Package 'wrappedtools'

October 10, 2024

Title Useful Wrappers Around Commonly Used Functions

Description The main functionalities of 'wrappedtools' are:
adding backticks to variable names; rounding to desired precision with special case for p-values;

selecting columns based on pattern and storing their position, name, and backticked name; computing and formatting of descriptive statistics (e.g. mean±SD), comparing groups and creating publication-ready tables with descriptive statistics and p-values; creating specialized plots for correlation matrices. Functions were mainly written for my own daily work or teaching, but may be of use to others as well.

Version 0.9.6 Date 2024-10-10

Type Package

Maintainer Andreas Busjahn <andreas@busjahn.net>

License GPL-3 **Encoding** UTF-8

Imports stats, boot, knitr, coin, utils, dplyr, forcats, purrr, glue, rlang, stringr, ggplot2, tibble, tidyr, kableExtra, lifecycle, broom, rlist, DescTools, flextable, nortest

Depends R (>= 4.2) RoxygenNote 7.3.2 LazyData true

VignetteBuilder knitr

Suggests rmarkdown, testthat, ggrepel

URL https://github.com/abusjahn/wrappedtools

BugReports https://github.com/abusjahn/wrappedtools/issues

NeedsCompilation no

Author Andreas Busjahn [cre, aut] (https://orcid.org/0000-0001-9650-6919), Bilal Asser [aut]

Repository CRAN

Date/Publication 2024-10-10 11:50:02 UTC

2 Contents

Contents

Index

	41
WINratio	40
	39
	39
	38
1	38
	37
	37
	36
i -	35
re	34
	33
i —	32
	31
	30
r	29
	28
- 1	26
	26
median_cl_boot	25
	25
	24
meansd	23
markSign	22
logrange_1	21
	20
	20
	19
	18
	17
	16
	15
	15
-	14
	13
	12
	11
compare_n_numvars	9
compare2qualvars	8
compare2numvars	7
cn	6
cat_desc_table	4 5
cat_desc_stats	3
bt	3

bt 3

bt

Add backticks to names or remove them

Description

bt adds leading and trailing backticks to make illegal variable names usable. Optionally removes them.

Usage

```
bt(x, remove = FALSE)
```

Arguments

```
x Names to add backtick to.remove Option to remove existing backticks, default=FALSE.
```

Value

Character vector with backticks added.

Examples

```
bt('name 1')
```

cat_desc_stats

Compute absolute and relative frequencies.

Description

cat_desc_stats computes absolute and relative frequencies for categorical data with a number of formatting options.

Usage

```
cat_desc_stats(
  source = NULL,
  separator = " ",
  return_level = TRUE,
  ndigit = 0,
  groupvar = NULL,
  singleline = FALSE,
  percent = TRUE,
  prettynum = FALSE,
  .german = FALSE,
  quelle = NULL
)
```

4 cat_desc_table

Arguments

source Data for computation. Previously "quelle".
separator delimiter between results per level, preset as ' '.

return_level Should levels be reported?

ndigit Digits for rounding of relative frequencies.

groupvar Optional grouping factor.

singleline Put all group levels in a single line?

percent Logical, add percent-symbol after relative frequencies?

prettynum logical, apply prettyNum to results?

. german logical, should "." and "," be used as bigmark and decimal? Sets prettynum to

TRUE.

quelle deprecated, retained for compatibility, use 'source' instead.

Value

Structure depends on parameter return_level: if FALSE than a tibble with descriptives, otherwise a list with two tibbles with levels of factor and descriptives. If parameter singleline is FALSE (default), results for each factor level is reported in a separate line, otherwise they are pasted. Number of columns for result tibbles is one or number of levels of the additional grouping variable.

Examples

```
cat_desc_stats(mtcars$gear)
cat_desc_stats(mtcars$gear, return_level = FALSE)
cat_desc_stats(mtcars$gear, groupvar = mtcars$am)
cat_desc_stats(mtcars$gear, groupvar = mtcars$am, singleline = TRUE)
```

cat_desc_table

Compute absolute and relative frequencies for a table.

Description

cat_desc_table computes absolute and relative frequencies for categorical data with a number of formatting options.

Usage

```
cat_desc_table(
  data,
  desc_vars,
  round_desc = 2,
  singleline = FALSE,
  spacer = " ",
  indentor = ""
)
```

cn 5

Arguments

data name of data set (tibble/data.frame) to analyze.

desc_vars vector of column names for dependent variables.

round_desc number of significant digits for rounding of descriptive stats.

singleline Put all group levels in a single line?

spacer Text element to indent levels and fill empty cells, defaults to " ".

indentor Optional text to indent factor levels

Value

A tibble with variable names and descriptive statistics.

Examples

```
cat_desc_table(
  data = mtcars, desc_vars = c("gear", "cyl", "carb"))

cat_desc_table(
  data = mtcars, desc_vars = c("gear", "cyl", "carb"), singleline = TRUE)
```

cn

Shortcut for colnames()

Description

cn lists column names, by default for variable rawdata.

Usage

```
cn(data = rawdata)
```

Arguments

data

Data structure to read column names from.

