Assessment Schedule - 2014

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Evidence Statement

Q1	Expected C	overage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$p = \frac{1}{2}$		OR equivalent.		
(b)	$u^{4} = \left[\sqrt{18 \operatorname{cis} \frac{-\pi}{4}} \right]^{4}$ $= 324 \operatorname{cis}(-\pi) \text{ or } 324 \operatorname{cis}(\pi)$	$u^{4} = (4.24 \operatorname{cis}(-45^{\circ}))^{4}$ = 324 \text{cis}(-180^{\circ}) OR 324 \text{cis}(180^{\circ})	OR equivalent.		
(c)	$x-3 = \sqrt{33-4x}$ $(x-3)^2 = 33-4x$ $x^2 - 2x - 24 = 0$ x = 6 OR $x = -4CHECK: x = 6 6 = \sqrt{9} + 3CHECK: x = -4 -4 = \sqrt{49} + 3Therefore there is one solution: x = -4$		x = 6 and -4 both given as solutions. OR $x = 6$ CRO	x = 6 chosen after discarding $x = -4$	
(d)	$z^{4} = -4k^{2}i = 4k^{2}cis\left(\frac{-\pi}{2}\right) \text{ OR } 4k$ $z_{1} = \sqrt{2k}cis\left(\frac{-\pi}{8}\right) \text{ OR } z_{1} = \sqrt{2k}ci$ $z_{2} = \sqrt{2k}cis\left(\frac{3\pi}{8}\right) \text{ OR } z_{2} = \sqrt{2k}ci$ $z_{3} = \sqrt{2k}cis\left(\frac{7\pi}{8}\right) \text{ OR } z_{3} = \sqrt{2k}ci$ $z_{4} = \sqrt{2k}cis\left(\frac{11\pi}{8}\right) \text{ or } z_{4} = \sqrt{2k}ci$	$\operatorname{is}\left(\frac{15\pi}{8}\right)$ $\operatorname{is}\left(\frac{-13\pi}{8}\right)$ $\operatorname{is}\left(\frac{-9\pi}{8}\right)$	One correct solution. OR 4 correct arguments in degrees or radians.	All correct solutions given.	
(e)	Let $z = x + iy$ x + iy - 1 + 2i = x + iy + 1 (x - 1) + (y + 2)i = (x + 1) + yi $\sqrt{(x - 1)^2 + (y + 2)^2} = \sqrt{(x + 1)^2 + y^2}$ $(x - 1)^2 + (y + 2)^2 = (x + 1)^2 + y^2$ $x^2 - 2x + 1 + y^2 + 4y + 4 = x^2 + 2x$ -2x + 4y + 5 = 2x + 1 4y - 4x + 4 = 0 $y - x + 1 = 0$ or	$+1+y^2$	Correct 3rd line.	Correct 5th line. $(x-1)^2 + \dots$	Correct expression for locus.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 partial solution	1u	2u	3u	1r	2r	1t with 1 minor error	1 t

Q2	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$x = 2 \pm 2\sqrt{3}i$ or $x = 2 \pm \sqrt{12}i$	Correct solution.		
(b)	$w = 2\operatorname{cis} \frac{\pi}{3}$ $w^{4} = 16\operatorname{cis} \frac{4\pi}{3} \qquad \text{OR} w^{4} = 16\operatorname{cis}(240^{\circ})$ $w^{4} = -8 - 8\sqrt{3}i \qquad \text{OR} w^{4} = -8 - 13.86i$	OR Equivalent rectangular form.		
(c)	$w_{1} = 2 - 3i w_{2} = 2 + 3i$ $[w - (2 - 3i)][w - (2 + 3i)]$ $= w^{2} - 4w + 13$ $\Rightarrow g(x) = (w^{2} - 4w + 13)(kw + c)$ $\Rightarrow k = 3 c = -2$ Coefficient of w $-4c + 13k$ $= 47$ $\Rightarrow A = 47 OR A = \frac{94 - 141i}{2 - 3i}$ $w_{3} = \frac{2}{3}$	$w^{2} - 4w + 13$ OR $A = 47$ OR $w_{2} = 2 + 3i$ and $w_{3} = \frac{2}{3}$ OR CRO	Correct value of A and other 2 solutions correct. $A = 47$ $w_2 = 2 + 3i$ $w_3 = \frac{2}{3}$	
(d)(i) (ii)	Circle centre (3,4), radius 2	Correct locus drawn.	Correct locus drawn and correct maximum value.	
(e)	$\frac{1+3i}{p+pi} = \frac{p-qi+3pi+3q}{p^2+q^2}$ $= \frac{p+3q+(3p-q)i}{p^2+q^2}$ $Arg(z) = \frac{\pi}{4} \to \tan(Arg(z)) = 1$ $Re(z) = Im(z) \text{ if } Arg(z) = \frac{\pi}{4}$ $\tan\left(\frac{\pi}{4}\right) = \frac{3p-q}{p+3q}$ $\frac{3p-q}{p+3q} = 1$ $p-2q = 0$	Correct expression without i² (1st line).	$Arg(z) = \frac{\pi}{4}$ interpreted to give a correct relationship such as $\tan(Arg(z)) = \frac{Im(z)}{Re(z)}$	Correct solution.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 partial solution	1u	2u	3u	1r	2r	1t with 1 minor error	1 t

Q3	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$25-16\sqrt{3}$	Correct expression.		
(b)	r = -8 - 5i marked correctly on diagram.	Correct point indicated on diagram.		
(c)	$px^{2}-4px+1=0 \text{ has no real solutions} \rightarrow b^{2}-4ac < 0$ $16p^{2}-4p < 0$ $4p(4p-1) < 0$ 0	Correct inequation (2nd line). OR CRO	Correct solution.	
(d)	$\overline{z}^{2} + \frac{1}{z^{2}} = (3 - 2i)^{2} + \frac{1}{(3 + 2i)^{2}}$ $= 5 - 12i + \frac{1}{5 + 12i}$ $= 5 \frac{5}{169} - 12 \frac{12}{169}i \text{ OR } \frac{850}{169} - \frac{2040}{169}i \text{ OR } 5.03 - 12.07i$	Correct expansion (2nd line). OR CRO.	Correct expression.	
(e)(i)	Roots $\alpha, \beta, \gamma \Rightarrow (x - \alpha)(x - \beta)(x - \gamma) = 0$ $x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\gamma + \beta\gamma + \alpha\beta)x - \alpha\beta\gamma = 0$ Since $ax^3 + bx^2 + cx + d = 0$ $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$ Comparing coefficients of $x^2 : \alpha + \beta + \gamma = \frac{-b}{a}$ of $x : \alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}$ of constant term : $\alpha\beta\gamma = \frac{-d}{a}$ $\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2 = \alpha\beta\gamma(\alpha + \beta + \gamma)$ $= \frac{-d}{a} \times \frac{-b}{a}$ $= \frac{bd}{a^2}$	One correct proof.	3 correct proofs.	All 4 proofs correct.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 partial solution	1u	2u	3u	1r	2r	1t with 1 minor error	1 t

Cut Scores

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 6	7 – 12	13 – 19	20 – 24