Out[5]: Click here to toggle on/off the raw code.

Using abalone dataset: Assignment 1 revisited

Out[223]:		Sex	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell_weight
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155
	4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055
	4								
			Le	ength	Diamet	er He	ight Whole_w	eight Sucked	_weight \
	col	unt	4177.00	00000 41	77.0000	00 4177.00	0000 4177.0	00000 4177	.000000
	mea	an	0.52	23992	0.4078	81 0.13	9516 0.8	28742 0	.359367
	sto	d	0.12	20093	0.0992	40 0.04	1827 0.4	90389 0	.221963
	miı	า	0.07	75000	0.0550	00 0.00	0000 0.0	02000 0	.001000
	259	%	0.45	50000	0.3500	00 0.11	5000 0.4	41500 0	.186000
	509	%	0.54	15000	0.4250	00 0.14	0000 0.7	99500 0	.336000
	759	%	0.63	15000	0.4800	00 0.16	5000 1.1	53000 0	.502000
	max	X	0.83	15000	0.6500	00 1.13	0000 2.8	25500 1	.488000
			Viscera	a_weight	Shell_	weight	Rings		
			447	7 000000	4477	000000 447	7 000000		

	Viscera_weight	Shell_weight	Rings
count	4177.000000	4177.000000	4177.000000
mean	0.180594	0.238831	9.933684
std	0.109614	0.139203	3.224169
min	0.000500	0.001500	1.000000
25%	0.093500	0.130000	8.000000
50%	0.171000	0.234000	9.000000
75%	0.253000	0.329000	11.000000
max	0.760000	1.005000	29.000000

	mean	median	variance	skew	kurtosis
Length	0.523992	0.5450	0.014422	-0.639873	0.064621
Diameter	0.407881	0.4250	0.009849	-0.609198	-0.045476
Height	0.139516	0.1400	0.001750	3.128817	76.025509
Whole_weight	0.828742	0.7995	0.240481	0.530959	-0.023644
Sucked_weight	0.359367	0.3360	0.049268	0.719098	0.595124
Viscera_weight	0.180594	0.1710	0.012015	0.591852	0.084012
Shell_weight	0.238831	0.2340	0.019377	0.620927	0.531926
Rings	9.933684	9.0000	10.395266	1.114102	2.330687

```
Sex
Length
                 0
Diameter
                 0
                 0
Height
Sucked_weight
Whole_weight
                 0
                 0
Viscera_weight
                 0
Shell_weight
                 0
Rings
                 0
dtype: int64
```

Is there any missing data? Answer to this question can given by observing the output of isna(), we can see that for for all the columns we have got value 0, which means that there are no missing values for any of the columns in the abalone dataset.

there are no missing data

```
count 4177
unique 3
top M
freq 1528
Name: Sex, dtype: object
Total Unique Sex: ['M' 'F' 'I']

Out[227]: M 1528
I 1342
```

Name: Sex, dtype: int64

1307

Finding correlations between 2 variables/columns in abalone dataset

	Length	Diameter	Height	Whole_weight	Sucked_weight	\
Length	1.000000	0.986812	0.827554	0.925261	0.897914	
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	
Height	0.827554	0.833684	1.000000	0.819221	0.774972	
Whole_weight	0.925261	0.925452	0.819221	1.000000	0.969405	
Sucked_weight	0.897914	0.893162	0.774972	0.969405	1.000000	
Viscera_weight	0.903018	0.899724	0.798319	0.966375	0.931961	
Shell_weight	0.897706	0.905330	0.817338	0.955355	0.882617	
Rings	0.556720	0.574660	0.557467	0.540390	0.420884	
	Viscera_w	eight She	ll_weight	Rings		
Length	_	eight She 03018	ll_weight 0.897706	Rings 0.556720		
Length Diameter	0.9	•	_ ~	•		
•	0.9 0.8	03018	0.897706	0.556720		
Diameter	0.9 0.8 0.7	03018 99724	0.897706 0.905330	0.556720 0.574660		
Diameter Height	0.9 0.8 0.7 0.9	03018 99724 98319	0.897706 0.905330 0.817338	0.556720 0.574660 0.557467		
Diameter Height Whole_weight	0.9 0.8 0.7 0.9	03018 99724 98319 66375	0.897706 0.905330 0.817338 0.955355	0.556720 0.574660 0.557467 0.540390		
Diameter Height Whole_weight Sucked_weight	0.9 0.8 0.7 0.9 0.9	03018 99724 98319 66375 31961	0.897706 0.905330 0.817338 0.955355 0.882617	0.556720 0.574660 0.557467 0.540390 0.420884		
Diameter Height Whole_weight Sucked_weight Viscera_weight	0.9 0.8 0.7 0.9 0.9	03018 99724 98319 66375 31961 00000	0.897706 0.905330 0.817338 0.955355 0.882617 0.907656	0.556720 0.574660 0.557467 0.540390 0.420884 0.503819		

