Ch41 Numerical Differentiation The derivative of a function fatxo is $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ = lim f(xo+h) -f(xo) $\approx \frac{f(x_0+h)-f(x_0)}{h}$ (for small h) Not a good approximation, due to cancellation error, but a good place to start. Suppose X, E(a,b) and f EC2[a,b], with X = X +h for h #0 and X & [a, 6]. The Lagrange polynomial Pouck interpolating f at xo and x, is used to approximate f: $f(x) = P_{0,1}(x) + \left[\frac{(x-x_0)(x-x_1)}{3!} f''(\xi(x)) \right] = \xi(x)$ $= \frac{(x-[x_0+h])}{(x_0-[x_0+h])} f(x_0) + \frac{(x-x_0)}{(x_0+h)-x_0} f(x_0+h) + E(x)$ $= \frac{(x-x_0-h)}{-h} f(x_0) + \frac{(x-x_0)}{h} f(x_0+h)$ + (x-x0)(x-x0-h) f"(&(x))

We have
$$f(x) = \frac{(x-x_0-h)}{-h} f(x_0) + \frac{(x-x_0)}{h} f(x_0+h) + \frac{(x-x_0)(x-x_0-h)}{2} f''(\xi_0)$$
where $f(x) \in (a,b)$. Then
$$f'(x) = \frac{f(x_0)}{-h} + \frac{f(x_0+h)}{h} + \frac{d}{dx} f'(x_0+h) + \frac{d}{dx} f''(\xi(x))$$

$$= \frac{f(x_0+h)-f(x_0)}{h} + \left[\frac{(x-x_0+h)+(x-x_0)}{2}\right] f''(\xi(x))$$

$$= \frac{f(x_0+h)-f(x_0)}{h} + \left[\frac{2(x-x_0-h)}{2} + \frac{d}{dx} f''(\xi(x)) + \frac{d}{dx} f''(\xi(x))\right]$$

$$+ \frac{(x-x_0)(x-x_0-h)}{2} f''(\xi(x))$$

Since $\xi(x)$ is unknown, our error term is incomplete. However, for $x = x_0$ we have $f'(x_0) = \frac{f(x_0+h) - f(x_0)}{h} - \frac{h}{z} f''(\xi(x_0))$ where $\xi(x_0) \in (a,b)$.

Thus $f'(x_0) = \frac{f(x_0+h) - f(x_0)}{h} - \frac{h}{z} f''(\xi(x_0))$ Our error term is thus bounded by

Mh, where $M = \max_{x \in [a_1b_1]} f''(x_0)$

when we use $f(x_0) = f(x_0) - f(x_0)$.

when h>0, equation (*) is known as the forward difference formula.

when h=0, equation (*) is known as the backward difference formula.

See Example 1 intext.

Figure 4.1

EXAMPLE 1 Let $f(x) = \ln x$ and $x_0 = 1.8$. The forward-difference formula

$$\frac{f(1.8+h) - f(1.8)}{h}$$

is used to approximate f'(1.8) with error

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} \le \frac{|h|}{2(1.8)^2}, \quad \text{where} \quad 1.8 < \xi < 1.8 + h.$$

The results in Table 4.1 are produced when h = 0.1, 0.01, and 0.001.

Table 4.1

		f(1.8+h)-f(1.8)	h
h	f(1.8+h)	" h	$2(1.8)^2$
0.1	0.64185389	0.5406722	0.0154321
0.01	0.59332685	0.5540180	0.0015432
0.001	0.58834207	0.5554013	0.0001543

Since f'(x) = 1/x, the exact value of f'(1.8) is $0.55\overline{5}$, and the error bounds are quite close to the true approximation error.

Math 361 Numerical Analysis Using Excel

Ch 4.1 Numerical Differentiation

Problem	1b				Problem 3b		
		f'(x)					
х	f(x)	forward diff		f'(x(k))	fwd diff error	bwd diff error	Error Bound
0.0	0.00000						
0.2	0.74140						
0.4	1.37180						
f(v) = 0vn	(v) 2v/2+2v	1					
	(x) -2x^2+3x p(x) - 4x + 3						
	,						
f''(x) = ex	p(x) - 4						
Error Bou	nd = Max f	"(x)*h/2	(Show your	calculation	ons here)		

