

Key differences between viral and bacterial genomics

Alicia Arnott

Deputy Head of Epidemiology, VIDRL

Introduction

- Translational public health genomics is increasingly being applied to investigate pathogens of public health importance
- Genomics was being utilised for the public health management of infectious diseases prior to the pandemic
- Pandemic highlighted the public health utility of pathogen genomics, increasing global implementation efforts

Post-pandemic pathogen prioritization

- The number of pathogens of public health concern is very large, while the resources for disease research and development is limited
- In 2022, the WHO employed a global panel of experts to identify which pathogen families/diseases pose the greatest public health risk due to their epidemic potential and/or whether there is no or insufficient countermeasures

Viruses pose greatest global pandemic threat

	RNA Viruses	DNA Viruses	Bacteria	Power	Protozoa ^a (Parasites)
	KNA VIruses	DNA VIruses	Вастегіа	Fungi	Protozoa" (Parasites)
Pandemic Potential	High	Moderate	Moderate, historically high	Low	Low
Features	Continual threat due to RNA genomes prone to mutation; fast viral reproduction and transmission; propensity to cause respiratory infections with airborne potential	Less prone to mutations than RNA viruses and transmission less likely to be airborne	Slower reproduction than viruses, less mutation prone, but able to transfer fitness genes; Threat now reduced due to fast detection and well-developed treatments	Nontraditional pandemic threat due to slow speed of spread and effective antifungals, though multidrug resistant organisms are increasing	Pandemic threat is low due to spread through vector, however malaria is estimated to contribute to half of all human deaths throughout history
Speed of Transmission	Fast	Fast-Medium	Medium	Slow	Slow-Medium
Mode of Transmission	Airborne Respiratory, Droplet, contact with infected fluids	Droplet, contact with infected fluids or materials (fabric)	Droplet (respiratory); Contact with infected humans or animals	Airborne spores; Contact with infected humans or animals; Environmental	Generally through an intermediate host (vector)
Detection Methods	PCR-based (hours) Select Antigens (hours-days)	PCR- based (hours) Antibodies (hours-days)	Bacterial culture (days), PCR-based (hours)	Fungal culture (days) Select antigen tests	Microscopy (hours) PCR-based (hours)
Countermeasures	Masks for respiratory transmission, antivirals, vaccines if available	Vaccines, standard precautions ^b	Vaccines, antibiotics, improved sanitation	Antifungals, control of environmental fungal threats	Barriers between hosts and humans, elimination of reservoirs, anti-parasitic medications
Examples of Pandemic Pathogens	SARS-CoV1 (SARS) SARS-CoV2 (COVID-19) Ebola (Hemorrhagic Fever) HIV (AIDS) Influenza (Spanish, Swine, Avian flus)	Variola major (Smallpox)	Yersinia pestis (Bubonic Plague) Vibrio cholera (cholera) Mycobacterium tuberculosis (TB)	No human pandemics caused by fungi; widespread fungal disease affecting bats, frogs; fungi posited to contribute to dinosaur die-off	Plasmodium spp (malaria) Trypanasoma lewisi (widespread death of the Christmas Island Rat)

Viral pathogens pose greatest pandemic threat

- In 2022, the priority diseases were:
 - COVID-19
 - Crimean-Congo haemorrhagic fever
 - Ebola virus disease and Marburg virus disease
 - Lassa fever
 - Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS)
 - Nipah and henipaviral diseases
 - Rift Valley fever
 - Zika
 - "Disease X"*

	2017	2018	2024		
Family	Priority Pathogens	Priority Pathogens	PHEIC risk	Priority Pathogens	Prototype Pathogens
Adenoviridae			Low-Medium	J	Recombinant Mastadenovirus
Adenoviridae			Low-Medium		Mastadenovirus blackbeardi serotype 14
Anelloviridae			Low		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Arenaviridae	Arenaviral hemorrhagic fevers including Lassa Fever	Lassa Fever virus	High	Mammarenavirus lassaense	Mammarenavirus lassaense
Arenaviridae			High		Mammarenavirus juninense
Arenaviridae			High		Mammarenavirus Iujoense
Astroviridae			Low		Mamastrovirus virginiaense
Bacteria			High	Vibrio cholerae serogroup 0139	
Bacteria			High	Yersinia Pestis	
Bacteria			High	Shigella dysenteriae serotype 1	
Bacteria			High	Salmonella enterica non typhoidal serovars	
Bacteria			High	Klebsiella pneumoniae	
Bornaviridae			Low		Orthobornavirus bornaense
Coronaviridae	Middle East Respiratory Syndrome Coronavirus	Middle East Respiratory Syndrome Coronavirus	High	Subgenus Merbecovirus	Subgenus Merbecovirus
Coronaviridae	Other highly pathogenic coronaviral diseases such as Severe Acute Respiratory Syndrome		High	Subgenus Sarbecovirus	Subgenus Sarbecovirus
Filoviridae	Filoviral diseases Ebola	Ebola virus disease	High	Orthoebolavirus zairense	Orthoebolavirus zairense
Filoviridae	Filoviral diseases Marburg	Marburg virus disease	High	Orthomarburgvirus marburgense	
Filoviridae			High	Orthoebolavirus sudanense	
Flaviviridae	Zika virus	Zika virus	High	Orthoflavivirus	Orthoflavivirus
Flaviviridae			High	Orthoflavivirus denguei	Orthoflavivirus denguei
riaviviriaae			High	Ormotiavivirus tiavi	
Flaviviridae			High		Orthoflavivirus encephalitidis
Flaviviridae			High	O-th-ab-a-d-a-d-a	Orthoflavivirus nilense
Hantaviridae			High	Orthohantavirus sinnombreense	Orthohantavirus sinnombreense
Hantaviridae			High	Orthohantavirus hantanense	
Hepadnaviridae			Low		Orthohepadnavirus hominoidei genotype C

