Теория функций комплексного переменного

4 семестр

ЧАСТЬ 2

Типовой расчет

Решение задач типового расчета позволяет успешно подготовиться к выполнению контрольных работ и к сдаче зачета.

<u>Задача №2.1</u>. Решить уравнение. Корни уравнения изобразить на комплексной плоскости.

вариант №	Vacalitatina	вариант №	Vnobilalitia
Варнан ж	уравнение	вариант ж	уравнение
1	$z^6 - 4z^3 + 3 = 0$	16	$z^4 + 8iz^2 - 16 = 0$
2	$e^{2z} + 2e^z - 3 = 0$	17	$\sin z = -3i$
3	$z^4 - 4z^2 + 8 = 0$	18	$z^4 + 2z^2 + 4 = 0$
4	$e^{4z} + 2e^{2z} + 4 = 0$	19	$\cos z = 2i$
5	$e^{8z} + 8ie^{4z} - 16 = 0$	20	$\operatorname{sh} z = -4i$
6	$e^{2z} + 3e^z - 4 = 0$	21	$z^8 + 32iz^4 - 256 = 0$
7	$z^6 + 16z^3 + 64 = 0$	22	tg z = -2i
8	$\sin z = 2$	23	$e^{6z} + 14ie^{3z} - 49 = 0$
9	$z^8 + \left(\frac{1+i}{1-i}\right)^2 = 0$	24	th z = 3
10	$\cos z = -3$	25	$z^4 - 2iz^2 - 1 = 0$
11	$z^6 + i\frac{2+i}{1-2i} = 0$	26	$z^4 - 3iz^2 + 4 = 0$
12	sh z = -5	27	$\sin 3z \cos 3z = 4$
13	$z^4 - z^2 + 1 = 0$	28	$\cos^2 3z - \sin^2 3z = 2$

14	chz - 6 = 0	29	$sh^2z + ch^2z = 3$
15	$\cos 8z = 2$	30	ch9z = 6

Задача №2.2. Исследовать заданную функцию f(z) на аналитичность.

вариант №	f(z)	вариант №	f(z)
1	$f(z) = ie^{3z - i^2}$	2	$f(z) = z^2 + 5\overline{z} - 7i$
3	f(z) = cos(iz - 1)	4	$f(z) = \cos(i\overline{z} - 1)$
5	f(z) = sh2z + i	6	$f(z) = \frac{i}{z} + z^2$
7	$f(z) = (iz)^2 + 5z + 3i$	8	f(z) = z z + i
9	$f(z) = ie^{(iz-1)}$	10	$f(z) = \sin(zi + 2)$
11	f(z) = ch3z - i	12	$f(z) = z\overline{z} + z^2 + 4$
13	$f(z) = 3z^2 - 4z + 2i$	14	f(z) = shiz + Rez
15	$f(z) = ie^{5z} + z$	16	$f(z) = i z - z^2$
17	$f(z) = iz \cdot \text{Re5}z$	18	f(z) = cosi(z+i)
19	$f(z) = (z+2) \cdot \text{Im}3z$	20	$f(z) = \frac{\text{Re}2z}{z}$
21	$f(z) = i(z+i)^2 - 4z$	22	$f(z) = \cos(\overline{z} + i)$
23	$f(z) = ze^{-3z} - i$	24	$f(z) = \frac{4}{z} - \text{Im}z$
25	f(z) = ichiz	26	f(z) = (2z + 5i)Rez
27	f(z) = cosiz - chz	28	$f(z) = \frac{z}{ z }i$
29	$f(z) = -iz^3 + 2i$	30	$f(z) = ie^z + (z+i)^2$

<u>Задача №2.3*</u>. Задана функция $\omega = f(z) = az^n + b$; $|z| \le R$; $\alpha_1 \le argz \le \alpha_2$. Определить область D_2 плоскости W, на которую отобразится область D_1 плоскости Z, заданной функцией $\omega = f(z)$. Начертить D_1 и D_2 .

(Задача не является обязательной, включается в типовой расчет по указанию преподавателя).

