IEA High-Temperature Superconductivity (HTS) Workshop "HTS Applications in the Power Sector"

Japanese HTS Projects - now and future

4th July 2017 Kawasaki **Tetsushiro lwatsubo**

Energy Conservation Technology Department

1. Introduction

- What's NEDO?
- NEDO's R&D Projects on Superconductivity

2. NEDO HTS Project

- June 2016 - March 2021

What's NEDO?

As Japan's largest public management organization promoting research and development as well as the dissemination of energy, environmental and industrial technologies, NEDO has a crucial mission to carry out.

Addressing energy and global environmental problems

- Enhancement of Japan's industrial competitiveness

Chairman: Mr. Kazuo Furukawa

Organization: Incorporated administrative agency under

the Ministry of Economy, Trade and Industry

(METI), government of Japan - Established in 1980

Location: Kawasaki City, Japan

Personnel: About 920

Budget: Approximately 129.8 Billion yen (2016 fiscal year)

(1.1 Billion US dollars)

NEDO's Technology Area

Basic Research

Technology Development

Demonstration

Renewable energy

Energy conservation

Electronics /ICT

Materials/nanotech

Energy storage

Robotics

Water treatment

Bio/medical

NEDO's R&D Project on Superconductivity

98 99 97 00 01 07 08 09 10 11 12 95 02 04 05

Fundamental Materials Science & Engineering

Fundamental Technologies for Superconductivity Applications Phase I, II YBCO C.C. etc.

NEDO

Materials, Science & **Processings**

High J. **BSCCO** Wire

SCHOOL STATE

MAGLEV

Reduction of Rare Earth Usage for Motors

Generator

Superconductive Generator Equipment(LTS) and Materials (Super-GM)

Superconducting Generator((SCG)

M-PACC SMES, Cable(AC), Transformer, & C.C.

SMES

SMES system (LTS) Basic Technology

SMES system (LTS)

SC Power Network (LTS-SMES)

Power Device Applications

HTS Flywheel Energy Storage

SC Magnetic Bearing for FW

SC Power Network System (FW)

AC Power Device Cable, FCL, etc.

AC Power SC Equipment (Super-ACE)

Bi-Cable(AC) Field Test

1. Introduction

- What's NEDO?
- NEDO's R&D Projects on Superconductivity

2. NEDO HTS Project

- June 2016 - February 2021

NEW NEDO HTS Project

"Project to Promote Commercialization of High-Temperature Superconductivity Technology"

Period: June 2016-Februrary 2021 5years Budget:€68M (120yen/€ 5years) €12.5M (2016FY)

Targeted Scope:
Power Transmission & Magnet System

Development Items

1.HTS Power Transmission Development

- (1) Commercialization Development of HTS Power transmission cable system
 - -AC system (2016 ~ 2018) TEPCO & ...
 - -DC system (2016) I-SPOT
- (2) Basic technology Development for applying transportation (2016 ~ 2020) Railway Technical Research Institute

2. High Magnetic Field Magnet System Development

- (3) Technology Development of High stable Magnetic Field HTS Magnet system
 - (2016 ~ 2020) Mitsubishi Electric, AIST
 - (2016 ~ 2018) Furukawa Electric Industries
- (4) Commercialization Development of HTS wire for High Magnetic Field Coil (2016 ~ 2018) Fujikura, AIST

Presentation from Japan

- "Safety and Reliability verification tests for Superconducting Cables", Takato Masuda, SEI
- ➤ "HTS Railway Applications", Masaru Tomita, Railway Technical Research Institute
- "Development of High Stable Magnetic Field HTS Magnet System Technology", Shoichi Yokoyama, Mitsubishi Electric
- "Recent Progress of REBCO Coated Conductors at Fujikura", Masanori Daibo, Fujikura Electric
- "Present Status of Taiyo Nippon Sanso Neon Turbo-Brayton Refrigerator", Shigeru Yoshida, Taiyo Nippon Sanso

Transmission cable system (DC)

- •Purpose:
- 1) Verify various characteristics using 1 km superconducting DC cable system in Hokkaido
- 2) summarize guidelines on design, construction, operation and maintenance
- ●Term: Jun 2016 ~ Feb 2017 (8 months)
- Budget: 200M yen (Subsidy 50%)
- Member: I-SPOT(Chiyoda corp., Sumitomo Electrical Ind., Chubu Univ., Sakura Internet Inc.)
- •Features:
- ①Low heat penetration Straight tube <1W/m</p>
- ②Heat shrinkage Helical deformation
- 3 Multi-joints (two joints)

heat penetration <1W/m

Development Items and Targets

Cat e gor y	Items	Subsidy From NEDO	Target	Contractor
Ower Transmissi Opment	①Commercialization Development of HTS Power transmission cable system (2016~2018)	50%	 Establishment of safety and evaluation standards for HTS cable system Establishment of high efficient cooling system COP:>0.11, Inspection period:40,000h DC power transmission: Establishment of design/operating guideline 	Tokyo Power Electric HD, Sumitomo Electric Industries, Furukawa Electric Industries, Mayekawa MFG I-SPOT
	②Basic technology Development for applying transportation (2016~2020)	100%	 Establishment 2km long cooling system and demonstration cooler size: 2m³ /kW, Pump: 0.6MPa, Flow rate 50L/m Establishment of design/evaluation/maintenance standard 	Railway Technical Research Institute
agnetic Field Magne n Development	③Technology Development of High stable Magnetic Field HTS Magnet system (2016~2020)	100%	 Imaging Demonstration of 3T Half size Magnet Coil system Magnetic Field uniformity <100ppm Magnetic Field stability <1ppm/h <!-- Establishment design standard for 3T MRI coil shape, cooling ability, cryostat etc.</li--> Technology Development of superconducting contact (<10⁻¹²Ω) 	Mitsubishi Electric Advanced Industrial Science and Technology Furukawa Electric Industries
	(4) Commercialization Development of HTS wire for High Magnetic Field Coil	100%	 Improvement of High Magnetic Field REBCO wire: Ave current density >400A/mm2 @30K, 7T Ic deviation ((Ic aveIc min.)/Ic ave.)< 0.15 for 1km long wire 	Advanced Industrial Science and
		50%	•REBCO wire production rate > 50m/h	Fujikura

Contents and Period

2016FY

2017FY

2018FY

2019FY

2020FY

1 Commercialization Development of **HTS Power** transmission cable system $(2016 \sim 2018)$

Transmission Development

Power

Field Magn

High Magnetic

- ●66kV, 66kV, 275kV Establishment of safety and evaluation standards for HTS cable system In-grid Operation, dismantling and research
- Design spec. for cable
 - Estimation standard for Safety/ reliability

Promotion to Commercialization

2Basic technology **Development for** applying transportation

 $(2016 \sim 2020)$

- Small size cooling system
- LN2 Pump
- Insulating Pipe (Cable)

DC power transmission

operating guideline

: Establishment of design/

- Laying long HTS Feeder
- Estimation
- System maintenance study

3Technology Development of High stable Magnetic Field
HTS Magnet system
(2016~2020)

- Development of 3T Half size Magnet Coil system.
- Establishment design standard for 3T MRI coil shape, cooling ability, cryostat etc.
- Development 5T Half size Magnet coil system
- Imaging by 5T Half size MRI

Technology Development of superconducting contact ($<10^{-12}\Omega$)

 Trial coil production by superconducting contact /Evaluation

4 Commercialization **Development of HTS** wire for High Magnetic Field Coil $(2016 \sim 2018)$

- Improvement of High Magnetic Field REBCO wire
- Improvement stability in long length
- Improvement Throughput

Putting Wire to Practical use