Sequence Listing

```
<110> CENTRE NATIONAL D'ETUDES VETERINAIRES ÉT ALIMENTAIRES - CNEVA
<120> GENOMIC AND POLYPEPTIDE CIRCOVIRUS SEQUENCE
      ASSOCIATED WITH PIGLET WEIGHT LOSS DISEASE (PWD),
      APPLICATIONS TO DIAGNOSIS AND TO THE PREVENTION
      AND/OR TO THE TREATMENT OF THE INFECTION
<130> D17221
<140>
<141>
<150> FR 97 15396
<151> 1997-12-05
<160> 20
<170> PatentIn Vers. 2.0
<210> 1
<211> 1759
<212> Genomic DNA
<213> Type A PWD circovirus
<220>
\langle 223 \rangle + Polarity strand (5'-3')
<400> 1
accagegeae tteggeageg geageacete ggeagegtea gtgaaaatge caageaagaa 60
aageggeeeg caaceceata agaggtgggt gttcaeeett aataateett eegaggagga 120
gaaaaacaaa atacgggagc ttccaatctc cctttttgat tattttgttt gtggcgagga 180
aggtttggaa gagggtagaa ctcctcacct ccaggggttt gcgaattttg ctaagaagca 240
gacttttaac aaggtgaagt ggtattttgg tgcdcgctgc cacatcgaga aagcgaaagg 300
aaccgaccag cagaataaag aatactgcag taaagaaggc cacatactta tcgagtgtgg 360
agctccgcgg aaccagggga agcgcagcga cctgtctact gctgtgagta cccttttgga 420
gacggggtct ttggtgactg tagccgagca gttfcctgta acgtatgtga gaaatttccg 480
cgggctggct gaacttttga aagtgagcgg gaabatgcag aagcgtgatt ggaagacagc 540
tgtacacgtc atagtgggcc cgcccggttg tgggaagagc cagtgggccc gtaattttgc 600
tgagcctagg gacacctact ggaagcctag tagaaataag tggtgggatg gatatcatgg 660
agaagaagtt gttgttttgg atgattttta tggctggtta ccttgggatg atctactgag 720
actgtgtgac cggtatccat tgactgtaga gadtaaaggg ggtactgttc cttttttggc 780
ccgcagtatt ttgattacca gcaatcaggc ccccaggaa tggtactcct caactgctgt 840
cccagctgta gaagctctct atcggaggat tadtactttg caattttgga agactgctgg 900
agaacaatcc acggaggtac ccgaaggccg atttgaagca gtggacccac cctgtgccct 960
tttcccatat aaaataaatt actgagtctt tt#tgttatc acatcgtaat ggtttttatt 1020
tttattcatt tagagggtct ttcaggataa at ctctgaa ttgtacataa atagtcaacc 1080
ttaccacata attttgggct gtggttgcat tttggagcgc atagcccagg cctgtgtgct 1140
cgacattggt gtgggtattt aaatggagcc acagctggtt tcttttatta tttggctgga 1200
accaatcaat tgtttggtct agctctggtt tgdgggtgaa gtacctggag tggtaggtaa 1260
agggctgcct tatggtgtgg cgggaggagt agttaatata ggggtcatag gccaagttgg 1320
tggagggggt tacaaagttg gcatccaaga tadcaacagt ggacccaaca cctctttgat 1380
tagaggtgat ggggtctctg gggtaaaatt catatttagc ctttctaata cggtagtatt 1440
ggaaaggtag gggtaggggg ttggtgccgc ctdagggggg gaggaactgg ccgatgttga 1500
atctcagctc gttaacattc caagatggct gcgagtgtcc tcctcttatg gtgagtacaa 1560
attetetaga aaggegggaa ttgaagatae eegtettteg gegeeatetg taaeggttte 1620
```

