

CSCE 580: Introduction to Al

CSCE 581: Trusted Al

Lecture 18: Explanation, Machine Learning – Unsupervised

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 26TH OCT 2023

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

CSCE 580, 581 - FALL 2023

Organization of Lecture 18

- Introduction Segment
 - Recap of Lecture 17
- Main Segment
 - Trust/ Explanations, LIME Recap
 - Unsupervised ML
 - Algorithms
- Concluding Segment
 - Course Project Discussion
 - Quiz 3
 - About Next Lecture Lecture 19
 - Ask me anything

Introduction Section

Recap of Lecture 17

- Topic discussed
 - Building Chatbots
 - Rasa
 - SafeChat Framework

Intelligent Agent Model

Relationship Between Main Al Topics

Where We Are in the Course

CSCE 580/581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification
- Week 9: Machine Learning Classification Trust Issues and

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

CSCE 580, 581 - FALL 2023

Main Section

Credit: Retrieved from internet

Recap: Al Trust/ Explanations

Types of Explanations

- •Feature-based: from the features of the data, which feature(s) were most important for given decision output
 - Example: For a loan, is it income or the person's age?
- •Sample-based: from data in training, which data points were important for given test point; helps understand sampling and its representation in wider population
 - Example: For a loan, what instances similar to the loan application would have gotten the loan?
- •Counter-factual: what-ifs what do you change about the input to change the decision output
 - Example: For a loan, does getting an additional borrower insurance increase chance of getting the loan?
- Natural language

Source: Explainable Machine Learning in Deployment, FAT* 2020

CSCE 590-1: TRUSTED AI 1

Source: Fairness and Machine Learning by Solon Barocas, Moritz Hardt, Arvind Narayanan (https://www.fairmlbook.org)

A Step Towards Fairness

Broad classes

- Individual fairness: similar individuals to be treated similarly
- Group fairness: statistical property of decision as a group should be representative of the population
- Both individual and group fairness, and use a single metric: generalized entropy index

Guidance: Selection of metric is application driven

Name	Closest relative	Note	Reference	
Statistical parity	Independence	Equivalent	Dwork et al. (2011)	
Group fairness	Independence	Equivalent		
Demographic parity	Independence	Equivalent		
Conditional statistical parity	Independence	Relaxation	Corbett-Davies et al. (2017)	
Darlington criterion (4)	Independence	Equivalent	Darlington (1971)	
Equal opportunity	Separation	Relaxation	Hardt, Price, Srebro (2016)	
Equalized odds	Separation	Equivalent	Hardt, Price, Srebro (2016)	
Conditional procedure accuracy	Separation	Equivalent	Berk et al. (2017)	
Avoiding disparate mistreatment	Separation	Equivalent	Zafar et al. (2017)	
Balance for the negative class	Separation	Relaxation	Kleinberg, Mullainathan, Raghavan (2016)	
Balance for the positive class	Separation	Relaxation	Kleinberg, Mullainathan, Raghavan (2016)	
Predictive equality	Separation	Relaxation	Chouldechova (2016)	
Equalized correlations	Separation	Relaxation	Woodworth (2017)	
Darlington criterion (3)	Separation	Relaxation	Darlington (1971)	
Cleary model	Sufficiency	Equivalent	Cleary (1966)	
Conditional use accuracy	Sufficiency	Equivalent	Berk et al. (2017)	
Predictive parity	Sufficiency	Relaxation	Chouldechova (2016)	
Calibration within groups	Sufficiency	Equivalent	Chouldechova (2016)	
Darlington criterion (1), (2)	Sufficiency	Relaxation	Darlington (1971)	

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification (feedback from label), clustering, dimensionality reduction, anomaly detection, neural methods, reinforcement learning (feedback from hint/ reward)
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Unsupervised Machine Learning

- Group data into clusters/ classes without supervision
 - Limited supervision
- What is a good cluster?
 - Samples within a cluster should be "near" to each other (cohesiveness)
 - Samples in a cluster should be "far" from other samples in other clusters. (distinctiveness)

