1 Przykłady

1.1 Pytanie czy dany scenariusz moze wystąpić

1.1.1 Historia

Mick i Sarah są parą, więc mają wspólne produkty spożywcze, ale posiłki zwykle jadają oddzielnie. Pewnego dnia Sarah chce zrobić ciasto, a Mick naleśniki. Nie mogą być one robione w tym samym czasie ze względu konieczność użycia miksera do przygotowania obu. Ponadto, zrobienie jednego lub drugiego dania zużywa cały zapas jajek dostępnych w mieszkaniu, więc trzeba je potem dokupić.

1.1.2 Opis akcji

```
initially eggs

(making_panc,1) causes ¬ eggs if eggs

(making_cake,1) causes ¬ eggs if eggs

impossible {making_pan,making_cake}

(buy_eggs, 2) causes eggs
```

1.1.3 Scenariusze

```
\begin{aligned} &\text{Sc} = &(OBS; ACS) \\ &\text{OBS} = \emptyset \\ &\text{ACS} = &((making\_panc; 1), 0), ((making\_cake, 1)2) \\ &\text{Sc2} = &(OBS2; ACS2) \\ &\text{OBS2} = \emptyset \\ &\text{ACS2} = &((making\_panc, 1), 0), ((buy\_eggs, 2)2), ((making\_cake, 1), 4), ((making\_panc, 1), 4) \end{aligned}
```

1.1.4 Kwerendy

- 1. performing making_panc at 1 when Sc
- 2. performing making_cake at 2 when Sc
- 3. performing at 5 when Sc2

1.1.5 Analiza

Odpowiedzi na kwerendy to odpowiednio:

- 1. TRUE,
- 2. TRUE,
- 3. Nie można zrealizować scenariusza Sc2,

Zgodnie z diagramem dla scenariusza Sc:

Scenariusza Sc2 nie można wykonać, ponieważ wymaga on jednoczesnego wypełnienia akcji $making_panc$ i $making_cake$, co jest niezgodne z warunkami zadania.

1.2 Pytanie czy dany warunek zachodzi w danym czasie

1.2.1 Historia

Mick i Sarah są parą, więc mają wspólne produkty spożywcze, ale posiłki zwykle jadają oddzielnie. Pewnego dnia Sarah chce zrobić ciasto, a Mick naleśniki. Nie mogą być one robione w tym samym czasie ze względu konieczność użycia miksera do przygotowania obu. Ponadto, zrobienie jednego lub drugiego dania zużywa cały zapas jajek dostępnych w mieszkaniu, więc trzeba je potem dokupić.

1.2.2 Opis akcji

```
initially eggs (making\_panc, 1) causes \neg eggs if eggs (making\_cake, 1) causes \neg eggs if eggs impossible \{making\_pan, making\_cake\} (buy\_eggs, 2) causes eggs
```

1.2.3 Scenariusz

```
Sc = (OBS; ACS) \ OBS = \emptyset

ACS = ((making\_panc; 1), 0), ((making\_cake, 1)2)
```

1.2.4 Kwerendy

- 1. eggs at 1 when Sc
- 2. eggs at 2 when Sc

1.2.5 Analiza

Odpowiedzi na kwerendy to odpowiednio:

- 1. TRUE,
- 2. FALSE.

Zgodnie z diagramem dla scenariusza Sc:

Oczywiście warunek akcji making_panc nie jest spełniony w momencie 2.

1.3 Pytanie czy dana akcja jest wykonywana w pewnym czasie

Ten przykład pokazuje przypadek kwerendy, która pyta, czy dana akcja jest wykonywana w pewnym czasie.

1.3.1 Historia

Mamy Billa i psa Maxa. Jeśli Bill idzie, to Max biegnie. Jeśli Bill gwiżdże , Max szczeka. Jeśli Bill zatrzymuje się, Max również. Jeśli Bill przestaje gwizdać, to Max przestaje szczekać.

