Data Science and Machine Learning in Python

Stephan Weyers

Topics covered in the online lectures

Part 1: Data Science

	Date	Topics covered	
1	Apr 13 th	Course introduction Data Science motivation How to use Jupyter Notebook Python types and lists Loops, if/else, functions	
2	Apr 20 th	Python tuples, lists, dictionaries Functions Numpy basics, operations Image processing	
3	Apr 27 th	Pandas Series, DataFrame Pandas basic operations Import/export files	
4	May 4 th	Principles of data visualization Data cleaning and preparation Join, combine and reshape data	
5	May 11 th	Volkswohl Bund dataset Data visualization in Python How to write Data Science reports Data aggregation and grouping	

Part 2: Machine Learning

	Date	Topics covered	
6	Jun 1 st	Introduction to supervised learning Classification and regression scikit-learn k-Nearest Neighbors Linear regression (ridge and lasso)	
7	Jun 8 th	Linear classification models Decision trees Random forests and gradient boosting Support vector machines Neural networks	
8	Jun 15 th	Introduction to unsupervised learning Preprocessing and scaling Dimensionality reduction Principal component analysis	
9	Jun 22 nd	k-means clustering Hierarchical clustering DBSCAN	
10	Jun 29 th	Representing data Engineering features	
11	Jul 6 th	Model evaluation and improvement Text data analysis	

Agenda for online lecture 6

Session	Topic	Mode	Materials used	Minutes	End
14:30-16:00	Organizational questions	Q&A		10	14:40
	Supermarket exercise	Team work in break-out rooms	Lecture 06a notebook	40	15:20
	k-Nearest Neighbors	Lecture / Q&A	Lecture slides	15	15:35
	Linear regression	Lecture / Q&A	Lecture slides	20	15:55
16:10-17:40	Regression toy data	Lecture / Q&A	Lecture 06b notebook	20	16:30
	California housing data	Team work in break-out rooms	Lecture 06c notebook	45	17:15
	Recap W02 / W03	Lecture / Q&A		20	17:35
17:50-19:20	Teams W04	Lecture / Q&A		10	18:00
	Happiness data	Team work in break-out rooms	Lecture 06d notebook	80	19:20

Types of problems

Supervised Approaches

- Labeled data
- Target values known

Classification

Predict category

Regression

Predict numeric value

Unsupervised Approaches

- Unlabeled data
- No target value provided

Cluster Analysis

Organize similar cases into segments

Dimensionality reduction

Reduce number of features

Question for discussion

Find examples for each of the 4 categories

k-Nearest Neighbors – example

k-Nearest Neighbors – predictions 1-NN

k-Nearest Neighbors – predictions 3-NN

k-Nearest Neighbors – Decision Boundary

k-Nearest Neighbors – Accuracy

k-Nearest Neighbors – Summary

Parameters

- Number of neighbors k
- Distance metric (Euklidean as default)

Strengths

- Easy to understand
- Building model is fast

Weaknesses

- Making predictions is very slow on large datasets
- Usually not good with many features (hundreds or more)
- Particularly bad with sparse datasets (many zeros)
- Not robust if features are on different scales.

Linear Regression – one input variable

Linear Regression – two input variables

Linear Regression – Formulas

Given training input data $x^{(1)}, ..., x^{(n)} \in \mathbb{R}^d$ with labels $y^{(1)}, ..., y^{(n)} \in \mathbb{R}$.

Try to find $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ in order to minimize

Linear regression (ordinary least squares)

$$L(w,b) = \sum_{i=1}^{n} (y^{(i)} - (w \cdot x^{(i)} + b))^{2}$$

Ridge regression

$$L_2(w, b) = \sum_{i=1}^n \left(y^{(i)} - \left(w \cdot x^{(i)} + b \right) \right)^2 + C \|w\|_2^2$$

Lasso regression

$$L_1(w,b) = \sum_{i=1}^n \left(y^{(i)} - \left(w \cdot x^{(i)} + b \right) \right)^2 + C \|w\|_1$$

Linear Models – Summary

Parameters

- Regularization parameter alpha and C
- Model type lasso vs. ridge for regression / logistic vs. SVM for classification

Strengths

- Fast to train, fast to predict
- Work well with sparse data
- Relatively easy to understand how predictions are made
- Work well with large number of features

Weaknesses

- Coefficients hard to interpret, especially if features are highly correlated
- Sometimes fail with small datasets
- Perform bad with non-linear features and datasets that are not linearly separable

Machine Learning – Training and Test Error

Under- and Overfitting

Regression

Classification

Low model complexity (Underfitting)

High model complexity (Overfitting)