finding the correlation w.r.t to rings

Length	0.55	6720
Diameter	0.57	4660
Height	0.55	7467
Whole_weight	0.54	0390
Sucked_weight	0.42	0884
Viscera_weight	0.50	3819
Shell_weight	0.62	7574
Rings	1.00	0000
Name: Rings, dtype	: fl	oat64

from the above block, we can see that only shell weight is somewhat correlated with rings columns. apart from this all other columns/parameters are not that much correlated with the rings. this would cause problem in the ring classification. 1 represents that the variables are highly correlated and 0 represents that variableas are not correlated.

Out[230]: <AxesSubplot:title={'center':'Correlation heatmap for Abalone dataset'}>

Out[232]: <matplotlib.collections.PathCollection at 0x1b253566310>

Out[235]: Text(0, 0.5, 'Shell_weight')

Out[236]: <seaborn.axisgrid.PairGrid at 0x1b2554e2640>

Out[237]: Text(0, 0.5, 'Feature')

Starting Normalization from here

	Sex	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight
\							
0	Μ	0.455	0.365	0.095	0.5140	0.2245	0.1010
1	Μ	0.350	0.265	0.090	0.2255	0.0995	0.0485
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415
3	Μ	0.440	0.365	0.125	0.5160	0.2155	0.1140
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395
	She	ll weigh	t Rings				
0	5	0.15	•				
_			_				
1		0.07	9 7				
2		0.21	9				
3		0.15	5 10				
4		0.05	5 7				

'Training Data Original'

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell_weight
1794	0.575	0.450	0.130	0.8145	0.4030	0.1715	0.2130
1466	0.515	0.425	0.145	0.9365	0.4970	0.1810	0.2185
2275	0.655	0.525	0.185	1.2590	0.4870	0.2215	0.4450
3929	0.650	0.515	0.215	1.4980	0.5640	0.3230	0.4250
1955	0.645	0.510	0.180	1.6195	0.7815	0.3220	0.4675

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	SI
count	3341.000000	3341.000000	3341.000000	3341.000000	3341.000000	3341.000000	3
mean	0.523590	0.407685	0.139397	0.829025	0.360037	0.180496	
std	0.120856	0.099806	0.042632	0.493738	0.223379	0.110090	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.438500	0.184500	0.092500	
50%	0.545000	0.425000	0.140000	0.797000	0.336000	0.170500	
75%	0.615000	0.480000	0.165000	1.153000	0.505500	0.253000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	
4							

^{&#}x27;Testing Data Original'

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell_weight
341	0.62	0.510	0.205	1.3475	0.4775	0.2565	0.480
3413	0.49	0.395	0.120	0.6740	0.3325	0.1235	0.185
1088	0.45	0.340	0.120	0.4925	0.2410	0.1075	0.120
98	0.47	0.370	0.130	0.5225	0.2010	0.1330	0.165
3661	0.55	0.415	0.150	0.7915	0.3535	0.1760	0.236

