Project Flow

- Load Dataset
- EDA
- · Create Baseline Models
- · Feature Engineering, Transformations & Feature Selections
- · Cross Validation of Models
- · Finalise Dataset
- Model Selection via CV
- · HyperParameter Tuning of Selected Model
- · Train Tuned Model using Entire new Data
- · Save & Deploy Data
- Predict

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")

pd.set_option('display.max_columns', None)
```

In [2]:

```
1 train = pd.read_csv('train.csv')
2 train.shape
```

Out[2]:

(614, 13)

In [3]:

```
1 test = pd.read_csv('test.csv')
2 test.shape
3
4 test_backup = test.copy()
```

```
In [4]:
    1 train.head()
Out[4]:
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappl
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								>
In	[]:							
1								

Data Validation

since we have categorical features, we would encode that, but need to check if all categories present in testing set are present in training data as well, otherwise we need to handle that separately

In [5]:

```
categorical_features = ['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed

for col in categorical_features:
    print('=> ',col)
    print('Train -> ', train[col].unique())
    print('Test -> ', test[col].unique())
    print('*'*33)
```

```
=> Gender
Train -> ['Male' 'Female' nan]
Test -> ['Male' 'Female' nan]
**********
=> Married
Train -> ['No' 'Yes' nan]
Test -> ['Yes' 'No']
**********
=> Dependents
Train -> ['0' '1' '2' '3+' nan]
Test -> ['0' '1' '2' '3+' nan]
**********
=> Education
Train -> ['Graduate' 'Not Graduate']
Test -> ['Graduate' 'Not Graduate']
**********
=> Self_Employed
Train -> ['No' 'Yes' nan]
Test -> ['No' 'Yes' nan]
=> Property_Area
Train -> ['Urban' 'Rural' 'Semiurban']
Test -> ['Urban' 'Semiurban' 'Rural']
**********
```

There are no unique categories present in Test set, which are not in Trianing data => Validiated

EDA has not been performed yet. Covered in another notebook

Outliers Detection

IQR

In [6]:

```
1
   def IQR(df, col):
 2
 3
        # calculate quantiles
 4
        q25, q75 = np.quantile(df[col], 0.25), np.quantile(df[col], 0.75)
 5
 6
        # calculate IQR
 7
        iqr = q75 - q25
 8
 9
        # defining boundaries
        lower, upper = q25 - (1.5 * iqr), q75 + (1.5 * iqr)
10
11
        print('IQR is ',iqr)
12
        print('lower bound is ', lower)
13
14
        print('upper bound is ', upper)
15
16
        # calculate records count beyond range
        df_upper = df[df[col] > upper]
17
        df_lower = df[df[col] < lower]</pre>
18
19
        print('Total number of outliers are', df_upper.shape[0] + df_lower.shape[0])
20
21
22
        # Visualising
        plt.figure(figsize = (10,6))
23
        sns.distplot(df[col], kde=False)
24
        plt.axvspan(xmin = lower,xmax= df[col].min(),alpha=0.2, color='red')
25
        plt.axvspan(xmin = upper,xmax= df[col].max(),alpha=0.2, color='red')
26
```

In [7]:

```
1 numerical_features = [ 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amou
```

In [8]:

```
1
   for col in numerical features:
 2
       print('=> ', col)
 3
       IQR(train, col)
 4
       print('*'*33)
=> ApplicantIncome
IQR is 2917.5
lower bound is
             -1498.75
upper bound is 10171.25
Total number of outliers are 50
**********
=> CoapplicantIncome
IQR is 2297.25
lower bound is -3445.875
upper bound is 5743.125
Total number of outliers are 18
**********
   LoanAmount
IQR is nan
lower bound is nan
upper bound is nan
Total number of outliers are 0
**********
=> Loan_Amount_Term
```

Z Score

In [9]:

```
def zscore(col):
 1
 2
 3
        outliers = []
 4
        z_scores = []
 5
        threshold = 3
 6
 7
        # calculate the mean and standard deviation of the data frame
 8
        data mean, data std = col.mean(), col.std()
 9
        for i in col:
10
            z_score = (i - data_mean)/ data_std
11
12
            z_scores.append(z_score)
13
14
            if np.abs(z score) > threshold:
15
                outliers.append(i)
16
        print('Total Outliers are ', len(outliers))
17
18
19
        # Visualising
20
        plt.figure(figsize = (10,6))
21
        sns.distplot(z scores)
22
        plt.axvspan(xmin = 3 ,xmax= max(z_scores),alpha=0.2, color='red')
```

