

more: bigdev.de/teaching

Funktionen

Funktionen - Intro

Funktionen (auch Abbildungen genannt) sind wie die Mengen ein grundlegendes mathematisches Konzept.

Motivation: Zuordnung eMail-Adresse son Person

Mail-Adressen

Posson / Postfach

haber @ gmail. an . Send

he @ gmail. en . Send

Heling - hat keine eMail (i)

h @ gmail. en . Huber - hat zwei eMails! (i)

maier @ example. org . Haier hat genan eine eHail!

eine eMail kann wicht an Zwei Personen gelren!

ZIEL Was levne ich ?

- · Erkennen von Funktionen
- · Prüfen von Funktionen auf Injektivität, Swjektivität und Bijcklivität
- · Bestimmen der Unkelofunktion (falls Flut. kijektiv)

Funktionen - Konzept

Def. Eine Function (oder auch Abbildung) of von einer Menge D in eine M ist eine Vorschift, die jedem Element $x \in D$ genan ein Element $f(x) \in M$

(d.h. $\forall x \in D \exists_1 y \in M : f(x) = y$)

Man schreibt: f: D-M

 $\times \mapsto f(x)$

und sagt: , x wird auf f(x) abgebildet " bzw. , f(x) ist das Bild (oder des Functions wert) von x".

Die Merge D heißt Definitionsbereich

Die Henge f(D):= {f(x) | x \in D} \le M height Bildmenge

Die Menge M heißt Wertebereich

Für B ⊆ M heißt f-1(B) := {x∈D | f(x)∈B} Urbildmenge von B.

Ü Diskutieren Sie die Begriffe, aus Beispiel
folgender Vorschrift:
e Hail-Adverser Posson/Postfach
huber@gmail.gru. f=send. Helig
h@gmailere
huber @ gmail. er . f= send . Helig! h @ gmail. er . Huber maier @ example long. I Maier
1st dies eine Funktion? X ja I nein,
weil jeder Mail-Adresse wird genan eine Person Engeordnet.
D = { huber Ogmail.en, h@garail.en, maier @examplions heist Definitions bereich
M = { Helbig, Huber, Maier } heith Wertebereich
f(0) = { Huber, Maier } height Bildmenge
f-1({Huber}) = {huber@garailen, h@gurail.en } heist Urbild von {Huber}
Eciclinen Sie die Mengen in obigan Bild ein!

d) 1st folgende Vorschrift eine Funktion?

Hario Staatsburgerschaften

Hario Mein, Mario werden zwei Staats-

burgers chaften Engeardnet!

Fundi; onen - Grap	·h
Austatt (2) (2) Kann	man das auch so
malan. Das keunt uso als Graph: 5007	in bei Fruhtionen R→R ph von f als Teilmenze des R²
Abstract mathematisch	
Def Die Menge Gg heißt Graph der Fun	$:= \left\{ (x, f(x)) \middle x \in D \right\} \subseteq D \times M$ Which $f: D \to M$.
$\begin{bmatrix} \ddot{\mathbf{u}} \end{bmatrix}$ beidmen Sie $G_{\mathbf{f}}$ (a) $f: \mathbb{R} \to \mathbb{R}$, $\times \mapsto f(\times)$	on folgenden Furktionen:)= x ²
b) $f: N \rightarrow N$, $n \mapsto f(n)$	$= n^2$ (1,1), (2,1), (3,9), (4,16),

Funktionen - Injektiv, Swjektiv, Bijektiv

Betrachten wir nochmals folgendes Beispiel:

Wir beobachten:

- · Nicht jeder Element im Wertebereich ist im Bild der Funktion.
- · Es gibt Elemente un Wertebereich, auf die mehrfach ab gebildet wird.

Negieren Sie die Aussafen der beiden Beebachstungen!

Medes Element in Wortebereich ist in Bild der Funktion

YyeM:

3xeD: f(x)=y

Auf alle Elemente in Westebereich wird nur einfach abgebildet (anders ausgedrückt: verschiedene $x \in D$ werden auch verschieden abgebildet: $\forall x_1, x_2 \in D: x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$)

Die Negation dieser Beobachtungen liefert folgende Eigenschaffen von Funktionen:

Def. Eine Fundhion $f:D \to M$ height y ist Bild a) swightiv : $\Rightarrow \forall y \in M$ $\exists x \in D : y = f(x)$.

 $(\Rightarrow) f(D) = M$ $voschiedene \times werden$ vorschiedene ab ge- $vorschiedene \times werden$ $vorschiedene \times werden$

 $\iff \forall x_1, x_2 \in D: \ f(x_1) = f(x_2) \implies x_1 = x_2$

c) bijektiv : f swjeldir & injektiv.

