NASA/TM-1999-209130

Computational Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations

Robert M. Bennett and Charlotte E. Walker Langley Research Center, Hampton, Virginia

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.
 Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION.
 Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320

NASA/TM-1999-209130

Computational Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations

Robert M. Bennett and Charlotte E. Walker Langley Research Center, Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

Acknowledgment

ACKHOV	vieuginem
Appreciation is extended to David A. Seidel of files available from the NASA Langley archives.	of the Boeing Company, Seattle WA for making the data
The use of trademarks or names of manufacturers in the reofficial endorsement, either expressed or implied, of such p Space Administration.	
Available from:	
NASA Center for AeroSpace Information (CASI)	National Technical Information Service (NTIS)

NASA Center for AeroSpace Information (CASI 7121 Standard Drive Hanover, MD 21076-1320 (301) 621-0390

National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 605-6000

Abstract

Proposed computational test cases have been selected from the data set for a rectangular wing of panel aspect ratio two with a twelve-percent-thick supercritical airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, and Mach numbers from subsonic to transonic with strong shocks. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.

Nomenclature

- c local chord
- c_r wing root chord, ft (m)
- C_p pressure coefficient, $(p-p_{\infty})/q_{\infty}$
- C_p* pressure coefficient for sonic flow
- f frequency, Hz
- H_o freestream total pressure, psf (kPa)
- k reduced frequency, $\omega c_r/(2V_{\infty})$
- p pressure, psf (kPa)
- p_{∞} freestream static pressure, psf (kPa)
- q_{∞} dynamic pressure, psf (kPa)
- R local radius of tip section
- Rn Reynolds number based on chord
- s semispan
- T_o total or stagnation temperature, °R (°C)
- V_{∞} freestream velocity, ft/sec (m/sec)
- x streamwise distance from leading edge
- x/c steamwise fraction of local chord
- y spanwise coordinate normal to freestream
- z_u, z₁ airfoil vertical upper and lower ordinate normal to freestream, positive up
- α_{o} mean angle of attack, degrees
- θ amplitude of pitch oscillations, degrees or radians
- η fraction of span, y/s
- γ ratio of specific heats for test gas

Introduction

Steady and unsteady measured pressures for a rectangular supercritical wing (referred to as RSW) undergoing pitching oscillations have been presented in references 1 to 3. From the several hundred compiled data points, 27 static and 36 pitching oscillation cases have been proposed for computational test cases to illustrate the trends with Mach number, reduced frequency, and angle of attack.

The wing was designed to be a simple configuration for Computational Fluid Dynamics (CFD) comparisons. The wing had an unswept rectangular planform plus a tip of revolution, a panel aspect ratio of 2.0, a twelve per cent thick supercritical airfoil section, and no twist. The model was tested over a wide range of Mach numbers, from 0.27 to 0.90, corresponding to low subsonic flows up to strong transonic flows. The higher Mach numbers are well beyond the design Mach number such as might be required for flutter verification beyond cruise conditions. The pitching oscillations covered a broad range of reduced frequencies.

Some early calculations for this wing are given for lifting pressure in references 3 and 4 as calculated from a linear lifting surface program and from a transonic small perturbation program. The unsteady results were given primarily for a mild transonic condition at M = 0.70. For these cases the agreement with the data was only fair, possibly resulting from the omission of viscous effects. Supercritical airfoil sections are known to be sensitive to viscous effects (for example, one case cited in ref. 4). Calculations using a higher level code with the full potential equation have been presented in reference 5 for one of the same cases and with the Euler equations in reference 6. The agreement around the leading edge was improved, but overall the agreement was not completely satisfactory. Typically for low-aspect-ratio rectangular wings, transonic shock waves on the wing tend to sweep forward from root to tip such that there are strong three-dimensional effects. It might also be noted that for most of the test, the model was tested with free transition, but a few points were taken with an added transition strip for comparison. Some unpublished results of a rigid wing of the same airfoil and planform that was tested on the pitch and plunge apparatus mount system (PAPA, ref. 7-8) showed effects of the lower surface transition strip on flutter at the lower subsonic Mach numbers. Significant effects of a transition strip were also obtained on a wing with a thicker supercritical section on the PAPA mount system (ref. 9). Both of these flutter tests on the PAPA resulted in very low reduced frequencies that may be a factor in this influence of the transition strip. However, these results indicate that correlation studies for RSW may require some attention to the estimation of transition location to accurately treat viscous effects.

In this report several test cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. An overview of the model and tests are given and the standard formulary for these data is listed. All of the data are presented herein both in tabular and in graphical form. Only the static pressures and the real and imaginary parts of the first harmonic of the unsteady pressures are available. All the data for the test are available in electronic file form, and are printed in the tables of reference 1. The test cases are also available as separate electronic files.

This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702 (ref. 10-11) and is being generated under the NATO Research and Technology Organization (RTO) Applied Vehicle Technology (AVT) Working Group-003. The overall description of the data set is given in the body of this report by a formulary similar to that used in AGARD Report 702.

Model and Tests

The rectangular supercritical wing model was tested in the NASA Langley Transonic Dynamics Tunnel (TDT). The tunnel has a slotted test section 16-feet (4.064 m) square with cropped corners. At the time of these tests, it could be operated with air or a heavy gas, R-12, as a test medium at pressures from very low to near atmospheric values. Currently the TDT can be operated with air or R-134a as a test medium. An early description of this facility is given in an internal report (NASA LWP-799, Sep. 1969) and the early data system in reference 12. More recent descriptions of the facility are given in references 13 and 14, and of the recent data system are given in references 15 and 16. Based on cone transition results (ref. 17-18), the turbulence level for this tunnel is in the average large transonic tunnel category. Some low speed turbulence measurements in air have also been presented in reference 19.

A photograph of the model and splitter plate as installed in the TDT is shown in figure 1 and the dimensions of the model and splitter plate setup are detailed in the sketch of figure 2. The unswept rectangular planform was 48 inches (1219 mm) in span plus a tip of revolution of maximum radius of 1.434 inches (36.4 mm) such that the maximum spanwise extent was 49.43 inches (1255 mm). The chord was 24 inches (609.6 mm). The model was mounted on a splitter plate offset from the wall. It was oscillated in pitch about 46 percent root chord with a shaft that was directly driven by a rotary hydraulic actuator located behind the tunnel wall. It could be set at various mean angles, and the amplitude and frequency of oscillation could be varied.

The wing was constructed in three sections. The center section was made of aluminum with the upper and lower halves pinned and bonded together. The leading and trailing edge portions were made of balsa and Kevlar sandwich material to minimize the inertia loading. The leading and trailing edge sections were joined at 0.23 and 0.69 of the chord, respectively. Some stiffness measurements are given in reference 3. Unsteady pressures were measured on four chords. There were 14 measurement locations along each chord on both upper and lower surfaces and one location in the nose for a total of 29 points per chord as shown in figure 3 and listed in table 1. The transducers in the center portion of the wing were insitu measurements. The transducers in the leading and trailing edges were mounted near the joints of the leading or trailing edge sections to the center beam. Equal length tubes were used between the orifices and these transducers. Other transducers were located by the first row of in-situ transducers and had tubes of the same length located in the center beam. These transducers were used to correct for dynamic effects of the tubes of the transducers in the leading and trailing edges. Each transducer was referenced to the tunnel static pressure and was used to measure both static and unsteady pressures. Eight accelerometers were located on the center section for dynamic measurements. Figure 4 (from ref. 1) shows C₁, versus Mach number as integrated from the pressure data, and gives an overall indication of the performance of the wing.

The airfoil for the RSW is illustrated in figure 5. This airfoil was derived by ratioing the thickness of an 11 percent airfoil (ref. 20) to 12 percent while keeping the same mean camber line. The trailing edge thickness was increased to 0.7 percent chord by rotating the lower cusp area as described in reference 21. The design Mach number and lift coefficient for the 2-dimensional airfoil is quoted at M = 0.80, and $C_L = 0.6$ (ref. 3). The design ordinates and the measured ordinates for five spanwise stations are given in table 2. The design wing tip-shape is also presented in table 2. The quoted accuracy of the measured ordinates is .00040 in. (.0010 mm). The measured airfoil ordinates are compared with the theoretical ordinates in figure 6. The measured ordinates agree very well with the theoretical ones but with some small deviation in the lower surface aft, or cove, region.

By CFD standards, the theoretical and measured ordinates were given on a medium to coarse grid. In order to develop a common set of ordinates for CFD applications, the measured ordinates have been interpolated at each span station. The measured ordinates were fit with a spline using arc-length as the independent parameter and running from upper surface trailing edge around the nose to the lower surface

trailing edge. Three passes of a local 5-point least-squares cubic smoothing patch were made and the resulting curve interpolated for the ordinates. The smoothed ordinates are interpolated for 206 values of x/c at each of the five measurement span stations. These are included as a file for the data set and are listed in table 3. One airfoil section, after smoothing, and the corresponding streamwise slopes are presented in figure 7. For this wing, the measured spanwise sections are nearly identical, except at the lower surface trailing edge where the slope varies by about 8 per cent. It should also be noted that the slope varies quite rapidly near the inflection point in the cove region of the airfoil lower surface (fig. 7).

As can been seen in figure 1, the model was tested with the sidewall slots of the test section open. Some recent unpublished results for a model having about six times the root chord of this model and mounted directly to the wind tunnel wall, have shown an order of ten percent influence of closing the slots on static lift curve slope (similar to those measured in ref. 22). Significantly less influence would be anticipated for this much smaller model mounted on a splitter plate.

Test Cases

The static test cases for the rectangular supercritical wing are given in table 4, and the dynamic test cases are presented in table 5. The point number is used to identify the test conditions and are in the order taken during the test. The test case number is related to the enumeration given in the RTO chapter. The cases are chosen to indicate trends with Mach number at two degrees angle of attack, and also at zero and four degrees angle of attack with a coarse increment. Some cases for high angles of attack at M=0.40, some cases for the effect of transition at M=0.825, and some cases for air as the test medium are listed. The dynamic cases are chosen to evaluate unsteady effects at these static conditions. The cases illustrate variations with Mach number for nearly constant reduced frequency, and variations with reduced frequency at constant Mach numbers. Some cases are chosen also to indicate the effects of angle of attack, transition strip, and amplitude. The plot of C_L versus Mach number as integrated from the pressure data (fig. 4) was used as a guide in selecting the test cases.

All the data for the static test cases are tabulated and shown in composite plots in figure 8. The data for the dynamic cases are also tabulated and shown in the plots of figure 9 in terms of in-phase and out-of-phase parts (real and imaginary) of the pressure normalized by the amplitude of the pitching oscillation. The phase is referenced to the pitching motion. More digits than are significant are retained in the tables to accurately reproduce the phase angles of the original tabulations.

Note that most of the tests for RSW were conducted with the heavy gas, R-12, as the test medium. The ratio of specific heats, γ , is tabulated for each point in the figures. It varies from about 1.129 to 1.132 and a value of 1.132 is suggested for use in computational comparisons. The corresponding value of Prandtl number is calculated to range from 0.77 to 0.78 for the conditions of this test assuming 0.99 for the fraction of heavy gas in the heavy gas-air mixture.

Formulary for Rectangular Supercritical Wing Data Set

1. General Description of Model

1.1 Designation Rectangular Supercritical Wing (RSW)

1.2 Type Semispan wing

1.3 Derivation None

1.4 Additional remarks Shown mounted in tunnel in figure 1 and sketch of

setup shown in figure 2

1.5 References 1-3 are the original source

2. Model Geometry

2.1 Planform Rectangular plus tip of revolution

2.2 Aspect ratio 2.0 for panel (without tip)

2.3 Leading edge sweep Unswept 2.4 Trailing edge sweep Unswept 2.5 Taper ratio 1.0 2.6 Twist None

2.7 Wing centerline chord 24.0 inches (609.6 mm)

2.8 Semi-span of model 48.0 inches (1219 mm)plus tip

2.9 Area of planform 1152 sq. in (1.786 sq m)

2.10 Location of reference sections and Reduced frequency based on root semichord, 12.0 inches 304.8 mm)

definition of profiles

2.11 Lofting procedure between reference sections

Constant percent thickness airfoil

2.12 Form of wing-body junction No fairing

2.13 Form of wing tip Tip of rotation. Each spanwise section formed by half

circle with radius half the local thickness and rotated

about the mean line

No control surfaces 2.14 Control surface details

2.15 Additional remarks See figures 1-3 for overview

2.16 References References 1-3

3. Wind Tunnel

3.1 Designation NASA LaRC Transonic Dynamics Tunnel (TDT)

3.2 Type of tunnel Continuous flow, single return 3.3 Test section dimensions 16 ft x 16 ft (4.064 x 4.064 m)

3.4 Type of roof and floor Three slots each 3.5 Type of side walls Two sidewall slots

3.6 Ventilation geometry Constant width slots in test region

Some documentation in internal report LWP-799. 3.7 Thickness of side wall boundary

Not documented

Model tested with splitter plate layer

3.8 Thickness of boundary layers at roof

and floor

3.9 Method of measuring velocity Calculated from static pressures measured in plenum

and total pressure measured upstream of entrance

nozzle of test section

3.10 Flow angularity Not documented, considered small

3.11 Uniformity of velocity over test Not documented, considered nearly uniform

section

3.12 Sources and levels of noise or Generally unknown. Some low speed measurements are presented in reference 19. turbulence in empty tunnel Cone transition

measurements are presented in references 17 and 18

3.13 Tunnel resonances Unknown Tests generally performed in heavy gas, R-12. Ratio of 3.14 Additional remarks specific heats, γ , is 1.129-1.132. For computations, 1.132 is recommended. For the conditions of this test, the Prandtl number is calculated to be 0.77-0.78 References 12, 13, and internal report LWP-799 3.15 References on tunnel 4. Model Motion 4.1 General description Pitching about 46% of root chord for wing, 11.04 inches (280.4 mm) aft of leading edge 4.2 Reference coordinate and definition Pitch about axis normal to freestream of motion 4.3 Range of amplitude Pitch amplitude of 0.50, 1.00, and 1.50 degrees 4.4 Range of frequency 5, 10, 15, and 20 Hz with a few lower frequencies 4.5 Method of applying motion Pitch oscillations shaft-driven with a rotary hydraulic actuator 4.6 Timewise purity of motion Not documented 4.7 Natural frequencies and normal First natural frequency was 34.8 Hz modes of model and support system 4.8 Actual mode of applied Some accelerometer measurements given in ref. 2 4.9 Additional remarks None 5. Test Conditions 5.1 Model planform area/tunnel area .03 5.2 Model span/tunnel height .25 5.3 Blockage Model less than 0.4% 5.4 Position of model in tunnel Mounted from splitter plate on wall and in the center of the tunnel 5.5 Range of Mach number 0.40 to 0.90 5.6 Range of tunnel total pressure 175 to 2025 psf (8.38 to 812 kPa) 5.7 Range of tunnel total temperature Not documented but generally in the range of 520 to 580 degrees Rankine (16 to 49° C) 5.8 Range of model steady or mean Generally -1 to 7 degrees, a few points from -4 to 14 incidence degrees 5.9 Definition of model incidence From chord line of airfoil 5.10 Position of transition, if free Unknown except for a few points with transition strip. Although the joint was quite smooth, an initial estimate of transition might be considered to be at the joint between the leading edge section and the main spar (23 per cent chord) 5.11 Position and type of trip, if Generally free transition. A few points measured with transition strip of number 60 grit located at 6 percent transition fixed chord on upper and lower surfaces (number is approximate grains per inch (per 25.4 mm)).

5.12 Flow instabilities during tests None defined 5.13 Changes to mean shape of model Not measured due to steady aerodynamic load Generally, a heavy gas, R-12, was used as a test 5.14 Additional remarks medium for the test cases. The ratio of specific heats, γ , is tabulated for each point and varies from about 1.129 to 1.132. A value of 1.132 is suggested for use in computational comparisons. The corresponding value of Prandtl number is 0.77-0.78. A few points were also measured in air References 1-3 5.15 References describing tests 6. Measurements and Observations 6.1 Steady pressures for the mean yes conditions 6.2 Steady pressures for small changes yes from the mean conditions 6.3 Quasi-steady pressures no 6.4 Unsteady pressures yes 6.5 Steady section forces for the mean no conditions by integration of pressures 6.6 Steady section forces for small no changes from the mean conditions by integration 6.7 Quasi-steady section forces by no integration 6.8 Unsteady section forces by no integration 6.9 Measurement of actual motion at no points of model 6.10 Observation or measurement of no boundary layer properties 6.11 Visualisation of surface flow no 6.12 Visualisation of shock wave no movements 6.13 Additional remarks no 7. Instrumentation 7.1 Steady pressure 7.1.1 Position of orifices spanwise 29 chordwise locations at 4 spanwise stations. See and chordwise figure 4

Kulite

7.1.2 Type of measuring system

7.2 Unsteady pressure 7.2.1 Position of orifices spanwise Same transducers measured steady and unsteady and chordwise pressures 7.2.2 Diameter of orifices Not documented 7.2.3 Type of measuring system In situ pressure gages and short tubes to unsteady gages with tube calibrations 7.2.4 Type of transducers Kulite 7.2.5 Principle and accuracy of Statically calibrated through reference tubes calibration 7.3 Model motion 7.3.1 Method of measuring motion Potentiometer reference coordinate 7.3.2 Method of determining Some verification with accelerometers spatial mode of motion 7.3.3 Accuracy of measured motion Undocumented 7.4 Processing of unsteady measurements 7.4.1 Method of acquiring and Analog signals digitized at about 300 samples/sec for processing measurements 75-100 cycles depending on frequency 7.4.2 Type of analysis Fourier analysis 7.4.3 Unsteady pressure quantities Amplitude and phase of each pressure signal. obtained and accuracies Accuracy not specified achieved 7.4.4 Method of integration to None obtain forces 7.5 Additional remarks None Data system overview for test given in reference 12 7.6 References on techniques 8. Data Presentation 8.1 Test cases for which data could be All data are available made available 8.2 Test cases for which data are All data tabulated and plotted. See figures 8 and 9. included in this document 8.3 Steady pressures Generally available for each test case 8.4 Quasi-steady or steady perturbation Steady pressures measured for several angles of attack pressures 8.5 Unsteady pressures Primary data. First harmonic only. No time histories C magnitude and phase of reference 2 converted to real and imaginary parts and normalized by amplitude of oscillation (in radians) for this report.

None

None

None

8.6 Steady forces or moments

8.7 Quasi-steady or unsteady

8.8 Unsteady forces and moments

perturbation forces

8.9 Other forms in which data could be

made available

References 1-6

None

8.10 Reference giving other representations of data

9. Comments on Data

9.1 Accuracy

9.1.1 Mach number Not documented
9.1.2 Steady incidence Not documented
9.1.3 Reduced frequency Should be accurate
9.1.4 Steady pressure coefficients Not documented

9.1.5 Steady pressure derivatives None

9.1.6 Unsteady pressure Not documented, but each gage individually calibrated dynamically and monitored statically

9.2 Sensitivity to small changes of parameter None indicated. Amplitudes of oscillation was varied in test

9.3 Non-linearities Many flow conditions involve shock waves

9.4 Influence of tunnel total pressure Some variation during test. Most of the test at

constant dynamic pressure

9.5 Effects on data of uncertainty, or unknown, not expected to be appreciable. Variation, in mode of model motion

9.6 Wall interference corrections None applied

9.7 Other relevant tests on same model None9.8 Relevant tests on other models of None

9.9 Any remarks relevant to comparison between experiment and theory generally about 4 x 10⁶ to 8 x 10⁶ but

9.10 Additional remarks

Upper and lower surface data instrumented

symmetrically

9.11 References on discussion of data

References 1-6

10. Personal Contact for Further Information

nominally the same shapes

Head, Aeroelasticity Branch Phone: +1-(757)-864-2820 Mail Stop 340 FAX: +1-(757)-864-8678

NASA Langley Research Center Hampton, VA 23681-2199 USA

Concluding Remarks

Steady and unsteady measured pressures for a rectangular supercritical wing (RSW) undergoing pitching oscillations were reviewed. From the several hundred compiled data points, 27 static cases and 36 pitching oscillation cases have been proposed for computational test cases to illustrate the trends with Mach number, reduced frequency, and angle of attack. An overview of the model and tests are given, and the standard formulary for these data is listed. All of the data are presented in both tabular and graphical form. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702 and is being generated under the NATO Research and Technology Organization (RTO) Applied Vehicle Technology (AVT) Working Group-003.

NASA Langley Research Center Hampton, VA 23681-2199 March 8, 1999

References

- 1. Ricketts, Rodney H.; Sandford, Maynard C.; Seidel, David A.; and Watson, Judith J: *Transonic Pressure Distributions on a Rectangular Supercritical Wing Oscillated in Pitch*. Journal of Aircraft, vol. 21, no. 8, August 1984, pp 576-582. (Also AIAA Paper 83-0923, May 1983 which is available as NASA TM 84616, Mar. 1983).
- 2. Ricketts, Rodney H.; Sandford, Maynard C.; Watson, Judith J.; and Seidel, David A.: Subsonic and Transonic Unsteady-and Steady-Pressure Measurements on a Rectangular Supercritical Wing Oscillated in Pitch. NASA TM 85765, August 1984.
- 3. Ricketts, Rodney H.; Sandford, Maynard C.; Watson, Judith J.; and Seidel, David A.: Geometric and Structural Properties of a Rectangular Supercritical Wing Oscillated in Pitch for Measurements of Unsteady Transonic Pressure Distributions. NASA TM 85673, Nov. 1983.
- 4. Seidel, David A.; Bennett, Robert M.; and Ricketts, Rodney H.: *Some Recent Applications of XTRAN3S*. AIAA Paper 83-1811, July 1983. (Also available as NASA TM 85641, May 1983).
- 5. Hounjet, M. H. L.: *NLR Inviscid Transonic Unsteady Loads Prediction Methods in Aeroelasticity*. Paper No. 12 in "Transonic Unsteady Aerodynamics and Aeroelasticity," AGARD CP-507, March 1992.
- 6. Brenneis, A.; and Eberle, A.: Application of an Implicit Relaxation Method Solving the Euler Equations for Time-Accurate Unsteady Problems. Journal of Fluids Engineering, Transactions of the ASME, Vol 112, Dec. 1990, pp. 510-520.
- 7. Farmer, Moses G.: A Two-Degree-of Freedom Flutter Mount System with Low Damping for Testing Rigid Wings at Different Angles of ttack. NASA TM 83302, 1982.
- 8. Farmer, Moses G.: Model Mount System for Testing Flutter. U. S. Patent No. 4,475,385, Oct. 9, 1984.
- Dansberry, B.E.; Durham, M.H.; Bennett, R.M.; Rivera, J.A., Jr.; Silva, W.A.; Wieseman, C.D.; and Turnock, D.L.: Experimental Unsteady Pressures at Flutter on the Supercritical Wing Benchmark Model. AIAA Paper No. 93-1592, April 1993.
- 10. Compendium of Unsteady Aerodynamic Measurements. AGARD Report No. 702, Aug. 1982.
- 11. Compendium of Unsteady Aerodynamic Measurements, Addendum No. 1. AGARD Report No. 702, May 1985.

- 12. Cole, Patricia H.: Wind Tunnel Real-Time Data Acquisition System. NASA TM-80081, 1979.
- 13. Cole, Stanley C., and Rivera, Jose, A., Jr.: *The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel*. Paper No. 4, presented at the Royal Aeronautical Society Wind Tunnels and Wind Tunnel Test Techniques Forum, Churchill College, Cambridge, UK, Apr. 1997.
- 14. Corliss, James M.; and Cole, Stanley R.: *Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel*. AIAA Paper 98-2710, June 1998.
- 15. Wieseman, Carol D.; and Hoadley, Sherwood, T.: *Versatile Software Package for Near Real-Time Analysis of Experimental Data*. AIAA Paper 98-2722, June 1998.
- 16. Bryant, C.; and Hoadley, S. T.: Open Architecture Dynamic Data System at Langley's Transonic Dynamics Tunnel. AAIA Paper 98-0343, Jan. 1998.
- 17. Dougherty, N. Sam, Jr.: *Influence of Wind Tunnel Noise on the Location of Boundary-Layer Transition on a Slender Cone at Mach Numbers from 0.2 to 5.5.* Volume I. Experimental Methods and Summary of Results. Volume II. Tabulated and Plotted Data. AEDC --TR-78-44, March 1980.
- 18. Dougherty, N. S., Jr.; and Fisher, D. F.: Boundary-Layer Transition on a 10-Degree Cone: Wind Tunnel/Flight Correlation. AIAA Paper 80-0154, January 1980.
- 19. Sleeper, Robert K.; Keller, Donald F.; Perry, Boyd, III; and Sandford, Maynard C.: Characteristics of Vertical and Lateral Tunnel Turbulence Measured in Air in the Langley Transonic Dynamics Tunnel. NASA TM 107734, March 1993.
- 20. Whitcomb, Richard T.: *Review of NASA Supercritical Airfoils*. ICAS Paper No.74-10, presented at the Ninth Congress of the International Council of The Aeronautical Sciences, Aug. 1974, Haifa, Israel.
- 21. Harris, Charles D.: Wind-Tunnel Investigation of Effects of Trailing-Edge Geometry on a NASA Supercritical Airfoil Section. NASA TM X-2336, Sept. 1971.
- 22. Lambourne, N.; Destuynder, R.; Kienappel, K.; and Roos, R.: Comparative Measurements in Four European Wind Tunnels of the Unsteady Pressures on an Oscillating Model (The NORA Experiments). AGARD Report No. 673, Feb. 1980.

Table 1. Pressure Orifice Locations and Type

x/c	Туре
0.000	Tube to Transducer
.003	Tube to Transducer
.050	Tube to Transducer
.100	Tube to Transducer
.200	Tube to Transducer
.260	In Situ
.320	In Situ
.380	In Situ
.440	In Situ
.500	In Situ
.560	In Situ
.620	In Situ
.700	Tube to Transducer
.800	Tube to Transducer
.900	Tube to Transducer

Table 2. Design and Measured Ordinates

		Design	Values			Measure	ed Values		
				y = 1.0	000 in	y = 14	.932 in	y = 28	.324 in
x, in	x/c	z _u , in	z _ı , in	z _u , in	z ₁ , in	z _u , in	z ₁ , in	z _u , in	z _l , in
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1800	0.0075	0.4610	-0.4610	0.4571	-0.4726	0.4535	-0.4701	0.4514	-0.4624
0.3000	0.0125	0.5630	-0.5650	0.5602	-0.5750	0.5557	-0.5717	0.5572	-0.5669
0.6000	0.0250	0.7230	-0.7350	0.7193	-0.7435	0.7156	-0.7376	0.7197	-0.7380
0.9000	0.0375	0.8280	-0.8470	0.8226	-0.8569	0.8234	-0.8498	0.8242	-0.8492
1.2000	0.0500	0.9100	-0.9360	0.9050	-0.9436	0.9050	-0.9383	0.9062	-0.9365
1.8000	0.0750	1.0330	-1.0670	1.0289	-1.0720	1.0290	-1.0693	1.0295	-1.0683
2.4000	0.1000	1.1220	-1.1610	1.1191	-1.1638	1.1176	-1.1620	1.1176	-1.1603
3.0000	0.1250	1.1930	-1.2340	1.1901	-1.2372	1.1895	-1.2345	1.1910	-1.2346
3.6000	0.1500	1.2480	-1.2890	1.2466	-1.2928	1.2459	-1.2902	1.2465	-1.2898
4.2000	0.1750	1.2930	-1.3330	1.2936	-1.3378	1.2916	-1.3345	1.2925	-1.3330
4.8000	0.2000	1.3290	-1.3650	1.3335	-1.3691	1.3287	-1.3670	1.3300	-1.3665
6.0000	0.2500	1.3840	-1.4130	1.3876	-1.4147	1.3846	-1.4122	1.3839	-1.4116
7.2000	0.3000	1.4150	-1.4340	1.4177	-1.4343	1.4147	-1.4320	1.4148	-1.4308
8.4000	0.3500	1.4320	-1.4370	1.4343	-1.4374	1.4331	-1.4343	1.4329	-1.4326
9.6000	0.4000	1.4390	-1.4170	1.4421	-1.4153	1.4396	-1.4127	1.4397	-1.4130
10.8000	0.4500	1.4320	-1.3750	1.4354	-1.3739	1.4341	-1.3717	1.4354	-1.3721
12.0000	0.5000	1.4170	-1.3060	1.4194	-1.3069	1.4177	-1.3036	1.4190	-1.3036
13.2000	0.5500	1.3870	-1.2000	1.3893	-1.2011	1.3892	-1.1971	1.3891	-1.1978
13.8000	0.5750	1.3690	-1.1260	1.3713	-1.1266	1.3702	-1.1224	1.3697	-1.1228
14.4000	0.6000	1.3450	-1.0330	1.3492	-1.0332	1.3487	-1.0284	1.3467	-1.0291
15.0000	0.6250	1.3200	-0.9140	1.3235	-0.9129	1.3225	-0.9084	1.3216	-0.9096
15.6000	0.6500	1.2880	-0.7620	1.2920	-0.7606	1.2912	-0.7569	1.2905	-0.7564
16.2000	0.6750	1.2500	-0.5940	1.2554	-0.5942	1.2543	-0.5896	1.2531	-0.5888
16.8000	0.7000	1.2110	-0.4390	1.2091	-0.4419	1.2169	-0.4370	1.2158	-0.4352
17.4000	0.7250	1.1640	-0.3010	1.1623	-0.3074	1.1737	-0.2994	1.1744	-0.2998
18.0000	0.7500	1.1130	-0.1750	1.1133	-0.1801	1.1232	-0.1697	1.1243	-0.1731
18.6000	0.7750	1.0580	-0.0650	1.0593	-0.0670	1.0675	-0.0608	1.0702	-0.0598
19.2000	0.8000	0.9930	0.0290	0.9948	0.0284	1.0032	0.0354	1.0066	0.0369
19.8000	0.8250	0.9190	0.1080	0.9224	0.1088	0.9285	0.1237	0.9327	0.1169
20.4000	0.8500	0.8330	0.1650	0.8387	0.1685	0.8446	0.1772	0.8472	0.1755
21.0000	0.8750	0.7380	0.2030	0.7440	0.2064	0.7494	0.2154	0.7518	0.2150
21.6000	0.9000	0.6250	0.2110	0.6317	0.2147	0.6371	0.2211	0.6412	0.2231
22.2000	0.9250	0.4980	0.1870	0.5046	0.1920	0.5076	0.2004	0.5140	0.1988
22.8000	0.9500	0.3500	0.1190	0.3574	0.1255	0.3580	0.1314	0.3632	0.1333
23.4000	0.9750	0.1790	-0.0010	0.1864	0.0053	0.1829	0.0104	0.1895	0.0128
24.0000	1.0000	-0.0190	-0.1870	-0.0077	-0.1765	-0.0217	-0.1796	-0.0184	-0.1734

Table 2. Concluded

			Measure	d Values		Design Values
		y = 38.93	2 in	y = 45.	948 in	Wing Tip Radius
x, in	x/c	z _u , in	z ₁ , in	z _u , in	z ₁ , in	R, in.
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
0.1800	0.0075	0.4580	-0.4583	0.4648	-0.4585	0.461
0.3000	0.0125	0.5625	-0.5640	0.5681	-0.5613	0.564
0.6000	0.0250	0.7248	-0.7321	0.7250	-0.7271	0.729
0.9000	0.0375	0.8299	-0.8446	0.8316	-0.8402	0.837
1.2000	0.0500	0.9103	-0.9320	0.9109	-0.9273	0.923
1.8000	0.0750	1.0330	-1.0639	1.0301	-1.0552	1.050
2.4000	0.1000	1.1199	-1.1560	1.1161	-1.1480	1.141
3.0000	0.1250	1.1900	-1.2284	1.1842	-1.2206	1.214
3.6000	0.1500	1.2454	-1.2836	1.2417	-1.2780	1.268
4.2000	0.1750	1.2929	-1.3283	1.2887	-1.3270	1.313
4.8000	0.2000	1.3324	-1.3631	1.3308	-1.3633	1.347
6.0000	0.2500	1.3833	-1.4117	1.3877	-1.4143	1.398
7.2000	0.3000	1.4138	-1.4310	1.4174	-1.4363	1.424
8.4000	0.3500	1.4310	-1.4283	1.4336	-1.4394	1.434
9.6000	0.4000	1.4369	-1.4073	1.4397	-1.4176	1.428
10.8000	0.4500	1.4329	-1.3670	1.4362	-1.3743	1.403
12.0000	0.5000	1.4168	-1.3004	1.4208	-1.3049	1.361
13.2000	0.5500	1.3876	-1.1963	1.3909	-1.1989	1.293
13.8000	0.5750	1.3689	-1.1224	1.3708	-1.1250	1.248
14.4000	0.6000	1.3461	-1.0287	1.3476	-1.0315	1.189
15.0000	0.6250	1.3204	-0.9091	1.3215	-0.9128	1.117
15.6000	0.6500	1.2891	-0.7564	1.2893	-0.7598	1.025
16.2000	0.6750	1.2520	-0.5891	1.2509	-0.5927	0.922
16.8000	0.7000	1.2128	-0.4338	1.2144	-0.4376	0.825
17.4000	0.7250	1.1698	-0.2965	1.1687	-0.3019	0.732
18.0000	0.7500	1.1225	-0.1706	1.1209	-0.1761	0.644
18.6000	0.7750	1.0688	-0.0577	1.0665	-0.0598	0.561
19.2000	0.8000	1.0052	0.0397	1.0004	0.0357	0.482
19.8000	0.8250	0.9320	0.1198	0.9280	0.1171	0.405
20.4000	0.8500	0.8493	0.1811	0.8447	0.1753	0.334
21.0000	0.8750	0.7546	0.2194	0.7506	0.2131	0.267
21.6000	0.9000	0.6446	0.2282	0.6387	0.2184	0.207
22.2000	0.9250	0.5153	0.2058	0.5083	0.1999	0.155
22.8000	0.9500	0.3661	0.1395	0.3586	0.1306	0.115
23.4000	0.9750	0.1892	0.0174	0.1809	0.0091	0.090
24.0000	1.0000	-0.0061	-0.1671	-0.0139	-0.1757	0.084

Table 3. Airfoil Ordinates Interpolated from Smoothed Measured Ordinates

	z ₁ /c000523002516002448005307007406010356016000021671025538025538	z _u /c .000007	z/c	,				-/ -	- / -
	000523 002516 003448 005307 007406 010356 010356 016000 021671 025538 025538	700000.	•	$z_{\rm u}/c$	z'/c	$z_{\rm u}/c$	z'c	z^{\prime}/c	z_{l}/c
	002516 003448 005307 007406 010356 016000 021671 025538 025538		000582	.000013	000369	.000038	.000015	.000258	.0000020
	003448 005307 007406 010356 016000 021671 025538 025538	.001949	002534	.001994	002358	.002204	002152	.002361	002079
	005307 007406 010356 016000 021671 025538 025538	.002866	003457	.002894	003263	.003114	003061	.003285	003001
	007406 010356 016000 021671 025538 028587 031088	.004699	005300	.004693	005071	.004927	004875	.005127	004839
	010356 016000 021671 025538 028587 031088	692900.	007382	.006730	007117	.006977	006926	.007205	006914
	016000 021671 025538 028587 031088	089600	010309	509600.	010005	.009867	009820	.010126	009832
	021671 025538 028587 031088	.015257	015913	.015168	015589	.015439	015417	.015722	015433
	025538 028587 031088	.020865	021541	.020866	021302	.021111	021149	.021349	021089
	028587	.024646	025369	.024729	025227	.024951	025069	.025123	024939
	031088	.027574	028379	.027692	028307	.027909	028121	.028019	027954
	001000	.029952	030850	.030078	030821	.030296	030611	.030361	030425
	035198	.031953	032941	.032071	032930	.032287	032714	.032331	032518
	035019	.033677	034753	.033777	034743	.033990	034533	.034025	034331
	036630	.035199	036366	.035279	036348	.035487	036145	.035515	035938
	038083	.036570	037829	.036631	037801	.036832	037603	.036851	037389
	039410	.037823	039172	.037869	039132	.038062	038939	.038068	038716
	040636	.038987	040417	.039020	040368	.039204	040179	.039195	039942
	041773	.040071	041575	.040095	041518	.040268	041333	.040242	041080
	042829	.041083	042653	.041100	042591	.041263	042410	.041217	042138
	043814	.042030	043659	.042042	043594	.042194	043414	.042129	043124
1	044736	.042919	044599	.042929	044533	.043068	044354	.042982	044047
	045601	.043756	045480	.043766	045416	.043891	045235	.043784	044912
0850.	046416	.044544	046307	.044556	046246	.044666	046061	.044540	045727
.0900 .045304	047183	.045290	047085	.045304	047028	.045398	046838	.045254	046494
.0950 .046016	047909	.045995	047817	.046013	047766	.046090	047569	.045930	047220
.1000 .046691	048596	.046665	048508	.046686	048463	.046747	048258	.046573	047907
.1050 .047332	049249	.047303	049162	.047327	049123	.047371	048911	.047186	048560
	049869	.047911	049783	.047938	049748	.047966	049528	.047772	049182
.1150 .048523	050460	.048491	050371	.048520	050342	.048534	050114	.048333	049775
.1200 .049078	051023	.049045	050931	.049077	050905	.049078	050671	.048872	050342

Table 3. Continued

	y = 1.0	y = 1.000 in.	y = 14.932 in.	932 in.	y = 28.324 in.	324 in.	y = 38.	y = 38.932 in.	y = 45.948 in.	948 in.
x/c	z _u /c	$z_{ m l}/c$	$z_{\rm u}/c$	z/c	$z'_{\rm u}/c$	z'/c	z _u /c	z_{l}/c	$z_{\rm u}/c$	z/c
.1250	.049609	051559	.049576	051463	.049610	051441	.049600	051200	.049391	050885
.1300	.050118	052071	.050084	051971	.050120	051950	.050101	051705	.049893	051407
.1350	.050608	052560	.050572	052456	609050.	052435	.050584	052187	.050377	051908
.1400	.051078	053026	.051041	052917	.051078	052897	.051050	052648	.050846	052389
.1450	.051531	053470	.051490	053358	.051528	053336	.051499	053088	.051299	052852
.1500	.051967	053893	.051921	053777	.051960	053754	.051932	053508	.051739	053296
.1550	.052388	054295	.052334	054177	.052374	054152	.052350	053911	.052165	053722
.1600	.052793	054677	.052731	054558	.052772	054530	.052754	054296	.052577	054132
.1650	.053185	055039	.053113	054920	.053153	054891	.053143	054664	.052977	054524
.1700	.053561	055384	.053479	055264	.053519	055233	.053518	055017	.053363	054900
.1750	.053924	055711	.053830	055592	.053870	055559	.053878	055353	.053736	055260
.1800	.054273	056021	.054167	055903	.054207	898550:-	.054225	055675	.054097	055605
.1850	.054608	056315	.054491	056199	.054530	056163	.054557	055983	.054444	055933
.1900	.054929	056593	.054802	056479	.054839	056442	.054875	056276	.054778	056247
.1950	.055237	056857	.055100	056745	.055136	056707	.055179	056556	.055098	056545
.2000	.055531	057108	.055386	766950:-	.055420	056959	.055469	056822	.055406	056829
.2050	.055813	057344	.055661	057236	.055692	057198	.055745	057075	.055700	057098
.2100	.056082	057569	.055924	057462	.055953	057424	.056008	057315	.055981	057354
.2150	.056338	057780	.056175	92929-	.056202	057638	.056258	057543	.056250	057595
.2200	.056583	057980	.056416	057877	.056440	057840	.056495	057758	.056505	057823
.2250	.056815	058168	.056646	058067	.056667	058030	.056720	057960	.056749	058038
.2300	.057036	058346	.056866	058246	.056884	058209	.056934	058151	.056980	058241
.2350	.057247	058512	.057076	058414	.057091	058377	.057137	058329	.057200	058431
.2400	.057446	899850:-	.057276	058571	.057288	058535	.057329	058496	.057408	058609
.2450	.057635	058815	.057467	058718	.057476	058682	.057511	058651	.057605	058776
.2500	.057814	058952	.057648	058855	.057654	058819	.057684	058794	.057791	058932
.2550	.057984	059080	.057821	058983	.057824	058947	.057847	058927	.057966	059077
.2600	.058144	059199	.057985	059102	.057986	059065	.058002	059048	.058131	059211
.2650	.058295	059309	.058141	059212	.058139	059174	.058148	059158	.058286	059335
.2700	.058438	059410	.058288	059312	.058285	059274	.058287	059258	.058431	059448

Table 3. Continued

	y = 1.000 in.	000 in.	y = 14.9	= 14.932 in.	y = 28.	= 28.324 in.	y = 38.932 in.	932 in.	y = 45.948 in.	948 in.
x/c	$z/^{n}z$	z/lc	$z_{\rm u}/c$	z'/c	$z_{\rm u}/c$	$\mathbf{z}^{\prime}\mathbf{z}$	z _u /c	$^{\mathrm{J}^{\mathrm{L}}}\!\mathrm{z}$	z _u /c	z_{l}/c
.2750	.058573	059502	.058428	059404	.058423	059364	.058417	059348	.058567	059551
.2800	.058699	059586	.058560	059486	.058553	059446	.058540	059427	.058695	059644
.2850	.058819	099650:-	.058685	059560	.058676	059518	.058656	964650:-	.058814	059728
.2900	.058931	059726	.058803	059624	.058793	059582	.058766	555650	.058926	059801
.2950	9£06 5 0'	059784	.058914	059681	.058903	869650:-	698850.	+09650:-	.059030	059865
.3000	.059136	059832	.059018	059728	900650.	059684	996850.	059644	.059128	059919
.3050	.059229	059872	.059116	059767	.059104	059723	750650.	059675	.059219	059964
.3100	.059316	059904	.059208	059798	.059195	059753	.059143	769650:-	.059303	000090'-
.3150	.059398	059927	.059294	059820	.059281	059775	.059223	059710	.059382	060026
.3200	.059474	059941	.059374	059833	.059362	682650:-	.059298	059714	.059455	060044
.3250	.059545	059947	.059448	059839	.059436	059794	.059369	059709	.059522	060052
.3300	.059611	059945	.059517	988650:-	905650.	262650:-	.059434	969650'-	.059584	060051
.3350	.059671	059934	.059581	059824	.059571	059781	.059494	059675	.059642	060041
.3400	.059727	059915	.059639	059805	.059631	059763	.059550	059646	.059694	060022
.3450	.059779	059888	.059693	059777	.059686	059736	.059602	059609	.059742	059995
.3500	.059826	059852	.059742	059741	.059736	059702	.059649	059564	.059786	059959
.3550	.059868	808650:-	.059786	769650:-	.059782	099650:-	.059692	059511	.059826	059914
.3600	.059907	059756	.059826	059645	.059824	059610	.059731	059451	.059863	059860
.3650	.059940	059696	.059861	059585	.059861	059552	.059766	059384	.059895	059797
.3700	059970	059627	.059891	059516	.059894	059486	962650.	059308	.059923	059726
.3750	.059995	059550	.059917	059440	.059923	059412	.059823	059225	.059948	059646
.3800	.060016	059464	.059939	059354	.059947	059329	.059845	059135	.059968	059557
.3850	.060032	059370	.059956	059261	996650.	059238	.059863	750620	.059985	059459
.3900	.060044	059268	896650.	059158	.059982	059139	728650.	058931	866650.	059352
.3950	.060052	059157	.059976	059048	.059992	059031	988650.	058818	800090	059236
.4000	.060055	059037	.059980	058928	059999	058914	.059891	058697	.060013	059111
.4050	.060054	058908	059979	058800	.060001	058789	.059892	895850:-	.060015	058977
.4100	.060048	058771	.059973	058663	.059998	058655	.059889	058431	.060013	058834
.4150	.060037	058625	.059963	058517	.059991	058512	.059881	058286	.00000	058681
.4200	.060022	058469	.059948	058361	626650.	058359	698650.	058133	966650.	058519

Table 3. Continued

	y = 1.000 in.	000 in.	y = 14.932 in	932 in.	y = 28.324 in	324 in.	y = 38.932 in.	932 in.	y = 45.948 in	948 in.
	$z_{\rm u}/c$	z/c	$z_{\rm u}/c$	z/c	$z_{\rm u}/c$	z_{l}/c	z _u /c	$z'_1 c$	z _u /c	z_{l}/c
	.060002	058304	.059929	058196	.059962	058196	.059852	057970	.059982	058348
\vdash	.059978	058129	.059905	058021	.059941	058023	.059831	057799	.059963	058166
	.059948	057945	928650.	057836	.059915	057841	.059804	057618	.059940	057974
	.059914	057750	.059843	057641	.059884	057647	.059774	057427	.059912	057772
	.059875	057545	508650.	057435	.059848	057443	.059738	057227	628650.	057559
	.059831	057329	.059762	057219	708650.	057228	869650.	057016	.059842	057336
	.059781	057103	.059714	056991	.059761	057002	.059653	056795	059800	057101
	.059727	056865	.059662	056752	.059710	056764	.059603	056563	.059753	056856
	.059668	056616	509650.	056502	.059654	056514	.059548	056319	.059700	056599
	.059603	056355	.059543	056239	.059593	056251	.059488	056064	.059642	056330
	.059534	056081	.059476	055963	.059526	055976	.059423	055796	975950.	056048
	.059460	055794	.059404	055674	.059454	055687	.059353	055515	.059511	055754
	.059380	055494	.059327	055371	.059377	055385	.059278	055221	.059437	055447
	.059296	055180	.059245	055054	.059294	055068	.059198	054913	.059357	055126
	.059207	054851	.059159	054723	.059206	054737	.059112	054590	.059271	054791
	.059114	054508	790650.	054376	.059112	054391	.059021	054253	.059180	054442
	.059015	054149	.058971	054015	.059013	054029	.058925	006850:-	.059083	054078
	.058912	053774	698850.	053636	.058908	053651	.058824	053531	058979	053699
	.058803	053382	.058763	053241	862820.	053256	.058718	053145	.058870	053303
	.058690	052972	.058652	052827	.058683	052842	.058606	052740	.058755	052890
	.058573	052543	.058536	052395	.058562	052410	.058489	052317	.058635	052458
	.058450	052094	.058415	051942	.058436	051958	.058367	051873	.058509	052007
	.058323	051624	.058289	051468	.058304	051485	.058240	051408	.058377	051536
	.058191	051132	.058159	050973	.058168	066050:-	.058107	050922	.058240	051044
	.058054	050618	.058024	050455	.058027	050473	057970	050412	760850.	050529
	.057913	050080	.057884	049914	.057880	049932	.057827	049878	.057949	049992
	.057767	049517	.057739	049347	.057728	049367	057679	049319	.057796	049430
	.057616	048928	.057590	048754	.057572	048775	.057526	048733	.057637	048843
	.057461	048309	.057435	048132	.057411	048155	.057368	048118	.057473	048227
	.057300	047660	.057276	047480	.057244	047504	.057204	047472	.057304	047580

Table 3. Continued

		2	œ	8	7	5	7	7	Q	∞	6	0	2		o	5	ξ.	∞	∞	0	_	0	ϵ	3	4	6	6	8	4	7	v
948 in.	z/c	046902	046188	045438	044647	043815	042937	042012	041040	040018	038949	037830	036662	03545	034200	032915	031603	030268	028918	027560	02920	024850	023513	022193	020894	019619	018369	017148	015954	014787	- 013645
y = 45.948 in	z ⁿ /c	.057129	.056948	.056762	.056569	.056370	.056165	.055953	.055734	.055507	.055273	.055031	.054780	.054521	.054254	.053980	.053699	.053411	.053116	.052815	.052508	.052195	.051876	.051552	.051222	.050886	.050545	.050197	.049843	.049482	049113
932 in.	z/c	046792	046077	045325	044532	043696	042815	041886	040910	039885	038813	037691	036522	035309	034058	032773	031459	030123	028772	027412	026051	024697	023355	022031	020727	019445	018189	016961	015761	014588	- 013442
y = 38.932 in	z _u /c	.057035	.058860	089950.	.056494	.056301	.056102	768530.	.055684	.055463	.055235	.054998	.054754	.054500	.054239	.053969	.053692	.053406	.053113	.052813	.052506	.052193	.051873	.051549	.051218	.050883	.050542	.050196	.049845	.049488	049124
28.324 in.	z/c	046821	046103	045347	044551	043713	042831	041900	040922	039896	038821	037698	036527	035312	034058	032772	031458	030122	028771	027414	026057	024709	023375	022060	020766	019495	018250	017033	015843	014679	- 013541
y = 28.3	z _u /c	.057073	.056897	.056715	.056528	.056335	.056136	.055931	.055718	.055499	.055271	.055036	.054793	.054542	.054282	.054015	.053741	.053460	.053172	.052878	.052577	.052272	.051962	.051646	.051325	.050998	.050665	.050326	.049979	.049625	040262
32 in.	z/c	046795	046075	045317	044520	043681	042797	041866	040888	039863	038791	037672	036506	035298	034052	032774	031469	030142	028799	027449	026098	024754	023422	022105	020808	019532	018279	017053	015853	014679	013530
y = 14.932 in	z/c	.057110	.056939	.056762	.056578	.056387	.056190	.055985	.055772	.055552	.055324	.055087	.054842	.054589	.054328	.054060	.053785	.053503	.053215	.052921	.052620	.052314	.052003	.051685	.051361	.051030	.050692	.050347	.049994	.049633	040263
00 in.	z/c	046977	046260	045504	044709	043870	042987	042055	041077	040050	038975	037853	036684	035472	034223	032942	031635	030307	028966	027619	026273	024935	023612	022308	021023	019762	018525	017315	016131	014972	- 013837
y = 1.000 in.	z _v /c	.057135	.056965	682950.	.056607	.056420	.056225	.056024	.055816	.055600	.055375	.055143	.054901	.054649	.054388	.054115	.053832	.053536	.053230	.052912	.052584	.052246	.051898	.051542	.051178	.050806	.050429	.050046	.049658	.049265	048868
	x/c	.5750	.5800	.5850	.5900	.5950	0009.	.6050	.6100	.6150	.6200	.6250	.6300	.6350	.6400	.6450	.6500	.6550	0099.	.6650	.6700	.6750	0089	0589.	0069.	.6950	.7000	.7050	.7100	.7150	7200

Table 3. Continued

y = 1.000 in. y = 14.932 in. y = 28.324 in. /c z_1/c z_2/c z_3/c z_4/c z_1/c z_3/c z_1/c z_1/c z_2/c z_1/c z_2/c z_1/c $z_1/$
26 .048883 .012406 .048891 36 .048493011306 .048511
010568 .048092010231 .048120010266 .000522 047681000180 047719009719
98 .047259008154 .047308
007496 046825007152 046885007190
.006515 .046380006173 .046450006208
.005557 .045922 005219 .046002 005248
004622 .045452 004287 .045543 004311
. 044969 003377 .045070
002824 .044473 002490 .044583
.001963 .043964 001624 .044083
001128043440000780043567
000319 .042903 .000039 .043037
.000462 .042350 .000833 .042491
.001215 .041783 .001600 .041928
001940 041200 002340 041349
. .040602 .003049
.003299 039988 03727 040137
03950. 039358 039373 039505
.004536 .038711 .004984 .038856
.005106 .038047 .005559 .038188
.005643 .037366 .006098 .037503
0.006145 0.036667 0.006598 0.036799
.006612 .035949 .007059 .036076
.007042 .035211 .007479 .035335
.007434 .034453 .007858 .034574
.007787 .033674 .008196 .033793
.008099 .032872 .008491 .032991
.008368 .032047 .008744 .032168

Table 3. Concluded

48 in.	z_l/c	.008844	.009019	.009149	.009230	.009262	.009240	.009163	.009027	.008829	.008564	.008229	.007821	.007338	8/1/900.	.006140	.005422	.004622	.003731	.002736	.001628	.000392	000978	002462	004033	005664	007324
y = 45.948 in.	z/nz	.031246	.030377	.029481	.028555	.027600	.026614	.025596	.024545	.023460	.022340	.021185	.019994	.018766	.017502	.016201	.014863	.013488	.012075	.010622	.009127	.007589	800900.	.004390	.002745	.001081	000592
)32 in.	z/c	.009137	.009322	.009459	.009547	.009583	.009564	.009490	935600.	.009158	568800.	.008561	.008154	.007672	.007114	.006479	.005765	.004969	.004083	.003094	.001989	.000756	000613	002098	003672	005306	006971
y = 38.932 in.	z/nz	.031441	.030578	.029688	.028771	.027825	.026849	.025841	.024800	.023726	.022616	.021471	.020288	.019068	.017811	.016516	.015185	.013815	.012407	.010958	.009466	.007929	.006347	.004727	.003079	.001412	000265
324 in.	z_l/c	.008927	.009107	.009239	.009322	.009352	.009328	.009248	.009109	806800	.008641	.008306	668200.	.007420	998900	.006236	.005529	.004741	.003863	.002881	.001781	.000549	000823	002316	003902	005550	007229
y = 28.324 in.	z _u /c	.031323	.030454	.029561	.028643	.027698	.026726	.025724	.024692	.023628	.022530	.021397	.020227	.019020	.017775	.016493	.015172	.013813	.012409	.010955	.009444	078700.	.006230	.004532	.002792	.001023	000761
)32 in.	z_l/c	.008954	.009121	.009243	.009317	.009341	.009314	.009231	.009091	068800	.008623	.008287	628200.	.007397	688900	.006202	.005487	.004688	.003796	.002797	.001678	.000425	0.000970	002488	004100	005775	007481
y = 14.932 in.	z _u /c	.031198	.030323	.029422	.028494	.027539	.026554	.025540	.024495	.023418	.022309	.021165	.019986	.018772	.017522	.016235	.014912	.013550	.012146	.010694	.009189	.007625	866500.	.004319	.002600	.000854	000905
000 in.	z_l/c	.008594	.008774	906800°	686800	.009020	866800	.008919	.008781	.008581	.008315	086200.	.007573	.007092	.006536	.005904	.005195	.004407	.003529	.002550	.001459	.000243	001106	002568	004116	005723	007359
y = 1.000 in.	z/nz	796080.	.030096	.029200	.028277	.027327	.026350	.025344	.024309	.023244	.022147	.021018	.019856	.018660	.017429	.016165	.014867	.013533	.012162	.010749	.009291	.007784	.006226	.004626	.002994	.001340	000325
	x/c	.8750	0088.	.8850	0068.	.8950	0006.	.9050	.9100	.9150	.9200	.9250	.9300	.9350	.9400	.9450	.9500	.9550	0096.	.9650	.9700	.9750	0086.	.9850	0066.	.9950	1.000

Table 4. Static Test Cases for the Rectangular Supercritical Wing

Test Case No.	Point	М	$lpha_{_{\circ,}},$ deg.	Comments
6E1	212	.404	2.22	vs M, $\alpha_{o} = 2^{\circ}$
6E2	394	.604	2.00	
6E3	364	.701	2.00	
6E4	331	.753	2.05	
6E5	152	.802	2.00	
6E6	462	.828	2.00	
6E7	276	.850	2.01	
6E8	423	.876	2.00	
6E9	251	.907	2.00	
6E10	489	.803	1.99	Repeat of 152
6E11	214	.403	.21	vs M, $\alpha_{o} = 0^{\circ}$
6E12	154	.801	.03	
6E13	464	.821	01	
6E14	253	.901	.00	
6E15	210	.403	4.20	vs M, $\alpha_{o} = 4^{\circ}$
6E16	150	.803	3.99	
6E17	460	.828	4.00	
6E18	249	.903	4.00	
6E19	604	.400	7.01	vs α_{o} , M=.4
6E20	607	.400	9.97	
6E21	609	.401	12.00	
6E22	628	.826	.00	With transition
6E23	626	.825	2.00	strip
6E24	624	.826	4.00	
6E25	52	.802	05	Air
6E26	53	.802	2.01	
6E27	54	.801	4.01	

Table 5. Dynamic Test Cases for the Rectangular Supercritical Wing

Test	Point	M	q	α_{\circ}	θ	f	k	Comments
Case No.			psf	deg.	deg.	Hz		
6E28	514	.402	54.8	1.97	1.003	10.00	.309	vs M, $\alpha_{o} = 2^{\circ}$
6E29	344	.750	100.8	2.05	1.052	14.99	.249	v
6E30	316	.802	107.6	2.08	1.035	15.03	.233	
6E31	475	.826	108.1	1.97	1.023	15.01	.228	
6E32	289	.854	113.7	1.99	1.006	14.96	.219	
6E33	435	.875	115.2	1.96	.987	14.99	.215	
6E34	264	.894	116.8	2.01	1.032	14.99	.210	
6E35	513	.403	54.7	1.97	1.008	5.02	.155	vs k, $\alpha_{\circ} = 2^{\circ}$
6E36	515	.402	54.7	1.98	1.020	15.06	.466	M = .40
6E37	516	.402	54.8	1.98	1.060	19.97	.617	141 – 140
OE37	510	.102	5 1.0	1.70	1.000	17.57	1017	
6E38	494	.803	106.1	2.19	1.069	1.98	.031	vs k, $\alpha_{o} = 2^{\circ}$
6E39	493	.802	105.8	1.89	1.025	3.00	.047	M = .80
6E40	495	.803	106.1	1.84	1.080	3.95	.062	
6E41	314	.803	107.7	2.10	1.080	4.95	.077	
6E42	315	.804	107.9	2.08	1.057	9.96	.154	
6E43	317	.802	107.5	2.07	1.039	20.01	.311	
6E44	473	.825	107.8	1.98	1.070	4.97	.076	vs k, $\alpha_{\circ} = 2^{\circ}$
6E45	474	.825	107.8	1.97	1.038	9.96	.152	M = .825
6E46	476	.825	108.0	1.97	1.035	20.07	.305	171 = 1025
6E47	262	.896	117.1	2.00	1.022	4.96	.069	vs k, $\alpha_{o} = 2^{\circ}$
6E48	263	.896	117.1	2.00	.989	9.95	.139	M = .90
6E49	265	.902	118.3	2.01	1.055	19.99	.278	
6E50	481	.823	107.6	03	1.023	15.01	.229	vs α_{o} , M = .825
6E51	469	.822	107.2	3.99	1.018	15.04	.230	$VS \alpha_0, WI = .023$
OBST	102	.022	107.2	3.77	1.010	15.01	.230	
6E52	269	.901	118.2	03	1.065	14.98	.208	vs α_{o} , M = .90
6E53	258	.900	117.9	4.03	1.024	14.95	.208	
6E54	632	.825	108.7	1.98	1.014	10.03	.152	With Transition
6E55	633	.826	108.7	1.98	.984	15.03	.228	Strip, $M = .825$
6E56	634	.826	108.9	1.98	1.005	20.09	.305	Surp; 141 – 1025
OESO	051	.020	100.5	1.50	1.005	20.09	.505	
6E57	180	.802	108.0	3.30	.500	15.12	.234	vs θ , $\alpha_{\circ} = 3.3^{\circ}$
6E58	184	.801	107.8	3.30	.983	15.03	.233	M = .80
6E59	189	.802	108.2	3.29	1.513	14.99	.232	
6E60	613	.402	54.4	11.99	1.004	5.00	.155	vs k, $\alpha_{\rm o} = 12^{\rm o}$
6E61	614	.401	54.2	12.00	.998	10.02	.312	M = .40
6E62	615	.401	54.2	12.00	1.012	14.99	.466	141 — 140
6E63	616	.401	54.3	12.02	1.012	19.99	.621	
0203	010	.+01	J-7.J	12.02	1.007	17.77	1.021	

Figure 1. Rectangular supercritical wing installed in wind tunnel.