tgaaggcggg gtgtaccaaa tatggtcttc tccggaggat gtttccaaga tggctgcggg 1680

```
ggcgggtccg tcttctgcgg taacgcctcc ttggccacgt catcctataa aagtgaaaga 1740
agtgcgctgc tgtagtatt
                                                                  1759
<210> 2
<211> 1759
<212> Genomic DNA
<213> Type A PWD circovirus
<220>
<223> Polarity strand - (5'-3')
<400> 2
aatactacag cagcgcactt ctttcacttt tataggatga cgtggccaag gaggcgttac 60
cgcagaagac ggacccgccc ccgcagccat cttggaaacg tcctccggag aagaccatat 120
ttggtacacc ccgccttcag aaaccgttac agatggcgcc gaaagacggg tatcttcaat 180
tcccgccttt ctagagaatt tgtactcacc ataagaggag gacactcgca gccatcttgg 240
aatgttaacg agctgagatt caacatcggc cagttcctcc cccctcagg cggcaccaac 300
cccctacccc tacctttcca atactaccgt attagaaagg ctaaatatga attttacccc 360
agagacccca tcacctctaa tcaaagaggt gttgggtcca ctgttgttat cttggatgcc 420
aactttgtaa ccccctccac caacttggcc tatgacccct atattaacta ctcctcccgc 480
cacaccataa ggcagccctt tacctaccac tccaggtact tcacccccaa accagagcta 540
gaccaaacaa ttgattggtt ccagccaaat aataaaagad accagctgtg gctccattta 600
aatacccaca ccaatgtcga gcacacaggc ctgggctatg cgctccaaaa tgcaaccaca 660
gcccaaaatt atgtggtaag gttgactatt tatgtacaat tcagagaatt tatcctgaaa 720
gaccctctaa atgaataaaa ataaaaacca ttacgatgtg ataacaaaaa agactcagta 780
atttatttta tatgggaaaa gggcacaggg tgggtccact gcttcaaatc ggccttcggg 840
tacctccgtg gattgttctc cagcagtctt ccaaaattgc aaagtagtaa tcctccgata 900
gagagettet acagetggga cageagttga ggagtaceat teetgggggg cetgattget 960
ggtaatcaaa atactgcggg ccaaaaaagg aacagtaccc cctttagtct ctacagtcaa 1020
tggataccgg tcacacagtc tcagtagatc atcccaaggt aaccagccat aaaaatcatc 1080
caaaacaaca acttettete catgatatee ateceaecae ttattetae taggetteea 1140
gtaggtgtcc ctaggctcag caaaattacg ggcccactdg ctcttcccac aaccgggcgg 1200
gcccactatg acgtgtacag ctgtcttcca atcacgctgc tgcatcttcc cgctcacttt 1260
caaaagttca gccagcccgc ggaaatttct cacatacgtt acaggaaact gctcggctac 1320
agtcaccaaa gaccccgtct ccaaaagggt actcacagca gtagacaggt cgctgcgctt 1380
cccctggttc cgcggagctc cacactcgat aagtatgtbg ccttctttac tgcagtattc 1440
tttattctgc tggtcggttc ctttcgcttt ctcgatgtgg cagcgggcac caaaatacca 1500
cttcaccttg ttaaaagtct gcttcttagc aaaattcgca aacccctgga ggtgaggagt 1560
tctaccctct tccaaacctt cctcgccaca aacaaaataa tcaaaaaggg agattggaag 1620
ctcccgtatt ttgtttttct cctcctcgga aggattatta agggtgaaca cccacctctt 1680
atggggttgc gggccgcttt tcttgcttgg cattttcatt gacgctgccg aggtgctgcc 1740
gctgccgaag tgcgctggt
                                                                  1759
<210> 3
<211> 939
<212> DNA
<213> Type A PWD circovirus
<220> ORF1
<400> 3
atgccaagca agaaaagcgg cccgcaaccc cataagaggt gggtgttcac ccttaataat 60
ccttccgagg aggagaaaa caaaatacgg gagcttccaa tctccctttt tgattatttt 120
gtttgtggcg aggaaggttt ggaagagggt agaac¢cctc acctccaggg gtttgcgaat 180
tttgctaaga agcagacttt taacaaggtg aagtg@tatt ttggtgcccg ctgccacatc 240
gagaaagcga aaggaaccga ccagcagaat aaagaatact gcagtaaaga aggccacata 300
cttatcgagt gtggagctcc gcggaaccag gggaagcgca gcgacctgtc tactgctgtg 360
agtacccttt tggagacggg gtctttggtg actgtagccg agcagtttcc tgtaacgtat 420
gtgagaaatt tccgcgggct ggctgaactt ttgaaagtga gcgggaagat gcagcagcgt 480
gattggaaga cagctgtaca cgtcatagtg ggccdgcccg gttgtgggaa gagccagtgg 540
```

```
gcccgtaatt ttgctgagcc tagggacacc tactggaagc ctagtagaaa taagtggtgg 600
gatggatatc atggagaaga agttgttgtt ttggatgatk tttatggctg gttaccttgg 660
gatgatctac tgagactgtg tgaccggtat ccattgactb tagagactaa agggggtact 720
gttccttttt tggcccgcag tattttgatt accagcaatc aggcccccca ggaatggtac 780
tcctcaactg ctgtcccagc tgtagaagct ctctatcgga ggattactac tttgcaattt 840
tggaagactg ctggagaaca atccacggag gtacccgaag gccgatttga agcagtggac 900
ccaccctgtg cccttttccc atataaaata aattactga
                                                                   939
<210> 4
<211> 702
<212> DNA
<213> Type A PWD circovirus
<220> ORF2
<400> 4
atgacgtggc caaggaggcg ttaccgcaga agacggaccc gccccgcag ccatcttgga 60
aacatcctcc ggagaagacc atatttggta caccccgcct tcagaaaccg ttacagatgg 120
cgccgaaaga cgggtatctt caattcccgc ctttctagag aatttgtact caccataaga 180
ggaggacact cgcagccatc ttggaatgtt aacgagctga gattcaacat cggccagttc 240
ctcccccct caggcggcac caacccccta ccctacctt tccaatacta ccgtattaga 300
aaggctaaat atgaatttta ccccagagac cccatcacdt ctaatcaaag aggtgttggg 360
tccactgttg ttatcttgga tgccaacttt gtaaccccdt ccaccaactt ggcctatgac 420
ccctatatta actactcctc ccgccacacc ataaggcagc cctttaccta ccactccagg 480
tacttcacco ccaaaccaga gctagaccaa acaattgatt ggttccagco aaataataaa 540
agaaaccage tgtggeteea tttaaatace cacaccaatg tegageacae aggeetggge 600
tatgcgctcc aaaatgcaac cacagcccaa aattatgtgg taaggttgac tatttatgta 660
caattcagag aatttatcct gaaagaccct ctaaatgaat aa
                                                                   702
<210> 5
<211> 621
<212> GENOMIC DNA
<213> Type A PWD circovirus
<220> ORF3
<400> 5
atgatateca teceaceact tatttetaet aggetteed taggtgteec taggeteage 60
aaaattacgg gcccactggc tcttcccaca accgggcgfg cccactatga cgtgtacagc 120
tgtcttccaa tcacgctgct gcatcttccc gctcactttc aaaagttcag ccagcccgcg 180
gaaatttete acataegtta caggaaactg eteggeta¢a gteaceaaag acceegtete 240
caaaagggta ctcacagcag tagacaggtc gctgcgcttc ccctggttcc gcggagctcc 300
acactcgata agtatgtggc cttctttact gcagtattct ttattctgct ggtcggttcc 360
tttcgctttc tcgatgtggc agcgggcacc aaaataccac ttcaccttgt taaaagtctg 420
cttcttagca aaattcgcaa acccctggag gtgaggagkt ctaccctctt ccaaaccttc 480
ctcgccacaa acaaaataat caaaaaggga gattggaagc tcccgtattt tgtttttctc 540
ctcctcggaa ggattattaa gggtgaacac ccacctctta tggggttgcg ggccgctttt 600
cttgcttggc attttcactg a
                                                                   621
<210> 6
<211> 312
<212> PRT
<213> Type A PWD circovirus
<400> 6
Met Pro Ser Lys Lys Ser Gly Pro Gln Pro His Lys Arg Trp Val Phe
 1
                                     10
                                                         15
Thr Leu Asn Asn Pro Ser Glu Glu Glu Lys Asn Lys Ile Arg Glu Leu
             20
                                 25
                                                     30
```

Pro	Ile	Ser 35	Leu	Phe	Asp	Tyr	Phe 40	Val	Cys	Gly	Glu	Glu 45	Gly	Leu	Glu
Glu	Gly 50	Arg	Thr	Pro	His	Leu 55	Gln	Gly	Phe	Ala	Asn 60	Phe	Ala	Lys	Lys
Gln 65	Thr	Phe	Asn	Lys	Val 70	Lys	Trp	Tyr	Phe	61y 75	Ala	Arg	Cys	His	Ile 80
Glu	Lys	Ala	Lys	Gly 85	Thr	Asp	Gln	Gln	Asn 90	Lys	Glu	Tyr	Cys	Ser 95	Lys
Glu	Gly	His	Ile 100	Leu	Ile	Glu	Cys	Gly 105	Ala	Pro	Arg	Asn	Gln 110	Gly	Lys
Arg	Ser	Asp 115	Leu	Ser	Thr	Ala	Val 120	Ser	Thr	Leu	Leu	Glu 125	Thr	Gly	Ser
Leu	Val 130	Thr	Val	Ala	Glu	Gln 135	Phe	Pro	Val	hr	Tyr 140	Val	Arg	Asn	Phe
Arg 145	Gly	Leu	Ala	Glu	Leu 150	Leu	Lys	Val	Ser	61y 155	Lys	Met	Gln	Gln	Arg 160
Asp ·	Trp	Lys	Thr	Ala 165	Val	His	Val	Ile	Val 170	Gly	Pro	Pro	Gly	Cys 175	Gly
Lys	Ser	Gln	Trp 180	Ala	Arg	Asn	Phe	Ala 185	Glu	Pro	Arg	Asp	Thr 190	Tyr	Trp
Lys	Pro	Ser 195	Arg	Asn	Lys	Trp	Trp 200	Asp	Gly	Tyr	His	Gly 205	Glu	Glu	Val
Val	Val 210	Leu	Asp	Asp	Phe	Tyr 215	Gly	Trp	Leu	Pro	Trp 220	Asp	Asp	Leu	Leu
Arg 225	Leu	Cys	Asp	Arg	Tyr 230	Pro	Leu	Thr	Val	Glu 235	Thr	Lys	Gly	Gly	Thr 240
Val	Pro	Phe	Leu	Ala 245	Arg	Ser	Ile	Leu	Ile 250	Thr	Ser	Asn	Gln	Ala 255	Pro
Gln	Glu	Trp	Tyr 260	Ser	Ser	Thr	Ala	Val 265	Pro	Ala	Val	Glu	Ala 270	Leu	Tyr
Arg	Arg	Ile 275	Thr	Thr	Leu	Gln	Phe 280	Trp	Lys	Thr	Ala	Gly 285	Glu	Gln	Ser
Thr	Glu 290	Val	Pro	Glu	Gly	Arg 295	Phe	Glu	Ala	Val	Asp 300	Pro	Pro	Cys	Ala
Leu 305	Phe	Pro	Tyr	Lys	Ile 310	Asn	Tyr								

<210> 7 <211> 233 <212> PRT

<213> Type A PWD circovirus

Ser His Leu Gly Asn Ile Leu Arg Arg Arg Pro Tyr Leu Val His Pro 20 25 30

Ala Phe Arg Asn Arg Tyr Arg Trp Arg Arg Lys Thr Gly Ile Phe Asn 35 40 45

Ser Arg Leu Ser Arg Glu Phe Val Leu Thr Ile Arg Gly Gly His Ser 50 55.

Gln Pro Ser Trp Asn Val Asn Glu Leu Arg Phe Asn Ile Gly Gln Phe 65 70 75 80

Leu Pro Pro Ser Gly Gly Thr Asn Pro Leu Pro Leu Pro Phe Gln Tyr
85 90 95

Tyr Arg Ile Arg Lys Ala Lys Tyr Glu Phe Tyr Pro Arg Asp Pro Ile 100 105 110

Thr Ser Asn Gln Arg Gly Val Gly Ser Thr Val Val Ile Leu Asp Ala 115 125

Asn Phe Val Thr Pro Ser Thr Asn Leu Ala Tyr Asp Pro Tyr Ile Asn 130 135 140

Tyr Ser Ser Arg His Thr Ile Arg Gln Pro Phe Thr Tyr His Ser Arg 145 150 160

Tyr Phe Thr Pro Lys Pro Glu Leu Asp Gln Thr Ile Asp Trp Phe Gln 175

Pro Asn Asn Lys Arg Asn Gln Leu Trp Leu His Leu Asn Thr His Thr 180 185 190

Asn Val Glu His Thr Gly Leu Gly Tyr Ala Leu Gln Asn Ala Thr Thr 195 200 205

Ala Gln Asn Tyr Val Val Arg Leu Thr Ile Tyr Val Gln Phe Arg Glu 210 220

Phe Ile Leu Lys Asp Pro Leu Asn Glu 225 230

<210> 8

<211> 206

<212> PRT

<213> Type A PWD circovirus

<400> 8

Met Ile Ser Ile Pro Pro Leu Ile Ser Thr Arg Leu Pro Val Gly Val 1 5 15

```
Pro Arg Leu Ser Lys Ile Thr Gly Pro Leu Ala Leu Pro Thr Thr Gly
             20
                                  25
Arg Ala His Tyr Asp Val Tyr Ser Cys Leu Pro Ile Thr Leu Leu His
         35
                                                   45
                              40
Leu Pro Ala His Phe Gln Lys Phe Ser Gln Pro Ala Glu Ile Ser His
     50
Ile Arg Tyr Arg Lys Leu Leu Gly Tyr Ser His Gln Arg Pro Arg Leu
 65
                                                               80
                      70
Gln Lys Gly Thr His Ser Ser Arg Gln Val Ala Ala Leu Pro Leu Val
                 85
                                      90
Pro Arg Ser Ser Thr Leu Asp Lys Tyr Val Ala Phe Phe Thr Ala Val
            1,00
                                 105
                                                      110
Phe Phe Ile Leu Leu Val Gly Ser Phe Arg Phe Leu Asp Val Ala Ala
        115
                             120
                                                  125
Gly Thr Lys Ile Pro Leu His Leu Val Lys $er Leu Leu Leu Ser Lys
    130
                         135
                                              140
Ile Arg Lys Pro Leu Glu Val Arg Ser Ser Thr Leu Phe Gln Thr Phe
                                          55
145
                     150
                                                              160
Leu Ala Thr Asn Lys Ile Ile Lys Lys Gly Asp Trp Lys Leu Pro Tyr
                 165
                                     170
                                                          175
Phe Val Phe Leu Leu Gly Arg Ile Ile Lys Gly Glu His Pro Pro
            180
                                 185
                                                      190
Leu Met Gly Leu Arg Ala Ala Phe Leu Ala [rp His Phe His
        195
                             200
                                                  205
```

<210> 9

<211> 1767

<212> Genomic DNA

<213> Type B PWD circovirus

<220> Polarity strand + (5'-3')

<400> 9

```
accagegeae tteggeageg geageacete ggeageaete cageageae atgeeeagea 60 agaagaatgg aagaagega eeceaaeee ataaaaggg ggtgtteaet etgaataate 120 etteegaaga egagegeaag aaaataeggg atetteeaat ateeetatt gattattta 180 ttgttggega ggagggtaat gaggaaggae gaacacetea eeteeagggg ttegetaatt 240 ttgtgaagaa geagaetttt aataaagtga agtggtattt gggtgeeege tgeeaeateg 300 agaaagegaa aggaacagat eageagaata aagaataeetg eagtaaagaa ggeaaeettae 360 tgatggagtg tggageteet agateteagg gacaaeeggag tgaeeetget aeetgetgtga 420 gtaeettgtt ggagageggg agtetggtga eeggtaaatt eegegggetg getgaaeett tgaaaggtgag egggaaaatg eagaageggg 540 atggaagee taatgtaee geaaeeeaet aeeggaagee eegggaaaee aageageggg 660 etgetaattt tgeagaeee gaaaeeeaeat aeeggaaaee aeetagaaae aagtggtggg 660 atggttaee tggtgaagaa gtggttgtta ttgatgaett ttatggetgg etgeeetggg 720 atgatetaet gagaeetgtg gategatate eattgaeetg agageetaaa ggtggaaeetg 780
```

