영상신호처리 Homework #2

컴퓨터공학전공 2020451142 정수영

- 1. Get a grey level image which size is N*N and partition to 8*8 sub images.
- (1) 정사각형 이미지를 지정된 N=512 값에 의해 흑백의 N*N 픽셀의 array로 변화하여 f에 저장한다.

```
Code
# import libraries
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from PIL import Image
# 1-(1). Get Gray level image; size N x N (512x512의 이미지 불러옴.)
N = 512
image = Image.open("hepburn.jpg").resize((N, N)).convert('L')
original_f = np.array(image)
plt.imshow(original_f, cmap="gray", vmin=0, vmax=255 )
plt.title("Original Image " + str(original f.shape))
plt.show() # 이미지 출력
Result
       Original Image (512, 512)
100
700
300
400
             280
                  305
        100
                       400
                             500
```

(2) N*N 이미지를 K*K의 서브 이미지들로 바꾸어 주는 GetKxKs() 함수와 이 함수의 역인 GetNxN()을 정의한다. GetK*K() 함수를 이용하여 원본 f를 8*8 이미지들의 배열로 변환한다. 원본이 512*512 이므로 8*8 의 이미지로 분해하면 64*64 = 4096개의 서브 이미지들의 배열로 변환된다. 이 이미지 배열을 f_s에 저장한다.

```
Code
# GetKxKs : NxN image to 8x8 (K=8) sub images
def GetKxKs(image, K):
    n = len(image)
    if n % K != 0: return
    ret = []
    for row in range(int(n/K)):
        for col in range(int(n/K)):
        ret.append(image[row*K:(row+1)*K, col*K:(col+1)*K])
    return np.array(ret)
```

```
# GetNxN : KxK(8x8) sub images to NxN image

def GetNxN(images):
    K = images.shape[1]
    N = int(np.sqrt(images.shape[0]) * K)
    ret_image = np.empty((N, N), float)
    for i in range(N):
        for j in range(N):
            group = int(i/K) * int(N/K) + int(j/K)
            ret_image[i][j] = images[group][i%K][j%K]
    return np.array(ret_image)

# 1-(2). partition to 8*8 sub images
f_s = GetKxKs(original_f, 8)
print("8*8 서브 이미지들을 담은 f_s:", f_s.shape)

Result

8*8 서브 이미지들을 담은 f_s: (4096, 8, 8)
```

2. Apply DFT to these sub images, and get the fourier transformed image F.

- (1) 푸리에 공식(Fourier())을 이용하여 N*N DFT(푸리에변환)매트릭스를 생성하는 함수 T()를 정의하고, 역푸리에 공식(IFourier())을 이용하여 N*N IDFT(역푸리에변환)매트릭스를 생성하는 함수 IT()를 정의한다.
- (2) T(8)를 이용하여 f_s 이미지 f들을 푸리에 변환하여 F로 만든 후 이들을 Fs 배열에 저장한다.

$$F = T_8 f T_8^H$$
 (where $T_8 = T(8)$)

(3) 푸리에 변환된 Fs의 각 원소를 절댓값을 취한 후 GetNxN() 함수를이용해 512*512 배열로 다시 변환후 푸리에 이미지를 출력한다.

```
Fs의 8\times 8 이미지 F의 임의의 원소가 a+bj일 때, |a+bj|=\sqrt{a^2+b^2} (단, j^2=-1)
```

```
Code
# Fourier Formular
def Fourier(N, x, a):
 return complex(sp.cos((2. * sp.pi * x * a)/N), -1.*sp.sin((2. * sp.pi * x * a
)/N))/np.sqrt(N)
# Inverse Fourier Formular
def IFourier(N, x, a):
 return complex(sp.cos((2. * sp.pi * x * a)/N), +1.*sp.sin((2. * sp.pi * x * a
)/N))/np.sqrt(N)
# 2-(1). Define DFT function T() and IDFT function IT()
# T : DFT (Discrete Fourier Transform)
def T(N):
 U = []
 for i in range(N):
    row = []
    for j in range(N):
      row.append(Fourier(N, i, j))
   U.append(row)
 return np.array(U)
# IT : IDFT (Inverse Discrete Fourier Transform)
def IT(N):
 U = []
 for i in range(N):
    row = []
    for j in range(N):
```

```
row.append(IFourier(N, i, j))
    U.append(row)
    return np.array(U)

# 2-(2) Derived Fs images Applying DFT to these sub image f_s.
# Fs : The 8*8 image F list in Frequency Domain
Fs = []
T8 = T(8)
for f in f_s:
    Fs.append(np.dot(T8, np.dot(f, np.matrix.getH(T8))))
Fs = np.array(Fs)

# 2-(3) Get the fourier transformed image F
plt.imshow(abs(GetNxN(Fs)), cmap='gray', vmin=0, vmax=255 )
plt.title("Fourier Transformed Image F")
plt.show()
Result
```

Fourier Transformed Image F 100 200 400 500 1

- 3. Derive the proper subsampling function matrix \boldsymbol{S} in spatial domain.
- (1) 주어진 공식에 따라 $n \times n$ 메트릭스를 $\frac{n}{2} \times \frac{n}{2}$ 메트릭스로 변환시켜줄 함수 S()를 정의한다.
- (2) 정의된 함수 S()를 이용해 8*8을 4*4로 변환시켜줄 메트릭스 S = S(8)을 구한다.

$$S = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

```
Code
# 3-(1). S : Subsampling matrix n*n -> n/2*n/2 in Spatial Domain
def S(n):
    ret = []
    for i in range(int(n/2)):
        row = []
        for j in range(n):
```

```
if i*2 == j or (i*2 +1) == j:
    row.append(0.5)
    else: row.append(0)
    ret.append(row)
    return np.array(ret)

# 3-(2). Derive the proper subsampling function matrix S in spatial domain
S = S(8)
    print("S =", S)

Result
S = [[0.5 0.5 0. 0. 0. 0. 0. 0. 0]
[0. 0. 0.5 0.5 0. 0. 0. 0. 0]
[0. 0. 0. 0.5 0.5 0. 0. 0. 0]
[0. 0. 0. 0. 0. 0.5 0.5 0. 0. 0]
[0. 0. 0. 0. 0. 0. 0. 0.5 0.5]
```

4. Multiplying proper 4*4 DFT matrix T to matrix S, derive the frequency version of subsampling function matrix, S_F .

```
(1) S_F = T_4 S T_8^H = SF (where T_4 = T(4), T_8 = T(8))
```

```
Code
# 4-(1). Derive the frequency version of subsampling function matrix SF.
# SF = T(4) * S * T(8)*
SF = np.dot(T(4), np.dot(S, np.matrix.getH(T(8))))
print("SF =", SF)

Result

SF = [[0.70710678+0.j 0. +0.j ]
[0. +0.j 0.60355339+0.25j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j ]
[0. +0.j 0. +0.j 0.35355339+0.35355339j 0. +0.j 0. +0.j 0. +0.j 0.35355339j 0. +0.j ]
[0. +0.j 0. +0.j 0. +0.j 0.10355339+0.25j 0. +0.j 0. +0.j 0. +0.j 0.60355339-0.25j ]]
```

- 5. Similarly, derive the frequency version of interpolation matrix: I
- (1) 먼저 Spatial Domain에서의 Interpolation matix I를 구한다.

