ELEC 533: Homework 8

Due on: Please check the Course Timetable

Professor Behnaam Aazhang MWF 11:00 AM - 11:50 AM

Problem 1

Suppose $\{X_t; t \in \mathbb{R}\}$ is a WSS random process with m.s. derivative $\{X_t'; t \in \mathbb{R}\}$.

- a) Show that $\Pr(|X_{t+\tau} X_t| \ge a) \le \frac{2[R_X(0) R_X(\tau)]}{a^2} \quad \forall \ a > 0$
- b) Show that $cov(X_t, X_t') = 0 \quad \forall t \in \mathbb{R}$

Problem 2

Suppose $Y_t = S_t + N_t$; $t \in \mathbb{R}$ where $\{S_t; t \in \mathbb{R}\}$ and $\{N_t; t \in \mathbb{R}\}$ are zero mean WSS and orthogonal. Suppose that we wish to estimate the process $X_t = \int\limits_{-\infty}^{\infty} k(t-\tau)S_{\tau}d\tau$, $t \in \mathbb{R}$ with an estimate of the form

 $\widehat{X}_t = \int\limits_{-\infty}^{\infty} h(t-\tau)Y_{\tau}d\tau$, $t \in \mathbb{R}$, where k and h are impulse responses of linear-time invariant systems.

$$E[(X_t - \widehat{X_t})^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[|K(\omega) - H(\omega)|^2 S_S(\omega) + |H(\omega)|^2 S_N(\omega) \right] d\omega$$

where K and H are the transfer function of k and h, respectively, and S_S and S_N are the power spectral densities of $\{S_t; t \in \mathbb{R}\}$ and $\{N_t; t \in \mathbb{R}\}$, respectively.

Problem 3

Show that:

$$\left| \int_{\omega_1}^{\omega_2} S_{XY}(\omega) d\omega \right|^2 \le \int_{\omega_1}^{\omega_2} S_X(\omega) d\omega \int_{\omega_1}^{\omega_2} S_Y(\omega) d\omega$$

From that if follows that if $S_X(\omega) = 0$ is an interval, then $S_{XY}(\omega) = 0$ in that interval.

Problem 4

Let $\{X_t; t \in \mathbb{R}\}$ be a continuous time, zero mean Gaussian random process with spectral density $S_X(\omega) = \frac{N_0}{2}$, $\forall w \in \mathbb{R}$. Let $H(\omega)$ and $G(\omega)$ be the transfer functions of the two linear systems (time-invariant) with impulse responses h(t) and g(t), respectively. The process $\{X_t\}$ is passed through the filter h(t) to obtain $\{Y_t; t \in \mathbb{R}\}$ and it is also passed through the filter g(t) to obtain $\{V_t; t \in \mathbb{R}\}$.

- a) Find $R_{YV}(t,s)$
- b) Under what assumptions Y_t and V_t are independent?

Problem 5

Consider the following mean-square differential equation

$$Y_t' + \alpha Y_t = X_t$$
 m.s. with $Y_0 = 0$

where X_t is a Gaussian random process with $\mu_X(t) = 0$ and $R_X(\tau) = a^2 \delta(\tau)$.

- a) Find a differential equation to solve for the mean function of Y_t , with appropriate initial conditions.
- b) Find a partial differential equation for crosscorrelation function between $\{Y_t; t \in \mathbb{R}\}$ and $\{X_t; t \in \mathbb{R}\}$ with appropriate boundary conditions.
- c) Find a partial differential equation for autocorrelation function of $\{Y_t; t \in \mathbb{R}\}$ with appropriate boundary conditions.
- d) Is Y_t wide sense stationary? Explain! Is Y_t a Gaussian random process?