Tobias Gomoll (2763879), Alexander Hinterthan (2760315)

Laborprotokoll 1.3

Reihenschaltung von Spannungsquellen und Pufferbetrieb mit Akku

Labordurchführung am 24.05.2024 betreut durch Dipl.-Ing. Andreas Bender

 $\frac{\text{Abgabetermin:}}{07.06.2024}$

Inhaltsverzeichnis

A bbi	ldungsverzeichnis	ii
Tabe	llenverzeichnis	ii
1	Materialliste	1
2	Fragen zur Vorbereitung	2
2.1	Wie lauten die Kirchhoffschen Gesetze?	2
3	Laborversuche	3
3.1	Aufgabe 1	3
3.2	Aufgabe 2	5
3.3	Aufgabe 3	7
2 /	Aufrebe 4	0

Abbildungsverzeichnis

1	Messschaltung Kondensatoren in Parallelschaltung	3
2	Messschaltung Kondensatoren in Parallelschaltung	5
3	Messschaltung Kondensatoren in Parallelschaltung	8
4	Messschaltung Kondensatoren in Parallelschaltung	9
Tab	ellenverzeichnis	
1	Materialliste Gesamt	1
2	In Aufgabe 1 verwendete Materialien	3
3	—	3
4	—	4
5	In Aufgabe 2 verwendete Materialien	5
6	—	5
7	—	6
8	In Aufgabe 3 verwendete Materialien	7
9	—	7
10	—	8
11	In Aufgabe 4 verwendete Materialien	9
12	—	9
13		g

1. Juli 2024

1 Materialliste

In der folgenden Tabelle 1: Materialliste Gesamt sind für alle Laborversuche notwendigen Geräte hinterlegt. Die für die jeweiligen Aufgaben notwendigen Geräte sind zu Anfang einer jeden Aufgabe erwähnt.

Anzahl	Bezeichnung	Nummer	Hinweis
	Aufgab	e 1	
1	Multimeter	54	Voltmeter/Ohmmeter
1	Multimeter	53	Voltmeter
1	Zangenmultimeter	SZ51	Amperemeter
2	1000 Ω Widerstand +/- 5 $\%$	-	-
1	100 Ω Widerstand +/- 5 $\%$	-	-
1	220 Ω Widerstand +/- 5 $\%$	-	-
1	680 Ω Widerstand +/- 5 $\%$	-	-
1	Spannungsquelle	1534	-
	Aufgab	e 2	
1	Multimeter	54	Voltmeter/Ohmmeter
1	Zangenmultimeter	SZ51	Amperemeter
1	Zangenmultimeter	SZ17	Amperemeter
2	1000 Ω Widerstand +/- 5 $\%$	-	-
1	100 Ω Widerstand +/- 5 $\%$	-	-
1	220 Ω Widerstand +/- 5 $\%$	-	-
1	680 Ω Widerstand +/- 5 $\%$	-	-
1	Spannungsquelle	1534	-

Tabelle 1: Materialliste Gesamt

2 Fragen zur Vorbereitung

2.1 Wie lauten die Kirchhoffschen Gesetze?

Es gibt zwei Kirchhoffsche Gesetze. Das erste, die Knotenpunktsatz, besagt, dass in jedem Knoten eines Stromkreises, die zufließenden Ströme gleich den abfließenden Strömen $(I_z u = I_a b)$ sind. Ein Knoten meint dabei einen Verzweigungspunkt im Stromkreis.

Das zweite Kichhoffsche Gesetz beschreibt das Verhalten von Spannungen innerhalb einer Masche zueinander. Es wird daher auch Maschensatz genannt. Nach dem Maschensatz ist die vorzeichenbehaftete Summe aller Spannungen innerhalb eine Masche gleich 0 $(U_q - \sum_{0}^{n} U_n = 0)$

3 Laborversuche

3.1 Aufgabe 1

Dafür werden die in Tabelle 2: In Aufgabe 1 verwendete Materialien aufgeführten Gegenstände benötigt.

Anzahl	Bezeichnung	Nummer	Hinweis
1	Multimeter	54	Voltmeter/Ohmmeter
1	Multimeter	53	Voltmeter
1	Zangenmultimeter	SZ51	Amperemeter
2	1000 Ω Widerstand +/- 5 $\%$	-	-
1	100 Ω Widerstand +/- 5 $\%$	-	-
1	220 Ω Widerstand +/- 5 $\%$	-	-
1	680 Ω Widerstand +/- 5 $\%$	-	-
1	Spannungsquelle	1534	-

Tabelle 2: In Aufgabe 1 verwendete Materialien

Schaltungsvariante	I_{ges} / mA	U_1 / \mathbf{V}	U_2 / V	P_{ges} / W	P_1 / W	P_2 / W
a	0,0125	12,5	12,5	0,3125	0,1563	0,1563
b	0,0189	6,06	18,94	0,4734	0,1148	0,3587
c	0,0149	14,88	10,11	0,3720	0,2214	0,1506
c halb	0,0074	7,44	5,06	0,0930	0,0554	0,0376

Tabelle 3: —

Abbildung 1: Messschaltung Kondensatoren in Parallelschaltung

Variante	I_g / \mathbf{A}	U_1 / \mathbf{V}	U_2 / \mathbf{V}
a	0,0132	12,5	12,5
b	0,0192	6,10	18,90
С	0,0153	15,00	10,00
c halb	0,0077	7,50	5,00

Tabelle 4: —

3.2 Aufgabe 2

Dafür werden die in Tabelle 5: In Aufgabe 2 verwendete Materialien aufgeführten Gegenstände benötigt.

