University of Wisconsin - Milwaukee Milwaukee, Wisconsin Graduate School

Create a Big Data Pipeline to transform, process and analyze a large National Patient Database

A Project Submitted in Partial Fulfillment of the Requirements of the Master of Science in Computer Science – Professional Track

Jay Tank
May 2020
Student ID – 991343373

Create a Big Data Pipeline to transform, process and analyze a large National Patient Database

This Capstone Project was approved by

Advisor:		Date:	
	Dr. Jake Luo		
Advisor:		Date:	
	Dr. Christine Cheng		

Acknowledgements

I would like to take this time to express my sincere gratitude to my advisors Dr. Jake Luo and Dr. Christine Cheng for providing their invaluable guidance, comments and suggestions throughout the course of this project. I would especially thank Dr. Jake Luo for providing me with NIS data samples, helping me to understand and utilize tools/resources required for the completion of this project. I would also like to thank Dr. Christine Cheng for constantly motivating me to work harder and supporting me during difficult times in the journey of completing my master's degree. This project would have not been possible without their help and insight.

I want to thank my parents for being great role models in work hard and perseverance can accomplish. At last but not the least, I am thankful to all my teachers and friends who have always been supporting and encouraging me throughout the year. The journey in doing this project and completing my degree has been a great learning experience and one I take pride in accomplishing.

Table of Contents

Chap	ter	Page
l.	Review of Literature	6
II.	Introduction A. Breast Cancer – Definition, Symptoms and Statistics B. Scope of the Project	7 7 7
III.	Description A. Data Sources B. Data Pre-Processing	8 - 10 8 -10 10
IV.	Data Science and Machine Learning Modelling A. Feature Selection B. Learning from imbalanced data C. Machine Learning Modelling and Validation	11 – 12 11 11 11-12
V.	Results	13 – 14
VI.	Summary and Future Work	15
VII.	References	15

Abstract

Background: I present a method to create a Big Data pipeline utilizing Healthcare Cost and Utilization Project (HCUP) dataset for predicting disease risk of individuals based on their medical diagnosis history. The presented methodology may be incorporated in a variety of applications such as risk management, tailored health communication and decision support systems in healthcare.

Methods: I employed the National Inpatient Sample (NIS) data, which is available through Healthcare Cost and Utilization Project (HCUP), to train various machine learning models for breast cancer prediction. Since the HCUP data is categorical in nature and highly imbalanced, I employed an ensemble learning approach of data cleaning and data pre-processing before feeding the data into machine learning algorithms. I compared the performance of Logistic Regression, Decision Tree and Naive Bayes Classifier to predict the risk of breast cancer.

Results: I trained 3 different Machine Learning models on the dataset and after comparing the results I observed that Decision tree was able to outperform the other models 97% of the time to predict breast cancer among the patients with a higher accuracy.

Conclusion: I was able to overcome the class imbalance problem and achieve promising results. Using the national HCUP data set and leveraging the data science technologies I was successfully able to build a predictive model which gives an average AUC of 85%.

Review of Literature

The reporting requirements of various US governmental agencies such as Center for Disease Control (CDC), Agency for Health Care Quality (AHRQ) and US Department of Health and Human Services Center for Medicare Services (CMS) have created huge public datasets that, I believe, are not utilized to their full potential. For example, CDC https://www.cdc.gov/ makes available National Health and Nutrition Examination Survey (NHANES) data which can be used to predict diabetes risk. CMS https://www.cms.gov/ uses the Medicare and Medicaid claims to create the minimum dataset (MDS). Herbert and others use MDS data to identify people with diabetes. For this project, I use the National Inpatient Sample (NIS) data created by AHRQ http://www.ahrq.gov Healthcare Utilization Project (HCUP), which captures eight chronic diseases to predict the risk for breast cancer.

Disease prediction can be applied to different domains such as risk management, tailored health communication and decision support systems. Risk management plays an important role in health insurance companies, mainly in the underwriting process. Health insurers use a process called underwriting in order to classify the applicant as standard or substandard, based on which they compute the policy rate and the premiums individuals have to pay. Currently, in order to classify the applicants, insurers require every applicant to complete a questionnaire, report current medical status and sometimes medical records, or clinical laboratory results, such as blood test, etc. By incorporating machine learning techniques, insurers can make evidence-based decisions and can optimize, validate and refine the rules that govern their business.

