Due	For	Available from	Until	
24 Oct	1 student	22 Oct at 15:30	24 Oct at 23:59	
		Preview		

Score for this quiz: 20 out of 20

Submitted 13 Nov at 7:44 This attempt took 2 minutes.

	Question 1	1 / 1 pts
	There is an algorithm that decides whether a given C++ probreturns 100.	lem
	O True	
Correct!	• False	

	Question 2 4 / 4 pts	
	Select all languages for which there is a deterministic Turing machine M that decides whether a given input x is in the language.	
	Diagonalization Language	
Correct!	Language that contains all binary strings having exactly 3 1-bits.	

2 of 5 13/11/20, 7:45 am

Correct!

Correct!

Question 3

1 / 1 pts

The problem to decide whether a given undirected graph G=(V,E) with positive edge weights has a minimum spanning tree of cost at most C is in PSPACE.

Correct!

True

False

Question 4

1 / 1 pts

If L is a problem in NP then any NP-complete problem is polynomial-time reducible to L.

True

Correct!

False

Question 5

1 / 1 pts

3 of 5

	Assuming $P \neq NP$, the decision variant of the traveling salesperson problem is in P.
	○ True
Correct!	False
	Question 6 4 / 4 pts
	Consider the problem of deciding whether a given undirected graph G=(V,E) with positive edge weights has a minimum spanning tree of cost at most C. Select all complexity classes that this problem belongs to.
Correct!	
Correct!	■ BPP
Correct!	
Correct!	
Correct!	co-NP
	Question 7 4 / 4 pts
	Select all correct statements.

4 of 5 13/11/20, 7:45 am

Correct!	$P\subseteq NP$
Correct!	$ otin NP \subseteq PSPACE $
	$^{\square}$ NP \subset P
Correct!	$^{\otimes}~P\subseteq RP$
	$\ \ \ \ BPP\ \subset RP$

	Question 8	4 / 4 pts
	Let G=(V,E) be an undirected graph. Select all correct statemen	nts.
	The problem to compute a clique with a maximal number of nodes P (assuming $P \neq NP$).	is in
	The problem to decide whether G contains a Hamiltonian cycle is in (assuming $P \neq NP$)	ı P.
	The problem to compute a clique with a maximal number of nodes NP (assuming $P \neq NP$).	is in
Correct!	The problem to decide whether G contains a clique of k nodes is in	NP.

Quiz score: 20 out of 20

5 of 5 13/11/20, 7:45 am