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(2)
$$I_F = T_8 I T_4^H = IF$$
 (where $T_4 = T(4)$, $T_8 = T(8)$)

```
[0,
                         0.5, 0.5, 0 ],
                               1, 0],
                  [0,
                         0,
                  Γ0,
                               0.5, 0.5],
                         0,
                                     1 ],
                  [0,
                         0,
                               0,
                  [0,
                               0,
                                     1
              1)
# 5-(2). Derive the interpolation matrix in frequency domain IF.
# IF : Interpolation matrix in Frequency Domain
# IF = T(8) \times I \times T(4)^*
IF = np.dot(T(8), np.dot(I, np.matrix.getH(T(4))))
print("IF =", IF)
Result
IF = [[1.41421356 + 0.j -0.08838835 -0.08838835j -0.1767767 + 0.j -0.08838835 + 0.08838835j]
[0. +0.j 1.20710678-0.125j -0.125j -0.125j -0.125j +0.j]
[0. +0.j \ 0.08838835 -0.08838835j \ 0.70710678 -0.1767767j \ -0.08838835 -0.08838835j]
\begin{bmatrix} 0. +0.j & 0.125 & +0.j & 0.125 & -0.125j & 0.20710678-0.125j \end{bmatrix}
[0. +0.j 0.08838835+0.08838835j 0.1767767 +0.j 0.08838835-0.08838835j]
[0. +0.j 0.20710678+0.125j 0.125 +0.125j 0.125 +0.j]
[0. +0.j -0.08838835 +0.08838835j 0.70710678 +0.1767767j 0.08838835 +0.08838835j]
[0. +0.j -0.125 +0.j -0.125 +0.125j 1.20710678+0.125j]]
```

- 6. Apply these matrices to each sub image of F, and get the final image, taking inverse DFT.
- (1) $F_S = S_F F S_F^H$ (F_S : Subsampling된 4*4 푸리에 이미지) F_S 를 모은 배열 SubFs를 구한다.
- (2) F_s 를 이미지로 출력한다.

```
Code
# 6-(1). Subsampling F's
SubFs = []
for F in Fs:
  SubFs.append(np.dot(SF, np.dot(F, np.matrix.getH(SF))))
SubFs = np.array(SubFs)
# 6-(2) Subsampling 된 푸리에 이미지를 출력한다.
plt.imshow(abs(GetNxN(SubFs)), cmap='gray', vmin=0, vmax=255 )
plt.title("Subsampled Fourier Images")
plt.show()
Result
       Subsampled Fourier Images
 50
200
150
 200
                    150
                          200
```

(3) $F_{SI} = I_F F_S I_F^H$, $(F_{SI}: F_S$ 를 Interpolating 시킨 푸리에 이미지) F_{SI} 들을 모은 배열이 InterSubFs

(4) $F_{\varsigma I}$ 이미지를 출력한다.

```
Code
# 6-(3). Interpolating Subsampled F's
InterSubFs = []
for SubF in SubFs:
  InterSubFs.append(np.dot(IF, np.dot(SubF, np.matrix.getH(IF))))
InterSubFs = np.array(InterSubFs)
# 6-(4) Subsampling -> Interpolating된 푸리에 이미지 출력
plt.imshow(abs(GetNxN(InterSubFs)), cmap="gray", vmin=0, vmax=255 )
plt.title("Interpolated Subsampled Fourier Images")
plt.show()
Result
  Interpolated Subsampled Fourier Images
100
700
 300
 400
 500
        100
               zác
                    305
                          400
                                500
```

(5) F_{SI} 의 역푸리에 구해서 $IDFT(F_{SI})$ 를 InvInterSubFs 배열에 저장한다.

$$f' = IDFT(F_{SI}) = IF \times F_{SI} \times IF^{H}$$

(6) f' 이미지를 출력한다.

```
Code
# 6-(5). IDFT image F's which is interpolated and subsampled
InvInterSubFs = []
IT8 = IT(8)
for isF in InterSubFs:
   InvInterSubFs.append(np.dot(IT8, np.dot(isF, np.matrix.getH(IT8))))
InvInterSubFs = np.array(InvInterSubFs)

# 6-(6). Show IDFT Image
f_processed_frequency = abs(GetNxN(InvInterSubFs))
plt.imshow(f_processed_frequency, cmap='gray', vmin=0, vmax=255 )
plt.title("IDFT Image : f'")
plt.show()
Result
```


- 7. Apply subsampling/interpolation function matrix S/I to original image in spatial domain and get the final image.
- (1) 임의의 8×8 원본 이미지 f에 대하여, Subsampling -> Interpolating한 이미지를 f''이라 하면,

$$f'' = I(S_8 f S_8^H) I^H$$

(2) f" 이미지를 출력

```
Code
# 7-(1). Apply S and I to original image in Spatial domain
subfs = []
for f in f_s:
 subfs.append(np.dot(S, np.dot(f, np.transpose(S))))
subfs = np.array(subfs)
intersubfs = []
for sf in subfs:
 intersubfs.append(np.dot(I, np.dot(sf, np.transpose(I))))
intersubfs = np.array(intersubfs)
# 7-(2). Show the image processed in spatial domain
f proccessed spatial = GetNxN(intersubfs)
plt.imshow(f_proccessed_spatial, cmap='gray', vmin=0, vmax=255 )
plt.title("Proccessed in spatial domain : f\"")
plt.show()
Result
```


[비교]

(1) 6번의 f'(Frequency Domain에서 변환)과 7번 <math>f''(Spatial Domain에서 변환) 이미지를 비교해보면 $MSE = 1.54 \times 10^{-26}$ 으로 거의 오차가 0에 가까움.

실제, 이론 상으로는 f'과 f''의 오차는 없어야 함.

$$\begin{split} DEF(f') &= I_F(S_F F S_F^H) I_F^H \\ &= (T_8 I T_4^H) (T_4 S T_8^H) (T_8 f T_8^H) (T_4 S T_8^H)^H (T_8 I T_4^H)^H \\ &= (T_8 I T_4^H) (T_4 S T_8^H) (T_8 f T_8^H) (T_8 S^H T_4^H) (T_4 I^H T_8^H) \\ &= T_8 I (T_4^H T_4) S(T_8^H T_8) f(T_8^H T_8) S^H (T_4^H T_4) I^H T_8^H \\ &= T_8 \times I \times S \times f \times S^H \times I^H \times T_8^H \end{split}$$

$$T_8 f' T_8^H = T_8 \times I \times S \times f \times S^H \times I^H \times T_8^H$$

$$f' = T_8^H (T_8 \times I \times S \times f \times S^H \times I^H \times T_8^H) T_8$$

$$f' = (T_8^H \times T_8) \times (I \times S \times f \times S^H \times I^H) \times (T_8^H \times T_8)$$

$$= I \times S \times f \times S^H \times I^H = f''$$

$$\therefore f' = f''$$

(2) f'-f, f''-f를 구해보면 서로 비슷한 수준의 에러를 보임.

(5) 원본 이미지의 크기 $N \times N$ 에서 N의 값에 따른 f' 비교

N이 클수록 변환에 따른 원본과의 오차가 작아지는 경향이 있음. 또한 원본과의 오차는 대부분 윤곽선에서 생기는 경향이 있음.


```
Code
# Compare with f'(proccessed in frequency domain) and f"(proccessed in spatial d
omain)
f_diff1 = f_processed_frequency - f_proccessed_spatial
mse1 = np.square(f diff1).mean(axis=None)
psnr1 = 20 * np.log10(255/np.sqrt(mse1))
error_msg1 = "MSE = {0}\n PSNR = {1}".format(mse1, psnr1)
plt.figure(figsize=(15,15))
plt.subplot(1, 3, 1)
plt.imshow(f_diff1, cmap= "gray", vmin=0, vmax=255 )
plt.title("Difference between f' and f\"\n"+ error msg1)
# Compare with f' and Original Image f
f_diff2 = f_processed_frequency - original_f
mse2 = np.square(f diff2).mean(axis=None)
psnr2 = 20 * np.log10(255/np.sqrt(mse2))
error msg2 = "MSE = \{0\} \setminus PSNR = \{1\}".format(mse2, psnr2)
plt.subplot(1, 3, 2)
plt.imshow(f_diff2, cmap= "gray", vmin=0, vmax=255 )
plt.title("Difference between f' and Original f\n"+error_msg2)
# Compare with f" and Original Image f
f diff3 = f proccessed spatial - original f
mse3 = np.square(f_diff3).mean(axis=None)
psnr3 = 20 * np.log10(255/np.sqrt(mse3))
error_msg3 = "MSE = {0}\n PSNR = {1}".format(mse3, psnr3)
plt.subplot(1, 3, 3)
```

plt.imshow(f_diff3, cmap= "gray", vmin=0, vmax=255)
plt.title("Difference between f\" and Original f\n" + error_msg3)
plt.show()

