Elettrotecnica

Luca Mombelli

2024-25

Indice

1	Circ	cuiti in DC				
	1.1	Misure in regimi DC				
	1.2	Reti del Primo ordine				
		1.2.1 Risposta naturale				
		1.2.2 Risposta forzata				
		1.2.3 Risposta rettangolare				
	1.3	Reti del secondo Ordine				
2	Circ	cuiti in AC				
	2.1	Relazione caratteristiche degli elementi passivi				
	2.2	Teorema del generatore equivalente				
	2.3	Potenza				
		2.3.1 Potenza istantanea				
		2.3.2 potenza media/attiva/reale				
		2.3.3 potenza apparente				
		2.3.4 potenza reattiva				
		2.3.5 potenza nel dominio della frequenza				
	2.4	Misure in corrente alternata				
		2.4.1 Multimetri digitali				
		2.4.2 Adattamento di carico in AC				
		2.4.3 Rifasamento				
	2.5	Filtri				
		2.5.1 Risonanza				
		2.5.2 Filtri				
3	Sistemi trifase 25					
	3.1	Collegamento a stella				
		3.1.1 Generatori				
		3.1.2 Utilizzatori				
	3.2	Collegamento a triangolo				
		3.2.1 utilizzatori				
	3.3	Potenza in sistemi trifase				
	3.4	Misure in sistemi trifase				

1 Circuiti in DC

Legge di Kirchhoff per le correnti (KCL)

In un nodo la somma delle correnti entranti (assunte positive) e uscenti (assunte negative) è nulla $\,$

$$\sum_{i=1}^{n} I_i = 0 \tag{1}$$

Legge di Kirchhoff per le differenze di potenziale (KVL)

In una maglia la somma algebrica delle tensioni è nulla

$$\sum_{i=1}^{n} V_i = 0 \tag{2}$$

Ponte di Wheastone

Figura 1:

$$R_4 = \frac{R_2 \times R_3}{R_1}$$

ottenuta con il ponte in equilibrio quindi con $v_{ab}=0$ Inoltre la differenza di potenziale tra i due capi si può calcolare come

$$v_{ab} = v_{ad} - v_{bd} = E\left(\frac{R_2}{R_1 + R_2} - \frac{R_x}{R_3 + R_x}\right)$$

Teorema del generatore equivalente

• Thevenin:

Un circuito resistivo lineare , ai fini del suo comportamento ad una qualsiasi coppia di terminali a e b , è equivalente ad un generatore ideale di tensione in serie ad un resistore. La tensione v_T del generatore è la tensione che si ha tra i terminali , quando sono aperti. La resistenza R_T del resistore è la resistenza equivalente vista dai terminali con i generatori indipendenti spenti

• Norton:

Un circuito resistivo lineare , ai fini del suo comportamento ad una qualsiasi coppia di terminali a e b , è equivalente ad un generatore ideale di corrente in parallelo ad un resistore. La corrente I_N del generatore è la corrente che scorre nei terminali quando questi sono in corto circuito (corrente di cc). La Resistenza R_N del resistore è la resistenza equivalente al circuito con i generatori indipendenti spenti

• Equivalenza Thevenin-Norton :

$$E_T = R_{eq} * I_N$$

Principio di Sovrapposizione

In un circuito resistivo lineare , qualunque tensione o corrente è la somma degli effetti dei singoli generatori indipendenti , quando agiscono uno alla volta

Per analizzare un circuito con il principio di sovrapposizione bisogna :

- 1. Inserire un generatore alla volta , con gli altri spenti , e ricavare la grandezza desiderata
 - Per spegnere un generatore di tensione, sostituirlo con un corto circuito
 - Per spegnere un generatore di corrente , sostituirlo con un circuito aperto
- 2. Somma algebricamente i risultati ottenuti

1.1 Misure in regimi DC

• Voltmetro:

senza voltmetro
$$V = E \frac{R}{R + R_s}$$

Con voltmetro (tensione misurata)
$$V_m = E \frac{R||R_v|}{R||R_v + R_s|}$$

errore di consumo
$$\epsilon_V = \frac{V_m - V}{V} = -\frac{R_s||R|}{R_V + R||R_s|} \approx -\frac{R_s||R|}{RV}$$

• Amperometro :

senza amperometro
$$I = \frac{E}{R + R_s}$$

Con amperometro (corrente misurata)
$$I_m = \frac{E}{R + R_s + R_a}$$
 errore di consumo $\epsilon_A = \frac{I_m - I}{I} = -\frac{R_a}{R_a + R + R_s} \approx -\frac{R_a}{R + R_s}$

• Wattmetro :

Nel circuiti a regime Dc possiamo calcolare la potenza in due modi completamente equivalenti :

utilizzando un Wattmetro o utilizzando la combinazione di un voltmetro e di un amperometro

Possiamo decidere in entrambi casi se collegare la parte voltmetrica o a valle o a monte (prima o dopo l'amperometro).

