Seminář 5: Kartézské uzavřené kategorie a λ -kalkul

Exponenciál (function object)

Nechť \mathcal{C} je kategorie a $a, b \in \mathcal{C}$. Exponenciál $[a \Rightarrow b]$ (alternativní značení: b^a) je objekt takový, že:

- existuje morfismus $eval: ([a \Rightarrow b] \times a) \rightarrow b$
- pro každý další objekt z s morfismem $g: z \times a \to b$ existuje unikátní morfismus $h: z \to (a \to b)$, který faktorizuje g skrz eval, tedy $g = eval \circ (h \times id)$

Kartézská uzavřená kategorie

Kategorie C se nazývá kartézská uzavřená (CCC), pokud splňuje následující podmínky:

- obsahuje terminální objekt
- pro každou dvojici objektů $a,b\in\mathcal{C}$ obsahuje jejich produkt $a\times b$
- pro každou dvojici objektů $a,b \in \mathcal{C}$ obsahuje jejich exponenciál $[a \Rightarrow b]$

Příklady CCC:

- Set exponenciál $[a \Rightarrow b]$ je množina funkcí mezi a a b.
- Booleova algebra morfismy jsou \leq , terminální objekt je 1, produkt $a \times b$ je infimum $a \wedge b$, exponenciál $[a \Rightarrow b]$ je "implikace" $\neg a \vee b$

Bikartézská uzavřená kategorie

Kategorie C se nazývá bikartézská uzavřená (BCCC), pokud je kartézská uzavřená a navíc splňuje následující podmínky:

- obsahuje iniciální objekt
- pro každou dvojici objektů $a,b\in\mathcal{C}$ obsahuje jejich koprodukt a+b

(Typovaný) λ -kalkul

Korektní **výrazy** λ -kalkulu:

- \bullet každá proměnná x
- pokud t je výraz a x je proměnná, potom $\lambda x.t$ je výraz (abstrakce)
- \bullet pokud t a s jsou výrazy, pak i ts je výraz (aplikace)

Proměnná je ve výrazu volná v těchto případech:

- \bullet proměnná x je volná ve výrazu x
- proměnná x je volná v $\lambda y.t$, pokud $x \neq y$ a x je volná v t
- $\bullet\,$ proměnná x je volná v st,pokud je volná v snebo t

Proměnná je ve výrazu vázaná v těchto případech:

- \bullet proměnná x je vázaná v $\lambda y.t,$ pokud x=ynebo x je vázaná v t
- ullet proměnná x je vázaná v st, pokud je vázaná v s nebo t

Na názvech proměnných nezáleží, tedy $\lambda x.x \equiv \lambda y.y$. Takovému přejmenování se říká α -konverze a využívá se pro předcházení jmenným konfliktů.

Nahrazení vázané proměnné argumentem se nazývá β -redukce a dá se chápat jako výpočetní krok. Např. $(\lambda x.ax)y \equiv ay$

Pokud f neobsahuje x jako volnou proměnnou, platí $\lambda x. fx \equiv f$. Tomuto se říká η -redukce

Typovaný λ-kalkul je rozšíření λ-kalkulu, ve kterém má každý výraz svůj typ. Zaveďme si množiny typových symbolů $S = \{S_1, S_2, ...\}$, potom definujeme typ takto:

- Symbol S_i je typ.
- Pokud T_1 a T_2 jsou typy, pak i $T_1 \to T_2$ je typ.

Pokud je t výraz, potom pro označení, že jeho typ je T píšeme t:T.

- c:T označuje konstantu typu T
- $\bullet\,$ pro každý typTexistuje spočetně mnoho proměnných $x_1:T,x_2:T,\dots$
- Pokud $t:T_1 \to T_2$ a $s:T_1$ potom $ts:T_2$
- Pro proměnnou $x:T_1$ a výraz $t:T_2$ platí $\lambda x.t:T_1\to T_2$
- Existuje singleton typ 1 s výrazem * : 1. Libovolný další výraz tohoto typu je ekvivalentní s *.

Daný typovaný λ -kalkul \mathcal{L} můžeme chápat jako kategorii $\mathcal{C}(\mathcal{L})$, kde:

- \bullet Objekty jsou typy T
- morfismy $A \to B$ jsou třídy ekvivalentních uzavřených výrazů $[c]: A \to B$
- identity jsou $id_T = \lambda x.x$ (kde x je typu T)
- skládání: $c \circ b = \lambda x.c(bx)$