DEVOIR DE MATHEMATIQUES N°4 - JANVIER 2022 DUREE 02 HEURE

EXERCICE 1 (05 points)

- 1) On considère l'équation (E) dans $C: Z^4 + 7 + 24i = 0$
- a) Vérifier $Z_0 = 2-i$ est une solution de (E)
- b) Déterminer les racines quatrièmes de l'unité dans C et en déduire l'ensemble des solutions de(E).

EXERCICE 2 (07 points)

On considère le polynôme P de variable complexe z définie par $P(z) = z^3 + iz^2 - 3z + 5i$

- 1) Calculer P(i) puis déterminer toutes les racines de P(z) on notera z_1 la racine dont la partie réelle est négative et z_2 l'autre racine.
- 2 a) Ecrire sous forme trigonométrique que le nombre complexe $\frac{z_1 i}{z_2 i}$

Dans le plan complexe de repère (o, \vec{u}, \vec{v}) , on désigne par A(i), B (z₁) et C(z₂) Déduire de la question précédente la nature du triangle ABC.

On considère A(i), B(-i) et M(z) on pose $z' = \frac{z-i}{z+i}$

- 1. a) Déterminer l'ensemble (D) des points M(z) tels que z' soit réel.
 - b) Déterminer l'ensemble (C) des points M(z) tel z' soit imaginaire pur
- 2. a) Interprétez géométriquement les modules de z-i et z+i

EXERCICE 3 (08 points)

Soit f la fonction définie par : $f(x) = 2\sin^3 x - 3\sin x$.

- a. Montrer que f est périodique de période 2π .
- b. Etudier la parité de f.
- c. Justifier que l'étude de f peut se faire dans l'intervalle $[0,\pi]$
- d. On note C_1 la courbe représentative de f sur $[0, \pi]$. Quelles transformations géométriques permettent de construire C_f à partir de C_1 .
- e. Démontrer que pour tout réel x f'(x) = -3cosx cos2x. Donner le tableau de variation de f restreinte à $[0, \pi]$
- f. Construire C_f dans $[-2\pi, 2\pi]$

Au traail!