Hands on Systematic Innovation Problem Solving Tools - Measurement Problems

Presentation in the Module 10-202-2312

Victor Jüttner

24. May 2022

Measuring for Mechanics

- Dimensions needed for functionality
- Need to confim all given dimensions
- Know exactly how to measure them
- No unnecessary measuring

Figure: Technical drawing by Pavelsamuta1

Measuring Code Quality

- ► Why?
 - Readability
 - Maintainability
 - Reusability
- ► What?
 - Complexity
 - Number of defects
 - Standards
- ► How?
 - Count lines of code
 - Cyclomatic Complexity
 - Defect Density
 - Count comment lines

Measurement in Business Context

- Financial success
- Customer satisfaction
- Production costs
- ▶ Brand value
- ► Product Quality

Measuring

- ▶ What to Measure and Why to Measure It?
- ► How to Measure?
- Case Studies

Measuring popular amongst Manager

- 'you don't fatten a cow by weighing it'
- 'what gets measured gets done'
- 'the most important numbers are unknown and unknowable'

Ideality Equation

Used throughout the systematic innovation methodology. Here for the individual elements or the whole system.

$$Ideality = Perceived \left(\frac{Benefits}{Cost + Harm} \right)$$

Costs Most popular element and easy to measure.

Harm Waste, environmental- and sustainability issues.

Benefits Value of product/service from perspective of receiver.

Perceived Respects complexity and uncertainty of intangibles.

Need for overall Ideality

Figure: Feedback and Control in a viable System (adapted from D. Mann "Hands on Systematic Innovation for Business and Management", p. 354)

Complexity

Figure: Complexity Trend (adapted from D. Mann "Hands on Systematic Innovation for Business and Management", p. 355)

Seminarconcept - Triz Methodology

- ▶ to sharpen intended effects in functional modelling as an Ideal Final Result or Ideal Machine,
- to identify negative (harmful) effects occurring during implementation,
- to localise such problems as contradictory behaviour in a delimitable "operational zone",
- and finally to resolve such contradictions by transforming a "system as it is" into a "system as required".

(A) Modify the system so that there is no need to make the detection or measurement

- ▶ Eliminate the need for measurement
- Use already existing resources
- Increase company transparency
- ▶ Integrate measures into one another
- ► Be careful!

(B) Make the detection or measurement on a copy, image or replica of the object or system

- ▶ Beta test networks as seperate microcosm
- Test audiences
- Customer feedback through internet-based forms
- Virtual customers?

(C) Transform the problem into one involving successive measurement of changes

- ▶ Measure delta's between successive measurements
- Key/Mouse-click rate to detect competence of user
- Response times in a car to measure intoxication
- Predict frequency of future measurements
- Identify proximity to potential non-linearities by changing frequency

(D) Add a new element (communication or person or element) to provide an easily detectable parameter related to the parameter required to be measured or detected

- Mystery Shopper, e.g. on customer service
- Suggestions schemes
- Notice boards
- Cookies
- Interactive TV
- GPS tracking system

(E) If it is not possible to modify the system, then introduce an easily detected element to the surrounding environment

- Bring in a temporary consultant
- CCTV cameras
- ► Heisenberg Uncertainty Principles

(F) If it is not possible to introduce an easily detectable element into the environment surrounding a system, obtain the desired measurement by detecting changes in something already in the environment

- ▶ Use friends and family to obtain information on morale
- ▶ Use press to measure changes in customer market suggestion
- ► Key-presses on a computer keyboard
- Audience noise levels

(G) Make use of psychological effects to help make the measurement

- ► Telling someone they can't have something is a good way of making them want it: Feedback mechanism
- Most people have the desire to be helpful
- People need certain amount of stimulus before they commit
- ▶ Be inclusive when formulating questions
- Bad news travels faster than good news
- ► The more you tell people the more they think you're hiding

(H) Use emotional effects to help to make the measurement

- ▶ Identification and use of exciters
- ▶ Identification and use of customer hot buttons
- ► Emphatic listening

(I) Use the inverse or opposite system to make the measurement

- Measure empty space, things that aren't present
- Measure non-customers

Measuring Business Performance

What to measure?

Business often measure success based on what is measurable rather than what is important.

- Photographic paper industry
- Regular measurements: streams of incoming and outgoing resources
- What is the main useful function?
- Use knowledge about how customers use product to improve, and know what to measure

Project Management System Measurements

Relationship measurement and resources

The ideal final result project management measurement requires no additional resource to acquire it.

- ▶ Global statistics show that 85% of project end late, over-budget or under-specification
- Common-sense approach: If there isn't enough data to be successful, hire more project managers
- Measurement should become self-sustaining without further resources

Measuring best practice

- Measurement methods most needed when system is in evolutionary development and is suffering from inadequate feedback and control mechanisms.
- When a new function is added to the system
- ▶ Define in simple functional terms the measurement required from the system under consideration.
- ► Is the measurement actually required by thinking about the useful function it is intended to deliver?