Controle de um conversor Boost para Rastreamento de Ponto de Máxima potência (MPPT) Aplicado em Painéis Fotovoltaicos

José Augusto Arbugeri e Tulio Gomes Pereira

Resumo – Na maior parte das aplicações, os sistemas de rastreamento de máxima potência são compostos por conversores cc-cc controlados através de algoritmos específicos, chamados de algoritmos de rastreamento.

A função desse sistema está associada à extração da máxima potência disponível no arranjo fotovoltaico, de forma independente da radiação solar incidente e temperatura de superfície. Existem, na literatura, várias técnicas desenvolvidas para essa finalidade [1 - 5], sendo a eficiência do rastreamento diretamente relacionada à complexidade e custo de implementação do sistema.

De forma geral, são dois os aspectos impactantes no funcionamento dos sistemas de rastreamento de máxima potência:

- Escolha do conversor cc-cc;
- Escolha do algoritmo de rastreamento.

Os conversores cc-cc podem ser entendidos como atuadores, que recebem o sinal de comando e trabalham de maneira a impor o ponto de máxima potência como ponto de operação do sistema.

As principais figuras de mérito que permitem quantificar e comparar a qualidade de diferentes métodos de rastreamento, são:

- Precisão;
- Rapidez da busca;
- Oscilações em regime permanente;
- Custo e simplicidade de implementação.

Na literatura existem diversas técnicas de rastreamento de máxima potência, contudo, as três mais comumente citadas são:

- Método da tensão constante;
- Método perturba e observa;
- Método condutância incremental.

Entretanto as Redes Neurais nos últimos anos vêm sendo usadas como técnicas para rastreamento de máxima potência. Esse trabalho tem objetivo de de testar algumas técnicas e avaliar o desempenho usando as figuras de mérito que possam comparar a qualidade desses métodos comparado aos métodos tradicionais consagrados na literatura.

Referencias:

- [1] N. Khaldi, H. Mahmoudi, M. Zazi and Y. Barradi, "The MPPT control of PV system by using neural networks based on Newton Raphson method," 2014 International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate, 2014, pp. 19-24. doi: 10.1109/IRSEC.2014.7059894
- [2] S. Messalti, A. G. Harrag and A. E. Loukriz, "A new neural networks MPPT controller for PV systems," *IREC2015 The Sixth International Renewable Energy Congress*, Sousse, 2015, pp. 1-6. doi: 10.1109/IREC.2015.7110907
- [3] I. Chtouki, P. Wira and M. Zazi, "Comparison of several neural network perturb and observe MPPT methods for photovoltaic applications," 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, 2018, pp. 909-914. doi: 10.1109/ICIT.2018.8352299
- [4] K. Jyotheeswara Reddy and N. Sudhakar, "High Voltage Gain Interleaved Boost Converter With Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle Applications," in *IEEE Access*, vol. 6, pp. 3899-3908, 2018. doi: 10.1109/ACCESS.2017.2785832
- [5] R. Benkercha, S. Moulahoum and N. Kabache, "Combination of artificial neural network and flower pollination algorithm to model fuzzy logic MPPT controller for photovoltaic systems," 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, 2017, pp. 1-2. doi: 10.1109/ISEF.2017.8090701