Introduction to Digital Computer Theory

Homework 9 - flip flops, counters, shift registers, and pulse

Instructions:

• Show all work to receive full credit.

Reference

Fur	ction	Tabl	le – NC	OR S-R Flip flop								
Inp	Inputs Outputs Comments											
S	R	Q	Q~	comments								
0	0	Q	Q~	No Change								
0	1	0	1	Reset								
1	0	1	0	Set								
1	1	Invalid										

Fur	nction	Tabl	le – J-K	Flip flop				
Inp	uts	Out	puts	Commonto				
J	K	Q	Q~	Comments				
0	0	Q	Q~	No Change				
0	1	0	1	Reset				
1	0	1	0	Set				
1 1 Q~ Q Toggle, invert the previous state								

Fur	nction T	able ·	– D Flip	flop						
Inp	ut	Out	puts	Comments						
D	Clock	Q	Q~	Comments						
0	0	Q	Q~	No Change						
0	1	0	1	Reset						
1	0	Q	Q~	No Change						
1	1	1	0	Set						

Transition at output	PRESENT State Q(N)	NEXT State Q(N+1)	J	К								
0 → 0	0	0	0	x								
0 → 1	0	1	1	х								
1 → 0	1	0	x	1								
1 -> 1	1	1	х	0								
	J-K FF excitation table											

555 Timer

$$T_{HI} = 0.693*(R1+R2)*C1$$

$$T_{LO} = 0.693(R2)*C1$$

Duty cycle =
$$(T_{HI} / Period)*100\%$$

$$Period = T = T_{HI} + T_{LO} \label{eq:period}$$

Question 1) For a given S-R FF, find the output Q and Q^{\sim} assuming that $Q_{initial} = 1$

Clock								
	0	1	2	3	4	5	6	7
S								
	0	1	2	3	4	5	6	7
R								
	0	1	2	3	4	5	6	7
Q								
	0	1	2	3	4	5	6	7
Q~								
	0	1	2	3	4	5	6	7

Question 2) For the following D-FF, sketch output Q assuming Qinitial = 0

Clock								
	0	1	2	3	4	5	6	7
D								
	0	1	2	3	4	5	6	7
Q								
	0	1	2	3	4	5	6	7
Q~								
	0	1	2	3	4	5	6	7

Question 3) For the following J-K-FF, sketch output Q assuming Qinitial = 1

Clock									
	0	1	2	3	4	5	6	7	8
J									
	0	1	2	3	4	5	6	7	8
K									
	0	1	2	3	4	5	6	7	8
Q									
	0	1	2	3	4	5	6	7	8
Q~									
	0	1	2	3	4	5	6	7	8

Question 4) For the following J-K-FF, sketch output Q assuming Qinitial = 0

Clock									
	0	1	2	3	4	5	6	7	8
J									
	0	1	2	3	4	5	6	7	8
K									
	0	1	2	3	4	5	6	7	8
Q									
	0	1	2	3	4	5	6	7	8
Q~									
	0	1	2	3	4	5	6	7	8

Question 5) Design a synchronous counter that will display odd number as the following:

1→3→5→6 repeats (COUNTER SEQUENCE)

Step 1: Write and sketch the sequence of the synchronous counter (3 points)

Step 2 and 3: Construct a truth table of the transition state with the PRESENT state and the NEXT state, and complete the J-K input for each flip flop using sequence diagram from Step 1.

	PRE	ESENT S	state	N	IEXT stat	е			J-K S	tate		
Decimal	С	В	Α	С	В	Α	Jc	Kc	J _B	K _B	J _A	K _A
0	0	0	0									
1	0	0	1									
2	0	1	0									
3	0	1	1									
4	1	0	0									
5	1	0	1									
6	1	1	0									
7	1	1	1									
				Circuit e	xcitation t	able for s	sequence	1,3,5,6				

Step 4: Create a k-map table for each J and K input and find the SOP equation of each.

		J _C					J _B					J _A		
		<u></u>	с				<u></u> \(\bar{c} \)	с				<u></u> <u> </u>	С	
_	$\overline{A}\overline{B}$				-	$\overline{A}\overline{B}$				_	$\overline{A}\overline{B}$			
-	ĀB				-	ĀB					ĀB			
-	AB				-	AB					AB			
-	$A\overline{B}$				-	$A\overline{B}$					$A\overline{B}$			
				J				<u> </u>]					
SOP:					SOP:					SOP:				

		Kc				K _B		K _A				
		<u></u>	с			<u></u>	с			<u></u> \(\overline{C} \)	С	
_	$\overline{A}\overline{B}$			-	$\overline{A}\overline{B}$			-	$\overline{A}\overline{B}$			
_	ĀB			-	ĀB			-	ĀB			
-	AB			-	AB			-	AB			
-	$A\overline{B}$			-	$A\overline{B}$			-	$A\overline{B}$			
												1
SOP:				SOP:				SOP:				

 $\textbf{Step 5}: \textbf{Complete and sketch the counter circuit using the SOP equation found in \textbf{step } 4$

Question 6) For the following pulse, find:

- a. Period
- b. Frequency

c. Duty cycle

Question 7) For the following 555 timer, R1 = 3.6 Ω , R2 = 2 Ω , and C1 = 0.25 F, find:

- a. Period
- b. Frequency
- c. Duty cycle

------ Homework Ends Here ------