вариант №	n	а	b	R	$lpha_1$	α_2
1	2	-1 + i	i	2	$-\frac{\pi}{4}$	0
2	2	1 + i	<i>−i</i>	3	0	$\frac{\pi}{4}$
3	2	1 – i	1 + 3 <i>i</i>	1	0	$\frac{\pi}{2}$
4	2	$1+i\sqrt{3}$	5 <i>i</i>	5	0	$\frac{\pi}{6}$
5	2	$-1+i\sqrt{3}$	2-i	1	$\frac{\pi}{4}$	$\frac{\pi}{3}$
6	2	$\sqrt{3}+i$	1 + 5i	1	0	$\frac{\pi}{4}$
7	2	$-\sqrt{3}+i$	-1-i	2	0	$\frac{2\pi}{3}$
8	2	$-\sqrt{3}-i$	2i	3	0	$\frac{\pi}{6}$
9	2	$\sqrt{3}-i$	-3 <i>i</i>	5	$\frac{\pi}{6}$	$\frac{\pi}{3}$
10	2	2 + 2 <i>i</i>	1 + 4 <i>i</i>	2	$\frac{\pi}{6}$	$\frac{\pi}{2}$
11	3	2 – 2 <i>i</i>	2 – i	3	$\frac{\pi}{4}$	$\frac{3\pi}{4}$

12	3	-1 + i	5 <i>i</i>	1	0	$\frac{\pi}{2}$
13	3	-1-i	3-i	3	0	$\frac{\pi}{4}$
14	3	-2 + 2i	5 + <i>i</i>	2	$-\frac{\pi}{6}$	$\frac{\pi}{3}$
15	2	1 + i	-i	2	0	$\frac{\pi}{4}$
16	2	-1-i	i	3	$-\frac{\pi}{4}$	0
17	2	-1 + i	-1 - 3i	1	$-\frac{\pi}{6}$	0
18	2	$-1-i\sqrt{3}$	-5 <i>i</i>	5	$-\frac{\pi}{3}$	0
19	2	$1-i\sqrt{3}$	-2 + 2i	1	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$
20	2	$-\sqrt{3}-i$	-1 - 2i	1	$-\frac{\pi}{12}$	0
21	2	$\sqrt{3}-i$	1+i	2	$-\frac{\pi}{3}$	0
22	2	$\sqrt{3}+i$	-2 <i>i</i>	3	$-\frac{\pi}{6}$	0
23	2	$-\sqrt{3}+i$	3i	5	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$
24	3	-2 - 2i	-1-2i	2	$-\frac{\pi}{2}$	$-\frac{\pi}{6}$
25	3	-2 + 2i	-2 + i	3	$-\frac{3\pi}{4}$	$-\frac{\pi}{4}$

Задача №2.4. Получить все разложения f(z) в ряд Лорана по степеням $(z-z_0)$.

Если z_0 – особая точка, указать тип этой особой точки и найти $\mathop{res}_{z=z_0} f(z)$.

вариант №	z_0	f(z)
1	-1	$\frac{z-1}{z(z+1)}$
2	-2	$\frac{z^2+2z-4}{z^2(z-2)}$
3	2	$\frac{2z^2 - 5z + 4}{z(z-2)^2}$
4	1	$\frac{sinz}{z-1}$
5	1	$\frac{z+2}{z^2-1}$
6	2	$\frac{z}{(z+2)(z+3)}$
7	-1	$\frac{3z-1}{z^2-2z-3}$
8	0	$\frac{z}{z^2+4}$
9	1	$\frac{2z^2 - z + 1}{z^3 - z}$
10	0	$\frac{2z-3}{z^2-3z+2}$
11	-2	$\frac{2z^2+z+2}{z^2(z+2)}$
12	-1	$\frac{z^3 + 3z^2 + 2z + 1}{z^2(z+1)^2}$

13	1	$\frac{e^z}{(z-1)^2}$
14	1	$\frac{3z^2-1}{z(z^2-1)}$
15	2	$\frac{z^2 - 3z + 5}{(z+1)(z-2)^2}$
16	3	$\frac{1}{z^2 - 7z + 12}$
17	0	$\frac{z^2+z+1}{z^3+z}$
18	-1	$\frac{2}{z^2 - 4z + 3}$
19	-3	$\frac{2z^2 + z + 3}{z^2(z+3)}$
20	-1	$\frac{z^2+z-1}{z^2(z-1)}$
21	0	$\frac{2z^2 + 5z + 4}{z^2(z+4)}$
22	0	$\frac{1}{z^2 - 5z + 6}$
23	0	$\frac{3z^2-1}{z^2(z-1)}$
24	-1	$\frac{2z^2 + 4z + 1}{z(z+1)^2}$
25	3	$\frac{9-2z}{z(3-z)^2}$
26	-5i	$(z+5i)^6 \sin\left(\frac{2}{z+5i}\right)$
27	0	$\frac{z^2}{z^2+9}$

28	4	$(z-4)^5 \cos\left(\frac{3}{z-4}\right)$
29	-6i	$(z+6i)^8 e^{\frac{5}{z+6i}}$
30	3	$\frac{z+4}{z^2-9}$

<u>Задача №2.5.</u> Найти все изолированные особые точки функции f(z), установить их тип и найти вычеты в этих точках.

