Exercise Sheet 8 Linear Algebra (AAI)

Exercise 8.1 (H)

Let

$$V = \{(x_1, x_2, x_3)^{\top} \in \mathbb{R}^3 \colon x_1 + x_2 + x_3 = 0\},\$$

$$W = \{(y_1, y_2, y_3, y_4)^{\top} \in \mathbb{R}^4 \colon y_1 + y_2 + y_3 + y_4 = 0\}$$

be subspaces of \mathbb{R}^3 and \mathbb{R}^4 , respectively.

- a) Determine $n_1, m_1, n_2, m_2 \in \mathbb{N}$ and linear maps $G_1 : \mathbb{R}^{n_1} \to \mathbb{R}^{m_1}$ and $G_2 : \mathbb{R}^{n_2} \to \mathbb{R}^{m_2}$ such that $V = \ker G_1$ and $W = \ker G_2$.
- b) Let $\mathcal{A} = ((1, -1, 0)^{\top}, (1, 0, -1)^{\top})$ and $\mathcal{B} = ((1, -1, 0, 0)^{\top}, (1, 0, -1, 0)^{\top}, (1, 0, 0, -1)^{\top})$.
 - i) Show that \mathcal{A} and \mathcal{B} are bases of V and W, respectively. Hint: Use the Rank-Nullity Theorem to determine dim V and dim W.
 - ii) Compute F(v) for $F \in L(V, W)$ given by

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$

and
$$v = (2, -1, -1)^{\top}$$
.

Exercise 8.2 (H)

Let $\mathcal{A} = ((1,1,0)^{\top}, (-1,1,1)^{\top}, (0,1,2)^{\top})$ and $\mathcal{B} = ((2,1,1)^{\top}, (0,0,1)^{\top}, (-1,1,1)^{\top})$ be bases of \mathbb{R}^3 .

- a) Determine the change-of-basis matrix $\mathcal{T}_{\mathcal{B}}^{\mathcal{A}}$.
- b) Let $F \in L(\mathbb{R}^3, \mathbb{R}^3)$ be given by the transformation matrix

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = \begin{pmatrix} 2 & -3 & 1 \\ 0 & 1 & 3 \\ 1 & 4 & -2 \end{pmatrix}.$$

Compute $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(F)$ for the standard basis \mathcal{E} of \mathbb{R}^3 .

Exercise 8.3 (H)

Let $A, B \in \mathbb{R}^{3 \times 2}$ be given by

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$.

- a) Show that A and B are equivalent.
- b) Let $F \in L(\mathbb{R}^2, \mathbb{R}^3)$ be given by $F = \mathcal{F}_A$. Construct bases \mathcal{A} and \mathcal{B} of \mathbb{R}^2 and \mathbb{R}^3 , respectively, such that

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = B.$$

c) Construct matrices $S \in Gl(3,\mathbb{R})$ and $T \in Gl(2,\mathbb{R})$ such that $A = S \cdot B \cdot T^{-1}$. Hint: Note that $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = B$ and $\mathcal{M}_{\mathcal{E}'}^{\mathcal{E}}(F) = A$, where \mathcal{E} and \mathcal{E}' denote the standard bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Exercise 8.4 (H)

Let $n \in \mathbb{N}$ and $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$ be given by

$$a_{i,j} = \begin{cases} 1, & \text{if } i \ge j, \\ 0, & \text{else.} \end{cases}.$$

- a) Show that A is invertible.
- b) Determine A^{-1} .

Hint: First, consider the case n = 4 and transform A into E_4 by using elementary row operations of type II (start with the last row).