

KRAJOWA OCENA TECHNICZNA ITB-KOT-2021/2017 wydanie 1

Niniejsza Krajowa Ocena Techniczna została wydana zgodnie z rozporządzeniem Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie krajowych ocen technicznych (Dz. U. z 2016 r., poz. 1968) przez Instytut Techniki Budowlanej w Warszawie, na wniosek:

Kaczmarek Malewo spółka jawna Malewo 1, 63-800 Gostyń

Krajowa Ocena Techniczna ITB-KOT-2021/2017 wydanie 1 stanowi pozytywną ocenę właściwości użytkowych poniższych wyrobów budowlanych do zamierzonego zastosowania:

Rury i kształtki KACZMAREK z PVC-U do sieci kanalizacji zewnętrznej bezciśnieniowej

Data ważności Krajowej Oceny Technicznej: 23 grudnia 2026 r.

D Y R E K T O R Instytutu Techniki Budowlanej

Mr Fr .

dr inż. Robert Gerylo

Warszawa, 23 grudnia 2021 r.

Dokument Krajowej Oceny Technicznej ITB-KOT-2021/2017 wydanie 1 zawiera 14 stron, w tym 2 Załączniki. Tekst tego dokumentu można kopiować tylko w całości. Publikowanie lub upowszechnianie w każdej innej formie fragmentów tekstu Krajowej Oceny Technicznej wymaga pisemnego uzgodnienia z Instytutem Techniki Budowlanej. Krajowa Ocena Techniczna ITB-KOT-2021/2017 wydanie 1 dotyczy wyrobów objętych Aprobatą Techniczną ITB AT-15-7558/2016.

Instytut Techniki Budowlanej

ul. Filtrowa 1, 00-611 Warszawa

tel.: 22 825 04 71; NIP: 525 000 93 58; KRS: 0000158785

1. OPIS TECHNICZNY WYROBU

Przedmiotem niniejszej Krajowej Oceny Technicznej ITB są rury i kształtki KACZMAREK z PVC-U do sieci kanalizacji zewnętrznej bezciśnieniowej. Rury i kształtki są produkowane przez Kaczmarek Malewo spółka jawna, Malewo 1, 63-800 Gostyń, w zakładzie produkcyjnym w Malewie.

Krajowa Ocena Techniczna obejmuje typy wyrobów określone przez producenta i wynikające z właściwości użytkowych podanych w p. 3 oraz kombinacji materiałów i elementów składowych.

Krajowa Ocena Techniczna obejmuje:

- Rury kielichowe, z kielichem normalnym lub wydłużonym, ze ścianką litą, o nominalnych sztywnościach obwodowych SN 12 i SN 16 oraz średnicach nominalnych od DN 110 do DN 630.
- Rury bezkielichowe, ze ścianką litą, o nominalnych sztywnościach obwodowych SN 12 i SN 16 oraz średnicach nominalnych od DN 110 do DN 630.
- Rury kielichowe, z kielichem normalnym lub wydłużonym, ze ścianką strukturalną (3-warstwową), o nominalnych sztywnościach obwodowych SN 2 i SN 12 oraz średnicach nominalnych od DN 110 do DN 630.
- Rury bezkielichowe, ze ścianką strukturalną (3-warstwową), o nominalnych sztywnościach obwodowych SN 2 i SN 12 oraz średnicach nominalnych od DN 110 do DN 630.
- Kształtki o nominalnych sztywnościach obwodowych SN 12 i SN 16 oraz średnicach nominalnych od DN 110 do DN 630, w następującym asortymencie:
 - kolana jednokielichowe i dwukielichowe 15°, 30°, 45°, 67,5°, 87,5°,
 - trójniki dwukielichowe 45°, 87,5°,
 - odgałęzienia siodłowe 45°, 90°.
 - rewizje,
 - zaślepki,
 - redukcje,
 - złączki dwukielichowe,
 - nasuwki,
 - przejścia szczelne,
 - przeguby kulowe.

