Краткий конспект лекций по курсу «Игры среднего поля» Лекция 9

Пусть

$$h, g: \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^d$$

гладкие по $x \in \mathbb{R}^d$ и удовлетворяют условиям

$$|h(x,\mu) - h(x,\sigma)| + |g(x,\mu) - g(x,\sigma)| \le Cd_{KR}(\mu,\sigma),$$

$$|h(x,\mu) - h(y,\mu)| + |g(x,\mu) - g(y,\mu)| \le C|x-y|,$$

$$|h(x,\mu)| + |g(x,\mu)| \le C.$$

Рассмотрим функцию

$$F(y,P) = \int_0^T \frac{1}{2} |\dot{y}(t)|^2 + h(y(t), P \circ e_t^{-1}) dt + g(y(T), P \circ e_T^{-1}),$$

где P — вероятностная мера на $\mathbb{R}^d \times C([0,T],\mathbb{R}^d)$.

Предложение 1. Предположим, что на абсолютно непрерывной функции y_x функционал $y \to F(y,P)$ достигает минимального значения на множестве всех абсолютно непрерывных функций у, удовлетворяющих условию y(0) = x. Тогда

$$|y_x(t)| \le |x| + M_1$$
, $|y_x(t) - y_x(s)| \le M_2|t - s|$.

где константы M_1 и M_2 зависят только от C и T.

Пусть ν — вероятностная мера на \mathbb{R}^d , носитель которой лежит в $B(0,\frac{R}{2})$. Положим

$$X = \overline{B}(0, \frac{R}{2}), \quad A = \{ y \in C([0, T], \mathbb{R}^d) \colon |y(t)| \le M_1 + 2R, \quad |y(t) - y(s)| \le M_2 |t - s| \}.$$

Для каждого $x \in X$ через S(x) обозначим множество функций y из A, удовлетворяющих условию y(0) = x.

Теорема 1. Существует вероятностная мера P на $X \times A$, удовлетворяющая условиям

$$P_X = \nu$$
, $P\{(x,y): y(0) = x$, $F(y,P) = \min_{z \in S(x)} F(z,P)\} = 1$.

Для доказательства этой теоремы достаточно проверить, что X, A, F, S, ν удовлетворяют условиям задачи (P2) с прошлой лекции. Ясно, что X и A компактные метрические пространства. Проверим условия на отображение S. Множества S(x) непусто, так как в нем лежит функция $y(t) \equiv x$. Множества S(x) замкнуто, так как из сходимости $y_n \to y$ следует $y_n(0) \to y(0)$. Если $x_n \to x, \ y_n \to y$ и $y_n \in S(x_n), \ \text{то} \ y_n(0) = x_n, \ y_n(0) \to y(0)$ и y(0) = x. Таким образом, график S замкнут. Пусть теперь $x_n \to x$ и $y \in S(x)$. Положим

$$y_n(t) = \alpha_n(y(t) - x) + x_n, \quad \alpha_n = 1 - \frac{|x_n - x|}{M_1 + R}.$$

Заметим, что $0 \le \alpha_n < 1$ и $y_n(0) = x_n$. Проверим, что $y_n \in A$. Имеем

$$|y_n(t)| \le \alpha_n |y(t)| + (1 - \alpha_n)|x| + |x_n - x| \le \alpha_n (M_1 + 2R) + (1 - \alpha_n)R + |x_n - x| = M_1 + 2R,$$
$$|y_n(t) - y_n(s)| = \alpha_n |y(t) - y(s)| < M_2 |t - s|.$$

Итак, $y_n(0)=x_n$ и $y_n\in A$, то есть $y_n\in S(x_n)$. Ясно, что y_n равномерно сходится к y и \dot{y}_n равномерно сходится к \dot{y} . Это позволяет перейти к пределу в выражении для $F(y_n, P)$.

Проверим, что F(y, P) равномерно непрерывна по P. Имеет место оценка

$$|F(y,P) - F(y,Q)| \le C \int_0^T d_{KR}(P \circ e_t^{-1}, Q \circ e_t^{-1}) dt + C d_{KR}(P \circ e_T^{-1}, Q \circ e_T^{-1}).$$

Так как $d_{KR}(P \circ e_t^{-1}, Q \circ e_t^{-1}) \leq d_{KR}(P, Q)$, то

$$\left| F(y,P) - F(y,Q) \right| \le C(T+1)d_{KR}(P,Q).$$

Остается проверить, что $y \to F(y, P)$ полунепрерывно снизу. Пусть $y_n \to y$. Так как сходимость равномерная, то

$$\lim_{n \to +\infty} \int_0^T h(y_n, P \circ e_t^{-1}) \, dt = \int_0^T h(y, P \circ e_t^{-1}) \, dt, \quad \lim_{n \to +\infty} g(y_n(T), P \circ e_T^{-1}) = g(y(T), P \circ e_T^{-1}).$$

Из оценки $|\dot{y}_n| \leq M_2$ следует ограниченность последовательности \dot{y}_n в $L^2[0,T]$. Переходя к подпоследовательности можно считать, что \dot{y}_n слабо сходится к \dot{y} в $L^2[0,T]$. Так как

$$\int_0^T \frac{1}{2} |\dot{y}_n(t)|^2 dt \ge -\int_0^T \frac{1}{2} |\dot{y}(t)|^2 dt + \int_0^T \langle \dot{y}_n(t), y(t) \rangle dt,$$

то

$$\lim \inf_{n \to \infty} \int_0^T \frac{1}{2} |\dot{y}_n(t)|^2 dt \ge \int_0^T \frac{1}{2} |\dot{y}(t)|^2 dt,$$

что влечет полунепрерывность снизу функционала $y \to F(y, P)$.

