Landau Theory

Lecture 4 — Part 2

Landau Theory

Lecture 4 part II

Feedback on the quiz

Questions: Any question about the homework?

Plan: Part I — Mean-Field Approximation

Quiz 2 next week: Wednesday afternoon?

Part II — Landau Theory

Tutorial: more on Mean-Field approximation

During this lecture, we will use the mean-field approximation to solve various problem. we will come back on the approximation in more details in the tutorial.

Expectations: Participate in the discussions, take notes, try to do the analytical derivations

References: Book "Complexity and Criticality", K. Christensen, N. Moloney, Chapter 1 and 2

Finding the exponents (cf. exercises)

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2

Exposant	Champ moyen		
α	discont.		
$\boldsymbol{\beta}$	0.5		
γ	1		
δ	3		

- $m_0 \sim (T_c T)^{\beta}$ $(T < T_c)$ for H=0 ?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{-\infty}$

$$\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H} \right)_T$$

- Start from Eq. (1) with H non 0
- Apply derivative on both sides of Eq.(1), then take the limit H=0
- Expand for small *m*
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

- Start from Eq. (2) with H=0
- Replace m by its expression m(T) for H=0. Treat T>Tc and T<Tc separately
- Derive twice by T
 - Expand for small *m*

- magnetization $m \sim H^{1/\delta}$ at T=Tc and H small?
 - Start from Eq. (1) with T=Tc
 - Expand for small *m* (as *m* is small, for T=Tc and H small)

Finding the exponents (cf. exercises)

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Exposant Champ moyen
$$\alpha$$
 discont. β 0.5 γ 1

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{T}$
 - Start from Eq. (1) with H non 0
 - Apply derivative on both sides of Eq.(1), then take the limit H=0
 - Expand for small m
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

- Start from Eq. (2) with H=0
- Replace m by its expression m(T) for H=0. Treat T>Tc and T<Tc separately
- Derive twice by T — Expand for small m

- magnetization $m \sim H^{1/\delta}$ at T=Tc and H small?
 - Start from Eq. (1) with T=Tc
 - Expand for small m (as *m* is small, for T=Tc and H small)

Close to T_C , m is very small!

Finding the exponents (cf. exercises)

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$

Champ moyen Exposant discont. 0.5

- $m_0 \sim (T_c T)^{\beta}$ $(T < T_c)$ for H=0 ?

m is solution of: $\frac{\partial f}{\partial m} = 0$

$$\frac{\partial f}{\partial m} = 0$$

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T-T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_T$

$$\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H} \right)_T$$

- Start from Eq. (1) with H non 0
- Apply derivative on both sides of Eq.(1), then take the limit H=0
- Expand for small m
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

- - Start from Eq. (2) with H=0
- Replace m by its expression m(T) for H=0. Treat T>Tc and T<Tc separately
- Derive twice by T — Expand for small m

- magnetization $m \sim H^{1/\delta}$ at T=Tc and H small?
 - Start from Eq. (1) with T=Tc
 - Expand for small m (as *m* is small, for T=Tc and H small)

Close to T_C , m is very small!

Everything can be obtained from knowing f(m; T,H)

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Behavior at $(T,H) \rightarrow (T_c,0)$?

Useful expansions:
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$ $\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$

Expansion at 4-th order in *m*:

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Behavior at $(T,H) \rightarrow (T_c,0)$?

Useful expansions:
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$ $\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

$$\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$

Expansion at 4-th order in *m*:

$$f = f_0 - Hm + \frac{k_B}{2}(T - T_c)m^2 + \frac{k_BT}{12}m^4 + o(m^4)$$

where $f_0 = -k_B T \log(2)$

pure entropy-part of the free energy

remaining term when T —> + infinity

Rem: we neglected terms in $H^2, Hm^3, H^2m^2, H^3m, H^4$ which are all $o(m^4)$ as $H \sim m^3$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Behavior at $(T,H) \rightarrow (T_c,0)$?

Useful expansions:
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$ $\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

$$\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$

Expansion at 4-th order in *m*:

$$f = f_0 - Hm + \frac{k_B}{2}(T - T_c)m^2 + \frac{k_BT}{12}m^4 + o(m^4)$$

Behavior of the function *f* for $m \rightarrow +/-$ infinity

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Behavior at $(T, H) \rightarrow (T_c, 0)$?

Useful expansions:
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$ $\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

$$\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$

Expansion at 4-th order in *m*:

$$f = f_0 - Hm + \frac{k_B}{2}(T - T_c)m^2 + \frac{k_BT}{12}m^4 + o(m^4)$$

Behavior of the function fnear m = 0(T - Tc) > 0 (T - Tc) < 0

Behavior of the function *f* for $m \rightarrow +/-$ infinity

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Behavior at $(T, H) \rightarrow (T_c, 0)$?

Useful expansions:
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

$$\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$

Expansion at 4-th order in *m*:

$$f = f_0 - Hm + \frac{k_B}{2}(T - T_c)m^2 + \frac{k_BT}{12}m^4 + o(m^4)$$

Behavior of the function *f*

Behavior of the function *f* for $m \rightarrow +/-$ infinity

At 4-th order, there is still the transition:

If we had cut at order 2, there will be no transition + issues, as for T<Tc, f would be going to -infinity

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Behavior at $(T,H) \rightarrow (T_c,0)$?

Useful expansions:
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^4}{4} + o(x^4)$$
 $\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$ $\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

$$\log[\cosh(x)] = \frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$

Expansion at 4-th order in *m*:

$$f = f_0 - Hm + \frac{k_B}{2}(T - T_c)m^2 + \frac{k_BT}{12}m^4 + o(m^4)$$

Behavior of the function *f* near m = 0

Behavior of the function *f* for $m \rightarrow +/-$ infinity

Landau approximation of the Ising model:

corresponds to a 4-th order expansion of the free energy per spin in the order parameter.

Expansion, but:

preserves all the information required to extract the critical exponents that determine the behavior of the mean-field Ising model close to the critical point (T, H) = (Tc, 0)

Expansion at 4-th order in *m***:** for $(T, H) \rightarrow (T_c, 0)$

$$f = f_0 - Hm + a_2(T - T_c)m^2 + a_4m^4 + o(m^4)$$

positive if T > Tc positive

negative if T < Tc

f is bounded from under: there is a minimum

Play with the little app.

$$f_0 = -k_B T \log(2)$$
 $a_2 = \frac{k_B}{2}$ $a_4 = \frac{k_B T}{12} > 0$

Critical exponents??

Expansion at 4-th order in m: for $(T, H) \rightarrow (T_c, 0)$

$$f = f_0 - Hm + a_2(T - T_c)m^2 + a_4m^4 + o(m^4)$$

$$f_0 = -k_B T \log(2)$$
 $a_2 = \frac{k_B}{2}$ $a_4 = \frac{k_B T}{12}$

Self-consistency relation: m is solution of: $\frac{\partial f}{\partial m} = 0$

$$-H + 2a_2(T - T_c)m + 4a_4m^3 = 0$$

Check that we recover the exponents:

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

$$m_0^2 = -\frac{a_2}{2a_4}(T - T_c)$$
 $\beta = 1/2$

Critical exponents??

Expansion at 4-th order in m: for $(T, H) \rightarrow (T_c, 0)$

$$f = f_0 - Hm + a_2(T - T_c)m^2 + a_4m^4 + o(m^4)$$

$$f_0 = -k_B T \log(2)$$
 $a_2 = \frac{k_B}{2}$ $a_4 = \frac{k_B T}{12}$

$$-H + 2 a_2 (T - T_c) m + 4 a_4 m^3 = 0$$

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

$$m_0^2 = -\frac{a_2}{2a_4}(T - T_c) \qquad \beta = 1/2$$

• Susceptibility per spin:
$$\chi \sim |T-T_c|^{-\gamma}$$
 ?

$$\chi = \begin{cases} \frac{1}{k_B} (T - T_c)^{-1} & \text{for } T \to T_c^+ \\ \frac{1}{2k_B} (T_c - T)^{-1} & \text{for } T \to T_c^- \end{cases}$$

Self-consistency relation:
$$m$$
 is solution of: $\frac{\partial f}{\partial m}=0$
$$-H+2\,a_2(T-T_c)\,m+4\,a_4\,m^3=0$$

$$\left(\frac{\partial [\cdot]}{\partial H}\right)_T$$
 Check that we recover the exponents:
$$m_0\sim (T_c-T)^\beta \quad (T
$$m_0^2=-\frac{a_2}{2\,a_4}(T-T_c) \qquad \beta=1/2 \qquad \lim_{H\to 0} \frac{\lim_{H\to 0}}{\lim_{H\to 0} (T-T_c)} \qquad \chi=\lim_{H\to 0} \left(\frac{\partial m}{\partial H}\right)_T \qquad -1+2\,a_2(T-T_c)\,\chi+12\,a_4\,m_0^2\,\chi=0$$

$$\chi=\begin{cases} \frac{1}{k_B}(T-T_c)^{-1} & \text{for } T\to T_c^+\\ \frac{1}{2k_B}(T_c-T)^{-1} & \text{for } T\to T_c^- \end{cases}$$
 for $T\to T_c^-$$$

Etc. We obtain the same results, as exponents were previously already obtained by taking the expansion in *m*

Description of continuous phase transition (Lev Landau 1937)

[Landau, Lifshitz, Pitaevskij. Statistical physics]

Since the order parameter grows continuously from zero at the critical temperature,

Landau suggested that, if the free energy is analytic (as a function of the order parameter) near the critical point,

then the free energy can be expanded as a Taylor series in terms of the order parameter which is small near the PT this expansion would tell us about the behavior near the transition.

$$f(T,H;\eta) = \sum_{k=0}^{\infty} a_k(T,H) \, \eta^k \qquad \text{for } T \to T_c, H \to H_c$$
 control parameters order parameter

Use symmetry arguments to constrains the $a_k(T, H)$

Ex. in the Ising model,
$$at H=0$$
: $f(T,0;-m) = f(T,0;m)$ f is even —>>> $a_k(T,0) = 0$ for k odd

Close to the PT: *m* is small —>> high-order terms are negligible

$$f(T,0;m)=a_0(T,0)+a_2(T,0)\,m^2\,+a_4(T,0)\,m^4$$
 Simplest expansion that would still have a PT

f(T,0;m)

Description of continuous phase transition (Lev Landau 1937)

$$f(T,0;m) = a_0(T,0) + a_2(T,0) m^2 + a_4(T,0) m^4$$

Simplest expansion that would still have a PT

$$a_4(T,0) > 0$$
 Expansion must **stop at even terms** with **positive coefficient** so that $f(T, 0; m)$ has a minimum

$$a_2(T,0) > 0$$
 for $T > T_c$ —>> at $T > Tc$ there is only one minimum, at $m=0$

$$->> a_2(T,0) = 0$$
 at $T = T_c$ $a_2(T,0) = \tilde{a}_2(T-T_c)$ with $\tilde{a}_2 > 0$

For T > Tc, the only terms that remains is

$$a_0(T,0) = f_0(T)$$

Entropic part of the free energy

m

Description of continuous phase transition (Lev Landau 1937):

When
$$H=0$$
: $f(T,0;m) = f_0(T) + \tilde{a}_2(T-T_c) m^2 + a_4(T,0) m^4$

With an external field H: $f(T,0;m)=f_0(T)-Hm+\tilde{a}_2(T-T_c)\,m^2\,+a_4(T,0)\,m^4$

Description of continuous phase transition (Lev Landau 1937):

When
$$H=0$$
: $f(T,0;m) = f_0(T) + \tilde{a}_2(T-T_c) m^2 + a_4(T,0) m^4$

With an external field
$$H$$
: $f(T,0;m)=f_0(T)-Hm+ ilde{a}_2(T-T_c)\,m^2\,+a_4(T,0)\,m^4$

This is the same expansion as the one we obtained previously from Expansion of the Mean-field Ising:

$$f = f_0 - Hm + \underline{a_2(T - T_c)m^2 + \underline{a_4m^4 + o(m^4)}}$$
positive if T > Tc
positive if T < Tc

$$f_0 = -k_B T \log(2)$$

We can recover all the critical exponents

Description of continuous phase transition (Lev Landau 1937):