In [10]:

```
for col in numerical_features:
 2
      print('=> ', col)
 3
      zscore(train[col])
      print('*'*33)
 4
=> ApplicantIncome
Total Outliers are 8
**********
=> CoapplicantIncome
Total Outliers are 6
**********
=> LoanAmount
Total Outliers are 14
**********
=> Loan_Amount_Term
Total Outliers are 12
=> Credit_History
Total Outliers are 0
**********
```

Standard Deviation

In [11]:

```
1
   def std(df, col):
 2
 3
        # calculate the mean and standard deviation of the data frame
 4
        data mean, data std = df[col].mean(), df[col].std()
 5
        # initialise the cutoff value
 6
 7
        cut_off = data_std * 3
 8
 9
        # calculate the lower and upper bound value
10
        lower, upper = data_mean - cut_off, data_mean + cut_off
11
12
        print('The lower bound value is', lower)
13
        print('The upper bound value is', upper)
14
        # calculate records count beyond range
15
        df_upper = df[df[col] > upper]
16
17
        df_lower = df[df[col] < lower]</pre>
18
        print('Total number of outliers are', df_upper.shape[0] + df_lower.shape[0])
19
20
21
        # Visualising
22
        plt.figure(figsize = (10,6))
        sns.distplot(df[col], kde=False)
23
24
        plt.axvspan(xmin = lower,xmax= df[col].min(),alpha=0.2, color='red')
25
26
27
```

```
In [12]:
    for col in numerical_features:
 1
        print('=> ', col)
 2
        std(train, col)
 3
 4
       print('*'*33)
=>
   ApplicantIncome
The lower bound value is -12923.665736773899
The upper bound value is 23730.584303549145
Total number of outliers are 8
**********
=> CoapplicantIncome
The lower bound value is -7157.499309645475
The upper bound value is 10399.990905699677
Total number of outliers are 6
***********
   LoanAmount
The lower bound value is -110.34981354495417
The upper bound value is 403.1741378692785
Total number of outliers are 14
                ******
=> Loan_Amount_Term
The lower bound value is 146.6387704361623
The upper bound value is 537.3612295638377
Total number of outliers are 12
```

```
In [13]:
```

```
1 train.dtypes
```

Out[13]:

Loan_ID object Gender object Married object Dependents object Education object Self_Employed object ApplicantIncome int64 CoapplicantIncome float64 LoanAmount float64 Loan_Amount_Term float64 float64 Credit_History Property_Area object Loan_Status object

In [14]:

dtype: object

```
# Removing outliers from ApplicantIncome considering Standard Deviation
train = train[(train['ApplicantIncome'] < 23730) & (train['ApplicantIncome'] > -12923)
```

In [15]:

```
1 # Removing outliers from CoApplicantIncome considering Standard Deviation
2 train = train[(train['CoapplicantIncome'] < 10399) & (train['CoapplicantIncome'] > -715
```

In [16]:

```
1 train.shape
```

Out[16]:

(600, 13)

In [17]:

```
sns.histplot(data= train['LoanAmount'], kde= True)
```

Out[17]:

<AxesSubplot: xlabel='LoanAmount', ylabel='Count'>

In [18]:

1 train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 600 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	600 non-null	object
1	Gender	589 non-null	object
2	Married	597 non-null	object
3	Dependents	585 non-null	object
4	Education	600 non-null	object
5	Self_Employed	570 non-null	object
6	ApplicantIncome	600 non-null	int64
7	CoapplicantIncome	600 non-null	float64
8	LoanAmount	578 non-null	float64
9	Loan_Amount_Term	586 non-null	float64
10	Credit_History	551 non-null	float64
11	Property_Area	600 non-null	object
12	Loan_Status	600 non-null	object

dtypes: float64(4), int64(1), object(8)

