多元函数积分学

Didnelpsun

目录

1	二重	积分		1											
	1.1	交换积分次序													
		1.1.1	直角坐标系	. 1											
		1.1.2	极坐标系	. 1											
	1.2	极直互	豆化	. 2											
	1.3	二重积分计算													
		1.3.1	交换积分次序	. 2											
		1.3.2	积分性质	. 2											
		1.3.3	切分区域	. 3											
		1.3.4	坐标轴移动	. 3											
	1.4	二重积	只分等式	. 4											
		1.4.1	函数	. 4											
		1.4.2	极限	. 4											
		1.4.3	求导	. 5											
	1.5	二重积	只分不等式	. 5											
		1.5.1	同积分域	. 5											
		1.5.2	同积分函数	. 5											
	1.6	一重积	只分化二重积分	. 5											
		1.6.1	乘积化不等式	. 6											
		1.6.2	乘积简化计算	. 6											
2	弧长	曲线积	9分	7											

3	坐标	坐标曲线积分															7			
	3.1	定积分	·法 .																	7
	3.2	二重积	分法																	7
		3.2.1	补全	区域															•	7
		3.2.2	不可	导点																7

1 二重积分

1.1 交换积分次序

1.1.1 直角坐标系

例题:交换积分次序 $\int_0^1 \mathrm{d}x \int_0^{x^2} f(x,y) \, \mathrm{d}y + \int_1^3 \mathrm{d}x \int_0^{\frac{1}{2}(3-x)} f(x,y) \, \mathrm{d}y$ 。解:已知积分区域分为两个部分。将 X 型变为 Y 型。画出图形可以知道 $y \in (0,1)$,x 的上下限由 $y = x^2$ 和 $y = \frac{1}{2}(3-x)$ 转化为 \sqrt{y} 和 3-2y。所以转换为 $\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{3-2y} f(x,y) \, \mathrm{d}x$ 。

1.1.2 极坐标系

例题: 对 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 交换积分次序。

解:对于极坐标的积分次序交换需要利用直角坐标系来画图了解,特别是对于r的上下限。

对
$$\theta = \frac{\pi}{2}$$
 变为 y 轴, $\theta = -\frac{\pi}{4}$ 变为 $y = -x$ 。

对 $r=2\cos\theta$ 变为 xy 的表达式, $r^2=2\cos\theta$,即 $x^2+y^2=2x$, $(x-1)^2+y^2=1$ 。 所以所得到的 σ 为一个圆割去一个扇形。

交换积分次序后就需要以一个长度以极点为圆心 做圆、切割 σ 。

由 σ 可知取长度 $\sqrt{2}$ 可以切分。

所以 σ 可以分为左边的 σ_1 和右边的 σ_2 。

$$\sigma_1$$
 的 $r \in [0, \sqrt{2}]$, σ_2 的 $r \in [\sqrt{2}, 2]$ 。

 σ_1 的 θ 下限是 y=-x 这条边,即 $\theta=-\frac{\pi}{4}$,上限是 $r=2\cos\theta$ 这个圆,则 $\theta=\arccos\frac{r}{2}$ 。

 σ_2 的 θ 界限都是是 $r=2\cos\theta$ 这个圆,此时 r>0 恒成立,但是上限是上半部分 $\theta>0$,而下限是下半部分 $\theta<0$,即上限 $\theta=\arccos\frac{r}{2}$,所以下限为 $\theta=-\arccos\frac{r}{2}$ 。

综上交换积分次序结果为:

$$\int_0^{\sqrt{2}} r \, \mathrm{d}r \int_{-\frac{\pi}{4}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) \mathrm{d}\theta + \int_{\sqrt{2}}^2 r \, \mathrm{d}r \int_{-\arccos \frac{r}{2}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) \mathrm{d}\theta \, .$$

1.2 极直互化

例题: 将 $I = \int_0^{\frac{\sqrt{2}}{2}R} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\frac{\sqrt{2}}{2}R}^R e^{-y^2} dy \int_0^{\sqrt{R^2-y^2}} e^{-x^2} dx$ 转换为极坐标系并计算结果。

1.3 二重积分计算

二重积分若是累次积分形式出现,则计算可以使用上面两种方法简便运算。

1.3.1 交换积分次序

主要用于直角坐标系。

当按照当前的积分次序无法算出时需要更换积分次序。主要是看 f(x,y) 是对 x 先积分更简单还是对 y 先积分更简单。

例题: 求 $\int_0^1 \mathrm{d}y \int_{\arcsin y}^{\pi - \arcsin y} \cos^2 x \, \mathrm{d}x$ 。

解: 首先直接对这个式子直接计算, $\cos^2 x=\frac{1}{2}(1+\cos 2x)$,原式 $=\frac{1}{2}\int_0^1(\pi-2y-\arcsin y)\mathrm{d}y$ 。根本无法解出。

考虑交换积分次序,首先求 σ , $y \in [0,1]$, $x \in [\arcsin y, \pi - \arcsin y]$, 则 $\sin x = y$, $y = \sin(\pi - x) = \sin x$ 即 $x \in [0, \sin x]$ 。

将积分区域换成 X 型: $x \in [0,\pi]$, $y \in [0,\sin x]$ 。

$$\int_0^{\pi} \cos^2 x \, dx \int_0^{\sin x} dy = \int_0^{\pi} \cos^2 x \sin x \, dx = -\int_0^{\pi} \cos^2 x \, d(\cos x) = -\frac{\cos^3 x}{3} \Big|_0^{\pi}$$
$$= \frac{2}{3}.$$

1.3.2 积分性质

直角坐标系和极坐标系都可以使用。

若积分区域 σ 关于 $x=k_1$ 或 $y=k_2$ 对称,则当 f(x,y) 含有 $x-k_1$ 或 $y-k_2$ 因式时重积分值为 0。

例题: 设 $D: x^2 + y^2 \leq 2x + 2y$, 求 $\iint_D xy \, dx dy$ 。

解:本题目使用直角坐标系和极坐标系都不好做。所以需要利用积分性质,对 D进行平移等操作。

利用平移,由于 $D: (x-1)^2 + (y-1)^2 = 2$,令 $x = 1 + r\cos\theta$, $y = 1 + r\sin\theta$,则利用极坐标, $r \in [0,\sqrt{2}]$, $\theta \in [0,2\pi]$, $= \int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} ((1+r\cos\theta)(1+r\sin\theta)r) \mathrm{d}r = \int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} (1+r\sin\theta+r\cos\theta+r^2\sin\theta\cos\theta)r\,\mathrm{d}r$,又将 $\sin\theta$ 和 $\cos\theta$ 对 θ 在 $[0,2\pi]$ 进行积分全部为 0,所以直接把后面的全消掉,变为 $\int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} r\,\mathrm{d}r = 2\pi$ 。

1.3.3 切分区域

主要用于直角坐标系转为极坐标系。

将不规则的区域划分为圆域。

例题: 设
$$D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$$
, 求 $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2 + y^2}}$ 。

解:由 $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$,知道可以使用极坐标系来表示,但是 D 是一个正方形,无法用圆来简单表示。

又
$$D$$
 可以从 $y=x$ 切割为两个部分,所以令下三角形为 D_1 , $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}=2\iint_{\mathbb{R}^2} \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}$ 。

所以 $0 \le y$ 和 y = x 可以确定 $\theta \in \left[0, \frac{\pi}{4}\right]$, $0 \le x \le 1$ 可以确定 r 上界为 x = 1, 即 $r \cos \theta = 1$, 即 $r = \frac{1}{\cos \theta}$, 确定 $r \in \left[0, \frac{1}{\cos \theta}\right]$ 。

