On Low Bound of Degree Sequences of Spanning Trees in K-edge-connected Graphs

Liu Zhenhong and Xu Baoguang

INSTITUTE OF SYSTEMS SCIENCE

ACADEMIA SINICA

BEIJING 100080, CHINA

Received July 5, 1995; revised October 29, 1997

Abstract: A graph G=(V,E) is k-edge-connected if for any subset $E'\subseteq E, |E'|< k, G-E'$ is connected. A d_k -tree T of a connected graph G=(V,E) is a spanning tree satisfying that $\forall v\in V, d_T(v)\leq \left[\frac{d(v)+k-1}{k}\right]+\alpha,$ where $[\cdot]$ is a lower integer form and α depends on k. We show that every k-edge-connected graph with $k\geq 2$, has a d_k -tree, and $\alpha=1$ for $k=2, \alpha=2$ for $k\geq 3$. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 87–95, 1998

Keywords: d_k -tree, d_k -full vertex, out-directed tree, spanning tree, DFS algorithm

1. INTRODUCTION

All graphs considered here are finite undirected and without loops or multiple edges. The terminology and notation used here are standard except as indicated. A good reference for any undefined terms is Bondy and Murty's book [1], and the sets of vertices and edges of a graph G are denoted by V(G) and E(G), respectively, and the degree of a vertex v of G is denoted by $d_G(v)$ or d(v) for simplicity. For $S \subseteq V(G)$, G[S] denotes the subgraph of G induced by G. An orientation of a

© 1998 John Wiley & Sons, Inc.

CCC 0364-9024/98/020087-09

graph G means that each edge of G is given a direction. After an orientation of G,G becomes a directed graph, denoted by \vec{G},G is called the underlying graph of \vec{G} . If there is a directed (u,v)-path from u to v in \vec{G} , then vertex v is said to be reachable from u. A directed graph is diconnected if every pair of vertices can be reachable each other. The indegree (respectively outdegree) of a vertex v in \vec{G} is denoted by $d_{\vec{G}}^-(v)$ (respectively $d_{\vec{G}}^+(v)$). An out-directed tree is a directed graph with its underlying graph being a tree in which the indegree of each vertex being 1 except one, called root. A spanning out-directed tree \vec{T} of a directed graph \vec{G} is an out-directed tree with $V(\vec{T}) = V(\vec{G})$. A d_k -tree (respectively d_k -subtree) T of a connected graph G = (V,E) is a spanning tree (respectively subtree) satisfying that $\forall v \in V, d_T(v) \leq \left[\frac{d(v)+k-1}{k}\right] + \alpha$, where $[\cdot]$ is a lower integer form and α depends on k. A vertex v of a d_k -subtree T of G with degree $\left[\frac{d(v)+k-1}{k}\right] + \alpha$ in T is called d_k -full.

It is well-known that any connected graph has a spanning tree. Using different parameters researchers have obtained some sufficient conditions for a graph to contain spanning trees with bounded degrees. See, for instance, [2, 3 and 4].

Let G=(V(G),E(G)) be a connected graph, $V(G)=\{v_1,v_2,\ldots,v_n\}$ and a positive integer sequence $D=(d_1,d_2,\ldots,d_n)$. The problem of whether there is a spanning tree T of G satisfying that for all $i,d_T(v_i)\leq d_i$, is very hard, as Hamilton path problem is a special case. In this article we study the connection between the edge-connectivity and the maximum degree of spanning trees of a graph, and obtain a positive integer sequence D, where the i^{th} component d_i is $\left[\frac{d(v_i)+k-1}{k}\right]+\alpha$, where $\alpha=1$ or 2 depends on k. Based on the results obtained, one can easily deduce that: every k-edge-connected k-regular graph has a connected [1,3] factor. We also note that when $k\geq 3$ the value of α cannot be reduced, if the value of α were less than 2, every k-edge-connected k regular graph would have a Hamilton path, but it is impossible. A counterexample is presented by B. Grunbaum and T. S. Motzkin [5] by constructing a cubic, planar 3-connected graph with 944 vertices in which no elementary chain could contain more than 939 vertices.

