INAME:			

MARK BOX			
PROBLEM	POINTS		
1	10		
2	10		
3	10		
4	10		
Total	40		

D (last four digits)	
. I HASE TOHE MICHS!	

please check the box of your section below

or

Г				
ı				
ı				
ı				
ı				
ı				

INSTRUCTIONS:

- (1) To receive credits you must:
 - (a) work in a logical fashion, show all your work and indicate your reasoning to support and justify your answer
 - (b) when applicable put your answer on/in the line/box; use the back of the page if needed
- (2) This exam covers (from *Elementary Linear Algebra* by Larson and Falvo 7^{th} ed.): Sections $3.1 3.4^*$.
- (1) Compute the determinant.

$$\begin{vmatrix}
1 & 1 & -2 \\
0 & 15 & 0 \\
2 & 2 & -4
\end{vmatrix}$$

- (2) Find (i) the characteristic equation, (ii) the eigenvalues, and (iii) the corresponding eigenvectors of the matrix.
 - (a)

$$\begin{array}{c|cc} 4 & -5 \\ 2 & -3 \end{array}$$

(b)

$$\begin{array}{c|ccccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}$$

- (3) $(optional)^*$ Find the adjoint $\mathbf{ad}(\mathbf{M})$ of the matrix $M = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 3 & 2 \\ 3 & 0 & -1 \end{pmatrix}$. Verify that $M\mathbf{ad}(M) = \mathbf{ad}(M)M = \det(M)I_3$.
- (4) **Definition**. A vector \mathbf{u} is said to be in the null space of a matrix A provided

$$A\mathbf{u} = \mathbf{0}$$
.

or, equivalently, \mathbf{u} is an eigenvector corresponding to the zero eigenvalue of A.

Which of the following vectors, if any, is in the null space of $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 3 \\ 1 & 0 & 2 & 2 \end{pmatrix}$?

- a) $[-1 \ 0 \ 1 \ 0]^T$ b) $[0 \ 2 \ 1 \ -1]^T$ c) $[0 \ 4 \ 2 \ -2]^T$
- (5) Determine which of the following statements are equivalent to the fact that a matrix A of size $n \times n$ is invertible?
 - a) A is nonsingular
 - b) The row space of A has dimension n
 - c) The column space of A has dimension n
 - d) The determinant of A is nonzero
 - e) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for any given \mathbf{b} in \mathbf{R}^n
 - f) The system $A\mathbf{x} = \mathbf{0}$ has nonzero solution
 - g) The dimension of the null space of A is zero
 - h) The rows of A are linear independent
 - i) The columns of A are linear independent
 - j) The rank of A is n
 - k) A is row-equivalent to an identity matrix
 - 1) All eigenvalues of A are nonzero
 - m) A can be written as the product of elementary matrices.
- (6) (optional*) The matrix $A = \begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ row reduces to $C = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
 - a) Find the rank and nullity of A.
 - b) Find a basis of the row space and the column space of A respectively.
 - c) Find a basis of the null space of A
 - d) Does the system $A\mathbf{x} = \begin{pmatrix} 109 \\ -217 \\ 66 \end{pmatrix}$ have a solution? (Hint: You can draw a conclusion from

the fact that dimension of column space is 3, without having to solve the system. Recall that rank(A) = dim(Col(A)) = dim(Row(A))

- e) What is the relation between rank, dim(null(A))?(Hint: Theorem 4.17 (pp.196) states that rank(A) + dim(null(A)) = n, the number of columns)
- (7) Find all the eigenvalues of the given matrix.

a)
$$\begin{pmatrix} 1 & -2 & 0 \\ -3 & 1 & 0 \\ -4 & -5 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 9 \\ 0 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ where $i = \sqrt{-1}$ ($i^2 = -1$) is the unit for pure imaginary numbers.

(8) We say a vector \mathbf{u} is a linear combination of a finite set of vectors $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ if there exist constants c_1, c_2, c_3 such that

$$\mathbf{u} = c_1 \mathbf{v_1} + \mathbf{v_2} + c_3 \mathbf{v_3}.$$

Determine whether one can write $\mathbf{u} = [8\ 3\ 8]^T$ as a linear combination of the vectors in the set S.

$$S = \{ [4 \ 3 \ 2]^T, [0 \ 3 \ 2]^T, [0 \ 0 \ 2]^T \}$$

Solutions (3)
$$ad(M) = transpose of \begin{pmatrix} -4 & 3 & -9 \\ 3 & -5 & 4 \\ -5 & 1 & -3 \end{pmatrix}$$

A straight forward computation shows $Mad(M) = -11I_3$.

- (8) a) rank(A) = 3 (number of leading 1's in C), nullity of A = 1
- b) A basis of Row(A) consists of $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$.

A basis of Col(A) consists of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$

$$c) \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$