S Chapter 2. Brownian Motion

Def 1.2.4: A stochastic process X = (Xt) tro is a collection

of random variables } Xt: 0 < t < 009

We think about X as a function

$$X: \Omega \times [0,\infty) \rightarrow |R|$$

$$X: \omega_X + \longrightarrow X_t(\omega)$$

o for fixed w t >> Xx(w) is called the sample path 1

A process X is called continuous if its sample paths are

Def. 2.1. (Symmetric Random Walks) Take r.v. ξ , ξ , id $P(\xi_i = 1) = P(\xi_i = -1) = \frac{1}{2}$. Define $\xi_0 = 0$. $Sk = \sum_{n=1}^{k} \xi_n \quad \forall k \in \mathbb{N}$

St (within adjacent integers) = linear interpolation of Sk 3 observations: · S' has independent increments for all 0 = ko < k. < k. < ... < km m & N integers (Sk. - Sko), (Sk. - Ski), . - . (Skm - Skm-1) are independent observe that $S_{kin} - S_{ki} = \sum_{n=1}^{kit} G_n - \sum_{n=1}^{ki} G_n$ = \frac{\chi_{\text{t}}}{\chi_{\text{m}}} & \frac{\chi_{\text{m}}}{\chi_{\text{non-overlapping}}} \frac{\chi_{\text{v}}}{\chi_{\text{m}}} \text{non-overlapping} \chi_{\text{v}}. o $\mathbb{E}\left[S_{kin} - S_{kin}\right] = \mathbb{E}\left[\frac{S_{kin}}{n} + S_{kin}\right] = \mathbb{E}\left[\frac{S_{kin}}{n} + S_{kin}\right] = 0$ o Var $\left[S_{k_{i+1}} - S_{k_{i+1}} \right] = Var \left[\sum_{n=k_{i+1}}^{k_{i+1}} \zeta_n \right] = \sum_{n=k_{i+1}}^{k_{i+1}} Var \left[\zeta_n \right] = k_{i+1} - k_i$ (Var (4n) = E[4n] - E[4n] = = = [2 + (-1)] - 02 = 1) => Var(Sk) = Var(Sk-S.) = k-0 = & rescale S so that it takes a random E[Sk] = 1E[Sk-So] = 0 Step at shorter and shorter time intervals. Def. 2.2. (Scaled symmetric random Walks) For E>O St:= JE St random walk at time t $\frac{1}{2} + \frac{t}{4} \in \mathbb{N}$ the def 2.1 tells us that E[St] = E[JESt/E] = JEE[St/E] = JE-0 =0

Var[St] = Var (JE: St/E) = E. Var (St/E) = E- 1/E = t From CLT, one can show that (proof omitted) Theorem 2.1: For t>0, the distribution of St converges to a normal distribution with mean 0 and variance t for 2-70 Def 2.2.1: (Brownian Motion). A Brownian motion w is a continuous stochastic process such that O w has independent increments L show these properties to @ for S<t, Wt-Ws ~N(0,6"(t-s))) verify a process as BM (Standard BM) A Standard BM is a BM for which Wo=0 and 62=1 Quick Revall: o Stochastic process {Xt: 0 < t < 00 } o trajectory / Sample t >> X+(w) for fixed w & D o X is called continuous if each trajectory is continuous o X has stationary increments, if Yn>0, the distribution of Xtrn-Xt does not depend on t (but n) 2.3. First-order Variation

For now: functions f. [0, 100) > 1R We take any partition IT = ?to, t., ..., tny of [o, T]: 0=to<ti><... < tn =T $FV_{\tau}(f) = \lim_{\|\tau\|_{20}} \sum_{j=0}^{\eta-1} |f(t_{j+1}) - f(t_{j})|$ Now take TI=10, 1, 1, -. - T' ne N if f is continuously differentiable, there exist the [th. thm] with fither - fith = fith (the th), thus $\sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_{i})| = \sum_{i=0}^{n-1} |f'(t_{i}^*)| (t_{i+1} - t_{i}), and$ $FV_{\tau}(f) = \lim_{\substack{n \to 0 \\ n = 0}} \sum_{j=0}^{n-1} |f'(t_j)|^{*} |(t_{jn} - t_{j})| = \int_{0}^{\tau} |f'(t)| dt$ Prop 23.1: If w is a Standard BM, then $\lim_{n\to\infty} \mathbb{E}\left[\begin{array}{c|c} \eta_{+1} \\ \hline \\ k \neq 0 \end{array}\right] W_{\underline{k+1}} - W_{\underline{k}} = 0$ ⇒ BM has first-order variation ∞ almost surely 2.4 The quadratic Variation of BM Def 2.4.1 $f: [0,+\infty) \rightarrow \mathbb{R}$, the quadratic variation of f up to time T is 0=to< --- < tn=T

