jager, Chem. Listy, 1958, 52, 734
- 58Jb C. K. Jorgensen, DA-91, 508-EUC-247, 1958
- 58JB E. Jorgensen and J. Bjerrum, <u>Acta Chem. Scand.</u>, 1958, <u>12</u>, 1047; <u>J. Inorg. Nucl. Chem.</u>, 1958, <u>8</u>, 313

- 58K P. N. Kovalenko, J. Inorg. Chem. USSR, 1958, 3, No. 5, 1 (1065)
- 58KB P. N. Kovalenko and K. N. Bagdasarov, <u>Uchenye Zapiski Univ. Rostov-Na Donu</u>, 1958, No. 41 (=Trudy Khim. Fak., 9,), 107
- 58KC I. K. Krotova and M. L. Chepelevetskii, Soobschch Nauch. Inst. Udobren Insektofungisid, 1958, No. 10, 58
- 58KG P. N. Kovalenko and O. I. Geiderovich, Nauch. Dokl. Vys. Shk., Khim., 1958, 294
- 58KGL I. M. Korenman, V. G. Ganina, and N. P. Lebedeva, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 5, 281 (1265)
- 58KK O. I. Khotsyanovskii and O. K. Kudra, <u>Izv. Vyssh. Ucheb. Zaved., Khim</u>, 1958, No. 1,
- 58KT G. Kruger and E. Thilo, Z. Phys. Chem. (Leipzig), 1958, 209, 190
- 58KV S. K. Kor and G. S. Verma, J. Chem. Phys., 1958, 29, 9
- 58L R. Larsson, Acta Chem. Scand., 1958, 12, 708
- 58La O. N. Lapteva, J. Appl. Chem. USSR, 1958, 31, (1210)
- 58LG P. E. Lake and J. M. Goodings, Canad. J. Chem., 1958, 36, 1089
- 58M R. A. Myers, Thesis, Univ. Nebr., 1958 (see 64SM)
- 58Ma V. E. Mironov, Diss. (Kand), Leningrad Tech. Inst., 1958 (see 64SM)
- 58Mb Y. Marcus, Proc. 2nd. Inter. Conf. Geneva, 1958, 3, 465
- 58Mc P. M. Mader, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 2634
- 58MF E. P. Maiorova and V. V. Formin, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 8, 295 (1937)
- 58MG A. I. Moskvin and A. D. Gelman, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 4, 198 (962)
- 58MH C. N. Muldrow, Jr., and L. G. Hepler, <u>J. Phys. Chem.</u>, 1958, <u>62</u>, 982
- 58ML W. L. Marshall, F. J. Loprest, and C. H. Secoy, <u>J. Amer. Chem. Soc</u>., 1958, <u>80</u>, 5646
- 58MP J. van Muylder and M. Pourbaix, Cebelcor Rapp. Tech., No. 59, 1958
- 58MW P. E. Martin and A. G. White, <u>J. Chem. Soc.</u>, 1958, 2490
- 58N R. O. Nilsson, Arkiv Kemi, 1958, 12, 219, 337
- 58Na R. O. Nilsson, Arkiv Kemi, 1958, <u>12</u>, 371
- 58NC L. Newman, J. De O. Cabral, and D. N. Hume, J. Amer. Chem. Soc., 1958, 80, 1814
- 58NL L. Newman, W. J. LaFleur, F. J. Brousaides, and A. M. Ross, <u>J. Amer. Chem. Soc.</u>, 1958, 80, 4491
- 58NN V. S. K. Nair and G. H. Nancollas, J. Chem. Soc., 1958, 3706
- 58NNa V. S. K. Nair and G. H. Nancollas, J. Chem. Soc., 1958, 4144

- 58NR G. Nilsson, T. Regnemo, and L. G. Sillen, Acta Chem. Scand., 1958, 12, 868
- 580 R. K. Osterheld, J. Phys. Chem., 1958, 62, 1133
- 58P D. D. Perrin, J. Amer. Chem. Soc., 1958, 80, 3852
- 58PD F. Pantani and P. Desideri, Gazz. Chim. Ital., 1958, 88, 1183
- 58PL D. Pavlov and D. Lazarov, J. Inorg. Chem. USSR, 1958, 3, No. 9, 142 (2099)
- 58PS V. I. Paramonova and A. N. Sergeev, J. Inorg. Chem. USSR, 1958, 3, No. 1, 331 (215)
- 58PT V. P. Persiantseva and P. S. Titov, Nauch. Dokl. Vysshei Shkoly, Khim., 1958, 584
- 58PW M. H. Panckhurst and K. G. Woolmington, Proc. Roy, Soc. (London), 1958, A244, 124
- 58R D. R. Rosseinsky, Trans. Faraday Soc., 1958, 54, 116
- 58RA S. W. Rabideau, L. B. Asprey, T. K. Keenan, and T. W. Newton, <u>Proc. Geneva Conf. Peaceful Uses of Atomic Energy</u>, 1958, <u>28</u>, p. 361
- 58RB T. Rengemo, U. Brune, and L. G. Sillen, Acta Chem. Scand., 1958, 12, 873
- 58S P. Schindler, Helv. Chim. Acta, 1958, 41, 527
- 58Sa N. M. Selivanova, Zh. Fiz. Khim., 1958, 32, 1277
- 58Sb J. F. B. Silman, Thesis, Harvard Univ., 1958
- 58Sc P. Sakellaridis, Chim. Chronika, 1958, 23, 263
- 58Sd P. Sakellaridis, Compt. Rend. Acad. Sci. Paris, 1958, 247, 2367
- 58SG G. Schwarzenbach, O. Gubeli, and H. Zust, Chimia (Switz.), 1958, 12, 84
- 58SK K. Schug and E. L. King, <u>J. Amer. Chem. Soc.</u>, 1958, <u>80</u>, 1089
- 58SM G. Schwarzenbach and J. Meier, J. Inorg. Nucl. Chem., 1958, 8, 302
- 58SMa R. Schwarz and W. D. Muller, Z. Anorg. Allg. Chem., 1958, 296, 273
- 58SO G. Saini and G. Ostracoli, <u>J. Inorg. Nucl. Chem.</u>, 1958, <u>8</u>, 346
- 58SP P. Senise and M. Perrier, J. Amer. Chem. Soc., 1958, 80, 4194
- 58SPa G. Schwarzenbach and G. Parissakis, Helv. Chim. Acta, 1958, 41, 2425
- 58SPS R. W. Stromatt, R. M. Peekema, and F. A. Scott, HW-58212, 1958
- 58SS V. I. Spitsyn and I. A. Savich, J. Inorg. Chem. USSR, 1958, 3, No. 8, 351 (1979)
- 58SSa N. M. Selivanova and V. A. Shneider, Nauch. Dokl. Vysshei Shkoly, Khim., 1958, 216
- 58ST D. B. Scaife and H. J. V. Tyrrell, <u>J. Chem. Soc.</u>, 1958, 392; <u>J. Inorg. Nucl. Chem.</u>, 1958, <u>8</u>, 353
- 58SW J. M. Smithson and R. J. P. Williams, J. Chem. Soc., 1958, 457
- 58SWa E. A. Simpson and G. M. Waind, J. Chem. Soc., 1958, 1746

- 58T R. S. Tobias, <u>Acta Chem. Scand.</u>, 1958, <u>12</u>, 198
- 58TF W. B. Treumann and L. M. Ferris, J. Amer. Chem. Soc., 1958, 80, 5048
- 58TG R. S. Tobias and A. B. Garrett, J. Amer. Chem. Soc., 1958, 80, 3532
- 58TW T. A. Turney and G. A. Wright, J. Chem. Soc., 1958, 2415
- 58VE E. G. Vassian and W. H. Eberhardt, J. Phys. Chem., 1958, 62, 84
- 58VG G. I. Volkov and V. I. Grinevich, J. Inorg. Chem. USSR, 1958, 3, No. 8, 337 (1968)
- 58VP C. Vanleugenhaghe and M. Pourbaix, Cebelcor Rapp. Tech., No. 74, 1958
- 58VPa C. Vanleugenhaghe and M. Pourbaix, Cebelcor Rapp. Tech., No. 75, 1958
- 58VR J. Vaid and T. L. Ramachar, Bull. India Sect. Elecktrochem. Soc., 1958, 7, 5
- 58VRa A. Valvassori and R. Riccardi, Boll. Sci. Fac. Chim. Ind. Bologna, 1958, 16, 80
- 58VS C. Vanleugenhaghe, K. Schwabe, and M. Pourbaix, Cebelcor Rapp. Tech., No. 76, 1958
- 58W R. H. Wood, J. Amer. Chem. Soc., 1958, 80, 1559
- 58YA K. B. Yatsimirskii and I. I. Alekseeva, <u>Izv. Vyssh. Ucheb. Zaved., Khim.</u>, 1958, No. 1, 53
- 58YF K. B. Yatsimirskii and T. I. Fedorova, <u>Izv. Vyssh. Ucheb. Zaved, Khim.</u>, 1958, No. 3, 40
- 58YK K. B. Yatsimirskii and V. D. Korableva, <u>J. Inorg. Chem. USSR</u>, 1958, <u>3</u>, No. 2, 139 (339)
- 58YM K. B. Yatsimirskii and P. M. Milyukov, <u>Trudy Ivanovsk. Khim-Tekh. Inst.</u>, 1958, 7, 16
- 58ZB A. I. Zelyanskaya, N. V. Bausova, and L. Ya. Kukalo, <u>Trudy Inst. Met. Akad. Nauk.</u> SSSR, Ural. Filial., 1958, No. 2, 263
- 59A F. Achenza, Ann. Chim. (Italy), 1959, 49, 624, 848
- 59Aa F. Achenza, Rend. Seminar Fac. Sci. Univ. Cagliari, 1959, 29, 52
- 59Ab K. P. Ang, J. Chem. Soc., 1959, 3822
- 59AS N. V. Akselrud and V. B. Spivakovskii, Russ. J. Inorg. Chem., 1959, 4, 22 (56)
- 59 ASa N. V. Akselrud and V. B. Spivakovskii, Russ. J. Inorg. Chem., 1959, 4, 449 (989)
- 59ASb N. V. Akselrud and V. B. Spivakovskii, Ukr. Khim. Zh., 1959, 25, 14
- 59ASc L. P. Adamovich and G. S. Shupenko, Ukr. Khim. Zh., 1959, 25, 155
- 59B E. Bock, Canad. J. Chem., 1959, 37, 1888
- 59Ba M. Bronnimann, Diss., Bern, 1959 (see 63FS)
- 59BBC R. G. Bates, V. E. Bower, R. G. Canham, and J. E. Prue, <u>Trans. Faraday Soc.</u>, 1959, <u>55</u>, 2062

- 59BBD A. Basinski, F. Burnicki, and W. Dzierza, Rocz. Chem., 1959, 33, 177
- 59BC E. A. Burns and F. D. Chang, J. Phys. Chem., 1959, 63, 1314
- 59BE J. Besson and W. Eckert, Bull. Soc. Chim. France, 1959, 1676
- 59BK A. I. Busev and N. A. Kanaev, Vestnik. Moskov. Univ., Ser. Mat., 1959, No. 1, 135
- 59BS A. Basinski and W. Szczerba, Rocz. Chem., 1959, 33, 283
- 59BSB A. Basinski, W. Szymanski, and T. Betto, Rocz. Chem., 1959, 33, 289
- 59C G. K. Czamanske, Econ. Geol., 1959, 54, 57
- 59CH H. C. Chiang and K. H. Hsu, Kexue Tongbao, 1959, 397
- 59CN H. Coll, R. V. Nauman, and P. W. West, J. Amer. Chem. Soc., 1959, 81, 1284
- 59D W. H. Dumbaugh, Jr., Thesis, Penn. State Univ., 1959
- 59DP P. G. Desideri and F. Pantani, Gazz. Chim. Ital., 1959, 89, 1349
- 59DT C. Dragulescu and P. Tribunescu, Stud. Cercetari Sti. Chim., Timisoara, 1959, 6, 59
- 59E A. J. Ellis, Amer. J. Sci., 1959, 257, 217, 354
- 59Ea A. J. Ellis, Amer. J. Sci., 1959, 257, 287
- 59EF J. E. Earley, D. Fortnum, A. Wojcicki, and J. O. Edwards, <u>J. Amer. Chem. Soc.</u>, 1959, 81, 1295
- 59EG K. Emerson and W. M. Graven, J. Inorg. Nucl. Chem., 1959, 11, 309
- 59EGa A. J. Ellis and R. M. Golding, J. Chem. Soc., 1959, 127
- 59ES H. K. E1-Shamy and F. G. Sherif, Egypt. J. Chem., 1959, 2, 217
- 59FB J. Faucherre and Y. Bonnaire, Compt. Rend. Acad. Sci. Paris, 1959, 248, 3705
- 59FS Ya. D. Fridman and Dzh. S. Sarbaev, Russ. J. Inorg. Chem., 1959, 4, 835 (1849)
- 59FSa H. Freund and C. R. Schneider, J. Amer. Chem. Soc., 1959, 81, 4780
- 59G A. M. Golub, <u>Russ. J. Inorg. Chem.</u>, 1959, <u>4</u>, 711 (1577)
- 59GJ L. O. Gilpatrick, H. R. Jolley, M. J. Kelly, M. D. Silverman, and G. M. Watson, CF-59-10-121, 1959
- 59GK A. M. Golub and Yu. V. Kosmatyi, Russ. J. Inorg. Chem., 1959, 4, 606 (1347)
- 59GR R. P. H. Gasser and R. E. Richards, Molec. Phys., 1959, 2, 357
- 59GS J. Gandeboeuf and P. Souchay, J. Chim. Phys., 1959, 56, 358
- 59HJ G. C. Hood, A. C. Jones, and C. A. Reilly, J. Phys. Chem., 1959, 63, 101
- 59HS S. Hietanen and L. G. Sillen, Acta Chem. Scand., 1959, 13, 533
- 59HSa S. Hietanen and L. G. Sillen, Acta Chem. Scand., 1959, 13, 1828

- 59I N. Ingri, Acta Chem. Scand., 1959, 13, 758
- 59IB N. Ingri and F. Brito, Acta Chem. Scand., 1959, 13, 1971
- 59K J. Kenttamaa, Suomen Kem., 1959, B32, 55
- 59Ka S. K. Kor, Z. Phys. Chem., 1959, 210, 288
- 59Kb J. R. Kramer, J. Sediment. Petrol., 1959, 29, 465
- 59Kc J. Kenttamaa, Suomen Kem., 1959, B32, 68
- 59Kd E. V. Komarov, Russ. J. Inorg. Chem., 1959, 4, 591 (1313)
- 59KB I. M. Korenman and V. N. Burova, <u>Trudy Khim. Khim. Tekh</u>. (Univ. Gorkii), 1959, <u>2</u>, 366
- 59KG E. L. King and P. K. Gallagher, J. Phys. Chem., 1959, 63, 1073
- 59KGa P. N. Kovalenko and O. I. Geiderovich, Russ. J. Inorg. Chem., 1959, 4, 895 (1974)
- 59KGb K. E. Kleiner and G. I. Gridchina, Russ. J. Inorg. Chem., 1959, 4, 915 (2020)
- 59KK P. Kivalo and R. Kurkela, Suomen Kem., 1959, B32, 39
- 59KL P. N. Kovalenco and T. V. Lindorf, <u>Russ. J. Inorg. Chem.</u>, 1959, <u>4</u>, 868, (1919)
- 59KP J. W. Kury, A. D. Paul, L. G. Hepler, and R. E. Connick, <u>J. Amer. Chem. Soc</u>., 1959, 81, 4185
- 59KS A. E. Klygin and I. D. Smirnova, Russ. J. Inorg. Chem., 1959, 4, 16 (42)
- 59KSN A. E. Klygin, I. D. Smirnova, and N. A. Nikolskaya, <u>Russ. J. Inorg. Chem.</u>, 1959, <u>4</u>, 754 (1674)
- 59L G. Lagerstrom, Acta Chem. Scand., 1959, 13, 722
- 59LP W. L. Lindsay, M. Peech, and J. S. Clark, Proc. Soil Sci. Soc. Amer., 1959, 23, 357
- 59M B. N. Mattoo, Z. Phys. Chem. (Frankfurt), 1959, 19, 156
- 59Ma Y. Marcus, J. Phys. Chem., 1959, 63, 1000
- 59Mb J. S. Mendez-Schalchi, Thesis, Mass. Inst. Tech. 1959
- 59Mc Y. Marcus, Bull. Res. Council Israel, 1959, A8, 17
- 59Md G. Maronny, Electrochim. Acta, 1959, 1, 58
- 59Me T. T. Mityurova, Dopovidi Akad. Nauk Ukr. SSR, 1959, 166
- 59Ma H. Matsuda and Y. Ayabe, Z. Elektrochem., 1959, 63, 1164
- 59MC Y. Marcus and C. D. Coryell, <u>Bull. Res. Council Israel</u>, 1959, <u>A8</u>, 1
- 59MG P. K. Migal, N. Kh. Grinberg, and Ya. I. Turyan, <u>Russ. J. Inorg. Chem.</u>, 1959, <u>4</u>, 833 (1844)
- 59MV C. C. Meloche and F. Vratny, Anal. Chim. Acta, 1959, 20, 415 (see also 64SM)

- 59NH L. Newman and D. N. Hume, J. Amer. Chem. Soc., 1959, 81, 5901
- 59NN V. S. K. Nair and G. H. Nancollas, J. Chem. Soc., 1959, 3934
- 59NQ L. Newman and K. P. Quinlan, J. Amer. Chem. Soc., 1959, 81, 547
- 590 A. Olin, Acta Chem. Scand., 1959, 13, 1791
- 590H J. W. Olver and D. N. Hume, Anal. Chim. Acta, 1959, 20, 559
- 59P D. D. Perrin, J. Chem. Soc., 1959, 1710
- 59Pa I. Popescu, Stud. Cercetari, Chim., Filiala Iasi, 1959, 10, 25
- 59Pb M. Pryszczewska, Roca. Chem., 1959, 33, 755
- 59Pc C. N. Polydoropoulos, Chim. Chronika, 1959, 24, 147; Chem. Abs., 1960, 15048c
- 59PD F. Pantani and P. G. Desideri, Gazz. Chim. Ital., 1959, 89, 1360
- 59PL K. Pan and J. L. Lin, J. Chinese Chem. Soc., 1959, 6, 1
- 59R R. W. Ramette, J. Chem. Educ., 1959, 36, 191
- 59S M. Spiro, Trans. Faraday Soc., 1959, 55, 1746
- 59Sa K. W. Sykes, J. Chem. Soc., 1959, 2473
- 59Sb J. L. Schultz, Thesis, Univ. Minnesota, 1959
- 59Sc P. C. Scott, Thesis, Univ. Minnesota, 1959
- 59Sd B. M. Shchigol, Russ. J. Inorg. Chem., 1959, 4, 913 (2014)
- 59Se G. B. Seifer, Russ. J. Inorg. Chem., 1959, 4, 1311 (2832)
- 59Sf P. Schindler, Helv. Chim. Acta, 1959, 42, 2736
- 59SD R. L. Seth and A. K. Dey, Z. Phys. Chem. (Leipzig), 1959, 210, 108
- 59SH J. C. Sullivan and J. C. Hindman, J. Phys. Chem., 1959, 63, 1332
- 59SHC J. C. Hindman, J. C. Sullivan, and D. Cohen, J. Amer. Chem. Soc., 1959, <u>81</u>, 2316
- 59SK N. M. Selivanova, A. F. Kapustinskii, and G. A. Zubova, <u>Bull. Acad. Sci. USSR</u>, 1959, 174 (187)
- 59SL S. A. Shchukarev, L. S. Lilich, V. A. Latysheva, and D. K. Andreeva, <u>Russ. J. Inorg. Chem.</u>, 1959, <u>4</u>, 1001 (2198)
- 59SLa S. A. Shchukarev, L. S. Lilich, V. A. Latysheva, and I. I. Chuburkova, <u>Vestnik</u> <u>Leningrad. Univ.</u>, 1959, <u>14</u>, No. 10, 66
- 59SS N. M. Selivanova and V. A. Shneider, <u>Izv. Vyssh. Ucheb. Zaved., Khim.</u>, 1959, <u>2</u>, 475, 651
- 59ST V. B. Shevchenko, V. G. Timoshev, and A. A. Volkova, <u>Soviet J. Atom. Ener.</u>, 1959, <u>6</u>, 293 (426)
- 59SV C. D. Schmulbach, J. R. Van Wazer, and R. R. Irani, <u>J. Amer. Chem. Soc</u>., 1959, <u>81</u>, 6347

- 59SY S. Saito and N. Yui, Nippon Kagaku Zasshi, 1959, 80, 139
- 59SZ N. M. Selivanova and G. A. Zubova, Zh. Fiz. Khim., 1959, 33, 141
- 59SZF N. M. Selivanova, G. A. Zubova, and F. I. Finkelshtein, Russ. J. Phys. Chem., 1959, 33, 430 (2365)
- 59T L. O. Tuazon, Thesis, Iowa State Coll., 1959
- 59Ta I. V. Tananaev, Acta Chim. Sinica, 1959, 25, 391
- 59TC Ya. I. Turyan and N. G. Chebotar, Russ. J. Inorg. Chem., 1959, 4, 273 (599)
- 59TH H. G. Tsiang and K. H. Hsu, Kexue Tongbao, 1959, 331
- 59TL I. V. Tananaev and C. D. Lu, <u>Russ. J. Inorg. Chem.</u>, 1959, <u>4</u>, 961 (2122)
- 59TS Ya. I. Turyan and R. Ya. Shtipelman, Russ. J. Inorg. Chem., 1959, 4, 366 (808)
- 59TT N. Tanaka and T. Takamura, J. Inorg. Nucl. Chem., 1959, 9, 15
- 59U R. Uggla, Acta Acad. Sci. Fenn., 1959, AII, No. 97
- 59VK D. G. Vartak and M. B. Kabadi, <u>Proc. Symp. Chem. Coord. Comp.</u>, Allahabad, 1959, <u>1</u>, 127
- 59VN V. G. Voden, G. P. Nikitina, and M. F. Pushlenkov, Radiokhim., 1959, 1, 121
- 59W H. v. Wartenberg, Z. Anorg. Allg. Chem., 1959, 299, 227
- 59WL J. I. Watters and S. M. Lambert, J. Amer. Chem. Soc., 1959, 81, 3201
- 59WO J. A. Wolhoff and J. T. G. Overbeek, Rec. Trav. Chim., 1959, 78, 759
- 59WP J. L. Weaver and W. C. Purdy, Anal. Chim. Acta, 1959, 20, 376
- 59YD T. Yamane and N. Davidson, J. Amer. Chem. Soc., 1959, 81, 4438
- 59Z A. J. Zielen, <u>J. Amer. Chem. Soc.</u>, 1959, <u>81</u>, 5022
- 60A G. Atkinson, J. Amer. Chem. Soc., 1960, 82, 818
- 60Aa N. V. Akselrud, Russ. J. Inorg. Chem., 1960, 5, 928 (1910)
- 60Ab H. L. Conley, Thesis, 1960; UCRL-9332
- 60AD P. J. Antikainen and D. Dyrssen, Acta Chem. Scand., 1960, 14, 86
- 60AH G. Atkinson and C. J. Hallada, <u>J. Phys. Chem.</u>, 1960, <u>64</u>, 1487
- 60AHS P. J. Antikainen, S. Hietanen, and L. G. Sillen, Acta Chem. Scand., 1960, 14, 95
- 60AM D. W. Anderson, G. N. Malcolm, and H. N. Parton, J. Phys. Chem., 1960, 64, 494
- 60AR P. J. Antikainen and V. M. K. Rossi, Suomen Kem., 1960, B33, 210
- 60AS N. V. Akselrud and V. B. Spivakovskii, Russ. J. Inorg. Chem., 1960, 5, 158 (327)
- 60ASa N. V. Akselrud and V. B. Spivakovskii, Russ. J. Inorg. Chem., 1960, 5, 163 (340)

60ASb N. V. Akselrud and V. B. Spivakovskii, Russ. J. Inorg. Chem., 1960, 5, 168 (348)

- 60ASc J. Angeli and P. Souchay, Comp. Rend. Acad. Sci. Paris, 1960, 250, 713
- 60AT P. J. Antikainen and K. Tevanen, Suomen Kem., 1960, B33, 59
- 60B B. Baysal, Act. 2 Congr. Internat. Catalyse, Paris, 1960, 1, 559
- 60Ba S. A. Brusilovskii, <u>Trudy Inst. Geol. Rud. Mestorozhdenii etc</u>., (Akad. Nauk SSSR), 1960, 42, 58
- 60Bb H. L. Barnes, Bull. Geol. Soc. Amer., 1960, 71, 1821
- 60BB P. B. Barton, Jr., and P. M. Bethke, Amer. J. Sci., 1960, A258, 21
- 60BC N. Bailey, A. Carrington, K. A. K. Lott, and M. C. R. Symons, <u>J. Chem. Soc</u>., 1960, 290
- 60BG G. Bianucci and L. Ghiringhelli, Ann. Chim. (Italy), 1960, 50, 99
- 60BH G. Biedermann and S. Hietanen, Acta. Chem. Scand., 1960, 14, 711
- 60BI F. Brito and N. Ingri, An. Fis. Quim., Ser. B, 1960, 56, 165
- 60BK A. K. Babko and V. S. Kodenskaya, Russ. J. Inorg. Chem., 1960, 5, 1241 (2568)
- 60BN F. B. Baker, T. W. Newton, and M. Kahn, J. Phys. Chem., 1960, 64, 109
- 60BR A. Basinski and M. Rozwadowski, Rocz. Chem., 1960, 34, 47
- 60BS G. Biedermann and L. G. Sillen, Acta Chem. Scand., 1960, 14, 717
- 60BT A. I. Busev, V. G. Tiptsova, and T. A. Sokolova, <u>Vestnik Moskov. Univ.</u>, <u>Ser. II</u>
 <u>Khim</u>, 1960, No. 6, 42
- 60C J. M. Creeth, J. Phys. Chem., 1960, 64, 920
- 60Ca F. Chauveau, Bull. Soc. Chim. France, 1960, 810, 819
- 60Cb F. Chauveau, Bull. Soc. Chim. France, 1960, 834
- 60Cc M. Cola, <u>Gazz. Chim. Ital.</u>, 1960, <u>90</u>, 1037
- 60CC V. Caglioti, L. Ciavatta, and A. Liberti, J. Inorg. Nucl. Chem., 1960, 15, 115
- 60CE M. M. Crutchfield and J. O. Edwards. <u>J. Amer. Chem. Soc.</u>, 1960, <u>82</u>, 3533
- 60CL C. Chen-ping and L. Lien-sen, Acta Chim. Sinica, 1960, 26, 148 (see 64VG)
- 60CLa L. Ciavatta and A. Liberti, Ric. Sci., 1960, 30, 1186
- 60C0 B. Carell and A. Olin, Acta Chem. Scand., 1960, 14, 1999
- 60D J. Danon, J. Inorg. Nucl. Chem., 1960, 13, 112
- 60Da G. Daniele, Gazz. Chim. Ital., 1960, 90, 1371
- 60DF J. L. Dye, M. P. Faber, and D. J. Karl, J. Amer. Chem. Soc., 1960, 82, 314
- 60DM R. G. Denotkina, A. I. Moskvin, and V. B. Shevchenko, <u>Russ. J. Inorg. Chem.</u>, 1960, 5, 387 (805), 731 (1509)

- 60EK J. H. Espenson and E. L. King, J. Phys. Chem., 1960, 64, 380
- 60FB D. H. Fortnum, C. J. Battaglia, S. R. Cohen, and J. O. Edwards, <u>J. Amer. Chem.</u> Soc., 1960, 82, 778
- 60FSA P. Franzosini, C. Sinistri, and G. Ajroldi, Ric. Sci., 1960, 30, 1707
- 60FSS Ya. D. Fridman, D. S. Sarbaev, and R. I. Sorochan, <u>Russ. J. Inorg. Chem.</u>, 1960, 5, 381 (791)
- 60FT F. M. Filinov, E. N. Tekster, A. A. Kolpakova, and E. P. Panteleeva, Russ. J. Inorg. Chem., 1960, 5, 552 (1149)
- 60G E. Giesbrecht, <u>J. Inorg. Nucl. Chem.</u>, 1960, <u>15</u>, 265
- 60Ga R. M. Golding, J. Chem. Soc., 1960, 3711
- 60Gb C. J. Garrigues, Publ. Sci. Tech. Ministere de L'Air (Paris), NT-93, 1960
- 60GB G. Gordon and C. H. Brubaker, Jr., J. Amer. Chem. Soc., 1960, 82, 4448
- 60GC S. A. Greenberg, T. N. Chang, and E. Anderson, J. Phys. Chem., 1960, 64, 1151
- 60GG A. A. Grinberg and M. I. Gelfman, Proc. Acad. Sci. USSR, 1960, 133, 895 (1081)
- 60GK P. K. Gallagher and E. L. King, J. Amer. Chem. Soc., 1960, 82, 3510
- 60GL P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188
- 60GN I. Grenthe and B. Noren, Acta Chem. Scand., 1960, 14, 2216
- 60GR R. L. Gustafson, C. Richard, and A. E. Martell, <u>J. Amer. Chem. Soc</u>., 1960, <u>82</u>, 1526
- 60GS A. A. Grinberg and G. A. Shagisultanova, <u>Russ. J. Inorg. Chem.</u>, 1960, <u>5</u>, 134 (280), 920 (1895)
- 60GSa A.M. Golub and V. V. Skopenko, Russ. J. Inorg. Chem., 1960, 5, 961 (1973)
- 60H E. Hogfeldt, Acta Chem. Scand., 1960, 14, 1597
- 60HR G. C. Hood and C. A. Reilly, J. Chem. Phys., 1960, 32, 127
- 60HT K. H. Hsu, T. C. Tan, and C. M. Yen, <u>Scientia Sinica</u>, 1960, <u>9</u>, 232; <u>Acta Chim</u>. Sinica, 1959, 25, 229
- 60IC R. R. Irani and C. F. Callis, J. Phys. Chem., 1960, 64, 1398
- 60JP B. Jeszowska-Trzebiatowska and L. Pajdowski, Rocz. Chem., 1960, 34, 787
- 60K T. Kumai, J. Chem. Soc., Japan, 1960, 81, 1687
- 60Ka K. E. Kleiner, Russ. J. Phys. Chem., 1960, 34, 194 (416)
- 60KG K. E. Kleiner and G. I. Gridchina, Russ. J. Inorg. Chem., 1960, 5, 96 (202)
- 60KM F. Ya. Kulba and V. E. Mironov, Russ. J. Inorg. Chem., 1960, 5, 138 (287)
- 60KMa F. Ya. Kulba and V. E. Mironov, Russ. J. Inorg. Chem., 1960, 5, 922 (1898)

- 60KV K. E. Kleiner and V. T. Vasilenko, Russ. J. Inorg. Chem., 1960, 5, 53 (112)
- 60L K. H. Lieser, Z. Anorg. Allg. Chem., 1960, 304, 296
- 60LC A. Lodzinska and H. Cichocka, Rocz. Chem., 1960, 34, 297
- 60LP I. A. Lebedev, S. V. Pirozhkov, and G. N. Yakovlev, Radiokhim., 1960, 2, 549
- 60LR M. W. Lister and P. Rosenblum, Canad. J. Chem., 1960, 38, 1827
- 60LS M. H. Lietzke and R. W. Stoughton, J. Phys. Chem., 1960, 64, 816
- 60LSV A.V. Lapitskii, B. V. Strizhkov, and L. G. Vlasov, <u>Vesinik Moskov. Univ.</u>, <u>Ser. II</u> Khim., 1960, No. 4, 25
- 60LY M. W. Lister and Y. Yoshino, Canad. J. Chem., 1960, 38, 45
- 60LYa M. W. Lister and Y. Yoshino, Canad. J. Chem., 1960, 38, 2342
- 60M C. B. Monk, J. Amer. Chem. Soc., 1960, 82, 5762
- 60Ma Y. Marcus, J. Inorg. Nucl. Chem., 1960, 12, 287
- 60Mb S. Matsuo, Nippon Kagaku Zasshi, 1960, 81, 833
- 60MB E. C. Moreno, W. E. Brown, and G. Osborn, <u>Proc. Soil Sci. Soc. Amer.</u>, 1960, <u>24</u>, 94, 99
- 60MJ R. L. McCullough, L. H. Jones, and R. A. Penneman, <u>J. Inorg. Nucl. Chem.</u>, 1960, 13, 286
- 60MM R. W. Mooney and G. J. Meisenhelter, J. Chem. Eng. Data, 1960, 5, 373
- 60MT M. Mori and R. Tsuchiya, Bull. Chem. Soc. Japan, 1960, 33, 841
- 60MTF K. P. Mishchenko, T. A. Tumanova, and I. E. Flis, <u>J. Anal. Chem. USSR</u>, 1960, <u>15</u>, 241 (211)
- 60N R. Nasanen, Suomen Kem., 1960, B33, 47
- 60NA C. J. Nyman and G. S. Alberts, Anal. Chem., 1960, 32, 207
- 60NM R. Nasanen and P. Merilainen, Suomen Kem., 1960, B33, 149, 197
- 600 A. Olin, Acta Chem. Scand., 1960, 14, 126, 814
- 600a J. Olivard, Arch. Biochem. Biophys., 1960, 88, 382
- 60P D. D. Perrin, J. Chem. Soc., 1960, 3189
- 60PB M. G. Panova, N. E. Brezhneva, and V. I. Levin, Radiokhim., 1960, 2, 208
- 60PN M. F. Pushlenkov, G. P. Nikitina, and V. G. Voden, Radiokhim., 1960, 2, 215
- 60R J. Raaflaub, Helv. Chim. Acta, 1960, 43, 629
- 60RK S. W. Rabideau and R. J. Kline, J. Phys. Chem., 1960, 64, 650
- 60RKa B. vant Riet and I. M. Kolthoff, J. Phys. Chem., 1960, 64, 1045

