

Low Noise, 256 Microstepping Motor Driver

PRODUCT DESCRIPTION

The MS35774 is a two-phase stepping driver featured by high-precision, low noise and built in power MOSFET. The average operating current for long time can reach 1.4A and the peak current is 2A. The MS35774 integrates protection function, including thermal shutdown, undervoltage protection, overcurrent protection, short-ground protection and short-power protection.

CELE TITLE

QFN28

FEATURES

- Two-phase Stepping Motor, Reach 2A Peak Current
- Low On-resistance
- Voltage Range 4.75~36V
- STEP/DIR Interface, Select 2,4,8 or 16 Microstep
- Internal 256 Microstep
- Automatically Enter into Power Saving Mode at Motor Stopping
- Buit-in Optional Sense Resistance Mode (No Need for External Sense Resistor)
- QFN28 Package with Back Thermal PAD

APPLICATIONS

- Precise Industrial Device
- Medical Device
- 3D Print
- Motoring

PRODUCT SPECIFICATION

Part Number	Package	Marking
MS35774	QFN28	MS35774

PIN CONFIGURATION

PIN DESCRIPTION

Pin	Name	Туре	Description
1	BOUT2	10	Motor Coil B Output 2
2	ENN	DI	Enable Input, turn off output when high level
3	GND	-	Ground
4	СРО	10	Charge-pump Capacitance Output
_	CDI	10	Charge-pump Capacitance Input,
5	СРІ	10	connected to CPO with 22nF(50V) capacitance
6	VCP	10	Charge-pump Voltage, connected to VM with 100nF capacitance
7	NC	-	Unused Pin, floating or grounding
			Internal 5V LDO,
8	V5	10	connected to ground with 2.2uF~4.7uF capacitance
9	MS1	DI	Microstep Configuration Port (Built in pull-down resistor)
10	MS2	DI	Microstep Configuration Port (Built in pull-down resistor)
			Internal Fault Signal Output, driver off when high level. Reset by
11	FAULT	DO	ENN with high level
12	FG0	DO	Provide Coil A Forward Zero-crossing Pulse
13	CLK	DI	Clock Input. Can ground when using internal clock.
			Power supply off is not controlled by input. Automatic standstill
14	14 PDN DIO		cuuernt decay mode when low level
15	VIO	-	1.8V to 5V Power Supply for Each Digital Input and Output Pins
16	STEP	DI	Microstep Input Pin
			Analog Reference Voltage Controlling Current Input Pin, or Analog
17	VREF	Al	Reference Current Input in Internal Sense Resistor Mode
18	GND	-	Ground
19	DIR	DI	DIR Input Pin (Built in pull-down resistor)
20	NC	-	Unused Pin, floating or grounding
21	AOUT2	10	Motor Coil A Output 2
22	VM	-	Motor Power Supply
			Coil A Low-side MOS Source Terminal, connected to ground with
23	SENA	10	sense resistor. Can ground directly in internal sense resistor mode
24	AOUT1	10	Motor Coil A Output 1
25	NC	-	Unused Pin, floating or grounding
26	BOUT1	10	Motor Coil B Output 1
			Coil B Low-side MOS Source Terminal, connected to ground with
27	SENB	10	sense resistor. Can ground directly in internal sense resistor mode
28	VM	-	Motor Power Supply
-	PAD	-	Thermal PAD, must be connected to ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because long-time absolute operation state affects device reliability. Absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

Parameter	Symbol	Range	Unit
Power Supply	Vs	-0.5 ~ 39	V
IO Supply Voltage	V _{VIO}	-0.5 ~ 5.5	V
Digital Power Supply with External Power	V _{5VOUT}	-0.5 ~ 5.5	V
Logic Input Voltage	Vı	-0.5 ~ V _{IO} +0.5	V
VREF Input Voltage ¹	V _{VREF}	-0.5 ~ 6	V
Maximum Current of Analog Digital Port	I _{IO}	±10	mA
Output Current Capacity		25	
for 5V Internal Power	I _{5VOUT}	25	mA
Power Drive, Output Current	I _{Ox}	2.5	Α
Junction Temperature	T _J	-50 ~ 1 50	°C
Storage Temperature	T _{STG}	-55 ~ 150	°C
ESD (HBM)	V _{ESD}	4k	V

Note 1: VIO and V5 voltages can't exceed 10% at the same time, otherwise going into test mode.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply (Using internal V5)	Vs	5.5		36	V
Power Supply (VS and V5 connected together)	Vs	4.7		5.4	V
I/O Supply Voltage	V _{VIO}	1.8		5.25	V
RMS Current, Each Motor Coil	I _{RMS}			1.2	Α
RMS Current, One Second On, One Second Off	I _{RMS}			1.4	Α
Peak Current, Each Motor Coil	I _{Ox}			2	Α
Junction Temperature	TJ	-40		125	°C

