ADVANCED BAYESIAN MODELING

A NORMAL HIERARCHICAL MODEL: HIERARCHICAL MODEL FOR 2016 POLLS

Review

Observe:

$$y_j$$
 = Clinton lead (percentage points) in poll j
$$\sigma_j$$
 = half margin of error of y_j
$$j = 1, \dots, 7$$

Let

$$y = (y_1, \dots, y_7) \qquad \sigma = (\sigma_1, \dots, \sigma_7)$$

Regard σ_j as (estimate of) $\sqrt{\mathrm{var}(y_j)}$ in sampling distribution of y_j .

1

Model for Poll Results

Results come from separately conducted polls:

$$y_1, \ldots, y_7$$
 independent (in sampling distribution)

To a close approximation, they should be normally distributed:

$$y_j \mid \theta_j \sim \mathrm{N}(\theta_j, ?)$$

Note: Poll j is allowed its own mean θ_j .

Since σ_i represents standard error of y_i ,

$$y_i \mid \theta_i \sim \mathrm{N}(\theta_i, \sigma_i^2)$$

For simplicity, regard σ_j as fixed and known. (No need to include it in conditioning notation.)

(More elaborate analysis might put independent priors on σ_i s.)

Model for Means

No reason to assume differences among polls (prior to seeing data).

Therefore, model poll means $\theta_1, \ldots, \theta_7$ as exchangeable.

Convenient to model them conditionally independent from a normal distribution:

$$\theta_i \mid \mu, \tau \sim \mathrm{N}(\mu, \tau^2)$$

Reasonable if no skew in population and no outliers.

(Also, recall normal prior is conjugate for normal sample mean.)

12

Hyperprior

Noninformative hyperprior proposed in BDA3, Sec. 5.4, for similar situation:

$$p(\mu, \tau) \propto 1 \qquad -\infty < \mu < \infty \quad \tau > 0$$

Obtained from multiplying flat priors for μ and τ :

$$p(\mu) \propto 1 - \infty < \mu < \infty$$

 $p(\tau) \propto 1 \quad \tau > 0$

Note: Improper, so requires checking that posterior is proper.

1.

Warning: Use improper hyperpriors carefully!

For example, using

$$p(\log \tau) \propto 1$$

would give an improper posterior (BDA3, Sec. 5.4).

Full Model

The full hierarchical normal model:

$$y_j \mid \theta_j \sim \mathrm{N}(\theta_j, \sigma_j^2) \qquad j = 1, \dots, J$$
 $\theta_j \mid \mu, \tau \sim \mathrm{N}(\mu, \tau^2) \qquad j = 1, \dots, J$ $\mu \sim \mathrm{flat} \ \mathrm{on} \ (-\infty, \infty)$ $\tau \sim \mathrm{flat} \ \mathrm{on} \ (0, \infty)$

DAG Model

Note: The **constant** node σ isn't circled.

Constant nodes are always observed.