- 60RS D. H. Richards and K. W. Sykes, J. Chem. Soc., 1960, 3626
- 60S J. Stary, Coll. Czech. Chem. Comm., 1960, 25, 890
- 60Sa L. Schoepp, Diss., Tech. Univ. Berlin, 1960
- 60SB A. W. Savage, Jr., and J. C. Browne, J. Amer. Chem. Soc., 1960, 82, 4817
- 60SF G. Schwarzenbach and A. Fisher, Helv. Chim. Acta, 1960, 43, 1365
- 60SG P. Schindler and A. B. Garrett, Helv. Chim. Acta, 1960, 43, 2176
- 60SL R. W. Stoughton and M. H. Lietzke, J. Phys. Chem., 1960, 64, 133
- 60SS V. B. Shevchenko, I. V. Shilin, and Yu. F. Zhdanov, <u>Russ. J. Inorg. Chem.</u>, 1960, 5, 1367 (2832)
- 60SW F. Seel and R. Winkler, Z. Phys. Chem. (Frankfurt), 1960, 25, 217
- 60SWa L. H. Suthcliffe and J. R. Weber, J. Inorg. Nucl. Chem., 1960, 12, 281
- 60T C. C. Templeton, J. Chem. Eng. Data, 1960, 5, 514
- 60Ta T. A. Turney, J. Chem. Soc., 1960, 4263
- 60Tb R. S. Tobias, J. Amer. Chem. Soc., 1960, 82, 1070
- 60TM Ya. I. Turyan and Yu. S. Milyavskii, Russ. J. Inorg. Chem., 1960, 5, 1086 (2242)
- 60TV I. V. Tananaev and A. D. Vinogradova, Russ. J. Inorg. Chem., 1960, 5, 155 (321)
- 60TZ Ya. I. Turyan and B. P. Zhantalai, Russ. J. Inorg. Chem., 1960, 5, 848 (1748)
- 60YD T. Yamane and N. Davidson, J. Amer. Chem. Soc., 1960, 82, 2123
- 60ZK S. S. Zavodnov and P. A. Kryukov, Bull. Acad. Sci. USSR, 1960, 1583 (1704)
- 61A N. V. Akselrud, <u>Ukr. Khim. Zh.</u>, 1961, <u>27</u>, 431
- 61AE N. V. Akselrud and V. I. Ermolenko, <u>Russ. J. Inorg. Chem</u>., 1961, <u>6</u>, 397 (777)
- 61AH K. Aurivillius and O. von Heidenstam, Acta Chem. Scand., 1961, 15, 1993
- 61AT P. J. Antikainen and K. Tevanen, Suomen Kem., 1961, B34, 135
- 61B A. Bolzan, <u>Rev. Fac. Cienc. Quim. Univ. Nacl. La Plata</u>, 1961, <u>33</u>, 67; <u>Chem. Abs.</u>, 1963, <u>58</u>, 3091d
- 61BC G. Biedermann and L. Ciavatta, Acta Chem. Scand., 1961, 15, 1347
- 61BD D. Bunn, F. S. Dainton, and S. Duckworth, Trans. Faraday Soc., 1961, 57, 1131
- 61BL G. Biedermann, N. C. Li, and J. Yu, Acta Chem. Scand., 1961, 15, 555
- 61BM M. Boulet and J. R. Marier, Arch. Biochem. Biophys., 1961, 93, 157
- 61BN S. Bruckenstein and D. C. Nelson, J. Chem. Eng. Data, 1961, 6, 605
- 61BP A. A. Bezzubenko and B. I. Pechchevitskii, <u>Izv. Sibir. Otdel. Akad. Nauk. SSSR</u>, 1961, No. 8, 62

- 61BS A. Basinski, W. Szymanski, and Z. Bebnista, Rocz. Chem., 1961, 35, 59
- 61BT D. Banerjea and K. K. Tripathi, J. Inorg. Nucl. Chem., 1961, 18, 199
- 61CA V. G. Chukhlantsev and K. V. Alyamovskaya, <u>Russ. J. Inorg. Chem.</u>, 1961, <u>6</u>, 223 (443)
- 61CAa V. G. Chukhlantsev and K. V. Alyamovskaya, <u>Izv Vyssh. Ucheb. Zayed.</u>, <u>Khim.</u>, 1961, 4, 359, 706
- 61CF R. E. Connick and D. A. Fine, J. Amer. Chem. Soc., 1961, 83, 3414
- 61CO B. Carell and A. Olin, Acta Chem. Scand., 1961, 15, 727
- 61COa B. Carell and A. Olin, Acta Chem. Scand., 1961, 15, 1875
- 61CP R. E. Connick and A. D. Paul, J. Phys. Chem., 1961, 65, 1216
- 61D T. F. Dyachenko, <u>Nauch. Trudy Dnepropetrovsk Khim. Tech. Inst.</u>, 1961, <u>12</u>, No. 2, 87
- 61Da G. A. Dean, Canad. J. Chem., 1961, 39, 1174
- 61DK N. S. Drozdov and V. P. Krylov, Russ. J. Phys. Chem., 1961, 35, 1264 (2557)
- 61DT D. Dyrssen and V. Tyrrell, Acta Chem. Scand., 1961, 15, 393, 1622
- 61EA A. J. Ellis and D. W. Anderson, J. Chem. Soc., 1961, 1765
- 61EAa A. J. Ellis and D. W. Anderson, J. Chem. Soc., 1961, 4678
- 61F Ya. D. Fridman, Russ. J. Inorg. Chem., 1961, 6, 771 (1501)
- 61GG A. A. Grinberg and M. I. Gelfman, Proc. Acad. Sci. USSR, 1961, 137, 257 (87)
- 61GM A. D. Gelman, A. I. Moskvin, L. M. Zaitsev, and M. P. Mefodeva, Kompleksye Soedineniya Transuranovykh Elementov, Moscow, 1961, p. 90, 98
- 61GO A. M. Golub and S. S. Ognyanik, Ukr. Khim. Zh., 1961, 27, 283
- 61GS A. M. Golub and E. P. Skorobogatko, Ukr. Khim. Zh., 1961, 27, 16
- 61GSa A. M. Golub and V. V. Skopenko, Russ. J. Inorg. Chem., 1961, 6, 69 (140)
- 61GSb A. M. Golub and V. V. Skopenko, Dokl. Chem., 1961, 138, 517 (601)
- 61GT R. M. Garrels, M. E. Thompson, and R. Siever, Amer. J. Sci., 1961, 259, 24
- 61H G. P. Height, Jr., Acta Chem. Scand., 1961, 15, 2012
- 61Ha E. Hogfeldt, J. <u>Inorg. Nucl. Chem.</u>, 1961, <u>17</u>, 302
- 61Hb T. Hurlen, Acta Chem. Scand., 1961, 15, 1231
- 61HA C. J. Hallada and G. Atkinson, J. Amer. Chem. Soc., 1961, 83, 3759
- 61HG C. J. Hardy, B. F. Greenfield, and D. Scargill, J. Chem. Soc., 1961, 174
- 61I R. R. Irani, <u>J. Phys. Chem.</u>, 1961, <u>65</u>, 1463

- 61IC R. R. Irani and C. F. Callis, J. Phys. Chem., 1961, 65, 296
- 61ICa R. R. Irani and C. F. Callis, J. Phys. Chem., 1961, 65, 934
- 61K V. I. Karpov, Russ. J. Inorg. Chem., 1961, 6, 271 (531)
- 61Ka P. N. Kovalenko, Russ. J. Inorg. Chem., 1961, 6, 275 (539)
- 61Kb A. G. Kozlov, Russ. J. Inorg. Chem., 1961, 6, 668 (1302)
- 61Kc P. Krumholz, Proc. 6th Int. Conf. Coord. Chem., 1961, 564
- 61Kd A. F. Kuteinikov, <u>Radiochem</u> (AEC-TR-4581), 1961, <u>3</u>, No. 6, 202 (706)
- 61KB P. N. Kovalenko and K. N. Bagdasarov, J. Appl. Chem. USSR, 1961, 34, 759 (789)
- 61KBa P. N. Kovalenko and K. N. Bagdasarov, Russ. J. Inorg. Chem., 1961, 6, 272 (534)
- 61KMF F. Ya. Kulba, V. E. Mironov, and V. A. Fedorov, <u>Russ. J. Inorg. Chem.</u>, 1961, <u>6</u>, 813 (1586)
- 61KMT F. Ya. Kulba, V. E. Mironov, G. S. Troitskaya, and N. G. Maksimova, <u>Russ. J. Inorg. Chem.</u>, 1961, <u>6</u>, 952 (1865)
- 61KT G. Kruger and E. Thilo, Z. Anorg. Allg. Chem., 1961, 308, 242
- 61KY G. A. Krestov and K. B. Yatsimirskii, Russ. J. Inorg. Chem., 1961, 6, 1170 (2304)
- 61KZ A. E. Klygin, D. M. Zavrazhnova, and N. A. Nikolskaya, <u>J. Anal. Chem. USSR</u>, 1961, <u>16</u>, 311 (297)
- 61L M. W. Lister, Canad. J. Chem., 1961, 39, 2330
- 61LH H. L. Loy and D. M. Himmelblau, J. Phys. Chem., 1961, 65, 264
- 61LP I. Leden and G. Persson, Acta Chem. Scand., 1961, 15, 1141
- 61LPa J. L. Lin and K. Pan, J. Chinese Chem. Soc., 1961, 8, 14
- 61LW M. W. Lister and D. W. Wilson, Canad. J. Chem., 1961, 39, 2606
- 61M V. E. Mironov, Russ. J. Inorg. Chem., 1961, 6, 205 (405)
- 61Ma V. E. Mironov, Russ. J. Inorg. Chem., 1961, 6, 336 (659)
- 61Mb T. Murayama, Sci. Repts. Tohoku Univ., Ser. I, 1961, 45, 84
- 61Mc S. Matsuo, Nippon Nagaku Zasshi, 1961, 82, 1330, 1334
- 61MA D. S. Martin, Jr., and R. J. Adams, Proc. 6th Int. Conf. Coord. Chem., 1961, 579
- 61MB D. W. Margerum, T. J. Bydalek and J. J. Bishop, J. Amer. Chem. Soc., 1961, 83, 1791
- 61MC I. N. Marov and M. K. Chmutova, Russ. J. Inorg. Chem., 1961, <u>6</u>, 1340 (2654)
- 61MD P. P. Mohapatra, R. C. Das, and S. Aditya, J. Indian Chem. Soc., 1961, 38, 845
- 61MF C. J. Mandleberg, K. E. Francis, and R. Smith, J. Chem. Soc., 1961, 2464
- 61ML C. H. Muendel, H. B. Linford, and W. A. Selke, <u>J. Amer. Inst. Chem. Eng.</u>, 1961, <u>7</u>, 133

- 61MN L. N. Mulay and M. C. Naylor, Proc. 6th Int. Conf. Coord. Chem., 1961, 520
- 61MP G. N. Malcolm, H. N. Parton, and I. D. Watson, J. Phys. Chem., 1961, 65, 1900
- 61MS D. F. C. Morris and E. L. Short, J. Chem. Soc., 1961, 5148
- 61MSa S. S. Muhammad and E. V. Sundaram, J. Sci. Ind. Res. (India), 1961, B20, 16
- 61NL N. S. Nikolaev and Yu. A. Lukyanychev, Atom. Ener., 1961, 11, 67 (see also 64SM)
- 61NM R. Nasanen, P. Merilainen, and K. Leppanen, Acta. Chem. Scand., 1961, 15, 913
- 61NP B. K. S. Nair, L. H. Prabhu, and D. G. Vartak, <u>J. Sci. Ind. Res</u>. (India), 1961, B20, 489
- 61NR C. J. Nyman, D. K. Roe, and R. A. Plane, J. Amer. Chem. Soc., 1961, 83, 323
- 61NS C. J. Nyman and T. Salazar, Anal. Chem., 1961, 33, 1467
- 61P A. Peterson, Acta Chem. Scand., 1961, 15, 101
- 61PB K. S. Pitzer and L. Breuer, <u>Thermodynamics</u>, rev. ed. by G. N. Lewis and M. Randall, McGraw-Hill, New York, <u>1961</u>, pp. 400, 676
- 61PF A. Patterson, Jr., and H. Freitag, J. Elecktrochem. Soc., 1961, 108, 529
- 61PG A. D. Paul, L. S. Gallo, and J. B. Van Camp, J. Phys. Chem. 1961, 65, 441
- 61PK N. S. Poluektov and L. I. Kononenko, Russ. J. Inorg. Chem., 1961, 6, 938 (1837)
- 61PM V. M. Peshkova, N. V. Melchakova, and S. G. Zhemchuzhin,, Russ. J. Inorg. Chem., 1961, 6, 630 (1233)
- 61PP I. V. Pyatnitskii and E. S. Pilipyuk, Ukr. Khim. Zh., 1961, 27, 247
- 61PS S. S. Parikh and T. R. Sweet, J. Phys. Chem., 1961, 65, 1909
- 61PY C. N. Polydoropoulos and Th. Yannapoulos, J. Inorg. Nucl. Chem., 1961, 19, 107
- 61RB R. A. Robinson and V. E. Bower, <u>J. Phys. Chem.</u>, 1961, <u>65</u>, 1279
- 61RK A. L. Rotinyan, V. L. Kheifets, and S. A. Nikolaeva, <u>Russ. J. Inorg. Chem.</u>, 1961, 6, 10 (21)
- 61RM S. W. Rabideau and R. H. Moore, J. Phys. Chem., 1961, 65, 371
- 61RMa S. W. Rabideau and B. J. Masters, J. Phys. Chem., 1961, 65, 1256
- 61RS R. W. Ramette and R. F. Stewart, J. Phys. Chem., 1961, 65, 243
- 61RSS R. A. Robinson, J. M. Stokes, and R. H. Stokes, J. Phys. Chem., 1961, 65, 542
- 61RT I. G. Ryss and V. B. Tulchinskii, Russ. J. Inorg. Chem., 1961, 6, 947 (1856)
- 61RW T. E. Rogers and G. M. Waind, Trans. Far. Soc., 1961, 83, 3373
- 61S S. Sobkowski, <u>J. Inorg. Nucl. Chem.</u>, 1961, 23, 81
- 61Sa R. B. Simpson, <u>J. Amer. Chem. Soc.</u>, 1961, <u>83</u>, 4711

- 61Sb M. B. Shchigol, Russ. J. Inorg. Chem., 1961, 6, 1361 (2693)
- 61Sc K. Schlyter, Trans. Roy. Inst. Tech. Stockholm, 1961, No. 182 (see 64SM)
- 61Sd J. P. Schwing, Thesis, Univ. Strasbourg, 1961
- 61SA F. G. Sherif and A. M. Awad, J. Inorg. Nucl. Chem., 1961, 19, 94
- 61SB M. B. Shchigol and N. B. Burchinskaya, <u>Russ. J. Inorg. Chem.</u>, 1961, <u>6</u>, 1267 (2504); (see also A. K. Babko, ibid., 1962, 7, 1373 (2642)
- 61SF R. W. Soughton, A. J. Fry, and J. E. Barney, II, <u>J. Inorg. Nucl. Chem</u>., 1961, <u>19</u>, 286
- 61SM E. L. Short and D. F. C. Morris, <u>J. Inorg. Nucl. Chem.</u>, 1961, <u>18</u>, 192
- 61SMa C. I. Sanders and D. S. Martin, Jr., J. Amer. Chem. Soc., 1961, 83, 807
- 61SN P. Senise and E. F. A. Neves, J. Amer. Chem. Soc., 1961, 83, 4146
- 61SR P. Schindler and M. Reinert, Chimia (Switz.), 1961, 15, 534
- 61SRD N. Sutin, J. K. Rowley, and R. W. Dodson, J. Phys. Chem., 1961, 65, 1248
- 61T Ya. I. Turyan, Russ. J. Inorg. Chem., 1961, 6, 80 (162)
- 61Ta G. A. Tsigdinos, Thesis, Boston Univ., 1961
- 61Tb J. Y. Tong, TID-13337, 1961
- 61Tc I. A. Taub, Thesis, Univ. Minnesota, 1961; Diss. Abs., 1961, 22, 1401
- 61TB V. F. Toropova and F. M. Batyrshina, Izv. Vyssh. Ucheb. Zaved., Khim., 1961, 4, 11
- 61TD I. V. Tananaev and E. N. Deichman, <u>Radiochem</u>. (AEC-TR-4581), 1961, <u>3</u>, No. 6, 208 (712)
- 61TG A. W. Taylor and E. L. Gurney, J. Phys. Chem., 1961, 65, 1613
- 61TH R. S. Tobias and Z. Z. Hugus, Jr., J. Phys. Chem., 1961, 65, 2165
- 61TJ J. F. Tate and M. M. Jones, J. Phys. Chem., 1961, 65, 1661
- 61TO N. Tanaka and H. Ogino, Bull. Chem. Soc., Japan, 1961, 34, 1040
- 61V V. P. Vasilev, <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1961, <u>4</u>, 936
- 61VQ C. E. Vanderzee and A. S. Quist. J. Phys. Chem., 1961, 65, 118
- 61WD R. M. Wallace and E. K. Dukes, J. Phys. Chem., 1961, 65, 2094
- 61WK J. M. White, P. Kelly, and N. C. Li, J. Inorg. Nucl. Chem., 1961, 16, 337
- 61WL J. M. Wright, W. T. Lindsay, Jr., and T. R. Druga, TID 4500=WADD-TM-204, 1961
- 61Y R. G. Yalman, J. Amer. Chem. Soc., 1961, 83, 4142
- 62A I. Ahlberg, Acta Chem. Scand., 1962, 16, 887
- 62AM H. Asai and M. Morales, Arch. Biochem. Biophys., 1962, 99, 383

- 62AMa J. M. Austin and A. D. Mair, J. Phys. Chem., 1962, 66, 519
- 62AP V. I. Altynov and B. V. Ptitsyn, Russ. J. Inorg. Chem., 1962, 7, 1088 (2103)
- 62AY G. Atkinson and M. Yokoi, J. Phys. Chem., 1962, 66, 1520
- 62B H. Bode, Z. Anorg. Allg. Chem., 1962, 317, 3
- 62Ba Yu. A. Buslaev, Russ. J. Inorg. Chem., 1962, 7, 619 (1204)
- 62Bb G. Biedermann, Proc. 7th Int. Conf. Coord. Chem., Stockholm-Uppsala, 1962, p. 159
- 62Bc L. A. Blatz, J. Phys. Chem., 1962, 66, 160
- 62BA J. A. Bolzan and A. J. Arvia, Electrochim. Acta, 1962, 7, 589
- 62BB A. Bukowska and H. Basinska, Chem. Anal., 1962, 7, 559
- 62BBa A. Bukowska and H. Basinska, Chem, Anal., 1962, 7, 563
- 62BC G. Biedermann and L. Ciavatta, Acta Chem. Scand., 1962, 16, 2221
- 62BD O. D. Bonner, H. Dolyniuk, C. F. Jordan, and G. B. Hanson, <u>J. Inorg. Nucl. Chem.</u>, 1962, <u>24</u>, 689
- 62BG A. K. Babko, G. I. Gridchina, and B. I. Nabivanets, <u>Russ. J. Inorg. Chem.</u>, 1962, 7, 66 (132)
- 62BK T. A. Belyavskaya and I. F. Kolosova, <u>Vestnik Moskov. Univ.</u>, <u>Ser. II</u>, 1962, No. 5,
- 62BM C. F. Baes, Jr., and N. J. Meyer, <u>Inorg. Chem.</u>, 1962, <u>1</u>, 780
- 62BS D. Banerjea and I. P. Singh, <u>J. Indian Chem. Soc.</u>, 1962, <u>39</u>, 353
- 62BW B. Behr and H. Wendt, Z. Elektrochem., 1962, <u>66</u>, 223
- 62CI J. J. Christensen and R. M. Izatt, <u>J. Phys. Chem.</u>, 1962, <u>66</u>, 1030
- 62CM J. R. Cooke and M. J. Minski, J. Appl. Chem., 1962, 12, 123
- 63CMa R. L. Causey and R. M. Mazo, Anal. Chem., 1962, 34, 1630
- 62CO B. Carell and A. Olin, Acta Chem. Scand., 1962, 16, 2350
- 62COa B. Carell and A. Olin, Acta Chem. Scand., 1962, 16, 4
- 62DC G. D'Amore, G. Calabro, and P. Curro, Atti Soc. Peloritana, Sci. Fis. Mat. Nat., 1962, 8, 265
- 62DG M. K. Dorfman and J. W. Gryder, Inorg. Chem., 1962, 1, 799
- 62DGa K. P. Dubey and S. Ghosh, Z. Anorg. Allg. Chem., 1962, 319, 204
- 62DK J. F. Duncan and D. L. Kepert, J. Chem. Soc., 1962, 205
- 62DL D. Dyrssen and P. Lumme, Acta Chem. Scand., 1962, 16, 1785
- 63DS G. G. Davis and W. M. Smith, Canad. J. Chem., 1962, 40, 1836

62EE H. R. Ellison, J. O. Edwards, and E. A. Healy, J. Amer. Chem. Soc., 1962, 84, 1820

- 62EK N.P. Ermolaev and N. N. Krot, Soviet Radiochem., 1962, 4, 600 (678)
- 62ET A. M. Egorov and Z. P. Titova, Russ. J. Inorg. Chem., 1962, 7, 141 (275)
- 62F M. H. Frere, Proc. Soil Sci. Soc. Amer., 1962, 26, 48
- 62FE T. D. Farr and K. L. Elmore, J. Phys. Chem., 1962, 66, 315
- 62FP C. R. Frink and M. Peech, Soil Sci., 1962, 20, 346; Inorg. Chem., 1963, 2, 473
- 62FR R. O. Fournier and J. J. Rowe, Amer. Mineralogist, 1962, 47, 897
- 62FSD Ya. D. Fridman, R. I. Sorochan, and N. V. Dolgashova, <u>Russ. J. Inorg. Chem</u>., 1962, 7, 1100 (2127)
- 62FSV Ya. D. Fridman, Dzh. S. Sarbaev, and R. A. Veresova, <u>Russ. J. Inorg. Chem.</u>, 1962, <u>7</u>, 15b (305)
- 62FT N. Fogel, J. M. J. Tai, and J. Yarborough, J. Amer. Chem. Soc., 1962, 84, 1145
- 62G I. Grenthe, Acta Chem. Scand., 1962, 16, 2300
- 62GA A. M. Golub and O. E. Andreichenko, Russ. J. Inorg. Chem., 1962, 7, 279 (549)
- 62GG H. Gnepf, O. Gubeli, and G. Schwarzenbach, Helv. Chim. Acta., 1962, 45, 1171
- 62GM A. D. Gelman, A. I. Moskvin, and V. P. Zaitseva, Radiokhim., 1962, 4, 154
- 62GT R. M. Garrels and M. E. Thompson, Amer. J. Sci., 1962, 260, 57
- 62H F. Halla, Monat. Chem., 1962, 93, 948
- 62Ha G. P. Haight, Jr., Proc. 7th Int. Conf. Coord. Chem., Stockholm-Uppsala, 1962, 318
- 62Hb R. E. Hester, Thesis, Cornell Univ.; 1962; Diss. Abs., 1962, 23, 1510
- 62HZ G. P. Haight, Jr., J. Zoltewicz, and W. Evans, Acta Chem. Scand., 1962, 16, 311
- 62I N. Ingri, Acta Chem. Scand., 1962, 16, 439
- 62IC R. M. Izatt, J. J. Christensen, R. T. Pack, and R. Bench, <u>Inorg. Chem</u>., 1962, <u>1</u>, 828
- 62IN B. N. Ivanov-Emin, L. A. Niselson, and L. E. Larionova, <u>Russ. J. Inorg. Chem.</u>, 1962, 7, 266 (522)
- 62JE J. Jordan and G. J. Ewing, Inorg. Chem., 1962, $\underline{1}$, 587
- 62JP P. K. Jena and B. Prasad, J. Indian Chem. Soc., 1962, 39, 33
- 62KB P. N. Kovalenko and K. N. Bagdasarov, <u>Russ. J. Inorg. Chem.</u>, 1962, <u>7</u>, 380 (739), 913 (1765), 915 (1769)
- 62KC F. Ya. Kulba and N. N. Chernova, <u>Russ. J. Inorg., Chem.</u>, 1962, <u>7</u>, 824 (1595)
- 62KG P. N. Kovalenko and O. I. Geiderovich, Izv. Vyssh. Ucheb. Zaved., Khim, 1962, 5, 58

- 62L V. K. LaMer, J. Phys. Chem., 1962, 66, 973
- 62La W. T. Lindsay, Jr., J. Phys. Chem., 1962, 66, 1341
- 62LG V. A. Latysheva and L. P. Goryanina, Russ. J. Inorg. Chem., 1962, 7, 377 (732)
- 62LL P. Lumme and H. Lumme, Suomen Kem., 1962, B35, 120
- 62LN Yu. A. Lukyanychev and N. S. Nikolaev, Soviet J. Atom. Ener., 1962, 13, 779 (179)
- 62LY I. A. Lebedev and G. N. Yakovlev, Radiokhim., 1962, 4, 304
- 62LYa M. W. Lister and Y. Yoshino, Canad. J. Chem., 1962, 40, 1490
- 62M K. Mizumachi, Nippon Kagaku Zasshi, 1962, 83, 61, 67
- 62MF G. W. Morey, R. O. Fournier, and J. J. Rowe, <u>Geochim. Cosmochim. Acta</u>, 1962, <u>26</u>, 1029
- 62ML A. O. McDougall and F. A. Long, J. Phys. Chem., 1962, 66, 429
- 62MM P. G. Manning and C. B. Monk, Trans. Faraday Soc., 1962, 58, 938
- 62MR I. N. Marov and D. I. Ryalbchikov, Russ. J. Inorg. Chem., 1962, 7, 533 (1036)
- 62MS D. F. C. Morris and E. L. Short, Electrochim. Acta, 1962, 7, 385
- 62MSa D. F. C. Morris and E. L. Short, J. Chem. Soc., 1962, 2672
- 62MZ A. I. Moskvin and V. P. Zaitseva, Radiokhim., 1962, 4, 73
- 62N B. I. Nabivanets, <u>Russ. J. Inorg. Chem.</u>, 1962, <u>7</u>, 212 (417)
- 62NA R. K. Nanda and S. Aditya, Z. Phys. Chem. (Frankfurt), 1962, 35, 139
- 62NF V. A. Nazarenko, G. V. Flyantikova, and N. V. Lebedeva, <u>Ukr. Khim. Zh.</u>, 1962, <u>28</u>, 266; AEC-TR-6192, No. 2, p. 309
- 62NL N. S. Nikolaev and Yu. A. Lukyanychev, <u>Soviet J. Atom. Ener.</u>, 1962, <u>12</u>, 356 (334)
- 62NM M. S. Novakovskii and M. G. Mushkina, Russ. J. Inorg. Chem., 1962, 1, 549 (1068)
- 62NP G. P. Nikitina and M. F. Pushlenkov, Radiokhim. 1962, 4, 137
- 62P A. D. Paul, <u>J. Phys. Chem.</u>, 1962, <u>66</u>, 1248
- 62Pa D. D. Perrin, J. Chem. Soc., 1962, 2197
- 62Pb D. D. Perrin, <u>J. Chem. Soc.</u>, 1962, 4500
- 62Pc H. A. Pohl, <u>J. Chem. Eng. Data</u>, 1962, <u>7</u>, 295
- 62PA V. M. Peshkova and P. Ang, Russ. J. Inorg. Chem., 1962, 7, 1091 (2110)
- 62PB N. P. Prokhorova and N. E. Brezhneva, Russ. J. Inorg. Chem., 1962, 7, 953 (1846)
- 62PF R. L. Pecsok and A. N. Fisher, <u>Inorg. Chem.</u>, 1962, <u>1</u>, 155
- 62PM D. F. Peppard, G. W. Mason, and I. Hucker, J. Inorg. Nucl. Chem., 1962, 24, 881

- 62PN V. I. Paramonova and N. M. Nikolaevna, Radiokhim. 1962, 4, 84
- 62PNN V. I. Paramonova, B. P. Nikolskii, and N. M. Nikolaeva, <u>Russ. J. Inorg. Chem.</u>, 1962, 7, 528 (1028)
- 62PO L. Pajdowski and A. Olin, Acta Chem. Scand., 1962, 16, 983
- 62PPC J. A. Perez-Bustamante, J. B. Polonio, and R. F. Cellini, An. Soc., Esp. Fis. Quim., 1962, B48, 677
- 62PPL B. I. Peshchevitskii, B. V. Ptitsyn, and N. M. Leskova, <u>Izv. Sibir. Otdel. Akad.</u>
 Nauk. SSSR, 1962, No. 11, 143
- 62RB R. E. Reeves and P. Bragg, J. Amer. Chem. Soc., 1962, 84, 2491
- 62RD H. M. Rootare, V. R. Deitz, and F. G. Carpenter, J. Colloid Sci., 1962, 17, 179
- 62RE D. I. Ryabchikov, A. N. Ermakov, V. K. Belyaeva, I. N. Marov, and K. M. Yao, <u>Russ</u>.
 J. Inorg. Chem., 1962, 7, 34 (69)
- 62RJ R. M. Rush, J. S. Johnson, and K. A. Kraus, Inorg. Chem., 1962, 1, 378
- 62RK A. Roppongi and T. Kato, Bull. Chem. Soc. Japan, 1962, 35, 1086
- 62RKa A. Roppongi and T. Kato, Bull. Chem. Soc. Japan, 1962, 35, 1092
- 62S P. Sakellaridis, Compt. Rend. Acad. Sci. Paris, 1962, 255, 127
- 62Sa Y. Sasaki, Acta Chem. Scand., 1962, 16, 719
- 62Sb D. N. Sokolv, <u>Trudy Po Khim. Khim. Tekh.</u>, 1962, No. 1, 55; <u>Chem. Abs</u>., 1963, <u>58</u>, 8453a
- 62Sc K. Schlyter, Trans. Roy. Inst. Tech. Stockholm, 1962, No. 195
- 62Sd K. Schlyter, Trans. Roy. Inst. Tech. Stockholm, 1962, No. 196
- 62Se G. F. Smith, Trans. Faraday Soc., 1962, <u>58</u>, 350
- 62SA P. Schindler, H. Althaus, A. Schurch, and W. Feitkuecht, Chimia (Switz.), 1962, 16, 42
- 62SD A. B. Scott, R. G. Dartau, and S. Sapsoonthorn, Inorg. Chem., 1962, 1, 313
- 62SE S. I. Syshlyaev and N. P. Edeleva, <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1962, <u>5</u>, 871
- 62SB G. Schwarzenbach, G. Geier, and J. Littler, Helv. Chim. Acta, 1962, 45, 2601
- 62SH E. R. Segnit, H. D. Holland, and C. J. Biscardi, Geochim. Cosmochim. Acta, 1962, 26, 1301
- 62SK Z. A. Sheka and E. E. Kriss, Radiokhim. 1962, 4, 720
- 62SLK N. M. Selivanova, Z. L. Leshchinskaya, and T. V. Klushina, <u>Russ. J. Phys. Chem.</u>, 1962, 36, 719 (1349)
- 62SLW P. E. Sturrock, E. D. Loughran, and J. I. Watters, Inorg. Chem., 1962, 1, 457
- 62ST K. W. Sykes and B. L. Taylor, <u>Proc. 7th Int. Conf. Coord. Chem.</u>, Stockholm-Uppsala, 1962, p. 31

