BEST AVAILABLE COPY

Method of constructing subterraneous curtain wall - uses self-hardening circulating suspension, enriched with fine ground materials, to form homogeneous wall material

Patent number:

DE4141629

Publication date:

1993-06-24

Inventor:

Applicant:

BAUER SPEZIALTIEFBAU (DE)

Classification:

- international:

E02D5/18; E02D19/16

- european:

E02D19/16

Application number:

DE19914141629 19911217

Priority number(s):

DE19914141629 19911217

Abstract of DE4141629

The suspension is introduced into the trench above the cutting tools, and consists of self-hardening material. The suspension circulates between the slot in the area of the tools, and a separator. The suspension is mixed with the ground material in the tool area, and during separation, ground material is extracted, the granulation of which exceeds a top level. This is enriched with fresh suspension, containing fine particles below that level, in a volume, which corresponds to the volume loss of the circulating suspension. This mixture is applied above the cutting wheels.

ADVANTAGE - Economical construction method, resulting in highly impervious and homogenous wall.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK
DEUTSCHLAND

OffenlegungsschriftDE 41 41 629 A 1

(5) Int. Cl.⁵: E 02 D 19/16 E 02 D 5/18

DEUTSCHES

PATENTAMT

 (2) Aktenzeichen:
 P 41 41 629.5

 (2) Anmeldetag:
 17. 12. 91

 (4) Offenlegungstag:
 24. 6. 93

(1) Anmelder:

Bauer Spezialtiefbau GmbH, 8898 Schrobenhausen, DE

(74) Vertreter:

Weber, O., Dipl.-Phys.; Heim, H., Dipl.-Ing. Dipl.-Wirtsch.-Ing., Pat.-Anwälte, 8000 München ② Erfinder:

Antrag auf Nichtnennung

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Verfahren zur Herstellung von Dichtwänden
- 5) Die Erfindung betrifft ein Verfahren zur Herstellung von wasserundurchlässigen Dichtwänden unter Stützung des zu durchörternden Schlitzes von Beginn an durch eine selbsterhärtende Suspension. In hohem Maße wasserundurchlässige Dichtwände werden auf wirtschaftliche Weise erfindungsgemäß dadurch hergestellt, daß beim Fräsen mit Boden vermischte Suspension um Bodenmaterial gezielt entreichert wird, dessen Körnigkeit einen vorgegebenen Grenzwert übertrifft, wobei diese Feinteile aus dem Boden enthaltende Suspension mit Frischsuspension in einer Menge vermischt und in den Schlitz eingeleitet wird, die der mit Boden angereicherten Suspension durch gezielte Entreicherung grobkörnigen Bodenmaterials entzogen worden ist.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung von Dichtwänden der im Oberbegriff des Anspruchs 1 angegebenen Art.

Ein derartiges Verfahren wird auch als Verfahren zur Herstellung von sogenannten Einphasen-Dichtwänden bezeichnet, weil die Abstützung des zu durchörternden Bodens von Beginn an durch eine selbsterhärtende Susren zur Herstellung von sogenannten Zweiphasen-Dichtwänden vorgesehen, die Abstützung durch eine nichthärtende Suspension zu bewirken und diese Suspension nach Abteufen des vollständigen Schlitzes gegen eine selbsterhärtende Suspension auszutauschen. 15. Als nichthärtende Suspensionen kommen Suspensionen auf der Basis von Bentoniten oder Polymer-Suspensionen in Betracht. Für die Herstellung von Einphasen-Dichtwänden wird eine langsam erhärtende Suspension und Bindemitteln besteht.

Wird eine nichterhärtende Stützsuspension verwendet, so kommen als Aushubwerkzeuge Seil- oder Hydraulikgreifer oder Schlitzwandfräsen zum Einsatz. Dabei läßt man den Greifer über dem Schlitz abtropfen 25 und entleert ihn im Absetzcontainer. Beim Einsatz von Schlitzwandfräsen läuft der Aushub des Bodens über Regenerierungs- und Separierungsanlagen, welche eine Rückgewinnung der nichterhärtenden Stützsuspension ermöglichen.

Für Abdichtungsbauwerke im Baugrund werden wasserundurchlässige Dichtungswände gewünscht, die eine geringere Festigkeit als Stahlbeton-Schlitzwände besitzen. Dadurch soll sichergestellt werden, daß die Wand Setzungen und Verformungen des Baugrundes inner- 35 halb gewisser Grenzen mitmacht, ohne daß sie dabei zerstört wird.

Dichtwand-Suspensionen zeichnen sich generell durch einen hohen Wassergehalt und einen verhältnissen-Dichtwand-Suspensionen mit handelsüblichen Zementen als Bindemittel beginnen mit dem Abbinden nach etwa 7 bis 10 Stunden. Der Herstellungsvorgang für eine Einphasen-Dichtwand muß deshalb innerhalb dieses Zeitraums beendet sein. Eine Verzögerung der 45 Suspension mit Chemikalien ist zwar möglich, führt jedoch zu sehr großen Mehrkosten.

Aufgrund der Abbindezeit ist deshalb für den Einsatz von Greifern bei der Herstellung von Einphasen-Dichtwänden relativ früh eine Grenze erreicht. Diese liegt 50 etwa bei Schlitztiefen von 30 m und wird zum anderen bestimmt durch sehr harte Gesteinsschichten, welche den Bohrfortschritt beim Greifern erheblich verringert. Eine Schlitzherstellung im vorgegebenen Zeitraum ist

dann meist nicht möglich.

Beim Einsatz von Schlitzwandfräsen zur Herstellung von Einphasen-Dichtwänden bestanden bislang Befürchtungen, daß die beweglichen Teile der Fräsen sowie die Pumpen an diesen Fräsen bei einem längeren Einsatz in der Einphasen-Suspension zu Schaden kom- 60 men könnten. Auf dieser Befürchtung gründet auch die DE-OS 40 08 207, in der vorgesehen ist, das zur Erhärtung führende Bindemittel Zement erst dann zuzugeben, wenn der Schlitz bereits unter Bentonitabstützung bzw. unter Stützung eines nichterhärtenden Mediums 65' abgeteuft ist. Dabei befindet sich die Fräse nur verhältnismäßig kurze Zeit in der selbsterhärtenden Suspension und ist deshalb nicht gefährdet.

Die nachträgliche Zugabe eines Bindemittels in eine Bentonit-Suspension garantiert erfahrungsgemäß jedoch keinesfalls eine gleichmäßige Verteilung des Bindemittels im gesamten Schlitzvolumen. Suspensionen 5 unterschiedlicher Viskosität und Dichte lassen sich schlecht mischen. Desweiteren wird die Homogenität des eingebrachten Dichtwandmaterials bei diesem bekannten Herstellungsverfahren umso schlechter, je feststoffreicher die Suspension ist; d. h. je dicker die Suspension erfolgt. Im Gegensatz hierzu ist es bei Verfah- 10 pension ist, umso mehr Mischenergie muß aufgebracht. werden.

Die Wasserundurchlässigkeit einer Dichtwand wird im wesentlichen durch den Anteil von Feststoffen und eine geeignete Korngrößen-Abstufung bestimmt. Herkömmlicherweise werden deshalb der Ausgangsmischung, bestehend aus Bindemittel, Bentonit und Wasser, noch zusätzliche Feststoffe zugeführt. Diese Feststoffzuführung erfolgt in der Regel durch Zugabe von Steinmehlen oder anderen Füllstoffen in der Aufbereiverwendet, die im wesentlichen aus Wasser, Bentonit 20 tungsanlage zur Herstellung der Suspension. Die Verwendung von derartigen schweren Dichtwandsuspensionen bringt jedoch den Nachteil mit sich, daß beim Greifern der Wirkungsgrad sinkt, weil diese dicken Suspensionen die Absinkgeschwindigkeit der Greifer deutlich vermindern. Ein weiterer Nachteil besteht darin, daß die zusätzlichen Füllstoffe extra antransportiert werden müssen, wodurch das Verfahren zusätzlich verteuert wird.

> Der Erfindung liegt die Aufgabe zugrunde, ein Ver-30 fahren zur Herstellung von wasserundurchlässigen Dichtwänden der eingangs genannten Art wirtschaftlicher sowie derart auszugestalten, daß die damit hergestellten Dichtwände in hohem Maße homogen und wasserundurchlässig sind.

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Demnach ist es erfindungsgemäß vorgesehen, die mäßig niedrigen Feststoffgehalt aus. Übliche Einpha- 40 selbsterhärtende Suspension derart im Kreislauf zu führen, daß die Suspension gezielt mit beim Örtern anfallendem Bodenfeinmaterial angereichert wird, wodurch eine hochhomogene Dichtwandmasse mit genau festgelegtem Feststoffgehalt gewonnen wird. Nach vollständigem Aushub des Schlitzes ist deshalb eine zusätzliche Homogenisierung der Dichtwandmasse im Schlitz nicht notwendig, wodurch der Mindestbindemittelgehalt der selbsterhärtenden Suspension durch die erfindungsgemäß vorgesehene ständige und in ihrer Menge gezielte Zugabe an Frischsuspension gewährleistet ist. Dadurch, daß die derart hergestellten Dichtwände einen homogenen und relativ hohen Feststoffgehalt besitzen, sind sie im erhärteten Zustand in hohem Maße wasserundurchlässig. Da außerdem erfindungsgemäß kein externer 55 Füllstoff zugeführt werden muß, dieser vielmehr aus dem abgetäuften Boden gewonnen wird, ist eine wirtschaftliche Durchführung des Verfahrens gewährleistet.

Wesentlich bei dem erfindungsgemäßen Verfahren ist die Wahl des Korngrößen-Grenzwertes, der vorteilhafterweise einen Wert von 1 bis 2 mm nicht überschreitet und bevorzugt etwa 0,5 mm vor allem 0,2 mm beträgt.

Um zu gewährleisten, daß die das Feinkorn enthaltende Suspension hinreichend homogen mit der Frischsuspension vermischt wird, wird diese vorteilhafterweise unter Rühren oder Umpumpen in die das Feinkorn enthaltende Suspension in einem Mischbehälter eingemischt. Eine direkte Zuführung in den oberen Bereich des suspensiongestützten Schlitzes wäre auch denkbar.

Weiterhin ist es vorteilhafterweise vorgesehen, daß der Bindemittelgehalt der Frischsuspension mindestens demjenigen der endgültig im Schlitz verbleibenden Suspension entspricht und vorzugsweise den Bindemittelgehalt in der Suspension um etwa 20% übertrifft. Dadurch wird gewährleistet, daß während der Schlitzherstellung auch bei steigendem Feinkornanteil in der Suspension der Bindemittelanteil ausreichend groß ist.

Nachfolgend soll die Erfindung anhand der Zeichnung näher erläutert werden; in dieser zeigen:

Fig. 1 eine schematische Darstellung des Ablaufs des erfindungsgemäßen Verfahrens zur Herstellung von Dichtwänden und

Fig. 2 eine Ausführungsform einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens.

In Fig. 1 befindet sich eine Schlitzwandfräse 1 bereits auf einem abgesenkten Niveau eines Schlitzes 2, der zur Herstellung einer Dichtwand im Erdreich 3 eingebracht ist. Der Schlitz 2 ist bis knapp unter seinen oberen Rand 4 mit einer Stützsuspension M1 gefüllt, die während des Abteufens des Schlitzes im Erdreich 3 zur Abstützung der Schlitzwandung dient. Die Fräse 1 umfaßt am Kopfende rotierende Werkzeuge 5 sowie eine Pumpe 6, die über einen Schlauch 7 mit einer nachfolgend näher zu beschreibenden Separierungsanlage 14 in Verbindung 25 steht.

