NOIP2024 模拟赛

时间: 4.5 小时

题目	灯	矩阵	折纸	钻石
程序	light.cpp	matrix.cpp	paper.cpp	diamond.cpp
输入文件	light.in	matrix.in	paper.in	diamond.in
输出文件	light.out	matrix.out	paper.out	diamond.out
时间限制	2s	2s	2s	2s
内存限制	512M	512M	512M	512M
测试点数量	10	20	10	10
是否等分	是	是	是	是
评测方式	spj	传统	传统	传统

编译选项

对于 C++ 语言: -O2 -std=c++14 -static

灯(light.cpp /2s/ 512M)

题目描述

有 n 个灯排成一排,有的灯是开着的,有的灯是关着的。第 i 盏灯的开关状态是 a_i (1 表示开,0 表示关)。现在希望让第 i 盏灯的开关状态变成 b_i 。

有 m 个开关,第 i 个可以翻转 $[l_i,r_i]$ 中的所有灯的开关状态(即 1 变成 0 , 0 变成 1)。每种开关最多只能按一次。

你需要求出有多少种按开关的方案,使得所有灯都能够到达想要的状态。由于方案数可能很大,只需要输出答案对 10^9+7 取模的结果。特别的,如果存在至少一组方案,你还需要给出一组构造。

输入格式

第一行共两个正整数 n, m。

第二行一个长度为 n 的 01 串,表示 a_i 。

第三行一个长度为 n 的 01 串,表示 b_i 。

接下来 m 行每行两个正整数 l_i, r_i ,表示一个开关。

输出格式

第一行一个非负整数,表示方案数模 10^9+7 。

第二行一个字符串 YES 或 NO ,表示是否存在至少一种按开关的方案满足要求。

如果是 YES ,那么第三行输出一个长度为 m 的零一串表示每个开关是否被按下,表示一种合法的方案。否则第三行不输出任何东西。

评分方式

如果方案数输出正确,获得该测试点50%的分数。

如果方案构造正确,获得该测试点另外50%的分数。

样例输入1

3 3			
010			
101 1 2			
1 2			
2 2			
3 3			

样例输出 1

```
1
YES
101
```

样例输入2

3 3			
010			
101			
1 2			
1 1			
2 2			

样例输出 2

0 NO

数据范围

测试点编号	$n,m\leq$	特殊性质
1	20	$orall i, a_i = 0$
2	20	无
3	10^{6}	$orall j, l_j = 1$
4	10^{6}	$orall j, l_j = 1$
5	10^{6}	无
6	10^6	无
7	10^{6}	无
8	10^{6}	无
9	10^{6}	无
10	10^6	无

矩阵(matrix.cpp /2s/ 512M)

题目描述

给一个仅包含整数的 n 行 m 列的矩阵 A,你需要构造一个 n 行 m 列的整数矩阵 B,使得:

$$A_{i,j} = \sum_{k=1}^{m} B_{i,k} + \sum_{k=1}^{n} B_{k,j} - B_{i,j} \pmod{10^9 + 7}$$

