Authentication: Part 6

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- J. Kurose, K. Ross, "Computer Networking: A Top Down Approach", Sixth Edition, Pearson Education, 2013
- C. Kaufman, R. Perlman, M. Speciner, "Network Security: Private Communication in a Public World", Pearson Education, 2nd edition, 2002

NPTEL

- Protocol shown in fig. Needham-Schroeder $\square N_1$, N_2 and N_3 are nonces Protocol
- Nonce N_1 is used to protect against foll. threat:
 - \square Trudy stole an old key ($K_{Bob,old}$) of Bob, after which Bob changed his key to K_{Bob} ; also, she recorded msg. 2 when Alice earlier contacted KDC for getting shared key with Bob
 - ☐ Then Trudy waited for Alice to contact KDC; Trudy replayed recorded msg. 2 and then impersonated herself as Bob to Alice

- String "Bob" is included in msg. 2 to protect against following threat:
 - ☐ Trudy modifies "Bob" to "Trudy" in msg. 1
 - ☐ Then Trudy tricks Alice into talking to herself and thinking that she is talking to Bob

Note:

- ☐ Needham-Schroeder protocol has been criticized for unnecessarily doubly encrypting the ticket to Bob
- lacktriangled no loss in security if ticket to Bob sent from KDC to Alice without encrypting with K_{Alice}

- In msg. 3, Alice sends a challenge $(K_{AB}(N_2))$ to Bob
 - \square Bob responds to challenge by sending $K_{AB}(N_2-1)$ in msg. 4, which proves that he knows K_{AB}
- In msg. 4, Bob also sends a challenge $(K_{AB}(N_3))$ to Alice
 - \square Alice responds to challenge by sending $K_{AB}(N_3-1)$ in msg. 5 ,which proves that she knows K_{AB}
- Note: in above protocols, response to challenge $K_{AB}(N)$ is $K_{AB}(N-1)$; alternatively, response could have been N

- Suppose a block cipher with Electronic Code Book (ECB) is used to send msg. 4 such that it is of the following form: $K_{AB}(N_2-1)$, $K_{AB}(N_3)$
- An intruder, Trudy, can launch following attack:
 - First, she eavesdrops on authentication exchange between Alice and Bob shown in fig., and records msg. 3
 - ☐ Later, she sends the recorded msg. 3 to Bob
 - Bob responds with $K_{AB}(N_2-1)$, $K_{AB}(N_4)$, where $N_4 \neq N_3$
 - \square Trudy cannot compute $K_{AB}(N_4-1)$; instead, she opens a new connection to Bob and sends $K_{AB}(N_4)$
 - \square Bob responds with $K_{AB}(N_4-1)$, $K_{AB}(N_5)$
 - \Box Trudy then uses $K_{AB}(N_4-1)$ to complete the first authentication exchange
 - Note that the above attack is an instance of the "reflection attack"
- Defence against above attack:
 - In msg. 4, encryption should be done in such a way that $K_{AB}(N_2-1)$ cannot be deduced from $K_{AB}(N_2-1,N_3)$ if K_{AB} unknown

- There is the foll. vulnerability in the Needham-Schroeder protocol shown in fig.
- Suppose initially, Alice's key is J_{Alice} ; also, when Alice contacts KDC for a ticket to talk to Bob, an intruder, Trudy, records msgs. 1 and 2 of the exchange; also, in msg. 2, J_{AB} was the shared key generated by KDC
- Later, Trudy finds out J_{Alice} and uses it to find J_{AB} ; Alice suspects that her key has been stolen and changes her key to K_{Alice}
- However, even after Alice changes her key, Trudy can still use J_{AB} and the old ticket $K_{Bob}(J_{AB},$ "Alice") to impersonate herself as Alice to Bob
- To defend against this vulnerability:
 - wo additional messages used at the beginning of the protocol, in which Alice asks for a nonce from Bob and Bob sends a nonce to Alice
 - ☐ resulting protocol called "Expanded Needham-Schroeder Protocol"

Expanded Needham-Schroeder Protocol

- In msg. 2, Bob sends $K_{Bob}(N_B)$, where N_B is nonce generated by Bob
- KDC includes N_B in the ticket to Bob
- Vulnerability described on previous slide is fixed because:
 - old recorded exchanges of Alice with KDC will not enable Trudy to authenticate as Alice to Bob since nonce in old ticket will not match new nonce sent by Bob
 - \square also, after Alice changes her key to K_{Alice} , KDC knows that her key is now K_{Alice} ; so Trudy will not be able to talk to KDC using old key J_{Alice}