Rury ze ścianką strukturalną mają budowę warstwową, o następującym układzie warstw:

- warstwa zewnętrzna (lita) z nieplastyfikowanego poli(chlorku winylu) PVC-U,
- warstwa (środkowa), spieniona lub niespieniona, z surowca wtórnego lub z modyfikowanego poli(chlorku winylu) PVC-U z wypełniaczem mineralnym (węglan wapnia),
- warstwa wewnętrzna (lita) z nieplastyfikowanego poli(chlorku winylu) PVC-U.

Rury ze ścianką litą są produkowane metodą wytłaczania, a rury ze ścianką strukturalną metodą współwytłaczania trzech warstw ścianki. Kształtki są produkowane metodą wtrysku lub jako segmentowe formowane z odcinków rur ze ścianką litą.

Rury KACZMAREK kielichowe, o średnicach od DN 110 do DN 500, mają kielichy z rowkiem prostokątnym lub owalnym, a rury o średnicy DN 630 - kielichy z rowkiem owalnym.

Rury KACZMAREK mogą być łączone kształtkami serii wymiarowej S16 lub S13,3 wg normy PN-EN 1852-1: 2018 oraz kształtkami o szeregu wymiarowym SDR 41 lub SDR 34 wg normy PN-EN 1401-1:2019.

Szczelność połączenia jest zapewniona poprzez zastosowanie uszczelek z elastomerów termoplastycznych (w tym olejoodpornych) wg normy PN-EN 681-1:2002, PN-EN 681-1:2002/A3:2006, PN-EN 681-2:2003 lub PN-EN 681-2:2003/A2:2006. W przypadku uszczelnienia połączeń przy pomocy wargowych uszczelek z elastomerów termoplastycznych (TPE) z pierścieniem wzmacniającym, pierścienie powinny być wykonane z polipropylenu (PP). Rury kielichowe są wyposażone w elastomerowe uszczelki pierścieniowe podczas procesu produkcyjnego.

Rury objęte niniejszą Krajową Oceną Techniczną, stosowane w sieciach drenażowych, są produkowane w następujących odmianach:

- TP w pełni sączące (totally perforated), ze szczelinami lub otworami wykonanymi na całym obwodzie,
- LP częściowo sączące (locally perforated), ze szczelinami lub otworami wykonanymi w zakresie
 220 ± 10° obwodu,
- MP wielofunkcyjne sącząco przepływowe (multipurpose), ze szczelinami lub otworami wykonanymi tylko w górnej części rury, w zakresie do 120° obwodu,
- UP bez perforacji.

Wymiary, wygląd zewnętrzny, barwę i znakowanie rur i kształtek KACZMAREK z PVC-U podano w Załączniku A. Opis surowców i materiałów, z których produkowane są wyroby objęte niniejszą Krajową Oceną Techniczną, podano w Załączniku B.

2. ZAMIERZONE ZASTOSOWANIE WYROBU

Rury i kształtki KACZMAREK z PVC-U są przeznaczone do bezciśnieniowego transportu ścieków o temperaturze nie większej niż 60°C, w sieciach kanalizacji bezciśnieniowej, do bezciśnieniowego transportu wód opadowych oraz do sieci drenażowych.

Rury o sztywości obwodowej SN 2 są przeznaczone do stosowania w obszarze zastosowania o symbolu "U" (do umieszczania w gruncie poza konstrukcjami budynków), a rury o sztywości obwodowej SN 12 i SN 16 do stosowania w obszarze zastosowania o symbolu "UD" (do umieszczania w gruncie pod konstrukcjami budynków oraz poza nimi) wg normy PN-EN 1401-1:2019.

Rury i kształtki KACZMAREK z PVC-U powinny być układane w wykopach, zgodnie z projektem uwzględniającym miejscowe warunki gruntowo-wodne, zaleceniami producenta oraz wymaganiami norm: PN-EN 476:2012, PN-EN 1295-1:2019, PN-B-10736:1999, PN-EN 1610:2015 i PN-ENV 1046:2007.