Figure 2. Diagram of wing and splitter plate in wind tunnel. Dimensions in inches (mm).

- · Matched-tubing orifice
- In situ transducer
- n Accelerometer
- △ Potentiometer

Figure 3. Instrumentation layout for the RSW model.

Figure 4. Lift coefficient vs. Mach number.

Figure 5. Airfoil for rectangular supercritical wing.

(a) Span station 1.000 in.

Figure 6. Comparison of the design and measured coordinates.

- (b) Span station 14.932 in.
- (c) Span station 28.324 in.

- (d) Span station 38.932 in.
- (e) Span station 45.948 in.

Figure 6. Concluded.

Figure 7. Plot of interpolated ordinates and slopes of smoothed measured airfoil, y = 28.324 in.

(a) Test case 6E1 (point 212). Figure 8. Static test cases.

Point Number = 394 Mach Number = 0.604 Alphao = 2.00, deg. V Η Rn Cp* gamma 482.6 303.9 .403E+07 1.131 -1.410y/s = 0.309y/s = 0.588y/s = 0.809y/s = 0.951x/c Cpu Cpl Cpu Cpl Cpu Cpl Cpu Cpl .000 1.104 1.035 1.056 1.069 -0.043 -1.065 -0.118 -1.106 .025 -1.212 -0.093 -0.870-0.146 .050 -0.933 -0.229 -0.901 -0.045 -0.808 -0.265 -0.773 -0.300 .100 -0.779 -0.279 -0.689 -0.247 -0.691 -0.316 -0.539 -0.294 .200 -0.504 -0.067 -0.465 -0.136 -0.925 -0.135 -0.370 -0.146 -0.249 -0.237 -0.463 -0.218-0.418 -0.185 -0.331 -0.197 .260 -0.405 -0.172 -0.152 -0.135 -0.427 -0.183 -0.307 -0.197 .320 -0.121 -0.152 .380 -0.350 -0.369 -0.201 -0.260 -0.168 -0.199 -0.179 -0.073 -0.243 -0.209 .440 -0.353 -0.348 0.000 -0.216 .500 -0.381 -0.194 -0.338 -0.205 -0.285 -0.178 -0.241 -0.197 .560 -0.383 -0.176 -0.302 -0.247 -0.294 -0.221 -0.169 -0.218 .620 -0.421 -0.018 -0.372 -0.067 -0.327 -0.129 -0.177 -0.164 -0.346.700 -0.4360.248 -0.4220.210 0.244 -0.2520.054 -0.471 -0.381 -0.388 -0.282 .800 0.411 0.398 0.359 0.347 .900 -0.360 0.491 -0.351 0.581 -0.325 0.455 -0.333 0.378 -1.5r-1.5-1-0.5 -0.5 = 0.309 $\eta = 0.588$ C_p C_p 0 0.5 0.5 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8 x/c x/c -1.5_F -1.5— Upper Surface -0.5 -0.5 C_p C_p 0 $\eta = 0.951$ $\eta = 0.809$ 0.5 0.5 1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 x/c x/c

(b) Test case 6E2 (point 394). Figure 8. Continued.

Point Number	= 364 Mach	n Number = 0.701	Alphao = 2.00,	deg.
*	H V 8.2 351.1	Rn gamma 402E+07 1.133	-	
	y/s =0.309 pu Cpl	y/s =0.588 Cpu Cpl	y/s =0.809 Cpu Cpl	y/s =0.951 Cpu Cpl
.000 1025 -1050 -1100 -0200 -0260 -0320 -0380 -0440 -0500 -0560 -0620 -0700 -0800 -0.	036 -0.267 845 -0.325 544 -0.234 518 -0.271 454 -0.192 403 -0.185 429 -0.229 427 -0.250 426 -0.228 468 -0.119 439 0.253 503 0.424	1.085 -1.252 -0.140 -1.015 -0.093 -0.786 -0.296 -0.509 -0.280 -0.469 -0.261 -0.462 -0.242 -0.413 -0.258 -0.400 -0.146 -0.405 -0.263 -0.353 -0.308 -0.418 -0.098 -0.460 0.231 -0.424 0.424 -0.361 0.581	1.106 -1.197 -0.106 -0.882 -0.304 -0.786 -0.366 -0.942 -0.246 -0.375 -0.261 -0.354 -0.228 -0.315 -0.225 -0.293 0.000 -0.317 -0.288 -0.341 -0.252 -0.356 -0.124 -0.369 0.253 -0.420 0.367 -0.339 0.471	1.111 -0.920 -0.158 -0.851 -0.340 -0.615 -0.334 -0.399 -0.248 -0.285 -0.283 -0.229 -0.222 -0.230 -0.190 -0.241 -0.244 -0.202 -0.244 -0.196 -0.261 -0.203 -0.186 -0.263 0.062 -0.294 0.360 -0.362 0.392
	0.6 0.8 1 :/c	$\eta = 0.309$	$\eta = 0.588 \\ C_{p} 0 \\ 1.5_{0}$	0.2 0.4 0.6 0.8 1 x/c
-1.5 -1 -0.5 C _p 0		$\eta = 0.809$	$ \begin{array}{c c} -1.5 \\ -1.5 \\ \hline -0.5 \\ \hline C_p 0 \end{array} $	Upper Surface B Lower Surface
1.50 0.2 0.4	0.6 0.8 1 /c	(c) Test case 6E3 Figure 8. Cor		0.2 0.4 0.6 0.8 1 x/c

Point Number = 331	Mach Number =	0.753 Alphao	= 2.05,	deg.			
-	V Rn 80.5 .400E+07	gamma Cp* 1.131 -0.64	3				
y/s =0.3 x/c	309 y/s =0 Cpl Cpu	O.588 y/s - Cpl Cpu	=0.809 Cpl	y/s =0.951 Cpu Cpl			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	288 -1.003 - 356 -1.003 - 292 -0.473 - 283 -0.498 - 218 -0.493 - 193 -0.409 - 253 -0.337 - 271 -0.473 - 233 -0.358 -	1.140 -0.156 -1.033 -0.138 -1.042 -0.324 -0.912 -0.339 -0.219 -0.263 -0.377 -0.239 -0.336 -0.261 -0.313 -0.176 -0.290 -0.278 -0.312 -0.364 -0.329 -0.106 -0.330 0.240 -0.385 0.415 -0.433 0.563 -0.334	-0.111 -0.302 -0.406 -0.330 -0.236 -0.205 -0.230 -0.001 -0.304 -0.294 -0.209 0.262 0.383 0.510	1.133 -0.869 -0.150 -0.954 -0.360 -0.663 -0.352 -0.405 -0.321 -0.283 -0.288 -0.221 -0.218 -0.213 -0.204 -0.234 -0.260 -0.225 -0.253 -0.200 -0.268 -0.218 -0.166 -0.259 0.096 -0.301 0.365 -0.389 0.408			
-1.5 -1.5 -0.5 C _p 0 0.5 1.50 0.2 0.4 0.6 0. x/c	$ \eta = 0. $	$\eta = 0.$	-1.5 -1.5 -0.5 588 C _p 0	0.2 0.4 0.6 0.8 1 x/c			
-1.5 -1.5 -0.5 C _p 0 0.5	$\eta = 0.$	$809 \qquad \mathbf{\eta} = 0.$	-1.5 -1.5 -0.5 -0.5 -0.5	Upper Surface Lower Surface			
1.50 0.2 0.4 0.6 0. x/c	8 1		1.50	0.2 0.4 0.6 0.8 1 x/c			
(d) Test case 6E4 (point 331). Figure 8. Continued.							

Point Number = 152 Mach Number = 0.802 Alphao = 2.00, deg. Н V Rn Cp* gamma 415.9 403.5 .401E+07 -0.479 1.133 y/s = 0.309y/s = 0.588y/s = 0.809y/s = 0.951x/c Cpu Cpl Cpu Cpl Cpu Cpl Cpu Cpl .000 1.164 1.187 1.159 1.166 .025 -0.666 -0.092 -0.826 -0.151 -0.845 -0.117 -0.739-0.156 -0.906 -0.310 -0.201 -0.857 -0.944 .050 -0.307 -0.995-0.398 -0.381 .100 -0.930 -0.399-0.904 -0.961 -0.460 -0.824 -0.416.200 -0.907 -0.350-0.897-0.414 -0.874 -0.362-0.429-0.370.260 -0.936 -0.378 -0.945-0.399-0.362 -0.324 -0.340 -0.345-0.265 .320 -0.849 -0.296 -0.841 -0.314 -0.336 -0.283 -0.274 -0.289 -0.359 -0.247 -0.471 -0.230 -0.323 -0.292 -0.263 .380 .440 -0.183 -0.329 -0.318 -0.269 -0.310 0.000 -0.275 -0.313 -0.404 -0.391 .500 -0.344-0.366 -0.342-0.366 -0.249-0.303.560 -0.444 -0.291-0.374 -0.398 -0.358 -0.331-0.230-0.335 .620 -0.511 -0.013 -0.451 -0.093 -0.373 -0.113 -0.226 -0.193 .700 -0.550 0.260 -0.522 0.258 -0.402 0.204 -0.258 0.130 -0.608 0.392 -0.553 0.440 -0.478 0.335 -0.313 0.314 .800 .900 -0.319 0.499 -0.353 0.602 -0.338 0.478 -0.396 0.393 -1.5_F -1.5-0.5 -0.5 $\eta = 0.588$ = 0.309 C_p C_p 0 0.5 0.5 1 1 0.2 0.4 0.2 0.4 0.6 0.8 0.6 0.8 x/c x/c -1.5_E -1.5Upper Surface -1- 1 -0.5-0.5 C_p $C_p 0$ $\eta = 0.951$ $\eta = 0.809$ 0.5 0.5 1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 x/c x/c (e) Test case 6E5 (point 152).

Figure 8. Continued.

33

Point Number = 462 Alphao = 2.00, deg. Mach Number = 0.828Н V Rn Cp* gamma .400E+07 108.0 406.5 -0.400 414.0 1.132 y/s = 0.309y/s = 0.588y/s = 0.809y/s = 0.951x/c Cpu Cpl Cpu Cpl Cpu Cpl Cpu Cpl .000 1.217 1.175 1.172 1.183 .025 -0.571-0.098 -0.755-0.174 -0.751 -0.124 -0.664 -0.164 -0.429 -0.764 .050 -0.798 -0.333 -0.190-0.835 -0.349-0.929 -0.434 -0.402 -0.458 .100 -0.842 -0.815 -0.892 -0.498 -0.848 -0.415 .200 -0.839-0.825 -0.455-1.004-0.400 -0.438 -0.379.260 -0.883 -0.447 -0.873 -0.459-0.754 -0.420-0.501 -0.375-0.821 -0.536 -0.300 -0.297 .320 -0.325-0.898 -0.365-0.317-0.745 -0.345 -0.839 -0.398 -0.321 -0.323 -0.290 -0.279 .380 -0.320 .440 -0.696 -0.371 -0.605 -0.309 -0.001 -0.293 -0.336 .500 -0.790-0.406-0.315-0.416 -0.345-0.416 -0.263 -0.337 -0.740-0.296-0.294 -0.342-0.246 .560 -0.393-0.345-0.363 .620 -0.328 0.133 -0.397 -0.073 -0.372 -0.103 -0.243 -0.191 .700 -0.410 0.226 -0.484 0.244 -0.397 0.186 -0.253 0.136 -0.606 -0.569 0.423 -0.507 0.307 .800 0.357 0.312 -0.314.900 -0.300 0.498 -0.318 -0.323 -0.426 0.400 0.579 0.469 -1.5_E -1.5-0.5 -0.5 $\eta = 0.588$ = 0.309 C_p C_p 0 0.5 0.5 1 1 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.8 x/c x/c -1.5_E -1.5Upper Surface -1- 1 -0.5-0.5 Cp C_p 0 $\eta = 0.809$ $\eta = 0.951$ 0.5 0.5 1 1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 x/c x/c (f) Test case 6E6 (point 462).

Figure 8. Continued.

34

Point Number = 276	Mach Number = 0.850	Alphao = 2.01,	deg.
q H V 112.6 410.3 427.	Rn gamma 6 .400E+07 1.131	_	
y/s =0.309 x/c Cpu Cpl	4 ·	y/s =0.809 Cpu Cpl	y/s =0.951 Cpu Cpl
.000 1.232 .025 -0.476 -0.09 .050 -0.711 -0.32 .100 -0.762 -0.44 .200 -0.753 -0.41 .260 -0.846 -0.45 .320 -0.808 -0.42 .380 -0.764 -0.42 .440 -0.754 -0.41 .500 -0.757 -0.43 .560 -0.789 -0.36 .620 -0.829 0.18 .700 -0.910 0.22 .800 -0.315 0.42 .900 -0.268 0.54	28	1.196 -0.667 -0.108 -0.734 -0.332 -0.821 -0.510 -0.834 -0.480 -0.783 -0.412 -0.704 -0.434 -0.535 -0.360 -0.402 0.000 -0.429 -0.457 -0.407 -0.338 -0.372 -0.042 -0.378 0.185 -0.510 0.296 -0.296 0.483	1.188 -0.585 -0.145 -0.848 -0.419 -0.853 -0.490 -0.538 -0.435 -0.453 -0.438 -0.396 -0.347 -0.332 -0.303 -0.330 -0.358 -0.309 -0.426 -0.273 -0.388 -0.252 -0.155 -0.265 0.109 -0.309 0.330 -0.443 0.406
-1.5 -1.5 -0.5 C _p 0 0.5 1.5 0.2 0.4 0.6 0.8 x/c	$\eta = 0.309$	$\eta = 0.588 \\ C_{p} 0 \\ 1.5_{0}$	0.2 0.4 0.6 0.8 1 x/c
-1.5 -1 -0.5 C _p 0 0.5 1 1.50 0.2 0.4 0.6 0.8	$\eta = 0.809$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Upper Surface Lower Surface 0.2 0.4 0.6 0.8 1
x/c	(g) Test case 6E7 Figure 8. Con	(point 276).	0.2 0.4 0.6 0.8 1 x/c

	Point Number = q 115.0	H V	= 0.876 Rn 401E+07	Alphao gamma 1.132	= 2.00, Cp* -0.269	deg.
	y/s =0.309	y/s =0.588	y/s	=0.809	y/s =	=0.951
x/c	Cpu Cpl	Cpu Cpl	Cpu	Cpl	Cpu	Cpl
.000	1.246	1.203	1.209		1.197	
.025	-0.409 -0.066	-0.593 -0.144	-0.587	-0.096	-0.527	-0.125
.050	-0.638 -0.305	-0.602 -0.151	-0.689	-0.306	-0.771	-0.403
.100 .200	-0.695 -0.414 -0.714 -0.496	-0.681 -0.374 -0.706 -0.535		-0.479 -0.544	-0.807 -0.640	-0.481 -0.483
.260	-0.784 -0.484	-0.779 -0.501	-0.764	-0.459		-0.439
.320	-0.758 -0.421	-0.814 -0.462		-0.455		-0.415
.380	-0.709 -0.454	-0.774 -0.545	-0.556	-0.458	-0.382	-0.401
.440	-0.691 -0.562	-0.743 -0.494	-0.545	-0.001	-0.404	-0.429
.500	-0.747 -0.680	-0.856 -0.660	-0.516	-0.595		-0.440
.560 .620	-0.768 -0.456 -0.824 0.068	-0.780 -0.615 $-0.814 -0.049$	-0.512 -0.536	-0.198 -0.026	-0.363 -0.323	-0.521 -0.157
.700	-0.824 0.088	-0.715 0.147	-0.469	0.028	-0.323	0.111
.800	-0.371 0.381	-0.352 0.424	-0.460	0.207	-0.302	0.290
.900	-0.177 0.488	-0.209 0.574	-0.227	0.420	-0.401	0.419
-1.5 r				-1.5		
-1		η = 0.309	$\eta = 0$.	\rightarrow C_p 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
1.500.2	2 0.4 0.6 0.8 x/c	1		0.5 1 1.5	0.2 0.4 x	0.6 0.8 1 /c
-1.5 r				-1.5 r		O Upper Surface
-1 - 8				-1	_	□ Lower Surface
-0.5	60 100 100 000 000 000 000 000 000 000 000			-0.5		
		<		F1/	1 14400	4000
C _p 0		_				
0.5	Б	$\eta = 0.809$	$\eta = 0$.	95 ¹ 0.5		
1 t				1		
1.5	2 0.4 0.6 0.8 x/c	1 1		1.5 <u>L</u>	0.2 0.4 x	0.6 0.8 1 /c
		(h) Test case 6F8	(point 423)			

(h) Test case 6E8 (point 423). Figure 8. Continued.

Point Num	ber = 251	Mac	h Number =	0.907	Alphao	= 2.00,	deg.	
q 117.7	Н 397.5	V 452.3	Rn .401E+07	gamma 1.133	Cp* -0.194	4		
x/c	y/s = Cpu	0.309 Cpl	y/s = Cpu	0.588 Cpl	y/s = Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	-0.535 -0.606 -0.614 -0.719 -0.708 -0.676 -0.640 -0.695 -0.725 -0.761 -0.777 -0.275	-0.025 -0.250 -0.364 -0.417 -0.484 -0.430 -0.540 -0.645 -0.768 -0.459 -0.285 -0.069 0.157	-0.499 -0.585 -0.614 -0.726 -0.733 -0.754 -0.789 -0.846 -0.795 -0.830	-0.095 -0.067 -0.329 -0.468 -0.527 -0.528 -0.560 -0.520 -0.669 -0.741 -0.302 -0.242 0.039 0.337	1.226 -0.512 -0.487 -0.687 -0.702 -0.741 -0.664 -0.568 -0.573 -0.597 -0.595 -0.673 -0.399 -0.042	-0.027 -0.267 -0.415 -0.495 -0.512 -0.503 -0.526 0.002 -0.632 -0.204 -0.005 -0.116 -0.145 0.100	1.218 -0.430 -0.693 -0.756 -0.626 -0.448 -0.457 -0.440 -0.435 -0.417 -0.436 -0.471 -0.286 -0.267	-0.078 -0.341 -0.472 -0.443 -0.517 -0.474 -0.459 -0.518 -0.538 -0.637 -0.206 -0.261 0.202 0.358
-1.5 -1 -0.5 -0.5 0.5 1 1.50 0.2	0.4 0.6 x/c	0.8 1	$\eta = 0$.	309	$\eta = 0.8$	-1.5 -1 -0.5 588 C _p 0		4 0.6 0.8 1 x/c
-1.5		3	$\eta = 0$.	809	$\eta = 0.1$	-1.5 -1.5 -0.5 c_{p} 0.5 951 0.5	- 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Upper Surface Lower Surface
1.5000.2	0.4 0.6 x/c	0.8 1		case 6E9 (p ure 8. Cont		1.50	0.2 0.4	4 0.6 0.8 1 k/c

	Point Nu	mber = 48	39 Mac	h Number =	0.803	Alphao	= 1.99,	deg.
q 105.8	H 414.7	V 402.7	Rn .400E+07	gamma 1.132	Cp*	6		
x/c	y/s Cpu	=0.309 Cpl	y/s Cpu	=0.588 Cpl	y/s Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.193 -0.665 -0.897 -0.924 -0.896 -0.899 -0.786 -0.526 -0.357 -0.405 -0.514 -0.580 -0.607 -0.324	-0.099 -0.327 -0.413 -0.378 -0.361 -0.284 -0.277 -0.324 -0.349 -0.290 0.167 0.254 0.394 0.515	1.157 -0.852 -0.852 -0.894 -0.879 -0.901 -0.740 -0.290 -0.294 -0.395 -0.371 -0.450 -0.515 -0.554 -0.345	-0.174 -0.196 -0.388 -0.424 -0.344 -0.320 -0.343 -0.261 -0.366 -0.373 -0.108 0.246 0.422 0.571	1.168 -0.828 -0.959 -0.945 -0.992 -0.411 -0.335 -0.280 -0.299 -0.344 -0.336 -0.371 -0.406 -0.481 -0.340	-0.134 -0.336 -0.474 -0.379 -0.314 -0.277 -0.276 -0.001 -0.380 -0.333 -0.217 0.193 0.342 0.475	1.163 -0.731 -0.979 -0.806 -0.429 -0.351 -0.262 -0.252 -0.270 -0.255 -0.239 -0.241 -0.248 -0.313 -0.407	-0.168 -0.416 -0.424 -0.355 -0.306 -0.270 -0.249 -0.304 -0.285 -0.335 -0.198 0.164 0.297 0.400
-1.5 -1.5 -0.5 C _p 0	2 0.4 0 x/c	6 0.8 1	$\eta = 0$.309	$\eta = 0$.	C _p 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2 0.4	1 0.6 0.8 1
-1.5 r -1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0			« η = 0	.809	$\eta = 0$.	-1.5 -1.5 -0.5 -0.5 951 0.5		Upper Surface Lower Surface
1.5 0 0.2	2 0.4 0. x/c	6 0.8 1				1.50	0.2 0.4	1 0.6 0.8 1 4/c
			(j) Tes	t case 6E10 (point 489).			

(j) Test case 6E10 (point 489). Figure 8. Continued.

Point Num	nber = 21	4 Mag	ch Number =	0.403	Alphao	= 0.21,	deg.		
q 111.1	H 1322.8	V 203.4	Rn .802E+07	gamma 1.135	Cp*	3			
x/c	y/s = Cpu	=0.309 Cpl	y/s = Cpu	0.588 Cpl	y/s : Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl	
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.060 -0.593 -0.553 -0.515 -0.373 -0.306 -0.268 -0.236 -0.348 -0.268 -0.277 -0.305 -0.358 -0.396 -0.324	-0.348 -0.407 -0.368 -0.338 -0.236 -0.180 -0.145 -0.180 -0.170 -0.160 -0.070 0.198 0.348 0.418	-0.547 -0.444 -0.346 -0.265 -0.301 -0.259 -0.238 -0.243 -0.209	-0.411 -0.303 -0.370 -0.382 -0.208 -0.215 -0.202 -0.076 -0.190 -0.214 -0.034 0.179 0.340 0.470	1.046 -0.637 -0.511 -0.455 -0.389 -0.200 -0.221 -0.179 -0.165 -0.204 -0.237 -0.230 -0.299 -0.333 -0.295	-0.370 -0.429 -0.394 -0.329 -0.206 -0.175 -0.166 0.000 -0.192 -0.369 -0.115 0.207 0.327 0.410	1.044 -0.537 -0.524 -0.382 -0.278 -0.157 -0.115 -0.145 -0.123 -0.121 -0.211 -0.235 -0.229	-0.355 -0.402 -0.345 -0.311 -0.174 -0.122 -0.136 -0.200 -0.164 -0.168 -0.101 0.090 0.299 0.339	
-1.5	0.4 0.6 x/c	5 0.8 1	$\eta = 0$.	.309	$\eta = 0$.	-1.5 -1 - -0.5 588 C, 0	0.2 0.4	4 0.6 0.8 x/c	_ 1
-1.5 F -1 -						-1.5 -1 -0.5	<u>=</u>	── Upper Surface	
C _p 0	Paga S e		$\eta = 0$.	.809	$\eta = 0$.	→ c 0	Book		_
1.50 0.2	0.4 0.6 x/c	5 0.8 1				1.50	0.2 0.4	4 0.6 0.8 x/c	<u> </u>
	(k) Test case 6E11 (point 214).								

(k) Test case 6E11 (point 214). Figure 8. Continued.

Pc	oint Number = 15	4 Mach Number	= 0.801 Alph	ao = 0.03,	deg.
	q 106.0	H V 416.2 403.1 .40	Rn gamma 01E+07 1.133	. Cp* -0.482	
x/c	y/s =0.309 Cpu Cpl	y/s =0.588 Cpu Cpl	y/s =0.809 Cpu Cpl	y/s = Cpu	=0.951 Cpl
.050100200260320380440500560620700800 -	1.197 -0.405 -0.381 -0.589 -0.595 -0.653 -0.657 -0.526 -0.562 -0.575 -0.487 -0.388 -0.384 -0.356 -0.373 -0.270 -0.393 -0.451 -0.384 -0.444 -0.292 -0.497 0.040 -0.527 0.206 -0.566 0.295 -0.284 0.399	1.174 -0.560 -0.456 -0.593 -0.459 -0.669 -0.632 -0.507 -0.611 -0.489 -0.453 -0.419 -0.375 -0.373 -0.415 -0.364 -0.314 -0.411 -0.383 -0.374 -0.436 -0.438 -0.039 -0.498 0.197 -0.504 0.301 -0.306 0.485	1.180 -0.586 -0.393 -0.641 -0.554 -0.714 -0.698 -0.542 -0.471 -0.346 -0.404 -0.316 -0.333 -0.314 -0.333 -0.293 0.000 -0.331 -0.381 -0.345 -0.314 -0.362 -0.090 -0.393 0.176 -0.445 0.278 -0.301 0.393	-0.691 -0.550 -0.348 -0.278 -0.220 -0.228 -0.254 -0.240 -0.228 -0.229 -0.257 -0.281	-0.384 -0.624 -0.550 -0.431 -0.314 -0.263 -0.277 -0.328 -0.305 -0.315 -0.144 0.124 0.265 0.342
-1.5	0.4 0.6 0.8 1 x/c	η = 0.309	0.	1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0.6 0.8 1 /c
-1.5 r -1 - -0.5 d C _p 0		$\eta = 0.809$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Upper Surface Lower Surface
1.5000.20	0.4 0.6 0.8 1 x/c	(l) Test and 6F12	1.	50 0.2 0.4	0.6 0.8 1 /c

(1) Test case 6E12 (point 154). Figure 8. Continued.

Point Num	ber = 46	4 Mac	ch Number =	0.821	Alphao	= -0.01,	deg.	
q 106.8	H 406.3	V 410.6	Rn .398E+07	gamma 1.132	Cp*	0		
x/c	y/s : Cpu	=0.309 Cpl	y/s =(Cpu	0.588 Cpl	y/s Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.213 -0.365 -0.543 -0.647 -0.603 -0.527 -0.539 -0.350 -0.473 -0.500 -0.500 -0.589 -0.581 -0.266	-0.360 -0.577 -0.695 -0.709 -0.625 -0.431 -0.357 -0.398 -0.442 -0.309 0.099 0.208 0.321 0.436	-0.549 -0.647 -0.594 -0.595 -0.421 -0.357 -0.357 -0.437 -0.393 -	-0.450 -0.408 -0.661 -0.747 -0.634 -0.458 -0.375 -0.332 -0.438 -0.401 -0.052 0.210 0.337 0.494	1.190 -0.555 -0.578 -0.730 -0.621 -0.408 -0.324 -0.301 -0.351 -0.354 -0.387 -0.406 -0.480 -0.286	-0.377 -0.557 -0.719 -0.614 -0.475 -0.344 -0.346 -0.001 -0.420 -0.312 -0.096 0.169 0.269 0.397	1.177 -0.492 -0.703 -0.630 -0.346 -0.313 -0.235 -0.266 -0.254 -0.250 -0.255 -0.263 -0.287 -0.276	-0.373 -0.620 -0.598 -0.456 -0.333 -0.295 -0.304 -0.343 -0.332 -0.325 -0.132 0.130 0.250 0.336
-1.5	0.4 0.6 x/c	5 0.8 1	$\eta = 0$.	309	$\eta = 0$.	-1.5 -0.5 588 C _p 0 0.5 1.50	0.2 0.4	1 0.6 0.8 1 x/c
-1.5 -1 -0.5 C 0	08000	-00	_			-1.5 -1- -0.5	e Sagat	Upper Surface Lower Surface
C _p 0		5 0.8 1	$\eta = 0$.	809	$ \eta = 0. $		0.2 0.4	
	x/c		(m) Test	case 6E13 ((point 464).		2	₹/c

(m) Test case 6E13 (point 464). Figure 8. Continued.

Point N	umber = 253	B Mach Number	= 0.901	Alphao =	0.00, deg.	
	q 116.9	H V 397.5 449.9 .4	Rn 100E+07	gamma 1.133 -	Cp*	
y/s x/c Cpu	=0.309 Cpl	y/s =0.588 Cpu Cpl	y/s = Cpu	0.809 Cpl	y/s =0.951 Cpu Cpl	
.000 1.276 .025 -0.171 .050 -0.343 .100 -0.483 .200 -0.480 .260 -0.576 .320 -0.556 .380 -0.551 .440 -0.592 .500 -0.628 .560 -0.660 .620 -0.695 .700 -0.693 .800 -0.507	-0.210 -0.406 -0.561 -0.568 -0.649 -0.576 -0.575 -0.636 -0.742 -0.597 -0.408 -0.284 -0.100	1.227 -0.347 -0.299 -0.342 -0.207 -0.474 -0.511 -0.490 -0.614 -0.561 -0.662 -0.605 -0.654 -0.602 -0.691 -0.626 -0.654 -0.677 -0.774 -0.614 -0.420 -0.623 -0.263 -0.665 -0.229 -0.588 -0.011 -0.063 0.265	-0.296 -0.586 -0.648 -0.588 -0.577 -0.527 -0.474 -0.493 -0.517 -0.513	-0.399 -0.588 -0.636 -0.653 -0.632 -0.630 0.001 -0.698 -0.521 -0.114 -0.078 0.069	1.218 -0.308 -0.234 -0.554 -0.454 -0.637 -0.626 -0.534 -0.535 -0.490 -0.585 -0.399 -0.467 -0.365 -0.500 -0.370 -0.548 -0.355 -0.582 -0.378 -0.546 -0.424 -0.121 -0.434 -0.215 -0.301 0.160 -0.193 0.275	
-1.5 -1 -0.5 C _p 0 0.5 1 1.50 0.2 0.4 0 x/c	6 0.8 1	η = 0.309	$\eta = 0.5$	C _p 0	0.2 0.4 0.6 0.8 x/c	·1
-1.5 r -1 - -0.5 c C _p 0		$\eta = 0.809$	$\eta = 0.9$	-1.5 -1 -0.5 -0.5 -0.5	Upper Surfac	
1.50 0.2 0.4 0 x/c	.6 0.8 1	(n) Tost once 6E1	4 (point 252)	1.50	0.2 0.4 0.6 0.8 x/c	- 1

(n) Test case 6E14 (point 253). Figure 8. Continued.

