

CM12002 Computer Systems Architectures

Fabio Nemetz

Second Generation – transistors (1950s...)

IBM 7094 (1962)

Many consider transistors to be one of the greatest inventions of the 20th century.

Transistors: small devices used to transfer electronic signals across a resistor.

- transistors were smaller than vacuum tubes
- they needed no warm up time
- consumed less energy
- generated much less heat
- faster and more reliable

Third generation – Integrated Circuits (chips) (1961)

- a set of electronic circuits on one small plate ("chip") of semiconductor material, normally silicon
- 10s to 100s of transistors on each chip

("Silicon Valley" – started with companies like Fairchild Semiconductor and Intel)

Fourth Generation - Large Scale Integration (LSI) (70s) (tens of thousands of transistors per chip)

Intel 4004 (1971) – 1st microprocessor

TI TMS 1000 (1971) - 1st microcontroller

January 1975

January 1975

Intel 8080 (1974)

Altair 8800 - Intel 8080

- Bill Gates and Paul Allen: founded Microsoft and wrote a Basic language interpreter for the Altair
- Steve Wozniak designed and built a better computer, and showed it to Steve Jobs. They founded **Apple**.

Recommended Film: Pirates of Silicon Valley (1999)

Fifth Generation - Very Large Scale Integration (VLSI) (mid 80s) (several billion transistors as of 2009 – started to be called Ultra Large Scale Integration (ULSI) – but VLSI is still preferred instead of ULSI)

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit	900
1995	Very large-scale integrated circuit	2,400,000
2020	Ultra large-scale integrated circuit	500,000,000

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over time. Source: Computer Museum, Boston, with 2020 extrapolated by the authors. See Section 1.13.

From Computer organization and design: the hardware/software interface
David A. Patterson and Hennessy John L. 2021

Introduction to the x86 Architecture

Chip	Date	MHz	Trans.	Memory	Notes
4004	4/1971	0.108	2300	640	First microprocessor on a chip
8008	4/1972	0.108	3500	16 KB	First 8-bit microprocessor
8080	4/1974	2	6000	64 KB	First general-purpose CPU on a chip
8086	6/1978	5–10	29,000	1 MB	First 16-bit CPU on a chip
8088	6/1979	5–8	29,000	1 MB	Used in IBM PC
80286	2/1982	8–12	134,000	16 MB	Memory protection present
80386	10/1985	16–33	275,000	4 GB	First 32-bit CPU
80486	4/1989	25–100	1.2M	4 GB	Built-in 8-KB cache memory
Pentium	3/1993	60-233	3.1M	4 GB	Two pipelines; later models had MMX
Pentium Pro	3/1995	150-200	5.5M	4 GB	Two levels of cache built in
Pentium II	5/1997	233-450	7.5M	4 GB	Pentium Pro plus MMX instructions
Pentium III	2/1999	650-1400	9.5M	4 GB	SSE Instructions for 3D graphics
Pentium 4	11/2000	1300-3800	42M	4 GB	Hyperthreading; more SSE instructions
Core Duo	1/2006	1600-3200	152M	2 GB	Dual cores on a single die
Core	7/2006	1200-3200	410M	64 GB	64-bit quad core architecture
Core i7	1/2011	1100-3300	1160M	24 GB	Integrated graphics processor

Source: Tanembaum's Structured Computer Organization

Figure 1-11. Key members of the Intel CPU family. Clock speeds are measured in MHz (megahertz), where 1 MHz is 1 million cycles/sec.

The present

The main hardware developments since the 70s have been in the *scale* of processors: billions of transistors per chip (VLSI &ULSI - very/ultra large scale integration), and consequently engineered on smaller and smaller scale.

These have required/enabled many software, conceptual and connectivity developments:

- The rise of the operating system.
- Networking, distributed computing.
- Mobile and ubiquitous computing.

