

#### AARHUS SCHOOL OF ENGINEERING

#### SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

#### Dokumentation

Gruppe 1 Lise Skytte Brodersen (201407432) Nina Brkovic(201406458) Jakob Degn Christensen(201408532) Toke Tobias Aaris(201407321) Annsofie Randrup Wagner (201406360) Anders Wiggers Birkelund(201404118)

Vejleder Studentervejleder Peter Johansen Aarhus Universitet

### Indholdsfortegnelse

| Kapite | l 1 Kra  | vspecifikation                  | 1 |
|--------|----------|---------------------------------|---|
| 1.1    | Indledni | ng                              | 1 |
| 1.2    | Systemb  | peskrivelse                     | 1 |
| 1.3    | Funktion | nelle krav                      | 1 |
|        | 1.3.1 A  | Aktør-kontekstdiagram           | 2 |
|        | 1.3.2    | Aktørbeskrivelse                | 3 |
|        | 1.3.3 U  | Jse case-diagram                | 4 |
|        | 1.3.4 U  | Use Cases                       | 4 |
| 1.4    | Ikke-fun | ktionelle krav                  | 8 |
|        | 1.4.1 H  | Functionality                   | 8 |
|        | 1.4.2 U  | Usability                       | 8 |
|        | 1.4.3 I  | Reliability                     | 9 |
|        | 1.4.4 I  | Performance                     | 9 |
|        | 1.4.5 S  | Supportability                  | 9 |
|        | 1.4.6    | $\operatorname{Andre}(+)$       | 9 |
| Kapite | l 2 Des  | sign 1                          | 1 |
| 2.1    |          | rkitektur                       | 1 |
|        | ·        | BBD-diagram                     |   |
|        |          | BD-diagram                      |   |
| 2.2    |          | lader                           |   |
| 2.3    | Hardwa   | re arkitektur                   | 4 |
|        | 2.3.1 k  | odd                             | 4 |
|        | 2.3.2 i  | ${ m bd}$                       | 4 |
|        | 2.3.3    | Grænseflader                    | 4 |
|        | 2.3.4    | Tryktransducer                  | 5 |
|        | 2.3.5 I  | nstrumentationsforstærker       | 5 |
| 2.4    | Software | e arkitektur                    | 6 |
|        | 2.4.1 I  | Domænemodel                     | 6 |
|        | 2.4.2    | Applikationsmodel               | 7 |
| Kapite | l 3 Har  | edware implementering og test 2 | 7 |
| 3.1    |          | onsforstærker                   |   |
| 3.1    | 3.1.1    |                                 |   |
| 3.2    |          | bk                              |   |
| Kanite | l 4 Acc  | m eptest 2                      | g |
| 4.1    |          | est af Use Cases                |   |
| 1.1    | -        | Use Case 1                      |   |
|        |          | Use Case 2                      |   |
|        |          | Use Case 3                      |   |

| ST3PRJ3 | Gruppe | 1 |
|---------|--------|---|
|---------|--------|---|

#### Indholdsfortegnelse

|     | 4.1.4 | Use Case 4      |          |          | <br> | <br> | 30 |
|-----|-------|-----------------|----------|----------|------|------|----|
|     | 4.1.5 | Use Case 5      |          |          | <br> | <br> | 31 |
|     | 4.1.6 | Use Case 6      |          |          | <br> | <br> | 31 |
| 4.2 | Accep | ttest af ikke-f | unktione | lle krav | <br> | <br> | 32 |

## Kravspecifikation

#### Versionshistorik

| Version | Dato       | Ansvarlig | Beskrivelse                                                                                                                                   |
|---------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0     | 23-09-2015 | Alle      | Første udkast til Use Cases. I alt 4, hvor en af funktionaliteterne var, at man kunne optage en lydsekvens                                    |
| 1.1     | 29-09-2015 | Alle      | Ændring af Use Cases efter møde med Peter. I alt 5, hvor funktionaliteterne kun dækker over de opstillede krav til projektet.                 |
| 1.2     | 30-09-2015 | Alle      | Små ændring af formuleringerne samt byttet om på UC1 og UC2 og tilføjet en UC6. De ikke-funktionelle krav er blevet tilføjet. Klar til Review |
| 2.0     | 08-10-2015 | Alle      | Rettelser efter review møde                                                                                                                   |
| 2.1     | 04-11-2015 | Alle      | Tilføjet tryktransduceren som en sekundæraktør                                                                                                |

#### 1.1 Indledning

Kravspecifikationen vil gennem seks Use Cases beskrive blodtryksmålerens funktionelle krav. Systemets ikke-funktionelle krav er udarbejdet på baggrund af (F)URPS+. Dertil vil der være aktør-kontekst- og Use Casesdiagram samt beskrivelse af de forskellige aktører, der intergerer med systemet.

#### 1.2 Systembeskrivelse

Systemet skal kunne vise et blodtryksignal kontinuert i en graf. Derudover skal systemet kunne kalibrere, nulpunktsjustere samt gemme data for målingen i en lokal database. Systemet er udvilket som en prototype, der er mulig at teste udfra de givne rammer.

#### 1.3 Funktionelle krav

De funktionelle krav vil nedenstående beskrives ud fra Aktør-kontekstdiagram, aktørbeskrivelse, Use Cases samt Use Case diagram.