- 62TE N. Tanaka, K. Ebata and T. Murayama, Bull. Chem. Soc. Japan, 1962, 35, 124
- 62TR Ya. I. Turyan and V. F. Romanov, Russ. J. Inorg. Chem., 1962, 7, 558 (1087)
- 62TS J. Terpilowski and R. Staroscik, Chemia Analityczna, 1962, 7, 629
- 62TZ S. Tribalat and C. Zeller, Bull. Soc. Chim. France, 1962, 2041
- 62V V. P. Vasilev, Russ. J. Inorg. Chem., 1962, 7, 283 (555)
- 62Va V. P. Vasilev, Russ. J. Inorg. Chem., 1962, 7, 924 (1788)
- 62VF L. P. Varga and H. Freund, J. Phys. Chem., 1962, 66, 21
- 62W T. Williams, J. Inorg. Nucl. Chem., 1962, 24, 1215
- 62WG M. J. M. Woods, P. K. Gallagher, and E. L. King, Inorg. Chem., 1962, 1, 55
- 62WS L. J. Wittenberg and R. H. Steinmeyer, J. Inorg. Nucl. Chem., 1962, 24, 1015
- 62YI T. F. Young and D. E. Irish, Ann. Rev. Phys. Chem., 1962, 13, 448
- 63A N. V. Akselrud, Russ. Chem. Rev., 1963, 32, 353 (800)
- 63AG S. Ahrland, I. Grenthe, L. Johansson, and B. Noren, <u>Acta Chem. Scand.</u>, 1963, <u>17</u>, 1567
- 63AK S. Ahrland, D. Karipides, and B. Noren, Acta Chem. Scand., 1963, 17, 411
- 63AM K. A. Allen and W. J. McDowell, J. Phys. Chem., 1963, 67, 1138
- 63AS A. M. Azzam and I. A. W. Shimi, Z. Anorg. Allg. Chem., 1963, 321, 284
- 63BA J. A. Bolzan and A. Arvia, Electrochim. Acta, 1963, 8, 375
- 63BF H. Bilinski, H. Furedi, M. Branica, and B. Tezak, Croat. Chim. Acta, 1963, 35, 19
- 63BJ J. A. Bolzan, E. A. Jauregui, and A. J. Arvia, Electrochem. Acta, 1963, 8, 841
- 63BL K. Bachmann and K. H. Lieser, Ber. Bunsengesel. Phys. Chem., 1963, 67, 802
- 63BLN A. K. Babko, V. V. Lukachina, and B. I. Nabivanets, <u>Russ. J. Inorg. Chem.</u>, 1963, <u>8</u>, 957 (1939)
- 63BP R. L. Benoit and J. Place, Canad. J. Chem., 1963, 41, 1170
- 63BPa J. R. Buckholz and R. E. Powell, <u>J. Amer. Chem. Soc.</u>, 1962, <u>85</u>, 509
- 63BPA J. A. Bolzan, J. J. Podesta, and A. J. Arvia, <u>An. Asoc. Quim. Argentina</u>, 1962, <u>51</u>,
- 63BS M. Bjorkman and L. G. Sillen, <u>Trans. Roy. Inst. Technol. Stockholm</u>, 1963, No. 199
- 63BW N. S. Bayliss and D. W. Watts, <u>Aust. J. Chem.</u>, 1963, <u>16</u>, 927
- 63C L. Ciavatta, Arkiv Kemi, 1963, 21, 129
- 63Ca P. L. Cloke, Geochim. Cosmochim. Acta, 1963, 27, 1264 1299

63CI J. J. Christensen, R. M. Izatt, J. D. Hale, R. T. Pack and G. D. Watt, <u>Inorg.</u> Chem., 1963, 2, 337

- 63CK M. L. Chepelevetskii and K. F. Kharitonovich, <u>J. Anal. Chem. USSR</u>, 1963, <u>18</u>, 314 (357)
- 63CU G. R. Choppin and P. J. Unrein, J. Inorg. Nucl. Chem., 1963, 25, 387
- 63DD J. Douphin, S. Dauphin, D. Chatonier, and G. Andraud, <u>Bull. Soc. Chim. France</u>, 1963, 2751; J. Dauphin, S. Dauphin, D. Chatonier, and M. T. Vialatte, <u>ibid</u>., 2754
- 63DH H. S. Dunsmore, S. Hietanen, and L. G. Sillen, Acta Chem. Scand., 1963, 17, 2644
- 63DK H. S. Dunsmore, T. R. Kelly, and G. H. Nancollas, <u>Trans. Faraday Soc.</u>, 1963 59, 2606
- 63DL A. J. Dedman, T. J. Lewis, and D. H. Richards, J. Chem. Soc., 1963, 2456
- 63DS H. S. Dunsmore and L. G. Sillen, <u>Acta Chem. Scand.</u>, 1963, <u>17</u>, 2657
- 63DW L. A. D'Orazio and R. H. Wood, J. Phys. Chem., 1963, 67, 1435
- 63E A. J. Ellis, Amer. J. Sci., 1963, 261, 259
- 63Ea A. J. Ellis, J. Chem. Soc., 1963, 4300
- 63EK J. H. Espenson and E. L. King, J. Amer. Chem. Soc., 1963, 85, 3328
- 63EM I. Eliezer and Y. Marcus, J. Inorg. Nucl. Chem., 1963, 25, 1465
- 63EMK T. Erdey-Gruz, L. Majthenyi, and E. Kugler, Acta Chim. Acad. Sci. Hung., 1963, 67, 393
- 63F M. L. Freedman, J. Inorg. Nucl. Chem., 1963, 25, 575
- 63FD Ya. D. Fridman, R. K. Drachevskoya, and V. A. Shestkova, in <u>Redkozemelnye</u> Elementy, Izd. Nauka, Moskva, 1963, p. 166
- 63FL P. Flood, T. J. Lewis, and D. H. Richards, J. Chem. Soc., 1963, 2446
- 63FP V. Frei and J. Podlahova, Chem. Z., 1963, 87, 47
- 63FS W. Feitknecht and P. Schindler, Pure Appl. Chem., 1963, 6, 130
- 63FU V. Frei and A. Ustyanovichova, Russ. J. Phys. Chem., 1963, 37, 612 (1153)
- 63G I. Greenwald, J. Phys. Chem., 1963, 67, 2853
- 63GK A. M. Golub and R. A. Kostrova, <u>Ukr. Khim. Zh.</u>, 1963, <u>29</u>, 128
- 63GKa G. Gattow and B. Krebs, Z. Anorg. Allg. Chem., 1963, 323, 13
- 63GKG A. A. Grinberg, N. V. Kiseleva, and M. I. Gelfman, <u>Doklady Chem.</u>, 1963, <u>153</u>, 1025 (1327)
- 63GL P. Gerding, I. Leden and S. Sunner, Acta Chem. Scand., 1963, 17, 2190
- 63GR J. F. Goodman and P. Robson, J. Chem. Soc., 1963, 2871

- 63GS H. Galal-Gorchev and W. Stumm, J. Inorg. Nucl. Chem., 1963, 25, 567
- 63H J. D. Hem, J. Chem. Eng. Data. 1963, 8, 99
- 63Ha P. B. Hostetler, J. Phys. Chem., 1963, 67, 720
- 63Hb P. B. Hostetler, Amer. J. Sci., 1963, 261, 238
- 63Hc E. Hogfeldt, Acta Chem. Scand., 1963, 17, 785
- 63Hd S. D. Hamann, J. Phys. Chem., 1963, 67, 2233
- 63HC R. N. Heistand and A. Clearfield, J. Amer. Chem. Soc., 1963, 85, 2566
- 63HI L. D. Hansen, R. M. Izatt, and J. J. Christensen, Inorg. Chem., 1963, 2, 1243
- 63HIa J. D. Hale, R. M. Izatt and J. J. Christensen, J. Phys. Chem., 1963, 67, 2605
- 63HR S. Hietanen, B. R. L. Row, and L. G. Sillen, Acta Chem. Scand., 1963, 17, 2735
- 63HS M. N. Hughes and G. Stedman, <u>J. Chem. Soc.</u>, 1963, 1239
- 63I N. Ingri, Acta Chem. Scand., 1963, 17, 573, 581
- 63Ia N. Ingri, Acta Chem. Scand., 1963, 17, 597
- 63JW A. Johansson and E. Wanninen, Talanta, 1963, 10, 769
- 63K E. I. Kolesnikova, Russ. J. Inorg. Chem., 1963, 8, 641 (1239)
- 63Ka S. K. Kundra, <u>Indian J. Chem.</u>, 1963, 1, 362
- 63Kb N. P. Komar, Uch. Zap. Kharkov Univ., 1963, 133, 189
- 63KB I. F. Kolosova and T. A. Belyauskaya, <u>Vestnik Moskov. Univ.</u>, <u>Khim.</u>, 1963, <u>18</u>, No. 1, 52
- 63KBa P. N. Kovalenko and K. N. Bagdasarov, <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1963, <u>6</u>, 546
- 63KM F. Ya. Kulba, V. E. Mironov, V. A. Fedorov, and V. A. Baevskii, <u>Russ. J. Inorg.</u> <u>Chem.</u>, 1963, <u>8</u>, 1012 (1945)
- 63KS H. Koch and H. Schmidt, Z. Naturforsch., 1963, 18b, 936
- 63KV D. Konrad and A. A. Vlcek, Coll. Czech. Chem. Comm., 1963, 28, 595
- 63L D. Lewis, Acta Chem. Scand., 1963, 17, 1891
- 63LC A. Liberti, V. Chiantella, and F. Corigliano, J. Inorg. Nucl. Chem., 1963, 25, 415
- 63LK V. I. Levin, G. V. Korpusov, N. M. Manko, E. N. Patrusheva, N. P. Prokhorova, and G. F. Platnov, Soviet Atom. Ener. 1963, 15, 828 (138)
- 63LL P. Lumme and H. Lumme, Suomen Kem., 1963, B36, 176
- 63LLa P. Lumme and H. Lumme, Suomen Kem., 1963, B36, 192
- 63LM S. H. Laurie and C. B. Monk, J. Chem. Soc., 1963, 3343

- 63LMa J. Lefebvre and H. Maria, Compt. Rend. Acad. Sci. Paris, 1963, 256, 3121
- 63LR T. J. Lewis, D. H. Richards, and D. A. Salter, J. Chem. Soc., 1963, 2434
- 63LZ L. I. Lebedeva and N. A. Zhukova, Russ. J. Inorg. Chem., 1963, 8, 841 (1634)
- 63M V. E. Mironov, Russ. J. Inorg. Chem., 1963, 8, 388 (764)
- 63Ma M. Cl. Musikas, Radiochim. Acta, 1963, 1, 92
- 63MF V. E. Mironov, V. A. Fedorov, and V. A. Nazarov, <u>Russ. J. Inorg. Chem.</u>, 1963, <u>8</u>, 1102 (2109)
- 63MG A. I. Moskvin, I. Geletseanu, and A. V. Lapitskii, <u>Doklady Chem</u>., 1963, <u>149</u>, 264 (611)
- 63MH S. S. Mesaric and D. N. Hume, Inorg. Chem., 1963, 2, 788
- 63MHa S. S. Mesaric and D. N. Hume, Inorg. Chem., 1963, 2, 1063
- 63MK V. E. Mironov, F. Ya. Kulba, and V. A. Fedorov, <u>Russ. J. Inorg. Chem</u>. 1963, <u>8</u>, 601 (1161)
- 63MKa V. E. Mironov, F. Ya. Kulba, V. A. Fedorov, and T. F. Nikitenko, <u>Russ. J. Inorg.</u>
 Chem., 1963, 8, 964 (1852)
- 63MKb V. E. Mironov, F. Ya. Kulba, V. A. Fedorov, and O. B. Tikhomirov, <u>Russ. J. Inorg.</u> <u>Chem.</u>, 1963, <u>8</u>, 1322 (2524)
- 63MKc V. E. Mironov, F. Ya. Kulba, V. A. Fedorov, and O. B. Tikhomirov, <u>Russ. J. Inorg.</u> <u>Chem.</u>, 1963, <u>8</u>, 1328 (2536)
- 63MKN V. E. Mironov, F. Ya. Kulba, and V. A. Nazarov, <u>Russ. J. Inorg. Chem.</u>, 1963, <u>8</u>, 470 (916)
- 63MKT V. E. Mironov, F. Ya. Kulba, and O. I. Trifonov, <u>Russ. J. Inorg. Chem.</u>, 1963, <u>8</u>, 1104 (2113)
- 63MM Y. Marcus and D. Maydan, J. Phys. Chem., 1963, 67, 979
- 63MMa D. Maydan and Y. Marcus, <u>J. Phys. Chem.</u>, 1963, <u>67</u>, 987
- 63ND D. A. Netzel and H. A. Droll, <u>Inorg. Chem.</u>, 1963, <u>2</u>, 412
- 63NP G. H. Nancollas and N. Purdie, Trans. Faraday Soc., 1963, 59, 735
- 63NPa J. Nowikow and G. Pfrepper, Z. Naturforsch., 1963, 18b, 993
- 63P L. Pajdowski, Rocz. Chem., 1963, 37, 1351, 1363
- 63Pa K. N. Polydoropoulos, Diss., Univ. Athens, 1963
- 63Pb A. J. Panson, J. Phys. Chem., 1963, 67, 2177
- 63PA V. M. Peshkova and P. An. Vestnik Moskov. Univ., Khim., 1963, 18, No. 1, 40
- 63PB R. A. Penneman, R. Bain, G. Gilbert, L. H. Jones, R. S. Nyholm, and G. K. N. Reddy, J. Chem. Soc., 1963, 2266
- 63PE L. Pinto, K. Egger, and P. Schindler, Helv. Chim. Acta, 1963, 46, 425

63PF D. Peschanski and J. M. Fruchart, Compt. Rend. Acad. Sci. Paris, 1963, 257, 1853

- 63PG R. C. Phillips, P. George, and F. J. Rutman, Biochem. 1963, 2, 501
- 63PL G. Popa, C. Luca, and E. Iosif, Z. Phys. Chem. (Leipzig) 1963, 222, 49
- 63PS B. G. Pozharskii, T. N. Sterlingova, and A. E. Petrova, <u>Russ. J. Inorg. Chem.</u>, 1963, 8, 831 (1594)
- 63R B. N. Ryzhenko, Geochem., 1963, 151 (137)
- 63RB R. W. Ramette and R. F. Broman, J. Phys. Chem., 1963, 67, 942
- 63RC E. F. C. H. Rohwer and J. J. Cruywagen, J. S. African Chem. Inst., 1963, 16, 26
- 63RD R. W. Ramette and E. A. Dratz, <u>J. Phys. Chem.</u>, 1963, <u>67</u>, 940
- 63RF W. L. Reynolds and S. Fukushima, Inorg. Chem., 1963, 2, 176
- 63RH C. L. Rulfs, R. F. Hirsch, and R. A. Pacer, Nature, 1963, 199, 66
- 63RJ R. M. Rush and J. S. Johnson, J. Phys. Chem., 1963, 67, 821
- 63RS T. P. Radhakrishnan and A. K. Sundaram, J. Electroanal. Chem., 1963, 5, 124
- 63RSa R. W. Ramette and J. B. Spencer, <u>J. Phys. Chem.</u>, 1963, <u>67</u>, 944
- 63S I. Szilard, Acta Chem. Scand., 1963, 17, 2674
- 63Sa M. B. Shchigol, Russ. J. Inorg. Chem., 1963, 8, 707 (1361)
- 63Sb M. Schellenberg, Diss., ETH, Zurich, 1963
- 63Sc E. Schumann, Diss., Tech. Hoch., Karsruhe, 1963
- 63Sd P. Schindler, Chimia (Switz.), 1963, 17, 313
- 63SA P. Schindler, H. Althaus, and W. Feitknecht, Gazz. Chim. Ital., 1963, 93, 168
- 63SB G. Schorsch and J. Bye, Compt. Rend. Acad. Sci. Paris, 1963, 257, 2833
- 63SBa U. V. Seshaiah and S. N. Banerji, <u>Proc. Nat. Acad. Sci. India</u>, 1963, <u>33</u>, 61
- 63SD J. Shankar and B. V. DeSouza, <u>Aust. J. Chem.</u>, 1963, <u>16</u>, 1119
- 63SG G. Schwarzenbach and G. Geier, Helv. Chim. Acta. 1963, 46, 906
- 63SI I. E. Starik and L. I. Ilmenkova, <u>Soviet Radiochem.</u>, 1963, <u>5</u>, 209 (236)
- 63SK V. P. Shvedov and K. Kotegov, <u>Soviet Radiochem.</u>, 1963, <u>5</u>, 342 (374)
- 63SL N. M. Selivanova and Z. L. Leshchinskaya, Russ. J. Inorg. Chem., 1963, 8, 286 (563)
- 63SM P. Schindler, W. Michaelis, and W. Feitknecht, Helv. Chim. Acta, 1963, 46, 444
- 63SR J. W. Stout and R. A. Robie, J. Phys. Chem., 1963, 67, 2248
- 63SRM P. E. Sturrock, J. D. Ray, J. McDowell, and H. R. Hunt, Jr., <u>Inorg. Chem.</u>, 1963, <u>2</u>, 649

63SS O. E. Schupp, III, P. E. Sturrock, and J. I. Watters, Inorg. Chem., 1963, 2, 106

- 63SW H. Strehlow and H. Wendt, Inorg. Chem., 1963, 2, 6
- 63SWa G. Schwarzenbach and M. Widmer, Helv. Chim. Acta, 1963, 46, 2613
- 63SZ Yu. I. Sannikov, V. L. Zolotavin, and I. Ya. Bezrukov, <u>Russ. J. Inorg. Chem.</u>, 1963, <u>8</u>, 474 (923)
- 63TC S. Tribalat and J. M. Caldero, <u>J. Electroanal. Chem.</u>, 1963, <u>5</u>, 176; <u>Compt. Rend.</u> Acad. Sci. Paris, 1962, 255, 925
- 63TF A. W. Taylor, A. W. Frazier, E. L. Gurney and J. P. Smith, <u>Trans. Faraday Soc.</u>, 1963, 59, 1585
- 63TN I. N. Tananaev, N. S. Nikolaev, Yu. A. Lukyanychev, and I. F. Alenchikova, Khimiya Ftoristykh Sodinenii Aktinidov, Izd. Akad. Nauk SSSR, 1963
- 63TS N. Tanaka, Y. Saito, and H. Ogino, Bull. Chem. Soc. Japan, 1963, 36, 794
- 63TU R. Tsuchiya and A. Umayahara, Bull. Chem. Soc. Japan; 1963, 36, 554
- 63TV I. V. Tananaev and V. P. Vasileva, Russ. J. Inorg. Chem., 1963, 8, 555 (1070)
- 63UK A. I. Ulyanov and T. I. Kazakova, Bull. Acad. Sci. USSR, 1963, 355 (393)
- 63VH L. P. Varga and D. N. Hume, Inorg. Chem., 1963, 2, 201
- 63VM V. P. Vasilev and P. S. Mukhina, Russ. J. Inorg. Chem., 1963, 8, 986 (1895)
- 63VR V. M. Vdovenko, G. A. Ramanov, and V. A. Shcherbakov, <u>Soviet Radiochem.</u>, 1963, <u>5</u>, 538 (581)
- 63VRa V. M. Vdovenko, G. A. Romanov, and V. A. Shcherbakov, <u>Soviet Radiochem.</u>, 1963, <u>5</u>, (664)
- 63VS C. E. Vanderzee and J. A. Swanson, <u>J. Phys. Chem.</u>, 1963, <u>67</u>, 2608
- 63VV V. P. Vasilev, V. N. Vasileva, N. A. Klindukhova, and A. N. Parfenova, <u>Izv. Vyssh.</u> Ucheb. Zaved., Khim., 1963, 6, 339
- 63W R. L. S. Willix, Trans. Faraday Soc., 1963, 59, 1315
- 63WS J. I. Watters, P. E. Sturrock, and R. E. Simonaitis, Inorg. Chem., 1963, 2, 765
- 63YR K. B. Yatsimirskii and L. P. Raizman, Russ. J. Inorg. Chem., 1963, 8, 574 (1107)
- 64A J. Aveston, <u>Inorg. Chem.</u>, 1964, <u>3</u>, 98
- 64Aa F. Achenza, Ann. Chim. (Italy), 1964, 54, 240
- 64AA J. Aveston, E. W. Anacker, and J. S. Johnson, Inorg. Chem., 1964, 3, 735
- 64AF G. P. Arkhipova, I. E. Flis, and K. P. Mishchenko, <u>J. Appl. Chem. USSR</u>, 1964, <u>37</u>, 2275 (2306)
- 64AJ S. Ahrland and L. Johansson, Acta Chem. Scand., 1964, 18, 2125
- 64AP V. I. Altynov and B. V. Ptitsyn, Russ. J. Inorg. Chem., 1964, 9, 1301 (2407)
- 64B J. C. Barnes, <u>J. Chem. Soc.</u>, 1964, 3880

- 64Ba K. Burger, Acta Chim. Acad. Sci. Hung., 1964, 40, 261
- 64Bb G. Biedermann, Svensk Kem. Tidskr., 1964, 76, 362
- 64BC G. Biedermann and L. Ciavatta, Arkiv Kemi. 1964, 22, 253
- 64BI F. Brito, N. Ingri, and L. G. Sillen, Acta Chem. Scand., 1964, 18, 1557
- 64BK R. J. Baltisberger and E. L. King, J. Amer. Chem. Soc., 1964, 86, 795
- 64BL F. Becker and H. M. Luschow, Proc. 8th Int. Conf. Coord. Chem., Vienna, 1964, 334
- 64BM J. C. Barnes and C. B. Monk, Trans. Faraday Soc., 1964, 60, 578
- 64BMa E. Ya. Benyash and T. G. Maslakova, Russ. J. Inorg. Chem., 1964, 9, 1472 (2731)
- 64BN G. Biedermann and L. Newman, Arkiv Kemi, 1964, 22, 303
- 64BP B. M. L. Bausal, S. K. Patil, and H. D. Sharma, <u>J. Inorg. Nucl. Chem.</u>, 1964, <u>26</u>, 993
- 64BR L. I. Budarin, T. A. Rumyantseva, and T. T. Sherinva, <u>Izv. Vyssh. Ucheb. Zaved.</u>, Khim., 1964, 7, 715
- 64BS A. A. Birynkov and V. I. Shlenskaya, Russ. J. Inorg. Chem., 1964, 9, 450 (813)
- 64BSa M. Bartusek and L. Sommer, Z. Phys. Chem. (Leipzig), 1964, 226, 309
- 64BU E. A. Buketov, M. Z. Ugorets, and A. S. Pashinkin, <u>Russ. J. Inorg. Chem.</u>, 1964, 9, 292 (526)
- 64C D. M. Czakis-Sulikowska, <u>Rocz. Chem.</u>, 1964, <u>38</u>, 533
- 64Ca E. H. P. Cordfunke, <u>J. Phys. Chem.</u>, 1964, <u>68</u>, 3353
- 64CI J. J. Christensen, R. M. Izatt, L. D. Hansen, and J. D. Dale, <u>Inorg. Chem.</u>, 1964, 3, 130
- 63CL C. Chen-ping and L. Lien-sen, Scientia Sinica, 1964, 13, 1334
- 64DB W. Davis, Jr., and H. J. de Bruin, J. Inorg. Nucl. Chem., 1964, 26, 1069
- 64DG F. Z. Dzhabarov and S. V. Gorbachev, Russ. J. Inorg. Chem., 1964, 9, 1297 (2399)
- 64DR D. Deveze and R. Rumpf, Compt. Rend. Acad. Sci. Paris, Sec. C, 1964, 258, 6135
- 64DRC V. R. Deitz, H. M. Rootare, and F. G. Carpenter, J. Colloid Sci., 1964, 19, 87
- 64DS D. Dyrssen and T. Sekine, <u>J. Inorg. Nucl. Chem.</u>, 1964, <u>26</u>, 981
- 64DSa H. Diebler and N. Sutin, J. Phys. Chem., 1964, 68, 174
- 64EH A. J. Eve and D. N. Hume, Inorg. Chem., 1964, 3, 276
- 64EM H. Ellison and A. E. Martell, J. Inorg. Nucl. Chem., 1964, 26, 1555
- 64F A. N. Fletcher, <u>J. Inorg. Nucl. Chem.</u>, 1964, <u>26</u>, 955
- 64FB R. Fischer and J. Bye, Bull. Soc. Chim. France, 1964, 2920

- 64FC J. P. Fackler, Jr., and I. D. Chawla, Inorg. Chem., 1964, 3, 1130
- 64FD Ya. D. Fridman and N. V. Dolgashova, Russ. J. Inorg. Chem., 1964, 9, 345 (623)
- 64FF T. L. Fabry and R. M. Fuoss, J. Phys. Chem., 1964, 68, 974
- 64FM I. E. Flis, K. P. Mishchenko, and G. I. Pusenok, <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1964, 7, 764
- 64FP V. Frei, J. Podlahova and J. Podlaha, Coll. Czech. Chem. Comm., 1964, 29, 2587
- 64FR H. N. Farrer and F. J. C. Rossotti, J. Inorg. Nucl. Chem., 1964, 26, 1959
- 64FW J. S. Fritz and H. Waki, J. Inorg. Nucl. Chem., 1964, 26, 865
- 64G E. Sh. Ganelina, J. Appl. Chem. USSR, 1964, 37, 1350 (1358)
- 64GA A. M. Golub and R. Akmyradov, Ukr. Khim. Zh., 1964, 30, 1016
- 64GH F. H. Guzzetta and W. B. Hadley, Inorg. Chem., 1964, 3, 259
- 64GK G. Gordon and D. M. H. Kern, Inorg. Chem., 1964, 3, 1055
- 64GL R. S. Guzairov, V. A. Leitsin, and S. D. Grekov, <u>Russ. J. Inorg. Chem.</u>, 1964, <u>9</u>, 10 (20)
- 64GM R. Geyer and H. Mucke, Z. Anal. Chem., 1964, 200, 210
- 64GS I. Gainar and K. W. Sykes, J. Chem. Soc., 1964, 4452
- 64H R. Hugel, <u>Bull. Soc. Chim. France</u>, 1964, 1462
- 64HK J. Haas, N. Konopik, F. Mark, and A. Neckel, <u>Monat. Chem.</u>, 1964, <u>95</u>, 1141, 1166, 1173
- 64HM G. G. Hammes and M. L. Morrell, J. Amer. Chem. Soc., 1964, 86, 1497
- 64HMF R.A. Horne, B. R. Myers, and G. R. Frysinger, Inorg. Chem., 1964, 3, 452
- 64HP R. E. Hester and R. A. Plane, J. Chem. Phys., 1964, 40, 411
- 64HPS S. D. Hamann, P. J. Pearce, and W. Strauss, J. Phys. Chem., 1964, 68, 375
- 64HR G. P. Haight, Jr., D. C. Richardson, and N. H. Coburn, <u>Inorg. Chem.</u>, 1964, <u>3</u>,
- 64HS S. Hietanen and L. G. Sillen, Acta Chem. Scand., 1964, 18, 1015
- 64HSa S. Hietanen and L. G. Sillen, Acta Chem. Scand., 1964, 18, 1018
- 64ID B. Z. Iofa and G. M. Dakar, Soviet Radiochem., 1964, 6, 396 (411)
- 64K V. N. Kumok, Russ. J. Inorg. Chem., 1964, 9, 198 (362)
- 64KB P. N. Kovalenko and K. N. Bagdasarov, Russ. J. Inorg. Chem., 1964, 9, 296 (534); J. Appl. Chem. USSR, 1964, 37, 739 (735)
- 64KS V. N. Kumok and V. V. Serebrennikov, Russ. J. Inorg. Chem., 1964, 9, 1160 (2148)

64KY F. Ya. Kulba, Yu. B. Yakovlev, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1964, <u>9</u>, 1390 (2573)

- 64L K. H. Lieser, J. Inorg. Nucl. Chem., 1964, 26, 1571
- 64La V. A. Latysheva, Khimiya Redkikh Elementov, Izd. Leningrad Univ., 1964, p. 133 (see 64SM)
- 64LA S. C. Lahiri and S. Aditya, J. Indian Chem. Soc., 1964, 41, 517
- 64LD Ch. Ch. Liang and Yu. M. Tu, Russ. J. Inorg. Chem., 1964, 9, 727 (1333)
- 64LP T. S. Laximinarayanan, S. K. Patil, and H. D. Sharma, <u>J. Inorg. Nucl. Chem.</u>, 1964, 26, 1001
- 64LR I. Leden and T. Ryhl, Acta Chem. Scand., 1964, 18, 1196
- 64LRC S. Lynn, R. G. Rinker, and W. H. Corcoran, J. Phys. Chem., 1964, 68, 2363
- 64LW S. H. Laurie, J. M. Williams, and C. J. Nyman, J. Phys. Chem., 1964, 68, 1311
- 64MK V. E. Mironov, F. Ya. Kulba, and V. A. Fedorov, <u>Russ. J. Inorg. Chem.</u>, 1964, <u>9</u>, 888 (1641)
- 64MKa V. E. Mironov, F. Ya. Kulba, A. V. Fokina, V. S. Golubeva, and V. A. Nazarov, Russ. J. Inorg. Chem., 1964, 9, 1152 (2133)
- 64MKb V. E. Mironov, F. Ya. Kulba, V. A. Fedorov, and A. V. Fedorova, <u>Russ. J. Inorg.</u> <u>Chem.</u>, 1964, <u>9</u>, 1155 (2138)
- 64MKc J. C. Mason and A. D. Kowalak, Inorg. Chem., 1964, 3, 1248
- 64MKI V. E. Mironov, F. Ya. Kulba, and Yu. E. Ivanov, <u>Russ. J. Inorg. Chem.</u>, 1964, <u>9</u>, 884 (1633)
- 64MP A. I. Moskvin and V. F. Peretrukhin, Soviet Radiochem., 1964, 6, 198 (206)
- 64MR D. F. C. Morris, G. L. Reed, and K. J. Sutton, <u>J. Inorg. Nucl. Chem.</u>, 1964, <u>26</u>, 1461
- 64MW H. A. C. McKay and J. L. Woodhead, J. Chem. Soc., 1964, 717
- 64N J. Nassler, Coll. Czech. Chem. Comm., 1964, 29, 174
- 64Na V. S. K. Nair, J. Inorg. Nucl. Chem., 1964, 26, 1911
- 64Nb G. Neumann, Acta Chem. Scand., 1964, 18, 278
- 64NH A. W. Naumann and C. J. Hallada, Inorg. Chem., 1964, 3, 70
- 64NK B. I. Nabivanets and L. N. Kudritskaya, Ukr. Khim. Zh., 1964, 30, 891
- 64NKa B. I. Kabiyanets and L. N. Kudritskaya, Ukr. Khim. Zh., 1964, 30, 1007
- 64NL B. I. Nabivanets and V. V. Lukachina, Ukr. Khim. Zh., 1964, 30, 1123
- 64NM R. I. Novoselov, Z. A. Muzykantova, and B. V. Ptitsyn, Russ. J. Inorg. Chem., 1964, 9, 442 (799)
- 64NU G. Nord (Waind) and J. Ulstrup, Acta Chem. Scand., 1964, 18, 307

