Epistemic Principle of a Congruence Maximization of a Phylogenetic Tree to External Classifications

Slava Brover*1

¹National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

August 18, 2024

Abstract

A miscongruence of a phylogenetic tree to external classifications is proposed as a criterion of the quality of a phylogenetic tree. Since an established classification of biological objects is taxonomy, the computation of taxonomy miscongruence between a phylogenetic tree and a given taxonomy is described. The miscongruence with the NCBI taxonomy can be used as one number evaluating the quality of a phylogenetic tree. The computation of taxonomy miscongruence also can be used to assign taxonomy names to interior nodes of a tree. Taxonomy miscongruence is applied to comparing different phylogenetic trees, optimization of the parameters of a tree building, finding taxonomically misassigned type strains, and the analysis of the MLST clades of *Escherichia coli*.

 $\textbf{\textit{Keywords}} \buildress{\leftarrow} Phylogenetic tree, Tree congruence, Taxonomy, Taxonomy miscongruence, Type strain, \textit{\textit{Escherichia coli.}}$

Contents

1	Introduction	2
2	Methods 2.1 Principle of maximum congruence estimation 2.2 Maximum parsimony miscongruence 2.3 Taxonomy miscongruence 2.3.1 Computation of taxonomy miscongruence 2.3.2 Assigning taxonomy names to interior nodes of a tree 2.3.3 Selection of the root of a phylogenetic tree 2.3.4 Caveat: Filtering of objects can lower taxonomy miscongruence	3 3 4 4
3	Results 3.1 Comparison of phylogenetic trees by quality	6 7
$\mathbf{A}_{]}$	ppendices	12
A	Encoding of taxonomical lineage for maximum parsimony problem	12
$\mathbf{R}_{\mathbf{c}}$	Leferences	15

^{*}E-mail: brovervv@ncbi.nlm.nih.gov

1 Introduction

The problem of a phylogenetic tree reconstruction has a curse of lacking training sets because there are no observed phylogenetic trees, and yet there is a desire to reconstruct a most probable phylogenetic tree. As a possible solution the principle of maximum congruence estimation is proposed.

This principle needs an external tree or classification and a function of miscongruence. If a phylogenetic tree spans a large number of taxa, the taxonomy can be used as the reference tree and a taxonomy miscongruence function is described.

This way a single number, miscongruence, is assigned to a phylogenetic tree, which allows optimizing tree building parameters, comparing phylogenetic trees by quality or finding outlier objects.

2 Methods

2.1 Principle of maximum congruence estimation

This section describes the concept and properties of miscongruence in an informal way.

Consider a set of objects for which it is desired to build a phylogenetic tree and for which there exist external classifications. For example, an external tree is a set of external classifications.

Let phylogenetic trees on these objects and classifications of these objects be represented as vectors. Let vector \mathbf{t} be the vector representing an unknown true tree T, \mathbf{r} be the vector representing external classifications R, and \mathbf{x} be the vector representing an arbitrary tree X, then

$$|\mathbf{x} - \mathbf{r}|^2 = |(\mathbf{x} - \mathbf{t}) - (\mathbf{r} - \mathbf{t})|^2 = |\mathbf{x} - \mathbf{t}|^2 + |\mathbf{r} - \mathbf{t}|^2 - 2(\mathbf{x} - \mathbf{t})^t(\mathbf{r} - \mathbf{t}). \tag{1}$$

If the deviations of \mathbf{x} and \mathbf{r} from \mathbf{t} are independent, then on the average $(\mathbf{x} - \mathbf{t})^t(\mathbf{r} - \mathbf{t}) = 0$, and

$$\arg\min_{\mathbf{x}} |\mathbf{x} - \mathbf{r}|^2 = \arg\min_{\mathbf{x}} |\mathbf{x} - \mathbf{t}|^2$$

which is generalized as

$$\arg\min_{\theta\in\Theta}\Delta(X(\theta),R) = \arg\min_{\theta\in\Theta}\Delta(X(\theta),T),$$

where $X(\theta)$ is the tree built with parameters $\theta \in \Theta$, and $\Delta(T_1, T_2)$ is a miscongruence between trees or classifications T_1 and T_2 .

Minimizing the miscongruence of the tree $X(\theta)$ from external classifications R by selecting parameters $\theta \in \Theta$, in other words, maximizing the congruence between $X(\theta)$ and R, on the average minimizes the miscongruence of $X(\theta)$ from the true tree T.

Therefore, building a phylogenetic tree of high quality consists in selecting Θ and R and computing

$$\arg\min_{\theta\in\Theta}\Delta(X(\theta),R).$$

The miscongruence consists of the two parts:

$$\Delta(X(\theta), R) = \Delta_0 + \Delta_1,$$

where

- Δ_0 matches $|\mathbf{x} \mathbf{t}|^2$ in (1), which is minimized with the minimization of the miscongruence;
- Δ_1 matches $|\mathbf{r} \mathbf{t}|^2 2(\mathbf{x} \mathbf{t})^t(\mathbf{r} \mathbf{t})$ in (1), which is noise and creates a lower bound of the miscongruence.

The maximum congruence estimation is similar to the statistical maximum likelihood estimation, where the parameters are adjusted to minimize the discrepancy of model from data and the formula measuring the discrepancy follows from a probabilistic model. In the maximum congruence estimation external classifications R act as data.

Since it is required that the deviations of X and R from T should be independent, the tree X and the classifications R should be created by different methods and/or by using different characters.

2.2 Maximum parsimony miscongruence

This section describes how to compute miscongruence using the maximum parsimony method.

Consider two rooted trees T_1 and T_2 having the same set S as leaves. Let L(y) be the leaves of the subtree rooted at node y of a tree.

For a set $Y \subseteq S$ define a Boolean attribute on the elements $y \in S$ which is 1 if $y \in Y$ and 0 otherwise. Then solve the maximum parsimony problem for this Boolean attribute in a tree T, and let $s_{mp}(Y|T)$ be the score of this solution. The maximum parsimony problem can be solved by the Sankoff algorithm in time O(n), where n = |S|, see [3].

Let $y \in T$ mean that y is a node of the tree T.

