6.3. Diccionario de datos

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

Diccionario de datos (DD)

- "Es un conjunto de información (datos) sobre datos"
- Objetivos del DD:
 - Glosario de términos
 - Establecer terminología estándar
 - Proporcionar referencias cruzadas
 - Proporcionar control centralizado para cambios
- Evolución histórica: desde el directorio/diccionario de datos hasta el diccionario de recursos de información

Posibles elementos para definir en el DD

- Flujos de datos
- Procesos
- Ficheros
- Entidades externas
- Estructuras de datos
- Datos elementales
- Cualquier otra cosa que el analista considere conveniente

Mínimo necesario

Información requerida para cada elemento del DD

- Nombre
- Tipo de elemento
- Breve descripción
- Sinónimos
- Observaciones

Mínimo necesario

Información requerida para cada elemento del DD (II)

- Frecuencias y fechas
- Volúmenes (Ks estimadas, nº líneas impresas, etc.)
- Cuellos de botella, valores máximos y mínimos (tablas, ficheros, impresos, entradas de datos)
- Referencia o código de impreso
- Rango de valores permitido y clase (numérico, alfanumérico, etc.)
- Miniespecificaciones (sólo procesos)
- Referencias cruzadas
- Usuarios afectados
- Cualquier otra información que se considere de interés

Soporte del DD

- Manual
- Editor/procesador de textos
- Base de datos
- Automático e integrado (sw. específico)

Descomposición top-down de datos

```
A = B + C
B = B1 + B2 + B3
C = C1 + C2
A, B, C, B1, B2, B3, C1, C2
todos están definidos en el DD
```

- Ejemplos de descomposición:
 - Ficheros en "subficheros" o registros
 - Procesos en subprocesos
 - Flujos en "subflujos"
 - Estructuras de datos en datos elementales

Operadores relacionales

- = "=" es equivalente a
- "+" y
- "<>" o (inclusivo: al menos una de las opciones)
- "[]", "|" o (exclusivo: sólo una de las opciones)
- "1{ }N" iteraciones entre 1 y N veces del término entre llaves
- "()" opcional

Operadores relacionales (II)

- Actualmente (Yourdon 93) "<>" no se usa (en System Architect tampoco)
- Se utiliza "[]", "|" con combinaciones de "()" y "+"
- Ejemplos:

```
direccion-cliente = <direccion-envio, direccion-facturacion>
```

- * se puede expresar como *
- dirección-cliente = [direccion-envio | direccion-facturacion | direccion-envio + direccion-facturacion]
- * si se admite que direccion-cliente esté vacio *
- direccion-cliente = (direccion-envio) + (direccion-facturacion)

Operadores relacionales (III)

- "*...*" comentario
- identificador de campo clave en un almacén (también, alternativamente, se puede subrayar la clave)
- Ejemplos:

```
Solicitud-destino = @n°ascensor + (n°planta)
= n°ascensor + (n°planta)
```

* ambas definiciones son equivalentes *

Ejemplos DD

```
pedido = cupon-correos + (pago-previo)
etiqueta = 1{carácter}8
n°-de-telefono =
      *cualquier secuencia correcta de dígitos que
           provoca una llamada *
     [extension-local | 9 + numero-exterior]
extension-local = * sólo dentro del edificio *
     primer-digito + 3{ cualquier-digito}3
primer-digito = [1|2|3|4|5|6|7]
cualquier-digito = [0|1|2|3|4|5|6|7|8|9]
```

¿Hasta cuándo especificar?

- El proceso de descomposición finaliza en los términos autocontenidos
- Ejemplo
 - persona = apellidos + nombre + noss + edad
 - ĕ "edad" es autocontenido?
 - edad = $1{digito}2$

Sinónimos

Origen:

- Distintos usuarios dan distintos nombres a los mismos objetos
- El analista introduce, **por error**, un nombre distinto para un objeto ya nombrado
- Distintos analistas que trabajan en el mismo proyecto dan nombres distintos a un mismo objeto
- Los sinónimos deben evitarse siempre que sea posible

Ejemplos DD (II)

Nombre: hoja-verde

Sinónimos: petición, solicitud

Tipo: sinónimo

Observaciones:

