Directional Derivatives

Directional derivative

Like all derivatives the directional derivative can be thought of as a ratio. Fix a unit vector \mathbf{u} and a point P_0 in the plane. The directional derivative of w at P_0 in the direction \mathbf{u} is defined as

$$\left. \frac{dw}{ds} \right|_{P_0, \mathbf{u}} = \lim_{\Delta s \to 0} \frac{\Delta w}{\Delta s}.$$

Here Δw is the change in w caused by a step of length Δs in the direction of \mathbf{u} (all in the xy-plane).

Below we will show that

$$\left. \frac{dw}{ds} \right|_{P_0, \mathbf{u}} = \nabla w(P_0) \cdot \mathbf{u}. \tag{1}$$

We illustrate this with a figure showing the graph of w = f(x, y). Notice that Δs is measured in the plane and Δw is the change of w on the graph.

Proof of equation 1

The figure below represents the change in position from P_0 resulting from taking a step of size Δs in the **u** direction.

$$\begin{array}{c}
y \\
\Delta s \\
P_0 \\
\hline
\Delta x
\end{array}$$

Since $(\Delta s)^2 = (\Delta x)^2 + (\Delta y)^2$ we have that $\left\langle \frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s} \right\rangle$ is a unit vector, so

$$\mathbf{u} = \left\langle \frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s} \right\rangle.$$

The tangent plane approximation at P_0 is

$$\Delta w \approx \left. \frac{\partial w}{\partial x} \right|_{P_0} \Delta x + \left. \frac{\partial w}{\partial y} \right|_{P_0} \Delta y$$

Dividing this approximation by Δs gives

$$\frac{\Delta w}{\Delta s} \approx \frac{\partial w}{\partial x} \bigg|_{P_0} \frac{\Delta x}{\Delta s} + \frac{\partial w}{\partial y} \bigg|_{P_0} \frac{\Delta y}{\Delta s}.$$

We can rewrite this as a dot product

$$\frac{\Delta w}{\Delta s} \approx \left\langle \frac{\partial w}{\partial x} \bigg|_{P_0}, \frac{\partial w}{\partial y} \bigg|_{P_0} \right\rangle \cdot \left\langle \frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s} \right\rangle.$$

In the dot product the first term is $\nabla w|_{P_0}$ and the second is just \mathbf{u} , so,

$$\frac{\Delta w}{\Delta s} \approx \nabla w|_{P_0} \cdot \mathbf{u}.$$

Now taking the limit we get equation (1).

Example: (Algebraic example) Let $w = x^3 + 3y^2$.

Compute $\frac{dw}{ds}$ at $P_0 = (1, 2)$ in the direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$. **Answer:** We compute all the necessary pieces:

- i) $\nabla w = \langle 3x^2, 6y \rangle \Rightarrow \nabla w|_{(1,2)} = \langle 3, 12 \rangle$.
- ii) **u** must be a unit vector, so $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \langle \frac{3}{5}, \frac{4}{5} \rangle$.

iii)
$$\frac{dw}{ds}\Big|_{P_0,\mathbf{u}} = \nabla w|_{(1,2)} \cdot \mathbf{u} = \langle 3, 12 \rangle \cdot \langle \frac{3}{5}, \frac{4}{5} \rangle = \boxed{\frac{57}{5}}.$$

Example: (Geometric example) Let **u** be the direction of $\langle 1, -1 \rangle$.

 $\frac{\partial w}{\partial x}\Big|_{P}$, $\frac{\partial w}{\partial y}\Big|_{p}$, and $\frac{dw}{ds}\Big|_{P,\mathbf{u}}$. Using the picture at right estimate

By measuring from P to the next in level curve in the x direction we see that $\Delta x \approx -.5$.

$$\Rightarrow \left| \frac{\partial w}{\partial x} \right|_P \approx \frac{\Delta w}{\Delta x} \approx \frac{10}{-.5} = -20.$$

Similarly, we get $\left| \begin{array}{c} \frac{\partial w}{\partial y} \right|_P \approx 20. \end{array}$

Measuring in the **u** direction we get $\Delta s \approx -.3$

$$\Rightarrow \left| \frac{dw}{ds} \right|_{P,\mathbf{u}} \approx \frac{\Delta w}{\Delta s} \approx \frac{10}{.3} = -33.3.$$

Direction of maximum change:

The direction that gives the maximum rate of change is in the same direction as ∇w . The proof of this uses equation (1). Let θ be the angle between ∇w and **u**. Then the geometric form of the dot product says

$$\frac{dw}{ds}\Big|_{\mathbf{u}} = \nabla w \cdot \mathbf{u} = |\nabla w||\mathbf{u}|\cos\theta = |\nabla w|\cos\theta.$$

(In the last equation we dropped the $|\mathbf{u}|$ because it equals 1.) Now it is obvious that this is greatest when $\theta = 0$. That is, when ∇w and \mathbf{u} are in the same direction.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.