Task 1

Regression

Importing Nicessary Libraries

```
In [1]: # Importing all libraries that would be needed throughout the experiment
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_squared_error, r2_score
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import Lasso
        from sklearn.model_selection import GridSearchCV
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean_squared_error, r2_score
        from statsmodels.stats.outliers_influence import variance_inflation_factor
        from sklearn.linear_model import Ridge
```

```
In [2]: # Importing the Houseprice data
data = pd.read_csv("/content/drive/MyDrive/Regression,clustering,ANNproject/Houseprice_data.csv")
```

Data Inspection/ Cleaning

In [3]: data.head()

Out[3]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built
0	221900.0	3	1.00	1180	5650	1.0	0	0	3	7	1180	0	1955
1	538000.0	3	2.25	2570	7242	2.0	0	0	3	7	2170	400	1951
2	180000.0	2	1.00	770	10000	1.0	0	0	3	6	770	0	1933
3	604000.0	4	3.00	1960	5000	1.0	0	0	5	7	1050	910	1965
4	510000.0	3	2.00	1680	8080	1.0	0	0	3	8	1680	0	1987
4													

In [4]: data.info(), data.describe()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 19 columns):
# Column Non-Null Count D
```

	Data	COIUMNIS (COCAI	is coidillis).					
	#	Column	Non-Null Count	Dtype				
	0	price	21613 non-null	float64				
	1	bedrooms	21613 non-null	int64				
	2	bathrooms	21613 non-null	float64				
	3	sqft_living	21613 non-null	int64				
	4	sqft_lot	21613 non-null	int64				
	5	floors	21613 non-null	float64				
	6 waterfront		21613 non-null	int64				
	7	view	21613 non-null	int64				
	8 condition		21613 non-null	int64				
	9	grade	21613 non-null	int64				
	10	sqft_above	21613 non-null	int64				
	11	sqft_basement	21613 non-null	int64				
	12	yr_built	21613 non-null	int64				
	13	yr_renovated	21613 non-null	int64				
	14	zipcode	21613 non-null	int64				
	15	lat	21613 non-null	float64				
	16	long	21613 non-null	float64				
	17	sqft_living15	21613 non-null	int64				
	18	sqft_lot15	21613 non-null	int64				
<pre>dtypes: float64(5),</pre>			int64(14)					

memory usage: 3.1 MB

Out[4]: (None,

(
	price	bedrooms	bathrooms	sqft_living	sqft_lot	\
count	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	
mean	5.401822e+05	3.370842	2.114757	2079.899736	1.510697e+04	
std	3.673622e+05	0.930062	0.770163	918.440897	4.142051e+04	
min	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	
	floors	waterfront	view	condition	grade	\
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	1.494309	0.007542	0.234303	3.409430	7.656873	
std	0.539989	0.086517	0.766318	0.650743	1.175459	
min	1.000000	0.000000	0.000000	1.000000	1.000000	
25%	1.000000	0.000000	0.000000	3.000000	7.000000	
50%	1.500000	0.000000	0.000000	3.000000	7.000000	
75%	2.000000	0.000000	0.000000	4.000000	8.000000	
max	3.500000	1.000000	4.000000	5.000000	13.000000	
	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	\
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	1788.390691	291.509045	1971.005136	84.402258	98077.939805	
std	828.090978	442.575043	29.373411	401.679240	53.505026	
min	290.000000	0.000000	1900.000000	0.000000	98001.000000	
25%	1190.000000	0.000000	1951.000000	0.000000	98033.000000	
50%	1560.000000	0.000000	1975.000000	0.000000	98065.000000	
75%	2210.000000	560.000000	1997.000000	0.000000	98118.000000	
max	9410.000000	4820.000000	2015.000000	2015.000000	98199.000000	
	lat	long	sqft_living15	sqft_lot15	5	
count	21613.000000	21613.000000	21613.000000	21613.000000)	
mean	47.560053	-122.213896	1986.552492	12768.455652	2	
std	0.138564	0.140828	685.391304	27304.179631		
min	47.155900	-122.519000	399.000000	651.000000)	
25%	47.471000	-122.328000	1490.000000	5100.000000)	
50%	47.571800	-122.230000	1840.000000	7620.000000)	
75%	47.678000	-122.125000	2360.000000	10083.000000)	
may	47.777600	-121.315000	6210.000000	871200.000000))	
max	47.777000	-121.313000	0210.000000	871200.000000	, ,	

```
In [5]: # Checking for null values
        data.isnull().sum()
Out[5]: price
                          0
        bedrooms
                          0
        bathrooms
                          0
        sqft_living
                          0
        sqft_lot
        floors
        waterfront
                          0
        view
                          0
        condition
                          0
        grade
                          0
        sqft_above
                          0
        sqft_basement
        yr_built
                          0
                          0
        yr_renovated
        zipcode
                          0
        lat
                          0
        long
        sqft_living15
                          0
        sqft_lot15
                          0
        dtype: int64
In [6]: # After checking for duplicates, there was 5 duplicates which was then dropped
        data.duplicated().sum()
        data = data.drop_duplicates()
```

Data Preprocessing