Value

Character vector with column names.

```
cn(mtcars)
```

6 ColSeeker

ColSeeker	Find numeric index and names of columns based on class(es) and pat-
	terns

Description

ColSeeker looks up colnames (by default for tibble rawdata) based on type and parts of names, using regular expressions. Be warned that special characters as e.g. [(need to be escaped or replaced by . Exclusion rules may be specified as well.

Usage

```
ColSeeker(
  data = rawdata,
  namepattern = ".",
  varclass = NULL,
  exclude = NULL,
  excludeclass = NULL,
  casesensitive = TRUE,
  returnclass = FALSE
)
```

Arguments

tibble or data.frame, where columns are to be found; by default rawdata

Nector of pattern to look for.

Vector, only columns of defined class(es) are returned

Vector of pattern to exclude from found names.

Vector, exclude columns of specified class(es)

Casesensitive Logical if case is respected in matching (default FALSE: a<>A)

Logical if classes should be included in output

Value

A list with index, names, backticked names, and count; optionally the classes as well

```
ColSeeker(data = mtcars, namepattern = c("^c", "g"))
ColSeeker(data = mtcars, namepattern = c("^c", "g"), exclude = "r")
assign("rawdata", mtcars)
ColSeeker(namepattern = c("^c", "g"), varclass="numeric")
num_int_data <- data.frame(num1=rnorm(10), num2=runif(10), int1=1:10, int2=11:20)
ColSeeker(num_int_data, varclass="numeric") # integers are not found
ColSeeker(num_int_data, varclass=c("numeric", "integer"))
```

compare2numvars 7

compare2numvars

Comparison for columns of numbers for 2 groups

Description

compare2numvars computes either t_var_test or wilcox.test, depending on parameter gaussian. Descriptive statistics, depending on distribution, are reported as well.

Usage

```
compare2numvars(
  data,
  dep_vars,
  indep_var,
  gaussian,
  round_p = 3,
  round_desc = 2,
  range = FALSE,
  rangesep = " ",
  pretext = FALSE,
  mark = FALSE,
  n = FALSE,
  add_n = FALSE
)
```

Arguments

data name of dataset (tibble/data.frame) to analyze. vector of column names for independent variables. dep_vars name of grouping variable, has to translate to 2 groups. If more levels are enindep_var countered, an error is produced. logical specifying normal or ordinal values. gaussian level for rounding p-value. round_p number of significant digits for rounding of descriptive stats. round_desc include min/max? range text between statistics and range or other elements. rangesep for function formatP. pretext for function formatP. mark create columns for n per group? add_n add n to descriptive statistics?

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep_vars.

8 compare2qualvars

Examples

```
# Assuming Normal distribution:
compare2numvars(
  data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
  gaussian = TRUE
)
# Ordinal scale:
compare2numvars(
  data = mtcars, dep_vars = c("wt", "mpg", "qsec"), indep_var = "am",
  gaussian = FALSE
)
# If dependent variable has more than 2 levels, consider fct_lump:
mtcars |> dplyr::mutate(gear=factor(gear) |> forcats::fct_lump_n(n=1)) |>
compare2numvars(dep_vars="wt",indep_var="gear",gaussian=TRUE)
```

compare2qualvars

Comparison for columns of factors for 2 groups

Description

compare2qualvars computes fisher.test with simulated p-value and descriptive statistics for a group of categorical dependent variables.

Usage

```
compare2qualvars(
  data,
  dep_vars,
  indep_var,
  round_p = 3,
  round_desc = 2,
  pretext = FALSE,
  mark = FALSE,
  singleline = FALSE,
  spacer = " ",
  linebreak = "\n",
  p_subgroups = FALSE)
```

Arguments

data name of data set (tibble/data.frame) to analyze.

dep_vars vector of column names for dependent variables.

indep_var name of grouping variable, has to translate to 2 groups.

round_p level for rounding p-value.

round_desc number of significant digits for rounding of descriptive stats.

compare_n_numvars 9

```
pretext for function formatP.

mark for function formatP.

singleline Put all group levels in a single line?

spacer Text element to indent levels and fill empty cells, defaults to " ".

linebreak place holder for newline.

p_subgroups test subgroups by recoding other levels into other, default is not to do this.
```

Value

A tibble with variable names, descriptive statistics, and p-value, number of rows is number of dep_vars.

Examples

```
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " "
)
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " ", singleline = TRUE
)
compare2qualvars(
  data = mtcars, dep_vars = c("gear", "cyl", "carb"), indep_var = "am",
  spacer = " ", p_subgroups = TRUE
)
```

compare_n_numvars

Comparison for columns of Gaussian or ordinal measures for n groups

Description

Some names were changed in August 2022, to reflect the update of the function to handle ordinal data using non-parametric equivalents.

Usage

```
compare_n_numvars(
   .data = rawdata,
   dep_vars,
   indep_var,
   gaussian,
   round_desc = 2,
   range = FALSE,
   rangesep = " ",
   pretext = FALSE,
   mark = FALSE,
```

10 compare_n_numvars

```
round_p = 3,
add_n = FALSE
)
```

Arguments

. data name of dataset (tibble/data.frame) to analyze, defaults to rawdata.

dep_vars vector of column names.

indep_var name of grouping variable.

gaussian Logical specifying normal or ordinal indep_var (and chooses comparison tests

accordingly)

round_desc number of significant digits for rounding of descriptive stats.

range include min/max?

rangesep text between statistics and range or other elements.

pretext, mark for function formatP.

round_p level for rounding p-value.

add_n add n to descriptive statistics?