Nombre: estado

Sinónimos: estado-cliente, EST\$

Tipo: elemento de datos

Valores y significado:

OK.- Cuenta en buen estado

C.- Cuenta cerrada

D.- Cuenta en "números rojos" * cliente moroso *

Observaciones:

Ejemplos DD (III)

```
Nombre: peticion
Sinónimos: solicitud, hoja-verde
Tipo: flujo de datos
Composición: [peticion-estado-cliente | peticion-stock | peticion-estado-de-un-
pedido | petición-de-materia-prima]
Pertenece a: * ninguno *
Observaciones:
```

```
Nombre: Contabilidad de proyectos
Sinónimos: Cuentas
Tipo: fichero
Composición: { @n°-de-proyecto + descripción-proyecto + cuenta-delgabinete + { nombre-del-empleado + fecha-ingreso } }
Organización: * secuencial, por número de proyecto *
Observaciones:
```

Elementos y estructuras de datos

- Son la base sobre la que se definen los flujos de datos, los almacenes y las entidades del diagrama E/R.
- Un elemento de datos es una pieza de información atómica.
- Una estructura de datos es un registro, compuesto por otras estructuras o elementos de datos.

Ejemplos DD (IV)

```
(Flujo de datos) "Libros prestados" =
               [ "Libros entregados" |
                    "Libros devueltos" ]
donde "Libros entregados" y "Libros
  devueltos" son estructuras de datos.
"Libros entregados" = {ISBN + Copia-ID }
"Libros devueltos" = { ISBN + Copia-ID }
donde ISBN y Copia-ID son elementos de datos
```

6.4. Modelado de la lógica de los procesos

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

Miniespecificaciones (ME)

- Proceso primitivo ⇒ miniespecificación
- La ME describe las reglas sobre cómo realizar el proceso para transformar las entradas en salidas
- La ME indica el proceso a realizar, la transformación de datos, no el algoritmo (que se selecciona en el proceso de diseño)

Herramientas para describir la lógica de los procesos

- Lenguaje estructurado
- Tablas de decisión
- Árboles de decisión
- Pre y post-condiciones(son alternativas no excluyentes)

Lenguaje estructurado

- Vocabulario (restringido) de una lengua (español, inglés, etc.)
 - Verbos imperativos
 - Términos definidos en el DD
 - Palabras reservadas para formulación lógica (mayúsculas)
- Sintaxis de la programación estructurada

Lenguaje estructurado (II)

- Los objetos de una ME (sujetos de las sentencias) serán términos del DD o bien términos locales
- Los términos locales se definen explícitamente dentro de una ME, y son conocidos, relevantes y significativos sólo dentro de esa ME (por tanto, no es imprescindible su inclusión en el DD)
- Ejemplo:
 variables utilizadas para cálculos intermedios, como sumas parciales, dentro de un proceso.

Lenguaje estructurado -Sintaxis

- Sentencia declarativa simple (secuencia)
- Estructura de decisión
- Estructura de repetición
- Combinaciones de las estructuras anteriores

Sentencias declarativas

- Concisión
- Evitar verbos ambiguos (manejar, realizar, procesar, etc.)
- Utilizar verbos precisos que describan acciones concretas (imprimir, enviar, acumular...)
- Mencionar expresamente el objeto de la sentencia, preferiblemente utilizando los términos del DD
- Ejemplos:
 - Recoger INF-CLIENTE
 - Separar PETICION
 - Archivar PETICION en F-PETICION *fichero*
 - Enviar DATOS-CLIENTE a DPTO-CLIENTES

Estructura de decisión

```
SI Condición
                               CASO Condición: Acción (es)
          Acción(es)
SINO
          Acción(es)
Ejemplos:
 a) SI Valor-capital-actual es menor que 600€
      Asignar Cantidad-depreciada = Valor-capital-actual = 0
 SINO
      Asignar Cantidad-depreciada = 10% de Valor-capital-actual
 b) Seleccionar la política que se aplica:
 Caso 1: (Costo-de-pedido > 1000€) :
      enviar por avión
 Caso 2: (Costo-de-pedido entre 100€ y 1000€):
      enviar por correo urgente
 Caso 1: (Costo-de-pedido < 100€) :
      enviar por correo normal
```

Estructura repetitiva

REPETIR (condición de selección)
Acción(es)
HASTA (condición de terminación)
MIENTRAS (condición)
Acción(es)
FIN MIENTRAS

Ejemplo:

REPETIR para cada registro-de-pasajero en fichero-de-reservas Acumular Cantidad-debida en Total Construir registro Nuevo-débito Escribir Nuevo-débito en el diario HASTA final de fichero-de-reservas

Estructura repetitiva (II)

a) PARA CADA cliente en fichero-cuentas

Acceder al registro de cuenta del fichero-cuentas

Si estado-cuenta es moroso y balance < 10

Poner estado-cuenta en pendiente

Acumular balance-cuenta en total-pendiente

Asignar a fecha-última-transacción la fecha de hoy

b)

REPETIR para cada cliente en fichero-cuentas

Acceder al registro de cuenta del fichero-cuentas Si estado-cuenta es moroso y balance < 10

Poner estado-cuenta en pendiente

Acumular balance-cuenta en total-pendiente

Asignar a fecha-última-transacción la fecha de hoy

HASTA que no haya más clientes

Lenguaje estructurado - Observaciones

- Utilizar "funciones" o "subrutinas"
- Subrayar los términos del DD o usar con mayúsculas
 - en SA, usar comillas
- Evitar sentencias largas e imprecisas
- Usar indentación o notación de bloque
- Usar paréntesis para las combinaciones de condiciones lógicas (and, or, not)

Lenguaje estructurado. Ejemplos (I) (Yourdon 93) Apéndice F

PROCESO 3.1: PRODUCIR RECIBOS EFECTIVO

COMIENZA

efectivo-recolectado = 0

MIENTRAS haya más registros en **DINERO**

LEER siguiente registro en **DINERO**

ENVIAR dinero *en (Yourdon 93) pone "DESPLEGAR"*

efectivo-recolectado = efectivo-recolectado + cantidad-dinero

FIN-MIENTRAS

reporte-efectivo = efectivo-recolectado

ENVIAR reporte-efectivo

TERMINA

Lenguaje estructurado. Ejemplos (II) (Yourdon 93) Apéndice F

Lenguaje estructurado. Ejemplos (III) (Yourdon 93) Apéndice F

PROCESO 3.2: PRODUCIR REPORTE DIARIO VENTAS

COMIENZA

total-diario = 0

MIENTRAS haya más **pedido** en **PEDIDOS** con **fecha-pedido**= fecha actual

LEER siguiente **pedido** con **fecha-pedido** = fecha actual

SUMAR numero-factura, nombre-cliente, nombre-compañía, pedido-total como nuevo renglón en reporte-diario- ventas

SUMAR total-pedidos a total-diario

FIN_MIENTRAS

SUMAR total-diario como nuevo renglón en reporte-diario-ventas

ENVIAR reporte-diario-ventas

TERMINA

Lenguaje estructurado. Ejemplos (IV) (Yourdon 93) Apéndice F

PROCESO 3.3: PRODUCIR REPORTE MENSUAL VENTAS

COMIENZA

total-ventas = 0

total-devoluciones = 0

total-créditos = 0

MIENTRAS haya más **pedido** en **PEDIDOS** con **fecha-pedido** de este mes SUMAR **total-pedidos** a **total-ventas**

FIN_MIENTRAS

MIENTRAS haya más **devolución** en **DEVOLUCIONES** con **fecha-devolución** de este mes

SUMAR valor-devolución a total-devoluciones

FIN_MIENTRAS

MIENTRAS haya más **crédito** en **CREDITOS** con **fecha-crédito** de este mes SUMAR **monto-de-crédito** a **total-créditos**

FIN_MIENTRAS

reporte-mensual-ventas = total-ventas, total-devoluciones, total-créditos ENVIAR reporte-mensual-ventas
TERMINA

Lenguaje estructurado. Ejemplos (V) (Yourdon 93) Apéndice F

Lenguaje estructurado. Ejemplos (VI) (Yourdon 93) Apéndice F

PROCESO 4.4: PROCESAR FACTURA IMPRENTA

COMIENZA

ENCONTRAR **libro** en **LIBROS** con **clave-libro** que corresponda con **clave-libro** en **fact-imprenta** SI no se encuentra registro

respuesta-fact-imprenta = "No existen pedidos pendientes para este libro" ENVIAR respuesta-fact-imprenta

OTRO

ENVIAR factura-imprenta (a administración para su aprobación)

ACEPTAR autorización-factura-imprenta

SI autorización-factura-imprenta = "NO"

respuesta-fact-imprenta = "Factura rechazada; comuníquese con la administración para discutirlo" ENVIAR **respuesta-fact-imprenta**

OTRO

respuesta-factura-imprenta = "Factura aceptada"

ENVIAR respuesta-factura-imprenta

factura-imprenta-aprobada = fact-imprenta

ENVIAR factura-imprenta-aprobada

FIN SI

FIN_SI

TERMINA

Lenguaje estructurado. Ejemplos (VII) (Yourdon 93) Apéndice F

PROCESO 6.1: PRODUCIR ETIQUETAS ENVIO

COMIENZA

ORDENAR CLIENTES por código-postal en etiquetas-envío

ENVIAR etiquetas-envío

TERMINA

Tablas de decisión

Se han desarrollado procesadores de tablas de decisión que generan automáticamente el código del proceso correspondiente.

Autorización de tarjeta de credito	1	2	3
Valor de la compra p	p > 100€	50€ < p < 100€	0< p < 50€
Autorizar automáticamente			X
Asignar autorización	Х	X	

Árboles de decisión

Comparativa

Uso	AD	TD	Lenguaje estructurado	Lenguaje narrado simplificado
Verificación Iógica	Moderada	Muy buena	Buena	Moderada
Visualización de la estructura lógica	Muy buena (pero sólo decisiones)	Moderada (sólo decisiones)	Buena (para todo)	Moderada (para todo, pero depende del autor)
Simplicidad	Muy buena	Muy pobre	Moderada	Buena
Validación por el usuario	Buena	Pobre (si el usuario no está formado en TD)	Pobre- Moderada	Buena
Especificación de programa	Moderada	Muy buena	Muy buena	Moderada
Editable por la máquina	Pobre	Muy buena	Moderada (necesita sintaxis)	Pobre
Cambios	Moderada	Pobre	Buena	Buena

Pre y post-condiciones (Yourdon 93)

- Útiles para representar la acción a realizar sin entrar en los detalles del algoritmo
- Particularmente útiles cuando:
 - El usuario tiene tendencia a describir el proceso en términos de un algoritmo particular
 - El analista está razonablemente seguro de que existen muchos algoritmos alternativos
 - El analista desea que el diseñador/programador explore varios algoritmos, pero no quiere enredarse con el usuario en discusiones acerca del mérito relativo de cada uno

Precondiciones

- Entradas disponibles
 - "Ilega el dato X" * en (Yourdon 93) pone "ocurre" *
- Relaciones entre las entradas
 - "Ilegan detalles de pedido y detalles de envío con el mismo número de cuenta"
 - "Ilega un pedido con fecha de entrega de más de 60 días"
- Relaciones entre entradas y almacenes
 - "hay un pedido-de-cliente con número-de-cta-de-cliente que corresponde con un número-de-cta-de-cliente del almacén de clientes"
- Relaciones entre almacenes distintos (o dentro del mismo almacén)
 - "hay un pedido en el almacén de pedidos cuyo número-de-cta-delcliente corresponde con un número-de-cta-del-cliente en el almacén de clientes"
 - "existe un pedido en el almacén de pedidos con fecha-de-envío igual a la fecha actual"

Post-condiciones

- Salidas producidas
 - "se producirá una factura"
- Relaciones entre entradas y salidas
 - "la factura-total se calcula como suma de precios-unitariosde-artículos más costos-de-envío"
- Relaciones entre salidas y almacenes
 - "el balance-actual en el almacén INVENTARIO se incrementará con cantidad-recibida, y el nuevo balanceactual se producirá como salida de este proceso"
- Cambios en los almacenes
 - "el pedido se anexará al almacén de PEDIDOS"
 - "el registro de clientes se eliminará del almacén de clientes"

Pre y post-condiciones Ejemplos (Yourdon 93)

- ESPECIFICACIÓN DE PROCESO 3.5: CALCULAR EL IMPUESTO SOBRE VENTAS
 - Precondición 1
 - Llega DATOS-VENTA con TIPO-ITEM que corresponde con CATEGORÍA-ITEM en CATEGORÍAS-IMPUESTO
 - Postcondición 1
 - IMPUESTO-SOBRE-VENTA se hace igual a MONTO-VENTA *
 IMPUESTO
 - Precondición 2
 - Llega DATOS-VENTA con TIPO-ITEM que no concuerda con CATEGORÍA-ITEM en CATEGORÍAS-IMPUESTO
 - Postcondición 2
 - Se genera mensaje de error

Pre y post-condiciones Ejemplos (II) (Yourdon 93)

Precondición 1

El comprador llega con un número-de-cta que corresponde con un número de cuenta en CUENTAS, cuyo código-de-status es "válido"

Postcondición 1

Se produce una factura con número-de-cuenta y monto-deventa

Precondición 2

 La precondición 1 falla por algún motivo (el número-de-cta no se encuentra en CUENTAS, o el código-de-status no es "válido")

Postcondición 2

Se produce un mensaje de error

ME - Otras técnicas

- Grafos y diagramas propios del usuario
 - Si son claros, se pueden agregar a la especificación como redundantes.
- Diagramas Nassi-Shneiderman

- Flowcharts
- Lenguaje narrativo

No recomendadas

Sirve para descripción breve

6.5 Modelado de datos

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

Objetivo

- Obtener una representación de la información del sistema independiente de aplicaciones y dispositivos físicos
 - ⇒ Facilitar cambios en los requisitos, SGBD, equipos físicos
- Con el análisis estructurado moderno de Yourdon el modelado de datos cobra la misma importancia que el modelado de procesos.
- Técnicas de modelado de datos en AE:
 - E/R ← *RECOMENDADO*
 - DED (Diagramas de Estructura de Datos)

Representa esquemas relacionales, jerárquicos, CODASYL

DED

 BD lógica, no simplificada ni optimizada, a efectos de validación por el usuario (esta especificación pasaría al implementador de la BD)

BD optimizada y normalizada, lista para ser implementada físicamente

DED (II)

- "E/R limitado"
 - Sólo interrelaciones de grado 2
 - Ternarias: descomponer
 - Cardinalidad sólo 1:N

- Otras cardinalidades:
- Cardinalidad 1:1
 - Agrupar las dos entidades
 - Conservar las dos entidades, con una interrelación en cualquier sentido
- Cardinalidad M:N
 - Entidad auxiliar con dos relaciones 1:N

DED. Ejemplo

DED. Interrelaciones

- Interrelaciones OPCIONALES
 - Interrelación opcional en el extremo B y obligatoria en el A

"∀ ocurrencia de A pueden ∃ o no una o varias ocurrencias de B, y para cada ocurrencia de B existe una ocurrencia de A asociada"

DED. Interrelaciones (II)

- Interrelaciones EXCLUSIVAS
 - Dos o más interrelaciones entre varias entidades son exclusivas si la existencia de una implica la no existencia de la otra
 - P.ej. En la CARM...

6.6. Historia de vida de las entidades

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

HVE. Bibliografía

Para todo este apartado:

Guía de técnicas de Métrica v.2.1.
Ministerio de Administraciones Públicas.
1996.

(HVE no es mencionada en Métrica 3)

HVE

- Describe la posible evolución de las entidades de datos del sistema
- VISIÓN DEL COMPORTAMIENTO, que complementa:
 - Visión estática (E/R o DED)
 - Visión de procesos y flujos (funcional) (DFDs)
- HVE se basa en entidades de datos (identificadas en DED), y transacciones o eventos (de los DFDs)
- Deben ser coherentes HVE, DED, DFD

HVE. Objetivos

- Registrar la secuencia de los cambios de las entidades en el tiempo
 - Determinar los estados posibles
 - Determinar los cambios de estado
 - Identificar interacciones producidas por eventos

HVE

- (En principio) existe una HVE por cada entidad del sistema
 - ■¿Realmente es necesario?
- HVE describe la "sucesión de eventos" que afectan a dicha entidad, cuyos efectos pueden ser:
 - Crear/dar de baja a la entidad
 - Modificar sus atributos

HVE. Elementos

- Entidades de datos
 - Cualquier objeto sobre el que el sistema guarda información (tienen atributos)
- Eventos
 - Sucesos que activan un proceso que afecta los datos del sistema
- Efectos
 - Resultado de la acción de un evento sobre una entidad

- Nodo
 - Agrupación de eventos en una caja
- Cajas vacías
 - Representan el caso en que ningún evento afecta a la entidad

Eventos

- EXTERNOS. Por activación externa
 - ej. solicitudes de alta, baja, modificación, etc.
- PERIÓDICOS. Activación dependiente del tiempo (automáticos) sin estímulo externo
 - ej. "back up" periódico
- TRIGGERING. Activados internamente por cumplimiento de determinadas condiciones
 - ej. alarma activada

Efectos

- Un evento puede tener distintos efectos sobre entidades diferentes.
 - Ej.: SOLICITAR APERTURA CTA. BANCARIA
 - Crea (o actualiza) entidad CLIENTE
 - Crea entidad CUENTA
- Un evento puede tener efectos distintos sobre ocurrencias de una misma entidad.
 - Ej.: entidad CUENTA; ev. REALIZAR TRANSFERENCIA
 - Efectos: para una ocurrencia: HACER APUNTE EN EL DEBE
 - Para la otra ocurrencia: HACER APUNTE EN EL HABER

Efectos (II)

- Tipos de efectos:
 - ■I: insertar
 - M: modificar
 - B: borrar

Nodo

Es una abstracción gráfica que mejora la legibilidad.

"Entidad" es un nodo que agrupa todos los eventos que le afectan

HVE. Notación (MAP 95)

HVE. Notación (II) (MAP 95)

También se pueden poner saltos: R Q (En general, RX QX)

HVE. Ejemplo (MAP 95)

HVE. Construcción

- 1. IDENTIFICAR EVENTOS
 - En el DFD anterior...
 - -E1: SOLICITUD DE RESERVA
 - -E2: SOLICITUD DE RESERVA EFECTUADA POR CLIENTE NUEVO
 - -E3: CONFIRMACIÓN DE RESERVA
 - –E4: ASIGNACIÓN DE UN CONDUCTOR A LA RESERVA
 - ⇒ ¿Se te ocurren más eventos?

HVE. Construcción (II) (MAP 95)

2. CONSTRUIR MATRIZ ENTIDAD/ EVENTO

I: Insertar

M: Modificar

B: Borrar

		EVENTOS				
S		E1	E2	E3	E4	
IDADES	CLIENTE		I			
	RESERVA			M	M	
ENT	CONDUCTOR	M				

HVE. Construcción (III) (MAP 95)

3. CONSTRUIR HVE INICIALES PARA TODAS LAS ENTIDADES

HVE. Construcción (IV) (MAP 95)

- 4. REFINAMIENTO DE LAS HVE
 - NUEVO EVENTO
 - E5: ENVÍO DE FACTURA

HVE. Construcción (V) (MAP 95)

- 4. REFINAMIENTO DE LAS HVE
 - NUEVO EVENTO
 - E6: PETICIÓN DE CAMBIO

HVE. Construcción (VI) (MAP 95)

5. AÑADIR INDICADORES DE ESTADO

Modo de construcción

Para cada entidad, en principio, debe haber un HVE

Empezar por las entidades detalle

Y al final...
examinar los
efectos de los
eventos del
maestro en
los detalles

HVE. Relaciones con otras técnicas

- Asegurar coherencia "vista evolutiva" (dinámica o de comportamiento) (HVE) con
 - Vista estática o de datos (E/R o DED)
 - Vista funcional (DFD)
- Para ello, comprobar:
 - DFD: para cada evento en el HVE, existe un proceso en los DFDs del sistema que lo trata
 - E/R o DED: el modelo de datos permite reflejar las repercusiones que la actuación de un evento sobre una entidad tiene sobre otras entidades del sistema