12-17-99

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Atty. Dkt. No.: MOBT:175-2

Prior Application Examiner:

E. Slobodyansky

Classification Designation:

Prior Group Art Unit: 1652

CERTIFICATE OF EXPRESS MAILING

NUMBER EL392860338US

DATE OF DEPOSIT December 15, 1999
I hereby certify that this paper or fee is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents,

Washington, DC 20231.

Signature

BOX PATENT APPLICATION

Assistant Commissioner for Patents

Washington, D.C. 20231

REQUEST FOR FILING DIVISIONAL APPLICATION UNDER 37 C.F.R. § 1.53(b)

This is a request for filing a divisional application under Rule 53(b) (37 C.F.R. § 1.53(b)) of co-pending prior application Serial No. 09/137,440 filed August 20, 1998, entitled "GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE

SYNTHASES."

1. Enclosed is a copy of the prior application Serial No. 09/137,440 as originally filed, including specification, claims, drawings, and declaration. The undersigned hereby verifies that the attached papers are a true copy of the prior application as originally filed and identified above, that no amendments (if any) referred to in the declaration filed to complete the prior application introduced new matter therein, and further that this statement was made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or

both, under Section 1001 of Title 18 of the United States Code, and that such willful false statement may jeopardize the validity of the application or any patent issuing thereon.

- (a) The inventorship is the same as prior Application Serial No. 09/137.440.
- Enclosed is a check in the amount of \$838.00 to cover the filing fee as calculated below and the fee for any new claims added in the Preliminary Amendment referred to in Clause No. 7 below.

CLAIMS AS FILED IN THE PRIOR APPLICATION LESS CLAIMS CANCELED BELOW

FOR	NUMBER FILED	NUMBER EXTRA	RATE	FEE
Basic Fee				\$760.00
Total Claims Independent	8 - 20 = 4 - 3 =	0 X 1 X	\$18.00 = \$78.00 =	\$ 0.00 \$ 78.00
Claims Multiple Depend	lent Claim(s)			\$ -000
		TOTAL FILIN	G FEES:	\$838.00

- 3. If the check is missing or insufficient, the Assistant Commissioner is hereby authorized to charge any fees under 37 C.F.R. §§ 1.16 to 1.21 which may be required for any reason relating to this application, or credit any overpayment to Arnold White & Durkee Deposit Account No. 01-2508/MOBT:175-2/PAT.
- A. Enclosed is a copy of the current Power of Attorney in the prior application.

 \boxtimes

5. Address all future communications to:

Elizabeth Graf ARNOLD WHITE & DURKEE 750 Bering Drive Houston, Texas 77057-2198 (713) 787-1400

- The prior application is presently assigned to Monsanto Company.
- 7. Enclosed is a preliminary amendment. Any additional fees incurred by this amendment are included in the check at No. 2 above and said fee has been calculated after calculation of claims and after amendment of claims by the preliminary amendment.
 - Amend the specification by inserting before the first line the sentence: --This is a divisional of co-pending application Serial No. 09/137,440 filed August 20, 1998--.
- 9. Enclosed are formal drawings.
 - Transfer the sequence information, including the computer readable form previously submitted in the parent application, Serial No. 09/137,440 filed August 20, 1998, for use in this application. Under 37 C.F.R. § 1.821(e), Applicant states that the paper copy of the sequence listing in this application is identical to the computer readable copy in parent application Serial No. 09/137,440 filed August 20, 1998.

 Under 37 C.F.R. § 1.821(f), Applicant also states that the information recorded in computer readable form is identical to the written sequence listing.

11. Return Receipt Postcard (should be specifically itemized).

Respectfully submitted,

Christopher J. Buntel, Ph.D. Reg. No. 44,573

AGENT FOR ASSIGNEE, MONSANTO COMPANY

ARNOLD, WHITE & DURKEE P.O. Box 4433 Houston, Texas 77210-4433 (713) 787-1400

Date: December 16, 1999

 \boxtimes

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Gerard F. Barry et al.

Serial No.: To be Assigned

Filed: December 16, 1999

For: GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASES Group Art Unit: To be Assigned

Examiner: To be Assigned

Atty. Dkt. No.: MOBT:175-2/PAT

PRELIMINARY AMENDMENT

CERTIFICATE OF EXPRESS MAIL NUMBER EL392860338US

DATE OF DEPOSIT December 16, 1999

Assistant Commissioner for Patents | I her State

Washington, D.C. 20231

I hereby certify that this paper or fee is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Washington, D. C. 20231.

maria L. alvax

Sir:

Please amend this application as follows:

In The Specification

At page 2, line 1, insert the following:

--This is a divisional of co-pending application Serial No. 09/137,440, filed August 20,

1998 ---

In the Claims

Cancel claims 1-100, without prejudice.

Please add the following new claims:

- --101. (Added) An antibody immunoreactive with a 5-enolpyruvylshikimate-3-phosphate synthase enzyme, the enzyme comprising the sequence domains:
 - -R-X₁-H-X₂-E- (SEQ ID NO:37), in which

X₁ is G, S, T, C, Y, N, Q, D or E;

X2 is S or T; and

-G-D-K-X₃- (SEQ ID NO:38), in which

X₃ is S or T; and

-S-A-O-X₄-K- (SEO ID NO:39), in which

X₄ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and

-N-X5-T-R-(SEQ ID NO:40), in which

X5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V.

- 102. (Added) The antibody of claim 101, wherein X₁ is D or N; X₂ is S or T; X₃ is S or T; X₄ is V, I or L; and X₅ is P or Q.
- 103. (Added) The antibody of claim 101, wherein the enzyme comprises SEQ ID NO:3.
- 104. (Added) The antibody of claim 101, further defined as a polyclonal antibody.
- 105. (Added) The antibody of claim 101, further defined as a monoclonal antibody.
- 106. (Added) A method of detecting a 5-enolpyruvylshikimate-3-phosphate synthase enzyme in a sample, the method comprising:

selecting a sample suspected of containing a 5-enolpyruvylshikimate-3-phosphate synthase enzyme;

contacting the sample with an antibody to form an enzyme-antibody complex; and detecting the presence of the enzyme-antibody complex; wherein the antibody is immunoreactive with SEO ID NO:3.

107. (Added) A method of detecting a 5-enolpyruvylshikimate-3-phosphate synthase enzyme in plant cells or plant tissue, the method comprising: selecting plant cells or plant tissue suspected of containing a 5-enolpyruvylshikimate-3phosphate synthase enzyme;

preparing a sample from the plant cells or plant tissue;

contacting the sample with an antibody to form an enzyme-antibody complex; and detecting the presence of the enzyme-antibody complex; wherein the antibody is immunoreactive with SEQ ID NO:3.

108. (Added) A kit for the detection of a 5-enolpyruvylshikimate-3-phosphate synthase enzyme in a sample, the kit comprising:

a container comprising an antibody immunoreactive with SEQ ID NO:3; and a detection agent.--

REMARKS

Claims 1-100 were initially filed in the parent case, application Serial No. 09/137,440 and thus have been canceled from this divisional application. The parent application was allowed on November 23, 1999 but has not yet issued.

The active claims in this case are claims 101-108. Added claims 101-108 correspond to cancelled claims 104-111 in the parent case. No new matter is introduced by the addition of claims 101-108.

The specification has been amended to recite the relationship with the parent case, namely that it is a divisional application.

It is believed that no fee is due; however, should any fees under 37 C.F.R. §§ 1.16 to 1.21 be required for any reason, the Assistant Commissioner is authorized to deduct said fees from Arnold White & Durkee Deposit Account No. 01-2508/MOBT:175-2/PAT.

Respectfully submitted,

Christopher J. Buntel, Ph.D.

Reg. No. 44,573 Agent for Assignee, Monsanto Company

ARNOLD, WHITE & DURKEE P.O. Box 4433 Houston, Texas 77210-4433 (713) 787-1400

Date: December 16, 1999

PATENT 38-21(10660)A

GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASES

This is a continuation-in-part of a copending U.S. patent application serial number 07/749,611, filed August 28, 1991 which is a continuation-in-part of U.S. patent application serial number 07/576,537, filed August 31, 1990, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates in general to plant molecular biology and, more particularly, to a new class of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases.

Recent advances in genetic engineering have provided the requisite tools to transform plants to contain foreign genes. It is now possible to produce plants which have unique characteristics of agronomic importance. Certainly, one such advantageous trait is more cost effective, environmentally compatible weed control via herbicide tolerance. Herbicide-tolerant plants may reduce the need for tillage to control weeds thereby effectively reducing soil erosion.

One herbicide which is the subject of much investigation in this regard is N-phosphonomethylglycine commonly referred to as glyphosate. Glyphosate inhibits the shikimic acid pathway which leads to the biosynthesis of aromatic compounds including amino acids, plant hormones and vitamins. Specifically, glyphosate curbs the conversion of phosphoenolpyruvic acid (PEP) and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (hereinafter

referred to as EPSP synthase or EPSPS). For purposes of the present invention, the term "glyphosate" should be considered to include any herbicidally effective form of N-phosphonomethylglycine (including any salt thereof) and other forms which result in the production of the glyphosate anion in planta.

It has been shown that glyphosate-tolerant plants can be produced by inserting into the genome of the plant the capacity to produce a higher level of EPSP synthase in the chloroplast of the cell (Shah et al., 1986) which enzyme is preferably glyphosate-tolerant (Kishore et al. 1988). Variants of the wildtype EPSPS enzyme have been isolated which are glyphosate-tolerant as a result of alterations in the EPSPS amino acid coding sequence (Kishore and Shah. 1988: Schulz et al., 1984: Sost et al., 1984: Kishore et al., 1986). These variants typically have a higher Ki for glyphosate than the wild-type EPSPS enzyme which confers the glyphosate-tolerant phenotype, but these variants are also characterized by a high K_m for PEP which makes the enzyme kinetically less efficient (Kishore and Shah, 1988; Sost et al., 1984; Schulz et al., 1984; Kishore et al., 1986; Sost and Amrhein, 1990). For example, the apparent Km for PEP and the apparent Ki for glyphosate for the native EPSPS from E. coli are 10 μM and 0.5 μM while for a glyphosate-tolerant isolate having a single amino acid substitution of an alanine for the glycine at position 96 these values are 220 µM and 4.0 mM, respectively. A number of glyphosate-tolerant plant variant EPSPS genes have been constructed by mutagenesis. Again, the glyphosate-tolerant EPSPS was impaired due to an increase in the Km for PEP and a slight reduction of the Vmax of the native plant enzyme (Kishore and Shah, 1988) thereby lowering the catalytic efficiency $(V_{\text{max}}/K_{\text{m}})$ of the enzyme. Since the kinetic constants of the variant enzymes are impaired with respect to PEP, it has been proposed that high levels of overproduction of the variant enzyme, 40-80 fold, would be required to maintain normal catalytic activity in plants in the presence of glyphosate (Kishore et al., 1988).

While such variant EPSP synthases have proved useful in obtaining transgenic plants tolerant to glyphosate, it would be increasingly beneficial to obtain an EPSP synthase that is highly glyphosate-tolerant while still kinetically efficient such that the amount of the glyphosate-tolerant EPSPS needed to be produced to maintain normal catalytic activity in the plant is reduced or that improved tolerance be obtained with the same expression level.

Previous studies have shown that EPSPS enzymes from different sources vary widely with respect to their degree of sensitivity to inhibition by glyphosate. A study of plant and bacterial EPSPS enzyme activity as a function of glyphosate concentration showed that there was a very wide range in the degree of sensitivity to glyphosate. The degree of sensitivity showed no correlation with any genus or species tested (Schulz et al., 1985). Insensitivity to glyphosate inhibition of the activity of the EPSPS from the Pseudomonas sp. PG2982 has also been reported but with no details of the studies (Fitzgibbon, 1988). In general, while such natural tolerance has been reported, there is no report suggesting the kinetic superiority of the naturally occurring bacterial glyphosate-tolerant EPSPS enzymes over those of mutated EPSPS enzymes nor have any of the genes been characterized. Similarly, there are no reports on the expression of naturally glyphosate-tolerant EPSPS enzymes in plants to confer glyphosate tolerance.

For purposes of the present invention the term "mature EPSP synthase" relates to the EPSPS polypeptide without the N-terminal chloroplast transit peptide. It is now known that the precursor form of the EPSP synthase in plants (with the transit peptide) is expressed and upon delivery to the chloroplast, the transit peptide is cleaved yielding the mature EPSP synthase. All numbering of amino acid positions are given with respect to the mature EPSP synthase (without chloroplast transit peptide leader) to facilitate comparison of EPSPS sequences from sources which have

chloroplast transit peptides (i.e., plants and fungi) to sources which do not utilize a chloroplast targeting signal (i.e., bacteria).

In the amino acid sequences which follow, the standard single letter or three letter nomenclature are used. All peptide structures represented in the following description are shown in conventional format in which the amino group at the N-terminus appears to the left and the carboxyl group at the C-terminus at the right. Likewise, amino acid nomenclature for the naturally occurring amino acids found in protein is as follows: alanine (Ala;A), asparagine (Asn;N), aspartic acid (Asp;D), arginine (Arg;R), cysteine (Cys;C), glutamic acid (Glu;E), glutamine (Gln;Q), glycine (Gly;G), histidine (His;H), isoleucine (Ile;I), leucine (Leu;L), lysine (Lys;K), methionine (Met;M), phenylalanine (Phe;F), proline (Pro;P), serine (Ser;S), threonine (Thr;T), tryptophan (Trp;W), tyrosine (Tyr;Y), and valine (Val;V). An "X" is used when the amino acid residue is unknown and parentheses designate that an unambiguous assignment is not possible and the amino acid designation within the parentheses is the most probable estimate based on known information.

The term "nonpolar" amino acids include alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, and methionine. The term "uncharged polar" amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The term "charged polar" amino acids includes the "acidic" and "basic" amino acids. The term "acidic" amino acids includes aspartic acid and glutamic acid. The term "basic" amino acid includes lysine, arginine and histidine. The term "polar" amino acids includes both "charged polar" and "uncharged polar" amino acids.

Deoxyribonucleic acid (DNA) is a polymer comprising four mononucleotide units, dAMP (2'-Deoxyadenosine-5- monophosphate), dGMP (2'-Deoxyguanosine-5- monophosphate), dCMP (2'-Deoxycytosine-5- monophosphate) and dTMP (2'-Deoxythymosine-5- monophosphate) linked in various sequences by 3',5'-phosphodiester bridges. The structural DNA consists of multiple nucleotide triplets called "codons" which code for the amino

acids. The codons correspond to the various amino acids as follows: Arg (CGA, CGC, CGG, CGT, AGA, AGG); Leu (CTA, CTC, CTG, CTT, TTA, TTG); Ser (TCA, TCC, TCG, TCT, AGC, AGT); Thr (ACA, ACC, ACG, ACT); Pro (CCA, CCC, CCG, CCT); Ala (GCA, GCC, GCG, GCT); Gly (GGA, GGC, GGG, GGT); Ile (ATA, ATC, ATT); Val (GTA, GTC, GTG, GTT); Lys (AAA, AAG); Asn (AAC, AAT); Gln (GAA, CAG); His (CAC, CAT); Glu (GAA, GAG); Asp (GAC, GAT); Tyr (TAC, TAT); Cys (TGC, TGT); Phe (TTC, TTT); Met (ATG); and Trp (UGG). Moreover, due to the redundancy of the genetic code (i.e., more than one codon for all but two amino acids), there are many possible DNA sequences which may code for a particular amino acid sequence.

SUMMARY OF THE INVENTION

DNA molecules comprising DNA encoding kinetically efficient, glyphosate-tolerant EPSP synthases are disclosed. The EPSP synthases of the present invention reduce the amount of overproduction of the EPSPS enzyme in a transgenic plant necessary for the enzyme to maintain catalytic activity while still conferring glyphosate tolerance. The EPSP synthases described herein represent a new class of EPSPS enzymes, referred to hereinafter as Class II EPSPS enzymes. Class II EPSPS enzymes of the present invention usually share only between about 47% and 55% amino acid similarity or between about 22% and 30% amino acid identity to other known bacterial or plant EPSPS enzymes and exhibit tolerance to glyphosate while maintaining suitable K_m (PEP) ranges. Suitable ranges of K_m (PEP) for EPSPS for enzymes of the present invention are between 1-150 uM, with a more preferred range of between 1-35 µM, and a most preferred range between 2-25 uM. These kinetic constants are determined under the assay conditions specified hereinafter. An EPSPS of the present invention preferably has a $K_{\rm i}$ for glyphosate range of between 15-10000 µM. The K_i/K_m ratio should be between about 2-500, and more preferably between 25-500. The V_{max} of the purified enzyme should preferably be in the range of 2-100 units/mg (µmoles/minute.mg at 25°C) and the K_m for shikimate-3-phosphate should preferably be in the range of 0.1 to 50 µM.

Genes coding for Class II EPSPS enzymes have been isolated from five (5) different bacteria: Agrobacterium tumefaciens sp. strain CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis, and Staphylococcus aureus. The LBAA and PG2982 Class II EPSPS genes have been determined to be identical and the proteins encoded by these two genes are very similar to the CP4 protein and share approximately 84% amino acid identity with it. Class II EPSPS enzymes often may be distinguished from Class I EPSPS's by their inability to react with polyclonal antibodies prepared from Class I EPSPS enzymes under conditions where other Class I EPSPS enzymes would readily react with the Class I antibodies as well as the presence of certain unique regions of amino acid homology which are conserved in Class II EPSP synthases as discussed hereinafter.

Other Class II EPSPS enzymes can be readily isolated and identified by utilizing a nucleic acid probe from one of the Class II EPSPS genes disclosed herein using standard hybridization techniques. Such a probe from the CP4 strain has been prepared and utilized to isolate the Class II EPSPS genes from strains LBAA and PG2982. These genes may also optionally be adapted for enhanced expression in plants by known methodology. Such a probe has also been used to identify homologous genes in bacteria isolated de novo from soil.

The Class II EPSPS enzymes are preferably fused to a chloroplast transit peptide (CTP) to target the protein to the chloroplasts of the plant into which it may be introduced. Chimeric genes encoding this CTP-Class II EPSPS fusion protein may be prepared with an appropriate promoter and 3' polyadenylation site for introduction into a desired plant by standard methods.

To obtain the maximal tolerance to glyphosate herbicide it is preferable to transform the desired plant with a plant-expressible Class II EPSPS gene in

conjunction with another plant-expressible gene which expresses a protein capable of degrading glyphosate such as a plant-expressible gene encoding a glyphosate oxidoreductase enzyme as described in PCT Application No.

WO 92/00377, the disclosure of which is hereby incorporated by reference.

Therefore, in one aspect, the present invention provides a new class of EPSP synthases that exhibit a low K_m for phosphoenolpyruvate (PEP), a high V_{max}/K_m ratio, and a high K_i for glyphosate such that when introduced into a plant, the plant is made glyphosate-tolerant such that the catalytic activity of the enzyme and plant metabolism are maintained in a substantially normal state. For purposes of this discussion, a highly efficient EPSPS refers to its efficiency in the presence of glyphosate.

More particularly, the present invention provides EPSPS enzymes having a K_m for phosphoenolpyruvate (PEP) between 1-150 μM and a $K_i(glyphosate)/K_m(PEP)$ ratio between 3-500, said enzymes having the sequence domains:

-R-X1-H-X2-E- (SEQ ID NO:37), in which

X1 is an uncharged polar or acidic amino acid,

X2 is serine or threonine; and

-G-D-K- X_3 - (SEQ ID NO:38), in which

X3 is serine or threonine; and

-S-A-Q-X4-K- (SEQ ID NO:39), in which

X₄ is any amino acid; and

-N-X5-T-R- (SEQ ID:40), in which

X5 is any amino acid.

Exemplary Class II EPSPS enzyme sequences are disclosed from seven sources: Agrobacterium sp. strain designated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

In another aspect of the present invention, a double-stranded DNA molecule comprising DNA encoding a Class II EPSPS enzyme is disclosed. Exemplary Class II EPSPS enzyme DNA sequences are disclosed from seven sources: Agrobacterium sp. strain designated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

In a further aspect of the present invention, nucleic acid probes from EPSPS Class II genes are presented that are suitable for use in screening for Class II EPSPS genes in other sources by assaying for the ability of a DNA sequence from the other source to hybridize to the probe.

In yet another aspect of the present invention, a recombinant, doublestranded DNA molecule comprising in sequence:

- a) a promoter which functions in plant cells to cause the production of an RNA sequence;
- a structural DNA sequence that causes the production of an RNA sequence which encodes a Class II EPSPS enzyme having the sequence domains:
 - -R-X1-H-X2-E- (SEQ ID NO:37), in which

X1 is an uncharged polar or acidic amino acid.

X2 is serine or threonine; and

-G-D-K-X3- (SEQ ID NO:38), in which

X₂ is serine or threonine; and

-S-A-Q-X₄-K- (SEQ ID NO:39), in which

X4 is any amino acid; and

-N-X5-T-R- (SEQ ID:40), in which

X5 is any amino acid; and

c) a 3' nontranslated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence

٦,

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSP synthase polypeptide to enhance the glyphosate tolerance of a plant cell transformed with said DNA molecule.

In still yet another aspect of the present invention, transgenic plants and transformed plant cells are disclosed that are made glyphosate-tolerant by the introduction of the above-described plant-expressible Class II EPSPS DNA molecule into the plant's genome.

In still another aspect of the present invention, a method for selectively controlling weeds in a crop field is presented by planting crop seeds or crop plants transformed with a plant-expressible Class II EPSPS DNA molecule to confer glyphosate tolerance to the plants which allows for glyphosate containing herbicides to be applied to the crop to selectively kill the glyphosate sensitive weeds, but not the crops.

Other and further objects, advantages and aspects of the invention will become apparent from the accompanying drawing figures and the description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURES 112 + 113 Show Figure 1 shows the DNA sequence (SEQ ID NO:1) for the full-length promoter of figwort mosaic virus (FMV35S).

Figure 2 shows the cosmid cloning vector pMON17020. Class II EPSPS gene from bacterial isolate Agrobacterium sp. strain CP4 and the deduced amino acid sequence (SEQ ID NO:3).

પાલુજાર માટે મુધ્ર પુરુખ Figure 4-shows the structural DNA sequence (SEQ ID NO:4) for the Class II EPSPS gene from the bacterial isolate Achromobacter sp. strain LBAA and the deduced amino acid sequence (SEQ ID NO:5).

Inquies 54.56 Show

l Figure 5 shows the structural DNA sequence (SEQ ID NO:6) for the Class II EPSPS gene from the bacterial isolate *Pseudomonas sp.* strain PG2982 and the deduced amino acid sequence (SEQ ID NO:7).

- Figure 6 shows the Bestfit comparison of the CP4 EPSPS amino acid sequence (SEQ ID NO:3) with that for the E. coli EPSPS (SEQ ID NO:8).

 Figure 7-shows the Bestfit comparison of the CP4 EPSPS amino acid
- Figure 7 shows the Bestfit comparison of the CP4 EPSPS amino acid sequence (SEQ ID NO:3) with that for the LBAA EPSPS (SEQ ID NO:5).
- Figure-8 shows the structural DNA sequence (SEQ ID NO:9) for the synthetic CP4 Class II EPSPS gene.
- Figure 9 shows the DNA sequence (SEQ ID NO:10) of the chloroplast transit peptide (CTP) and encoded amino acid sequence (SEQ ID NO:11) derived from the Arabidopsis thaliana EPSPS CTP and containing a SphI restriction site at the chloroplast processing site, hereinafter referred to as CTP2. $\sqrt{\frac{10}{4}} \frac{10}{10} \frac$
- Figure 10 shows the DNA sequence (SEQ ID NO:12) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:13) derived from the *Arabidopsis thaliana* EPSPS gene and containing an *EcoRI* restriction site within the mature region of the EPSPS, hereinafter referred to as CTP3.
- Figure 11 shows the DNA sequence (SEQ ID NO:14) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:15) derived from the *Petunia hybrida* EPSPS CTP and containing a *SphI* restriction site at the chloroplast processing site and in which the amino acids at the processing site are changed to -Cys-Met, hereinafter referred to as CTP4.

are changed to -Cys-Met, hereinafter referred to as CTP4.

| Violity | Violi

Figure 13 shows a plasmid map of CP4 plant transformation/ expression vector pMON17110.

Figure 14 shows a plasmid map of CP4 synthetic EPSPS gene plant transformation/expression vector pMON17131.

Figure 15 shows a plasmid map of CP4 EPSPS free DNA plant transformation expression vector pMON13640.

Figure 16 shows a plasmid map of CP4 plant transformation/direct selection vector pMON17227.

Figure 17 shows a plasmid map of CP4 plant transformation/expression vector pMON19653

**Control of the State of the State

Figure 18 shows the structural DNA sequence (SEQ ID NO:41) for the Class II EPSPS gene from the bacterial isolate Bacillus subtilis and the deduced amino acid sequence (SEQ ID NO:42).

[VIIII | VIIII | VIIIII | VII

Figure 19 shows the structural DNA sequence (SEQ ID NO:43) for the Class II EPSPS gene from the bacterial isolate Staphylococcus aureus and the deduced amino acid sequence (SEQ ID NO:44).

| Sequence 20 shows the Bestfit comparison of the representative Class II

Figure 20 shows the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. strain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Bacillus subtilis (SEQ ID NO:42), and Staphylococcus aureus (SEQ ID NO:44) with that for representative Class I EPSPS amino acid sequences [Sacchromyces cerevisiae (SEQ ID NO:49), Aspergillus nidulans (SEQ ID NO:50), Brassica napus (SEQ ID NO:51), Arabidopsis thaliana (SEQ ID NO:52), Nicotina tobacum (SEQ ID NO:53), L. esculentum (SEQ ID NO:54), Petunia hybrida (SEQ ID NO:55), Zea mays (SEQ ID NO:56), Solmenella gallinarum (SEQ ID NO:57), Solmenella typhimurium (SEQ ID NO:58), Solmenella typhi (SEQ ID NO:65), E. coli (SEQ ID NO:8), K. pneumoniae (SEQ ID NO:59), Y. enterocolitica (SEQ ID NO:60), H. influenzae (SEQ ID NO:61), P. multocida (SEQ ID NO:62), Aeromonas salmonicida (SEQ ID NO:63), Bacillus pertussis (SEQ ID NO:64)] and illustrates the conserved regions among Class II EPSPS sequences which are unique to Class II EPSPS sequences. To aid in a comparison of the EPSPS sequences, only mature

EPSPS sequences were compared. That is, the sequence corresponding to the chloroplast transit peptide, if present in a subject EPSPS, was removed prior to making the sequence alignment.

Figure 21 shows the structural DNA sequence (SEQ ID NO:66) for the Class II EPSPS gene from the bacterial isolate Synechocystis sp. PCC6803 and

the deduced amino scid sequence (SEQ ID NO:67).

Figure 22 shows the structural DNA sequence (SEQ ID NO:68) for the Class II EPSPS gene from the bacterial isolate *Dichelobacter nodosus* and the

deduced amino acid seguence (SEQ ID NO:69).

Figure 23 shows the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. strain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Synechocystis sp. PCC6803 (SEQ ID NO:67), Bacillus subtilis (SEQ ID NO:42), Dichelobacter nodosus (SEQ ID NO:69) and Staphylococcus aureus (SEQ ID NO:44).

Figure 24 a plasmid map of canola plant transformation/expression vector pMON17209.

Figure 25 a plasmid map of canola plant transformation/expression vector pMON17237.

STATEMENT OF THE INVENTION

The expression of a plant gene which exists in double-stranded DNA form involves synthesis of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA.

Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence

of bases that signals RNA polymerase to associate with the DNA, and to initiate the transcription into mRNA using one of the DNA strands as a template to make a corresponding complementary strand of RNA. A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the cauliflower mosaic virus (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose bis-phosphate carboxylase (ssRUBISCO, a very abundant plant polypeptide) and the full-length transcript promoter from the figwort mosaic virus (FMV35S), promoters from the maize ubiquitin and rice actin genes. All of these promoters have been used to create various types of DNA constructs which have been expressed in plants; see, e.g., PCT publication WO 84/02913 (Rogers et al., Monsanto).

Promoters which are known or found to cause transcription of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant DNA viruses and include, but are not limited to, the CaMV35S and FMV35S promoters and promoters isolated from plant genes such as ssRUBISCO genes and the maize ubiquitin and rice actin genes. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of a Class II EPSPS to render the plant substantially tolerant to glyphosate herbicides. The amount of Class II EPSPS needed to induce the desired tolerance may vary with the plant species. It is preferred that the promoters utilized have relatively high expression in all meristematic tissues in addition to other tissues inasmuch as it is now known that glyphosate is translocated and accumulated in this type of plant tissue. Alternatively, a combination of chimeric genes can be used to cumulatively result in the necessary overall expression level of the selected Class II EPSPS enzyme to result in the glyphosate-tolerant phenotype.

The mRNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples, wherein the non-translated region is derived from both the 5' non-translated sequence that accompanies the promoter sequence and part of the 5' non-translated region of the virus coat protein gene. Rather, the non-translated leader sequence can be derived from an unrelated promoter or coding sequence as discussed above.

Preferred promoters for use in the present invention the the full-length transcript (SEQ ID NO:1) promoter from the figwort mosaic virus (FMV35S) and the full-length transcript (35S) promoter from cauliflower mosaic virus (CaMV), including the enhanced CaMV35S promoter (Kay et al. 1987). The FMV35S promoter functions as strong and uniform promoter with particularly good expression in meristematic tissue for chimeric genes inserted into plants, particularly dicotyledons. The resulting transgenic plant in general expresses the protein encoded by the inserted gene at a higher and more uniform level throughout the tissues and cells of the transformed plant than the same gene driven by an enhanced CaMV35S promoter. Referring to Figure 1, the DNA sequence (SEQ ID NO:1) of the FMV35S promoter is located between nucleotides 6368 and 6930 of the FMV genome. A 5 non-translated leader sequence is preferably coupled with the promoter. The leader sequence can be from the FMV35S genome itself or can be from a source other than FMV35S.

For expression of heterologous genes in moncotyledonous plants the use of an intron has been found to enhance expression of the heterologous gene. While one may use any of a number of introns which have been isloated from plant genes, the use of the first intron from the maize heat shock 70 gene is preferred.

The 3' non-translated region of the chimeric plant gene contains a polyadenylation signal which functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the viral RNA. Examples of suitable 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylated signal of Agrobacterium tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene, and (2) plant genes like the soybean storage protein genes and the small subunit of the ribulose-1,5-bisphosphate carboxylase (ssRUBISCO) gene. An example of a preferred 3' region is that from the ssRUBISCO gene from pea (E9), described in greater detail below.

The DNA constructs of the present invention also contain a structural coding sequence in double-stranded DNA form which encodes a glyphosate-tolerant, highly efficient Class II EPSPS enzyme.

Identification of glyphosate-tolerant, highly efficient EPSPS enzymes

In an attempt to identify and isolate glyphosate-tolerant, highly efficient EPSPS enzymes, kinetic analysis of the EPSPS enzymes from a number of bacteria exhibiting tolerance to glyphosate or that had been isolated from suitable sources was undertaken. It was discovered that in some cases the EPSPS enzymes showed no tolerance to inhibition by glyphosate and it was concluded that the tolerance phenotype of the bacterium was due to an impermeability to glyphosate or other factors. In a number of cases, however, microorganisms were identified whose EPSPS enzyme showed a greater degree of tolerance to inhibition by glyphosate and that displayed a low K_m for PEP when compared to that previously reported for other microbial and plant sources. The EPSPS enzymes from these microorganisms were then subjected to further study and analysis.

Table I displays the data obtained for the EPSPS enzymes identified and isolated as a result of the above described analysis. Table I includes data for three identified Class II EPSPS enzymes that were observed to have a high

tolerance to inhibition to glyphosate and a low K_m for PEP as well as data for the native Petunia EPSPS and a glyphosate-tolerant variant of the Petunia EPSPS referred to as GA101. The GA101 variant is so named because it exhibits the substitution of an alanine residue for a glycine residue at position 101 (with respect to Petunia). When the change introduced into the Petunia EPSPS (GA101) was introduced into a number of other EPSPS enzymes, similar changes in kinetics were observed, an elevation of the K_i for glyphosate and of the K_m for PEP.

Table I Kinetic characterization of EPSPS enzymes

ENZYME SOURCE	$K_m PEP (\mu M)$	K _i Glyphosate (μ M)	K _i /K _m
Petunia	5	0.4	0.08
Petunia GA101	200	2000	10
PG2982	$\begin{array}{c} 2.1 \text{-} 3.11 \\ \sim 7.3 \text{-} 82 \\ 12^3 \\ 13^4 \\ 5^5 \end{array}$	25-82	~8-40
LBAA		60 (est) ⁷	~7.9
CP4		2720	227
B. subtilis 1A2		440	33.8
S. aureus		200	40

- Range of PEP tested = 1-40 μM
- 2 Range of PEP tested = 5-80 µM
- Range of PEP tested = $1.5-40 \mu M$
- Range of PEP tested = 1-60 μM
 Range of PEP tested = 1-50 μM
- 7 (est) = estimated

The Agrobacterium sp. strain CP4 was initially identified by its ability to grow on glyphosate as a carbon source (10 mM) in the presence of 1 mM phosphate. The strain CP4 was identified from a collection obtained from a fixed-bed immobilized cell column that employed Mannville R-635 diatomaceous earth beads. The column had been run for three months on a

waste-water feed from a glyphosate production plant. The column contained 50 mg/ml glyphosate and NH₃ as NH₄Cl. Total organic carbon was 300 mg/ml and BOD's (Biological Oxygen Demand - a measure of "soft" carbon availability) were less than 30 mg/ml. This treatment column has been described (Heitkamp et al., 1990). Dworkin-Foster minimal salts medium containing glyphosate at 10 mM and with phosphate at 1 mM was used to select for microbes from a wash of this column that were capable of growing on glyphosate as sole carbon source. Dworkin-Foster minimal medium was made up by combining in 1 liter (with autoclaved H₂O), 1 ml each of A, B and C and 10 ml of D (as per below) and thiamine HCl (5 mg).

A. D-F Salts (1000X stock; per 100 ml; autoclaved):

H_3BO_3	1 mg
$MnSO_4.7H_2O$	1 mg
$ZnSO_4.7H_2O$	12.5 mg
$CuSO_4.5H_2O$	8 mg
$NaMoO_3.3H_2O$	1.7 mg

B.	FeSO _{4.7} H ₂ 0 (1000X stock: per 100 ml; autoclaved)	$0.1\mathrm{g}$
C.	MgSO ₄ .7H ₂ O (1000X stock; per 100 ml; autoclaved)	20 g
D.	(NH ₄) ₂ SO ₄ (100X stock; per 100 ml; autoclaved)	20 g

Yeast Extract (YE; Difco) was added to a final concentration of 0.01 or 0.001%. The strain CP4 was also grown on media composed of D-F salts, amended as described above, containing glucose, gluconate and citrate (each at 0.1%) as carbon sources and with inorganic phosphate (0.2 - 1.0 mM) as the phosphorous source.

Other Class II EPSPS containing microorganisms were identified as Achromobacter sp. strain LBAA (Hallas et al., 1988), Pseudomonas sp. strain PG2982 (Moore et al., 1983; Fitzgibbon 1988), Bacillus subtilis 1A2 (Henner et al., 1984) and Staphylococcus aureus (O'Connell et al., 1993). It had been reported previously, from measurements in crude lysates, that the EPSPS enzyme from strain PG2982 was less sensitive to inhibition to glyphosate than that of E. coli, but there has been no report of the details of this lack of sensitivity and there has been no report on the K_m for PEP for this enzyme or of the DNA sequence for the gene for this enzyme (Fitzgibbon, 1988; Fitzgibbon and Braymer, 1990).

Relationship of the Class II EPSPS to those previously studied

All EPSPS proteins studied to date have shown a remarkable degree of homology. For example, bacterial and plant EPSPS's are about 54% identical and with similarity as high as 80%. Within bacterial EPSPS's and plant EPSPS's themselves the degree of identity and similarity is much greater (see Table II).

Table II Comparison between exemplary Class I EPSPS protein sequences1

	similarity	identity
E. coli vs. S. typhimurium	93	88
P. hybrida vs. E. coli	72	55
P. hybrida vs. L. esculentum	93	88

1 The EPSPS sequences compared here were obtained from the following references: E. coli., Rogers et al., 1983; S. typhimurium, Stalker et al., 1985; Petunia hybrida, Shah et al., 1986; and tomato (L. esculentum), Gasser et al., 1988.

When crude extracts of CP4 and LBAA bacteria (50 μ g protein) were probed using rabbit anti-EPSPS antibody (Padgette et al., 1987) to the Petunia EPSPS protein in a Western analysis, no positive signal could be detected, even with extended exposure times (Protein A - 125I development system) and

under conditions where the control EPSPS (Petunia EPSPS, 20 ng; a Class I EPSPS) was readily detected. The presence of EPSPS activity in these extracts was confirmed by enzyme assay. This surprising result, indicating a lack of similarity between the EPSPS's from these bacterial isolates and those previously studied, coupled with the combination of a low K_m for PEP and a high K_i for glyphosate, illustrates that these new EPSPS enzymes are different from known EPSPS enzymes (now referred to as Class I EPSPS).

Glyphosate-tolerant Enzymes in Microbial Isolates

For clarity and brevity of disclosure, the following description of the isolation of genes encoding Class II EPSPS enzymes is directed to the isolation of such a gene from a bacterial isolate. Those skilled in the art will recognize that the same or similar strategy can be utilized to isolate such genes from other microbial isolates, plant or fungal sources.

Cloning of the Agrobacterium sp. strain CP4 EPSPS Gene(s) in E. coli

Having established the existence of a suitable EPSPS in Agrobacterium sp. strain CP4, two parallel approaches were undertaken to clone the gene: cloning based on the expected phenotype for a glyphosate-tolerant EPSPS; and purification of the enzyme to provide material to raise antibodies and to obtain amino acid sequences from the protein to facilitate the verification of clones. Cloning and genetic techniques, unless otherwise indicated, are generally those described in Maniatis et al., 1982 or Sambrook et al., 1987. The cloning strategy was as follows: introduction of a cosmid bank of strain Agrobacterium sp. strain CP4 into E. coli and selection for the EPSPS gene by selection for growth on inhibitory concentrations of glyphosate.

Chromosomal DNA was prepared from strain Agrobacterium sp. strain CP4 as follows: The cell pellet from a 200 ml L-Broth (Miller, 1972), late log phase culture of Agrobacterium sp. strain CP4 was resuspended in 10 ml of Solution I; 50 mM Glucose, 10 mM EDTA, 25 mM Tris -CL pH 8.0 (Birnboim

and Doly, 1979). SDS was added to a final concentration of 1% and the suspension was subjected to three freeze-thaw cycles, each consisting of immersion in dry ice for 15 minutes and in water at 70°C for 10 minutes. The lysate was then extracted four times with equal volumes of phenol:chloroform (1:1; phenol saturated with TE; TE = 10 mM Tris pH8.0; 1.0 mM EDTA) and the phases separated by centrifugation (15000g; 10 minutes). The ethanol-precipitable material was pelleted from the supernatant by brief centrifugation (8000g; 5 minutes) following addition of two volumes of ethanol. The pellet was resuspended in 5 ml TE and dialyzed for 16 hours at 4°C against 2 liters TE. This preparation yielded a 5 ml DNA solution of 552 µg/ml.

Partially-restricted DNA was prepared as follows. Three 100 ug aliquot samples of CP4 DNA were treated for 1 hour at 37°C with restriction endonuclease HindIII at rates of 4, 2 and 1 enzyme unit/ug DNA, respectively. The DNA samples were pooled, made 0.25 mM with EDTA and extracted with an equal volume of phenol:chloroform. Following the addition of sodium acetate and ethanol, the DNA was precipitated with two volumes of ethanol and pelleted by centrifugation (12000 g; 10 minutes). The dried DNA pellet was resuspended in 500 ul TE and layered on a 10-40% Sucrose gradient (in 5% increments of 5.5 ml each) in 0.5 M NaCl, 50 mM Tris pH8.0, 5 mM EDTA. Following centrifugation for 20 hours at 26,000 rpm in a SW28 rotor, the tubes were punctured and ~1.5 ml fractions collected. Samples (20 µl) of each second fraction were run on 0.7% agarose gel and the size of the DNA determined by comparison with linearized lambda DNA and HindIII-digested lambda DNA standards. Fractions containing DNA of 25-35 kb fragments were pooled, desalted on AMICON10 columns (7000 rpm; 20°C; 45 minutes) and concentrated by precipitation. This procedure yielded 15 µg of CP4 DNA of the required size. A cosmid bank was constructed using the vector pMON17020. This vector, a map of which is presented in Figure 2, is based on the pBR327 replicon and contains the spectinomycin/streptomycin (Spr;spc) resistance gene from Tn7 (Fling et al., 1985), the chloramphenical resistance gene (Cmr;cat) from Tn9 (Alton et al., 1979), the gene 10 promoter region from phage T7 (Dunn et al., 1983), and the 1.6 kb BglII phage lambda cos fragment from pHC79 (Hohn and Collins, 1980). A number of cloning sites are located downstream of the cat gene. Since the predominant block to the expression of genes from other microbial sources in E. coli appears to be at the level of transcription, the use of the T7 promoter and supplying the T7 polymerase in trans from the pGP1-2 plasmid (Tabor and Richardson, 1985), enables the expression of large DNA segments of foreign DNA, even those containing RNA polymerase transcription termination sequences. The expression of the spc gene is impaired by transcription from the T7 promoter such that only Cmr can be selected in strains containing pGP1-2. The use of antibiotic resistances such as Cm resistance which do not employ a membrane component is preferred due to the observation that high level expression of resistance genes that involve a membrane component, i.e. \$\beta-lactamase and Amp resistance. give rise to a glyphosate-tolerant phenotype. Presumably, this is due to the exclusion of glyphosate from the cell by the membrane localized resistance protein. It is also preferred that the selectable marker be oriented in the same direction as the T7 promoter.

The vector was then cut with *Hind*III and treated with calf alkaline phosphatase (CAP) in preparation for cloning. Vector and target sequences were ligated by combining the following:

Vector DNA (HindIII/CAP)	3 µg
Size fractionated CP4 HindIII fragments	1.5 µg
10X ligation buffer	$2.2~\mu l$
T4 DNA ligase (New England Biolabs) (400 U/μl)	1.0 µl

and adding $\rm H_2O$ to 22.0 µl. This mixture was incubated for 18 hours at 16°C. 10X ligation buffer is 250 mM Tris-HCl, pH 8.0; 100 mM MgCl₂; 100 mM Dithiothreitol; 2 mM Spermidine. The ligated DNA (5 µl) was packaged into

lambda phage particles (Stratagene; Gigapack Gold) using the manufacturer's procedure.

A sample (200 µl) of E. coli HB101 (Boyer and Rolland-Dussoix, 1973) containing the T7 polymerase expression plasmid pGP1-2 (Tabor and Richardson, 1985) and grown overnight in L-Broth (with maltose at 0.2% and kanamycin at 50 µg/ml) was infected with 50 µl of the packaged DNA. Transformants were selected at 30°C on M9 (Miller, 1972) agar containing kanamycin (50 μg/ml), chloramphenicol (25 μg/ml), L-proline (50 μg/ml), Lleucine (50 µg/ml) and B1 (5 µg/ml), and with glyphosate at 3.0 mM. Aliquot samples were also plated on the same media lacking glyphosate to titer the packaged cosmids. Cosmid transformants were isolated on this latter medium at a rate of ~5 x 105 per ug CP4 HindIII DNA after 3 days at 30°C. Colonies arose on the glyphosate agar from day 3 until day 15 with a final rate of ~1 per 200 cosmids. DNA was prepared from 14 glyphosate-tolerant clones and, following verification of this phenotype, was transformed into E. coli GB100/pGP1-2 (E. coli GB100 is an aroA derivative of MM294 [Talmadge and Gilbert, 1980) and tested for complementation for growth in the absence of added aromatic amino acids and aminobenzoic acids. Other aroA strains such as SR481 (Bachman et al., 1980; Padgette et al., 1987), could be used and would be suitable for this experiment. The use of GB100 is merely exemplary and should not be viewed in a limiting sense. This aroA strain usually requires that growth media be supplemented with L-phenylalanine, L-tyrosine and L-tryptophan each at 100 µg/ml and with para-hydroxybenzoic acid, 2.3-dihydroxybenzoic acid and para-aminobenzoic acid each at 5 µg/ml for growth in minimal media. Of the fourteen cosmids tested only one showed complementation of the aroA- phenotype. Transformants of this cosmid, pMON17076, showed weak but uniform growth on the unsupplemented minimal media after 10 days.

The proteins encoded by the cosmids were determined in vivo using a T7 expression system (Tabor and Richardson, 1985). Cultures of E. coli containing

pGP1-2 (Tabor and Richardson, 1985) and test and control cosmids were grown at 30°C in L-broth (2 ml) with chloramphenical and kanamycin (25 and 50 ug/ml, respectively) to a Klett reading of ~ 50. An aliquot was removed and the cells collected by centrifugation, washed with M9 salts (Miller, 1972) and resuspended in 1 ml M9 medium containing glucose at 0.2%, thiamine at 20 ug/ml and containing the 18 amino acids at 0.01% (minus cysteine and methionine). Following incubation at 30°C for 90 minutes, the cultures were transferred to a 42°C water bath and held there for 15 minutes. Rifampicin (Sigma) was added to 200 ug/ml and the cultures held at 42°C for 10 additional minutes and then transferred to 30°C for 20 minutes. Samples were pulsed with 10 uCi of 35S-methionine for 5 minutes at 30°C. The cells were collected by centrifugation and suspended in 60-120 µl cracking buffer (60 mM Tris-HCl 6.8, 1% SDS, 1% 2-mercaptoethanol, 10% glycerol, 0.01% bromophenol blue). Aliquot samples were electrophoresed on 12.5% SDS-PAGE and following soaking for 60 minutes in 10 volumes of Acetic Acid-Methanol-water (10:30:60), the gel was soaked in ENLIGHTNING $^{\text{TM}}$ (DUPONT) following manufacturer's directions, dried, and exposed at -70°C to X-Ray film. Proteins of about 45 kd in size, labeled with 35S-methionine, were detected in number of the cosmids, including pMON17076.

Purification of EPSPS from Agrobacterium sp. strain CP4

All protein purification procedures were carried out at 3-5°C. EPSPS enzyme assays were performed using either the phosphate release or radioactive HPLC method, as previously described in Padgette et al., 1987, using 1 mM phosphoenol pyruvate (PEP, Boehringer) and 2 mM shikimate-3-phosphate (S3P) substrate concentrations. For radioactive HPLC assays, 14C-PEP (Amersham) was utilized. S3P was synthesized as previously described in Wibbenmeyer et al. 1988. N-terminal amino acid sequencing was performed by loading samples onto a Polybrene precycled filter in aliquots while drying. Automated Edman degradation chemistry was used to determine the N-

terminal protein sequence, using an Applied Biosystems Model 470A gas phase sequencer (Hunkapiller *et al.*, 1983) with an Applied Biosystems 120A PTH analyzer.

Five 10-litre fermentations were carried out on a spontaneous "smooth" isolate of strain CP4 that displayed less clumping when grown in liquid culture. This reduced clumbing and smooth colony morphology may be due to reduced polysaccharide production by this isolate. In the following section dealing with the purification of the EPSPS enzyme, CP4 refers to the "smooth" isolate -CP4-S1. The cells from the three batches showing the highest specific activities were pooled. Cell paste of Agrobacterium sp. CP4 (300 g) was washed twice with 0.5 L of 0.9% saline and collected by centrifugation (30 minutes. 8000 rpm in a GS3 Sorvall rotor). The cell pellet was suspended in 0.9 L extraction buffer (100 mM TrisCl. 1 mM EDTA, 1 mM BAM (Benzamidine), 5 mM DTT, 10% glycerol, pH 7.5) and lysed by 2 passes through a Manton Gaulin cell. The resulting solution was centrifuged (30 minutes, 8000 rpm) and the supernatant was treated with 0.21 L of 1.5% protamine sulfate (in 100 mM TrisCl, pH 7.5, 0.2% w/v final protamine sulfate concentration). After stirring for 1 hour, the mixture was centrifuged (50 minutes, 8000 rpm) and the resulting supernatant treated with solid ammonium sulfate to 40% saturation and stirred for 1 hour. After centrifugation (50 minutes, 8000 rpm), the resulting supernatant was treated with solid ammonium sulfate to 70% saturation, stirred for 50 minutes, and the insoluble protein was collected by centrifugation (1 hour, 8000 rpm). This 40-70% ammonium sulfate fraction was then dissolved in extraction buffer to give a final volume of 0.2 L, and dialyzed twice (Spectrum 10,000 MW cutoff dialysis tubing) against 2 L of extraction buffer for a total of 12 hours.

To the resulting dialyzed 40-70% ammonium sulfate fraction (0.29 L) was added solid ammonium sulfate to give a final concentration of 1 M. This material was loaded (2 ml/min) onto a column (5 cm x 15 cm, 295 ml) packed with phenyl Sepharose CL-4B (Pharmacia) resin equilibrated with extraction

buffer containing 1 M ammonium sulfate, and washed with the same buffer (1.5 L, 2 ml/min). EPSPS was eluted with a linear gradient of extraction buffer going from 1 M to 0.00 M ammonium sulfate (total volume of 1.5 L, 2 ml/min). Fractions were collected (20 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 36-50) were pooled and dialyzed against 3×2 L (18 hours) of 10 mM TrisCl, 25 mM KCl, 1 mM EDTA, 5 mM DTT, 10% glycerol, pH 7.8.

The dialyzed EPSPS extract (350 ml) was loaded (5 ml/min) onto a column (2.4 cm x 30 cm, 136 ml) packed with Q-Sepharose Fast Flow (Pharmacia) resin equilibrated with 10 mM TrisCl, 25 mM KCl, 5 mM DTT, 10% glycerol, pH 7.8 (Q Sepharose buffer), and washed with 1 L of the same buffer. EPSPS was eluted with a linear gradient of Q Sepharose buffer going from 0.025 M to 0.40 M KCl (total volume of 1.4 L, 5 ml/min). Fractions were collected (15 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 47-60) were pooled and the protein was precipitated by adding solid ammonium sulfate to 80% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation (20 minutes, 12000 rpm in a GSA Sorvall rotor), dissolved in Q Sepharose buffer (total volume of 14 ml), and dialyzed against the same buffer (2 x 1 L, 18 hours).

The resulting dialyzed partially purified EPSPS extract (19 ml) was loaded (1.7 ml/min) onto a Mono Q 10/10 column (Pharmacia) equilibrated with Q Sepharose buffer, and washed with the same buffer (35 ml). EPSPS was eluted with a linear gradient of 0.025 M to 0.35 M KCl (total volume of 119 ml, 1.7 ml/min). Fractions were collected (1.7 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 30-37) were pooled (6 ml).

The Mono Q pool was made 1 M in ammonium sulfate by the addition of solid ammonium sulfate and 2 ml aliquots were chromatographed on a Phenyl Superose 5/5 column (Pharmacia) equilibrated with 100 mM TrisCl, 5 mM

DTT, 1 M ammonium sulfate, 10% glycerol, pH 7.5 (Phenyl Superose buffer). Samples were loaded (1 ml/min), washed with Phenyl Superose buffer (10 ml), and eluted with a linear gradient of Phenyl Superose buffer going from 1 M to 0.00 M ammonium sulfate (total volume of 60 ml, 1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions from each run with the highest EPSPS activity (fractions ~36-40) were pooled together (10 ml, 2.5 mg protein). For N-terminal amino acid sequence determination, a portion of one fraction (#39 from run 1) was dialyzed against 50 mM NaHCO3 (2 x 1 L). The resulting pure EPSPS sample (0.9 ml, 77 μ g protein) was found to exhibit a single N-terminal amino acid sequence of:

XH(G)ASSRPATARKSS(G)LX(G)(T)V(R)IPG(D)(K)(M) (SEQ ID NO:18).

The remaining Phenyl Superose EPSPS pool was dialyzed against 50 mM TrisCl, 2 mM DTT, 10 mM KCl, 10% glycerol, pH 7.5 (2 x 1 L). An aliquot (0.55 ml, 0.61 mg protein) was loaded (1 ml/min) onto a Mono Q 5/5 column (Pharmacia) equilibrated with Q Sepharose buffer, washed with the same buffer (5 ml), and eluted with a linear gradient of Q Sepharose buffer going from 0-0.14 M KCl in 10 minutes, then holding at 0.14 M KCl (1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay and were subjected to SDS-PAGE (10-15%, Phast System, Pharmacia, with silver staining) to determine protein purity. Fractions exhibiting a single band of protein by SDS-PAGE (22-25, 222 µg) were pooled and dialyzed against 100 mM ammonium bicarbonate, pH 8.1 (2 x 1 L, 9 hours).

