Разделение переменных в уравнениях Лапласа и Гельмгольца в сферической системе координат. Функции Лежандра.

Оператор Лапласа в сферической системе координат имеет вид

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial u}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial u}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2}$$

Если мы ищем гармонические функции ($\Delta u = 0$) специального вида

$$u(r, \theta, \varphi) = G(r)F(\theta)\Phi(\varphi),$$

то, разделяя переменные

$$\frac{\frac{\partial}{\partial r}(r^2\frac{\partial G}{\partial r})}{G} + \frac{\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial F}{\partial\theta})}{F} + \frac{\frac{1}{\sin^2\theta}\frac{\partial^2\Phi}{\partial\varphi^2}}{\Phi} = 0,$$

мы получим для каждого множителя обыкновенное дифференциальное уравнение:

$$\frac{d}{dr}(r^2\frac{dG}{dr}) - \beta G = 0$$

$$\frac{1}{\sin\theta}\frac{d}{d\theta}(\sin\theta\frac{dF}{d\theta} - \frac{\alpha}{\sin^2\theta}F) + \beta F = 0$$

$$\Phi'' + \alpha\Phi = 0$$

Естественно, мы хотим получить однозначные и ограниченные решения. Требование однозначности, как мы помним, приводит к тому, что функция $\Phi(\varphi)$ должна быть периодической с периодом $T=2\pi$. Следовательно, $\alpha=m^2,\,m=0,\,1,\,...,\,$ и

$$\Phi_m(\varphi) = C_1 \sin m\varphi + C_2 \cos m\varphi.$$

Для функции $F(\theta)$ мы получаем уравнение

$$\frac{1}{\sin\theta} \frac{d}{d\theta} (\sin\theta \frac{dF}{d\theta}) + (\beta - \frac{m^2}{\sin^2\theta})F = 0, \tag{28.1}$$

с которым нам раньше не приходилось встречаться. Познакомимся с ним поближе.

Сделаем замену $\tau = \cos \theta$. Для этого сначала преобразуем первое слагаемое. По правилу дифференцирования сложной функции

$$\frac{d}{d\theta} = \frac{d}{d\tau} \cdot \frac{d\tau}{d\theta} = -\sin\theta \frac{d}{d\tau}.$$

Отсюда

$$\frac{1}{\sin \theta} \frac{d}{d\theta} = -\frac{d}{d\tau} = -\frac{d}{d\cos \theta}$$
$$\frac{1}{\sin \theta} \frac{d}{d\theta} (\sin \theta \frac{dF}{d\theta}) = \frac{d}{d\cos \theta} (\sin^2 \theta \frac{dF}{d\cos \theta})$$

Тогда

$$\frac{d}{d\tau}((1-\tau^2)\frac{dF}{d\tau}) + (\beta - \frac{m^2}{1-\tau^2})F = 0,$$

или в развернутом виде

$$(1 - \tau^2)F'' - 2\tau F' + (\beta - \frac{m^2}{1 - \tau^2})F = 0.$$
 (28.2)

Точки $\tau=\pm 1$ являются для этого уравнения особыми (соответственно для уравнения (28.1) особыми являются точки $\theta=0$ и $\theta=\pi$).

Потребуем ограниченности функции F в этих точках. Мы должны выяснить, при каких значениях β уравнение (28.2) имеет решение, ограниченное на отрезке [-1;1]. Другими словами, мы должны решить задачу Штурма–Лиувилля:

$$\begin{cases} L[F] = (1-\tau^2)F'' - 2\tau F' - \frac{m^2}{1-\tau^2}F = -\beta F \\ F(-1) - \text{ограничено} \\ F(1) - \text{ограничено} \end{cases}$$

