Table of Contents

Questions No: 1	1
Introduction	1
Methodologies Recommendation	2
Plan Driven Methodologies	2
Advantages	6
Disadvantage	6
SSADM is less complicated then SDLC	6
It does not include documentation for each steps	6
SSADM is faster, consume less effort and cost compared to SDLC	6
Error and bugs are harder to be notice because testing is not covered in SSADM	6
Unique cross referencing of techniques	6
Expensive and exhaustive	6
Triple Constraints:	7
Analysis on Agile & Plan Driven Methodology	8
Project Characteristics Analysis	8
Alistair Cockburn Polar Graph	9
Agile Methodologies	10
Most appropriate methodology chosen for the project	14
Question No:2	15
Requirement Prioritizing	15
Project Summary	16
Project Plan	17
Gantt chart	20
Cost Estimation	25
Techniques	25
Question No: 3	31
Requirement Listing	31
Functional Requirement	31
Non-Functional Requirements	34
Architecture	35
Saana	20

Network Diagram	39
Use Case Diagrams	40
Start Chart Diagrams	50
Sequence Diagram	51
Collaboration Diagram	
Activity Diagrams	
•	
Entity Relationship Diagram	
Class Diagram	
Component Diagram	67
Deployment Diagram	68
Interface Design	69
References	74
Appendix	76
List of Figure	
Ü	
Figure 1 Waterfall Model Diagram (Tutorialspoint, 2010)	
Figure 2USDP Diagrams	
Figure 3 SSADM Diagram (Patel , 2008)	
Figure 4 Triple Constraints (advncs, 2009)	
Figure 5 Polar Chart (Cockburn)	
Figure 6 Polar Graph based on the Group	
Figure 7 DSDM Life Cycle	
Figure 8 XP Structure	
Figure 9 XP Variables & Values	
Figure 10 Gantt Chart Time Box1	
Figure 11Gantt Chart Time Box 2	
Figure 12 Gantt Chart Time Box 3	
Figure 13 Gantt Chart Implementation Iteration	
Figure 14 MVC Architecture Diagram	36
Figure 15 MVC architecture of OATS	37
Figure 16 Network Diagram OATS	39
Figure 17 Use Case Diagram Search & Registration	40
Figure 18 Use Case for flight reservation	42
Figure 19 Use Case Diagram Payment	44
Figure 20 Use Case Reservation Cancellation	45
Figure 21 Use Case Manage Flight	
Figure 22 Use Case Delete Flight Details	48
Figure 23 Use Case Generate Report	
Figure 24 Start Chart Diagram of OATS	
Figure 25 Sequence Diagram User Login	

Figure 26 Sequence Diagram Search Flight	52
Figure 27 Sequence Diagram Reservation	53
Figure 28 Sequence Diagram User Registration	54
Figure 29 Sequence Diagram Reservation Cancellation	55
Figure 30 Sequence Diagram Report Generation	56
Figure 31 Sequence Diagram Manage Flight	56
Figure 32 Collaboration Diagram User Registration	57
Figure 33 Collaboration Diagram Reservation	57
Figure 34 Collaboration Diagram reservation cancellation	58
Figure 35 Collaboration Diagram Manage Flight	59
Figure 36 Collaboration Diagram Member Login	59
Figure 37 Activity Diagram Search Flight	60
Figure 38 Activity Diagram Reservation	61
Figure 39 Activity Diagram New Registration	62
Figure 40 Activity Diagram Payment	63
Figure 41 Activity Diagram Manage Flight	64
Figure 42 Activity Diagram Generate Report	65
Figure 43 Activity Diagram reservation cancellation	66
Figure 44 ER Diagram of OATS	66
Figure 45 Class Diagram of OATS	67
Figure 46 Component Diagram of OATS	67
Figure 47 Deployment Diagram of OATS	68
Figure 48 Home Page Interface	69
Figure 49 Login Page Interface	70
Figure 50 Registration Page Interface	71
Figure 51 Reservation Page Interface	72
Figure 52 Manage Flight Interface	73
List of Table	
Table 1 Category of Methodology	1
Table 2 Advantages & Disadvantages of Waterfall Approach	2
Table 3 Waterfall Approach Application	3
Table 4 Bottleneck of waterfall approach for the project	3
Table 5 Advantages & Disadvantage of SSADM (2.docm, 2007)	6
Table 6 Comparison Agile Vs. Plan Driven based on Application	8
Table 7 Comparison of Agile Methodologies (AgileOnly, 2012)	14
Table 8 Project Plan (DSDM)	17
Table 9 Gantt Chart Overall	20

Acknowledgement

Thanks for all who directly and indirectly helped me a lot in shaping my work to achieve this great extent.

A substantial amount of support for my work was given by Mr Rohit Pandey (Lecturer Department of Computing, Islington College). Without his innovative and excellent supervision this work won't have been great success, thanks a lot for the support and immense patience.

Likewise, we are very grateful to our each and every group members as well as business partner Mr Manoj Gaire, Mr Ranjit Raj Onta, Mr Karun Lama, Miss Sujata Basnet from Inkwalkar Pvt Ltd. Without their strong advice and suggestion this project can't be a successful one. Thank You, Guys.

Thanks & Regards

Anit Thapaliya

Manoj Rana

Karun Lama

Mahesh Bhandari

BSc (Hons) Computing

Islington College

Abstract

This document on "Online Airlines Ticketing System" normally describes the introduction, background of Online Airlines Ticketing aspects with the different available development approaches.

Secondly, this document focuses on the comparision different development methodologies and selection of the most appropriate methodology with the position point for justification. Likewise, in the initial phase appropriate plan was generate based on the selected methodology. And also theprimary as well as secondary cost estimation for the project was described.

Later in this document the visualization of the project was presented through the different diagrams such as UML, ER etc. Basically ER Diagram is used to present the ideas based on the data store or the database that was required for the online airlines ticketing system. The system overview is presented through the help of the interface design. Interface design usually describes the pictorial presentation of the online airlines ticketing system.

Meanwhile, before the design portion various analysis is carried out in order to sort out the requirement of the online airlines ticketing system. This includes the architecture, scope of the system. The analysis part result to the formation of the software requirement specification for the project. Based on which the design portion of the document is carried out.

This document also reflects the group efforts for the implementation of the online airlines ticketing system. And also reflect the different role performed by the different group members.