Another domain where disease prediction can be applied is tailored health communication. Disease risk prediction along with tailored health communication can lead to an effective channel for delivering disease specific information for people who will be likely to need it. In addition to population level clinical knowledge, deidentified public datasets represent an important resource for the clinical data mining researchers. While full featured clinical records are hard to access due to privacy issues, deidentified large national public dataset are readily available [6]. Although these public datasets don't have all the variables of the original medical records, they still maintain some of their main characteristics such as data imbalance and the use of controlled terminologies (ICD-9 codes).

Introduction

Breast Cancer – Definition, Symptoms and Statistics

Breast cancer is cancer that forms in the cells of the breasts. After skin cancer, breast cancer is the most common cancer diagnosed in women in the United States. Breast cancer can occur in both men and women, but it's far more common in women. Symptoms of breast cancer include a lump in the breast, bloody discharge from the nipple, and changes in the shape or texture of the nipple or breast.

Treatment depends on the stage of cancer. It may consist of chemotherapy, radiation, and surgery. It is estimated that 42,690 deaths (42,170 women and 520 men) from breast cancer will occur this year.

	DCIS ca	ases	Invasive	cases	s Death					
Age	Number	%	Number	%	Number	%				
<40	1,180	2%	11,870	4%	1,070	3%				
40-49	8,130	17%	37,150	14%	3,250	8%				
50-59	12,730	26%	61,560	23%	7,460	18%				
60-69	14,460	30%	74,820	28%	9,920	24%				
70-79	8,770	18%	52,810	20%	8,910	21%				
+08	2,830	6%	30,390	11%	11,150	27%				
All ages	48,100		268,600		41,760					

Current age	Diagnosed with invasive breast cancer	Dying from breast cancer
20	0.1% (1 in 1,479)	<0.1% (1 in 18,503)
30	0.5% (1 in 209)	<0.1% (1 in 2,016)
40	1.5% (1 in 65)	0.2% (1 in 645)
50	2.4% (1 in 42)	0.3% (1 in 310)
60	3.5% (1 in 28)	0.5% (1 in 193)
70	4.1% (1 in 25)	0.8% (1 in 132)
80	3.0% (1 in 33)	1.0% (1 in 101)
Lifetime risk	12.8% (1 in 8)	2.6% (1 in 39)

Scope of the Project

Several machine learning techniques were applied to healthcare data sets for the prediction of future health care utilization such as predicting individual expenditures and disease risks for patients. The idea behind this project is to leverage Data Science technologies and Machine Learning algorithms to a large national patient sample database to build predictive models which can be accurately use in the classification of breast cancer metastasis and predict the risk of breast cancer.

After loading dataset into a database like PostgreSQL, I performed data cleaning to remove corelations between the features and trained different Machine Learning models on the random sub-samples in order to obtain the best working model for the data.

Data Description

Data Sources

The Nationwide Inpatient Sample (NIS) is a database of hospital inpatient admissions that dates back to 1988 and is used to identify, track, and analyze national trends in health care utilization, access, charges, quality, and outcomes. The NIS database is developed by the Healthcare Cost and Utilization Project (HCUP) and sponsored by the Agency for Healthcare Research and Quality (AHRQ). The NIS data contains discharge level information on all inpatients from a 20% stratified sample of hospitals across the United States, representing approximately 90% of all hospitals in the country. HCUP data from the year 2012 to 2016 are used in this project. The data set contains about 8 million records of hospital stays, with 126 clinical and nonclinical data elements for each visit. Nonclinical elements include patient demographics, hospital identification, admission date, zip code, calendar year, total charges and length of stay. Clinical elements include procedures, procedure categories, diagnosis codes and diagnosis categories. Every record contains a vector of 15 diagnosis codes. The diagnosis codes are represented using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The International Statistical Classification of Disease is designed and published by the World Health Organization (WHO). The ICD-9 codes are alphanumeric codes, 3-5 characters long and used by hospitals, insurance companies and other facilities to describe health conditions of the patient. Every code represents a disease, condition, symptom, or cause of death. There are numerous codes, over 14,000 ICD-9 codes and 3,900 procedures codes. Every ICD-9 code has a corresponding diagnosis category and every category contains a set of ICD-9 codes. Demographics such as age, race and sex are also included in the data set. The data set is highly imbalanced.