- 640 H. Ohtaki, Acta Chem. Scand., 1964, 18, 521
- 64P D. D. Perrin, J. Chem. Soc., 1964, 3644
- 64Pa R. F. Platford, Canad. J. Chem., 1964, 42, 181
- 64PB N. K. Popovicheva, A. A. Biryukov, and V. I. Shlenskaya, <u>Russ. J. Inorg. Chem.</u>, 1964, 9, 803 (1482) (See 64SM)
- 64PH W. Plumb and G. M. Harris, Inorg. Chem., 1964, 3, 542
- 64PS P. I. Protsenko, O. N. Shokina, and N. P. Checkhunova, <u>Russ. J. Phys. Chem.</u>, 1964, 38, 1013 (1857)
- 64RK I. G. Ryss and N. F. Kulish, <u>Russ. J. Inorg. Chem</u>., 1964, <u>9</u>, 603 (1103), 752 (1382)
- 64RP P. A. Rock and R. E. Powell, Inorg. Chem., 1964, 3, 1593
- 64RSM G. L. Reed, K. J. Sutton, and D. F. C. Morris, <u>J. Inorg. Nucl. Chem</u>., 1964, <u>26</u> 1227
- 64RSS T. P. Radhakrishnan, S. C. Saraiya, and A. K. Sundaram, <u>J. Inorg. Nucl. Chem.</u>, 1964, 26, 378
- 64S A. P. Samodelov, Soviet Radiochem., 1964, 6, 548 (568)
- 64Sa G. Schorsch, Bull. Soc. Chim. France, 1964, 1449, 1456
- 64SA C. E. Schaffer and P. Andersen in <u>Theory and Structure of Complex Compounds</u> symposium, Wroclaw, 1962, Pergamon, Warszawa, 1964, p. 571
- 64SAa I. E. Starik, N. I. Ampelogova, and B. S. Kuznetsov, Soviet Radiochem., 1964, $\underline{6}$, 501 (519) (see 73Ab)
- 64SAb I. E. Starik, N. I. Ampelogova, and B. S. Kuznetsov, <u>Soviet Radiochem</u>., 1964, <u>6</u>, 507 (524) (see 73Ab)
- 64SAF P. Schindler, H. Althaus, and W. Feitknecht, Helv. Chim. Acta, 1964, 47, 982
- 64SB V. I. Shlenskaya and A. A. Bryukov, <u>Vestik Moskov. Univ.</u>, Khim., 1964, No. 3, 65
- 64SD V. I. Spitsyn, R. A. Dyachkova, and V. P. Khlebnikov, <u>Doklady Chem</u>., 1964, <u>157</u>, 677 (135)
- 64SH C. C. Stephenson, H. P. Hopkins, and C. A. Wulff, J. Phys. Chem., 1964, 68, 1427
- 64SLI S. A. Shchukarev, O. A. Lobaneva, M. A. Ivanova, and M. A. Kononova, <u>Russ. J. Inorg. Chem.</u>, 1964, <u>9</u>, 1503 (2791)
- 64SLM N. M. Selivanova, Z. L. Leshinskaya, A. I. Maier, and E. Yu. Muzalev. <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1964, <u>17</u>, 209
- 64SM Unpublished values quoted in L. G. Sillen and A. E. Martell, <u>Stability Constants</u>
 of <u>Metal-Ion Complexes</u>, Special Publication No. 17, The Chemical Soc.,
 London, 1964
- 64SMa V. B. Spivakovskii and L. P. Moisa, Russ. J. Inorg. Chem., 1964, 9, 1239 (2287)
- 64SS Y. Sasaki and L. G. Sillen, Acta Chem. Scand., 1964, 18, 1014

- 64SSa P. S. Shetty and P. R. Subbaraman, Indian J. Chem., 1964, 2, 428
- 64SSG P. S. Shetty, P. R. Subbaraman, and J. Gupta, Indian J. Chem., 1964, 2, 8
- 64SSL P. Salomaa, L. L. Schaleger, and F. A. Long, J. Amer. Chem. Soc., 1964, 86, 1
- 64SSW P. Sellers, S. Sunner, and I. Wadso, Acta Chem. Scand., 1964, 18, 202
- 64ST J. Ste-Marie, A. E. Torma, and A. O. Gubeli, Canad. J. Chem., 1964, 42, 662
- 64T J. Y. Tong, Inorg. Chem., 1964, 3, 1804
- 64Ta G. Thompson, Thesis, Univ. Calif. Berkeley, 1964; UCRL-11410
- 64TC I. V. Tananaev and N. N. Chudinova, Russ. J. Inorg. Chem., 1964, 9, 135 (244)
- 64TCa S. Tribalat and J. M. Caldero, Comp. Rend. Acad. Sci. Paris, Sec. C, 1964, 258
- 64TY R. S. Tobias and M. Yasuda, J. Phys. Chem., 1964, 68, 1820
- 64TYa R. S. Tobias and M. Yasuda, Canad. J. Chem., 1964, 42, 781
- 64V V. P. Vasilev, Russ. J. Inorg. Chem., 1964, 9, 354 (647)
- 64VG V. P. Vasilev and N. K. Grechina, Russ. J. Inorg. Chem., 1964, 9, 357 (647)
- 64VH L. P. Varga and D. N. Hume, Inorg. Chem., 1964, 3, 77
- 64VHa A. L. VanGeet and D. N. Hume, <u>Inorg. Chem.</u>, 1964, <u>3</u>, 523
- 64VM V. P. Vasilev and P. S. Mikhina, Izv. Vyssh. Ucheb. Zaved., Khim., 1964, 7, 711
- 64VMa V. P. Vasilev and P. S. Mikhina, Russ. J. Inorg. Chem., 1964, 9, 620 (1134)
- 64VR S. Varva and N. P. Rudenko, Vestnik Moskov. Univ., Khim., 1964, No. 6, 14
- 64W E. D. Weed, Thesis, Ohio State Univ., 1964; Diss. Abs., 1964, 25, 795
- 64Wa H. Wenger, Diss., Eidgenossische Tech. Hoch., Zurich, 1964
- 64WD T. H. Wirth and N. Davidson, J. Amer. Chem. Soc., 1964, 86, 4325
- 64WE J. H. Walsh and J. E. Earley, Inorg. Chem., 1964, 3, 343
- 64WG M. J. M. Woods, P. K. Gallagher, Z. Z. Hugus, Jr., and E. L. King, <u>Inorg. Chem.</u>, 1964, 3, 1313
- 64WS J. I. Watters and R. A. Simonaitis, Talanta, 1964, 11, 247
- 64WSa M. Widmer and G. Schwarzenbach, Helv. Chim. Acta, 1964, 47, 266
- 64YK K. B. Yatsimirskii and V. E. Kalinina, Russ. J. Inorg. Chem., 1964, 9, 611 (1117)
- 64YP K. B. Yatsimirskii and K. E. Prik, Russ. J. Inorg. Chem., 1964, 9, 995 (1838)
- 65A R. Arnek, Arkiv Kemi, 1965, 24, 531
- 65Aa G. Anderegg, Helv. Chim. Acta, 1965, 48, 1712

- 65Ab J. Aveston, J. Chem. Soc., 1965, 4438
- 65Ac J. Aveston, J. Chem. Soc., 1965, 4444
- 65AB I. P. Alimarin, T. A. Belyauskaya, and G. D. Brykina, <u>Vestnik Moskov. Univ.</u>, <u>Khim.</u>, 1965, No. 5, 69
- 65AK G. Atkinson and S. K. Kor, <u>J. Phys. Chem.</u>, 1965, <u>69</u>, 128, (see also L. S. Jackopin and E. Yeagen; G. Atkinson and S. K. Kor, <u>J. Phys. Chem.</u>, 1966, 70, 313, 314)
- 65AKP I. P. Alimarin, Sh. A. Khamid, and I. V. Puzdrenkova, <u>Russ. J. Inorg. Chem.</u>, 1965, 10, 209 (389)
- 65BB R. Barbieri and J. Bjerrum, Acta Chem. Scand., 1965, 19, 469
- 65BBa N. N. Baranova and V. L. Barsukov, Geokhim., 1965, 1093
- 65BC E. Bottari and L. Ciavatta, J. Inorg. Nucl. Chem., 1965, 27, 133
- 65BCY J. Botts, A. Chashin, and H. L. Young, Biochem., 1965, 4, 1788
- 65BE C. J. Battaglia and J. O. Edwards, Inorg. Chem., 1965, 4, 552
- 65BG Yu. A. Buslaev and M. P. Gustyakova, Russ. J. Inorg. Chem., 1965, 10, 831 (1524)
- 65BL G. J. Buist and J. D. Lewis, Chem. Comm., 1965, 66
- 65BLa K. A. Burkov and L. S. Lilich, <u>Vest. Leningrad Univ.</u>, 1965, No. 10 (<u>Fiz. Khim.</u>, No. 1), 103
- 65BLS K. A. Burkov, L. S. Lilich, and L. G. Sillen, Acta Chem. Scand., 1965, 19, 14
- 65BM C. F. Baes, Jr., N. J. Meyer, and C. E. Roberts, Inorg. Chem., 1965, 4, 518
- 65BS M. Bartusek and L. Sommer, J. Inorg. Nucl. Chem., 1965, 27, 2397
- 65BW R. H. Boyd and C. H. Wang, <u>J. Phys. Chem</u>., 1965, <u>69</u>, 3906
- 65BY G. A. Bogdanov, G. K. Yurchenko, and L. A. Kuzenko, <u>Russ. J. Phys. Chem.</u>, 1965, 39, 1261 (2359)
- 65C J. Chojnacka, Rocz. Chem., 1965, 39, 161
- 65CD A. K. Covington and J. V. Dobson, J. Inorg. Nucl. Chem., 1965, 27, 1435
- 65CG L. Ciavatta and M. Grimaldi, J. Inorg. Nucl. Chem., 1965, <u>27</u>, 2019
- 65CI J. J. Christensen, R. M. Izatt and D. Eatough, Inorg. Chem., 1965, 4, 1278
- 65CK G. R. Choppin and J. Ketels, J. Inorg. Nucl. Chem., 1965, <u>27</u>, 1335
- 65CO J. Chojnacki and B. Oleksyn, Rocz. Chem., 1965, 39, 1141
- 65CS G. R. Choppin and W. F. Stazik, Inorg. Chem., 1965, 4, 1250
- 65CW J. P. Candlin and R. G. Wilkins, J. Amer. Chem. Soc., 1965, <u>87</u>, 1490
- 65D K. P. Dubey, Z. Anorg. Allg. Chem., 1965, 337, 309

65DB J. R. Durig, O. D. Bonner, and W. H. Breazeale, J. Phys. Chem., 1965, 69, 3886

- 65DK R. G. Deshpande, P. K. Khopkar, C. L. Rao, and H. D. Sharma, <u>J. Inorg. Nucl.</u>
 Chem., 1965, <u>27</u>, 2171
- 65F A. Ferse, Z. Phys. Chem. (Leipzig), 1965, 229, 51
- 65Fa R. T. M. Fraser, J. Chem. Soc., 1965, 1747
- 65Fb W. Feldmann, Z. Anorg. Allg. Chem., 1965, 338, 235
- 65FA I. E. Flis, G. P. Arkhipova, and K. P. Mishchenko, <u>J. Appl. Chem. USSR</u>, 1965, <u>38</u>, 1466 (1494)
- 65FK A. B. Fasman, G. G. Kutyukov, and D. V. Sokolskii, <u>Russ. J. Inorg. Chem</u>., 1965, 10, 727 (1338)
- 65FM J. R. Fryer and D. F. C. Morris, Electrochim. Acta, 1965, 10, 473
- 65FMT H. N. Farrer, M. M. McGrady, and R. S. Tobias, <u>J. Amer. Chem. Soc.</u>, 1965, <u>87</u>, 5019
- 65FP V. Frei, J. Podlahova, and J. Podlaha, <u>Russ. J. Inorg. Chem.</u>, 1965, <u>10</u>, 921 (1690)
- 65G R. Guillaumont, Bull. Soc. Chim. France, 1965, 135
- 65Ga R. Guillaumont, Compt. Rend. Acad. Sci. Paris, Sec. C, 1965, 260, 1416
- 65GA R. W. Green and P. W. Alexander, Aust., J. Chem., 1965, 18, 651
- 65GC S. A. Greenberg and T. N. Chang, J. Phys. Chem., 1965, 69, 182
- 65GCa R. M. Garrels and C. L. Christ, <u>Solutions, Minerals and Equilibria</u>, Harper and Row, New York, 1965
- 65GP E. Sh. Ganelina and T. N. Pozhidaeva, J. Appl. Chem. USSR, 1965, 38, 2168 (2210)
- 65GS T. Goto and M. Smutz, J. Inorg. Nucl. Chem., 1965, 27, 663
- 65GSS H. Gamsjager, H. U. Stuber, and P. Schindler, Helv. Chim. Acta, 1965, 48, 723
- 65H R. Hugel, Bull. Soc. Chim. France, 1965, 968
- 65Ha R. Hugel, Bull. Soc. Chim. France, 1965, 971, 2017
- 65HA J. D. Hefley and E. S. Amis, J. Phys. Chem., 1965, 69, 2082
- 65HC L. D. Hansen, J. J. Christensen, and R. M. Izatt, Chem. Comm., 1965, 36
- 65HD R. Haase, K. H. Ducker, and H. A. Kuppers, <u>Ber. Bunsengesell. Phys. Chem.</u>, 1965, 69, 97
- 65HE G. P. Haight, Jr. and B. Y. Ellis, Inorg. Chem., 1965, 4, 249
- 65HI S. Hamada, Y. Ishikawa, and T. Shirai, Nippon Kagaku Zasshi, 1965, 86, 1042
- 65HP G. P. Haight, Jr., and J. R. Peterson, Inorg. Chem., 1965, 4, 1073
- 65HS H. E. Hellwege and G. K. Schweitzer, J. Inorg. Nucl. Chem., 1965, 27, 99

- 65HSE M. K. Hargreaves, E. A. Stevinson, and J. Evans, J. Chem. Soc., 1965, 4582
- 65HW H. P. Hopkins, Jr., and C. A. Wulff, J. Phys. Chem., 1965, 69, 6
- 65HWa H. P. Hopkins, Jr., and C. A. Wulff, J. Phys. Chem., 1965, 69, 9
- 65Wb H. P. Hopkins, Jr., and C. A. Wulff, J. Phys. Chem., 1965, 69, 1980
- 65HWH H. P. Hopkins, C. Wu, and L. G. Hepler, J. Phys. Chem., 1965, 69, 2244
- 65IC R. M. Izatt, J. J. Christensen, J. W. Hansen and G. D. Watt, <u>Inorg. Chem.</u>, 1965, <u>4</u>, 718
- 65IM A. Indelli and G. Mantovani, Trans. Faraday Soc., 1965, 61, 909
- 65JB K. M. Jones and J. Bjerrum, Acta Chem. Scand., 1965, 19, 974
- 65JG D. S. Jain and J. N. Gaur, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1965, 13, 615
- 65JL E. Josefowicz and H. Ladzinska-Kulinska, Rocz. Chem., 1965, 39, 1175
- 65K I. V. Kolosov, Russ. J. Inorg. Chem., 1965, 10, 1197 (2200)
- 65Ka J. R. Kyrki, Suomen Kem., 1965, B38, 203
- 65KM F. Ya. Kulba, V. E. Mironov, and G. Mrnyakova, <u>Russ. J. Inorg. Chem.</u>, 1965, <u>10</u>, 758 (1393)
- 65KMa F. Ya. Kulba, V. E. Mironov, I. F. Mavrin, and Yu. B. Yakovlev, <u>Russ. J. Inorg.</u>
 <u>Chem.</u>, 1965, <u>10</u>, 1117 (2053)
- 65KMb F. Ya. Kulba, V. E. Mironov, and I. F. Mavrin, <u>Russ. J. Phys. Chem.</u>, 1965, <u>39</u>, 1387 (2595)
- 65KS S. K. Kundra, P. R. Subbaraman, and J. Gupta, Indian J. Chem., 1965, 3, 60
- 65KY F. Ya. Kulba, Yu. B. Yakovlev, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1965, 10, 886 (1624)
- 65KYa F. Ya. Kulba, Yu. B. Yakovlev, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1965, 10, 1113 (1624)
- 65L K. H. Lieser, Z. Anorg. Allg. Chem., 1965, <u>335</u>, 225
- 65La O. Lukkari, Suomen Kem., 1965, B38, 121
- 65Lb B. J. Levien, Aust. J. Chem., 1965, 18, 1161
- 65LA Z. L. Leshchinskaya, M. A. Averbukh, and N. M. Selivanova, <u>Russ. J. Phys. Chem.</u>, 1965, <u>39</u>, 1082 (2036)
- 65LB K. H. Lieser, G. Beyer, and E. Lakatos, Z. Anorg. Allg. Chem., 1965, 339, 208
- 65LL P. Lumme, P. Lahermo, and J. Tummavuori, Acta Chem. Scand., 1965, 19, 2175
- 65LP D. Leonesi and G. Piantoni, Ann. Chim. (Italy), 1965, 55, 668
- 65LS Z. L. Leshchinskaya and N. M. Selivanova, <u>Russ. J. Phys. Chem.</u>, 1965, <u>39</u>, 1297 (2430)

- 65LT P. Lumme and J. Tummavuori, Acta Chem. Scand., 1965, 19, 617
- 65LW D. W. Larsen and A. C. Wahl, Inorg. Chem., 1965, 4, 1281
- 65M L. W. Marple, J. Inorg. Nucl. Chem., 1965, 27, 1693
- 65MB R. C. Mercier, M. Bonnet, and M. R. Paris, Bull. Soc. Chim. France, 1965, 2926
- 65MJ D. F. C. Morris and M. W. Jones, J. Inorg. Nucl. Chem., 1965, 27, 2454
- 65MK T. R. Musgrave and R. N. Keller, Inorg. Chem., 1965, 4, 1793
- 65MKF V. E. Mironov, F. Ya. Kulba, and V. A. Fedorov, <u>Russ. J. Inorg. Chem.</u>, 1965, <u>10</u>, 495 (914); 755 (1388)
- 65MR V. E. Mironov and Yu. I. Rutkovskii, <u>Russ. J. Inorg. Chem.</u>, 1965, <u>10</u>, 580 (1069) 1450 (2670)
- 65MRI V. E. Mironov, Yu. I. Rutkovskii, and E. I. Ignatenko, <u>Russ. J. Inorg. Chem.</u>, 1965, <u>10</u>, 1434 (2639)
- 65MRS D. F. C. Morris, G. L. Reed, E. L. Short, D. N. Slater, and D. N. Waters, <u>J</u>. <u>Inorg. Nucl. Chem.</u>, 1965, <u>27</u>, 377
- 65MS A. S. G. Mazumdar and C. K. Sivaramakrishnan, <u>J. Inorg. Nucl. Chem.</u>, 1965, <u>27</u>, 2423
- 65MSW T. D. B. Morgan, G. Stedman, and P. A. E. Whincup, J. Chem. Soc., 1965, 4813
- 65NH Y. Narusawa, J. Hashimoto, and H. Hamaguchi, <u>Bull. Chem. Soc. Japan</u>, 1965, <u>38</u>, 234
- 65NP R. I. Novoselov and B. V. Ptitsyn, Russ. J. Inorg. Chem., 1965, 10, 1241 (2282)
- 65NPG N. M. Nikolaeva, B. V. Ptitsyn, and I. I. Gorbacheva, <u>Russ. J. Inorg. Chem.</u>, 1965, <u>10</u>, 570 (1051)
- 65NS H. Neumann, I. Z. Steinberg, and E. Katchalski, <u>J. Amer. Chem. Soc.</u>, 1965, <u>87</u>, 3841
- 65NT T. Nishide and R. Rsuchiya, Bull. Chem. Soc. Japan, 1965, 38, 1398
- 65P R. Pottel, <u>Ber. Bunsengesel. Phys. Chem.</u>, 1965, <u>69</u>, 363
- 65Pa J. A. Perez-Bustamante, Radiochim. Acta, 1965, 4, 67
- 65PE R. Phillips, P. Eisenberg, P. George, and R. J. Rutman, <u>J. Biol. Chem</u>., 1965, <u>240</u>, 4393
- 65PF D. Peschanski and J. M. Fruchart, <u>Compt. Rend. Acad. Sci. Paris</u>, <u>Sec. C</u>, 1965, <u>260,</u> 3073
- 65PI J. A. Partridge, R. M. Izatt, and J. J. Christensen, J. Chem. Soc., 1965, 4231
- 65PSV P. Paoletti, J. H. Stern, and A. Vacca, J. Phys. Chem., 1965, 69, 3759
- 65PSZ L. Przyborowski, G. Schwarzenbach and T. Zimmerman, <u>Helv. Chim. Acta</u>, 1965, <u>48</u>, 1556
- 65PT P. Papoff, G. Torsi, and P. G. Zambonin, Gazz. Chim. Ital., 1965, 95, 1031

- 65PY K. V. Pavlova and K. B. Yatsimirskii, Russ. J. Inorg. Chem., 1965, 10, 557 (1027)
- 65R P. A. Rock, Inorg. Chem., 1965, 4, 1667
- 65Ra J. K. Ruff, Inorg. Chem., 1965, 4, 1446
- 65RD D. E. Ryan, J. R. Dean, and R. M. Cassidy, Canad. J. Chem., 1965, 43, 999
- 65RP I. G. Ryss and N. G. Parkhomenko, Ukr. Khim. Zh., 1965, 31, 237
- 65S T. Sekine, Acta Chem. Scand., 1965, 19, 1435
- 65Sa T. Sekine, Acta Chem. Scand., 1965, 19, 1469
- 65Sc T. Sekine, Acta Chem. Scand., 1965, 19, 1519
- 65Sd T. Sekine, Acta Chem. Scand., 1965, 19, 1526
- 65Se M. B. Shchigol, Russ. J. Inorg. Chem., 1965, <u>10</u>, 1142 (2097)
- 65Sf G. Schorsch, Bull. Soc. Chim. France, 1965, 988
- 65SAH P. Schindler, H. Althaus, F. Hofer, and W. Minder, Helv. Chim. Acta, 1965, 48, 1204
- 65SAP A. Kh. Serif, I. P. Alimarin, and I. V. Puzdrenkova, <u>Vestnik Moskov. Univ.</u>, <u>Khim.</u>, 1965, 3, 71
- 65SG A. Swinarski and A. Grodzicki, Rocz. Chem., 1965, 39, 3
- 65SGa A. Swinarski and A. Grodzicki, Rocz. Chem., 1965, 39, 1155
- 65SK T. W. Swaddle and E. L. King, Inorg. Chem., 1965, 4, 532
- 65SL S. A. Shchukarev, O. A. Lobaneva, and M. A. Kononova,, <u>Vestnik Leningrad Univ.</u>, 1965, No. 4, 149
- 65SM G. K. Schweitzer and S. W. McCarty, J. Inorg. Nucl. Chem., 1965, 27, 191
- 65SMa M. Shiloh and Y. Marcus, Israel J. Chem., 1965, 3, 123
- 65SMb R. G. Seys and C. B. Monk, J. Chem. Soc., 1965, 2452
- 65SMc V. B. Spivakovskii and G. V. Makovskaya, <u>Russ. J. Inorg. Chem</u>., 1965, <u>10</u>, 576 (1062)
- 65SP V. I. Spitsyn and N. N. Patsukova, Russ. J. Inorg. Chem., 1965, 10, 1304 (2396)
- 65SS G. Schwarzenbach and M. Schellenberg, Helv. Chim. Acta, 1965, 48, 28
- 65SSa A. V. Stepanov and V. P. Shvedov, Russ. J. Inorg. Chem., 1965, 10, 541 (1000)
- 65T A. Tateda, <u>Bull. Chem. Soc. Japan</u>, 1965, <u>38</u>, 165
- 65TF R. S. Tobias and C. E. Freidline, Inorg. Chem., 1965, 4, 215
- 65V G. Vogt, Ber. Bunsengesellschaff Phys. Chem., 1965, 69, 648
- 65VP V. Vesely, V. Pekarek, and M. Abbrent, J. Inorg. Nucl. Chem., 1965, 27, 1159

65VW L. P. Varga, W. D. Wakley, L. S. Nicolson, M. L. Madden, and J. Patterson, <u>Anal.</u> Chem., 1965, <u>37</u>, 1003

- 65WC G. D. Watt, J. J. Christensen and R. M. Izatt, Inorg. Chem., 1965, 4, 220
- 65WS W. J. Weber, Jr. and W. Stumm, J. Inorg. Nucl. Chem. 1965, 27, 237
- 65YR K. B. Yatsimirskii and V. F. Romanov, Russ. J. Inorg. Chem., 1965, 10, 877, (1607)
- 65ZP J. Zsako and E. Petri, Rev. Roumaine Chem., 1965, 10, 571
- 65ZS D. M. Ziv and I. A. Shestakova, Radiokhim., 1965, 7, 175
- 66A J. Aveston, J. Chem. Soc. (A), 1966, 1599
- 66AB S. Ahrland and L. Brandt, Acta Chem. Scand., 1966, 20, 328
- 66AD R. H. Arntson, F. W. Dickson, and G. Tunell, Science, 1966, 153, 1673
- 66AM D. W. Archer and C. B. Monk, J. Chem. Soc. (A), 1966, 1374
- 66AMa D. W. Archer and C. B. Monk, Trans. Faraday Soc., 1966, 62, 1583
- 66AP G. Atkinson and S. Petrucci, J. Phys. Chem., 1966, 70, 3122
- 66AS A. Adin and A. G. Sykes, J. Chem. Soc. (A), 1966, 1518
- 66ASS L. P. Andrusenko, Z. A. Sheka, and I. A. Sheka, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 676 (1266)
- 66B F. Brito, An. Fis. Quim., Ser. B, 1966, 62, 123; Acta Chem. Scand., 1967, 21, 1968
- 66Ba F. Brito, An. Fis. Quim., Ser. B, 1966, 62, 193
- 66Bb F. Brito, An. Fis. Quim., Ser. B, 1966, 62, 197
- 66BA T. A. Belyavskaya, I. P. Alimarin, and G. D. Brykina, Moscow Univ. Chem. Bull., 1966, 21, 63 (84)
- 66BB H. Bilinski and M. Branica, Croat. Chim. Acta, 1966, 38, 263
- 66BBS H. Bilinski, M. Branica, and L. G. Sillen, Acta Chem. Scand., 1966, 20, 853
- 66BE M. S. Borisov, A. A. Elesin, I. A. Lebedev, V. T. Filimonov, and G. N. Yakovlev, Soviet Radiochem., 1966, 8, 40 (42)
- 66BF M. N. Bukhsh, J. Flegenheimer, F. M. Hall, A. G. Maddock, and C. Ferreira de Miranda, J. Inorg. Nucl. Chem., 1966, 28, 421
- 66BI K. A. Burkov and L. V. Ivanova, <u>Vestnik Leningrad Univ.</u>, 1966, No. 16 (<u>Fiz. Khim.</u>, No. 3), 120
- 66BK J. H. Boughton and R. N. Keller, <u>J. Inorg. Nucl. Chem.</u>, 1966, <u>28</u>, 2851
- 66BM G. L. Bertrand, F. J. Millero, C. H. Wu, and L. G. Hepler, <u>J. Phys. Chem.</u>, 1966, 70, 699
- 66BSA A. A. Biryukov, V. I. Shlenskaya, and I. P. Alimarin, <u>Bull. Acad. Sci. USSR</u>, <u>Chem. Sci.</u>, 1966, <u>1</u> (3)

66BSW G. L. Bertrand, G. W. Stapleton, C. A. Wulff, and L. G. Hepler, <u>Inorg. Chem</u>., 1966, 5, 1283

- 66BT W. S. Broecker and T. Takahashi, J. Geophys. Res., 1966, 71, 1575
- 66CI J. J. Christensen, R. M. Izatt, L. D. Hansen, and J. A. Partridge, <u>J. Phys. Chem</u>., 1966, 70, 2003
- 66CK N. A. Coward and R. W. Kiser, J. Phys. Chem., 1966, 70, 213
- 66CL R. W. Chlebek and M. W. Lister, Canad. J. Chem., 1966, 44, 437
- 66CM A. Cassol and L. Magon, Ric. Sci., 1966, 36, 1194
- 66CN T. J. Conocchioli, G. H. Nancollas, and N. Sutin, Inorg. Chem., 1966, 5, 1
- 66CP A. Cassol, R. Portanova, and L. Magon, <u>Ric. Sci.</u>, 1966, <u>36</u>, 1180; A. Cassol, L. Magon, and R. Barbieri, <u>Inorg. Nucl. Chem. Letters</u>, 1967, <u>3</u>, 25
- 66CT R. L. Carroll and L. B. Thomas, <u>J. Amer. Chem. Soc.</u>, 1966, <u>88</u>, 1376
- 66CV R. Cohen-Adad and P. Veys, Bull. Soc. Chim. France, 1966, 1740
- 66DM A. V. Davydov, I. N. Marov, and P. N. Palei, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 702 (1316)
- 66DO P. R. Danesi, F. Orlandini, and G. Scibona, J. Inorg. Nucl. Chem., 1966, 28, 1047
- 66DR E. N. Deichman, G. V. Rodicheva, and L. S. Krysina, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 1199 (2237)
- 66E V. I. Ermolenko, Dopovidi Akad. Nauk. Ukr. SSR, Ser. B, 1966, 85
- 66EB J. H. Espenson and D. E. Binau, <u>Inorg. Chem.</u>, 1966, <u>5</u>, 1365
- 66EL L. I. Elding and I. Leden, Acta Chem. Scand., 1966, 20, 706
- 66F T. M. Florence, <u>Aust. J. Chem.</u>, 1966, <u>19</u>, 1343
- 66Fa D. S. Flett, Solvent Extr. Chem., Proc. Int. Conf., Gothenburg, Interscience Publ. (1967), 1966, 60
- 66FK U. K. Frolova, V. N. Kumok, and V. V. Serebrennikov, <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1966, <u>9</u>, 176
- 66FL Ya. D. Fridman, M. G. Levina, and R. I. Sorochan, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 877 (1641)
- 66FP F. H. Firsching and T. R. Paul, <u>J. Inorg. Nucl. Chem.</u>, 1966, <u>28</u>, 2414
- 66FPS M. T. Falqui, G. Ponticelli, and F. Sotgiu, Ann. Chim. (Italy), 1966, 56, 464
- 66FT C. E. Freidline and R. S. Tobias, <u>Inorg. Chem.</u>, 1966, <u>5</u>, 354
- 66G P. Gerding, Acta Chem. Scand., 1966, 20, 79
- 66Ga R. Guillaumont, Rev. Chim. Minerale, 1966, 3, 339
- 66Gb P. Gerding, Acta Chem. Scand., 1966, 20, 2771

- 66Gc M. Givon, Israel J. Chem., 1966, 4, 3p
- 66GC S. L. Gupta and M. K. Chatterjee, Indian J. Chem., 1966, 4, 22
- 66GD D. W. Gruenwedel and N. Davidson, J. Mol. Biol., 1966, 21, 129
- 66GK H. Gamsjager, W. Kraft, and W. Rainer, Monat. Chem., 1966, 97, 833
- 66GL S. D. Grekov, V. A. Leitsin, and R. S. Guzairov, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 452 (835)
- 66GM M. V. Goloshchapov, B. V. Martynenko, and T. N. Filatova, <u>Russ. J. Inorg. Chem.</u>, 1966, 11, 504 (935)
- 66GS A. A. Grinberg, A. I. Stetsenko, and G. P. Guryanova, <u>Russ. J. Inorg. Chem.</u>, 1966, 11, 1008 (1887)
- 66GW G. Gattow and J. Wortmann, Z. Anorg. Allg. Chem., 1966, 345, 172
- 66HF W. Holzapfel and E. U. Franck, Ber. Bunsengesell. Phys. Chem., 1966, 70, 1105
- 66HN J. Hala, O. Navratil, and V. Nechuta, J. Inorg. Nucl. Chem., 1966, 28, 553
- 66I A. A. Ivakin, J. Appl. Chem. USSR, 1966, 39, 252 (277)
- 66Ia A. A. Ivakin, J. Appl. Chem. USSR, 1966, 39, 2262 (2406)
- 66IT R. R. Irani and T. A. Taulli, J. Inorg. Nucl. Chem., 1966, 28, 1011
- 66J L. Johansson, Acta Chem. Scand., 1966, 20, 2156
- 66Ja S. Johansson, quoted in P. Paoletti, A. Vacca, and D. Arenare, <u>J. Phys. Chem.</u>, 1966, 70, 193
- 66JH N. Jordanov and I. Havezov, Z. Anorg. Allg. Chem., 1966, 347, 101
- 66K C. Kiehl. Z. Phys. Chem. (Leipzig), 1966, 232, 384
- 66KA P. N. Kovalenko, L. T. Azhipa, and M. M. Evstifeev, <u>Russ. J. Inorg. Chem.</u>, 1966, 11, 1443 (2689)
- 66KC R. N. Knyazeva, G. N. Chernova, and G. B. Zhukovskaya, <u>Izv. Vyssh. Ucheb. Zaved.</u>, Khim., 1966, 9, 869
- 66KG L. I. Katzin and E. Gulyas, J. Amer. Chem. Soc., 1966, 88, 5209
- 66KGS W. Kraft, H. Gamsjager, and E. Schwarz-Bergkampf, Monat. Chem., 1966, 97, 1134
- 66KL M. B. Kennedy and M. W. Lister, <u>Canad. J. Chem.</u>, 1966, <u>44</u>, 1709
- 66KS P. N. Kovalenko and G. G. Shchemeleva, J. Appl. Chem. USSR, 1966, 39, (2440)
- 66KW G. Kohler and H. Wendt, Ber. Bunsengesel. Phys. Chem., 1966, 70, 674
- 66L P. J. D. Lloyd, <u>Solvent Extr. Chem.</u>, Proc. Int. Conf., Gothenburg, Interscience Publ. (1967) 1966, 458
- 66LA S. C. Lahiri and S. Aditya, J. Indian Chem. Soc., 1966, 43, 513
- 66LB B. Lenarcik and A. Basinski, Rocz. Chem., 1966, 40, 165

