Taller 2 — Extensiones del Job Shop Scheduling Problem en MiniZinc

Mantenimiento programado y Tardanza ponderada

John Freddy Belalcázar Samuel Galindo Cuevas Nicolás Herrera Marulanda

26 de octubre de 2025

Índice

Ι.	Jobs	shop Mantenimiento	1
	1.1.	Modelo	2
	1.2.	Implementación	3
	1.3.	Pruebas	4
	1.4.	Análisis y conclusiones	8
2.	Jobs	shop Mantenimiento	10
	2.1.	Modelo	10
	2.2.	Implementación	10
	2.3.	Pruebas	10
	2.4.	Árboles de búsqueda	10
		Análisis y conclusiones	

Repositorio del proyecto

Código fuente, instancias, scripts y PDF están disponibles en: https://github.com/Herreran903/taller-2-restricciones

1. Jobshop Mantenimiento

Planificación en un taller con trabajos, cada uno como una secuencia de operaciones que deben ejecutarse en máquinas específicas; cada máquina procesa a lo sumo una operación a la vez y las operaciones de un mismo trabajo respetan su orden. Se entregan intervalos de mantenimiento por máquina durante los cuales no están disponibles, y el objetivo es calendarizar todas las operaciones evitando solapes en la misma máquina y cumpliendo precedencias y ventanas de mantenimiento, de modo que se minimice el makespan.

1.1. Modelo

Parámetros

P1 — JOBS: Cantidad de trabajos.

P2 — TASKS: Cantidad de máquinas.

 ${f P3}$ — PROC_TIME: Matriz de duraciones $p_{i,m}$ de tamaño JOBS imes TASKS: PROC_TIME $[i,m]=p_{i,m}$.

P4 — MAX_MAINT_WINDOWS: Tope global de ventanas de mantenimiento por máquina.

P5 — MAINT_START, MAINT_END: Inicios $a_{m,k}$ y fines $b_{m,k}$ de cada ventana k en máquina m.

P6 — MAINT_ACTIVE: Indicadores booleanos MAINT_ACTIVE[m, k] que activan la ventana $[a_{m,k}, b_{m,k})$.

Constantes derivadas

D1 — H: Horizonte superior seguro, derivado como

$$H \; = \; \sum_{i=1}^{\texttt{JOBS}} \sum_{m=1}^{\texttt{TASKS}} p_{i,m} \; + \; \sum_{m=1}^{\texttt{TASKS}} \sum_{k=1}^{\texttt{MAINT_WINDOWS}} \left(b_{m,k} - a_{m,k}\right) \mathbf{1}[\texttt{MAINT_ACTIVE}[m,k]] \, .$$

D2 — J: Conjunto de trabajos, $J = \{1, \dots, JOBS\}$.

D3 — M: Conjunto de máquinas, $M = \{1, ..., TASKS\}$.

Variables

V1 — $s_{i,m}$: Inicio de la operación del trabajo i en la máquina m, con $s_{i,m} \in [0, H]$.

V2 — END: Makespan del programa, END $\in [0, H]$.

Restricciones principales

R1 — Precedencias dentro del trabajo: Las operaciones de cada trabajo siguen su orden dado.

$$\forall i \in J, \ \forall m \in \{1, \dots, |M|-1\}: \quad s_{i,m} + p_{i,m} \ \leq \ s_{i,m+1}, \qquad s_{i,|M|} + p_{i,|M|} \ \leq \ \mathtt{END}.$$

R2 — No solape por máquina: En cada máquina, las operaciones se procesan de a una (restricción disyuntiva).

$$\forall m \in M, \ \forall i, k \in J, \ i < k : \ (s_{i,m} + p_{i,m} \le s_{k,m}) \ \lor \ (s_{k,m} + p_{k,m} \le s_{i,m}).$$

R3 — Bloqueos por mantenimiento: Ninguna operación se ejecuta durante una ventana activa de mantenimiento.

$$\forall m \in M, \ \forall k \in \{1, \dots, \texttt{MAX_MAINT_WINDOWS}\} \ \text{con MAINT_ACTIVE}[m, k] = \texttt{true}, \ \forall i \in J: \\ (s_{i,m} + p_{i,m} \le a_{m,k}) \ \lor \ (b_{m,k} \le s_{i,m}) \ ,$$

donde $a_{m,k} = \mathtt{MAINT_START}[m,k]$ y $b_{m,k} = \mathtt{MAINT_END}[m,k]$, con $0 \le a_{m,k} < b_{m,k} \le H$.