memory usage: 65.6+ KB

```
In [19]:
```

```
1 test.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 367 entries, 0 to 366
Data columns (total 12 columns):
     Column
                        Non-Null Count
                                         Dtype
     ----
 0
     Loan ID
                         367 non-null
                                         object
     Gender
 1
                         356 non-null
                                         object
 2
     Married
                         367 non-null
                                         object
 3
     Dependents
                         357 non-null
                                         object
 4
     Education
                                         object
                         367 non-null
     Self_Employed
 5
                        344 non-null
                                         object
 6
     ApplicantIncome
                         367 non-null
                                         int64
 7
     CoapplicantIncome 367 non-null
                                         int64
 8
     LoanAmount
                         362 non-null
                                         float64
     Loan_Amount_Term
 9
                        361 non-null
                                         float64
 10 Credit_History
                         338 non-null
                                         float64
 11 Property_Area
                         367 non-null
                                         object
dtypes: float64(3), int64(2), object(7)
memory usage: 34.5+ KB
In [20]:
   train[train.duplicated(keep= 'first')].shape
Out[20]:
(0, 13)
In [21]:
 1 train.isnull().sum()
Out[21]:
Loan ID
                      0
Gender
                      11
Married
                       3
                     15
Dependents
Education
                       0
Self Employed
                      30
ApplicantIncome
                       0
CoapplicantIncome
                      0
LoanAmount
                     22
Loan_Amount_Term
                      14
Credit History
                      49
Property Area
                       0
Loan_Status
                       0
dtype: int64
```

```
In [22]:
```

```
1 test.isnull().sum()
Out[22]:
Loan_ID
                       a
Gender
                      11
Married
                       0
Dependents
                      10
Education
                       0
Self_Employed
                      23
ApplicantIncome
                       0
CoapplicantIncome
                       0
LoanAmount
                       5
Loan_Amount_Term
                       6
Credit History
                      29
Property_Area
                       0
dtype: int64
```

Splitting Train data into Train & Val

```
In [23]:
```

```
from sklearn.model_selection import train_test_split

X = train.drop(['Loan_Status'], axis= 1)
y = train['Loan_Status']

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=9,
X_train.shape, X_val.shape, y_train.shape, y_val.shape
X_train.shape, X_val.shape, y_train.shape, y_val.shape
```

```
Out[23]:
```

```
((480, 12), (120, 12), (480,), (120,))
```

In [24]:

```
1 X_train['Gender'].value_counts(normalize= True)
```

Out[24]:

Male 0.817021 Female 0.182979

Name: Gender, dtype: float64

Why this is important: Suppse if one of the values were dominant (covering > 80% suppose), then we could have used that value to impute in these missing values

if suppose both were too close, and if we assign there missing values to a particular class (using MODE), then the distribution will significantly change, in that case we need to think other way around

check column transformer to do all tasks together

```
In [25]:
```

```
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OrdinalEncoder
```

In [26]:

```
Imputer = ColumnTransformer(transformers = [
    ('mode', SimpleImputer(strategy= 'most_frequent'), ['Gender', 'Married', 'Dependent'
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mode', SimpleImputer(strategy= 'most_frequent'), ['Gender', 'Married', 'Dependent')
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mode', SimpleImputer(strategy= 'most_frequent'), ['Gender', 'Married', 'Dependent']
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mode', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
    ('mean', SimpleImputer(strategy= 'mean'), ['LoanAmount'])

Imputer = ColumnTransformer(transformers = [
```

In [27]:

```
1 Imputed_data_train = Imputer.fit_transform(X_train)
2 Imputed_data_train
```

Out[27]:

In [28]:

```
1 Imputer.named_transformers_['mode'].get_feature_names_out()
```

Out[28]:

In [29]:

```
1 Imputer.named_transformers_['mean'].get_feature_names_out()
```

Out[29]:

array(['LoanAmount'], dtype=object)

In [30]:

```
1 new_cols = Imputer.get_feature_names_out()
2 new_cols
```

Out[30]:

In [31]:

```
Imputed_df_train = pd.DataFrame(Imputed_data_train, columns=new_cols)
Imputed_df_train.tail()
```

Out[31]:

	modeGender	modeMarried	modeDependents	modeSelf_Employed	modeLoan_A
475	Male	Yes	0	No	
476	Male	Yes	2	No	
477	Male	No	0	No	
478	Female	No	1	Yes	
479	Male	Yes	0	No	
4					+

In [32]:

```
1 Imputed_df_train.isnull().sum()
```

Out[32]:

```
mode__Gender
mode__Married
mode__Dependents
0
mode__Self_Employed
mode__Loan_Amount_Term
mode__Credit_History
mean__LoanAmount
dtype: int64
```

In [33]:

1 Imputed_df_train.shape

Out[33]:

(480, 7)

In [34]:

```
1  X_train = X_train.reset_index(drop= True)
2  Imputed_df_train = Imputed_df_train.reset_index(drop=True)
3 
4  X_train = pd.concat([X_train, Imputed_df_train], axis=1)
5  X_train.tail()
```

Out[34]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coar
475	LP001578	Male	Yes	0	Graduate	No	2439	
476	LP002832	Male	Yes	2	Graduate	No	8799	
477	LP002697	Male	No	0	Graduate	No	4680	
478	LP001392	Female	No	1	Graduate	Yes	7451	
479	LP001356	Male	Yes	0	Graduate	No	4652	
4								>

