Solving ODEs in Matlab

BP205

M.Tremont

1.30.2009

- Outline -

- I. Defining an ODE function in an M-file
- **II.** Solving first-order ODEs
- III. Solving systems of first-order ODEs
- IV. Solving higher order ODEs

Numerical methods are used to solve initial value problems where it is difficult to obtain exact solutions

- An ODE is an equation that contains one independent variable (e.g. time)
 and one or more derivatives with respect to that independent variable.
- In the time domain, ODEs are **initial-value problems**, so all the conditions are specified at the initial time t = 0.

$$\frac{dy}{dt} = \frac{t}{y} \qquad y(0) = 1$$
$$y(t) = \sqrt{t^2 + 1}$$

 Matlab has several different functions (built-ins) for the numerical solution of ODEs. These solvers can be used with the following syntax:

What are we doing when numerically solving ODE's?

We know t_0 and $y(t_0)$ and we know the slope of y(t), dy/dt = f(t,y).

We don't know y(t) for any values of t other than t_0 .

Integrators compute nearby value of y(t) using what we already know and repeat.

Higher order numerical methods reduce error at the cost of speed:

- Euler's Method 1st order expansion
- Midpoint method 2nd order expansion
 - Runge-Kutta 4th order expansion

Solver	Accuracy	Description
ode45	Medium	This should be the first solver you try
ode23	Low	Less accurate than ode45
ode113	Low to high	For computationally intensive problems
ode15s	Low to medium	Use if ode45 fails because the problem is stiff*

Runge-Kutta (4,5) formula

^{*}No precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution.

Defining an ODE function in an M-file

[t,state] = ode45(@dstate,tspan,ICs,options)

- 1. Define tspan, ICs and options in one file (e.g. call_dstate.m), which sets up ode45
- 2. Define your constants and derivatives in another file (e.g. dstate.m) or as a function dstate within the call file
- 3. Run call dstate.m
- 4. Analyze the results as a plot of state vs. t

II. Solving first-order ODEs

Example:
$$\frac{dy}{dt} = y'(t) = \alpha y(t) - \gamma y(t)^{2}$$
$$y(0) = 10$$

```
function [t,y] = call dstate()
      tspan = [0 9]; % set time interval
2-
      y0 = 10; % set initial condition
      % dstate evaluates r.h.s. of the ode
5
     [t,y] = ode45(@dstate,tspan,y0);
6-
     plot(t,y)
      disp([t,y]) % displays t and y(t)
               function dydt = dstate(t,y)
8
                      alpha=2; gamma=0.0001;
9-
                      dydt = alpha*y-gamma*y^2;
10-
               en d
11 \rightarrow
12-end
```

Save as call_dstate.m in some directory, and cd to that directory in the matlab GUI

Matlab ode45's numerical solution

$$\frac{dy}{dt} = y'(t) = \alpha y(t) - \gamma y(t)^{2}$$
$$y(0) = 10$$

At t = 9, have we reached steady state?

$$\lim_{t\to\infty} y(t) = \frac{\alpha}{\gamma} = 20,000$$

From the command line:

van der Pol equations in relaxation oscillation:

$$\frac{dy_1}{dt} = y_2 y_1(0) = 0$$

$$\frac{dy_2}{dt} = 1000(1 - y_1^2)y_2 - y_1 y_2(0) = 1$$

- This is a system of ODEs because we have more than one derivative with respect to our independent variable, time.
- This is a stiff system because the limit cycle has portions where the solution components change slowly alternating with regions of very sharp change - so we will need ode15s.
- This is a example from mathworks, a great resource @ mathworks.com or the software manual.
- This time we'll create separate files for the call function (call_osc.m) and the ode function (osc.m)

van der Pol equations in relaxation oscillation:

$$\frac{dy_1}{dt} = y_2 y_1(0) = 0$$

$$\frac{dy_2}{dt} = 1000(1 - y_1^2)y_2 - y_1 y_2(0) = 1$$

To simulate this system, create a function osc containing the equations. Method 1: preallocate space in a column vector, and fill with derivative functions

```
function dydt = osc(t,y)

dydt = zeros(2,1); % this creates an empty column
% vector that you can fill with your two derivatives:

dydt(1) = y(2);

dydt(2) = 1000*(1 - y(1)^2)*y(2) - y(1);
%In this case, y(1) is y1 and y(2) is y2, and dydt(1)
% is dy1/dt and dydt(2) is dy2/dt.
8-end
```

Save as osc.m in the same directory as before.

van der Pol equations in relaxation oscillation:

$$\frac{dy_1}{dt} = y_2 \qquad y_1(0) = 0$$

$$\frac{dy_2}{dt} = 1000(1 - y_1^2)y_2 - y_1 \qquad y_2(0) = 1$$

To simulate this system, create a function osc containing the equations.

Method 2: vectorize the differential functions

Save as osc.m in the same directory as before.

van der Pol equations in relaxation oscillation:

$$\frac{dy_1}{dt} = y_2 y_1(0) = 2$$

$$\frac{dy_2}{dt} = 1000(1 - y_1^2)y_2 - y_1 y_2(0) = 0$$

Now solve on a time interval from 0 to 3000 with the above initial conditions. Create a scatter plot of y_1 with time.

```
1 function [T,Y] = call_osc()
2          tspan = [0 3000];
3          y1_0 = 2;
4          y2_0 = 0;
5          [T,Y] = ode15s(@osc,tspan,[y1_0 y2_0]);
6          plot(T,Y(:,1),'o')
7          end
```

Save as call_osc.m in the same directory as before.

Plot of numerical solution

van der Pol equations in relaxation oscillation:

$$\frac{dy_1}{dt} = y_2$$

$$\frac{dy_2}{dt} = 1000(1 - y_1^2)y_2 - y_1$$

$$y_1(0) = 2$$

$$y_2(0) = 0$$

IV. Solving higher order ODEs

Simple pendulum:

$$ML\frac{d^2\theta}{dt^2} = -MG\sin\theta$$
$$\frac{d^2\theta}{dt^2} = -\frac{G}{L}\sin\theta$$

- Second order non-linear ODE
- Convert the 2nd order ODE to standard form:

$$z_1 = \theta$$
, $z_2 = d\theta/dt$

Non-linear pendulum function file

```
• G = 9.8 m/s z_1 = \theta, \quad z_2 = d\theta/dt
• L = 2 m

• Time 0 to 2\pi \frac{dz_1}{dt} = z_2
• Initial \theta = \pi/3 \frac{dz_2}{dt} = -\frac{G}{L}\sin(z_1)
• Plot \theta with time
```

```
function [] = call pend()
      tspan=[0 2*pi]; % set time interval
      z0=[pi/3,0]; % set initial conditions
      [t,z]=ode23(@pend,tspan,z0);
      plot(t,z(:,1))
6 function dzdt = pend(t,z)
      G=9.8; L=2; % set constants
74
     z1=z(1);
                    % get z1
94
   z2=z(2); % get z2
104
   dzdt = [z2 ; -G/L*sin(z1);];
11\pm end
12+ end
```


