PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11269146 A

(43) Date of publication of application: 05.10.99

		(40) Date of publ	outer or approach.
(51) Int. Cl	C07D213/30		
	C07D207/333		
	C07D213/38		
	C07D213/40		
	C07D213/82		
	C07D237/08		
	C07D241/12		
	C07D307/12		
	C07D307/42		
	C07D401/12		
(21) Application	number: 10075349	(71) Applicant:	MITSUI CHEM INC
(22) Date of file	ng: 24.03.98	(72) Inventor:	SUZUKI TSUNESHI ANDO TOMOYUKI TSUCHIYA KATSUTOSHI SAITO AKIKO YAMASHITA TAKASHI

(54) DIFFERENTIATION-INDUCTING AGENT

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a new compound having a differentiation-inducing action and useful as a medicine for treatment and/or improvement of malignant tumors, sutohimune diseases, dermaticels and parasets infectious diseases.

SOLUTION: This compound is represented by formula i

(A is a phenyl or a heterocycle (substituted with 1-4

halogen atoms, OH, amino, or the like); X is a direct bond, a group of the formula (CH2)eQ, a group of formula II (e) is 0-4; R4 is H or a (substituted) 1-4C alkyl; Q is O, S, on the like], on the like.; Y is a group of the formula (CH2)mQ(CH2)n ((m) is 1-4; (n) is 0-4); R1 and R2 are each H, a halogen, OH, amino, or the like.; R3 amino or OHI. N-(2-aminophenyl)-4-[3-(pyridin-3-yloxy)propoxy]benzamid e. The compound of formula I is obtained by removing a protecting group of a compound of formula V obtained by carrying out condensation reaction of a compound of formula III with a compound of formula IV (R5 is amino, on the like, protected with a protecting group used for peptide formation reaction of tert- butoxycarbonyl, on

the like).

COPYRIGHT: (C)1999,JPO

MARIKO YUKIYASU

Bibliographic Fields

213/40

213/82

237/08

241/12

Document Identity

 (19)【発行国】
 (19) [Publication Office]

 日本国特許庁(JP)
 Japan Patent Office (JP)

 (12)【公練種別】
 (12) [Kind of Document]

 公開特許公報(A)
 Unexamined Patent Publication (A)

 (11)【公開審号】
 (11) [Publication Number of Unexamined Patent Publication Number of Unexamined P

(11) [公開番号] (11) [Publication Number of Unexamined Application] 特開平11-269146 Japan Unexamined Patent Publication Hei 11- 269146 (43) [公開日] (43) [Publication Date of Unexamined Application] 平成11年(1999)10月5日 1999(1999)October 5*

Public Availability

 (43)【公開日】
 (43) [Publication Date of Unexamined Application]

 平成11年(1999)10月5日
 1999 (1999) October 5*

Technical (54)[発明の名称] (54) [Title of Invention] 分化誘導剤 differentiation induction

分化誘導剤 differentiation induction agent
(51)[国際特許分類第6版] (51) [International Patent Classification, 6th Edition]
(70772) 1349 (70772) 1349

207/333 207/333 213/38 213/38 213/40 213/40 213/82 213/82 237/08 237/08 241/12 241/12 307/12 307/12 307/42 307/42 401/12 213 401/12213 [FI] IFI C07D213/30 C07D213/30 207/333 207/333 213/38 213/38

2 241/12

Page 1 Paterra® InstantMT® Machine Translation (US Patent 6,490,548). Translated and formatted in Tsukuba, Japan.

213/40

213/82

237/08

(21) [Application Number]

307/12 307/12 307/42 307/42 401/12 213 401/12213 [Number of Claims]

13

【出願形態】 [Form of Application]

OL OL

【全頁数】 [Number of Pages in Document]

21

Filing

【審查請求】 [Request for Examination]

未請求 Unrequested (21)【出願番号】 (21)【Applie

特願平10-75349 Japan Patent Application Hei 10- 75349

(22)【出願日】 (22) [Application Date]

平成10年(1998)3月24日 1998 (1998) March 24*

Parties

Applicants

(71)【出願人】 (71) [Applicant]

【識別番号】 [Identification Number]

 000005887
 000005887

 【氏名又は名称】
 [Name]

三井化学株式会社 Mitsui Chemicals Inc. (DB 69-056-7037)

【住所又は居所】 [Address]

東京都千代田区霞が関三丁目2番5号 Tokyo Chiyoda-ku Kasumigaseki 3-Chome 2-5

Inventors

千葉県茂原市東郷1144番地 三井化学株式 Chiba Prefecture Mobara City Togo 1144address Mitsui

会社内 Chemicals Inc. (DB 69-056-7037) *

 (72) [発明者]
 (72) [Inventor]

 [氏名]
 [Name]

 安藤 知行
 Ando Tomoyuki

【住所又は居所】

千葉県茂原市東郷1144番地 三井化学株式 会社内

(72)【発明者】

【氏名】 土屋 克敏

【住所又は居所】

千葉県茂原市東郷1144番地 三井化学株式 会社内

(72)【発明者】 【氏名】

齋藤 明子 【住所又は居所】

千葉県茂原市東郷1900番地の1 三井製薬工

業株式会社内 (72)【発明者】 【氏名】 山下 俊

【住所又は居所】 千葉県茂原市東郷1900番地の1 三井製薬工 業株式会社内

(72)【発明者】 【氏名】

鞠子 幸泰 【住所又は居所】

千葉県茂原市東郷1900番地の1 三井製薬工 業株式会社内

Abstract

(57)【要約】 【課題】

分化誘導作用を有する新規ベンズアミド誘導体 を提供する。

【解決手段】

式(1)で示される新規ベンズアミド誘導体。

[Address]

Chiba Prefecture Mobara City Togo 1144address Mitsui

Chemicals Inc. (DB 69-056-7037) *

(72) [Inventor] [Name]

Tsuchiya Katsutoshi

[Address]

Chiba Prefecture Mobara City Togo 1144address Mitsui Chemicals Inc. (DB 69-056-7037) *

(72) [Inventor]
[Name]

Saito Akiko [Address]

Chiba Prefecture Mobara City Togo 1900address *1Mitsu

i Pharmaceuticals Inc. *

(72) [Inventor]
[Name]
Yamashita *
[Address]

Chiba Prefecture Mobara City Togo 1900address *1Mitsu i Pharmaceuticals Inc. *

(72) [Inventor]
[Name]

[Address]

Chiba Prefecture Mobara City Togo 1900address *1Mitsu i Pharmaceuticals Inc. *

(57) [Abstract]

[Problems to be Solved by the Invention]

novel benzamide derivative which possesses differentiatio n-inducing action is offered.

[Means to Solve the Problems]

novel benzamide derivative . which is shown with Formu la (1)

示される新規ヘンスプミト誘導体。

【効果】

本発明の新規ベンズアミド誘導体は分化誘導 作用を有するため、悪性腫瘍、自己免疫疾患、 皮膚病、寄生虫感染症の治療および/または改 善剤として有用である。

特に、制癌剤として効果が高く、造血器腫瘍、固形癌に有効である。

Claims

【特許請求の範囲】

【請求項1】

式(1)(化 1)

【化1】

【化2】

[Effect (s)]

novel benzamide derivative of this invention in order to possess differentiation-inducing action , is useful as the t reatment and/or improving agent of malignant turnor , au toimmune disease , dermatological disease , parasite infection .

Especially, effect is high, effective to hematopoietic tumo ${\bf r}$, solid cancer as anticancer drug .

[Claim (s)]

[Claim 1]

Formula (1) [Chemical Formula 1]

[Chemical Formula 1]

[In Formula, A to display optionally substitutable phenyl group or heterocycle (As substituent, from group which honsists of alkoxy carbonyl group, phenyl group, act erocycle of perfluoroalkyloxy group, carbon number 1—4 of aperfluoroalkyl group, carbon number 1—4 of alkyl thio group, carbon number 1—4 of acyl amine group, carbon number 1—4 of alkyl amine group, carbon number 1—4 of alkyl group, carbon number 1—4 of supplementation of the properties of the supplementation of the properties of the supplementation of the supple

[Chemical Formula 2]

{式中、eは0~4の整数を表し、R4は水素原子または置換されていてもよい炭素数 1~4 のアルキル基を表し、Q は式(3)[化 3]}

[4:3]

(式中、R4 は前記と同義。)で示される構造のいずれかを表す。

}で示される構造のいずれかを表し、Y は式(4) [化 4]

[1L 4]

$$-(CH2)m-Q-(CH2)n- (4)$$

]で表されるベンズアミド誘導体または薬理学的 に許容される塩。

【請求項2】

X が式(5)[化 5]

[45.5]

$$-(CH2)e-Q- (5)$$

{In Formula, e to display integer 0 - 4, R4 to display al kyl group of hydrogen atom or optionally substitutable c arbon number 1-4, as for Q Formula (3) [Chemical Formula 3]

[Chemical Formula 3]

any of structure which is shown with (In Formula, as fo r R4 description above and synonymy,) is displayed.

} With to display any of structure which is shown, as f or the Y Formula (4) [Chemical Formula 4]

[Chemical Formula 4]

structure which is shown with (In Formula, m displays i nteger of 1 - 4, as for Q description above and being 8 ynonymous, as for n displays integer 0 - 4.) is displayed, R1 and R2 becoming independent respectively, displays perfluorally/loxy group, carboxyl group of perfluorally yl group, carbon number 1-4 of acyl amino group, carbon number 1-4 of acyl amino group, carbon number 1-4 of acyl group, carbon number 1-4 of alkyl amino group, carbon number 1-4 of alkyl amino group, carbon number 1-4 of alkyl group, carbon number 1-4 of alkoy group, carbon number 1-4 or alkoy group, carbon gen atom, hydroxy group, amino group, carbon number 1-4 or alkoy carbon yl group of carbon number 1-4 or alkoy carbon yl group or hydroxy group.

] With benzamide derivative or pharmacologically accepta ble salt . which is displayed

[Claim 2]

X Formula (5) [Chemical Formula 5]

[Chemical Formula 5]

(式中、e および Q は前記と同義。)で示される構造のいずれかである請求項1記載のベンズアミド誘導体または薬理学的に許容される塩。

【請求項3】

A が置換されていてもよいヘテロ環である請求 項2記載のベンズアミド誘導体または薬理学的 に許容される塩。

【請求項4】

A が置換されていてもよいピリジル基である請求項3記載のベンズアミド誘導体または薬理学的に許容される塩。

【請求項 5】

R1 および R2 が水素原子である請求項 4 記載 のベンズアミド誘導体または薬理学的に許容される塩。

【請求項6】

R3 がアミノ基である請求項 5 記載のベンズアミド誘導体または薬理学的に許容される塩。

【請求項7】

X が式(6)[化 6]

【化6】

(式中、e および R4 は前記と同義。)で示される 構造のいずれかである請求項 1 記載のペンズ アミド誘導体または薬理学的に許容される塩。

[請求項8]

A が置換されていてもよいヘテロ環である請求 項7記載のベンズアミド誘導体または薬理学的 に許容される塩。

[請求項9]

A が置換されていてもよいピリジル基である請求項 8 記載のベンズアミド誘導体または薬理学的に許容される塩。

【請求項 10】

R1 および R2 が水素原子である請求項 9 記載 のベンズアミド誘導体または薬理学的に許容さ benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 1 which is a any of structur e which is shown with (In Formula, as for e and Q description above and synonymy.)

[Claim 3]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 2 where A is optionally sub stitutable heterocyclic ring

[Claim 4]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 3 where A is optionally substitutable pyridyl group

[Claim 5]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 4 where R1 and R2 is hydrogen atom

[Claim 6]

benzamide derivative or pharmacologically acceptable salt, which is stated in Claim 5 where R3 is amino group

[Claim 7]

X Formula (6) [Chemical Formula 6]

[Chemical Formula 6]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 1 which is a any of structur e which is shown with (In Formula, as for e and R4 de scription above and synonymy.)

[Claim 8]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 7 where A is optionally sub stitutable heterocyclic ring

[Claim 9]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 8 where A is optionally sub stitutable pyridyl group

[Claim 10]

benzamide derivative or pharmacologically acceptable salt , which is stated in Claim 9 where R1 and R2 is hydr

れる塩。

【請求項 11】

R3 がアミノ基である請求項10記載のベンズアミド誘導体または薬理学的に許容される塩。

【請求項 12】

請求項 1~11 のいずれかに記載の化合物のうち、少なくとも 1 つを有効成分として含有する制 癌剤。

【請求項13】

請求項 1~11 のいずれかに記載の化合物のうち、少なくとも 1 つを有効成分として含有する医 率品。

Specification

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は分化誘導剤に関する。

さらに詳しくは、本発明は新規ペンズアミド誘導体の分化誘導作用に基づく制癌剤およびその他の医薬品への利用に関する。

[0002]

【従来の技術】

現在、癌は死亡原因の中で心疾患、脳血管疾患を抜いて最大の原因となっており、これまで 多くの研究が多額の費用と時間をかけて行われてきた。

しかし、外科的手術、放射線療法、温熱療法など多岐にわたる治療法の研究にも拘らず癌は 克服されていない。

その中で化学療法は癌治療の大きな柱の一つ であるが、今日に至っても十分満足のゆく薬剤 は見いだされておらず、毒性が低く治療効果の 高い制癌剤が待ち望まれている。

これまでの多くの制癌剤は細胞、主に DNA に 作用し細胞毒性を発現することで癌細胞に傷害 を与え、制癌効果を発揮している。

しかし、癌細胞と正常細胞との選択性が十分でないため、正常細胞において発現する副作用が 治療の限界となっている。 ogen atom

[Claim 11]

benzamide derivative or pharmacologically acceptable salt . which is stated in Claim 10 where R3 is amino grou

[Claim 12]

Among compound which are stated in any of Claim $1\sim 11$, anticancer drug . which contains at least one as active ingredient

[Claim 13]

Among compound which are stated in any of Claim 1 \sim 11, drug . which contains at least one as active ingredie

[Description of the Invention]

[0001]

[Technological Field of Invention]

this invention regards differentiation induction agent .

