

Continguts i Pautes

Sessió de teoria del 04/05/2021

Contingut

De: 6.2.6.1 Notació estereoquímica (des de símbol de quiralitat configuracional, geometria octaèdrica)

Fins: 6.2.6.1 Notació estereoquímica (fins símbols de quiralitat no configuracional)

Alfonso Polo Ortiz Departament de Química (Química Inorgànica) Universitat de Girona **Pautes**

De: exercici 6.24 Fins: exercici 6.26

© Alfonso Polo Ortiz [Nom del titular dels drets d'explotació], 2021 Els continguts d'aquest document (excepte textos i imatges no creats per l'autor) estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-CompartirIgual 4.0

Exercici 6.24. Dibuixa les estructures dels diferents estereoisòmers dels següents compostos. Relacionals entre ells. Assigna'ls-hi els símbols polièdrics i índexs de configuració. Si és el cas, determina el seu símbol de quiralitat configuracional.

- a) $Na[Co(CH_3NH_2)_2(CN)_2(OH)_2]$
- b) $[CoBrCII(NH_3)(H_2O)py]$ (py = piridina)

Resposta: a) (OC-6-32), (OC-6-22), (OC-6-33), (OC-6-13) i (OC-6-12), el primer d'ells com parell d'enantiòmers. b) 15 parells d'enantiòmers, diastereòmers entre ells.

El mètode de Bailar

Mètode que permet conèixer el nombre d'estereoisòmers que presenta un complex octaèdric, segons la seva estequiometria i mitjançant la construcció d'una llista sistemàtica.

L'estereoquímica del complex es descriu mitjançant una matriu 3 x 2 on cada una de les tres files conté els lligands que es troben mútuament en *trans*. e.g. Complex amb 6 lligands diferents

$$\begin{array}{c}
c \\
m \\
e
\end{array}$$

$$\begin{array}{c}
d \\
d \\
d
\end{array}$$

$$\begin{array}{c}
ab \\
cd \\
ef
\end{array}$$

Si mantenim **a** i **b** fixes. La variació dels lligands *trans* a **c** generen 3 diastereòmers

$$\begin{array}{c|c}
c_{IIIIII} & a \\
d & M & e
\end{array}$$

$$\begin{array}{c|c}
c_{IIIIIII} & a \\
b & a \\
c_{IIIIIII} & a
\end{array}$$

$$\begin{array}{c|c}
c_{IIIIIIII} & a \\
c_{IIIIIIII} & a \\
d & c_{IIIIIIIIIII}
\end{array}$$

Si es repeteix el mateix procés per cada lligand que pot estar en *trans* a **a** (lligand de referència), obtindrem: 5 lligands (**b**, **c**, **d**, **e**, i **f**) x 3 diastereòmers per cada lligand = 15 diastereòmers.

Exercici 6.24. Dibuixa les estructures dels diferents estereoisòmers dels següents compostos. Relacionals entre ells. Assigna'ls-hi els símbols polièdrics i índexs de configuració. Si és el cas, determina el seu símbol de quiralitat configuracional.

- a) $Na[Co(CH_3NH_2)_2(CN)_2(OH)_2]$
- b) $[CoBrCII(NH_3)(H_2O)py]$ (py = piridina)

Resposta: a) (OC-6-32), (OC-6-22), (OC-6-33), (OC-6-13) i (OC-6-12), el primer d'ells com parell d'enantiòmers. b) 15 parells d'enantiòmers, diastereòmers entre ells.

El mètode de Bailar

poden posar en forma de taula:

Totes aquestes combinacions es

	A	B	C
	ab	ab	ab
1	cd	ce	cf
	ef	df	de
	ac	ac	ac
2	bd	be	bf
	ef	df	de
	ad	ad	ad
3	bc	be	bf
	ef	cf	ce
	ae	ae	ae
4	bc	bd	bf
	df	cf	cd
	af	af	af
5	bc	bd	be
	de	ce	cd
			_

Cap d'ells té σ o i

Tots són quirals (C_i) (parells d'enantiòmers)

 $15 \times 2 = 30$ estereoisòmers

Exercici 6.24. Dibuixa les estructures dels diferents estereoisòmers dels següents compostos. Relacionals entre ells. Assigna'ls-hi els símbols polièdrics i índexs de configuració. Si és el cas, determina el seu símbol de quiralitat configuracional.

