Heterogeneous 3D model of concrete

April 22, 2013

Abstract

Documentation of heterogeneous 3D model of concrete written in MATLAB by Filip Nilenius. The model implementation solves the heat/diffusion equation both for stationary and transient conditions. All MATLAB code required to use the model is attached to this PDF. Just click the pins to open each *.m-file.

Contents

1	MA	ATLAB files	2
	1.1	SVEGenerator.m —	2
	1.2	computeDiffusivity.m —	2
	1.3	PreProcessor.m —	2
	1.4	findITZ.m —	2
	1.5	LinStatSolver.m —	2
	1.6	LinTransSolver.m —	2
	1.7	StatPostProcessor.m —	3
	1.8	TransPostProcessor.m —	3
2	Ele	ment node numbering	3
3	ITZ	2 implementation	4
	3.1	Line-sphere intersection	4
	3.2	Voigt assumption	4
		3.2.1 Isotropic	4
		3.2.2 Anisotropic	4

1 MATLAB files

1.1 SVEGenerator.m

- generates random structured SVE.
- saves topology data for input to PreProcessor.m.

1.2 computeDiffusivity.m

- works as a wrapper around LinStatSolver.m and StatPostProcessor.m to compute the 9 components of the homogenized diffusivity tensor.
- the implementation is parallelized for speed.
- requires nothing.

1.3 PreProcessor.m

- discretizes SVE to structured grid.
- creates and saves topology matrices for input to the processor files.
- requires input data generated by SVEGenerator.m.

1.4 findITZ.m

- computes $A_{\rm ITZ}, V_{\rm a}$ and $V_{\rm cp}$ in fig. 2.
- called by PreProcessor.m.

1.5 LinStatSolver.m

- Solves the linear system of equations, Ka = f.
- Dirichlet and convective boundary conditions types are implemented.
- requires input data generated by PreProcessor.m.

1.6 LinTransSolver.m

- Solves the linear system of equations, $C\dot{a} + Ka = f$.
- convective boundary conditions types are implemented.
- requires input data generated by PreProcessor.m.

1.7 StatPostProcessor.m

- post processor routine for LinStatSolver.m
- generates .vtk file which can be imported to eg Paraview for visualization.

1.8 TransPostProcessor.m

- post processor routine for TransStatSolver.m
- generates .vtk file which can be imported to eg Paraview for visualization.

2 Element node numbering

Figure 1: Node numbers in circles and line segments in rectangles.

3 ITZ implementation

Figure 2: Interface voxel.

3.1 Line-sphere intersection

$$d = -(\boldsymbol{l} \cdot (\boldsymbol{o} - \boldsymbol{c})) \pm \sqrt{(\boldsymbol{l} \cdot (\boldsymbol{o} - \boldsymbol{c}))^2 - (\boldsymbol{o} - \boldsymbol{c})^2 + r^2}$$
(1)

3.2 Voigt assumption

3.2.1 Isotropic

$$\bar{D} = \frac{1}{2}(D_{\rm a} + D_{\rm c}) + \frac{t}{h}D_{\rm ITZ}$$
 (2)

3.2.2 Anisotropic

$$\bar{\boldsymbol{D}} = \frac{V_{\mathrm{a}}D_{\mathrm{a}} + V_{\mathrm{c}}D_{\mathrm{c}}}{V_{\mathrm{a}} + V_{\mathrm{c}}}\boldsymbol{I} + \frac{A_{\mathrm{ITZ}}D_{\mathrm{ITZ}}t}{V_{\mathrm{a}} + V_{\mathrm{c}}}(\boldsymbol{I} - \boldsymbol{n} \otimes \boldsymbol{n})$$
(3)