2. RESULTS

The main result of this article is the following:

Theorem 1. Let G = (V(G), E(G)) be a k-edge-connected graph, then G has a d_k -tree.

In order to prove the Theorem 1, we first give a lemma, which is a generalization of a result of Win [4].

Suppose that there exists some k-edge-connected graph G, which has no d_k -tree. Let H be the subgraph of G induced by the set of vertices of a maximal d_k -subtree of G.

Lemma 1. There is a d_k -tree T of H, and $B, R \subseteq V(H)$, with $B \neq \emptyset$, such that

- (i) $B \cup R$ is a subset of d_k -full vertices of T.
- (ii) Let $T_i, 1 \leq i \leq m$, be the components of $T \setminus B$, if for some i and j with $i \neq j$ a vertex v_i of T_i is adjacent in H to the vertex v_j of T_j , then v_i or v_j is in R.
- (iii) Let $B(T_i)$ be the set of all vertices of B which are adjacent to some vertices of T_i in $T, 1 \le i \le m$. If all the vertices of $B(T_i)$ are the endvertices of a d_k -tree of $G[V(T_i) \cup B(T_i)]$. Then in that d_k -tree all vertices of $V(T_i) \cap R$ are d_k -full vertices.
- (iv) If v is a vertex of T adjacent in G to a vertex not in V(H), then v is in $B \cup R$.
- (v) There is no edge in H between components of $T \setminus (B \cup R)$.

Proof. We first show the existence of T, B and R satisfying (i)–(iv).

Let H=G-V(H) and N(H) be the set of all vertices of V(H) adjacent to some vertex in $V(\bar{H})$. Then $N(\bar{H}) \neq \emptyset$ and for any $t \in N(\bar{H})$, obviously t is d_k -full vertex in any d_k -tree of H, because of the choice of H. Let $T_i, 1 \leq i \leq m$, be the components of $T \setminus \{t\}$, and let t_i be the vertex of T_i adjacent in T to t.

Suppose there is an edge x_px_q in H between T_p and T_q , then for any d_k -tree T_i^* of $G[V(T_i) \cup \{t\}]$, with t being an end vertex i=p,q, at least one of x_p and x_q must be d_k -full. Otherwise we can obtain a d_k -tree T^* by setting

$$T^* = T - (T_p + T_q) + (T_p^* + T_q^*) + x_p x_q - tt_p(\text{or } tt_q).$$

Obviously t is not a d_k -full vertex of T^* , which contradicts our observation about the vertices in $N(\bar{H})$. We conclude that under our supposition, at least one of x_p or x_q , say x_p , has the following property:

 (α) Every d_k -tree of $G[V(T_p) \cup \{t\}]$ with t as end vertex, then x_p is d_k -full.

Now let $B=\{t\}$, and R be the union of the set of all vertices x_p of $T\setminus\{t\}$ having property (α) and the set $N(\bar{H})\setminus\{t\}$. Such vertex x_p is called d_k-t -full. Then referring to the statement of Lemma 1, (i) holds, (ii) and (iv) hold because of the choice of R. (iii) follows from (α) by noting that $B(T_i)=\{t\}, 1\leq i\leq m$. Hence we have established the existence of T,B and R.

