TD N°3: Modélisation géométrique directe et inverse

Exercice 1: Robot RRPR Adept Cobra S600

On considère le robot Adept Cobra S600 qui est représenté et schématisé sur la figure 1. C'est un manipulateur industriel de type RRPR composé de 4 solides S_1, S_2, S_3, S_4 , un bâti S_0 et 3 liaisons $(S_0 - S_1 : \text{pivot}, S_1 - S_2 : \text{pivot}, S_2 - S_3 : \text{glissière et } S_3 - S_4 : \text{pivot})$.

On note $[p_x, p_y, p_z]^T$ les coordonnées de E dans \mathcal{R}_0 et $\phi = (\widehat{\vec{x_0}}, \widehat{\vec{x_E}})$ mesuré autour de $\vec{z_0}$.

Figure 1 – [Gauche] : Robot Adept Cobra S600. [Droite] : Robot RRPR - Placement des repères

- 1. En utilisant Chasles, donner les coordonnées $[p_x, p_y, p_z]^T$ en fonction des 3 paramètres du robot $\theta_1(t), \theta_2(t)$ et $d_3(t)$.
- 2. Exprimer ϕ en fonction $\theta_1(t)$, $\theta_2(t)$ et $\theta_4(t)$.
- 3. En déduire le modèle géométrique direct $\mathbf{x} = [p_x, p_y, p_z, \phi]^T$ en fonction des paramètres articulaires $\mathbf{q} = [\theta_1(t), \theta_2(t), d_3(t), \theta_4(t)]^T$.
- 4. Vérifier ces relations en utilisant les matrices de transformation homogènes. On donnera pour cela ${}^{0}\mathbf{T}_{1}(\mathbf{q}), {}^{1}\mathbf{T}_{2}(\mathbf{q}), {}^{2}\mathbf{T}_{3}(\mathbf{q}), {}^{3}\mathbf{T}_{4}(\mathbf{q}), {}^{4}\mathbf{T}_{E}(\mathbf{q})$ et ${}^{0}\mathbf{T}_{E}(\mathbf{x})$.
- 5. Résoudre le modèle géométrique inverse qui donne \mathbf{q} en fonction de \mathbf{x} . Combien de solutions au problème inverse ?
- 6. Comment peut-on définir l'espace de travail du robot.

Exercice 2: Robot RPPR

Soit le robot RPPR à 4 degrés de liberté décrit schématiquement sur la figure ci-dessous.

FIGURE 2 - Robot RPPR représenté schématiquement - ET - Placement des repères DH

Ce robot est constitué de 5 corps solides notés S_0, S_1, S_2, S_3 et S_4 articulés entre eux de la façon suivante :

- la liaison entre les corps S_0 et S_1 est une liaison pivot d'axe vertical, paramétré par l'angle q_1 ,
- la liaison entre les corps S_1 et S_2 est une liaison glissière d'axe horizontal perpendiculaire à l'axe de la liaison précédente; paramétré par la distance q_2 ,
- la liaison entre les corps S_2 et S_3 est une liaison glissière d'axe horizontal perpendiculaire à l'axe de la liaison précédente; paramétré par la distance q_3 ,
- la liaison entre les corps S_3 et S_4 est une liaison pivot d'axe vertical perpendiculaire à l'axe de la liaison précédente, paramétré par l'angle q_4 .

Le corps S_4 est une tige dont l'extrémité, notée P, se situe à la distance l_4 de l'axe de la liaison $S_3 - S_4$.

- 1. Les repères \mathcal{R}_0 à \mathcal{R}_4 étant données. Compléter sur la Figure 2 les autres repères \mathcal{R}_1 , \mathcal{R}_2 et \mathcal{R}_3 conformément à la convention Denavit-Hartenberg.
- 2. Donner sur le tableau suivant les paramètres de Denavit et Hartenberg associés.
- 3. Expliquer sans faire explicitement le calcul comment obtenir ${}^{0}T_{4}(q)$ en prenant soin de donner chaque transformation.
- 4. Combien de paramètres opérationnels sont commandables? Lesquels?
- 5. On supprime désormais la dernière liaison $S_3 S_4$. Calculer la transformation ${}^0T_3(q)$ en fonction de q_1, q_2, q_3 et en déduire la position du point D_3 dans le repère \mathcal{R}_0 .
- 6. Retrouver ces relations avec une méthode géométrique (Chasles). Quelles sont les composantes opérationnelles commandables?
- 7. Dans le cas où $q_1 = 0$, simplifier ces relations et donner le modèle géométrique inverse qui exprime les variables articulaires q_2, q_3 en fonction des variables opérationnelles commandables?
- 8. Dans le cas où $q_2 = 0$, simplifier ces relations et donner le modèle géométrique inverse qui exprime les variables articulaires q_1, q_3 en fonction des variables opérationnelles commandables?