Linearna klasifikacija i perceptronsko učenje

- Linearna klasifikacija
 - Geometrijska interpretacija linearne klasifikacije
 - Perceptronsko učenje

Jednačine prave i ravni (podsećanje)

Jednačina prave u ravni (2D)

Rastojanje proizvoljne tačke $\mathbf{x'}$ od prave $\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0 = 0$:

$$r = \frac{\left|\mathbf{w}^{\mathsf{T}}\mathbf{x}' + w_0\right|}{\sqrt{w_1^2 + w_2^2}} = \frac{\left|\mathbf{w}^{\mathsf{T}}\mathbf{x}' + w_0\right|}{\left\|\mathbf{w}\right\|}$$

Linearna klasifikacija

 Linearna klasifikacija u dve klase može se realizovati na osnovu linearne regresije tako što nepoznati uzorak dodeljujemo jednoj ili drugoj klasi u zavisnosti od toga da li je vrednost izlazne veličine pozitivna ili negativna

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0, \quad g(\mathbf{x}) \underset{\omega_2}{\stackrel{\omega_1}{\geqslant}} 0$$

- Uzorci dveju klasa su *linearno razdvojivi* ako postoji hiperravan $g(\mathbf{x}) = 0$ koja predstavlja granicu odlučivanja između njih
- Ako su \mathbf{x}_1 i \mathbf{x}_2 dve tačke na hiperravni odlučivanja, važi sledeće:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{1} + \mathbf{w}_{0} = \mathbf{w}^{\mathsf{T}}\mathbf{x}_{2} + \mathbf{w}_{0} = \mathbf{0},$$

odakle se dobija:

$$\mathbf{w}^{\mathsf{T}}(\mathbf{x}_{1}-\mathbf{x}_{2})=0,$$

- što znači da je vektor w ortogonalan na hiperravan odlučivanja
- Količnik $\frac{|g(\mathbf{x})|}{\|\mathbf{w}\|}$ predstavlja euklidsko rastojanje tačke \mathbf{x} od hiperravni odlučivanja

Perceptron

- Jednostavan koncept mašine za učenje namenjene rešavanju problema linearne klasifikacije
 - Perceptron izračunava skalarnu funkciju više ulaznih promenljivih x_i pomnoženih težinskim faktorima w_i
 - U slučaju binarne klasifikacije, uzorak se klasifikuje u jednu od dve klase na osnovu znaka izlaza, što se može predstaviti step-funkcijom sa izlazima y = ±1
 - Perceptron je u stanju da automatski formira model, odnosno, odredi vrednosti težinskih koeficijenata w na osnovu uzoraka, koristeći određeni algoritam učenja
- Perceptron se često nadograđuje tako što se umesto step-funkcije na izlazu uvede neka druga, po pravilu neprekidna nelinearna funkcija
 - Ovako modifikovan perceptron naziva se neuron i predstavlja osnovu veštačkih neuronskih mreža
 - Pošto izlaz predstavlja nelinearnu funkciju linearne kombinacije ulaznih promenljivih (često sigmoid, i u tom slučaju je zapravo reč o logističkoj regresiji)

- Neka skup za obuku $\mathbf{X} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$ sadrži uzorke koji pripadaju klasama ω_1 i ω_2 i neka važi pretpostavka njihove linearne razdvojivosti
 - Prag w_0 podvodi se pod težinski vektor **w** uvođenjem pomoćnog obeležja $x_0 = 1$ (nadalje će se smatrati da je $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, pri čemu vektor **x** sadrži i obeležje x_0)

Zadatak perceptronskog učenja:

Naći vektor w takav da važi:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} > 0, \ \forall \mathbf{x} \in \mathbf{\omega}_{1}$$

 $\mathbf{w}^{\mathsf{T}}\mathbf{x} < 0, \ \forall \mathbf{x} \in \mathbf{\omega}_{2}$

