Capítulo 2

Práctica 2. Recurrencia.

2.1. Sucesiones predefinidas en maxima

Algunas sucesiones están predefinidas en maxima. Para usar las siguientes funciones es necesario cargar el paquete "functs"

arithmetic (a, d, n) Devuelve el n-ésimo término de la progresión aritmética $a, a+d, a+2d, \ldots, a+(n-1)d$.

geometric (a, r, n) Devuelve el n-ésimo término de la progresión geométrica $a, ar, ar^2, \ldots, ar^{n-1}$.

harmonic (a, b, c, n) Devuelve el n-ésimo término de la progresión armónica a/b, a/(b+c), a/(

arithsum (a, d, n) Devuelve la suma de la progresión aritmética hasta el n-ésimo término.

geosum (a, r, n) Devuelve la suma de la sucesión geométrica hasta el n-ésimo término. Si n es infinito (inf) la suma será finita sólo si el valor absoluto de r es menor que 1.

Para calcular los 10 primeros términos de geosum (sucesión cuyo elemento n-ésimo es la suma de los n primeros términos de una sucesión geométrica) cuando la razón de la sucesión geométrica es 1/4:

(%ixx) load(functs);

Warning - you are redefining the Maxima function lcm

(%oxx) /usr/share/maxima/5,20,1/share/simplification/functs.mac

(%ixx) makelist(geosum(1,1/4,i),i,1,10);

(%oxx) $[1, \frac{5}{4}, \frac{21}{16}, \frac{85}{64}, \frac{341}{256}, \frac{1365}{1024}, \frac{5461}{4096}, \frac{21845}{16384}, \frac{87381}{65536}, \frac{349525}{262144}]$

2.2. Recurrencia

Una sucesión está definida por recurrencia si la descripción de un término, a_n , viene dada como función de un número determinado de términos anteriores: $a_{n-1}, \ldots a_{n-t}$. Entonces tendremos una ecuación de la forma:

$$a[n] = f_1 * a[n-1] + \dots + f_t * a[n-t] + f_{t+1}$$

Si $f_{t+1} = 0$ decimos que es una relación de recurrencia homogénea.

Al número t le llamamos grado de la relación de recurrencia.

Si cada f_i es una constante, decimos que la relación de recurrencia tiene **coeficientes constantes**. Para que una sucesión dada por una relación de recurrencia de grado t esté completamente determinada es necesario dar t valores iniciales, es decir, t valores consecutivos de la sucesión, que nos permitan calcular el siguiente elemento utilizando la relación.

Un ejemplo típico de sucesión definida por recurrencia es la sucesión de Fibonacci:

$$a_n = a_{n-1} + a_{n-2}$$

 $a_0 = 0;$
 $a_1 = 1;$

que viene predefinida en maxima con estos valores iniciales.

Observamos que es una relación de recurrencia **homogénea**, de **grado 2** (por eso requiere 2 valores iniciales) y tiene **coeficientes constantes**.

```
(%ixx) fib(6);
(%oxx) 8

(%ixx) makelist(fib(i),i,0,10);
(%oxx) [0,1,1,2,3,5,8,13,21,34,55]
```

Podemos definir sucesiones por recurrencia en maxima. La siguiente es un ejemplo que tiene grado 1, es no homogénea y no tiene coeficientes constantes:

```
(%ixx) A0 : 4; /* valor inicial */
A [n] := if n > 0 then F (n)*A [n-1]+G(n) else A0; /* relación de grado 1 */
F (n) := n^2; /* no es de coeficientes constantes */
G (n) := 2*n+1; /* no es homogénea*/
```

Observamos que mientras que en la definición de F(n) usamos paréntesis, en la de A[n] se utilizan corchetes. Esto indica a maxima que tiene que memorizar los valores que ya han sido calculados para obtener el siguiente (se usa el término **memoizing** para referirse a este hecho en programación), es decir, que A es una función definida por recurrencia, mientras que F o G son funciones explícitas.

```
(%ixx) makelist(A[n],n,0,4);
(%oxx) [4,7,33,304,4873]
```

Ejercicio: Halla una relación de recurrencia que genere la siquiente sucesión:

$$\{1, 2, 5, 12, 29, 70, 169, \dots\}$$

y define la correspondiente función recursiva en maxima. Calcula los primeros 7 términos y comprueba que tu propuesta es acertada.

2.3. Resolución de relaciones de recurrencia

Una relación de recurrencia, o ecuación de recurrencia, es una igualdad en la que se relaciona un término de una sucesión a_n con algunos de los términos que lo preceden. Una solución de una relación de recurrencia es una sucesión que verifique dicha relación.

Maxima utiliza el paquete solve_rec para la resolución de ecuaciones de recurrencia. Supongamos que tenemos la relación

$$a_n = a_{n-1} + a_{n-2}$$

$$a_1 = 1$$

$$a_2 = 1$$

entonces ejecutamos:

```
(%ixx) load(solve_rec); (%oxx) /usr/share/maxima/5.20.1/share/contrib/solve_rec/solve_rec.mac (%ixx) solve\_rec(a[k]=a[k-1]+a[k-2], a[k], a[1]=1,a[2]=1);
```

(%oxx)
$$a[k] = \frac{(\sqrt{5}+1)^k}{\sqrt{5}2^k} - \frac{(\sqrt{5}-1)^k(-1)^k}{\sqrt{5}2^k}$$

también puede utilizarse para calcular una solución general, es decir, cuando no se fijan los valores iniciales

```
(%ixx) solve_rec(a[k]=c*a[k-1],a[k]); (%oxx) a[k] = \%k_1 * c^k
```

donde $\%k_1$ es un parámetro que puede ser determinado imponiendo condiciones iniciales. La que acabamos de obtener es la solución general para una relación de recurrencia de grado 1, homogénea y con coeficientes constantes.

Ejercicio: Halla la solución para la relación de recurrencia que has propuesto en el ejercicio de la sección anterior, con las condiciones iniciales correspondientes.

Ejercicios: Decide si son lineales, homogéneas y de coeficientes constantes las siguientes relaciones. Resuelvelas con los valores iniciales que se proporcionan

```
1. a_n = 2na_{n-1}; a_1 = 1;

2. a_n = 7a_{n-2} - 6a_{n-3}; a_1 = 0; a_2 = 1; a_3 = 1

3. a_n = 2na_{n-1}; a_1 = 1
```

Ejercicio: A continuación obtenemos las soluciones de otros tipos de relaciones con coeficientes constantes. Decide de qué tipo son. (%ixx) solve_rec(a[k]=c*a[k-1]+b,a[k]);

```
(%ixx) solve_rec(a[k]=c*a[k-2]+b*a[k-1], a[k]);
(%ixx) solve_rec(a[k]=c*a[k-2]+b*a[k-1]+d, a[k]);
(%ixx) solve_rec(a[k]=k*a[k-1], a[k]);
(%ixx) solve_rec(a[k]=a[k-1]+(k-1), a[k]);
(%ixx) solve_rec(a[k]*a[k-1]=c, a[k]);
(%ixx) solve_rec(a[k]=a[k-1]*a[k-2], a[k]);
```

Ejercicio: Para las relaciones anteriores que sean lineales y homogéneas, calcula el polinomio asociado, las raíces de éste (usa el comando solve) y observa la relación entre estas raíces y la solución general.