Disc Golf Aging Curves Final Project

Lincoln Stewart

$\mathrm{May}\ 25,\ 2025$

Contents

Overv	view and Description of Data	3
Meth	od of determinig player type	3
Descr	ription of model making	3
Resul	ts	4
Qu	adratic model	4
Vis	sualizations	4
Spl	line	15
Vis	sualizations	16
Discu	ssion	27
Concl	lusion	28
${f List}$	of Figures	
1	Bar plot of showing spread of player data across different clusters	9
2	Different polynomials from the clusters	11
3	SCatter plot of all players and their ratings	12

4	Scatter plot seperated by cluster type, seperated by color	13
5	The cluster types shown as seperate graphs	14
6	Bar plot of all clustering types and their RSME	15
7	Bar plot of player data aross the different clusters from splines	21
8	Polynomials from the different clusters from splines	23
9	Scatter plot of all players	24
10	Seperated by color using clustering method	25
11	Different groups shown as individual graphs	26
12	Bar plot of all clustering types and their RMSE	27
List	of Tables	
1	Table showing best clustering types	8
2	Table of top 6 best clusterting methods from splines	20
librar librar mean_S mean_S mean_S	<pre>y(ggplot2) y(knitr) y(dplyr) S_t_mod <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Stud S_t <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/gi S_t <- mean_SS_t %>% ct(-X) %>% me(DF_Used = NA.)</pre>	· O
_	<pre>S_t_mod <- mean_SS_t_mod %>% ct(-X)</pre>	
clustd	<pre>m_cv <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/g</pre>	;ithub/Disc-(
clustd	<pre>m <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/gith</pre>	ub/Disc-Gol:
MPO_ar	_pt <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/gi	thub/Disc-G

```
clss <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/github/Disc-Golf-Ag:
clss_sc <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/github/Disc-Golf-
clss_hc <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/github/Disc-Golf-
clss_kmeans <- read.csv("C:/Users/lincs/OneDrive/Documents/Independent Study/github/Disc-Golf-</pre>
```

Overview and Description of Data

The goal of this independent study has been to figure out whether or not it is more effective to predict players skill level using generic aging curves across all athletes or to have position specific ones. The sport in which we used for our research was disc golf. The data that we would use was from the PDGA website that would include things like players' ratings, names and ages, and their stats from when they have competed. Using a combination of all this different data is how the research was conducted.

Method of determining player type

Since one of the biggest determiners of this study was the way players were grouped and therefore assigned player types. This was achieved through multiple methods of clustering. The kind that were was hierarchical, GMM, spectral, and k-means. Each different clustering method used different methods of clustering, and would look at 2 clusters through 6 for each method for each kind of clustering. This gave us a total of 65 different ways in which the players were grouped.

Description of model making

After grouping the players into different types with the use of different clustering methods, it was then time to predict whether or not the player type model was more effective or the non player type. The model was then split into two different ones, one for player type and one for a regular generic one. The models fitted are as follows.

```
outp < -lm(pt_ratr\ pt_type * pt_ages + pt_type * I(pt_ages^2), data = MPO_ar_pt_train2)
out < -lm(ratr\ ages + I(ages^2), data = MPO_ar_pt_train)
```

The first being the player type model, the second being the generic model. From there, different loops were run through with multiple different iterations. The parameters that were used to then measure the fit and effectiveness of the model was adjusted R^2 , sum squared error, and

mean squared error. This was all put into a table titled mean_SS_t for spline model and mean_SS_t_mod for the quadratic model.

Results

Quadratic model

The use of the quadratic model was the original vision for the the project. This was the most general use to explore the effect of aging curves for player type and non player type models. The model that wads fitted for the player type is as follows

```
outp < -lm(pt_ratr\ pt_type * pt_ages + pt_type * I(pt_ages^2), data = MPO_ar_pt_train2)
and the non player type out < -lm(ratr\ ages + I(ages^2), data = MPO_ar_pt_train)
```

