

MONASH **INFORMATION**

TECHNOLOGY

Assignment Project Exam Help Database Design II: Logical Modelling https://powcoder.com

Add WeChat powcoder

Reference

Several of the examples and diagrams just this sassiff the bye been taken from:

Hoffer, J. A., Prescott, M.B. & McFadden F.R. "Modern Database Management"

Add WeChat powcoder

Step 2 (and 3) of the Design Process

- Step 1 Conceptual Model (session 2)
 - Database Model independent
- Step 2 Logical Model (this session)
 - Select which type (model) of Patabase your conceptual model in
 - Network, Relational, OO, XML, NoSQL, Interest of the control of the
 - Database model dependent
- Step 3 Physical Model
 - Select which specific venue for your prosen model you will implement in
 - Oracle, MySQL, IBM DB2, SQL Server, ...
 - Database vendor dependent
 - Final output schema file to implement model (for relational model a set of tables)

Summary of Terminologies at Different Levels

Conceptual A S	signn-regisal (Relational	t Exahysica (Relational)
Entity	Relation	Table
Attribute	https://powco	der Column
Instance	Tuple Tuple	Row
Identifier	Add WeChat	Primary Key
Relationship	Aug wechat	powc <u>o</u> dei
	Foreign Key	Foreign Key

Recap Session 3 Relational Model Characteristics

- Each relation must have a unique name
- Each attribute of a relation must have a distinct name within the relation
- An attribute ca Anstigenmettival Ped (eans is kafne letip yet)
- All values of an attribute need to be from the same domain https://powcoder.com
- The order of attributes and tuples in a relation is immaterial
- Each relation must have a Windshatepowcoder
- Logical (not physical) connections are made between relations by virtue of primary/foreign keys

Revisit - Session 2 Conceptual Model

Transforming ER diagrams into relations (mapping conceptual level to logical level) Essentially

- KEY to PK
- Represent relationships with PK/FK pairs
 The steps are: Assignment Project Exam Help

 - Map strong (regular) entities
 Map weak entities
 - Map binary relationships
 Map associative entities

 WeChat powcoder

 - Map unary relationships
 - Map ternary relationships
 - Map supertype/subtype relationships (is not part of this unit).

Map Regular Entities

- Composite Attributes
 - When the regular entity type contains a composite attribute, only the simple component attributes of the composite attribute are included in the new relation.
 Assignment Project Exam Help
 - Compared to composite attributes, simple attributes not only improve data accessibility but a polypoint intended attributes accessibility.
 - Client input needed in some cases to determine if to be left as simple or broken into composite WeChat powcoder

Mapping a Composite Attribute

Monash Software Case Study

* = not null (must have value)

Map Regular Entities

Multivalued Attribute

- When the regular entity type contains a multivalued attribute, two new relations are created.
- The first relation to the multivalued attribute itself.
- The second relation to the attributes is the PK from the first relation, which becomes the FK in the second relation and the other (s) that multivalued attribute.
- There can also be non key attributes in the second relation depending upon the data requirements.

Mapping a Multi valued Attribute

Is there a better solution than the one shown above?
What are the issues here - this was partially discussed in session 2

Mapping a Weak Entity

• For each weak entity type, create a new relation and include all of the simple attributes as attributes of this relation. The PK of the identifying relation is also included as the FK in this new relation.

Mapping a 1:M Binary Relationship

Map Binary Relationships (1:M)

For each 1:M binary relationship, first create a relation for each of the two entity types participating in the relationship. Then include the PK attribute (or attributes) of the entity on the one-side of the relationship as the FK on the many-side of the relationship.

Mapping a M:N Binary Relationship

Map Binary Relationship (M:N)

- For a M:N binary relationship
 - First create a relation for each of the two entity types participating in the relationship.
 - Then create a steich tand and the state of the two participating entity types. These attributes become the sk / of the two detailers.
 - If there are any nonkey attributes associated with the M:N relationship, they are also included in the new elition. powcoder

Mapping an associative entity with an Identifier

Add WeChat powcoder

Mapping a 1:1 Binary Relationship

Location

Date of Birth

Relationship Participation Mandatory vs Optional

NURSE participation in this relationship?

CARECENTRE participation in this relationship?

Map Binary Relationship (1:1)

- Create two relations, one for each of the participating entity types.
 - The primary key (PK) on the mandatory side of the relationship becomes the foreign key (FK) on the optional side of the relationship.
 - where both are signal plate the ject of the walk causes the fewest nulls
 - Special case: 1:1 https://doi.org/10.1011/10
 - Consider consolidating the two entity types into one relation Add WeChat powcoder

Map unary relationships

- Unary Relationship is a relationship between the instances of a single entity type.
- Unary 1:M Relationship A relation is created for the entity type. Add a
 FK within the same relation that references the PK values
 of the same relation https://powcoder.com
 Unary M:N Relationship Two relations are created, one for the entity
- Unary M:N Relationship Two relations are created, one for the entity type in the relationship the Char as the associative relation to represent the M:N relationship itself. The PK of the associative relation consists of two attributes (with different names) taking their values from the PK of the other relation.

Mapping a 1:M Unary Relationship

Mapping a M:N Unary Relationship

SQL Developer Data Modeler

Adding surrogate keys

Surrogate PK's may be added **ONLY** on the logical model provided they are justified (include in documentation / assumptions).

Need to ensure that the identification theroject onceptual model - the natural key:

Potential problem:

Project MENUALLY and new PK attribute (here et_no), both of the SQL Developers conceptual model - the natural key:

"Create Surrogate Key" option

(emp_no, training_code, et_date, completed)

will still remain unique

Solution, where needed:

Define a unique index on the attributes of natural key p

101	ORA01	1 Oct 2016
	CINAUI	1-Oct-2016
		1-Oct-2016
101	ORA01	1-Oct-2016
		101 ORA01 101 ORA01

Ternary Relationships

Ternary modelled as binary: SUPPLIER COMPANY PROJECT SUPPLIER **PROJECT** proj no (PK) supplier_no (PK) https://powcoder.com supply uses Add WeChat powcoder PART PART part no (PK) part_no (PK)

Ternary Relationships – model as binary relationships?

- Ternary represents more information than three binary relationships
- For example Supplier 1 supplies Project 2 with Part 3 -
 - ternary Assignment Project Exam Help
 - instance (supplier 1, project 2, part 3) exists
 - binaries https://powcoder.com
 - instances
 - (supplier 1, project 2) (project 2, part 3) (supplier 1, part 3)
 - BUT does not imply (supplier 1, project 2, part 3)
- How then do we map such relationships?

Mapping a Ternary Relationship

Map Ternary (and n-ary) Relationships

- Ternary relationship should be converted to an associative entity.
 - To map an associative entity type that links three regular entity types, an associative relation is created.
 - The default Assignment by Proposition of the participating entity types.
 - Any attributes of the tassociano entributes of the new relation.

Add WeChat powcoder

Mapping a Ternary Relationship