вариант №	f(z)	вариант №	f(z)
1	$f(z) = \frac{z^3}{1 + z^4}$	2	$f(z) = e^{\frac{1}{z-2}}$
3	$f(z) = \frac{\sin z}{z^2}$	4	$f(z) = z^2 \left(\frac{1}{z} - \sin\frac{1}{z}\right)$
5	$f(z) = \frac{1 - \cos z}{z^3}$	6	$f(z) = \frac{1}{z + z^2}$
7	$f(z) = \frac{z+1}{z^4+16}$	8	$f(z) = \frac{1}{(1-z)^3(z+2)^2}$
9	$f(z) = \frac{1}{z+2}e^{\frac{1}{z+2}}$	10	$f(z) = \frac{e^z}{1 + z^2}$
11	$f(z) = \frac{\sin z}{z(z^3 + 1)}$	12	$f(z) = \frac{1}{z^5 - 4z^3}$
13	$f(z) = \frac{\sin z}{z^3 (z-1)^3}$	14	$f(z) = \frac{e^z - 1}{z^2(z+1)}$
15	$f(z) = \frac{\cos z}{(z^3 + 1)z^2}$	16	$f(z) = \frac{z^3 + 1}{(z+3)^2(z+1)}$
17	$f(z) = \frac{z^2}{1 - \cos z}$	18	$f(z) = \frac{1 - \cos 2z}{z^2(z+1)}$

19	$f(z) = \frac{1}{z^3} \cos \frac{1}{z}$	20	$f(z) = \frac{1}{z(1 - e^{2z})}$
21	$f(z) = \frac{e^z - 1}{(z^2)(z - 1)}$	22	$f(z) = \frac{1}{z^4 - z^2}$
23	$f(z) = \frac{\sin(z-3)}{(z-3)(z-4)^3}$	24	$f(z) = \frac{\cos(z-5) - 1}{(z-5)^3(z+3)}$
25	$f(z) = \frac{\sin(z-1)}{(z-1)^3(z+4)^3}$	26	$f(z) = \frac{3}{z-2}e^{\frac{1}{z-2}}$
27	$f(z) = (z-1)e^{\frac{1}{(z-1)^3}}$	28	$f(z) = \frac{1 - e^{z-2}}{(z-2)(z+3)^3}$
29	$f(z) = z^2 \left(\frac{1}{z} - \cos\frac{1}{z}\right)$	30	$f(z) = \frac{z^2 + 3}{z^2 - z - 2}$

<u>Задача №2.6</u>. Вычислить интеграл по замкнутому контуру $\int_{\mathcal{C}} f(z) dz$ с помощью основной теоремы о вычетах.

вариант №	f(z)	С
1	$\frac{\cos \pi z}{(2z-1)^2}$	z = 1
2	$\frac{z}{\sinh^2 \pi z}$	$ z = \frac{1}{2}$
3	$\frac{\sinh \pi z}{(z+4)(z^2+4)}$	z = 5
4	$\frac{1}{z^4 + 16}$	z - 2 = 2
5	$\frac{z}{z^3+8}$	$ z-2 =2\sqrt{2}$
6	$\frac{2z-1}{\cos^2 \pi z}$	$\left z - \frac{1}{2}\right = \frac{1}{2}$
7	$\frac{e^z}{z(z^2+2z+5)}$	z+1-2i =1

8	$\frac{\sin 2z}{z^2(z^2+4)}$	z = 1
9	$\frac{\sin z}{z^2(z-2)^2}$	z = 1
10	$\frac{z^3}{z^4-1}$	z + 1 = 1
11	$\frac{z}{(z-1)(z-2)^2}$	$ z-2 =\frac{1}{2}$
12	$\frac{\cos z}{z^3 - z^2 - 2z}$	z + 1 = 2
13	$\frac{sh z}{z(z^2 + 2z + 5)}$	z+1+2i =1
14	$\frac{e^z}{z(z-1)^2(z-4)}$	z = 2
15	$\frac{\cos z}{z^2(z+1)}$	$ z = \frac{1}{2}$
16	$\frac{e^z}{z^4 + 8z^2 - 9}$	z = 2
17	$\frac{e^z}{z(z-\pi i)}$	z - 3i = 1
18	$\frac{z+1}{z(z-1)^2(z-3)}$	z =2
19	$\frac{e^z}{z^3(z-2)^2}$	z - 2 = 1
20	$\frac{e^z}{(z-1)^2z}$	$ z-2 = \frac{3}{2}$
21	$\frac{z}{z^4+1}$	$(x-1)^2 + \frac{y^2}{8} = 1$
22	$\frac{1}{(z+2)^2(z-3)^2}$	z + 2 = 1

