Aprendizado de Máquina: Medidas para Avaliação de Classificadores

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Matriz de confusão

- Acurácia trata as classes igualmente, pode não ser adequada para dados desbalanceados
- Em muitos problemas, classe rara é mais interessante que a majoritária.
 - Ex.: diagnóstico de doenças
- Veremos medidas alternativas baseadas na matriz de confusão, muitas das quais analisadas em pares

Matriz de confusão (2)

 Matriz de confusão: classe real nas colunas e predições nas linhas (convenção)

	Classe Verdadeira						
Classe Predita	Positiva	Negativa					
Positiva	Verdadeiro Positivo	Falso Positivo					
Negativa	Falso Negativo	Verdadeiro Negativo					

Matriz de confusão (3)

- Verdadeiro positivo: instância da classe positiva prevista como classe positiva
- Falso positivo: instância que não é da classe positiva prevista como classe positiva
- Falso negativo: instância da classe positiva que não foi prevista como positiva
- Verdadeiro negativo: instância que não é da classe positiva e que não foi prevista como positiva

Matriz de confusão (4)

- Classe positiva é, em geral, a classe de maior interesse (ou classe com menos exemplos)
 - Em alguns casos, os erros têm igual importância
 - Em outro casos, erros diferentes têm consequências diferentes
 - Por exemplo, falso negativo é pior no diagnóstico de doenças

Medidas

Acurácia ou taxa de acerto

$$ACC = \frac{VP + VN}{VP + FP + FN + VN}$$

Medidas (2)

Taxa de erro

$$ERR = \frac{FP + FN}{VP + FP + FN + VN}$$

$$ERR = 1 - ACC$$

Medidas (3)

 Taxa de falsos positivos (em relação aos negativos)

$$TFP = \frac{FP}{FP + VN}$$

Também chamada de: Erros do Tipo 1, Custo

Medidas (4)

Taxa de falsos negativos (em relação aos positivos)

$$TFN = \frac{FN}{FN + VP}$$

Também chamada de: Erros do Tipo 2

Medidas ₍₅₎

Taxa de verdadeiros positivos (em relação aos positivos)

$$TVP = \frac{VP}{VP + FN}$$

 Também chamada de: Benefício, Sensibilidade, Cobertura, Revocação, Recall

Medidas (6)

Precisão (em relação às predições positivas)

$$P = \frac{VP}{VP + FP}$$

 Especificidade (em relação às predições negativas)

$$ESP = \frac{VN}{VN + FP}$$

Medidas ₍₇₎

 Medida-F: média hârmonica ponderada entre a precisão e a cobertura

$$F = \frac{(1+\alpha)PC}{\alpha P + C}$$

Onde α representa o peso dado a precisão

Medidas (8)

 Medida-F₁: variante da Medida-F em que precisão e cobertura tem o mesmo peso

$$F_1 = \frac{2PC}{P+C} = \frac{2}{\frac{1}{P} + \frac{1}{C}}$$

- Define uma média harmônica entre precisão e cobertura
- Obriga classificador a equilibrar precisão e cobertura ou terá Medida-F baixa

Análises

- As medidas são usadas popularmente em diferentes áreas
 - Recuperação de Informações: Precisão vs Cobertura (foco)
 - Estatística: Erros do Tipo 1 vs Erros do Tipo 2
 - Biologia, Medicina: Especificidade vs Sensibilidade
 - Medicina, Processamento de Sinais: TVP vs TFP (ou Custo vs Benefício) (foco)

Cobertura vs Precisão

- Cobertura (recall ou revocação): tudo que é relevante foi recuperado? Nenhum exemplo positivo é deixado de fora
- Precisão: tudo que foi recuperado é relevante?
 Nenhum exemplo negativo é incluído
- Em recuperação de informações, VN costuma ser grande e atrapalhar o cálculo de diversas medidas
 - Precisão e Cobertura não usam VN