#### 1.3.1 Aktør-kontekstdiagram



 $Figur~1.1:~Akt \'{o}r-kontekst diagram$ 

Systemet består af en software- og en hardward-del. Softwaredelen er udarbejdet i Visual Studio C#. Hardwaredelen består af flere komponenter sat sammen. Tryktransducer, Instrumentationforstærker, et aktivt 2. ordens lavpasfilter af typen Sallen-Key med unity gain og en DAQ. Det er selve systemet.

Primær aktøren i dette projekt er en Forsker. Sekundære aktører er Database, Tryktransducer og Måleobjekt. Måleobjekt er en package af Physionet og Analog Discovery, som er eksterne aktører.

1.3. Funktionelle krav ASE

#### 1.3.2 Aktørbeskrivelse

| Aktørnavn<br>Type                | Forsker<br>Primær                                                                                                                                                                                                                                                                                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beskrivelse                      | Person med relevant baggrundsviden inden for blodtryksanalyse                                                                                                                                                                                                                                           |
| Aktørnavn<br>Type<br>Beskrivelse | Tryktransducer<br>Sekundær<br>Tryktransducer måler og omformer trykket fra Måleobjekt til et analogt<br>signal                                                                                                                                                                                          |
| Aktørnavn<br>Type<br>Beskrivelse | Måleobjekt Sekundær Måleobjekt i det færdigudviklede produkt er et signal genereret enten in vitro eller in vivo. I prototypen er Måleobjekt en kombination af Physionet og Analog Discovery. Måleobjekt repræsenterer data fra Physionet leveret til blodtryksmålingssystemet igennem Analog Discovery |
| Aktørnavn<br>Type<br>Beskrivelse | Database<br>Sekundær<br>Database bruges i blodtryksmålingssystemet til at gemme data                                                                                                                                                                                                                    |
| Atørnavn<br>Type<br>Beskrivelse  | Physionet<br>Ekstern<br>Physionet er en ekstern database, som indeholder blodtrykssignalet fra<br>forskellige patienter                                                                                                                                                                                 |
| Aktørnavn<br>Type<br>Beskrivelse | Analog Discovery Ekstern Analog Discovery omdanner data fra Physionet til at analogt signal                                                                                                                                                                                                             |

Tabel 1.2: Aktørbeskrivelse

#### 1.3.3 Use case-diagram



Figur 1.2: Use case-diagram

Forskeren af systemet er den primære aktør i alle seks Use Cases. Det er Forskeren, der sætter alle Use Cases igang og styrer, hvad der skal ske og hvornår. Tryktransducer, som er en af de sekundære aktører, interagerer i UC2. Tryktransduceren behandler tryk fra den anden sekundære aktør Måleobjekt, og omformer det til et analog signal. Blodtryksmålingen skal vises i UC2. For at få gemt data interagerer den sekundære aktør Database med UC6.

#### 1.3.4 Use Cases

| Navn             | Kalibrér                                    |
|------------------|---------------------------------------------|
| Use case ID      | 1                                           |
| Samtidige forløb | 1                                           |
| Primær aktør     | Forsker                                     |
| Sekundære aktør  |                                             |
| Mål              | Forsker ønsker at kalibrere blodtrykssignal |
| Initiering       | Startes af Forsker                          |

1.3. Funktionelle krav ASE

| Forudsætninger |     | System er aktivt og tilgængeligt                                                 |  |
|----------------|-----|----------------------------------------------------------------------------------|--|
| Resultat       |     | Blodtrykssignalet er kalibreret                                                  |  |
| Hovedforløb    | 1.  | Kalibrering-vinduet vises                                                        |  |
|                | 2.  | Tidligere kalibreringsdato vises og System spørg om der ønskes<br>en kalibrering |  |
|                | 3.  | Forsker trykker på "Ja"-knappen [3.a Forsker trykker på "Nej"-knappen]           |  |
|                | 4.  | System kalibrerer og Kalibrering-vinduet lukkes ned                              |  |
| Undtagelser    | 3.a | Forsker ønsker ingen kalibrering. UC1 afsluttes og Kalibrering-vinduet lukkes    |  |
|                |     |                                                                                  |  |

Tabel 1.3: Fully dressed Use Case 1.

| Navn             |    | Vis Måling med filter                                                                                          |
|------------------|----|----------------------------------------------------------------------------------------------------------------|
| Use case ID      |    | 2                                                                                                              |
| Samtidige forløb |    | 1                                                                                                              |
| Primær aktør     |    | Forsker                                                                                                        |
| Sekundære aktør  |    | Måleobjekt og Tryktransducer                                                                                   |
| Mål              |    | Forsker ønsker at vise blodtrykssignal med digitalt filter                                                     |
| Initiering       |    | Startes af UC1                                                                                                 |
| Forudsætninger   |    | System er aktivt og tilgængeligt. Digitalt filter er aktivt. Måleobjekt og Tryktransducer er tilsluttet system |
| Resultat         |    | Blodtrykssignalet udskrives                                                                                    |
| Hovedforløb      | 1. | Monitor-vinduet vises                                                                                          |
|                  | 2. | Blodtryksignal vises i en graf i Monitor-vinduet                                                               |
|                  | 3. | Systole-, Diastole- og puls værdier vises i Monitor-vinduet                                                    |
| Undtagelser      |    |                                                                                                                |

Tabel 1.4: Fully dressed Use Case 2.