23	$\frac{z}{\cos z}$	$\left z - \frac{\pi}{2}\right = \frac{\pi}{2}$
24	$\frac{\mathrm{ch}^2 z}{z^2 (z+2)(z-1)}$	$ z+1 = \frac{3}{2}$
25	$\frac{z^2+1}{\sinh 2z}$	$\left z - \frac{\pi i}{2}\right = 1$
26	$\frac{4}{\operatorname{ch} z}$	z = 2
27	$\frac{1}{(z^2+4)^3}$	$\frac{(y-1)^2}{4} + x^2 = 1$
28	ctg 3z	$\left z - \frac{\pi}{2}\right = 1$
29	$\frac{3z}{\sin z}$	$ z-\pi =5$
30	$\frac{e^{8z} - 1}{6z^2(z^2 + 1)}$	$\left z+i\right = \frac{5}{2}$

<u>Задача №2.7.</u> Вычислить несобственный интеграл $\int_a^b f(x) dx$ с помощью вычетов.

вариант №	f(x)	(a, b)
1	$\frac{x^2}{(x^2+1)(x^2+9)}$	$(0,+\infty)$
2	$\frac{(x^2+2)}{(x^2+1)(x^2+9)}$	$(-\infty, +\infty)$
3	$\frac{x-3}{x^4+5x^2+4}$	$(-\infty, +\infty)$
4	$\frac{x+1}{(x^2+9)(x^2+4)}$	$(-\infty, +\infty)$
5	$\frac{x+2}{(x^2+16)(x^2+1)}$	$(-\infty, +\infty)$

6	$\frac{x^2 - x + 2}{x^4 + 10x^2 + 9}$	$(-\infty, +\infty)$
7	$\frac{x-1}{x^4 + 37x^2 + 36}$	$(-\infty, +\infty)$
8	$\frac{x^2}{(x^2+4)^2}$	$(-\infty, +\infty)$
9	$\frac{x^2+1}{x^4+1}$	(0,+∞)
10	$\frac{x+3}{x^4+5x^2+4}$	$(-\infty, +\infty)$
11	$\frac{1}{(x^2+9)(x^2+1)^2}$	$(-\infty, +\infty)$
12	$\frac{x+4}{(x^2+4)(x^2+1)}$	$(-\infty, +\infty)$
13	$\frac{1}{(x^2+1)^3}$	(0,+∞)
14	$\frac{(x^2+1)}{(x^2+9)(x^2+16)}$	$(-\infty, +\infty)$
15	$\frac{x-5}{(x^2+16)(x^2+1)}$	$(-\infty, +\infty)$
16	$\frac{x^2}{x^4 + 10x^2 + 9}$	(0, +∞)
17	$\frac{x^2}{(x^2+4)^3}$	(0,+∞)
18	$\frac{x^2 + 5}{x^4 + 26x^2 + 25}$	$(-\infty, +\infty)$
19	$\frac{x^2 + 2}{x^4 + 7x^2 + 12}$	(−∞,+∞)
20	$\frac{1}{(x^2+1)^2(x^2+16)}$	(−∞,+∞)

21	$\frac{x^2}{x^2 + 5x^2 + 4}$	(0, +∞)
22	$\frac{x^2}{x^4 + 29x^2 + 100}$	(0,+∞)
23	$\frac{x^4+1}{x^6+1}$	(-∞,+∞)
24	$\frac{x^2}{(x^2+25)(x^2+9)}$	(-∞,+∞)
25	$\frac{x+6}{(x^2+4)(x^2+9)}$	(-∞,+∞)
26	$\frac{1}{(x^2+1)^4}$	(-∞,+∞)
27	$\frac{2x^2 + 13x}{x^4 + 13x^2 + 36}$	(-∞,+∞)
28	$\frac{x^2 + 2}{x^4 + 7x^2 + 12}$	(-∞,+∞)
29	$\frac{6}{(x^2+9)(x^2+1)}$	(0,+∞)
30	$\frac{x^2}{(x^2+81)(x^2+16)}$	(0,+∞)

<u>Задача №2.8</u>. Вычислить несобственный интеграл $\int_a^b f(x) dx$ с помощью вычетов.

