Analysis of crab abundance, presence/absence, and carapace length

December 21, 2017

1 Regression

Figure 1: Results of model selection analysis with three crab population variables (abundance, presence/absence, carapace length) by shallow and deep water. Variable importances and pooled estimates show summarized results from multiple models that evaluated all parameter combinations. The unconditional explained variance (%) is the effect of each variable independent of all other variables.

Table 1: Top five selected models for crab abundance at shallow and deep water. Input variables were fluorescence, nitrate, oxygen, and salinity. All explanatory variables were scaled and centered.

Models	Int.	Fluorescence	Nitrate	Oxygen	Salinity	df	logLik	AICc	delta
30 m									
1	2.68	-	1.49	-	-2.17	4	-47.51	105.24	0
2	1.43	0.87	-	-	-1.88	4	-47.6	105.43	0.19
3	2.13	0.48	0.89	-	-2.12	5	-47.04	107.61	2.37
4	1.78	0.86	-	-0.57	-2.29	5	-47.22	107.96	2.72
5	1.75	-	-	-	-1.51	3	-50.42	108.11	2.86
100 m									
1	3.16	1.29	-	-	-1.99	4	-47.66	105.54	0
2	2.75	-	-	-	-1.85	3	-49.78	106.83	1.29
3	3.2	1.74	-	1.24	-	4	-49.03	108.27	2.73
4	2.55	-	0.87	-	-2.5	4	-49.09	108.4	2.86
5	3.03	1.17	0.38	-	-2.27	5	-47.52	108.57	3.03

Table 2: Top five selected models for crab presence/absence at shallow and deep water. Input variables were fluorescence, nitrate, oxygen, and salinity. All explanatory variables were scaled and centered.

Models	Int.	Fluorescence	Nitrate	Oxygen	Salinity	df	logLik	AICc	delta
30									
1	1.17	-	2.62	-	-3.15	3	-10.22	27.71	0
2	-0.07	1.17	-	-1.95	-4.1	4	-9.71	29.65	1.94
3	1.36	-	2.29	-0.77	-3.68	4	-9.93	30.09	2.38
4	0.98	0.14	2.43	-	-3.13	4	-10.21	30.63	2.92
5	-0.88	0.99	-	-	-2.01	3	-11.99	31.24	3.53
100									
1	3.34	3.41	-	-	-5.46	3	-7.53	22.33	0
2	3.31	3.27	0.37	-	-5.85	4	-7.5	25.22	2.89
3	3.34	3.34	-	-0.2	-5.72	4	-7.53	25.28	2.94
4	3.3	3.3	0.52	0.25	-5.68	5	-7.5	28.52	6.19
5	1.68	2.83	-	1.97	-	3	-10.87	29	6.67

Table 3: Top five selected models for crab carapace length at shallow and deep water. Input variables were fluorescence, nitrate, oxygen, and salinity. All explanatory variables were scaled and centered.

Models	Int.	Fluorescence	Nitrate	Oxygen	Salinity	df	logLik	AICc	delta
30									
1	6.59	-	-	-	-	2	6.99	-8.28	0
2	6.61	-	0.06	-	-	3	7.7	-5.41	2.87
3	6.57	0.01	-	-	-	3	7.11	-4.21	4.06
4	6.59	-	-	-	0.01	3	7.01	-4.01	4.26
5	6.58	-	-	0	-	3	7	-4	4.28
100									
1	6.59	-	-	-	-	2	6.99	-8.28	0
2	6.54	-	0.1	-	-	3	8.33	-6.66	1.61
3	6.57	-	-	-0.03	-	3	7.13	-4.25	4.02
4	6.59	-	-	-	-0.01	3	7	-4	4.27
5	6.59	0	-	-	-	3	7	-4	4.28

2 PCA regression

Figure 2: PCA results, points sized by abundance

Figure 3: Results of model selection analysis with crab abundance, by shallow and deep water. Models were created using four principal components of input variables. Importances and pooled estimates show summarized results from multiple models that evaluated all parameter combinations. The unconditional explained variance (%) is the effect of each axis independent of all other variables.

Table 4: Top five selected models for crab abundance at shallow and deep water using principal component axes. Input variables for PCA were fluorescence, nitrate, oxygen, and salinity. All explanatory variables were scaled and centered.

Models	Int.	PC1	PC2	PC3	PC4	df	logLik	AICc	delta
30 m	1110.	101	1 02	100	101	- CII	юдык	11100	derea
1	2.3	-	-	-2.31	-	3	-48.84	104.94	0
2	2.71	-0.54	-	-2.54	-	4	-47.48	105.18	0.24
3	1.77	-	-0.66	-2.01	-	4	-47.73	105.69	0.75
4	2.26	-	-	-2.29	-0.55	4	-48.77	107.76	2.82
5	2.27	-0.4	-0.41	-2.3	-	5	-47.13	107.79	2.85
100 m									
1	3.19	0.82	1.69	-	-	4	-48.7	107.61	0
2	3.12	0.79	1.66	-1.79	-	5	-47.31	108.14	0.53
3	2.27	-	1.24	-	-	3	-50.54	108.33	0.72
4	2.24	-	1.22	-1.89	-	4	-49.22	108.66	1.05
5	1.94	-	-	-	-	2	-52.17	108.94	1.33

Table 5: Correlations of crab abundance and input variables with principal component (PC) axes. Abundance was modelled with PC axes where the axes were created using the input variables.

PC1	PC2	PC3	PC4	
-0.2	-0.37	-0.5*	-0.11	
-0.81*	-0.86*	-0.04	0	
-0.95*	-0.38	-0.05	0	
0.67*	-0.37	-0.36	0.51*	
-0.51*	0.12	0.91*	0.15	
0.21	0.36	-0.31	0.03	
-0.36	0.99*	0.09	-0.01	
-0.94*	0.37	-0.28	0.24	
0.98*	-0.42*	-0.06	0.11	
-0.78*	0.02	0.57*	0.25	
	-0.2 -0.81* -0.95* 0.67* -0.51* 0.21 -0.36 -0.94* 0.98*	-0.2 -0.37 -0.81* -0.86* -0.95* -0.38 0.67* -0.37 -0.51* 0.12 0.21 0.36 -0.36 0.99* -0.94* 0.37 0.98* -0.42*	-0.2	