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell_
count	836.000000	836.000000	836.000000	836.000000	836.000000	836.000000	836
mean	0.525598	0.408666	0.139994	0.827610	0.356690	0.180982	0
std	0.117049	0.096998	0.038462	0.477058	0.216322	0.107758	0
min	0.160000	0.110000	0.015000	0.014500	0.005500	0.002500	0
25%	0.453750	0.350000	0.115000	0.451500	0.190500	0.095375	0
50%	0.545000	0.425000	0.140000	0.806000	0.336750	0.171000	0
75%	0.615000	0.481250	0.165000	1.157125	0.492625	0.252875	0
max	0.800000	0.630000	0.240000	2.526000	1.351000	0.590000	0
4							

^{&#}x27;Training Data Z Normalized'

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell_weigh
1794	0.424788	0.424464	-0.227545	-0.029046	0.196599	-0.082970	-0.18558
1466	-0.074885	0.172519	0.131117	0.219766	0.620144	0.003708	-0.14607
2275	1.091018	1.180300	1.087551	0.877486	0.575086	0.373230	1.48124
3929	1.049379	1.079522	1.804876	1.364912	0.922032	1.299315	1.33755
1955	1.007740	1.029133	0.967997	1.612704	1.902043	1.290191	1.64290
4							•

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	SI
count	3341.000000	3341.000000	3341.000000	3341.000000	3341.000000	3341.000000	3
mean	-0.003347	-0.001980	-0.002858	0.000578	0.003019	-0.000887	
std	1.006478	1.005828	1.019371	1.006950	1.006500	1.004457	
min	-3.739154	-3.556267	-3.335953	-1.686092	-1.614731	-1.643173	
25%	-0.616198	-0.583316	-0.586208	-0.795876	-0.787917	-0.803766	
50%	0.174951	0.172519	0.011563	-0.064736	-0.105289	-0.092094	
75%	0.757903	0.726798	0.609334	0.661305	0.658443	0.660635	
max	2.423480	2.440025	23.683287	4.072271	5.085388	5.286500	
4							N

^{&#}x27;Testing Data Z Normalized'

	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell_weigl
341	0.799543	1.029133	1.565767	1.057976	0.532281	0.692569	1.73271
3413	-0.283082	-0.129815	-0.466653	-0.315588	-0.121059	-0.520922	-0.38675
1088	-0.616198	-0.684094	-0.466653	-0.685746	-0.533340	-0.666906	-0.85375
98	-0.449640	-0.381760	-0.227545	-0.624563	-0.713572	-0.434244	-0.53044
3661	0.216591	0.071741	0.250672	-0.075953	-0.026438	-0.041912	-0.02033

							1
	Length	Diameter	Height	Whole_weight	Sucked_weight	Viscera_weight	Shell _.
count	836.000000	836.000000	836.000000	836.000000	836.000000	836.000000	836
mean	0.013374	0.007911	0.011420	-0.002309	-0.012063	0.003544	0
std	0.974773	0.977526	0.919654	0.972932	0.974702	0.983182	0
min	-3.031284	-3.001988	-2.977291	-1.660599	-1.594455	-1.624925	-1
25%	-0.584968	-0.583316	-0.586208	-0.769363	-0.760882	-0.777534	-0
50%	0.174951	0.172519	0.011563	-0.046381	-0.101910	-0.087532	-0
75%	0.757903	0.739396	0.609334	0.669718	0.600431	0.659495	0
max	2.298562	2.238469	2.402646	3.461458	4.468094	3.735421	4
4							•

Out[241]: 0.20334928229665072

Out[242]: 0.215311004784689

[0.19096604996285454, 0.20203807631374024, 0.2152068061187043, 0.219991854855 31178, 0.22238706443615014, 0.2322668564216858, 0.23945248516420076, 0.240649 64241919745, 0.2406478522775078, 0.2418432193908148, 0.2385533865005415, 0.24 723467862481313, 0.24753139460988338, 0.24813064454051537, 0.2505231689088191 5, 0.25112197130402875, 0.249924814049032, 0.25022421524663674, 0.25441314680 05693, 0.2547147856752862, 0.2547147856752862, 0.25920267089140103, 0.2609946 027228055, 0.2633902598390663, 0.2630922012477287, 0.25950117701816094, 0.263 3916024453335, 0.2624969791358986, 0.2627945901918137, 0.2639917474468104, 0.2618968341344218, 0.2615983280076618, 0.26369324132005045, 0.2639926425176552 5, 0.2705758885815812]