Define the maximum parsimony miscongruence of trees T_1 and T_2 as

$$\Delta_{\mathrm{mp}}(T_1, T_2) = \sum_{y \in T_1, L(y) \neq S} (s_{\mathrm{mp}}(L(y)|T_2) - 1).$$

This formula is similar to the Robinson-Foulds distance between trees [3], where a set in $\{L(y): y \in T_1\}$ is scored 1 if it is missing in $\{L(y): y \in T_2\}$, whereas in $\Delta_{mp}(T_1, T_2)$ a set is scored 1 or greater if it is missing in $\{L(y): y \in T_2\}$.

The value $\Delta_{\mathrm{mp}}(T_1, T_2)$ is not a distance.

$$\Delta_{\rm mp}(T_1, T_2) \ge 0.$$

$$T_1 = T_2 \Leftrightarrow \Delta_{\mathrm{mp}}(T_1, T_2) = 0.$$

The maximum parsimony score $s_{\rm mp}(L(y)|T_2)$ is the number of nodes in T_2 where the Boolean attribute defined by L(y) is gained or lost. Therefore, $\Delta_{\rm mp}(T_1,T_2)$ can be decomposed into maximum parsimony scores $\Delta_{\rm mp}(T_1,T_2,y)$ per node $y\in T_2$. This allows finding the most miscongruent interior nodes or leaves of T_2 .

2.3 Taxonomy miscongruence

In biology there is one distinguished classification which is the taxonomy. It is based mostly on phenotypic and rDNA characters. For prokaryotes the taxonomy tree can be extended below species by including phylogroups, serovars and MLST numbers.

Let \mathfrak{T} be the extended NCBI taxonomy tree [2]. Then define the taxonomy miscongruence of a tree T as

$$\tau(T) = \Delta_{\mathrm{mp}}(\mathfrak{T}, T),$$

and the taxonomy miscongruence of a node $y \in T$ as

$$\tau(y) = \Delta_{\mathrm{mp}}(\mathfrak{T}, T, y),$$

see Section 2.2.

2.3.1 Computation of taxonomy miscongruence

Since some taxons are unknown (for example, incertae sedis), the Boolean attributes defining the maximum parsimony problem in Section 2.2 must have three values: 1, 0 or unknown. To compute $\tau(T)$ each of these 3-valued Boolean attributes should be assigned to each leaf of the tree T, so that the input data will have size $O(n^2)$ which is too much.

To simplify the input data, for each biological object only its taxonomic lineage is stored as a sequence of nominal attribute-value pairs TaxonLevel:TaxonName, for the detailed description see Appendix A. The set of nominal attributes is the same for each biological object. The nominal attributes are taxonomic ranks, e.g., kingdom, phylum, class, order, family, genus, species, together with subranks, which are the taxonomy levels between the ranks. The nominal attribute-value pairs are converted into 3-valued Boolean attributes, see Table 1. Since there is a limited number of taxonomy rank-subrank combinations, the input data size for the computation of taxonomy miscongruence is O(n).

V	Value of nom	Variant	nom:a	nom:b	nom:c
	a		true	false	false
	b		false	true	false
	c		false	false	true
	unknown	1	unknown	unknown	unknown
	unknown	2	false	false	false

Table 1: Conversion of a nominal attribute nom into three 3-valued Boolean attributes nom:a, nom:b and nom:c.

2.3.2 Assigning taxonomy names to interior nodes of a tree

The procedure for the computation of the taxonomy miscongruence described in Section 2.3 can be also used for an automatic assignment of taxonomy names to the interior tree nodes.

After the maximum parsimony problem is solved for each Boolean attribute, the binary assignment of each rank-subrank-taxonomic name is made to each node of the phylogenetic tree. A Boolean attribute is gained at a node, if it is true at the node, but false at its parent node. Then the gained taxonomic names of a node are the taxonomic names of the Boolean attributes which are gained in this node. These taxonomic names belong to different rank-subrank combinations, see the Lemma below, and therefore, can be ordered from the lowest to highest rank-subrank. The first and last taxonomic names in this ordering can be used as the name of the interior node in the format name1/name2, or just name1 if the both names are the same.

To make the names more informative, the unknown taxons in a taxonomic lineage of an object are considered as novel taxonomic names unique to the object and they are not used in naming.

This method is used in the phylogenetic trees of [1].

Lemma: if Boolean attributes B_1 and B_2 represent different values of the same nominal attribute, the maximum parsimony problem is solved for each Boolean attribute independently, and Boolean assignments with more false nodes are preferred, then at no node B_1 and B_2 can be both gained.

Proof: by induction from tree leaves. Suppose the Lemma is proved for all tree depths greater than d. Then consider an interior node v at depth d where B_1 is gained. Let n_i be the number of the children of this node where $B_i = true$, and \bar{n}_i be the number of the children of this node where $B_i = false$. Then $n_1 > \bar{n}_1 \ge n_2$. If B_2 is also gained at the node v, then similarly $n_2 > n_1$, which is a contradiction.

2.3.3 Selection of the root of a phylogenetic tree

The procedure for the computation of the taxonomy miscongruence described in Section 2.3 can be also used for an automatic root selection of the phylogenetic tree.

After the maximum parsimony problem is solved for each Boolean attribute, for each tree node the number of the Boolean attributes having the true assignment can be computed. The node with the fewest number can be selected as the root.

2.3.4 Caveat: Filtering of objects can lower taxonomy miscongruence

Before a tree building the tree objects are usually filtered for contamination or taxonomic misassignment, which can be based on a separately built auxiliary phylogenetic tree. If the auxiliary phylogenetic tree is similar to the target phylogenetic tree then this procedure will artificially lower the taxonomy miscongruence of the target phylogenetic tree.

Consider two stable clades A and B and an object x located in the gray zone between A and B. Suppose that x is not a type strain, and that x is taxonomically assigned to clade A. This assignment may be an error and x may actually belong to B.

Different tree building methods will assign x to either A or B, so that all 4 cases are possible, see Table 2.

Case	Phylogenetic tree	True taxonomy	Current taxonomy	Taxonomy miscongruence
1	(Ax)B	(Ax)B	(Ax)B	0
2	(Ax)B	A(xB)	(Ax)B	0
3	A(xB)	(Ax)B	(Ax)B	1
4	A(xB)	A(xB)	(Ax)B	1

Table 2: Possible cases of placing an object x in the gray zone of stable clades A and B.

If a filtering procedure prefers cases 1 and 2 because they agree with the current taxonomy, the taxonomy miscongruence will be artificially lowered.