Value

A list with elements "results": tibble with descriptive statistics, p-value from ANOVA/Kruskal-Wallis test, p-values for pairwise comparisons, significance indicators, and descriptives pasted with significance. "raw": nested list with output from all underlying analyses.

```
# Usually,only the result table is relevant:
compare_n_numvars(
   .data = mtcars, dep_vars = c("wt", "mpg", "hp"),
   indep_var = "cyl",
   gaussian = TRUE
)$results
# For a report, result columns may be filtered as needed:
compare_n_numvars(
   .data = mtcars, dep_vars = c("wt", "mpg", "hp"),
   indep_var = "cyl",
   gaussian = FALSE
)$results |>
   dplyr::select(Variable, `cyl 4 fn`:`cyl 8 fn`, multivar_p)
```

compare_n_qualvars 11

compare_n_qualvars	Comparison for columns of factors for more than 2 groups with post-hoc
--------------------	--

Description

Comparison for columns of factors for more than 2 groups with post-hoc

Usage

```
compare_n_qualvars(
  data,
  dep_vars,
  indep_var,
  round_p = 3,
  round_desc = 2,
  pretext = FALSE,
  mark = FALSE,
  singleline = FALSE,
  spacer = " ",
  linebreak = "\n",
  prettynum = FALSE
)
```

Arguments

data	name of data set (tibble/data.frame) to analyze.
dep_vars	vector of column names.
indep_var	name of grouping variable.
round_p	level for rounding p-value.
round_desc	number of significant digits for rounding of descriptive stats
pretext	for function formatP
mark	for function formatP
singleline	Put all group levels in a single line?
spacer	Text element to indent levels, defaults to " ".
linebreak	place holder for newline.
prettynum	Apply prettyNum to results?

Value

A tibble with variable names, descriptive statistics, and p-value of fisher.test and pairwise_fisher_test, number of rows is number of dep_vars.

12 cortestR

Examples

```
# Separate lines for each factor level:
compare_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  spacer = " "
)
# All levels in one row but with linebreaks:
compare_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  singleline = TRUE
)
# All levels in one row, separateted by ";":
compare_n_qualvars(
  data = mtcars, dep_vars = c("am", "cyl", "carb"), indep_var = "gear",
  singleline = TRUE, linebreak = "; "
)
```

cortestR

Correlations with significance

Description

cortestR computes correlations and their significance level based on cor.test. Coefficients and p-values may be combined or reported separately.

Usage

```
cortestR(
  cordata,
  method = "pearson",
  digits = 3,
  digits_p = 3,
  sign_symbol = TRUE,
  split = FALSE,
  space = ""
)
```

Arguments

cordata	data frame or matrix with rawdata.
method	as in cor.test.
digits	rounding level for estimate.
digits_p	rounding level for p value.
sign_symbol	If true, use significance indicator instead of p-value.
split	logical, report correlation and p combined (default) or split in list.
space	character to fill empty upper triangle.

detect_outliers 13

Value

Depending on parameters split and sign_symbol, either a single data frame with coefficient and p-values or significance symbols or a list with two data frames.

Examples

```
# with defaults
cortestR(mtcars[, c("wt", "mpg", "qsec")], split = FALSE, sign_symbol = TRUE)
# separate coefficients and p-values
cortestR(mtcars[, c("wt", "mpg", "qsec")], split = TRUE, sign_symbol = FALSE)
```

detect_outliers

Find outliers based on IQR

Description

[Experimental]

detect_outliers computes IQR and finds outliers. It gives the same results as geom_boxplot and thus differs slightly from boxplot.stats.

Usage

```
detect\_outliers(x, coef = 1.5)
```

Arguments

x numeric vector.

coef coefficient for boxplot.stats, defaults to 1.5.

Value

A list with elements positions and outliers as numeric vectors.

```
detect_outliers(rnorm(100))
```

14 eGFR

eGFR	Estimation of glomerular filtration rate (eGFR) based on sex, age, and
	either serum creatinine and/or cystatin C

Description

[Experimental]

eGFR computes eGFR according to different rules (see references).

Usage

```
eGFR(data, age_var = "age", sex_var = "sex", crea_var = NULL, cys_var = NULL)
```

Arguments

data	name of data set (tibble/data.frame) to analyze.
age_var	name of column with patient age in years, default=age.
sex_var	name of column with sex, assumed as female and male.
crea_var	name of column with creatinine in mg/dl. If not available, leave as NULL.
cys_var	name of column with cystatin C in mg/l. If not available, leave as NULL.

Value

```
A list with 3 elements:

eGFR_crea

eGFR_cystatin

eGFR_creatinine_cystatin
```

References

```
https://www.kidney.org/content/ckd-epi-creatinine-cystatin-equation-2021
https://www.kidney.org/content/ckd-epi-creatinine-equation-2021
https://www.kidney.org/content/ckd-epi-cystatin-c-equation-2012
```

faketrial 15

faketrial

Results from a simulated clinical trial with interaction effects.

Description

A dataset containing physiological data, biomarkers, and categorical data.