	2017	2018	2024		
	Priority	Priority		Priority	Prototype
Family	Pathogens	Pathogens	PHEIC risk	Pathogens	Pathogens
Hepeviridae			Low	J	Paslahepevirus balayani genotype 3
Herpesviridae			Low		3 ,,,
Nairoviridae	Crimean Congo Haemorrhagic Fever	Crimean Congo Haemorrhagic Fever	High	Orthonairovirus haemorrhagiae	Orthonairovirus haemorrhagiae
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H1	Alphainfluenzavirus Influenzae H1
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H2	
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H3	
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H5	Alphainfluenzavirus Influenzae H5
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H6	
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H7	
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H10	
Papillomaviridae			Low		
Paramyxoviridae	Nipah and related henipaviral diseases	Nipah and henipaviral diseases	High	Henipavirus nipahense	Henipavirus nipahense
Parvoviridae			Low		Protoparvovirus carnivoran
Peribunyaviridae			Low		Orthobunyavirus oropoucheense
Phenuiviridae	Severe Fever with Thrombocytopenia Syndrome		High	Bandavirus dabieense	Bandavirus dabieense
Phenuiviridae	Rift Valley Fever	Rift Valley Fever	High		Phlebovirus riftense
Picobirnaviridae			Low		Orthopicobirnavirus hominis
Picornaviridae			Medium	Enterovirus coxsackiepol	
Picornaviridae			Medium		Enterovirus alphacoxsackie 71
Picornaviridae			Medium		Enterovirus deconjucti 68
Pneumoviridae			Low-Medium		Metapneumovirus hominis
Polyomaviridae			Low		
Poxviridae			High	Orthopoxvirus variola	Orthopoxvirus
Poxviridae			High		vaccinia
Poxviridae			High	Orthopoxvirus monkeypox	Orthopoxvirus monkeypox
Retroviridae			Medium	Lentivirus humimdef1	Lentivirus humimdef1
Rhabdoviridae			Low		Genus Vesiculovirus
Sedoreoviridae			Low		Genus Rotavirus
Spinareoviridae			Low		Orthoreovirus mammalis
Togaviridae			High	Alphavirus chikungunya	Alphavirus chikungunya
Togaviridae			High	Alphavirus venezuelan	Alphavirus venezuelan
Pathogen X	Pathogen X	Pathogen X		Pathogen X	

Genomics is an essential tool for public health management of infectious diseases

 WGS can overcome important limitations of conventional epidemiological and laboratory methods:

Epidemiological

- Poor case recall
- Case lost to follow-up
- Deliberately misleading information
- Missing cases
- Confirm/refute tenuous epidemiological links

Laboratory

- Multiple tests required to answer different questions about the pathogen
- Often cannot definitively determine whether pathogens are identical

Genomics for investigation of viral outbreaks over time

How you compare sequences differs by bug and question

Genome Lineage/clade Phylogenomics/ Trends: local Trends: global analysis designation clustering

High

- Contexualising metadata
- Local context
- Translation

Population overview

Low

International context

Resolution of public health genomic data

How does sequencing and analysis differ between viruses and bacteria?