- 66LM C. Luca, V. Magearu, and G. Popa, J. Electroanal. Chem., 1966, 12, 45
- 66LN S. J. Lyle and S. J. Naqvi, J. Inorg. Nucl. Chem., 1966, 28, 2993
- 66LS Z. L. Leshchinskaya and N. M. Selivanova, <u>Izv. Vyssh. Ucheb. Zaved</u>., <u>Khim</u>., 1966, 19, 523
- 66LSa Z. L. Leshchinskaya and N. M. Selivanova, Russ. J. Inorg. Chem., 1966, <u>11</u>, 143 (260)
- 66LV A. Liberti and M. Vicedomini, Ric. Sci., 1966, 36, 851
- 66M L. W. Marple, J. Inorg. Nucl. Chem., 1966, 28, 1319
- 66Ma J. C. Morris, J. Phys. Chem., 1966, 70, 3798
- 66Mb R. Matejec, Ber. Bunsengesel. Phys. Chem., 1966, 70, 703
- 66MA V. M. Masalovich, P. K. Agasyan, and E. R. Nikolaeva, <u>Russ. J. Inorg. Chem.</u>, 1966, 11, 149 (272)
- 66MB W. L. Masterton and L. H. Berka, J. Phys. Chem., 1966, 70, 1924
- 66MD W. U. Malik and A. Das, Indian J. Chem., 1966, 4, 203
- 66MG E. C. Moreno, T. M. Gregory, and W. E. Brown, <u>J. Res. Nat. Bur. Stand</u>., 1966, <u>70A</u>
 545
- 66MI R. E. Mesmer and R. R. Irani, J. Inorg. Nucl. Chem., 1966, 28, 493
- 66MJ W. L. Marshall and E. V. Jones, J. Phys. Chem., 1966, 70, 4028
- 66MK V. E. Mironov, F. Ya. Kulba, Yu. I. Rutkovskii, and E. I. Ignatenko, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 955 (1786)
- 66MM R. P. Mitra, H. C. Malhotra, and D. V. S. Jain, Trans. Faraday Soc., 1966, 62, 167
- 66MR V. E. Mironov and Yu. I. Rutkovskii, Russ. J. Inorg. Chem., 1966, 11, 958 (1792)
- 66MS W. L. Marshall and R. Slusher, J. Phys. Chem., 1966, 70, 4015
- 66MSY T. V. Malkova, G. A. Shutova, and K. B. Yatsimirskii, <u>Russ. J. Inorg. Chem</u>., 1966, <u>11</u>, 832 (1556)
- 66N B. I. Nabivanets. Soviet Prog. Chem. (Ukr. Khim. Zh.), 1966, 32, 669 (886)
- 66NH L. Nilsson and G. P. Haight, Jr., <u>Acta Chem. Scand.</u>, 1966, <u>20</u>, 486
- 66NS G. F. Nichugovskii and V. P. Shvedov, Soviet Radiochem., 1966, 8, 110 (118)
- 660A T. Okubo and F. Aoki, J. Chem. Soc. Japan, 1966, 87, 1103
- 660L J. Oleszkiewicz and T. Lipiec, Rocz. Chem., 1966, 40, 541
- 660P Z. Orhanovic, B. Pokric, H. Furedi, and M. Branica, Croat. Chem. Acta, 1966, 38, 269
- 660S H. G. Offner and D. A. Skoog, Anal. Chem., 1966, 38, 1520
- 66P J. Podlaha, Coll. Czech. Chem. Comm., 1966, 31, 7

66PD I. V. Pyatnitskii and M. Durdyev, <u>Soviet Prog. Chem</u>. (<u>Ukr. Khim. Zh.</u>), 1966, <u>32</u>, 57 (77)

- 66PP O. E. Presnyakova and R. S. Prishchepo, <u>Russ. J. Inorg. Chem.</u>, 1966, <u>11</u>, 767 (1436)
- 66R R. Radeglia, Z. Phys. Chem. (Leipzig), 1966, 231, 339
- 66RY A. G. Rykov and G. N. Yakovlev, Soviet Radiochem., 1966, 8, 26 (27)
- 66S J. Sobkowski, Rocz. Chem., 1966, 40, 271
- 66Sa A. P. Savostin, Russ. J. Inorg. Chem., 1966, 11, 1514 (2817)
- 66SB V. I. Shlenskaya and A. A. Biryukov, Russ. J. Inorg. Chem., 1966, 11, 28 (54)
- 66SC R. Sabbah and G. Carpeni, <u>J. Chim. Phys.</u>, 1966, <u>63</u>, 1549
- 66SD A. Swinarski, E. Danilczuk, and R. Gogolin, <u>Rocz. Chem</u>., 1966, <u>40</u>, 737
- 66SG A. Swinarski and A. Grodzicki, Rocz. Chem., 1966, 40, 373
- 66SH T. Sekine and Y. Hasegawa, Bull. Chem. Soc. Japan, 1966, 39, 240
- 66SHa K. Swaminathan and G. M. Harris, J. Amer. Chem. Soc., 1966, 88, 4411
- 66SI A. S. Solovkin and A. I. Ivantsov, Russ. J. Inorg. Chem., 1966, 11, 1013 (1897)
- 66SM V. I. Spitsyn, N. B. Mikheev, and A. Khermann, <u>Doklady Phys. Chem</u>., 1966, <u>166</u>, 48 (658)
- 66SN I. V. Shilin and V. K. Nazarov, Soviet Radiochem., 1966, 8, 474 (514)
- 66SNa V. P. Shvedov and G. F. Nichugovskii, Soviet Radiochem., 1966, 8, 62 (66)
- 66SNb G. Schmid and U. Neumann, Ber. Bunsengesell. Phys. Chem., 1966, 70, 1165
- 66SO G. Scibona, F. Orlandini, and P. R. Danesi, J. Inorg. Nucl. Chem. 1966, 28, 1313
- 66SS Z. A. Sheka and E. I. Sinyavskaya, Russ. J. Inorg. Chem., 1966, 11, 555 (1029)
- 66SSH T. Sekine, M. Sakairi, and Y. Hasegawa, Bull. Chem. Soc. Japan, 1966, 39, 2141
- 66SV P. Salomaa and A. Vesala, Acta Chem. Scand., 1966, 20, 1414
- 66SW G. Schwarzenbach and M. Widmer, Helv. Chim. Acta, 1966, 49, 111
- 66SWa G. Schwarzenbach and D. C. Winkley, Solvent Extr. Chem., Proc. Int. Conf., Gothenburg, Interscience Publ. (1967) 1966, 39
- 66TF R. S. Tobias, H. N. Farrer, M. B. Hughes, and B. A. Nevett, <u>Inorg. Chem.</u>, 1966, <u>5</u>, 2052
- 66TJ J. Y. Tong and R. L. Johnson, Inorg. Chem., 1966, 5, 1902
- 66VL V. M. Vdovenko, L. N. Lazarev, and Ya. S. Khvorostin, <u>Soviet Radiochem.</u>, 1966, <u>8</u>, 613 (673)
- 66VS I. M. Vasilkevich and E. A. Shilov, <u>Soviet Prog. Chem</u>. (<u>Ukr. Khim. Zh</u>.). 1966. <u>32</u>, 703 (947)

- 66VSB F. Vierling, G. Schorsch, and J. Bye, Rev. Chim. Minerale, 1966, 3, 875
- 66VV V. N. Vasileva and V. P. Vasilev, Izv. Vyssh. Ucheb. Zaved., Khim., 1966, 9, 185
- 66WD R. M. Walters and R. W. Dodson, Solvent Extr. Chem., Proc. Int. Conf., Gothenburg, Interscience Publ. (1967), 1966, 71
- 66WM J. I. Watters and S. Matsumoto, <u>Inorg. Chem.</u>, 1966, <u>5</u>, 361
- 67A G. Anderegg, Helv. Chim. Acta, 1967, 50, 2333
- 67Aa S. Ahrland, Helv. Chim. Acta, 1967, 50, 306
- 67Ab I. I. Alekseeva, Russ. J. Inorg. Chem., 1967, 12, 968 (1840)
- 67ADR I. A. Ammar, S. Darwish, and K. Rizk, Electrochim. Acta. 1967, 12, 647
- 67ADT F. Accascina, A. D'Aprano, and R. Triolo, J. Phys. Chem., 1967, 71, 3469
- 67AK R. Arnek and W. Kakolowicz, Acta Chem. Scand., 1967, 21, 1449
- 67AKa R. Arnek and W. Kakolowicz, Acta Chem. Scand., 1967, 21, 2180
- 67AKE L. T. Azhipa, P. N. Kovalenko, and M. M. Evstifeev, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 601 (1138)
- 67AS M. Ardon and N. Sutin, <u>Inorg. Chem.</u>, 1967, <u>6</u>, 2268
- 67ASa L. P. Andrusenko and I. A. Sheka, Russ. J. Inorg. Chem., 1967, 12, 333 (638)
- 0. Butkevitsch, Suomen Kem., 1967, B40, 148 (see also 64SM)
- 67Ba N. N. Baronova, Russ. J. Inorg. Chem., 1967, 12, 760 (1438)
- 67Bb M. Barres, Rev. Chim. Minerale, 1967, 4, 803
- 67Bc M. Beran, Coll. Czech. Chem. Comm., 1967, 32, 1368
- 67BC L. Burlamacchi, G. Casini, O. Fagioli, and E. Tiezzi, Ric. Sci., 1967, 37, 97
- 67BI H. Bilinski and N. Ingri, Acta Chem. Scand., 1967, 21, 2503
- 67BN A. K. Babko, B. I. Nabivanets, and V. V. Lukachina, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1568 (2965)
- 67BP G. A. Boos and A. A. Popel, Russ. J. Inorg. Chem., 1967, 12, 1098 (2086)
- 67BS D. Banerjea and I. P. Singh, Z. Anorg. Allg. Chem., 1967, 349, 213
- 67BSW B. R. Baker, N. Sufin, and T. J. Welch, <u>Inorg. Chem.</u>, 1967, <u>6</u>, 1948
- 67BT F. Bertin, G. Thomas, and J. C. Merlin, Bull. Soc. Chim. France, 1967, 2393
- 67C P. Chartier, Bull. Soc. Chim. France, 1967, 2706
- 67CB M. P. Collados, F. Brito, and R. Diaz Cadaviece. <u>An. Fis. Quim.</u>, <u>Ser. B</u>, 1967, <u>63</u>
- 67CC R. G. de Carvalko and G. R. Choppin, J. Inorg. Nucl. Chem., 1967, 29, 725, 737
- 67CE D. W. Carlyle and J. H. Espenson, Inorg. Chem., 1967, 6, 1370

- 67CM R.L. Carroll and R. E. Mesmer, Inorg. Chem., 1967, 6, 1137
- 67CP B. Corain and A. J. Poe, J. Chem. Soc. (A), 1967, 1318
- 67CS T. J. Conocchioli and N. Sutin, J. Amer. Chem. Soc., 1967, 89, 282
- 67D P. R. Danesi, Acta Chem. Scand., 1967, 21, 143
- 67DE L. Drougge, L. I. Elding, and L. Gustafson, Acta Chem. Scand., 1967, 21, 1647
- 67DS R. G. Denotkina and V. B. Shevchenko, Russ. J. Inorg. Chem., 1967, 12, 1237 (2345)
- 67EG W. A. Eaton, P. George, and G. I. H. Hanania, J. Phys. Chem., 1967, 71, 2016
- 67EH A. J. Eve and D. N. Hume, <u>Inorg. Chem.</u>, 1967, <u>6</u>, 331
- 67EHP W. J. Eilbeck, F. Holmes, G. G. Phillips, and A. E. Underhill, <u>J. Chem. Soc. (A)</u>, 1967, 1161
- 67EL A. A. Elesin, I. A. Lebedev, E. M. Piskunov, and G. N. Yakovlev, Soviet Radiochem., 1967, 9, 159 (161)
- 67EM A. J. Ellis and N. B. Milestone, Geochim. Cosmochim. Acta, 1967, 31, 615
- 67EME A. N. Ermakov, I. N. Marov, and G. A. Evtikova, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1784 (3372)
- 67ES J. H. Espenson and S. G. Slocum, Inorg. Chem., 1967, 6, 906
- 67FD F. H. Fisher and D. F. Davis, J. Phys. Chem., 1967, 71, 819
- 67FH J. F. Fisher and J. L. Hall, Anal. Chem., 1967, 39, 1550
- 67FR V. A. Fedorov, A. M. Robov, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1750 (3307)
- 67G A. Garnier, Compt. Rend. Acad. Sci. Paris, Sec. B, 1967, 265, 198
- 67Ga H. J. Gardner, <u>Aust. J. Chem.</u>, 1967, <u>20</u>, 2357
- 67Gb H. Gamsjager, Monat. Chem., 1967, 98, 1803
- 67GD G. Gattow and M. Drager, Z. Anorg. Allg. Chem., 1967, 349, 202
- 67GK Yu. I. Gryzin and K. Z. Koryttsev, Russ. J. Inorg. Chem., 1967, 12, 50 (101)
- 67GL V. Gold and B. M. Lowe, J. Chem. Soc. (A), 1967, 936
- 67GR H. Gamsjager, W. Rainer, and P. Schindler, Monat. Chem., 1967, 98, 1793
- 67GS A. O. Gubeli and J. Ste-Marie, Canad. J. Chem., 1967, 45, 827
- 67GSa A. O. Gubeli and J. Ste-Marie, Canad. J. Chem., 1967, 45, 2101
- 67GSb H. Gamsjager and P. Schindler, Helv. Chim. Acta, 1967, 50, 2053
- 67H H. C. Helgeson, J. Phys. Chem., 1967, 71, 3121
- 67HB A. A. Humffray, A. M. Bond, and J. S. Forrest, J. Electroanal. Chem., 1967, 15, 67

67HC J. Haladjian and G. Carpeni, J. Chim. Phys., 1967, 64, 1338

BIBLIOGRAPHY

- 67HI G. I. H. Hanania, D. H. Irvine, W. A. Eaton, and P. George, <u>J. Phys. Chem</u>., 1967, 71, 2022
- 67HK C. F. Hale and E. L. King, <u>J. Phys. Chem.</u>, 1967, <u>71</u>, 1779
- 67HL W. J. Haffenden and G. J. Lawson, J. Inorg. Nucl. Chem., 1967, 29, 1499
- 67HP J. Hala and D. Pohankova, J. Inorg. Nucl. Chem., 1967, 29, 2983
- 67HR R. Haque and L. W. Reeves, <u>J. Amer. Chem. Soc.</u>, 1967, <u>89</u>, 250 (see also K. Schaumburg and C. Deverell, Ibid., 1968, 90, 2495)
- 67HS M. Haeringer and J. P. Schwing, Bull. Soc. Chim. France, 1967, 708
- 67I A. A. Ivakin, Russ. J. Inorg. Chem., 1967, 12, 939 (1787)
- 67IE R. M. Izatt, D. Eatough, and J. J. Christensen, J. Chem. Soc. (A), 1967, 1301
- 67IJ R. M. Izatt, H. D. Johnston, G. D. Watt, and J. J. Christensen, <u>Inorg. Chem</u>., 1967, <u>6</u>, 132
- 67IW R. M. Izatt, G. D. Watt, D. Eatough, and J. J. Christensen, <u>J. Chem. Soc. (A)</u>, 1967, 1304
- 67JG D. S. Jain and J. N. Gaur, Acta Chim. Acad. Sci. Hung., 1967, 51, 165
- 67JJ D. V. S. Jain and C. M. Jain, J. Chem. Soc. (A), 1967, 1541
- 67K Z. Kolarik, Coll. Czech. Chem. Comm., 1967, 32, 432
- 67Ka K. H. Khoo, Aust. J. Chem., 1967, 20, 1287
- 67KG L. N. Komissarova, V. G. Gulia, T. M. Sas, and N. A. Chernova, <u>Russ. J. Inorg.</u>
 <u>Chem.</u>, 1967, <u>12</u>, 461 (873)
- 67KI I. V. Kolosov, B. N. Ivanov-Emin, L. G. Korotaeva, and Kh. Tetsu, <u>Soviet Radiochem</u>, 1967, 9, (473)
- 67KM C. Th. Kawassiades, G. E. Manoussakis, and J. A. Tossidis, <u>J. Inorg. Nucl. Chem.</u>, 1967, <u>29</u>, 401
- 67KP V. I. Kazakova and B. V. Ptitsyn, Russ. J. Inorg. Chem., 1967, 12, 323 (620)
- 67KPa K. H. Khoo and M. H. Panckhurst, Aust. J. Chem., 1967, 20, 2633
- 67KPb D. R. Kester and R. M. Pytkowicz, Limnol. Oceanog., 1967, 12, 243
- 67KR R. T. Kolarich, V. A. Ryan, and R. P. Schuman, <u>J. Inorg. Nucl. Chem</u>., 1967, <u>29</u>, 783
- 67KZ N. P. Komar and N. T. Zung, Russ. J. Inorg. Chem., 1967, 12, 669 (1265)
- 67L A. Lerman, Geochim. Cosmochim. Acta, 1967, 31, 2309
- 67La M. Lucas, <u>Bull. Soc. Chim. France</u>, 1967, 3842
- 67LB J. Lagrange and J. Bye, Bull. Soc. Chim. France, 1967, 1490

- 67LD H. Loman and E. von Dalen, J. Inorg. Nucl. Chem., 1967, 29, 699
- 67LH M. H. Lietzke and J. O. Hall, <u>J. Inorg. Nucl. Chem.</u>, 1967, <u>29</u>, 1249
- 67LK V. I. Lobov, F. Ya. Kulba and V. E. Mironov, <u>Russ. J. Inorg. Chem</u>., 1967, <u>12</u>, 172 (334)
- 67LN S. J. Lyle and S. J. Naqvi, J. Inorg. Nucl. Chem., 1967, 29, 2441
- 67M J. Maslowska, Rocz. Chem., 1967, 41, 1857
- 67Ma W. L. Marshall, J. Phys. Chem., 1967, 71, 3584
- 67MA D. F. C. Morris and B. D. Andrews, Electrochim. Acta, 1967, 12, 41
- 67MAN V. M. Masalovich, P. K. Agasyan, and E. R. Nikolaeva, <u>Russ. J. Inorg. Chem</u>., 1967, 12, 1074 (2041)
- 67MB R. E. Mesmer and C. F. Baes, Jr., Inorg. Chem., 1967, 6, 1951
- 67ME A. I. Moskvin, L. N. Essen, and T. V. Bukhtiyarova, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1794 (3390)
- 67MF V. E. Mironov and A. V. Fokina, Russ. J. Inorg. Chem., 1967, 12, 1357 (2571)
- 67MFR V. E. Mironov, A. V. Fokina, and Yu. I. Rutkovskii, <u>Russ. J. Inorg. Chem.</u>, 1967, 12, 1082 (2056)
- 67MG S. K. Mishra and Y. K. Gupta, J. Inorg. Nucl. Chem., 1967, 29, 1643
- 67MK I. F. Mavrin, F. Ya. Kulba, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 167 (324)
- 67MKa I. F. Mavrin, F. Ya. Kulba, and V. E. Mironov, <u>Russ. J. Phys. Chem.</u>, 1967, <u>41</u>, 886 (1659)
- 67MN R. K. Momii and N. H. Nachtrieb, Inorg. Chem., 1967, 6, 1189
- 67MNU M. G. Mushkina, M. S. Novakovskii, and N. Ch. Uen, <u>Russ. J. Inorg. Chem</u>., 1967, <u>12</u>, 1239 (2351)
- 67MP T. Morozumi and F. A. Posey, Denki Kagaku, 1967, 35, 633
- 67MR F. Maggio, V. Romano, and L. Pellerito, Ann. Chim. (Italy), 1967, 57, 191
- 67MRa F. Maggio, V. Romano, and L. Pellerito, J. Electanal. Chem., 1967, 15, 227
- 67MS K. Mizutani and K. Sone, Z. Anorg. Allg. Chem., 1967, 350, 216
- 67MSK S. A. Merkusheva, N. A. Skorik, V. N. Kumok, and V. V. Serebrennikov, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1793 (3388)
- 67MSP A. I. Moskvin, A. M. Shelyakina, and P. S. Perminov, <u>Russ. J. Inorg. Chem.</u>, 1967, 12, 1756 (3319)
- 67N B. Noren, Acta Chem. Scand., 1967, 21, 2435, 2449
- 67Na B. Noren, Acta Chem. Scand., 1967, 21, 2457
- 67NK Y. Narusawa, M. Kanazawa, S. Takahashi, K. Morinaga, and K. Nakano, <u>J. Inorg. Nucl.</u>
 Chem., 1967, <u>29</u>, 123

- 67NP N. M. Nikolaev and E. D. Pastukhova, Russ. J. Inorg. Chem., 1967, 12, 796 (1514)
- 67NR G. M. Nair, C. L. Rao, and G. A. Welch, Radiochim. Acta, 1967, 7, 77
- 67NS J. Nassler and A. Sedlak, Coll. Czech. Chem. Comm., 1967, 32, 2405
- 67NT G. H. Nancollas and K. Torrance, <u>Inorg. Chem.</u>, 1967, <u>6</u>, 1567
- 670K H. Ohtaki and H. Kato, Inorg. Chem., 1967, 6, 1935
- 670W M. Orhanovic and R. G. Wilkins, J. Amer. Chem. Soc., 1967, 89, 278
- 67PB B. Pokric and M. Branica, Croat. Chem. Acta, 1967, 39, 11
- 67PI G. Popa, E. Iosif, and C. Luca, Rev. Roum. Chim., 1967, 12, 169
- 67PM N. A. Parpiev, I. A. Maslennikov, and Yu. A. Buslaev, <u>Uzbek. Khim. Zh.</u>, 1967, No. 3. 9
- 67PP A. D. Pethybridge and J. E. Prue, Trans. Faraday Soc., 1967, 63, 2019
- 67PS J. Podlaha and J. Silha, Coll. Czech. Chem. Comm., 1967, 32, 3760
- 67R B. N. Ryzhenko, Geokhim., 1967, 161
- 67RM Yu. I. Rutkovskii and V. E. Mironov, Russ. J. Inorg. Chem., 1967, 12, 1739 (3287)
- 67SA Z. A. Sheka, L. P. Andrusenko, and I. A. Sheka, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 36 (74)
- 67SB H. Sigel, K. Becker, and D. B. McCormick, Biochim. Biophys. Acta, 1967, 148, 655
- 67SG A. Swinarski and A. Grodzicki, Rocz. Chem., 1967, 41, 1205
- 67SI G. Schorsch and N. Ingri, <u>Acta Chem. Scand.</u>, 1967, <u>21</u>, 2727
- 67SK H. Schmid and P. Krenmayr, Monat. Chem., 1967, 98, 417, 423
- 67SKV Yu. I. Sannikov, E. I. Krylov, and V. M. Vinogradov, <u>Russ. J. Inorg. Chem.</u>, 1967, 12, 1398 (2651)
- 67SL K. Sallavo and P. Lumme, Suomen Kem., 1967, B40, 155
- 67SS T. Sekine, I. Sakamoto, T. Sato, T. Taira, and Y. Hasegawa, <u>Bull. Chem. Soc. Japan</u>, 1967, 40, 251
- 67SSa T. Sekine and M. Sakairi, Bull. Chem. Soc. Japan, 1967, 40, 261
- 67SSb D. L. Singleton and J. H. Swinehart, Inorg. Chem., 1967, 6, 1536
- 67SSc Z. A. Sheka and E. I. Sinyavskaya, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 194 (377), 340 (650)
- 67SSd J. Steigman and D. Sussman, J. Amer. Chem. Soc., 1967, 89, 6400
- 67SV A. A. Shidlovskii, A. A. Voskreseuskii, and E. S. Shitikov, <u>Russ. J. Phys. Chem.</u>, 1967, <u>41</u>, 380 (731)
- 67TG J. E. Teggins, D. R. Gano, M. A. Tucker, and D. S. Martin, Jr., <u>Inorg. Chem.</u>, 1967, 6, 69

- 67TK M. Tanaka and I. Kojima, J. Inorg. Nucl. Chem., 1967, 29, 1769
- 67TP I. V. Tananaev and S. M. Petushkova, Russ. J. Inorg. Chem., 1967, 12, 39 (81)
- 67VD S. P. Vorobev, I. P. Davydov, and I. V. Shilin, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1129 (2142)
- 67VDa S. P. Vorobev, I. P. Davydov, and I. V. Shilin, <u>Russ. J. Inorg. Chem</u>., 1967, <u>12</u>, 1406 (2665)
- 67VG V. P. Vasilev and N. K. Grechina, Russ. J. Inorg. Chem., 1967, 12, 724 (1372)
- 67VK S. Varvicka and J. Koryta, Coll. Czech. Chem. Comm., 1967, 32, 2346
- 67VL V. P. Vasilev and G. A. Lobanov, Russ. J. Inorg. Chem., 1967, 12, 463 (878)
- 67VLa V. P. Vasilev and G. A. Lobanov, Russ. J. Phys. Chem., 1967, 41, 434 (838)
- 67VLb V. P. Vasilev and G. A. Lobanov, Russ. J. Phys. Chem., 1967, 41, 1053 (1969)
- 67VLc V. M. Vdovenko, L. N. Lazarev, and Ya. S. Khvorostin, <u>Soviet Radiochem</u>., 1967, 9, 445 (460)
- 67VLd V. M. Vdovenko, L. N. Lazarev, and Ya. S. Khvorostin, <u>Soviet Radiochem</u>., 1967, 9, 449 (464)
- 67VLe V. M. Vdovenko, L. N. Lazarev, and Ya. S. Khvorostin, <u>Russ. J. Inorg. Chem.</u>, 1967, 12, 610 (1152)
- 67VM V. P. Vasilev and P. S. Mukhina, Izv. Vyssh. Ucheb. Zaved., Khim. 1967, 10, 263
- 67VS V. M. Vdovenko, O. B. Stebunov, and V. A. Shcherbakov, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 896 (1706)
- 67W R. M. Wallace, <u>J. Phys. Chem.</u>, 1967, <u>71</u>, 1271
- 67Wa H. E. Wirth, J. Phys. Chem., 1967, 71, 2922
- 67WC J. B. Walker and G. R. Choppin, Adv. Chem. Series, 1967, 71, 127
- 67WD C. F. Wells and G. Davies, J. Chem. Soc. (A), 1967, 1858
- 67WM J. I. Watters and S. Matsumoto, J. Inorg. Nucl. Chem., 1967, 29, 2955
- 67WW C. H. Wu, R. J. Witonsky, P. George, and R. J. Rutman, <u>J. Amer. Chem. Soc</u>., 1967, 89, 1987
- 67YK Yu. B. Yakovlev, F. Ya. Kulba, and V. E. Mironov, Russ. J. Inorg. Chem., 1967, <u>12</u>, 1737 (3283)
- 67ZB P. A. Zagorets and G. P. Bulgakova, Russ. J. Inorg. Chem., 1967, 12, 179 (347)
- 67ZF I. Zsako and E. Fekete, Studia Univ. Babes-Bolyai, Ser. Chem., 1967, 45
- 67ZO F. A. Zakharova and M. M. Orlova, <u>Russ. J. Inorg. Chem.</u>, 1967, <u>12</u>, 1596 (3016), 1699 (3211)
- 68A R. Arnek, Acta Chem. Scand., 1968, 22, 1102

- 68AB S. Ahrland and L. Brandt, Acta Chem. Scand., 1968, 22, 106
- 68ABa S. Ahrland and L. Brandt, Acta Chem. Scand., 1968, 22, 1579
- 68AC M. Asso and G. Carpeni, Canad. J. Chem., 1968, 46, 1795
- 68AD I. A. Ammar, S. Darwish, and K. Rizk, Electrochim. Acta, 1968, 13, 797
- 68AL A. Aziz and S. J. Lyle, <u>J. Inorg. Nucl. Chem.</u>, 1968, <u>30</u>, 3223
- 68ALN A. Aziz, S. J. Lyle, and S. J. Naqvi, J. Inorg. Nucl. Chem., 1968, 30, 1013
- 68AN V. P. Antonovich and V. A. Nazarenko, Russ. J. Inorg. Chem., 1968, 13, 940 (1805)
- 68AP R. Arnek and C. C. Patel, <u>Acta Chem. Scand.</u>, 1968, <u>22</u>, 1097
- 68AS R. Arnek and K. Schlyter, Acta Chem. Scand., 1968, 22, 1327
- 68ASa R. Arnek and K. Schlyter, Acta Chem. Scand., 1968, 22, 1331
- 68ASb R. Arnek and I. Szilard, Acta Chem. Scand., 1968, 22, 1334
- 68ASc L. P. Andrusenko and I. A. Sheka, Russ. J. Inorg. Chem., 1968, 13, 1363 (2645)
- 68AT E. Andalaft, R. P. T. Tomkins, and G. J. Janz, Canad. J. Chem., 1968, 46, 2959
- 68B N. N. Baronova, <u>Geokhim</u>., 1968, 17
- 68Ba R. Bury, J. Chim. Phys., 1968, 65, 1494
- 68BB D. P. Baccanori, B. A. Buckman, M. M. Yevitz, and H. A. Swain, Jr., <u>Talanta</u>, 1968, <u>15</u>, 416
- 68BC E. Bottari and L. Ciavatta, Inorg. Chim. Acta, 1968, 2, 74
- 68C J. M. Cleveland, Inorg. Chem., 1968, 7, 874
- 68Ca W. A. Cilley, Inorg. Chem., 1968, 7, 612
- 68CF Y. C. Chiu and R. M. Fuoss, J. Phys. Chem., 1968, 72, 4123
- 68CFa B. D. Costley and J. P. G. Farr, Chem. and Ind., 1968, 1435
- 68CG L. Ciavatta and M. Grimaldi, J. Inorg. Nucl. Chem., 1968, 30, 197, 563
- 68CM A. Chughtai, R. Marshall, and G. H. Nancollas, <u>J. Phys. Chem.</u>, 1968, <u>72</u>, 208
- 68CS R. Christova and C. Stefanova, Z. Anorg. Allg. Chem., 1968, 361, 209
- 68D R. W. Duerst, J. Chem. Phys., 1968, 48, 2275
- 68DD R. C. Das, A. C. Dash, and J. P. Mishra, <u>J. Inorg. Nucl. Chem.</u>, 1968, <u>30</u>, 2417
- 68DF A. D'Aprano and R. M. Fuoss, J. Phys. Chem., 1968, 72, 4710
- 68DK N. K. Davidenko, G. A. Komashko, and K. B. Yatsimirskii, <u>Russ. J. Inorg. Chem.</u>, 1968, <u>13</u>, 58 (117)
- 68DM P. R. Danesi, M. Magini, S. Margherita, and G. D'Alessadro, <u>Ener. Nucl</u>. (Milan), 1968, <u>15</u>, 333