The future

- Moore's Law (1965)*
 - computing power (relative to component cost) doubles over a fixed time (about 2 years).
- This has been sustained for 40 years, but the *physical properties* of silicon mean that it <u>cannot continue indefinitely</u>: it <u>already slowed down.</u>
- Really?

*(Gordon Moore co-founded Intel in 1968)

Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Data source: Wikipedia (wikipedia.org/wiki/Transistor count)

Year in which the microchip was first introduced

The future

 The 2010 update to the International Technology Roadmap for Semiconductors predicted that after 2013 transistor counts and densities were to double only every three years (approx. tenfold increase in the next 10 years)

Really?

Huawei's Kirin 980 (7 nanometre):

"The advent of 10nm and 7nm chips means you are unlikely to see anyone suggesting again that we are reaching our limits. Physicists always come up with new physics.

Moore's law states that each year you would have the size reducing by half but resistor count and performance improvements, etc, increasing by double, so we are actually beating that, as we are going from 10nm to 7nm in the space of a couple months." (Akhram Mohamed, CTO of Huawei, 2018)

Same year (later on)

17 Sep 2018 | 20:09 GMT

David Patterson Says It's Time for New Computer Architectures and Software Languages

Moore's Law is over, ushering in a golden age for computer architecture, says RISC pioneer

By Tekla S. Perry

"there's no better time than now to be a computer architect."

That's because Moore's Law really is over, he says: "We are now a factor of 15 behind where we should be if Moore's Law were still operative. We are in the post-Moore's Law era."

This means, Patterson told engineers attending the 2018 @Scale Conference held in San Jose last week, that "we're at the end of the performance scaling that we are used to. When performance doubled every 18 months, people would throw out their desktop computers that were working fine because a friend's new computer was so much faster."

https://goo.gl/4n699j

"Calling the end of Moore's Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, "<u>The number of people predicting the death of Moore's Law doubles every two years</u>." To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.

Source:

https://singularityhub.com/2020/08/23/moores-law-lives-intel-says-chips-will-pack-50-times-more-transistors/

Moore's Law vs actual transistor count

What is a computer? Two kinds of answers

- A computer is a "black box" for processing data
 - all I need to know is: what outputs I will get from a given input (functional)

- A computer is a device with internal structure :
 - different parts which interact to turn input into output. To understand what a computer is, I
 need to know what these parts are, and how they work.

Why study computer architecture if you don't want to be a hardware designer?

- Learning to program: having a mental model of the implementation can be useful when solving computational problems
- Efficiency and performance: get the most out of your machine.
- Avoiding errors and failures: understand what could go wrong.
- Recovering from errors: identify the problem, and know how to fix it.

A more subtle approach

- •Computers are complex and varied, but they are designed according to some common, basic principles.
- •To describe how a computer works, we need to find the right *level of abstraction*. We can distinguish several of these, corresponding to different answers to the question: What is a computer?
- 1. A black box.
- 2. A collection of parts (memory, control, data processing, etc.) each of which is a black box. (ISA: Instruction Set Architecture)
- 3. A collection of parts, each composed of electronic circuits (storage cells, circuits for control and arithmetic, etc.) each of which is a black box. (Microarchitecture)
- 4. A collection of parts, each composed of electronic circuits, which are made of electronic components (logic gates, wires, etc.) (Electronics)

In this course we shall study 2-4 (in that order).

Some things you can do (if you're curious enough)

- Learn more about:

Charles Babbage

Ada Lovelace

Alan Turing

John von Neumann

Previous winners of <u>Turing awards</u> and <u>von Neuman medals</u>

Interested in the fascinating history of Computers?

A History of **Modern** Computing (History of Computing) – 2nd ed. Paul Ceruzzi (Cruzi)

The Innovators Walter Isaacson

The Soul of A New Machine Tracy Kidder

Introduction to the History of Computing Gerard O'Regan Library link - online access

Here's what happens every minute on the internet in 2023

Source:

https://localiq.com/blog/what-happens-in-an-internet-minute/

More interesting stuff coming next