CS 715: Advanced Topics in Algorithmic Game Theory and Mechanism Design

Sujit Prakash Gujar

Artificial Intelligence Laboraory sujit.gujar@epfl.ch

Lecture 2

Agenda

- Game Theory
 - Mixed Strategies
 - Utility Theory
 - Von Neumann and Morgenstern Theorem for zero sum games
 - N Player games and Nash Theorem
 - Games with Incomplete Information

Agenda

- Game Theory
 - Mixed Strategies
 - Utility Theory
 - Von Neumann and Morgenstern Theorem for zero sum games
 - N Player games and Nash Theorem
 - Games with Incomplete Information
- Mechanism Design Theory
 - Introduction
 - Desirable Properties of a Mechanism
 - Gibbard-Satterthwaite Impossibility Theorem
 - Quasi-linear Environment

2 / 29

◆□ > ◆□ > ◆ ≥ > ◆ ≥ >

Mixed Strategies (1)

- In matching pennies game, row player tosses a coin and if H, then play H, else T.
- Similarly column player plays her action.
- Row player expected payoff = Pr(H,H) Pr(H,T) Pr(T,H) + Pr(T,T) = 0
- Column Player expected utility = -Pr(H,H) + Pr(H,T) + Pr(T,H) Pr(T,T)
- Such randomization over actions is called as mixed strategy

Mixed Strategies (2)

- Say for player i, there are i_k actions, $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$.
- She decides to play these actions with probabilities $p_{i_1}, p_{i_2}, \ldots, p_{i_k}$ with $p_{i_1} + p_{i_2} + \ldots + p_{i_k} = 1$
- $\Delta(S_i) = i_k$ dimensional simplex, representing all possible randomization over S_i .
- For player *i*, expected payoff =

$$\sum_{s_{-i} \in S_{-i}} p_{i_1} * p(s_{-i}) * U(a_{i_1}, s_{-i}) + p_{i_2} * p(s_{-i}) * U(a_{i_2}, s_{-i})$$

$$+ \ldots + p_{i_k} * p(s_{-i}) * U(a_{i_k}, s_{-i})$$

This leads to Utility Theory

Utility Theory (1)

Let X be the set of outcomes. \succ be the preference of a player over the set of outcomes.

Axioms

- Completeness: every pair of outcomes is ranked
- Transitivity: If $x_1 \succ x_2$ and $x_2 \succ x_3$ then $x_1 \succ x_3$.
- Substitutability: If $x_1 \sim x_2$ then any lottery in which x_1 is substituted by x_2 is equally preferred.
- Decomposability: two different lotteries assign same probability to each outcome, then player is indifferent between these two lotteries
- Monotonicity: If $x_1 > x_2$ and p > q then $[x_1 : p, x_2 : 1 p] > [x_1 : q, x_2 : 1 q]$
- Continuity: If $x_1 \succ x_2 \succ x_3$, $\exists p \ni x_2 \sim [x_1 : p, x_3 : 1 p]$

Utility Theory (2)

Von Neumann and Morgenstern

Theorem

Given a set of outcomes X and a preference relation on X that satisfies above six axioms, there exists a utility function $u: X \to [0,1]$ with the following properties:

$$u(x_1) \geq u(x_2) iff x_1 \succ x_2$$

$$u([x_1:p_1;x_2:p_2;\ldots;x_m:p_m]) = \sum_{j=1}^m p_j u(x_j)$$

Zero Sum Games

- Recall: Zero sum games where one player's gain = other player's loss.
- We studied saddle points and pure strategy equilibrium
- Matching pennies: no pure strategy equilibrium
- Can it have a mixed strategy equilibrium?
- Yes.
- Let p and q be the mixed strategies of row and column player respectively.

