

Exercise 11B

Question 1:

(i) Join BO.

In ABOC we have

OC = OB [Each equal to the radius] $\Rightarrow \angle OBC = \angle OCB$ [: base angles of an isosceles] $\Rightarrow \angle OBC = 30^{\circ}$ [: $\angle OCB = 30^{\circ}$]

Thus, we have,

∠OBC=30°(1)

Now,in ∆BOA, we have

OB=OC [Each equal to the radius]

$$\Rightarrow$$
 \angle OAB = \angle OBA [: base angles of an isosceles] triangle are equal

 \Rightarrow \angle OBA = 40° [: \angle OAB = 40° , given]

Thus, we have,

 \angle OBA = 40° (2)

 \therefore \angle ABC = \angle OBC + \angle OBA

 \Rightarrow = 30° + 40° [from (1) and (2)]

 \Rightarrow \angle ABC = 70°

The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference.

$$\angle AOC = 2 \times \angle ABC$$

= $2 \times 70^{\circ} = 140^{\circ}$

(ii)
$$\angle BOC = 360^{\circ} - (\angle AOB + \angle AOC)$$

= $360^{\circ} - (90^{\circ} + 110^{\circ})$
= $360^{\circ} - 200^{\circ} = 160^{\circ}$

We know that ∠BOC= 2∠BAC

$$\Rightarrow \qquad \angle BAC = \frac{160^{\circ}}{2} = 80^{\circ} \qquad [\because \angle BOC = 160^{\circ}]$$

$$\therefore \qquad \angle BAC = 80^{\circ}.$$

********* END ********