Regressão linear simples

Introdução

Imagino que todos conheçam o termo **correlação**. Essa medida leva em conta a força do relacionamento linear entre duas variáveis. Um índice de correlação próximo de 1 indica que, se uma variável tem uma alta, a outra também possui uma tendência de alta. Um índice próximo de -1 indica o oposto (uma variável tem uma alta, enquanto que a outra tem uma tendência de queda).

Para a maioria das aplicações, no entanto, saber que tal relacionamento linear existe não é o bastante. Nós queremos conseguir entender a natureza do relacionamento. É aí que usamos os modelos de regressão, começando pela regressão linear simples.

Antes de começarmos a falar sobre os modelos, é bom ficar bastante atento ao fato de que **correlação não significa causalidade**! Ou seja, o fato de dois dados apresentarem um índice alto de correlação, seja ele positivo ou negativo, não significa que um dado cause alteração no outro. Esse é um assunto muito delicado, então toda análise baseada em regressão precisa ser embasada, para que a regressão faça sentido.

Exemplos bem interessantes dessa "máxima" de que correlação é diferente de causalidade estão apresentados no <u>site spurious correlations</u>.

Os algoritmos de regressão também são considerados modelos supervisionados, já que possuímos dados sobre um alvo e estamos tentando estabelecer uma função que conecte esses dados.

Conceitos iniciais

Vamos pensar num cenário em que temos dados sobre a área de um imóvel e o preço de venda. Faz sentido imaginarmos que, quanto maior a área de um imóvel, maior será o preço de venda. Claro que outros fatores influenciam esse preço, mas vamos focar, no momento, na área do imóvel.

A regressão linear simples indica que, caso você desenhe a relação entre dois dados em um espaço bidimensional, você terá uma reta.

Ou seja, podemos considerar que a relação entre dois dados distintos atende a função:

Nessa expressão, a é a inclinação da reta, enquanto que b é o ponto no eixo y (dos preços) cortado pela reta.

Chamamos a variável que se encontra no eixo "x" de *variável independente*, ou seja, ela é a suposta causa da variável no eixo "y", que é a *variável dependente*.

Sabemos que, em uma base de dados significativa, é extremamente improvável obtermos precisamente a relação mostrada para todos os pares de dados, conhecidos valores "a" e "b" (desenhar um eixo com uma reta e indicar os possíveis pares de dados). Portanto, podemos acertar a nossa função para o seguinte:

```
preço = a * área + b + e
```

Onde "e" é um termo de erro, que esperamos que seja pequeno. Ele normalmente contabiliza outros fatores não contemplados pelo nosso modelo, e o nosso objetivo é encontrar valores de "a" e "b" de forma que, no geral, o termo "e" seja o mínimo possível para todos os nossos pares de dados.

Portanto, temos que saber qual é o erro total sobre todo o conjunto de dados. Mas não podemos simplesmente adicionar os erros, pois erros positivos e negativos podem se anular e falsear o resultado. Por isso, nós somamos os erros ao quadrado, que são sempre positivos.

Dessa forma, o nosso problema passa a ser escolher valores "a" e "b" de forma que a soma dos quadrados dos erros seja a menor possível.

Não vamos entrar no mérito aqui de como calculamos matemáticamente essa soma mínima.

Aplicação

Para aplicar esse modelo de regressão linear vamos usar a scikit-learn em uma base de dados disponível no GitHub.

Passo 1: import e análise dos dados

```
%matplotlib inline
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn import metrics

df = pd.read_csv("HousingPrices.csv")
```

Agora vamos explorar os dados. A primeira coisa é identificar o tamanho da base.

```
df.shape
```

```
(1460, 2)
```

O conjunto de dados possui 1460 linhas e duas colunas. Vamos ver como o nosso conjunto de dados está organizado.

df.head()

	SquareFeet	SalePrice
0	1710	208500
1	1262	181500
2	1786	223500
3	1717	140000
4	2198	250000

df.describe()

	SquareFeet	SalePrice
count	1460.000000	1460.000000
mean	1515.463699	180921.195890
std	525.480383	79442.502883
min	334.000000	34900.000000
25%	1129.500000	129975.000000
50%	1464.000000	163000.000000
75%	1776.750000	214000.000000
max	5642.000000	755000.000000

Podemos também desenhar nossos dados em um gráfico 2D e tentar identificar manualmente alguma relação entre os dados.

```
df.plot(x="SquareFeet", y="SalePrice", style="o")
plt.title("Square Feet vs Sale Price")
plt.xlabel("Square Feet")
plt.ylabel("Sale Price")
plt.show()
```


Pelo gráfico acima conseguimos observar claramente uma relação positiva linear entre a área do imóvel e o preço de venda.

100000 |

Passo 2: tratamento e organização dos dados

Agora já temos algumas ideias com relação aos detalhes dos dados. O próximo passo é dividir os dados nos "atributos" e nos "alvos". Atributos são as variáveis independentes, e os alvos são as variáveis dependentes cujos valores serão previstos. No nosso conjunto de dados temos apenas duas colunas: nós queremos prever o preço de venda baseado na área do imóvel.

```
sq_feet = df.iloc[:, :-1].values
sale_price = df.iloc[:, 1].values
```

Os atributos foram armazenados na variável sq_feet . Especificamos o -1 como a faixa para as colunas já que nós queremos conter todas as colunas do DataFrame exceto a última, que é a de preços. De forma análoga, a variável sale_price contém o nosso alvo.

Agora que temos os atributos e os alvos, o próximo passo é dividir os dados em treino e teste.

```
sq_feet_train, sq_feet_test, sale_price_train, sale_price_test = train_test_split(
    sq_feet, sale_price, test_size=0.2, random_state=0
)
```

A função acima dividiu 80% dos nossos dados no conjunto de treinamento, enquanto que 20% erá usado para os nossos testes.

Passo 3: divisão dos dados e treino do modelo

Já dividimos os nossos dados em treino e teste, portanto agora é hora de treinar o nosso modelo.

```
lin_reg = LinearRegression().fit(sq_feet_train, sale_price_train)
scores = cross_val_score(lin_reg, sq_feet_train, sale_price_train)
```

Cross validation (CV) é uma técnica muito utilizada para avaliação de desempenho de modelos de aprendizado de máquina. O CV consiste em particionar os dados em conjuntos (partes),

onde um conjunto é utilizador para treino e outro conjunto é utilizado para teste e avaliação do desempenho do modelo.

A utilização do CV tem altas chances de detectar se o seu modelo está sobrejustado ao seus dados de treinamento. Existe mais de um método de aplicação de CV. A função cross_val_score utiliza o método chamado **k-fold**.

K-fold consiste em dividir a base de dados de forma aleatória em K subconjuntos (com K definido previamente) com aproximadamente a mesma quantidade de amostras em cada um deles. A cada iteração, treino e teste, um conjunto formado por K - 1 subconjuntos são utilizados para treinamento e o subconjunto restante será utilizado para teste gerando um resultado de métrica para avaliação. Esse processo garante que cada subconjunto será utilizado para teste em algum momento da avaliação do modelo.

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
the marking O	T	T	T	-	T !.
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test

```
print(scores)
print(f"Score: {round(scores.mean(), 2)} (+/- {round(scores.std() * 2, 2)}))")

[0.51542273 0.49093565 0.48083647 0.55585545 0.55633684]
    Score: 0.52 (+/- 0.06))
```

Esse score fornecido pela função cross_val_score é, por default, o **coeficiente de determinação**, ou **coeficiente R²**. Basicamente ele é a soma dos erros quadrados. Se tivéssemos em um problema de classificação, poderíamos incluir o argumento scoring="accuracy", por exemplo, para pegar os indicadores de acurácia dos modelos.

O coeficiente R² varia entre 0 e 1, onde valores mais próximos de 1 tendem a indicar um maior ajuste do modelo aos dados. O valor encontrado, de média 0.52, indica que nosso modelo não está tão bem ajustado aos dados. Faz sentido, já que existem inúmeros outros fatores que podem influenciar o preço dos imóveis, como renda per capta média na região, ano de construção, criminalidade do bairro, etc.

Voltando ao nosso modelo, podemos ver os coeficientes de inclinação da reta e interseção no eixo y utilizando os atributos abaixo:

Isso significa que a nossa equação de formação dos preços com base na área dos imóveis é, desconsiderando os erros:

```
preço = 110.26 * área + 13330.29
```

Com área sendo dada em pés quadrados.

Passo 4: análise dos resultados

Agora que treinamos nosso algoritmo, vamos fazer umas previsões. Usaremos nossos dados de teste para ver o quão acurado está o nosso modelo.

```
sale_price_pred = lin_reg.predict(sq_feet_test)

plt.scatter(sq_feet_train, sale_price_train)
plt.plot(sq_feet_test, sale_price_pred, color="red")
plt.show()
```


O sale_price_pred é um array do numpy que contém todos os valores previstos para os valores de input na série sq_feet_test.

Para compararmos os alvos reais com os previstos, podemos executar o seguinte:

```
df_compare = pd.DataFrame({"Actual": sale_price_test, "Predicted": sale_price_pred})
df_compare.head()
```

	Actual	Predicted
0	200624	290645.119259
1	133000	187327.428687
2	110000	145978.299590
3	192000	236284.797539
4	88000	133738.957377

Deu para ver que, realmente, o nosso modelo não é tão acurado assim. No entanto, deu para ter uma ideia do valor do imóvel baseado na sua área.

Avaliação

A última etapa é avaliar o desempenho do algoritmo. Para os algoritmos de regressão, utilizamos três indicadores:

- Média dos erros absolutos;
- Média dos erros quadrados;
- Raiz quadrada dos erros quadrados.

```
print(
 "Mean Absolute Error:",
 metrics.mean_absolute_error(
   sale price test,
   sale_price_pred
print("Mean Sqaured Error:",
 metrics.mean_squared_error(
   sale price test,
   sale_price_pred
 )
print("Root Mean Squared Error:",
   metrics.mean_squared_error(
     sale price test,
     sale_price_pred
   )
  )
)
```

Mean Absolute Error: 39364.76724953735 Mean Sqaured Error: 3913788296.4027987 Root Mean Squared Error: 62560.277304394986

Vimos lá em cima que a média dos preços de venda é da ordem de 180.000,00. Isso indica que a nossa raiz da média dos erros quadrados é muito maior que 10% dessa média, o que indica um algoritmo mediano. Certamente a nossa análise seria beneficiada pela inclusão de novos atributos.

✓ 0s conclusão: 19:55