

Year 12 Specialist TEST 3 2018

TIME: 45 minutes working Classpads allowed!

38 Marks 7 Questions

Name:	()	arkino	Keu	1
			,)

Teacher:

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1 (2 & 2 = 4 marks)

$$x = 3 - 5\lambda$$

Consider a line with parametric equations

$$y = -7 + 2\lambda$$

i) Determine a vector equation

ation
$$\int_{-7}^{y=-7+2\lambda} + \lambda \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$
 vector egn

Determine a cartesian equation.

Q2 (3 & 2 = 5 marks)

Consider a plane containing the three points A $\left(-2,7,11\right)$, B $\left(-1,8,5\right)$ & C $\left(10,-3,9\right)$.

Determine the vector equation of the plane.

$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 1 \\ -6 \end{pmatrix}$$

$$\overrightarrow{AC} = \begin{pmatrix} 12 \\ -10 \\ -2 \end{pmatrix}$$

$$\sqrt{31} = \begin{pmatrix} -2 \\ 7 \\ 11 \end{pmatrix}, \begin{pmatrix} 31 \\ 35 \\ 11 \end{pmatrix} = 304$$

$$\begin{array}{ccc}
(11) & (11) & (11) \\
OR & \chi = \begin{pmatrix} -\frac{2}{11} \\ -\frac{2}{11} \end{pmatrix} + \lambda \begin{pmatrix} \frac{12}{6} \\ -\frac{2}{2} \end{pmatrix}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} -62 \\ -70 \\ -22 \end{pmatrix} = -2 \begin{pmatrix} 31 \\ 35 \\ 11 \end{pmatrix}$$

I detain two vectors in plane I was cross product to find normal I find vector agn of plane

Continued-

ii) Determine the cartesian equation of the plane.

$$31x + 35y + 11z = 304$$

Jues dot product with (2) V simplified co-efficients

Q3 (4 marks)

Determine the distance of point P $\left(-5,1,3\right)$ from the line $r = \begin{pmatrix} -1 \\ 7 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -8 \\ 1 \end{pmatrix}$

$$d = PA + \lambda \frac{1}{5} = (-1)^{-1} - (-1)^{-1} + \lambda (-1)^{-1} = (-1)^{-1} = (-1)^{-1} + \lambda (-1)^{-1} = (-1)^{-$$

$$\frac{d}{d} \cdot \begin{pmatrix} 5 \\ -8 \\ 1 + 1 \end{pmatrix} = 0$$

$$\begin{pmatrix} 4 + 51 \\ 6 - 81 \\ 1 + 1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -8 \\ 1 \end{pmatrix} = 5 (4 + 51) - 8 (6 - 81) - 1 + 1 = 0$$

$$\lambda = \frac{29}{90}$$

 $|d| = \sqrt{39290}$ or a6.607 using classpad.

OR determines r-OP

/ obtain expression for magnitude

/ minimises distance, using calculus

/ determines distance.

sets up a displacement vector of

uses dot product equated to zero

solves for parameter 1

determines | del

Q4 (4 marks)

Consider two particles A and B whose position at t=0 is recorded as below moving with constant velocities $v_{\scriptscriptstyle A} \ \& v_{\scriptscriptstyle B}$. Determine the distance of closest approach and the time that this occurs.

velocities
$$v_A$$
 & v_B . Determine the distance of closest approach and the time that this occurs.

$$r_A = \begin{pmatrix} 2 \\ -5 \\ 9 \end{pmatrix} \qquad v_A = \begin{pmatrix} 11 \\ -5 \\ 7 \end{pmatrix}$$

$$r_B = \begin{pmatrix} 1 \\ -1 \\ 9 \end{pmatrix} \qquad v_B = \begin{pmatrix} 12 \\ -10 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix}$$

$$d = \begin{pmatrix} 1 \\ -1 \\ 9 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ -1/5 \\ 5/7 \end{pmatrix} - \begin{pmatrix} 1/2 \\ -1/2 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ -1/2 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ -1/2 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ -1/2 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ -1/2 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} 1/5 \\ 5/7 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 5$$

I minimises distance expression a solver for time

obtains distance (minimum)

OABCD is a pyramid. The height of the pyramid is the length of DE, where E is the point on the base OABC such that DE is perpendicular to the base.

$$LHS = \begin{pmatrix} -2 \\ +5 \\ -2 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Show that the base OABC is a rhombus. $CAS = \begin{pmatrix} -2 \\ +5 \\ -2 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $CAS = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 5 \\ -2 \end{pmatrix}$

The unit vector $p\vec{i} + q\vec{j} + r\vec{k}$ is perpendicular to both \overrightarrow{OA} and \overrightarrow{OC} .

$$\begin{pmatrix} \frac{2}{5} \\ \frac{1}{5} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{5} \\ \frac{5}{5} \\ -2 \end{pmatrix} = 0$$

ii) Show that q=0 and determine the exact values of p&r.

(1) Show that q=0 and determine the exact values of p&r.

