Al Lab 2 Report | G6

Shreyas Sathe | 180010033 Janhavi Dadhania | 180010012

Introduction:

Blocks World Domain Game starts with an initial state consisting of a fixed number of blocks arranged in 3 stacks(as asked in this specific assignment) and we can move only top blocks of the stacks and we have to achieve a goal state that is a particular arrangement of blocks by moving these blocks. Blocks World is a planning problem where we know goal state beforehand and path to Goal state is more important.

```
Initial state: ( [F, B, E], [A, D], [C] )

State space: { ( [F, B], [A, D], [C, E] ) , ( [F, B], [A, D, E ], [C] ), ( [F, B, E, D], [A], [C] ), ( [F, B, E], [A], [C, D] ), ( [F, B, E, C], [A, D], [ ] ), ( [F, B, E], [A, D, C], [ ])

Goal State: ( [B, D, A], [C, F, E], [ ] )
```

Pseudocode:

```
<u>MoveGen( arrangement )</u>:
```

return children

```
children = []
candidate_moves = { (a, b) : block on top of stack 'a' moves to stack 'b' }
for move in candidate_moves:
    temp = deepcopy(arrangement.design)
    if temp[move[0]]:
        block = temp[move[0]].pop()
        temp[move[1]].append(block)
        result = candidate_design(temp, design, move[0], move[1])
        children.append(result)
```

goalTest(current, destination): if not current or not destination : return false If current.design == destination.design: return true return false

Heuristic Functions considered:

1	Out of Place Heuristic
	If position of the block is not same as in goal state, 1 is added to the cost
	Pseudo code:
	for each block in state_space: If block above exist: If block above is not block above it in goal state: Cost += 1 Else: If block above exist in goalState: Cost += 1 If block below exist: If block below is not block below it in goal state: Cost += 1 Else: If block below exist in goalState: Cost += 1 Cost += 1
2	Different penalty for top and bottom
	If the block(or clear) at top is not as in the goal state add 1 to the cost function. If the bottom block(or table) is not as in the goal state add 1 to the cost function.
	Pseudo Code:
	For each block in state_space:

If block at bottom exist and not equal to block at bottom in goal state:

Cost += 1

If block at top exist and not equal to block at top in goal state:

Cost += 1

If table at bottom and goal state has block at bottom:

Cost += 1

If clear at top and goal state has block at top:

Cost += 1

Best First Search Analysis and Observation:

It is quite evident that heuristics will not matter in case of 3 blocks since maximum stacks that can be used is equal to 3. All the blocks can be placed in one stack and any goal arrangement can be achieved.

3	[3, 2, 1]	[1, 3, 2]		
			Heuristic	Moves
		П	1	4
			2	4
3	[3, 2, 1]	[1, 2, 3]		
	0 0		Heuristic	Moves
	ц		1	3
			2	3
3	[3, 2, 1]	[1]		
	0 0	[2] [3]	Heuristic	Moves
		[0]	1	2
			2	2

5	[3,5,2]	[1,2,3]		
	[] [1,4]	[4,5] []	Heurist ic	Moves
			1	4
			2	4
5	[3,5,2]	[1,2]		
	[] [1,4]	[5,4] [3]	Heurist ic	Moves
			1	5
			2	5
5	[3,5,2]	[2,5,3]		
	[] [1,4]	[4,1]	Heurist ic	Moves
			1	5
			2	5

Second, heuristic seems better than the first one.

Number of Blocks	Goal	Initial State	Number of Moves	
6	[4, 2]	[3]		
	[6, 1, 5, 3]	[3] [2, 6, 1, 4] [5]	Heuristic	Moves
	u		1	15
		2	11	

6	[4, 2]	[3, 5, 4]		
	[6, 1, 5, 3]	[2, 6, 1]	Heuristic	Moves
	u		1	17
			2	18
	[4, 2]			
6	[6, 1, 5, 3] []	[2, 6, 1] [4, 5, 3]	Heuristic	Moves
			1	9
			2	10
6		[1, 2, 3, 4, 5, 6]		, ,
	[6, 1, 5, 3]		Heuristic	Moves
			1	17
			2	12
6		[6, 5, 4, 2, 1, 3]		
	[6, 1, 5, 3]		Heuristic	Moves
	U		1	23
			2	12

8	[1,2,3,4,5,6,7,8] []	[8,4,5] [2,6,1] [3,7]	Heurist ic	Moves
			1	45
			2	38
8	[1,2,3,4,5,6,7,8]	[3,2,1] [8,6,5]		

		[4,7]	Heurist ic	Moves
			1	28
			2	18
8	[1,2,3,4,5,6,7,8]	[3,2,1]		
		[5,6,8] [4,7]	Heurist ic	Moves
			1	37
			2	41
8	[1,2,3,4,5,6,7,8]	[3,4,2,1]		
		[7,5,6,8]	Heurist ic	Moves
			1	36
			2	17
8	[1,2,3,4,5,6,7,8]	[3,4,7,5,6,8,2,1]		
		Heurist ic	Moves	
			1	24
			2	29

8	[1,2,3,4,5,6,7,8] [] []	[8,2,1] [4,7,5] [3,6]	Heurist ic	Moves
			1	25
			2	34

9	[1,2,3] [7,8,9] [4,5,6]	[1,2,3,4,5,6,7,8,9] []	Heuristic 1 2	Moves 10 14
9	[1,2,3] [7,8,9] [4,5,6]	[1,3,4] [2,6,7] [9,8,5]	Heuristic 1 2	Moves 26 35
9	[1,2,3] [7,8,9] [4,5,6]	[1,3,4] [2] [9,8,5,7,6]	Heuristic 1 2	Moves 26 25

9	9 [1,2,3] [1,2,3]				
	[1,2,3] [7,8,9] [4,5,6]	[1,2,3] [7,8] [4,5,6,9]	Heuristic	Moves	
				1	45
			2	38	

Plots:

Number of Moves vs Number of blocks

It can be observed from the plot that heuristic 2 performs better than heuristic 1 as the number of blocks increases.

Hill Climbing and Best First Search Comparison

Initial State	Goal State	Steps taken (BFS)	Time (steps)	States explor ed (BFS)		Reaching Optimal Solution
---------------	-------------------	-------------------------	-----------------	---------------------------------	--	---------------------------------

[3, 2, 1] []	[1, 3, 2] []	4	6	13	7	Reached
[1,2,3] [4,5] []	[3,5,2] [] [1,4]	4	-	480	8	Not Reached
[3] [2, 6, 1, 4] [5]	[4, 2] [6, 1, 5, 3] []	11	4	124	4	Not Reached
	[8,4,5] [2,6,1] [3,7]	38	43	658	43	Not Reached
[2]	[1,2,3] [7,8,9] [4,5,6]	25	40	981	40	Not reached

Observation:

- 1. Best First Search explored much more states compared to hill climbing.
- 2. Time taken (when optimal solution is reached) is very less compared to BFS.
- 3. As the total number of blocks increases, in most of the cases goal state is not reached in hill climbing.