### Title of the Case Study:

# EXCESS 3 TO BCD CONVERSION

Roll No & Student name:

BU21EECE0100387 MOHAN PS BU21EECE0100486 D.GOWHASRI

Semester and Year:

6<sup>TH</sup> Semester & 3<sup>rd</sup> year

Subject Code & Subject Name :

EECE3051 VLSI Design

## <u>Introduction</u>:

Self-Complementary property means that the 1's complement of an excess-3 number is the excess-3 code of the 9's complement of the corresponding decimal number. This property is useful since a decimal number can be nines' complemented (for subtraction) as easily as a binary number can be ones' complemented; just by inverting all bits.

For example, the excess-3 code for 3(0011) is 0110, and to find the excess-3 code of the complement of 3, we just need to find the 1's complement of  $0110 \rightarrow 1001$ , which is also the excess-3 code for the 9's complement of  $3 \rightarrow (9-3) = 6$ . Excess-3 binary code is an unweighted self-complementary BCD code.

#### **Truth Table, Equation and Logical Diagram:**

#### Truth Table:

| Excess-3 |   |   |   | BCD |   |    |    |
|----------|---|---|---|-----|---|----|----|
| w        | x | у | z | Α   | В | С  | D  |
| 0        | 0 | 0 | 0 | X   | X | X  | X  |
| 0        | 0 | 0 | 1 | X   | X | X  | X  |
| 0        | 0 | 1 | 0 | X   | X | X  | X  |
| 0        | 0 | 1 | 1 | 0   | 0 | 0  | 0  |
| 0        | 1 | 0 | 0 | 0   | 0 | -0 | 1  |
| 0        | 1 | 0 | 1 | 0   | 0 | 1  | -0 |
| -0       | 1 | 1 | 0 | 0   | 0 | 1  | 1  |
| 0        | 1 | 1 | 1 | 0   | 1 | 0  | -0 |
| 1        | 0 | 0 | 0 | 0   | 1 | 0  | 1  |
| 1        | 0 | 0 | 1 | 0   | 1 | 1  | 0  |
| 1        | 0 | 1 | 0 | 0   | 1 | 1  | 1  |
| 1        | 0 | 1 | 1 | 1   | 0 | 0  | 0  |
| 1        | 1 | 0 | 0 | 1   | 0 | 0  | 1  |
| 1        | 1 | 0 | 1 | X   | X | X  | X  |
| 1        | 1 | 1 | 0 | X   | X | X  | X  |
| 1        | 1 | 1 | 1 | X   | X | X  | X  |

#### Equation:

The equation are derived from truth table and with help of K-map

THE DERIVED EQUATION ARE:

M = AB + ACD

X = B0D0+B0C0+BCD

Y= C XOR D

Z = D0

## Logical Diagram:



#### Working:

- **Step 1** Take each Excess-3 code.
- **Step 2** Subtract 3 from each Excess-3 code. The result will be the equivalent BCD code.
- **Step 3** Combine all the BCD codes equivalent to each Excess-3 code to obtain the final result in BCD representation.

#### Application:

**Arithmetic-Friendly Nature** 

Early Adoption in Computing Devices

**Conversion Process:** 

#### Video Drive link:

https://drive.google.com/file/d/1amUFEzUy2Yixt\_jUQ\_1 SEz5ZBi-UO8IX/view?usp=drivesdk