Ensemble Learning

- It is a machine learning model that combines the predictions from two or more models
- The predictions are combined using simple statistics such as voting or averaging
- The models that contribute to ensemble are called ensemble members
- They may be of the same type or of different types
- They may or may not be trained on the same training data
- Eg: Bagging, Boosting

Bagging

- Bagging, also known as Bootstrap aggregating, is an ensemble learning technique that helps to improve the performance and accuracy of machine learning algorithms.
- It is used to deal with bias-variance trade-offs and reduces the variance of a prediction model.
- Bagging avoids overfitting of data and is used for both regression and classification models, specifically for decision tree algorithms.
- Eg : used in Random forest model

Bootstrapping

Bootstrapping is the method of randomly creating samples of data out of a population with replacement to estimate a population parameter.

Steps to perform bagging

- **Step 1**: Multiple subsets are created from the original data set with equal tuples, selecting observations with replacement.
- Step 2: A base model is created on each of these subsets.
- **Step 3**: Each model is learned in parallel with each training set and independent of each other.

- **Step 4**: The final predictions are determined by combining the predictions from all the models.

Boosting

- Boosting is an ensemble modeling technique that attempts to build a strong classifier from the number of weak classifiers.
- It is done by building a model by using weak models in series.
- Firstly, a model is built from the training data.
- Then the second model is built which tries to correct the errors present in the first model.
- This procedure is continued and models are added until either the complete training data set is predicted correctly or the maximum number of models are added.
- Eg : Adaboost

Steps to perform Boosting

- **Step 1:** The base algorithm reads the data and assigns equal weight to each sample observation.
- **Step 2:** False predictions made by the base learner are identified. In the next iteration, these false predictions are assigned to the next base learner with a higher weightage on these incorrect predictions.
- Step 3: Repeat step 2 until the algorithm can correctly classify the output.

Therefore, the main aim of Boosting is to focus more on miss-classified predictions

Difference between Bagging and Boosting

S.NO	Bagging	Boosting
1.	The simplest way of combining predictions that belong to the same type.	A way of combining predictions that belong to the different types.
2.	Aim to decrease variance, not bias.	Aim to decrease bias, not variance.
3.	Each model receives equal weight.	Models are weighted according to their performance.
4.	Each model is built independently.	New models are influenced by the performance of previously built models.
5.	Different training data subsets are selected using row sampling with replacement and random sampling methods from the entire training dataset.	Every new subset contains the elements that were misclassified by previous models.
6.	Bagging tries to solve the over-fitting problem.	Boosting tries to reduce bias.
7.	If the classifier is unstable (high variance), then apply bagging.	If the classifier is stable and simple (high bias) the apply boosting.
8.	In this base classifiers are trained parallelly.	In this base classifiers are trained sequentially.
9	Example: The Random forest model uses Bagging.	Example: The AdaBoost uses Boosting techniques