Three Point Formula

Suppose $\{x_0, x_1, x_2\}$ are distinct numbers in $\{a,b\}$ and $\{\epsilon C^3[a,b]$. We have

$$f(x) = \sum_{k=0}^{2} f(x_k) L_{z,k}(x) + \frac{(x-x_0)(x-x_1)(x-x_2)}{3!} f^{(1)}(\xi(x))$$

where E(x) & [a, b]. Then

$$f'(x) = \sum_{x=0}^{\infty} f(x^{x}) \Gamma_{x}^{x} \kappa(x) + \left[\frac{q^{x}}{q} (x-x^{0})(x-x^{0})(x-x^{0}) \right] f''(\xi(x))$$

If x= xi, for j \{ 0,1,2}, then

$$f'(x_j) = \sum_{k=0}^{\infty} f(x_k) G_k(x_j) + \begin{bmatrix} \frac{1}{1}(x_j - x_k) \\ \frac{1}{1}(x_j - x_k) \end{bmatrix} \frac{f''(\xi(x_j))}{6}$$

$$L_{Z,0}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \Rightarrow L_{Z,0}(x) = \frac{2x-x_1-x_2}{(x_0-x_1)(x_0-x_2)}$$

$$L_{2,1}(X) = \frac{2X - X_0 - X_2}{(X_1 - X_0)(X_1 - X_2)}, L_{2,2}(X) = \frac{2X - X_0 - X_1}{(X_2 - X_0)(X_2 - X_1)}$$

(Show)

We have, for
$$j = 0, 1, 2, 1$$

 $f'(x_i) = f(x_0) \left[\frac{2x_j - x_i - x_2}{(x_0 - x_i)(x_0 - x_2)} \right]$
 $+ f(x_i) \left[\frac{2x_j - x_0 - x_2}{(x_i - x_0)(x_i - x_2)} \right]$
 $+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_0 - x_1)} \right]$
 $+ \frac{1}{6} f'''(\xi(x_j)) \prod_{\substack{k \ge 0 \\ k \ne i}} (x_j - x_k)$
where $\xi'(x_i) \xi(a, b)$.

Suppose nodes equally spaced by $h:$
 $x_0, x_i = x_0 + h, x_2 = x_0 + 2h$
Then
$$f''(x_0) = f(x_0) \left[\frac{2x_0 - x_i - x_2}{(h)(2h)} \right] + f(x_1) \left[\frac{2x_0 - x_0 - x_2}{(h)(2h)} \right]$$

 $+ f(x_2) \left[\frac{2x_0 - x_0 - x_1}{(2h)(h)} \right] + \frac{1}{6} f'''(\xi(x_0))(x_0 x_1)(x_0 x_0)$
 $= f(x_0) \cdot \left(-\frac{3}{2h} \right) + f(x_1) \left(\frac{2}{h} \right) + f(x_2) \left(-\frac{1}{2h} \right)$
 $+ \frac{1}{6} f'''(\xi(x_0)) \cdot (-h)(2h)$

Thus

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2 f(x_0) - \frac{1}{2} f(x_0) \right]$$

$$+ \frac{h^2}{3} f'''(\xi(x_0))$$

similarly,

$$f'(x') = \frac{1}{h} \left[-\frac{5}{12} f(x^0) + \frac{5}{12} f(x^5) \right] - \frac{6}{h_s} f_{111}(\xi(x^1))$$

$$f'(x_{2}) = \frac{1}{h} \left[\frac{1}{2} f(x_{0}) - 2f(x_{1}) + \frac{3}{2} f(x_{2}) \right] + \frac{h^{2}}{3} f'''(\xi(x_{0}))$$
Since $x_{1} = x_{0} + h$, and $x_{2} = x_{0} + 2h$, we have
$$f'(x_{0}) = \frac{1}{h} \left[-\frac{3}{2} f(x_{0}) + 2f(x_{0} + h) - \frac{1}{2} f(x_{0} + 2h) \right] + \frac{h^{2}}{3} f'''(\xi(x_{0}))$$

$$f'(x_{0} + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_{0}) + \frac{1}{2} f(x_{0} + 2h) \right] + \frac{h^{2}}{6} f'''(\xi(x_{1}))$$

$$f'(x_{0} + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_{0}) - 2f(x_{0} + 2h) \right] + \frac{3}{2} f(x_{0} + 2h) \right] + \frac{h^{2}}{3} f'''(\xi(x_{0}))$$
In $2^{a_{0}} = \frac{1}{h} \left[-\frac{1}{2} f(x_{0} - h) + \frac{1}{2} f(x_{0}) \right] - \frac{h^{2}}{6} f'''(\xi(x_{1}))$

$$f'(x_{0}) = \frac{1}{h} \left[-\frac{1}{2} f(x_{0} - h) + \frac{1}{2} f(x_{0}) \right] - \frac{h^{2}}{6} f'''(\xi(x_{1}))$$

$$f_{n}(x^{0}) = \frac{1}{16} \left[\frac{5}{16} (x^{0} - y^{0}) - \frac{5}{16} (x^{0} - y^{0}) + \frac{3}{16} \frac{1}{16} (x^{0}) \right] + \frac{3}{16} \frac{1}{16} \frac{1}{16} (x^{0})$$

