

Introduction to Virtual Reality

Other Rotation Representations

Professor Dan Szafir

Computer Science & ATLAS Institute
University of Colorado Boulder

Goal: specify geometry, positions, translations, rotations, etc. in 3D space

Rotations with Transformation Matrix

What axis do you want to rotate around?

X-axis				Y-axis					Z-axis			
Γ1	0	0	0	$\cos \theta$	0	$\sin \theta$	0^{T}		$\cos \theta$	$-\sin\theta$	0	0
0	$\cos \theta$	$-\sin\theta$	0	0	1	0	0		$\sin \theta$	$\cos \theta$	0	0
0	$\sin \theta$	$\cos \theta$	0	$-\sin\theta$	0	$\cos \theta$	0		0	0	1	0
$\lfloor 0$	0	0	1	0	0	0	1_		0	0	0	1

Which way is positive?

Normally:
Use the right-hand rule

Which way is positive?

Normally:

Use the right-hand rule

Unity:

Left-hand rule

Other Rotation Representations

Euler angles, Axis/Angle, Quaternions,

Limitations of Rotation Matrix

Rotation matrix is over-parameterized (9 parameters instead of 3)

Also hard to visualize

Can we have a minimum representation?

Euler Angles

Product of 3 consecutive rotations around a pre-defined axis

E.g., X - Y - Z (or roll – pitch – yaw)

Rotate 30° on X, the 10° on Y, the 5° on Z

Converting Euler to Rotation Matrix

$$\begin{split} R_X R_Y R_Z \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos A & -\sin A \\ 0 & \sin A & \cos A \end{pmatrix} \begin{pmatrix} \cos B & 0 & \sin B \\ 0 & 1 & 0 \\ -\sin B & 0 & \cos B \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos B & 0 & \sin B \\ \sin A \sin B & \cos A & -\sin A \cos B \\ -\cos A \sin B & \sin A & \cos A \cos B \end{pmatrix} \begin{pmatrix} \cos C & -\sin C & 0 \\ \sin C & \cos C & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos B \cos C & -\cos B \sin C & \sin B \\ \sin A \sin B \cos C + \cos A \sin C & -\sin A \sin B \sin C + \cos A \cos C & -\sin A \cos B \\ -\cos A \sin B \cos C + \sin A \sin C & \cos A \sin B \sin C + \sin A \cos C & \cos A \cos B \end{pmatrix} \end{split}$$

Ugly! Plus we need a different one for every possible axis ordering (e.g., X - Y - Z, vs X - Z - Y ...)

Euler Angles

Advantages

Minimal representation (3 parameters) Easy to understand

Disadvantages

Many alternatives (X-Y-Z, Z-Y-X, etc.)
Difficult to concatenate
Singularities (gimbal lock)

Unity uses Z - X - Y

https://youtu.be/rrUCBOlJdt4?t=120

Axis/Angle

Rotation = rotation axis and angle

4 parameters:

3D vector specifying axis Size of angle to rotate around axis

OR

3 parameters

3D vector specifying axis (vector magnitude is used as angle) Not unique (every 2*Pl you circle around again)

Can convert to and from rotation matrix See Rodriguez' formula and inverse

Axis/Angle

Advantages

Minimal representation (3 parameters) Simple derivations

Disadvantages

Difficult to concatenate

Slow conversion to rotation matrix

Quaternions

4 dimensional vector representing rotation

$$Q = xi + yj + zk + w$$

Advantages:

Multiplication, inversion, and rotations are efficient e.g., concatenation only requires multiplication, addition, and subtraction

No gimbal lock

Can convert to rotation matrix, axis/angle Used by Unity internally

Quaternions: History

Discovered by Sir William Rowan Hamilton in 1843
Attempting to construct an algebra for three dimensions
Instead realized how to construct an algebra for four!

Mathematical graffiti: $i^2 = j^2 = k^2 = ijk = -1$

Number Sets

Common number sets:

N: **Natural** – positive whole numbers (maybe 0) – e.g., 0,1,2,3...

 \mathbb{Z} : Integer – whole numbers – e.g., -2, -1, 0, 1, 2...

 \mathbb{Q} : **Rational** – numbers that can be expressed as a fraction – e.g., -4, $\frac{1}{2}$, etc.

 \mathbb{R} : **Real** – all rational and irrational numbers – e.g., π , – $\sqrt{2}$

Real Numbers

Complex Number System

C: Add imaginary numbers to the set of real numbers

Imaginary Numbers

Invented to solve certain equations that had no solutions Example: $x^2 + 1 = 0$

Form:
$$i^2 = -1$$

$$\mathbb{C}$$
: $z=a+bi$ $a,b\in\mathbb{R}$, $i^2=-1$ i.e., complex numbers are the sum of a real number and an imaginary number

Operations with Imaginary Numbers

Addition: $(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$

Subtraction: $(a_1+b_1i)-(a_2+b_2i)=(a_1-a_2)+(b_1-b_2)i$

Scalar multiplication: $\lambda(a+bi) = \lambda a + \lambda bi$

Operations with Imaginary Numbers

Product of complex numbers:

$$z_1 = (a_1 + b_1 i)$$

$$z_2 = (a_2 + b_2 i)$$

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i)$$

$$= a_1 a_2 + a_1 b_2 i + b_1 a_2 i + b_1 b_2 i^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$$

Square:

$$z = (a + bi)$$

 $z^2 = (a + bi)(a + bi)$
 $= (a^2 - b^2) + 2abi$

Operations with Imaginary Numbers

Powers:

i^0	=					1	i^0	=	1
i^1	=					i	i^{-1}	=	-i
i^2	=					-1	i^{-2}	=	-1
i^3	=	ii^2	=			-i	i^{-3}	=	i
i^4	=	i^2i^2	=			1	i^{-4}	=	1
i^5	=	ii^4	=			i	i^{-5}	=	-i
i^6	=	ii^5	=	i^2	=	-1	i^{-6}	=	-1

What pattern do you see? What does this remind you of?

Rotations

(x, y, -x, -y, x, ...): rotate a point 90 degrees on 2D plane

Complex Plane

Can map complex numbers onto a 2D grid

Horizontal axis = real component Vertical axis = imaginary component

Multiplying a complex number by *i* rotates through this plane at 90 degree increments

Where would you draw point p?

Where would you draw point p?

Let's multiply p by i: Point q = pi

$$= (2+i)i$$

= $2i+i^2$
= $-1+2i$

Where is point q?

Let's multiply p by i: Point q = pi

$$= (2+i)i$$

= $2i+i^2$
= $-1+2i$

Where is point q?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$

Let's multiply q by i: Point r = qi

What is the formula for r?

A)
$$r = -1 + 2i$$

B)
$$r = 2 + i$$

C)
$$r = -1 - i$$

D)
$$r = -2 - i$$

Where is point r?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$

Let's multiply q by i: Point r = qi

What is the formula for r?

$$r = qi$$

= $(-1+2i)i$
= $-i+2i^2$
= $-2-i$

Where is point r?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$

Let's multiply q by i: Point r = qi

What is the formula for r?

$$r = qi$$

= $(-1+2i)i$
= $-i+2i^2$
= $-2-i$

Where is point r?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$
Point $r = -2 - i$

Let's multiply r by i: Point s = ri

What is the formula for s?

A)
$$s = -1 + 2i$$

B)
$$s = 1 + i$$

C)
$$s = 1 - i$$

D)
$$s = 1 - 2i$$

Where is point s?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$
Point $r = -2 - i$

Let's multiply r by i: Point s = ri

What is the formula for s?

$$s = ri$$

= $(-2 - i)i$
= $-2i - i^2$
= $1 - 2i$

Where is point s?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$
Point $r = -2 - i$

Let's multiply r by i: Point s = ri

What is the formula for s?

$$\begin{array}{rcl} s & = & ri \\ & = & (-2-i)i \\ & = & -2i-i^2 \\ & = & 1-2i \end{array}$$

Where is point s?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$
Point $r = -2 - i$
Point $s = 1 - 2i$

Let's multiply s by i: Point t = si

What is the formula for t?

A)
$$t = 1 + 2i$$

B)
$$t = 1 + i$$

C)
$$t = 2 + i$$

$$D) t = -1 + 2i$$

Where is point t?

Point
$$p = 2 + i$$

Point $q = -1 + 2i$
Point $r = -2 - i$
Point $s = 1 - 2i$

Let's multiply s by i: Point t = si

What is the formula for t?

$$t = si$$

= $(1-2i)i$
= $i-2i^2$
= $2+i$

Where is point t?

Multiplying a complex number by *i* rotates through this plane at 90 degree increments

How would we rotate clock-wise?

What if we wanted arbitrary rotation angles?

Arbitrary Rotations

Cartesian Plane: use polar coordinates

Polar coordinates:

$$x = r cos \theta$$

$$y = rsin\theta$$

Arbitrary Rotations

Complex Plane: define a "rotor" q (same idea as polar coords)

Point
$$P = x + iy = r\cos\theta + ir\sin\theta$$

$$Rotor q = cos\theta + isin\theta$$

Rotated point P' = pq Multiplying a point by a rotor:

$$p = a + bi$$

$$q = \cos \theta + i \sin \theta$$

$$pq = (a + bi)(\cos \theta + i \sin \theta)$$

$$a' + b'i = a\cos \theta - b\sin \theta + (a\sin \theta + b\cos \theta)i$$

An Aside

Point $P = x + iy = r\cos\theta + ir\sin\theta$

Euler's formula: $e^{ix} = cosx + isinx$

$$\therefore P = re^{i\theta}$$

Where is $e^{\pm i\pi/2}$?

Euler's identity: $e^{i\pi} + 1 = 0$

Stretch!

```
Stand up
Use your left hand
Real axis points forward
Imaginary axis points up
Show:
   1+i
  e^{-i\pi/3}
```

Test your knowledge

If $re^{i\theta}$ is multiplied by i, the corresponding vector is:

- A) Reflected about the x-axis
- B) Reflected about the y-axis
- C) Rotated 90 degrees counterclockwise
- D) Rotated 90 degrees clockwise

Test your knowledge 2

$$(re^{i\theta})(se^{i\alpha})$$

If $re^{i\theta}$ is multiplied by se^{ilpha} , the corresponding vector is?

Get with a partner, write **big** on a blank sheet of paper (or the back of your plicker card). We will hold up answers when finished.

$$(re^{i\theta})(se^{i\alpha}) = rse^{i(\theta + \alpha)}$$

In other words

Multiplying by i = rotate counterclockwise by 90 degrees Multiplying by $se^{i\alpha}$ rotates counterclockwise by α and scales by s

Extending to 3D Space: Quaternions

Add 2 additional imaginary numbers to our number system *i, j, k* are all roots of -1

Quaternion general form: q = s + xi + yj + zk where $s, x, y, z \in \mathbb{R}$

i.e., s, x, y, and z are just normal numbers (x,y,z correspond to our normal x,y,z axis)

Hamilton's equation: $i^2 = j^2 = k^2 = ijk = -1$

Quaternions

Anti-commutative:

$$ij = k$$
 $jk = i$ $ki = j$
 $ji = -k$ $kj = -i$ $ik = -j$

Note similarity to Cartesian cross product:

$$\mathbf{x} \times \mathbf{y} = \mathbf{z}$$
 $\mathbf{y} \times \mathbf{z} = \mathbf{x}$ $\mathbf{z} \times \mathbf{x} = \mathbf{y}$ $\mathbf{y} \times \mathbf{x} = -\mathbf{z}$ $\mathbf{z} \times \mathbf{y} = -\mathbf{x}$ $\mathbf{x} \times \mathbf{z} = -\mathbf{y}$

Visualizing i,j,k

What happens if we multiply a quaternion by i?

```
q = s + xi + yj + zk

iq = ?

qi = ?
```

```
\begin{array}{lll} ij=k & jk=i & ki=j \\ ji=-k & kj=-i & ik=-j \end{array}
```

What happens if we multiply a quaternion by i?

$$q = s + xi + yj + zk$$

$$iq = si - x + yk - zj$$

$$qi = si - x - yk + zj$$

$$iqi = -s - xi + yj + zk$$

 $-iqi = s + xi - yj - zk$
(rotation in the jk-plane)

$$ij = k$$
 $jk = i$ $ki = j$
 $ji = -k$ $kj = -i$ $ik = -j$

Visualization

-iqi rotates by Θ "about i" (in the jk-plane)

Similar methods for rotating through the other planes

Visualization

http://quaternions.online/

Why are quaternions helpful?

Interpolation!

Can avoid gimbal lock

SLERP

Spherical Linear Interpolation

Allows us to smoothly interpolate between two orientations with ease in/out

 q_1 = starting orientation

 q_2 = end orientation

t = time (how fast the interpolation happens) – ranges [0,1]

p = start point

p' = end point

LERP: $p' = p_1 + t(p_2 - p_1)$

SLERP: same idea, but we are interpolating across the 4D sphere formed by the quaternion

Unity Demo

For more info: https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html

THANKS!

Professor Dan Szafir

Computer Science & ATLAS Institute
University of Colorado Boulder