```
In [7]: selected_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'cond data = data[selected_features]
```

Correlation Heatmap


```
In [11]: # Extracting the independent variables
    X = data.drop('price', axis=1)

# Calculating VIF for each variable
    vif_data = pd.DataFrame()
    vif_data["Variable"] = X.columns
    vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]

# Display the VIF values
    print(vif_data)
```

/usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide
by zero encountered in double_scalars
 vif = 1. / (1. - r_squared_i)

	Variable	VIF
0	bedrooms	1.727662
1	bathrooms	3.396057
2	sqft_living	inf
3	sqft_lot	2.108188
4	floors	2.082902
5	sqft above	2.002302 inf
6	sqft basement	inf
7	yr_built	2.551770
8	yr renovated	1.165371
9	zipcode	1.684440
10	lat	1.187669
11	long	1.838005
12	sqft_living15	3.047669
13	sqft_lot15	2.137032
14	waterfront 0	2.13/032 inf
15	waterfront 1	inf
16	view 0	inf
17	view_0 view 1	inf
18	view_1 view 2	inf
19	view_3	inf
20	view_3 view 4	inf
21	condition 1	inf
22	condition_2	inf
23	condition 3	inf
24	condition 4	inf
25	condition 5	inf
26	grade_1	inf
27	grade_3	inf
28	grade_4	inf
29	grade_5	inf
30	grade_6	inf
31	grade_7	inf
32	grade_8	inf
33	grade_9	inf
34	grade_10	inf
35	grade_11	inf
36	grade_12	inf
37	grade_13	inf
٠,	81 aac_13	±111

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
In [12]:
         def calculate vif(data frame):
             # Calculate VIF for each variable
             vif data = pd.DataFrame()
             vif data["Variable"] = data frame.columns
             vif_data["VIF"] = [variance_inflation_factor(data_frame.values, i) for i in range(data_frame.shape[1])]
             return vif data
         # Your original dataframe
         X = data.drop('price', axis=1)
         # Loop to iteratively drop variables with high VIF
         while True:
             vif data = calculate vif(X)
             max vif = vif data['VIF'].max()
             if max vif > 5:
                 # Drop the variable with the highest VIF
                 variable_to_drop = vif_data[vif_data['VIF'] == max_vif]['Variable'].values[0]
                 X = X.drop(variable to drop, axis=1)
             else:
                 break
         # Displaying the final dataframe with reduced multicollinearity
         print(X)
         /usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide
         by zero encountered in double scalars
           vif = 1. / (1. - r_squared_i)
         /usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide
         by zero encountered in double scalars
           vif = 1. / (1. - r_squared_i)
         /usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide
         by zero encountered in double_scalars
           vif = 1. / (1. - r_squared_i)
         /usr/local/lib/python3.10/dist-packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide
         by zero encountered in double scalars
```

vif = 1. / (1. - r_squared_i)

21609 21610 21611	bedrooms -0.398812 -0.398812 -1.473987 0.676363 -0.398812 0.676363 -1.473987 -0.398812 -1.473987	-1.447297 0.175615 -1.447297 1.149362 -0.148967 0.500197	-0.123349 -0.244052 -0.1696990.337452 -0.224426 -0.332166 -0.307108	-0.915258 0.936944 -0.915258 -0.915258	3 -0. 4 0. 3 -0. 3 1. 3 -0. 4 -0. 4 -0. 4 -0.	 658704 1 658704 1 658704 1	.544756 .680946 .293800	\
0 1 2 3 4 21608 21609 21610 21611	-0.210 -0.210 -0.210 -0.210 -0.210	1.8706 1.775 0.8794 1.0856	034 -0.3525 185 1.1614 108 1.2834 1070 -0.2832 1086 0.4095 1186 0.4095 1186 0.3561 1086 -0.3561 1087 0.2478 1098 -0.1843	515 -0.306 469 -0.746 425 -0.135 238 -1.275 528 1.199 375 -0.938 123 -1.055 383 -0.604 375 1.028	5346 5667 1814 9305 3070 1685 1327	grade_3 0 0 0 0 0 0 0 0 0	0 0 0 0 0	\
21612 0 1 2 3 4 21608 21609 21610 21611 21612	-0.210 grade_5 0 0 0 0 0 0 0 0	grade_6 gr 0 0 1 0 0 0 0 0 0 0		718 -0.604 ade_9 gra 0 0 0 0 0 0 0 0		orade_11 g 0 0 0 0 0 0 0 0 0 0 0 0	0 rade_12 0 0 0 0 0 0 0 0 0	\
0 1 2	grade_13 0 0 0							

```
3 0
4 0
... ...
21608 0
21609 0
21610 0
21611 0
21612 0
```