Ü Welche der folgenden Abbildungen ist swijeldir, injehlir, bijektir? Zeifen Sie dies mit obiger Definition!

a) $f: \mathbb{Z} \rightarrow \mathbb{N}_0, \ z \mapsto f(z) = z^2$

• 3+

wicht sujeteliv: 339: Fy EN Yze Z: f(z) = y.

2.B. y = 7 esfullt dies: $y = 7 \neq 2$ ($\forall z \in \mathbb{Z}$)

Annalme: $\vec{T} = \vec{z}^2 \implies \vec{z} = \pm \vec{T} \vec{z}$

incht injeletir: 32g: $\exists 3_1, z_2 \in \mathbb{Z}$: $z_1 \neq z_2 \land f(z_1) = f(z_2)$.

z.8. $z_1 = -2 \neq 2 = z_2 \land f(z_1) = 4 = f(z_2).$

Funktionen - Wichtige Beispiele

Gerade. f: R > R, x > f(x) = mx+t

ist bijektiv, da jede waagrechte Gerade schneidet den Graphen nur einmal und der gesamte Wertebereich wird erreicht.

Identitat (Spezialfall m=1, t=0). id R-R, id (x)=x. Ganz allgemen für eine beliebige Meuge Dist id_ : D -> D, x -> x die Identität von D.

Parabel. $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = x^2$

ist weder injektiv noch swijelitiv, da x1=-1 \neq 1 = x2 and $f(x_1) = 1 = f(x_2)$, y = -1 wind with erreith, da $f(x) = x^2 \ge 0$.

Betrags function. $f: \mathbb{R} \to \mathbb{R}, \times \mapsto |\times| := \begin{cases} \times & \text{follo} \times \geq 0 \\ -\times & \text{follo} \times < 0 \end{cases}$

ist weder injektiv noch swjeldiv, $da |-5| = 5 = |5|, |x| \ge 0, also wird$ z.b. y=-1 nicht erreicht.

Funktionen - Verknipfung

Man kann Funktionen auch nacheinander ausführen.

Wir establen eine neue Funktion, die einer Mail ein Gochlecht zu ordnet. Etwas mathematisches:

$$\mathbb{R} \xrightarrow{x \mapsto x+1} \mathbb{R} \xrightarrow{x \mapsto x^2} \mathbb{R}$$

$$x \mapsto (x+1)^2$$

Def. Seien $f: D_f \to M$ and $g: D_g \to N$ Functionen. Die Hinterein ander ausführung oder Verknüpfung von f und g ist (in Falle $g(D_g) \subseteq D_f$) die

$$\times \longmapsto (f \circ g)(x) := f(g(x)).$$

Man beachde bei fog, dass g zwest ausgeführt wird!

" Berechnen Sie fog (sofern definiert!):

a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2; g: \mathbb{R} \to \mathbb{R}, g(x) = 3x$ $f \circ g: \mathbb{R} \to \mathbb{R}, f \circ g(x) = f(g(x)) = f(3x) = (3x)^2 = 9x^2$

b) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x}; g: \mathbb{R} \to \mathbb{R}, g(x) = x^3$ $f \circ g: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f \circ g(x) = f(g(x)) = f(x^3) = \frac{1}{x^3}$

i Bestimmen Sie zwei Fundtionen f, g mit h = fog:

a) $h(x) = (x+1)^5$: $f(x) = x^5$ and g(x) = x+1 $f \circ g(x) = f(g(x)) = f(x+1) = (x+1)^5$.

b) h(x) = |x-2|: f(x) = |x| and g(x) = x-2 $\Rightarrow f \circ g(x) = f(g(x)) = f(x-2) = |x-2|$.

Funktionen - Umkehrfunktion

Wir wollen jetst die Funktion "rückwarts ausführen", d.h. zu gegebener Person die eMail-Adresse herausfinden. Anders gesprochen: Wir suchen eine Funktion, die dies machen sollte:

Dabei stopen wir auf die zwei Probleme

rot & blan. O.h. dies stellt gar keine Funktion

dar, da "Helkig" gar keine Mail zugewiesen wird &

und Huber zwei Mails zugewiesen wird &.

Unter welchen Bedingungen kann man eine Funktion "ruckwarts ausführen", d.h. die Undehrung ist eine Function ? Autwort:

Die Frultion muss swielter & injektiv sein, darnit die Problème wicht auftreten!

