Introduction to Reinforcement Learning

- What is reinforcement learning?
- Why is reinforcement learning exciting?
- Reward functions

Model Type	Labeled Cases	Purpose	Metric
Supervised Machine Learning	Yes	Make Predictions	Error
Unsupervised Machine Learning	No	Find Structure	Error
Reinforcement Learning	No	Learn policy	Cumulative reward

Key differences with other ML methods:

- Reinforcement learning agent creates a policy which maximizes cumulative reward or utility
- RL agent has no supervisor, only reward signal
- Cumulative reward feedback is delayed
- Agent learns policy for a given task
- Policy determines actions, given state
- Time matters; sequential, non iid data

The Reinforcement Learning Agent

- Reinforcement learning agent operates sequentially over time steps:
 - From **state**, s_t
 - Executes action, a_t
 - Receives **observations**, o_t , and **updates state**, s_{t+1}
 - Receives scalar **reward**, r_t
- In response, the **environment**:
 - Receives and executes action, at
 - Emits observations, O_t
 - Emits reward, r_t

 Agent learns from experienceState is the history of the actions, rewards, observations

$$S_{t} = (a_{t-n}, r_{t-n}, o_{t-n}, ..., a_{t-1}, r_{t-1}, o_{t-1}, a_{t}, r_{t}, o_{t})$$

- Agent's actions affect subsequent data
- Time matters; sequential process, non iid data
- State is affected by actions

Why is Reinforcement Learning Exciting?

- Difficult robotics tasks
 - Walking robot
 - Drone flight control
 - Navigation
- Complex control problems
 - Control smart power grids
 - Allocate server resourses
 - Optimize elevator availability
- Play games at super-human level
 - Backgammon
 - Go
 - Atari
- Many more......

Why is Reinforcement Learning Exciting?

- Rapid advances in algorithms
- Deep Q-Networks (DQN) only since 2013
- But there are **pitfalls**:
 - Learning can be slow
 - Gaining experience can be expensive
 - Unintended behaviors occur
- Many recent improvements improve learning rate, reduce required experience

- A good reward function is key to success
- Reward function must be specific to a **task**
- Good reward function must reflect the goal
- Good reward function should be understandable and simple
- Poor reward function can lead to unexpected results

Properties of reward functions, R_t:

- Reward is a scalar feedback signal
- Reward depends on agent's action
- Indicates how agent is doing at time t
- Time maters, agent executes actions sequentially
- Non-instantaneous feedback: non-zero values may be delayed

- Reward function examples
- Agent plays a game:

R(t) = +1 for win; -1 for loss

Delayed reward; only at end of game

No path penalty

- Reward function examples
- Agent navigates robot to goal by shortest path:

R(t) = -1 for step; +10 for goal

Penalize for extra steps

• Poor reward function:

R(t) = +10 for goal

No penalty for long path

- Reward function examples
- Agent directs walking robot:

• Poor reward function:

R(t) = +1 for step; +10 for getting up Falling increases cumulative reward!