

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCIS15090070902

FCC REPORT

(BLE)

Applicant: WORLD MEDIA AND TECHNOLOGY Corp

Address of Applicant: 600 Brickell World Plaza, Suite 1775, Miami, FL 33132

Equipment Under Test (EUT)

Product Name: Smart Glasses

Model No.: Space Lumina

FCC ID: 2AFFB-LUMINA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Sep., 2015

Date of Test: 08 Sep., to 30 Dec., 2015

Date of report issued: 30 Dec., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	30 Dec., 2015	Original

Reviewed by: Over Over Date: 30 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
_	_		
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	20
	6.6.2	2 Radiated Emission Method	22
	6.7	Spurious Emission	27
	6.7.1	Conducted Emission Method	27
	6.7.2	2 Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
R	FIIT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	WORLD MEDIA AND TECHNOLOGY Corp
Address of Applicant:	600 Brickell World Plaza, Suite 1775, Miami, FL 33132
Manufacturer/ Factory:	Quality Technology Industrial Co.,Ltd
Address of Manufacturer/ Factory:	Room 201~203, 2/F, Block B3, Ming You Industrial Products, Procurement Center, #168 Bao Yuan Road, Bao'an District, Shenzhen, China.

5.2 General Description of E.U.T.

Product Name:	Smart Glasses
Model No.:	Space Lumina
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.5dBi
Power supply:	(1) Rechargeable Li-ion Battery DC3.7V-720mAh(2) Rechargeable Li-ion Battery DC3.7V-435mAh
AC adapter:	Model: SK22G-0500200Z Input:100-240V AC,50/60Hz 0.35A Output:5V DC MAX2A

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Report No: CCIS15090070902

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18		04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Con	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: F

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antennais aninternal antennawhich cannot replace by end-user, the best case gain of the antennais2.5dBi.

6.2 Conducted Emission

0.15-0.5 Quasi-peak 0.5-5 56	t (dBuV) Average
TestFrequencyRange: 150 kHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56	Average
Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56	Average
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56	Average
Limit: Frequency range (MHz) Limit Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56	Average
0.15-0.5 Quasi-peak 0.5-5 56	Average
0.5-5 56	
	56 to 46*
	46
5-30 60	50
* Decreases with the logarithm of the frequency.	
Test procedure 1. The E.U.T and simulators are connected to a line impedance stabilization network (L.I. 50ohm/50uH coupling impedance for the me 2. The peripheral devices are also connect through a LISN that provides a 50ohm/50 with 50ohm termination. (Please refer to the test setup and photographs). 3. Both sides of A.C. line are checked for interference. In order to find the maximum positions of equipment and all of the interference according to ANSI C63.4: measurement.	S.N.), which provides a asuring equipment. ed to the main power all coupling impedance are block diagram of the remaximum conducted a emission, the relative erface cables must be
Test setup: Reference Plane LISN 40cm 80cm E.U.T Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	ilter — AC power
Test Uncertainty:	±3.28 dB
Test Instruments: Refer to section 5.7 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Measurement Data

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart Glasses Model : Space lumina Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT Remark

Vemark	Fred	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark	
	MHz	dBu₹	<u>a</u> B	<u>dB</u>	dBu∀	dBu₹			
1	0.162	31.31	0.25	10.77	42.33	65.34	-23.01	QP	
2	0.178	13.31	0.25	10.77	24.33	54.59	-30.26	Average	
3	0.637	23.03	0.21	10.77	34.01	46.00	-11.99	Average	
4	0.641	34.89	0.21	10.77	45.87	56.00	-10.13	QP	
2 3 4 5 6 7 8 9	0.720	26.74	0.18	10.78	37.70	56.00	-18.30	QP	
6	0.720	14.06	0.18	10.78	25.02	46.00	-20.98	Average	
7	0.984	22.67	0.22	10.87	33.76		-22.24		
8	1.021	10.85	0.22	10.87	21.94	46.00	-24.06	Average	
	1.289	9.76		10.90	20.91	46.00	-25.09	Average	
10	2.435	22.64	0.29	10.94	33.87	56.00	-22.13	QP	
11				10.87			-8.14	1 1 2 3	
12	26.699	25.43	0.65	10.87	36.95	50.00	-13.05	Average	

Report No: CCIS15090070902

Line:

Trace: 11

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : Smart Glasses
Model : Space lumina
Test Mode : BLE mode
Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

.emark								
	9 <u>28</u> 31	Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.150	30.40	0.27	10.78	41.45	66.00	-24.55	QP
2	0.158	11.81	0.27	10.78	22.86	55.56	-32.70	Average
3	0.186	27.82	0.28	10.76	38.86	64.20	-25.34	QP
4	0.277	12.39	0.26	10.74	23.39	50.90	-27.51	Average
5	0.634	32.44	0.24	10.77	43.45	56.00	-12.55	QP
6	0.634	19.80	0.24	10.77	30.81	46.00	-15.19	Average
7 8	0.708	24.55	0.22	10.77	35.54	56.00	-20.46	QP
8	0.747	11.40	0.23	10.79	22.42	46.00	-23.58	Average
9	1.016	20.16	0.25	10.87	31.28	56.00	-24.72	QP
10	1.016	7.51	0.25	10.87	18.63	46.00	-27.37	Average
11	1.324	7.35	0.25	10.91	18.51	46.00	-27.49	Average
12	2.155	19.94	0.26	10.95	31.15	56.00	-24.85	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-6.04		
Middle	-10.46	30.00	Pass
Highest	-6.15		

