

Rajalakshmi Engineering College (An Autonomous Institution) Rajalakshmi Nagar, Thandalam- 602105

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

AI23521 – BUILD AND DEPLOY MACHINE LEARNING APPLICATIONS (REGULATION 2023)

RAJALAKSHMI ENGINEERING COLLEGE

Thandalam, Chennai-602015

Name: Preethi G

Register No: 231501122

Year / Branch: 3rd / AIML

Semester: V

Academic Year: 2024 - 2025

RAJALAKSHMI ENGINEERING COLLEGE (AUTONOMOUS) RAJALAKSHMI NAGAR, THANDALAM

602 105

BONAFIDE CERTIFICATE

NAME	PREETHI G	REGISTER NO	231501122
ACADEM	IC YEAR 2024-25 SEN	IESTER- V BRANC	C H : AIML-B.Tech
This Certific	cation is the Bonafide re	ecord of work done b	y the above student
in the AI23	3521 – Build and Deplo	y Machine Learnin	g Applications
Laboratory	during the year 2024 _	2025.	
		Signature	of Faculty -in _ Charge
Submitted for	r the Practical Examination	held on	

INDEX

S.No	Date	Торіс	Page Number
1	7/8/25	Setting Up the Environment And Preprocessing the Data	1
2	14/8/25	Support Vector Machine (SVM) and Random Forest for Binary & Multiclass Classification	6
3	14/8/25	Classification with Decision Trees	10
4(a)	21/8/25	Support Vector Machines (SVM)	13
4(b)	21/8/25	Ensemble Methods: Random Forest	18
5	28/8/25	Clustering with K-Means and Dimensionality Reduction with PCA	23
6	11/9/25	Feedforward and Convolutional Neural Networks	30

7	25/9/25	Generative Models with GANs: Creating and Training a Generative Adversarial Network	40
8	9/10/25	Model Evaluation and Improvement: Hyperparameter Tuning with Grid Search and Cross-Validation	50

Exp No: 1 Date : 7/8/25

Setting Up the Environment And Preprocessing the Data

Aim:

To set up a fully functional machine learning development environment and to perform data preprocessing operations like handling missing values, encoding categorical variables, feature scaling, and splitting datasets.

Algorithm:

- 1. Install Required Libraries:
 - Install numpy, pandas, matplotlib, seaborn, and scikit-learn using pip.
- 2. Import Libraries.
- 3. Load Dataset:
 - Load any dataset (e.g., Titanic or Iris) using pandas.
- 4. Data Exploration:
 - Use df.info(), df.describe(), df.isnull().sum() to understand the data.
- 5. Handle Missing Values:
 - Use .fillna() or .dropna() depending on the strategy.
- 6. Encode Categorical Data:
 - Use pd.get dummies() or LabelEncoder.
- 7. Feature Scaling:
 - Normalize or standardize the numerical features using StandardScaler or MinMaxScaler.
- 8. Split Dataset:
 - Use train test split() from sklearn to create training and testing sets.
- 9. Display the Preprocessed Data.

```
Code:
```

```
# 1. Install necessary libraries (if not already installed)
#!pip install numpy pandas matplotlib seaborn scikit-learn
# 2. Import libraries import pandas as pd import numpy as np
from sklearn.model selection import train test split from
sklearn.preprocessing import StandardScaler, LabelEncoder
import seaborn as sns import matplotlib.pyplot as plt
# 3. Load dataset
df = sns.load dataset('titanic') # Titanic dataset df.head()
# 4. Explore the dataset
print(df.info()) print(df.describe())
print(df.isnull().sum())
# 5. Handle missing values
# Fill age with median, embark town with mode df['age'].fillna(df['age'].median(),
inplace=True)
df['embark town'].fillna(df['embark town'].mode()[0],
                                                                              inplace=True)
df.drop(columns=['deck'], inplace=True) # too many missing values
# 6. Encode categorical variables
# Convert 'sex' and 'embark town' using LabelEncoder
le = LabelEncoder() df['sex'] = le.fit transform(df['sex'])
df['embark town'] = le.fit transform(df['embark town'])
# Drop non-informative or redundant columns df.drop(columns=['embarked', 'class',
'who', 'alive', 'adult male', 'alone'], inplace=True)
```

```
# 7. Feature Scaling scaler = StandardScaler() numerical_cols
= ['age', 'fare'] df[numerical_cols] =
scaler.fit_transform(df[numerical_cols])

# 8. Split dataset
# Define features (X) and label (y)
X = df.drop('survived', axis=1) y
= df['survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 9. Show final preprocessed data print("Training
Data Shape:", X_train.shape) print("Test Data
Shape:", X_test.shape)
X_train.head()
```

Output:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
                 Non-Null Count Dtype
    Column
 #
    ----
                  -----
    survived
                  891 non-null
                                  int64
                  891 non-null
                                  int64
 1
     pclass
 2
                  891 non-null
                                  object
    sex
 3
                 714 non-null
                                  float64
 4
     sibsp
                  891 non-null
                                  int64
 5
     parch
                  891 non-null
                                  int64
 6
     fare
                  891 non-null
                                  float64
 7
     embarked
                  889 non-null
                                 object
 8
                  891 non-null
    class
                                  category
 9
    who
                  891 non-null
                                  object
 10
    adult male
                  891 non-null
                                  bool
 11
    deck
                  203 non-null
                                  category
    embark_town
                 889 non-null
                                  object
 12
                                  object
13 alive
                  891 non-null
 14 alone
                 891 non-null
                                  bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
None
         survived
                       pclass
                                                sibsp
                                                                         fare
                                      age
                                                            parch
     891.000000 891.000000 714.000000
                                          891.000000
                                                      891.000000 891.000000
count
mean
         0.383838
                     2.308642
                               29.699118
                                            0.523008
                                                        0.381594
                                                                   32.204208
std
         0.486592
                     0.836071
                               14.526497
                                             1.102743
                                                        0.806057
                                                                   49.693429
min
         0.000000
                     1.000000
                                0.420000
                                            0.000000
                                                        0.000000
                                                                    0.000000
25%
         0.000000
                     2.000000
                                20.125000
                                            0.000000
                                                        0.000000
                                                                    7.910400
50%
         0.000000
                     3.000000
                                28.000000
                                             0.000000
                                                        0.000000
                                                                   14.454200
75%
         1.000000
                     3.000000
                                38.000000
                                            1.000000
                                                        0.000000
                                                                   31.000000
         1.000000
                     3.000000
                                80.000000
                                             8.000000
                                                        6.000000
                                                                  512.329200
max
survived
                      0
pclass
                      0
                      0
sex
                    177
age
sibsp
                      0
parch
                      0
fare
                      0
                      2
embarked
class
                      0
who
                      0
adult male
                      0
deck
                    688
embark town
                      2
alive
                      0
alone
                      0
dtype: int64
```

Training Data Shape: (712, 7)

Test Data Shape: (179, 7)

/tmp/ipython-input-4068659829.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['age'].fillna(df['age'].median(), inplace=True)
/tmp/ipython-input-4068659829.py:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This implace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['embark_town'].fillna(df['embark_town'].mode()[0], inplace=True)

	pclass	sex	age	sibsp	parch	fare	embark_town
331	1	1	1.240235	0	0	-0.074583	2
733	2	1	-0.488887	0	0	-0.386671	2
382	3	1	0.202762	0	0	-0.488854	2
704	3	1	-0.258337	1	0	-0.490280	2
813	3	0	-1.795334	4	2	-0.018709	2

Result:

The dataset was successfully preprocessed by handling missing values, encoding categorical features, scaling numerical attributes, and splitting into training and testing sets. The final cleaned and standardized data is now ready for use in machine learning model training and evaluation.

Exp No: 2

Support Vector Machine (SVM) and Random Forest for Binary & Multiclass Classification

Date: 14/8/25

Aim

To build classification models using **Support Vector Machines (SVM)** and **Random Forest**, apply them to a dataset, and evaluate the models using performance metrics like accuracy and confusion matrix.

Algorithm

Part A: SVM Model

- 1. Import necessary libraries
- 2. Load and explore the dataset
- 3. Handle missing values if any
- 4. Encode categorical variables
- 5. Split dataset into training and testing sets
- 6. Build SVM classifier using SVC()
- 7. Train and predict
- 8. Evaluate the model using accuracy and confusion matrix

Part B: Random Forest Model

- 1. Initialize Random Forest using RandomForestClassifier()
- 2. Train and predict
- 3. Evaluate and compare with SVM Code:

1. Import libraries import

pandas as pd

from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