- Ako se uvedu oznake klasa $y_1 = 1$ za klasu ω_1 i $y_2 = -1$ za klasu ω_2 , problem se svodi na nalaženje vektora **w** takvog da $y^{(i)} \cdot \mathbf{w}^T \mathbf{x}^{(i)} > 0$, $\forall \mathbf{x}^{(i)}$
 - Ovo je ekvivalentno promeni znaka svih uzoraka iz klase ω_2 ($\mathbf{x} \leftarrow [-\mathbf{x}], \ \forall \mathbf{x} \in \omega_2$) nakon čega je dovoljno naći vektor \mathbf{w} takav da $\mathbf{w}^\mathsf{T}\mathbf{x} > 0, \ \forall \mathbf{x}$ (oznake klasa mogu se ignorisati)

Napomena: Uvođenje obeležja x_0 koje je uvek jednako 1 značajno komplikuje geometrijsku interpretaciju jer povećava dimenzionalnost problema za 1. Konkretno, u datom primeru i vektor \mathbf{x} i vektor \mathbf{w} zapravo su trodimenzionalni, pa se situacija više ne može adekvatno predstaviti u samo dve dimenzije.

- Sada treba naći pogodnu funkciju greške J(w) koju treba minimizovati
 - □ J(w) treba da predstavlja meru greške klasifikacije na osnovu proizvoljne hiperravni w
 - J(w) treba da ima vrednost 0 ako su svi uzorci ispravno klasifikovani, a treba da bude tim veća što je više pogrešno klasifikovanih uzoraka i što su pogrešno klasifikovani uzorci udaljeniji od hiperravni w
- Nakon promene znaka uzorcima iz klase ω_2 , čime je uslov sveden na $\mathbf{w}^\mathsf{T} \mathbf{x} > 0$, $\forall \mathbf{x}$, za funkciju greške može se usvojiti tzv. perceptronska kriterijumska funkcija:

$$J_{p}(\mathbf{w}) = \sum_{\mathbf{x} \in X_{M}} (-\mathbf{w}^{\mathsf{T}}\mathbf{x}),$$

gde je $X_{\rm M}$ skup uzoraka pogrešno klasifikovanih pomoću ${\bf w}$

- $J_{P}(\mathbf{w})$ je jednaka 0 kada su svi uzorci ispravno klasifikovani, jer je tada $X_{M} = \emptyset$
- U ostalim slučajevima $J_p(\mathbf{w})$ je pozitivna jer za pogrešno klasifikovane uzorke važi $\mathbf{w}^\mathsf{T}\mathbf{x} < 0$
- $J_{P}(\mathbf{w})$ se minimizuje metodom gradijentnog silaska
 - Ako su uzorci linearno separabilni, algoritam gradijentnog silaska dolazi do rešenja u konačno mnogo koraka

Gradijent perceptronske kriterijumske funkcije jednak je:

$$\nabla_{\mathbf{w}} J_{P}(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{\mathbf{x} \in X_{M}} (-\mathbf{w}^{\mathsf{T}} \mathbf{x}) = \sum_{\mathbf{x} \in X_{M}} (-\mathbf{x})$$

pa se vrednost **w** po metodi gradijentnog silaska obnavlja po pravilu:

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \alpha \nabla_{\mathbf{w}} J_{P}(\mathbf{w}(k)) = \mathbf{w}(k) + \alpha \sum_{\mathbf{x} \in X_{M}} \mathbf{x}$$

- Ovo pravilo poznato je kao grupno perceptronsko pravilo ažuriranja
 - U obnavljanju vrednosti **w** učestvuju svi pogrešno klasifikovani uzorci, odnosno, njihova suma
 - Početi od proizvoljne vrednosti w(0)
 - Odrediti skup pogrešno klasifikovanih uzoraka X_M za dato $\mathbf{w}(k)$, a zatim korigovati vektor $\mathbf{w}(k)$:

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \alpha \nabla_{\mathbf{w}} J_{P}(\mathbf{w}(k)) = \mathbf{w}(k) + \alpha \sum_{\mathbf{x} \in X_{tx}} \mathbf{x}$$

gde je α brzina učenja (fiksni mali broj)

