Chapitre 6 : Vecteurs dans un repère

Définition: Base orthonormée

Soit O un point du plan, et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1.

On dit que (\vec{i},\vec{j}) est une **base orthonormée** du plan et que $(O;\vec{i},\vec{j})$ est un **repère orthonormé** du plan.

Propriété: Coordonnées d'un vecteur

Si (\vec{i},\vec{j}) est une base orthonormée du plan et u est un vecteur, il existe un unique couple de réels $(x\;;\;y)$ tel que :

$$\vec{u} = x\vec{i} + y\vec{j}$$

On dit que le vecteur \vec{u} a pour **coordonnées** $\begin{pmatrix} x \\ y \end{pmatrix}$ dans la base (\vec{i},\vec{j}) .

Remarque

- Cela revient à décomposer le vecteur \vec{u} en sa composante horizontale et verticale.
- Deux vecteurs sont égaux si et seulement si leurs coordonnées sont égales.

Exemple

Dans le repère ci-dessus, on a

- $\vec{u} = 2\vec{i} \vec{j}$, donc $\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ dans la base (\vec{i}, \vec{j}) .
- $\vec{v} = -3\vec{i} + 2\vec{j}$, donc $\vec{v} \binom{-3}{2}$ dans la base (\vec{i}, \vec{j}) .

Propriété : Coordonnées d'un vecteur à partir de points

Soient ${\rm A}(x_{\rm A}$; $y_{\rm A})$ et ${\rm B}(x_{\rm B}$; $y_{\rm B})$ deux points du plan.

Alors le vecteur \overrightarrow{AB} a pour coordonnées

$$\begin{pmatrix} x_{\rm B} - x_{\rm A} \\ y_{\rm B} - y_{\rm A} \end{pmatrix}$$

Exemple

Dans le repère ci-dessus, on a les points A(1; 3) et B(5; 0).

Donc le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} 5-1\\0-3 \end{pmatrix} = \begin{pmatrix} 4\\-3 \end{pmatrix}$.

Propriété: Norme d'un vecteur

Si un vecteur \vec{u} a pour coordonnées $\binom{x}{y}$, sa norme est égale à $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Exemple

Soit
$$\vec{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
.

Alors
$$\|\vec{u}\| = \sqrt{3^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}$$
.

Remarquons que cela revient à calculer la distance entre les deux extrémités du vecteur.

Propriété: Somme de vecteurs

Si on a deux vecteurs $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$, alors $\vec{u} + \vec{v}$ a pour coordonnées $\binom{x+x'}{y+y'}$.

Exemple

Soit $\vec{u} \begin{pmatrix} 3 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ 4 \end{pmatrix}$. Alors $\vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} 3 + (-1) \\ -5 + 4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Propriété: Produit d'un vecteur par un réel

Si un vecteur \vec{u} a pour coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ et k est un nombre réel, le vecteur $k\vec{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$.

Exemple

Soit $\vec{u} \binom{-2}{5}$. Alors le vecteur $-3\vec{u}$ a pour coordonnées $\binom{-3 \times (-2)}{-3 \times 5} = \binom{6}{-15}$.

Définition: Colinéarité

Si deux vecteurs ont la même direction, on dit qu'ils sont **colinéaires**.

Propriété: Colinéarité

Si $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$, alors \vec{u} et \vec{v} sont colinéaires si, de manière équivalente, on a :

- $\vec{u} = k\vec{v}$, avec k un nombre réel;
- Les coordonnées de \vec{u} et \vec{v} sont proportionnelles ;
- $x \times y' = x' \times y$