```
import seaborn as sns import matplotlib.pyplot as plt
# 2. Load dataset
iris = load iris()
X = iris.data y =
iris.target
# 3. Feature scaling scaler
= StandardScaler()
X scaled = scaler.fit transform(X)
# 4. Train-test split
X train, X test, y train, y test = train test split(X scaled, y, test size=0.3, random state=42)
# -----
# Part A: SUPPORT VECTOR MACHINE
# -----
# 5. Initialize and train SVM
svm model = SVC(kernel='linear') # You can also try 'rbf', 'poly' svm model.fit(X train,
y train)
# 6. Predict and evaluate SVM y pred svm
= svm_model.predict(X_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred_svm)) print("SVM
Confusion Matrix:\n", confusion matrix(y test, y pred svm))
# Part B: RANDOM FOREST
```

from sklearn.metrics import accuracy score, confusion matrix

```
#7. Initialize and train Random Forest
rf model = RandomForestClassifier(n estimators=100, random state=42) rf model.fit(X train,
y train)
#8. Predict and evaluate Random Forest y pred rf
= rf model.predict(X test)
print("Random Forest Accuracy:", accuracy score(y test, y pred rf)) print("Random
Forest Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
# -----
# 9. Visual comparison using seaborn heatmap
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
sns.heatmap(confusion matrix(y test,
                                       y_pred_svm),
                                                        annot=True,
                                                                       cmap='Blues',
                                                                                         fmt='d'
plt.title("SVM Confusion Matrix")
plt.subplot(1, 2, 2)
sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, cmap='Greens', fmt='d')
plt.title("Random Forest Confusion Matrix") plt.tight_layout() plt.show()
```

OUTPUT:

Result:

The SVM and Random Forest models were successfully implemented for the Iris dataset. The SVM achieved high accuracy (~97%), while the Random Forest performed slightly better (~100%), demonstrating its robustness and ensemble advantage in classification tasks.

ExpNo:3 Classification with Decision Trees Date: 14/8/25

Aim

To implement a Decision Tree classifier and evaluate its performance using **accuracy score** and **confusion matrix** on a real-world dataset.

Algorithm

- 1. Import necessary libraries
- 2. Load a classification dataset (e.g., Iris or Titanic)
- 3. Split the dataset into training and test sets
- 4. Preprocess data if needed
- 5. Train a DecisionTreeClassifier from sklearn.tree
- 6. Predict on test data
- 7. Evaluate using: o Confusion Matrix o Accuracy Score
- 8. Visualize the Decision Tree (optional)

Code:

Step 1: Import Libraries from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score import matplotlib.pyplot as plt import seaborn as sns

```
# Step 2: Load Dataset
iris = load_iris() X =
iris.data y = iris.target
```

Step 3: Split the dataset

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 4: Train the Decision Tree Classifier dt model =
DecisionTreeClassifier(criterion='gini',
                                                 random state=0)
dt model.fit(X train, y train)
# Step 5: Predict y pred =
dt_model.predict(X_test)
# Step 6: Evaluate the Model cm =
confusion matrix(y test, y pred) acc =
accuracy score(y test,
                              y pred)
print("Confusion
                   Matrix:\n",
                                 cm)
print("Accuracy Score:", acc)
# Step 7: Visualize Confusion Matrix
sns.heatmap(cm,
                       annot=True,
                                      cmap="Blues", xticklabels=iris.target names,
yticklabels=iris.target names) plt.xlabel("Predicted") plt.ylabel("Actual") plt.title("Confusion
Matrix") plt.show()
# Step 8: Visualize the Decision Tree plt.figure(figsize=(12,8)) plot tree(dt model, filled=True,
feature names=iris.feature names,
                                    class names=iris.target names)
                                                                      plt.title("Decision
                                                                                           Tree
Visualization") plt.show()
```

OUTPUT:

Result:

The Decision Tree Classifier was successfully implemented and evaluated on the Iris dataset. The model accurately classified all flower species, and the visualization clearly showed how feature-based splits lead to each prediction.

Exp No: 4A Date: 21/8/25	Support Vector Machines (SVM)	
-----------------------------	-------------------------------	--

Aim:

To build an SVM model for a binary classification task, tune its hyperparameters, and evaluate it using accuracy, precision, recall, F1-score, confusion matrix, and ROC-AUC.

Algorithm:

- 1. Import libraries: numpy, pandas, matplotlib, sklearn.
- 2. Load data: Use a standard binary dataset (Breast Cancer Wisconsin) from sklearn.datasets.
- 3. Train/Test split: 80/20 split with a fixed random state.
- 4. Preprocess: Standardize features (StandardScaler).
- 5. SVMs are sensitive to feature scale.
- 6. Model selection: Use SVC (RBF kernel).
- 7. Hyperparameter tuning: Grid search on C and gamma with cross-validation (GridSearchCV).
- 8. Train final model: Fit on training data using best parameters.
- 9. Evaluate: Predict on test set; compute metrics and plot ROC curve.
- 10. Report: Best params, metrics, and brief observations.

CODE:

1) Imports import numpy as np import pandas as pd import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler from sklearn.svm
import SVC from sklearn.metrics import (accuracy_score,
precision_score, recall_score, fl_score, confusion_matrix,
classification report, roc auc score, roc curve

```
)
#2) Load dataset (binary classification) data
= load breast cancer()
X = pd.DataFrame(data.data, columns=data.feature names) y =
pd.Series(data.target, name="target") # 0 = malignant, 1 = benign
# 3) Train/test split
X train, X test, y train, y test = train test split(
  X, y, test size=0.20, random state=42, stratify=y
)
#4) Standardize features (important for SVMs) scaler
= StandardScaler()
X train sc = scaler.fit transform(X train)
X \text{ test } sc = scaler.transform(X_test)
# 5) Define model svm = SVC(kernel='rbf', probability=True,
random state=42)
#6) Hyperparameter grid & tuning param grid
= {
  "C": [0.1, 1, 10, 100],
  "gamma": ["scale", 0.01, 0.001, 0.0001]
}
grid = GridSearchCV(
                        estimator=svm,
param grid=param grid,
                           scoring='f1', #You can
change to 'accuracy' or 'roc auc' cv=5, n jobs=-1,
verbose=0
)
```

```
grid.fit(X train sc, y train)
print("Best Parameters from Grid Search:", grid.best params ) best svm
= grid.best estimator
    7)
          Train
                   final
                          model
                                    &
                                          predict
best svm.fit(X train sc, y train) y pred
best svm.predict(X test sc)
                                  y prob
best svm.predict proba(X test sc)[:, 1]
# 8) Evaluation acc = accuracy score(y test, y pred)
prec = precision score(y test, y pred,
zero division=0) rec = recall score(y test, y pred) f1
= f1_score(y_test, y_pred) auc = roc_auc_score(y_test,
y prob) cm = confusion matrix(y test, y pred)
print("\n=== SVM (RBF) — Test Metrics ===")
print(f"Accuracy : {acc:.4f}") print(f"Precision:
{prec:.4f}")
print(f"Recall
               : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion
                       Matrix:\n",
                                                 print("\nClassification
                                                                            Report:\n",
                                        cm)
classification report(y test, y pred, zero division=0))
# 9) Plot ROC Curve fpr, tpr, thresholds =
roc curve(y test, y prob) plt.figure() plt.plot(fpr,
tpr, label=f"SVM (AUC = {auc:.3f})") plt.plot([0,
1], [0, 1], linestyle="--", color='gray')
```



```
Best Parameters from Grid Search: {'C': 10, 'gamma': 0.01}
=== SVM (RBF) - Test Metrics ===
Accuracy: 0.9825
Precision: 0.9861
       : 0.9861
Recall
F1-Score : 0.9861
ROC-AUC : 0.9977
Confusion Matrix:
[[41 1]
[ 1 71]]
Classification Report:
               precision
                            recall f1-score
                   0.98
                             0.98
                                       0.98
                                                    42
           1
                   0.99
                             0.99
                                       0.99
                                                    72
                                                   114
                                       0.98
    accuracy
                   0.98
                             0.98
                                       0.98
                                                   114
   macro avg
weighted avg
                   0.98
                             0.98
                                       0.98
                                                   114
```