Questions No: 1

Introduction

From the view point of Avison & Fitzgerald (1988) a methodology can be describe as a collection of procedures, techniques, tools, documentation aids etc. organized within a lifecycle structure with an underlying philosophy which capture's a particular view of the meaning and purpose of information system development. Normally during the software development lifecycle a methodology play a vital role for the better quality software product, better documented software, more consistent software, more maintainable software etc. In other word, a methodology is a set of general principles that guide the choice of a method suited to a specific task or project. The key terms within the methodology are described below.

Method "An instantiation of the principal in a given situation, the step-by-step description of the steps involved in doing a job".

Task "A task is something we follow in a particular project." A task might be 'Analyse the requirement for a use case'

Technique "A technique specifies how to carry out a task." For Examples, UML Collaboration diagram.

Table 1 Category of Methodology

Plan Driven Methodology (Heavy)	Agile Methodology (Light)	
A Framework that describes the activities	Normally these types of methodologies spped up	
performed at each stage of a software	or bypass one or more life cycle phases of	
development project or the process are managed	software development life cycle and usually less	
& controlled in a sequential manner.	formal & reduced scope.	
Examples SSADM, USDP, WATERFALL	Examples DSDM, XP SCRUM	

Now a day, software development methodologies are categories in two aspect of the development process called Heavy Weight Methodologies (Waterfall, RUP) & Light Weight Methodologies (DSDM, XP, SCRUM etc.). But having the classification in the software development methodologies most of the software company rated the selection of the appropriate methodology is the critical task in their business procedure (Pelican Engineering, 2002).

Likewise, a statistical survey on the project delivery and failure in 2009 reflects that the 26 percentage of the all project failed before completion, 30 percentage of the software project was complete on time with the estimated budget allocation but the rest of the project was failed to deliver on time and with the initially estimated budgets(CHAOS, 2009).

Hence, the software development process is directly responsible in the selection of the methodologies in order to satisfy the software company reputation as well as quality as acceptable product for the business client.

Methodologies Recommendation

Plan Driven Methodologies

Waterfall Approach:

Waterfall approach was first SDLC model to be used widely in software engineering to ensure success of the project. In "Waterfall" approach the whole process of software development is divided into separate phases. In waterfall model, typically, the outcome of one phase acts as the input for the next phase sequentially.

The waterfall model is a sequential software development model. In other word it is defined as a process for the creation of software in which development is seen as flowing steadily downwards like a waterfall in the nature. The origin of the term "waterfall" is cited to be an article by Winston W. Royce. (Rouse, 2007). The unmodified waterfall model progress flows from top to the bottom just like a normal waterfall.

Figure 1 Waterfall Model Diagram (Tutorialspoint, 2010)

Table 2 Advantages & Disadvantages of Waterfall Approach

Advantage	Disadvantage
Very easy to implement (Linear)	Only able to use when requirement are fixed

Required minimum resource	Unable to move back to the previous stage
Documentation is produced at every stages	If mistake happen on middle, should start from
	the scratch
m	
Testing is done to check code is running correct	Tester role only happen in the testing phase
Testing is done to check code is running correct or not	Tester role only happen in the testing phase

Waterfall Model Application (When to Use?)

Every software development is different and requires a suitable software development life cycle to be followed on the internal and external factors. Some situations are mentioned on the table below:

Table 3 Waterfall Approach Application

S.N:	Suitable Situations
1	The project is short
2	Product definition is stable
3	Requirements are very well documented, clear and fixed
4	Technology is not so dynamic
5	No ambiguous requirements

Why not appropriate?

The advantages of waterfall development are that it allows for departmentalization and control. But the waterfall approach is not suitable for the online airlines ticketing system because of the following reasons:

Table 4Bottleneck of waterfall approach for the project

S.N:	Reasons
1	Cannot accommodate the changing requirement:
	Missing requirement or the changing requirement cannot accommodate in the waterfall
	approaches because it required fixed and stable requirement but the features are not known
	and may change in the future. Hence, it will be difficult to implement the change in the
	waterfall approaches
2	High amount of risk and uncertainty:
	The negative aspect of the waterfall model that is does not allow for much reflection or
	revision. Once in the testing phase it is very difficult to go back and change something in order
	to mitigate the targeted risk. Hence, it is not suitable for the online airlines ticketing system
	where requirement are at a moderate to high risk of changing. So, risk and uncertainty is high
	with the waterfall approach.

RUP/USDP (Rational Unified Process/Unified Software Development Process)

Unified software development process is object oriented approach for the software development. USDP introduce the main concepts of iterative and incremental development. USDP has 4 phases (i.e. Inception, Elaboration, Construction and Transition). Iteration are vital to USDP where each iteration is important that includes planning, analysis, design, integration and testing. Additional functionality is implemented in each increment. USDP is an industry standard software development process. It is free & the generic process for the UML. And also USDP is use case and risk driven with architecture centric behaviour.

Rational Unified Process is an instantiation of USDP. RUP is a product marketed and owned by IBM software

Figure 2USDP Diagrams

USDP Application (When to use USDP?)

The main focus of USDP is to accommodate the changing nature of the requirements or the missing requirement of the system in the software development life cycle. USDP is mostly used for big a project that requires heavy documentation.

Why not appropriate?

USDP is generic software development process. It has to be customized for our team project such as our project duration is short but USDP is normally used for the big project which resembles the long duration. As team project online airlines ticketing system development requires a day to progress report based on the project plan. Hence, along USDP is not suitable for the online airlines ticketing system.

SSADM (Structured System Analysis and Design Method)

SSADM is a procedural and documentation standards methodology for system development. This kind of method is systematic approach to the analysis and design of Information Technology (IT) applications that is commonly used in the UK (Ashworth, 1993).

The methodology adopts the SDLC phases. The steps in SSADM are similar with SDLC, but it does not attempt to cover information strategy planning or construction, testing and implementation of the eventual system (Ashworth, 1993). In developing a system using this methodology, user - analyst interaction is possible because according to this method, the system is belong to the user, hence their participation in the development process is essential.

Figure 3 SSADM Diagram (Patel, 2008)

SSADM consists of 5 main modules:

- 1. Feasibility Study
- 2. Requirement Analysis
- 3. Requirement Specification
- 4. Logical System Specification
- 5. Physical Design

Table 5 Advantages & Disadvantage of SSADM (2.docm, 2007)

Advantages	Disadvantage
SSADM is less complicated then SDLC	It does not include documentation for each steps
SSADM is faster, consume less effort and cost	Error and bugs are harder to be notice because
compared to SDLC	testing is not covered in SSADM
Unique cross referencing of techniques	Expensive and exhaustive

SSADM Application (When to use SSADM?)

