Chapitre 2 : Nombres complexes et trigonométrie

1 Ensemble des nombres complexes

1.1 Définition

Définition

- On appelle ensemble des **nombres complexes** et on note $\mathbb C$ l'ensemble des nombres qui s'écrivent sous la forme z = a + ib où $(a, b) \in \mathbb R^2$ et $i^2 = -1$.
- Plus précisément, tout nombre complexe z s'écrit de manière unique sous la forme z = a + ib avec $(a, b) \in \mathbb{R}^2$. Cette écriture est appelée **écriture algébrique** (ou forme algébrique).
- Si z = a + ib avec $(a, b) \in \mathbb{R}^2$, a est appelé **partie réelle** de z et notée Re(z), b est appelée partie imaginaire de z et notée Im(z).
- Si z = a + ib et z' = a' + ib' avec $a, b, a', b' \in \mathbb{R}$, on définit z + z' et $z \times z'$ par :

$$z + z' = (a + a') + i(b + b')$$
 et $z \times z' = (aa' - bb') + i(ab' + a'b)$

Remarque:

- La formule du produit se retrouve en développant (a+ib)(a'+ib') et en utilisant la relation $i^2=-1$.
- Si $x \in \mathbb{R}$, on identifie x avec le nombre complexe x + i0. Ceci permet d'avoir \mathbb{R} inclus dans \mathbb{C} . L'addition est la multiplication sur \mathbb{C} prolongent l'addition et la multiplication usuelles sur \mathbb{R} . Elles vérifient donc les même propriétés :
 - · associativité:

$$\forall z, z', z'' \in \mathbb{C}, (z + z') + z'' = z + (z' + z'') \text{ et } (z \times z') \times z'' = z \times z' \times z'')$$

• commutativité:

$$z + z' = z' + z$$
 et $z \times z' = z' \times z$

• la multiplication est distributive sur l'addition :

$$z \times (z' + z'') = z \times z' + z \times z''$$

- Si $y \in \mathbb{R}$, on note simplement iy le nombre complexe 0 + iy, appelé imaginaire pur. On note $i\mathbb{R}$ l'ensemble des imaginaires purs.
- $\bigwedge \text{Re}(z+z') = \text{Re}(z) + \text{Re}(z')$ mais en général, $\text{Re}(zz') \neq \text{Re}(z) \times \text{Re}(z')$. De même pour la partie imaginaire.
- \mathbb{C} n'est usuellement muni d'aucune relation d'ordre. Nous ne pouvons donc pas dire qu'un complexe est plus grand qu'un autre ou qu'il est positif.

Proposition

Soient $z, z' \in \mathbb{C}$. On a :

$$z = z' \iff \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases}$$

Définition: Interprétation géométrique des nombres complexes

On munit le plan usuel \mathscr{P} d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$.

A tout point M de \mathscr{P} de coordonnées (x, y) (resp. à tout vecteur \overrightarrow{u} tel que $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$) avec $(x, y) \in \mathbb{R}^2$, on associe le nombre complexe z = x + iy et réciproquement. On dit que z est l'**affixe** de M (resp. \overrightarrow{u}) et M (resp. \overrightarrow{u}) est appelé image de z. On note M(z) (resp. $(\overrightarrow{u}(z))$) pour exprimer que z est l'affixe de M (resp. \overrightarrow{u}).

Remarque:

est une bijection. En effet, à tout point M du plan $\mathcal P$ d'affixe z correspond un unique nombre complexe z son affixe.

On identifie ainsi C au plan usuel, muni d'un repère orthonormé direct.

- Si A et B sont deux points du plan d'affixes a et b, alors l'affixe du vecteur \overrightarrow{AB} est b-a.

Proposition

Soit $z \in \mathbb{C}$. Soit $\lambda \in \mathbb{R}$, on a :

 $Re(\lambda z) = \lambda Re(z);$ $Im(\lambda z) = \lambda Im(z)$ $\operatorname{Re}(iz) = -\operatorname{Im}(z);$ $\operatorname{Im}(iz) = \operatorname{Re}(z);$

Démonstration. Soit $\lambda \in \mathbb{R}$. Posons z = a + ib avec $a, b \in \mathbb{R}$.

On a: $\lambda(a+ib) = \lambda a + i\lambda b$, $i(\lambda a + ib) = -b + ia$.

1.2 Conjugaison

Définition

Soit $z = a + ib \in \mathbb{C}$ avec $(a, b) \in \mathbb{R}^2$. On appelle **conjugué** de z, et on note \overline{z} le nombre complexe a - ib.

Proposition

Soient $z, z_1, z_2 \in \mathbb{C}$, on a :

- $\bullet \quad \overline{z} = z$.
- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$.

Si $z_2 \neq 0$, $\frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{z_1}}{\overline{z_2}}$. On dit que la conjugaison est compatible avec l'addition, la multiplication et le quotient.

•
$$\begin{cases} \operatorname{Re}(z) = \frac{z + \overline{z}}{2} \\ \operatorname{Im}(z) = \frac{z - \overline{z}}{2i} \end{cases}$$

Démonstration. Posons z = a + ib avec $a, b \in \mathbb{R}$. Posons $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ avec $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

- $\overline{\overline{z}} = \overline{a+ib} = \overline{a-ib} = a+ib = z$.
- $\overline{z_1 + z_2} = \overline{(a_1 + ib_1) + (a_2 + ib_2)} = \overline{(a_1 + a_2) + i(b_1 + b_2)} = a_1 + a_2 i(b_1 + b_2) = a_1 ib_1 + a_2 ib_2 = \overline{z_1} + i\overline{z_2}.$
- $\overline{z_1 \times z_2} = \overline{(a_1 + ib_1) \times (a_2 + ib_2)} = \overline{(a_1a_2 b_1b_2) + i(a_1b_2 + a_2b_1)} = a_1a_2 b_1b_2 i(a_1b_2 + a_2b_1)$ Or, $\overline{z_1} \times \overline{z_2} = (\overline{a_1 + ib_1}) \times (\overline{a_2 + ib_2}) = (a_1 - ib_1)(a_2 - ib_2) = a_1a_2 - b_1b_2 - i(a_2b_1 + a_1b_2) = \overline{z_1 \times z_2}$.
- Si $z_2 \neq 0$ alors, $\overline{z_2} \neq 0$. On a alors : $1 = \overline{z_2 \times \frac{1}{z_2}} = \overline{z_2} \times \frac{1}{\overline{z_2}}$ d'où $\overline{\frac{1}{z_2}} = \frac{1}{\overline{z_2}}$. Puis, $\overline{\frac{z_1}{z_2}} = \overline{z_1 \times \frac{1}{z_2}} = \overline{z_1} \times \overline{\frac{1}{z_2}} = \overline{z_1} \times \frac{1}{\overline{z_2}} = \overline{\frac{z_1}{z_2}}$.
- On a z = Re(z) + iIm(z) et $\overline{z} = \text{Re}(z) i\text{Im}(z)$. En faisant la somme et la différence, on obtient le résultat voulu.

Corollaire

Soit $z \in \mathbb{C}$. Alors :

- $z \in \mathbb{R}$ si et seulement si $\overline{z} = z$
- $z \in i\mathbb{R}$ si et seulement si $\overline{z} = -z$

Démonstration. Soit $z \in \mathbb{C}$,

$$z \in \mathbb{R} \iff \operatorname{Im}(z) = 0$$

$$\iff \frac{z - \overline{z}}{2i} = 0$$

$$\iff z - \overline{z} = 0$$

$$\iff z = \overline{z}$$

1.3 Module

Définition

On appelle module du nombre complexe z=a+ib avec $(a,b)\in\mathbb{R}^2$ et on note |z| le réel positif (ou nul) défini par

$$|z| = \sqrt{a^2 + b^2}.$$

Remarque : La notion de module prolonge celle de valeur absolue, c'est à dire que le module d'un nombre réel est égal à sa valeur absolue.

Proposition

Pour tout $z \in \mathbb{C}$, on a $|z|^2 = z\overline{z}$.

Démonstration. Soit $z = a + ib \in \mathbb{C}$, avec $(a, b) \in \mathbb{R}^2$. Alors $z\overline{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2$.

Proposition

Soit $z, z_1, z_2 \in \mathbb{C}$, on a:

- $|z| = 0 \iff z = 0$
- $|\overline{z}| = |z|$.
- $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$.
- $|z_1 z_2| = |z_1| \times |z_2|$ si $z_2 \neq 0$, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

On dit que le module est compatible avec le produit et le quotient.

!\text{le module n'est pas compatible avec la somme.}

Démonstration. Soit $z = a + ib \in \mathbb{C}$ avec $(a, b) \in \mathbb{R}^2$.

$$|z| = 0 \iff |z|^2 = 0$$

$$\iff a^2 + b^2 = 0$$

$$\iff a^2 = 0 \text{ et } b^2 = 0$$

$$\iff a = 0 \text{ et } b = 0$$

$$\iff z = 0$$

• $|\overline{z}| = |a - ib| = \sqrt{a^2 + b^2} = |a + ib| = |z|$.

- $|\text{Re}(z)| = |a| = \sqrt{a^2} \le \sqrt{a^2 + b^2} = |z|$. On procède de même pour la partie imaginaire.
- $|z_1z_2|^2 = z_1z_2\overline{z_1z_2} = z_1z_2\overline{z_1z_2}$ par compatibilité de la conjugaison avec la multiplication. Ainsi, $|z_1 z_2|^2 = z_1 \overline{z_1} z_2 \overline{z_2} = |z_1|^2 |z_2|^2$. Or, $|z_1 z_2|$, $|z_1|$ et $|z_2|$ sont des réels positif d'où $|z_1 z_2| = |z_1||z_2|$.
- Si $z_2 \neq 0$ alors, on a: $1 = \left| z_2 \times \frac{1}{z_2} \right| = |z_2| \times \left| \frac{1}{z_2} \right|$. Comme $z_2 \neq 0$, on a $|z_2 \neq 0$ d'où $\left| \frac{1}{z_2} \right| = \frac{1}{|z_2|}$. Enfin, $\left| \frac{z_1}{z_2} \right| = \left| z_1 \times \frac{1}{z_2} \right| = \left| z_1 \right| \times \left| \frac{1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

Proposition: Inverse d'un nombre complexe

Pour tout $z \in \mathbb{C}^*$, on a:

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}.$$

Méthode

Pour calculer l'expression algébrique de l'inverse d'un nombre complexe z, ou simplifier une expression du type $\frac{z_1}{z_2}$ on multipliera toujours en numérateur et dénominateur par le conjugué du dénominateur.

Exemple:
$$\frac{4+3i}{-2+7i} = \frac{(4+3i)(-2-7i)}{(-2+7i)(-2-7i)} = \frac{-8-6i-28i+21}{4+49} = \frac{13}{53} - \frac{34}{53}i.$$

Proposition: Inégalité triangulaire

Pour tout $z_1, z_2 \in \mathbb{C}$, on a :

$$|z_1 + z_2| \le |z_1| + |z_2|$$
,

avec égalité si et seulement si $z_1 = 0$ ou s'il existe $\lambda \in \mathbb{R}_+$ tel que $z_2 = \lambda z_1$.

Remarque:

- \(\frac{1}{2}\) Comme pour les nombres réels, on n'a pas : $|z_1 - z_2| \le |z_1| - |z_2|!$

Démonstration. Soit $z_1, z_2 \in \mathbb{C}$.

• Avec une proposition précédente, on a :

$$\begin{split} |z_1 + z_2|^2 &= (z_1 + z_2)(\overline{z_1 + z_2}) \\ &= z_1 \overline{z_1} + z_1 \overline{z_2} + z_2 \overline{z_1} + z_2 \overline{z_2} \\ &= |z_1|^2 + z_1 \overline{z_2} + \overline{z_1} \overline{z_2} + |z_2|^2 \\ &= |z_1|^2 + 2 \operatorname{Re}(z_1 \overline{z_2}) + |z_2|^2 \\ &\leq |z_1|^2 + 2 |\operatorname{Re}(z_1 \overline{z_2})| + |z_2|^2 \\ &\leq |z_1|^2 + 2 |z_1 \overline{z_2}| + |z_2|^2 \\ &\leq |z_1|^2 + 2 |z_1| \times |\overline{z_2}| + |z_2|^2 \\ &\leq |z_1|^2 + 2 |z_1| \times |z_2| + |z_2|^2 \\ &\leq (|z_1| + |z_2|)^2. \end{split}$$

Comme $|z_1 + z_2|$, $|z_1| + |z_2|$ sont des réels positifs, on obtient : $|z_1 + z_2| \le |z_1| + |z_2|$.

• Supposons que $|z_1 + z_2| = |z_1| + |z_2|$. On a donc égalité dans toutes les inégalités précédentes. Donc :

$$\operatorname{Re}(z_1\overline{z_2}) = |\operatorname{Re}(z_1\overline{z_2})| = |z_1\overline{z_2}|.$$

On a donc $\operatorname{Re}(z_1\overline{z_2})^2 = |z_1\overline{z_2}|^2 = \operatorname{Re}(z_1\overline{z_2})^2 + \operatorname{Im}(z_1\overline{z_2})^2$ donc $\operatorname{Im}(z_1\overline{z_2}) = 0$. Ainsi, le nombre $z_1\overline{z_2}$ est un réel. D'où $z_1\overline{z_2} = \operatorname{Re}(z_1\overline{z_2}) = |\operatorname{Re}(z_1\overline{z_2})|$. Ainsi, $z_1\overline{z_2} \in \mathbb{R}_+$.

Notons α ce réel positif.

On a alors :
$$z_2\overline{z_1} = \overline{z_1}\overline{z_2} = \overline{\alpha} = \alpha$$
.
Si $z_1 \neq 0$, alors $z_2 = z_2 \frac{z_1\overline{z_1}}{|z_1|^2} = \frac{\alpha}{|z_1|^2} z_1$, donc en posant $\lambda = \frac{\alpha}{|z_1|^2}$, on a $\lambda \in \mathbb{R}_+$ et $z_2 = \lambda z_1$.

Réciproquement,

- si $z_1 = 0$, on a l'égalité
- si il existe $\lambda \in \mathbb{R}_+$ tel que $z_2 = \lambda z_1$, on a :

$$|z_1 + z_2| = |(1 + \lambda)z_1|$$

= $(1 + \lambda)|z_1|$ car $1 + \lambda \in \mathbb{R}_+$

Et

$$\begin{aligned} |z_1| + |z_2| &= |z_1| + |\lambda z_1| \\ &= |z_1| + |\lambda| |z_1| \\ &= (1 + \lambda) |z_1| \quad \operatorname{car} \lambda \in \mathbb{R}_+ \end{aligned}$$

donc on a égalité.

Corollaire

Pour tout $z_1, z_2 \in \mathbb{C}$, $||z_1| - |z_2|| \le |z_1 - z_2|$.

Démonstration. Soient $z_1, z_2 \in \mathbb{C}$. On a :

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

$$\iff$$
 $-|z_1 - z_2| \le |z_1| - |z_2| \le |z_1 - z_2|$

Or, par la proposition précédente, on a :

$$|z_2| = |z_2 - z_1 + z_1| \le |z_2 - z_1| + |z_1|$$

D'où $-|z_1-z_2| \le |z_1|-|z_2|$. Ainsi, l'inégalité de gauche est vérifiée.

Toujours avec la proposition précédente, on a :

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2|$$

D'où $|z_1| - |z_2| \le |z_1 - z_2|$. L'inégalité de droite est donc aussi vérifiée.

On a donc le résultat souhaité.

Interprétation géométrique du module :

Soit $z \in \mathbb{C}$.

Si M est le point du plan \mathscr{P} d'affixe z alors $|z| = ||\overrightarrow{OM}|| = OM$.

De même, si \overrightarrow{u} est le vecteur du plan d'affixe z alors $|z| = ||\overrightarrow{u}||$

Si *A* et *B* sont deux points du plan d'affixes *a* et *b* alors $|b - a| = ||\overrightarrow{AB}|| = AB$.

L'inégalité triangulaire peut donc s'interpréter de la manière suivante : si z et z' représentent les affixes de deux vecteurs \overrightarrow{u} et \overrightarrow{u}' alors : $||\overrightarrow{u} + \overrightarrow{u}'|| \le ||\overrightarrow{u}|| + ||\overrightarrow{u}'||$.

Le cas d'égalité dans l'inégalité triangulaire correspond au cas où les vecteurs \overrightarrow{u} et $\overrightarrow{u'}$ sont colinéaires de même sens.

Cercles et disques :

Soient $\omega \in \mathbb{C}$ et $r \in \mathbb{R}^*_{\perp}$.

- L'ensemble des points du plan d'affixe z vérifiant $|z \omega| = r$ est le cercle de centre Ω d'affixe ω et de rayon r.
- L'ensemble des points du plan d'affixe z vérifiant $|z-\omega| < r$ (resp. $|z-\omega| \le r$) est le disque ouvert (resp. fermé) de centre Ω d'affixe ω et de rayon r.

disque ouvert (c'est à dire ne contenant pas les points du cercle) contrairement au disque fermé.

2 Nombres complexes de module 1 et trigonométrie

Définition

On note $\mathbb U$ l'ensemble des nombres complexes de module 1 :

$$\mathbb{U} = \{ z \in \mathbb{C}/|z| = 1 \}.$$

 \mathbb{U} s'identifie géométriquement, dans le plan muni d'un repère orthonormé direct, avec le cercle trigonométrique (cercle de centre 0 et de rayon 1) (cas particulier du résultat précédent).

Définition

Soit $\theta \in \mathbb{R}$. On note $e^{i\theta}$ le nombre complexe défini par $e^{i\theta} = \cos\theta + i\sin\theta$

Exemple:

- e^{i0} = 1. Cette nouvelle définition est donc compatible avec la valeur que donne la fonction exponentielle en 0 déjà connue sur \mathbb{R} .
- $e^{2i\pi} = 1$, $e^{i\pi} = -1$.
- $e^{i\frac{\pi}{2}} = i$, $e^{-i\frac{\pi}{2}} = -i$.

Proposition : Paramétrisation de $\mathbb U$ par les fonctions circulaires

Un nombre complexe z est de module 1 si et seulement si il existe $\theta \in \mathbb{R}$ tel que $z = e^{i\theta}$. Autrement dit, on a :

$$\mathbb{U} = \{e^{i\theta}, \ \theta \in \mathbb{R}\}.$$

Démonstration. On procède par double inclusion.

- Soit $\theta \in \mathbb{R}$. Alors, par définition du module, $|e^{i\theta}|^2 = \cos^2 \theta + \sin^2 \theta = 1$. Ainsi $|e^{i\theta}| = 1$ et $\{e^{i\theta}, \theta \in \mathbb{R}\} \subset \mathbb{U}$.
- Réciproquement, soit $z \in \mathbb{U}$. On écrit z sous la forme a+ib avec $(a,b) \in \mathbb{R}^2$. Comme |z|=1, $a^2+b^2=1$. On a alors $a^2 \le 1$, donc $a \in [-1,1]$. Or, la fonction cos réalise une bijection de $[0,\pi]$ sur [-1;1], il existe un (unique) $t \in [0,\pi]$ tel que $x = \cos(t)$.

On a alors $b^2 = 1 - a^2 = 1 - \cos^2 t = \sin^2 t$ donc $b = \pm \sin t$. Comme $t \in [0, \pi]$, $\sin t \ge 0$.

- Si $b \ge 0$, alors $b = \sin t$. On pose $\theta = t$, et on a $z = a + ib = \cos \theta + i \sin \theta = e^{i\theta}$.
- Si b < 0, alors $b = -\sin(t)$. On pose $\theta = -t$ et on a $z = a + ib = \cos t i\sin t = \cos \theta + i\sin \theta = e^{i\theta}$.

On a donc $\mathbb{U} \subset \{e^{i\theta}, \theta \in \mathbb{R}\}.$

Ainsi,
$$\mathbb{U} = \{e^{i\theta} , \theta \in \mathbb{R}\}.$$

Remarque: On retrouve ici un exemple de raisonnement par double inclusion pour montrer une égalité d'ensembles.

Proposition

Soient θ , $\phi \in \mathbb{R}$, on a :

$$\overline{e^{i\theta}} = e^{-i\theta};$$
 $e^{i\theta} e^{i\phi} = e^{i(\theta+\phi)};$ $e^{-i\theta} = \frac{1}{e^{i\theta}};$ $\frac{e^{i\theta}}{e^{i\phi}} = e^{i(\theta-\phi)}$ $e^{i\theta} = e^{i\phi} \iff \theta \equiv \phi \quad [2\pi]$

Démonstration.

- Soit $\theta \in \mathbb{R}$, on a: $e^{i\theta} = \cos\theta + i\sin\theta = \cos\theta i\sin\theta = \cos(-\theta) + i\sin(-\theta) = e^{-i\theta}$.
- Soient $\theta, \phi \in \mathbb{R}$. On a:

 $e^{i\theta}e^{i\phi} = (\cos\theta + i\sin\theta)(\cos\phi + i\sin\theta') = (\cos\theta\cos\phi - \sin\theta\sin\theta') + i(\sin\phi\cos\theta + \sin\theta\cos\phi) = \cos(\theta + \phi) + i\sin(\theta + \phi) = e^{i(\theta + \phi)}.$

- On en déduit que $e^{i\theta}e^{-i\theta}=e^{i\theta}=1$, donc $e^{-i\theta}=\frac{1}{e^{i\theta}}$.
- Soit $\theta, \phi \in \mathbb{R}$. On a les équivalences suivantes :

$$\begin{split} e^{i\theta} &= e^{i\phi} \iff e^{i(\theta-\phi)} = 1 \\ &\iff \cos(\theta-\phi) + i\sin(\theta-\phi) = 1 \\ &\iff \left\{ \begin{array}{l} \cos(\theta-\phi) = 1 \\ \sin(\theta-\phi) = 0 \end{array} \right. \\ &\iff \left\{ \begin{array}{l} \theta-\phi \equiv 0[2\pi] \\ \theta-\phi \equiv 0[\pi] \end{array} \right. \\ &\iff \theta-\phi \equiv 0 \left[2\pi\right] \\ &\iff \theta \equiv \phi \left[2\pi\right] \end{split}$$

Proposition: Formules d'Euler

Pour tout
$$\theta \in \mathbb{R}$$
, on a $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Démonstration. Soit θ ∈ \mathbb{R} . On a :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
 et $e^{-i\theta} = \cos(-\theta) + i\sin(-\theta) = \cos(\theta) - i\sin(\theta)$.

En additionnant et soustrayant ces deux égalités, on obtient le résultat souhaité.

Méthode: factorisation par l'angle moitié

Lorsque l'on a une expression de la forme $e^{ia} \pm e^{ib}$, on met en facteur $e^{i\frac{a+b}{2}}$ puis on utilise la formule d'Euler. Cela est en particulier utile pour :

- · simplifier des puissances
- déterminer les formules de factorisation de $\cos(a) \pm \cos(b)$ ou $\sin(a) \pm \sin(b)$ en prenant la partie réelle ou la partie imaginaire.

L'expression la plus fréquente est : $1 \pm e^{it}$.

• $1 + e^{it}$ avec $t \in \mathbb{R}$:

Soit
$$t \in \mathbb{R}$$
.
 $1 + e^{it} = e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} + e^{+i\frac{t}{2}} \right) = 2\cos\left(\frac{t}{2}\right) e^{it/2}$.
Ainsi, $|1 + e^{it}| = 2|\cos(\frac{t}{2})|$.

- $1 e^{it}$ avec $t \in \mathbb{R}$: $1 - e^{it} = e^{i\frac{t}{2}} \left(e^{-i\frac{t}{2}} - e^{+i\frac{t}{2}} \right) = -2i \sin\left(\frac{t}{2}\right) e^{it/2}$. Ainsi, $|1 - e^{it}| = 2|\sin(\frac{t}{2})|$.
- Factorisation de cos(a) + cos(b) avec $a, b \in \mathbb{R}$: Soient $a, b \in \mathbb{R}$.

$$\begin{aligned} \cos(a) + \cos(b) &= \operatorname{Re}(e^{ia}) + \operatorname{Re}(e^{ib}) = \operatorname{Re}\left(e^{ia} + e^{ib}\right) \\ &= \operatorname{Re}\left(e^{i\frac{(a+b)}{2}}\left(e^{i\frac{(a-b)}{2}} + e^{-i\frac{(a-b)}{2}}\right)\right) = \operatorname{Re}\left(2e^{i\frac{(a+b)}{2}}\cos\left(\frac{(a-b)}{2}\right)\right) = 2\cos\left(\frac{(a-b)}{2}\right)\operatorname{Re}\left(e^{i\frac{(a+b)}{2}}\right) \\ &= 2\cos\left(\frac{(a-b)}{2}\right)\cos\left(\frac{a+b}{2}\right) \end{aligned}$$

• Factorisation de sin(a) + sin(b) avec a, $b \in \mathbb{R}$:

$$\sin(a) + \sin(b) = \operatorname{Im}\left(e^{ia} + e^{ib}\right) = \operatorname{Im}\left(e^{i\frac{(a+b)}{2}}\left(e^{i\frac{(a-b)}{2}} + e^{-i\frac{(a-b)}{2}}\right)\right) = \operatorname{Im}\left(2e^{i\frac{(a+b)}{2}}\cos\left(\frac{(a-b)}{2}\right)\right) = 2\cos\left(\frac{(a-b)}{2}\right)\operatorname{Im}\left(e^{i\frac{(a+b)}{2}}\right)$$

$$= 2\cos\left(\frac{(a-b)}{2}\right)\sin\left(\frac{a+b}{2}\right)$$

• Factorisation de cos(a) - cos(b) avec $a, b \in \mathbb{R}$:

$$\begin{aligned} \cos(a) - \cos(b) &= \operatorname{Re}\left(e^{ia} - e^{ib}\right) = \operatorname{Re}\left(e^{i\frac{(a+b)}{2}}\left(e^{i\frac{(a-b)}{2}} - e^{-i\frac{(a-b)}{2}}\right)\right) = \operatorname{Re}\left(2e^{i\frac{(a+b)}{2}}2i\sin\left(\frac{(a-b)}{2}\right)\right) = 2\sin\left(\frac{(a-b)}{2}\right)\operatorname{Re}\left(ie^{i\frac{(a+b)}{2}}\right) \\ &= -2\sin\left(\frac{(a-b)}{2}\right)\operatorname{Im}\left(e^{i\frac{(a+b)}{2}}\right) \\ &= -2\sin\left(\frac{(a-b)}{2}\right)\sin\left(\frac{a+b}{2}\right) \end{aligned}$$

• Factorisation de $\sin(a) - \sin(b)$ avec a, b $\in \mathbb{R}$:

$$\begin{split} \sin(a) - \sin(b) &= \operatorname{Im}\left(e^{ia} - e^{ib}\right) = \operatorname{Im}\left(e^{i\frac{(a+b)}{2}}\left(e^{i\frac{(a-b)}{2}} - e^{-i\frac{(a-b)}{2}}\right)\right) = \operatorname{Im}\left(2e^{i\frac{(a+b)}{2}}2i\sin\left(\frac{(a-b)}{2}\right)\right) = 2\sin\left(\frac{(a-b)}{2}\right)\operatorname{Im}\left(ie^{i\frac{(a+b)}{2}}\right) \\ &= 2\sin\left(\frac{(a-b)}{2}\right)\operatorname{Re}\left(e^{i\frac{(a+b)}{2}}\right) \\ &= 2\sin\left(\frac{(a-b)}{2}\right)\cos\left(\frac{a+b}{2}\right) \end{split}$$

Proposition : Formule de Moivre

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$, on a $(e^{i\theta})^n = e^{in\theta}$ ou encore par définition de $e^{i\theta}$:

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

Démonstration. Raisonnons par récurrence $n \in \mathbb{N}$.

Pour n = 0 $(e^{i\theta})^0 = 1 = e^{i0}$.

Soit $n \in \mathbb{N}$. Supposons que $(e^{i\theta})^n = e^{in\theta}$. Alors $(e^{i\theta})^{n+1} = (e^{i\theta})^n e^{i\theta} = e^{in\theta} e^{i\theta}$ (par hypothèse de récurrence). On a donc prouvé par récurrence que : $\forall n \in \mathbb{N}$, $(e^{i\theta})^n = e^{in\theta}$ $=e^{i(n+1)\theta}$

 $e^{in\theta}$

Soit $n \in \mathbb{Z} \setminus \mathbb{N}$. On a $e^{in\theta} = \frac{1}{e^{-in\theta}} = \frac{1}{(e^{i\theta})^{-n}} = (e^{i\theta})^n$.

Méthode: Linéarisation

Pour linéariser une expression trigonométrique de la forme $\cos^k x \sin^l x$ (en combinaison linéaire de termes en $\cos(\alpha x)$ ou $\sin(\beta x)$), on procède comme suit :

- 1. On utilise les formules d'Euler pour exprimer $\cos x$ et $\sin x$ en fonction de e^{ix} et e^{-ix} .
- 2. On développe complètement, avec le binôme de Newton et la formule de Moivre.
- 3. On regroupe les termes deux à deux conjugués pour reconnaître des $\cos(\alpha x)$ ou $\sin(\beta x)$.

Exemple: Soit $x \in \mathbb{R}$. Linéariser $\cos^3(x) \sin^2(x)$.

$$\begin{aligned} \cos^3(x)\sin^2(x) &= \left(\frac{e^{ix} + e^{-ix}}{2}\right)^3 \times \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^2 \\ &= -\frac{1}{32}(e^{3ix} + 3e^{ix} + 3e^{-ix} + e^{-3ix})(e^{2ix} - 2 + e^{-2ix}) \\ &= -\frac{1}{32}(e^{5ix} + 3e^{3ix} + 3e^{ix} + e^{-ix} - 2e^{3ix} - 6e^{ix} \\ &\quad - 6e^{-ix} - 2e^{-3ix} + e^{ix} + 3e^{-ix} + 3e^{-3ix} + e^{-5ix}) \\ &= -\frac{1}{32}\Big((e^{5ix} + e^{-5ix}) + (e^{3ix} + e^{-3ix}) - 2(e^{ix} + e^{-ix})\Big) \\ &= -\frac{1}{16}\Big(\cos(5x) + \cos(3x) - 2\cos(x)\Big). \end{aligned}$$

Remarque: La linéarisation permet de calculer des primitive de fonctions de la forme $x \mapsto \cos^k x \sin^l x$.

Pour transformer $\cos(nx)$ ou $\sin(nx)$ en un polynôme en cos (ou en sin), on procède comme suit :

- 1. On écrit $\cos(nx) = \text{Re}(e^{inx}) = \text{Re}((e^{ix})^n) = \text{Re}((\cos x + i\sin x)^n)$ grâce à la formule de Moivre.
- 2. On développe avec le binôme de Newton.
- 3. On ne garde que la partie réelle (ou imaginaire dans le cas d'un sinus).

Exemple : Soit $x \in \mathbb{R}$. Exprimer $\cos(4x)$ en fonction de $\cos x$. On a

$$\cos(4x) = \operatorname{Re}(e^{4ix})$$

$$= \operatorname{Re}((\cos x + i \sin x)^{4})$$

$$= \operatorname{Re}(\cos^{4}(x) + 4i \cos^{3} x \sin(x) - 6\cos^{2}(x) \sin^{2}(x) - 4i \cos(x) \sin^{3}(x) + \sin^{4}(x))$$

$$= \cos^{4}(x) - 6\cos^{2}(x)(1 - \cos^{2}(x)) + (1 - \cos^{2}(x))^{2}$$

$$= \cos^{4}(x) + 1 - 2\cos^{2}(x) + \cos^{4}(x) - 6\cos^{2}(x) + 6\cos^{4}(x)$$

$$= 8\cos^{4}(x) - 8\cos^{2}(x) + 1$$

Méthode

La formule de Moivre permet de simplifier les sommes trigonométriques de la forme $\sum_{k=0}^{n} \cos(kt)$ ou $\sum_{k=0}^{n} \sin(kt)$, en écrivant cos et sin comme les parties réelles et imaginaires d'exponentielles complexes.

Exemple: Soit $x \in \mathbb{R}$, calculer $S_n = \sum_{k=0}^n \cos(kx)$ et $T_n = \sum_{k=0}^n \sin(kx)$.

On a:

$$S_n = \sum_{k=0}^n \cos(kx) = \sum_{k=0}^n \operatorname{Re}(e^{ikx}) = \operatorname{Re}\left(\sum_{k=0}^n e^{ikx}\right) = \operatorname{Re}\left(\sum_{k=0}^n (e^{ix})^k\right) \quad \text{(par la formule de Moivre)}$$

On reconnait la somme des n+1 premiers termes d'une suite géométrique de raison e^{ix} et de premier terme 1. De plus, $e^{ix} = 1 = e^{i0} \iff x \equiv 0$ [2π].

- Si $x = 0[2\pi]$ alors, $S_n = \text{Re}(n+1) = n+1$.
- Si $x \neq 0[2\pi]$ ($e^{ix} \neq 1$), on a donc :

$$\begin{split} S_n &= \text{Re}\left(\frac{1 - e^{ix(n+1)}}{1 - e^{ix}}\right) = \text{Re}\left(\frac{e^{ix(n+1)/2}(e^{-ix(n+1)/2} - e^{ix(n+1)/2})}{e^{ix/2}(e^{-ix/2} - e^{ix/2})}\right) \\ &= \text{Re}\left(e^{ixn/2}\frac{-2i\sin\left(\frac{(n+1)x}{2}\right)}{-2i\sin\left(\frac{x}{2}\right)}\right) = \text{Re}(e^{ixn/2})\frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \\ &= \cos\left(\frac{nx}{2}\right)\frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}. \end{split}$$

On a:

$$T_n = \sum_{k=0}^n \sin(kx) = \sum_{k=0}^n \operatorname{Im}(e^{ikx}) = \operatorname{Im}\left(\sum_{k=0}^n e^{ikx}\right) = \operatorname{Im}\left(\sum_{k=0}^n (e^{ix})^k\right) \quad \text{(par la formule de Moivre)}$$

On reconnait la somme des n+1 premiers termes d'une suite géométrique de raison e^{ix} et de premier terme 1. De plus, $e^{ix}=1=e^{i0}$ $\iff x\equiv 0$ [2π].

- Si $x = 0[2\pi]$ alors, $T_n = \text{Im}(n+1) = 0$.
- Si $x \neq 0[2\pi]$ ($e^{ix} \neq 1$), on a donc :

$$\begin{split} T_n &= \operatorname{Im} \left(\frac{1 - e^{ix(n+1)}}{1 - e^{ix}} \right) = \operatorname{Im} \left(\frac{e^{ix(n+1)/2} (e^{-ix(n+1)/2} - e^{ix(n+1)/2})}{e^{ix/2} (e^{-ix/2} - e^{ix/2})} \right) \\ &= \operatorname{Im} \left(e^{ixn/2} \frac{-2i \sin \left(\frac{(n+1)x}{2} \right)}{-2i \sin \left(\frac{x}{2} \right)} \right) = \operatorname{Im} (e^{ixn/2}) \frac{\sin \left(\frac{(n+1)x}{2} \right)}{\sin \left(\frac{x}{2} \right)} \\ &= \cos \left(\frac{nx}{2} \right) \frac{\sin \left(\frac{(n+1)x}{2} \right)}{\sin \left(\frac{x}{2} \right)}. \end{split}$$

3 Forme trigonométrique, argument

Théorème : Forme trigonométrique d'un nombre complexe non nul

Soit $z \in \mathbb{C}^*$

- Il existe $r_0 \in \mathbb{R}_+^*$ et $\theta_0 \in \mathbb{R}$ tels que $z = r_0 e^{i\theta_0}$.
- Soit $\theta \in \mathbb{R}$, $r \in \mathbb{R}^*_{+}$.

$$z = re^{i\theta} \iff \begin{cases} r = r_0 = |z| \\ \theta \equiv \theta_0 [2\pi] \end{cases}$$

• Comme $z \neq 0$, on a $|z| \neq 0$, on peut donc poser $u = \frac{z}{|z|}$. On a alors |u| = 1, donc $u \in \mathbb{U}$. Ainsi, il existe $\theta_0 \in \mathbb{R}$ tel que $u = e^{i\theta_0}$. Ainsi $z = |z|e^{i\theta_0}$ ce qui prouve le résultat en posant $r_0 = |z|$. Soit $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. On raisonne par double implication.

• Si $z = re^{i\theta}$ alors on a $|z| = |re^{i\theta}| = |r||e^{i\theta}| = r$ car $|e^{i\theta}| = 1$ et $r \in \mathbb{R}_+$. Ainsi, $|z| = r = r_0$. On a alors $|z|e^{i\theta} = z = |z|e^{i\theta_0}$. Or, $|z| \neq 0$ donc $e^{i\theta} = e^{i\theta_0}$. Ainsi, $\theta \equiv \theta_0[2\pi]$ d'après une proposi-

• Réciproquement, si $r = r_0 = |z|$ et si $\theta = \theta_0$ [2 π] alors $e^{i\theta} = e^{i\theta_0}$ donc $z = r_0 e^{i\theta_0} = r e^{i\theta}$.

Définition

Soit $z \in \mathbb{C}^*$.

- Tout réel θ tel que $z = |z|e^{i\theta}$ est appelé un argument de z.
- On appelle forme trigonométrique de z toute écriture de la forme :

$$z = |z|e^{i\theta} = |z|(\cos\theta + i\sin\theta)$$
 avec $\theta \in \mathbb{R}$

Remarque: La forme trigonométrique d'un nombre complexe est très pratique pour le calcul de puissances, grâce à la formule de Moivre.

Remarque: Un nombre complexe non nul admet toujours une infinité d'arguments. Plus précisément, si θ_0 est un argument de z alors les arguments de z sont les $\theta_0 + 2k\pi$ avec $k \in \mathbb{Z}$.

Définition

Soit $z \in \mathbb{C}^*$. On appelle argument principal de z et on note $\arg(z)$ l'unique argument de z appartenant à $]-\pi,\pi]$.

Proposition

Soit $z \in \mathbb{C}^*$, $\theta \in \mathbb{R}$.

 θ est un argument de z si et seulement si $\theta \equiv \arg(z) [2\pi]$.

Méthode: détermination d'un argument

Dans la plupart des cas, il suffit d'écrire $\frac{z}{|z|}$ et de reconnaitre que cette expression s'écrit aussi sous la forme $e^{i\theta}$. Le réel θ est alors un argument de z.

Exemple:

• Déterminer un argument de 1+i.

On a $1+i=\sqrt{2}\left(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)=\sqrt{2}e^{i\frac{\pi}{4}}$. Ainsi, un argument de 1+i est $\frac{\pi}{4}$.

Donner la forme cartésienne de $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{2018}$

$$1 + i\sqrt{3} = 2e^{i\frac{\pi}{3}} \text{ et } 1 - i = \sqrt{2}e^{-i\frac{\pi}{4}}.$$
Ainsi,
$$\frac{1 + i\sqrt{3}}{1 - i} = \frac{2e^{i\frac{\pi}{3}}}{\sqrt{2}e^{-i\frac{\pi}{4}}} = \sqrt{2}e^{7i\frac{\pi}{12}}.$$

On a alors:

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{2018} = (\sqrt{2})^{2018}e^{7\times2018i\frac{\pi}{12}} = 2^{1009}e^{7\times1009i\frac{\pi}{6}} = 2^{1009}e^{7063i\frac{\pi}{6}}.$$

$$\text{Or, } 7063 = 588 \times 12 + 7 \text{ Ainsi, } \left(\frac{1+i\sqrt{3}}{1-i}\right)^{2018} = 2^{1009} e^{(588 \times 12 + 7)i\frac{\pi}{6}} = 2^{1009} e^{588 \times 2i\pi + 7i\frac{\pi}{6}} = 2^{1009} e^{588 \times 2i\pi} \times e^{7i\frac{\pi}{6}}.$$

- Déterminer un argument de $1 + e^{ix}$ pour $x \in]-\pi,\pi[$ et pour $x \in]\pi,2\pi[$. Soit $x \in]-\pi,2\pi[$, $1 + e^{ix} = 2\cos\left(\frac{x}{2}\right)e^{ix/2}$.
 - Si $x \in]-\pi,\pi[$, $|1+e^{ix}|=\left|2\cos\left(\frac{x}{2}\right)\right|=2\cos\left(\frac{x}{2}\right)$ car $\cos\left(\frac{x}{2}\right)>0$. Ainsi, un argument de $1+e^{ix}$ est $\frac{x}{2}$.
 - Si $x \in]\pi, 2\pi[$, $|1 + e^{ix}| = \left|2\cos\left(\frac{x}{2}\right)\right| = -2\cos\left(\frac{x}{2}\right) \operatorname{car}\cos\left(\frac{x}{2}\right) < 0.$ Ainsi, $1 + e^{ix} = -2\cos\left(\frac{x}{2}\right)\left(-e^{i(x/2)}\right) = -2\cos\left(\frac{x}{2}\right)e^{i(x/2+\pi)}$. Ainsi, un argument de $1 + e^{ix}$ est $\frac{x}{2} + \pi$.

Remarque : \bigwedge si $z = ae^{i\theta}$ avec $a \in \mathbb{R}^*$ et $\theta \in \mathbb{R}$ alors on a |z| = |a| où |a| désigne la valeur absolue du réel a et donc :

- si a > 0, un argument de z est θ .
- si a < 0, alors $z = -a(-e^{i\theta}) = -ae^{i(\theta} + \pi)$ et un argument de z est $\theta + \pi$.

Proposition

Soient $z, z' \in \mathbb{C}^*$.

$$z = z' \iff \begin{cases} |z| = |z'| \\ \arg(z) = \arg(z') \end{cases}$$

Remarque: Soit $z = |z|e^{i\theta}$ et $z' = |z'|e^{i\theta'}$ avec $\theta, \theta' \in \mathbb{R}$. On a :

$$z = z' \iff \begin{cases} |z| = |z'| \\ \theta \equiv \theta'[2\pi] \end{cases}$$

Soient $z_1 \in \mathbb{C}^*$ et $z_2 \in \mathbb{C}^*$ d'arguments respectifs θ_1 et θ_2 . Soit $n \in \mathbb{Z}$. Alors

- 1. $\overline{z_1}$ est non nul et $-\theta_1$ est un argument de $\overline{z_1}$.
- 2. $z_1 z_2$ est non nul et $\theta_1 + \theta_2$ est un argument de $z_1 + z_2$. 3. $\frac{1}{z_2}$ est non nul et $-\theta_2$ est un argument de $\frac{1}{z_2}$. 4. $\frac{z_1}{z_2}$ est non nul et $\theta_1 \theta_2$ est un argument de $\frac{z_1}{z_2}$.
- est non nul et $n\theta_1$ est un argument de z_1^n .
- 6. $-z_1$ est non nul et $\theta_1 + \pi$ est un argument de $-z_1$.

Démonstration. Comme θ_1 est un argument de z_1 , on a $z_1 = |z_1|e^{i\theta_1}$. De même, $z_2 = |z_2|e^{i\theta_2}$.

- $\overline{z_1} = \overline{|z_1|e^{i\theta_1}} = |z_1|e^{-i\theta_1} = |\overline{z_1}|e^{-i\theta_1}$.
- On a: $z_1 z_2 = |z_1| e^{i\theta_1} \times |z_2| e^{i\theta_2} = |z_1| |z_2| e^{i(\theta_1 + \theta_2)} = |z_1 z_2| e^{i(\theta_1 + \theta_2)}$.
- On a $\frac{1}{z_2} = \frac{1}{|z_2|e^{i\theta_2}} = \frac{1}{|z_2|}e^{-i\theta_2} = \left|\frac{1}{z_2}\right|e^{-i\theta_2}$
- Comme $\frac{z_1}{z_2} \frac{|z_1| e^{i\theta_1}}{|z_2| e^{i\theta_2}} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 \theta_2)} = \left| \frac{z_1}{z_2} \right| e^{i(\theta_2 \theta_1)}$.

Ainsi, $\theta_1 - \theta_2$ est un argument de $\frac{z_1}{z_2}$

- $z_1^n = (|z_1|e^{i\theta_1})^n = |z_1|^n (e^{i\theta_1})^n = |z_1^n|e^{in\theta_1}$ (par récurrence on a $|z_1|^n = |z_1^n|$, la formule de Moivre permet alors de
- $-z_1 = -|z_1|e^{i\theta_1} = |z_1|e^{i(\theta_1 + \pi)} = |-z_1|e^{i(\theta_1 + \pi)}$

Proposition Calcul d'arguments

Soit $z = a + ib \in \mathbb{C}^*$ avec $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Alors:

$$arg(z) = \arctan\left(\frac{b}{a}\right)$$
 si $a > 0$

Remarque: On a:

$$\arg(z) = \begin{cases} \arctan\left(\frac{b}{a}\right) - \pi & \text{si } a < 0 \text{ et } b < 0 \\ \arctan\left(\frac{b}{a}\right) + \pi & \text{si } a < 0 \text{ et } b > 0 \\ \operatorname{signe}(b) \frac{\pi}{2} & \text{si } a = 0 \end{cases}$$

Démonstration. On a $z = |z|e^{i\arg(z)}$. Ainsi, $z = |z|\cos(\arg z) + i|z|\sin(\arg z)$ donc $a = |z|\cos(\arg z)$ et $b = |z|\sin(\arg z)$.

- Si $a \neq 0$ alors $\cos(\arg z) \neq 0$. Donc $\tan(\arg z) = \frac{b}{a} = \tan\left(\arctan\frac{b}{a}\right)$. Or, $\arg z \in]-\pi,\pi]$ et $\arctan\frac{b}{a} \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.
 - si a > 0 alors $\arg z \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{donc} \arg z = \arctan \frac{v}{a}.$
 - si a < 0 alors:

- si b < 0 alors $\arg z \in \left] -\pi, -\frac{\pi}{2} \right[$. Donc $\arg z + \pi \in \left] 0, \frac{\pi}{2} \right[$ et $\tan(\arg z + \pi) = \tan(\arg z) = = \tan\left(\arctan\frac{b}{a}\right)$. Ainsi, $\arg z + \pi = \arctan\frac{b}{a}$.
- si $b \ge 0$, alors $\arg z \in \left] \frac{\pi}{2}, \pi \right[$. Donc $\arg z \pi \in \left] \frac{\pi}{2}, 0 \right[$ et $\tan(\arg z \pi) = \tan(\arg z) = = \tan\left(\arctan\frac{b}{a}\right)$. Ainsi, $\arg z \pi = \arctan\frac{b}{a}$.
- si a = 0 alors z = ib donc $arg(z) = signe(b) \frac{\pi}{2}$

Interprétation géométrique de l'argument :

Soit $z \in \mathbb{C}^*$ et θ un argument de z.

Si M a pour affixe z, alors, θ représente une mesure de l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$.

Si \vec{u} a pour affixe z, alors, θ représente une mesure de l'angle orienté (\vec{i}, \vec{u}) .

Proposition

Si $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, il existe $(A, \omega) \in \mathbb{R}_+^* \times \mathbb{R}$ tels que : $\forall t \in \mathbb{R}$, $a \cos t + b \sin t = A \cos(t - \omega)$.

Démonstration. Soit $t \in \mathbb{R}$, d'après la formule d'Euler, on a :

$$a\cos t + b\sin t = a\left(\frac{e^{it} + e^{-it}}{2}\right) + b\left(\frac{e^{it} - e^{-it}}{2i}\right) = \frac{(a - ib)}{2}e^{it} + \frac{(a + ib)}{2}e^{-it}.$$

Notons $z = a + ib \neq 0$ et $z = Ae^{i\omega}$ sa forme trigonométrique (avec $A \in \mathbb{R}_+^*$ et $\omega \in \mathbb{R}$), alors

$$a\cos(t) + b\sin t = \frac{\overline{z}}{2}e^{it} + \frac{z}{2}e^{-it} = \frac{A}{2}e^{-i\omega}e^{it} + \frac{A}{2}e^{i\omega}e^{-it} = \frac{A}{2}(e^{i(t-\omega)} + e^{-i(t-\omega)}) = A\cos(t-\omega)$$

Remarque : Une telle fonction $t\mapsto a\cos t + b\sin t$ est appelée signal sinusoïdal. Physiquement, le réel A représente son amplitude, et ω sa phase. Comme vu dans la preuve, l'amplitude est le module de a+ib et la phase son argument.

Méthode

Pour transformer une expression de la forme $a \cos t + b \sin t$ avec $a, b \in \mathbb{R}$:

- On pose z = a + ib. On détermine le module et un argument θ de z.
- On a alors:

 $a\cos t + b\sin t = |z|\cos\theta\cos t + |z|\sin\theta\sin t = |z|\cos(t-\theta)$

Ceci est particulièrement utile pour résoudre une équation de la forme $a\cos t + b\sin t = C$ avec $a, b, C \in \mathbb{R}$.

Soit $x \in \mathbb{R}$. Posons $z = \sqrt{3} - i$.

On a:

$$z = 2\left(\frac{\sqrt{3}}{2} - i\frac{1}{2}\right)$$

$$= 2e^{-i\frac{\pi}{6}}$$

$$= 2\cos\left(\frac{-\pi}{6}\right) + 2i\sin\left(\frac{-\pi}{6}\right)$$

$$= 2\cos\left(\frac{\pi}{6}\right) - 2i\sin\left(\frac{\pi}{6}\right)$$

П

Ainsi, on a:

$$\sqrt{3}\cos x - \sin x = 1 \iff 2\cos\frac{\pi}{6}\cos x - 2\sin\frac{\pi}{6}\sin x = 1$$

$$\iff 2\left(\cos\frac{\pi}{6}\cos x - \sin\frac{\pi}{6}\sin x\right) = 1$$

$$\iff 2\cos\left(x + \frac{\pi}{6}\right) = 1$$

$$\iff \cos\left(\frac{\pi}{6} + x\right) = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\iff \frac{\pi}{6} + x \equiv \pm\frac{\pi}{3}\left[2\pi\right]$$

$$\iff \begin{cases} x \equiv \frac{\pi}{6}\left[2\pi\right] \\ \text{ou} \\ x \equiv -\frac{\pi}{2}\left[2\pi\right] \end{cases}$$

L'ensemble des solutions est donc $\{\frac{\pi}{6}+2k\pi, k\in\mathbb{Z}\}\cup\{-\frac{\pi}{2}+2k\pi, k\in\mathbb{Z}\}.$

4 Équations algébriques dans C

4.1 Racines carrées d'un nombre complexe

Définition

On appelle racine carrée d'un nombre complexe z tout nombre complexe u vérifiant $u^2 = z$.

Proposition

Tout nombre complexe non nul admet exactement deux racines carrées et celles-ci sont opposées.

Démonstration. Soit $z \in \mathbb{C}^*$ de forme trigonométrique $re^{i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. 0 n'est pas une racine carrée de z. On peut donc chercher les racines carrées sous forme trigonométrique. Soient $s \in \mathbb{R}_+^*$, $\beta \in \mathbb{R}$. Posons $u = se^{i\beta}$. On a :

$$u^{2} = z \iff s^{2}e^{2i\beta} = re^{i\theta}$$

$$\iff \begin{cases} s^{2} = r \\ 2\beta \equiv \theta \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} s = \sqrt{r} \quad \text{car } s > 0 \\ \beta \equiv \frac{\theta}{2} \quad [\pi] \end{cases}$$

$$\iff \begin{cases} u = \sqrt{r}e^{i\theta/2} \\ \text{ou} \\ u = \sqrt{r}e^{i(\theta/2 + \pi)} = -\sqrt{r}e^{i\theta/2} \end{cases}$$

On a donc le résultat voulu.

Remarque:

- Même un réel a strictement positif admet deux racines carrées. Cependant par convention, on privilégie l'une des deux (celle qui est positive). On l'appelle alors **la** racine carrée de a et on note \sqrt{a} . Les racines carrées complexes de a sont alors \sqrt{a} et $-\sqrt{a}$.

- On ne sait pas dans $\mathbb C$ privilégier l'une des deux racines contrairement à ce qui se passe lorsque $a \in \mathbb R^+$. Ainsi :
 - Il est impossible d'utiliser la notation \sqrt{z} pour un complexe quelconque.
 - Il faut parler d'une racine carrée de *a* et non pas de *la* racine carrée de *z*.
- 0 n'admet qu'une seule racine carrée, lui-même.

Méthode: détermination des racines carrées d'un nombre complexe

Soit $z \in \mathbb{C}^*$.

\bullet Via la forme trigonométrique de z

Si $z = re^{i\theta}$ où r = |z|, ses racines carrées sont $\sqrt{r}e^{i\frac{\theta}{2}}$ et $-\sqrt{r}e^{i\frac{\theta}{2}}$ (cf preuve).

Via la forme cartésienne de z

On note z = a + ib avec $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ la forme cartésienne de z. Soit $x, y \in \mathbb{R}$.

$$(x+iy)^2 = z \iff \begin{cases} x^2 - y^2 = a & \text{(égalité des parties réelles)} \\ 2xy = b & \text{(égalité des parties imaginaires)} \\ x^2 + y^2 = \sqrt{a^2 + b^2} & \text{(égalité des modules)} \end{cases}$$

On peut alors calculer x^2 et y^2 puis en déduire x et y, les signes relatifs de x et y étant donnés par l'équation 2xy = b.

4.2 Équation du second degré à coefficients complexes

Proposition : Résolution de l'équation du second degré

Soit $az^2 + bz + c = 0$ une équation d'inconnue $z \in \mathbb{C}$ à coefficients $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$. On appelle discriminant de l'équation, le nombre $\Delta = b^2 - 4ac$.

— Si $\Delta = 0$, l'équation admet une unique solution $z_0 = -\frac{b}{2a}$, appelée racine double et

 $\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_0)^2.$ — Si $\Delta \neq 0$, l'équation admet deux solutions distinctes, $z_1 = \frac{-b - \delta}{2a}$ et $z_2 = \frac{-b + \delta}{2a}$, où δ est une racine carrée de Δ et

 $\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2).$

Démonstration. Soit $z \in \mathbb{C}$. On a :

$$az^{2} + bz + c = a\left(z + \frac{b}{a}z + \frac{c}{a}\right) \quad \text{car } a \neq 0$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right)$$

Cette écriture est appelée forme canonique du trinôme.

Soit δ une racine carrée de Δ . On a alors :

$$az^{2} + bz + c = a\left(\left(z + \frac{b}{2a}\right)^{2} - \left(\frac{\delta}{2a}\right)^{2}\right) = a\left(z - \frac{-b + \delta}{2a}\right)\left(z - \frac{-b - \delta}{2a}\right)$$

• Si $\Delta = 0$ alors $\delta = 0$. L'équation admet une racine double $z_0 = -\frac{b}{2a}$ et $az^2 + bz + c = (z - z_0)^2$.

• Si $\Delta \neq 0$, l'équation admet deux solutions distinctes $z_1 + \frac{-b - \delta}{2a}$ et $z_2 = \frac{-b + \delta}{2a}$ et $az^2 + bz + c = a(z - z_1)(z - z_2)$.

Remarque : Si $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$ et si le discriminant de $az^2 + bz + c = 0$ est strictement négatif alors ses solutions sont complexes conjugués.

Exemple : Résolvons l'équation $z^2 - 2z - i = 0$ d'inconnue $z \in \mathbb{C}$.

Son discriminant est 4+4i. Par calcul précédent, ses racines carrées sont $\pm 2\left(\sqrt{\frac{1+\sqrt{2}}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}\right)$. Ainsi les solutions de l'équation sont $1\pm\left(\sqrt{\frac{1+\sqrt{2}}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}\right)$.

Proposition: Relations coefficients racines

Soit $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$. Soient $z_1, z_2 \in \mathbb{C}$. Alors :

 z_1, z_2 sont les solutions (éventuellement confondues) de l'équation $az^2 + bz + c = 0 \iff \begin{cases} z_1 + z_2 = -\frac{b}{a} \\ z_1 z_2 = \frac{c}{a} \end{cases}$

- Supposons que z_1 et z_2 sont les solutions de $az^2 + bz + c = 0$. Démonstration.

Notons δ une racine carrée de $\Delta = b^2 - 4ac$. Alors $z_1 = \frac{-b+\delta}{2a}$ et $z_2 = \frac{-b-\delta}{2a}$ (quitte à changer δ en $-\delta$). Ainsi $z_1 + z_2 = -\frac{b}{a}$ et $z_1 z_2 = \frac{(-b+\delta)(-b-\delta)}{4a^2} = \frac{b^2-\delta}{4a^2} = \frac{b^2-\Delta}{4a^2} = \frac{c}{a}$.

- Réciproquement, supposons que $z_1, z_2 \in \mathbb{C}$ vérifient $z_1 + z_2 = -\frac{b}{a}$ et $z_1 z_2 = \frac{c}{a}$. Soit $z \in \mathbb{C}$, on a alors : $a(z-z_1)(z-z_2) = az^2 - a(z_1+z_2)z + az_1z_2 = az^2 + bz + c$. Ainsi, z_1 et z_2 sont les deux solutions de l'équation $az^2 + bz + c = 0$.

Méthode

Pour résoudre un système de la forme $\begin{cases} xy = \alpha \\ x + y = \beta \end{cases}$, on introduit l'équation $z^2 - \beta z + \alpha = 0$.

(x, y) est alors le couple de solutions de cette équation du second degré (écrit dans un ordre ou l'autre).

4.3 Racines *n*-ièmes

Racines n-ièmes de l'unité

Définition

Soit $n \in \mathbb{N}^*$. On appelle racine n-ième de l'unité tout nombre complexe z vérifiant $z^n = 1$. On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité.

Exemple : $U_2 = \{-1, 1\}.$

Proposition : Énumèration de l'ensemble U_n

Soit $n \in \mathbb{N}^*$. Il existe exactement n racines n-ièmes de l'unité distinctes, qui sont les $\xi_k = e^{2ik\pi/n}$ avec $k \in [0, n-1]$. Ainsi:

$$\mathbb{U}_n = \left\{ e^{2ik\pi/n}, k \in \llbracket 0, n-1 \rrbracket \right\}.$$

• Etape 1 : Montrons que $\mathbb{U}_n = \{e^{2ik\pi/n}, k \in \mathbb{Z}\}$

Les racines n-ième de 1 sont non nuls. On peut donc les chercher sous forme trigonométrique. Soit $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. Posons $z = re^{i\theta}$. On a :

$$\begin{split} z^n &= 1 &\iff r^n e^{in\theta} = 1 \text{ (par la formule de Moivre) .} \\ &\iff \left\{ \begin{array}{l} r^n &= 1 \\ n\theta &\equiv 0 \quad [2\pi] \end{array} \right. \\ &\iff \left\{ \begin{array}{l} r &= 1 \quad \text{car } r \in \mathbb{R}_+^* \\ \theta &\equiv 0 \quad \left[\frac{2\pi}{n}\right] \end{array} \right. \\ &\iff \left\{ \begin{array}{l} r &= 1 \\ \exists k \in \mathbb{Z}, \ \theta = \frac{2k\pi}{n} \end{array} \right. \\ &\iff \exists k \in \mathbb{Z}, \ z = e^{2ik\pi/n} \end{split}$$

On a donc montré que $\mathbb{U}_n = \{e^{2ik\pi/n}, k \in \mathbb{Z}\}.$

• Etape 2 : Montrons que $\mathbb{U}_n = \{e^{2ik\pi/n}, k \in [\![0,n-1]\!]\}$ Montrons que $\{e^{2ik\pi/n}, k \in \mathbb{Z}\} = \{e^{2ik\pi/n}, k \in [0, n-1]\}.$

- On sait déjà que $\{e^{2ik\pi/n}, k \in [0, n-1]\} \subset \{e^{2ik\pi/n}, k \in \mathbb{Z}\}.$
- Montrons désormais que $\{e^{2ik\pi/n}, k \in \mathbb{Z}\} \subset \{e^{2ik\pi/n}, k \in [0, n-1]\}$. Soit $k \in \mathbb{Z}$. Effectuons la division euclidienne de k par n. Il existe $q \in \mathbb{Z}$ et $r \in [0, n-1]$ tel que k = nq + r. Ainsi, $e^{2ik\pi/n} = e^{2i(qn+r)\pi/n} = e^{2iq\pi+2ir\pi/n} = e^{2iq\pi}e^{2ir\pi/n} = e^{2ir\pi/n}$. Donc $e^{2ik\pi/n} \in \{e^{2ik\pi/n}, k \in [0, n-1]\}$ et $\{e^{2ik\pi/n}, k \in \mathbb{Z}\} \subset \{e^{2ik\pi/n}, k \in [0, n-1]\}$.

On a ainsi prouvé que $\mathbb{U}_n = \{e^{2ik\pi/n}, k \in [0, n-1]\}$.

Il y a donc au plus n racines n-ièmes distinctes.

- Etape 3 : Démontrons désormais qu'il y a exactement n racines n-ièmes dictinctes

Pour ce faire, étudions le cas d'égalité:

Soit $(k,l) \in [0,n-1]$. Supposons que $e^{2ik\pi/n} = e^{2il\pi/n}$. Alors, $\frac{2k\pi}{n} \equiv \frac{2l\pi}{n}$ [2π]. Donc $k \equiv l$ [n] Ainsi, il existe $p \in \mathbb{Z}$ tel que k-l=pn. Or, $k,l \in [0,n-1]$ donc -n < k-l < n. Ainsi, -n < pn < n et $n \neq 0$ d'où -1 donc <math>p = 0. Ainsi, k = l. Ainsi, les $e^{2ik\pi/n}$ sont deux à deux distincts pour $k \in [0,n-1]$. Ce qui prouve le résultat annoncé.

Remarque : On peut encore prendre [1, n] ou tout ensemble de n entiers consécutifs à la place de [0, n-1]. **Exemple :**

- On note généralement $j = e^{2i\pi/3}$, les racines cubiques de l'unité sont alors 1, j et j^2 .
- Les racines quatrièmes de l'unité sont ± 1 et $\pm i$.

Proposition

Soit *n* un entier supérieur ou égal à 2.

- Si on note $\xi_1 = e^{2i\pi/n}$, alors les racines n-ième de l'unité sont 1, $\xi_1, \xi_1^2, ..., \xi_1^{n-1}$.
- Si ξ est une racine n-ième de l'unité différente de 1, on a : $\sum_{k=0}^{n-1} \xi^k = 0$
- La somme des *n* racines *n*-ième de l'unité est égale à 0.

Démonstration. • Découle directement de la proposition précédente.

- $1 + \xi + ... + \xi^{n-1}$ constitue la somme des termes d'une progression géométrique de raison $\xi \neq 1$. Ainsi, $1 + \xi + ... + \xi^{n-1} = \frac{1 - \xi^n}{1 - \xi} = 0$ car $\xi^n = 1$.
- Découle directement des points 1 et 2. En posant $\xi = \xi_1$, on obtient le résultat.

Remarque : Les points du plan complexe dont les affixes sont les racines n-ièmes de l'unité forment un polygone régulier à n côtés inscrit dans le cercle trigonométrique.

Les points en question sont tous situés sur le cercle trigonométrique et l'angle au centre formé par deux points consécutifs sur le cercle vaut $\frac{2\pi}{n}$.

Racines *n*-ièmes d'un nombre complexe

Définition

Soient $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$, on appelle racine n-ième de a tout nombre complexe z vérifiant $z^n = a$.

Méthode

• Pour résoudre une équation du type $z^n = a$ avec $a \in \mathbb{C}^*$, on détermine la forme trigonométrique de a: $a = |a|e^{i\theta}$ où $\theta \in \mathbb{R}$ puis on écrit :

$$z^{n} = a \iff \frac{z^{n}}{a} = 1$$

$$\iff \left(\frac{z}{|a|^{1/n}e^{i\theta/n}}\right)^{n} = 1$$

$$\iff \frac{z}{|a|^{1/n}e^{i\theta/n}} \in \mathbb{U}_{n}$$

$$\iff \exists k \in [0, n-1], \frac{z}{|a|^{1/n}e^{i\theta/n}} = e^{2ik\pi/n}$$

$$\iff \exists k \in [0, n-1], z = |a|^{1/n}e^{i(\theta/n+2ik\pi/n)}$$

• Pour résoudre une équation du type $z_1^n = z_2^n$, on se ramène à $\left(\frac{z_1}{z_2}\right)^n = 1$ (après avoir vérifié $z_2 \neq 0$)

Remarque:

- $n = v^n$ ne se simplifie pas en u = v!
- ullet On montre avec le point méthode que : tout nombre complexe non nul a admet exactement n racines n-ièmes distinctes. Si $\theta \in \mathbb{R}$ est un argument de a alors, les racines n-ième de a sont les complexes $|a|^{\frac{1}{n}}e^{i\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right)}$ avec $k \in [0, n-1]$.

Exemple : Déterminer les racines 8-ième de $\frac{1-i}{\sqrt{3}-i}$. Cela revient à résoudre l'équation $z^8=\frac{1-i}{\sqrt{3}-i}$ d'inconnue $z\in\mathbb{C}$.

On a:
$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} e^{-i\pi/4}$$
.
Et $\sqrt{3} - i = 2 \left(\frac{\sqrt{3}}{2} - \frac{i}{2} \right) = 2 e^{-i\pi/6}$.
Ainsi, $\frac{1 - i}{\sqrt{3} - i} = \frac{\sqrt{2}}{2} e^{-i\pi/12} = 2^{-1/2} e^{-i\pi/12}$.
Soit $z \in \mathbb{C}$.

$$z^{8} = \frac{1-i}{\sqrt{3}-i} \iff \frac{z^{8}}{\frac{1-i}{\sqrt{3}-i}} = 1$$

$$\iff \frac{z^{8}}{2^{-1/2}e^{-i\pi/12}} = 1$$

$$\iff \left(\frac{z}{2^{-1/16}e^{-i\pi/96}}\right)^{8} = 1$$

$$\iff \frac{z}{2^{-1/16}e^{-i\pi/96}} \in \mathbb{U}_{8}$$

$$\iff \exists k \in [0,7], \frac{z}{2^{-1/16}e^{-i\pi/96}} = e^{2ik\pi/8}$$

$$\iff \exists k \in [0,7], z = 2^{-1/16}e^{i(k\pi/4-\pi/96)}$$

L'ensemble des solutions est $\{2^{-1/16}e^{i(k\pi/4-\pi/96}, k \in [0,7]\}$.

Exemple : Résolvons l'équation $(z+i)^n = (z-i)^n$ d'inconnue $z \in \mathbb{C}$.

Tout d'abord, on remarque que i n'est pas solution de l'équation. Soit $z \in \mathbb{C} \setminus \{i\}$. On a alors :

$$(z+i)^{n} = (z-i)^{n} \iff \left(\frac{z+i}{z-i}\right)^{n} = 1$$

$$\iff \frac{z+i}{z-i} \in \mathbb{U}_{n}$$

$$\iff \exists k \in [0, n-1], \ \frac{z+i}{z-i} = e^{2ik\pi/n}$$

$$\iff \exists k \in [0, n-1], \ (z+i) = e^{2ik\pi/n}(z-i)$$

$$\iff \exists k \in [0, n-1], \ z(1-e^{2ik\pi/n}) = -i(e^{2ik\pi/n}+1)$$

Pour k = 0, l'équation devient : 0 = -2i qui est impossible. On a donc

$$(z+i)^n = (z-i)^n \iff \exists k \in [1,n-1], \ z(1-e^{2ik\pi/n}) = -i(e^{2ik\pi/n}+1) \\ \iff \exists k \in [1,n-1], \ z = \frac{-i(e^{2ik\pi/n}+1)}{(1-e^{2ik\pi/n})} = -i\frac{e^{ik\pi/n}(e^{ik\pi/n}+e^{-ik\pi/n})}{e^{ik\pi/n}(e^{-ik\pi/n}-e^{ik\pi/n})} = -i\frac{2\cos(k\pi/n)}{-2i\sin(k\pi/n)} = \frac{\cos(k\pi/n)}{\sin(k\pi/n)} = \frac{\cos($$

Ainsi, l'ensemble des solutions est $\left\{\frac{\cos(k\pi/n)}{\sin(k\pi/n)}, k \in [1, n-1]\right\}$

5 Exponentielle complexe

Définition

Pour tout $z \in \mathbb{C}$, on appelle exponentielle de z et on note e^z ou $\exp(z)$ le nombre complexe défini par :

$$e^z = e^{\text{Re}z} e^{i \text{Im}z}$$
.

Remarque: Cette définition est compatible avec la définition de l'exponentielle :

- sur \mathbb{R} puisque si $z \in \mathbb{R}$ alors Imz = 0 et donc $e^{i \text{Im} z} = 1$ et
- sur $i\mathbb{R}$ puisque si $z \in i\mathbb{R}$ alors Rez = 0 et donc $e^{\text{Re}z} = 1$.

Proposition

Soient $z, z' \in \mathbb{C}$ et $n \in \mathbb{Z}$. On a :

- $|\exp(z)| = e^{\text{Re}z}$ et Imz est un argument de $\exp(z)$.
- $\exp(z+z') = \exp(z) \exp(z')$.
- $\bullet \quad \frac{1}{e^z} = e^{-z}$
- $\frac{e^z}{e^{z'}}$
- $\bullet \quad (e^z)^n = e^{nz}.$
- $\exp(z) = \exp(z') \iff \exists k \in \mathbb{Z}, z z' = 2i\pi k$

Démonstration. • $|e^z| = |e^{\operatorname{Re}(z)}e^{i\operatorname{Im}(z)}| = |e^{\operatorname{Re}(z)}||e^{i\operatorname{Im}(z)}| = e^{\operatorname{Re}(z)}$ car la fonction exponentielle définie sur $\mathbb R$ est strictement positive.

- $e^{z+z'} = e^{\operatorname{Re}(z+z')}e^{i\operatorname{Im}(z+z')} = e^{\operatorname{Re}z+\operatorname{Re}z'}e^{i(\operatorname{Im}z+\operatorname{Im}z')}$. Or, d'après les propriétés de l'exponentielle réelle et de l'exponentielle d'un imaginaire pur, on a : $e^{z+z'} = e^{\operatorname{Re}z}e^{\operatorname{Re}z'}e^{i\operatorname{Im}z}e^{i\operatorname{Im}z'} = e^ze^{z'}$
- $1 = e^0 = e^{z-z} = e^z e^{-z}$ d'après le résultat précédent. Ainsi, $e^{-z} = \frac{1}{e^z}$.
- $\frac{e^z}{e^{z'}} = e^z \times \frac{1}{e^{z'}} = e^z e z' = e^{z z'}$.
- En effet, on a $(e^z)^n = \left(e^{\operatorname{Re}(z)}e^{i\operatorname{Im}(z)}\right)^n$ $= \left(e^{\operatorname{Re}(z)}\right)^n \left(e^{i\operatorname{Im}(z)}\right)^n$ $= e^{n\operatorname{Re}(z)}e^{in\operatorname{Im}(z)}$ $= e^{nz}$

•
$$e^{z} = e^{z'}$$
 \iff
$$\begin{cases} e^{\operatorname{Re}z} = e^{\operatorname{Re}z'} \\ \operatorname{Im}z \equiv \operatorname{Im}z' & [2\pi] \end{cases}$$

$$\iff$$

$$\begin{cases} \operatorname{Re}z = \operatorname{Re}z' \\ \exists k \in \mathbb{Z}, \operatorname{Im}(z) - \operatorname{Im}(z') = 2k\pi \end{cases}$$

$$\iff$$

$$\begin{cases} \operatorname{Re}z = \operatorname{Re}z' & \operatorname{car} \exp : \mathbb{R} \to \mathbb{R}_{+}^{*} \text{ est bijective} \\ \exists k \in \mathbb{Z}, \operatorname{Im}(z) - \operatorname{Im}(z') = 2k\pi \end{cases}$$

$$\iff$$

$$\exists k \in \mathbb{Z}, z - z' = 2k\pi i$$

Soit $z \in \mathbb{C}$. On a:

$$e^z = 3 \iff e^z = e^{\ln 3}$$

 $\iff \exists k \in \mathbb{Z}, z - \ln 3 = 2k\pi i$

L'ensemble des solutions est $\{\ln 3 + 2k\pi i, k \in \mathbb{Z}\}$.

On a:
$$1 + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\pi/3}$$
.

Soit $z \in \mathbb{C}$. On a:

$$e^{z} = 1 + i\sqrt{3} \iff e^{z} = 2e^{i\pi/3}$$

$$\iff e^{z} = e^{\ln 2}e^{i\pi/3}$$

$$\iff e^{z} = e^{\ln 2 + i\pi/3}$$

$$\iff \exists k \in \mathbb{Z}, \ z = \ln 2 + i\frac{\pi}{3} + 2k\pi i$$

L'ensemble des solutions est $\{\ln 2 + i\frac{\pi}{3} + 2k\pi i, k \in \mathbb{Z}\}.$

Nombres complexes et géométrie plane

6.1 Alignement et orthogonalité

Proposition

Soit $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ deux vecteurs du plan non nuls d'affixes respectives z_1 et z_2 . Une mesure de l'angle $(\overrightarrow{u_1}, \overrightarrow{u_2})$ est donnée par un argument de $\frac{z_2}{z_1}$.

- $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires si et seulement si $\frac{z_2}{z_1} \in \mathbb{R}$.
- $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont orthogonaux si et seulement si $\frac{z_2}{z_1} \in i\mathbb{R}$.

Démonstration. Soit θ_1 (resp. θ_2) un argument de z_1 (resp. z_2).

On a $\theta_1 \equiv (\overrightarrow{i}, \overrightarrow{u_1})[2\pi]$ et $\theta_2 \equiv (\overrightarrow{i}, \overrightarrow{u_2})[2\pi]$. Or, $(\overrightarrow{u_1}, \overrightarrow{u_2}) = (\overrightarrow{i}, \overrightarrow{u_2}) - (\overrightarrow{i}, \overrightarrow{u_1})$ donc $(\overrightarrow{u_1}, \overrightarrow{u_2}) \equiv \theta_2 - \theta_1[2\pi]$. Ainsi, $\theta_2 - \theta_1$ qui est un argument de $\frac{z_2}{z_1}$ est une aussi mesure l'angle $(\overrightarrow{u_1}, \overrightarrow{u_2})$.

On a alors:

- $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires si et seulement si $(\overrightarrow{u_1}, \overrightarrow{u_2}) \equiv 0[\pi]$ si et seulement si $\theta_2 \theta_1 \equiv 0[\pi]$ si et seulement si $\frac{z_2}{z_2} \in \mathbb{R}$
- De même, $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont orthogonaux si et seulement si $(\overrightarrow{u_1}, \overrightarrow{u_2}) \equiv \frac{\pi}{2} [\pi]$ si et seulement si $\theta_2 \theta_1 \equiv \frac{\pi}{2} [\pi]$ si et seulement $\operatorname{si} \frac{z_2}{z_1} \in i\mathbb{R}$

Soient A, B et C trois points du plan, deux à deux distincts et d'affixes respectives z_A , z_B et z_C . Une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ est donnée par un argument de $\frac{z_C - z_A}{z_B - z_A}$. Par suite :

- A, B et C sont alignés si et seulement si $\frac{z_C z_A}{z_B z_A} \in \mathbb{R}$.
- *ABC* est rectangle en *A* si et seulement si $\frac{z_C z_A}{z_B z_A} \in i\mathbb{R}$.

Transformations remarquables du plan

Si F est une application du plan dans lui-même, on peut lui associer une unique application f de $\mathbb C$ dans $\mathbb C$ telle que pour tous points M et M' d'affixes respectives z et z' on ait M' = F(M) si, et seulement si z' = f(z).

Réciproquement, la donnée de f caractérise l'application F. On dit que f représente F dans le plan complexe.

Remarque : Le plan usuel \mathscr{P} muni d'un repère orthonormé direct pouvant être identifié avec \mathbb{C} , on identifie souvent f et F.

Définition

Une transformation du plan est une bijection du plan dans lui-même.

Proposition

Soit \overrightarrow{u} un vecteur du plan d'affixe $b \in \mathbb{C}$. L'application $\left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & z+b \end{array} \right.$ représente

la translation de vecteur \vec{u} .

Démonstration. Soit $M, M' \in \mathcal{P}$ d'affixes respectives z, z'. Notons $T_{\overrightarrow{u}} : \mathcal{P} \to \mathcal{P}$ la translation de vecteur \overrightarrow{u} et $t_b : \begin{cases} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & z+b \end{cases}$. On a :

$$M' = T_{\overrightarrow{u}}(M) \iff \overrightarrow{MM'} = \overrightarrow{u}$$
 $\iff z' - z = b$
 $\iff z' = z + b$
 $\iff z' = t_b(z)$

Proposition

Soit $\theta \in \mathbb{R}$. L'application $\begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto e^{i\theta}z \end{cases}$ représente la rotation de centre O et d'angle θ .

 $\textbf{Remarque:} \ \text{Plus g\'en\'eralement, l'application} \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & e^{i\theta}(z-\omega)+\omega \end{array} \right. \ \text{repr\'esente la rotation de centre } \Omega \ \text{d'affixe} \ \omega \ \text{et d'angle} \ \theta \in \mathbb{R}.$

Démonstration. Soit $M, M' ∈ \mathscr{P}$ d'affixes respectives z, z'. Notons $R_\theta : \mathscr{P} \to \mathscr{P}$ la rotation d'angle θ et $r_\theta : \begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto ze^{i\theta} \end{cases}$.

• Cas 1 : si $z \neq 0$ i.e $M \neq O$:

$$M' = T_{\overrightarrow{u}}(M) \iff \begin{cases} OM = OM' \\ (\overrightarrow{OM}, \overrightarrow{OM'}) \equiv \theta[2\pi] \end{cases}$$

$$\iff \begin{cases} |z| = |z'| \\ \arg\left(\frac{z'}{z}\right) \equiv \theta[2\pi] \end{cases}$$

$$\iff \begin{cases} \left|\frac{z'}{z}\right| = 1 \\ \arg\left(\frac{z'}{z}\right) \equiv \theta[2\pi] \end{cases}$$

$$\iff \frac{z'}{z} = e^{i\theta}$$

$$\iff z' = ze^{i\theta}$$

$$\iff z' = r_{\theta}(z)$$

• Cas 2 : si z = 0 i.e M = O :

$$M' = R_{\theta}(M)$$
 \iff $M' = M = O$
 \iff $z' = z = 0$
 \iff $z' = r_{\theta}(z)$

Proposition

L'application $\left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \overline{z} \end{array} \right.$ représente la symétrie par rapport à l'axe des abscisses.

 $\begin{array}{ll} \textit{D\'{e}monstration}. \ \ \text{Soit} \ \textit{M}, \textit{M}' \in \mathscr{P} \ \textit{d'affixes respectives} \ \textit{z} = \textit{a} + i\textit{b}, \ \textit{z}' = \textit{a}' + i\textit{b}' \ \text{avec} \ \textit{a}, \textit{b}, \textit{a}', \textit{b}' \in \mathbb{R}. \ \text{Notons} \ \textit{S} : \mathscr{P} \rightarrow \mathscr{P} \ \text{la sym\'etrie} \\ \text{par rapport} \ \grave{\textit{a}} \ \textit{l'axe} \ \text{des abscisses et} \ \textit{s} : \left\{ \begin{array}{ccc} \mathbb{C} & \rightarrow & \mathbb{C} \\ \textit{z} & \mapsto & \overline{\textit{z}} \end{array} \right.. \end{array}$

On a:

$$M' = S(M) \iff \begin{cases} a' = a \\ b' = -b \end{cases}$$

$$\iff a + ib = a' + ib'$$

$$\iff z' = \overline{z}$$

$$\iff z' = s(z)$$

Définition

L'homothétie de centre $\Omega \in \mathscr{P}$ et de rapport $\lambda \in \mathbb{R}^*$ est l'application du plan dans lui même qui, à tout point M, associe le point M' tel que $\overrightarrow{\Omega M'} = \lambda \overrightarrow{\Omega M}$.

Proposition

Soit $\lambda \in \mathbb{R}^*$. L'application $\left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \lambda z \end{array} \right.$ représente l'homothétie de centre O et de rapport λ

Remarque : Plus généralement, l'application $\begin{cases} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto \lambda(z-\omega)+\omega \end{cases}$ où $\lambda \in \mathbb{R}^*$ représente l'homothétie de centre Ω d'affixe ω et de rapport λ .

Démonstration. Soit $M, M' \in \mathcal{P}$ d'affixes respectives z, z'.

Notons $H_{\lambda}: \mathcal{P} \to \mathcal{P}$ l'homothétie de centre O et de rapport λ et $h_{\lambda}: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \lambda z \end{array} \right.$

$$M' = H_{\lambda}(M) \quad \Longleftrightarrow \quad \overrightarrow{OM'} = \lambda \overrightarrow{OM}$$

$$\iff \quad z' = \lambda z$$

$$\iff \quad z' = h_{\lambda} z$$