Frischsuspension M0 ist in einem Behälter 7 bevorratet, an den eine Leitung 8, beispielsweise eine Schlauchleitung angeschlossen ist, die in einen Mischbehälter 9 mündet. In der Leitung 8 ist eine Ventileinrichtung 10 30 angeordnet, mit der die Menge an Frischsuspension gesteuert wird, die in den Mischbehälter 9 eingeleitet wird. An den Mischbehälter 9 ist eine Leitung 11 angeschlossen, über die Suspension aus dem Mischbehälter 9 zu dem Schlitz 2 überführt wird. Die Leitung 11 endet kurz 35 über der Oberfläche der im Schlitz 2 befindlichen Suspension M1. Durch die Pumpe 6 am Kopf der Schlitzwandfräse 1 wird Suspension M2 über eine Leitung 12 abgesaugt, die über einem Sammelbehälter 13 der Separierungsanlage 14 endet. Bei der Suspension M2 handelt 40 es sich um die Suspension M1, die angereichert ist mit Bodenmaterial, das mit Hilfe der rotierenden Werkzeuge 5 der Fräse 1 von dem umgebenden Erdreich abgetragen worden ist. Die Suspension M2 wird im Behälter 13 mittels Sieben (15), Zyklonen oder Zentrifugen be- 45 handelt, wobei Bodenkörner oberhalb einer bestimmten Korngrenzgröße über eine Schütte 16 ausgetragen werden, während die derart entreicherte Suspension M3 in einer Wanne 17 aufgefangen wird, die über eine Leitung 18 mit dem Mischbehälter 9 in Verbindung steht. Im 50 Mischbehälter 9 erfolgt eine Vermischung der Feinteile einer vorbestimmten Größe enthaltenden Suspension M3 mit der Frischsuspension M0 und die derart vermischte Suspension wird in den Schlitz 2 über die Leitung 11 eingespeist und bildet dort die Stützsuspension 55 M1, die nach Fertigstellung des Schlitzes 2 und nach dem Herausziehen der Fräse 1 erhärtet und dadurch die wasserundurchlässige Dichtwand bildet.

Zu Beginn der Dichtwandherstellung, also dann, wenn die Fräse 1 durch Absenken den oberen Bereich 4 des 60 Schlitzes 2 abträgt, besteht die Stützsuspension zunächst aus der Frischsuspension M0, da in dieser Phase noch keine Zumischung von Bodenfeinteile enthaltener Suspension M3 zu der Frischsuspension M0 in dem Mischbehälter 9 stattgefunden hat. Diese Zumischung erfolgt unverzüglich in der nachfolgenden Phase, wenn durch die rotierenden Werkzeuge 5 am Kopf der Fräse 1 abgefräste Bodenteile mit anstehenden Suspension

M2 gemischt und über die Pumpe 6 zur Separierungsanlage 14 gefördert worden sind. Durch die dann in den Schlitz 2 nachlaufende Suspension, die ein Gemisch aus Frischsuspension M0 und gezielt angereicherter Suspension M3 darstellt, erfolgt eine Vermischung mit der zunächst im Schlitz 2 ausschließlich anwesenden Frischsuspension, wobei beim weiteren Abteufen des Schlitzes die Dichte der Stützsuspension M1 im Schlitz 2 im wesentlichen der Dichte des Suspensionsgemisches M0/M3 im Mischbehälter 9 entspricht.

Die Siebung oder Separierung von Bodenkorn in der Anlage 14 erfolgt so, daß Bodenkorn mit einem Durchmesser größer als etwa 1 bis 2 mm aus der Suspension M2 abgetrennt wird und der dabei auftretende Volumenschwund wird durch eine Einleitung von Frischsuspension M0 entsprechend der Volumendifferenz kompensiert. Hierdurch wird erreicht, daß das Niveau der im Schlitz 2 vorhandenen Stützsuspension M1 erhalten bleibt. Vom Kreislaufprozeß her gesehen unterscheidet sich daher das Volumen der in den Mischbehälter 9 eingeleiteten Suspension M3 vom Volumen der zur Anlage 14 geförderten Suspension M2 durch das Volumen der separierten Bodenkörner. Um dabei zu gewährleisten, daß während der Schlitzherstellung auch bei steigendem Feinkornanteil in der selbsthärtenden Stützsuspension der Bindemittelanteil hinreichend groß bleibt, bzw. vergrößert werden kann, wird die Frischsuspension M0 mit einem bis zu 20% höheren Bindemittelanteil in den Mischbehälter 9 eingespeist. Dadurch wird gewährleistet, daß der Mindestbindemittelgehalt der selbsterhärtenden Suspension auf alle Fälle vorhanden

Die gezielte Zugabe von Feinteilen bis zum Korngrößen-Grenzwert von etwa 1 bis 2 mm, vor allem etwa 0,5 mm und bevorzugt 0,2 mm, sorgt für eine im Vergleich zum Stand der Technik deutlich gesteigerte Wasserundurchlässigkeit der derart erstellten Dichtwand. Da diese Feinteile aus dem anstehenden Baugrund stammen, vermindern sich die Kosten für die Ausgangsstoffe der Suspension in erheblichem Umfang, da Füllstoffe über die Suspension nicht extra auf die Baustelle geliefert werden müssen. Außerdem wird der abzufahrende Bodenaushub deutlich reduziert, und dieser läßt sich billiger entsorgen, da er keine feinkörnigen Anteile enthält. Die Dichte der endgültigen selbsterhärtenden Suspension im Schlitz kann Werte bis etwa 1,6 t/m³ erreichen.

In Fig. 2 ist eine bevorzugte Ausführungsform einer Anordnung zur Herstellung von wasserundurchlässigen Dichtwänden mittels des erfindungsgemäßen Verfahrens dargestellt. Gezeigt ist eine Phase der Dichtwandherstellung, bei welcher die Dichtwandfräse 1 einen Bodenstock 20 bearbeitet, der stehengeblieben ist, nach dem vorausgehenden Ortern von zwei außenliegenden Schlitzen 2a und 2b. Gefüllt ist der gesamte Schlitz 2 auch im Bereich der vorausgehend erzeugten Schlitze 2a und 2b mit noch nicht erhärteter Stützsuspension M1 der in Fig. 1 beschriebenen Zusammensetzung.

