Tabela geral das Derivadas

Nesta tabela u e v são funções deriváveis de x e c, α e a são constantes.

(1)
$$y = c \Rightarrow y' = 0$$

(2)
$$y = x \Rightarrow y' = 1$$

(3)
$$y = c \cdot u \Rightarrow y' = c \cdot u'$$

(4)
$$y = u + v \implies y' = u' + v'$$

(5)
$$y = u \cdot v \implies y' = u' \cdot v + u \cdot v'$$

(6)
$$y = \frac{u}{v} \implies y' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

(7)
$$y = u^{\alpha}, (\alpha \neq 0) \Rightarrow y' = \alpha \cdot u^{\alpha - 1} \cdot u'$$

(8)
$$y = a^{u} (a > 0, a \ne 1) \Rightarrow y' = a^{u} . \ln a . u'$$

(9)
$$y = e^u \implies y' = e^u \cdot u'$$

(10)
$$y = \log_a u \implies y' = \frac{u'}{u} \log_a e$$

(11)
$$y = \ln u \implies y' = \frac{u'}{u}$$

(12)
$$y = u^{v} (u>0)$$

 $\Rightarrow y' = v \cdot u^{v-1} \cdot u' + u^{v} \cdot \ln u \cdot v'$

(13)
$$y = \operatorname{sen} u \Rightarrow y' = \cos u \cdot u'$$

(14)
$$y = \cos u \Rightarrow y' = - \sin u \cdot u'$$

(15)
$$y = tg u \Rightarrow y' = sec^2 u \cdot u'$$

(16)
$$y = \cot g u \Rightarrow y' = -\csc^2 u . u'$$

(17)
$$y = \sec u \Rightarrow y' = \sec u \cdot tg \cdot u \cdot u'$$

(18)
$$y = \csc u$$

 $\Rightarrow y' = -\csc u \cdot \cot g \cdot u \cdot u'$

(19)
$$y = arc sen u \Rightarrow y' = \frac{u'}{\sqrt{1 - u^2}}$$

(20)
$$y = arc \cos u \Rightarrow y' = \frac{-u'}{\sqrt{1-u^2}}$$

(21)
$$y = \text{arc tg } u \Rightarrow y' = \frac{u'}{1+u^2}$$

(22)
$$y = \operatorname{arc cotg} u \Rightarrow y' = \frac{-u'}{1+u^2}$$

(23)
$$y = \operatorname{arc} \sec u, |u| \ge 1$$

$$\Rightarrow$$
 y' = $\frac{u'}{|u|\sqrt{u^2-1}}$, $|u| > 1$

(24)
$$y = \text{arc cosec u}, |u| \ge 1$$

$$\Rightarrow$$
 y' = $\frac{-u'}{|u|\sqrt{u^2-1}}$, $|u| > 1$

(25)
$$y = \operatorname{senh} u \Rightarrow y' = \cosh u \cdot u'$$

(26)
$$y = \cosh u \Rightarrow y' = \operatorname{senh} u \cdot u'$$

(27)
$$y = tgh u \Rightarrow y' = sech^2 u \cdot u'$$

(28)
$$y = \operatorname{cotgh} u \Rightarrow y' = -\operatorname{cosech}^2 u \cdot u'$$

(29)
$$y = \operatorname{sech} u \Rightarrow y' = -\operatorname{sech} u \cdot \operatorname{tgh} u \cdot u'$$

(30)
$$y = \operatorname{cosech} u$$

 $\Rightarrow y' = -\operatorname{cosech} u \cdot \operatorname{cotgh} u \cdot u'$

(31)
$$y = \arg \sinh u \Rightarrow y' = \frac{u'}{\sqrt{u^2 + 1}}$$

(32)
$$y = \operatorname{arg} \cosh u \Rightarrow y' = \frac{u'}{\sqrt{u^2 - 1}}, u > 1$$

(33)
$$y = \arg tgh \ u \Rightarrow y' = \frac{u'}{1 - u^2}, \ |u| < 1$$

(34)
$$y = \arg \operatorname{cotgh} u \Rightarrow y' = \frac{u'}{1 - u^2}, |u| > 1$$

(35)
$$y = \arg \operatorname{sech} u \Rightarrow y' = \frac{-u'}{u\sqrt{1-u^2}}, 0 < u < 1$$

(36)
$$y = \operatorname{arg} \operatorname{cosech} u \Rightarrow y' = \frac{-u'}{|u| \sqrt{1 + u^2}}, \quad u \neq 0$$

Identidades Trigonométricas

1.
$$\sin^2 x + \cos^2 x = 1$$
.

