MATA52 - Exercícios da Semana 03

Grupo: Avenger

Autores:

<u>Lucas dos Santos Lima</u> (Responsável)

Responsável pela resolução da questão 3 pesquisando e aplicando conhecimentos utilizados nas questões anteriores, vistos em aula e no livro recomendado da disciplina. Além disso discuti com Monique sobre o fato da resposta que ela forneceu para a questão 2 ser suficiente para responder a 4.

Elis Marcela de Souza Alcantara

 Resolvi a primeira questão, pesquisando e aplicando o método da substituição, gostei bastante da manipulação com a constante d que foi feita em aula e manipulei de outra forma (somando).

Bruno de Lucas Santos Barbosa

 A terceira semana foi um tanto quanto problemática, tivemos dificuldades para marcar o encontro síncrono, então fomos conversando de forma assíncrona e resolvendo os exercícios conforme encontrávamos durante a semana, primordialmente na qui

Monique Silva

Resolvi a segunda e a quarta questão, com base nos estudos e no conteúdo fornecido durante as aulas da disciplina. Consegui entender e mostrar como a recorrência da segunda questão possui uma suposição falha. Em seguida, na questão quatro, mostrei como alterar a suposição para incluir um termo de ordem inferior faz-se necessário para a provar que a suposição inicial é verdadeira.

Instruções (não apagar)

- 1. Após criar este notebook, altere o nome do notebook/documentação incluindo o nome do seu grupo. Por exemplo, se você é do grupo Ouro, altere o nome do notebook para "MATA53-Semana02-Ouro.ipynb"
- 2. Compartilhe este documento com todos os membros do grupo (para participarem da elaboração deste documento). É importante que o notebook utilizado seja o mesmo compartilhado para que os registros de participação e colaboração fiquem salvos no histórico.

- 3. Incluia o nome completo dos autores na lista de autores que auxiliaram na elaboração deste notebook. Destaque o responsável como sendo o(a) primeiro(a) autor(a). Relatar brevemente a contribuição de cada membro do grupo.
- 4. Utilize os recursos de blocos de texto e de código para adicionar as suas respostas, sem alterar os blocos de texto e código existente. Não economize, esses blocos são de graça.
- 5. Ao concluir a atividade, compartilhe o notebook com <u>januario.ufba@gmail.com</u> (dando permisão para edição) e deixando o aviso de notificação marcado, para que eu receba o seu e-mail. Identificar o nome do grupo na mensagem de compartilhamento.

Exercícios

1. Prove que a solução para a recorrência

$$T(n)=4T(n/2)+n$$
 é $O(n^2)$

Resposta 1:

$$T(n) = 4T(\frac{n}{2}) + n = O(n^2)$$

Precisamos provar que existem constantes c e n_0 tais que, se $n \geq n_0$, então $T(n) \leq c n^2$.

Sabemos que T(1)=1, então podemos partir dessa igualdade, logo:

$$T(1) = 1$$

 $1 \leq 1^2 c$, desde que $c \geq 1$.

Provando que $T(n) \le cn^2$, se $n \ge 1$.

Hipótese: $T(x) \leq cx^2 \ \forall \ 1 \leq x < n$

Sabemos que $T(n)=4T(\frac{n}{2})+n$. Como $\frac{n}{2}< n$ (sendo n>1), vale por hipótese que $T(\frac{n}{2})\leq c(\frac{n}{2})^2$.

Simplificando $c(\frac{n}{2})^2 = \frac{cn^2}{4}$

Logo:

$$T(n) = 4T(\frac{n}{2}) + n \le 4\frac{cn^2}{4} + n = cn^2 + n$$

$$cn^2 + n \le cn^2$$

Onde $n \leq 0$

Mudando o curso da indução e provando que $T(n) \leq c n^2 + d$

$$T(1) = 1$$

$$1 \leq 1^2 c + d$$
, desde que $c + d \geq 1$.

Provando que $T(n) \le cn^2 + d$, se $n \ge 1$.

$$\text{Hipótese: } T(x) \leq cx^2 + d \ \forall \ 1 \leq x < n$$

Realizando a substituição:

$$T(n) = 4T(\frac{n}{2}) + n \le 4(\frac{cn^2}{4} + d) + n = cn^2 + d + n \le cn^2$$

Essa expressão é válida pois $d+n \leq 0$ sempre que d \leq -n

Então d = -1:

Como
$$c+d \geq 1$$
, temos $c=2$

$$T(n) \le 2n - 1 \le cn^2$$

2. Usando o teorema mestre, é possível mostrar que a solução da recorrência T(n)=4T(n/3)+n é $T(n)=\theta(n^{\log_3 4})$. Prove que o método da substituição com a hipótese $T(n)\leq cn^{\log_3 4}$ não funciona.

Resposta 2:

Considere
$$T(n) = 4T(rac{n}{3})^{\log_3 4} + n$$

Suposição:
$$T(n) = \theta(n^{log_34})$$

Precisamos provar que existem constantes c e n_0 tal que $T(n) \le c n^{\log_3 4}$ para todo $n \ge n0$, onde c e n_0 são constantes positivas.

$$T(n) = 4T(\frac{n}{3})^{\log_3 4} + n$$

$$\leq 4c(\frac{n}{3})^{\log_3 4} + n$$

$$= 4c(\frac{n^{\log_3 4}}{3^{\log_3 4}}) + n$$

$$=4c(rac{n^{\log_3 4}}{4})+n$$

 $=cn^{\log_3 4}+n$

Conclusão: Não é possível prosseguir, pois anularia a hipotése que $T(n) \leq c n^{\log_3 4}$.

Se a recorrência é dada por $T(n)=aT(\frac{n}{b})+f(n)$ existem soluções na forma $\theta(n^{log_ba})$. O teorema mestre afirma uma solução semelhante sob certas condições.

3. Podemos aplicar o teorema mestre na seguinte recorrência? $T(n)=4T(n/2)+n^2\lg n$? Seja sua resposta sim ou não, justifique-a.

Resposta 3

Sim.

Retornando ao teorema mestre, temos que:

Com
$$a \geq 1, b > 1$$
 e $k > 0$ para $T(n) = aT(\frac{n}{b}) + \Theta(n^k)$

Vale que:

1. Se a >
$$b^k$$
, então $T(n) = \Theta(n^{log_b a})$

2. Se a =
$$b^k$$
, então $T(n) = \Theta(n^K log_b a)$

3. Se a <
$$b^k$$
, então $T(n) = \Theta(n^k)$

Assim, podemos considerar, a=4, b=2ek=2 e teremos que:

$$a = b^k$$
 ou $4 = 2^2$

E finalmente podemos considerar: T(n) = $\Theta(n^2log_24)$ ou T(n) = $\Theta(2n^2)$ ou T(n) = $\Theta(n^2)$

4. Altere a hipótese utilizada na questão 2 para resolver a recorrência apresentada na mesma.

Resposta 4

Relembrando o resultado encontrado na questão 2:

Vamos supor $T(n) \leq c n^{\log_3 4}$ para todo $n \geq n_0$, onde c e n_0 são constantes positivas.

$$egin{aligned} T(n) &= 4T(rac{n}{3})^{\log_3 4} + n \ &\leq 4c(rac{n}{3})^{\log_3 4} + n \ &= 4c(rac{n^{\log_3 4}}{3^{\log_3 4}}) + n \ &= 4c(rac{n^{\log_3 4}}{4}) + n \ &= cn^{\log_3 4} + n \end{aligned}$$

Não é possível prosseguir, pois anularia a hipotése que $T(n) \leq c n^{\log_3 4}$. Com isso, não podemos provar nossa suposição em sua forma exata. Então, precisamos modificar nossa suposição subtraindo um termo de ordem inferior.

Dessa forma:

Vamos assumir $T(n) \leq 4T(\frac{n}{3})^{\log_3 4} + n - dn$ para todo $n \geq n_0$, onde, c, d, e n_0 são constantes positivas.

$$egin{align} T(n) &= 4T(rac{n}{3}) + n \leq 4(c(rac{n^{\log_3 4}}{3})) \ &= 4c(rac{n^{\log_3 4}}{3^{\log_3 4}}) - 4(rac{dn}{3}) + n \ &= 4c(rac{n^{\log_3 4}}{4}) - 4(rac{dn}{3}) + n \ &= cn^{\log_3 4} - dn - rac{dn}{3} + n \ &= cn^{\log_3 4} - dn - (rac{d}{3})n \ &\leq cn^{\log_3 4} - dn \ \end{pmatrix}$$

O último passo se confirma enquanto $(\frac{d}{3-1})n \geq 0$ Se escolhermos $n_0=1$, então precisamos d>3