Die Schlitzwandfräse 1 hängt an einem Bagger 21, über dessen Auslegerarm auch die Absaugleitung 12 geführt ist, die in Gestalt einer Rohrleitung 12 vom Bagger zur Separierungsanlage 14 verläuft. Unmittelbar neben der Separierungsanlage 14 ist der Mischbehälter 9 angeordnet, von dem die Zuführleitung 11, die ebenfalls in Gestalt von Rohren realisiert ist, auf dem Boden entlanglaufend sich bis zum Schlitz 2 erstreckt und dort über einen Krümmer in die im Schlitz 2 befindliche Stützsuspension M1 hineinragt. In der Leitung 11 ist

eine Förderpumpe 22 angeordnet.

Die Bevorratung der Frischsuspensionskomponenten erfolgt in getrennten Behältern A und B, aus denen die Suspensionskomponenten über Steigleitungen 23 und 23' in eine Mischanlage 24 überführt werden, in welcher die Komponenten der Suspension in einem vorgegebenen Mischverhältnis mit Wasser vermischt werden. Die Frischsuspension wird in einem Behälter 25 zwischengelagert. Fertige Frischsuspension wird dann über die Leitung 8 mittels einer Pumpen-/Dosiereinrichtung 26 in den Mischbehälter 9 eingeleitet.

Der Suspensionskreislauf in Fig. 2 ist derselbe wie in Fig. 1, wobei insbesondere in der Leitung 12 Suspension der Qualität M2, in der Leitung 18 Suspension der Qualität M3 geführt wird und wobei die Suspension im 15 Schlitz 2 die Qualität M1 aufweist.

Patentansprüche

1. Verfahren zur Herstellung von Dichtwänden mit- 20 tels einer kopfseitig Fräswerkzeuge aufweisenden Schlitzwandfräse unter Stützung des Schlitzes von Beginn an durch eine Suspension, dadurch gekennzeichnet, daß die in den Schlitz oberhalb der Fräswerkzeuge zugeführte Suspension eine selbster- 25 härtende Suspension ist, die im Kreislauf zwischen dem Schlitz im Bereich der Fräswerkzeuge und einer Separierung geführt ist, daß die Suspension mit dem an den Fräswerkzeugen anstehenden Boden vermischt und diese mit Bodenmaterial angerei- 30 cherte Suspension bei der Separierung um Bodenmaterial entreichert wird, dessen Körnigkeit einen vorgegebenen oberen Grenzwert überschreitet, daß zu dieser Feinteile unterhalb des oberen Grenzwertes enthaltenden selbsterhärtenden Sus- 35 pension Frischsuspension in einer Menge beigemischt wird, die im wesentlichen dem durch die Entreicherung bei der Separierung entstehenden Volumenverlust der im Kreislauf umlaufenden Suspension entspricht, und daß diese gemischte Sus- 40 pension oberhalb der Fräsräder in den Schlitz zugeführt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Frischsuspension einen Bindemittel-Gehalt pro Kubikmeter (m³) besitzt, der höher ist als der Bindemittel-Gehalt pro Kubikmeter (m³) der endgültigen im Schlitz erhärtenden Suspension.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Beimischung von Frischsuspension zur aus der Separierung erhaltenen Suspension in einem Mischbehälter durchgeführt wird, aus dem die gemischte Suspension dem Schlitz zugeführt wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen oberen Korngrößen- 55 Grenzwert von 1 bis 2 mm, insbesondere von 0,2 mm bis 0,5 mm.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Frischsuspension unter Rühren oder Umpumpen in die Feinkornteile 60 enthaltende Suspension in den Mischbehälter eingemischt wird.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Suspension im Bereich der Oberfläche der den Schlitz stützenden 65 Suspension in diese eingeleitet wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Bindemittelge-

halt der Frischsuspension mindestens demjenigen der endgültig im Schlitz verbleibenden Suspension entspricht.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Bindemittelgehalt der Frischsuspension denjenigen der endgültig im Schlitz verbleibenden Suspension um bis zu etwa 20% übertrifft.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Frischsuspension Wasser, Bentonit und Bindemittel umfaßt.

10. Verfahren nach einem der Ansprüche i bis 9, dadurch gekennzeichnet, daß die Entreicherung grobkörnigen Bodenmaterials in der Aufbereitungsanlage durch Siebe oder durch den Einsatz von Zyklonen erfolgt.

11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Dichte der endgültig im Schlitz verbleibenden Suspension durch Einstellen des Mischverhältnisses Frischsuspension/Feinkornteile enthaltende Suspension im Mischbehälter vorzugsweise auf einen Wert von bis zu etwa 1,6 t/m³ erfolgt.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 41 41 629 A1

E 02 D 19/16 24. Juni 1993

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 41 41 629 A1 E 02 D 19/16 24. Juni 1993

BUNDESREPUBLIK
DEUTSCHLAND

[®] DE 4141629 C 2

Patentschrift

(5) Int. Cl.⁶: **E 02 D 19/16** E 02 D 5/18

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

P 41 41 629.5-25

2 Anmeldetag:

17, 12, 91

Offenlegungstag:

24. 6.93

) Veröffentlichungstag

der Patenterteilung: 20. 2.

.

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Bauer Spezialtiefbau GmbH, 86529 Schrobenhausen, DE

(74) Vertreter:

Weber, O., Dipl.-Phys.; Heim, H., Dipl.-Ing. Dipl.-Wirtsch.-Ing., Pat.-Anwälte, 81479 München ② Erfinder:

Antrag auf Nichtnennung

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 41 01 015 A1

DE 40 08 207 A1 DE 39 05 463 A1

DE 39 05 463 A1 FR 21 65 931

Greifer oder Fräse? In: baumaschinendienst, H. 5, 1988, S. 362-368;

Verfahren zur Herstellung von Dichtwänden

57 Verfahren zur Herstellung von Dichtwänden mittels einer kopfseitig Fräswerkzeuge aufweisenden Schlitzwandfräse unter Stützung des Schlitzes von Beginn an durch eine selbsterhärtende Suspension,

bei dem Suspension im Kreislauf zwischen dem Schlitz im Bereich der Fräswerkzeuge und einer Separierung geführt ist, bei dem die Suspension mit dem an den Fräswerkzeugen anstehenden Boden vermischt und diese mit Bodenmeterial angereicherte Suspension bei der Separierung um Bodenmaterial entreichert wird, dessen Korngröße einen vorgegebenen Grenzwert, der zwischen cs. 0,2 mm und cs. 2 mm liegt, überschreitet.

bei dem der entreicherten Suspension, die Feinteile unterhalb des Grenzwertes enthält, Frischsuspension beigemischt wird

bei dem die Frischsuspension und die entreicherte Suspension in die den Schlitz stützende Suspension eingeleitet wird und bei dem des weiteren im Bereich der Fräswerkzeuge die mit Bodenmateriel angereicherte Suspension entnommen wird, der entreicherten Suspension, die Feinteile unterhalb des Grenzwertes enthält, Frischsuspension in einer Menge beigemischt wird, die im wesentlichen dem durch die Entreicherung bei der Separierung entstehenden Volumenverlust der im Kreislauf umlaufenden Suspension entspricht, und

die Frischsuspension und die entreicherte Suspension unterhalb oder oberhalb der Oberfläche der den Schlitz stützenden Suspension, im Bereich der Oberfläche eingeleitet wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung von Dichtwänden.

Es sind Verfahren bekannt, welche auch als Verfahren 5 zur Herstellung von sogenannten Einphasen-Dichtwänden bezeichnet werden, weil die Abstützung des zu durchörternden Bodens von Beginn an durch eine selbsterhärtende Suspension erfolgt. Im Gegensatz hierzu ist es bei Verfahren zur Herstellung von soge- 10 nannten Zweiphasen-Dichtwänden vorgesehen, die Abstützung durch eine nichthärtende Suspension zu bewirken und diese Suspension nach Abteufen des vollständigen Schlitzes gegen eine selbsterhärtende Suspension men Suspensionen auf der Basis von Bentoniten oder Polymer-Suspensionen in Betracht. Für die Herstellung von Einphasen-Dichtwänden wird eine langsam erhärtende Suspension verwendet, die im wesentlichen aus Wasser, Bentonit und Bindemitteln besteht.

Wird eine nichterhärtende Stützsuspension verwendet, so kommen als Aushubwerkzeuge Seil- oder Hydraulikgreifer oder Schlitzwandfräsen zum Einsatz. Dabei läßt man den Greifer über dem Schlitz abtropfen Schlitzwandfräsen läuft der Aushub des Bodens über Regenerierungs- und Separierungsanlagen, welche eine Rückgewinnung der nichterhärtenden Stützsuspension ermöglichen.

Für Abdichtungsbauwerke im Baugrund werden was- 30 serundurchlässige Dichtungswände gewünscht, die eine geringere Festigkeit als Stahlbeton-Schlitzwände besitzen. Dadurch soll sichergestellt werden, daß die Wand Setzungen und Verformungen des Baugrundes innerzerstört wird.

Dichtwand-Suspensionen zeichnen sich generell durch einen hohen Wassergehalt und einen verhältnismäßig niedrigen Feststoffgehalt aus. Übliche Einphasen-Dichtwand-Suspensionen mit handelsüblichen Ze- 40 menten als Bindemittel beginnen mit dem Abbinden nach etwa 7 bis 10 Stunden. Der Herstellungsvorgang für eine Einphasen-Dichtwand muß deshalb innerhalb dieses Zeitraums beendet sein. Eine Verzögerung der doch zu sehr großen Mehrkosten.

Aufgrund der Abbindezeit ist deshalb für den Einsatz von Greifern bei der Herstellung von Einphasen-Dichtwänden relativ früh eine Grenze erreicht. Diese liegt etwa bei Schlitztiefen von 30 m und wird zum anderen 50 bestimmt durch sehr harte Gesteinsschichten, welche den Bohrfortschritt beim Greifern erheblich verringert. Eine Schlitzherstellung im vorgegebenen Zeitraum ist dann meist nicht möglich.

Beim Einsatz von Schlitzwandfräsen zur Herstellung 55 von Einphasen-Dichtwänden bestanden bislang Befürchtungen, daß die beweglichen Teile der Fräsen sowie die Pumpen an diesen Fräsen bei einem längeren Einsatz in der Einphasen-Suspension zu Schaden kommen könnten. Auf dieser Befürchtung gründet auch die DE-OS 40 08 207, in der vorgesehen ist, das zur Erhärtung führende Bindemittel Zement erst dann zuzugeben, wenn der Schlitz bereits unter Bentonitabstützung bzw. unter Stützung eines nichterhärtenden Mediums abgeteuft ist. Dabei befindet sich die Fräse nur verhältnismäßig kurze Zeit in der selbsterhärtenden Suspension und ist deshalb nicht gefährdet.

Die nachträgliche Zugabe eines Bindemittels in eine

Bentonit-Suspension garantiert erfahrungsgemäß jedoch keinesfalls eine gleichmäßige Verteilung des Bindemittels im gesamten Schlitzvolumen. Suspensionen unterschiedlicher Viskosität und Dichte lassen sich schlecht mischen. Desweiteren wird die Homogenität des eingebrachten Dichtwandmaterials bei diesem bekannten Herstellungsverfahren umso schlechter, je feststoffreicher die Suspension ist; d. h. je dicker die Suspension ist, umso mehr Mischenergie muß aufgebracht werden.

Die Wasserundurchlässigkeit einer Dichtwand wird im wesentlichen durch den Anteil von Feststoffen und eine geeignete Korngrößen-Abstufung bestimmt. Herkömmlicherweise werden deshalb der Ausgangsmiauszutauschen. Als nichthärtende Suspensionen kom- 15 schung, bestehend aus Bindemittel, Bentonit und Wasser, noch zusätzliche Feststoffe zugeführt. Diese Feststoffzuführung erfolgt in der Regel durch Zugabe von Steinmehlen oder anderen Füllstoffen in der Aufbereitungsanlage zur Herstellung der Suspension. Die Ver-20 wendung von derartigen schweren Dichtwandsuspensionen bringt jedoch den Nachteil mit sich, daß beim Greifern der Wirkungsgrad sinkt, weil diese dicken Suspensionen die Absinkgeschwindigkeit der Greifer deutlich vermindern. Ein weiterer Nachteil besteht darin, und entleert ihn im Absetzcontainer. Beim Einsatz von 25 daß die zusätzlichen Füllstoffe extra antransportiert werden müssen, wodurch das Verfahren zusätzlich verteuert wird.

> Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von wasserundurchlässigen Dichtwänden der eingangs genannten Art wirtschaftlicher sowie derart auszugestalten, daß die damit hergestellten Dichtwände in hohem Maße homogen und wasserundurchlässig sind.

Erfindungsgemäß wird die Aufgabe durch ein Verfahhalb gewisser Grenzen mitmacht, ohne daß sie dabei 35 ren zur Herstellung von Dichtwänden mittels einer kopfseitig Fräswerkzeuge aufweisenden Schlitzwandfräse unter Stützung des Schlitzes von Beginn an durch eine selbsterhärtende Suspension gelöst, bei dem Suspension im Kreislauf zwischen dem Schlitz im Bereich der Fräswerkzeuge und einer Separierung geführt ist, bei dem die Suspension mit dem an den Fräswerkzeugen anstehenden Boden vermischt und diese mit Bodenmaterial angereicherte Suspension bei der Separierung um Bodenmaterial entreichert wird, dessen Korngröße Suspension mit Chemikalien ist zwar möglich, führt je- 45 einen vorgegebenen Grenzwert, der zwischen ca. 0,2 mm und ca. 2 mm liegt, überschreitet, bei dem der entreicherten Suspension, die Feinteile unterhalb des Grenzwertes enthält, Frischsuspension beigemischt wird, bei dem die Frischsuspension und die entreicherte Suspension in die den Schlitz stützende Suspension eingeleitet wird und bei dem des weiteren im Bereich der Fräswerkzeuge die mit Bodenmaterial angereicherte Suspension entnommen wird, der entreicherten Suspension, die Feinteile unterhalb des Grenzwertes enthält, Frischsuspension in einer Menge beigemischt wird, die im wesentlichen dem durch die Entreicherung bei der Separierung entstehenden Volumenverlust der im Kreislauf umlaufenden Suspension entspricht, und die Frischsuspension und die entreicherte Suspension unterhalb oder oberhalb der Oberfläche der den Schlitz stützenden Suspension, im Bereich der Oberfläche eingeleitet wird.

Demnach ist es erfindungsgemäß vorgesehen, die selbsterhärtende Suspension derart im Kreislauf zu führen, daß die Suspension gezielt mit beim Örtern anfallendem Bodenfeinmaterial angereichert wird, wodurch eine hochhomogene Dichtwandmasse mit genau festgelegtem Feststoffgehalt gewonnen wird. Nach vollständi-

gem Aushub des Schlitzes ist deshalb eine zusätzliche Homogenisierung der Dichtwandmasse im Schlitz nicht notwendig, wodurch der Mindestbindemittelgehalt der selbsterhärtenden Suspension durch die erfindungsgemäß vorgesehene ständige und in ihrer Menge gezielte Zugabe an Frischsuspension gewährleistet ist. Dadurch, daß die derart hergestellten Dichtwände einen homogenen und relativ hohen Feststoffgehalt besitzen, sind sie im erhärteten Zustand in hohem Maße wasserundurchlässig. Da außerdem erfindungsgemäß kein externer 10 Füllstoff zugeführt werden muß, dieser vielmehr aus dem abgeteuften Boden gewonnen wird, ist eine wirtschaftliche Durchführung des Verfahrens gewährleistet.

Wesentlich bei dem erfindungsgemäßen Verfahren ist die Wahl des Korngrößen-Grenzwertes zwischen ca. 15 0,2 mm und ca. 2 mm.

Um zu gewährleisten, daß die das Feinkorn enthaltende Suspension hinreichend homogen mit der Frischsuspension vermischt wird, wird diese vorteilhafterweise unter Rühren oder Umpumpen in die das Feinkorn ent- 20 haltende Suspension in einem Mischbehälter eingemischt. Eine direkte Zuführung in den oberen Bereich des suspensiongestützten Schlitzes wäre auch denkbar.

Weiterhin ist es vorteilhafterweise vorgesehen, daß der Bindemittelgehalt der Frischsuspension mindestens 25 dem jenigen der endgültig im Schlitz verbleibenden Suspension entspricht und vorzugsweise den Bindemittelgehalt in der Suspension um etwa 20% übertrifft. Dadurch wird gewährleistet, daß während der Schlitzherstellung auch bei steigendem Feinkornanteil in der Sus- 30 pension der Bindemittelanteil ausreichend groß ist.

Nachfolgend soll die Erfindung anhand der Zeichnung näher erläutert werden; in dieser zeigen:

Fig. 1 eine schematische Darstellung des Ablaufs des Dichtwänden und

Fig. 2 eine Ausführungsform einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens.