1.3.2 Opis akcji

```
initially \neg go\_Bill and \neg run\_Max and \neg whistle\_Bill and \neg bark\_Max (goes\_Bill, 2) causes run\_Max (goes\_Bill, 2) invokes (runs\_Max, 2) after 1 (whistles\_Bill, 1) causes bark\_Max (whistles\_Bill, 1) invokes (barks\_Max, 1) after 1
```

1.3.3 Scenariusz

```
Sc = (OBS, ACS)
OBS = \emptyset
ACS = ((goes\_Bill, 2), 1), ((whistles\_Bill, 1), 5), ((goes\_Bill, 2), 7)
```

1.3.4 Kwerendy

- 1. performing run_Max at 8 when Sc
- 2. performing run_Max when Sc
- 3. performing at 8 when Sc

1.3.5 Analiza

Odpowiedzi na powyższe kwerendy są następujące:

- 1. FALSE,
- 2. TRUE,
- 3. TRUE.

Ilustruje to poniższy diagram:

			goes_Bill		runs_Max	whist	les_Bill bark	_Max	goes_Bill		runs_Max	
1	0	1	2	3	4	5	6	7	8	9	10	11
2	-G	G	G	-G	-G	-G	-G	G	G	-G	-G	-G
3	-R	-R	-R	R	R	-R	-R	-R	-R	R	R	-R
4	-W	-W	-W	-W	-W	W	-W	-W	-W	-W	-W	-W
5	-B	-В	-B	-B	-В	-В	В	-В	-B	-В	-B	-В
6	0	O	{G}	{G}	{R}	{R}	{W}	{B}	{G}	{G}	{R}	{R}
1	Czas											
2	go_Bill											
3												
4	whistle_Bill											
5												
6	okluzia											

1.4 Brak integralności

Przykład *Brak integralnośći* pokazuje scenariusz, który mimo zgodności z warunkami zadania, jest sprzeczny z logiką *common sense* (z powodu braku warunków integralności).

1.4.1 Historia

Mamy Billa oraz komputer. Bill może nacisnąć przycisk Wlqcz lub odłączyć komputer od zasilania. Komputer jest wyłączony i podłączony do zasilania. Jeżeli zostanie naciśnięty jego przycisk Wlqcz, to komputer włącza się.

1.4.2 Opis akcji

```
initially \neg on\_computer and connect\_power\_computer and \neg swith\_on\_computer (clicks\_button\_on, 1) causes switch\_on\_computer (clicks\_button\_on, 1) invokes (switches\_on\_computer, 2) after 1 (switches\_on\_computer, 1) causes on\_computer (disconnects\_power, 1) causes on\_computer and \neg swith\_on\_computer
```

1.4.3 Scenariusz

```
\begin{split} Sc = & (OBS, ACS) \\ OBS = \emptyset \\ ACS = & ((clicks\_button\_on, 1), 1), ((disconnects\_power, 1), 4), ((clicks\_button\_on, 1), 5) \end{split}
```

1.4.4 Kwerendy

- 1. $swith_on_computer$ at 6 + 2 when Sc
- 2. $swith_on_computer$ and $\neg on_computer$ at 6+2 when \mathbf{Sc}

1.4.5 Analiza

Powyższy scenariusz jest prawidłowy, lecz zawiera pewną niezgodność. W chwili t=4+1 komputer zostaje odcięty od zasilania. Powinien więc wyłączyć się. Bill chwili t=5+1 naciska przycisk Wlącz.Komputer zacznie włączać się mimo iż jest odcięty od zasilania. Zachodzą dwa sprzeczne ze sobą stany, tj. $swith_on_computer = T$ i $on_computer = T$. Odpowiedzi na powyższe kwerendy będą odpowiednio: 1. TRUE i 2. FALSE. Należy zaznaczyć, że odpowiedzi zgodnie ze zdrowym rozsądkiem powinny być sobie równe.

		clicks	clicks_button switches_on_computer		disconn	ets_power cli	cks_button	switches_on_computer	
1	0	1	2	3	4	5	6	7	8
2	F	F	F	F	-F	?F	?F	?F	?F
3	Т	Т	Т	Т	Т	-Т	-Т	-T	-Т
4	G	G	-G	-G	-G	G	G	G	G
5	O	Ð	{F}	{G}	{G}	{F,T}	{F}	{G}	{G}

¹ Czas

² on_computer

³ connect_power_computer

⁴ switch_on_computer

⁵ okluzja