MAT 141 Homework #3

Lucas Vas

November 8, 2023

6.1 Question 26	Grade:
Given the set $S_i = \{x \in \mathbb{R} 1 < x < 1 + \frac{1}{i} \}$, then:	Faculty Comments
(a) $\bigcup_{i=1}^{4} S_i = \{x \in \mathbb{R} 1 < x < 2\}$	
(b) $\bigcap_{i=1}^{4} S_i = \{x \in \mathbb{R} 1 < x < \frac{5}{4} \}$	
(c) This set is not mutually disjoint, because it does not yield \emptyset when intersected.	
(d) $\bigcup_{i=1}^{n} S_i = \{x \in \mathbb{R} 1 < x < 2\}$	
(e) $\bigcap_{i=1}^{n} S_i = \{x \in \mathbb{R} 1 < x < \frac{1+n}{n} \}$	
(f) $\bigcup_{i=1}^{\infty} S_i = \{x \in \mathbb{R} 1 < x < 2\}$	
(g) $\bigcap_{i=1}^{\infty} S_i = \{x \in \mathbb{R} 1 < x < 1 + \text{some incredibly tiny number} \}$	

7.2 Question 56

Grade:

Given our set X, we can create a one-to-one correspondance between the powerset of X and the set of all binary strings. To start, we would have the subsets of X, a few examples being: Faculty Comments

Ø

$$\{x_1, x_3, x_4\}$$

$$\{x_2, x_4\}$$

$$\{x_1, x_2, x_3, x_4\}$$

Using the subscripts assigned to each element of X, we can create a binary string that represents each subset. from our first example, we would have a binary string of 0000, since there are no elements. The second set would be 1011, since we have x_1, x_3 and x_4 , but not x_2 . The third set would be 0110, by the same logic, and the final example would be 1111, since x_1, x_2, x_3 and x_4 are all present. This could be expanded and repeated for any number of elements, and thus we have a one-to-one correspondance between the powerset of X and the set of all binary strings.

Grade:

7.3 Question 20

Given that $f: X \to Y$ and $g: Y \to Z$, and $g \circ f$ is onto, then f does not have to be onto. For example, if we have 3 elements in X, 5 elements in Y, and 2 elements in Z, then f can map each element in X to at least one element in Y, but not all. This would mean that f was not onto. However, g can map all elements from Y to both elements from Z, which would allow $g \circ f$ to be onto. Therefore, f does not have to be onto in order for $g \circ f$ to be onto as well.

 $Faculty\ Comments$

8.2 Question 26

Grade:

Faculty Comments

To define a relation R where sRt and the sum of all elements of s is equal to the sum of all elements of t, then we can define some classes as follows:

 $[0] = \{[0,0,0,0]\}$

 $[1] = \{[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]\}$

 $[2] = \{ [0,0,0,2], [0,0,1,1], [0,0,2,0], [0,1,0,1], [0,1,1,0], \\ [0,2,0,0], [1,0,0,1], [1,0,1,0], [1,1,0,0], [2,0,0,0] \}$

į