Visualizations

```
# Best player type
names(MPO_ar_pt)[which.min(mean_SS_t_mod$Mean_MSE_PlayerType) + 12]

## [1] "X3_anovadot"

best_order <- names(MPO_ar_pt)[order(mean_SS_t_mod$Mean_MSE_PlayerType) + 12]

mean_SS_t_mod[order(mean_SS_t_mod$Mean_MSE_PlayerType), ]</pre>
```

```
##
      Mean SSE PlayerType Mean SSE NoPlayerType Mean MSE NoPlayerType
## 22
                   1812967
                                           2029109
                                                                 27.62017
## 7
                   1808377
                                          2029321
                                                                 27.68965
## 12
                   1829028
                                           2059000
                                                                 27.84625
## 17
                   1829094
                                          2029359
                                                                 27.65951
                                                                 27.78894
## 27
                   1828267
                                           2042691
                                                                 27.78167
## 3
                   1852888
                                           2049072
## 2
                   1875934
                                          2039958
                                                                 27.73684
## 51
                   1876042
                                          2016330
                                                                 27.60372
```

#	# 48	1894022	2016825	27.61412
#	# 35	1894683	2038657	27.72395
#	# 1	1897019	2041178	27.71080
#	# 64	1902035	2056631	27.85466
#	# 59	1898223	2026952	27.67681
#	# 58	1891780	2016385	27.64847
#	# 46	1906260	2044174	27.75781
#	# 29	1903795	2024075	27.71386
#	# 19	1906257	2017637	27.65140
#	# 53	1902101	2015484	27.65038
#	# 61	1907646	2049157	27.83257
#	# 63	1910397	2052516	27.84625
#	# 62	1933400	2030904	27.69415
#	# 52	1929263	2041628	27.77066
#	# 5	1924179	2068624	27.91430
#	# 26	1918246	2044407	27.78155
#	# 6	1923303	2042154	27.72829
#	# 23	1929491	2044212	27.76277
#	# 56	1918346	2049437	27.84200
#	# 18	1928856	2043675	27.78147
#	# 13	1930196	2042087	27.75051
#	# 21	1920911	2053994	27.85957
#	# 14	1924897	2028434	27.73304
#	# 11	1925972	2041854	27.78511
#	# 16	1932213	2060688	27.87307
#	# 49	1946911	2042641	27.74339
#	# 28	1935173	2034507	27.73582
#	# 9	1935257	2030883	27.74946
#	# 42	1958380	2020002	27.63328
#	# 54	1944021	2020781	27.63935
#	# 4	1953874	2047928	27.80660
#	# 8	1985392	2035325	27.74180
#	# 45	1985834	2021756	27.58709
#	# 47	2576619	2033476	27.71304
#	# 44	1995036	2032091	27.63938
#	# 57	2593895	2039833	27.77220
#	# 43	2027473	2064729	27.84851