Рассмотрим случай m=0. Уравнение (28.2) в этом случае называется уравнением Лежандра и имеет вид

$$(1 - \tau^2)F'' - 2\tau F' + \beta F = 0. (28.3)$$

Хотя уравнение выглядит довольно просто, у нас нет оснований надеяться на то, что его решение выражается через известные функции. Но мы можем попробовать найти решение в виде степенного ряда. Итак, ищем решение уравнения (28.3) в виде ряда

$$F(\tau) = \sum_{k=0}^{+\infty} c_k \tau^k. \tag{28.4}$$

Подставляем (28.4) в уравнение:

$$(1-\tau^2)\sum_{k=2}^{+\infty} c_k k(k-1)\tau^{k-2} - 2\tau \sum_{k=1}^{+\infty} c_k k\tau^{k-1} + \beta \sum_{k=0}^{+\infty} c_k \tau^k = 0.$$

Приводим подобные слагаемые и приравниваем коэффициенты к нулю:

$$2c_2 + \beta c_0 = 0$$

$$-k(k-1)c_k + (k+2)(k+1)c_{k+2} - 2kc_k + \beta c_k = 0.$$

таким образом, коэффициенты могут быть найдены из рекуррентных соотношений

$$c_{k+2} = \frac{(k(k+1) - \beta)c_k}{(k+2)(k+1)}. (28.5)$$

Рассмотрим точку $\tau=1$. Если $\beta\neq n(n+1)$ для всех $n\in\mathbb{N}\bigcup\{0\}$, то при достаточно больших k ряд $F(1)=\sum_{k=0}^{+\infty}c_k$ становится знакопостоянным, и применяя признак Гаусса, можно показать, что он расходится.

Если же найдется $n \in \mathbb{N} \cup \{0\}$ такое, что $\beta = n(n+1)$, то из (28.5) следует, что $c_{n+2} = 0$ и все дальнейшие коэффициенты $c_{n+2k} = 0$.

Если n — четное (n=2m), то коэффициенты c_2 , c_4 , ..., c_{2m} определяются через c_0 , а следующие за ними коэффициенты c_{2p} , p>m, обращаются в ноль. Полагая $c_1=0$, мы получим, что все коэффициенты $c_{2k+1}=0$, $k\in\mathbb{N}$.

Если n — нечетное $(n=2m+1, m\in\mathbb{N}\cup\{0\})$, то коэффициенты c_3 , c_5 , ..., c_{2m+1} определяются через c_1 , а следующие за ними коэффициенты $c_{2p+1}, \ p>m$, обращаются в ноль. Полагая $c_0=0$, мы получим, что все коэффициенты $c_{2k}=0, \ k\in\mathbb{N}$.

Таким образом, при $\beta = n(n+1)$ уравнение (28.3) имеет решение в виде многочлена, а второе линейно независимое с ним решение останется рядом, расходящимся по крайней мере при $\tau = 1$.

Так, при $\beta=0$ (n=0) уравнение $(1-\tau^2)F''-2\tau F'=0$ легко решить, понижая порядок. Его ФСР состоит из функции $y_1\equiv 1$, ограниченной на отрезке [-1;1], и функции $y_2=\ln\frac{1+\tau}{1-\tau}$ неограниченной в точках $\tau=\pm 1$.

При $\beta=2$ (n=1) уравнение $(1-\tau^2)F''-2\tau F'+2F=0$ имеет решение $y_1=\tau$, ограниченное на отрезке [-1;1]. Второе решение $y_2=2-\tau\ln\frac{1+x}{1-x}$ можно достроить, пользуясь формулой Лиувилля. Как и в случае n=0, оно неограниченно в точках $\tau=\pm 1$.

С увеличением номера n второе решение становится все более сложным, но его явный вид нас совершенно не интересует. Достаточно понимать, что оно неограниченно при $\tau=\pm 1$.

Итак, при $\beta=n(n+1)$ уравнение (28.3) имеет решение в виде многочлена степени n. Это решение, определенным образом нормированное, называется многочленом Лежандра. Найти многочлены Лежандра при любом значении n можно по формуле Родрига:

$$P_n(\tau) = \frac{1}{2^n n!} \frac{d^n (\tau^2 - 1)^n}{d\tau^n}.$$

Приведем формулы $P_n(\tau)$ для небольших значений n:

$$P_0(\tau) = 1$$
, $P_1(\tau) = \tau$, $P_2(\tau) = \frac{1}{2}(3\tau^2 - 1)$, $P_3(\tau) = \frac{1}{2}(5\tau^2 - 3\tau)$.