Furthermore as for details, as for this invention it regard s theutilization to anticancer drug and other drug which are based on the differentiation-inducing action of novel henzamide derivative.

[0002]

[Prior Art]

Presently, cancer pulling out heart disease, cerebral blood vessel disorder in death cause, had become maximum cause, so far many researches focused cost and time of themulti forearm and were done.

But, in spite cancer is not overcome of research of Wata ru treatment method in diversity such as surgical surgery , radiation therapeutic method, moist heat therapeutic method.

Among those chemotherapy is one of pillar where cancer therapy islarge, but fully as for drug which it is satisfie d withoutbeing discovered, toxicity to be low anticancer drug where remedial effect ishigh is anticipated reaching up to today.

Former many anticancer drug cell , operates DNA mainly and gives damage to cancer cell by fact that cell toxic ity is revealed, shows anticancer effect.

But, because selectivity of cancer cell and normal cell is not fully ,side effect which is revealed in normal cell h as become limit of the treatment.

[0003]

ところが制癌剤の中でも分化誘導剤は直接の 殺細胞ではなく、癌細胞に分化を促し癌細胞の 無限増殖を抑えることを目的としている。

そのため癌の退縮においては直接細胞を殺す種類の制癌剤には及ばないが、低い毒性と異なる選択性が期待できる。

実際、分化誘導剤であるレチノイン酸が治療に 用いられ急性前骨髄性白血病で高い効果を すことはよく知られている[Fluang ら]Blood、vol.7 2、567-572(1988)、Castaign ら;Blood、vol.76、17 04-1709、(1990)、Warrell ら;New Engl.J.Med.vo 1.324、1385-1393(1991)など1。

また、ピタミン D 誘導体が分化誘導作用を示す ことから制癌剤への応用も多く研究されている [Olsson ら;Cancer Res.vol.43、5862-5867(1983) 他」。

[0004]

しかしながら、これらの研究によっても癌治療上 十分なレベルに達した薬剤はなく、各種の癌に 対し有効で安全性の高い薬剤が強く望まれてい る。

[0005]

【発明が解決しようとする課題】

本発明の課題は、分化誘導作用を有し、悪性腫瘍 自己免疫疾患、皮膚病、寄生虫感染症の治療および/または改善薬などの医薬品として有用な化合物を提供することにある。

F00031

However, differentiation induction agent is not direct sho oting cell even in anticancer drug ,you urge differentiatio n to cancer cell and you designate that unlimited multiplic ation of cancer cell is held down as objective.

Because of that regarding involution of cancer it does no treach to anticancer drug of types which directly kills cel 1. You can expect low toxicity and different selectivity

Actual time, it can use for treatment retinoic acid which is a differentiation induction agent and it is known well that high effect is shown with acute promyelocytic leuk emia, [Huang and others, Blood (ISSN 0006-4971, COD EN BLOOA), vol.72, 567-572 (1988), Castagin and oth ers; Blood (ISSN 0006-4971, CODEN BLOOA), vol.76, 1704-1709, [1990], Warrell and others; such as New Eng land Journal of Medicine (0028 - 4793, NEJMAG) vol. 324, 1385-1393 (1991) i.

In addition, also application to anticancer drug is mainly researched fromfact that vitamin Dderivative shows differentiation-inducing action, [Olsson and others; CancerRe s.vol.43, 5862-5867 (1983) other things].

[0004]

Receiving these researches, vitamin Dderivative which is a differentiation induction agent (Japan Unexamined Pate nt Publication Hei 6-179622disclosure), isoprene derivative (Japan Unexamined Patent Publication Hei 6-192073di sclosure), tocopherol (Japan Unexamined Patent Publication Hei 6-256181disclosure), quinones derivative (Japan Unexamined Patent Publication Hei 6-25055/stisclosure), acyclic poly isoprenoid (Japan Unexamined Patent Publication Hei 6-305650/disclosure), benzoica acid derivative (Japan Unexamined Patent Publication Hei 7-206765disclosure), patential dipatent Publication to glycolipid (Japan Unexamined Patent Publication Hei 7-258100disclosure) or other anticancer drug is reported.

But, there is not a drug which reaches to sufficient level on cancer therapy evenin these researches, being effecti ve vis-a-vis various cancer, the drug where safety is hi sh is strongly desired.

[0005]

[Problems to be Solved by the Invention 1

It is problem of this invention to have differentiation-ind ucing action, to offer useful compound as treatment and /or improvement medicine or other drug of malignant tu mor, autoimmune disease, dermatological disease, para site infection.

[0006]

本発明の目的は新規ベンズアミド誘導体、該誘導体を含有する制癌剤および該誘導体を含有する制癌剤および該誘導体を含有する医薬品を提供することにある。

[0007]

【課題を解決するための手段】

本発明者は上記課題を解決すべく鋭意検討した結果、分化誘導作用を有する新規ペンズアミ ド誘導体が抗腫瘍効果を示すことを見いだし、 本条明を完成させた。

すなわち本発明は、[1] 式(1)[化 7]

[0008]

【化7】

[式中 A は置換されていてもよいフェル基 法 には権 楽風 (競奏として、ハロゲン原子、水酸 基、アミ基、ニトロ基、シアノ基、炭素数 1-40 アハ アルキル基、炭素数 1-40 アアルコキン基、炭 数 1-40 アミノアルキル基、炭素数 1-40 アアル 40 アシルアミノ基、炭素数 1-40 アル・キルディ 40 アシルアミノ基、炭素数 1-40 アル・キルディ オーのアンルアミノ基、炭素数 1-40 アル・キルディ オーのアンルアミノ基、炭素数 1-40 アル・オーシ基、 カルボキシル基、皮素数 1-40 アルコキシカル ボール基、フェール基、複素類 1-40 アルコキシカル ボール基、フェール基、複素関からなる群より ばれた基を 1-4個有する)を表し、X は直接結合 または式(2)(16 81)

[0009]

【化8】

{式中、eは0~4の整数を表し、R4は水素原子または置換されていてもよい炭素数 1~4 のアルキ

[0006]

objective of this invention is to offer anticancer drug wh ich contains novel benzamide derivative, said derivative and drug which contains said derivative.

[00071

[Means to Solve the Problems 1

this inventor in order that above-mentioned problem is so lved, result of diligent investigation, discovered fact that novel benzamide derivative which possesses the differenti ation-inducing action shows antineoplasty effect, complete d this invention.

Namely as for this invention, [1] Formula (1) [Chemical Formula 7]

[0008]

[Chemical Formula 7]

[In Formula, A to display optionally substitutable phenyl group or heterocycle (As substituent, from group which consists of alkoxy carbonyl group, phenyl group, net erocycle of perfluorotalkyloxy group, carbon number 1-4 of perfluoroalkyl group, carbon number 1-4 of alkyl thio group, carbon number 1-4 of acyl amino group, carbon number 1-4 of alkyl amino group, carbon number 1-4 of alkyl group, carbon number 1-4 of alkoxy group, carbon number 1-4 of halogen atom, hydroxy group, amino group phich ischosen 1 - 4 it possesses), as for the X direct bond or Formula (2) [Chemical Formula 8]

[0009]

[Chemical Formula 8 1

{In Formula, e to display integer 0 - 4, R4 to display al kyl group of hydrogen atom or optionally substitutable c arbon number 1~4, as for O Formula (3) [Chemical For

ル基を表し、Q は式(3)[化 9]}

[0010]

【化9】

(式中、R4 は前記と同義。)で示される構造のいずれかを表す。

}で示される構造のいずれかを表し、Y は式(4) [化 10]

[0011]

【化 10】

$$-(CH2)m-Q-(CH2)n- (4)$$

]で表されるベンズアミド誘導体または薬理学的 に許容される塩であり、また、[2] Xが式(5)[化 1 1]

[0012]

【化11】

$$-(CH2)e-Q- (5)$$

(式中、c および O は前記と同義。)で示される構造のいずれかである[1]記載のベンズアミド第6 体または薬理学的に許容される塩でおり、また、[3] A が置換されていてもよいヘテロ環である[2]記載のベンズアミド誘導体または薬理学的 mula 9]}

[Chemical Formula 9]

any of structure which is shown with (In Formula, as fo r R4 description above and synonymy,) is displayed.

With to display any of structure which is shown, as f or the Y Formula (4) [Chemical Formula 10]

[Chemical Formula 10]

structure which is shown with (In Formula, m to display integer 1 - 4, as for Q description above and synonym y, n displays integer 0 - 4.) is displayed, R1 and R2 b ecomingindependent respectively, displays perfluoroalsylox y group, carboxyl group of perfluoralsyly group, carbo n number 1-4 of alkyl thio group, carbon number 1-4 of alkyl amino group, carbon number 1-4 of alkyl amino group, carbon number 1-4 of alkyl group, carbon number 1-4 or alkox y carbonyl group of carbon number 1-4, R3 displays am ino group or hydroxy group.

] With with benzamide derivative or pharmacologically a cceptable salt which is displayed, in addition,[2] X Form ula (5) [Chemical Formula 11]

[0012]

[Chemical Formula 11]

With benzamide derivative or pharmacologically acceptabl e salt which is stated in [1] which is a any of structure which is shown with (In Formula, as for e and Q desc ription above and synonymy.), in addition, with benzami de derivative or pharmacologically acceptable salt which

に許容される塩であり、また。[4] A が雷換されていてもよいビリジル基である[3]配載のペスアミド誘導体または楽理学的に許容される塩であり、また。[5] R I および R 2 が水素原子である [4]記載のペンズアミド誘導体または楽理学的に許容される塩であり、また。[6] R 3 がアミノ基である[5]記載のペンズアミド誘導体または楽理学的に許容される塩であり、また。[7] X が式(6) [代 12]

[0013]

【化 12】

(式中、e および R4 は前記と同義。)で示される 構造のいずれかである[1]記載のベンズアミド誘 導体または薬理学的に許容される塩であり、ま た、[8] A が置換されていてもよいヘテロ環であ る[7]記載のベンズアミド誘導体または薬理学的 に許容される塩であり、また、[9] A が置換され ていてもよいピリジル基である[8]記載のベンズ アミド誘導体または薬理学的に許容される塩で あり、また、[10] R1 および R2 が水素原子であ る[9]記載のベンズアミド誘導体または薬理学的 に許容される塩であり、また、[11] R3 がアミノ 基である[10]記載のベンズアミド誘導体または 薬理学的に許容される塩であり、また、[12] [1] ~[11]のいずれかに記載の化合物のうち、少なく とも 1 つを有効成分として含有する制癌剤であ り、また、[13] [1]~[11]のいずれかに記載の化 合物のうち、少なくとも 1 つを有効成分として含 有する医薬品である。

[0014]

【発明の実施の形態】

以下、本発明を詳細に説明する。

本発明でいう炭素数 1~4 とは、単位置換基あたりの炭素数を表す。

すなわち、例えばジアルキル置換の場合は、炭素数 2~8 を意味する。

[0015]

式(1)で示される化合物における複素環とは、窒 素原子または酸素原子または硫黄原子を 1~4 個を含む 5 負環または6 負環からなる単環式複 素環または2 環式縮合複素環で、例えば単環 is stated in [2] where [3] A is the optionally substitutable enheterocyclic ring, in addition, with benzamide derivative or pharmacologically acceptable salt which is stated in the[3] where [4] A is optionally substitutable pyridyl group, in addition, with benzamide derivative or the pharmacologically acceptable salt which is stated in [4] where [5] R1 and R2 is hydrogen atom, In addition, with benzamide derivative or pharmacologically acceptable salt which is stated in [5] where [6] R3 is amino group, in addition, [71] X Formula [6] (Chemical Formula 1 2]

[0013]

[Chemical Formula 12]

With benzamide derivative or pharmacologically acceptabl e salt which is stated in [1] which is a any of structure which is shown with (In Formula, as for e and R4 des cription above and synonymy.), in addition, with benza mide derivative or pharmacologically acceptable salt whic h is stated in [7] where [8] A is the optionally substitut able heterocyclic ring, in addition, with benzamide deriv ative or pharmacologically acceptable salt which is stated in the[8] where [9] A is optionally substitutable pyridyl group, in addition, with benzamide derivative or the p harmacologically acceptable salt which is stated in [9] w here [10] R1 and R2 is hydrogen atom, In addition, wit h benzamide derivative or pharmacologically acceptable s alt which is stated in [10]where [11] R3 is amino group , in addition, [12] [1] - among compound which are sta ted in any of [11], with anticancer drug which contains at least one as active ingredient, in addition, [13] [1] among compound which are stated in any of [11], it is a drug which contains at least one as active ingredient .

T00141

[Embodiment of the Invention]

Below, this invention is explained in detail.

carbon number 1~4 as it is called in this invention, car bon number per unit substituent isdisplayed.

In case of namely, for example dialkyl-substituted, carb on number 2~8 is meant.

