Himpunan

oleh Aldy Rialdy Atmadja, MT.

Himpunan

- Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di dalam dunia informatika
- Himpunan (set) dalah kumpulan objek-objek yang berbeda
- Objek yang terdapat dalam himpunan disebut elemen, unsur, atau anggota

Notasi Himpunan

- Himpunan dinyatakan dg huruf capital,
 misalnya: A, B, G
- Sedangkan elemennya dg huruf kecil mislanya: a, b, c..,1,2,..

Penyajian Himpunan

1. Enumerasi

menyebutkan semua anggota dari himpunan tersebut.

contoh: Himpunan tiga bilangan ganjil pertama: $A = \{1,3,5\}$.

Keanggotaan Himpuan

 $x \in A : x$ merupakan anggota himpunan A;

 $x \not\in A$: x bukan merupakan anggota himpunan A.

Contoh 2.

```
Misalkan: A = \{1,3,5,8\}, R = \{a,b,\{a,b,c\},\{a,c\}\}, K = \{\{\}\}\} maka 1 \in A, \{a,b,c\} \in R, sedangkan c \not \in R , \{\} \in K, sedangkan \{\} \not \in A
```

Simbol-Simbol Baku

Beberapa simbol baku pada himpunan

```
\mathbf{N} = himpunan bilangan alami (asli) = { 0,1, 2, 3,... }
```

 $Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... }$

Q = himpunan bilangan rasional

R = himpunan bilangan riil

C = himpunan bilangan kompleks

sedangkan U menyatakan himpunan semesta.

Contoh: Misalkan $U = \{a, b, c, d, e\}$ dan A adalah himpunan bagian dari U, dengan $A = \{a, d, e\}$.

Notasi Pembentuk Himpunan

Notasi : { x | syarat yang harus dipenuhi oleh x }

- Bagian dikiri tanda '|' melambangkan elemen himpunan
- Tanda '|' dibaca dimana atau sedemikian sehingga
- Bagian dikanan tanda '| menunjukkan syarat keanggotaan himpunan
- Setiap tanda ',' didalam keanggotaan dibaca sebagai dan
- Contoh :

```
A adalah himpunan bilangan asli yang kecil dari 10

A = \{ x \mid x \le 10 \text{ dan } x \in \mathbb{N} \} \text{ atau } A = \{ x \in \mathbb{N} \mid x \le 10 \}

yang ekivalen dengan A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
```

Notasi Pembentuk Himpunan

- $A = \{ x \mid x \in P, x < 5 \}$
- B = { $x \mid x/2 \in P, 2 \le x \le 8$ }
- $C = \{ a/b \mid a,b \in Z, b \neq 0 \}$

Diagram Venn

- Untuk menyajikan himpunan secara grafis
- Diperkenalkan oleh Venn tahun 1881
- Himpunan semesta (U) digambarkan sebagai segi empat, sedangkan himpunan lainnya digambarkan sebagai lingkaran didalam segi empat

Diagram Venn

untuk menyatakan relasi antar himpunan

Misal U = $\{1, 2, ..., 7, 8\}$, $A = \{1, 2, 3, 5\}$ dan

 $B = \{2, 5, 6, 8\}.$ U A B

maka notasi dala

Himpunan Berhingga (Finite Set)

- Himpunan yang mempunyai anggota berhingga disebut himpunan berhingga (finite set)
- Sembarang himpunann yang anggotanya tak berhingga disebut himpunan tak berhingga(infinite set)
- contoh A={a,b,c,d,e,f} adalah finite set, sedangkan Z adalah infinite set.

Kardinalitas

- Misalkan A disebut sebagai himpunan berhingga, maka jumlah didlaam elemen tersebut disebut kardinal dari himpunan A
- Notasi : n(A) atau |A|

Contoh Kardinalitas

- A = $\{x \mid x \text{ merupakan bilangan prima lebih kecil dari 10}\}$, atau A = $\{2, 3, 5, 7\}$ maka |A| = 4
- B = {kucing, a, Amir, 10, paku}, maka |A| = ?
- C = {a, {a}, {{a}}}, maka |C| = ?
- D = $\{x \mid x \text{ adalah faktor dari } 12\}$, maka |D| = ?
- $E = \{x \mid x \text{ adalah bilangan positif kurang dari 1}\}$, maka |E| = ?
- F = {x | x adalah mahasiswa menggunakan kerudung di UIN}, maka | F |
 = ?

Himpunan Kosong

- Himpunan yang tidak mempunyai anggota atau kardinalitasnya = 0
- Contoh A = $\{x \mid x \text{ bilangan bulat } x^2 + 1 = 0\}$ maka n(A)= 0
- Notasi himpunan kosong {} atau Ø
- Himpunan {{ }} dapat juga ditulis sebagai {Ø}
- Perhatikan : $\{\emptyset\}$ -> bukan himpunan kosong, karena memuat satu elemen \emptyset

Himpunan Bagian (Subset)

 Himpunan A dikatakan himpunan bagian (subset) dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. Dalam hal ini, B dikatakan superset dari A

Notasi : A ⊆ B

Contoh Himpunan Bagian

- $\{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}$
- $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- $N \subseteq Z \subseteq R \subseteq C$

Himpunan yang Sama

 Himpunan A dikatakan sama dengan himpunan B jika dan hanya jika keduanya mempunyai elemen yang sama. Dengan kata lain, A sama dengan B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak, maka kita katakan A tidak sama dengan B

• Contoh:

- Jika $A = \{0, 1\}$ dan $B = \{x \mid x(x-1)=0\}$, maka A=B
- Jika $A = \{3,5,8,5\}$ dan $B = \{5,3,8\}$, maka A=B
- Jika $A = \{3,5,8,5\}$ dan $B = \{5,8\}$, maka $A \neq B$

Himpunan yang Ekivalen

• Himpunan A disebut ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.

```
• Notasi: A~B <-> |A| = |B|
```

$$A = \{ 1,2,3,4 \}$$
 dan $B = \{ ali, budi, joko, tuti \}$, maka $A \sim B$ sebab $|A| = |B| = 4$

Himpunan Saling Lepas

- Dua himpunan A dan B dikatakan saling lepa, jika keduanya tidak memiliki elemen yang sama
- Notasi A // B

Himpunan Kuasa

- Himpunan kuasa (*power set*) dari himpunan *A* adalah suatu himpunan yang anggotanya merupakan semua himpunan bagian dari *A*, termasuk himpunan kosong dan himpunan *A* sendiri.
- Notasi : P(A) atau 2^A
- Jika |A| = m, maka |P(A)| = 2m.

Contoh 12.

```
Jika A = \{ 1, 2 \}, maka P(A) = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 1, 2 \} \}
```

Contoh 13.

Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = \{\emptyset\}$, dan himpunan kuasa dari himpunan $\{\emptyset\}$ adalah $P(\{\emptyset\}) = \{\emptyset\}$, $\{\emptyset\}$.

Operasi Terhadap Himpunan

1. Irisan (intersection)

• Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh

- (i) Jika $A = \{a,b,c,d,e\}$ dan $B = \{c,e,f,g\}$, maka $A \cap B = \{c,e\}$
- (ii) Jika $A = \{ 1,2,3 \}$ dan $B = \{ 4,5 \}$, maka $A \cap B = \emptyset$. Artinya: A // B

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh:

- (i) Jika $A = \{ a, b, c \}$ dan $B = \{ b, c, d, e \}$, maka $A \cup B = \{ a, b, c, d, e \}$
- (ii) $A \cup B = A$

3. Komplemen (complement)

• Notasi : $\overline{A} = \{ x \mid x \in U, x \not\in A \}$

Contoh

Misalkan $U = \{ 1, 2, 3, ..., 7 \},$

- (i) jika $A = \{1, 3, 4, 6\}$, maka $\overline{A} = \{2, 5, 7\}$
- (ii) jika $A = \{ x \mid x/2 \in P, x < 7 \}$, maka $\overline{A} = \{ 1, 3, 5, 7, \}$

4. Selisih (difference)

• Notasi : $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

Contoh.

- (i) Jika $A = \{$ a, b, c,d,e,f $\}$ dan $B = \{$ c,d,f $\}$, maka $A B = \{$ a,b,e $\}$ dan $B A = \emptyset$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut:

(a) $A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ (hukum asosiatif)

hukum asosiatif) t-sifat berikut:

(a) $A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(hukum asosiatif)

Contoh 20. Misalkan

U = himpunan mahasiswa

P = himpunan mahasiswa yang nilai ujian UTS di atas 80

Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A": $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B": $P \oplus Q$
- (iii) "Ssemua mahasiswa yang mendapat nilai C" : $U (P \cup Q)$

6. Perkalian Kartesian (cartesian product)

• Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

Contoh.

- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka A * B = himpunan semua titik di bidang datar

Catatan:

- 1. Jika A dan B merupakan himpunan berhingga, maka: $|A \times B| = |A| \cdot |B|$.
- $2. (a, b) \neq (b, a).$
- 3. $A \times B \neq B \times A$ dengan syarat A atau B tidak kosong.

Pada Contoh 20(i) di atas,
$$C = \{1, 2, 3\}$$
, dan $D = \{a, b\}$, $D \times C = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
 $C \times D = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 $D \times C \neq C \times D$.

4. Jika $A = \emptyset$ atau $B = \emptyset$, maka $A \times B = B \times A = \emptyset$

Contoh. Misalkan

 $A = \text{himpunan makanan} = \{ s = \text{soto}, b = \text{bakso}, n = \text{nasi} \}$ goreng, $m = \text{mie ayam} \}$

 $B = \text{himpunan minuman} = \{ c = \text{coca-cola}, t = \text{teh}, d = \text{es} \}$

Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas?

Jawab:

 $|A \times B| = |A| \cdot |B| = 4 \cdot 3 = 12$ kombinasi dan minuman, yaitu $\{(s, c), (s, t), (s, d), (b, c), (b, t), (b, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)\}.$