3 Results

3.1 Comparison of phylogenetic trees by quality

Different phylogenetic trees can be compared by quality using the taxonomy miscongruence. But these trees should contain the same objects. For a pair of trees the objects present only in one tree are removed, so that each reduced tree should contain only the objects common to the both trees, and then for these reduced trees the taxonomy miscongruences τ_1 and τ_2 are computed respectfully according to Section 2.3.

If a tree T_1 is better than a tree T_2 , in other words, $\tau_1 \leq \tau_2$, then the quality difference is

$$1 - \tau_1/\tau_2$$
.

The phylogenetic trees of Table 3 have been compared by quality in Table 4.

Tree name	Tree file	Taxon	Tree object	Objects	Reference
ASTRAL	ASTRAL	prokaryota	assembly	10,575	[8]
GTDB-86	bac120_r86.1.tree	bacteria	assembly	27,372	[4]
GTDB-89	bac120_r89.tree	bacteria	assembly	23,458	[4]
NCBI bacteria	bacteria-R11	bacteria	assembly	415,761	[1]
NCBI bacteria-type	bacteria-R11t	bacteria	assembly, type strains	11,970	[1]
Budding Yeast	332_24080Gs_ time-calibrated_ phylogeny	Saccharomy cotina	assembly	332	[7]
NCBI fungi	fungi-R15	fungi	assembly	4,413	[1]
Silva	LTPs132_SSU	prokaryota	16S rRNA	13,867	[6]
NCBI 16S	prok-16S-R4	prokaryota	16S rRNA	20,975	[1]

Table 3: Phylogenetic trees whose quality is evaluated in Table 4.

Tree T_1 (better)	Tree T_2	Common	_	_	Quality
Tree I ₁ (better)	11ee 1 ₂	objects	$ au_1 $	$ au_2$	difference
GTDB-86	NCBI bacteria	22,479	37,420	41,158	9.1%
GTDB-86	NCBI bacteria-type	6,885	11,239	11,584	3.0%
GTDB-89	NCBI bacteria	20,759	41,592	45,515	8.6%
GTDB-89	NCBI bacteria-type	7,170	13,394	13,694	2.2%
GTDB-86	GTDB-89	13,248	27,012	27,134	0.4%
ASTRAL	NCBI bacteria	8,422	17,686	20,264	12.7%
ASTRAL	NCBI bacteria-type	3,411	7,416	7,726	4.0%
ASTRAL	GTDB-86	6,685	15,083	15,387	2.0%
NCBI fungi	Budding Yeast	319	520	528	1.5%
NCBI 16S	Silva	12,501	16,494	19,110	13.7%

Table 4: Comparison of the quality of phylogenetic trees T_1 and T_2 by taxonomy miscongruences τ_1 and τ_2 of the common object trees.

The quality difference for the NCBI bacteria-type tree is much better than the for NCBI bacteria tree. A possible explanation is that in the GTDB and ASTRAL trees the contaminated genomes have been removed by the CheckM analysis [5] which itself uses a phylogenetic tree, see Section 2.3.4. This removal of contaminated genomes can artificially reduce the taxonomy miscongruence, but type strains are less likely to be affected by the contamination removal.

In comparing the GTDB-86 and GTDB-89 trees the common objects have been restricted to those which could be mapped to the NCBI assemblies.

The best current bacterial phylogenetic tree is ASTRAL followed by GTDB-86 followed by NCBI bacteria-type.

3.2 Achieving the best phylogenetic tree

The topology and, therefore, the taxonomy miscongruence of a phylogenetic tree depend on the following choices:

- object type: specific gene or genes, whole genome;
- parameters of multiple alignment or dissimilarity computation;
- tree building method (maximum likelihood, distance-based) and parameters of the method;
- outlier identification parameters;
- how good the optimization is: optimization criterion, number of optimization iterations;
- number of the objects used in the tree.

The tree building parameters of least squares distance trees of [1] have been optimized to achieve the minimum of taxonomy miscongruence for a random subset of 1000 objects. That is how the parameters in Appendix C of [1] have been chosen. The obtained parameters have been used to build the whole trees, see Table 5.

Taxon	bacteria	fungi	protists	prokaryotes	fungi
Object type	genome	genome	genome	16S rRNA	ITS rRNA
Reservoir objects	473,130	4,670	635	21,137	11,025
Objects in the tree	415,761	4,413	581	20,975	10,428
Outliers, %	12.1%	5.5%	8.5%	0.8%	5.4%
Taxonomy miscongruence	156,076	3,557	747	30,907	26,141
Tax. misc. per object	0.38	0.81	1.29	1.47	2.51
Release	11	14	3	4	8
Data collection date	10 Jan 2020	10 Jan 2020	22 Apr 2019	29 Jun 2019	21 Oct 2019
Base file name	bacteria-R11	fungi-R14	protists-R3	prok-16S-R4	fungi-ITS-R8

Table 5: The GenBank global trees from [1] with taxonomy miscongruences

The improvement of the taxonomy miscongruence with the number of optimization iterations for the initial 3,000 objects of the Fungal ITS tree tree fungi-ITS-R8 [1] is in Table 6. Given the variance of τ there is no improvement after 5 optimization iterations.

Number of optimization iterations	Absolute criterion	τ
0 (NNJ only)	590.87	9,969
1	43.18	9,385
2	42.90	9,139
3	42.88	9,146
4	42.88	9,093
5	42.88	9,117
6	42.88	9,084
7	42.88	9,093
8	42.88	9,051
9	42.88	9,075
10	42.88	9,024
15	42.88	9,075
20	42.88	9,074
30	42.88	9,087
50	42.88	9,101

Table 6: Improvement of the taxonomy miscongruence τ with the number of optimization iterations in the Fungal ITS tree [1].

When a tree is built incrementally the taxonomy miscongruence of the initial set of objects improves with the total number of objects. This is shown for the Fungal ITS tree [1] in Fig. 1.

Figure 1: Improvement of the taxonomy miscongruence of the initial set of objects with the tree incrementation number in the Fungal ITS tree [1].

This suggests the following method to improve a phylogenetic tree for a set S of objects:

- add more objects to S making a superset S': $S \subset S'$;
- build a tree for the superset S';
- remove the extra objects $S' \setminus S$ from the tree.

The resulting tree will contain the original set S of objects and will be on the average better than a tree built only from S.

3.3 Bacterial type strains with probably misassigned sequence

Type strain sequences are used as golden standard for taxonomic assignment of other sequences, but the whether the type strain sequences themselves are correct or their taxonomic lineages are correct remains a problem.

