Стохастическая аппроксимация. Табличные методы обучения с подкреплением

Теория игр, 2022

Содержание

1 Стохастическая аппроксимация

Q-learning

Содержание

① Стохастическая аппроксимация

2 Q-learning

Ограничения методов динамического программирования

уравнение оптимальности Беллмана

$$v*=\mathit{T}(v^*)=\lim_{k o\infty}\mathit{T}^k(v)$$
, где $\mathit{T}:\mathcal{V} o\mathcal{V}$

$$T(v)(s) = \max_{a} \sum_{(s',r)} p(s',r \mid s,a) \left(r + \gamma v(s')\right)$$

- вероятностное распределение $p(s',r|s,a) = \Pr[S_{t+1}=s',R_{t+1}=r|S_t=s,A_t=a]$ перехода на шаге t в состояние s' и получения награждения r при условии нахождения в состоянии s и выполнении действия a должно быть известно
- на каждой итерации необходимо вести расчеты для множества всех возможных наборов $\{(s,a,s',r)\}_{s'\in\mathcal{S},r}$, даже если их вероятность встретить на практике крайне мала

Архитектура задачи последовательного принятия решения

Рис.: Взаимодействие агента и среды

Отличие обучения с подкреплением от динамического программирования

При наличии среды или ее имитационной модели доступна только возможность взаимодействия с ней и соответственно на каждом шаге t сэмплы, генерируемые МППР $(s_t, a_t, s_{t+1}, r_{t+1}) \sim p(s_{t+1}, r_{t+1} \mid s_t, a_t)$

Теория игр

Стохастическая оптимизация

Мотивация: итеративный метод Ньютона для нахождения корня x^* детерминированной функции $f(x^*)=0$:

$$x_{k+1} = x_k - (f'(x_k))^{-1} f(x_k)$$

Постановка задачи

Управляемое воздействие $x \in \mathcal{X}$

Случайная величина $\xi \sim \mathbb{P}_{\xi}$ (добавляется стохастичность)

На выходе случайная функция, выдаваемая $f(x,\xi)$

Необходимое найти такое значение воздействия x^* , что

$$\mathbb{E}_{\xi \sim \mathbb{P}_{\xi}}[f(x^*, \xi)] = 0$$

Примеры: Вазан, Стохастическая аппроксимация

Методы решения

Мотивация: итеративный метод Ньютона: $x_{k+1} = x_k - \left(f'(x_k)\right)^{-1} f(x_k)$

Постановка задачи

Управляемое воздействие $x \in \mathcal{X}$

Случайная величина $\xi \sim \mathbb{P}_{\xi}$ (добавляется стохастичность)

На выходе случайная функция, выдаваемая $f(x,\xi)$

Найти $x^*: \mathbb{E}_{\xi \sim \mathbb{P}_{\xi}}[f(x^*, \xi)] = 0$:

Метод Роббинса-Монро

Условия: $\sum_{k\geq 0}^{\infty} \alpha_k = +\infty, \quad \sum_{k\geq 0}^{\infty} \alpha_k^2 < +\infty$

Итерация:

Сэмплирование на основе управляющего воздействия $x_k\mapsto f(x_k,\xi_k)$

Обновление $x_{k+1} \leftarrow x_k - \frac{\alpha_k}{\alpha_k} f(x_k, \frac{\xi_k}{\xi_k})$

Поиск стационарной точки (fixed point) случайной функции

Постановка задачи

Управляемое воздействие $x \in \mathcal{X}$

Случайная величина $\xi \sim \mathbb{P}_{\xi}$ (добавляется стохастичность)

На выходе случайная функция, выдаваемая $f(x,\xi)$

Найти $x^*: \mathbb{E}_{\xi \sim \mathbb{P}_{\xi}}[f(x^*, \xi)] = x^*$:

Сведение к задаче стохастической оптимизации

Управляемое воздействие $x \in \mathcal{X}$

Случайная величина $\xi \sim \mathbb{P}_{\xi}$ (добавляется стохастичность)

На выходе случайная функция, выдаваемая $g(x,\xi)=f(x,\xi)-x$

Найти $x^*: \mathbb{E}_{\xi \sim \mathbb{P}_{\varepsilon}}[g(x^*, \xi)] = 0$:

Содержание

1 Стохастическая аппроксимация

Q-learning

Задача оптимизации в ДП

Постановка задачи

Нахождение оптимальной стратегии $\pi^*: \mathcal{S} o \mathcal{A}$

достигается решением

Постановка задачи

Нахождение оптимальной функции ценности $v^*:\mathcal{S} o\mathbb{R}$

Оптимальная стратегия

$$\pi^*_{t+1}(s) = \operatorname*{argmax}_{a} q^\pi(s, a) = \operatorname*{argmax}_{a} \sum_{(s', r)} p(s', r \mid s, a) \bigg(r + v^*_t(s') \bigg)$$

Не подходит для RL, так как неизвестны $p(s',r\mid s,a)$, нужно знать непосредственно $q^{\pi}(s,a)$ для любого s и a

Q функция

Для любого $s \in \mathcal{S}$

$$v^*(s) = \max_a q^*(s, a)$$

$$q^*(s, a) = \underset{(s',r) \sim p(|s,a)}{\mathbb{E}} [r + v^*(s')]$$

Уравнение оптимальности

$$q^*(s,a) = \underset{(s',r) \sim p(|s,a)}{\mathbb{E}} [r + \max_{a'} q^*(s',a')]$$

 $q^* = \mathbb{F}q^*$

Оптимальная стратегия находится тогда

$$\pi^*_{t+1}(s) = \operatorname*{argmax}_{a} q^*_{t+1}(s,a)$$

Q функция

Уравнение оптимальности

$$\mathbb{F}q^* = \underset{(s',r)\sim p(|s,a)}{\mathbb{E}}[r + \max_{a'} q^*(s',a')]$$
$$= \underset{(s',r)\sim p(|s,a)}{\mathbb{E}}[r] + \underset{(s',r)\sim p(|s,a)}{\mathbb{E}}[\max_{a'} q^*(s',a')]$$

Уравнение стохастической аппроксимации при сэмплировании

$$\mathbb{F}(q,\xi_k) = r + extit{max}_{a'} q(s',a') = \mathbb{F} q + \xi$$
 , где

$$\xi_k = \left(r - \underset{(s',r) \sim p(|s,a)}{\mathbb{E}}[r]\right) + \left(\max_{a'}q(s',a') - \underset{(s',r) \sim p(|s,a)}{\mathbb{E}}[\max_{a'}q(s',a')]\right)$$

$$\mathbb{E}[\xi_k \mid s_0, a_o, \dots, s_k, a_k] = 0$$

Для
$$q^*$$
 $\mathbb{E}_{\xi \sim \mathbb{P}_{\varepsilon}}[F(q^*,\xi)] = \mathbb{E}_{\xi \sim \mathbb{P}_{\varepsilon}}[\mathbb{F}q^* + \xi] = \mathbb{F}q^* = q^*$

Переход к СА в отношении оператора на векторном пространстве

Если $|\mathcal{S}|=d$, $|\mathcal{A}|=n$, то q-функция $q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}$ может быть представлена таблицей с d строк и n столбцов, которая раскладывается в одномерный массив (вектор) размерностью $|q|=d\times n$, индексируемый $q_{(s,a)}$.

Уравнение обновления для q-функции

Для всех
$$(s,a)$$
 $q_{(s,a)}^{k+1} \leftarrow q_{(s,a)}^k + \alpha_{(s,a)}^k \left(r_{(s,a)} + \gamma \max_{a'} q_{(s',a')}^k - q_{(s,a)}^k \right)$ где $s', r \sim p(s', r \mid s, a)$, $\alpha_k(s,a) \in [0,1]$ — случайные величины, с вероятностью один удовлетворяющие для каждой пары s,a условиям Роббинса-Монро $\sum_{k\geq 0}^{\infty} \alpha_{(s,a)}^k = +\infty$ $\sum_{k\geq 0}^{\infty} (\alpha_{(s,a)}^k)^2 < +\infty$ для $s \neq S^k$, $a \neq A^k$ $\alpha_{(s,a)}^k = 0$

Tsitsiklis, Async Stochastic Approx and Q-Learning

Алгоритм

Algorithm 1 Q-learning

Гиперпараметры: α — параметр экспоненциального сглаживания, ϵ — параметр исследований

Инициализация q(s,a) произвольно для всех $s\in\mathcal{S}, a\in\mathcal{A}$ Наблюдение s_0

На *k*-ом шаге:

- $oldsymbol{0}$ с вероятностью ϵ сэмплируется $a_k \sim \mathsf{Uniform}(\mathcal{A})$, иначе $a_k = rgmax \, q(s_k, a_k)$
- Обновление

$$q(s_k, a_k) \leftarrow q(s_k, a_k) + \alpha \left(r_k + \gamma \max_{a_{k+1}} q(s_{k+1}, a_{k+1}) - q(s_k, a_k)\right)$$