Equilibrium in Zero Sum Games

Von Neumann and Morgenstern showed:

Theorem

For every $(m \times n)$ matrix A, there is a stochastic row vector $p^* = (p_1^*, \dots, p_n^*)$ and a stochastic column vector $q^{*T} = (q_1^*, \dots, q_n^*)$ such that

$$\min_{q \in \Delta(S_2)} p^*Aq = \max_{p \in \Delta(S_1)} pAq^*$$

 (p^*,q^*) is equilibrium. Matching Pennies Game: $p^*=(0.5,0.5)=q^{*T}$

n-player Games

Recall, n player game in strategic form is represented as

$$\Gamma = < N, (S_i)_{i \in N}, (U_i)_{i \in N} >$$

$$N$$
: Set of players $N = \{1, 2, \dots, n\}$

 \hat{S}_1 : Strategies available to player 1

 $S_2:$ Strategies available $U_1:S o\mathbb{R}$ to player 2 $U_2:S o\mathbb{R}$

:

players

 S_n : Strategies available $U_n:S o\mathbb{R}$ to player n

 $S = S_1 \times S_2 \times ... \times S_n$ Strategy space of all the Utility Functions

• Note that we denote the space of strategies include randomization, that is, it is set of **mixed strategies** by $\Delta(S_i)$ and represent a mixed strategy for a player i as σ_i .

Nash Equilibrium

Definition (Pure Strategy Nash Equilibrium)

A strategy profile $(s_1^*, s_2^*, \dots, s_n^*)$ is called as Pure Strategy Nash Equilibrium, if for each player i, s_i^* is a best response strategy to s_{-i}^* .

That is, $\forall i$

$$U_i(s_i^*, s_{-i}^*) \geq U_i(s_i, s_{-i}^*) \ \forall \ s_i \in S_i$$

Definition (Mixed Strategy Nash Equilibrium)

A strategy profile $(\sigma_1^*, \sigma_2^*, \dots, \sigma_n^*)$ is called as Mixed Strategy Nash Equilibrium, if for each player i, σ_i^* is a best response strategy to σ_{-i}^* .

That is, $\forall i$

$$U_i(\sigma_i^*, \sigma_{-i}^*) \geq U_i(\sigma_i, \sigma_{-i}^*) \ \forall \ \sigma_i \in \Delta(S_i)$$

<ロト <回り < 重り < 重

Suit Prakash Guiar (LIA) Game Theory (Lect 2) Lecture 2 10 / 29

Nash Theorem

- Nash Theorem: Every finite game has at least one Nash Equilibrium (NE).
 In NE player plays his/her best response to the strategy played by the remaining agents
- Interpretations
 - Prescription
 - Prediction
 - Self enforcing agreement
 - Evolution and Steady State

11 / 29

¹Image Credits: Elke Wetzig (Elya) - Own work.

Sujit Prakash Gujar (LIA) Game Theory (Lect 2) Lecture 2

Batter of Sexes

- You and your friend want to meet for coffee
- You both enjoy being with each other than being alone. (Say utility 1 for being with each other)
- You enjoy Esplande (Say additional utility of 1) where as your friend enjoys BC more.

Batter of Sexes

- You and your friend want to meet for coffee
- You both enjoy being with each other than being alone. (Say utility 1 for being with each other)
- You enjoy Esplande (Say additional utility of 1) where as your friend enjoys BC more.

	Е	BC
Е	(2,1)	(0,0)
BC	(0,0)	(1,2)

Batter of Sexes

- You and your friend want to meet for coffee
- You both enjoy being with each other than being alone. (Say utility 1 for being with each other)
- You enjoy Esplande (Say additional utility of 1) where as your friend enjoys BC more.
 - Pure strategy equilibria (E,BC) and (BC,E)

Game Theory (Lect 2)

• Mixed Strategy equilibrium $(\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3})$

	Е	BC
Ε	(2,1)	(0,0)
BC	(0,0)	(1,2)

Games with Incomplete Information: Auction

- Two players A and B compete for an item.
- Value it 2 and 1 respectively
- Strategies: bid either 0 or 1.
- Outcome: A wins if Bid(A) > Bid(B), B wins otherwise
- Payoff: (Value payment) if a player wins and 0 otherwise

Games with Incomplete Information: Auction

- Two players A and B compete for an item.
- Value it 2 and 1 respectively
- Strategies: bid either 0 or 1.
- Outcome: A wins if Bid(A) > Bid(B), B wins otherwise
- Payoff: (Value payment) if a player wins and 0 otherwise

		Player B	
		0	1
Player	0	(0,1)	(0,0)
Α	1	(1,0)	(0,0)

- (1,0) is pure strategy Nash equilibrium. (Note it is weakly dominant strategy equilibrium)
- However the valuation of the other players are not known
- This leads to mechanism design theory

Game Theory and Other Related Theories

Mechanism Design

• Game Theory: Analysis of strategic interaction among players

15 / 29

イロト (個) (を注) (注)

Mechanism Design

- Game Theory: Analysis of strategic interaction among players
- Mechanism Design: Reverse engineering of game theory

Mechanism Design

- Game Theory: Analysis of strategic interaction among players
- Mechanism Design: Reverse engineering of game theory

Mechanism Design

Mechanism Design is the art of designing rules of a game to achieve a specific outcome in presence of *multiple self-interested agents*, each with *private information* about their preferences

Mechanism Design Example: Fair Division of Cake

• This is an example of a mechanism without money

Mechanism Design Example: Vickrey Auction

- Second Price Auction (SPA) for selling a single item.
 - The bidder with the highest bid wins
 - She pays as much as the second highest bid
- Vickrey^a showed : The truth revelation is dominant strategy

- Say there are four bidders
- They value the object as 80, 100, 60, and 40
- Suppose they bid truthfully
- The bidder 2 gets the object and pays 80
- This is an example of a mechanism with money

$$\mathscr{N} = \{1, 2, \dots, n\}$$

•
$$\mathcal{M}=(S_1(),S_2(),\cdots,S_n(),g(\cdot))$$
 where, $g():\prod_i S_i \to X$

18 / 29

(日) (日) (日) (日)

$$\mathcal{N} = \{1, 2, \dots, n\}$$

$$\Theta_1,\ldots,\Theta_n$$

•
$$\mathcal{M}=(S_1(),S_2(),\cdots,S_n(),g(\cdot))$$
 where, $g():\prod_i S_i \to X$

$$\mathcal{N} = \{1, 2, \dots, n\}$$

$$\Theta_1,\ldots,\Theta_n$$

X : Set of Outcomes

•
$$\mathcal{M} = (S_1(), S_2(), \cdots, S_n(), g(\cdot))$$
 where, $g() : \prod_i S_i \to X$

$$\mathscr{N} = \{1, 2, \dots, n\}$$

$$\Theta_1,\ldots,\Theta_n$$

X : Set of Outcomes

$$u_1, u_2, \ldots, u_n: X \times \Theta_i \to \mathbb{R}$$

•
$$\mathcal{M} = (S_1(), S_2(), \cdots, S_n(), g(\cdot))$$
 where, $g() : \prod_i S_i \to X$

$$\mathscr{N} = \{1, 2, \dots, n\}$$

$$\Theta_1,\ldots,\Theta_n$$

X : Set of Outcomes

$$u_1, u_2, \ldots, u_n : X \times \Theta_i \to \mathbb{R}$$

$$f:\Theta_1\times\ldots\Theta_n\to X$$

•
$$\mathcal{M}=(S_1(),S_2(),\cdots,S_n(),g(\cdot))$$
 where, $g():\prod_i S_i \to X$

Mechanisms: With Money and Without Money

Settings in which mechanisms allow monetary transfers are referred to as quasi-linear settings

Sujit Prakash Gujar (LIA) Game Theory (Lect 2) Lecture 2 19 / 29

Properties of Mechanisms

DSIC

Dominant Strategy Incentive Compatibility Reporting truth is always good

ΑE

Allocative Efficiency Allocate item to those who value them most

Non-Dictatorship

No single agent is favored all the time

BIC

Bayesian Incentive Compatibility Reporting truth is good in expectation whenever others report truth

BB

Budget Transfer Payments are balanced and net transfer is zero

IR

Individual Rationality Payments participate voluntarily. (No losses)

Space of Mechanisms in Quasi-Linear Settings

Acronyms

DSIC	Dominant Strategy Incentive Compatible	
BIC	Bayesian Nash Incentive Compatible	
AE	Allocative Efficiency (Allocatively Efficient)	
BB	Budget Balance	
IR	Individual Rationality	
VCG	Vickrey-Clarke-Groves Mechanisms	
dAGVA	d'Aspremont and Gérard-Varet mechanisms	

《中》《圖》《意》《意》

Notation

N	Set of agents: $\{1, 2, \ldots, n\}$
Θ_i	Type set of Agent i
Θ	A type profile = $(\Theta_1 \times \ldots \times \Theta_n)$
Θ_{-i}	A profile of types of agents other than i
	$=(\Theta_1\times\ldots\times\Theta_{i-1}\times\Theta_{i+1}\times\ldots\times\Theta_n)$
θ_i	Actual type of agent i , $\theta_i \in \Theta_i$
θ	A profile of actual types $=(\theta_1,\ldots,\theta_n)$
θ_{-i}	A profile of actual types of agents other than i
	$=(\theta_1,\ldots,\theta_{i-1},\theta_{i+1},\ldots,\theta_n)$
$\hat{\theta}_i$	Reported type of agent $i, \ \hat{ heta}_i \in \Theta_i$
$\hat{\theta}$	A profile of reported types $=(\hat{ heta}_1,\ldots,\hat{ heta}_n)$
$\hat{\theta}_{-i}$	A profile of reported types of agents other than i
	$=(\hat{\theta}_1,\ldots,\hat{\theta}_{i-1},\hat{\theta}_{i+1},\ldots,\hat{\theta}_n)$

Notation

A cumulative distribution function (CDF) on Θ_i
A probability density function (PDF) on Θ_i
Outcome Set
A particular outcome, $x \in X$
Utility function of agent <i>i</i>
A social choice function
Set of social choice functions
A direct revelation mechanism
A Set of project choices
A particular project choice, $k \in K$
Monetary transfer to agent <i>i</i>
Valuation function of agent i

Gibbard-Satterthwaite Impossibility Theorem

Theorem

lf

- **1** The outcome set X is such that, $3 \le |X| < \infty$
- $\mathbf{Q} \ \mathcal{R}_i = \mathcal{S} \ \forall i$
- **3** $f(\Theta) = X$, that is, the image of SCF $f(\cdot)$ is the set X.

then the social choice function SCF $f(\cdot)$ is truthfully implementable in dominant strategies if and only if it is dictatorial.

Gibbard-Satterthwaite Impossibility Theorem

Theorem

lf

- **1** The outcome set X is such that, $3 \le |X| < \infty$
- 2 $\mathcal{R}_i = \mathcal{S} \ \forall \ i$
- **3** $f(\Theta) = X$, that is, the image of SCF $f(\cdot)$ is the set X.

then the social choice function SCF $f(\cdot)$ is truthfully implementable in dominant strategies if and only if it is dictatorial.

Restrict to Quasi linear Environment Bayesian Incentive Compatible Social Choice functions

Quasi Linear Environment

$$X = \left\{ (k, t_1, \dots, t_n) : k \in K, t_i \in \mathbb{R} \ \forall \ i = 1, \dots, n, \sum_i t_i \leq 0 \right\}$$
Project Choice \bigcup Monetary transfer to agent i

COLLOWING

Reading

- Game Theory by Roger Myerson. Harvard University press, 2013.
- Algorithmic Game Theory, edited by Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazerani.
- Dinesh Garg, Y. Narahari, Sujit Gujar, "Foundations of Mechanism Design: A Tutorial - Part 1: Key Concepts and Classical Results."
 Sadhana - Indian Academy Proceedings in Engineering Sciences, Volume 33, Part 2, pp 83-130, April 2008.
- Dinesh Garg, Y. Narahari, Sujit Gujar, "Foundations of Mechanism Design: A Tutorial - Part 2: Advanced Concepts and Results."
 Sadhana - Indian Academy Proceedings in Engineering Sciences, Volume 33, Part 2, pp 131-174, April 2008.

29 / 29

Lecture 2