вариант №	f(x)	(a, b)
1 и 16	$\frac{(x+1)\cos 3x}{x^2+4x+104}$	(-∞,+∞)
2 и 17	$\frac{(x+1)sin2x}{x^2+2x+2}$	(-∞,+∞)

3 и 18	$\frac{(x-1)cosx}{x^2-4x+5}$	$(-\infty, +\infty)$
4 и 19	$\frac{x^3 sinx}{x^4 + 5x^2 + 4}$	(-∞,+∞)
5 и 20	$\frac{xsinx}{x^2 + 2x + 10}$	(−∞,+∞)
6 и 21	$\frac{x\cos x}{x^2 - 2x + 10}$	(−∞,+∞)
7 и 22	$\frac{(x^3 + 5x)sinx}{x^4 + 10x^2 + 9}$	(0,+∞)
8 и 23	$\frac{x \sin x}{x^2 + 9}$	(0,+∞)
9 и 24	$\frac{\cos x}{x^2 + 4}$	(0,+∞)
10 и 25	$\frac{xsinx}{x^2 + 25}$	(−∞,+∞)
11 и 26	$\frac{x sin x}{(x^2+1)^2}$	(0,+∞)
12 и 27	$\frac{\cos x}{x^2 + 9}$	(0,+∞)
13 и 28	$\frac{xsinx}{x^4 + 5x^2 + 4}$	$(-\infty, +\infty)$
14 и 29	$\frac{x\cos x}{x^4 + 5x^2 + 6}$	(-∞,+∞)
15 и 30	$\frac{3\cos x}{x^2 + 16}$	(0,+∞)

<u>Задача №2.9.</u> С помощью теоремы Руше найти число корней уравнения в указанной области \mathcal{A} .

вариант №	уравнение	область Д
1	$z^5 - 5z^2 + 2z + 1 = 0$	1 < z < 2
2	$z^6 - 7z^5 + 3z^3 - z - 1 = 0$	1 < z < 2
3	$z^4 - 5z^3 - z^2 - 1 = 0$	$\frac{1}{2} < z < 1$
4	$2z^5 - 3z^3 + 2z^2 - 5 = 0$	$\frac{1}{2} < z < 2$
5	$3z^4 + 2z^3 - z^2 - z + 3 = 0$	$\frac{1}{2} < z < 2$
6	$2z^3 - 7z^2 + 3z + 1 = 0$	1 < z < 4
7	$2z^5 - 8z^4 + z^3 + 2z^2 + z - 1 = 0$	1 < z < 2
8	$z^5 - 4z^3 - 10z^2 + 3 = 0$	1 < z < 3
9	$3z^6 - 4z^4 + 5z^2 - 15z - 1 = 0$	1 < z < 2
10	$2z^4 + 4z^3 - 17z^2 + 3z - 7 = 0$	1 < z < 5
11	$5z^5 + 4z^4 - 3z^3 - 2z^2 - 17 = 0$	1 < z < 2
12	$z^8 - 3z^5 + 2z^2 - 12z - 3 = 0$	1 < z < 2
13	$5z^4 + 2z^3 - 13z^2 + 4z + 1 = 0$	1 < z < 2

14	$2z^4 + 3z^3 - z^2 + 11z - 1 = 0$	$\frac{1}{2} < z < 3$
15	$2z^5 - 5z^4 + 5z - 1 = 0$	2 < z < 3
16	$z^6 - 10z^3 + 2z^2 + 3z - 1 = 0$	2 < z < 3
17	$z^7 - 5z^5 + 2z^4 + 1 = 0$	1 < z < 3
18	$3z^7 + z^6 - 9z^4 + 2z^2 - 2 = 0$	1 < z < 2
19	$10z^4 - z^3 + 4z^2 - z - 3 = 0$	$\frac{1}{2} < z < 1$
20	$2z^3 - 3z^2 - 7z - 1 = 0$	1 < z < 3
21	$z^5 + 2z^4 - z^3 - 3z^2 + 13z - 5 = 0$	1 < z < 4
22	$z^5 - 2z^2 + 5z + 1 = 0$	1 < z < 2
23	$z^4 - 6z^3 + z^2 - 10z + 1 = 0$	1 < z < 2
24	$z^3 - 17z^2 + 25z - 5 = 0$	1 < z < 2
25	$4z^3 + 10z^2 - 3z + 1 = 0$	2 < z < 3
26	$3z^3 + 9z^2 - 5z - 1 = 0$	2 < z < 4
27	$2z^4 - z^3 + 6z^2 - z - 1 = 0$	$\frac{1}{4} < z < 1$
28	$z^6 - 5z^3 + z^2 + 1 = 0$	$\frac{1}{2} < z < 1$

