LECTURE 13: DUMMY VARIABLES

ECON 480 - ECONOMETRICS - FALL 2018

Ryan Safner

November 7, 2018

Dummy Variables

Recoding Dummies

· You now have the "minimal toolkit" for data analysis with multivariate OLS regression

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- \cdot The remainder of the course is about two types of extensions to the toolkit:

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- $\boldsymbol{\cdot}$ The remainder of the course is about two types of extensions to the toolkit:
 - "Data Wrangling"

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- $\boldsymbol{\cdot}$ The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- $\boldsymbol{\cdot}$ The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- $\boldsymbol{\cdot}$ The remainder of the course is about two types of extensions to the toolkit:
 - "Data Wrangling"
 - · Altering variables or data for useful analysis
 - · Dummy variables for categorical data (R calls them factors)
 - · Transforming variable scales or models to fit nonlinear data

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- \cdot The remainder of the course is about two types of extensions to the toolkit:
 - "Data Wrangling"
 - · Altering variables or data for useful analysis
 - · Dummy variables for categorical data (R calls them factors)
 - · Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- $\boldsymbol{\cdot}$ The remainder of the course is about two types of extensions to the toolkit:
 - "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)
 - Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems
 - · Time Series data

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- \cdot The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)
 - · Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems
 - · Time Series data
 - · Panel data

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)
 - Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems
 - · Time Series data
 - · Panel data
 - · Fixed effects and random effects models

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)
 - Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems
 - · Time Series data
 - · Panel data
 - · Fixed effects and random effects models
 - · Difference-in-difference models

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)
 - Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems
 - · Time Series data
 - · Panel data
 - · Fixed effects and random effects models
 - · Difference-in-difference models
 - · Instrumental variables models

- · You now have the "minimal toolkit" for data analysis with multivariate OLS regression
- The remainder of the course is about two types of extensions to the toolkit:
 - 1. "Data Wrangling"
 - · Altering variables or data for useful analysis
 - Dummy variables for categorical data (R calls them factors)
 - Transforming variable scales or models to fit nonlinear data
 - 2. Advanced identification strategies and unique problems
 - · Time Series data
 - · Panel data
 - · Fixed effects and random effects models
 - · Difference-in-difference models
 - · Instrumental variables models
 - · Linear probability, logit, and probit models

DATA WRANGLING

• "Data wrangling" is a term for altering and cleaning data from raw form (often unusable) to a form that is useful for analysis (e.g. plotting and regressions)

DATA WRANGLING

- "Data wrangling" is a term for altering and cleaning data from raw form (often unusable) to a form that is useful for analysis (e.g. plotting and regressions)
- · A significant portion of data analysis is initial data wrangling

· Recall categorial variables place an individual into one of several possible categories

- Recall categorial variables place an individual into one of several possible categories
 - e.g. sex, season, political party

- · Recall categorial variables place an individual into one of several possible categories
 - e.g. sex, season, political party
 - may be responses to questions

- Recall categorial variables place an individual into one of several possible categories
 - · e.g. sex, season, political party
 - may be responses to questions
 - · can be quantitative (e.g. age, zip code)

Cut	Fair	Good	Very Good	Premium	Ideal
Count	1610	4906	12082	13791	21551
Proportion	0.030	0.091	0.224	0.256	0.400

Cut characteristics of 53,940 diamonds

- · Recall categorial variables place an individual into one of several possible categories
 - e.g. sex, season, political party
 - may be responses to questions
 - · can be quantitative (e.g. age, zip code)

Cut	Fair	Good	Very Good	Premium	Ideal
Count	1610	4906	12082	13791	21551
Proportion	0.030	0.091	0.224	0.256	0.400

Cut characteristics of 53,940 diamonds

· Also recall R calls this type of data a factor

Example

Do men earn higher wages on average than women?

• Using basic statistics, we can test for a statistically significant difference in group means with a *t*-test¹

¹See the **Handout** on Blackboard for this example.

Example

- Using basic statistics, we can test for a statistically significant difference in group means with a *t*-test¹
- · Let:

¹See the **Handout** on Blackboard for this example.

Example

- Using basic statistics, we can test for a statistically significant difference in group means with a t-test¹
- · Let:
 - \overline{Y}_M the average earnings of a sample of n_M men

¹See the **Handout** on Blackboard for this example.

Example

Do men earn higher wages on average than women?

