Onboard Localisation of Public Transport Vehicles in Urban Environments

Vít Fanta, Jakub Kašpar, Vladimír Havlena, Zdeněk Hurák

MOTIVATION

Initial motivation has stemmed from our industrial partners Škoda Digital and Herman systems: How can we improve positioning accuracy without additional sensors and how do we estimate position confidence of such position reading? Standard u-blox modules fail to provide dependable accuracy estimates in urban environments.

URBAN ENVIRONMENT CHALLENGES

In city settings, buildings frequently obstruct direct line-of-sight (LOS) to satellites, causing:

- Non-line-of-sight (NLOS) signal propagation
- Multi-path signal reception

Both factors degrade positioning accuracy and reliability.

PC25

APPROACH

Rather than relying on black-box chip processing, we directly analyze raw GNSS observables (pseudoranges, Doppler measurements, satellite ephemeris) to develop custom positioning algorithms.

We improve performance by fusing GNSS, map and ephemerides.

IMPROVED LOCALISATION METHODS

- Constraint-based approach: Attracting GNSS measurements to known tram track
- Weighted pseudoranges: Reducing influence of erroneous readings
- Ray-tracing analysis: Detecting and isolating NLOS and reflected signals

Jakub Kašpar's master thesis Root-mean-squared error (RMSE) from Root-mean-squared error (RMSE) from track projection in real data ground truth in simulation scenario RMS Distance to Tracks MP est. + el. angle lookup MP est. + raytracing MP est. + el. angle lookup **ECC** article Root-mean-squared error (RMSE) from ground truth in simulation scenario Without soft constr. With soft constr. With distribution mixing 6.8 m Without distribution mixing Root-mean-squared error (RMSE) from

Without soft constr. | With soft constr.

 $0.91\,\mathrm{m}$

 $9.29\,\mathrm{m}$

track projection in real data

With distribution mixing

Without distribution mixing

Further links:

