

Disciplina - BC1419

Título

Docente: Professor

Autor A RA: 000000000
Autor B RA: 11111111
Autor C RA: 22222222
Autor D RA: 33333333

Santo André Data

Sumário

	Sumário		
1	${ m INTRODUÇ\~AO\ldots}$ 2		
1.1	Transformada normalizada de Fourier		
1.2	Propriedades		
1.2.1	Transformada da derivada com relação a x		
1.2.2	Transformada inversa da derivada com relação a p		
2	TRANSFORMADA DE FUNÇÕES 4		
2.1	Constante		
2.2	Delta de Dirac		
2.3	Degrau de Heaviside 4		
2.4	Função retangular		
2.5	Função triangular		
2.6	Função sinc		
2.7	Função sinal		
2.8	Pente de Dirac		
2.9	Potência		
2.10	Potência negativa		
2.11	Exponencial		
2.12	Seno		
2.13	Cosseno		
2.14	Gaussiana		
2.15	Secante hiperbólica		
3	METODOLOGIA		
3.1	Lista de materiais		
3.2	Montagem experimental		
3.3	Procedimento experimental		
4	RESULTADOS E ANÁLISE DE DADOS 8		

5	CONCLUSÃO	9
Referênc	ias	10
	REFERÊNCIAS	10
A	DEMONSTRAÇÕES	11
В	PROPAGAÇÃO DE INCERTEZAS	12

Resumo

1 Introdução

1.1 Transformada normalizada de Fourier

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{i\frac{p}{\hbar}x} \tag{1.1}$$

$$\langle p|x\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{-i\frac{p}{\hbar}x} \tag{1.2}$$

$$|\psi\rangle = \int \psi(x) |x\rangle dx = \int \hat{\psi}(p) |p\rangle dp$$
 (1.3)

$$\psi(x) = \langle x | \psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \hat{\psi}(p) e^{i\frac{p}{\hbar}x} dp$$
 (1.4)

$$\hat{\psi}(p) = \langle p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \psi(x)e^{-i\frac{p}{\hbar}x} dx \qquad (1.5)$$

1.2 Propriedades

1.2.1 Transformada da derivada com relação a x

Seja

$$D_x |\psi\rangle = \left| \frac{\mathrm{d}\psi}{\mathrm{d}x} \right\rangle = \int \frac{\mathrm{d}\psi}{\mathrm{d}x} |x\rangle \,\mathrm{d}x$$
 (1.6)

então

$$\langle p|D_x|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \frac{\mathrm{d}\psi}{\mathrm{d}x} e^{-i\frac{p}{\hbar}x} \,\mathrm{d}x$$
 (1.7)

$$\langle p|D_x|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \psi(x)e^{-i\frac{p}{\hbar}x}\Big|_{-\infty}^{+\infty} + \frac{ip}{\hbar} \frac{1}{\sqrt{2\pi\hbar}} \int \psi(x)e^{-i\frac{p}{\hbar}x} dx \qquad (1.8)$$

$$\langle p|D_x|\psi\rangle = \frac{ip}{\hbar}\hat{\psi}(p) = \frac{i}{\hbar}\langle p|p\psi\rangle$$
 (1.9)

1.2.2 Transformada inversa da derivada com relação a p

Seja

$$D_p |\psi\rangle = \left| \frac{\mathrm{d}\psi}{\mathrm{d}p} \right\rangle = \int \frac{\mathrm{d}\hat{\psi}}{\mathrm{d}p} |p\rangle \,\mathrm{d}p$$
 (1.10)

então

$$\langle x|D_p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \frac{\mathrm{d}\hat{\psi}}{\mathrm{d}p} e^{i\frac{p}{\hbar}x} \,\mathrm{d}p$$
 (1.11)

$$\langle x|D_p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \,\hat{\psi}(p)e^{i\frac{p}{\hbar}x} \Big|_{-\infty}^{+\infty} - \frac{ix}{\hbar} \frac{1}{\sqrt{2\pi\hbar}} \int \hat{\psi}(p)e^{i\frac{p}{\hbar}x} \,\mathrm{d}p \tag{1.12}$$

$$\langle x|D_p|\psi\rangle = \frac{-ix}{\hbar}\psi(x) = \frac{-i}{\hbar}\langle x|x\psi\rangle$$
 (1.13)

2 Transformada de funções

2.1 Constante

$$|f\rangle = \int A |x\rangle dx$$
 (2.1)

$$\langle p|f\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int Ae^{-i\frac{p}{\hbar}x} dx = A\sqrt{2\pi\hbar}\delta(p)$$
 (2.2)

