DATA MINING LECTURE 6

Linear Regression
Logistic Regression
Neutral Networks
A Little Bit of Deep Learning

CSC177
Dr. Victor Chen

Regression Problem

- The problem of predicting continuous values is called regression problem
- General approach: find a continuous function that models the continuous points.

Linear Regression with one input

A simple regression has the coefficient β and the constant α . The equation is then:

$$y = \alpha + \beta * x$$

where α is y-intercept and β is slope

Linear Regression with more than one input

A multiple regression is in the following form:

$$y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + ... + \beta_k * X_k$$

where k is the number of variables, or parameters.

Linear regression for 2D data

Given a dataset of the form

 $\{(x_1, y_1), ..., (x_n, y_n)\},\$ find a linear continuous function that minimizes the Sum of Squares of Error (SSE)

Linear Regression

Sum of Squares of Error (SSE)

Independent variable (x)

Sum of Squares of Error (SSE) is the sum of all the squared errors.

Sum of Squares of Regression (SSR)

Sum of Squares of Regression (SSR) is the sum of the squared differences between each prediction and the mean of data.

Sum of Squares of Total (SST)

R-Squared score

- R-Squared score can be used as a single summary number to measure the quality of linear regression model
- The value of R² can range between 0 and 1.
- The higher R², the more accurate the regression model is.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Nonlinear functions can also be fit as regressions

Any nonlinear continuous functions can also be fit as regressions, including power, Logarithmic, Exponential, and Logistic.

A Real Example: Social Network Analysis

High school friendship

High school dating

A Real Example: Social Network Analysis

- In link prediction, given any two arbitrary users, we aim to answer:
 - What is the likelihood that a particular link (relationship) exists between them?

Markov Networks v.s. Bayesian Networks

 Haiquan Chen, Wei-Shinn Ku, Haixun Wang, Liang Tang, Min-Te Sun: Scaling Up Markov Logic Probabilistic Inference for Social Graphs. IEEE Trans. Knowl. Data Eng. 29(2): 433-445 (2017)

Experimental validation

 $\begin{array}{c} common_friends(X,Y,+n) \longrightarrow knows(X,Y) \\ common_communities(X,Y,+n) \longrightarrow knows(X,Y) \end{array}$

TABLE 1
Datasets used in the experiments.

Name	Description	Number of nodes	Number of edges	Number of commu- nities
DBLP	collaboration network	317,080	1,049,866	13,477
LJ	social network	3,997,962	34,681,189	287,512

(a) Friendship probability versus # of common friends (DBLP)

(b) Friendship probability versus # common communities (DBLP)

(c) Friendship probability versus # of common Friends (LJ)

(d) Friendship probability versus # of common communities (LJ)

Now Logistic Regression...

Linear Regression Doesn't Work

- A linear function/regression is not good
 - It may produce probabilities beyond [0, 1]

Note: APACHE II is one of several ICU scoring systems.

Logistic Regression

Logistic (Sigmoid) function maps any input x between [0, 1]

$$f(t) = \frac{1}{1 + e^{-x}}$$

Logistic regression is a linear regression on the Sigmoid function

$$P(C|x) = \frac{1}{1 + e^{-(\alpha + \beta \cdot x)}}$$

Q: What is the logistic regression model for more than one dimension?

Logistic Regression

- For 2-class problem, the probability threshold is set to 0.5 so
 - If the predicted probability >= 0.5, predict "y = 1",
 - If the predicted probability > 0.5, predict "y = 0",

How B affects the model

Compare Two Models In One Dimension

Data that has a sharp survival cut off point between patients who live or die should have a large value of β .

Data with a lengthy transition from survival to death should have a low value of β .

Q: What x value makes the model output a probability of 0.5?

Logistic regression in 2D space

Predict Iris flower species based on sepal length and sepal width only

Coefficients

$$\beta_1 = -1.9
\beta_2 = -0.4
\alpha = 13.04$$

Estimating the coefficients

 Use gradient descent algorithm to find the nearoptimal coefficients for linear/logistic regression

Gradient descent for two parameters

Gradient descent for two parameters

Gradient descent implementation

Batch gradient descent

$-> \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (\underline{h}_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $\geq \frac{1}{m} \sum_{i=1}^m (\underline{h}_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

Stochastic gradient descent

Sklearn implementation

- http://scikitlearn.org/stable/modules/generated/sklearn.linear model. LinearRegression.html
- http://scikitlearn.org/stable/modules/generated/sklearn.linear model. LogisticRegression.html

Logistic/Linear Regression Advantages

- Linear regression produces a continuous output.
- Logistic regression produces class membership with predicted probability.
- The coefficients can be used for understanding the feature importance.
- Works for relatively large datasets

Neutral networks

- Logistic regression can be considered as the simplest form of a neutral network, which is a collection of perceptron.
- Perceptron is seen as an analogy to a biological neuron.

Perceptron (Neuron)

The Perceptron can represent both linear & logistic regression:

1:

2-class classification with one neuron

2-class classification with two neurons, one for each class

Putting multiple neurons in parallel we can predict multiple classes

Softmax normalization

$$P(y = k | \mathbf{x}) = \frac{\exp \mathbf{x}^T \mathbf{w}_k}{\sum_{n=1}^{N} \exp \mathbf{x}^T \mathbf{w}_n}$$

Normalization factor so that the sum of probabilities sum up to 1.

sigmoid vs softmax

 sigmoid function is used for the two-class logistic regression

$$rac{1}{1+e^{-oldsymbol{eta}_{.}\mathbf{X}_{i}}}$$

 softmax function is used for the multiclass logistic regression

$$rac{e^{oldsymbol{eta}_k \cdot \mathbf{X}_i}}{\sum_{0 \leq c \leq K} e^{oldsymbol{eta}_c \cdot \mathbf{X}_i}}$$

Softmax implementation

What is softmax([1, 2, 3])

```
def softmax(x):
    """Compute the softmax of vector x."""
    exps = np.exp(x)
    return exps / np.sum(exps)
```

• y1 =
$$\frac{e^1}{e^1 + e^2 + e^3}$$
 = 0.09

• y1 =
$$\frac{e^2}{e^1 + e^2 + e^3}$$
 = 0.24

• y3 =
$$\frac{e^3}{e^1 + e^2 + e^3}$$
 = 0.67

Output:

• [0.09, 0.24, 0.67]

3-class classification with three neurons

Putting multiple neurons in parallel we can predict multiple classes

Neutral Network = Multi Layer Perceptron

 Multiple classes can be predicted by putting many neurons in parallel.

Sklearn implementation

 http://scikitlearn.org/stable/modules/neural networks supervised.html#

Deep learning

AI APPLICATIONS

Neural networks vs deep learning neural networks

- "Normal" neural networks usually have one to two hidden layers and are used for SUPERVISED classification.
- Deep learning neural network have more hidden layers and can be used for both UNSUPERVISED and SUPERVISED learning tasks.

An example deep learning neural network

