Electronics 2 FINAL

Professor Cliver ENT-2156

(EEET-221 36907)

Name: _	
Class time (ex. 1 p.m.):	

- 1. If $I_{B+}=214$ nA and $I_{B-}=188$ nA determine the input offset current (I_{OS})
 - (a) 26 nA
 - (b) 214 nA
 - (c) 402 nA
 - (d) 201.00 nA
- 2. If $V_{IN1}=7V, V_{IN2}=1V, V_{O(SAT)}=\pm 15 V$ and, $R_L=5K\Omega$ in figure 1, determine the output current I_L of the comparitor (the current through R_L).
 - (a) 1.20 mA
 - (b) 0.80 mA
 - (c) -3.00 mA
 - (d) 3.00 mA

Figure 1: Comparitor

- 3. An op-amp has a slew-rate of $4\frac{V}{\mu s}$ and is configured as a non-inverting amplifier $R_F = 9.9K\Omega$ and $R_I = 3.2K\Omega$. If a 8.00mV peak sine wave is applied to the non-inverting input, determine the slew rate limiting frequency (maximum sine wave frequency).
 - (a) 19.4 MHz
 - (b) 79.6 MHz
 - (c) 122.1 MHz
 - (d) 246.2 MHz

- 4. An op-amp has a unity gain frequency of 4 MHz and is configured as a non-inverting amplifier $R_f = 9.8K\Omega$ and $R_i = 3.2K\Omega$. Calculate the rise time (t_{CL}) associated with the amplifier.
 - (a) 4.00 ns
 - (b) 1015.63 ns
 - (c) 0.98 ns
 - (d) 355.47 ns

5. Find V_- (voltage at the inverting input) if $V_{in}=1.06$ V, $R_i=62$ K Ω , $R_f=18$ K Ω and $R_L=134$ K Ω in Figure 2.

Figure 2: Inverting Amplifier

6. Find I_f (current in R_f) if $V_{in}=0.20\mathrm{V},\,R_i=2\mathrm{K}\Omega,\,R_f=5\mathrm{K}\Omega$ and $R_L=133\mathrm{K}\Omega$ in Figure 3.

Figure 3: Non-Inverting Amplifier

7. Find V_- (voltage at the inverting input) if $V_{in}=0.22$ V, $R_i=40$ K Ω , $R_f=12$ K Ω and $R_L=141$ K Ω in Figure 4.

Figure 4: Non-Inverting Amplfier

8. Find the noise gain if $V_{in}=0.54\mathrm{V},~R_i=14\mathrm{K}\Omega,~R_f=17\mathrm{K}\Omega$ and $R_L=151\mathrm{K}\Omega$ in Figure 5.

Figure 5: Amplifier

9. Find I_L (current in R_L) if $V_{in}=0.58$ V, $R_i=65$ K Ω , $R_f=21$ K Ω and $R_L=139$ K Ω in Figure 6.

Figure 6: Non-Inverting Amplifier

10. Find V_L if $V_{io}=4{\rm mV},\,R_i=2{\rm K}\Omega,\,R_c=2{\rm K}\Omega$ and $R_f=153{\rm K}\Omega$ in Figure 7.

Figure 7: Input Offset Voltage

11. Find the closed loop 3-dB bandwidth for a non-inverting amplifier if the unity gain frequency $B=3{\rm MHz},\ R_i=2{\rm K}\Omega$ and $R_f=177{\rm K}\Omega.$

The problems on this page both use the same figure.

12. Sketch the input-output characteristic curve given $R_1 = 9.3K\Omega$, $R_2 = 3.9K\Omega$ and $V_{O(SAT)} = \pm 12V$ in Figure 8.

Figure 8: Inverting Schmitt Trigger

13. Sketch the output curve given the input curve in Figure 9 and $R_1=9.5K\Omega, R_2=3.5K\Omega$ and $V_{O(SAT)}=\pm13V$ in Figure 8.

Figure 9: Input Output Curve

The problems on this page both use the same figure.

14. Sketch the input-output characteristic curve given $R_1 = 9.7K\Omega$, $R_2 = 3.2K\Omega$ and $V_{O(SAT)} = \pm 14V$.

15. Sketch the output curve given the input curve and $R_1 = 8.1K\Omega$, $R_2 = 4.7K\Omega$ and $V_{O(SAT)} = \pm 14V$.

The problems on this page both use the same figure.

16. Determine the current I_1 given all resistors are $= 2.0K\Omega$ except R_{1b} that is $= 4.6K\Omega$ and $V_{in1} = 6V$ and $V_{in2} = 13V$.

17. Using the same circuit and values, determine I_2 .

18. A 4-pole high-pass Butterworth filter has a 3-dB cutoff of 6 MHz. Use figure 8-7 to determine the decibel response at 2 MHz.

19. Design a two-pole low-pass Butterworth active filter using the unity-gain amplifier (below) to achieve a 3dB frequency of 6 KHz. Select the two filter resistances at $12\mathrm{K}\Omega$ each. Starting values for C_1 and C_2 are 1.414 and 0.7071, respectively.

- 20. What is the minimum order needed for a high-pass filter that has:
 - (a) relative amplitude \leq 0.100 dB for f \geq 4.0 KHz.
 - (b) relative amplitude \geq 30.0 dB for f \leq 0.600 KHz.

TABLE 8-1 Data for determining pass-band relative amplitude response for Butterworth filters flfc for Low-Pass Amplitude felf for High-Pass (dB) n = 2n = 3n = 4n = 6n = 7-0.010.219 0.363 0.468 0.545 0.603 0.648 -0.020.261 0.328 0.408 0.511 0.584 0.639 0.681 -0.050.476 0.573 0.640 0.690 0.727 -0.10.391 0.534 0.625 0.687 0.731 0.764 -0.20.466 0.601 0.683 0.737 0.775 0.804 -0.50.591 0.704 0.810 0.874 0.839 0.860 -10.713 0.798 0.845 0.894 0.908 0.875 0.914 0.935 0.948 0.956 0,962 -3.01

1.	What has been the most confusing point so far in the class?