

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

- Actualizamos el calendario del ramo para que lo revisen.
- Está disponible el Caso 1: Morrison Co., que se entrega el próximo miércoles.
- La próxima semana tendremos control el día jueves nuevamente.

Ejemplo: Fabrica de sillas

- Tres operaciones principales:
 - Cortar 12 minutos por silla (0.2 horas)
 - Pulir y ensamblar 30 minutos por silla (0.5 horas)
 - Barnizar 24 minutos por silla (0.4 horas)
- Todas las sillas pasan por cada operación.
- Hay un operario por operación.
- Cada operario tiene 8 horas de trabajo al día.

Proceso: fabricación de sillas

• Esquema:

Operador	Actividad	Consumo (horas/silla)	Disponibilidad (horas por día)	Capacidad (sillas por día)	Utilización
1	Corte	0.2	8	40	40%
2	Ensamblado	0.5	8	16	100%
3	Barnizado	0.4	8	20	80.1
	Sistema			16	

Proceso: fabricación de sillas

Operador	Actividad	Consumo (horas/silla)	Disponibilidad (horas por día)	Capacidad (sillas por día)	Utilización
1	Corte	0.2	8	40	50%
2	Ensamblado	0.5	16	32	62.5%
3	Barnizado	0.4	8	20	100.1
	Sistema			20	

Proceso: fabricación de sillas

• Mejora de la utilización:

Operador	Actividad	Consumo (horas/silla)	Disponibilidad (horas por día)	Capacidad (sillas por día)	Utilización
1	Corte + Barnizado	0.2 + 0.4 = 0.6	8	13.3	100.1
2	Ensamblado	0.5	8	16	831,
	Sistema			13.3	

¿Cuál de las dos opciones es mejor?

- Supongamos que cada trabajador recibe \$10,000 por día.
- ¿Cuánto es el costo de fabricar una silla en cada escenario?

Tiempos de flujo y ciclo

• ¿Cuánto se demora en producir la primera silla?

• ¿Cuánto se demora en producir 2 sillas?

• ¿Cuánto se demora en 22 sillas?

Análisis de tiempo

	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126
Cortar	1	1	2	2	3	3															
Pulir			1	1	1	1	1	2	2	2	2	2	3	3	3	3	3				
Barnizar								1	1	1	1		2	2	2	2		3	3	3	3

- El primer trabajo termina después de 66) 30
- El segundo trabajo termina después de 96
- El tercer trabajo termina después de
- 22 sillas demoran: $(66 + 2) \cdot 30 =)$ TF + (m-1) TC + (m-1)

• ¿Capacidad del proceso? ¿Tiempo de Flujo?

Mejoras de capacidad

- ¿Cómo aumentamos la capacidad de un proceso?
 - Paralelizar actividades
 - Cambiar secuencia de actividades
 - Redistribuir la carga / Especialización

Cop = 0.55

El diseño de los procesos es fundamental

- McDonalds "Made for You"
- Proceso Original

Proceso Nuevo – Jack Greenberg (1998)

Ejemplo 1

• Identificar: capacidad de la línea, cuello(s) de botella, utilización de cada proceso 1 u/h 2 u/h 5 u/h 9 u/h 9 u/h 8 u/h 3 u/h 7 u/h 3 6 u/h 4 u/h 9 u/h

Ejemplo 2

• Identificar: capacidad de la línea, cuello(s) de botella, utilización de cada proceso

• ¿Cómo encontramos la capacidad de la línea?

Flujo Máximo

- ¿Cuál es el máximo flujo que va desde el origen s al destino t?
- Existen herramientas que permiten determinar esto en fracciones de segundo.

Modelo

• El siguiente es el modelo a usar

Flujogramas

• Utilizado para modelar procesos.

http://www.businessballs.com/dtiresources/TQM_implementation_blueprint.pdf

Diagramas Lean y VSM

- El mapa de flujo de valor (VSM) es la técnica utilizada por Lean para analizar y mejorar los flujos e información.
- Se enfoca en: tiempo de proceso, takt time, tiempo de ciclo y distingue entre actividades que generan y no generan valor.
- Los procesos se representan de forma agregada de acuerdo al foco de atención.