PLEASE NOTE: data files after year 2016 contains ICD- 10 codes for disease diagnosis categories.

Table 1 HCUP data elements (Continued)

Table 1 HCUP data elements

lab	ie i ncur da	ta elements	iab	ie i ncor da	ita elements (Continued)
	Element Name	Element Description		ELECTIVE	Elective versus non-elective admission
1	AGE	Age in years at admission		E_CCS1	CCS: E Code 1
	AGEDAY	Age in days (when age > 1 year)	54	E_CCS2	CCS E Code 2
	AMONTH	Admission month		E_CCS3	CCS: E Code 3
	ASOURCE	Admission source (uniform)	56	E_CCS4	CCS: E Code 4
5		Admission source (UB-92 standard coding)	57	FEMALE	Indicator of sex
6	ASOURCE X	Admission source (as received from source)	58	HOSPID	HCUP hospital identification number
7	ATYPE	Admission type	59	HOSPST	Hospital state postal code
8	AWEEKEND	Admission day is a weekend	60	KEY	HCUP record identifier
9	DIED	Died during hospitalization	61	LOS	Length of stay (cleaned)
	DISCWT	Weight to discharges in AHA universe		LOS_X	Length of stay (as received from source)
11		Disposition of patient (UB-92 standard coding)		MDC	MDC in effect on discharge date
	DISPUNIFORM	Disposition of patient (uniform)		MDC18	MDC, version 18
	DQTR	Discharge quarter		MDNUM1_R	Physician 1 number (re-identified)
	DRG	DRG in effect on discharge date	66	_	Physician 2 number (re-identified)
	DRG18	DRG, version 18	67	NDX	Number of diagnoses on this record
	DRGVER	DRG grouper version used on discharge date	68		Number of E codes on this record
	DSHOSPID	Data source hospital identifier		NEOMAT	Neonatal and/or maternal DX and/or PR
18	DX1	Principal diagnosis	70		
	DX2	Diagnosis 2		NPR	Number of procedures on this record
	DX3	Diagnosis 3		PAY1	Primary expected payer (uniform)
	DX4	Diagnosis 4		PAY1_X	Primary expected payer (as received from source)
	DX5	Diagnosis 5		PAY2	Secondary expected payer (uniform)
23	DX6	Diagnosis 6	75	PAY2_X	Secondary expected payer (as received from source)
24	DX7	Diagnosis 7	76	PL_UR_CAT4	Patient Location: Urban-Rural 4 Categories
25	DX8	Diagnosis 8		PR1	Principal procedure
26	DX9	Diagnosis 9	78		Procedure 2
27	DX10	Diagnosis 10	79		Procedure 3
28	DX11	Diagnosis 11	80		Procedure 4
29	DX12	Diagnosis 12		PR5	Procedure 5
30	DX13	Diagnosis 13	82		Procedure 6
31	DX14	Diagnosis 14	83		Procedure 7
32	DX15	Diagnosis 15	84		Procedure 8
*33	DXCCS1	CCS: principal diagnosis	85		Procedure 9
*34	DXCCS2	CCS: diagnosis 2	86	PR10	Procedure 10
*35	DXCCS3	CCS: diagnosis 3	87	PR11	Procedure 11
*36	DXCC54	CCS: diagnosis 4	88	PR12	Procedure 12
*37	DXCCS5	CCS: diagnosis 5	89	PR13	Procedure 13
*38	DXCCS6	CCS: diagnosis 6	90	PR14	Procedure 14
*39	DXCCS7	CCS: diagnosis 7	91	PR15	Procedure 15
*40	DXCCS8	CCS: diagnosis 8	92	PRCCS1	CCS: principal procedure
*41	DXCCS9	CCS: diagnosis 9	93	PRCCS2	CCS procedure 2
*42	DXCCS10	CCS: diagnosis 10	94	PRCCS3	CCS: procedure 3
*43	DXCCS11	CCS: diagnosis 11	95	PRCCS4	CCS: procedure 4
*44	DXCCS12	CCS: diagnosis 12	96	PRCCS5	CCS: procedure 5
*45	DXCCS13	CCS: diagnosis 13	97	PRCCS6	CCS: procedure 6
*46	DXCCS14	CCS: diagnosis 14	98	PRCCS7	CCS: procedure 7
*47	DXCCS15	CCS: diagnosis 15	99	PRCCS8	CCS: procedure 8
48	ECODE1	E code 1	100	PRCCS9	CCS: procedure 9
49	ECODE2	E code 2	101	PRCCS10	CCS: procedure 10
50	ECODE3	E code 3	102	PRCCS11	CCS: procedure 11
51	ECODE4	E code 4	103	PRCCS12	CCS: procedure 12