[0015]

heterocycle in compound which is shown with Formula (1), quinoline, isoquinoline, appthyridine, furopyridine, thienopyridine, pyrrolo pyridine, oxazolopyridine, i midazolo pyridine, thiazolopyridine or other condensatio

式権実現としてはピリジン、ピラジン、ピリミジ 、ピリダジン、チオフェン、フラン、ピロール、ピ ラゾール、イソオキサゾール、イソテアゾール、 イミダソール、オキサゾール、テファノール、ピ リジン、ピージン、ピロリジン、キヌクリジン、 だち、フ環ス物を検集環場としてはキーリン、イン イリン、ピロロピリジン、オコ・オキサゾロピリジン、イミダ ゾロピリジン、チアチリウンなどの総合ピリジ ン環、ベンソフラン、ベングチオフェン、ベンズイ ミダゾールなどを挙げることができる。

[0016]

ハロゲン原子とは、フッ素原子、塩素原子、臭素 原子、ヨウ素原子を挙げることができる。

[0017]

炭素数 1~4 のアルキル基とは、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブ チル基などを挙げることができる。

[0018]

炭素数1~4のアルコキシ基とは、例えばメトキシ基、エトキシ基、n-プロボキシ基、イソプロボキシ基、アリルオキシ基、ローフトキシ基、イソフトキシ基、sec-プトキシ基、tert-ブトキシ基などを挙げることができる。

炭素数 1~4のアミノアルキル基とは、例えばアミ ノメチル基、1-アミノエチル基、2-アミノプロビル 基などを挙げることができる。

[0019]

炭素数 1-4 のアルキルアミノ基とは、例えば N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエ チルアミノ基、N-メチル-N-エチルアミノ基、N,N-ジイソプロピルアミノ基などを挙げることができ る。

[0020]

炭素数 1~4 のアシル基とは、例えばアセチル 基、プロパノイル基、ブタノイル基を挙げること ができる。

[0021]

炭素数 1-4 のアシルアミノ基とは、例えばアセチ ルアミノ基、プロパノイルアミノ基、ブタノイルアミ ノ基などを挙げることができる。

[0022]

炭素数 1~4 のアルキルチオ基とは、メチルチオ

n pyridine ring , benzofuran , benzothiophene , benzimid azole etc can be listed with pyridine , pyrizaire , pyrimid , isoxazole , isoxazole , imidazole , oxazole , thiazole , piperdine , piperazine , pyrimolidine , quinuclidine , tetra hydrofuran , morpholine , thiomorpholine etc, as 2 rings type condensed heterocycle monocyclic heterocycle which consists of 5 -member ring or 6-member ring where 1 - 4 sincluded or with 2 rings type condensed heterocycle , nitrogen atom or oxygen atom or sulfyra atom or star.

[0016]

halogen atom , fluorine atom , chlorine atom , bromine atom , iodine atom can be listed.

for example monocyclic heterocycle .

[0017]

alkyl group of carbon number 1-4, for example methyl group , ethyl group , n- propyl group , isopropyl group , n- butyl group , isobutyl group , s-butyl group , t- bu tyl group etc can be listed.

f00181

alkoxy group of earbon number 1~4, for example methox y group , ethoxy group , n- propoxy group , isopropoxy group , allyl oxy group , n- butoxy group , isobutoxy group , s -butoxy group , t- butoxy group etc can be lis

amino alkyl group of carbon number 1~4, for example a minomethyl group, 1- aminoethyl group, 2- aminopropy I group etc can be listed.

[0019]

alkyl amino group of carbon number 1-4, for example N - methylamino group , N, N- dimethylamino group , N, N- diethyl amino group , N, N- methyl -N- ethylamino group p , N, N- disopropylamino group etc can be listed.

[0020]

acyl group of carbon number $1\sim\!4$, for example acetyl group , propanoyl group , butanoyl group can be listed.

F00211

acyl amino group of carbon number 1~4, for example ac etylamino group , propanoyl amino group , butanoyl ami no group etc can be listed.

F00221

alkyl thio group of carbon number 1-4, methylthio group

基、エチルチオ基、プロビルチオ基などを挙げる ことができる。

[0023]

炭素数 1~4 のパーフルオロアルキル基とは、例 えばトリフルオロメチル基、ペンタフルオロエチ ル基などを挙げることができる。

[0024]

炭素数 1-4 のパーフルオロアルキルオキシ基とは、例えばトリフルオロメトキシ基、ペンタフルオロエトキシ基などを挙げることができる。

[0025]

炭素数 1~4 のアルコキシカルボニル基とは、例 えばメトキシカルボニル基、エトキシカルボニル 基などを挙げることができる。

[0026]

置換されていてもよい炭素数 1-4 のアルキル基 とは、例えばメチル基、エチル基、ホ・プロピル 基、イソプロピル基、ホプチル基、イソプチル基、 sec-プチル基、tert・プチル基などやこれに置換 基として、ハロゲン原子、水酸基、アシ基、ニー ロ基、シアノ基、フェニル基、複素環からなる群 より選ばれた基を 1-4 個有するものを挙げるこ とができる。

[0027]

薬理学的に許容される化合物の塩とは、この分 野で常用される塩酸、臭化水素酸、硫酸、焼酸 などの無機酸や、酢酸、乳酸、酒石酸、リンゴ 酸、ロハウ酸、フマル酸、マレイン酸、ノアエン酸、 安息香酸、トリフルオロ酢酸、トールエンスルホ ン酸、メタンスルホ、酸などの有機酸との塩を挙 げることができる。

[0028]

医薬品とは制癌剤の他、自己免疫疾患、皮膚病、寄生虫感染症などの治療および/または改善薬を表す。

[0029]

式())で表される化合物において不斉炭素を有する場合は、異なった立体異性形態またはラセミ形態を含む立体異性形態の混合物の形態で存在することができる。

すなわち、本発明はこのように規定した種々の 形態をも包含するが、これらも同様に有効成分 化合物として用いることができる。 , ethyl thio group , propyl thio group etc can be listed.

f00231

perfluoroalkyl group of carbon number 1~4, for example trifluoromethyl group , pentafluoroethyl group etc can be listed

[0024]

perfluoroalkyloxy group of carbon number 1~4, for exam ple trifluoromethoxy group, penta fluoro ethoxy group e tc can be listed.

[0025]

alkoxy carbonyl group of carbon number $1\sim4$, for examp le methoxycarbonyl group , ethoxy carbonyl group etc ca n be listed.

[0026]

alkyl group of optionally substitutable carbon number 1-4, for example methyl group, ethyl group, n- propyl g roup, isoptropyl group, n- butyl group, isobutyl group , s-butyl group, t- butyl group etc and in this those w hich 1 - 4possess group which is chosen can be listed fr om group whichconsists of halogen atom, hydroxy grou p, amino group, nitro group, yayon group, phenyl gr oup, heterocycle as substituent.

[0027]

salt of acceptable compound, salt of hydrochloric acid, hydrobromic acid and accid, phosphoric acid or ot ber inorganic acid and accite acid, lateric acid, malic acid, succinic acid, fumaric acid, malic acid, succinic acid, timfaric acid, maleic acid, citric acid, benzoic acid, trifluoroacetic acid, ptolucnesulfonic acid, methane sulfonic acid or other organic acid which arcregularly used with this field can be listed to harmacological.

[0028]

drug other than anticancer drug, autoimmune disease, dermatological disease, parasite infection or other treatment and/or improvement medicine isdisplayed.

f00291

When it possesses asymmetric carbon in compound which is displayed with the Formula (1), it can exist with form of mixture of stereoisomeric form whichincludes stereoisomeric form or racemic form which differs.

namely, this invention this way includes also various for m which is stipulated, but these in same way you can us e as active ingredient compound.

[0030]

以下、本発明の式(1)で示される代表的化合物 を表-1[表 1-表 10]に例示する。

なお、本発明はこれらの例に限定されるもので はない。

[0031]

【表 1】

表-1 その1

[0030]

Below, representative compound which is shown with Formula (1) of this invention is illustrated to Table 1 [Table 1 -Table 10].

Furthermore, this invention is not something which is li mited as theseexamples.

[0031]

[Table 1]

Table 1 that 1

[0032]

【表 2】 [Table 2]

[0032]

1 that 2

表-1 そ		Table
22004	Max.	
6		
£8684	Méd	_
7	CH ₃ H NH ₂	
化食物物等	Bex A	
8		
化自物管件	Max	
9		
化合物物等	Rat	
10	SSVO CHILLIANS	

[0033] [表3] [Table 3] 表-1その3 Table 1 that 3

tamas	衛並式
11	
12	The state of the s
13	WH.
14	
15	WALL

[0034] [0034] [表 4] [Table 4] 表 1 Table 1 that 4

COW# 7	独业式
16	~ # C # W12
17	WHE
18	HALL HALL HALL HALL HALL HALL HALL HALL
19	Max
20	MARK

[0035] [0035] [7able 5] 表-1 その 5 Table 1 that 5

[0036] [0036] [表6] [Table 6] 表-1 その6 Table 1 that 6

[0037] [表7] [Table 7] 表-1 その 7 Table 1 that 7

化自物操作	- Rack
31	
32	H _a c H _b H _b H _b
化合物器等	明を 式
33	H ₀ C ^{-O} H NH ₂
34	H ₂ C H ₂ C H ₃ C H ₄ C H ₂ C H ₄ C
35	H ₂ N O NH ₂

[0038] [0038] [0038] [表記 [Table 8] 表:1その8 Table 1 that 8

化合物基份	単位式
36	H ₂ C-H ₂
化食物酶等	max .
37	FF O O O O O O O O O O O O O O O O O O
20 05 0	原业式
38	H ₂ C ₀ H ₂ C ₀ H ₁ NH ₂
16989	###
39	S-D-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-
化金物青年	有道式
40	o o o o o o o o o o o o o o o o o o o

[0039]
[表9]
表1その9
Table 1 that 9

[0040] [0040] [表 10] [Table 10] 表 1 その 10 Table 1 that 10

本発明の化合物は、例えば下記のような方法に より製造することができる。

(a) 式(7)[化 13]

[0041]

【化 13】

It can produce compound of this invention, as in for example description belowwith method.

Formula (a) (7) [Chemical Formula 13]

[0041]

[Chemical Formula 13]

Page 23 Paterra® InstantMT® Machine Translation (US Patent 6,490,548). Translated and formatted in Tsukuba, Japan.

[式中、A、X、Y および R1 は前記と同義。]で示される化合物と式(8)[化 14]

[0042]

【化 14】

[式中、R2 は前記と同義、R3 は ter・プトキントルギール基などの通常のペプチドル成長のに用いられる保護基で保護されたアミノ基またはペンジル基などの通常のペプチド形成反応に用いられる保護基で保護された改基を表す。『で示される化合物を縮合反応に付して得られる式(9)(化15]

[0043]

【化 15】

(式中、A、X、Y、R1、R2 および R5 は前記と同義。)で示される化合物の保護基を除去することにより本発明の化合物を得ることができる。

(b) 式(7)で示される化合物と式(10)[化 16]

[0044]

【化 16】

compound and Formula which are shown with [In Formu la, as for A, X, Y and R 1 description above and synon ymy.] (8) [Chemical Formula 14]

[0042]

[Chemical Formula 14]

compound which is shown with [In Formula, as for R2 description above and synonymy. As for R5 hydroxy group which is protected with protecting group which issued for protected amino group or benzyl group or other con ventional peptide formation reaction with protecting group which is used for the 1- butoxy carbonyl group or other conventional peptide formation reaction is displayed.] a taching on condensation reaction; Formula which is acquired (9) [Chemical Formula 15]

[0043]

[Chemical Formula 15]

compound of this invention can be acquired by removing protecting group of the compound which is shown with (In Formula, as for A, X, Y, R1, R2 and R5 description above and synonymy.).

compound and Formula which are shown with Formula (b) (7) (10) [Chemical Formula 1 6]

[0044]

[Chemical Formula 16]

(式中、R2 および R3 は前記と同義。)で示される 化合物を縮合反応に付すことによっても本発明 の化合物を得ることができる。

[0045]

(a)および(b)の縮合反応は、通常のペプチドに おけるアミド結合形成反応、例えば活性エステ ルまたは混合酸無水物または酸塩化物の方法 によって実施することができる。

例えば、式(7)で示される化合物と 2、4、5トリク ロフェノール、ベンタクロロフェノールも以く ・ニトロフェノールなどのフェノール類、または N-ヒドロキシスクシィミド、N-ヒドキシベンズドリアソ ールなどの N-ヒドロキシ化合物を、ジシクロペ キシルカルボジイミドの存在下に総合させ、活 性エステルはに変換した後、アシス成分(或(8)で 示される化合物または式(10)で示される化合物 と総合させることによって行うことができる。

[0046]

また、カルボン酸成分[式(7)で示される化合物] を塩化ホキザリル、塩化テオニル、オキシ塩化 リンなどと反応させ、酸塩化物に変換した後、ア ミン成分[式(8)で示される化合物または式(10)で 示される化合物]と縮合させることによって行うこ とができる。

[0047]

また、カルボン酸成分(式())で示される化合物) をクロロ炭酸ペリプチル、メタンスルホニルクロラ ライドまたは p-ニトロペンゼンスルホニルクロラ イドなどと反応させることによって混合酸無水物 を得た後、アミン成分(式(8)で示される化合物 たは式(10)で示される化合物)と縮合させること によって行うことができる。

[0048]

さらにまた、当該縮合反応は、ジシクロヘキシル カルボジイミド、N.N' -カルボニルジイミダソー ル、ジフェニルリン酸アジド、ジエチルリン酸シア ニド、2-クロロ-1,3-ジメチルイミダゾロニウムクロ compound which is shown with (In Formula, as for R2 and R3 description above and synonymy.) it attaches on condensation reaction and canacquire compound of this invention even with thing.

