

ElasticPOST 用户手册

1.0 版本

廖名情

FGMS 课题组@哈尔滨工业大学 Liaomq1900127@163.com

目 录

目 录	I
第1章 功能说明	1
第2章 使用条例	2
第3章 ElasticPOST 工具箱安装	3
第4章 弹性各向异性理论	4
4.1 晶体类型	4
4.1.1 三维晶体	4
4.1.2 二维晶体	6
4.2 Voigt-Reuss-Hill 近似	6
4.3 弹性常数的各向异性	7
4.4 硬度的弹性常数表示	8
4.5 二维材料的弹性常数	9
第5章 图形界面使用指导	10
5.1 整体界面	10
5.2 工具栏	10
5.3 数据输入区	11
5.4 数据保存区	13
5.5 绘图区	13
5.6 图形定制区	14
5.6.1 三维视角区	15
5.6.2 切片区	15
5.6.3 图形设置区	15
5.7 图形保存区	16
5.8 提示区	17
第6章 函数手册	
6.1 Bulk_3D	
6.2 Young_2DM	
6.3 Young_3D	
6.4 Shear_2DM	
6.5 Shear_3D	
6.6 Shear_4D	
6.7 Poisson 2DM	

ElasticPOST 用户手册

6.8 Poisson_3D	20
6.9 Poisson_4D	21
6.10 Hardness	21
6.11 Hardness_3D	21
6.12 ElasticPlot_2D	22
6.13 ElasticPlot_2DM	22
6.14 ElasticPlot_3D	23
6.15 Plot_Slice	23
6.16 Elastic_Read	24
6.17 D2toD3	25
6.18 D3toD2	25
6.19 Ang2Direction	25
6.20 Direction2Ang	26

第1章 功能说明

本软件(ElasticPOST)主要是对计算得到的弹性刚度矩阵进行后处理,主要功能如下:

- 1. 对任意对称性的三维材料可以体弹模量、杨氏模量、剪切模量、泊松比等与弹性刚度矩阵相关量进行三维各向异性绘图;
- 2. 对任意对称性的二维材料可以对杨氏模量、剪切模量、泊松比进行弹性常数二维各向异性图的绘制;
- 3. 可以按照一定格式读取 EXCEL、TXT 以及 MAT 文件,以达到批量处理的目的:
- 4. 可以根据 Voigt-Reuss-Hill 近似对上述量进行计算,并可以将数据进行保存并与 MATLAB 工作空间交互;
 - 5. 对三维图形提供多种图形属性的调控操作,如从最高位置看,切片等;
- 6. 对图片的输出提供.tif、.jpg、.emf 等多种位图格式以及.eps、.pdf、.fig 等 多种矢量格式。
 - 7. 提供界面操作与命令操作两种模式。
 - 8. 对常见错误有一定提示。

第2章 使用条例

本软件(ElasticPOST)已申请软件著作权,仅可以用作学术用途,不可以用作商业用途。若学术工作使用到本软件,请提供本软件下载地址,并参考如下文章。若有用户针对其进行二次开发,请联系作者(liaomq1900127@163.com)

第3章 ElasticPOST 工具箱安装

1. 通过添加路径方式运行

将软件包解压到 MATLAB 的 toolbox 路径(其实也可以是任意路径)下,再将相应路径添加到 MATLAB 路径即可。添加路径的方式如下:

图 3-1 设置路径-1

图 3-2 设置路径-2

 通过设定当前路径运行 将软件包的路径设置为当前路径,然后在当前路径下运行。

第4章 弹性各向异性理论

本章主要介绍本软件用到的理论背景。

4.1 晶体类型

4.1.1 三维晶体

三维晶体结构如图 4-1 所示, 其相应的独立晶格常数如图 4-2 所示。

图 4-1 三维晶格示意图

(a)三斜晶系; (b)単斜晶系; (c)正交晶系; (d)四方晶系; (e)立方晶系; (f)菱方晶系; (g)六方晶系

(a)Triclinic; (b)Monoclinic; (c)Orthorhombic; (d)Tetragonal; (e)Cubic; (f)Trigonal; (g)Hexagonal

图 4-2 不同三维晶系的独立晶格常数

4.1.2 二维晶体

二维材料的晶体结构如所示,其独立的晶格常数如所示(其中 C_{33} 对应于三维材料中的 C_{66})。

图 4-3 二维晶格示意图
(a)倾斜晶系; (b)矩形晶系; (c)正方晶系; (d)六方晶系
(a) Oblique; (b) Rectangular; (c) Square; (d)Hexagonal

图 4-4 不同二维晶系独立晶格常数 (其中 C_{33} 对应三维材料中的 C_{66})

4.2 Voigt-Reuss-Hill 近似

多晶弹性常数通过弹性刚度系数(C_{ij})与弹性柔度系数(S_{ij}),采用 Voigt-Reuss-Hill[1]近似进行计算,其具体计算公式如公式(4-1)到(4-3)所示。

$$\begin{cases}
B_{V} = \frac{A+2B}{3}, B_{R} = \frac{1}{3a+6b}, B = \frac{1}{2}(B_{R} + B_{V}) \\
G_{V} = \frac{A-B+3C}{5}, G_{R} = \frac{5}{4a-4b+3c}, G = \frac{1}{2}(G_{R} + G_{V})
\end{cases}$$
(4-1)

$$\begin{cases}
A = \frac{C_{11} + C_{22} + C_{33}}{3}, B = \frac{C_{23} + C_{13} + C_{12}}{3}, C = \frac{C_{44} + C_{55} + C_{66}}{3} \\
a = \frac{S_{11} + S_{22} + S_{33}}{3}, b = \frac{S_{23} + S_{13} + S_{12}}{3}, c = \frac{S_{44} + S_{55} + S_{66}}{3} \\
S_{ij} = C_{ij}^{-1}
\end{cases}$$
(4-2)

$$E = \left(\frac{1}{3G} + \frac{1}{9B}\right)^{-1}, v = \frac{1}{2}\left(1 - \frac{3G}{3B + G}\right)$$
 (4-3)

4.3 弹性常数的各向异性

弹性常数的各向异性采用 Marmier[2]描述的方法,采用 Voigt 标记,即

表 4-1 张量标记与 Voigt 标记

张量标记	11	22	33	23,32	31,13	12,21
Voigt 标记	1	2	3	4	5	6

$$S_{pq} = \begin{cases} S_{ijkl} & both \ p \ and \ q \ equal \ 1 \ or \ 2 \ or \ 3 \\ 2S_{ijkl} & either \ p \ or \ q \ are \ 4,5 \ or \ 6 \ (and \ the \ other \ is \ 1,2 \ or \ 3) \\ 4S_{ijkl} & both \ p \ and \ q \ are \ 4,5 \ or \ 6 \end{cases} \tag{4-4}$$

而张量的旋转公式可以用如下公式进行:

$$T'_{\alpha\beta\gamma\delta} = r_{\alpha i} r_{\beta j} r_{\gamma k} r_{\delta l} T_{ijkl} \tag{4-5}$$

其中:

$$r_{\alpha i} = \begin{cases} a_i & i \text{ equal } 1 \text{ or } 2 \text{ or } 3\\ b_i & i \text{ equal } 1 \text{ or } 2 \text{ or } 3 \end{cases}$$

$$(4-6)$$

式中:

$$a = \begin{bmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{bmatrix}$$
 (4-7)

$$b = \begin{bmatrix} \cos\theta\cos\varphi\cos\psi - \sin\varphi\sin\psi \\ \cos\theta\sin\varphi\cos\psi + \cos\varphi\sin\psi \\ -\sin\theta\cos\psi \end{bmatrix}$$
(4-8)

其中 θ 、 φ 、 ψ 为角度值,其范围分别为[0, π]、[0, 2π]和[0, 2π],其示意图如图 4-5 所示。

图 4-5 欧拉角

通过上述旋转既可以求得任意方向 S_{ijkl} 。 而对于各个弹性常数可以通过如下公式求得。

$$\begin{cases}
B(\theta,\varphi) = \frac{1}{\beta(\theta,\varphi)} = \frac{1}{S_{ijkk}a_{i}a_{j}} \\
E(\theta,\varphi) = \frac{1}{S_{11}^{'}(\theta,\varphi)} = \frac{1}{a_{i}a_{j}a_{k}a_{l}S_{ijkl}} \\
G(\theta,\varphi,\psi) = \frac{1}{4S_{66}^{'}(\theta,\varphi,\psi)} = \frac{1}{4a_{i}b_{j}a_{k}b_{l}S_{ijkl}} \\
v(\theta,\varphi,\psi) = -\frac{S_{12}^{'}(\theta,\varphi,\psi)}{S_{11}^{'}(\theta,\varphi,\psi)} = -\frac{a_{i}a_{j}b_{k}b_{l}S_{ijkl}}{a_{i}a_{j}a_{k}a_{l}S_{ijkl}}
\end{cases}$$
(4-10)

式中下标(i, j, k, l)是张量表示法,表示对其范围内求和,且其取值均为[1, 2, 3]。

4.4 硬度的弹性常数表示

材料的硬度采用 Chen[3]和 Tian[4]描述的方法,即有:

$$H_V = 0.92B^{1.137}G^{0.708} (4-11)$$

其中 Hv 为维氏硬度, GPa;

B为体弹模量, GPa;

G 为剪切模量, GPa;

4.5 二维材料的弹性常数

由于为二维材料,不考虑体弹模量与硬度,其弹性常数采用 Jasiukiewicz[5] 描述的方法,即有:

$$E(\varphi) = \frac{1}{S_{11}\cos^{4}\varphi + S_{22}\sin^{4}\varphi + 2(S_{33} + S_{12})\cos^{2}\varphi\sin^{2}\varphi + 2\sqrt{2}S_{13}\cos^{3}\varphi\sin\varphi + 2\sqrt{2}S_{23}\cos\varphi\sin^{3}\varphi}$$

$$(4-12)$$

$$v(\varphi)/E(\varphi) = (S_{11} + S_{22} - 2S_{33})\cos^{2}\varphi\sin^{2}\varphi + S_{12}(\cos^{4}\varphi + \sin^{4}\varphi) + \sqrt{2}(S_{13} - S_{23})(\cos\varphi\sin^{3}\varphi - \cos^{3}\varphi\sin\varphi)$$

$$(4-13)$$

$$\frac{1}{4G(\varphi)} = (S_{11} + S_{22} - 2S_{12})\cos^{2}\varphi\sin^{2}\varphi + S_{33}(\cos^{2}\varphi - \sin^{2}\varphi)^{2}/2 - \sqrt{2}(S_{13} - S_{23})\sin\varphi\cos\varphi(\cos^{2}\varphi - \sin^{2}\varphi)$$

(4-14)

第5章 图形界面使用指导

本章对软件图形界面操作进行简要的解释与说明。

5.1 整体界面

软件整体界面如图 5-1 所示,主要分为工具栏、数据输入区、数据保存区、 绘图区、图形定制区、图片保存区、提示区。

图 5-1 整体界面

5.2 工具栏

工具栏如图 5-2 所示,主要保留了 MATLAB 自带的几个常用工具,分别为放大工具、缩小工具、平移工具、旋转工具、数据读取工具、颜色条工具,以实现对图像的一些简单操作,如放大,缩小等。

图 5-2 工具栏

放大工具:针对绘图区图像进行放大操作;

缩小工具: 针对绘图区图像进行缩小操作;

平移工具:对绘图区图像进行平移操作;

旋转工具: 对绘图区图像进行旋转操作;

数据读取工具:对绘图区的图像上的数据点进行读取;

颜色条工具:针对三维图形,控制颜色条的显示或隐藏;

5.3 数据输入区

数据输入区如图 5-3 所示。以实现弹性刚度矩阵的读入以及初始绘图操作, 具体介绍如下。

图 5-3 数据输入区

①材料选择:

3D Material: 三维材料 2D Material: 二维材料

②数据读入模式选择:

Single: 单个材料的弹性刚度矩阵的输入 FromFile: 从文件中读取弹性刚度矩阵

FromWorkSpace: 从 MATLAB 工作空间读取弹性刚度矩阵

③晶体结构类型选择/文件类型选择:

数据读入模式为 Single 时:

材料选择为 3D 材料:

Cubic: 立方体系, 独立晶格常数: C11、C12、C44

Tetragonal 1: 四方体系,独立晶格常数: C11、C12、C13、C33、C44、

C66

Tetragonal_2: 四方体系, 独立晶格常数: C11、C12、C13、C16、C33、C44、C66

Orthorhombic: 正交体系,独立晶格常数: C11、C12、C13、C22、C23、C33、C44、C55、C66

Hexagonal: 六方体系,独立晶格常数: C11、C12、C13、C33、C44

Trigonal_1: 三方体系,独立晶格常数: C11、C12、C13、C14、C33、C44、C66

Trigonal_2: 三方体系,独立晶格常数: C11、C12、C13、C14、C15、C33、C44、C66

Monoclinic: 単斜体系, 独立晶格常数: C11、C12、C13、C15、C22、C23、C25、C33、C35、C44、C46、C55、66

Triclinic: 三斜体系,独立晶格常数: C11、C12、C13、C14、C15、C16、C22、C23、C24、C25、C26、C33、C34、C35、C36、C44、C45、C46、C55、C56、C66

材料选择为 2D 材料时:

Hexagonal: 六方体系,独立晶格常数: C11、C12

Square: 正方体系,独立晶格常数: C11、C12、C66

Rectangular: 矩形体系,独立晶格常数: C11、C12、C22、C66

Oblique: 倾斜体系,独立晶格常数: C11、C12、C16、C22、C26、C66

数据读入模式为 FromWorkSpace 时,此处显示 MATLAB 工作空间变量的名字,尺寸以及类型。

- ④弹性刚度矩阵的显示或输入: 当输入模式为 Single 时,可以手动输入弹性刚度矩阵,当为其他时,不可输入,只能显示
- ⑤绘图类型选择: 3D 为绘制三维图形; 2D 为绘制坐标平面内图
- ⑥绘图平面, 只对三维材料生效

绘图类型为 3D 时:

对于绘图属性⑦为B或E或H时,未生效,当G或v时:

Ave: 绘制 G 或 v 的平均值

Min: 绘制 G 或 v 的最小值

Max: 绘制 G 或 v 的最大值

All: 绘制 G 或 v 的上述三个面

绘图类型为 2D 时:

xy: xoy平面图

xz: xoz 平面图

yz: yoz 平面图

7绘图属性:

B: 体弹模量, GPa

E: 杨氏模量, GPa

G: 剪切模量, GPa

v: 泊松比

H: 硬度, GPa

- ⑧绘图数据点:对于三维图形来说表示每个坐标轴方向的数据点数目,对于二维图表示整个图形的数据点数目,默认 200
- ⑨名称:表示该材料的名称,只对 Single 时候生效
- ⑩绘图:对上述设置进行绘图,对于多个弹性刚度矩阵(如从文件中读取或从工作空间读取时),可以利用 next 与 previous 对下一个与上一个进行浏览。

5.4 数据保存区

数据保存区如图 5-4 所示,主要实现对数据的保存操作。

图 5-4 数据保存区

- ①是否将所得数据输出到工作空间
- ②是否保存二维或三维数据
- ③是否包括头文件
- ④保存为单个文件或者多个文件
- ⑤对多晶弹性常数的排序(针对保存到单个文件用)

Order By Material: 即根据材料排序 Order By Property: 即根据属性排序

- ⑥保存文件的后缀
 - .txt: 文本文件
 - .xlsx: EXCLE 文件格式
 - .mat: MATLAB 数据文件格式
- (7)保存按钮: 进行保存

5.5 绘图区

绘图区界面如图 5-5 所示,该区域主要对图形进行显示,可以结合工具栏工 具对该去显示的图形进行操作。

图 5-5 绘图区

5.6 图形定制区

图形定制区整体界面如所示,其主要分为三部分:三维视角区、切片区以及图形设置区。

图 5-6 图形定制区

5.6.1 三维视角区

三维视角区如图 5-7 所示,其主要功能为实现三维图形的不同方位的观看。

图 5-7 三维视角区

- ①从属性最大值处观看
- ②从属性最小值处观看
- ③从内置的一些常见的方向观看
- ④指定任意的方向,可以是三个浮点数,中间可以以空格或逗号或分号分隔
- ⑤从上述指定的任意方向进行观看

5.6.2 切片区

切片区如图 5-8 所示, 其主要功能为对三维图进行切片显示。

图 5-8 切片区

- ①和②控制切片的方向,三个浮点数,中间可以用空格或逗号或者分号分隔,若有一个留空时,切片方向为指定方向的法向,若指定两个方向时,切片方向指定两个方向所确定的面
- ③对上述指定的面切片
- ④对⑤操作显示最高点与最低点
- ⑤对最高点方向与最低点方向所确定的面进行切面

5.6.3 图形设置区

图形设置区如图 5-9 所示, 其主要功能为对图形进行一个附加功能的选项。

图 5-9 图形设置区

- ①显示或隐藏坐标轴
- ②显示或隐藏标题
- ③显示或隐藏 color bar
- ④更改 color map
- ⑤显示或隐藏图例

5.7 图形保存区

图形保存区如图 5-10 所示,其主要功能为实现图形与设置的保存。

图 5-10 图形保存区

- ①设置保存路径
- ②保存图片的格式

tif: 保存图片为tif格式,位图

jpg: 保存图片为jpg格式,位图

eps: 保存图片为 eps 格式, 矢量图

fig: 保存图片为 fig 格式, 矢量图

pdf: 保存图片为 pdf 格式, 矢量图

emf: 保存图片为 emf 格式, 位图

- ③对位图设置分辨率
- ④保存当前单个图片
- ⑤批量保存图片
- ⑥设置当前设置为默认设置
- 7恢复默认设置

5.8 提示区

提示区如图 5-11 所示,其主要功能为对操作出现的错误与警告进行提示,错误与警告一般用红色的字表示。

OK The Structure is STABLE

图 5-11 提示区

第6章 函数手册

本部分介绍命令行模式下的各个函数功能、输入以及输出。

6.1 Bulk 3D

$B = Bulk_3D(S, theta, phi)$

功能: 根据柔度系数矩阵(S), 计算与 Z 轴的夹角为 *theta*, 以及与 X 轴的夹角为 *phi* 位置处的三维材料体弹模量 B。

输入:

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
theta	与Z轴夹角	$[0,\pi]$,可以为一个数或一个矩阵,与 phi 同尺寸
phi	与X轴夹角	[0, 2π], 可以为一个数或一个矩阵
输出:		
输出	说明	备注
В	三维材料体弹模量	量 单位 GPa,与输入的 theta 同尺寸

6.2 Young 2DM

$E = Young_2DM(S, phi)$

功能: 根据柔度系数矩阵(S),计算与 X 轴的夹角为 phi 位置处的二维材料的杨氏模量 E。

输入:

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
phi	与 X 轴夹角	[0, 2π], 可以为一个数或一个矩阵
输出:		
输出	说明	备注
\overline{E}	二维材料杨氏模量	量 单位 GPa,与输入的 phi 同尺寸

6.3 Young_3D

$E = Young_3D(S, theta, phi)$

功能: 根据柔度系数矩阵(S), 计算与 Z 轴的夹角为 *theta*, 以及与 X 轴的夹角为 *phi* 位置处的三维材料的杨氏模量 E。

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
theta	与Z轴夹角	$[0,\pi]$,可以为一个数或一个矩阵,与 phi 同尺寸
phi	与X轴夹角	[0, 2π], 可以为一个数或一个矩阵
输出:		
输出	说明	备注
E	三维材料杨氏模量	量 单位 GPa,与输入的 theta 同尺寸

6.4 Shear_2DM

$G = Shear_3D(S, phi)$

功能: 根据柔度系数矩阵(S),计算与 X 轴的夹角为 phi 位置处的二维材料的剪切模量 G。

输入:

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
phi	与 X 轴夹角	[0,2π],可以为一个数或一个矩阵
输出:		
输出	说明	备注
\overline{G}	二维材料剪切模量	量 单位 GPa,与输入的 phi 同尺寸

6.5 Shear_3D

$[Gmin, Gave, Gmax] = Shear_3D(S, theta, phi)$

功能:根据柔度系数矩阵(S),计算与 Z 轴的夹角为 theta,以及与 X 轴的夹角为 phi 位置处的三维材料的剪切模量 G。

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
theta	与Z轴夹角	$[0,\pi]$,可以为一个数或一个矩阵,与 phi 同尺寸
phi	与 X 轴夹角	[0, 2π],可以为一个数或一个矩阵
输出:		
输出	说明	备注
Gmin	三维最小剪切模	重量 单位 GPa,与输入的 theta 同尺寸
Gave	三维平均剪切模	重量 单位 GPa,与输入的 theta 同尺寸
Gmax	三维最大剪切模	重量 单位 GPa,与输入的 theta 同尺寸

6.6 Shear_4D

$G = Shear_4D(S, theta, phi, chi)$

功能: 根据柔度系数矩阵(S), 计算与 Z 轴的夹角为 *theta*, 以及与 X 轴的夹角为 *phi* 位置处的三维材料的剪切模量 G。

输入:

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
theta	与Z轴夹角	[0, π], 可以为一个数或一个矩阵, 与 phi 同尺寸
phi	与X轴夹角	[0, 2π],可以为一个数或一个矩阵
chi		[0, 2π], 可以为一个数或一个矩阵, 与 phi 同尺寸
输出:		
输出	说明	备注
G	三维剪切模量	单位 GPa, 与输入的 theta 同尺寸

6.7 Poisson 2DM

$v = Poisson_2DM(S, phi)$

功能:根据柔度系数矩阵(S),计算与 X 轴的夹角为 phi 位置处的二维材料的泊松 比 G。

输入:

,,,,,		
输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
phi	与 X 轴夹角	[0, 2π], 可以为一个数或一个矩阵
输出:		
输出	说明	备注
ν	二维材料泊松比	与输入的 <i>phi</i> 同尺寸

6.8 Poisson_3D

[vmin, vave, vmax] = $Poisson_3D(S, theta, phi)$

功能: 根据柔度系数矩阵(S), 计算与 Z 轴的夹角为 *theta*, 以及与 X 轴的夹角为 *phi* 位置处的三维材料的泊松比 v。

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
theta	与Z轴夹角	$[0,\pi]$,可以为一个数或一个矩阵,与 phi 同尺寸
phi	与X轴夹角	[0, 2π],可以为一个数或一个矩阵

输出 说明 备注 Gmin 三维材料最小剪切模量 与输入的 theta 同尺寸 Gave 三维材料平均剪切模量 与输入的 theta 同尺寸 Gmax 三维材料最大剪切模量 与输入的 theta 同尺寸

6.9 Poisson_4D

$v = Poisson_4D(S, theta, phi, chi)$

功能: 根据柔度系数矩阵(S), 计算与 Z 轴的夹角为 theta, 以及与 X 轴的夹角为 phi 位置处的三维材料的泊松比 v。

输入:

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa^{-1}
theta	与Z轴夹角	$[0,\pi]$,可以为一个数或一个矩阵,与 phi 同尺寸
phi	与 X 轴夹角	[0, 2π], 可以为一个数或一个矩阵
chi		[0, 2π],可以为一个数或一个矩阵,与 phi 同尺寸
输出:		
输出	说明	备注
v	泊松比	与输入的 theta 同尺寸

6.10 Hardness

H = Hardness(G, B)

功能:根据体弹模量(B)与剪切模量(G)计算硬度(H)。

输入:

输入	说明	备注
В	体弹模量	GPa, 可以为一个数或矩阵
G	剪切模量	GPa,与 B 同尺寸
输出:		
输出	说明	备注
Н	硬度	GPa,与B同尺寸

6.11 Hardness_3D

$H = Hardness_3D(S, theta, phi)$

功能:根据柔度系数矩阵(S), 计算与 Z 轴的夹角为 theta, 以及与 X 轴的夹角为

phi 位置处的三维材料的硬度 H。

输入:

输入	说明	备注
S	柔度系数	$S=C^{-1}$, GPa
theta	与Z轴夹角	$[0,\pi]$,可以为一个数或一个矩阵,与 phi 同尺寸
phi	与 X 轴夹角	[0, 2π], 可以为一个数或一个矩阵
输出:		
输出	说明	备注
Н	硬度	单位 GPa,与输入的 theta 同尺寸

6.12 ElasticPlot_2D

handles = ElasticPlot_2D(handles, S, n, flag, flag_plane, flag_save,
Name)

功能:根据柔度系数矩阵(S),在给定图形句柄上绘制二维图形。

输入:

输入	说明	备注	
handles	图像句柄		
S	柔度系数	$S=C^{-1}$, GPa	
10	每个维度的数据	整数,默认为 200	
n	点个数	全 数,	
flag	计算的属性类别	{'B', 'G', 'E', 'v', 'H'}其中之一	
flag_plane	绘制的平面	{'xy', 'xz', 'yz'}其中之一	
flag_save	是否保存	0 不保存, 1 保存	
Name	保存的名字	字符串,保存的名字	
输出:			
输出	说明	备注	
handles	图像句柄	更新的图形句柄,其中更新了 X, Y, V	
	· · · · · · · · · · · · · · · · · · ·		

6.13 ElasticPlot_2DM

handles = ElasticPlot_2DM(handles, S, n, flag, flag_save, Name) 功能:根据柔度系数矩阵(S),在给定图形句柄上绘制二维材料的二维图形。输入:

输入	说明	备注
handles	图像句柄	
S	柔度系数	S=C ⁻¹ , GPa
n	每个维度的数据	整数,默认为 200

	点个数	
flag	计算的属性类别	{'G', 'E', 'v'}其中之一
flag_save	是否保存	0 不保存, 1 保存
Name	保存的名字	字符串,保存的名字
输出:		
输出	说明	备注
handles	图像句柄	更新的图形句柄,其中更新了 X, Y, V

6.14 ElasticPlot_3D

handles = ElasticPlot_3D(handles, S, n, flag, flag_amm, flag_save,
Name)

功能:根据柔度系数矩阵(S),在给定图形句柄上绘制三维图形。

输入:

输入	说明	备注	
handles	图像句柄		
S	柔度系数	$S=C^{-1}$, GPa	
	每个维度的数据	整数, 默认为 200	
n	点个数	至效,	
flag	计算的属性类别	{'G', 'E', 'v'}其中之一	
а	针对G和v时的	Ave, Min, Max, All 其中之一	
flag_amm	表现		
flag_save	是否保存	0 不保存, 1 保存	
Name	保存的名字	字符串,保存的名字	
输出:			
输出	说明	备注	
handles	图像句柄	更新的图形句柄,其中更新了 X, Y, V	

6.15 Plot_Slice

handles = Plot_Slice(handles, S, n, flag, slice_plane, flag_save, Name) 功能: 根据柔度系数矩阵(S), 在给定图形句柄上绘制三维图形切片图形。

输入	说明	备注
handles	图像句柄	
S	柔度系数	$S=C^{-1}$, GPa
10	每个维度的数据	整数,默认为 200
n	点个数	≝效,젰叭/Ŋ 200

flag	计算的属性类别	{'G', 'E', 'v'}其中之一
slice_plane	切片的面	由其法向量控制,如[111]
flag_save	是否保存	0 不保存, 1 保存
Name	保存的名字	字符串,保存的名字
输出:		
输出	说明	备注
handles	图像句柄	更新的图形句柄,其中更新了 X, Y, V

6.16 Elastic_Read

$[Cij, ComName, State] = Elastic_Read(filename)$

功能:从 EXCEL,MAT 或文本文件中读取弹性刚度矩阵(CLJ),返回弹性刚度矩阵、命名以及读取状态。

输入:	filename
709/ >•	juciunic

格式 后缀		具体格式说明
		①可以多个表单,但是表单之间数据格式保持一致。
		②数据列数保持为3列(二维材料)或者6列(三维材
		料或二维材料)。
EXCEL 文件	* v.lav/* v.la	③允许为每一个刚度系数添加名字,放在相应刚度系数
EXCEL 文件	T.XISX/T.XIS	的上一行的第一列,并且要加就需要全部加,否则不加
		则自动按照文件名+数字编号
		④允许刚度矩阵之间存在空行
		e.g. Example.xlsx
		①保持数据为3列或6列
		②允许为每个刚度系数添加名字,放在相应刚度系数的
文本格式	*.txt/*.dat/任意	上方,且名字中一定要有字母。注意:要加就全部加,
大 华竹八	后缀	否则就都不加。
		③刚度矩阵之间允许存在空行
		e.g. Example.txt
		①允许多个数据变量,每个变量的列数为3列或6列
MATLAB 数	*.mat	②最多允许一个命名变量,若有则需要给所有的刚度系
据格式		数依次命名。
		e.g. Example.mat

输出: Cij, ComName, State

Cij 弹性刚度矩阵	6x6xm double(m 为刚度矩阵的个数)
ComName 弹性刚度矩阵的命令	Z mx1 cell(m 为刚度矩阵的个数)
State 读取状态	'OK'

一些错误或警告, 如下表

错误或警告:

种类	问题	解决方案
No Data Error	没有数据或只有一个不	数据有问题,检查数据
	全的数据	
No Effective Data	没有有效的 CIJ	列数只能为 6 (二维或三维材料) 或者 3
Error		(二维材料)

6.17 D2toD3

Cij6 = D2toD3(Cij3)

功能:将 3x3 的弹性刚度矩阵(二维弹性刚度矩阵)转换为 6x6 弹性刚度矩阵,支持多个矩阵。

输入: Cij3

Cij3	二维材料弹性刚度矩阵	3x3	
输出: Cij6			
Cij6	三维材料弹性刚度矩阵	6x6	

6.18 D3toD2

Cij3 = D3toD2(Cij6)

功能:将 6x6 的弹性刚度矩阵转换为 3x3 弹性刚度矩阵,支持多个。

输入: Cij6

Cij6	三维材料弹性刚度矩阵	6x6
输出: Cij3		
Cij3	二维材料弹性刚度矩阵	3x3

6.19 Ang2Direction

[theta, phi] = Direction2Ang(x, y, z)

功能:将笛卡尔坐标系下坐标 x, y, z 转换为欧拉角。

输入	说明	备注
x	笛卡尔坐标 x	数或者矩阵
у	笛卡尔坐标 y	数或者矩阵,尺寸同 x

\boldsymbol{z}	笛卡尔坐标z数或者矩阵	车 ,尺寸同 <i>x</i>
输出:		
输出	说明	备注
theta	欧拉角(xy 面投影与 x 轴夹角) 数或者矩阵
phi	欧拉角(与z轴夹角)	数或者矩阵,尺寸同 theta

6.20 Direction2Ang

[x, y, z] = Ang2Direction(theta, phi)

功能: 将欧拉角转换为笛卡尔坐标系下坐标 x, y, z(模为 1)。

输入:

输出	说明		备注
theta	欧拉角(xy 面投影与 x 轴夹角)		数或者矩阵
phi	欧拉角(与 z 轴夹角)		数或者矩阵,尺寸同 theta
输出:			
输入	说明	备注	
x	笛卡尔坐标 x	数或者矩阵	
y	笛卡尔坐标 y	数或者矩阵,	尺寸同 x
Z	笛卡尔坐标 z	数或者矩阵,	尺寸同x

References:

- [1] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proceedings of the Physical Society. Section A. 65 (5) (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307
- [2] A. Marmier, Z. A. D. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker, K. E. Evans, ElAM: A computer program for the analysis and representation of anisotropic elastic properties, Comput. Phys. Commun. 181 (12) (2010) 2102-2115. https://doi.org/10.1016/j.cpc.2010.08.033
- [3] X. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics. 19 (9) (2011) 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026
- [4] Y. Tian, B. Xu, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals, International Journal of Refractory Metals and Hard Materials. 33 (2012) 93-106. https://doi.org/10.1016/j.ijrmhm.2012.02.021
- [5] C. Jasiukiewicz, T. Paszkiewicz, S. Wolski, Fourth-rank tensors of [[V2]2]-type and elastic material constants for 2D crystals, physica status solidi (b). 245 (3) (2008) 557-561. https://doi.org/10.1002/pssb.200777712