Create a Big Data Pipeline to transform, process and analyze a large National Patient Database

Table 1 HCUP data elements (Continued)

104	PRCCS13	CCS: procedure 13
105	PRCCS14	CCS: procedure 14
106	PRCCS15	CCS: procedure 15
107	PRDAY1	Number of days from admission to PR1
108	PRDAY2	Number of days from admission to PR2
109	PRDAY3	Number of days from admission to PR3
110	PRDAY4	Number of days from admission to PR4
111	PRDAY5	Number of days from admission to PR5
112	PRDAY6	Number of days from admission to PR6
113	PRDAY7	Number of days from admission to PR7
114	PRDAY8	Number of days from admission to PR8
115	PRDAY9	Number of days from admission to PR9
116	PRDAY10	Number of days from admission to PR10
117	PRDAY11	Number of days from admission to PR11
118	PRDAY12	Number of days from admission to PR12
119	PRDAY13	Number of days from admission to PR13
120	PRDAY14	Number of days from admission to PR14
121	PRDAY15	Number of days from admission to PR15
122	RACE	Race (uniform)
123	TOTCHG	Total charges (deaned)
124	TOTCHG_X	Total charges (as received from source)
125	YEAR	Calendar year
126	ZIPInc_Qrtl	Median household income quartile for patient's ZIP Code

Complete list of 126 HCUP data elements. The elements marked with "*" (rows 33-47) are the ones used in the classification as input variables.

Data Pre-Processing

The data set was provided in a large ASCII files, each containing approximately 7 million records. All the required data files are named as "Core" files. Along with the core files, there are "Hospital Weights File" and "Severity Measures File" which contains and several other features.

The first step was to parse the data set using "File Specification" files. These files specify the starting column and the ending column in the ASCII file for each data element (length of data element). Load all the data into PostgreSQL database dynamically. The running time for dynamic loading takes around 48 hours to complete.

The second step is to update all the tables in database by adding extra column called outcome which contains the disease code for breast cancer from every record. If value is not found, then insert null.

The third step in to randomly select N records and extract a set of relevant features to pass to machine learning algorithm. Every record is a sequence of characters that are not delimited.

^{*}HCUP data elements used in the classification

Data Science and Machine Learning Modelling

The final step is to perform any required data cleaning like converting the data types using type casting, performing label encoding for categorical features, fill all the null values, checking for any co-relations between the features before passing the data to machine learning model.

Feature Selection

For every record, I extracted the age, gender, race and 25 -30 diagnosis categories. I denote the samples that contain a given disease category as "active" and the remaining ones as "inactive". The active and inactive data samples are defined only from the point of view of the disease being classified. We cannot include the features which are likely to have a corelation with our desired output A snippet of "pandas dataframe" is shown below showing active and inactive samples