In [35]:

```
1 X_train.isnull().sum()
```

Out[35]:

Loan_ID	0
Gender	10
Married	3
Dependents	14
Education	0
Self_Employed	22
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	21
Loan_Amount_Term	11
Credit_History	40
Property_Area	0
modeGender	0
modeMarried	0
modeDependents	0
<pre>modeSelf_Employed</pre>	0
<pre>modeLoan_Amount_Term</pre>	0
<pre>modeCredit_History</pre>	0
meanLoanAmount	0
dtype: int64	

One Hot Encoding

```
In [36]:
```

```
1 encoder = ColumnTransformer(transformers = [
2     ('encOH', OneHotEncoder(sparse= False, drop= 'first'), ['mode__Gender', 'mode__Marr
3     ('encOR', OrdinalEncoder(categories =[[ 'Not Graduate', 'Graduate']]), ['Education
4 ], remainder= 'drop')
```

In [37]:

```
1 encoded_data_train = encoder.fit_transform(X_train)
2 encoded_data_train
```

Out[37]:

In [38]:

```
1 encoder.named_transformers_['encOH'].get_feature_names_out()
```

Out[38]:

In [39]:

```
1 new_cols = encoder.get_feature_names_out()
2 new_cols
```

Out[39]:

In [40]:

```
encoded_df_train = pd.DataFrame(encoded_data_train, columns=new_cols, dtype= int)
encoded_df_train.head()
```

Out[40]:

	encOHmode	Gender_Male	encOHmode_	_Married_Yes enc	OHmode_	_Dependents_1	enc
0		1		1		0	
1		1		0		0	
2		1		1		0	
3		1		0		0	
4		1		1		0	
4							•

In [41]:

```
X_train = X_train.reset_index(drop= True)
encoded_df_train = encoded_df_train.reset_index(drop=True)

X_train = pd.concat([X_train, encoded_df_train], axis=1)
X_train.head()
```

Out[41]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coappl
0	LP002197	Male	Yes	2	Graduate	No	5185	
1	LP002652	Male	No	0	Graduate	No	5815	
2	LP002449	Male	Yes	0	Graduate	No	2483	
3	LP001761	Male	No	0	Graduate	Yes	6400	
4	LP001926	Male	Yes	0	Graduate	No	3704	
4								•

In [42]:

```
1 X_train.isnull().sum()
Out[42]:
                                    0
Loan_ID
Gender
                                   10
Married
                                    3
Dependents
                                   14
Education
                                    0
Self_Employed
                                    22
ApplicantIncome
                                    0
CoapplicantIncome
                                    0
                                   21
LoanAmount
Loan_Amount_Term
                                   11
Credit History
                                   40
Property_Area
                                    0
mode__Gender
mode__Married
                                     a
mode__Dependents
mode__Self_Employed
                                    0
mode__Loan_Amount_Term
                                     0
mode Credit History
```

Imputing & Encoding Validation & Test Dataset

Imputing Val

In [43]:

```
Imputed_data_val = Imputer.transform(X_val)
new_cols = Imputer.get_feature_names_out()
Imputed_df_val = pd.DataFrame(Imputed_data_val, columns=new_cols)

X_val = X_val.reset_index(drop= True)
Imputed_df_val = Imputed_df_val.reset_index(drop=True)

X_val = pd.concat([X_val, Imputed_df_val], axis=1)
```

Encoding Val

In [44]:

```
1  encoded_data_val = encoder.transform(X_val)
2  new_cols = encoder.get_feature_names_out()
3  encoded_df_val = pd.DataFrame(encoded_data_val, columns=new_cols, dtype= int)
4  
5  X_val = X_val.reset_index(drop= True)
6  encoded_df_val = encoded_df_val.reset_index(drop=True)
7  
8  X_val = pd.concat([X_val, encoded_df_val], axis=1)
```

Imputing Test

In [45]:

```
Imputed_data_test = Imputer.transform(test)
new_cols = Imputer.get_feature_names_out()
Imputed_df_test = pd.DataFrame(Imputed_data_test, columns=new_cols)

test = test.reset_index(drop= True)
Imputed_df_test = Imputed_df_test.reset_index(drop=True)

test = pd.concat([test, Imputed_df_test], axis=1)
```

