MATH 4824C - Sample Midterm

March 24, 2024

Please (1) show the work to the questions and (2) return the answer sheet on time.

- 1. Show that in randomized trials; i.e. $(Y_i(1), Y_i(0), X_i) \perp Z_i$, Var(ZY) = P(Z=1)Var(Y(1));
- 2. Show that in observational studies without unmeasured confounders; i.e. $(Y_i(1), Y_i(0)) \perp Z_i \mid X_i, E(Y(1) X) = E[E(Y X \mid Z = 1, X)]$
- 3. Show that in observational studies without unmeasured confounders; i.e. $(Y_i(1), Y_i(0)) \perp Z_i \mid X_i, E(Y(1) X) = E[Z(Y X)/e(X)]$ where e(X) = P(Z = 1|X);
- 4. Show that in observational studies without unmeasured confounders; i.e. $(Y_i(1), Y_i(0)) \perp Z_i \mid X_i$, let $e(\mathbf{x}, \beta)$, be the logistic model of Z_i on X_i , and $\mu_1(\mathbf{x}, \alpha_1)$ be linear or logistic model of $Y_i(1)$ on X_i . Try to show that

$$\tilde{\mu}_{1,\mathrm{DR}} = E \left[\frac{Z_i \left\{ Y_i - \mu_1 \left(\mathbf{X}_i, \alpha_1 \right) \right\}}{e \left(\mathbf{X}_i, \beta \right)} + \mu_1 \left(\mathbf{X}_i, \alpha_1 \right) \right]$$

is doubly robust, that is, if either $\mu_1(\mathbf{x}, \alpha_1) = \mu_1(\mathbf{x}) := E[Y_i | Z_i = 1, \mathbf{X}_i = \mathbf{x}]$ or $e(\mathbf{x}, \beta) = e(\mathbf{x}) := P(Z_i | \mathbf{X}_i = \mathbf{x})$, then $\tilde{\mu}_{1,DR} = E\{Y_i(1)\}$.

5. In observational studies with binary response and binary unmeasured confounders U_i ; i.e. $(Y_i(1), Y_i(0)) \perp Z_i \mid (X_i, U_i)$, if $RR_{ZY}^{obs} = 1.2$, calculate the E-value and interpret it.