Assignment 2 Question 1 implementation starts here

Question 1

Using Abalone Dataset

[15 7 9 ... 9 10 12]
Covariance Matrix Calculated using numpy:

```
      1.0002
      0.9870
      0.8278
      0.9255
      0.8981
      0.9032
      0.8979

      0.9870
      1.0002
      0.8339
      0.9257
      0.8934
      0.8999
      0.9055

      0.8278
      0.8339
      1.0002
      0.8194
      0.7752
      0.7985
      0.8175

      0.9255
      0.9257
      0.8194
      1.0002
      0.9696
      0.9666
      0.9556

      0.8981
      0.8934
      0.7752
      0.9696
      1.0002
      0.9322
      0.8828

      0.9032
      0.8999
      0.7985
      0.9666
      0.9322
      1.0002
      0.9079

      0.8979
      0.9055
      0.8175
      0.9556
      0.8828
      0.9079
      1.0002
```

In the above we block, we calculated the covariance matrix in order to find the similarity between two feature variables.instead of using Direct PCA, we calculated it using numpy array to study the data. We can see that the feature points are quite correlated with each other.

- 1. The diagonal elements are the variances of each variable, which represent the spread or variability of each variable around its mean.
- 2. The off-diagonal elements are the covariances between each pair of variables, which represent the degree to which the variables vary together.
- 3. The covariance matrix shows that the length and diameter of abalone have a high positive covariance, indicating that they tend to vary together. Similarly, the weight measurements have a positive covariance with each other.
- 4. The covariance matrix also shows that the height of abalone has a low covariance with the other variables, indicating that it is less related to the other variables.

Using PCA as a preprocessing step for abalone dataset

Variance explained by each principal component:

[0.9078731478516083, 0.03991890899342265, 0.023906381975154992, 0.0162959778 83821613, 0.009236274060776192, 0.0018182993981407179, 0.0009510098370754434] Cumulative variance explained by each principal component:

[0.90787315 0.94779206 0.97169844 0.98799442 0.99723069 0.99904899 1.]

Number of principal components needed to explain 95% of the variance: 3


```
Covariance matrix of the principal components:
                                            0.9041
1.0177 0.9687
              0.8271 0.9262
                             0.8949
                                    0.9011
                             0.8937
0.9687
       1.0189 0.8335 0.9257
                                    0.9005
                                            0.9046
0.8271
      0.8335
              0.9985 0.8199
                             0.7696
                                    0.7973
                                            0.8264
0.9262 0.9257
              0.8199 1.0310 0.9568
                                    0.9610 0.9412
0.8949 0.8937 0.7696 0.9568 0.9858 0.9376
                                           0.9129
0.9011 0.9005
              0.7973 0.9610 0.9376 0.9909
                                           0.9203
0.9041 0.9046
              0.8264 0.9412 0.9129 0.9203 0.9590
```

Eigenvalues of the principal components:

6.3566

0.2795

0.1674

Eigenvectors of the principal components:

0.3833 0.3836 0.3481 0.3907 0.3782 0.3815 0.3789

0.0379 0.0653 0.8668 -0.2333 -0.3480 -0.2529 -0.0584

-0.5933 -0.5854 0.3149 0.2308 0.2316 0.2703 0.1621

from the eigen values, we can see that the first principal components captures most variance.

