DTM	NTM 2	$Entscheidungsproblem$ $_{3}$
$(Un\mbox{-})Entscheidbarkeit$	$Aufz\"{a}hlbarke it$	$Abz\"{a}hlbarke it$
Überabzählbarkeit	Halte problem 8	Cantor-Funktion
$Cantor ext{-}Diagonal is ierung$	Cantors erstes Diagonalargument	Cantors zweites Diagonalargument
Cantorsche Paarungsfunktion	A ckermann funktion	Topologie
$G\"{o}delsche~unvollst\"{a}ndigkeitss\"{a}tze$	LOOP-Programm: Definition	$LOOP ext{-}Programm: ADD ext{-}Funktion$
LOOP-Programm: SUB-Funktion	LOOP-Programm: MUL-Funktion	$LOOP ext{-}Programm: POT ext{-}Funktion$
LOOP-Programm: DIV-Funktion	$LOOP ext{-}Programm: MAX ext{-}Funktion$	$LOOP ext{-}Programm: MIN ext{-}Funktion$

tbd 3	tbd 2	tbd
tbd	tbd	tbd
tbd	tbd 8	tbd
tbd	tbd	tbd
tbd 15	tbd	tbd 13
$ADDx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOx_0 = x_0 + 1END$	tbd	tbd
$POTx_{1}x_{2}:$ $x_{0} := x_{1} + 0;$ $LOOPx_{2}DOMULx_{0}x_{1}END$ 21	$MULx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOADDx_0x_1END$ 20	$SUBx_1x_2:$ $x_0 := x_1 + 0;$ $LOOPx_2DOx_0 = x_0 - 1END$
$MINx_1x_2:$ $x_0 = x_1 + 0;$ $MAXx_1x_2;$ $ADDx_0x_2;$ $SUBx_0x_1$	$MAXx_1x_2:$ $x_0 := x_1 + 0;$ $SUBx_0x_2;$ $ADDx_0x_2$ 23	tbd 22

$LOOP ext{-}Programm: MOD ext{-}Funktion$	$LOOP ext{-}Programm: GGT ext{-}Funktion$	LOOP-Programm: Fallunterscheidung
WHILE-Programm: Definition	$WHILE ext{-}Programm: Syntax$	$Kolmogorov ext{-}Komplexit \"{a}t$
${\it Many-One-Reduktion}$	$Turing ext{-}Reduktion$	Schubfach prinzip 33
Satz von Rice	$Postsches \ Korrespondenz problem$ 35	$\ddot{A} \ quivalenz problem$
N,NP,PSPACE-hart	N,NP,PSPACE-vollständig 38	Wortproblem Deterministischer Endlicher Automaten

		1
IFx! = 0THENPEND: $LOOPxDOy := 1END;$ $LOOPyDOPEND$	$GGTx_1x_2:$ $x_4 = x_1 + 0;$ $LOOPx_4DO:$ $LOOPx_2DO:$ $x_5 = x_2 + 0;$	$MODx_1x_2:$ $LOOPx_2DO:$ $LOOPx_1DOx_0 = x_1 + 0END;$ $SUBx_1x_2$ END
tbd 30	$MODx_5x_1;$ $x_1 = x_2 + 0$ $END;$ $x_2 \stackrel{tbd}{=} dx_5 + 0$ $END;$ $x_0 = x_1$	tbd 28
tbd 33	tbd	tbd
tbd 36	tbd 35	tbd 34
tbd 39	tbd 38	tbd 37