Grundbegriffe der Informatik Aufgabenblatt 1

Matr.nr.:				
Nachname:				
Vorname:				
Tutorium:	Nr.	Name des Tutors:		
Ausgabe:	22. Oktober	2014		
Abgabe:	31. Oktober	1. Oktober 2014, 12:30 Uhr		
	im GBI-Briefkasten im Untergeschoss			
von Gebäude 50.34				
Lösungen werden nur korrigiert, wenn sie				
• rechtzeitig,		1		
• in Ihrer eigenen Handschrift,				
• mit dieser Seite als Deckblatt und				
• in der oberen linken Ecke zusammengeheftet				
abgegeben wei	ruen.			
Vom Tutor au	ıszufüllen:			
erreichte Punkte				
Blatt 1:	/ 15	+3		
Blätter 1 – 1:	: / 15	+3		

Aufgabe 1.1 (6 Punkte)

Eine Relation R auf einer Menge M heißt genau dann konfluent, wenn

$$\forall x \in M \,\forall y_1, y_2 \in M : (xRy_1 \land xRy_2 \implies \exists z \in M : y_1Rz \land y_2Rz).$$

Solche Relationen treten bei Termersetzungssystemen auf, die von funktionalen Programmiersprachen zum Musterabgleich benutzt werden.

Gegeben seien die folgenden Relationen auf \mathbb{N}_0 : $R_1 = \{\}$, $R_2 = \{(0,0)\}$, $R_3 = \{(0,1), (0,2), (0,3), (1,3), (2,3), (3,3)\}$, $R_4 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x = y\}$, $R_5 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x < y\}$ und $R_6 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x \text{ teilt } y\}$.

Begründen Sie für jede dieser Relationen, ob sie konfluent ist oder nicht.

Hinweis: Eine ganze Zahl $a \in \mathbb{Z}$ teilt eine ganze Zahl $b \in \mathbb{Z}$ genau dann, wenn eine ganze Zahl $x \in \mathbb{Z}$ existiert so, dass ax = b gilt.

Lösung 1.1

- a) Die Relation R_1 ist **konfluent**, da für jedes $x \in \mathbb{N}_0$, jedes $y_1 \in \mathbb{N}_0$ und jedes $y_2 \in \mathbb{N}_0$ die Konjunktion $xR_1y_1 \wedge xR_1y_2$ falsch ist, also die Implikation $xR_1y_1 \wedge xR_1y_2 \implies \exists z \in M : y_1R_1z \wedge y_2R_1z$ wahr.
- b) Die Relation R_2 ist **konfluent**, da die Konjunktion $xR_2y_1 \wedge xR_2y_2$ nur für x = 0, $y_1 = 0$ und $y_2 = 0$ wahr ist und für $y_1 = 0$, $y_2 = 0$ und z = 0 gilt, dass y_1R_2z und y_2R_2z .
- c) Die Relation R_3 ist **konfluent**: Die Konjunktion $xR_2y_1 \wedge xR_2y_2$ ist genau dann wahr, wenn $(x, y_1, y_2) \in \{(0, 1, 1), (0, 2, 2), (0, 3, 3), (0, 1, 2), (0, 2, 1), (0, 1, 3), (0, 3, 1), (0, 2, 3), (0, 3, 2), (1, 3, 3), (2, 3, 3), (3, 3, 3)\}$. Für jedes dieser Tripel (x, y_1, y_2) und z = 3 gilt y_1R_2z und y_2R_2z .
- d) Die Relation R_4 ist **konfluent**: Es seien $x \in \mathbb{N}_0$, $y_1 \in \mathbb{N}_0$ und $y_2 \in \mathbb{N}_0$ so, dass $xR_4y_1 \wedge xR_4y_2$ gilt. Dann gilt $y_1 = x = y_2$. Setze z = x. Dann gilt y_1R_4z und y_2R_4z .
- e) Die Relation R_5 ist **konfluent**: Es seien $x \in \mathbb{N}_0$, $y_1 \in \mathbb{N}_0$ und $y_2 \in \mathbb{N}_0$ so, dass $xR_5y_1 \wedge xR_5y_2$ gilt. Dann gilt $x < y_1$ und $x < y_2$. Setze $z = y_1 + y_2 + 1$. Dann gilt y_1R_5z und y_2R_5z .
- f) Die Relation R_6 ist **konfluent**: Es seien $x \in \mathbb{N}_0$, $y_1 \in \mathbb{N}_0$ und $y_2 \in \mathbb{N}_0$ so, dass $xR_6y_1 \wedge xR_6y_2$ gilt. Setze $z = y_1y_2$. Dann gilt y_1R_6z und y_2R_6z .