Point Num	ber = 21	0 Mag	ch Number =	= 0.403	Alphao	= 4.20,	deg.		
q 111.0	H 1321.4	V 203.3	Rn .803E+07	gamma 1.135	Cp* -3.98	3			
x/c	y/s : Cpu	=0.309 Cpl	y/s = Cpu	=0.588 Cpl	y/s Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl	
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	0.778 -1.576 -1.202 -0.931 -0.616 -0.507 -0.437 -0.376 -0.382 -0.369 -0.382 -0.409 -0.341	0.296 0.090 -0.018 -0.108 -0.056 -0.030 -0.018 -0.070 -0.074 -0.081 -0.036 0.238 0.382 0.453	0.761 -1.634 -1.147 -0.818 -0.567 -0.447 -0.385 -0.353 -0.353 -0.336 -0.289 -0.340 -0.413 -0.363 -0.327	0.239 0.168 -0.038 -0.153 -0.046 -0.079 -0.088 0.019 -0.106 -0.015 0.019 0.213 0.377 0.500	0.827 -1.409 -1.003 -0.772 -0.564 -0.343 -0.269 -0.240 -0.261 -0.289 -0.275 -0.343 -0.362 -0.317	0.216 0.004 -0.103 -0.146 -0.072 -0.065 -0.075 0.000 -0.135 -0.337 -0.085 0.214 0.348 0.434	0.916 -1.101 -0.886 -0.593 -0.392 -0.218 -0.151 -0.192 -0.139 -0.149 -0.127 -0.245 -0.301 -0.369	0.097 -0.078 -0.143 -0.186 -0.044 -0.030 -0.074 -0.140 -0.096 -0.138 -0.121 0.067 0.287 0.339	
-2 -1.5 -1.5 -1.5 -1.5 -2 0 0.2	0.4 0.6 x/c	5 0.8 1	$\eta = 0$.309	$\eta = 0$.	-2 [-1.5] -1.5 588-0.5 0.5 1.5 1.5	0.2 0.4	4 0.6 0.8 1 x/c	- 1
-1.5 -1 -0.5 C _p 0			$\eta = 0$.809	$\eta = 0$.	-1.5 -1 -0.5 -0.5 -0.5 0.5	- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Upper Surface Lower Surface	_
1.50 0.2	0.4 0.6 x/c	5 0.8 1	(n) Tes	t case 6E15	(point 210)	1 . 5	0.2 0.4	4 0.6 0.8 1 x/c	ן 1
			(0) 103	t case on 13	(Pont 210).				

(o) Test case 6E15 (point 210). Figure 8. Continued.

Point Num	ber = 15	0 Ma	ch Number =	0.803	Alphao	= 3.99,	deg.	
Q 106.2	H 415.5	V 403.7	Rn .401E+07	gamma 1.133	Cp* -0.476			
x/c	y/s Cpu	=0.309 Cpl	y/s =0 Cpu	.588 Cpl	y/s = Cpu	0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.147 -0.920 -1.105 -1.167 -1.141 -1.182 -1.154 -1.109 -0.882 -0.527 -0.235 -0.323 -0.431 -0.546 -0.345	0.152 -0.070 -0.189 -0.233 -0.245 -0.197 -0.204 -0.254 -0.256 -0.282 -0.256 -0.029 0.289 0.437 0.533	-1.103 -1.136 - -1.107 - -1.177 - -1.155 - -1.073 - -0.522 - -0.215 - -0.243 - -0.347 - -0.465 - -0.509	0.099 0.024 0.185 0.298 0.273 0.223 0.281 0.203 0.314 0.429 0.099 0.280 0.473 0.620	-1.186 -1.187 -1.004 -0.458 -0.352 -0.321 -0.328 -0.340	0.115 -0.094 -0.270 -0.275 -0.242 -0.222 -0.243 0.000 -0.344 -0.340 -0.151 0.232 0.384 0.518	1.125 -0.990 -1.176 -1.128 -0.547 -0.491 -0.330 -0.295 -0.295 -0.260 -0.237 -0.230 -0.269 -0.366 -0.594	0.041 -0.206 -0.288 -0.323 -0.298 -0.202 -0.224 -0.297 -0.295 -0.343 -0.222 0.119 0.322 0.396
-1.5 -1.5 -0.5 C _p 0	0.4 0.6 x/c	5 0.8 1	$\eta = 0.3$	309	$\eta = 0.5$	-1.5 -1 -0.5 888 C _p 0 1.5	0.2 0.4	0.6 0.8 1
-1.5 -1.5 -0.5 C _p 0			~ η = 0.8	309	$\eta = 0.9$	-1.5 r -1 d -0.5 r -0.5 r		Upper Surface Lower Surface
1.50 0.2	0.4 0.6 x/c	5 0.8 1	(n) Test o	case 6E16 ((point 150).	1.50	0.2 0.4	0.6 0.8 1

(p) Test case 6E16 (point 150). Figure 8. Continued.

Point Num	ber = 460) Mac	ch Number	= 0.828	Alphao	= 4.00,	deg.	
Q 107.9	Н 406.3	V 413.7	Rn .401E+07	gamma 1.132	Cp*	0		
x/c	y/s = Cpu	=0.309 Cpl	y/s : Cpu	=0.588 Cpl	y/s : Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.186 -0.806 -0.988 -1.060 -1.038 -1.100 -1.083 -1.058 -1.034 -0.866 -0.925 -0.914 -0.226 -0.414 -0.325	0.137 -0.098 -0.221 -0.259 -0.274 -0.218 -0.242 -0.297 -0.345 -0.295 0.040 0.276 0.434 0.558	1.140 -0.938 -0.990 -1.028 -1.002 -1.100 -1.093 -1.069 -1.054 -1.068 -0.439 -0.217 -0.351 -0.460 -0.354	0.069 0.029 -0.207 -0.315 -0.302 -0.277 -0.320 -0.249 -0.372 -0.439 -0.101 0.277 0.481 0.625	1.151 -0.917 -1.029 -1.099 -1.001 -1.006 -0.931 -0.561 -0.407 -0.387 -0.352 -0.353 -0.373 -0.497 -0.352	0.099 -0.136 -0.292 -0.291 -0.284 -0.255 -0.272 0.000 -0.394 -0.370 -0.149 0.214 0.369 0.521	1.152 -0.883 -1.098 -1.083 -0.618 -0.553 -0.437 -0.390 -0.358 -0.301 -0.269 -0.252 -0.267 -0.363 -0.659	0.027 -0.235 -0.323 -0.315 -0.324 -0.242 -0.263 -0.326 -0.338 -0.389 -0.230 0.120 0.332 0.417
-1.5 -1.5 -0.5 C _p 0	0.4 0.6 x/c	0.8 1	$\eta = 0$.309	$\eta = 0$.	-1.5 -1.5 -0.5 588 C, 0	0.2 0.4	1 0.6 0.8 1 3/c
-1.5 -1.5 -0.5 C _p 0			$\eta = 0$.809	$\eta = 0$.	-1.5 -1.5 -0.5 -0.5 -0.5 951 _{0.5}		Upper Surface Lower Surface
1.5000.2	0.4 0.6 x/c	0.8 1	(q) Tes	st case 6E17	(point 460).	1.50	0.2 0.4	1 0.6 0.8 1 x/c

(q) Test case 6E17 (point 460). Figure 8. Continued.

Point Number = 249	Mach Number = 0.903	Alphao = 4.00,	deg.
q H V 116.9 396.6 450.	Rn gamma 3 .400E+07 1.133	_	
y/s =0.309 x/c	y/s =0.588 Cpu Cpl	y/s =0.809 Cpu Cpl	y/s =0.951 Cpu Cpl
.000 1.260 .025 -0.501 0.14 .050 -0.679 -0.08 .100 -0.778 -0.22 .200 -0.761 -0.23 .260 -0.869 -0.34 .320 -0.869 -0.32 .380 -0.858 -0.39 .440 -0.788 -0.45 .500 -0.803 -0.54 .560 -0.782 -0.68 .620 -0.845 -0.31 .700 -0.799 -0.23 .800 -0.323 -0.05 .900 -0.308 0.19	5	1.206 -0.651	1.204 -0.609
-1.5 -1.5 -0.5 C _p 0 0.5 1.50 0.2 0.4 0.6 0.8 x/c	$ \eta = 0.309 $	$\eta = 0.588 \\ C_{p} 0 \\ 1.5_{0}$	0.2 0.4 0.6 0.8 1 x/c
-1.5 -1 -0.5 C _p 0	- (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Upper Surface Lower Surface
1.50 0.2 0.4 0.6 0.8 x/c	(r) Test case 6F18	1.50	0.2 0.4 0.6 0.8 1 x/c

(r) Test case 6E18 (point 249). Figure 8. Continued.

Point Num	ber = 604	Mac	ch Number =	- 0.400	Alphao :	= 7.01,	deg.	
q 54.1	Н 652.8	V 201.8	Rn .400E+07	gamma 1.132	Cp* -4.058			
x/c	y/s =0 Cpu	0.309 Cpl	y/s = Cpu	=0.588 Cpl	y/s = Cpu	0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	0.328 -2.396 -1.659 -1.218 -0.755 -0.653 -0.538 -0.452 -0.957 -0.421 -0.435 -0.417 -0.400 -0.456 -0.343	0.610 0.350 0.177 0.076 0.050 0.074 0.129 0.028 0.009 0.010 -0.136 0.281 0.420 0.476	0.291 -2.393 -1.560 -1.059 -0.665 -0.544 -0.523 -0.476 -0.485 -0.315 -0.319 -0.378 -0.432 -0.339 -0.315	0.544 0.558 0.184 -0.040 0.057 -0.038 -0.009 0.174 -0.030 0.125 0.096 0.221 0.410 0.627	-0.337 -0.381 -0.242 -0.299 -0.324	0.532 0.240 0.078 0.011 -0.055 -0.048 -0.080 0.002 -0.090 -0.106 -0.006 0.301 0.344 0.462	0.678 -1.536 -1.094 -0.756 -0.484 -0.295 -0.247 -0.256 -0.202 -0.162 -0.333 -0.396 -0.554	0.361 0.121 -0.011 -0.086 -0.153 0.022 -0.032 -0.129 -0.162 -0.141 -0.117 -0.083 0.373 0.330
-3212123 0 0 . 2	0.4 0.6 x/c	0.8 1	$\eta = 0$.309	$\eta = 0.5$	-3 -2 -1 -1 -88 C _p 0		4 0.6 0.8 1 x/c
-3 F -2 O -1 C _p O	999996 BRUBBQ) 	$\eta = 0$.809	$\eta = 0.9$	-3 -2 -1 -2 -1 -2 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	B B B	Upper Surface Lower Surface
30 0.2	0.4 0.6 x/c	0.8 1	() 	t case 6E10 (30	0.2 0.	4 0.6 0.8 1 x/c

(s) Test case 6E19 (point 604). Figure 8. Continued.

	Point Nu	mber = 60	07 Mac	h Number	= 0.400	Alphao	= 9.97,	deg.
54.1	652.8	q 201.8	H .401E+07	V 1.132	Rn 2 -4.05	gamma 88	Cp*	
x/c	y/s Cpu	=0.309 Cpl	y/s Cpu	=0.588 Cpl	y/s Cpu	=0.809 Cpl	y/s : Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	-0.372 -3.734 -2.195 -1.516 -0.922 -0.790 -0.650 -0.549 -1.281 -0.482 -0.484 -0.455 -0.410 -0.458 -0.324	0.826 0.583 0.373 0.217 0.167 0.172 0.215 0.106 0.077 0.070 -0.100 0.310 0.437 0.488	-0.358 -3.490 -2.059 -1.337 -0.813 -0.668 -0.614 -0.556 -0.543 -0.376 -0.366 -0.413 -0.454 -0.351 -0.303	0.772 0.779 0.373 0.096 0.162 0.057 0.074 0.248 0.041 0.171 0.131 0.246 0.427 0.629	-0.104 -2.929 -1.678 -1.254 -0.908 -0.518 -0.420 -0.444 -0.293 -0.346 -0.373 -0.370 -0.397 -0.423 -0.335	0.774 0.463 0.257 0.129 0.040 0.038 -0.010 0.002 -0.043 -0.075 0.030 0.344 0.343 0.472	0.329 -2.060 -1.452 -0.909 -0.566 -0.369 -0.315 -0.312 -0.307 -0.210 -0.186 -0.204 -0.416 -0.518 -0.742	0.584 0.313 0.122 -0.008 -0.094 0.069 0.006 -0.107 -0.137 -0.134 -0.124 -0.148 0.386 0.312
-4 -3 -4	2 0.4 0. x/c	6 0.8 1	· —	.309	$\eta = 0$.	-4 -3 -4 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5		0.6 0.8 1
-3 p	⁹		$\eta = 0$.809	$\eta = 0$.	-3 F -2 P -1 F C _p 0 F 951 1		Upper Surface Lower Surface
30 0.2	2 0.4 0. x/c	6 0.8 1	(t) Tes	st case 6F20) (point 607).	2 - 30	0.2 0.4	0.6 0.8 1

(t) Test case 6E20 (point 607). Figure 8. Continued.

Point Number	= 609 Mac	h Number = 0.	401 Alphao	= 12.00, d	leg.	
q 54.2 65	H V 52.8 202.0		gamma Cp* 1.132 -4.03			
x/c (y/s =0.309 Cpu Cpl	y/s =0.5 Cpu C	38 y/s pl Cpu	=0.809 Cpl	y/s =0.5 Cpu	951 Cpl
.025	903 813	-2.358	-0.563 879 -3.708 905 -1.941 487 -1.402 183 -0.990 214 -0.580 119 -0.471 130 -0.491 300 -0.328 082 -0.374 245 -0.398 157 -0.395 263 -0.418 439 -0.442 630 -0.343	0.589 0.366 0.206 0.105 0.095 0.044 0.002 -0.009 -0.041 0.059 0.373 0.341	-1.377 0 -1.007 0 -0.622 0 -0.416 -0 -0.368 0 -0.349 0 -0.323 -0 -0.245 -0 -0.220 -0 -0.245 -0 -0.485 -0 -0.622 0	.700 .431 .207 .044 .054 .095 .031 .091 .125 .126 .121 .187 .388 .298
	4 0.6 0.8 1	η = 0.30	$9 \qquad \eta = 0.$	C _p 0	0.2 0.4 0. x/c	6 0 . 8 1
-4 -3	4 0.6 0.8 1	η = 0.80	$9 \qquad \eta = 0.$	2 - 3 - 4	0.2 0.4 0.x/c	Upper Surface Lower Surface
			e 6E21 (point 609) 3. Continued.			

Point Number = 628 Mac	n Number = 0.826	Alphao = 0.00,	deg.
q H V 108.6 410.3 413.8	Rn gamma .401E+07 1.132	Cp* -0.406	
y/s =0.309 x/c Cpu Cpl	y/s =0.588 Cpu Cpl	y/s =0.809 Cpu Cpl	y/s =0.951 Cpu Cpl
.000 1.189 .025 -0.380 -0.346 .050 -0.496 -0.492 .100 -0.722 -0.690 .200 -0.614 -0.705 .260 -0.514 -0.630 .320 -0.025 -0.551 .380 -0.427 -0.413 .440 -0.228 -0.415 .500 -0.457 -0.416 .560 -0.470 -0.259 .620 -0.496 0.117 .700 -0.556 0.130 .800 -0.493 0.188 .900 -0.180 0.287	1.182 -0.535 -0.427 -0.506 -0.391 -0.703 -0.717 -0.594 -0.711 -0.586 -0.644 -0.019 -0.578 -0.397 -0.421 -0.368 -0.358 -0.439 -0.401 -0.391 -0.221 -0.451 -0.023 -0.502 0.132 -0.462 0.196 -0.199 0.331	1.193 -0.545 -0.379 -0.563 -0.530 -0.764 -0.731 -0.468 -0.621 -0.463 -0.503 -0.016 -0.403 -0.298 -0.367 -0.310 -0.001 -0.349 -0.412 -0.347 -0.002 -0.377 -0.127 -0.391 0.133 -0.427 0.205 -0.228 0.314	1.178 -0.487 -0.368 -0.650 -0.609 -0.740 -0.609 -0.376 -0.426 -0.336 -0.390 -0.011 -0.313 -0.244 -0.313 -0.264 -0.349 -0.253 -0.338 -0.249 -0.327 -0.250 -0.108 -0.259 0.134 -0.276 0.192 -0.251 0.288
-1.5 -1 -0.5 C _p 0 0.5 1.50 0.2 0.4 0.6 0.8 1 x/c	$\eta = 0.309$	$ \eta = 0.588 $	0.2 0.4 0.6 0.8 1 x/c
-1.5 -1 -0.5		-1.5 F -1 -0.5	Upper Surface
C _p 0	$\eta = 0.809$	$\eta = 0.951_{0.5}$	
1.50 0.2 0.4 0.6 0.8 1 x/c	(v) Test case 6E22	1.50 (point 628)	0.2 0.4 0.6 0.8 1 x/c

(v) Test case 6E22 (point 628). Figure 8. Continued.

Point Numbe	er = 626	Mac	h Number :	= 0.825	Alphao	= 2.00,	deg.	
q 108.5	H 410.1	V 413.4	Rn .401E+07	gamma 1.132	Cp*	9		
x/c	y/s =0 Cpu	0.309 Cpl	y/s : Cpu	=0.588 Cpl	y/s : Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.025050100200260320380440500560620700800 -	-0.8340.8490.8750.8410.0360.7030.4600.659 -	-0.092 -0.295 -0.424 -0.409 -0.438 -0.365 -0.344 -0.384 -0.393 -0.265 0.103 0.164 0.231 0.342	1.171 -0.768 -0.793 -0.814 -0.868 -0.873 -0.040 -0.817 -0.336 -0.353 -0.333 -0.409 -0.466 -0.456 -0.220	-0.160 -0.213 -0.424 -0.420 -0.429 -0.391 -0.413 -0.327 -0.381 -0.236 -0.009 0.153 0.218 0.349	1.180 -0.761 -0.883 -0.877 -0.908 -0.649 -0.020 -0.325 -0.314 -0.335 -0.332 -0.358 -0.382 -0.428 -0.248	-0.136 -0.333 -0.494 -0.389 -0.407 -0.329 -0.331 -0.001 -0.398 -0.302 -0.134 0.144 0.225 0.339	1.173 -0.675 -0.928 -0.862 -0.456 -0.479 -0.014 -0.278 -0.283 -0.258 -0.244 -0.238 -0.244 -0.288 -0.361	-0.165 -0.419 -0.468 -0.370 -0.321 -0.287 -0.289 -0.337 -0.338 -0.352 -0.153 0.138 0.204 0.322
-1.5	0.4 0.6 x/c	0.8 1	η = 0	.309	$\eta = 0$.	-1.5 -1.5 -0.5 588 C, 0	0.2 0.4	1 0.6 0.8 1 x/c
-1.5 F				 1		-1.5	=	Upper Surface Lower Surface
-0.5 C _p 0	A Da C		$\eta = 0$.809	$\eta = 0$.	-1 -0 .5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		H3000
1 5	0.4 0.6 x/c	0.8 1				1.50	0.2 0.4	1 0.6 0.8 1
			(w) Tes	st case 6E23	(point 628).			

(w) Test case 6E23 (point 628). Figure 8. Continued.

Point Num	ber = 62	4 Mac	ch Number =	0.826	Alphao	= 4.01,	deg.	
q 108.5	Н 409.8	V 413.7	Rn .401E+07	gamma 1.132	Cp* -0.406			
x/c	y/s : Cpu	=0.309 Cpl	y/s =0 Cpu	0.588 Cpl	y/s = Cpu	0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.164 -0.841 -1.024 -1.072 -1.078 -1.054 -0.048 -1.005 -1.045 -0.925 -0.950 -0.442 -0.317 -0.351 -0.199	0.144 -0.073 -0.213 -0.274 -0.277 -0.268 -0.250 -0.323 -0.354 -0.263 0.101 0.200 0.284 0.400	-1.0281.0571.0461.0600.0481.0210.5900.3310.3080.3580.384	0.088 0.005 0.223 0.289 0.260 0.293 0.320 0.256 0.342 0.201 0.013 0.191 0.268 0.393	-1.096 -1.065 -1.019 -0.034 -0.463 -0.368 -0.343 -0.323	0.092 -0.115 -0.290 -0.297 -0.262 -0.274 -0.001 -0.374 -0.318 -0.157 0.156 0.260 0.379	1.150 -0.904 -1.108 -1.115 -0.620 -0.568 -0.020 -0.356 -0.333 -0.286 -0.258 -0.241 -0.251 -0.337	0.028 -0.227 -0.327 -0.312 -0.272 -0.260 -0.266 -0.326 -0.335 -0.369 -0.189 0.138 0.205 0.334
-1.5 -1.5 -0.5 C _p 0	0.4 0.6 x/c	5 0.8 1	$\eta = 0.$	309	$\eta = 0.5$	-1.5 -1.5 -0.5 888 C _p 0	0.20.4	1 0.6 0.8 1 3/c
-1.5 -1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5			$\eta = 0$.	809	$\eta = 0.9$	-1.5 -1.5 -0.5 -0.5 -0.5		Upper Surface Lower Surface
1.50 0.2	0.4 0.6 x/c	5 0.8 1	(x) Test	case 6F24 (point 624).	1.50	0.2 0.4	1 0.6 0.8 1 4/c

(x) Test case 6E24 (point 624). Figure 8. Continued.

Point Num	ber = 52	Mach Number	= 0.802	Alphao	= -0.05,	deg.	
q 93.2	н ч 315.9 878	7 Rn 3.4 .117E+07	gamma 1.400	Cp*	9		
x/c	y/s =0.30 Cpu Cr		=0.588 Cpl	y/s : Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700	1.211 -0.339 -0.3 -0.520 -0.5 -0.632 -0.6 -0.612 -0.6 -0.615 -0.5 -0.541 -0.5 -0.499 -0.4 -0.451 -0.4 -0.487 -0.4 -0.461 -0.3 -0.567 0.2 -0.573 0.4	523 -0.521 550 -0.645 554 -0.615 541 -0.598 522 -0.544 460 -0.457 462 -0.271 462 -0.418 393 -0.398 138 -0.455 258 -0.493 116 -0.557	-0.359 -0.399 -0.620 -0.711 -0.538 -0.506 -0.441 -0.415 -0.431 -0.318 -0.166 0.254 0.393 0.455	1.179 -0.482 -0.601 -0.691 -0.584 -0.490 -0.427 -0.305 -0.288 -0.347 -0.310 -0.374 -0.394 -0.455 -0.344	-0.315 -0.479 -0.655 -0.571 -0.448 -0.431 -0.360 -0.003 -0.448 -0.395 -0.490 0.224 0.419 0.507	1.172 -0.462 -0.619 -0.586 -0.416 -0.409 -0.305 -0.226 -0.263 -0.290 -0.293 -0.312 -0.239 -0.239 -0.281 -0.275	-0.324 -0.544 -0.576 -0.453 -0.305 -0.377 -0.307 -0.316 -0.343 -0.376 -0.217 0.250 0.219 0.387
-1.5	0.4 0.6 0.8 x/c		.309	$\eta = 0$.	-1.5 -1.5 -0.5 588 C, 0 0.5 1.50	0.2 0.4	4 0.6 0.8 1 k/c
-1.5 r -1 -					-1.5 -1 -0.5		Upper Surface Lower Surface
0.5			.809	$\eta = 0$.	1		
1.500.2	0.4 0.6 0.8 x/c		st case 6E25	(point 52).	1.5	0.2 0.4	1 0.6 0.8 1 K/c

(y) Test case 6E25 (point 52). Figure 8. Continued.

Ро	int Num	ber = 5	3 Ma	ch Number =	0.802	Alphao	= 2.01,	deg.		
	q 93.2	Н 315.9	V 878.4	Rn .117E+07	gamma 1.400	Cp*)			
		y/s	=0.309	y/s =0).588	y/s =	=0.809	_	=0.951	
	x/c	Cpu	Cpl	Cpu	Cpl	Cpu	Cpl	Cpu	Cpl	
	.000	1.193		1.159		1.165		1.157		
	.025	-0.597	-0.059	-0.727 -	-0.097	-0.733	-0.077	-0.691	-0.117	
	.050	-0.811	-0.274	-0.782 -	-0.182	-0.919	-0.260	-0.865	-0.344	
	.100	-0.864	-0.378	-0.855 -	-0.360	-0.883	-0.413	-0.777	-0.401	
	.200	-0.869	-0.386	-0.859 -	0.429	-0.791	-0.394	-0.516	-0.366	
	.260	-0.913	-0.353	-0.908 -	-0.330	-0.766	-0.313	-0.453	-0.210	
	.320	-0.839	-0.367	-0.838 -	-0.334	-0.690	-0.329	-0.312	-0.313	
	.380	-0.792	-0.340	-0.780 -	-0.338	-0.179	-0.271	-0.262	-0.277	
	.440	-0.710	-0.371	-0.442 -	-0.381	-0.288	-0.004	-0.286	-0.281	
	.500	-0.652	-0.369	-0.277 -	-0.350	-0.351	-0.369	-0.299	-0.313	
	.560	-0.281	-0.319		-0.278	-0.285	-0.298	-0.290	-0.355	
	.620	-0.386	0.096		-0.360	-0.355	-0.629	-0.299	-0.319	
	.700	-0.527	0.253	-0.465	0.252	-0.391	0.167	-0.218	0.265	
	.800	-0.562	0.441	-0.532	0.444	-0.449	0.427	-0.306	0.206	
	.900	-0.393	0.528	-0.324	0.494	-0.353	0.504	-0.393	0.413	
-1.5 -1	-	poop					-1.5 -1-	r - 000 g		
			Ð	$\eta = 0$.	309	$\eta = 0.$	588 🖟	000	Bart o	
$C_p 0$		P		•			C _p 0		1	-
0.5	s [-		8 0				0.5		8-0	
1	<u> </u>						1			
	· d						Ŷ.			
1.5	0.2	0.4 0.6	5 0.8 1				1.5	0.2 0.4	1 0.6 0.8	1
		x/c						Σ	α/ c	
-1.5	, L						-1.5 F	_	Upper Surface	
-1	<u> </u>						-1	— Hq	── Lower Surface	
-0.5		R P					-0.5	le l	,D	
		-B-0-0-0	10-00				H	8 B-E	000 0	
$C_p 0$) [——₩		_			C _p 0			-
0.5	} <u> </u>		B	$\eta = 0$.	809	$\eta = 0$.	9510.5			
1	<u> </u>						1			
1.5	0 0.2	0.4 0.6 x/c	5 0.8 1				1.50	0.2 0.4	1 0.6 0.8 1	1 1
				(z) Test	case 6E26	(point 53).				

(z) Test case 6E26 (point 53). Figure 8. Continued.

Point Num	ber = 5	4 Ma	ch Number =	= 0.801	Alphao	= 4.01,	deg.	
Q 93.4	Н 317.4	V 879.8	Rn .117E+07	gamma 1.400	Cp*	2		
x/c	y/s Cpu	=0.309 Cpl	y/s = Cpu	=0.588 Cpl	y/s : Cpu	=0.809 Cpl	y/s Cpu	=0.951 Cpl
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	1.149 -0.840 -1.012 -1.086 -1.077 -1.114 -1.071 -0.994 -0.989 -0.626 -0.270 -0.394 -0.415 -0.364	0.172 -0.048 -0.173 -0.230 -0.214 -0.248 -0.231 -0.276 -0.287 -0.240 0.182 0.191 0.429 0.521	1.116 -0.927 -1.016 -1.071 -1.057 -1.116 -1.055 -0.971 -0.840 -0.762 -0.322 -0.277 -0.357 -0.419 -0.288	0.136 0.022 -0.166 -0.276 -0.191 -0.216 -0.241 -0.298 -0.272 -0.180 -0.281 0.154 0.408 0.483	1.130 -0.912 -1.167 -1.084 -1.078 -0.975 -0.950 -0.447 -0.270 -0.336 -0.265 -0.329 -0.373 -0.431 -0.361	0.136 -0.054 -0.235 -0.274 -0.202 -0.243 -0.197 -0.004 -0.319 -0.231 -0.604 0.051 0.401 0.483	1.127 -0.921 -1.042 -0.986 -0.589 -0.550 -0.362 -0.291 -0.289 -0.286 -0.276 -0.287 -0.227 -0.349 -0.546	0.070 -0.168 -0.271 -0.300 -0.084 -0.239 -0.209 -0.218 -0.226 -0.287 -0.310 0.200 0.180 0.362
-1.5 -1.5 -0.5 C _p 0	0.4 0.6 x/c	5 0.8 1	η = 0	.309	$\eta = 0$.	-1.5 -0.5 588 C, 0 1.5	0.2 0.	4 0.6 0.8 1 x/c
-1.5 r -1 d -0.5 r C _p 0 d 0.5			$\eta = 0$.809	$\eta = 0$.	-1.5 r -1 8 -0.5 r -0.5 r -0.5 r		Upper Surface Lower Surface
1.50 0.2	0.4 0.6 x/c	5 0.8 1	(22) Ta	st case 6E27	(point 54)	1.50	0.2 0	4 0.6 0.8 1 x/c

(aa) Test case 6E27 (point 54). Figure 8. Continued.