Encoding Test

In [46]:

```
1  encoded_data_test = encoder.transform(test)
2  new_cols = encoder.get_feature_names_out()
3  encoded_df_test = pd.DataFrame(encoded_data_test, columns=new_cols, dtype= int)
4  test = test.reset_index(drop= True)
6  encoded_df_test = encoded_df_test.reset_index(drop=True)
7  test = pd.concat([test, encoded_df_test], axis=1)
```

Dropping Index Identifier: loan_id

```
In [47]:
```

```
1  X_train.drop(['Loan_ID'], axis= 1, inplace= True)
2  X_val.drop(['Loan_ID'], axis= 1, inplace= True)
3  test.drop(['Loan_ID'], axis= 1, inplace= True)
```

Validating Data Types of Features

In [48]:

```
1 # Train
2 X_train['mode__Loan_Amount_Term'] = X_train['mode__Loan_Amount_Term'].astype('int')
3 X_train['mode__Credit_History'] = X_train['mode__Credit_History'].astype('int')
4 X_train['mean__LoanAmount'] = X_train['mean__LoanAmount'].astype('float')
5
6 # Test
7 X_val['mode__Loan_Amount_Term'] = X_val['mode__Loan_Amount_Term'].astype('int')
8 X_val['mode__Credit_History'] = X_val['mode__Credit_History'].astype('int')
9 X_val['mean__LoanAmount'] = X_val['mean__LoanAmount'].astype('float')
10
11 # Val
12 test['mode__Loan_Amount_Term'] = test['mode__Loan_Amount_Term'].astype('int')
13 test['mode__Credit_History'] = test['mode__Credit_History'].astype('int')
14 test['mean__LoanAmount'] = test['mean__LoanAmount'].astype('float')
```

```
In [ ]:
1
```

Separating Numerical Features for Further Analysis

Detecting Multi-Collinearity

```
In [50]:

1 X_train[numerical_features].corr().round(2)
Out[50]:
```

	ApplicantIncome	CoapplicantIncome	meanLoanAmount	modeLc
ApplicantIncome	1.00	-0.16	0.62	_
CoapplicantIncome	-0.16	1.00	0.25	
meanLoanAmount	0.62	0.25	1.00	
modeLoan_Amount_Term	0.02	-0.06	0.11	
modeCredit_History	0.06	-0.03	0.05	

In [51]:

sns.heatmap(X_train[numerical_features].corr().round(2), annot= True, cmap='coolwarm')

Out[51]:

<AxesSubplot: >

Quick Statistical Summary of Data

In [52]:

1 X_train[numerical_features].describe().round(2)

Out[52]:

	ApplicantIncome	CoapplicantIncome	meanLoanAmount	modeLoan_Amount_Term	m
count	480.00	480.00	480.00	480.00	
mean	5008.53	1441.32	144.15	342.00	
std	3555.31	1723.58	77.87	66.39	
min	150.00	0.00	9.00	12.00	
25%	2912.75	0.00	100.75	360.00	
50%	3807.00	1128.50	129.50	360.00	
75%	5818.25	2259.25	165.00	360.00	
max	20833.00	8980.00	650.00	480.00	
4					•

- · verify the minimum values of feature, if they are negative.
- verify if max values of features make sense and are logical
- · verify if it contains outliers, an idea could be generated by looking min, max & Mean

Building Base Model

In [53]:

In [54]:

```
### Let's try out a few more models
 2
   from sklearn.preprocessing import StandardScaler
 3
   from sklearn.preprocessing import MinMaxScaler
 5
 6
   from sklearn import model_selection
 7
   from sklearn.metrics import classification report
   from sklearn.metrics import confusion_matrix
9
   from sklearn.metrics import accuracy score
   from sklearn.pipeline import Pipeline
10
11 from sklearn.model selection import GridSearchCV
   from sklearn.linear model import LogisticRegression
12
   from sklearn.tree import DecisionTreeClassifier
14 from sklearn.neighbors import KNeighborsClassifier
   from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
   from sklearn.naive_bayes import GaussianNB
   from sklearn.svm import SVC
17
18
19
   from sklearn.ensemble import AdaBoostClassifier
   from sklearn.ensemble import GradientBoostingClassifier
   from sklearn.ensemble import RandomForestClassifier
21
22
```

In [55]:

```
models = []
 2
   models.append(('LR', LogisticRegression(class_weight='balanced', random_state=9)))
   models.append(('LDA', LinearDiscriminantAnalysis()))
   {\tt models.append(('KNN', KNeighborsClassifier())')}
 5
   models.append(('CART', DecisionTreeClassifier(random_state=9)))
   models.append(('NB', GaussianNB()))
 7
   models.append(('SVM', SVC( random_state=9)))
   models.append(('RF', RandomForestClassifier(random_state=9)))
   models.append(('GB', GradientBoostingClassifier(random state=9)))
   models.append(('AdaB', AdaBoostClassifier(random_state=9)))
11
12
13 models
```