[21608 rows x 32 columns]

This are the Columns that was dropped sqft_living, sqft_above, sqft_basement, waterfront_0, waterfront_1, view_0, view_1, view_2, view_3, view_4, condition_1, condition_2, condition_4, condition_5, grade_1, grade_3, grade_4, grade_5, grade_6, grade_7, grade_8, grade_9, grade_10, grade_11, grade_12, grade_13

These features were highly correlated with other features in the dataset, making them redundant and causing issues like infinite VIF values. Dropping them helps to address multicollinearity.

```
In [14]: # Slitting to test and train data
y = data['price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Training the Model

```
In [15]: # Using Linear Regression Model
model = LinearRegression()
model.fit(X_train, y_train)
```

Out[15]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [17]: # Making predictions on the test set
y_pred = model.predict(X_test)

# Plotting residuals against one input (bedrooms)
plt.figure(figsize=(10, 6))
plt.scatter(X_test['bedrooms'], y_test - y_pred, c='blue', marker='o', label='Residuals')
plt.axhline(y=0, color='red', linestyle='--', linewidth=2, label='Zero Residual Line')
plt.xlabel('bedrooms')
plt.ylabel('Residuals')
plt.title('Residual Plot')
plt.legend()
plt.show()
```



```
In [18]: # Measuring the effectiveness of the model by using Mse and R2 score
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error: ", mse)
print("R-squared (R2) Score: ", r2)
```

Mean Squared Error: 41684779886.43211 R-squared (R2) Score: 0.7075361790482855

Visualising the predicted model

```
In [19]: # Creating a scatter plot of actual vs. predicted prices and showing the regression line
    plt.scatter(y_test, y_pred, color='blue', label='Data Points')
    plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linestyle='--', linewidth=2, lat
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted Prices")
    plt.title("Actual Prices vs. Predicted Prices")
    plt.legend()
    plt.show()
```


Improving the Linear Regression algorithm

Using GridSearchCv to get the best parameters

```
In [22]: # Defining the parameter grid to search over
         param_grid = {
             'fit intercept': [True, False],
             'positive': [True, False],
             'alpha': [0.1, 0.5, 1.0, 5.0] #regularization strength values
         # Creating a GridSearchCV object for Ridge regression
         ridge grid search = GridSearchCV(
             estimator=Ridge(),
             param grid=param grid,
             scoring='neg mean squared error',
             cv=5
In [23]: # Fitting the GridSearchCV object to your data
         ridge grid search.fit(X train, y train)
         # Getting the best parameters and the best estimator
         best params ridge = ridge grid search.best params
         best ridge model = ridge grid search.best estimator
In [25]: # Using the best estimator for predictions
         y pred2 = best ridge model.predict(X test)
         # Measuring the effectiveness of the Improved model by using Mse and R2 score
         mse = mean squared error(y test, y pred2)
         r2 = r2 score(y test, y pred2)
         print("Best Parameters: ", best params ridge)
         print("Mean Squared Error (Best Model): ", mse)
         print("R-squared (R2) Score (Best Model): ", r2)
         Best Parameters: {'alpha': 0.1, 'fit intercept': True, 'positive': False}
         Mean Squared Error (Best Model): 41602418451.733
         R-squared (R2) Score (Best Model): 0.7081140336023168
```

```
In [27]: # Creating a scatter plot of actual vs. predicted prices for the best parameter model and showing the regressi
    plt.scatter(y_test, y_pred2, color='blue', label='Data Points')
    plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linestyle='--', linewidth=2, lat
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted Prices (Best Model)")
    plt.title("Actual Prices vs. Predicted Prices (Best Model)")
    plt.legend()
    plt.show()
```


Exploring Advanced Regression models

Using RandomForest Regression

```
In [28]: # Creating a Random Forest Regressor
    rf_regressor = RandomForestRegressor(random_state=42)

rf_regressor.fit(X_train, y_train)
    y_pred_rf = rf_regressor.predict(X_test)

# E# Measuring the effectiveness of the Random Forest model by using Mse and R2 score
    mse_rf = mean_squared_error(y_test, y_pred_rf)
    r2_rf = r2_score(y_test, y_pred_rf)

print("Random Forest Regression - Mean Squared Error: ", mse_rf)
    print("Random Forest Regression - R-squared (R2) Score: ", r2_rf)
Random Forest Regression - Mean Squared Error: 23741866400.706726
```

Random Forest Regression - R-squared (R2) Score: 0.833425125837455

```
In [29]: # Create a scatter plot of actual vs. predicted prices and showing the regression line
plt.scatter(y_test, y_pred_rf, color='blue', label='Data Points')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linestyle='--', linewidth=2, lat

plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices (Random Forest)")
plt.title("Actual Prices vs. Predicted Prices (Random Forest)")
plt.legend()

plt.show()
```


In []: