Contents

1	Topological group action	2
2	Hyperbolic geometry	3
3	Universal coefficient theorem	4
4	Fundamental differential geometry	6
	4.1 Manifold and Atlas	6
	4.2 Definition of Differentiable Structure	7
	4.3 Curves	8
	4.4 Connection computation	8
	4.5 Geodesic equation	9
5	Vector calculus on spherical coordinates	10
6	Bundles	11

1 Topological group action

- **1.1.** Let *G* be a topological group acting on a topological space *X*. Let $p: X \to X/G$ be the quotient map.
- (a) $p^{-1}(p(A)) = \bigcup_{g \in G} gA$ for any $A \subset X$.
- (b) *p* is open.
- (c) If $x \neq gx$, then there is an open neighborhood U of x such that gU is disjoint to U.
- *Proof.* (c) Since X is Hausdorff, there is disjoint open neighborhoods U_0 and U_1 respectively of x and gx. Then, $U := g^{-1}(gU_0 \cap U_1) \subset U_0$ and $gU = gU_0 \cap U_1 \subset U_1$ are disjoint.
- **1.2.** Let $f: X \to Y$ be continuous. We say f is *proper* if $f^{-1}(K)$ is compact for compact K. We say f is *Bourbaki-proper* if it is closed and proper. If X is Hausdorff and Y is locally compact, then two notions are equivalent.
- **1.3** (Properly discontinuous actions). Let G be a topological group acting on a topological space X. Let $p: X \to X/G$ be the quotient map. This action is called *properly discontinuous* if for every compact $K \subset X$ only finite gK intersect K.
- (a) A free and proper action is properly
- **1.4** (Covering space actions). Let G be a topological group acting on a topological space X. Let $p: X \to X/G$ be the quotient map. This action is called a *covering space action* if every $x \in X$ has a neighborhood U such that gU are all disjoint for $g \in G$.
- (a) A properly discontinuous and free action is a covering space action, if *X* is locally compact and Hausdorff.
- (b) A covering space action is properly discontinuous.
- (c) A covering space action is free.

Proof. (a) Fix $x \in X$ and let K be a compact neighborhood of x. By the proper discontinuity, there is a finite subset $F \subset G$ such that gK intersects K only for $g \in F$. Because the action is free, for every $g \in F \setminus \{1\}$ there is an open neighborhood U_g of x such that $gU_g \cap U_g = \emptyset$. Then, $U := K^{\circ} \cap \bigcap_{g \in F \setminus \{1\}} U_g$ satisfies $gU \cap U = \emptyset$.

(b)

2 Hyperbolic geometry

- **2.1.** Consider a convex polygon P in \mathbb{H}^2 . The vertices are denoted by $v_0, v_1, \dots, v_n = v_0$, indexed along the boundary counterclockwise. Denote by s_i the side connecting v_i and v_{i+1} .
- **2.2** (Side pairing condition). Let Γ be a discrete group of Isom⁺(\mathbb{H}^2) and suppose D is a Dirichlet domain of Γ .
- (a) For each side s_i of D, there is $g_i \in \Gamma$ such that $g_i(\overline{D}) \cap \overline{D} = s_i$. The isometry g_i is called the *side pairing isometry* of the side s_i .
- (b) The side pairing isometry g_i is unique if v_i is
- (c) Define s_{j+1} , where $g_i^{-1}(s_i) = s_j$,

3 Universal coefficient theorem

Lemma 3.1. Suppose we have a flat resolution

$$0 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0.$$

Then, we have a exact sequence

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{Tor}_{1}^{R}(A,B) \longrightarrow P_{1} \otimes B \longrightarrow P_{0} \otimes B \longrightarrow A \otimes B \longrightarrow 0.$$

Theorem 3.2. Let R be a PID. Let C_{\bullet} be a chain complex of flat R-modules and G be a R-module. Then, we have a short exact sequence

$$0 \to H_n(C) \otimes G \to H_n(C;G) \to \operatorname{Tor}(H_{n-1}(C),G) \to 0$$
,

which splits, but not naturally.

1. We have a short exact sequence of chain complexes

$$0 \longrightarrow Z_{\bullet} \longrightarrow C_{\bullet} \longrightarrow B_{\bullet-1} \longrightarrow 0$$

where every morphism in Z_{\bullet} and B_{\bullet} are zero. Since modules in $B_{\bullet-1}$ are flat, we have a short exact sequence

$$0 \longrightarrow Z_{\bullet} \otimes G \longrightarrow C_{\bullet} \otimes G \longrightarrow B_{\bullet-1} \otimes G \longrightarrow 0$$

and the associated long exact sequence

$$\rightarrow H_n(B;G) \rightarrow H_n(Z;G) \rightarrow H_n(C;G) \rightarrow H_{n-1}(B;G) \rightarrow H_{n-1}(Z;G) \rightarrow$$

where the connecting homomomorphisms are of the form $(i_n: B_n \to Z_n) \otimes 1_G$ (It is better to think diagram chasing than a natural construction). Since morphisms in B and Z are zero (if it is not, then the short exact sequence of chain complexes are not exact, we have

$$\longrightarrow B_n \otimes G \longrightarrow Z_n \otimes G \longrightarrow H_n(C;G) \longrightarrow B_{n-1} \otimes G \longrightarrow Z_{n-1} \otimes G \longrightarrow .$$

Since

$$0 \longrightarrow \operatorname{Tor}_1^R(H_n,G) \longrightarrow B_n \otimes G \longrightarrow Z_n \otimes G \longrightarrow H_n \otimes G \longrightarrow 0$$

for all n, the exact sequence splits into short exact sequence by images

$$0 \longrightarrow H_n \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}_1^R(H_{n-1},G) \longrightarrow 0.$$

For splitting,

2. Since *R* is PID, we can construct a flat resolution of *G*

$$0 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow G \longrightarrow 0.$$

Since modules in C_{\bullet} are flat so that the tensor product functors are exact and $P_1 \to P_0$ and $P_0 \to G$ induce the chain maps, we have a short exact sequence of chain complexes

$$0 \, \longrightarrow \, C_{\scriptscriptstyle\bullet} \otimes P_1 \, \longrightarrow \, C_{\scriptscriptstyle\bullet} \otimes P_0 \, \longrightarrow \, C_{\scriptscriptstyle\bullet} \otimes G \, \longrightarrow \, 0.$$

Then, we have the associated long exact sequence

$$\to H_n(C; P_1) \to H_n(C; P_0) \to H_n(C; G) \to H_{n-1}(C; P_1) \to H_{n-1}(C; P_0) \to .$$

Since flat tensor product functor commutes with homology funtor from chain complexes, we have

$$\to H_n \otimes P_1 \to H_n \otimes P_0 \to H_n(C;G) \to H_{n-1} \otimes P_1 \to H_{n-1} \otimes P_0 \to .$$

Since

$$0 \, \longrightarrow \, \operatorname{Tor}_1^R(G,H_n) \, \longrightarrow \, H_n \otimes P_1 \, \longrightarrow \, H_n \otimes P_0 \, \longrightarrow \, H_n \otimes G \, \longrightarrow \, 0$$

for all n, the exact sequence splits into short exact sequence by images

$$0 \longrightarrow H_n \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}_1^R(G,H_{n-1}) \longrightarrow 0.$$

Proof 3. By tensoring *G*, we get the following diagram.

 $H_{n}\otimes G \qquad \qquad H_{n-1}\otimes G$ $\operatorname{coker}\partial_{n+1}\otimes G \operatorname{ker}\partial_{n-1}\otimes G$ $C_{n}\otimes G \qquad \qquad C_{n-1}\otimes G$ $\operatorname{im}\partial_{n}\otimes G \qquad \qquad C_{n-1}\otimes G$ $\operatorname{Tor}_{1}(H_{n-1},G)$

Every aligned set of consecutive arrows indicates an exact sequence. Notice that epimorphisms and cokernals are preserved, but monomorphisms and kernels are not. Especially, $\operatorname{coker} \partial_{n+1} \otimes G = \operatorname{coker} (\partial_{n+1} \otimes 1_G)$ is important.

Consider the following diagram.

Since ker ∂_{n-1} is free,

If we show $\operatorname{im}(\partial_n \otimes 1_G) \to \ker \partial_{n-1} \otimes G$ is monic, then we can get

$$H_n(C; G) = \ker(\operatorname{coker} \partial_{n+1} \otimes G \to \operatorname{im}(\partial_n \otimes 1_G))$$

= $\ker(\operatorname{coker} \partial_{n+1} \otimes G \to \ker \partial_{n-1} \otimes G).$

4 Fundamental differential geometry

4.1 Manifold and Atlas

Definition 4.1. A locally Euclidean space M of dimension m is a Hausdorff topological space M for which each point $x \in M$ has a neighborhood U homeomorphic to an open subset of \mathbb{R}^d .

Definition 4.2. A *manifold* is a locally Euclidean space satisfying the one of following equivalent conditions: second countability, blabla

Definition 4.3. A *chart* or a *coordinate system* for a locally Euclidean space is a map φ is a homeomorphism from an open set $U \subset M$ to an open subset of \mathbb{R}^d . A chart is often written by a pair (U, φ) .

Definition 4.4. An *atlas* \mathcal{F} is a collection $\mathcal{F} = \{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in A\}$ of charts on M such that $\bigcup_{\alpha \in A} U_{\alpha} = M$.

Definition 4.5. A *differentiable maifold* is a manifold on which a differentiable structure is equipped.

The definition of differentiable structure will be given in the next subsection. Actually, a differentiable structure can be defined for a locally Euclidean space.

4.2 Definition of Differentiable Structure

Definition 4.6. An atlas \mathcal{F} is called *differentiable* if any two charts $\varphi_{\alpha}, \varphi_{\beta} \in \mathcal{F}$ is *compatible*: each *transition function* $\tau_{\alpha\beta} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ which is defined by $\tau_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is differentiable.

It is called a gluing condition.

Definition 4.7. For two differentiable atlases $\mathcal{F}, \mathcal{F}'$, the two atlases are *equivalent* if $\mathcal{F} \cup \mathcal{F}'$ is also differentiable.

Definition 4.8. An differentiable atlas \mathcal{F} is called *maximal* if the following holds: if a chart (U, φ) is compatible to all charts in \mathcal{F} , then $(U, \varphi) \in \mathcal{F}$.

Definition 4.9. A differentiable structure on M is a maximal differentiable atlas.

To differentiate a function on a flexible manofold, first we should define the differentiability of a function. A differentiable structure, which is usually defined by a maximal differentiable atlas, is roughly a collection of differentiable functions on M. When the charts is already equipped on M, it is natural to define a function $f: M \to \mathbb{R}$ differentiable if the functions $f \circ \varphi^{-1} \colon \mathbb{R}^d \to \mathbb{R}$ is differentiable.

The gluing condition makes the differentiable function for a chart is also differentiable for any charts because $f \circ \varphi_{\alpha}^{-1} = (f \circ \varphi_{\beta}^{-1}) \circ (\varphi_{\beta} \circ \varphi_{\alpha}^{-1}) = (f \circ \varphi_{\beta}^{-1}) \circ \tau_{\alpha\beta}$. If a function f is differentiable on an atlas \mathcal{F} , then f is also differentiable on any atlases which is equivalent to \mathcal{F} by the definition of the equivalence relation for differential atlases. We can construct the equivalence classes respected to this equivalence relation.

Therefore, we want to define a differentiable structure as a one of the equivalence classes. However the differentiable structure is frequently defined as a maximal atlas for the convenience since each equivalence class is determined by a unique maximal atlas.

Example 4.1. While the circle S^1 has a unique smooth structure, S^7 has 28 smooth structures. The number of smooth structures on S^4 is still unknown.

Definition 4.10. A continuous function $f: M \to N$ is differentiable if $\psi \circ f \circ \varphi^{-1}$ is differentiable for charts φ, ψ on M, N respectively.

4.3 Curves

Definition 4.11. For $f: M \to \mathbb{R}$ and (U, ϕ) a chart,

$$df\left(\frac{\partial}{\partial x^{\mu}}\right) := \frac{\partial f \circ \phi^{-1}}{\partial x^{\mu}}.$$

Definition 4.12. Let $\gamma: I \to M$ be a smooth curve. Then, $\dot{\gamma}(t)$ is defined by a tangent vector at $\gamma(t)$ such that

$$\dot{\gamma}(t) := d\gamma \left(\frac{\partial}{\partial t}\right).$$

Let $\phi: M \to N$ be a smoth map. Then, $\phi(t)$ can refer to a curve on N such that

$$\phi(t) := \phi(\gamma(t)).$$

Let $f: M \to \mathbb{R}$ be a smooth function. Then, $\dot{f}(t)$ is defined by a function $\mathbb{R} \to \mathbb{R}$ such that

$$\dot{f}(t) := \frac{d}{dt} f \circ \gamma.$$

Proposition 4.1. Let $\gamma: I \to M$ be a smooth curve on a manifold M. The notation $\dot{\gamma}^{\mu}$ is not confusing thanks to

$$(\dot{\gamma})^{\mu} = (\dot{\gamma^{\mu}}).$$

In other words,

$$dx^{\mu}(\dot{\gamma}) = \frac{d}{dt}x^{\mu} \circ \gamma.$$

4.4 Connection computation

$$\begin{split} \nabla_{X}Y &= X^{\mu}\nabla_{\mu}(Y^{\nu}\partial_{\nu}) \\ &= X^{\mu}(\nabla_{\mu}Y^{\nu})\partial_{\nu} + X^{\mu}Y^{\nu}(\nabla_{\mu}\partial_{\nu}) \\ &= X^{\mu}\left(\frac{\partial Y^{\nu}}{\partial x^{\mu}}\right)\partial_{\nu} + X^{\mu}Y^{\nu}(\Gamma^{\lambda}_{\mu\nu}\partial_{\lambda}) \\ &= X^{\mu}\left(\frac{\partial Y^{\nu}}{\partial x^{\mu}} + \Gamma^{\nu}_{\mu\lambda}Y^{\lambda}\right)\partial_{\nu}. \end{split}$$

The covariant derivative $\nabla_X Y$ does not depend on derivatives of X^{μ} .

$$Y^{\nu}_{,\mu} = \nabla_{\mu}Y^{\nu} = \frac{\partial Y^{\nu}}{\partial x^{\mu}}, \qquad Y^{\nu}_{;\mu} = (\nabla_{\mu}Y)^{\nu} = \frac{\partial Y^{\nu}}{\partial x^{\mu}} + \Gamma^{\nu}_{\mu\lambda}Y^{\lambda}.$$

Theorem 4.2. For Levi-civita connection for g,

$$\Gamma_{ij}^l = \frac{1}{2} (\partial_i g_{jk} + \partial_j g_{ki} - \partial_k g_{ij}).$$

Proof.

$$(\nabla_{i}g)_{jk} = \partial_{i}g_{jk} - \Gamma_{ij}^{l}g_{lk} - \Gamma_{ik}^{l}g_{jl}$$

$$(\nabla_{j}g)_{kl} = \partial_{j}g_{kl} - \Gamma_{jk}^{l}g_{li} - \Gamma_{ji}^{l}g_{kl}$$

$$(\nabla_{k}g)_{ij} = \partial_{k}g_{ij} - \Gamma_{ki}^{l}g_{lj} - \Gamma_{kj}^{l}g_{il}$$

If ∇ is a Levi-civita connection, then $\nabla g = 0$ and $\Gamma_{ij}^k = \Gamma_{ji}^k$. Thus,

$$\Gamma_{ij}^l g_{kl} = \frac{1}{2} (\partial_i g_{jk} + \partial_j g_{ki} - \partial_k g_{ij}).$$

$$\Gamma_{ij}^{l} = \frac{1}{2} g^{kl} (\partial_{i} g_{jk} + \partial_{j} g_{ki} - \partial_{k} g_{ij}).$$

4.5 Geodesic equation

Theorem 4.3. If c is a geodesic curve, then components of c satisfies a second-order differential equation

$$\frac{d^2\gamma^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\lambda} \frac{d\gamma^{\nu}}{dt} \frac{d\gamma^{\lambda}}{dt} = 0.$$

Proof. Note

$$0 = \nabla_{\dot{\gamma}} \dot{\gamma} = \dot{\gamma}^{\mu} \nabla_{\mu} (\dot{\gamma}^{\lambda} \partial_{\lambda}) = (\dot{\gamma}^{\nu} \partial_{\nu} \dot{\gamma}^{\mu} + \dot{\gamma}^{\nu} \dot{\gamma}^{\lambda} \Gamma^{\mu}_{\nu\lambda}) \partial_{\mu}.$$

Since

$$\dot{\gamma}^{\nu}\partial_{\nu}\dot{\gamma}^{\mu} = \dot{\gamma}(\dot{\gamma}^{\mu}) = d\dot{\gamma}^{\mu}(\dot{\gamma}) = d\dot{\gamma}^{\mu} \circ d\gamma \left(\frac{\partial}{\partial t}\right) = d\dot{\gamma}^{\mu} \left(\frac{\partial}{\partial t}\right) = \ddot{\gamma}^{\mu},$$

we get a second-order differential equation

$$\frac{d^2\gamma^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\lambda} \frac{d\gamma^{\nu}}{dt} \frac{d\gamma^{\lambda}}{dt} = 0$$

for each μ .

Vector calculus on spherical coordinates

$$V = (V_r, V_\theta, V_\phi)$$

$$= V_r \qquad \widehat{r} \qquad + \qquad V_\theta \qquad \widehat{\theta} \qquad + \qquad V_\phi \qquad \widehat{\phi} \qquad \text{(normalized)}$$

$$= V_r \qquad \frac{\partial}{\partial r} \qquad + \qquad \frac{1}{r} V_\theta \qquad \frac{\partial}{\partial \theta} \qquad + \qquad \frac{1}{r \sin \theta} V_\phi \qquad \frac{\partial}{\partial \phi} \qquad (\Gamma(TM))$$

$$= V_r \qquad dr \qquad + \qquad r V_\theta \qquad d\theta \qquad + \qquad r \sin \theta V_\phi \qquad d\phi \qquad (\Omega^1(M))$$

$$= r^2 \sin \theta V_r \qquad d\theta \wedge d\phi \qquad + \qquad r \sin \theta V_\theta \qquad d\phi \wedge dr \qquad + \qquad r V_\phi \qquad dr \wedge d\theta \qquad (\Omega^2(M))$$

$$\nabla \cdot V = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} (r^2 \sin \theta V_r) + \frac{\partial}{\partial \theta} (r \sin \theta V_\theta) + \frac{\partial}{\partial \phi} (r V_\phi) \right]$$

$$\Delta u = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} (r^2 \sin \theta \partial_r u) + \frac{\partial}{\partial \theta} (\sin \theta \partial_\theta u) + \frac{\partial}{\partial \phi} (\frac{1}{\sin \theta} \partial_\theta u) \right]$$

 $(\Gamma(TN))$

 $(\Omega^1(N))$

 $(\Omega^2(M))$

Let (ξ, η, ζ) be an orthogonal coordinate that is *not* normalized. Then,

$$\sharp = g = \operatorname{diag}(\|\partial_{\xi}\|^{2}, \|\partial_{\eta}\|^{2}, \|\partial_{\zeta}\|^{2})$$

$$\widehat{x} = \|\partial_{x}\|^{-1} \partial_{x} = \|\partial_{x}\| dx = \|\partial_{y}\| \|\partial_{z}\| dy \wedge dz$$

In other words, we get the normalized differential forms in sphereical coordinates as follows:

dr, $r d\theta$, $r \sin \theta d\phi$, $(r d\theta) \wedge (r \sin \theta d\phi)$, $(r \sin \theta d\phi) \wedge (dr)$, $(dr) \wedge (r d\theta)$.

$$\begin{aligned} \operatorname{grad} : \nabla &= \left[\begin{array}{c} \frac{1}{\|\partial_x\|} \frac{\partial}{\partial x} \cdot -, \frac{1}{\|\partial_y\|} \frac{\partial}{\partial y} \cdot -, \frac{1}{\|\partial_z\|} \frac{\partial}{\partial z} \cdot - \right] \\ \operatorname{curl} : \nabla &= \left[\begin{array}{c} \frac{1}{\|\partial_y\| \|\partial_z\|} \left(\frac{\partial}{\partial y} (\|\partial_z\| \cdot -) - \frac{\partial}{\partial z} (\|\partial_y\| \cdot -) \right), \\ \frac{1}{\|\partial_z\| \|\partial_x\|} \left(\frac{\partial}{\partial z} (\|\partial_x\| \cdot -) - \frac{\partial}{\partial x} (\|\partial_z\| \cdot -) \right), \\ \frac{1}{\|\partial_z\| \|\partial_y\|} \left(\frac{\partial}{\partial x} (\|\partial_y\| \cdot -) - \frac{\partial}{\partial y} (\|\partial_z\| \cdot -) \right) \right] \\ \operatorname{div} : \nabla &= \frac{1}{\|\partial_x\| \|\partial_y\| \|\partial_z\|} \left[\begin{array}{c} \frac{\partial}{\partial x} \left(\|\partial_y\| \|\partial_z\| \cdot -), & \frac{\partial}{\partial y} \left(\|\partial_z\| \|\partial_x\| \cdot -), & \frac{\partial}{\partial z} \left(\|\partial_x\| \|\partial_y\| \cdot -) \right) \right] \\ \Delta &= \frac{1}{\|\partial_z\| \|\partial_z\| \|\partial_z\|} \left[\begin{array}{c} \frac{\partial}{\partial x} \left(\frac{\|\partial_y\| \|\partial_z\|}{\|\partial_z\|} \frac{\partial}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\|\partial_z\| \|\partial_x\|}{\|\partial_z\|} \frac{\partial}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\|\partial_z\| \|\partial_y\|}{\|\partial_z\|} \frac{\partial}{\partial z} \right) \right] \end{aligned}$$

$$\operatorname{grad} = \frac{1}{\|\cdot\|^{1}} (\nabla) \|\cdot\|^{0}$$
$$\operatorname{curl} = \frac{1}{\|\cdot\|^{2}} (\nabla \times) \|\cdot\|^{1}$$
$$\operatorname{div} = \frac{1}{\|\cdot\|^{3}} (\nabla \cdot) \|\cdot\|^{2}$$

6 Bundles

Show that S^n has a nonvanishing vector field if and only if n is odd.

Solution. Since S^n is embedded in \mathbb{R}^{n+1} , the tangent bundle TS^n can be considered as an embedded manifold in $S^n \times \mathbb{R}^{n+1}$ which consists of (x, v) such that $\langle x, x \rangle = 1$ and $\langle x, v \rangle = 0$, where the inner product is the standard one of \mathbb{R}^{n+1} .

Suppose *n* is odd. We have a vector field $(x_1, x_2, \dots, x_{n+1}; x_2, -x_1, \dots, -x_n)$ which is nonvanishing.

Conversely, suppose we have a nonvanishing vector field X. Consider a map

$$\phi: S^n \xrightarrow{X} TS^n \to S^n \times \mathbb{R}^{n+1} \to \phi \mathbb{R}^{n+1} \to S^n.$$

The last map can be defined since X is nowhere zero. Since this map satisfies $\langle x, \phi(x) \rangle = 0$ for all $x \in S^n$, we can define homotopies from ϕ to the identity map and the antipodal map respectively. Therefore, the antipodal map must have positive degree, +1, so n is odd.

Proposition 6.1. *Independent commuting vector fields are realized as partial derivatives in a chart.*

Proposition 6.2. Let $\{\partial_1, \dots, \partial_k\}$ be an independent involutive vector fields. We can find independent commuting $\{\partial_{k+1}, \dots, \partial_n\}$ such that union is independent. (Maybe)

Proposition 6.3. Let $\{\partial_1, \dots, \partial_k\}$ be an independent commuting vector fields. We can find independent commuting $\{\partial_{k+1}, \dots, \partial_n\}$ such that union is independent and commuting. (Maybe)

The following theorem says that image of immersion is equivalent to kernel of submersion.

Proposition 6.4. An immersed manifold is locally an inverse image of a regular value.

Proposition 6.5. A closed submanifold with trivial normal bundle is globally an inverse image of a regular value.

Proof. It uses tubular neighborhood. Pontryagin construction?

Proposition 6.6. An immersed manifold is locally a linear subspace in a chart.

Proposition 6.7. Distinct two points on a connected manifold are connected by embedded curve.

Proof. Let $\gamma: I \to M$ be a curve connecting the given two points, say p, q.

Step [.1] Constructing a piecewise linear curve For $t \in I$, take a convex chart U_t at $\gamma(t)$. Since I is compact, we can choose a finite $\{t_i\}_i$ such that $\bigcup_i \gamma^{-1}(U_{t_i}) = I$. This implies $\operatorname{im} \gamma \subset \bigcup_i U_{t_i}$. Reorganize indices such that $\gamma(t_1) = p$, $\gamma(t_n) = q$, and $U_{t_i} \cap U_{t_{i+1}} \neq \emptyset$ for all $1 \leq i \leq n-1$. It is possible since the graph with $V = \{i\}_i$ and $E = \{(i,j): U_{t_i} \cap U_{t_j} \neq \emptyset$ is connected. Choose $p_i \in U_{t_i} \cap U_{t_{i+1}}$ such that they are all dis for $1 \leq i \leq n-1$ and let $p_0 = p$, $p_n = q$.

How can we treat intersections?

Therefore, we get a piecewise linear curve which has no self intersection from p to q.

Step [.2]Smoothing the curve

Proposition 6.8. Let M is an embedded manifold with boundary in N. Any kind of sections on M can be extended on N.

Proposition 6.9. Every ring homomorphism $C^{\infty}(M) \to \mathbb{R}$ is obtained by an evaluation at a point of M.

Proof. Suppose $\phi: C^{\infty}(M) \to \mathbb{R}$ is not an evaluation. Let h be a positive exhaustion function. Take a compact set $K:=h^{-1}([0,\phi(h)])$. For every $p\in K$, we can find $f_p\in C^{\infty}(M)$ such that $\phi(f_p)\neq f_p(p)$ by the assumption. Summing $(f_p-\phi(f_p))^2$ finitely on K and applying the extreme value theorem, we obtain a function $f\in C^{\infty}(M)$ such that $f\geq 0$, $f|_K>1$, and $\phi(f)=0$. Then, the function $h+\phi(h)f-\phi(h)$ is in kernel of ϕ although it is strictly positive and thereby a unit. It is a contradiction.

Proposition 6.10. The set of points that is geodesically connected to a point is open.