Machine Learning Assessing and Improving ML Models

Indian Institute of Information Technology
Sri City, Chittoor

Today's Agenda

- Recap to Supervised Learning?
- Recap to classification?
- How to evaluate the classification model?
- Evaluation Metrics for a Classification model

Supervised Learning

- To learn an unknown target function f
- Input: a training set of labeled examples (x_j, y_j) where $y_i = f(x_i)$
 - E.g., x_i is an image, $f(x_i)$ is the label "giraffe"
- Output: hypothesis h that is "close" to f, i.e., predicts well on unseen examples ("test set")
- Many possible hypothesis families for h
 - Linear models, logistic regression, neural networks, decision trees, examples (nearestneighbor) etc.

Supervised Learning

Functions \mathcal{F}

$$f: \mathcal{X} \to \mathcal{Y}$$

Training data

$$\{(x_i,y_i)\in\mathcal{X} imes\mathcal{Y}\}$$

LEARNING

Learning machine

New data

What is Classification Problem?

Suppose we are given a training set of N observations

$$(x_1, \dots, x_N)$$
 and $(y_1, \dots, y_N), x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$

Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

Classification: Supervised Learning

Training Phase

We have shown a set of dog pictures and a set of cat pictures to a child.

Classification: Supervised Learning

Testing Phase

How to evaluate the classification model?

- Example: Two class image classification
 - Class 1: Dog Images (10), Class 2: Cat images (10).
 - Total Samples: N=20
- Confusion Matrix: Normally this matrix is of size K*K
 where K is number of classes.

		Predicted	
N=20		Dog (+)	Cat (-)
ual	Dog (+)	7	3
Actual	Cat (-)	4	6

How to evaluate the classification model?

		Predicted	
	N=20	Dog (+)	Cat (-)
ual	Dog (+)	TP	FN
Actual	Cat (-)	FP	TN

True Positives: 7

False Positives (*Type 1 Error*): 3

True Negatives: 6

False Negatives (Type 2 Error): 4

Total (N) =TP+FP+FN+TN=20

Evaluation Metrics for a classification model

 Accuracy: Accuracy is number of correct predictions out of total records.

$$Accuracy=(TP+TN)/Total=13/20=65\%$$
.

Misclassification rate or error rate:

Error rate=
$$(FP+FN)$$
/Total=7/20=35%.

Accuracy Paradox:

Consider, Total number of Dog Images (19), Cat (1), N=20

		Predicted	
N=20		Dog (+)	Cat (-)
Actual	Dog (+)	19	0
	Cat (-)	1	0

		Predicted	
N=20		Dog (+)	Cat (-)
Actual	Dog (+)	TP	FN
	Cat (-)	FP	TN

Accuracy= (TP+TN)/Total=(19+0)/20=99%

Evaluation Metrics for a Classification model

 Precision (positive predicted value): It is the number of positive predictions divided by the total number of positive class values predicted.

 Recall (sensitivity or true positive rate): It is the number of positive predictions divided by the number of positive class values in the test data.

$$Recall=TP/(TP+FN)=19/(19+0)=100\%.$$

 F-1 Measure: A balanced measure between precision and recall.

```
F-1 Measure=2*(Precision * Recall)/(Precision + Recall)
F-1=2*(0.99*1.0)/(0.99+1.0)=2*(0.99)/(1.99)=1.98/1.99=0.99
```

Evaluation Metrics for a Classification model

 Specificity (True Negative Rate): How often the ML model predicts negative samples correctly out of total negative samples.

```
Specificity=TN/(TN+FP)=0/(0+1)=0\%
```

- -Model has 0% effective in predicting negative samples as negative.
- False positive rate (FPR): How often the ML model predict the negative samples (cat) as positive (dog)?

Note: It can also be calculated as FPR=1-Specificity=1-0=100%

ML model has 100% FPR, which means that every time model will every Negative (Cat) sample as Positive (Dog).

Sensitivity and Specificity is most important in medical diagnosis.

ROC Curve

- A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
- The method was originally developed for operators of military radar receivers, which is why it is so named.
- The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.

ROC Curve

ROC Curve

Thank You: Question?