Trypsinolysis and peptide sequencing of Agrobacterium sp strain CP4 EPSPS

To the resulting pure Agrobacterium sp. strain CP4 EPSPS (111 µg) was added 3 µg of trypsin (Calbiochem), and the trypsinolysis reaction was

allowed to proceed for 16 hours at 37°C. The tryptic digest was then chromatographed (1ml/min) on a C18 reverse phase HPLC column (Vydac) as previously described in Padgette et al., 1988 for E. coli EPSPS. For all peptide purifications, 0.1% trifluoroacetic acid (TFA, Pierce) was designated buffer "RP-A" and 0.1% TFA in acetonitrile was buffer "RP-B". The gradient used for elution of the trypsinized Agrobacterium sp. CP4 EPSPS was: 0-8 minutes, 0% RP-B; 8-28 minutes, 0-15% RP-B; 28-40 minutes, 15-21% RP-B; 40-68 minutes, 21-49% RP-B; 68-72 minutes, 49-75% RP-B; 72-74 minutes, 75-100% RP-B. Fractions were collected (1 ml) and, based on the elution profile at 210 nm, at least 70 distinct peptides were produced from the trypsinized EPSPS. Fractions 40-70 were evaporated to dryness and redissolved in 150 µl each of 10% acetonitrile. 0.1% trifluoroacetic acid.

The fraction 61 peptide was further purified on the C18 column by the gradient: 0-5 minutes, 0% RP-B; 5-10 minutes, 0-38% RP-B; 10-30 minutes, 38-45% B. Fractions were collected based on the UV signal at 210 nm. A large peptide peak in fraction 24 eluted at 42% RP-B and was dried down, resuspended as described above, and rechromatographed on the C18 column with the gradient: 0-5 minutes, 0% RP-B; 5-12 min, 0-38% RP-B; 12-15 min, 38-39% RP-B: 15-18 minutes, 39% RP-B; 18-20 minutes. 39-41% RP-B; 20-24 minutes, 41% RP-B; 24-28 minutes, 42% RP-B. The peptide in fraction 25, eluting at 41% RP-B and designated peptide 61-24-25, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

APSM(I)(D)EYPILAV (SEQ ID NO:19)

The CP4 EPSPS fraction 53 tryptic peptide was further purified by C18 HPLC by the gradient 0% B (5 minutes), 0-30% B (5-17 minutes), 30-40% B (17-37 minutes). The peptide in fraction 28, eluting at 34% B and designated peptide 53-28, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

ITGLLEGEDVINTGK (SEQ ID NO:20).

In order to verify the CP4 EPSPS cosmid clone, a number of oligonucleotide probes were designed on the basis of the sequence of two of the tryptic sequences from the CP4 enzyme (Table III). The probe identified as MID was very low degeneracy and was used for initial screening. The probes identified as EDV-C and EDV-T were based on the same amino acid sequences and differ in one position (underlined in Table III below) and were used as confirmatory probes, with a positive to be expected only from one of these two probes. In the oligonucleotides below, alternate acceptable nucleotides at a particular position are designated by a "/" such as A/C/T.

Table III Selected CP4 EPSPS peptide sequences and DNA probes

PEPTIDE 61-24-25 APSM(I)(D)EYPILAV

(SEQ ID NO:19)

Probe MID; 17-mer; mixed probe; 24-fold degenerate

(SEQ ID NO:21)

PEPTIDE 53-28 ITGLLEGEDVINTGK (SEQ ID NO:20)

ATGATA/C/TGAC/TGAG/ATAC/TCC

Probe EDV-C; 17-mer; mixed probe; 48-fold degenerate

GAA/GGAC/TGTA/C/G/TATA/C/TAACAC (SEQ ID NO:22)

Probe EDV-T; 17-mer; mixed probe; 48-fold degenerate

GAA/GGAC/TGTA/C/G/TATA/C/TAATAC (SEQ ID NO:23)

The probes were labeled using gamma- 22 P-ATP and polynucleotide kinase. DNA from fourteen of the cosmids described above was restricted with EcoRI, transferred to membrane and probed with the oligonucleotide probes. The conditions used were as follows: prehybridization was carried out in 6X SSC, 10X Denhardt's for 2-18 hour periods at 60°C, and hybridization was for 48-72 hours in 6X SSC. 10X Denhardt's, 100 µg/ml tRNA at 10°C below the T_d for the probe. The T_d of the probe was approximated by the formula 2°C x

 $(A+T)+4^{\circ}C$ x (G+C). The filters were then washed three times with 6X SSC for ten minutes each at room temperature, dried and autoradiographed. Using the MID probe, an ~9.9 kb fragment in the pMON17076 cosmid gave the only positive signal. This cosmid DNA was then probed with the EDV-C (SEQ ID NO:22) and EDV-T (SEQ ID NO:23) probes separately and again this ~9.9 kb band gave a signal and only with the EDV-T probe.

The combined data on the glyphosate-tolerant phenotype, the complementation of the *E. coli aroA*- phenotype, the expression of a ~45 Kd protein, and the hybridization to two probes derived from the CP4 EPSPS amino acid sequence strongly suggested that the pMON17076 cosmid contained the EPSPS gene.

Localization and subcloning of the CP4 EPSPS gene

The CP4 EPSPS gene was further localized as follows: a number of additional Southern analyses were carried out on different restriction digests of pMON17076 using the MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes separately. Based on these analyses and on subsequent detailed restriction mapping of the pBlueScript (Stratagene) subclones of the ~9.9 kb fragment from pMON17076; a 3.8 kb EcoRI-SalI fragment was identified to which both probes hybridized. This analysis also showed that MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes hybridized to different sides of BamHI, ClaI, and SacII sites. This 3.8 kb fragment was cloned in both orientations in pBlueScript to form pMON17081 and pMON17082. The phenotypes imparted to E. coli by these clones were then determined. Glyphosate tolerance was determined following transformation into E. coli MM294 containing pGP1-2 (pBlueScript also contains a T7 promoter) on M9 agar media containing glyphosate at 3 mM. Both pMON17081 and pMON17082 showed glyphosate-tolerant colonies at three days at 30°C at about half the size of the controls on the same media lacking glyphosate. This result suggested that the 3.8 kb fragment contained an intact EPSPS gene. The apparent lack of orientation-dependence of this phenotype could be explained by the presence of the T7 promoter at one side of the cloning sites and the *lac* promoter at the other. The *aroA* phenotype was determined in transformants of *E. coli* GB100 on M9 agar media lacking aromatic supplements. In this experiment, carried out with and without the *Plac* inducer IPTG, pMON17082 showed much greater growth than pMON17081, suggesting that the EPSPS gene was expressed from the *SaII* site towards the *EcoRI* site.

Nucleotide sequencing was begun from a number of restriction site ends. including the BamHI site discussed above. Sequences encoding protein sequences that closely matched the N-terminus protein sequence and that for the tryptic fragment 53-28 (SEQ ID NO:20) (the basis of the EDV-T probe) (SEQ ID NO:23) were localized to the SalI side of this BamHI site. These data provided conclusive evidence for the cloning of the CP4 EPSPS gene and for the direction of transcription of this gene. These data coupled with the restriction mapping data also indicated that the complete gene was located on an ~2.3 kb XhoI fragment and this fragment was subcloned into pBlueScript. The nucleotide sequence of almost 2 kb of this fragment was determined by a combination of sequencing from cloned restriction fragments and by the use of specific primers to extend the sequence. The nucleotide sequence of the CP4 EPSPS gene and flanking regions is shown in Figure 3 (SEQ ID NO:2). The sequence corresponding to peptide 61-24-25 (SEQ ID NO:19) was also located. The sequence was determined using both the SEQUENASE™ kit from IBI (International Biotechnologies Inc.) and the T7 sequencing/Deaza Kit from Pharmacia.

That the cloned gene encoded the EPSPS activity purified from the Agrobacterium sp. strain CP4 was verified in the following manner: By a series of site directed mutageneses, BglII and NcoI sites were placed at the N-terminus with the fMet contained within the NcoI recognition sequence, the first internal NcoI site was removed (the second internal NcoI site was

removed later), and a SacI site was placed after the stop codons. At a later stage the internal NotI site was also removed by site-directed mutagenesis. The following list includes the primers for the site-directed mutagenesis (addition or removal of restriction sites) of the CP4 EPSPS gene. Mutagenesis was carried out by the procedures of Kunkel et al. (1987), essentially as described in Sambrook et al. (1989).

PRIMER BgNc (addition of Bg/III and NcoI sites to N-terminus)
CGTGGATAGATCTAGGAAGACAACCATGGCTCACGGTC
(SEQ ID NO:24)

PRIMER Sph2 (addition of Sph1 site to N-terminus)
GGATAGATTAAGGAAGACGCGCATGCTTCACGGTGCAAGCAGCC
(SEQ ID NO:25)

PRIMER S1 (addition of SacI site immediately after stop codons)
GGCTGCCTGATGAGCTCCACAATCGCCATCGATGG
(SEQ ID NO:26)

PRIMER N1 (removal of internal NotI recognition site)
CGTCGCTCGTCGTGCGTGGCCGCCCTGACGGC
(SEQ ID NO:27)

PRIMER Nco1 (removal of first internal NcoI recognition site)
CGGGCAAGGCCATGCAGGCTATGGGCGCC
(SEQ ID NO:28)

PRIMER Nco2 (removal of second internal NcoI recognition site)
CGGGCTGCCGCCTGACTATGGGCCTCGTCGG
(SEQ ID NO:29)

This CP4 EPSPS gene was then cloned as a NcoI-BamHI N-terminal fragment plus a BamHI-SacI C-terminal fragment into a PrecA-gene10L expression vector similar to those described (Wong et al., 1988; Olins et al., 1988) to form pMON17101. The K_m for PEP and the K_i for glyphosate were determined for the EPSPS activity in crude lysates of pMON17101/GB100 transformants following induction with nalidixic acid (Wong et al., 1988) and found to be the same as that determined for the purified and crude enzyme preparations from Agrobacterium sp. strain CP4.

Characterization of the EPSPS gene from Achromobacter sp. strain LBAA and from Pseudomonas sp. strain PG2982

A cosmid bank of partially HindIII-restricted LBAA DNA was constructed in E. coli MM294 in the vector pHC79 (Hohn and Collins, 1980). This bank was probed with a full length CP4 EPSPS gene probe by colony hybridization and positive clones were identified at a rate of ~1 per 400 cosmids. The LBAA EPSPS gene was further localized in these cosmids by Southern analysis. The gene was located on an ~2.8 kb XhoI fragment and by a series of sequencing steps, both from restriction fragment ends and by using the oligonucleotide primers from the sequencing of the CP4 EPSPS gene, the nucleotide sequence of the LBAA EPSPS gene was completed and is presented in Figure 4 (SEQ ID NO:4).

The EPSPS gene from PG2982 was also cloned. The EPSPS protein was purified, essentially as described for the CP4 enzyme, with the following differences: Following the Sepharose CL-4B column, the fractions with the highest EPSPS activity were pooled and the protein precipitated by adding solid ammonium sulfate to 85% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation, resuspended in Q Sepharose buffer and following dialysis against the same buffer was loaded

onto the column (as for the CP4 enzyme). After purification on the Q Sepharose column, ~40 mg of protein in 100 mM Tris pH 7.8, 10% glycerol, 1 mM EDTA, 1 mM DTT, and 1 M ammonium sulfate, was loaded onto a Phenyl Superose (Pharmacia) column. The column was eluted at 1.0 ml/minutes with a 40 ml gradient from 1.0 M to 0.00 M ammonium sulfate in the above buffer.

Approximately 1.0 mg of protein from the active fractions of the Phenyl Superose 10/10 column was loaded onto a Pharmacia Mono P 5/10 Chromatofocusing column with a flow rate of 0.75 ml/minutes. The starting buffer was 25 mM bis-Tris at pH 6.3, and the column was eluted with 39 ml of Polybuffer 74, pH 4.0. Approximately 50 µg of the peak fraction from the Chromatofocusing column was dialyzed into 25 mM ammonium bicarbonate. This sample was then used to determine the N-terminal amino acid sequence.

The N-terminal sequence obtained was:

XHSASPKPATARRSE (where X = an unidentified residue) (SEQ ID NO:30)

A number of degenerate oligonucleotide probes were designed based on this sequence and used to probe a library of PG2982 partial-HindIII DNA in the cosmid pHC79 (Hohn and Collins, 1980) by colony hybridization under nonstringent conditions. Final washing conditions were 15 minutes with 1X SSC, 0.1% SDS at 55° C. One probe with the sequence GCGGTBGCSGGYTTSGG (where B = C, G, or T, S = C or G, and Y = C or T) (SEQ ID NO:31) identified a set of cosmid clones.

The cosmid set identified in this way was made up of cosmids of diverse HindIII fragments. However, when this set was probed with the CP4 EPSPS gene probe, a cosmid containing the PG2982 EPSPS gene was identified (designated as cosmid 9C1 originally and later as pMON20107). By a series of restriction mappings and Southern analysis this gene was localized to a ~2.8

kb XhoI fragment and the nucleotide sequence of this gene was determined. This DNA sequence (SEQ ID NO:6) is shown in Figure 5. There are no nucleotide differences between the EPSPS gene sequences from LBAA (SEQ ID NO:4) and PG2982 (SEQ ID NO:6). The kinetic parameters of the two enzymes are within the range of experimental error.

A gene from PG2982 that imparts glyphosate tolerance in *E. coli* has been sequenced (Fitzgibbon, 1988; Fitzgibbon and Braymer, 1990). The sequence of the PG2982 EPSPS Class II gene shows no homology to the previously reported sequence suggesting that the glyphosate-tolerant phenotype of the previous work is not related to EPSPS.

Characterization of the EPSPS from Bacillus subtilis

Bacillus subtilis 1A2 (prototroph) was obtained from the Bacillus Genetic Stock Center at Ohio State University. Standard EPSPS assay reactions contained crude bacterial extract with, 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3-phosphate (S3P), 0.1 mM ammonium molybdate, 5 mM potassium fluoride, and 50 mM HEPES, pH 7.0 at 25°C. One unit (U) of EPSPS activity is defined as one μ mol EPSP formed per minute under these conditions. For kinetic determinations, reactions contained crude bacterial, 2 mM S3P, varying concentrations of PEP, and 50 mM HEPES, pH 7.0 at 25°C. The EPSPS specific activity was found to be 0.003 U/mg. When the assays were performed in the presence of 1 mM glyphosate, 100% of the EPSPS activity was retained. The appKm(PEP) of the B. subtilis EPSPS was determined by measuring the reaction velocity at varying concentrations of PEP. The results were analyzed graphically by the hyperbolic, Lineweaver-Burk and Eadie-Hofstee plots, which yielded app $K_m(PEP)$ values of 15.3 μM , $10.8~\mu\text{M}$ and $12.2~\mu\text{M}$, respectively. These three data treatments are in good agreement, and yield an average value for $\text{app}K_m(\text{PEP})$ of 13 $\mu M.$ The appKi(glyphosate) was estimated by determining the reaction rates of B. subtilis 1A2 EPSPS in the presence of several concentrations of glyphosate, at a PEP concentration of 2 μ M. These results were compared to the calculated V_{max} of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for B. subtilis EPSPS, as it is for all other characterized EPSPSs, an appK_i(glyphosate) was determined graphically. The appK_i(glyphosate) was found to be 0.44 mM.

The EPSPS expressed from the *B. subtilis aroE* gene described by Henner et al. (1986) was also studied. The source of the *B. subtilis aroE* (EPSPS) gene was the *E. coli* plasmid-bearing strain ECE13 (original code = MM294[p trp100]; Henner, et al., 1984; obtained from the *Bacillus* Genetic Stock Center at Ohio State University; the culture genotype is [pBR322 trp100] Ap [in MM294] [pBR322::6 kb insert with trpFBA-hisH]). Two strategies were taken to express the enzyme in *E. coli* GB100 (aroA-): 1) the gene was isolated by PCR and cloned into an overexpression vector, and 2) the gene was subcloned into an overexpression vector. For the PCR cloning of the *B. subtilis aroE* from ECE13, two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NdeI and EcoRI) to the sequences of the following oligonucleotides:

GGAACATATGAAACGAGATAAGGTGCAG (SEQ ID NO:45)

GGAATTCAAACTTCAGGATCTTGAGATAGAAAATG (SEQ ID NO:46)

The other approach to the isolation of the $B.\ subtilis\ aroE$ gene, subcloning from ECE13 into pUC118, was performed as follows:

- (i) Cut ECE13 and pUC with XmaI and SphI.
- (ii) Isolate 1700bp aroE fragment and 2600bp pUC118 vector fragment.
- (iii) Ligate fragments and transform into GB100.

The subclone was designated pMON21133 and the PCR-derived clone was named pMON21132. Clones from both approaches were first confirmed for

complementation of the aroA mutation in *E. coli* GB100. The cultures exhibited EPSPS specific activities of 0.044 U/mg and 0.71 U/mg for the subclone (pMON21133) and PCR-derived clone (pMON21132) enzymes, respectively. These specific activities reflect the expected types of expression levels of the two vectors. The *B. subtilis* EPSPS was found to be 88% and 100% resistant to inhibition by 1 mM glyphosate under these conditions for the subcloned (pMON21133) and PCR-derived (pMON21132) enzymes, respectively. The appK_m(PEP) and the appK_i(glyphosate) of the subcloned *B. subtilis* EPSPS (pMON21133) were determined as described above. The data were analyzed graphically by the same methods used for the 1A2 isolate, and the results obtained were comparable to those reported above for *B. subtilis* 1A2 culture.

Characterization of the EPSPS gene from Staphylococcus aureus

The kinetic properties of the S. aureus EPSPS expressed in E. coli were determined, including the specific activity, the $appK_m(PEP)$, and the $appK_i(glyphosate)$. The S. aureus EPSPS gene has been previously described (O' Conneil et al., 1993)

The strategy taken for the cloning of the S. aureus EPSPS was polymerase chain reaction (PCR), utilizing the known nucleotide sequence of the S. aureus aroA gene encoding EPSPS (O' Connell et al., 1993). The S. aureus culture (ATCC 35556) was fermented in an M2 facility in three 250 mL shake flasks containing 55 mL of TYE (tryptone 5g/L, yeast extract 3 g/L, pH 6.8). The three flasks were inoculated with 1.5 mL each of a suspension made from freeze dried ATCC 35556 S. aureus cells in 90 mL of PBS (phosphate-buffered saline) buffer. Flasks were incubated at 30°C for 5 days while shaking at 250 rpm. The resulting cells were lysed (boiled in TE [tris/EDTA] buffer for 8 minutes) and the DNA utilized for PCR reactions. The EPSPS gene was amplified using PCR and engineered into an E. coli expression vector as follows:

 two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NcoI and SacI) to the sequences of the oligonucleotides:

GGGGCCATGGTAAATGAACAAATCATTG (SEQ

(SEQ ID NO:47)

GGGGGAGCTCATTATCCCTCATTTTGTAAAAGC (SEQ ID NO:48)

- (ii) The purified, PCR-amplified aroA gene from S. aureus was digested using NcoI and SacI enzymes.
- (iii) DNA of pMON 5723, which contains a pRecA bacterial promoter and Gene10 leader sequence (Olins et al., 1988) was digested NcoI and SacI and the 3.5 kb digestion product was purified.
- (iv) The S. aureus PCR product and the NcoI / SacI pMON 5723 fragment were ligated and transformed into E. coli JM101 competent cells.
- (v) Two spectinomycin-resistant E. coli JM101 clones from above (SA#2 and SA#3) were purified and transformed into a competent aroA· E. coli strain, GB100

For complementation experiments SAGB#2 and SAGB#3 were utilized, which correspond to SA#2 and SA#3, respectively, transformed into *E. coli* GB100. In addition, *E. coli* GB100 (negative control) and pMON 9563 (wt petunia EPSPS, positive control) were tested for *AroA* complementation. The organisms were grown in minimal media plus and minus aromatic amino acids. Later analyses showed that the SA#2 and SA#3 clones were identical, and they were assigned the plasmid identifier pMON21139.

SAGB#2 in E. coli GB100 (pMON21139) was also grown in M9 minimal media and induced with nalidixic acid. A negative control, E. coli GB100, was grown under identical conditions except the media was supplemented with

aromatic amino acids. The cells were harvested, washed with 0.9% NaCl, and frozen at -80°C, for extraction and EPSPS analysis.

The frozen pMON21139 *E. coli* GB100 cell pellet from above was extracted and assayed for EPSPS activity as previously described. EPSPS assays were performed using 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3-phosphate (S3P), 0. 1 mM ammonium molybdate, 5 mM potassium fluoride, pH 7.0, 25°C. The total assay volume was 50 µL, which contained 10 µL of the undiluted desalted extract.

The results indicate that the two clones contain a functional aroA/EPSPS gene since they were able to grow in minimal media which contained no aromatic amino acids. As expected, the GB100 culture did not grow on minimal medium without aromatic amino acids (since no functional EPSPS is present), and the pMON9563 did confer growth in minimal media. These results demonstrated the successful cloning of a functional EPSPS gene from S. aureus. Both clones tested were identical, and the E. coli expression vector was designated pMON21139.

The plasmid pMON21139 in *E. coli* GB100 was grown in M9 minimal media and was induced with nalidixic acid to induce EPSPS expression driven from the RecA promoter. A desalted extract of the intracellular protein was analyzed for EPSPS activity, yielding an EPSPS specific activity of 0.005 µmol/min mg. Under these assay conditions, the *S. aureus* EPSPS activity was completely resistant to inhibition by 1 mM glyphosate. Previous analysis had shown that *E. coli* GB100 is devoid of EPSPS activity.

The app $K_m(PEP)$ of the S. aureus EPSPS was determined by measuring the reaction velocity of the enzyme (in crude bacterial extracts) at varying concentrations of PEP. The results were analyzed graphically using several standard kinetic plotting methods. Data analysis using the hyperbolic. Lineweaver-Burke, and Eadie-Hofstee methods yielded app $K_m(PEP)$ constants of 7.5, 4.8, and 4.0 μ M. respectively. These three data treatments are in good agreement, and yield an average value for app $K_m(PEP)$ of 5 μ M.

Further information of the glyphosate tolerance of S. aureus EPSPS was obtained by determining the reaction rates of the enzyme in the presence of several concentrations of glyphosate, at a PEP concentration of 2 μ M. These results were compared to the calculated maximal velocity of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for S. aureus EPSPS, as it is for all other characterized EPSPSs, an app $K_i(glyphosate)$ was determined graphically. The app $K_i(glyphosate)$ for S. aureus EPSPS estimated using this method was found to be 0.20 mM.

The EPSPS from S. aureus was found to be glyphosate-tolerant, with an app K_i (glyphosate) of approximately 0.2 mM. In addition, the app K_m (PEP) for the enzyme is approximately 5 μ M, yielding a app K_i (glyphosate) / app K_m (PEP) of 40.

Alternative Isolation Protocols for Other Class II EPSPS Structural Genes

A number of Class II genes have been isolated and described here. While the cloning of the gene from CP4 was difficult due to the low degree of similarity between the Class I and Class II enzymes and genes, the identification of the other genes was greatly facilitated by the use of this first gene as a probe. In the cloning of the LBAA EPSPS gene, the CP4 gene probe allowed the rapid identification of cosmid clones and the localization of the intact gene to a small restriction fragment and some of the CP4 sequencing primers were also used to sequence the LBAA (and PG2982) EPSPS gene(s). The CP4 gene probe was also used to confirm the PG2982 gene clone. The high degree of similarity of the Class II EPSPS genes may be used to identify and clone additional genes in much the same way that Class I EPSPS gene probes have been used to clone other Class I genes. An example of the latter was in the cloning of the A. thaliana EPSPS gene using the P. hybrida gene as a probe (Klee et al., 1987).

Glyphosate-tolerant EPSPS activity has been reported previously for EPSP synthases from a number of sources. These enzymes have not been

characterized to any extent in most cases. The use of Class I and Class II EPSPS gene probes or antibody probes provide a rapid means of initially screening for the nature of the EPSPS and provide tools for the rapid cloning and characterization of the genes for such enzymes.

Two of the three genes described were isolated from bacteria that were isolated from a glyphosate treatment facility (Strains CP4 and LBAA). The third (PG2982) was from a bacterium that had been isolated from a culture collection strain. This latter isolation confirms that exposure to glyphosate is not a prerequisite for the isolation of high glyphosate-tolerant EPSPS enzymes and that the screening of collections of bacteria could yield additional isolates. It is possible to enrich for glyphosate degrading or glyphosate resistant microbial populations (Quinn et al., 1988; Talbot et al., 1984) in cases where it was felt that enrichment for such microorganisms would enhance the isolation frequency of Class II EPSPS microorganisms. Additional bacteria containing class II EPSPS gene have also been identified. A bacterium called C12, isolated from the same treatment column beads as CP4 (see above) but in a medium in which glyphosate was supplied as both the carbon and phosphorus source, was shown by Southern analysis to hybridize with a probe consisting of the CP4 EPSPS coding sequence. This result, in conjunction with that for strain LBAA, suggests that this enrichment method facilitates the identification of Class II EPSPS isolates. New bacterial isolates containing Class II EPSPS genes have also been identified from environments other than glyphosate waste treatment facilities. An inoculum was prepared by extracting soil (from a recently harvested soybean field in Jerseyville, Illinois) and a population of bacteria selected by growth at 28°C in Dworkin-Foster medium containing glyphosate at 10 mM as a source of carbon (and with cycloheximide at 100 µg/ml to prevent the growth of fungi). Upon plating on L-agar media, five colony types were identified. Chromosomal DNA was prepared from 2ml L-broth cultures of these isolates and the presence of a Class II EPSPS gene was probed using a the CP4 EPSPS coding sequence probe by Southern analysis under stringent hybridization and washing conditions. One of the soil isolates, S2, was positive by this screen.

Class II EPSPS enzymes are identifiable by an elevated Ki for glyphosate and thus the genes for these will impart a glyphosate tolerance phenotype in heterologous hosts. Expression of the gene from recombinant plasmids or phage may be achieved through the use of a variety of expression promoters and include the T7 promoter and polymerase. The T7 promoter and polymerase system has been shown to work in a wide range of bacterial (and mammalian) hosts and offers the advantage of expression of many proteins that may be present on large cloned fragments. Tolerance to growth on glyphosate may be shown on minimal growth media. In some cases, other genes or conditions that may give glyphosate tolerance have been observed, including over expression of beta-lactamase, the *igrA* gene (Fitzgibbon and Braymer, 1990), or the gene for glyphosate oxidoreductase (PCT Pub. No. WO92/00377). These are easily distinguished from Class II EPSPS by the absence of EPSPS enzyme activity.

The EPSPS protein is expressed from the aroA gene (also called aroE in some genera, for example, in Bacillus) and mutants in this gene have been produced in a wide variety of bacteria. Determining the identity of the donor organism (bacterium) aids in the isolation of Class II EPSPS gene - such identification may be accomplished by standard microbiological methods and could include Gram stain reaction, growth, color of culture, and gas or acid production on different substrates, gas chromatography analysis of methylesters of the fatty acids in the membranes of the microorganism, and determination of the GC% of the genome. The identity of the donor provides information that may be used to more easily isolate the EPSPS gene. An AroA host more closely related to the donor organism could be employed to clone the EPSPS gene by complementation but this is not essential since complementation of the E. coli AroA mutant by the CP4 EPSPS gene was observed. In addition, the information on the GC content the genome may be

used in choosing nucleotide probes - donor sources with high GC% would preferably use the CP4 EPSPS gene or sequences as probes and those donors with low GC would preferably employ those from *Bacillus subtilis*, for example.

Relationships between different EPSPS genes

The deduced amino acid sequences of a number of Class I and the Class II EPSPS enzymes were compared using the Bestfit computer program provided in the UWGCG package (Devereux et al. 1984). The degree of similarity and identity as determined using this program is reported. The degree of similarity/identity determined within Class I and Class II protein sequences is remarkably high, for instance, comparing E. coli with S. typhimurium (similarity/identity = 93%/88%) and even comparing E. coli with a plant EPSPS (Petunia hybrida; 72%/55%). These data are shown in Table IV. The comparison of sequences between Class I and Class II, however, shows a much lower degree of relatedness between the Classes (similarity/identity = 50-53%/23-30%). The display of the Bestfit analysis for the E.coli (SEQ ID NO:8) and CP4 (SEQ ID NO:3) sequences shows the positions of the conserved residues and is presented in Figure 6. Previous analyses of EPSPS sequences had noted the high degree of conservation of sequences of the enzymes and the almost invariance of sequences in two regions - the "20-35" and "95-107" regions (Gasser et al., 1988; numbered according to the Petunia EPSPS sequence) - and these regions are less conserved in the case of CP4 and LBAA when compared to Class I bacterial and plant EPSPS sequences (see Figure 6 for a comparison of the E. coli and CP4 EPSPS sequences with the E. coli sequence appearing as the top sequence in the Figure). The corresponding sequences in the CP4 Class II EPSPS are:

PGDKSISHRSFMFGGL

(SEQ ID NO:32) and (SEQ ID NO:33).

LDFGNAATGCRLT

These comparisons show that the overall relatedness of Class I and Class II is EPSPS proteins is low and that sequences in putative conserved regions have also diverged considerably.

In the CP4 EPSPS an alanine residue is present at the "glycine101" position. The replacement of the conserved glycine (from the "95-107" region) by an alanine results in an elevated K_i for glyphosate and in an elevation in the K_m for PEP in Class I EPSPS. In the case of the CP4 EPSPS, which contains an alanine at this position, the K_m for PEP is in the low range, indicating that the Class II enzymes differ in many aspects from the EPSPS enzymes heretofore characterized.

Within the Class II isolates, the degree of similarity/identity is as high as that noted for that within Class I (Table IVA). Figure 7 displays the Bestfit computer program alignment of the CP4 (SEQ ID NO:3) and LBAA (SEQ ID NO:5) EPSPS deduced amino acid sequences with the CP4 sequence appearing as the top sequence in the Figure. The symbols used in Figures 6 and 7 are the standard symbols used in the Bestfit computer program to designate degrees of similarity and identity.

Table IVA 1,2

Comparison of relatedness of EPSPS protein sequences Comparison between Class I and Class II EPSPS protein sequences

÷ §	imilarity	identity
S. cerevisiae vs. CP4	54	30
A. nidulans vs. CP4	50	25
B. napus vs. CP4	47	22
A. thaliana vs. CP4	48	22
N. tabacum vs. CP4	50	24
L. esculentum vs. CP4	50	24
P. hybrida vs. CP4	50	23
Z. mays vs. CP4	48	24
S. gallinarum vs. CP4	51	25
S. typhimurium vs. CP4	51	25
S. typhi vs. CP4	51	25
K. pneumoniae vs. CP4	56	28
Y. enterocolitica vs. CP4	53	25
H. influenzae vs. CP4	53	27
P. multocida vs. CP4	55	30
A. salmonicida vs. CP4	53	23
B. pertussis vs. CP4	53	27
E. coli vs. CP4	52	26
E. coli vs. LBAA	52	26
E. coli vs. B. subtilis	55	29
E. coli vs. D. nodosus	5 5	32
E. coli vs. S. aureus	5 5	29
E.coli vs. Synechocystis sp. PCC68	03 53	30

Comparison between Class I EPSPS protein sequences

	<u>similarity</u>	identity
E. coli vs. S. typhimurium	93	88
P. hybrida vs. E. coli	72	55

Comparison between Class II EPSPS protein sequences

<u>milarity</u>	<u>identity</u>
62	43
90	83
90	83
58	34
59	41
62	45
	62 90 90 58 59

The EPSPS sequences compared here were obtained from the following references: E. coli, Rogers et al., 1983; S. typhimurium, Stalker et al., 1985; Petunia hybrida, Shah et al., 1986; B. pertussis, Maskell et al., 1986; cerevisiae. Duncan et al., 1987, Synachocystis sp. PCC6803, Dalla Chiesa et al., 1994 and D. nodosus, Alm et al., 1994.

"GAP" Program, Genetics Computer Group, (1991), Program Manual for the GCG Package, Version 7. April 1991, 575 Science Drive, Madison, Wisconsin, USA 53711

The relative locations of the major conserved sequences among Class II EPSP synthases which distinguishes this group from the Class I EPSP synthases is listed below in Table IVB.

Table IVB Location of Conserved Sequences in Class II EPSP Synthases Source Seq. 11 Seq. 22 Seq. 33 Seq. 44 CP4 start. end LBAA start end PG2982 start end B. subtilis start end S. aureus start end Synechocystis sp. PCC6803 start end D. nodosus start end

min, start

max. end

1 -R-X₁-H-X₂-E- (SEQ ID NO:37)

² -G-D-K-X₃- (SEQ ID NO:38)

^{3 -}S-A-Q-X₄-K- (SEQ ID NO:39)

^{4 -}N-X5-T-R- (SEQ ID NO:40)

The domains of EPSP synthase sequence identified in this application were determined to be those important for maintenance of glyphosate resistance and productive binding of PEP. The information used in indentifying these domains included sequence alignments of numerous glyphosate-sensitive EPSPS molecules and the three-dimensional x-ray structures of E. coli EPSPS (Stallings, et al. 1991) and CP4 EPSPS. The structures are representative of a glyphosate-sensitive (i.e., Class I) enzyme. and a naturally-occuring glyphosate-tolerant (i.e., Class II) enzyme of the present invention. These exemplary molecules were superposed threedimensionally and the results displayed on a computer graphics terminal. Inspection of the display allowed for structure-based fine-tuning of the sequence alignments of glyphosate-sensitive and glyphosate-resistant EPSPS molecules. The new sequence alignments were examined to determine differences between Class I and Class II EPSPS enzymes. Seven regions were identified and these regions were located in the x-ray structure of CP4 EPSPS which also contained a bound analog of the intermediate which forms catalytically between PEP and S3P.

The structure of the CP4 EPSPS with the bound intermediate analog was displayed on a computer graphics terminal and the seven sequence segments were examined. Important residues for glyphosate binding were identified as well as those residues which stabilized the conformations of those important residues: adjoining residues were considered necessary for maintenance of correct three-dimensional structural motifs in the context of glyphosate- sensitive EPSPS molecules. Three of the seven domains were

determined not to be important for glyphosate tolerance and maintainance of productive PEP binding. The following four primary domains were determined to be characteristic of Class II EPSPS enzymes of the present invention:

-R-X1-H-X2-E (SEQ ID NO:37), in which

X1 is an uncharged polar or acidic amino acid,

X2 is serine or threonine,

The Arginine (R) reside at position 1 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate. The Histidine (H) residue at position 3 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Glutamic Acid (E) residue at position 5 stabilizes the Lysine (K) residue at position 5 of SEQ ID NO:39.

-G-D-K-X₃ (SEQ ID NO:38), in which

X3 is serine or threonine,

The Aspartic acid (D) residue at position 2 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Lysine (K) residue at position 3 is important because for productive PEP binding.

-S-A-Q-X4-K (SEQ ID NO:39), in which

X4 is any amino acid,

The Alanine (A) residue at position 2 stabilizes the Arginine (R) residue at position 1 of SEQ ID NO:37. The Serine (S) residue at position 1 and the Glutamine (Q) residue at position 3 are important for productive S3P binding.

-N-X5-T-R (SEQ ID NO:40) in which

X5 is any amino acid,

The Asparagine (N) residue at position 1 and the Threonine (T) residue at position 3 stabilize residue X_1 at position 2 of SEQ ID NO:37. The Arginine (R) residue at position 4 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate.

Since the above sequences are only representative of the Class II EPSPSs which would be included within the generic structure of this group of EPSP synthases, the above sequences may be found within a subject EPSP synthase molecule within slightly more expanded regions. It is believed that the above-described conserved sequences would likely be found in the following regions of the mature EPSP synthases molecule:

- -R-X₁-H-X₂-E- (SEQ ID NO:37) located between amino acids 175 and 230 of the mature EPSP synthase sequence;
- -G-D-K-X₃- (SEQ ID NO:38) located between amino acids 5 and 55 of the mature EPSP synthase sequence;
- -S-A-Q-X₄-K- (SEQ ID NO:39) located between amino acids 150 and 200 of the mature EPSP synthase sequence; and
- -N- X_5 -T-R- (SEQ ID NO:40) located between amino acids 245 and 295 of the mature EPSPS synthase sequence.

One difference that may be noted between the deduced amino acid sequences of the CP4 and LBAA EPSPS proteins is at position 100 where an Alanine is found in the case of the CP4 enzyme and a Glycine is found in the case of the LBAA enzyme. In the Class I EPSPS enzymes a Glycine is usually found in the equivalent position, i.e Glycine96 in *E. coli* and *K. pneumoniae* and Glycine101 in Petunia. In the case of these three enzymes it has been reported that converting that Glycine to an Alanine results in an elevation of the appKi for glyphosate and a concomitant elevation in the appKm for PEP (Kishore et al., 1986; Kishore and Shah, 1988; Sost and Amrhein, 1990), which, as discussed above, makes the enzyme less efficient especially under conditions of lower PEP concentrations. The Glycine100 of the LBAA EPSPS was converted to an Alanine and both the appKm for PEP and the appKi for glyphosate were determined for the variant. The Glycine100Alanine change was introduced by mutagenesis using the following primer:

CGGCAATGCCGCCACCGGCGCGCGCC (SEQ ID NO:34)

and both the wild type and variant genes were expressed in *E. coli* in a *RecA* promoter expression vector (pMON17201 and pMON17264, respectively) and the appKm's and appKi's determined in crude lysates. The data indicate that the appKi(glyphosate) for the G100A variant is elevated about 16-fold (Table

V). This result is in agreement with the observation of the importance of this G-A change in raising the appKi(glyphosate) in the Class I EPSPS enzymes. However, in contrast to the results in the Class I G-A variants, the appKm(PEP) in the Class II (LBAA) G-A variant is unaltered. This provides yet another distinction between the Class II and Class I EPSPS enzymes.

Table V

	appKm(PEP)	appKi(glyphosate)
Lysate prepared from:		
E. coli/pMON17201 (wild type)	$5.3 \mu M$	28 μ M *
E. coli/pMON17264	5.5 μM	459 μ M #
(G100A vorient)		

[@] range of PEP: 2-40 μM

The LBAA G100A variant, by virtue of its superior kinetic properties, should be capable of imparting improved in planta glyphosate tolerance.

Modification and Resynthesis of the Agrobacterium sp. strain CP4 EPSPS Gene Sequence

The EPSPS gene from Agrobacterium sp. strain CP4 contains sequences that could be inimical to high expression of the gene in plants. These sequences include potential polyadenylation sites that are often and A+T rich, a higher G+C% than that frequently found in plant genes (63% versus -50%), concentrated stretches of G and C residues, and codons that are not used frequently in plant genes. The high G+C% in the CP4 EPSPS gene has a number of potential consequences including the following: a higher usage of G or C than that found in plant genes in the third position in codons, and the

^{*} range of glyphosate: 0-310 μ M; # range of glyphosate: 0-5000 μ M.

potential to form strong hair-pin structures that may affect expression or stability of the RNA. The reduction in the G+C content of the CP4 EPSPS gene, the disruption of stretches of G's and C's, the elimination of potential polyadenylation sequences, and improvements in the codon usage to that used more frequently in plant genes, could result in higher expression of the CP4 EPSPS gene in plants.

A synthetic CP4 gene was designed to change as completely as possible those inimical sequences discussed above. In summary, the gene sequence was redesigned to eliminate as much as possible the following sequences or sequence features (while avoiding the introduction of unnecessary restriction sites): stretches of G's and C's of 5 or greater; and A+T rich regions (predominantly) that could function as polyadenylation sites or potential RNA destabilization region The sequence of this gene is shown in Figure 8 (SEQ ID NO:9). This coding sequence was expressed in E. coli from the RecA promoter and assayed for EPSPS activity and compared with that from the native CP4 EPSPS gene. The apparent Km for PEP for the native and synthetic genes was 11.8 and 12.7, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was mutagenized to place an SphI site at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. The following primer was used to accomplish this mutagenesis:

 ${\tt GGACGGCTGCTTGCACCGTGAAGCATGCTTAAGCTTGGCGTAATCATGG} \\ ({\tt SEQ~ID~NO:35}).$

Expression of Chloroplast Directed CP4 EPSPS

The glyphosate target in plants, the 5-enolpyruvyl-shikimate-3phosphate synthase (EPSPS) enzyme, is located in the chloroplast. Many chloroplast-localized proteins, including EPSPS, are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps. Examples of other such chloroplast proteins include the small subunit (SSU) of Ribulose-1,5-bisphosphate carboxylase (RUBISCO), Ferredoxin, Ferredoxin oxidoreductase, the Light-harvesting-complex protein I and protein II, and Thioredoxin F. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast.

A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidonsis CTP was engineered by site-directed mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The sequence of this CTP, designated as CTP2 (SEQ ID NO:10), is shown in Figure 9. The N-terminus of the CP4 EPSPS gene was modified to place a SphI site that spans the Met codon. The second codon was converted to one for leucine in this step also. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by rate of complementation of the aroA allele. This modified N-terminus was then combined with the SacI C-terminus and cloned downstream of the CTP2 sequences. The CTP2-CP4 EPSPS fusion was cloned into pBlueScript KS(+). This vector may be transcribed in vitro using the T7 polymerase and the RNA translated with 35S-Methionine to provide material that may be evaluated for import into chloroplasts isolated from Lactuca sativa using the methods described hereinafter (della-Cioppa et al., 1986, 1987). This template was transcribed in vitro using T7 polymerase and the 35S-methionine-labeled CTP2-CP4 EPSPS material was shown to import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (control = 35Slabeled PreEPSPS [pMON6140; della-Cioppa et al., 1986]).

In another example the Arabidopsis EPSPS CTP, designated as CTP3, was fused to the CP4 EPSPS through an EcoRI site. The sequence of this

CTP3 (SEQ ID NO:12) is shown in Figure 10. An EcoRI site was introduced into the Arabidopsis EPSPS mature region around amino acid 27, replacing the sequence -Arg-Ala-Leu-Leu- with -Arg-Ile-Leu-Leu- in the process. The primer of the following sequence was used to modify the N-terminus of the CP4 EPSPS gene to add an EcoRI site to effect the fusion to the

CTP3:GGAAGACGCCCAGAATTCACGGTGCAAGCAGCCGG (SEQ ID NO:36) (the *EcoRI* site is underlined.

This CTP3-CP4 EPSPS fusion was also cloned into the pBlueScript vector and the T7 expressed fusion was found to also import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (pMON6140).

A related series of CTPs, designated as CTP4 (SphI) and CTP5 (EcoRI), based on the Petunia EPSPS CTP and gene were also fused to the SphI- and EcoRI-modified CP4 EPSPS gene sequences. The SphI site was added by site-directed mutagenesis to place this restriction site (and change the amino acid sequence to -Cys-Met-) at the chloroplast processing site. All of the CTP-CP4 EPSPS fusions were shown to import into chloroplasts with approximately equal efficiency. The CTP4 (SEQ ID NO:14) and CTP5 (SEQ ID NO:16) sequences are shown in Figures 11 and 12.

A CTP2-LBAA EPSPS fusion was also constructed following the modification of the N-terminus of the LBAA EPSPS gene by the addition of a SphI site. This fusion was also found to be imported efficiently into chloroplasts.

By similar approaches, the CTP2-CP4 EPSPS and the CTP4-CP4 EPSPS fusion have also been shown to import efficiently into chloroplasts prepared from the leaf sheaths of corn. These results indicate that these CTP-CP4 fusions could also provide useful genes to impart glyphosate tolerance in monocot species.

The use of CTP2 or CTP4 is preferred because these transit peptide constructions yield mature EPSPS enzymes upon import into the chloroplat which are closer in composition to the native EPSPSs not containing a transit peptide signal. Those skilled in the art will recognize that various chimeric constructs can be made which utilize the functionality of a particular CTP to import a Class II EPSPS enzyme into the plant cell chloroplast. The chloroplast import of the Class II EPSPS can be determined using the following assay.

Chloroplast Uptake Assay

Intact chloroplasts are isolated from lettuce (Latuca sativa, var. longifolia) by centrifugation in Percoll/ficoll gradients as modified from Bartlett et al., (1982). The final pellet of intact chloroplasts is suspended in 0.5 ml of sterile 330 mM sorbitol in 50 mM Hepes-KOH, pH 7.7, assayed for chlorophyll (Arnon, 1949), and adjusted to the final chlorophyll concentration of 4 mg/ml (using sorbitol/Hepes). The yield of intact chloroplasts from a single head of lettuce is 3-6mg chlorophyll.

A typical 300 μ l uptake experiment contained 5 mM ATP, 8.3 mM unlabeled methionine, 322 mM sorbitol, 58.3 mM Hepes-KOH (pH 8.0), 50 μ l reticulocyte lysate translation products, and intact chloroplasts from L. sativa (200 μ g chlorophyll). The uptake mixture is gently rocked at room temperature (in 10 x 75 mm glass tubes) directly in front of a fiber optic illuminator set at maximum light intensity (150 Watt bulb). Aliquot samples of the uptake mix (about 50 μ l) are removed at various times and fractionated over 100 μ l silicone-oil gradients (in 150 μ l polyethylene tubes) by centrifugation at 11,000 X g for 30 seconds. Under these conditions, the intact chloroplasts form a pellet under the silicone-oil layer and the incubation medium (containing the reticulocyte lysate) floats on the surface. After centrifugation, the silicone-oil gradients are immediately frozen in dry ice. The chloroplast pellet is then resuspended in 50-100 μ l of lysis buffer (10 mM Hepes-KOH pH 7.5, 1 mM

PMSF, 1 mM benzamidine, 5 mM e-amino-n-caproic acid, and 30 μg/ml aprotinin) and centrifuged at 15,000 X g for 20 minutes to pellet the thylakoid membranes. The clear supernatant (stromal proteins) from this spin, and an aliquot of the reticulocyte lysate incubation medium from each uptake experiment, are mixed with an equal volume of 2X SDS-PAGE sample buffer for electrophoresis (Laemmli, 1970).

SDS-PAGE is carried out according to Laemmli (1970) in 3-17% (w/v) acrylamide slab gels (60 mm X 1.5 mm) with 3% (w/v) acrylamide stacking gels (5 mm X 1.5 mm). The gel is fixed for 20-30 min in a solution with 40% methanol and 10% acetic acid. Then, the gel is soaked in EN³HANCE™ (DuPont) for 20-30 minutes, followed by drying the gel on a gel dryer. The gel is imaged by autoradiography, using an intensifying screen and an overnight exposure to determine whether the CP4 EPSPS is imported into the isolated chloroplasts.

Plant Transformation

Plants which can be made glyphosate-tolerant by practice of the present invention include, but are not limited to, soybean, cotton, corn, canola, oil seed rape, flax. sugarbeet, sunflower, potato, tobacco, tomato, wheat, rice, alfalfa and lettuce as well as various tree, nut and vine species.

A double-stranded DNA molecule of the present invention ("chimeric gene") can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed, e.g., by Herrera-Estrella (1983), Bevan (1984), Klee (1985) and EPO publication 120,516 (Schilperoort et al.). In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of Agrobacterium. alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation.

chemicals that increase free DNA uptake, free DNA delivery via microprojectile bombardment, and transformation using viruses or pollen.

Class II EPSPS Plant transformation vectors

Class II EPSPS DNA sequences may be engineered into vectors capable of transforming plants by using known techniques. The following description is meant to be illustrative and not to be read in a limiting sense. One of ordinary skill in the art would know that other plasmids, vectors, markers, promoters, etc. would be used with suitable results. The CTP2-CP4 EPSPS fusion was cloned as a BglII-EcoRI fragment into the plant vector pMON979 (described below) to form pMON17110, a map of which is presented in Figure 13. In this vector the CP4 gene is expressed from the enhanced CaMV35S promoter (E35S; Kay et al. 1987). A FMV35S promoter construct (pMON17116) was completed in the following way: The SalI-NotI and the NotI-BglII fragments from pMON979 containing the Spc/AAC(3)-III/oriV and the pBR322/Right Border/NOS 3'/CP4 EPSPS gene segment from pMON17110 were ligated with the XhoI-BglII FMV35S promoter fragment from pMON981. These vectors were introduced into tobacco, cotton and capala.

A series of vectors was also completed in the vector pMON977 in which the CP4 EPSPS gene, the CTP2-CP4 EPSPS fusion, and the CTP3-CP4 fusion were cloned as *BgIII-SacI* fragments to form pMON17124, pMON17119, and pMON17120, respectively. These plasmids were introduced into tobacco. A pMON977 derivative containing the CTP2-LBAA EPSPS gene was also completed (pMON17206) and introduced into tobacco.

The pMON979 plant transformation/expression vector was derived from pMON886 (described below) by replacing the neomycin phosphotransferase typeII (KAN) gene in pMON886 with the 0.89 kb fragment containing the bacterial gentamicin-3-N-acetyltransferase type III (AAC(3)-III) gene (Hayford et al., 1988). The chimeric P-35S/AA(3)-III/NOS 3' gene encodes

gentamicin resistance which permits selection of transformed plant cells. pMON979 also contains a 0.95 kb expression cassette consisting of the enhanced CaMV 35S promoter (Kay et al., 1987), several unique restriction sites, and the NOS 3' end (P-En-CaMV35S/NOS 3'). The rest of the pMON979 DNA segments are exactly the same as in pMON886.

Plasmid pMON886 is made up of the following segments of DNA. The first is a 0.93 kb AvaI to engineered-EcoRV fragment isolated from transposon Tn7 that encodes bacterial spectinomycin/streptomycin resistance (Spc/Str), which is a determinant for selection in $E.\ coli$ and $Agrobacterium\ tumefaciens$. This is joined to the 1.61 kb segment of DNA encoding a chimeric kanamycin resistance which permits selection of transformed plant cells. The chimeric gene (P-35S/KAN/NOS 3') consists of the cauliflower mosaic virus (CaMV) 35S promoter, the neomycin phosphotransferase typeII (KAN) gene, and the 3'-nontranslated region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983). The next segment is the 0.75 kb oriV containing the origin of replication from the RK2 plasmid. It is joined to the 3.1 kb SaII to PvuI segment of pBR322 (ori322) which provides the origin of replication for maintenance in $E.\ coli$ and the bom site for the conjugational transfer into the $Agrobacterium\ tumefaciens$ cells. The next segment is the 0.36 kb PvuI to BcII from pTiT37 that carries the nopaline-type T-DNA right border (Fraley et al., 1985).

The pMON977 vector is the same as pMON981 except for the presence of the P-En-CaMV35S promoter in place of the FMV35S promoter (see below).

The pMON981 plasmid contains the following DNA segments: the 0.93 kb fragment isolated from transposon Tn7 encoding bacterial spectinomycin/streptomycin resistance [Spc/Str; a determinant for selection in E. coli and Agrobacterium tumefaciens (Fling et al., 1985)]; the chimeric kanamycin resistance gene engineered for plant expression to allow selection of the transformed tissue, consisting of the 0.35 kb cauliflower mosaic virus 35S promoter (P-35S) (Odell et al., 1985), the 0.83 kb neomycin phosphotransferase typeII gene (KAN), and the 0.26 kb 3'-nontranslated

region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983); the 0.75 kb origin of replication from the RK2 plasmid (oriV) (Stalker et al., 1981); the 3.1 kb SalI to PvuI segment of pBR322 which provides the origin of replication for maintenance in E. coli (ori-322) and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells, and the 0.36 kb PvuI to BclI fragment from the pTiT37 plasmid containing the nopaline-type T-DNA right border region (Fraley et al., 1985). The expression cassette consists of the 0.6 kb 35S promoter from the figwort mosaic virus (P-FMV35S) (Gowda et al., 1989) and the 0.7 kb 3' non-translated region of the pea rbcS-E9 gene (E9 3') (Coruzzi et al., 1984, and Morelli et al., 1985). The 0.6 kb SspI fragment containing the FMV35S promoter (Figure 1) was engineered to place suitable cloning sites downstream of the transcriptional start site. The CTP2-CP4syn gene fusion was introduced into plant expression vectors (including pMON981, to form pMON17131; Figure 14) and transformed into tobacco, canola, potato, tomato, sugarbeet, cotton, lettuce, cucumber, oil seed rape, poplar, and Arabidopsis.