Usage

faketrial

Format

A tibble with 300 rows and 24 variables:

Sex Sex of animal, factor with levels 'female', 'male'

Agegroup Factor with levels 'young', 'middle', 'old'

Treatment Factor with levels 'sham', 'OP'

HR Heart rate

sysRR,diaRR Systolic and diastolic blood pressure

Med xxx Pseudo-medications, factors with levels 'y','n'

Biomarker x units Biomarkers with log-normal distribution

Responder factor yes/no, systolic plood pressure >= 120?

FindVars

Find numeric index and names of columns based on patterns

Description

[Superseded]

Function ColSeeker extends this by adding class-checks.

FindVars looks up colnames (by default for data-frame rawdata) based on parts of names, using regular expressions. Be warned that special characters as e.g. [(need to be escaped or replaced by . Exclusion rules may be specified as well. New function ColSeeker() extends this by adding class-checks.

16 flex2rmd

Usage

```
FindVars(
  varnames,
  allnames = colnames(rawdata),
  exact = FALSE,
  exclude = NA,
  casesensitive = TRUE,
  fixed = FALSE,
  return_symbols = FALSE
)
```

Arguments

varnames Vector of pattern to look for.

allnames Vector of values to detect pattern in; by default: colnames(rawdata).

exact Partial matching or exact only (adding ^ and \$)?
exclude Vector of pattern to exclude from found names.

casesensitive Logical if case is respected in matching (default FALSE: a<>A)

fixed Logical, match as is, argument is passed to grep().

return_symbols Should names be reported as symbols additionally? (Default FALSE)

Value

A list with index, names, backticked names, and symbols

Examples

```
FindVars(varnames = c("^c", "g"), allnames = colnames(mtcars))
FindVars(varnames = c("^c", "g"), allnames = colnames(mtcars), exclude = "r")
```

flex2rmd

Transform flextable to rmd if non-interactive

Description

flex2rmd takes a flextable and returns a markdown table if not in an interactive session

Usage

```
flex2rmd(ft)
```

Arguments

ft a flextable

Value

either a markdown table or the flextable

formatP 17

formatP Re-format p-values, avoiding rounding to 0 and add requested	ding surprisal if
--	-------------------

Description

formatP simplifies p-values by rounding to the maximum of p or a predefined level. Optionally < or = can be added, as well as symbols according to significance level.

Usage

```
formatP(
  pIn,
  ndigits = 3,
  textout = TRUE,
  pretext = FALSE,
  mark = FALSE,
  german_num = FALSE,
  add.surprisal = FALSE,
  sprecision = 1
)
```

Arguments

pIn	A numeric vector or matrix with p-values.
ndigits	Number of digits (default=3).
textout	Cast output to character (default=TRUE)?
pretext	Should = or < be added before p (default=FALSE)?
mark	Should significance level be added after p (default=FALSE)?
german_num	change dot (default) to comma?
add.surprisal	Add surprisal aka Shannon information to p-value (default=FALSE)?
sprecision	Rounding level for surprisal (default=1).

Value

 $vector\ or\ matrix\ (depending\ on\ type\ of\ pIn)\ with\ type\ character\ (default)\ or\ numeric,\ depending\ on\ parameter\ textout$

```
formatP(0.012345)
formatP(0.012345, add.surprisal = TRUE)
formatP(0.012345, ndigits = 4)
formatP(0.000122345, ndigits = 3, pretext = TRUE)
```

18 ggcormat

ggcormat

Print graphical representation of a correlation matrix.

Description

ggcormat makes the same correlation matrix as cortestR and graphically represents it in a plot

Usage

```
ggcormat(
  cor_mat,
  p_mat = NULL,
  method = "Correlation",
  title = "",
  maxpoint = 2.1,
  textsize = 5,
  axistextsize = 2,
  titlesize = 3,
  breaklabels = NULL,
  lower_only = TRUE,
  .low = "blue3",
  .high = "red2",
  .legendtitle = NULL
)
```

Arguments

cor_mat

.low

.high

.legendtitle

p_mat	Optional matrix of p-values; if provided, this is used to define size of dots rather than absolute correlation.
method	text specifying type of correlation.
title	plot title.
maxpoint	maximum for scale_size_manual, may need adjustment depending on plotsize.
textsize	for theme text.
axistextsize	relative text size for axes.
titlesize	as you already guessed, relative text size for title.
breaklabels	currently not used, intended for str_wrap.
lower_only	should only lower triangle be plotted?

correlation matrix as produced by cor.

Color for heatmap.

Color for heatmap.

Optional name for color legend.

glmCI 19

Value

A ggplot object, allowing further styling.

Examples

```
coeff_pvalues <- cortestR(mtcars[, c("wt", "mpg", "qsec", "hp")],
   split = TRUE, sign_symbol = FALSE
)
# focus on coefficients:
ggcormat(cor_mat = coeff_pvalues$corout, maxpoint = 5)
# size taken from p-value:
ggcormat(
   cor_mat = coeff_pvalues$corout,
   p_mat = coeff_pvalues$pout, maxpoint = 5)</pre>
```

glmCI

Confidence interval for generalized linear models

Description

glm_CI computes and formats CIs for glm.

Usage

```
glmCI(model, min = .01, max = 100, cisep = '\U000022ef', ndigit=2)
```

Arguments

model	Output from glm.
min, max	Lower and upper limits for CIs, useful for extremely wide CIs.
cisep	Separator between CI values.
ndigit	rounding level.

