Wydział:	Imię i nazwisko Rafał Grabiańsl		Rok: Grupa:		Zespół:	
WIEiT	Zbigniew Królik		II	7	7	
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Kriogen	Nr ćwiczenia: 113				
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	OCENA:	
16.12.2014	13.01.2015					

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z budową i działaniem przyrządu nazwanego busolą stycznych. Mieliśmy za zadanie wyznaczyć doświadczalnie składową poziomą ziemskiego pola magnetycznego.

2 Wyniki pomiarów

Lp	Liczba Zwojów n	Prąd [mA]	Kąt w lewo [°]	Kąt w prawo [^o]	Šredni kąt [°]	$B [\mu T]$
1	12	300	35	35	35	2.48
2	12	350	40	40	40	2.42
3	12	250	29	31	30	2.51
4	12	200	26	24	25	2.49
5	16	200	32	32	32	2.48
6	16	250	38	38	38	2.47
7	16	150	26	25	25.5	2.43
8	16	180	30	29	29.5	2.46
9	24	100	27	27	27	2.28
10	24	150	34	36	35	2.48
11	24	180	39	40	39.5	2.53
12	24	130	32	32	32	2.41
13	36	50	21	20	20.5	2.33
14	36	100	35	36	35.5	2.44
15	36	120	40	40	40	2.49
16	36	80	28	30	29	2.51
17	40	50	22	22	22	2.39
18	40	70	29	29	29	2.44
19	40	90	34	34	34	2.58
20	40	110	41	41	41	2.45

Tabela 1: Wyniki pomiarów dla różnych wartości prądu płynącego w zwojnicy

3 Opracowanie wyników

3.1 Obliczenie wartości poziomej składowej indukcji ziemskiego pola magnetycznego

Wartość poziomej indukcji magnetycznej wyliczyliśmy z zależności:

$$B_0 = \mu_0 \cdot \frac{NI}{2R \, t \, q \alpha} \tag{1}$$

Wartość średnią poziomej indukcji magnetycznej obliczyliśmy licząć średnią arytmetyczną ze wszystkich pomiarów. $B_0=\overline{B}=(2.45\pm0.28)\cdot10^{-5}\mu T$

3.2 Obliczenie niepewności pomiarowych

Niepewność wyliczonej indukcji policzyliśmy z odchylenia standardowego średniej uzyskanych pomiarów.

$$u_A(B_0) = 6.8 \cdot 10^{-7} \mu T \tag{2}$$

Czyli względna niepewność:

$$\frac{u_A(B_0)}{B_0} \approx 2.8\%$$
 (3)

Niepewności typu B będą dotyczyły amperomierza:

$$\Delta I = \frac{zakres \, x \, klasa}{100} = 56mA \tag{4}$$

$$u_B(I) = \frac{\Delta I}{\sqrt{3}} = 32.3mA\tag{5}$$

$$\frac{u_B(I)}{I} = 11\% \tag{6}$$

Niepewność pomiaru grubości cewki oszacowaliśmy grubo przyjmując, z racji odczuwalnych różnic w geometrii i rozdzielczości miary na 3 mm. Względny błąd wyniesie zatem:

$$\frac{u_B(R)}{R} = \frac{3}{130} \approx 2.3\% \tag{7}$$

Na koniec obliczamy względną niepewność złożoną:

$$\tfrac{u_c(B_0)}{B_0} = \sqrt{[\tfrac{u_A(B_0)}{B_0}]^2 + [\tfrac{u_B(I)}{I}]^2 + [\tfrac{u_B(R)}{R}]^2} = \sqrt{[2.8\%]^2 + [11\%]^2 + [2.3\%]^2} \approx 11.6\%$$

I z tego liczymy $u_c(B_0) = 2.84 \cdot 10^{-6} \mu T$

4 Wnioski

Otrzymana wartość składowej poziomej natężenia pola magnetycznego Ziemi dla Krakowa, wyniosła $B_0 = (2.45 \pm 0.28) \cdot 10^{-5} \mu T$. W porównaniu do wartości tabelarycznej: $B_T = 2.1 \cdot 10^{-5} \mu T$ oraz k=2 mieścimy się przedziale w niepewności rozszerzonej $(1.53 \cdot 10^{-5} \mu T, 2.67 \cdot 10^{-5} \mu T)$.

Nie używając niepewności rozszerzonej wykroczyliśmy tylko nieznacznie poza przedział, co świadczy o prawidłowym wykonaniu doświadczenia. Nie zaobserwowano błędów grubych.

Największy wpływ na niepewność pomiaru miała mała rozdzielczość amperomierza równa $u_c 2.8 mAT$, a największa możliwa do otrzymania niepewność wyniosła:

$$\Delta I = \frac{zakres \, x \, klasa}{100} = 56mA \tag{8}$$