10

15

WHAT IS CLAIMED IS:

1. A selective androgen receptor modulator (SARM) compound represented by the structure of formula I:

$$Z \xrightarrow{(R_3)_m} NH \xrightarrow{R_L} T \times (R_2)_m$$

$$Z \xrightarrow{Q} Q$$

Ι

X is a bond, O, CH₂, NH, S, Se, PR, NO or NR; G is O or S;

T is OH, OR, -NHCOCH₃, or NHCOR;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH_2F , CHF_2 , CF_3 , CF_2CF_3 , aryl, phenyl, halogen, alkenyl or OH;

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

R₂ is F, Cl, Br, I, CH₃, CF₃, OH, CN, NO₂, NHCOCH₃, NHCOCF₃, NHCOR, alkyl, arylalkyl, OR, NH₂, NHR, NR₂, SR;

R₃ is F, Cl, Br, I, CN, NO₂, COR, COOH, CONHR, CF₃, SnR₃, or R₃ together with the benzene ring to which it is attached forms a fused ring system represented by the structure:

20

25

Z is NO₂, CN, COR, COOH, or CONHR;

Y is CF₃, F, Br, Cl, I, CN, or SnR₃;

Q is N₃ or NHCOCH₂Hal;

Hal is halogen;

n is an integer of 1-4; and m is an integer of 1-3.

2. A selective androgen receptor modulator (SARM) compound represented by the structure of formula I:

$$(R_3)_m$$
 Z
 NH
 R_1
 C
 $R_2)_n$
 Q

10

15

20

X is a bond, O, CH2, NH, S, Se, PR, NO or NR;

G is O or S;

T is OH, OR, -NHCOCH₃, or NHCOR;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH_2F , CHF_2 , CF_3 , CF_2CF_3 , aryl, phenyl, halogen, alkenyl or OH;

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

R₂ is F, Cl, Br, I, CH₃, CF₃, OH, CN, NO₂, NHCOCH₃, NHCOCF₃, NHCOR, alkyl, arylalkyl, OR, NH₂, NHR, NR₂, SR;

R₃ is F, Cl, Br, I, CN, NO₂, COR, COOH, CONHR, CF₃, SnR₃, or R₃ together with the benzene ring to which it is attached forms a fused ring system represented by the structure:

25

Z is NO₂, CN, COR, COOH, or CONHR; Y is CF₃, F, Br, Cl, I, CN, or SnR₃;

Q is N₃ or NHCOCH₂Hal;

Hal is halogen;

n is an integer of 1-4; and m is an integer of 1-3;

or its analog, isomer, metabolite, derivative, pharmaceutically acceptable salt, pharmaceutical product, N-oxide, hydrate or any combination thereof.

5

15

20

- 3. The compound according to claim 1, wherein G is O.
- 4. The compound according to claim 1, wherein T is OH.
- 5. The compound according to claim 1, wherein R₁ is CH₃.
 - 6. The compound according to claim 1, wherein X is O.
 - 7. The compound according to claim 1, wherein Z is NO_2 .
 - 8. The compound according to claim 1, wherein Z is CN.
 - 9. The compound according to claim 1, wherein Y is CF_3 .
 - 10. The compound according to claim 1, wherein Q is NHCOCH₂Cl.
 - 11. The compound according to claim 1, wherein Q is NHCOCH₂Cl.
 - 12. The compound according to claim 1, wherein Q is N_3 .
 - 13. The compound according to claim 1, wherein said compound is an alkylating agent.
- 14. A selective androgen receptor modulator

 (SARM) compound represented by the structure of formula II:

$$A \xrightarrow{NH} \begin{matrix} R_1 \\ G \end{matrix} \begin{matrix} T \\ X \end{matrix} \begin{matrix} T \end{matrix}$$

wherein

X is a bond, O, CH₂, NH, S, Se, PR, NO or NR;

G is O or S;