Из общей теории следует, что многочлены Лежандра ортогональны на интервале (-1;1) с весом $\rho=1$, то есть

$$\int_{-1}^{1} P_n(\tau) P_m(\tau) d\tau = 0, \quad m \neq n,$$

и имеет место теорема Стеклова:

Если функция $f(\tau) \in C^2(-1;l)$ ограничена в точках $\tau=\pm 1,$ то она допускает на отрезке [-1;1] разложение в равномерно сходящийся ряд Фурье–Лежандра

$$f(\tau) = \sum_{k=0}^{+\infty} c_k P_0(\tau),$$

где

$$c_{k} = \frac{\int_{-1}^{1} f(\tau) P_{k}(\tau) d\tau}{\int_{-1}^{1} P_{k}^{2}(\tau) d\tau}.$$

Вернемся к уравнению (28.2) с произвольным $m \in \mathbb{N}$. Оно также имеет ограниченные в точках $\tau=\pm 1$ решения только при $\beta=n(n+1)$, где $n=0,1,\dots$ Эти решения называются присоединенными функциями Лежандра и могут быть получены из многочленов Лежандра по формулам

$$P_{nm}(\tau) = (1 - \tau^2)^{m/2} \frac{d^m P_n(\tau)}{d\tau^m}.$$

Здесь $n=0, 1, \dots; m=0, 1, 2, \dots n$.

Если фиксировать m и рассматривать функции $P_{nm}(\tau)$ при $n \geqslant m$, то они будут решениями задачи Штурма–Лиувилля, и следовательно, образуют полную ортогональную систему:

$$\int_{-1}^{1} P_{nm}(\tau) P_{km}(\tau) d\tau = 0, \quad k \neq n.$$

Подведем промежуточный итог. Мы искали гармонические функции специального вида

$$u(r, \theta, \varphi) = G(r)F(\theta)\Phi(\varphi),$$

и нашли функции $F(\theta)$ и $\Phi(\varphi)$, определяющие зависимость функции u от углов $(\theta;\varphi)$. Введем обозначение

$$Y_n^m(\theta,\varphi) = (C_1 \cos m\varphi + C_2 \sin m\varphi) \cdot \sin^m \theta \cdot P_n^{(m)}(\cos \theta),$$

где $P_n^{(m)}(\tau) = \frac{d^m P_n(\tau)}{d\tau^m}$. Функции $Y_n^m(\theta,\varphi)$ называются сферическими гармониками и играют в задачах, связанных со сферой, ту же роль, что функции $\cos m\varphi$ и $\sin m\varphi$ в задачах, связанных с окружностью.

Функция

$$Y_n(\theta,\varphi) = a_0 P_n(\cos\theta) + \sum_{m=1}^n (a_m \cos m\varphi + b_m \sin m\varphi) \cdot \sin^m \theta \cdot P_n^{(m)}(\cos\theta)$$

называется сферической функцией порядка n. Для лучшего понимания структуры сферических функций расположим их в таблице:

В центральном столбце таблицы стоят многочлены Лежандра от $\cos \theta$, в соседних столбцах слева и справа от него мы видим первую присоединенную функцию Лежандра $P_{n1}(\cos \theta)$, умноженную на $\cos \varphi$ и $\sin \varphi$ соответственно. В следующем столбце находится вторая присоединенная функция Лежандра $P_{n2}(\cos \theta)$, умноженная на $\cos 2\varphi$ и $\sin 2\varphi$ соответственно, и так далее.

В n-ной строке расположено (2n+1) функций, и сферическая функция $Y_n(\theta,\varphi)$ является их линейной комбинацией.

Продолжим построение гармонической функции $u = G(r)F(\theta)\Phi(\varphi)$. Нам осталось найти множитель G(r). Для этого у нас есть уравнение $(r^2G')' - \beta G = 0$, в котором значение β уже определено и равно n(n+1).

