Electrodynamics

Michael Brodskiy

Professor: D. Wood

November 1, 2023

• Current

- Ohm's "Law"¹
 - * Holds when there is some current density such that $\vec{J} = \sigma \vec{E}$, with σ as conductivity
 - * The unit of conductivity is $\left[\frac{A}{Vm}\right]$
 - * The resistivity is the inverse of the conductivity, $\rho = \sigma^{-1}$, with units $[\Omega \, m]^2$
- The average velocity of a particle accelerated over an interval due to an electric field is:

$$v_{avg} = \sqrt{\frac{q\vec{E}d}{2m}}$$

- The current density can be defined as

$$\vec{J} = nq\vec{v}$$

- An electron's drift velocity may be defined as:

$$v_d = \frac{1}{2} \frac{q\vec{E}d}{mv}$$

- * As long as $v_d \ll v$
- Given a wire of length L and potential V_o , we can calculate:

$$\vec{E} = \frac{V_o}{L}$$

$$R = \frac{V}{I} = \frac{\vec{E}L}{\vec{J}A} = \frac{\rho L}{A}$$

¹Note: this is not a fundamental law

²Note: Ohms are equal to $\frac{V}{A}$