Data Mining HW1

Task1

1. What transaction you define?

第一題我依照範例定義(PM2.5,Humidity,Temperature)作為 Transaction,但我所找的 device id 為 74DA388FF5F6。

2. What discretization methods you use?

我所使用的方法為 divide by 10 跟 divide by 20。

3. What algorithms you use?

我使用了 apriori 以及 fp-growth。

4. What rules you discover

Apriori: (min Support: 10%, min Confidence: 50%)(divide by 10)

```
erature:10.0'], ['pm2.5:50', 'temperature:20.0'], ['humidity:70',
dity:70', 'temperature:10.0'], ['humidity:70', 'pm2.5:50'], ['humi
'], ['pm2.5:60', 'temperature:10.0'], ['humidity:90', 'temperature
-----
[]
-----ASSOCIATION RULES------
RULES
      SUPPORT%
                 CONFIDENCE%
Rule# 1 : ['pm2.5:40'] ==> ['temperature:20.0'] 13 76
Rule# 2 : ['humidity:80'] ==> ['temperature:10.0'] 14 54
Rule# 3 : ['pm2.5:50'] ==> ['temperature:20.0'] 12 60
Rule# 4 : ['humidity:70'] ==> ['temperature:20.0'] 18 62
Rule# 5 : ['pm2.5:50'] ==> ['humidity:70'] 11 54
Rule# 6 : ['humidity:60'] ==> ['temperature:20.0'] 13 64
Rule# 7 : ['pm2.5:60'] ==> ['temperature:10.0'] 11 67
Rule# 8 : ['humidity:90'] ==> ['temperature:20.0'] 11 79
```

```
[]
           -----ASSOCIATION RULES-----
 RULES SUPPORT%
                        CONFIDENCE %
 Rule# 1 : ['pm2.5:40'] ==> ['temperature:20.0'] 26 68
 Rule# 2 : ['humidity:80'] ==> ['temperature:20.0'] 23 57
 Rule# 3 : ['pm2.5:0'] ==> ['humidity:80'] 10 84
 Rule# 4 : ['pm2.5:60'] ==> ['temperature:0.0'] 12 56
 Rule# 5 : ['pm2.5:40'] ==> ['humidity:60'] 24 62
 Rule# 6 : ['temperature:20.0'] ==> ['humidity:60'] 32 52
 Rule# 7 : ['humidity:60'] ==> ['temperature:20.0'] 32 63
 Rule# 8 : ['temperature:0.0'] ==> ['humidity:60'] 19 50
 Rule# 9 : ['pm2.5:60'] ==> ['humidity:60'] 15 68
 Rule# 10 : ['pm2.5:20'] ==> ['temperature:20.0'] 10 57
 Rule# 11 : ['humidity:60', 'temperature:20.0'] ==> ['pm2.5:40'] 17 54
 Rule# 12 : ['humidity:60', 'pm2.5:40'] ==> ['temperature:20.0'] 17 73
 Rule# 13 : ['pm2.5:40', 'temperature:20.0'] ==> ['humidity:60'] 17 67
Fp-growth:(min_Support: 10%, min_Confidence: 50%)(divide by 10)
+1000:pm2.5
+2000:humidity
+3000:temperature
  pm2.5:60 humidity:60 temperature:20.0
  pm2.5:70 humidity:60 temperature:20.0
  min_Support: 0.1 min_Condifiance: 0.5
   +1000:PM2.5
   +2000:Humidity
  +3000:Temperature
   fp-growth algorithm
  X, Y, Support counts, Confidence
   (frozenset({1050}), frozenset({2070}), 166, 0.5424836601307189)
   (frozenset({1060}), frozenset({3010}), 177, 0.6755725190839694)
   (frozenset({2080}), frozenset({3010}), 213, 0.5419847328244275)
   (frozenset({1040}), frozenset({3020}), 210, 0.7692307692307693)
   (frozenset({1050}), frozenset({3020}), 186, 0.6078431372549019)
   (frozenset({2060}), frozenset({3020}), 208, 0.6479750778816199)
   (frozenset({2070}), frozenset({3020}), 283, 0.6206140350877193)
   (frozenset({2090}), frozenset({3020}), 167, 0.7952380952380952)
```

Fp-growth:(min_Support: 10%, min_Confidence: 50%)(divide by 20)