##	55	2014763	2026295	27.63485
##	33	2014004	2015357	27.53953
##	50	2042224	2057246	27.87562
##	32	2045730	2045595	27.67222
##	65	2044370	2045306	27.85012
##	25	2055500	2020654	27.59924
##	38	2046037	2045939	27.74480
##	34	2055059	2056591	27.77994
##	37	2058148	2057991	27.78907
##	15	2072885	2029433	27.67812
##	30	2084988	2012781	27.57460
##	10	2075215	2035967	27.79300
##	60	2104821	2042535	27.74894
##	20	2089286	2029806	27.75953
##	39	2247448	2041211	27.69010
##	24	2127114	2027008	27.60307
##	40	2343757	2049389	27.75514
##	31	NA	NA	NA
##	36	NA	NA	NA
	00	1111	****	1411
##		NA	NA	NA
		NA		NA
## ##		NA	NA	NA
## ##	41 22	NA Mean_MSE_PlayerType	NA Adj_R_Sqr_NoPlayerType	NA Adj_R_Sqr_PlayerType
## ## ## ##	41 22	NA Mean_MSE_PlayerType 26.05634	NA Adj_R_Sqr_NoPlayerType 0.3020976	NA Adj_R_Sqr_PlayerType 0.4277503
## ## ## ##	41 22 7 12	NA Mean_MSE_PlayerType 26.05634 26.09116	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341
## ## ## ## ##	41 22 7 12	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239
## ## ## ## ##	41 22 7 12 17 27	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734
## ## ## ## ##	41 22 7 12 17 27 3	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772
## ## ## ## ## ##	4122712172732	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567
## ## ## ## ## ## ##	4122712172732	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567 0.4058088
## ## ## ## ## ## ##	412271217273251	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358 26.60677	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817 0.3018588	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567 0.4058088 0.3645871
## ## ## ## ## ## ##	41 22 7 12 17 27 3 2 51 48 35	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358 26.60677 26.67504	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817 0.3018588 0.3004638	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567 0.4058088 0.3645871 0.3952138
## ## ## ## ## ## ## ## ##	41 22 7 12 17 27 3 2 51 48 35	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358 26.60677 26.67504 26.68417	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817 0.3018588 0.3004638 0.3002519	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567 0.4058088 0.3645871 0.3952138 0.4021110
## ## ## ## ## ## ## ## ## ## ## ## ##	41 22 7 12 17 27 3 2 51 48 35 1	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358 26.60677 26.67504 26.68417 26.69381	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817 0.3018588 0.3004638 0.3002519 0.3020046	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567 0.4058088 0.3645871 0.3952138 0.4021110 0.3673521
## ## ## ## ## ## ## ## ## ## ## ## ##	41 22 7 12 17 27 3 2 51 48 35 1 64	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358 26.60677 26.67504 26.68417 26.69381 26.73114	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817 0.3018588 0.3004638 0.3002519 0.3020046 0.3016422	NA Adj_R_Sqr_PlayerType 0.4277503 0.4266341 0.4267239 0.4271734 0.4273772 0.4250567 0.4058088 0.3645871 0.3952138 0.4021110 0.3673521 0.4236578
## ## ## ## ## ## ## ## ## ## ## ## ##	41 22 7 12 17 27 3 2 51 48 35 1 64 59	NA Mean_MSE_PlayerType 26.05634 26.09116 26.18672 26.19032 26.24235 26.32618 26.56358 26.60677 26.67504 26.68417 26.69381 26.73114 26.73664	NA Adj_R_Sqr_NoPlayerType 0.3020976 0.3012010 0.3020962 0.3007004 0.3014891 0.3002262 0.3014817 0.3018588 0.3004638 0.3002519 0.3020046 0.3016422 0.3019483	NA Adj_R_Sqr_PlayerType

## 19	26.81472	0.3001964	0.4239551
## 53	26.82159	0.2992322	0.3941634
## 61	26.83916	0.3006623	0.3639672
## 63	26.85032	0.3000592	0.3949741
## 62	26.85111	0.3014819	0.4185866
## 52	26.86534	0.3013249	0.4180589
## 5	26.88534	0.3017461	0.4291675
## 26	26.89327	0.3017002	0.3582859
## 6	26.89765	0.3002870	0.3577969
## 23	26.90537	0.3012105	0.4178517
## 56	26.91900	0.3011061	0.3647556
## 18	26.92138	0.3015478	0.4210399
## 13	26.92804	0.3018620	0.4184414
## 21	26.93433	0.3015446	0.3580143
## 14	26.95386	0.2992421	0.4240148
## 11	26.96421	0.3015837	0.3587028
## 16	26.98166	0.3021914	0.3587873
## 49	26.99309	0.3012747	0.4227192
## 28	26.99732	0.3018207	0.4196219
## 9	27.02549	0.2984856	0.4235851
## 42	27.02663	0.3015972	0.4090414
## 54	27.03613	0.3002943	0.4262173
## 4	27.05945	0.3015044	0.4082551
## 8	27.07540	0.3016094	0.4218728
## 45	27.12552	0.2997127	0.4169413
## 47	27.17699	0.3009915	0.4229920
## 44	27.20483	0.2998314	0.4176743
## 57	27.28113	0.3008193	0.4175093
## 43	27.38725	0.3017841	0.4095302
## 55	27.39579	0.3007613	0.4246947
## 33	27.53224	0.2987421	0.3116975
## 50	27.61847	0.3016259	0.4317560
## 32	27.67315	0.3014976	0.3024693
## 65	27.71179	0.3003505	0.4343878
## 25	27.74055	0.3000908	0.4030884
## 38	27.74552	0.3007732	0.3017439
## 34	27.77166	0.3000493	0.3130368

```
## 37
                                                                0.3022306
                  27.79019
                                         0.3012552
## 15
                  27.87069
                                         0.2990087
                                                                0.4023864
## 30
                  27.95591
                                         0.2992221
                                                                0.4035353
## 10
                  27.96177
                                         0.2991061
                                                                0.4026315
## 60
                  28.03573
                                         0.3016895
                                                                0.4298452
## 20
                  28.06582
                                         0.2992805
                                                                0.4060509
## 39
                  28.17876
                                         0.3020104
                                                                0.3252229
## 24
                  28.23518
                                         0.2999217
                                                                0.3473182
## 40
                  28.49555
                                         0.3011804
                                                                0.3242155
## 31
                        NA
                                                                       NA
                                                 NA
## 36
                        NA
                                                                       NA
                                                 NA
## 41
                        NA
                                                 NA
                                                                       NA
```

```
## table of best clustering types
tab_best_order <- data.frame(
    Best_cluster_types = c(best_order[1:6])
)
kable(tab_best_order)</pre>
```