1767

1767

```
tacctttttt ggcccgcagt attctgatta ccagcaatca gaccccgttg gaatggtact 840
cctcaactgc tgtcccagct gtagaagctc tttatcggag gattacttcc ttggtatttt 900
ggaagaatgc tacagaacaa tccacggagg aagggggcca gttcgtcacc ctttcccccc 960
catgccctga atttccatat gaaataaatt actgagtctt ttttatcact tcgtaatggt 1020
ttttattatt cattaagggt taagtggggg gtctttaaaa|ttaaattctc tgaattgtac 1080
atacatggtt acacggatat tgtattcctg gtcgtatata|ctgttttcga acgcagtgcc 1140
gaggeetacg tggtetacat ttecageagt ttgtagtete|ageeacaget ggtttetttt 1200
gttgtttggt tggaagtaat caatagtgaa atctaggaca|ggtttggggg taaagtaccg 1260
ggagtggtag gagaagggct gggttatggt atggcgggag gagtagttta cataggggtc 1320
ataggtgagg gctgtggcct ttgttacaaa gttatcatct aaaataacag cactggagcc 1380
cactcccctg tcaccctggg tgatcgggga gcagggccag attcaacct taacctttct 1440
tattctgtag tattcaaagg gcacagagcg ggggtttgac|cccctcctg ggggaagaaa 1500
gtcattaata ttgaatctca tcatgtccac cgcccaggag ggcgttctga ctgtggttcg 1560
cttgacagta tatccgaagg tgcgggagag gcgggtgttg aagatgccat ttttccttct 1620
ccagcggtaa cggtggcggg ggtggacgag ccaggggcgg cggcggagga tctggccaag 1680
atggctgcgg gggcggtgtc ttcttcttcg gtaacgcctc cttggatacg tcatatctga 1740
aaacgaaaga agtgcgctgt aagtatt
<210> 10
<211> 1767
<212> GENOMIC DNA
<213> Type B PWD circovirus
<220> Polarity strand - (5'-3')
<400> 10
aatacttaca gcgcacttct ttcgttttca gatatgacgt atccaaggag gcgttaccga 60
agaagaagac accgcccccg cagccatctt ggccagatcc tccgccgccg cccctggctc 120
gtccaccccc gccaccgtta ccgctggaga aggaaaaatg gcatcttcaa cacccgcctc 180
tecegeacet teggatatae tgteaagega accaeagtea gaaegeeete etgggeggtg 240
gacatgatga gattcaatat taatgacttt cttcccccag gaggggggtc aaacccccgc 300
tctgtgccct ttgaatacta cagaataaga aaggttaagg ttgaattctg gccctgctcc 360
ccgatcaccc agggtgacag gggagtgggc tccagtgctg tattttaga tgataacttt 420
gtaacaaagg ccacagccct cacctatgac ccctatgtaa actactcctc ccgccatacc 480
ataacccage cetteteeta ceaeteeegg taetttaeee beaaacetgt cetagattte 540
actattgatt acttccaacc aaacaacaaa agaaaccagc tgtggctgag actacaaact 600
gctggaaatg tagaccacgt aggcctcggc actgcgttcg baaacagtat atacgaccag 660
gaatacaata teegtgtaac eatgtatgta caatteagag aatttaattt taaagaeeee 720
ccacttaacc cttaatgaat aataaaaacc attacgaagt gataaaaaag actcagtaat 780
ttatttcata tggaaattca gggcatgggg gggaaagggt gacgaactgg cccccttcct 840
ccgtggattg ttctgtagca ttcttccaaa ataccaagga agtaatcctc cgataaagag 900
cttctacagc tgggacagca gttgaggagt accattccaa ¢ggggtctga ttgctggtaa 960
tcagaatact gcgggccaaa aaaggtacag ttccaccttt agtctctaca gtcaatggat 1020
atcgatcaca cagtctcagt agatcatccc agggcagcca dccataaaag tcatcaataa 1080
caaccacttc ttcaccatgg taaccatccc accacttgtt tctaggtggt ttccagtatg 1140
tggtttccgg gtctgcaaaa ttagcagccc atttgctttt &ccacaccca ggtggcccca 1200
caatgacgtg tacattagtc ttccaatcac gcttctgcat tttcccgctc actttcaaaa 1260
gttcagccag cccgcggaaa tttctgacaa acgttacagg gtgctgctct gcaacggtca 1320
```

<210> 11 <211> 945

gtgctgccgc tgccgaagtg cgctggt

ccagactccc gctctccaac aaggtactca cagcagtaga ¢aggtcactc cgttgtccct 1380 gagatctagg agctccacac tccatcagta agttgccttc tttactgcag tattctttat 1440

tetgetgate tgtteettte getttetega tgtggeageg ggeacecaaa taccaettea 1500

ctttattaaa agtctgcttc ttcacaaaat tagcgaaccc ¢tggaggtga ggtgttcgtc 1560 cttcctcatt accctcctcg ccaacaataa aataatcaaa tagggatatt ggaagatccc 1620 gtattttctt gcgctcgtct tcggaaggat tattcagagt daacacccac cttttatggg 1680

