P1 Chapter 4: Transforming Graphs

Transforming Functions

Effect of transformation on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform. Where would each of these points end up?

y = f(x)	(4, 3)	(1,0)	(6, -4)
y = f(x+1)	?	?	?
y = f(2x)	?	?	3
y = 3f(x)	?	?	3
y = f(x) - 1	?	?	?
$y = f\left(\frac{x}{4}\right)$?	?	?
y = f(-x)	?	?	?
y = -f(x)	?	?	?

Effect of transformation on specific points

Sometimes you will not be given the original function, but will be given a sketch with specific points and features you need to transform. Where would each of these points end up?

$\mathbf{y} = f(\mathbf{x})$	(4, 3)	(1,0)	(6, -4)
y = f(x+1)	(3,3)	(0,0)	(5, -4)
y = f(2x)	(2,3)	(0.5, 0)	(3, -4)
y = 3f(x)	(4,9)	(1,0)	(6, -12)
y = f(x) - 1	(4,2)	(1, -1)	(6, -5)
$y = f\left(\frac{x}{4}\right)$	(16,3)	(4,0)	(24, -4)
y = f(-x)	(-4,3)	(-1,0)	(-6, -4)
y = -f(x)	(4, -3)	(1,0)	(6,4)

Test Your Understanding

Edexcel C1 May 2012 Q10

Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x), where

$$f(x) = x^2(9 - 2x).$$

There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A.

(a) Write down the coordinates of the point A.

(1)

(b) On separate diagrams sketch the curve with equation

(i)
$$y = f(x + 3)$$
,

(ii)
$$y = f(3x)$$
.

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

(6)

The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10).

(c) Write down the value of k.

(1)

Test Your Understanding

Edexcel C1 May 2012 Q10

Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x), where

$$\mathbf{f}(x) = x^2(9 - 2x).$$

There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A.

(a) Write down the coordinates of the point A.

(1)

(b) On separate diagrams sketch the curve with equation

(i)
$$y = f(x + 3)$$
,

(ii)
$$y = f(3x)$$
.

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

(6)

The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10).

(c) Write down the value of k.

(1)

(a) {Coordinates of A are} (4.5, 0)

(b)(i)

(ii)

(c)
$$\{k=\}-17$$

Exercise 4.7

Pearson Pure Mathematics Year 1/AS Page 33

Homework Exercise

1 The following diagram shows a sketch of the curve with equation y = f(x). The points A(0, 2), B(1, 0), C(4, 4) and D(6, 0) lie on the curve.

Sketch the following graphs and give the coordinates of the points, A, B, C and D after each transformation:

- **a** f(x+1) **b** f(x)-4 **c** f(x+4)

- **d** f(2x) **e** 3f(x) **f** $f(\frac{1}{2}x)$
- $\mathbf{g}^{-\frac{1}{2}}\mathbf{f}(x)$
- **h** f(-x)

Sketch the following graphs. Give the equations of any asymptotes and give the coordinates of intersections with the axes after each transformation.

- **a** f(x) + 2 **b** f(x + 1) **c** 2f(x)
- **d** f(x) 2 **e** f(2x) **f** $f(\frac{1}{2}x)$
- **g** $\frac{1}{2}$ **f**(x) **h** -**f**(x)

Homework Exercise

3 The curve with equation y = f(x) passes through the points A(-4, -6), B(-2, 0), C(0, -3) and D(4, 0)as shown in the diagram.

Sketch the following and give the coordinates of the points A, B, C and D after each transformation.

a
$$f(x-2)$$
 b $f(x)+6$ **c** $f(2x)$

b
$$f(x) + 6$$

$$\mathbf{c}$$
 f(2x)

d
$$f(x + 4)$$
 e $f(x) + 3$ **f** $3f(x)$

$$e f(x) + 3$$

g
$$\frac{1}{3}$$
f(x) **h** $f(\frac{1}{4}x)$ **i** $-f(x)$

h
$$f(\frac{1}{4}x)$$

$$\mathbf{i} - \mathbf{f}(x)$$

$$\mathbf{j} \quad \mathbf{f}(-x)$$

- 4 A sketch of the curve y = f(x) is shown in the diagram. The curve has a vertical asymptote with equation x = -2 and a horizontal asymptote with equation y = 0. The curve crosses the y-axis at (0, 1).
 - a Sketch, on separate diagrams, the graphs of:

ii
$$f(2x)$$

i
$$2f(x)$$
 ii $f(2x)$ iii $f(x-2)$

In each case state the equations of any asymptotes and, if possible, points where the curve cuts the axes.

b Suggest a possible equation for f(x).

Homework Exercise

- 5 The point P(2, 1) lies on the graph with equation y = f(x).
 - a On the graph of y = f(ax), the point P is mapped to the point Q(4, 1). Determine the value of a. (1 mark)
 - **b** Write down the coordinates of the point to which *P* maps under each transformation **i** f(x-4) **ii** 3f(x) **iii** $\frac{1}{2}f(x)-4$ (3 marks)
- 6 The diagram shows a sketch of a curve with equation y = f(x). The points A(-1, 0), B(0, 2), C(1, 2) and D(2, 0) lie on the curve. Sketch the following graphs and give the coordinates of the points A, B, C and D after each transformation:

a
$$y + 2 = f(x)$$
 b $\frac{1}{2}y = f(x)$

c
$$y - 3 = f(x)$$
 d $3y = f(x)$

e
$$2y - 1 = f(x)$$

Problem-solving

Rearrange each equation into the form y = ...

1 a

 \mathbf{c}

 \mathbf{e}

h

e $y = 2, x = \frac{1}{2}, (0, 0)$

h y = -2, x = 1, (0, 0)

y = 4, x = 1, (0, 0)

f y = 2, x = 2, (0, 0)

3 **a** A(-2, -6), B(0, 0), C(2, -3), D(6, 0)

b A(-4, 0), B(-2, 6), C(0, 3), D(4, 6)

c A(-2, -6), B(-1, 0), C(0, -3), D(2, 0)

d A(-8, -6), B(-6, 0), C(-4, -3), D(0, 0)

e A(-4, -3), B(-2, 3), C(0, 0), D(4, 3)

f = A(-4, -18), B(-2, 0), C(0, -9), D(4, 0)

 \mathbf{g} A(-4, -2), B(-2, 0), C(0, -1), D(4, 0)

h A(-16, -6), B(-8, 0), C(0, -3), D(16, 0)

i A(-4, 6), B(-2, 0), C(0, 3), D(4, 0)

 \mathbf{j} A(4, -6), B(2, 0), C(0, -3), D(-4, 0)

4 **a** i
$$x = -2, y = 0, (0, 2)$$

ii
$$x = -1, y = 0, (0, 1)$$

iii $x = 0 \ y = 0$

iv
$$x = -2 y = -1 (0, 0)$$

$$\mathbf{v} \quad x = 2 \ y = 0 \ (0, 1)$$

vi
$$x = -2$$
 $y = 0$ $(0, -1)$

4 b
$$f(x) = \frac{2}{x+1}$$

6 a A(-1, -2) B(0, 0) C(1, 0) D(2, -2)

b A(-1, 0) B(0, 4) C(1, 4) D(2, 0)

c A(-1, 3) B(0, 5) C(1, 5) D(2, 3)

d $A(-1, 0) B(0, \frac{2}{3}) C(1, \frac{2}{3}) D(2, 0)$

e A(-1, 0.5) B(0, 1.5) C(1, 1.5) D(2, 0.5)

