Lab 7

1- plot the following design charts vs gm/ID for PMOS

2- plot the following design charts vs gm/ID for NMOS

3- Detailed design procedure and hand analysis.

3.1 Input pairs:

:: From GBW condition => gm=314 us

:: Let gm/id =16 "gain related"

Then Id=20 uA:

:: Assuming ro2=ro4 ==> gm1,2*ro1,2>=100

- L1,2 =440 n
- W1,2 = w/id *id=17.24 u

Input Pairs	
W	17.24 u
L	440 n
Gm	314 us
ID	20 uA
Gm/id	16
Vdsat	98.6 mv
Vov	24 mv
V*	125.1 mv

3.2 CM load:

Condition: gds< 3.14

Let gm/id =10 => 200 Then :: Gm/gd >= 63.7

Getting length::

:: L=350 n

Getting gm/id Valid Range ::

Vgs3.4 >= vin,max + VDsat1,2 -VGS1,2

:: Getting VGS 1,2 and VDsat1,2

:: SO VGS3.4 >= 0.873 V

:: Getting gm/id range

:: Gm/id Must be smaller than 11.5

Taking gm/id = 11 => to be deeper into sat.

:: Getting W

:: W= (w/id)* id =13.8 u

CM load	
W	13.8 u
L	350 n
Gm	220 us
ID	20 uA
Gm/id	11
Vdsat	161 mv
Vov	132 mv
V*	182 mv

3.3 Current Mirror

:: Id=40 uA

:: AVcm < 0.01 → 1/2gm3,4*ro5 < 0.01

ro5< 227.3 k => gds5 < 4.4 us :: let gm/id =10 :: ld=40 uA => gm5=400 us

:: gm/gds > 91 => Getting L

::L=470 n

Getting real gm/id Range ::

Vin min - Vgs1,2 - Vdsat 5 >= 0

VGS1,2 = 725 mv and Vin,min= 1v → VDsat5 <= 275 mv

Gm/id > 5.75 \rightarrow Take gm/id = 10

:: Getting W5

::W =8.9 u

CM load	
W	8.9 u
L	470 n
Gm	400 us
ID	40 uA
Gm/id	10
Vdsat	201 mv
Vov	134 mv
V*	201 mv

M6:

Same as M5 but width = w5 *1/4

4- Schematic of the OTA showing sizing of the transistors: after tuning

- Is current (and gm) in the input pair exactly equal?
- ⇒ Yes
- What is DC voltage at VOUT? Why?
- ⇒ 0.94
- ⇒ At Vid =0 Vout follows Vf mirror node =VDD-VGS3,4 = 0.9 V

5- Diff small signal ccs:

Plot diff gain (in dB) vs frequency.

f2 = 1.942043e+05 peak = 5.162645e+01 f2 = 1.942043e+05 gbw = 1.002608e+07 BSIM4v5: Berkeley Short Channel IGFET Model-4

• Compare simulation results with hand calculations in a table.

	Simulation	Hand analysis
Avd	51.6	Gain=gm1*(ro2//ro4)=52
GBW	10 Mhz	Gbw =gm1/cout=10.2 Mhz

- ⇒ gm1=321 us

- ⇒ Hand analysis are higher

6- CM small signal ccs:

- Plot CM gain in dB vs frequency.
- Compare simulation results with hand calculations in a table.

f2 = 1.942493e+05 peak = 9.337351e-03 f2 = 1.942493e+05 gbw = 1.813774e+03

	Simulation	Hand analysis
Avd	9 * 10^-3	1/(2gm3,4 *1/gds5)=12 * 10^-3

[⇒] gm3,4=217 us

:: Hand analysis are higher

7- CMRR:.

- Plot CMRR in dB vs frequency at VICM at the middle of the CMIR.
- Compare simulation results with hand calculations in a table

	Simulation	Hnad analysis
CMRR	5529 (74.8 db)	gm1,2(gds2+gds4)^-1*2gm3,4(1/gds5)=5200 (74.32 db)

::Hand analysis are smaller

8- large signal ccs:.

- Plot VOUT vs VID.
- From the plot, what is the value of Vout at VID = 0? Why?

:: Vout @ VID=0 follow VF = VDD-VGS3,4 = 0.9 v

4	w	13.85u	
5	VGS	898.4m	
6	VDS	600m	

• Plot the derivative of VOUT vs VID. Compare the peak with Avd.

- 9- (Optional) CM large signal ccs (GBW vs VICM):
 - Use AC analysis (1Hz, 1 point only).
 - Set VIDAC = 1 and VICMAC = 0.
 - Use parametric sweep (not DC sweep) VICM = 0:10m:VDD.

10- PART 4: Closed-Loop OTA Simulation

Is the current (and gm) in the input pair exactly equal? Why?

