第七章

- 7.1 图的基本概念
- G 无向图 D 有向图

 $V(G) E(G) v e = (v_i, v_i) m n$

Nn N1 n 阶零图 平凡图 \emptyset , K_n , $K_{2,2}$, W_n

 $N_G v$ 邻域 $\overline{N_G}(v)$ 闭邻域

 $I_G(v)$ 关联集

 $\Gamma_D^+(v)$ 后继元集 $\Gamma_D^-(v)$ 先驱元集 gamma

 $d_G(v) d_D(v)$ 或d(v) 度

 $\Delta(G)$ $\delta(v)$ $\Delta^{+}(G)$ $\Delta^{-}(G)$ $\delta^{+}(G)$ $\delta^{-}(G)$

 $G_1 \cong G_1$ 同构

 $G[E_1]$, $G[V_1]$ 导出子图

 \bar{G}

G - e, $G \setminus e$, $G \cup (u, v)$, G + (u, v)

 $G_1 \oplus G_2$ 环合, $G_1 \times G_2$ 积图 (区分基图)

7.2 通路和回路

 Γ 通路,回路

c(G), g(G)周长围长

7.3 无向图的连通性

*u~v*联通

p(G)

d(u,v)距离 d(G)

7.4 无向图的连通度

 $\kappa(G)$ 点连通度, $\lambda(G)$ 边连通度 kappa

7.5 有向图的连通性

 $v_i \rightarrow v_j$

第八章 欧拉图与哈密顿图

C 圏

第九章 树

T

 \bar{T} 余树 G[E(G) - E(T)]

 $\xi(G)$ 圏秩 Xi

 $\eta(G)$ 割集秩

 $\tau(G)$ 生成树的个数

 $E(V_1 \times \overline{V_2})$ 断集,简记 $(V_1, \overline{V_2})$

第十章 图的矩阵表示

M(D)关联矩阵

$M_f(G)$ 基本关联矩阵

r秩

 $[a_{ij}^{(1)}]_{n imes n}$,A邻接矩阵,相邻矩阵

 $[p_{ij}]_{n imes n}$,P可达矩阵,连通矩阵

第十一章

deg(R)次数

n, m, r

 G^* 对偶图

第十二章

 $\chi(G) = k$ 色数 chi

χ′(G)边色数

f(G,k)色多项式

第十三章

 V^* 支配集

 γ_0 支配数

 β_0 点独立数

 α_0 点覆盖数

 u_0 团数 Nu

 α_1 边覆盖数

 β_1 边独立数或匹配数