

計算科学ロードマップからの 計算機資源要件抽出

~特にI/O部分について~

2013/12/25 株式会社 日立製作所

本件連絡先: masaaki.shimizu.sf@hitachi.com

toshiyuki.ukai.qq@hitachi.com

★ヒアリングシートの締め切りは2014/1/31で御願いします。

★ご質問、お問い合わせはお気軽にしてください。

Contents

- 1. 背景と目的
- 2. 想定するエクサスケールシステム
- 3. 用語定義
- 4. アプリケーションの1/0特性からの分類
- 5. 簡易ヒアリングシート
- 6. 詳細ヒアリングシートのサンプル

1-1.おねがい

■目的

- ・エクサスケールシステムのI/O系設計に向けたアプリのI/O要件抽出
- ・そのために、本FSの皆様に各アプリのI/0要件のヒアリングに協力いただきたい

■現在までの準備状況

- ①I/Oヒアリングシート案作成(8/6に一度清水が説明)
- ②東大FSでのアプリ(RSDFT, COCO, ALPS, NICAM)のI/O要件入力でシート改良
- ③富田先生、西澤先生、八代先生協力で理研のアプリ(NICAM-LETKF)でシート改良
- ④本日、皆様にヒアリングシート入力をおねがいしたい (本日説明、今月中にメーリングリストに展開します)

1-2.背景と目的

■目的

・エクサスケールシステムのI/O系設計に向けたアプリのI/O要件抽出

■課題

•アプリ/O要求パラメータの算出条件などの整理

■本資料の流れ

- ①エクサスケールシステムの構成と、アプリ実行条件などについて、現状開示できる範囲で一定 の意識あわせ(スライド2、3-1、3-2)。
- ②I/0特性に応じてアプリを数種類に分類(スライド4)。簡易ヒアリングシートで基本パターンを提示いただいた上(スライド5)で、詳細ヒアリングシートによる整理(別紙)。
- ③基本パターンに収まらないアプリは個別ヒアリングを検討。

■考え方, 留意事項

- ・アプリの規模感を合わせるため,エクサスケール全系でプログラムを実行することを想定。1 ジョブで全系を使い切れない場合は,全系を埋めるようにジョブを多重化。このときの総I/0量を 把握したい。
- →全系を使う前提に合わない場合, 簡易ヒアリングシート(スライド5)の特記事項にその旨ご記載ください。
- 簡単化のために1プロセス/1ノードを想定。
- ・回答が困難な場合,例えば「問題規模」や「ジョブの実行時間」などは,京実行実績に基づき, 「京におけるジョブ実行環境の〇倍」などの表現も可。
- ・記載にあたり、アプリのファイルIO振る舞い確認のため、京で動くI/Oプロファイルリングツール (ライブラリ)をご利用いただくことも可能(富士通様より情報提供いただいた)。

2. 想定するエクサスケールシステム

今回の前提: (総Flopsにあわせて全体が1/nになる可能性があります)

未確定の部分が多いが、ひとつの目安として下記数値を前提とした。

•総演算性能:1ExaFlops

•主記憶:10PB

•ノード数:10万ノード(性能10TF/ノード、 メモリは50~100GB/ノード)

高速ファイルシステム:100PB

- 主記憶10PBの10倍

- 高速ファイルシステム性能:10TB/s
 - 主記憶を1000秒で退避、アプリ実行時間の10%程度を目安
- ・総ファイルシステム容量:1ExaByte
 - 共有ファイルシステム、アーカイブを含んだ総量。

3-1. 用語定義(ジョブ, プログラム)

■ジョブ関連の用語定義

用語	説明
ジョブ	ジョブスケジューラに登録する「ジョブ」を想定。1ジョブは実行ファイルまたはシェルスクリプト。
プログラム	ジョブ実行時に実際に実行される実行ファイル。簡単化のために1プログラム(プロセス)/ノードを想定。京のステップジョブの場合のサブジョブ。
プログラム群	MPIで並列に動作するプログラム全体。

3-2. 用語定義(ファイル種別, 繰り返し)

■ファイル関連の用語定義

#	用語	説明
1	初期入力	プログラム開始時にReadする初期データ。先行のプログラムの計算結果を引き継ぐ場合も含む。
2	共通ファイル	辞書などを想定。一つのプログラムが繰り返しRead, または, 複数のプログラムで共有Read。
3	中間ファイル	作業用データ。プログラム内のみで利用。プログラム終了後は不要なデータ。
4	ログ	プログラムの実行状況, 実行結果などの確認用。追記型。
5	計算結果	計算の結果、出力される解。プログラム終了後も必要なデータ。
6	チェックポイント	運用上の制限(使用時間制限を越える実行時間),対障害,アプリ都合(一定ステップごとに出力など)で,ジョブ 実行を再開できる情報。システムの信頼性が十分で,運用上の制限がない場合,I/Oする必要がないデータ。

4. アプリケーションのI/0特性による分類(案)

■狙い

・最終的にはアプリをI/0特性に応じて数種類に分類し,分類毎のI/0特性を押さえた 上で要件を抽出。

■仮説

・アプリケーションによって、ファイルの利用目的による種別(初期入力,中間,計算結果,共通/共有の入力(辞書など))と、そのファイルのサイズや数,および,ファイルに対するプロセスの1/0特性などに基づき、数種類に分類できる。

■分類案

・仮説に基づき、グランドチャレンジアプリのI/O分析結果を中心に検討。その結果、今のところ、①時系列シミュレーション型、②最適化問題型、③検索型の三種に分類。

			トータル1/0容量			
#	分類観点	分類	AP本体	で必要な /0	チェックポイント	AP
			初期入力	計算結果	テエックペイント	
1	計算結果(時間発展する 状態)を時系列に蓄積	①時系列 シミュレーション型	小~大	大 (上書き <mark>不可</mark>)	大 (上書き可)	COCO, NICAM
2	最終の計算結果のみ必要	②最適化問題型	小~大	小〜大 (上書き <mark>可</mark>) *再開のため最新数世 代が必要な場合有	大 (上書き可)	ALPS, RSDFT
3	入力ファイル数多	③検索型	中〜大 (ファイル数多)	小	N/A	ゲノムマッチング

5. 簡易ヒアリングシート

6-1. 詳細ヒアリングシートのサンプル(1/2)

◆別紙として詳細ヒアリングシートを用意。下記は,ジョブ実行条件など,全体概要を記載いただきたい筒所。

■お願い

ジョブ名

ジョブA

- ・別紙説明書(計算科学ロードマップからの計算機資源要件抽出 ~特にI/O部分について~)を参照してください。
- ・ジョブはSMP MPIで、1プログラム(プロセス)/1ノードと想定してください。
- •「全体概要」以外は、ジョブまたはプログラムがI/Oする<u>個々のファイル単位</u>でお答えください。 I/O時間が問題となる可能性がある、主要なファイルのみで結構です。
- ・エクサスケール<u>世代のマシンでジョブ/プログラムを実行することを想定</u>してください。お答えが難しい場合、例えば「問題規模」や「ジョブの実行時間」などは、京実行実績に基づき、「京におけるジョブ実行環境の〇倍想定」などの表現でも結構です。
- ・ご回答欄を全て埋めていただけなくてもご返答ください。「回答期待度」をご考慮の上、ご回答いただければ幸いです(◎:特大、O:大)。
- ・ファイルの記載欄が不足する場合はフォームをコピーして追加してください。

			<u> </u>		
プログラム名		ラム名	-		
ご回答年月日		年月日	2014年 x 月 x 日		
	全体机	既要			
	#	回答 期待度	項	i 🗏	回答
	1	0		システム全体での同時 実行ジョブ(プログラム群) 数	2
	2	0	実行条件 (エクサスケール世代 想定)	1プログラム群当たりの 同時実行プログラム数 (=MPI並列数=ノード数)	40000
	3	0		問題規模	160G Grid (40000x40000x100)
	4			その他	時間レンジ 10年間をシミュレート, dt = 25s (約3,500 step / day)
	5	0	ジョブの実行時間		1
	6	0	期待するI/O性能 (or 計算時間に対するI/(O時間の割合)	10%
	7	0	プログラミング言語		
	8		特記事項		【例】 アプリ都合でのチェックポイント有無 etc.

6-2. 詳細ヒアリングシートのサンプル(2/2)

◆下記はI/Oに関してご記載いただきたい箇所。ファイル毎のご記載をお願いしたい。 (I/O時間が問題となる可能性がある,主要なファイルのみで結構です)

■ ファイル		L					
1	#	回答 期待度	項目		回答		
	1	0	ファイル名		INITIAL		
	2	0	格納データ概要		初期条件		
	3	0	I/O種別		初期入力		
	4	0	アクセス方法		(D)I/Oマスタ 代表プログラムでreadしてscatter (MPI−IO準拠の方式に移行 予定)		
	5	0	アクセスパターン(シーケン	シャル, ランダム)			
	6	0	I/Oするプロセスの数(/ブ	プログラム群)	1		
	7	0	1ファイルの容量	計算式 or 根拠	12TB -		
	8	0	1繰り返し当たりのファイ ル数	計算式 or 根拠	1 -		
				H1 77 20 01 12 12	1 🛽		
	9	0	ファイルI/Oの繰り返し数 (/プログラム)	計算式 or 根拠	-		
				上書き有無	N/A		
	10	0	総I/O容量 (/プログラム群)	 計算式 or 根拠	12TB 12TB x 1回		
	11	0	【writeの場合】 最終的に保持必要なファイル容量(/プログラム群)		N/A		
				計算式 or 根拠	-		
	12		1ファイルに対する1回当たりのI/O量(I/O単位)				
	13		ファイルのI/O頻度		初期設定時に一度のみ		
14			特記事項		アクセス方法はMPI-IO準拠の方式に移行予定		

6-3. サンプル「ジョブA」 ①時系列シミュレーション型

実行条件	 ・システム全体で 2 ジョブを独立に同時実行 ・1ジョブあたり 200x200 = 40,000 プロセス ・問題規模 40,000 x 40,000 x 100 (160G grid) ・時間 10年間をシミュレート, dt = 25s (約3,500 step / day)
初期入力	INITIAL (初期条件) ファイル ・容量 12TB を1回のbinary read ですべて読み込む ・現在は代表プロセスでreadしてscatter、MPI-IO準拠の方式へ移行予定
出力	 約10種類のモデル変数の値を、変数ごと1日(3,500step)ごとに出力・1ファイルサイズは 160G grid x 8B = 1.28TB、1回に12.8TB (10変数) 全体で、12.8TB x 3,650日分 = 46.7PB ・現在は代表プロセスがgatherしてwrite、MPI-IO準拠の方式へ移行予定
チェックポイント	1日分のシミュレート(3,500 step)ごとに出力 ファイルは1つ、容量約12.8TB ・現在は代表プロセスがgatherしてwrite、MPI-IO準拠の方式へ移行予定

以下,付録

付録1.ファイルアクセスパターンの分類

■ファイルアクセスパターンの分類

★詳細ヒアリングシート回答時ご参考

付録2. サンプル「ジョブB」 ②最適化問題型

実行条件	・システム全体で 1000 ジョブを独立に同時実行 ・1ジョブあたり 100 プロセス ・ジョブの実行時間は24時間 ・チェックポイント用のデータを1時間毎に出力 ・24時間後にジョブは正常終了し、チェックポイントデータは削除されるとする			
初期入力	・プロセス0が、params.in.xml(1KB), params.task1.in.xml(10KB)の 2ファイル(テキスト・XML)をプログラム開始時に1回だけ読む			
チェックポイント / 出力	 「1回/時間 + ジョブ終了時」にプロセス0が出力、 (1) params.out.xml (テキスト・XML, 1KB) (2) params.task1.out.xml (テキスト・XML, 10KB) 「1回/時間 + ジョブ終了時」に全プロセスが独立に出力 (3) params.task1.clone1.workerXX.h5 (バイナリ・HDF5) プロセス0 は1GB、他プロセスは各々10MB ジョブあたり 2GB (上書きしてよいが最新2世代分は残す) 			
チェックポイント	 params.task1.clone1.workerXX (バイナリ, XDR) 「1回/時間」全プロセスが独立に出力 プロセスあたり 2GB, ジョブあたり 200GB 			

付録3-1. ご回答活用例 -既判明分のアプリ/0要件のまとめ-

◆ご回答は、下のように整理し、最低限必要な容量、1/0帯域の算出、その他のニーズの把握に 利用させていただく。

上一数(※) D 36.864 96 12.288 96.768 12.288 10.5004 10.0000 10.0000 10.0000 10.000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000	イド NICAM大規模
プロセス製	
大力に会体	100 2
大力・「全体 C 294,912 384,000 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216 387,072 393,216	
上 一方 一方 一方 一方 一方 一方 一方	1,024 163,840
# 1	2,400 327,680
シミュレーション規模を特徴	
プラスト 10.592原子・格子数	1,024 40,960
プラスト 10.592原子・格子数	2,400 81,920
シミュレーション規模を特徴	
大力システム全体	g-level=14, v-layer=94 (258G 格子点)
大力システム全体	
ファイル数	1ヶ月分 (dt=2秒/1時間=1,800step)
大力 (GB)	
出力(計算結果、システム全体)	0,400 21,954,560
ファイル数/出力間隔	9 <mark>,275</mark> 105,022
出力量(GB)/出力間隔	
出力間隔(演算時間(s)) M N 750 3,600 3,600 43,200 43,200	5,242,880
田力間隔(演奏時間に) M	67,200
諸	2,000
保存ファイル量(GB) R 172,280,000 9,680 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,800	3,774,873,600
保存ファイル量(GB) R 172,280,000 9,680 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 876,700 890,400 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,880 8,700 7,880 7,880 7,880 8,700 7,880 7,800	48,384,000
チェックポイント(リスタート用のデータ) ファイル数/出力間隔 S 2 384,000 0.79 P3D216 1,320 1,320 1,320 1,320 814 GB/出力間隔 1,320 43,200 786,432 1,320 814 GB/出力間隔の10%(s) 0,000 786,432 1,320 4,320 814 GB/出力間隔の10%(s) 814 GB/出力間隔の10%(s) 4,320	3,774,873,600
ファイル数/出力間隔 S 2 384,000 U - 7 342/16 1,1 1 1 1 1 1 1 1 1	6,451 48,384,000
出力量(GB)/出力間隔	
出力のみの帯域 出力間隔の10%(s) U 0.1xM 75 360 360 4,320 4,320 4,320	3,200 ?
必要帯域(GB/s)	5,740 ?
必要帯域(GB/s)	
操作対象ファイル/s W K/U 0.27 1,072.22 1,092.31 0.0005 0.0037 テェックポイントのみの帯域 2 185 GB/s 4,320 4,320 公要帯域(GB/s) β T/α 573 2,133 2,185 0 0 0 ほかけ チェックポイントの帯域 2 1 1 1,092.27 0.00 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
### ### ### ### #####################	814 336
数要帯域(GB/s)	5,632 26,214
域 <mark>必要帯域(GB/s) β T/α 573 2.133 2.185 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </mark>	
操作対象ファイル/s γ S/α 0.03 1,066.67 1.092.27 0.00 0.00 1 1	1,200 200
出力 + チェックポイントの帯域 2,195 GB/6 4,320 4,320	205 ?
<u>出力間隔の10%s</u> X 0.1xM 75 3 4, 193 は 1 , 320 4,320	36.00
7.2	
】 <mark> </mark>	1,200
	I,018 ?
■ 操作対象ファイル/s Z (K+S)/U 0.29 2,138.89 2,184.58 0.00 0.00	?

帯域の計算は1/0時間を演算 時間の10%と仮定して実施

時系列sim.型

最適化問題型

付録3-2. ご回答活用例 -階層化ストレージの構成モデルー

- ◆要件
- (a) 容量/帯域的に支配的な,初期入力,結果出力,チェックポイント出力をカバー。
- (b) 共用利用するデータ(数万ノードからの アクセス)や, 計算終了後に不要なデータ (上書き可)など, 容量に比べて高1/0負荷になるデータに対する対処。
- ◆モデル案・電力削減のため、基本はオンライン(第二階層)とオフライン(第三階層)の二階層。
 - ・負荷の高い1/0を受けとめるための、キャッシュとしての第一階層。
 - 各階層のストレージ容量(S₁~S₃)と,各層間の必要帯域(B₂~B₀)を定義。

 \rightarrow ・構成案提案に向けては、アプリ/0要件(スライド4-2)を $S_1 \sim S_3$ 、 $B_a \sim B_d$ に反映

付録3-3. ご回答活用例 -1/0要件の構成モデルへのマップ-

■時系列シミュレーション型のアプリの要件(最低限必要な容量,スループット)

パターン	1	2	3	4	5'
考え方	全1/0第	一階層	全1/0第	二階層	上書可データの 1/0第一階層
	Check Point有	Check Point無	Check Point有	Check Point無	Check Point有
B _a	1,203 GB/s	814 GB/s			573 GB/
1st Layer S_1	346 PB	345 PB			1 PB
B _b	120 GB/s	81 GB/s			57 GB/s
B _c			1,203 GB/s	814 GB/s	814GB/s
$^{2^{nd}}$ Layer S_2	345 PB	345 PB	518 PB	517 PB	345 PB
B_d	81 GB/s				
3 rd Layer S ₃	?	?	?	?	?

END

計算科学ロードマップからの計算機資源要件抽出 ~特にI/O部分について~

2013/12/25

株式会社 日立製作所

HITACHI Inspire the Next