

REPORTE 1

Variables ambientales sobre el crecimiento microbiano

Nicolás Garrido Calderara J. Patricio Parada Gutiérrez

Coordinador: Dr. José Antonio Reyes Suárez Encargado trabajos prácticos: Yerko Argandoña Vargas

FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA CIVIL EN BIOINFORMÁTICA

PROCESOS BIOINDUSTRIALES

24 de septiembre de 2021

1. Introducción

El crecimiento de un cultivo de bacterias están asociados a muchas variables que permiten la duplicación de estos organismos unicelulares como lo es la *E. coli*. Dentro de aquellos factores se encuentran la temperatura, pH, y los nutrientes del medio. Por lo tanto dependiendo de las diferentes condiciones a las que están expuestas, presentarán diferenciación tanto fenotípica como de crecimiento del cultivo.

Es posible obtener distintos crecimientos en distintos tipos de ambientes de incubación o crecimiento en varios tipos de medios de cultivo tanto sólido como líquido. Estos son los principales factores de crecimiento de las bacterias ya que en base a la abundancia de alimento que tengan, será su competitividad y desarrollo de la colonia. Sin embargo mayor cantidad de nutrientes no significa mayor crecimiento. Donde es necesario mantener una relación de volumen en la solución debido a la posibilidad de estresar las colonias reprimiendo su desarrollo por exceso de nutrientes.

Para analizar y obtener el cálculo de microorganismos presentes en una muestra, existen una gran variedad de métodos, los cuales permiten obtener tanto su volumen, masa y cantidad de células. Dentro de ellas es posible considerar la cantidad de biomasa midiendo el peso su peso, o bien determinar su biovolumen a través de microscopía fotónica o epifluorescencia. Sin embargo un método menos costoso de realizar corresponde a espectrofotometría la cual mide los haces de luz que atraviesa el medio de cultivo y calcula su densidad

2. Materiales y métodos

2.1. Materiales

- Medio estéril y medio LB estéril.
- Matraz Erlenmeyer de 50 mL con 10 mL de medio de cultivo.
- Glucosa, glicerol y sacarosa (sucrosa) estéril.
- Micropipetas.
- Placas multipocillos.
- Espectrofotómetro de placas.
- Agitador orbital con temperatura controlada.

2.2. Métodos

2.2.1. Primera parte

Durante la primera parte se buscó establecer una aproximación para obtener valores de células viables a partir del registro de absorbancia a 600 nm.

- A partir de un cultivo cuyo número de células viables es conocido (UFC mL⁻¹), se generaron 10 diluciones seriadas en base a potencias de dos, las cuales fueron sometidas al espectrofotómetro a 600 nm.
- El experimento se realizó en triplicado.

2.2.2. Segunda parte

Desde un cultivo

3. Resultados

3.1. Curva de calibración

Los datos obtenidos de densidad óptica desde una muestra con número de células viables de detalla en la tabla 1

	Dilución en relación a muestra original							
	1:2	1:4	1:8	1:16	1:32	1:64	1:128	Blanco
	0.905	0.537	0.307	0.183	0.110	0.077	0.061	0.044
	0.905	0.537	0.303	0.178	0.111	0.077	0.059	0.042
	0.918	0.542	0.310	0.180	0.113	0.077	0.061	0.041
Promedio	0.909	0.539	0.307	0.180	0.111	0.077	0.060	0.042

Tabla 1: Densidad óptica muestras con UFC mL⁻¹ conocida (datos en bruto)

Se ajustaron los datos para obtener la densidad óptica de la muestra, ya que la presentada en la tabla 1 indica la densidad óptica tanto del organismo como del medio de cultivo, lo que son presentados en la tabla 2

	Dilución en relación a muestra original						
	1:2	1:4	1:8	1:16	1:32	1:64	1:128
	0.861	0.493	0.263	0.139	0.066	0.033	0.017
	0.863	0.495	0.261	0.136	0.069	0.035	0.017
	0.877	0.501	0.269	0.139	0.072	0.036	0.02
Promedio	0.867	0.496	0.264	0.138	0.069	0.035	0.018

Tabla 2: Densidad óptica muestras con UFC mL⁻¹ conocida (datos corregidos)

Dado que el inocuo inicial contenía $4.5 \times 10^9 \, \mathrm{UFC \, mL^{-1}}$, los títulos de las diluciones seriadas están totalmente determinado y se adjuntan en la siguiente tabla

Dilución	Título ($\times 10^9 \mathrm{UFC mL^{-1}}$)
1:2	2.25
1:4	1.12
1:8	0.562
1:16	0.281
1:32	0.141
1:64	0.0704
1:128	0.0352

Tabla 3: Título diluciones

Entonces, a partir de los datos experimentales detallados previamente, es que se construyó una curva de calibración que relaciona la densidad óptica (DO) medida con la cantidad de células viables (UFC mL⁻¹), la que ilustra en la figura 1

Figura 1: Curva de calibración

De los datos presentados en la tabla 2 y la figura 1, y según el método de mínimos cuadrados, la recta de mejor ajuste se determinó y corresponde a

$$DO(n) = 0.385792 \cdot n + 0.0235 \tag{1}$$

donde n corresponde a la mantisa del valor de las células viables cuando éstas están expresadas en orden de magnitud 9, e.g., si el número de células viables es de $2.25 \times 10^9 \, \mathrm{UFC \, mL^{-1}}$ entonces el valor que ingresa a la función es 2.25, teniendo este modelo un coeficiente de determinación $R^2 = 0.994256$.

Se manipuló el modelo presentado en la ecuación (1) de forma algebraica para obtener un segundo modelo,

$$n(DO) = 2.57718 \cdot DO - 0.0569 \tag{2}$$

, donde DO representa la densidad óptica medida y n, tal como se indicó más arriba, la mantisa del número de células viables cuando el orden de magnitud es 9.

3.2. Curva de crecimiento

Las mediciones de densidad óptica obtenidas para muestra problema se detallan en la tabla 4.

Los datos presentados en la tabla 4 se corrigieron, en su promedio, los cuales se presentan en la tabla 5.

	Glicerol	Sucrosa	Glucosa
	0.066	0.067	0.072
$t = 0 \min$	0.067	0.069	0.069
	0.064	0.070	0.070
Promedio	0.066	0.069	0.070
	0.084	0.102	0.111
$t = 30 \mathrm{min}$	0.091	0.102	0.105
	0.082	0.111	0.119
Promedio	0.086	0.105	0.112
	0.111	0.139	0.153
$t = 60 \mathrm{min}$	0.116	0.143	0.145
	0.105	0.139	0.153
Promedio	0.111	0.140	0.150
	0.160	0.162	0.241
$t = 90 \mathrm{min}$	0.163	0.165	0.241
	0.156	0.174	0.240
Promedio	0.160	0.167	0.241
	0.233	0.186	0.342
$t = 120 \mathrm{min}$	0.238	0.189	0.325
	0.219	0.196	0.352
Promedio	0.230	0.190	0.340
Blanco	0.037		

Tabla 4: Densidad óptica muestras con UFC mL⁻¹ desconocido (datos en bruto)

	Glicerol	Sucrosa	Glucosa
t = 0	0.029	0.032	0.033
t = 30	0.049	0.067	0.075
t = 60	0.074	0.103	0.113
t = 90	0.123	0.130	0.204
t = 120	0.193	0.153	0.303

Tabla 5: Densidad óptica promedio muestras con UFC mL⁻¹ desconocido (datos corregidos)

Estos datos fueron graficados y dicho gráfico se muestra en la figura 2.

Usando el modelo descrito en la ecuación (2) se interpolaron los datos presentados en la tabla 5; estos datos se tabularon y se encuentran disponibles en la tabla 6

Curva de crecimiento 0.3 Glicerol Sucrosa Glucosa 0.1

Figura 2: Curva de crecimiento

60

Tiempo (minutos)

90

120

30

	Glicerol	Sucrosa	Glucosa
t = 0	0.01784	0.02557	0.02815
t = 30	0.06938	0.1158	0.1364
t = 60	0.1338	0.2085	0.2343
t = 90	0.2601	0.2781	0.4688
t = 120	0.4405	0.3374	0.7240

Tabla 6: Interpolación de la DO para obtener $UFC mL^{-1}(\times 10^9)$

Estos datos también fueron graficados, lo que se ilustra en la figura 3.

0

Se asume que este crecimiento es descrito mediante una progresión geométrica de la forma

$$N(t) = N_0 2^{n(t)} \tag{3}$$

en donde n(t) es el número de generaciones transcurridas en un determinado tiempo t (minutos para este caso), N_0 es la cantidad inicial de microorganismos y N(t) es la cantidad de microorganismos como función del tiempo, siendo estas últimas expresadas en UFC mL⁻¹.

Para efectos prácticos de cálculo, el modelo presentado en (3) se linealizó mediante el uso logaritmos naturales, tal como se expresa a continuación

$$\Rightarrow \ln(N(t)) = \ln(N_0 2^{n(t)})$$

$$\Leftrightarrow \ln(N(t)) = n(t) \ln(2) + \ln(N_0)$$
(4)

Curva de crecimiento Glicerol Sucrosa Glucosa O.4 O.2 O 30 60 90 120

Figura 3: Curva de crecimiento

Tiempo (minutos)

El tiempo generacional, denotado por g, se define como

$$g = \frac{t}{n} \tag{5}$$

Al calcular el recíproco del tiempo generacional es que se puede obtener la velocidad de crecimiento del microorganismo.

Al reemplazar (5) en (4), se obtiene la siguiente expresión

$$\ln(N) = \frac{\ln(2)}{g}t + \ln(N_0) \tag{6}$$

A consecuencia del desarrollo matemático anterior, es que se procedió a calcular el logaritmo natural de los valores presentes en la tabla 6, lo que se almacenó en la tabla 7.

	Glicerol	Sucrosa	Glucosa
t = 0	16.6970	17.0569	17.1531
t = 30	18.0551	18.5674	18.7311
t = 60	18.7119	19.1554	19.2721
t = 90	19.3766	19.4435	19.9657
t = 120	19.9034	19.6362	20.4003

Tabla 7: Valores de $\ln N$

Las justificaciones y demostraciones de teoremas asociados a las próximas expresiones matemáticas escapan a los objetivos del presente reporte, pero son resultados bien co-

nocidos dentro de los métodos numéricos, particularmente para el cómputo por mínimos cuadrados (Chapra y Canale 2015).

Al tenerse n observaciones de la forma

$$\underbrace{\begin{pmatrix} \ln(N_1) \\ \vdots \\ \ln(N_n) \end{pmatrix}}_{Y} = \underbrace{\begin{pmatrix} t_1 \cdot \ln(2) & 1 \\ \vdots & \vdots \\ t_n \cdot \ln(2) & 1 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} g^{-1} \\ \ln(N_0) \end{pmatrix}}_{X}$$

no es posible despejar, directamente, el vector de interés X. Para solventar el inconveniente de que la matriz A no es cuadrada, se procede a multiplicar por la izquierda por su transpuesta, de forma que la matriz resultante, $A^{t}A$, es una matriz cuadrada. Entonces, el vector de interés se obtiene mediante

$$X = (A^{\mathsf{t}}A)^{-1}(A^{\mathsf{t}}Y) \tag{7}$$

Se aplicó entonces este razonamiento a las tres columnas de datos de la tabla 7, lo que determina los siguientes modelos:

$$ln(N) = 0.02578t + 17.001903, \quad R^2 = 0.961773$$
(8)

$$ln(N) = 0.02902t + 17.564960, \quad R^2 = 0.841405 \tag{9}$$

$$\ln(N) = 0.02576t + 17.558637, \quad R^2 = 0.933942 \tag{10}$$

donde las ecuaciones (8), (9) y (10) representan la linealización del crecimiento bacteriano en glicerol, sucrosa y glucosa, respectivamente.

Los puntos de la tabla 7, junto con los modelos, están representados en la figura

Figura 4: Curva de crecimiento (linealizada)

4. Discusión

5. Conclusión

Referencias

Chapra, S. C. & Canale, R. P. (2015). Numerical Methods for Engineers (7th). McGraw-Hill Education.