Test plot as follows:

Date: 23.Nov.2015 18:57:32 Lowest channel

Date: 23.NOV.2015 18:58:39 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.726		
Middle	0.738	>500	Pass
Highest	0.708		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.032		
Middle	1.038	N/A	N/A
Highest	1.038		

Test plot as follows:

6dB EBW

Date: 23.NOV.2015 19:14:46

Lowest channel

Date: 23.NOV.2015 19:06:58

Middle channel

Date: 23.NOV.2015 19:01:12

Highest channel

99% OBW

Date: 23.NOV.2015 19:27:31

Lowest channel

Date: 23.NOV.2015 19:24:30

Middle channel

Date: 23.NOV.2015 19:20:52

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-6.76		
Middle	-12.06	8.00	Pass
Highest	-6.64		

Test plots as follow:

Date: 23.NOV.2015 19:29:14

Lowest channel

Date: 23.NOV.2015 19:31:35

Middle channel

Date: 23.NOV.2015 19:33:32

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 23.NOV.2015 19:15:49

Lowest channel

Date: 23.NOV.2015 19:19:37

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2	2013and KDB	558074v03r0	3 section 12	2.1		
TestFrequencyRange:	2.3GHz to 2.5G	iHz					
Test site:	Measurement D	Distance: 3m					
Receiver setup:	Frequency	Detector	RBW 1MHz	VBW	Remark		
	Above 1GHz	Above 1GHz Peak RMS		3MHz 3MHz	Peak Value Average Value		
Limit:	Freque	1	1MHz Limit (dBuV/		Remark		
	Above	-	54.0	0	Average Value		
Test Procedure:			74.0		Peak Value		
	 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data 						
Test setup:	AE (T	urntable) Gro Test Receive	Horn Ante	Antenna To	wer		
Test Instruments:	Refer to section	5.7 for detail	s				
Test mode:	Refer to section	5.3 for detail	S				
Test results:	Passed						

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Smart Glasses Space Lumina EUT Model : BLE-L mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55% Test Engineer: YT

REMARK

Freq		Antenna Factor						
MHz	dBu∜		<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2390.000				0.00				
2390.000	7.28	27.58	6.63	0.00	41.49	54.00	-12.51	Average

Test channel:Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Glasses Model : Space Lumina
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

			Antenna Factor					Remark
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	
1 2	2390.000 2390.000				0.00 0.00			

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Smart Glasses Space Lumina EUT Model : : BLE-H mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
- 2	MHz	—dBu∜	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>	
1	2483.500	19.96	27.52	6.85	0.00	54.33	74.00	-19.67	Peak
2	2483, 500	7.87	27. 52	6, 85	0.00	42.24	54,00	-11.76	Average

Test channel:Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Glasses : Space Lumina : BLE-H mode Model Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

20-813163163	Freq		Antenna Factor						Remark
-	MHz	dBu∇	$-\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500					53.04 42.22			

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Ground Reference Plane Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 25.NOV.2015 03:05:02

30MHz~25GHz

Middle channel

Date: 25.NOV.2015 03:06:02

30MHz~25GHz

Highest channel

Date: 25.NOV.2015 03:08:48

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205							
Test Method:	ANSI C63.10:2009									
TestFrequencyRange:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	Above 1GHz									
	Above IGIIZ	Average Value								
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-21	16MHz	43.5	5	Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-	1GHz	54.0		Quasi-peak Value					
	Above 1	GHz	54.0		Average Value					
			74.0		Peak Value					
Test Procedure:	the ground todetermine The EUT antenna, we tower. The antenre the ground Both horizon make the new to find the rest and to find the rest specified B. If the emission the limitspec of the EUT have 10dB.	at a 3 meter case the position of the position of the position of the position of the position and height is valued to determine the postal and vertical and vertical and vertical and the rotatable of the rotatable of the position level of the	amber. The f the highes ters away f ted on the teried from or the maximus all polarizates ion, the Ea was tuned for mg. I was set for Maximum Hotel EUT in perting could be tred. Otherwas teried to the was teried.	table was retradiation. From the incop of a variance meter to the importance of the	le 0.8 meters above otated 360 degrees terference-receiving able-height antenna of four meters above f the field strength, antenna are set to tranged to its worst from 1 meter to 4 ees to 360 degrees etect Function and the peak values hissions that did not e using peak, quasi-reported in a data					

Page 30 of 36

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Smart Glasses Condition

EUT Model : Space Lumina
Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT

REMARK

Freq							Over Limit	Remark	
MHz	dBu∜	<u>d</u> B/m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B		
60.280	29.59	12.69	0.69	29.77	13.20	40.00	-26.80	QP	
153.739	46.25	8.42	1.33	29.19	26.81	43.50	-16.69	QP	
236.645	44.10	11.93	1.56	28.61	28.98	46.00	-17.02	QP	
332.519	49.20	13.86	1.88	28.52	36.42	46.00	-9.58	QP	
406.088	48.47	15.18	2.14	28.79	37.00	46.00	-9.00	QP	
734.491	33.96	19.24	3.00	28.54	27.66	46.00	-18.34	QP	
	MHz 60. 280 153. 739 236. 645 332. 519 406. 088	Freq Level MHz dBuV 60.280 29.59 153.739 46.25 236.645 44.10 332.519 49.20 406.088 48.47	Freq Level Factor MHz dBuV dB/m 60.280 29.59 12.69 153.739 46.25 8.42 236.645 44.10 11.93 332.519 49.20 13.86 406.088 48.47 15.18	Freq Level Factor Loss MHz dBuV dB/m dB 60.280 29.59 12.69 0.69 153.739 46.25 8.42 1.33 236.645 44.10 11.93 1.56 332.519 49.20 13.86 1.88 406.088 48.47 15.18 2.14	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 60.280 29.59 12.69 0.69 29.77 153.739 46.25 8.42 1.33 29.19 236.645 44.10 11.93 1.56 28.61 332.519 49.20 13.86 1.88 28.52 406.088 48.47 15.18 2.14 28.79	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dB dBuV/m 60.280 29.59 12.69 0.69 29.77 13.20 153.739 46.25 8.42 1.33 29.19 26.81 236.645 44.10 11.93 1.56 28.61 28.98 332.519 49.20 13.86 1.88 28.52 36.42 406.088 48.47 15.18 2.14 28.79 37.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m 60.280 29.59 12.69 0.69 29.77 13.20 40.00 153.739 46.25 8.42 1.33 29.19 26.81 43.50 236.645 44.10 11.93 1.56 28.61 28.98 46.00 332.519 49.20 13.86 1.88 28.52 36.42 46.00 406.088 48.47 15.18 2.14 28.79 37.00 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m <t< td=""><td>Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 60.280 29.59 12.69 0.69 29.77 13.20 40.00 -26.80 QP 153.739 46.25 8.42 1.33 29.19 26.81 43.50 -16.69 QP 236.645 44.10 11.93 1.56 28.61 28.98 46.00 -17.02 QP 332.519 49.20 13.86 1.88 28.52 36.42 46.00 -9.58 QP 406.088 48.47 15.18 2.14 28.79 37.00 46.00 -9.00 QP</td></t<>	Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 60.280 29.59 12.69 0.69 29.77 13.20 40.00 -26.80 QP 153.739 46.25 8.42 1.33 29.19 26.81 43.50 -16.69 QP 236.645 44.10 11.93 1.56 28.61 28.98 46.00 -17.02 QP 332.519 49.20 13.86 1.88 28.52 36.42 46.00 -9.58 QP 406.088 48.47 15.18 2.14 28.79 37.00 46.00 -9.00 QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

: FCC PART15 CLASS B 3m

EUT : Smart Glasses

Model : Space Lumina

Test mode : BLE mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK :

TEWWIT.									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBuV	<u>d</u> B/m	āĒ	<u>d</u> B	dBuV/m	dBuV/m	āB	
1	40.135	36.91	13.58	0.52	29.90	21.11	40.00	-18.89	QP
1 2 3 4 5	89.276	37.37	11.76	0.91	29.57	20.47	43.50	-23.03	QP
3	120.699	41.27	10.38	1.13	29.39	23.39	43.50	-20.11	QP
4	152.130	45.95	8.35	1.32	29.20	26.42	43.50	-17.08	QP
5	269.428	38.58	12.34	1.68	28.50	24.10	46.00	-21.90	QP
6	406.088	41.68	15.18	2.14	28.79	30.21	46.00	-15.79	QP

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.34	31.53	10.57	40.24	50.20	74.00	-23.80	Vertical
4804.00	48.26	31.53	10.57	40.24	50.12	74.00	-23.88	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.59	31.53	10.57	40.24	40.45	54.00	-13.55	Vertical
4804.00	38.41	31.53	10.57	40.24	40.27	54.00	-13.73	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	49.84	31.58	10.66	40.15	51.93	74.00	-22.07	Vertical
4884.00	49.81	31.58	10.66	40.15	51.90	74.00	-22.10	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	39.54	31.58	10.66	40.15	41.63	54.00	-12.37	Vertical
4884.00	39.68	31.58	10.66	40.15	41.77	54.00	-12.23	Horizontal

Т	Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.71	31.69	10.73	40.03	51.10	74.00	-22.90	Vertical	
4960.00	48.69	31.69	10.73	40.03	51.08	74.00	-22.92	Horizontal	

Test channel:			Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	38.02	31.69	10.73	40.03	40.41	54.00	-13.59	Vertical
4960.00	38.94	31.69	10.73	40.03	41.33	54.00	-12.67	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.:CCIS150900709RF