gttggggtcc gcttcttcca ttcttcttgc tgggcatgtt gctgctgagg tgctgccgag 1740

Ħį

```
<212> DNA
<213> Type B PWD circovirus
<220> ORF1
<400> 11
atgcccagca agaagaatgg aagaagcgga ccccaacdcc ataaaaggtg ggtgttcact 60
ctgaataatc cttccgaaga cgagcgcaag aaaatacdgg atcttccaat atccctattt 120
gattatttta ttgttggcga ggagggtaat gaggaaggac gaacacctca cctccagggg 180
ttcgctaatt ttgtgaagaa gcagactttt aataaagtga agtggtattt gggtgcccgc 240
tgccacatcg agaaagcgaa aggaacagat cagcagaalta aagaatactg cagtaaagaa 300
ggcaacttac tgatggagtg tggagctcct agatctcagg gacaacggag tgacctgtct 360
actgctgtga gtaccttgtt ggagagcggg agtctggtga ccgttgcaga gcagcaccct 420
gtaacgtttg tcagaaattt ccgcgggctg gctgaactkt tgaaagtgag cgggaaaatg 480
cagaagcgtg attggaagac taatgtacac gtcattgtbg ggccacctgg gtgtggtaaa 540
agcaaatggg ctgctaattt tgcagacccg gaaaccacht actggaaacc acctagaaac 600
aagtggtggg atggttacca tggtgaagaa gtggttgtta ttgatgactt ttatggctgg 660
ctgccctggg atgatctact gagactgtgt gatcgatatc cattgactgt agagactaaa 720
ggtggaactg taccttttt ggcccgcagt attctgatta ccagcaatca gaccccgttg 780
gaatggtact cctcaactgc tgtcccagct gtagaagctc tttatcggag gattacttcc 840
ttggtatttt ggaagaatgc tacagaacaa tccacggagg aagggggcca gttcgtcacc 900
ctttcccccc catgccctga atttccatat gaaataaatt actga
                                                                   945
<210> 12
<211> 702
<212> DNA
<213> Type B PWD circovirus
<220> ORF2
<400> 12
atgacgtatc caaggaggcg ttaccgaaga agaagacacc gccccgcag ccatcttggc 60
cagatectee geogeogeo etggetegte caececege acegttaceg etggagaagg 120
aaaaatggca tcttcaacac ccgcctctcc cgcaccttcg gatatactgt caagcgaacc 180
acagtcagaa cgccctcctg ggcggtggac atgatgagat tcaatattaa tgactttctt 240
ccccaggag gggggtcaaa cccccgctct gtgccctttg aatactacag aataagaaag 300
gttaaggttg aattetggee etgeteeeg ateaceeagg gtgaeagggg agtggetee 360
agtgctgtta ttttagatga taactttgta acaaaggcca cagccctcac ctatgacccc 420
tatgtaaact actecteeg ceataceata acceageeet teteetaeea eteeeggtae 480
tttaccccca aacctgtcct agatttcact attgattact tccaaccaaa caacaaaga 540
aaccagctgt ggctgagact acaaactgct ggaaatgtag accacgtagg cctcggcact 600
gcgttcgaaa acagtatata cgaccaggaa tacaatatc¢ gtgtaaccat gtatgtacaa 660
ttcagagaat ttaattttaa agacccccca cttaaccctt aa
                                                                  702
<210> 13
<211> 315
<212> DNA
<213> Type B PWD circovirus
<220> ORF3
<400> 13
atggtaacca tcccaccact tgtttctagg tggtttccag tatgtggttt ccgggtctgc 60
aaaattagca gcccatttgc ttttaccaca cccaggtgg¢ cccacaatga cgtgtacatt 120
agtettecaa teaegettet geatttteee geteaettte aaaagtteag eeageeegeg 180
gaaatttetg acaaacgtta cagggtgetg etetgeaacd gteaccagae teeegetete 240
caacaaggta ctcacagcag tagacaggtc actccgttgt ccctgagatc taggagctcc 300
acactccatc agtaa
                                                                  315
```

<210> 14 <211> 314 <212> PRT <213> Type B PWD circovirus															
<400 Met 1			Lys	Lys 5	Asn	Gly	Arg	Ser	Gly 0	Pro	Gln	Pro	His	Lys 15	Arg
Trp '	Val	Phe	Thr 20	Leu	Asn	Asn	Pro	Ser 25	1	Asp	Glu	Arg	Lys 30	Lys	Ile
Arg A	Asp	Leu 35	Pro	Ile	Ser	Leu	Phe 40	Asp	Tyr	Phe	Ile	Val 45	Gly	Glu	Glu
Gly A	Asn 50	Glu	Glu	Gly	Arg	Thr 55	Pro	His	Leu	Gln	Gly 60	Phe	Ala	Asn	Phe
Val :	Lys	Lys	Gln	Thr	Phe 70	Asn	Lys	Val	Lys	Trp 75	Tyr	Leu	Gly	Ala	Arg 80
Cys	His	Ile	Glu	Lys 85	Ala	Lys	Gly	Thr	Asp 90	Gln	Gln	Asn	Lys	Glu 95	Tyr
Cys	Ser	Lys	Glu 100	Gly	Asn	Leu	Leu	Met 105	Glu	Cys	Gly	Ala	Pro 110	Arg	Ser
Gln (Gly	Gln 115	Arg	Ser	Asp	Leu	Ser 120	Thr	Ala	Val	Ser	Thr 125	Leu	Leu	Glu
Ser (Gly 130	Ser	Leu	Val	Thr	Val 135	Ala	Glu	Gln	His	Pro 140	Val	Thr	Phe	Val
Arg 1	Asn	Phe	Arg	Gly	Leu 150	Ala	Glu	Leu	Leu	Lys 155	Val	Ser	Gly	Lys	Met 160
Gln :	Lys	Arg	Asp	Trp 165	Lys	Thr	Asn	Val	His 170		Ile	Val	Gly	Pro 175	Pro
Gly	Cys	Gly	Lys 180	Ser	Lys	Trp	Ala	Ala 185	Asn	Phe	Ala	Asp	Pro 190	Glu	Thr
Thr '	Tyr	Trp 195	Lys	Pro	Pro	Arg	Asn 200	Lys	Trp	Trp	Asp	Gly 205	Tyr	His	Gly
Glu (Glu 210	Val	Val	Val	Ile	Asp 215		Phe	Tyr		Trp 220	Leu	Pro	Trp	Asp
Asp (Leu	Leu	Arg	Leu	Cys 230	Asp	Arg	Tyr	Pro	Leu 235	Thr	Val	Glu	Thr	Lys 240
Gly	Gly	Thr	Val	Pro 245	Phe	Leu	Ala	Arg	Ser 250		Leu	Ile	Thr	Ser 255	Asn
Gln '	Thr	Pro	Leu 260	Glu	Trp	Tyr	Ser	Ser 265	Thr	Ala	Val	Pro	Ala 270	Val	Glu
Ala	Leu	Tyr	Arg	Arg	Ile	Thr	Ser	Leu	Val	Phe	Trp	Lys	Asn	Ala	Thr

