

Systemy operacyjne

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka:-

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.140.01912.22

Języki wykładowe: polski

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.SO.OL.

Koordynator przedmiotu

Jakub Kozik

Prowadzący zajęcia

Jakub Kozik

C1

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Okres Semestr 3 Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia laboratoryjne: 30

Liczba punktów ECTS 6.0

Cele kształcenia dla przedmiotu

Zapoznanie z interfejsem systemu operacyjnego zdefiniowanego w standardzie POSIX.

Wykształcenie umiejętności programowania bazującego na tym standardzie (POSIX programming).

Zrozumienie podstawowych zagadnień i problemów związanych z implementacją systemu operacyjnego, w tym standardu POSIX.

C3 Uświadomienie studentom podstawowych problemów programowania współbieżnego.

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie		Metody weryfikacji	
Wiedzy – Student zna i rozumie:				
W1	interfejs systemów operacyjnych zdefiniowany w standardzie POSIX.	IAN_K1_W13	egzamin pisemny, projekt, zadania programistyczne	
W2	zasady projektowania systemów operacyjnych.	IAN_K1_W13	egzamin pisemny	
Umiejętności – Student potrafi:				
U1	przeanalizować zalety i wady rozwiązania wykorzystanego w implementacji systemu operacyjnego.	IAN_K1_U19	egzamin pisemny, projekt	
U2	korzystać z udostępnianych przez system mechanizmów komunikacji międzyprocesowaj do implementacji przykładowych aplikacji współbieżnych.	IAN_K1_U12	zadania programistyczne	
U3	programować aplikacje bazujące na standardzie POSIX.	IAN_K1_U12, IAN_K1_U18	projekt, zadania programistyczne	
U4	zrealizować prosty projekt programistyczny polegający na modyfikacji/rozbudowie przykładowego systemu operacyjnego.	IAN_K1_U18	projekt	

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	

Łączny nakład pracy studenta	Liczba godzin 172	ECTS
uczestnictwo w egzaminie	2	
przygotowanie do egzaminu	30	
samodzielne rozwiązywanie zadań komputerowych	20	
przygotowywanie projektów	60	
ćwiczenia laboratoryjne	30	

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	Podstawowy interfejs systemu operacyjnego – standard POSIX – procesy, pliki, sygnały.	W1, U3
2.	Współbieżność i mechanizmy synchronizacji procesów.	W2, U2
3.	Architektury systemów operacyjnych – systemy monolityczne, systemy z mikrojądrem.	W2
4.	Metody szeregowania procesów.	W2
5.	Analiza implementacji mikrojądra systemu operacyjnego MINIX.	U1
6.	System wejścia/wyjścia – ogólne zagadnienia zarządzania zasobami, mechanizmy unikania/wykrywania blokad (deadlock), implementacja systemu wejścia/wyjścia w systemie MINIX.	W2, U1
7.	Zarządzanie pamięcią – mechanizmy segmentacji i stronicowania, implementacja zarządzania pamięcią i procesami w systemie MINIX.	W2, U1
8.	System plików – rodzaje organizacji przestrzeni dyskowej, system plików systemu MINIX, implementacja serwera plków w systemie MINIX.	W2, U1
9.	Realizacja projektu programistycznego polegającego na modyfikacji/rozbudowie przykładowego systemu operacyjnego	U4

Informacje rozszerzone

Metody nauczania:

metoda projektów, wykład z prezentacją multimedialną, analiza przypadków, ćwiczenia laboratoryjne

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	Warunkiem zaliczenia przedmiotu jest uzyskanie ponad 50% punktów na egzaminie pisemnym oraz pozytywna ocena z ćwiczeń.
ćwiczenia laboratoryjne	projekt, zadania programistyczne	Warunkiem zaliczenia ćwiczeń jest terminowa i poprawna realizacja dwóch projektów programistycznych oraz dwóch zadań programistycznych. Aktywność na ćwiczeniach może podwyższyć ocenę, jednak nie zmienia faktu zaliczenia ćwiczeń.

Wymagania wstępne i dodatkowe

• umiejętność programowania w języku C - znajomość użytkowej strony systemu z rodziny UNIX

Literatura

Obowiązkowa

1. Andrew S. Tanenbaum, Systemy operacyjne, Helion 2015

Dodatkowa

- 1. Andrew S Tanenbaum, Albert S Woodhull, Operating Systems Design and Implementation, 3rd Edition, Pearson Prentice Hall 2009.
- 2. POSIX.1-2017, The Open Group Base Specifications Issue 7, 2018 edition, IEEE Std 1003.1™-2017 (Revision of IEEE Std 1003.1-2008)
- 3. A. Silberschatz, J.L. Peterson, G. Gagne: Podstawy systemów operacyjnych. WNT