Out[55]:

```
[('LR', LogisticRegression(class_weight='balanced', random_state=9)),
  ('LDA', LinearDiscriminantAnalysis()),
  ('KNN', KNeighborsClassifier()),
  ('CART', DecisionTreeClassifier(random_state=9)),
  ('NB', GaussianNB()),
  ('SVM', SVC(random_state=9)),
  ('RF', RandomForestClassifier(random_state=9)),
  ('GB', GradientBoostingClassifier(random_state=9)),
  ('AdaB', AdaBoostClassifier(random_state=9))]
```

In [56]:

```
train_base_scores = []
val_base_scores = []
model_names = []

for name, model in models:
    model.fit(X_train[final_processed_features], y_train)
    model_names.append(name)
    train_base_scores.append(model.score(X_train[final_processed_features], y_train ))
val_base_scores.append(model.score(X_val[final_processed_features], y_val ))
```

```
In [57]:
```

```
for model, train_score, val_score in zip(model_names, train_base_scores, val_base_score)
 2
       print('Model -> ', model)
 3
       print('Train Score -> ', round(train_score,2))
       print('Val Score -> ', round(val_score,2))
 4
 5
       print('*'*30)
Train Score -> 0.82
Val Score -> 0.79
**********
Model -> SVM
Train Score -> 0.69
Val Score -> 0.69
**********
Model -> RF
Train Score -> 0.99
Val Score -> 0.73
*********
Model -> GB
Train Score -> 0.88
Val Score -> 0.79
*********
Model -> AdaB
Train Score -> 0.84
Val Score -> 0.78
*********
```

```
Findings
   -----
 2
 3
   Logistic - fine
   LDA - fine
   KNN - fine
   CART - Overfitting, could be used if tuned
7
   NB - fine
   SVM - fine
   RF - OVerfitting, could be used if tuned
9
10
   GB - Overfitting, coule be used if tuned
   AdaB - Overfitting, coule be used if tuned
11
12
```

```
NOTE
 1
 2
   ====
 3
   we simply can't proceed with the model performing best with test data, as it's not
   guaranteed that with new test data, the model performance would be consistent given
   the pattern is same.
 5
 6
   answer is CROSSVALIDATION
 7
   as it is repeated training and testing, we can see the variation in the models
   performance.
 8
   So we need to check how close are models predicted values among themselves on similar
9
   Even if is consistently predictiong wrong, it is highly precise.
10
   a model which is sometimes good and sometimes bad, thats not good.
11
12
```

13 THIS IS THE REAL USE CASE OF CROSS VALIDATION

In [58]:

1 y_train.value_counts(normalize=True)

Out[58]:

Y 0.691667 N 0.308333

Name: Loan_Status, dtype: float64

In [59]:

```
from sklearn.model_selection import StratifiedKFold, cross_val_score
 2
 3
   results = []
 4
   model_names = []
   n_splits= 5
 5
 6
   for name, model in models:
 7
 8
        kfold = StratifiedKFold(n_splits= 5, shuffle= True, random_state= 9)
 9
        cv_results = cross_val_score(model, X_train[final_processed_features], y_train, cv=
10
        results.append(cv results)
       model_names.append(name)
11
12
       msg = "%s: %5.2f (%5.2f)" % (name, cv_results.mean()*100, cv_results.std()*100)
13
14
       print(msg)
15
16
   results_df = pd.DataFrame(results, index = model_names, columns = 'CV1 CV2 CV3 CV4 CV5
   results_df['CV Mean'] = results_df.iloc[:, 0:n_splits].mean(axis=1)
17
   results_df['CV Std Dev'] = results_df.iloc[:, 0:n_splits].std(axis=1)
18
   results_df.sort_values(by= 'CV Mean', ascending= False)*100
19
20
21
22
```

LR: 75.83 (2.02) LDA: 81.88 (1.06) KNN: 60.42 (1.98) CART: 69.79 (5.02) NB: 81.04 (0.78) SVM: 69.17 (0.51) RF: 79.38 (2.83) GB: 77.08 (2.95) AdaB: 78.96 (1.21)

Out[59]:

	CV1	CV2	CV3	CV4	CV5	CV Mean	CV Std Dev
LDA	83.333333	80.208333	82.291667	81.250000	82.291667	81.875000	1.187683
NB	82.291667	80.208333	81.250000	80.208333	81.250000	81.041667	0.871521
RF	84.375000	78.125000	80.208333	78.125000	76.041667	79.375000	3.159531
AdaB	78.125000	78.125000	81.250000	79.166667	78.125000	78.958333	1.358167
GB	78.125000	71.875000	80.208333	79.166667	76.041667	77.083333	3.294039
LR	72.916667	77.083333	78.125000	77.083333	73.958333	75.833333	2.258280
CART	62.500000	72.916667	69.791667	77.083333	66.666667	69.791667	5.609547
SVM	69.791667	69.791667	68.750000	68.750000	68.750000	69.166667	0.570544
KNN	60.416667	63.541667	60.416667	60.416667	57.291667	60.416667	2.209709

Reason being, the data is already pslitted in Cross Validation in n folds, and here also if we are passing Splitted data then the overall % of data used to train individual models becomes insufficient to get descent scores and understand real predictive power of our model.

Scaling Features

Re Training & Evaluating Models

In [64]:

```
from sklearn.model_selection import StratifiedKFold, cross_val_score
 1
 3
   results = []
 4
   model_names = []
 5
   n_splits= 5
 6
 7
   for name, model in models:
 8
        kfold = StratifiedKFold(n_splits= 5, shuffle= True, random_state= 9)
        cv_results = cross_val_score(model, X_train[final_processed_features], y_train, cv=
 9
10
        results.append(cv_results)
11
        model_names.append(name)
12
13
       msg = "%s: %5.2f (%5.2f)" % (name, cv_results.mean()*100, cv_results.std()*100)
        print(msg)
14
15
   results_df = pd.DataFrame(results, index = model_names, columns = 'CV1 CV2 CV3 CV4 CV5
16
   results_df['CV Mean'] = results_df.iloc[:, 0:n_splits].mean(axis=1)
   results_df['CV Std Dev'] = results_df.iloc[:, 0:n_splits].std(axis=1)
   results_df.sort_values(by= 'CV Mean', ascending= False)*100
19
20
21
22
```

LR: 76.04 (2.47) LDA: 81.88 (1.06) KNN: 74.17 (2.83) CART: 69.79 (5.02) NB: 81.04 (0.78) SVM: 81.04 (2.02) RF: 79.38 (2.83) GB: 77.29 (2.59) AdaB: 79.17 (1.14)

Out[64]:

	CV1	CV2	CV3	CV4	CV5	CV Mean	CV Std Dev
LDA	83.333333	80.208333	82.291667	81.250000	82.291667	81.875000	1.187683
NB	82.291667	80.208333	81.250000	80.208333	81.250000	81.041667	0.871521
SVM	83.333333	80.208333	83.333333	80.208333	78.125000	81.041667	2.258280
RF	84.375000	78.125000	80.208333	78.125000	76.041667	79.375000	3.159531
AdaB	78.125000	79.166667	81.250000	79.166667	78.125000	79.166667	1.275776
GB	78.125000	72.916667	80.208333	79.166667	76.041667	77.291667	2.890508
LR	71.875000	79.166667	77.083333	77.083333	75.000000	76.041667	2.755991
KNN	71.875000	77.083333	76.041667	76.041667	69.791667	74.166667	3.159531
CART	62.500000	72.916667	69.791667	77.083333	66.666667	69.791667	5.609547

```
Naive Bayes is performing better with appropriate Standard Deviation
```

3 Let's perform Hyperparameter Tuning for it.

```
In [65]:
```

```
from sklearn.model_selection import GridSearchCV

clf = GaussianNB()

# define parameter grid for grid search
param_grid = {'var_smoothing': [1e-9, 1e-8, 1e-7, 1e-6, 1e-5]}
```

In [66]:

```
# perform grid search using 5-fold cross-validation
grid_search = GridSearchCV(clf, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train[final_processed_features], y_train)

# print the best parameters and corresponding accuracy score
print("Best parameters: ", grid_search.best_params_)
print("Best accuracy score: ", grid_search.best_score_)
```

```
Best parameters: {'var_smoothing': 1e-09}
Best accuracy score: 0.7979166666666667
```

In [67]:

```
1 clf = GaussianNB(var_smoothing= 1e-09)
```

Training Final Model

```
In [68]:
```

```
1 clf.fit(X_train[final_processed_features], y_train)
```

Out[68]:

```
▼ GaussianNB
GaussianNB()
```

In [69]:

```
1 # Trianing Score
2 clf.score(X_train[final_processed_features], y_train)
```

