Introduction to Statistical Method

Inference on Proportions

Estimating Proportions

$$X = egin{cases} 1 & ext{has trait} \ 0 & ext{does not have trait} \end{cases}$$

$$p = rac{ ext{\#members with trait}}{ ext{population size}} = rac{1}{N} \sum_{i=1}^{N} x_i$$

If we take a random sample $X_1, \ldots X_n$ of X, the sample mean $\hat{p} = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is unbiased estimator for p.

So the random variable X follows a point binomial distribution with E[X] = p and VarX = p(1-p).

Then we can see from central limit theorem, \hat{p} is approximately normally distributed with mean p and Var=p(1-p)/n.

Thus $\frac{\hat{p}-p}{\sqrt{p(1-p)/n}}$ is approximately standard-normally distributed.

The 100(1-lpha)% confidence interval for p is $\hat{p}\pm z_{lpha/2}\sqrt{p(1-p)/n}$

But the p unknown, so we replace it with \hat{p} .

But we should replace the $z_{\alpha/2}$ with $t_{\alpha/2}$ according to ve401 note 7 . (we replace σ by S to get confidence interval for mean)

(we neglect the operation here)

Choosing the Sample Size

Given a 100(1-lpha)% confidence interval $p=\hat{p}\pm z_{lpha/2}\sqrt{\hat{p}(1-\hat{p})/n}$

Then $d=z_{\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n}$ and we derive $n=\frac{z_{\alpha/2}^2\hat{p}(1-\hat{p})}{d^2}$ as the sample size to ensure the confidence and $|p-\hat{p}|< d$. (requirement, have an estimate \hat{p} and p beforehand).

Since x(1-x) < 0.25, then we deduce that $n = \dfrac{z_{lpha/2}^2}{4d^2}$

Hypothesis Testing

Let $X_1..X_n$ be a random sample of size n from a Bernoulli distribution with parameter p and we let $\hat{p} = \overline{X}$ for the sample mean.

Test $H_0: p=p_0$ based on statistic $Z=rac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}$ is called a large-sample test for proportion.

We reject H_0 at significance level lpha

- ullet in favor of $H_1: p
 eq p_0$ if $|Z| > z_{lpha/2}$
- in favor of $H_1: p>p_0$ if $Z>z_{lpha}$
- ullet in favor of $H_1: p < p_0$ if $Z < -z_lpha$

Comparing Two Proportions

If we have different random sample of size n_1 and n_2 for $X^{(1)}$ and $X^{(2)}$, both are approximately normally distributed.

So mean p_1, p_2 and variance $p_1(1-p_1)/n_1, p_2(1-p_2)/n_2$.

Then for large samples, the estimator $\hat{p_1} - \hat{p_2}$ is approximately normal with mean $p_1 - p_2$ and variance $p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2$.

So the
$$100(1-lpha)\%$$
 confidence interval for p_1-p_2 : $\hat{p_1}-\hat{p_2}\pm z_{lpha/2}\sqrt{rac{\hat{p_1}(1-\hat{p_1})}{n_1}+rac{\hat{p_2}(1-\hat{p_2})}{n_2}}$

Test for Comparing Two Proportions

Let $X_1^{(i)} \dots X_{n_i}^{(i)}$, i=1,2 be random samples of size n_i from two Bernoulli distributions with parameters p_i and $\hat{p_i} = \overline{X_i}$ for corresponding sample means.

Then $H_0: p_1-p_2=(p_1-p_2)_0$ based on statistic $Z=rac{\hat{p_1}-\hat{p_2}-(p_1-p_2)_0}{\sqrt{rac{\hat{p_1}(1-\hat{p_1})}{n_1}+rac{\hat{p_2}(1-\hat{p_2})}{n_2}}}$ is called large-sample test for differences in proportions.

We reject H_0 at significance level α

- ullet in favor of $H_1:p_1-p_2
 eq (p_1-p_2)_0$ if $|Z|>z_{lpha/2}$
- ullet in favor of $H_1:p_1-p_2>(p_1-p_2)_0$ if $Z>z_lpha$
- ullet in favor of $H_2: p_1-p_2<(p_1-p_2)_0$ if $Z<-z_lpha$

Equality of Proportions

So the test statistic $Z=rac{\hat{p_1}-\hat{p_2}}{\sqrt{p(1-p)(rac{1}{n_1}+rac{1}{n_2})}}$ follows standard normal distribution.

Both $\hat{p_1}$ and $\hat{p_2}$ are estimators of p, then we estimate $~\hat{p}=rac{n_1\hat{p_1}+n_2\hat{p_2}}{n_1+n_2}$

Pooled Test

Let $X_1^{(i)} cdots X_{n_i}^{(i)}$, i=1,2 be random samples of size n_i from two Bernoulli distributions with parameters p_i and $\hat{p}_i = \overline{X}_i$ for corresponding sample means.

The test $H_0: p_1=p_2$ based on statistic $Z=rac{\hat{p_1}-\hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})(rac{1}{n_1}+rac{1}{n_2})}}$ is called pooled large-sample test for equality of proportions.

We reject H_0 at significance level lpha

- ullet in favor of $H_1: p_1-p_2
 eq (p_1-p_2)_0$ if $|Z|>z_{lpha/2}$
- ullet in favor of $H_1:p_1-p_2>(p_1-p_2)_0$ if $Z>z_lpha$
- ullet in favor of $H_2: p_1-p_2 < (p_1-p_2)_0$ if $Z<-z_lpha$