Раскрыв скобки, мы увидим, что это уравнение Эйлера:

$$r^2G'' + 2rG' - n(n+1)G = 0$$

Его определяющее уравнение $\lambda(\lambda-1)+2\lambda-n(n+1)=0$, или $\lambda(\lambda+1)=n(n+1)$. Корни $\lambda_1=n$ и $\lambda_2=-(n+1)$. Следовательно, общее решение имеет вид

$$G_n(r) = C_1 r^n + C_2 \frac{1}{r^{n+1}}.$$

Таким образом, гармонические функции вида $u = G(r)F(\theta)\Phi(\varphi)$, ограниченные в начале координат, задаются формулой

$$u_n(r,\theta,\varphi) = r^n Y_n(\theta,\varphi),$$

а гармонические функции вида $u=G(r)F(\theta)\Phi(\varphi)$, ограниченные на бесконечности, задаются формулой

$$u_n(r, \theta, \varphi) = r^{-(n+1)} Y_n(\theta, \varphi).$$

			÷	:
		$\cos \varphi \cdot P_2'(\cos \theta) \sin \theta \mid P_2(\cos \theta) \mid \sin \varphi \cdot P_2'(\cos \theta) \sin \theta \mid \sin 2\varphi \cdot P_2''(\cos \theta) \sin^2 \theta$		
	$\sin\varphi\cdot P_1'(\cos\theta)\sin\theta$	$\sin\varphi\cdot P_2'(\cos\theta)\sin\theta$:	$\sin\varphi\cdot P_n'(\cos\theta)\sin\theta$
$P_0(\cos\theta)$	$P_1(\cos\theta)$	$P_2(\cos \theta)$	÷	$P_n(\cos \theta)$
	$\cos \varphi \cdot P_1'(\cos \theta) \sin \theta \mid P_1(\cos \theta) \mid \sin \varphi \cdot P_1'(\cos \theta) \sin \theta$	$\cos arphi \cdot P_2'(\cos heta) \sin heta$:	$\cos \varphi \cdot P_n'(\cos \theta) \sin \theta \mid P_n(\cos \theta) \mid \sin \varphi \cdot P_n'(\cos \theta) \sin \theta$
		$\cos 2\varphi \cdot P_2''(\cos \theta) \sin^2 \theta$		
	'		:	÷

Таблица 1. Сферические гармоники

Теперь зададимся вопросом: при каких значениях параметра \varkappa уравнение Гельмгольца $\Delta u + \varkappa^2 u = 0$ имеет нетривиальное решение вида $u(r,\theta,\varphi) = G(r)F(\theta)\Phi(\varphi)$, обращающиеся в нуль на сфере $x^2 + y^2 + z^2 = r_0^2$?

При разделении переменных в уравнении Гельмгольца мы получили для функций $F(\theta)$ и $\Phi(\varphi)$ те же самые уравнения, что и при разделении переменных в уравнении Лапласа. Требования однозначности и ограниченности приведут нас к тем же самым задачам Штурма—Лиувилля, и мы увидим, что зависимость о углов θ и φ в этой задаче та же, что и в предыдущей. Этот замечательный факт имеет глубокую связь с симметрией рассматриваемых задач и мы поймем это, когда будем изучать теорию представлений групп вращений.

Уравнение для функции G(r) получится более сложным:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial G}{\partial r}\right) - \frac{n(n+1)}{r^2}G + \varkappa^2 G = 0$$

Сделав замену $y(r) = \sqrt{r}G(r)$, для функции y(r) получим уравнение

$$r^2y''(r) + ry'(r) + (\varkappa^2r^2 - (n + \frac{1}{2})^2)y(r) = 0$$

Это уравнение Бесселя порядка $\frac{2n+1}{2}$. Его общее решение

$$y(r) = C_1 J_{n+1/2}(\varkappa r) + C_2 J_{-(n+1/2)}(\varkappa r).$$

Следовательно,

$$G(r) = C_1 \frac{J_{n+1/2}(\varkappa r)}{\sqrt{r}} + C_2 \frac{J_{-(n+1/2)}(\varkappa r)}{\sqrt{r}}.$$

Если мы ищем решение в внутри шара $x^2 + y^2 + z^2 \leqslant r_0^2$, то следует положить $C_2 = 0$, так как функция $\frac{J_{-(n+1/2)}(\varkappa r)}{\sqrt{r}}$ не ограничена в нуле, а если нас интересует решение вне шара, то надо положить $C_1 = 0$, чтобы решение было ограниченным на бесконечности.