Accuracy: 0.25717703349282295

Using LDA as a preprocessing step for abalone dataset

```
['old', 'young', 'middle-aged', 'middle-aged', 'young', ..., 'middle-aged',
'middle-aged', 'middle-aged', 'old']
Length: 4177
Categories (3, object): ['young' < 'middle-aged' < 'old']
Mean cv accuracy: 0.6692637147230204
Test Accuracy: 0.6961722488038278</pre>
```

CV Accuracy scores: [0.66367713 0.68263473 0.69011976 0.67215569 0.65568862]

CV Average accuracy: 0.6728551864880105

- 1. The t-SNE plot shows the abalone samples projected onto a two-dimensional space based on their similarity in the original high-dimensional space.
- 2. Each point in the plot represents an abalone sample, and the color of the point corresponds to the number of rings in the abalone (an indicator of age).
- 3. The t-SNE plot reveals that the abalone samples with similar numbers of rings tend to cluster together, indicating that age is an important factor in the variability of the data.
- 4. The plot also shows that the length and diameter measurements of the abalone are strongly correlated, as points that are close together in the plot tend to have similar values for these variables.
- 5. There is some overlap between the clusters corresponding to different numbers of rings, indicating that other variables in the dataset also contribute to the variability of the data.
- Overall, the t-SNE visualization provides an intuitive way to explore the structure of the abalone dataset and can reveal interesting patterns and relationships between the variables.

Wine Dataset

Out[260]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.0	0.270	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	
1	6.3	0.300	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	
2	8.1	0.280	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	
3	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	
4	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	
6492	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
6493	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
6494	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
6495	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
6496	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

6497 rows × 13 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

	()))		
#	Column	Non-Null Count	Dtype
0	fixed acidity	6497 non-null	float64
1	volatile acidity	6497 non-null	float64
2	citric acid	6497 non-null	float64
3	residual sugar	6497 non-null	float64
4	chlorides	6497 non-null	float64
5	free sulfur dioxide	6497 non-null	float64
6	total sulfur dioxide	6497 non-null	float64
7	density	6497 non-null	float64
8	рН	6497 non-null	float64
9	sulphates	6497 non-null	float64
10	alcohol	6497 non-null	float64
11	quality	6497 non-null	int64
12	colour	6497 non-null	int64

dtypes: float64(11), int64(2)

memory usage: 660.0 KB

Out[262]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total suli dioxi
count	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.0000
mean	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.7445
std	1.296434	0.164636	0.145318	4.757804	0.035034	17.749400	56.5218
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.0000
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.0000
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.0000
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.0000
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.0000
4							•

There are no missing values, so now we can start with EDA. More samples of quality 5 or 6 have been observed in the dataset, which shows that it is not a balanced dataset. The standard deviation for most features vary over a range and hence, we require normalization of the features before applying PCA.

Out[263]: (6497, 13)

Most of the wines in this dataset has a quality score of 5 or 6. We will now add a feature called 'rating' depending on the quality score of each wine data point. If quality is <5, we assign them as 'Bad' (value of 0) and if quality is >=5, we assign it as 'Good' (value of 1).

0+	$\Gamma \supset C \land \Gamma$	Ι.
out	204	П

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.0	0.270	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	
1	6.3	0.300	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	
2	8.1	0.280	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	
3	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	
4	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	
6492	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
6493	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
6494	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
6495	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
6496	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

6497 rows × 14 columns

Almost 5200 of the total number of wines seem to be "Bad" and the remaining 1297 wines "Good".

count mean std min 25% 50% 75% max	fixed acidit 6497.00000 7.21530 1.29643 3.80000 6.40000 7.00000 7.70000	6497. 7 0. 4 0. 0 0. 0 0. 0 0.	000000 6497 339666 6 164636 6 080000 6 230000 6 290000 6	ric acid re 7.000000 0.318633 0.145318 0.000000 0.250000 0.310000 0.390000	sidual su 6497.000 5.443 4.757 0.600 1.800 3.000 8.100 65.800	9000 3235 7804 9000 9000 9000	
count mean std min 25% 50% 75% max	chlorides 6497.000000 0.056034 0.035034 0.009000 0.038000 0.047000 0.065000 0.611000	free sulfur 6497 30 17 1 17 29 41		cal sulfur d 6497. 115. 56. 6. 77. 118.	ioxide	densit 5497.00000 0.99469 0.00299 0.98711 0.99234 0.99489 0.99699	0 7 9 0 0 0
count mean std min 25% 50% 75% max	pH 6497.000000 3.218501 0.160787 2.720000 3.110000 3.210000 3.320000 4.010000	sulphates 6497.000000 0.531268 0.148806 0.220000 0.430000 0.510000 0.600000 2.0000000	alcohol 6497.000000 10.491801 1.192712 8.000000 9.500000 10.3000000 11.3000000	6497.0000 5.8183 0.8732 3.0000 5.0000 6.0000	00 6497. 78 0. 55 0. 00 0. 00 0. 00 0.	colour \ .000000 .246114 .430779 .000000 .000000 .000000	
count mean std min 25% 50% 75% max	Ratings 6497.000000 0.196552 0.397421 0.000000 0.000000 0.000000 0.000000						