#### Use Case 3

| Navn             |    | Nulpunktsjustér                                                   |
|------------------|----|-------------------------------------------------------------------|
| Use case ID      |    | 3                                                                 |
| Samtidige forløb |    | 1                                                                 |
| Primær aktør     |    | Forsker                                                           |
| Sekundære aktør  |    |                                                                   |
| Mål              |    | Forsker ønsker at nulpunktsjustere blodtrykssignal                |
| Initiering       |    | Startes af Forsker                                                |
| Forudsætninger   |    | System er aktivt og tilgængeligt. UC2 kører                       |
| Resultat         |    | Blodtrykssignalet er nulpunktsjusteret                            |
| Hovedforløb      | 1. | Forsker trykker på "Nulpunktjustering"-knappen                    |
|                  | 2. | System udfører nulpunktsjusteringen                               |
|                  | 3. | Det fremgår i Monitor-vinduet, at nulpunktsjustering er foretaget |
| Undtagelser      |    |                                                                   |

Tabel 1.5: Fully dressed Use Case 3.

| Navn             |    | Deaktivér filter                                                        |
|------------------|----|-------------------------------------------------------------------------|
| Use case ID      |    | 4                                                                       |
| Samtidige forløb |    | 1                                                                       |
| Primær aktør     |    | Forsker                                                                 |
| Sekundære aktør  |    |                                                                         |
| Mål              |    | Forsker ønsker at deaktivere det digitale filter                        |
| Initiering       |    | Startes af Forsker                                                      |
| Forudsætninger   |    | System er aktivt og tilgængeligt. UC2 kører                             |
| Resultat         |    | Ufiltreret blodtrykssignal vises i Monitor-vinduet                      |
| Hovedforløb      | 1. | Forsker deaktiverer filter ved at markere i "Deaktivér digitalt filtre" |
|                  | 2. | System udskriver det ufiltreret blodtryksignal                          |

#### Undtagelser

Tabel 1.6: Fully dressed Use Case 4.

#### Use Case 5

| Navn             |    | Aktivér filter                                                       |
|------------------|----|----------------------------------------------------------------------|
| Use case ID      |    | 5                                                                    |
| Samtidige forløb |    | 1                                                                    |
| Primær aktør     |    | Forsker                                                              |
| Sekundære aktør  |    |                                                                      |
| Mål              |    | Forsker ønsker at aktivere det digitale filter                       |
| Initiering       |    | Startes af Forsker                                                   |
| Forudsætninger   |    | System er aktivt og tilgængeligt. Det digitale filter er deaktiveret |
| Resultat         |    | Filtreret blodtrykssignal vises i Monitor-vindet                     |
| Hovedforløb      | 1. | Forsker aktiverer filter ved at markere i "Aktivér digitalt filtre"  |
|                  | 2. | System udskriver det filtreret blodtryksignal                        |
| Undtagelser      |    |                                                                      |

Tabel 1.7: Fully dressed Use Case 5.

| Navn             | Gem måling                                  |
|------------------|---------------------------------------------|
| Use case ID      | 6                                           |
| Samtidige forløb | 1.2*                                        |
| Primær aktør     | Forsker                                     |
| Sekundære aktør  | Database                                    |
| Mål              | Forsker ønsker at gemme data i Database     |
| Initiering       | Startes af Forsker                          |
| Forudsætninger   | System er aktivt og tilgængeligt. UC2 kører |

| Resultat                                        |     | Data er gemt i Database                                                                |  |  |  |
|-------------------------------------------------|-----|----------------------------------------------------------------------------------------|--|--|--|
| Hovedforløb                                     | 1.  | Forsker trykker på "Gem"-knappen [1.a Måleobjektets data er gemt fra forrige målinger] |  |  |  |
| 2. System åbner Gem-vinduet                     |     | System åbner Gem-vinduet                                                               |  |  |  |
| 3. Forsker indtaster data for blodtryksmålingen |     | Forsker indtaster data for blodtryksmålingen                                           |  |  |  |
| 4. Forsker trykker på "OK"-knappen              |     | Forsker trykker på "OK"-knappen                                                        |  |  |  |
|                                                 | 5.  | System lukker Gem-vinduet og åbner Monitor-vinduet igen                                |  |  |  |
|                                                 | 6.  | System viser, at data er gemt i Monitor-vinduet                                        |  |  |  |
| Undtagelser                                     | 1.a | UC6 forsættes ved punkt 6                                                              |  |  |  |

Tabel 1.8: Fully dressed Use Case 6.

#### 1.4 Ikke-funktionelle krav

De ikke-funktionelle krav er specificeret ved brug af redskabet (F)URPS+, der står for hhv. Functionality, Usability, Reliability, Performance, Supportability og andre krav til fx brugssituationer og interface.

#### 1.4.1 Functionality

- System skal kunne vise en kontinuerlig blodtryksignal i Monitor-vinduet.
- System skal kunne vise Systole-, Diastole- og Pulsværdier med op til tre cifre.
- System skal kunne vise et blodtrykssignal med og uden et digitalt filter.
- System skal kunne nulpunktsjustere blodtrykssignalet.
- System skal kunne gemme en blodtryksmåling i en database.
- System skal kunne kalibreres.

#### 1.4.2 Usability

- Monitor-vinduet skal indeholde en "Gem"-knap.
- Monitor-vinduet skal indeholde en "Nulpunktsjustér"-knap.
- Monitor-vinduet skal indeholde et tidsstempel for seneste nulpunktsjustering.
- Monitor-vinduet skal indeholde to radiobuttons til aktivering og deaktivering af digitalt filter.