- +1000:pm2.5
- +2000:humidity
- +3000:temperature

```
+2000:Humidity
+3000:Temperature

fp-growth algorithm
X, Y, Support counts, Confidence

(frozenset({3020, 2060}), frozenset({1040}), 267, 0.5437881873727087)
(frozenset({1040, 2060}), frozenset({3020}), 267, 0.7355371900826446)
(frozenset({1040, 3020}), frozenset({2060}), 267, 0.6742424242424242)
(frozenset({1040}), frozenset({2060}), 363, 0.6269430051813472)
(frozenset({1060}), frozenset({2060}), 228, 0.6805970149253732)
(frozenset({1000}), frozenset({2080}), 164, 0.845360824742268)
(frozenset({1060}), frozenset({3000}), 189, 0.564179104477612)
(frozenset({3000}), frozenset({2060}), 286, 0.5053003533568905)
(frozenset({1020}), frozenset({3020}), 158, 0.572463768115942)
(frozenset({1040}), frozenset({3020}), 396, 0.6839378238341969)
(frozenset({2060}), frozenset({3020}), 491, 0.631917631917632)
(frozenset({3020}), frozenset({2060}), 491, 0.5245726495726496)
(frozenset({2080}), frozenset({3020}), 347, 0.5754560530679934)
```

5. What you have learned, and do some comparisons between different methods you use.

我同時使用兩個演算法(apriori, fp-growth)來跑同一筆資料,以驗證其正確性。 由其中發現的 rules 我可以從中做一些總結跟推測。

- 一、首先是 divide by 10 時,我們可以從 support 來找最常出現的關係,其中最常出現的是:{濕度 70}=>{溫度 20} (support: 0.18),代表此 sensor 溼度時常為 70~79 且溫度在 20~29 度之間。再看其 confidence,在濕度 70~79 的條件下有 62%的 transaction 的溫度在 20~29。 Divide by 20 時,資料較容易失真,因為 discretize 的區間較大,例如溫度大概都在十幾二十度附近,但是十幾度時如果 divide by 20 則溫度會跑到 0 度,與真實相差甚大。但是可以在 pm2.5 及濕度這種區間較大的看出大致的 rules,例如 pm2.5 在 0~19 的條件下,大致上濕度都在 80~99 的區間。
- 二、當資料做 discretization 時,資料會被重新分配區間,更多的數據會被集中到同一個區間,因此可以觀察到在同樣的 min_support 以及 min_confidence之下,support 有相當大的提升,假設原本在溫度 0^9 有 5 筆資料, 10^19 之間有 10 筆資料,在 10 等資料,在 10 等資料,在 10 等資料,在 10 等资料,在 10 等。 10 等资料,在 10 等。 10 等,,10 等。 10 等。 10 等。 10 等。 10 等。 10 等。
- 三、fp-growth 的優點在於不用產生 candidate,不用反覆掃資料,並將 transaction 建成一顆樹。而 apriori 則要產生 candidate,非常耗時間,且要 一直掃全部的資料。理論上 fp-growth 會比 apriori 快。

6. What dataset you use in this homework

我使用了 before processing 的資料,因為 discretization 可以解决一些原本的問 題,因此我使用 before processing 的資料來觀察 discretization 處理資料的效 果。

Task2

1. What transaction you define?

這次我選擇(PM2.5,PM1,PM10)來當作 transaction 的 column, device id 則是跟 Task1 一樣為 74DA388FF5F6。

2. What discretization methods you use?

我使用 divide by 10、qcut 以及 kmeans。

qcut 是將 dataframe 照頻率切成區間。之後我再將其區間取平均做為值,放回 dataframe •

```
import pandas as pd
import numpy as np
from orangecontrib.recommendation import *
import pyfpgrowth
df = pd.read csv('201703 Taiwan.csv')
df = df[df['device_id']=='74DA388FF5F6']
df = df.reset_index(drop=True)
a = pd.qcut(df['PM2.5'],10,labels=False,retbins=True)
b = pd.qcut(df['PM1'],10,labels=False,retbins=True)
c = pd.qcut(df['PM10'],10,labels=False,retbins=True)
#print(a[0])
print(a[1])
print(b[1])
print(c[1])
for i in range(0,a[0].size):
    index1 = a[0][i]
    index2 = b[0][i]
    index3 = c[0][i]
    df['PM2.5'][i] = (a[1][index1]+a[1][index1+1])/2
    df['PM1'][i] = (b[1][index2]+b[1][index2+1])/2
    df['PM10'][i] = (c[1][index3]+c[1][index3+1])/2
df
    2.
          16.1
                 30.
                        39.
                                       50.
                                              56.
                                                     60.
                                                            64.
                                                                   75.
                                                                         167. ]
[
    2.
         14. 24.
                     29. 32. 36.
                                       40.
                                              43.
                                                    46.
                                                         66. 156.]
```

```
17.1
      32.
             44.
                    53.
                           62.
                                  69.
                                        75.
                                               81.
                                                            173. ]
```