Anzahl	Bezeichnung	Nummer	Hinweis
1	Multimeter	54	Voltmeter/Ohmmeter
1	Zangenmultimeter	SZ51	Amperemeter
1	Zangenmultimeter	SZ17	Amperemeter
2	1000 Ω Widerstand +/- 5 $\%$	-	-
1	100 Ω Widerstand +/- 5 $\%$	-	-
1	220 Ω Widerstand +/- 5 $\%$	-	-
1	680 Ω Widerstand +/- 5 $\%$	-	-
1	Spannungsquelle	1534	-

Tabelle 5: In Aufgabe 2 verwendete Materialien

Schaltungsvariante	I_{ges} / mA	I_1 / mA	I_2 / mA	P_{ges} / W	P_1 / W	P_2 / W
a	0,05	$0,\!025$	0,025	1,250	0,625	0,625
b	0,103	0,0781	0,025	2,578	1,953	0,625
c	0,062	0,025	0,037	1,544	0,625	0,919
c halb	0,031	0,013	0,018	0,386	0,156	0,230

Tabelle 6: —

Abbildung 2: Messschaltung Kondensatoren in Parallelschaltung

Variante	I_{ges} / A	U_1 / \mathbf{V}	U_2 / \mathbf{V}
a	25	0,0506	0,0258
b	25	0,1036	0,0803
c	25	0,0629	0,026
c halb	12,5	0,0313	0,0127

Tabelle 7: —

3.3 Aufgabe 3

Dafür werden die in Tabelle 8: In Aufgabe 3 verwendete Materialien aufgeführten Gegenstände benötigt.

Anzahl	Bezeichnung	Nummer	Hinweis
1	Multimeter	54	Voltmeter
1	Multimeter	53	Voltmeter
1	2200 Ω Widerstand +/- 5 $\%$	-	-
1	100 Ω Widerstand +/- 5 $\%$	-	-
1	220 Ω Widerstand +/- 5 $\%$	-	-
1	680 Ω Widerstand +/- 5 $\%$	-	-
1	Widerstandsdekade 1000 Ω	24	-
1	Spannungsquelle	1534	-

Tabelle 8: In Aufgabe 3 verwendete Materialien

R_1 / Ω	R_2 / Ω	Alpha	U_v (R = 320 Ω) / V	U_v (R = 680 Ω) / V	U_v (R = 2200 Ω) / V
0	1000	100,00	25,00	25,00	25,00
100	900	90,00	17,56	19,87	21,62
200	800	80,00	13,33	16,19	18,64
300	700	70,00	10,57	13,37	15,98
400	600	60,00	8,57	11,09	13,52
500	500	50,00	7,02	9,14	11,22
600	400	40,00	5,71	7,39	9,02
700	300	30,00	4,53	5,73	6,85
800	200	20,00	3,33	4,05	4,66
900	100	10,00	1,95	2,21	2,40
1000	0	0,00	0,00	0,00	0,00

Tabelle 9: —

Abbildung 3: Messschaltung Kondensatoren in Parallelschaltung

R_1 / Ω	R_2 / Ω	Alpha	$U_v~({f R}={f 320}~\Omega)~/~{f V}$	$U_v~({f R}={f 680}~{f \Omega})~/~{f V}$	$U_v~({f R}={f 2200}~\Omega)~/~{f V}$
0	1000	100.00	25.00	25.00	25.00
100	900	90.00	17.55	19.86	21.60
200	800	80.00	13.31	16.15	18.67
300	700	70.00	10.53	13.32	15.98
400	600	60.00	8.54	11.03	13.53
500	500	50.00	7.00	9.10	11.23
600	400	40.00	5.71	7.38	9.04
700	300	30.00	4.52	5.72	6.86
800	200	20.00	3.33	4.05	4.68
900	100	10.00	1.96	2.23	2.43
1000	0	0.00	0.02	0.02	0.02

Tabelle 10: —

3.4 Aufgabe 4

Dafür werden die in Tabelle 11: In Aufgabe 4 verwendete Materialien aufgeführten Gegenstände benötigt.

Anzahl	Bezeichnung	Nummer	Hinweis
1	Multimeter	54	Voltmeter
1	Multimeter	53	Voltmeter
1	Zangenmultimeter	SZ51	Amperemeter
1	100 Ω Widerstand +/- 5 $\%$	-	-
1	220 Ω Widerstand +/- 5 $\%$	-	-
1	Widerstandsdekade 1000 Ω	24	-
1	Spannungsquelle	1534	-

Tabelle 11: In Aufgabe 4 verwendete Materialien

Alpha	R_1 / Ω	R_2 / Ω	I_k / \mathbf{mA}	U_0 / \mathbf{V}
0.3	700	300	35.71	7.5
0.6	400	600	62.50	15

Tabelle 12: —

Abbildung 4: Messschaltung Kondensatoren in Parallelschaltung

I_v / \mathbf{mA}	R_v / Ω	U_v / \mathbf{V}	
0	∞	7.5	
13.4	320	4.5	
35.60	0	0.000	

Tabelle 13: —