Home

Course Information

Schedule

Week	Date	Торіс	Test
1.	Sept 15	Requirements. ROS introduction. Setup the development environment.	-
2.	Sept 22	Setup the development environment. Linux principles. ROS principles. Running examples. ROS package. Basics of ROS communication, implementation of publisher and subscriber.	Project topic announcements.
4.	Oct 6	Python principles. Practicing ROS communication, solving examples.	-
5.	Oct 13	Principles of robotics. Programming a da Vinci surgical robot in simulated environment I.	-
6.	Oct 20	Principles of robotics. Programming a da Vinci surgical robot in simulated environment II.	-
7.	Oct 27	Versioning, Git. Project labor I.	Test 1
8.	Nov 3	ROS 2 Launch, Param, Bag	-
9.	Nov 10		-

Week	Date	Topic	Test
		Kinematics, inverse kinematics, programming a simulated robot arm in joint space and task space I.	
10.	Nov 17	Kinematics, inverse kinematics, programming a simulated robot arm in joint space and task space II.	-
11.	Nov 24	Kinematics, inverse kinematics, programming a simulated robot arm in joint space and task space III.	-
12.	Dec 1	Project labor II.	-
13.	Dec 8	-	Test 2
14.	Dec 15	Project presentations.	Test retake
14+1.	Dec 19 (Tue)	-	Mid-term replacement

The schedule may change during the semester!

Course Requirements

Project

- Proved to be the student's own work
- Running results valid output
- Grading: completeness of the soultion, proper ROS communication, proper structure of the program, quality of implementation, documentation

Grading

Personal attendance on the classes is mandatory (min 70%).

To pass the course, Tests and the Project must be passed (grade 2). One of the Test can be taken again.

Grade

 $(Jegy = (Test1 + Test2 + 2 \land Project) / 4)$

Course Supervisor

Dr. Péter Galambos peter.galambos@irob.uni-obuda.hu

Teachers

Tamás Levendovics tamas.levendovics@irob.uni-obuda.hu

Borsa Détár detar.borsa@gmail.com

Antal Bejczy Center for Intelligent Robotics (BARK/IROB)

ÓBUDAI EGYETEM

BEJCZY ANTAL INTELLIGENS ROBOTTECHNIKAI KÖZPONT

https://irob.uni-obuda.hu

irob-saf

(iRob Surgical Automation Framework)

 \prod

https://github.com/ABC-iRobotics/irob-saf

PlatypOUs

https://github.com/ABC-iRobotics/PlatypOUs-Mobile-Robot-Platform