- Kalibrering-vinduet skal indeholde en "Ja"-knap og en "Nej"-knap.
- Kalibrering-vinduet skal indeholde et datostempel for seneste kalibrering.
- Gem-vinduet skal indeholde tekstbokse til data indtastning for målingen.
- Gem-vinduet skal indeholde en "OK"-knap.
- Det skal være muligt at aflæse værdier på Monitor-vinduet fra 2 meters afstand med normalt syn.

#### 1.4.3 Reliability

• Systemet skal have en effektiv MTBF (Mean Time Between Failure) på 99 timer og en MTTR (Mean Time To Restore) på 20 minutter (1/3 time).

$$Availability = \frac{MTBF}{MTBF + MTTR} = \frac{99}{99 + 1/3} = 0,997 = 99,7\%$$
 (1.1)

#### 1.4.4 Performance

- Blodtrykssignalet skal vises maksimalt 5 sekunder efter UC1 er afsluttet.
- Systemet skal vise en graf for blodtryksmålingen, hvor y-aksen er mmHg og x-aksen er tid i sekunder.
- Systemet skal kunne måle blodtryksværdier fra 0 til 300 mmHg.

#### 1.4.5 Supportability

• Softwaren skal opbygges efter trelagsmodellen.

#### 1.4.6 Andre(+)

#### Brugssituationer

- Der skal være adgang til en computer med Windows 7 eller nyere computeren skal have minimum 4 GB RAM.
- Der skal være adgang til en computer, hvor National Instruments er installeret.

#### Interface

- Blodtryksdiagrammet skal fylde minimum 1/3 af Monitor-vinduet.
- Baggrunden i Monitor-vinduet skal være mørk.
- Blodtrykssignal og -værdier(systole og diastole) skal være røde, og puls skal være grøn.
- Systolisk og diastolisk blodtryk skal fremhæves øverst i højre hjørne ved større skriftstørrelse end andre værdier i Monitor-vinduet (fx værdier på akserne).

#### Versionshistorik

| Version | Dato       | Ansvarlig | Beskrivelse                                                                                                                            |
|---------|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1.0     | 20-10-2015 | Alle      | Første udkast til domænemodel, bdd, ibd og sekvensdiagrammer                                                                           |
| 1.1     | 21-10-2015 | Alle      | Små ændringer i bdd og ibd efter møde med vejleder                                                                                     |
| 1.2     | 27-10-2015 | Alle      | Ændring af bdd og ibd efter møde med Kim; blokkene filter og forstærker er blevet lagt sammen under blokken instrumenteringsforstærker |
| 1.3     | 02-11-2015 | Alle      | Begyndte at oprette Design-dokumentet. Udkast til klassediagrammer for UC                                                              |
| 1.4     | 04-11-2015 | Alle      | Skrevet hardward design afsnittet. Små rettelser i de andre afsnit i design, så det er klar til review                                 |

#### 2.1 Systemarkitektur

Igennem BBD og IBD vil det overordnede blodtryksmålersystem beskrives i forhold til hvilke blokke systemet består af, og hvordan de interagerer med hinanden.

#### 2.1.1 BBD-diagram

På figur 2.1 ses BDD-diagrammet for systemet. BBD viser de forskellige blokke for systemet og hvilke porte de består af. I tabel 2.2 ses en beskrivelse af blokkene.



Figur 2.1: BBD-diagram

| Blok                       | Beskrivelse                                                                                                                                                                                                                                          |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Blodtryksmåler             | Det overordnede system, som indeholder Trykmonitor,<br>Instrumenteringsforstærker, DAQ og Computer                                                                                                                                                   |  |  |
| Trykmonitor                | Registrerer en fysisk størrelse i form af en trykændring. I dette system anvendes en transducer. Transduceren har til opgave at transformere den fysiske størrelse til en elektrisk spænding, som viderebehandles gennem de resterne hardware blokke |  |  |
| Instrumenteringsforstærker | Består af to dele. En forstærker-del og en filterings-del.<br>Det analoge signal fra Trykmonitoren bliver via denne blok<br>forstærket og filteret                                                                                                   |  |  |
| DAQ                        | Konverterer det analoge signal fra Trykmonitoren til et digitalt signal                                                                                                                                                                              |  |  |
| Computer                   | Indeholder software til systemet, som er kodet i Visual Studio C#. Softwaren kan blandt andet vise det digitale signal grafisk. Softwaren kan ligeledes kalibrere, nulpunktsjustere og gemme målinger samt aktivere og deaktiver filter              |  |  |

Tabel 2.2: Beskrivelse af blokkene for systemet

#### 2.1.2 IBD-diagram

På figur 2.2 ses IBD-diagrammet for systemet. IBD viser, hvordan de forskellige blokke intergerer med hinanden. IBD fortæller signalets behandling gennem systemet - altså hvordan signalet transformeres fra et målt fysisk tryk til et digitalt signal, som softwaren kan videre behandle og vise grafisk.