29	$z^5 - 10z = -3$	1 < z < 2
30	$z^4 - 3z^3 = 1$	1 < z < 2

<u>Задача №2.10</u>. Задано изображение g(p). С помощью вычетов найти его оригинал.

вариант №	g(p)	вариант №	g(p)
1	$\frac{1}{(p+1)^2(p+2)}$	2	$\frac{p+1}{p^2(p-2)}$
3	$\frac{1}{(p-4)(p^2+9)}$	4	$\frac{p+1}{(p-1)(p+2)^2}$
5	$\frac{p-1}{(p+1)(p^2+1)}$	6	$\frac{1}{(p-1)(p^2-2p+2)}$
7	$\frac{p+1}{(p-1)(p+2)(p-3)}$	8	$\frac{1}{p^3 + 2p^2 + p}$
9	$\frac{p-1}{(p^2+4)p^2}$	10	$\frac{p}{p^4-1}$
11	$\frac{p^2+1}{p^2(p-1)^2}$	12	$\frac{1}{(p^2+4)(p+4)}$
13	$\frac{p}{(p^2+1)^2}$	14	$\frac{1}{(p^2-4p)^2}$
15	$\frac{1}{(p-1)^2(p+2)}$	16	$\frac{1}{p^2(p^2+1)}$
17	$\frac{1}{(p+3)(p+2)^2}$	18	$\frac{p}{(p^2+4)(p-1)}$
19	$\frac{1}{(p^2+9)p^2}$	20	$\frac{p+1}{p^3+4p^2+4p}$

21	$\frac{p}{(p-2)(p+4)(p+1)}$	22	$\frac{p}{(p^2-9)^2}$
23	$\frac{p}{(p^2-4)^2}$	24	$\frac{1}{(p^2+1)(p+1)^2}$
25	$\frac{p}{(p-1)(p+2)^2}$	26	$\frac{1}{(p+3)(p+4)^2}$
27	$\frac{1}{p^2(p-4)}$	28	$\frac{1}{(p^2+1)(p^2+9)}$
29	$\frac{p}{p^4 - 81}$	30	$\frac{1}{(p^2-1)(p^2+4)}$

Задача №2.11. Вычислить заданный интегралс помощью Гамма и Вета - функций.

вариант №		вариант №	
1и 16	$\int_{-\infty}^{+\infty} x^2 \cdot e^{-x^2 + 2x} dx$	2 и 17	$\int_{0}^{\pi/2} \sin^2(2x) \cdot \cos^4 x dx$
3 и 18	$\int_{0}^{+\infty} \frac{\sqrt[4]{x}}{\left(16+x\right)^{2}} dx$	4 и 19	$\int_{0}^{3} x \cdot \sqrt[3]{27 - x^3} dx$
5 и 20	$\int_{0}^{+\infty} \frac{x^4}{(9+x^2)^3} dx$	6 и 21	$\int_{0}^{2} \frac{dx}{\sqrt[6]{64 - x^{6}}}$
7 и 22	$\int_{0}^{\pi/2} \sin^4(2x) \cdot \cos^2 x dx$	8 и 23	$\int\limits_{0}^{1}x^{7}\cdot\sqrt[3]{1-x^{3}}dx$

9 и 24	$\int_{0}^{+\infty} \frac{x^4}{64 + x^6} dx$	10 и 25	$\int_{-\infty}^{+\infty} x^2 \cdot e^{-x^2 - 4x} dx$
11 и 26	$\int_{0}^{3} \frac{dx}{\sqrt[4]{81-x^4}}$	12 и 27	$\int_{0}^{\pi/4} \sqrt[3]{tg2x} dx$
13 и 28	$\int_{0}^{+\infty} \frac{x dx}{125 + x^3}$	14 и 29	$\int_{0}^{+\infty} \frac{x^3 dx}{729 + x^6}$
15 и 30	$\int_{0}^{+\infty} \frac{dx}{8+x^3}$		