- Se colleghiamo a monte è la misura della tensione che è affetta dal consumo dell'amperometro

$$V_m = R_A I + V$$
 $\Delta V = R_a I$ $\delta_{VA} = \frac{\Delta V}{V} = \frac{R_A}{R}$

 Se colleghiamo il voltmetro a valle è la misura della corrente che è affetta da consumo del voltmetro

$$I_m = \frac{V}{R||R_V} \quad \Delta I = \frac{V}{R_V} \quad \delta_{AV} = \frac{\Delta I}{I} = \frac{R}{R_v}$$

Adattamento di carico in un generatore di tensione Reale

Un generatore di tensione reale può essere rappresentato come generatore ideale in serie con una resistenza $R_{\rm s}$

Ora sappiamo che la potenza generatore è pari a $P_g=ei=\frac{e^2}{R+R_s}$, invece la potenza erogata al carica è $P_e=vi=RI^2=R\frac{e^2}{(R+R_s)^2}$.

Ora vogliamo trovare il valore di R_s che massimizza la potenza trasferita al carico. Per massimizzarla imponiamo che la derivata di P_e rispetto alla resistenza R sia zero e otteniamo la seguente condizione $R=R_s$

Tutte via nelle applicazione reali metà della potenza generata viene dissipata dalla resistenza R_s , quindi spesso si preferisce un carico $R>>R_s$

1.2 Reti del Primo ordine

Una rete del primo ordine contiene solo un elemento reattivo (C o L) equivalente. Una situazione di regime (t < 0) è seguita da un transitorio (t=0) che termina con una nuova situazione a regime ($t \to \infty$)

Per determinare v(t) e i(t) durante il transitorio sfruttiamo la continuità della

• tensione : sulle capacità

• corrente : attraverso l'induttanza

1.2.1 Risposta naturale

La risposta naturale di una rete del primo ordine rappresenta il comportamento del circuito in assenza di forzanti esterne , dipende unicamente dalle condizioni iniziali. L'analisi del transitorio richiede la risoluzione di un'equazione differenziale lineare omogenea del primo ordine a coefficienti costanti $\frac{dx(t)}{dlt} + ax(t) = 0$ che come soluzione

$$x(t) = Ke^{\frac{t}{\tau}}$$

dove K è determinata dalla condizione iniziale (K=x(0)) invece $\tau = \frac{1}{a}$ è detta costante di tempo

Rete RC

5

per t < 0 la corrente I(t) = 0 invece la tensione ai capi del condensatore è pari a $v_c(t) = E$ Ora sappiamo che per la continuità $v_c(0-) = v_c(0+) = E$ quindi sappiamo anche che $K = v_c(0) = E$

Invece per t>0 il condensatore di scarica comportandosi come un generatore quindi $v(t)=v_R+v_c=Ri+v_c=RC\dot{v_c}(t)+v_c=0$

$$\dot{v_c}(t) + \frac{1}{RC}v_c = 0$$

ora abbiamo scoperto anche la costante di tempo che è $\tau=RC$ quindi possiamo scrivere la soluzione dell'equazione differenziale

$$v_c(t) = Ke^{-\frac{t}{\tau}} = Ee^{-\frac{t}{RC}}$$

Ora che abbiamo scoperto possiamo ricavarci anche l'espressione della corrente sappiamo che t<0 i(t)=0 invece per

$$t>0 \quad i(t)=C\dot{v}(t)=\mathcal{L}E(-\frac{1}{R\mathcal{C}})e^{-\frac{t}{RC}}=-\frac{E}{R}e^{-\frac{t}{RC}}$$

Ora possiamo grafare le due soluzioni :

Vediamo che unicamente v_c è continua , invece i presenta un salto durante il transitorio

Rete RL

Per
$$t < 0$$
 $v_L(t) = 0$ $i(t) = \frac{E}{R}$

Inoltre sappiamo che per la continuità $i(0-)=i(0+)=\frac{E}{R}=K$

Per t>0 l'induttanza inizia a comportarsi come un generatore di corrente quindi $v(t)=v_r+v_L=L\dot{I}(t)+I(t)R=\dot{I}(t)+\frac{R}{L}I(t)=0$ quindi ora abbiamo l'equazione differenziale

$$\frac{dI}{dt} + \frac{R}{L}I(t)$$
la cui soluzione è : $I(t) = \frac{E}{R}e^{-\frac{t}{L}}$

dove $\tau = \frac{L}{R}$ è la costante di tempo.