Ponavljati prethodni korak do ispravne klasifikacije svih uzoraka (dok ne bude $X_M = \emptyset$)

- Težinski vektor w može obnavljati vrednost i na osnovu pojedinačnih uzoraka, i u tom slučaju uzorci x⁽ⁱ⁾ ulaze u algoritam jedan za drugim, najbolje slučajnim redosledom
 - Ako algoritam nije konvergirao nakon obrade svih uzoraka jednom, procedura se ponavlja dok se ne dostigne konvergencija (do ispravne klasifikacije svih uzoraka)
 - Perceptronsko pravilo ažuriranja svodi se na:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \alpha \mathbf{x}^{(k)}$$

gde je $\mathbf{x}^{(k)}$ neki od uzoraka koji su u k-tom koraku bili pogrešno klasifikovani pomoću $\mathbf{w}(k)$

- Ako su klase linearno razdvojive, obe verzije perceptronskog učenja (grupna i pojedinačna) konvergiraju ka ispravnom rešenju u konačno mnogo koraka
- Ako klase nisu linearno razdvojive, perceptronsko učenje neće konvergirati
 - Nijedan težinski vektor w ne može ispravno klasifikovati svaki uzorak, pa će nakon svakog koraka algoritma ponovo biti pogrešno klasifikovanih uzoraka, a samim tim i novih promena
 - \square Jedno rešenje je u usvajanju promenljive brzine učenja $\alpha(k)$ koja teži ka 0 kada $k \to \infty$
 - Varijanta algoritma koja sprečava oscilovanje između različitih rešenja bez mogućnosti zaustavljanja naziva se algoritam džepa
 - Ideja je da algoritam tokom iterativnog procesa pamti "u džepu" najbolje rešenje koje je pronađeno do datog trenutka i ažurira ga samo ako se pojavi bolje rešenje
 - Pod određenim uslovima algoritam džepa konvergira ka suboptimalnom rešenju, odnosno, dolazi do minimalnog broja pogrešnih klasifikacija

Klasifikacija u više od dve klase

- U praksi retko postoji linearna separabilnost između više klasa, tako da se linearna klasifikacija u više klasa uglavnom i ne radi pomoću perceptrona
- U opštem slučaju, klasifikacija u više od dve klase ($\omega_1, \omega_2, ..., \omega_K$) može se uvek realizovati kao višestruka primena klasifikacije u dve klase:
 - $\omega_1/\text{ne }\omega_1; \omega_2/\text{ne }\omega_2;...; \omega_K/\text{ne }\omega_K \text{ (eng. one versus rest OVR)}$
 - ω_i/ω_i za svako *i* i *j* (eng. *one versus one* OVO)

a zatim odlučivanjem po većinskom principu, ali se pokazuje da oba načina imaju nedostatke (mogu se javiti sporni regioni nedefinisane pripadnosti)

Klasifikacija u više od dve klase

- Pristup "jedan protiv svih" (OVR) u praksi se modifikuje tako da se klasifikacija u više klasa vrši na osnovu diskriminantnih funkcija, čime se prevazilazi problem spornih regiona nedefinisane pripadnosti
 - Ponovo se svakoj klasi ω_i pridružuje po jedan perceptron, čiji se težinski vektor \mathbf{w}_i određuje perceptronskim učenjem na klasama ω_i i "ne ω_i ", pri čemu taj vektor ujedno određuje i odgovarajuću diskriminantnu funkciju $g_i(\mathbf{x}) = \mathbf{w}_i^{\mathsf{T}}\mathbf{x} + w_0$
 - Odlučivanje se ne vrši većinski, već klasifikator dodeljuje uzorak opisan vektorom obeležja \mathbf{x} klasi ω_i ako je $g_i(\mathbf{x}) > g_j(\mathbf{x})$ za svako $j \neq i$, odnosno, uzorak se dodeljuje klasi čiji je perceptron dao najveći *odziv* na \mathbf{x}
 - Pošto su diskriminantne funkcije linearne, površi odlučivanja predstavljaju hiperravni