Betrachten wir ein Beispiel wo alles funtioniert:

d.h. jede Zahl wird verdappelt. Die Umtehrung ist fede talil zu habieren:

$$\mathbb{R} \xrightarrow{g} \mathbb{R} \qquad z.\mathbb{R} \xrightarrow{2 \mapsto 1} 3 \xrightarrow{1,5} 4 \xrightarrow{2} 2 \times 6 \xrightarrow{3} 3$$

Hier gelfen folgende wichtige Eigenschaften:

•
$$f \circ g = id_R$$
 (da $\forall x \in R$: $f \circ g(x) = f(g(x)) = f(\frac{1}{2}x) = 2 \cdot (\frac{1}{2}x) = x = id(x)$

• $g \circ f = id_R$ (da $\forall x \in R$: $g \circ f(x) = g(f(x)) = g(2x) = x$

$$=\frac{1}{2}(2\times)=\times=id(x)$$

Wir halden fest:	
Def. und Satz. Eine Fu um kelt bar oder invertion	ntition f: D -> M height
I g: M→D Funktio	n: Jog = can
Sate	gof = id_D
<⇒ f bijeletiv.	
in diesem Fall heißt g ei	ne Unkelo function von
f. Weiter ist geindentig	g bestimmt und wir schreiben Satz
dafür $f^{-1} := g$.	Satz
Beweis. (Vortesury) siehe	A 40 Pr
bewers. (a varieting) siene	Annang:

" Geben Sie die Umkehrfandtion an:

a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = 2x + 1.$

$$y = 2x + 1$$
, vestous the $y \mapsto x : x = 2y + 1 \Rightarrow y = \frac{x - 1}{2} = :g(x)$
 $f \circ g(x) = f(\frac{x - 1}{2}) = 2(\frac{x - 1}{2}) + 1 = x = id(x)$
 $g \circ f(x) = g(2x + 1) = \frac{(2x + 1) - 1}{2} = x = id(x)$ $y = \frac{x - 1}{2} = :g(x)$

b)
$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}$$
, $f(x) = \frac{2}{x}$.

$$y = \frac{2}{x}$$
, Vertausche $y \leftrightarrow x$: $x = \frac{2}{y} \Rightarrow y = \frac{2}{x} = :g(x)$
 $f \circ g(x) = f(g(x)) = f(\frac{2}{x}) = \frac{2}{\frac{2}{x}} = x = id(x)$
 $g \circ f(x) = g(f(x)) = g(\frac{2}{x}) = \frac{2}{\frac{2}{x}} = x = id(x)$

Whether flet.

Fehlender Beweis zu Satz aus dem Skript. Sei $f: D \to M$ eine Funktion. Dann gilt:

f ist umkehrbar $\iff f$ ist bijektiv.

Dies folgt aus folgenden zwei Lemmata, genauer Lemma 2 c):

Lemma 1. Eine Umkehrfunktion ist eindeutig bestimmt.

Beweis. seien g, h que Untehrfteten von $f:D \rightarrow M \approx g: g=h$.

$$g = g \circ id_{M} = g \circ (f \circ h) \xrightarrow{\text{Acsoz. von o}} (g \circ f) \circ h = id_{D} \circ h = h$$
 $V_{x \in M}: g(id_{M}(x)) = g(x)$
 $f \circ h = id_{M}, da h \text{ Underbyfut. von } f$

Lemma 2. Sei $f: D \to M$ eine Funktion. Dann gilt:

- a) f ist injektiv $\iff \exists g: M \to D: g \circ f = \mathrm{id}_{D}$
- b) f ist surjektiv $\iff \exists h: M \to D: f \circ h = \mathrm{id}_M$.
- c) f ist bijektiv \iff Es gibt eine Umkehrfunktion von f.

Beweis.

(a) \Rightarrow : Sei f injektiv. $\overrightarrow{gg}: \exists g: M \rightarrow D: gof = id_D$. Also definiere ain

$$\forall y \in M: g(y) := \begin{cases} \times, & \text{fallo } y \in f(D) \\ \text{wit } f(x) = y. \end{cases}$$

$$\downarrow \times_{0}, & \text{fallo } y \notin f(D)$$

 $\forall x \in D: (g \circ f)(x) = g(f(x)) = x = id_{D}(x), \text{ also } g \circ f = id_{D}$ $\exists f(x) = g(f(x)) = x = id_{D}(x), \text{ also } g \circ f = id_{D}$

Sei g uit
$$g \circ f = id_D$$
 queben. $2eg: f injektiv.$

Seien $x_n, x_2 \in D$ uit $f(x_n) = f(x_2)$. $3eg: x_n = x_2$.

$$f(x_n) = f(x_2) \xrightarrow{g \circ} g \circ f(x_n) = g \circ f(x_2) \longrightarrow x_n = x_2$$

Wid D wid D

b) ₩ DIY.

c) Just bijeletiv
$$\stackrel{\text{Def.}}{=}$$
 fust injeletiv & surjeletiv $\stackrel{\text{a),6}}{=}$ $\exists g,h:M\to D: gof=id_D$

Beneits won

 $\stackrel{\text{Beneits won}}{=}$ $g=h$ Unshelv flet. In f

Lemma 1.