Point Nu	mber = 51	l4 Mac	ch Number	= 0.402	Alphao	o = 1.97	, deg.	
q,psf	Н, ря	sf V, i	fps Rr	ı	gamma fi	req,Hz	k th	neta, deg
54.8	_		3.1 .403E		_	10.00	0.309	1.003
		y/s =					0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-3.584	1.171			-3.489	1.093		
.025	-3.364	3.908	8.456	-2.425	-11.537	3.682	8.324	-2.262
.023	-12.243 -8.347	2.174	6.599	-2.423	-7.610	1.827	6.241	-2.202
.100	-5.382	0.699	4.702	-0.611	-4.541	0.517	4.365	-0.544
.200	-3.196	-0.134	3.022	0.180	-2.907	-0.193	2.845	0.249
.260	-2.592	-0.134	2.335	0.160	-2.345	-0.193	2.043	0.609
.320	-2.392	-0.434 -0.627	1.961	0.552	-2.345	-0.507	1.805	0.809
					-1.527			0.718
.380 .440	-1.734	-0.740	1.671 1.500	0.741 0.828		-0.778	1.500 1.270	0.828
	-1.436	-0.826	1.221		-1.341	-0.871		
.500	-1.260	-0.889		0.846	-1.083	-0.840	1.075	0.941
.560	-0.996	-0.857	1.043	0.976	-0.943	-0.831	0.876	0.901
.620	-0.812	-0.883	0.765	1.068	-0.763	-0.850	0.594	0.976
.700	-0.504	-0.762	0.665	0.929	-0.461	-0.789	0.500	0.898
.800	-0.194	-0.537	0.578	0.708	-0.214	-0.530	0.538	0.667
.900	0.144	-0.093	0.399	0.486	0.104	-0.137	0.397	0.411
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-2.848	0.844			-1.592	0.459		
.025	-10.232	3.070	6.003	-2.124	-7.402	2.164	5.976	-1.748
.050	-6.788	1.580	4.345	-1.316	-4.892	1.156	4.331	-1.048
.100	-4.042	0.339	2.667	-0.453	-2.736	0.186	2.670	-0.285
.200	-2.384	-0.272	1.481	0.193	-1.578	-0.258	1.466	0.240
.260	-2.069	-0.432	2.060	0.559	-1.117	-0.438	-1.214	1.800
.320	-1.461	-0.651	1.107	0.639	-0.898	-0.500	-0.132	1.192
.380	-1.305	-0.709	0.833	0.763	-0.699	-0.589	0.846	0.477
.440	-1.001	-0.760	-0.612	0.000	-0.632	-0.579	0.488	0.560
.500	-0.765	-0.770	0.499	0.889	-0.526	-0.524	0.278	0.689
.560	-0.607	-0.830	0.359	0.876	-0.342	-0.527	0.079	0.681
.620	-0.467	-0.786	0.213	0.875	-0.450	-0.438	-0.353	0.653
.700	-0.330	-0.665	0.198	0.820	-0.309	-0.411	-0.182	0.661
.800	-0.148	-0.492	0.164	0.704	-0.789	-0.129	-0.036	0.513
.900	0.000	-0.171	0.140	0.574	-1.523	0.244	-0.106	0.326

(a-1) Tabulated data for test case 6E28 (point 514) Figure 9. Dynamic test cases.

(a-2) Plot of data for test case 6E28 (point 514) Figure 9. Continued.

Point Nu	mber = 34	14 Mac	h Number	= 0.750	Alphao	o = 2.05	, deg.	
q,psf 100.8	Н, ps 432.					req,Hz L4.99	k th	neta,deg 1.052
x/c	ReCpu/t	y/s = ImCpu/t		ImCpl/t	ReCpu/t	-	0.588 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .320 .380 .440 .500 .560 .620 .700 .800	-0.817 -7.352 -8.681 -10.716 -12.333 -1.576 -1.857 -1.937 -1.587 -1.328 -0.904 -0.532 -0.059 0.491 0.551	0.720 6.235 7.362 8.223 7.178 -5.723 -2.950 -2.426 -2.009 -2.060 -1.922 -1.774 -1.306 -0.510 0.527	7.115 6.623 5.683 3.853 3.319 2.621 2.217 1.907 1.474 0.994 0.387 0.799 0.749 0.583	-4.124 -3.778 -2.216 -0.728 0.145 0.500 0.755 0.934 1.028 1.227 1.531 0.819 0.326 0.296	-1.153 -6.050 -8.846 -10.544 -5.649 -1.320 -1.703 -1.573 -1.179 -1.014 -0.796 -0.481 -0.081 0.567 0.473	0.822 5.076 7.163 7.633 1.190 -3.285 -2.125 -1.950 -1.767 -1.742 -1.611 -1.447 -1.032 -0.424 0.270	7.278 6.257 5.151 3.726 2.787 2.557 2.055 1.722 1.235 0.762 0.069 0.628 0.925 0.596	-4.168 -3.313 -2.081 -0.491 0.752 0.544 0.873 1.047 1.230 1.321 1.414 0.890 0.326 0.057
		y/s =	0.809			y/s =	0.951	
x/c .000 .025	-0.854 -5.976	ImCpu/t 0.585 4.736	ReCpl/t 5.637	-3.607	ReCpu/t -0.639 -7.109	0.416 4.849	ReCpl/t 5.678	ImCpl/t -2.893
.050 .100 .200 .260 .320 .380 .440 .500 .560	-10.187 -11.262 -2.283 -2.176 -1.628 -1.258 -1.048 -0.822 -0.543 -0.390	8.103 6.847 -1.031 -1.128 -1.187 -1.284 -1.253 -1.285 -1.129 -1.133	5.039 3.195 1.843 1.238 1.187 0.930 -0.159 0.475 0.180 -0.342	-2.866 -1.676 -0.287 0.362 0.646 0.740 0.000 1.096 1.172 1.143	-9.932 -2.933 -2.014 -1.654 -1.341 -1.011 -0.780 -0.603 -0.371 -0.205	7.084 -0.221 0.060 -0.337 -0.456 -0.644 -0.680 -0.703 -0.666 -0.563	5.051 3.260 1.851 1.095 -0.044 0.806 0.489 0.285 -0.052 -0.643	-2.313 -0.880 0.036 0.609 1.252 0.648 0.722 0.823 0.870 0.946
.700 .800 .900	-0.215 0.060 0.109	-0.901 -0.432 0.189	0.333 0.439 0.419	0.865 0.365 0.151	-0.167 -0.867 -2.530	-0.402 0.085 1.007	-0.049 0.259 0.010	0.706 0.416 0.436

(b-1) Tabulated data for test case 6E29 (point 344) Figure 9. Continued.

(b-2) Plot of data for test case 6E29 (point 344) Figure 9. Continued.

Point N	umber = 31	l6 Ma	ch Number	= 0.802	Alpha	o = 2.08	, deg.	
q, ps	f H,ps	sf V,	fps Rr	ו	gamma f:	req,Hz	k th	neta, deg
107.			4.9 .401			15.03	0.233	1.035
		y/s =	0.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
000	0 000	0.476			-0.397	0 (00		
.000 .025	-0.282 -4.813	3.996	5.969	-3.391	-0.397 -3.796	0.600 3.312	6.105	-3.596
.050	-4.595	3.911	5.896	-3.515	-5.988	5.007	5.455	-3.061
.100	-4.272	3.942	5.648	-2.421	-4.149		5.126	-2.368
.200	-3.898	4.678	4.361	-0.769	-4.031	4.638	4.044	-0.655
.260	-4.813	7.763	3.759	0.197	-10.280	13.741	3.459	0.767
.320	-9.489	18.152	3.084	0.667	-14.445	15.063	2.679	0.698
.380	-11.881	13.288	2.517	1.012	-7.603	0.745	2.132	1.177
.440	-9.965	-1.489	1.846	1.222	-1.657	-7.797	1.691	1.251
.500	-4.391	-9.679	1.218	1.209	-1.826	-6.961	0.932	1.307
.560	-3.405	-9.306	0.388	1.558	-0.891	-5.688	0.177	1.484
.620	0.070	-6.643	-0.737	1.911	-0.196	-4.868	-0.309	1.406
.700	1.809	-4.997	1.189	0.454	1.141	-2.942	0.789	0.696
.800	3.179	0.452	1.415	-0.482	2.375	0.166	1.196	-0.435
.900	0.706	2.040	0.958	-0.751	0.737	1.970	0.712	-0.615
		v/s =	0.809			v/s =	0.951	
x/c	ReCou/t	ImCpu/t	ReCpl/t	TmCpl/t	ReCou/t	ImCpu/t		TmCpl/t
Α, ε	песра, с	тшери, с	RCCPI/C	тшерт, с	ricepu, e	тмера, с	пеерт, с	IMCPI/C
.000	-0.362	0.419			-0.283	0.341		
.025	-3.634	2.901	4.928	-3.001	-5.221	3.738	4.946	-2.487
.050	-5.929	4.818	4.947	-2.693	-4.265	3.442	4.967	-2.316
.100	-3.700	3.083	3.368	-2.026	-5.540	4.765	3.487	-0.889
.200	-7.198	11.430	2.042	-0.241	-1.952	1.159	2.037	0.218
.260	-6.005	4.541	1.466	0.553	-2.803	1.190	1.239	0.836
.320	-2.975	-1.208	1.490	0.805	-2.048	-0.050	0.148	1.599
.380	-2.755	-1.755	0.945	1.096	-1.820	-0.481	0.776	0.865
.440	-2.100	-2.049	-0.367	0.000	-1.422	-0.858	0.454	0.887
.500	-1.531	-2.568	0.329	1.234	-1.069	-1.122	0.111	0.879
.560	-0.969	-2.593	-0.301	1.372	-0.646	-1.161	-0.421	0.903
.620	-0.381	-2.462	-0.782	1.228	-0.307	-1.121	-0.772	0.869
.700	0.117	-1.768	0.375	0.692	-0.136	-0.819	0.036	0.552
.800	0.718	-0.293	0.386	0.103	-0.664		0.339	0.187
.900	0.230	1.252	0.250	-0.426	-2.607	1.346	0.105	0.256
. , , ,	5.250		5.250	5.120	,		3.103	5.250

(c-1) Tabulated of data for test case 6E30 (point 316) Figure 9. Continued.

(c-3) Plot of data for test case 6E30 (point 316) Figure 9. Continued.

Point Number = 475 Mach Number = 0.826					Alphao = 1.97, deg.			
q,psf 108.1			fps Ri 3.8 .4001			req,Hz 15.01	k tl	neta,deg 1.023
		,	0 200			,	0 500	
x/c	ReCnu/t	4 '	0.309 ReCpl/t	TmCpl/t	ReCpu/t	4 '	0.588 ReCpl/t	ImCpl/t
11, 0	псора, с	тшора, с	пеорт, с	IMOPI, C	πουραγε	тмери, с	пеорт, с	IMOPI, C
.000	-0.056	0.274			-0.187	0.208		
.025	-4.081	3.053	5.528	-3.414	-3.324	2.380	5.753	-3.581
.050	-4.417	3.163	5.420	-3.683	-5.466	3.715	5.065	-3.202
.100	-3.967	2.925	5.432	-3.023		2.430	4.801	-2.885
.200	-3.376	2.773	5.321	-1.749		2.206	5.564	-2.373
.260	-4.747	2.524	5.424	-0.840		2.487	5.308	0.371
.320	-5.623	3.365	4.865	0.272	-3.159	2.415	5.255	0.312
.380	-5.735	2.541	4.055	1.771	-3.511	5.797	3.370	2.413
.440	-1.101	1.414	2.012	2.106		17.912	2.060	2.655
.500	-3.356	13.363	1.066	1.907		1.033	0.828	2.675
.560	-8.472	15.603	-0.904	2.050		-3.684	0.030	2.464
.620	-8.364	-0.791	-2.732	2.051	-3.113	-4.176	0.034	1.512
.700		-10.541	2.128	0.700		-5.237	0.177	0.878
.800	2.084	-8.485	2.362	-0.704		-4.033	-0.068	-0.612
. 900	1.389	2.750	1.209	-1.471	1.016	2.428	-0.040	-0.503
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.193	0.203			-0.106	0.130		
.025	-3.235	2.215	4.698	-2.945	-4.527	2.796	4.715	-2.465
.050	-5.231	3.462	4.985	-2.832	-3.495	2.227	4.985	-2.673
.100	-3.245	2.099	4.055	-2.866	-3.332	2.737	4.293	-1.631
.200	-3.158	2.228	2.741	-0.802	-1.778	2.983	2.799	-0.078
.260	-4.904	5.681	2.852	-0.288	-0.715	1.072	2.774	0.681
.320	-0.343	5.310	2.034	1.222	-1.275	1.774	0.729	2.118
.380	-2.116	2.001	1.334	1.757	-1.300	1.150	1.067	1.370
.440	-2.293	0.903	-0.598	0.000	-1.369	0.641	0.692	1.407
.500	-2.498	-0.333	0.409	2.049	-1.282	0.130	0.226	1.495
.560	-2.047	-1.269	-0.751	1.869		-0.299	-0.755	1.374
.620	-1.699	-1.861	-1.198	1.121	-0.799	-0.615	-1.053	1.162
.700	-1.034	-1.987	0.357	1.044	-0.597	-0.668	-0.014	0.672
.800	0.494	-1.606	0.389	0.138		0.019	0.392	-0.008
.900	0.482	1.255	0.133	-0.948	-2.787	1.775	0.200	-0.101

(d-1) Tabulated of data for test case 6E31 (point 475) Figure 9. Continued.

(d-2) Plot of data for test case 6E31 (point 475) Figure 9. Continued.

Point Number = 289 Mach Number = 0.854					Alphao = 1.99, deg.			
q,psf	H,ps	sf V.	fps Rr	1	gamma fi	ceq,Hz	k th	neta, deg
113.7	412.	-	0.0 .401E		~	L4.96	0.219	1.006
		y/s =	0.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	<pre>ImCpl/t</pre>	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	0.000	0.000			-0.164	0.047		
.025	-3.803	2.404	4.601	-2.954	-2.914	1.892	4.553	-3.129
.050	-4.086	2.378	4.259	-3.244	-4.873	2.836	3.718	-2.731
.100	-3.677	2.174	4.004	-2.721	-3.183	1.657	3.684	-2.776
.200	-3.315	1.891	5.371	-5.097	-2.979	1.427	4.411	-5.220
.260	-3.222	1.579	3.390	-3.129	-4.742	2.092	3.846	-3.475
.320	-3.633	2.022	5.111	-3.319	-3.265	1.488	5.199	-4.347
.380	-3.248	1.655	6.370	-2.916	-4.216	2.139	6.342	-3.107
.440	-1.932	0.489	9.116	-2.038	-4.166	2.234	8.489	-1.375
.500	-1.163	-0.467	9.328	4.389	-3.653	2.723	8.619	5.118
.560	-1.897	0.613	-6.697	9.424	-5.249	8.806	-2.928	8.750
.620	-2.028	1.038	-4.022	1.260	0.429	6.136	-1.634	-0.670
.700	-2.770	3.970	4.327	2.529	-3.404	-4.279	1.696	3.671
.800	-2.113	-3.109	2.560	0.783	-2.491	-3.258	-0.004	2.164
.900	1.792	-2.569	1.553	0.562	1.367	1.451	0.300	1.450
		v/s =	0.809			v/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
			_	_	_	_	_	_
.000	-0.170	0.013			-0.112	-0.018		
.025	-3.033	1.808	3.809	-2.568	-4.383	2.185	3.775	-2.232
.050	-4.732	2.623	3.616	-2.398	-3.247	1.528	3.486	-2.369
.100	-2.984	1.417	2.880	-2.325	-3.973	1.719	2.835	-2.008
.200	-2.841	1.319	2.674	-5.340	0.365	-1.317	2.819	-2.899
.260	-3.243	1.245	1.377	-1.552	-1.128	0.160	1.543	-0.402
.320	-4.131	2.178	2.900	-1.873	-0.159	-0.236	2.902	-1.323
.380	-0.947	0.201	2.999	-2.376	-0.390	0.629	3.240	-0.198
.440	-0.127	1.247	-2.743	0.000	0.042	0.166	2.657	1.025
.500	0.131	1.132	2.253	4.268	0.189	0.833	2.235	2.509
.560	-0.064	2.619	-2.210	5.465	0.092	0.735	-0.851	3.133
.620	-1.467	1.743	-0.873	1.432	-0.267	0.629	-0.824	0.610
.700	-2.443	-0.559	0.686	1.905	-0.664	0.162	0.464	0.914
.800	-1.637	-1.744	1.285	0.737	-1.285	0.257	0.796	1.111
. 900	0.164	0.233	1.068	-0.596	-3.418	1.565	0.297	1.100

(e-1) Tabulated data for test case 6E32 (point 289) Figure 9. Continued.

(e-2) Plot of data for test case 6E32 (point 289) Figure 9. Continued.

Point Numb	per = 43	5 Mac	h Number	= 0.876	Alphao	o = 1.96	, deg.	
q,psf 115.2	H,ps 405.		-			ceq,Hz L4.99	k th	neta,deg 0.987
x/c R	ReCpu/t	y/s = ImCpu/t	0.309 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	0.588 ReCpl/t	ImCpl/t
.025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620	-0.174 -3.683 -4.093 -3.668 -3.417 -3.878 -4.609 -5.097 -2.955 -1.899 -1.436 -1.961 -2.149 0.538	0.014 1.717 1.797 1.610 1.458 1.003 1.192 0.844 0.181 -0.537 -0.464 0.220 0.711 -2.079	4.279 3.895 3.933 4.005 2.957 2.748 2.148 1.766 1.749 -11.356 3.347 8.863 6.661	-2.071 -1.727 -1.851 -2.787 -1.737 -1.025 -0.577	-0.290 -3.073 -4.977 -3.310 -3.013 -4.862 -3.400 -4.311 -4.456 -4.545 -4.410 -4.485 -4.212 3.599		4.501 3.516 4.042 3.214 2.970 2.965 2.553 2.318 1.656 -2.266 3.646 3.678 4.842	-2.023 -1.662 -2.042 -1.745 -1.586 -2.333 -2.283 -1.747 -0.964 -7.016 -0.970 4.187 2.875
	-2.140 ReCpu/t	0.534 $y/s = ImCpu/t$		-1.729 ImCpl/t	-2.269 ReCpu/t	1.294 $y/s = ImCpu/t$	3.144 0.951 ReCpl/t	0.554
.025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700	-0.287 -3.107 -4.695 -3.166 -3.025 -3.171 -4.395 -3.624 -1.737 -1.347 -0.557 0.578 2.676 -1.524 -0.465	0.045 1.442 2.012 1.146 0.822 0.715 1.310 0.817 -0.131 -0.681 -0.509 -0.572 1.846 1.903 0.871	3.585 2.988 3.397 1.124 1.893 0.726 0.883 -0.246 1.042 -1.379 1.266 1.369 1.402 0.405	-1.532 -1.317 -2.070 -1.580 -1.650 -1.395 0.000 -2.456 8.421 0.663 -0.674	-0.232 -4.387 -3.206 -3.945 -2.828 -1.736 -1.445 -1.265 -0.842 0.044 0.970 1.256 0.190 -1.161 -3.639	-0.011 1.693 1.205 1.381 0.653 0.137 -0.134 -0.428 -0.221 -0.462 -0.180 0.452 0.968 1.137 2.283	3.580 2.934 3.325 1.228 1.543 0.621 0.433 1.352 1.867 4.618 -1.191 1.288 1.623 0.612	-1.520 -1.400 -1.658 -0.524 -1.576 -0.767 -1.077 -1.743 -1.175 3.889 0.604 0.531 0.096 0.181

(f-1) Tabulated data for test case 6E33 (point 435) Figure 9. Continued.

(f-2) Plot of data for test case 6E33 (point 435) Figure 9. Continued.

Point Number = 264 Mach Number = 0.894					Alphao = 2.01, deg.			
q,psf	H,ps	sf V.	fps Rr	1	gamma fi	ceq,Hz	k th	neta, deg
116.8	401.		8.2 .398		_	L4.99	0.210	1.032
		y/s =	0.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
	_	_	_	_	_	_	_	_
.000	-0.186	0.121			-0.290	0.165		
.025	-3.783	1.740	4.253	-1.624	-3.160	1.500	4.597	-1.811
.050	-3.932	1.677	3.849	-1.730	-4.950	2.122	3.562	-1.410
.100	-3.759	1.658	4.215	-1.568	-3.503	1.408	4.453	-1.872
.200	-3.516	1.521	3.543	-0.936	-3.164	1.208	3.208	-1.086
.260	-3.391	1.234	3.337	-1.514	-4.682	1.396	3.094	-0.893
.320	-3.755	1.525	2.665	-0.547	-3.445	1.073	2.938	-0.831
.380	-3.701	1.510	2.393	-0.718	-4.330	1.407	2.738	-0.916
.440	-2.487	0.579	1.952	-0.429	-4.315	1.452	2.696	-1.178
.500	-1.770	-0.155	1.822	-0.188	-4.603	1.639	2.096	-0.734
.560	-1.288	-0.768	-0.886	2.097	-4.442	1.750	-1.427	0.746
.620	-1.937	-0.152	0.990	0.502	-3.966	1.595	0.924	0.508
.700	-2.113	0.683	2.068	-0.810	-2.765	1.421	1.818	-0.226
.800	-0.597	-1.001	2.789	-1.610	1.816	-0.245	2.548	-0.779
. 900	-1.578	-1.401	2.853	-1.089	-0.613	0.260	2.636	-0.872
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	${\tt ImCpl/t}$	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.249	0.123			-0.273	0.052		
.025	-3.238	1.462	3.736	-1.470	-4.601	1.803	3.683	-1.406
.050	-4.746	2.034	2.952	-1.168	-3.374	1.281	2.872	-1.190
.100	-3.259	1.271	3.894	-1.133	-3.980	1.402	3.798	-1.566
.200	-3.074	1.131	1.566	-1.134	-3.409	1.003	1.626	-0.360
.260	-3.262	0.911	1.075	-0.787	-0.622	-0.239	1.105	0.114
.320	-3.606	1.116	1.032	-0.550	-1.720	-0.051	0.981	-0.387
.380	-3.306	0.960	0.499	-0.048	-1.775	-0.068	0.310	-0.392
.440	-2.125	0.417	-0.113	0.000	-1.755	-0.275	-0.141	-0.089
.500	-1.998	0.035	0.641	-0.270	-1.304	-0.475	0.500	-0.441
.560	-1.888	-0.010	0.472	0.309	-0.936	-0.785	0.386	-0.674
.620	-1.871	-0.253	0.975	0.134	1.536	-2.178	-0.243	0.969
.700	-1.514	-0.693	1.914	-0.134	1.828	-0.128	1.673	-0.989
.800	6.909	1.406	1.428	-0.932	0.084	1.663	1.771	-0.926
.900	-0.241	1.027	0.543	-1.362	-2.518	2.662	0.888	0.017

(g-1) Tabulated data for test case 6E34 (point 264) Figure 9. Continued.

(g-2) Plot of data for test case 6E34 (point 264) Figure 9. Continued.

Point Nu	mber = 51	l3 Ma	ch Number	= 0.402	Alpha	o = 1.97	, deg.	
q,psf 54.7			fps Rr 2.9 .4021		gamma f: 1.132	req,Hz 5.02	k th	neta,deg 1.008
x/c	ReCpu/t	4 '	0.309 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	0.588 ReCpl/t	ImCpl/t
.000	-3.864	0.674			-3.757	0.622		
.025	-13.066	2.163	8.889	-1.281	-12.393	2.052	8.727	-1.211
.050	-8.893	1.250	6.933	-0.900	-8.062	1.033	6.492	-0.763
.100	-5.662	0.495	4.873	-0.392	-4.821	0.320	4.480	-0.305
.200	-3.353	0.047	3.069	0.027	-3.069	-0.037	2.841	0.079
.260	-2.782	-0.131	2.372	0.274	-2.493	-0.196	2.142	0.278
.320	-2.262	-0.230	2.017	0.345	-2.022	-0.313	1.900	0.352
.380	-1.916	-0.249	1.661	0.386	-1.670	-0.343	1.542	0.396
.440	-1.610	-0.354	1.530	0.439	-1.434	-0.358	1.297	0.424
.500	-1.374	-0.363	1.288	0.449	-1.258	-0.356	1.154	0.483
.560	-1.138	-0.361	1.104	0.453	-1.142	-0.349	0.901	0.596
.620	-0.958	-0.358	0.786	0.563	-0.911	-0.323	0.676	0.520
.700	-0.736	-0.303	0.648	0.462	-0.612	-0.301	0.561	0.481
.800	-0.415	-0.186	0.708	0.363	-0.370	-0.145	0.661	0.331
.900	-0.032	0.047	0.630	0.261	-0.103	0.048	0.575	0.246
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-2.973	0.487			-1.684	0.270		
.025	-10.779	1.707	6.242	-1.187	-7.585	1.161	6.248	-0.878
.050	-7.048	0.903	4.511	-0.755	-4.960	0.644	4.519	-0.507
.100	-4.198	0.264	2.778	-0.284	-2.724	0.152	2.783	-0.117
.200	-2.609	-0.178	1.534	0.070	-1.533	-0.075	1.527	0.150
.260	-2.157	-0.121	1.520	0.237	-1.125	-0.160	-1.309	0.802
.320	-1.509	-0.277	0.722	0.327	-0.891	-0.184	-0.323	0.665
.380	-1.334	-0.284	0.877	0.375	-0.709	-0.209	0.864	0.283
.440	-1.154	-0.307	-0.606	0.000	-0.698	-0.243	0.508	0.365
.500	-0.845	-0.336	0.398	0.438	-0.580	-0.234	0.284	0.355
.560	-0.708	-0.363	0.307	0.471	-0.457	-0.229	0.070	0.392
.620	-0.601	-0.323	0.263	0.487	-0.605	-0.159	-0.353	0.370
.700	-0.434	-0.270	0.230	0.441	-0.431	-0.145	-0.235	0.389
.800	-0.307	-0.150	0.175	0.358	-0.966	0.022	-0.044	0.281
.900	-0.170	0.018	0.134	0.281	-1.803	0.237	0.039	0.166

(h-1) Tabulated data for test case 6E35 (point 513) Figure 9. Continued.

(h-2) Plot of data for test case 6E35 (point 513) Figure 9. Continued.

E	Point Nur	mber = 51	L5 Ma	ch Number	= 0.402	Alpha	o = 1.98	, deg.	
	q,psf	H,ps	sf V,	fps Rr	n	gamma f:	req,Hz	k tł	neta, deg
	54.7	654.	. 9 20:	2.9 .402E	E+07	1.132	15.06	0.466	1.020
			,	0 200			,	0 500	
	x/c	Do Cour /+	_	0.309 ReCpl/t	TmCm1 /+	BaCau/t	y/s = ImCpu/t	0.588	TmCm1/+
	X/C	Recpu/c	Imcpu/c	Recpi/t	IIICPI/ C	Recpu/t	Imcpu/t	ReCpl/t	IIICPI/ C
	.000	-3.492	1.548			-3.481	1.572		
	.025	-11.884	5.069	8.319	-3.094	-11.203	5.082	8.250	-3.117
	.050	-8.073	2.780	6.532	-2.072	-7.607	2.399	6.181	-1.878
	.100	-5.454	0.747	4.727	-0.673	-4.684	0.567	4.447	-0.649
	.200	-3.287	-0.421	3.112	0.460	-3.050	-0.494	2.940	0.466
	.260	-2.656	-0.914	2.453	0.976	-2.396	-0.968	2.131	1.012
	.320	-2.180	-1.164	1.990	1.158	-1.934	-1.251	1.895	1.207
	.380	-1.781	-1.275	1.707	1.282	-1.585	-1.344	1.606	1.406
	.440	-1.425	-1.435	1.450	1.410	-1.318	-1.459	1.326	1.452
	.500	-1.178	-1.503	1.199	1.486	-1.064	-1.449	1.082	1.505
	.560	-0.939	-1.533	0.960	1.586	-0.845	-1.458	0.844	1.650
	.620	-0.673	-1.484	0.661	1.732	-0.609	-1.450	0.568	1.587
	.700	-0.441	-1.333	0.559	1.470	-0.290	-1.374	0.444	1.391
	.800	-0.042	-1.010	0.347	1.186	0.021	-1.011	0.355	1.125
	.900	0.387	-0.325	0.186	0.994	0.337	-0.377	0.127	0.776
				0.809				0.951	
	x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
	.000	-2.850	1.192			-1.598	0.692		
	.025	-10.127	4.174	5.986	-2.912	-7.255	2.887	5.990	-2.264
	.050	-6.833	2.050	4.456	-1.767	-4.872	1.546	4.473	-1.316
	.100	-4.201	0.316	2.782	-0.540	-2.747	0.173	2.796	-0.264
	.200	-2.533	-0.511	1.664	0.404	-1.617	-0.473	1.608	0.504
	.260	-2.157	-0.807	2.430	0.949	-1.232	-0.674	-0.905	2.599
	.320	-1.541	-1.128	1.628	1.039	-0.960	-0.778	0.041	1.966
	.380	-1.292	-1.167	0.853	1.242	-0.738	-0.921	0.833	0.836
	.440	-1.076	-1.297	-0.249	0.000	-0.640	-0.924	0.390	1.054
	.500	-0.750	-1.382	0.527	1.389	-0.513	-0.871	0.349	1.068
	.560	-0.580	-1.401	0.342	1.383	-0.276	-0.914	0.020	1.067
	.620	-0.407	-1.402	0.162	1.390	-0.360	-0.762	-0.404	1.048
	.700	-0.236	-1.213	0.186	1.270	-0.233	-0.692	-0.229	0.985
	.800	-0.011	-0.899	0.127	1.111	-0.600	-0.307	-0.139	0.831
	.900	0.180	-0.350	0.100	0.944	-1.282	0.157	-0.191	0.646

(i-1) Tabulated data for test case 6E36 (point 515) Figure 9. Continued.