3.
$$1 + \cot^2 x = \csc^2 x$$
.

2.
$$1 + tg^2 x = \sec^2 x$$
.

4.
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
.

5.
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
.

7. $2 \sin x \cos y = \sin(x - y) + \sin(x + y)$.

9. $2\cos x \cos y = \cos(x-y) + \cos(x+y)$.

11. $\csc x = \frac{1}{\sec x}$

13. $\operatorname{tg} x = \frac{\operatorname{sen} x}{\cos x}$

6. sen 2x = 2 sen x cos x.

 $2 \operatorname{sen} x \operatorname{sen} y = \cos(x - y) - \cos(x + y).$ 8.

 $1 \pm \operatorname{sen} x = 1 \pm \cos \left(\frac{\pi}{2} - x \right).$ 10.

 $\sec x = \frac{1}{\cos x}$ 12.

 $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$ 14.

Funções hiperbólicas

 $\cosh x = \frac{e^x + e^{-x}}{2}$

Integrais

1. $\int du = u + c$.

3. $\int u^n du = \frac{u^{n+1}}{n+1} + c, \quad n \neq -1.$

 $5. \int e^u du = e^u + c.$

 $7. \int e^{au} = \frac{1}{a}.e^{au} + c$

9. $\int \cos u \, du = \sin u + c$.

11. $\int \cot g \ u \ du = \ln |\sin u| + c.$

13. $\int \operatorname{cosec} u \ du = \ln \left| \operatorname{cosec} u - \operatorname{cotg} u \right| + c$. 14. $\int \operatorname{sec} u \ \operatorname{tg} u \ du = \operatorname{sec} u + c$.

15. $\int \csc u \cot u \, du = -\csc u + c.$

17. $\int \csc^2 u \ du = -\cot u + c.$

19. $\int \cos^2 u \ du = \frac{1}{2} \cdot u + \frac{1}{4} \cdot \sin 2u + c$ **20.** $\int \cot g^2 u \ du = -\cot g u - u + c$

 $21. \int tg^2 u \ du = tg u - u + c$

23. $\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c$, $u^2 > a^2$. 24. $\int \frac{du}{\sqrt{u^2 + a^2}} = \ln \left| u + \sqrt{u^2 + a^2} \right| + c$.

2. $\int a du = au + c$.

 $4. \int \frac{du}{u} = \ln |u| + c.$

6. $\int a^u du = \frac{a^u}{\ln a} + c$, $a > 0, a \ne 1$.

8. $\int \operatorname{sen} u \, du = -\cos u + c \, .$

10. $\int \text{tg } u \, du = \ln |\sec u| + c$.

12. $\int \sec u \, du = \ln |\sec u + \tan u| + c$.

16. $\int \sec^2 u \ du = \operatorname{tg} u + c$.

18. $\int sen^2 u \, du = \frac{1}{2} \cdot u - \frac{1}{4} \cdot sen 2u + c$

22. $\int \frac{du}{dx^2 + r^2} = \frac{1}{r} arc \operatorname{tg} \frac{u}{r} + c$

25. $\int \frac{du}{u\sqrt{u^2+a^2}} = \frac{1}{a} arc \sec \left| \frac{u}{a} \right| + c$. 26. $\int \frac{1}{u\sqrt{u^2+a^2}} du = -\frac{1}{a} \ln \left| \frac{a+\sqrt{u^2+a^2}}{u} \right| + c$

27. $\int \frac{1}{u^2 \sqrt{u^2 + a^2}} du = -\frac{\sqrt{u^2 \pm a^2}}{+a^2 u}$ **28.** $\int \frac{du}{\sqrt{u^2 + a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right| + c.$

29. $\int \frac{du}{\sqrt{a^2 - u^2}} = arc \sin \frac{u}{a} + c$, $u^2 < a^2$. **30.** $\int \frac{\sqrt{a^2 - u^2}}{u^2} du = -\frac{\sqrt{a^2 - u^2}}{u} - arc \sin \frac{u}{a} + c$

31. $\int \frac{u^2}{\sqrt{a^2-u^2}} du = -\frac{u}{2} \sqrt{a^2-u^2} + \frac{a^2}{2} \arcsin \frac{u}{a} + c$ 32. $\int \frac{1}{u^2 \sqrt{a^2-u^2}} du = -\frac{\sqrt{a^2-u^2}}{a^2u} + c$

33. $\int \sqrt{a^2 - u^2} du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \arcsin \frac{u}{a} + c$.