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

T is OH, OR, -NHCOCH₃, or NHCOR;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH_2F , CHF_2 , CF_3 , CF_2CF_3 , aryl, phenyl, halogen, alkenyl or OH;

A is a ring selected from:

10

5

B is a ring selected from:

$$Q_{2} \qquad Q_{1} \qquad Q_{2} \qquad Q_{1} \qquad Q_{2} \qquad Q_{1} \qquad Q_{2} \qquad Q_{2} \qquad Q_{1} \qquad Q_{2} \qquad Q_{2$$

wherein A and B cannot simultaneously be a benzene ring;

Z is NO₂, CN, COOH, COR, NHCOR or CONHR;

Y is CF₃, F, I, Br, Cl, CN CR₃ or SnR₃;

Q₁ is N₃ or NHCOCH₂Hal;

Hal is halogen;

Q₂ is a hydrogen, alkyl, halogen, CF₃, CN CR₃, SnR₃, NR₂, NHCOCH₃, NHCOCF₃, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH₃, NHCSCF₃, NHCSR NHSO₂CH₃, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R, SR,

20

15

20

$$\begin{array}{c|c} & & & & \\ & &$$

Q₃ and Q₄ are independently of each other a hydrogen, alkyl, halogen, CF₃, CN CR₃, SnR₃, NR₂, NHCOCH₃, NHCOCF₃, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH₃, NHCSCF₃, NHCSR NHSO₂CH₃, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R or SR;

 W_1 is O, NH, NR, NO or S; and W_2 is N or NO.

15. A selective androgen receptor modulator
(SARM) compound represented by the structure of formula II:

$$A \xrightarrow{NH} G^{T} X \xrightarrow{B}$$

II

wherein

X is a bond, O, CH₂, NH, S, Se, PR, NO or NR; G is O or S;

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

T is OH, OR, -NHCOCH₃, or NHCOR;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH₂F, CHF₂, CF₃, CF₂CF₃, aryl, phenyl, halogen, alkenyl or OH;

A is a ring selected from:

B is a ring selected from:

wherein A and B cannot simultaneously be a benzene ring;

Z is NO₂, CN, COOH, COR, NHCOR or CONHR;

Y is CF₃, F, I, Br, Cl, CN CR₃ or SnR₃;

Q₁ is N₃ or NHCOCH₂Hal;

Hal is halogen;

Q₂ is a hydrogen, alkyl, halogen, CF₃, CN CR₃, SnR₃, NR₂, NHCOCH₃, NHCOCF₃, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH₃, NHCSCF₃, NHCSR NHSO₂CH₃, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R, SR,

$$W_1$$
 or W_1 Q_4 W_2 Q_3

Q₃ and Q₄ are independently of each other a hydrogen, alkyl, halogen, CF₃, CN CR₃, SnR₃, NR₂, NHCOCH₃, NHCOCF₃, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH₃, NHCSCF₃, NHCSR NHSO₂CH₃, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R or SR; W₁ is O, NH, NR, NO or S; and

W₂ is N or NO;

or its analog, isomer, metabolite, derivative, pharmaceutically acceptable salt, pharmaceutical product, N-oxide, hydrate or any combination thereof.

20

25

15

5

- 16. The compound according to claim 14, wherein G is O.
- 17. The compound according to claim 14, wherein T is OH.
- 18. The compound according to claim 14, wherein R₁ is CH₃.

10

20

25

- 19. The compound according to claim 14, wherein X is O.
- 20. The compound according to claim 14, wherein Z is NO_2 .
- 21. The compound according to claim 14, wherein Z is CN.
 - 22. The compound according to claim 14, wherein Y is CF_3 .
 - 23. The compound according to claim 14, wherein Q_1 is NHCOCH₂Cl.
 - 24. The compound according to claim 14, wherein Q₁ is NHCOCH₂Cl.
 - 25. The compound according to claim 14, wherein Q_1 is N_3 .
- 15 26. The compound according to claim 14, wherein said compound is an alkylating agent.
 - 27. A selective androgen receptor modulator (SARM) compound represented by the structure of formula III:

$$X$$
 Y
 NH
 R_1
 T
 T
 T
 T

wherein X is a bond, O, CH₂, NH, S, Se, PR, NO or NR;