(2) $\binom{-2}{5}=0$ (3) $\binom{-2}{5}=0$ (4) $\binom{-2}{5}=0$ (5) $\binom{-2}{5}=0$ (6) $\binom{-2}{5}=0$ (7) $\binom{-2}{5}=0$ (8) $\binom{-2}{5}=0$ (9) $\binom{-2}{5}=0$ (9) $\binom{-2}{5}=0$ (10) $\binom{-2}{5}=0$ (11) $\binom{-2}{5}=0$ (12) $\binom{-2}{5}=0$ (13) $\binom{-2}{5}=0$ (14) $\binom{-2}{5}=0$ (15) $\binom{-2}{5}=0$ (16) $\binom{-2}{5}=0$ (17) $\binom{-2}{5}=0$ (18) $\binom{-2}{5}=0$ (19) $\binom{-2}{5}=0$ (20) $\binom{-2}{5}=0$ (30) $\binom{-2}{5}=0$ (41) $\binom{-2}{5}=0$ (51) $\binom{-2}{5}=0$ (72) $\binom{-2}{5}=0$ (81) $\binom{-2}{5}=0$ (9) $\binom{-2}{5}=0$ (19) $\binom{-2}{5}=0$ (10) $\binom{-2}{5}=0$ (11) $\binom{-2}{5}=0$ (12) $\binom{-2}{5}=0$ (13) $\binom{-2}{5}=0$ (14) $\binom{-2}{5}=0$ (15) $\binom{-2}{5}=0$ (16) $\binom{-2}{5}=0$ (17) $\binom{-2}{5}=0$ (17) $\binom{-2}{5}=0$ (18) $\binom{-2}{5}=0$ (19) $\binom{-2}{5}=0$ (20) $\binom{-2}{5}=0$ (21) $\binom{-2}{5}=0$ (22) $\binom{-2}{5}=0$ (33) $\binom{-2}{5}=0$ (44) $\binom{-2}{5}=0$ (55) $\binom{-2}{5}=0$ (76) $\binom{-2}{5}=0$ (77) $\binom{-2}{5}=0$ (87) $\binom{-2}{5}=0$ (98) $\binom{-2}{5}=0$ (99) $\binom{-2}{5}=0$ (19) $\binom{-2}{5}=0$ (20) $\binom{-2}{5}=0$ (21) $\binom{-2}{5}=0$ (22) $\binom{-2}{5}=0$ (23) $\binom{-2}{5}=0$ (24) $\binom{-2}{5}=0$ (25) $\binom{-2}{5}=0$ (26) $\binom{-2}{5}=0$ (27) $\binom{-2}{5}=0$ (28) $\binom{-2}{5}=0$ (29) $\binom{-2}{5}=0$ (20) $\binom{-2}{5}=0$ (20) $\binom{-2}{5}=0$ (20) $\binom{-2}{5}=0$ (21) $\binom{-2}{5}=0$ (22) $\binom{-2}{5}=0$ (23) $\binom{-2}{5}=0$ (24) $\binom{-2}{5}=0$ (25) $\binom{-2}{5}=0$ (26) $\binom{-2}{5}=0$ (27) $\binom{-2}{5}=0$ (28) $\binom{-2}{5}=0$ (29) $\binom{-2}{$

iii) Hence determine the exact height of the pyramid.

$$\left| \begin{pmatrix} \rho \\ 0 \\ -P \end{pmatrix} \right| = 1$$

hine the exact height of the pyramid.
$$\begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} P \\ Q \end{pmatrix}$$

$$\begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} P \\ Q \\ P \end{pmatrix} = \begin{pmatrix} P \\ Q \\ P \end{pmatrix} = \begin{pmatrix} P \\ Q \\ P \end{pmatrix} = \begin{pmatrix} P \\ Q \\ P$$

iii) height =
$$|\overrightarrow{OD} \cdot (\frac{12}{0})|$$
 = $|(\frac{3}{4}) \cdot (\frac{1}{4})|$ = $|(\frac{3}{4}) \cdot (\frac{3}{4})|$ = $|(\frac{3}{4}) \cdot (\frac{3$

$$\begin{pmatrix} 3 \\ 4 \\ -\frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix} =$$

$$= \sqrt{2} - 3\sqrt{2}$$

Q6 (5 marks)

Consider a sphere of centre (-3,2,7) and radius of a units , where a is a constant.

The line
$$r = \begin{pmatrix} 2 \\ 1 \\ -8 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ -3 \end{pmatrix}$$
 is a tangent to the above sphere.

Determine the possible value(s) of a

$$\begin{vmatrix} \zeta - \begin{pmatrix} -3 \\ 2 \\ 7 \end{vmatrix} = a$$

$$\begin{vmatrix} short lne & into vector \\ sqn & sphere. \\ lne & sphere. \\ lne$$

Q7(2, 3 & 3 = 8 marks)

Consider the function $f(x) = ax^4 + bx^3 + cx^2 + dx$ where a, b, c & d are constants.

The graph has a stationary point (f'=0) at $\left(1,1\right)$ and passes through the point $\left(-1,4\right)$.

i) Write down three linear equations satisfied by $a,b,c\ \&\ d$.

ii) Express a,b & c in terms of d.

iii) Determine the value of \emph{d} for which the graph has a stationary point where $\emph{x}=4$

$$f'(2) = 4ax^{2} + 3bx^{2} + 2cx + cd$$
 $0 = 256a + 48b + 8c + cd$
 $0 = 256(-\frac{1}{4}+d) + 48(-\frac{3}{2}-d) + 8(\frac{11}{4}-d) + cd$

Solve on classed

 $d = \frac{38}{67}$ or $a = 0.567$ for a,b,c ed using $f'=0$ at $x=4$

Visite all variebles in term of $f'=0$ at $f'=0$ at