Manual for Package: physics Revision 1:7M

Karl Kästner

March 28, 2020

Contents

1	@Cons	stant	2
	1.1	Constant	2
	1.2	celsius_to_kelvin	2
	1.3	depth_to_pressure	2
	1.4	kelvin_to_celsius	2
	1.5		2
	1.6	pressure_to_depth	3
	1.7	saturation_vapor_pressure	3
	1.8		3
	1.9		3
	1.10		4
	1.11		4
	1.12		4
2	physic	s	4
	2.1		4
	2.2		4
	2.3		4
	2.4		4
	2.5		4
	2.6		4
3	hydrog	gen-spectrum	5
	3.1	hydrogen_spectrum_1d	5
	3.2		5
	3.3		5
	3.4		5
4	physic	${f s}$	5

4.1	minimum_cable_diameter	5
4.2	moment_of_inertia_rectangle	5
4.3	moment_of_inertia_ring	5
4.4	parabolic_reflector_gain	5
4.5	test_sound_absorption_air	5

1 @Constant

1.1 Constant

Constant and physical standard quantities

1.2 celsius_to_kelvin

convert temperature from degree Celsius to Kelvin function $t_K = celsius_to_kelvin(t_C)$

$1.3 \quad depth_to_pressure$

convert depth to pressure in fresh water at standard temperature

$$z = (p - p0)/(rho g)$$

=> $p = rho g z + p0$

input :

p0 : nx1 or scalar, pressure at water surface in BAR

d : depth in metre

output :

 ${\tt p}$: nx1, pressure at measurement depth in BAR

1.4 kelvin_to_celsius

convert temperature degree Kelvin to Celsius

1.5 optical_attenuation

1.6 pressure_to_depth

```
convert pressure to depth in fresh water at standard temperature z = (p - p0)/(rho*g) input: p : nx1, \; pressure \; at \; measurement \; depth \; in \; BAR p0 : nx1 \; or \; scalar, \; pressure \; at \; water \; surface \; in \; BAR output: d : \; depth \; in \; metre
```

1.7 saturation_vapor_pressure

1.8 sound_absorption_air

1.9 sound_absorption_water

```
sound absrobption in water
following Francois and Garrison, 1982

function alpha = sound_absorption(f,S,D,T)

input:
f : frequency (Hz)
S : salinity
D : depth (m)
T : temperature (degree C)

output:
alpha = sound attenuation in dB/m (not dB/km)

function alpha = sound_absorption(f,S,D,T,model)
```

1.10 sound_velocity_water

sound velocity in water following Lubbers and Graaff (1998) this formula does not include depth and salinity effects

- 1.11 viscosity_dynamic_water
- 1.12 viscosity_kinematic_water
- 2 physics
- 2.1 beam_bending_deflection
- ${\bf 2.2} \quad beam_bending_moment$
- 2.3 beam_bending_strain
- 2.4 beam_bending_stress
- 2.5 bolt_stress
- 2.6 drag_force

3	hydrogen-spectrum
3.1	$hydrogen_spectrum_1d$
3.2	$hydrogen_spectrum_2012_12_02$
3.3	$hydrogen_spectrum_2d$
3.4	$hydrogen_spectrum_3d$
4	physics
4.1	$minimum_cable_diameter$
4.2	$moment_of_inertia_rectangle$
4.3	$moment_of_inertia_ring$
4.4	parabolic_reflector_gain

 ${\bf 4.5 \quad test_sound_absorption_air}$