Futher Application

luojunxun

2023年3月30日

(Principle of Analytic Continuation): every polynomial of order n have n roots in C

Theorem 4.8: f is defined on a region Ω , if there is a sequence named $\{x_n\} \subset \Omega$: $x_n \to x \in \Omega$ and $f(x_n) = 0$ for all n; then $f \equiv 0$

Corollary 4.9:then if we need to judge function f=g in Ω , just to find a sequence $\{x_n\} \subset \Omega$: $x_n \to x \in \Omega$ s.t. $f(x_n) = g(x_n)$ for all n

Theorem Morera's theorem: Supposed f is a continuous function in the open disc D s.t. for any triangle T containded in D: $\int_T f(z)dz = 0$ then f is Hol on D

Application

Sequences of holomorphic functions

Theorem 5.2: if $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions that converges uniformly to a function f in every compact set of Ω then f is holomorphic in Ω

Corollary 5.3: then the sequence of dirivatives $\{f'_n\}$ converges uniformly to f on every compact set of Ω

Holomorphic functions defined in terms of integrals

Theorem 5.4: F(z,s) defined in $\Omega \times [0,1], \Omega$ is an open set ,if:1.F(z,s) is hol in z for each s.

2. F is continuous on $\Omega \times [0,1]$: then $f(z) = \int_{0}^{1} F(z,s) ds$ is holomorphic

Schwarz reflection principle

Theorem Symmetry principle: if f^+ and f^- are hol on Ω^+ and Ω^- respectively, and $f^+(x)=0$

$$f^-(x), \forall x \in I = \Omega^+ \cap \Omega^- \text{ , then: } F = \begin{cases} f^+ & x \in \Omega^+ \\ f^+ = f^- & x \in I \text{ } is \text{ hol on } \Omega \\ f^- & x \in \Omega^- \end{cases}$$

Theorem Schwarz reflection principle: f hol on Ω^+ and extends continuously to I and s.t.

f(x) is a real function while $x \in I$, then there exists a function F s.t. F hol on Ω

$$\textit{Proof:}[\operatorname{Srp}] \\ \text{define } F(z) = \overline{f(\overline{z})} \; while \; z \in \Omega^-$$

Runge's approximation Theorem