- Using basic statistics, we can test for a statistically significant difference in group means with a t-test¹
- · Let:
 - \overline{Y}_M the average earnings of a sample of n_M men
 - \cdot \overline{Y}_W the average earnings of a sample of n_W women

HOOD

¹See the **Handout** on Blackboard for this example.

Example

- Using basic statistics, we can test for a statistically significant difference in group means with a t-test¹
- · Let:
 - \overline{Y}_M the average earnings of a sample of n_M men
 - \overline{Y}_W the average earnings of a sample of n_W women
 - · Difference in group averages $d = \overline{Y}_M \overline{Y}_W$

¹See the **Handout** on Blackboard for this example.

Example

- Using basic statistics, we can test for a statistically significant difference in group means with a t-test¹
- · Let:
 - \overline{Y}_M the average earnings of a sample of n_M men
 - \overline{Y}_W the average earnings of a sample of n_W women
 - Difference in group averages $d = \overline{Y}_M \overline{Y}_W$
- The hypothesis test is:

¹See the **Handout** on Blackboard for this example.

Example

- Using basic statistics, we can test for a statistically significant difference in group means with a t-test¹
- · Let:
 - \overline{Y}_M the average earnings of a sample of n_M men
 - \cdot \overline{Y}_W the average earnings of a sample of n_W women
 - · Difference in group averages $d = \overline{Y}_M \overline{Y}_W$
- The hypothesis test is:
- $\cdot H_0 : d = 0$

HOOD

¹See the **Handout** on Blackboard for this example.

Example

- Using basic statistics, we can test for a statistically significant difference in group means with a t-test¹
- · Let:
 - \overline{Y}_M the average earnings of a sample of n_M men
 - \cdot \overline{Y}_W the average earnings of a sample of n_W women
 - · Difference in group averages $d = \overline{Y}_M \overline{Y}_W$
- The hypothesis test is:
- $\cdot H_0 : d = 0$
- $\cdot H_1: d \neq 0$

¹See the **Handout** on Blackboard for this example.

• In a regression, we can easily compare across groups via a dummy variable²

²Also called a binary variable or dichotomous variable

- In a regression, we can easily compare across groups via a dummy variable²
 - \cdot Dummy variable only = 0 or = 1, depending on if a condition is met

²Also called a binary variable or dichotomous variable

- In a regression, we can easily compare across groups via a dummy variable²
 - \cdot Dummy variable only = 0 or = 1, depending on if a condition is met
 - $\boldsymbol{\cdot}$ Signifies whether an observation belongs to a category or not

²Also called a binary variable or dichotomous variable

- In a regression, we can easily compare across groups via a dummy variable²
 - · Dummy variable only = 0 or = 1, depending on if a condition is met
 - · Signifies whether an observation belongs to a category or not

Example

$$\widehat{Wage}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i$$
 where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female \\ 0 & \text{if } i \text{ is } Male \end{cases}$

· Again, $\hat{\beta}_1$ makes less sense as the "slope" of a line in this context

HOOD

²Also called a binary variable or dichotomous variable

COMPARING GROUPS IN REGRESSION: SCATTERPLOT

COMPARING GROUPS IN REGRESSION: SCATTERPLOT WITH JITTERING

- use ${\tt geom_jitter()}$ instead of ${\tt geom_point()}$ to "jitter" the data to avoid overplotting

COMPARING GROUPS IN REGRESSION: SCATTERPLOT WITH JITTERING II

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

• When $D_i = 0$ (Control group):

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y_i} = \hat{\beta_0}$

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y}_i = \hat{\beta_0}$
 - \cdot $\mathit{E}[Y|D_i=0]=\hat{eta}_0\iff$ the mean of Y when $D_i=0$

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y}_i = \hat{\beta_0}$
 - \cdot $\mathit{E}[Y|D_i=0]=\hat{eta}_0\iff$ the mean of Y when $D_i=0$
- When $D_i = 1$ (Treatment group):

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y}_i = \hat{\beta_0}$
 - \cdot $E[Y|D_i=0]=\hat{eta}_0\iff$ the mean of Y when $D_i=0$
- When $D_i = 1$ (Treatment group):

$$\cdot \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$$

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y}_i = \hat{\beta}_0$
 - $\cdot \ \ E[Y|D_i=0]=\hat{eta}_0 \iff ext{the mean of Y when } D_i=0$
- When $D_i = 1$ (Treatment group):
 - $\cdot \ \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$
 - \cdot $E[Y|D_i=1]=\hat{eta}_0+\hat{eta}_1\iff$ the mean of Y when $D_i=1$

