

Zirkelzettel vom 21. Dezember 2013

Konventionen

Die Menge der natürlichen Zahlen ist $\mathbb{N} := \{0, 1, 2, 3, \ldots\}.$

Die leere Menge $\{\} = \emptyset$ enthält kein einziges Element.

Alle Elemente der Menge der Elefanten in diesem Raum können π auswendig.

Regeln für surreale Zahlen

- 1. Konstruktionsprinzip. Sind L und R Mengen surrealer Zahlen und ist kein Element von $L \geq$ irgendeinem Element von R, so ist $\{L \mid R\}$ ebenfalls eine surreale Zahl. Alle surrealen Zahlen entstehen auf diese Art.
- 2. Notation. Für $x=\{L\mid R\}$ bezeichnen wir ein typisches Element von L mit " x^{L} ", ein typisches Element von R mit " x^{R} ". Wenn wir " $\{a,b,c,\dots\mid d,e,f,\dots\}$ " schreiben, meinen wir die Zahl $\{L\mid R\}$, sodass a,b,c,\dots die typischen Elemente von L und d,e,f,\dots die typischen Elemente von R sind.
- 3. Anordnung.

Wir sagen genau dann $x \geq y$, falls kein $x^R \leq y$ und $x \leq$ keinem y^L .

Wir sagen genau dann $x \not\leq y$, wenn $x \leq y$ nicht gilt.

Wir sagen genau dann x < y, wenn $x \le y$ und $y \not\le x$.

Wir sagen genau dann $x \leq y$, wenn $y \geq x$.

Wir sagen genau dann x > y, wenn y < x.

- 4. Gleichheit. Wir sagen genau dann x = y, wenn $x \le y$ und $y \le x$.
- 5. Rechenoperationen.

$$\begin{split} x+y &:= \{x^L + y, x + y^L \mid x^R + y, x + y^R\}. \\ -x &:= \{-x^R \mid -x^L\}. \\ xy &:= \{x^L y + xy^L - x^L y^L, x^R y + xy^R - x^R y^R \mid \\ x^L y + xy^R - x^L y^R, x^R y + xy^L - x^R y^L\}. \end{split}$$

Aufgabe 1. Erste Beispiele für surreale Zahlen

Zu Beginn ist uns keine einzige surreale Zahl bekannt. Trotzdem kennen wir eine *Menge* surrealer Zahlen: nämlich die leere Menge. So können wir nach dem Konstruktionsprinzip eine erste surreale Zahl bauen:

$$0 := \{ | \} \quad (also \ L = R = \emptyset)$$

Wir haben diese Zahl "0" genannt, weil sie die Rolle der Null einnehmen wird. Mit dieser Zahl an der Hand können wir eine weitere surreale Zahl bauen:

$$1 := \{0 \mid \} \quad (also \ L = \{0\}, R = \emptyset)$$

- a) Überzeuge dich davon, dass die so definierten Zahlen 0 und 1 wirklich surreale Zahlen sind, dass also die Voraussetzung in der Konstruktionsvorschrift jeweils erfüllt war.
- b) Uberprüfe, dass gemäß der Definitionen tatsächlich $0 \le 1$ gilt.
- c) Mit der bereits konstruierten Zahl 0 kann man insgesamt drei Ausdrücke angeben:

$$\{0 \mid \}, \{\mid 0\}, \{0 \mid 0\}.$$

Welche der beiden hinteren Ausdrücke sind Zahlen?

- d) Sortiere alle bis jetzt gefundenen Zahlen und überlege dir so geeignete Bezeichnungen für die neuen Zahlen aus c).
- e) Konstruiere ein paar weitere Zahlen, sortiere sie in die bereits gefundenen Zahlen ein und überlege dir geeignete Namen für sie.

Aufgabe 2. Erste Rechnungen mit surrealen Zahlen (benötigt Aufgabe 1)

- a) Überprüfe, dass gemäß der Definitionen gilt: 0 + 1 = 1.
- b) Berechne (-1) + 1 und vergleiche das Ergebnis mit 0.

Aufgabe 3. Geburtstage von Zahlen (benötigt Aufgabe 1)

Der Geburtstag b(x) einer surrealen Zahl ist wiederum eine surreale Zahl, definiert als

$$b(x) := \{b(x^L), b(x^R) \mid \}.$$

Wir sagen auch: "Die Zahl x wurde am Tag b(x) geboren."

- a) Uberzeuge dich davon, dass die Zahl 0 am Tag 0 geboren wurde.
- b) Berechne den Geburtstag von einigen surrealen Zahlen.
- c) Wieso ergibt die Bezeichnung Sinn? (Vergleiche mit deiner Lösung von Aufgabe 1.)

Aufgabe 4. Unendlich große Zahlen (benötigt Aufgabe 1)

Wir definieren die surreale Zahl

$$\omega := \{0, 1, 2, \dots | \}.$$

- a) Überzeuge dich davon, dass ω wirklich eine surreale Zahl ist.
- b) Zeige: Für jede natürliche Zahl n gilt $n < \omega$.
- c) Berechne $\omega + 1$.

- d) Berechne $\omega 1$.
- e) Zeige: Für jede natürliche Zahl n gilt $n < \omega 1$.

Aufgabe 5. Mex-Operation

Ist S eine endliche Menge natürlicher Zahlen, so ist mex S die kleinste natürliche Zahl, die nicht in S liegt (minimum excludant).

a) Überzeuge dich von der Richtigkeit folgender Beispiele:

$$\max\{0, 1, 4, 7\} = 2$$
, $\max\{1, 4, 7\} = 0$, $\max \emptyset = 0$.

b) Berechne das Mex von deiner Lieblingsteilmenge natürlicher Zahlen.

Aufgabe 6. Nimber-Addition (benötigt Aufgabe 5)

Die Nimber-Addition ist in mengentheoretischer Notation wie folgt rekursiv definiert:

$$n \oplus m := \max (\{n' \oplus m \mid n' < n\} \cup \{n \oplus m' \mid m' < m\}).$$

Wenn man also den Wert von $n \oplus m$ herausfinden möchte, muss man zunächst die Werte von $n' \oplus m$ für alle kleineren Zahlen n' < n und die Werte von $n \oplus m'$ für alle kleineren Zahlen m' < m bestimmen. Der Wert von $n \oplus m$ ergibt sich dann als Mex dieser Zahlen.

- a) Ergänze unten stehende Tabelle für die Nim-Addition.
- \star b) Wenn du schon die Beweistechnik der Induktion kennst, kannst du dich an folgenden Behauptungen für alle $n \in \mathbb{N}$ versuchen:

 $0 \oplus n = n$

Aufgabe 7. Falsche binomische Formel

... wäre schön, benötigt aber Multiplikation; hat daher hohen technischen Aufwand.

Aufgabe 8. Unmenge surrealer Zahlen (benötigt Aufgabe 1)

In einem gewissen Sinn gibt es zu viele surreale Zahlen, als dass sie noch eine Menge bilden könnten; sie bilden nur noch etwas, was man echte Klasse nennt.

Zeige: Wenn die surrealen Zahlen eine Menge bilden würden, gäbe es eine surreale Zahl, die größer als alle surrealen Zahlen wäre, insbesondere also auch größer als sich selbst.

3

Lösung. Angenommen, die surrealen Zahlen bilden eine Menge. Dann können wir eine surreale Zahl Ω mit L:= Menge aller surrealen Zahlen und $R:=\emptyset$ bilden. Denn daR keine Elemente enthält, ist die Voraussetzung in der Konstruktionsvorschrift erfüllt. Durch Induktion können wir zeigen, dass $\Omega>x$ für alle surrealen Zahlen x.