Dirbtinio intelekto sistemų inžinerija

DI projektų valdymas: projektų planavimas. Išteklių paskirstymas ir rizikos valdymas

Artificial Intelligence System Engineering

Al Project Management: Project planning and scheduling. Resource allocation and risk management

Challenges in Al Project Management

- Evolving technology and requirements
- Data dependency and quality
- Integration with existing systems
- Ethical considerations and regulatory compliance

Data dependency and quality

- Data is the foundational element that determines the success or failure of a model;
- Data is used for:
 - Training
 - Validation and testing
 - Production and Updates
- Data Accessibility (Before starting to work, try to get a sample data)
- Data Integration

Project Planning in Al

- Key elements of project planning:
 - Defining objectives
 - Identifying deliverables
 - Creating a project roadmap
- Tools and techniques:
 - Gantt charts
 - Work Breakdown Structure (WBS)

Scheduling in Al Projects

- Importance of iterative cycles (e.g., Agile sprints)
- Managing dependencies and milestones
- Techniques:
 - Rolling wave planning
 - Kanban boards

Resource Allocation

- Types of resources:
 - Human resources (data scientists, ML engineers)
 - Infrastructure resources (cloud computing, GPUs)
 - Data resources (datasets, storage)
- Strategies:
 - Dynamic resource allocation (e.g., scaling cloud resources)
 - Prioritizing tasks based on critical paths
- Tools:
 - Resource management plans
 - Automation with MLOps platforms

- Developing ML systems is an iterative process
- Two key characteristics of ML workflows that influence their resource management: repetitiveness and dependencies.
- How to solve this?
 - Cron
 - Schedulers
 - oand Orchestrators

- Cron job run a script at a predetermined time. It does not care if the action ended in success or failure
- DAG directed acyclic graph

Designing Machine Learning systems

- Schedulers cron programs that can handle dependencies (you could try Slurm)
- Allows to control the logic if a job fails/succeeds
- Should optimize for:
 - o resource utilization
 - o jobs to run
 - o resources needed for each job
- Answer questions when to run jobs and what resources to use

- Orchestrators answer the question *where* to get those resources
- Orchestrators deal with:
 - Machines
 - Instances
 - Clusters
 - Service-level grouping
 - Replication
 - o Etc.
- Kubernetes (WS's Elastic Kubernetes Service (EKS), Google Kubernetes Engine (GKE) unless you love setting up K8s clusters)
- Schedulers usually run on top of orchestrators
 - Slurm, Google's Borg, HashiCorp Nomad, K8s

Tools

- Workflow management tools for data science:
 - Airflow
 - Argo
 - Prefect
 - Kubeflow
 - Metaflow, etc