Table 1: Table showing best clustering types

```
Best_cluster_types
X3_anovadot
X3_rbfdot
X3_polydot
X3_laplacedot
X3_splinedot
nc4
```

```
# Visualizing results
pp <- apply(clustdm_cv[, c(2, 3, 5, 6)], 2, function(x) tapply(x, clustdm_cv$X3_anovadot,
barplot(t(pp), beside = TRUE, ylab = "Standardized Statistic (C1,C2, C1P, C2P)", xlab = "I</pre>
```


Figure 1: Bar plot of showing spread of player data across different clusters

```
# Final polynomial-based visualization for sanity check
out <- lm(ratr ~ -1 + factor(X3 anovadot) + factor(X3 anovadot) / ages + factor(X3 anovadot)
          data = MPO_ar_pt)
summary(out)
##
## Call:
## lm(formula = ratr ~ -1 + factor(X3 anovadot) + factor(X3 anovadot)/ages +
       factor(X3 anovadot)/I(ages^2), data = MPO ar pt)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -243.459 -10.402
                        1.074
                                14.676
                                         67.349
##
## Coefficients:
##
                                   Estimate Std. Error t value Pr(>|t|)
## factor(X3 anovadot)1
                                  1034.5997
                                                 0.4731 2186.66
                                                                  <2e-16 ***
## factor(X3 anovadot)2
                                  1015.6658
                                                 0.4071 2494.99
                                                                 <2e-16 ***
## factor(X3_anovadot)3
                                   995.9549
                                                 0.8568 1162.43
                                                                 <2e-16 ***
## factor(X3 anovadot)1:ages
                                     8.2355
                                                 0.6081
                                                         13.54 <2e-16 ***
## factor(X3 anovadot)2:ages
                                    16.3652
                                                 0.4344
                                                         37.67 <2e-16 ***
## factor(X3_anovadot)3:ages
                                    22.6632
                                                 1.2025
                                                        18.85
                                                                 <2e-16 ***
## factor(X3_anovadot)1:I(ages^2)
                                   -25.3701
                                                 0.5585 -45.43
                                                                 <2e-16 ***
## factor(X3 anovadot)2:I(ages^2)
                                                 0.4200 - 42.71
                                   -17.9346
                                                                 <2e-16 ***
## factor(X3 anovadot)3:I(ages^2)
                                                 1.1498 -13.78
                                   -15.8406
                                                                  <2e-16 ***
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 24.94 on 13285 degrees of freedom
## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9994
## F-statistic: 2.397e+06 on 9 and 13285 DF, p-value: < 2.2e-16
ages_plot <- seq(-1, 1, 0.1)
rat_pred1 <- coef(out)[1] + coef(out)[4] * ages_plot + coef(out)[7] * ages_plot^2</pre>
rat_pred2 <- coef(out)[2] + coef(out)[5] * ages_plot + coef(out)[8] * ages_plot^2</pre>
rat pred3 <- coef(out)[3] + coef(out)[6] * ages plot + coef(out)[9] * ages plot^2
```

```
ages_plot2 <- ages_plot * sd(MPO_ar_pt$Age) + mean(MPO_ar_pt$Age)

plot(rat_pred2 ~ ages_plot2, type = "l", ylim = c(min(rat_pred3), max(rat_pred1)), lwd = 1

points(rat_pred1 ~ ages_plot2, type = "l", col = "blue", lwd = 2)

points(rat_pred3 ~ ages_plot2, type = "l", col = "red", lwd = 2)</pre>
```


