Package 'BVSLR'

January 15, 2022

Title Bayesian Approach for Variable Selection
Version 1.0
Description This contains functions from novel bayesian approach for variable selection.
License GPL-3
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Depends R (>= 2.10)
Imports magrittr, mvtnorm, extraDistr, stats
NeedsCompilation no
Author ZI-JING HUANG [aut, cre]
Maintainer ZI-JING HUANG <zjhuang915@gmail.com></zjhuang915@gmail.com>
R topics documented:
AssignValue

AssignValue	2
fconditionBeta	2
fconditionGprior	3
fconditionRandomset	3
fconditionSigma2	4
MHAlgorithm	5
PriorProbability	6
probBeta	7
probGprior	7
probRandomsetA	8
probSigma2	8
qAlpha	9
qBeta	9
qGprior	10
qRandomsetA	10
qSigma2	11
RidgeLambda	11
SimdataN100P10	12
SimdataN50P100	12
	13

Index

2 fconditionBeta

AssignValue AssignValue

Description

AssignValue

Usage

```
AssignValue(x, idx, value)
```

Arguments

x vector to be modified

idx index of elements to be modified

value values to be assigned

Value

the vector after modified x

fconditionBeta fconditionBeta

Description

fconditionBeta

Usage

```
fconditionBeta(beta, sig2, g, A, data.X, data.Y, n.size, p.size, log.p = F)
```

Arguments

```
beta
                  β
                  \sigma^2
sig2
g
                  g-prior
                  random set, A
Α
data.X
                  predictors
data.Y
                  responses
n.size
                  sample size
p.size
                  number of parameter
log.p
                  logical. If TRUE, probability p is given as log(p)
```

Value

full conditional density of β

fconditionGprior 3

 ${\it fcondition Gprior}$

fcondition Gprior

Description

fconditionGprior

Usage

```
fconditionGprior(g, beta, sig2, A, data.X, data.Y, n.size, p.size, log.p = F)
```

Arguments

```
g
                  g-prior
beta
                  β
                  \sigma^2
sig2
Α
                  random set, A
data.X
                  predictors
data.Y
                  responses
n.size
                  sample size
                  number of parameter
p.size
                  logical. If TRUE, probability p is given as log(p)
log.p
```

Value

full conditional density of g

 ${\it fcondition} Random {\it set}$

fconditionRandomset

Description

fcondition Random set

Usage

```
fconditionRandomset(
   A,
   beta,
   sig2,
   g,
   data.X,
   data.Y,
   p.prio,
   n.size,
   p.size,
   power.l,
   log.p = F
```

4 fconditionSigma2

Arguments

Α	random set, A
beta	eta
sig2	σ^2
g	g-prior
data.X	predictors
data.Y	responses
p.prio	prior probability
n.size	sample size
p.size	number of parameter
power.l	power transformation of truncated binomial
log.p	logical. If TRUE, probability p is given as log(p)

Value

full conditional density of A

fconditionSigma2

f condition Sigma 2

Description

fcondition Sigma 2

Usage

```
fconditionSigma2(
    sig2,
    beta,
    g,
    A,
    data.X,
    data.Y,
    n.size,
    p.size,
    sig.a,
    sig.b,
    log.p = F
)
```

Arguments

```
\begin{array}{lll} \mathrm{sig2} & & \sigma^2 \\ \mathrm{beta} & & \beta \\ \mathrm{g} & & \mathrm{g-prior} \\ \mathrm{A} & & \mathrm{random\ set,\ A} \end{array}
```

MHAlgorithm 5

Value

full conditional density of σ^2

MHAlgorithm

MHAlgorithm

Description

MHAlgorithm

Usage

```
MHAlgorithm(
    sim.size,
    data,
    p.prio = NULL,
    tune.p_h,
    tune.eps_sig,
    tune.eps_g,
    tune.mu_truncbinom,
    tune.sig_a,
    tune.sig_b,
    ini.g = NULL,
    ini.sig2 = NULL,
    ini.A = NULL,
    ini.beta = NULL
)
```

Arguments

```
sim.size simulation sample size

data observed data

p.prio prior of p can be specified

tune.p_h tuning parameter

tune.eps_sig tuning parameter

tune.eps_g tuning parameter

tune.mu_truncbinom

tuning parameter
```

6 PriorProbability

```
tune.sig_a tuning parameter tune.sig_b tuning parameter ini.g initial value g ini.sig2 initial value \sigma^2 ini.A initial random set, A ini.beta initial \beta
```

Value

simulation samples and acceptance rate

Examples

```
## Not run:
MHAlgorithm(sim.size = 50000, data = cbind(diabetes.data$y,diabetes.data$x),
tune.p_h = 0.5, tune.eps_sig = 0.1, tune.eps_g = 60,
tune.mu_truncbinom = 2.5, tune.sig_a = 0.001, tune.sig_b = 0.001)
## End(Not run)
```

PriorProbability

PriorProbability

Description

PriorProbability

Usage

```
PriorProbability(data.X, data.Y)
```

Arguments

data.X	predictors
data.Y	responses

Value

prior probability with calculate correlation between predictors and responses

probBeta 7

Description

probBeta

Usage

```
probBeta(betat1, At1, gt1, sig2t1, data.X, data.Y, n.size, p.size, log.p = F)
```

Arguments

```
\beta at time t + 1
betat1
                   random set, A at time t + 1
At1
                   g-prior, g at time t + 1
gt1
                   \sigma^2 at time t + 1
sig2t1
data.X
                   predictors
data.Y
                   responses
n.size
                   sample size
                   number of predictor
p.size
                   logical. If TRUE, probability p is given as log(p)
log.p
```

Value

proposal density of β

probGprior probGprior

Description

probGprior

Usage

```
probGprior(gt1, gt, eps_g, log.p = F)
```

Arguments

```
gt1 g-prior, g at time t + 1
gt g-prior, g at time t
eps_g parameter for proposal function of g
log.p logical. If TRUE, probability p is given as log(p)
```

Value

proposal density of g

probSigma2

probRandomsetA

probRandomsetA

Description

probRandomsetA

Usage

```
probRandomsetA(At1, At, ch, p.prio)
```

Arguments

At c_h random set, A at time c_h random set, A at time c_h random set, A at time c_h indicator of model change

p.prio prior probability

Value

proposal density of A

probSigma2

probSigma2

Description

probSigma2

Usage

```
probSigma2(sig2t1, sig2t, eps_sig, log.p = F)
```

Arguments

```
sig2t1 \sigma^2 at time t + 1
sig2t \sigma^2 at time t
```

eps_sig parameter for proposal function of σ^2

log.p logical. If TRUE, probability p is given as log(p)

Value

proposal density of σ^2

qAlpha 9

qAlpha qAlpha

Description

qAlpha

Usage

```
qAlpha(alp, At, p.prio)
```

Arguments

alp element in A

At random set, A at time t
p.prio prior probability

Value

 α for A_t

qBeta qBeta

Description

qBeta

Usage

```
qBeta(At1, gt1, sig2t1, data.X, data.Y, n.size, p.size)
```

Arguments

At1 random set, A at time t+1 gt1 g-prior, g at time t+1 sig2t1 σ^2 at time t+1 data. X predictors data. Y responses n. size sample size p. size number of predictor

Value

 β_{t+1}

10 qRandomsetA

qGprior

qGprior

Description

qGprior

Usage

```
qGprior(gt, eps_g)
```

Arguments

gt

g-prior, g at time t

eps_g

parameter for proposal function of g

Value

 g_{t+1}

qRandomsetA

qRandomsetA

Description

qRandomset A

Usage

```
qRandomsetA(p.size, At, ch, p.prio)
```

Arguments

 $\begin{array}{ll} \text{p.size} & \text{number of parameter} \\ \text{At} & \text{random set, A at time t} \end{array}$

ch c_h indicator of model change

p.prio prior probability

Value

 A_{t+1}

qSigma2 11

qSigma2

qSigma2

Description

qSigma2

Usage

```
qSigma2(sig2t, eps_sig)
```

Arguments

sig2t

 σ^2 at time t

eps_sig

parameter for proposal function of σ^2

Value

 σ_{t+1}^2

RidgeLambda

RidgeLambda

Description

Ridge Lamb da

Usage

```
RidgeLambda(n.size, p.size, kt)
```

Arguments

n.size sample size

p. size number of predictorkt model size at time t

Value

lambda value by formula 2.4

12 SimdataN50P100

SimdataN100P10

This is the data set to be included in this package

Description

This is the data set to be included in this package

Usage

SimdataN100P10

Format

100 simulation data set with n=100 and p=10

SimdataN50P100

This is the data set to be included in this package

Description

This is the data set to be included in this package

Usage

SimdataN50P100

Format

100 simulation data set with n=50 and p=100

Index

```
* datasets
     SimdataN100P10, 12
     SimdataN50P100, 12
AssignValue, 2
fconditionBeta, 2
fconditionGprior, 3
fconditionRandomset, 3
\verb|fconditionSigma2|, 4|
{\tt MHAlgorithm}, {\tt 5}
PriorProbability, 6
probBeta, 7
probGprior, 7
{\tt probRandomsetA}, {\color{red} 8}
probSigma2, 8
qAlpha, 9
qBeta, 9
qGprior, 10
qRandomsetA, 10
qSigma2, 11
{\tt RidgeLambda}, \textcolor{red}{11}
SimdataN100P10, 12
SimdataN50P100, 12
```