(i-2) Plot of data for test case 6E36 (point 515) Figure 9. Continued.

Point 1	Number = 51	l6 Ma	ch Number	= 0.402	Alpha	o = 1.98	, deg.	
q,p	sf H,ps	sf V,	fps Rr	n	gamma f:	req,Hz	k tł	neta, deg
54			3.2 .403		_	19.97	0.617	1.060
		y/s =	0.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-3.313	1.936			-3.427	1.955		
.025	-11.488	6.368	8.127		-10.957	6.532	8.202	-4.143
.050	-7.832	3.405	6.492	-2.689	-7.705	3.004	6.273	-2.509
.100	-5.612	0.849	4.792	-0.836	-4.934	0.623	4.686	-0.818
.200	-3.484	-0.766	3.290	0.639	-3.358	-0.831	3.176	0.658
.260	-2.796	-1.418	2.630	1.387	-2.627	-1.391	2.432	1.410
.320	-2.306	-1.789	2.129	1.575	-2.137	-1.825	2.121	1.675
.380	-1.864	-1.957	1.818	1.774	-1.719	-1.943	1.726	1.864
.440	-1.457	-2.081	1.565	1.932	-1.455	-2.148	1.481	1.930
.500	-1.168	-2.134	1.289	2.063	-1.076	-2.121	1.186	2.062
.560	-0.878	-2.152	0.967	2.173	-0.784	-2.131	0.967	2.054
.620	-0.577	-2.140	0.703	2.329	-0.497	-2.104	0.641	2.178
.700	-0.392	-2.016	0.514	1.933	-0.265	-1.982	0.405	1.903
.800	0.093	-1.565	0.190	1.719	0.173	-1.449	0.139	1.561
.900	0.543	-0.673	-0.013	1.459	0.544	-0.741	-0.020	1.297
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-2.814	1.612			-1.587	0.927		
.025	-10.021	5.669	5.977	-3.983	-7.329	3.946	5.966	-3.172
.050	-6.896	2.843	4.491	-2.410	-4.983	2.095	4.494	-1.862
.100	-4.410	0.440	2.930	-0.699	-3.020	0.206	2.947	-0.393
.200	-2.787	-0.868	1.850	0.601	-1.871	-0.707	1.779	0.644
.260	-2.279	-1.122	2.878	1.290	-1.410	-1.002	-0.205	3.453
.320	-1.731	-1.631	1.817	1.465	-1.120	-1.172	0.388	2.346
.380	-1.483	-1.719	0.969	1.617	-0.886	-1.293	0.950	1.108
.440	-1.299	-1.862	1.273	0.000	-0.669	-1.297	0.456	1.500
.500	-0.830	-1.938	0.526	1.878	-0.492	-1.316	0.381	1.240
.560	-0.570	-1.973	0.368	1.826	-0.253	-1.327	0.039	1.405
.620	-0.388	-1.962	0.173	1.879	-0.339	-1.196	-0.378	1.410
.700	-0.196	-1.773	0.163	1.770	-0.132	-1.073	-0.210	1.280
.800	0.111	-1.347	0.040	1.566	-0.442	-0.680	-0.273	1.046
.900	0.344	-0.674	0.040	1.243	-1.077	-0.096	-0.374	0.898
. 500	0.544	0.0/4	0.007	1.243	1.011	0.000	0.5/4	0.090

(j-1) Tabulated data for test case 6E37 (point 516) Figure 9. Continued.

(j-2) Plot of data for test case 6E37 (point 516) Figure 9. Continued.

Point Number = 494 Mach Number = 0					Alpha	o = 2.19	, deg.	
q,psf	Н, ря	sf V,	fps Rı	n	gamma f:	req,Hz	k tl	neta,deg
106.1	. 415	. 4 40	3.2 .401	∑+07	1.132	1.98	0.031	1.069
		,	0 000			,	0 500	
x/c	Do Cour /+	y/s = ImCpu/t	0.309	TmCm1 /+	ReCpu/t	4 '	0.588	TmCm1/+
x/C	kecpu/t	Imcpu/ c	ReCp1/t	IMCDI/ C	Recpu/t	Incpu/c	ReCp1/t	ImCpl/t
.000	-0.687	0.116			-0.802	0.057		
.025	-7.365	0.683	7.805	-0.559	-5.924	0.550	8.123	-0.625
.050	-8.598	0.737	7.749	-0.596	-8.970	0.785	7.107	-0.547
.100	-7.097	0.671	6.905	-0.350		0.543	6.362	-0.456
.200	-7.725	0.853	4.822	-0.143	-7.204	0.681	4.285	-0.150
.260	-12.010	1.093	3.752	-0.020	-13.617	1.167	3.804	-0.093
.320	-18.225	1.370	3.484	-0.030	-20.473	1.503	2.571	0.094
.380	-17.642	1.265	2.674	0.173	-6.324	0.099	1.979	0.125
.440	-1.069	-0.976	2.086	0.128	4.993	-1.245	1.767	0.086
.500	5.978	-1.502	1.588	0.252	3.429	-0.868	1.383	0.175
.560	3.397	-0.772	0.147	0.156	2.231	-0.577	0.293	0.132
.620	1.942	-0.402	-2.060	0.352	1.269	-0.430	-0.922	0.285
.700	0.842	-0.164	2.090	0.036	0.104	-0.025	1.233	0.011
.800	-0.388	0.370	3.482	-0.128	-0.408	-0.133	2.604	-0.338
.900	-1.239	0.346	2.772	-0.286	-1.362	0.294	2.073	-0.269
		v/s =	0.809			v/s =	0.951	
x/c	ReCpu/t	ImCpu/t		ImCpl/t	ReCpu/t	ImCpu/t		ImCpl/t
	-	•	-	-	-		_	•
.000	-0.745	0.089			-0.533	0.056		
.025	-5.495	0.529	6.097	-0.490	-7.000	0.551	6.095	-0.426
.050	-9.446	0.876	6.098	-0.438	-6.624	0.545	6.097	-0.405
.100	-5.872	0.524	3.694	-0.292	-8.069	0.621	3.693	-0.187
.200	-14.341	1.482	1.929	0.044	-2.144	-0.019	1.929	0.007
.260	-8.565	0.419	1.072	0.000	-2.733	0.033	1.071	0.043
.320	-0.482	-0.425	0.107	0.075	-1.230	-0.075	-0.082	0.069
.380	-0.372	-0.386	0.697	-0.024	-0.841	-0.170	0.692	0.081
.440	-0.184	-0.387	-0.696	0.000	-0.488	-0.222	0.696	0.039
.500	0.297	-0.380	0.320	0.047	-0.131	-0.234	0.289	0.140
.560	0.308	-0.371	-0.411	0.061	0.049	-0.153	-0.416	0.103
.620	0.399	-0.270	-1.060	0.206	0.066	-0.147	-1.061	0.153
.700	0.105	-0.020	0.161	0.018		-0.054	0.137	0.085
.800	-0.601	0.228	0.803	-0.059		0.051	0.803	-0.045
.900	-1.100	0.238	0.534	-0.151	-4.598	0.330	0.535	0.031

 $\begin{array}{c} \text{(k-1) Tabulated data for test case 6E38 (point 494)} \\ \text{Figure 9. Continued.} \end{array}$

(k-2) Plot of data for test case 6E38 (point 494) Figure 9. Continued.

Point Nu	umber = 49	93 Ma	ch Number	= 0.802	Alphao	o = 1.89	, deg.	
q,psf 105.8			fps Ri 2.4 .4001		gamma fi	req,Hz 3.00	k tl	neta,deg 1.025
		/ -	0 200			/ -	0.588	
x/c	ReCpu/t	y/s = ImCpu/t	0.309 ReCpl/t	ImCpl/t	ReCpu/t	4 '		ImCpl/t
	-				•	-	1	1
.000	-0.690	0.227			-0.830	0.120		
.025	-7.517	1.137	7.991	-0.967	-6.081	0.909	8.374	-1.058
.050	-8.735	1.305	7.988	-0.995		1.348	7.322	-0.912
.100	-7.290	1.142	7.121	-0.698		0.976	6.608	-0.765
.200	-7.877	1.361	4.971	-0.208		1.154	4.469	-0.148
.260	-12.126	1.683	3.800	0.086		1.806	3.857	0.027
.320	-18.424	2.230	3.240	0.107	-21.281	2.802	2.739	0.043
.380	-18.227	1.980	2.678	0.159		0.509	2.066	0.087
.440	-1.884	-1.493	2.235	0.070		-1.914	1.675	0.085
.500	5.986	-2.492	1.788	0.059		-1.569	1.228	0.380
.560	3.429	-1.505	0.205	0.266		-1.033	0.480	0.286
.620	2.132	-0.840	-2.229	0.531	1.479	-0.790	-0.856	0.529
.700	1.265	-0.716	2.124	-0.037		-0.118	1.286	-0.002
.800	-0.292	0.604	3.336	-0.351		0.647	2.649	-0.424
. 900	-1.450	0.589	2.992	-0.399	-1.355	0.343	2.009	-0.490
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.706	0.172			-0.547	0.116		
.025	-5.699	0.821	6.389	-0.840	-7.317	0.950	6.394	-0.661
.050	-9.800	1.360	6.392	-0.772	-6.924	0.936	6.398	-0.627
.100	-6.093	0.824	4.008	-0.603	-8.537	1.109	4.021	-0.169
.200	-14.991	2.536	2.123	-0.099	-2.287	0.148	2.124	0.037
.260	-8.667	0.957	1.118	0.050	-2.571	0.040	1.109	0.140
.320	-0.481	-0.687	0.277	0.234	-1.325	-0.208	-0.123	0.251
.380	-0.260	-0.738	0.705	0.365	-0.975	-0.247	0.724	0.062
.440	-0.015	-0.727	-0.615	0.000	-0.539	-0.295	0.598	0.145
.500	0.166	-0.707	0.265	0.251	-0.198	-0.271	0.257	0.110
.560	0.263	-0.429	-0.286	0.262	0.108	-0.258	-0.234	0.240
.620	0.293	-0.259	-0.985	0.297	0.141	-0.241	-0.993	0.164
.700	-0.046	-0.032	0.165	0.133	-0.037	-0.106	0.133	0.102
.800	-0.938	0.499	0.783	-0.019	-1.275	0.166	0.782	-0.036
.900	-1.019	0.300	0.556	-0.182	-4.660	0.572	0.552	-0.086

(l-1) Tabulated data for test case 6E39 (point 493) Figure 9. Continued.

(1-2) Plot of data for test case 6E39 (point 493) Figure 9. Continued.

Point Nur	mber = 49	95 Mac	ch Number	= 0.803	Alphao	o = 1.84	, deg.	
q,psf	H,ps	sf V,	fps Rr	ì	gamma fi	req,Hz	k th	neta, deg
106.1			3.2 .401E	E+07	1.132	3.95	0.062	1.080
		4 '	0.309				0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCp1/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCp1/t
.000	-0.615	0.164			-0.723	0.170		
.025	-7.078	1.401	7.600	-1.190	-5.777	1.144	7.925	-1.170
.050	-8.275	1.638	7.589	-1.256	-8.703	1.660	6.933	-0.987
.100	-6.862	1.396	6.896	-0.859	-6.251	1.204	6.216	-0.741
.200	-7.291	1.670	4.863	-0.417	-6.951	1.490	4.242	-0.148
.260	-11.156	2.108	3.394	-0.089	-13.653	2.605	3.978	0.069
.320	-17.382	2.846	3.129	0.076	-19.958	3.519	2.653	0.009
.380	-17.607	3.105	2.544	0.120	-8.296	1.196	2.069	0.025
.440	-5.175	-1.166	2.106	0.259	5.096	-2.619	1.568	0.274
.500	5.587	-3.371	1.603	0.367	3.390	-1.981	1.033	0.417
.560	3.698	-2.083	0.123	0.461	2.111	-1.424	0.306	0.558
.620	2.227	-1.235	-2.160	0.735	1.281	-0.944	-0.836	0.653
.700	1.209	-0.546	2.069	0.007	0.354	-0.321	1.159	0.134
.800	-0.198	0.880	3.142	-0.509	-0.515	0.459	2.442	-0.506
.900	-1.289	0.626	2.708	-0.526	-1.259	0.885	1.973	-0.416
		,	0.000			,	0.051	
,	/:		0.809	1/-	·	4 '	0.951	1/:
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCp1/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCp1/t
.000	-0.665	0.183			-0.513	0.136		
.025	-5.312	1.033	6.040	-1.024	-6.842	1.219	6.035	-0.891
.050	-9.172	1.750	5.990	-0.948	-6.466	1.210	5.988	-0.852
.100	-5.684	1.064	3.687	-0.746	-7.884	1.419	3.698	-0.337
.200	-13.207	2.928	1.745	-0.247	-2.168	0.174	1.750	0.027
.260	-9.520	1.610	1.008	-0.005	-3.020	0.153	0.966	0.286
.320	-0.822	-0.584	0.423	0.152	-1.367	-0.182	-0.161	0.393
.380	-0.588	-0.752	0.722	0.312	-0.974	-0.259	0.720	0.183
.440	-0.227	-0.818	-0.354	0.000	-0.550	-0.320	0.365	0.217
.500	0.285	-0.856	0.253	0.484	-0.193	-0.378	0.265	0.177
.560	0.297	-0.738	-0.279	0.419	0.039	-0.316	-0.254	0.271
.620	0.223	-0.652	-0.970	0.373	-0.023	-0.211	-0.964	0.293
.700	-0.023	-0.317	0.208	0.154	-0.202	-0.064	0.128	0.169
.800	-0.554	0.410	0.742	-0.083	-1.359	0.237	0.743	-0.016
.900	-1.039	0.639	0.474	-0.207	-4.327	0.818	0.473	-0.066

(m-1) Tabulated data for test case 6E40 (point 495) Figure 9. Continued.

(m-2) Plot of data for test case 6E40 (point 495) Figure 9. Continued.

	Point N	umber = 3	14 Mac	ch Number	= 0.803	Alphac	o = 2.10,	deg.
	q,psf	H,psf	V,fps	Rn	qamma	freq,Hz	k	theta, deg
	107.7	422.0		401E+07	1.131	4.95	0.077	1.080
		y/s =	0.309			y/s =	0.588	
x/	c ReCpu/t	ImCpu/t		ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.00	0 -0.599				-0.762	0.230		
.02			7.431	-1.525	-5.817	1.450	7.757	-1.522
. 05			7.421	-1.577	-8.618	2.053	6.824	-1.314
.10			6.697	-1.121	-6.293	1.511	6.113	-1.078
.20			4.699	-0.461	-6.716	1.787	4.210	-0.539
.26			3.760	-0.230	-12.205	3.020	3.340	0.111
. 32			3.130	-0.022	-20.244	4.525	2.668	0.451
.38			2.595	0.154	-10.979	2.676	2.036	0.599
. 44			1.926	0.378	4.867	-3.408	1.818	0.380
.50			1.564	0.293	3.444	-2.829	1.477	0.158
.56			0.378	0.372	2.289	-1.976	0.279	0.245
. 62			-1.330	0.774	1.447	-1.326	-0.641	0.472
.70			1.751	-0.006	0.513	-0.609	1.104	0.151
.80			2.546	-0.527	0.132	0.459	2.084	-0.401
. 90	0 -0.835	0.961	2.253	-0.612	-1.012	0.937	1.660	-0.356
		y/s =	0.809			y/s =	0.951	
x/	c ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.00	0 -0.667	0.175			-0.510	0.144		
.00			5.958	-1.240	-7.044	1.562	5.956	-1.050
.05			5.913	-1.240	-6.255	1.444	5.911	-1.000
.10			3.725	-0.917	-7.860	1.444	3.752	-0.328
.20			1.953	-0.306	-2.157	0.276	1.961	0.089
.26			1.166	0.109	-2.748	0.270	1.156	0.160
.32			0.576	0.302	-1.355	-0.258	-0.183	0.554
. 38			0.731	0.268	-0.897	-0.327	0.723	0.168
. 44			-0.581	0.000	-0.541	-0.427	0.567	0.136
.50			0.197	0.292	-0.244	-0.410	0.205	0.053
.56			-0.149	0.328	-0.050	-0.368	-0.225	0.225
. 62			-1.010	0.440	0.001	-0.371	-0.962	0.447
.70			0.208	0.174	-0.115	-0.239	0.047	0.207
.80			0.583	-0.086	-1.252	0.234	0.581	0.055
. 90			0.311	-0.314	-4.225	1.038	0.316	0.040
							•	

(n-1) Tabulated data for test case 6E41 (point 314) Figure 9. Continued.

(n-2) Plot of data for test case 6E41 (point 314) Figure 9. Continued.

Point 1	Number = 31	l5 Mac	ch Number	= 0.804	Alphao	o = 2.08	, deg.	
q, ps			fps Rr			req,Hz		neta, deg
107	.9 422	. 2 40	5.5 .401E	±+0 /	1.131	9.96	0.154	1.057
		v/s =	0.309			v/s =	0.588	
x/c	ReCpu/t		ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t		ImCpl/t
.000	-0.492	0.426			-0.569	0.415		
.025	-6.080	3.343	6.761	-2.800	-4.855		6.959	-3.026
.050	-6.356	3.626	6.721	-2.895	-7.377		6.142	-2.594
.100	-5.686	3.270	6.260	-2.131	-5.373	2.942	5.600	-2.049
.200	-5.786	3.830	4.620	-0.948	-5.532	3.524	4.146	-0.828
.260	-7.307	5.251	3.740	-0.059	-11.959		3.402	0.292
.320	-14.397	10.888	3.183	0.312	-18.215	9.849	2.634	0.342
.320	-14.557	10.333	2.602	0.512	-10.416	5.917	2.142	0.594
. 440	-9.467	0.596	2.046	0.534	2.422	-6.618	1.822	0.699
.500	1.327	-8.571	1.499	0.630	1.672	-5.610	1.001	0.831
.560	2.087	-7.183	0.430	1.170	1.173	-4.231	0.249	1.055
. 620	1.942	-3.998	-1.187	1.616	1.173	-3.033	-0.489	1.147
.700	2.124	-2.604	1.623	0.105	0.793	-1.294	0.972	0.340
.800	1.269	1.183	2.228	-0.851	0.793		1.582	-0.711
		1.183	1.710		-0.332	1.647	1.330	-0.711
. 900	-0.369	1.750	1./10	-1.048	-0.332	1.64/	1.330	-0.838
		y/s =	0.809			4 '	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.550	0.348			-0.465	0.279		
.025	-4.582	2.467	5.469	-2.514	-6.241	3.031	5.484	-2.050
.050	-7.607	4.165	5.454	-2.269	-5.423	2.847	5.467	-1.936
.100	-4.777	2.562	3.519	-1.822	-7.007	3.679	3.604	-0.773
.200	-10.130	7.360	1.776	-0.372	-2.313	0.581	1.789	0.009
.260	-9.064	4.539	1.191	0.152	-2.847	0.678	1.096	0.470
.320	-1.827	-1.448	0.958	0.345	-1.662	-0.245	-0.027	0.975
.380	-1.387	-1.737	0.698	0.638	-1.358	-0.546	0.625	0.430
.440	-0.870	-1.807	-0.554	0.000	-0.988	-0.761	0.356	0.478
.500	-0.319	-2.035	0.463	0.647	-0.569	-0.792	0.063	0.647
.560	0.012	-1.735	-0.063	0.971	-0.210	-0.785	-0.219	0.612
.620	0.195	-1.505	-0.750	1.078	0.012	-0.705	-0.828	0.613
.700	0.253	-0.942	0.292	0.380	-0.033	-0.487	0.061	0.319
.800	0.050	0.649	0.538	-0.168	-0.990	0.286	0.542	0.012
.900	-0.179	0.904	0.249	-0.536	-3.406	1.545	0.257	0.085

(o-1) Tabulated data for test case 6E42 (point 315) Figure 9. Continued.

(o-2) Plot of data for test case 6E42 (point 315) Figure 9. Continued.

	Point Nu	umber = 3	17 Mac	ch Numbeı	c = 0.802	Alpha	.0 = 2.07,	deg.
q,psf 107.5			fps Ri 4.5 .4011		_	req,Hz 20.01	k tl 0.311	neta,deg 1.039
x/c	ReCpu/t	y/s = ImCpu/t	0.309 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	= 0.588 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620	-0.026 -3.733 -3.473 -3.148 -2.390 -1.774 1.035 -1.358 -8.778 -10.672 -10.286 -6.634 -2.308 6.054	0.385 4.059 3.622 3.765 3.839 5.627 17.947 16.875 5.921 -4.774 -6.328 -7.605 -9.541 -3.058	5.438 5.387 5.593 4.798 4.631 3.736 3.159 2.376 1.373 0.395 -0.566 1.075 0.879	-4.054 -4.300 -3.216 -1.268 0.105 0.973 1.694 2.058 2.198 2.338 2.473 0.948 -0.327	-0.167 -3.006 -4.776 -3.171 -2.430 -3.220 -3.721 -4.331 -5.692 -5.853 -4.692 -3.446 -0.509 4.063	0.408 3.304 4.894 3.377 3.549 9.680 20.678 5.644 -5.216 -5.034 -5.050 -5.389 -5.380 -2.224	5.725 5.213 5.258 4.687 4.675 3.571 2.832 2.185 1.108 0.087 -0.407 0.732 0.587	-4.314 -3.801 -3.134 -1.022 0.799 1.314 2.013 2.410 2.525 2.480 2.112 1.233 -0.152
.900 x/c	2.038 ReCpu/t	2.017 $y/s = ImCpu/t$	0.225 0.809 ReCpl/t	-0.379	1.792 ReCpu/t	1.948 y/s = ImCpu/t	0.043 = 0.951 ReCpl/t	-0.328
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	-0.148 -2.944 -4.630 -2.793 -2.050 -1.767 -2.897 -3.060 -2.871 -2.306 -1.730 -0.804 0.931 0.703	0.356 3.060 4.728 2.975 8.411 5.572 0.387 -0.122 -0.930 -1.753 -2.136 -2.624 -2.348 -1.162 0.989	4.815 5.010 3.720 2.639 2.250 2.109 1.270 0.495 0.350 -0.313 -1.026 0.374 0.446 0.339	-3.654 -3.351 -2.746 -0.296 0.862 1.361 1.882 0.000 2.202 2.217 1.523 1.229 0.458 -0.237	-0.076 -4.364 -3.351 -3.840 -1.034 -1.749 -1.645 -1.792 -1.603 -1.186 -0.847 -0.561 -0.859 -2.248	0.265 3.971 3.434 4.625 1.630 1.761 0.778 0.307 -0.161 -0.593 -0.900 -0.944 -0.885 -0.201 1.175	4.895 5.098 3.997 2.616 1.947 0.630 0.868 0.681 0.073 -0.438 -0.947 -0.104 0.228	-2.988 -2.861 -1.063 0.405 1.255 2.286 1.473 1.628 1.542 1.538 1.289 0.821 0.441 0.377

(p-1) Tabulated data for test case 6E43 (point 317) Figure 9. Continued.

(p-2) Plot of data for test case 6E43 (point 317) Figure 9. Continued.

	Point N	umber = 4	73 Mac	ch Number	= 0.825	Alphao	= 1.98,	deg.
	q,psf	H,psf	V,fps	Rn	qamma	freq,Hz	k	theta, deg
	107.8	407.9		399E+07	1.132	4.97	0.076	1.070
		y/s =	0.309			y/s =	0.588	
x/	c ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.00					-0.555	0.198		
.02		1.552	6.974	-1.444	-4.990	1.235	7.233	-1.511
. 05			7.003	-1.565	-7.716	1.810	6.240	-1.292
.10			6.417	-1.224	-5.472	1.293	5.727	-1.124
.20			5.626	-0.751	-5.243	1.327	5.735	-0.745
.26			4.810	-0.303	-6.964	1.493	3.636	0.191
. 32			3.906	0.157	-6.218	1.620	3.231	0.477
. 38			3.027	0.388	-13.605	4.394	2.005	0.754
. 44			1.789	0.338	-19.420	5.313	1.436	0.431
. 50			1.600	0.444	-4.872	0.094	0.962	0.061
. 56			-0.697	0.666	4.282	-3.644	-0.332	0.731
. 62			-2.766	0.634	3.346	-3.164	-0.888	0.929
.70			1.962	0.276	3.145	-2.667	1.121	-0.086
.80			3.078	-0.411	1.392	-0.005	2.474	-1.025
. 90	0 -1.202	1.145	2.896	-0.963	-1.399	1.165	1.942	-0.769
		,				,		
,	/.		0.809		/.	y/s =		
x/	c ReCpu/t	ImCpu/t	ReCp1/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCp1/t
.00	0 -0.454	0.162			-0.409	0.127		
.02	5 -4.688	1.117	5.581	-1.239	-6.169	1.368	5.579	-1.044
.05	0 -7.820	1.834	5.793	-1.150	-5.401	1.118	5.792	-1.073
.10	0 -4.902	1.141	4.109	-1.111	-6.112	1.603	4.143	-0.531
.20	0 -5.490	1.440	2.029	-0.261	-5.101	1.628	2.035	-0.007
.26	0 -10.986	3.443	1.445	0.118	-2.986	0.635	1.428	0.229
. 32	0 -7.550	2.409	0.572	0.440	-2.733	0.531	-0.175	0.562
.38	0 -3.266	0.029	0.832	0.345	-1.713	0.036	0.761	0.393
. 44	0 -1.687	-0.685	-0.584	0.000	-1.206	-0.252	0.528	0.262
.50	0 -0.675	-1.218	0.316	0.230	-0.665	-0.540	0.154	0.342
.56	0.013	-1.232	-0.683	0.647	-0.097	-0.635	-0.633	0.495
. 62	0 0.647	-1.233	-1.047	0.586	0.159	-0.511	-1.089	0.280
.70	0.613	-0.878	0.210	0.141	0.176	-0.391	0.174	0.124
.80	0.232	0.223	0.901	-0.258	-1.154	0.237	0.901	-0.128
. 90	0 -0.891	0.686	0.620	-0.608	-4.466	1.122	0.627	-0.141

(q-1) Tabulated data for test case 6E44 (point 473) Figure 9. Continued.

(q-2) Plot of data for test case 6E44 (point 473) Figure 9. Continued.

	Point N	umber = 4	74 Mac	ch Number	= 0.825	Alphao = 1.97 , deg.		deg.
	q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta,deg
	107.8	408.0	413.0 .	399E+07	1.132	9.96	0.152	1.038
			y/s =	0 200			y/s =	0 500
x/	c ReCou/t	ImCpu/t	-	ImCpl/t	ReCpu/t	ImCnu/t	y/s = ReCpl/t	
21/	с ксери/с	Imepu, c	ксерт, с	IMCPI/C	псери, с	Imepu/ c	песрі/ с	IMOPI/C
.00	0 -0.291	0.332			-0.428	0.348		
.02	5 -5.011	2.801	6.051	-2.694	-4.108	2.267	6.414	-2.829
.05	0 -5.734	3.205	6.028	-2.875	-6.616	3.547	5.564	-2.431
.10			5.748	-2.276	-4.581	2.436	5.173	-2.079
.20			4.888	-1.156	-4.233	2.493	5.263	-1.470
.26			4.823	-0.575	-5.665	2.739	3.998	0.505
. 32			3.629	0.324	-4.874	3.034	3.531	0.635
. 38			2.993	0.774	-10.715	9.957	2.018	1.351
. 44			1.675	0.963	-15.847	13.487	1.218	1.201
.50			1.125	0.799	-6.558	1.263	0.676	1.009
.56			-0.817	1.042	0.069	-5.685	-0.250	1.693
. 62			-2.513	1.387	0.020	-5.741	-0.379	1.498
.70		-10.957	1.913	0.272	0.101	-6.402	0.659	0.063
.80			2.494	-0.893	2.438	-2.075	1.234	-1.414
. 90	0 -0.566	2.532	2.110	-1.413	-0.437	2.333	0.963	-1.278
		y/s =	0.809			y/s =	0.951	
x/	c ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.00	0 -0.381	0.319			-0.375	0.233		
.02		2.118	5.091	-2.346	-5.448	2.681	5.052	-2.082
.05	0 -6.531	3.472	5.308	-2.196	-4.496	2.361	5.253	-2.176
.10	0 -4.113	2.141	3.828	-2.097	-5.063	3.042	3.922	-1.140
.20	0 -4.400	2.750	2.025	-0.447	-3.996	3.044	2.042	-0.021
.26	0 -8.659	6.937	1.766	0.076	-2.933	1.868	1.691	0.511
.32	0 -5.915	5.555	1.065	0.721	-2.632	1.145	-0.197	1.142
.38	0 -3.830	1.252	0.685	1.044	-2.189	0.292	0.543	0.697
.44	0 -2.949	-0.430	-0.580	0.000	-1.734	-0.334	0.424	0.509
.50	0 -2.258	-1.587	0.147	0.937	-1.235	-0.731	0.041	0.440
.56	0 -1.375	-2.134	-0.740	0.995	-0.746	-1.027	-0.714	0.691
. 62	0 -0.737	-2.487	-1.054	0.862	-0.343	-1.049	-1.042	0.725
.70	0 -0.223	-2.086	0.201	0.454	-0.134	-0.873	0.078	0.265
.80	0 0.863	-0.932	0.694	-0.310	-0.932	-0.106	0.681	-0.227
.90	0 -0.232	1.304	0.446	-1.106	-3.525	1.712	0.513	-0.205

(r-1) Tabulated data for test case 6E45 (point 474) Figure 9. Continued.

(r-2) Plot of data for test case 6E45 (point 474) Figure 9. Continued.