SSADM is suitable for the system development process where the requirements of the project are not known and the project is big in category. SSADM is data driven highly structure with very detailed rules and guidelines which adhered the big project into small. It is also suitable for the big project that requires data modelling and cross referencing for consistency.

Why not appropriate?

Online airlines ticketing system is a normal project the major requirement are already list on the case study. Hence, it does not require the procedural and huge documentation of SSADM. Similarly, online airlines ticketing system is group work so that human resources and time are bottleneck for the SSADM making it unsuitable for projects of a small nature.

Conclusion

Apart from the various methodologies analyzed above however, depending upon the various factors such as project context, human resources, technology& techniques constraints, time etc. these methodologies are not appropriate for online airlines ticketing system development process.

Triple Constraints:

When it comes to information technology project i.e. an online airlines ticketing system we often struggle to find the balance betweeb scope, cost and project deadline. We believe in a "measure twice, cut once" mentality where appropriate level of analysis and planning can help a project be successful, as well as mitigate problems later in the project development life cycle.

Scope Quality Cost

Figure 4 Triple Constraints (advncs, 2009)

Scope:

Scope is the product or services that the software offers. Talking about this case study our scope is to develop an online ticketing system, of course it's a high scope project due to the critical business task it performed.

Time:

Time/Resource describes the structure of our group and its ability to fulfil commitments or the ability to handle changes. For this online airlines ticketing system the project deadline is before 10th January 2014. Likewise, the maximum human resource allocated was 5 but due to critical problems human resource remains are just 3.

Cost:

Cost reflects the competitive advantage of product and marginal utility & value to the clients. In other word, it's a pre estimation of the sum of the money required for the software development. During the development of the online airline ticketing system all the direct as well as indirect cost should be mentioned.

Analysis on Agile & Plan Driven Methodology

Consider essential software engineering difficulties like *complexity*, *conformity*, *changeability* and *invisibility* for both the agile and plan driven methodologies.

Agile methodology handles changeability and invisibility by building a shared vision of project's objectives. But agile do not scale up to large complex project but agile methods found on handling the complexity and some extent of conformity.

Plan driven methodology handle conformity and invisibility by investing in extra documentation. Likewise, they founder on changeability and the increasing complexity due to system integration.

Table 6 Comparison Agile Vs. Plan Driven based on Application

Characteristics	Agile	Plan Driven	
Scope	Responding to change	High assurance & stability	
Size	Small Team	Large Team	
Environment	High Change; Project Focused	Low Change;	
		Project/Organization Focused	

Project Characteristics Analysis

S.N:	Characteristics	Agile	Plan Driven
1	Size (less than 10)	Yes	No
2	Change response (=High)	Yes	No
3	Time (=Short)	Yes	No
4	Culture (=thriving on chaos)	Yes	No
5	Traceability (=High)	No	Yes
6	Growth/Progress (=Visible)	Yes	No

According to the case study based on the online airlines ticketing's system, above mention factors may consider as the turning point in order to select the development methodologies. From the above mention table, the case study restricts the project size of more than 4 persons. Hence, the Plan driven methodologies is not suitable for the development of the online airlinesticketing system because the project human resources is fixed at the three different members.

Secondly, the invisible requirement change might occur during the development phase as it is the dynamic system although the basic requirements are fixed. The response rate for change rate must be low in order to flow the plan driven methodologies.

Thirdly, let's say time, talking about the time for this system is it well declared to be short for plan driven methodologies. As the system need some rapid development procedures.

Fourthly, Culture reflects the nature of the project being the academic project it very comfort and empower via the degree of freedom to the students without the framework of policies and procedures.

Lastly, Traceability and growth, for the online airlines ticketing system group members must show the progress with the different members as well as the module leader but the growth or progress is not visible in the plan driven methodologies. Similarly, the traceability is informally prioritized in the agile methodology but in the plan driven methodology it is formally managed where fractional documentation is required. Hence, Agile is suitable for the online airlines ticketing system.

Alistair Cockburn Polar Graph

Cockburn identified five critical decision factors associated with agile and plan driven methodologies.

Figure 5 Polar Chart (Cockburn)

The above mention diagram, reflects the comparison between the agile and plan driven methodologies. Based on the Cockburn description over the five different axes certain number is provide to each axes in order to calculate the polar graph. The range (1-10) is used to describe the properties of the polar axes according the Cockburn description. Hence, the graph results that agile methodology is suitable for the project enrolling the low human resources.

Polar Graph based on our Group

Personnel scale of the group members is low indicating 3 out of 10 from the personnel axes of the polar graph. Members are not professionally strong. Likewise, the size is low hence it is directed towards the center of the polar graph. Normally the basic requirements are mentioned on the case study but it may change during the project development. Hence, the group cannot accommodate the changes.

Figure 6 Polar Graph based on the Group

Based on the group decision made on the meeting held on the 6th December 2012 at Brit House, Islington College. Team members decided to apply agile methodology rather than the plan driven heavy methodology for the development of the online airlines ticketing system. This because of the above mentioned analysis results.

Agile Methodologies

Agile software development model is a combination of iterative and incremental process models with focus in process adaptability ad customer satisfaction by rapid delivery of working software product. Agile methods break the product into small increments and these increments provides an ierations. Among the various agile methodologies only DSDM and XP is mentioned below.

DSDM (Dynamic Software Development Method)

In January 1994, sixteen individuals from the software development business met to form the DSDM Consortium. This group hoped to establish an independent RAD methodology. The basic concepts of DSDM were established by March, and the consortium now consisted of 36 members. This showcases that the DSDM approach to software development is mature, as it has not undergone any major revisions for several years. As a result, the DSDM Consortium was created and convened in 1994 with the goal of devising and promoting a common industry framework for rapid software delivery.

DSDM is an iterative and incremental approach that incorporates the principles of agile development. It is based on nine key principles that are as follows:

Figure 7 DSDM Life Cycle

Principles

The entire approach of DSDM relies on nine principles(DSDM Consortium, 2010), which are applied throughout the entire process. These principles are as follows:

- 1. Active user involvement
- 2. Teams must be empowered to make their own decisions.
- 3. Frequent delivery of releases is more important than maximizing quality.
- 4. The primary criteria for deliverables is meeting the business needs.
- 5. Iterative development is essential to reach a correct solution.
- 6. Any change during development can be reversed.
- 7. The most high level requirements should be unchangeable.
- 8. Testing shall occur throughout the lifecycle of the project.
- 9. All stakeholders must cooperate and communicate.

