Deep Learning Project Progress Report

Hüseyin Talha Şenyaşa^{1,*}

¹Department of Physics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

My personal notes on An application of deep reinforcement learning to algorithmic trading.

I. IMPLEMENTATION OF THE FRAMEWORK

Some definitions and symbols

- 1. S: Set of environment and agent state.
- 2. A: Set of actions which are available for agent to use.
- 3. s_t : RL environment internal state
- 4. o_t : Observation
- 5. a_t : Trading action
- 6. i_t : Information
- 7. $\pi(a_t|i_t)$: Trading policy (Rule)
- 8. r_t : Network's reward.
- 9. ν_t^c : Total amount of cash in portfolio.
- 10. ν_t^s : Corresponding value of the share.
- 11. n_t : Total number of shares, lots.

Reinforcement learning techniques are concerned with the design of π maximizing an optimality criterion, which directly depends on the immediate rewards r_t observed over a certain time horizon.

A. Trading Environment

 $1. \quad Implementation \ of \ Fundamental \ Operations$

Buy, Sell, GoShort, GoLong

2. Implementation of Trading Environment via OpenAI Gym

The trading environment of the DQL is implemented in $OpenAI\ Gym$ framework. The elements of the trading environment are as follows:

$$\mathcal{E}_{TE} = \{ \text{Close, Low, High, Volume, Position,} \\ \text{Action, Holdings, Cash, Money, Returns} \}$$
 (1)

B. Implementation of Deep Neural Network

Network Architecture, loss function etc.

C. Implementation of Double-Q Mechanism

II. ADDITIONAL NOTES AND QUESTIONS

- 1. Representing the transition from one candle to the next one as a Markov process.
- 2. Considering the correlation between candles as a spin system (as in the case of Witten's "An introduction to quantum information theory")

^{*} senyasa@itu.edu.tr