	Point Nu	umber = 47	76 Mac	ch Number	= 0.825	Alpha	0 = 1.97,	deg.
а	,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k k	theta, deg
108.0	-	.2 413	3.4 .399I	E+07	_	20.07		1.035
		y/s =				4	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	0.047	0.159			-0.122	0.185		
.025	-3.526	3.441	5.116	-4.323	-2.862	2.774	5.184	-4.667
.050	-3.920	3.505	4.906	-4.721	-4.843	4.300	4.534	-4.228
.100	-3.349	3.145	5.219	-4.019	-3.162	2.691	4.519	-3.998
.200	-2.653	2.748	5.906	-2.919	-2.738	2.249	5.870	-3.768
.260	-4.046	2.402	6.185	-1.727	-3.895	2.539	6.519	-0.422
.320	-4.679	3.062	6.617	-0.591	-2.624	2.125	7.066	-0.531
.380	-4.848	2.038	6.354	2.288	-1.974	3.590	5.815	2.976
.440	-0.609	-0.003	3.843	3.750	1.581	16.421	4.183	4.501
.500	2.930	10.217	1.546	4.620	-1.361	0.742	1.400	5.299
.560	0.406	16.603	-1.370	3.743	-3.536	-1.717	-0.506	3.953
.620	-7.436	1.178	-2.966	3.214	-3.951	-1.876	-0.174	1.484
.700	-9.675	-5.496	2.278	1.473	-5.717	-2.801	0.062	2.213
.800	-3.197	-9.555	1.771	-0.022	-0.971	-5.619	-0.987	0.889
.900	2.630	1.842	0.239	-0.437	2.072	1.918	-0.774	0.712
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.126	0.109			-0.102	0.044		
.025	-2.921	2.630	4.489	-3.862	-4.266	3.261	4.412	-3.435
.050	-4.820	4.073	4.762	-3.749	-3.356	2.538	4.587	-3.835
.100	-2.970	2.312	4.702	-3.900	-3.166	2.421	4.230	-2.736
.200	-2.883	2.244	3.202	-1.440	-1.061	1.621	3.277	-0.817
.260	-4.374	4.926	3.718	-0.918	0.036	0.162	3.763	0.085
.320	2.498	2.354	3.109	1.422	-0.273	0.958	2.240	2.453
.380	-0.886	1.534	2.238	2.314	-0.332	0.761	2.041	1.787
.440	-1.444	1.026	-0.027	0.000	-0.526	0.713	1.485	2.136
.500	-2.147	0.226	0.602	3.433	-0.735	0.713	0.741	2.320
.560	-2.204	-0.541	-1.165	2.985	-0.720	0.013	-0.620	2.584
.620	-2.238	-1.215	-1.624	1.379	-0.678	-0.240	-0.969	1.741
.700	-1.880	-1.717	0.551	1.657	-0.684	-0.365	0.018	1.162
.800	-0.418	-2.231	0.432	0.662	-0.933	0.126	0.187	0.462
.900	0.832	0.889	0.249	-0.366	-2.515	1.511	-0.227	0.242
	0.032	0.007	0.217	0.500	2.010	1.011	0.22/	J. L. 1 L

(s-1) Tabulated data for test case 6E46 (point 476) Figure 9. Continued.

(s-2) Plot of data for test case 6E46 (point 476) Figure 9. Continued.

Point Number = 2			62 Mac	ch Number	= 0.896	Alphao	deg.		
		q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
			401.1		398E+07	1.132	4.96	0.069	1.022
			101.1	113.2 .	0,02,0,	1.101	1.50	0.003	1.022
			y/s =	0.309			y/s =	0.588	
	x/c	ReCpu/t	ImCpu/t		ImCpl/t	ReCpu/t		ReCpl/t	ImCpl/t
		*	-		1		<u>.</u> .	1	1
	.000	-0.210	0.078			-0.275	0.053		
	.025	-4.462	0.843	4.920	-0.832	-3.678	0.762	5.295	-0.962
	.050	-4.580	0.824	4.569	-0.880	-5.615	1.081	4.136	-0.759
	.100	-4.352	0.822	4.972	-0.859	-3.916	0.712	5.288	-0.999
	.200	-4.130	0.788	4.264	-0.675	-3.589	0.633	3.978	-0.687
	.260	-3.921	0.684	4.462	-0.843	-5.104	0.745	3.877	-0.607
	.320		0.861	3.603	-0.545	-3.876	0.614	3.925	-0.664
	.380		0.885	3.265	-0.529	-4.877	0.746	4.067	-0.820
	.440		0.453	2.616	-0.317	-4.877	0.746	3.961	-0.777
	.500			2.567	-0.252	-5.314	0.851	3.203	-0.559
	.560			-1.558	1.613	-5.287	1.008	-2.780	1.459
	.620			1.193	0.838	-4.898	0.952	0.752	0.673
	.700			2.295	0.136	-4.016	1.039	2.460	1.090
	.800			3.958	0.423	0.741	-2.470	3.067	1.080
	.900	-1.105	-0.768	3.126	0.290	-0.730	-0.288	2.794	0.609
			_	0.809			y/s =		
	x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
	000	0.076	0.046			0.005	0 000		
	.000			4 000	0.763	-0.205	0.092	4 000	0 (05
	.025		0.700 0.980	4.099 3.323	-0.763 -0.624	-4.966 -3.531	0.894 0.635	4.092	-0.685 -0.584
	.100		0.980	4.534	-0.624 -0.666	-3.531 -4.142	0.635	4.526	-0.384 -0.806
	.200		0.559	2.425	-0.736	-4.142	0.723	2.443	-0.339
	.260		0.539	1.606	-0.736	0.224	-0.002	1.625	-0.339 -0.065
	.320		0.654	2.049	-0.561	-1.669	0.205	2.049	-0.321
	.320		0.634	1.553	-0.397	-1.606	0.203	1.558	-0.194
	. 440		0.392	-1.112	0.000	-1.430	0.234	1.119	0.065
	.500		0.309	1.336	-0.235	-1.430	0.281	1.119	0.019
	.560		0.303	-0.708	1.501	-1.311	0.207	0.951	0.065
	.620		0.373	0.745	0.586	-0.529	0.303	-1.413	0.542
	.700		0.342	0.743	0.506	-0.329	0.416	0.172	0.937
	.800		-1.345	1.680	0.803	-0.084	-0.032	1.614	0.472
	.900		0.062	1.323	-0.760	-1.662	0.212	1.321	0.468
	. 900	-0.2/3	0.002	1.323	-0.700	-3.469	0.212	1.321	0.400

(t-1) Tabulated data for test case 6E47 (point 262) Figure 9. Continued.

(t-2) Plot of data for test case 6E47 (point 262) Figure 9. Continued.

	Point Nu	ımber = 20	63 Mac	ch Numbeı	c = 0.896	Alpha	0 = 2.00	deg.
q, psf 117.1			fps Ri 9.2 .398i		gamma f: 1.132	req,Hz 9.95	k tl	neta,deg 0.989
x/c	ReCpu/t	-	0.309 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	0.588 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	-0.150 -3.837 -3.910 -3.782 -3.620 -3.390 -3.812 -3.810 -2.439 -1.680 -1.111 -1.854 -2.378 -0.436 -1.528	0.088 1.314 1.278 1.295 1.232 0.998 1.202 1.209 0.505 0.009 -0.497 -0.006 0.918 -0.883 -0.944	4.365 3.964 4.387 3.609 3.690 2.928 2.760 2.253 2.125 0.355 1.792 2.955 4.957 4.124	-1.376 -1.474 -1.494 -1.076 -1.536 -0.923 -1.054 -0.754 -0.573 1.344 0.474 -0.021 -0.910 -0.624	-0.271 -3.133 -4.909 -3.357 -3.039 -4.593 -3.353 -4.284 -4.324 -4.576 -4.573 -4.116 -3.437 -1.803 -1.503	0.102 1.215 1.758 1.104 0.958 1.213 0.917 1.245 1.314 1.478 1.664 1.538 2.267 0.100	4.648 3.654 4.642 3.380 3.337 3.295 3.205 3.266 2.612 -1.548 1.718 3.853 4.802 3.295	-1.628 -1.308 -1.810 -1.217 -1.162 -1.278 -1.488 -1.629 -1.252 1.725 0.838 0.466 -0.243 -0.658
x/c	ReCpu/t	y/s = ImCpu/t	0.809 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	0.951 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .320 .380 .440 .500 .560 .620 .700 .800	-0.197 -3.143 -4.582 -3.142 -2.946 -3.030 -3.463 -3.029 -1.763 -1.548 -1.316 -1.197 -0.620 -2.396 -0.346	0.122 1.188 1.640 1.015 0.867 0.778 0.954 0.783 0.343 0.226 0.206 0.215 0.689 1.728 0.036	3.641 2.925 4.003 2.050 1.364 1.835 1.407 -1.274 1.495 -0.251 1.198 2.818 2.913 1.528	-1.399 -1.145 -1.176 -1.332 -1.172 -1.157 -0.889 0.000 -0.477 2.279 0.782 0.416 -0.896 -0.991	-0.173 -4.455 -3.091 -3.666 -3.042 0.012 -1.390 -1.274 -1.094 -0.866 -0.579 1.321 0.731 -1.711 -3.940	0.016 1.473 0.986 1.086 0.730 -0.463 0.046 -0.044 -0.125 -0.074 0.004 0.174 0.899 1.647 1.965	3.602 2.867 3.902 2.011 1.389 1.728 1.209 1.058 1.375 1.298 -0.540 2.790 3.066 1.605	-1.283 -1.100 -1.632 -0.895 -0.409 -0.946 -0.898 -0.711 -0.746 -0.498 1.344 0.779 -0.161 -0.237

(u-1) Tabulated data for test case 6E48 (point 263) Figure 9. Continued.

(u-2) Plot of data for test case 6E48 (point 263) Figure 9. Continued.

	Point Number = 265		55 Mac	Mach Number = 0.902			Alphao = 2.01, deg.			
a.	psf :	H,psf	V,fps	Rn	qamma	freq,Hz	k	theta,deg		
118.3	-	-	2.2 .400E			L9.99		1.055		
		y/s =	0.309			y/s =	0.588			
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t		
	-	-	-	-	-	-	-	-		
.000	-0.083	0.070			-0.123	0.107				
.025	-3.312	2.276	3.982	-2.226	-2.680	1.947	4.343	-2.579		
.050	-3.408	2.230	3.503	-2.284	-4.262	2.810	3.355	-2.008		
.100	-3.189	2.167	4.032	-2.135	-2.957	1.826	4.196	-2.612		
.200	-3.020	2.029	3.579	-1.282	-2.612	1.557	3.189	-1.514		
.260	-2.897	1.606	2.995	-1.764	-4.006	1.945	3.146	-1.201		
.320	-3.102	1.901	2.697	-0.632	-2.863	1.440	3.031	-1.038		
.380	-3.172	1.891	2.349	-0.674	-3.542	1.899	2.845	-1.075		
.440	-2.204	0.772	1.933	-0.296	-3.494	1.985	2.764	-1.133		
.500	-1.729	-0.179	1.900	-0.070	-3.670	2.223	2.318			
.560	-1.515	-0.958	1.639	0.850	-3.454	2.260	-0.444	0.931		
.620	-1.891	-0.189	1.159	0.596	-3.034	2.008	1.451	0.957		
.700	-1.882	0.971	2.215	-0.225	-1.128	0.755	2.076	0.422		
.800	-1.176	-1.205	3.195		0.189	1.399	2.714	-0.081		
.900	-2.400	-1.019	2.673	-1.207	-0.419	0.499	2.214	-0.233		
,	,	-	0.809	- /	,		0.951	- 4		
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t		
.000	-0.129	0.100			-0.095	0.052				
.025	-2.680	1.947	3.562	-2.317	-4.024	2.476	3.549	-2.000		
.050	-3.979	2.745	2.819	-1.834	-2.822	1.736	2.749	-1.645		
.100	-2.772	1.712	3.836	-1.785	-3.222	1.913	3.740	-2.212		
.200	-2.550	1.449	2.183	-1.743	-2.522	1.387	2.377	-0.768		
.260	-2.683	1.183	1.769	-1.294	1.381	-1.142	1.898	0.099		
.320	-2.819	1.405	1.762	-0.926	-1.139	0.361	1.831	0.238		
.380	-2.383	1.056	1.355	-0.134	-0.906	0.366	1.352	0.121		
.440	-1.217	0.283	1.056	0.000	-0.825	0.415	1.041	0.784		
.500	-1.292	0.172	1.303	0.011	-0.634	0.311	1.167	0.580		
.560	-0.923	-0.002	-0.277	1.112	-0.741	0.338	0.922	0.842		
.620	-0.977	0.036	1.355	0.889	-0.753	0.312	-1.243	1.291		
.700	-0.953	0.218	0.475	0.816	0.707	-1.346	0.105	0.533		
.800	3.716	-0.803	2.151	0.423	0.111	0.476	1.927	-1.319		
.900	0.001	0.652	1.955	0.018	-1.660	1.793	1.955	-0.041		

 $\begin{array}{c} \hbox{(v-1) Tabulated data for test case 6E49 (point 265)} \\ \hbox{Figure 9. Continued.} \end{array}$

(v-2) Plot of data for test case 6E49 (point 265) Figure 9. Continued.

	Point Number = 48		Mach Number = 0.823			Alphao	deg.	
	q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
	107.6	408.3		399E+07	ī.132	15.01	0.229	1.023
			0.309			y/s =		
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000			4 200	2 005	0.042	0.038	4 647	4 270
.025			4.322	-3.905	-4.491	4.538	4.647	-4.379
.050			3.157	-3.258	-3.014	2.762	2.968	-2.730
.100			4.663	-4.762	-3.527	4.278	4.259	-4.681
.200			5.146	-6.355	-3.264	7.129	4.446	-5.836
.260			7.356	-8.373	-5.236	8.219	7.462	-7.974
.320			9.107	-4.324	-8.910	7.241	11.508	-5.788
.380			10.150	1.426	-6.706	-2.012	9.288	3.621
.440			4.021	6.535	-3.604	-3.279	0.690	7.304
.500			-1.768	4.420	-3.792	-3.148	-1.068	3.539
.560			-1.692	-0.388	-3.310	-3.264	0.088	0.666
.620			-3.380	-2.679	-2.719	-3.275	-0.347	-0.886
.700			2.358	3.744	-2.413	-6.032	0.127	2.797
.800			3.040	5.099	3.492	-2.233	0.253	4.137
. 900	-0.235	1.210	2.321	3.701	0.439	0.716	0.395	2.772
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	0.023	0.110			0.048	-0.029		
.025			3.861	-3.588	-3.516	2.867	3.824	-3.020
.050			2.759	-2.381	-4.315	3.996	2.668	-2.223
.100			3.983	-3.837	-4.077	4.544	4.143	-3.427
.200			1.514	-6.979	-1.075	-0.316	2.094	-0.796
.260			3.109	-1.104	-4.247	1.429	3.185	-0.212
.320			2.216	0.803	-1.957	-0.120	2.236	0.137
.380			1.252	2.912	-1.780	-0.497	1.744	0.765
. 440			0.280	0.000	-1.494	-0.884	0.884	1.295
.500			-0.078	2.293	-1.120	-1.176	0.402	1.341
.560			-1.363	1.018	-0.670	-1.356	-0.783	1.612
.620			-2.463	-0.060	0.011	-1.512	-1.396	2.031
.700			0.341	1.513	0.458	-1.264	0.624	0.475
.800			0.388	1.463	0.601	-0.504	0.606	-0.290
. 900			1.184	1.176	-1.434	0.978	1.014	-1.196
	0.270							

(w-1) Tabulated data for test case 6E50 (point 481) Figure 9. Continued.

(w-2) Plot of data for test case 6E50 (point 481) Figure 9. Continued.

Point	Number = 46	59 Mac	h Number	= 0.822	Alphac	o = 3.99	, deg.	
q,p	osf H,ps	sf V,f	ps Rr	า	gamma fi	ceq,Hz	k th	neta, deg
107	7.2 407	. 4 411	.4 .3991	E+07	1.132	L5.04	0.230	1.018
		y/s =	0 300			11/0 -	0.588	
x/c	r ReCpu/t	ImCpu/t		TmCpl/t	ReCpu/t	y/s - ImCpu/t		TmCpl/t
11,	neepu, e	imopu, c	reop1/c	imopi, c	neopu, e	ттора, с	теорт, с	imopi, c
.000		0.469			-0.715	0.449		
.025	-3.791	2.323	5.513	-2.559	-3.396	2.106	5.602	-2.636
.050	-3.724	1.988	5.394	-2.678	-3.805	2.075	5.156	-2.393
.100	-3.763	2.034	5.163	-1.941	-3.987	2.093	4.798	-1.948
.200	-3.527	1.995	4.334	-0.993	-3.650	2.006	4.189	-0.867
.260	-3.594	1.871	4.493	-0.291	-3.142	1.519	4.501	-0.118
.320	-3.338	1.873	3.696	0.375	-3.084	1.633	3.395	0.513
.380	-3.989	2.742	3.386	0.844	-2.834	1.730	3.212	1.044
. 440	-4.175	2.967	2.922	1.325	-3.331	3.194	2.614	1.437
.500	-2.730	3.219	2.337	1.761	-6.216	15.699	2.094	1.707
.560	-1.450	1.161	1.166	1.926	-6.837	12.233	1.022	1.749
.620	-18.208	17.279	-0.325	1.771	-3.237	-4.326	-0.266	1.496
.700	-1.515	-5.945	1.453	1.064	-1.753	-5.526	0.739	1.063
.800	1.559	-6.918	1.393	0.608	0.505	-5.549	0.736	0.696
. 900	1.292	0.084	0.603	0.814	1.102	0.230	0.480	0.552
		v/s =	N 8N9			77/8 =	0.951	
x/c	ReCou/t	4 '	ReCpl/t	TmCn1/t	ReChu/t	ImCpu/t		TmCn1/t
Α/ (recpu/c	Imepu/ c	Recp1/c	IMCPI/C	Recpu, c	тшери/ с	Kecpi, c	IMCPI/C
.000		0.416			-0.523	0.331		
.025		1.789	4.793		-3.834	2.021	4.782	-2.129
.050	-3.634	1.916	4.874	-2.256	-3.423	1.835	4.866	-2.076
.100		2.110	3.931	-1.842	-3.501	2.256	4.004	-1.148
.200		1.770	2.716	-0.655	-0.981	1.233	2.758	-0.043
.260		1.871	2.532	0.105	-0.628	1.132	2.488	0.475
.320	-4.820	7.338	2.415	0.673	-0.414	2.213	2.410	0.570
.380	-0.017	4.784	1.712	1.112	-0.886	2.008	1.447	1.164
.440		2.602	-1.610	0.000	-1.273	1.429	1.051	1.321
.500		1.399	1.049	1.768	-1.418	0.917	0.716	1.467
.560		0.109	0.029	2.307	-1.311	0.511	-0.068	1.687
.620		-0.938	-0.850	1.487	-1.002	-0.148	-0.630	1.195
.700		-1.339	0.665	1.053	-1.166	-0.193	-0.073	0.954
.800		-1.328	0.663	0.255	-1.680	0.174	0.071	0.672
.900	0.094	0.726	0.386	0.116	-4.675	2.091	0.148	0.365

(x-1) Tabulated data for test case 6E51 (point 469) Figure 9. Continued.

(x-2) Plot of data for test case 6E51 (point 469) Figure 9. Continued.

Point Number = 269			59 Mac	ch Number	= 0.901	Alphao	o = -0.03,	deg.
а	,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
118.2	-	-	L.8 .399E		_	14.98	0.208	1.065
		y/s =	0.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	0.000	0.000			-0.023	0.049		
.025	-4.140	1.673	4.387		-4.662	2.095	4.878	
.050	-3.554	1.400	2.969	-1.266	-2.947	1.026	2.794	
.100	-3.406	1.335	4.016	-1.391	-3.095	1.090	3.351	-1.174
.200	-3.726	1.683	3.430	-1.421	-3.417	1.450	3.310	-1.284
.260	-3.693	1.337	3.532	-1.307	-3.132	0.981	2.945	-0.856
.320	-3.346	1.017	3.623	-1.369	-3.080	0.965	3.066	-0.822
.380	-2.485	0.469	2.925	-0.724	-2.968	0.964	2.508	-0.616
.440	-1.979	0.215	1.719	0.093	-2.885	1.039	2.640	-0.747
.500	-2.036	0.189	1.450	0.086	-2.762	1.060	0.831	0.224
.560	-2.202	0.135	-0.432	-0.550	-3.138	1.544	-2.140	1.802
.620	-1.882	-0.072	0.968	-0.041	-3.410	2.257	0.965	-0.076
.700	-1.999	0.429	0.749	-0.083	-0.395	-1.116	1.804	-0.704
.800	8.847	-6.404	1.717	-0.120	4.405	-0.239	1.929	-1.551
.900	-1.340	0.115	1.866	-0.694	0.372	-0.460	1.617	-1.337
		y/s =					0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.046	0.029			0.000	0.000		
.025	-4.546	1.958	3.614	-1.551	-3.310	1.127	3.618	-1.225
.050	-3.717	1.427	2.578	-0.815	-4.169	1.600	2.563	-0.818
.100	-3.167	1.047	3.163	-1.110	-2.979	0.928	3.208	-0.914
.200	-3.537	1.294	2.006	-1.128	-2.491	0.681	2.083	-0.539
.260	-3.365	0.952	1.442	-0.995	-1.778	0.430	1.490	-0.223
.320	-3.594	1.126	0.970	-1.115	0.692	-0.297	-0.628	0.807
.380	-3.592	1.300	0.726	-0.671	-1.560	0.044	0.736	0.160
.440	-1.722	0.003	0.049	0.000	-1.560	-0.022	0.326	0.281
.500	-1.376	-0.250	-0.340	-0.185	-1.237	-0.043	0.335	0.172
.560	-1.275	-0.429	0.090	-0.426	-1.057	-0.200	-0.636	-0.113
.620	-1.147	-0.292	0.494	-0.444	-0.429	-0.553	0.497	-0.321
.700	-0.633	-0.298	0.834	0.145	3.919	-2.459	0.416	-0.754
.800	5.114	-1.040	0.925	0.384	1.010	0.160	0.328	-0.911
.900	-0.069	0.534	0.306	-0.552	0.117	0.690	-0.289	0.145

(y-1) Tabulated data for test case 6E52 (point 269) Figure 9. Continued.

(y-2) Plot of data for test case 6E52 (point 269) Figure 9. Continued.

								_
	Point N	umber = 2	58 Ma	ch Number	= 0.900	Alphao	= 4.03,	deg.
	q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
	117.8	401.1		399E+07	1.132	14.95	0.208	1.024
		/ -	0 200			/ -	0 500	
/ -	D - C /+		0.309	T C 1 /+	D - C /+	y/s =		T C 1 /-
x/c	e Recpu/t	ImCpu/t	кесрі/ с	ImCpl/t	ReCpu/t	IMCpu/C	ReCpl/t	IMCDI/C
.000	-0.436	0.252			-0.553	0.271		
.025	-3.813	1.754	4.267	-1.528	-3.147	1.461	4.361	-1.596
.050	-3.438	1.347	4.041	-1.649	-3.800	1.497	3.769	-1.424
.100	-3.654	1.410	3.612	-1.195	-3.723	1.385	3.155	-1.148
.200			3.923	-1.490	-3.247	1.221	4.165	-1.925
.260	-3.351	1.095	2.292	-0.092	-2.958	0.848	2.374	-0.393
.320	-3.174	1.093	2.058	0.532	-3.000	0.906	2.499	0.311
.380	-3.717	1.555	2.115	0.219	-2.798	0.797	2.198	0.419
.440	-3.791	1.664	2.636	-0.512	-2.643	0.728	2.404	0.088
.500	-3.353	1.409	2.301	-0.477	-2.688	0.776	2.126	-0.011
.560	-1.618	0.446	1.305	0.316	-2.725	0.849	0.665	-0.096
.620	-1.556	-0.180	1.299	-1.312	-1.516	0.579	0.808	-1.142
.700	3.475	0.866	1.877	0.311	-0.541	0.143	1.739	0.427
.800	-1.365	0.308	3.072	0.177	0.011	0.503	2.574	-0.018
.900	-1.547	0.650	2.355	0.492	-1.788	1.252	1.568	0.976
		17/G -	0.809			y/s =	0.051	
x/c	BoCnu/+	y/s = ImCpu/t		ImCpl/t	BoCnu/+	y/s = ImCpu/t		TmCn1/+
Х/С	: Recpu/t	IMCpu/c	KeCp1/L	IMCPI/C	Kecpu/ c	IIICpu/ c	KeCp1/L	IMCDI/ C
.000	-0.558	0.259			-0.524	0.197		
.025	-2.828	1.349	3.580	-1.497	-3.567	1.477	3.562	-1.339
.050		1.477	3.635	-1.377	-3.151	1.312	3.592	-1.415
.100	-3.746	1.483	2.860	-1.244	-3.258	1.192	2.864	-0.964
.200	-3.136	1.198	1.352	-1.997	-2.539	0.874	1.496	-0.208
.260	-3.167	0.932	2.077	-0.513	-2.676	0.990	2.003	-0.713
.320			1.213	0.672	-1.586	0.343	0.902	0.995
.380	-4.425	1.743	1.109	0.801	-1.636	0.378	0.694	1.017
.440	-2.935	1.097	-0.719	0.000	-1.585	0.346	0.637	0.352
.500	-1.993	0.291	0.441	0.240	-1.765	0.302	0.392	0.217
.560	-1.932	0.320	-0.278	-0.493	-1.621	-0.062	0.279	-0.012
.620	-1.733	0.076	-0.064	0.391	-0.812	-1.274	-1.744	-0.607
.700	-1.634	-0.383	1.040	0.208	0.167	-1.220	0.210	-1.156
.800	5.480	2.270	1.570	-0.494	0.049	0.276	1.577	-0.382
.900	-0.760	0.969	0.808	-1.626	-1.869	3.185	0.749	0.587

(z-1) Tabulated data for test case 6E53 (point 258) Figure 9. Continued.

(z-2) Plot of data for test case 6E53 (point 258) Figure 9. Continued.

	Point Nu	umber = 6	32 Mac	ch Numbeı	c = 0.825	Alpha	o = 1.98,	deg.
q,psf 108.7	-		fps Ri 3.7 .4011		_	req,Hz 10.03	k tl 0.152	neta,deg 1.014
		4 '	0.309			4 .	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.315	0.324			-0.424	0.374		
.025	-4.957	2.828	6.145	-2.866	-4.078	2.317	6.412	-2.963
.050	-6.858	4.056	5.476	-2.694	-7.082	4.007	5.059	-2.252
.100	-3.974	2.033	5.694	-2.347	-3.826	1.950	4.975	-1.860
.200	-4.708	2.806	3.684	-0.577	-4.134	2.445	3.648	-0.429
.260	-5.251	3.218	5.786	-1.314	-4.838	2.919	5.702	-0.842
.320	-0.277	0.196	3.272	0.194	-0.269	0.206	3.176	0.537
.380	-4.289	3.037	3.133	0.446	-14.473	12.805	2.371	0.920
.440	-10.220	7.562	1.948	0.759	-12.228	7.406	1.560	0.915
.500	-15.071	7.253	1.172	0.682	-2.619	-3.754	0.566	0.912
.560	-10.809	-0.927	-0.083	0.502	-0.710	-5.321	-0.404	0.395
.620	1.063	-8.181	-0.111	0.496	0.138	-5.253	-0.095	0.140
.700	4.069	-7.371	1.297	0.559	1.694	-4.069	0.991	0.750
.800	3.353	-0.799	1.725	0.541	1.879	-0.399	1.340	0.841
. 900	0.303	0.911	1.822	0.397	0.003	0.735	1.324	0.758
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.459	0.329			-0.311	0.245		
.025	-3.938	2.219	5.071	-2.509	-5.264	2.613	5.078	-2.062
.050	-7.291	4.210	5.096	-2.226	-4.581	2.457	5.085	-2.044
.100	-3.881	2.089	4.128	-2.157	-6.482	3.803	4.251	-1.163
.200	-4.509	2.807	1.751	-0.054	-2.760	1.969	1.752	0.015
.260	-10.386	8.808	1.861	-0.310	-3.463	2.241	1.827	0.375
.320	-0.277	0.195	1.134	0.535	-0.107	0.036	0.994	0.648
.380	-3.559	0.062	0.846	0.777	-2.025	0.191	0.758	0.590
.440	-2.438	-1.189	-0.448	0.000	-1.716	-0.349	0.420	0.602
.500	-1.470	-2.212	0.199	0.803	-1.133	-0.844	0.185	0.593
.560	-0.807	-2.292	-0.646	0.439	-0.609	-1.018	-0.688	0.495
.620	-0.318	-2.352	-0.961	0.277	-0.278	-1.037	-0.905	0.577
.700	0.028	-1.751	0.292	0.560	-0.053	-0.846	0.029	0.451
.800	0.380	-0.338	0.435	0.585	-0.678	-0.015	0.283	0.423
. 900	-0.195	0.470	0.530	0.709	-3.380	1.118	0.549	0.292

(aa-1) Tabulated data for test case 6E54 (point 632) Figure 9. Continued.

(aa-2) Plot of data for test case 6E54 (point 632) Figure 9. Continued.