Now we show (v) holds by choosing T,B and R such that $|B \cup R|$ is maximal. By contradiction: suppose that there is an edge e joining two components of $T \setminus (B \cup R)$. Then the path in T joining two end vertices of e contains no vertex of B by (ii) and the choice of R. Thus the two end vertices of e are in the same component T_i of $T \setminus B$ for some $i, 1 \le i \le m$, and the path must contain a vertex in R. Now let w be a vertex of R on the path and let $T_{ij}, 1 \le j \le l$, be the components of $T_i \setminus \{w\}$, let $B(T_{ij})$ be the set of all vertices of B which are adjacent in T to some vertices of T_{ij} and T_{ij} and

Assume that $e=(y_p,y_q)$ connects T_{ip} with T_{iq} and $y_p \in T_{ip}, y_q \in T_{iq}$. If, for j=p,q, there exists a d_k -tree T_{ij}^* of $G[V(T_{ij}) \cup B(T_{ij}) \cup \{w\}]$ with the vertices in $B(T_{ij} \cup \{w\})$ being end vertices and y_j is not d_k -full vertex of T_{ij}^* . Then $T_i^* = T[V(T_i) \cup B(T_i) \setminus (V(T_{ip}) \cup V(T_{iq}))] \cup T_{ip}^* \cup T_{iq}^*$ is a d_k -tree of $G[V(T_i) \cup B(T_i)]$, in which all the vertices of $B(T_i)$ are end vertices but both y_p

and y_q are not d_k -full vertices, and $T_i^* + (y_p, y_q) - (w, w_q)(\operatorname{or}(w, w_q))$ is a d_k -tree of $G[V(T_i) \cup B(T_i)]$ in which all vertices of $B(T_i)$ are end vertices, but w is not a d_k -full vertex which contradicts the choice of R. This contradiction shows that at least one of y_p and y_q , say y_p has property:

(β) If w and all the vertices of $B(T_{ip})$ are end vertices in a d_k -tree of $G[V(T_{ip}) \cup B(T_{ip}) \cup \{w\}]$, then in that d_k -tree y_p must be d_k -full.

Now let R' be the set of all vertices of $T_i \setminus \{w\}$ having property (β) . Further, let $B^* = B \cup \{w\}$ and $R^* = (R \cup R') \setminus \{w\}$. Then (i), (ii), (iii) and (iv) hold with B^* and R^* replacing B and R, respectively. Moreover $|B^* \cup R^*|$ is greater than $|B \cup R|$, which contradicts our choice of T, B and R. The contradiction shows that there is no edge in H joining components of $T \setminus (B \cup R)$, which completes the proof of Lemma 1.

Lemma 2. Let T be a d_k -tree of H, S be a subset of the set of d_k -full vertices of T. Then the number of components of $T \setminus S$, satisfying that each of them is adjacent to only one vertex of S in T, at least is $\sum_{v \in S} ([\frac{d(v)+k-1}{k}] + \alpha - 2) + 2$.

Proof. (By induction on the number of vertices of S). First, we can see that:

(*) For every vertex v of $S, d_T(v) \geq 2$.

If |S| = 1, the result is true according to (*), because the only vertex s of S is not a leaf, and each components of $T \setminus S$ is adjacent to only one vertex of S in T.

Suppose the result holds for |S| < k. For |S| = k, select a vertex v_0 of S satisfying that one of components of $T \setminus \{v_0\}$ contains all vertices of $S \setminus \{v_0\}$, say ω_0 , then ω_0 is a d_k -tree and $|S \setminus \{v_0\}| < k$. By the induction, the number of components of $\omega_0 \setminus (S \setminus \{v_0\})$ satisfying that each is adjacent to only one vertex of $S \setminus \{v_0\}$ in ω_0 at least is $\sum_{v \in (S \setminus \{v_0\})} ([\frac{d(v)+k-1}{k}] + \alpha - 2) + 2 - \beta$, where $\beta = 1$ if v_0 is adjacent to some vertex of $S, \beta = 0$, otherwise. Clearly every component of $\omega_0 \setminus (S \setminus \{v_0\})$ is also a component of $T \setminus S$ possibly except one that contains a vertex adjacent to v_0 in T, Recall the property of v_0 , one can easily know that all components of $T \setminus \{v_0\}$ except ω_0 are adjacent to no one vertex of $S \setminus \{v_0\}$, then the number of components of $T \setminus S$ each of them is adjacent to only one vertex of S in T at least is:

$$\sum_{v \in (S \setminus \{v_0\})} \left(\left[\frac{d(v) + k - 1}{k} \right] + \alpha - 2 \right) + 2 - \beta + d_T(v_0) - 1$$

$$\geq \sum_{v \in S} \left(\left[\frac{d(v) + k - 1}{k} \right] + \alpha - 2 \right) + 2.$$

where $d_T(v_0) = \frac{d(v_0) + k - 1}{k} + \alpha$, and $\beta \leq 1$, which completes the proof.

