Mitigating Attacks against Virtual Coordinate Based Routing in Wireless Sensor Networks

Jing Dong, Kurt Ackermann, Brett Bavar, Cristina Nita-Rotaru

Department of Computer Science and CERIAS
Purdue University

Wireless Sensor Networks

Data collection

Object detection & tracking

Multi-dimensional queries

Data centric storage

Task scheduling & coordination

Point-to-Point Communication

- New applications require point-to-point routing
 - Highly scalable
 - Low overhead
 - Robust
- Geographical routing based on physical coordinates
 - Each node only needs to know the coordinates of neighboring nodes and the destination
 - Greedy routing to the neighbor that is closest to destination

Virtual Coordinate-Based Routing

- Establish node coordinates
- Reference nodes store coordinates
- Obtain destination coordinates
- Greedy routing towards destination
- Fall-back procedure to address local minima

Virtual Coordinate Establishment

Virtual Coordinate Establishment

Virtual Coordinate Establishment

Attacks against VC Establishment

- Goal: generate <u>incorrect or unstable coordinates</u>
- Impact on routing: route failures, invocation of expensive fall-back procedure
- Attacks classified as
 - Coordinate deflation
 - Coordinate inflation
 - Coordinate oscillation
- Ways to mount the attacks
 - Reporting false coordinates to neighbors
 - Replaying legitimate coordinates in distant regions of network (wormhole attack)

Coordinate Deflation

Coordinate Deflation

Coordinate Deflation

Coordinate Inflation

Coordinate Oscillation

Coordinate Oscillation Strategies

- Alternate: Alternate coordinates between max and min
- Random: Select coordinate randomly from the correct range
- Pulse: Oscillate coordinate once at exponentially distributed interval

Alternate Random Pulse

Difficulty of detection

Experiment Setup

- TOSSIM simulator and Beacon Vector Routing (BVR) [Fonseca 05] protocol
- o 100 nodes, 8 reference nodes
- Attacker nodes randomly selected
 - Deflation: attackers advertise 0 for max impact
 - Inflation: attackers advertise 20 for max impact
 - Oscillation: alternate, random, and pulse scenarios
- Results are averaged over 10 runs

Impact on Virtual Coordinates

One single attacker

Number of attackers

Impact on Routing

Defense for Virtual Coordinate Systems

- We focus on deflation and oscillation attacks
- Assume reference nodes are trusted
- Coordinate deflation attack
 - Detecting attack with statistical test
 - Preventing attack from non-colluding attackers with hop-count authentication
- Coordinate oscillation attack
 - Stability-based parent selection

Detecting Coordinate Deflation with Statistical Test

Observation

 Deflation attack causes global hop count decrease in the network

Approach

 Use changes in a small subset of nodes to extrapolate global coordinate change with statistical test

Implementation

 Statistical test run by reference nodes on the set of coordinates maintained locally

Attack Detection Procedure

o Initialize

 Record reference hop counts when no attack

Detect

 Compare the current stored hop count to the reference hop counts with Wilcoxon signed rank test

Result

 If test detects change, report attack detected

Benefits of Statistical Test

- Wilcoxon Signed-Rank Test
 - Requires small sample set
 - Uses paired measurements
 - No assumption on underlying distribution
- Uses readily available coordinates stored in reference nodes, thus <u>zero</u> <u>communication overhead</u>
- Low computation overhead

Defense for Virtual Coordinate Systems

- Coordinate deflation attack
 - Detecting attack with statistical test
 - Preventing attack from non-colluding attackers with hop-count authentication
- Coordinate oscillation attack
 - Stability-based parent selection

Prevent Deflation with One-way Hash Chain

- Basic idea: use one-way hash chains
- However, it is vulnerable to replay attack

- Two flavors of replay
 - Same-distance fraud
 - Transparent forwarding
- Dangerous due to epidemic effect

Hash Chain Replay Defense

- Approach
 - Bind the received hash value to the identity of the node
- The coordinate message for a node at hop count i is (i, h_i, h, id)
 - i, h_i are same as before
 - id is unique ID for the node
 - h = H(h_{i-1} || id), binds the received hash value to its id

Replay Detection and Response

Same-distance fraud

- Response with self-sacrifice
 - Upstream node voluntarily inflates its coordinates

Defense for Virtual Coordinate Systems

- Coordinate deflation attack
 - Detecting attack with statistical test
 - Preventing attack from non-colluding attackers with hop-count authentication
- o Coordinate oscillation attack
 - Stability-based parent selection

Mitigating Oscillation Attacks

Challenges

- Cannot simply ban oscillating nodes
 - Affected honest nodes also exhibit attacker-like behavior
- Normal network variations also cause certain level coordination oscillation
- Design goals
 - Detect and isolate consistent attackers
 - Detect and isolate strategic attackers
 - Not implicate honest nodes affected by attack
 - Tolerate normal network variations

Robust Parent Selection

- Each node evaluates a coordinate volatility score for each of its neighbors
- Only neighbors with small enough volatility score can be potential parents
- Volatility score
 - Captures a nodes current behavior, historical behavior, and sudden changes in behavior

$$VS_t = \alpha v_t + \beta H_t + \gamma C_t$$

Detection of Deflation

Variation Compensation (VC) accounts for normal network variations

Trade-offs: higher VC, lower false alarms, lower detection rate.

False positive rate

Hash Chain Replay Defense

Selective replay: only replays smaller coordinates – common attack behavior

Indiscriminate replay: replays all overheard coordinates – attempts to cause many honest nodes to voluntarily raise their coordinate

Route Success Ratio

Number of attackers Replay Replay Selective replay w/ defense No attack No attack No attack Number of attackers

Route cost

Oscillation Mitigation

No defense

Defense with stable parent selection

Summary

- We identified attacks against VCS in wireless sensor networks
 - Coordinate Deflation
 - Coordinate Inflation
 - Coordinate Oscillation
- We proposed efficient defense mechanisms
 - Wilcoxon test for deflation detection
 - One-way hash chain with replay defense
 - Stability-based parent selection
- We demonstrated the impact of the attacks and the effectiveness of the solutions

Thank You

Contact: dongj@cs.purdue.edu