Aufgabe 1.2 (2+1 Punkte)

Für zwei Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq A \times C$ heißt die Relation

$$R_1 \bowtie R_2 = \{(y,z) \in B \times C \mid \exists x \in A : (x,y) \in R_1 \land (x,z) \in R_2\}$$

Verbund von R_1 und R_2 . Diese und verwandte Operationen kommen bei relationelen Datenbanken vor, die in vielen Unternehmen verwendet werden.

a) Es seien $A = \mathbb{N}_0$, $B = \{a, b, c, d, e\}$ und $C = \{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \varphi, \psi\}$ drei Mengen. Ferner seien

$$R_1 = \{(1,c), (2,a), (3,b), (4,d), (5,e)\} \text{ und}$$

$$R_2 = \{(1,\alpha), (1,\zeta), (1,\psi), (3,\alpha), (3,\gamma), (4,\epsilon)\}.$$

Geben Sie die Relation $R_1 \bowtie R_2$ an.

b) Geben Sie konkrete Mengen A, B und C und Relationen R_1 und R_2 so an, dass $R_1 \bowtie R_2 = B \times C$ gilt.

Lösung 1.2

- a) $R_1 \bowtie R_2 = \{(c, \alpha), (c, \zeta), (c, \psi), (b, \alpha), (b, \gamma), (d, \epsilon)\}.$
- b) Triviale Lösung: $A = B = C = \{\}$, $R_1 = A \times B$ und $R_2 = A \times C$. Allgemeinere Lösung: Es sei A eine beliebige Menge und es sei eine der Mengen B oder C leer. Dann ist das kartesische Produkt $B \times C$ leer und eine der Relationen $R_1 = A \times B$ oder $R_2 = A \times C$ ist ebenfalls leer. Somit ist die Relation $R_1 \bowtie R_2$ leer und damit gleich $B \times C$. Nicht-leere Relationen: Es seien $A = \{1\}$, $B = \{a,b\}$ und $C = \{\alpha,\beta\}$. Dann ist $B \times C = \{(a,\alpha), (a,\beta), (b,\alpha), (b,\beta)\}$. Weiter seien $R_1 = \{(1,a), (1,b)\}$

Aufgabe 1.3 (3 Punkte)

Für jedes $n \in \mathbb{N}_0$ sei die Relation R_n auf \mathbb{N}_0 gegeben durch

und $R_2 = \{(1, \alpha), (1, \beta)\}$. Dann ist $R_1 \bowtie R_2 = B \times C$.

$$\forall x, y \in \mathbb{N}_0 : (xR_n y \iff n \text{ teilt } x - y)$$
.

Geben Sie R_0 , R_1 und R_2 an.

Lösung 1.3

a) Die Zahl 0 teilt nur sich selbst. Also gilt

$$R_0 = \{(x, y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x - y = 0\}$$

= \{(x, x) \ | x \in \mathbb{N}_0\}
= \text{Id.

wobei Id die Abbildung von \mathbb{N}_0 nach \mathbb{N}_0 bezeichne, die jede nicht-negative ganze Zahl auf sich selbst abbildet.

- b) Die Zahl 1 teilt jede Zahl. Also gilt $R_1 = \mathbb{N}_0 \times \mathbb{N}_0$.
- c) Die Zahl 2 teilt jede gerade Zahl. Also gilt

$$R_2 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid y - x \text{ ist gerade}\}$$

$$= \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid \exists z \in \mathbb{Z} \colon y - x = 2z\}$$

$$= \{(x,x+2z) \mid x \in \mathbb{N}_0 \land z \in \mathbb{Z} \land x + 2z \ge 0\}.$$

Aufgabe 1.4 (3 Punkte)

Es seien A und B zwei Mengen. Wie viele Relationen $R \subseteq A \times B$ gibt es, die rechtstotal und linkseindeutig sind? Begründen Sie ihre Antwort.

Lösung 1.4

Fehler der Aufgabensteller: Die meinten natürlich nur endliche Mengen! Natürlich! Es gibt $|A|^{|B|}$ solche Relationen.