Proof of Theorem 1. Let H, T, B and R satisfy Lemma 1 and $\omega_1, \omega_2, \ldots, \omega_l$ be all components of $T \setminus (B \cup R)$. Then by the assumption of the Theorem 1

and (v) of Lemma 1, for $1 \leq i \leq l$, there are at least k edges with one end in $V(\omega_i)$ and one end in $B \cup R$. Since H is a proper subgraph of G, condition (iv) of Lemma 1 implies that there are at least k edges with one end in $B \cup R$ and the other not in V(H). From Lemma 2 the number of components of $T \setminus (B \cup R)$ satisfying that each of them is adjacent in T to exactly one vertex in $B \cup R$ is at least $\sum_{v \in B \cup R} ([\frac{d(v) + k - 1}{k}] + \alpha - 2) + 2$ components. Thus, the number of edges in $E(G) \setminus E(T)$, with one end in $V(G) \setminus (B \cup R)$ and the other in $B \cup R$ at least is

$$\left(\sum_{v \in B \cup R} \left(\left[\frac{d(v) + k - 1}{k} \right] + \alpha - 2 \right) + 2 \right) (k - 1) + k$$

$$= \sum_{v \in B \cup R} \left(\left[\frac{d(v) + k - 1}{k} \right] + \alpha - 2 \right) (k - 1) + 3k - 2 \quad (1)$$

where first item refers to the number of edges of $E(G) \setminus E(T)$ with one end in $B \cup R$ and the other in the components of $T \setminus (B \cup R)$ satisfying that each of them is adjacent in T to exactly one vertex in $B \cup R$. The second item is the minimum number of edges between V(H) and $V(G) \setminus V(H)$.

But on the other hand the number of edges in $E(G) \setminus E(T)$, with one end in $B \cup R$ at most is:

$$\sum_{v \in B \cup R} \left(d(v) - \left[\frac{d(v) + k - 1}{k} \right] - \alpha \right) \tag{2}$$

(1)–(2):

$$\sum_{v \in R \cap R} \left(k \left[\frac{d(v) + k - 1}{k} \right] - d(v) + k(\alpha - 2) + 2 \right) + 3k - 2$$

Because $k\left[\frac{d(v)+k-1}{k}\right]-d(v)$ is greater than or equal to 0, one can easily deduce that:

$$(1) - (2) \begin{cases} > 0 & k = 2, \ \alpha = 1 \\ > 0 & k \ge 3, \ \alpha = 2 \end{cases}$$

which is impossible. The proof of the theorem has been completed.

3. ORIENTATION OF A GRAPH

For a 2-edge-connected graph G, Robbins [7] showed the following theorem:

Theorem 2. If G is 2-edge-connected graph, then G has a diconnected orientation.

Nash-Williams [8] has generalized Robbins' theorem by showing that:

Theorem 3. Every 2k-edge-connected graph G has a k-arc-connected orientation.

In the following we will give orientation of graphs which develops the result of Theorem 2 and from which one can easily deduce a special case of Theorem 1 when G is a 2-edge-connected graph. Moreover we also present a polynomial algorithm to find a spanning d_2 -tree of a 2-edge-connected graph, based on the following theorem:

Theorem 4. Let G=(V,E) be a 2-edge-connected graph, then there exists a disconnected orientation \vec{G} of G such that for every vertex v of $G, |d_{\vec{G}}^-(v) - d_{\vec{G}}^+(v)| \leq 1$.