Таким образом, все условия проверены и теорема о существовании меры P доказана.

Отметим, что в силу предложения 1 сужение исходного пространства $C([0,T],\mathbb{R}^d)$ до множества A не влияет на множество функций y, на которых достигается минимум F(y,P).

Следуя работам P.Cannarsa, R.Capuani, P.Cardaliaguet назовем пару (u, μ_t) решением в среднем системы

$$\begin{cases} -u_t + \frac{1}{2} |\nabla u|^2 - h(x, \mu_t) = 0, \\ \partial_t \mu_t - \operatorname{div}(\nabla u \mu_t) = 0 \end{cases}$$

с начальными условиями $u(x,T)=g(x,\mu_T),\,\mu_0=\nu,$ если

$$\mu_t = P \circ e_t^{-1}, \quad u(x,t) = \inf_{y:\ y(t) = x} \int_t^T \frac{1}{2} |\dot{y}(t)|^2 + h(y(t), \mu_t) \, dt + g(y(T), \mu_T),$$

где вероятностная мера P на $\mathbb{R}^d \times C([0,T],\mathbb{R}^d)$ удовлетворяет условиям: $P|_{\mathbb{R}^d_x} = \nu$ и носитель sp P лежит в множестве пар (x,y), у которых y(0) = x и y — точка минимума функционала

$$y \to \int_0^T \frac{1}{2} |\dot{y}(t)|^2 + h(y(t), P \circ e_t^{-1}) dt + g(y(T), P \circ e_T^{-1})$$

на множестве всех абсолютно непрерывных функций y с условием y(0) = x.

Теорема 2. Решение в среднем существует.

Доказательство. Немедленно следует из доказанного выше.

Отметим, что u является вязкостным решением уравнения Гамильтона-Якоби

$$-u_t + \frac{1}{2}|\nabla u|^2 - h(x, \mu_t) = 0.$$

Более того, в недавней работе P.Cannarsa, R.Capuani, P.Cardaliaguet показали, что для всех x из носителя μ_t функция $x \to u(x,t)$ дифференцируема и μ_t является решением уравнения непрерывности

$$\partial_t \mu_t - \operatorname{div}(\nabla u \mu_t) = 0.$$

Таким образом, решение в среднем является «поточечным» решением системы уравнений. Будем говорить, что для функции $f(x,\mu)$ выполняется условие монотонности, если

$$\int (f(x,\mu) - f(x,\sigma)) d(\mu - \sigma) \ge 0,$$

а равенство нулю влечет равенство $f(x, \mu) = f(x, \sigma)$.

Теорема 3. Если функции h и g удовлетворяют условию монотонности u пары (u^1, μ_t^1) , (u^2, μ_t^2) — решения в среднем, то $u^1 = u^2$. Более того, если в условии монотонности из равенства нулю следует совпадение мер, то $\mu_t^1 = \mu_t^2$ и решение в среднем единственно.

Доказательство. Пусть мера P^1 соответствует паре (u^1,μ^1_t) , а мера P^2 – соответствует паре (u^2,μ^2_t) . Для всякой пары $(x,y)\in {\rm sp}\, P^1$ выполнено

$$u^{1}(x,0) = \int_{0}^{T} \frac{1}{2} |\dot{y}(t)|^{2} + h(y(t), \mu_{t}^{1}) dt + g(y(T), \mu_{T}^{1}),$$

$$u^{2}(x,0) \leq \int_{0}^{T} \frac{1}{2} |\dot{y}(t)|^{2} + h(y(t), \mu_{t}^{2}) dt + g(y(T), \mu_{T}^{2}).$$

Следовательно, верна оценка

$$g(y(T), \mu_T^1) - g(y(T), \mu_T^2) + \int_0^T h(y(t), \mu_t^1) - h(y(t), \mu_t^2) dt \le u^1(x, 0) - u^2(x, 0).$$

Интегрируя это неравенство по мере P^1 и учитывая, что $P^1 \circ e_t^{-1} = \mu_t^1$, приходим к новому неравенству

$$\int g(x,\mu_T^1) - g(x,\mu_T^2) d\mu_T^1 + \int_0^T \int h(x,\mu_t^1) - h(x,\mu_t^2) d\mu_t^1 dt \le \int u^1(x,0) - u^2(x,0) d\nu.$$

Аналогичным образом получаем неравенство

$$\int g(x,\mu_T^2) - g(x,\mu_T^1) d\mu_T^2 + \int_0^T \int h(x,\mu_t^2) - h(x,\mu_t^1) d\mu_t^2 dt \le \int u^2(x,0) - u^1(x,0) d\nu.$$

Складываем полученные неравенства и приходим к оценке

$$\int g(x,\mu_T^1) - g(x,\mu_T^2) d(\mu_T^1 - \mu_T^2) + \int_0^T \int h(x,\mu_t^1) - h(x,\mu_t^2) d(\mu_t^1 - \mu_t^2) dt \le 0.$$

Следовательно, верны равенства

$$g(x,\mu_T^1) = g(x,\mu_T^2), \quad h(x,\mu_t^1) = h(x,\mu_t^2),$$

в силу которых функционалы, задающие u^1 и u^2 совпадают.