

#### Curso – TerraMA<sup>2</sup> v4

- Módulo de Administração - Análise

Projeto:



















# Módulo de Administração



# Análises – principais características

- Análises são utilizadas para cruzar dados estáticos e dinâmicos e produzir novos dados dinâmicos.
- Um usuário pode criar várias análises.
- Uma análise pode utilizar o mesmo dado dinâmico e estático várias vezes.
- Para ver o resultado de uma análise um visualização deve ser definida.
- Análises são de três tipos:
  - Análises baseadas em Objetos Monitorados
  - Análises baseadas em Grades
  - Análises baseadas em PCD



### Tipos de Análises

- Análise baseada em Objetos Monitorados
  - ENTRADA
    - Requer um mapa vetorial previamente disponível como dado estático;
    - Requer dados dinâmicos cadastrados;
    - Requer um modelo de análise escrito em Python.
  - SAÍDA: tabela com os resultados da análise







Mapa com áreas a serem monitoradas

Dados Ambientais dinâmicos

Novas colunas com resultados

## Tipos de Análises

#### Análise baseada em Grades

- ENTRADA
  - Mapas estáticos matriciais disponíveis
  - Requer dados dinâmicos matriciais cadastrados (pelo menos um)
  - Requer um modelo de análise escrito em Python
- SAÍDA: Dado dinâmico matricial.



Dados dinâmico matricial

Dados dinâmico matricial

### Tipos de Análises

#### Análise com PCD

- ENTRADA
  - Requer uma fonte de dados do tipo PCD
  - Requer um modelo de análise escrito em Python
- SAÍDA: tabela com os resultados da análise



PCD's no campo





Novas colunas com resultados

# Utilitários para as análises

#### Os seguintes utilitários estão disponíveis

- Unidade de distância : unidade utilizada pelo operador "buffer"
- II. Buffer: define distâncias ou faixas de distâncias a partir de objetos monitorados (dados estáticos representados por ponto, linha ou polígonos)
- III. Unidade de tempo : unidade utilizada pelo operadores históricos
- IV. Adiciona valor : utilizado para inserir valores aos resultados das análises
- v. Gerais : demais funções



#### I - Utilitários - Unidade de distância

Para operadores que utilizam unidades de distância tem-se as seguintes opções:

"cm": Centímetros

• "m" : Metros

• "km": Kilômetros

#### Exemplo de Uso no operador Buffer

- buffer = Buffer(BufferType.object\_plus\_buffer, 50, "cm")
- buffer = Buffer(BufferType.object\_plus\_buffer, 100, "m")
- buffer = Buffer(BufferType.object\_plus\_buffer, 10, "km")





#### II - Utilitários - Buffer

Criação de buffer a partir de geometrias vetoriais.

classe: Buffer()

#### Tipos

**BufferType.None**: Sem buffer

**BufferType.In**: Somente a geometria do buffer interno.

**BufferType.Out**: Somente a geometria do buffer externo.

BufferType.In\_out : A união da geometria do buffer externo com a

geometria do buffer interno.

BufferType.Out\_union: Interior da geometria mais a geometria do

buffer externo

**BufferType.In\_diff**: Interior da geometria menos a geometria do buffer, este buffer deve ser interno.

**BufferType.Level**: A diferença entre a geometria do buffer 1 e a geometria do buffer 2.



#### II - Utilitários - Buffer

BufferType.None(): Sem buffer

**BufferType.Out**: Somente a geometria do buffer externo.

BufferType.In: Somente a geometria do buffer interno.

**Buffer.Type.In\_out**: A união da geometria do buffer externo com a geometria do buffer interno.

**BufferType.Out\_union**: Interior da geometria mais a geometria do buffer externo

**BufferType.In\_diff**: Interior da geometria menos a geometria do buffer interno.

**BufferType.Level**: A diferença entre a geometria do buffer 1 e a geometria do buffer 2













# III - Utilitários - Unidade de tempo

Para filtro de data temos as seguintes unidades de tempo:

• sec: Segundo

• min: Minuto

• h: Hora

• d: Dia

w: Semana

#### Exemplo de Uso

- x = occurrence.count("ocorrencias", Buffer(), "30sec", "")
- x = occurrence.count("ocorrencias", Buffer(), "10min", "")
- x = occurrence.count("ocorrencias", Buffer(), "1h", "")
- x = occurrence.count("ocorrencias", Buffer(), "2d", "")
- x = occurrence.count("ocorrencias", Buffer(), "2w", "")



#### IV - Utilitários - Adiciona valor

Método utilizado para adicionar o valor ao resultado análise

#### **Assinatura**

add\_value("attributeName", value)

#### **Parâmetros**

- attributeName: String com o nome do atributo que vai armazenar o valor
- value: Valor a ser armazenado, deve ser do tipo numérico. (Ex. Integer, Float, Double).

