CCF 全国信息学奥林匹克联赛(NOIP2013)复赛

普及组

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	计数问题	表达式求值	小朋友的数字	车站分级	
英文题目与子目录名	count	expr	number	level	
可执行文件名	count	count expr		level	
输入文件名	count.in	expr.in	number.in	level.in	
输出文件名	count.out	expr.out	number.out	level.out	
每个测试点时限	1秒	1秒	1秒	1秒	
测试点数目	10	10	10	10	
每个测试点分值	10	10	10	10	
附加样例文件	有	有	有	有	
结果比较方式	全文	文比较 (过滤行末	空格及文末回车)	
题目类型	传统	传统	传统	传统	
运行内存上限	128M	128M	128M	128M	

二. 提交源程序文件名

	• • •					
对于 C++语言	count.cpp	expr.cpp	number.cpp	level.cpp		
对于 C 语言	count.c	expr.c	number.c	level.c		
对于 pascal 语言	count.pas	expr.pas	number.pas	level.pas		

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o count	g++ -o expr	g++ -o number	g++ -o level
	count.cpp -lm	expr.cpp -lm	number.cpp -lm	level.cpp -lm
对于 C 语言	gcc -o count	gcc -o expr	gcc-o number	gcc -o level
	count.c -lm	expr.c -lm	number.c -lm	level.c -lm
对于 pascal 语言	fpc count.pas	fpc expr.pas	fpc number.pas	fpc level.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) 64x2 Dual Core CPU 5200+, 2.71GHz, 内存 2G, 上述时限以此配置为准。
- 4、只提供 Linux 格式附加样例文件。
- 5、特别提醒: 评测在 NOI Linux 下进行。

1. 记数问题

(count.cpp/c/pas)

【问题描述】

试计算在区间 1 到 n 的所有整数中,数字 $x(0 \le x \le 9)$ 共出现了多少次?例如,在 1 到 11 中,即在 1、2、3、4、5、6、7、8、9、10、11 中,数字 1 出现了 4 次。

【输入】

输入文件名为 count.in。

输入共1行,包含2个整数n、x,之间用一个空格隔开。

【输出】

输出文件名为 count.out。

输出共1行,包含一个整数,表示x出现的次数。

【输入输出样例】

count.in	count.out				
11 1	4				

【数据说明】

对于 100%的数据, $1 \le n \le 1,000,000$, $0 \le x \le 9$ 。

2. 表达式求值

(expr.cpp/c/pas)

【问题描述】

给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值。

【输入】

输入文件为 expr.in。

输入仅有一行,为需要你计算的表达式,表达式中只包含数字、加法运算符"+"和乘法运算符"*",且没有括号,所有参与运算的数字均为 0 到 2^{31} -1 之间的整数。输入数据保证这一行只有 $0\sim 9$ 、+、*这 12 种字符。

【输出】

输出文件名为 expr.out。

输出只有一行,包含一个整数,表示这个表达式的值。**注意: 当答案长度多于 4 位时,** 请只输出最后 4 位,前导 0 不输出。

【输入输出样例1】

expr.in	expr.out					
1+1*3+4	8					

【输入输出样例 2】

expr.in	expr.out
1+1234567890*1	7891

【输入输出样例 3】

expr.in	expr.out				
1+100000003*1	4				

【输入输出样例说明】

样例 1 计算的结果为 8,直接输出 8。

样例 2 计算的结果为 1234567891, 输出后 4 位, 即 7891。

样例 3 计算的结果为 1000000004, 输出后 4 位, 即 4。

【数据范围】

对于 30%的数据, 0<表达式中加法运算符和乘法运算符的总数<100;

对于80%的数据,0<表达式中加法运算符和乘法运算符的总数<1000;

对于 100%的数据, 0≤表达式中加法运算符和乘法运算符的总数≤100000。

3. 小朋友的数字

(number.cpp/c/pas)

【问题描述】

有 n 个小朋友排成一列。每个小朋友手上都有一个数字,这个数字可正可负。规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。

作为这些小朋友的老师,你需要给每个小朋友一个分数,分数是这样规定的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。

请计算所有小朋友分数的最大值,**输出时保持最大值的符号,将其绝对值对 p 取模后输出。**

【输入】

输入文件为 number.in。

第一行包含两个正整数 n、p, 之间用一个空格隔开。

第二行包含 n 个数,每两个整数之间用一个空格隔开,表示每个小朋友手上的数字。

【输出】

输出文件名为 number.out。

输出只有一行,包含一个整数,表示最大分数对 p 取模的结果。

【输入输出样例1】

number.in	number.out
5 997	21
1 2 3 4 5	

【输入输出样例说明】

小朋友的特征值分别为 1、3、6、10、15,分数分别为 1、2、5、11、21,最大值 21 对 997的模是 21。

【输入输出样例 2】

number.in	number.out					
5 7	-1					
-1 -1 -1 -1 -1						

【输入输出样例说明】

小朋友的特征值分别为-1、-1、-1、-1、-1,分数分别为-1、-2、-2、-2、-2,最大值-1 对 7 的模为-1,输出-1。

【数据范围】

对于 50%的数据, $1 \le n \le 1,000$, $1 \le p \le 1,000$ 所有数字的绝对值不超过 1000; 对于 100%的数据, $1 \le n \le 1,000,000$, $1 \le p \le 10^9$,其他数字的绝对值均不超过 10^9 。

4. 车站分级

(level.cpp/c/pas)

【问题描述】

一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是5趟车次的运行情况。其中,前4趟车次均满足要求,而第5趟车次由于停靠了3号火车站(2级)却未停靠途经的6号火车站(亦为2级)而不满足要求。

车站编号	1		2		3		4		5		6		7		8		9
车站级别 车次	3		1		2		1		3		2		1		1		3
1	始	→	→	→	停	→	→	→	停	→	终						
2					始	→	→	→	停	→	终						
3	始	→	停	→	终												
4							始	→	停	→	停	→	停	→	停	→	终
5					始	†	†	†	停	†	→	†	†	†	†	†	终

现有m趟车次的运行情况(全部满足要求),试推算这n个火车站至少分为几个不同的级别。

【输入】

输入文件为 level.in。

第一行包含 2 个正整数 n, m,用一个空格隔开。

第 i+1 行($1 \le i \le m$)中,首先是一个正整数 s_i ($2 \le s_i \le n$),表示第 i 趟车次有 s_i 个停靠站;接下来有 s_i 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

【输出】

输出文件为 level.out。

输出只有一行,包含一个正整数,即n个火车站最少划分的级别数。

【输入输出样例】

level.in	level.out
9 2	2
4 1 3 5 6	
3 3 5 6	
9 3	3
4 1 3 5 6	
3 3 5 6	
3 1 5 9	

【数据范围】

对于 20%的数据, $1 \le n, m \le 10$;

对于 50%的数据, $1 \le n, m \le 100$;

对于 100%的数据, $1 \le n, m \le 1000$ 。