السنة الدراسية 2012 _ 2013

مدة الإنجاز : 2 ساعات

40

30

20

الفرض المحروس 1 في العلوم الفيزيائية المستوى الثانية بكالوريا علوم تجريبية ـ

مسلك العلوم الفيزيائية

الثانوية التأهلية صلاح الدين الأيوبي _آسفي

نيابة إقليم أسغي

الأستاذ : علال محداد

الاعتناء بتنظيم ورقة التحرير ضروري ضرورة كتابة العلاقات الحرفية قبل كل تطبيق عددي ضرورة تأطير العلاقات الحرفية والتطبيقات العددية

الكيمياء (7 نقط)

 $C_2H_2O_4$ لحمض الأوكساليك (S_0) لحمض التبيع الزمني لتطور مجموعة كيميائية ، حضر الأستاذ في المختبر محلولا $C_0=5,0\times 10^{-1} \, \mathrm{mol}\,/\,\mathrm{L}$ تركيزه المولي

مجمه الأوكسيلك حجمه الأوكسيلك حجمه (S_1) لحمض الأوكسيلك حجمه الأستاذ تحضير محلولا (S_1) لحمض الأوكسيلك حجمه $C=5.0\times 10^{-2}\,\mathrm{mol}\,/\mathrm{L}$ وتركيزه المولي $V=100\,\mathrm{mol}\,/\mathrm{L}$ وذلك بتخفيف المحلول $V=100\,\mathrm{mol}\,/\mathrm{L}$

(${f 0,5}$) (${f S_1}$ ما هو الحجم الذي يجب أخذه من المحلول (${f S_0}$) للحصول على المحلول المخفف (${f 1}$

($\mathbf{0.5}$) . حدد الطريقة المتبعة والأدوات اللازمة لإنجاز عملية التخفيف $\mathbf{0.5}$

. ع حمض الأوكساليك وفق تفاعل أيونات البرمنغنات ($\mathrm{MnO}_{4}^{-}(\mathrm{aq})$ مع حمض الأوكساليك وفق تفاعل نعتبره كليا

نخضر في كأس محلولا (S_1) لحمض الأوكساليك حجمه $V_1 = 50 \text{mL}$ وتركيزه $V_1 = 50 \text{mL}$ ونحضر في كأس محلولا $V_2 = 50 \text{mL}$ وتركيزه $V_2 = 50 \text{mL}$ المحمض حجمه $V_2 = 50 \text{mL}$ وتركيزه أخرى محلولا $V_2 = 50 \text{mL}$ وتركيزه

 $C_2 = 10^{-1} \text{ mol} / L$

عند خلط المحلولين ، نلاحظ تدريجيا ، انطلاق غاز يعكر ماء الجير (ثنائي أوكسيد الكربون) واختفاء اللون البنفسجي المميز لأيونات البرمنغنات .

 ${
m CO_2(g)/\,C_2H_2O_4(aq)}$ و ${
m MnO_4^-(aq)/Mn^{2+}(aq)}$: المزدوجتان المتفاعلتان هما

2 ـ 1 هل هذا التفاعل بطيء

أم سريع ؟ علل جوابك (0,25 ت)

2 _ 2 أكتب معادلة التفاعل

الحاصل (0,75 ن)

2 ــ 3 أنجز الجدول الوصفي لتقدم التفاعل وحدد التقدم

(ن **1,25**) الأقصى الأقصى

2 _ 4 أوجد علاقة التقدم x و

ر. t عند اللحظة Mn^{2+} تركيز أيونات Mn^{2+}

نضع $V_T = V_1 + V_2$ الحجم الكلي للخليط

عند اللحظة t (0,5 ن)

- لممثل في $\left[Mn^{2+}\right]_t = f(t)$ الممثل في المنحنى (mn^{2+}) الممثل في الشكل mn^{2+} الممثل في الشكل 1
 - ($\mathbf{1}$) $\left\lceil \mathrm{Mn}^{2+} \right\rceil$ أعط تعريف السرعة الحجمية للتفاعل . وأوجد تعبيرها بدلالة
 - (**1** عين قيمة السرعة عند t = 0s و t = 0s
 - 3 _ 3 عرف زمن نصف التفاعل (**0,5)**
 - لتركيز الأقصى $\left[Mn^{2+}\right]_{max}$ بدلالة بدلالة $\left[Mn^{2+}\right]_{t_{1/2}}$ التركيز الأقصى 4-3

لأيونات ⁺² (**0,75 ن**)

($\dot{\mathbf{1}}$) . استنتج قيمة $t_{1/2}$ مبيانيا

الفيزياء

دراسة موجة صوتية وموجة ضوئية

خلال حصة الأشغال التطبيقية قام الأستاذ وتلاميذه بتحديد سرعة انتشار الصوت في وسطين مختلفين (الهواء والماء) وتعيين طول الموجة لموجة ضوئية ودراسة انتشار حزمة ضوئية في موشور من الزجاج

I ــ التعيين التجريبي لسرعة انتشار الصوت

لتحديد سرعة انتشار الموجات الصوتية في وسطين مختلفين ، تم إنجاز التركيب التجريبي الممثل في الشكل 1 ، حيث الميكروفونان R_2 و R_1 تفصل بينهما المسافة R_2

في التجربة 1 تم إنجاز التجربة في الهواء . يمثل الرسمان التذبذبيان الممثلان في الشكل 1 تغيرات التوتر بين مربطي كل ميكروفون بالنسبة للمسافة $d_{\rm i} = 25,4$.

 $5\mu s / div$: هي R_2 و R_1 الحساسية الأفقية للمدخلين المرتبطين ب

- 1 _ ما طبيعة الموجات الصوتية ؟ علل الجواب 1 •
- ن الموتية الدور T للموجات الصوتية المنبعثة من مكبر الصوت T للموجات الصوتية المنبعثة من مكبر الصوت T
- R_{\perp} نزيح أفقيا الميكروفون R_{2} وفق المستقيم Δ إلى أن يصبح الرسمان التذبذبيان من جديد ولأول مرة على توافق في الدور ، فتكون المسافة بين R_{1} و R_{2} هي R_{2} هي الدور ، فتكون المسافة بين R_{1} و R_{2} هي الدور ،
 - **1** عول الموجة للموجة الصوتية λ طول الموجة الصوتية λ
 - \mathbf{v}_{eau} سرعة انتشار الموجة الصوتية في الهواء $\mathbf{1}$ ن \mathbf{v}_{eau}
- 4 _ في التجربة الثانية نعوض الهواء بالماء ونعيد نفس التجربة حيث يكون الرسمان التذبذبيان على توافق في الطور عندما تكون المسافة الفاصلة بين الميكروفونين هي $D_1 = 10,1$ علما أن سرعة انتشار الموجة الصوتية في عندما تكون المسافة بين الميكروفونين هي $D_1 = 10,1$ التي يجب أن نزيح أفقيا الميكروفون $D_2 = 1,0$ وفق المستقيم $D_2 = 1,0$ لكي يصبح الرسمان التذبذبيان من جديد ولثاني مرة على توافق في الطور $D_2 = 1,0$ ن

II ــ التعيين التجريبي لطول الموجة لموجة ضوئية

لتحديد طول الموجة λ لموجة ضوئية ، تمت إضاءة خيط رفيع قطره $d=5\times10^{-5} m$ مثبتا على حامل ، بواسطة حزمة ضوئية أحادية اللون منبعثةمن جهاز اللازر ، فنعاين على الشاشة والتي توجد على مسافة D=3m من الخيط بقع ضوئية كما في الشكل D=3m . أعطى عرض البقعة المركزية القيمة D=7.6cm .

1 _ ما اسم الظاهرة التي تبرزها هذه التجربة ؟ **1 ن**

2 ـ أذكر الشرط الذي يجب أن يحققه قطر الخيط d لكي تحدث هذه الطاهرة ؟ **0,5 ن**

ن **1,25** (نعتبر $\theta \simeq \theta$ بالنسبة لزاوية $\theta \simeq 0$ و D و $\theta \simeq 0$ بالنسبة لزاوية $\lambda \simeq 0$ و D و $\theta \simeq 0$ بالنسبة لزاوية $\lambda \simeq 0$

III ــ دراسة انتشار موجة ضوئية في موشور من الزجاج

في تجربة ثانية تمت إزالة الخيط الرفيع وتعويضه بموشور من الزجاج معامل انكساره n=1.58 وزاويته $A=30^\circ$ وتمت إضاءته بواسطة الحزمة الضوئية الأحادية اللون السابقة α . نعطي سرعة الضوء في الفراغ وفي الهواء

 $n_{air}=1$ معامل انكسار الهواء $c=3\times10^{-8}\,\mathrm{m/s}$

- ن الموشور . f 1 ي أحسب v قيمة سرعة انتشار الحزمة الضوئية في الموشور . f 1
- . أوجد قيمة $\lambda_{\scriptscriptstyle \parallel}$ طول الموجة للحزمة الضوئية خلال انتشارها في الموشور $\lambda_{\scriptscriptstyle \parallel}$

ما قيمة تردد الحزمة الضوئية ؟ 1,5 ن

 $_{\rm n_p}$ =1,510 مختلفة من الوجه الأخر للموشور أشعة دات ألوان مختلفة من الوجه الأخر للموشور أشعة دات ألوان مختلفة من بينها الشعاعان الأحمر والأزرق . معامل انكسار الموشور بالنسبة لضوء الأزرق $_{\rm n_p}$ =1,523 وبالنسبة للضوء الأحمر $_{\rm n_p}$ =1,510

أحسب الفرق الزاوي $\Delta \theta$ يين الشعاعين المنبثقين من الوجه ΔC للموشور **2,5 ن**