Data Representation

- Data matrix representation
 - N objects (data rows) x p attributes (columns)
 - Similar to classification
- Dissimilarity matrix
 - Object x Object structure
 - D(I, j) is difference or dissimilarity between (I, j), 0 means similar and 1 means dissimilar

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- •City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- •Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Clustering as a Preprocessing Tool (Utility)

•Summarization:

 Preprocessing for regression, PCA, classification, and association analysis

•Compression:

- Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Considerations for a Clustering Algorithm

- Need a distance measure for far and near
- Be able to explain what a cluster means
- Handle different types of attributes: numeric, categorical (nominal, ordinal), binary
- Detect different shapes of clusters
- Handle noisy data
- Scale
 - Size
 - Dimensions

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- · Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: **DBSACN**, OPTICS, DenClue

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Major Clustering Approaches (II)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: p-Cluster

User-guided or constraint-based:

- Clustering by considering user-specified or application-specific constraints
- Typical methods: COD (obstacles), constrained clustering

Link-based clustering:

- Objects are often linked together in various ways
- Massive links can be used to cluster objects: SimRank, LinkClus

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Partitioning Algorithms: Basic Concept

<u>Partitioning method</u>: Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

Given *k*, find a partition of *k* clusters that optimizes the chosen partitioning criterion

- Global optimal: exhaustively enumerate all partitions
- Heuristic methods: k-means and k-medoids algorithms
- <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
- <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87):
 Each cluster is represented by one of the objects in the cluster

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

An Example of K-Means Clustering

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Comments on the K-Means Method

- <u>Strength</u>: *Efficient*: *O*(*tkn*), where *n* is # objects, *k* is # clusters, and *t* is # iterations. Normally, *k*, *t* << *n*.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify *k*, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Exercise: Weka

- Use K-means on weather.arff
- Vary k

Snapshot of Clustering Methods

Credit:

https://scikitlearn.org/stable/modules /clustering.html

A comparison of the clustering algorithms in scikit-learn

Snapshot of Clustering Methods

Credit:

https://scikitlearn.org/stable/modules /clustering.html

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters, inductive	Distances between points
Affinity propaga- tion	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry, induc- tive	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry, inductive	Distances between points
Spectral cluster- ing	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry, transductive	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, transductive	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances, transductive	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes, outlier removal, transductive	Distances between near- est points
HDBSCAN	minimum cluster membership, mini- mum point neigh- bors	large n_samples, medium n_clusters	Non-flat geometry, uneven clus- ter sizes, outlier removal, transductive, hierarchical, vari- able cluster density	Distances between near- est points
OPTICS	minimum cluster membership	Very large n_samples, large n_clusters	Non-flat geometry, uneven clus- ter sizes, variable cluster den- sity, outlier removal, transductive	Distances between points
Gaussian mix- tures	many	Not scalable	Flat geometry, good for density estimation, inductive	Mahalanobis distances to centers
BIRCH	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction, inductive	Euclidean distance be- tween points
Bisecting K-Means	number of clusters	Very large n_samples, medium n_clusters	General-purpose, even cluster size, flat geometry, no empty clusters, inductive, hierarchical	Distances between points

Course Project

Project Discussion: What Problem Fascinates You?

- Data
 - Water
 - Finance
 - •
- Analytics
 - Search, Optimization, Learning, Planning, ...
- Application
 - Building chatbot
- Users
 - Diverse demographics
 - Diverse abilities
 - Multiple human languages

Project execution in sprints

- Sprint 1: (Sep 12 Oct 5)
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Human interaction: Develop a basic chatbot (no AI), no problem focus
- Sprint 2: (Oct 10 Nov 9)
 - Solving: Evaluate your solution on problem
 - Human interaction: Integrated your choice of chatbot (rule-based or learning-based) and methods
- Sprint 3: (Nov 14 30)
 - Evaluation: Comparison of your solver chatbot with an LLMbased alternative, like ChatGPT

CSCE 580, 581 - FALL 2023 25

Project Discussion: Dates and Deliverables

Project execution in sprints

- Sprint 1: (Sep 12 Oct 5)
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Human interaction: Develop a basic chatbot (no AI), no problem focus
- Sprint 2: (Oct 10 Nov 9)
 - Solving: Evaluate your solution on problem
 - Human interaction: Integrated your choice of chatbot (rule-based or learning-based) and methods
- Sprint 3: (Nov 14 30)
 - Evaluation: Comparison of your solver chatbot with an LLMbased alternative, like ChatGPT