In Fig. 1 befindet sich eine Schlitzwandfräse 1 bereits auf einem abgesenkten Niveau eines Schlitzes 2, der zur 40 Herstellung einer Dichtwand im Erdreich 3 eingebracht ist. Der Schlitz 2 ist bis knapp unter seinen oberen Rand 4 mit einer Stützsuspension M1 gefüllt, die während des Abteufens des Schlitzes im Erdreich 3 zur Abstützung der Schlitzwandung dient. Die Fräse 1 umfaßt am Kopf- 45 ende rotierende Werkzeuge 5 sowie eine Pumpe 6, die über einen Schlauch 7 mit einer nachfolgend näher zu beschreibenden Separierungsanlage 14 in Verbindung

Frischsuspension M0 ist in einem Behälter 7 bevorra- 50 tet, an den eine Leitung 8, beispielsweise eine Schlauchleitung angeschlossen ist, die in einen Mischbehälter 9 mündet. In der Leitung 8 ist eine Ventileinrichtung 10 angeordnet, mit der die Menge an Frischsuspension gesteuert wird, die in den Mischbehälter 9 eingeleitet wird. 55 An den Mischbehälter 9 ist eine Leitung 11 angeschlossen, über die Suspension aus dem Mischbehälter 9 zu dem Schlitz 2 überführt wird. Die Leitung 11 endet kurz über der Oberfläche der im Schlitz 2 befindlichen Suspension M1. Durch die Pumpe 6 am Kopf der Schlitzwandfräse 1 wird Suspension M2 über eine Leitung 12 abgesaugt, die über einem Sammelbehälter 13 der Separierungsanlage 14 endet. Bei der Suspension M2 handelt es sich um die Suspension M1, die angereichert ist mit Bodenmaterial, das mit Hilfe der rotierenden Werkzeu- 65 ge 5 der Fräse 1 von dem umgebenden Erdreich abgetragen worden ist. Die Suspension M2 wird im Behälter 13 mittels Sieben (15), Zyklonen oder Zentrifugen be-

handelt, wobei Bodenkörner oberhalb einer bestimmten Korngrenzgröße über eine Schütte 16 ausgetragen werden, während die derart entreicherte Suspension M3 in einer Wanne 17 aufgefangen wird, die über eine Leitung 18 mit dem Mischbehälter 9 in Verbindung steht. Im Mischbehälter 9 erfolgt eine Vermischung der Feinteile einer vorbestimmten Größe enthaltenden Suspension M3 mit der Frischsuspension M0 und die derart vermischte Suspension wird in den Schlitz 2 über die Leitung 11 eingespeist und bildet dort die Stützsuspension M1, die nach Fertigstellung des Schlitzes 2 und nach dem Herausziehen der Fräse 1 erhärtet und dadurch die wasserundurchlässige Dichtwand bildet.

Zu Beginn der Dichtwandherstellung, also dann, wenn die Fräse 1 durch Absenken den oberen Bereich 4 des Schlitzes 2 abträgt. Besteht die Stützsuspension zunächst aus der Frischsuspension M0, da in dieser Phase noch keine Zumischung von Bodenfeinteile enthaltener Suspension M3 zu der Frischsuspension M0 in dem Mischbehälter 9 stattgefunden hat. Diese Zumischung erfolgt unverzüglich in der nachfolgenden Phase, wenn durch die rotierenden Werkzeuge 5 am Kopf der Fräse 1 abgefräste Bodenteile mit anstehenden Suspension M2 gemischt und über die Pumpe 6 zur Separierungsanlage 14 gefördert worden sind. Durch die dann in den Schlitz 2 nachlaufende Suspension, die ein Gemisch aus Frischsuspension M0 und gezielt angereicherter Suspension M3 darstellt, erfolgt eine Vermischung mit der zunächst im Schlitz 2 ausschließlich anwesenden Frischsuspension, wobei beim weiteren Abteufen des Schlitzes die Dichte der Stützsuspension M1 im Schlitz 2 im wesentlichen der Dichte des Suspensionsgemisches M0/M3 im Mischbehälter 9 entspricht.

Die Siebung oder Separierung von Bodenkorn in der erfindungsgemäßen Verfahrens zur Herstellung von 35 Anlage 14 erfolgt so, daß Bodenkorn mit einem Durchmesser größer als etwa 1 bis 2 mm aus der Suspension M2 abgetrennt wird und der dabei auftretende Volumenschwund wird durch eine Einleitung von Frischsuspension M0 entsprechend der Volumendifferenz kompensiert. Hierdruch wird erreicht, daß das Niveau der im Schlitz 2 vorhandenen Stützsuspension M1 erhalten bleibt. Vom Kreislaufprozeß her gesehen unterscheidet sich daher das Volumen der in den Mischbehälter 9 eingeleiteten Suspension M3 vom Volumen der zur Anlage 14 geförderten Suspension M2 durch das Volumen der separierten Bodenkörner. Um dabei zu gewährleisten, daß während der Schlitzherstellung auch bei steigendem Feinkornanteil in der selbsthärtenden Stützsuspension der Bindemittelanteil hinreichend groß bleibt, bzw. vergrößert werden kann, wird die Frischsuspension M0 mit einem bis zu 20% höheren Bindemittelanteil in den Mischbehälter 9 eingespeist. Dadurch wird gewährleistet, daß der Mindestbindemittelgehalt der selbsterhärtenden Suspension auf alle Fälle vorhanden

Die gezielte Zugabe von Feinteilen bis zum Korngrö-Ben-Grenzwert von etwa 1 bis 2 mm, vor allem etwa 0,5 mm und bevorzugt 0,2 mm, sorgt für eine im Vergleich zum Stand der Technik deutlich gesteigerte Wasserundurchlässigkeit der derart erstellten Dichtwand. Da diese Feinteile aus dem anstehenden Baugrund stammen, vermindern sich die Kosten für die Ausgangsstoffe der Suspension in erheblichem Umfang, da Füllstoffe über die Suspension nicht extra auf die Baustelle geliefert werden müssen. Außerdem wird der abzufahrende Bodenaushub deutlich reduziert, und dieser läßt sich billiger entsorgen, da er keine feinkörnigen Anteile enthält. Die Dichte der endgültigen selbsterhärtenden

Suspension im Schlitz kann Werte bis etwa 1,6 t/m³ erreichen.