[0045]

As for condensation reaction of (a) and (b), it can exe cute with method of amide bond formation reaction, for example active ester or mixed acid anhydride or acid c hloride in conventional peptide.

compound and 2, 4 and 5 -trichloro phenol , penta chlor ophenol or 4 -nitro phenol or other phenols , where it is shown with the for example Formula (7) or N- [hidoro kishisukushiimido], condensing N- hydroxy benzhaizoele or other N- hydroxy compound, under existing of the dicyclohexyl carbodiimide , after converting to active ester , amine component [compound which is shown with Formula (8) or compound which is shownwith Formula (10) with it is possiblete do by fact that it condenses.

[0046]

In addition, after reacting with oxalyl chloride, thionyl chloride, phosphorous oxychloride etc, converting carboyy lic acid component [compound which is shown with Formula (7)] to acid chloride, amine component [compound which is shown with Formula (8) or compound which is shown with Formula (10)] with it is possible to do by factthat it condenses.

[0047]

In addition, after acquiring mixed acid anhydride by fact that it reacts with chloro carbon dioxide isobutyl, meth ane sulfonyl chloride or p-nitrobenzene sulfonyl chloride etc, amine component [compound which is shown with Formula (8) or compound which is shown with Formula (10)] with to do by fact thatit condenses it is possible c arboxylic acid component [compound which is shown with Formula (7)].

[0048]

Furthermore and, this said condensation reaction can also do, using dicyclohexyl carbodiimide, N, N' -carb onyl diimidazole, biphenyl phosphoric acid azido, dieth yl cyanophosphonate, 2- chloro -1, 3- [jimechiruimidazor

ライドなどのペプチド縮合試薬を単独で用いて 行うこともできる。

[0049]

反応は、通常-20~+50 deg C で 0.5~48 時間行う。

用いられる溶媒としては例えば、ベンゼン、トリア エンなどの芳香族族化水素類、テトラドロラン、 ジオキサン、ジエチルエーテルなどのエーテ ル類、塩化メチレン、ウロロボルなどのハロゲ ン化炭化水素類、NN・ジメチルホルムアミドの 他、メタノール、エタノールなどのアルコール類 またはこれとの混合物が挙げられる。

必要により有機塩基例えば、トリエチルアミンま たはピリジンなどを加えて反応する。

[0050]

式(9)で示される化合物の保護基の除去は、通常のペプチド形成反応に用いられる条件で行われる。

例えば、式(9)において R5 が、tert-ブトキシカル ボニル基で保護されたアミノ基の場合は、塩酸 またはトリフルオロ酢酸などの酸で処理すること により脱保護反応を行うことができる。

[0051]

式(1)で示される化合物の塩は、式(1)で示される化合物を製造する反応で得ることもできるが、薬理学的に許容される酸と容易に塩を形成し得る。

その酸としては、例えば塩酸、臭化水素酸、硫酸、燐酸などの無機酸や、酢酸、酒石酸、フマル酸、マレイン酸、ケエン酸、安息香酸、トリフルオロ酢酸、ア・トルエンスルホン酸などの有機酸を挙げることができる。

これらの塩もまたフリー体の式(1)の化合物と同様に本発明の有効成分化合物として用いることができる。

[0052]

式(1)で示される化合物は、反応混合物から通常の分離手段、例えば抽出法、再結晶法、カラ ムクロマトグラフィーなどの方法により単離精製することができる。

[0053]

本発明の新規ベンズアミド誘導体は分化誘導 作用を有しており、悪性腫瘍、自己免疫疾患、 皮膚病、寄生虫感染症などの治療および/また oniumukuroraido] or other peptide condensation reagent with alone

[0049]

It reacts, usually - 20 - with + 50 deg C 0.5 - 48 hour s.

Other than for example benzene, toluene or other aroma tic hydrocarbons, tetrahydrofuran, dioxane, diethyl eth er or other ethers, methylene chloride, chloroform or o ther halogenated hydrocarbons, N, N- dimethylformamid e, methanol, ethanol or other alcohols or you can list these mixture as the solvent which is used.

It reacts including organic base for example triethylamine or pyridine etc in accordance withnecessary.

[0050]

As for removal of protecting group of compound which is shown with Formula (9), it is done with condition which is used for conventional peptide formation reaction.

When R5, it is a protected amino group with t- butoxy carbonyl group in for example Formula (9), it ispossible to do deprotection reaction , by treating with hydrochlori c acid or trifluoroacetic acid or other acid .

[0051]

salt of compound which is shown with Formula (1) can alsoobtain with reaction which produces compound which is shown with Formula (1), but in pharmacological it c an form salt in acceptable acid andeasy.

As acid , for example hydrochloric acid , hydrobromic a cid , sulfuric acid , phosphoric acid or other inorganic a cid and acetic acid , tartaric acid , fumaric acid , maleic acid , citric acid , benzoic acid , trifluoroacetic acid , p roluenesulfionic acid or other organic acid can be listed.

And in same way as compound of Formula (1) of free c ompound you canuse also these salt as active ingredient compound of this invention.

[0052]

compound which is shown with Formula (1) isolation an d purification is possible from reaction mixture with con ventional separation means, for example extraction meth od, recrystallization method, column chromatography or other method.

F00531

novel benzamide derivative of this invention has had diff erentiation-inducing action, it is useful as malignant tum or, autoimmune disease, dermatological disease, parasi

は改善剤として有用である。

こで悪性腫瘍とは急性白血病 慢性白血病 悪性リンパ腫、多発性骨髄腫、マクログロブリン 血症などの造血器腫瘍の他、大腸癌、膨腫痛、 頭頚部癌、乳癌、肺癌、食道癌、胃癌、肝癌、胆 最癌、胆管癌、膀絡癌、防癌、脓性、肥脂、 副腎皮質癌、膀胱癌、前立腺癌、睾丸腫瘍、卵 巣癌、子宮癌、絨毛癌、甲状腺症。悪性力ルチ ノイ・腫瘍、皮膚癌、悪性黒色腫、骨肉腫、軟部 組織肉腫、神経芽細胞腫、ウルス腫瘍、顆 繊芽細胞腫などの固形腫瘍がずげられる。

自己免疫疾患とはリウマチ、腎炎、糖尿病、全 身性エリテマト―デス、ヒト自己免疫生リンパ球 増殖性リンパ節症、免疫芽細胞性リンパ節症、 クロ―ン病、潰瘍性大腸炎などを示す。

皮膚病とは乾せん、アクネ、湿疹、アトピー性皮膚炎などを示す。

寄生虫感染症とは、マラリア感染症などの寄生 虫の感染によって引き起こされる疾患を示す。 なお、本発明の対象疾患はこれらに限定される

なお、本発明の対象疾患はこれらに限定される ことはない。

[0054]

本発明の有効成分化合物は、医薬品として有 用であり、これらは一般的な医療製剤の形態で 用いられる。

製剤は通常使用される充填剤、増量剤、結合 剤、保湿剤、崩壊剤、界面活性剤、滑沢剤等の 希釈剤あるいは賦形剤を用いて調製される。

この医薬製剤としては各種の形態が治療目的 に応じて選択でき、その代表的なものとして錠 剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、 カプセル剤、注射剤(液剤、悪濁剤等)および坐 剤等が挙げられる。

[0055]

錠剤の形態に成形するに際しては、担体として この分野で従来よりよく知られている各種のも のを広く使用することができる。

その例としては、例えば乳糖、ブドウ糖、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸等の賦形剤、水、エタノール、プロピルアルコール、単シロップ、ブドウ糖液、デンブ

te infection or other treatment and/or improving agent .

malignant tumor other than acute leukemia, chronic leukemia, malignant lymphoma, multiple myeloma, macro globulinaemia or other hematopoietic tumor, you can lis t carcinoma of the colon, brain neoplasm, head and ne ck cancer, breast cancer, lung cancer, esophageal cancer, stomach cancer, ivier cancer, gall bladder cancer, abile duct cancer, panerate cancer, gall bladder cancer, solie duct cancer, prostate cancer, adrenal cortex cancer, bladder cancer, prostate cancer, ctestes neoplasm, o varian cancer, uterine cancer, chorioma, thyroid cancer, malignancy carcinoid tumor, skin cancer, malignant melanoma, osotossaroma, soft issue sarcoma, neurob lastoma, Wilm's tumor, retinoblastoma or other solid neoplasm here.

autoimmune disease rheumatism, nephritis, diabetes, s ystemic erythematodes, human autoimmunity raw lymph ocyte proliferation characteristic lymph node symptom, i mmunity bud cellular lymph node symptom and Crohn&a poss disease, ulcerative colitis etc are shown.

dermatological disease psoriasis, acne, eczema, endoge nous eczema etc is shown.

parasite infection, disorder which is caused with infection of malaria infection or other parasite isshown.

Furthermore, as for object disorder of this invention ther e are not times when itis limited in these.

[0054]

As for active ingredient compound of this invention, being useful as drug, as for theseit is used with form of general medicine formulation.

formulation is manufactured making use of filler, extend er, binder, humectant, disintegrating agent, surfactant, lubricant or other diluent or vehicle whichusually is u sed.

As this pharmaceutical formulation be able to select vari ous form, making representative ones,you can list tablets , pill, powder, liquid, suspension, emulsion, granul e, capsules, injectable (liquid, suspension etc) and suppository etc according to treatment objective.

[0055]

When it forms in form of tablets, various ones which a re wellknown from until recently with this field as carrie r can be usedwidely.

As example, for example lactose, fructose, starch, cal cium carbonate, kaolin, crystalline cellulose, silicic aci d or other vehicle, water, ethanol, propyl alcohol, sin gle syrup, fructose solution, starch liquid, gelatin solu

ン液、ゼラテン溶液、カルボキシメチルセルロース、セラック、メチルセルロース、ポピニルスのピロリドン等の結合剤、乾燥デンプン、アルギン酸ナトリウム、カンデンメ、乳糖等の崩壊剤、白糖、カカオパター、水素添加油等の崩壊剤、自糖、カカオパター、水素添加油等の崩壊剤、自動、カカオパター、水素添加油等の崩壊剤を削削、第4級アンモロウム塩落、プリル・配砂・ドンプン等の保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤、タルウ、ステアリン酸塩、ポリエチレングリコール等の滑沢剤等を使用することができる。

さらに錠剤については、必要に応じ通常の剤皮 を施した錠剤、例えば糖衣錠、ゼラチン被包錠、 腸溶性被包錠、フィルムコーティング錠あるいは 二層錠、多層錠とすることができる。

[0056]

丸剤の形態に成形するに際しては、担体として 従来この分野で公知のものを広く使用できる。

その例としては、例えば結晶セルロース、乳糖、 デンブン、硬化植物油、カオリン、タルク等の賦 形剤、アラビアゴム末、トラガント末、ゼラチン等 の結合剤、カルメロースカルシウム、カンテン等 の前強剤等が挙げられる。

[0057]

カプセル剤は、常法に従い通常有効成分化合物を上記で例示した各種の担体と混合して、硬質ゼラチンカブセル、軟質カプセル等に充填して調製される。

[0058]

この場合等張性の溶液を調製するのに必要な 量の食塩、ブドウ糖あるいはグリセリンを医薬 製剤中に含有させてもよく、また通常の溶解補 助剤、緩衝剤、無痛化剤等を添加してもよい。 tion, carboxymethyl cellulose, shellae, methylcellulose, polyvinyl pyrrolidone or other binder, drying starch, sodium alginate, agar powder, croscarmellose calcium, starch, lactose or other disintegrating agent, sucrose, cocoa butter, hydrogenated oil or other breakdown in hibitor, quaternary ammonium salt group, sodium lauryl sulfate or other absorption promotor, glycerin, starch or other humectant, starch, lactose, kaolin, bentonite (DANA 71.3.1a.1-2), colloidal silicic acid or other absorbent, tale, stearate, polyethylene glycol or other lubric ant etic can he used

Furthermore concerning tablets , it can make tablets , for example sugar-coated tablet , gelatin capsule , enteric w rap pill , film-coated tablet or two layers pill , multilayer pill which administers conventional coating according t o need.

[0056]

When it forms in form of pill, those of public knowled ge can beused until recently widely with this field as car rier.

As example, you can list for example crystalline cellulos e, lactose, starch, hardened vegetable oil, kaolin, tal c or other vehicle, gum arabic powder, traganth powder, gelatin or other binder, croscarmellose calcium, aga r or other disintegrating agent etc.

[0057]

capsules is manufactured mixing with various carrier whi ch usuallyillustrated active ingredient compound at description above in accordance with the conventional method , being filled in hard gelatin capsule , flexible capsule etc.

[0058]

When it manufactures, as injectable liquid, emulsion and suspension are done sterilization, it is desirable, forms in these form, at same timewhen to be a blood and a i sotonic, in this field as diluent common usethose which are done for example water and ethanol, macrogol, p ropylene glycol, ethoxylated isostearyl alcohol, polyoxy conversion isostearyl alcohol, polyoxy chyters etc. as the used.

In case of this in order to manufacture solution of isoton icity salt, fructose of necessary quantity or it is possible to contain glycerin in the pharmaceutical formulation, i n addition to add conventional solubilizer, buffer, anest hetic etc is possible.

