

Operating Systems 3120 - Week 8 - Locks & Semaphores

Study online at quizlet.com/_3cml9s

1. Ensuring that a process releases all of its resources if it is not able to acquire the resources needed to execute is a method of ensuring "" to prevent ""? 2. The following are four methods for headling what problems?	Preemption to prevent deadlocks Deadlocks	8. How does Sleep/Wake or Suspend/Resume differ from a busy waiting scenario?	It differs in that the onus is put on the thread in the critical section to notify the waiting (and suspended) thread when it has completed its work and the critical section can now be entered.
handling what problem? - Do nothing - Prevention - Avoidance - Detection & recovery		9. How do monitors differ from locks or semaphores?	 Monitors are language specific Monitors are implemented with locks, semaphores, or other mechanisms
 The following are some advantages to what? Dont have to increment/decrement counters Dont have to check for boundary cases Single call required Same abstraction for different synchronization problems 	- Semaphores	10. How might direct avoidance of deadlocks be implemented with regards to the states?	 User specifies max resource, request/release order when process runs System checks if it can run safely before executing
		In the Dekker/Petersen's solution, which of the following has it addressed? - Mutual exclusion - Scheduler independent - Allows Progress - Starvation free	Mutual exclusion: YesScheduler independent: YesAllows Progress: YesStarvation free: Yes
4. How can we mitigate the issues associated with semaphores? 5. How could we prevent a deadlock	- Implementing a safe queue to queue processes waiting to acquire a semaphore - must ensure the semaphore queue is mutexed By removing the		
		12. In the detection and recovery methodology, how would a deadlock be detected?	- Use method such as RAG or Bankers algorithm to repeatedly check if cycles have occurred or there is an over commitment of
from occurring?	possibility of one of the following from happening Mutual exclusion - Hold and Wait - No preemption - Circular wait	 13. In the proposed solution of lock variables. Which of the following does it address. Mutual exclusion Scheduler independent 	resources - Mutual exclusion: No - Scheduler independent: Yes - Allows progress: Yes - Starvation Free: No
6. How does a lock address the concurrency problem?	- Prevents more than one thread from executing a certain bit of code (eg: code to	- Allows Progress - Starvation free 14. In the Test and Set solution, which of the	- Mutual exclusion: Yes - Scheduler independent: Yes
7. How does Dekker/Petersen's Solution function with regards to solving the critical section problem?	modify a variable) - Utilizes a ready flag and a turn indicator variable - Whichever process reaches the critical section first waits for the other to go by setting the flag for the other	following has it addressed? - Mutual exclusion - Scheduler independent - Allows Progress - Starvation free	- Allows Progress: Yes - Starvation free: No
		15. In what method of handling deadlocks would we allow a deadlock to occur and then carry out some method of handling the deadlock?	Detection and Recovery