Result:

The Support Vector Machine (RBF kernel) model was successfully trained and tuned on the Breast Cancer dataset. After hyperparameter optimization, the model showed strong classification performance with balanced precision, recall, and F1-score. The ROC curve confirmed excellent class separability.

Exp No: 4B	Ensemble Methods: Random Forest
Date: 21/8/25	

Aim:

To implement a **Random Forest classifier** for a classification task, tune key hyperparameters, evaluate performance, and interpret **feature importance**.

Algorithm:

- 1. Import libraries.
- 2. Load data (use same dataset to compare with SVM).
- 3. Train/Test split with stratification.
- 4. (Optional) Preprocess: Random Forests don't require scaling; we'll use raw features.
- 5. Model: RandomForestClassifier.
- 6. Hyperparameter tuning: Grid search over n_estimators, max_depth, min_samples_split, min_samples_leaf.
- 7. Train the best model on training data.
- 8. Evaluate with accuracy, precision, recall, F1, confusion matrix, ROC-AUC.
- 9. Interpretation: Plot top feature importances.

CODE:

from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier

```
from sklearn.metrics import (
                                  accuracy score, precision score,
                           confusion_matrix, classification report,
recall score, fl score,
roc auc score, roc curve
)
#2) Load dataset (same as 4A for comparison) data
= load breast cancer()
X = pd.DataFrame(data.data, columns=data.feature names) y
= pd.Series(data.target, name="target")
# 3) Train/test split (no scaling needed for RF)
X train, X test, y train, y test = train test split(
  X, y, test size=0.20, random state=42, stratify=y
#
         4)
                  Define
                                model
                                              rf
RandomForestClassifier(random state=42, n jobs=-1)
#5) Hyperparameter grid & tuning param grid
= {
  "n estimators": [100],
  "max depth": [None, 10],
  "min samples split": [2],
  "min samples leaf": [1]
} grid = GridSearchCV(
estimator=rf,
param grid=param grid,
scoring="f1", cv=3,
n jobs=-1, verbose=0)
grid.fit(X train, y train)
print("Best Parameters
(CV):", grid.best params)
```

```
best rf =
grid.best estimator
   6) Train final model & predict
best rf.fit(X train, y train)
                               y pred
best rf.predict(X test)
                            y prob
best rf.predict proba(X test)[:, 1]
#7) Evaluate acc = accuracy score(y test, y pred) prec
= precision score(y test, y pred, zero division=0) rec
= recall score(y test, y pred) f1 = f1 score(y test,
y pred) auc = roc auc score(y test, y prob) cm =
confusion matrix(y test, y pred)
print("\n=== Random Forest — Test Metrics ===")
print(f"Accuracy : {acc:.4f}") print(f"Precision:
{prec:.4f}") print(f"Recall : {rec:.4f}") print(f"F1-
Score : {f1:.4f}") print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification report(y test, y pred, zero division=0))
# 8) Feature Importance (Top 10) importances =
pd.Series(best rf.feature importances, index=X.columns) top10 =
importances.sort values(ascending=False).head(10)
plt.figure() top10[::-1].plot(kind="barh")
plt.xlabel("Importance") plt.title("Top 10 Feature
Importances — Random Forest") plt.grid(axis="x",
alpha=0.3) plt.show()
```

```
# 9) ROC Curve fpr, tpr, thresholds = roc_curve(y_test, y_prob) plt.figure() plt.plot(fpr, tpr, label=f"Random Forest (AUC = {auc:.3f})") plt.plot([0, 1], [0, 1], linestyle="--", color='gray') plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve — Random Forest") plt.legend() plt.grid(True) plt.show()
```

OUTPUT:

```
Best Parameters (CV): {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}
```

```
=== Random Forest - Test Metrics ===
Accuracy: 0.9561
Precision: 0.9589
        : 0.9722
Recall
F1-Score: 0.9655
ROC-AUC : 0.9937
Confusion Matrix:
 [ 2 70]]
Classification Report:
                           recall f1-score
                                              support
              precision
          0
                  0.95
                            0.93
                                      9.94
                                                  42
                  0.96
                            0.97
                                      0.97
                                                  72
   accuracy
                                      0.96
                                                 114
   macro avg
                  0.96
                            0.95
                                      0.95
                                                  114
weighted avg
                  0.96
                            0.96
                                      0.96
                                                  114
```


Result:

The Random Forest Classifier was effectively implemented and optimized. The model achieved reliable classification results without feature scaling. Feature importance analysis revealed the most influential medical predictors. Both evaluation metrics and ROC-AUC indicated high overall model performance.

Exp No: 5 Date: 28/8/25 Clustering with K-Means and Dimensionality Reduction with PCA
--

Aim:

To demonstrate the application of Unsupervised Learning models, specifically K-Means clustering for grouping data points and Principal Component Analysis (PCA) for dimensionality reduction and visualization, using a suitable dataset.

Algorithm:

1. K-Means Clustering

K-Means is an iterative clustering algorithm that aims to partition \$n\$ observations into \$k\$ clusters, where each observation belongs to the cluster with the nearest mean (centroid).

Steps:

- 1. **Initialization:** Choose \$k\$ initial centroids randomly from the dataset.
- 2. **Assignment:** Assign each data point to the cluster whose centroid is closest (e.g., using Euclidean distance).
- 3. Update: Recalculate the centroids as the mean of all data points assigned to that cluster.
- 4. **Iteration:** Repeat steps 2 and 3 until the centroids no longer move significantly or a maximum number of iterations is reached.

2. Principal Component Analysis (PCA)

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

Steps:

- 1. **Standardization:** Standardize the dataset (mean = 0, variance = 1).
- 2. Covariance Matrix Calculation: Compute the covariance matrix of the standardized data.
- 3. **Eigenvalue Decomposition:** Calculate the eigenvalues and eigenvectors of the covariance matrix.
- 4. **Feature Vector Creation:** Sort the eigenvectors by decreasing eigenvalues and select the top \$k\$ eigenvectors to form a feature vector (projection matrix).
- 5. **Projection:** Project the original data onto the new feature space using the feature vector.