Value

A list with coefficient, CIs, and pasted coef([CIs]).

```
\label{eq:glmout} $$ glm_out <- glm(am ~ mpg, family = binomial, data = mtcars) $$ glmCI(glm_out) $$
```

20 label_outliers

ksnormal

Kolmogorov-Smirnov-Test against Normal distribution

Description

ksnormal is a convenience function around ks.test, testing against Normal distribution. If less than 2 values are provided, NA is returned.

Usage

```
ksnormal(x, lillie = TRUE)
```

Arguments

x Vector of data to test.

lillie Logical, should the Lilliefors test be used? Defaults to TRUE

Value

p.value from ks.test.

Examples

```
# original ks.test:
ks.test(
    x = mtcars$wt, pnorm, mean = mean(mtcars$wt, na.rm = TRUE),
    sd = sd(mtcars$wt, na.rm = TRUE)
)
# wrapped version:
ksnormal(x = mtcars$wt, lillie=FALSE)
```

label_outliers

Add labels to outliers in boxplot/beeswarm.

Description

[Experimental]

label_outliers adds a text_repel layer to an existing ggplot object. It is intended to be used with boxplots or beeswarm plots. Faceting will result in separate computations for outliers. It requires the ggrepel package.

logrange_1 21

Usage

```
label_outliers(
  plotbase,
  labelvar = NULL,
  coef = 1.5,
  nudge_x = 0,
  nudge_y = 0,
  color = "darkred",
  size = 3,
  hjust = 0,
  face = "bold"
)
```

Arguments

plotbase ggplot object to add labels to. labelvar variable to use as label. If NULL, rownames or rownumbers are used. coef coefficient for boxplot.stats, defaults to 1.5. nudge_x nudge in x direction, defaults to 0. nudge_y nudge in y direction, defaults to 0. color color of labels, defaults to darkred. size size of labels, defaults to 3. horizontal justification of labels, defaults to 0. hjust face font face of labels, defaults to bold.

Value

A ggplot object, allowing further styling.

logrange_1

Predefined sets of labels for plots with log-scaled axes

Description

```
logrange_1 returns a vector for log-labels at .1, 1, 100, 1000 ...
```

Usage

```
logrange_1
logrange_5
logrange_123456789
logrange_12357
logrange_15
```

22 markSign

Format

An object of class numeric of length 41.

An object of class numeric of length 738.

An object of class numeric of length 369.

An object of class numeric of length 205.

An object of class numeric of length 82.

Value

numeric vector numeric vector

Functions

- logrange_5: vector for log-labels at 1.0, 1.5, 2.0, 2.5 ... 10, 15, 20, 25 ...
- logrange_123456789: vector for log-labels at 1, 2, 3 ... 9, 10, 20, 30 ... 90, 100 ...
- logrange_12357: vector for log-labels at 1, 2, 3, 5, 7, 10, 20, 30, 50, 70 ...
- logrange_15: vector for log-labels at 1, 5, 10, 50 ...

Examples

```
ggplot2::ggplot(mtcars) +
ggplot2::aes(wt, mpg) +
   ggplot2::geom_point() +
   ggplot2::scale_y_log10(breaks = logrange_5)
ggplot2::ggplot(mtcars) +
   ggplot2::aes(wt, mpg) +
   ggplot2::geom_point() +
   ggplot2::scale_y_log10(breaks = logrange_123456789)
```

markSign

Convert significance levels to symbols

Description

markSign returns the symbol associated with a significance level.

Usage

```
markSign(SignIn, plabel = c("n.s.", "+", "**", "***"))
```

Arguments

SignIn A single p-value.

plabel A translation table, predefined with the usual symbols.

meansd 23

Value

factor with label as defined in plabel.

Examples

```
markSign(0.012)
```

meansd

Compute mean and sd and put together with the \pm symbol.

Description

Compute mean and sd and put together with the \pm symbol.

Usage

```
meansd(
    x,
    roundDig = 2,
    drop0 = FALSE,
    groupvar = NULL,
    range = FALSE,
    rangesep = " ",
    add_n = FALSE,
    .german = FALSE
)
```

Arguments

X	Data for computation.
roundDig	Number of relevant digits for roundR.
drop0	Should trailing zeros be dropped?
groupvar	Optional grouping variable for subgroups.
range	Should min and max be included in output?
rangesep	How should min/max be separated from mean+-sd?
add_n	Should n be included in output?
.german	logical, should "." and "," be used as bigmark and decimal?

Value

character vector with mean \pm SD, rounded to desired precision

24 meanse

Examples

```
# basic usage of meansd
meansd(x = mtcars$wt)
# with additional options
meansd(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
```

meanse

Compute mean and standard error of mean and put together with the \pm symbol.

Description

meanse computes SEM based on Standard Deviation/square root(n)

Usage

```
meanse(x, mult = 1, roundDig = 2, drop0 = FALSE)
```

Arguments

x Data for computation.

multiplier for SEM, default 1, can be set to e.g. 2 or 1.96 to create confidence

intervals

roundDig Number of relevant digits for roundR.

drop0 Should trailing zeros be dropped?

Value

character vector with mean \pm SEM, rounded to desired precision

```
# basic usage of meanse
meanse(x = mtcars$wt)
```

medianse 25

medianse

Compute standard error of median.

Description

```
medianse is based on mad/square root(n)
```

Usage

medianse(x)

Arguments

Х

Data for computation.

Value

numeric vector with SE Median.

Examples

```
# basic usage of medianse
medianse(x = mtcars$wt)
```

median_cl_boot

Compute confidence interval of median by bootstrapping.

Description

median_cl_boot computes lower and upper confidence limits for the estimated median, based on bootstrapping.

Usage

```
median_cl_boot(x, conf = 0.95, type = "basic", nrepl = 10^3)
```

Arguments

x Data for computation.

conf confidence interval with default 95%.

type type for function boot.ci.

nrepl number of bootstrap replications, defaults to 1000.

Value

A tibble with one row and three columns: Median, CIlow, CIhigh.

26 median_quart

Examples

```
# basic usage of median_cl_boot
median_cl_boot(x = mtcars$wt)
```

```
median_cl_boot_gg
```

Rename output from median_cl_boot for use in ggplot.

Description

median_cl_boot_gg computes lower and upper confidence limits for the estimated median, based on bootstrapping, using default settings.

Usage

```
median_cl_boot_gg(x)
```

Arguments

Х

Data for computation.

Value

A tibble with one row and three columns: y, ymin, ymax.

Examples

```
# basic usage of median_cl_boot
median_cl_boot_gg(x = mtcars$wt)
```

median_quart

Compute median and quartiles and put together.

Description

Compute median and quartiles and put together.

Usage

```
median_quart(
    x,
    nround = NULL,
    probs = c(0.25, 0.5, 0.75),
    qtype = 8,
    roundDig = 2,
    drop0 = FALSE,
    groupvar = NULL,
```

median_quart 27

```
range = FALSE,
rangesep = " ",
rangearrow = " -> ",
prettynum = FALSE,
.german = FALSE,
add_n = FALSE
)
```

Arguments

x Data for computation.

nround Number of digits for fixed round.

probs Quantiles to compute.

qtype Type of quantiles.

roundDig Number of relevant digits for roundR.

drop0 Should trailing zeros be dropped?

groupvar Optional grouping variable for subgroups.

range Should min and max be included in output?

rangesep How should min/max be separated from mean+-sd?

rangearrow What is put between min -> max?

prettynum logical, apply prettyNum to results?

. german logical, should "." and "," be used as bigmark and decimal?

add_n Should n be included in output?

Value

character vector with median [1stQuartile/3rdQuartile], rounded to desired precision

```
# basic usage of median_quart
median_quart(x = mtcars$wt)
# with additional options
median_quart(x = mtcars$wt, groupvar = mtcars$am, add_n = TRUE)
data(faketrial)
median_quart(x=faketrial$`Biomarker 1 [units]`,groupvar = faketrial$Treatment)
```

28 pairwise_fisher_test

```
pairwise_fisher_test Pairwise Fisher's exact tests
```

Description

pairwise_fisher_test calculates pairwise comparisons between group levels with corrections for multiple testing.

Usage

```
pairwise_fisher_test(
  dep_var,
  indep_var,
  adjmethod = "fdr",
  plevel = 0.05,
  symbols = letters[-1],
  ref = FALSE
)
```

Arguments

dep_var	dependent variable, containing the data.
indep_var	independent variable, should be factor or coercible.
adjmethod	method for adjusting p values (see p.adjust).
plevel	threshold for significance.
symbols	predefined as b,c, d; provides footnotes to mark group differences, e.g. b means different from group 2
ref	is the 1st subgroup the reference (like in Dunnett test)?

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)

```
# All pairwise comparisons
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear)
# Only comparison against reference gear=3
pairwise_fisher_test(dep_var = mtcars$cyl, indep_var = mtcars$gear, ref = TRUE)
```

pairwise_ordcat_test 29

pairwise_ordcat_test Pairwise comparison for ordinal categories

Description

pairwise_ordcat_test calculates pairwise comparisons for ordinal categories between all group levels with corrections for multiple testing.

Usage

```
pairwise_ordcat_test(
  dep_var,
  indep_var,
  adjmethod = "fdr",
  plevel = 0.05,
  symbols = letters[-1],
  ref = FALSE,
  cmh = TRUE
)
```

Arguments

dep_var	dependent variable, containing the data
indep_var	independent variable, should be factor
adjmethod	method for adjusting p values (see p.adjust)
plevel	threshold for significance
symbols	predefined as b,c, d; provides footnotes to mark group differences, e.g. b means different from group 2
ref	is the 1st subgroup the reference (like in Dunnett test)
cmh	Should Cochran-Mantel-Haenszel test (coin::cmh_test) be used for testing? If false, the linear-by-linear association test (coin::lbl_test) is applied.

