A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2ED

Bookmark

Show all steps: ON

Problem

Let G be a group. By an *automorphism* of G we mean an isomorphism $f: G \to G$.

By an *inner automorphism* of G we mean any function ϕ_a of the following form:

for every
$$x \in G$$
 $\phi_a(x) = axa^{-1}$

Prove that every inner automorphism of *G* is an automorphism of *G*.

Step-by-step solution

Step 1 of 4

Suppose that G is a group. Consider an inner automorphism of G as the function $\phi_a:G\to G$ of the following form:

for every $x \in G$, $\phi_a(x) = axa^{-1}$.

Objective is to prove that every inner automorphism of G is an automorphism of G. That is, the function ϕ_a is one-one, onto and homomorphism.

Comment

Step 2 of 4

Let $x, y \in G$. Then to show that ϕ_a is one-one, suppose that $\phi_a(x) = \phi_a(y)$. Then by the use of definition of inner automorphism one have,

$$\phi_a(x) = \phi_a(y)$$

$$axa^{-1} = aya^{-1}$$

Now pre-multiply both the sides by a^{-1} and then do the post-multiply by a in the following manner:

$$a^{-1} \cdot axa^{-1} = a^{-1} \cdot aya^{-1}$$
$$exa^{-1} = eya^{-1}$$
$$xa^{-1}a = ya^{-1}a$$
$$x = y.$$

Since the condition $\phi_a(x) = \phi_a(y)$ implies that x = y, therefore ϕ_a is one-one.

Comment

Step 3 of 4

Since for each $y \in G$ there exists $x = a^{-1}ya$ such that

$$\phi_a(x) = y$$

Thus, the mapping ϕ_a is onto.

For homomorphism, consider

$$\phi_a(xy) = a(xy)a^{-1}$$

$$= ax(a^{-1}a)ya^{-1}$$

$$= (axa^{-1})(aya^{-1})$$

$$= \phi_a(x)\phi_a(y).$$

This implies that ϕ_a is homomorphism.

Comment

Step 4 of 4

Since ϕ_a is one-one, onto and homomorphism, therefore ϕ_a of G is an automorphism of G.

Comment