MoSCoW

The MoSCoW system is a method of prioritizing items. DSDM utilizes it as a system for prioritizing requirements. This acronym stands for Must, Should, Could, and Would. These are the four types of priorities that requirements may have. Must priorities are those that are absolutely required in order to meet the business needs of the end users. Should priorities are those that the system should have if even remotely possible, but the system will not fail outright if the requirement is not met. Could priorities are those that it would be nice for the system to have, but the quality of the final system will not be affected if these priorities are

not met. Lastly, the Would priorities are requirements that could be added at a later time if it is feasible to do so, such as during post-project development.

XP (Extreme Programming)

Extreme Programming is a software development process as well as methodology. XP is a lightweight methodology or "Crystal Methodology" according to Alistair Cockburn. In other word methodology of agile family have high productivity and high tolerance. Communication is usually strong with short paths, especially informal not documented. There us only a small range of deliverables but these are delivered frequently.

Figure 8 XP Structure

XP has been applied to business problems only e.g. projects with external customer that wants a specific product. The projects usually ranged from 6 to 15 months? XP was used by small teams ranging from two to twelve members.

XP Variables	XP Values
Cost	Communication
Time	Simplicity
Scope	Feedback
Quality	Courage

Figure 9 XP Variables & Values

XP is an iterative and incremental process. The project is divided into smaller "mini projects" which result in an increment of functionality, the so-called release. An XP project creates frequent release in order to gain the values of the feedback.

XP process normally includes the planning games process and the development. The process planning games consists of three steps exploration, planning and steering while the development process usually consists of the iteration of the project releases. But the each iteration in the development process is again begins with an iteration planning game cycle (Dudziak, 1999/2000).

XP is different although the rules and practices are not new they are used in a much more strict fashion. This is especially true for pair programming, refactoring and unit testing. It seems to be more fun than a "traditional" process mostly because there is a strong emphasis on team work, communication and helping each other.

Most appropriate methodology chosen for the project

According to the 6th December 2013 meeting with the group members, DSDM methodology was selected within the agile nature for the development of the online airlines ticketing system.

Why most appropriate?

Table 7 Comparison of Agile Methodologies (Agile Only, 2012)

S.N:	Characteristic	Scrum	DSDM	XP
1	Project Team	All sizes	Independent	Less than 20 or
			Team	smaller team
2	Project Size	All Types	All Types	Smaller Projects
3	Communication	Informal	Document based	Informal
4	Development Approach	Iterative	Iterative	Iterative
		increments		increments
5	Time	2-4 weeks	80% solution in	1-6 weeks
			20% total time	

From the above comparison table, online airlines ticketing system development process is most suitable with DSDM rather than other mentioned agile methodologies. Apart from this, the change management environment of the DSDM is most suitable aspect for the online airlines ticketing system because the invisible change might occur during the development phase. Likewise, DSDM MosCow technique is very useful for prioritizing the requirements of the project within the fixed time box. Additionally, DSDM ensures the delivery of the project on time. The basic functionality is quickly identified and delivered. In addition, the results/progress of development is visible.

Requirement priority approach is the important factors for the project because the basic requirement of the project is already mentioned. Hence, missing requirement can be adjust in the project because it's a iterative approach. Likewise, efficient project management is another strong aspect of the DSDM methodology because DSDM focus on frequent delivery of the products. Furthermore, DSDM make possible to break down aspects of the system into smaller components to produce manageable functional increments.

Question No:2

Requirement Prioritizing

The functional requirements for a system basically describe what the system normally does (Sommerville, 2011). For the proposed system as per the requirement analysis following requirements is considered as functional requirements.

MoSCoW (Described earlier in questions no 1)

S.N:	Must Have Requirement
1	Tickets Reservation (The system must provide a means to members to reserve the tickets)
	Member must logged in in order to make reservation
	2. Member must able to make online tickets reservation
2	Member Registration (The system must provide a means for new user registration)
	1. System requires members photo and others details for registration
	2. User must logged in in order to search, reserve and payment etc
3	Manage Payment (System must provide a means for online payment)
	1. Member must be able to make online payment (after confirmation of
	reservation)
	2. Member must be able to make cash or Cheque payment (within 3 days of
	reservation)
	3. System must forward e-tickets after the payment
	4. System must handle discount of
	• 15% for reservation before 3 months
	• 5% for reservation before 1 months
	• 10% for reservation of age group (below 2 & above 70)
5	Handle Flight information (System must provide a means to add, update & delete
	airlines/flights/airports etc.)
	1. Administrator must be able to manage airlines/flights/airports details.
	2. Administrator must be able to verify the reservation and cancellation of tickets
	made by the customers.
6	Handle e-Ticketing (System must allow members to get an online e-tickets)
	1. Administrator must send e-ticket to customer on matching their requisites for
	reservation.
	2. Member must be able to forward the scanned copy of visa/passport for the
	agency or company.
<u> </u>	

	3. System must generate unique verification code for every ticket
	4. Member must be able to cancel the flight reservation.
	Should Have Requirements
7	Manage Cancellation of tickets (System should allow members to cancel their reservation)
	System should manage the cancellation by
	1. Deducting 25% charge for reservation before 3 months
	2. Deducting 35% charge for reservation before 1 month
	3. Deducting 15% charge for reservation before 15 before
8	Handle Report (System should allow administrator or the manager to generate and view
	report)
	1. System should generate reports to keep track of the flow of customer according
	to the country/city/airliner
	2. Manager should be able to view reports in order to analyze the performance of
	airlines/flights/country etc
	3. Manager should be able to view analytical reports regarding the seasonal flow
	of Nepali nationals.
9	Manage Search (System should provide a means to allow users to search flights)
	Could Have Requirements
10	Update Profile (System could have provide a means to allow members to change their
	personal information)
	Won't Have Requirement
11	Confirmation
	1. System won't have SMS confirmation system

Project SummaryStart Date: 29th November, 2013 (Based On Group Meeting Minutes)

End Date: 10th January, 2014

Total Days: 42 days

TimeBoxing

TimeBox Number	Requirements ID	Duration
1	M1, S1, S3	2 weeks
2	L1, L2, L3, M3, S2	2 Weeks
3	L5, M2, A1, A2	1 Week
		Total days: 35