The plant vector containing the Class II EPSPS gene may be mobilized into any suitable Agrobacterium strain for transformation of the desired plant species. The plant vector may be mobilized into an ABI Agrobacterium strain. A suitable ABI strain is the A208 Agrobacterium tumefaciens carrying the disarmed Ti plasmid pTiC58 (pMP90RK) (Koncz and Schell, 1986). The Ti plasmid does not carry the T-DNA phytohormone genes and the strain is therefore unable to cause the crown gall disease. Mating of the plant vector into ABI was done by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). When the plant tissue is incubated with the ABI::plant vector conjugate, the vector is transferred to the plant cells by the vir functions encoded by the disarmed pTiC58 plasmid. The vector opens at the T-DNA right border region, and the entire plant vector sequence may be inserted into the host plant chromosome. The pTiC58 Ti plasmid does not transfer to the plant cells but remains in the Agrobacterium.

Class II EPSPS free DNA vectors

Class II EPSPS genes may also be introduced into plants through direct delivery methods. A number of direct delivery vectors were completed for the CP4 EPSPS gene. The vector pMON13640, a map of which is presented in Figure 15, is described here. The plasmid vector is based on a pUC plasmid (Vieira and Messing, 1987) containing, in this case, the nptII gene (kanamycin resistance; KAN) from Tn903 to provide a selectable marker in E. coli. The CTP4-EPSPS gene fusion is expressed from the P-FMV35S promoter and contains the NOS 3' polyadenylation sequence fragment and from a second cassette consisting of the E35S promoter, the CTP4-CP4 gene fusion and the NOS 3' sequences. The scoreable GUS marker gene (Jefferson et al., 1987) is expressed from the mannopine synthase promoter (P-MAS; Velten et al., 1984) and the sovbean 7S storage protein gene 3' sequences (Schuler et al., 1982). Similar plasmids could also be made in which CTP-CP4 EPSPS fusions are expressed from the enhanced CaMV35S promoter or other plant promoters. Other vectors could be made that are suitable for free DNA delivery into plants and such are within the skill of the art and contemplated to be within the scope of this disclosure.

Plastid transformation:

While transformation of the nuclear genome of plants is much more developed at this time, a rapidly advancing alternative is the transformation of plant organelles. The transformation of plastids of land plants and the regeneration of stable transformants has been demonstrated (Svab et al., 1990; Maliga et al., 1993). Transformants are selected, following double cross-over events into the plastid genome, on the basis of resistance to spectinomycin conferred through rRNA changes or through the introduction of an aminoglycoside 3"-adenyltransferase gene (Svab et al., 1990; Svab and Maliga, 1993), or resistance to kanamycin through the neomycin phosphotransferase NptII

(Carrer et al., 1993). DNA is introduced by biolistic means (Svab et al., 1990; Maliga et al., 1993) or by using polyethylene glycol (O'Neill et al., 1993). This transformation route results in the production of 500-10,000 copies of the introduced sequence per cell and high levels of expression of the introduced gene have been reported (Carrer et al., 1993; Maliga et al., 1993). The use of plastid transformation offers the adavantages of not requiring the chloroplast transit peptide signal sequence to result in the localization of the heterologous Class II EPSPS in the chloroplast and the potential to have many copies of the heterologous plant-expressible Class II EPSPS gene in each plant cell since at least one copy of the gene would be in each plastid of the cell.

Plant Regeneration

When expression of the Class II EPSPS gene is achieved in transformed cells (or protoplasts), the cells (or protoplasts) are regenerated into whole plants. Choice of methodology for the regeneration step is not critical, with suitable protocols being available for hosts from Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, etc.), Cucurbitaceae (melons and cucumber), Gramineae (wheat, rice. corn, etc.), Solanaceae (potato, tobacco, tomato, peppers), various floral crops as well as various trees such as poplar or apple, nut crops or vine plants such as grapes. See, e.g., Ammirato, 1984; Shimamoto, 1989; Fromm, 1990; Vasil, 1990.

The following examples are provided to better elucidate the practice of the present invention and should not be interpreted in any way to limit the scope of the present invention. Those skilled in the art will recognize that various modifications, truncations, etc. can be made to the methods and genes described herein while not departing from the spirit and scope of the present invention.

In the examples that follow, EPSPS activity in plants is assayed by the following method. Tissue samples were collected and immediately frozen in

liquid nitrogen. One gram of young leaf tissue was frozen in a mortar with liquid nitrogen and ground to a fine powder with a pestle. The powder was then transferred to a second mortar, extraction buffer was added (1 ml/gram), and the sample was ground for an additional 45 seconds. The extraction buffer for canola consists of 100 mM Tris, 1 mM EDTA, 10 % glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4°C). The extraction buffer for tobacco consists of 100 mM Tris, 10 mM EDTA, 35 mM KCl, 20 % glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4°C). The mixture was transferred to a microfuge tube and centrifuged for 5 minutes. The resulting supernatants were desalted on spin G-50 (Pharmacia) columns, previously equilibrated with extraction buffer (without BSA), in 0.25 ml aliquots. The desalted extracts were assayed for EPSP synthase activity by radioactive HPLC assay. Protein concentrations in samples were determined by the BioRad microprotein assay with BSA as the standard.

Protein concentrations were determined using the BioRad Microprotein method. BSA was used to generate a standard curve ranging from 2 - 24 µg. Either 800 µl of standard or diluted sample was mixed with 200 µl of concentrated BioRad Bradford reagent. The samples were vortexed and read at A(595) after ~ 5 minutes and compared to the standard curve.

EPSPS enzyme assays contained HEPES (50 mM), shikimate-3-phosphate (2 mM), NH₄ molybdate (0.1 mM) and KF (5 mM), with or without glyphosate (0.5 or 1.0 mM). The assay mix (30 μl) and plant extract (10 μl) were preincubated for 1 minute at 25°C and the reactions were initiated by adding 14C-PEP (1 mM). The reactions were quenched after 3 minutes with 50 μl of 90% EtOH/0.1M HOAc, pH 4.5. The samples were spun at 6000 rpm and the resulting supernatants were analyzed for 14C-EPSP production by HPLC. Percent resistant EPSPS is calculated from the EPSPS activities with and without glyphosate.

The percent conversion of $^{14}\mathrm{C}$ labeled PEP to $^{14}\mathrm{C}$ EPSP was determined by HPLC radioassay using a C18 guard column (Brownlee) and an AX100

HPLC column (0.4 X 25 cm, Synchropak) with 0.28 M isocratic potassium phosphate eluant, pH 6.5, at 1 ml/min. Initial velocities were calculated by multiplying fractional turnover per unit time by the initial concentration of the labeled substrate (1 mM). The assay was linear with time up to ~ 3 minutes and 30% turnover to EPSPS. Samples were diluted with 10 mM Tris, 10% glycerol, 10 mM BTT, pH 7.5 (4°C) if necessary to obtain results within the linear range.

In these assays DL-dithiotheitol (DTT), benzamidine (BAM), and bovine serum albumin (BSA, essentially globulin free) were obtained from Sigma. Phosphoenol pyruvate (PEP) was from Boehringer Mannheim and phosphoenol-[1-14C]pyruvate (28 mCi/mmol) was from Amersham.

EXAMPLES

Example 1

Transformed tobacco plants have been generated with a number of the Class II EPSPS gene vectors containing the CP4 EPSPS DNA sequence as described above with suitable expression of the EPSPS. These transformed plants exhibit glyphosate tolerance imparted by the Class II CP4 EPSPS.

Transformation of tobacco employs the tobacco leaf disc transformation protocol which utilizes healthy leaf tissue about 1 month old. After a 15-20 minutes surface sterilization with 10% Clorox plus a surfactant, the leaves are rinsed 3 times in sterile water. Using a sterile paper punch, leaf discs are punched and placed upside down on MS104 media (MS salts 4.3 g/l, sucrose 30 g/l, B5 vitamins 500X 2 ml/l, NAA 0.1 mg/l, and BA 1.0 mg/l) for a 1 day preculture.

The discs are then inoculated with an overnight culture of a disarmed Agrobacterium ABI strain containing the subject vector that had been diluted 1/5 (i.e.: about 0.6 OD). The inoculation is done by placing the discs in centrifuge tubes with the culture. After 30 to 60 seconds, the liquid is drained

off and the discs were blotted between sterile filter paper. The discs are then placed upside down on MS104 feeder plates with a filter disc to co-culture.

After 2-3 days of co-culture, the discs are transferred, still upside down, to selection plates with MS104 media. After 2-3 weeks, callus tissue formed, and individual clumps are separated from the leaf discs. Shoots are cleanly cut from the callus when they are large enough to be distinguished from stems. The shoots are placed on hormone-free rooting media (MSO: MS salts 4.3 g/l, sucrose 30 g/l, and B5 vitamins 500X 2 ml/l) with selection for the appropriate antibiotic resistance. Root formation occurred in 1-2 weeks. Any leaf callus assays are preferably done on rooted shoots while still sterile. Rooted shoots are then placed in soil and kept in a high humidity environment (i.e.: plastic containers or bags). The shoots are hardened off by gradually exposing them to ambient humidity conditions.

Expression of CP4 EPSPS protein in transformed plants

Tobacco cells were transformed with a number of plant vectors containing the native CP4 EPSPS gene, and using different promoters and/or CTP's. Preliminary evidence for expression of the gene was given by the ability of the leaf tissue from antibiotic selected transformed shoots to recallus on glyphosate. In some cases, glyphosate-tolerant callus was selected directly following transformation. The level of expression of the CP4 EPSPS was determined by the level of glyphosate-tolerant EPSPS activity (assayed in the presence of 0.5 mM glyphosate) or by Western blot analysis using a goat anti-CP4 EPSPS antibody. The Western blots were quantitated by densitometer tracing and comparison to a standard curve established using purified CP4 EPSPS. These data are presented as % soluble leaf protein. The data from a number of transformed plant lines and transformation vectors are presented in Table VI below.

Table VI Expression of CP4 EPSPS in transformed tobacco tissue Vector Plant # CP4 EPSPS ** (% leaf protein) pMON17110 25313 0.02 pMON17110 25329 0.04 pMON17116 25095 0.02 pMON17119 25106 0.09 pMON17119 25762 0.09 pMON17119 25767 0.03

Glyphosate tolerance has also been demonstrated at the whole plant level in transformed tobacco plants. In tobacco, R_0 transformants of CTP2-CP4 EPSPS were sprayed at 0.4 lb/acre (0.448 kg/hectare), a rate sufficient to kill control non-transformed tobacco plants corresponding to a rating of 3, 1 and 0 at days 7, 14 and 28. respectively, and were analyzed vegetatively and reproductively (Table VII).

^{**} Glyphosate-tolerant EPSPS activity was also demonstrated in leaf extracts for these plants.

Table VII Glyphosate tolerance in Ro tobacco CP4 transformants*

Vector/Plant #	Score**			
	Vegetative		Fertile	
÷	day 7	day 14	day 28	
pMON17110/25313	6	4	2	no
pMON17110/25329	9	10	10	yes
pMON17119/25106	9	9	10	yes

^{*} Spray rate = 0.4 lb/acre (0.448kg/hectare)

**Plants are evaluated on a numerical scoring system of 0-10 where a vegetative score of 10 represents no damage relative to nonsprayed controls and 0 represents a dead plant. Reproductive scores (Fertile) are determined at 28 days after spraying and are evaluated as to whether or not the plant is fertile.

Example 2A

Canola plants were transformed with the pMON17110, pMON17116, and pMON17131 vectors and a number of plant lines of the transformed canola were obtained which exhibit glyphosate tolerance.

Plant Material

Seedlings of Brassica napus cv Westar were established in 2 inch (~ 5 cm) pots containing Metro Mix 350. They were grown in a growth chamber at 24°C, 16/8 hour photoperiod, light intensity of 400 uEm-2sec-1 (HID lamps). They were fertilized with Peters 20-10-20 General Purpose Special. After 2 1/2 weeks they were transplanted to 6 inch (~ 15 cm) pots and grown in a growth chamber at 15/10°C day/night temperature, 16/8 hour photoperiod, light

intensity of 800 uEm $^{-2}$ sec $^{-1}$ (HID lamps). They were fertilized with Peters 15-30-15 Hi-Phos Special.

Transformation/Selection/Regeneration

Four terminal internodes from plants just prior to bolting or in the process of bolting-but before flowering were removed and surfaced sterilized in 70% v/v ethanol for 1 minute, 2% w/v sodium hypochlorite for 20 minutes and rinsed 3 times with sterile deionized water. Stems with leaves attached could be refrigerated in moist plastic bags for up to 72 hours prior to sterilization. Six to seven stem segments were cut into 5mm discs with a Redco Vegetable Slicer 200 maintaining orientation of basal end.

The Agrobacterium was grown overnight on a rotator at 24°C in 2mls of Luria Broth containing 50mg/l kanamycin, 24mg/l chloramphenicol and 100 mg/l spectinomycin. A 1:10 dilution was made in MS (Murashige and Skoog) media giving approximately 9x108 cells per ml. This was confirmed with optical density readings at 660 mu. The stem discs (explants) were inoculated with 1.0 ml of Agrobacterium and the excess was aspirated from the explants.

The explants were placed basal side down in petri plates containing 1/10X standard MS salts. B5 vitamins. 3% sucrose, 0.8% agar, pH 5.7, 1.0 mg/l 6-benzyladenine (BA). The plates were layered with 1.5 ml of media containing MS salts, B5 vitamins, 3% sucrose, pH 5.7, 4.0 mg/l p-chlorophenoxyacetic acid, 0.005 mg/l kinetin and covered with sterile filter paper.

Following a 2 to 3 day co-culture, the explants were transferred to deep dish petri plates containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1 mg/l BA. 500 mg/l carbenicillin, 50mg/l cefotaxime, 200 mg/l kanamycin or 175 mg/l gentamicin for selection. Seven explants were placed on each plate. After 3 weeks they were transferred to fresh media, 5 explants per plate. The explants were cultured in a growth room at 25°C, continuous light (Cool White).

Expression Assav

After 3 weeks shoots were excised from the explants. Leaf recallusing assays were initiated to confirm modification of R_0 shoots. Three tiny pieces of leaf tissue were placed on recallusing media containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 5.0mg/l BA, 0.5 mg/l naphthalene acetic acid (NAA), 500 mg/l carbenicillin, 50mg/l cefotaxime and 200 mg/l kanamycin or gentamicin or 0.5 mM glyphosate. The leaf assays were incubated in a growth room under the same conditions as explant culture. After 3 weeks the leaf recallusing assays were scored for herbicide tolerance (callus or green leaf tissue) or sensitivity (bleaching).

Transplantation

At the time of excision, the shoot stems were dipped in Rootone® and placed in 2 inch (~ 5 cm) pots containing Metro-Mix 350 and placed in a closed humid environment. They were placed in a growth chamber at 24°C, 16/8 hour photoperiod, 400 uEm-1sec-2(HID lamps) for a hardening-off period of approximately 3 weeks.

The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one resistant phenotype.

Seed from an R_0 plant is harvested, threshed, and dried before planting in a glyphosate spray test. Various techniques have been used to grow the plants for R_1 spray evaluations. Tests are conducted in both greenhouses and growth chambers. Two planting systems are used: ~ 10 cm pots or plant trays

containing 32 or 36 cells. Soil used for planting is either Metro 350 plus three types of slow release fertilizer or plant Metro 350. Irrigation is either overhead in greenhouses or sub-irrigation in growth chambers. Fertilizer is applied as required in irrigation water. Temperature regimes appropriate for canola were maintained. A sixteen hour photoperiod was maintained. At the onset of flowering, plants are transplanted to ~15 cm pots for seed production.

A spray "batch" consists of several sets of R_1 progenies all sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more non-segregating transformed genotypes previously identified as having some resistance.

Two-six plants from each individual R₀ progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not induced by the glyphosate. When the other plants reach the 2-4 leaf stage, usually 10 to 20 days after planting, glyphosate is applied at rates varying from 0.28 to 1.12 kg/ha, depending on objectives of the study. Low rate technology using low volumes has been adopted. A laboratory track sprayer has been calibrated to deliver a rate equivalent to field conditions.

A scale of 0 to 10 is used to rate the sprayed plants for vegetative resistance. The scale is relative to the unsprayed plants from the same R_0 plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT), or until bolting, and a line is given the average score of the sprayed plants within an R_0 plant family.

Six integers are used to qualitatively describe the degree of reproductive damage from glyphosate:

- 0: No floral bud development
- 2: Floral buds present, but aborted prior to opening
- Flowers open, but no anthers, or anthers fail to extrude past petals
- 6: Sterile anthers
- 8: Partially sterile anthers
- 10: Fully fertile flowers

Plants are scored using this scale at or shortly after initiation of flowering, depending on the rate of floral structure development.

Expression of EPSPS in Canola

After the 3 week period, the transformed canola plants were assayed for the presence of glyphosate-tolerant EPSPS activity (assayed in the presence of glyphosate at 0.5 mM). The results are shown in Table VIII.

Table VIII Expression of CP4 EPSPS in transformed Canola plants

	Plant #	% resistant EPSPS activity of Leaf extract (at 0.5 mM glyphosate)
Vector Control		0
pMON17110	41	47
pMON17110	52	28
pMON17110	71	82
pMON17110	104	75
pMON17110	172	84
pMON17110	177	85
pMON17110	252	29*
pMON17110	350	49
pMON17116	40	25
pMON17116	99	87
pMON17116	175	94
pMON17116	178	43
pMON17116	182	18
pMON17116	252	69
p M ON17116	298	44*
pMON17116	332	89
pMON17116	383	97
pMON17116	395	52

^{*}assayed in the presence of 1.0 mM glyphosate

 R_1 transformants of canola were then grown in a growth chamber and sprayed with glyphosate at 0.56 kg/ha (kilogram/hectare) and rated vegetatively. These results are shown in Table IXA - IXC. It is to be noted that expression of glyphosate resistant EPSPS in all tissues is preferred to observe optimal glyphosate tolerance phenotype in these transgenic plants. In the Tables below, only expression results obtained with leaf tissue are described.

Table IXA Glyphosate tolerance in Class II EPSPS canola R_1 transformants

(pMON17110 = P-E35S; pMON17116 = P-FMV35S; R1 plants; Spray rate = 0.56 kg/ha)

-	•		Vegetative	
	% resistant	Score*	<u> </u>	
Vector/Plant No.	EPSPS*	day 7	day 14	
Control Westar	0	5	3	
pMON17110/41	47	6	7	
pMON17110/71	82	6	7	
pMON17110/177	85	9	10	
pMON17116/40	25	9	9	
pMON17116/99	87	9	10	
pMON17116/175	94	9	10	
pMON17116/178	43	6	3	
pMON17116/182	18	9	10	
pMON17116/383	97	9	10	

Table IXB Glyphosate tolerance in Class II EPSPS canola R1 transformants

(pMON17131 = P-FMV35S; R1 plants; Spray rate = 0.84 kg/ha)

Vector/Plant No.	Vegetative score** day 14	Reproductive score day 28	
17131/78	10	10	
17131/102	9	10	
17131/115	9	10	
17131/116	9	10	
17131/157	9	10	
17131/169	10	10	
17131/255	10	10	
control Westar	1	0	

Table IXC Glyphosate tolerance in Class I EPSPS canola transformants

(P-E35S; R2 Plants; Spray rate = 0.28 kg/ha)

Vegetative

	% resistant	Scor	e**
Vector/Plant No.	EPSPS*	<u>day 7 d</u>	ay 14
Control Westar	0	4	2
pMON899/715	96	5	6
pMON899/744	95	8	8
pMON899/794	86	6	4
pMON899/818	81	7	8
nMON899/885	57	7	6

[%] resistant EPSPS activity in the presence of 0.5 mM glyphosate

The data obtained for the Class II EPSPS transformants may be compared to glyphosate-tolerant Class I EPSP transformants in which the

^{**} A vegetative score of 10 indicates no damage, a score of 0 is given to a dead

same promoter is used to express the EPSPS genes and in which the level of glyphosate-tolerant EPSPS activity was comparable for the two types of transformants. A comparison of the data of pMON17110 [in Table IXA] and pMON17131 [Table IXB] with that for pMON899 [in Table IXC; the Class I gene in pMON899 is that from A. thaliana (Klee et al., 1987) in which the glycine at position 101 was changed to an alanine] illustrates that the Class II EPSPS is at least as good as that of the Class I EPSPS. An improvement in vegetative tolerance of Class II EPSPS is apparent when one takes into account that the Class II plants were sprayed at twice the rate and were tested as R₁ plants.

Example 2B

The construction of two plant transformation vectors and the transformation procedures used to produce glyphosate-tolerant canola plants are described in this example—The vectors, pMON17209 and pMON17237, were used to generate transgenic glyphosate-tolerant canola lines. The vectors each contain the gene encoding the 5-enol-pyruvyl-shikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4. The vectors also contain either the gox gene encoding the glyphosate oxidoreductase enzyme (GOX) from Achromobacter sp. strain LBAA (Barry et al., 1992) or the gene encoding a variant of GOX (GOX v.247) which displays improved catalytic properties. These enzymes convert glyphosate to aminomethylphosphonic acid and glyoxylate and protect the plant from damage by the metabolic inactivation of glyphosate. The combined result of providing an alternative, resistant EPSPS enzyme and the metabolism of glyphosate produces transgenic plants with enhanced tolerance to glyphosate

Molecular biology techniques. In general, standard molecular biology and microbial genetics approaches were employed (Maniatis et al., 1982).

Site-directed mutageneses were carried out as described by Kunkel et al. (1987). Plant-preferred genes were synthesized and the sequence confirmed.

Plant transformation vectors. The following describes the general features of the plant transformation vectors that were modified to form vectors pMON17209 and pMON17237. The Agrobacterium mediated plant transformation vectors contain the following well-characterized DNA segments which are required for replication and function of the plasmids (Rogers and Klee, 1987; Klee and Rogers, 1989). The first segment is the 0.45 kb ClaI-DraI fragment from the pTi15955 octopine Ti plasmid which contains the T-DNA left border region (Barker et al., 1983). It is joined to the 0.75 kb origin of replication (oriV) derived from the broad-host range plasmid RK2 (Stalker et al., 1981). The next segment is the 3.1 kb SalI-PvuI segment of nBR322 which provides the origin of replication for maintenance in E. coli and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells (Bolivar et al., 1977). This is fused to the 0.93 kb fragment isolated from transposon Tn7 which encodes bacterial spectinomycin and streptomycin resistance (Fling et al., 1985), a determinant for the selection of the plasmids in E. coli and Agrobacterium. It is fused to the 0.36 kb PvuI-BclI fragment from the pTiT37 plasmid which contains the nopaline-type T-DNA right border region (Fraley et al., 1985). Several chimeric genes engineered for plant expression can be introduced between the Ti right and left border regions of the vector. In addition to the elements described above, this vector also includes the 35S promoter/NPTII/NOS 3' cassette to enable selection of transformed plant tissues on kanamycin (Klee and Rogers, 1989; Fraley et al., 1983; and Odell, et al., 1985) within the borders. An "empty" expression cassette is also present between the borders and consists of the enhanced E35S promoter (Kay et al., 1987), the 3' region from the small subunit of RUBPcarboxylase of pea (E9) (Coruzzi et al., 1984; Morelli et al., 1986), and a number of restriction enzyme sites that may be used for the cloning of DNA sequences for expression in plants. The plant transformation system based on Agrobacterium tumefaciens delivery has been reviewed (Klee and Rogers, 1989; Fraley et al., 1986). The Agrobacterium mediated transfer and integration of the vector T-DNA into the plant chromosome results in the expression of the chimeric genes conferring the desired phenotype in plants.

Bacterial Inoculum. The binary vectors are mobilized into Agrobacterium tumefaciens strain ABI by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). The ABI strain contains the disarmed pTiC58 plasmid pMP90RK (Koncz and Schell, 1986) in the chloramphenical resistant derivative of the Agrobacterium tumefaciens strain A208.

Transformation procedure. Agrobacterium inocula were grown overnight at 28°C in 2 ml of LBSCK (LBSCK is made as follows: LB liquid medium [1 liter volume] = 10 g NaCl; 5 g Yeast Extract;10 g tryptone; pH 7.0, and autoclave for 22 minutes. After autoclaving, add spectinomycin (50 mg/ml stock) - 2 ml, kanamycin (50 mg/ml stock) - 1 ml, and chloramphenicol (25 mg/ml stock) - 1 ml.). One day prior to inoculation, the Agrobacterium was subcultured by inoculating 200µl into 2 ml of fresh LBSCK and grown overnight. For inoculation of plant material, the culture was diluted with MSO liquid medium to an A660 range of 0.2-0.4.

Seedlings of *Brassica napus* cv. Westar were grown in Metro Mix 350 (Hummert Seed Co., St. Louis, Mo.) in a growth chamber with a day/night temperature of 15/10°C, relative humidity of 50%, 16h/8h photoperiod, and at a light intensity of 500 µmol m⁻² sec⁻¹. The plants were watered daily (via sub-irrigation) and fertilized every other day with Peter's 15:30:15 (Fogelsville, Pa.).

In general, all media recipes and the transformation protocol follow those in Fry et. al. (1987). Five to six week-old Westar plants were harvested when the plants had bolted (but prior to flowering), the leaves and buds were removed, and the 4-5 inches of stem below the flower buds were used as the explant tissue source. Following sterilization with 70% ethanol for 1 min and 38% Clorox for 20 min, the stems were rinsed three times with sterile water and cut into 5 mm-long segments (the orientation of the basal end of the stem segments was noted). The plant material was incubated for 5 minutes with the diluted Agrobacterium culture at a rate of 5 ml of culture per 5 stems. The suspension of bacteria was removed by aspiration and the explants were placed basal side down - for an optimal shoot regeneration response - onto coculture plates (1/10 MSO solid medium with a 1.5 ml TXD (tobacco xanthi diploid) liquid medium overlay and covered with a sterile 8.5 cm filter paper). Fifty-to-sixty stem explants were placed onto each co-culture plate.

After a 2 day co-culture period, stem explants were moved onto MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/l BAP (benzylaminopurine) for 3 days. The stem explants were then placed for two periods of three weeks each, again basal side down and with 5 explants per plate, onto an MS/0.1 mM glyphosate, selection medium (also containing carbenicillin, cefotaxime, and BAP (The glyphosate stock [0.5M] is prepared as described in the following: 8.45 g glyphosate [analytical grade] is dissolved in 50 ml deionized water, adding KOH pellets to dissolve the glyphosate, and the volume is brought to 100 ml following adjusting the pH to 5.7. The solution is filter-sterilized and stored at 4°C). After 6 weeks on this glyphosate selection medium, green, normally developing shoots were excised from the stem explants and were placed onto fresh MS medium containing 750 mg/l carbenicillin. 50 mg/l cefotaxime, and 1 mg/l BAP, for further shoot development. When the shoots were 2-3 inches tall, a fresh cut at the end of

the stem was made, the cut end was dipped in Root-tone, and the shoot was placed in Metro Mix 350 soil and allowed to harden-off for 2-3 weeks.

Construction of Canola transformation vector pMON17209.

The EPSPS gene was isolated originally from Agrobacterium sp. strain CP4 and expresses a highly tolerant enzyme. The original gene contains sequences that could be inimical to high expression of the gene in some plants. These sequences include potential polyadenylation sites that are often A+T rich, a higher G+C% than that frequently found in dicotyledonous plant genes (63% versus ~50%), concentrated stretches of G and C residues, and codons that may not used frequently in dicotyledonous plant genes. The high G+C% in the CP4 EPSPS gene could also result in the formation of strong hairpin structures that may affect expression or stability of the RNA. A plant preferred version of the gene was synthesized and used for these vectors. This coding sequence was expressed in E. coli from a PRecA-gene 10L vector (Olins et al., 1988) and the EPSPS activity was compared with that from the native CP4 EPSPS gene. The app K_m for PEP for the native and synthetic genes was 11.8 μM and 12.7 μ M, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was then mutagenized to place an SphI site (GCATGC) at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by complementation of the aroA mutant. A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidopsis CTP was engineered by site-directed mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The CTP2-CP4 EPSPS fusion was tested for import into chloroplasts isolated from Lactuca sativa using the methods described previously (della-Cioppa et al., 1986; 1987).

The GOX gene that encodes the glyphosate metabolizing enzyme glyphosate oxidoreductase (GOX) was cloned originally from Achromobacter sp. strain LBAA (Hallas et al., 1988; Barry et al., 1992). The gox gene from strain LBAA was also resynthesized in a plant-preferred sequence version and in which many of the restriction sites were removed (PCT Appln. No. WO 92/00377). The GOX protein is targeted to the plastids by a fusion between the C-terminus of a CTP and the N-terminus of GOX. A CTP, derived from the SSU1A gene from Arabidopsis thaliana (Timko et al., 1988) was used. This CTP (CTP1) was constructed by a combination of site-directed mutageneses. The CTP1 is made up of the SSU1A CTP (amino acids 1-55), the first 23 amino acids of the mature SSU1A protein (56-78), a serine residue (amino acid 79), a new segment that repeats amino acids 50 to 56 from the CTP and the first two from the mature protein (amino acids 80-87), and an alanine and methionine residue (amino acid 88 and 89). An NcoI restriction site is located at the 3' end (spans the Met89 codon) to facilitate the construction of precise fusions to the 5' of GOX. At a later stage, a BglII site was introduced upstream of the N-terminus of the SSU1A sequences to facilitate the introduction of the fusions into plant transformation vectors. A fusion was assembled between CTP1 and the synthetic GOX gene.

The CP4 EPSPS and GOX genes were combined to form pMON17209 as described in the following. The CTP2-CP4 EPSPS fusion was assembled and inserted between the constitutive FMV35S promoter (Gowda et al., 1989; Richins et al., 1987) and the E9 3' region (Coruzzi et al., 1984; Morelli et al., 1985) in a pUC vector (Yannisch-Perron et al., 1985; Vieira and Messing, 1987) to form pMON17190; this completed element may then be moved easily as a NotI-NotI fragment to other vectors. The CTP1-GOX fusion was also assembled in a pUC vector with the FMV35S promoter. This element was then moved as a HindIII-BamHI fragment into the plant transformation

vector pMON10098 and joined to the E9 3' region in the process. The resultant vector pMON17193 has a single NotI site into which the FMV 35S/CTP2-CP4 EPSPS/E9 3' element from pMON17190 was cloned to form pMON17194. The kanamycin plant transformation selection cassette (Fraley et al., 1985) was then deleted from pMON17194, by cutting with XhoI and re-ligating, to form the pMON17209 vector (Figure 24).

Construction of Canola transformation vector pMON17237.

The GOX enzyme has an apparent Km for glyphosate [appKm(glyphosate)] of ~25 mM. In an effort to improve the effectiveness of the glyphosate metabolic rate in planta, a variant of GOX has been identified in which the appKm(glyphosate) has been reduced approximately 10-fold; this variant is referred to as GOX v.247 and the sequence differences between it and the original plant-preferred GOX are illustrated in PCT Appln. No. WO 92/00377. The GOX v.247 coding sequence was combined with CTP1 and assembled with the FMV35S promoter and the E9 3' by cloning into the pMON17227 plant transformation vector to form pMON17241. In this vector, effectively, the CP4 EPSPS was replaced by GOX v.247. The pMON17227 vector had been constructed by replacing the CTP1-GOX sequences in pMON17193 with those for the CTP2-CP4 EPSPS, to form pMON17199 and followed by deleting the kanamycin cassette (as described above for pMON17209). The pMON17237 vector (Figure 25) was then completed by cloning the FMV35S/CTP2-CP4 EPSPS/E9 3' element as a NotI-NotI fragment into pMON17241.

Example 3

Soybean plants were transformed with the pMON13640 (Figure 15) vector and a number of plant lines of the transformed soybean were obtained which exhibit glyphosate tolerance.

Soybean plants are transformed with pMON13640 by the method of microprojectile injection using particle gun technology as described in Christou et al. (1988). The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one resistant phenotype.

Seed from an R_o soybean plant is harvested, and dried before planting in a glyphosate spray test. Seeds are planted into 4 inch (~5 cm) square pots containing Metro 350. Twenty seedlings from each Ro plant is considered adequate for testing. Plants are maintained and grown in a greenhouse environment. A 12.5-14 hour photoperiod and temperatures of 30°C day and 24°C night is regulated. Water soluble Peters Pete Lite fertilizer is applied as needed.

A spray "batch" consists of several sets of R_1 progenies all sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more non-segregating transformed genotypes previously identified as having some resistance.

One to two plants from each individual R_0 progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as

to assess any variability not induced by the glyphosate. When the other plants reach the first trifoliate leaf stage, usually 2-3 weeks after planting, glyphosate is applied at a rate equivalent of 128 oz./acre (8.895 kg/ha) of Roundup®. A laboratory track sprayer has been calibrated to deliver a rate equivalent to those conditions.

A vegetative score of 0 to 10 is used. The score is relative to the unsprayed progeries from the same R_0 plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT). The data from the analysis of one set of transformed and control soybean plants are described on Table X and show that the CP4 EPSPS gene imparts glyphosate tolerance in soybean also.

Table X Glyphosate tolerance in Class II EPSPS soybean
transformants
(P.E35S, P.FMV35S; RO plants; Spray rate = 128 oz./acre)

Vector/Plant No.		Vegetative score		
	<u>day 7</u>	day 14	dav 28	
13640/40-11	5	6	7	
13640/40-3	9	10	10	
13640/40-7	4	7	7	
control A5403 2	1	0		
control A5403 1	1	0		

Example 4

The CP4 EPSPS gene may be used to select transformed plant material directly on media containing glyphosate. The ability to select and to identify transformed plant material depends, in most cases, on the use of a dominant selectable marker gene to enable the preferential and continued growth of the

transformed tissues in the presence of a normally inhibitory substance. Antibiotic resistance and herbicide tolerance genes have been used almost exclusively as such dominant selectable marker genes in the presence of the corresponding antibiotic or herbicide. The nptII/kanamycin selection scheme is probably the most frequently used. It has been demonstrated that CP4 EPSPS is also a useful and perhaps superior selectable marker/selection scheme for producing and identifying transformed plants.

A plant transformation vector that may be used in this scheme is pMON17227 (Figure 16). This plasmid resembles many of the other plasmids described infra and is essentially composed of the previously described bacterial replicon system that enables this plasmid to replicate in *E. coli* and to be introduced into and to replicate in *Agrobacterium*, the bacterial selectable marker gene (Spc/Str), and located between the T-DNA right border and left border is the CTP2-CP4 synthetic gene in the FMV35S promoter-E9 3' cassette. This plasmid also has single sites for a number of restriction enzymes, located within the borders and outside of the expression cassette. This makes it possible to easily add other genes and genetic elements to the vector for introduction into plants.

The protocol for direct selection of transformed plants on glyphosate is outlined for tobacco. Explants are prepared for pre-culture as in the standard procedure as described in Example 1: surface sterilization of leaves from 1 month old tobacco plants (15 minutes in 10% clorox + surfactant; 3X dH₂O washes); explants are cut in 0.5 x 0.5 cm squares, removing leaf edges, mid-rib, tip, and petiole end for uniform tissue type; explants are placed in single layer, upside down, on MS104 plates + 2 ml 4COO5K media to moisten surface; preculture 1-2 days. Explants are inoculated using overnight culture of Agrobacterium containing the plant transformation plasmid that is adjusted to a titer of 1.2 X 109 bacteria/ml with 4COO5K media. Explants are placed into a centrifuge tube, the Agrobacterium suspension is added and the mixture of bacteria and explants is "Vortexed" on maximum setting for 25 seconds to

ensure even penetration of bacteria. The bacteria are poured off and the explants are blotted between layers of dry sterile filter paper to remove excess bacteria. The blotted explants are placed upside down on MS104 plates + 2ml 4COO5K media + filter disc. Co-culture is 2-3 days. The explants are transferred to MS104 + Carbenicillin 1000 mg/l + cefotaxime 100 mg/l for 3 days (delayed phase). The explants are then transferred to MS104 + glyphosate 0.05 mM + Carbenicillin 1000 mg/l + cefotaxime 100 mg/l for selection phase. At 4-6 weeks shoots are cut from callus and placed on MSO + Carbenicillin 500 mg/l rooting media. Roots form in 3-5 days, at which time leaf pieces can be taken from rooted plates to confirm glyphosate tolerance and that the material is transformed.

The presence of the CP4 EPSPS protein in these transformed tissues has been confirmed by immunoblot analysis of leaf discs. The data from one experiment with pMON17227 is presented in the following: 139 shoots formed on glyphosate from 400 explants inoculated with Agrobacterium ABI/pMON17227; 97 of these were positive on recallusing on glyphosate. These data indicate a transformation rate of 24 per 100 explants, which makes this a highly efficient and time saving transformation procedure for plants. Similar transformation frequencies have been obtained with pMON17131 and direct selection of transformants on glyphosate with the CP4 EPSPS genes has also been shown in other plant species, including, Arabidopsis, soybean, corn, wheat, potato, tomato, cotton, lettuce, and sugarbeet.

The pMON17227 plasmid contains single restriction enzyme recognition cleavage sites (NotI, XhoI, and BstXI) between the CP4 glyphosate selection region and the left border of the vector for the cloning of additional genes and to facilitate the introduction of these genes into plants.

Example 5A

The CP4 EPSPS gene has also been introduced into Black Mexican Sweet (BMS) corn cells with expression of the protein and glyphosate resistance detected in callus.

The backbone for this plasmid was a derivative of the high copy plasmid pUC119 (Viera and Messing, 1987). The 1.3 Kb FspI-DraI pUC119 fragment containing the origin of replication was fused to the 1.3 Kb Smal-HindIII filled fragment from pKC7 (Rao and Rogers, 1979) which contains the neomycin phosphotransferase type II gene to confer bacterial kanamycin resistance. This plasmid was used to construct a monocot expression cassette vector containing the 0.6 kb cauliflower mosaic virus (CaMV) 35S RNA promoter with a duplication of the -90 to -300 region (Kay et al., 1987), an 0.8 kb fragment containing an intron from a maize gene in the 5' untranslated leader region, followed by a polylinker and the 3' termination sequences from the nopaline synthase (NOS) gene (Fraley et al., 1983). A 1.7 Kb fragment containing the 300 bp chloroplast transit peptide from the Arabidopsis EPSP synthase fused in frame to the 1.4 Kb coding sequence for the bacterial CP4 EPSP synthase was inserted into the monocot expression cassette in the polylinker between the intron and the NOS termination sequence to form the plasmid pMON19653 (Figure 17).

pMON19653 DNA was introduced into Black Mexican Sweet (BMS) cells by co-bombardment with EC9, a plasmid containing a sulfonylurea-resistant form of the maize acetolactate synthase gene. 2.5 mg of each plasmid was coated onto tungsten particles and introduced into log-phase BMS cells using a PDS-1000 particle gun essentially as described (Klein et al., 1989). Transformants are selected on MS medium containing 20 ppb chlorsulfuron. After initial selection on chlorsulfuron, the calli can be assayed directly by Western blot. Glyphosate tolerance can be assessed by transferring the calli to

medium containing 5mM glyphosate. As shown in Table XI, CP4 EPSPS confers glyphosate tolerance to corn callus.

Table XI. Expression of CP4 in BMS Corn Callus - pMON 19653

Line	CP4 expression		
÷	(% extracted protein)		
284	0.006 %		
287	0.036		
290	0.061		
295	0.073		
299	0.113		
309	0.042		
313	0.003		

To measure CP4 EPSPS expression in corn callus, the following procedure was used: BMS callus (3 g wet weight) was dried on filter paper (Whatman#1) under vacuum, reweighed, and extraction buffer (500 µl/g dry weight; 100 mM Tris, 1 mM EDTA, 10% glycerol) was added. The tissue was homogenized with a Wheaton overhead stirrer for 30 seconds at 2.8 power setting. After centrifugation (3 minutes, Eppendorf microfuge), the supernatant was removed and the protein was quantitated (BioRad Protein Assay). Samples (50 µg/well) were loaded on an SDS PAGE gel (Jule, 3-17%) along with CP4 EPSPS standard (10 ng), electrophoresed, and transferred to nitrocellulose similarly to a previously described method (Padgette, 1987). The nitrocellulose blot was probed with goat anti-CP4 EPSPS IgG, and developed with I-125 Protein G. The radioactive blot was visualized by autoradiography. Results were quantitated by densitometry on an LKB UltraScan XL laser densitomer and are tabulated below in Table X.

Table XII. Glyphosate resistance in BMS Corn Callus using pMON 19653

Vector	Experiment	# chlorsulfuron-	# cross-resistant
		resistant lines	to Glyphosate
19653	253	120	81/120 = 67.5 %
19653	254	80	37/80 = 46%
EC9 control	2 53 /254	8	0/8 = 0%

Improvements in the expression of Class II EPSPS could also be achieved by expressing the gene using stronger plant promoters, using better 3' polyadenylation signal sequences, optimizing the sequences around the initiation codon for ribosome loading and translation initiation, or by combination of these or other expression or regulatory sequences or factors.

Example 5B

The plant-expressible genes encoding the CP4 EPSPS and a glyphosate oxidoreductasease enzyme (PCT Pub. No. WO92/00377) were introduced into embryogenic corn callus through particle bombardment. Plasmid DNA was prepared using standard procedures (Ausubel et al., 1987), cesium-chloride purified, and re-suspended at 1 mg/ml in TE buffer. DNA was precipitated onto M10 tungsten or 1.0µ gold particles (BioRad) using a calcium chloride/spermidine precipitation protocol, essentially as described by Klein et al. (1987). The PDS1000® gunpowder gun (BioRad) was used. Callus tissue was obtained by isolating 1-2 mm long immature embryos from the "Hi-II" genotype (Armstrong et al., 1991), or Hi-II X B73 crosses, onto a modified N6 medium (Armstrong and Green, 1985; Songstad et al., 1991). Embryogenic callus ("type-II"; Armstrong and Green, 1985) initiated from these embryos was maintained by subculturing at two week intervals, and was bombarded when less than two months old. Each plate of callus tissue was bombarded from 1 to 3 times with either tungsten or gold particles coated with the plasmid DNA(s) of interest. Callus was transferred to a modified N6 medium containing an appropriate selective agent (either glyphosate, or one or more of the antibiotics kanamycin, G418, or paromomycin) 1-8 days following bombardment, and then re-transferred to fresh selection media at 2-3 week intervals. Glyphosate-resistant calli first appeared approximately 6-12 weeks post-bombardment. These resistant calli were propagated on selection medium, and samples were taken for assays gene expression. Plant regeneration from resistant calli was accomplished essentially as described by Petersen et al. (1992).

In some cases, both gene(s) were covalently linked together on the same plasmid DNA molecule. In other instances, the genes were present on separate plasmids, but were introduced into the same plant through a process termed "co-transformation". The 1 mg/ml plasmid preparations of interest were mixed together in an equal ratio, by volume, and then precipitated onto the tungsten or gold particles. At a high frequency, as described in the literature (e.g., Schocher et al., 1986), the different plasmid molecules integrate into the genome of the same plant cell. Generally the integration is into the same chromosomal location in the plant cell, presumably due to recombination of the plasmids prior to integration. Less frequently, the different plasmids integrate into separate chromosomal locations. In either case, there is integration of both DNA molecules into the same plant cell, and any plants produced from that cell.

Transgenic corn plants were produced as decribed above which contained a plant-expressible CP4 gene and a plant-expressible gene encoding a glyphosate oxidoreductase enzyme.

The plant-expressible CP4 gene comprised a structural DNA sequence encoding a CTP2/CP4 EPSPS fusion protein. The CTP2/CP4 EPSPS is a gene fusion composed of the N-terminal 0.23 Kb chloroplast transit peptide sequence from the Arabidopsis thaliana EPSPS gene (Klee et al. 1987, referred to herein as CTP2), and the C-terminal 1.36 Kb 5-enolpyruvylshikimate-3-phosphate synthase gene (CP4) from an Agrobacterium species. Plant

expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature CP4 protein.

The plant-expressible gene expressing a glyphosate oxidoreductase enzyme comprised a structual DNA sequence comprising CTP1/GOXsyn gene fusion composed of the N-terminal 0.26 Kb chloroplast transit peptide sequence derived from the Arabidopsis thaliana SSU 1a gene (Timko et al., 1988 referred to herein as CTP1), and the C-terminal 1.3 Kb synthetic gene sequence encoding a glyphosate oxidoreductase enzyme (GOXsyn, as descibed in PCT Pub. No. WO92/00377 previously incorporated by reference). The GOXsyn gene encodes the enzyme glyphosate oxidoreductase from an Achromobacter sp. strain LBAA which catalyzes the conversion of glyphosate to herbicidally inactive products, aminomethylphosphonate and glyoxylate. Plant expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature GOX protein.

Both of the above described genes also include the following regulatory sequences for plant expression: (i) a promoter region comprising a 0.6 Kb 35S cauliflower mosaic virus (CaMV) promoter (Odell et al., 1985) with the duplicated enhancer region (Kay et al., 1987) which also contains a 0.8 Kb fragment containing the first intron from the maize heat shock protein 70 gene (Shah et al., 1985 and PCT Pub. No. WO93/19189, the disclosure of which is hereby incorporated by reference); and (ii) a 3' non-translated region comprising a 0.3 Kb fragment of the 3' non-translated region of the nopaline synthase gene (Fraley et al., 1983 and Depicker, et al., 1982) which functions to direct polyadenylation of the mRNA.

The above described transgenic corn plants exhibit tolerance to glyphosate herbicide in greenhouse and field trials.

Example 6

The LBAA Class II EPSPS gene has been introduced into plants and also imparts glyphosate tolerance. Data on tobacco transformed with pMON17206 (infra) are presented in Table XIII.

Table XIII - Tobacco Glyphosate Spray Test (pMON17206: E35S - CTP2-LBAA EPSPS: 0.4 lbs/ac)

Line	7 Day Rating
33358 34586	9 9
33328	9
34606 33377	9
34611 34607	10 10
34601 34589	9 9
Samsun (Control)	4

From the foregoing, it will be recognized that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with advantages which are obvious and which are inherent to the invention. It will be further understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

BIBLIOGRAPHY

Alm, R.A., Dalrymple, B.P. and Mattick, J.S. 1994. Sequencing and expression of the aroA gene from *Dichelobacter nodosus*, Gene, 145: 97-101.

Alton, N.K. and Vapnek, D. (1979) Nature 282:864-869.

Ammirato, P.V., et al. <u>Handbook of Plant Cell Culture - Crop Species</u>. Macmillan Publ. Co. (1984).

Armstrong, C.L., and Green, C.E. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207-214.

Armstrong, C.L., Green, C.E., and Phillips, R.L. 1991. Development and availability of germplasm with high Type II culture formation response.

Maize Genetics Cooperation NewsLetter 65:92-93.

Arnon, D.I. Plant Physiol, 24:1-15 (1949).

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. 1987. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley and Sons, Inc. New York.

Bachmann. B. J. et al., Microb. Rev., 44:1-56 (1980).

Barker, R., Idler, K., Thompson, D., and Kemp, J. (1983) Nucleotide sequence of the T-DNA region from the *Agrobacterium tumefaciens* Ti plasmid pTi15955. Plant Mol Biol 2: 335-350

Barry, G., Kishore, G., Padgette, S., Taylor, M., Kolacz, K., Weldon, M., Re D., Eichholtz., Fincher, K., and Hallas, L. (1992) Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. In: Biosynthesis and Molecular Regulation of Amino Acids in Plants. pp. 139-145. [Edited by Singh, B. K., Flores, H. E., and Shannon, J. C.] American Society of Plant Physiologists, Rockville, Maryland.

Bartlett, S.G., Grossman, A.R., and Chua, N.H. (1982) in <u>Methods in</u>
<u>Chloroplast Molecular Biology</u>, pp. 1081-1091. M. Edelman, R.B., Hallick, and
Chua, N.H., eds.

Bevan, M. (1984) Nucleic Acids Res. 12 (22): 8711-8721.

Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA.

Nucl. Acids. Res. 7:1513-1525.

Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. B., Heynecker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977) Construction and characterization of new cloning vehicles, II. A multi-purpose cloning system. Gene 2: 95-113.

Boyer, H. W. and Rolland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA in *Escherichia coli*. J. Mol. Biol. 41:459.

Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49-56.

Christou, P., D. E. McCabe, and W.F. Swain (1988) Stable transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol, 87:671-674.

Coruzzi, G., Broglie, R., Edwards, C., and Chua, N.H. (1984). Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. <u>EMBO</u> J 3:1671.

Dalla Chiesa, M., Mayes, S.R., Maskell, D.J., Nixon, P.J. and Barber, J. 1994 An AroA homologue from Synechocystis sp. PCC6803, Gene, 144: 145-146.

della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore G. K. (1986) Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad Sci. USA 83: 6873-6877.

della-Cioppa, G., Bauer, S. C., Taylor, M. T., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore G. M. (1987) Targeting a herbicide-resistant enzyme from *Escherichia coli* to chloroplasts of higher plants. Bio/Technology 5: 579-584.

Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., and Goodman, H.M. 1982. Nopaline Synthase: Transcript Mapping and DNA Sequence. J. MOLEC. APPL. GENETICS 1:561-573.

Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX.

Nucl. Acids. Res. 12:387-395.

Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. (1980) Broad host range DNA cloning system for Gram-Negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77, 7347-7351.

Duncan, K., Edwards, R.M., Coggins, J.R. (1987) The pentafunctional aroM enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem. J. 246: 375-386.

Dunn, J.J. and Studier, F.W., (1983) J. Mol. Biol. 166:477-535.

Fitzgibbon, J. E. (1988) *Pseudomonas* sp. strain PG2982: uptake of glyphosate and cloning of a gene which confers increasedresistance to glyphosate. Ph. D. Dissertation, Louisiana State University.

Fitzgibbon, E. F. and Braymer, H. D. (1990) Cloning of a gene from *Pseudomonas* sp. PG2982 conferring increased glyphosate resistance <u>Appl.</u> Environ. <u>Microbiol.</u> 56: 3382-3388.

Fling, M.E., Kopf, J., and Richards, C. (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3"(9)-O-nucleotidyltransferase. Nucleic Acids Res. 13 no.19, 7095-7106.

Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R. Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffman, N.L., and Woo, S.C. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80:4803-4807.

Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz D. A., Flick, J. S., Fink, C. L., Hoffmann, N. L. and Sanders, P. R. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation.

Bio/Technology 3: 629-635.

Fromm, M., (1990) UCLA Symposium on Molecular Strategies for Crop Improvement, April 16-22, 1990. Keystone, CO.

Fry J., Barnason A., and Horsch R. (1987) Plant Cell Reports 6: 321-325.

Gasser, C. S., Winter, J. A., Hironaka, C. M. and Shah, D. M. (1988) Structure, expression, and evolution of the 5-enolpyruvylshikimate 3-phosphate synthase genes of petunia and tomato. <u>J. Biol. Chem.</u> 263: 4280-4289.

Gowda, S., Wu, F.C., and Shepard, R.J. (1989). Identification of promoter sequences for the major RNA transcripts of figwort mosaic and peanut chlorotic streak viruses (caulimovirus group).

Journal of Cellular Biochemistry supplement 13D, 301 (Abstract).

Hallas, L. E., Hahn, E. M. and Korndorfer, C. (1988) Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. <u>J. Industrial Microbiol</u>. 3: 377-385.

Hayford, M. B., Medford, J. I., Hoffmann, N. L., Rogers, S. G. and Klee, H. J. (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. <u>Plant Physiol.</u> 86: 1216-1222.

Herrera-Estrella, L., et al. (1983) Nature 303:209

Heitkamp, M. A., Hallas, L. and Adams, W. J. (1990) Biotreatment of industrial wastewater with immobilized microorganisms - Presented in Session 11, Paper S40, Society for Industrial Microbiology Annual Meeting, Orlando, Florida, July 29-August 3, 1990.

Henner, J. H., Band, L. and Shimotsu, H. (1984) Nucleotide sequence of the *Bacillus subtilis* tryptophan operon. <u>Gene</u>, 34: 169-177.

Henner, J. H., Band, L., Flaggs, G. and Chen, E. (1986) The organization and nucleotide sequence of the *Bacillus subtilis hisH*, tyrA and aroE genes Gene 49: 147-152.

Hohn, B. and Collins J. (1980) A small cosmid for efficient cloning of large DNA fragments. <u>Gene</u> 11: 291-298.

Horsch, R.B. and H. Klee. (1986) Proc. Natl. Acad. Sci. U.S.A. 83:4428-32.

Hunkapiller, M. W., Hewick, R. M., Dreyer, R. J., and Hood, L. (1983) Methods Enzymol, 91, 399-413.

