Comp790-166: Computational Biology

Lecture 8

February 11, 2021

Announcements

- No class on Tuesday- Wellness day!
- Homework due in 1 week!

Topics for Today

- Finish meld
 - A couple more GSP basics
 - Graph Fourier Transform
 - Low-pass filtering
 - Meld's low pass filter

MELD Overview Recap

Compute an enhanced experimental signal (EES) that explains how prototypical a cell is for a particular experimental condition.

Figure: Burkhardt et al., Nature Biotechnology. 2021

General Overview of the Steps of MELD

- Build a graph between cells based on gene or protein expression measurements
- **Graph Signals:** Experimental label (a binary indicator) is used to label each cell according to experimental condition
- Using GSP techniques, MELD filters biological and technical noise to look at how much the experimental signal of a cell matches the true experimental label. This quantifies how prototypical each cell is in its condition.
- Relate back to cell-types and features that differ between experimental conditions

RES vs EES

EES represents the enhanced experimental signal, in comparison to RES, which was the raw, binary signal.

Figure: from Burkhardt et al., Nature Biotechnology. 2021

Sources of Noise

- Cells with similar feature measurements are said to be in the same state (biologically)
- High Frequency Noise: High frequency noise is when the labels of neighboring cells are rapidly fluctuating.
- Graph Fourier Transform is used to study the frequency of a signal over an irregular domain, like a graph.

What is GFT (on a high level?)

- Explain frequency content of the experimental labels (aka graph signal) as a weighted sum of the eigenvectors of the Graph Laplacian
- The eigenvectors of the Graph Laplacian comprise the Graph Fourier Basis and can help to decouple high and low frequency signals

Zero Crossings

The signs of the entries in the between nodes connected in the graph tend to be different more for the eigenvectors corresponding to higher eigenvalues

Figure: from GSP Review https://arxiv.org/abs/1211.0053

Example

Figure: from https://arxiv.org/abs/1211.0053

• Higher eigenvalues (x-axis) correspond to higher frequency eigenvectors.

Local Variation of a Signal

The local variation of a signal or the sum of differences around a node can be written as,

$$(\mathcal{L}\mathbf{f})(i) = ([\mathbf{D} - \mathbf{A}]\mathbf{f})(i) \tag{1}$$

$$= d(i)\mathbf{f}(i) - \sum_{j} A_{ij}\mathbf{f}(j)$$
 (2)

$$=\sum_{i}A_{ij}(\mathbf{f}(i)-\mathbf{f}(j)) \tag{3}$$

Local Variation Leads to Total Variation

The total variation of a signal on a graph is defined as follows and is also known as the Laplacian Quadratic Form

$$TV(\mathbf{f}) = \sum_{i,j} A_{ij} (\mathbf{f}(i) - \mathbf{f}(j))^2$$
 (4)

$$= \mathbf{f}^{\mathsf{T}} \mathcal{L} \mathbf{f} \tag{5}$$

• Note here I have been assuming that we have an unweighted graph, but you could certainly substitute A_{ij} with a weighted version, W_{ij}

Getting to Graph Fourier Basis

- ullet We can look at eigenvectors, $oldsymbol{\Psi} = [\psi_1, \psi_2, \dots, \psi_N]$ of $\mathcal L$
- ullet and eigenvalues, $oldsymbol{\Lambda} = [0 = \lambda_1 \leq \cdots \leq \lambda_{\it N}]$ of ${\cal L}$

The Graph Fourier Transform of a Signal

The Graph Fourier Transform $(\hat{\mathbf{f}})$ of a signal, \mathbf{f} can be written as,

$$\hat{f}(\lambda_{\ell}) = \sum_{i} f(i)\psi_{\ell}^{T}(i) = \langle \mathbf{f}, \psi_{\ell} \rangle$$
 (6)

Said otherwise in matrix form as,

$$\hat{\mathbf{f}} = \mathbf{\Psi}^T \mathbf{f} \tag{7}$$

GFT Will Be Used to Filter

- A filter on the graph will take in a signal and attenuate it according to a frequency response function.
- Low-Pass Filter: We filter or preserve only frequencies corresponding to eigenvalues below some threshold, λ_k . So, consider frequencies λ_b , with $\lambda_b < \lambda_k$
- **High-Pass Filters**: Preserve only frequencies corresponding to eigenvalues above some threshold, λ_k . So, consider frequencies λ_b , with $\lambda_b \geq \lambda_{k+1}$

A Simple Low-Pass Filter

Define some filter h as,

$$h: [0, \max(\mathbf{\Lambda})] \to [0, 1] \tag{8}$$

Assuming the cutoff is λ_k ,

$$h(x) > 0$$
, for $x < \lambda_k$ and $h(x) = 0$, otherwise

Defining Notation

To match notation from the MELD paper, define $h(\Lambda)$ as a diagonal matrix of eigenvalues with the filter applied.

Filtering a Signal Based on GFT

Based on what we computed with GFT, the filtered signal, $\hat{f_{filt}}$ can be computed as,

$$\hat{\mathbf{f}}_{filt} = h(\mathbf{\Lambda})\hat{\mathbf{f}} \tag{9}$$

Incorporating these ideas into meld

- Low frequency components are thought to be where the true signal comes from (e.g. cell states that can differentiate groups)
- Define a latent variable z that describes the biological process that differs between the two conditions

An optimization problem can be defined for low pass filtering as,

$$\mathbf{y} = \underset{\mathbf{z}}{\operatorname{argmin}} \underbrace{\|\mathbf{x} - \mathbf{z}\|_{2}^{2}}_{\mathbf{a}} + \underbrace{\beta \mathbf{z}^{T} \mathcal{L} \mathbf{z}}_{\mathbf{b}}$$
(10)

Unpacking

y is the EES or Enhanced Experimental Signal

$$\mathbf{y} = \underset{\mathbf{z}}{\operatorname{argmin}} \underbrace{\|\mathbf{x} - \mathbf{z}\|_{2}^{2}}_{\mathbf{z}} + \underbrace{\beta \mathbf{z}^{T} \mathcal{L} \mathbf{z}}_{\mathbf{b}}$$
(11)

- The Laplacian Regularization (term b) acts as a low-pass filter for an input graph signal, x
- (a) Term a represents reconstruction between x and z
- (b) Term b represents Laplacian regularization or a measure of smoothness on the graph. Recall this looks a lot like total variation.

$$\beta \mathbf{z}^{T} \mathcal{L} \mathbf{z} = \beta \sum_{i,j} A_{ij} (\mathbf{z}(i) - \mathbf{z}(j))^{2}$$
(12)

Introducing the MELD Filter

They adjust the filer a bit as follows. The following allows also for a flexible notion of figure order, ρ ,

$$\mathbf{y} = \underset{\mathbf{z}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} + \mathbf{z}^{T} \mathcal{L}_{*} \mathbf{z}$$

$$\text{where } \mathcal{L}_{*} = [\beta \mathcal{L} - \alpha \mathbf{I}]^{\rho}$$
(13)

Takeaway

They show that their Laplacian Regularization is a filter with the following frequency response,

$$h_{\text{MELD}}(\lambda) = \frac{1}{1 + (\beta \lambda - \alpha)^{\rho}}$$
 (14)

This was a lot to unpack. I recommend staring at the details (if you are interested) in

https://www.biorxiv.org/content/10.1101/532846v1.full.pdf

Filter Variety

Here are some experiments showing what parameters on the MELD filter will do to the frequency response, $h(\lambda)$.

Figure: from Burkhardt *et al.*, Nature Biotechnology. 2021. Negative values of ρ , for example, can produce a high-pass filter.

Reminder: What we Do with a Filter

Given GFT, $\hat{\mathbf{f}}$, our filtered signal is computed as

$$\hat{\mathbf{f}}_{\mathsf{filt}} = h(\mathbf{\Lambda})\hat{\mathbf{f}} \tag{15}$$

• As a reminder, $h(\Lambda)$ applied h() to each eigenvalue

Meld Results

Computing the EES cleans up some of the noise and helps to better identify prototypical cells in each experimental condition.

Figure: from Burkhardt et al., Nature Biotechnology. 2021.

Gene Expression Profiles Based on RES and EES

You can look at the gene expression profiles of cells with similar EES scores.

Figure: from Burkhardt et al., Nature Biotechnology. 2021.

Zooming in on High and Low Frequency Regions

Figure: from Burkhardt et al., Nature Biotechnology. 2021.

What's Coming up Next?

- MELD defines clusters of cells based on both features measured per cells and frequency information
- We will soon start some papers focused on differential analysis of cell populations.
- Such approach is 'univariate' in the sense that a bunch of individual things are being tested for differences.