Restricciones redundantes

R4 — Cota por trabajo: El *makespan* no puede ser menor que la suma de duraciones de cada trabajo.

$$\forall i \in J: \quad \mathtt{END} \ \geq \ \sum_{m \in M} p_{i,m}.$$

R5 — Carga por máquina: El makespan acota inferiormente la carga total de cada máquina.

$$\forall m \in M : \quad \mathtt{END} \ \geq \ \sum_{i \in J} p_{i,m}.$$

R6 — Cota por horizonte: Las fechas de inicio y el makespan se restringen al horizonte H.

$$\forall i \in J, \ \forall m \in M: \ 0 \le s_{i,m} \le H, \qquad 0 \le \text{END} \le H.$$

Restricciones de simetría

R7 — **Trabajos idénticos:** Para evitar permutaciones equivalentes, si $p_{i,*} = p_{k,*}$ y i < k se impone orden léxico en los inicios:

$$(s_{i,1},\ldots,s_{i,|M|}) \leq_{\text{lex}} (s_{k,1},\ldots,s_{k,|M|}).$$

1.2. Implementación

Modelo

El modelo captura de forma correcta la estructura del problema mediante los parámetros definidos en la sección anterior y las restricciones principales R1-R3. Las variables $s_{i,m}$ y END permiten representar explícitamente el instante de inicio y finalización de cada operación, de modo que cualquier configuración factible de estas variables corresponde a un cronograma real. La restricción R1 asegura la correcta secuencia de operaciones dentro de cada trabajo, preservando el orden tecnológico sin permitir solapamientos entre tareas consecutivas del mismo job. La restricción R2 implementa la capacidad unitaria de cada máquina, garantizando que solo una operación se ejecute a la vez en ella; esto se logra mediante la disyunción de no solape, lo que define implícitamente un orden válido entre operaciones que comparten recurso. Finalmente, R3 extiende el modelo clásico incorporando las ventanas de mantenimiento: los intervalos definidos por MAINT_START, MAINT_END y activados por MAINT_ACTIVE se tratan como periodos de no disponibilidad de la máquina, impidiendo que cualquier operación se solape con ellos.

Restricciones redundantes

Las restricciones R4–R6 son **lógicamente implicadas** por las restricciones principales del modelo, es decir, no añaden información nueva sobre el conjunto de soluciones factibles. Su propósito es **reforzar la propagación** de cotas durante la búsqueda, ayudando al solver a podar ramas del árbol de exploración más temprano. R4 (cota por trabajo) obliga a END a ser al menos la suma de duraciones de cada trabajo individual, descartando de inmediato valores imposibles del objetivo. R5 (carga por máquina) exige que END no sea menor que la carga total de trabajo acumulada en cada máquina. R6 acota todas las variables al horizonte seguro H; en la implementación esta cota se aplica de forma implícita mediante los dominios [0, H] definidos para las variables $s_{i,m}$ y END.

Restricciones de simetría

Cuando existen trabajos con la misma secuencia de duraciones (PROC_TIME[i,*] = PROC_TIME[k,*]), el problema admite soluciones equivalentes donde solo se intercambian las etiquetas de estos trabajos idénticos. La restricción R7 rompe esta simetría imponiendo un orden léxico sobre los vectores de tiempos de inicio $(s_{i,1},\ldots,s_{i,|M|})$ para cada par de trabajos idénticos i < k. De este modo, se conserva un único representante canónico por cada clase de permutación equivalente. Dado que los trabajos idénticos son intercambiables sin afectar la optimalidad del makespan, esta restricción elimina soluciones estructuralmente idénticas sin perder la solución óptima, por lo que no es necesario un proceso posterior para recuperar soluciones.

