1/17/25, 11:53 PM

2207864

README

文章背景

本篇文章在美观方面一言难尽,属于我最近看到的论文里面最丑的一篇,而且方法十分朴素。但是它又一个极大的亮点就是思路很好,就是让人觉得十分合理,并且对每一个参数的数据都进行了严格的指派,而不是像之前几篇论文里面只给出数据源甚至不告知具体参数。我猜测评委可能想法和这篇文章非常契合,因此被评选为O将论文。因此这是一篇很值得仔细阅读的文章。

其思路如下:

- 第一问和其它几篇差不多
- 对于第二问,它使用TOPSIS+熵权法来对供供水对于工业和农业的影响,评分高的州优先供水,同时分三个缺水阶段进行讨论。(但是事实上它问得是电力和日常之间的冲突,就是如果水不够应该先满足谁,这里它对于问题的回答文不对题)
- 对于问题三,通过提供一些节水或者可持续的措施来减少水量,这个比较开放,只要最后措施使得在模型的运行下更加持久地运转就可以。
- 对于问题四,文章写得很简略,也不知道在放什么jb屁。

问题

[zt] TOPSIS+熵权法解决州之间的优先供应问题

这里需要获得每个州的经济分数。这里给出原始指标:

表5:指标统计

State name	Total Employment	Industries	Agricultural output	Agricultural input
AZ	3041476	75569280	0.7767	0.5610
CA	19784145	578107490	9.0782	5.0492
CO	2958379	72318151	1.3403	1.2982
NM	1027003	26022552	0.6094	0.6828
WY	343755	9777143	0.2618	0.4583

井曜 1・ 百松年佐元

需要通过熵权法进行权重分配,然后根据TOPSIS得出每个州的评分。