275			280					285			
Glu Gln Ser 290	Thr Glu	Glu Gly 295	Gly	Gln	Phe	Val	Thr 300	Leu	Ser	Pro	Pro
Cys Pro Glu 305		Tyr Glu 310	Ilė .	Asn	Tyr						
<210> 15 <211> 233 <212> PRT <213> Type I	B PWD cir	covirus									
<400> 15 Met Thr Tyr	Pro Arg 2	 Arg Arg	Tyr .	Arg	Arg 10	Arg	Arg	His	Arg	Pro 15	Arg
Ser His Leu	_	Ile Leu	Arg .	Arg 25		Pro	Trp	Leu	Val 30		Pro
Arg His Arg 35	Tyr Arg	Trp Arg	Arg	Lys	Asn	Gly	Ile	Phe 45	Asn	Thr	Arg
Leu Ser Arg 50	Thr Phe	Gly Tyr 55	Thr	Val	Lys	Arg	Thr 60	Thr	Val	Arg	Thr
Pro Ser Trp 65	Ala Val	Asp Met 70	Met .	Arg	Phe	Asn 75	Ile	Asn	Asp	Phe	Leu 80
Pro Pro Gly	Gly Gly 85	Ser Asn	Pro .	Arg	Ser 90	Val	Pro	Phe	Glu	Tyr 95	Tyr
Arg Ile Arg	Lys Val 1	Lys Val		Phe 105	Trp	Pro	Cys	Ser	Pro 110	Ile	Thr
Gln Gly Asp 115	Arg Gly	Val Gly	Ser 120	Ser	Ala	Val	Ile	Leu 125	Asp	Asp	Asn
Phe Val Thr 130	Lys Ala	Thr Ala 135	Leu	Thr	Tyr	Asp	Pro 140	Tyr	Val	Asn	Tyr
Ser Ser Arg 145			Gln				_		Ser	_	Tyr 160
Phe Thr Pro		Val Leu			Thr 170		Asp	Tyr	Phe	Gln 175	Pro
Asn Asn Lys	Arg Asn 180	Gln Leu	-	Leu 185	Arg	Leu	Gln	Thr	Ala 190	Gly	Asn
Val Asp His 195	Val Gly	Leu Gly	Thr .	Ala	Phe	Glu	Asn	Ser 205	Ile	Tyr	Asp
Gln Glu Tyr 210	Asn Ile	Arg Val 215		Met	Tyr		Gln 220	Phe	Arg	Glu	Phe
7 Di- I	Nan Dwa	Dwo Iou	7	D							

Asn Phe Lys Asp Pro Pro Leu Asn Pro

					1				<i>,</i>		
225	230										
<210> 16 <211> 104 <212> PRT <213> Type B PW	D circov	irus									
<400> 16 Met Val Thr Ile 1	Pro Pro 5	Leu	Val	Ser	Arg	Trp	Phe	Pro	Vaİ	Cys 15	Gly
Phe Arg Val Cys 20	Lys Ile	Ser	Ser	Pro 25	Phe	Ala	Phe	Thr	Thr 30	Pro	Arg
Trp Pro His Asn	Asp Val	Tyr	Ile 40	Ser	Leu	Pro	Ile	Thr 45	Leu	Leu	His
Phe Pro Ala His	Phe Gln	Lys 55	Phe	Ser	Gln	Pro	Ala 60	Glu	Ile	Ser	Asp
Lys Arg Tyr Arg	Val Leu 70	Leu	Cys	Asn	Gly	His 75	Gln	Thr	Pro	Ala	Leu 80
Gln Gln Gly Thr	His Ser 85	Ser	Arg	Gln	Val 90	Thr	Pro	Leu	Ser	Leu 95	Arg
Ser Arg Ser Ser 100	Thr Leu	His	Gln								
<210> 17 <211> 15 <212> PRT <213> Type B PW	D circov	irus			į ,						
<400> 17 Val Asp Met Met 1	Arg Phe 5	Asn	Ile	Asn	Asp	Phe	Leu	Pro	Pro	Gly 15	
<210> 18 <211> 15 <212> PRT <213> Type B PW	D circov	irus			, , .		,				
<400> 18 Gln Gly Asp Arg 1	Gly Val 5	Gly	Ser	Ser			Ile	Leu	Asp	Asp 15	
<210> 19 <211> 15 <212> PRT <213> Type B PW	D circov	irus									
<400> 19 Gly Val Gly Ser 1	Ser Ala 5	Val	Ile	Leu	Asp	Asp	Asn	Phe	Val	Thr 15	

Bibliographic references

Allan, G.M. et al., 1995, Vet. Microbiol., 44: 49-64.

Barany, F., 1911, PNAS. USA, 88: 189-193.

Boulton, L.H. et al., 1997, J. Gen. Virol., 78 (Pt 6), 1265-1270.

Buckholz, R.G., 1993, Yeast systems for the expression of heterologous gene products.

Curr. Op. Biotechnology 4: 538-542.

Burg, J.L. et al., 1996, Mol. and Cell. Probes, 10: 257-271.