We have f(xo) = = = (-3f(xo) + 4f(xo+h) - f(xo+2h)] + == f"(x(x)) $f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f''(\xi(x_0))$ f'(x0) = = = [f(x0-2h) - 4f(x0-h) + 3f(x0)] + = = f"(f(x0)) Note that the 3rd equation can be obtained from the 1st by replacing h by -h. That means we will focus only on the first two formulas: (Both are consideral 3 pt formulas) f'(x0) = = = [-3f(x0) + 4f(x0+h) - f(x0+2h)] + = f'(x(x)) f(x0) = = = = [f(x0-34) + = f(x0+4)] + = f(x(x1)) We may assume that €(xo) ∈ (xo, xo+2h), ∈(x,) ∈ (xo-h, xo+h) -Both formulas for f(x) have error of O(h2), athough the 2nd error is about half the first: -The 1st formula requires 3 evaluations of f, all to right of xo; znd formula just z, on each side of xo.

$$f'(x_{1}) = f(x_{0}) \left[\frac{2x_{1} - x_{1} - x_{2}}{(x_{0} - x_{1})(x_{0} - x_{2})} \right]$$

$$+ f(x_{1}) \left[\frac{2x_{1} - x_{0} - x_{2}}{(x_{1} - x_{0})(x_{1} - x_{0})} \right]$$

$$+ f(x_{2}) \left[\frac{2x_{1} - x_{0} - x_{1}}{(x_{2} - x_{0})(x_{2} - x_{1})} \right]$$

$$+ \frac{1}{6} f'''(\xi^{0}(x_{1})) \frac{1}{k_{0}} (x_{1} - x_{k})$$

$$= f(x_{0}) \left[\frac{x_{1} - x_{0}}{(x_{0} - x_{1})(x_{0} - x_{2})} + f(x_{1}) \left[\frac{2x_{1} - x_{0} - x_{2}}{(x_{1} - x_{0})(x_{1} - x_{2})} \right] \right]$$

$$+ f(x_{1}) \left[\frac{x_{1} - x_{0}}{(x_{0} - x_{0})(x_{0} - x_{2})} + \frac{1}{6} f'''(\xi^{0}(x_{1}))(x_{1} - x_{0})(x_{1} - x_{2}) \right]$$

$$+ \frac{1}{6} f'''(\xi^{0}(x_{1}))(x_{1} - x_{0})(x_{1} - x_{2})$$

$$+ \frac{1}{6} f'''(\xi^{0}(x_{1}))(x_{1} - x_{2})(x_{1} - x_{2})$$

$$+ \frac{1}{6} f'''(\xi^{0}(x_{1}))(x_{1} - x_{2})(x_{1} - x_{2})$$

$$+ \frac{1}{6} f'''(\xi^{0}(x_{1}))(x_{1} - x_{2})(x_{2} - x_{2})$$

$$+ \frac{1}{6} f'''(\xi^{0}(x_{1}))(x_{1} - x_{2}$$

Example 2
$$f(x) = xe^x$$

Values for $f(x) = xe^x$ are given in Table 4.2.

x	f(x)	$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0+h) - f(x_0+2h)] + \frac{h^2}{3} f''(x_0)$
1.8	10.889365	2 1 m
1.9	12.703199	
2.0	14.778112	$f'(x_0) = \frac{1}{2h} [f(x_0+h) - f(x_0-h)] - \frac{h^2}{6} f'''(\xi_0)$
2.1	17.148957	1 (vo) Sy Figure 11 (vo vo) 6.
2.2	19.855030	

Since $f'(x) = (x+1)e^x$, we have f'(2.0) = 22.167168. Approximating f'(2.0) using the various three- and five-point formulas produces the following results.

Three-Point Formulas

Using (4.4) with
$$h = 0.1$$
: $\frac{1}{0.2}[-3f(2.0) + 4f(2.1) - f(2.2)] = 22.032310$,

Using (4.4) with
$$h = -0.1$$
: $\frac{1}{-0.2}[-3f(2.0) + 4f(1.9) - f(1.8)] = 22.054525$,

Using (4.5) with
$$h = 0.1 : \frac{1}{0.2} [f(2.1) - f(1.9)] = 22.228790$$
,

Using (4.5) with
$$h = 0.2 : \frac{1}{0.4} [f(2.2) - f(1.8)] = 22.414163$$
.