- 68DP A. R. Davis and R. A. Plane, Inorg. Chem., 1968, 7, 2565
- 68DS J. Doyle, A. G. Sykes, and A. Adin, <u>J. Chem. Soc. (A)</u>, 1968, 1314
- 68DT E. N. Deichman, I. V. Tananaev, Zh. A. Ezhova, and T. N. Kuzmina, <u>Russ. J. Inorg.</u> Chem., 1968, 13, 23 (47)
- 68EP J. H. Espenson and J. R. Pipal, Inorg. Chem., 1968, 7, 1463
- 68EPa J. H. Espenson and O. J. Parker, J. Amer. Chem. Soc., 1968, 90, 3689
- 68F R. Fernandez-Prini, Trans. Faraday Soc., 1968, 64, 2146
- 68FB S. Fontana and F. Brito, Inorg. Chim. Acta, 1968, 2, 179
- 68FD R. C. Ferguson, P. Dobud, and D. G. Tuck, J. Chem. Soc. (A), 1968, 1058
- 68FH J. Feeney, R. Haque, L. W. Reeves, and C. P. Yue, Canad. J. Chem., 1968, 46, 1389
- 68FM J. R. Fryer and D. F, C. Morris, Talanta, 1968, 15, 1309
- 68FS V. A. Fedorov, N. P. Samsonova, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1968, 13, 198 (382)
- 68G P. Gerding, Acta Chem. Scand., 1968, 22, 1282
- 68Ga R. Guillaumont, Bull. Soc. Chim. France, 1968, 162
- 68Gb R. Guillaumont, Bull. Soc. Chim. France, 1968, 168
- 68GF A. V. Gordievskii, E. L. Filippov, V. S. Shterman, and A. S. Krivoshein, <u>Russ. J.</u> Phys. Chem., 1968, 42, 1050 (1998)
- 68GH R. N. Goldberg and L. G. Hepler, J. Phys. Chem., 1968, 72, 4654
- 68GJ P. Gerding and I. Jonsson, Acta Chem. Scand., 1968, 22, 2247
- 68GJa P. Gerding and I. Jonsson, Acta Chem. Scand., 1968, 22, 2255
- 68GL V. Gold and B. M. Lowe, J. Chem. Soc. (A), 1968, 1923
- 68GS A. O. Gubeli and J. Ste-Marie, Canad. J. Chem., 1968, 46, 1707
- 68GY E. A. Gyunner and N. D. Yakhkind, Russ. J. Inorg. Chem., 1968, 13, 1420 (2758)
- 68HC P. Hemmes, D. L. Cole, and E. M. Eyring, J. Phys. Chem., 1968, 72, 301
- 68HF K. L. Hsia and R. M. Fuoss, J. Amer. Chem. Soc., 1968, 90, 3055
- 68HG T. E. Haas and H. D. Gillman, <u>Inorg. Chem.</u>, 1968, <u>7</u>, 2051
- 68HJ G. P. Haight, Jr., and L. Johansson, Acta Chem. Scand., 1968, 22, 961
- 68HM J. Hill and A. McAuley, J. Chem. Soc. (A), 1968, 2405
- 68HR C. C. Hong and W. H. Rapson, Canad. J. Chem., 1968, 46, 2053
- 68HRa T. M. Hseu and G. A. Rechnitz, Anal. Chem., 1968, 40, 1054
- 68HS S. Hietanen and L. G. Sillen, Acta Chem. Scand., 1968, 22, 265

- 68HSa K. E. Howlett and S. Sarsfield, J. Chem. Soc. (A), 1968, 683
- 68HSb F. M. Hall and S. J. Slater, Aust. J. Chem., 1968, 21, 2663
- 68HSc J. Haladjian, R. Sabbah, and P. Bianco, J. Chim. Phys., 1968, 65, 1751
- 68IW R. M. Izatt, G. D. Watt, C. H. Bartholomew and J. J. Christensen, <u>Inorg. Chem.</u>, 1968, 7, 2236
- 68IZ B. N. Ivanov-Emin, V. A. Zaitseva, and A. M. Egorov, <u>Russ. J. Inorg. Chem.</u>, 1968, 13, 1368 (2655)
- 68J S. S. Jorgensen, Acta Chem. Scand., 1968, 22, 335
- 68JD W. Jakob and M. Dyrek, Rocz. Chem., 1968, 42, 1393
- 68JG Z. Jablonski, J. Gornicki, and A. Lodzinska, Rocz. Chem., 1968, 42, 1809
- 68K K. H. Khoo, J. Inorg. Nucl. Chem., 1968, 30, 2524
- 68Ka K. Kleboth, Monat. Chem., 1968, 99, 1177
- 68KA P. N. Kovalenko, L. T. Azhipa, and M. M. Evstifeev, <u>J. Appl. Chem. USSR</u>, 1968, <u>41</u>, (198)
- 68KD R. M. Kren, H. W. Dodgen, and C. J. Nyman, Inorg. Chem., 1968, 7, 446
- 68KK V. N. Krylov, E. V. Komarov, and M. F. Pushlenkov, <u>Soviet Radiochem</u>., 1968, <u>10</u>, 702 (717)
- 68KKa V. N. Krylov, E. V. Komarov, and M. F. Pushlenkov, <u>Soviet Radiochem</u>., 1968, <u>10</u>, 705 (719)
- 68KKb V. N. Krylov, E. V. Komarov, and M. F. Pushlenkov, <u>Soviet Radiochem</u>., 1968, <u>10</u>, 708 (723)
- 68KM G. B. Kolski and D. W. Margerum, Inorg. Chem., 1968, 7, 2239
- 68KP D. R. Kester and R. M. Pytkowicz, Limnol. Oceanog., 1968, 13, 670
- 68KT W. Kruse and D. Thusius, Inorg. Chem., 1968, 7, 464
- 68KTa O. I. Khotsyanovskii and V. Sh. Telyakova, <u>Soviet Prog. Chem</u>. (<u>Ukr. Khim. Zh</u>.), 1968, <u>34</u>, No. 11, 29 (1126)
- 68L O. G. Levanda, Russ. J. Inorg. Chem., 1968, <u>13</u>, 1707 (3311)
- 68La D. Langmiur, Geochim. Cosmochim. Acta, 1968, 32, 835
- 68LC E. Lanza and G. Carpeni, Electrochim. Acta, 1968, 13, 519
- 68LF H. D. Ludemann and E. U. Franck, Ber. Bunsengesell. Phys. Chem., 1968, 72, 523
- 68LJ H. G. Linge and A. L. Jones, <u>Aust. J. Chem</u>., 1968, <u>21</u>, 1445, 2189
- 68LK L. N. Lazarev and Ya. S. Khvorostin, Russ. J. Inorg. Chem., 1968, 13, 311 (598)
- 68LM S. A. Levison and R. A. Marcus, J. Phys. Chem., 1968, 72, 358

68LMV O. G. Levanda, I. I. Moiseev, and M. N. Vargaftik, <u>Bull. Acad. Sci. USSR</u>, 1968, 2237 (2368)

- 68LN A. M. Lunyatskas and P. K. Norkus, Russ. J. Inorg. Chem., 1968, 13, 347 (665)
- 68LW D. Levine and I. B. Wilson, <u>Inorg. Chem.</u>, 1968, <u>7</u>, 818
- 68M T. Mitsuji, Bull. Chem. Soc. Japan, 1968, 41, 115
- 68Ma J. Maslowska, Rocz. Chem., 1968, 42, 1819
- 68MB S. Mateo Dumpierrez and F. Brito, An. Quim., 1968, 64, 115
- 68MD I. N. Marov, Yu. N. Dubrov, V. K. Belyaeva, and A. N. Ermakov, <u>Russ. J. Inorg.</u> Chem., 1968, 13, 1107 (2140), 1262 (2445)
- 68MF E. E. Mercer and D. T. Farrar, Canad. J. Chem., 1968, 46, 2679
- 68MG S. K. Mishra and Y. K. Gupta, <u>Indian J. Chem.</u>, 1968, <u>6</u>, 757
- 68MH D. F. C. Morris and S. D. Hammond, Electrochim. Acta, 1968, 13, 545
- 68MHB W. M. McNabb, J. F. Hazel, and R. A. Baxter, J. Inorg. Nucl. Chem., 1968, 30, 1585
- 68ML J. I. Morrow and J. Levy, <u>J. Phys. Chem.</u>, 1968, <u>72</u>, 885
- 68MM V. E. Mironov, Yu. A. Makashev, I. Ya. Mavrina, and D. M. Markhaeva, <u>Russ. J. Phys.</u> Chem., 1968, 42, 1592 (2987)
- 68MS O. Makitie and M. L. Savolainen, Suomen Kem., 1968, B41, 242
- 68MSa J. M. Malin and J. H. Swinehart, Inorg. Chem., 1968, 7, 250
- 68MSb W. U. Malik and C. L. Sharma, J. Indian Chem. Soc., 1968, 45, 29
- 68MT O. N. Malyavinskaya and Ya. I. Turyan, Russ. J. Phys. Chem., 1968, 42, 144 (269)
- 68N G. M. Nair, Radiochim. Acta, 1968, 10, 116
- 68Na F. S. Nakayama, Soil Sci., 1968, 106, 429
- 68NA V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, <u>Russ. J. Inorg. Chem</u>., 1968, <u>13</u>, 825 (1574)
- 68NK Yu. V. Norseyev and V. A. Khalkin, J. Inorg. Nucl. Chem., 1968, 30, 3239
- 68NKa B. I. Nabivanets and E. E. Kapantsyan, Russ. J. Inorg. Chem., 1968, 13, 946 (1817)
- 68NM T. W. Newton, G. E. McGrary, and W. G. Clark, J. Phys. Chem., 1968, 72, 4333
- 680A T. Okubo, F. Aoki, and R. Teraoka, Nippon Kagaku Zasshi, 1968, 89, 432
- 680P M. Orhanovic, H. N. Po, and N. Sutin, J. Amer. Chem. Soc., 1968, 90, 7224
- 68P B. Prasad, J. Indian Chem. Soc., 1968, 45, 1037
- 68PC R. Portanova, A. Cassol, L. Magon, and G. Tomat, Gazz. Chim. Ital., 1968, 98, 1290
- 68PG M. R. Paris and Cl. Gregoire, <u>Anal. Chim. Acta</u>, 1968, <u>42</u>, 431

- 68PGa M. R. Paris and Cl. Gregoire, Anal. Chim. Acta, 1968, 42, 439
- 68PM N. A. Parpiev and I. A. Maslennikov, Uzbek. Khim. Zh., 1968, No. 2, 6
- 68PS Ts. V. Pevsner and I. A. Sheka, Russ. J. Inorg. Chem., 1968, 13, 1381 (2681)
- 68PV B. A. Purin and I. A. Vitina, Izv. Akad. Nauk. Latv. SSR, Khim., 1968, 277, 372
- 68PW B. Perlmutter-Hayman and Y. Weissmann, Israel J. Chem., 1968, 6, 17
- 68QM A. S. Quist and W. L. Marshall, J. Phys. Chem., 1968, 72, 3122
- 68RJ L. Rasmussen and C. K. Jorgensen, Acta Chem. Scand., 1968, 22, 2313
- 68RR C. Ropars, M. Rougee, M. Momentau, and D. Lexa, <u>J. Chim. Phys.</u>, 1968, <u>65</u>, 816
- 68RS C. L. Rao, C. J. Shahani, and K. A. Mathew, <u>Inorg. Nucl. Chem. Letters</u>, 1968, <u>4</u>, 655
- 68RV R. Ripan and G. Vericeanu, Studio Univ. Babes-Bolyai, Ser. Chem., 1968, 13, 31
- 68S P. Stantschett, Z. Anal. Chem., 1968, 234, 109
- 68SA I. A. Sheka and L. P. Andrusenko, Russ. J. Inorg. Chem., 1968, 13, 180 (347)
- 68SF U. Schedin and M. Frydman, Acta Chem. Scand., 1968, 22, 115
- 68SG T. W. Swaddle and G. Guastalla, Inorg. Chem., 1968, 7, 1915
- 68SI T. Sekine, H. Iwaki, M. Sakairi, F. Shimada, and M. Inarida, <u>Bull. Chem. Soc.</u>
 Japan, 1968, 41, 1
- 68SM V. B. Spivakovskii and G. V. Makovskaya, <u>Russ. J. Inorg. Chem.</u>, 1968, <u>13</u>, 815 (1555), 1423 (2764)
- 68SMR C. J. Shahani, K. A. Mathew, C. L. Rao, and M. V. Ramaniah, Radiochim. Acta, 1968, 10, 165
- 68SR K. Srinivasan and G. A. Rechnitz, Anal. Chem., 1968, 40, 1818
- 68SRG P. Schindler, M. Reinert, and H. Gamsjager, Helv. Chim. Acta, 1968, 51, 1845
- 68SRR G. C. Stocco, E. Rivarola, R. Romeo, and R. Barbieri, <u>J. Inorg. Nucl. Chem.</u>, 1968, 30, 2409
- 68SS Y. Sasaki and L. G. Sillen, <u>Arkiv Kemi</u>, 1968, <u>29</u>, 253
- 68ST T. G. Sukhova, O. N. Temkin, R. M. Flid, and T. K. Kaliya, <u>Russ. J. Inorg. Chem.</u> 1968, <u>13</u>, 1072 (2073)
- 68SW A. Schlund and H. Wendt, Ber. Bunsengesell. Phys. Chem., 1968, 72, 652
- 68SY G. A. Shutova, K. B. Yatsimirskii, and T. V. Malkova, <u>Russ. J. Inorg. Chem.</u>, 1968, 13, 1395 (2708)
- 68TH A. H. Truesdell and P. B. Hostetler, Geochim. Cosmochim. Acta, 1968, 32, 1019
- 68TL J. Tummavuori and P. Lumme, Acta Chem. Scand., 1968, 22, 2003

68TR P. H. Tedesco, V. B. de Rumi, and J. A. Gonzalez Quintana, <u>J. Inorg. Nucl. Chem.</u>, 1968, 30, 987

- 68TW S. P. Tanner, J. B. Walker, and G. R. Choppin, <u>J. Inorg. Nucl. Chem.</u>, 1968, <u>30</u>, 3067
- 68V N. E. Vanderborgh, Talanta, 1968, 15, 1009
- 68VG V. P. Vasilev and N. K. Grechina, Izv. Vyssh. Ucheb. Zaved., Khim., 1968, 11, 142
- 68VK V. P. Vasilev and L. A. Kochergina, Russ. J. Phys. Chem., 1968, 42, 199 (373)
- 68VV V. P. Vasilev and P. N. Vorobev, Izv. Vyssh. Ucheb. Zaved., Khim., 1968, 11, 971
- 68WM J. I. Watters and R. Machen, J. Inorg. Nucl. Chem., 1968, 30, 2163
- 68WS C. F. Wells and M. A. Salam, J. Chem. Soc. (A), 1968, 24
- 68WSa C. F. Wells and M. A. Salam, J. Chem. Soc. (A), 1968, 308
- 68ZL O. E. Zvyagintsev and S. B. Lyakhmanov, Russ. J. Inorg. Chem., 1968, 13, 643 (1230)
- 68ZP P. Zanella, G. Plazzogna, and G. Tagliavini, Inorg. Chim. Acta, 1968, 2, 340
- 69A R. Arnak, Acta Chem. Scand., 1969, 23, 1986
- 69AL A. Aziz and S. J. Lyle, Anal. Chim. Acta, 1969, 47, 49
- 69ALa A. Aziz and S. J. Lyle, J. Inorg. Nucl. Chem., 1969, 31, 3471
- 69AY I. I. Alekseeva and K. B. Yatsimirskii, Russ. J. Inorg. Chem., 1969, 14, 221 (432)
- 69B E. W. Baumann, <u>J. Inorg. Nucl. Chem.</u>, 1969, <u>31</u>, 3155
- 69Ba A. M. Bond, <u>J. Electroanal. Chem.</u>, 1969, <u>23</u>, 269
- 69Bb A. M. Bond, J. Electroanal. Chem., 1969, 23, 277
- 69Bc N. N. Baranova, Russ. J. Inorg. Chem., 1969, 14, 1717 (3257)
- 69BC S. L. Bertha and G. R. Choppin, Inorg. Chem., 1969, 8, 613
- 69BG F. Becker and R. Grundmann, Z. Phys. Chem. (Frankfort), 1969, 66, 137
- 69BL B. Kozlowska, F. Letowska, and J. Niemiec, Rocz. Chem., 1969, 43, 1597
- 69BM Yu. A. Barbanel and N. K. Mikhailova, Soviet Radiochem., 1969, 11, 576 (595)
- 69BMN A. K. Babko, E. A. Mazurenko, and B. I. Nabivanets, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 1091 (2079)
- 69BNR E. A. Biryuk, V. A. Nazarenko, and R. V. Ravitskaya, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 503 (965)
- 69BNT E. A. Biryuk, V. A. Nazarenko, and L. N. Thu, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 373 (714)
- 69BP G. R. Bruce and M. H. Panckhurst, Aust. J. Chem., 1969, 22, 469
- 69BPa H. L. Bohn and M. Peech, Proc. Soil Sci. Soc. Amer., 1969, 33, 873

- 69BS B. Behar and G. Stein, Israel J. Chem., 1969, 7, 827
- 69BW W. B. Baldwin and G. Wiese, Arkiv Kemi, 1969, 31, 419
- 69BWa W. G. Baldwin and G. Wiese, Arkiv Kemi, 1969, 31, 429
- 69C C. W. Childs, J. Phys. Chem., 1969, 73, 2956
- 69Ca J. M. Carpentier, Bull. Soc. Chim. France, 1969, 3851
- 69CP C. W. Childs and M. H. Panckhurst, Aust. J. Chem., 1969, 22, 911
- 69CPK A. K. Chuchalin, B. I. Peshchevitskii, and I. A. Kuzin, Russ. J. Inorg. Chem., 1969, 14, 937 (1785)
- 69CR D. L. Cole, L. D. Rich, J. D. Owen, and E. M. Eyring, Inorg. Chem., 1969, 8, 682
- 69DH B. Desire, M. Hussonnois, and R. Guillaumont, Compt. Rend. Acad. Sci. Paris, Ser. C, 1969, 269, 448
- 69DK G. Davies and K. Kustin, Inorg. Chem., 1969, 8, 1196
- 69EP A. M. Erenburg and B. I. Peshchevitskii, Russ. J. Inorg. Chem., 1969, 14, 485 (932)
- 69ES B. Evtimova, J. P. Scharff, and M. R. Paris, Bull. Soc. Chim. France, 1969, 81
- 69F A. W. Fordham, Aust. J. Chem., 1969, 22, 1111
- 69FB V. A. Fedorov, I. M. Bolshakova, and V. E. Mironov, <u>Russ. J. Inorg. Chem</u>., 1969, 14, 805 (1538)
- 69FD Ya. D. Fridman and T. V. Danilova, Russ. J. Inorg. Chem., 1969, <u>14</u>, 370
- 69FP D. P. Fay and N. Purdie, J. Phys. Chem., 1969, 73, 3462
- 69FR A. V. Fokina, Yu. I. Rutkovskii, and V. E. Mironov, <u>Russ. J. Inorg. Chem</u>., 1969, 14, 620 (1183)
- 69FRa V. A. Fedorov, A. M. Robov, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 1432 (2720)
- 69FT S. Funahashi and M. Tanaka, <u>Inorg. Chem.</u>, 1969, <u>8</u>, 2159
- 69G P. Gerding, Acta Chem. Scand., 1969, 23, 1695
- 69GA H. Gamsjaeger, K. Aeberhard, and P. Schindler, Helv. Chim. Acta, 1969, 52, 2315
- 69GK B. Gorski and H. Koch, J. Inorg. Nucl. Chem., 1969, 31, 3565
- 69GM R. Guillaumont, C. Ferreira de Miranda, and M. Galin, Comp. Rend. Acad. Sci. Paris, Ser. C, 1969, 268, 140
- 69GN G. L. Gardner and G. H. Nancollas, Anal. Chem., 1969, 41, 202
- 67GP M. Gazikalovic, Z. Pavlovic, and T. Markovic, Arh. Tehnol., 1967, 5, 51
- 69GS H. Gamsjaeger, P. S. Schindler, and B. Kleinert, Chimia (Switz.), 1969, 23, 229
- 69GV I. Grenthe and J. Varfeldt, Acta Chem. Scand., 1969, 23, 988

- 69H G. Horn, Rodex-Rundsch., 1969, 1, 439
- 69HS J. Hala and J. Smola, J. Inorg. Nucl. Chem., 1969, 31, 1133
- 69IE R. M. Izatt, D. Eatough, J. J. Christensen, and C. H. Bartholomew, <u>J. Chem. Soc.(A)</u>, 1969, 45
- 69IEa R. M. Izatt, D. Eatough, J. J. Christensen, and C. H. Bartholomew, <u>J. Chem. Soc.(A)</u>, 1969, 47
- 69IV A. A. Ivakin and E. M. Voronova, Russ. J. Inorg. Chem., 1969, 14, 815 (1557)
- 69IVa A. A. Ivakin and E. M. Voronova, <u>Trudy Inst. Khim. Uralsk. Fil. Akad. Nauk SSSR</u>, 1969, No. 17, 107
- 69J L. Johansson, Acta Chem. Scand., 1969, 23, 548
- 69K B. Kennedy, Diss., Georgetown Univ., Wash., D.C., 1969; <u>Diss. Abs. Int. B</u>, 1969, 30, 1544
- 69KH C. Kappenstein and R. Hugel, Rev. Chim. Minerale, 1969, 6, 1107
- 69KK V. N. Krylov and E. V. Komarov, Soviet Radiochem., 1969, 11, 94 (101) 99, (105)
- 69KKP V. N. Krylov, E. V. Komarov and M. S. Pushlenkov, <u>Soviet Radiochem</u>., 1969, <u>11</u>, 97 (103), 237 (244), 450 (460)
- 69KM K. H. Khoo and J. D. Murray, J. Inorg. Nucl. Chem., 1969, 31, 2437
- 69KP D. R. Kester and R. M. Pytkowicz, <u>Limnol. Oceanog.</u>, 1969, <u>14</u>, 686
- 69KS V. I. Krautsov and I. V. Simakova, <u>Vestn. Leningrad. Univ.</u>, <u>Fiz. Khim.</u>, 1969, 124; <u>Chem. Abs.</u>, 1970, 72, 125686W
- 69LS F. I. Lobanov, V. M. Savostina, L. V. Serzhenko, and V. M. Peshkova, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 562 (1077)
- 69LV G. A. Lobanol and V. P. Vasilev, Izv. Vyssh. Ucheb. Zaved., Khim., 1969, 12, 740
- 69M J. Maslowska, Zesz. Nauk. Politech. Lodz., Chem., 1969, No. 19, 7; Chem. Abs., 1970, 72, 16211s
- 69MA D. F. C. Morris, D. T. Anderson, S. L. Waters, and G. L. Reed, <u>Electrochim. Acta</u>, 1969, 14, 643
- 69MB R. E. Mesmer and C. F. Baes, Jr., Inorg. Chem., 1969, 8, 618
- 69MF I. D. McKenzie and R. M. Fuoss, J. Phys. Chem., 1969, 73, 1501
- 69MG M. C. Mehra and A. O. Gubeli, Radiochem. Radioanal. Letters, 1969, 2, 61
- 69MGa H. Metivier and R. Guillamont, Radiochem. Radioanal. Letters, 1969, 1, 209
- 69MH E. E. Mercer and J. A. Hormuth, J. Inorg. Nucl. Chem., 1969, 31, 2145
- 69MK A. I. Mikhailichenko and I. E. Kurdin, Soviet Radiochem., 1969, 11, 348 (356)
- 69MKa B. Marin and T. Kikindai, Comp. Rend. Acad. Sci. Paris, Ser. C, 1969, 268, 1
- 69MKb O. Makitie and V. Konttinen, Acta Chem. Scand., 1969, 23, 1459

- 69MM V. E. Mironov, Yu. A. Makashev, and I. Ya. Mavrina, <u>Russ. J. Inorg. Chem.</u>, 1969, 14, 746 (1424)
- 69MN E. A. Mazurenko and B. I. Nabivanets, Russ. J. Inorg. Chem., 1969, 14, 1732 (3286)
- 69MNM D. M. Mikhailova, R. N. Nacheva, and V. Ts. Mikhailova, <u>Soviet Radiochem</u>., 1969, 11, 241 (247)
- 69MP J. B. Macaskill and M. H. Panckhurst, Aust. J. Chem., 1969, 22, 317
- 69MS D. F. C. Morris and P. J. Sturgess, Electrochim. Acta, 1969, 14, 629
- 69N B. Noren, Acta Chem. Scand., 1969, 23, 379
- 69Na B. Noren, Acta Chem. Scand., 1969, 23, 931
- 69Nb N. M. Nikolaeva, Russ. J. Inorg. Chem., 1969, 14, 487 (936)
- 69NM V. A. Nazarenko and O. V. Mandzhgaladze, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 639 (1219)
- 69NN V. A. Nazarenko and E. M. Nevskaya, Russ. J. Inorg. Chem., 1969, 14, 1696 (3215)
- 69NP V. A. Nazarenko and E. N. Poluektova, Russ. J. Inorg. Chem., 1969, 14, 105 (204)
- 69NPa N. M. Nikolaeva and M. P. Primanchuk, Russ. J. Inorg. Chem., 1969, 14, 1554 (2945)
- 69NPS B. P. Nikolskii, V. V. Palchevskii, and E. F. Strizhev, <u>Vestn. Leningrad, Univ.</u>, <u>Fiz. Khim.</u>, 1969, 116; <u>Chem. Abs.</u>, 1970, <u>72</u>, 16165e
- 69NR F. S. Nakayama and B. A. Rasnick, J. Inorg. Nucl. Chem., 1969, 31, 3491
- 69NS G. F. Nichugovskii and V. P. Shvedov, Russ. J. Inorg. Chem., 1969, 14, 156 (299)
- 69PB B. I. Peshchevitskii and V. I. Belevantsev, <u>Izv. Sib. Otd. Akad. Nauk SSSR</u>, <u>Ser. Khim.</u>, 1969, 82; <u>Chem. Abs.</u>, 1969, <u>71</u>, 16401h
- 69PK R. M. Pytkowicz and D. R. Kester, <u>Amer. J. Sci.</u>, 1969, <u>267</u>, 217
- 69PN C. J. Peacock and G. Nickless, Z. Naturforsch., 1969, 24a, 245
- 69R T. Ryhl, <u>Acta Chem. Scand.</u>, 1969, <u>23</u>, 2667
- 69RC L. D. Rich, D. L. Cole, and E. M. Eyring, J. Phys. Chem., 1969, 73, 713
- 69RP C. L. Rao and S. A. Pai, Radiochem. Acta, 1969, 12, 135
- 69RS N. P. Rudenko and A. I. Sevastyanov, Russ. J. Inorg. Chem., 1969, 14, 441 (848)
- 69SA I. A. Sheka and L. P. Andrusenko, Russ. J. Inorg. Chem., 1969, 14, 186 (362)
- 69SB T. G. Sukhova, N. Ya. Borshch, O. N. Temkin, and R. M. Flid, <u>Russ. J. Inorg.</u> Chem., 1969, 14, 362 (694)
- 69SG V. I. Sidorenko and V. I. Gordienko, <u>J. Anal. Chem. USSR</u>, 1969, <u>24</u>, 499 (645)
- 69SGM M. Shiloh, M. Givon, and Y. Marcus, J. Inorg. Nucl. Chem., 1969, 31, 1807
- 69SM V. B. Spivakovskii and L. P. Moisa, Russ. J. Inorg. Chem., 1969, 14, 615 (1173)

69SMK S. A. Sherif, N. E. Milad, and A. A. Khedr, J. Inorg. Nucl. Chem., 1969, 31, 3225

- 69SMT E. V. Saksin, O. N. Malyavinskaya, and Ya. I. Turyan, <u>Russ. J. Phys. Chem</u>., 1969, 43, 283 (517)
- 69SP G. Sahu and B. Prasad, <u>J. Indian Chem. Soc.</u>, 1969, <u>46</u>, 233
- 69SPa L. Sharma and B. Prasad, J. Indian Chem. Soc., 1969, 46, 241
- 69SS T. Sekine and M. Sakairi, Bull. Chem. Soc. Japan, 1969, 42, 2712
- 69ST T. G. Sukhova, O. N. Temkin, and R. M. Flid, <u>Russ. J. Inorg. Chem</u>., 1969, <u>14</u>, 483 (928)
- 69SW G. Schwarzenbach and H. Wenger, Helv. Chim. Acta, 1969, 52, 644
- 69VB F. H. Van Cauwelaert and H. J. Bosmans, Rev. Chim. Miner., 1969, 6, 611
- 69VM V. P. Vasilev and P. S. Mukhina, Izv. Vyssh. Ucheb. Zaved., Khim., 1969, 12, 258
- 69VO A. Vanni, G. Ostacoli, and E. Roletto, Ann. Chem., 1969, 59, 847
- 69VP E. Verdier and J. Piro, Ann. Chim. (France) 1969, 4, 213
- 69VS V. M. Vdovenko and O. B. Stebunov, Soviet Radiochem., 1969, 11, 625 (635)
- 69VSa V. M. Vdovenko and O. B. Stebunov, Soviet Radiochem., 1969, 11, 630 (640)
- 69VV V. P. Vasilev, P. N. Vorobev, and A. F. Belyakova, <u>Izv. Vyssh. Ucheb. Zaved.</u>, <u>Khim.</u>, 1969, <u>12</u>, 115
- 69WK J. I. Watters, S. Kalliney, and R. C. Machen, <u>J. Inorg. Nucl. Chem</u>., 1969, <u>31</u>, 3817
- 69WKa J. I. Watters, S. Kalliney, and R. C. Machen, <u>J. Inorg. Nucl. Chem</u>., 1969, <u>31</u>, 3823
- 69WS C. F. Wells and M. A.Salam, J. Inorg. Nucl. Chem., 1969, 31, 1083
- 69YM L. B. Yeatts and W. L. Marshall, <u>J. Phys. Chem.</u>, 1969, <u>73</u>, 81
- 69ZL O. E. Zvyagintsev and S. B. Lyakhmanov, <u>Russ. J. Inorg. Chem.</u>, 1969, <u>14</u>, 956, (1822)
- 70AB J. Ascanio and F. Brito, <u>An. Quim.</u>, 1970, <u>66</u>, 617
- 70AL A. Aziz and S. J. Lyle, J. Inorg. Nucl. Chem., 1970, 32, 1925
- 70AR S. Ahrland and J. Rawsthorne, Acta Chem. Scand., 1970, 24, 157
- 70AS A. Anagnostopoulos and P. O. Salkellaridis, <u>J. Inorg. Nucl. Chem.</u>, 1970, <u>32</u>, 1740
- 70AW N. S. Al-Niaimi, A. G. Wain, and H. A. C. McKay, <u>J. Inorg. Nucl. Chem.</u>, 1970, <u>32</u>, 977
- 70AWa N. S. Al-Niaimi, A. G. Wain, and H. A. C. McKay, <u>J. Inorg. Nucl. Chem</u>., 1970, <u>32</u>, 2331

- 70B A. M. Bond, J. Electroanal. Chem., 1970, 28, 433
- 70Ba A. M. Bond, J. Electrochem. Soc., 1970, 117, 1145
- 70Bb A. Bellomo, Talanta, 1970, 17, 1109
- 70Bc E. W. Baumann, J. Inorg. Nucl. Chem., 1970, 32, 3823
- 70Bd W. G. Baldwin, Arkiv Kemi, 1970, 31, 407
- 70BH A. M. Bond and G. Hefter, Inorg. Chem., 1970, 9, 1021
- 70BO A. M. Bond and T. A. O'Donnell, J. Electroanal. Chem., 1970, 26, 137
- 70BS W. G. Baldwin and L. G. Sillen, Arkiv Kemi, 1970, 31, 391
- 70BT A. M. Bond and R. J. Taylor, J. Electroanal. Chem., 1970, 28, 207
- 70BZ K. A. Burkov, N. I. Zinevich, and L. S. Lilich, <u>Izv. Vyssh. Ucheb. Zaved.</u>, Khim., 1970, 13, 1250
- 70C C. W. Childs, Inorg. Chem., 1970, 9, 2465
- 70CG L. Ciavatta and M. Grimaldi, Inorg. Chim. Acta, 1970, 4, 312
- 70CGM L. Ciavatta, M. Grimaldi, and A. Mangone, J. Inorg. Nucl. Chem., 1970, 32, 3805
- 70CJ J. J. Christensen, H. D. Johnston and R. M. Izatt, J. Chem. Soc. (A), 1970, 454
- 70DS V. I. Dubinskii and V. M. Shulman, Russ. J. Inorg. Chem., 1970, 15, 764 (1488)
- 70DSa E. F. De Almeida Neves and L. Sant'Agostino, Anal. Chim. Acta, 1970, 49, 591
- 70E B. Elgquist, J. Inorg. Nucl. Chem., 1970, 32, 937
- 70Ea L. I. Elding, Acta Chem. Scand., 1970, 24, 1331, 1527
- 70Eb L. I. Elding, Acta Chem. Scand., 1970, 24, 2546, 2557
- 70EE M. Ebert and J. Eysseltova, J. Inorg. Nucl. Chem., 1970, 32, 967
- 70EL M. Ehrenfreund and J. L. Leibenguth, Bull. Soc. Chim. France, 1970, 2494, 2498
- 70FC V. A. Fedorov, G. E. Chernikova, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1970, 15, 1082 (2100)
- 70FS V. A. Fedorov, N. P. Samsonova, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1970, 15, 1325 (2561)
- 70GF R. Guillaumont, J. C. Franck, and R. Muxart, <u>Radiochem. Radioanal. Letters</u>, 1970, 4, 73
- 70GG A. W. Gardner and E. Glueckauf, Trans. Faraday Soc., 1970, 66, 1081
- 70GH A. O. Gubeli, J. Hebert, P. A. Cote; and R. Taillon, <u>Helv. Chim. Acta</u>, 1970, <u>53</u>, 186
- 70GHa A. O. Gubeli, J. Hebert, R. Taillon, and P. A. Cote, <u>Helv. Chim. Acta</u>, 1970, <u>53</u>, 1229

- 70GK H. Gamsjaeger, W. Kraft, and P. Schindler, Helv. Chim. Acta, 1970, 53, 290
- 70GM T. M. Gregory, E. C. Moreno, and W. E. Brown, <u>J. Res. Nat. Bur. Stand.</u>, 1970, 74A, 461
- 70GN R. Ghosh and V. S. K. Nair, J. Inorg. Nucl. Chem., 1970, 32, 3041
- 70GNa G. L. Gardner and G. H. Nancollas, Anal. Chem., 1970, 42, 794
- 70G0 I. Grenthe, H. Ots, and O. Ginstrup, Acta Chem. Scand., 1970, 24, 1067
- 70GS A. M. Gorelov and A. P. Shtin, Russ. J. Inorg. Chem., 1970, 15, 1655 (3178)
- 70GSM V. I. Gordienko, V. I. Sidorenko, and Yu. I. Mikhailyuk, <u>Russ. J. Inorg. Chem.</u>, 1970, 15, 1241 (2397)
- 70GZ A. Gunter and A. Zuberbuhler, Chimia (Switz.), 1970, 24, 340
- 70HK D. S. Honig and K. Kustin, J. <u>Inorg. Nucl. Chem.</u>, 1970, <u>32</u>, 1599
- 70HKS Y. Hasegawa, H. Kawashima, and T. Sekine, Bull. Chem. Soc. Japan, 1970, 43, 1718
- 70HR P. Hemmes, L. D. Rich, D. L. Cole, and E. M. Eyring, <u>J. Phys. Chem.</u>, 1970, <u>74</u>, 2859
- 70HS S. Hietanen and L. G. Sillen, Arkiv Kemi, 1970, 32, 111
- 70HV E. Halloff and N. G. Vannerberg, Acta Chem. Scand., 1970, 24, 55
- 70HW W. J. Hamer and Y. C. Wu, <u>J. Res. Nat. Bur. Standards</u>, 1970, <u>74A</u>, 761
- 70IE B. N. Ivanov-Emin, A. M. Egorov, V. I. Romanyuk, and E. N. Siforova, <u>Russ. J.</u>
 Inorg. Chem., 1970, 15, 628 (1224)
- 70IV A. A. Ivakin and E. M. Voronova, <u>Tr. Inst. Khim.</u>, <u>Akad. Nauk SSSR</u>, <u>Ural. Filial</u>, 1970, No. 17, 144; <u>Chem. Abs.</u>, 1970, <u>73</u>, 134396z
- 70KB H. Krentzien and F. Brito, Ion, 1970, 30, 14
- 70KBM G. N. Kozachenko, I. M. Batyaev, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1970, <u>15</u>, 452 (888)
- 70KK A. E. Klygin, N. S. Kolyada, and I. D. Smirnova, <u>Russ. J. Inorg. Chem.</u>, 1970, 15, 1719 (3300)
- 70KS A. E. Klygin, I. D. Smirnova, and D. M. Zavrazhnova, <u>Russ. J. Inorg. Chem.</u>, 1970, <u>15</u>, 155 (294)
- 70KT V. I. Kravtsov, N. V. Titova, and G. P. Tsayun, <u>Elektrokhim</u>., 1970, <u>6</u>, 573
- 70KY F. Ya. Kulba, Yu. B. Yakovlev, and E. A. Kopylov, <u>Russ. J. Inorg. Chem</u>., 1970, <u>15</u>, 1088 (2112)
- 70L J. W. Larson, J. Phys. Chem., 1970, 74, 3392
- 70La F. Letowski, Rocz. Chem., 1970, 44, 1665
- 70Lb G. M. Lafon, Geochim. Cosmochim. Acta, 1970, 34, 935

- 70Lc O. Lukkari, Suomen Kem., 1970, B43, 347
- 70Ld J. O. Liljenzin, Acta Chem. Scand., 1970, 24, 1655
- 70LK H. Lahr and W. Knoch, Radiochim. Acta, 1970, 13, 1
- 70LS B. N. Laskorin, V. F. Smirnov, and V. I. Nikonov, <u>Russ. J. Inorg. Chem.</u>, 1970, 15, 1724 (3310)
- 70M A. I. Moskvin, Russ. J. Inorg. Chem., 1970, 15, 1756 (3368)
- 70MA V. M. Mylnikova, K. V. Astakhov, and S. A. Barkov, <u>Russ. J. Phys. Chem.</u>, 1970, 44, 314 (560)
- 70MG M. C. Mehra and A. O. Gubeli, Canad. J. Chem., 1970, 48, 3491
- 70MGa M. C. Mehra and A. O. Gubeli, J. Less-Common Metals, 1970, 22, 281
- 70MM V. E. Mironov, Yu. A. Makashev, I. Ya. Mavrina, and M. M. Kryshanovskii, Russ.