The bacterial genomes of type strains with taxonomic miscongruence $\tau \geq 32$ in the tree bacteria-R12t [1] have been manually checked, and 53 genomes which probably have been assigned to a type strain in error or where the taxonomic lineage of the type strain is incorrect are in Table 7.

The same manual analysis has been done for prokaryotic type strain 16S rRNA sequences using the tree prok-16S-R4 [1], and 68 16S rRNA sequences which probably have been assigned to a type strain in error or where the taxonomic lineage of the type strain is incorrect, are in Table 8.

3.4 Analysis of the MLST clades of Escherichia coli

For the GenBank genomes assigned to *Escherichia coli* the 7-locus ST numbers have been identified using the data from http://enterobase.warwick.ac.uk/species/ecoli/download_data. And the obtained ST numbers have been used as taxonomy extension and assigned to the interior nodes of the phylogenetic tree of GenBank bacterial genomes [1] by the method described in Section 2.3.2.

Some ST numbers are polyphyletic, and some ST numbers are paraphyletic, in other words, their clades contain other ST numbers. The ST numbers with more than 50 genomes are in Table 9.

NCBI assembly	Strain	τ	Taxonomic lineage	Phylogenetic lineage
GCA_900167375.1	ATCC 25662	200	Anaerorhabdus furcosa; Anaerorhabdus; Ba	Erysipelotrichaceae; Clostridia; Terraba
GCA_002934545.1	DSM 3808	198	Bacteroides xylanolyticus; Bacteroides <	Lachnoclostridium; Lachnospiraceae; Clos
GCA_003847445.2	X0209	194	Kroppenstedtia sanguinis; Kroppenstedtia	Gordoniaceae/Gordonia <actinomycete>; Co</actinomycete>
GCA_900169515.1	Marseille-P3369	183	Varibaculum timonense; Varibaculum; Acti	Tissierellaceae; Tissierellia; Clostridi
GCA_006740705.1	NKC3-5	172	Salicibibacter halophilus; Salicibibacte	Bacillaceae; ; Bacillales; Bacilli; Clos
GCA_003051055.1	DSM 5822	166	Agitococcus lubricus; Agitococcus; Carno	Thiotrichales; ; Gammaproteobacteria; Pr
GCA_002362315.1	ATCC 31363	148	Pseudomonas acidophila; Pseudomonas; Pse	Paraburkholderia; Burkholderiaceae; Burk
GCA_002894665.1	CB7	138	Salinivenus iranica; Salinivenus; Salini	Bacteroidetes <phylum>/Rhodothermaceae;</phylum>
GCA_900114705.1	ATCC 43154	126	Rugamonas rubra; Rugamonas; Pseudomonada	Oxalobacteraceae; Burkholderiales; Betap
GCA_900290205.1	Marseille-P4302	126	Anaerolactibacter massiliensis; Anaerola	Erysipelotrichaceae; Clostridia; Terraba
GCA_003254275.1	DSM 6779	103	Cytophaga xylanolytica; Cytophaga; Cytop	Bacteroidia/Bacteroidales; Bacteroidetes
GCA_007970665.1	BR7-21	100	Baekduia soli; Baekduia; Baekduiaceae; R	Solirubrobacterales; Thermoleophilia; Ac
GCA_000483165.1	ATCC 49900	90	Acholeplasma multilocale ATCC 49900; Ach	Mesoplasma; Entomoplasmataceae; Entomopl
GCA_000717315.1	NRRL B-24431	90	Actinospica acidiphila; Actinospica; Act	Streptomycetales/Streptomyces; Actinobac
GCA_002529455.1	TRM 49117	90	Glycomyces fuscus; Glycomyces; Glycomyce	Nocardiopsis; Nocardiopsaceae; Streptosp
GCA_003052455.1	ATCC 31213	90	Sphaerisporangium cinnabarinum; Sphaeris	Promicromonosporaceae/Cellulosimicrobium
GCA_000473895.1	KORDI 51-2	76	Rubidibacter lacunae KORDI 51-2; Rubidib	Synechococcales: Cyanobacteria/Melaina
GCA_000382325.1	DSM 17123	68	Woodsholea maritima DSM 17123; Woodshole	Rhodobacterales/Hyphomonadaceae; Alphapr
GCA_000688235.1	DSM 6293	68	Terasakiella pusilla DSM 6293; Terasakie	Rhodospirillaceae; Rhodospirillales; Alp
GCA_003725335.1	DSM 22242	68	Parvibacter caecicola; Parvibacter; Cori	Eggerthellales/Eggerthellaceae; Coriobac
GCA_900100455.1	930I	68	Roseospirillum parvum; Roseospirillum; R	Rhodospirillaceae; Rhodospirillales; Alp
GCA_003574215.1	TH-1	63	Hydrogenophilus thermoluteolus; Hydrogen	Proteobacteria; Bacteria <pre>cprokaryotes></pre>
GCA_001855385.1	DSM 1989	62	Andreesenia angusta; Andreesenia; Gottsc	Tissierellia; Clostridiales; Clostridia;
GCA_001274725.1	DSM 4	48	Sporosarcina globispora; Sporosarcina; P	Bacillus <bacterium>; Bacillaceae; ; Bac</bacterium>
GCA_900626075.1	Marseille-P8228	48	Clostridium transplantifaecale; Clostrid	Lachnoclostridium; Lachnospiraceae; Clos
GCA_900102225.1	i6	44	Eubacterium pyruvativorans; Eubacterium;	Clostridiales; Clostridia; Terrabacteria
GCA_001443605.1	L21-Spi-D4	42	Salinivirga cyanobacteriivorans; Saliniv	Bacteroidia/Bacteroidales; Bacteroidetes
GCA_000155205.1	ATCC 29176	37	Ruminococcus lactaris ATCC 29176; Rumino	Lachnospiraceae; Clostridiales; Clostrid
GCA_000518685.1	ATCC 35991	37	Eubacterium xylanophilum ATCC 35991; Eub	Lachnospiraceae; Clostridiales; Clostrid
GCA_900167085.1	ATCC 17233	37	Eubacterium ruminantium; Eubacterium; Eu	Lachnospiraceae; Clostridiales; Clostrid
GCA_900167205.1	ATCC 51222	37	Eubacterium coprostanoligenes; Eubacteri	Ruminococcaceae; Clostridiales; Clostrid
GCA_000174415.1	AHT 1	34	Dethiobacter alkaliphilus AHT 1; Dethiob	Clostridia; Terrabacteria group/Firmicut
GCA_000374145.1	DSM 15528	34	Neomegalonema perideroedes DSM 15528; Ne	Alphaproteobacteria; Proteobacteria; Bac
GCA_000384415.1	PS-1	34	Cycloclasticus pugetii PS-1; Cycloclasti	Gammaproteobacteria; Proteobacteria; Bac
GCA_000422285.1	DSM 4660	34	Desulfatiglans anilini DSM 4660; Desulfa	Proteobacteria/Deltaproteobacteria; Bact
GCA_000620305.1	DSM 16504	34	Desulfitibacter alkalitolerans DSM 16504	Clostridiales; Clostridia; Terrabacteria
GCA_002088235.1	22II-S10r2	34	Oceanococcus atlanticus; Oceanococcus; E	Gammaproteobacteria; Proteobacteria; Bac
GCA_00208255.1 GCA_003148465.1	DSM 24906	34	Oceanotoga teriensis; Oceanotoga; Thermo	Thermotogae <phylum>/Thermotogae <</phylum>
GCA_003751635.1	DSM 100275	34	Inmirania thermothiophila; Inmirania; Ec	Gammaproteobacteria; Proteobacteria; Bac
GCA_009602465.1	2-36	34	Cumulibacter manganitolerans; Cumulibact	Actinobacteria <class>; Actinobacteria</class>
GCA_900086705.1	Marseille-P2411	34	Massilibacillus massiliensis; Massilibac	Negativicutes; Terrabacteria group/Firmi
GCA_900101835.1	DSM 20475	34	Peptococcus niger; Peptococcus; Peptococ	Clostridia; Terrabacteria group/Firmicut
GCA_900101855.1 GCA_900129455.1	DSM 25475 DSM 45627	34	Jatrophihabitans endophyticus; Jatrophih	Actinobacteria <class>; Actinobacteria</class>
GCA_004362405.1	DSM 45027 DSM 25082	33	Kinneretia asaccharophila; Kinneretia; C	Burkholderiales; Betaproteobacteria; Pro
GCA_004362975.1	DSM 28287	33	Aminicella lysinilytica; Aminicella; Eub	Clostridiales; Clostridia; Terrabacteria
GCA_004302975.1 GCA_007004765.1	GYP-15	33	Aliikangiella marina; Aliikangiella; Kan	Oceanospirillales; Thiotrichales; ; Gamm
GCA_900167975.1	DSM 25262	33	Ohtaekwangia koreensis; Ohtaekwangia; Cy	Cytophagia/Cytophagales; Bacteroidetes <
GCA_300101313.1	DOM 20202	99	Omackwangia koreensis, Omackwangia, Cy	Cytophagia/Cytophagaies, Dacteroidetes C