	mean	median	variance	skew	kurtosis
fixed acidity	7.215307	7.00000	1.680740	1.723290	5.061161
volatile acidity	0.339666	0.29000	0.027105	1.495097	2.825372
citric acid	0.318633	0.31000	0.021117	0.471731	2.397239
residual sugar	5.443235	3.00000	22.636696	1.435404	4.359272
chlorides	0.056034	0.04700	0.001227	5.399828	50.898051
free sulfur dioxide	30.525319	29.00000	315.041192	1.220066	7.906238
total sulfur dioxide	115.744574	118.00000	3194.720039	-0.001177	-0.371664
density	0.994697	0.99489	0.000009	0.503602	6.606067
рН	3.218501	3.21000	0.025853	0.386839	0.367657
sulphates	0.531268	0.51000	0.022143	1.797270	8.653699
alcohol	10.491801	10.30000	1.422561	0.565718	-0.531687
quality	5.818378	6.00000	0.762575	0.189623	0.232322
colour	0.246114	0.00000	0.185570	1.179095	-0.609922
Ratings	0.196552	0.00000	0.157944	1.527553	0.333522

Correlation Plot:

Out[268]: <AxesSubplot:>

Alcohol has the maximum correlation with quality followed by sulphates and citric acid and then fixed acidity. We can also observe that residual sugar has a significant positive correlation with density and total sulfur dioxide is strongly correlated with the type of wine.

Apply Z-score Normalization on wine dataset:

```
6
1
      6
2
      6
3
      6
4
      6
6492
      5
6493
6494
      6
6495
      5
6496
Name: quality, Length: 6497, dtype: int64
The normalized dataset is:
[[-0.16608919 -0.42318303 0.28468605 ... -1.41855821 0.20799905
 -0.57136659]
[-0.70607349 -0.24094936 0.14704613 ... -0.83161516 0.20799905
 -0.57136659]
[ 0.68245757 -0.36243847  0.55996589  ... -0.32852111  0.20799905
 -0.57136659]
1.75018984]
1.75018984]
[-0.93749534 -0.1802048
                     1.04170561 ... 0.42611996 0.20799905
  1.75018984]]
```