age	female	race	dx1	dx2	dx3	dx4	dx5	dx6	dx7 c	x8	dx9	dx10	dx11	dx12	dx13	dx14	dx15	dx16	dx17	dx18	dx19	dx20	dx21	dx22	dx23	dx24	dx25	status
1	36	1	2 33	3 1977	1970	1985	413	5990	4019	0	0	0) (0	0	0	0	0	0	0	0	0	0	0 0) (0	
9	78	0	4 4	1 56881		0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 (433	4581	
2	64	1	4 21	3 4019	49390	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
3	51	1	2 19	5 262	70703	2875	2761	0	850	28522	8	1251) (0	0	0	0	0	0	0	0	0	0	0 () (0	
0	78	1	6	0 (0	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0 0	
6	56	1	2 8	5 8543	3 0	70711	4019	442	1582	5869	161	160	163	16	8	0	0	0	0	0	0	0	0	0	0 () (0 0	
6	49	1	4 560	9 8543	1977	1534	49390	442	1582	5869	161	160	165	16	8	0	0	0	0	0	0	0	0	0	0 () (0	
8	80	0	4 53	0 2851		0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
7	52	1	4 590	5939	4149	4589	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
7	75	1	1	0 2720	4019	4589	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0 0) (0 0	
3	85	1	-9 434	1 5990	34290	56400	4279	2724	850	78451	8	1251) (0	0	0	0	0	0	0	0	0	0	0 0) (0	
4	75	1	4 43	3 49390	4019	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
0	90	1	4 434	1 (0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0 () (0	
4	55	1	1	0 4019		0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0 () (0	
2	86	1	1 427	2761	L C	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
1	67	0	4 997	9 5762	78959	7824	4019	25000	2724	0	0	0) (0	0	0	0	0	0	0	0	0	0	0 () (0	
9	90	1	1 40	.9 (0	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0 (433	4581	
5	64	1	1 3		0	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
8	90	1	1 40	.9 (0	0	0	0	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0 () (0	
5	65	1	4 35	0 25000	4019	0	0	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	D () (0	

Learning from Imbalanced Data

A data set is class-imbalanced if one class contains significantly more samples than the other. In such cases, it is challenging to create an appropriate testing and training data sets, given that most classifiers are built with the assumption that the test data is drawn from the same distribution as the training data. Presenting imbalanced data to a classifier will produce undesirable results such as a much lower performance on the testing that on the training data.

Machine Learning Modelling and Validation

For this project, I initially split my data into testing data and training data in the ratio 70:30 and performed multiple runs with random samples for Logistic regression, Decision Tree and Naïve Bayes models to observe the accuracy and compare the results obtained

For eg: data file 'nis_2014_core' contains a total of 7071762 records from which 34901 are active samples. For the project requirements, I took all the active samples and 50,000 inactive samples. After shuffling all the records, I split the data into 70% training data and 30% testing data performed multiple runs to record the observations. I validated the observations by

splitting the data into 80% training data and 20% testing data. I also performed validation using different validation techniques like k-fold cross validation and Leave one out (LOO) validation.

A flowchart of typical cross validation workflow in model training

Below is a code snippet for Naïve Bayes Classifier performed on 'nis_2013_core' which has 28 features and the data is split into70 : 30 (train : test).

```
dataframe_2013_pos = pd.read_sql_query('SELECT age, female, race, dx1
dataframe_2013_neg = pd.read_sql_query('SELECT age, female, race, dx1,
   index, row in dataframe_2013_pos.iterrows():
    for i in range(1, 26):
    d = 'dx' + str(i)
        d = 'dx' + str(i)
if row[d].startswith('174'):
ertical_stack = pd.concat([dataframe_2013_pos, dataframe_2013_neg])
    for i in range(1, 26)
d = 'dx' + str(i)
        d = 'dx' + str(i)
if row[d] == '':
            vertical_stack.at[index, d] = row[d].replace('V', '')
        if row[d] ==
            vertical_stack.at[index, d] = '0'
            vertical_stack.at[index, d] = '0'
ertical_stack = vertical_stack.sample(frac=1)
 = vertical_stack.drop(columns='status')
 = vertical_stack['status']
rint(X.shape)
rint(Y.shape)
 _train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3,
gnb = GaussianNB()
nb = gnb.fit(X train, Y train)
  pred = gnb.predict(X_test)
```

Results

1. Results obtained after random sub sampling and validation on multiple runs with varying train-test-splits

Data File	Logistic Regression	Decision Tree	Naïve Bayes
nis_2012_core	75.50%	82.63%	48.02%
nis_2013_core	78.50%	78.63%	46.77%
nis_2014_core	72.83%	84.16%	50.42%
nis_2015_core	No relevant features	No relevant features	No relevant features
nis_2016_core	73.76%	87.88%	55.24%