In Fig. 2 ist eine bevorzugte Ausführungsform einer Anordnung zur Herstellung von wasserundurchlässigen Dichtwänden mittels des erfindungsgemäßen Verfahrens dargestellt. Gezeigt ist eine Phase der Dichtwandherstellung, bei welcher die Dichtwandfräse 1 einen Bodenstock 20 bearbeitet, der stehengeblieben ist, nach dem vorausgehenden Örtern von zwei außenliegenden Schlitzen 2a und 2b. Gefüllt ist der gesamte Schlitz 2 auch im Bereich der vorausgehend erzeugten Schlitze 2a und 2b mit noch nicht erhärteter Stützsuspension M1 der in Fig. 1 beschriebenen Zusammensetzung.

Die Schlitzwandfräse 1 hängt an einem Bagger 21, über dessen Auslegerarm auch die Absaubleitung 12 15 geführt ist, die in Gestalt einer Rohrleitung 12 vom Bagger zur Separierungsanlage 14 verläuft. Unmittelbar neben der Separierungsanlage 14 ist der Mischbehälter 9 angeordnet, von dem die Zuführleitung 11, die ebenfalls in Gestalt von Rohren realisiert ist, auf dem Boden entlanglaufend sich bis zum Schlitz 2 erstreckt und dort über einen Krümmer in die im Schlitz 2 befindliche Stützsuspension M1 hineinragt. In der Leitung 11 ist eine Förderpumpe 22 angeordnet.

Die Bevorratung der Frischsuspensionskomponenten 25 erfolgt in getrennten Behältern A und B, aus denen die Suspensionskomponenten über Steigleitungen 23 und 23' in eine Mischanlage 24 überführt werden, in welcher die Komponenten der Suspension in einem vorgegebenen Mischverhältnis mit Wasser vermischt werden. Die Frischsuspension wird in einem Behälter 25 zwischengelagert. Fertige Frischsuspension wird dann über die Leitung 8 mittels einer Pumpen-/Dosiereinrichtung 26 in den Mischbehälter 9 eingeleitet.

Der Suspensionskreislauf in Fig. 2 ist derselbe wie in 35 Fig. 1, wobei insbesondere in der Leitung 12 Suspension der Qualität M2, in der Leitung 18 Suspension der Qualität M3 geführt wird und wobei die Suspension im Schlitz 2 die Qualität M1 aufweist.

Patentansprüche

1. Verfahren zur Herstellung von Dichtwänden mittels einer kopfseitig Fräswerkzeuge aufweisenden Schlitzwandfräse unter Stützung des Schlitzes von 45 Beginn an durch eine selbsterhärtende Suspension, bei dem Suspension im Kreislauf zwischen dem Schlitz im Bereich der Fräswerkzeuge und einer Separierung geführt ist, bei dem die Suspension mit dem an den Fräswerkzeugen anstehenden Boden vermischt und diese mit Bodenmaterial angereicherte Suspension bei der Separierung um Bodenmaterial entreichert wird, dessen Korngröße einen vorgegebenen Grenzwert, der zwischen ca. 0,2 mm und ca. 2 mm liegt, überschreitet, 55 bei dem der entreicherten Suspension, die Feinteile

sion beigemischt wird, bei dem die Frischsuspension und die entreicherte Suspension in die den Schlitz stützende Suspension 60 eingeleitet wird

unterhalb des Grenzwertes enthält, Frischsuspen-

und bei dem des weiteren im Bereich der Fräswerkzeuge die mit Bodenmaterial angereicherte Suspension entnommen wird, der entreicherten Suspension, die Feinteile unterhalb des Grenzwertes enthält, Frischsuspension in einer Menge beigemischt wird, die im wesentlichen dem durch die
Entreicherung bei der Separierung entstehenden

Volumenverlust der im Kreislauf umlaufenden Suspension entspricht, und

die Frischsuspension und die entreicherte Suspension unterhalb oder oberhalb der Oberfläche der den Schlitz stützenden Suspension, im Bereich der Oberfläche eingeleitet wird.

2. Verfahren nach Anspruch 1, bei dem der Bindemittelgehalt der Frischsuspension mindestens demjenigen der endgültig im Schlitz verbleibenden Suspension entspricht.

3. Verfahren nach Anspruch 2, bei dem die Frischsuspension einen Bindemittel-Gehalt pro Kubikmeter (m³) besitzt, der höher ist als der Bindemittel-Gehalt pro Kubikmeter (m³) der endgültigen im Schlitz erhärtenden Suspension.

4. Verfahren nach Anspruch 3, bei dem der Bindemittelgehalt der Frischsuspension den Bindemittelgehalt der endgültig im Schlitz verbleibenden Suspension um bis zu etwa 20% übertrifft.

5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem die Beimischung von Frischsuspension zur aus der Separierung erhaltenen Suspension in einem Mischbehälter durchgeführt wird, aus dem die gemischte Suspension dem Schlitz zugeführt wird.

6. Verfahren nach Anspruch 5, bei dem die Frischsuspension unter Rühren oder Umpumpen in die Feinkornteile enthaltende Suspension in den Mischbehälter eingemischt wird.

7. Verfahren nach einem der Ansprüche 1 bis 4, bei dem die aus der Separierung erhaltene Suspension dem suspensiongestützten Schlitz direkt zugeführt wird

8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die Frischsuspension Wasser, Bentonit und Bindemittel umfaßt.

9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem die Entreicherung grobkörnigen Bodenmaterials in der Aufbereitungsanlage durch Siebe oder durch den Einsatz von Zyklonen erfolgt.

10. Verfahren nach einem der Ansprüche 5 bis 6, bei dem die Dichte der endgültig im Schlitz verbleibenden Suspension durch Einstellen des Mischverhältnisses Frischsuspension/Feinkornteile enthaltende Suspension im Mischbehälter auf einen Wert von bis zu etwa 1,6 t/m³ erfolgt.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.6:

DE 41 41 629 C2

Veröffentlichungstag: 20. Februar 1997

E 02 D 19/16

Nummer: Int. Cl.⁶:

DE 41 41 629 C2

E 02 D 19/16

Veröffentlichungstag: 20. Februar 1997

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.