Kmeans 則是將所有的點分成 20 群,並且我將它們都改成其 mean 的 center 坐標,因此只會有 20 種不同的結果且這 20 條 confidence 都會是 100,但是其 support 則要看靠近的點有多少個。

```
from sklearn.cluster import KMeans
 import numpy as np
 import pandas as pd
 df = pd.read_csv('201703_Taiwan.csv')
 df = df[df['device id']=='74DA388FF5F6']
 df = df.reset_index(drop=True)
 df = df[['PM2.5','PM1','PM10']]
 X = df.as matrix()
 kmeans = KMeans(n clusters=20, random state=0).fit(X)
  kmeans.labels
  for i in range(0,len(df)):
      tmp = kmeans.labels_[i] #0~9
      df['PM2.5'][i] = kmeans.cluster_centers_[tmp][0]
      df['PM1'][i] = kmeans.cluster_centers_[tmp][1]
      df['PM10'][i] = kmeans.cluster_centers_[tmp][2]
 print(kmeans.cluster_centers_)
 print(df)
  for j in df.index:
     print('pm2.5:',df['PM2.5'][j],' pm1:',df['PM1'][j],' pm10:',df['PM10'][j],sep='')
 [[ 52.59722222 37.59027778 65.57638889]
[ 144. 133. 148.42857143]
[ 19.16883117 16.07792208 20.72727273]
                  37.59027778
                                 65.57638889]
    92.45 79.55 101.4 ]
```

3. What algorithms you use?

apriori 以及 fp-growth。

4. What rules you discover

Apriori:(min support: 10%, min confidence: 90%)(divide by 10)

```
-----FREQUENT 3-ITEMSET------
[['pm10:50', 'pm1:30', 'pm2.5:40']]
     ______
-----FREQUENT 4-ITEMSET-------
-----ASSOCIATION RULES------
RULES
      SUPPORT%
                CONFIDENCE%
Rule# 1 : ['pm2.5:30'] ==> ['pm1:20'] 10 91
Rule# 2 : ['pm2.5:40'] ==> ['pm1:30'] 17 96
Rule# 3 : ['pm10:50'] ==> ['pm2.5:40'] 12 99
Rule# 4 : ['pm10:50'] ==> ['pm1:30'] 12 98
Rule# 5 : ['pm10:70'] ==> ['pm1:40'] 14 90
Rule# 6 : ['pm10:50'] ==> ['pm1:30', 'pm2.5:40'] 12 98
Rule# 7 : ['pm10:50', 'pm1:30'] ==> ['pm2.5:40'] 12 100
Rule# 8 : ['pm10:50', 'pm2.5:40'] ==> ['pm1:30'] 12 99
```

```
Fp-growth:(min Support: 10%, min Confidence: 90%)(divide by 10)
+1000:pm2.5
+2000:pm1
+3000:pm10
 pm2.5:60 pm1:40 pm10:70
 pm2.5:70 pm1:50 pm10:80
 min Support: 0.1 min Condifance: 0.9
 +1000:PM2.5
 +2000:PM1
 +3000:PM10
 fp-growth algorithm
 X, Y, Support counts, Confidence
 (frozenset({3050, 2030}), frozenset({1040}), 184, 1.0)
 (frozenset({1040, 3050}), frozenset({2030}), 184, 0.9945945945945946)
 (frozenset({3050}), frozenset({1040, 2030}), 184, 0.989247311827957)
 (frozenset({1030}), frozenset({2020}), 157, 0.9181286549707602)
 (frozenset({1040}), frozenset({2030}), 264, 0.967032967032967)
 (frozenset({3050}), frozenset({1040}), 185, 0.9946236559139785)
 (frozenset({3050}), frozenset({2030}), 184, 0.989247311827957)
 (frozenset({3070}), frozenset({2040}), 219, 0.9087136929460581)
Apriori:(min support: 10%, min confidence: 90%)(qcut into 10 part)
',, [ pmz.J.uz , pmr.Ju , pmru./u ], [ pmz.J.uz , ]
 _____
        -----FREQUENT 1-ITEMSET-----
 [['pm1:26'], ['pm1:34'], ['pm10:57'], ['pm2.5:53'], |
 'pm1:19'], ['pm2.5:23'], ['pm10:24'], ['pm2.5:9'], [
 _____
 -----FREQUENT 2-ITEMSET------
 [['pm10:24', 'pm2.5:23'], ['pm10:9', 'pm2.5:9']]
 _____
 ------3-ITEMSET------
   ______
 ------RSSOCIATION RULES------
        SUPPORT%
                     CONFIDENCE%
 _____
 Rule# 1 : ['pm10:24'] ==> ['pm2.5:23'] 10 98
 Rule# 2 : ['pm2.5:23'] ==> ['pm10:24'] 10 95
 Rule# 3 : ['pm2.5:9'] ==> ['pm10:9'] 10 100
 Rule# 4 : ['pm10:9'] ==> ['pm2.5:9'] 10 100
 _____
```

```
Fp-growth: (min_support: 10%, min_confidence: 90%)(qcut into 10 part)
min_Support: 0.1 min_Condifiance: 0.9
+1000:PM2.5
+2000:PM1
+3000:PM10

fp-growth algorithm
X, Y, Support counts, Confidence

(frozenset({3009}), frozenset({1009}), 151, 1.0)
(frozenset({1009}), frozenset({3009}), 151, 1.0)
(frozenset({1023}), frozenset({3024}), 152, 0.9559748427672956)
(frozenset({3024}), frozenset({1023}), 152, 0.9806451612903225)
```