In the following we denote the set of all vertices of odd degree in G by o(G). For a directed graph \vec{H} , the underlying graph of \vec{H} is denoted by H. First we give some lemmas.

Lemma 3. Let G = (V, E) be a graph and C be a cycle in G then o(G) = o(G - E(C)).

Lemma 4. Let G = (V, E) be a graph, u and v be two distinct vertices of odd degree in G, P is a (u, v) path in G, then $o(G - E(P)) = o(G) - \{u, v\}$.

Lemma 5. Let graph G be 2-edge-connected, H a connected subgraph of G, ω a component of G-E(H), if $|V(H)\cap o(\omega)|\leq 1$ then there exists a cycle C in ω such that $|V(H)\cap V(C)|\geq 1$.

Proof. By induction on the number of vertices in $S = V(H) \cap V(\omega)$. One can obviously observe that $|S| \ge 1$ by the connectivity of G.

If |S| = 1, then ω is a 2-edge-connected subgraph of G and thus there exists a cycle C in ω containing one edge with one end in S.

Assume the conclusion holds for |S|=k and let |S|=k+1, where $k\geq 1$. Suppose that u and v are two vertices in S,v has even degree and u has odd degree in ω or both have even degree. We denote a (u,v)-path in ω by P, and e=(v',v) is an edge in P. If $\omega-e$ is connected, then there is a cycle in ω containing edge e and so containing at least one vertex in S. If $\omega-e$ is disconnected, then e is a cut edge in ω and $\omega-e$ consists of two connected components, denoted by ω_1 and ω_2 . Let $v\in\omega_2$ and $H'=H\cup\omega_1\cup\{e\}$, then $|V(H')\cap V(\omega_2)|\leq k$, and $|V(H')\cap o(\omega_2)|\leq 1$. Hence by induction hypothesis there is a cycle in ω_2 containing at least one vertex in V(H'). As $V(\omega_1)\cap V(\omega_2)=\emptyset$, one can easily see that $V(H)\cap V(\omega)\neq\emptyset$. The result follows by the induction.

Lemma 6. Let \vec{G} be a directed graph, \vec{H} be a diconnected subgraph in \vec{G}, u and v be two vertices in \vec{H}, \vec{P} be a (u, v)-directed-path in $\vec{G} - A(\vec{H})$ then $\vec{H} \cup \vec{P}$ is diconnected. Where $A(\vec{H})$ is the arc set of \vec{H} .

Lemma 7. Let \vec{G} be a directed graph, \vec{H} be a diconnected subgraph in \vec{G}, \vec{C} be a directed-cycle in $\vec{G} - A(\vec{H})$ and $V(\vec{H}) \cap V(\vec{C}) \neq \emptyset$, then $\vec{H} \cup \vec{C}$ is diconnected. Where $A(\vec{C})$ is the arc set of \vec{C} .

Lemma 8. Let \vec{G} be a disconnected directed graph, then there is an out-directed tree in \vec{G} rooted at u for any $u \in V(G)$.

Let G=(V,E) be the given 2-edge-connected graph, in the following we will present an algorithm for orienting G to be a disconnected digraph \vec{G} with $|d^+_{\vec{G}}(v)-d^-_{\vec{G}}(v)|\leq 1$ for all $v\in V(\vec{G})$.

Algorithm

step 0: Let G=(V,E) and $u_0\in V$, using DFS algorithm to find a cycle C in G containing u_0 . Set $G_0=C$, orient G_0 to be a directed cycle \vec{G}_0 . $\vec{G}^*=\vec{G}_0, i=1$.

step 1: If $G=G^*$ stop. Otherwise take one of the components of $G-E(G^*)$, denoted by ω .

If $|o(\omega) \cap V(G^*)| \leq 1$, using DFS algorithm to find a cycle C in ω such that $V(G^*) \cup V(C) \neq \emptyset$ (from the Lemma 5 such cycle must be found). Set $G_i = C$, orient G_i to be a directed cycle \vec{G}_i , set $\vec{G}^* = \vec{G}^* \cup \vec{G}_i$, i = i + 1, goto step 1.