Figure 2: Different polynomials from the clusters

These are a couple visualizations of of scatter plots of all the players.

Figure 3: SCatter plot of all players and their ratings

Figure 4: Scatter plot seperated by cluster type, seperated by color

This is a representation of all the different clustering methods used and their effectiveness.

Figure 5: The cluster types shown as seperate graphs

Figure 6: Bar plot of all clustering types and their RSME

Spline

The use of splines were included based off the fact that sometimes quadratic models sometimes over simplify the relationship between the ages and the ratings of the players. Spline regression gives more flexibility by enabling the model to capture more complexity and non linear trends in the data. It is also useful for when the effect of age on performance isn't constant across all different age ranges. The spline model for player type is as follows

```
outp < -lm(pt_ratr\ pt_type * bs(pt_ages, degree = 3, df = df_try), data = MPO_ar_pt_train2)
and the non player type
out < -lm(ratr\ bs(ages, degree = 3, df = df_try), data = MPO_ar_pt_train)
```

Something that differed from the quadratic model is the "DF_Used" on the last column. Each spline was fitted from 3:8 knots and then the best one was determined that yielded the best measurements of the model, like MSE, SSE, ect. The results are then all stored in a table.

Visualizations

The following visualizations are calculating and showing what clustering method was the best performance wise.

```
# Best player type
names(MPO_ar_pt)[which.min(mean_SS_t$Mean_MSE_PlayerType) + 12]
## [1] "X6_manhattan"
best_order <- names(MPO_ar_pt)[order(mean_SS_t$Mean_MSE_PlayerType) + 12]
mean SS t[order(mean_SS_t$Mean_MSE_PlayerType), ]</pre>
```

##		<pre>Mean_SSE_PlayerType</pre>	${\tt Mean_SSE_NoPlayerType}$	<pre>Mean_MSE_NoPlayerType</pre>
##	45	151634879	167886247	1295.709
##	35	151543573	167717151	1295.057
##	43	154754771	173091893	1315.644
##	7	153597438	172036018	1311.625
##	12	154574308	169956208	1303.673
##	22	155760516	176293344	1327.755
##	56	158847162	175064370	1323.119
##	17	155055795	179119558	1338.356
##	57	155658467	175268321	1323.889
##	44	155990290	176324245	1327.871
##	27	156170854	173939591	1318.862
##	42	155161973	173946511	1318.888
##	26	157174014	169582583	1302.239
##	3	157139648	173881157	1318.640

##	16	159085442	171935334	1311.241
##	28	157443841	172474245	1313.295
##	53	159328056	173561765	1317.428
##	21	159043820	175091835	1323.223
##	14	158095848	170599114	1306.136
##	1	160373720	175917843	1326.340
##	61	160329479	173628389	1317.681
##	51	157375224	173660348	1317.803
##	19	157795797	172366893	1312.886
##	52	161234095	174542721	1321.146
##	46	162042059	178522353	1336.123
##	58	160402258	171764970	1310.591
##	63	160530748	171556817	1309.797
##	49	159592932	174657118	1321.579
##	6	161503793	177799671	1333.415
##	8	162799258	180989406	1345.323
##	13	162641135	173170142	1315.941
##	11	160884376	172051922	1311.686
##	62	162529396	172974445	1315.197
##	29	163673196	175189865	1323.593
##	48	161516524	173628664	1317.682
##	9	163595603	169818842	1303.146
##	59	164894258	170857680	1307.125
##	54	167082632	176197144	1327.393
##	5	165900491	169173203	1300.666
##	18	165566239	184976249	1360.060
##	47	166636746	173038482	1315.441
##	64	166127527	175458512	1324.608
##	37	169168551	169134831	1300.518
##	23	169549196	172907697	1314.944
##	4	171051106	172747358	1314.334
##	33	169435460	169314574	1301.209
##	38	173654658	173616137	1317.635
##	32	173429303	173397141	1316.803
##	34	173491562	173477715	1317.109
##	25	177992505	171162711	1308.292
##	20	184963999	173045656	1315.468