 J. Inorg. Chem., 1970, 15, 668 (1301)
- 70MS L. P. Moisa and V. B. Spivakovskii, Russ. J. Inorg. Chem., 1970, 15, 1513 (2907)
- 70MSS T. Murayama, T. Sawaki, and S. Sakuraba, Bull. Chem. Soc. Japan, 1970, 43, 2820
- 70NK B. I. Nabivanets and L. V. Kalabina, Russ. J. Inorg. Chem., 1970, 15, 818 (1595)
- 700E J. D.Owen and E. M. Eyring, J. Inorg. Nucl. Chem., 1970, 32, 2217
- 700P N. A. Orlin and V. E. Plyushchev, <u>Russ. J. Inorg. Chem.</u>, 1970, <u>15</u>, 227 (439), 229 (442)
- 70P H. Persson, Acta Chem. Scand., 1970, 24, 3739
- 70PH J. Prasilova and J. Havlicek, J. Inorg. Nucl. Chem., 1970, 32, 953
- 70PM G. Pilloni and F. Magno, <u>Inorg. Chim. Acta</u>, 1970, <u>4</u>, 105
- 70RG W. F. Rittner, A. Gulko, and G. Schmuckler, Talanta, 1970, 17, 807
- 70RS V. K. Rao, C. J. Shahani, and C. L. Rao, Radiochim. Acta, 1970, 14, 31
- 70SB F. H. Sweeton and C. F. Baes, Jr., J. Chem. Thermodyn., 1970, 2, 479
- 70SG P. Senise and O. E. S. Godinho, J. Inorg. Nucl. Chem., 1970, 32, 3641
- 70SGK T. M. Sas, V. A. Gagarina, L. N. Komissarova, and V. G. Gulia, <u>Russ. J. Inorg.</u> <u>Chem.</u>, 1970, <u>15</u>, 644 (1255)
- 70SK T. W. Swaddle and P. Kong, Canad. J. Chem., 1970, 48, 3224
- 70SP L. Sharma and B. Prasad, J. Indian Chem. Soc., 1970, 47, 193
- 70SS V. I. Shlenskaya, N. G. Shumkova, and A. A. Biryukov, <u>J. Anal. Chem. USSR</u>, 1970, <u>25</u>, 1852 (2155)
- 70TR Ya. I. Turyan and O. E. Ruvinskii, J. Electroanal. Chem., 1970, 28, 381
- 70VA V. P. Vasilev, S. A. Aleksandrova and L. A. Kochergina, <u>Russ. J. Inorg. Chem.</u>, 1970, <u>15</u>, 899 (1751)

70VAa V. P. Vasilev, S. A. Aleksandrova and L. A. Kochergina, Russ. J. Inorg. Chem., 1970, 15, 1659 (3185)

- 70VT N. T. Voskresenskaya and N. V. Timofeeva, <u>Russ. J. Inorg. Chem.</u>, 1970, <u>15</u>, 1352 (2608)
- 70VV V. P. Vasilev and P. N. Vorobev, Russ. J. Phys. Chem., 1970, 44, 657 (1181)
- 70W J. B. Walker, J. Inorg. Nucl. Chem., 1970, 32, 2793
- 71AB K. P. Anderson, E. A. Butler and E. M. Woolley, J. Phys. Chem., 1971, 75, 93
- 71AK S. Ahrland and L. Kullberg, Acta Chem. Scand., 1971, 25, 3457, 3471
- 71AKa S. Ahrland and L. Kullberg, Acta Chem. Scand., 1971, 25, 3677
- 71AKb S. Ahrland and L. Kullberg, Acta Chem. Scand., 1971, 25, 3692
- 71AM R. P. Agarwal and E. C. Moreno, Talanta, 1971, 18, 873
- 71AO S. Akalin and U. Y. Ozer, J. Inorg. Nucl. Chem., 1971, 33, 4171
- 71B A. M. Bond, Anal. Chim. Acta, 1971, 53, 159
- 71Ba T. F. Bidleman, Anal. Chim. Acta, 1971, 56, 221
- 71BG V. P. Biryukov and E. Sh. Ganelina, Russ. J. Inorg. Chem., 1971, 16, 320 (600)
- 71BH A. M. Bond and G. Hefter, J. Inorg. Nucl. Chem., 1971, 33, 429
- 71BHa A. M. Bond and G. Hefter, <u>J. Electroanal. Chem.</u>, 1971, <u>31</u>, 477
- 71BL A. R. Bailey and J. W. Larson, <u>J. Phys. Chem.</u>, 1971, <u>75</u>, 2368
- 71BN T. A. Belyavskaya and I. A. Nemirovskaya, Moscow Univ. Chem. Bull., 1971, No. 6, 95 (745)
- 71BS G. Biedermann and T. G. Spiro, Chem. Scripta, 1971, 1, 155
- 71BSa L. Barcza and L. G. Sillen, Acta Chem. Scand., 1971, 25, 1250
- 71BSb L. P. Barchuk and I. A. Sheka, Russ. J. Inorg. Chem., 1971, 16, 1268 (2378)
- 71BSB N. Bertazzi, A. Silvestri, and R. Barbieri, <u>J. Inorg. Nucl. Chem</u>., 1971, <u>33</u>, 799
- 71BZ K. A. Burkov, N. I. Zinevich, and L. S. Lilich, <u>Russ. J. Inorg. Chem.</u>, 1971, <u>16</u>, 926 (1746)
- 71CD R. O. Cook, A. Davies, and L. A. K. Staveley, J. Chem. Thermodyn., 1971, 3, 907
- 71CV J. Cadek, J. Vesely and Z. Sulcek, Coll. Czech. Chem. Comm., 1971, 36, 3377
- 71D V. I. Dubinskii, Russ. J. Inorg. Chem., 1971, 16, 607
- 71Da A. D'Aprano, J. Phys. Chem., 1971, 75, 3290
- 71DB N. Dezelic, H. Bilinski, and R. H. H. Wolf, J. <u>Inorg. Nucl. Chem.</u>, 1971, 33, 791

- 71DC P. R. Danesi, R. Chiarizia, G. Scibona and G. D'Alessandro, <u>J. Inorg. Nucl.</u> Chem., 1971, 33, 3503; 1974, 36, 2396
- 71DD R. C. Das, A. C. Dash, D. Satyanarayan, and U. N. Dash, <u>Thermochim. Acta</u>, 1971, <u>2</u>, 435
- 71DG H. Dautet and R. Guillaumont, Radiochem. Radioanal. Letters, 1971, 8, 175
- 71EG L. I. Elding and L. Gustafson, Inorg. Chim. Acta, 1971, 5, 643
- 71EGa A. J. Ellis and W. Giggenbach, Geochim. Cosmochim. Acta, 1971, 35, 247
- 71EM C. E. Evans and C. B. Monk, Trans. Faraday Soc., 1971, 67, 2652
- 71FCK V. A. Fedorov, G. E. Chernikova, T. N. Kalosh, and M. E. Mironov, <u>Russ. J.</u>
 Inorg. Chem., 1971, 16, 170 (325)
- 71FCM V. A. Fedorov, G. E. Chernikova, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1971, 16, 489 (918)
- 71FK V. A. Fedorov, T. N. Kalosh, G. E. Chernikova, and V. E. Mironov, <u>Russ. J. Phys.</u> Chem., 1971, 45, 106 (186)
- 71FKa V. A. Fedorov, T. N. Kalosh, G. E. Chernikova, and V. E. Mironov, <u>Russ. J. Phys.</u> Chem., 1971, 45, 775 (1364)
- 71FKM V. A. Fedorov, T. N. Kalosh, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1971, 16, 539 (1014)
- 71FKS V. A. Fedorov, T. N. Kalosh, L. I. Shmydko, and V. E. Mironov, <u>Russ. J. Inorg.</u> Chem., 1971, 16, 1276 (2393)
- 71FR V. A. Fedorov, A. M. Robov, I. D. Isaev, and V. E. Mironov, <u>Russ. J. Inorg.</u> Chem., 1971, <u>16</u>, 500 (940)
- 71G W. Giggenbach, <u>Inorg. Chem.</u>, 1971, <u>10</u>, 1333
- 71GB E. S. Ganelina and V. A. Borgoyakov, <u>Russ. J. Inorg. Chem.</u>, 1971, <u>16</u>, 318 (596)
- 71GD R. Guillaumont, B. Desire, and M. Galin, <u>Radiochem. Radioanal. Letters</u>, 1971, 8, 189
- 71GF E. A. Gyunner and A. M. Fedorenko, Russ. J. Inorg. Chem., 1971, 16, 1784 (3371)
- 71GH S. L. Grassino and D. N. Hume, J. Inorg. Nucl. Chem., 1971, 33, 421
- 71HR P. Hemmes, L. D. Rich, D. L. Cole, and E. M. Eyring, <u>J. Phys. Chem.</u>, 1971, <u>75</u>, 929
- 71IB B. N. Ivanov-Emin, L. D. Borzova, A. M. Egorov, and S. G. Malyugina, <u>Russ. J.</u>
 Inorg. Chem., 1971, 16, 1474 (2766)
- 71IJ R. M. Izatt H. D. Johnston, D. J. Eatough, J. W. Hansen and J. J. Christensen, <u>Thermochim. Acta</u>, 1971, <u>2</u>, 77
- 71K A. S. Kereichuk, Russ. J. Inorg. Chem., 1971, 16, 751 (1424)
- 71KB N. N. Kozachenko and I. M. Batyaev, Russ. J. Inorg. Chem., 1971, 16, 66 (125)

- 71KBa H. C. Kaehler and F. Brito, An. Quim., 1971, 67, 1185
- 71KM V. I. Kravtsov and L. B. Martynova, Russ. J. Inorg. Chem., 1971, 16, 457 (858)
- 71KMF P. Klotz, A. Mukherji, S. Feldberg, and L. Newman, Inorg. Chem., 1971, 10, 740
- 71KN P. K. Khopkar and P. Narayanankutty, J. Inorg. Nucl. Chem., 1971, 33, 495
- 71KP L. N. Komissarova, N. M. Prutkova, and G. Ya. Pushkina, <u>Russ. J. Inorg. Chem.</u>, 1971, <u>16</u>, 954 (1798)
- 71KS S. Kiciak and T. Stefanowicz, Rocz. Chem., 1971, 46, 1801
- 71KSa L. O. Spreer and E. L. King, Inorg. Chem., 1971, 10, 916
- 71M A. I. Moskvin, Russ. J. Inorg. Chem., 1971, <u>16</u>, 405 (759)
- 71Ma N. B. Milic, Acta Chem. Scand., 1971, 25, 2487
- 71Mb R. E. Mesmer, Inorg. Chem., 1971, 10, 857
- 71MB R. E. Mesmer and C. F. Baes, Jr., Inorg. Chem., 1971, 10, 2290
- 71MD S. Mateo, A. Diaz, and F. Brito, An. Quim., 1971, 67, 1179
- 71MG M. C. Mehra and A. O. Gubeli, J. Less-Common Metals, 1971, 25, 221
- 71MH D. F. C. Morris, T. J. Hedger, and P. A. Watson, <u>J. Inorg. Nucl. Chem.</u>, 1971, 33, 2077
- 71MKA Yu. A. Makashev, F. Ya. Kulba, M. I. Agaf, Yu. A. Volokhov, and V. E. Mironov, Russ. J. Phys. Chem., 1971, 45, 414 (735)
- 71MKK I. V. Melchakova, D. G. Khadzhidemetriu, N. A. Krasnyanskaya, and V. M. Peshkova, Russ. J. Inorg. Chem., 1971, 16, 1054 (1981)
- 71MM J. P. Manners, K. G. Morallee, and R. J. P. Williams, <u>J. Inorg. Nucl. Chem.</u>, 1971, <u>33</u>, 2085
- 71MO K. Momoki and H. Ogawa, Anal. Chem., 1971, 43, 1664
- 71MS H. Moriya and T. Sekine, <u>Bull. Chem. Soc. Japan</u>, 1971, <u>44</u>, 3347
- 71N E. F. A. Neves, <u>J. Inorg. Nucl. Chem.</u>, 1971, <u>33</u>, 571
- 71Na F. S. Nakayama, J. Chem. Eng. Data, 1971, 16, 178
- 71Nb F. S. Nakayama, J. Inorg. Nucl. Chem., 1971, 33, 1287
- 71Nc G. Neumann, Arkiv Kemi, 1971, 32, 229
- 71NA V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, <u>Russ. J. Inorg. Chem.</u>, 1971, 16, 530 (997)
- 71NAa V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, <u>Russ. J. Inorg. Chem.</u>, 1971, 16, 1273 (2387)
- 71NL B. I. Nabivanets and V. V. Lukachina, <u>Soviet Prog. Chem</u>. (<u>Ukr. Khim. Zh.</u>), 1971, 37, No. 6, 60 (581)

- 710B H. Ohtaki and G. Biedermann, Bull. Chem. Soc. Japan, 1971, 44, 1822
- 71P H. Persson, Acta Chem. Scand., 1971, 25, 543
- 71Pa L. Pettersson, Acta Chem. Scand., 1971, 25, 1959
- 71PB B. I. Peshchevitskii and N. V. Kurbatova, <u>Russ. J. Inorg. Chem.</u>, 1971, <u>16</u>, 1007 (1898)
- 71PH J. C. Pierrard and R. Hugel, Rev. Chim. Minerale, 1971, 8, 831
- 71PJ R. Paterson, S. K. Jalota, and H. S. Dunsmore, J. Chem. Soc. (A), 1971, 2116
- 71PK J. C. Pierrard, C. Kappenstein, and R. Hugel, Rev. Chim. Minerale, 1971, 8, 11
- 71PM G. Pilloni and F. Magno, Inorg. Chim. Acta, 1971, 5, 30
- 71PMP P. R. Patel, E. C. Moreno, and J. M. Patel, <u>J. Res. Nat. Bur. Stand</u>., 1971, <u>75A</u>, 205
- 71PR W. J. Popiel and M. S.Rustom, Chem. Ind. (London), 1971, 543
- 71PS A. T. Pilipenko, I. P. Sereda, and Z. A. Semchinskaya, <u>Russ. J. Inorg. Chem.</u>, 1971, 16, 1349 (2529)
- 71PT T. I. Pochkaeva, N. S. Tamm, and A. V. Novoselova, <u>Russ. J. Inorg. Chem.</u>, 1971, 16, 113 (219)
- 71PW R. A. Porter and W. J. Weber, Jr., J. Inorg. Nucl. Chem., 1971, 33, 2443
- 71S U. Schedin, Acta Chem. Scand., 1971, 25, 747
- 71SB I. A. Sheka and L. P. Barchuk, Russ. J. Inorg. Chem., 1971, <u>16</u>, 1573 (2961)
- 71SK T. Sekine, Y. Kimatsu, and M. Sakairi, Bull. Chem. Soc. Japan, 1971, 44, 1480
- 71SKa A. Samotus and B. Kosowicz-Czajkowska, Rocz. Chem., 1971, 46, 1623
- 71SM T. Sekine, R. Murai, and M. Iguchi, Nippon Kagaku Zasshi, 1971, 92, 412
- 71SS K. Srinivasan and R. S. Subrahmanya, J. Electroanal. Chem., 1971, 31, 233
- 71T J. Tummavuori, <u>Suomen Kem.</u>, 1971, <u>B44</u>, 222
- 71Ta J. Tummavuori, Suomen Kem., 1971, B44, 343
- 71Tb J. Tummavuori, Suomen Kem., 1971, B44, 350
- 71TL J. Tummavuori and P. Lumme, Suomen Kem., 1971, B44, 215
- 71TM L. R. Tokareva and M. V. Mokhosoev, Russ. J. Inorg. Chem., 1971, 16, 2388 (2417)
- 71TR M. M. Taqui Khan and P. R. Reddy, J. Inorg. Nucl. Chem., 1971, <u>33</u>, 1427
- 71TS K. Teruya, T. Seki, and I. Nakamori, <u>Kogyo Kagaku Zasshi</u>, 1971, <u>74</u>, 142; <u>Chem</u>. Abs., 1971, 74, 103712r
- 71V F. Vierling, Bull. Soc. Chim. France, 1971, 22, 25

71VP Y. A. Volokhov, L. N. Pavlov, N. I. Eremin, and V. E. Mironov, <u>J. Appl. Chem.</u> USSR, 1971, 44, 243 (246)

- 71WT J. B. Walker, C. R. Twine, and G. R. Choppin, <u>J. Inorg. Nucl. Chem.</u>, 1971, <u>33</u>, 1813
- 72AB R. Arnek and L. Barcza, Acta Chem. Scand., 1972, 26, 213
- 72AG R. Ya. Aliev, M. N. Guseinov, and A. D. Kuliev, <u>Russ. J. Phys. Chem.</u>, 1972, <u>46</u>, 1520 (2657)
- 72AJ R. Arnek and S. R. Johansson, Acta Chem. Scand., 1972, 26, 2903
- 72AK R. Ya. Aliev and A. D. Kuliev, Russ. J. Inorg. Chem., 1972, 17, 1639 (3118)
- 72B E. W. Baumann, J. Inorg. Nucl. Chem., 1972, 34, 687
- 72BA N. Bertazzi, G. Alonzo, and A. Silvestri, J. Inorg. Nucl. Chem., 1972, 34, 1943
- 72BB V. I. Blokhin, T. N. Bukhtiyarova, N. N. Krot, and A. D. Gelman, <u>Russ. J. Inorg.</u> Chem., 1972, 17, 1262 (2420)
- 72BBa V. I. Blokhin, T. N. Bukhtiyarova, N. N. Krot, and A. D. Gelman, <u>Russ. J. Inorg.</u> Chem., 1972, 17, 1742 (3317)
- 72BBM E. A. Belousov, V. V. Bocharov, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1972, 17, 1717 (3265)
- 72BC P. A. Baisden, G. R. Choppin, and W. F. Kinard, <u>J. Inorg. Nucl. Chem.</u>, 1972, <u>34</u>, 2029
- 72BH A. M. Bond and G. Hefter, J. Electroanal. Chem., 1972, 34, 227
- 72BHa A. M. Bond and G. Hefter, J. Inorg. Nucl. Chem., 1972, 34, 603
- 72BP M. C. Bonnet, R. A. Paris and R. P. Martin, Bull. Soc. Chim. France, 1972, 903
- 72BPa M. C. Bonnet, R. A. Paris and R. P. Martin, Bull. Soc. Chim. France, 1972, 909
- 72BPb N. G. Bogdanovich, N. I. Pechurova, L. I. Martynenko, L. S. Koltsova, and V. V. Piunova, Moscow Univ. Chem. Bull., 1972, 27, No. 2, 84 (236)
- 72BT M. J. Burkhart and R. C. Thompson, <u>J. Amer. Chem. Soc.</u>, 1972, <u>94</u>, 2999
- 72CB G. Carpeni, E. Boitard, R. Pilard, S. Poize and N. Sabiani, <u>J. Chim. Phys.</u>, 1972, 69, 1445
- 72CD C. Collier, L. Donneau, M. Fournier, and M. Quintin, <u>J. Chim. Phys.</u>, 1972, <u>69</u>, 945
- 72CG S. Cabani and P. Gianni, Anal. Chem., 1972, 44, 253
- 72CK J. J. Christensen, G. L. Kimball, H. D. Johnston, and R. M. Izatt, <u>Thermochim</u>. Acta, 1972, <u>4</u>, 141
- 72CMP A. Cassol, L. Magon, R. Portanova, and E. Tondello, <u>Radiochim. Acta</u>, 1972, <u>17</u>, 28
- 72CMT A. Cassol, L. Magon, G. Tomat, and R. Portanova, Inorg. Chem., 1972, 11, 515

- 72CP C. Y. Chan and M. H. Panckhurst, Aust. J. Chem., 1972, 25, 311, 317
- 72DD A. D'Aprano and I. D. Donato, Electrochim. Acta, 1972, 17, 1175
- 72DJ H. S. Dunsmore, S. K. Jalota, and R. Paterson, <u>J. Chem. Soc. Faraday I</u>, 1972, 68, 1583
- 72DN C. Dragulescu, A. Nimara, and I. Julean, Rev. Roum. Chem., 1972, 7, 1181
- 72DS A. Davies and J. Staveley, J. Chem. Thermodyn., 1972, 4, 267
- 72E L. I. Elding, Inorg. Chim. Acta, 1972, 6, 647
- 72F D. Ferri, Acta Chem. Scand., 1972, 26, 733
- 72Fa D. Ferri, Acta Chem. Scand., 1972, 26, 747
- 72FI V. A. Fedorov, I. D. Isaev, A. M. Robov, A. V. Vertiprakhov, and V. E. Mironov, Russ. J. Inorg. Chem., 1972, 17, 495 (951)
- 72FKM V. A. Fedorov, L. I. Kiprin, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1972, <u>17</u>, 641 (1233)
- 72FKS V. A. Fedorov, T. N. Kalosh, L. I. Shmydko, and V. E. Mironov, <u>Russ. J. Inorg.</u> Chem., 1972, 17, 1086 (2089)
- 72FR V. A. Fedorov, A. M. Robov, T. I. Grigor, and V. E. Mironov, <u>Russ. J. Inorg.</u> Chem., 1972, 17, 990 (1909)
- 72FS C. M. Frey and J. E. Stuehr, <u>J. Amer. Chem. Soc.</u>, 1972, <u>94</u>, 8898
- 72FSa V. A. Fedorov, N. P. Samsonova, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1972, 17, 674 (1301)
- 72FSb V. A. Fedorov, L. P. Shishin, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1972, 17, 836 (1616)
- 72FSL V. A. Fedorov, L. P. Shishin, S. G. Likhacheva, A. V. Fedorova, and V. E. Mironov, Russ. J. Inorg. Chem., 1972, 17, 41 (79)
- 72GC A. O. Gubeli and P. A. Cote, Canad. J. Chem., 1972, <u>50</u>, 1144
- 72GR A. O. Gubeli and J. P. Retel, Helv. Chim. Acta, 1972, 55, 1429
- 72H G. Hefter, J. Electroanal. Chem., 1972, 39, 345
- 72HF R. D. Hancock, N. P. Finkelstein and A. Evers, <u>J. Inorg. Nucl. Chem</u>. 1972, <u>34</u>, 3747
- 72HH H. Hussonnois, S. Hubert, L. Aubin, R. Guillaumont, and G. Boussieres, Radiochem. Radionanal. Letters, 1972, 10, 231
- 72HP H. D. Harmon, J. R. Peterson, and W. J. McDowell, <u>Inorg. Nucl. Chem. Letters</u>, 1972, <u>8</u>, 57
- 72HPa H. D. Harmon, J. R. Peterson, W. J. McDowell, and C. F. Coleman, <u>J. Inorg. Nucl.</u> Chem., 1972, 34, 1381
- 72HPB H. D. Harmon, J. R. Peterson, J. T. Bell, and W. J. McDowell, <u>J. Inorg. Nucl.</u> Chem., 1972, <u>34</u>, 1711

- 72HS C. F. Hale and F. S. Spedding, J. Phys. Chem., 1972, 76, 1887
- 72J J. B. Jenson, Acta Chem. Scand., 1972, 26, 4031
- 72JW R. F. Jameson and M. F. Wilson, J. Chem. Soc. Dalton, 1972, 2607
- 72KB V. S. Kublanovskii and V. N. Belinskii, Russ. J. Inorg. Chem., 1972, 17, 68 (129)
- 72KMB H. Kaehler, S. Mateo, and F. Brito, An. Quim., 1972, 68, 1215
- 72KMN T. Kimura, K. Morinaga, and K. Nakano, Nippon Kagaku Kaishi, 1972, 664
- 72KO G. Kura and S. Ohashi, J. Inorg. Nucl. Chem., 1972, 34, 3899
- 72L S. Lasztity, Radiochem. Radioanal. Letters, 1972, 12, 33
- 72LG V. A. Leitsin, S. D. Grekov, T. P. Sirina, and B. S. Pritsker, <u>Russ. J. Inorg.</u> Chem., 1972, 17, 687 (1325)
- 72LL O. Lukkari and H. Lukkari, Suomen Kem., 1972, B45, 6
- 72LO J. E. Land and C. V. Osborne, J. Less-Common Metals, 1972, 29, 147
- 72MB S. Mateo and F. Brito, An. Quim., 1972, 68, 38
- 72MBS R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton, Inorg. Chem., 1972, 11, 537
- 72MC W. J. McDowell and C. F. Coleman, J. Inorg. Nucl. Chem., 1972, 34, 2837
- 72MG H. Metivier and R. Guillaumont, Radiochem. Radioanal. Letters, 1972, 10, 27
- 72MH D. F. C. Morris, F. B. Haynes, P. A. Lewis, and E. L. Short, <u>Electrochim</u>. Acta, 1972, 17, 2017
- 72MR P. G. Manning and S. Ramamoorthy, Inorg. Nucl. Chem. Letters, 1972, 8, 653
- 72MT T. Murayama and A. Takayanagi, Bull. Chem. Soc. Japan, 1972, 45, 3549
- 72MV O. I. Martynova, L. G. Vasina, and S. A. Pozdnyakova, <u>Doklady Chem</u>., 1972, <u>202</u>, 173 (1337)
- 72N J. O. Nriagu, Geochim. Cosmochim. Acta, 1972, 36, 459
- 72Na J. O. Nriagu, Amer. J. Sci., 1972, 272, 476
- 72Nb J.O. Nriagu, Inorg. Chem., 1972, 11, 2499
- 72NE L. V. Nazarova, T. M. Efremova, and S. I. Orenshtein, <u>Russ. J. Inorg. Chem.</u>, 1972, 17, 186 (357)
- 72NS E. F. A. Neves and P. Senise, <u>J. Inorg. Nucl. Chem.</u>, 1972, <u>34</u>, 1915
- 720 H. Ots, Acta Chem. Scand., 1972, 26, 3810
- 720K H. Ohtaki and T. Kawai, <u>Bull. Chem. Soc. Japan</u>, 1972, <u>45</u>, 1735
- 720S S. O'Cinneide, J. P. Scanlan, and M. J. Hynes, Chem. Ind. (London), 1972, 340
- 72P J. C. Pierrard, Thesis, 1972, Univ. Reims (France)

72PR J. Pouradier and J. Rigola, Compt. Rend. Acad. Sci. Paris, Sec. C, 1972, 275, 515

- 72R T. Ryhl, Acta Chem. Scand., 1972, 26, 2961
- 72RC R. Roulet and R. Chenaux, Helv. Chim. Acta, 1972, 55, 1959
- 72S R. N. Sylva, Rev. Pure Appl. Chem., 1972, 22, 115
- 72SB V. I. Shlenskaya, A. A. Biryukov, and V. M. Kadomtseva, <u>Russ. J. Inorg. Chem.</u>, 1972, 17, 572 (1104)
- 72SC R. Stampfli and G. R. Choppin, J. Inorg. Nucl. Chem., 1972, 34, 205
- 72SF N. P. Samsonova, V. A. Fedorov, and V. E. Mironov, <u>Russ. J. Phys. Chem.</u>, 1972, 46, 1233 (2153)
- 72SK T. Stefanowicz and S. Kiciak, Rocz. Chem., 1972, 46, 1209
- 72SN P. Senise and E. F. A. Neves, J. Inorg. Nucl. Chem., 1972, 34, 1923
- 72TL J. Tummavuori and P. Lumme, Suomen Kem., 1972, B45, 21
- 72TS S. Tribalat and L. Schriver, Compt. Rend. Acad. Sci. Paris, Sec. C, 1972, 274, 849
- 72TSa Ya. I. Turyan and N. K. Strizhov, Russ. J. Inorg. Chem., 1972, 17, 1066 (2053)
- 72US L. N. Usherenko and N. A. Skorik, Russ. J. Inorg. Chem., 1972, 17, 1533 (2918)
- 72V F. Vierling, Bull. Soc. Chim. France, 1972, 2557
- 72Va F. Vierling, Bull. Soc. Chim. France, 1972, 2563
- 72VK C. E. Vanderzee, D. L. King and I. Wadso, J. Chem. Thermodyn., 1972, 4, 685
- 73A R. G. Ainsworth, J. Chem. Soc. Faraday I, 1973, 69, 1028
- 73Aa I. Ahlberg, Acta Chem. Scand., 1973, 27, 3003
- 73Ab N. I. Ampelogova, Soviet Radiochem., 1973, 15, 823 (813)
- 73AA R. Abu-Eittah and G. Arafa, Z. Anorg. Allg. Chem., 1973, 399, 244
- 73AB J. Ascanio and F. Brito, <u>An. Quim.</u>, 1973, <u>69</u>, 177
- 73AK T. Amaya, H. Kakihana, and M. Maeda, <u>Bull. Chem. Soc. Japan</u>, 1973, <u>46</u>, 1720, 2889
- 73AM J. M. Austin and A. D. Mair, unpublished data (see 73HP)
- 73B G. Bengtsson, Acta Chem. Scand., 1973, 27, 2554
- 73Ba W. L. Bradford, Limnol. Oceanog., 1973, 18, 757
- 73BF C. P. Bezboruah, M. Filomena, G. F. C. Camoes, A. K. Covington, and J. V. Dobson, J. Chem. Soc. Faraday I, 1973, 69, 949
- 73BI O. Budevsky, F. Ingman, and D. H. Liem, Acta Chem. Scand., 1973, 27, 1277

