

Instruction Words

(e.g. Relation Extraction)

GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect

Chengguang Gan¹ Qinghao Zhang² Tatsunori Mori¹

¹Yokohama National University, Japan ²Pusan National University, South Korea

Corresponding

Format

<sport>Relation Extraction

:Lionel Messi;Occupation;Soccer player:

Introduction Novel Approach: Introduces a Generalized Large Language Model for Information Extraction (IE) that handles various IE sub-tasks. Mutual Reinforcement Effect (MRE): Utilizes a mixed dataset for training and testing, allowing dual-level classification on the same textual data. Contribution: Includes a new Format Converter, the Japanese TCREE dataset, and a fine-tuned Japanese GIELLM using multiple mix datasets. Illustration of MRE: Shows the reinforcement between word-level and text-level classifications. **Sentence Classification** Soccer player Lionel Messi is the winner of the 2022 World Cup. **Mutual Reinforcement Effect Relation Extraction** Soccer player Lionel Messi is the winner of the 2022 World Cup. **Lionel Messi** Soccer player Occupation **Event Extraction** Soccer player Lionel Messi is the winner of the 2022 World Cup. **Lionel Messi** World Cup 2022 Model Workflow: Depicts how source text is processed and output to GIELLM. **Source Text** Soccer player Lionel Messi is the winner of the 2022 World Cup. **Format** Convert Soccer player Lionel Messi is the winner of the 2022 World Cup. Add TC/SC-label <sport><movie><woman><IT><CM> Add Instruction Words <SC-label>Instruction Word :Object;RE-label;Subject:

Japanese General Information Extraction Large Language Model

GIELLM

GIELLM Workflow: Processes source text through Format Converter and Instruction Words (IW) to create input sequence.

Unified Format: Reduces input text length and speeds up model inference, using specific marks for labels and entities.

Instruction Words (IW): Concise directives tailored for specific tasks, replacing the need for lengthy ICL samples and IL directives.

TCREE Dataset: Fills a gap in MRE mix dataset by providing datasets for IE domain subtasks.

Format Converter Examples: Demonstrates the Format Converter in different IE subtasks.

Instruction Words in IE Subtasks: Shows IWs in different IE subtasks.

TCREE Dataset Labels: Labels of the TCREE dataset.

TC&RE

Labels

TC

sport, movie, woman, IT, CM

RE

occupation, ownership, category, protagonist, product, ...

EE

married, win, street date, play a role in the TV/film, movie release, ...

Experiment

Training Corpus: Consists of 4500 sequences, fine-tuning LLaMA2's 7B and 13B parameter models, and LLM-jp.

Training Details: Uses A800 80GB * 8, epoch of 3, learning rate of 1e-5, and per device batch size of 1.

Evaluation Metric: Accuracy at both word-level and text-level sequences.

Performance: GIELLM outperforms other models in 14 out of 18 accuracy metrics across six datasets.

Bilingual vs. Monolingual: GIELLM-13B-JP generally outperforms GIELLM-13B and other English-trained LLMs.

Training Corpus Composition: Composition of the training corpus.

Dataset Statistics: Statistical data of training and testing sets for six MRE-based Japanese datasets.

	Datasets	train set	test set
•	SCNM	1000	4343
	SCPOS:RW	1000	1000
	SCPOS:N	500	187028
	SCPOS:Adj	500	187028
	SCPOS:N & Adj	500	187028
	TCREE	1000	1000

Accuracy Results: Accuracy of Six Mix Datasets in different methods or models.

		SCNM			SCPOS: RW		SC	CPOS: Adj & N	J
Accuracy	TL	WL	ALL	TL	WL	ALL	TL	WL	ALL
SLG Framework	88.89	81.96	72.41	88.21	55.57	17.28	87.30	26.22	1.60
USA-7B	-	-	-	89.60	56.32	18.10	90.20	60.09	3.97
GPT-3.5-Turbo	49.46	11.87	6.97	53.60	14.99	1.60	73.20	10.34	0.13
GIELLM-7B	85.70	63.16	54.29	86.31	66.90	25.37	92.27	54.23	3.23
GIELLM-13B	85.06	54.06	45.96	83.33	65.25	24.75	90.43	63.98	6.27
GIELLM-13B-JP	86.44	62.95	54.43	85.83	67.62	26.15	93.2	48.04	3.43
		SCPOS: N			SCPOS: Adj			TCREE	
Accuracy	TL	WL	ALL	TL	WL	ALL	TL	WL	ALL
SLG Framework	89.50	27.62	3.00	83.00	73.84	52.47	96.49	73.12	71.72
USA-7B	91.50	62.41	6.86	92.17	64.94	50.90	-	_	-
GPT-3.5-Turbo	73.83	10.44	0.23	78.83	15.45	9.87	80.02	7.33	6.73
						, , , ,			
GIELLM-7B	92.10	58.33	4.60	91.6	75.71	58.8	97.19	77.01	75.80
GIELLM-7B GIELLM-13B									75.80 73.29
	92.10	58.33	4.60	91.6	75.71	58.8	97.19	77.01	

Analysis MRE in TCREE task

MRE Analysis: Significant drop in accuracy for separate tasks compared to mixed dataset, confirming the MRE's impact on performance.

MRE Accuracy Comparison: Table showing accuracy comparison of TC and REE tasks in separate and mixed datasets.

	Accuracy				
Dataset	TL	\mathbf{WL}	ALL		
TCREE	96.49	73.12	71.72		
Single TC	95.89	_	-		
Single REE	-	58.73	_		