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y}_i = \hat{\beta}_0$
 - $\cdot E[Y|D_i=0]=\hat{\beta}_0 \iff \text{the mean of Y when } D_i=0$
- When $D_i = 1$ (Treatment group):
 - $\cdot \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$
 - \cdot $E[Y|D_i=1]=\hat{eta}_0+\hat{eta}_1\iff$ the mean of Y when $D_i=1$
- · So the difference in group means:

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\cdot \hat{Y}_i = \hat{\beta}_0$
 - $\cdot \ \ E[Y|D_i=0]=\hat{eta}_0 \iff ext{the mean of } Y ext{ when } D_i=0$
- When $D_i = 1$ (Treatment group):
 - $\cdot \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$
 - \cdot $E[Y|D_i=1]=\hat{eta}_0+\hat{eta}_1\iff$ the mean of Y when $D_i=1$
- So the difference in group means: $= E[Y_i|D_i = 1] E[Y_i|D_i = 0]$ $= (\hat{\beta}_0 + \hat{\beta}_1) (\hat{\beta}_0)$ $= \hat{\beta}_1$

$$\widehat{Wage_i} = \hat{eta_0} + \hat{eta_1}$$
Female_i

$$Female_i = \left\{ egin{array}{ll} 1 & \text{if i is Female} \\ 0 & \text{If i is Male} \end{array} \right.$$

Example

$$\widehat{Wage}_i = \hat{eta}_0 + \hat{eta}_1$$
Female $_i$
Female $_i = \left\{ egin{array}{ll} 1 & ext{if i is Female} \ 0 & ext{If i is Male} \end{array}
ight.$

• Mean wage for males:

Example

$$\widehat{Wage_i} = \hat{eta_0} + \hat{eta_1}$$
Female_i

$$Female_i = \left\{ egin{array}{ll} 1 & \text{if i is Female} \\ 0 & \text{If i is Male} \end{array} \right.$$

 \cdot Mean wage for males: $extit{E[Wage|Female} = 0] = \hat{eta}_0$

$$\widehat{Wage_i} = \hat{eta}_0 + \hat{eta}_1$$
Femal e_i

$$Female_i = \left\{ egin{array}{ll} 1 & ext{if i is Female} \\ 0 & ext{If i is Male} \end{array} \right.$$

- \cdot Mean wage for males: $extit{E[Wage|Female} = 0] = \hat{eta}_0$
- Mean wage for females:

$$\widehat{Wage}_i = \hat{eta}_0 + \hat{eta}_1$$
Female $_i$
Female $_i = \left\{egin{array}{ll} 1 & ext{if i is Female} \\ 0 & ext{If i is Male} \end{array}
ight.$

- \cdot Mean wage for males: $\mathit{E[Wage|Female} = 0] = \hat{eta}_0$
- · Mean wage for females: $\textit{E[Wage|Female} = 1] = \hat{eta}_{0} + \hat{eta}_{1}$

$$\widehat{Wage}_i = \hat{eta}_0 + \hat{eta}_1$$
Female $_i$
Female $_i = \left\{egin{array}{ll} 1 & ext{if i is Female} \\ 0 & ext{If i is Male} \end{array}
ight.$

- \cdot Mean wage for males: $extit{E[Wage|Female} = 0] = \hat{eta}_0$
- \cdot Mean wage for females: $\textit{E[Wage|Female} = 1] = \hat{eta}_0 + \hat{eta}_1$
- · Difference in wage between males & females:

$$\widehat{Wage}_i = \hat{eta}_0 + \hat{eta}_1$$
Female $_i$
Female $_i = \left\{ egin{array}{ll} 1 & ext{if i is Female} \\ 0 & ext{If i is Male} \end{array}
ight.$

- \cdot Mean wage for males: $\mathit{E[Wage|Female} = 0] = \hat{eta}_0$
- · Mean wage for females: $\textit{E[Wage|Female} = 1] = \hat{eta}_{0} + \hat{eta}_{1}$
- Difference in wage between males & females: \hat{eta}_1

• OLS Regression:
$$\widehat{\text{Wage}}_i = 7.10 - 2.51 \text{ Female}_i$$

(0.21) (0.30)

• OLS Regression:
$$\widehat{\text{Wage}}_i = 7.10 - 2.51 \text{ Female}_i$$

(0.21) (0.30)