[0059]

坐剤の形態に成形するに際しては、担体として 従来公知のものを広く使用することができる。

その例としては、例えば半合成グリセライド、カカオ脂、高級アルコール、高級アルコールのエステル類、ポリエチレングリコール等を挙げることができる。

[0060]

さらに必要に応じて着色剤、保存剤、香料、風味剤、甘味剤等や他の医薬品を医薬製剤中に 含有させることもできる。

[0061]

本発明のこれらの医薬製剤中に含有されるべき有効成分化合物の量は、特に限定されずに 広範囲から適宜選択されるが、通常製剤組成 物中に約 1~70 重量%、好ましくは約 5~50 重 量%とするのがよい。

[0062]

本発明のこれら医薬製剤の投与方法は特に制 限はなく、各種製剤形態、患者の年齢、性別、 疾患の程度およびその他の条件に応じた方法 で投与される。

例えば錠利、丸利、液剤、懸濁剤、乳剤、類剤 剤およびカプセル剤の場合には、経口投与さ れ、注射剤の場合は、単独でまたはブドウ糖、 アミノ酸等の通常の補液と混合して静脈内投与 され、さらに必要に応じて単独で筋肉内、皮下も しくは酸酔の投与される。

坐剤の場合は直腸内投与される。

[0063]

本発明のこれら医薬製剤の投与量は、用法、患者の年齢、性別、疾患の程度およびその他の条件により適宜選択されるが、通常有効成分化合物の量としては、体重1kg当り、一日約0.0001-100mg程度とするのがよい。

また投与単位形態の製剤中には有効成分化合物が約 0.001~1,000mg の範囲で含有されることが望ましい。

[0064]

[0059]

When it forms in form of suppository, those of prior public knowledge can be used widely as carrier.

As example, esters, polyethylene glycol etc of for example semisynthetic glyceride, cacao butter, higher alcohol, higher alcohol can be listed.

100601

Furthermore according to need colorant, preservative, fr agrance, flavor agent, sweetener etc and it is possible also to contain other drug in pharmaceutical formulation

F00611

this invention remains and others quantity of active ingre dient compound which it shouldcomtain in pharmaceutical formulation especially without being limited is appropria telyselected from broad range, but it is good usually to make approximately 1 - 70 weight %, preferably approxi mately 5 - 50 weight % in formulation commosition.

[0062]

this invention remain and others as for administration me thod of pharmaceutical formulation as forespecially restriction not to be, it is prescribed with extent of the age, gender, disorder of various formulation type, patient and method which responds to other condition.

In case of for example tablets , pill , liquid , suspension , emulsion , granule and capsules , oral dosage it is do ne, case of the injectable , or mixing with fructose , am ino acid or other conventional supplemental liquid with a lone , intravenous administration it is done, furthermore in tramuscular , subcutaneous or intraperitoneal administration is done with according to need alone .

In case of suppository intrarectal administration it is don

[0063]

this invention remains and others dose of pharmaceutical formulation is selectedappropriately by extent and other condition of age, gender, disorder of the administration method, patient, but it is good to make body weight per kg, one day approximately 0.0001 - 100 mg extent, as quantity of active ingredient compound usually.

In addition it is desirable in formulation of dosage unit f orm for active ingredient compound tobe contained in range of approximately 0.001 - 1,000 mg.

[0064]

本発明の式(1)で表される化合物およびその塩は、薬理学的に効果を示す投与量において毒性を示さない。

[0065]

【実施例】

以下に本発明を実施例で詳細に説明するが、 本発明はこれらに限定されるものではない。

なお、表題の括弧内の番号は詳細な説明に例 示した化合物の番号である。

[0066]

実施例1

N-(2-アミノフェニル)-4-[3-(ピリジン-3-イルオキシ)プロポキシ]ベンズアミド (表-1:化合物番号1)の合成

(1-1) 4-ヒドロキシ安息香酸エチル 1.0g(6mmo l)、3-プロモプロパンール 0.84g(6mmol)、トリフェニルホスフィン 1.6g(6mmol)の THF(20ml)溶液に、アゾジカルボン酸ジエチルエステル 1.1g(6mmol)を加え 1 時間撹拌した。

反応混合物を濃縮後、酢酸エチルと水で分配した

有機層を無水硫酸マグネシウムで乾燥後、濃縮し、シリカゲルカラムクロマトグラフィー(溶媒、 ヘキサン:酢酸エテル=9:1)で精製し、4-(3-プロモ プロポキシ)安息香酸エチル 1.1g(収率 63%)を 無色油状物として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.38(3H,t,J=7.3Hz), 2.29-2.39(2H,m), 3.61(2H,t,J=6.6Hz), 4.17(2H,t,J=5.9Hz), 4.35(2H,q,J=7.3Hz), 6.92 (2H,d,J=8.8Hz),8.00(2H,d,J=8.8Hz).

[0067]

(1-2) 水素化ナトリウム(60%油性)70mg(1.8mm ol)を DMF(5ml)に懸濁し、-15 deg C に冷却し た。

これに、3-ヒドロキシピリジン 170mg(1.8mmol)の DMF(2ml)溶液を滴下した。

30 分間撹拌後、工程(1-1)の化合物 500mg(1.8 mmol)の DMF(3ml)溶液を滴下した。

5 時間撹拌後、反応溶液に酢酸エチルと水を加 えた。 compound or its salt which are displayed with Formula (1) of the this invention do not show toxicity in dose w hich shows effect in the pharmacological .

[0065]

[Working Example (s)]

Below this invention is explained in detail with Working Example, but this invention is not something which is limited in these.

Furthermore, number inside parenthesis of title is number of compound which was illustrated to detailed descriptio n .

100661

Working Example 1

N- (2 -amino phenyl) - 4 - synthesis of [3 - (pyridine -3- yloxy) propoxy] benzamide (Table l :compound nu mber 1)

(1 - 1) 4 -hydroxybenzoic acid ethyl 1.0g (6 mmol), 3-bromo propanol 0.84g (6 mmol), in THF (20 ml) sol ution of triphenyl phosphine 1.6g (6 mmol), 1 hour it a gitated including diethyl azodicarboxylate ester 1.1g (6 mmol).

reaction mixture after concentrating, was distributed with ethylacetate and thewater.

After drying, it concentrated organic layer with anhydrou s magnesium sulfate, refined with silica gel column chr omatography (solvent ;hexane :ethylacetate =9:1), 4-it acquired (3-bromo propoxy) ethyl benzoate 1.1g (yie ld 63%) as colorless oil.

Sup>1/Sup>Hmnr (270 MHz, CDCl/Sub>3/Sub>);deppm: 1.38 (3 H, t, J=7.3Hz), 2.29 - 2.39 (2 H, m), 3. 61 (2 H, t, J=6.6Hz), 4.17 (2 H, t, J=5.9Hz), 4.35 (2 H, q, J=7.3Hz), 6.92(2 H, d, J=8.8Hz), 8.00 (2 H, d, J=8.8Hz)

[0067]

(1 - 2) sodium hydride (60% oily) suspension it did 70 mg (1.8 mmol) in DMF (5 ml), -cooled in 15 deg

3 -hydroxypyridine 170mg DMF (2 ml) solution of (1.8 mmol) was dripped to this.

30 min agitation later, DMF (3 ml) solution of compound 500mg (1.8 mmol) of the step (1 - 1) was dripped.

5 hours agitation later, ethylacetate and water were adde d to the reaction solution .

有機層を生理食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、濃縮して 4-[34ビリジン・3・イルオキシ] 安息香酸エチル 0.5g(収率 9 5%)を白色固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.38(3H,t,J=7.3Hz), 2.26-2.88(2H,m), 4.19-4.25(4H,m), 4.34(2H,q,J=7.3Hz), 6.94(2H,d,J=9.5Hz), 7.20-7. 22(2H,m), 8.00(2H,d,J=8.8Hz), 8.21-8.23(1H,m), 8.33(1H,br.s).

[0068]

(1-3) 工程(1-2)の化合物 460mg(1.5mmol)をメタ ノール 4ml に溶解した。

これに、水酸化リチウム 67mg(1.6mmol)水溶液 (2ml)を加え、50 deg Cで5時間反応した。

反応液を濃縮後、希塩酸水溶液で中和(pH5)した。

析出した白色固体を濾集し、4-[3-(ピリジン-3-イルオキシ)プロポキシ]安息香酸 350mg(収率 8 3%)を得た。

¹H NMR(270MHz, DMSO-d₆) δ ppm: 2.19-2.2 4(2H,m), 4.19-4.24(4H,m), 7.03(2H,d,J=8.8Hz), 7.29-7.43(2H,m), 7.88(2H,d,J=8.8Hz), 8.16(1 H,d,J=4.4Hz), 8.30(1H,d,J=2.9Hz).

[0069]

(1-4) o-フェニレンジアミン 108g(1.0mol)のジオ キサン(1000ml)溶液に 1 規定水酸化ナトリウム 水溶液(500ml)を加え、氷冷下、ジ-tert-ブチルジ カーボネート 218g(1.1mol)のジオキサン(500ml) 溶液を加えた。

室温で6時間攪拌後、一晩放置した。

溶媒を 1/2 容にまで濃縮した後、酢酸エチルで 抽出した。

有機層を飽和食塩水で洗浄後、乾燥、溶媒を 去して得た残渣をシリカゲルカラムクロマトグラ フィー(溶媒、プロロホルム)で精製し、得られた固 体をエチルエーテルで洗浄することにより N-tert ・プトキシカルボニール・ロフェニレンジアミン 68.4g (収率 32%)を白色固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 3.75(2H,s), 6.26(1H,s), 6.77(1H,d,J=8.1Hz), 6.79(1H,dd,J=7.3,8.1Hz), 7.00(1H,dd,J=7.3,8.1Hz), 7.27(1H,d,J=8.1Hz).

With physiological saline after washing, it dried organic layer with anhydrous sodium sulfate ,concentrated and 4 - it acquired [3 - (pyridine -3- yloxy) propoxy] ethyl benzoate 0.5g (yield 95%) as white solid.

Sup>1-(sup>Hmnr (270 MHz, CDCl-sub>3-(sub>) ;de pm: 1.38 (3 H, t, J=7.3Hz), 2.26 - 2.88 (2 H, m), 4. 19 - 4.25 (4 H, m), 4.34 (2 H, q, J=7.3Hz), 6.94(2 H, d, J=9.5Hz), 7.20 - 7.22 (2 H, m), 8.00 (2 H, d, J=8.8Hz), 8.21 - 8.23 (1 H, m), 8.31 (1 H, br. 8)

1006

compound 460 mg (1.5 mmol) of (1 - 3) step (1 - 2) w as melted in methanol 4 ml .

In this, 5 hours it reacted with 50 deg C including lithiu m hydroxide 67mg (1.6 mmol) aqueous solution (2 ml).

reaction mixture after concentrating, it neutralized (pH 5) with dilute aqueous hydrochloric acid solution .

white solid which it precipitated was filtered, 4 - [3 - (p yridine -3- yloxy) propoxy] benzoic acid 350mg (yield 83%) wasacouired.

≤sup>1-(ssup>Hmur (270 MHz, DMSO -d-sub>)√c/sub>), yde ppm :2.19-2.24 (2 H, m), 4.19 - 4.24 (4 H, m), 7.03 (2 H, d, J=8.8Hz), 7.29 - 7.43 (2 H, m), 7.88(2 H, d, J=8.8Hz), 8.16 (1 H, d, J=4.4Hz), 8.30 (1 H, d, J=2.9Hz).

[0069]

dioxane (500 ml) solution of under ice cooling, di-t-bu tyl dicarbonate 218g (1.1 mol) was added to dioxane (1 000 ml) solution of(1 - 4) o-phenylenediamine 108g (1. 0 mol) including 1 normal sodium hydroxide water solu tion (500 ml).

6 hours after stirring , overnight it left with room tempe rature .

After concentrating solvent to 1/2 permitting/inserting, ite xtracted with ethylacetate .

It acquired N-t-butoxy carbonyl -o-phenylenediamine 6 8.4g (yield 32%) it refined residue which after washing, removing drying and solvent with saturated saline, acquires organic layer with silica gel column chromatography (solvent; chloroform), by washing solid which is acquire d with ethyl ether as white solid.

<sup>1
<sup>1
<sup>3
<sub>3
<sub>3
<sub>3
<sub>3
<sup>1
<sup>5
<sup>6
<sup>7
<tu>1
<tu>

[0070]

(1-5) 工程(1-3)の化合物 170mg(0.6mmol)、トリエチルアミン 0.15ml、4・ジメチルアミノピリジン 13 mg のアセトニトリル(5ml)溶液に p-ニトロペンゼンスルホニルクロリド 140mg を加え 20 分間撹拌した。

これに、工程(1-4)の化合物130mgを加え、10時間撹拌した。

反応液をクロロホルムにて希釈した後、有機層 を飽和炭酸水素ナトリウム水溶液で洗浄した。

無水硫酸ナトリウムで乾燥後、濃縮し、さらにシリカゲルカラムクロマトグラフィー(溶媒、酢酸エチル)で精製し、N-[2-(N-tert-ブトキシカルボニル)アミノフェニル]-4-[3-(ピリジン-3-イルオキシ)プロポキシ)ベンズアミド 160mg(収率 55%)を白色固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 2.28-2.37(2H,m), 4.20-4.26(4H,m), 6.89-6.98 (3H,m), 7.11-7.24(5H,m), 7.75(1H,dd,J=1.5,8.1 Hz), 7.93(2H,d,J=8.8Hz), 8.21-8.24(1H,m), 8.3 3-8.34(1H,m), 9.05(1H,br.s).