Key differences between viral and bacterial pathogens

Viral and bacterial genomes typically differ in the type of nucleic acid they contain, their size, and how they are organised:

Factor	Virus	Bacteria	
Genetic material	DNA or RNA	DNA	
Typical genome size	+	++	
Genome complexity	+	++	
Genome organisation	Single/double stranded	Circular	
Plasmids present	No	Yes	
Primary detection methods	Molecular	Culture/molecular	

WGS: laboratory procedure

Culture-independent WGS

Isolate pathogen and extract nucleic acid

Library preparation and sequencing

Generation of raw data

Key differences between viral and bacterial pathogens

Viral and bacterial genomes typically differ in how they are analysed and compared:

Factor	Virus	Bacteria	
Whole genome alignment Yes		No	
Core genome/genes No		Yes	
Typing methods	Lineages/clades	Sequence types (STs), MLST, cgMLST	
Phenotypic AMR Extremely limited		Yes	
Known AMR mutations	Extremely limited understanding: pathogen specific mutations	Often well understood: pathogen agnostic genes/pathogen specific mutations	

WGS: data analysis

Data quality control

- Speciation
- Trimming

Mapping to reference and single nucleotide polymorphism (SNP) calling

Phylogenetic tree generation and cluster identification

How does interpretation of genomic data differ between viruses and bacteria?

Typical public health objectives

 Are cases linked/exposed to the same source?

Is the viral lineage/sub-clade novel?

 Will the vaccines/diagnostic tests/antivirals still work?

 Is the lineage/sub-clade associated with severe disease?

Not all viral pathogen populations are the same

One case = one distinct consensus

One case > one distinct consensus (i.e. Mpox)

One case = one identical consensus (i.e. beginning explosive transmission)

Key considerations in interpretation of standard genomic epidemiological data: resp virus

One case = one distinct consensus

- Directly linking cases must be interpreted in epidemiological context
- Comprehensive global genomic surveillance and high geographical representation permits geographical source attribution and understanding of currently circulating lineages
- Genomic relatedness between cases can be attributed to direct link(s) in the context of robust epidemiological evidence
- A genomic threshold for relatedness between cases has been determined, thus genomic clustering can be performed

Key considerations in interpretation of genomic epidemiological data: emergent virus

One case = one identical consensus (<u>i.e.</u> beginning explosive transmission)

- Directly linking cases cannot be conducted using genomics alone and genomic data must be interpreted in epidemiological context
- Lack of global genomic surveillance and bias in geographical representation limits geographical source attribution and understanding of currently circulating lineages
- Genomic relatedness between cases should only be attributed to a common exposure(s) rather than direct link(s) in the absence of robust epidemiological evidence
- Within-host diversity: longitudinal sampling required to better understand
- A genomic threshold for relatedness between cases has not been determined. Genomic clustering may not be able to be performed

Key considerations in interpretation of complex genomic epidemiological data: Mpox

One case > one distinct consensus (i.e. Mpox)

- Directly linking cases cannot be conducted using genomics alone and genomic data must be interpreted in epidemiological context
- Lack of global genomic surveillance and bias in geographical representation limits geographical source attribution and understanding of currently circulating lineages
- Genomic relatedness between cases should only be attributed to a common exposure(s) rather than direct link(s) in the absence of robust epidemiological evidence
- Within-host diversity: multiple sub-lineages and sequence diversity have been detected from different bodily sites within the same host, potentially related to complexity of transmission
- A genomic threshold for relatedness between cases has not been determined. Genomic relatedness is confounded by ongoing viral evolution, within and between hosts, and presence of large genome deletions which limits available genomic data for comparison.

Examples of how genomic data can inform public health management of viral pathogens

Amount of available genomic data differs

- Viral sequencing was performed during the pandemic at a scale previously never achieved
 - Culture-independent sequencing
 - Smaller, less complex genome
 - Ease of specimen collection and transport

genomes high burden bacteria

genomes high burden/emergent viruses

Pathogen	Time period	Genomes
SARS-CoV-2	2020-present	>20,000,000
Influenza	~2010-present	>500,000
Dengue	~2011-present	>16,000
Мрох	22-present	10,832

Source: https://gisaid.org and https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/

Epidemiological questions answered using genomics during the COVID-19 pandemic

Integration of genomic data into established pathogen networks

- Viral pathogens will continue to cause Public Health Events of International Concern (PHEICs)
- WGS and genomic epidemiology increasingly integrated into established and emerging global networks focused on specific viruses:

Genomic data used to investigate emerging viral pathogens: Mpox Clade IIb

- In 2024, Mpox Clade IIb was reintroduced into Australia (Victoria) April 2024
- Five distinct Clade IIb sublineages detected amongst 19 cases
 - Multiple, concurrent introductions
- Limited global genomic surveillance
- Considerable diversity between sequences obtained from same case
 - Conventional genomic epi analysis very challenging

Genomic data used to investigate emerging viral pathogens: Mpox Clade Ib

Availability of genomic sequencing data

EMERGENCIES programme

Conclusions

- Translational public health genomics is a field that has grown exponentially since the COVID-19 pandemic
- How genomic data are generated and interpreted differs between viral and bacterial pathogens
- Genomics is increasingly utilised for routine surveillance and outbreak investigation of viral pathogens both locally and internationally
- Epidemiological context is essential to ensure accurate interpretation of genomic data
- Next up: introduction to dengue virus