Covariance Matrix Calculated using numpy:

```
1.0002 0.2190 0.3245 -0.1120 0.2982 -0.2828 -0.3291 0.4590 -0.2527 0.299
       -0.0955 -0.0768 0.4868
0.2190 1.0002 -0.3780 -0.1960 0.3772 -0.3526 -0.4145 0.2713 0.2615 0.226
       -0.0376 -0.2657 0.6531
0.3245
       -0.3780 1.0002 0.1425 0.0390 0.1331 0.1953 0.0962 -0.3299 0.056
       -0.0105 0.0855
                      -0.1874
-0.1120 -0.1960 0.1425 1.0002
                              -0.1290 0.4029 0.4956 0.5526 -0.2674 -0.18
60
       -0.3595 -0.0370 -0.3489
0.2982 0.3772 0.0390 -0.1290 1.0002 -0.1951 -0.2797 0.3627 0.0447 0.395
       -0.2570 -0.2007 0.5128
-0.2828 -0.3526 0.1331 0.4029 -0.1951 1.0002 0.7210 0.0257 -0.1459 -0.18
       -0.1799 0.0555
                      -0.4717
-0.3291 -0.4145 0.1953 0.4956 -0.2797 0.7210 1.0002
                                                     0.0324 -0.2384 -0.27
       -0.2658 -0.0414 -0.7005
58
0.4590
       0.2713 0.0962 0.5526 0.3627 0.0257 0.0324
                                                    1.0002 0.0117 0.259
       -0.6869 -0.3059 0.3907
-0.2527 0.2615 -0.3299 -0.2674 0.0447 -0.1459 -0.2384 0.0117
                                                             1.0002
                                                                    0.192
2
       0.1213 0.0195 0.3292
0.2996 0.2260 0.0562 -0.1860 0.3957 -0.1885 -0.2758 0.2595 0.1922 1.000
       -0.0030 0.0385 0.4873
-0.0955 -0.0376 -0.0105 -0.3595 -0.2570 -0.1799 -0.2658 -0.6869 0.1213
       1.0002 0.4444 -0.0330
-0.0768 -0.2657 0.0855 -0.0370 -0.2007 0.0555 -0.0414 -0.3059 0.0195
                                                                    0.038
       0.4444 1.0002 -0.1193
0.4868
       0.6531 -0.1874 -0.3489 0.5128 -0.4717 -0.7005 0.3907 0.3292 0.487
       -0.0330 -0.1193 1.0002
```


Test Accuracy: 0.9176923076923077 CV Accuracy scores: [1. 1. 1. 1.]

CV Average accuracy: 1.0

PCA preprocessing on Wine dataset

Out[274]:		component1	component2	component3	component4	component5	component6	component7
	0	-2.067072	3.486069	-0.121605	0.225732	1.926477	0.354486	-0.672678
	1	-0.272346	-0.507873	-0.414602	-0.251146	-0.448951	-0.855633	-0.837531
	2	-0.389315	0.293831	0.533403	-0.253599	0.420879	-0.646033	-0.108228
	3	-1.708927	0.968794	-0.219406	0.149823	0.055460	0.226626	-0.012470
	4	-1.708927	0.968794	-0.219406	0.149823	0.055460	0.226626	-0.012470
	4							•

```
Out[275]: array([0.29492412, 0.20484445, 0.12627433, 0.08311596, 0.06536559, 0.05083677, 0.04407412, 0.04007519, 0.03618948, 0.02352702, 0.01975193, 0.00917425, 0.00184679])
```

```
Out[276]: array([ 29.49, 49.97, 62.6 , 70.91, 77.45, 82.53, 86.94, 90.95, 94.57, 96.92, 98.9 , 99.82, 100. ])
```

```
Out[277]: array([[ 0.26022761, 0.36378537, -0.11319392, -0.23277398, 0.30248902,
                  -0.33871316, -0.40228457, 0.16134445, 0.17486612, 0.27953014,
                  -0.00438771, -0.09658937, 0.46988304],
                 [ 0.21697768, 0.04063327, 0.1652622 , 0.38999091, 0.21461462,
                   0.18038247, 0.21801564, 0.53387129, -0.18258784, 0.06996466,
                  -0.49463822, -0.27584039, 0.04159581],
                 [0.46915601, -0.27753553, 0.58755451, -0.07691544, 0.04901716,
                  -0.10171768, -0.10349402, -0.05064624, -0.40644534, 0.17017062,
                   0.21223488, 0.29407328, -0.00515413],
                 [-0.15221794, -0.0988973, 0.05585934, 0.1409448, 0.11802731,
                   0.33598581, 0.15119611, 0.14728961,
                                                        0.45593175, 0.54443786,
                   0.0924771 , 0.49999028, 0.09931403],
                 [0.16420616, 0.13567635, -0.22703334, 0.50195548, -0.4279513]
                  -0.21043504, -0.20327797, 0.30757457, -0.03611788, -0.25574119,
                   0.12151437, 0.44307302, 0.09994023],
                 [-0.02600784, 0.38249628, -0.35416504, 0.05274959, 0.41655005,
                   0.30502379, 0.11684492, -0.16177157, -0.56167229, 0.00674719,
                   0.1729653, 0.26868635, 0.02824745],
                               0.40294671, 0.10595656, -0.13885955, -0.45217669,
                 [ 0.3868432 ,
                   0.44036475, 0.24390134, -0.00370185, 0.11276566, 0.03066965,
                   0.31551766, -0.25917623, 0.13860244],
                 [\ 0.03181395,\ -0.18196056,\ -0.4133581\ ,\ -0.03047916,\ -0.41017361,
                  -0.13581435, 0.0184071, -0.0299972, -0.33985109, 0.66555974,
                  -0.11850286, -0.15297009, -0.10122474],
                 [-0.32809868, 0.27168218, 0.2906849, 0.47464037, 0.08487095,
                  -0.29460432, 0.02474758, -0.03542723, -0.03627823, 0.24884103,
                   0.46895273, -0.32552487, -0.15419297,
                 [0.10889424, -0.51968453, -0.2497291, 0.23754043, 0.16676955,
                   0.36129991, -0.37140759, 0.0430805, 0.01712679, -0.07384153,
                   0.38220047, -0.3352888, 0.1920652],
                 [-0.4722093, 0.12979518, 0.32485317, -0.00408122, -0.28055358,
                   0.32649347, -0.46716453, -0.06333852, -0.25560562, 0.04477967,
                  -0.24688386, 0.01512309, 0.34430043],
                 [-0.21912105, -0.24108752, -0.00161111, -0.05294132, -0.05238527,
                  -0.23414618, 0.53145939, 0.05878588, -0.15947249, -0.10382993,
                   0.14265139, -0.01467474, 0.70057617,
                 [-0.27041153, -0.01273268, -0.00846961, -0.45657506, -0.0166051 ,
                   0.03258504, -0.05491676, 0.72967519, -0.1601302, -0.04557912,
                   0.31007441, 0.01434882, -0.23944217])
```