· Simple tabulation of group means:

	Avg. Wage	SE(avg)	
Sex	(\bar{Y})	(s_Y)	n
Female	4.59	0.16	252
Male	7.10	0.21	274
Difference	-2.51	(0.30)	-

• OLS Regression:
$$\widehat{\text{Wage}_i} = 7.10 - 2.51 \text{ Female}_i$$

(0.21) (0.30)

· Simple tabulation of group means:

	Avg. Wage	SE(avg)	
Sex	(\bar{Y})	(s_Y)	n
Female	4.59	0.16	252
Male	7.10	0.21	274
Difference	-2.51	(0.30)	-

• Differences in means: $\overline{Y_F} - \overline{Y_M} = 4.59 - 7.10 = -2.51$

• OLS Regression:
$$\widehat{\text{Wage}_i} = 7.10 - 2.51 \text{ Female}_i$$

(0.21) (0.30)

· Simple tabulation of group means:

	Avg. Wage	SE(avg)	
Sex	(\bar{Y})	(s_Y)	n
Female	4.59	0.16	252
Male	7.10	0.21	274
Difference	-2.51	(0.30)	-

• Differences in means:
$$\overline{Y_F} - \overline{Y_M} = 4.59 - 7.10 = -2.51$$

$$\cdot$$
 SE $(\overline{Y_F} - \overline{Y_M}) = \sqrt{\frac{s_M^2}{n_M} + \frac{s_F^2}{n_F}} = \sqrt{\frac{0.21^2}{274} + \frac{0.16^2}{252}} \approx 0.30$


```
# Our data comes from WAGE1.dta which you can find in Blackboard under data
# Load WAGE1 as wages
library("foreign") # to load .dta Stata files
wages<-read.dta("../Data/WAGE1.dta")</pre>
# there's a lot of variables in wages, let's only look at wage and female for no
wages<-subset(wages, select=c("wage","female"))</pre>
```



```
# just get a sense of the data
head(wages)
```

```
## wage female
## 1 3.10 1
## 2 3.24 1
## 3 3.00 0
## 4 6.00 0
## 5 5.30 0
## 6 8.75 0
```


• We want to look at the data under certain conditions

 $^{^3}$ Later, I will show you how to do this in dplyr, a popular package that makes data wrangling easier

- · We want to look at the data under certain conditions
- $\cdot\,$ Can do this in base R by subsetting data using square brackets [] 3

 $^{^3}$ Later, I will show you how to do this in ${\tt dplyr}$, a popular package that makes data wrangling easier

- · We want to look at the data under certain conditions
- \cdot Can do this in base R by **subsetting** data using square brackets []³
- \cdot Syntax: data[df\$variable condition] where condition is likely:

 $^{^{3}}$ Later, I will show you how to do this in dplyr, a popular package that makes data wrangling easier

- We want to look at the data under certain conditions
- Can do this in base R by **subsetting** data using square brackets []³
- Syntax: data[df\$variable condition] where condition is likely:
 - A logical test, i.e. >, <, !=, <=, >=, == some value

 $^{^3}$ Later, I will show you how to do this in ${ t dplyr}$, a popular package that makes data wrangling easier

[1] 4.160858

```
# look at average wage for men
summary(wages$wage[wages$female==0])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.500 4.143 6.000 7.099 8.765 24.980

sd(wages$wage[wages$female==0]) # get sd
```



```
# look at average wage for women
summary(wages$wage[wages$female==1])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.530 3.000 3.750 4.588 5.510 21.630

sd(wages$wage[wages$female==1]) # get sd
```


