

Name:	Blake Williams	•

INEG 33103 - Probability and Statistics

Week 6 Homework (100 points)

For each problem, you can solve by hand or use Excel to help. You need to show all work in either case.

Question 1 (p197, 4-53). An article in Computers in Electrical Engineering ("Parallel Simulation of Cellular Neural Networks", 1996, Vol. 22, pp.61-84) considered the speed-up of cellular neural networks for a parallel general-purpose computing architecture. The data follow.

3.775302 3.350679 4.217981 4.030324 4.639692 4.139665 4.395575 4.824257 4.268119 4.584193 4.930027 4.315973

- 4.600101
 - (a) Is there sufficient evidence to reject the claim that the mean speed-up exceeds 4.0? Assume $\alpha = 0.05$.
 - a. Null hypothesis = u = 4.0
 - b. Alternative Hypothesis = u > 4.0
 - c. Sample Mean = 4.31322
 - d. Sample Standard Deviation = 0.432852
 - e. (4.31322 4.0) / (0.432852 / sqrt(13) = 2.607
 - f. $T_{0.05,12}$ = 1.782
 - g. 2.607 > 1.782
 - h. We reject the Null hypothesis and replace it with the Alternative Hypothesis. So yes there is sufficient evidence.
 - (b) Find a 95% two-sided CI on the mean speed-up time.
 - a. E = 2.179 * (0.432852/sqrt(13) = 0.26157
 - b. Upper Limit = Sample Mean + E = 4.31322 + 0.26157 = 4.57479
 - c. Lower Limit = Sample Mean -E = 4.31322 0.26157 = 4.05165
 - d. 4.05165 <= u <= 4.57479

Question 2 (p204, 4-68). The sugar content of the syrup in canned peaches is normally distributed, and the variance is thought to be σ^2 =18 (mg)².

- (a) Test the hypothesis that the variance is not 18 $(mg)^2$ if a random sample of 10 cans yields a sample standard deviation of 4 mg, using a fixed-level test with $\alpha = 0.05$.
 - a. Null Hypothesis
 - b. H_0 : $\sigma^2 = 18$
 - c. Alternative Hypothesis
 - d. H_1 : $\sigma^2 != 18$
 - e. $X^2 = ((n-1)s^2)/18$
 - f. $X^2 = ((10-1)(16))/18 = 8$
 - g. 2.7004 < = 8 < = 19.0228

- h. We fail to disprove the Null hypothesis as there is not sufficient evidence to conclude that the variance differs from 18
- (b) What is the P-value for this test?
 - a. $X^2 < = 8 = 0.4009$
 - b. $X^2 > 8 = 1 0.4009 = 0.5991$
 - c. Min = 0.4009
 - d. P-value = 2 * 0.4009 = 0.8018
- (c) Find a 95% two-sided CI for σ .
 - a. Lower Limit = sqrt(144/19.0228) = 2.752
 - b. Upper Limit = sqrt(144/2.7004) = 7.300
- (d) Use the CI in part © to test the hypothesis.
 - a. Sqrt(18) = 4.243
 - b. Since the Hypothesized standard deviation lies within the confidence interval, we fail to reject the null hypothesis.

Question 3 (p214, 4-75). Large passenger vans are thought to have a high propensity of rollover accidents when fully loaded. Thirty accidents of these vans were examined, and 11 vans had rolled over.

- (a) Test the claim that the proportion of rollovers exceeds 0.25 with lpha=0.1
 - a. Null Hypothesis p > 0.25
 - b. Alternative Hypothesis p > 0.25
 - c. Sample Proportion = 11/30 = 0.3667
 - d. Standard Error = sqrt(0.1875/30) = 0.0791
 - e. Z-test = ((0.3667 0.25) / 0.0791) = 1.476
 - f. $Z_{0.10} = 1.2816$
 - g. $Z = 1.476 > z\alpha = 1.2816$
 - h. The Null Hypothesis is rejected and there is significant evidence to support the claim that rollovers exceeds 0.25
- (b) Suppose that the true p=0.35 and $\alpha=0.1$. How large a sample would be required if we want $\beta=0.1$?
 - a. Significance level = z0.90 = 1.2816
 - b. Power = 1.2816
 - c. Calculating using sample size formula
 - d. $N = (1.1684/0.10)^2 = 136.51$
 - e. Round up to 137
 - f. We need 137 vans
- (c) Find a 90% traditional lower confidence bound on the rollover rate of these vans.
 - a. SE = sqrt(0.2321/30) = 0.0879
 - b. L = 0.3667 1.2816 * 0.0879 = 0.2540
 - c. 25.4%