

Автор работы 1	2	3	4	5	6	7	8

1. [2 балла] Докажите, что функция

$$f(x) = \log\left(\sum_{i=1}^{n} e^{x_i}\right)$$

выпуклая, используя любой дифференциальный критерий выпуклости.

2. [3 балла] Пусть $X \in \mathbb{R}^{m \times n}$, где $\mathrm{rk} X = n$, $\Omega \in \mathbb{S}^m_{++}$, и $W \in \mathbb{R}^{k \times n}$. Найдите матрицу $G \in \mathbb{R}^{k \times m}$, являющуюся решением следующей задачи оптимизации:

$$f(G) = \operatorname{tr}\left(G\Omega G^{\top}\right) \to \min_{GX = W}$$

- 3. [1 балл] Приведите пример μ -сильно выпуклой L-гладкой функции, для которой градиентный спуск сойдётся из любой стартовой точки ровно за одну итерацию. Укажите необходимый для этого шаг метода (он не должен зависеть от точки старта). Ответ обоснуйте.
- 4. [2 балла] Упростите выражение:

$$\sum_{i=1}^n \langle X^{-1}w_i, w_i \rangle, \ \text{ где } \ X = \sum_{i=1}^n w_i w_i^T, w_i \in \mathbb{R}^n, \det X \neq 0.$$

5. [2 балла] Предложите метод решения линейной системы уравнений большой размерности:

$$Ax = b$$
,

где матрица A симметрична и положительно определена, с помощью одного из методов оптимизации. Пусть известны собственные значения матрицы $\lambda_{\min}(A), \lambda_{\max}(A)$. Приведите оценку скорости сходимости метода (здесь предполагается, что вы предложите метод из курса, тогда доказывать скорость сходимости не нужно).

6. [3 балла] Рассмотрите задачу оптимизации:

$$\begin{split} f(x) &\to \min_{x \in \mathbb{R}^n}, \\ \text{s.t. } a &\preceq x \preceq b \end{split}, \qquad a \in \mathbb{R}^n, \, b \in \mathbb{R}^n, \, \, a \prec b. \end{split}$$

Выпишите явно нетривиальную итерацию проксимального градиентного метода для неё.

7. [2 балла] Сходимость алгоритма Франк-Вульфа в курсе показана только для гладких функций. В этой задаче мы рассмотрим, является ли гладкость необходимой. Рассмотрим следующую негладкую задачу с $f: \mathbb{R}^2 \to \mathbb{R}, f=\max\{x_1,x_2\}$:

$$\min_{x_1^2+x_2^2\leq 2} f(x_1,x_2).$$

Предположим, что мы стартуем из точки (0,0) и запускаем алгоритм Франк-Вульфа (с любым правилом шага). Поскольку функция не является гладкой, мы будем использовать произвольный субградиент вместо градиента. Сходится ли этот алгоритм к оптимуму? Ответ обоснуйте.

8. [5 баллов] Рассмотрим выпуклую гладкую задачу минимизации конечной суммы:

$$f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \to \min_{x \in \mathbb{R}^p}$$

Алгоритм SGD выбирает $i \in [n]$ равномерно и устанавливает $\nabla f_i(x_k)$ как стохастический градиент. Иногда можно ускорить SGD, выполняя сэмплирование не равномерно, а по значимости.

а. [1 балл] Рассмотрим произвольное распределение вероятностей $p=(p_1,\dots,p_n)$ с $p_i>0$ и $\sum_{i=1}^n p_i=1$. Мы выбираем i согласно распределению p и определяем g_k как:

$$g_k := \frac{1}{p_i n} \nabla f_i(x_k) \tag{IS}$$

Тогда покажите, что g_k является несмещенной оценкой градиента, то есть $\mathbb{E}[g_k|x_k] = \nabla f(x_k)$.

б. [2 балла] Напомним, что стандартный единичный симплекс определяется как

$$\Delta_n := \left\{ y \in \mathbb{R}^n : \sum_{i=1}^n y_i = 1, y_i \geq 0 \forall i \right\}.$$

Для некоторых фиксированных констант $c_i \in \mathbb{R}$ для $i \in [n]$. Пусть y^\star будет оптимумом следующей задачи оптимизации:

$$\min_{y \in \Delta_n} \sum_{i=1}^n \frac{c_i^2}{y_i} \tag{P}$$

Используя общие условия локального экстремума первого порядка, докажите, что

$$y_i^\star = \frac{|c_i|}{\sum_{i=1}^n |c_i|}, \forall i \in [n]$$

является решением поставленной задачи (Р).

в. [2 балла] Используя результат из предыдущего пункта, вычислите оптимальную вероятность сэмплирования p^\star для того, чтобы минимизировать дисперсию $\mathbb{E}[\|g_k - \nabla f(x_k)\|^2]$ стохастического градиента g_k , определенного в (IS).