Project Plan

Table 8 Project Plan (DSDM)

Task Name	Duration	Start	Finish	Team Member Allocation
			Main Roles	
Feasibility Study	1	29/11/2013	30/11/2013	Karun
Business Case Study	2	01/12/2013	03/12/2013	Anit
Apply MoSCoW	1	04/12/2013	05/12/2013	Manoj
Time Box1 (M1, S1, S3)				
Functional Model Iteration	14	06/12/2013	20/12/2013	
Identify Functional Prototype	2	06/12/2013	08/12/2013	Karun
Agree Plan	1	09/12/2013	10/12/2013	Karun, Manoj, Anit
Create Functional Prototype	7	11/12/2013	18/12/2013	
Finish UML Diagrams (Use Case, Class, Sequence, Activity, Collaboration, State Chart)	3	11/12/2013	14/12/2013	Karun
Finish Logical design (ERD, Normalization, Data design)	3	15/12/2013	18/12/2013	Anit
Finish Interfaces	1	19/12/2013	20/12/2013	Manoj
Review Prototype	4	21/12/2013	25/12/2013	Karun, Manoj, Anit
Time Box2 (L1, L2, L3, M3, S2)				
Functional Model Iteration	14	26/12/2013	09/01/2014	
Identify Functional Prototype	2	26/12/2013	28/12/2013	Anit
Agree Plan	1	29/12/2013	30/12/2013	Karun, Manoj, Anit
Create Functional Prototype	7	31/12/2013	07/01/2014	

Finish UML Diagrams (Use Case, Class, Sequence, Activity, Collaboration, State Chart)	3	31/12/2013	03/01/2014	Manoj
Finish Logical design (ERD, Normalization, Data design)	3	04/01/2014	07/01/2014	Karun
Finish Interfaces	1	08/01/2014	09/01/2014	Anit
Review Prototype	4	10/01/2014	14/01/2014	Karun, Manoj, Anit
Review Prototype	1	15/01/2014	16/01/2014	Karun, Manoj, Anit
Time Box3 (L5, A1, A2, M2)				
Functional Model Iteration	7	17/12/2013	24/12/2013	
Identify Functional Prototype	1	26/12/2013	27/12/2013	Anit
Agree Plan	1	28/12/2013	29/12/2013	Karun, Manoj, Anit
Create Functional Prototype	4	30/12/2013	03/01/2014	
Finish UML Diagrams (Use Case, Class, Sequence, Activity, Collaboration, State Chart)	1	04/01/2013	05/01/2013	Manoj
Finish Logical design (ERD, Normalization, Data design)	1	05/01/2014	06/01/2014	Karun
Finish Interfaces	1	07/01/2014	08/01/2014	Anit
Review Prototype	2	08/01/2014	10/01/2014	Karun, Manoj, Anit
Design and Build Iteration	40	12/01/2014	21/02/2014	
Identify Design Prototype	9	12/01/2014	21/01/2014	Manoj
Agree Plan	3	22/01/2014	25/01/2014	Karun, Manoj, Anit
Create Design Prototype	21	26/01/2014	16/02/2014	Karun
Review Design Prototype	7	17/02/2014	24/02/2014	Karun, Manoj, Anit
Implementation	17	25/03/2014	11/04/2014	
User Approval and User guidelines	4	25/03/2014	29/03/2014	Manoj
Train Users	4	30/03/2014	03/04/2014	Anit
Implement	2	04/04/2014	06/04/2014	Karun

Review Business 7 07/04/2014 14/04/2014 F	Karun, Manoj, An	it
---	------------------	----

Gantt chart

Table 9 Gantt Chart Overall

Figure 10 Gantt Chart Time Box1

Figure 11Gantt Chart Time Box 2

Cost Estimation

Cost estimation is the process of determining the amount of fixed and variable cost (i.e. direct/indirect cost) associated during the development of the system.

Cost estimation includes estimation of:

- i. Hardware and software costs.
- ii. Travel and training costs.
- iii. Effort cost

Techniques

There is no simple way to make an accurate/precise estimation of the effort to develop software. Some popular estimation techniques are as follows:

- a) Algorithmic cost modelling.
- b) Expert Judgement.
- c) Estimation by analogy.
- d) Parkinson's Law.
- e) Pricing to win.

Technique Used

- 1. Function Point Estimation
- 2. COCOMO 81 model (Constructive cost model)

Function Point Estimation

Functions points for the proposed system are as follows:

- a. Report generation (MIS)
- b. UI
- c. Ticketing (Reservation, Payment & Cancellation)

Report Generation

```
Low Estimate (S1) = 1500 \text{ LOC}
```

High Estimate (Sh) = 2500 LOC

Average Estimate (Sa) = 2000 LOC

Here,

Expected Value (Ev) =
$$(1500+4*2000+2500)/6$$

$$= 2000 LOC$$

Now,

Number of person available = 3

Cost per line of code = \$1.5 (Assumption)

UI

Low Estimate (S1) = 1300 LOC

High Estimate (Sh) = 1900 LOC

Average Estimate (Sa) = 1600 LOC

Here,

Expected Value (Ev) =
$$(1300+4*1600+1900)/6$$

= 1600 LOC

Now,

Number of person available = 3

Cost per line of code = \$1.5 (Assumption)

Ticketing (Reservation, Payment & Cancellation)

Low Estimate (S1) = 1800 LOC

High Estimate (Sh) = 3000 LOC

Average Estimate (Sa) = 2400 LOC

Here,

Expected Value (Ev) =
$$(1800+4*2400+3000)/6$$

= 2400 LOC

Now,

Number of person available = 3

Cost per line of code = \$1.5 (Assumption)

=200*1.5

=\$3600

Total SLOC = 200+1600+2400 = 6000 = 6.0 KLOC

Total Cost = \$3600 + \$2400 + \$3000

= \$9000

Now,

COCOMO 81

COCOMO (Constructive Cost Model) is proposed by DR. Berry Boehm in 1981 normally known as COCOMO 81. It is a regression formula with the data taken from the historical projects as well as current projects. COCOMO II is best for the iterative project like online airlines ticketing system. Normally COCOMO II is classified with the three different software product mentioned below

- Organic projects "small" teams with "good" experience working with "less than rigid" requirements
- Semi-detached projects "medium" teams with mixed experience working with a mix of rigid and less than rigid requirements
- Embedded projects developed within a set of "tight" constraints. It is also combination of organic and semi-detached projects.