Value

A list with elements "methods" (character), "p.value" (matrix), "plevel" (numeric), and "sign_colwise" (vector of length number of levels - 1)

```
# All pairwise comparisons
mtcars2 <- dplyr::mutate(mtcars, cyl = factor(cyl, ordered = TRUE))
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear)
# Only comparison against reference gear=3
pairwise_ordcat_test(dep_var = mtcars2$cyl, indep_var = mtcars2$gear, ref = TRUE)</pre>
```

30 pairwise_t_test

pairwise_t_test

Extended pairwise t-test

Description

pairwise_t_testcalculate pairwise comparisons between group levels with corrections for multiple testing based on pairwise.t.test

Usage

```
pairwise_t_test(
  dep_var,
  indep_var,
  adjmethod = "fdr",
  plevel = 0.05,
  symbols = letters[-1]
)
```

Arguments

dep_var dependent variable, containing the data

indep_var independent variable, should be factor

adjmethod method for adjusting p values (see p.adjust)

plevel threshold for significance

symbols predefined as b,c, d...; provides footnotes to mark group differences, e.g. b means different from group 2

Value

A list with method output of pairwise.t.test, matrix of p-values, and character vector with significance indicators.

```
pairwise_t_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
```

pairwise_wilcox_test 31

```
pairwise_wilcox_test Pairwise Wilcoxon tests
```

Description

pairwise_wilcox_test calculates pairwise comparisons on ordinal data between all group levels with corrections for multiple testing based on coin::wilcox_test from package 'coin'.

Usage

```
pairwise_wilcox_test(
  dep_var,
  indep_var,
  strat_var = NA,
  adjmethod = "fdr",
  distr = "exact",
  plevel = 0.05,
  symbols = letters[-1],
  sep = ""
)
```

Arguments

dep_var	dependent variable, containing the data.	
indep_var	independent variable, should be factor.	
strat_var	optional factor for stratification.	
adjmethod	method for adjusting p values (see p.adjust)	
distr	Computation of p-values, see coin::wilcox_test.	
plevel	threshold for significance.	
symbols	predefined as b,c, d; provides footnotes to mark group differences, e.g. means different from group 2.	b
sep	text between statistics and range or other elements.	

Value

A list with matrix of adjusted p-values and character vector with significance indicators.

```
pairwise_wilcox_test(dep_var = mtcars$wt, indep_var = mtcars$cyl)
```

pdf_kable

pdf_kable

Enhanced knitr::kable with latex

Description

pdf_kable formats tibbles/df's for markdown

Usage

```
pdf_kable(
    .input,
    width1 = 6,
    twidth = 14,
    tposition = "left",
    innercaption = NULL,
    caption = "",
    foot = NULL,
    escape = TRUE
)
```

Arguments

.input table to printwidth1 Width of 1st column, default 6.

twidth Default 14
tposition Default left
innercaption subheader
caption header
foot footnote

escape see knitr::kable

Value

A character vector of the table source code.

plot_LB 33

plot_LB

Lineweaver-Burk diagram

Description

plot_LB plots a Lineweaver-Burk diagram and computes the linear model

Usage

```
plot_LB(
   data,
   substrate,
   velocity,
   group = NULL,
   title = "Lineweaver-Burk-Plot",
   xlab = "1/substrate",
   ylab = "1/velocity"
)
```

Arguments

```
data structure with columns for model data substrate colname for substrate concentration velocity colname for reaction velocity group colname for optional grouping factor title title of the plot label of the abscissa ylab label of the ordinate
```

plot_MM

plot_MM

Michaelis-Menten enzyme kinetics model and plot

Description

plot_MM creates a Michaelis-Menten type Enzyme kinetics plot and returns model as well

Usage

```
plot_MM(
   data,
   substrate,
   velocity,
   group = NULL,
   title = "Michaelis-Menten",
   xlab = "substrate",
   ylab = "velocity"
)
```

Arguments

```
data structure with columns for model data substrate colname for substrate concentration velocity colname for reaction velocity group colname for optional grouping factor title title of the plot xlab label for x-axis ylab label for y-axis
```

Value

a list with elements "MMfit" and "MMplot"

print_kable 35

print_kable

Enhanced knitr::kable with definable number of rows and/or columns for splitting

Description

[Superseded]

package flextable is a more powerful alternative

print_kable formats and prints tibbles/df's in markdown with splitting into sub-tables with repeated caption and header.

Usage

```
print_kable(t, nrows = 30, caption = "", ncols = 100, ...)
```

Arguments

t table to print.

nrows number of rows (30) before splitting.

caption header.

ncols number of columns (100) before split

number of columns (100) before splitting.
... Further arguments passed to knitr::kable.

Value

No return value, called for side effects.

```
## Not run:
print_kable(mtcars, caption = "test")
## End(Not run)
```

36 roundR

roundR

Automatic rounding to a reasonable length, based on largest number

Description

roundR takes a vector or matrix of numbers and returns rounded values with selected precision and various formatting options.

Usage

```
roundR(
  roundin,
  level = 2,
  smooth = FALSE,
  textout = TRUE,
  drop0 = FALSE,
  .german = FALSE,
  .bigmark = FALSE
)
```

Arguments

roundin	A vector or matrix of numbers.
level	A number specifying number of relevant digits to keep.
smooth	A logical specifying if you want rounding before the dot (e.g. 12345 to 12300).
textout	A logical if output is converted to text.
drop0	A logical if trailing zeros should be dropped.
.german	A logical if german numbers should be reported.
.bigmark	A logical if big.mark is to be shown, mark itself depends on parameter .german.

