Problemas Logica

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Problemas

- 1. Sean p,q y r proposiciones. Demostrar con y sin tablas de verdad que las siguientes proposiciones son tautologias.
 - (a) $p \Longrightarrow (p \lor q)$
 - (b) $[(p \land \sim q) \Longrightarrow \sim p] \Longrightarrow (p \Longrightarrow q)$
 - (c) $[(p \land \sim q) \land (\sim r \land q) \land r] \Longrightarrow \sim p$
 - (d) $[p \land (p \Longrightarrow q)] \Longrightarrow q$
- 2. Sean p y q proposiciones. Se define la proposición $p \star q$, por la siguiente tabla de verdad:

p	q	$p \star q$
V	V	F
V	F	F
F	V	F
F	F	V

- (a) Probar que $\sim p \iff (p \star p)$ y que $(p \lor q) \iff \sim (p \star q)$
- (b) Expresar las proposiciones $(p \Longrightarrow q)$ y $(q \land p)$ usando sólo * y ~.
- 3. Sean p,q y r tres proposiciones tales que r es Falsa , $(p \iff q)$ es verdadera y $(q \implies r)$ es verdadera. Deduzca el valor de verdad de p.
- 4. Determine los valores de verdad de las preposiciones p, q, r y t, si se sabe que la preposición:

$$\left[(p \Longleftrightarrow q) \land \overline{(r \Longleftrightarrow s)} \land \overline{t}\right] \Longrightarrow [s \lor (q \Longrightarrow s)] \text{ es Falsa}$$

5. Considere las preposiciones p_1, p_2, p_3, p_4, p_5 y p_6 de tal modo que se cumple lo siguiente:

$$\left[\overline{(p_1 \Longleftrightarrow p_2)} \Longrightarrow (p_4 \Longrightarrow p_3)\right] \Longleftrightarrow F$$

Usando lo anterior, determinar el valor de verdad de:

$$\left[\overline{(p_6 \vee p_5) \wedge (p_1 \wedge p_2)}\right] \Longleftrightarrow (p_3 \Longrightarrow p_4)$$

6. Determine el valor de verdad de las preposiciones p, q, t y s si se sabe que la siguiente preposición es verdadera:

$$[s \Longrightarrow (t \lor \overline{t})] \Longrightarrow [\overline{(p \Longrightarrow q)} \land s \land \overline{t}]$$

- 7. Demuestre por el método exploratorio que:
 - (a) $(p \Longrightarrow r) \Longrightarrow ((p \land q) \Longrightarrow r)$
 - (b) $[(\overline{p} \lor q) \lor (\overline{r} \land \overline{p})] \iff (p \Longrightarrow q)$
- 8. Demuestre por contradicción:

$$[(p \Longrightarrow q) \land (\overline{s} \Longrightarrow \overline{r})] \Longrightarrow [\overline{p} \lor \overline{r} \lor (q \land s)]$$

9. Demuestre, sin usar tablas de verdad, que

$$[(p \lor q) \Longleftrightarrow r] \Longrightarrow [(q \Longrightarrow r) \land (p \Longrightarrow r)]$$

es una tautologia.

- 10. Indique el valor de verdad de las siguientes preposiciones. Luego, escriba sus negaciones:
 - (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \ x \leq y$
 - (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \ x \leq y$
- 11. Muestre que las siguientes afirmaciones son falsas:
 - (a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \ x^2 \ge y^2 \Longleftrightarrow x \ge y$
 - (b) $\exists n \in \mathbb{N}^*, \forall m \in \mathbb{N}, \exists k \in \mathbb{N}, n = mk$
- 12. Considere el conjunto $A = \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$ diga si las siguientes proposiciones son verdaderas o falsas (justifique):
 - (a) $(\forall (x,y) \in A) (x+y \le 1)$
 - (b) $(\forall x \in A) (\exists y \in A) (x^2 \le y)$

Escriba la negación de las proposiciones anteriores.