The basic COCOMO equations take the form

Effort Applied (E) = $a(KLOC)^b$ [person-months]

Development Time (D) = $c(Effort Applied)^d$ [months]

People required (**P**) = Effort Applied / Development Time [count]

where, **KLOC** is the estimated number of delivered lines (expressed in thousands) of code for project. The coefficients a, b, c and d are given in the following table:

Development Mode	Project Characteristics					
	Size	Innovation	Deadline/constraints	Dev. Environment		
Organic	Small	Little	Not tight	Stable		
Semi-detached	Medium	Medium	Medium	Medium		
Embedded Large Greate		Greater	Tight	Complex hardware/customer interfaces		
Here is the coefficents re	Here is the coefficents related to development modes for intermadiate model:					
Development Mode	a	b	С	d		
Organic	3.2	1.05	2.5	0.38		
Semi-detached	3.0	1.12	2.5	0.35		
Embedded	2.8	1.20	2.5	0.32		

Here online airlines ticketing system comes under the organic project because it consists of the small team with in-house group member's environment. Hence, the organic software product is suitable for proposed system.

Now we know that:

Effort = a(KLOC)^b Person/month

Now,

=2.4*6.0^1.05

=15.75 person/month

Again, for time

=c(Effort)^d month

=2.5*(15.75)^0.38 month

=7.1 months

Similarly, for Person required

=Effort/Time=15.75/7.1

=2.2 person

Now, Cost = 7.1*3*\$1000 (where 3=number of members & \$1000 is the monthly salary)

Total Cost=\$21300

Software cost estimation

S.N.	Item	Purpose	Cost(\$)
1	Operating System	E.g. Windows 7 as a	200
		OS platform	
2	RAD Tools	E.g. Dreamweaver,	100
		XAMMP or WAMP	
		Server	
Total			\$300

Training Cost

S.N.	Item	Cost (\$)
1	Travel Cost	100
2	Training Cost	300
Total		\$400

System Hosting Charge

Features	Specification
Web Space	100GB
Bandwidth	200MB
Domain Registration	Yes
Database	Unlimited

FTP accounts	Unlimited
Total	\$2000 (Approx.)

Question No: 3

Requirement Listing

Functional Requirement

ID	User Requirements	ID	System Requirements
L1	The system must provide means to search flight details		
		L1.1	The airlines administrator should be provided with the facility to manage flight details (insert/update/delete).
		L1.2	The database in updated with each task (insert/update/delete).

ID	User Requirements	ID	System Requirements
L2	The system must provide the means for registration in order to make		
	reservation		
		L2.1	The system should be provided with an interface for new member registration.
		L2.2	Register member is uniquely identified by a ID number.
		L2.3	The system should be provided with a facility to modify and deleteold member details.
		L2.4	Database is updated.

ID	User Requirements	ID	System Requirements
L3	The system shall provide a means		
	for members to upload or send the		
	VISA/Passport for booking.		
		L3.1	The members should be provided with an
			interface for uploading purOATS e.
		L3.2	The details are stored in the database

ID	User Requirements	ID	System Requirements
L4	The system shall provide a means to		
	send the confirmation of the		

reservation.		
	L4.1	The administrator should be provided with a
		facility to check the condition of a reservation.
	L4.2	If the conditions are matched then reservation
		details is stored in the database
	L4.3	The members should be provided with a soft
		copy of the reservation confirmation

ID	User Requirements	ID	System Requirements
L5	The system shall provide a means to		
	cancel the reservation of the flight.		
		L5.1	The airlines administrator should be provided
			with a facilities to cancel the reservation based
			on the policy
		L5.2	Database is updated after the cancellation of
			the reservation

ID	User Requirements	ID	System Requirements
M1	The system could have provided		
	the administrator with the facilities		
	to manage (insert/update/delete)		
	airlines, flight and airports.		
		M1.1	The administrator should be provided with an
			interface to manage airlines, flights, airports.
		M1.2	The database is updated after each operations

ID	User Requirements	ID	System Requirements
M2	The system could have provided a		
	means to the administrator to		
	manage (verify) the reservation &		
	cancellation of tickets.		
		M2.1	The administrator should be provided with an
			interface to verify reservation & cancellation.
		M2.2	The database is updated after each operations

ID	User Requirements	ID	System Requirements
M3	The system could have provided a		
	means to forward the e-tickets to		
	the members.		
		M3.1	The administrator should be provided with a
			facility to send the e-tickets to the members
			after meeting all the requisites.
		M3.2	A confirmation message should be displayed
			to the administrator interface when the e-
			ticket is sent.

ID	User Requirements	ID	System Requirements
A1	The system shall provide a means		
	to see the report based on different		
	factors ticketing operation.		
		A1.1	The administrator should be provided with a
			facility to viewreport.
		A1.2	The system should generate report about different operations performed for airline ticketing.
		A1.3	The manager should be able to view the
			generated report.
		A1.4	Reports are stored in the database

ID	User Requirements	ID	System Requirements
A2	The system shall provide a means		
	to view reports regarding seasonal		
	flow of Nepali nationals.		
		A2.1	The system should generate reports regarding
			seasonal flow of Nepali nationals.
		A2.2	The administrator/manager should be able to
			view the report.
		A2.3	Reports are stored in the database

ID	User Requirements	ID	System Requirements
S 1	The system shall operate in online status.		
		S 1.1	The user should be able to access the system through internet.
		S 1.2	The system should be available anytime

ID	User Requirements	ID	System Requirements
S 2	The system shall print unique verification		
	code for each e-ticket.		
		S 2.1	The system should generate unique
			verification code for each e-ticket.
		S 2.2	The unique verification codes are
			stored in the database.

ID	User Requirements	ID	System Requirements
S 3	The system shall complete registration with		
	user photo.		
		S 3.1	The system verifiesif the user has
			uploaded a photo or not.
		S 3.2	User details along with photo are
			stored in the database.

Non-Functional Requirements

Non-functional requirements describe the different sorts of requirements that is required for the smooth and proper functioning of the OATS. Certain requirements are mentioned below.

i. Performance Requirements:

It specifies the timing characteristics of the software. There are certain features, which are more time-sensitive than others. The non-functional requirements should identify those software functions, which have some constraints on their performance.

