MTH 102: Mathematics II

Chapter 0: Mathematical Induction

This chapter explains a powerful proof technique called **mathematical induction**. To motivate the discussion, let's first examine the kinds of statements that induction is used to prove.

Consider the following statement

"The sum of the first n odd natural numbers equals n^2 ." The following table illustrates what this conjecture says. Each row is headed by a natural number n, followed by the sum of the first n odd natural numbers, and followed by n^2 .

n	Sum of the first n odd natural numbers	n^2
1	1	1
2	1+3	4
3	1+3+5	9
4	1+3+5+7	16
5	1+3+5+7+9	25
:	:	:
n	1+3+5+7++(2n-1)	n^2
:	:	:

Note that in the first five lines of the table, the sum of the first n odd numbers really does add up to n^2 . Notice also that these first five lines indicate that the n^{th} odd natural number (the last number in each sum) is 2n-1. For instance, when n=2, the second odd natural number is $2\cdot 2\cdot 1=3$; when n=3, the third odd natural number is $2\cdot 3\cdot 1=5$, etc.

The table raises a very simple question.

"Does the sum 1 + 3 + 5 + 7 + ... + (2n-1) really equal n^2 for all natural number n?"

Let's rephrase this as follows. For each natural number n, we define a statement S_n as follows:

$$S_1$$
: $1 = 1^2$
 S_2 : $1+3 = 2^2$
 S_3 : $1+3+5 = 3^2$
...
 S_n : $1+3+5+...+(2n-1) = n^2$
...

Our question is: Are all of these statements true?

Mathematical induction is a proof technique designed to answer this kind of question. It is used when we have a set of statements $S_1, S_2, S_3, \ldots, S_n, \ldots$, and we need to prove that they are all true. The method is really quite simple.

To visualize it, think of these statements as dominoes lined up in a row. Imagine you can prove the first statement S_1 , and symbolize this as domino S_1 being knocked down. Additionally, imagine that you can prove that any statement S_k being true (falling) forces the next statement S_{k+1} to be true (to fall). Then S_1 falls, and knocks down S_2 . Next S_2 falls and knocks down S_3 , then S_3 knocks down S_4 , and so on. The inescapable conclusion is that all the statements are knocked down (proved to be true).

In this setup, the first step (1) is called the **basis step**.

The second step (2) is called the **inductive step**.

Because S_1 is usually a very simple statement, the basis step is often quite easy to do. In the inductive step, the direct proof is most often used to prove S_k implies S_{k+1} . So, this inductive step is usually carried out by assuming S_k is true and showing that it forces S_{k+1} to be true.

The assumption that S_k is true is called the **inductive** hypothesis.

Now let's apply this technique to our original conjecture that the sum of the first n odd natural numbers equals n^2 .

Our goal is to show that for each $n \in \mathbb{N}$, the statement

$$S_n: 1+3+5+7+...+(2n-1) = n^2$$
 is true.

Before getting started, observe that S_k is obtained from S_n by plugging k in for n. Thus S_k is the statement

$$S_k: 1+3+5+7+...+(2k-1)=k^2.$$

Also, we get S_{k+1} by plugging in k+1 for n, so that

$$S_{k+1}: 1+3+5+7+...+(2(k+1)-1)=(k+1)^2.$$

Example If $n \in \mathbb{N}$, then $1+3+5+7+...+(2n-1)=n^2$.

Proof: We will prove this with mathematical induction.

- (1) <u>Basis step</u>: Observe that if n = 1, this statement is $1 = 1^2$, which is obviously true.
- (2) <u>Inductive step</u>: We must now prove that S_k implies S_{k+1} for any $k \ge 1$. That is, we must show that $1 + 3 + 5 + 7 + \dots + (2k-1) = k^2$ implies $1+3+5+7+\dots + (2(k+1)-1) = (k+1)^2$.

We use direct proof. Suppose that $k \ge 1$ and $1+3+5+7+...+(2k-1) = k^2$. Next, we consider

$$1 + 3 + 5 + 7 + \dots + (2(k+1)-1)$$

$$= 1 + 3 + 5 + 7 + \dots + (2k-1) + (2(k+1)-1)$$

$$= [1 + 3 + 5 + 7 + \dots + (2k-1)] + (2(k+1)-1)$$

$$= k^{2} + (2(k+1)-1)$$
 (by the inductive hypothesis)
$$= k^{2} + 2k + 1$$

$$= (k+1)^{2}$$

Thus $1+3+5+7+...+(2(k+1)-1) = (k+1)^2$.

This proves that S_k implies S_{k+1} for all $k \ge 1$. It follows by mathematical induction that $1+3+5+7+...+(2n-1)=n^2$ for every $n \in \mathbb{N}$.

Example Prove that $2^1 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} - 2$ for all $n \in \mathbb{N}$.

Example Show that, for every $n \in N$,

$$1+2+3+4+\cdots+n=\frac{n^2+n}{2}$$
.

In induction proofs, it is usually the case that the first statement S_1 is indexed by the natural number 1, but this need not always be so. Depending on the problem, the first statement could be S_0 , or S_m for any other integer m. In the next example the statements are S_0 , S_1 , S_2 , S_3 , . . . The same outline is used, except that the basis step verifies S_0 , not S_1 .

Example Show that $5 \mid (n^5-n)$ for all non-negative integers n.

Proof. We will prove this with mathematical induction. Observe that the first non-negative integer is 0, so the basis step involves n = 0.

- (1) When n = 0, the statement S_0 is $5 \mid (0^5 0)$ or $5 \mid 0$, which is obviously true.
- (2) Let $k \ge 0$. We need to prove that if $5 \mid (k^5 k)$, then $5 \mid ((k+1)^5 (k+1))$.

We use direct proof. Suppose $5 \mid (k^5 - k)$. Thus $k^5 - k = 5a$ for some $a \in \mathbb{Z}$. Then observe that

$$(k+1)^{5}-(k+1) = k^{5}+5k^{4}+10k^{3}+10k^{2}+5k+1-k-1$$
$$= (k^{5}-k) + 5k^{4}+10k^{3}+10k^{2}+5k$$

$$= 5a+5k^4+10k^3+10k^2+5k$$
$$= 5(a+k^4+2k^3+2k^2+k).$$

This shows $(k+1)^5$ -(k+1) is an integer multiple of 5, so $5 \mid ((k+1)^5 - (k+1))$. We have now shown $5 \mid (k^5 - k)$ implies $5 \mid ((k+1)^5 - (k+1))$. It follows by induction that $5 \mid (n^5 - n)$ for all non-negative integers n.

Example For all integers $n \ge 4$ we have $n! > 2^n$

Exercise

Use mathematical induction to prove that the following assertions are true for $n \ge 1$

1.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$$

2.
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

3.
$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{2^{n} - 1} + \frac{1}{2^{n}} \ge 1 + \frac{n}{2}$$

4.
$$\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

5.
$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$