##	50	182714866	176196848	1327.392	
##	15	189101651	172249669	1312.439	
##	24	186725493	173899437	1318.709	
##	40	198127556	184307082	1357.597	
##	10	198353738	183009190	1352.809	
##	65	203800290	184631907	1358.793	
##	60	202789652	185706135	1362.740	
##	2	207166305	189696406	1377.303	
##	55	212749065	176985324	1330.358	
##	30	225678806	182473232	1350.827	
##	39	290023349	171616596	1310.025	
##	31	NA	NA	NA	
##	36	NA	NA	NA	
##	41	NA	NA	NA	
##		<pre>Mean_MSE_PlayerType</pre>	${\tt Adj_R_Sqr_NoPlayerType}$	${\tt Adj_R_Sqr_PlayerType}$	DF_Used
##	45	24.01136	0.4111357	0.5138408	4
##	35	24.06100	0.4089544	0.4999376	4
##	43	24.16739	0.4114851	0.5028604	4
##	7	24.19220	0.4107794	0.5324238	4
##	12	24.20906	0.4088278	0.5324395	4
##	22	24.26094	0.4111664	0.5312982	4
##	56	24.29320	0.4081767	0.4827640	7
##	17	24.29965	0.4119891	0.4981729	3
##	57	24.30718	0.4141631	0.5305570	6
##	44	24.31781	0.4105548	0.5161999	7
##	27	24.31782	0.4110106	0.5333118	4
##	42	24.32967	0.4141214	0.5120357	7
##	26	24.37225	0.4099852	0.4776506	7
##	3	24.37382	0.4121511	0.5243097	4
##	16	24.42008	0.4135898	0.4802012	7
##	28	24.51959	0.4143897	0.5282713	4
##	53	24.52253	0.4100196	0.5027150	4
##	21	24.52926	0.4103566	0.4767276	7
##	14	24.57692	0.4069409	0.5267190	4
##	1	24.59793	0.4107465	0.4875872	8
##	61	24.64363	0.4142160	0.4824512	6
##	51	24.65287	0.4063466	0.4841900	7

##	19	24.65445	0.4060060	0.5302575	4
##	52	24.65574	0.4118402	0.5220482	4
##	46	24.65901	0.4099522	0.4801084	7
##	58	24.72049	0.4081770	0.5034039	5
##	63	24.73831	0.4103615	0.5026139	4
##	49	24.74864	0.4102072	0.5275040	4
##	6	24.76268	0.4157332	0.4839112	8
##	8	24.77863	0.4105767	0.4974694	3
##	13	24.86098	0.4141691	0.5280348	4
##	11	24.86539	0.4128709	0.4738649	4
##	62	24.87150	0.4104620	0.5310174	6
##	29	24.90459	0.4145668	0.5326670	4
##	48	24.91563	0.4125619	0.5038796	5
##	9	24.94147	0.4114992	0.5378008	6
##	59	25.07053	0.4156640	0.5249737	4
##	54	25.13180	0.4074494	0.5247016	4
##	5	25.16777	0.4096908	0.5240381	4
##	18	25.18225	0.4105913	0.4980751	3
##	47	25.25587	0.4091991	0.5313101	6
##	64	25.27613	0.4129712	0.5332200	4
##	37	25.28964	0.4117122	0.4116647	4
##	23	25.33111	0.4129367	0.5267817	4
##	4	25.42023	0.4156819	0.5183685	4
##	33	25.50468	0.4108346	0.4184841	4
##	38	25.59383	0.4106114	0.4125612	6
##	32	25.63162	0.4122443	0.4128760	4
##	34	25.64207	0.4097023	0.4201033	8
##	25	25.99625	0.4155896	0.5026153	4
##	20	26.52840	0.4102234	0.5087914	4
##	50	26.55635	0.4116925	0.5347702	4
##	15	26.91415	0.4063223	0.5000774	4
##	24	26.98060	0.4104939	0.4558698	4
##	40	27.40244	0.4128970	0.3946780	3
##	10	27.43750	0.4096671	0.4713444	3
##	65	27.77422	0.4114170	0.5068488	3
##	60	27.81056	0.4121508	0.5049772	3
##	2	27.91083	0.4152789	0.4753885	3

```
## 55
                  28.56006
                                                                0.4975350
                                                                                  3
                                          0.4112929
## 30
                  29.20990
                                          0.4089767
                                                                0.4731756
                                                                                  3
## 39
                  33.78178
                                          0.4112985
                                                                0.4278301
                                                                                  5
## 31
                        NA
                                                 NA
                                                                        NA
                                                                                 NA
## 36
                        NA
                                                 NA
                                                                        NA
                                                                                 NA
## 41
                        NA
                                                 NA
                                                                        NA
                                                                                 NA
```

```
## table of best clustering types
tab_best_order <- data.frame(
    Best_cluster_types = c(best_order[1:6])
)
kable(tab_best_order)</pre>
```

