Transformation #4: Log Models

Log Models: Intuition

- Log transformations are very useful when the data is skewed because the logged data becomes more normally distributed
- You can inspect the QQ-Plot and Histogram of the variable to evaluate normality
- You cannot log variables that have negative values (there are no logs for negative values)
- Useful with truncated data (e.g., count data truncated at 0)
- Useful to model elasticity (%) effects

Log Models: Interpreting Effects

A model $y = \beta_0 + \beta_1 x + \varepsilon$ has 4 possible linear-log models (more than one x variable can be logged):

Dependent Variable	Independent Variable	
	X	Log(x)
y	Linear Model $y = \beta_0 + \beta_1 x + \varepsilon$ $x \uparrow 1 \text{ unit } \rightarrow y \uparrow \beta_1 \text{ units}$	Linear-Log Model $y = \beta_0 + \beta_1 Log(x) + \varepsilon$ $1\% (1/100) \uparrow \text{ in } x \rightarrow$ $y \uparrow \beta_1/100 \text{ units}$
Log(y)	Log-Linear Model $Log(y) = \beta_0 + \beta_1 X + \varepsilon$ $x \uparrow 1 \text{ unit } \rightarrow$ $y \uparrow 100*\beta_1\% \text{ (i.e., } \beta_1 \text{ fraction)}$	Log-Log (Elasticity) Model Log(y) = $\beta_0 + \beta_1 \text{Log}(x) + \epsilon$ $1\% \uparrow x \rightarrow y \uparrow \beta_1\%$


```
 \begin{array}{c} \text{lm.log.linear.fit=lm} \, (\log{(y)} \sim x1 + x2 + \text{etc.,} \\ & \text{data=dataName}) \hspace{0.2cm} \hspace{0.2cm}
```


KOGOD SCHOOL of BUSINESS