THE DUMMY REGRESSION

```
dummyreg<-lm(wage~female, data=wages)</pre>
summarv(dummvreg)
##
## Call:
## lm(formula = wage ~ female, data = wages)
##
## Residuals:
      Min
##
           10 Median 30
                                     Max
                                                                Wage_{i} = 7.10 - 2.51 Female_{i}
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
                                                                         (0.21) (0.30)
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.0995 0.2100 33.806 < 2e-16 ***
## female
          -2.5118 0.3034 -8.279 1.04e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Residual standard error: 3.476 on 524 degrees of freedom

THE DUMMY REGRESSION: JUST CHECKING!

$$\widehat{\text{Wage}}_i = 7.10 - 2.51 \text{ Female}_i$$
(0.21) (0.30)

• Does this mean we've accurately measured the gender-wage gap as \$2.51/hr?

THE DUMMY REGRESSION: JUST CHECKING!

$$\widehat{\text{Wage}}_i = 7.10 - 2.51 \text{ Female}_i$$
(0.21) (0.30)

- Does this mean we've accurately measured the gender-wage gap as \$2.51/hr?
- $\boldsymbol{\cdot}$ Are there variables for which the following is true?

$$corr(wage, Z) \neq 0$$

$$\mathit{corr}(\mathit{female}, \mathit{Z}) \neq 0$$

THE DUMMY REGRESSION: JUST CHECKING!

$$\widehat{\text{Wage}}_i = 7.10 - 2.51 \text{ Female}_i$$
(0.21) (0.30)

- Does this mean we've accurately measured the gender-wage gap as \$2.51/hr?
- · Are there variables for which the following is true?

$$corr(wage, Z) \neq 0$$

 $corr(female, Z) \neq 0$

• female is probably endogenous, must include other control variables

· What if instead of female we had used:

$$\widehat{Wage}_i = \hat{eta}_0 + \hat{eta}_1 Male_i$$

$$Male_i = \left\{ egin{array}{ll} 1 & ext{if i is Male} \\ 0 & ext{If i is Female} \end{array} \right.$$

· What if instead of female we had used:

Example

$$\widehat{Wage_i} = \hat{eta_0} + \hat{eta_1}$$
Male_i

$$Male_i = \left\{ egin{array}{ll} 1 & ext{if i is Male} \\ 0 & ext{If i is Female} \end{array} \right.$$

 \cdot female is a variable already in the data, we need to generate the male variable

· Again, a very useful **R** function is

ifelse(conditions, do.this.if.true, do.this.if.false)

· Again, a very useful **R** function is

```
ifelse(conditions, do.this.if.true, do.this.if.false)
```

So let's create a male variable in our wages dataframe that we define as 1 if female==0 and
 0 otherwise (i.e. if female==1)

· Again, a very useful **R** function is

```
ifelse(conditions, do.this.if.true, do.this.if.false)
```

So let's create a male variable in our wages dataframe that we define as 1 if female==0 and
 0 otherwise (i.e. if female==1)

```
wages$male<-ifelse(wages$female==0,1,0)
head(wages) # verify that it worked</pre>
```


SCATTERPLOT WITH MALE

SCATTERPLOT WITH MALE II

THE DUMMY REGRESSION WITH MALE

```
mreg<-lm(wage~male, data=wages)</pre>
summary(mreg)
##
## Call:
## lm(formula = wage ~ male, data = wages)
##
## Residuals:
      Min
##
          10 Median 30
                                     Max
                                                                Wage; = 4.59 + 2.51 \, Male_i
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
                                                                        (0.21) (0.30)
##
## Coefficients:
         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.5877 0.2190 20.950 < 2e-16 ***
## male
         2.5118 0.3034 8.279 1.04e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Residual standard error: 3.476 on 524 degrees of freedom

THE DUMMY REGRESSION: MALE OR FEMALE

```
library("stargazer")
stargazer(dummyreg, mreg, type="latex",
          header=FALSE, float=FALSE)
```

	Dependent variable: wage	
	(1)	(2)
female	-2.512***	
	(0.303)	
male		2.512***
		(0.303)
Constant	7.099***	4.588***
	(0.210)	(0.219)
Observations	526	526
R^2	0.116	0.116
Adjusted R ²	0.114	0.114
Residual Std. Error (df = 524)	3.476	3.476
F Statistic (df = 1; 524)	68.537***	68.537***
Note:	*p<0.1; **p<0.05; ***p<0.01	

· Note it doesn't matter if we use male or female OD males always earn \$2.51 more than females

THE DUMMY REGRESSION: MALE OR FEMALE

	Dependent variable:		
	Wa	wage	
	(1)	(2)	
female	-2.512***		
	(0.303)		
male		2.512***	
		(0.303)	
Constant	7.099***	4.588***	
	(0.210)	(0.219)	
Observations	526	526	
R^2	0.116	0.116	
Adjusted R ²	0.114	0.114	
Residual Std. Error (df = 524)	3.476	3.476	
F Statistic (df = 1; 524)	68.537***	68.537***	

Note:

- Note it doesn't matter if we use male or female or males always earn \$2.51 more than females
- Compare the constant (mean for the D=0 group)

*p<0.1; **p<0.05; ***p<0.01