CODE:

Import necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler

```
from sklearn.cluster import KMeans from
sklearn.decomposition import PCA
from sklearn.metrics import silhouette score
# --- Part 1: K-Means Clustering ---
print("--- Part 1: K-Means Clustering ---")
# 1. Generate dataset
X, y = \text{make blobs}(n \text{ samples}=300, \text{centers}=3, \text{cluster std}=0.60, \text{random state}=42)
df kmeans = pd.DataFrame(X, columns=['Feature 1', 'Feature 2'])
print("\nOriginal K-Means Dataset Head:") print(df kmeans.head())
# 2. Elbow Method
wcss = [] for i in
range(1, 11):
  kmeans
                  KMeans(n clusters=i,
                                            init='k-means++',
                                                                 max iter=300,
                                                                                    n init=10,
random state=42)
                     kmeans.fit(X)
  wcss.append(kmeans.inertia)
plt.figure(figsize=(10, 6)) plt.plot(range(1, 11),
wcss, marker='o', linestyle='--') plt.title('Elbow
Method for Optimal K (K-Means)')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('WCSS') plt.grid(True)
plt.show()
# 3. Apply K-Means with chosen K optimal k
=3
kmeans = KMeans(n clusters=optimal k, init='k-means++', max iter=300, n init=10,
random state=42) clusters = kmeans.fit predict(X) df kmeans['Cluster'] = clusters
# 4. Visualize K-Means clusters plt.figure(figsize=(10,
8))
sns.scatterplot(x='Feature 1', y='Feature 2', hue='Cluster', data=df kmeans, palette='viridis',
s=100, alpha=0.8)
plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:, 1], s=300, c='red',
marker='X', label='Centroids')
plt.title(fK-Means Clustering with K=\{\text{optimal } k\}'\}
plt.xlabel('Feature 1') plt.ylabel('Feature 2')
plt.legend() plt.grid(True)
```

```
plt.show()
# 5. Silhouette Score
silhouette avg = silhouette score(X, clusters)
print(f"\nSilhouette Score for K-Means (K={optimal k}): {silhouette avg:.3f}")
# --- Part 2: Dimensionality Reduction with PCA ---
print("\n--- Part 2: Dimensionality Reduction with PCA ---")
# 1. Generate 4D dataset
X pca, y pca = make blobs(n samples=500, n features=4, centers=4, cluster std=1.0,
random state=25)
df pca original
                            pd.DataFrame(X pca,
                                                         columns=[fFeature {i+1}'
       in range(X pca.shape[1])]) df pca original['True Cluster'] = y pca print("\nOriginal
PCA Dataset Head:") print(df pca original.head())
print(f"Original PCA Dataset Shape: {df pca original.shape}")
# 2. Standardize scaler =
StandardScaler()
X pca scaled = scaler.fit transform(X pca)
# 3. PCA (4D \rightarrow 2D) pca =
PCA(n components=2)
principal components = pca.fit transform(X pca scaled)
df principal components
                                                      pd.DataFrame(principal components,
columns=['Principal Component 1', 'Principal Component 2'])
df principal components['True Cluster'] = y pca explained variance =
pca.explained variance ratio print("\nPrincipal Components Head:")
print(df principal components.head())
print(f"\nExplained Variance Ratio: {explained variance}")
print(f"Total Explained Variance by 2 PCs: {explained variance.sum():.3f}")
# 4. Visualize PCA result plt.figure(figsize=(10,
8))
sns.scatterplot(x='Principal Component 1', y='Principal Component 2', hue='True Cluster',
         data=df principal components, palette='Paired', s=100, alpha=0.8)
plt.title('PCA - Dimensionality Reduction to 2 Components')
plt.xlabel(fPC1 ({explained variance[0]*100:.2f}%)')
plt.ylabel(fPC2 ({explained variance[1]*100:.2f}%)') plt.grid(True)
plt.show()
```

```
# 5. K-Means on PCA-reduced data
                     KMeans(n clusters=4,
                                                 init='k-means++',
                                                                       max iter=300,
kmeans pca
n init=10, random state=42) clusters pca = kmeans pca.fit predict(principal components)
df principal components['KMeans Cluster on PCA'] = clusters pca
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Principal Component 1', y='Principal Component 2',
hue='KMeans Cluster on PCA',
         data=df principal components, palette='viridis', s=100, alpha=0.8)
plt.scatter(kmeans pca.cluster centers [:, 0], kmeans pca.cluster centers [:, 1], s=300,
c='red', marker='X', label='Centroids')
plt.title('K-Means Clustering on PCA-Reduced Data')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2') plt.legend()
plt.grid(True) plt.show()
# 6. Silhouette Score for PCA-reduced KMeans
silhouette avg pca
                                silhouette score(principal components,
                                                                            clusters pca)
print(f"\nSilhouette
                                                         PCA-Reduced
                     Score for
                                   K-Means
                                                 on
                                                                              Data
      (K=4):
{silhouette avg pca:.3f}")
```

OUTPUT:

```
--- Part 1: K-Means Clustering ---
Original K-Means Dataset Head:
    Feature_1    Feature_2
0    -7.155244    -7.390016
1    -7.395875    -7.110843
2    -2.015671    8.281780
3    4.509270    2.632436
4    -8.102502    -7.484961
```


Silhouette Score for K-Means (K=3): 0.908

--- Part 2: Dimensionality Reduction with PCA ---

Original PCA Dataset Head:

	Feature_1	Feature_2	Feature_3	Feature_4	True_Cluster
0	-0.638667	1.110057	-6.400722	-0.204990	3
1	-2.951556	-7.657445	3.844794	0.903589	1
2	-0.253177	2.125103	-7.869801	0.559678	3
3	-2.151209	3.401400	-5.734930	0.965230	3
4	-2.347519	-7.230467	3.478891	-0.443440	1
On	iginal DCA	Dataset Sha	ne (500 5	(2)	

Principal Components Head:

	The That components head		
	Principal_Component_1	Principal_Component_2	True_Cluster
0	0.455305	1.623917	3
1	-2.705622	0.375012	1
2	0.810234	1.966926	3
3	0.427139	2.149626	3
4	-2.407508	0.099250	1

Explained Variance Ratio: [0.57208431 0.33622342] Total Explained Variance by 2 PCs: 0.908

Silhouette Score for K-Means on PCA-Reduced Data (K=4): 0.776

Result:

The experiment showed how **K-Means** can group similar data points into clusters and how **PCA** can reduce high-dimensional data into simpler 2D form for visualization. Both

methods worked well — K-Means formed clear clusters, and PCA kept the main data patterns while reducing complexity.

	Feedforward and Convolutional Neural Networks
Exp No: 6	
Date: 11/9/25	

Aim:

To demonstrate the construction and application of a simple Feedforward Neural Network (FNN) for classification and a Convolutional Neural Network (CNN) for image classification, utilizing the Keras API with TensorFlow backend.

Algorithm:

1. Feedforward Neural Network (FNN)

A Feedforward Neural Network is the simplest type of artificial neural network where connections between the nodes do not form a cycle. It consists of an input layer, one or more hidden layers, and an output layer. Information flows only in one direction—forward—from the input nodes, through the hidden nodes (if any), and to the output nodes.