The errors in the formulas are approximately

$$1.35 \times 10^{-1}$$
, 1.13×10^{-1} , -6.16×10^{-2} , and -2.47×10^{-1} , respectively. (Here, actual error was computed: $|P-P^*|$)

Five-Point Formula

Using (4.6) with h = 0.1 (the only five-point formula applicable):

$$\frac{1}{1.2}[f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)] = 22.166999.$$

The error in this formula is approximately

$$1.69 \times 10^{-4}$$

The five-point formula is clearly superior. Note also that the error from Eq. (4.5) with h = 0.1 is approximately half of the magnitude of the error produced using Eq. (4.4) with either h = 0.1 or h = -0.1.

See Excel sheet for more examples.

Problem :	5b				Problem 7b		
		f'(x)					
Х	f(x)	Eqn 4.4	Eqn 4.5	f'(x)	Eqn 4.4 Error	Eqn 4.5 Error	Error Bound
8.1	16.94410						
8.3	17.56492						
8.5	18.19056						
8.7	18.82091						
$f(x) = x \ln(x)$	x)						
$f'(x) = \ln(x)$	() + 1						
f''(x) = 1/x							
f'''(x) = -1/2	x^2						
Eqn 4.4 E	rror Bound =	Max f "(x)*(l	1^2)/3	(Show yo	our calculations)		
		. , ,			, , , , , , , , , , , , , , , , , , ,		
Eqn 4.5 Eı	rror Bound =	Max f "'(x)*(l	า^2)/6	(Show yo	ur calculations)		

Analysis of Roundoff Error Consider the three-point formula f'(x0) = = = [f(x0+h) - f(x0-h)] - h2f(s(x0)) Suppose that, due to roundoff error, our computed values in this formula are f(xo+h) = f(xo+h) + e(xo+h) $f(x_0-h) = f(x_0-h) + e(x_0-h)$ Then the total error in approximating f(xo) is f'(x0) - f(x0+h)-f(x0-h) $= \frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6} f'''(\xi(x_0))$ round off error of interp polyn. Suppose le(xo±h)! < E, for some €>0, and If "(x) | & M, for x & [a, b]. Then |f'(x6) - \f(x0+h) - f(x0-h) | \le \frac{\xi}{h} + \frac{h^2}{h} M (Show.) Note: As h-o, roundoff error gets bigger.

Justification of Error Bound on Previous Slide Recall

$$\left|f'(x_0) - \frac{\tilde{f}'(x_0+h) - \tilde{f}(x_0-h)}{2}\right| = \left|\frac{e(x_0+h) - e(x_0-h)}{2h} - \frac{h^2}{6}f''(e(x_0))\right|$$

$$\leq \frac{\varepsilon}{2h} + \frac{\varepsilon}{2h} + \frac{h^2}{6}M$$

where M = max |f"(x)|

Since round off error & increases as h decreases, we typically cannot use h for very small values. (That is, use an h that is small but not too small.)

Example $f(x) = \sin x$; approximate f'(0.9). Note: True value is $f'(0.9) = \cos(0.9) = 0.62191$ See Tables in text. Here, $f'(0.900) \cong f(0.900+h) - f'(0.900-h)$.

Recall that the error is bounded by:

 $|Error| \in E(h) = \frac{\varepsilon}{h} + \frac{h^2}{6}M$

To find man E(h), take derivative: $E'(h) = -\frac{E}{h^2} + \frac{h}{3}M \stackrel{\text{set}}{=} 0$

 $\Rightarrow \frac{h}{3}M = \frac{\varepsilon}{h^2}$

⇒ h3 = 3 €/M

=> h = 3/3 E/M,

where $M = \max_{x \in [0.8, 1.0]} |f''(x)| = \max_{x \in [0.8, 1.0]} |\cos(x)|$

 $= \cos(0.8) \cong 0.6967!$

An estimate for ε is $\varepsilon = 0.000005$, since the values of f in tables are given to five declinal places. Thus choose $h \cong 0.028$.

