Module 1: Data Science Fundamentals

Module 1: Data Science Fundamentals

Sprint 1: Data Wrangling and Storytelling

Volcano Eruptions, once more!

Background

For the last day of this sprint, we're analyzing volcano eruptions once more. Equipped with solid EDA knowledge, your objective is to look at the dataset with a creative spirit. We suggest tackling the task with the following framework:

- 1. Start by exploring the data, without any initial clear objective.
- 2. Raise hypotheses, answer them using the data.

How to start?

So far, your objective has been to answer provided questions using the tools learned. Now, you have to ask questions yourself, and answer them using the data and EDA methods we've studied. How should I know what to ask? I've never seen this data (Okay, not exactly true, we've had a tiny exercise with it, but still).

20-11-2020

As a reminder, start from EDA. Be creative! Examine each data source individually. Calculate some basic statistics, visualize the time data in relation to some numerical variable. Don't be afraid to group things and display them. Join data if you sense that enriching one datasource could give insights.

Having done these steps, you should be able to formulate a basic set of questions and start zooming in on the dataset - dissecting it further, along different, more specific dimensions, e.g. "Right, it's clear that rock A is the one errupted most. But maybe that's the case only for some specific set of big volcanoes?". And, down the rabbit hole you go!

Concepts to explore

You should explore calculating basic data statistical parameters, performing EDA.

Requirements

- Describe the data with basic statistical parameters mean, median, quantiles, etc.
- Grouping the data and analyzing the groups using pandas aggregate methods.
- Work with features handle missing data, use pandas date APIs.
- Manipulate datasets use joins.
- 🗸 Visualize the data use line, scatter, histogram plots, density plots, regplots, etc.

The data is available <u>here</u>, you can use any of the datasets from the repository.

Evaluation Criteria

- The code quality
- The quality of your raised hypotheses
- The quality of how methodologically you verified you hypotheses
- · Adherence to the requirements

Bonus challenges

- Can you enrich the data from sources other than the repository specified?
- Build a model to predict major rock 1 given primary volcano type.

Data exploration on volcanoes

Abstract

With data from <u>The Smithsonian Institute</u> this week's project is about exploring **volcanoes!** We'll dive into some interesting datasets about volcanoes, eruptions and tectonic plates and in the end we'll build a model to predict the <code>major_rock_1</code> given the <code>primary_volcano_type</code>. Let's get started!

```
# Import necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import folium
import datetime
import numpy as np
# Loading datasets into the dataframes
volcano = pd.read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesda
```

Checking the size and shape of the dataframe to understand what we're working wit
print(f"The Volcano dataframe has a shape of {volcano.shape}, where the number {len
volcano.info()

The Volcano dataframe has a shape of (958, 26), where the number 958 represent

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 958 entries, 0 to 957
Data columns (total 26 columns):

#	Column	Non-	-Null Count	Dtype
0	volcano_number	958	non-null	int64
1	volcano_name	958	non-null	object
2	<pre>primary_volcano_type</pre>	958	non-null	object
3	last_eruption_year	958	non-null	object
4	country	958	non-null	object
5	region	958	non-null	object
6	subregion	958	non-null	object
7	latitude	958	non-null	float64
8	longitude	958	non-null	float64
9	elevation	958	non-null	int64
10	tectonic_settings	958	non-null	object
11	evidence_category	958	non-null	object
12	major_rock_1	958	non-null	object
13	major_rock_2	958	non-null	object
14	major_rock_3	958	non-null	object
15	major_rock_4	958	non-null	object
16	major_rock_5	958	non-null	object
17	minor_rock_1	958	non-null	object
18	minor_rock_2	958	non-null	object
19	minor_rock_3	958	non-null	object
20	minor_rock_4	958	non-null	object

```
21 minor_rock_5
                            958 non-null object
 22 population within 5 km
                                          int64
                            958 non-null
 23 population within 10 km 958 non-null
                                          int64
 24 population_within_30_km 958 non-null
                                           int64
 25 population_within_100_km 958 non-null
                                          int64
dtypes: float64(2), int64(6), object(18)
memory usage: 194.7+ KB
```

