Approach

By Abhishruti Mandal, 19th September, 2021

Data:

Train Data

Variable	Definition
ID	Unique Identifier for a row
Store_id	Unique id for each Store
Store_Type	Type of the Store
	Type of the location where
Location_Type	Store is located
	Code of the Region where Store
Region_Code	is located
Date	Information about the Date
	If there is holiday on the given
Holiday	Date, 1 : Yes, 0 : No
	If discount is offered by store
Discount	on the given Date, Yes/ No
#O = d = ==	Number of Orders received by
#Orders	the Store on the given Day
	Total Sale for the Store on the
Sales	given Day

Test Data

Variable	Definition
ID	Unique Identifier for a row
Store_id	Unique id for each Store
Store_Type	Type of the Store
	Type of the location where
Location_Type	Store is located
	Code of the Region where Store
Region_Code	is located
Date	Information about the Date
	If there is holiday on the given
Holiday	Date, 1 : Yes, 0 : No
	If discount is offered by store
Discount	on the given Date, Yes/ No
	Total Sale for the Store on the
Sales	given Day

Removing the unimportant columns:

- 1. ID variable from both training and test dataset, since it is unique for every record and doesn't contribute as a feature for training the model.
- 2. #Order from the training dataset, since it is not present in the test dataset.

Data cleaning:

- 1. Checking for missing values
- 2. Checking for duplicate records

Feature engineering:

1. Converting categorical variables into numerical variables

a. Store_Type, Location_Type, Region_Code, Date, Discount are categorical

variables.

b. One hot encoding for Store Type, Location Type, Region Code, since

they have more than two categories.

c. Label encoding for Discount, since it has two categories which is yes or

d. Feature extraction from Date into days, months, years, day of year and

weak of year

Scaling:

Normalization of the numeric variables, such as Store id, day, month, year, day of year,

week or year using MinMaxScaler.

Regression model used:

XGBRegressor from xgboost

Hyperparameter tuning:

Manual hyperparameter tuning max_depth, min_child_weight parameters, subsample,

cosample_bytree and alpha value

Tuning is done based on MSLE (mean squared log error) metric on validation dataset

(25% of train dataset) and 75% train dataset.

Final model parameters chosen:

Model: XGBRegressor

max_depth: 14

min_child_weight: 1

subsample: 1

cosample_bytree: 1

alpha: default

Final submission:

Trained on 100% of train dataset and final prediction made for the test dataset.