

WHAT IS CLAIMED IS

5

1. A method of classifying an image,
comprising the steps of:

a) extracting a query image from a plurality
of images in an image database;

10 b) searching, according to a predetermined
similarity level, for a representative image resembling
the query image in a representative image classification
database in which groups of images are represented by
respective representative images;

15 c) registering the query image as a new
representative image in the representative image
classification database when no resembling
representative image is found as a result of the search
according to the predetermined similarity level; and

20 d) adding the query image into a group
represented by the resembling representative image found
as a result of the search according to the predetermined
similarity level.

25

2. The method as claimed in claim 1, wherein
the images in the image database are obtainable by
5 referring to the respective representative images in
accordance with the predetermined similarity level.

10

3. The method as claimed in claim 1, further
comprising a step of forming the groups into a
hierarchical structure, wherein the forming step further
includes the steps of:

15 a) extracting a further query image from the
representative images in the representative image
classification database;

b) searching, according to a further
predetermined similarity level, for a further
20 representative image resembling the further query image
in a further representative image classification
database in which groups of images are represented by
respective further representative images;

c) registering the further query image as a
25 new further representative image in the further

representative image classification database when no resembling further representative image is found as a result of the search according to the further predetermined similarity level; and

5 d) adding the further query image into a group represented by the resembling further representative image found as a result of the search according to the further predetermined similarity level.

10

4. The classification method as claimed in
claim 3, wherein the hierarchical structure is formed as
15 layers of a directory of a file system for managing the
images in the image database.

20

5. An image feature space display method comprising the steps of:
25 a) determining k representative points (k being an integer which is more than 1) in a feature space in response to a distance between points in the

feature space and representative points representative of a plurality of feature spaces surrounding the feature space;

- b) obtaining k sub-feature spaces by evenly
5 allocating the points in the feature space into k representative points;
- c) dividing a display space into sub-display regions of k segments, the display space being divided in a manner so that the sub-feature spaces correspond to
10 the sub-display regions;
- d) repeating the steps a) through c) until the sub-feature spaces and the sub-display regions are divided into minimum units, respectively; and
- e) arranging each image included in a minimum
15 unit of a sub-feature space to a corresponding one of the minimum units of the sub-display regions.

20

6. The image feature space display method as claimed in claim 5, wherein the display space is two dimensional, wherein the feature space and the display space are divided into four sub-feature spaces and four
25 sub-display regions in a grid manner, respectively,

wherein the representative points are disposed proximally with respect to two feature spaces which are arranged adjacent to each other and tangent to the sub-feature spaces, and thus disposed distally with respect
5 to two other feature spaces which are arranged adjacent to each other but not tangent to the sub-feature spaces.

10

7. The image feature space display method as claimed in claim 5, wherein the display space is three dimensional, wherein the feature space and the display space are divided into eight sub-feature spaces and
15 eight display regions in a grid manner, respectively, wherein the representative points are disposed proximally with respect to three feature spaces which are arranged adjacent to each other and tangent to the sub-feature spaces, and thus disposed distally with
20 respect to three other feature spaces which are arranged adjacent to each other but not tangent to the sub-feature spaces.

25

8. The image feature space display method as claimed in claim 5, wherein the points in the feature space represent images in a representative image classification database which are subject to the steps of:

- a) extracting a query image from a plurality of images in an image database;
- b) searching, according to a predetermined similarity level, for a representative image resembling the query image in the representative image classification database in which groups of images are represented by respective representative images;
- c) registering the query image as a new representative image in the representative image classification database when no resembling representative image is found as a result of the search according to the predetermined similarity level; and
- d) adding the query image into a group represented by the resembling representative image found as a result of the search according to the predetermined similarity level.

9. The image feature space display method as claimed in claim 8, further comprising a step of forming the groups into a hierarchical structure, wherein the

5 forming step further includes the steps of:

- a) extracting a further query image from the representative images in the representative image classification database;
- b) searching, according to a further

10 predetermined similarity level, for a further representative image resembling the further query image in a further representative image classification database in which groups of images are represented by respective further representative images;

- c) registering the further query image as a new further representative image in the further representative image classification database when no resembling further representative image is found as a result of the search according to the further

15 predetermined similarity level; and

- d) adding the further query image into a group represented by the resembling further representative image found as a result of the search according to the further predetermined similarity level.