G is O or S;

T is OH, OR, -NHCOCH₃, or NHCOR

Z is NO₂, CN, COOH, COR, NHCOR or CONHR;

Y is CF₃, F, I, Br, Cl, CN, CR₃ or SnR₃;

Q is N₃ or NHCOCH₂Hal;

Hal is halogen;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH₂F, CHF₂, CF₃, CF₂CF₃, aryl, phenyl, halogen, alkenyl or OH; and R₁ is CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃.

28. A selective androgen receptor modulator (SARM) compound represented by the structure of formula III:

$$Z$$
 NH
 R_1
 T
 T
 T
 T

wherein

X is a bond, O, CH2, NH, S, Se, PR, NO or NR;

G is O or S;

T is OH, OR, -NHCOCH₃, or NHCOR

Z is NO2, CN, COOH, COR, NHCOR or CONHR;

Y is CF₃, F, I, Br, Cl, CN, CR₃ or SnR₃;

15

10

5

Q is N₃ or NHCOCH₂Hal;

Hal is halogen;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH₂F, CHF₂, CF₃, CF₂CF₃, aryl, phenyl, halogen, alkenyl or OH; and

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

20

25

30

or its analog, isomer, metabolite, derivative, pharmaceutically acceptable salt, pharmaceutical product, N-oxide, hydrate or any combination thereof.

- 29. The compound according to claim 27, wherein G is O.
- 30. The compound according to claim 27, wherein T is OH.
- 31. The compound according to claim 27, wherein R_1 is CH_3 .
- 32. The compound according to claim 27, wherein X is O.

- 33. The compound according to claim 27, wherein Z is NO_2 .
- 34. The compound according to claim 27, wherein Z is CN.
- 35. The compound according to claim 27, wherein Y is CF_3 .
- 36. The compound according to claim 27, wherein Q is NHCOCH₂Cl.
- 37. The compound according to claim 27, wherein Q is NHCOCH₂Cl.
- 38. The compound according to claim 27, wherein Q is N_3 .
- 39. The compound according to claim 27, wherein said compound is an alkylating agent.
- 40. The compound according to claim 27, represented by the structure of formula IV:

25

5

10

- 41. A composition comprising the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof; and a suitable carrier or diluent.
- 42. A pharmaceutical composition comprising an effective amount of the selective androgen

receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof; and a pharmaceutically acceptable carrier, diluent or salt.

43. A method of suppressing spermatogenesis in a subject comprising administering to said subject with the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to suppress sperm production.

15

10

5

44. A method of contraception in a male subject, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to suppress sperm production in said subject, thereby effecting contraception in said subject.

25

30

20

45. A method of hormone therapy comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to effect a change in an androgen-dependent condition.

10

15

20

25

- 46. A method of hormone replacement therapy comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to effect a change in an androgen-dependent condition.
- 47. A method of preventing prostate cancer in a subject, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to prevent prostate cancer in said subject.
- 48. A method of treating a subject having a hormone related condition, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to effect a change in an androgen-dependent condition.
- 49. A method of treating a subject suffering from prostate cancer, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination

10

15

20

25

30

thereof, in an amount effective to treat prostate cancer in said subject.

- 50. A method of delaying the progression of prostate cancer in a subject suffering from prostate cancer, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to delay the progression of prostate cancer in said subject.
- 51. A method of preventing the recurrence of prostate cancer in a subject suffering from prostate cancer, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to prevent the recurrence of prostate cancer in said subject.
- 52. A method of treating the recurrence of prostate cancer in a subject suffering from prostate cancer, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to treat the recurrence of prostate cancer in said subject.