73BL K. A. Burkov, L. S. Lilich, N. D. Ngo, and A. Yu. Smirnov, <u>Russ. J. Inorg. Chem.</u>, 1973, 18, 797 (1513)

- 73BN E. A. Biryuk and V. A. Nazarenko, <u>Russ. J. Inorg. Chem.</u>, 1973, <u>18</u>, 1576 (2964)
- 73BR M. Barres, J. P. Redoute, R. Romanetti, H. Tachoire, and C. Zahra, <u>Compt. Rend.</u>
 Acad. Sci. Paris, Sec. C, 1973, <u>276</u>, 363
- 73BS P. Benes and H. Selecka, Radiochem. Radioanal. Letters, 1973, 13, 339
- 73CB G. R. Choppin and S. L. Bertha, J. Inorg. Nucl. Chem., 1973, 35, 1309
- 73CD A. K. Covington, J. V. Dobson and K. V. Srinivasan, <u>J. Chem. Soc. Faraday I</u>, 1973, 69, 94
- 73CDa R. Chiarizia, . R. Danesi, and G. Scibona, <u>J. Inorg. Nucl. Chem.</u>, 1973, <u>35</u>, 3595
- 73CG L. Ciavatta and M. Glimaldi, <u>Gazz. Chim. Ital.</u>, 1973, <u>103</u>, 731
- 73CH C. L. Christ, P. B. Hostetler, and R. M. Siebert, Amer. J. Sci., 1973, 273, 65
- 73CP Y. Couturier and C. Petitfaux, Bull. Soc. Chim. France, 1973, 439
- 73CZ D. M. Czakis-Sulikowska and A. Zajdler, Rocz. Chem., 1973, 47, 3
- 73DH D. Dyrssen and I. Hansson, Marine Chem., 1973, 1, 137
- 73FA G. Ferroni, G. Antonetti, R. Romanetti and J. Galea, <u>Bull. Soc. Chim. France</u>, 1973, 3269
- 73FC V. A. Fedorov, G. E. Chernikova, M. A. Kuznechikhina, and V. E. Mironov, Russ. J. Inorg. Chem., 1973, 18, 337 (645)
- 73FP M. M. Farrow and N. Purdie, <u>J. Soln. Chem.</u>, 1973, <u>2</u>, 503
- 73FR V. A. Fedorov, A. M. Robov, I. I. Shmydko, and V. E. Mironov, <u>Russ. J. Inorg.</u> Chem., 1973, 18, 180 (342)
- 73FS V. A. Fedorov, I. I. Shmydko, A. M. Robov, L. S. Simaeva, V. A. Kukhtina, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1973, <u>18</u>, 673 (1274)
- 73G V. I. Gordienko, <u>J. Gen. Chem. USSR</u>, 1973, <u>43</u>, 2109 (2117)
- 73GG J. Y. Guennec and R. Guillaumont, Radiochem. Radioanal. Letters, 1973, 13, 33
- 73GS A. Gulko and G. Schmuckler, J. Inorg. Nucl. Chem., 1973, 35, 603
- 73GT V. P. Goncharik, L. P. Tikhonova, and K. B. Yatsimirskii, Russ. J. Inorg. Chem., 1973, 18, 658 (1248)
- 73HH M. H. Hutchinson and W. C. E. Higginson, J. Chem. Soc. Dalton, 1973, 1247
- 73HHa J. Havel and E. Hogfeldt, Acta Chem. Scand., 1973, 27, 3323
- 73HHb M. Hussonnois, S. Hubert, L. Brillard, and R. Guillaumont, <u>Radiochem. Radioanal</u>. <u>Letters</u>, 1973, <u>15</u>, 47
- 73HP G. R. Hedwig and H. K. J. Powell, <u>J. Chem. Soc. Dalton</u>, 1973, 798

- 73IV A. A. Ivakin and E. M. Voronova, Russ. J. Inorg. Chem., 1973, 18, 465 (885)
- 73IVa A. A. Ivakin and E. M. Voronova, Russ. J. Inorg. Chem., 1973, 18, 956 (1809)
- 73J L. Johansson, <u>Acta Chem. Scand.</u>, 1973, <u>27</u>, 1832
- 73KB Yu. A. Kozlov, V. V. Blokhin, V. V. Shurukhin, and V. E. Mironov, <u>Russ. J. Phys.</u> Chem., 1973, 47, 1343 (2386)
- 73KK F. Ya. Kulba, E. A. Kopylon, and Yu. B. Yakovlev, <u>Russ. J. Inorg. Chem.</u>, 1973, 18, 38 (76)
- 73KM H. C. Kaehler, S. Mateo, and F. Brito, An. Quim., 1973, 69, 1269, 1273
- 73KN N. P. Komar, V. A. Naumenko, E. M. Sokolskaya, and T. G. Shapovalova, <u>Russ. J.</u>
 Phys. Chem., 1973, 47, 1588 (2832)
- 73KO T. Kawai, H. Otsuka, and H. Ohtaki, Bull. Chem. Soc. Japan, 1973, 46, 3753
- 73KP N. N. Kozachenko, N. A. Panteleeva, V. S. Netswetaeva and I. M. Batyaev, Russ. J. Inorg. Chem., 1973, 18, 938
- 73KR E. G. Krunchak, A. G. Rodichev, Ya. S. Khvorostin, B. S. Krumgalz, V. G. Krunchak, and Yu. I. Yusova, Russ. J. Inorg. Chem., 1973, <u>18</u>, 1519 (2859)
- 73KT V. I. Kravtsov, E. G. Tsventarnyi, and A. N. Kochetkova, Russ. J. Inorg. Chem., 1973, 18, 1060 (1998)
- 73L Z. Libus, <u>Inorg. Chem.</u>, 1973, <u>12</u>, 2972
- 73LG J. Lipkowski and Z. Galus, J. Electroanal. Chem., 1973, 48, 337
- 73LR S. Libich and D. L. Rabenstein, <u>Anal. Chem.</u>, 1973, <u>45</u>, 118
- 73MC C. Mehrbach, C. H. Culberson, J. E. Hawley, and R. M. Rytkowicz, Limnol. Oceanog, 1973, 18, 897
- 73MS U. von Meyenburg, O. Siroky, and G. Schwarzenbach, Helv. Chim. Acta, 1973, 56,
- 73MSa T. P. Makarova, A. V. Stepanov, and B. I. Shestakov, <u>Russ. J. Inorg. Chem.</u>, 1973, 18, 783 (1485)
- 73N J. O. Nriagu, Geochim. Cosmochim. Acta, 1973, <u>37</u>, 2357
- 73Na B. Noren, Acta Chem. Scand., 1973, 27, 1369
- 73NM T. Nozaki, T. Mise, and K. Torii, Nippon Kagaku Kaishi, 1973, 2030
- 73NP B. P. Nikolskii, V. V. Palchevskii and F. TyPang, <u>Doklady Chem</u>., 1973, <u>209</u>, 253 (624)
- 73NS V. A. Nazarenko, G. G. Shitareva, and E. N. Poluektova, <u>Russ. J. Inorg. Chem.</u>, 1973, 18, 609 (1155)
- 7300 L. L. Olson and C. R. O'Melia, J. Inorg. Nucl. Chem., 1973, 35, 1977
- 73P H. K. J. Powell, J. Chem. Soc. Dalton, 1973, 1947

- 73Pa V. P. Poddymov, Russ. J. Phys. Chem., 1973, 47, 1063 (1883)
- 73PE I. Z. Pevzner, N. I. Eremin, N. N. Knyazeva, Ya. B. Rozen, and V. E. Mironov, Russ. J. Inorg. Chem., 1973, 18, 596 (1129)
- 73PR S. K. Patil and V. V. Ramakrishna, Radiochim. Acta, 1973, 19, 27
- 73PRa S. K. Patil and V. V. Ramakrishna, <u>J. Inorg. Nucl. Chem.</u>, 1973, <u>35</u>, 3333
- 73PS B. Perlmutter-Hayman and F. Secco, Israel J. Chem., 1973, 11, 623
- 73R P. H. Rieger, Aust. J. Chem., 1973, 26, 1173
- 73RM S. Ramamoorthy and P. G. Manning, J. Inorg. Nucl. Chem., 1973, 35, 1279
- 73RR F. Rodante, F. Fallo, and P. Fiordiponti, Thermochim. Acta, 1973, 6, 369
- 73RS C. Ruzycki, Yu. B. Solovev, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1973, <u>18</u>, 28 (57)
- 73RT R. S. Ramakrishna and R. Thuraisingham, J. Inorg. Nucl. Chem., 1973, 35, 2809
- 73S A. V. Stepanov, Russ. J. Inorg. Chem., 1973, 18, 194 (371)
- 73SB A. Szymaszek and J. Biernat, Monat. Chem., 1973, 104, 74
- 73SP H. K. Sinha and B. Prasad, <u>J. Indian Chem. Soc.</u>, 1973, <u>50</u>, 177
- 73SS M. Sieprawski, J. Said and R. Cohen-Adad, J. Chim. Phys., 1973, 70, 1417
- 73SZ V. I. Sidorenko, E. F. Zhuravlev, V. I. Gordienko, and N. P. Grineva, <u>Russ. J.</u>
 Inorg. Chem., 1973, 18, 670 (1270)
- 73T J. Tummavuori, Suomen Kem., 1973, B46, 97
- 73TR M. M. Taqui Khan and P. R. Reddy, J. Inorg. Nucl. Chem., 1973, 35, 179
- 73V F. Vierling, Ann. Chim., (France) 1973, 8, 53
- 73VA V. P. Vasilev and S. A. Aleksandrova, <u>Russ. J. Inorg. Chem.</u>, 1973, <u>18</u>, 1089, (2055)
- 73VAK V. P. Vasilev, S. A. Aleksandrova, and L. A. Kochergina, <u>Russ. J. Inorg. Chem.</u>, 1973, 18, 1549 (2912)
- 73VK V. P. Vasilev and E. V. Kozlovskii, Russ. J. Inorg. Chem., 1973, 18, 1544 (2902)
- 74A G. Anderegg, Helv. Chim. Acta, 1974, 57, 1340
- 74Aa R. Aruga, J. Inorg. Nucl. Chem., 1974, 36, 3779
- 74AA S. Ahrland, E. Avsar, and L. Kullberg, Acta Chem. Scand., 1974, A28, 855
- 74AB S. Ahrland and J. O. Bovin, Acta Chem. Scand., 1974, A28, 1089
- 74AC K. P. Anderson, A. L. Cummings, J. L. Bills, and K. J. Walker, Jr., <u>J. Inorg.</u>
 Nucl. Chem., 1974, <u>36</u>, 1837
- 74AM Z. Amjad and A. McAuley, J. Chem. Soc. Dalton, 1974, 2521

- 74AS R. Arnek and Y. Sasaki, Acta Chem. Scand., 1974, A28, 20
- 74BA F. Brito, J. Ascanio and M. Franceschetto, An. Quim., 1974, 70, 465
- 74BB E. A. Belousov, V. V. Bocharov, and V. E. Mironov, <u>Russ. J. Inorg. Chem.</u>, 1974, 19, 99 (186)
- 74BC A. J. Barker and A. B. Clarke, J. Inorg. Nucl. Chem., 1974, 36, 921
- 74BL J. W. Bixler and T. M. Larson, J. Inorg. Nucl. Chem., 1974, 36, 224
- 74BLL G. Biedermann, J. Lagrange, and P. Lagrange, Chem. Scripta, 1974, 5, 153
- 74EM I. Eliezer and A. Moreno, J. Chem. Eng. Data, 1974, 19, 226
- 74F A. M. Fedorenko, Russ. J. Inorg. Chem., 1974, 19, 841 (1543)
- 74Fa G. Ferroni, Bull. Soc. Chim. France, 1974, 2698
- 74FG A. M. Fedorenko and E. A. Gyunner, Russ. J. Inorg. Chem., 1974, 19, 1397 (2560)
- 74FGA G. Ferroni, J. Galea, G. Antonetti, and R. Romanetti, <u>Bull. Soc. Chim. France</u>, 1974, 2695
- 74FK V. A. Fedorov, L. I. Kiprin, N. S. Shchekina, N. P. Samsonova, M. Ya. Kutuzova, and V. E. Mironov, Russ. J. Inorg. Chem., 1974, 19, 474 (872)
- 74FKa V. A. Fedorov, T. N. Kalosh, and L. I. Shmydko, <u>Russ. J. Inorg. Chem.</u>, 1974, <u>19</u>, 991 (1820)
- 74FKb L. N. Filatova and T. N. Kurdyumova, Russ. J. Inorg. Chem., 1974, 19, 1746 (2190)
- 75FP M. M. Farrow, N. Puride, and W. D. White, J. Soln. Chem., 1974, 3, 395
- 74FR V. A. Fedorov, A. M. Robov, I. I. Shmydko, V. V. Zadnovskii, and V. E. Mironov, Russ. J. Inorg. Chem., 1974, 19, 830 (1523)
- 74FRa V. A. Fedorov, A. M. Robov, I. I. Shmydko, N. A. Vorontsova, and V. E. Mironov, Russ. J. Inorg. Chem., 1974, 19, 950 (1746)
- 74FRI V. A. Fedorov, A. M. Robov, I. D. Isaev, and A. A. Alekseeva, <u>Russ. J. Inorg.</u> <u>Chem.</u>, 1974, <u>19</u>, 798 (1466)
- 74FRP V. A. Fedorov, A. M. Robov, V. P. Plekhanov, V. V. Kudruk, M. A. Kuznechikhina, and G. E. Chernikova, Russ. J. Inorg. Chem., 1974, 19, 666 (1225)
- 74FS Ya. D. Fridman, D. S. Sarbaev, and T. V. Danilova, <u>Russ. J. Inorg. Chem.</u>, 1974 19, 471 (867)
- 74G S. Gobom, Acta Chem. Scand., 1974, A28, 1180
- 74HH J. Havel and E. Hogfeldt, Chem. Scripta, 1974, 5, 164
- 74HI G. I. H. Hanania and S. A. Israelian, J. Soln. Chem., 1974, 3, 57
- 74IG A. A. Ivakin and V. A. Gurevich, Russ. J. Inorg. Chem., 1974, 19, 1655 (3027)
- 74IGG A. A. Ivakin, V. A. Gurevich, and M. P. Glazyrin, <u>Russ. J. Inorg. Chem.</u>, 1974, 19, 1309 (2397)

74IK A. A. Ivakin, L. D. Kurbatova, and E. M. Voronova, <u>Russ. J. Inorg. Chem.</u>, 1974, 19, 387 (714)

- 74IS E. M. Ivashkovich and M. I. Skoblei, Russ. J. Inorg. Chem., 1974, 19, 411 (760)
- 74J L. Johansson, Coord. Chem. Rev., 1974, 12, 241
- 74JJ D. V. S. Jain and C. M. Jain, <u>Indian J. Chem.</u>, 1974, <u>12</u>, 178; D. V. S. Jain, Ibid., 1970, 8, 945
- 75JL R. L. Jacobson and D. Langmuir, Geochim. Cosmochim. Acta, 1974, 38, 301
- 74K L. Kullberg, Acta Chem. Scand., 1974, A28, 829
- 74Ka L. Kullberg, Acta Chem. Scand., 1974, A28, 897
- 74Kb L. Kullberg, Acta Chem. Scand., 1974, A28, 979
- 74Kc Kabir-Ud-Din, Z. Phys. Chem. (Frankfort), 1974, 88, 316
- 74KC W. F. Kinard and G. R. Choppin, J. Inorg. Nucl. Chem., 1974, 36, 1131
- 74KH C. Kappenstein and R. Hugel, J. Inorg. Nucl. Chem., 1974, 36, 1821
- 74KI H. Kakihana and S. Ishiguro, Bull. Chem. Soc. Japan, 1974, 47, 1665
- 74KM P. K. Khopkar and J. N. Mathur, J. Inorg. Nucl. Chem., 1974, 36, 3819
- 74KN N. P. Komar, V. A. Naumenko, and T. A. Karpova, <u>Russ. J. Phys. Chem.</u>, 1974, <u>48</u>, 954 (1613)
- 74KO G. Kura, S. Ohashi, and S. Kura, <u>J. Inorg. Nucl. Chem.</u>, 1974, <u>36</u>, 1605
- 74KY F. Ya. Kulba, Yu. B. Yakovlev, and D. A. Zenchenko, <u>Russ. J. Inorg. Chem.</u>, 1974, 19, 502 (923)
- 74LP J. K. Lawrence and J. E. Prue, J. Soln. Chem., 1974, 3, 553
- 74M D. F. C. Morris, Radiochem. Radioanal. Letters, 1974, 19, 141
- 74MB R. E. Mesmer and C. F. Baes, Jr., <u>J. Soln. Chem.</u>, 1974, 3, 307
- 74MC C. Musikas, F. Couffin, and M. Marteau, <u>J. Chim. Phys.</u>, 1974, <u>71</u>, 641
- 74MG Yu. I. Mikhailyuk and V. I. Gordienko, <u>Russ. J. Inorg. Chem.</u>, 1974, <u>19</u>, 1114 (2033)
- 74MS H. Moriya and T. Sekine, Bull. Chem. Soc. Japan, 1974, 47, 747
- 74MSB Yu. A. Makashev, M. I. Shalaevskaya, V. V. Blokhin, and V. E. Mironov, <u>Russ</u>. J. Phys. Chem., 1974, <u>48</u>, 1219 (2066)
- 74MV O. I. Martynova, L. G. Vasina, and S. A. Pozdnyakova, <u>Doklady Chem.</u>, 1974, <u>217</u>, 552 (1080)
- 74MVa O. I. Martynova, L. G. Vasina, S. A. Pozdnyakova, and V. A. Kishnevskii, Doklady Phys. Chem., 1974, 217, 730 (862)
- 74NB V. A. Nazarenko and E. A. Biryuk, Russ. J. Inorg. Chem., 1974, 19, 341 (632)

- 74NBa N. D. Ngo and K. A. Burkov, Russ. J. Inorg. Chem., 1974, 19, 680 (1249)
- 74NK B. I. Nabivanets, E. E. Kapantsyan, and E. N. Oganesyan, Russ. J. Inorg. Chem., 1974, 19, 394 (729)
- 74P H. Persson, Acta Chem. Scand., 1974, A28, 885
- 74Pa H. K. J. Powell, J. Chem. Soc. Dalton, 1974, 1108
- 74Pb L. Pellerito, J. Electroanal. Chem., 1974, 54, 405
- 74RB Ts. Ruzhitski, V. V. Blokhin, and V. E. Mironov, Russ. J. Phys. Chem., 1974, 48, 282 (480)
- 74RL E. J. Reardon and D. Langmuir, Amer. J. Sci., 1974, 274, 599
- 74RM S. Ramamoorthy and P. G. Manning, Inorg. Nucl. Chem. Letters, 1974, 10, 623
- 74RN D. R. Rosseinsky, M. J. Nicol, K. Kite, and R. J. Hill, <u>J. Chem. Soc. Faraday I</u>, 1974, 70, 2232
- 74RO D. L. Rabenstein, R. Ozubko, S. Libich, C. A. Evans, M. T. Fairhurst, and C. Suvanprakorn, J. Coord. Chem., 1974, 3, 263
- 74SB L. H. Skibsted and J. Bjerrum, Acta Chem. Scand., 1974, A28, 740
- 74SM F. H. Sweeton, R. E. Mesmer, and C. F. Baes, Jr., J. Soln. Chem., 1974, 3, 3
- 74SP V. I. Shlenskaya, G. V. Pichugina, V. P. Khvostova, and I. P. Alimarin, <u>Bull</u>. Acad. Sci. USSR, Chem. Sci., 1974, 23, 240 (268)
- 74SS P. H. Santschi and P. W. Schindler, J. Chem. Soc. Dalton, 1974, 181
- 74T D. J. Turner, J. Chem. Soc. Faraday I, 1974, 70, 1346
- 74TM Ya. I. Turyan, L. M. Makarova, and V. N. Sirko, <u>Russ. J. Inorg. Chem.</u>, 1974, <u>19</u>, 969 (1778)
- 74TR M. M. Taqui Khan and P. R. Reddy, J. Inorg. Nucl. Chem., 1974, 36, 607
- 74VK V. P. Vasilev and E. V. Kozlovskii, <u>Russ. J. Inorg. Chem.</u>, 1974, <u>19</u>, 807 (1481), 971 (1781)
- 74VKL V. P. Vasilev, V. E. Kalinina, and A. I. Lytkin, <u>Russ. J. Inorg. Chem.</u>, 1974, <u>19</u>, 989 (1815)
- 74VZ G. Velinov, P. Zirolov, P. Tchakarova and O. Budevsky, Talanta, 1974, 21, 163
- 76AA S. Ahrland and E. Avsar, Acta Chem. Scand., (in press)
- 76BM C. F. Baes, Jr. and R. E. Mesmer, <u>The Hydrolysis of Cations</u>, John Wiley, Inc.-Interscience, 1976 (in press)

LIGAND FORMULA INDEX

Order of elements: C,H,O,N, others in alphabetical order.

AsF ₆	74		но-	1	
Br -	115		HOBr	134	
Br ₆ Ir	135		HOC1	134	
•			HOI	134	
CHON	28		HO ₂ N	47	
CHN	26		HO ₂ C1	134	
CHNS	29		HO3I	126	
СH ₂ O ₃	37		HO4NF2S2	135	
CH ₂ N ₂	135		HO ₄ S	79	
CH ₂ S ₃	131		HO ₄ Se	93	
CH ₂ S ₄	131		HO4Tc	135	
$^{\mathrm{CH}_2\mathrm{Se}_3}$	131		HF	96	
CNSe	35		HN ₃	45	
$c_2N_3^-$	36		H ₂ O ₂	75	
$C_4^{H_2}O_4^{Fe}$	135		H ₂ O ₂ N ₂	53, 1	L35
C_4N_3	36		$^{\rm H}2^{\rm O}3^{\rm N}2$	135	
C ₅ HO ₅ Mn	135		$^{\mathrm{H}}2^{\mathrm{O}}3^{\mathrm{FP}}$	132	
${^{C}_{6}}^{H_{4}}{^{N}_{6}}^{Fe}{^{C}_{6}}^{Fe}{^{3}}^{-}$	21		H ₂ O ₃ S	78	
$C_6N_6Co^{3-}$	24		$^{\rm H}2^{\rm O}3^{\rm S}2$	86	
C6N6Fe3-	22		$^{\mathrm{H}}2^{\mathrm{O}}3^{\mathrm{Se}}$	91	
$^{\mathrm{C_8^H_3^N_8^W}}$	135		$^{\mathrm{H}}2^{\mathrm{O}}4^{\mathrm{Cr}}$	17	
$^{\mathrm{C_8^{H_4^{N_8^{W}}}}}$	135		$^{\mathrm{H}}2^{\mathrm{O}}4^{\mathrm{Mn}}$	135	
			$^{\mathrm{H}}2^{\mathrm{O}}4^{\mathrm{Mo}}$	18	
C1 2	104		$^{\rm H}2^{\rm O}4^{\rm S}2$	135	
C1 ₆ Ir ³⁻	135		$^{\mathrm{H}}2^{\mathrm{O}}4^{\mathrm{W}}$	19	
			H ₂ O ₅ S	133	
F ₆ P	74		$^{\rm H}2^{\rm O}8^{\rm S}2$	89	

254 LIGAND FORMULA INDEX

н ₂ s	76	$^{ m H}{}_4{}^{ m N}{}_2$	43
H ₂ S ₄	133	H ₅ ON ₂ PS	132
H ₂ S ₅	133	H ₅ O ₂ N ₂ P	132
H ₂ Se	90	н ₅ о ₅ sь	133
H ₂ Te	94	H ₅ O ₅ Ta	135
H ₃ ON	44	H ₅ O ₆ NP ₂	71
H ₃ O ₂ P	54	H ₅ 061	129
H ₃ O ₃ NS	88	H ₅ O ₁₀ P ₃	63
H ₃ O ₃ As	132	H ₆ O ₆ N ₃ P ₃	72
H ₃ O ₃ B	25	H ₆ O ₆ Te	134
H ₃ O ₃ P	55	H ₆ O ₁₃ P ₄	66
H ₃ O ₃ PS	132	H ₆ O ₁₈ P ₆	70
H ₃ O ₄ NS	133	H ₇ 08N ₂ P ₃	71
H ₃ O ₄ As	133	H ₇ O ₁₆ P ₅	135
H ₃ O ₄ P	56	H ₈ O ₁₉ Nb ₆	131
H ₃ O ₄ V	15	H8 ^O 19 ^P 6	135
H ₃ O ₅ P	131	H ₈ O ₂₄ P ₈	70
H ₃ O ₉ P ₃	68	H ₁₆ O ₄₃ P ₁₄	135
H ₃ N	40	H ₆₂ O ₁₂₁ P ₆₀	135
H ₃ PS ₄	132		
H ₄ O ₃ NP	132	ı ⁻	122
H ₄ O ₄ Ge	131		
H_4O_4Si	39	ON	135
H_4O_4Te	95	o ₃ n¯	48
H ₄ O ₆ P ₂	72, 73	0 ₃ Br	121
$^{\rm H_4O_6P_2S_2}$	135	0,01	113
H ₄ O ₇ P ₂	59	03SSe ²⁻	88
H ₄ O ₈ P ₂	73	0 ₄ C1 ⁻	114
H ₄ O ₉ FP ₃	135	O ₄ Mn	135
H ₄ O ₁₂ P ₄	69	0 ₄ Re	20

LIGAND NAME INDEX

Ammonia, 40	Hydrogen amidophosphate, 132
Antimonic acid, 133	Hydrogen amidosulfate, 88
Arsenic acid, 133	Hydrogen antimonate, 133
Arsenous acid, 132	Hydrogen arsenate, 133
	Hydrogen arsenite, 132
Boric acid, 25	Hydrogen azide, 45
Bromate ion, 121	Hydrogen borate, 25
Bromide ion, 115	Hydrogen carbonate, 37
	Hydrogen chlorite, 134
Carbonic acid, 37	Hydrogen chromate, 17
Chlorate ion, 113	Hydrogen cyanate, 28
Chloride ion, 104	Hydrogen cyanide, 26
Chlorous acid, 134	Hydrogen diamidophosphate, 132
Chromic acid, 17	Hydrogen diamidothiophosphate, 132
Cyanamide, 135	Hydrogen diimidotriphosphate, 71
Cyanic acid, 28	Hydrogen diphosphate, 59
Cyclo-tri- μ -imidotris(dioxophosphate), 72	Hydrogen diphosphate (III,V), 72
	Hydrogen μ -disulfidohexaoxodiphosphate, 135
Dicyanimide ion, 36	Hydrogen dithionite, 135
Diimidotriphosphoric acid, 71	Hydrogen fluoride, 96
	Hydrogen fluorophosphate, 132
Hexabromoiridate (III) ion, 135	Hydrogen fluorotriphosphate, 135
Hexachloroiridate (III) ion, 135	Hydrogen germanate, 131
Hexacyanocobaltate (III) ion, 24	Hydrogen hexacontaphosphate, 135
Hexacyanoferrate (III) ion, 22	Hydrogen hexacyanoferrate (II), 21
Hexafluoroarsenate ion, 74	Hydrogen hexametaphosphate, 70
Hexafluorophosphate ion, 74	Hydrogen hexaphosphate, 135
Hexametaphosphoric acid, 70	Hydrogen hydroxylamidosulfate, 133
Hydrazine, 43	Hydrogen hypobromite, 134
Hydrazoic acid, 45	Hydrogen hypochlorite, 134
Hydrocyanic acid, 26	Hydrogen hypoiodite, 134
Hydrofluoric acid, 96	Hydrogen hyponitrite, 53

256 LIGAND NAME INDEX

Hydrogen tetrametaphosphate, 69 Hydrogen hypophosphate, 73 Hydrogen tetraphosphate, 66 Hydrogen hypophosphite, 54 Hydrogen tetrasulfide, 133 Hydrogen imidobis(fluorosulfate), 135 Hydrogen tetrathiophosphate, 132 Hydrogen imidodiphosphate, 71 Hydrogen thiocyanate, 29 Hydrogen iodate, 126 Hydrogen thiophosphate, 132 Hydrogen manganate (VI), 135 Hydrogen molybdate, 18 Hydrogen thiosulfate, 86 Hydrogen trimetaphosphate, 68 Hydrogen niobate, 131 Hydrogen triphosphate, 63 Hydrogen nitrite, 47 Hydrogen octacyanowolframate (IV), 135 Hydrogen triselenocarbonate, 131 Hydrogen trithiocarbonate, 131 Hydrogen octacyanowolframate (V), 135 Hydrogen vanadate, 15 Hydrogen octametaphosphate, 70 Hydrogen wolframate, 19 Hydrogen α -oxyhyponitrite, 135 Hydroselenic acid, 90 Hydrogen pentacarbonylmanganate (-I), 135 Hydrogen pentaphosphate, 135 Hydrosulfuric acid, 76 Hydrogen pentasulfide, 133 Hydrotelluric acid, 94 Hydrogen periodate, 129 Hydroxide ion, 1 Hydroxylamine, 44 Hydrogen peroxide, 75 Hydroxylamine-O-sulfonic acid, 133 Hydrogen peroxodiphosphate, 73 Hypobromous acid, 134 Hydrogen peroxodisulfate, 89 Hypochlorous acid, 134 Hydrogen peroxophosphate, 131 Hypoiodous acid, 134 Hydrogen peroxosulfate, 133 Hydrogen perthiocarbonate, 131 Hyponitrous acid, 53 Hydrogen phosphate, 56 Hypophosphoric acid, 73 Hydrogen phosphite, 55 Hypophosphorous acid, 54 Hydrogen selenate ion, 93 Hydrogen selenide, 90 Imidodiphosphoric acid, 71 Iodic acid, 126 Hydrogen selenite, 91 Hydrogen silicate, 39 Iodide ion, 122 Hydrogen sulfate ion, 79 Isohypophosphoric acid, 72 Hydrogen sulfide, 76 Hydrogen sulfite, 78 Manganate (VII) ion, 135 Hydrogen tantalate, 135 Molybdic acid, 18 Hydrogen technetate (VII), 135 Hydrogen tellurate, 134 Nitramide, 135 Hydrogen telluride, 94 Nitrate ion, 48 Hydrogen tellurite, 95 Nitrogen oxide, 135 Hydrogen tetracarbonylferrate (-II), 135 Nitrous acid, 47

Hydrogen tetradecaphosphate, 135

LIGAND NAME INDEX 257

Octametaphosphoric acid, 70

Perchlorate ion, 114
Periodic acid, 129
Permanganate ion, 135
Peroxodisulfuric acid, 89
Pertechnetic acid, 135
Phosphoric acid, 56
Phosphorous acid, 55
Pyrophosphoric acid, 59

Rhenate (VII) ion, 20

Selenic acid, 93
Selenocyanate ion, 35
Selenosulfate, 88
Selenous acid, 91
Silicic acid, 39
Sulfamic acid, 88
Sulfuric acid, 79
Sulfurous acid, 78

Telluric acid, 134
Tellurous acid, 95
Tetrametaphosphoric acid, 69
Tetraphosphoric acid, 66
Thiocyanic acid, 29
Thiosulfuric acid, 86
Tricyanomethane ion, 36
Trimetaphosphimic acid, 72
Trimetaphosphoric acid, 68
Triphosphoric acid, 63
Tungstic acid, 19

Vanadic acid, 15