所以 = $2\int_0^{\frac{\pi}{4}} d\theta \int_0^{\frac{1}{\cos\theta}} dr = 2\int_0^{\frac{\pi}{4}} \frac{d\theta}{\cos\theta} = 2\ln(\sec\theta + \tan\theta)|_0^{\frac{\pi}{4}} = 2\ln(1 + \sqrt{2})$ 。 即对二重积分求导,需要将二重积分化为一重积分。

1.3.4 坐标轴移动

主要用于直角坐标系转为极坐标系。

面对 *D* 为一个圆的部分区域,而圆心不在原点,则可以坐标轴移动让圆心到原点上,从而方便积分,本质就是换元。

例题:设积分区域 $D = \{(x,y)|x^2+y^2 \leq 2x+2y\}$,求 $\iint_D (x^2+xy+y^2) d\sigma$ 。解:D 为 $(x-1)^2+(y-1)^2 \leq \sqrt{2}$,即圆心在 (1,1) 的圆,极坐标系无法表示,所以必须平移坐标轴。

令
$$x-1=u$$
, $y-1=v$, $x=u+1$, $y=v+1$, 此时 $D'=\{(u,v)|u^2+v^2\leqslant 2\}$ 。

$$\iint\limits_{D} (x^2 + xy + y^2) \mathrm{d}\sigma = \iint\limits_{D'} [(u+1)^2 + (u+1)(v+1) + (v+1)^2] \mathrm{d}u \mathrm{d}v = \iint\limits_{D'} [u^2 + uv + v^2 + 3(u+v) + 3] \mathrm{d}u \mathrm{d}v = \iint\limits_{D'} (u^2 + v^2) \mathrm{d}u \mathrm{d}v + \iint\limits_{D'} [uv + 3(u+v)] \mathrm{d}u \mathrm{d}v + 3\iint\limits_{D'} \mathrm{d}u \mathrm{d}v \,.$$

由于 uv + 3(u + v) 是关于 u 或 v 的奇函数,且 D' 关于 uv 轴都对称,所

以积分值为 0。且根据二重积分的几何意义
$$\iint_{D'} \mathrm{d}u \mathrm{d}v = S_{D'} = 2\pi$$
。
所以 $\iint_D (x^2 + xy + y^2) \mathrm{d}\sigma = \iint_{D'} (u^2 + v^2) \mathrm{d}u \mathrm{d}v + 6\pi$ 。

转换为极坐标系, $u=r\cos\theta$, $v=r\sin\theta$,则 $D'=\{(r,\theta)|0\leqslant\theta\leqslant2\pi,0\leqslant\theta$ $r\leqslant \sqrt{2}\}\,{\scriptstyle \circ}$

$$\iint_{D'} (u^2 + v^2) du dv = \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} r^3 dr = 2\pi \int_0^{\sqrt{2}} r^3 dr = \frac{\pi}{2} (\sqrt{2})^4 = 2\pi \circ$$
所以原式 = $2\pi + 6\pi = 8\pi \circ$

1.4 二重积分等式

1.4.1函数

例题:设 f(x,y) 为连续函数,且 $f(x,y) = \frac{1}{\pi} \sqrt{x^2 + y^2} \iint\limits_{x^2 + y^2 \le 1} f(x,y) \, \mathrm{d}\sigma + y^2$, 求 f(x,y)。

 $\mathbf{M}: : f(x,y)$ 为连续函数,所以其在区间上可积且是一个常数。

令
$$\iint_{x^2+y^2 \le 1} f(x,y) d\sigma = A$$
。 对 $f(x,y) = \frac{A}{\pi} \sqrt{x^2 + y^2} + y^2$ 两边积分:

$$A = \frac{A}{\pi_{x^2 + y^2 \leqslant 1}} \int \sqrt{x^2 + y^2} \, d\sigma + \iint_{x^2 + y^2 \leqslant 1} y^2 \, d\sigma, \quad \diamondsuit \quad x = r \cos \theta, \quad y = r \sin \theta.$$

$$A = \frac{A}{\pi} \int_0^{2\pi} d\theta \int_0^1 r^2 dr + \int_0^{2\pi} \sin^2 \theta d\theta \int_0^1 r^3 dr = \frac{2A}{3} + \frac{\pi}{4} \circ A = \frac{3}{4} \pi \circ$$

$$A = \frac{A}{\pi} \int_0^{2\pi} d\theta \int_0^1 r^2 dr + \int_0^{2\pi} \sin^2 \theta d\theta \int_0^1 r^3 dr = \frac{2A}{3} + \frac{\pi}{4} \circ A = \frac{3}{4} \pi \circ$$

则代入原式
$$f(x,y) = \frac{3}{4}\sqrt{x^2 + y^2} + y^2$$
。

1.4.2 极限

例题: 设 g(x) 有连续的导数,且 g(0)=0, $g'(0)=a\neq 0$, f(x,y) 在 (0,0) 的某邻域内连续,求 $\lim_{r\to 0^+}\frac{x^2+y^2\leqslant r^2}{g(r^2)}$ 。

解:已知对于这个积分式子中f(x) 和 g(x) 都是未定式,不可能求出具体的 值,所以不能再用二重积分直接计算。

面对这种未定式我们希望把这个式子变成我们已知的式子,也应该与r相 关。此时我们可以想到二重积分中值定理。

根据二重积分中值定理 $\iint\limits_{x^2+y^2\leqslant r^2} f(x,y)\,\mathrm{d}x\mathrm{d}y = \pi r^2 f(\xi,\eta),\ \mathrm{其中}\ (\xi,\eta)\ \mathrm{为圆域}$ $x^2 + y^2 \leqslant r^2$ 上的点,所以 $\lim_{r \to 0^+} f(\xi, \eta) = f(0, 0)$ 。

$$= \lim_{r \to 0^+} \frac{\pi r^2 f(\xi, \eta)}{g(r^2)} = \lim_{r \to 0^+} \frac{\pi f(0, 0) 2r}{2r g'(r^2)} = \lim_{r \to 0^+} \frac{\pi f(0, 0)}{g'(r^2)} = \frac{\pi f(0, 0)}{g'(0)} = \frac{\pi f(0, 0)}{a} \circ$$

1.4.3 求导

1.5 二重积分不等式

即对二重积分进行对比。

1.5.1 同积分域

同一积分域上二重积分大小的比较,只要比较在该区间被积函数值的大小。

1.5.2 同积分函数

同一积分函数上二重积分大小的比较,要比较函数域的大小,也要注意在函数域上被积函数的符号。

例题: 设积分区域
$$D_1 = \{(x,y)|x^2+y^2 \leqslant 1\}$$
、 $D_2 = \{(x,y)|x^2+y^2 \leqslant 2\}$ 、 $D_3 = \left\{(x,y)|\frac{1}{2}x^2+y^2 \leqslant 1\right\}$ 、 $D_4 = \left\{(x,y)|x^2+\frac{1}{2}y^2 \leqslant 1\right\}$ 。 记 $I_i = \iint\limits_{D_i} \left[1-\left(x^2+\frac{1}{2}y^2\right)\right] \mathrm{d}\sigma$ $(i=1,2,3,4)$,求 $\max\{I_1,I_2,I_3,I_4\}$ 。

解:已知 D_1 、 D_2 分别为半径 1 和 $\sqrt{2}$ 的圆,而 D_3 、 D_4 分别为横着和竖着的椭圆。可以画出图像。

被积函数 $f(x,y)=1-\left(x^2+\frac{1}{2}y^2\right)$ 为连续函数,只有在 D_4 上才能保证完全为正,以外的地方为负值。

所以 $D_1 \subset D_4$,所以 $I_1 < D_4$ 。对于 D_2 更大, $D_4 \subset D_2$,但是多余的左右 部分是负值,积分值会在 D_4 的基础上减去这部分的值,同理 D_3 和 D_4 一个是 横的椭圆一个是竖的椭圆,其积分值只有中间交叉的部分,还要减去两边多余的 部分。

所以 I_4 最大。

1.6 一重积分化二重积分

对于一重积分的计算或证明可能比较有难度,如两个关于 x 的函数的一重积分乘积计算,可以将其中一个 x 当作 y,从而将一重积分的乘积变为二重积分。

1.6.1 乘积化不等式

例题: f(x) 为恒大于 0 的连续函数,证明 $\int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x \geqslant (b-a)^2$ 。解:首先观察这个式子,右边是积分上下限的差的乘积,左边是两个积分的乘积,看上去貌似没什么关系,而且积分式子给出的是一个未定式 f(x),所以不能直接求左边值再比较大小,他们之间一定存在着某种关系。

式子左边的两个函数互为倒数,所以应该要尝试将这两个式子乘在一起来 利用基本不等式计算,即将一重积分乘积变为二重积分。

对于一重积分而言只是一个自变量,对于二重积分而言就变成了两个自变量,需要令其中一个 f(x) 变为 y,所以 xy 的积分区域都是一样的 [a,b],所以 $D = \{(x,y)|a \le x \le b, a \le y \le b\}$ 。

$$\stackrel{\text{id}}{\not\sim} D = \{(x,y) | a \leqslant x \leqslant b, a \leqslant y \leqslant b \}_\circ$$

$$I = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(y)} \, \mathrm{d}y = \iint_D \frac{f(x)}{f(y)} \, \mathrm{d}x \, \mathrm{d}y_\circ$$

$$I = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x = \int_a^b f(y) \, \mathrm{d}y \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x = \iint_D \frac{f(y)}{f(x)} \, \mathrm{d}x \, \mathrm{d}y_\circ$$

$$\therefore I = \frac{1}{2} \left[\iint_D \left[\frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} \right] \, \mathrm{d}x \, \mathrm{d}y \right] \geqslant \frac{1}{2} \iint_D 2 \sqrt{\frac{f(x)}{f(y)} \cdot \frac{f(y)}{f(x)}} \, \mathrm{d}x \, \mathrm{d}y =$$

$$\frac{1}{2} \iint_D 2 \, \mathrm{d}x \, \mathrm{d}y = (b-a)^2 \circ$$

1.6.2 乘积简化计算

例题: 求 $\int_0^{+\infty} e^{-x^2} dx$.

解:对于这个一重积分首先看到 e^{x^2} ,肯定会想到将其幂次降低。使用分部积分法对 e^{e^2} 求导这个幂次不会降低,使用换元法 $x=\sqrt{t}$ 会得到 $\frac{1}{\sqrt{t}}$ 从而无法处理,所以这些都不能计算,那么该怎么办?

看到 x^2 就能想到 $x^2 + y^2$ 的形式,这样就是一个极坐标系的二重积分,所以尝试将一重积分变成二重积分,即再乘一个以 y 为自变量的原式。

设
$$I = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x$$
,显然 $I > 0$,将 x 换成 y :
$$I^2 = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \cdot \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \cdot \int_0^{+\infty} e^{-y^2} \, \mathrm{d}y$$

$$= \iint_{\substack{0 \le x \le +\infty \\ 0 \le y \le +\infty}} e^{-(x^2 + y^2)} \, \mathrm{d}x \, \mathrm{d}y, \quad \diamondsuit \quad x = r \cos \theta, \quad y = r \sin \theta;$$

$$= \int_0^{\frac{\pi}{2}} \, \mathrm{d}\theta \int_0^{+\infty} e^{-r^2} r \, \mathrm{d}r = \frac{\pi}{2} \left(-\frac{1}{2} \right) \int_0^{+\infty} e^{-r^2} \, \mathrm{d}(-r^2) = -\frac{\pi}{4} e^{-r^2} \Big|_0^{+\infty} = \frac{\pi}{4}.$$

$$\therefore I = \frac{\sqrt{\pi}}{2}.$$

2 弧长曲线积分

3 坐标曲线积分

3.1 定积分法

3.2 二重积分法

3.2.1 补全区域

即 L 不能构成一个完整的域,就需要按照路径对区域进行补全,然后减去这个曲线积分值。

3.2.2 不可导点

即 D 中存在不可导的点,需要以不可导点为圆心做圆对 D 进行切割。

例题:
$$I = \oint_{L} \frac{x dy - y d}{x^2 + y^2}$$
, L 为不过原点的闭曲线。

解:
$$P = -\frac{y}{x^2 + y^2}$$
, $Q = \frac{x}{x^2 + y^2}$ 。 $\frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$, $\frac{\partial P}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$,从 而 $\frac{\partial Q}{\partial x} \equiv \frac{\partial P}{\partial y}$ 。 但是此时 $(x, y) \neq (0, 0)$, 所以格林公式无法使用。

若 $(0,0) \notin D$,则可以使用格林公式, $I = \iint_D 0 d\sigma = 0$ 。

若 $(0,0) \in D$,不可以使用格林公式,所以重新对 D 进行划分,令 L_0 : $x^2+y^2=r^2$,其中 r>0 且 L_0 不超过 D, L_0 为逆时针。中间的环为 D_1 ,最里侧的圆为 D_2 。

所以对中间的环
$$D_1$$
 使用格林公式: $\oint_{L+L_0^-} = \iint_{D_1} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d\sigma = 0$ 。
$$\therefore \oint_L + \oint_{L_0^-} = \oint_L - \oint_{L_0} = 0, \quad \oint_L = \oint_{L_0} \circ$$

$$I = \oint_{L_0} \frac{x dy - y dx}{x^2 + y^2} = \frac{1}{r^2} \oint_{L_0} x dy - y dx = \frac{2}{r^2} \iint_{D_2} d\sigma = 2\pi \circ$$

例题: 计算曲线积分 $\oint_L \frac{x \mathrm{d}y - y \mathrm{d}x}{4^x 2 + y^2}$,其中 L 是以点 (1,0) 为圆心, $R \geqslant 1$ 为 半径的圆,取逆时针方向。

解:由于是逆时针在
$$L$$
 上,所以是正向: = $\oint_{L^+} \left(\frac{-y}{4x^2 + y^2} dx + \frac{x}{4x^2 + y^2} dy \right)$ 。

又对于 L 所围成的圆面 D,因为 $4x^2 + y^2 \neq 0$,所以 (0,0) 应该被挖去。

因为逆时针的方向下挖去这个点做的运动顺时针是负方向的,所以令其为 C^- 。

又因为格林公式
$$\oint_{L^++C^-} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}\sigma =$$

$$\iint_D \left(\frac{4x^2 + y^2 - 3x^2}{(4x^2 + y^2)^2} - \frac{-(4x^2 + y^2) + 2y^2}{(4x^2 + y^2)^2} \right) \mathrm{d}\sigma = 0 \, \text{o} \quad \text{旋度为 } 0 \, \text{o}$$

$$= \oint_{L^++C^-} \oint_{C^-} = 0 - \oint_{C^-} \oint_{C^+} \otimes \mathbb{R} \, C : 4x^2 + y^2 = \delta^2, \quad \delta \text{ 为一个足够小的常}$$
数。(分母取 δ^2)
$$= \oint_{C^+} \left(\frac{-y}{4x^2 + y^2} \mathrm{d}x + \frac{x}{4x^2 + y^2} \mathrm{d}y \right) = \oint_{C^+} \left(\frac{-y}{\delta^2} \mathrm{d}x + \frac{x}{\delta^2} \mathrm{d}y \right)$$

$$= \frac{1}{\delta^2} \oint_{C^+} -y \, \mathrm{d}x + x \, \mathrm{d}y, \quad \text{利用格林公式, } C^+ \text{ 所成区域为 } D' : \frac{1}{\delta^2} \oint_{D'} (1 - (-1)) \, \mathrm{d}\sigma =$$

$$\frac{2}{\delta^2} D' = \frac{2}{\delta^2} \pi \frac{\delta}{2} \delta = \pi \, \text{o}$$