- a) $Na[Co(CH_3NH_2)_2(CN)_2(OH)_2]$
- b) $[CoBrCII(NH_3)(H_2O)py]$ (py = piridina)

Resposta: a) (OC-6-32), (OC-6-22), (OC-6-33), (OC-6-13) i (OC-6-12), el primer d'ells com parell d'enantiòmers. b) 15 parells d'enantiòmers, diastereòmers entre ells.

 $M(L_a)(L_b)(L_c)(L_d)(L_e)(L_f) \rightarrow 15$ parells d'enantiòmers

1.-
$$Z_{\rm I} = 53 > Z_{Br} = 35 > Z_{Cl} = 17 > Z_{\rm O} = 8 > Z_N = 7$$

2.- py \rightarrow N tres enllaços amb C (Z=6); NH $_3$ \rightarrow N tres enllaços amb H (Z=1)

b)

Exercici 6.24. Dibuixa les estructures dels diferents estereoisòmers dels següents compostos. Relacionals entre ells. Assigna'ls-hi els símbols polièdrics i índexs de configuració. Si és el cas, determina el seu símbol de quiralitat configuracional.

- a) $Na[Co(CH_3NH_2)_2(CN)_2(OH)_2]$
- b) $[CoBrCII(NH_3)(H_2O)py]$ (py = piridina)

Resposta: a) (*OC*-6-32), (*OC*-6-22), (*OC*-6-33), (*OC*-6-13) i (*OC*-6-12), el primer d'ells com parell d'enantiòmers. b) 15 parells d'enantiòmers, diastereòmers entre ells.

b) CI NH ₃ (OC-6-56-) Br	Br	Br H ₂ O////////////////////////////////////	Br	15 parells d'enantiòmers (OC-6-24) (OC-6-25) (OC-6-26) (OC-6-34) (OC-6-35) (OC-6-36) (OC-6-43) (OC-6-45) (OC-6-46) (OC-6-53) (OC-6-54) (OC-6-56) (OC-6-63) (OC-6-64) (OC-6-65)
--	----	--	----	---

Exercici 6.24. Dibuixa les estructures dels diferents estereoisòmers dels següents compostos. Relacionals entre ells. Assigna'ls-hi els símbols polièdrics i índexs de configuració. Si és el cas, determina el seu símbol de quiralitat configuracional.

- a) $Na[Co(CH_3NH_2)_2(CN)_2(OH)_2]$
- b) $[CoBrCII(NH_3)(H_2O)py]$ (py = piridina)

Resposta: a) (*OC*-6-32), (*OC*-6-22), (*OC*-6-33), (*OC*-6-13) i (*OC*-6-12), el primer d'ells com parell d'enantiòmers. b) 15 parells d'enantiòmers, diastereòmers entre ells.

$$M(L_a)(L_b)(L_c)(L_d)(L_e)(L_f) \Rightarrow M(L_a)_2(L_b)_2(L_c)_2$$

El mètode de Bailar

	Α	В	С
	ab	ab	ab
1	cd	ce	cf
	ef	df	de
	ac	ac	ac
2	bd	be	bf
	ef	df	de
	ad	ad	ad
3	bc	be	bf
	ef	cf	ce
	ae	ae	ae
4	bc	bd	bf
	df	cf	cd
5	af	af	af
	bc	bd	be
	de	ce	cd

c e	a 	d=a e=b f=c →>	c _{IIII}	a MIIIC a b
Prioritats: $L_a > L_b > L_c$			(OC-6 (OC-6 (OC-6 (OC-6	- <mark>33)</mark> -13)

	Α	В	C
	ab	ab	ab
1	cd	ce R	cf
	ef	df	de
	ac	ac	ac
2	bd R	be	bf R
	ef	df	de
	ad	ad	ad
3	bc	be	bf R
	ef	cf	ce
	ae	ae	ae
4	bc R	bd R	bf R
	df	cf	cd
	af _	af _	af
5	bc R	bd R	be R
	de	ce	cd

a)

Exercici 6.24. Dibuixa les estructures dels diferents estereoisòmers dels següents compostos. Relacionals entre ells. Assigna'ls-hi els símbols polièdrics i índexs de configuració. Si és el cas, determina el seu símbol de quiralitat configuracional.

- a) $Na[Co(CH_3NH_2)_2(CN)_2(OH)_2]$
- b) $[CoBrCII(NH_3)(H_2O)py]$ (py = piridina)

Resposta: a) (OC-6-32), (OC-6-22), (OC-6-33), (OC-6-13) i (OC-6-12), el primer d'ells com parell d'enantiòmers. b) 15 parells d'enantiòmers, diastereòmers entre ells.

Exercici 6.25. Els cicles quelats de 6 membres també poden aparèixer com dos enantiòmers. Assigna el símbol de quiralitat conformacional als dos exemples següents que compten amb un lligand 1,3-propilendiamina en conformació de bot obliquo:

Resposta: δ i λ respectivament

$$\begin{array}{c} H_2 \\ H_2 \\ H_2 \end{array} \qquad \begin{array}{c} H_2 \\ C \\ H_2 \end{array} \qquad \begin{array}{c} H_2 \\ H_2 \end{array} \qquad \begin{array}{c} H_2 \\ H_2 \\ H_2 \\ H_2 \end{array} \qquad \begin{array}{c} H_2 \\ H_2 \\ H_2 \\ H_2 \end{array} \qquad \begin{array}{c} H_2 \\ H_2 \\ H_2 \\ H_2 \\ H_2 \end{array} \qquad \begin{array}{c} H_2 \\ H_3 \\ H_3 \\ H_4 \\ H_4 \\ H_4 \\ H_5 \\$$

Exercici 6.26. Dibuixa les estructures dels dos primers compostos i estableix la notació estereoquímica i la fórmula dels tercer i quart:

- a) (R)-cloro(nitro)metanol
- b) (C)-[Co(NH₃)₂(NO)₂(NO₂)₂] (NO₂ = unit al metall pel N)

c)

Resposta: c) (SP-4-2)-[Pt((δ,S) -cys- κ^2N ,S)(H)(PPh₃)]. d) (OC-6-13)-[RuCl₂((δ,S,S) -DPEDA- κ^2N)((R_a) -3,3'-PhosBINAP- κ^2P)].

Cloro(nitro)metanol:

O₂N HO

Apliquem CIP:

Mirem des de la part diametralment oposada a 4:

(R)-Cloro(nitro)metanol:

$$\frac{1}{R}$$

a)

Exercici 6.26. Dibuixa les estructures dels dos primers compostos i estableix la notació estereoquímica i la fórmula dels tercer i quart:

- a) (R)-cloro(nitro)metanol
- b) (C)-[Co(NH₃)₂(NO)₂(NO₂)₂] (NO₂ = unit al metall pel N)

c)

PO₃H₂

Ph₂
Plum, Ru MN
Ph
Ph₂
CI
Glamina = DPEDA
Iligand atropoisomèric = 3,3'-PhosBINAF

Resposta: c) (SP-4-2)-[Pt((δ,S) -cys- κ^2N ,S)(H)(PPh₃)]. d) (OC-6-13)-[RuCl₂((δ,S,S) -DPEDA- κ^2N)((R_a) -3,3'-PhosBINAP- κ^2P)].

 $[Co(NH_3)_2(NO)_2(NO_2)_2]$: Per poder ser quiral no pot tenir lligands iguals en trans

Apliquem CIP, definim l'eix de referència,

i observem des del substituent amb màxima prioritat:

(C)-[Co(NH₃)₂(NO)₂(NO₂)₂]:

Exercici 6.26. Dibuixa les estructures dels dos primers compostos i estableix la notació estereoquímica i la fórmula dels tercer i quart:

- a) (R)-cloro(nitro)metanol
- b) (C)-[Co(NH₃)₂(NO)₂(NO₂)₂] (NO₂ = unit al metall pel N)

c)

Resposta: c) (SP-4-2)-[Pt((δ,S) -cys- κ^2N ,S)(H)(PPh₃)]. d) (OC-6-13)-[RuCl₂((δ,S,S) -DPEDA- κ^2N)((R_a) -3,3'-PhosBINAP- κ^2P)].

$$\begin{array}{c} 4 \\ H_{1111111} \\ Ph_3P \\ \hline \\ 2 \\ \hline \\ 3 \\ \hline \end{array}$$

$$\begin{array}{c} COOH \\ A \\ \hline \\ SH_2C \\ \hline \\ \\ \end{array}$$

$$\begin{array}{c} 1 \\ S \\ \hline \\ \\ \end{array}$$

$$\begin{array}{c} S \\ SH_2C \\ \hline \\ \end{array}$$

 $(SP-4-2)-[Pt((\delta, S)-cys-\kappa^2N, S)(H)(PPh_3)]$

Apliquem CIP als lligands, es mira l'àtom central des del cicle quelat, es torna a aplicar CIP al carboni quiral, i es mira des de la posició contraria a 4.

Exercici 6.26. Dibuixa les estructures dels dos primers compostos i estableix la notació estereoquímica i la fórmula dels tercer i quart:

- a) (R)-cloro(nitro)metanol
- b) (C)-[Co(NH₃)₂(NO)₂(NO₂)₂] (NO₂ = unit al metall pel N)

c)

Resposta: c) (SP-4-2)-[Pt((δ,S) -cys- κ^2N ,S)(H)(PPh₃)]. d) (OC-6-13)-[RuCl₂((δ,S,S) -DPEDA- κ^2N)((R_a) -3,3'-PhosBINAP- κ^2P)].

S'aplica CIP als lligands \rightarrow (OC-6-13)- Es mira l'àtom central des del cicle quelat \rightarrow [RuCl₂((δ ,

Exercici 6.26. Dibuixa les estructures dels dos primers compostos i estableix la notació estereoquímica i la fórmula dels tercer i quart:

- a) (R)-cloro(nitro)metanol
- b) (C)-[Co(NH₃)₂(NO)₂(NO₂)₂] (NO₂ = unit al metall pel N)

c)

Resposta: c) (SP-4-2)-[Pt((δ ,S)-cys- κ^2N ,S)(H)(PPh₃)]. d) (OC-6-13)-[RuCl₂((δ ,S,S)-DPEDA- $\kappa^2 N$)((R_a)-3,3'-PhosBINAP- $\kappa^2 P$)].

 PO_3H_2 **d)** CI

CH(Ph)NH₂

 \rightarrow *S*,*S*)-DPDEA- $\kappa^2 N$)

 $(OC-6-13)-[RuCl_{2}((\delta,$ Es torna a aplicar CIP als carbonis quirals i es mira des de la posició contraria a 4

Exercici 6.26. Dibuixa les estructures dels dos primers compostos i estableix la notació estereoquímica i la fórmula dels tercer i quart:

- a) (R)-cloro(nitro)metanol
- b) (C)-[Co(NH₃)₂(NO)₂(NO₂)₂] (NO₂ = unit al metall pel N)

c)

Resposta: c) (SP-4-2)-[Pt((δ ,S)-cys- κ^2N ,S)(H)(PPh₃)]. d) (OC-6-13)-[RuCl₂((δ ,S,S)-DPEDA- $\kappa^2 N$)((R_a)-3,3'-PhosBINAP- $\kappa^2 P$)].

 $(OC-6-13)-[RuCl_2((d,S,S)-DPEDA-\kappa^2N)]$ $(OC-6-13)-[RuCl_2((\delta,S,S)-DPEDA-\kappa^2N)((R_a)-3,3'-PhosBINAP-k^2P)]$

d)