10

15

20

25

- 53. A method of treating a dry eye condition in a subject suffering from dry eyes, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to treat dry eyes in the subject.
- 54. A method of preventing a dry eye condition in a subject, comprising the step of administering to said subject the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to prevent dry eyes in the subject.
 - 55. A method of inducing apoptosis in a prostate cancer cell, comprising the step of contacting said cell with the selective androgen receptor modulator compound of claim 1, 14, 27 or 40 and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate or N-oxide or any combination thereof, in an amount effective to induce apoptosis in said cancer cell.
 - 56. A process for preparing a selective androgen receptor modulator (SARM) compound represented by the structure of formula I:

$$(R_3)_m$$
 Z
 NH
 G
 I
 R_1
 Q
 Q

wherein X is a O, NH, S, Se, PR, or NR;

G is O or S;

T is OH, OR, -NHCOCH₃, or NHCOR;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH₂F, CHF₂, CF₃, CF₂CF₃, aryl, phenyl, halogen, alkenyl or OH;

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

R₂ is F, Cl, Br, I, CH₃, CF₃, OH, CN, NO₂, NHCOCH₃, NHCOCF₃, NHCOR, alkyl, arylalkyl, OR, NH₂, NHR, NR₂, SR;

R₃ is F, Cl, Br, I, CN, NO₂, COR, COOH, CONHR, CF₃, SnR₃, or R₃ together with the benzene ring to which it is attached forms a fused ring system represented by the structure:

15

5

10

Z is NO₂, CN, COR, COOH, or CONHR;

Y is CF₃, F, Br, Cl, I, CN, or SnR₃;

Q is N₃ or NHCOCH₂Hal;

Hal is halogen;

20

n is an integer of 1-4; and

m is an integer of 1-3;

said process comprising the step of coupling a compound of formula VIII:

25

VIII

10

15

20

wherein Z, Y, G, R₁, T, R₃ and m are as defined above and L is a leaving group,

with a compound of formula IX:

$$P(R_2)_n$$
 Q
 $P(R_2)_n$

wherein Q, X R₂ and n are as defined above.

57. The process according to claim 56, wherein the compound of formula VIII is prepared by

a. preparing a compound of formula X by ring opening of a cyclic compound of formula XI

$$XI$$
 HO
 R
 T
 X
 X

wherein L, R₁, G and T are as defined above, and T₁ is O or NH; and

b. reacting an amine of formula

XII:

$$(R_3)_m$$
 NH_2
 XII

wherein Z, Y, R_3 and m are as defined above, with the compound of formula X, in the presence of a coupling reagent, to produce the compound of formula VIII.

$$(R_3)_m$$
 NH
 R_{1_n}
 T
 L

10

15

20

25

- 58. The process according to claim 56, further comprising the step of purifying said compound of formula I using a mixture of ethanol and water.
- 59. The process according to claim 56, further comprising the step of converting said selective androgen receptor modulator (SARM) compound to its analog, isomer, metabolite, derivative, pharmaceutically acceptable salt, pharmaceutical product, N-oxide, hydrate or any combination thereof.
- 60. A process for preparing a selective androgen receptor modulator (SARM) compound represented by the structure of formula II:

$$A \xrightarrow{NH} G X X_B$$

wherein

X is O, NH, S, Se, PR, or NR;

G is O or S;

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

T is OH, OR, -NHCOCH₃, or NHCOR;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH_2F , CHF_2 , CF_3 , CF_2CF_3 , aryl, phenyl, halogen, alkenyl or OH;

A is a ring selected from:

B is a ring selected from:

10

15

20

$$Q_{2} \qquad Q_{1} \qquad Q_{2} \qquad Q_{2$$

wherein A and B cannot simultaneously be a benzene ring; Z is NO₂, CN, COOH, COR, NHCOR or CONHR; Y is CF₃, F, I, Br, Cl, CN CR₃ or SnR₃;

Q₁ is N₃ or NHCOCH₂Hal;

Hal is halogen;

