人(1) 摊 $F(x_1, x_2) = \int_0^{x_1} \int_0^{x_2} i x_1 e^{-x_1} dx_1 dx_1$ 设陋机向量 $\gamma = [\chi_1, \chi_1]^T$ 的宏度函数为 $f(x_1, \chi_1) =$ $\chi_1 > 0$, 0 < h < 1. (1) \$\frac{1}{2} F(\chi_1,\chi_2) $F(x_1,x_2) = \int_0^{x_1} \int_0^{x_2} 2t_1 e^{-t_1} dt_2 dt_1$ (2) $f(x_1) = \int_0^1 f(x_1)(x_2) dx_2$ = 5/1/2 260-X1 $f(x_1) = \int_0^{+a} f(x_1 x_1) dx_1$ = 21/2(1-e-x1) 单位量 (X,Y) = E { [X - E(X)] [Y- E(Y)] } 证明的双相互独立 (3) $P f(x_1,x_2) = f(x_1) f(x_2)$ 对价量XY $Var(X) = E[(X-EX)(X-EX)^T]$ 3. 从 QTX, 即均值知方差: E(aTXI) $= \alpha^T E(X_I)$ $= a^{\mathsf{T}} \mathcal{M}$ X的方差或协方差对 var (aTX) Var(X)为E Cov(Xi,X3)为 6ii = aT Var(X) a 2 = (6ij) +xp = aT Ea X1+X2-X3+X4的均值的差: $E(X_1+X_2-X_3+X_4)$ = 34 Var (X1 + X2 - X3 + X4) (DX = WAY 4E

(OV (X1 + X2 - X3 + X4 , a5X1 + 0.5 X2 + 0.5 X3 + 0.5 X4) = 0.5 E + 0.5 E - 0.5 Z + 0.5 E = E

扫描全能王 创建

6. X_1 年 X_1 X_2 X_3 Y_1 Y_2 Y_3 Y_1 Y_2 Y_3 Y_4 Y_5 Y_4 Y_5 Y_5 Y_6 Y_6 Y_6 Y_6 Y_6 Y_7 Y_8 Y_8

$$\frac{\overline{X} - \mu}{\sqrt{n}} \sim \mu(0,1)$$

 $P\left(-\frac{7}{7}, \frac{6}{5} \frac{7}{5}, \frac{7}{5} < \frac{7}{5}, \frac{7}{5} > 0.99\right) = 0.99$ $P\left(\frac{7}{7} - \frac{6}{5} \frac{7}{5}, \frac{7}{5}, \frac{7}{5} < \frac{7}{5}, \frac{7}{5} > 0.99\right) = 0.99$

$$\bar{\mu} = 50.38 + \frac{0.62}{\sqrt{10}} \times 2.58 = \frac{50.89}{50.8858}$$

$$\underline{\mu} = 50.38 - \frac{0.62}{\sqrt{10}} \times 2.58 = 49.87$$

$$\underline{\mu} \in [49.87, 50.89]$$

4. (1)

 $l = E(X) = \ell^{n}$. (2) -0.693147 0.22314355 -0.22314355 0.693147 $\overline{X} = 0$ $\overline{X} = 0$ $\overline{X} = 0$ $\overline{X} = 0$

(3) X 与 S 相互独立:

(4)S 为正定阵的充要条件是n > n

1. 段隨机向量
$$X = (X_1, X_2)^{\mathsf{T}}$$
 的密度函数为
$$f(x_1, x_2) = \begin{cases} 2x_2 e^{-x_1}, & x_1 \ge 0.0 \le x_i \le 1. \\ 0, & \text{其他.} \end{cases}$$

- (1) 求 $F(x_1, x_2)$:
- (2) 求 $f(x_1), f(x_2)$
- (3) 证明 X₁ 与 X₂ 相互独立.
- 2. 设随机向量 $X=(X_1,X_2)^{\mathrm{T}}$ 具有均值向量 $\mu=(\mu_1,\mu_2)^{\mathrm{T}}$, 协差阵 $\Sigma=$ $\begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} \end{bmatrix}$. 写出线性组合 $\begin{cases} Z_1 = X_1 - X_2 \\ Z_2 = X_1 + X_2 \end{cases}$ $\mathbf{Z} = \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = CX$ 的

样本均值向量和协差阵.

③ 设随机向量
$$X_1, X_2, X_3, X_4$$
 具有(均值向量) $\mu = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, 协差阵 $\Sigma = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, 也就能成功的值和方差, $\Sigma = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, 也就能成功的值和方

 $£,X_1+X_2-X_3+X_4$ 与 $0.5X_1+0.5X_2+0.5X_3+0.5X_4$ 之间的协差阵.

4. 设随机向量 X_1 和 X_2 相互独立,且 $X_1\sim N_p\left(m{\mu}_1\,,m{\Sigma}_{11}\,\right)$, $X_2\sim N_q\left(m{\mu}_2\,,m{\Sigma}_{22}\,\right)$,问

 $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$ 服从什么分布?均值向量和协差阵是什么?

5. 设随机向量 $X \sim N_{\rm 5} \left(\mu, \Sigma \right)$,问 $\left[egin{matrix} X_2 \\ X_{\rm 5} \end{smallmatrix}
ight]$ 服从什么分布?均值向量和协差阵是什

$$\mathbf{E} \mathbf{X} = (X_1, X_2, X_3)^{\mathsf{T}} \sim N_3 (\boldsymbol{\mu}, \boldsymbol{\Sigma}), 其中 \boldsymbol{\Sigma} = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, 问 X_1 与 X_2 是资$$

相互独立 $?(X_1,X_2)$ 和 X_3 是否相互独立?