Otherwise, let u and v be two vertices of odd degree in ω , use DFS algorithm to obtain a (u,v)-path P in ω . Set $G_i=P$, orient G_i to be a directed path \vec{G}_i with origin $u, \vec{G}^* = \vec{G}^* \cup \vec{G}_i, i=i+1$, goto step 1.

We denote $\bigcup_{j=0,...,i}G_j$ by H_i .

Claim 1.
$$o(G) \supseteq o(G - E(H_0)) \supseteq \cdots \supseteq o(G - E(H_i))$$
.

Proof. Otherwise let $i_0,i_0\geq 1$, be the minimum integer such that $o(G-E(H_{i_0-1}))\not\supseteq o(G-E(H_{i_0}))$, then there exists a vertex $u_0\in o(G-E(H_{i_0}))\setminus o(G-E(H_{i_0-1}))$, From Lemma 3 and Lemma 4 we know G_{i_0} is a path, if u_0 is not an end of G_{i_0} then $d_{G_{i_0}}(u_0)\equiv 0 \pmod{2}$ and $d_{G-E(H_{i_0-1})}(u_0)\equiv d_{G-E(H_{i_0})}(u_0) \pmod{2}$, this contradicts $u_0\in o(G-E(H_{i_0}))\setminus o(G-E(H_{i_0-1}))$. So u_0 is an end of G_{i_0} , but it is impossible since $u_0\not\in o(G-E(H_{i_0-1}))$.

Proof of Theorem 4. In the algorithm for every G_i , the length of G_i is more than 1 or 3, corresponding to a path or cycle, hence at the end of step 1, a graph $G^* = G$ must be obtained. From Lemma 6 and Lemma 7 we know that \vec{G}^* is disconnected at any step.

In the following we will prove $|d^+_{\vec{G}}(v) - d^-_{\vec{G}}(v)| \le 1$ for all $v \in V(\vec{G})$.

First we show that $|d^+_{\vec{G}}(v) - d^-_{\vec{G}}(v)| = 0$ for all $v \in V(G) \setminus o(G)$.

One can easily see that $d^+_{\vec{G}_i}(u_0) = d^-_{\vec{G}_i}(u_0)$ if u_0 is not an end of a path G_i . If there is a vertex $u_0, u_0 \in V(G) \setminus o(G), |d^+_{\vec{G}_i}(u_0) - d^-_{\vec{G}_i}(u_0)| \geq 1$ then there exists a smallest integer i_0 such that for all $i < i_0, d^+_{\vec{G}_i}(u_0) = d^-_{\vec{G}_i}(u_0)$ and $|d^+_{\vec{G}_{i_0}}(u_0) - d^-_{\vec{G}_{i_0}}(u_0)| = 1$ then u_0 is an end of G_{i_0} , hence $u_0 \in o(G - E(H_{i_0-1}))$, but this contradicts Claim 1 since $u_0 \notin o(G)$.

Second we show that $|d^+_{\vec{G}}(v) - d^-_{\vec{G}}(v)| \le 1$ for all $v \in o(G)$.

Assume $v_0 \in o(G)$, if, for all i, v_0 is not an end point of G_i , then $|d^+_{\vec{G}}(v) - d^-_{\vec{G}}(v)| = 0$. Otherwise let j_0 be the smallest integer such that v_0 is an end point

of a path G_{j_0} , from Lemma 4 we know $v_0 \notin o(G - E(H_{j_0}))$, by Claim 1 for all $j \geq j_0, v_0 \notin o(G - E(H_j))$, hence there is at most one path, say G_{j_0} , with an end v_0 . So

$$|d_{\vec{G}}^{+}(v_{0}) - d_{\vec{G}}^{-}(v_{0})| = \left| \sum_{G_{i}, v_{0} \in V(G_{i})} (d_{\vec{G}_{i}}^{+}(v_{0}) - d_{\vec{G}_{i}}^{-}(v_{0})) \right|$$

$$= \left| \sum_{G_{i} \neq G_{j_{0}}, v_{0} \in V(G_{i})} (d_{\vec{G}_{i}}^{+}(v_{0}) - d_{\vec{G}_{i}}^{-}(v_{0})) \right|$$

$$+ |(d_{\vec{G}_{j_{0}}}^{+}(v_{0}) - d_{\vec{G}_{j_{0}}}^{-}(v_{0}))|$$

$$= 1$$

which complete the proof of Theorem 4.