#### Exemplo de uso

- moBuffer = Buffer(BufferType.object\_plus\_buffer, 2., "km")
- x = dcp.min("Serra do Mar", moBuffer, "1d", "Pluvio")
- add\_value("Minimo", x)



#### V - Utilitários - Gerais

### Estatística : Operador estatísticos para agregação

- Statistic.min : valor mínimo de uma lista de valores
- Statistic.max : valor máximo de uma lista de valores
- Statistic.mean : valor médio de uma lista de valores
- Statistic.sum : soma de uma lista de valores
- Statistic.mean : média de uma lista de valores
- Statistic.standard\_deviation : desvio padrão de uma lista de valores

#### Análise baseada em Objetos Monitorados

Utiliza operadores zonais com a geometria dos dados estáticos vetoriais de **ponto**, **linha ou polígonos** para realização de cálculos.

### Tipos de operadores:

- Operadores de ocorrência
- II. Operadores de agregação de ocorrências
- III. Operadores de PCDs
- IV. Operadores de histórico de PCDs
- v. Operadores zonais sobre grades
- VI. Operadores zonais histórico de grades
- VII. Operadores zonais sobre previsões









# 2.I - Operadores de ocorrência

Operadores para obter informações sobre as fontes de dados do tipo de ocorrências.

Consideram os pontos num intervalo de tempo passado a partir da data/hora atual dentro ou a uma área de influência (buffer) do objeto monitorado.



# 2.II - Operadores de agregação de ocorrência

Operadores para obter informações sobre as fontes de dados do tipo de ocorrências.

Consideram os pontos num intervalo de tempo passado a partir da data/hora atual dentro ou a uma área de influência (buffer) do objeto monitorado, porém agrega pontos dentro da área de influência dos pontos



### 2.III - Operadores de PCDs

Os operadores sobre um conjunto de pontos de PCD, porém a seleção dos pontos obedecem uma regra de influência ou valor informado.









- + Centro de massa do objeto (polígono) monitorado
- Área de influência da PCD toca área do objeto
- Área de influência da PCD envolve o centro de massa do objeto além de tocar área do mesmo



#### 2.III - Operadores de PCDs

#### Influência PCD

Operador auxiliar para um criar um vetor com a lista de PCD's que influenciam o objeto monitorado. Dois tipos:

- Baseado nos atributos do objeto
- Baseado na regra de influência da análise

dcp.influence.by\_attribute("dataSeriesName", attributeList) dcp.influence.by\_rule("dataSeriesName", buffer) onde:

- dataSeriesName : String com o nome da série de dados de PCD.
- AttributeList : Parâmetro contendo a lista de atributos do objeto monitorado contendo ID´s das PCD´s que o influenciam.
- buffer : Objeto Buffer para ser aplicado ao objeto monitorado. Ver utilitário Buffer



# Influência PCD - (Regra de Influência)

### Raio (toca)

# Raio (centro)

## Região







círculo de influência intersecta o polígono

círculo de influência precisa conter o centróide do polígono um mapa estático define a área de influência de cada PCD. Um atributo de cada área identifica o código das PCDs.

## Influência PCD - (Atributo do Objeto)

#### Definido pelo atributo do Objeto



um ou mais atributos do objeto monitorado (dado estático) que especifica quais PCD's devem ser consideradas.

### 2.IV - Operadores de histórico de PCDs

Os operadores de histórico sobre um conjunto de pontos de PCD, porém a seleção dos pontos obedecem uma regra de influência ou valor informado.



- + Centro de massa do objeto (polígono) monitorado
- Área de influência da PCD toca área do objeto
- Área de influência da PCD envolve o centro de massa do objeto além de tocar área do mesmo

## 2.V - Operadores zonais sobre grades

Retornam valores que fazem interseção dos pontos da grade com o objeto monitorado ou sua área de influência (buffer). O cálculo é realizado sempre que o serviço de coleta obtém uma nova grade. Pode ser por exemplo um arquivo com **uma única camada** (satélite meteorológico)





#### **Dado Matricial (grade)**



- ☐ Valor da grade não avaliado pelo operador zonal
- Valor da grade será computado pelo operador zonal
- Representação do ponto central de elemento da grade

## 2.VI - Operadores zonais histórico de grades











- ☐ Valor da grade não avaliado pelo operador zonal
- Valor da grade será computado pelo operador zonal
- Representação do ponto central de elemento da grade

#### 2.VII - Operadores zonais sobre previsões







