

Issued: 2016-8-16

TEST REPORT

Applicant Name &

: 3H AND COMPANY LIMITED

Address

BLOCK A&B, 10F, MAIWAH INDUSTRIAL BLDG, 1-7 WAHSING ST.,

KWAIHING, N.T. HK

Sample Description

Product : VR CHRISTMAS LIGHT

FCC ID ZFJ3H20160803R

Model No. : VR-xxxxL(the xxxx can replace different number 0 to 9 means different LED

number)

Electrical Rating : 120V/60Hz

Date Received : 07 July 2016

Date Test Conducted : 07 July 2016 – 22 July 2016

Test standards : FCC Part 15: 2015 Subpart B

Test Result : Pass

Conclusion : The submitted samples complied with the above rules/standards.

Remark : None.

Prepared and Checked By:

Approved By:

Sky Zhu Engineer

Intertek Guangzhou

Helen Ma Team Leader

Intertek Guangzhou

16 August 2016 Date

Page 1 of 17

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch
Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China
Tel / Fax: 86-20-8213 9688/86-20-3205 7538
© 2016 Intertek

FCC ID: ZFJ3H20160803R

Issued: 2016-8-16

CONTENT

T.	EST REPO	ORT	1
C	ONTENT.		2
1	TEST	RESULTS SUMMARY	3
2	TEST	RESULTS CONCLUSION	4
3	LABO	RATORY MEASUREMENTS	5
4	TEST	RESULTS	6
	4.1 Con	NDUCTED DISTURBANCE VOLTAGE AT MAINS PORTS	6
	4.1.1	Used Test Equipment	
	4.1.2	Block Diagram of Test Setup	6
	4.1.3	Test Setup and Procedure	
	4.1.4	Limit	7
	4.1.5	Test Data and curve	8
	4.1.6	Measurement Uncertainty	9
	4.2 RAD	DIATED EMISSION (30 MHz -1000 MHz)	
	4.2.1	Used Test Equipment	10
	4.2.2	Block Diagram of Test Setup	10
	4.2.3	Test Setup and Procedure	11
	4.2.4	Limit	11
	4.2.5	Test Data and Curve	12
	4.2.6	Measurement uncertainty	13
	4.3 RAD	DIATED EMISSION ABOVE 1 GHZ	14
	4.3.1	Used Test Equipment	14
	4.3.2	Block Diagram of Test Setup	15
	4.3.3	Test Setup and Procedure	16
	4.3.4	Limit	16
	4.3.5	Test Data	17
	4.3.6	Measurement uncertainty	17

1

Report No.: 160707009GZU-002

Page 3 of 17

Issued: 2016-8-16

TEST RESULTS SUMMARY

Classification of EUT: Class B

Test Item	Standard	Result			
Conducted disturbance voltage at	FCC Part 15: 2014, Subpart B	Pass			
mains ports					
Radiated emission (30 MHz–1 GHz)	FCC Part 15: 2014, Subpart B	Pass			
Radiated emission (Above 1 GHz)	FCC Part 15: 2014, Subpart B	Pass			
Remark:		·			
Reference publication is used for methods of measurement: ANSI C63.4:2014					

Remark: 1. The symbol "N/A" in above table means Not Applicable.

2. When determining the test results, measurement uncertainty of tests has been considered.

FCC ID: ZFJ3H20160803R

2

Report No.: 160707009GZU-002

Issued: 2016-8-16

Test Results Conclusion

(with Justification)

RE: EMC Testing Pursuant to FCC Part 15, Subpart B Performed on the VR CHRISTMAS LIGHT, Models: VR-xxxxL(the xxxx can replace different number 0 to 9 means different LED number).

We tested the VR CHRISTMAS LIGHT, Model: VR-0200L to determine if it was in compliance with the relevant FCC rules as marked on the Test Results Summary. We found that the unit met the requirement of FCC Part 15, Subpart B when tested as received. The worst case's test data was presented in this test report.

An un-modulated CW signal at the operating frequency of the EUT is supplied to the EUT for all measurements.

The receiver type of the EUT is super heterodyne.

Conclusion:

The sample as received complied with the FCC Part 15 requirement.

The production units are required to conform to the initial sample as received when the units are placed on the market.

FCC ID: ZFJ3H20160803R Page 4 of 17

Issued: 2016-8-16

3 LABORATORY MEASUREMENTS

Configuration Information

Equipment Under Test (EUT): VR CHRISTMAS LIGHT

Model: VR-0200L

Serial No. None

Support Equipment: None

Rated Voltage: 120V/60Hz

Condition of Environment: Temperature : 22~28°C

Relative Humidity: 35~60% Atmosphere Pressure 86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode producing the largest emission in the frequency band being investigated consistent with normal applications.

An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. Test Sites:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

All tests were performed at:

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

Except Radiated Disturbance was performed at:

Room 101, Block A, No.11 Jing Ye San Street, Yu Shu Industrial Park, Guangzhou Science City, GETDD Guangzhou

FCC ID: ZFJ3H20160803R Page 5 of 17

Issued: 2016-8-16

4 TEST RESULTS

4.1 Conducted Disturbance Voltage at mains ports

Test Result: Pass

4.1.1 Used Test Equipment

obea 1000 Equipment							
Equipment No.	Equipment	Model	Manufacturer	Cal.Date	Due Date		
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu	2016-2-10	2017-2-10		
EM080-05	EMI receiver	ESCI	R&S	2015-8-4	2016-8-4		
EM006-05	LISN	ENV216	R&S	2015-12-12	2016-12-12		
EM084-02	SIGNAL Generator	SML02	R&S	2016-6-9	2017-6-9		

4.1.2 Block Diagram of Test Setup

4.1.3 Test Setup and Procedure

Test was performed according to ANSI C63.4: 2014. The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane(Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

FCC ID: ZFJ3H20160803R Page 6 of 17

Issued: 2016-8-16

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

4.1.4 Limit

Class B

Frequency range MHz	AC mains terminals dB (uV)			
WILL	Quasi-peak	Average		
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46		
5 to 30	60	50		

Note 1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note 2: The lower limit is applicable at the transition frequency.

Issued: 2016-8-16

4.1.5 Test Data and curve

At main terminal: Pass Test Voltage: AC120 V, 60 Hz

Tested Wire: Live Operation Mode: Receiving mode + Lighting

	EDI:	F PEAK LIST (Final	Measurement Resul	.ts)			
Tra	ce1:	FCC15QP					
Trace2:		FCC15AV					
Trace3:							
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB			
1	Quasi Peak	15.982 MHz	43.55 L1	-16.44			
2	Average	15.982 MHz	31.01 L1	-18.98			
2	Average	25.618 MHz	29.61 L1	-20.38			
1	Quasi Peak	4.41 MHz	34.54 L1	-21.45			
1	Quasi Peak	23.974 MHz	37.50 L1	-22.49			
1	Quasi Peak	314 kHz	37.28 L1	-22.57			
1	Quasi Peak	2.114 MHz	33.15 L1	-22.84			
1	Quasi Peak		32.02 L1	-23.97			
1	Quasi Peak	6.334 MHz	35.47 L1	-24.52			
1	Quasi Peak		40.65 L1	-25.34			