10. An image feature space display method
5 comprising the steps of:

- a) dividing a feature space into three sub-feature spaces, the three sub-feature spaces being composed of two sub-feature spaces disposed within a prescribed radius with respect to two reference points
10 in the feature space, and another sub-feature space other than the two sub-feature spaces;
- b) dividing a display space into sub-display regions of three segments, the display space being divided in a same manner as the feature space so that
15 the sub-feature spaces correspond to the sub-display regions;
- c) repeating the steps a) and b) until the sub-feature spaces and the sub-display regions are divided into minimum units, respectively; and
20
- d) arranging each image included in a minimum unit of a sub-feature space to a corresponding one of the minimum units of the sub-display regions.

11. The image feature space display method as
claimed in claim 10, wherein the reference points are
selected from points disposed nearest to representative
5 points included in the two sub-feature spaces.

10 12. A program written to be executed with a
computer, comprising the steps of:

a) determining k representative points (k
being an integer which is more than 1) in a feature
space in response to a distance between points in the
15 feature space and representative points representative
of a plurality of feature spaces surrounding the feature
space;

b) obtaining k sub-feature spaces by evenly
allocating the points in the feature space into k
20 representative points;

c) dividing a display space into sub-display
regions of k segments, the display space being divided
in a manner so that the sub-feature spaces correspond to
the sub-display regions;

25 d) repeating the steps a) through c) until the

sub-feature spaces and the sub-display regions are divided into minimum units, respectively; and

e) arranging each image included in a minimum unit of a sub-feature space to a corresponding one of
5 the minimum units of the sub-display regions.

10 13. The program written to be executed with a computer as claimed in claim 12, wherein the display space is two dimensional, wherein the feature space and the display space are divided into four sub-feature spaces and four sub-display regions in a grid manner,
15 respectively, wherein the representative points are disposed proximally with respect to two feature spaces which are arranged adjacent to each other and tangent to the sub-feature spaces, and thus disposed distally with respect to two other feature spaces which are arranged
20 adjacent to each other but not tangent to the sub-feature spaces.

14. The program written to be executed with a computer as claimed in claim 12, wherein the display space is three dimensional, wherein the feature space and the display space are divided into eight sub-feature spaces and eight display regions in a grid manner, respectively, wherein the representative points are disposed proximally with respect to three feature spaces which are arranged adjacent to each other and tangent to the sub-feature spaces, and thus disposed distally with respect to three other feature spaces which are arranged adjacent to each other but not tangent to the sub-feature spaces.

15

15. The program written to be executed with a computer as claimed in claim 12, wherein the points in the feature space represent images in a representative image classification database which are subject to the steps of:

- a) extracting a query image from a plurality of images in an image database;
- b) searching, according to a predetermined similarity level, for a representative image resembling

the query image in the representative image classification database in which groups of images are represented by respective representative images;

- c) registering the query image as a new representative image in the representative image classification database when no resembling representative image is found as a result of the search according to the predetermined similarity level; and
- d) adding the query image into a group represented by the resembling representative image found as a result of the search according to the predetermined similarity level.

15

16. The program written to be executed with a computer as claimed in claim 15, further comprising a step of forming the groups into a hierarchical structure, wherein the forming step further includes the steps of:

- a) extracting a further query image from the representative images in the representative image classification database;
- b) searching, according to a further predetermined similarity level, for a further

representative image resembling the further query image in a further representative image classification database in which groups of images are represented by respective further representative images;

5 c) registering the further query image as a new further representative image in the further representative image classification database when no resembling further representative image is found as a result of the search according to the further
10 predetermined similarity level; and

 d) adding the further query image into a group represented by the resembling further representative image found as a result of the search according to the further predetermined similarity level.

15

17. A program written to be executed with a
20 computer, comprising the steps of:

 a) dividing a feature space into three sub-feature spaces, the three sub-feature spaces being composed of two sub-feature spaces disposed within a prescribed radius with respect to two reference points
25 in the feature space, and another sub-feature space

other than the two sub-feature spaces;

- b) dividing a display space into sub-display regions of three segments, the display space being divided in a same manner as the feature space so that
 - 5 the sub-feature spaces correspond to the sub-display regions;
 - c) repeating the steps a) and b) until the sub-feature spaces and the sub-display regions are divided into minimum units, respectively; and
 - 10 d) arranging each image included in a minimum unit of a sub-feature space to a corresponding one of the minimum units of the sub-display regions.

15

18. The program written to be executed with a computer as claimed in claim 17, wherein the reference points are selected from points disposed nearest to
 - 20 representative points included in the two sub-feature spaces.

25

19. A recording medium having a program written thereto for processing with a computer, the recording medium comprising the steps of:

- a) determining k representative points (k being an integer which is more than 1) in a feature space in response to a distance between points in the feature space and representative points representative of a plurality of feature spaces surrounding the feature space;
- 10 b) obtaining k sub-feature spaces by evenly allocating the points in the feature space into k representative points;
- c) dividing a display space into sub-display regions of k segments, the display space being divided in a manner so that the sub-feature spaces correspond to the sub-display regions;
- 15 d) repeating the steps a) through c) until the sub-feature spaces and the sub-display regions are divided into minimum units, respectively; and
- 20 e) arranging each image included in a minimum unit of a sub-feature space to a corresponding one of the minimum units of the sub-display regions.

20. The recording medium having a program
written thereto for processing with a computer as
claimed in claim 19, wherein the display space is two
5 dimensional, wherein the feature space and the display
space are divided into four sub-feature spaces and four
sub-display regions in a grid manner, respectively,
wherein the representative points are disposed
proximally with respect to two feature spaces which are
10 arranged adjacent to each other and tangent to the sub-
feature spaces, and thus disposed distally with respect
to two other feature spaces which are arranged adjacent
to each other but not tangent to the sub-feature spaces.

15

21. The recording medium having a program
written thereto for processing with a computer as
20 claimed in claim 19, wherein the display space is three
dimensional, wherein the feature space and the display
space are divided into eight sub-feature spaces and
eight display regions in a grid manner, respectively,
wherein the representative points are disposed
25 proximally with respect to three feature spaces which

are arranged adjacent to each other and tangent to the
sub-feature spaces, and thus disposed distally with
respect to three other feature spaces which are arranged
adjacent to each other but not tangent to the sub-
5 feature spaces.

10 22. The recording medium having a program
written thereto for processing with a computer as
claimed in claim 19, wherein the points in the feature
space represent images in a representative image
classification database which are subject to the steps
15 of:

- a) extracting a query image from a plurality
of images in an image database;
- b) searching, according a predetermined
similarity level, for a representative image resembling
20 the query image in the representative image
classification database in which groups of images are
represented by respective representative images;
- c) registering the query image as a new
representative image in the representative image
25 classification database when no resembling

representative image is found as a result of the search according to the predetermined similarity level; and

d) adding the query image into a group represented by the resembling representative image found
5 as a result of the search according to the predetermined similarity level.

10

23. The recording medium having a program written thereto for processing with a computer as claimed in claim 22, further comprising a step of forming the groups into a hierarchical structure,
15 wherein the forming step further includes the steps of:

a) extracting a further query image from the representative images in the representative image classification database;

b) searching, according to a further
20 predetermined similarity level, for a further representative image resembling the further query image in a further representative image classification database in which groups of images are represented by respective further representative images;

c) registering the further query image as a
25

new further representative image in the further representative image classification database when no resembling further representative image is found as a result of the search according to the further

5 predetermined similarity level; and

d) adding the further query image into a group represented by the resembling further representative image found as a result of the search according to the further predetermined similarity level.

10

24. A recording medium having a program

15 written thereto for processing with a computer, the recording medium comprising the steps of:

a) dividing a feature space into three sub-feature spaces, the three sub-feature spaces being composed of two sub-feature spaces disposed within a

20 prescribed radius with respect to two reference points in the feature space, and another sub-feature space other than the two sub-feature spaces;

b) dividing a display space into sub-display regions of three segments, the display space being

25 divided in a same manner as the feature space so that

the sub-feature spaces correspond to the sub-display regions;

- c) repeating the steps a) and b) until the sub-feature spaces and the sub-display regions are
- 5 divided into minimum units, respectively; and
- d) arranging each image included in a minimum unit of a sub-feature space to a corresponding one of the minimum units of the sub-display regions.

10

25. The recording medium having a program written thereto for processing with a computer as
- 15 claimed in claim 24, wherein the reference points are selected from points disposed nearest to representative points included in the two sub-feature spaces.