Value

vector of type character (default) or numeric, depending on parameter textout.

```
roundR(1.23456, level = 3)
roundR(1.23456, level = 3, .german = TRUE)
roundR(1234.56, level = 2, smooth = TRUE)
```

SEM 37

SEM

Standard Error of Mean.

Description

SEM computes standard error of mean.

Usage

SEM(x)

Arguments

Χ

Data for computation.

Value

numeric vector with SEM.

Examples

```
SEM(x = mtcars$wt)
```

se_median

Compute standard error of median

Description

se_median is based on mad/square root(n) (Deprecated, please see medianse, which is the same but named more consistently)

Usage

```
se_median(x)
```

Arguments

Х

Data for computation.

Value

numeric vector with SE Median.

38 tab.search

Examples

```
# basic usage of se_median
## Not run:
se_median(x = mtcars$wt)
## End(Not run)
```

surprisal

Compute surprisal aka Shannon information from p-values

Description

surprisal takes p-values and returns s, a value representing the number of consecutive heads on a fair coin, that would be as surprising as the p-value

Usage

```
surprisal(p, precision = 1)
```

Arguments

p a vector of p-values

precision rounding level with default 1

Value

a character vector of s-values

tab.search

Search within data.frame or tibble

Description

tab. search searches for pattern within a data-frame or tibble, returning column(s) and row(s)

Usage

```
tab.search(searchdata = rawdata, pattern, find.all = T, names.only = FALSE)
```

Arguments

searchdata table to search in, predefined as rawdata pattern regex, for exact matches add ^findme\$

find.all return all row indices or only 1st per column,default=TRUE

names . only return only vector of colnames rather than list with names and rows, default=FALSE

t_var_test 39

Value

A list with numeric vectors for each column giving row numbers of matched elements

t_var_test

Independent sample t-test with test for equal variance

Description

t_var_test tests for equal variance based on var.test and calls t.test, setting the option var.equal accordingly.

Usage

```
t_var_test(data, formula, cutoff = 0.05)
```

Arguments

data Tibble or data_frame.

formula Formula object with dependent and independent variable.

cutoff is significance threshold for equal variances.

Value

A list from t.test

Examples

```
t_var_test(mtcars, wt ~ am)
# may be used in pipes:
mtcars |> t_var_test(wt ~ am)
```

var_coeff

Compute coefficient of variance.

Description

var_coeff computes relative variability as standard deviation/mean *100

Usage

```
var_coeff(x)
```

Arguments

Х

Data for computation.

40 WINratio

Value

numeric vector with coefficient of variance.

Examples

```
var_coeff(x = mtcars$wt)
```

WINratio Comparison for groups in clinical trials based on all possible combi-

nations of subjects

Description

[Experimental]

WINratio computes the ratio of wins and losses for any number of comparison rules.

Usage

```
WINratio(data, groupvar, testvars, rules, idvar = NULL, p_digits = 3)
```

Arguments

data name of data set (tibble/data.frame) to analyze.

groupvar name of grouping variable, has to translate to 2 groups.

testvars names of variables for sequential rules.

rules list of rules (minimal cut-offs) for sequential comparison, negative if reduction

is success, positive if increase is beneficial, must not be 0.

idvar name of identifier variable. If NULL, rownumber is used.

p_digits level for rounding p-value.

Value

A list with elements:

WINratio=vector with WINratio and CIs.

WINodds=odds ratio of wins and losses, taking ties into account,

p.value=p.value from prop.test,

WINratioCI=character with merged WINratio, CI, and p

testdata= tibble with testdata from cross-join.

Index

* datasets faketrial, 15 logrange_1, 21 bt, 3	<pre>logrange_1, 21 logrange_123456789 (logrange_1), 21 logrange_12357 (logrange_1), 21 logrange_15 (logrange_1), 21 logrange_5 (logrange_1), 21</pre>
<pre>cat_desc_stats, 3 cat_desc_table, 4 cn, 5 coin::cmh_test, 29 coin::lbl_test, 29 coin::wilcox_test, 31 ColSeeker, 6, 15 ColSeeker(), 15</pre>	<pre>mad, 25, 37 markSign, 22 meansd, 23 meanse, 24 median_cl_boot, 25, 26 median_cl_boot_gg, 26 median_quart, 26 medianse, 25, 37</pre>
compare2numvars, 7 compare2qualvars, 8 compare_n_numvars, 9 compare_n_qualvars, 11 cor.test, 12 cortestR, 12, 18 detect_outliers, 13 eGFR, 14	p.adjust, 28-31 pairwise.t.test, 30 pairwise_fisher_test, 11, 28 pairwise_ordcat_test, 29 pairwise_t_test, 30 pairwise_wilcox_test, 31 pdf_kable, 32 plot_LB, 33 plot_MM, 34 print_kable, 35
faketrial, 15 FindVars, 15	roundR, 36
fisher.test, 8, 11 flex2rmd, 16 formatP, 7, 9, 11, 17	se_median, 37 SEM, 37 surprisal, 38
ggcormat, 18 glm, 19 glmCI, 19 grep(), 16	t.test, 39 t_var_test, 7, 39 tab.search, 38 units, 15
knitr::kable, 32, 35 ks.test, 20 ksnormal, 20	var.test, 39 var_coeff, 39
label_outliers, 20	wilcox.test, 7 WINratio, 40