From Newton's Laws to Modelling Black Holes The Power of Numerical Methods

Wenkang Xin

April 25, 2024

Introduction

What is the **greatest** achievement of science?

Quantum mechanics? General relativity? The standard model?

Introduction

What is the **greatest** achievement of science?

Ability to predict the future,

using, for example, Newton's laws.

Contents

Newton's Laws

Numerical Methods

Foraging to Black Holes

Exciting Science

Concluding Remarks

Newton's Laws

If all the co-ordinates and velocities (of a system) are simultaneously specified, it is known from experience that the state of the system is completely determined and that its subsequent motion can, in principle, be calculated.

Newton's Laws

In principle, we can predict the future using Newton's second law:

$$\mathbf{F} = m\mathbf{a} = m\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} \tag{1}$$

Once we know the force, we can solve the differential equation.

Newton's Laws

Imagine you are a rocket moving in space towards Mother Earth. Your dynamics is a constant updating of the state vector:

$$\begin{pmatrix} x \\ v \end{pmatrix} \xrightarrow{\delta t} \begin{pmatrix} x + v\delta t \\ v + a\delta t \end{pmatrix} \tag{2}$$

How do we know the acceleration a?

What we just did is called the **Euler's method**.

It is a general method of solving ordinary differential equations.

⁰Leonhard Euler (1707-1783).

Consider the following differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -15y \quad y(0) = 1 \tag{3}$$

We know the solution is:

$$y(t) = e^{-15t} \tag{4}$$

Let's see how Euler's method performs with different step sizes.

There are at least two problems with the naive Euler's method:

- 1. It is (very) inaccurate for large step sizes.
- 2. It becomes (very) **slow** for small step sizes.

Numerical Methods - Go to Higher Orders

The Euler's method is naive in a sense that it is too 'local'.

We could have 'scouted' ahead a bit and use the average of acceleration there and our current position.

Numerical Methods - Go to Higher Orders

Let us go as far as four steps ahead!

Runge-Kutta methods are a family of numerical methods for ODEs.

The most famous is the RK4 method.

Numerical Methods - Adapt Your Step

The Euler's method is also too 'dumb' because it only knows a **fixed step size**.

Numerical Methods - Adapt Your Step

To know when and how to adapt the step size, we require a rough estimate of the error.

RK(F)45 method is a viable choice, which uses both 4th and 5th order results to estimate the error.

Foraging to Black Holes

Instead of a rocket, what if we are photons travelling towards a black hole?

What even is a black hole?

Foraging to Black Holes

⁰ John Michell and Karl Schwarzschild.

Foraging to Black Holes

Black holes are very simple objects with two (three) parameters: mass and spin (charge).

They are often accompanied by an accretion disk that emits high-energy radiation.

Foraging to Black Holes - Some GR

The motion of a photon is governed by the geodesic equation:

$$\frac{\mathrm{d}x^a}{\mathrm{d}\lambda} + \Gamma^a_{bc} \frac{\mathrm{d}x^b}{\mathrm{d}\lambda} \frac{\mathrm{d}x^c}{\mathrm{d}\lambda} = 0$$

This can be numerically integrated!

Exciting Science - Ray Tracing

We can use C++ (for its speed) to **simulate** how photons from an accretion disk travel to an observer.

 $^{^{0}}$ spin = 0.95, inclination = 20 deg

Exciting Science - Actual Value

Besides simulating a BH on your PC, the algorithm also gives us a **spectrum** that contains key information about the BH.

Concluding Remarks

What have we learnt?

Concluding Remarks

Similar mathematical ideas arise from distinct physical principles.

Concluding Remarks

In tackling the most difficult questions, human ingenuity prevails over computational brute force.

Thank you!

References

A. Abdikamalov et al. (2019), Public Release of RELXILL NK: a Relativistic Reflection Model for Testing Einstein's Gravity

```
import time
   3 start = time.time()
   4 for i in range(100000):
          euler method(f, y0, 0.01, T) # Test 1000 times
     end = time.time()
   7 print('Time used for dt = 0.01:', end - start)
     start = time.time()
  10 for i in range(100000):
         euler method(f, y0, 0.1, T) # Test 1000 times
     end = time.time()
     print('Time used for dt = 0.1:', end - start)
  15 start = time.time()
  16 for i in range(100000):
         euler_method(f, y0, 1/8, T) # Test 1000 times
     end = time.time()
  19 print('Time used for dt = 1/8:', end - start)
                                                                         Python
Time used for dt = 0.01: 3.7898566722869873
Time used for dt = 0.1: 0.4230952262878418
Time used for dt = 1/8: 0.35508084297180176
```


 $-\frac{\left\{a^{2}+r\;\left(-2\,M+r\right)\;\right)\;\left(a^{4}\,M+3\;a^{4}\;r-4\;a^{2}\,M\;r^{2}+8\;a^{2}\,r^{3}+8\;r^{5}+4\;a^{2}\;r\;\left(a^{2}+r\;\left(M+2\,r\right)\right)\;Cos\left[2\,theta\right]-a^{4}\;\left(M-r\right)\;Cos\left[4\,theta\right]\right)\;Sin\left[theta\right]^{2}}{\left(a^{2}+2\;r^{2}+a^{2}\;Cos\left[2\,theta\right]\right)^{3}}$

 $^{^{0}}$ spin = 0.5, inclination = 20 deg

 $^{^{0}}$ spin = 0.5, inclination = 45 deg

 $^{^{0}}$ spin = 0.75, inclination = 20 deg

 $^{^{0}}$ spin = 0.75, inclination = 45 deg

 $^{^{0}}$ spin = 0.95, inclination = 20 deg

 $^{^{0}}$ spin = 0.95, inclination = 45 deg

$$y_{n+1}=y_n+rac{h}{6}\left(k_1+2k_2+2k_3+k_4
ight), \ t_{n+1}=t_n+h$$
 for $n=0,$ 1, 2, 3, ..., using $[3]$ $k_1=f(t_n,y_n), \ k_2=f\left(t_n+rac{h}{2},y_n+hrac{k_1}{2}
ight), \ k_3=f\left(t_n+rac{h}{2},y_n+hrac{k_2}{2}
ight), \ k_4=f(t_n+h,y_n+hk_3).$

```
/* RK45 constants */
#define a1 1.0/4.0
#define b1 rk 3.0/32.0
#define b2 rk 9.0/32.0
#define c1 rk 1932.0/2197.0
#define c2 rk -7200.0/2197.
#define c3 7296.0/2197.0
#define d1 439.0/216.0
#define d2 -8.0
#define d3 3680.0/513.0
#define d4 -845.0/4104.0
#define e1 -8.0/27.0
#define e2 2.0
#define e3 -3544.0/2565.0
#define e4 1859.0/4104.0
```

```
vars temp[i] = vars[i] + a1 * k1[i];
diffeqs(vars temp. diffs):
diffeqs(vars temp, diffs);
diffeqs(vars_temp, diffs);
   vars temp[i] = vars[i] + d1 * k1[i] + d2 * k2[i] + d3 * k3[i] + d4 * k4[i];
diffeqs(vars temp, diffs);
   vars temp[i] = vars[i] + e1 * k1[i] + e2 * k2[i] + e3 * k3[i] + e4 * k4[i] + e5 * k5[i]
                                                                4日 > 4団 > 4 豆 > 4 豆 > 1 豆 > 9 Q ()
```

```
diffeqs(vars temp. diffs):
```