[0071]

(1-6) 工程(1-5)の化合物 130mg をジオキサン 3 ml に溶解し、4 deg C に冷却した。

これに、4 規定塩酸・ジオキサン溶液 1ml を加え、3 時間撹拌した。

反応液に酢酸エチルと飽和炭酸水素ナトリウム 水溶液を加えた。

有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、濃縮し、N-(2-アミノフェニル)-4-[3-(ピリジン-3-イルオキシ)プロポキシ/ベンズアミド 100mg(定量的)を白色固体として得た。

mp. 165-168 deg C.

¹H NMR(270MHz, DMSO-d₆) δ ppm: 2.20-2.2 5(2H_m), 4.07-4.25(4H_m), 4.86(2H_s), 6.56-6. 62(1H_m), 6.76-6.79(1H_m), 6.93-7.15(4H_m), 7.30-7.43(2H_m), 7.96(2H_sd, J=8.8Hz), 8.16-8.32 (2H_m), 9.54(1H_ss).

[0072]

実施例2

N-(2-アミノフェニル)-4-[2-(ピリジン-3-イルオキ

[0070]

compound 170mg of (1 - 5) step (1 - 3) (0.6 mmol), 2 0 min it agitated in acetonitrile (5 ml) solution of trieth ylamine 0.1 5ml, 4- dimethylamino pyridine 13mg including p- nitrobenzene sulfonyl chloride 140mg.

In this, 10 hours it agitated including compound 130mg of step (1 - 4).

After diluting reaction mixture with chloroform, organic layer was washed with the saturated aqueous sodium bi carbonate solution.

After drying, it concentrated with anhydrous sodium sulfate, furthermore refined with silica gel column chromatog raphy (solvent ;ethylacetate), N- [2 - (N-t- butoxy carb onyl) amino phenyl] - 4 - it acquired [3 - (pyridine -3 - yloxy) propoxy] benzamide 160mg (yield 55%) as the white solid.

¹Hnmr (270 MHz, CDCl
CDCl
sub>3
,0
,28 - 2.37 (2 H, m), 4.20 - 4.26 (4 H, m), 6.89 - 6.98 (3 H, m), 7.11 - 7.24 (5 H, m), 7.75 (1 H, dd, J=1.5, 8.1Hz), 7.93 (2 H, d, J=8.8H z), 8.21 - 8.24 (1 H, m), 8.33 - 8.34 (1 H, m), 9.05 (1 H, br.s).

[0071]

It melted compound 130mg of (1 - 6) step (1 - 5) in di oxane 3ml, cooled in 4 deg C.

In this, 3 hours it agitated including 4 normal hydrochlor ic acid -dioxane solution 1ml.

ethylacetate and saturated aqueous sodium bicarbonate solution were added to reaction mixture.

You washed organic layer with saturated saline, after drying, concentrated with anhydrous sodium sulfate, N- (2 -amino phenyl) - 4 - you acquired [3 - (pyridine -3- y loxy) propoxy] benzamide 100mg (quantitative) as the white solid.

mp.165-168deg C.

<sup>I-/sup>Hnmr (270 MHz, DMSO -d-sub>6-/sub>)de ppm 12.20-2.25 (2 H, m), 4.07 - 4.25 (4 H, m), 4.86 (2 H, s), 6.56 - 6.62 (1 H, m), 6.76 -6.79 (1 H, m), 6.93 - 7.15 (4 H, m), 7.30 - 7.43 (2 H, m), 7.96 (2 H, d, J=8.8Hz), 8.16 - 8.32 (2 H, m), 9.54(1 H, s).

[0072]

Working Example 2

N- (2 -amino phenyl) - 4 - synthesis of [2 - (pyridine

- シ)エトキシメチル]ベンズアミド (表-1:化合物番号 2)の合成
- (2-1) 水素化ナトリウム(60%油性)2.2g の DMF (60m)懸濁液に 3-ヒドロキシピリジン 5g(52mmo l)を加え、4 deg C で 30 分間撹拌した。
- これにブロモ酢酸エチル 5.8ml(52mmol)を加え、6時間撹拌した。
- 反応液を濃縮後、酢酸エチルと水を加え分配した。
- 有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。
- これを濃縮後、シリカゲルカラムクロマトグラフィー(溶媒,酢酸エチル)で精製し、(ビリジン・3・イルオン)酢酸エチル 4.3g(収率 45%)を油状物として得た。
- ¹H NMR(270MHz, CDCl₃) δ ppm: 1.30(3H,t,J =7.3Hz), 4.28(2H,q,J=7.3Hz), 4.67(2H,s), 7.18-7.24(2H,m), 8.27-8.35(2H,m).

[0073]

- (2-2) 水素化リチウムアルミニウム 0.5g(13mmo l)の THF(20ml)懸濁液を-78 deg C に冷却し、 工程(2-1)の化合物 1.2g(6.6mmol)を加えた。
- 3 時間撹拌後、水を加えて撹拌した。
- 不溶物を濾過により除いた後、濃縮して 2-(ピリ ジン-3-イルオキシ)エタノール 0.8g(収率 86%)を 得た。
- ¹H NMR(270MHz, CDCl₃) δ ppm: 4.00(2H,t,J = 4.4Hz), 4.14(2H,t,J=4.4Hz), 7.22-7.27(2H,m), 8.23(1H,t,J=2.9Hz), 8.32-8.36(1H,m).

[0074]

- (2-3) 水素化ナトリウム(60%油性)30mgのDMF (3ml)懸濁液を 4 deg C に冷却後、工程(2-2)の化合物 100mg(0.7mmol)を加えた。
- 室温に戻し 30 分間撹拌した後、再び 4 deg C に冷却した。
- これに 4-ブロモメチル安息香酸メチルを加え、 室温にて5時間反応した。
- 反応液を濃縮後、酢酸エチルと水で分配した。
- 有機層を生理食塩水で洗浄後、無水硫酸マグ ネシウムで乾燥し濃縮した。

- -3- yloxy) ethoxymethyl] benzamide (Table 1 :compou nd number $\bf 2$)
- (2 1) sodium hydride (60% oily) in DMF (60 ml) s uspension of 2.2 g 30 min itagitated with 4 deg C 3 -hydroxypyridine 5g including (52 mmol).
- 6 hours it agitated in this including ethyl bromoacetate 5.8ml (52 mmol).
- reaction mixture after concentrating, was distributed including ethylacetate andwater.
- organic layer with saturated saline after washing, was dri ed with anhydrous sodium sulfate .
- This after concentrating, it refined with silica gel column chromatography (solvent ;ethylacetate), it acquired(pyrid ine -3- yloxy) ethylacetate 4.3g (yield 45%) as oil .
- <sup>1
 <sup>1
 <sup>1
 <sup>1
 <sup>3
 <sub>3
 <sub>4
 <sub>4
 <sub>4
 <sub>4
 <sub>4
 <sub>4
 <sub>4
 <sub>5
 <sub>5
 <sub>6
 <sub>6
 <sub>6
 <sub>7
 <sub>7
 <sub>8
 <sub>7
 <sub>8
 <sub>7
 <sub>8
 <sub>7
 <sub>8
 <sub>9
 <p

F00731

- THF (20 ml) suspension of (2 2) lithium aluminum h ydride 0.5g (13 mmol) was cooled in 78 deg C, the compound 1.2g (6.6 mmol) of step (2 1) was added.
- It agitated 3 hours agitation later, including water.
- After excluding insoluble matter due to filtration, concent rating, 2 itacquired (pyridine -3- yloxy) ethanol 0.8g (yield 86%).
- <sup>!sup>!fup>Hnmr (270 MHz , CDCl<<sub>>sub>>jd,1.00 (2 H, t, J=4.4Hz),1.22 7.27 (2 H, m),8.23 (1 H, t, J=2.9Hz),8.36 8.36(1 H, m).

[0074]

- (2 3) sodium hydride (60% oily) DMF (3 ml) suspension of 30 mg after cooling, the compound 100mg (0.7 mmol) of step (2 2) was added to 4 deg C.
- Again you reset to room temperature and 30 min after a gitating, you cooledin 4 deg C.
- 5 hours it reacted to this with room temperature includin g 4 -bromomethyl methyl benzoate .
- reaction mixture after concentrating, was distributed with ethylacetate and thewater.
- With physiological saline after washing, it dried organic layer with anhydrous magnesium sulfate andconcentrated.

これを、シリカゲルムクロマトグラフィー(溶媒:酢酸エチル)で精製し、4-[2-(ピリジン-3-イルオキシ)エトキシメチル]安息香酸メチル 88mg(定量的)を得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 3.86-3.89(2 H,m), 3.92(3H,s), 4.20-4.24(2H,m), 4.69(2H,s), 7.18-7.26(2H,m), 7.43(2H,d,J=8.8Hz), 8.03(2 H,d,J=8.1Hz), 8.22-8.25(1H,m), 8.34-8.36(1H,m).

[0075]

(2-4) 工程(2-3)の化合物 80mg(0.3mmol)をメタ ノール 0.5ml に溶解し、水酸化リチウム 13mg(0.3mmol)の水溶液(0.3ml)を加えた。

6時間撹拌した後、反応液を濃縮した。

濃縮物をジクロロメタン 4ml に懸濁し、オキザリルクロリド 0.1ml を加え、2 時間撹拌した。

反応溶液を濃縮後、さらにトルエンを加え2回共 沸した。

これにジクロロメタン3mlを加え、さらに実施例1 の工程(1-4)の化合物100mg(0.48mmol)とピリジン0.4ml のジクロメタン(2ml)溶液を加え、1 時間機料した。

反応液に酢酸エチルと水を加え分配した。

有機層を生理食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。

濃縮後、シリカゲルカラムクロマトグラフィー(溶 媒、酢酸エチル)にて精製を行い、N-[2-(N-tert-ブ トキシカルボニル)アミノフェニル]-4-[2-(ピリジン-3-イルオキシ)エトキシメチル)ペンズアミド 122m g(収率 97%)を淡黄色固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.51(9H,s), 3.86-3.90(2H,m), 4.21-4.24(2H,m), 4.70(2H, s), 6.88(1H,m), 7.13-7.26(6H,m), 7.46(2H,d,J=7.9Hz), 7.79-7.82(1H,m), 7.95(2H,d,J=8.2Hz), 8.22-8.24(1H,m), 8.34(1H,m), 9.18(1H,br.s).

[0076]

(2-5) 工程(2-4)の化合物 110mg(0.23mmol)の ジクロロメタン(1ml)溶液を4 deg C に冷却後、1 0%トリフルナロ酢酸-ジクロロメタン溶液 1ml を 加え、4 時間撹拌した。

反応溶液に飽和炭酸水素ナトリウム水溶液と酢酸エチルを加え、分配した。

This, was refined with [shirikagerumukuromatogurafii] (s olvent ;ethylacetate), 4 - [2 - (pyridine -3- yloxy) etho xymethyl] methyl benzoate 88mg (quantitative) was ac mired.

Sup>1-(Sup>Hnmr (270 MHz , CDCI-Sub>3-(Sub>);de ppm :3.86-3.89 (2 H, m), 3.92 (3 H, s), 4.20 - 4.24 (2 H, m), 4.69 (2 H, s), 7.18 - 7.26(2 H, m), 7.43 (2 H, d, J=8.8Hz), 8.03 (2 H, d, J=8.1Hz), 8.22 - 8.2 5 (1 H, m), 8.34 - 8.36 (1 H, m).

10075

compound 80mg (0.3 mmol) of (2 - 4) step (2 - 3) was melted in methanol 0.5ml, aqueous solution (0.3 ml) of lithium hydroxide 13mg (0.3 mmol) was added.

6 hours after agitating, reaction mixture was concentrate

Suspension it did concentrate in dichloromethane 4ml, 2 hours it agitatedincluding oxalyl chloride 0.1 ml.

reaction solution after concentrating, twice azeotropic boil ing was done furthermore including toluene.

1 hour it agitated in this including dichloromethane 3ml , furthermore compound 100mg of step (1 - 4) of Wor king Example 1 (0.48 mmol) with including dichloromet hane (2 ml) solution of pyridine 0.4ml .

It distributed in reaction mixture including ethylacetate an d water.

organic layer with physiological saline after washing, was dried with anhydrous sodium sulfate .

After concentrating, it refined with silica gel column chromatography (solvent ;ethylacetate), N- [2 - (N-t-buto xy carbonyl) amino phenyl] - 4-it acquired [2 - (pyri dine -3- yloxy) ethoxymethyl] benzamide 122mg (yield 97%) as pale vellow solid.

^IHnmr (270 MHz, - CDCI<sub>34/sub>);de ppm: i.51 (9 H, s), 3.86 - 3.90 (2 H, m), 4.21 - 4.24 (2 H, m), 4.70 (2 H, s), 5.88(1 H, m), 7.13 - 7.26 (6 H, m), 7.46 (2 H, d, J=7.9Hz), 7.79 - 7.82 (1 H, m), 7.95 (2 H, d, J=8.2Hz), 8.22 - 8.24 (1 H, m), 8.3 4 (1 H, m), 9.18 (1 H, brs).

[0076]

dichloromethane (1 ml) solution of compound 110 mg (0.23 mmol) of (2 - 5) step (2 - 4) after cooling, 4 ho urs was agitated in 4 deg C including 10% trifluoroacetic acid-dichloromethane solution 1 ml.

It distributed in reaction solution including saturated aque ous sodium bicarbonate solution and ethylacetate .

有機層を生理食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、濃縮して、N-(2-アミ/フェニル)-4-[2-(ビリジン-3-イルオキシ)エトキシメチル]ベンズアミド 88mg(定量的)を淡黄色固体として得た。

mp. 112-114 deg C.

¹H NMR(270MHz, CDCl₃) δ ppm: 3.96-3.90(2 H,m), 4.21-4.24(2H,m), 4.70(2H,s), 6.78-6.87 (2H,m), 7.21-7.36(4H,m), 7.47(2H,d,J=8.6Hz), 7.89(2H,d,J=8.2Hz), 7.95(1H,br.s), 8.21-8.24(1 H.m), 8.31-8.33(1H.m).

[0077]

実施例3

N-(2-アミノフェニル)-4-{[2-(ピリジン-3-イルオキシ)-エチルアミノ]メチル}ベンズアミド (表-1:化合物番号3)の合成

(3-1) 実施例 2 の工程(2-1)の化合物 0.59g(3.3 mmol)と 4-アミノメチル安息香酸メチル 0.60g(3.0 mmol)のキシレン(6ml)懸濁液に、DBU0.98ml (6.6mmol)を加え 80 deg Cで3時間加熱撹拌した。

これに酢酸エチル 50ml を加えた。

飽和炭酸水素ナトリウム水溶液 10ml を加え洗 浄した後に、飽和食塩水10mlで洗浄し、有機層 を無水硫酸ナトリウムで乾燥し濃縮した。

これにメタノール及びジイソプロピルエーテルを加え、析出した固体を濾取、乾燥することにより 4-{[2-(ゼ)ジン・3-イルオキシ)アセチルアミノ]メチル} 安息香酸メチルを 0.65g(収率 72%)得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 3.91(3H₃s), 4.61(2H₃s), 4.62(2H₃d,J=5.1Hz),7.00(1H₃s), 7. 17-7.30(2H₃m), 7.35(2H₄d,J=8.8Hz), 8.01(2H₃d,J=8.1Hz), 8.31(1H₃dd,J=1.5,4.4Hz), 8.35(1H₃d,J=2.9Hz).

[0078]

(3-2) 工程(3-1)の化合物 0.6g(2mmol)の THF 溶液にボラン-ジメチルスルフィド錯体 0.44ml(4.8 mmol)を加え、4 時間加熱還流した。

反応液に濃塩酸 10 滴を加え、40 deg Cで3時間撹拌した。

反応液を濃縮後、酢酸エチルと飽和炭酸水素 ナトリウム水溶液を加え分配した。 With physiological saline after washing, it dried organic layer with anhydrous sodium sulfate ,concentrated, N- (2 -amino phenyl) - 4 - it acquired [2 - (pyridine -3- ylo xy) ethoxymethyl] benzamide 88mg (quantitative) as the pale yellow solid.

mp.112-114deg C.

Ssup>1-/sup>Hnmr (270 MHz, CDC/Ssub>3-/sub>);deppm :3:96-3:90 (2 H, m), 4.21 - 4.24 (2 H, m), 4.70 (2 H, s), 6.78 - 6.87 (2 H, m), 7.21 - 7.36 (4 H, m), 7.47 (2 H, d, J=8.6Hz), 7.89 (2 H, d, J=8.2Hz), 7.95 (1 H, brs), 8.21 - 8.24 (1 H, m), 8.31 - 8.33 (1 H, m).

[0077]

Working Example 3

N- (2 -amino phenyl) - 4 - synthesis of {[2 - (pyridine -3- yloxy) -ethylamino] methyl} benzamide (Table 1 :compound number 3)

compound 0.59g of step (2 - 1) of (3 - 1) Working Exa mple 2 (3.3 mmol) with 4 -aminomethyl methyl benzoa te 0.60g in the xylene (6 ml) suspension of (3.0 mmol), 3 hours heat and stir it did with 80 deg C including the DBU0.98ml (6.6 mmol).

ethylacetate 50ml was added to this.

After washing including saturated aqueous sodium bicarb onate solution 10ml, you washed with saturated saline 1 0ml, dried organic layer with anhydrous sodium sulfate and concentrated.

In this filtering and 4 - {[2 - (pyridine -3- yloxy) acety lamino] methyl } methyl benzoate 0.65 g (yield 72%) was acquired bydries solid which was precipitated including methanol and the diisopropyl ether.

Sup>1-(Sup>Hnmr (270 MHz, CDCl-Sub>3-(Sub>);de ppm :3.91 (3 H, s), 4.61 (2 H, s), 4.62 (2 H, d, J=5, 11tz), 7.00 (1 H, s), 7.17 - 7.30 (2 H, m), 7.35(2 H, d, J=8.8Hz), 8.01 (2 H, d, J=8.1Hz), 8.31 (1 H, dd, J=1.5, 4.4Hz), 8.35 (1 H, d, J=2.9Hz)

[0078]

4 hours heating and refluxing it made THF solution of c ompound 0.6g (2 mmol) of (3 - 2) step (3 - 1) including borane -dimethyl sulfide complex 0.44ml (4.8 mmol

In reaction mixture 3 hours it agitated with 40 deg C in cluding concentrated hydrochloric acid 10 drop.

reaction mixture after concentrating, was distributed inclu ding ethylacetate and saturated aqueous sodium bicarbona 有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥後、濃縮した。

濃縮物をシリカゲルカラムクロマトグラフィー(溶 媒,酢酸エチル・メタノール=10:1)で精製し、4・{[2-(ピリジン・3・イルオキシ)エチルアミノJメチル) 安 息香酸メチル 0.37g(収率 64%)を無色油状物と して得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 3.04(2H,t,J=4.9Hz), 3.91(3H,s), 3.94(2H,s),4.13(2H,t,J=5.3 Hz), 7.16-7.24(2H,m), 7.43(2H,d,J=8.6Hz), 8.0 1(2H,d,J=8.2Hz), 8.21-8.23(1H,m), 8.31-8.32(1 H,m).

[0079]

(3-3) 工程(3-2)の化合物 0.36g(1.25mmol)のジオキサン(10ml)-水(5ml)溶液に、3 規定水酸化ナトリウム水溶液 0.5ml を加えた。

氷冷下、ジ-tert-ブチルジカーボネート 330mg(1.5mmol)を加えた。

室温に戻し2時間撹拌した後、反応液に酢酸エ チルと生理食塩水を加え、分配した。

有機層を生理食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。

濃縮後、シリカゲルカラムクロマトグラフィー(溶 媒,酢酸エチル)で精製し、4-{tert-ブトキシカルボ ニル-[2-(ビリジン-3-イルオキシ)エチルアミノ]メ チル}安息香酸メチル 0.45g(収率 93%)を得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.41(major9 H,s), 1.51(minor9H,s), 3.57(minor2H,br.s), 3.6 (major2H,br.s), 3.92(3H₃),4.08(minor2H,br.s), 4.17(major2H,br.s), 4.61(2H,s), 7.14-7.23(2H,m), 7.31(2H,br.s), 7.98-8.01(2H,m), 8.21-8.26 (2H,m), 回義與性体の混合物。

[0080]

(3-4) 工程(3-3)の化合物 0.45g(1.1mmol)のメタ ノール(4ml)溶液に水酸化リチウム 50mg(1.2mm ol)の水溶液(2ml)を加え、60 deg C で 2 時間撹 拌した。

室温まで冷却後、希塩酸で中和(pH4)した。

反応液を濃縮後、酢酸エチルと飽和食塩水を加 え分配した。

有機層を無水硫酸ナトリウムで乾燥後濃縮し

te solution .

organic layer with saturated saline after washing, after dr ying, was concentrated with anhydrous sodium sulfate .

It refined concentrate with silica gel column chromatogra phy (solvent ;ethylacetate :methanol =10:1), 4 - it acqui red {[2 - (pyridine -3- yloxy) ethylamino] methyl} methyl benzoate 0.37g (yield 64%) as colorless oil.

Sup-1/Sup-Hnmr (270 MHz , CDCI-sub-3-S-sub-) ,deppm :3.04 (2 H, t, I=4.9Hz), 3.91 (3 H, s), 3.94 (2 H, s), 4.13 (2 H, t, I=5.3Hz), 7.16 - 7.24 (2 H, m), 7.43(2 H, d, I=8.6Hz), 8.01 (2 H, d, I=8.2Hz), 8.21 - 8.23 (1 H, m), 8.31 - 8.32 (1 H, m)

[0079]

dioxane of compound 0.36g (1.25 mmol) of (3 - 3) ste p (3 - 2) (10 ml) - 3 rule sodium hydroxide water solution 0.5ml were addedto water (5 ml) solution .

under ice cooling, di-t-butyl dicarbonate 330mg (1.5 m mol.) was added.

You reset to room temperature and 2 hours after agitatin g, you distributed in reaction mixture including ethylaceta te and physiological saline.

After washing organic layer with physiological saline , it dried with anhydrous sodium sulfate .

After concentrating, it refined with silica gel column chromatography (solvent ;ethylacetate), 4 - acquired {t- but oxy carbonyl - [2 - (pyridine -3- yloxy) ethylamino] methyl } methyl benzoate 0.45g (yrield 93%).

<sup>1-(sup>Hnmr (270 MHz. CDCI
-sub>3-(sub>)-yde
ppm :1.41 (major9H, s), 1.51 (minor9H, s), 3.57 (minor2H, brs.), 3.67 (major2H, brs.), 3.92 (3 H, s), 4.08 (minor2H, brs.), 4.17 (major2H, brs.), 4.61 (2 H, s), 7.14 - 7.23 (2 H, m), 7.31 (2 H, brs.), 7.98 - 8.01 (2 H, m), mixture . of8.21 - 8.26 (2 H, m) rotational isomer

[0800]

In methanol (4 ml) solution of compound 0.45g (1.1 m mol) of (3 - 4) step (3 - 3) 2 hours itagitated with 60 deg C including aqueous solution (2 ml) of lithium hy droxide 50mg (1.2 mmol).

To room temperature after cooling, it neutralized (pH 4) with dilute hydrochloric acid .

reaction mixture after concentrating, was distributed including ethylacetate and saturated saline.

organic layer after drying was concentrated with anhydro

た。

濃縮物をアセトニトリル 10ml に溶解し、トリエチ ルアミン 0.33ml、4-ジメチルアミノビリジン 26mg を加えた。

さらに p-ニトロベンゼンスルホニルクロリド 0.26g を加え 30 分撹拌した。

これに、実施例 1 の工程(1-4)の化合物 0.25g(1. 2mmol)を加え 3 時間撹拌した。

反応液を濃縮した後、酢酸エチルと飽和炭酸水 素ナトリウム水溶液を加え分配した。

有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。

濃縮後、シリカゲルカラムクロマトグラフィー(溶 蝶、酢酸エチル)で精製を行い、№[2-(N-tert-ブト キシカルポニル)アミ/フェニルリ-4-(tert-ブトキシ カルポニル-[2-(ビリジン・3-イルオキシ)エチルア ミカリンチル/ペンズアミド 0.54g(収率 56%)を白色 固体として得た。

¹H NMR(270MHz, CDCl₃) δ ppm: 1.50(18H, s), 3.57(minor2H,br.s), 3.67(major2H,br.s), 4.0 7-4.23(2H,m), 4.62(2H,s), 7.12-7.32(8H,m), 7.9(1H,m), 7.90(2H,d,J=8.2Hz), 8.20-8.22(2H, m), 9.18(1H,br.s). 回転異性体の混合物。

[0081]

(3-5) 工程(3-4)の化合物 0.33g(0.58mmol)のジ オキサン(5ml)溶液に 4 規定塩酸-ジオキサン 2 ml を加え 2 時間撹拌した。

反応溶液に酢酸エチルと飽和炭酸水素ナトリウム水溶液を加え分配した。

有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、濃縮してN-(アミノフェニル)-4-{{2 (ピリジン-3-イルオキシ)エチルアミノ]メチル}ベンズアミド 0.21g(定量的)を得た。

mp. (amorphous).

¹H NMR(270MHz, CDCl₃) δ ppm: 3.04(2H,t,J=4.9Hz), 3.95(2H,s), 4.13(2H,t,J=4.6Hz), 6.81-6.86(2H,m), 7.06-7.11(1H,m), 7.19-7.33(3H,m), 7.46(2H,d,J=8.2Hz), 7.86(2H,d,J=7.9Hz), 8.20-8.22(1H,m), 8.28-8.29(1H,m).

実施例3

と同様の方法により、実施例 4 から実施例 8 の 化合物を合成した。 us sodium sulfate

concentrate was melted in acetonitrile 10ml, triethylamin e 0.33ml, 4- dimethylamino pyridine 26mg was added.

Furthermore 30 minutes it agitated including p- nitrobenz ene sulfonyl chloride 0.26g.

In this, 3 hours it agitated including compound 0.25g (1. 2 mmol) of step (1 - 4) of Working Example 1.

After concentrating reaction mixture, it distributed including ethylacetate and saturated aqueous sodium bicarbonate solution.

organic layer with saturated saline after washing, was dri ed with anhydrous sodium sulfate .

After concentrating, it refined with silica gel column chr omatography (solvent; ethylacetate), N- [2 - (N- t- buto xy carbonyl) amino phenyl] - 4-it acquired (t- butoxy carbonyl - [2 - (pyridine -3- yloxy) ethylamino] meth yl } benzamide 0.34g (yield 56%) as white solid .

