Carefully P	RINT your full name:		
Math 51	Di	fferential Equations Exam 2 (100 points)	April 11, 2022 noon–1:20 p.m.
There are s	even problems on the ϵ	exam.	
•	· · · · · · · · · · · · · · · · · · ·	s or notes during the exam and put away for the dur	n. All electronic devices (includation of the exam.
and upload You should	it to Gradescope for i	marking (you do not need to top of each page, as ind	t. We will scan your submission to take images of your exam). icated (especially if you remove
space if pos If you need	ssible. There is a blank	page at the back of your	to fit this work in the available exam for use as scratch paper. In the indicated space that your
* * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * *	: * * * * * * *
_	the pledge below. With assistance on this exa		dge that you have neither given
Signature			

- 1. (14 points) True-False and Multiple Choice.
 - (a) (2 pts.) True or False (circle your choice). Any set of vectors that includes the zero vector **0** is linearly dependent.
 - (b) (2 pts.) True or False (circle your choice). If $\vec{\mathbf{p}}_1$ and $\vec{\mathbf{p}}_2$ are solutions of the nonhomogeneous system $D\vec{\mathbf{x}} = A\vec{\mathbf{x}} + \vec{\mathbf{E}}(t)$, then $\vec{\mathbf{p}}_1 \vec{\mathbf{p}}_2$ is a solution of the related homogeneous system $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$.
 - (c) (2 pts.) True or False (circle your choice). Assume that all the functions in this question are differentiable. Let $\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n$ be solutions of the nonhomogeneous linear system $D\vec{\mathbf{x}} = A\vec{\mathbf{x}} + \vec{\mathbf{E}}(t)$ on an interval I and let t_0 be a point in I. Then $\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n$ generate the general solution of the given system if and only if the Wronskian $W[\vec{\mathbf{x}}_1, \dots, \vec{\mathbf{x}}_n](t_0) \neq 0$.
 - (d) (2 pts.) True or False (circle your choice). Two vectors $\vec{\mathbf{v}}_1$ and $\vec{\mathbf{v}}_2$ are linearly dependent if and only if one of them is a constant multiple of the other.
 - (e) (2 pts.) True or False (circle your choice). Three vectors $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$ and $\vec{\mathbf{v}}_3$ are linearly dependent if and only if some vector is a constant multiple of another vector.
 - (f) (2 pts.) Which of the following formulas for $\vec{\mathbf{x}}$ gives the general solution to the linear homogeneous ode $(D^2+1)^3\vec{\mathbf{x}}=\vec{\mathbf{0}}$? Circle your choice.
 - A. $c_1 \cos t + c_2 \sin t$
 - B. $c_1 t^2 \cos t + c_2 t^2 \sin t$
 - C. $c_1 t^2 \cos t + c_2 t^2 \sin t + c_3 t \cos t + c_4 t \sin t + c_5 \cos t + c_6 \sin t$
 - D. None of the above.

Your full name:	

(g) (2 pts.) For which of the following expressions for E(t) does the method of undetermined coefficients **not** apply when solving the linear nonhomogeneous ode Lx = E(t)? Circle your choice.

$$3t^4$$
, $\sin t$, $2t^3e^{-4t}\cos 5t$, $\ln t$.

- A. Only $3t^4$.
- B. Only $\sin t$.
- C. Only $2t^3e^{-4t}\cos 5t$.
- D. Only $\ln t$.
- E. The method of undetermined coefficients does not apply for at least two of the four functions.
- F. The method of undetermined coefficients applies for all four functions.
- 2. (16 points) Short-Answer Questions.
 - (a) (3 pts.) The matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right]$$

has eigenvalue 1 with multiplicity 3. Find three linearly independent generalized eigenvectors. No explanation is required. (*Hint*: Approached correctly, this problem does not require any computation.)

(b) (5 pts.) Write down an annihilator of smallest possible order with real coefficients for the function $3e^t + 2te^{-t} + \sin t$. No work or explanation is required.

(c) (3 pts.) Suppose

where it is given that the determinant of the coefficient matrix is nonzero. Write down the formula for u_3 in terms of determinants. Do not evaluate the determinants.

(d) (5 points) Given that $\vec{\mathbf{h}}_1(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$ and $\vec{\mathbf{h}}_2(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix}$ are solutions of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$, where $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, determine whether or not the general solution is $\vec{\mathbf{x}}(t) = c_1\vec{\mathbf{h}}_1(t) + c_2\vec{\mathbf{h}}_2(t)$. Show your work.

Your full name:	

- 3. (12 points)
 - (a) Convert the differential equation

$$x''' - e^t x'' - 4tx + x = e^{2t}$$

into a linear system of three equations in three unknowns x_1, x_2, x_3 .

(b) Write the linear system in the form $D\vec{\mathbf{x}} = A(t)\vec{\mathbf{x}} + \vec{\mathbf{E}}(t)$ for some matrix A(t) and vector $\vec{\mathbf{E}}(t)$.

4. (10 points) Suppose 3+2i, 3-2i are eigenvalues of the 2×2 matrix A with corresponding eigenvectors $\begin{bmatrix} i\\1 \end{bmatrix}, \begin{bmatrix} -i\\1 \end{bmatrix}$, respectively. Write down two linearly independent real solutions of $D\vec{\mathbf{x}}=A\vec{\mathbf{x}}$. Show your work and simplify your answers.

Your full name:	

5. (15 points) Find the general solution of $4x'' - 4x' + x = \frac{8}{t^2}e^{t/2}$ for t > 0, given that two solutions to the associated homogeneous equation are $\vec{\mathbf{h}}_1 = e^{t/2}$, $\vec{\mathbf{h}}_2 = te^{t/2}$.

6. (13 points) The matrix A below has an eigenvalue λ and a generalized eigenvector $\vec{\mathbf{v}}$ as follows:

$$A = \left[egin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}
ight], \qquad \lambda = 1, \qquad \vec{\mathbf{v}} = \left[egin{array}{c} 1 \\ 0 \end{array}
ight].$$

Find the general solution of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$.

Your full name:	

7. (10 points) Make a simplified guess for a particular solution of the differential equation

$$(D+2)^3(D^2+1)^2 \vec{\mathbf{x}} = te^{-2t} + \sin t.$$

Do not solve for the coefficients.