Математический анализ. Подготовка к РК №1

1 Теоретические вопросы

1.1 Определения

Вопрос 1. Сформулируйте определение окрестности точки $x \in \mathbb{R}$.

Ответ. Окрестностью точки x называется любой интервал, содержащий данную точку.

Вопрос 2. Сформулируйте определение ε -окрестности точки $x \in \mathbb{R}$.

Ответ. ε -окрестностью точки x называется интервал с центром в точке x и длиной 2ε .

$$S(x,\varepsilon)$$
 или $u_{\varepsilon}(x)$

Вопрос 3. Сформулируйте определение окрестности $+\infty$.

Ответ. Окрестностью $+\infty$ называется любой интервал вида:

$$S(a, +\infty), \quad a > 0$$

Вопрос 4. Сформулируйте определение окрестности $-\infty$.

Ответ. Окрестностью $-\infty$ называется любой интервал вида:

$$S(-\infty, -a), a > 0$$

Вопрос 5. Сформулируйте определение окрестности ∞ .

Ответ. Окрестностью ∞ называется любой интервал вида:

$$S(\infty, a) = S(-\infty, -a) \cup S(a, +\infty)$$
$$= (-\infty, -a) \cup (a, +\infty), a > 0$$

Вопрос 6. Сформулируйте определение предела последовательности.

Ответ. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдётся натуральное число $N(\varepsilon)$ такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{n \to \infty} x_n = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon)$$

Вопрос 7. Сформулируйте определение сходящейся последовательности.

Ответ. Последовательность, имеющая предел, назыается сходящейся.

Вопрос 8. Сформулируйте определение ограниченной последовательности.

Ответ. Последовательность $\{x_n\}$ называется ограниченной, если она ограничена и сверху, и снизу, т.е.:

$$\exists M, m : \forall n \in \mathbb{N} \Rightarrow m \le x_n \le M$$

Вопрос 9. Сформулируйте определение монотонной последовательности.

Ответ. Последовательность называется монотонной, если она является неубывающей, либо невозрастающей.

Вопрос 10. Сформулируйте определение возрастающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется возрастающей, если каждый последующий член $x_{n+1} > x_n, n \in \mathbb{N}$.

Вопрос 11. Сформулируйте определение убывающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется убывающей, если каждый последующий член $x_{n+1} < x_n$.

Вопрос 12. Сформулируйте определение невозрастающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется невозрастающей, если каждый последующий член $x_{n+1} \leq x_n$.

Вопрос 13. Сформулируйте определение неубывающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется неубывающей, если каждый последующий член $x_{n+1} \ge x_n$.

Вопрос 14. Сформулируйте определение фундаментальной последовательности.

Ответ. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon>0$ существует свой порядковый номер $N(\varepsilon)$ такой, что при всех $n\geq N(\varepsilon)$ и $m\geq N(\varepsilon)$ выполнено неравенство $|x_n-x_m|<\varepsilon$.

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n, m \ge N(\varepsilon) \Rightarrow |x_n - x_m| < \varepsilon)$$

Вопрос 15. Сформулируйте критерий Коши существования предела последовательности.

Ответ. Для того, чтобы последовательность была сходящейся, необходимо и достаточно чтобы она была фундаментальной.

Вопрос 16. Сформулируйте определение по Гейне предела функции.

Ответ. Число а называется пределом y=f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти $\{x_n\}$ из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall x_n \in D_f) (\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = a)$$

Вопрос 17. Сформулируйте определение бесконечно малой функции при $x \to x_0$.

Ответ. Функция называется бесконечно малой при $x \to x_0$, если:

$$\lim_{x \to x_0} f(x) = 0$$

Вопрос 18. Сформулируйте определение бесконечно большой функции.

Ответ. Функция называется бесконечно большой при $x \to x_0$, если:

$$\lim_{x \to x_0} f(x) = \infty$$

Вопрос 19. Сформулируйте определение бесконечно малых функций одного порядка.

Ответ. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются одного порядка малости, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const \neq 0$$

Вопрос 20. Сформулируйте определение несравнимых бесконечно малых функций.

Ответ. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *несравнимыми*, если:

$$\exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Bonpoc 21. Сформулируйте определение эквивалентных бесконечно малых функций.

Ответ. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются эквивалентными , если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Вопрос 22. Сформулируйте определение порядка малости одной функции относительно другой.

Ответ. Б.м.ф. $\alpha(x)$ имеет порядок малости k относительно функции б.м.ф. $\beta(x)$, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = const \neq 0$$

Вопрос 23. Сформулируйте определение приращения функции.

Ответ.

$$\Delta y = f(x) - f(x_0)$$

Вопрос 24. Сформулируйте определение непрерывности функции в точке (любое).

Ответ. Любой ответ из:

1. Функция f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке если:

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

2. Функция y = f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке, если в достаточно малой окрестности точки x_0 значение функции близки к $f(x_0)$.

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

3. Функция y = f(x) в некоторой окрестности точки x_0 называется

непрерывной в этой точке, если выполняются условия:

- 1. $\exists \lim_{x \to x_0+} f(x)$ 2. $\exists \lim_{x \to x_0-} f(x)$ 3. $\lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x) = f(x)$
- 4. Функция y = f(x) называется непрерывной в точке x_0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Вопрос 25. Сформулируйте определение непрерывности функции на интервале.

Ответ. Функция y = f(x) называется непрерывной на интервале (a, b), если она непрерывна в каждой точке этого интервала.

Вопрос 26. Сформулируйте определение непрерывности функции на отрезке.

Ответ. Функция y = f(x) называется непрерывной на отрезке [a, b], если:

- 1. Непрерывна на интервале (a, b)
- 2. Непрерывна в точке a справа
- 3. Непрерывна в точке b слева

Вопрос 27. Сформулируйте опредление точки разрыва.

Ответ. Пусть функция y = f(x) определена в некоторой точке проколотой окрестности точки x_0 непрерывна в любой точке этой окрестности (за исключением самой точки x_0). Тогда точка x_0 называется точкой разрыва функции.

Вопрос 28. Сформулируйте определение точки устранимого разрыва.

Ответ. Если точка x_0 – точка разрыва первого рода функции y = f(x), и предел $\lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x)$, но $\not\exists f(x_0)$, то точка x_0 называется точкой устранимого разрыва.

Вопрос 29. Сформулируйте определение точки разрыва І рода.

Ответ. Если точка x_0 – точка разрыва функции y=f(x) и существуют конечные пределы $\lim_{x\to x_0+}f(x)$ и $\lim_{x\to x_0-}f(x)$, то x_0 называют точкой І-го рода.

Вопрос 30. Сформулируйте определение точки разрыва II рода.

Ответ. Если точка x_0 — точка разрыва функции y=f(x) и **не** существуют конечные пределы $\lim_{x\to x_0+} f(x)$ и $\lim_{x\to x_0-} f(x)$ или $\lim_{x\to x_0} f(x)=\infty$, то x_0 называется точкой разрыва II-го рода.

1.2 Определение предела по Коши

Вопрос 31. Сформулируйте определение по Коши $\lim_{x\to 0} f(x) = b$, где $b\in\mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x\to 0} f(x) = b$$

$$\Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(0,\delta) \Rightarrow |f(x) - b| < \varepsilon)$$

Пример:

$$\lim_{x \to 0} (x+b) = b$$

Вопрос 32. Сформулируйте определение по Коши $\lim_{x\to a} = +\infty$, где $a\in\mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x \to a} = +\infty$$

$$\Leftrightarrow$$

$$(\forall M > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in S(a, \delta) \Rightarrow f(x) > M)$$

Пример:

$$\lim_{x \to a} \frac{1}{|x - a|} = +\infty$$

Вопрос 33. Сформулируйте определние по Коши $\lim_{x\to\infty} f(x) = 0$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x \to \infty} f(x) = 0$$

$$\Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall |x| > N \Rightarrow |f(x)| < \varepsilon)$$

Пример:

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Вопрос 34. Сформулируйте определние по Коши $\lim_{x\to a-0} f(x) = -\infty$, где $a\in\mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x \to a - 0} f(x) = -\infty$$

$$\Leftrightarrow$$

$$(\forall M > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in (a - \delta, a) \Rightarrow f(x) < -M)$$

Пример:

$$\lim_{x \to a - 0} \frac{1}{x - a} = -\infty$$

1.3 Формулировка теорем

Вопрос 35. Сформулируйте теорему об ограниченности сходящейся числовой последовательности.

Ответ. Любая сходящаяся последовательность ограничена.

Вопрос 36. Сформулируйте теорему о связи функции, ее предела и бесконечно малой.

Ответ. Функция y=f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

Вопрос 37. Сформулируйте теорему о сумме конечного числа бесконечно малых функций.

Ответ. Конечная сумма бесконечно малых функции есть бесконечно малая функция.

Вопрос 38. Сформулируйте теорему о произведении бесконечно малой

на ограниченную функцию.

Ответ. Произведение бесконечно малой функции на ограниченную есть величина бесконечно малая.

Вопрос 39. Сформулируйте теорему о связи бесконечно малой и бесконечно большой функций.

Ответ. Если $\alpha(x)$ - бесконечно большая функция при $x \to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x \to x_0$.

Вопрос 40. Сформулируйте теорему о необходимом и достаточном условии эквивалентности бесконечно малых.

Ответ. Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

Вопрос 41. Сформулируйте теорему о сумме бесконечно малых разных порядков

Ответ. Сумма бесконечно малых функций разных порядком малости эквивалентно слагаемому низшего порядка малости.