Direkter Beweis: Eine Relation R ist genau dann rechtstotal und linkseindeutig, wenn es für jedes Element $b \in B$ genau ein Element $a \in A$ gibt so, dass $(a,b) \in R$. Für jedes Element $b \in B$ gibt es |A| Möglichkeiten es in Beziehung zu einem Element aus A zu setzen. Also gibt es

$$\underbrace{|A||A|\cdots|A|}_{|B| \text{ mal}} = |A|^{|B|}$$

Möglichkeiten eine rechtstotale und linkseindeutige Relation zu konstruieren.

Beweis auf Umwegen: Idee: Betrachte eine rechtstotale und linkseindeutige Relation zwischen *A* und *B* als Abbildung von *B* nach *A*.

Ausführung: Für jede Relation R zwischen A und B bezeichne R^{-1} die Relation

$$\{(b,a) \mid (a,b) \in R\}$$

zwischen B und A. Für jede Relation R gilt $(R^{-1})^{-1} = R$. Eine Relation R ist genau dann rechtstotal und linkseindeutig, wenn die Relation R^{-1} linkstotal und rechtseindeutig ist. Es sei \mathcal{R}_1 die Menge aller rechtstotalen und linkseindeutigen Relationen zwischen A und B und \mathcal{R}_2 die Menge aller linkstotalen und rechtseindeutigen Relationen zwischen B und A. Dann ist die Abbildung

$$f \colon \mathcal{R}_1 \to \mathcal{R}_2,$$

$$R \mapsto R^{-1},$$

eine Bijektion. Somit enthält \mathcal{R}_1 genauso viele Relationen wie \mathcal{R}_2 . Die Menge \mathcal{R}_2 ist aber gerade die Menge aller Abbildungen von B nach A. Aus der Übung wissen wir, dass es genau $|A|^{|B|}$ solche Abbildungen gibt.

*Aufgabe 1.5 (3 Extrapunkte)

Es seien A und B zwei endliche Mengen. Beweisen Sie, dass |A| = |B| genau dann gilt, wenn eine linkseindeutige, rechtseindeutige, linkstotale und rechtstotale Relation zwischen A und B existiert.

Lösung 1.5

Anschauung: Eine linkseindeutige, rechtseindeutige, linkstotale und rechtstotale Relation zwischen A und B ist eine 1-zu-1-Entsprechung zwischen den Elementen aus A und jenen aus B. Enthalten beide Mengen dieselbe Anzahl an Elementen, so gibt es eine solche 1-zu-1-Entsprechung. Und gibt es eine solche 1-zu-1-Entsprechung, so enthalten beide Mengen dieselbe Anzahl an Elementen.

Beweis: Die Mengen A und B sind endlich, also $m = |A| \in \mathbb{N}_0$ und $n = |B| \in \mathbb{N}_0$. Somit existieren paarweise verschiedene Elemente x_1, x_2, \ldots, x_m in A so, dass $A = \{x_1, x_2, \ldots, x_m\}$, und paarweise verschiedene Elemente y_1, y_2, \ldots, y_n in B so, dass $B = \{y_1, y_2, \ldots, y_n\}$.

Zunächst gelte |A| = |B|, also m = n. Die Relation R sei $\{(x_i, y_i) \mid i \in \{1, 2, ..., n\}\}$. Sie ist linkseindeutig, da die Elemente x_i , $i \in \{1, 2, ..., n\}$, paarweise verschieden sind, und rechtseindeutig, da die Elemente y_i , $i \in \{1, 2, ..., n\}$,

paarweise verschieden. Sie ist linkstotal, da A gerade aus den Elementen x_i , $i \in \{1,2,\ldots,n\}$, besteht, und rechtstotal, da B gerade aus den Elementen y_i , $i \in \{1,2,\ldots,n\}$, besteht.

Nun gebe es eine linkseindeutige, rechtseindeutige, linkstotale und rechtstotale Relation R zwischen A und B. Für jeden Index $i \in \{1,2,\ldots,m\}$ existiert genau ein Index $k_i \in \{1,2,\ldots,n\}$ derart, dass $(x_i,y_{k_i}) \in R$. Dabei folgt die Existenz von y_{k_i} aus der Linkstotalität von R und die Eindeutigkeit aus der Rechtseindeutigkeit von R. Wegen der Linkseindeutigkeit von R, sind die Elemente y_{k_i} , $i \in \{1,2,\ldots,m\}$, paarweise verschieden. Somit enthält die Menge B mindestens B Elemente. In anderen Worten: Es gilt B0. Genauso sieht man, dass B1. Insgesamt gilt also A2 = B3.