Ora che sappiamo la corrente i(t) possiamo anche ricavare la tensione ai capi dell'induttore

$$v_L(t) = L\frac{dI}{dt} = L\frac{E}{R}(-\frac{R}{L})e^{-\frac{t}{L}} = -Ee^{-\frac{t}{L}}$$

Ora possiamo grafare entrambe le curve

1.2.2 Risposta forzata

In questo caso l'analisi del transitorio richiede la risoluzione di un'equazione differenziale lineare non omegenea del primo ordine a coefficienti costanti

$$\frac{dx(t)}{t} + ax(t) = f(t)$$

Se la sollecitazione è a gradino allora la funzione f(t) è costante. La soluzione allora è $x(t)=Ke^{-\frac{t}{\tau}}+X$

Reti RC

Per t<0 i(t)=0 $v(t)=v_r+v_c=v_c=E$ Ora sappiamo che per continuità $v_c(0-)=v_c(0+)=E$ Per t>0 $v(t)=v_R+v_c=Ri+v_c=RC\dot{v_c}(t)+v_c(t)=E_1$

$$\dot{v_c}(t) + \frac{1}{RC}v_c(t) = \frac{E_1}{RC}$$

La soluzione è quindi

$$v_c(t) = Ke^{\frac{-t}{\tau}} + v_c(\infty) = (E_0 - E_1)e^{\frac{-t}{RC}} + E_1$$

ora che abbiamo scoperto la $v_c(t)$ possiamo ricavarci la i(t)

$$i(t) = C\dot{v_c}(t) = C(E_0 - E_1)(-\frac{1}{RC})e^{\frac{-t}{RC}} = \frac{E_1 - E_0}{R}e^{\frac{-t}{RC}}$$

Ora possiamo grafare le due soluzioni

Reti RL

Per
$$t<0$$
 $v_L(t)=0$ $i(t)=\frac{E_0}{R}$
Ora sappiamo che per continuità $i(0+)=i(0-)=\frac{E}{R}$
Per $t>0$ $v(t)=v_R+v_L=RI(t)+L\frac{di}{dt}=E_1$

$$\frac{di}{dt} + \frac{R}{l}i(t) = \frac{E_1}{L}$$

La soluzione è quindi

$$i(t) = \frac{E_0 - E_1}{R} e^{-\frac{r}{\frac{L}{R}}} + \frac{E_1}{R}$$

Ora che sappiamo i(t) possiamo ricavare $v_L(t)$

$$v_L(t) = L \frac{di}{dt} = (E_1 - E_0)e^{-\frac{r}{L}}$$

Ora possiamo grafare la soluzione

1.2.3 Risposta rettangolare

Una sollecitazione a gradino si verifica quando si ha una doppia commutazione: da a in b per t=0e da b in a per $t=t_1$

Rete RC

8

Per
$$t<0$$
 $v_c(t)=0$
Per $0< t< t_1$ $v_c(t)=E(1-e^{-\frac{t}{\tau}})$ transitorio di carica
Per $t=t_1$ $v_c(t_1)=E(1-e^{-\frac{t_1}{\tau}})$
Per $t>t_1$ $v_c(t)=v_c(t_1)e^{-\frac{t-t_1}{\tau}}$ transitorio di scarica

Grafando la sollecitazione è:

1.3 Reti del secondo Ordine

Le reti del secondo ordine sono reti che contengono 2 elementi reattivi diversi tra loro. L'analisi del transitorio richiede la risoluzione di un'equazione differenziale lineare del secondo ordine a coefficienti costanti

$$\frac{d^2x(t)}{dt^2}+b\frac{dx(t)}{dt}+cx(t)=\frac{d^2x(t)}{dt^2}+2\alpha\frac{dx(t)}{dt}+\omega_0^2x(t)=f(t)$$

Per le sollecitazioni a gradino abbiamo che f(t)=F cioè è costante

equazione caratteristica dell'eq differenziale

$$s^2 + 2\alpha s + \omega_0^2$$
 con
$$\begin{cases} 2\alpha = \frac{R}{2L} \\ w_0^2 = \frac{1}{LC} \end{cases}$$

Le cui soluzioni sono :

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

Vista l'equazione caratteristica della nostra equazione differenziale possiamo avere tre diversi casi

- Rete sovrasmorzata $(\Delta > 0)$: $x(t) = K_1 e^{\frac{-t}{\tau_1}} + K_2 e^{\frac{-t}{\tau_2}}$ $\cot \tau_1 = -\frac{1}{s_1} \quad \tau_2 = -\frac{1}{s_2}$
- Rete a smorzamento critico ($\Delta=0$): $x(t)=K_1e^{\frac{-t}{\tau}}+K_2e^{\frac{-t}{\tau}}$ con $\tau=\frac{1}{\alpha}$
- Rete sottosmorzata ($\Delta < 0$): $x_n(t) = K_1 e^{\frac{-t}{\tau}} cos(w_n t) + K_2 e^{\frac{-t}{\tau}} sin(w_n t)$ $con \tau = \frac{1}{\alpha} e \omega_n = \sqrt{-\Delta}$

RLC in serie

Per t<0 i(t)=0 $v_c(t)=0$ in oltre i(t) e $v_c(t)$ variano entrambe con continuità. Per $t>0:v(t)=v_R+v_L+v_c=RC\frac{dv_c(t)}{dt}+LC\frac{d^2v_c(t)}{dt^2}+v_c=E$

$$\frac{d^2v_(t)}{dt^2} + \frac{R}{L}\frac{dv_c(t)}{dt} + \frac{1}{LC}v_c = \frac{E}{LC}$$

quindi ora sappiamo che $\alpha=\frac{R}{2L}$ e $\omega_0^2=\frac{1}{LC}$ quindi possiamo scrivere l'equazione caratteristica

$$s_{1,2} = -\alpha \pm \sqrt{\Delta} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{L}}$$

1. E = 10V; $R = 300\Omega$; L = 10mH; $C = 1\mu F$

In questo abbiamo una rete sovrasmorzata poichè $\Delta > 0$ quindi abbiamo una soluzione del tipo

$$v_c(t) = v_{cn}(t) + v_{cr}(t) = K_1 e^{-\frac{t}{\tau_1}} + K_2 e^{-\frac{t}{\tau_2}} + E$$

inoltre dalle condizioni iniziali possiamo ricavare K_1 e K_2 $v_c(0)=K_1+K_2+10i(0)=C\frac{dv_c}{dt}=-\frac{K_1}{\tau_1}-\frac{K_2}{\tau_2}=0$ da cui ricaviamo che $K_1=1.7V$ $K_2=-11.7V$

Ora possiamo grafare la soluzione :

2. $E = 10V; R = 200\Omega; L = 10mH; C = 1\mu F$

In questo caso abbiamo una retta a smorzamento critico poichè $\Delta=0$ quindi abbiamo una soluzione del tipo:

$$v_c(t) = v_{cn}(t) + v_{cr}(t) = K_1 e^{\frac{-t}{\tau}} + K_2 e^{\frac{-t}{\tau}} + E$$

Inoltre dalle condizioni iniziali possiamo ricavare K_1 e K_2 $v_c(0)=K_1+10=0$ $i(0)=C\frac{dv_c}{dt}=-\frac{K_1}{\tau}+K_2=0$ da cui ricaviamo che $K_1=-10V$ $K_2=-10^5V$

Ora possiamo grafare la soluzione :

3. $E = 10V; R = 100\Omega; L = 10mH; C = 1\mu F$

In questo caso abbiamo una rete sottosmorzata poichè $\Delta < 0$ quindi abbiamo una soluzione del tipo

$$v_c(t) = K_1 e^{\frac{-t}{\tau}} cos(w_n t) + K_2 e^{\frac{-t}{\tau}} sin(w_n t) + E$$

Inoltre dalle condizioni iniziali possiamo ricavare
$$K_1$$
 e K_2 $v_c(0)=K_1+10=0$ $i(0)=C\frac{dv_c}{dt}=-\frac{K_1}{\tau}+\omega_nK_2=0$ da cui ricaviamo che $K_1=-10V$ $K_2=-5.8V$

Ora possiamo grafare la soluzione :

Figura 2: confronto fra l'andamento della tensione sul condensatore nei tre casi descritti

2 Circuiti in AC

2.1 Relazione caratteristiche degli elementi passivi

	Dominio del Tempo	Dominio della frequenza
Resistore	v(t) = Ri(t)	V = RI
Induttore	$v(t) = L \frac{di(t)}{dt}$	$V = j\omega I$
Capacità	$i(t) = \frac{dv(t)}{dt}$	$V = -\frac{j}{\omega C}I$

Inoltre possiamo anche vedere che per l'induttore la corrente è in ritardo rispetto alla tensione invece per il condensatore la corrente è in anticipo rispetto alla tensione .Invece per la resistenza corrente e tensione sono in fase

Quindi anche l'induttore e il condensatore in regime sinusoidale seguono una legge di Ohm simbolica che in generale può essere scritta come

$$V = ZI$$

essendo

Z = R	per il resistore
$Z = j\omega L$	per l'induttore
$Z = \frac{1}{i\omega C}$	per il condensatore

La quantità **Z** prende il nome di impedenza dell'elemento (si misura in Ohm) e può essere invertita definendo così la quantità Y chiamata ammettenza.

Le regole di composizione di resistenze in serie o in parallelo si estendono anche ai circuiti simbolici, purchè si faccia riferimento alle impedenze o alle ammettenze. Quindi :

 $\bullet\,$ Impedenze in serie:

$$Z_{eq} = \sum_{k=1}^{n} Z_k$$

• Impedenze in parallelo:

$$\frac{1}{Z_{eq}} = \sum_{k=1}^{n} \frac{1}{Z_k}$$

2.2 Teorema del generatore equivalente

Il teorema di Thevenin si applica anche ai circuiti simbolici. In tal caso la tensione a vuoto è un fasore e al posto della resistenza equivalente si ha un'impedenza equivalente. Discorso analogo si applica al teorema di Norton , in tal caso la corrente è un fasore e al posto della resistenza equivalente si ha un'altra impedenza equivalente.

2.3 Potenza

2.3.1 Potenza istantanea

$$p(t) = v(t)i(t) = 2VIcos(\omega t + \phi_v)cos(\omega t + \phi_i) = VIcos(\phi_v - \phi_i) + VIcos(2\omega + \phi_v + \phi_i)$$

Chiamiamo $\phi = \phi_v - \phi_i$ lo sfasamento tra tensione e corrente e inoltre chiamiamo $cos(\phi)$ il fattore di potenza.

12

2.3.2 potenza media/attiva/reale

Il fattore $VIcos(\phi)$ è la **potenza media/attiva/reale** che rappresenta la potenza reale consumata dal carico per svolgere lavoro utile, come riscaldamento, illuminazione o movimento meccanico.

$$P = \langle p(t) \rangle = \frac{1}{T} \int_0^T p(t)dt = VIcos(\phi) \ [W]$$

P fissata, se anche V è fissata:

- $\bullet\,$ se $\phi=0$ (carico resistivo) , P è trasferita con I (ed S) minima
- se $\phi \neq 0$ (carico reattivo) I (ed S) aumenta e rispetto a valore strettamente necessario per trasferire una data P.

Il fattore $VIcos(2\omega + \phi_v + \phi_i)$ è la componente fluttuante che "rimbalza" tra carico e sorgente con frequenza 2ω .

2.3.3 potenza apparente

La potenza apparente è

$$S = VI = \sqrt{P^2 + Q^2} \quad [VA]$$

È la combinazione vettoriale della potenza attiva e reattiva. Rappresenta la potenza totale che il sistema deve fornire.

2.3.4 potenza reattiva

La **potenza reattiva** è

$$Q = VIsin(\phi) \ [VAR]$$

Indica la potenza che oscilla tra la sorgente e i componenti reattivi del circuito, come induttori e condensatori. Non produce lavoro utile ma è necessaria per il funzionamento del circuito.

Q rappresenta solo l'ampiezza $p_r(t)$ è improprio parlare di potenza reattiva assorbita/erogata, ma l'espressione è usata per comodità di linguaggio.

- \bullet Q > 0 per l'induttore
- Q < 0 per il condensatore

2.3.5 potenza nel dominio della frequenza

La potenza complessa è

$$\dot{S} = \dot{V}\dot{I}^* = P + iQ \quad [VA]$$

inoltre possiamo scrivere :

$$P = Re[\dot{S}] \quad e \quad Q = Im[\dot{S}]$$

2.4 Misure in corrente alternata

$$\epsilon_a = \frac{\Delta_a}{|\dot{I}|} = \frac{|\dot{I}_m| - |\dot{I}|}{|\dot{I}|} \approx -\frac{R_a}{|\dot{Z} + \dot{Z}_s|} \qquad R_a << |\dot{Z} + \dot{Z}_s| \qquad 2.4$$

$$\epsilon_v = \frac{v}{|\dot{V}|} = \frac{|\dot{V}_m| - |\dot{V}|}{|\dot{V}|} \approx |\frac{\dot{Z}_s||\dot{Z}}{\dot{Z}_v}| \qquad 2.4$$

In questo caso è possibile usare solo il voltmetro e l'amperometro se essi misurano \dot{V}_M, \dot{I}_M , cioè sono Phasor Measurement unit, che però per funzionare hanno bisogno dello stesso riferimento temporale che viene preso tramite GPS

2.4.1 Multimetri digitali

Le incertezze sono di tre tipi :

- Incertezza strumentale
- Incertezza di interazione
- Incertezza di definizione
- . L'incertezza strumentale di un DMM si può calcolare come

$$\Delta = k_1 |x_{mis}| + k_0 R$$

dove k_1, k_0 sono costanti , x_{mis} è il valore assoluto della misura effettuata e e infine R è portata o il range scelto (es:10V,100V)

Inoltre l'incertezza totale può essere vista come :

$$\Delta_{tot} = \Delta + \Delta_t = (k_1 | x_{mis} | + k_0 R) + (k_{1T} | x_{mis} | + k_{0T} R + || T - T_{cal} | - 5C|)$$

dove T è la temperatura attuale di lavoro e T_{cal} è la temperatura di calibrazione. Infatti , per l'incertezza strumentale , le due principali grandezze di influenza sono la temperatura e il tempo trascorso dalla taratura

2.4.2 Adattamento di carico in AC

$$\dot{I} = \frac{\dot{E}}{\dot{Z}_G + \dot{Z}_L} \quad I = \frac{E}{\sqrt{(R_G + R_L)^2 + (X_G + X_L)^2}}$$

$$P = R_L I^2 = \frac{E^2 R_L}{(R_G + R_L)^2 + (X_G + X_L)^2}$$

Abbiamo che la potenza massima viene trasferita quando l'impedenza del carico è uguale al complesso coniugato del-

l'impedenza della sorgente. : $Z_L = Z_G^*$.

Quindi sapendo che $Z_L = R_L + X_L$ e $Z_G^* = R_G - X_G$ possiamo dire che

$$R_L = R_G \ e \ X_L = -X_G$$

Quindi la potenza massima è $P_{max}=\frac{E^2}{4R_L}~P_g=\frac{E}{2R_L}~\eta=50\%$

2.4.3 Rifasamento

Il rifasamento è la tecnica utilizzata per ridurre la potenza reattiva assorbita dal carico e quindi migliorare il fattore di potenza $cos(\phi)$. In Europa il fattore di potenza obbiettivo è $cos(\phi')=0.95$.

- Caso carico induttivo: La maggior parte due carichi industriali è induttiva e introduce un ritardo nella corrente rispetto alle tensione. Per rifasare il sistema si installano condensatori in parallelo rispetto al carico
- Caso carico capacitivo : Se il sistema è capacitivo viene invece introdotto un induttore in parallelo o in serie rispetto al carico

Data un certo ϕ e ϕ' possiamo calcolare la capacità del condensatore utile ad avere ϕ' .

$$C = \frac{R}{\omega Z^2} (tan(\phi) - tan(\phi'))$$

2.5 Filtri

Definizione. sistema lineare stazionario con memoria: sistema che è

- lineare : soddisfa il principio di sovrapposizione
- stazionario : il comportamento del sistema non cambia con il tempo
- ullet con memoria: l'output y(t) non dipende unicamente dall'input attuale ma anche dai valori passati/futuri dell'input

Se abbiamo in ingresso e in uscita la stessa grandezza allora abbiamo un filtro I sistemi sono descritti da :

 $\bullet\,$ nel tempo dall'integrale di convoluzione :

$$y(t) = \int_{-\infty}^{\tau} x(\tau)h(t-\tau)d\tau$$

dove x(t) è l'input , invece h(t) è la risposta del sistema all'impulso (che è una funziona caratteristica dell'insieme)

• In frequenza : grazie alla trasformata di Fourier possiamo trasformare l'integrale di convoluzione in una moltiplicazione

$$\dot{Y}(\omega) = \dot{H}(\omega)\dot{X}(\omega) \quad \dot{H}(\omega) = \frac{\dot{Y}(\omega)}{\dot{X}(\omega)}$$

dove $\dot{H}(\omega)$ si chiama **riposta in frequenza** (caratteristica del sistema) che fornisce la dipendenza di una grandezza sinusoidale in uscita al variare della frequenza di una grandezza sinusoidale d'ingresso. Inoltre essa è una funzione complessa

2.5.1 Risonanza

• LC in serie

$$Z(\omega) = j(\omega L - \frac{1}{\omega C})$$

quindi esiste un valore della frequenza tale che per cui $|Z(\omega)|=0$ e questo valore è

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

per questo valore la reattanza induttiva compensa la reattanza capacitiva e la rete si comporta come un cortocircuito.

Figura 3: Andamento del modulo dell'impedenza e del suo argomento

• RLC in serie:

$$\begin{array}{c|c}
\dot{l}(\omega) \\
\uparrow \\
\dot{r}(\omega)
\end{array}$$

$$Z(\omega) = R + j(\omega L - \frac{1}{\omega C})$$

In questo caso la frequenza di risonanza è sempre $\omega_0=\frac{1}{\sqrt{LC}}$ ma in questo caso $|Z(\omega_0)|\neq 0$ ma $|Z(\omega_0)|=R$

Inoltre possiamo scrivere l'impedenza come

$$Z(\omega) = R \left[1 + jQ_s \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right]$$

dove $Q_s=\frac{\omega_0L}{R}=\frac{1}{R}\sqrt{\frac{L}{C}}$ è detto fattore di qualità del circuito risonanza in serie

• Risonanza LC in parallelo Vi è un comportamento duale rispetto alla risonanza LC in serie

in questo caso alla frequenza di risonanza $\omega_0=\frac{1}{\sqrt{LC}}$ l'impedenza presenta un asintoto verticale infatti $|Z(\omega_0)|=+\infty$, quindi la reattanza induttiva compensa la reattanza capacitiva e il circuito si comporta come un **circuito aperto**

Figura 4: Grafici del modulo e dell'argomento dell'impedenza

• RLC in parallelo

$$Z(\omega) = \frac{R\frac{L}{C}}{\frac{L}{C} + jR\left(\omega L - \frac{1}{\omega C}\right)}$$

In questo caso alla frequenza di risonanza il modulo dell'impedenza non presenta un asintoto ma presenta un punto di massimo assoluto infatti $|Z(\omega_0)|=R$. Inoltre possiamo scrivere l'impedenza come

$$Z(\omega) = \frac{R}{\left[1 + jQ_p\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]}$$

dove $Q_p = \frac{R}{\omega_0 L} = r \sqrt{\frac{C}{L}}$ è il fattore di qualità del circuito risonanza in parallelo

2.5.2 Filtri

 $\mathbf{N.B:}$ tutte le grandezze vanno intese come FASORI (ricordatelo ti prego) stai zitto

Sappiamo che la risposta in frequenza si può definire come

$$H(\omega) = \frac{V_0(\omega)}{V_I(\omega)}$$

2.5

Filtro Passa-basso RC:

Possiamo scrivere quindi la frequenza di risposta come

$$H(\omega) = \frac{V_0(\omega)}{V_I(\omega)} = \frac{Z_2}{Z_1 + Z_2} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + Rj\omega C} = \frac{1}{1 + j\frac{\omega}{\omega_0}} \quad \omega_0 = \frac{1}{RC}$$

Possiamo inoltre definire la frequenza di taglio come

$$f_0 = \frac{\omega_0}{2\pi}$$

Figura 5: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

Figura 6: Argomento della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

- Filtro passo alto RC:

Possiamo scrivere quindi la frequenza di risposta come

$$H(\omega) = \frac{V_0(\omega)}{V_I(\omega)} = \frac{Z_2}{Z_1 + Z_2} = \frac{R}{R + \frac{1}{j\omega C}} = \frac{Rj\omega C}{Rj\omega C + 1} = \frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} \quad \omega_0 = \frac{1}{RC}$$

Figura 7: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

• Filtro RL passa basso:

Figura 8: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

Possiamo ricavare la riposta in frequenza:

$$H(\omega) = \frac{V_0(\omega)}{V_I(\omega)} = \frac{Z_2}{Z_1 + Z_2} = \frac{R}{R + jwL} = \frac{1}{1 + j\frac{\omega}{\omega_0}} \quad \omega_0 = \frac{R}{L}$$

• Filtro passa alto RL:

$$H(\omega) = \frac{V_0(\omega)}{V_I(\omega)} = \frac{Z_2}{Z_1 + Z_2} = \frac{jwL}{R + jwL} = \frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} \quad \omega_0 = \frac{R}{L}$$

Cascata di filtri

Quando due o più filtri sono collegati a cascata , l'uscita del primo filtro diventa l'ingresso del secondo , e così via.

La risposta in frequenza complessiva sarà pari al prodotto di tutte le singole risposte in frequenza

$$H(\omega) = H_1(\omega) \cdot H_2(\omega) \cdot \dots \cdot H_n(\omega)$$

Filtro Passa Banda(con filtri del primo ordine)

$$H(\omega) = \frac{V_0}{V_I} = \frac{V_0}{V} \cdot \frac{V}{V_1} = \frac{j\frac{\omega}{\omega_1}}{1 + j\frac{\omega}{\omega_1}} \cdot \frac{1}{1 + j\frac{\omega}{\omega_2}} \quad \omega_1 = \frac{1}{R_1C_1} \ \omega_2 = \frac{1}{R_2C_2} \quad \omega_1 << \omega_2$$

Figura 9: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

Figura 10: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

Filtri di secondo ordine

• Filtro passa basso RLC:

$$H(\omega) = \frac{-jQ_s \frac{\omega_0}{\omega}}{1 + jQ_s \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \quad w_0) \frac{1}{\sqrt{LC}}$$

dove $Q_s = \frac{\omega_0 L}{R}$ è il fattore di qualità del circuito risonante

Figura 11: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

Figura 12: Modulo della risposta in frequenza in scala lineare

• Filtro passa alto :

dove $Q_s = \frac{\omega_0 L}{R}$ è il fattore di qualità del circuito risonante

• Filtro passa banda :

$$H(\omega) = \frac{1k}{1 + jQ_s \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

La banda passante risulta centrata sulla pulsazione di risonanza ω_0

Figura 13: Modulo della risposta in frequenza in scala lineare e in scala logaritmica (diagramma di bode)

Figura 14: Modulo della risposta in frequenza in scala lineare

• FIitro elimina banda :

$$H(\omega) = \frac{jQ_s \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}{1 + jQ_s \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

Figura 15: Modulo della risposta in frequenza in scala lineare

Figura 16: Modulo della frequenza di risposta

• Filtri passa banda realizza con una cascata di filtri

3 Sistemi trifase

Un sistema **polifase** è un'insieme di P tensione o correnti sinusoidali isofrequenziali. Di conseguenza un sistema trifase è un sistema in cui sono presenti 3 tensioni o correnti isofrequenziali. Inoltre un sistema trifase può essere :

• simmetrico;

Un sistema trifase è definito simmetrico se quando le sue tre fasi

- Hanno lo stesso valore efficace
- Sono sfasate di 120°

• diretto:

un sistema trifase è detto diretto quando quando le tre fasi rispettano l'ordine naturale di rotazione

$$a(0^\circ) \rightarrow b(120^\circ) \rightarrow c(240^\circ)$$

• puro:

un sistema trifase è pure quando la somma dei fasori (tensione o corrente) è pari a zero

3.1 Collegamento a stella

3.1.1 Generatori

Il nodo O è detto centro di stella.