Steps:

- 1. Define Network Architecture: Specify the number of layers (input, hidden, output) and the number of neurons in each layer.
- 2. Choose Activation Functions: Select activation functions for hidden layers (e.g., ReLU) and the output layer (e.g., Sigmoid for binary classification, Softmax for multi-class classification).
- 3. Define Loss Function: Choose a loss function appropriate for the task (e.g., Binary Crossentropy for binary classification, Categorical Cross-entropy for multi-class classification).
- 4. Choose Optimizer: Select an optimization algorithm (e.g., Adam, SGD) to update network weights during training.
- 5. Training: Feed forward data through the network to get predictions, calculate the loss, and then backpropagate the error to update weights.
- 6. Evaluation: Assess the model's performance on unseen data using metrics like accuracy.

2. Convolutional Neural Network (CNN)

A Convolutional Neural Network is a specialized type of neural network primarily designed for processing data with a grid-like topology, such as images. Key components include convolutional layers, pooling layers, and fully connected layers.

Steps:

- 1. Convolutional Layers: Apply filters (kernels) to input data to extract features. Each filter detects a specific pattern (e.g., edges, textures).
- 2. Activation Function (ReLU): Apply a non-linear activation function after convolution to introduce non-linearity.
- 3. Pooling Layers: Downsample feature maps to reduce dimensionality, computational cost, and prevent overfitting (e.g., Max Pooling).
- 4. Flattening: Convert the 2D pooled feature maps into a 1D vector to be fed into a fully connected layer.
- 5. Fully Connected Layers: Standard neural network layers for classification based on the extracted features.
- 6. Output Layer: Final layer with an activation function (e.g., Softmax) to output class probabilities.
- 7. Training and Evaluation: Similar to FNNs, train the CNN using backpropagation and evaluate its performance.

CODE:

Import necessary libraries import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist, fashion_mnist from sklearn.metrics import classification_report, confusion_matrix import seaborn as sns

Suppress TensorFlow warnings for cleaner output tf.keras.utils.disable_interactive_logging()

```
# --- Part 1: Building a Simple Feedforward Neural Network --- print("--- Part 1: Building a Simple Feedforward Neural Network ---")
```

```
# 1. Load and Preprocess Dataset (Using Fashion MNIST for FNN) (x_train_fnn, y_train_fnn), (x_test_fnn, y_test_fnn) = fashion_mnist.load_data()
```

```
print(f"\nOriginal FNN training data shape: {x_train_fnn.shape}") print(f"Original FNN test data shape: {x_test_fnn.shape}")
```

Flatten images to 1D array

```
x train fnn flat = x train_fnn.reshape(-1, 28 * 28) x_test_fnn_flat
= x test fnn.reshape(-1, 28 * 28)
# Normalize pixel values x train fnn norm
= x train fnn flat / 255.0
x test fnn norm = x test fnn flat / 255.0
print(f"Flattened & Normalized FNN training data shape: {x train fnn norm.shape}")
print(f"Flattened & Normalized FNN test data shape: {x test fnn norm.shape}")
# 2. Build FNN Model model fnn
= keras.Sequential([
  layers. Dense(128, activation='relu', input shape=(784,)),
                      layers.Dense(64, activation='relu'),
layers.Dropout(0.2),
  layers.Dense(10, activation='softmax')
1)
# 3. Compile Model
model fnn.compile(optimizer='adam',
          loss='sparse categorical crossentropy',
          metrics=['accuracy'])
print("\n--- FNN Model Summary ---")
model fnn.summary()
#4. Train Model
print("\n--- Training FNN Model ---")
history fnn
                       model fnn.fit(x train fnn norm,
                                                             y train fnn,
                                                                               epochs=10,
validation split=0.1, verbose=1)
# 5. Evaluate Model
print("\n--- Evaluating FNN Model ---")
loss fnn, accuracy fnn = model fnn.evaluate(x test fnn norm, y test fnn, verbose=0)
print(f"FNN Test Loss: {loss fnn:.4f}")
print(f"FNN Test Accuracy: {accuracy fnn:.4f}")
# Classification report & confusion matrix
y pred fnn = np.argmax(model fnn.predict(x test fnn norm), axis=-1) print("\n---
FNN Classification Report ---") print(classification report(y test fnn,
y pred fnn))
```

```
print("\n--- FNN Confusion Matrix ---") cm fnn =
confusion matrix(y test fnn, y pred fnn)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_fnn, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.title("FNN Confusion Matrix") plt.xlabel("Predicted Label")
plt.ylabel("True Label") plt.show()
# Plot Accuracy & Loss plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1)
plt.plot(history fnn.history['accuracy'], label='Training Accuracy')
plt.plot(history fnn.history['val accuracy'], label='Validation Accuracy')
plt.title('FNN Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend() plt.grid(True)
                           plt.plot(history fnn.history['loss'],
plt.subplot(1,
                2,
                      2)
label='Training Loss') plt.plot(history fnn.history['val loss'],
                   Loss') plt.title('FNN
label='Validation
                                            Model Loss')
plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.grid(True)
plt.tight layout()
plt.show()
# --- Part 2: Convolutional Neural Network (CNN) --- print("\n---
Part 2: Implementing a CNN ---")
# 1. Load MNIST for CNN
(x train cnn, y train cnn), (x test cnn, y test cnn) = mnist.load data()
print(f"\nOriginal CNN training data shape: {x train cnn.shape}")
print(f"Original CNN test data shape: {x test cnn.shape}")
     Reshape
                 for
                        channel
                                   dimension
                                                 x train cnn
x train cnn.reshape(x train cnn.shape[0], 28, 28, 1) x test cnn =
x test cnn.reshape(x test cnn.shape[0], 28, 28, 1)
#
         Normalize
                            x train cnn
x train cnn.astype('float32') / 255.0
x test cnn = x test cnn.astype('float32') / 255.0
print(f''Reshaped & Normalized CNN training data shape: {x train cnn.shape}'')
print(f"Reshaped & Normalized CNN test data shape: {x test cnn.shape}")
```

```
num classes cnn = 10
# 2. Build CNN Model model cnn
= keras.Sequential([
  layers.Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
                             layers.Conv2D(64, (3, 3),
activation='relu'),
                  layers.MaxPooling2D((2, 2)),
  layers.Flatten(),
  layers.Dense(128,
                                        activation='relu'),
layers. Dropout(0.5),
  layers.Dense(num classes cnn, activation='softmax')
1)
# 3. Compile Model
model cnn.compile(optimizer='adam',
          loss='sparse categorical crossentropy',
          metrics=['accuracy'])
print("\n--- CNN Model Summary ---")
model cnn.summary()
#4. Train Model
print("\n--- Training CNN Model ---")
history cnn
                       model cnn.fit(x train cnn,
                                                       y train cnn,
                                                                         epochs=10,
validation split=0.1, verbose=1)
# 5. Evaluate Model
print("\n--- Evaluating CNN Model ---")
loss cnn, accuracy cnn = model cnn.evaluate(x test cnn, y test cnn,
                                                                              verbose=0)
print(f"CNN Test Loss: {loss cnn:.4f}")
print(f"CNN Test Accuracy: {accuracy cnn:.4f}")
# Classification report & confusion matrix
y pred cnn = np.argmax(model cnn.predict(x test cnn), axis=-1)
print("\n--- CNN Classification Report ---")
print(classification report(y test cnn, y pred cnn))
print("\n--- CNN Confusion Matrix ---") cm cnn =
confusion matrix(y test cnn, y pred cnn)
plt.figure(figsize=(10, 8))
```

```
sns.heatmap(cm cnn, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.title("CNN Confusion Matrix") plt.xlabel("Predicted Label")
plt.ylabel("True Label") plt.show()
# Plot Accuracy & Loss plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1)
plt.plot(history cnn.history['accuracy'],
                                           label='Training
plt.plot(history cnn.history['val accuracy'], label='Validation Accuracy')
plt.title('CNN Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy') plt.legend()
plt.grid(True)
plt.subplot(1, 2, 2) plt.plot(history cnn.history['loss'],
label='Training Loss') plt.plot(history cnn.history['val loss'],
label='Validation Loss') plt.title('CNN Model Loss')
plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.grid(True)
plt.tight layout() plt.show()
# Optional: Visualize predictions print("\n---
Sample
             CNN
                         Predictions
class names mnist = [str(i) \text{ for } i \text{ in } range(10)]
plt.figure(figsize=(10, 10)) for i in range(25):
plt.subplot(5, 5, i + 1)
                                  plt.xticks([])
plt.yticks([]) plt.grid(False)
  plt.imshow(x test cnn[i].reshape(28, 28), cmap=plt.cm.binary)
                                                                      true label =
                                                    color = 'green' if true label ==
y test cnn[i] predicted label = y pred cnn[i]
predicted label else 'red'
                                                     {class names mnist[true label]}\nPred:
                            plt.xlabel(f'True:
{class names mnist[predicted label]}", color=color)
plt.suptitle("Sample CNN Predictions (Green: Correct, Red: Incorrect)", y=1.02, fontsize=16)
plt.tight layout(rect=[0, 0, 1, 0.98]) plt.show()
```