2.2. Grænseflader ASE



 $Figur~2.2:~IBD ext{-}diagram$ 

#### 2.2 Grænseflader

Kommunikationsprotokol for hardware blokkene ses i tabel 2.3. Det er en beskrivelse og specifikation af hvilken indgang- og udgangssignal de forskellige blokke har.

| Grænseflade | Signal             | Type | Format        | Værdi                |
|-------------|--------------------|------|---------------|----------------------|
| Trykmoniter | Blodtryk           | in   | Tryk          | 0 - 300 mmHg         |
|             | Analogt            | out  | Spænding      | +/- 13,5mV           |
| Forstærker  | Analogt            | in   | Spænding      | +/- 13,5mV           |
|             | Forstærket analogt | out  | Spænding      | $+/$ - $5\mathrm{V}$ |
| Filter      | Forstærket analogt | in   | Spænding      | $+/$ - $5\mathrm{V}$ |
|             | Filteret analogt   | out  | Spænding      | $+/$ - $5\mathrm{V}$ |
| DAQ         | Filteret analogt   | in   | Spænding      | $+/$ - $5\mathrm{V}$ |
|             | Digitalt           | out  | 16-bit double | +/- 5                |
| Computer    | Digitalt           | in   | 16-bit double | +/- 5                |
|             |                    |      |               |                      |

 $Tabel\ 2.3:\ Kommunikationsprotokol$ 

#### 2.3 Hardware arkitektur

Herunder er de krævede specifikationer for hardwaren beskrevet.

#### 2.3.1 bdd



Figur 2.3: bdd-diagram for Instrumenteringsforstærker HW

#### 2.3.2 ibd



 $Figur~2.4:~ibd\mbox{-}diagram~for~Instrumenterings for stærker~HW$ 

#### 2.3.3 Grænseflader

| Grænseflade | Signal  | $\mathbf{Type}$ | Format   | Værdi  |
|-------------|---------|-----------------|----------|--------|
| Forstærker  | Batteri | in              | Spænding | +/- 9V |

|        | Analogt            | in  | Spænding | +/- 13,5mV           |
|--------|--------------------|-----|----------|----------------------|
|        | Jord               | out | Spænding | 0V                   |
|        | Forstærket analogt | out | Spænding | $+/$ - $5\mathrm{V}$ |
| Filter | Forstærket analogt | in  | Spænding | $+/$ - $5\mathrm{V}$ |
|        | Jord               | out | Spænding | $+/$ - $5\mathrm{V}$ |
|        | Filteret analogt   | out | Spænding | $+/$ - $5{ m V}$     |

Tabel 2.4: Kommunikationsprotokol for Instrumenteringsforstærke

#### 2.3.4 Tryktransducer

#### Specifikationer

- Måleprobe kan indsættes intravenøst
- Operationel trykinterval 0-300 mmHg
- ullet Udgangssignal: 2 udgange; +/- udgang
- Sensitivitet:  $5\mu/V/V/mmHg$
- Operationstemperatur: 15-40 grader Celcius

#### 2.3.5 Instrumentationsforstærker

#### Filterblok

#### Specifikationer

- 2. Ordens lavpasfilter
- Cutofffrekvens: 50 Hz
- Unity gain (ingen forstærkning)
- $\bullet$  -20 dB ved 500 Hz
- Infinite indgangsimpedans
- Indgangsspænding +/- 5 V
- $\bullet$ Eksitationsspænding +/- 9 V

#### Forstærkerblok

#### Specifikationer

- Gain: 370
- Indgangspænding: +/- 0-14 mV

• Eksitationsspænding: +/- 9V

• Output spænding: +/- 5 V

 $\bullet\,$  Båndbredde: 100 Hz

#### 2.4 Software arkitektur

#### 2.4.1 Domænemodel

Domænemodellen er skabt på baggrund af de seks Use Cases og fungerer som et middel til at skabe et samlet overblik over systemet. Gennem navneordsanalyse er de konceptuelle klasser fundet. I modellen beskrives, hvordan de konceptuelle klasser og aktører interagerer med hinanden. Controlleren er ikke en konceptuel klasse, men det er den, der sørger for at systemet fungerer optimalt, og udfører kommandoer.



 $Figur\ 2.5:\ Domæne model\ for\ blodtryksmåler systemet$ 

NPJ = nulpunktsjustering

BT = blodtryksmåling

I domænemodellen ses to røde streger, som har hver deres kommando – "kalibrerings data bliver sendt fra database" og "vises i kalibrerings-vinduet".Årsagen til at stregerne er røde, er, at hver af de to handlinger udelukkende forekommer ved start/genstart af programmet.

#### 2.4.2 Applikationsmodel

#### Sekvensdiagram

Sekvensdiagrammerne beskriver step-by-step, via metoder, forløbet i de forskellige Use Cases. Der er lavet et sekvensdiagram for hver Use Case, for at gøre systemet mere overskueligt. Et sekvensdiagram består af boundary-klasserne og domain-klasserne fra domænemodellen, samt en controller-klasse, med navn efter den specifikke Use Case.



Figur 2.6: Sekvensdiagram for UC1

Forsker interagerer med Monitorvindue. Kalibreringsmetoden bliver kaldt, når Forsker trykker på knappen "Ja". Derefter igangsættes kalibreringen og metadata sendes og gemmes.



Figur 2.7: Sekvensdiagram for UC2

Controller henter data fra Tryktransducer, som henter data i form af tryk fra måleobjekt. Datafilerne sendes fra Måleobjekt via Tryktransducer tilbage til Controller, der kalder metoden. Monitorvindue opdateres, og herefter kan Forsker aflæse blodtryk.



Figur 2.8: Sekvensdiagram for UC3

Forsker interagerer med Monitorvindue ved at trykke på knappen "Nulpunktsjustér". Derefter kaldes metoden, og nulpunktsjusteringen startes. Metadata sendes og gemmes, hvorefter Forsker får besked om, at nulpunktsjusteringen er foretaget.



Figur 2.9: Sekvensdiagram for UC4

Forsker interagerer med Monitorvindue ved at markere radiobutton "Deaktivér digitalt filter". Derefter kaldes metoden, og filteret deaktiveres, hvorefter signalet bliver udskrevet ufiltreret.



Figur 2.10: Sekvensdiagram for UC5

Forsker interagerer med Monitorvindue ved at markere radiobutton "Aktivér digitalt filter". Derefter kaldes metoden, og filteret aktiveres, hvorefter signalet bliver udskrevet filtreret.



Figur 2.11: Sekvensdiagram for UC6

Forsker interagerer med Monitorvindue ved at trykke på knappen "Gem". Derefter kaldes metoden og Gem vinduet åbnes. Første gang Forsker ønsker at gemme, indtastes data og der trykkes på knappen "OK". Kommando sendes og data valideres. De efterfølgende gange, der ønskes at gemme, er data udfyldt fra første gang, og der trykkes blot på "OK", hvorefter kommandoen sendes. Data sendes til datalag, hvor det bliver behandlet, og derefter bliver sendt til database. Data gemmes og Gem vinduet lukkes. Controller bekræfter til Monitorvindue, at data er gemt.

#### Opdateret klassediagram

De opdateret klassediagrammer indeholder metoderne fra de dertilhørende sekvensdiagrammer - dette giver et overblik over, hvilke metoder de forskellige klasser består af.



Figur 2.12: Klassediagram for UC1



 $Figur\ 2.13:\ Klassediagram\ for\ UC2$ 

2.4. Software arkitektur ASE



Figur 2.14: Klassediagram for UC3



Figur 2.15: Klassediagram for UC4



Figur 2.16: Klassediagram for UC5



Figur 2.17: Klassediagram for UC6

# Hardware implementering og test 3

#### 3.1 Operationsforstærker

Som forstærkerblok anvendes INA 114. Denne har den fordel at gain kan kontrolleres af en variabel modstand (potentiometer).

3.1.1

#### 3.2 Filterblok

## Acceptest 4

#### Versionshistorik

| Version | Dato       | Ansvarlig | Beskrivelse                    |
|---------|------------|-----------|--------------------------------|
| 1.0     | 30-09-2015 | Alle      | Første udkast. Klar til Review |
| 2.0     | 08-10-2015 | Alle      | Rettelser efter review møde    |

#### 4.1 Accepttest af Use Cases

#### 4.1.1 Use Case 1

#### Kalibrér

|     | Test                      | Forventet resultat                                                                                                          | Faktiske observationer | Godkendt |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|----------|
|     | $Hoved for l \emptyset b$ |                                                                                                                             |                        |          |
| 1.  | Start system              | Kalibrering-vinduet vises, hvor system spørger om der skal foretages en ka- librering. Seneste kalibreringstidspunkt vises. |                        |          |
| 2.  | Tryk på "Ja"-knappen      | System kalibrerer og<br>Kalibrering-vinduet<br>lukkes ned                                                                   |                        |          |
|     | Undtagelse                |                                                                                                                             |                        |          |
| 2a. | Tryk på "Nej"-<br>knappen | Kalibrering-vinduet lukkes ned                                                                                              |                        |          |

Tabel 4.2: Accepttest of Use Case 1.

#### 4.1.2 Use Case 2

#### Vis måling med filter

|    | Test                             | Forventet resultat                                                                          | Faktiske observationer Godkend |  |  |
|----|----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|--|--|
|    | $Hoved for l \emptyset b$        |                                                                                             |                                |  |  |
| 1. | System viser Monitor-<br>vinduet | Blodtryksignal samt<br>Systole-, Diastole- og<br>pulsværdier udskrives<br>i Monitor-vinduet |                                |  |  |
|    | Undtagelse                       |                                                                                             |                                |  |  |
|    |                                  |                                                                                             |                                |  |  |

Tabel 4.3: Accepttest of Use Case 2.

#### 4.1.3 Use Case 3

#### Nulpunktsjustér

|    | Test                                        | Forventet resultat                                                                                          | Faktiske observationer | Godkendt |
|----|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|----------|
|    | $Hoved for l \emptyset b$                   |                                                                                                             |                        |          |
| 1. | Tryk på<br>"Nulpunktsjustering"-<br>knappen | Blodtrykssignalet<br>udskrives i Monitor-<br>vinduet med en baseli-<br>ne ved 0. Tidsstemplet<br>opdateres. |                        |          |
|    | Undtagelser                                 |                                                                                                             |                        |          |
|    |                                             |                                                                                                             |                        |          |

Tabel 4.4: Accepttest af Use Case 3.

#### 4.1.4 Use Case 4

#### Deaktivér filter

| Test                      | Forventet resultat | Faktiske observationer | Godkendt |
|---------------------------|--------------------|------------------------|----------|
| $Hoved for l \emptyset b$ |                    |                        |          |

| 1. | Markér "Deaktivér di-<br>gitalt filtre" | Filteret deaktiveres<br>og det ufiltreret blod-<br>tryksignal udskrives i<br>Monitor-vinduet |
|----|-----------------------------------------|----------------------------------------------------------------------------------------------|
|    | Undtagelser                             |                                                                                              |
|    |                                         |                                                                                              |

Tabel 4.5: Accepttest af Use Case 4.

#### 4.1.5 Use Case 5

#### Aktivér filter

|    | Test                                  | Forventet resultat                                                                        | ıltat Faktiske observationer Godker |  |  |
|----|---------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|--|--|
|    | $Hoved for l \emptyset b$             |                                                                                           |                                     |  |  |
| 1. | Markér "Aktivér digi-<br>talt filtre" | Filteret aktiveres og<br>det filtreret blod-<br>tryksignal udskrives i<br>Monitor-vinduet |                                     |  |  |
|    | Undtagelser                           |                                                                                           |                                     |  |  |
|    |                                       |                                                                                           |                                     |  |  |

Tabel 4.6: Accepttest of Use Case 5.

#### 4.1.6 Use Case 6

#### Gem måling

|    | Test                      |        | Forventet resultat         | Faktiske observationer | Godkendt |
|----|---------------------------|--------|----------------------------|------------------------|----------|
|    | $Hoved for l \emptyset b$ |        |                            |                        |          |
| 1. | Tryk på<br>knappen        | "Gem"- | Gem-vinduet åbnes          |                        |          |
| 2. | Indtast data              |        | Datafelterne er u<br>fyldt | d-                     |          |

| 3.  | Tryk    | på    | "OK"-  | Gem-vinduet lukkes     |
|-----|---------|-------|--------|------------------------|
|     | knapper | 1     |        | ned og Monitor-        |
|     |         |       |        | vinduet åbnes. Gem-    |
|     |         |       |        | me tidspunktet vises i |
|     |         |       |        | Monitor-vinduet        |
|     | Undtage | elser |        |                        |
| 1a. | Tryk    | på    | "Gem"- | Gemme tidspunktet      |
|     | knapper | 1     |        | vises i Monitor-       |
|     |         |       |        | vinduet                |

Tabel 4.7: Accepttest of Use Case 6.

#### 4.2 Accepttest af ikke-funktionelle krav

| Ikke-funktionelt<br>krav                                                                     | Test/handling                                                                           | Forventet resultat                                                                      | Faktiske<br>vationer | obser- | Godkendt |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|--------|----------|
| Functionality                                                                                |                                                                                         |                                                                                         |                      |        |          |
| System skal<br>kunne vise et<br>kontinuerligt<br>blodtryksignal i<br>Monitor-vinduet         | Der ses om<br>GUI'en viser<br>et kontinuerligt<br>blodtrykssignal                       | System viser<br>et kontinuerligt<br>blodtrykssignal                                     |                      |        |          |
| System skal kun-<br>ne vise Systole-,<br>Diastole- og<br>Pulsværdier med<br>op til tre cifre | Der ses om GUI'en inde- holder Systole-, Diastole- og Pulsværdier med op til tre cifre  | GUI'en inde-<br>holder Systole-,<br>Diastole- og<br>Pulsværdier med<br>op til tre cifre |                      |        |          |
| System skal kun-<br>ne vise et blod-<br>trykssignal med<br>og uden et digi-<br>talt filter   | Der ses om<br>GUI'en kan vise<br>et blodtrykssig-<br>nal med og uden<br>digitalt filter | GUI'en kan vise<br>et blodtrykssig-<br>nal med og uden<br>digitalt filter               |                      |        |          |
| System skal kun-<br>ne nulpunktsju-<br>stere blodtryks-<br>signalet                          | Der ses i GUI'en<br>om blodtrykssig-<br>nalet kan nul-<br>punktsjusteres                | Blodtrykssignalet<br>kan nulpunktju-<br>steres                                          |                      |        |          |

| System skal<br>kunne gemme en<br>blodtryksmåling<br>i en database                                               | Der trykkes på "Gem"knappen i Monitor-vinduet og der indtastes gyldige værdier i Gem-vinduet og trykkes på "OK"-knappen | System gemmer data i en data- base og udskri- ver tidsstempel for gemt data i Monitor-vinduet                    |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| System skal kun-<br>ne kalibreres                                                                               | Der trykkes på "Ja"-knappen i kalibrering- vinduet                                                                      | System er kali-<br>breret                                                                                        |
| Usability                                                                                                       |                                                                                                                         |                                                                                                                  |
| Monitor-vinduet<br>skal indeholde<br>en "Gem"-knap                                                              | Der ses i<br>Monitor-vinduet<br>om der er en<br>"Gem"-knap                                                              | Der er en "Gem"knap i Monitor- vinduet                                                                           |
| Monitor-vinduet<br>skal indeholde en<br>"Nulpunktsjustér"<br>-knap                                              | Der ses i<br>Monitor-vinduet<br>- om der er en<br>"Nulpunktsjustér"-<br>-knap                                           | Der er en<br>"Nulpunktsjustér"-<br>-knap i Monitor-<br>- vinduet                                                 |
| Monitor-vinduet<br>skal indeholde<br>et tidsstempel<br>for seneste nul-<br>punktsjustering                      | Der ses i Monitor- vinduet, om der er et tids- stempel for seneste nul- punktsjustering                                 | Der er et tids-<br>stempel for<br>seneste nul-<br>punktsjustering i<br>Monitor-vinduet                           |
| Monitor-vinduet<br>skal indeholde<br>to radiobuttons<br>til aktivering og<br>deaktivering af<br>digitalt filter | Der ses i<br>Monitor-vinduet<br>om der er to<br>radiobuttons til<br>aktivering og<br>deaktivering af<br>digitalt filter | Der er to radio-<br>buttons til akti-<br>vering og deakti-<br>vering af digitalt<br>filter i Monitor-<br>vinduet |