Итак, внутри шара мы получили частные решения вида

$$u_{nm}(r,\theta,\varphi) = Y_n^m(\theta,\varphi) \cdot \frac{J_{n+1/2}(\varkappa r)}{\sqrt{r}}$$

Теперь найдем \varkappa из условия $u\big|_{r=r_0}=0$, то есть $J_{n+1/2}(\varkappa r_0)=0$. Тогда

$$\varkappa_k = \frac{\mu_k^{n+1/2}}{r_0} \quad \text{if} \quad u_{nmk}(r,\theta,\varphi) = Y_n^m(\theta,\varphi) \cdot \frac{J_{n+1/2}(\frac{\mu_k^{n+1/2}}{r_0}r)}{\sqrt{r}}$$

При рассмотрении уравнения Гельмгольца в сферической системе координат мы получили частные решения, в которых фигурируют функции Бесселя полуцелого порядка. По этой причине функции

$$J_{n+1/2}(x)$$
 и $J_{-(n+1/2)}(x)$

часто называют сферическими функциями Бесселя.

Самостоятельная работа

- 1. Найдите гармоническую внутри шара $r\leqslant r_0$ функцию u такую, что $u\big|_{r=r_0}=\cos 2\theta.$
- ${\bf 2.}$ Найдите гармоническую вне шара радиуса r_0 функцию u такую, что $u\big|_{r=r_0}=\sin^2\theta.$
- **3.** Найдите решения уравнения Гельмгольца $\Delta u + 25u = 0$, имеющие вид $u = \sin^2 \theta \cdot \cos 2\varphi \cdot F(r)$.
- **4.** Найдите решения уравнения Гельмгольца $\Delta u + 9u = 0$, не зависящие от угла φ .
- 5. Найдите ограниченное в нуле решение уравнения Гельмгольца $\Delta u + 16u = 0 \ {\rm Takoe}, \ {\rm чтo} \ u\big|_{r=4} = \cos\theta.$

Ответы и указания.

1. Указание:
$$\cos 2\theta = 2\cos^2 \theta - 1 = 2(\cos^2 \theta - \frac{1}{3}) + \frac{2}{3} =$$

= $\frac{2}{3}P_0(\cos \theta) + \frac{4}{3}P_2(\cos \theta)$

Other:
$$u(r;\theta;\varphi) = \frac{2}{3} + 2(\cos^2\theta - \frac{1}{3})(\frac{r}{r_0})^2$$

2. Указание:
$$\sin^2\theta = 1 - \cos^2\theta = -(\cos^2\theta - \frac{1}{3}) + \frac{2}{3} =$$

= $\frac{2}{3}P_0(\cos\theta) - \frac{2}{3}P_2(\cos\theta)$

Other:
$$u(r;\theta;\varphi) = \frac{2}{3} \frac{r_0}{r} - (\cos^2 \theta - \frac{1}{3})(\frac{r_0}{r})^3$$

3.
$$u = \sin^2 \theta \cdot \cos 2\varphi \cdot (A \frac{J_{5/2}(5r)}{\sqrt{r}} + B \frac{J_{-5/2}(5r)}{\sqrt{r}})$$

4.
$$u=P_n(\cos\theta)\cdot(A\frac{J_{n+1/2}(3r)}{\sqrt{r}}+B\frac{J_{-(n+1/2)}(3r)}{\sqrt{r}}),$$
 где $P_n(t)$ — полиномы Лежандра.

5.
$$u = \cos \theta \cdot \frac{2J_{3/2}(4r)}{J_{3/2}(16)\sqrt{r}}$$