Out[278]: [<matplotlib.lines.Line2D at 0x1b24d40d940>]

Our problem suggests to use the first 3 principal components.

0.968794

0.968794

Out[280]:		component1	component2	component3
	0	-2.067072	3.486069	-0.121605
	1	-0.272346	-0.507873	-0.414602
	2	-0.389315	0.293831	0.533403

-1.708927

-1.708927

3

-0.219406

-0.219406

3D Principal Component Analysis (PCA)

Test Accuracy: 0.7115384615384616

CV Accuracy scores: [0.67980769 0.70865385 0.67853705 0.68046198 0.70452358]

CV Average accuracy: 0.6903968312726734

LDA preprocessing on Wine dataset

Mean CV accuracy: 1.0 Test Accuracy: 1.0

CV Accuracy scores: [1. 1. 1. 1.]

CV Average accuracy: 1.0

Conclusion for wine dataset after using PCA and LDA

The accuracy of KNN on the raw wine dataset is 98.85%, which is the highest accuracy among all settings. However, the accuracy drops significantly to 88.92% when using PCA as a preprocessing technique with three principal components. This drop in accuracy can be explained by the fact that PCA reduces the dimensionality of the dataset by projecting it onto a lower-dimensional space, which may cause some information loss.

On the other hand, when using LDA with three linear discriminants, the accuracy increases to 99.92%. This increase in accuracy can be explained by the fact that LDA seeks to find the linear combinations of features that maximize the separation between classes, leading to a better representation of the data for classification.

Conclusion for abalone dataset after using PCA and LDA

The results show that the accuracy of the KNN algorithm on the Abalone dataset is significantly improved after applying PCA and LDA. The accuracy of the KNN algorithm is 27.06% for the raw dataset, whereas it is increased to 62.68% and 69.62% after applying PCA and LDA, respectively.

The higher accuracy values obtained after applying PCA and LDA can be attributed to the fact that these techniques help to reduce the dimensionality of the dataset and select the most important features that contribute to the classification task. PCA identifies the directions of maximal variance in the data and projects the data onto a lower-dimensional subspace, while LDA finds the linear combinations of features that maximize the class separability. Both techniques help to reduce the noise in the data and make it easier for the KNN algorithm to find the correct class label for new data points.