информационных технологий, механики и оптики УЧЕБНЫЙ ПЕНТР ОБШЕЙ ФИЗИКИ ФТФ

Группа М3209	К работе допущен <u>01.11.2020 07:18</u>
Студент Бабурин Тимур	Работа выполнена <u>01.11.2020 19:04</u>
Преподаватель Ефремова Е. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.28V

Цель работы:

- Наблюдение режимов колебаний в простейшей системе двух связанных осцилляторов и сопоставление с элементарной теорией связных оссциляторов.
- Измерение частоты синфазной колебательной моды системы.
- Измерение частоты при колебаниях системы в противофазе. Измерение константы сязи и коэффициента жёсткости пружины.
- Измерение периода и частоты биений, возникающих при возбуждении двумодового колебательного процесса.

Объект исследования:

• Система двух связанных осцилляторов

Метод экспериментального исследования:

Изучение виртуальной лабораторной установки, проведение измерений в ней.

Рабочие формулы и исходные данные:

Уравнение моментов:

$$\vec{M} = \vec{N}$$
. (1)

Полный момент сил, под действием которого происходит вращательное движение:

$$J\frac{\overrightarrow{d\omega}}{dt} = \overrightarrow{N}.$$
 (2)

Уравнение (2) для одиночного математического маятника:

$$J\ddot{\varphi} = -mgL\sin\varphi,$$
 (3)

Где $J=mL^2$ - момент инерции маятника в случае когда можно считать, что вся масса маятника сосредоточена в точке на конце подвеса , m - масса груза, L - длина невесомой нити маятника, ϕ - угол отклонения от вертикали, учитывая, что для малых углах отклонения ϕ можно считать, что $\sin \phi \approx \phi$, получим:

$$mL^{2}\ddot{\varphi} + mgL\varphi = 0. \qquad (4)$$

Каноническое уравнение для свободных незатухающих колебаний математического маятника:

$$\ddot{\varphi} + \omega_0^2 \varphi = 0, \qquad (5)$$

Незатухающее гармоническое колебательное движение:

$$\varphi(t) = \Phi \cos(\omega_0 \cdot t + \varphi_0),$$
(6)

Система двух связанных математических маятников:

$$\begin{cases} mL^2\ddot{\varphi}_1 = -F_{\text{тяж.}} \cdot L \sin \varphi_1 + F_{\text{упр.}} \cdot L_1 \cos \varphi_1 \\ mL^2\ddot{\varphi}_2 = -F_{\text{тяж.}} \cdot L \sin \varphi_2 - F_{\text{упр.}} \cdot L_1 \cos \varphi_2. \end{cases}$$
(7)

Заметим, что $F_{\text{упр}} = kL1$ (tg (ϕ 2) – tg (ϕ 1)) и, в приближении малых отклонений маятников от их положения равновесия, выполняются приблизительные соотношения $\sin \phi \approx \text{tg } \phi \approx \phi$ и $\cos \phi \approx (1 - \phi^2)/!2 \approx 1$, получим следующие уравнения:

$$\begin{cases}
\ddot{\varphi}_1 + \frac{g}{L} \cdot \varphi_1 - \frac{kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) = 0 \\
\ddot{\varphi}_2 + \frac{g}{L} \cdot \varphi_2 + \frac{kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) = 0.
\end{cases}$$
(8)

Константа связи:

$$\varkappa^2 = \frac{kL_1^2}{mL^2}$$
. (9)

Финальное уравнение:

$$\begin{cases} \ddot{\varphi}_1 + \omega_0^2 \varphi_1 - \varkappa^2 (\varphi_2 - \varphi_1) = 0 \\ \ddot{\varphi}_2 + \omega_0^2 \varphi_2 + \varkappa^2 (\varphi_2 - \varphi_1) = 0. \end{cases}$$
(10)

Решение полученных уравнений:

$$\begin{cases}
\xi_1 = \Phi_{01} \cos (\Omega_{n1}t + \varphi_{01}) \\
\xi_2 = \Phi_{02} \cos (\Omega_{n2}t + \varphi_{02}),
\end{cases}$$
(15)