Table 4.3

x	sin x	х	sin x
0.800	0.71736	0.901	0.78395
0.850	0.75128	0.902	0.78457
0.880	0.77074	0.905	0.78643
0.890	0.77707	0.910	0.78950
0.895	0.78021	0.920	0.79560
0.898	0.78208	0.950	0.81342
0.899	0.78270	1.000	0.84147

Table 4.4

	h	Approximation to $f'(0.900)$	Error	
	0.001	0.62500	0.00339	
	0.002	0.62250	0.00089	
->	0.005	0.62200	0.00039	-
->	0.010	0.62150	-0.00011	-
-	0.020	0.62150	-0.00011	-
-3	0.050	0.62140	-0.00021	-
	0.100	0.62055	-0.00106	

Recall that the three-point formula $f'(x_0) = \frac{1}{2h} [f(x_0+h) - f(x_0-h)] - \frac{h^2}{6} f''(\xi(x_0))$ is used to approximate $f'(x_0)$:

f'(x0) = 1/2 [f(x0+h) - f(x0-h)]

with total error

 $E(h) = \frac{\varepsilon}{h} + \frac{h^2}{6} M , \quad M = \max_{x \in [c,b]} \left| f'''(x) \right|$

This illustrates the fact that numerical differentiation is unstable, since small values of h needed to reduce truncation error also cause the roundoff error to grow.

Math 361 Numerical Analysis Using Excel

Ch 4.1 Numerical Differentiation

Problem	1b				Problem 3b		
		f'(x)					
х	f(x)	forward diff		f'(x(k))	fwd diff error	bwd diff error	Error Bound
0.0	0.00000						
0.2	0.74140						
0.4	1.37180						
f(v) = 0vn	(v) 2v/2+2v	1					
	(x) -2x^2+3x p(x) - 4x + 3						
	,						
f''(x) = ex	p(x) - 4						
Error Bou	nd = Max f	"(x)*h/2	(Show your	calculation	ons here)		

Problem :	5b				Problem 7b		
		f'(x)					
Х	f(x)	Eqn 4.4	Eqn 4.5	f'(x)	Eqn 4.4 Error	Eqn 4.5 Error	Error Bound
8.1	16.94410						
8.3	17.56492						
8.5	18.19056						
8.7	18.82091						
$f(x) = x \ln(x)$	x)						
$f'(x) = \ln(x)$	() + 1						
f''(x) = 1/x							
f'''(x) = -1/2	x^2						
Eqn 4.4 E	rror Bound =	Max f "(x)*(l	1^2)/3	(Show yo	our calculations)		
		. , ,			, , , , , , , , , , , , , , , , , , ,		
Eqn 4.5 Eı	rror Bound =	Max f "'(x)*(l	า^2)/6	(Show yo	ur calculations)		

Ch 4.1 Examples

		f'(x)						
		forward	back		fwd diff	bwd diff	fwd error	bwd error
x	f(x)	diff	diff	f'(x(k))	error	error	bound	bound
0.0	0.00000	3.70700		4.00000	0.29300		0.30000	
0.2	0.74140	3.15200	3.70700	3.42140	0.26940	0.28560	0.27786	0.30000
0.4	1.37180		3.15200	2.89182		0.26018		0.27786

 $f(x) = \exp(x) - 2x^2 + 3x - 1$

 $f'(x) = \exp(x) - 4x + 3$

 $f''(x) = \exp(x) - 4 < 0 \text{ on } [0, 0.4]$

 $f'''(x) = \exp(x) > 0 \text{ on } [0,0.4]$

Error Bound = $| \text{Max f "}(x)^*h/2 |$ (Show your calculations here)

		f'(x)						
x	f(x)	Eqn 4.4	Eqn 4.5	f'(x)	Eqn 4.4 Error	Eqn 4.5 Error	Eqn 4.4 Error bound	Eqn 4.5 Error bound
8.1	16.94410	3.09205		3.09186	0.00019		0.00020322	
8.3	17.56492	3.11643	3.11615	3.11626	0.00017	0.00011	0.00019355	0.00010161
8.5	18.19056	3.14025	3.13998	3.14007	0.00018	0.00009	0.00020322	0.00009677
8.7	18.82091	3.16353		3.16332	0.00020		0.00019355	

 $f(x) = x \ln(x)$

 $f'(x) = \ln(x) + 1$

f''(x) = 1/x

 $f'''(x) = -1/x^2 < 0$ on [8.1,8.7]

 $f''''(x) = 2/x^3 > 0$ on [8.1,8.7]

Eqn 4.4 Error Bound = $| \text{Max f }'''(x)^*(h^2)/3 |$ (Show your calculations)

Eqn 4.5 Error Bound = $| \text{Max f }'''(x)^*(h^2)/6 |$ (Show your calculations)