- 1) Response Time: It specify the response time for the transaction in the system. Normally the OATS system can handle mostly 4/5 transaction with the CPU usage of 60%
- 2) Notification Time: It defines the time required to notify the user about the completion, error in the transaction.
- 3) Recovery Time
- 4) Loading or Run Time (Application Loading should not take long time).

ii. Safety & Security Requirements

It specifies the ability of the software to remain protected from unauthorized access. This includes both change access and view access.

- 1) Authentication system will used for the secure password validation
- 2) Safe Login & Logout will be done by session handling
- iii. Other Software Quality Attributes
 - 1) User Friendliness: The system should be ease and simple to use for the end users. It doesn't require extra training to use the system.
 - 2) Reliability: The OATS System should be reliable because it handles the strong username and password authentication mechanism.
 - 3) Scalability: The system should be scalable as the OATS system should handle the growing amount of work.
 - 4) Fault Tolerant: In case power failure system should able to recover the data using the backup mechanism as well as transaction logs
 - 5) Operating Platform: The OATS system should operate of the computer having the Microsoft Windows Xp and greater, with minimum 1GHz processor and 256MB RAM.
 - 6) Interface Metaphor: The OATS system GUI must include the dialog boxes, menus, buttons and also some screen instructions. And minimize the use of pointer navigation then the keyboard navigation.
 - 7) Ease of Use: The OATS system must be user friendly in terms with ease menu, instructions etc.

Architecture

The online airlines reservation system development follows the model view architecture. The overview of the system is described in the below figure:

Figure 14 MVC Architecture Diagram

Model-View-Controller is the concept introduced by Smalltalk's inventors of encapsulating some data together with its processing (the model) and isolates it from the manipulation (the controller) and presentation (the view) part that has to be done on a User Interface (Connelly, 2003).

Figure 15 MVC architecture of OATS

Scope

An online ticketing system is generally focus on the management of business procedures carried out by the travel agency. OATS usually handles the reservation and payment of the different flight tickets. Members have the facilities to search reserve and purchase the flight tickets. Likewise, the manager has the facilities to generate the different categories report. Normally the overall business activities of the travel agency is wisely handle by the OATS though having minor consideration on the functions like mobile ticketing, etc. The major features that OATS handle were mentioned below:

- Customer registration
- Make reservation/payment online
- Cancel reservation
- MIS Reporting

Network Diagram

Figure 16 Network Diagram OATS

Actors: Customer (Primary/Initiator), System

Purpose: Request for the new membership

Overview:

The customer search the suitable flight. Then, proceed towards the online form and submits. The system checks if any new membership requests have arrived. The Systemreviews the membership request and checks the details if the one who applied had meet all the requisites. Then the system stores the new membership details in to the database.

Type: Primary, essential

40

Dialogue

Actor	System
1. Customersubmits the online form for the new	2.The system checks the membership requests
membership.	from the customer
•	4. The Systemreview the membership request to
	confirm if all the requisites are matched.
	5. The system provides the membership
	6. The system stores the new membership details
	into the database.

Figure 18 Use Case for flight reservation

Actors: Member (Primary/Initiator), System and Administrator

Purpose: Reserve flight

Overview:

The member logs in to the system with his/her username and password. Dashboard is displayed in the system where user can do search for the flight suitable for him/her. The system displays a list of flight which the user searched for. The user selects the flight details. The system checks whether the reservation is available or not. The system and the

Administrator verify the reservation. The Administrator conforms the reservation with the system generated unique verification code a reservation and send e-tickets to the members.

Type: Primary, essential

Dialogue

Actor	System	
1. The member logs into the system with	2. Authenticates user	
username and password	3. Displays reservation interface	
4. The membersearch the flight details6. the member select the flight for reservation	5. Displays the search result	
10. The Administrator reserve the flight	7. Checks the availability of the flight8. Checks all the requisites9. Confirm reservation11. Sends a unique verification code	

Alternate Action.

Line 2: If the username and password is not valid then the system rejects logging in.

Line 4: If the flights are not available which are searched by the members then the booking is cancelled.

Line 9: If the member cannot meet all the requisites then reservation cancelld.

Figure 19 Use Case Diagram Payment

Actors: Member (Primary/Initiator), System

Purpose: Make Payment

Overview:

The member logs into the system and the system displays the dashboard. The members make the reservation for the flight. Members provide the payment. The system checks the discount schemeand deduct from the payment methods applied by the customer.

Type: Primary, essential

Dialogue

Actor	System
1. The members logs into the system with his/her	2. Displays the dashboard
username and password	4. The system confirms the reservation of the
3. The members make the reservation	flight

5. The members makes the payment	4. The system checks the discount scheme and
	deduct the amount from the cards

Alternate Action.

Line 4: While making cash payment the secondary actor may be the administrator but while online payment the actor will be the system itself.

Figure 20 Use Case Reservation Cancellation

Actors: Member (primary/initiator), Administrator

Purpose: To cancel the reservation.

Overview:

The member logs into the system and view reservation details. If the members cancel his/her earlier reservation then request for cancellation. The system verify the reservation and allocate the charge amount for the members based on the cancellation scheme and updates the database.

Type: Primary, essential

Dialogue

Actor	System
1 The member login in to the system.3. The member request for reservation cancellation.	2. The system authenticates the user.4. The Administrator verifies the reservation and allocates the cancellation charge to the members.
	5. The system updates the database

Flight Management Login <<includes> username password insert flight <<ind><<<ind><includes>> Tincludes_ Administrator Airlines Names Flight Description Flight Source flight destination no of seats Lincludes - Keinclu Leincludes update flight Confirm

Figure 21 Use Case Manage Flight

Actors: Administrator(primary/initiator), System

Purpose: Add& update flight details.

Overview:

The administrator login into the system and view the flight details. The administratorcan modify, add or deletethe flight details. The system updates the update the flight details accordingly.

Type: Primary, essential

Dialogue

Actor	System
1 The administrator login in to the system.3. The administratormanage the flight details	2. The system authenticates the administrator.
(add, update tasks).	4. The System verifies the change.
	5. The system updates the database.

Figure 22 Use Case Delete Flight Details

Actors: Administrator(primary/initiator), System

Purpose: To delete flight details.

Overview:

The administrator login into the system and view the flight details. The administratorcselect the delete flight details. The system updates the update the flight details accordingly.