⇒ No , as Vid is not zero due to error , so there is some sort of steering

Calculate the mismatch in Id and gm.

```
No. of Data Rows: 1
 BSIM4v5: Berkeley Short Channel IGFET Model-4
                          m.x1.xm6.m0
nmos_3p3.8
0.000100318
      device
                                                     m.x1.xm5.m0
                                                                                m_{\star} \times 1_{\star} \times m4_{\star} m0
                                                     nmos_3p3.8
0.000374961
                                                                               pmos_3p3.12
0.000211154
       model
          gm
                          3,50075e-05
                                                     0.000130316
                                                                                8,20081e-05
        gmbs
                                                     1,15746e-05
                                                                               2,56163e-06
         gds
                          8.74141e-07
                                                         0,264806
                                                                                   0.752517
         vds
                              0.838493
                              0,170836
                                                        0.165643
                                                                                   0,154269
       vdsat
                              0.838499
                                                                                   0.891638
                                                        0.838499
         vgs
                                                        0.709843
                                                                                0.769038
1.84358e-05
         vth
                              0.702339
                                 1e-05
                                                     3.72181e-05
          id
 BSIM4v5: Berkeley Short Channel IGFET Model-4
                                                     m_* \times 1_* \times m_2 \cdot m_0
      device
                          m.x1.xm3.m0
                                                                                m.x1.xm1.m0
                          pmos_3p3,12
0,000214404
                                                     nmos_3p3,12
0,0003122
                                                                               nmos_3p3,12
0,000316671
       model
          gm
                                                                               8,87246e-05
3,31346e-06
                          8.31828e-05
                                                     8.74413e-05
        gmbs
                          2,42776e-06
                                                     3,11209e-06
         9ds
                                                         0,78266
                                                                                  0.643541
         vds
                              0.891636
                                                                                  0.0912812
       vdsat
                              0.154796
                                                       0.0903198
                                                        0.782661
                              0.891638
                                                                                   0.785182
         vgs
                              0.768329
         vth
                                                        0.778789
                                                                                   0.779307
                          1.87823e-05
                                                     1.84358e-05
                                                                               1.87823e-05
          id
gm_mismatch = 4.471590e-06
id_mismatch = 3.465610e-07
binary raw fi<u>l</u>e "OTA_TB₊raw"
ngspice 1 ->
```

11- (2) Loop Gain:

• Plot loop gain in dB and phase vs frequency. Show the results in the console.

• Compare DC gain and GBW with those obtained from open-loop simulation. Comment.

```
bw = 1.917852e+05

pm_deg = -8.945972e+01

dominant_pole_f = 9.818358e+06

loop_gain = 3.418592e+01

gbw = 9.819989e+06

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
```

	Open loop	Closed loop
Gain	34.25 db	34.1 db
GBW	10 meg	9.8 Mhz

Comment :: open loop gain is bigger as closed loop gain is $\frac{A_{Ol}}{A_{Ol}\beta+1}$

• Show the operating point at VICM in the middle of the CMIR.

```
No. of Data Rows : 1
BSIM4v5: Berkeley Short Channel IGFET Model-4
                                   m.x1.xm6.m0
nmos_3p3.8
        device
                                                                       m_{\star} \times 1_{\star} \times m_{5_{\star}} m_{0}
                                                                                                          m_{\star} \times 1_{\star} \times m4_{\star} m0
                                                                       nmos_3p3.8
0.000398574
                                                                                                          pmos_3p3.12
0.000218495
         model
                                   0.000100272
3.49949e-05
                                                                       0.000138468
                                                                                                            8,5024e-05
                                   8,70549e-07
                                                                       5.70936e-06
                                                                                                              3,127e-06
            gds
                                        0.84498
0.170918
                                                                           0,406042
             vds
                                                                           0.168887
         vdsat
                                                                                                               0,90004
0,769795
             vgs
                                        0.844986
                                                                           0.844986
                                                                       0.711686
3.99966e-05
                                         0.70874
             vth
                                                                                                          1,97373e-05
                                             1e-05
              id
BSIM4v5: Berkeley Short Channel IGFET Model-4
device m.x1.xm3.m0 m.x
model pmos_3p3.12 nmo
gm 0.000224477 0.0
gmbs 8.71153e-05 8.5
                                                                      m.x1.xm2.m0
nmos_3p3.12
0.000315833
8.51934e-05
                                                                                                          m_{*} \times 1_{*} \times m 1_{*} m 0
                                                                                                          nmos_3p3.12
0.00032153
                                                                                                          8,67747e-05
                                                                       2,75171e-06
            gds
                                                                                                               0.493902
                                        0,900039
0,159856
                                                                           0.840718
             vds
                                                                          0.0987629
         vdsat
                                                                                                               0.100774
                                                                                                               0.843946
                                         0.90004
                                                                             0.84072
             vgs
                                        0.769988
                                                                           0,821246
                                                                                                               0,820662
             vth
                                                                       1,97373e-05
                                                                                                          2,02593e-05
              id
                                   2.02593e-05
```

• Compare simulation results (DC gain and GBW) with hand calculations in a table.

	simulation	hand calculation
DC gain	34.1 db	1*gm1,2(gds2+gds4)^-1=52
GBW	9.8 Mhz	Gbw =gm1/cout=10.2 Mhz

[⇒] gm1=321 us

::Hand analysis are Bigger

[⇒] gm2=315 us