Table 7: Bacterial type strain genomes which probably have been assigned to a type strain in error or where the taxonomic lineage of the type strain is incorrect. The data are as of January 2020.

RefSeq	GenBank	τ	Taxonomic lineage	Phylogenetic lineage
accession NR_044819.1	accession X55406	231	Filifactor alocis; Filifactor; Peptostre	Fusobacterium; Fusobacteriaceae; Fusobac
NR_115176.1	AY230768	231	Paenibacillus sanguinis; Paenibacillus;	Lysobacter; Xanthomonadaceae; Xanthomona
NR_104743.1	FR733681	226	Ilyobacter delafieldii; Ilyobacter; Fuso	Clostridium; Clostridiaceae; Clostridial
NR_104899.1	HF558386	226	Bacteroides xylanolyticus; Bacteroides <	Lachnoclostridium; Lachnospiraceae; Clos
NR_104962.1	JX986959	226	Flavobacterium acidificum; Flavobacteriu	Pantoea; Erwiniaceae; Enterobacterales;
NR_104868.1	HE582776	204	Agitococcus lubricus; Agitococcus; Carno	Pseudomonadales/Moraxellaceae; Gammaprot
NR_118671.1	L34614	203	Clostridium combesii; Clostridium; Clost	Acidipropionibacterium; Propionibacteria
NR_104948.1 NR_117112.1	JN175353 FR733683	129 129	Prolinoborus fasciculus; Prolinoborus; N Cytophaga xylanolytica; Cytophaga; Cytop	Acinetobacter; Pseudomonadales/Moraxella Marinilabiliaceae; Marinilabiliales; Bac
NR_041304.1	AB210824	118	Sharpea azabuensis; Sharpea; Lactobacill	Firmicutes/Erysipelotrichaceae; Terrabac
NR_104915.1	HM038005	118	Rugamonas rubra; Rugamonas; Pseudomonada	Oxalobacteraceae; Burkholderiales; Betap
NR_112167.1	AB073978	118	Fucophilus fucoidanolyticus; Fucophilus;	Puniceicoccales/Puniceicoccaceae; Opitut
NR_144718.1	LN713275	118	Beduini massiliensis; Beduini; Clostridi	Firmicutes/Erysipelotrichaceae; Terrabac
NR_104836.1	GU269544	116	Lactobacillus rogosae; Lactobacillus; La	Lachnospiraceae; Clostridiales; Terrabac
NR_147732.1	LC055729	105 100	Filobacterium rodentium; Filobacterium;	Chitinophagia/Chitinophagaceae; Bacteroi
NR_113504.1 NR_041204.1	AB663439 AB184754	95	Halostagnicola alkaliphila; Halostagnico Streptomyces gardneri; Streptomyces; Str	Halosimplex carlsbadense; Halosimplex; H Nocardia; Nocardiaceae; Corynebacteriale
NR_043396.1	D14125	95	Halorubrum trapanicum; Halorubrum; Halor	Natrinema; Natrialbales/Natrialbaceae; H
NR_044137.1	EF178675	95	Actinoalloteichus cyanogriseus; Actinoal	Streptomyces; Streptomycetales/Streptomy
NR_104535.1	EU693576	95	Prauserella marina; Prauserella; Pseudon	Streptomyces griseus group/Streptomyces
NR_115779.1	DQ442518	95	Streptomyces libani; Streptomyces; Strep	Arthrobacter; Micrococcaceae; Micrococca
NR_117484.1	GU269552	95	Pilimelia columellifera subsp. pallida;	Streptomyces; Streptomycetales/Streptomy
NR_042487.1 NR_044657.2	AM183347 M22351	90 88	Rheinheimera perlucida; Rheinheimera; Ch Asteroleplasma anaerobium; Asteroleplasm	Alteromonadales/Alishewanella; Chromatia Terrabacteria group/Clostridia; bacteria
NR_117160.1	FR749963	82	Thermohydrogenium kirishiense; Thermohyd	Thermoanaerobacterium; Thermoanaerobacte
NR_042960.1	AY538169	79	Acholeplasma multilocale; Acholeplasma;	Entomoplasmataceae; Entomoplasmatales/Sp
NR_112013.1	AB006157	79	Parvopolyspora pallida; Parvopolyspora;	Actinomadura; Thermomonosporaceae; Strep
NR_025605.1	AJ578476	68	Woodsholea maritima; Woodsholea; Cauloba	Hyphomonadaceae; Rhodobacterales; Rhizob
NR_041955.1	AJ011919	68	Roseospirillum parvum; Roseospirillum; R	Rhodospirillaceae; Rhodospirillales; Alp
NR_116378.1	EU588727	68	Oceanotoga teriensis; Oceanotoga; Thermo	Petrotogales/Petrotogaceae; Thermotogae
NR_156875.1 NR_118544.1	KF022043.1 KC188660	68 60	Haloactinomyces albus; Haloactinomyces; Keratinibaculum paraultunense; Keratinib	Pseudonocardiales/Pseudonocardiaceae; Ac Tissierellales; Tissierellia; Clostridia
NR_028816.1	AF349724	59	Turicibacter sanguinis; Turicibacter; Er	Terrabacteria group/Clostridia; bacteria