Theo	rem.	L	f -	f	is	CO	nt	inu	ous	ly	d	ifte	rev	tie	аЫl	е,	th	en	Ĺj	î, f] 7	=	0		
pr	oof:	_/	Acco	rd	ing	_	to	-	the	•	Me	an	-V	alı	ne.	tı	heo	iyei	η,						
	n	- ≥ ≥=0	C.f.	(te	+1)	-,	fo	th)]2	= \frac{1}{2}	n-1 ≥ 2=0	۲ď	۲′ (ر	(*)	(t	k+1	-1	(J.)]²						
			<	γη 0≤	ax te	ζĽ.	fit	<u>.</u>)]	· Ļ		n-1 \(\sigma\)	. (b	tk+	ı –	th) ີ									
			=	γ 0 ≾	na) ts	{[[fi	.t)]	2]]	n i	-1 > 1=0	T² 'n²													
			=	ma o≤t	1 X 1	{[:	fit]2	ļ -	T ²		<u>n-</u>	÷0°	, →	D										
Re	emar																								
	k:	- - - 0	t _{k+} ,	- 1	(R)) –	→ (0	<		:>	dŧ	∵d	t =	- 0										
Theore	em :	2.4	.2 .	le	ŧ	и) [be	Æ	Ю	ndo	rol	E	3M		The	en	Ľι	υ, ι	N].	t = -	t		/t ≥	
														70-	1	œ	γο	nd	bm	V	eria	ble	•	U	2.
												liv	り りな). Ž	-0	W	ţj		- V	٧ŧ	12	bie			
												_			5	Υ. √	-								
Re	2may	k:																							
	D-t	the	pai	ths	0	f	В	rau	ν'n	ìar	۱ 7	nσ	tio	η	ca	nn	st	be	- (dif	ere	nt	iat	ed	
W	.r.t	- t	ime																						
	D.	Ι÷	we	u	se	E	3,4	1 .	to	r	noc	del	t	the	- 1	ri	e	of		ک ب <i>ا</i>	sto	ck	, u	je.	
d	o n																								
ex	ister	nce	od	_	a	de	eri	va	tiv	e	w	ou	ld	P	2rp	nit	c	ne	<u> </u>	to	Si	æ	w	net	her
	e pi													*											

D We also have Var[w(T)]=T. but it's computed by averaging over all possible paths. The quadratic variation is computed along a single path, and we get the same answer regardless of the path. Proof. we have $t_{kn} - t_k = \frac{1}{n}$ $\sum_{k=0}^{n-1} \left[W(t_{k+1}) - W(t_k) \right]^2 = T \cdot \frac{n-1}{n} \left[W(t_{k+1}) - W(t_k) \right]$ $= T_{1} \frac{1}{n} \sum_{k=0}^{n-1} \left[\frac{W(t_{k+1}) - W(t_{k})}{\sqrt{t_{k+1} - t_{k}}} \right]^{2}$ For each k, the random variable $W(tk+1) - W(tk) \sim N(0, 1)$ That - the thus the r.v. Tw(thei)-w(th) are i.i.d. having the same mean value of 1 ($E[x^2] = Var(x) + E[x]^2$) by Law of Large Numbers.

 $\frac{1}{n} \sum_{k=0}^{n-1} \left[\frac{W(t_{k+1}) - W(t_k)}{\int t_{k+1} - t_k} \right]^2 \rightarrow F\left(\left[\frac{W(t_{k+1}) - W(t_k)}{\int t_{k+1} - t_k} \right]^2 \right) = 1$ thus $\sum_{k=0}^{n-1} \left[W(t_{k+1}) - W(t_k) \right]^2 = T \cdot \frac{1}{n} \sum_{k=0}^{n-1} \left[\frac{W(t_{k+1}) - W(t_k)}{\int t_{k+1} - t_k} \right]^2 \rightarrow T$

the equation is equivalent to dw(t) dw(t) = dt

Additional Theorems

$$\lim_{N\to\infty} \sum_{k=0}^{n-1} |W(t_{k+1}) - W(t_k)| (t_{k+1} - t_k) = 0$$

we record this fact by writing dwlt) dt = 0

$$\begin{array}{c|c} \langle 2 \rangle & \lim_{n \to \infty} \sum_{k=p}^{n-1} |W(t_{k+1}) - W(t_k)|^3 = 0 \\ & \lim_{n \to \infty} \sum_{k=p}^{n-1} |W(t_{k+1}) - W(t_k)|^3 = 0 \end{array}$$

we record this fact by writing (dwiti) = 0