Wyroby objęte niniejszą Krajową Oceną Techniczną powinny być stosowane zgodnie z:

- projektem technicznym, opracowanym dla określonego obiektu, uwzględniającym polskie normy i przepisy techniczno-budowlane, a w szczególności rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2019 r., poz. 1065, z późniejszymi zmianami),
- postanowieniami niniejszej Krajowej Oceny Technicznej,
- instrukcją opracowaną przez producenta i udostępnianą odbiorcom.

3. WŁAŚCIWOŚCI UŻYTKOWE WYROBU I METODY ZASTOSOWANE DO ICH OCENY

Właściwości użytkowe rur i kształtek KACZMAREK z PVC-U i metody zastosowane do ich oceny podano w tablicy 1.

Tablica 1

Poz	. Zasadnicze charakterystyki	Właściwości użytkowe	Metody oceny
1	2	3	4
1	Wymiary rur i kształtek	wg Załącznika A	PN-EN ISO 3126:2006
2	Temperatura mięknienia wg Vicata, °C: - rur - kształtek	≥ 79 ≥ 77	PN-EN ISO 2507-1,2:2017 warunki badania wg PN-EN 1401-1:2019
3	Skurcz wzdłużny rur, %	≤ 5 brak pęcherzy i pęknięć	PN-EN ISO 2505:2006 warunki badania wg PN-EN 1401-1:2019 (suszarka
4	Odporność rur na uderzenia zewnętrzne, % (metoda spadającego ciężarka)	TIR ≤ 10	PN-EN ISO 3127:2017 warunki badania: wg PN-EN 1401-1:2019
5	Odporność rur na uderzenia zewnętrzne (metoda schodkowa)	H50 ≥ 1,0 m; maksymalnie jedno pęknięcie poniżej 0,5 m	PN-EN ISO 11173:2017 warunki badania wg PN-EN 1401-1:2019
6	Sztywność obwodowa rur, kN/m²	SN 2 ≥ 2 SN 12 ≥ 12 SN 16 ≥ 16	PN-EN ISO 9969:2016
7	Sztywność obwodowa kształtek, kN/m²	SN 12 ≥ 12 SN 16 ≥ 16	PN-EN ISO 13967:2011
8	Szczelność połączeń z elastomerowym pierścieniem uszczelniającym	 a) przy ciśnieniu 2,5, 0,5 i 0,05 bara: brak przecieków i uszkodzeń b) przy podciśnieniu: -0,30 bara ≤ p ≤ -0,27 bara 	PN-EN ISO 13259:2021 parametry badania wg PN-EN 1401-1:2019
9	Elastyczność obwodowa rur ze ścianką strukturalną	brak uszkodzeń przy deformacji do 30%	PN-EN ISO 13968:2009
10	Odporność na dichlorometan rur o ściance litej	brak oddziaływania	PN-EN ISO 9852:2017 parametry badania wg PN-EN 1401-1:2019
11	Zmiany w wyniku ogrzewania kształtek wtryskowych	wg PN-EN 1401-1:2019	PN-EN ISO 580:2006 parametry badania wg PN-EN 1401-1:2019
12	Wytrzymałość kształtek na uderzenie (metoda zrzutu)	brak uszkodzeń	PN-EN ISO 13263:2017 parametry badania wg PN-EN 1401-1:2019
13	Elastyczność lub wytrzymałość mechaniczna kształtek segmentowych	wg PN-EN 1401-1:2019	PN-EN ISO 13264:2017 parametry badania wg PN-EN 1401-1:2019
	Wodoszczelność kształtek segmentowych	brak przecieków	PN-EN ISO 13254:2017 parametry badania wg PN-EN 1401-1:2019
5	Odporność rur na ścieranie, mm	≤ 0,10 (100000 cykli) ≤ 0,15 (200000 cykli)	PN-EN 295-3:2012
6	Odporność rur na płukanie wysokociśnieniowe	brak uszkodzeń przy ciśnieniu 280 bar (rury) i 180 bar (kształtki)	DIN V 19517:2002

4. PAKOWANIE, TRANSPORT I SKŁADOWANIE ORAZ SPOSÓB ZNAKOWANIA WYROBU

Wyroby objęte niniejszą Krajową Oceną Techniczną powinny być dostarczane w opakowaniach producenta oraz przechowywane i transportowane w sposób zapewniający niezmienność ich właściwości technicznych.

Sposób znakowania wyrobów znakiem budowlanym powinien być zgodny z rozporządzeniem Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r., poz. 1966, z późniejszymi zmianami).

Oznakowaniu wyrobu znakiem budowlanym powinny towarzyszyć następujące informacje:

- dwie ostatnie cyfry roku, w którym znak budowlany został po raz pierwszy umieszczony na wyrobie budowlanym,
- nazwa i adres siedziby producenta lub znak identyfikacyjny pozwalający jednoznacznie określić nazwę i adres siedziby producenta,
- nazwa i oznaczenie typu wyrobu budowlanego,
- numer i rok wydania krajowej oceny technicznej, zgodnie z którą zostały zadeklarowane właściwości użytkowe (ITB-KOT-2021/2017 wydanie 1),
- numer krajowej deklaracji właściwości użytkowych,
- poziom lub klasa zadeklarowanych właściwości użytkowych,
- adres strony internetowej producenta, jeżeli krajowa deklaracja właściwości użytkowych jest na niej udostępniona.

Wraz z krajową deklaracją właściwości użytkowych powinna być dostarczana albo udostępniana w odpowiednich przypadkach karta charakterystyki i/lub informacje o substancjach niebezpiecznych zawartych w wyrobie budowlanym, o których mowa w art. 31 lub 33 rozporządzenia (WE) nr 1907/2006 Parlamentu Europejskiego i Rady w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów (REACH) i utworzenia Europejskiej Agencji Chemikaliów.

Ponadto oznakowanie wyrobu budowlanego, stanowiącego mieszaninę niebezpieczną według rozporządzenia REACH, powinno być zgodne z wymaganiami rozporządzenia (WE) nr 1272/2008 Parlamentu Europejskiego i Rady w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin (CLP), zmieniającego i uchylającego dyrektywy 67/548/EWG i 1999/45/WE oraz zmieniającego rozporządzenie (WE) nr 1907/2006.

5. OCENA I WERYFIKACJA STAŁOŚCI WŁAŚCIWOŚCI UŻYTKOWYCH

5.1. Krajowy system oceny i weryfikacji stałości właściwości użytkowych

Zgodnie z rozporządzeniem Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 r. w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (Dz. U. z 2016 r., poz. 1966, z późniejszymi zmianami) ma zastosowanie system 4 oceny i weryfikacji stałości właściwości użytkowych.

5.2. Badanie typu

Właściwości użytkowe, ocenione w p. 3, stanowią badanie typu wyrobu, dopóki nie nastąpią zmiany surowców, składników, linii produkcyjnej lub zakładu produkcyjnego.

5.3. Zakładowa kontrola produkcji

Producent powinien mieć wdrożony system zakładowej kontroli produkcji w zakładzie produkcyjnym. Wszystkie elementy tego systemu, wymagania i postanowienia, przyjęte przez producenta, powinny być dokumentowane w sposób systematyczny, w formie zasad i procedur, włącznie z zapisami z prowadzonych badań. Zakładowa kontrola produkcji powinna być dostosowana do technologii produkcji i zapewniać utrzymanie w produkcji seryjnej deklarowanych właściwości użytkowych wyrobu.

Zakładowa kontrola produkcji obejmuje specyfikację i sprawdzanie surowców i składników, kontrolę i badania w procesie wytwarzania oraz badania kontrolne (według p. 5.4), prowadzone przez producenta zgodnie z ustalonym planem badań oraz według zasad i procedur określonych w dokumentacji zakładowej kontroli produkcji.

Wyniki kontroli produkcji powinny być systematycznie rejestrowane. Zapisy rejestru powinny potwierdzać, że wyroby spełniają kryteria oceny i weryfikacji stałości właściwości użytkowych. Poszczególne wyroby lub partie wyrobów i związane z nimi szczegóły produkcyjne muszą być w pełni możliwe do identyfikacji i odtworzenia.

5.4. Badania kontrolne

5.4.1. Program badań. Program badań obejmuje:

- a) badania bieżace.
- b) badania okresowe.

5.4.2. Badania bieżące. Badania bieżące obejmują sprawdzenie:

- a) wyglądu zewnętrznego i barwy rur i kształtek.
- b) wymiarów rur i kształtek,
- c) odporności rur na uderzenia zewnętrzne (metodą spadającego ciężarka i metodą schodkową),
- d) wytrzymałości kształtek na uderzenie,
- e) zmiany w wyniku ogrzewania kształtek wtryskowych.
- f) sztywności obwodowej rur i kształtek.

5.4.3. Badania okresowe. Badania okresowe obejmują sprawdzenie:

- a) skurczu wzdłużnego rur,
- b) temperatury mięknienia wg Vicata rur i kształtek,
- c) odporności rur na dichlorometan,
- d) elastyczności obwodowej rur,
- e) wodoszczelności kształtek segmentowych,
- f) szczelności połączeń z elastomerowym pierścieniem uszczelniającym.

5.5. Częstotliwość badań

Badania bieżące powinny być prowadzone zgodnie z ustalonym planem badań, ale nie rzadziej niż dla każdej partii wyrobów. Wielkość partii wyrobów powinna być określona w dokumentacji zakładowej kontroli produkcji.

Badania okresowe powinny być wykonane nie rzadziej niż raz na 3 lata.

6. POUCZENIE

- **6.1.** Krajowa Ocena Techniczna ITB-KOT-2021/2017 wydanie 1 jest pozytywną oceną właściwości użytkowych tych zasadniczych charakterystyk rur i kształtek KACZMAREK z PVC-U, które zgodnie z zamierzonym zastosowaniem, wynikającym z postanowień Oceny, mają wpływ na spełnienie wymagań podstawowych przez obiekty budowlane, w których wyrób będzie zastosowany.
- **6.2.** Krajowa Ocena Techniczna ITB-KOT-2021/2017 wydanie 1 nie jest dokumentem upoważniającym do oznakowania wyrobu budowlanego znakiem budowlanym.

Zgodnie z ustawą z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (Dz. U. z 2021 r., poz. 1213) wyroby, których dotyczy niniejsza Krajowa Ocena Techniczna, mogą być wprowadzone do obrotu lub udostępniane na rynku krajowym, jeżeli producent dokonał oceny i weryfikacji stałości właściwości użytkowych, sporządził krajową deklarację właściwości użytkowych zgodnie z Krajową Oceną Techniczną ITB-KOT-2021/2017 wydanie 1 i oznakował wyroby znakiem budowlanym, zgodnie z obowiązującymi przepisami.

- **6.3.** Krajowa Ocena Techniczna ITB-KOT-2021/2017 wydanie 1 nie narusza uprawnień wynikających z przepisów o ochronie własności przemysłowej, a w szczególności ustawy z dnia 30 czerwca 2000 r. Prawo własności przemysłowej (Dz. U. z 2021 r., poz. 324). Zapewnienie tych uprawnień należy do obowiązków korzystających z niniejszej Krajowej Oceny Technicznej ITB.
- **6.4.** ITB wydając Krajową Ocenę Techniczną nie bierze odpowiedzialności za ewentualne naruszenie praw wyłącznych i nabytych.
- 6.5. Krajowa Ocena Techniczna nie zwalnia producenta wyrobów od odpowiedzialności za ich prawidłową jakość, a wykonawców robót budowlanych od odpowiedzialności za ich właściwe zastosowanie.
- 6.6. Ważność Krajowej Oceny Technicznej może być przedłużana na kolejne okresy, nie dłuższe niż 5 lat.

7. WYKAZ DOKUMENTÓW WYKORZYSTANYCH W POSTĘPOWANIU

7.1. Raporty, sprawozdania z badań, oceny, klasyfikacje

 03304/21/Z00NZF. Opinia specjalistyczna dotycząca oceny raportów z badań rur i kształtek KACZMAREK z PVC-U. Zakład Fizyki Cieplnej, Akustyki i Środowiska ITB, Warszawa, 2021 r.