| Kalibrering- vinduet skal indeholde en "Ja"-knap og en "Nej"-knap                                                  | Der ses i<br>kalibrering-<br>vinduet om der<br>er en "Ja"-knap<br>og en "Nej"-knap                                         | Der er en "Ja"knap og en "Nej"-knap i kalibrering- vinduet                           |  |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Kalibrering- vinduet skal indeholde et datostempel for seneste kalibrering                                         | Der ses i<br>kalibrering-<br>vinduet om der<br>er et tidsstem-<br>pel for seneste<br>kalibrering                           | Der er et tids-<br>stempel for se-<br>neste kalibrering<br>i kalibrering-<br>vinduet |  |
| Gem-vinduet skal indeholde tekstbokse til data indtastning for målingen                                            | Der ses i Gemvinduet, om der er tekstbokse til indtastning af data                                                         | Der er tekstbokse til indtastning af data i Gemvinduet                               |  |
| Gem-vinduet<br>skal indeholde<br>en "OK"-knap                                                                      | Der ses i Gemvinduet om der er en "OK"-knap                                                                                | Der er en "OK"-knap i Gem-vinduet                                                    |  |
| Det skal være<br>muligt at aflæ-<br>se værdier på<br>Monitor-vinduet<br>fra 2 meters<br>afstand med<br>normalt syn | Der testes af 5 personer med forskellige aldre med en syns- styrke på +/- 0,25, som place- res 2 meter fra Monitor-vinduet | Det er muligt for<br>de 5 at aflæse<br>værdierne på 2<br>meters afstand              |  |
| Reliability                                                                                                        |                                                                                                                            |                                                                                      |  |
| Systemet skal<br>have en effektiv<br>MTBF på 20<br>minutter og<br>MTTR på 1<br>minut                               | Køre programmet i 20 minutter. Genstart derefter programmet, hvor der tages tid med et stopur                              | Programmet har<br>kørt i 20 minut-<br>ter og genstartes<br>indenfor 1 minut          |  |
| Performance                                                                                                        |                                                                                                                            |                                                                                      |  |

| Blodtrykssignalet<br>skal vises maksi-<br>malt 5 sekunder<br>efter UC1 er<br>afsluttet                                    | UC1 afsluttes<br>samtidig med<br>startes et stopur<br>på en iPhone 5s.<br>Når blodtryks-<br>signalet vises<br>stoppes uret | Blodtryksignalet<br>vises indenfor de<br>5 sekunder                                                  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Systemet skal<br>vise en graf<br>for blodtryks-<br>målingen, hvor<br>y-aksen er mm-<br>Hg og x-aksen er<br>tid i sekunder | Der ses på grafen<br>for blodtryks-<br>signalet, om<br>y-aksen er mm-<br>Hg og x-aksen er<br>tid i sekunder                | Blodtryksignalets y-akse er mmHg og x-aksen er tid i sekunder                                        |
| Systemet skal<br>kunne måle<br>blodtryksværdi-<br>er fra 0 til 300<br>mmHg                                                | Der foretages<br>målinger hvor<br>trykket er hen-<br>holdsvis 280-295<br>og +300 (?)                                       | (?)                                                                                                  |
| Supportability                                                                                                            |                                                                                                                            |                                                                                                      |
| Softwaren skal<br>opbygges efter<br>trelagsmodellen                                                                       | Der kigges i ko-<br>den efter data-<br>lag, logik-lag og<br>GUI-lag                                                        | Data-lag, logik-<br>lag og GUI-lag er<br>at find i koden                                             |
|                                                                                                                           |                                                                                                                            |                                                                                                      |
| Der skal være adgang til en computer med Windows 7 eller nyere – computeren skal have mini-                               | Der ses om der er<br>installeret Win-<br>dows 7 eller nye-<br>re og om der er<br>minimum 4 GB<br>RAM                       | Det ses at der er<br>installeret Win-<br>dows 7 eller nye-<br>re og om der er<br>minimum 4 GB<br>RAM |
| mum 4 GB RAM                                                                                                              | ItAM                                                                                                                       | 1(411)1                                                                                              |

| Baggrunden i<br>Monitor-vinduet<br>skal være mørk                                                                                      | Der ses i<br>Monitor-vinduet<br>om baggrunden<br>er mørk                                                                                                                           | Baggrunden i<br>Monitor-vinduet<br>er mørk                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blodtrykssignal og - værdier(systole og diastole) skal være røde og puls skal være grøn                                                | Der ses på blodtryksdia-grammet om blodtrykssignal og -værdier er røde og puls er grøn                                                                                             | Blodtrykssignal og - værdier(systole og diastole) er røde og puls er grøn                                                                               |
| Systolisk og diastolisk blodtryk skal fremhæves ved større skriftstørrelse end andre værdier i Monitor-vinduet (fx værdier på akserne) | Der ses i<br>Monitor-vinduet<br>om det systoliske<br>og det diasto-<br>liske blodtryk<br>er fremhævet<br>ved større skrift-<br>størrelse end<br>andre værdier i<br>Monitor-vinduet | Det ses i Monitor-vinduet at det systoliske og det diasto- liske blodtryk er fremhævet ved større skrift- størrelse end andre værdier i Monitor-vinduet |

 $Tabel \ 4.8: \ Accept test \ af \ Ikke-funktionelle \ krav$