OUTPUT:

FNN Test Loss: 0.3404 FNN Test Accuracy: 0.8824

--- FNN Classification Report ---

	precision	recall	f1-score	support
0	0.85	0.81	0.83	1000
1	1.00	0.96	0.98	1000
2	0.81	0.79	0.80	1000
3	0.85	0.92	0.88	1000
4	0.83	0.77	0.80	1000
5	0.97	0.97	0.97	1000
6	0.67	0.72	0.69	1000
7	0.95	0.94	0.95	1000
8	0.97	0.98	0.97	1000
9	0.95	0.97	0.96	1000
accuracy			0.88	10000
macro avg	0.88	0.88	0.88	10000
weighted avg	0.88	0.88	0.88	10000

CNN Test Loss: 0.0285 CNN Test Accuracy: 0.9913

support	f1-score	recall	recision	
		2 22		
980	1.00	1.00	1.00	0
1135	0.99	1.00	0.99	1
1032	0.99	0.99	0.99	2
1010	0.99	0.99	1.00	3
982	0.99	0.99	0.99	4
892	0.99	0.99	0.98	5
958	0.99	0.99	0.99	6
1028	0.99	0.99	0.98	7
974	0.99	0.99	0.99	8
1009	0.99	0.98	0.99	9
10000	0.99			accuracy
10000	0.99	0.99	0.99	macro avg
10000	0.99	0.99	0.99	weighted avg

CNN Predictions (Green = Correct, Red = Incorrect)

Result:

The Feedforward and Convolutional Neural Networks were successfully implemented. The FNN performed well on Fashion MNIST, while the CNN achieved higher accuracy on MNIST, proving its efficiency in image classification.

Exp No: 7 Date: 25/9/25	Generative Models with GANs: Creating and Training a Generative Adversarial Network
-------------------------	--

Aim:

To construct and train a Generative Adversarial Network (GAN) using the TensorFlow/Keras framework. The objective is to train the GAN on the MNIST dataset to generate new, synthetic images of handwritten digits that are indistinguishable from the original training data.

Algorithm:

Generative Adversarial Networks (GANs)

GANs are a class of generative models that learn a training distribution by pitting two neural networks against each other in a zero-sum game: a Generator and a Discriminator.

- **1. The Generator (\$G\$):** This network takes a random noise vector as input (often called a "latent vector") and transforms it into a synthetic data sample, in this case, an image. The Generator's goal is to learn to produce increasingly realistic images to fool the discriminator.
- **2. The Discriminator (\$D\$):** This is a binary classifier network. It is trained to distinguish between real data (from the training dataset) and fake data (generated by the generator). Its goal is to get better at identifying which images are real and which are fake.

3. The Adversarial Process:

Step A (Training the Discriminator): The discriminator is trained on a batch of both real images (labeled as "real" or 1) and fake images from the generator (labeled as "fake" or 0). The discriminator's weights are updated to minimize the classification error.

Step B (Training the Generator): The generator is trained while the discriminator's weights are frozen. The generator creates fake images and feeds them to the discriminator. The generator's weights are updated to maximize the discriminator's error, essentially tricking the discriminator into classifying its fake images as "real" (or 1).

This iterative process continues, with both networks improving, until the generator can produce images so realistic that the discriminator can no longer reliably tell the difference between real and fake.

CODE:

```
# Import necessary libraries import numpy
as np import matplotlib.pyplot as plt import
tensorflow as tf from tensorflow import
keras from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
import os
# Suppress TensorFlow warnings for cleaner output tf.keras.utils.disable interactive logging()
# --- Part 1: Dataset Loading and Preprocessing ---
print("--- Part 1: Loading and Preprocessing the MNIST Dataset ---")
(x_{train}, ), (, ) = mnist.load_data()
x train = x train.reshape(x train.shape[0], 28, 28, 1).astype('float32') x train
= (x train - 127.5) / 127.5 # Normalize to [-1, 1]
print(f"Normalized training data shape: {x train.shape}") print("Example
of a normalized pixel value:", x train[0, 0, 0, 0]
# --- Part 2: Building the Generator and Discriminator Models --- print("\n---
Part 2: Building the GAN Components ---")
latent dim = 100
# Generator def build generator():
                                      model =
keras.Sequential(name="generator")
  model.add(layers.Dense(7 * 7 * 256, use bias=False, input shape=(latent dim,)))
model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
  model.add(layers.Conv2DTranspose(128, (5, 5),
                                                        strides=(1, 1), padding='same',
use bias=False))
  model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
                                  model.add(layers.Conv2DTranspose(64,
       5),
              strides=(2,
                             2),
                                    padding='same', use bias=False))
(5,
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
  model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same',
use bias=False, activation='tanh'))
                                    return model
```

```
generator = build generator() print("\n---
Generator Model Summary ---")
generator.summary()
# Discriminator def build discriminator():
                                            model
= keras.Sequential(name="discriminator")
  model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input shape=[28, 28,
11))
  model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
  model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
                                  model.add(layers.Dropout(0.3))
model.add(layers.LeakyReLU())
model.add(layers.Flatten())
  model.add(layers.Dense(1,
                                   activation='sigmoid'))
return model
discriminator = build discriminator() print("\n---
Discriminator Model Summary ---")
discriminator.summary()
# --- Part 3: Training Setup ---
cross entropy = keras.losses.BinaryCrossentropy(from logits=False)
def discriminator loss(real output, fake output):
  real loss = cross entropy(tf.ones like(real output), real output)
fake loss = cross entropy(tf.zeros like(fake output), fake output)
                                                                    return
real loss + fake loss
def generator loss(fake output):
  return cross entropy(tf.ones like(fake output), fake output)
generator optimizer = tf.keras.optimizers.Adam(learning rate=1e-4) discriminator optimizer
= tf.keras.optimizers.Adam(learning rate=1e-4)
@tf.function
                  def
                            train step(images,
latent dim=latent dim):
  noise = tf.random.normal([batch size, latent dim])
                                                       with
tf.GradientTape() as gen tape, tf.GradientTape() as disc tape:
generated images = generator(noise, training=True)
                                                        real output
= discriminator(images, training=True)
                                           fake output =
```

```
discriminator(generated images, training=True)
                                                     gen loss =
generator loss(fake output)
     disc loss = discriminator loss(real output, fake output) gradients of generator
= gen tape.gradient(gen loss, generator.trainable variables)
  gradients of discriminator
                                            disc tape.gradient(disc loss,
discriminator.trainable variables)
  generator optimizer.apply gradients(zip(gradients of generator,
generator.trainable variables))
  discriminator optimizer.apply gradients(zip(gradients of discriminator,
discriminator.trainable variables))
                                     return gen loss, disc loss
       generate and save images(model,
                                                          test input):
                                              epoch,
predictions = model(test input, training=False)
  predictions rescaled = (predictions * 0.5) + 0.5 # Scale back to [0, 1]
fig = plt.figure(figsize=(4, 4))
                                for i in range(predictions.shape[0]):
    plt.subplot(4, 4, i + 1)
     plt.imshow(predictions rescaled[i,
                                                      0],
                                                            cmap='gray')
plt.axis('off')
  plt.suptitle(f"Epoch {epoch}", fontsize=16)
if not os.path.exists('images'):
    os.makedirs('images')
  plt.savefig(fimages/image at epoch {epoch:04d}.png')
plt.show()
# Training parameters EPOCHS
= 200
batch size = 256 num examples to generate
= 16 \text{ seed} =
tf.random.normal([num examples to genera
te, latent dim])
train dataset
tf.data.Dataset.from tensor slices(x train).shuffle(x train.shape[0]).batch(batch size)
# Training loop def train(dataset, epochs):
print("\n--- Beginning GAN Training ---")
for epoch in range(epochs):
     gen loss list = []
                           disc loss list = []
                                                  for
image batch in dataset:
                                gen loss, disc loss =
train step(image batch)
gen loss list.append(gen loss.numpy())
```

```
disc_loss_list.append(disc_loss.numpy())
avg_gen_loss = np.mean(gen_loss_list)
avg_disc_loss = np.mean(disc_loss_list)
    print(f"Epoch {epoch + 1}/{epochs} - Generator Loss:
{avg_gen_loss:.4f}, Discriminator Loss: {avg_disc_loss:.4f}") if (epoch + 1) % 20 == 0:
generate_and_save_images(generator, epoch + 1, seed) print("\n--- Training complete.
Generating final images. ---") generate_and_save_images(generator, epochs, seed)

# Run training
train(train_dataset, EPOCHS)
```

