Lecture 5

Instructor: Amit Kumar Das

Senior Lecturer,
Department of Computer Science & Engineering,
East West University
Dhaka, Bangladesh.

Constraint Satisfaction Problems (Chapter 6)

8			4		6	4		7
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

What is search for?

 Assumptions: single agent, deterministic, fully observable, discrete environment

Search for planning

- The path to the goal is the important thing
- Paths have various costs, depths

Search for assignment

- Assign values to variables while respecting certain constraints
- The goal (complete, consistent assignment) is the important thing

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

Constraint satisfaction problems (CSPs)

Definition:

- State is defined by variables X_i with values from domain D_i
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Solution is a complete, consistent assignment
- How does this compare to the "generic" tree search formulation?
 - A more structured representation for states, expressed in a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: {red, green, blue}
- Constraints: adjacent regions must have different colors e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

Solutions are complete and consistent assignments,
 e.g., WA = red, NT = green, Q = red, NSW = green,
 V = red, SA = blue, T = green

Example: n-queens problem

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

Activate Windows
Go to Settings to activate Windows.

[demos: iterative n-queens, map coloring]

Example: N-Queens

- Variables: X_{ij}
- **Domains:** {0, 1}
- Constraints:

$$\Sigma_{i,j} X_{ij} = N$$

$$(X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$(X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$(X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$(X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

N-Queens: Alternative formulation

- Variables: Q_i
- **Domains:** {1, ..., *N*}
- Constraints:

 \forall i, j non-threatening (Q_i, Q_j)

Example: Cryptarithmetic

• Variables: T, W, O, F, U, R

$$X_1, X_2$$

- **Domains**: {0, 1, 2, ..., 9}
- Constraints:

O + O = R + 10 *
$$X_1$$

W + W + X_1 = U + 10 * X_2
T + T + X_2 = O + 10 * F
Alldiff(T, W, O, F, U, R)
T \neq 0, F \neq 0

Example: Sudoku

Variables: X_{ij}

• **Domains:** {1, 2, ..., 9}

Constraints:

Alldiff(X_{ij} in the same *unit*)

					8		12	4
	8	4		1	6			
		- 5	5			1	96 61	
1		3	8			9	/-	
6		8		X	j	4		3
	3	2		9 3	9	5	8	1
		7	Г		2			
			7	8		2	6	
2			3					

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetable problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- More examples of CSPs: http://www.csplib.org/

Standard search formulation (incremental)

States:

Variables and values assigned so far

Initial state:

The empty assignment

Action:

- Choose any unassigned variable and assign to it a value that does not violate any constraints
 - Fail if no legal assignments

Goal test:

The current assignment is complete and satisfies all constraints

Standard search formulation (incremental)

- What is the depth of any solution (assuming n variables)?
 n (this is good)
- Given that there are *m* possible values for any variable, how many paths are there in the search tree?
 n! *m*ⁿ (this is bad)
- How can we reduce the branching factor?

Backtracking search

- In CSP's, variable assignments are commutative
 - For example, [WA = red then NT = green] is the same as [NT = green then WA = red]
- We only need to consider assignments to a single variable at each level (i.e., we fix the order of assignments)
 - Then there are only mⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search algorithm

```
function Recursive-Backtracking (assignment, csp)

if assignment is complete then return assignment

var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)

for each value in Order-Domain-Values (var, assignment, csp)

if value is consistent with assignment given Constraints [csp]

add \{var = value\} to assignment

result \leftarrow \text{Recursive-Backtracking}(assignment, csp)

if result \neq failure then return result

remove \{var = value\} from assignment

return failure
```

- Making backtracking search efficient:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Which variable should be assigned next?

- Most constrained variable:
 - Choose the variable with the fewest legal values
 - A.k.a. minimum remaining values (MRV) heuristic

Which variable should be assigned next?

Most constrained variable:

- Choose the variable with the fewest legal values
- A.k.a. minimum remaining values (MRV) heuristic

Which variable should be assigned next?

Most constraining variable:

- Choose the variable that imposes the most constraints on the remaining variables
- Tie-breaker among most constrained variables

Which variable should be assigned next?

Most constraining variable:

- Choose the variable that imposes the most constraints on the remaining variables
- Tie-breaker among most constrained variables

Given a variable, in which order should its values be tried?

- Choose the least constraining value:
 - The value that rules out the fewest values in the remaining variables

Given a variable, in which order should its values be tried?

- Choose the least constraining value:
 - The value that rules out the fewest values in the remaining variables

Which assignment for Q should we choose?

Early detection of failure

```
function Recursive-Backtracking(assignment, csp)
  if assignment is complete then return assignment
   var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(\text{VARIABLES}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp)
       if value is consistent with assignment given CONSTRAINTS[csp]
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
            if result \neq failure then return result
            remove \{var = value\} from assignment
   return failure
```

Apply *inference* to reduce the space of possible assignments and detect failure early

Early detection of failure

Apply *inference* to reduce the space of possible assignments and detect failure early

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

Thank You