In [652]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear\_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

import re

from sklearn.datasets import load\_digits

from sklearn.model\_selection import train\_test\_split

In [653]: | a=pd.read\_csv(r"C:\Users\user\Downloads\C10\_air\csvs\_per\_year\csvs\_per\_year\madrid\_2014

Out[653]:

|        | date                       | BEN | со  | EBE | имнс | NO   | NO_2 | O_3  | PM10 | PM25 | SO_2 | тсн  | TOL | station  |
|--------|----------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|-----|----------|
| 0      | 2014-06-<br>01<br>01:00:00 | NaN | 0.2 | NaN | NaN  | 3.0  | 10.0 | NaN  | NaN  | NaN  | 3.0  | NaN  | NaN | 28079004 |
| 1      | 2014-06-<br>01<br>01:00:00 | 0.2 | 0.2 | 0.1 | 0.11 | 3.0  | 17.0 | 68.0 | 10.0 | 5.0  | 5.0  | 1.36 | 1.3 | 28079008 |
| 2      | 2014-06-<br>01<br>01:00:00 | 0.3 | NaN | 0.1 | NaN  | 2.0  | 6.0  | NaN  | NaN  | NaN  | NaN  | NaN  | 1.1 | 28079011 |
| 3      | 2014-06-<br>01<br>01:00:00 | NaN | 0.2 | NaN | NaN  | 1.0  | 6.0  | 79.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079016 |
| 4      | 2014-06-<br>01<br>01:00:00 | NaN | NaN | NaN | NaN  | 1.0  | 6.0  | 75.0 | NaN  | NaN  | 4.0  | NaN  | NaN | 28079017 |
|        |                            |     |     |     |      |      |      |      |      |      |      |      |     |          |
| 210019 | 2014-09-<br>01<br>00:00:00 | NaN | 0.5 | NaN | NaN  | 20.0 | 84.0 | 29.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079056 |
| 210020 | 2014-09-<br>01<br>00:00:00 | NaN | 0.3 | NaN | NaN  | 1.0  | 22.0 | NaN  | 15.0 | NaN  | 6.0  | NaN  | NaN | 28079057 |
| 210021 | 2014-09-<br>01<br>00:00:00 | NaN | NaN | NaN | NaN  | 1.0  | 13.0 | 70.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079058 |
| 210022 | 2014-09-<br>01<br>00:00:00 | NaN | NaN | NaN | NaN  | 3.0  | 38.0 | 42.0 | NaN  | NaN  | NaN  | NaN  | NaN | 28079059 |
| 210023 | 2014-09-<br>01<br>00:00:00 | NaN | NaN | NaN | NaN  | 1.0  | 26.0 | 65.0 | 11.0 | NaN  | NaN  | NaN  | NaN | 28079060 |

210024 rows × 14 columns

```
In [654]: a.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210024 entries, 0 to 210023 Data columns (total 14 columns): Column Non-Null Count Dtype --------------0 date 210024 non-null object BEN float64 1 46703 non-null 2 CO 87023 non-null float64 3 EBE 46722 non-null float64 float64 4 NMHC 25021 non-null 5 NO 209154 non-null float64 6 NO 2 209154 non-null float64 7 0 3 121681 non-null float64 8 PM10 104311 non-null float64 9 PM25 51954 non-null float64 float64 10 SO 2 87141 non-null 11 TCH 25021 non-null float64 12 TOL 46570 non-null float64 13 station 210024 non-null int64 dtypes: float64(12), int64(1), object(1) memory usage: 22.4+ MB

In [655]: b=a.fillna(value=86)

Out[655]:

|        | date                       | BEN  | со   | EBE  | имнс  | NO   | NO_2 | O_3  | PM10 | PM25 | SO_2 | тсн   | TOL  | station  |
|--------|----------------------------|------|------|------|-------|------|------|------|------|------|------|-------|------|----------|
| 0      | 2014-06-<br>01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 3.0  | 10.0 | 86.0 | 86.0 | 86.0 | 3.0  | 86.00 | 86.0 | 28079004 |
| 1      | 2014-06-<br>01<br>01:00:00 | 0.2  | 0.2  | 0.1  | 0.11  | 3.0  | 17.0 | 68.0 | 10.0 | 5.0  | 5.0  | 1.36  | 1.3  | 28079008 |
| 2      | 2014-06-<br>01<br>01:00:00 | 0.3  | 86.0 | 0.1  | 86.00 | 2.0  | 6.0  | 86.0 | 86.0 | 86.0 | 86.0 | 86.00 | 1.1  | 28079011 |
| 3      | 2014-06-<br>01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 1.0  | 6.0  | 79.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079016 |
| 4      | 2014-06-<br>01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0  | 6.0  | 75.0 | 86.0 | 86.0 | 4.0  | 86.00 | 86.0 | 28079017 |
|        |                            |      |      |      |       |      |      |      |      |      |      |       |      |          |
| 210019 | 2014-09-<br>01<br>00:00:00 | 86.0 | 0.5  | 86.0 | 86.00 | 20.0 | 84.0 | 29.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079056 |
| 210020 | 2014-09-<br>01<br>00:00:00 | 86.0 | 0.3  | 86.0 | 86.00 | 1.0  | 22.0 | 86.0 | 15.0 | 86.0 | 6.0  | 86.00 | 86.0 | 28079057 |
| 210021 | 2014-09-<br>01<br>00:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0  | 13.0 | 70.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079058 |
| 210022 | 2014-09-<br>01<br>00:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 3.0  | 38.0 | 42.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079059 |
| 210023 | 2014-09-<br>01<br>00:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0  | 26.0 | 65.0 | 11.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079060 |

210024 rows × 14 columns

```
In [656]: b.columns
dtype='object')
```

In [657]: c=b.head(30) С

Out[657]:

|    | date                   | BEN  | со   | EBE  | имнс  | NO  | NO_2 | O_3  | PM10 | PM25 | SO_2 | тсн   | TOL  | station  |
|----|------------------------|------|------|------|-------|-----|------|------|------|------|------|-------|------|----------|
| 0  | 2014-06-01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 3.0 | 10.0 | 86.0 | 86.0 | 86.0 | 3.0  | 86.00 | 86.0 | 28079004 |
| 1  | 2014-06-01<br>01:00:00 | 0.2  | 0.2  | 0.1  | 0.11  | 3.0 | 17.0 | 68.0 | 10.0 | 5.0  | 5.0  | 1.36  | 1.3  | 28079008 |
| 2  | 2014-06-01<br>01:00:00 | 0.3  | 86.0 | 0.1  | 86.00 | 2.0 | 6.0  | 86.0 | 86.0 | 86.0 | 86.0 | 86.00 | 1.1  | 28079011 |
| 3  | 2014-06-01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 1.0 | 6.0  | 79.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079016 |
| 4  | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 6.0  | 75.0 | 86.0 | 86.0 | 4.0  | 86.00 | 86.0 | 28079017 |
| 5  | 2014-06-01<br>01:00:00 | 0.1  | 0.4  | 0.1  | 86.00 | 1.0 | 10.0 | 83.0 | 7.0  | 86.0 | 2.0  | 86.00 | 0.2  | 28079018 |
| 6  | 2014-06-01<br>01:00:00 | 0.1  | 0.2  | 0.1  | 0.23  | 1.0 | 5.0  | 80.0 | 4.0  | 3.0  | 2.0  | 1.21  | 0.1  | 28079024 |
| 7  | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 1.0  | 86.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079027 |
| 8  | 2014-06-01<br>01:00:00 | 86.0 | 0.3  | 86.0 | 86.00 | 5.0 | 22.0 | 68.0 | 86.0 | 86.0 | 4.0  | 86.00 | 86.0 | 28079035 |
| 9  | 2014-06-01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 1.0 | 4.0  | 86.0 | 14.0 | 86.0 | 1.0  | 86.00 | 86.0 | 28079036 |
| 10 | 2014-06-01<br>01:00:00 | 0.1  | 86.0 | 0.1  | 86.00 | 6.0 | 18.0 | 86.0 | 8.0  | 5.0  | 2.0  | 86.00 | 0.7  | 28079038 |
| 11 | 2014-06-01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 1.0 | 7.0  | 81.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079039 |
| 12 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 3.0 | 13.0 | 86.0 | 3.0  | 86.0 | 4.0  | 86.00 | 86.0 | 28079040 |
| 13 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 3.0 | 10.0 | 86.0 | 11.0 | 6.0  | 86.0 | 86.00 | 86.0 | 28079047 |
| 14 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 8.0  | 86.0 | 5.0  | 1.0  | 86.0 | 86.00 | 86.0 | 28079048 |
| 15 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 7.0  | 75.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079049 |
| 16 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 7.0  | 86.0 | 7.0  | 6.0  | 86.0 | 86.00 | 86.0 | 28079050 |
| 17 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 10.0 | 78.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079054 |
| 18 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 0.23  | 1.0 | 4.0  | 86.0 | 8.0  | 86.0 | 86.0 | 1.20  | 86.0 | 28079055 |
| 19 | 2014-06-01<br>01:00:00 | 86.0 | 0.3  | 86.0 | 86.00 | 7.0 | 28.0 | 65.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079056 |
| 20 | 2014-06-01<br>01:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 1.0 | 4.0  | 86.0 | 8.0  | 86.0 | 6.0  | 86.00 | 86.0 | 28079057 |
| 21 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 4.0  | 64.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079058 |
| 22 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 2.0 | 3.0  | 69.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079059 |
| 23 | 2014-06-01<br>01:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 5.0  | 86.0 | 7.0  | 86.0 | 86.0 | 86.00 | 86.0 | 28079060 |

|    | date                   | BEN  | СО   | EBE  | NMHC  | NO  | NO_2 | O_3  | PM10 | PM25 | SO_2 | TCH   | TOL  | station  |
|----|------------------------|------|------|------|-------|-----|------|------|------|------|------|-------|------|----------|
| 24 | 2014-06-01<br>02:00:00 | 86.0 | 0.1  | 86.0 | 86.00 | 2.0 | 9.0  | 86.0 | 86.0 | 86.0 | 3.0  | 86.00 | 86.0 | 28079004 |
| 25 | 2014-06-01<br>02:00:00 | 0.2  | 0.2  | 0.1  | 0.11  | 4.0 | 21.0 | 63.0 | 9.0  | 6.0  | 5.0  | 1.36  | 0.8  | 28079008 |
| 26 | 2014-06-01<br>02:00:00 | 0.3  | 86.0 | 0.1  | 86.00 | 1.0 | 2.0  | 86.0 | 86.0 | 86.0 | 86.0 | 86.00 | 0.9  | 28079011 |
| 27 | 2014-06-01<br>02:00:00 | 86.0 | 0.2  | 86.0 | 86.00 | 1.0 | 6.0  | 79.0 | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079016 |
| 28 | 2014-06-01<br>02:00:00 | 86.0 | 86.0 | 86.0 | 86.00 | 1.0 | 4.0  | 76.0 | 86.0 | 86.0 | 5.0  | 86.00 | 86.0 | 28079017 |
| 29 | 2014-06-01<br>02:00:00 | 0.1  | 0.4  | 0.1  | 86.00 | 1.0 | 13.0 | 74.0 | 8.0  | 86.0 | 2.0  | 86.00 | 0.1  | 28079018 |

ass 2 - Jupyter Notebook

Out[658]:

|    | BEN  | СО   | EBE  | NMHC  | NO_2 | O_3  | PM10 | SO_2 | тсн   | TOL  | station  |
|----|------|------|------|-------|------|------|------|------|-------|------|----------|
| 0  | 86.0 | 0.2  | 86.0 | 86.00 | 10.0 | 86.0 | 86.0 | 3.0  | 86.00 | 86.0 | 28079004 |
| 1  | 0.2  | 0.2  | 0.1  | 0.11  | 17.0 | 68.0 | 10.0 | 5.0  | 1.36  | 1.3  | 28079008 |
| 2  | 0.3  | 86.0 | 0.1  | 86.00 | 6.0  | 86.0 | 86.0 | 86.0 | 86.00 | 1.1  | 28079011 |
| 3  | 86.0 | 0.2  | 86.0 | 86.00 | 6.0  | 79.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079016 |
| 4  | 86.0 | 86.0 | 86.0 | 86.00 | 6.0  | 75.0 | 86.0 | 4.0  | 86.00 | 86.0 | 28079017 |
| 5  | 0.1  | 0.4  | 0.1  | 86.00 | 10.0 | 83.0 | 7.0  | 2.0  | 86.00 | 0.2  | 28079018 |
| 6  | 0.1  | 0.2  | 0.1  | 0.23  | 5.0  | 80.0 | 4.0  | 2.0  | 1.21  | 0.1  | 28079024 |
| 7  | 86.0 | 86.0 | 86.0 | 86.00 | 1.0  | 86.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079027 |
| 8  | 86.0 | 0.3  | 86.0 | 86.00 | 22.0 | 68.0 | 86.0 | 4.0  | 86.00 | 86.0 | 28079035 |
| 9  | 86.0 | 0.2  | 86.0 | 86.00 | 4.0  | 86.0 | 14.0 | 1.0  | 86.00 | 86.0 | 28079036 |
| 10 | 0.1  | 86.0 | 0.1  | 86.00 | 18.0 | 86.0 | 8.0  | 2.0  | 86.00 | 0.7  | 28079038 |
| 11 | 86.0 | 0.2  | 86.0 | 86.00 | 7.0  | 81.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079039 |
| 12 | 86.0 | 86.0 | 86.0 | 86.00 | 13.0 | 86.0 | 3.0  | 4.0  | 86.00 | 86.0 | 28079040 |
| 13 | 86.0 | 86.0 | 86.0 | 86.00 | 10.0 | 86.0 | 11.0 | 86.0 | 86.00 | 86.0 | 28079047 |
| 14 | 86.0 | 86.0 | 86.0 | 86.00 | 8.0  | 86.0 | 5.0  | 86.0 | 86.00 | 86.0 | 28079048 |
| 15 | 86.0 | 86.0 | 86.0 | 86.00 | 7.0  | 75.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079049 |
| 16 | 86.0 | 86.0 | 86.0 | 86.00 | 7.0  | 86.0 | 7.0  | 86.0 | 86.00 | 86.0 | 28079050 |
| 17 | 86.0 | 86.0 | 86.0 | 86.00 | 10.0 | 78.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079054 |
| 18 | 86.0 | 86.0 | 86.0 | 0.23  | 4.0  | 86.0 | 8.0  | 86.0 | 1.20  | 86.0 | 28079055 |
| 19 | 86.0 | 0.3  | 86.0 | 86.00 | 28.0 | 65.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079056 |
| 20 | 86.0 | 0.2  | 86.0 | 86.00 | 4.0  | 86.0 | 8.0  | 6.0  | 86.00 | 86.0 | 28079057 |
| 21 | 86.0 | 86.0 | 86.0 | 86.00 | 4.0  | 64.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079058 |
| 22 | 86.0 | 86.0 | 86.0 | 86.00 | 3.0  | 69.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079059 |
| 23 | 86.0 | 86.0 | 86.0 | 86.00 | 5.0  | 86.0 | 7.0  | 86.0 | 86.00 | 86.0 | 28079060 |
| 24 | 86.0 | 0.1  | 86.0 | 86.00 | 9.0  | 86.0 | 86.0 | 3.0  | 86.00 | 86.0 | 28079004 |
| 25 | 0.2  | 0.2  | 0.1  | 0.11  | 21.0 | 63.0 | 9.0  | 5.0  | 1.36  | 8.0  | 28079008 |
| 26 | 0.3  | 86.0 | 0.1  | 86.00 | 2.0  | 86.0 | 86.0 | 86.0 | 86.00 | 0.9  | 28079011 |
| 27 | 86.0 | 0.2  | 86.0 | 86.00 | 6.0  | 79.0 | 86.0 | 86.0 | 86.00 | 86.0 | 28079016 |
| 28 | 86.0 | 86.0 | 86.0 | 86.00 | 4.0  | 76.0 | 86.0 | 5.0  | 86.00 | 86.0 | 28079017 |
| 29 | 0.1  | 0.4  | 0.1  | 86.00 | 13.0 | 74.0 | 8.0  | 2.0  | 86.00 | 0.1  | 28079018 |

In [659]: sns.pairplot(d)

Out[659]: <seaborn.axisgrid.PairGrid at 0x1b71ec9e130>



```
In [660]: sns.distplot(a['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[660]: <AxesSubplot:xlabel='NO\_2', ylabel='Density'>



In [661]: sns.heatmap(d.corr())

## Out[661]: <AxesSubplot:>



```
In [662]: x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
          y=d['TCH']
```

```
In [663]: | from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [664]: | from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
```

Out[664]: LinearRegression()

```
In [665]: print(lr.intercept_)
          1.1110435929424654
In [666]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
          coeff
Out[666]:
                  Co-efficient
             BEN
                    0.142538
              CO
                   -0.000223
             EBE
                    -0.142758
           NMHC
                    0.987220
            NO_2
                    0.001252
In [667]: prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[667]: <matplotlib.collections.PathCollection at 0x1b72afc28b0>
                                                         80
            60
            40
            20
            0
                         20
                                                      80
In [668]: print(lr.score(x_test,y_test))
          0.999997386323644
         from sklearn.linear_model import Ridge,Lasso
In [669]:
In [670]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[670]: Ridge(alpha=10)
In [671]: rr.score(x_test,y_test)
Out[671]: 0.999995914178287
```

```
ass 2 - Jupyter Notebook
In [672]: la=Lasso(alpha=10)
            la.fit(x_train,y_train)
Out[672]: Lasso(alpha=10)
In [673]: la.score(x_test,y_test)
Out[673]: 0.9997204464884435
In [674]: | a1=b.head(7000)
            a1
Out[674]:
                                                               NO 2 O 3 PM10
                                                                                  PM25
                                                                                         SO 2
                                BEN
                                        CO
                                            EBE NMHC
                                                         NO
                                                                                                 TCH TOL
                           date
                                                                                                               station
                     2014-06-01
                 0
                                 86.0
                                        0.2
                                            86.0
                                                   86.00
                                                          3.0
                                                                10.0
                                                                      86.0
                                                                             86.0
                                                                                    86.0
                                                                                            3.0
                                                                                                86.00
                                                                                                       86.0
                                                                                                             28079004
                       01:00:00
                     2014-06-01
                                                                             10.0
                                  0.2
                                        0.2
                                              0.1
                                                          3.0
                                                                17.0
                                                                      68.0
                                                                                     5.0
                                                                                            5.0
                                                                                                 1.36
                                                                                                        1.3
                                                                                                             28079008
                                                     0.11
                       01:00:00
                     2014-06-01
                                       86.0
                                  0.3
                                              0.1
                                                   86.00
                                                          2.0
                                                                 6.0
                                                                      86.0
                                                                             86.0
                                                                                    86.0
                                                                                           86.0
                                                                                                86.00
                                                                                                             28079011
                       01:00:00
                     2014-06-01
                                 86.0
                                        0.2
                                            86.0
                                                   86.00
                                                          1.0
                                                                 6.0
                                                                      79.0
                                                                             86.0
                                                                                    86.0
                                                                                           86.0
                                                                                                86.00
                                                                                                       86.0
                                                                                                             28079016
                       01:00:00
                     2014-06-01
                                 86.0
                                       86.0
                                            86.0
                                                   86.00
                                                                 6.0
                                                                      75.0
                                                                             86.0
                                                                                    86.0
                                                                                                86.00
                                                                                                       86.0
                                                                                                             28079017
                                                          1.0
                                                                                            4.0
                       01:00:00
```

