Analog Circuit Design

HW₂

工科 25 110011101 林冠澔

(1) Design of a rail-to-rail input amplifier with constant gm control.

- (a) Design I_{Bias} and W/L of all transistors by hand calculation.
 - (1) Power dissipation

根據電路的功能,在最高電流的狀態為 17 個 I_{Bias}。

(2) Frequency response

利用 3dB frequency 的條件可以藉由 R_{out} 來獲得輸出端 $MS1\sim MS8$ 的 size,但可以發現求出的尺寸不在合理的範圍,原因可以從 hw1 的結果發現出實際使用的電晶體 λ 值與 level-1 理想參數表差異甚大(>100%),因此計算所用的 r_o 會比實際大得多。加上電晶體的 K 值也與設計的尺寸有關,因此在計算 g_m 時有相當的誤差。故在此次設計中並沒有藉由這個方式決定 $MS1\sim 8$,而是採用 Output swing 條件設計。

(3) Output swing

為了達到目標的 output swing,在設計的過程中假設 MS1~MS8 電晶體的 V_{DS} =0.25V,以達到下界的 0.5V 與上界的 1.3V。因此可以藉由此條件設計 cascode 的 size 與 Biasing volotage

(4) Gain

根據 $Av = Gm \times Rout$,而 Rout 可從 3dB 的條件獲得最大值,因此可以求得 $MN1 \cdot 2$ 與 $MP1 \cdot 2$ 的最小 size。

(5) Input differential pair

在 Differential pair stage 的部分,若是同樣有設計使得 current source 的 V_{DS} =0.25V 的話,可以藉由電晶體飽和條件再次推算出 $MN1 \cdot 2$ 與 $MP1 \cdot 2$ 的 size,並因為這個值比 gain 所求得的 size 更大,因此會使用這裡的邊界條件進行後續設計。

而在 current source 的 size(MN3、MP3)與偏壓(VB1、VB4)也可以藉由 V_{DS} 與 I_{Bias} 的設計求得。

(6) Complementary input pair

在N與P的互補輸入對中也是藉由使 V_{DS} =0.25V 來進行設計。並為了使 Δg_m <10%的條件,在 current mirror 中設計了1:3 的電流以進行補償。

(b) Biasing circuit

利用 Iref = 20uA 藉由 current mirror 設計 bias voltage。由於電路中有7個偏壓點需要施加,因此在這邊設計7組 current mirror 產生7個不同的 Bias voltage,每組中藉由下半部的 NMOS 對左邊的理想電流進行複製,並利用比例控制電流大小。再利用上端的 PMOS 作為電阻產生壓差生成穩定電壓點作為主電路的偏壓。

Bias circuit size

Cell	Iref	M19	M20	M22	M23	M30	M26	M28
$\frac{W}{L}$ (m)	20uA	$\frac{0.26u}{1.08u}$	$\frac{0.3u}{1.48u}$	$\frac{0.31u}{2.3u}$	$\frac{0.2u}{17.25u}$	$\frac{0.26u}{1.06u}$	$\frac{0.48u}{1.49u}$	$\frac{0.3u}{3.83u}$
Cell	M16	M17	M18	M21	M24	M29	M25	M27
$\frac{W}{L}$ (m)	$\frac{5u}{0.5u}$	9.98 <i>u</i> 0.5 <i>u</i>	$\frac{5.01u}{0.5u}$	$\frac{5u}{0.5u}$	$\frac{1.25u}{0.5u}$	9.98 <i>u</i> 0.5 <i>u</i>	$\frac{4.97u}{0.5u}$	$\frac{5u}{0.5u}$

• DC operating point

• Bias voltage result

Node	VDD	VSS	VB1	VB2	VB3	VB4	VB5	VBN	VBP
Voltage(V)	1.8	0	500.1m	800.1m	899.9m	1.277	500.1m	700m	1

- (c) rail-to-rail input amplifier
- (i) Summary of the circuit

• Circuit parameter

MOS	MN1 · 2	MN3	MN4	MN5	MP1 \ 2	MP3	MP4	MP5
$\frac{W}{L}$ (m)	$\frac{34 \times 0.5u}{0.5u}$	$\frac{39 \times 1u}{1u}$	$\frac{22 \times 1u}{1u}$	$\frac{30 \times 1u}{1u}$	$\frac{69 \times 0.5u}{0.5u}$	$\frac{83 \times 1u}{1u}$	$\frac{50 \times 0.5}{0.5u}$	
M	1	1	3	1	2	9	6	6
MOS	MB1	MB2	MS1 · 2	MS3 \ 4	MS5 × 0	6 MS7	7 、 8	
$\frac{W}{L}$ (m)	$\frac{30 \times 1u}{1u}$	$\frac{30 \times 1u}{1u}$	$\frac{51 \times 1u}{1u}$	$\frac{80 \times 0.75}{0.75u}$	$\frac{u}{0.52u}$		0.55 <i>u</i>	
M	2	4	6	6	8	(5	

Design flow

- I. 使用計算出來的邊界值套入電路中,並逐步調整直到在 Vcm=0.9V 時達到 input pair 與 cascode 電路操作在 Saturation 區域以達到最大的放大倍率。而互補輸入對則在此時操作在 Subthreshold 區域。
- II. 藉由 delta gm 的條件重新調整 input pair N-type 與 P-type 的相對比例。 並使 gm total 維持在 1m 左右,以利後續 phase 的調控。
- III. 放大 cascode stage 的比例,以達到目標 gain 與 f3dB 的條件。
- IV. 藉由 gm 與 ro 的數值,使上下 Rop 與 Ron 相對平衡,也就是讓 N 型與 P 型的放大比例穩定,藉此提高 phase margin。
- V. 最後重複調整 casecode 的 W/L 與 m 的相對數值,使 DC Output swing 與 AC 的 f_{3dB}、phase margin、gain 可以操作在 0V<ICMR<1.8V 的情况下接满足條件。

DC operating point

> Region-gm-ro

➤ Id-vth-vdsat

• $P_{diss} = 1.028m \times 1.8 = 1.8504mW$

(ii) Sweep the DC value of v₀ with v₁ sweeping from 0 to 1.8V.

- Red line: Vout-Vin Blue line: Gain-Vin
- Output dynamic range : $0.4224 V \le V_{out} range \le 1.3007 V$

Freq (Hz)

- AC gain : Av = 54.0684 dB
- 3dB frequency: $f_{3dB} = 110.056 \text{ kHz}$
- Unit gain bandwidth: UBW = 53.703 MHz
- Phase margin : $PM = 180^{\circ} 112.652^{\circ} = 67.348^{\circ}$

(iv) Constant g_m

Vicm (V)

- Red line: g_{mp} Yellow line: g_{mn} Green line: $g_{mn}+g_{mp}$
- $g_{m_{max}} = 1.01721 \text{ mA/V}$, $g_{m_{min}} = 0.935696 \text{ mA/V}$

(v) ICMR

From Vicm = $0V\sim1.8V$:

• AC gain : $Av \ge 51.6337 dB$

• 3dB frequency : $f_{3dB} \ge 85.9076k$ • Phase margin : $PM \ge 65.0792^{\circ}$

(d) Summarize the specifications of the Op-amp

	Specifications	Simulations	Units
	$P_{diss} \le 2$	1.8504	mW
DC	$0 \le ICMR \le 1.8$	$0 \le ICMR \le 1.8$	V
Characteristics	$0.5 \leq V_{out} range \leq 1.3$	0.4224 \(\leq V_{out} \) range \(\leq 1.3007\)	V
	$\Delta g_m < 10\%$	8.01	%
AC	$Av \ge 50dB$	54.0684	dB
AC Characteristics	3-dB-bandwidth ≥ $80k$	110.056	Hz
Characteristics	<i>PM</i> ≥ 65	67.348	0