Apriori:(min_support: 10%, min_confidence: 100%)(kmeans)

```
1 : ['pm1:41'] ==> ['pm2.5:57'] 10 100
Rule#
Rule# 2 : ['pm2.5:57'] ==> ['pm1:41'] 10 100
Rule# 3 : ['pm10:72'] ==> ['pm2.5:57'] 10 100
Rule# 4 : ['pm2.5:57'] ==> ['pm10:72'] 10 100
Rule# 5 : ['pm10:72'] ==> ['pm1:41'] 10 100
Rule# 6 : ['pm1:41'] ==> ['pm10:72'] 10 100
       7 : ['pm2.5:61'] ==> ['pm1:44'] 11 100
Rule#
      8 : ['pm1:44'] ==> ['pm2.5:61'] 11 100
Rule#
       9 : ['pm2.5:61'] ==> ['pm10:78'] 11 100
Rule#
       10 : ['pm10:78'] ==> ['pm2.5:61'] 11 100
Rule#
Rule#
      11 : ['pm10:78'] ==> ['pm1:44'] 11 100
Rule#
       12 : ['pm1:44'] ==> ['pm10:78'] 11 100
Rule#
       13 : ['pm10:72'] ==> ['pm1:41', 'pm2.5:57'] 10 100
      14 : ['pm1:41'] ==> ['pm10:72', 'pm2.5:57'] 10 100
Rule#
       15 : ['pm2.5:57'] ==> ['pm10:72', 'pm1:41'] 10 100
Rule#
       16 : ['pm10:72', 'pm2.5:57'] ==> ['pm1:41'] 10 100
Rule#
       17 : ['pm10:72', 'pm1:41'] ==> ['pm2.5:57'] 10 100
Rule#
       18 : ['pm1:41', 'pm2.5:57'] ==> ['pm10:72'] 10 100
Rule#
       19 : ['pm2.5:61'] ==> ['pm10:78', 'pm1:44'] 11 100
Rule#
```

5. What you have learned, and do some comparisons between different methods you use.

- 一、使用 qcut 做 discrtization 時,在 pm2.5 為 9 時 pm10 的值 100%為 9,且 pm10 為 9 時 pm2.5 的值也 100%為 9。在這組資料中,他們 100%伴隨彼此 出現。
- 二、使用 divide by 10 的作為 discretization 時,在 pm10 為 50 且 pm1 為 30 的情况下,pm2.5 的值 100%為 40,但在 pm10 為 50 且 pm2.5 為 40 的情况下,pm1 的值 99%為 30。由此可見,雖然有相同的 support 但是 confidence 卻不一定相同。
- 三、使用 qcut 再取上下界做平均的 discretization 方法相較於使用 divide by 10,qcut 所切出來的值比較靠近真實的值。
- 四、使用 qcut 做為 discretization,算出來 rules 的 support 幾乎都在 9 點多跟 10 點多之間,非常均匀,數值比較不同的是 confidence。
- 五、使用 kmeans 的 confidence 都會是 100%是因為我使用中心當作一組的數值,但是靠近每個中心的數目不一樣,所以 support 會有差異。
- 6. What dataset you use in this homework

