LINGI2364: Mining Patterns in Data

Exercise session 2: Depth-First Algorithms for Itemset Mining and Sequential Pattern Mining

Gilles Peiffer

25 February 2020

2 Solutions

1. (a) For a minimum support threshold of 2, the projected databases are obtained as follows (by convention, transactions which do not appear are empty):

$$\mathcal{D}_{|\emptyset}(t) = \left\{ \begin{array}{ll} \mathcal{D}(t), & \text{if } t \in \{0,\dots,9\} \setminus \{7\}, \\ \mathcal{D}(7) \setminus \{G\}, & \text{otherwise}. \end{array} \right.$$

$$\mathcal{D}_{|\{B\}}(2) = \{D\},\$$

$$\mathcal{D}_{|\{B\}}(3) = \{C, D\},\$$

$$\mathcal{D}_{|\{B\}}(4) = \{C\},\$$

$$\mathcal{D}_{|\{B\}}(5) = \{D\},\$$

$$\mathcal{D}_{|\{B\}}(6) = \{D, E\},\$$

$$\mathcal{D}_{|\{B\}}(7) = \{C, D, E\},\$$

$$\mathcal{D}_{|\{B\}}(7) = \{C, D, E\},\$$

$$\mathcal{D}_{|\{B\}}(9) = \{D\}.$$

$$\mathcal{D}_{|\{B,C\}}(3) = \{D\},\$$

$$\mathcal{D}_{|\{B,C\}}(7) = \{D\}.$$

(b)

$$\begin{aligned} &\operatorname{cover}_{\mathcal{D}_{|\emptyset}}(\{A\}) = \{0, 1, 5, 9\}, \\ &\operatorname{cover}_{\mathcal{D}_{|\emptyset}}(\{B\}) = \{2, 3, 4, 5, 6, 7, 9\}, \\ &\operatorname{cover}_{\mathcal{D}_{|\emptyset}}(\{C\}) = \{1, 3, 4, 7, 8\}, \\ &\operatorname{cover}_{\mathcal{D}_{|\emptyset}}(\{D\}) = \{0, 1, 2, 3, 5, 6, 7, 8, 9\}, \\ &\operatorname{cover}_{\mathcal{D}_{|\emptyset}}(\{E\}) = \{1, 6, 7\}, \\ &\operatorname{cover}_{\mathcal{D}_{|\emptyset}}(\{F\}) = \{0, 8\}. \end{aligned}$$

$$\begin{split} & \operatorname{cover}_{\mathcal{D}_{|\{B\}}}(\{C\}) = \{3,4,7\}, \\ & \operatorname{cover}_{\mathcal{D}_{|\{B\}}}(\{D\}) = \{2,3,5,6,7,9\}, \\ & \operatorname{cover}_{\mathcal{D}_{|\{B\}}}(\{E\}) = \{6,7\}. \end{split}$$

$$\operatorname{cover}_{\mathcal{D}_{|\{B,C\}}}(\{D\}) = \{3,7\}.$$

(c) At node $\{A\}$, the projected database is

$$\begin{split} & \mathrm{cover}_{\mathcal{D}_{|\{A\}}}(\{B\}) = \{5,9\}, \\ & \mathrm{cover}_{\mathcal{D}_{|\{A\}}}(\{D\}) = \{0,1,5,9\}. \end{split}$$

The DFS algorithm next explores node $\{A, B\}$, which has the following projected database:

$$cover_{\mathcal{D}_{|\{A,B\}}}(\{D\}) = \{5,9\}.$$

However, $\operatorname{cover}_{\mathcal{D}_{|\{A,B,D\}}}(I) = \emptyset$, for any item I.

The search thus backtracks, and explores node $\{A,D\}$. $\operatorname{cover}_{\mathcal{D}|\{A,D\}}(I)=\emptyset$, for any item I, hence the search backtracks, and then once again, back to the root node. This concludes the DFS algorithm.

- (d) The inverted tid-list for $\{A\}$ is $\{2,3,4,6,7,8\}$. The inverted tid-list for $\{B\}$ is $\{0,1,8\}$. The inverted tid-list for $\{A,B\}$ can then be computed by taking the union of the previously identified inverted tid-lists for $\{A\}$ and $\{B\}$: $\{0,1,2,3,4,6,7,8\}$.
 - Inverted tid-lists have the advantage that computing a set union is easier than computing an intersection. However, computing the cover is harder, and has higher memory requirements, since very quickly, inverted tid-lists are close to \mathcal{T} .
- 2. (a) The FP-tree for \emptyset is the following:

The FP-tree for $\{B\}$ is the following:

The FP-tree for $\{B,C\}$ is the following:

Header Table
$$\{B,C\}$$

$$| D:2 \longrightarrow D:2$$

(b) By sorting on the frequencies instead of alphabetically $(D \to C \to E)$, one finds the following FP-tree for $\{B\}$:

(c) The first node to be explored is $\{B, D\}$. However, its FP-tree is empty. The search backtracks, and visits $\{B, C\}$, which has FP-tree

$$\begin{array}{ccc} \text{Header Table} & \{B,C\} \\ & | \\ D:2 & \longrightarrow D:2 \end{array}$$

The search then continues down its path, towards $\{B,C,D\}$, which has an empty FP-tree. The search backtracks twice, then visits $\{B,E\}$, with FP-tree

Header Table
$$\{B, E\}$$

 $D: 2 \longrightarrow D: 2$

The next child of this node, $\{B, D, E\}$, has an empty FP-tree. The search backtracks all the way up to the root node, and the algorithm terminates.

3. (a)

$$\begin{aligned} & \operatorname{cover}(\langle \{A, B\}, \{C\} \rangle) = \{0, 1\}, \\ & \operatorname{cover}(\langle \{A, B\}, \{D\} \rangle) = \{0, 1\}, \\ & \operatorname{cover}(\langle \{A\}, \{B\} \rangle) = \{2, 3\}, \\ & \operatorname{cover}(\langle \{A\}, \{D\} \rangle) = \{0, 1, 2\}. \end{aligned}$$

- (b) The frequent sequences are:
 - $\langle \{A\} \rangle, \langle \{B\} \rangle, \langle \{C\} \rangle, \langle \{D\} \rangle$,
 - $\langle \{A, B\} \rangle, \langle \{A, C\} \rangle$,
 - $\langle \{A\}, \{A\} \rangle$, $\langle \{A\}, \{B\} \rangle$, $\langle \{A\}, \{C\} \rangle$, $\langle \{A\}, \{D\} \rangle$, $\langle \{B\}, \{C\} \rangle$, $\langle \{B\}, \{D\} \rangle$, $\langle \{C\}, \{A\} \rangle$, $\langle \{C\}, \{B\} \rangle$, $\langle \{C\}, \{D\} \rangle$,
 - $\langle \{A, B\}, \{C\} \rangle, \langle \{A, B\}, \{D\} \rangle$,
 - $\langle \{A\}, \{A, C\} \rangle$.
- (c) Let $F = \langle I_1, \dots, I_n \rangle \in (2^{\mathcal{I}})^*$ be a frequent sequence. By anti-monotonicity, the sequence $S = \langle J_1, \dots, J_m \rangle \in (2^{\mathcal{I}})^*$ is also frequent, if there exist integers $1 \leq i_1 < \dots < i_m \leq n$ such that for all $j \in \{1, \dots, m\} : J_j \subseteq I_{i_j}$.

Conversely, let $I = \langle I_1, \dots, I_n \rangle \in (2^{\mathcal{I}})^*$ be an infrequent sequence. By anti-monotonicity, the sequence $S = \langle J_1, \dots, J_m \rangle \in (2^{\mathcal{I}})^*$ is then also infrequent, if there exist integers $1 \leq j_1 < \dots < j_n \leq m$ such that for all $i \in \{1, \dots, n\} : I_i \subseteq J_{j_i}$.

This formalizes the intuition of anti-monotonicity: "If a sequence is frequent, all sequences which are contained in it are also frequent; if a sequence is infrequent, all sequences in which it is contained are also infrequent."

(d) No, there is no anti-monotonicity property.

Proof. By contradiction. Take the single transaction database $\langle \{A\}, \{B\}, \{B\} \rangle$. For this database, $\operatorname{support}(\langle \{A\} \{B\} \rangle) = 2$, despite the fact that $\langle \{A\} \rangle \subseteq \langle \{A\} \{B\} \rangle$.

- 4. (a) Let the relation be written as \leq . \leq is a partial order if and only if the three following properties are satisfied:
 - Reflexivity: $a \leq a$.
 - Antisymmetry: if $a \leq b$ and $b \leq a$, then a = b.
 - Transitivity: if $a \prec b$ and $b \prec c$, then $a \prec c$.
 - (b) We assume all elements are different. This relation is then not a partial order.

Proof. By contradiction. Since $A \succeq C$ and $C \succeq D$, by transitivity one would obtain $A \succeq D$, however this is not the case.

- (c) We do not prove it formally, but *match* is a partial order, since it (intuitively) verifies all three required properties.
- (d) This constraint is a gap constraint. It expresses the fact that the number of itemsets between matched itemsets in a patter must not exceed some limit q 1.
- (e) No, it is no longer a partial order.

Proof. By contradiction. Take $X = \langle \{A\}, \{D\} \rangle, Y = \langle \{A\}, \{C\}, \{D\} \rangle, Z = \langle \{A\}, \{B\}, \{C\}, \{D\} \rangle$, with g = 2. It is easy to verify that match(X,Y) and match(Y,Z), however, $\neg match(X,Z)$ since the gap between $\{A\}$ and $\{D\}$ in Z is 3 > g = 2.

- (f) With the length constraint, match is still a partial order. When combining the two constraints, match is a partial order if $g \ge \ell$, as this makes the gap constraint redundant.
- 5. (a) At level 1, we generate $\langle \{A\} \rangle$, $\langle \{B\} \rangle$, $\langle \{C\} \rangle$, $\langle \{D\} \rangle$. All are frequent.
 - $\begin{array}{l} \bullet \text{ At level 2, we generate } \langle \{A,B\}\rangle, \langle \{A,C\}\rangle, \langle \{A,D\}\rangle, \langle \{A\},\{A\}\rangle, \langle \{A\},\{B\}\rangle, \langle \{A\},\{C\}\rangle, \\ \langle \{A\},\{D\}\rangle, \ \langle \{B\},\{A\}\rangle, \ \langle \{B\},\{B\}\rangle, \ \langle \{B\},\{C\}\rangle, \ \langle \{B\},\{D\}\rangle, \ \langle \{C\},\{A\}\rangle, \ \langle \{C\},\{B\}\rangle, \\ \langle \{C\},\{C\}\rangle, \ \langle \{C\},\{D\}\rangle, \ \langle \{D\},\{A\}\rangle, \ \langle \{D\},\{B\}\rangle, \ \langle \{D\},\{C\}\rangle, \ \langle \{D\},\{B\}\rangle, \ \langle \{A\},\{B\}\rangle, \ \langle \{A\},\{B\}\}, \ \langle \{A\},\{B\},\{B\}\}, \ \langle \{A\},\{B\}\}, \ \langle \{A\},\{B\},\{B\}\}, \ \langle \{A\},\{B\},\{B\}\}, \ \langle \{A\},\{B\},\{B\}\}, \ \langle \{A\}$
 - At level 3, we generate $\langle \{A,B,C\} \rangle$, $\langle \{A,B\},\{A\} \rangle$, $\langle \{A,B\},\{B\} \rangle$, $\langle \{A,B\},\{C\} \rangle$, $\langle \{A,B\},\{D\} \rangle$, $\langle \{A,C\},\{A\} \rangle$, ... The frequent sequences are $\langle \{A,B\},\{C\} \rangle$, $\langle \{A,B\},\{D\} \rangle$, $\langle \{A\},\{A,C\} \rangle$.
 - At level 4, we generate $\langle \{A,B\}, \{C,D\} \rangle$, $\langle \{A,B\}, \{C\}, \{D\} \rangle$, $\langle \{A,B\}, \{C\}, \{D\} \rangle$. There are no more frequent sequences, and the GSP algorithm terminates.

Once this is done, we can eliminate all sequences which do not contain the item A.

(b) We denote X being added to the last itemset of a sequence as branching on X, and a new itemset being added starting with X by branching on |X|. The trie of frequent sequences looks like this:

