University of Virginia
Department of Mathematics

MATH 2310 Quiz 1

Spring 2022

By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else during the exam:

Name (sign):	Solutions	Name (print):	
		.	

1. [4 pts] Given the vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$. Determine the vector projection $\mathsf{proj}_{\mathbf{a}}(\mathbf{b})$ of \mathbf{b} onto \mathbf{a} .

$$Proj_{\overline{a}}(\overline{b}) = \underbrace{\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}}_{\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}} \underbrace{\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}}_{\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}} = \underbrace{\frac{1}{3}}_{\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}}$$

- 2. True/False. If the statement is true, give an explanation why you think so. If a statement is false, provide a counter-example.
 - (a) [3 pts] The cross product of two unit vectors is a unit vector.

False.
$$\vec{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \vec{u} \times \vec{v} = \vec{1} \times \vec{z} \cdot (\vec{1} + \vec{j})$$

$$\vec{z} = \vec{z} \cdot (\vec{1} + \vec{j}) = \vec{z} \cdot (\vec{1} + \vec{j})$$
Not length = 1!

(b) [3 pts] If \mathbf{u} is a scalar multiple of \mathbf{v} , then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

The.

If
$$\vec{u} = e\vec{\nabla} \Rightarrow \text{angle btw } \vec{u} \text{ and } \vec{\nabla} \text{ is } \theta = 0 \text{ or } \theta = \vec{u}$$

in either case $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta$, $= |\vec{u} \times \vec{v}| = 0$.

(c) [3 pts] If \mathbf{u} , \mathbf{v} , and \mathbf{w} are all non-zero vectors in space and $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

Fulse.
Chaose
$$\vec{U}_1 = \vec{1}$$
 Then $\vec{1} \cdot \vec{J} = 0 = \vec{2} \cdot \vec{K}$
 $\vec{V}_2 = \vec{J}$ but $\vec{J} \neq \vec{K}$.
 $\vec{U}_3 = \vec{K}$

(d) [3 pts] The vector equation

$$\langle x,y,z\rangle \times \langle 1,1,1\rangle = \langle 0,1,0\rangle$$

has a solution in \mathbb{R}^3 .

Solve
$$\begin{vmatrix} \overline{1} & \overline{1} & \overline{k} \\ x & y & \overline{z} \end{vmatrix} = \begin{bmatrix} y-\overline{z} \\ -(x-\overline{z}) \\ x-y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 So $x=y=\overline{z}$ but then no solution to $x-\overline{z}=-1$ //