<sup>I-/sup>Hnmr (270 MHz , CDCI₃);de ppm :1:00 (18 H, s), 3.57 (minor2H, br.s), 3.67 (major 2H, brs), 407 - 4.23 (2 H, m), 4.62 (2 H, s), 7.12-7.32 (8 H, m), 7.79 (1 H, m), 7.90 (2 H, d, J=8.2Hz), 8.20 - 8.22 (2 H, m), mixture of 9.18 (1 H, brs).rotational isomer

[0081]

2 hours it agitated in dioxane (5 ml) solution of compo und 0.33g (0.58 mmol) of (3 - 5) step (3 - 4) includin g 4 normal hydrochloric acid -dioxane 2ml .

It distributed in reaction solution including ethylacetate a nd saturated aqueous sodium bicarbonate solution.

With saturated saline after washing, it dried organic layer with anhydrous sodium sulfate ,concentrated and N- (am ino phenyl) - 4 - acquired {[2 - (pyridine -3- yloxy) e thylamino | methyl } benzamide 0.21g (quantitative).

mp. (amorphous).

<sup>I-(sup>Hnmr (270 MHz , CDCI<sub>3-(sub>);de ppm :3.04 (2 H, t, J=4.9Hz), 3.95 (2 H, s, J=4.13 (2 H, t, J=4.6Hz), 6.81 - 6.86 (2 H, m), 7.06 - 7.11(1 H, m), 7.19 - 7.33 (3 H, m), 7.46 (2 H, d, J=8.2Hz), 7.86 (2 H, d, J=7.9Hz), 8.20 - 8.22 (1 H, m), 8.2 8 - 8.29 (1 H, m)

Working Example 3

With with similar method, compound of Working Example 8 was synthesized from Working Example 4.

以下に、化合物の融点(mp.)、「H NMR の測定値を示す。

[0082]

実施例4

N-(2-アミノフェニル)-4-[(3-ピリジン-3-イル・プロ ピルアミノ)メチル]ベンズアミド 塩酸塩(表-1:化 合物番号 4 の塩酸塩)

mp. 192 deg C(dec.).

¹H NMR(270MHz, DMSO-d₀) δ ppm: 2.13(2H, t,J=7.3Hz), 2.95-2.98(4H,m), 4.23(2H,s), 7.30-7.42(2H,m), 7.49-7.52(1H,m), 7.61-7.64(1H,m), 7.78(2H,d,J=8.1Hz), 8.01-8.06(1H,m), 8.18(2H,d,J=8.1Hz), 8.18-8.54(1H,m), 8.80-8.91(2H,m), 9.79(2H,br.s), 10.63(1H,s).

[0083]

実施例 5

N-{2-アミノフェニル)-4-{[(ピリジン-3-イルメチル) アミノJメチル}ベンズアミド 塩酸塩(表-1:化合物 番号 5 の塩酸塩)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d_c) δ ppm: 4.32(2H, s), 4.38(2H,s), 7.30-7.90(7H,m), 8.15(2H,d,J=8. Hz), 8.50(2H,d,J=1.5Hz), 8.82(1H,d,J=1.5Hz), 8.99(1H,s), 10.16(2H,br.s), 10.56(1H,s).

[0084]

実施例 6

N-(2-アミノフェニル)-4-{[(ピリジン-2-イルメチル) アミノ]メチル}ベンズアミド 塩酸塩(表-1:化合物 番号6の塩酸塩)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.33(4H, s), 7.32-7.45(2H,m), 7.45-7.50(2H,m), 7.60(2 H,d,J=7.3Hz), 7.73(2H,d,J=8.1Hz), 7.93(1H,dd d,J=1.5,7.3,6.6Hz), 8.19(2H,d,J=8.1Hz), 9.90(2 H,br.s). 10.64(1H,br.s).

[0085]

実施例7

N-(2-アミノフェニル)-4-[(メチル-ピリジン-3-イルメチルアミノ)メチル]ペンズアミド 塩酸塩(表-1: 化合物番号 7 の塩酸塩)

mp. (amorphous).

Below, melting point of compound (mp.), measured value of ¹Hnmr is shown.

[0082]

Working Example 4

N- (2 -amino phenyl) - 4 - [(3 -pyridine -3- yl -propy l amino) methyl] benzamide acetate (acetate of Table l :compound number 4)

mp.192deg C (dec).

Sup>1-6/sup-Himmr (270 MHz, DMSO -d-sub>-6/sub>-yde ppm 2.13 (2 H, I, =7.3Hz), 2.95 - 2.98 (4 H, m), 4.23 (2 H, s), 7.30 - 7.42 (2 H, m), 7.49 -7.52 (1 H, m), 7.61 - 7.64 (1 H, m), 7.78 (2 H, d, =#8.1Hz), 8.01 - 8.06 (1 H, m), 8.18 (2 H, d, =#8.1Hz), 8.51 - 8.54(1 H, m), 8.80 - 8.91 (2 H, m), 9.79 (2 H, brs.), 10.63 (1 H, s).

T00831

Working Example 5

N- (2 -amino phenyl) - 4 - {[(pyridine -3- yl methyl) amino] methyl} benzamide acetate (acetate of Table 1 :compound number 5)

mp. (amorphous).

<sup>1-/sup>Hnmr (270 MHz, DMSO -d-sub>></sub>)de ppm: 4-32 (2 H, s), 4-38 (2 H, s), 7-30 - 7-90 (7 H, m), 8.15 (2 H, d, J=8.0Hz), 8.50 (2 H, d, J=8.1 Hz), 8.820 (1 H, d, J=1.5Hz), 8.99 (1 H, s), 10.16 (2 H, br.s), 10.56 (1 H, s).

[0084]

Working Example 6

N- (2 -amino phenyl) - 4 - {[(pyridine -2- yl methyl) amino] methyl} benzamide acetate (acetate of Table 1 :compound number 6)

mp. (amorphous).

<sup>1-t/sup>-Hnur (270 MHz , DMSO -d-sub>-6/sub>)de ppm :4.33 (4 H, s), 7.32 - 7.45 (2 H, m), 7.45 - 7.50 (2 H, m), 7.60 (2 H, d ,]=7.3Hz), 7.73(2 H, d ,]=8.1Hz), 7.93 (1 H, ddd, J=1.5, 7.3, 6.6Hz), 8.19 (2 H, d , J=8.1Hz), 9.90 (2 H, br.s), 10.64 (1 H, br.s).

[0085]

Working Example 7

N- (2 -amino phenyl) - 4 - [(methyl -pyridine -3- yl methylamino) methyl] benzamide acetate (acetate of Ta ble 1 :compound number 7)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₂)δ ppm: 2.60(3H, s), 4.40-4.80(4H,m), 7.36(1H,dd,J=7.3,8.1Hz), 4.4(1H,dd,J=6.6,7.3Hz), 7.63(1H,d,J=6.6Hz), 7.84(2H,d,J=8.1Hz), 7.54(1H,d,J=7.3Hz), 7.98(1H,d,J=8.1Hz), 8.72(1H,d,J=8.1Hz), 8.72(1H,d,J=8.1Hz), 8.93(1H,d,J=5.1Hz), 9.14(1H, s), 10.7(1H,s), 10.7(1H,s), 10.7(1H,s), 10.7(1H,s), 10.7(1H,s).

[0086]

実施例8

N-(2-アミノフェニル)-4-[(ビス-ピリジン-3-イルメ チルアミノ)メチル]ベンズアミド 塩酸塩(表-1:化 合物番号 8 の塩酸塩)

mp. (amorphous).

¹H NMR(270MHz, DMSO-d₆) δ ppm: 4.06(2H, br.s), 4.31(4H,br.s), 7.30-7.40(2H,m), 7.50-7.65 (3H,m), 7.70-7.80(2H,m), 7.85-7.95(2H,m), 8.0 5(2H,d,J=5.1Hz), 8.20-8.35(2H,m), 8.78(2H,d,J=5.1Hz), 10.53(1H)br.s).

[0087]

薬理試験例1

A2780 細胞に対する分化誘導作用試験

アルカリフォスファターゼ(ALP)活性の上昇は、 ヒト大陽癌細胞の分化の指標として知られており、例えば路酸ナトリウムが ALP 活性を上昇さ せることが知られている[Young 5;Cancer Res.、 42、2976(1985)、Morita 5;Cancer Res.、42、454 0(1982)]。

そこで ALP 活性を指標に分化誘導作用の評価を行った。

(実験方法) 96 穴プレートに 15,000 ヶ/well となるように、A2780 細胞を 0.1ml ずつまき、翌日培地にて段階希釈した被験薬の溶液を 0.1ml ずつ添加した。

- 3 日間培養後、プレート上の細胞を TBS 緩衝液 (20mMTris,137mM NaCl、pH7.6)で 2 回洗浄した。
- ついで、0.6mg/ml の濃度の p-エトロフェニルホスフェイト(9.6% ジエタノールアミン、0.5mM Mg Cl₂(pH9.6))溶液を 0.05ml ずつ添加し、室温で 3 0 分インキュベートした。
- 3 規定水酸化ナトリウム水溶液 0.05ml で反応を 停止した後、405nm の吸光度を測定し、ALP 活 性の上昇を惹起する薬物の最小濃度(ALPmin)

Supp-1-(Sup-Hnnr (270 MHz , DMSO -d-sub>-6-(sub-)yde ppm 2.50 (3 H, s), 440 - 4.80 (4 H, m), 7.36 (1 H, dd, J=7.3, 8.1Hz), 7.44 (1 H, dd, J=6.6, 7.3Hz), 7.63 (1 H, d, J=6.6Hz), 7.84(2 H, d, J=8.1Hz), 7.54 (1 H, d, J=7.3Hz), 7.98 (1 H, dd, J=5.1, 7.3Hz), 8.22 (2 H, d, J=8.1Hz), 8.72 (1 H, d, J=5.1Hz), 8.93 (1 H, d, J=5.1Hz), 9.14 (1 H, s), 10.7 (1 H, s).

[0086]

Working Example 8

N- (2 -amino phenyl) - 4 - [(bis -pyridine -3- yl meth ylamino) methyl] benzamide acetate (acetate of Table 1 :compound number 8)

mp. (amorphous).

Sup3-1/Sup3-Hnmr (270 MHz , DMSO -d-Sub5-6/Sub>), de ppm :4.06 (2 H, brs.) , 4.31 (4 H, brs.) , 7.30 - 7.40 (2 H, m.) , 7.50 - 7.65 (3 H, m.) , 7.70 - 7.80 (2 H, m.) , 7.85 - 7.95 (2 H, m.) , 8.05 (2 H, d, J=5.1Hz.) , 8.20 - 8.35 (2 H, m.) , 8.78 (2 H, d, J=5.1Hz.) , 10.53 (1 H, brs.) .

[0087]

pharmacological test Example 1

differentiation-inducing action test for A2780cell

Rise of alkaline phosphatase (ALP) activity is known, a s indicator of differentiation of human carcinoma of the c olon cell for example sodium butanoate rising has been known ALPactivity, [Young and others; CancerRes., 45, 2976 (1985), Morita and others; CancerRes., 42, 4540 (1982)].

Then ALPactivity you appraised differentiation-inducing a ction in indicator .

- In order (experimental method) to become 15,000 [ke] /well in 96 -hole plate , A2780cell the step is diluted s olution of test chemical which was added 0.1 ml at atime with firewood 0.1 ml at a time and next day culture medium .
- 3 -day period culture cell after and on plate twice was washed with TBSbuffer (20 mMTris, 137mM NaCl, pH 7.6).
- It added 0.05 ml at a time 9.6% diethanolamine, 0.5m M MgCl₂ (pH 9.6) solution, 30 minute in cubate didwith room temperature. Next, p-nitrophenyl p hosphate of concentration of 0.6 mg/ml

After stopping reaction with 3 rule sodium hydroxide wa ter solution 0.05ml, absorbance of 405 nm wasmeasure d, minimum concentration (ALPmin) of drug which cau を求めた。

(実験結果) 実験結果を、表-2[表 11]に示した。

ses rise of ALPactivity was sought.

(experimental result) experimental result , was shown in Table 2 [Table 11].

[0088]

【表 11】

[0088] [Table 11]

表-2:A2780 細胞に対する分化誘導作用

differentiation-inducing action for Table 2 :A2780cell

供試化合物	LPmin(µM)	Terentiation-inducing action for Table 2 :A2/80cell		
PCBA IC CI 100	LFIIIII (# WI)			
test compound	LPmin (; mu M)			
実施例1の化合物	0.03			
compound of Working Example 1	0. 03			
実施例2の化合物	1			
compound of Working Example 2	1			
実施例3の化合物	0.3			
compound of Working Example 3	0. 3			
実施例4の化合物	10			
compound of Working Example 4	10			
実施例5の化合物	10			
compound of Working Example 5	10			
実施例6の化合物	10			
compound of Working Example 6	10			
実施例7の化合物	3			
compound of Working Example 7	3			
実施例8の化合物	1			
compound of Working Example 8	1			

[0089]

[0089]

【発明の効果】

[Effects of the Invention]

本発明の新規ベンズアミド誘導体は分化誘導作用を有し、悪性腫瘍、自己免疫疾患、皮膚

novel benzamide derivative of this invention has different iation-inducing action , it is useful as treatment and/or $\rm i$

病、寄生虫感染症の治療および/または改善薬などの医薬品として有用である。

特に制癌剤として効果が高く、造血器腫瘍、固形癌に有効である。

mprovement medicine or other drug of malignant tumor, autoimmune disease, dermatological disease, parasite in a prection.

Especially, effect is high, effective to hematopoietic tumo r , solid cancer as anticancer drug .