我使用的是 before processing 的資料。

Task3

1. What transaction you define?

Columns: (PM1,PM10,Humidity), device id = '74DA388FF5F6' •

2. What discretization methods you use?

qcut(into 5 part), kmean(into 15 cluster) •

3. What algorithms you use?

Apriori and fp-growth

4. What rules you discover

```
--LVEOOFNI C-IIFUOFI-
  [['pm10:42', 'pm1:28'], ['humidity:94', 'pm1:13'], ['humidity
  1:43'], ['pm10:127', 'pm1:101'], ['humidity:60', 'pm10:42'],
  _____
  -----FREQUENT 3-ITEMSET------
  [['humidity:94', 'pm10:17', 'pm1:13']]
  _____
  -----FREQUENT 4-ITEMSET---------
  ______
  ----- RSSOCIATION RULES-------
  RULES
         SUPPORT%
                      CONFIDENCE%
  Rule# 1 : ['pm10:42'] ==> ['pm1:28'] 18 92
  Rule# 2 : ['pm1:28'] ==> ['pm10:42'] 18 93
  Rule# 3 : ['pm1:13'] ==> ['pm10:17'] 19 96
  Rule# 4 : ['pm10:17'] ==> ['pm1:13'] 19 97
  Rule# 5 : ['humidity:94', 'pm1:13'] ==> ['pm10:17'] 10 98
  Rule# 6 : ['humidity:94', 'pm10:17'] ==> ['pm1:13'] 10 96
Fp-growth: (min_support: 10%, min_confidence: 90%)(qcut into 5 part)
 pm1:43 pm10:75 humidity:60
 pm1:101 pm10:75 humidity:60
 pm1:101 pm10:75 humidity:60
 pm1:101 pm10:127 humidity:60
 min Support: 0.1 min Condifiance: 0.9
 +1000:PM1
 +2000:PM10
 +3000: Humidity
 fp-growth algorithm
 X, Y, Support counts, Confidence
 (frozenset({1013, 3094}), frozenset({2017}), 159, 0.9814814814814815)
```

(frozenset({2017, 3094}), frozenset({1013}), 159, 0.9695121951219512)

(frozenset({1013}), frozenset({2017}), 297, 0.9674267100977199)
(frozenset({2017}), frozenset({1013}), 297, 0.9705882352941176)
(frozenset({1028}), frozenset({2042}), 276, 0.9324324324324325)
(frozenset({2042}), frozenset({1028}), 276, 0.9261744966442953)

```
----- RSSOCIATION RULES------
                        CONFIDENCE%
RULES
       SUPPORT%
Rule# 1 : ['pm10:68'] ==> ['pm1:39'] 13 100
Rule# 2 : ['pm1:39'] ==> ['pm10:68'] 13 100
Rule# 3 : ['pm1:39'] ==> ['humidity:77'] 13 100
Rule# 4 : ['pm10:68'] ==> ['humidity:77'] 13 100
Rule# 5 : ['pm1:44'] ==> ['humidity:70'] 12 100
Rule# 6 : ['pm10:77'] ==> ['humidity:70'] 12 100
Rule# 7 : ['pm10:77'] ==> ['pm1:44'] 12 100
Rule# 8 : ['pm1:44'] ==> ['pm10:77'] 12 100
Rule# 9 : ['pm10:68'] ==> ['humidity:77', 'pm1:39'] 13 100
Rule# 10 : ['pm1:39'] ==> ['humidity:77', 'pm10:68'] 13 100
Rule# 11 : ['humidity:77', 'pm1:39'] ==> ['pm10:68'] 13 100
Rule# 12 : ['humidity:77', 'pm10:68'] ==> ['pm1:39'] 13 100
Rule# 13 : ['pm10:68', 'pm1:39'] ==> ['humidity:77'] 13 100
Rule# 14 : ['pm10:77'] ==> ['humidity:70', 'pm1:44'] 12 100
Rule# 15 : ['pm1:44'] ==> ['humidity:70', 'pm10:77'] 12 100
Rule# 16 : ['humidity:70', 'pm1:44'] ==> ['pm10:77'] 12 100
```

5. What you have learned, and do some comparisons between different methods you use.

- 一、當區間數值間隔狹小時,如果切太多塊,會造成 support 大幅下降,因此 這次資料才會採取 qcut 成 5 個部分。
- 二、在 qcut 作為 discretizaion 時,pm1 的值時常為 13,且當 pm1 為 13 時,pm10 有非常高的機率為 17。而 pm10 也時常為 17 且當 pm10 為 17 時,pm1 有非常高機率為 13。且當濕度為 94 時,上述這些規則也是符合的。
- 三、在做 kmean 時也跟 qcut 一樣,要是 cluster 數目太多時,則會造成 support 大大的降低,但 cluster 太少時,也會造成資料失真嚴重。

6. What dataset you use in this homework

我使用的是 before processing 的資料。

Reference:

- 1. https://github.com/biolab/orange3-associate
- 2. https://github.com/nalinaksh/Association-Rule-Mining-Python