With an external field
$$H$$
: $f(T,0;m)=f_0(T)-Hm+\tilde{a}_2(T-T_c)\,m^2\,+a_4(T,0)\,m^4$

$$\eta_0^2 = -rac{a}{b} = -rac{a_0}{b_0}(T-T_c)$$
 $\eta_0(T)$ $\eta_0(T)$ $\eta_0(T)$ $\eta_0(T)$ $\eta_0(T)$ $\eta_0(T)$ $\eta_0(T)$ $\eta_0(T)$

$$F-F_0 = egin{cases} -rac{a_0^2}{2b_0}(T-T_c)^2, & T < T_c \ 0, & T > T_c \end{cases}$$

$$c_p = -Trac{\partial^2 F}{\partial T^2} = \left\{ egin{array}{l} rac{a_0^2}{b_0} T, & T < T_c \ 0, & T > T_c \end{array}
ight.$$

$$\chi(T,h o 0) = \left\{ egin{array}{ll} rac{1}{2a_0(T-T_c)}, & T > T_c \ rac{1}{-4a_0(T-T_c)}, & T < T_c \end{array}
ight. \propto \left| T - T_c
ight|^{-\gamma}
ight.$$

Validity of the theory: Ginzburg criterion

The mean-field approximation assumes fluctuations of the energy can be neglected

$$E(\vec{s}) = E_0(\vec{s}) + \Delta E(\vec{s}) \qquad \text{where} \qquad \Delta E(\vec{s}) = -\frac{Jq}{2} \sum_{i=1}^{N} (s_i - \langle s_i \rangle)(s_j - \langle s_j \rangle)$$
$$|\langle \Delta E(\vec{s}) \rangle| = \frac{Jq}{2} \sum_{i=1}^{N} g(s_i, s_j) = \frac{Jq}{2} k_B T \chi$$

- —>>>> Fluctuations are negligible if: $|\langle \Delta E(\vec{s}) \rangle| \ll |\langle E_0(\vec{s}) \rangle|$
 - —>> Ginzburg criterion: $\sqrt{\langle M^2 \rangle \langle M \rangle^2}| \ll \langle M \rangle$
 - ->> In the case of the mean-field Ising: Gives d>4

Exponent agreement between mean-field and d > 4 is a result of the "unimportance" of fluctuations in higher dimensions.

Universality

Critical Temperatures are Non-Universal:

Lattice	2	k_BT_c/J
d = 1 line	2	0
d = 1 his $d = 2$ hexagonal	3	$2/\ln(2+\sqrt{3})^a$
square	4	$2/\ln(1+\sqrt{2})^{\rm b}\approx 2.269185$
triangular	6	4/ In 3ª
d = 3 diamond	4	2.70°
simple cubic	6	4.51152 ^d
body-centred cubic	8	6.40 ^e
face-centred cubic	12	9.79e
Mean-field	2	z

Critical Exponents are Universal:

$$C \sim |T - T_c|^{-\alpha}$$
 $\qquad \qquad \chi \sim |T - T_c|^{-\gamma}$ $m_0 \sim (T_c - T)^{\beta}$ $\qquad (T < T_c)$ $\qquad m \sim H^{1/\delta}$ $\qquad (T = T_c)$

Exponents	d = 2	d = 3	<i>d</i> >= 4	Mean-field
α	$\ln T-T_c $	0.01 ± 0.01	0	0 (discont.)
\boldsymbol{eta}	0.125	0.312 ± 0.003	0.5	0.5
γ	1.75	1.250 ± 0.002	1	1
δ	15 (*)	5.0 ± 0.05	3	3

Upper critical dimension = 4

Critical exponents for $d \ge 4$ remains unchanged

Exponents of Mean-field Ising are the same than for d >= 4

Summary

Mean-field approximation: the theory assume that we neglect the fluctuations

Landau's theory: — is a Mean-field theory

- gives a **good qualitative description** of the phase transitions
- quantitatively it was inconsistent with experiments

Mean-field approximation: fluctuations of the order parameters are neglected \longrightarrow not a good idea when close to critical point! Valid above a critical dimension dc = 4 ("unimportance" of fluctuations in higher dimensions)

Below dc, fluctuations can't be neglected: statistical field theory —>> Ginzburg-Landau theory Ginzburg-Landau ϕ^4 model

Liquid to Solid water:

$$f - f_0 = a(T - T_c)\rho^2 + c\rho^3 + \frac{1}{2}b\rho^4$$

All coefficients are **positive**

Other example: symmetric function

$$f(T) = f_0(T) + \alpha_0(T - T_c)m^2 + \frac{1}{2}\beta m^4 + \frac{1}{3}\gamma m^6$$

$$\alpha_0 > 0$$
 $\beta < 0$ $\gamma > 0$

(b)

