UNICAMP - Universidade Estadual de Campinas

IMECC - Instituto de Matemática, Estatística e Computação Científica
Departamento de Estatística
ME731 - Métodos em Análise Multivariada

Trabalho

Carlos Caminho Oco RA 168624 marfloy Chaves eduardo RA 173733 Caio Henrique de Sousa Lima RA 214144 Piupiu Mendes Panela RA 219494 Nathan Blusa Amaarela Soltinho RA 222854

1 Questão 1

hist apenas no relatorio, qq e boxplot apendice

1.1 Introdução

O banco de dados é composto pelo perfil de tamanho e formato de 48 tartarugas, sendo 24 machos e 24 fêmeas. As informações obtidas foram largura, comprimento e altura. O estudo tinha como objetivo observar e comparar o sexo ao qual o animal pertencia e sua relação com essas medidas físicas. Para realizar a análise desse banco, foi utilizado o software estatístico R e aplicado algumas metodologias como a Análise de Variância Multivariada (MANOVA).

1.2 Análise descritiva

Tabela 1: Medidas resumo (F = Fem, M = Masc)

	Média	Var.	DP	CV(%)	Min.	Med.	Max.	CA	Cur.
length (F)	136.00	451.39	21.25	15.62	98.00	136.50	177.00	-0.23	2.26
width (F)	102.58	171.73	13.10	12.77	81.00	102.00	132.00	0.31	2.55
height (F)	51.96	66.65	8.16	15.71	38.00	51.00	67.00	-0.03	2.19
length (M)	113.38	138.77	11.78	10.39	93.00	115.00	135.00	-0.08	2.10
width (M)	88.29	50.04	7.07	8.01	74.00	89.00	106.00	0.20	3.15
height (M)	40.71	11.26	3.36	8.24	35.00	40.00	47.00	0.18	2.20

Inicialmente, visualizando as medidas resumo para cada sexo, podemos observar que aparentemente o sexo feminino tem, em média, medidas maiores que o sexo masculino.

Figura 1: Matriz de gráfico de dispersões sexo feminino.

Figura 2: Matriz de gráfico de dispersões sexo masculino.

Para ambos os sexos, as medidas de altura, largura e comprimento são bastante correlacionadas.

Tabela 2: Matriz de covariâncias (F = Fem, M = Masc)

				,		
	length (F)	width (F)	height (F)	length (M)	width (M)	height (M)
length	451.39	271.17	168.70	138.77	79.15	37.38
width	271.17	171.73	103.29	79.15	50.04	21.65
height	168.70	103.29	66.65	37.38	21.65	11.26

A matriz de covariância para ambos os sexos parecem ser diferentes, na qual as medidas do sexo masculino aparentam ter variância bem menor se comparado ao sexo feminino.

4) Matriz de correlações

Feminino

```
## length width height
## length 1.0000000 0.9739706 0.9725816
## width 0.9739706 1.0000000 0.9654187
## height 0.9725816 0.9654187 1.0000000
```

Masculino

```
## length width height
## length 1.0000000 0.9497846 0.9455580
## width 0.9497846 1.0000000 0.9122648
## height 0.9455580 0.9122648 1.0000000
```


Figura 3: Boxplots das variáveis por sexo.

Figura 4: Histogramas das variáveis por sexo.

Figura 5: QQplots das variáveis por sexo.

Olhando para boxplot,histogramas e qqplots, as variáveis não parecem seguir uma distribuição normal.

1.3 Análise inferencial

Tabela 3: Teste de Box-Cox para homocedasticidade

	Estatística do teste	p-valor	
Box-Cox	24.04	0.0005	

Tabela	4. Resultados da MANOVA
Valor	Aproximação pela distribuição F

	Valor	Aproximação pela distribuição F	p-valor
Wilks	0.41	21.28	< 0.0001
Pillai	0.59	21.28	< 0.0001
Hotelling-Lawley	1.45	21.28	< 0.0001
Roy	1.45	21.28	< 0.0001

Para observar inferencialmente a diferença entre as matrizes de covariância de cada grupo, foi realizado um teste de Box-cox, e tivemos como resultado que as matrizes realmente são diferentes. Após isso, foi realizado uma MANOVA com o objetivo de visualizar se existe diferença entre os vetores de médias para ambos os sexos, e também foi rejeitada a hipótese de que elas são iguais. Dessa forma, queremos ver em qual medidas essas diferenças são mais acentuadas, portanto aplicamos um teste CBU.

Tabela 5: Estimativas dos parâmetros do modelo

			<u> </u>	
	Estimativa	EP	Estatística t	p-valor
μ_1	136.00	3.51	38.79	< 0.0001
μ_2	102.58	2.15	47.72	< 0.0001
μ_3	51.96	1.27	40.78	< 0.0001
α_{21}	-22.63	4.96	-4.56	< 0.0001
α_{22}	-14.29	3.04	-4.70	< 0.0001
α_{23}	-11.25	1.80	-6.24	< 0.0001

Tabela 6: Testes CBU ($\alpha_{2i}=0$)

Parâmetro	Estatística Qui-quadrado	p-valor
α_{21} (Length)	20.82	< 0.0001
α_{22} (Width)	22.10	< 0.0001
α_{23} (Height)	38.99	< 0.0001

Observando o resultado dos teste CBU, podemos observar que as diferenças estão em todas as medidas (largura, comprimento e altura).

Aqui eu não sei o que falar

OBS: DEPOIS TEM QUE VER A LISTA FEITA PRA VER SE FALTA ALGO