Onde foi usado que

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx} \, \mathrm{d}x = \delta(k) \tag{2.3}$$

2.2 Delta de Dirac

$$|\delta\rangle = \int \delta(x) |x\rangle dx$$
 (2.4)

$$\langle p|\delta\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \delta(x)e^{-i\frac{p}{\hbar}x} dx = \frac{1}{\sqrt{2\pi\hbar}}$$
 (2.5)

2.3 Degrau de Heaviside

$$|\Theta\rangle = \int \Theta(x) |x\rangle dx$$
 (2.6)

$$\langle p|\Theta\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \Theta(x)e^{-i\frac{p}{\hbar}x} \,\mathrm{d}x =$$
 (2.7)

- 2.4 Função retangular
- 2.5 Função triangular
- 2.6 Função sinc
- 2.7 Função sinal
- 2.8 Pente de Dirac
- 2.9 Potência

$$|x^n\rangle = \int x^n |x\rangle \,\mathrm{d}x \tag{2.8}$$

$$\langle p|x^n\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int x^n e^{-i\frac{p}{\hbar}x} dx = (i\hbar)^n \frac{\partial^n}{\partial p^n} \frac{1}{\sqrt{2\pi\hbar}} \int e^{-i\frac{p}{\hbar}x} dx$$
 (2.9)

$$\langle p|x^n\rangle = \sqrt{2\pi\hbar}(i\hbar)^n\delta^{(n)}(p) = \sqrt{2\pi\hbar^{2n+1}}i^n\delta^{(n)}(p)$$
 (2.10)

- 2.10 Potência negativa
- 2.11 Exponencial
- 2.12 Seno
- 2.13 Cosseno
- 2.14 Gaussiana

Seja a gaussiana

$$|g\rangle = \frac{1}{\sqrt{2\pi\sigma^2}} \int e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx \qquad (2.11)$$

então

$$D_x |g\rangle = \frac{1}{\sqrt{2\pi\sigma^2}} \int -\frac{x-\mu}{\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx \qquad (2.12)$$

$$D_x |g\rangle = \frac{1}{\sqrt{2\pi\sigma^2}} \int -\frac{x}{\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx + \frac{1}{\sqrt{2\pi\sigma^2}} \int \frac{\mu}{\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} |x\rangle dx \quad (2.13)$$

$$D_x |g\rangle = -\frac{1}{\sigma^2} |xg\rangle + \frac{\mu}{\sigma^2} |g\rangle \tag{2.14}$$

$$\frac{i}{\hbar} |pg\rangle = -\frac{i\hbar}{\sigma^2} D_p |g\rangle + \frac{\mu}{\sigma^2} |g\rangle \tag{2.15}$$

$$D_p |g\rangle = -\frac{\sigma^2}{\hbar^2} |pg\rangle - \frac{i\mu}{\hbar} |g\rangle \qquad (2.16)$$

$$\langle p|D_p|g\rangle = -\frac{\sigma^2}{\hbar^2}\langle p|pg\rangle - \frac{i\mu}{\hbar}\langle p|g\rangle$$
 (2.17)

$$\frac{\mathrm{d}\hat{g}}{\mathrm{d}p} = -\frac{\sigma^2 p}{\hbar^2} \hat{g} - \frac{i\mu}{\hbar} \hat{g} \tag{2.18}$$

$$\int_{\hat{g}(0)}^{\hat{g}(p)} \frac{1}{\hat{g}} \, \mathrm{d}\hat{g} = \int_{0}^{p} -\frac{\sigma^{2} p}{\hbar^{2}} - \frac{i\mu}{\hbar} \, \mathrm{d}p \tag{2.19}$$

$$\ln \hat{g}(p) = -\frac{\sigma^2 p^2}{2\hbar^2} - \frac{i\mu p}{\hbar} \tag{2.20}$$

$$\hat{g}(p) = e^{-\frac{\sigma^2 p^2}{2\hbar^2} - \frac{i\mu p}{\hbar}} \tag{2.21}$$

2.15 Secante hiperbólica

3 Metodologia

- 3.1 Lista de materiais
 - primeiro
- 3.2 Montagem experimental
- 3.3 Procedimento experimental

4 Resultados e análise de dados

5 Conclusão

Referências

A Demonstrações

B Propagação de incertezas

i	a	b
1	A	В
2	С	D

Tabela 1 – Exemplo de tabela.

Figura 1 – Exemplo de imagem.