Double check for null values volcano.isnull().sum()

volcano_number	0
volcano_name	0
<pre>primary_volcano_type</pre>	0
last_eruption_year	0
country	0
region	0
subregion	0
latitude	0
longitude	0
elevation	0
tectonic settings	0
evidence_category	0
major rock 1	0
major_rock_2	0
major_rock_3	0
major_rock_4	0
major_rock_5	0
minor_rock_1	0
minor_rock_2	0
minor_rock_3	0
minor_rock_4	0
minor_rock_5	0
population_within_5_km	0
population_within_10_km	0
population within 30 km	0
population_within_100_km	0
dtype: int64	

Check common statistics of the data volcano.describe()

	volcano_number	latitude	longitude	elevation	population_within_5_k
count	958.000000	958.000000	958.000000	958.000000	9.580000e+0
mean	298585.325678	14.984680	23.537475	1867.027140	4.786046e+0
std	49792.657247	31.584983	109.852596	1401.545901	2.986690e+0
min	210010.000000	-78.500000	-179.970000	-2500.000000	0.000000e+0
25%	263025.000000	-5.401500	-78.282750	881.000000	0.000000e+0
50%	300055.500000	14.514000	36.393500	1622.500000	2.950000e+0
75%	343088.000000	40.798250	131.045500	2548.250000	4.642000e+0
max	390829.000000	71.082000	179.580000	6879.000000	5.783287e+0

Let's see what the dataframe looks like transposed volcano.head(4).T

	0	1	2	3
volcano_number	283001	355096	342080	213004
volcano_name	Abu	Acamarachi	Acatenango	Acigol- Nevsehir
primary_volcano_type	Shield(s)	Stratovolcano	Stratovolcano(es)	Caldera
last_eruption_year	-6850	Unknown	1972	-2080
country	Japan	Chile	Guatemala	Turkey
region	Japan, Taiwan, Marianas	South America	México and Central America	Mediterranean and Western Asia
subregion	Honshu	Northern Chile, Bolivia and Argentina	Guatemala	Turkey
latitude	34.5	-23.292	14.501	38.537
longitude	131.6	-67.618	-90.876	34.621
elevation	641	6023	3976	1683
tectonic_settings	Subduction zone / Continental crust (>25 km)	Subduction zone / Continental crust (>25 km)	Subduction zone / Continental crust (>25 km)	Intraplate / Continental crust (>25 km)
evidence_category	Eruption Dated	Evidence Credible	Eruption Observed	Eruption Dated
major_rock_1	Andesite / Basaltic Andesite	Dacite	Andesite / Basaltic Andesite	Rhyolite
major_rock_2	Basalt / Picro- Basalt	Andesite / Basaltic Andesite	Dacite	Dacite
major_rock_3	Dacite			Basalt / Picro- Basalt
major_rock_4				Andesite / Basaltic Andesite
major_rock_5				
minor_rock_1			Basalt / Picro- Rasalt	

There are a lot of volcano types, we can check the relation between the primary_volcano_type and the elevation. In addition, we can do something with the latitude and the longitude to plot the volcanoes on a map to see where they are.

```
volcano['primary volcano type'].value counts()
    Stratovolcano
                        353
    Stratovolcano(es)
                        107
    Shield
                         85
    Volcanic field
                         71
   Pyroclastic cone(s) 70
                         65
    Caldera
                         46
    Complex
    Shield(s)
                         33
    Submarine
                         27
    Lava dome(s)
                         26
   Fissure vent(s)
Caldera(s)
                        12
                         9
                          9
    Compound
    Maar(s)
   Maar(s) 8
Pyroclastic shield 7
    Tuff cone(s)
                          7
    Crater rows
    Subglacial
                          5
   Pyroclastic cone 4
   Lava dome
                          3
    Lava cone(s)
                           1
                          1
    Lava cone
    Stratovolcano?
                          1
    Lava cone(es)
                           1
    Tuff cone
                           1
    Complex(es)
                           1
    Name: primary_volcano_type, dtype: int64
# group unneccesary extra characters like '(es)', '(s)' and '?'
volcano['primary_volcano_type'] = volcano['primary_volcano_type'].str.replace('\(es\))
volcano['primary_volcano_type'].value_counts()
    Stratovolcano 461
   Shield
Caldera
                       118
                        74
   Pyroclastic cone 74
Volcanic field 71
Complex 47
    Complex
                        47
   Lava dome
Submarine
                        29
                         27
   Fissure vent
                       12
    Compound
                         9
   Tuff cone
                         8
    Maar
                         8
    Pyroclastic shield 7
    Crater rows
    Subglacial
    Lava cone
    Name: primary_volcano_type, dtype: int64
# Group the elevation by primary_volcano_type
elevation = volcano[['elevation', 'primary_volcano_type']]
volcano grouped_by_type = elevation.groupby('primary_volcano_type').mean().round(2)
volcano_grouped_by_type.nlargest(20, 'elevation')
```

elevation

	-	
nrimarv	volcano	twne
PLIMALY	AOTCHIO	Cypc

F	
Lava cone	2751.33
Compound	2686.78
Stratovolcano	2229.05
Pyroclastic shield	2155.57
Complex	2047.17
Lava dome	1777.86
Volcanic field	1704.79
Shield	1634.25
Pyroclastic cone	1596.19
Caldera	1566.28
Subglacial	1518.00
Tuff cone	1065.62
Maar	1028.62
Fissure vent	948.17
Crater rows	422.60
Submarine	-741.48

```
# Plot elevation by volcano type
volcano_sorted = volcano[['primary_volcano_type', 'elevation']].sort_values(by='ele
sns.set(style="darkgrid")
plt.figure(figsize=(15,10))
sns.boxplot(data=volcano_sorted, y='primary_volcano_type', x='elevation', palette='
plt.title("Average elevation by volcano type",
          horizontalalignment="center", fontsize=16)
plt.xlabel("Elevation")
plt.ylabel("Volcano type")
plt.show()
```


Nice! So we can see that the type of volcano does correlate with the elevation. A **submarine** volcano will most likely be **lower** than other types of volcanoes. Let's check some more data. Maybe the region or country can tell us something or the tectonic_settings shows interesting data.

```
# Check the regions
volcano.region.value_counts().head(10)
```

Classification and the control of th	117
South America	117
Japan, Taiwan, Marianas	102
Indonesia	95
México and Central America	93
Africa and Red Sea	79
Kamchatka and Mainland Asia	78
Canada and Western USA	60
Melanesia and Australia	45
Alaska	38
Mediterranean and Western Asia	35
Name: region, dtype: int64	

Check the tectonic settings
volcano.tectonic settings.value_counts()

```
Subduction zone / Continental crust (>25 km)
                                                     511
Intraplate / Continental crust (>25 km)
                                                     106
Subduction zone / Oceanic crust (< 15 km)
                                                      77
Rift zone / Continental crust (>25 km)
                                                      74
Rift zone / Oceanic crust (< 15 km)
                                                      69
Subduction zone / Intermediate crust (15-25 km)
                                                      41
Subduction zone / Crustal thickness unknown
                                                      40
Rift zone / Intermediate crust (15-25 km)
                                                      21
Intraplate / Oceanic crust (< 15 km)</pre>
                                                      14
```

.

Cool! Later on we'll come back to this map to plot the tectonic plate lines. In the meanwhile we'll look at the eruptions data. We can check the duration of eruptions with the start year, start month, start day, end year, end month and end day columns. In addition, the Volcano Explosivity Index vei shows us how explosive a volcano is. Maybe there is a relation between the duration and the vei.

```
# Now, let's check eruptions data
# Load it in a dataframe
eruptions = pd.read_csv("https://raw.githubusercontent.com/rfordatascience/tidytues
eruptions.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11178 entries, 0 to 11177
Data columns (total 15 columns):
```

Ducu	COTAMIND (COCAT 13 COTAM	115).	
#	Column	Non-Null Count	Dtype
0	volcano_number	11178 non-null	int64
1	volcano_name	11178 non-null	object
2	eruption_number	11178 non-null	int64
3	eruption_category	11178 non-null	object
4	area_of_activity	4694 non-null	object
5	vei	8272 non-null	float64
6	start_year	11177 non-null	float64
7	start_month	10985 non-null	float64
8	start_day	10982 non-null	float64
9	evidence_method_dating	9898 non-null	object
10	end_year	4332 non-null	float64
11	end_month	4329 non-null	float64
12	end_day	4326 non-null	float64
13	latitude	11178 non-null	float64
14	longitude	11178 non-null	float64
dtype	es: float64(9), int64(2)	, object(4)	
memo	ry usage: 1.3+ MB		

Check null values & shape print(f"The eruptions dataframe has a shape of {eruptions.shape}, where the number eruptions.isnull().sum()

The eruptions dataframe has a shape of (11178, 15), where the number 11178 rep

```
volcano number
                           0
volcano_name
                           0
eruption number
                           0
eruption_category
                           0
area_of_activity
                        6484
vei
                         2906
start year
                          1
start_month
                         193
start_day
                         196
evidence method dating
                        1280
end year
                        6846
end month
                         6849
end day
                         6852
latitude
                           0
```

longitude dtype: int64

eruptions.head(10)

	volcano_number	volcano_name	eruption_number	eruption_category	area_of_
0	266030	Soputan	22354	Confirmed Eruption	
1	343100	San Miguel	22355	Confirmed Eruption	
2	233020	Fournaise, Piton de la	22343	Confirmed Eruption	
3	345020	Rincon de la Vieja	22346	Confirmed Eruption	
4	353010	Fernandina	22347	Confirmed Eruption	
5	273070	Taal	22344	Confirmed Eruption	
6	282050	Kuchinoerabujima	22345	Confirmed Eruption	
7	241040	Whakaari/White Island	22338	Confirmed Eruption	197
8	311060	Semisopochnoi	22341	Confirmed Eruption	
9	284096	Nishinoshima	22340	Confirmed Eruption	

```
# Check the minimum start year
print(eruptions['start year'].min())
# Check eruption categories
print(eruptions.eruption category.unique())
print(eruptions.evidence method dating.unique())
     -11345.0
     ['Confirmed Eruption' 'Uncertain Eruption' 'Discredited Eruption']
     ['Historical Observations' 'Seismicity' 'Hydrophonic' nan 'Uranium-series'
      'Magnetism' 'Radiocarbon (corrected)' 'Tephrochronology' 'Anthropology'
      'Lichenometry' 'Varve Count' 'Uncertain' 'Surface Exposure' 'Radiocarbon (uncorrected)' 'Dendrochronology' 'Ice Core' 'Ar/Ar'
      'Hydration Rind' 'Fission track' 'Potassium-Argon' 'Thermoluminescence']
```

Meh, the eruption categories are not as thrilling as I thought. The evidence method dating however, is quite interesting. Maybe a certain method picks up more explosivity than the other. Keeping in mind that eruptions before the seismograph have to be calculated in another way, we might see that those methods show more explosivity since big, climate-changing eruptions happened a long time ago. We'll come back to this evidence later, first we'll look at the duration!

```
# Exclude 'trash' values
eruptions year = eruptions.query("start year > 1677 and start month > 0 and start d
# Start year, month, day to int
```

```
eruptions_year['start_year'] = eruptions_year['start_year'].astype(int)
eruptions year['start month'] = eruptions year['start month'].astype(int)
eruptions_year['start_day'] = eruptions_year['start_day'].astype(int)
# End year, month, day to int
eruptions_year['end_year'] = eruptions_year['end_year'].astype(int)
eruptions_year['end_month'] = eruptions_year['end_month'].astype(int)
eruptions_year['end_day'] = eruptions_year['end_day'].astype(int)
# Group by start year and get mean 'vei'
by year df = eruptions year.groupby('start year')
by year df['vei'].agg(['mean'])
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:5: SettingWithCor A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st

/usr/local/lib/python3.6/dist-packages/ipykernel launcher.py:6: SettingWithCor A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st

```
# Set full date
eruptions year['full date start'] = eruptions year['start year'].astype(str) + '-'
eruptions year['full date end'] = eruptions year['end year'].astype(str) + '-' + er
# Get the duration of eruptions
date = eruptions year[['full date start']].apply(pd.to_datetime)
date['full_date_end'] = eruptions_year[['full_date_end']].apply(pd.to_datetime)
date['duration'] = date['full_date_end'] - date['full_date_start']
date['eruption_number'] = eruptions_year['eruption_number']
date
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: SettingWithCor A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: SettingWithCor A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st This is separate from the ipykernel package so we can avoid doing imports ur

	full_date_start	full_date_end	duration	eruption_number
0	2020-03-23	2020-04-02	10 days	22354
1	2020-02-22	2020-02-22	0 days	22355
2	2020-02-10	2020-04-06	56 days	22343
3	2020-01-31	2020-04-17	77 days	22346
4	2020-01-12	2020-01-12	0 days	22347
6901	1687-05-10	1687-05-11	1 days	16609
6903	1687-03-26	1687-03-27	1 days	10749
6906	1686-03-26	1686-03-27	1 days	17575
6908	1685-10-03	1694-04-29	3130 days	13336
6924	1682-08-12	1682-08-22	10 days	13335

3413 rows × 4 columns

284 rows x 1 columns

date.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3413 entries, 0 to 6924
Data columns (total 4 columns):
                     Non-Null Count Dtype
# Column
---
                    _____
 0 full_date_start 3413 non-null datetime64[ns]
1 full_date_end 3413 non-null datetime64[ns]
2 duration 3413 non-null timedelta64[ns
                     3413 non-null timedelta64[ns]
 3 eruption number 3413 non-null int64
dtypes: datetime64[ns](2), int64(1), timedelta64[ns](1)
memory usage: 293.3 KB
```

date.head()

	full_date_start	full_date_end	duration	eruption_number
0	2020-03-23	2020-04-02	10 days	22354
1	2020-02-22	2020-02-22	0 days	22355
2	2020-02-10	2020-04-06	56 days	22343
3	2020-01-31	2020-04-17	77 days	22346
4	2020-01-12	2020-01-12	0 days	22347

```
# Let's add the VEI
date['vei'] = eruptions['vei']
# Drop null values
date new = date.dropna(subset=['vei'])
date new.head()
```

	full_date_start	full_date_end	duration	eruption_number	vei
7	2019-12-09	2019-12-09	0 days	22338	2.0
9	2019-12-05	2020-04-17	134 days	22340	1.0
13	2019-10-13	2019-10-22	9 days	22334	1.0
25	2019-05-16	2019-10-07	144 days	22320	2.0
32	2019-02-18	2019-07-28	160 days	22306	2.0

```
# Check mean, max, min and quantiles for eruption duration in days
print(date_new.duration.mean())
print(date new.duration.max())
print(date_new.duration.min())
print(date_new.duration.quantile([0.0, 0.25, 0.5, 0.75]))
    332 days 11:06:06.816952208
    89774 days 00:00:00
    0 days 00:00:00
```

0.00 0.25

0 days

3 days

```
0.50
           35 days
    0.75
           153 days
    Name: duration, dtype: timedelta64[ns]
# Check mean, max, min and quantiles for eruption duration in days after excluding
date normal=date new[date new.duration < datetime.timedelta(days=10_000)]
print(date_normal.duration.mean())
print(date_normal.duration.max())
print(date_normal.duration.min())
    219 days 09:21:54.527333132
    9381 days 00:00:00
    0 days 00:00:00
```

```
# Plot the frequency of eruption duration in days
(date_normal.duration.astype('timedelta64[ns]') / pd.Timedelta(days=1)).hist(range=
plt.xlabel('Eruption duration (days)')
plt.ylabel('# of eruptions');
```



```
# Let's zoom in a bit more
(date normal.duration.astype('timedelta64[ns]') / pd.Timedelta(days=1)).hist(range=
plt.xlabel('Eruption duration (days)')
plt.ylabel('# of eruptions');
```

Seems like most recent eruptions take less than 10 days. Now let's take a look at the vei.

```
800
# Group the data by year and get the sum vei per year
grouped = date_normal.groupby(pd.Grouper(key='full_date_start',freq='Y')).sum()
# Largest and smallest vei
print(grouped.nlargest(3, 'vei'))
print(grouped.nsmallest(3, 'vei'))
                     eruption_number
                                     vei
    full date start
    2004-12-31
                              809465 89.0
    2005-12-31
                              722980 77.0
    2010-12-31
                              617802 76.0
                     eruption number vei
    full date start
    1683-12-31
                                   0.0
    1684-12-31
                                   0.0
                                   0 0.0
    1688-12-31
# Group the data by year and get the mean vei per year
grouped day = date normal.groupby(pd.Grouper(key='full date start',freq='Y')).mean(
# drop NaN
grouped day.dropna(subset=['vei'])
# Largest and smallest vei
print(grouped_day.nlargest(3, 'vei'))
print(grouped_day.nsmallest(3, 'vei'))
                     eruption number vei
    full_date_start
    1721-12-31
                             12673.0 5.0
    1739-12-31
                             18612.0 5.0
    1693-12-31
                             12743.0 4.0
                     eruption number vei
    full_date_start
    1757-12-31
                             12992.0 0.0
    1702-12-31
                             13699.0 1.0
    1726-12-31
                             12874.0 1.0
```

2004 has the highest vei and could be named the most explosive year, while the mean vei per year is the highest in 1721. This could be due to the fact that 2004 had many less-explosive (smaller) eruptions. To come back to the evidence method dating, we'll see which methods pick up the highest explosivity and vice versa.

```
# create new evidence dataframe
    evidence = eruptions
    # drop null values from the evidence_method_dating column
    evidence.dropna(subset=['evidence method dating'], inplace=True)
https://colab.research.google.com/github/TuringCollegeSubmissions/lcramw-DS.1.1/blob/master/data-wrangling-and-storytelling.ipynb#scrollTo=h8RL1-iNT... \\ 16/28
```

```
evidence.evidence method dating.unique()
     array(['Historical Observations', 'Seismicity', 'Hydrophonic',
            'Uranium-series', 'Magnetism', 'Radiocarbon (corrected)', 'Tephrochronology', 'Anthropology', 'Lichenometry', 'Varve Count',
            'Uncertain', 'Surface Exposure', 'Radiocarbon (uncorrected)',
            'Dendrochronology', 'Ice Core', 'Ar/Ar', 'Hydration Rind',
             'Fission track', 'Potassium-Argon', 'Thermoluminescence'],
           dtype=object)
# Plot the evidence method by vei while checking the eruption category
evidence sorted = evidence[['evidence method dating', 'vei', 'eruption category']].
sns.set(style="darkgrid")
plt.figure(figsize=(15,10))
sns.boxplot(data=evidence_sorted, y='evidence_method_dating', x='vei', palette='inf
plt.title("Average vei by evidence method",
          horizontalalignment="center", fontsize=16)
plt.xlabel("Vei")
plt.ylabel("Evidence method")
plt.show()
```

Well.. all the above data comes from confirmed eruptions (duh). Better to leave eruption category out to get a clearer look at the data!

```
# Plot the evidence method by vei
evidence_sorted2 = evidence[['evidence_method_dating', 'vei']].sort_values(by='vei'
sns.set(style="darkgrid")
plt.figure(figsize=(15,10))
sns.boxplot(data=evidence sorted2, y='evidence method dating', x='vei', palette='in
plt.title("Average vei by evidence method",
          horizontalalignment="center", fontsize=16)
plt.xlabel("Vei")
plt.ylabel("Evidence method")
plt.show()
```


That's better! In line of what was expected, seismicity has a low vei because it is being used to keep track of recent eruptions and the most explosive eruptions can be found in with looking at the ice core. Finally, I would be interested to see which primary volcano type has the highest vei. In order to do that we must merge the two datasets used before.

```
# Load the datasets
volcano_for_merge = pd.read_csv("https://raw.githubusercontent.com/rfordatascience/
eruptions_for_merge = pd.read_csv("https://raw.githubusercontent.com/rfordatascienc
# Merge! (default is inner, which we want)
merged = pd.merge(volcano_for_merge, eruptions_for_merge, on='volcano_number')
merged.head()
```

	volcano_number	volcano_name_x	primary_volcano_type	last_eruption_year	
0	283001	Abu	Shield(s)	-6850	
1	342080	Acatenango	Stratovolcano(es)	1972	G
2	342080	Acatenango	Stratovolcano(es)	1972	G
3	342080	Acatenango	Stratovolcano(es)	1972	G
4	342080	Acatenango	Stratovolcano(es)	1972	G

```
# check for null values
merged.isnull().sum()
```

```
volcano number
                                0
volcano name x
                                0
primary_volcano_type
                                0
last eruption year
                                0
country
                                0
region
                                0
subregion
                                0
latitude x
                                0
longitude x
                                0
elevation
                                0
tectonic settings
                                0
evidence category
                                0
major_rock_1
                                0
major_rock_2
```

```
major_rock_3
    major_rock 4
                                    0
    major_rock_5
                                    0
    minor_rock_1
                                    0
    minor_rock_2
                                    0
    minor_rock_3
                                    0
    minor rock 4
                                    0
    minor_rock_5
                                    0
    population within 5 km
                                    0
    population within 10 km
                                    0
    population_within_30_km
                                    0
    population within 100 km
                                    0
    volcano name y
                                    0
    eruption_number
                                    0
    eruption category
                                    0
    area of activity
                                 5212
                                 2399
    vei
    start_year
                                    1
    start_month
                                  171
    start_day
                                 174
    evidence method dating
                                1007
    end year
                                 5865
    end_month
                                 5868
    end day
                                 5871
    latitude y
                                    0
    longitude y
                                    0
    dtype: int64
# drop null values for vei
merged.dropna(subset=['vei'], inplace=True)
print(merged.vei.isnull().sum())
# group unneccesary extra characters like '(es)', '(s)' and '?'
merged['primary volcano type'] = merged['primary volcano type'].str.replace('\(es\))
    0
# Plot the evidence method by vei
merged_sorted = merged[['primary_volcano_type', 'vei']].sort_values(by='vei', ascen
sns.set(style="darkgrid")
plt.figure(figsize=(15,10))
sns.barplot(data=merged_sorted, x='primary_volcano_type', y='vei', palette='hot_r')
plt.title("Average vei by volcano type",
          horizontalalignment="center", fontsize=16)
plt.ylabel("Vei")
plt.xlabel("Volcano type")
plt.xticks(rotation=30)
plt.show()
```


Voila! As we can see, Subglacial volcanoes tend to be the most explosive. This explains why the evidence method type Ice core has the highest vei.

Bonus Challenges

Challenge 1 - Enrich dataset

We will plug in the tectonic plate lines in the volcano map from before

```
# Load the tectonic plate data
tectonic = pd.read_csv("https://raw.githubusercontent.com/TuringCollegeSubmissions/
tectonic.shape
    (12321, 3)
tectonic.head(5)
```

```
plate
                 lat
                         lon
     0
           am 30.754 132.824
     1
           am 30.970 132.965
     2
              31.216 133.197
     3
           am 31.515 133.500
# Check for null values
tectonic.isnull().sum()
    plate
             0
    lat
    lon
              0
    dtype: int64
# Create the tectonic plate map
plate map = folium.Map()
plates = list(tectonic['plate'].unique())
for plate in plates:
   plate_vals = tectonic[tectonic['plate'] == plate]
    lats = plate_vals['lat'].values
    lons = plate_vals['lon'].values
   points = list(zip(lats, lons))
    indexes = [None] + [i + 1 for i, x in enumerate(points) if i < len(points) - 1</pre>
    for i in range(len(indexes) - 1):
        folium.vector_layers.PolyLine(points[indexes[i]:indexes[i+1]], popup=plate,
plate map
```

Make this Notebook Trusted to load map: File -> Trust Notebook

dtype: int64

```
# Get max VEI for each volcano
volcano_max_vei = eruptions.groupby(['volcano_number'])['vei'].max().reset_index()
# Merge into data_volcano dataframe
data volcano = pd.merge(volcano, volcano_max_vei, on='volcano_number')
# Check null values
data_volcano.isnull().sum()
    volcano_number
                                    0
    volcano name
                                    0
    primary_volcano_type
                                    0
                                    0
    last eruption year
    country
                                    0
    region
                                    0
    subregion
                                    0
    latitude
                                    0
    longitude
                                    0
    elevation
                                    0
    tectonic_settings
                                    0
    evidence category
                                    0
    major_rock_1
                                    0
    major_rock_2
                                    0
    major_rock_3
                                    0
    major_rock_4
                                    0
    major_rock_5
                                    0
    minor_rock_1
                                    0
    minor rock 2
                                    0
    minor_rock_3
                                    0
    minor rock 4
                                    0
    minor_rock_5
                                    0
    population within 5 km
                                    0
    population within 10 km
                                    0
    population within 30 km
                                    0
    population within 100 km
                                    0
    vei
                                  152
```

```
def vei radius(vei):
    return 2 ** (int(vei) - 4) + 3 if not np.isnan(vei) else 1
volcano with vei = data volcano.dropna(subset=['vei'])
# Create the map
complete map = folium.Map()
# Add tectonic plates to map
plate layer = folium.FeatureGroup(name='Tectonic Plates')
plates = list(tectonic['plate'].unique())
for plate in plates:
   plate vals = tectonic[tectonic['plate'] == plate]
   lats = plate vals['lat'].values
   lons = plate vals['lon'].values
   points = list(zip(lats, lons))
   indexes = [None] + [i + 1 for i, x in enumerate(points) if i < len(points) - 1</pre>
    for i in range(len(indexes) - 1):
        folium.vector layers.PolyLine(points[indexes[i]:indexes[i+1]], popup=plate,
plate layer.add to(complete map)
# Create layers
layers = []
for i in range(8):
    layers.append(folium.FeatureGroup(name='VEI: '+str(i)))
layers.append(folium.FeatureGroup(name='VEI: NaN'))
# Add each volcano to the correct layer
for i in range(0, volcano with vei.shape[0]):
   volcano = volcano with vei.iloc[i]
    # Create marker
   marker = folium.CircleMarker([volcano['latitude'],
                                  volcano['longitude']],
                                  popup=volcano['volcano_name'] + ', VEI: ' + str(v
                                  radius=vei_radius(volcano['vei']),
                                  color='red' if not np.isnan(volcano['vei']) and i
                                  fill=True)
   # Add to correct layer
   if np.isnan(volcano['vei']):
        marker.add to(layers[8])
    else:
        marker.add_to(layers[int(volcano['vei'])])
# Add layers to map
for layer in layers:
    layer.add to(complete map)
# Add layer control
folium.LayerControl().add_to(complete_map)
complete map
```

Make this Notebook Trusted to load map: File -> Trust Notebook

Challenge 2 - Make predictions

We will predict major rock 1 given the primary volcano type from the volcano dataset.

```
# Load the volcano dataset
volcano_model = pd.read_csv("https://raw.githubusercontent.com/rfordatascience/tidy
# Clean primary_volcano_types
volcano_model['primary_volcano_type'] = volcano_model['primary_volcano_type'].str.r
print(volcano_model["primary_volcano_type"].value_counts())
# Set primary_volcano_type as category
```

 $volcano\ model \cite{Color:primary:color:primary:primary:color:primary$

volcano model.dtypes

```
Stratovolcano
                     461
Shield
                     118
Caldera
                      74
Pyroclastic cone
Volcanic field
                       74
                      71
Complex
                       47
Lava dome
                      29
Submarine
                       27
                     12
Fissure vent
                       9
Compound
Tuff cone
Maar
Pyroclastic shield 7
Crater rows
Subglacial
                        3
Lava cone
Name: primary volcano type, dtype: int64
volcano_number
volcano_name
                             int64
                           object
primary_volcano_type category last eruption_veer
last_eruption_year
                            object
                             object
country
region
                              object
subregion
                              object
                            float64
float64
latitude
longitude
                               int64
elevation
                             object
tectonic_settings
evidence category
                             object
major_rock_1
                             object
major_rock_2
                               object
major_rock_3
                             object
major_rock_4
                             object
major_rock_5
                             object
                             object
minor_rock_1
                             object
minor_rock_2
minor_rock_3
                             object
minor_rock_4
                             object
                             object
minor_rock_5 object
population_within_5_km int64
population_within_10_km int64
population_within_30_km int64
population_within_100_km int64
minor_rock_5
dtype: object
```

Assign encoded variables to new column primary_volcano_type_cat volcano model["primary volcano type cat"] = volcano model["primary volcano type"].c volcano model.head()

```
volcano_number volcano_name primary_volcano_type last_eruption_year
                                                                                     CO
     0
                 283001
                                   Abu
                                                        Shield
                                                                              -6850
     1
                 355096
                            Acamarachi
                                                  Stratovolcano
                                                                           Unknown
     2
                 342080
                            Acatenango
                                                  Stratovolcano
                                                                              1972 Gua
# Set input and output set
X = volcano model[['primary volcano type cat']]
y = volcano model[['major rock 1']]
print(X["primary volcano type cat"].value counts())
print(X.dtypes)
# Check for null values
print(X.isnull().sum())
print(y.isnull().sum())
     11
           461
     10
           118
     8
            74
     0
            74
     15
            71
     1
            47
     6
            29
     13
            27
     4
            12
     2
             9
     14
             8
     7
             8
     9
             7
             5
     12
     3
             5
    Name: primary volcano type cat, dtype: int64
    primary_volcano_type_cat
                                 int8
    dtype: object
    primary_volcano_type_cat
    dtype: int64
    major_rock_1
                      0
     dtype: int64
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
# Fit the model
model.fit(X, y)
```

test with 'Shield' and 'Stratovolcano'

```
predictions = model.predict([ [10],[11] ])
print(predictions)
    ['Basalt / Picro-Basalt' 'Andesite / Basaltic Andesite']
# With an accuracy score
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
score = accuracy_score(y_test, predictions)
print(score)
    0.609375
```