Chu, B.C.F. et al., 1986, NAR, 14: 5591-5603.

Chu, P.W.G. et al., 1993, Virus Research, 27: 161-171.

Clark, E.G., 1997, American Association of Swine Practitioners, 499-501.

Daft, B. et al., 1996, American Association of Veterinary Laboratory Diagnosticians, 32.

Derse, D. et al., 1995, J. Virol., 69(3): 1907-1912.

Duck, P. et al., 1990, Biotechniques, 9: 142-147.

Dulac, G.C. et al., 1989, Can. J. Vet. Res., 53: 431-433.

Edwards, C.P., and Aruffo, A., 1993, Current applications of COS cell based transient expression systems. Curr. Op. Biotechnology 4: 558-563.

Edwards, S. et al., 1994, Vet. Rec., 134: 680-681.

Erlich, H.A., 1989, In PCR Technology. Principles and Applications for DNA Amplification. New York: Stockton Press.

Felgner, et al., 1987, Proc. Natl. Acad. Sci., 84: 7413.

Fontes, E.P.B. et al., 1994, J. Biol. Chem., Vol. 269, No. 11: 8459-8465.

Fraley et al., 1980, J. Biol. Chem., 255: 10431.

Guateli, J.C. et al., 1990, PNAS. USA, 87: 1874-1878.

Hackland, A.F. et al., 1994, Arch. Virol., 139: 1-22.

Hanson, S.F. et al., 1995, Virology, 211: 1-9.

Harding, J.C., 1997, American Association of Swine Practitioners, 503.

Harding, R.M. et al., 1993, Journal of General Virology, 74: 323-328.

Harding, J.C. and Clark, E.G., 1997, Swine Health and Production, Vol. 5, No. 5: 201-203.

Heyraud-Nitschke, F. et al., 1995, Nucleic Acids Research, Vol. 23, No. 6.

Horner, G.W., 1991, Surveillance 18(5): 23.

Houben-Weyl, 1974, in Methode der Organischen Chemie, E. Wunsch Ed., Volume 15-I and 15-II, Thieme, Stuttgart.

Huygen, K. et al., 1996, Nature Medicine, 2(8): 893-898.

Innis, M.A. et al., 1990, in PCR Protocols. A guide to Methods and Applications, San Diego, Academic Press.

Kaneda, et al., 1989, Science, 243: 375.

Kievitis, T. et al., 1991, J. Virol. Methods, 35: 273-286.

Kohler, G. et al., 1975, Nature, 256(5517): 495-497.

Kwoh, D.Y. et al., 1989, PNAS. USA, 86: 1173-1177.

Ladany, S. et al., 1989, J. Clin. Microbiol. 27: 2778-2783.

Lazarowitz, S.G. et al., 1989, The EMBO Journal, Vol. 8 No. 4: 1023-1032.

Luckow, V.A., 1993, Baculovirus systems for the expression of human gene products.

Curr. Op. Biotechnology 4: 564-572.

Mankertz, A. et al., 1997, J. Virol., 71: 2562-2566.

Matthews, J.A. et al., 1988, Anal. Biochem., 169: 1-25.

McNeilly, F. et al., 1996, Vet. Immunol. Immunopathol., 49: 295-306.

Meehan, B.M. et al., 1997, J. Gen. Virol. 78: 221-227.

Merrifield, R.D., 1966, J. Am. Chem. Soc., 88(21): 5051-5052.

Midoux, 1993, Nucleic Acids Research, 21: 871-878.

Miele, E.A. et al., 1983, J. Mol. Biol., 171: 281-295.

Murphy, F.A. et al., 1995, Sixth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag Wien New York.

Nayar, G.P. et al., 1997, Can. Vet. J. 38(6): 385-386.

Olins, P.O., and Lee, S.C., 1993, Recent advances in heterologous gene expression in E.coli. Curr. Op. Biotechnology 4: 520-525.

Pagano et al., 1967, J. Virol., 1: 891.

Rolfs, A. et al., 1991, In PCR Topics. Usage of Polymerase Chain reaction in Genetic and Infectious Disease. Berlin: Springer-Verlag.

Sambrook, J. et al., 1989, In Molecular cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Sanchez-Pescador, R., 1988, J. Clin. Microbiol., 26(10): 1934-1938.

Segev D., 1992, in "Non-radioactive Labeling and Detection of Biomolecules". Kessler C. Springer Verlag, Berlin, New-York: 197-205.

Shiver, J.W., 1995, in Vaccines 1995, eds Chanock, R.M. Brown, F. Ginsberg, H.S. & Norrby, E., pp. 95-98, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Tascon, R.E. et al., 1996, Nature Medicine, 2(8): 888-892.

Tischer, I. et al., 1982, Nature, 295: 64-66.

Tischer, I. et al., 1986, Arch. Virol., 91: 271-276.

Tischer, I. et al., 1988, Zentralbl Bakteriol Mikrobiol Hyg [A] 270: 280-287.

Tischer, I. et al., 1995, Arch. Virol., 140: 737-743.

Urdea, M.S., 1988, Nucleic Acids Research, II: 4937-4957.

Walker, G.T. et al., 1992, NAR 20: 1691-1696.

Walker, G.T. et al., 1992, PNAS. USA, 89: 392-396.

White, B.A. et al., 1997, Methods in Molecular Biology, 67, Humana Press, Towota.

Zhao, T.M. et al., 1996, Proc. Natl. Acad. Sci., USA 93(13): 6653-6648.