QMB 6358: Software Tools for Business Analytics

College of Business University of Central Florida Fall 2020

Assignment 9

Due Thursday, December 10, 2020 at 9:59 PM in your GitHub repo.

Instructions:

Complete this assignment within the space on your GitHub repo in a folder called assignment_09. You may organize your files any way you like but leave your answers to all questions in this folder.

All of your responses can be completed using the language of your choice, as long as your solutions meet the specifications in each question. Store any printed output by writing or pasting into a document of your choice or pasting comments in your code. This output can also be automated by redirecting output from a script in Question 6.

When you are finished, submit your code and any other documents by pushing your changes to your GitHub repo, following the instructions in Question 7. Complete these exercises individualy and git push your own work.

Part A: Data Handling and Regression Modelling

Estimate the best regression model you can by solving as many of Questions 1 to 4 as you can. You do not necessarily have to solve them in order.

Question 1:

The folder assignment_09 contains three .csv files: airplane_sales.csv, airplane_specs.csv, and airplane_perf.csv. The first dataset airplane_sales.csv contains the following variables.

SALE_ID = a unique key for each airplane sold

price = price of an airplane

age = age of the aircraft, in years

Use this dataset to estimate a regression model to predict the prices of airplanes.

- a) Read in the airplane_sales.csv dataset and store it in a data frame called airplane_sales in your workspace.
- b) Calculate and store the printed output from either a summary of the data or describe the data, according to your choice of software. Use this to get familiar with the contents of the dataset.
- c) Estimate a regression model to predict price as a function of age. Store the printed estimation output with the print and/or summary command, as appropriate.

Question 2:

Now use two files airplane_sales.csv and airplane_specs.csv in the folder assignment_09. The dataset airplane_specs.csv contains the following variables.

SALE_ID = a unique key for each airplane sold pass = the number of passengers an airplane can accommodate

extstyle ext

fixgear = an indicator for fixed landing gear (i.e. wheels are not retractable)

tdrag = an indicator that a wheel is on the tail (a tail-dragger)

Use the variables from both datasets to estimate a better regression model to predict the prices of airplanes.

- a) Perform any pre-processing that needs to be done to the files airplane_sales.csv and airplane_specs.csv before joining them: clean them, sort them or read them, according to your strategy of choice.
- b) Form a dataset airplane_sales_specs.csv by pasteing, joining, or mergeing the datasets, as needed.
- c) If not already done in the above, read the new dataset and store it in a data frame called airplane_sales_specs in your workspace.
- d) Calculate and store the printed output from either a summary of the data or describe the data, according to your choice of software. Use this to get familiar with the contents of the dataset.
- e) Estimate a regression model to predict price as a function of age, pass, wtop, fixgear, and tdrag. Store the printed estimation output with the print and/or summary command, as appropriate.

Question 3:

Now use all three files airplane_sales.csv, airplane_specs.csv, and airplane_perf.csv in the folder assignment_09. The dataset airplane_perf.csv contains the following variables.

SALE_ID = a unique key for each airplane sold

horse = the horsepower of the engine

fuel = the volume of the fuel tank, in gallons

ceiling = the maximum flying height of an airplane, in feet

cruise = the cruising speed, in MPH

Use the variables from these datasets to estimate an even better regression model to predict the prices of airplanes.

- a) Perform any pre-processing that needs to be done to the file airplane_perf.csv before joining it to the others: clean, sort or read, according to your strategy of choice.
- b) Form a dataset airplane_full.csv by pasteing, joining, or mergeing the datasets, as needed.
- c) If not already done in the above, read the new dataset and store it in a data frame called airplane_full in your workspace.
- d) Calculate and store the printed output from either a summary of the new variables or describe the new variables, according to your choice of software. Use this to get familiar with the contents of the dataset.
- e) Estimate a regression model to predict price as a function of age, pass, wtop, fixgear, and tdrag, as well as horse, fuel, ceiling, and cruise. Store the printed estimation output with the print and/or summary command, as appropriate.

Question 4:

Now calculate new variables to estimate a model for airplane prices using a different functional form. Use the variables from your best model from Questions 1 to 3.

- a) Create new variables log_price, log_age, log_horse, log_fuel, log_ceiling, and log_cruise from the variables price, age, horse, fuel, ceiling, and cruise, using the logarithm function log() in R or math.log() in Python.
- b) Calculate and store the printed output from either a summary of the new variables or describe the new variables, according to your choice of software. Use this to get familiar with the contents of the dataset.
- c) Estimate a regression model to predict log_price as a function of log_age, pass, wtop, fixgear, and tdrag, as well as log_horse, log_fuel, log_ceiling, and log_cruise. Store the printed estimation output with the print and/or summary command, as appropriate.

Part B: Function Design and Optimization

Question 5:

Estimate $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_k)'$ by minimizing the sum of squared residuals, defined as

$$SSR(\beta; y, x_1, \dots, x_k) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_k x_{ki})^2$$

- a) Define a function SSR(beta; ...) that calculates the sum of squared residuals. Your function should be compatible with the best model from Part A. In particular, it should allow for all k explanatory variables that are used in your model.
- b) Test your function by comparing the value to the SSR obtained from your best model from Part A. Take the value of beta from the estimated coefficients to calculate SSR(beta; ...). Compare this value with sum(my_lm_model\$residuals^2) in R or sum(reg_model_sm.resid**2) using the stats.models module in Python, for example.
- c) Use a numerical optimization function to minimize your SSR(beta; ...) function.
- d) Verify the accuracy of your calculation by printing your optimal parameter values and comparing them with the values in your estimated model from Part A. Validate the optimized value of the SSR(beta; ...) function against the values from part (b).

Part C: Software Management and Version Control

Question 6:

Create a UNIX shell script called assignment_09.sh that runs all the software to answer Questions 1 to 5 in Parts A and B.

- a) Use commands such as Rscript, python3, or sqlite3 to run your software.
- b) Redirect the output of each script to appropriately-named .txt or .out files, using the ">" operator, to save your output.
- c) You can test your script by running ./assignment_09.sh.

Question 7:

Push your completed files to your GitHub repository following these steps. See the README.md and the GitHub_Quick_Reference.md in the folder demo_04_version_control in the QMB6358F20 course repository for more instructions.

- 1. Open GitBash and navigate to the folder inside your local copy of your git repo containing your assignments. Any easy way to do this is to right-click and open GitBash within the folder in Explorer. A better way is to navigate with UNIX commands.
- 2. Enter git add . to stage all of your files to commit to your repo. You can enter git add my_filename.ext to add files one at a time, such as my_filename.ext. in this example.
- 3. Enter git commit -m "Describe your changes here", with an appropriate description, to commit the changes. This packages all the added changes into a single unit and stages them to push to your online repo.
- 4. Enter git push origin master to push the changes to the online repository. After this step, the changes should be visible on a browser, after refreshing the page.