- Protokoły z badań bieżących i okresowych rur i kształtek KACZMAREK z PVC-U prowadzonych w ramach zakładowej kontroli produkcji, laboratorium zakładowe Kaczmarek Malewo, 2021 r.
- GT/335/2021.Raporty z badań rur KACZMAREK z PVC-U. Instytut Inżynierii Materiałów Polimerowych i Barwników, Oddział Farb i Barwników, Gliwice, 2018 r.
- 2F020729. Raport z badań rur rur KACZMAREK z PVC-U. RISE Research Institutes of Sweden, Goteborg, 2020 r.
- 227/2018. Sprawozdanie z badań odporności na ścieranie rur KACZMAREK. Instytut Inżynierii Materiałów Polimerowych i Barwników, Oddział Farb i Barwników, Gliwice, 2018 r.
- 405/1/2016. Raport z badań rur KACZMAREK. Instytut Inżynierii Materiałów Polimerowych i Barwników, 2016 r.
- 7. 41/15/SM1. Raport z badań rur KACZMAREK do kanalizacji Główny Instytut Górnictwa, 2015 r.
- 7935 01381/2015. Raport z badań rur i kształtek z PVC-U do kanalizacji zewnętrznej. Instytut Badań i Certyfikacji, Zlin, 2015 r.
- 5F008908. Raport z badań rur z PVC do podziemnego odwadniania i kanalizacji. SP Technical Research Institute of Sweden, 2015 r.

7.2. Normy i dokumenty związane

PN-EN 1401-1:2019	Systemy przewodów rurowych z tworzyw sztucznych do podziemnego
	bezciśnieniowego odwadniania i kanalizacji. Nieplastyfikowany
	poli(chlorek winylu) (PVC-U). Część 1: Specyfikacje rur, kształtek
	i systemu
PN-EN ISO 580:2006	Systemy przewodów rurowych i rur osłonowych z tworzyw sztucznych.
	Kształtki wtryskowe z tworzyw termoplastycznych. Metody wizualnej
	oceny zmian w wyniku ogrzewania
PN-EN ISO 2507-1:2017	Rury i kształtki z tworzyw termoplastycznych. Temperatura mięknienia
	według Vicata. Część 1: Wymagania ogólne dla metody badania
PN-EN ISO 2507-2:2017	Rury i kształtki z tworzyw termoplastycznych. Temperatura mięknienia
	według Vicata. Część 2: Warunki badania dla rur i kształtek
	z nieplastyfikowanego poli(chlorku winylu) (PVC-U) lub chlorowanego
	poli(chlorku winylu) (PVC-C) i rur z poli(chlorku winylu) o wysokiej
	udarności (PVC-HI)
PN-EN 681-1:2002	Uszczelnienia z elastomerów. Wymagania materiałowe dotyczące
	uszczelek złączy rur wodociągowych i odwadniających. Część 1: Guma
PN-EN 681-1:2002/A3:2006	Uszczelnienia z elastomerów. Wymagania materiałowe dotyczące
	uszczelek złączy rur wodociągowych i odwadniających. Część 1: Guma
PN-EN 681-2:2003	Uszczelnienia z elastomerów. Wymagania materiałowe dotyczące
	uszczelek złączy rur wodociągowych i odwadniających. Część 2:
	Elastomery termoplastyczne
PN-EN 681-2:2003/A2:2006	Uszczelnienia z elastomerów. Wymagania materiałowe dotyczące
	uszczelek złączy rur wodociągowych i odwadniających. Część 2:
	Elastomery termoplastyczne

PN-EN ISO 9969:2016	Rury z tworzyw termoplastycznych. Oznaczanie sztywności obwodowej
PN-EN ISO 11173:2017	Systemy przewodowe z tworzyw sztucznych.Rury z tworzyw
	termoplastycznych. Oznaczanie odporności na uderzenia zewnętrzne
	metodą schodkową
PN-EN ISO 13967:2011	Kształtki z tworzyw termoplastycznych. Oznaczanie sztywności
	obwodowej
PN-EN ISO 2505:2006	Rury z tworzyw termoplastycznych. Skurcz wzdłużny. Metoda i warunki
	badania
PN-EN ISO 3126:2006	Systemy przewodów rurowych z tworzyw sztucznych. Elementy
	z tworzyw sztucznych. Sprawdzanie wymiarów
PN-EN ISO 3127:2017	Rury z tworzyw termoplastycznych. Badanie odporności na uderzenia
	zewnętrzne. Metoda spadającego ciężarka
PN-EN ISO 13968:2009	Systemy przewodów rurowych i rur osłonowych z tworzyw sztucznych.
	Rury z tworzyw termoplastycznych. Oznaczanie elastyczności obwodowej
PN-EN ISO 9852:2017	Rury z nieplastyfikowanego poli(chlorku winylu) (PVC-U). Odporność na
	dichlorometan w określonej temperaturze (DCMT). Metoda badania
PN-EN ISO 13254:2017	Systemy przewodowe z tworzyw sztucznych. Systemy rur z tworzyw
	termoplastycznych do zastosowań bezciśnieniowych. Metoda badania
	szczelności wodą
PN-EN ISO 13263:2017	Systemy przewodów rurowych z tworzyw termoplastycznych do
	bezciśnieniowej podziemnej kanalizacji deszczowej i sanitarnej. Kształtki
	z tworzyw termoplastycznych. Metoda badania wytrzymałości na
	uderzenie
PN-EN ISO 13264:2017	Systemy przewodów rurowych z tworzyw termoplastycznych do
	podziemnego bezciśnieniowego odwadniania i kanalizacji. Kształtki z
	tworzyw termoplastycznych. Metoda badania wytrzymałości
	mechanicznej lub elastyczności kształtek fabrykowanych
PN-EN ISO 13259:2021	Systemy przewodów rurowych z tworzyw termoplastycznych do
	bezciśnieniowych sieci układanych pod ziemią. Metoda badania
	szczelności połączeń z elastomerowym pierścieniem uszczelniającym
PN-EN 295-3:2012	Systemy rur kamionkowych w sieci drenażowej i kanalizacyjnej. Część 3:
	Metody badań
PN-EN 476:2012	Wymagania ogólne dotyczące elementów stosowanych w systemach
	kanalizacji deszczowej i sanitarnej
PN-B-10736:1999	Roboty ziemne. Wykopy otwarte dla przewodów wodociągowych
	i kanalizacyjnych. Warunki techniczne wykonania
PN-EN 1610:2015	Budowa i badania przewodów kanalizacyjnych
PN-EN 1295-1:2019	Obliczenia statyczne rurociągów ułożonych w ziemi w różnych warunkach
	obciążenia. Część 1: Wymagania ogólne

PN-ENV 1046:2007	Systemy przewodów rurowych z tworzyw sztucznych. Systemy poza		
	konstrukcjami budynków do przesyłania wody lub ścieków. Praktyka		
	instalowania pod ziemią i nad ziemią		
DIN V 19517:2002	Test methods for determination of the jetting resistance of drain and sewer		
	pipes		
AT-15-7558/2016	Rury i kształtki KACZMAREK z PVC-U ze ścianką litą i ścianką warstwową		
	do sieci kanalizacji zewnętrznej bezciśnieniowej		

ZAŁĄCZNIKI

Załącznik A.	Wymiary, wygląd zewnętrzny, barwa i znakowanie	12
Załącznik B.	Surowce i materiały	14

Załącznik A.

A.1. Wymiary

Wymiary rur i kształtek oraz ich tolerancje podano w tablicach A1 i A2. Szerokość szczelin rur drenarskich podano w tablicy A3. Powierzchnia szczelin powinna wynosić nie mniej niż 50 cm²/mb (w przypadku szczelin o szerokości mniejszej niż 5 mm) lub nie mniej niż 100 cm²/mb (w przypadku szczelin o szerokości nie mniejszej niż 5 mm). Odchyłki wymiarów nietolerowanych odpowiadają klasie średniodokładnej m według normy PN-EN 22768-1:1999.

Tablica A1

		Grubość ścianek rur, mm						
Średnica zewnętrzna d _e i tolerancja, mm	Minimalna grubość warstwy wewnętrznej rur warstwowych, mm	-17	N 2 R 51	0.000000	12 R 30	Post Control of the C	SN 16 DR 27,6	
	rur warstwowych, mm	emin	emax	emin	emax	emin	emax	
110 ^{+0,3}	0,4	343	-	3,6	4,5	4,0	4,6	
160+0,4	0,5	3,2	3,8	5,2	6,0	5,8	6,6	
200+0,5	0,6	3,9	4,5	6,5	7,4	7,3	8,3	
250 ^{+0,5}	0,7	4,9	5,6	8,1	9,3	9,1	10,3	
315 ^{+0,6}	8,0	6,2	7,1	10,2	11,5	11,4	12,8	
355 ^{+0,7}	0,9	7,0	7,9	11,5	12,9	12,9	14,4	
400+0,7	1,0	7,9	8,9	13,0	14,6	14,5	16,2	
450 ^{+0,8}	1,2	8,8	9,9	14,6	16,3	16,3	18,2	
500 ⁺⁰⁹	1,3	9,8	11,0	16,2	18,2	18,1	20,2	
630 ^{+1,2}	1,4	12,3	13,8	21,0	23,2	22,8	25,3	

Tablica A2

Nominalna		Wy	Długość montażowa				
średnica zewn. rury d _e , mm	Średn. wewn. kielicha d _{sm} , mm	Min. głębokość kielicha normalnego A, mm	Min. głębokość kielicha wydłużonego A, mm	Maks. głębokość strefy uszczelniającej C, mm	Kielicha normalnego, L, mm	Kielicha wydłużonego L, mm	
110	110.4	32	86	26	60	85	
160	160.5	42	107	32	81	100	
200	200.6	50	113	40	99	115	
250	250,8	55	116	70	125	135	
315	316,0	62	131	70	132	150	
355	356,1	66	135	70	136	158	
400	401,2	70	143	80	150	170	
450	451,4	75	145	80	155	180	
500	501,5	80	147	80	160	185	
630	632,0	140	230	150	300	280	

Tablica A3

Szerokość szczeliny b, mm	Tolerancje, mm	
1,2	+0,4 / -0,4	
2,5	+0,4 / -0,4	
5,0	+1,0 / - 0,5	
10,00	+1,5 / - 0,5	

A.2. Wygląd zewnętrzny i barwa

Powierzchnie zewnętrzna i wewnętrzna rur i kształtek powinny być gładkie, bez niejednorodności. Barwa rur i kształtek na zewnątrz i wewnątrz powinna być jednolita pod względem odcienia i intensywności (mogą wystąpić różnice odcienia poszczególnych warstw ścianki rury warstwowej).

A.3. Znakowanie

Znakowanie rur i kształtek powinno być wykonane w sposób trwały i czytelny. Znakowanie rur i kształtek powinno zawierać co najmniej:

- nazwę producenta i/lub znak handlowy,
- średnicę nominalną i grubość ścianki,
- symbol surowca,
- symbol obszaru zastosowania,
- sztywność obwodową.

Załącznik B.

B.1. Surowce i materialy

Surowcem stosowanym do produkcji rur i kształtek o ściance litej oraz warstwy wewnętrznej i zewnętrznej rur ze ścianką strukturalną powinien być poli(chlorek winylu) (PVC-U), o właściwościach wg normy PN-EN 1401-1:2019.

Do produkcji warstwy środkowej rur ze ścianką strukturalną powinien być stosowany spieniony poli(chlorek winylu) (PVC-U) lub poli(chlorek winylu) (PVC-U) z wypełniaczem mineralnym (węglan wapnia CaCO₃). Zawartość poli(chlorek winylu (PVC-U) w tej warstwie nie powinna być mniejsza niż 60% jej masy.

Materiałem uszczelniającym połączeń rur i kształtek powinny być wargowe uszczelki elastomerowe, wg normy PN-EN 681-1:2002, PN-EN 681-1:2002/A3:2006, PN-EN 681-2:2003 lub PN-EN 681-2:2003/A2:2006.