Modeling Traffic Scenes for Intelligent Vehicles using CNN-based Detection and Orientation Estimation

Carlos Guindel, David Martín and José María Armingol Intelligent Systems Laboratory (LSI) · Universidad Carlos III de Madrid

Sevilla · 23 November 2017

Agenda

- Introduction
- Obstacle detection
- Scene modeling
- Results
- 5) Conclusion

Agenda

- 1) Introduction
- Obstacle detection
- 3) Scene modeling
- Results
- Conclusion

Automated vehicles

- Highly dynamic, semi-structured environments
- They have to handle complex situations
- A basic requirement for driving tasks

Obstacle detection

Classification

 An accurate estimation of the class is essential

- Close-to-market assemblies
- · Rich data source

Vision-based approaches

Convolutional **Neural Networks**

- Feature learning
- The new paradigm in computer vision

INTELLIGENT VEHICLE BASED ON VISUAL INFORMATION 2.0

+info: uc3m.es/islab

System overview

- Two main branches intended to run in parallel
- Obstacle detection
 - Features are extracted exclusively from the left stereo image

- Scene modeling
 - Stereo-based 3D reconstruction & flat-ground assumption

Agenda

- Introduction
- Obstacle detection
- 3) Scene modeling
- Results
- 5) Conclusion

Faster R-CNN framework

Parameters are learned through a multi-task loss

Conv. features in these regions are pooled for classification

A **RPN** generates proposals wrt. a fixed set of anchors

Convolutional features computed **only once** per image

S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, 2016.

Viewpoint estimation

Faster R-CNN framework was modified to introduce viewpoint inference

C. Guindel, D. Martin, and J. M. Armingol, "Joint object detection and viewpoint estimation using CNN features," in Proc. of the IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2017, pp. 145–150.

Discrete viewpoint inference

 N_b angle bins $\Theta_i \dots \Theta_{N_b}$

$$N_b = 8$$

Every object is assigned a bin

Training: $\theta_{i_0} \rightarrow \Theta_i$

$$\Theta_i = \left\{ \theta \in [0, 2\pi) \mid \frac{2\pi}{N_b} \cdot i \le \theta < \frac{2\pi}{N_b} \cdot (i+1) \right\}$$

Inference gives a categorial distribution

Inference output: $r \in \Delta^{N_b-1}$

$$\Delta^{N} = \left\{ x \in \mathbb{R}^{N+1} \mid \sum_{i=1}^{N+1} x_i = 1 \land \forall i \colon x_i \ge 0 \right\}$$

Final estimation: $\Theta_{i^*} \to \hat{\theta}$

$$\hat{\theta} = \frac{\pi(2i^* + 1)}{N_b}$$

r

Joint detection and viewpoint estimation

Loss function and training

Unweighted muli-task loss with five components

- (1) Introduction
- (2) Obstacle detection
- 3 Scene modeling
- 4 Results
- (5) Conclusion

Scene modeling

Scene modeling

Voxel grid dowsampling

The cloud from the 3D reconstruction pipeline is downsampled (grid size: 20 cm)

Scene Modeling

...Pass through filters

Vertical axis: 0-2 m Depth axis: 0-20 m

Planar segmentation

Using RANSAC with a 10 cm threshold, and a small angular tolerance.

Scene modeling

Object localization

Object localization

Agenda

- Introduction
- Obstacle detection
- 3) Scene modeling
- Results
- 5) Conclusion

Results: Detection and viewpoint estimation

- KITTI Object Detection Benchmark
 - 5,576 images for training and 2,065 for validation
 - Labels for class and orientation available
- Evaluation metric
 - Average Orientation Similarity (AOS)

$$AOS = \frac{1}{11} \sum_{r \in \{0, 0.1, \dots, 1\}} \max_{\tilde{r}: \tilde{r} \ge r} s(\tilde{r}) \qquad s(r) = \frac{1}{|\mathcal{D}(r)|} \sum_{i \in \mathcal{D}(r)} \frac{1 + \cos \Delta_{\theta}^{(i)}}{2} \delta_i$$

- Two different architectures:
 - ZF (lightweight) and VGG 16-layer (more complex)
- Three different scales (height in pixels):
 - 375, 500, 625

	Net	Scale	Car	${\bf Pedest.}$	Cyclist	Van	Truck	mean	Time	(ms)
	ZF			35.6						
		500	52.7	43.7	18.4	12.9	3.5	26.2	73	
		625	51.6	40.7	22.7	15.1	5.3	27.1	90	
	VGG	375	64.8	54.7	25.0	22.9	8.5	35.2	79	
		500	74.7	61.0	33.0	30.0	12.1	42.2	112	
		625	75.7	60.9	35.2	31.1	15.4	43.7	144	

Top-performing comparable method in the KITTI ranking

88,43 66,28	63,41	N.A.	N.A.	N.A.	2 sec.
-------------	-------	------	------	------	--------

Results: Scene modeling

Results: Scene modeling

Results: Scene modeling

Agenda

- Introduction
- Obstacle detection
- 3) Scene modeling
- Results
- 5) Conclusion

Conclusion

- Towards a full object-based scene understanding
 - CNN-based detection and viewpoint inference
 - Efficient approach: the same set of features is used for all tasks
- Stereo-vision 3D information is included for situation assessment.
- Results validate our approach

Future work

- New categories of traffic elements
- Extension to the time domain
 - Tracking, filtering, etc.
- Including information from other perception modules
 - E.g., semantic segmentation

Code for CNN detection & viewpoints available at https://github.com/cguindel/lsi-faster-rcnn

THANKS FOR YOUR ATTENTION

23 November 2017 ROBOT'2017 - Third Iberian Robotics Conference