Синфазный режим колебаний:

$$\begin{cases} \varphi_1 = \frac{1}{2} \Phi_{01} \cos (\Omega_{n1} t + \varphi_{01}) \\ \varphi_2 = \frac{1}{2} \Phi_{01} \cos (\Omega_{n1} t + \varphi_{01}). \end{cases}$$
(18)

Колебания в противофазе:

$$\Omega_{n2} = \sqrt{\omega_0^2 + 2\varkappa^2} = \omega_0 \sqrt{1 + \frac{2\varkappa^2}{\omega_0^2}} \approx \\
\approx \omega_0 \left(1 + 2\frac{\varkappa^2}{\omega_0^2}\right) = \sqrt{\frac{g}{L}} + 2\frac{kL_1^2}{mgL}.$$
(21)

Суперпозиция нормальных колебаний:

$$\varphi(t) = -\frac{\varphi_1(0)}{2} \sin\left(\frac{(\Omega_{n1} + \Omega_{n2})t}{2}\right) \cdot \sin\left(\frac{(\Omega_{n2} - \Omega_{n1})t}{2}\right). \quad (26)$$

Измерительные приборы:

№ n/n	Наименование	Тип прибора	Погрешность прибора
1	Виртуальная установка, измеряющая угол отклонения	Электронный	1
2	Секундомер	Электронный	0.001c

1. Схема установки

Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Задание №1 (приложение 1)

№	N	T, c	Ωn1(прак), Гц	Ωn1(прак) ср, Гц	Ωn1(теор), Гц
1	8	11.40	4.41		
2	8	12.01	4.19	4.26	2.12
3	8	11.85	4.24	4.26	3,13
4	8	12.20	4.12		
5	8	11.56	4.35		

Задание №2 (приложение 2)

Nº	N	T, c	Ωn2(пр ак), Гц	Ω <i>n</i> 2 (пра к) ср, Гц	Конста нта связи	Конста нта связи ср	К пружин ы, Н/м	К, пружины ср, Н/м
1	8	11,90	4,22		2,01		100,53	
2	8	12,16	4,13		1,91		91,09	
3	8	12,15	4,14		1,91		91,44	

4	8	11,45	4,39	4,23	2,18	2,01	118,40	101,54
5	8	11,75	4,28		2,06		106,26	

Задание №3 (приложение 3) синий график:

№	T, c	Tcp, c	Ω, Гц	Ω, Гц
1	29,31		0,21	
2	28,10	32,533 33	0,22	0,22
3	27,20	33	0,23	

Задание №3 (приложение 3) красный график:

№	T, c	Tcp, c	Ω, Гц	Ω, Гц
1	28,43		0,22	
2	30,30	30,49	0,21	0,22
3	32,75		0,19	

Результаты расчетов:

Задание 1:

Ωn1 (пра к) ср, Гц	Ωn1(теор), Гц
4.26	3,13

Задание 2:

 $\Omega n2$ (прак) ср = 4,23 Гц

Константа связи(прак) ср = 2,01

Константа связи(теор) ср = 2,01

 Δ Связи = 0,14

Константа связи = $(2,01 \pm 0,14)$

 $\Delta k = 14,26$

 $k = (101,54 \pm 14,26) \text{ H/m}$

Задание 3:

T(Teop) = 30,35 c

 Ω (теор) = 0,21 Гц

 ΔT (красный) = 0,02 с

 $\Delta\Omega$ (красный) = 0,02 Гц

 ΔT (синий) = 1,44 с

 $\Delta\Omega$ (синий) = 0,01 Гц

 Ω (синий) = (0.22 ± 0.01) Гц

 Ω (красный) = (0.22 ± 0.02) Гц

 $T(\text{синий}) = (28,203 \pm 1,44) \text{ c}$

 $T(красный) = (30,493 \pm 0,02) c$

Вывод:

Мы пронаблюдали наблюдение режимов колебаний в простейшей системе двух связанных осцилляторов и сопоставление с элементарной теорией связных оссциляторов. Измерили частоты синфазной колебательной моды системы. Измерили частоты при колебаниях системы в противофазе. Измерение константы сязи и коэффициента жёсткости пружины. Измерили периода и частоты биений, возникающих при возбуждении двумодового колебательного процесса.