FCC ID: ZFJ3H20160803R Page 8 of 17

Issued: 2016-8-16

Tested Wire: Neutral

Operation Mode: Receiving mode + Lighting

	EDT	T PEAK LIST (Final	Measurement Resul	ts)			
Tra	cel:	FCC150P	Treabaremente rebar				
Tra	ice2:	FCC15AV					
Tra	ice3:						
	TRACE	FREQUENCY	LEVEL dBuV	DELTA LIMIT dB			
1	Ouasi Peak	354 kHz	42.03 L1	-16.82			
1	Quasi Peak	4.542 MHz	37.06 L1	-18.93			
1	Quasi Peak	3.486 MHz	35.09 L1	-20.90			
1	Quasi Peak	15.966 MHz	38.97 L1	-21.02			
2	Average	23.978 MHz	28.95 L1	-21.04			
1	Quasi Peak	1.61 MHz	34.86 L1	-21.13			
1	Quasi Peak	1.174 MHz	34.74 L1	-21.25			
2	Average	15.978 MHz	28.71 L1	-21.29			
1	Quasi Peak	150 kHz	44.16 L1	-21.83			
1	Quasi Peak	498 kHz	34.17 L1	-21.85			
2	Average	4.362 MHz	23.29 L1	-22.70			
1	Quasi Peak	23.962 MHz	36.69 L1	-23.30			
2	Average	346 kHz	25.18 L1	-23.87			
1	Quasi Peak	7.79 MHz	35.49 L1	-24.50			

4.1.6 Measurement Uncertainty

Uncertainty: 2.58 dB at a level of confidence of 95%

Issued: 2016-8-16

4.2 Radiated Emission (30 MHz -1000 MHz)

Test Result: Pass

4.2.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer	Cal.Date	Due Date
EM030-01	3m Semi-Anechoic Chamber	9×6×6 m3	ETS•LINDGR EN	2016-5-3	2017-5-3
EM030-02	Control room for 3m Semi-Anechoic Chamber	4×4×3 m3	ETS•LINDGR EN	2016-5-3	2017-5-3
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2016-6-9	2017-6-9
EM033-01	TRILOG Super Broadband test Antenna (30 MHz-3 GHz)	VULB 9163	SCHWARZB ECK	2015-8-30	2016-8-30
EM031-02-01	Coaxial cable	/	R&S	2016-6-9	2017-6-9
EM084-02	SIGNAL Generator	SML02	R&S	2016-6-9	2017-6-9

4.2.2 Block Diagram of Test Setup

FCC ID: ZFJ3H20160803R Page 10 of 17

Issued: 2016-8-16

4.2.3 Test Setup and Procedure

The measurement was applied in a 3 m semi-anechoic chamber. The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2014 requirement during radiated test. The bandwidth setting on R&S Test Receiver was 120 kHz. The frequency range from 30MHz to 1000MHz was checked

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper Frequency of Radiated Measurement
Below 1.705 MHz	30MHz
1.705 MHz – 108 MHz	1 GHz
108 MHz – 500 MHz	2 GHz
500 MHz – 1 GHz	5 GHz
Above 1 GHz	5th harmonic of the highest frequency or
	40 GHz, whichever is lower.
At transitional frequencies the lower limit appli	es.

Remark: Radiated Emission was performed from 30 MHz to 1 GHz.

4.2.4 Limit

Class B limit at 3m test distance:

Frequency range	Quasi-peak limits			
MHz	dB (μV/m)			
30 to 88	40			
88 to 216	43.5			
216 to 960	46			
960 to 1000	54			
At transitional frequencies the lower limit applies.				

FCC ID: ZFJ3H20160803R Page 11 of 17

Issued: 2016-8-16

4.2.5 Test Data and Curve

Horizontal:

QP

Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
60.000000	27.1	120.000	٧	12.0	12.9	40.0
63.960000	26.9	120.000	٧	10.8	13.1	40.0
151.840000	26.8	120.000	٧	8.0	16.7	43.5

FCC ID: ZFJ3H20160803R Page 12 of 17

Issued: 2016-8-16

Vertical

QP

Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Pol	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
34.880000	37.0	120.000	٧	13.3	3.0	40.0
51.760000	34.9	120.000	٧	12.7	5.1	40.0
63.800000	33.0	120.000	٧	10.9	7.0	40.0

4.2.6 Measurement uncertainty

Uncertainty: 4.87 dB in the frequency range of 30-1000 MHz at a level of confidence of 95%

Issued: 2016-8-16

4.3 Radiated Emission above 1 GHz

Test Result: Pass

4.3.1 Used Test Equipment

Osed Test Equipment						
Equipment No.	Equipment	Model	Manufacturer	Cal.Date	Due Date	
EM030-01	3m Semi-Anechoic Chamber	9×6×6 m3	ETS•LINDGR EN	2016-5-3	2017-5-3	
EM030-02	Control room for 3m Semi-Anechoic Chamber	4×4×3 m3	ETS•LINDGR EN	2016-5-3	2017-5-3	
EM031-02	EMI Test Receiver (9 kHz~7 GHz)	R&S ESR7	R&S	2016-6-9	2017-6-9	
EM033-01	TRILOG Super Broadband test Antenna (30 MHz-3 GHz)	VULB 9163	SCHWARZB ECK	2015-8-30	2016-8-30	
EM031-03	Signal and Spectrum Analyzer (10 Hz~40 GHz)	R&S FSV40	R&S	2016-6-9	2017-6-9	
EM033-02	Bouble-Ridged Waveguide Horn Antenna (800 MHz- 18 GHz)	R&S HF907	EM033-02	2016-5-30	2017-5-30	
EM031-02-01	Coaxial cable	/	R&S	2016-6-9	2017-6-9	
EM084-02	SIGNAL Generator	SML02	R&S	2016-6-9	2017-6-9	

FCC ID: ZFJ3H20160803R Page 14 of 17

Issued: 2016-8-16

4.3.2 Block Diagram of Test Setup

Issued: 2016-8-16

4.3.3 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber with absorbing material placed on the ground. The EUT were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turntable varied every 30 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna pole. The antenna was set as same as the height of the radiation centre of the EUT.

Horn antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated during radiated test.

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest Frequency Generated or	Upper Frequency of			
Used in Device	Radiated Measurement			
Below 1.705 MHz	30MHz			
1.705 MHz – 108 MHz	1 GHz			
108 MHz – 500 MHz	2 GHz			
500 MHz – 1 GHz	5 GHz			
Above 1 GHz	5th harmonic of the highest frequency or			
	40 GHz, whichever is lower.			
At transitional frequencies the lower limit applies.				

Remark: Radiated Emission was performed from 1 GHz to 2 GHz since the highest frequency generated from the EUT was 433 MHz.

4.3.4 Limit

Class B limit at 3m test distance:

Frequency range	Linear Average Detector	Peak Detector			
MHz	$dB (\mu V/m)$	$dB (\mu V/m)$			
> 1000	54	74			
At transitional frequencies the lower limit applies.					

FCC ID: ZFJ3H20160803R Page 16 of 17

Issued: 2016-8-16

4.3.5 Test Data

Receiver mode + Lighting on

Horizontal

<u> </u>						
Frequency	Read Level	Correction	Level	Limit Line	Over Limit	Detector
(GHz)	(dBuV)	Factor	(dBuV/m)	(dBµV/m)	(dB)	Function
		(dB)				
		, ,				
1.17	45.77	-14.20	31.57	54.00	-22.43	Peak
1.52	46.00	-12.60	33.40	54.00	-20.60	Peak
1.74	45.30	-11.20	34.10	54.00	-19.90	Peak

Vertical

Frequency	Read Level	Correction	Level	Limit Line	Over Limit	Detector
(GHz)	(dBuV)	Factor	(dBuV/m)	(dBµV/m)	(dB)	Function
		(dB)				
		, ,				
1.18	45.99	-14.10	31.89	54.00	-22.11	Peak
1.51	45.78	-12.60	33.18	54.00	-20.82	Peak
1.84	45.27	-10.60	34.67	54.00	-19.33	Peak

Remark: The measured PK value is below AV limit so the result was passed.

4.3.6 Measurement uncertainty

Measurement uncertainty is under consideration according to CISPR 16-4-2:2010.

FCC ID: ZFJ3H20160803R Page 17 of 17