1.3. Pruebas

 ${\bf Tabla\ 1:}\ {\bf Resultados}\ {\bf de}\ {\bf pruebas}\ {\bf con}\ {\bf restricciones}\ {\bf redundantes}.$

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
$test_01$	gecode	$first_fail$	$indomain_min$	7.862	68	20	13
$test_02$	gecode	first_fail	indomain_min	508.427	264886	132435	28
$test_03$	gecode	first_fail	$indomain_min$	73.898	38172	19054	25
$test_04$	gecode	first_fail	$indomain_min$	21869.202	12299388	6149673	39
$test_05$	gecode	first_fail	$indomain_min$	17700.848	8583304	4291610	40
$test_06$	gecode	first_fail	$indomain_min$	20.877	9098	4520	26
$test_07$	gecode	first_fail	$indomain_min$	22.030	9125	4554	23
$test_08$	gecode	first_fail	$indomain_min$	43979.030	12705667	6352774	39
$test_09$	gecode	first_fail	$indomain_min$	3900.950	1514760	757354	41
test_10	gecode	first_fail	indomain_min	59937.474	20139317	10069609	52
${\rm test}_01$	gecode	dom_w_deg	$indomain_split$	0.960	113	34	34
$test_02$	gecode	dom_w_deg	$indomain_split$	9.232	3150	1549	71
$test_03$	gecode	dom_w_deg	$indomain_split$	3.973	959	451	69
$test_04$	gecode	dom_w_deg	$indomain_split$	28.810	7536	3729	88
$test_05$	gecode	dom_w_deg	$indomain_split$	11.892	2338	1114	119
$test_06$	gecode	dom_w_{deg}	indomain_split	4.120	994	455	90
$test_07$	gecode	dom_w_{deg}	indomain_split	4.192	1283	628	68
$test_08$	gecode	dom_w_{deg}	indomain_split	11.540	2173	980	128
test 09	gecode	dom_w_{deg}	indomain_split	36.976	2702	1311	71
test_10	gecode	dom_w_{deg}	indomain_split	370.060	41970	20857	180
	gecode	input_order	indomain_min	0.821	200	94	13
$test_02$	gecode	input_order	indomain min	10240.779	8250996	4125491	25
test_03	gecode	input_order	indomain min	281.118	210561	105269	21
test_04	gecode	input_order	indomain min	58975.739	33415666	16707816	32
test 05	gecode	input_order	indomain min	59935.589	35953071	17976510	39
test 06	gecode	input_order	indomain min	856.992	535610	267795	26
test 07	gecode	input order	indomain min	173.459	114108	57052	23
test 08	gecode	input_order	indomain min	59939.545	37098935	18549449	36
test 09	gecode	input order	indomain min	10316.886	4784339	2392147	35
test_10	gecode	input_order	indomain_min	59940.290	31019998	15509979	50
test_01	chuffed	first_fail	indomain_min	2.000	68	12	14
$test_02$	chuffed	first_fail	indomain_min	8.000	537	389	22
$test_03$	chuffed	first_fail	indomain_min	6.000	675	373	22
$test_04$	chuffed	first_fail	indomain_min	37.000	2863	2008	26
$test_05$	chuffed	first_fail	indomain_min	45.000	811	409	37
$test_06$	chuffed	first_fail	indomain_min	7.000	454	261	27
test 07	chuffed	first fail	indomain min	7.000	636	494	19
test 08	chuffed	first_fail	indomain min	37.000	2139	1523	37
test 09	chuffed	first fail	indomain min	25.000	1794	1344	25
test_10	chuffed	first_fail	$\operatorname{indomain_min}$	28609.000	736859	595199	50
test_01	chuffed	dom_w_deg	indomain_split	1.000	114	8	53
$test_02$	chuffed	dom_w_{deg}	indomain_split	4.000	945	150	117
test_03	chuffed	dom_w_{deg}	indomain_split	5.000	974	212	121
test_04	chuffed	dom_w_{deg}	indomain_split	23.000	3269	1065	145
test_05	chuffed	dom_w_{deg}	indomain_split	188.000	14992	7081	252
test_06	chuffed	dom_w_{deg}	indomain_split	16.000	2717	910	152
test 07	chuffed	dom_w_{deg}	indomain_split	7.000	1267	505	100
	chuffed	dom_w_{deg}	indomain_split	39.000	5237	1663	247
test 08	Chunea	dom w deg	maomam spin	00.000			
test_08 test_09	chuffed	dom_w_deg	indomain_split	48.000	6423	2433	144