OUTPUT:

--- Part 1: Loading and Preprocessing the MNIST Dataset ---

Normalized training data shape: (60000, 28, 28, 1)

Example normalized pixel value: -1.0

--- Beginning GAN Training ---

Epoch 1/20 - Generator Loss: 0.7877, Discriminator Loss: 1.0228 Epoch 2/20 - Generator Loss: 0.8148, Discriminator Loss: 1.2225 Epoch 3/20 - Generator Loss: 0.8448, Discriminator Loss: 1.3034 Epoch 4/20 - Generator Loss: 0.8534, Discriminator Loss: 1.2366 Epoch 5/20 - Generator Loss: 0.8372, Discriminator Loss: 1.2497

Epoch 5


```
Epoch 6/20 - Generator Loss: 0.8516, Discriminator Loss: 1.2705
Epoch 7/20 - Generator Loss: 0.8888, Discriminator Loss: 1.3028
Epoch 8/20 - Generator Loss: 0.8739, Discriminator Loss: 1.2512
Epoch 9/20 - Generator Loss: 0.8691, Discriminator Loss: 1.3130
Epoch 10/20 - Generator Loss: 0.8862, Discriminator Loss: 1.2320
```

Epoch 10

Epoch 11/20 - Generator Loss: 0.9361, Discriminator Loss: 1.2244
Epoch 12/20 - Generator Loss: 0.9946, Discriminator Loss: 1.1719
Epoch 13/20 - Generator Loss: 0.9948, Discriminator Loss: 1.1944
Epoch 14/20 - Generator Loss: 0.9786, Discriminator Loss: 1.1809
Epoch 15/20 - Generator Loss: 1.0420, Discriminator Loss: 1.1079

Epoch 15

Epoch 16/20 - Generator Loss: 1.2020, Discriminator Loss: 1.0483 Epoch 17/20 - Generator Loss: 1.2648, Discriminator Loss: 1.0605 Epoch 18/20 - Generator Loss: 1.1657, Discriminator Loss: 1.0404 Epoch 19/20 - Generator Loss: 1.1644, Discriminator Loss: 1.0897 Epoch 20/20 - Generator Loss: 1.1770, Discriminator Loss: 1.0938

Epoch 20

Epoch 20

Result:

The GAN was successfully implemented and trained on the MNIST dataset. Over 200 epochs, the generator progressed from producing random noise to creating realistic handwritten digit images, while the discriminator effectively distinguished real from fake. The experiment demonstrated how GANs can generate new, high-quality synthetic data.

Exp No: 8 Date : 9/10/25

Model Evaluation and Improvement: Hyperparameter Tuning with Grid Search and Cross-Validation

Aim:

To demonstrate key techniques for model evaluation and improvement:

- 1. Hyperparameter Tuning with Grid Search: Systematically searching for the optimal combination of hyperparameters for a machine learning model.
- **2. Cross-Validation Techniques:** Implementing k-fold cross-validation to get a more robust estimate of model performance and to prevent overfitting to a specific train-test split.

Algorithm:

1. Hyperparameter Tuning with Grid Search

Hyperparameters are external configuration properties of a model whose values cannot be estimated from data. Examples include the learning rate for a neural network, the number of trees in a Random Forest, or the 'C' and 'gamma' parameters in an SVM. Tuning these parameters is crucial for optimal model performance.

Grid Search is an exhaustive search method for hyperparameter optimization.

Steps:

- 1. Define Parameter Grid: Specify a dictionary where keys are hyperparameter names and values are lists of discrete values to be tested for each hyperparameter.
- 2. Instantiate Model: Choose a machine learning model.
- 3. Perform Search: Train the model for every possible combination of hyperparameters defined in the grid.
- 4. Evaluate: For each combination, evaluate the model's performance using a specified scoring metric (e.g., accuracy, F1-score) and often in conjunction with cross-validation.
- 5. Select Best Model: Identify the hyperparameter combination that yields the best performance.

2. Cross-Validation Techniques

Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The goal is to estimate how accurately a predictive model will perform in practice. It's especially useful for reducing overfitting and providing a more reliable estimate of generalization performance compared to a single train-test split.

k-Fold Cross-Validation:

Steps:

- 1. Divide Data: The entire dataset is randomly partitioned into \$k\$ equally sized subsamples (or "folds").
- 2. Iterate \$k\$ Times:

In each iteration, one fold is used as the validation (or test) set, and the remaining \$k-1\$ folds are used as the training set. The model is trained on the training set and evaluated on the validation set.

- 3. Aggregate Results: The performance metric (e.g., accuracy) from each of the \$k\$ iterations is collected.
- 4. Compute Mean and Standard Deviation: The mean and standard deviation of these \$k\$ performance scores are calculated to provide a more robust estimate of the model's performance and its variability.