7000 rows × 14 columns

2014-06-13

04:00:00 2014-06-13

04:00:00 2014-06-13

04:00:00 2014-06-13

04:00:00 2014-06-13

04:00:00

86.0

86.0

86.0

86.0

86.0

0.2

86.0

86.0

86.0

86.0

86.0

86.0

86.0

86.0

86.0

86.00

86.00

86.00

86.00

86.00

1.0

3.0

2.0

1.0

3.0

16.0

18.0

17.0

14.0

14.0

63.0

86.0

86.0

86.0

59.0

86.0

22.0

22.0

29.0

86.0

86.0

86.0

15.0

14.0

86.0

86.0

4.0

86.0

86.0

86.0

86.00

86.00

86.00

86.00

86.00

86.0

86.0

86.0

86.0

28079039

28079040

28079047

28079048

86.0 28079049

6995

6996

6997

6998

6999

```
In [675]: | e=a1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
           'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
In [676]:
          f=e.iloc[:,0:14]
          g=e.iloc[:,-1]
In [677]: h=StandardScaler().fit transform(f)
In [678]: logr=LogisticRegression(max_iter=10000)
          logr.fit(h,g)
Out[678]: LogisticRegression(max iter=10000)
```

```
In [679]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [680]: i=[[10,20,30,40,50,60,15,26,37,47,58]]
In [681]: | prediction=logr.predict(i)
          print(prediction)
          [28079060]
In [682]: logr.classes_
Out[682]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                  28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                  28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                  28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
                dtype=int64)
In [683]: logr.predict_proba(i)[0][0]
Out[683]: 0.0
In [684]: logr.predict proba(i)[0][1]
Out[684]: 0.0
In [685]: |logr.score(h_test,g_test)
Out[685]: 0.9328571428571428
In [686]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[686]: ElasticNet()
In [687]: print(en.coef )
          [-0.00000000e+00 -2.29937927e-05 -0.00000000e+00 9.85502898e-01
            0.0000000e+00]
In [688]: |print(en.intercept_)
          1.235000236806897
In [689]: | prediction=en.predict(x_test)
          print(en.score(x_test,y_test))
          0.9999941929868205
```

```
In [690]: from sklearn.ensemble import RandomForestClassifier
                                       rfc=RandomForestClassifier()
                                      rfc.fit(h train,g train)
Out[690]: RandomForestClassifier()
In [691]: parameters={'max depth':[1,2,3,4,5],
                                            'min_samples_leaf':[5,10,15,20,25],
                                            'n estimators':[10,20,30,40,50]
                                           }
In [692]: from sklearn.model selection import GridSearchCV
                                        grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring=<mark>"accuracy"</mark>)
                                      grid_search.fit(h_train,g_train)
Out[692]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                                                       'min samples_leaf': [5, 10, 15, 20, 25],
                                                                                                                                      'n_estimators': [10, 20, 30, 40, 50]},
                                                                                        scoring='accuracy')
In [693]: grid_search.best_score_
Out[693]: 0.9953061224489796
In [694]: | rfc_best=grid_search.best_estimator_
In [695]: from sklearn.tree import plot_tree
                                       plt.figure(figsize=(80,50))
                                      plot tree(rfc best.estimators [2],filled=True)
                                                                              value = (202, 0, 206, 207, 203, 197, 0, 215, 206, 207, 211, 197, 176, 214, 225, 203, 197, 0, 215, 200
                                                                                                                                                                                                                                                                                               N[10] <- 1.296
gm = 0.944
serings = 2704
serings = 2704
(serings = 2704
197, 178, 214, 223, 200, 197, 0, 215, 206, 109
197, 178, 214, 223, 200, 197, 0, 215, 206, 109
                                                                                                                                                    X(1) == -1.386
gini = 0.5
gini = 0.5
value = [292, 0.1.220, 0.0, 0.0, 0.0, 0.0, 0.0
0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0
                                                                                                                                                                                                                                                                            393 <= -0.712
gri = 0.941
semples = 2383
salue = (0, 0, 0, 0, 201, 200, 1, 204, 205, 206, 207, 211
197, 176, 234, 225, 233, 197, 0, 215, 200, 189
                                                                                                                                                                                                                                           girl = 0.033
samples = 1914
value = 16, 0, 0, 20, 5, 0, 704, 205, 206, 0, 211
197, 178, 214, 225, 203, 197, 0, 215, 200, 189
                                                                                                                                                                                                                                                                    per i - 0.423 gri = -0.0 per i - 0.0 per i
```

## Conclusion: from this data set i observed that the ridge has the highest accuracy of 0.9961224489795919

| T 1  | <br>7 . I |  |
|------|-----------|--|
| In I | 1111      |  |
|      | <br>J . I |  |
|      |           |  |