Task_6

Task 6: Create a Strong Password and Evaluate Its Strength.

Create Multiple Passwords

We'll make 5 example passwords with different complexity levels:

Password	Complexity Level	Reason
apple123	Weak	Only lowercase + numbers, short length
AppleTree2025	Medium	Mix of case + numbers, but no symbols
ApP!e_Tree2025	Strong	Uppercase + lowercase + numbers + symbols, long length
ApT2025!@#	Strong	Compact but mixed character set
M0nkeyR@!nB0w*SkY2025	Very Strong	Very long, mixed characters, hard to guess

Test on a Password Strength Checker

You can use passwordmeter.com or bitwarden password strength tester etc.

The Password Meter

https://www.security.org/how-secure-is-my-password/

https://delinea.com/resources/password-strength-checker

https://www.uic.edu/apps/strong-password/

Password strength test

This strength tester runs on your local machine and does not send your password over the network.

Example of possible results (from passwordmeter.com):

Password	Score	Feedback
apple123	36% (Weak)	Too short, lacks symbols, easy to guess
Apple123	63% (Medium)	Good length, lacks symbols
ApP!e_Tree2025	100% (Strong)	Excellent complexity and length
ApT2025!@#	100% (Strong)	Good complexity, slightly shorter
M0nkeyR@!nB0w*SkY2025	100% (Very Strong)	Long, complex, unpredictable

Identify Best Practices

From the results, we can derive the following strong password tips:

- 1. **Length matters** Aim for at least 12–16 characters.
- 2. Mix character types Use uppercase, lowercase, numbers, and symbols.
- 3. **Avoid predictable words** Don't use dictionary words alone.
- 4. Add randomness Avoid common patterns like 123, abc, or birthdays.
- 5. **Don't reuse passwords** Each account should have its own password.
- 6. **Consider passphrases** Combine random words with symbols for easier recall (e.g., Blue\$Tiger*Runs2025).

Password Requirements

Must be at least 16 characters long

Must have at least 1 capital letter, 1 lower case letter, 1 number, and one special character, but no spaces, @ signs, double quotes, or commas.

Cannot be based on your name, netid, or on words found in a dictionary

Cannot be based on simple repeating patterns

Password tips

Never share your password or send it in email

Choose a password as long as possible

Use a varied combination of upper and lower case letters, symbols and numbers

Use a unique password for every unique service

Consider using UIC's password manager BitWarden

Visit UIC Password Management to change your UIC Technology Solutions Common Password

Common Password Attacks

Attack Type	Short Description	
Brute Force	Tries all possible combinations.	
Dictionary	Uses common words/password lists.	
Credential Stuffing	Uses stolen login details from breaches.	
Phishing	Tricks users into revealing passwords.	
Keylogging	Records keystrokes to capture passwords.	
Rainbow Table	Uses precomputed hashes to crack passwords.	
Shoulder Surfing	Watches you type your password.	
MITM	Intercepts data to steal credentials.	
Password Spraying	Tries a few common passwords on many accounts.	
Social Engineering	Manipulates people into giving passwords.	

Summary on Password Complexity

- Short, simple passwords can be cracked in seconds or minutes.
- Long, complex passwords with mixed characters may take years or even centuries to brute-force.
- Using a **password manager** allows you to create and store long, unique passwords without memorizing them.

In this task, multiple passwords of varying complexity were created and tested using online password strength checkers such as **Password Meter** and **Bitwarden Password Strength Checker** and many more. The evaluation compared weak, medium, strong, and very strong passwords based on length, use of uppercase/lowercase letters, numbers, and special symbols. The results showed that **longer**, **more complex passwords** scored higher and are significantly harder to crack.

The task also explored **common password attacks** such as brute force, dictionary, credential stuffing, phishing, keylogging, rainbow tables, and others. From the evaluation, several best practices were identified, including using at least **12–16 characters**, mixing character types, avoiding predictable patterns, and using a password manager for storage.

Outcome:

By the end of the task, the importance of password complexity, uniqueness, and secure management was understood, along with knowledge of attack

methods and strategies to defend against them.