VITMO

Системы ввода/вывода

Лабораторная работа №3 «Изучение протоколов передачи данных между устройствами»

Преподаватели Сергей Быковский Сергей Табунщик

Лабораторная работа 3

- Tema: «Изучение протоколов передачи данных между устройствами»
- **Цель:** познакомится с принципами обмена данными между устройствами, алгоритмами обмена и форматами передачи данных на примере интерфейсов I2C, SPI, 1-Wire.
- ПО для выполнения работы:
 - Logic 2

Материалы

- ✓ Документация на датчик температуры и влажности DHT-11
 - https://static.chipdip.ru/lib/185/DOC001185323.pdf

- ✓ Документация на датчик ВМР280
 - https://cdn-shop.adafruit.com/datasheets/BST-BMP280-DS001-11.pdf

VİTMO

Интерфейс SPI

Интерфейс SPI

Интерфейс SPI | Режимы работы (1)

- CPOL (Clock Polarity) определяет начальный уровень (полярность) сигнала синхронизации.
- СРНА (Clock Phase) фаза синхронизации, определяет по какому из фронтов синхронизирующего сигнала производить выборку данных.

Mode	CPOL	CPHA
SPI Mode 0	0	0
SPI Mode 1	0	1
SPI Mode 2	1	0
SPI Mode 3	1	1

Интерфейс SPI | Режимы работы (2)

- **CPOL = 0** исходное состояние сигнала синхронизации -- низкий уровень;
- **CPOL = 1** исходное состояние сигнала синхронизации -- высокий уровень;
- **СРНА = 0** выборка данных производится по переднему фронту (переключению) сигнала синхронизации. То есть по переключению из основного в противоположное ему;
- **СРНА = 1** выборка данных производится по заднему фронту (переключению) сигнала синхронизации. То есть по переключению обратно к основному из противоположного;

VİTMO

Интерфейс I2C

Интерфейс I2C | протокол

Сигнал СТАРТ

или повторный

CTAPT

Сигнал СТОП

CTAPT

или повторный

Сигнал подтверждения

от приёмника

Интерфейс I2C | адресация

Первый байт после СТАРТ-состояния - адресный байт

Служебный пакет - запрос к Slave

Интерфейс I2C | Запись

Интерфейс I2C | Чтение

VİTMO

Интерфейс 1-Wire

Интерфейс 1-Wire

https://musbench.com/all/onewire/

Интерфейс 1-Wire | Протокол

VİTMO

Задание

Задание к лабораторной работе

- 1. Подключить комплект с контроллер с датчиком и логическим анализатором к компьютеру
- 2. С помощью логического анализатора записать временную диаграмму обмена данными по сигнальным линиям в течении трех транзакций обмена.
- 3. Расшифровать протокол обмена данными.
- 4. Перевести значение физической величины, заданной в варианте задания, в человекочитаемый формат.
- 5. Нарисовать временную диаграмму передачи другого, отличного от полученных, значения физической величины.
- 6. Определить скорость интерфейса.
- 7. Оформить отчет по работе в электронном формате

Варианты

Nº	Датчик	Интерфейс	Физическая	Единицы
варианта			величина	измерения
1	BMP280	I2C	Температура	Градусы
				Цельсия
2	BMP280	SPI	Температура	Градусы
				Цельсия
3	DHT-11	Single wire	Температура	Градусы
			Влажность	Цельсия и
				проценты

Требования к отчету

- 1. На титульном листе должны быть приведены следующие данные:
 - а. Название дисциплины
 - b. Номер и название лабораторной работы
 - с. ФИО исполнителя и группа
- 2. Во введении указываются цели и задачи работы
- 3. В основной части приводятся временные диаграммы с расшифровкой протоколов обмена данными и переводом физических величин в человекочитаемый формат.
- 4. Приводятся самостоятельно сформированные временные диаграммы передачи других значений полученных физических величин.

Пример анализа протокола

Пример работы с датчиками

$$25/60 = x/5$$
; x = $25/60 * 5 = 2.083 V = 2083 mV$

Протокол обмена с датчиком 18В20

Формат регистра термпературы

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
LS Byte	2^3	2 ²	21	2°	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
MS Byte	S	S	S	S	S	2 ⁶	2 ⁵	24

Значение температуры: 0х019А -> Расчетное значение: 25.625 С

Спасибо за внимание!

ITSMOre than a UNIVERSITY