- Oct 12, 2023
 - Project checkpoint
 - In-class presentation
- Nov 30, 2023
 - Project report due
- Dec 5 / 7, 2023
- In-class presentation

CSCE 580, 581 - FALL 2023 2

Skeleton: A Basic Chatbot

- Run in an infinite loop until the user wants to quit
- Handle any user response
 - User can quit by typing "Quit" or "quit" or just "q"
 - User can enter any other text and the program has to handle it. The program should write back what the user entered and say – "I do not know this information".
- Handle known user query types // Depends on your project
 - "Tell me about N-queens", "What is N?"
 - "Solve for N=4?"
 - "Why is this a solution?"
- Handle <u>chitchat</u> // Support at least 5, extensible from a file
 - "Hi" => "Hello"
 - ...
- Store session details in a file

Illustrative Project

- **1. Title**: Solve and explain solving of n-queens puzzle
- **2. Key idea**: Show students how a course project will look like
- 3. Who will care when done: students of the course, prospective Al students and teachers
- **4. Data need**: n: the size of game; interaction
- 5. Methods: search
- **6. Evaluation**: correctness of solution, quality of explanation, appropriateness of chat
- **7. Users**: with and without Al background; with and without chess background
- 8. Trust issue: user may not believe in the solution, may find interaction offensive (why queens, not kings? ...)

Project Discussion: Illustration

- Create a private Github repository called "CSCE58x-Fall2023-<studentname>-Repo". Share with Instructor (biplav-s) and TA (kausik-l)
- Create Google folder called "CSCE58x-Fall2023-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (lakkarajukausik90@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by next class (Sep 5, 2023)

- 1. Title: Solve and explain solving of n-queens puzzle
- 2. Key idea: Show students how a course project will look like
- **3.** Who will care when done: students of the course, prospective AI students and teachers
- **4. Data need**: n: the size of game; interaction
- 5. Methods: search
- **6. Evaluation**: correctness of solution, quality of explanation, appropriateness of chat
- **7. Users**: with and without AI background; with and without chess background
- **8. Trust issue**: user may not believe in the solution, may find interaction offensive (why queens, not kings? ...)

CSCE 580, 581 - FALL 2023

31

Project Illustration: N-Queens

- •Sprint 1: (Sep 12 Oct 5)
 - Solving: Choose a decision problem, identify data, work on solution methods
 - Method 1: Random solution
 - Method 2: Search BFS
 - Method 3: Search ...
 - Human interaction: Develop a basic chatbot (no AI) as outlined
 - Deliverable
 - Code structure in Github
 - ./data
 - ./code
 - ./docs
 - ./test
 - Presentation: Make sprint presentation on Oct 12, 2023

Reference: Project Rubric

- Project results 60%
 - Working system ? 30%
 - Evaluation with results superior to baseline? 20%
 - Considered related work? 10%
- Project efforts 40%
 - Project report 20%
 - Project presentation (updates, final) 20%
- Bonus
 - Challenge level of problem 10%
 - Instructor discretion 10%
- Penalty
 - Lack of timeliness as per announced policy (right) up to 30%

Milestones and Penalties

- •Oct 12, 2023
 - Project checkpoint
 - In-class presentation
 - Penalty: presentation not ready by Oct 10, 2023 [-10%]
- Nov 30, 2023
 - Project report due
 - Project report not ready by date [-10%]
- Dec 5 / 7, 2023
 - In-class presentation
 - Project presentations not ready by Dec 4, 2023 [-10%]

Quiz 3

Discussion on Quiz 3; due on Tuesday (Nov 2, 2023)

Lecture 18: Summary

- We talked about
 - Building Chatbots
 - Rasa
 - SafeChat Framework

Concluding Section

About Next Lecture – Lecture 19

E 580, 581 - FALL 2023 37

Lecture 19: Machine Learning - NN, Deep Learning

- Neural Networks
- Deep Learning
- Trust Issues