DM 4: L'intégrale de Dirichlet

§ 1. **Le lemme d'Abel.**— Dans toute la suite, on note $I = \left[0, \frac{\pi}{2}\right]$ et E l'espace des fonctions de classe \mathscr{C}^1 de I dans \mathbb{C} . Pour tout $f \in E$, on pose pour tout réel x:

$$I_f(x) = \int_0^{\pi/2} f(t) \exp(ixt) dt.$$

Dans toute la suite, f désignera une fonction appartenant à E.

- Q1/ (a) Expliquer pourquoi les fonctions f et f' sont bornées sur I. On posera par la suite $M = ||f||_{\infty}$ et $M' = ||f'||_{\infty}$.
 - (b) A l'aide par exemple d'une intégration par parties, montrer qu'il existe $A \in \mathbf{R}_+$, que l'on exprimera en fonction de M et M', tel que $\forall x \neq 0, |I_f(x)| \leq \frac{A}{|x|}$.
 - (c) En déduire que $\lim_{x \to \infty} \int_{0}^{\pi/2} f(t) \cos(xt) dt = \lim_{x \to \infty} \int_{0}^{\pi/2} f(t) \sin(xt) dt = 0.$
- § 2. Calcul de l'intégrale de Dirichlet.— Pour tout entier naturel *n*, on pose

$$J_n = \int_{0}^{\pi/2} \frac{\sin(nt)}{\sin t} dt.$$

- **Q2**/ (a) Justifier pour tout $n \in \mathbb{N}$, l'existence de J_n .
 - (b) Calculer J_0 , J_1 et J_2 .
- **Q3**/ (a) Si a et b sont deux réels, factoriser $\sin a \sin b$.
 - (b) Pour tout entier naturel $n \ge 2$, exprimer $J_n J_{n-2}$ en fonction de n.
 - (c) Montrer que pour tout $N \in \mathbf{N}^*$, $J_{2N+1} = \frac{\pi}{2}$.
 - (d) Montrer que pour tout $N \in \mathbf{N}^*$, $J_{2N} = 2 \sum_{n=0}^{N-1} \frac{(-1)^n}{2n+1}$.
- **Q4**/ (a) Montrer qu'il existe une fonction $\psi \in E$ telle que

pour tout
$$n \in \mathbb{N}^*$$
, $J_n - J_{n-1} = \int_0^{\pi/2} \psi(t) \cos((n - 0.5)t) dt$,

1

- (b) En déduire la valeur de $\lim_{n\to\infty} (J_n J_{n-1})$.
- (c) En déduire que $\lim_{n\to\infty} J_n = \frac{\pi}{2}$.
- **Q5**/ Déduire des résultats précédents l'égalité : $\pi = \lim_{N \to \infty} 4 \sum_{n=0}^{N} \frac{(-1)^n}{2n+1}.$

Q6/ On définit l'application $g: t \in \left[0, \frac{\pi}{2}\right] \mapsto \begin{cases} \frac{1}{\sin t} - \frac{1}{t} & \text{si } t \neq 0, \\ 0 & \text{si } t = 0. \end{cases}$

A l'aide du théorème de la limite de la dérivée, montrer que g est de classe \mathscr{C}^1 .

- **Q7**/ (a) Déterminer $\lim_{n\to\infty} \left(\int_0^{\pi/2} \frac{\sin(nt)}{\sin t} dt \int_0^{\pi/2} \frac{\sin(nt)}{t} dt \right)$.
 - (b) En déduire $\lim_{n\to\infty} \int_{0}^{\pi/2} \frac{\sin(nt)}{t} dt$.
 - (c) Déterminer $\lim_{n\to\infty} \int_{0}^{n\pi/2} \frac{\sin(t)}{t} dt$.
- **Q8**/ (a) Montrer que pour tout réel strictement positif *x* on a :

$$\int_{0}^{x} \frac{\sin t}{t} dt = \frac{1 - \cos x}{x} + \int_{0}^{x} \frac{1 - \cos t}{t^{2}} dt.$$

Vous penserez à prouver que la deuxième intégrale existe.

- (b) Montrer que $\int_{1}^{x} \frac{1 \cos t}{t^2} dt \le 2 \text{ pour tout } x \ge 1.$
- (c) En déduire que la fonction $\Psi: x \in]0, +\infty[\mapsto \int_0^x \frac{1-\cos t}{t^2} dt$ admet une limite finie en $+\infty$.
- (d) En déduire que la fonction $x \ge 0 \mapsto \int_0^x \frac{\sin t}{t} dt$ admet en $+\infty$ une limite réelle, puis calculer la valeur de celle-ci.