Name: _	
Student ID:	
Signature:	

CITY UNIVERSITY OF HONG KONG

Semester A 2015/2016

EE3210: Signals and Systems

Quiz 9

Time allowed: 15 minutes
Total number of problems: 2

3. Total marks available: 11

4. This paper may not be retained by candidates

Special Instructions

- 5. This is a closed book exam
- 6. Attempt all questions from each problem
- 7. A list of possibly relevant equations is attached at the end of this paper

Problem 1: (6 marks)

Given that the continuous-time signal x(t) has the Fourier transform $X(\omega)$, express the Fourier transform $Y(\omega)$ of the signal

$$y(t) = x(1-t) * x(1-2t)$$

in terms of $X(\omega)$.

Problem 2: (5 marks)

Given that the discrete-time signal x[n] has the Fourier transform $X[\Omega]$, express the Fourier transform $Y[\Omega]$ of the signal

$$y[n] = \sum_{k=0}^{+\infty} x[n-k]$$

in terms of $X[\Omega]$.

Appendix – A list of possibly relevant equations

- Continuous-time Fourier transform:
 - Formulas:

* Analysis:
$$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

* Synthesis:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$

- Properties: Consider $x(t) \leftrightarrow X(\omega), y(t) \leftrightarrow Y(\omega)$.
 - * Linearity: $ax(t) + by(t) \leftrightarrow aX(\omega) + bY(\omega)$
 - * Time shift: $x(t-t_0) \leftrightarrow e^{-j\omega t_0}X(\omega)$
 - * Time reversal: $x(-t) \leftrightarrow X(-\omega)$
 - * Time scaling: $x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$
 - * Multiplication: $x(t)y(t) \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\theta)Y(\omega \theta)d\theta$
 - * Convolution: $x(t)*y(t) \leftrightarrow X(\omega)Y(\omega)$
 - * Parseval's relation: $\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$
- Discrete-time Fourier transform:
 - Formulas:

* Analysis:
$$X[\Omega] = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\Omega n}$$

* Synthesis:
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X[\Omega] e^{j\Omega n} d\Omega$$

- Properties: Consider $x[n] \leftrightarrow X[\Omega], \ y[n] \leftrightarrow Y[\Omega].$
 - * Linearity: $ax[n] + by[n] \leftrightarrow aX[\Omega] + bY[\Omega]$
 - * Time shift: $x[n-n_0] \leftrightarrow e^{-j\Omega n_0}X[\Omega]$
 - * Time reversal: $x[-n] \leftrightarrow X[-\Omega]$
 - * Multiplication: $x[n]y[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X[\theta]Y[\Omega \theta]d\theta$
 - * Convolution: $x[n] * y[n] \leftrightarrow X[\Omega]Y[\Omega]$
 - * Parseval's relation: $\sum_{n=-\infty}^{+\infty}|x[n]|^2=\frac{1}{2\pi}\int_{2\pi}|X[\Omega]|^2d\Omega$

— End of Paper —