Digital Communication: UE18EC352

VI Sem ECE, PESU: Jan-May 2021

Experiment-2: Pulse shaping with Nyquist pulses

Steps:

- 1. Set $R_b = 100$ Hz and $T_{max} = 10T_b$. You can use $T_r = 0.001$ as the time resolution for plotting p(t).
- 2. Generate the raised cosine pulse

$$p(t) = \begin{cases} \frac{sinc(R_b t)\cos(\pi \alpha R_b t)}{1 - 4\alpha^2 R_b^2 t^2} & -T_{max} < t < T_{max} \\ 0 & elsewhere \end{cases}$$

- 3. Find P(f). Plot p(t) and P(f) for different values of α between 0 and 1. Note the bandwidth in each case.
- 4. Repeat with $T_{max} = 3T_b$. Note the effect of truncating p(t) on P(f) as α varies.
- 5. Repeat with $p(t) = sinc^2(R_b t)$. Note the effect of truncating p(t) on P(f) in this case too.
- 6. Plot p(t) and P(f) for the following cases:
 - (a) Raised cosine pulse shaping with $T_{max}=10T_b$ and $\alpha=0$
 - (b) Raised cosine pulse shaping with $T_{max}=10T_b$ and $\alpha=0.5$
 - (c) Raised cosine pulse shaping with $T_{max}=10T_b$ and $\alpha=1$
 - (d) Raised cosine pulse shaping with $T_{max} = 3T_b$ and $\alpha = 0$
 - (e) Raised cosine pulse shaping with $T_{max} = 3T_b$ and $\alpha = 0.5$
 - (f) Raised cosine pulse shaping with $T_{max}=3T_b$ and $\alpha=1$
 - (g) $sinc^2$ pulse shaping with $T_{max} = 10T_b$
 - (h) $sinc^2$ pulse shaping with $T_{max} = 3T_b$