应用离散数学

杭州电子科技大学

•00000000000

定义1 (n元运算)

设X是非空集合,从 X^n 到X上的函数f被称为集合X上 的n元运算。

 $\exists n = 1$ 时,f被称为X上的一元运算 $\exists n = 2$ 时、f被称为X上的二元运算 对于二元运算,

- X上任意两个元素都可以进行运算,且运算结果唯一;
- 封闭性: X上任意两个元素的运算结果仍然属于X。

00000000000

$$(\mathbb{N},+)$$
 \checkmark $(\mathbb{N}, 相反数)$ \times $(\mathbb{N},-)$ \times $(\mathbb{R}, 求倒数)$ \times (\mathbb{R},\times) \checkmark (\mathbb{R},\div) \times $(\rho(A),\cup)$ \checkmark $(\mathbb{Z}_m,+_m)$ \checkmark $(\hat{M}_n(R),+)$ \checkmark $(\hat{M}_n(R),+)$ \checkmark

代数运算

定义2(交换律、结合律)

设*是非空集合X上的二元运算、

- 若 $\forall x, y \in X$, 有x * y = y * x, 则称*满足交换律
- 若 $\forall x, y, z \in X$, (x * y) * z = x * (y * z), 则称*满足结合律

	$(\mathbb{N},+)$	$(\mathbb{N}, imes)$	$(\mathbb{R},-)$	(\mathbb{R}^*,\div)	$(\mathbb{Z}_m,+_m)$
交换律	\checkmark	\checkmark	×	×	\checkmark
结合律	\checkmark	\checkmark	×	×	✓

$$(\mathbb{Z}_m, \times_m) \quad (M_n(R), +) \quad (\hat{M}_n(R), \times) \quad (\rho(X), \cup) \qquad (\rho(X), \cap)$$
 交換律 \checkmark \checkmark \checkmark \checkmark \checkmark 结合律 \checkmark \checkmark \checkmark \checkmark

设*.0是非空集合X上的二元运算、

■ 若 $\forall x, y, z \in X$,有

$$x \circ (y * z) = (x \circ y) * (x \circ z), (y * z) \circ x = (y \circ x) * (z \circ x)$$

则称o对*满足分配律。

■ 若仅有第一式子成立、则称○对*满足左分配律 若仅有第二式子成立,则称o对*满足右分配律

$$(\mathbb{N}, +, \times)$$
 $(\mathbb{Z}_m, +_m, \times_m)$ $(M_n(R), +, \times)$ $(\rho(X), \cap, \cup)$ 分配律 \times \times_m \times_m \times_m \times_m \times_m \times_m \times_m \times_m \times_m \times_m

メロト (部) (意) (意)

设*是非空集合X上的二元运算,如果存在 $\theta_l \in X$ (或 $\theta_r \in X$),使得 $\forall x \in X$ 有

$$\theta_l * x = \theta_l, (\mathbf{x} * \theta_r = \theta_r)$$

则称 $\theta_l($ 或 $\theta_r)$ 为*的左零元(或右零元)

如果 θ 既是左零元又是右零元,则称 θ 是*的零元

	$(\mathbb{N},+)$	$(\mathbb{N}, imes)$	$(\mathbb{R},-)$	(\mathbb{R}^*, \div)	$(\mathbb{Z}_m,+_m)$
零元	无	0	无	无	无
	(\mathbb{Z}_m, \times_m)	$(M_n(R),+)$	$(\hat{M}_n(R), \times)$	$(\rho(X), \cup)$	$(\rho(X),\cap)$
零元	0	无	无	X	Ø

代数运算 ○○0000●00000 二元运算的性质

设*是非空集合X上的二元运算, 如果存在 $e_l \in X$ (或 $e_r \in X$), 使 得 $\forall x \in X$ 有

$$e_l * x = x \quad (\mathbf{x} x * e_r = x)$$

则称 $e_l($ 或 $e_r)$ 是*运算的左单位元(或右单位元)

如果e既是左单位元,又是右单位元,则称其是单位元(幺元)

	$(\mathbb{N},+)$	$(\mathbb{N}, imes)$	$(\mathbb{R},-)$	(\mathbb{R}^*, \div)	$(\mathbb{Z}_m,+_m)$
单位元	0	1	$e_r = 0$	$e_r = 1$	0
	(\mathbb{Z}_m, \times_m)	$(M_n(R),+)$	$(\hat{M}_n(R), \times)$	$(\rho(X), \cup)$	$(\rho(X),\cap)$
单位元	1	0_n	I_n	Ø	X

设*是非空集合X上的二元运算, e是其单位元。对于 $x \in X$, 如果存在 $y_1 \in X$ (或 $y_r \in X$), 使得

$$y_l * x = e, \quad (\mathbf{x} x * y_r = e)$$

则称 $y_l(\mathbf{d}y_r)$ 是x关于*的左逆元(或右逆元)

如果y既是x的左逆元,又是x的右逆元,则称其是x的<mark>逆元</mark>,记为 x^{-1}

	$(\mathbb{N},+)$	$(\mathbb{N}, imes)$	$(\mathbb{Z}_m,+_m)$	(\mathbb{Z}_m, \times_m)
逆元	$0^{-1} = 0$	$1^{-1} = 1$	$x^{-1} = mm x$	$1^{-1} = 1$
	$(M_n(R),+)$	$(\hat{M}_n(R), \times)$	$(\rho(X), \cup)$	$(\rho(X),\cap)$
逆元	$A^{-1} = -A$	A^{-1} 是其逆矩阵	$\emptyset^{-1}=\emptyset$	$X^{-1}=X$

代数运算 ○○000000●000 二元运算的性质

定理1

设*是非空集合X上的二元运算,则

- 如果X中有关于*的左单位元 e_l 和右单位元 e_r 、则 $e_l = e_r$ 、 即其就是单位元, 且单位元如存在必定唯一。
- 2 如果X中有关于*的左零元 θ_1 和右零元 θ_r 、则 $\theta_1 = \theta_r$ 、即 其就是零元, 且零元如存在必定唯一。
- 3 设X对运算*满足结合律, 且*有单位元e。如果对 于 $x \in X$ 存在左逆元 y_1 和右逆元 y_r ,则 $y_1 = y_r$,即其就 是x的逆元,且逆元如果存在必定唯一。

定义7(消去律)

设*是非空集合X上的二元运算, 如 果 $\forall x, y, z \in X, x \neq \theta$ 有

$$x * y = x * z \Rightarrow y = z, y * x = z * x \Rightarrow y = z$$

则称*满足消去律

如果只有第一式成立,则称其满足左消去律 如果只有第二式成立,则称其满足右消去律 代数运算 00000000000 二元运算的性质

设
$$S=\mathbb{Q} imes\mathbb{Q},*$$
是 S 上的二元运算: $orall \langle u,v
angle,\langle x,y
angle\in S$

$$\langle u, v \rangle * \langle x, y \rangle = \langle u \cdot x, u \cdot y + v \rangle$$

- ■*是否满足交换律、结合律
- 2*是否有单位元、零元?如果有,请指出,并求S中所有 可逆元素的逆元

作业 习题4.1 第 4 题 (列个表)