Jefferson, R.A., Kavanaugh, T.A. and Bevan, M.W., 1987, EMBO J., 6:3901-3907.

Kay, R., Chan, A., Daly, M. and McPherson, J. 1987. Duplication of the CaMV 35S promoter sequence creates a strong enhancer for plants. <u>Science</u> 236. 1299-1302. Kishore, G., Shah, D., Padgette, S., della-Cioppa, G., Gasser, C., Re, D., Hironaka, C., Taylor, M., Wibbenmeyer, J., Eichholtz, D., Hayford, M., Hoffman, N., Delannay, X., Horsch, R., Klee, H., Rogers, S., Rochester, D., Brundage, L., Sanders, P. and Fraley, R. T. (1988) 5-Enolpyruvylshikimate 3-phosphate synthase: From Biochemistry to genetic engineering of glyphosate tolerance, in <u>Biotechnology for Crop Protection</u> ACS Symposium series No. 379. Eds. Hedlin P. A., Menn, J. J. and Hollingsworth, R. M. pp. 37-48.

Kishore, G. and Shah, D. (1988) Ann. Rev. Biochem. 57:627-663.

Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, Q. K. and della-Cioppa, G. (1986) Fed. Proc. 45: 1506.

Klee, H.J., et al. (1985) Bio/Technology 3:637-42.

Klee, H. J., Muskopf, Y. M. and Gasser, C. S. (1987) Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvyl-shikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants.

Mol. Gen. Genet. 210: 437-442.

Klee, H. J. and Rogers, S. G. (1989) Plant gene vectors and genetic transformation: plant transformation systems based on the use of Agrobacterium tumefaciens in: Cell Culture and Somatic Cell: Genetics of Plants eds J. Schell and I.K. Vasil . 6: 1-23.

Klein, T.M., Kornstein, L., Sanford, J.C., and Fromm, M.E. 1989. Genetic transformation of maize cells by particle bombardment.

Plant Phys. 91:440-444.

Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204:383-396.

Kunkel, T. A., Roberts, J. D. and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection.
Methods Enzymol. 154:367.

Laemmli, U.K. (1970), "Cleavage of structural proteins during the assembly of the head of the bacteriophage T4" Nature, 227:680.

Maliga, P., Carrer, H., Kanevski, I., Staub, J., and Svab, Z. (1993) Plastid engineering in land plants: a conservative genome is open to change. Philos. Trans. R. Soc. London B Biol. Sci. 342: 203-208.

Maniatis, T., Fritsch, E. F. and Sambrook, J. (1982) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Maskell, D.J., Morrissey, P. and Dougan, G. (1988) Cloning and nucleotide sequence of the aroA gene of Bordetella pertussis.

J. Bacteriol. 170:2467-2471.

Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York.

Moore, J. K., Braymer, H. D. and Larson, A. D. (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl. Environ. Microbiol. 46: 316-320. Morelli, G., Nagy, F., Fraley, R.T., Rogers, S.G., and Chua, N. H. (1985). A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea.

Nature 315, 200-204.

O'Connell, C., Pattee, P. A. and Foster, T. J. (1993) Sequence and mapping of the aroA gene of Staphylococcus aureus 8325-4. J. Gen. Micr. 139: 1449-1460.

Odell, J.T., Nagy, F., and Chua, N.H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter.

Nature 313, 810-812.

Olins, P. O., Devine, C. S., Rangwala, S. H. and Kavka, K. S. (1988) <u>Gene</u> 73: 227-235.

O'Neill, C., Horvath, G. V., Horvath, E., Dix, P. J. and Medgyesy, P. (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3: 729-738.

Padgette, S. R., Huynh, Q. K., Borgmeyer, J., Shah, D. M., Brand, L. A., Re, D. B., Bishop, B. F., Rogers, S. G., Fraley, R. T., and Kishore, G. (1987) Bacterial expression and isolation of *Petunia hybrida 5-enol-*pyruvylshikimate-3-phosphate synthase. <u>Arch. Biochem. Biophys.</u> 258, 564-573.

Padgette, S. R., Huynh, Q. K., Aykent, S., Sammons, R. D., Sikorski, J. A., and Kishore, G. M. (1988) <u>J. Biol. Chem.</u> 263, 1798-1802.

Petersen, W.L., Sulc, S., and Armstrong, C.L. 1992. Effect of nurse cultures on the production of macro-calli and fertile plants from maize embryogenic suspension protoplasts. Plant Cell Reports 10:591-594.

Quinn, J. P., Peden, J. M. M. and Dick, E. (1988) Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide.

Appl. Microbiol. Biotechnol. 29: 511-516.

Rao, R.N. and Rogers, S.G. (1979). Plasmid pKC7: A vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7:79.

Richins, R. D., Scholthof, H. B., and Shepard, R. J. (1987) Sequence of the figwort mosaic virus DNA (caulimovirus group).

Nucl. Acids Res. 15: 8451-8466.

Rogers, S.G., Brand, L.A. Holder, S.B. Sharps, E.S. and Brackin, M.J. (1983) Amplification of the *aroA* gene from *E. coli* results in tolerance to the herbicide glyphosate. <u>Appl. Environ. Microbiol.</u>, 46:37-43.

Rogers, S.G. and Klee, H. J. (1987). "Pathways to genetic manipulation employing *Agrobacterium.*" in <u>Plant Gene Research. Plant DNA Infectious Agents</u>, Vol IV, Hohn, T. and Schell, J., eds. Springer-Verlag, Vienna, pp.179-203.

Sambrook, J., Fritsch, E.F. and Maniatis, T., (1989)

<u>Molecular Cloning: A Laboratory Manual</u>, Cold Spring Harbor Laboratory

Press, Cold Spring Harbor, New York.

Schocher, R.J., Shillito, R.D., Saul, M.W., Paszkowski, J., and Potrykus, I. (1986). Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4:1093-1097.

Songstad, D.D., Armstrong, C.L., and Petersen, W.L. (1991). AgNO₃ increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Reports 9: 699-702.

Schuler, M. A., Schmitt, E. S. and Beachy, R.N. (1982) Nucleic Acids Res. 10:8225-8244.

Schulz, A., Kruper, A. and Amrhein, N. (1985) Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. <u>FEMS Microbiol. Lett.</u> 28: 297-301.

Schulz, A., Sost, D. and Amrhein, D. (1984) Arch. Microbiol. 137: 121-123.

Shah, D., Horsch, R., Klee, H., Kishore, G., Winter, J., Tumer, N., Hironaka, C., Sanders, P., Gasser, C., Aykent, S., Siegal, N., Rogers, S., and Fraley, R. (1986). Engineering herbicide tolerance in transgenic plants.

Science 233, 478-481.

Shah, D.M., Rochester, D.E., Krivi, G., Hironaka, C., Mozer, T.J., Fraley, R.T., and D.C. Tiemeier. 1985. Structure and expression of the maize hsp70 gene. Cell. and Mol. Biol. of Plant Stress. Alan R. Liss, Inc. pp. 181-200.

Shimamoto, K. et al. (1989) Nature 338:274-276.

Sost, D., Schulz, A. and Amrhein, N. (1984) FEBS Lett. 173: 238-241.

Sost, D. and Amrhein, N. (1990) Substitution of Gly-96 to Ala in the 5enolpyruvylshikimate 3-phosphate synthase of *Klebsiella pneumoniae* results in greatly reduced affinity for the herbicide glyphosate. Arch. Biochem. Biophys. 282: 433-436.

Stalker, D.M., Thomas, C.M., and Helinski, D.R. (1981). Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. <u>Mol Gen Genet</u> 181: 8-12.

Stalker, D. M., Hiatt, W. R. and Comai, L. (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimate 3-phosphate synthase confers resistance to glyphosate. <u>J. Biol. Chem.</u> 260: 4724-4728.

Stallings, W. C., Abdel-Meguid, S. S., Lim, L. W., Shieh, Huey-Sheng, Dayringer, H. E., Leimgruber, N. K., Stegeman, R. A., Anderson, K. S., Sikorski, J. A., Padgette S. R., Kishore, G. M. (1991). Structure and Topological Symmetry of the Glyphosate Target 5-enol-pyruvylshikimate-3-phosphate synthase. Proc. Natl. Acad. Sci., USA 88. 5046-5050.

Svab, Z., Hajdukiewicz, P., and Maliga, P. (1990) Stable transformation of plastids in higher plants. <u>Proc. Natl. Acad. Sci. USA</u> 87: 8526-8530.

Svab, Z. and Maliga, P. (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. <u>Proc. Natl. Acad Sci. USA</u> 90:913-917.

Tabor, S. and Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. <u>Proc. Natl. Acad. Sci. USA</u> 82: 1074-1078.

Talbot, H. W., Johnson, L. M. and Munnecke, D. M. (1984) Glyphosate utilization by *Pseudomonas* sp. and *Alcaligenes* sp. isolated from environmental sources. <u>Current Microbiol</u>, 10: 255-260.

Talmadge, K., and Gilbert, W., (1980) "Construction of plasmid vectors with unique PstI cloning sites in the signal sequence coding region"

Gene, 12: 235-241.

Timko, M.P., Herdies, L., de Almeida, E., Cashmore, A.R., Leemans, J., and Krebbers, E. 1988. Genetic Engineering of Nuclear-Encoded Components of the Photosynthetic Apparatus in *Arabidopsis* in "The Impact of Chemistry on Biotechnology," ACS Books, 279-295.

Vasil, V., F. Redway and I. Vasil. (1990), Bio/Technology 8:429-434.

Vieira, J. and Messing J. (1987) Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3-11.

Yanisch-Perron, C., Vieira, J. and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119

Annex A

38-21(10535) PCT/US91/6148 (WO 92/04449) filed August 28, 1991 designated countries:

Australia European Patent Office

(Austria, Belgium, Denmark, France, Great Britain, Greece, Germany, Holland, Italy, Luxemburg, Sweden, Spain, Switzerland)

Japan Russian Federation

CLAIMS:

 An isolated DNA sequence other than the structural coding sequence listed in SEQ ID NO:41, SEQ ID NO:43 SEQ ID NO:66 and SEQ ID NO:68, encoding an EPSPS enzyme having the sequence domains:

-R-X1-H-X2-E- (SEQ ID NO:37), in which

X₁ is G, S, T, C, Y, N, Q, D or E;

X2 is S or T; and

-G-D-K-X3- (SEQ ID NO:38), in which

X₃ is S or T; and

-S-A-Q-X4-K- (SEQ ID NO:39), in which

 X_4 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and -N- X_5 -T-R- (SEQ ID NO:40), in which

 $X_5 \ is \ A, \ R, \ N, \ D, \ C, \ Q, \ E, \ G_{\lambda} \ H, \ I, \ L, \ K, \ M, \ F, \ P, \ S, \ T, \ W, \ Y \ or \ V.$

- 2. A DNA molecule of Claim 1 in which the K_m forphosphoenolpyruvate is between 2 and 25 $\mu M.$
- 3. A DNA molecule of Claim 1 in which the K_r/K_m ratio is between 25 and 500.
- $4. \qquad A \ DNA \ molecule \ of \ Claim \ 1 \ in \ which \ X_1 \ is \ D \ or \ N; \ X_2 \ is \ S \ or \ T; \ X_3 \\ is \ S \ or \ T; \ X_4 \ is \ V, \ I \ or \ L; \ and \ X_5 \ is \ P \ or \ Q.$
- A DNA molecule of Claim 4 which encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
 - 6. A DNA molecule of Claim 5 having the sequence of SEQ ID NO:2.

- 7. A DNA molecule of Claim 5 having the sequence of SEQ IDNO:9.
- 8. A recombinant, double-stranded DNA molecule comprising in sequence:
 - a) a promoter which functions in plant cells to cause the production of an RNA sequence;
 - b) a structural DNA sequence that causes the production of an RNA sequence which encodes a EPSPS enzyme having the sequence domains:
 - -R-X1-H-X2-E- (SEQ ID NO:37), in which

X₁ is G, S, T, C, Y, N, Q, D or E;

X2 is S or T; and

-G-D-K-X3- (SEQ ID NO:38), in which

X₃ is S or T; and

-S-A-Q-X₄-K- (SEQ ID NO:39), in which

 $X_4 \ is \ A, R, \ N, D, \ C, \ Q, \ E, \ G, \ H, \ I, \ L, \ K, \ M, \ F, \ P, \ S, \ T, \ W, \ Y \ or \ V; \ and \\ -N-X_5-T-R- (SEQ \ ID \ NO:40), \ in \ which$

 X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V;

and

c) a 3' non-translated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence:

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the encoded EPSPS enzyme to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule.

- 9. A DNA molecule of Claim 8 in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- 10. A DNA molecule of Claim 8 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q.
- 11. A DNA molecule of Claim 10 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 12. A DNA molecule of Claim 9 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q.
- 13. A DNA molecule of Claim 12 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2. SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- $14. \quad$ A DNA molecule of Claim 12 in which the EPSPS sequence is SEQ ID NO:3.
- 15. A DNA molecule of Claim 14 in which the promoter is a plant DNA virus promoter.
- A DNA molecule of Claim 15 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.

- 17. A DNA molecule of Claim 14 in which the the structural DNA sequence encodes a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11 and SEQ ID NO:15.
- 18. A DNA molecule of Claim 17 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 19. A method of producing genetically transformed plants which are tolerant toward glyphosate herbicide, comprising the steps of:
- a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence domains:
 - -R-X1-H-X2-E- (SEQ ID NO:37), in which

X1 is G, S, T, C, Y, N, Q, D or E;

X2 is S or T; and

-G-D-K-X3- (SEQ ID NO:38), in which

X3 is S or T; and

-S-A-Q-X₄-K- (SEQ ID NO:39), in which

 $X_4 \ is \ A, \ R, \ N, \ D, \ C, \ Q, \ E, \ G, \ H, \ I, \ L, \ K, \ M, \ F, \ P, \ S, \ T, \ W, \ Y \ or \ V; \ and \\ -N-X_5-T-R- \ (SEQ \ ID \ NO:40), \ in \ which$

 X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V;

and

a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence;

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the polypeptide to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule:

- b) obtaining a transformed plant cell; and
- c) regenerating from the transformed plant cell a genetically transformed plant which has increased tolerance to glyphosate herbicide.
- 20. A method of Claim 17 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q.
- 21. A method of Claim 20 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 22. A method of Claim 19 in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- 23. A method of Claim 22 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q.
- 24. A method of Claim 23 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:42 and SEQ ID NO:44.

- 26. A method of Claim 25 in which the promoter is from a plant DNA virus.
- 27. A method of Claim 26 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 28. A glyphosate-tolerant plant cell comprising a DNA molecule of Claims 9, 12 or 14.
- 29. A glyphosate-tole ant plant cell of Claim 28 in which the promoter is a plant DNA virus promoter.
- A glyphosate-tolerant plant cell of Claim 29 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 31. A glyphosate-tolerant plant cell of Claim 28 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, eukalyptus, apple, lettuce, peas, lentils, grape and turf grasses.
 - 32. A glyphosate-tolerant plant comprising plant cells of Claim 31.
- 33. A glyphosate-tolerant plant of Claim 32 in which the promoter is from a DNA plant virus promoter.

- 34. A glyphosate-tolerant plant of Claim 33 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 35. A glyphosate-tolerant plant of Claim 34 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, eukalyptus, apple, lettuce, peas, lentils, grape and turf grasses.
- 36. A method for selectively controlling weeds in a field containing a crop having planted crop seeds or plants comprising the steps of:
- a) planting the crop seeds or plants which are glyphosate-tolerant as a result of a recombinant double-stranded DNA molecule being inserted into the crop seed or plant, the DNA molecule having:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence domains:
 - -R-X1-H-X2-E- (SEQ ID NO:37), in which

X₁ is G, S, T, C, Y, N, Q, D or E;

X2 is S or T; and

-G-D-K-X3- (SEQ ID NO:38), in which

X₃ is S or T; and

-S-A-Q-X₄-K- (SEQ ID NO:39), in which

 X_4 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and -N-X*-T-R- (SEQ ID NO:40), in which

X₅ is A, R, N, D, C, Q, E, G, H, \(\frac{1}{3}\), L, K, M, F, P, S, T, W, Y or V;

and

iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSPS enzyme to enhance the glyphosate tolerance of the crop plant transformed with the DNA molecule; and

- b) applying to the crop and weeds in the field a sufficient amount of glyphosate herbicide to control the weeds without significantly affecting the crop.
- 37. A method of Claim 36 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q.
- 38. A method of Claim 37 in which the structural DNA sequence encodes an EPSPS enzyme selected from the sequences as set forth in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:42 and SEQ ID NO:44.
- 39. A method of Claim 36 in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- $40. \qquad \text{A method of Claim 39 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q.}$
- 41. A method of Claim 40 in which the structural DNA sequence encodes an EPSPS enzyme selected from the sequences as set forth in SEQ ID NO:2. SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.

- 42. A method of Claim 40 in which the DNA molecule encodes an EPSPS enzyme as set forth in SEQ ID NO:3.
- 43. A method of Claim 42 in which the DNA molecule further comprises a promoter selected from the group consisting of the CAMV35S and FMV35S promoters.
- 44. A method of Claim 43 in which the crop plant is selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower potato, tobacco, tomato, alfalfa, poplar, pine, eukalyptus, apple, lettuce, peas, lentils, grape and turf grasses.
- 45. A DNA molecule of Claim 9 in which the structural DNA sequence encodes a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17.
- 46. A DNA molecule of Claim 45 in which the chloroplast transit peptide is encoded by a DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16.
- 47. A DNA molecule of Claim 9 in which the structural DNA sequence encodes a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11 and SEQ ID NO:15.
- 48. A DNA molecule of Claim 47 in which the chloroplast transit peptide is encoded by a DNA sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:14.

- 49. A DNA molecule of Claim 45 in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- 50. A DNA molecule of Claim 46 in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- 51. A DNA molecule of Claim 47 in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- 52. A DNA molecule of Claim 48 in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- 53. A DNA molecule of Claim 49 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 54. A DNA molecule of Claim 50 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' nontranslated regions.
- 55. A DNA molecule of Claim 51 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 56. A DNA molecule of Claim 52 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.

- 57. A DNA molecule of Claim 53 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SSEQ ID NO:44.
- 58. A DNA molecule of Claim 54 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44.
- 59. A DNA molecule of Claim 55 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44.
- 60. A DNA molecule of Claim 56 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5,—SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44.
- 61. A DNA molecule of Claim 57 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 62. A DNA molecule of Claim 58 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.

- 63. A DNA molecule of Claim 59 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 64. A DNA molecule of Claim 60 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 65. A DNA molecule of Claim 53 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 66. A DNA molecule of Claim 54 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 67. A DNA molecule of Claim 55 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 68. A DNA molecule of Claim 56 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 69. A DNA molecule of Claim 65 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
- 70. A DNA molecule of Claim 66 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.

- 71. A DNA molecule of Claim 67 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
- 72. A DNA molecule of Claim 68 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
 - 73. A glyphosate-tolerant plant cell of Claim 29 in which:
- (a) the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters;
 - (b) the structural DNA sequence encodes:
 - (i) a chloroplast transit peptide selected from the group consisting of SEQ ID NO.11, SEQ ID NO.13, SEQ ID NO.15 and SEQ ID NO.17; and
 - (ii) an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44: and
- (c) the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 75. A glyphosate-tolerant plant cell of Claim 73 in which the structural DNA sequence comprises:
- (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10. SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16; and
- (b) an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.

- 76. A glyphosate-tolerant plant cell of Claim 73 in which the structural DNA sequence comprises:
- (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:14; and
- (b) a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 77. A glyphosate-tolerant plant cell of Claim 74 in which the structural DNA sequence comprises an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
- 78. A glyphosate-tolerant plant cell of Claim 75 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, eukalyptus, apple, lettuce, peas, lentils/grape and turf grasses.
- 79. A glyphosate-tolerant plant comprising a DNA molecule of Claims 9, 12 or 14 in which:
- (a) the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters;
 - (b) the structural DNA sequence encodes:
 - (i) a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17: and
 - (ii) an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44: and
- (c) the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.

- 80. A glyphosate-tolerant plant of Claim 79 in which the structural DNA sequence comprises:
- (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16; and
- (b) an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 81. A glyphosate-tolerant plant of Claim 80 in which the structural DNA sequence comprises:
- (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:14; and
- (b) a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 82. A glyphosate-tolerant plant of Claim 81 in which the structural DNA sequence comprises an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
- 83. A glyphosate-tolerant plant of Claim 82 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato. alfalfa, poplar, pine, eukalyptus, apple, lettuce, peas, lentils, grape and turf grasses.
 - 84. A seed of a glyphosate-tolerant plant of Claim 32.
 - 85. A seed of a glyphosate-tolerant plant of Claim 35.

- 86. A seed of a glyphosate-tolerant plant of Claim 79.
- 87. A seed of a glyphosate-tolerant plant of Claim 80.
- 88. A seed of a glyphosate-tolerant plant of Claim 81.
- 89. A seed of a glyphosate-tolerant plant of Claim 82.
- 90. A seed of a glyphosate-tolerant plant of Claim 83.
- 91. A transgenic soybean plant which contains a heterologous gene which encodes an EPSPS enzyme having a K_m for phosphoenolpyruvate (PEP) between 1 and 150 μM and a $K_i(glyphosate)/K_m(PEP)$ ratio between about 2 and 500, said plant exhibiting tolerance to N-phosphonomethylglycine herbicide at a rate of 1 lb/acre without significant yield reduction due to herbicide application.
 - 92. Seed of a soybean plant of Claim 91.
- 93. In a method for the transformation and regeneration of transgenic plants, the improvement which comprises the use of a glyphosate-resistance marker gene comprising::
 - a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence domains:

-R-X₁-H-X₂-E- (SEQ ID NO:37), in which

 X_1 is G, S, T, C, Y, N, Q, D or E;

Xo is S or T: and

-G-D-K-X3- (SEQ ID NO:38), in which

X3 is S or T; and

-S-A-Q-X4-K- (SEQ ID NO:39), in which

X₄ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and -N-Xs-T-R- (SEQ ID NO:40), in which

X₅ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V:

and

iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence:

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the polypeptide to render a plant cell transformed with the DNA molecule tolerance to a toxic level of glyphosate.

- 94. A method of Claim 93 in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q
- 95. A method of Claim 94 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 96. A method of Claim 93 in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.

ABSTRACT OF THE DISCLOSURE

Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.

6657	GTACGTACTACCACHCATTCAAAGTCTTTTTCTGTAGGTGGCTTCTGAATTTCAATCACC	
	CATIGUATICATIGGTICAGTIAAGTTTTCAGAAAAAGACATCCAUCGAAGACTTAAAGTTAGTGG	8659
6597	6 CGGTTTTTCGATGTCCTCTAGTTTACTTCTTAGAAGTTTAGTTTTCATTTGATGACAAGGTCGT	
	GCCAAAAGCTACAGGAGATCAATGAAGAATCTTCAATCAA	6538
6537	TOUTTUTTEAGAGTUAGGTTTTCGGAGTTGTTCCAGTCCCATGTCTCAGAGGTTTGGTAAT	
	AUGAAGAATTCTTCEGTUCAAAGCCTCAACAAGGTCAGGGTACAGAGTCTCCAAACCATTA	6478
6477	TGAAATAAGTTTAAGCATAGCGGTTTTTGGTTCCTTCCTT	
	ACTITIATIVAAAITIGGTATCGCCAAAACCAAGAAGGAACTCCCATCCTCAAAGGTTTGTA	6418
6417	ACTACTTTTTATAAATECTECTAAGGTCTAACCCAAGTTACTTGTTCCATGCTCGGTATAG	
) • •	_SSDI_ TUATICAAAATATTIVAGUAGCATTCCAGATTGGGTTCAATUAACAAGGTACGAGCCATATC	6358

Figure 1

SHEET 1 of 2

TAT 6898 ATA	AC2 6838 TG1	6778 778	AC 6718 TIC	ে 8599 95
TATTAAGAAGGCATTICATTICAATTTGAAGGATCATCAGATACTAACCAATATTTCTC ATATTICTTCCGTAAGTAAGGGTAAACTTCCTAGTAGTGATGATGATTGCTTAAACCAATATTTCTC 6954	ACAGUCUACTEACHAATEGGTATGACGAACGCAGTGACGACCACAAAAGAATTCCCTCTA 6897 TEHUUGGGTGAGTGAHTAUGCATACTGCTTGCGTCACTGCTGGTGTTTTCTTAAGGGAGAT	ATAAAGCAGATTCCTKTAGTACAAGTGGGGAACAAAATAACGTGGAAAAAGAGCTGTCCTG 6837 TATIIIKGIKTIAAGGAGATCATGTTCACCCCTTGTTTTATIIGCACCTTTTCTCGACAGGAC		GCATCTTTGAAAGTAATCTTGTCAACATCGAGCAGCTGGCTTGTGGGGGACCAGACAAAA 67 CUTAUAAACTTTVCATTAGAACAGTTGTAGCTCGTCGACCGAACACCCCTGGTCTGTTTTTT
4	97	37	6777	6717

SHEET 2 of 2

DOTALIGO INTEGR

Figure 2

346	GAT Asp 95	CTC Leu	CCG (Pro 1	GCG Ala	GAG Glu	CCT Pro 90	GCG Ala	CTG Leu	CTC	GGC Gly	61y 85	AAT Asn	GGC Gly	GTC Val	евс С	GAT Asp 80	
298	ATC Ile	ATC Ile	TGG Trp	ACC Thr	GAC Asp 75	GGC Gly	GAA Glu	AAG Lys	CGT Arg	ATC Ile 70	AGG Arg	ATU GGC GCC AGG Met Gly Ala Arg	• 715 255	ATG Met	GCC Ala 65	CAG Gln	
250	ATG Met	GCC Ala	AAG Lys	GGC Gly 60	ACG Thr	AAT Asn	ATC Ile	GTC Val	GAC Asp 55	GAG Glu	GGC Gly	GAA GGC Glu Gly	CTG	CT"f Len 50	GGC CTT CTG Gly Len Leu 50	ACC Thr	
202	ATC Ile	CGC Arg	ACG Thr 45	GAA Glu	GGT Gly	AGC Ser	GCG Ala	CTC Leu 40	GGT Gly	GGC Gly	TTC Phe	ATG Met	TTC Phe 35	TCC Ser	CGG Arg	CAC His	
154	TCC	ATC Ile 30	TCG Ser	AAG Lys	GAC Asp	GGC Gly	CCC Pro 25	ATT Ile	CGC Arg	GTC Val	ACC	GGA Gly 20	TCC	L'eu C'lup	4[5 - 995	TCT Ser	
106	CC er 15	AA TCC /s Ser 15	3C AAA rg Lys	GCC CGC Ala Arg	ACC GCC Thr Ala	GCA A Ala T 10	CCC G Pro A	CGG C	AGC C	AGC A	Ala s	GGT (CAC (His G	TCG (ATG T Met S	C: **	
60	AAGCCCGGT TCTCTCCGGC GCTCCGCCCG GAGAGCCGTG GATAGATTAA GGAAGACGCC	3GAA(TAA (AGAT	GAT.	CGTG	GAGC	AD D)GCCC	CTCC	GC C	TCCC	TCTC	CGT	CCCC	AA(

Figure 3 SHEET 1 of 5

CTG Leu	ATG Met	AAG Lys 205	GAA Glu	ACG Thr	CAT His	GAT Asp	CGC Arg 200	ACG Thr	ATG Met	ATC Ile	CCG Pro	GAG Glu 195	ATC (GTC Val	ACG Thr
C ACG e Thr 0	ATC Ile 190	GGC Gly	CCC Pro	ACG Thr	AAC Asn	CTC Leu 185	GGC Gly	GCC Ala	CTC	ren O.C.	C GCC+GTG CTG r Ala Val Leu 180	GCC Ala	TCC Ser	AAG Lys	GTG Val
A CAG a Gln 175	GCA Ala	TCC Ser	GCC Ala	ATG Met	CCG Pro 170	GTG Val	CGC Arg	TAC Tyr	ACC Thr	ATC T1e 165	CCG Pro	ACG Thr	CCG Pro	ACG Thr	AAG Lys 160
3 CCG 7 Pro	GGG Gly	CGC Arg	TTG Leu	ACC Thr 155	GTT Val	CCC Pro	CTT	CGT Arg	GAC Asp 150	GGT Gly	GAC Asp	GAA Glu	TCG Ser	AAA Iys 145	GTG Val
- 0	GTG Val	GGC Gly	ATG Met 140	GAA Glu	CGC Arg	CTG Leu	CCG Pro	AAC Asn 135	TTG Leu	GTG Val	CGC	GGC Gly	ATG Met 130	CCG Pro	CGC Arg
۲ Þ	ACA Thr	CTC Leu 125	TCG Ser	GCC Ala	GAC Asp	GGC Gly	ATC Ile 120	TTC Phe	ACC Thr	AGC Ser	GAC Asp	TTC Phe 115	GAT Asp	TAC Tyr	GTC Val
010	GTC Val 110	CTC	GGC Gly	ATG Met	ACC Thr	CTG Leu 105	Arg	TGC	Gly Cys	Thr	THE GGC AAT GCC GCC Phe Gly Asn Ala Ala 100	Ala	Asn	617 617	Phe Ph

SHEET 2 of 5

1.	H .	T	m 6			
CTG .	ATC Ile	CCC	CTG	GAC Asp 240	CGC Arg	CAG Gln
CGC Arg 305	GAA Glu	ACC Thr	CTT Leu	GTG Val	ACC Thr 225	91y
GTT Val	GTC Val 290	CGC Arg	GTT Val	CCG Pro	ATC Ile	TTTT Phe 210
CGC Arg	A'I'e Ile	ACC Thr 275	CCG Pro	GGC Gly	CGC Arg	GGC Gly
TCC Ser	AAC Asn	GGC G1y	GGC Gly 260	GAC Asp	CTG	GCC Ala
TCC Ser	CCG Pro	CTC Leu	'I'CC Ser	ccG Pro 245	GAA Glu	AAC Asn
ACG Thr 310	CGC Arg	ATC Ile	GAC Asp	TCC Ser	GGC Gly 230	CTT
CTG Leu	CTT Leu 295	CTG Leu	GTC Val	TCG Ser	CGC	Thr 215
AAG Lys	GCC Ala	ACG Thr 280	ACC Thr	ACG Thr	GGC Gly	GTC Val
GGC Gly	GGC Gly	CTG Leu	ATC Ile 265	GCC Ala	AAG Lys	GAG Glu
GTC Val	GGC Gly	CAG Gln	CTC Leu	TTC Phe 250	CTC	ACG Thr
ACG Thr 315	GAA Glu	GAA Glu	AAC Asn	CCG Pro	ACC Thr 235	GAT Asp
GTG Val	GAC Asp 300	ATG Met	GTG Val	CTG Leu	GGC Gly	GCG Ala 220
CCG Pro	GTG Val	GGC Gly 285	CTG Leu	GTT Val	CAA Gln	GAC Asp
GAA Glu	GCG Ala	GCC Ala	ATG Met 270	GCG Ala	GTC Val	GGC Gly
GAC Asp	GAC Asp	GAC Asp	AAC Asn	GCC Ala 255	ATC Ile	GTG Val
1018	970	922	874	826	778	730

SHEET 3 of 5

GTG Val	ACC Thr 400	ege Arg	AAT Asn	GTC Val	GCC Ala	9. ₽ C
						CGC Arg .
	CAT His	CCT Pro 385	GGC Gly	AAG Lys	TYTC Phe	GCG Ala
GAA . Glu .	CTC	GAC Asp	GTG Val 370	GAA Glu	GCG Ala	CCT
AAC Asn	GAT Asp	GGC Gly	GAT Asp	AGC Ser 355	GAA Glu	TCG Ser
CCT GTC Pro Val 420	CAC His	AAG Lys	TGC Cys	GAC Asp	GGG G1y 340	ATG Met
GTC Val	CGC Arg 405	GGG Gly	GAT Asp	CGC Arg	GCG Ala	ATC Ile 325
ACG Thr	ATC Ile	CTC Leu 390	GAG Glu	CTC Leu	ACC	GAC Asp
GTG Val	GCC Ala	GGC Gly	GGC Gly 375	TCG Ser	GTG Val	GAA Glu
GAC Asp	ATG Met	AAC Asn	GAG Glu	GCC Ala 360	ATG Met	TAT Tyr
GAT Asp 425	AGC Ser	GCC Ala	ACG Thr	GTC Val	AAC Asn 345	CCG
GCC Ala	TTC Phe 410	TCG Ser	TCG Ser	GCC Ala	GGT Gly	ATT Ile 330
ACG Thr	CTC Leu	GGC G1y 395	CTC Leu	AAT Asn	CTG Leu	CTC Leu
ATG Met	GTC Val	GCC Ala	GTC Val 380	GGC Gly	GAA Glu	GCT Ala
ATC Ile	ATG Met	GCC Ala	GTG Val	CTC Leu 365	GAA Glu	GTC Val
GCC Ala 430	GGC Gly	GTC Val	CGC Arg	AAG Lys	CTC Leu 350	GCC Ala
ACG Thr	CTC Leu 415	GCC Ala	GGC Gly	CTC Leu	CGC Arg	GCC Ala 335
1354	1306	1258	1210	1162	1114	1066

SHEET 4 of 5

1982	CCGACGATGC GCACTT	TGGGTCGGGC GGACAGTCCT TTGAAGCCCG	GGACAGTCC	TGGGTCGGGC
1936	AGGATATCCG CCGCCGCGAC GAGCGGGACA		CGATTACGU	GCGGGTTGGC CGATTACGGG
1876	AACGCCGCTA TGACGAAATC CTCGGCAATG	GTGCGCGCGA	GTCACCGG/	A'FGTCACCGC GTCACCGGAA
1816	CUSTRICTUGA TROUACGUGAT ATROGGCACGG TGGTCTGCCC GGATGCGCCG GTGAAGCTCT	41' ATCGGCACGG	ı 'I'GGACGCGz	CGGTGCTGGA
1756	CUTUGUTGUG GUGGGCGCTU GTCGAGGCGC AGCGCAGCTT TGCGGCGCGT GAGCUGGGCA	TG GTCGAGGCGC	3 GCGGGCGC	CCTCGGTGCC
1696	ACCGGREGGT GETGTEGGEC CATGECATEG GEGAGGEGGE TTEGAAGATE GEGGTEATGE	CC CATGCCATCG	F GCTGTCGG	ACCGGTCGG
1636	CGAGGCGUTT GCGGCCGATG TCGCCCGCAA TCTCGATCTT GCCGGGCTCG	TT GCGGCCGATG	A CGAGGCGG	CGCTTGATGA
1576	. CGGCCAAAGC GCTGCTCGAT CGCGGCCTGT	ETCTICGETEC GGGCCTGACC TATICGCGCCA	C GGGCCTGA	ATCTCGATA
1516	GCCGTATCGC GGAGGTCTAT GGCTTTCATC	CCGCTGCGGC CGGCAAGGGG ACGCTCTCGC	IC CGGCAAGO	CCGCTGCGG
1456	TGATGACCTT CACAATCGCC ATCGATGGTC	AAG GCT GCC lys Ala Ala 455		GAA CTC TCC Glu Leu Ser 450
1402	ATG GCC GGG CTG GGC GCG AAG ATC Met Ala Gly Leu Gly Ala Lys Ile 440	ATG GAC CTG Met Asp Leu	CCG GAG TTC Pro Glu Phe 435	AGC TYC (Ser Phe

SHEET 5 of 5

G.1.5	ZOOF.	CAC	ATA	ATTAC	218.0	PAGCT	'AGGA	A GC	cccc	TATC	TCT	CAAT	000	GCGT	GESGUCACAC ATAATTACEA TAGCTAGGAA GCCCGCTATC TCTCAATCCC GCGTGATCGC	60
GCC	'Ashi	:TGT	GACI	GTGA	7 YY	GUCAAAATGF GACTGTGAAA AATCC	ATG Met	TCC Ser	CAT	TC'I Ser	GCA Ala 5	TCC	CCG	AAA Lys	CCA Pro	112
GCA Ala 10	Thr	GCC Ala	Arg	: CGC	CGC TCG Arg Ser 15	GAG Glu	GCA Ala	CTC Leu	ACG Thr	GGC Gly 20	GAA Glu	ATC Ile	CGC Arg	ATT Ile	CCG Pro 25	160
GGC Gly	GAC Asp	AAG Lys	TCC		TCG	ATC TCG CAT Ile Ser His 30	CGC Arg	TCC Ser	TTC Phe 35	ATG Met	TTT Phe	GGC Gly	GGT Gly	CTC Leu 40	GCA Ala	208
TCG Ser	66 <i>C</i> 61 <i>y</i>	GAA Glu	ACC Thr 45	CGC Arg	ATC Ile	ACC Thr	GGC Gly	CTT Leu 50	CTG	GAA Glu	GGC	GAG Glu	GAC Asp 55	GTC Val	ATC Ile	256
AAT Asn	ACA Thr	GGC CGC Gly Arg 60	CGC Arg	GCC Ala	ATG Met	CAG Gln	GCC Ala 65	ATG Met	GGC Gly	3 GGC GCG AAA 5 Gly Ala Lys	AAA Lys	ATC Ile 70	CGT Arg	AAA Lys	GAG Glu	304
GGC GAT Gly Asp 75	GAT G ASP V 75	′I′C a.1	TGG Trp.	TGG ATC	ATC Ile	AAC Asn 80	GGC G1y	GTC Val	GGC GGY	AAT Asn	GGC TGC Gly Cys 85		CTG Leu	TTG Leu	CAG Gln	352

SHEET 1 of 5

688	GAC Asp	CGC Arg .	ACC (Thr ;	ATG . Met '	GTC Val	CCG Pro	GAG Glu 195	ATC Ile	GTC Val	ACC Thr	ACC Thr	GTC Val 190	GGC Gly	CCG Pro (ACG (Thr	AAC Asn
640	CTC Leu 185	GGT Gly	GCC Ala	CTC Leu	CTG	GTG Val 180	GCC Ala	TCC Ser	AAA Lys	GTA Val	CAG Gln 175	Ser Ala	Ser.	GCC Ala	ATG Met	CCG Pro 170
592	GTG Val	CGC Arg	TAT Tyr	ACC Thr	ATC Ile 165	CCG Pro	AAT Asn	GCC Ala	ACG Thr	AAG Lys 160	CCG Pro	GGC G1y	ATC Tle	CTG	ACG Thr 155	CTG
544	CCG Pro	ATG Met	CGC Arg	GAC Asp 150	GGC Gly	GAT Asp	GCC Ala	GCA Ala	GAA Glu 145	GTG Val	CAG Gln	GTT Val	90C	ATG Met 140	GAA Glu	ege Arg
496	TTG Leu	CCG	AAC Asn 135	CTG Leu	GTG Val	CGC Arg	GGC Gly	ATG Met 130	CCG Pro	CGC	AAG Lys	TCG Ser	CTG Leu 125	TCG Ser	GCC Ala	GAC Asp
448	GGC Gly	ATC 11e 120	TTT Phe	TCC Ser	ACC Thr	AAG Lys	ATG Met 115	GAC Asp	TAT	ACC) GJY GGC	r GTC 1 Val 110	CTT	GGC Gly	ATG Met	ACC Thr
400	CTC Leu 105	CGC Arg	GCG Ala	GGC G1y	ACC Thr	GGA Gly 100	GCC Ala	AAT Asn	GGC Gly	Phe	C GAT 1 ASP 95	3 CTC	r GCG a Ala	GAA GCT Glu Ala	GAP	Pro 90

SHEET 2 of 5

1024	GGC Gly	AAG (Lys (CTC ; Leu I	AAG (Lys 1 310	TCG . Ser	GCT Ala	AGG Arg	GTC . Val	CGC Arg 305	CTG	GAT Asp	GCC Ala	GTC Val	GAC Asp 300	GAA Glu	GGC Gly
976	GGC Gly	GCA Ala	CTT L Leu . 295	CGT Arg	GCC Ala	AAT Asn	CTC	GTG Val 290	GAA Glu	ATC Ile	GAT Asp	GCC Ala	GGC G1y 285	ATG Met	GAA Glu	CAG Gln
928	TTG Leu	ACC Thr 280	CTC	ATC Ile	CTC	GGC Gly	ACC Thr 275	CGT Arg	ACC Thr	3 ATG AAC CCG 1 Met Asn Pro 270	AAC Asn	ATG Met 270	GTG CTG Val Leu	GTG Val	AAC Asn	CGC Arg
880	ATC Ile 265	ACC Th r	GTC Val	GAC Asp	TCC Ser	GGT Gly 260	GAA Glu	GTG Val	CTG Leu	CTT Leu	GCC Ala 255	GCC Ala	GTT GCC Val Ala	CTC	CCG Pro	TYPC Phe 250
832	GCC Ala	ACC Thr	TCG Ser	TCA Ser	CCG Pro 245	GAT Asp	GGC Gly	CCG	GTG Val	GAC Asp 240	ATC Tle	ACC Thr	CAG Gln	997 1	CTT GTC Leu Val 235	알길
784	AAG Lys	GGC Gly	CAG Gln	GGC Gly 230	ACC Thr	ATC Ile	CGC	ATC	CAT His 225	a ccc Arg	C GTG	Gly	GAT Asp	AAG Lys 220	GAC Asp	ACC Thr
736	GAG Glu	GTC Val	ACG Thr 215	CTC	GAC Asp	GCC Ala	GGC Gly	Phe 210	GGC Gly	G CAG	t Leu	ATG	Glu Lys 205	GA,	Thr	CAC His

SHEET 3 of 5

ATG Met 410	ACG Thr	TCG	Ala Ala	Gly	GTC Val 330	< Q
0 G 0 G	GTT Val 395	Leu	A C		016	2.3
7.0	2 - 7	on in	CGC Arg	Len	L'eu L'eu	GTC GTC Val Val 315
GGC CTT GCG Gly Len Ala	GCA Ala	ACG Thr 380	ggc Gly	Asp	GC Al	Val
	ACC Thr	GTT Val	CTT Leu 365	Glu	3 AT	GPP CCG Val Pro
GCG Ala	CAT His	CGC Arg	GAA	1 CTG 1 Len 350	r GC e Al.	74 O
GAA Glu 415	CTC	617 617	GGC CTT GAA GCC Gly Leu Glu Ala 365	i Arg	G ATT GCC GCC a Ile Ala Ala 335	GCG GAA
CG GAA AAG CC la Glu Lys Pr 415	GAT Asp 400	CGC Arg	AAC Asn	Arg Val Lys Glu Ser	C TCC a Ser 5	u Arg u Arg 320
ં તેં	CAT His	CCC Pro 385	GGC Gly	C AA 1 Ly	C TTC	3T GCG 7g Ala 20
GTG Val	CGT Arg	GAC Asp	GTC Val 370	G GA s Gl	'C GCG e Ala	3G CCG
ACG Thr	ATC Ile	GGC Gly	GAT Asp	A TO u Se 35	G GAA a Glu	o Ser
GT"f Va1 420	GCG Ala	AAG Lys	f TGC Cys	G GAT r Asp 5	A GGC u Gly 340	3G A11G er Met
GAC Asp	ATG Met 405	GGA Gly	ACC Thr	T CGT p Arg	C GAA Y Glu 0	'G A'l'C et 11e 325
GAC Asp	AGC Ser	CTG Leu 390	GAA	T CTG g Leu	A ACC u Thr	
AGT Ser	TTC Phe	GGC Gly	A GGC u Gly 375	'G GCA u Ala	C GTG	
AAC Asn	CTC	c GGC / Gly	C GAG Y Glu 5	A GCG a Ala 360		GAA T Glu T
ATG Met 425	GTG 1 Val	۰ ۵			ATG Met	TAT Tyr
ភិក្សិ ភ	TG al	GGC Gly	ATG Met	GTC Val	GAC Asp 345	CCG
1360	1312	1264	1216	1168	1120	1072

SHEET 4 of 5

1673	ATGACTITICATI TITICITGAGAAA TITIGGCCTCGC A	CAT TTCTGAGAA	ATGACTT
1642	CHEAGCHTTC TUAAGACHTC GTHAAAACTG TACTGAAATC CCGGGGGGTC CGGGGATCAA	"I"PC TCAAGACI"	CTEAAGCT
1582	THACAGUATU AGGAAATATU AAAAAAGCTT TAGAAGGAAT TGCTAGAGCA GCGACGCCGC	CATIC AGGAAATIA	TAACAGC
1522	GAGAFIGGGC ATTATTACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT CTTCCATACG	GGC ATTATTACC	GAGATTG
1462	THG AGC ATA CTC TAGTCACTCG ACAGCGAAAA TATTATTTGC Leu Ser Ile Leu	ATC GAG Tle Glu 445	GCA AAG Ala Lys
1408	ACG TYC TYC CCC GAA TTC ATG GAC ATG ATG CCG GGA TTG GGC Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly Leu Gly 430 435	2 ACG TCC TTC a Thr Ser Phe 430	ANC GCC The Ala

SHEET 5 of 5

				100					9					Ċ		
342	GCG Ala	GGC Gly	ACC Thr		GCC Ala	AAT Asn	GGC Gly	TTC Phe	GAT Asp	CTC	GCG Ala	GCT Ala	CCC GAA Pro Glu 90	Pro Pro	CAG Gln	TTG CAG Leu Gln
294	CTG Leu	TGC Cys	66C 61y 85	AAT Asn	GGC Gly	GTC Val	GGC Gly	AAC Asn 80	ATC Ile	ATC Ile	h.d L.d	GTC Val		GGC GAT Gly Asp 75	GAG Glu	AAA Lys
246	CGT Arg	ATC Ile 70	AAA Lys	GCG Ala	GGC Gly	ATG Met	GCC Ala 65	CAG Gln	ATG Met	GCC Ala	ccc Arg	дас 61 у 60	ACA Thr	AAT Asn	ATC Ile	GTC Val
198	GAC Asp 55	GAG Glu	GGC Gly	GAA Glu	CTG Leu	CTT Leu 50	GGC Gly	ACC Thr	ATC Ile	CGC Arg	ACC Thr 45	GAA Glu	GGC Gly	TCG Ser	GCA Ala	CTC Leu 40
150	GGT Gly	GGC Gly	TTT Phe	ATG Met	TTC Phe 35	TCC	CGC	CAT	TCG Ser	ATC Tle 30	: TCC	C AAG D Lys	: GAC	617 617	Pro	ATT Tle
102	CGC Arg	ATC Ile	CG GGC GAA ATC IN Gly Glu Ile .	GGC Gly 20	71. 17.	. CTC Leu	GCA Ala	GAG Glu	TCG Ser	ccc Arg	2 CGC	C GCC r Ala	A ACC a Thr	GCA Ala 10	CCA Pro	AAA Lys
ហុ	c ccc r Pro	A TCC a Ser 5	T GCA T Ala 5	T TCT		ic Ticc it Ser 1	C AT	Å TC	JAAA!	Tere	I'GA (Met 1	C 24	90	2010	0

SHEET 1 of 5

CGC G Arg A 200	GGT CTC 185	CGC Arg		Pro	ATC Ile 120	Arg
GAC (Asp F	CTC Leu . 185	GTG Val	CCG Pro	Leu		1 Le 10
TAC His	AAC Asn	CCG Pro 170	Leu	Arg	GA As	· · · · · · · · · · · · · · · · · · ·
UAU CAC ACC GAA Asp His Thr₊Glu	ACG Thr	ATG Met	Thr 155	GAA Glu	GGC GAC GCC TCG CTG Gly Asp Ala Ser Leu 125	Arg Leu Thr Met Gly Leu Val Gly Thr Tyr Asp 105
GAA ,G] 11	CCG Pro	GCC Ala	G Leu	A ATG u Met 140	a Se	9 15 0
AAG Lys 205	69C	Ser Ser	G ATC u Tle	0 A[5 16 JAB BL	or L	1y 1
AT Me	: GTC / Val 190		0 O	3C 1	'I'G eu 25	ie,
ATG CTG	TC 7	GCG Ala	GGC Gly	GTT Val	TCG Ser	Val 110
TG (ACC Thr	CAG Gln 175	CCG Pro	CAG Gln	G TYCG AAG 1 Ser Lys	G1 ₃
Gln (ACC Thr	GTA Val	AAG Lys 160	GTG Val	cGC Arg	7 Th
GGC TTT Gly Phe 210	GTC Val	AAA Lys	ACt Tha	GAA Glu 145	C CCG	17 T
TTT Phe 210	ATC Ile	TCC	GCC /	A GCA 1 Ala 5	G ATG O Met 130	YF G
GGC Gly	GAG Glu 195	C GCC	C AAT a Asn		00 10 10 10 10 10 10 10 10 10 10 10 10 1	AC / Sp M
GCC Ala	9 L	a V		GCC Ala	GGC Gly	ATG Met 115
2C C	CCG (GTG Val 180	CCG Pro	GAT Asp	CGC Arg	AAG Lys
GAC Asp	GTC Val	CTG Leu	ATC Ile 165	GGC Gly	GTG Val	ACC
CTC Leu	ATG Met	CTC Leu	ACC Thr	GAC Asp 150	CTG	r Ser
ACG Thr	ACC Thr	GCC Ala	TAT			
2. 13 43	чO	рÖ	J.	CGC Arg	AAC Asn 135	TTT Phe
678	630	582	534	486	4.	ω
	O	2	4	36	438	390

AAG (Lys (GCA Ala	ACC Thr 280	ACC Thr	ácc Thr	997 1997	Va.
Gly .	GGC Gly	Treu Leu	ATC Ile 265	GCC Ala	AAG Lys	1 G1:
GTC Val	GGC Gly	CAG Gln	CGC Arg	Phe 250	G CTT	a Th
GTC Val 315	GAA Glu	GAA Glu	AAC Asn	: ccg Pro	r Grc 1 Val 235	r As
GTT Val	GAA GAC Glu*Asp 300	ATG Met	Va]	G Leu	6 GGC 1 GJy	C AA P Ly 22
CCG	GTC Val	u CAG GAA ATG GGC o u Gln Glu Met Gly <i>j</i> 285	ner Ten	C GTT 1 Val	с сад у Gln	O As
GTT CCG CCG Val Pro Pro	GCC Ala	GCC Ala	ATG Met 270	T GCC 1 Ala	.G ACC n Thr	Val Glu Thr Asp Lys Asp Gly 220
GAA Glu	GAT Asp	GAT Asp	AAC Asn	C GCC a Ala 255	C ATC	3C GTG y Val
GAA CGT Glu Arg 320	Val Ala Asp Leu	ATC Ile	CCG	C CTT a Leu 5	C GAC e Asp 240	G CGC
GCG Ala	CGC Arg 305	GAA Glu	acc Thr	T CTG u Leu	C GTG p Val	C CAT G His 225
CCG Pro	GTC Val	Val 290	C CGT	3 GTG 1 Val	G CCG 1 Pro	T ATC s Ile 5
TCG	AGG Arg	Leu	l' ACC J Thr 275	G GAA 1 Glu	G GGC o Gly	'C' CGC e Arg
ATG	GCT Ala	AAT	GGC GIY	A GGT u Gly 260	C GAT Y Asp	C ATC
ATC Ile 325	TCG Ser	'GCC Ala	CTC	r TCC / Ser	T CCG p Pro 245	C ACC e Thr
GAC Asp	AAG Lys 310	Arg	ATC	C GAC	G TCA o Ser 5	r Gly 230
GAA Glu	CTC L'eu	CTT Leu 295	CTC	c GTC p Val	A TCG r Ser	C CAG Y Gln 0
		0.2.5	L ()	1 C	មេល	βά
1014	966	918	870	822	774	726

SHEET 3 of 5

AAC Asn	CTC	ရ ရ	G C	3 7 (
n M 4:		617 (3.255	GAG Glu	ссс А1а 360	ATG Met	Tyr
ATG Met 425	GTG Val	GGC Gly	ATG Met	GTC Val	GAC Asp 345	Pro
ATC Ile	ATG Met 410	ACG Thr	TCG Ser	GCA Ala	C GGG Gly	G GTC o Val 330
GCC Ala	₹ 19	GTT Val 395	CTG	A CGC a Arg	y Leu	546 04
ACG Thr	CPT GCG	T GCA 1 Ala 5			PC (CTG (
5 A	n e		ACG Thr 380	GGC G1y	GAC Asp	GCG Ala
TCC '	SCG 11 a	ACC Thr	CTT Val	CTT Leu 365	GAA Glu	APT Ile
TTC Phe 430	GCG Ala	CAT His	CGC Arg	GAA Glu	CTG Leu 350	r GCC e Ala
CCC Pro	GAA Glu 415	CTC	GGC Gly	Ala	GCGC Arg	C GCC a Ala 335
GAA Glu	AAG Lys	GAT Asp 400	CGC	AAC Asn	C GTC g Val	C TCC a Ser 5
TTC Phe	CCG Pro	CAT His	CCC Pro 385	GGC Gly	C AAG l Lys	C TTC r Phe
ATG Met	GTG Val	CGT Arg	GAC Asp	GTC Val 370	G GAA s Glu	C GCG e Ala
GAC Asp 435	ACG Thr	ATC	G1y	C GAT l Asp	A TCG u Ser 355	G GAA a Glu
ATG Met	GTT Val 420	GCG	AAG Lys	r TGC o Cys	G GAT r Asp 5	A GGC u Gly 340
ATG Met	GAC Asp	ATG Met 405	GGA Gly	C ACC s Thr	T CGT p Arg	iC GAA Y Glu 0
CCG Pro	GAC Asp	AGC Ser	1 CTG Leu 390	c gaa r glu	T CTG g Leu	A ACC u Thr
GGA Gly	: AGT			۳ A ع 0 C		
Υ¥	er er	TTC Phe	GGC Gly	GGC G1y 375	GCA Ala	GTG Val
1350	1302	1254	1206	1158	1110	1062

SHEET 4 of 5

440	i.eu	1
	Gly	GGC
	Ala	GCA
	Lys	AAG
	hen Gly Ala Lys Ile Glu Leu Ser Ile Leu	ATC
445	Glu	GAG
	Leu	TTG
	Ser	AGC
	Ile	ATA
	Leu	CTC
		TAGTICACTCG
		TAGTCACTCG ACAGCGAAAA
		1400

TEMPTATIFIC GAGATIGGG: ATTATTACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT

CTTCCATACG TAACAGCATC AGGAAATATC AAAAAAGCTT

1500 1460

Figure σ

÷

SHEET 5 of 5

あるないがん ひのちかいからの

y t	96	45	148	95	9	4	٠			
95 LVSKPYIDITLNIMKTFGVEIENQHYQQFVVKGUQSYQSPGTYLVEGDAS 244	98 MTRDIFTEKMI.(x:):GANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPSS 247	145 QENYPPLRIQGGFTGGNVDVDGSVSSQFLTALLMTAPLAPEDTVIRIKGD 194	148 DGDKLEVTLKGFKTPTFITYRVPMASAQVKSAVLLAGLNTPGITTVIEPI 197	95 AGTAMRPLAAALCLGSNDIVLTGEPRMKERPIGHLVDALRLGGAKITYLE 144	99 AATGCRLTMGLAVGVVDFDSTFIGDASLTKRPMGKVLNPLREMGVQVK.SE 147	45 I.DSDDVRHMI.NAI:TALGVSYTLSADRTRCEIIGNGGPLHAEGALELFLGN 94	51 LEGEDVIRTEKARQAMGARIRKEGDTWIIDGVGRGGLLAPEAPLDFGN 98	44		1 MSHGASSRPATARKSSGLSGTVRIPGDKSISHRSFMFGGLASGFTRITTGI F
4	7	4	97	4	47	4	8	4	Ċ	л Э

	426 AA* 428	426
	446 KIELSDTKAA* 456	446
425	377 AEIATYNDHRMANCFSLVAL SDTPVTILDPKCTAKTFPDYFEQLARISQ 425	3.77
44	AAVATHLDHRIAMSFLVMGLVSENPVTVDDATM1ATSFPEFMDLMAGLGA 449	396
376	333 NIYNWRVKETDRLFAMATELRKVGAEVEEGHDYIRI.TPPEKLNF 370	ى كا
39	346 GLEELRVKESDKLSAVANGLKLNGVDCDEGETSLVVRGRPDGKGLGNASG 39:	346
W	33. CHORDELLIS INGELINATION DINNHIPDAAMTLATAALFAKGTTRLR 33.	
4	. :	
) •	296 ACCEDVALLEVESSTLECTUPEDRAPSMIDEVELL AVANAGAGO TO TO A	290
28	SASIFLAAAAIKGGTVKVTGIGRNSMQGDIRFADVLEKMGATI	1. 2. 0.
2		-
	248 TAFFILVAALLVEGSDVTILNVLMNPTRTGLTIT LOFMCARTEUTIER SO	124

251	251	201	201	151	151	101		101	5		51	_	
PI-VAALIAVEGSDVTIRNVLMNPTRTGLILTILQENGADIEVLNARLAGGED 3	_	DHTEKMLQGFGADIAVETDKDGVRHIRITGQGKLVGQTIDVPGDPSSTAF 2	-2	~	RLEVTLRGEKTTITTTVERDEMASAQVKSAVLLAGLNTPGITTVIEPIMTR	TGARLTIMGLVGTYDMKTSFIGDASLSKRPMGRVLNPLREMGVQVEAADGD		TOCKLINGLVGVYDFDSTFIGDASLTKRPMGRVLNDLRFMGVOVZGEDGD	LEGEDVINTGRAMQAMGAKIRKEGDVWIINGVGNGCLLQPEAALDFGNAG		LEGEDVINTGKAMQAMGARIRKEGDTWIIDGVGNGGLLAPEAPIDEGNAA	-	MSHGASSRPATAKKSSGLSGTVRIPGDKSISHRSFMFGGLASGFTRITGL
300	300	250	250	200	200	150	TOO	n O	100	Ġ	100	50	7.0

451	865	401	351	351	301	301
451 DTKAA* 456	398 HLDHRIAMSFLVMGLAAEKPVTVDDSNMIATSFPEFMDMMPGLGAKIELS 447	401 HIJHKIAMSELVMGLVSENPVTVDDATMIATSEPEEMDLMAGLGAKIELS 450	RVKESDRLAAVARGLEANGVDCTEGEMSLTVRGRPDGKGLGGGTVAT 397		301 VADLRVRASKIKGVVVPPERAPSMIDEYPVLAIAASFAEGETVMDGLDEL 350	301 VADLRVRSSTIKGVTVPEDRAPSMIDEYPILAVAAAFAEGATVMNGLEEL 350
	47	50	197	00	350	350

448 11.... 449

Figure 7

GTTCCGACGT CACCATCCTT AACGTTTTGA TGAACCCAAC CCGTACTGGT CTCATCTTGA AUGUMCCAGG TGATCCATCC TCTACTGCTT TCCCATTGGT TGCTGCCTTG CTTGTTCCAG CHGACGGRUF GCGRACCARC CGRCFFGAAG GTCGTGGRAA GCTCACCGGT CAAGTGATFG CHCACCACAC TGAAAAGATG CTTCAAGGTT TTGGTGCTAA CCTTACCGTT GAGACTGATG THETRETHEE HEGTENEARE ACCCCAGGTA TCACCACTGT TATCGAGCCA ATCATGACTC AGACTICICAAC GCCAATCACC TACAGGGTAC CTATGGCTTC CGCTCAAGTG AAGTCCGCTG THUGTICTICA GETGAACTET GAAGACGETG ATCGTCTTCC AGTTACCTTG CGTGGACCAA THUGTGACGC THECTCECH AAGCGTCCAA TGGGTCGTGT GTTGAACCCA CTTCGCGAAA CAACHGGITIG CCGITTIGACT AIGGGTCTTG TTGGTGTTTA CGATTTCGAT AGCACTTTCA GHEAGGEHAT GCAAGCHATG GGTGCCAGAA TCCGTAAGGA AGGTGATACT TGGATCATTG TEGETIAGEGG TGAAACTEGT ATCACCGGTC TTTTGGAAGG TGAAGATGTT ATCAACACTG GAACCUTCCG TATTCCAGGT GACAAGTCTA TCTCCCACAG GTCCTTCATG TTTGGAGGTC CCATGGCTCA CGGTGCAAGC AGCCGTCCAG CAACTGCTCG TAAGTCCTCT GGTCTTTCTG TAACGGTUGA CTCCTTGCTC CTGAGGCTCC TCTCGATTTC GGTAACGCTG 840 780 720 660 600

540 480 420 360 300 240 180 120 60

Figure σ

SHEET of

N

日日本市本日日日 · 以同日日直

1377	TGAGCTC	TRUCTRUTTET TRUGARCTRAR ATCUAACTOT COGACACTAA GGOTGOTTGA TGAGOTO	CCGACACTAA	ATCGAACTCT	TGGAGCTAAG	TGGCTGGTCT
1320	ATGGATTTGA	CHGTTACHGT TGATGATGCT ACTATGATCG CTACTAGCTT CCCAGAGTTC ATGGATTTGA	CTACTAGCTT	ACTATGATCG	TGATGATGCT	CTGTTACTGT
1260	TCTGAAAACC	CUCACUTUGA TUACUGTATU GUTATGAGUT TOOTOGTTAT GGGTCTCGTT TOTGAAAACC	TCCTCGTTAT	GUTATGAGUT	TCACCGTATC	CCCACCTCGA
1200	GCTGTCGCTA	TREFIGURING TEGRECINGE GETAAGGETE TEGGTAACGE TICTGGAGCA GETGTCGCTA	TCGGTAACGC	GGTAAGGGTC	TUGTCCTGAU	исстверте
1140	ACTTCTCTCG	CTWTCGCAAA CGGTCTCAAG CTCAACGGTG TTGATTGCGA TGAAGGTGAG ACTTCTCTCG	TTGATTGCGA	CTCAACGGTG	CGGTCTCAAG	CTGTCGCAAA
1080	CGTCTTTCTG	GIGGTAGGGT TATGAAGGGF TTGGAAGAAC TCCGTGTTAA GGAAAGCGAC CGTCTTTCTG	TCCGTGTTAA	TTGGAAGAAC	TATGAACGGT	GTGCTACCGT
1020	TTCGCTGAAG	GEOUTECTEU TATUATUGAU GAGTATECAA TTETEGETGE TEGEAGETGEA TTEGETGAAG	TTCTCGCTGT	GAGTATCCAA	PATGATCGAC	GTGCTCCTTC
961	CCAGAAGACC	ACGIGGCIGA CINGCGIGIF CGTICTTCTA CTTIGAAGGG IGITTACTGTT CCAGAAGACC	CTTTGAAGGG	· CGTTCTTCTA	CTTGCGTGTT	ACGTGGCTGA
90	GGTGGAGAAG	CTCTGCAGGA AATGGGTGCC GACATCGAAG TGATCAACCC ACGTCTTGCT GGTGGAGAAG	TGATCAACCC	GACATCGAAG	AATGGGTGCC	CTCTGCAGGA

SHEET 2 of 2

318												С	GCG TGC ATG_C Ala Cys Met	TGC Cys	GCG Ala	ACG Thr
305	TCC Ser	Val	TCT Ser	TCT Ser 70	ATG Met	GTC Val	AAG Lys	CTT AAG Leu Lys	CCT Pro 65	CGT Arg	Leu	ATT GGC TCT GAG Ile Gly Ser Glu 60	TCT Ser	660 61y 60	ATT Ile	Tra Leu
257	ACG Thr	ATG Met	GGG Gly 55	AGT Ser	AAG Lys	AAG Lys	TTG Leu	GGA Gly 50	TGG Trp	TCG Ser	TCG Ser	TCG Ser	ATT Ile 45	CCG Pro	GCT TAT Ala Tyr	GCT Ala
209	CGA Arg	CCA Pro 40	CAT His	CAG Gln	CAG Gln	ACG Thr	AAG ACG Lys Thr 35	CTG Leu	TCT Ser	GTT Val	TCG Ser	TTA Leu 30	TCT CCC Ser Pro		AAA Lys	ege Arg
16:	CAA Gln 25	AGT Ser	TCC Ser	AAA Lys	Ser	CTC Leu 20	AAT Asn	Ser	ATC Ile	CTS	TCT Ser 15	CCA Pro	AAC Asn	G]n	GGT GTG Gly Val 10	GGT 61y 10
1	C AAT s Asn	C TGC e Cys	A ATC	AGC AGA Ser Arg 5	GTT AGC Val Ser 5	A GTT n Val	CG CAA la Gln	ATG GCG Met Ala 1		PCTCC	711111111111111111111111111111111111111	CGAITICTINC AATINGAAGIII TETECCG	AATru	TPTC	MTG(<i>ქ</i> მე
6	SUBTICITY OF ATTAGETTUS TOTABITY OF GOARGATCAA ARTITY CART CCCCATTCTY	cccc	AAT	TTTC	AAT	TCAA	3AAGA	3A G(ATTGO	PGTA!	GA 1	AGCTH	ATA!	7TCG	ATCT:	AC.

75

55
CUATTRICTIC AATTGAAGTE TCTCCG ATG GCG CAA GTT AGC AGA ATC TGC AAT 11 Met Ala Gln Val Ser Arg Ile Cys Asn 1 5
GGT GTG CAG AAC CCA TCT CTT ATC TCC AAT CTC TCG AAA TCC AGT CAA 16 Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln , 10 15 20 25
CGC AAA TCT CCC TTA TCG GTT TCT CTG AAG ACG CAG CAG CAT CCA CGA Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg 30 35 40
Ala Tyr Pro Ile Ser Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr 45 50 55

ATT AAG
Jule
CCT GGC
TCC
AAG TCT
CTA
TCA
AAT /
AGA .
ATT
401

Figure 10

Asn Asn Met Ala Gln Gly Ile 5 10 CAT AAA CCC CAA GTT CCT AAA His Lys Pro Gln Val Pro Lys AAA AAA CTG AAA AAT TCA GCA Lys Lys Leu Lys Asn Ser Ala TCA ATT TTT ATG CAA AAG TTT Ser Ile Phe Met Gln Lys Phe Ser Ile GCC TGC ATG C Ala Thr Ala Cys Met 70 CCA AGC TGC ATG C Ala Thr Ala Cys Met
Ile Asn Asn Met Ala Gln Gly Ile of the His Lys Pro Gln Val Pro Lys 20 TCT AAA AAA CCC CAA GTT CCT AAA Phe His Lys Pro Gln Val Pro Lys 25 TCT AAA AAA CTG AAA AAT TCA GCA Ser Lys Lys Leu Lys Asn Ser Ala 40 GAT TCA ATT TTT ATG CAA AAG TTT ASp Ser Ile Phe Met Gln Lys Phe 55 GTG GCT ACA GCC TGC ATG C Val Ala Thr Ala Cys Met 70
Asn Met Ala Gln Gly Ile (10 AAA CCC CAA GTT CCT AAA Lys Pro Gln Val Pro Lys 25 AAA CTG AAA AAT TCA GCA Lys Len Lys Asn Ser Ala 40 ATT TTT ATG CAA AAG TTT Ile Phe Met Gln Lys Phe 55 ACA GCC TGC ATG C Thr Ala Cys Met
Ala Gln Gly Ile (10 10 10 10 10 10 10 10 10 10 10 10 10
Gly Ile (10 10 TCT AAA Pro Lys TCA GCA Ser Ala AAG TTT Lys Phe C

201	AAA Lys	AAA Lys 50	TTG . Leu :	GTT Val	TTG Leu	ATG Met	TCT Ser 45	AAT Asn	GCA Ala	TCA Ser	AAT Asn	AAA Lys 40	CTG	AAA Lys	AAA Lys	TCT Ser	
153	GGA Gly 35	TTT Phe	GTT Val	CTT Leu	TTT Phe	AGT Ser 30	TCA Ser	TCT Ser	AAA Lys	CCT Pro	GTT Val 25	CAA Gln	CCC	AAA Lys	CAT His	TTC Phe 20	
105	AAT Asn	TCC Ser	AAT Asn	CCC	AAT Asn 15	CTT Leu	ACC Thr	CAA Gln	ĄТА Ile	GGG Gly 10	CAA Gln	GCT Ala	A'I'G Met	AAC Asn	AAC Asn 5	ATTI	
57	A CAA a Gln	GCA Ala	Met	ATATATCC	ATAS	GGAG	AGAA	T TA	AACT	GTTT	1111 1	AGATCTGCTA GAAATAATTII TGTTTAACTT TAAGAAGGAG	GAAA	CTA	TCTG	AGA	

352														С	ATT Ile	AGA Arg 100
345	AAT Asn	TCT Ser	TTA Leu	TCA Ser	AAA Lys 95	TCT Ser	GGC Gly	CCT Pro	TTG	AAA Lys 90	GTT Val	ACT Thr	GGC Gly	TCA Ser	АТТ I1е 85	GAG Glu
297	AAA Lys	ATT Ile	CCC Pro	CAA Gln 80	TTG Leu	GTG Val	ATA Ile	GAG Glu	TCT Ser 75	CCT Pro	<i>LL</i> G Lys	CAG Gln	GCA Ala	ACA Thr 70	GCT Ala	ond Val
249	TCA Ser	GCA Ala	TCA Ser 65	ATT Ile	AGG Arg	TTT Phe	TCC Ser	TGT Cys 60	TTT Phe	AAG Lys	CAA Gln	ATG Met	TTT Phe 55	ATT Ile	TCA Ser	GAT Asp

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

4	6	144	192	240	288	336
CCC Pro	GCG Ala	CTG	AGC Ser	GAG Glu 80	CTG	GGA Gly
ATT Ile 15	CTA	TGT	CAA Gln	AAA Lys (CGC (Arg I	GCC G Ala G
CAT	GCG Ala 30	GAT Asp	GAG Glu	TG	ATT (Ile /	GTA G Val A
ATA Ile	66C 61y	GCA Ala 45	ATT Ile	GGA ATC GAT GCC C Gly Ile Asp Ala L 75	ACG	GCG C Ala V
GAA Glu	TTT	$_{\rm G1y}^{\rm GGA}$	CAC His 60	GAT	ACA Thr	AGC (
GGA G1y	ATG Met	CCG	GTT Val	ATC Ile 75	$_{\rm GGY}$	TAC . Tyr :
A CAT 1 His 10	GTT	CTG	$_{\rm G1y}^{\rm GGT}$	GGA Gly	AAT TCA Asn Ser 90	TTT
TTA	TCT Ser 25	TTT	ATG Met	AAA Lys	AAT Asn	CCT Pro 105
ACC Thr	CGC	AAC Asn 40	AAA Lys	$_{\rm GLy}^{\rm GGA}$	GGA Gly	CGT (Arg I
CAG Gln	CAC	AAA AAC TTT C Lys Asn Phe L 40	TTT AGA AAA ATG G Phe Arg Lys Met G 55	CAC	GTC .	66C (
AAG GTG C Lys Val C 5	ATT TCT (Ile Ser B	G'FT Val	TTT Phe	ATT 11e 70	GAT Asp	GCG (Ala C
AAG Lys 5	AT'I Ile	ACA Thr	TGC Cys	GTG Val	TTA Leu 85	TTG (Len }
GAT	TCC Ser 20	ACA Thr	GAT TGC Asp Cys B	GTC	CTT (ATA 1 Ile I 100
CGA	AAA Lys	ACA Thr 35	ATC Ile	GAT	AGC (Ser 1	GGA A Gly I
AAA Lys	GAT Asp	GGC Gly	ACG Thr 50	AGC (GAA 7	CTC (Fen G
ATG Met 1	$\begin{array}{c} \text{GGT} \\ \text{G1} \end{array}$	GCA Ala	AGC	AGC Ser 65	CCA (ATG C Met I

SHEET 1 of Figure 18

384	432	480	528	576	624	672	
GAG AGC ATT Glu Ser Ile 115		CCG ("YG TYCA GTG AGC GGC GCT TCA TTA AAA GGA ATT GAT TAT GTA TCA Pro Leu Ser Val Ser Gly Ala Ser Leu Lys Gly Ile Ast Tyr Val Ser 145	CCT GTT GCA AGC GCG CAA ATT AAA TCT GCT GTT TTG CTG GCC GGA TTA Pro Val Ala Ser Ala Gln Ile Lys Ser Ala Val Leu Leu Ala Gly Leu 165	GAG GCC ACA ACA ACT GTA ACA GAG CCC CAT AAA TCT Glu Gly Thr Thr Thr Val Thr Glu Pro His Lys Ser 180 190	CAC ACT GAG CUG ATG CTT TCT GCT TTT GGC GTT AAG CTT TCT GAA GAT His Thr Glu Arg Met Leu Ser Ala Phe Gly Val Lys Leu Ser Glu Asp 200	CAA ACG ACT GTT TCC ATT GCT GGT GGC CAG AAA CTG ACA GCT GCT GAT Gln Thr Ser Val Ser Ile Ala Gly Gly Gln Lys Leu Thr Ala Ala Asp 210	Ī

Figure 18

235 240 ATT GFA TTG AAA AAC GTA GGT TTA 768 Ile Val Leu Lys Asn Val Gly Leu 250 255	GAT GTC CTT CAA AAC ATG GGG GCA 816 Asp Val Leu Gln Asn Met Gly Ala 265	GAT AGC GGT GCA GAG CCT TAT GGA 864 Asp Ser Gly Ala Glu Pro Tyr Gly 285	AAG GCA GTT GAA ATC GGA GGA 912 Lys Ala Val Glu Ile Gly Gly 300	ATC CCT ATC ATC GCG CTT CTT 960 Ile Pro Ile Ile Ala Leu Leu 315 320	ATT AAG GAC GCG GCA GAG CTA 1008 Ile Lys Asp Ala Ala Glu Leu 330	
230 CCA AAC AGC AGA , Pro Asn Ser Arg ; 245	ACA GGT ATT ATT Thr Gly Ile Ile	A CCA TCT GCT S Pro Ser Ala 280	A ACG TCA TCT CTA I	CGT TTA ATT GAT Arg Leu Ile Asp 310	GGA ACC ACC	Figure 10
GGC GCG ATG GTT CCGIY Ala Met Val Pr	AAT CUG ACT CGG AC Asn Pro Thr Arg TP 260	AAA CTT GAA ATC AAA Lys Leu Glu Ile Lys 275	GAT TTG ATT ATA GAA ASP Leu Ile Ile Glu 290	GAT ATC ATT CCG CG ASP Ile Ile Pro Ar 305	GCG ACT CAG GCG GAA Ala Thr Gln Ala Glu 325	

Figure 18

SHEET 3 Of 4

1056	1104	1152	1200	1248
CGC Arg	TAT Tyr	GAT Asp	GAG Glu 400	ACC Thr
CTT	GTT Val	GGA Gly	GAG Glu	CCA Pro 415
GAG G1u 350	AAG Lys	CAC	ACG Thr	TAT (Tyr 1
TCT Ser	ATG Met 365	AGC Ser	ATA Ile	TCT 1 Ser 1
oTT Val	$_{\rm GGA}$	TCC Ser 380	'TGT Cys	GTT Val
ACT GIT Thr Val	GAT Asp	GTG Val	TCC Ser 395	CAC
ACT Thr	GCA Ala	GCA Ala	GCT Ala	ATT Ile 410
ATT GAT	ACA Thr	GCT Ala	ATT Ile	GCC
ATT Ile	CCG Pro 360	GGC G1y	$_{\rm G1y}^{\rm GGT}$	GAT
마다오다르다 마음마바요마음마 CA AAC CGY ATY GAY ACY C hr Asn Arg Ile Asp Thr V 345	GAA Glu	GGC Gly 375	CTT	ACG Thr
AAC	ATT Ile	AAA Lys	A1G Met 390	CAC
∢ [-	GAA Glu	TTC	ATG Met	GAG G1u 405
GAA G1u 340	GCT Ala	ACG Thr	GGA Gly	ATC Ile
AAA Lys	$_{\rm G1y}^{\rm G21}$	CAA Gln	ATC Ile	GAA G1 u
GTG Val	CTG Leu	AAA Lys 370	UGA Arg	ATT (
AAA Lys	AAG Lys	GGC G1y	CAT His 385	CCG

TTC TTC GAG CAT TTA AAT AAG CTT TCG AAA AAA TCC TGA Phe Phe Glu His Leu Asn Lys Leu Ser Lys Lys Ser 420

SHEET 4 Figure

Thr			GJ _u	Ala	д на	4 2 4
Arg	Asn	AAA Lys	_ ,			
Leu			Asp (Ser		Val
			TGT Cys	Leu 35	Val	AAT Asn
Leu . 100			CGT Arg	GCT Ala		
GCA Ala	His 85	GAT Asp	ASP Cys Arg Arg 50	a G G		
GGY Gly	Gln	T GAA o Glu 70	1 5.	GAA (CAA Gln 5
f TTG / Leu		AA 2 lu I 70	ACG Thr	Gly	GAT Asp	ATC
n I	GTA Val	AAA Lys	ATG Met 55	GTA Val	AAG Lys	II.
TTA Leu	TTG Leu	A TTA GTT 5 Leu Val	GAC Asp	Ser	G TCA s Ser	ATT GAT Ile Asp
AGT Ser 105	TAT Tyr	va Va	C ATT D Ile		CA zer M	AT
Gly	-3 N.	T GTG 1 Val		ACT Thr	ATG Met 25	ATT Ile
A T.	ACA (Thr (TG.	TTC Phe	ATA Ile	ACA Thr	TCA Ser
TTA (Leu (GGT G1y	ACT Thr 75	CGA Arg	TAT Tyr	CAC His	a GGT
GGT Gly	AAT Asn	TCC Ser	CAC His	AAG Lys	C CGT s Arg	A A
AAT Asn	TCT Ser	CCA			7 BJ	CCG Pro
C GAA 1 Glu 110		o & G G	TTA (Leu (CCA Pro 45	GCA Ala	TTA Leu
		GGA Gly	GGT Gly	CTA Leu	ATC Ile 30	AAG Lys
AGT Ser	ACG Thr 95	TAT Tyr	GTA Val	CTT	ATG Met	3 GGC 3 Gly 15
GTT Val	ACA Thr	CAA Gln 80	GAA Glu			5 7 6
-	13 ,12	0 1 2	u A	GGC Gly	TTG Leu	GAA Glu
336	288	240	1.9	⊭		
٥,	80	0	192	144	96	48

GCA Ala	CGA Arg	AGT Ser	CAA Gln	T'6T Tyr 145	AGA Arg	Lei
GAA Glu 210	AAT Asn	TTG Leu	A'TG Met	ACA Thr	A CCA J Pro 130	Se Se
A GGG TTA TCA 1 Gly Leu Ser)	CAT His 195	TTT Phe	GAA Glu	. CCA	A TTG D Leu	r 61
TTA Leu	ACT Thr	TCT Ser 180	GTT Val	TTA Leu	i Lys	Ası
TCA Ser	GAG Glu	AAG Lys	GCA Ala 165	ATT Ile	CT	r Gr
ATT Ile	ACG Thr	GAA Glu	KGT Ser	11e	CTT ATG	Len Ser Gly Asp Val Ser Ile Gly Lys Arg Pro Met Asp 115 120 120 120 121 121 122 125 126 127 128 129 129 125 125 126 127 128 128 128 128 128 128 128 128 128 128
AAT Asn 215	ATG Met	CCG Pro	GCA Ala	AAC Lys	GAT ASE	A ATT
ACA Thr	TTC Phe 200	ACC Thr	CAA Gln	CCA TCT	GAT GCG Asp Ala 135	r GG7 e G1y 120
ACC Thr	AAA Lys	ATC Ile 185	GTA Val	TCT	AAT Asn	l AA? Lys
CCT Pro	CAT His	ATT Ile	AAA Lys 170	GTC Val	ATT Ile	Arg
GAA Glu	TTT Phe	AAA Lys	AGT Ser	ATA Ile 155	GAA Glu	Pro
GCA Ala 220	AAT Asn	GAA Glu	GCC Ala	AAA Lys	GGT Gly 140	Met
ATT Ile	ATT I1e 205	TTA Leu	ATT Ile	GGT Gly	ATT Ile	Asp 125
CGA Arg	CCA Pro	GAT Asp 190	TTA Leu	ATA Ile	GAA Glu	Arg
TAC Tyr	ATT Ile	GTA Val	TTT Phe 175	AAT Asn	GAT Asp	ToTC
ATT Ile	GAA Glu	AGT Ser	GCA Ala	TAT Tyr 160	AAT	TTG
672	624	57	52	48	43	3 8

Figure 19 SHEET 2 of 4

H A	ω n ∽					
Ile .	ACA Thr 305	CCT Pro	AAA Lys	AAT ASD	TTT Phe	Lys 225
GCA Ala	ATC Ile	ACT Thr 290	ATG Met	Val	ATT Ile	Pro
TTA Leu	GAA Glu	GCT Ala	GGC G1y 275	GTT GGA Val Gly	GTT Val	Ala
CTT	GGA GAA Gly Glu	TC Se	7[5]	A ATC Tile 260	r GCA l Ala	a Asp
TGT Cys 325	GAA G]u	ATTI	GGT AAT Gly Asn	AA' ASI	A GCA a Ala 245	p Ph
Hur Thr	TTA Leu 310	CGT Arg	'ATC	AAT CAA Asn Gln	A CTT a Leu 5	Phe His 230
CAA Gln	GGA GAA TEA GTT CCA Gly Glu Leu Val Pro 310	T ATT CGT ATT r Ile Arg Ile 295	CAA Gln	ACA Thr	Γ ATC 1 Ile	s Val
GCA Ala	CCA Pro	CAA TAC Gln Tyr	CTT Leu 280	Arg	ACA Thr	l Pro
GTT Val	AAA Lys	TAC Tyr	TTC Phe	TCA Ser 265	CCA	o Gly
GGC ACG Gly Thr 330	GCA Ala	ACA Thr	AAT Asn	GGT	GGA Gly 250	/ Asp
ACG Thr	ATT Ile 315	CCA Pro	CAA Gln	ATT Ile	AGT Ser	235
AGT	GAT Asp	ATG Met 300	ACA Thr	ATT	' GAT ' Asp	lle Ser 235
ACA Thr	GAA Glu	CTT	ACT Thr 285	GAT Asp	GTA Val	Ser
ATT Ile	CTG Leu	CAA Gln	GGT Gly	ATT 11e 270	ACA Thr	Ala
AAA Lys 335	CCT Pro	CCA Pro	GCT Ala	GTT Val	ATT: 11e: 255	Ala
GAT Asp	GTA Val 320	ATA Ile	GAA Glu	GAA Glu	CAT His	1 Phe 240
₽						
1008	960	912	864	816	768	t

1293		TAA	GGA Gly 430	GAG Glu	AAT Asn	CAA Gln	TTA Leu	CTT Leu 425	AAG Lys	CTA Leu	AAA Lys	CCA Pro	TTA Leu 420	TTT	GGA Gly	CCA Pro
1248	זייויי Phe	TCA Ser 415	GTA Val	AAT Asn	GTA Val	GCTP Ala	GAT Asp 410	TTT Phe	CAA Gln	AAA Lys	ETC TTe	AAA Lys 405	Val	CCT Pro	GAG Glu	AGC Ser
1200	TCA Ser 400	CTT	GTA Val	TGT Cys	GCT Ala	GTT Val 395	GCA Ala	CTT	ATG Met	ATG Met	00A 01y 390	ATA Ile	CGA Arg	CAT His	GAT Asp	ACT Thr 385
1152	TTA Leu	ATT Ile	GAT Asp	ACA Thr	GCA Ala 380	AAT Asn	ACA Thr	AAA Lys	TTT Phe	GAA Glu 375	TCA Ser	CCG	CAT His	A'I''I' Ile	ATT Ile 370	TTG Leu
1104	GGA Gly	GAT Asp	AAT Asn	ACT Thr 365	CCA Pro	CAA Gln	TTA Leu	GAA Glu	TTT Phe 360	GGG Gly	T"TA Leu	TTG	AAC Asn	TTA Leu 355	Met	GAT Asp
1056	GCT Ala	ACG Thr	ACA Thr 350	GAT Asp	ATT Ile	AGA Arg	AAT Asn	ACA Thr 345	GAA Glu	AAA Lys	: UTA AAA : Val Lys	AA! Lys	TTA Leu 340	GAA Glu	: GAG i Glu	GCC Ala

SHEET 4 of 4

430

Egrobacterium CP4 entoercolitica S. typhimurium L. esculentum S. cerevisiae salmonicida influenzae pneumoniae A. midulans gallinarum B. subtilis pertussis multocida P. hybrida N. tabacum Consensus S. aureus S. typhi thaliana в. пария E. coli Z. mays PG2982 LBAA ...MSGLAYL ····· MEKINSL ..MIKDATAIMLESL ···· MESL ·····MESLMESLMESL MESL .K....PSEI .K...PHEI .K...PNEI .K...ASEI MSHSASPKPAAGAEEI .K...ASEI MSHGASSRPA MSHSASPKPAVHP · · · · · MVNEQLVYP DLPAARLARG TLNPISYIEG RLEPISRVAG TLAPISAVEG TLHPIALING TLQPIARVDG TLQPIARVDG TLQPIARVDG TLQPIARVDG VLQPIKEISC VLQPIKDISC VLQPIREISG TLQPIARVDC VLQPIKEISG VLXPIKDISG VLQPIREISG ..GVAHSSNV FKDIPADQQK KRDKVQTLHG TARKSSGLSC TARRSEALTC TARRSEALTG IIDISGPLKG

ĸ Agrobacterium CP4 A. salmonicida entoercolitica S. typhimurium H. influenzae S. gallinarum P. multocida S. cerevisiae pneumoniae A. nidulans pertussis esculentum B. subtilis P. hybrida N. tabacum Consensus S. aureus S. typhi thaliana B. napus E. coli Z. mays PG2982 LBAA -----PG-K--EVALPGSKSI EVNI.PGSKSV EVRLPGSKSL TINLPGSKSL TVNLPGSKSV TVNLPGSKSV TINLPGSKTV AINLPGSKSV AINLPGSKSV TVKLPGSKSL AINLPGSKSV TVKLPGSKSL TVKLPGSKSL TVKLPGSKSL LIKLPGSKSL LIKLPGSKSL VVIPPGSKSI TCAPPGSKSI EIEVPGDKSM ETHI PGDKSI TVRIPGDKSI ELRIPGDKSI EIRIPGDKSI --R----L SNRVLLLAAL AEGSTEITGL LDSDDTRVML SNRALLLAAL SNRALLLSAL SNRALLLAAL SNRALLLAAL SNRALLLAAL SNRALLLAAL SNRALLLAAL SNRALLLAAL SNRALLLAAL SNRILLLAAL SNRILLLAAL SNRILLLAAL SNRILLLAAL SNRILLLAAL SNRILLLAAL SNRALVLAAL SNRALILAAL THRAIMLASL SHRSVMFGAL SHRSFMFGGL SHRSFMFGGL SHRSFMFGGL ARGTTRLTNL --G-----AKGKTTLTNL AKGTTKVTNL AEGTTQLNNL ARGTTVLTNL AHGKTVLTNL ACGKTVLTNL PCGKTALTNL ACGKTVLTNL SEGTTVVDNL SEGTTVVDNL SEGRTVVDNL SKGRTVVDNL GSGTCRIKNL GEGQCKIKNL AEGVSTIYKP AAGTTTVKNF ASGETRITGL ASGETRITGL ASGETRITGL SEGTTVVDNL SEGTTVVDNL LDSDDIRHML LDSDDVRHML LDSDDIRHML LDSDDIRHML LDSDDVRHML LDSDDVRHML LDSDDVRHML LDSDDVRHML LDSDDVRHML LSSDDIHYML LNSEDVHYML LSSDDIHYML LSSDDIHYML LNSDDINYML LNSDDINYML LHSDDTEVML LHSDDTKHML LEGEDVINTG LEGEDVINTG LLGEDCRRTM LPGADCLSTI LEGEDVINTG AALKQL.GVS AALTQL.GVK NALKEL.GVT NALKAL.GVR NALQAL.GVK NALSAL.GVH NALTAL.GVS NALSAL.GIN NALSAL.GIN NALSAL.GIN GALRTL.GLS GALKTL.GLH GALKTL.GLE GALKTL.GLH DALKKL.GLN NALERLGAAT DALKRL.GLN TAVHELKGAT DIFRHL.GVE DCFRKM.GVH KAMQAM.GAF RAMQAM.GAF RAMQAM.GAK

Figure

SHEET of 11 L---D----

H. influenzae P. multocida A. salmonicida B. pertussis Consensus	S. typhimurium S. typhi E. coli K. pneumoniae Y. entoercolitica	L. esculentum P. hybrida Z. mays S. gallinarum	S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum	PG2982 LBAA Agrobacterium CP4 B. subtilis
YQLSDDKTIC YQLSEDKSVC YKLSADKTEC VGEVADGC	YTLSADRTRC YTLSADRTRC YTLSADRTRC YTLSADRTRC YVLSSDRTRC YVLSSDRTRC	VEDDNENQRA VEEDSANQRA VEADKAAKRA YTLSADRTRC	I KEDDEKLVV I SWEDNGETV F SWEEEGEVL VERDS VNNRA VETDS ENNRA VEDDNENORA	101 IRKEGDVWII IRKEGDTWII IRKEGDTWII
EIEGLGGAFN IQDNLS EIEGLGRAFE WQSGLA TVHGLGRSFA VSAPVN VTIEGVARFP TEQAE	DITGNGGALR DITGNGGPLR EIIGNGGPLH EVTGTGGPLQ EVDGLGGKLV	IVEGCGGQFP VVEGCGGLFP VVVGCGGKFP DITGNGGPLR		I NGVGNGCLLQ NGVGNGCLLQ DGVGNGGLLA HGKGIDALKE
	APGALE ASGTLE AEGALE AGSALE AEOPLE	IVEGCGGGFP VCKKSEEEIQ VVEGCGGLFP VGKESKEEIQ VVVGCGGKFP VE. DAKEEVQ DITGNGGPLR APGALE		NGVGNGCLLQ PEAA NGVGNGCLLQ PEAA DGVGNGGLLA PEAP HGKGIDALKE PESL
LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAF LGNT	LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM	LFLGNAGTAM RPLTAAVTV LFLGNAGTAM RPLTAAVTV LFLGNAGTAM RPLTAAVTV LFLGNAGTAM RPLTAAVTA LFLGNAGTAM RPLAAALCL		LDFGNAGTGA LDFGNAGTGA LDFGNAATGC LDVGNSGTTI
RPLTAALCLK RPLTAALCLS RPLCAALCL. RPLCAALALM RPLTAALALM	RPLAAALCL. RPLAAALCL. RPLAAALCL. RPLAAALCL. RPLAAALCL.	TETSINAGTAM RELTAAVTVA LELGNAGTAM RELTAAVTVA LELGNAGTAM RELTAAVTVA LELGNAGTAM RELTAAVTAA LELGNAGTAM RELAAALCL.		150 RLTMGLVGTY RLTMGLVGTY RLTMGLVGVY

SHEET 3 of 11

Consensus	-		. multocida				E. CO11	S. typhi	S. typhimurium	S. gallinarum	Z. mays	_	h. esculentum	N. tabacum	A. thallana	B. napus	A. nidulans	S. Cerevisiae		B. SUDTILIS	Agrobacterium CP4	I,BAA	PG2982	
1 1 1 1 1	GGDY			G.NHEVEI	GKNDI	GSNDI	GSNDI	GQNEI	GQNEI	GQNEI	GGNATY	•	GGHSRY	GGHSRY	GGNASY	GGNASY	HSSTVDSS	NST. SSQKYI	GNES	PFYS	DF DS	DMKT	DMKT	151
G	RLSGVPRMHE	MLGGEPRMEE	VLTGEPRMKE	ILTGEPRMKE	VLTGEPRMKE	VLTGEPRMKE	VLTGEPRMKE	VLTGEPRMKE	VLTGEPRMKE	VLTGEPRMKE	VLDGVPRMRE	VLDGVPRMRE	VLDGVPRMRE	VLDGVPRMRE		VLDGVPRMRE	HSSTVDSS VLTGNNRMKQ	VLTGNARMQQ	VLSGDVSIGK	AVAGDESIAK			DMKT SFIGDASLSK	
RPL	RPIGDLVDAL	RPIGHLVDCL	RPIQHLVDAL	RPILHLVDAL	RPIGHLVDAL	RPIGHLVDAL	RPIGHLVDAL	RPIGHLVDSL	RPIGHLVDSL	RPIGHLVDSL	RPIGDLVVGL	RPISDLVDGL	RPIGDLVDGL	RPIGDLVDGL	RPIGDLVVGL	RPIGDLVVGL	RPIGDLVDAL	RPIAPLVDSL	RPMDRVLRPL	RPMKRVTEPL	RPMGRVLNPL	RPMGRVLNPL	RPMGRVLNPL	
	-	ALKGAHIQYL	CQAGAEIQYL	RQAGADIRYL	RQGGAQIDYL	RQGGAQIDYL	RLGGAKITYL	RQGGANIDYL	RQGGANIDYL	RQGGANIDYL	KQLGADVDCF	KQLGAEVDCF	KQLGAEVDCS	KQLGAEVDCF	KQLGADVECT	KQLGADVECT	TANVLPLNTS	RANGTKIEYL	KLMDANIEG.	KKMGAKIDGR			REMGVQVEAA	
1 1 1 1 1 1 1 1	GQAGYPPLRI	KKDGYPPLVV	EQEGYPPIAI	ENEGYPPLAI	EQENYRR.CI	EQENYPPLRL	EQENYPPLRL	EQENYPPLRI,	EQENYPPLRL	EQENYPPLRL	LGTDCPPVRV	LGTKCPPVRI	LGTNCPPVRI	LGTNCPPVRI					IEDNYTPL				DGDRMPL	200

SHEET 4 of 11

09454099.121599

Figure 20

SHEET 5 of 11

۲.		Ayı	
K. pneumoniae cntoercolltica H. influenzae P. multocida A. salmonicida B. pertussis Consensus	Z. mays S. gallinarum S. typhimurium S. typhi E. coli	EARLA LIBAR Aylobacterium CP4 B. subtilis S. aureus S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum L. esculentum P. hybrida Z. mays	Dr. (2082)
RGGFTG AGGFRG RNT.GIKG RNT.GLKG DAK.GLWG GGGSIRVD	RGGFTG RGGFTG RGGFTG QGGFTG		201 LTGPK
GRYTVDGGKVKIDGGRYQIDGGRYQUDGGDVHVDGGPVRVEG	GDIEVDGGDIEVDGGDIEVDGGDVEVDG	TANDITYRVP TPTPITYRVP SLKGIDYVSP VIKGINYQMEGRIELAAGRIELAAGKVKLSGGKVKLSGGKVKLSGGKVKLSGGKVKLSGGKVKLSG	TANPITYRVP
SVSSQFLIAL SVSSQFLTAL SISSQFLTAL SVSSQFLTAL SVSSQFLTAF SVSSQFLTAL	SVSSQFLTAL SVSSQFLTAL SVSSQFLTAL SVSSQFLTAL SVSSQFLTAL	MASAQVKSAV MASAQVKSAV VASAQIKSAV VASAQVKSAI TVSSQYVSSI KVSSQYVSSI SISSQYLTAL SISSQYLTAL SISSQYLTAL SISSQYLTAL SISSQYLTAL SISSQYLTAL	MASAOVKSAV
LMTAP.LA LMSAP.LA LMSAP.MA LMAAPAMA LMAAPVLARR LMAAPVLARR	LMTAP.LA LMTAP.LA LMTAP.LA LMTAP.LA LMTAP.LA LMTAP.LA	LLAGLN LLAGLQ LLAGLQ LFASLF LMCAPYAE LMCAPYAK LMAAP.LA LMSAP.LA LMSAP.LA LMAAP.LA LMAAP.LA LMAAP.LA LMAAP.LA	LLAGLN
EQDTEIQIQ ENDTEIEII EADTEIEII . PVIPRIHIK SGQDITIEVV	.PKDTIIRVK .PKDTIIRVK .PEDTIIRVK .PEDTVIRIK .PEDTVIRIK	TPGVTTAEGTTTSKEPTISKEPTISKEPTISKEPTIGDVEIEII .LGDVEIEII .LGDVEIEII .LGDVEIEII .LGDVEIEII .LGDVEIEII	250 TPGVTT

Agrobacterium CP4 entuerculitica S. typhimurium S. gallimarum salmonicida L. esculentum S. cerevisiae influenzae pertussis multocida pheumoniae A. nidulans Consensus B. subtilis P. hybrida N. tabacum S. typhi S. aureus thaliana E. coli B. napus Z. mays PG2982 LBAA GELISKPYIE GELVSKPYID GEI.VSKPYID GELVSKPYID GELVSKPYID GELVSRPYID GDLVSKPYID GELVSKPYID GELVSKPYID GELVSKPYID DKLISIPYVE DKLISVPYVE DKLISVPYVE DKLISVPYVE DKLISVPYVE DKLISVPYVE GKPISQPYID GKPISKLYVD MTIKMMEKFG IKELDVSRNH VTEPHKSRDH TERMLSAFGV VIEPIMTRDH VIEPVMTRDH VIEPVMTRDH ITLNLMARFG VS..V.RRDG ITLHIMNSSG VV..IEH.DN ITLKMMQTFG ITLAMMRDFG ITLHLMKAFG ITLHLMKTFG ITLNLMKTFG ITLNLMKTFG ITLNLMKTFG MTLRLMERFG MTLKLMERFG ITLNLMKTFG MTLKLMERFG MTLKLMERFG MTLKLMERFG MTLKLMERFG MTTAMMRSFG TETMFKHFNI TEKMLQGFGA TEKMLQGFGA TEKMLQGFGA VE..VEN.QA VK..VEN.HH VD..VVH.EN VE..VEN.QA VE..IEN.QH VE..IAN.HH VE. . IAN.HH VE. IAN.HH VK..AEHSDS VS..VEHTSS IS..VEHSSS VF..VEHSSG VS..VEHSDS VS..AEHSDS ID..VQKSTT IN. VET. STT PIEAEGLS.. KLSEDQTS.. NLTVETDADG DL/FVETDKDG DLTVETDKDG WRAFTIARDA YKLFYIKGNQ YQRFLVKGHQ YQKFQVKGNQ YQIFHIKGGQ YQRFIVRGNQ YQQFVVKGGQ YQQFVVKGGQ YQQFVVKGGQ YQQFVVKGGQ WDRFYIKGGQ WDRFFVRGGQ WDRFLVKGGQ WDKFLVRGGQ WDRFFVKGGQ WDRFFVKGGQ EEHTYHIPQG EPYTYYIPKG ..INTTPEAI ...VSIAGGQ VRTIRLEGRG VRHIRITGQG VRHIRITGQG VYRGPGRMAI SIVSPGDFLV SYISPNKYLV QYQSPHRFLV TYRSPGIYLV QYQSPGDYLV SYQSPGTYLV QYHSPGRYLV QYHSPGRYLV QYHSPGRYLV KYKSPKNAYV KYKSPGKAFV KYKSPGKAFV KYKSPGKAYV KYKSPGNAYV KYKSPGNAYV RYVNPAEYVI RYIKPADFHV HYINPSEYVI KLTAA.DIFV KLTGQ.VIDV KLVGQ.TIDV KLVGQ.TIDV

Figure

SHEET 0 of.

SHEET 7 of 11

MG		1 1 1 1 1 1	1	1	D-S	Consensus
ATLAAMGADV	SIQGDVAFA.	PVRVTGVGED	LALGA. IGGG		EGDASTASYF	в. pertussis
DVLERMGARI	SI.GDIHFA.	KVRVTGIGKH	LAAGA.IK.G		EGDASSASYF	A. salmonicida
DVLEKMGAHI	SIQGDRLFA.	KVKVTGVGKN	LAAAA.IK.G		EGDASSASYF	P. multogida
DVLEKMGAKI	SIQGDRLFA.	KVKVTGIGKN	LAAGA.IK.G		EGDASSASYF	II. influenzae
DVLEKMGAK1	SVQGDTKFA.	TVRVTGIGKQ	LAAAA.IKGG		EGDASSASYF	Y. entoercolitica
DVLEKMGATV	SVQGDIRFA.	TVKVTGIGRN	LAAGA.IKGG		EGDASSASYF	K. pneumoniae
DVLEKMGATI	SMQGDIRFA.	TVKVTGIGRN	LAAAA.IKGG		EGDASSASYF	E. coli
DVLHKMGATI	SMQGDIRFA.	TVKVTGIGGK	LAAGG.IKGG		EGDASSASYF	
DVLEKMGATI	SMQGDIRFA.	TVKVTGIGRK	LAAGA.IKGG	LAA(EGDASSASYF	
DVLEKMGATI	SMQGDIRFA.	TVKVTGIGRK	LAAGA.IKGG	LAAG	EGDASSASYF	s. gallinarum
EVLEMMGAKV	SLQGDVKFA.	TVTVEGCGTT	LAGAA.ITGG		EGDASSASYF	Z. mays
EVLEKMGAEV	SLQGDVKFA.	TITVEGCGTN	LAGAA.VTGG		EGDASSASYF	
EVLEKMGAEV	SLQGDVKFA.	TVTVEGCGTS	LAGAA.VTGG		EGDASSASYF	h. esculentum
EVLEKMGAEV	SI,QGDVKFA.	TVTVEGCGTS	LAGAA.VTGG		EGDASSASYF	N. tabacum
EVLEKMGCKV	SLQGDVKFA.	TVTVEGCGTT	LAGAA.ITGE	LAG	EGDASSASYF	A. thaliana
EVLEKMGCKV	SLQGDVKFA.	TVTVEGCGTT	LAGAA.ITGE		EGDASSASYF	
EVLRPMGCTV	SLQGDARFAV	TCTVPNIGSA	LAVAA.VTGT		ESDASCATYP	⊳
DVLKPMGCKI	SLQGDARFAR	TVTVPNIGFE	LAFAA.MTGT		ESDASSATYP	S. cerevisiae
DIVEKMGGNI	OTRSGII	DVTIHNVGIN OTRSGI.	IVAALITPGS		PGDISSAAFF	7 ~
DVLQNMGAKL	PTRTGII	RIVLKNVGLN	LAAGAMVPNS		PGDISSAAFF	B. subtilis
LTLQEMGADI	PTRTGLI	DVTILNVLMN	LVAALLVPGS		PGDPSSTAFP	Agrobacterium CP4
LTLQEMGADI	PTRTGLI	DUTIRNVLMN	LVAALLVEGS		PGDPSSTAFP	LBAA
LTLQEMGADI	PTRTGLI	DVTIRNVLMN	LVAALLVEGS		PGDPSSTAFP	PG2982
350					501	

Consensus

Agrobacterium CP4 A. salmonicida entoercolitica S. typhimurium S. gallinarum s. cerevisiae intluenzae esculentur pneumoniae pertussis multocida P. hybrida N. tabacum Consensus S. aureus thaliana nidulans S. typhi subtilis B. napus E. coli Z. mays PG2982 LBAARYGPGW ... TWGDDF ... TWGEDFTWGDDF ...SWGDDY ...TWGEDYCWGDDYTWGDDFTWGDDF TWGDDF ...TWTETS TWTENSTWTENS ...SWTENSTQTATS QL.FNQTTGA ...SWTENS ...EQTETS EIKPSADSGA EVINPRLAGG ... TWTENS EVI.NARI.AGG EVLNARLAGG IETRGVRVAE GGR..LKAF. I.....E 1.....Q J.....Q VTVTGPPREP VTVKGPPRSS 1 A 2..... VTVKGPPRNS VTVKGPPRNS VTVTGPPRDA TTVTGPSD.. EDVADLRVR. EDVADLRVR. 1.....A I......A 1 A VTVTGPSRDA TTVSGPPV.. EPTASIRIQY EPYGDLIIE. EDVADLRVR. AEQGPLHGV. AEHAELNGI. CSRGELQGI. CTRGELNAI. VEKGNLKGI. CTRGELNAI. CTRGELHAI. FGRKHLKAI. CTRGELHAI. CTRGELHAI. SGRKHLRAI. SGMKHLRAI. SGMKHLRAV. TPMLQPITIE TSSLKAVEIG SSTLKGVTVP ASKLKGVVVP FGMRHLRAI. FGMRHLRAV. ...GILRATS ...GTLKPLK ASKLKGVVVP DADFNLIPDA DMDMNHI PDV DMDMNHIPDA DMDMNHIPDA DMDMNHIPDA DMDMNH I PDA DMDMNH I PDA DMDMNHIPDA DMDMNHIPDA DMDMNHIPDA DVNMNKMPDV DVNMNKMPDV DVNMNKMPDV DVNMNKMPDV DVNMNKMPDV DVNMNKMPDV KRGYGT . NDR HVDMEPMTDA GELVPKAIDE GDIIPRLIDE EDRAPSMIDE PERAPSMIDE PERAPSMIDE ----D-AMTAATLALY GHDHSGQSHC AMTIATTALF AMTIATTALE AMTIATTALF AMTIATAALF AMTIATAALF AMTIATTALF AMTIATTALF AMTLAVVALE AMTLAVVALY AMTIATTALF AMTLAVVALF AMTLAVVALF AMTLAVVALF AMTLAVVALF CVPRCFRTGS FLTACVVAAI LPVIALLCTQ IPITALLATO YPILAVAAAF YPVLAIAASF YPVLATAASF

Figure

SHEET 8 of. 11

Consensus	B. pertussis	A. salmonicida	P. multocida	H. influenzae	Y. entoercolitica	K. pneumoniae	E. coli	S. typhi	S. typhimurium	S. gallinarum		P. hybrida	L. esculentum	N. tabacum	A. thaliana	B. napus	A. nidulans	S. cerevisiae		B. subtilis	Agrobacterium CP4	LBAA	PG2982	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADG	I,PR				-	AKG		AKG	AKG	ADG	ADG	ADG	ADG	ADG	ADG	HRPMEKSQTT	SHDSDPNSAN	AVG	AEG	AEG	AEG	AEG	101
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PCRLRNIGSW	VPPHSQHLQL	ETVIRNIYNW	ETVIRNIYNW	PTVIRNIYNW	TTTLRNIYNW	TTRLRNIYNW	TTTLRNIYNW	TTTLRNIYNW	TTTLRNIYNW	PTAIRDVASW	PTAIRDVASW	PTTIRDVASW	PTAIRDVASW	PTTIRDVASW	PTTIRDVASW	PPVSSGIANQ	TTTIEGIANQ	TSTIKDAEEL	TTVIKDAAEL	ATVMNGLEEL	ETVMDGLDEL	ETVMDGLDEL	
-VR	RVKETDRIHA	AVRD.DRCTP	RVKETDRLTA	RVKETDRLTA	RVKETDRLSA	RVKETDRLFA	RVKETDRLFA	RVKETDRLFA	RVKETDRLFA	RVKETDRLFA	RVKETERMVA	RVKETERMIA	RVKETERMIA	RVKETERMIA	RVKETERMIA	RVKETERMIA	RVKECNRIKA	RVKECNRILA	KVKETNRIDT	KVKETNRIDT	RVKESDRLSA	RVKESDRLAA	KVKESDRLAA	
1 1 1 1 1			MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	IRTELTKLGA	ICTELRKLGA	ICTELRKLGA	ICTELRKLGA	ICTELRKLGA	ICTELRKLGA	MKDELAKFGV	MATELAKFGV	TADMLNLLGF	VVSELRKLGA	VANGLKLNGV	VARGLEANGV	VARGLEANGV	
	GV.QSGADWL	GVSEEGTTFI	EV.EEGEDFI	EV.EEGEDFI	EV.EEGQDYI	EV.EEGEDYI	EV.EEGHDYI	EV.EEGHDYI	EV.EEGHDYI	EV.EEGHDYI	SV.EEGPDYC	TV.EEGPDYC	TV.VEGSDYC	TV.VEGSDYC	TV.EEGSDYC	TV.EEGSDYC	ICREHDDGLE	KTTELPDGIQ	ELQPTNDGLI	EIEPTADGMK	DCDEGETSLV	DCTEGEMSLT	DCTEGEM	450

Figure 20

SHEET 9 of 11

Agrobacterium CP4 entoercolitica S. typhimurium K. pneumoniae S. gallinarum L. esculentum S. cerevisiae salmonicida influenzae A. nidulans B. subtilis pertussis mullocida P. hybrida N. tabacum Consensus thaliana S. aureus S. typhi в. napus E. coli mays FG2982 LBAA EVAPPEPGGW TRDAADPAQA RIQPLNLAQF RIQPLALNQF RVVP..PAQL RITP..PLTL RITP..PEKL RITP .. PAKL RITP..PAKL RITP .. PAKL IITP...PEKL NVT..... IITP..PEKL IITP..PEKL NVT..... VITP..PKKV VITP..PAKV VYGKQTLKG. [ITP..PEKL IDGIDR. SNL VHGLNSIKDL VRGRPDGKGL IHPSEFKTN. VRGRPDGKGL G...GG.... VRGRPDGKGL RDA..... RRD..... QHA..... QFA..... NFA..... QHA..... QHA..... QHA..... NVT..... NVT..... KTA..... KPA..... KHA..... IAA..... GNASGA.... G...GG... RQPVG.... KVPSDSSGPV GVCTYDDHRVGA....AT.... HIGTWDDHRM AMCFLLAAF R. . HLQRSRI NIETYNDHRM AVSSHGDHRI EL'NI . HDHRM GVFCYDDHRV DI . . LTDHRI EIGTYNDHRM DIGTYNDHRM DIGTYNDHRM DIGTYNDHRM AIDTYDDHRM EIDTYDDHRM EIDTYDDHRM AVATHLDHRI EIGTYNDHRM EIATYNDHRM DIDTYDDHRM EIDTYDDHRM EIDTYDDHRM TVATHLDHRI TVATHLDHRI AMCFSLVAL. AMCFSLIAL. AMCFALIAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMAFSLAAC AMAFSLAAC AMAFSLAAC. AMAFSLAAC. AMAFSLAAC. AFSFSVL.SL AMSFSLLAGM GMMLAVACVL GMMLGIASCI AMSFLVMGLV AMSFLVMGL? AMAFSLAAC. AMSFLVMGLA VNSQNERDEV S..... A VTPQ..... A A A A AS Ts A

Figure 20

SHEET 10 of 11

		111		TOTAL CONTROL TO THE PROPERTY OF THE PROPERTY
ELSIL	DMMPGLGAKI	MIATSFPEFM	ENEVIVOUSN MIATSFPEFM DMMPGLGAKI ELSIL	LDAA
11011	The state of the s			7 7 7
FI CTI	DMMEGLGAKT	MIATSFPEFM	EKEVIVUUSN MIATSEPEEM DMMPGLGAKT ELSTI	F62982
1,10				150000
n 20			501	

1			1 1 1 1 1 1	CONSTIDENCE
D	DVIAGLLAAK			Consessor
:				b. pertussis
		CTSKTFPDYF	DI AVT'I'NDPG	A. salmoničida
AYR	7	CTAKTFPTFL		P. Multocida
CLKN		CTAKTFPTFF		n. influenzae
	EQLARLSQIA	CTAKTFPDYF		. entoercolitica
	GQLARISTLA	CTAKTFPDYF	DTPVTILDPK	K. pheumoniae
	EQLARISQAA	CTAKTFPDYF	DTPVTILDPK	
:	EQI.ARMSTPA	CTAKTFPDYF	DTPVTILDPK	S. typhi
:	EQLARMSTPA	CTAKTFPDYF	DTPVTILDPK	S. Lyphimurium
:	EQI,ARMSTPA	CTAKTFPDYF	DTPVTILDPK	S. gallinarum
:	DVLSTFVKN.	CTRKTFPDYF	EVPVTIRDPG	Z. mays
	DVLQQYSKH.	CTRKTFPNYF	DVPVTINDPG	P. hybrida
	EVI,QKYSKH.	CTRKTFPDYF	DVPVTIKNPG	h. esculentum
	DVI,QQYSKH.	CTRKTFPNYF	DVPVTIKDPG	N. tabacum
	QVLERITKH.	CTRKTFPDYF	DVPITINDSG	A. thaliana
	QVLESITKH.	CTRKTFPDYF	DVPVTIKDPG	B. napus
	DTLRQLFKV.	CVGKTWPGWW	PTLILEKE	A. nidulans
	DVLH	CTGKTWPGWW	ANPVRILERH	S. cerevisiae
•	PKLKLLQNEG	AVNVSFPGFL	SEPVKIKQFD	
	EHLNKLSKKS	AIHVSYPTFF	EEPIEIEHTD	B. subtilis
ELSDTKAA	DI.MAGLGAKI	MIATSFPEFM	ENPOTVDDAT	Adropacterium CP4
ELSIL	DMMPGLGAKI		EKFVTVDDSN	БАА
ELSIL	THE STANDON MEDITAL PROPERTY DIMPGLIGANT	MINISTER		1 1 1 1

۲.

Figure 20

SHEET 11 of 11

DESTRUCTION OF STREET

A/I/C T1e 55	TCC Ser	61y	AAC Asn	GCI	L.L.I.	GCC	Tr.	AC.
GAA Glu	CAT His 40	GTC Val		TGG	PACT	3ATPC0	I'CCA'	ACGGGCTGTA
666 61y	CGG Arg	GCT Ala 25	AAT CAT Asn His	CPT	PCCT	jĊCT	P.GGG	FGTA
СТА Leu	GCC Ala	TTG Leu	CAA Gln 10	CCCI	THTACTICCT TGACTAACCG	GTTC	GAA'	ACG
CTG Len	TTG Leu	ACT Thr	TCC	3339	TAAC	BAAAS	'FAA'	G'FAG'
09 neri Sul	ATG Met	937 399	CAT	CT A	CG F	PAP	1.D.	PAG (
606 61y	TTG Leu 45	CGC Arg	CAT CAA His Gln	ATT	\GGA!	4CAA!	ATTT	GGT
GAA Glu	GGG Gly	CTA Leu 30	CGC	GUTTIGGTOTT COURGECCET AATTIGTECE CTCC	AGGAAAATTT	GUGATUGUUT GITGAAATTA ACAAACTGTC	TTTCCATGGG GAATAATGGT ATTTCATTGG	ACGGTAGTAG GGGTCCCGAG
GAT Asp	GCG Ala	AGG Arg	TTA Leu 15)C CI	T GC)))		
CCC	ATC Ile	GTG Val	ACT Thr	 	cece	CCTI	rrgg	4CAA!
CGT Arg 65	GCC Ala	CCG Pro	GTT AAT Val Asn	ATG G Met A	GGGC	CCAC	CTC'I	AAGC
AGT Ser	ACC Thr 50	GGG Gly	AAT Asn	GCC T Ala L	AGA	TGA	GGT	GTO
ACG Thr	666 61y	GAT Asp 35	CCC	TTG C Leu L	AATG	GCCCTTCCAC TGACCATGGT	TTTGGCCTCT GGTCTGGCAA	CCGC
GCC Ala	GAA Glu	AAA Lys	CCT Pro 20	CTT T Leu S	CCA		CAA	CAA
CAT His	ACC	TCC Ser	GCC Ala	TCC C Ser L	ATAC	AACG	TGGT	GCAG
TGC Cys 70	ATT Ile	ATT Ile	CAA Gln	CTC	GGCGGGGGC AGAAATGCCA ATACAATTTA	AACGATGTTT	TGGTTGCTAG	CACAAAAGCG GTGCCGGCAA GCAGAACTAA
					,EV	T	(1)	Ð
484	436	388	340	292	240	180	120	60

Figure 21 SHEET 1 of 5

820	GCT Ala	ATT Ile	CCC Pro 180	TCC Ser	CAT His	TAC Tyr	CAT His	ATC Ile 175	CCG Pro	AAA Lys	T'PA L'eu	CAA TTA Gln Leu	AGC Ser 170	GGT .	CAG (GTC Val
772	GCA Ala	CTG Leu 165	CCG Pro	GCG Ala	TTT Phe	AAG Lys	GGC Gly 160	AAC Asn	AGT Ser	CGG Arg	GCC Ala	TGG Trp 155	ATT Ile	AAA Lys	GCA Ala	606 61y
724	ATG Met 150	CAA Gln	CAA Gln	TTG Leu	CCC	CAA Gln 145	ATT Ile	GTA Val	CGG Arg	TCC	ATG Met 140	CCC Pro	CGC Arg	CAC His	CGT Arg	CTC Leu 135
676	TCC Ser	GAT Asp	GAT Asp	GGC Gly	ACC Thr 130	GTC Val	ACC Thr	TTC Phe	TTA Leu	TGT Cys 125	GAT Asp	AAA Lys	CAA Gln	GĞG Gly	GCC Ala 120	CTA Len
628	TTG Leu	GGC Gly	TTG Leu	ATG Met 115	'I'TA Leu	CGC Arg	ATG Met	ACC Thr	ACC Thr 110	GGC Gly	TCT Ser	AAC Asn	GUG Gly	GCG Ala 105	GAT Asp	Treu Leu
580	GTT Val	ACC Thr	AGT Ser 100	CCC	GAA Glu	CAG Gln	TTG	CAG Gln 95	GGA Gly	Leu	GGT Gly	Arg	GGT Gly 90	CAG Gln	GTT Val	ATC Ile
532	ATC Ile	AAA Lys 85	GAA Glu	TCA Ser	AAT	CTA	GAA Glu 80	AGC Ser	ATC Ile	GAA Glu	Ala	G1y 75	ATG Met	GCC Ala	THE Arg	Phe

Figure 21 SHEET 2 of 5

CCC Pro	TCC Ser	GTG Val	# Q	2 A C	ഒര	S =
			CAT His	CGC Arg 215	GGG Gly	TCA Ser
ACC Thr 280	ATT Ile	GTG Val	AGC Ser	ATG Met	GAC Asp 200	GCC Ala
AGG Arg	TTG Leu 265	CCA Pro	GTC Val	TTG Leu	ACC Thr	CAG Gln 185
ACA Thr	CCT Pro •	GGG Gly 250	ACT Thr	CAG Gln	ACG Thr	GTA Val
GGG Gly	GGA Gly	GAC Asp	GTC Val 235	GCC Ala	GTT Val	AAG Lys
GTG Val	TCA Ser	ATC Ile	CAT His	TTT Phe 220	Thr	Ser Ser
TTG Leu 285	GAA Glu	AGC Ser	GGC Gly	GGA Gly	GAA Glu 205	TGC
GAA Glu	TTG Leu 270	TCG Ser	CCG	Ala	CCA	CTG Leu 190
GTG Val	TTG Leu	GCG Ala 255	GCC Ala	AAA Lys	GCT	TTG
TTG Leu	GTG Val	GCC Ala	CAT His 240	TTA	CTA Leu	Leu
GCC Ala	GAA Glu	TTT Phe	TTA Leu	ACC Thr 225	TCC	GCG Ala
CAG Gln 290	AAT Asn	TGG Trp	ACG Thr	ATT Ile	CGG Arg 210	GGG Gly
ATG Met	GTA Val 275	TTA Leu	GGG G1y	GAT Asp	GAT Asp	TTA Leu 195
GGG Gly	GGC Gly	GTG Val 260	CAA Gln	CCA Pro	CAT	ACC Thr
GCG Ala	ATT Ile	GCG Ala	CGG Arg 245	GTA Val	AGC	ACC Thr
GAC Asp	AAC Asn	GCA Ala	GTG Val	ACC Thr 230	GAA Glu	GAG Glu
1156	1108	1060	1012	964	916	868

Figure 21

SHEET 3 of 5

GGA Gly	ATG Met 375	< Q	A C	1	- 6	
		a1	GCC Ala	ATT Tle	CTG Leu	ATT Tle 295
AGC (GIY	GTT AAA Val Lys 360	TTT Phe	ATT Ile	CGG Arg	ACC Thr
CCG Pro	GCC Ala	GAA Glu	GCA Ala 345	ATT CCC Ile.Pro	GTT Val	Pro
T"PA I,eu	AAA Lys	AGC Ser	GAG Glu	CGA Arg 330	AGG Arg	GAG
CAA Gln 395	AAA GTC Lys Val	GAT' Asp	GGC Gly	Leu	3 GCA 3 Ala 315	3 AAT 1 Asn
614 614	ACC Thr 380	GAT CGC Asp Arg	ACT Thr	1 I1e	A AGC	T GAA n Glu 300
GCC Ala	GAA Glu	CTG Leu 365	ACC	HIT GAT	C CAT	A CGA u Arg U
GAG Glu	TTT	GC(Ala	CGC Arg 350	f GAA o Glu	r CTC s Leu	A TTG g Leu
GTG Val	GAT Asp	GCC Ala	ATT Ile	ATT 1 Ile 335	C CAG	G GTA u Val
GAT Asp 400	GAT Asp	ATT Ile	GAA Glu	, CCC	GGT 1 Gly 320	A ACG l Thr
AGC Ser	GGC Gly 385	GCT Ala	GAA GAT Glu Asp	ATT	TGC	305
'I'TG	Leu	TCG Ser 370	GCC Ala	TTG	ACC	GAA Glu
ACG Thr	GAA Glu	GAG Glu	GCA Ala 355	GCA Ala	Phe	CCG Pro
GAT Asp	ATT Ile	TTG Leu	GAA Glu	GTG Val 340	G1y	GTA Val
CAT His 405	CAA Gln	GGC Gly	CTG Leu	GCG Ala	GGC G1y 325	GCA Ala
CGC Arg	GGG G1y 390	AAA Lys	AGG Arg	GCG Ala	GAA	A GAT ASP 310
L	⊢					
1492	1444	1396	1348	1300	1252	1204

Figure 21 SHEET 4 of 5

1894	CCACTTATIAA CTTTCGGGA	CCA
1875	GAGTAGAAGT AATGGGGCUA AACGGCGATC GCCACGGGAA ATTAAAGCCT GCATCACTGA	GAG
1815	TUUUTTIAAT TUUTTAAAAG CTOGOTTAAA AOTGOOCAAC GTATOTOOGT AATGGOGAGT	TCC
1755	GEGTEARTIFEA TECCGEARTIFG ACCAATEGGE ATGGACEGTA TEGTTEAAAC TGGGTAATTE	GGU
1695	GUCGGTPTGT AAATGTPTTA CCAAGGTAGT TTGGGGTAAA GGCCCCAGCA AGTGCTGCCA	660
1635	GUC ACG CTA GGG CAA GTT GCC CAA GGA TAAAGTTAGA AAAACTCCTG Gly Thr Leu Gly Gln Val Ala Gln Gly 440 445	66C 61y
1588	T ATT AAC CGG GCG GAA GCG GCC GCC ATT TCC TAT CCA GAA TTT TTT e Ile Asn Arg Ala Glu Ala Ala Ile Ser Tyr Pro Glu Phe Phe 425 430 435	A'I"F Ile
1540	FIT GAL ANG GAG PNG GAG ATC GCC GCT TTA GGT AGT GGG GGG GAA ACA Fle Ala Met Ala Leu Ala Ile Ala Ala Leu Gly Ser Gly Gly Gln Thr 410 415 420	I

Figure 21

SHEET 5 of 5

~ ~						
AGA Arg	TGT Cys	TTA Leu	АТА Т1е 20	AAT ASN	CTC	
GAA Glu	TTG Leu	GCA Ala	TGC Cys	ATA Ile 5	CCA	AAA/
AAA Lys 70	GCG Ala	GAA Glu	660 61у	Trp	Jululu	IAC'A
GAA Glu	ACG Thr 55	GGA Gly	GAT Asp	CAC His	TCC	A'I'G
ATA Ile	CGG Arg	GGA CAA Gly Gln 40	AAA Lys	ACC Thr	здСА	AGTT.
AA AAA GAA ATA GTG A lu Lys Glu Ile Val Ti 70	CAA Gln	ACG Thr	TCA Ser 25	: GCG : Ala	AA.	AAA
hr GG	CGG CAA GCA Arg Gln Ala	GAA Glu	ATG Met	3 CCC 3 Pro 10	ľAAC	AAAT
ATT Ile 75	TTG Leu	ATC Ile	TCG Ser	GTC Val	3TTG(PATT'
CGC Arg	TTG CGC GCA Leu Arg Ala 60	CGC Arg	CAT	Ser	CTECCEATTIFF TECCGGCACAA TAACGTTGGT TTTATAAAAG GAAATG	TT TC
GGT GTG Gly Val	GCA Ala	GGC Gly 45	Arg	GCG Ala	PTAT?	TGGC
GTG Val	TTA Leu	TTT Phe	GCC Ala 30	Leu	AAAG	'ACAC
GGA Gly	GGC Gly	TTA Leu	TTA Leu	ser 15	GAA	: GCG
TTT Phe 80	GTT Val	GCG Ala	TTA Leu	GGC Gly	ATG	CTTT
CTG Leu	GAT Asp 65	TGC Cys	TTA Leu	GAA Glu	ATG ATG Met Met 1	LLL
GGT Gly	ATT Ile	GCG Ala 50	GCA Ala	ATA Ile	ATG Met	TGCA
TTG	CAA Gln	GAT Asp	GCG Ala 35	ACG Thr	ACG Thr	THEAAAAACA ARGAGIHAAA AAATTATTTT TCTGGCACAC GCGCTTTTTT TGCATTTTTT
355	307	259	211	163	115	60

Figure 22 SHEET 1 of 5

		i a
ACT TGC GGC AT	TTA TTG GCT Leu Leu Ala	TGC GGC ATC AGT
AGT TGC CTT ATT TT Ser Cys Leu Ile Le 175	TTA CCG CTT Leu Pro Leu 165	TGC CTT Cys Leu 175
ACC GGC ATT GATH GATH GATH GATH GATH AS	GCG CCG TTA Ala Pro Leu 150	GGC Gly
GTC AGT CAC AGC Ai Val Ser His Ser A:	CCG CTT GTG Pro Leu Val	AGT CAC Ser His
CCG ATG CAG CGC A' Pro Met Gln Arg I 125	TGC GGC GAT Cys Gly Asp	ATG CAG Met Gln
CAG CGC TTT GAG A Gln Arg Phe Glu S 110	CGT TTA TTG Arg Leu Leu 100	CGC TTT Arg Phe 110
CAA AAC AGT GGC A Gln Asn Ser Gly T 95	Gln Pro Pro Lys Ala Pro Leu Asn Met 85	Ser 95

Figure 22

SHEET 2 of 5

GCA Ala	GGA Gly	ATT 11e 260	GCG Ala	GTG Val	AAG Lys	
GAT Asp	CGG Arg	AAT Asn	3 GCT a Ala 245	G CTT 1 Leu	G AAA s Lys	
ATT Ile	ATT	l'CCG	T TTG a Leu 5	T GAT u Asp 230		
r GTT Val 295		G A	i Maria Maria		GAG G Glu	
25 V	GAA TTG Glu, Leu 280	ACG Thr	ATT Ile	ATT Ile	CAA Gln 215	
GTT Val	TTG Leu 280	CGG Arg	GCG Ala	GTC Val	ATA Ile	200
TAT Tyr	CAT	GCG Ala 265	CCG	G17 GGC	ATC Ile	Ü
CAT	CAT CAT CAG His His Gln	GCA Ala	CGC Arg 250	GAT Asp	GTC Val	
TCA Ser	CAG Gln	ATC Ile	GCG Ala	TTG Leu 235	ACC Thr	200 205
AAA Lys 300	CGC Arg	ATT Ile	GAA Glu	TCG	GIY 220	
TTG Leu	TTT Phe 285	ACT Thr	GTC Val	GCG Ala	GGA Gly	205
A TTG CGC 5 Leu Arg	TGG Trp	TTG Leu 270	GTT Val	GCG Ala	CAA Gln	4
GGC Gly	GGC Gly	TTG Leu	ATT Ile 255	GCG Ala	AAA Lys	Ito
ATT Ile	GCC Ala	CAA Gln	CGT Arg	TTT Phe 240	TTG	: :
ACG Thr 305	GAA Glu	AAA Lys	AAT Asn	TTT	CAC His 225	t C
GTG Val	CCG Pro 290	ATG Met	GTC Val	ATG Met	GGT Gly	210
GCG Ala	GTG Val	GGC Gly 275	GGC Gly	GTT Val	TGC	
1027	979	931	883	835	787	

GCA GGT GAA TTA TTG Ala Gly Glu Leu Leu 405	GGC GAT CAT CGG ATT GCG Gly Asp His Arg Ile Ala 390	TAT GGA AGA AGC GAU Tyr Gly Arg Ser Asp 375	CAA ACT TTG GGC GTG Gln Thr Leu Gly Val 360	;	THE COTT GTE AAA GAA TEG O
ATT G Ile A	GCG A Ala M	cee e Arg e	G GUG TGC 1 Ala Cys)	Ser 345	11CG
GAT GAC Asp Asp 410	3 ATG AGT TTG GCG (Met Ser Leu Ala v 395	GAT CGG CAA TTT Asp Arg Gln Phe	TGC GAC Cys Asp	Asp Arg	3AT
GAC GGC GCG (TTG	TTA Leu 380	C GTT GGC p Val Gly 365	Leu	TTA
GCG (GCG (Ala V	CCG (GGC Gly 365	Ala	3
GTG C Val A	3TG /al	GCG (Ala	GCC Ala	A1a 350	
GCG C Ala #	GCA (CGG Arg	GAT Asp	ATG Met	
GCG (Ala V	GGT (Gly 1	GTG Val	TTT Phe	GCG Ala	
GTT Val	GTG Val	AAC Asn 385	ATT Ile	CAA Gln	
TCT	CGC Arg	AGT Ser	CAT His 370	AAT Asn	
ATG Met	GÇG Ala	TTT Phe	ATA Ile	TTA Leu 355	
1363	1315	1267	1219	1171	

Figure 22 SHEET 4 of 5

CAC	CAC GAT TGATGGTCCT AGCGGTGTTG GAAAAGGCAC	'G GA	TGTT)GCGC	CT 1	GGTC	TGAT	GAT Asp	CAC His	TGT Cys	AAA AAT TGT Lys Asn Cys	AAA Lys	GCG Ala	GAT Asp	AAA Lys
S Lu A	A GGA GAA l Gly Glu 435	GTA Val	Pro Gln Phe Arg Asp Phe Ala Ala Ala Ila GGI Marg AAT GTA 420 425 426 427	ATG Met	Gly 430	A'l"l' Ile	Pro Gln Phe Arg Asp Phe Ala Ala Ala Ile G 420 420 425	Ala	Ala	Phe 425	Asp	Arg	Phe	G] n	Pro 420

GGTGGCGCAA GCTT

440

1479

Figure 22

SHEET 5 of 5

Figure 23 SHEET 1 of 4

Consensus	S. aureus El		B. subtilis Q	Synechocystis sp. PCC6803 L	Agrobacterium CP4 K	LBAA K	PG2982 K	81	Consensus R	S. aureus R	D. nodosus R	B. subtilis R	Synechocystis sp. PCC6803 R	Agrobacterium CP4 R	LBAA R	PG2982 R	4	Consensus -	S. aureus .	D. nodosus .		Synechocystis sp. PCC6803 M	Agrobacterium CP4 .	LBAA .	PG2982 .	1
T	EDDEKLVVTS	REKEIVTIRG	QSSSDVVIHG	LNSEKIIVQG	KEGDTWIIDG	KEGDVWI ING	KEGDVWIING	₽	MFA-	RAIMLASLAE	RALLLAALAE	RSVMFGALAA	RALMLGAIAT	RSFMFGGLAS	RSFMFGGLAS	RSFMFGGLAS	41	1 1 1 1 1 1 1 1 1				MALLSLNNHQ	MS	MS	MS	
-GP-	PGYQ. VNTPH QVLYTGNSGT TTRLLAGLLS	VGFLGLQPPK	KGIDALKEPE	RGLGQLQEPS	VGNGGLLAPE	VGNGCLLQPE	VGNGCLLQPE		RMFA- GIL-	GVSTIYKPLL	GQTEIRGFLA	GTTTVKNFLP	GETIIEGLLL	GETRITGLLE	GETRITGLLE	GETRITGLLE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MVNEQII	MMTNIWHT		SHQRLTVNPP	HGASSRPATA	HSASPKPATA	HSASPKPATA	
LNTRLG	QVLYTGNSGT	APLNMQNSGT	SLLDVGNSGT	TVLDAGNSGT	APLDFGNAAT	AALDFGNAGT	AALDFGNAGT		DT	GEDCRRTMDI	CADCLATRQA	GADCLSTIDC	GEDPRSTAHC	GEDVINTGKA	GEDVINTGRA	GEDVINTGRA		L-G	DISGPLKGEI	APVSALSGEI	DKVQTLHGEI	AQGVALTGRL	RKSSGLSGTV	RRSEALTGEI	RRSEALTGEI	
RLG	TTRLLAGLLS	SMRLLAGILA	TIRLMLGILA	TMRLMLGLLA	GCRLTMGLVG	GARLTMGLVG	GARLTMGLVG	120	MGI	FRHLGVEI.K	LRALGVDI.Q	FRKMGVHI.E	FRAMGAEISE	MQAMGARI.R	MQAMGAKI.R	MQAMGAKI.R	80	- I- <u>GDKS</u> H	EVPGDKSMTH	TICGDKSMSH	HIPGDKSISH	RVPGDKSISH	RIPGDKSISH	RIPGDKSISH	RIPGDKSISH	40

Figure 23 SHEET 2 of 4

PG2982 LBAR LBAR Agrobacterium CP4 Synechocystis sp. PCC6803 Sp. subtilis D. nodosus S. aureus Consensus	PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 Synechocystis pb. nodosus D. nodosus S. aureus Consensus	PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis B. nodosus S. aureus
201 TTVIEPVMTR DHTEKMLQGFGADLT VETDKDGVRH TTVIEPVMTR DHTEKMLQGFGADLT VETDKDGVRH TTVIEPLMTR DHTEKMLQGFGANLT VETDADGVRT TTVTEPALSR DHSERMLQAFGAKLT IDPVTHSV TTVTEPHKSR DHTERMLSAFGVKLS EDQTSV TRLHTCGISR DHTERMLPLFGGALE IKKEQI TIIKELDVSR NHTETMFKHF NIFIEAEGLS INTTPEAIRY TIIKELDVSR NHTETMFKHF NIFIEAEGLS INTTPEAIRY	LTLIGPK LTLIGPK VTLRGPK PLAVQGS PLSVSGA PLHISGR PLHISGR	121 121 17. DMKTSFI GDASLSKRPM GRVLNPLREM GVQVEAADGD TY. DMKTSFI GDASLSKRPM GRVLNPLREM GVQVEAADGD TY. DMKTSFI GDASLSKRPM GRVLNPLREM GVQVKSEDGD TY. DDSTPFI GDASLTKRPM GRVLNPLREM GVQVKSEDGD QK. GDASLTKRPM SRVIQPLQM GAKIWARSNG G. RPFYSAVA GDESLEKRPM KRVTEPLKKM GAKIDGRAGG AQR. FESVLC GDESLEKRPM QRIITPLVQM GAKIVSHSNF GLGN. ESVLS GDVSIGKRPM DRVLRPLKLM DANIEGIEDN C

S. aureus Consensus	B. subtilis	Agropacterium CP4 Synechocystis sp. PCC6803	LBAA	PG2982		Consensus	S. aureus	D. nodosus	B. subtilis	Synechocystis sp. PCC6803	Agrobacterium CP4	LBAA	PG2982		Consensus	S. aureus	D. nodosus	B. subtilis	Synechocystis sp. PCC6803	Agrobacterium CP4	LBAA	PG2982	
IQYTPMLQPI		VR.SSTLKGV		VR.ASKLKGV VVPPERAPSM	321	-NVN-TR-	HNVGINQTRS	RNVGINPTRA	KNVGLNPTRT	ENVGINPTRT	LNVLMNPTRT	RNVLMNPTRT	RNVLMNPTRT GLILTLQEMG	281	1 1 1 1 1 1 1 1 1 1	IKPAD	.IVTGGQKLH	.SIAGGQKLT	.TVHGPAHLT	IRLEGRGKLT	IRITGQGKLV	IRITGOGKLV	241
TVAPEWIANA TIEGELVPKA	EIGGDIIPRL	TVPEDRAPSM	VVPPERAPSM	VVPPERAPSM		MG	GIIDIVEKMG	AIITLLQKMG	GIIDVLQNMG	GVLEVLAQMG	GI.ILTLQEMG	GLILTLQEMG	GLILTLQEMG		V-GD-	IKPADFHVPGDI	. IVTGGQKLH GCVLDIVGDL	AADIFVPGDI	GQRVVVPGDI	GQVIDVPGDP	IRITGQGKLV GQTIDVPGDP	GOTIDVPGDP	
IDELPIFFIA IDE-PI IDE-PI			IDEYPVLAIA	IDEYPVLAIA		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GNIQLFNQT.	GRIELHHQRF	AKLEIKPSAD	ADITPENERL	ADIEVINPRL	ADIEVLNARL	ADIEVLNARL		SAFA-	SSAAFFIVAA	SAAAFFMVAA	SSAAFFLAAG	SSAAFWLVAA		SSTAFPIVAA	IRITGOGKLV GOTIDVPGDP SSTAFPINAA	
AACAEGTTFV CTQAVGTSTI A-G	ATQAEGTTVI	AAFAEGATVM	ASFAEGETVM	IDEYPVLAIA ASFAEGETVM	360	H	TGAEPTASIR	WGAEPVADIV	SGAEPYGDLI	VTGEPVADLR	AGGEDVADLR	AGGEDVADLR	AGGEDVADLR	320	1 1 1 1 1 1 1 1 1 1 1 1							TTVECCE	280

Figure 23

SHEET 3 of 4

Figure 23 SHEET 4 of 4

Synechocystis sp. PCC6803

B. subtilis

HTDAIHVSYP RAEAAAISYP DATMIATSFP

TFFEHLNKLS

EFMDLMAGLG AKIELSDTKA A.. EFFGTLGQVA QG*......

Consensus S. aureus nodosus

----S-P

QFDAVNVSFP GFLPKLKLLQ NEG.....

- K-----

DGAVAAVSMP QFRDFAAAIG

MNVGEKDAKN CHD KKS.....

:

Agrobacterium CP4

Act Chart in CDA Dame	· LBAA DSNM			Consensus				. PCC6803					Consensus							PG2982 DGLI	361	
TATION	IATSFP	IATSFP		1	FK	SDRQFL	QTLK.G	SPLQ	GLGNAS	(GLG	PDGKGLG		EL-VKE	KDAEELKVKE	GNLSELRVKE	KDAAELKVKE	EDAAELRVKE	NGLEELRVKE	DGLDELRVKE	DGLDELRVKE		
DAMATA HOLD DINGS	DSNMIATSFP EFMDMMPGLG AKIELSIL	DSNMIATSFP EFMDMMPGLG		DH RI-M-L-V	EFK TNATDILTDH RIGMMLAVAC	PARVNSFGDH	GAAVSSHGDH	GAEVDSLTDH	PDGKGLGNAS GAAVATHLDH	PDGKGLG GGTVATHLDH	GGTVATHLDH		R	TURIDTTADM	SDRLAAMAQN	TNRIDTVVSE	SDRLAAIASE	SDRLSAVANG	SDRLAAVARG	SDRLAAVARG		
		AKIELSIL					RIGMMLGIAS	RIAMALAIAA	RIAMSFLVMG	RIAMSFLVMG	RIAMSFLVMG		LG	LNLLGFELQP TNDGLIIHPS	LQTLGVACDV	LRKLGAEIEP	LGKMGAKVTE	LKLNGVDCDE	LEANGVDCTE	LEANGVDCTE		
	:	:	473	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VLSSEPVKIK	VRAAGELLID	CITEEPIEIE	LGSGGQTIIN	LVSENPVTVD	LAAEKPVTVD	LAAEKPVTVD	440	V	TNDGLIIHPS	GADFIHIYGR	TADGMKVYGK	FDDGLEIQGG	GETSLVVRGR	GEMSLTVRGR	GEMSLTVRGR	400	

Syn

SYI

Figure 24

Figure 25

APPLICATION FOR UNITED STATES PATENT DECLARATION * POWER OF ATTORNEY * PETITION

AS A BELOW-NAMED INVENTOR, I hereby declare that:
MY RESIDENCE, citizenship, and post office address are as stated below,
next to my name.

	I BELIEVE I am:
1.	[] the original, first and sole inventor,
2.	[X] an original, first and joint inventor,
	of the subject matter which is claimed and for which a patent is sought on the invention entitled
3.	GLYPHOSATE TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3- PHOSPHATE SYNTHASES,
	the specification of which, with any Preliminary Amendment,
4.	[X] is attached hereto
5.	[] was filed on
5(a).	as application Serial No.
6.	including Amendment(s) filed on(date) and(date)
7.	[] together with any Amendment(s) filed herewith.

I HEREBY STATE that I have reviewed and understand the contents of the above-identified Specification, including the Claims, as amended by any Amendment(s) referred to above.

I ACKNOWLEDGE my Duty to Disclose information of which I am aware which is material to the Examination of this Application in accordance with Title 37, Code of Federal Regulations, §1.56(a) including any such information which occurred between the filing date of any prior application listed below for which the benefit of Title 35, United States Code §120 is claimed and the filing date of this Application.

I HEREBY STATE that the subject matter which is claimed in any Amendment(s) referred to above was part of my or our invention and was invented before the filing of this Application.

BENEFIT OF EARLIER FILING DATE

THIS APPLICATION in whole or in part discloses and claims subject matter disclosed in and I hereby claim the benefit under Title 35, United States Code, §120 of any of my or our prior United States application(s) listed below:

 SERIAL NO.
 FILING DATE
 STATUS

 8.
 07/749.611
 08-28-91
 Pending

 07/576.537
 08-31-90
 Abandoned

I HEREBY CLAIM foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or Inventor's Certificate(s) listed below:

NUMBER COUNTRY FILING DATE

9.

Any foreign application(s) for patent or Inventor's Certificate(s) filed by me or us which claims or discloses all or any part of the subject matter claimed in this Application and which has a filing date before that of the above-listed application(s) on which foreign priority is claimed is identified below:

NUMBER

COUNTRY

FILING DATE

10.

AS TO ANY subject matter which is claimed in this Application which is not common to any above-identified prior application(s) for which the benefit of 35 USC \$119 or §120 is claimed, I do not know and do not believe that the same was ever known or used in the United States before my or our invention or discovery thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to the date of this Application, or in public use or on sale in the United States more than one year prior to the date of this Application, that said subject matter has not been patented or made the subject of an Inventor's Certificate issued before the date of this Application in any country foreign to the United States on an application filed by me or my legal representatives or assigns more than twelve months prior to this Application.

AS TO ANY subject matter which is claimed in this Application which is common to any above-identified prior application(s) for which the benefit of 35 USC §120 is claimed, I do not know and believe that the same was ever known or used in the United States before my or our invention or discovery thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to the earliest of said prior application(s) to which said subject matter is common, or in public use or on sale in the United States more than one year prior to the earliest of said prior application(s) to which said subject matter is common, that said subject matter has not been patented or made the subject of an Inventor's Certificate issued before the date of the earliest of said prior application(s) to which said subject matter is common in any country foreign to the United States on an application filed by me or my legal representatives or assigns more than twelve months prior to the earliest of said prior application(s) to which said subject matter is common.

11. [X] ALL APPLICATION(S), if any, for patent or Inventor's Certificate on any part of said subject claimed in this Application filed by me or my representatives or assigns in any country foreign to the United States of America in addition to any listed above on which priority is claimed are listed in Annex A. attached hereto.

I HEREBY appoint the following as my attorney(s) and/or agent(s) of record with full power of substitution and revocation to prosecute this Application and to

transact all business in the Patent and Trademark Office connected therewith.

12. Dennis R Hoerner, Jr. Reg. No. 30,914 Richard H. Shear Reg. No. 26,583 James C. Bolding Reg. No. 26.843 Grace L. Bonner Reg. No. 32,963 Lawrence M. Lavin, Jr. Reg. No. 30,768

ALL correspondence/telephone calls in connection with this Application should be directed to:

13. Dennis R. Hoerner, Jr. - BB4F MONSANTO COMPANY

700 Chesterfield Parkway North

St. Louis, Missouri 63198

Telephone Number: (314) 537-6099 13(a).

I FURTHER declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the Application or any patent issuing thereon.

WHEREFORE, I PRAY that Letters Patent be granted to me solely or jointly with the additional inventor(s) (if any) named below for the invention described and claimed in the above-identified specification and claims, and I hereby subscribe my name to the above-identified specification and claims, Declaration, Power of Attorney and this Petition.

SOLE or FIRST JOINT INVENTOR, 14(a).

full name:

Gerard Francis Barry

RESIDENCE (State/Country):

Missouri/United States

CITIZENSHIP:

Republic of Ireland

POST OFFICE ADDRESS:

6350 Waterman Avenue St. Louis, Missouri 63130

INVENTOR'S SIGNATURE:

DATE:

14(b). SECOND JOINT INVENTOR (if any), full name:

RESIDENCE (State/Country):

CITIZENSHIP:

POST OFFICE ADDRESS:

INVENTOR'S SIGNATURE:

DATE:

14(c). THIRD JOINT INVENTOR (if any), full name:

RESIDENCE (State/Country):

CITIZENSHIP:

POST OFFICE ADDRESS:

INVENTOR'S SIGNATURE:

DATE:

 $14(c). \qquad \mbox{FOURTH JOINT INVENTOR (if any), full name:} \\$

RESIDENCE (State/Country):

CITIZENSHIP:

POST OFFICE ADDRESS:

INVENTOR'S SIGNATURE:

DATE:

Ganesh Murthy Kishore

Missouri/United States

United States

15354 Grantley Drive Chesterfield, Missouri 63017

Sanesh murks King

Stephen Rogers Padgette

Missouri/United States

United States

553 Nantucket Pointe Drive Grover, Missouri 63040

September 13, 1944

William Carlton Stallings

Missouri/United States

United States

19165 Old Logging Road Glencoe. Missouri 63038

William Caston Styling. Sept. 13, 1994

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Barry, Gerard F. Kishore, Ganesh M. Padgette, Stephen R. Stallings, William C.
- (ii) TITLE OF INVENTION: Glyphosate Tolerant 5-Enolpyruvylshikimate-3-Phosphate Synthases
- (iii) NUMBER OF SEQUENCES: 69
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Dennis R. Hoerner, Jr., Monsanto Co. BB4F
 - (B) STREET: 700 Chesterfield Village Parkway
 - (C) CITY: St. Louis
 - (D) STATE: Missouri
 - (E) COUNTRY: USA
 - (F) ZIP: 63198
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/749,611
 - (B) FILING DATE: 28-AUG-1991
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/576,537
 - (B) FILING DATE: 31-AUG-1990
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hoerner Jr., Dennis R.
 B) REGISTRATION NUMBER: 30,914
 - c) REFERENCE/DOCKET NUMBER: 38-21(10660)A
 - (1x) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (314)537-6099
 - B) TELEFAX: .314)537-6047

121	INFORMATION	FOR	CEO	TD	NO 1

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 597 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEO ID NO:1:

TCATCAAAAT	ATTTAGCAGC	ATTCCAGATT	GGGTTCAATC	AACAAGGTAC	GAGCCATATC	60
ACTTTATTCA	AATTGGTATC	GCCAAAACCA	AGAAGGAACT	CCCATCCTCA	AAGGTTTGTA	120
AGGAAGAATT	CTCAGTCCAA	AGCCTCAACA	AGGTCAGGGT	ACAGAGTCTC	CAAACCATTA	180
GCCAAAAGCT	ACAGGAGATC	AATGAAGAAT	CTTCAATCAA	AGTAAACTAC	TGTTCCAGCA	240
CATGCATCAT	GGTCAGTAAG	TTTCAGAAAA	AGACATCCAC	CGAAGACTTA	AAGTTAGTGG	300
GCATCTTTGA	AAGTAATCTT	GTCAACATCG	AGCAGCTGGC	TTGTGGGGAC	CAGACAAAAA	360
aggaatggtg	CAGAATTGTT	AGGCGCACCT	ACCAAAAGCA	TCTTTGCCTT	TATTGCAAAG	420
ATAAAGCAGA	TTCCTCTAGT	ACAAGTGGGG	AACAAAATAA	CGTGGAAAAG	AGCTGTCCTG	480
ACAGCCCACT	CACTAATGCG	TATGACGAAC	GCAGTGACGA	CCACAAAAGA	ATTCCCTCTA	540
TATAAGAAGG	CATTCATTCC	CATTTGAAGG	ATCATCAGAT	ACTAACCAAT	ATTTCTC .	597

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1982 base pairs
 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 62..1426
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AAGC	CCGC	GT I	CTCI	cce	C GC	CTCCG	ccc	GAG	AGCC	GTG	GATA	GATT	AA C	GAAG	SACGCC	:	60
									0 Al				GC AF	's Se			106
													TCG Ser		Ser		154
													ACG Thr 45				202
													AAG Lys				250
													Irp				298
													CCG Pro				346
													CTC Leu			•	394
				Asp									CTC Leu 125				442
CGC Arg	CCG Pro	ATG Met 130	Gly	CGC	GTG Val	TTG Leu	AAC Asn 135	Pro	CTG Leu	CGC	GAA Glu	ATG Met 140	GGC Gly	GTG Val	CAG Gln		490

									TTG Leu			538
									GCC Ala			586
									CCC Pro			634
									GAA Glu			682
									GCG Ala 220			730
									GGC Gly			778
Val									CTG Leu			826
									GTG Val			874
							Leu		ATG Met			922
		Ile				Ala				Val	GAC Asp	970
	Val				Leu				Va1		GAC Asp	1018
Ala				Asp				Lev			GCC Ala 335	1066

										GGT Gly						1114
										GCC Ala						1162
										TCG Ser					GGC Gly	1210
										TCG Ser		Ala			GCC Ala	1258
	His					Ile					Leu				CTC Leu 415	1306
					Val					Ala					ACG Thr	1354
AGC Ser	TTC	Pro	GAG Glu 435	Phe	ATG Met	GAC Asp	CTG Leu	ATG Met 440	Ala	GGG Gly	CTG Leu	GGC Gly	GCG Ala 445	Lys	ATC	1402
			Asp				GCC Ala 455		TGAC	CTT	CACA	ATCG	CC A	TCGA	TGGTC	1456
CCG	CTGC	:GGC	CGGC	AAGG	igg ?	CGCT	CTCC	c cc	CGTA	TCGC	GG#	GGTC	TAT	GGCT	TTCATC	1516
ATC	TCGA	TAC	GGG	CTGA	cc 1	ATCO	CGCC	A CO	GCC?	LAAGO	GCT	GCTC	GAT	CGCG	GCCTGT	1576
CGC	TTGA	TGA	CGAC	GCGC	TT	cccc	CGAT	G TO	cccc	GCAA	A TC	rcga1	CTT	GCCC	GGCTCG	1636
ACC	GGTC	GGT	GCT	STCGO	cc :	CATGO	CATO	G G	GAG	CGGG	rrc	CGAA	SATC	GCGC	STCATGC	1696
cca	CGG:	rgCG	gcg	GCG	TG (STCG/	AGGC	GC AC	GCGC	AGCT	r TG	CGGC	CGT	GAGO	CCGGGCA	1756
ಂಡರ	TGC:	rgga	TGG	ACGC	GAT .	ATCG	GCAC	GG T	GGTC	rgcc	C GG.	ATGC	GCCG	GTG	AAGCTCT	1816
ATO	GTCA	CCGC	3TC	ACCG	SAA	GTGC	GCGC	GA A	ACGC	CGCT.	A TG	ACGA	AATC	CTC	GCAATG	1976
GC	GGT	rg g C	CGA	TTAC	GGG	ACGA	TCCT	CG A	GGAT	ATCC	G CC	GCCG	CGAC	GAG	CGGGACA	1936

TGGGTCGGGC GGACAGTCCT TTGAAGCCCG CCGACGATGC GCACTT

1982

- (2) INFORMATION FOR SEO ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 455 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
- Met Ser His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser 1 10 15
- Gly Leu Ser Gly Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser His $20 \ 25 \ 30$
- Arg Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr 35 40 45
- Gly Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys Ala Met Gln
 50 55 60
- Ala Met Gly Ala Arg Ile Arg Lys Glu Gly Asp Thr Trp Ile Ile Asp 65 70 75 80
- Gly Val Gly Asn Gly Gly Leu Leu Ala Pro Glu Ala Pro Leu Asp Phe 85 90 95
- Gly Asn Ala Ala Thr Gly Cys Arg Leu Thr Met Gly Leu Val Gly Val 100 \$105\$
- Tyr Asp Phe Asp Ser Thr Phe Ile Gly Asp Ala Ser Leu Thr Lys Arg 115 120 125
- Pro Met Gly Arg Val Leu Asn Pro Leu Arg Glu Met Gly Val Gln Val 130 135 140
- Lys Ser Glu Asp Gly Asp Arg Leu Pro Val Thr Leu Arg Gly Pro Lys 145 150 150 155
- Thr Pro Thr Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val

- Val Ile Glu Pro Ile Met Thr Arg Asp His Thr Glu Lys Met Leu Gln 195 \$200\$
- Thr Ile Arg Leu Glu Gly Arg Gly Lys Leu Thr Gly Gln Val Ile Asp 225 * 230 235 240
- Val Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu 245 250 255
- Leu Val Pro Gly Ser Asp Val Thr Ile Leu Asn Val Leu Met Asn Pro $260 \\ 265 \\ 270$
- Thr Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile 275 \$280\$
- Glu Val Ile Asn Pro Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu 290 295 300
- Arg Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg 305 310 315 320
- Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala 325 330 335
- Phe Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$
- Lys Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn . 355 \$360\$
- Gly Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg 370 375 380
- Pro Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr 385 190 395 400
- His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val 105 410 415
- Ser Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser

60

Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu 435 440 445

Leu Ser Asp Thr Lys Ala Ala 450 455

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1673 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (C) STRANDEDNESS: doubl
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 86..1432
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- GCCAAAATGT GACTGTGAAA AATCC ATG TCC CAT TCT GCA TCC CCG AAA CCA
 Met Ser His Ser Ala Ser Pro Lys Pro
 1 5

 GCA ACC GCC CGC CGC TCG GAG GCA CTC ACG GGC GAA ATC CGC ATT CCG
 Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg Ile Pro
 10 15 20 25

 GGC GAC AAG TCC ATC TCC CAT CGC TCC TTC ATG TTT GGC GGT CTC GCA
 Cly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala
 10 15 40

GTAGCCACAC ATAATTACTA TAGCTAGGAA GCCCGCTATC TCTCAATCCC GCGTGATCGC

- TCG GGC GAA ACC CGC ATC ACC GGC CTT CTG GAA GGC GAG GAC GTC ATC
 Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile
 45
 50
 55
- AAT ACA GGC CGC GCC ATG CAG GCC ATG GGC GCG AAA ATC CGT AAA GAG loa Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg Lys Glu $\frac{65}{10}$
- GGC GAT GTC TGG ATC ATC AAC GGC GTC GGC AAT GGC TGC CTG TTG CAG
 Gly Asp Val Tip lie lie Asn Gly Val Gly Asn Gly Cys Leu Leu Gln

75 85 CCC GAA GCT GCG CTC GAT TTC GGC AAT GCC GGA ACC GGC GCG CGC CTC 400 Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala Arg Leu 100 ACC ATG GGC CTT GTC GGC ACC TAT GAC ATG AAG ACC TCC TTT ATC GGC 448 Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 110 115 GAC GCC TCG CTG TCG AAG CGC CCG ATG GGC CGC GTG CTG AAC CCG TTG 496 Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asn Pro Leu 125 130 135 CGC GAA ATG GGC GTT CAG GTG GAA GCA GCC GAT GGC GAC CGC ATG CCG 544 Arg Glu Met Gly Val Gln Val Glu Ala Ala Asp Gly Asp Arg Met Pro 140 145 CTG ACG CTG ATC GGC CCG AAG ACG GCC AAT CCG ATC ACC TAT CGC GTG 592 Leu Thr Leu Ile Gly Pro Lys Thr Ala Asn Pro Ile Thr Tyr Arg Val 155 CCG ATG GCC TCC GCG CAG GTA AAA TCC GCC GTG CTG CTC GCC GGT CTC 640 Pro Met Ala Ser Ala Gln Val Lys Ser Ala Val Leu Leu Ala Gly Leu 170 175 180 AAC ACG CCG GGC GTC ACC ACC GTC ATC GAG CCG GTC ATG ACC CGC GAC Asn Thr Pro Gly Val Thr Thr Val Ile Glu Pro Val Met Thr Arg Asp 190 CAC ACC GAA AAG ATG CTG CAG GGC TTT GGC GCC GAC CTC ACG GTC GAG 736 His Thr Glu Lys Met Leu Gln Gly Phe Gly Ala Asp Leu Thr Val Glu 210 205 ACC GAC AAG GAT GGC GTG CGC CAT ATC CGC ATC ACC GGC CAG GGC AAG 784 Thr Asp Lvs Asp Gly Val Arg His Ile Arg Ile Thr Gly Gln Gly Lys 220 225 CTT GTC GGC CAG ACC ATC GAC GTG CCG GGC GAT CCG TCA TCG ACC GCC 832 Leu Val Gly Gln Thr Ile Asp Val Pro Gly Asp Pro Ser Ser Thr Ala 240 TTC CCG CTC GTT GCC GCC CTT CTG GTG GAA GGT TCC GAC GTC ACC ATC 880 Phe Pro Leu Val Ala Ala Leu Leu Val Glu Gly Ser Asp Val Thr Ile 255 260 250 CGC AAC GTG CTG ATG AAC CCG ACC CGT ACC GGC CTC ATC CTC ACC TTG 928 Arg Asn Val Leu Met Asn Pro Thr Arg Thr Gly Leu Ile Leu Thr Leu

270 275 280	
CAG GAA ATG GGC GCC GAT ATC GAA GTG CTC AAT GCC CGT CTT GCA GGC Gln Glu Met Gly Ala Asp Ile Glu Val Leu Asn Alá Arg Leu Ala Gly 285 290 295	976
GGC GAA GAC GTC GCC GAT CTG CGC GTC AGG GCT TCG AAG CTC AAG GGC Gly Glu Asp Val Ala Asp Leu Arg Val Arg Ala Ser Lys Leu Lys Gly 300 . 305	1024
GTC GTC GTT CCG CCG GAA CGT GCG CCG TCG ATG ATC GAC GAA TAT CCG Val Val Val Pro Pro Glu Arg Ala Pro Ser Met Ile Asp Glu Tyr Pro 315 320 325	1072
GTC CTG GGG ATT GCC GCC TCC TTC GCG GAA GGC GAA ACC GTG ATG GAC Val Leu Ala Ile Ala Ala Ser Phe Ala Glu Gly Glu Thr Val Met Asp 330 345	1120
GGG CTC GAC GAA CTG CGC GTC AAG GAA TCG GAT CGT CTG GCA GCG GTC Gly Leu Asp Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Val 350 355 360	1168
GCA CGC GGC CTT GAA GCC AAC GGC GTC GAT TGC ACC GAA GGC GAG ATG Ala Arg Gly Leu Glu Ala Asn Gly Val Asp Cys Thr Glu Gly Glu Met 365 370 375	1216
TCG CTG ACG GTT CGC GGC CGC CCC GAC GGC AAG GGA CTG GGC GGC GGC Ser Leu Thr Val Arg Gly Arg Pro Asp Gly Lys Gly Leu Gly Gly 380 385 390	1264
ACG GTT GCA ACC CAT CTC GAT CAT CGT ATC GCG ATG AGC TTC CTC GTG Thr Val Ala Thr His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val 395 400 405	1312
ATG GGC CTT GCG GCG GAA AAG CCG GTG ACG GTT GAC GAC AGT AAC ATG Met Gly Leu Ala Ala Glu Lys Pro Val Thr Val Asp Asp Ser Asn Met 410 425	1360
ATC GCC ACG TCC TTC CCC GAA TTC ATG GAC ATG ATG CCG GGA TTG GGC Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly Leu Gly 430 435 440	1408
GCA AAG ATC GAG TTG AGC ATA CTC TAGTCACTCG ACAGCGAAAA TATTATTTGC Ala Lys Ile Glu Leu Ser Ile Leu 445	1462
GAGATTGGGC ATTATTACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT CTTCCATACG	1522

TAACAGCATC AGGAAATATC AAAAAAGCTT TAGAAGGAAT TGCTAGAGCA GCGACGCCGC													1582			
CTAA	CTAAGCTTTC TCAAGACTTC GTTAAAACTG TACTGAAATC CCGGGGGGTC CGGGGATCAA														A 1642	
ATGACTTCAT TTCTGAGAAA TTGGCCTCGC A														1673		
(2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 449 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein																
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:																
Met 1	Ser	His	Ser	Ala 5	Ser	Pro	Lys	Pro	Ala 10	Thr	Ala	Arg	Arg	Ser 15	Glu	
Ala	Leu	Thr	Gly 20	Glu	Ile	Arg	Ile	Pro 25	Gly	Asp	Lys	Ser	Ile 30	Ser	His	
Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr	
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	Arg	Ala	Met	Gln	
Ala 65	Met	Gly	Ala	Lys	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Val	ırb	Ile	Ile	Asn 80	
Gly	Val	Gly	Asn	Gly 85	Cys	Leu	Leu	Gln	Pro 90	Glu	Ala	Ala	Leu	Asp 95	Phe	
Gly	Asn	Ala	Gly 100		Gly	Ala	Arg	Leu 105		Met	Gly	Leu	Val 110	Gly	Thr	
Tyr	Asp	Met 115		Thr	Ser	Phe	11e 120	Gly	Asp	Ala	Ser	Leu 125	Ser	Lys	Arg	

9ro Met Gly Arg Val Leu Asn Pro Leu Arg Glu Met Gly Val Gln Val 130 $$135\$

Glu 145	Ala	Ala	Asp	Gly	Asp 150	Arg	Met	Pro	Leu	Thr 155	Leu	Ile	Gly	Pro	Lys 160
Thr	Ala	Asn	Pro	Ile 165	Thr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	Gln 175	Va1
Lys	Ser	Ala	Val 180	Leu •	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Val 190	Thr	Thr
Val	Ile	Glu 195	Pro	Val	Met	Thr	Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	Gln
Gly	Phe 210	Gly	Ala	Asp	Leu	Thr 215	Val	Glu	Thr	Asp	Lys 220	Asp	Gly	Val	Arg
His 225	Ile	Arg	Ile	Thr	Gly 230	Gln	Gly	Lys	Leu	Val 235	Gly	Gln	Thr	Ile	Asp 240
Val	Pro	Gly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
Leu	Val	Glu	Gly 260	Ser	Asp	Val	Thr	Ile 265	Arg	Asn	Val	Leu	Met 270	Asn	Pro
Thr	Arg	Thr 275	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	G1y 285	Ala	Asp	Ile
Glu	Val 290	Leu	Asn	Ala	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp 300	Val	Ala	qaA	Leu
Arg 305	Val	Arg	Ala	Ser	Lys 310	Leu	Lys	Gly	Va1	∵al 315	Val	Pro	Pro	Glu	Arg 320
Ala	Pro	Ser	Met	Ile 325	Asp	Glu	Tyr	Pro	Va1 330	Leu	Ala	Ile	Ala	Ala 335	Ser
			340					345					350	Arg	
		355					360					365		Ala	
	370					375					380			Gly	
Pro		c:v	Lvs	: (31)	Leu	Giv	Giv	Giv	The	: Cal	Ala	Thr	His	Leu	Asp

His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Ala Ala Glu Lys \$405\$

Pro Val Thr Val Asp Asp Ser Asn Met Ile Ala Thr Ser Phe Pro Glu 420 425 430

Phe Met Asp Met Met Pro Gly Leu Gly Ala Lys Ile Glu Leu Ser Ile 435 440 445

Leu

(2) INFORMATION FOR SEO ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 34..1380
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GTGATCGCGC CAAAATGTGA CTGTGAAAAA TCC ATG TCC CAT TCT GCA TCC CCG Met Ser His Ser Ala Ser Pro $1 \hspace{1.5cm} 5 \hspace{1.5cm} .$	54
AAA CCA GCA ACC GCC CGC CGC TCG GAG GCA CTC ACG GGC GAA ATC CGC Lys Pro Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg 10 15 20	102
ATT CCG GGC GAC AAG TCC ATC TCG CAT CGC TCC TTC ATG TTT GGC GGT Ile Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly 25	150

CTC GGA TCG GGC GAA ACC CGC ATC ACC GGC CTT CTG GAA GGC GAG GAC Leu Ala Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp 40 45 50 55

										ATG Met						246	
										GTC Val						294	
										AAT Asn						342	
										GAC Asp						390	
										ATG Met 130						438	
										GCA Ala						486	
				Leu						GCC Ala						534	
CGC Arg	GTG Val	CCG Pro 170	ATG Met	GCC Ala	TCC Ser	GCG Ala	CAG Gln 175	GTA Val	AAA Lys	TCC Ser	GCC Ala	GTG Val 180	CTG Leu	CTC Leu	GCC Ala	582	
GG T Gly	CTC Leu 185	AAC Asn	ACG Thr	CCG Pro	GGC Gly	GTC Val 190	ACC Thr	ACC Thr	GTC Val	ATC Ile	GAG Glu 195	CCG Pro	GTC Val	ATG Met	ACC Thr	. 630	
Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	Gln	Gly	Phe 210	Gly	Ala	Asp	Leu	Thr 215	678	
GTC Val	GAG Glu	ACC	GAC Asp	Lys 220	Asp	GGC Gly	GTG Val	CGC Arg	CAT His 225	Il-e	CGC	ATC Ile	ACC Thr	GGC Gly 230	CAG Gln	726	
GGC	AAG Lys	CT?	GTC 1 Val 235	Gly	CAC	ACC Thr	ATC	GAC Asp 240	val	. Pro	GGC Gly	GAT Asp	245	Ser	TCG Ser	774	

											Glu	GGT Gly 260					822
												GGC Gly					870
												AAT Asn					918
												GCT Ala					966
												ATG Met					1014
												GGC Gly 340					1062
		Gly										GAT Asp					1110
GCG Ala 360	Val	GCA Ala	CGC Arg	GGC Gly	CTT Leu 365	GAA Glu	GCC Ala	AAC Asn	GGC Gly	GTC Val 370	GAT Asp	TGC Cys	ACC Thr	GAA Glu	GGC Gly 375		1158
GAG Glu	ATG Met	TCG	CTG Leu	ACG Thr 380	Val	CGC Arg	GGC Gly	CGC	CCC Pro 385	Asp	GGC Gly	AAG Lys	GGA Gly	CTG Leu 390	GGC Gly	•	1206
GGC	GGC	ACG Thr	GTT Val	Ala	ACC Thr	CAT	CTC	GAT Asp 400	His	CGT Arg	ATC	GCG Ala	ATG Met 405	Ser	TTC Phe		1254
CTC	GTC Val	ATC Met	Gly	CTT Leu	GCG Ala	GCG	GAA Glu 419	Lys	CCG Pro	GTG Val	ACG	GTT Val 420	Asp	GAC Asp	AGT Ser		1302
AAC Asr	ATO Met 425	: :1.	GCC Ala	ACC A Thi	TCC Sei	Phe 430	e Pro	GAA	TTC Phe	ATC Met	GAC Asp 435	Met	ATC Met	CCG Pro	GGA Gly		1350

TTG Leu 440				Ile						TAGT	CACT	CG A	CAGC	GAAA	A	1400
TATT	ATTT	GC G	AGAT	TGGG	C AT	TATT	ACCG	GTT	GGTC	TCA	GCGG	GGGT	TT A	ATGT	CCAAT	1460
CTTC	CATA	CG T	AACA	GCAT	C AG	GAAA	TATC	AAA	AAAG	CTT						1500
				÷												
(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	0:7:									
	(i) S	(A) (B)	LEN TYP	CHAR IGTH: PE: a POLOG	449 minc	ami aci	.no a	cids							
	(i	.i) M	OLEC	ULE	TYPE	: pr	otei	.n								
	(х	ti) S	EQUE	NCE	DESC	RIPT	'ION:	SEC	ID.	NO:7	':					
Met 1	Ser	His	Ser	Ala 5	Ser	Pro	Lys	Pro	Ala 10	Thr	Ala	Arg	Arg	Ser 15	Glu	
Ala	Leu	Thr	Gly 20	Glu	Ile	Arg	Ile	Pro 25	Gly	Asp	Lys	Ser	Ile 30	Ser	His	
Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr	
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	Arg	Ala	Met	Gln	
Ala 65	Met	Gly	Ala	Lys	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Val	Trp	Ile	Ile	Asn 80	•
Gly	Val	Gly	Asn	Gly 85	Cys	Leu	Leu	Gln	Pro 90	Glu	Ala	Ala	Leu	Asp 95	Phe	
Gly	Asn	Ala	Gly 100	Thr	Gly	Ala	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Thr	
Tyr	Asp	Met 115	1; s	Thr	Ser	Phe	11e 120		Asp	Ala	Ser	1eu 125	Ser	Lys	Arg	
Pro	Met 130		Àrq	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val	

Glu Ala Ala Asp Gly Asp Arg Met Pro Leu Thr Leu Ile Gly Pro Lys 145 150 155 160

Thr Ala Asn Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val 165 \$170\$

Val Ile Glu Pro Van Met Thr Arg Asp His Thr Glu Lys Met Leu Gln
195 200 205

Gly Phe Gly Ala Asp Leu Thr Val Glu Thr Asp Lys Asp Gly Val Arg 210 215 220

His Ile Arg Ile Thr Gly Gln Gly Lys Leu Val Gly Gln Thr Ile Asp 225 230 235 240

Val Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu 245 250 255

Leu Val Glu Gly Ser Asp Val Thr Ile Arg Asn Val Leu Met Asn Pro $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Thr Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile 275 280 285

Glu Val Leu Asn Ala Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu 290 295 300

Arg Val Arg Ala Ser Lys Leu Lys Gly Val Val Val Pro Pro Glu Arg 305 \$310\$ 315

Phe Ala Glu Gly Glu Thr Val Met Asp Gly Leu Asp Glu Leu Arg Val

Lys Glu Ser Asp Arg Leu Ala Ala Val Ala Arg Gly Leu Glu Ala Asn 355 360 365

Gly Val Asp Cys Thr Glu Gly Glu Met Ser Leu Thr Val Arg Gly Arg 370 375 380

Pro Asp Gly Lys Gly Leu Gly Gly Gly Thr Val Ala Thr His Leu Asp 385 400

His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Ala Ala Glu Lys 405 410 415

Pro Val Thr Val Asp Asp Ser Asn Met Ile Ala Thr Ser Phe Pro Glu $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Phe Met Asp Met Met Pro Gly Leu Gly Ala Lys Ile Glu Leu Ser Ile 435 440 445

Leu

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 423 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ser Leu Thr Leu Gln Pro Ile Ala Arg Val Asp Gly Thr Ile Asn Leu 1 5 10 15

Pro Gly Ser Lys Thr Val Ser Asn Arg Ala Leu Leu Leu Ala Ala Leu 20 25 30

Ala His Gly Lys Thr Val Leu Thr Asn Leu Leu Asp Ser Asp Asp Val 35 40 45

Arg His Met Leu Asn Ala Leu Thr Ala Leu Gly Val Ser Tyr Thr Leu 50 60

Ser Ala Asp Arg Thr Arg Cys Glu Ile Ile Gly Asn Gly Gly Pro Leu 65 70 75 80

His Ala Glu Gly Ala Leu Glu Leu Phe Leu Gly Asn Ala Gly Thr Ala 90 90 95

Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Ser Asn Asp Ile Val

- Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His Leu Val \$115\$
- Asp Ala Leu Arg Leu Gly Gly Ala Lys Ile Thr Tyr Leu Glu Gln Glu 130 135 140
- Asn Tyr Pro Pro Leu Arg Leu Gln Gly Gly Phe Thr Gly Gly Asn Val 145 \$150\$
- Asp Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu Leu Met 165 170 175
- Thr Ala Pro Leu Ala Pro Glu Asp Thr Val Ile Arg Ile Lys Gly Asp 180 185 190
- Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met Lys Thr 195 200 205
- Phe Gly Val Glu Ile Glu Asn Gln His Tyr Gln Gln Phe Val Val Lys 210 225
- Gly Gly Gln Ser Tyr Gln Ser Pro Gly Thr Tyr Leu Val Glu Gly Asp 225 230 235
- Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Ala Ala Ile Lys Gly Gly 245 250 255
- Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Met Gln Gly Asp Ile $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$
- Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Ile Cys Trp Gly 275 $280\,$ 285
- Asp Asp Tyr Ile Ser Cys Thr Arg Gly Glu Leu Asn Ala Ile Asp Met 290 295 300
- Asp Met Ash His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr Ala Ala 305 \$310\$ \$310
- Leu Phe Ala Lys Gly Thr Thr Arg Leu Arg Asn Ile Tyr Asn Trp Arg
- Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu Arg Lys
- Val Gly Aia Glu Val Glu Glu Gly His Asp Tyr Ile Arg Ile Thr Pro i55 360 365

Pro Glu Lys Leu Asn Phe Ala Glu Ile Ala Thr Tyr Asn Asp His Arg 370 375 380

Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro Val Thr 385 390 395

Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr Phe Glu 415

Gln Leu Ala Arg Ile Ser Gln 420

- (2) INFORMATION FOR SEQ ID NO:9:
 - SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1377 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CCATGGCTCA	CGGTGCAAGC	AGCCGTCCAG	CAACTGCTCG	TAAGTCCTCT	GGTCTTTCTG	60
GAACCGTCCG	TATTCCAGGT	GACAAGTCTA	TCTCCCACAG	GTCCTTCATG	TTTGGAGGTC	120
TCGCTAGCGG	TGAAACTCGT	ATCACCGGTC	TTTTGGAAGG	TGAAGATGTT	ATCAACACTG	180
GTAAGGCTAT	GCAAGCTATG	GGTGCCAGAA	TCCGTAAGGA	AGGTGATACT	TGGATCATTG.	240
ATGGTGTTGG	TAACGGTGGA	CTCCTTGCTC	CTGAGGCTCC	TOTOGATTTO	GGTAACGCTG	300
CAACTGGTTG	CCGTTTGACT	ATGGGTCTTG	TTGGTGTTTA	CGATTTCGAT	AGCACTTTCA	360
TTGGTGACGC	TTCTCTCACT	AAGCGTCCAA	TGGGTCGTGT	GTTGAACCCA	CTTCGCGAAA	420
TGGGTGTGCA	GGTGAAGTCT	GAAGACGGTG	ATCGTCTTCC	AGTTACCTTG	CGTGGACCAA	480
AGACTCCAAC	GCCAATCACC	TACAGGGTAC	CTATGGCTTC	CGCTCAAGTG	AAGTCCGCTG	540
TTCTGCTTGC	TGGTCTCAAC	ACCCCAGGTA	TCACCACTGT	TATOGAGOCA	ATCATGACTC	600
aman carete	TOLLLANGATO	CTTC A ACCTT	mmccmccm3.2	CCTTACCGTT	GAGACTGATG	560

CTGACGGTGT	GCGTACCATC	CGTCTTGAAG	GTCGTGGTAA	GCTCACCGGT	CAAGTGATTG	720
ATGTTCCAGG	TGATCCATCC	TCTACTGCTT	TCCCATTGGT	TGCTGCCTTG	CTTGTTCCAG	780
GTTCCGACGT	CACCATCCTT	AACGTTTTGA	TGAACCCAAC	CCGTACTGGT	CTCATCTTGA	840
CTCTGCAGGA	AATGGGTGCC	GACATCGAAG	TGATCAACCC	ACGTCTTGCT	GGTGGAGAAG	900
ACGTGGCTGA	CTTGCGTGTT	CGTTCTTCTA	CTTTGAAGGG	TGTTACTGTT	CCAGAAGACC	960
GTGCTCCTTC	TATGATCGAC	GAGTATCCAA	TTCTCGCTGT	TGCAGCTGCA	TTCGCTGAAG	1020
GTGCTACCGT	TATGAACGGT	TTGGAAGAAC	TCCGTGTTAA	GGAAAGCGAC	CGTCTTTCTG	1080
CTGTCGCAAA	CGGTCTCAAG	CTCAACGGTG	TTGATTGCGA	TGAAGGTGAG	ACTTCTCTCG	1140
TCGTGCGTGG	TCGTCCTGAC	GGTAAGGGTC	TCGGTAACGC	TTCTGGAGCA	GCTGTCGCTA	1200
CCCACCTCGA	TCACCGTATC	GCTATGAGCT	TCCTCGTTAT	GGGTCTCGTT	TCTGAAAACC	1260
CTGTTACTGT	TGATGATGCT	ACTATGATCG	CTACTAGCTT	CCCAGAGTTC	ATGGATTTGA	1320
TGGCTGGTCT	TGGAGCTAAG	ATCGAACTCT	CCGACACTAA	GGCTGCTTGA	TGAGCTC	137

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 318 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: \$7..317
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

AGATCTATCG ATAAGCTTGA TGTAATTGGA GGAAGATCAA AATTTTCAAT CCCCATTCTT 60 CGATTGCTTC AATTGAAGTT TCTCCG ATG GCG CAA GTT AGC AGA ATC TGC AAT 113 Met Ala Gln Val Ser Arg Ile Cys Asn 5

					 		 AGT Ser	 161
 	 		 	 	 	 	CCA Pro 40	 209
					 		ATG Met	 257
 			 	 	 		GTT Val	 305
 GCG Ala 75		С						318

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 77 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu $_{1}$ 5 10 15

The Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val \$20\$ \$25\$ \$30

Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser 35 40 45

Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg

Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Cys Met 65

(2)	INFORMATION	FOR	SEO	ID	NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 402 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 87..401

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AGAT	'C'TA'I	CG A	ATAAC	CTTC	A TG	TAAT	TGGA	GGA	AGAT	'CAA	AATT	"I"I'CA	LAT C	CCCA	TTCTT	60
CGAT	TGCI	TC 2	AATTO	AAGT	т то	TCCG		Ala				Arç			AAT Asn	113
			AAC Asn													161
			CCC Pro													209
			ATT Ile 45													257
			TCT Ser													305
			AAA Lys													353
			ATT													401
С																402

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
 (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val \$20\$ \$25\$ \$30

Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser 35 40 45

Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg 50 55 60

Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Glu Lys Ala Ser Glu 65 70 75 80

Ile Val Leu Gln Pro Ile Arg Glu Ile Ser Gly Leu Ile Lys Leu Pro

Gly Ser Lys Ser Leu Ser Asn Arg Ile 100 105

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 base pairs
 - ·B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: DNA (genomic)
 - (1x) FEATURE:
 - -A) NAME/KEY: CDS
 - B) LOCATION: 14..232

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AGAT	CTTT	CA A										ATA Ile		49
							His				Pro		TCT Ser	97
						Ser				Ası			AAT Asn	145
			 		Lys			 	Met				TGT Cys 60	193
				Ala				: Ala		C ATO				233

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro 1 5 10 15

Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu

7al Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val

Leu Lys Lys Asp Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile

Ser Ala Ser Val Ala Thr Ala Cys Met 65 70

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 352 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 49..351
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- AGATCTGCTA GAAATAATTT TGTTTAACTT TAAGAAGGAG ATATATCC ATG GCA CAA 57
 Met Ala Gln
- ATT AAC AAC ATG GCT CAA GGG ATA CAA ACC CTT AAT CCC AAT TCC AAT
 Tle Asn Asn Met Ala Gln Gly Tle Gln Thr Leu Asn Pro Asn Ser Asn
 5 10 15
- TTC CAT AAA CCC CAA GTT CCT AAA TCT TCA AGT TTT CTT GTT TTT GGA
 Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu Val Phe Gly
 20 35 35
- TCT AAA AAA CTG AAA AAT TCA GCA AAT TCT ATG TTG GTT TTG AAA AAA 201 Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val Leu Lys Lys Lys 40 50 50
- GAT TCA ATT TTT ATG CAA AAG TTT TGT TCC TTT AGG ATT TCA GCA TCA
 ASP Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile Ser Ala Ser
- GTG GCT ACA GCA CAG AAG CCT TCT GAG ATA GTG TTG CAA CCC ATT AAA Val Ala Thr Ala Gln Lys Pro Ser Glu Ile Val Leu Gln Pro Ile Lys
- GAG ATT TCA GGC ACT GTT AAA TTG CCT GGC TCT AAA TCA TTA TCT AAT
 Glu Ile Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn
 85
 20
 . 95

AGA ATT C Arg Ile 100

352

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 101 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro $1 \\ 0 \\ 1 \\ 0 \\ 15$

Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu 20 25 30

Val Phe Gly Ser Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val 35 40 45

Ser Ala Ser Val Ala Thr Ala Gln Lys Pro Ser Glu Ile Val Leu Gln $_{65}$ 70 $_{70}$ 80

Pro Ile Lys Glu Ile Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser 85 90 95

Leu Ser Asn Arg Ile

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - B) TYPE: amino acid
 - C) STRANDEDNESS: single
 - D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
```

Xaa His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly
1 10 15

Leu Xaa Gly Thr Val Arg Ile Pro Gly Asp Lys Met 20

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val 1 $$\rm 10^{\circ}$

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

The Thr Gly Leu Leu Glu Gly Glu Asp Val The Asn Thr Gly Lys
1 5 10 15

GARGAYGTNA THAATAC

(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE; TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
ATGATHGAYG ARTAYCC	17
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
GARGAYGTNA THAACAC	17
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEO ID NO:23:	

35

(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CGTGGATAGA TCTAGGAAGA CAACCATGGC TCACGGTC	38
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GGATAGATTA AGGAAGACGC GCATGCTTCA CGGTGCAAGC AGCC	44
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:26:	

GGCTGCCTGA TGAGCTCCAC AATCGCCATC GATGG

(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
CGTCGCTCGT CGTGCGTGGC CGCCCTGACG GC	32
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
CGGGCAAGGC CATGCAGGCT ATGGGCGCC	29
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA	
(X1) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
COCCUMENCE COMPANIE GOVERNOON	31

17

- (2) INFORMATION FOR SEO ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Xaa His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 (A) DESCRIPTION: Synthetic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GCGGTBGCSG GYTTSGG

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (C) STRANDEDNESS: sing.
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Leu Asp Phe Gly Asn Ala Ala Thr Gly Cys Arg Leu Thr 1 5 10

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid

 (A) DESCRIPTION: Synthetic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

CGGCAATGCC GCCACCGGCG CGCGCC

26

- (2) INFORMATION FOR SEQ ID NO:35:
 - - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	Other	nuc	cleic	acid			
				(A)	DESCR	RIPTION:	S	ynthetic	DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGACGGCTGC TTGCACCGTG AAGCATGCTT AAGCTTGGCG TAATCATGG

49

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 (A) DESCRIPTION: Synthetic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GGAAGACGCC CAGAATTCAC GGTGCAAGCA GCCGG

35

- (2) INFORMATION FOR SEO ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: .note= "Xaa at position 2 is Gly, Ser, Thr. Cys. Tyr. Asn. Gln. Asp. or Glu"
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - E) LOCATION: 4
 - D) OTHER INFORMATION: note= "Maa at position 4 is Ser or Thr"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Arg Xaa His Xaa Glu 1 5

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 4
 - (D) OTHER INFORMATION: /note= "Xaa at position 4 is Ser or Thr"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Gly Asp Lys Xaa

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 4
 - (D) OTHER INFORMATION: note= "Xaa at position 4 is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val"

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
```

Ser Ala Gln Xaa Lys 1 5

- (2) INFORMATION FOR SEQ ID NO:40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /note= "Xaa at position 2 is Ala Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val*
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Asn Xaa Thr Arg

- (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1287 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1287

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

	,,,,,						44.	,								
										GGA Gly						48
										ATG Met						96
										CCG Pro						144
										GTT Val						192
Ser 65	Ser	Asp	Val	Val	Ile 70	His	Gly	Lys	Gly	ATC Ile 75	Asp	Ala	Leu	Lys	Glu 80	240
Pro	Glu	Ser	Leu	Leu 85	Asp	Val	Gly	Asn	Ser 90	GGT Gly	Thr	Thr	Ile	Arg 95	Leu	288
Met	Leu	Gly	Ile 100	Leu	Ala	Gly	Arg	Pro 105	Phe	TAC Tyr	Ser	Ala	Val 110	Ala	Gly	336
Asp	Glu	Ser 115	Ile	Ala	Lys	Arg	Pro 120	Met	Lys	CGT Arg	Val	Thr 125	Glu	Pro	Leu	384
Lys	Lys 130	Met	Gly	Ala	Lys	11e 135	Asp	Gly	Arg	GCC Ala	Gly 140	Gly	Glu	Phe	Thr	432
Pro 145	Leu	Ser	Val	Ser	Gly 150	Ala	Ser	Leu	Lys	GGA Gly 155	Ile	Asp	Tyr	Val	Ser 160	480
					Gln					Val					TTA Leu	528

				ACA Thr													576
				ATG Met													624
				T ė C Ser													672
				GGA Gly													720
				CCA Pro 245													768
				ACA Thr													816
			Ile	AAA Lys				Asp									864
GAT Asp	TTG Leu 290	Ile	ATA Ile	GAA Glu	ACG Thr	TCA Ser 295	TCT	CTA Leu	AAG Lys	GCA Ala	GTT Val 300	GAA Glu	ATC Ile	GGA Gly	GGA Gly		912
GAT Asp 305	Ile	ATT	CCG Pro	CGT Arg	TTA Leu 310	Ile	GAT Asp	GAG Glu	ATC Ile	Pro 315	Ile	ATC Ile	GCG Ala	CTT Leu	Leu 320	٠.	960
GCG Ala	ACT Thr	CAG Glr	GCG Ala	GAA Glu 325	Gly	ACC Thr	ACC	GTT Val	Ile 330	Lys	GAC Asp	GCG Ala	GCA Ala	GAG Glu 335	CTA Leu		1008
AAA Lys	GTC Val	AAA Lys	GAA Glu 340	ı Thr	AAC Asr	CGT Arg	ATT	345	Thr	GTT Val	GTT . Val	TCT Ser	GAG Glu 350	Leu	CGC Arg		1056
AAC Lys	G CTO	GG(1 Gl) 35!	/ Ala	r GAA a Glu	A ATI	r GAA	A CCC 1 Pro 36	o Th	A GCA	A GAS	r GG;	A ATO Met 365	: Lys	GTT Val	r TAT l Tyr		1104

						GTG Val	Ser		1152
			Leu			TCC Ser 395			1200
						CAC His			1248
		Leu	Lys	Leu	 	AAA Lys	 TGA		1287

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 428 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:42:

Met Lys Arg Asp Lys Val Gln Thr Leu His Gly Glu Ile His Ile Pro

Gly Asp Lys Ser Ile Ser His Arg Ser Val Met Phe Gly Ala Leu Ala $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Gly Thr Thr Thr Val Lys Asn Phe Leu Pro Gly Ala Asp Cys Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Ser Thr Ile Asp Cys Phe Arg Lys Met Gly Val His Ile Glu Gln Ser 50 55 60

Ser Ser Asp Val Val Ile His Gly Lys Gly Ile Asp Ala Leu Lys Glu 65 70 75 80

Pro Glu Ser Leu Leu Asp Val Gly Asn Ser Gly Thr Thr Ile Arg Leu

Met Leu Gly Ile Leu Ala Gly Arg Pro Phe Tyr Ser Ala Val Ala Gly

100

105

110

Asp Glu Ser Ile Ala Lys Arg Pro Met Lys Arg Val Thr Glu Pro Leu 115 120 125

Lys Lys Met Gly Ala Lys Ile Asp Gly Arg Ala Gly Glu Phe Thr 130 135 140

Pro Val Ala Ser Ala Gln Ile Lys Ser Ala Val Leu Leu Ala Gly Leu 165 170 175

Gln Ala Glu Gly Thr Thr Thr Val Thr Glu Pro His Lys Ser Arg Asp 180 185 190

His Thr Glu Arg Met Leu Ser Ala Phe Gly Val Lys Leu Ser Glu Asp 195 200 205

Gln Thr Ser Val Ser Ile Ala Gly Gly Gln Lys Leu Thr Ala Ala Asp 210 215 220

The Phe Val Pro Gly Asp The Ser Ser Ala Ala Phe Phe Leu Ala Ala 225 230 235 240

Gly Ala Met Val Pro Asn Ser Arg Ile Val Leu Lys Asn Val Gly Leu 245 250 255

Asn Pro Thr Arg Thr Gly Ile Ile Asp Val Leu Gln Asn Met Gly Ala 260 265 \cdot 270

Lys Leu Glu Ile Lys Pro Ser Ala Asp Ser Gly Ala Glu Pro Tyr Gly 275 280 285

Asp Leu Ile Ile Glu Thr Ser Ser Leu Lys Ala Val Glu Ile Gly Gly 290 295 300

Asp Ile Ile Pro Arg Leu Ile Asp Glu Ile Pro Ile Ile Ala Leu Leu 305 310 315

Ala Thr Gln Ala Glu Gly Thr Thr Val Ile Lys Asp Ala Ala Glu Leu 325 330 335

Lys Val Lys Glu Thr Asn Arg Ile Asp Thr Val Val Ser Glu Leu Arg 340 345 350

48

Lys	Leu	Gly	Ala	Glu	Ile	Glu	Pro	Thr	Ala	Asp	Gly	Met	Lys	Val	Tyr
		355					360					365			

Gly Lys Gln Thr Leu Lys Gly Gly Ala Ala Val Ser Ser His Gly Asp 370 375 380

His Arg Ile Gly Met Met Leu Gly Ile Ala Ser Cys Ile Thr Glu Glu 385 390 395 400

Pro Ile Glu Ile Glu His Thr Asp Ala Ile His Val Ser Tyr Pro Thr \$405\$ \$410\$

Phe Phe Glu His Leu Asn Lys Leu Ser Lys Lys Ser 420 425

- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1293 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1293
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATG	GTA	AAT	GAA	CAA	ATC	ATT	GAT	ATT	TCA	GGT	CCG	TTA	AAG	GGC	GAA	
Met	Val	Asn	Glu	Gln	Ile	Ile	Asp	Ile	Ser	Gly	Pro	Leu	Lys	Gly	Glu	
1				5					10					15		

ATA GAA GTG CCG GGC GAT AAG TCA ATG ACA CAC CGT GCA ATC ATG TTG

11e Glu Val Fro Gly Asp Lys Ser Met Thr His Arg Ala 11e Met Leu

20
25
30

GCG TCG CTA GCT GAA GGT GTA TCT ACT ATA TAT AAG CCA CTA CTT GGC Ala Ser Leu Ala Glu Gly Val Fer Thr File Tyr Lys Pro Leu Leu Gly 45

											CAC His 60					192
											TCC Ser					240
GTT Val	AAC Asn	ACG Thr	CCA Pro	ČAT His 85	CAA Gln	GTA Val	TTG Leu	TAT Tyr	ACA Thr 90	GGT Gly	AAT Asn	TCT Ser	GGT Gly	ACG Thr 95	ACA Thr	288
											GGT Gly					336
											ATG Met					384
											GGT Gly 140					432
											AAA Lys					480
											GCC Ala					528
											GAA Glu				AGT Ser	576
								Lys			AAT Asn				GAA Glu	624
		Gly					Thr				GCA Ala 220				ATT Ile	672
	Pro					Val					Ser				TTC Fhe 240	~20

												GTA Val				768
												GAT Asp				816
												ACT Thr 285				864
												CTT Leu				912
												GAA Glu				960
												ACA Thr				1008:
				Lys					Asn			GAT Asp				1056
GAT Asp	ATG Met	TTA Leu 355	Asn	TTG Leu	TTA Leu	GGG Gly	TTT Phe 360	Glu	TTA Leu	CAA Gln	CCA Pro	ACT Thr 365	AAT Asn	GAT Asp	GGA Gly	1104
TTG Leu	ATT Ile 370	Ile	CAT	CCG Pro	TCA Ser	GAA Glu 375	Phe	AAA Lys	ACA Thr	AAT Asn	GCA Ala 380	Thr	GAT Asp	ATT	TTA Leu	. 1152
Thr 385	Asp	His	Arç	Ile	390	Met	Met	Leu	ı Ala	. Val 395	Ala	Cys	Val	Leu	400	1200
AGC Ser	GAC Glu	CCT Pro	GTC Val	L Lys 405	: Ile	: AAA	CAA Glr	TTI Phe	TAD ? dak 410	Ala	GTA Val	AAT Asn	GTA Val	TCA Ser 419	TTT Fhe	1248
CCA Pro	GG/	A TTT	TTZ e Lei 421	ı Pro	AAA D Lys	CTA Let	A AAC 1 Lys	G CT S Let 42	ı Le	A CAP	AAAA AAA	r GAG n Glu	GGA Gly 430	,	A	1293

- (2) INFORMATION FOR SEO ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 430 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Met Val Asn Glu Gln Ile Ile Asp Ile Ser Gly Pro Leu Lys Gly Glu 1 5 10 15

Ile Glu Val Pro Gly Asp Lys Ser Met Thr His Arg Ala Ile Met Leu 20 25 30

Ala Ser Leu Ala Glu Gly Val Ser Thr Ile Tyr Lys Pro Leu Leu Gly $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Asp Cys Arg Arg Thr Met Asp Ile Phe Arg His Leu Gly Val Glu $50 \,$ $\,$ 55 $\,$ 60 $\,$

Ile Lys Glu Asp Asp Glu Lys Leu Val Val Thr Ser Pro Gly Tyr Gln 65 70 75 80

Val Asn Thr Pro His Gln Val Leu Tyr Thr Gly Asn Ser Gly Thr Thr 85 90 95

Leu Ser Gly Asp Val Ser Ile Gly Lys Arg Pro Met Asp Arg Val Leu 115 120 125

Arg Pro Leu Lys Leu Met Asp Ala Asn Ile Glu Gly Ile Glu Asp Asn 130 135 140

Tyr Thr Pro Leu Ile Ile Lys Pro Ser Val Ile Lys Gly Ile Asn Tyr 145 150 155 160

Glm Met Glu Val Ala Ser Ala Glm Val Lys Ser Ala Ile Leu Phe Ala 165 170 175

Ser Leu Phe Ser Lys Glu Pro Thr Ile Ile Lys Glu Leu Asp Val Ser 180 185 190 Arg Asn His Thr Glu Thr Met Phe Lys His Phe Asn Ile Pro Ile Glu 205

Ala Glu Gly Leu Ser Ile Asn Thr Thr Pro Glu Ala Ile Arg Tyr Ile 215

Lys Pro Ala Asp Phe His Val Pro Gly Asp Ile Ser Ser Ala Ala Phe 225

Phe Ile Val Ala Ala Leu Ile Thr Pro Gly Ser Asp Val Thr Ile His 255

Asn Val Gly Ile Asn Gln Thr Arg Ser Gly Ile Ile Asp Ile Val Glu 260

Lys Met Gly Gly Asn Ile Gln Leu Phe Asn Gln Thr Thr Gly Ala Glu 285

Pro Thr Ala Ser Ile Arg Ile Gln Tyr Thr Pro Met Leu Gln Pro Ile 290 295 300

Thr Ile Glu Gly Glu Leu Val Pro Lys Ala Ile Asp Glu Leu Pro Val 305 310 315 320

Ile Ala Leu Cys Thr Gln Ala Val Gly Thr Ser Thr Ile Lys Asp

Ala Glu Glu Leu Lys Val Lys Glu Thr Asn Arg Ile Asp Thr Thr Ala 340 345 350

Asp Met Leu Asn Leu Leu Gly Phe Glu Leu Gln Pro Thr Asn Asp Gly 355 360 365

Leu Ile Ile His Pro Ser Glu Phe Lys Thr Asn Ala Thr Asp Ile Leu 370 375 380

Thr Asp His Arg Ile Gly Met Met Leu Ala Val Ala Cys Val Leu Ser 385 390 395 400

Ser Glu Pro Val Lys Ile Lys Gln Phe Asp Ala Val Asn Val Ser Phe $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415$

Pro Gly Phe Leu Pro Lys Leu Lys Leu Leu Gln Asn Glu Gly 420 425 430

(2) INFORMATION FOR SEQ ID NO:45

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GGAACATATG AAACGAGATA AGGTGCAG

28

- (2) INFORMATION FOR SEO ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

GGAATTCAAA CTTCAGGATC TTGAGATAGA AAATG

35

- (2) INFORMATION FOR SEC ID NO:47:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: Synthetic DNA
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO:47:

- (2) INFORMATION FOR SEO ID NO:48:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 - (A) DESCRIPTION: Synthetic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GGGGGAGCTC ATTATCCCTC ATTTTGTAAA AGC

33

- (2) INFORMATION FOR SEQ ID NO:49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

Leu Thr Asp Glu Thr Leu Val Tyr Pro Fhe Lys Asp Ile Pro Ala Asp 1

Gln Gln Lys Val Val Ile Pro Pro Gly Ser Lys Ser Ile Ser Asn Arg

Ala Leu Ile Leu Ala Ala Leu Gly Glu Gly Gln Cys Lys Ile Lys Asn 35 40 45

Leu Lys Gly Ala Thr fle Ser Trp Glu Asp Asn Gly Glu Thr Val Val 65

Val Glu Gly His Gly Gly Ser Thr Leu Ser Ala Cys Ala Asp Pro Leu 85 95 95 Tyr Leu Gly Asn Ala Gly Thr Ala Ser Arg Phe Leu Thr Ser Leu Ala 100 105 110

Ala Leu Val Asn Ser Thr Ser Ser Gln Lys Tyr Ile Val Leu Thr Gly \$115\$

Asn Ala Arg Met Gln Gln Arg Pro Ile Ala Pro Leu Val Asp Ser Leu 130 \$135\$

Arg Ala Asn Gİy Thr Lys Ile Glu Tyr Leu Asn Asn Glu Gly Ser Leu 145 150 155 160

Pro Ile Lys Val Tyr Thr Asp Ser Val Phe Lys Gly Gly Arg Ile Glu $_{\rm 165}$ $_{\rm 170}$ $_{\rm 175}$

Leu Ala Ala Thr Val Ser Ser Gln Tyr Val Ser Ser Ile Leu Met Cys $180 \ \ 185 \ \ \ 190$

Ala Pro Tyr Ala Glu Glu Pro Val Thr Leu Ala Leu Val Gly Gly Lys
195 200 205

Pro Ile Ser Lys Leu Tyr Val Asp Met Thr Ile Lys Met Met Glu Lys 210 215 220

Phe Gly Ile Asn Val Glu Thr Ser Thr Thr Glu Pro Tyr Thr Tyr Tyr 225 230 235 240

Ile Pro Lys Gly His Tyr Ile Asn Pro Ser Glu Tyr Val Ile Glu Ser \$245\$

Asp Ala Ser Ser Ala Thr Tyr Pro Leu Ala Phe Ala Ala Met Thr Gly 265 \$270\$

Thr Thr Val Thr Val Pro Asn Ile Gly Phe Glu Ser Leu Gln Gly Asp 275 280 285

Ala Arg Phe Ala Arg Asp Val Leu Lys Pro Met Gly Cys Lys Ile Thr 290 295 300

Gln Thr Ala Thr Ser Thr Thr Val Ser Gly Pro Fro Val Gly Thr Leu 305 310 315 320

Lys Pro Leu Lys His Val Asp Met Glu Pro Met Thr Asp Ala Phe Leu 325 330 335

Thr Ala Cys Val Val Ala Ala Ile Ser His Asp Ser Asp Pro Asn Ser 340 345 350

- Ala Asn Thr Thr Thr Ile Glu Gly Ile Ala Asn Gln Arg Val Lys Glu \$355\$
- Cys Asn Arg Ile Leu Ala Met Ala Thr Glu Leu Ala Lys Phe Gly Val $370 \ \ 375 \ \ 380$
- Lys Thr Thr Glu Leu Pro Asp Gly Ile Gln Val His Gly Leu Asn Ser 385 390 395 400
- Ile Lys Asp Leu Lys Val Pro Ser Asp Ser Ser Gly Pro Val Gly Val 405 410 415
- Cys Thr Tyr Asp Asp His Arg Val Ala Met Ser Phe Ser Leu Leu Ala 420 425 430
- Gly Met Val Asn Ser Gln Asn Glu Arg Asp Glu Val Ala Asn Pro Val 435 440 445
- Arg Ile Leu Glu Arg His Cys Thr Gly Lys Thr Trp Pro Gly Trp Trp 450 455 460
- Asp Val Leu His Ser Glu Leu Gly Ala Lys Leu Asp Gly Ala Glu Pro 465 470 475 480
- (2) INFORMATION FOR SEQ ID NO:50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: protein
 - (X1) SEQUENCE DESCRIPTION: SEQ ID NO:50:
 - Leu Ala Pro Ser Ile Glu Val His Pro Gly Val Ala His Ser Ser Asn 1 $$ 5 $$ 10 $$ 15
 - Val Ile Cys Ala Pro Pro Gly Ser Lys Ser Ile Ser Asn Arg Ala Leu 20 25 30
 - Val Leu Ala Ala Leu Gly Ser Gly Thr Cys Arg Ile Lys Asn Leu Leu 35 40 45

- His Ser Asp Asp Thr Glu Val Met Leu Asn Ala Leu Glu Arg Leu Gly $50 \ \ 55 \ \ \ 60$
- Gly Lys Gly Gly Asn Leu Gln Ala Ser Ser Ser Pro Leu Tyr Leu Gly 85 90 95
- Asn Ala Gly Thr Ala Ser Arg Phe Leu Thr Thr Val Ala Thr Leu Ala
- Asn Ser Ser Thr Val Asp Ser Ser Val Leu Thr Gly Asn Asn Arg Met
- Lys Gln Arg Pro Ile Gly Asp Leu Val Asp Ala Leu Thr Ala Asn Val
- Ala Ala Ser Gly Gly Phe Ala Gly Gly Asn Ile Asn Leu Ala Ala Lys 165 170 175
- Val Ser Ser Gln Tyr Val Ser Ser Leu Leu Met Cys Ala Pro Tyr Ala 180 185 190
- Lys Glu Pro Val Thr Leu Arg Leu Val Gly Gly Lys Pro Ile Ser Gln 195 200 205
- Pro Tyr Ile Asp Met Thr Thr Ala Met Met Arg Ser Phe Gly Ile Asp 210 215 220
- Val Gln Lys Ser Thr Thr Glu Glu His Thr Tyr His Ile Pro Gln Gly 225 230 235 240
- Arg Tyr Val Asn Pro Ala Glu Tyr Val Ile Glu Ser Asp Ala Ser Cys 245 250 255
- Ala Thr Tyr Pro Leu Ala Val Ala Ala Val Thr Gly Thr Thr Cys Thr 260 265 270
- Val Pro Asn Ile Gly Ser Ala Ser Leu Gln Gly Asp Ala Arg Phe Ala
- Val Glu Val Leu Arg Pro Met Gly Cys Thr Val Glu Gln Thr Glu Thr 290 195 300

Ser Thr Thr Val Thr Gly Pro Ser Asp Gly Ile Leu Arg Ala Thr Ser 305 310 315 320

Lys Arg Gly Tyr Gly Thr Asn Asp Arg Cys Val Pro Arg Cys Phe Arg 325 330 335

Thr Gly Ser His Arg Pro Met Glu Lys Ser Gln Thr Thr Pro Pro Val $\frac{340}{}$ 345 350

Ser Ser Gly Ile Ala Asn Gln Arg Val Lys Glu Cys Asn Arg Ile Lys $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365 \hspace{1.5cm}$

Ala Met Lys Asp Glu Leu Ala Lys Phe Gly Val Ile Cys Arg Glu His 370 375 380

Asp Asp Gly Leu Glu Ile Asp Gly Ile Asp Arg Ser Asn Leu Arg Gln 385 390 395

Pro Val Gly Gly Val Phe Cys Tyr Asp Asp His Arg Val Ala Phe Ser 405 410 415

Phe Ser Val Leu Ser Leu Val Thr Pro Gln Pro Thr Leu Ile Leu Glu
420 425 430

Lys Glu Cys Val Gly Lys Thr Trp Pro Gly Trp Trp Asp Thr Leu Arg 435 440 445

Gln Leu Phe Lys Val Lys Leu Glu Gly Lys Glu Leu 450 455 460

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - ,=,
 - (ii) MOLECULE TYPE: protein
 - (X1) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Lys Ala Ser Glu Ile Val Leu Gln Pro Ile Arg Glu Ile Ser Gly Leu I 5 10 15

Ile Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu 20 25 30

Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn Ser 35 40 45

Asp Asp Ile Asn Tyr Met Leu Asp Ala Leu Lys Lys Leu Gly Leu Asn 50 $^{}_{}$ 55 $$ 60

Val Glu Arg Asp Ser Val Asn Asn Arg Ala Val Val Glu Gly Cys Gly 65 70 75 80

Gly Ile Phe Pro Ala Ser Leu Asp Ser Lys Ser Asp Ile Glu Leu Tyr \$85\$

Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Ala Ala Gly Gly Asn Ala Ser Tyr Val Leu Asp Gly Val Pro Arg Met 115 \$120\$ L25

Arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly $130 \,$ $135 \,$ $140 \,$

Ala Asp Val Glu Cys Thr Leu Gly Thr Asn Cys Pro Pro Val Arg Val 145 150 150 155

Asn Ala Asn Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser $165 \\ 170 \\ 175$

Ile Ser Ser Gln Tyr Leu Thr Ala Leu Leu Met Ala Ala Pro Leu Ala 180 185 190

Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Val Pro 195 200 205

Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Val Ser Ala 210 215 220

Glu His Ser Asp Ser Trp Asp Arg Phe Phe Val Lys Gly Gly Gln Lys 225 \$230\$

Tyr Lys Ser Pro Gly Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala 045 050 055

Ser Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Glu Thr Val Thr Val 260 265 270

- Glu Gly Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285
- Val Leu Glu Lys Met Gly Cys Lys Val Ser Trp Thr Glu Asn Ser Val 290 295 300
- Thr Val Thr Gly Pro Ser Arg Asp Ala Phe Gly Met Arg His Leu Arg 305 • 310 315
- Ala Val Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 335
- Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Thr Ile Arg Asp Val $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$
- Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr 355 360 365
- Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Ser Asp Tyr Cys 370 375 380
- Val Ile Thr Pro Pro Ala Lys Val Lys Pro Ala Glu Ile Asp Thr Tyr 385 \$390\$ 395 400
- Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp 405 410 415
- Val Pro Val Thr Ile Lys Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro
- Asp Tyr Phe Gln Val Leu Glu Ser Ile Thr Lys His 435
- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
- Lys Ala Ser Glu Ile Val Leu Gln Pro Ile Arg Glu Ile Ser Gly Leu 1 5 10 15
- Ile Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu $\overset{20}{\cdot}$ 30
- Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn Ser 35 40 45
- Asp Asp Ile Asn Tyr Met Leu Asp Ala Leu Lys Arg Leu Gly Leu Asn 50 60
- Val Glu Thr Asp Ser Glu Asn Asn Arg Ala Val Val Glu Gly Cys Gly 65 70 75 80
- Gly Ile Phe Pro Ala Ser Ile Asp Ser Lys Ser Asp Ile Glu Leu Tyr 85 90 95
- Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr 100 $$105\$
- Ala Ala Gly Gly Asn Ala Ser Tyr Val Leu Asp Gly Val Pro Arg Met 115 \$120\$
- Arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly 130 135 140
- Ala Asp Val Glu Cys Thr Leu Gly Thr Asn Cys Pro Fro Val Arg Val 145 150 155 160
- Asn Ala Asn Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 175
- Ile Ser Ser Gln Tyr Leu Thr Ala Leu Leu Met Ser Ala Pro Leu Ala 180 185 190
- Leu Gly Asp Val Glu Ile Glu Ile Val Asp Lys Leu Ile Ser Val Pro
- Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Val Ser Val 210 220
- Glu His Ser Asp Ser Trp Asp Arg Phe Phe Val Lys Gly Gly Gln Lys S25 \$230\$

- Tyr Lys Ser Pro Gly Asn Ala Tyr Val Glu Glu Asp Ala Ser Ser Ala 245 250 255
- Cys Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Glu Thr Val Thr Val 260 265 270
- Glu Gly Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285
- Val Leu Glu Lys Met Gly Cys Lys Val Ser Trp Thr Glu Asn Ser Val 290 295 300
- Thr Val Thr Gly Pro Pro Arg Asp Ala Phe Gly Met Arg His Leu Arg 305 \$310\$ 315 320
- Ala Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 335
- Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr $355 \hspace{1cm} 360 \hspace{1cm} 365 \hspace{1cm}$
- Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Ser Asp Tyr Cys 370 375 380
- Val Ile Thr Pro Pro Lys Lys Val Lys Thr Ala Glu Ile Asp Thr Tyr 385 390395 400
- Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp 405 410 415
- Val Pro Ile Thr Ile Asn Asp Ser Gly Cys Thr Arg Lys Thr Phe Pro 420 425 430
- Asp Tyr Phe Gln Val Leu Glu Arg Ile Thr Lys His
 435 440
- (2) INFORMATION FOR SEQ ID NO:53:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
- Lys Pro Asn Glu Ile Val Leu Gln Pro Ile Lys Asp Ile Ser Gly Thr 1 5 10 15
- Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu $\frac{2}{2}$ 0 25 30
- Ala Ala Leu Ser Lys Gly Arg Thr Val Val Asp Asn Leu Leu Ser Ser 35 40 45
- Val Glu Asp Asp Asp Glu Asp Gln Arg Ala Ile Val Glu Gly Cys Gly 65 707575
- Gly Gln Phe Pro Val Gly Lys Lys Ser Glu Glu Glu Ile Gln Leu Phe 85 90 95
- Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr $100 \\ 105 \\ 110$
- Val Ala Gly Gly His Ser Arg Tyr Val Leu Asp Gly Val Pro Arg Met 115 120 125
- Arg Glu Arg Pro Ile Gly Asp Leu Val Asp Gly Leu Lys Gln Leu Gly 130 135
- Ala Glu Val Asp Cys Phe Leu Gly Thr Asn Cys Pro Pro Val Arg Ile 145 150 155 160
- Val Ser Lys Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 175
- Ile Ser Ser Gln Tyr Leu Thr Ala Leu Leu Met Ala Ala Pro Leu Ala 180 \$190\$
- Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Val Pro
- Glu His Thr Ser Ser Trp Asp Lys Phe Leu Val Arg Gly Gly Gln Lys 225 \$230\$

- Tyr Lys Ser Pro Gly Lys Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala 245 250 255
- Ser Tyr Phe Leu Ala Gly Ala Ala Val Thr Gly Gly Thr Val Thr Val 260 265 270
- Glu Gly Cys Gly Thr Ser Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285
- Val Leu Glu Lys Met Gly Ala Glu Val Thr Trp Thr Glu Asn Ser Val 290 295 300
- Thr Val Lys Gly Pro Pro Arg Asn Ser Ser Gly Met Lys His Leu Arg 305 310 315 320
- Ala Val Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 330 335
- Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 340 345 350
- Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr 355 360 365
- Glu Leu Arg Lys Leu Gly Ala Thr Val Val Glu Gly Ser Asp Tyr Cys 370 375 380
- Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Glu Ile Asp Thr Tyr 385 \$390\$
- Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp $\frac{405}{405}$
- Val Pro Val Thr Ile Lys Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 420 425 430
- Asn Tyr Phe Asp Val Leu Gln Gln Tyr Ser Lys His 435 440
- (2) INFORMATION FOR SEQ ID NO:54:
 - 1) SEQUENCE CHARACTERISTICS:
 - A) LENGTH: 444 amino acids
 - .B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - 11) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
- Lys Pro His Glu Ile Val Leu Xaa Pro Ile Lys Asp Ile Ser Gly Thr 1 5 10 15
- Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu 20 25 30
- Ala Ala Leu Ser Glu Gly Arg Thr Val Val Asp Asn Leu Leu Ser Ser 35 40 45
- Asp Asp Ile His Tyr Met Leu Gly Ala Leu Lys Thr Leu Gly Leu His $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$
- Val Glu Asp Asp Asp Glu Asp Gln Arg Ala Ile Val Glu Gly Cys Gly 65 7075 70 75
- Gly Gln Phe Pro Val Gly Lys Lys Ser Glu Glu Glu Ile Gln Leu Phe 85 90 95
- Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr 100 $$105\$
- Val Ala Gly Gly His Ser Arg Tyr Val Leu Asp Gly Val Pro Arg Met 115 120 125
- Arg Glu Arg Pro Ile Gly Asp Leu Val Asp Gly Leu Lys Gln Leu Gly 130 135 140
- Ala Glu Val Asp Cys Ser Leu Gly Thr Asn Cys Pro Pro Val Arg Ile 145 155 150 160
- Val Ser Lys Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 175
- Ile Ser Ser Gln Tyr Leu Thr Ala Leu Leu Met Ala Ala Pro Leu Ala 180 185 190
- Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Val Pro 195 200 205
- Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Val Phe Val 210 215 220

Glu	His	Ser	Ser	Gly	Trp	Asp	Arg	Phe	Leu	Val	Lys	Gly	Gly	Gln	Lys
225					230					235					240

Tyr Lys Ser Pro Gly Lys Ala Phe Val Glu Gly Asp Ala Ser Ser Ala 245 250 255

Ser Tyr Phe Leu Ala Gly Ala Ala Val Thr Gly Gly Thr Val Thr Val $_{\mbox{\scriptsize 2}}$ 260 265 270

Glu Gly Cys Gly Thr Ser Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285

Val Leu Glu Lys Met Gly Ala Glu Val Thr Trp Thr Glu Asn Ser Val 290 \$295\$

Thr Val Lys Gly Pro Pro Arg Asn Ser Ser Gly Met Lys His Leu Arg 305 \$310\$

Ala Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 335

Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Thr Ile Arg Asp Val 340 345 350

Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr $355 \\ 860 \\ 365$

Glu Leu Arg Lys Leu Gly Ala Thr Val Val Glu Gly Ser Asp Tyr Cys 370 375 380

Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Glu Ile Asp Thr Tyr 385 \$390\$ \$395\$

Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp 405 410 415

Val Pro Val Thr Ile Lys Asn Pro Gly Cys Thr Arg Lys Thr Phe Pro

Asp Tyr Phe Glu Val Leu Gln Lys Tyr Ser Lys His 435 440

- (2) INFORMATION FOR SEO ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:
 - Lys Pro Ser Glu Ile Val Leu Gln Pro Ile Lys Glu Ile Ser Gly Thr 1 $$ 15
 - Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu 20 25 30
 - Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Ser Ser 35 40 \cdot 45
 - Asp Asp Ile His Tyr Met Leu Gly Ala Leu Lys Thr Leu Gly Leu His 50 $$ \phantom
 - Val Glu Glu Asp Ser Ala Asn Gln Arg Ala Val Val Glu Gly Cys Gly 65 70 75 80
 - Gly Leu Phe Pro Val Gly Lys Glu Ser Lys Glu Glu Ile Gln Leu Phe 35 95
 - Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr 100 105 110
 - Val Ala Gly Gly Asn Ser Arg Tyr Val Leu Asp Gly Val Pro Arg Met 115 120 125
 - Arg Glu Arg Pro Ile Ser Asp Leu Val Asp Gly Leu Lys Gln Leu Gly 130 140
 - Ala Glu Val Asp Cys Phe Leu Gly Thr Lys Cys Pro Pro Val Arg Ile 145 150 150 155
 - Val Ser Lys Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 175

- Ile Ser Ser Gln Tyr Leu Thr Ala Leu Leu Met Ala Ala Pro Leu Ala 180 185 190
- Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Val Pro
 195 200 205
- Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Ile Ser Val 210 215 220
- Glu His Ser Ser Ser Trp Asp Arg Phe Phe Val Arg Gly Gly Gln Lys 225 230235235
- Tyr Lys Ser Pro Gly Lys Ala Phe Val Glu Gly Asp Ala Ser Ser Ala 245 350 255
- Ser Tyr Phe Leu Ala Gly Ala Ala Val Thr Gly Gly Thr Ile Thr Val \$260\$
- Glu Gly Cys Gly Thr Asn Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 275 280 285
- Val Leu Glu Lys Met Gly Ala Glu Val Thr Trp Thr Glu Asn Ser Val 290 295 300
- Thr Val Lys Gly Pro Pro Arg Ser Ser Ser Gly Arg Lys His Leu Arg 305 310315315
- Ala Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 \$330
- Ala Val Val Ala Leu Tyr Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 340 345 350
- Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr 355 360 365
- Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Pro Asp Tyr Cys 370 375 380
- Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Asp Ile Asp Thr Tyr 385 390 395 400
- Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp 405 410 415
- Val Pro Val Thr Ile Asn Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 420 425 430

Asn Tyr Phe Asp Val Leu Gln Gln Tyr Ser Lys His 435 440

- (2) INFORMATION FOR SEO ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 amino acids
 - (B) TYPE: amino acid
 - (D) TOPÔLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

 - Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu 20 25 30
 - Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn 35 40 45
 - Ser Glu Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu 50 55 60
 - Ser Val Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Val Gly Cys 70 75 80
 - Gly Gly Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe $85 \hspace{1cm} 90 \hspace{1cm} 95 \hspace{1cm} .$

 - Ala Ala Gly Gly Asn Ala Thr Tyr Val Leu Asp Gly Val Pro Arg Met 115 \$120\$
 - arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly 130 $$135\$
 - Ala Asp Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val 145 150 150

165

Asn Gly Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser

170

Ile	Ser	Ser	Gln 180	Tyr	Leu	Ser	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Pro
Leu	Gly	Asp 195		Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Ile	Pro
Tyr	Va1 210	Glu	Met	Thr	Leu	Arg 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Lys	Ala
Glu 225	His	Ser	Asp	Ser	Trp 230	Asp	Arg	Phe	Tyr	Ile 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Lys 245	Asn	Ala	Tyr	Val	Glu 250	G1y	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Ile 265	Thr	Gly	Gly	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275		Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290		Met	Met	Gly	Ala 295		Val	Thr	Trp	Thr 300		Thr	Ser	Val

Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 340 345 350

Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Val Ala Ile Arg Thr 355 360 365

Thr Val Thr Gly Pro Pro Arg Glu Pro Phe Gly Arg Lys His Leu Lys

Ala Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu

315

310

305

Glu Leu Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys 370 375 380

The File Thr Pro Pro Glu Lys Leu Asn Val Thr Ala File Asp Thr Tyr 385 400

Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Glu 405 410 415 Val Pro Val Thr Ile Arg Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 420 $\,$ 425 $\,$ 430 $\,$

Asp Tyr Phe Asp Val Leu Ser Thr Phe Val Lys Asn 435

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
 - Met Glu Ser Leu Thr Leu Gln Pro Ile Ala Arg Val Asp Gly Ala Ile 1 $$ 5 $$ 10 $$ 15
 - Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$
 - Ala Leu Ala Cys Gly Lys Thr Val Leu Thr Asn Leu Leu Asp Ser Asp 35 40 45
 - Asp Val Arg His Met Leu Asn Ala Leu Ser Ala Leu Gly Ile Asn Tyr $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$
 - Thr Leu Ser Ala Asp Arg Thr Arg Cys Asp Ile Thr Gly Asn Gly Gly 65 70 75 80
 - Pro Leu Arg Ala Pro Gly Ala Leu Glu Leu Phe Leu Gly Asn Ala Gly 95
 - Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Gln Asn Glu 100 105 110
 - The Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His
 - Leu Val Asp Ser Leu Arg Gln Gly Gly Ala Asn Ile Asp Tyr Leu Glu 130 135 140

Gln	Glu	Asn	Tyr	Pro	Pro	Leu	Arg	Leu	Arg	Gly	Gly	Phe	Ile	Gly	Gly
145					150					155					160

Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 175

Leu Met Thr Ala Pro Leu Ala Pro Lys Asp Thr Ile Ile Arg Val Lys $$_{\bullet}180 185 190

Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met 195 200205

Val Lys Gly Gly Gln Gln Tyr His Ser Pro Gly Arg Tyr Leu Val Glu 225 230 230 235

Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys \$245\$

Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Lys Ser Met Gln Gly $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Ile Thr 275 280 285

Trp Gly Asp Asp Phe Ile Ala Cys Thr Arg Gly Glu Leu His Ala Ile 390 300

Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 305 310 315

Thr Ala Leu Phe Ala Lys Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 \$330\$

Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 340 345 350

Arg Lys Val Gly Ala Glu Val Glu Glu Gly His Asp Tyr Ile Arg Ile

Thr Pro Pro Ala Lys Leu Gln His Ala Asp Ile Gly Thr Tyr Asn Asp 370 375 380

His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 400 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 410 415

Phe Glu Gln Leu Ala Arg Met Ser Thr Pro Ala 420 425

- (2) INFORMATION FOR SEQ ID NO:58:

 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
 - Met Glu Ser Leu Thr Leu Gln Pro Ile Ala Arg Val Asp Gly Ala Ile 1 $$ 5 $$ 10 $$ 15
 - Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala 20 25 30
 - Ala Leu Ala Cys Gly Lys Thr Val Leu Thr Asn Leu Leu Asp Ser Asp 35 40 45
 - Asp Val Arg His Met Leu Asn Ala Leu Ser Ala Leu Gly Ile Asn Tyr 50 55 60
 - Thr Leu Ser Ala Asp Arg Thr Arg Cys Asp Ile Thr Gly Asn Gly Gly 65 70 75 80
 - Pro Leu Arg Ala Ser Gly Thr Leu Glu Leu Phe Leu Gly Asn Ala Gly 85 90 95
 - Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Gln Asn Glu 100 105 110
 - Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His
 - Leu Val Asp Ser Leu Arg Gln Gly Gly Ala Asn Ile Asp Tyr Leu Glu 130 140

Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Ile Gly Gly 145 150 155 160

Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 175

Leu Met Thr Ala Pro Leu Ala Pro Glu Asp Thr Ile Ile Arg Val Lys \$80 185 190

Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met 195 200205

Lys Thr Phe Gly Val Glu Ile Ala Asn His His Tyr Gln Gln Phe Val 210 $\,$ 215 $\,$ 220 $\,$

Val Lys Gly Gly Gln Gln Tyr His Ser Pro Gly Arg Tyr Leu Val Glu 225 $$ 230 $$ 235 $$ 240

Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Gly Ile Lys 245 250 255

Gly Gly Thr Val Lys Val Thr Gly Ile Gly Gly Lys Ser Met Gln Gly 260 265 270

Asp Ile Arg Phe Ala Asp Val Leu His Lys Met Gly Ala Thr Ile Thr $275 \\ 280 \\ 285$

Trp Gly Asp Asp Phe Ile Ala Cys Thr Arg Gly Glu Leu His.Ala Ile 290 295 300

Thr Ala Leu Phe Ala Lys Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 \$330\$

Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 340 345 350

Arg Lys Val Gly Ala Glu Val Glu Glu Gly His Asp Tyr Ile Arg Ile 355 360 365

Thr Pro Pro Ala Lys Leu Gln His Ala Asp Ile Gly Thr Tyr Asn Asp 370 375 380

His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 400 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 415

Phe Glu Gln Leu Ala Arg Met Ser Thr Pro Ala 420 425

- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Met Glu Ser Leu Thr Leu Gln Pro Ile Ala Arg Val Asp Gly Thr Val 1 5 10 15

Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala 20 25 30

Ala Leu Ala Arg Gly Thr Thr Val Leu Thr Asn Leu Leu Asp Ser Asp 35 40 45

Asp Val Arg His Met Leu Asn Ala Leu Ser Ala Leu Gly Val His Tyr 50 55 60

Val Leu Ser Ser Asp Arg Thr Arg Cys Glu Val Thr Gly Thr Gly Gly 65 70 75 80

Pro Leu Gin Ala Gly Ser Ala Leu Glu Leu Phe Leu Gly Asn Ala Gly 95 90 95

Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Ser Asn Asp 100 105 110

Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His

Leu Val Asp Ala Leu Arg Gln Gly Gly Ala Gln Ile Asp Tyr Leu Glu 130 135 140 Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Thr Gly Gly 145 \$150\$

Asp Val Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 175

Leu Met Ala Ser Pro Leu Ala Pro Gln Asp Thr Val Ile Ala Ile Lys 180 185 190

Gly Glu Leu Val Ser Arg Pro Tyr Ile Asp Ile Thr Leu His Leu Met 195 200205

Lys Thr Phe Gly Val Glu Val Glu Asn Gln Ala Tyr Gln Arg Phe Ile 210 \$215\$

Val Arg Gly Asn Gln Gln Tyr Gln Ser Pro Gly Asp Tyr Leu Val Glu 225 230 230 235

Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys \$245\$

Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Val Thr 275 280 285

Trp Gly Glu Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asn Ala Ile 290 295 300

Asp Met Asp Met Asn His Ile Fro Asp Ala Ala Met Thr Ile Ala Thr 305 \$310\$ \$315

Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 \$330\$

Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 340 345 350

Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 355 360 365

Thr Pro Pro Leu Thr Leu Gin Phe Ala Glu Ile Gly Thr Tyr Asn Asp 370 375 380

His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 400 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr \$405\$ \$410\$

Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 420 425

- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO:60:
 - Met Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 1 $$ 5 $$ 10 $$ 15
 - Val Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu 20 25 30
 - Ala Ala Leu Ala Glu Gly Thr Thr Gln Leu Asn Asn Leu Leu Asp Ser 35 40 45
 - Asp Asp Fie Arg His Met Leu Asn Ala Leu Gln Ala Leu Gly Val Lys 50 $\,$
 - Tyr Arg Leu Ser Ala Asp Arg Thr Arg Cys Glu Val Asp Gly Leu Gly 65 70 75 80
 - Gly Lys Leu Val Ala Glu Gln Pro Leu Glu Leu Phe Leu Gly Asn Ala 95 90 95
 - Gly Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Lys Asn
 - Asp Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly 115 120 125
 - His Leu Val Asp Ala Leu Arg Gln Gly Gly Ala Gln Ile Asp Tyr Leu 130 135 140

Glu Gln Glu Asn Tyr Arg Arg Cys Ile Ala Gly Gly Phe Arg Gly Gly 145 \$150\$

Lys Leu Thr Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 175

Leu Met Thr Ala Pro Leu Ala Glu Gln Asp Thr Glu Ile Gln Ile Gln 180 185 190

Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu His Leu Met 195 200 205

Lys Ala Phe Gly Val Asp Val Val His Glu Asn Tyr Gln Ile Phe His 210 215 220

Ile Lys Gly Gly Gln Thr Tyr Arg Ser Pro Gly Ile Tyr Leu Val Glu 225 230 235 240

Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Ala Ala Ile Lys 245 250 255

Gly Gly Thr Val Arg Val Thr Gly Ile Gly Lys Gln Ser Val Gln Gly $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Asp Thr Lys Phe Ala Asp Val Leu Glu Lys Met Gly Ala Lys Ile Ser 275 280 285

Trp Gly Asp Asp Tyr Ile Glu Cys Ser Arg Gly Glu Leu Gln Gly Ile . 290 \$295\$

Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 305 \$310\$ 315 320

Thr Ala Leu Phe Ala Asp Gly Pro Thr Val Ile Arg Asn Ile Tyr Asn 325 \$330\$ 335

Trp Arg Val Lys Glu Thr Asp Arg Leu Ser Ala Met Ala Thr Glu Leu 340 345 350

Arg Lys Val Gly Ala Glu Val Glu Glu Gly Gln Asp Tyr Ile Arg Val 355 360 365

Val Pro Pro Ala Gln Leu Ile Ala Ala Glu Ile Gly Thr Tyr Asn Asp 370 375 380

His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 400 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 410 415

Phe Glu Gln Leu Ala Arg Leu Ser Gln Ile Ala 420 425

- (2) INFORMATION FOR SEQ ID NO:61:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:
 - Met Glu Lys Ile Thr Leu Ala Pro Ile Ser Ala Val Glu Gly Thr Ile
 1 5 10 15
 - Asn Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ala Leu Leu Ala 20 25 30
 - Ala Leu Ala Lys Gly Thr Thr Lys Val Thr Asn Leu Leu Asp Ser Asp 35 40 45
 - Asp Ile Arg His Met Leu Asn Ala Leu Lys Ala Leu Gly Val Arg Tyr 50 55 60
 - Gln Leu Ser Asp Asp Lys Thr Ile Cys Glu Ile Glu Gly Leu Gly Gly 65 70 75 80
 - Ala Phe Asn Ile Gln Asp Asn Leu Ser Leu Phe Leu Gly Asn Ala Gly 35 90 95
 - Thr Ala Met Arg Pro Leu Thr Ala Ala Leu Cys Leu Lys Gly Asn His 100 $$100\,$
 - Glu Val Glu Ile Ile Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro 115 $$120\,$
 - The Leu His Leu Val Asp Ala Leu Arg Glm Ala Gly Ala Asp The Arg 130 135 140

Tyr 145	Leu	Glu	Asn	Glu	Gly 150	Tyr	Pro	Pro	Leu	Ala 155	Ile	Arg	Asn	Lys	Gly 160
Ile	Lys	Gly	Gly	Lys 165	Val	Lys	Ile	Asp	Gly 170	Ser	Ile	Ser	Ser	Gln 175	Phe
Leu	Thr		Leu •180	Leu	Met	Ser	Ala	Pro 185	Leu	Ala	Glu	Asn	Asp 190	Thr	Glu
Ile	Glu	Ile 195	Ile	Gly	Glu	Leu	Val 200	Ser	Lys	Pro	Tyr	Ile 205	Asp	Ile	Thr
Leu	Ala 210	Met	Met	Arg	Asp	Phe 215	Gly	Val	Lys	Val	G1u 220	Asn	His	His	Tyr
Gln 225	Ĺys	Phe	Gln	Val	Lys 230	Gly	Asn	Gln	Ser	Tyr 235	Ile	Ser	Pro	Asn	Lys 240
Tyr	Leu	Val	Glu	Gly 245	Asp	Ala	Ser	Ser	Ala 250	Ser	Tyr	Phe	Leu	Ala 255	Ala
Gly	Ala	Ile	Lys 260	Gly	Lys	Val	Lys	Val 265	Thr	Gly	Ile	Gly	Lys 270	Asn	Ser
Ile	Gln	Gly 275	Asp	Arg	Leu	Phe	Ala 280	Asp	Val	Leu	Glu	Lys 285	Met	Gly	Ala
Lys	11e 190	Thr	Trp	Gly	Glu	Asp 295	Phe	Ile	Gln	Ala	Glu 300	His	Ala	Glu	Leu
Asn 305	Gly	Ile	Asp	Met	Asp 310	Met	Asn	His	Ile	Pro 315	Asp	Ala	Ala	Met	Thr 320
Ile	Ala	Thr	Thr	Ala 325	Leu	Phe	Ser	Asn	Gly 330	Glu	Thr	Val	Ile	Arg 335	Asn
	-		340					345					350	Met	
		355					360					365		λsp	
	370					375					380			Asn	
Glu 385		Tyr	Asn	Asp	H15		Met	Ala	Met	Cys 395		Ser	Leu	Ile	Ala 400

Leu Ser Asn Thr Pro Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys 405 410 415

Thr Phe Pro Thr Phe Phe Asn Glu Phe Glu Lys Ile Cys Leu Lys Asn 420 425 430

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 441 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:
 - Val Ile Lys Asp Ala Thr Ala Ile Thr Leu Asn Pro Ile Ser Tyr Ile 1 $$ 5 $$ 10 $$ 15
 - Glu Gly Glu Val Arg Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ala 20 25 30
 - Leu Leu Ser Ala Leu Ala Lys Gly Lys Thr Thr Leu Thr Asn Leu 35 40 45
 - Leu Asp Ser Asp Asp Val Arg His Met Leu Asn Ala Leu Lys Glu Leu 50 60
 - Gly Val Thr Tyr Gln Leu Ser Glu Asp Lys Ser Val Cys Glu Ile Glu 65 70 75 80
 - Gly Leu Gly Arg Ala Phe Glu Trp Gln Ser Gly Leu Ala Leu Phe Leu 85 90 95
 - Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Leu Cys Leu 100 $\,$ 105 $\,$ 110 $\,$
 - Ser Thr Pro Asn Arg Glu Gly Lys Asn Glu Ile Val Leu Thr Gly Glu
 - Pro Arg Met Lys Glu Arg Pro Ile Gln His Leu Val Asp Ala Leu Cys 130 135 140

Gln 145	Ala	Gly	Ala	Glu	Ile 150	Gln	Tyr	Leu	Glu	Gln 155	Glu	Gly	Tyr	Pro	Pro 160
Ile	Ala	Ile	Arg	Asn 165	Thr	Gly	Leu	Lys	Gly 170	Gly	Arg	Ile	Gln	Ile 175	Asp
Gly	Ser	Val	Ser 180	Ser	Gln	Phe	Leu	Thr 185	Ala	Leu	Leu	Met	Ala 190	Ala	Pro
Met	Ala	Glu 195	-	Asp	Thr	Glu	Ile 200	Glu	Ile	Ile	Gly	Glu 205	Leu	Val	Ser
Lys	Pro 210	Tyr	Ile	Asp	Ile	Thr 215	Leu	Lys	Met	Met	Gln 220	Thr	Phe	Gly	Val
Glu 225	Val	Glu	Asn	Gln	Ala 230	Tyr	Gln	Arg	Phe	Leu 235	Va1	Lys	Gly	His	Gln 240
Gln	Tyr	Gln	Ser	Pro 245	His	Arg	Phe	Leu	Val 250	Glu	Gly	Asp	Ala	Ser 255	Ser
Ala	Ser	Tyr	Phe 260	Leu	Ala	Ala	Ala	Ala 265	Ile	Lys	Gly	Lys	Val 270	Lys	Val
Thr	Gly	Val 275	Gly	Lys	Asn	Ser	Ile 280	Gln	Gly	Asp	Arg	Leu 285	Phe	Ala	Asp
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	His	Ile	Thr	Trp	Gly 300	Asp	qsA	Phe	Ile
Gln 305	'Val	Glu	Lys	Gly	Asn 310	Leu	Lys	Gly	::e	Asp 315	Met	Asp	Met	Asn	His 320
Ile	Pro	Asp	Ala	Ala 325		Thr	Ile	Ala	Thr 330	Thr	Ala	Leu	Phe	Ala 335	Glu
Gly	Glu	Thr	Val 340		Arg	Asn	Ile	Tyr 345		Trp	Arg	Val	Lys 350	Glu	Thr
Asp	Arg	1 Leu 355		Ala	Met	Ala	Thr 360		Leu	Arg	Lys	Val 365	Gly	Ala	Glu
Val	. Glu		Gly	/ Glu	ı Asp	Phe 375		Arg	ile	Gln	Pro 380	Leu	Asn	Leu	Ala

Gln Phe Gln His Ala Glu Leu Asn Ile His Asp His Arg Met Ala Met 385 390 395 400 Cys Phe Ala Leu Ile Ala Leu Ser Lys Thr Ser Val Thr Ile Leu Asp 405 410 415

Pro Ser Cys Thr Ala Lys Thr Phe Pro Thr Phe Leu Ile Leu Phe Thr 420 425 430

Leu Asn Thr Arg Glu Val Ala Tyr Arg 435 440

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (i1) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Asn Ser Leu Arg Leu Glu Pro Ile Ser Arg Val Ala Gly Glu Val Asn 1 $$ 5 $$ 10 $$ 15

Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala Ala 20 25 30

Leu Ala Arg Gly Thr Thr Arg Leu Thr Asn Leu Leu Asp Ser Asp Asp 35 40 45

Leu Ser Ala Asp Lys Thr Glu Cys Thr Val His Gly Leu Gly Arg Ser 65 70 75 80

Phe Ala Val Ser Ala Pro Val Asn Leu Phe Leu Gly Asn Ala Gly Thr 95 95

Ala Met Arg Pro Leu Cys Ala Ala Leu Cys Leu Gly Ser Gly Glu Tyr 100 $\,$ 105 $\,$ 110 $\,$

Met Leu Gly Gly Glu Pro Arg Met Glu Glu Arg Pro Ile Gly His Leu 115 120 125

Wal Asp Cys Leu Ala Leu Lys Gly Ala His Ile Gln Tyr Leu Lys Lys 130 140 Asp Gly Tyr Pro Pro Leu Val Val Asp Ala Lys Gly Leu Trp Gly Gly 145 \$150\$

Asp Val His Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Phe 165 $$170\$

Leu Met Ala Ala Pro Ala Met Ala Pro Val Ile Pro Arg Ile His Ile 180 185 190

Lys Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu His Ile 195 200 205 \leftarrow

Met Asn Ser Ser Gly Val Val Ile Glu His Asp Asn Tyr Lys Leu Phe 210 215 220

Tyr Ile Lys Gly Asn Gln Ser Ile Val Ser Pro Gly Asp Phe Leu Val 225 230 235 240

Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile 245 250 255

Lys Gly Lys Val Arg Val Thr Gly Ile Gly Lys His Ser Ile Gly Asp $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Ile His Phe Ala Asp Val Leu Glu Arg Met Gly Ala Arg Ile Thr Trp $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$

Gly Asp Asp Phe Ile Glu Ala Glu Gln Gly Pro Leu His Gly Val Asp

Met Asp Met Asn His Ile Pro Asp Val Gly His Asp His Ser Gly Gln 305 310 315

Ser His Cys Leu Pro Arg Val Pro Pro His Ser Gln His Leu Gln Leu 325 330 335

Ala Val Arg Asp Asp Arg Cys Thr Pro Cys Thr His Gly His Arg Arg 340 345 350

Ala Gin Aia Giy Val Ser Glu Glu Gly Thr Thr Phe Ile Thr Arg Asp \$360\$

Ala Ala Asp Pro Ala Gin Ala Arg Arg Asp Arg His Leu Gin Arg Ser 370 380

Arg Ile Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Ile Ala Val

Thr Ile Asn Asp Pro Gly Cys Thr Ser Lys Thr Phc Pro Asp Tyr Phe 405 410 415

Asp Lys Leu Ala Ser Val Ser Gln Ala Val 420 425

- (2) INFORMATION FOR SEQ ID NO:64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 442 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:
 - Met Ser Gly Leu Ala Tyr Leu Asp Leu Pro Ala Ala Arg Leu Ala Arg 1 5 10 15
 - Gly Glu Val Ala Leu Pro Gly Ser Lys Ser Ile Ser Asn Arg Val Leu 20 25 30
 - Leu Leu Ala Ala Leu Ala Glu Gly Ser Thr Glu Ile Thr Gly Leu Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$
 - Asp Ser Asp Asp Thr Arg Val Met Leu Ala Ala Leu Arg Gln Leu Gly 50 $\,$ 55 $\,$ 60 $\,$
 - Val Ser Val Gly Glu Val Ala Asp Gly Cys Val Thr Ile Glu Gly Val 65 $$ 70 $$ 75 $$ 80
 - Ala Arg Phe Pro Thr Glu Gln Ala Glu Leu Phe Leu Gly Asn Ala Gly 85 90 95
 - Thr Ala Phe Arg Fro Leu Thr Ala Ala Leu Ala Leu Met Gly Gly Asp 100 105 110
 - Tyr Arg Leu Ser Gly Val Pro Arg Met His Glu Arg Pro Ile Gly Asp 115 120 125
 - Leu Val Asp Ala Leu Arg Gin Phe Gly Ala Gly Ile Glu Tyr Leu Gly 130 \$135\$ \$140

Gln Ala Gly Tyr Pro Pro Leu Arg Ile Gly Gly Gly Ser Ile Arg Val 145 150 150 155

Asp Gly Pro Val Arg Val Glu Gly Ser Val Ser Ser Gln Phe Leu Thr 165 170 175

Ala Leu Leu Met Ala Ala Pro Val Leu Ala Arg Arg Ser Gly Gln Asp 180 185 190

Ile Thr Ile Glu Val Val Gly Glu Leu Ile Ser Lys Pro Tyr Ile Glu
195 200 205 *

Ile Thr Leu Asn Leu Met Ala Arg Phe Gly Val Ser Val Arg Arg Asp 210 \$215\$

Gly Trp Arg Ala Phe Thr Ile Ala Arg Asp Ala Val Tyr Arg Gly Pro 225 \$230\$

Gly Arg Met Ala Ile Glu Gly Asp Ala Ser Thr Ala Ser Tyr Phe Leu \$245\$

Ala Leu Gly Ala Ile Gly Gly Gly Pro Val Arg Val Thr Gly Val Gly $260 \hspace{1cm} 265 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Glu Asp Ser Ile Gln Gly Asp Val Ala Phe Ala Ala Thr Leu Ala Ala 275 280280285

Met Gly Ala Asp Val Arg Tyr Gly Pro Gly Trp Ile Glu Thr Arg Gly 290 295 300

Val Arg Val Ala Glu Gly Gly Arg Leu Lys Ala Phe Asp Ala Asp Phe 305 310 320

Asn Leu Ile Pro Asp Ala Ala Met Thr Ala Ala Thr Leu Ala Leu Tyr 325 \$330 \$ 335

Ala Asp Gly Pro Cys Arg Leu Arg Asn Ile Gly Ser Trp Arg Val Lys \$340\$

Glu Thr Asp Arg Ile His Ala Met His Thr Glu Leu Glu Lys Leu Gly 355 365

Ala Gly Tal Gln Ser Gly Ala Asp Trp Leu Glu Val Ala Pro Pro Glu

Pro Gly Gly Trp Arg Asp Ala His Ile Gly Thr Trp Asp Asp His Arg

Met Ala Met Cys Phe Leu Leu Ala Ala Phe Gly Pro Ala Ala Val Arg 405 410 410 415

Val Tyr Ala Gly Leu Leu Ala Ala Arg Asp

- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Met Glu Ser Leu Thr Leu Gln Pro Ile Ala Arg Val Asp Gly Ala Ile 1 5 10 15

Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala 20 25 30

Ala Leu Ala Cys Gly Lys Thr Val Leu Thr Ash Leu Leu Asp Ser Asp 15 40

Asp Val Arg His Met Leu Asn Ala Leu Ser Ala Leu Gly Ile Asn Tyr \$50\$ \$50\$.

Thr Leu Ser Ala Asp Arg Thr Arg Cys Asp Ile Thr Gly Asn Gly Gly 70 70 75 80

Pro Leu Arg Ala Ser Gly Thr Leu Glu Leu Phe Leu Gly Asn Ala Gly 35 95

Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Gln Asn Glu

The Val Leu Thr Gly Glu Pro Ard Met Lys Glu Arg Pro Ile Gly His

- Leu Val Asp Ser Leu Arg Gln Gly Gly Ala Asn Ile Asp Tyr Leu Glu 130 \$135\$
- Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Ile Gly Gly 145 \$150\$
- Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 \$170\$
- Leu Met Thr Ala Pro Leu Ala Pro Glu Asp Thr Ile Ile Arg Val Lys 180 185 190
- Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met 195 200 205
- Lys Thr Phe Gly Val Glu Ile Ala Asn His His Tyr Gln Gln Phe Val 210 215 220
- Val Lys Gly Gly Gln Gln Tyr His Ser Pro Gly Arg Tyr Leu Val Glu 225 230 235 240
- Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Gly Ile Lys 245 250 255
- Gly Gly Thr Val Lys Val Thr Gly Ile Gly Gly Lys Ser Met Gln Gly 260 265 270
- Asp Ile Arg Phe Ala Asp Val Leu His Lys Met Gly Ala Thr Ile Thr 275 280 285
- Trp Gly Asp Asp Phe Ile Ala Cys Thr Arg Gly Glu Leu His Ala Ile 290 295 300
- Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 305 \$310\$
- Thr Ala Leu Phe Ala Lys Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 330 335
- Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu
- Arg Lys Val Gly Ala Glu Val Glu Glu Gly His Asp Tyr Ile Arg Ile
- Thr Pro Pro Ala Lys Leu Gin His Ala Asp Ile Gly Thr Tyr Asn Asp 370 . 380

His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 385 390 395 400	
Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr $_{\rm 405}$ $-$ 415	
Phe Glu Gln Leu Ala Arg Met Ser Thr Pro Ala 420 425	
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1894 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2751618 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
ACGGGCTGTA ACGGTAGTAG GGGTCCCGAG CACAAAAGCG GTGCCGGCAA GCAGAACTAA	60
TTTCCATGGG GAATAATGGT ATTTCATTGG TTTGGCCTCT GGTCTGGCAA TGGTTGCTAG	120
GCGATCGCCT GTTGAAATTA ACAAACTGTC GCCCTTCCAC TGACCATGGT AACGATGTTT	180
TTTACTTCCT TGACTAACCG AGGAAAATTT GGCGGGGGGC AGAAATGCCA ATACAATTTA	240
GCTTGGTCTT CCCTGCCCCT AATTTGTCCC CTCC ATG GCC TTG CTT TCC CTC Met Ala Leu Leu Ser Leu 1 5	292
AAC AAT CAT CAA TCC CAT CAA CGC TTA ACT GTT AAT CCC CCT GCC CAA Asn Asn His Gin Ser His Gin Arg Leu Thr Val Asn Pro Pro Ala Gin 10 15 20	340
GGG GTC GCT TTG ACT GGC CGC CTA AGG GTG CCG GGG GAT AAA TCC ATT Gly Val Ala Leu Thr Gly Arg Leu Arg Val Pro Gly Asp Lys Ser Ile 25	388

												GGG Gly				436
												ACG Thr				484
												TCA Ser				532
												ccc Pro				580
												ATG Met 115				628
CTA Leu	GCC Ala 120	Gly	CAA Gln	AAA Lys	GAT Asp	TGT Cys 125	TTA Leu	TTC Phe	ACC Thr	GTC Val	ACC Thr 130	G G C Gly	GAT Asp	GAT Asp	TCC Ser	676
CTC Leu 135	Arg	CAC	CGC	CCC Pro	ATG Met 140	Ser	CGG Arg	GTA Val	ATT Ile	CAA Gln 145	Pro	TTG Leu	CAA Gln	CAA Gln	ATG Met 150	724
GGG Gly	GCA Ala	AAA Lys	ATT	TGG Trp 155	Ala	CGG Arg	AGT Ser	AAC Asr	GGC Gly 160	- 7.8	TTT Phe	GCG Ala	CCG Pro	CTG Leu 165	GCA Ala	772
GTC Val	CAC Gli	GG Gly	R AG0 7 Se: 17	r Glr	TTA	AAA Lys	CCC Pro	175	e His	TAC TYP	CAT His	r TCC	CCC Pro	· ile	GCT Ala	820
TC/ Se:	A GCC	C CA a Gl: 18	n Va	A AAG 1 Ly:	s Sei	TGC Cyt	CTO Let	u Le	G CT. u Le	A GCC u Al	G GG a Gl	g TT: y Lei 19	7 Jun	ACC Th	c GAG r Glu	868
GG Gl	G GA y As 20	p Th	c AC r Th	G GT r Va	T AC. 1 Th	A GA r G1 20	u Pr	A GC o Al	T CT a Le	A TC u Se	C CG r Ar 21	ā ys	T CA	r AG s Se	C GAA r Glu	916
OG Ar Ol	g Me	G TT	ig ca eu gi	kG GC In Al	C TT a Ph	e Gl	A GC y Al	C AA .a. Ly	ua TT rs Le	A AC	: :.	T GA Le As	T CC p Pr	A GT o Va	A ACC 11 Thr 230	964

				GTC Val 235				Ala					Gln			1012
				GAC Asp								Leu				1060
				GGA Gly		Glu										1108
CCC Pro	ACC Thr 280	AGG Arg	ACA Thr	GGG Gly	GTG Val	TTG Leu 285	GAA Glu	GTG Val	TTG Leu	GCC Ala	CAG Gln 290	ATG Met	GGG Gly	ĞCG Ala	GAC Asp	1156
				AAT Asn												1204
CTG Leu	CGG Arg	GTT Val	AGG Arg	GCA Ala 315	AGC Ser	CAT His	CTC Leu	CAG Gln	GGT Gly 320	TGC Cys	ACC Thr	TTC Phe	GGC Gly	GGC Gly 325	GAA Glu	1252
ATT Ile	ATT	CCC	CGA Arg 330	CTG Leu	ATT	GAT Asp	GAA Glu	ATT Ile 335	Pro	ATT Ile	TTG Leu	GCA Ala	GTG Val 340	GCG Ala	GCG Ala	1300
Ala	Phe	345	Glu S	Gly	Thr	Thr	Arg 350	Ile	Glu	дар	Ala	355	Giu	Leu	AGG Arg	1348
Va]	Lys 360	s Glu	ı Ser	Asp) Arc	365	Ala	A Ala	1 Ile	: Ala	370)	Leu	. GIY	Lys	
Me1	G1:	y Al	a Ly	s Vai	1 Th:	r Glu	ı Phe	e Asi	p Asī	385 385	, rer	1 610	1 116		GGG Gly 390	1444
Gl	y Se	r Pr	o le	u Gl 39	n Gl 5	y Ala	a GI	u Va	1 As	0 0	r Le	u		40		1492
AT 11	T GC .e Al	C AT La Mé	rg gd at Al	a Le	G GC	G AT	C GC e Al	C GC La Al	a Le	A GG u Gl	T AG Y Se	T GG	G GG y Gl 42	y G.	A ACA n Thr	1540

The lie Asn Arg Ala Glu Ala Ala Ala Ile Ser Tyr Pro Glu Phe 425 430 435	
GGC AGG CTA GGG CAA GTT GCC CAA GGA TAAAGTTAGA AAAACTCCTG Gly Thr Leu Gly Gln Val Ala Gln Gly 440 445	1635
GGCGGTTTGT AAATGTTTTA CCAAGGTAGT TTGGGGTAAA GGCCCCAGCA AGTG	CTGCCA 1695
GGGTAATTTA TCCGCAATTG ACCAATCGGC ATGGACCGTA TCGTTCAAAC TGGG	TAATTC 1755
TCCCTTTAAT TCCTTAAAAG CTCGCTTAAA ACTGCCCAAC GTATCTCCGT AATG	GCGAGT 1815
GAGTAGAAGT AATGGGGCCA AACGGCGATC GCCACGGGAA ATTAAAGCCT GCAT	CACTGA 1875
CCACTTATAA CTTTCGGGA	1894

- (2) INFORMATION FOR SEQ ID NO:67:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (XI) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Met Ala Leu Leu Ser leu Asn Asn His Gln Ser His Gln Arg Leu Thr

Val Asn Pro Pro Ala Gln Gly Val Ala Leu Thr Gly Arg Leu Arg Val .

Pro Gly Asp Lys Ser Ile Ser His Arg Ala Leu Met Leu Gly Ala Ile $\frac{35}{45}$

Ala Thr Gly Glu Thr Ile Ile Glu Gly Leu Leu Gly Glu Asp Pro

Arg Ser Thr Ala His Cys Phe Arg Ala Met Gly Ala Glu Ile Ser Glu 45 90

Leu Asn Ser Glu Lys Tie Fie Val Gin Gly Arg Gly Leu Gly Gin Leu 35 90 95

- Gln Glu Pro Ser Thr Val Leu Asp Ala Gly Asn Ser Gly Thr Thr Met $100 \hspace{1cm} 105 \hspace{1cm} 110$
- Arg Leu Met Leu Gly Leu Leu Ala Gly Gln Lys Asp Cys Leu Phe Thr 115 \$120\$
- Val Thr Gly Asp Asp Ser Leu Arg His Arg Pro Met Ser Arg Val Ile 130 135 140
- Gln Pro Leu Gln Gln Met Gly Ala Lys Ile Trp Ala Arg Ser Asn Gly 145 150 155 160
- Lys Phe Ala Pro Leu Ala Val Gln Gly Ser Gln Leu Lys Pro ILe His $165 \ \ 170 \ \ \ 175$
- Tyr His Ser Pro Ile Ala Ser Ala Gln Val Lys Ser Cys Leu Leu Leu 180 185 190
- Ala Gly Leu Thr Thr Glu Gly Asp Thr Thr Val Thr Glu Pro Ala Leu 195 200205
- Ser Arg Asp His Ser Glu Arg Met Leu Gln Ala Phe Gly Ala Lys Leu 210 215 220
- Thr Ile Asp Pro Val Thr His Ser Val Thr Val His Gly Pro Ala His 225 230 235 240
- Leu Thr Gly Gln Arg Val Val Val Pro Gly Asp Ile Ser Ser Ala Ala 245 255
- Phe Trp Leu Val Ala Ala Ser Ile Leu Pro Gly Ser Glu Leu Leu Val
- Glu Asn Val Gly Ile Asn Pro Thr Arg Thr Gly Val Leu Glu Val Leu 275 280 285
- Ala Gln Met Gly Ala Asp Ile Thr Pro Glu Asn Glu Arg Leu Val Thr 290 295 300
- Gly Glu Pro Val Ala Asp Leu Arg Val Arg Ala Ser His Leu Gln Gly 305 310 320
- Cys Thr Phe Gly Gly Glu Ile Ile Pro Arg Leu Ile Asp Glu Ile Pro
- The Leu Ala Val Ala Ala Ala Phe Ala Glu Gly Thr Thr Arg Ile Glu 340 345 350

Asp Ala Ala Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Ile

Ala	Ser 370	Glu	Leu	Gly	Lys	Met 375	Gly	Ala	Lys	Val	Thr 380	Glu	Phe	Asp	Asp		
Gly 385	Leu	Glu	Ile	Gln	Gly 390	Gly	Ser	Pro	Leu	Gln 395	Gly	Ala	Glu	Val	Asp 400		
Ser	Leu	Thr	Asp	His 405	Arg	Ile	Ala	Met	Ala 410	Leu	Ala	Ile	Ala	Ala 415	Leu		
Gly	Ser	Gly	Gly 420	Gln	Thr	Ile	Ile	Asn 425	Arg	Ala	Glu	Ala	Ala 430		Ile		
Ser	Tyr	Pro 435		Phe	Phe	Gly	Thr 440	Leu	Gly	Gln	Val	Ala 445	Gln	Gly			
	(ii (ix) SE ((((())) (()) MC	QUEN A) L B) T C) S D) T OLECU EATUF (A) 1 (B) I	CE C ENGT YPE: TRAN OPOL ULE T RE: NAME.	HARA H: 1 nuc DEDN OGY: YPE: YEY:	CTER 479 leic ESS: lin DNA	ISTI base aci dou ear (ge	CS: paid duble enomi	.c)								
															ATTTTTT	60 :15	
CT	CCCA	TTTT	TCC	GGCA	CAA	TAAC	GTTG	GT T	TTAT	AAAA	G GA	AAIG	Met 1	Mec	ACG Thr		
AA As	T AT	A TO	ig ca ip Hi	C AC	c go	G CC	o Va	al Se	er Al	a	T TO	er G	c ga y gl	A AI Li u.	A ACG Le Thr	161	3

												TTA Leu					211
												TTA Leu					259
												GGC Gly					307
		Ly										GGA Gly					355
		Pr										AGT Ser 95					403
CGT Arg	Le	A TI	rG eu	GCA Ala	GGA Gly	ATT Ile 105	TTG Leu	GCA Ala	GCG Ala	CAG Gln	CGC Arg 110	TTT Phe	GAG Glu	AGC Ser	GTG Val	TTA Leu 115	451
TG(GGG Gl	C GA / As	TA	GAA Glu	TCA Ser 120	TTA Leu	GAA Glu	AAA Lys	CGT Arg	CCG Pro 125	Met	CA G Gln	CGC Arg	ATT	ATT Ile 130	ACG Thr	499
2r	CT o Le	T Gʻ	TG al	CAA Gln 135	ATG Met	GGG Gly	GCA Ala	AAA Lys	ATT Ile	val	AGT Ser	CAC H1s	AGC Ser	AAT Asn 145	Pne	ACG Thr	547
GC Al	G CC a Pr	o L	TA eu 50	CAT	ATT	TCA Ser	GGA Gly	CGC Arc	g Pro	CTC Leu	ACC Thi	GGC Gly	Tle 160	ASP	TAC Tyr	GCG Ala	595
TT Le	A CO u Pr	o L	TT .eu	2CC	AGC Ser	GCC Ala	a Gli	n Le	A AA/ u Ly:	A AG	r TGG	CTT s Let 17!	1 116	TTC Lei	GC2	A GGA a Gly	643
5.	rA T′ eu L 30	rg (GCT	GAC Ast	GG1	r AC y Th 13	r Th	g CG r Ar	G CT	G CA u Hi	T AC s Th	r Cy	s Gl	z AT y Il	C AG e Se	T CGC r Arg 195	691
G.	AC C	AC .	ACC Thr	GA : 31	A CG u Ar 20	g Me	G TT	G CC	IG CT	T TT tu Ph 20	e Gi	თ 96 კ ნე	c gc y Al	A CI a Le	T GA eu Gl 21	G ATC u Ile .0	739

							Thr					TTG Leu				787
						Asp						TTT Phe 240				835
Ala					Pro							CGT Arg				883
												CAA Gln				931
												GCC Ala				979
												ATT Ile				1027
CCG Pro	GAA Glu	TGG Trp 310	Ile	GCC Ala	AAC Asn	GCG Ala	ATT Ile 315	GAT Asp	GAA Glu	TTG Leu	CCG	ATT Ile 320	TTT Phe	TTT Phe	ATT Ile	1075
GCG Ala	GCA Ala 325	Ala	TGC Cys	GCG Ala	GAA Glu	GGG Gly 330	ACG Thr	ACT	TTT Phe	GTG Val	GGC Gly 335	Asn	TTG Leu	TCA Ser	GAA Glu	1123
TTG Leu 340	Arq	g To	3 AAA 1 Lys	A GAA s Glu	TCG Ser 345	Asp	CGT	TTA Leu	GCC Ala	GCG Ala 350	Met	GCG Ala	CAA Gln	AAT Asr	TTA Leu 355	1171
CAA Glr	A AC' 1 Th	TTO Le	g ggo u Gl	C GTC y Va:	L Ale	TGC Cys	GAC Ast	GTT Vai	GG(1 G1; 36	y Ale	GA Ası	r TT?	a Ile	CAT His	r ATA s Ile	1219
TA'	r GG r Gl	A AG y Ar	A AG g Se	r As	r cg	g CAi	A TT	T TT e Le 39	u Pr	G GC o Al	g cg a Ar	g GT: g Va	G AA0 1 As: 18	n se	r TTT r Phe	1267
3G G1	C GA Y As	н ф	AT CC Ls Ai	ig AT	T GC .e Al	G AT a Me	G AG t 3e 39	r le	G GC	G GT La ∵a	rg go	A GG a Gl	.y .a	G CG	c GCG	1315

Ala Gly Gl 405						TG GCG (al Ala / 415				1363
CCG CAA TT Pro Gln Pt 420			Ala A		a Ile G			l Gly		1411
AAA GAT GG Lys Asp A	la Lys .				ATGGTCC	T AGCGG	rgt tg	GAAAAG	GCAC	1465
GGTGGCGCA	A GCTT									1479
(2) INFOR	MOITAN	FOR SE	QIDN	0:69:						
(i	(B)		H: 443 amino	amino acid	S: acids					
(ii) MOLEC	ULE TY	PE: pr	otein						
(xi) SEQUE	ENCE DE	SCRIPT	ION: S	EQ ID N	10:69:				
Met Met T	hr Asn	Ile Tr	p His	Thr Al	la Pro \	Val Ser	Ala Le	eu Ser 15	Gly	
Glu Ile T	hr lle	Cys Gl	y Asp		er Met :	Ser His	Arg A	la Leu 30	Leu	
Giu Ile T	20			2	25 •			30		s.
	20 Ala Leu 35	Ala G	lu Gly	Gln Ti	hr Glu	Ile Arg	Gly P	30 he Leu	Ala	*
Leu Ala A	20 Ala Leu 35 Asp Cys	Ala G Leu A Glu L	lu Gly la Thr 55	Gln Th 40 Arg G	hr Glu ln Ala	Ile Arg Leu Arg 60	Gly P 45	30 he Leu eu Gly	Ala Val	
Leu Ala A Cys Ala . 50 Asp Ile	20 Ala Leu 35 Asp Cys Gln Arg	Ala G Leu A Glu L	lu Gly la Thr 55 ys Glu 70	Gln Th 40 Arg G	hr Glu ln Ala 'al Thr	Ile Arg Leu Arg 60 Ile Arg	Gly P 45 Ala L Gly V	30 he Leu eu Gly al Gly	Ala Val Phe 80	*

with the

Ser Val Leu Cys Gly Asp Glu Ser Leu Glu Lys Arg Pro Met Gln Arg 115 120 125

Ile Ile Thr Pro Leu Val Gln Met Gly Ala Lys Ile Val Ser His Ser 130 \$135\$

Asn Phe Thr Ala Pro Leu His Ile Ser Gly Arg Pro Leu Thr Gly Ile 145 \$150\$

Asp Tyr Ala Leu Pro Leu Pro Ser Ala Gln Leu Lys Ser Cys Leu Ile 165 170 175

Leu Ala Gly Leu Leu Ala Asp Gly Thr Thr Arg Leu His Thr Cys Gly 180 185 190

Ile Ser Arg Asp His Thr Glu Arg Met Leu Pro Leu Phe Gly Gly Ala 195 200 205

Leu Glu Ile Lys Lys Glu Gln Ile Ile Val Thr Gly Gly Gln Lys Leu 210 215 220

His Gly Cys Val Leu Asp Ile Val Gly Asp Leu Ser Ala Ala Ala Phe 225 230 235 240

Phe Met Val Ala Ala Leu Ile Ala Pro Arg Ala Glu Val Val Ile Arg 245 250 255

Asn Val Gly Ile Asn Pro Thr Arg Ala Ala Ile Ile Thr Leu Leu Gln 260 265 270

Lys Met Gly Gly Arg Ile Glu Leu His His Gln Arg Phe Trp Gly Ala 275 280 285

Glu Pro Val Ala Asp Ile Val Val Tyr His Ser Lys Leu Arg Gly Ile . 290 \$295\$

Thr Val Ala Pro Glu Trp Ile Ala Asn Ala Ile Asp Glu Leu Pro Ile 305 310 315

Phe Phe Ile Ala Ala Ala Cys Ala Glu Gly Thr Thr Phe Val Gly Asn $325\,$, $330\,$

Leu Ser Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Met Ala 340 345

Gln Asn Leu Gln Thr Leu Gly Val Ala Cys Asp Val Gly Ala Asp Phe

Ile His Ile Tyr Gly Arg Ser Asp Arg Gln Phe Leu Pro Ala Arg Val 370 375 380

Asn Ser Phe Gly Asp His Arg Ile Ala Met Ser Leu Ala Val Ala Gly 385 \$390\$

Val Arg Ala Ala Gly Glu Leu Leu Ile Asp Asp Gly Ala Val Ala Ala 405 \$410\$

Val Ser Met Pro Gln Phe Arg Asp Phe Ala Ala Ala Ile Gly Met Asn 420 425 430

Val Gly Glu Lys Asp Ala Lys Asn Cys His Asp 435 440