COMP20007 Design of Algorithms

Hashing

Daniel Beck

Lecture 15

Semester 1, 2020

• Abstract Data Structure: collection of (key, value) pairs.

- Abstract Data Structure: collection of (key, value) pairs.
- Required operations: Search, Insert, Delete

- Abstract Data Structure: collection of (key, value) pairs.
- Required operations: Search, Insert, Delete
- Last lecture: Binary Search Trees (and extensions)

- Abstract Data Structure: collection of (key, value) pairs.
- Required operations: Search, Insert, Delete
- Last lecture: Binary Search Trees (and extensions)
- This lecture: Hash Tables.

• A hash table is a continuous data structure with m preallocated entries.

- A hash table is a continuous data structure with *m* preallocated entries.
- Average case performance for Search, Insert and Delete: $\Theta(1)$

- A hash table is a continuous data structure with *m* preallocated entries.
- Average case performance for Search, Insert and Delete: $\Theta(1)$
- Requires a hash function: $h(K) \to i \in [0, m-1]$.

 The period of the property of the content is a position.

- A hash table is a continuous data structure with m preallocated entries.
- Average case performance for Search, Insert and Delete: $\Theta(1)$
- Requires a hash function: $h(K) \rightarrow i \in [0, m-1]$.
- A hash function should:
 - Be efficient $(\Theta(1))$.
 - Distribute keys evenly (uniformly) along the table.

Question: if keys are integers, why do I need a hash function? I could just use the key as the index, no?

Question: if keys are integers, why do I need a hash function? I could just use the key as the index, no?

• This is the *identity* hash function: h(K) = K.

Question: if keys are integers, why do I need a hash function? I could just use the key as the index, no?

- This is the *identity* hash function: h(K) = K.
- Note that $K \in [0, m-1]$. In other words we need to know the maximum number of keys in advance.

should be bounded

Question: if keys are integers, why do I need a hash function? I could just use the key as the index, no?

- This is the *identity* hash function: h(K) = K.
- Note that $K \in [0, m-1]$. In other words we need to know the maximum number of keys in advance.
- Sometimes this is possible: postcodes, for example.

Question: if keys are integers, why do I need a hash function? I could just use the key as the index, no?

- This is the *identity* hash function: h(K) = K.
- Note that $K \in [0, m-1]$. In other words we need to know the maximum number of keys in advance.
- Sometimes this is possible: postcodes, for example.
- Many times it is not:
 - m is too large (need to preallocate) = g. for postcode, you need to preallocate 100000 elevant
 - Unbounded integers (student IDs)
 - Non-integer keys (games)

Hashing Integers

• For large/unbounded integers, an alternative function is $h(K) = K \mod m$

Hashing Integers

- ullet For large/unbounded integers, an alternative function is $h(K) = K \mod m$
- Allow us to set the size *m*.

Hashing Integers

- For large/unbounded integers, an alternative function is $h(K) = K \mod m$
- Allow us to set the size m.
- Small *m* results in lots of collisions, large *m* takes excessive memory. Best *m* will vary.

Hashing Strings

• Assume A \mapsto 0, B \mapsto 1, etc.

- Assume A \mapsto 0, B \mapsto 1, etc. may each character to Assume 26 characters and m=101.
- Each character can be mapped to a binary string of length 5 $(2^5 = 32)$.

Hashing Strings

- Assume A \mapsto 0, B \mapsto 1, etc.
- Assume 26 characters and m = 101.
- Each character can be mapped to a *binary* string of length 5 ($2^5 = 32$).

We can think of a string as a long binary number:

$$M \ Y \ K \ E \ Y \ \mapsto 01100 11000 0101 000100 11000 \ (= 13379736)$$

$$13379736 \mod 101 = 64$$

So 64 is the position of string M Y K E Y in the hash table.

Hashing Strings

We deliberately chose
$$m$$
 to be prime.

Will be cancelled by 32

$$13379736 = 12 \times 32^4 + 24 \times 32^3 + 10 \times 32^2 + 4 \times 32 + 24$$

With m = 32, the hash value of any key is the last character's value! if last character is the same, many collisions

another problem for hashing strings:

O very long string, the number calculated is very large

-> overflow

Hashing Long Strings

Assume chr be the function that gives a character's number, so for example, chr(c) = 2.

Hashing Long Strings

Assume *chr* be the function that gives a character's number, so for example, chr(c) = 2.

Then we have

$$h(s) = (\sum_{i=0}^{|s|-1} chr(s_i) \times 32^{|s|-i-1}) \mod m$$

where m is a prime number. For example,

$$h(V E R Y L O N G K E Y) = (21 \times 32^{10} + 4 \times 32^{9} + \cdots) \mod 101$$

Hashing Long Strings

Assume *chr* be the function that gives a character's number, so for example, chr(c) = 2.

Then we have

$$h(s) = (\sum_{i=0}^{|s|-1} chr(s_i) \times 32^{|s|-i-1}) \mod m$$

where m is a prime number. For example,

$$h(V E R Y L O N G K E Y) = (21 \times 32^{10} + 4 \times 32^{9} + \cdots) \mod 101$$

The term between parenthesis can become quite large and result in overflow.

Horner's Rule

Instead of

$$21 \times 32^{10} + 4 \times 32^9 + 17 \times 32^8 + 24 \times 32^7 \cdots$$

factor out repeatedly:

$$(\cdots ((21 \times 32 + 4) \times 32 + 17) \times 32 + \cdots) + 24$$

Horner's Rule

Instead of

factor out repeatedly:

instead of calculating larg number

$$(\cdots ((21 \times 32 + 4) \times 32 + 17) \times 32 + \cdots) + 24$$

Now utilize these properties of modular arithmetic:

$$(x+y) \bmod m = ((x \bmod m) + (y \bmod m)) \bmod m$$
$$(x \times y) \bmod m = ((x \bmod m) \times (y \bmod m)) \bmod m$$

So for each sub-expression it suffices to take values modulo m.

Collisions

Happens when the hash function give identical results to two different keys.

Collisions

Happens when the hash function give identical results to two different keys.

We saw two solutions:

- Separate Chaining
- Linear Probing

Collisions

Happens when the hash function give identical results to two different keys.

We saw two solutions:

- Separate Chaining
- Linear Probing

Practical efficiency will depend on the table load factor:

$$\alpha = n/m$$
 $n = \#$ total of records

Assign multiple records per cell (usually through a linked list)

 \bullet Assuming even distribution of the n keys.

- Assuming even distribution of the *n* keys.
- A sucessful search requires $1 + \alpha/2$ operations on average.

- Assuming even distribution of the *n* keys.
- A sucessful search requires $1 + \alpha/2$ operations on average.
- An unsucessful search requires α operations on average.

- Assuming even distribution of the *n* keys.
- A sucessful search requires $1 + \alpha/2$ operations on average.
- ullet An unsucessful search requires lpha operations on average.
- Almost same numbers for Insert and Delete.

- Assuming even distribution of the *n* keys.
- A sucessful search requires $1 + \alpha/2$ operations on average.
- ullet An unsucessful search requires lpha operations on average.
- Almost same numbers for Insert and Delete.
- Worst case $\Theta(n)$ only with a bad hash function (load factor is more of an issue).

- Assuming even distribution of the *n* keys.
- A sucessful search requires $1 + \alpha/2$ operations on average.
- ullet An unsucessful search requires lpha operations on average.
- Almost same numbers for Insert and Delete.
- Worst case $\Theta(n)$ only with a bad hash function (load factor is more of an issue).
- Requires extra memory.

Linear Probing

Populate successive empty cells.

move until find an empty cell

We will only have 0-d=1 in this case Populate successive empty cells.

- Much harder analysis, simplified results show:
- A sucessful search requires $(1/2) \times (1 + 1/(1 \alpha))$ operations on average.
- An unsucessful search requires $(1/2) \times (1+1/(1-\alpha)^2)$ operations on average.

 only make sense for n < 2 < 1

If we don't allocate extra space, if 2>1, means all spaces are fully allocated, when d=1, worst case O(n)

Populate successive empty cells.

- Much harder analysis, simplified results show:
- A successful search requires $(1/2) \times (1 + 1/(1 \alpha))$ operations on average.
- An unsucessful search requires $(1/2) \times (1 + 1/(1 \alpha)^2)$ operations on average.
- Similar numbers for Insert. Delete virtually impossible.

ne don't actually delete element, just assign a flag show it's deseted c如果真delete,我们在智索下一个会 loss track. 不删除的缺乏,占用内容。

Populate successive empty cells.

- Much harder analysis, simplified results show:
- A sucessful search requires $(1/2) \times (1 + 1/(1 \alpha))$ operations on average.
- An unsucessful search requires $(1/2) \times (1 + 1/(1 \alpha)^2)$ operations on average.
- Similar numbers for Insert. Delete virtually impossible.
- Does not require extra memory.

Populate successive empty cells.

- Much harder analysis, simplified results show:
- A sucessful search requires $(1/2) \times (1 + 1/(1 \alpha))$ operations on average.
- An unsucessful search requires (1/2) \times (1 + 1/(1 α)²) operations on average.
- Similar numbers for Insert. Delete virtually impossible.
- Does not require extra memory.
- Worst case $\Theta(n)$ with a bad hash function and/or

clusters.

A generalisation of Linear Probing.

Apply a second hash function in case of collision.

A generalisation of Linear Probing.

Apply a second hash function in case of collision.

- First try: h(K) $(h(k)+o\cdot S(k))$ mod m = h(k)
- Second try: $(h(K) + s(K)) \mod m$
- Third try: $(h(K) + 2s(K)) \mod m$
- ...

if
$$s(k)=1$$

 $(h(k)+0. s(k))$ mod $m=h(k)$ since $xx \mod m$
 $=h(k)$
 $(h(k)+(-1))$ mod m
 $=h(k)$
 $h(k) \mod m$
 $=h(k)$

A generalisation of Linear Probing.

Apply a second hash function in case of collision.

- First try: h(K)
- Second try: $(h(K) + s(K)) \mod m$
- Third try: $(h(K) + 2s(K)) \mod m$
- . . .
- Another reason to use prime m in h(K): will guarantee to find a free cell if there is one.

A generalisation of Linear Probing.

Apply a second hash function in case of collision.

- First try: h(K)
- Second try: $(h(K) + s(K)) \mod m$
- Third try: $(h(K) + 2s(K)) \mod m$
- ...

Another reason to use prime m in h(K): will guarantee to find a free cell if there is one.

Both Linear Probing and Double Hashing are sometimes referred as *Open Addressing* methods.

Rehashing

• High load factors deteriorate the performance of a hash table (for linear probing, ideally we should have $\alpha < 0.9$).

T threshold

Rehashing

- High load factors deteriorate the performance of a hash table (for linear probing, ideally we should have $\alpha < 0.9$).
- Rehashing allocates a new table (usually around double the size) and move every item from the previous table to the new one.

Rehashing

- High load factors deteriorate the performance of a hash table (for linear probing, ideally we should have $\alpha < 0.9$).
- Rehashing allocates a new table (usually around double the size) and move every item from the previous table to the new one.
- Very expensive operation, but happens infrequently.

Hash Tables:

• Implement dictionaries.

- Implement dictionaries.
- Allow $\Theta(1)$ Search, Insert and Delete in the average case.

- Implement dictionaries.
- Allow $\Theta(1)$ Search, Insert and Delete in the average case.
- Preallocates memory (size m).

- Implement dictionaries.
- Allow $\Theta(1)$ Search, Insert and Delete in the average case.
- Preallocates memory (size m).
- Requires good hash functions.

- Implement dictionaries.
- Allow $\Theta(1)$ Search, Insert and Delete in the average case.
- Preallocates memory (size m).
- Requires good hash functions.
- Requires good collision handling.

If Hash Tables are so good, why bother with BSTs?

If Hash Tables are so good, why bother with BSTs?

- Hash Tables ignore key ordering, unlike BSTs.
- Queries like "give me all records with keys between 100 and 200" are easy within a BST but much less efficient in a hash table.

if require ordering of key;
But better

If Hash Tables are so good, why bother with BSTs?

- Hash Tables ignore key ordering, unlike BSTs.
- Queries like "give me all records with keys between 100 and 200" are easy within a BST but much less efficient in a hash table.
- Also: memory requirements of a hash table are much higher.

If Hash Tables are so good, why bother with BSTs?

- Hash Tables ignore key ordering, unlike BSTs.
- Queries like "give me all records with keys between 100 and 200" are easy within a BST but much less efficient in a hash table.
- Also: memory requirements of a hash table are much higher.

That being said, if hashing is applicable, a well-tuned hash table will typically outperform BSTs.

Python dictionaries (dict type)

Python dictionaries (dict type)

- Open addressing using pseudo-random probing
- Rehashing happens when $\alpha = 2/3$

Python dictionaries (dict type)

- Open addressing using pseudo-random probing
- Rehashing happens when $\alpha = 2/3$

C++ unordered_maps

Python dictionaries (dict type)

- Open addressing using pseudo-random probing
- Rehashing happens when $\alpha = 2/3$

C++ unordered_maps

- Uses chaining.
- Rehashing happens when $\alpha = 1$

Python dictionaries (dict type)

- Open addressing using pseudo-random probing
- Rehashing happens when $\alpha = 2/3$

C++ unordered_maps

- Uses chaining.
- Rehashing happens when $\alpha = 1$

Next lecture: what happens if records/data is too large?