16. A "" is a lock mechanism that requires a thread to spin in a loop testing a condition of some sort(waiting for another	Spin Lock	25. What are some of the problems with Dekker/Petersen's solution?	Only works for 2 processesRequires busy waitingAssumption: writes and reads are atomic
thread to unlock) 17. Is preventing mutual exclusion a valid option for attempting to prevent deadlocks?	No, mutual exclusion is necessary to have multiple threads navigate	26. What are some of the problems with lock variables as a solution?	Either does not work at all or depends on a schedulerStarvation is possibleRequire busy waiting
18. Preventing a process / thread from holding more than one resource at a time would be one way to prevent deadlocks, are there any issues with this method?	a non-sharable resource Yes, It requires inefficient implementation, and also does not account scenarios where more than one resource is required by a process	27. What are some possible issues with implementing semaphores?	 The internal lock on the semaphore can still cause a spin lock when a thread is trying to acquire the semaphore Deadlocks are still possible
		28. What are some possible problems with spin	- Starvation is possible - Busy waiting
19. To prevent hold and wait, we may try and allocate all the resources a process needs at the start of execution. What are some possible issues with this method?	 Have to know up front what resources are necessary Starvation is possible Low utilization of resources , lots of 	locks? 29. What are the 4 instructions in Pthreads mutex API?	pthread_mutex_init() pthread_mutex_destroy() pthread_mutex_lock() pthread_mutex_unlock()
20. What are 3 abstractions used for mutual exclusion?	holding - Locks (mutex) - Semaphores - Monitors	30. What are the 5 main goals of effective thread / process synchronization?	 Avoid destructive inference Avoid deadlock Avoid starvation Avoid scheduler reliance Maximize concurrency
21. What are some disadvantages to programming to directly avoid deadlocks?	- Low utilization - Poor user experience	31. What are the four conditions necessary to create a deadlock?	- Mutual exclusion is possible (eg: 1 thread can lock a resource) - Hold and wait is possible (eg: thread can be holding 1 resource while waiting for another) - No preemption(eg: processes cannot be forced to release a resource) - Circular wait (eg: processes holding resources from one another while waiting on one another)
22. What are some implementation issues with the Suspend/Resume Cycle?	- If many threads are waiting / suspended, they must be ordered in some way - If they are to be ordered in some way (eg: in a queue) we now have to manage who gets to edit the queue	create a deadlock:	
23. What are some issues associated with locks?	- Many implementations do not allow threads to acquire its own lock - Implementations require that a thread that owns the lock, release it - Only has two states - Can have missed wake ups or spurious wake ups	32. What are the pros and cons of ensuring resource acquisition order?	Pro: Easy to implementCon: Code must be written to maintain the order
		33. What are the three main options for handling a deadlock once it has been detected?	 Notify the user Terminate the process or process tree associated Preempt all associated resources
24. What are some of the issues associated with ensuring resource release by processes that were not able to acquire	- Some resources should not be pre-empted - Starvation is possible - Under utilization of		(or Do nothing)

the necessary resources?

resources

34. What are the three types of states that one must be aware of in order to avoid deadlocks from occurring?	- Safe state: requesting a resource will not risk a deadlock - Unsafe state: deadlock is possible - Deadlock: deadlock has occured	45. What is a RAG and what is its purpose?	Resource AllocationGraphUsed to reason about deadlocks
		46. What is a solution to the busy waiting problem?	Suspend / Resume Cycle
		47. What is a solution to the suspend resume cycle?	Using spin locksLet the OS handle critical
35. What are the two atomic operations of a semaphore?	- Acquire - Release		sections and ignore it
36. What are the two fundamental operations for locks?	Lock and Unlock! Duh	48. What is one method to try and prevent circular wait separate from direct preemption?	- Ensure resources are only able to be required in a predetermined order (RI, R2, etc)
37. What are the two types of semaphores?	- binary: can be at most 1 - counting: Initialized to a positive number, can be decremented until 0 where it locks. Lets a specified number of processes access a resource	49. What is the most basic algorithm for determining deadlock safety? What are its downfalls?	- Resource Allocation Graph (RAG) - Does not work when resources have multiple instances
		50. What will likely occur if two or more threads try to acquire semaphores incorrectly?	A Deadlock
38. What atomic operation(s) are supported on many CPUs ?	test and set. If the cpu is busy, it cannot execute its operation, otherwise it does.	semaphores meditectly.	
39. What does it mean for a read or write to be performed atomically?	An atomic operation, is one that is un-interruptible.		
40. What information is contained in a semaphore?	- # of pendingwakeups- # of sleepingprocesses		
41. What is a lock?	- Mutual exclusion mechanism to protect critical sections		
42. What is a more general algorithm for determining deadlock safety?	The bankers algorithm		
43. What is an issue associated with attempting to detect if a deadlock has occurred?	- Algorithms to detect a deadlock can be expensive, how often should they be run?		
44. What is another option to try and prevent hold and wait that is similar	- Processes may not own any resources		

when requesting

in batches, no holding

eg: have to request

all resources needed

resources

to ensuring processes have all their

from the same downfalls as normal

resources at the beginning of

preemption

execution? This methods suffers