Le tensioni stellate (di fase) tra fase e centro della stella coincidono con le tensioni dei generatori

Le tensioni concatenate o di linea tra due fasi sono

$$V_{12}=E_1-E_2$$
 $V_{23}=V_2-V_3$ $V_{31}=V_3-V_1$ Tutti i valori sono fasori

inoltre nel caso di un sistema trifase diretto e simmetrico tutte le tensioni concatenate sono uguali e hanno valori efficaci pari a

$$V = 2E\cos\frac{\pi}{6} = \sqrt{3}E$$

3.1.2 Utilizzatori

In questo caso le tre impedenze hanno valori diversi , quindi i tre carichi sono alimentati da una tensione diverse da quella dei generatori

$$V_{OO'} = \frac{\frac{\dot{E}_1}{\dot{Z}_1} + \frac{\dot{E}_2}{\dot{Z}_2} + \frac{\dot{E}_3}{\dot{Z}_3}}{\frac{1}{\dot{Z}_1} + \frac{1}{\dot{Z}_2} + \frac{1}{\dot{Z}_3}} \quad \dot{I}_K = \frac{\dot{E}_K - V_{OO'}}{\dot{Z}_K}$$

Per poter alimentari i carichi usando le tensione dei generatori viene introdotto un quarto filo chiamato neutro che collega O' a O In questo caso le correnti di linea hanno

espressioni $\dot{I}_K = \frac{\dot{E}_K}{\dot{Z}_K}$ e la corrente nel neutro è pari a $I_O = I_1 + I_2 + I_3$ (fasori). Se prendiamo in esame un sistema trifase simmetrico e con carico equilibrato , le impedenza dei carichi sono uguali tra loro) allora abbiamo due risultati interessanti:

- $\dot{V}_{OO'}=0$ poichè i due centri sono collegati dal neutro
- La terna delle tre correnti è anch'essa simmetrica , sfasata solo di un angolo $\phi = arg(\dot{Z})$ rispetto alla terna delle tensioni

 $\bullet \ I_0=0$ per cui il neutro può essere eliminato

3.2 Collegamento a triangolo

3.2.1 utilizzatori

Le correnti di fase che scorrono nelle impedenze sono pari a

$$\dot{J}_{ik} = \frac{\dot{V}_{ik}}{\dot{Z}_{ik}}$$

$$\dot{I}_1 = \dot{J}_{12} - \dot{J}_{31}$$
 $\dot{I}_2 = \dot{J}_{23} - \dot{J}_{12}$ $\dot{I}_3 = \dot{J}_{31} - \dot{J}_{23}$

Se abbiamo un sistema di generatori simmetrico ed un carico equilibrato hanno le correnti di fase hanno lo stesso valore efficace

$$I = 2J\cos\frac{\pi}{6} = \sqrt{3}J$$

3.3 Potenza in sistemi trifase

Potenza istantanea fornita dal tripolo:

$$p(t) = e_1(t)_1(t) + e_2(t)i_2(t) + e_3(t)i_3(t)$$

Potenza complessa fornita dal tripolo:

$$\dot{S} = \dot{E}_1 \dot{I}_1^* + \dot{E}_2 \dot{I}_2^* + \dot{E}_3 \dot{I}_3^*$$

inoltre possiamo dimostrare che la potenza complessa e la potenza istantanea non dipendono dal riferimento dei potenziali. Quindi ora possiamo calcolare :

• potenza attiva trifase:

$$P = Re[\dot{S}] = E_1 I_1 \cos \phi_1 + E_2 I_2 \cos \phi_2 + E_3 I_3 \cos \phi_3$$

• potenza reattiva trifase

$$Q = Im[\dot{S}] = E_1 I_1 \sin \phi_1 + E_2 I_2 \sin \phi_2 + E_3 I_3 \sin \phi_3$$

Una sezione di linea trifase simmetrica, ed equilibrati (quindi le Tensione e le correnti sono sfasate di 120 gradi) abbiamo che la potenza istantanea è pari a:

$$p(t) = e_1(t)_1(t) + e_2(t)i_2(t) + e_3(t)i_3(t) = 3EI\cos(\phi)$$

Quindi nella sezione vediamo che la potenza istantanea è costante ed è parti alla potenza attiva , quindi NELLA sezione la potenzia reattiva è pari a zero (fluttua invece nelle singole linee). Utilizzando le grandezza di linea possiamo scrivere

$$p(t) = P = \sqrt{3}VI\cos\phi$$
 $Q = \sqrt{3}VI\sin\phi$ $S = \sqrt{3}VI$

3.4 Misure in sistemi trifase

- \bullet corrente: Ne dobbiamo usare 3 0 4
(neutro) se invece il sistema è equilibrato ne basta 1 amperometro
- tensione: dobbiamo usare 3 voltmetri , se il sistema è simmetrico basta 1 voltmetro
- Potenza:
 - In sistemi con neutro vanno usati 3 watt
metri , se il sistemi è simmetrico ed equilibrato basta 1 watt
metro

In sistemi senza neutro vanno usati 2 wattmetri (inserzione Aron) una fase è
considerata linea di ritorno delle altre due fasi della potenza misurata dipende
da polarità dai morsetti amperometrici e voltmetrici, inoltre non sono richiesta
ipotesi su tensioni e correnti

$$P = P_{13} + P_{23}$$