Out[69]:

0.8166666666666667

In [70]:

```
# Validation Score
clf.score(X_val[final_processed_features], y_val)
```

Out[70]:

0.791666666666666

In [71]:

```
#checking predictions son Validation set
pred_test = clf.predict(test[final_processed_features])
pred_test
```

Out[71]:

```
array(['Y',
                 'Υ',
                                                            'N',
                                      'Υ',
                                             'Y'
                                                                                               'N',
          'N',
                 'Y'
                                                                           N'
                 'Υ'
                                                     'N
                                                                                               'N'
                 'N'
                                      'N'
                        'N'
                                      'N'
                                              'Υ
                        'N'
                                                     'N
                 'Y'
                                'N
                        'N'
          'N'
                 'N'
                        'N'
                                                     'N
                                                            'N
                 'Υ
                                       'Y
                                                                                 'N
                                                                                                'N
                 'Y'
                                      'N'
                                              'Y'
                                                                                 'N
                                      'N'
                                              'N'
                 'N'
                               'N'
                                'N
                                                                   'N'
                 'N'
                        'N'
                                       'Υ
                                              'Y'
                                                            'N
                 'Y'
                               'N'
                 'Υ'
                                              'Υ'
                                                     'N'
                                                                   'N'
                 'N'
                                              'N'
          'N'
                                                            'N
                                              'N'
                                                                                 'N'
                                              'Υ'
                                                            'Υ
                                      'Υ
                                                                                 'Y'
                                             'Υ',
                                                    'Y'
                                                           'Y'
                                                                          'Y'
                                      'N'
                                                                   'N'
                                             'Υ',
                                                    'Υ',
                                      'Υ',
                                                           'Υ',
                               'N',
                                                                  'Υ',
                        'Y'], dtype='<U1')
```

In [72]:

```
pred_test_df = pd.DataFrame({'Loan_ID' : test_backup['Loan_ID'], 'Loan_Status' : pred_test_df.head()
```

Out[72]:

	Loan_ID	Loan_Status
0	LP001015	Υ
1	LP001022	Υ
2	LP001031	Υ
3	LP001035	Υ
4	LP001051	Υ

```
In [73]:
```

```
1 # saving File
2 pred_test_df.to_csv("predicted_Loan_Defaulter.csv", index=False)
```

```
In [ ]:
```

1

Trying Lazy Predictor

1 !pip install lazypredict

In [77]:

```
import lazypredict
from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
```

In [79]:

- 1 clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
- 2 models,predictions = clf.fit(X_train[final_processed_features], X_val[final_processed_features]
- 3 models

100%|

| 29/29 [00:01<00:00, 25.33it/s]

Out[79]:

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model					
AdaBoostClassifier	0.78	0.71	None	0.77	0.13
LGBMClassifier	0.78	0.70	None	0.77	0.14
BernoulliNB	0.80	0.69	None	0.77	0.02
LinearDiscriminantAnalysis	0.80	0.69	None	0.77	0.01
RidgeClassifierCV	0.80	0.69	None	0.77	0.02
RidgeClassifier	0.80	0.69	None	0.77	0.02
NuSVC	0.80	0.69	None	0.77	0.02
CalibratedClassifierCV	0.80	0.69	None	0.77	0.11
LogisticRegression	0.80	0.69	None	0.77	0.02
LinearSVC	0.80	0.69	None	0.77	0.03
GaussianNB	0.79	0.68	None	0.77	0.02
SVC	0.79	0.68	None	0.77	0.03
Perceptron	0.76	0.68	None	0.75	0.01
NearestCentroid	0.78	0.68	None	0.76	0.01
SGDClassifier	0.78	0.68	None	0.76	0.01
LabelSpreading	0.75	0.68	None	0.74	0.03
QuadraticDiscriminantAnalysis	0.78	0.67	None	0.75	0.01
LabelPropagation	0.74	0.67	None	0.73	0.02
DecisionTreeClassifier	0.71	0.66	None	0.71	0.02
KNeighborsClassifier	0.77	0.66	None	0.74	0.02
RandomForestClassifier	0.73	0.66	None	0.72	0.19
ExtraTreesClassifier	0.72	0.65	None	0.71	0.16
BaggingClassifier	0.70	0.64	None	0.70	0.05
ExtraTreeClassifier	0.68	0.64	None	0.69	0.01
PassiveAggressiveClassifier	0.63	0.59	None	0.64	0.01
DummyClassifier	0.69	0.50	None	0.57	0.01

In []:

1