Wolfram Mathematica CHEAT SHEET								
BASIC PRINCIPLES								
Evaluate input		SELECTED OPERATORS						
Abort calculation	Alt, \mathfrak{H},	= Assignment =						
Quit	Alt F4 策Q Quit[]	== Equality						
SPECIAL CHARACTERS	PECIAL CHARACTERS NOTATION							
@ Esc ee Esc 2.71828	; Suppress output [] Arguments	≠ Inequality Esc!=Esc						
<i>i</i> EsciiEsc √-1 (also I)	/. Replace {} List	∧ And Esc && Esc						
π Esc p Esc 3.14159	//. Replace repeatedly () Precedence	V Or Esc Esc						
→ Esc ->Esc replace	= assign -> rule	U Union Esc UN Esc						
× Esc * Esc times	:= assign delayed :> delayed rule	∩ Intersection Escinter Esc						
× Esc Cross Esc Cross prod	/@ Map (see below) /; Condition (see below)	* Conjugate Esc CO Esc						
Escisart Esci square root	@@ Apply (see below) (* *) comment	x=. clear value of x						

COMMON TOOLS & CONSTRUCTS							
N[expr] N[expr, pred	:] <i>expr</i>	`ргес	Yields numerical value of <i>expr</i> to precision <i>prec</i> (also postfix //N)				
Evaluate	Hold		Forces or prevents evaluation (useful for Table or Replace in Plot, for instance)				
Condition[expr,cond]	expr /;	cond	Creates a pattern matching only if <i>cond</i> is True				
PROCEDURAL PROGRAMMING							
$Do[expr,\{i,i_{min},i_{max}\}]$ While $[test,body]$ For $[start,test,incr,body]$ If $[cond,iftrue,iffalse]$							
Table[$expr$, $\{i, i_{min}, i_{max}\}$] Generates vectors, matrices, tensors, and other arrays from $expr$ across the range of							
Module[$\{x,y,\ldots\}$, $expr$]			Specifies that occurrences of symbols x , y are local to $expr$				
With[$\{x=x_0,y=y_0,\ldots\}$, $expr$]			Specifies that each occurrence of symbols x , y should be replaced by x_0, y_0 in $expr$				
FUNCTIONAL PROGRAMMING							
Replace[<i>expr</i> ,rules]	/. /	′/.	Applies <i>rules</i> to transform <i>expr</i> ; rules are of the form {rule1->expr1,}				
Map[f,expr]	/@		Applies f to each element of $expr$; particularly useful with lists				
Apply[f,expr]	@ @	900	Replaces the head of $expr$ by f ; particularly useful with lists (@@@ for first level)				
Thread[f[args]]			Threads f over any lists appearing in $args$; see also MapThread				
Select[list,cond]		Chooses elements of list for which cond is True					
expr[#] & Ci			Creates a pure function applying <i>expr</i> to #				

ALGEBRA, TRIGONOMETRY, & SERIES Functions are typically named intuitively, and it is straightforward to find what you want once you know it exists. sin(x) Esc sum Esc Ctrl +_ i=1 Ctrl +% Esc inf Esc \rightarrow Ctrl +/ 7 \downarrow 10 Ctrl +^ i Sin[x]sinh(x) Sinh[x]Log[x] $log_e(x) = ln(x)$ Fit[data, fns, vars] Finds a least-squares fit to a list of data to functions fns Exp[x]Interpolation[data] Creates a pure function of order InterpolationOrder. exp(x) Expand[] Maximize[] NSolve[] Minimize[]

CALCULUS & DIFFERENTIAL EQUATIONS						
FUNCTIONS		OPTIONS (EXAMPLES, NOT RECOMMENDATIONS)				
D[expr,x] expr'	Give the partial derivative of $expr$ w.r.t. x	NonConstants $\rightarrow \{u_i\}$	Specifies u_i implicitly depend on x			
Integrate[<i>expr</i> , <i>x</i>]	Gives the indefinite integral of expr					
$\int_0^\infty f(t) e^{-st} dt$	EscintEsc Ctrl + 0 Ctrl + Escit EsceeEsc Ctrl + 6 - s t → 10 Esc					
NIntegrate[f ,{ x , x _{min}	$\{y,y_{ extsf{min}},y_{ extsf{max}}\}$, $\{y,y_{ extsf{min}},y_{ extsf{max}}\}$, $opt extsf{al}$	Method→" <i>MonteCarlo</i> "	PrecisionGoal→6			
Dsolve[$\{eqn\},y,x$]		Analytically solves the differential equation (if possible)				
NDSolve[$\{eqn\}, y, \{x\}$, X_{min} , $X_{max}\}$	Numerically solves the differential equation				
Plot[Evaluate[$y[x] /. \%], \{x, x_{min}, x_{max}\}]$					

TECHNICAL DATA

Execute data functions without arguments to determine scope; execute with string argument "Properties" to find queryable data.

ElementData	GenomeData	GraphData	Get < <pkg`< th=""><th>Introduce a package with new symbols and rules</th></pkg`<>	Introduce a package with new symbols and rules		
IsotopeData	ProteinData	PolyhedronData	Needs	Required for some packages not commonly used		
ChemicalData	GenomeLookup	Quantity[magnitude,units]		Represents a quantity of magnitude units		
ParticleData	WeatherData	<pre>Import[file]</pre>		Load <i>file</i> (including XLS, HDF, PDB) or URL		
AstronomicalData	GeodesyData	Export["file",e	expr,"format"]	Export data of <i>expr</i> to <i>file</i> as <i>format</i>		

MANIPULATION & DYNAMIC CONTENT

Dynamic content allows you to explore large parameter spaces with vastly abbreviated output relative to Table.

Dynamic [expr] Returns an object representing the current value of expr; try with Plot, for instance Animate $[expr, \{t, t_{min}, t_{max}\}]$ Generates animation of expr by varying t continuously from t_{min} to t_{max} Generates a version of expr with controls allowing manipulation of t in steps dt

P		٠.	-	-41	м	_
-					w	
	ъ,	- 4			II VI	•

SELECTED FUNCTIONSSELECTED OPTIONS $Plot[f, \{x, x_{min}, x_{max}\}, opt \rightarrow val]$ $PlotRange \rightarrow$

ContourPlot $[f, \{x, x_{\min}, x_{\max}\}, \{y, y_{\min}, y_{\max}\}, opt \rightarrow val]$ AxesOrigin $\rightarrow \{x, y\}$ Frame \rightarrow True

PolarPlot[r, $\{\theta, \theta_{\min}, \theta_{\max}\}$, $opt \rightarrow val$] AxesLabel \rightarrow Automatic AspectRatio \rightarrow 1/5

 $\mathsf{Plot3D}[f,\{x,x_{\min},x_{\max}\},\{y,y_{\min},y_{\max}\},opt \to val] \\ \mathsf{AxesStyle} \to \mathsf{Thick} \\ \mathsf{ColorFunction} \to \mathsf{"Rainbow"}$

ParametricPlot[$\{f_x, f_y\}$, $\{t, t_{\min}, t_{\max}\}$, $opt \rightarrow val$] Ticks $\rightarrow \{\{0, \pi, 2\pi, 3\pi\}, \{0, 1\}\}$ Mesh $\rightarrow 300$

RotateLabel→True

Show[$grfx_1, grfx_2, ..., opt \rightarrow val$]