Table 2: Table of top 6 best clusterting methods from splines

```
Best_cluster_types
X6_manhattan
X6_euclidean
X4_manhattan
X3_rbfdot
X3_polydot
X3_anovadot
```

Call:

Figure 7: Bar plot of player data aross the different clusters from splines

```
## lm(formula = ratr ~ -1 + factor(X6_manhattan) + factor(X6_manhattan)/ages +
##
       factor(X6_manhattan)/I(ages^2), data = MPO_ar_pt)
##
## Residuals:
##
                       Median
                                    3Q
                                            Max
        Min
                  1Q
## -238.406 -11.277
                        1.649
                                14.749
                                         66.347
##
## Coefficients:
##
                                    Estimate Std. Error t value Pr(>|t|)
## factor(X6_manhattan)1
                                                 0.3309 3068.087 < 2e-16 ***
                                   1015.1278
## factor(X6 manhattan)2
                                                        328.978 < 2e-16 ***
                                    988.5610
                                                 3.0049
## factor(X6_manhattan)3
                                   1043.8113
                                                 0.6584 1585.323 < 2e-16 ***
## factor(X6_manhattan)4
                                    897.7840
                                                56.0691
                                                          16.012 < 2e-16 ***
## factor(X6 manhattan)1:ages
                                                 0.3655
                                                          41.863 < 2e-16 ***
                                     15.3001
## factor(X6 manhattan)2:ages
                                     35.3738
                                                 6.0854
                                                          5.813 6.28e-09 ***
## factor(X6 manhattan)3:ages
                                                 0.7635
                                                          11.852 < 2e-16 ***
                                      9.0485
## factor(X6_manhattan)4:ages
                                   -280.4051
                                               113.1466
                                                          -2.478 0.01322 *
## factor(X6_manhattan)1:I(ages^2)
                                    -17.5540
                                                 0.3618 -48.523 < 2e-16 ***
                                                          -4.803 1.58e-06 ***
## factor(X6 manhattan)2:I(ages^2)
                                                 7.7788
                                    -37.3595
## factor(X6_manhattan)3:I(ages^2)
                                    -28.7874
                                                 0.6602 -43.601 < 2e-16 ***
## factor(X6_manhattan)4:I(ages^2) -166.0349
                                                54.0128
                                                          -3.074 0.00212 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.18 on 13282 degrees of freedom
## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9994
## F-statistic: 1.764e+06 on 12 and 13282 DF, p-value: < 2.2e-16
ages plot \leftarrow seq(-1, 1, 0.1)
ages plot2 <- ages plot * sd(MPO ar pt$Age, na.rm = TRUE) + mean(MPO ar pt$Age, na.rm = TRUE)
rat_pred1 <- coef(out)[1] + coef(out)[5] * ages_plot + coef(out)[9] * ages_plot^2
rat pred2 <- coef(out)[2] + coef(out)[6] * ages plot + coef(out)[10] * ages plot^2
rat_pred3 <- coef(out)[3] + coef(out)[7] * ages_plot + coef(out)[11] * ages_plot^2
rat_pred4 <- coef(out)[4] + coef(out)[8] * ages_plot + coef(out)[12] * ages_plot^2
plot(rat_pred1 ~ ages_plot2, type = "1", lwd = 2, col = "black",
```

Polynomial Aging Curves by Player Type (X6_manhattan)

Figure 8: Polynomials from the different clusters from splines

These are a couple visualizations of of scatter plots of all the players.