By Lemma 8 there exists an out-directed tree in \vec{G} rooted at v for any $v \in V(G)$. Let \vec{T} be an out-directed tree of \vec{G} , for every vertex v of \vec{T} it has the property that $d^+_{\vec{T}}(v) \leq d^+_{\vec{G}}(v) \leq [\frac{d(v)+1}{2}]$, which also implies $d_T(v) \leq [\frac{d(v)+1}{2}] + 1$ for every vertex v of T.

Using the Algorithm for orienting G to be a diconnected digraph \vec{G} and the algorithm of [6] for finding an out-directed tree \vec{T} of \vec{G} , then one can easily see that T satisfying the conclusion of Theorem 1.

The complexity of DFS Algorithm is O(|E|). In step 1 each time we get a path of length at least 1 or get a cycle of length at least 3, thus the total execution time for the *Algorithm* is at most $O(|E|^2)$. Moveover using DFS Algorithm for finding an out-directed tree of a diconnected graph the complexity is at most O(|E|), then we have an algorithm of finding a spanning tree of a 2-edge connected graph satisfying the result of Theorem 1 with the complexity is $O(|E|^2)$.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph theory with application*, Macmillan, London and Elsevier, New York (1976).
- [2] Y. Caro, L. Krasikov, and Y. Roditty, On the largest tree of given maximum degree in a connected graph, *J. Graph Theory* **15** (1991), 7–13.
- [3] V. Neumman-Lara and E. Rivera-Campo, Spanning trees with bounded degrees, *Combinatorica*. **11** (No. 1) (1991), 55–61.
- [4] Sein Win, On a connection between the existence of k-trees and the toughness of a graph, *Graphs and Combinatorics*, **5** (1989), 201–205.
- [5] B. Grunbaum and T. S. Motzkin, Longest paths in polyhedral graphs. *J. Londen. Math. Soc.* **37** (1962), 152–160.

- [6] Y. Zhu and Z. Liu, On the shortest arborescence of a directed graph, *Scientia Sinica*, **XIV** (No. 10) (1965), 1396–1400.
- [7] H. E. Robbins, A theorem on graphs, with an application to a problem of traffic control, *Amer. Math. Monthly* **46** (1939), 281–283.
- [8] C. St. J. A. Nash-Williams, On orientations, connectivity and odd-vertex pairings in finite graphs, *Canad. J. Math.* **12** (1960), 555–567.
- [9] L. Posa, A theorem concerning Hamilton lines, *Magyer Tud. Akad. Math. Kutato Int. Kozl.* **7** (1962), 225–226.
- [10] J. A. Bondy, Large cycles in graphs, *Discrete Math.* **1** (1971), 121–132.
- [11] M. Las Vergnas, Sur une propriete des arbores maximaux dans un graphe, *Acad. Sci. Paris ser A-B* **272** (1971), 1297–1300.
- [12] V. Chvatal and P. Erdos, A note on Hamiltonian circuits, *Discrete Math.* **2** (1972), 111–113.
- [13] Y. Caro, I. Krasikov, and Y. Roditty, Spanning trees and some edge-reconstructible graphs, *Ars Combin.* **20-A** (1985), 109–118.
- [14] I. Krasikov, Y. Roditty, A Las-Vergnas type theorem for trees, in *Topics in combinatorics and graph theory*, R. Bodendick and R. Henn (Eds.), Heidelberg: Physica-Verlag (1990), 443–449.