2. Sample Confusion Matrices (for data file 'nis_2013_core')

a. Decision Tree Classifier gives us the following confusion matrix

	Actual Values							
Predicted Values	TP = 9990	FP = 4980						
	FN = 203	TN = 10549						

Precision =
$$TP/(TP + FP) = 0.67$$

Recall = $TP/(TP + FN) = 0.49$

b. Naïve Bayes gives us following confusion matrix

, ,	Actual	Values		
Predicted Values	TP = 1611	FP = 28		
	FN = 553	TN = 10060		

Precision =
$$TP/(TP + FP) = 0.98$$

Recall = $TP/(TP + FN) = 0.14$

After rigorous training the models with random sampling and validation, I observed that Decision Tree classifier gives the best accuracy as compared to other models. Please find the sample outputs below for Decision Tree Classifier run on 'nis_2014_core'

```
digraph Tree {
node [shape=box] ;
0 [label="X[1] \le 0.5 \neq 0.5] 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
243941"1 :
1 [label="X[1] \le -4.5\nentropy = 0.001\nsamples = 15255\nvalue = [15254,
1]"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"];
2 [label="X[25] <= 231.5\nentropy = 1.0\nsamples = 2\nvalue = [1, 1]"];
1 -> 2 ;
3 [label="entropy = 0.0\nsamples = 1\nvalue = [1, 0]"];
2 -> 3;
4 [label="entropy = 0.0\nsamples = 1\nvalue = [0, 1]"];
2 \rightarrow 4:
5 [label="entropy = 0.0\nsamples = 15253\nvalue = [15253, 0]"];
1 -> 5 ;
6 [label="X[0] <= 33.5\nentropy = 0.992\nsamples = 44175\nvalue = [19782,
24393]"];
0 -> 6 [labeldistance=2.5, labelangle=-45, headlabel="False"];
7 [label="X[3] <= 15.0\nentropy = 0.33\nsamples = 7615\nvalue = [7153,
462]"];
6 -> 7 ;
8 [label="entropy = 0.068\nsamples = 124\nvalue = [1, 123]"];
7 -> 8 ;
9 [label="entropy = 0.266\nsamples = 7491\nvalue = [7152, 339]"];
7 -> 9 ;
10 [label="X[3] <= 38.5\nentropy = 0.93\nsamples = 36560\nvalue = [12629,
23931]"];
6 -> 10 ;
11 [label="entropy = 0.02\nsamples = 6210\nvalue = [12, 6198]"];
12 [label="entropy = 0.979\nsamples = 30350\nvalue = [12617, 17733]"];
10 -> 12 ;
```


Summary and Future Work

In this study I used the NIS dataset (HCUP) created by AHRQ. I was successfully able to load all the required data into database, performed data pre-processing and create different machine learning models that have a good predictive power for the diagnosis of breast cancer. Also, I found out that for NIS data we can use Decision based classifier to make better predications and overall give a higher accuracy as compared to other models.

For this project, I have focused on prediction of breast cancer, but this method can be used to predict the risk for any disease. Various other predictive and statistical analysis can be performed using other data sets (Hospital Weights File and Severity Measures File). NIS have good amount of data but lack of early indication and early diagnosis. So, we can develop a method which will help to overcome this problem that will aid patients for early detection and proper diagnosis to prevent further risk.

References

- 1. Agency for Healthcare Research and Quality https://www.ahrq.gov/
- 2. NIS File Specifications -

https://www.hcup-us.ahrq.gov/db/nation/nis/nisfilespecs.jsp#2017NIS

- 3. NIS data elements description https://www.hcup-us.ahrq.gov/db/nation/nis/nisdde.jsp
- 4. https://www.cancer.net/cancer-types/breast-cancer/statistics
- 5. https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptoms-causes/syc-20352470
- 6. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures-2019-2020.pdf
- 7. https://www.postgresqltutorial.com/
- 7. https://scikit-learn.org/stable/
- 8. https://towardsdatascience.com/machine-learning/home