Neural Network

Neural Network

$$y(x) = \sum_{i=1}^{d} w_i x_i + b$$

Dot product of two very large matrices

```
layerInput = self.weights[i].dot(input.T[i])
```

$$y(x) = \sum_{i=1}^{d} w_i x_i + b$$

Convolution of two very large matrices

```
y = scipy.signal.convolve(input[i,:],w[i,:])
OR
```

y = scipy.signal.convolve2d(input[:,:,i],w[:,:,i,j])

Classical Neural Network

FULLY CONNECTED NEURAL NET

LOCALLY CONNECTED NEURAL NETWORK

Neural Network

1 _{×1}	1,0	1,	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

CONVOLUTIONAL PYRATID

Forward propogation

CNNs have three main components:

- 1) Convolutional Layers
- 2) Pooling layer
- 3) Fully Connected layer

Spatial Size of Output Volume W x H x D

$$SZ = \frac{(W - F + 2P)}{S} + 1$$

Spatial Size of Output Volume

$W \times H \times D$

$$SZ = \frac{(W - F + 2P)}{S} + 1$$

W = size of input

F = size of receptive field

P = padding size

S = stride

Spatial Size of Output Volume

$$SZ = \frac{(W - F + 2P)}{S} + 1$$

W = size of input

F = size of receptive field

P = padding size

S = stride

1 _{×1}	1_×0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

$$W = 5 (5x5)$$

$$F = 3 (3x3)$$

$$P = 0$$

$$S = 1$$

$$SZ = 3$$

Pooling

Reduces *spatial size* of input by subsampling

Pooling

Reduces *spatial size* of input by subsampling

max pool with 2x2 filters and stride 2

6	8
3	4

Fully Connected Layer

Convert spatial connections with volume to a single layer so it can go into a regular NN

Example : Ouput at one layer is 7x7x512

We need to input them into a NN of 1024 inputs

-- Use window of size 7x7 with stride = 1 and pad = 0

$$SZ = \frac{(W - F + 2P)}{S} + 1$$

SZ = 1x 1x 1024