	Point Nu	umber = 6	33 Mac	ch Number	= 0.826	Alpha	o = 1.98,	deg.
q,	,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k k	theta,deg
108.9	411.	.1 41	4.1 .401E	E+07	1.132	15.03	0.228	0.984
		77/6 -	0.309			11/0 -	0.588	
x/c	ReCou/t			TmCnl/t	ReCpu/t			TmCpl/t
11, 0	поора, с	Imopa, c	1.00р1, с	Iop 1, 0	noopa, c	ımopa, c	поорт, с	тторт, с
.000	-0.020	0.174			-0.167	0.238		
.025	-3.850	2.922	5.580	-3.487	-3.175	2.366	5.714	-3.710
.050	-5.022	3.785	4.960	-3.371	-5.754	4.165	4.590	-2.981
.100	-3.148	2.204	5.428	-3.058	-2.945	1.986	4.667	
.200	-3.375	2.862	4.524	-1.111	-3.019	2.283	4.793	-1.811
.260	-3.355	2.795	6.340	-1.758	-3.350	2.617	6.153	-1.297
.320	-0.156	0.173	5.110	-0.384	-0.114	0.132	5.581	-0.312
.380	-1.869	1.289	4.487	1.633	-3.987	12.419	3.479	2.233
.440	-1.736	5.375	2.502	2.092	-6.047	12.792	2.350	2.261
.500	-5.623	15.365	0.917	1.949	-4.377	-1.214	0.357	1.947
.560	-9.299	8.641	-0.303	1.245	-3.623	-3.623	-0.620	0.916
.620	-5.506	-6.246	-0.175	0.915	-3.098	-4.441	-0.309	0.754
.700	-2.801	-8.885	1.517	1.082	-1.206	-4.800	1.221	1.167
.800	2.655	-2.778	2.068	1.072	1.848	-1.601	1.846	1.322
.900	0.773	0.708	2.183	0.812	0.364	0.664	1.921	0.680
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.149	0.179			-0.071	0.160		
.025	-3.011	2.294	4.782	-3.058	-4.404	2.731	4.837	-2.561
.050	-5.415	4.037	4.894	-2.842	-3.557	2.327	4.908	-2.676
.100	-3.022	2.180	4.358	-2.981	-5.197	4.223	4.608	-1.806
.200	-3.122	2.528	2.375	-0.288	-0.863	1.314	2.387	-0.004
.260	-4.926	9.383	3.044	-0.961	-0.640	2.421	3.050	0.472
.320	-0.065	0.284	1.821	1.230	-0.083	0.082	1.784	0.985
.380	-2.641	1.912	1.510	1.530	-1.283	1.006	1.391	1.151
.440	-2.748	0.509	-1.437	0.000	-1.264	0.443	0.952	1.395
.500	-2.546	-1.003	0.359	1.527	-1.162	-0.075	0.440	1.449
.560	-2.148	-1.601	-0.677	1.018	-0.891	-0.431	-0.392	1.158
.620	-1.651	-2.183	-0.976	0.667	-0.642	-0.592	-0.915	1.056
.700	-0.849	-1.916	0.600	0.980	-0.333	-0.547	0.224	0.904
.800	0.239	-0.657	0.740	1.082	-0.798	0.168	0.561	0.816
.900	-0.103	0.394	0.785	0.766	-2.965	1.491	0.776	0.401

(bb-1) Tabulated data for test case 6E55 (point 633) Figure 9. Continued.

(bb-2) Plot of data for test case 6E55 (point 633) Figure 9. Continued.

	Point N	umber = 63	34 Mac	ch Number	= 0.826	Alphao	= 1.98,	deg.
	q,psf	H,psf	V,fps	Rn	qamma	freq,Hz	k	theta, deg
	108.9	411.1		401E+07	1.132	20.09	0.305	1.005
		y/s =	0.309			y/s =	0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	0.030	0.168			-0.135	0.184		
.025			4.942	-4.132	-2.849	2.629	5.057	-4.350
.050			4.336	-4.044	-5.198	4.535	4.038	-3.523
.100			4.891	-3.740	-2.632	2.094	4.269	-3.240
.200			4.658	-1.705	-2.807	2.241	4.154	-1.586
.260			6.246	-2.498	-2.970	2.492	6.165	-2.232
.320			5.548	-0.662	-0.108	0.133	5.243	-0.137
.380			5.511	1.855	0.545	12.473	4.399	2.165
.440	0.435		3.099	3.109	-2.268	6.334	2.936	3.030
.500			0.862	3.310	-4.179	-0.580	0.593	3.079
.560			-0.628	1.773	-4.363	-2.109	-0.616	1.656
.620			-0.450	1.292	-4.218	-3.020	-0.320	1.035
.700			1.660	1.564	-2.643	-4.398	1.333	1.561
.800			2.407	1.527	1.844	-1.944	2.013	1.590
.900	0.951	0.384	2.191	0.815	0.457	0.789	2.015	0.940
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.170	0.152			-0.127	0.114		
.005			4.404	-3.717	-4.114	3.066	4.415	-3.137
.050			4.428	-3.485	-3.406	2.585	4.371	-3.294
.100			3.895	-3.798	-4.890	4.281	4.226	-2.372
.200			2.406	-0.626	-0.634	0.384	2.439	-0.248
.260			3.175	-1.718	0.351	1.025	3.306	0.069
.320			2.175	1.337	-0.028	0.050	2.101	1.025
.380			1.817	2.018	-0.629	0.737	1.645	1.410
.440			1.064	0.000	-0.768	0.591	1.099	1.800
.500			0.289	2.702	-0.954	0.170	0.276	1.803
.560			-0.854	1.611	-0.884	-0.224	-0.680	1.507
.620			-1.084	0.894	-0.692	-0.398	-0.913	1.168
.700			0.599	1.425	-0.538	-0.509	0.164	1.071
.800	-0.107	-0.676	0.773	1.387	-0.854	0.045	0.432	0.931
.900	-0.317	0.606	0.804	1.051	-2.675	1.405	0.675	0.614

(cc-1) Tabulated data for test case 6E56 (point 634) Figure 9. Continued.

(cc-2) Plot of data for test case 6E56 (point 634) Figure 9. Continued.

	Point Nu	umber = 18	80 Mac	ch Numbeı	c = 0.802	Alpha	0 = 3.30	deg.
q,psf 108.0			fps Ri 5.4 .4041		_	req,Hz 15.12	k tl	neta,deg 0.500
x/c	ReCpu/t	-	0.309 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	0.588 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800		0.742 3.348 2.841 3.443 3.324 3.094 5.280 26.881 13.630 -10.291 -10.099 -8.875 -5.656 -1.915 1.014	5.758 5.653 5.260 3.985 3.658 2.802 2.561 2.168 1.743 1.033 0.243 0.841 0.972 0.519	-2.563 -2.517 -1.608 -0.454 0.249 0.596 1.003 1.287 1.304 1.073 1.237 1.088 0.972 0.612	-0.724 -3.849 -4.649 -4.507 -3.777 -3.625 -4.943 -22.578 -3.343 -2.249 -1.647 -0.950 0.451 2.180 0.961	2.939 2.949 2.795 2.988 4.943 44.698 -5.744 -7.221 -6.557 -5.999 -4.216 -2.195	6.186 5.607 5.131 4.109 3.875 3.073 2.499 2.185 1.589 0.859 0.078 0.555 0.685 0.430	-2.728 -2.334 -1.637 -0.367 0.407 0.922 1.149 1.474 1.315 1.489 1.488 1.132 0.919 0.677
x/c	ReCpu/t	y/s = ImCpu/t	0.809 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	0.951 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	-0.656 -3.475 -4.271 -4.666 -3.578 -9.721 -3.243 -2.862 -2.736 -2.156 -1.534 -1.193 -0.738 -0.136 0.178	0.640 2.223 2.679 3.124 3.553 23.012 1.451 -0.115 -1.178 -1.887 -2.283 -2.478 -2.049 -0.674 0.782	5.058 5.122 3.810 2.521 2.218 2.344 1.568 -1.349 0.520 0.016 -0.949 0.609 0.776 0.667	-2.087 -1.771 -1.081 0.056 0.751 1.152 1.187 0.000 1.735 1.490 1.624 1.017 0.293 -0.140	-0.411 -4.493 -3.623 -4.835 -1.659 -2.138 -1.356 -1.588 -1.489 -1.073 -1.039 -0.849 -1.375 -4.277	0.029	5.064 5.134 3.869 2.498 2.055 2.591 1.121 0.688 0.229 -0.042 -0.898 -0.197 -0.098	-1.833 -1.629 -0.461 0.342 1.015 0.480 1.451 1.449 1.588 1.145 1.466 1.012 0.796 0.686

(dd-1) Tabulated data for test case 6E57 (point 180) Figure 9. Continued.

(dd-2) Plot of data for test case 6E57 (point 180) Figure 9. Continued.

	Point Nu	umber = 18	34 Mac	ch Number	= 0.801	Alphad	o = 3.30,	deg.
q	,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
107.8		. 4 404	4.9 .4041	E+07	_	15.03	0.233	0.983
		y/s =					0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.478	0.588			-0.633	0.603		
.025	-4.589	3.201	5.880	-2.557	-3.795	2.608	6.098	-2.639
.050	-3.986	2.530	5.751	-2.560	-4.651	2.895	5.551	-2.288
.100	-4.414	3.045	5.392	-1.700	-4.409	3.053	5.114	-1.612
.200	-3.807	2.985	4.218	-0.563	-3.634	2.922	4.066	-0.341
.260	-3.594	2.879	4.011	0.295	-3.538	2.666	3.972	0.629
.320	-0.192	0.219	3.124	0.721	-3.996	4.864	2.954	0.903
.380	-5.116	10.084	2.721	1.044	-11.721	23.204	2.504	1.248
.440	-10.257	22.612	2.276	1.304	-7.373	4.589	1.942	1.490
.500	-13.639	10.278	1.799	1.390	-3.768	-4.523	1.409	1.554
.560	-4.764	-8.421	0.839	1.332	-2.509	-6.027	0.595	1.457
.620	-2.610	-9.740	0.158	1.272	-1.756	-6.045	-0.110	1.395
.700	-0.664	-8.075	0.818	1.062	-0.275	-4.772	0.531	1.103
.800	2.709	-3.357	0.940	0.784	2.018	-2.639	0.654	0.665
.900	0.964	1.169	0.518	0.705	0.969	0.926	0.514	0.557
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-0.615	0.536			-0.435	0.388		
.025	-3.447	2.290	4.996	-2.244	-4.542	2.740	5.026	-1.869
.050	-4.297	2.801	5.009	-1.917	-3.630	2.330	5.042	
.100	-4.580	3.112	3.733	-1.283	-4.971	4.231	3.816	-0.489
.200	-3.664	3.915	2.390	-0.012	-1.637	2.824	2.313	0.602
.260	-8.595	17.468	2.111	0.632	-2.484	4.354	1.935	0.952
.320	-3.357	1.755	2.151	0.922	-1.960	1.466	2.270	0.532
.380	-3.139	-0.225	1.302	1.212	-1.616	0.497	0.866	1.314
.440	-2.873	-1.285	-1.443	0.000	-1.688	0.091	0.460	1.383
.500	-2.252	-2.028	0.689	1.490	-1.544	-0.303	0.362	1.411
.560	-1.524	-2.346	-0.056	1.456	-1.237	-0.517	-0.425	1.333
.620	-1.153	-2.485	-0.891	1.430	-0.927	-0.606	-0.962	1.095
.700	-0.645	-1.997	0.432	1.014	-0.810	-0.571	-0.179	0.856
.800	0.150	-1.038	0.664	0.348	-1.454	0.091	-0.022	0.699
. 900	0.046	0.756	0.523	-0.044	-4.247	2.062	-0.100	0.515

(ee-1) Tabulated data for test case 6E58 (point 184) Figure 9. Continued.

(ee-2) Plot of data for test case 6E58 (point 184) Figure 9. Continued.

	Point N	umber = 18	89 Mac	ch Number	= 0.802	Alphao	= 3.29,	deg.
	q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta,deg
	108.2	424.3		404E+07	1.133	14.99	0.232	1.531
		y/s =	0.309			y/s =	0.588	
x/c	c ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000					-0.595	0.622		
.025			5.894	-2.587	-3.709	2.597	6.056	-2.684
.050			5.823	-2.654	-4.629	2.972	5.550	-2.345
.100			5.490	-1.752	-4.225	2.970	5.155	-1.695
.200			4.272	-0.524	-3.485	2.832	4.205	-0.449
.260			4.148	0.217	-3.461	2.743	4.138	0.670
.320			3.239	0.778	-4.868	8.640	3.068	0.973
.380			2.733	1.127	-8.402	16.004	2.541	1.278
. 440			2.250	1.341	-8.381	9.019	1.973	1.486
.500			1.738	1.422	-4.249	-2.802	1.310	1.683
.560			0.845	1.500	-2.830	-5.277	0.639	1.558
. 620			0.169	1.374	-2.035	-5.592	-0.136	1.528
.700			0.831	1.060	-0.456	-4.731	0.595	1.039
.800			0.927	0.633	1.932	-2.238	0.697	0.505
. 900	1.078	1.245	0.642	0.574	0.834	1.152	0.571	0.424
		_	0.809			y/s =		
x/c	c ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	0 -0.615	0.548			-0.498	0.453		
.025			4.812	-2.270	-4.724	2.963	4.825	-1.842
.050	0 -4.259	2.787	4.804	-1.979	-3.524	2.404	4.829	-1.607
.100	0 -4.277	2.895	3.546	-1.405	-5.007	4.337	3.640	-0.447
.200		3.752	2.245	-0.006	-1.712	2.636	2.178	0.547
.260	0 -6.323		1.972	0.710	-2.596	3.433	1.774	0.967
.320	0 -3.282	3.939	1.690	0.986	-2.056	1.300	1.712	0.657
.380	0 -2.956	0.474	1.159	1.344	-1.787	0.409	0.787	1.184
. 440	0 -2.822	-0.746	-1.172	0.000	-1.833	-0.054	0.426	1.159
.500	0 -2.346	-1.673	0.553	1.640	-1.532	-0.354	0.097	1.231
.560	0 -1.733	-2.014	-0.103	1.566	-1.344	-0.570	-0.416	1.163
. 620			-0.912	1.378	-0.917	-0.770	-0.986	1.025
.700			0.397	1.066	-0.886	-0.627	-0.202	0.759
.800			0.528	0.406	-1.421	-0.045	-0.026	0.561
.900			0.405	-0.117	-4.005	2.032	-0.007	0.412

(ff-1) Tabulated data for test case 6E59 (point 189) Figure 9. Continued.

(ff-2) Plot of data for test case 6E59 (point 189) Figure 9. Continued.

	Point Nu	umber = 6	13 Mac	ch Numbeı	s = 0.402	Alpha	0 = 11.99,	deg.
q,psf 54.4			fps Rr 2.4 .4021		gamma fi 1.132	req,Hz 5.00	k th	neta,deg 1.004
x/c	ReCpu/t	y/s = ImCpu/t	0.309 ReCpl/t	ImCpl/t	ReCpu/t	y/s = ImCpu/t	= 0.588 ReCpl/t	ImCpl/t
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700	-7.048 -6.113 -3.432 -2.449 -2.111 -1.619 -1.217 -0.997 -0.657 -0.264 0.236 0.973	-0.024 -14.631 -2.128 2.225 1.249 0.158 -0.059 -0.341 -0.628 -0.763 -0.863 -1.052 -1.523 -1.679	2.054 2.796 3.023 2.379 2.012 1.762 1.564 1.367 1.217 1.125 0.853 0.466 0.238	0.036 0.024 0.100 0.292 0.417 0.479 0.542 0.577 0.628 0.676 0.758 0.718	-13.949 -25.675 -7.906 -5.237 -2.737 -2.383 -1.797 -1.471 -1.223 -1.112 -0.830 -0.452 0.028 0.597	0.951 -1.795 0.650 1.161 0.119 -0.255 -0.563 -0.624 -0.618 -0.584 -0.605 -0.727 -0.798 -0.905	2.452 3.195 3.025 2.385 1.604 1.780 1.578 1.441 1.197 0.892 0.766 0.451 0.302	-0.086 -0.089 0.021 0.238 0.409 0.408 0.498 0.545 0.538 0.382 0.596 0.589 0.550
.900 x/c	1.355 ReCpu/t	-1.137 $y/s = ImCpu/t$	0.133 0.809 ReCpl/t	0.672 ImCpl/t	0.978 ReCpu/t	_	0.172 = 0.951 ReCpl/t	0.484 ImCpl/t
.000 .025 .050 .100 .200 .260 .320 .380 .440 .500 .560 .620 .700 .800	-13.478 -12.293 -7.515 -4.109 -2.036 -1.863 -1.363 -1.162 -0.926 -0.778 -0.713 -0.727 -0.608 -0.500 -0.282	1.679 0.903 0.525 0.014 -0.272 -0.278 -0.422 -0.474 -0.445 -0.474 -0.452 -0.426 -0.276 -0.044	3.016 3.190 2.397 1.534 1.183 0.723 0.789 -0.690 0.450 0.378 0.303 0.277 0.232 0.196	-0.218 -0.197 -0.026 0.208 0.298 0.375 0.000 0.522 0.545 0.521 0.528 0.488 0.375	-9.101 -14.201 -5.224 -2.738 -1.531 -1.240 -1.414 -0.671 -0.456 -1.181 -1.026 -1.407 -1.936 -3.024 -4.159	1.263 1.870 0.521 0.067 -0.172 -0.194 -0.316 -0.343 -0.204 -0.351 -0.235 -0.122 -0.069 0.240	3.007 3.183 2.396 1.532 1.168 0.668 0.728 0.628 0.327 0.248 -0.045 -0.298 -0.604	-0.327 -0.284 -0.050 0.169 0.268 0.322 0.329 0.395 0.396 0.383 0.397 0.419 0.431

(gg-1) Tabulated data for test case 6E60 (point 613) Figure 9. Continued.

(gg-2) Plot of data for test case 6E60 (point 613) Figure 9. Continued.

	Point Nu	ımber = 61	4 Mac	ch Number	c = 0.401	Alpha	o = 12.00,	deg.
q	,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k k	theta,deg
54.2			2.1 .401		1.132 1	10.02		0.998
		y/s =					0.588	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
	44.005				40.600			
.000	-14.035	3.266	0 116	0 105	-13.688	3.236	0 445	0 244
.025	-24.314	-2.641	2.116		-30.145	2.584	2.445	
.050	-8.252	0.505	2.861	-0.235	-7.726	1.755	3.194	
.100	-5.063	1.030	3.100	-0.016	-4.495	1.400	3.041	-0.101
.200	-2.870	0.025	2.492	0.413	-2.794	-0.660	2.442	0.361
.260	-2.175	-0.736	2.092	0.620	-2.328	-0.628	1.741	0.746
.320	-2.059	-0.878	1.780	0.800	-1.881	-0.987	1.854	0.775
.380	-1.808	-1.002	1.543		-1.472	-1.000	1.616	0.874
.440	-1.264	-1.170	1.430	0.961	-1.330	-1.002	1.430	0.961
.500	-1.049	-1.141	1.279		-1.135	-0.969	1.255	1.005
.560	-0.819	-1.316	1.121	1.152	-0.852	-0.933	0.990	1.193
.620	-0.465	-1.358	0.915	1.251	-0.520	-1.151	0.867	1.071
.700	-0.017	-1.607	0.545	1.203	-0.121	-1.257	0.521	1.087
.800	0.478	-1.833	0.340	1.157	0.245	-1.239	0.346	1.034
.900	0.758	-1.610	0.208	1.071	0.584	-1.054	0.221	0.892
		y/s =	0.809			y/s =	0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-13.141	3.743			-8.761	2.562		
.025	-11.921	2.972	2.877	-0.544	-13.707	3.853	2.845	-0.693
.050	-7.383	1.435	3.066	-0.518	-5.116	1.059	3.047	-0.570
.100	-4.127	0.238	2.351	-0.159	-2.696	0.122	2.349	-0.148
.200	-2.126	-0.491	1.476	0.331	-1.572	-0.334	1.462	0.300
.260	-1.827	-0.500	1.219	0.527	-1.251	-0.423	1.174	0.467
.320	-1.381	-0.704	0.914	0.606	-1.383	-0.384	0.751	0.623
.380	-1.260	-0.800	0.940	0.693	-0.689	-0.691	0.785	0.673
.440	-0.936	-0.848	-0.726	0.000	-0.479	-0.716	0.613	0.684
.500	-0.795	-0.829	0.665	0.911	-1.140	-0.393	0.416	0.819
.560	-0.694	-0.842	0.503	0.986	-1.004	-0.557	0.284	0.752
.620	-0.595	-0.773	0.398	0.972	-1.304	-0.446	0.020	0.746
.700	-0.528	-0.680	0.258	0.979	-1.713	-0.180	-0.232	0.769
.800	-0.358	-0.449	0.154	0.907	-2.870	-0.070	-0.527	0.821
.900	-0.165	-0.048	0.097	0.799	-3.756	0.501	-0.398	0.764

(hh-1) Tabulated data for test case 6E61 (point 614) Figure 9. Continued.

(hh-2) Plot of data for test case 6E61 (point 614) Figure 9. Continued.

	Point N	umber = 6	15 Mac	ch Number	= 0.401	Alphac	o = 12.01,	deg.
	q,psf	H,psf	V,fps	Rn	gamma	freq,Hz	k	theta, deg
	54.2	652.8		401E+07	1.132	14.99	0.466	1.012
			,				,	0. 500
/ -	D = G = /+	T C /+-	y/s =		D - G/+	T G / b	y/s =	
x/c	c ReCpu/t	ImCpu/t	ReCp1/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpI/t
.000	-13.887	5.527			-13.375	5.871		
.025	-26.214	2.432	2.177	-0.368	-26.931	9.431	2.478	-0.590
.050		1.474	2.962	-0.480	-7.371	1.540	3.222	-0.632
.100	-5.128	0.503	3.225	-0.113	-4.921	0.223	3.107	-0.212
.200	-2.989		2.608	0.526	-2.995	-0.853	2.561	0.475
.260	-2.542	-1.245	2.264	0.896	-2.462	-1.010	1.871	1.063
.320	-2.051	-1.312	1.943	1.163	-1.911	-1.318	1.904	1.117
.380	-1.747	-1.350	1.671	1.264	-1.530	-1.431	1.718	1.295
. 440	-1.419	-1.691	1.527	1.351	-1.348	-1.529	1.488	1.393
.500	-1.156	-1.609	1.359	1.519	-1.064	-1.396	1.295	1.500
.560			1.215	1.636	-0.739	-1.402	1.122	1.633
.620		-1.776	0.939	1.680	-0.462	-1.457	0.853	1.598
.700			0.705	1.669	-0.142	-1.693	0.592	1.592
.800			0.514	1.619	0.138	-1.579	0.450	1.579
. 900	0.210	-1.514	0.424	1.528	0.297	-1.093	0.275	1.273
		v/s =	0.809			y/s =	0.951	
x/c	c ReCpu/t	ImCpu/t		ImCpl/t	ReCpu/t	4 '	ReCpl/t	ImCpl/t
/	1,001,0		1100[2]		1,001,00	op u, -	1100[12]	
.000					-8.794	3.769		
.025			3.055	-0.802	-13.878	5.551	3.003	-1.017
.050			3.257	-0.778	-5.209	1.553	3.231	-0.848
.100			2.539	-0.255	-2.822	0.217	2.538	-0.226
.200			1.722	0.462	-1.691	-0.469	1.705	0.416
.260			1.369	0.792	-1.284	-0.596	1.289	0.711
.320			1.093	0.952	-1.457	-0.624	0.827	0.931
. 380			1.061	1.082	-0.775	-1.047	0.870	0.969
. 440			-0.894	0.000	-0.479	-1.026	0.656	1.059
.500			0.776	1.409	-1.099	-0.698	0.561	1.175
.560			0.558	1.429	-0.949	-0.891	0.291	1.094
. 620			0.430	1.467	-1.294	-0.702	-0.032	1.132
.700			0.303	1.418	-1.568	-0.486	-0.210	1.113
.800			0.182	1.344	-2.641	-0.324	-0.469	1.154
. 900	-0.021	-0.111	0.136	1.180	-3.376	0.373	-0.340	1.080

(ii-1) Tabulated data for test case 6E62 (point 615) Figure 9. Continued.

(ii-2) Plot of data for test case 6E62 (point 615) Figure 9. Continued.

	Point Nu	ımber = 61	l6 Mac	ch Numbeı	c = 0.401	Alpha	o = 12.02,	deg.
			V,fps				k	theta,deg
54.3	3 652.	.7 202	2.2 .4021	E+07	1.132	19.99	0.621	1.055
		11/0 -	0.309			/o -	0.588	
x/c	PeCnu/t			TmCnl/t	ReCpu/t			ImCnl/t
Α/ C	Recpu/ c	Incpu/c	Recpi/c	IMCPI/C	Recpu, c	тшери, с	Recp1/c	IMCPI/C
.000	-12.855	7.602			-12.556	7.574		
.025	-25.030	5.779	2.307	-0.622	-27.955	11.125	2.625	-0.883
.050	-8.539	2.336	3.050	-0.789	-7.880	2.962	3.349	-0.929
.100	-5.517	0.502	3.354	-0.299	-4.962	0.583	3.291	-0.381
.200	-3.524	-1.104	2.824	0.559	-3.166	-0.974	2.825	0.549
.260	-2.803	-1.765	2.423	1.099	-2.587	-1.381	2.055	1.220
.320	-2.274	-1.764	2.126	1.413	-2.052	-1.778	2.184	1.424
.380	-1.852	-1.911	1.869		-1.632	-1.891	1.914	1.606
.440	-1.558	-2.090	1.660	1.719	-1.367	-1.960	1.639	1.739
.500	-1.159	-2.152	1.541	1.966	-0.983	-1.937	1.481	1.875
.560	-0.899	-2.214	1.294	2.009	-0.641	-1.904	1.335	2.047
.620	-0.589	-2.260	1.036	2.153	-0.359		0.971	2.064
.700	-0.482	-2.285	0.805	2.076	-0.223		0.736	2.044
.800	-0.235	-2.160	0.596	1.976	0.024	-1.738	0.571	1.927
.900	-0.081	-1.192	0.465	1.787	0.146	-0.967	0.433	1.627
			0.809				0.951	
x/c	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t	ReCpu/t	ImCpu/t	ReCpl/t	ImCpl/t
.000	-12.027	7.603			-8.354	5.384		
.025	-10.539	5.027	3.080	-1.160	-13.430	7.911	2.962	-1.483
.050	-7.433	2.913	3.308	-1.135	-5.249	2.228	3.243	-1.251
.100	-4.374	0.467	2.637	-0.437	-2.916	0.312	2.633	-0.389
.200	-2.516	-1.022	1.862	0.535	-1.838	-0.665	1.833	0.505
.260	-2.063	-1.206	1.525	1.037	-1.467	-0.826	1.443	0.867
.320	-1.550	-1.599	1.267	1.292	-1.452	-0.852	0.998	1.148
.380	-1.379	-1.679	1.210	1.460	-0.870	-1.442	0.987	1.227
.440	-0.974	-1.757	1.263	0.000	-0.521	-1.371	0.854	1.388
.500	-0.801	-1.843	0.799	1.822	-1.040	-1.033	0.494	1.381
.560	-0.575	-1.812	0.667	1.855	-0.913	-1.216	0.345	1.481
.620	-0.426	-1.685	0.528	1.885	-1.182	-0.957	0.003	1.521
.700	-0.327	-1.541	0.399	1.934	-1.422	-0.678	-0.130	1.461
.800	-0.042	-1.140	0.265	1.767	-2.390	-0.512	-0.373	1.530
.900	0.235	-0.365	0.170	1.563	-2.860	0.326	-0.308	1.322

(jj-1) Tabulated data for test case 6E63 (point 616) Figure 9. Continued.

(jj-2) Plot of data for test case 6E63 (point 616) Figure 9. Concluded.

REPOR	T DOCUMENTATION PAG	ìΕ		Form Approved OMB No. 0704-0188					
sources, gathering and maintaining the dat aspect of this collection of information, inclu	of information is estimated to average 1 hour p ta needed, and completing and reviewing the uding suggestions for reducing this burden, to Suite 1204, Arlington, VA 22202-4302, and to	collection of information. Send co Washington Headquarters Service	mments rega ces, Directorat	structions, searching existing data rding this burden estimate or any other te for Information Operations and					
1. AGENCY USE ONLY (Leave blan	2. REPORT DATE April 1999	3. REPORT TY Technical		ATES COVERED ndum					
4. TITLE AND SUBTITLE Computational Test Case Pitching Oscillations	es For a Rectangular Supercriti	ical Wing Undergoing		NG NUMBERS 322-31-81-03					
6. AUTHOR(S) Robert M. Bennett and (Charlotte E. Walker								
7. PERFORMING ORGANIZATION				DRMING ORGANIZATION RT NUMBER					
NASA Langley Research Hampton, VA 23681-219			L-1783	30					
9. SPONSORING/MONITORING AG	GENCY NAME(S) AND ADDRESS(ES)			ISORING/MONITORING NCY REPORT NUMBER					
National Aeronautics and Space Administration Washington, DC 20546-0001 NASA/TM-1999-209130									
<u> </u>	ch Center, Hampton, VA gineering Education Student, U	University of Tennesse	e, Knoxv	ville, TN					
12a. DISTRIBUTION/AVAILABILITY Unclassified-Unlimited	STATEMENT		12b. DIST	FRIBUTION CODE					
Subject Category 02 Availability: NASA CAS	Distribution: Standard SI (301) 621-0390								
13. ABSTRACT (Maximum 200 word	as)								
panel aspect ratio two v Langley Transonic Dyna pitching oscillation frequ plots of the measured pr	Proposed computational test cases have been selected from the data set for a rectangular wing of panel aspect ratio two with a twelve-percent-thick supercritical airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, and Mach numbers from subsonic to transonic with strong shocks. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.								
14. SUBJECT TERMS Unsteady aerodynamics;	Transonic flow; Computation	al fluid dynamics		15. NUMBER OF PAGES					
				16. PRICE CODE A07					
17. SECURITY CLASSIFICATION OF REPORT Linelassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFIC OF ABSTRACT Unclassified	ATION	20. LIMITATION OF ABSTRACT I II					