NR_041385.1	AB245479	55	Sulfurivirga caldicuralii; Sulfurivirga;	Chromatiales; Gammaproteobacteria; Oligo
NR_137384.1	KP178167	55	Alkalimarinus sediminis; Alkalimarinus;	Oceanospirillales; Gammaproteobacteria;
NR_042854.1	AY345990	53	Entomoplasma melaleucae; Entomoplasma; E	Entomoplasmatales/Spiroplasma; Tenericut
NR_112008.1	AB004752	53	Serratia liquefaciens; Serratia; Yersini	Klebsiella; Enterobacteriaceae; Enteroba
NR_112014.1 NR_119056.1	AB006170 X74709	53 53	Sphaerimonospora mesophila NBRC 14179 = Moritella marina ATCC 15381; Moritella m	Thermobifida; Nocardiopsaceae; Streptosp Pseudoalteromonas; Pseudoalteromonadacea
NR_104808.1	FR749965	50	Thermohydrogenium kirishiense; Thermohyd	Thermoanaerobacterium; Thermoanaerobacte
NR_117161.1	FR749964	50	Thermohydrogenium kirishiense; Thermohyd	Thermoanaerobacterium; Thermoanaerobacte
NR_024683.1	AB018184	48	Eubacterium multiforme; Eubacterium; Eub	Clostridium; Clostridiaceae; Clostridial
NR_028884.1	AJ132943	48	Microlunatus lacustris; Microlunatus; Pr	Nocardioidaceae/Friedmanniella; Propioni
NR_074975.1	CP000482	48	Pelobacter propionicus; Pelobacter; Desu	Geobacteraceae/Geobacter; Desulfuromonad
NR_115528.1 NR_104905.1	D16278 HM037993	48 46	Bacillus racemilacticus; Bacillus <bacte filiformis;="" n<="" td="" vitreoscilla="" vitreoscilla;=""><td>Sporolactobacillaceae/Sporolactobacillus Burkholderiales; Betaproteobacteria; Gam</td></bacte>	Sporolactobacillaceae/Sporolactobacillus Burkholderiales; Betaproteobacteria; Gam
NR_134756.1	HF947551	46	Limisphaera ngatamarikiensis; Limisphaer	Verrucomicrobia; PVC group; bacteria; pr
NR_029181.1	U16758	45	Mycoplasma feliminutum; Mycoplasma; Myco	Tenericutes/Mollicutes; Terrabacteria gr
NR_113170.1	AB558581	43	Oligosphaera ethanolica; Oligosphaera; O	bacteria; prokaryotes
NR_137400.1	JF304644	43	Chitinispirillum alkaliphilum; Chitinisp	bacteria; prokaryotes
NR_149251.1	LN833202	43	Longimicrobium terrae; Longimicrobium; L	bacteria; prokaryotes
NR_040915.1 NR_111998.1	AB078062 AB004691	42 42	Hugenholtzia roseola; Hugenholtzia; Bern Pantoea agglomerans; Pantoea agglomerans	Microscillaceae; Cytophagia/Cytophagales Enterobacteriaceae; Enterobacterales; Ga
NR_152675.1	LM999900	42	Balneicella halophila; Balneicella; Baln	Marinilabiliales; Bacteroidia; Bacteroid
NR_041036.1	AB175654	40	Azomonas macrocytogenes; Azomonas; Azoto	Pseudomonas; Pseudomonadales/Pseudomonad
NR_024661.1	AB008552	37	Eubacterium ruminantium; Eubacterium; Eu	Lachnospiraceae; Clostridiales; Terrabac
NR_027579.1	L76602	37	Ruminococcus lactaris ATCC 29176; Rumino	Lachnospiraceae; Clostridiales; Terrabac
NR_104737.1	FR733672	37	Eubacterium oxidoreducens; Eubacterium;	Lachnospiraceae; Clostridiales; Terrabac
NR_104931.1	JN175336 AV026916	37 37	Carbophilus carboxidus; Carbophilus; Rhi Lutibacterium anuloederans; Lutibacteriu	Aminobacter; Mesorhizobium; Phyllobacter Erythrobacter; Altererythrobacter; Eryth
NR_115118.1 NR_116306.1	AY026916 EU401907	37	Beijerinckia fluminensis; Beijerinckia;	Rhizobium/Agrobacterium group/Rhizobium;
NR_116747.1	FJ611794	37	Ruminococcus faecis JCM 15917; Ruminococ	Lachnospiraceae; Clostridiales; Terrabac
NR_118670.1	L34421	37	Eubacterium ventriosum; Eubacterium; Eub	Lachnospiraceae; Clostridiales; Terrabac
NR_118674.1	L34623	37	Eubacterium ramulus ATCC 29099; Eubacter	Lachnospiraceae; Clostridiales; Terrabac
NR_118676.1	L34628	37	Eubacterium xylanophilum; Eubacterium; E	Lachnospiraceae; Clostridiales; Terrabac
NR_134741.1	KJ023821	37	Hafnia psychrotolerans; Hafnia; Hafniace	Yersiniaceae; Enterobacterales; Gammapro
NR_135890.1 NR_159172.1	KF982858 LN651200.1	35 35	Aestuariicella hydrocarbonica; Aestuarii Gellertiella hungarica; Gellertiella; Rh	Cellvibrionaceae; Cellvibrionales; Gamma Rhizobium/Agrobacterium group/Rhizobium;
1.10_130112.1		_ 50	Concentration, Concentration, Inc.	

Table 8: Bacterial type strain 16S rRNA sequences which probably have been assigned to a type strain in error or where the taxonomic lineage of the type strain is incorrect. The data are as of June 2019.

ST number	Number of genomes	Number of genomes in main clade	Number of clades	Clades of other ST numbers in the main clade (with numbers of genomes in parentheses, ≥ 10)
ST10	2062	1811	20	ST34(17) ST34(96) ST43(42) ST44(15) ST167(149) ST227(22) ST378(13) ST617(105) ST744(83) ST1060(11) ST1091(13) ST1284(15)
ST11	1594	1594	1	51744(65) 511000(11) 511091(15) 511264(15)
ST12	171	171	1	
ST14	91	91	1	ST1193(71)
ST16	220	211	2	ST1792(13)
ST17	313	313	1	ST1967(37)
ST20	86	46	3	
ST21	785	785	1	ST723(23)
ST23	344	339	4	ST410(233)
ST29	1031	1021	4	ST21(785) ST723(23) ST765(15)
ST32	270	270	1	
ST33 ST34	76 113	76 96	$\begin{array}{c c} 1 \\ 2 \end{array}$	CT997(99) CT979(19)
ST38	253	219	3	ST227(22) ST378(13)
ST40	57	57	1	ST200(17)
ST48	330	325	4	ST4(36) ST1312(25) ST2353(17) ST5276(17)
ST58	97	95	2	()()()()
ST59	50	45	4	
ST69	394	394	1	
ST73	399	399	1	
ST88	157	87	4	ST90(26)
ST93	166	100	4	
ST95	462	438	3	ST421(14)
ST101	267	267	1	ST359(33)
ST117	213	211	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	ST5935(14)
ST127 ST137	118 287	118 287	1	ST22(270)
ST141	57	35	2	ST32(270)
ST154	55	51	2	
ST155	170	79	3	
ST156	126	126	1	ST348(14)
ST162	70	26	6	
ST165	248	244	3	ST100(22) ST189(59) ST301(85)
ST167	155	149	4	
ST173	81	81	1	ST5305(28)
ST189	59	59	$\frac{1}{2}$	
ST206	115 107	114 59	2 2	
ST224 ST245	68	62	2	
ST278	117	98	3	ST328(46)
ST297	63	63	1	51020(10)
ST301	85	85	1	
ST342	88	88	1	
ST349	56	56	1	
ST354	57	57	1	
ST357	58	58	1	
ST398	59	56	2	CTG25(20)
ST399	69	69	1	ST635(29)
ST405 ST410	181 240	164 233	4 3	
ST442	109	105	3	
ST443	122	115	2	
ST448	54	54	1	ST94(15)
ST453	61	61	1	
ST457	76	76	1	
ST517	71	71	1	
ST542	60	49	2	
ST602	73	73	1	(F) 00 4(15)
ST617	105	105	1	ST1284(15)
ST641	180	180	1	ST86(11) ST453(61) ST877(10)
ST648 ST655	136 163	122 153	$\begin{array}{c c} 4 \\ 2 \end{array}$	
ST678	91	91	1	
ST744	85	83	3	
ST746	97	97	1	
ST1193	71	71	1	
ST2332	101	101	1	

Table 9: The Escherichia coli 7-locus MLST numbers with more than 50 genomes.

Acknowledgements

I thank Richa Agarwala, Josh Cherry, Barbara Robbertse, Conrad Schoch, Bill Klimke and David Lipman for the discussions of this project.

Funding

This research was supported by the National Center for Biotechnology Information of the National Library of Medicine (NLM), National Institutes of Health.

Availability of data and materials

The source code for the algorithms described in this paper is written in C++ and bash scripts for UNIX and is available at https://github.com/ncbi/tree-tool.

License: Freely available to the public for use.

The documentation for this code is available at https://github.com/ncbi/tree-tool/wiki.

Authors contributions

Not applicable.

Competing interest

Authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Appendices

A Encoding of taxonomical lineage for maximum parsimony problem

The NCBI taxonomy as of 01/09/2020 is used. There are 30 ranks in the NCBI taxonomy. The *subranks* are taxons between ranks. See Table 10.

Rank name	Rank number	Max. number of subranks
superkingdom	0	5
kingdom	1	5
subkingdom	2	1
superphylum	3	0
phylum	4	3
subphylum	5	6
superclass	6	11
class	7	7
subclass	8	3
infraclass	9	3
cohort	10	8
subcohort	11	1
superorder	12	1
order	13	6
suborder	14	3
infraorder	15	4
parvorder	16	2
superfamily	17	1
family	18	3
subfamily	19	4
tribe	20	1
subtribe	21	1
genus	22	3
subgenus	23	2
species group	24	1
species subgroup	25	1
species	26	4
subspecies	27	2
varietas	28	1
forma	29	0

Table 10: Ranks in the NCBI taxonomy

The greatest number of subranks between two consecutive ranks is 11 for rank "superclass", see Table 11. A taxonomical lineage is encoded as a sequence of lines of the format:

rank_number.subrank_number:tax_name

If some ranks or subranks are missing in the lineage, they are represented in the encoding by borrowing the tax_name from the previous line.

The unknown taxons are recognized by the following keywords in their taxonomic names: unclassified, unassigned, unidentified, candidate phyla, incertae sedis, symbionts, sp. (but not f. sp. which is forma speciales), taxa, taxon, uncultured, bacterium, actinobacterium, proteobacterium.

The unknown taxons are encoded by $tax_name = _OTHER_.$

For example, the lineage of taxid 2315236 is "cellular organisms; Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; unclassified Burkholderiales; Burkholderiales Genera incertae sedis; Aquabacterium; Aquabacterium pictum". The lineage encoding is in Listing 1.

```
00-00:Bacteria prokaryotes>
00-01:Bacteria prokaryotes>
00-02:Bacteria prokaryotes>
00-03:Bacteria prokaryotes>
00-03:Bacteria prokaryotes>
01-04:Bacteria prokaryotes>
01-00:Bacteria prokaryotes>
01-02:Bacteria prokaryotes>
01-02:Bacteria prokaryotes>
01-03:Bacteria prokaryotes>
01-03:Bacteria prokaryotes>
01-05:Bacteria prokaryotes>
01-05:Bacteria prokaryotes>
01-05:Bacteria prokaryotes>
01-06:Bacteria prokaryotes>
01-06:Bacteria prokaryotes>
02-00:Bacteria prokaryotes>
02-00:Bacteria prokaryotes>
03-00:Bacteria prokaryotes>
04-00:Proteobacteria
04-01:Proteobacteria
04-03:Proteobacteria
04-03:Proteobacteria
04-03:Proteobacteria
04-03:Proteobacteria
         04-03:Proteobacteria
05-00:Proteobacteria
    US-00: Proteobacteria
05-01: Proteobacteria
05-02: Proteobacteria
05-03: Proteobacteria
05-04: Proteobacteria
05-05: Proteobacteria
05-06: Proteobacteria
         06-00:Proteobacteria
    06-01: Proteobacteria
06-01: Proteobacteria
06-02: Proteobacteria
06-04: Proteobacteria
06-05: Proteobacteria
06-06: Proteobacteria
         06-07:Proteobacteria
         06-08:Proteobacteria
    06-08: Proteobacteria
06-09: Proteobacteria
06-10: Proteobacteria
06-11: Proteobacteria
07-00: Betaproteobacteria
07-01: Betaproteobacteria
07-02: Betaproteobacteria
07-03: Betaproteobacteria
    07-03: Betaproteobacteria
07-05: Betaproteobacteria
07-05: Betaproteobacteria
07-06: Betaproteobacteria
07-07: Betaproteobacteria
08-00: Betaproteobacteria
08-00: Betaproteobacteria
08-02: Betaproteobacteria
    08-03: Betaproteobacteria
09-00: Betaproteobacteria
09-01: Betaproteobacteria
09-02: Betaproteobacteria
09-03: Betaproteobacteria
10-00: Betaproteobacteria
10-01: Betaproteobacteria
    10-01: Betaproteobacteria
10-02: Betaproteobacteria
10-03: Betaproteobacteria
10-04: Betaproteobacteria
10-05: Betaproteobacteria
10-05: Betaproteobacteria
10-06: Betaproteobacteria
10-08: Betaproteobacteria
10-08: Betaproteobacteria
11-00: Betaproteobacteria
11-01: Betaproteobacteria
  11-01: Betaproteobacteria
12-00: Betaproteobacteria
12-00: Betaproteobacteria
13-00: Gurkholderiales
13-01: OTHER
13-02: OTHER
13-03: OTHER
13-04: OTHER
13-06: OTHER
14-00: OTHER
14-00: OTHER
14-00: OTHER
14-00: OTHER
14-00: OTHER
15-00: OTHER
15-00: OTHER
15-00: OTHER
  15-00:_OTHER_
15-01:_OTHER_
15-02:_OTHER_
15-03:_OTHER_
15-04:_OTHER_
16-00:_OTHER_
16-00:_OTHER_
16-01:_OTHER_
16-01:_OTHER_
17-00:_OTHER_
17-01:_OTHER_
18-01:_OTHER_
18-01:_OTHER_
18-01:_OTHER_
18-01:_OTHER_
18-01:_OTHER_
19-01:_OTHER_
19-00:_OTHER_
19-01:_OTHER_
19-01:_OTHER_
19-01:_OTHER_
19-01:_OTHER_
19-01:_OTHER_
19-02:_OTHER_
19-02:_OTHER_
19-03:_OTHER_
19-03:_OTHER_
19-04:_OTHER_
20-01:_OTHER_
20-01:_OTHER_
20-01:_OTHER_
21-01:_OTHER_
21-01:_Aquabacterium
23-01:_Aquabacterium
23-01:_Aquabacterium
24-01:_Aquabacterium
25-01:_Aquabacterium
25-01:_Aquabacterium
25-01:_Aquabacterium
         25-00: Aquabacterium
    25-00: Aquabacterium
26-00: Aquabacterium pictum
26-01: Aquabacterium pictum
26-02: Aquabacterium pictum
26-03: Aquabacterium pictum
26-04: Aquabacterium pictum
```

13

Listing 1: Encoded lineage for Aquabacterium pictum.

NCBI taxon id	Taxon name	Rank name	Rank number	Subrank number
8287	Sarcopterygii	superclass	6	0
1338369	Dip note trapodo morpha	-	-	1
32523	Tetrapoda	-	-	2
32524	Amniota	-	-	3
8457	Sauropsida	-	-	4
32561	Sauria	-	-	5
1329799	Arche los auria	-	-	6
8492	Archosauria	-	-	7
436486	Dinosauria	-	-	8
436489	Saurischia	-	-	9
436491	The ropoda	-	-	10
436492	Coeluros auria	-	-	11
8782	Aves (birds)	class	7	0

Table 11: Example of a taxonomic lineage with subranks: birds.

References

- [1] Brover S., Building Large Phylogenetic Trees in Log-Linear Time. In print.
- [2] Federhen S. The NCBI Taxonomy database. Nucleic Acids Res. 2012 Jan;40(Database issue):D136-43. doi: 10.1093/nar/gkr1178. Epub 2011 Dec 1. PMID: 22139910; PMCID: PMC3245000.
- [3] Joseph Felsenstein. Inferring Phylogenies. Sunderland, MA: Sinauer Associates, 2003.
- [4] Parks, D., Chuvochina, M., Waite, D. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36, 996-1004 (2018) doi:10.1038/nbt.4229
- [5] Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015 Jul;25(7):1043-55. doi: 10.1101/gr.186072.114. Epub 2015 May 14. PMID: 25977477; PMCID: PMC4484387.
- [6] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41 (D1): D590-D596.
- [7] Shen XX et al., Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell. 2018 Nov 29;175(6):1533-1545.e20. doi: 10.1016/j.cell.2018.10.023. Epub 2018 Nov 8.
- [8] Zhu, Q., Mai, U., Pfeiffer, W. et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun 10, 5477 (2019). https://doi.org/10.1038/s41467-019-13443-4