Figure 9: Scatter plot of all players

Figure 10: Seperated by color using clustering method

This is a representation of all the different clustering methods used and their effectiveness.

Figure 11: Different groups shown as individual graphs

```
#performance by cluster on bar plots (MSE measure)
mean_SS_t$Cluster <- colnames(cbind(clss, clss_sc, clss_hc, clss_kmeans))
ggplot(mean_SS_t, aes(x = reorder(Cluster, Mean_MSE_PlayerType), y = Mean_MSE_PlayerType)
    geom_col(fill = "steelblue") +
    coord_flip() +
    labs(title = "RMSE of Player-Type Models by Clustering Method",
        x = "Clustering Variable", y = "RMSE (Player-Type)") +
    theme_minimal()</pre>
```


Figure 12: Bar plot of all clustering types and their RMSE

Discussion

Looking at our results holistically is how we can interpret the full scope of our research. When looking at the table of results for the quadratic model, We can interpret the performance of the player type versus the non player type. When solely looking at the MSE's of both, we can see that the player type model performed slightly better more often than the non player type. The

player type (pt) had an MSE of around 26-27 every time, while the non player type (npt) had 27 or above. In retrospect we would still want the MSE in general to be lower, as on average this means that it was missing the true rating by around 26 points every time regardless.

In terms of the spline models, it had different performance. The MSE was around 24-27 for the pt, while the npt was all over the place, being in the 1300s. Based off that it would be a safe conclusion to say that when using splines for aging curves, it makes more sense to use pt models rather than not.

When looking at the bar plot of the clusters and the line plot of the aging curve of different clusters, there is clear differences that are drawn between players. For the bar plot the first group is the super stars, the second is the middle of the way players, and the third are the fringe lesser players. We can then see exactly why the players were split up in the way that they were. As opposed to the ones of the spline model, it is harder to interpret the six different groups that everything was split up by. The bar graph follows the quadratic model mostly, having good, middle of the way, and bad players grouped together. But then with cluster 4 it has a large mix of both, which is questionable. As well as with the aging curve plot, that shows the 4 splines that was fit. It seems as if it has 3 very closely contested groups, and then a very poor quickly decaying group.

The scatter plots that are a representation of all players give us a good insight as well. It shows the color corresponding to the group that the player belongs to. The quadratic model gives us a nicer representation of everything encompassing compared to the spline model. You can clearly see where the difference between the groups of players are and how the aging curve line from our plots before exists.

Despite the extent of the research , some limitations and inconsistencies are present. Player ratings are influenced by many different external factors that were not captured in this data. Further more, players may transition their play style and skill patterns as they age, as they improve, and as the game changes. Some of the results from our spline models lacked aspects of interpreting, which may allude to over fitting. As far as real world context, research like this can be used by coaches, sponsors, and scouts and analysts to find high profile players easier. This could also help chart a players decline over their career and help guide their career as it declines.

Conclusion

This project set out to compare the effectiveness of modeling the aging curves through the sport of disc golf and their ratings of players. By fitting both a quadratic model and a spline model across multiple different clustering strategies, we found that player type models edged out non player type model in terms of predictive error. The results suggest that athlete aging patterns are meaningful across different aging groups.

There is a strong potential for this type of modeling to be used in other sports. It would be better utilized for individual performance based sports, like tennis, golf, and e sports. The approach of using clustering to define roles, followed by role specific modeling, could be space for expansion as well.

If this research was to be continued the first avenue that would be explored is the change in rating over time. Use of something like this would allow more dynamic modeling rating as a function of age alone. It might uncover transition patterns between roles when a player's performances changes because of injury, age, or improvement.