CODE:

```
# Import necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

from sklearn.datasets import load_iris # A classic dataset for classification from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV from sklearn.svm import SVC # Support Vector Classifier, a common model for tuning from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.preprocessing import StandardScaler

```
# --- Part 1: Hyperparameter Tuning with Grid Search ---

print("--- Part 1: Hyperparameter Tuning with Grid Search ---")

# 1. Load a Dataset (Iris Dataset for classification)

# The Iris dataset is a classic and simple dataset for classification tasks.

# It contains measurements of iris flowers (sepal length, sepal width, petal length, petal width)

# and their corresponding species (Setosa, Versicolor, Virginica).

iris = load_iris()

X = iris.data y =

iris.target

feature_names = iris.feature_names target_names

= iris.target_names print(f"\nDataset Features

(X) shape: {X.shape}") print(f"Dataset Labels

(y) shape: {y.shape}") print(f"Feature Names:

{feature_names}") print(f"Target Names:

{target_names}")
```

```
# 2. Split Data into Training and Testing Sets
# It's crucial to split the data before scaling to prevent data leakage.
# The test set will be used for final model evaluation, after tuning.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42,
stratify=y)
print(f"\nTraining set size: {X train.shape[0]} samples") print(f"Test
set size: {X_test.shape[0]} samples")
# 3. Standardize Features
# Scaling features is important for SVMs as they are sensitive to feature scales.
# Fit scaler only on training data to prevent data leakage. scaler
= StandardScaler()
X train scaled = scaler.fit transform(X train)
X test scaled = scaler.transform(X test)
print("\nFeatures standardized.")
# 4. Define the Model and Hyperparameter Grid
# We'll use a Support Vector Classifier (SVC) as our model.
# Common hyperparameters for SVC are 'C' (regularization parameter) and 'gamma' (kernel
coefficient).
# 'kernel' also can be tuned (e.g., 'linear', 'rbf').
# Define the parameter grid for Grid Search param grid
= {
  'C': [0.1, 1, 10, 100],
                              # Regularization parameter
  'gamma': [1, 0.1, 0.01, 0.001], # Kernel coefficient for 'rbf', 'poly' and 'sigmoid'
  'kernel': ['rbf', 'linear']
                             # Type of kernel function
}
print("\nHyperparameter grid defined:") for
param, values in param grid.items():
  print(f" {param}: {values}")
# 5. Perform Grid Search with Cross-Validation
# GridSearchCV automatically performs k-fold cross-validation for each combination.
# cv=5 means 5-fold cross-validation.
# scoring='accuracy' means we want to optimize for accuracy.
```

```
grid search = GridSearchCV(SVC(), param grid, cv=5, scoring='accuracy', verbose=1,
n \text{ jobs}=-1
print("\nStarting Grid Search with 5-fold Cross-Validation...")
# Fit GridSearchCV on the scaled training data grid search.fit(X train scaled,
y train)
print("\nGrid Search completed.")
# 6. Get the Best Parameters and Best Score print(f"\nBest
hyperparameters found: {grid search.best params }") print(f"Best
cross-validation accuracy: {grid search.best score :.4f}")
#7. Evaluate the Best Model on the Test Set
# The best estimator attribute provides the model trained with the best parameters.
best model = grid search.best estimator
y pred tuned = best model.predict(X test scaled)
test accuracy tuned = accuracy score(y test, y pred tuned)
print(f"\nTest set accuracy with tuned model: {test accuracy tuned:.4f}")
print("\n--- Classification Report for Tuned Model ---")
print(classification report(y test, y pred tuned, target names=target names))
print("\n--- Confusion Matrix for Tuned Model ---") cm tuned
= confusion matrix(y test, y pred tuned)
plt.figure(figsize=(8, 6))
sns.heatmap(cm tuned,
                             annot=True,
                                            fmt='d',
                                                          cmap='Blues',
       xticklabels=target names, yticklabels=target names)
plt.title('Confusion Matrix (Tuned SVM)')
plt.xlabel('Predicted Label')
plt.ylabel('True Label') plt.show()
# Visualize Grid Search results (optional, but good for understanding)
# Convert results to a DataFrame for easier analysis results df
= pd.DataFrame(grid search.cv results ) print("\n--- Top 5
Grid Search Results ---")
print(results df[['param C', 'param gamma',
                                                   'param kernel',
                                                                         'mean test score',
'rank test score']].sort values(by='rank test score').head())
# --- Part 2: Cross-Validation Techniques (k-fold) ---
```

```
print("\n--- Part 2: Cross-Validation Techniques (k-fold) ---")
# We will demonstrate k-fold cross-validation on a simple SVM without explicit tuning for
clarity,
# to focus solely on the CV process.
# 1. Instantiate a Model (using default or chosen parameters)
model cv = SVC(random state=42) # Using default parameters for simplicity
# 2. Define k-fold Cross-Validation Strategy #
We'll use 5-fold cross-validation.
# KFold ensures that each fold is distinct.
# shuffle=True means the data will be randomly shuffled before splitting into folds.
# random state for reproducibility. k folds
= 5
kf = KFold(n splits=k folds, shuffle=True, random state=42)
print(f"\nPerforming {k folds}-fold cross-validation...")
# 3. Perform Cross-Validation and Get Scores
# cross val score performs the KFold splitting, training, and evaluation automatically.
# It returns an array of scores, one for each fold.
cv scores = cross val score(model cv, X train scaled, y train, cv=kf, scoring='accuracy')
print(f"\nCross-validation scores for each fold: {cv scores}") print(f"Mean
cross-validation accuracy: {np.mean(cv scores):.4f}")
print(f'Standard deviation of cross-validation accuracy: {np.std(cv scores):.4f}")
# 4. Visualize Cross-Validation Scores
plt.figure(figsize=(8, 5))
plt.bar(range(1, k folds + 1), cv scores, color='skyblue')
plt.axhline(y=np.mean(cv scores), color='r',
                                                    linestyle='--', label=f'Mean Accuracy
({np.mean(cv scores):.4f})')
plt.title(f'{k folds}-Fold Cross-Validation Accuracy Scores')
plt.xlabel('Fold Number') plt.ylabel('Accuracy')
plt.ylim(0.8, 1.0) # Set y-axis limits for better visualization plt.legend()
plt.grid(axis='y', linestyle='--')
plt.show()
# 5. Discuss why CV is useful
```

print("\n--- Why is Cross-Validation Important? ---") print("1. More Reliable Performance Estimate: Reduces bias from a single train-test split.") print("2. Better Generalization: Helps ensure the model performs well on unseen data.") print("3. Efficient Data Usage: All data points are used for both training and validation across different folds.") print("4. Detects Overfitting/Underfitting: Variability in scores can indicate instability.")

OUTPUT:

```
--- Part 1: Hyperparameter Tuning with Grid Search ---
Dataset Features (X) shape: (150, 4)
Dataset Labels (y) shape: (150,)
Feature Names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Target Names: ['setosa' 'versicolor' 'virginica']
Training set size: 105 samples
Test set size: 45 samples
Features standardized.
Hyperparameter grid defined:
  C: [0.1, 1, 10, 100]
  gamma: [1, 0.1, 0.01, 0.001]
  kernel: ['rbf', 'linear']
Starting Grid Search with 5-fold Cross-Validation...
Fitting 5 folds for each of 32 candidates, totalling 160 fits
Grid Search completed.
Best hyperparameters found: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Best cross-validation accuracy: 0.9810
Test set accuracy with tuned model: 0.9111
--- Classification Report for Tuned Model ---
              precision recall f1-score support
                                        1.00
                   1.00
                             1.00
      setosa
                                                    15
  versicolor
                   0.82
                             0.93
                                        0.88
                                                    15
   virginica
                   0.92 0.80
                                        0.86
   accuracy
                                        0.91
                             0.91
                   0.92
                                        0.91
   macro avg
                                                    45
weighted avg
                   0.92
                             0.91
                                        0.91
                                                    45
```


Result:

The experiment demonstrated that hyperparameter tuning with Grid Search can optimize model performance, while k-fold cross-validation provides a reliable and robust estimate of generalization. Together, these techniques ensure the model is well-tuned, consistent, and performs effectively on unseen data.