Q₂ is a hydrogen, alkyl, halogen, CF₃, CN CR₃, SnR₃, NR₂, NHCOCH₃, NHCOCF₃, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH₃, NHCSCF₃, NHCSR NHSO₂CH₃, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R, SR,

$$W_1$$
 or W_1 Q_4 W_2 Q_3

Q₃ and Q₄ are independently of each other a hydrogen, alkyl, halogen, CF₃, CN CR₃, SnR₃, NR₂, NHCOCH₃, NHCOCF₃, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH₃, NHCSCF₃, NHCSR NHSO₂CH₃, NHSO₂R, OR, COR, OCOR, OSO₂R, SO₂R or SR;

W₁ is O, NH, NR, NO or S; and

W₂ is N or NO;

said process comprising the step of coupling a compound of formula XIII:

$$A \xrightarrow{NH} \begin{matrix} R_1 & T \\ G & \end{matrix} L$$
XIII

wherein A, G, R₁ and T are as defined above and L is a leaving group, with a compound of formula HX-B wherein B and X are as defined above.

61. The process according to claim 60, wherein the amide of formula XIII is prepared by

a.

preparing a compound formula X by ring opening of a cyclic compound

10 of formula XI

wherein L, R₁, G and T are as defined above, and T₁ is O or NH; and

b. reacti

15

5

ng an amine of formula A-

NH₂ wherein

A is as

defined

above, with

20

the compound of formula X in the presence of a coupling reagent, to produce the amide of formula XIII.

$$A \xrightarrow{NH} \begin{matrix} R_1 \\ G \end{matrix} \qquad XIII$$

10

15

- 62. The process according to claim 60, further comprising the step of purifying said compound of formula II using a mixture of ethanol and water
- 63. The process according to claim 60, further comprising the step of converting said selective androgen receptor modulator (SARM) compound to its analog, isomer, metabolite, derivative, pharmaceutically acceptable salt, pharmaceutical product, N-oxide, hydrate or any combination thereof.
 - 64. A process for preparing a selective androgen receptor modulator (SARM) compound represented by the structure of formula III:

$$X$$
 Y
 NH
 R_1
 T
 T
 T
 T
 T

wherein X is O, NH, S, Se, PR or NR;

G is O or S;

T is OH, OR, -NHCOCH₃, or NHCOR

Z is NO₂, CN, COOH, COR, NHCOR or CONHR;

Y is CF₃, F, I, Br, Cl, CN, CR₃ or SnR₃;

Q₁ is N₃ or NHCOCH₂Hal;

Hal is halogen;

R is alkyl, haloalkyl, dihaloalkyl, trihaloalkyl, CH₂F, CHF₂, CF₃,

CF₂CF₃, aryl, phenyl, halogen, alkenyl or OH; and

R₁ is CH₃, CH₂F, CHF₂, CF₃, CH₂CH₃, or CF₂CF₃;

30

said process comprising the step of coupling a compound of formula XIV:

$$X = X$$

wherein Z, Y, G R₁ and T are as defined above and L is a leaving group,

5

with a compound of formula XV:

wherein Q and X are as defined above.

10

65. The process according to claim 64, wherein the compound of formula XIV is prepared by

a.

preparing a compound formula X by ring opening of a cyclic compound

20

15

of formula XI

wherein L, R₁, and T are as defined above, G is O and T₁ is O or NH;

and

25

b. reacti

of formula

XVI

XVI

with the compound of formula X in the presence of a coupling reagent, to produce the compound of formula XIV.

$$X$$
 Y
 NH
 R_1
 T
 XIV

10

15

20

- 66. The process according to claim 64, further comprising the step of purifying said compound of formula III using a mixture of ethanol and water
- 67. The process according to claim 64, further comprising the step of converting said selective androgen receptor modulator (SARM) compound to its analog, isomer, metabolite, derivative, pharmaceutically acceptable salt, pharmaceutical product, N-oxide, hydrate or any combination thereof.

25

68. The process according to claim 64, wherein said SARM is represented by the structure of formula IV: