#### Machine Learning Course - CS-433

# **Gaussian Mixture Models**

Nov 24, 2020

changes by Martin Jaggi 2020, 2019, changes by Rüdiger Urbanke 2018, changes by Martin Jaggi 2016, 2017 ©Mohammad Emtiyaz Khan 2015

Last updated on: November 24, 2020



#### **Motivation**

Spherical, but sometimes it is desirable to have elliptical clusters. Another issue is that, in K-means, each example can only belong to one cluster, but this may not always be a good choice, e.g. for data points that are near the "border". Both of these problems are solved by using Gaussian Mixture Models.

# **Clustering with Gaussians**

The first issue is resolved by using full covariance matrices  $\Sigma_k$  instead of *isotropic* covariances.

$$p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[ \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]^{\boldsymbol{z}_{nk}}$$

# **Soft-clustering**

The second issue is resolved by defining  $z_n$  to be a random variable. Specifically, define  $z_n \in \{1, 2, ..., K\}$  that follows a multinomial distribution.

$$p(z_n = k) = \pi_k \text{ where } \pi_k > 0, \forall k \text{ and } \sum_{k=1}^K \pi_k = 1$$
is provided a weight of group k

This leads to soft-clustering as opposed to having "hard" assignments.





#### Gaussian mixture model

Together, the likelihood and the prior define the joint distribution of Gaussian mixture model (GMM):

Here,  $\mathbf{x}_n$  are observed data vectors,  $\mathbf{z}_n$  are latent unobserved variables, and the unknown parameters are given by  $\boldsymbol{\theta} := \{\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K, \boldsymbol{\pi}\}.$ 

### Marginal likelihood

GMM is a latent variable model with  $z_n$  being the unobserved (latent) variables. An advantage of treating  $z_n$  as latent variables instead of parameters is that we can marginalize them out to get a cost function that does not depend on  $z_n$ , i.e. as if  $z_n$  never existed.

Specifically, we get the following marginal likelihood by marginalizing  $z_n$  out from the likelihood:

$$p(\mathbf{x}_n|oldsymbol{ heta}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)$$



Deriving cost functions this way, is good for *statistical efficiency*. Without a latent variable model, the number of parameters grow at rate O(N). After marginalization, the growth is reduced to  $O(D^2K)$  (assuming  $D, K \ll N$ ).

joint

$$P(X,Z)$$

maginal

 $P(X) = Z P(X,Z=k)$ 
 $= Z P(X|Z=k) P(Z=k)$ 
 $= Z P(X|Z=k)$ 
 $= Z P(X|Z=k)$ 



$$\begin{array}{cccc}
\Xi_{k} & (k.0) \\
\Xi_{k} & (k.0^{2}) \\
\Xi_{k} & (K)
\end{array}$$

### Maximum likelihood

To get a maximum (marginal) likelihood estimate of  $\boldsymbol{\theta}$ , we maximize the following:



Is this cost convex? Identifiable? Bounded?



Dyon-conver

2) na- (dont i fichte -> No unique aptima. (permetation of)

(3) Unbounded

2 -> 00

4 Z<sub>1</sub> = 5 I

width

when 5 -> 0