或者判断无解。注意,如果有解,你需要输出**字典序最小**的 B。字典序最小指:先让第一行第一个元素尽量小,再让第一行第二个元素尽量小……以此类推。

输入格式

第一行两个正整数 n, m。

接下来 n 行每行 m 个整数,表示矩阵 A。

输出格式

若有解,第一行输出 1,否则输出 -1。

共n行,每行m个整数,表示矩阵B。你需要保证B中的元素在 $[0,10^9+6]$ 之中。

样例输入1

```
3 3
4 5 3
3 3 2
3 4 3
```

样例输出 1

```
1
1 1 1
0 1 0
1 1 0
```

样例输入2

```
1 2
1 2
```

样例输出 2

-1

数据范围

对于所有数据, $1 \leq n, m \leq 1000, 0 \leq A_{i,j} < 10^9 + 7$ 。

测试点编号	n	m
1	≤ 2	≤ 10
2	≤ 2	≤ 10
3	≤ 2	≤ 10
4	≤ 2	≤ 1000
5	≤ 2	≤ 1000
6	≤ 2	≤ 1000
7	≤ 10	≤ 10
8	≤ 10	≤ 10
9	≤ 10	≤ 10
10	≤ 10	≤ 10
11	≤ 50	≤ 50
12	≤ 50	≤ 50
13	≤ 50	≤ 50
14	≤ 50	≤ 50
15	≤ 1000	≤ 1000
16	≤ 1000	≤ 1000
17	≤ 1000	≤ 1000
18	≤ 1000	≤ 1000
19	≤ 1000	≤ 1000
20	≤ 1000	≤ 1000

折纸(paper.cpp /2s /512M)

题目描述

一张折纸是一个 n 行 m 列的字符矩阵,每个位置上是一个大写英文字母。你每次可以选择相邻两行或者相邻两列之间的空隙,把小的半边沿着这条空隙折到另一边(如果两边一样大你可以选择任意一边折过去),前提是折过去的对应位置上的字母必须相同。

例如:

它可以以第三列和第四列之间的空隙作为对称轴,把第四列对折到左边;或者可以以第二行和第三行间的空隙,把下面对折到上面。但是其他位置都不能进行对折。

这个矩阵沿着第三列第四列对折可以得到:

```
CAA
ADA
ADA
CAA
```

继续沿着第二行第三行对折可以得到:

```
CAA
ADA
```

注意这里既可以往上对折也可以往下对折。

你需要求出总共能够得到多少个不同的子矩形。注意**最终位置不同**就算不同,并不一定要字母不同才算不同。例如上面 4×4 的矩阵可以得到总共 6 种不同的子矩形($1 \land 4\times 4$, $1 \land 4\times 3$, $2 \land 2\times 4$, $2 \land 2\times 3$)。

输入格式

第一行输入两个正整数 n, m。

接下来 n 行每行一个长度为 m 的仅包含大写英文字母的字符串,表示矩阵。

输出格式

共一行一个数字,表示方案数。

样例输入1

4 4
CAAA
ADAA
ADAA
CAAA

样例输出 1

6

数据范围

对于所有数据, $1 \le n \times m \le 10^6$ 。

测试点编号	n	m
1	= 1	≤ 100
2	= 1	≤ 1000
3	= 1	$\leq 10^6$
4	= 1	$\leq 10^6$
5	≤ 20	≤ 20
6	≤ 20	≤ 20
7	≤ 1000	≤ 1000
8	≤ 1000	≤ 1000
9	无特殊限制	无特殊限制
10	无特殊限制	无特殊限制

钻石(diamond.cpp / 2s /512M)

题目描述

有一张 n 个点 m 条边的简单无向图(即无重边无自环的无向图),你需要判断图中是否存在"钻石"。

一个钻石包含四个点 A, B, C, D,其中恰好仅有 A, D 之间不存在边。

本题需要多测。

输入格式

第一行一个正整数T,表示数据组数。

对于每组数据,第一行两个正整数 n, m 表示点数和边数。

接下来m行每行两个正整数u, v表示一条边。

输出格式

每组数据输出一行 YES 或 NO , 分别表示存在和不存在。

样例输入1

```
2
4 5
1 2
2 3
3 4
1 3
1 4
4 6
1 2
2 3
3 4
1 3
1 4
1 3
1 4
2 4
```

样例输出1

```
YES
NO
```

数据范围

对于所有数据, $\sum n \leq 10000, \sum m \leq 5 \times 10^5$ 。

测试点编号	Æ.	<u>M</u>
1	≤ 50	无特殊限制
2	≤ 50	无特殊限制

测试点编号	$\sum n$	$\sum m$
3	≤ 400	无特殊限制
4	≤ 400	无特殊限制
5	≤ 3000	≤ 10000
6	≤ 3000	≤ 10000
7	≤ 10000	无特殊限制
8	≤ 10000	无特殊限制
9	≤ 10000	无特殊限制
10	≤ 10000	无特殊限制