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_01	chuffed	input_order	indomain_min	1.000	53	16	14
$test_02$	chuffed	$input_order$	indomain_min	6.000	617	272	22
$test_03$	chuffed	$input_order$	indomain_min	5.000	442	248	22
$test_04$	chuffed	$input_order$	indomain_min	47.000	3435	2735	26
${\rm test}_05$	chuffed	$input_order$	indomain_min	273.000	10926	9503	38
$test_06$	chuffed	$input_order$	indomain_min	25.000	2088	1657	27
${\rm test}_07$	chuffed	$input_order$	indomain_min	8.000	737	672	20
$test_08$	chuffed	$input_order$	indomain_min	28.000	1610	1189	37
$test_09$	chuffed	$input_order$	$indomain_min$	78.000	4925	4365	26
$test_10$	chuffed	$input_order$	$indomain_min$	16350.000	362590	332479	51

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_01	gecode	first_fail	indomain_min	10.203	68	20	13
$test_02$	gecode	$first_fail$	indomain_min	499.978	264817	132389	28
$test_03$	gecode	$first_fail$	$indomain_min$	62.441	24282	12104	25
$test_04$	gecode	$first_fail$	$indomain_min$	17341.491	8810676	4405319	39
$test_05$	gecode	$first_fail$	$indomain_min$	59931.770	50739812	25369861	49
$test_06$	gecode	$first_fail$	$indomain_min$	24.156	11998	5983	26
$test_07$	gecode	$first_fail$	$indomain_min$	50.264	23345	11649	23
$test_08$	gecode	$first_fail$	$indomain_min$	47879.649	14960880	7480383	39
$test_09$	gecode	$first_fail$	$indomain_min$	9620.749	6094237	3047083	41
_test10	gecode	$first_fail$	$indomain_min$	59934.424	27947665	13973774	51
test_01	gecode	dom_w_{deg}	indomain_split	0.912	112	33	36
$test_02$	gecode	dom_w_deg	$indomain_split$	5.504	1634	774	71
$test_03$	gecode	dom_w_deg	$indomain_split$	1.708	334	133	72
$test_04$	gecode	dom_w_deg	$indomain_split$	36.409	9649	4793	77
$test_05$	gecode	dom_w_deg	$indomain_split$	10.264	1880	838	141
$test_06$	gecode	dom_w_deg	$indomain_split$	5.299	1340	593	93
${\rm test}_07$	gecode	dom_w_deg	$indomain_split$	11.445	3549	1729	75
$test_08$	gecode	dom_w_deg	$indomain_split$	13.378	2937	1287	133
$test_09$	gecode	dom_w_deg	$indomain_split$	12.210	3567	1688	96
$_{\rm test_10}$	gecode	${\rm dom}_{\rm w_deg}$	$indomain_split$	304.671	42287	20950	182
test_01	gecode	$input_order$	indomain_min	0.833	200	94	13
$test_02$	gecode	$input_order$	$indomain_min$	10051.899	8250996	4125491	25
$test_03$	gecode	$input_order$	$indomain_min$	276.237	210561	105269	21
$test_04$	gecode	$input_order$	$indomain_min$	58520.001	33415666	16707816	32
$test_05$	gecode	$input_order$	$indomain_min$	59938.719	36319978	18159963	39
$test_06$	gecode	$input_order$	$indomain_min$	897.716	535610	267795	26
$test_07$	gecode	$input_order$	$indomain_min$	170.944	114108	57052	23
$test_08$	gecode	$input_order$	$indomain_min$	59933.128	37142176	18571070	36
$test_09$	gecode	$input_order$	$indomain_min$	10471.427	4784339	2392147	35
test_10	gecode	input_order	indomain_min	59936.365	30298504	15149232	50
test_01	chuffed	first_fail	indomain_min	1.000	68	12	14
$test_02$	chuffed	$first_fail$	indomain_min	7.000	537	389	22
$test_03$	chuffed	$first_fail$	indomain_min	6.000	697	373	22
$test_04$	chuffed	$first_fail$	$indomain_min$	36.000	2889	2008	26
${\rm test}_05$	chuffed	$first_fail$	indomain_min	16.000	851	409	38
$test_06$	chuffed	$first_fail$	indomain_min	6.000	423	261	27
$test_07$	chuffed	$first_fail$	indomain_min	7.000	637	494	20
$test_08$	chuffed	$first_fail$	indomain_min	42.000	2069	1523	37
$test_09$	chuffed	$first_fail$	indomain_min	25.000	1817	1344	25

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_10	chuffed	first_fail	indomain_min	28238.000	736910	595199	51
test_01	chuffed	dom_w_deg	indomain_split	1.000	117	8	56
${\rm test}_02$	chuffed	dom_w_deg	$indomain_split$	4.000	949	150	121
$test_03$	chuffed	dom_w_deg	$indomain_split$	5.000	974	212	121
$test_04$	chuffed	dom_w_deg	$indomain_split$	21.000	3272	1065	148
$test_05$	chuffed	dom_w_deg	$indomain_split$	190.000	14992	7081	252
$test_06$	chuffed	dom_w_deg	$indomain_split$	15.000	2717	910	152
${ m test}_07$	chuffed	dom_w_deg	$indomain_split$	7.000	1270	505	103
$test_08$	chuffed	dom_w_deg	$indomain_split$	38.000	5237	1663	247
$test_09$	chuffed	dom_w_deg	$indomain_split$	47.000	6423	2433	144
${\rm test}_10$	chuffed	$\mathrm{dom}_\mathrm{w_deg}$	$indomain_split$	12393.000	471285	221818	345
test_01	chuffed	input_order	indomain_min	1.000	53	16	14
$test_02$	chuffed	$input_order$	$indomain_min$	5.000	617	272	22
$test_03$	chuffed	$input_order$	$indomain_min$	5.000	442	248	22
$test_04$	chuffed	$input_order$	$indomain_min$	45.000	3435	2735	26
${\rm test}_05$	chuffed	$input_order$	$indomain_min$	252.000	10926	9503	38
$test_06$	chuffed	$input_order$	$indomain_min$	25.000	2088	1657	27
${\rm test}_07$	chuffed	$input_order$	$indomain_min$	8.000	737	672	20
$test_08$	chuffed	$input_order$	indomain_min	29.000	1610	1189	37
$test_09$	chuffed	$input_order$	indomain_min	77.000	4925	4365	26
test10	chuffed	input_order	indomain_min	16677.000	362590	332479	51

 ${\bf Tabla~3:}~{\bf Resultados~de~pruebas~con~restricciones~redundantes~y~con~simetr\'ia.$

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_01 test_02	gecode gecode	first_fail first_fail	indomain_min indomain_min	7.862 508.427	68 264886	$\frac{20}{132435}$	13 28
test_01	gecode	$ dom_w_{deg} $ $ dom_w_{deg} $	indomain_split	0.960	113	34	34
test_02	gecode		indomain_split	9.232	3150	1549	71
test_01	gecode	input_order	indomain_min	0.821	200	94	13
test_02	gecode	input_order	indomain_min	10240.779	8250996	4125491	25
test_01	chuffed	first_fail	indomain_min	2.000	68	12	14
test_02	chuffed	first_fail	indomain_min	8.000	537	389	22
test_01	chuffed	$\begin{array}{c} dom_w_deg \\ dom_w_deg \end{array}$	indomain_split	1.000	114	8	53
test_02	chuffed		indomain_split	4.000	945	150	117
test_01	chuffed	input_order	indomain_min	1.000	53	16	14
test_02	chuffed	input_order	indomain_min	6.000	617	272	22

Tabla 4: Resultados de pruebas con restricciones redundantes y sin simetría.

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_01	gecode	first_fail	indomain_min	5.143	171	$73 \\ 320733$	13
test_02	gecode	first_fail	indomain_min	1251.807	641482		28
test_01	gecode	$\begin{array}{c} dom_w_deg \\ dom_w_deg \end{array}$	indomain_split	0.822	153	54	34
test_02	gecode		indomain_split	9.131	3911	1934	65
test_01	gecode	input_order	indomain_min	1.239	360	174	13
test_02	gecode	input_order	indomain_min	17282.710	15001952	7500969	26
test_01	chuffed	first_fail	indomain_min	3.000	76	19	14

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_02	chuffed	first_fail	indomain_min	35.000	3546	2824	22
test_01 test_02	chuffed chuffed	dom_w_deg dom_w_deg	indomain_split indomain_split	1.000 10.000	135 3069	17 784	53 117
Chuffed (I	Estrategia:	$input_order \ +$	$indomain_min)$				
test_01 test_02	chuffed chuffed	input_order input_order	indomain_min indomain_min	1.000 16.000	$57 \\ 2050$	$\frac{20}{1261}$	14 22

Tabla 5: Resultados de pruebas con restricciones redundantes y sin simetría.

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth
test_01	gecode	first_fail	indomain_min	5.143	171	73	13
test_02	gecode	first_fail	indomain_min	1251.807	641482	320733	28
test_01	gecode	dom_w_deg	indomain_split	0.822	153	54	34
test_02	gecode	dom_w_deg	indomain_split	9.131	3911	1934	65
test_01 test_02	gecode gecode	input_order input_order	indomain_min indomain_min	$1.239 \\ 17282.710$	360 15001952	174 7500969	13 26
test_01	chuffed	first_fail	indomain_min	$3.000 \\ 35.000$	76	19	14
test_02	chuffed	first_fail	indomain_min		3546	2824	22
test_01	chuffed	$\begin{array}{c} dom_w_deg \\ dom_w_deg \end{array}$	indomain_split	1.000	135	17	53
test_02	chuffed		indomain_split	10.000	3069	784	117
test_01	chuffed	input_order	indomain_min	1.000	$57 \\ 2050$	20	14
test_02	chuffed	input_order	indomain_min	16.000		1261	22

Tabla 6: Resultados de pruebas con redundancia y con simetría (todas las soluciones).

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth	Solutions
test_01	gecode	first_fail	indomain_min	59921.041	3127246	0	25	1563617
test_02	gecode	first_fail	indomain_min	59930.036	2700044	0	32	1350012
${\rm test}_01$	gecode	dom_w_deg	$indomain_split$	59931.679	3151727	0	45	1575852
test_02	gecode	dom_w_{deg}	indomain_split	59933.849	2730619	0	82	1365278
test_01	gecode	$input_order$	indomain_min	59937.490	3173156	0	25	1586572
test_02	gecode	input_order	indomain_min	59937.140	2754654	0	32	1377317
${\rm test}_01$	${\rm chuffed}$	$\operatorname{first_fail}$	$indomain_min$	59934.000	1517948	1517936	13	1517936
test_02	chuffed	first_fail	indomain_min	59933.000	1294586	1294565	21	1294565
${\rm test}_01$	chuffed	$\mathrm{dom}_\mathrm{w_deg}$	$indomain_split$	59926.000	1905356	1567323	52	1567323
test_02	chuffed	dom_w_deg	indomain_split	59938.000	1547960	1351214	116	1351214
${\rm test}_01$	${\rm chuffed}$	$input_order$	$indomain_min$	59934.000	1553352	1553340	13	1553340
$test_02$	chuffed	$input_order$	indomain_min	59936.000	1361902	1361881	21	1361881

Tabla 7: Resultados de pruebas con redundancia y sin simetría (todas las soluciones).

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth	Solutions
test_01	gecode	$first_fail$	indomain_min	59942.958	3225524	0	25	1612756
${\rm test}_02$	gecode	$first_fail$	$indomain_min$	59937.814	2766214	0	32	1383097
test_01	gecode	dom_w_deg	indomain_split	59939.585	3256656	0	45	1628314

Archivo	Solver	Var heur	Val heur	Time (ms)	Nodes	Failures	Depth	Solutions
test_02	gecode	dom_w_deg	$indomain_split$	59936.894	2852672	0	76	1426307
test_01 test_02	gecode gecode	input_order input_order	indomain_min indomain_min	59939.783 59933.915	3251452 2774174	0	25 32	1625720 1387077
test_01 test_02	chuffed chuffed	first_fail first_fail	indomain_min indomain_min	59932.000 59937.000	1566132 1332201	$1566122 \\ 1332180$	13 21	$1566122 \\ 1332180$
test_01 test_02	chuffed chuffed		indomain_split indomain_split	59933.000 59936.000	1931617 1592857	$1589249 \\ 1390351$	52 116	1589249 1390351
test_01 test_02	chuffed chuffed	input_order input_order	indomain_min indomain_min	59936.000 59924.000	1588141 1412380	$1588128 \\ 1412359$	13 21	1588128 1412359

1.4. Análisis y conclusiones

El análisis inicial se centra en evaluar el impacto de las restricciones redundantes (R4 y R5) cuando la restricción de simetría (R6) se mantiene activa. Para ello, se comparan los resultados obtenidos al optimizar el makespan con ambas restricciones activas frente a los obtenidos únicamente con la restricción de simetría activa.

Observando el comportamiento del solver Gecode, se evidencia que la efectividad de las restricciones redundantes está fuertemente ligada a la estrategia de búsqueda utilizada. Con la heurística first_fail (ff_min), las restricciones redundantes resultaron ser mayormente perjudiciales. En casi todas las instancias, el tiempo de ejecución aumentó y tanto el número de nodos explorados como los fallos fueron significativamente mayores. Esto sugiere que el costo adicional de propagar estas restricciones no se compensa con una poda efectiva del árbol de búsqueda para esta estrategia, generando un overhead innecesario.

Por el contrario, con la estrategia informada dom_w_deg (wdeg_split), las restricciones redundantes mostraron un beneficio general en Gecode. Consistentemente redujeron el número de nodos y fallos, indicando una poda más temprana del espacio de búsqueda, lo cual se tradujo en mejoras de tiempo en varias instancias, aunque con excepciones notables como test_10. Finalmente, con la estrategia input_order (inorder_min), similar a ff_min, las redundantes no aportaron beneficios claros e incluso empeoraron el rendimiento en algunos casos, especialmente visible en instancias que alcanzaron el tiempo límite, donde la exploración del árbol fue comparable o mayor.

El solver Chuffed mostró una interacción diferente con las restricciones redundantes. Con la estrategia ff_min, las redundantes ayudaron consistentemente a reducir el número de nodos y fallos, aunque el impacto en el tiempo de ejecución fue variable y sin un patrón definido, posiblemente debido a la eficiencia intrínseca de Chuffed en la propagación y poda.

Para la estrategia wdeg_split en Chuffed, las redundantes también demostraron ser beneficiosas, reduciendo nodos y fallos de forma consistente y logrando mejoras, aunque modestas, en el tiempo de ejecución para las instancias más complejas como test_10. Con inorder_min, los resultados fueron mixtos; si bien se observó una reducción en nodos y fallos, el tiempo de ejecución a veces mejoró y otras veces empeoró, similar al comportamiento visto con ff_min.

De esta comparación se derivan conclusiones generales importantes sobre las restricciones redundantes R4 y R5 y la elección de solver/estrategia. Su efectividad no es universal, sino que depende crucialmente de la estrategia de búsqueda y, en menor medida, del solver. Heurísticas más informadas como wdeg_split tienden a explotar mejor la información adicional proporcionada por las redundantes para podar la búsqueda. En cambio, con estrategias más simples, el costo de mantener y propagar estas restricciones puede superar el beneficio obtenido. Chuffed parece ser más robusto y capaz de beneficiarse (o al menos no ser perjudicado significativamente) por las redundantes en más escenarios que Gecode. Además, el posible beneficio de estas restricciones tiende a ser más perceptible en las instancias de mayor complejidad computacional.

Consistentemente, la estrategia dom_w_deg emerge como la opción más robusta y eficiente en general, tanto para Gecode como para Chuffed. Esta heurística informada, que prioriza variables con dominios pequeños y alta participación en conflictos, logra una poda del árbol de búsqueda significativamente mejor, reflejada en menores nodos y fallos en la mayoría de las instancias. Es precisamente con wdeg_split donde las restricciones redundantes muestran su mayor valor, ayudando a reducir aún más el espacio explorado y, frecuentemente, el tiempo de ejecución, sobre todo en problemas más complejos.

En contraste, las estrategias más simples como first_fail (ff_min) e input_order (inorder_min) mostraron un rendimiento mucho más variable y, a menudo, inferior. Con estas heurísticas, las restricciones redundantes pueden incluso ser perjudiciales (especialmente en Gecode), añadiendo costo de propagación sin un beneficio claro en la poda.

En cuanto a los solvers, Chuffed demostró ser notablemente más rápido y eficiente que Gecode en la mayoría de las configuraciones probadas, particularmente con la estrategia wdeg_split. Chuffed parece explotar mejor la estructura del problema y las restricciones, incluyendo las redundantes, logrando soluciones óptimas en menos tiempo y con una exploración considerablemente menor.

Por lo tanto, la combinación Chuffed + wdeg_split se perfila como la elección preferente para este modelo, beneficiándose además de la inclusión de las restricciones redundantes (R4 y R5) para mejorar la poda en instancias desafiantes.

Continuando el análisis, se examina ahora el efecto de la restricción de rompimiento de simetría (R6), comparando los resultados de las ejecuciones que la incluían con aquellas que no, manteniendo en ambos casos las restricciones redundantes activas. Dado que esta restricción solo tiene efecto en presencia de trabajos idénticos, la comparación se enfoca exclusivamente en las instancias test_01 y test_02.

En el contexto de la optimización (búsqueda de la solución óptima), la restricción de simetría demostró ser altamente beneficiosa, particularmente en la instancia más compleja test_02. Para el solver Gecode, la activación de R6 consistentemente redujo el número de nodos explorados y fallos en ambas instancias, aunque el impacto en el tiempo fue mixto para test_01 (a veces ligeramente más lento con simetría activa, como con ff_min y wdeg_split). Sin embargo, en test_02, la mejora fue sustancial en todos los aspectos, especialmente con inorder_min donde el tiempo se redujo de 17.3s a 10.2s.

Con el solver Chuffed, el beneficio de la restricción de simetría fue aún más pronunciado. En test_01, se observaron mejoras modestas pero consistentes en tiempo, nodos y fallos. En test_02, la reducción fue drástica: por ejemplo, con ff_min, el tiempo bajó de 35ms a 8ms, y con wdeg_split, de 10ms a 4ms, acompañado de significativas reducciones en nodos y fallos. Estos resultados sugieren que la restricción lex_lesseq poda eficazmente ramas equivalentes del árbol de búsqueda, mejorando notablemente la eficiencia de la optimización en presencia de simetría.

Para cuantificar la reducción del espacio de búsqueda debida a la simetría, se realizaron pruebas adicionales en modo satisfy buscando todas las soluciones posibles. Se compararon las ejecuciones con redundancia y simetría frente a aquellas con redundancia pero sin simetría. Idealmente, se esperaría una reducción significativa en el número de soluciones encontradas al activar R6. Sin embargo, los resultados muestran que casi todas las configuraciones alcanzaron el tiempo límite de 60 segundos antes de completar la enumeración total. A pesar de esto, se observa una tendencia consistente: en todas las combinaciones de solver y estrategia, el número de soluciones reportadas antes del timeout fue ligeramente menor cuando la restricción de simetría estaba activa. Por ejemplo, con Chuffed y ff_min en test_01, se reportaron 1,517,936 soluciones con simetría frente a 1,566,122 sin ella. La reducción no es drástica debido tanto al tiempo límite como a que la restricción solo elimina permutaciones entre los jobs idénticos, siendo el impacto global moderado por la presencia de jobs únicos. Aun así, esta reducción en soluciones encontradas, nodos explorados y fallos confirma que la restricción R6 está funcionando correctamente, eliminando soluciones equivalentes y podando el espacio de búsqueda.

En conclusión, la restricción de simetría R6 es una adición valiosa al modelo para instancias con trabajos idénticos, mejorando el rendimiento en la optimización y demostrando su capacidad para reducir el espacio de búsqueda en la enumeración de todas las soluciones, aunque las limitaciones de tiempo y que solo afecta a permutaciones de trabajos idénticos impidieron observar un recorte drástico en este último escenario.

2. Jobshop Mantenimiento

2.1. Modelo

Parámetros

Variables

 ${\bf Restricciones\ principales}$

Restricciones redundantes

Restricciones de simetría

2.2. Implementación

Modelo

Restricciones redundantes

Restricciones de simetría

2.3. Pruebas

Tabla 8: Resultados de pruebas con restricciones redundantes.

Archivo	Solver	Var heur	Val heur	time	nodes	fail	depth
Tabla 9: Resultados de pruebas sin restricciones redundantes.							
Archivo	Solver	Var heur	Val heur	time	nodes	fail	depth

2.4. Análisis y conclusiones