Cobertura vs Precisão (2)

 É possível ajustar um classificador para focar mais em precisão ou cobertura mudando o limiar do score do classificador para decidir entre as classes

Exercícios

- É possível calcular as medidas classe a classe gerando várias matrizes de confusão
- Exercício 1: gerar matriz de confusão chamando uma das classes positiva e as outras duas de negativas
- Exercício 2: idem para as outras duas classes

	Classe verdadeira						
Classe predita	1	2	3				
1	25	10	0				
2	0	40	0				
3	5	0	20				

Exercícios (2)

Exercício 3: calcular medidas para:

Exercícios (3)

- Exercício 4: seja um classificador com a seguinte matriz de confusão, definir:
 - Acurácia, Precisão, Cobertura (sensibilidade) e Especificidade

Gráficos ROC

- Do inglês, Receiver Operating Characteristics
- Medida de desempenho originária da área de processamento de sinais
- Plotar no gráfico ROC os 3 classificadores do exemplo anterior

Classificador 1 TVP = 0.4 TFP = 0.3

Classificador2 TVP = 0.7 TFP = 0.5

Classificador 3 TVP = 0.6 TFP = 0.2

Gráficos ROC

Gráficos ROC (2)

- Informalmente, melhor classificador é aquele cujo ponto está mais a noroeste
- Classificadores próximos do canto inferior esquerdo são conservadores. Só fazem classificações positivas com forte evidência (poucos erros de FP)
- Classificadores próximos ao canto superior direito são liberais (correm riscos) (muitos FPs)

Gráficos ROC (3)

- Pontos na diagonal estão associados à escolha aleatória da classe
 - Instância é classificada como positiva com probabilidade fixa
 - Independente dos valores de seus atributos de entrada
 - TVP e TFP serão idênticas

Gráficos ROC (5)

- Classificadores que geram escores ou probabilidades
 - Diferentes valores de limiares podem ser utilizados escolha da classe positiva, gerando vários pontos
 - Cada valor de limiares produz um ponto diferente
 - Ligação dos pontos gera uma curva ROC

Gráficos ROC (6)

Classificador Escore/ Probabilístico

Curvas ROC (2)

- 1 Ordenar exemplos em ordem decrescente por valor de predição
- 2- Aplicar threshold a cada valor de predição
- 3 Calcular VP, VN, FP, FN para cada threshold
- 4 Calcular TVP e TFP

$$Classe = \begin{cases} predição \ge \theta, P \\ predição < \theta, N \end{cases}$$

Instância	Clas-Ver	Predição
6	Р	0.9
3	Р	0.8
2	N	0.7
9	Р	0.6
5	Р	0.6
1	N	0.5
7	N	0.3
8	N	0.2
4	N	0.2
10	N	0.1

Curvas ROC (3)

Threshold >=	Classe	+	-	+	-		-	+	-	+	+	
	Р	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	VP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	VN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	7	2	2	2	2	3	3	4	5
-▶	TVP	1	0.8	8.0	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
-	TFP	1	1	8.0	8.0	0.6	0.4	0.2	0.2	0	0	0

Curva ROC:

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Planejamento e Análise de Experimentos

Curvas ROC (4)

Classificador Discreto

Área sob a Curva ROC (AUC)

- Fornece uma estimativa do desempenho de classificadores
 - Gera um valor continuo no intervalo [0, 1]
 - Quanto maior melhor
 - Calculo: somar as áreas de sucessivos trapezoides
- Um classificador com maior AUC pode apresentar AUC pior em trechos da curva
- É mais confiável utilizar médias de curvas

Área Sob Curvas ROC (2)

Nenhuma Discriminação

Área Sob Curvas ROC (3)

Área Sob Curvas ROC (4)

Área Sob Curvas ROC (5)

Créditos

- Adaptado de:
 - Notas de aula do Prof. Dr. André C. P. L. F. de Carvalho - ICMC-USP