ELECTRICAL CHARACTERISTICS

VM=24V. Note: Unless otherwise noted, Ta = 25°C ±2°C

Current Consumption

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Current Consumption, without Load	I _S	Fclk=12MHz, without chopping		10	14	mA
Current Consumption, without Load	Is	Fclk=12MHz, 35kHz chopping		11		mA
V5 Supply Current	lvcc	Fclk=12MHz, 35kHz chopping		10		mA
IO Supply Current	I _{VIO}	IO without any load		30		uA

Digital Input and Output

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Low Voltage	V_{INLO}		-0.3		0.3Vio	V
Input High Voltage	V_{INHI}		0.7Vio		Vio+0.3	V
Input SMIT Hysteresis	V_{INHYST}			0.12Vio		V
Output High Voltage	V _{OUTLO}	I=2mA	Vio-0.2			V
Output Low Voltage	V _{outhi}	I=2mA			0.2	V
Input Leakage Current	I _{ILEAK}		-10		10	uA
Pull-up, Pull-down Resistance	R _{PU} /R _{PD}			150		kΩ
Digital Port Capacitance	С			8		pF

Motor Drive

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Low -side rdson	R _{ONL}	I=100mA		0.28	0.38	Ω
High-side rdson	R _{ONH}	I=100mA		0.29	0.39	Ω
Rise Time	t _{SLPON}	I=700mA	40	80	160	ns
Fall Time	t _{SLPOFF}	I=700mA	40	80	160	ns
Source Current at Drive Off	I _{OIDLE}	OUTX connected to GND	120	330	400	uA

Charge-pump

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Charge_pump Output Voltage	V _{VCP} -V _S	Operating at fchop<40kHz	4	Vcc-0.3	VCC	V
Charge_pump Output Undervoltage Threshold	V _{VCP} -V _S	Using internal 5V LDO	3.7	4	4.3	V
Charge_pump Frequency	f_{CP}			1/16CLK		

5V LDO

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Voltage	V ₅	I5v=0mA	4.8	5	5.2	V

Output Resistance	R _{V5}	Static Load		1		Ω
Deviation in Whole	VE	I=5mA, whole operating			. 200	.,
Temperature Range	V5 _{T(DEV)}	temperature rang		±90	±200	mV
Deviation in Whole		I=5mA, whole operating				
Voltage Range	V5 _{V(DEV)}	voltage range		±100	±150	mV/10V

Clock Oscillator

Parameter	Symbol	Condition	Min	Тур	Max	Unit
	f _{CLKOSC}	T=50°C		11.7		MHz
Clock Frequency	f _{CLKOSC}	T=25°C	11.5	12.0	12.5	MHz
(Default Setting)	f _{CLKOSC}	T=150°C		12.1		MHz
Additional Clock Frequency	f _{CLK}		4	10-16	18	MHz
Rise and Fall Time		CI K (40			
for Additional Clock Frequency	t _{CLK}	CLK from 0.1Vio to 0.9Vio	10			ns
Overtime Detection						Fclk
for Additional Clock	X _{timeout}		32		48	Period

Detection Signal

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Undervoltage Protection	V _{UV_VS}	Power supply rising	3.5	4.3	4.6	V
V5 Undervoltage Protection	V _{UV_V5}	5V LDO rising		4.2		V
Overcurrent Protection Voltage(HS)	V _{OS2G}		2	2.5	3	V
Overcurrent Protection Voltage(LS)	V _{OS2VS}		1.6	2	2.3	V
Short-circuit Protection Detection Time(HS+LS)	t _{S2G}	High-side Output Level to VSP-3V	0.8	1	2	us
Overtemperature Pre-warning	t _{OTPW}	Temperature rises	100	120	140	°C
Overtemperature Shutdown or Overtemperature Pre-warning	t _{OT143}	Temperature rises	128	143	163	°C
Overtemperature Shutdown	t _{OT150}	Temperature rises	135	150	170	°C
Overtemperature Shutdown	t _{OT157}	Temperature rises	142	157	177	°C
Temperature Difference between Power FET and Temperature Detection Module	t _{OTDIFF}			10		°C

Sense

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Sense Peak Voltage (Low Sensitivity)	V _{SRTL}			325		mV
Sense Peak Voltage (High Sensitivity)	V _{SRTH}			180		mV
Internal Resistance between Internal Brx to	_					_
External Sense Resistance	R _{xy}			15		mΩ

FUNCTION DESCRIPTION

The MS35774 is a two-phase stepping motor driver, with full-bridge output structure consisted of dual NDMOS, which can provide larger current driving capacity. ENN controls output drive and when it is low level, output drive is turned on.

The MS35774 has easy peripheral control and the silence feature is especially appropriate to domestic or office application.

Microstep Control

The microstep resolution is controlled by MS1 and MS2, as shown in following table. MSx is built in a $160k\Omega$ pull-down resistor.

MS2	MS1	Step Mode
0	0	1/8
0	1	1/2
1	0	1/4
1	1	1/16

STEP Input

Each STEP can be full-step or microstep. One full-step could be equal to 2,4,8,16,32,64,128,256 microstep. The internal table is translated to sine and cosine values, controlling motor current.

The MS35774 integrates internal STEP pulse generator, meeting some applications, which require precise time and speed rather than position.

DIR

The motor direction is controlled by DIR pin. The timing diagram is for STEP, DIR control as follows.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
STEP Frequency	f _{STEP}				1/2 f _{CLK}	
Full-step Frequency	f _{FS}				f _{CLK} /512	
Setup Time , DIR to STEP	t ₁		20			ns
STEP Minimum High Level Time	t ₂			100		ns
STEP Minimum Low Level Time	t ₃			100		ns
Hold Time, DIR to STEP	t ₄		20			ns
Filtering Time for STEP and DIR Glitches	t ₅	Rise or Fall Edge	13	20	30	ns

5V Regulated Power

The MS35774 also provides 5V regulated power output, which is required to connect with a capacitor of 2.2uF to 4.7uF in applications. The MS35774 has internal V5 voltage detection structure. If fault occurs (low-voltage), all outputs are turned off.

Charge-pump

Because output stage adopts N-channel FETs, which are fully enabled only when the required gate drive voltage is higher than the power supply. And the MS35774 integrates charge-pump circuit to generate this high-voltage.

When normally operating, charge-pump circuit needs to connect with two external capacitors as shown below.

Current Control

The motor peak current is determined by R_{SENSE} and input voltage of VREF pin.

The peak current calculation formula is as followed:

$$I_{RMS} = \frac{325mV}{R_{SENSE} + 15m\Omega} \times \frac{V_{VREF}}{2.5V}$$

The corresponding RMS current formula is as followed:

$$I_{RMS} = \frac{325mV}{R_{SENSE} + 15m\Omega} \times \frac{1}{\sqrt{2}} \times \frac{V_{VREF}}{2.5V}$$

Automatic Current Decay

The automatic current decay function is enabled by pulling down PDN pin. When the operating current is about 50%, the power dissipation can be reduced to 33%.

Zero-crossing Output Flag

The MS35774 provides zero-crossing output flag , FG0. When motor coil current is forward zero-crossing, a pulse signal will be output.

Fault Output Flag

When fault signal occurs, the diagnostic signal is output through fault indication pin, FAULT. The fault signal can be reset via ENN pin, and FAULT is low level at normal operation.

Protection

The MS35774 has protection function, including overcurrent protection, undervoltage protection and thermal shutdown.

When motor loads are shorted together or grounded directly, the MS35774 will protect itself by detecting overcurrent and turn off shorted FETs, preventing internal devices from damage. FAULT pin would output a high-level signal, and ENN pin reset is needed.

When the temperature exceeds setting threshold, the thermal shutdown will work. At this time, all channels would be off and FAULT outputs a high-level signal. When the temperature drops to safety temperature, the MS35774 will return to normal operation state .

When the power supply drops to threshold voltage of undervoltage protection, all channels will be off, internal logic circuits are reset. When returning to the voltage higher than threshold, the MS35774 will return to normal operation state.

TYPICAL APPLICATION DIAGRAM

PACKAGE OUTLINE DIMENSIONS

QFN28

	Dimensions in I	Millimeters	Dimensions in Inches		
Symbol	Min	Max	Min	Max	
А	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203R	EF	0.008REF		
D	4.900	5.100	0.193	0.201	
E	4.900	5.100	0.193	0.201	
D1	3.050	3.250	0.120	0.128	
E1	3.050	3.250	0.120	0.128	
k	0.200N	IIN	0.008MIN		
b	0.180	0.300	0.007	0.012	
е	0.500TYP		0.020TYP		
L	0.450	0.650	0.018	0.026	

MARKING and PACKAGING SPECIFICATIONS

1. Marking Drawing Description

Product Name: MS35774

Product Code: XXXXXXX

2. Marking Drawing Demand

Laser printing, contents in the middle, font type Arial.

3. Packaging Specifications

Device	Package	Piece/Reel	Reel/Box	Piece/Box	Box/Carton	Piece/Carton
MS35774	QFN28	1000	8	8000	4	32000

STATEMENT

- All Revision Rights of Datasheets Reserved for Ruimeng. Don't release additional notice.
 Customer should get latest version information and verify the integrity before placing order.
- When using Ruimeng products to design and produce, purchaser has the responsibility to observe safety standard and adopt corresponding precautions, in order to avoid personal injury and property loss caused by potential failure risk.
- The process of improving product is endless. And our company would sincerely provide more excellent product for customer.

MOS CIRCUIT OPERATION PRECAUTIONS

Static electricity can be generated in many places. The following precautions can be taken to effectively prevent the damage of MOS circuit caused by electrostatic discharge:

- 1. The operator shall ground through the anti-static wristband.
- 2. The equipment shell must be grounded.
- 3. The tools used in the assembly process must be grounded.
- 4. Must use conductor packaging or anti-static materials packaging or transportation.

+86-571-89966911

Rm701, No.9 Building, No. 1 WeiYe Road, Puyan Street, Binjiang District, Hangzhou, Zhejiang

VERSION: V1.0

http://www.relmon.com