Type: Primary, essential

Dialogue

Actor	System

1 The administrator login in to the system.

2. The system authenticates the administrator.

3. The administratordeletes the flight details.

4. The System verifies the change.

5. The system updates the database.

Figure 23 Use Case Generate Report

Actors: Manager(primary/initiator), System

Purpose: To generate report based on different factors

Overview:

The manager login into the system and generate differentreport based on the flight, country, airlines and city. The manageranalyse the report through the analytical report of the seasonal customer.

Type: Primary, essential

Dialogue

Actor	System
1 The manager login in to the system.	
	2. The system authenticates the manager.
3. The administratorgenerates the report.	
	4. The System provides the analytical report.
	5.77
	5. The system updates the database.

Start Chart Diagrams

Figure 24 Start Chart Diagram of OATS

Sequence Diagram

Figure 25 Sequence Diagram User Login

Figure 26 Sequence Diagram Search Flight

Figure 27 Sequence Diagram Reservation

Figure 28 Sequence Diagram User Registration

Figure 29 Sequence Diagram Reservation Cancellation

Figure 30 Sequence Diagram Report Generation

Figure 31 Sequence Diagram Manage Flight

Collaboration Diagram

Figure 32 Collaboration Diagram User Registration

Figure 33 Collaboration Diagram Reservation

←8: retrieve transaction details-←14: database updated message—

Credit Card

Card Database

Figure 34 Collaboration Diagram reservation cancellation

Figure 35 Collaboration Diagram Manage Flight

Figure 36 Collaboration Diagram Member Login

Activity Diagrams

Figure 37 Activity Diagram Search Flight

Figure 38 Activity Diagram Reservation

Figure 39 Activity Diagram New Registration

Figure 40 Activity Diagram Payment

System Administrator enter login details validate username and password success enter flight details (add, update, delete) verify details fail succes confirmation message fail display message

Figure 41 Activity Diagram Manage Flight

System Administrator enter login details validate username and password success generate report fail succes display message analyzed report

Figure 42 Activity Diagram Generate Report

enter cancellation details

receive request

werify reservation

make cancellation

success
deduct charge

provide refund

Figure 43 Activity Diagram reservation cancellation

Entity Relationship Diagram

Figure 44 ER Diagram of OATS

Class Diagram

Figure 45 Class Diagram of OATS

Component Diagram

Figure 46 Component Diagram of OATS

Deployment Diagram

Figure 47 Deployment Diagram of OATS

Interface Design

Figure 48 Home Page Interface

_ - - -

Figure 49 Login Page Interface

Copyright @ 2014

Figure 50 Registration Page Interface

Copyright @ 2014

Figure 51 Reservation Page Interface

Copyright @ 2014

Figure 52 Manage Flight Interface

References

- 2.docm. (2007). *Systems Analysis and Design*. Retrieved Jan 8, 2014, from http://www2.docm.mmu.ac.uk/STAFF/M.Stanton/SAD/Tutorials/Lecture1.html
- advncs. (2009). *Advanced Network & Computer Services*. Retrieved from http://www.advncs.com/Content.aspx?ID=11
- AgileOnly. (2012). *Comparison of Agile Methodology*. Retrieved 01 08, 2014, from http://agile-only.com/master-thesis/software-dm/agile-s-dm/c-of-am
- Ashworth. (1993). SSADM.
- CHAOS. (2009). Standish 2009 CHAOS Report.
- Clifton, M., & Dunlap, J. (2003). *What Is DSDM?* Retrieved December 30, 2013, from http://www.codeproject.com/Articles/5097/What-Is-DSDM
- COCOMO II. (2004). Retrieved 01 08, 2014, from http://csse.usc.edu/tools/COCOMOII.php
- Connelly, B. (2003). *Model View Controller*. Retrieved January 8, 2014, from http://c2.com/cgi/wiki?ModelViewController
- DSDM Consortium. (2010). *Enabling Business Agility*. Retrieved 01 07, 2013, from http://www.dsdm.org/version4/2/public/default.asp
- Dudziak, T. (1999/2000). Xp "An Overview".
- MountainGoat. (2005). *SCRUM AND FIXED PRICE: IMPOSSIBLE?* Retrieved January 6, 2013, from http://glenndejaeger.wordpress.com/category/software-development/methodology/scrum/
- Patel, D. (2008). Methodologies and Lifecycles. New Delhi, India.
- Pelican Engineering. (2002). The Software Development Life Cycle.
- Rouse, M. (2007). What is waterfall model? Definition from WhatIs.com. Retrieved 11 26, 2013, from http://searchsoftwarequality.techtarget.com/definition/waterfall-model
- Sommerville, I. (2011). *SOFTWARE ENGINEERING* (Ninth Edition ed.). Noida, India: Dorling Kindersley Pvt. Ltd.
- SpringSource. (n.d.). *15. Web MVC framework*. Retrieved january 12, 2013, from http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html
- stanton. (2007). *Systems Analysis and Design Lecture 1*. Retrieved December 30, 2013, from http://www2.docm.mmu.ac.uk/STAFF/M.Stanton/SAD/Tutorials/Lecture1.html
- tutor. (2011). *Waterfall Model*. Retrieved January 5, 2013, from http://www.sdlc.ws/waterfall-model/

Tutorialspoint. (2010). Software Development Life Cycle (SDLC).

- versionone. (n.d.). *Agile Methodologies for Software Development*. Retrieved January 8, 2013, from http://www.versionone.com/Agile101/Agile-Development-Methodologies-Scrum-Kanban-Lean-XP/
- Webmaster. (n.d.). *Development Methodologies*. Retrieved January 3, 2013, from http://www.technologyuk.net/computing/sad/methodologies.shtml

Appendix

Team Structure

During the project development the following members are responsible in the different professional roles with the member's profile. But the members are very much responsible for the corresponding roles as well as.

Role: Project Manager	Role: Analyst
Name: Anit Thapaliya	Name: Manoj Rana
Abbreviation: AT	Abbreviation: MR
Address: Sukedhara, Kathmandu, Nepal	Address:Bhaktapur, Nepal
Telephone: 9849054113	Telephone: 9818313739
Email: anitdgret@gmail.com	Email: manoj_rana@yahoo.com
Role: Designer	Role: Testing
Name: Karun Lama	Name: Mahesh Bhandari
Abbreviation: KL	Abbreviation: MD
Address: Gaushala, Kathmandu	Address: Bhaktapur, Nepal
Telephone: 9801213225	Telephone:
Email: lamakarun17@gmail.com	Email: