Linear Algebra Notes

Ishaan Dey | Spring 2020

MATH 3350 | Holt Linear Algebra 2nd Ed.

Ch 1

1.2 Intro stuff

<u>Thm</u>: Any system of linear eqs has either 0, exactly 1, or ∞ many solutions

How to: check how many solutions there are in a given system of eq:

If there last line is 0 = c, then there is $no\ solution$

If not, are there free variables? If so, there are inf many solutions, otherwise 1 solutions.

Thm: Homogenous systems ALWAYS are consistent, aka they have either 1 or inf many solutions.

This is b/c the trivial solution will always exist when $A\mathbf{x}=0$

Ch 2

2.1 Linear Combinations

How to: find all vectors $\binom{a}{b}$ s.t. $c_1u_1+c_2u_2=\binom{a}{b}$? > Augment the vector with $\binom{a}{b}$ and row reduce, the remaining things in the augment become the scalars c_1,c_2

<u>How to</u>: show that a certain vector \mathbf{b} cannot be obtained as a linear combination of some other vectors? > Augment the matrix with b then row reduce, you'll find an inconsistent set with 0 = c

2.2 Spans

 $\underline{ ext{Definition}}$ of $span\{\mathbf{u_1} \ldots \mathbf{u_m}\}$ is the set of ALL linear combinations

<u>How to</u>: See if some vector \mathbf{v} is an element of $span\{u_1, u_2, \dots, u_m\}$? > iff the linear system w/ \mathbf{v} as the augment has a solution

<u>Thm</u>: IF \mathbf{u}, \mathbf{v} are in $span\{\mathbf{u_1...u_m}\}$, THEN $\mathbf{u} + \mathbf{v} \& a\mathbf{u}$ are in that span (linear combinations of the vectors are in that span)

How to: Find a vector b not in a given span of vectors?

- > Set matrix equal (by augment) to some (a, b, c), and track what happens to it until row reduced.
- > If the row is [0 0 0 | f(c)], then any vector that has f(c) \neq 0 is not in the span

 $\underline{\mathsf{Thm:}}\,(span\{u_1\ldots u_m\}=\mathbb{R}^n)\iff (\mathsf{B}\;\mathsf{has}\;\mathsf{a}\;\underline{\mathsf{pivot}}\;\mathsf{in}\;\mathsf{every}\;\underline{\mathsf{row}})$

How to: check if a set of vectors span \mathbb{R}^n ?

- > Row reduce the matrix augmented with $[a\ b\ c]$
 - > Check if there is a row of 0s, which would imply that there could be a vector not in that span
- > If there is a pivot in every row, there are either 1 or inf many ways to get to any point in \mathbb{R}^n (depending on if there are free variables in any of the columns)

<u>How to</u>: Find what values of h in a $n \times m$ matrix allow it to span \mathbb{R}^n ?

- a. Row reduce the matrix, moving the h down as needed to the last row.
- b. The vectors in A span \mathbb{R}^n iff there is a trivial solution, which only occurs when $f(h) \neq 0$
- c. The final answer should be all vectors with $\{h|h \neq 27\}$ or something

<u>How to:</u> find $span(\{\mathbf{a_1...a_m}\})$ (aka the columns of T)?

<u>Thm:</u> For a given set of *m* vectors in \mathbb{R}^n :

- a. IF m < n, THEN the set does <u>not</u> span \mathbf{R}^n (b/c theres no way to have a pivot in every row)
- b. IF $m \ge n$, THEN the set could span \mathbf{R}^n (depends on whether or not they are linearly independent)

 $\underline{\mathsf{Thm}} \colon \ \mathbf{b} \ \epsilon \ span\{\mathbf{a_1...a_m}\} \ in \ \mathbb{R}^n \iff A\mathbf{x} \ = \mathbf{b} \ \mathsf{has} \ \mathsf{at} \ \mathsf{least} \ \mathsf{1} \ \mathsf{solution}$

2.3 Linear Independence

<u>Definition</u>: IF the only way to express $\mathbf{0}$ as a linear combination of \mathbf{A} is the trivial solution $\mathbf{0}$, THEN the system is *linearly independent*. Nontrivial solutions imply *linear dependence*.

<u>Thm</u>: $(A_X = 0)$ has only the trivial solution) \iff $(\{a_1 \dots a_m\})$ is linearly independent)

How to: Check if a sustem is linearly independent?

> Set the sytem equal to ${f 0}$, and row reduce. The only solution should be ${f x}={f 0}$ (which will happen when there is a pivot in every column)

<u>Thm:</u> (*m* vectors in \mathbb{R}^n are linearly independent) \Longrightarrow ($m \le n$)

(b/c you can't have pivots in every column if there are too many columns)

(in other words, there are more variables than equations in the system)

<u>Thm:</u> For a given set of m vectors in \mathbb{R}^n :

- a. $(span\{u_1 \ldots u_m\} = \mathbb{R}^n) \iff ext{(B has a pivot in every } \underline{row})$
- b. $(\{u_1 \dots u_m\})$ are linearly independent $) \iff (B \text{ has a pivot in every } \underline{column})$

How to: Check if one vector lies in the span of others in a set?

- a. Row reduce the matrix augmented with 0
- b. If B does not have a pivot in every column \implies the system is linearly dependent \implies one of the vectors lies in the span of the others

General vs. Particular Solutions to Ax=0

<u>Thm</u>: $\mathbf{x_g} = \mathbf{x_p} + \mathbf{x_h}$, where $\mathbf{x_g}$ is the solution to $\mathbf{Ax} = \mathbf{b}$, $\mathbf{x_h}$ is the solution to the associated homogenous system $\mathbf{Ax} = \mathbf{0}$, and $\mathbf{x_p}$ is a particular solution to $\mathbf{x_g}$

<u>Thm:</u> For a given set of vectors $\{a_1 \dots a_m\}$ and b in \mathbb{R}^n :

a. (
$$\{a_1 \ldots a_m\}$$
 are linearly independent) \iff $(Ax = b)$

Ch 3

3.1 Linear Transformations

<u>Definition</u>: A transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is <u>linear</u> if both:

a.
$$T(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u}) + \mathbf{A}(\mathbf{v}) = \mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})$$

b.
$$T(r\mathbf{u}) = \mathbf{A}(r\mathbf{u}) = r\mathbf{A}(\mathbf{u}) = rT(\mathbf{u})$$

<u>Thm</u>: $T(\mathbf{x}) = \mathbf{A}\mathbf{x} \implies T$ is a linear transformation, where A is a nxm matrix, and T goes from \mathbf{R}^m to \mathbf{R}^n

How to: Check if a given transformation is linear:

- a. Convert the system into a matrix A
- b. Plug in the vectors $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ for ${\bf u}$ and $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ for ${\bf v}$ to prove the general case true
- c. Try the basis vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ independently and check if the output fails to prove *false*

How to: Find range(T), where $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$:

- a. $range(T) = span(\{\mathbf{a_1 \dots a_m}\})$
- b. range is the set of linear combinations of the columns of A

How to: Check if a given vector \mathbf{w} is in $range(\mathbf{T})$:

a. Make matrix of $[\mathbf{A}\ | \mathbf{w}]$ and solve

One-to-One vs Onto

<u>Definition</u>: A transformation is *one-to-one* when there's at most one input that maps to an output

<u>Definition</u>: A transformation is *onto* when no element in the codomain B is left ou\

<u>Thm</u>: Given $T: \mathbb{R}^m \to \mathbb{R}^n$ and $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where **B** is A in row-echelon form:

1a. (T is one-to-one) \iff (columns of A are linearly independent) \iff (B has a pivot in every column)

1b. $n < m \implies$ T is not one-to-one (aka if output space is smaller than input space)

2a. (T is onto) \iff (columns of A span the codomain \mathbb{R}^n aka $range(T) = \mathbb{R}^n$) \iff (B has a pivot in every row)

2b. $n > m \implies T$ is not onto (aka if output space is bigger than input space)

- > "No matrix that goes from bigger space to smaller space can be one-to-one"
- > "No matrix that goes from small space to bigger space can be onto"

Geometry of transformations

<u>How to</u>: Rotate a vector CCW by θ :

a.
$$T_r(\mathbf{x}) = egin{pmatrix} cos(heta) & -sin(heta) \ sin(heta) & cos(heta) \end{pmatrix} \mathbf{x}$$

How to: Shear to the right:

a.
$$T_r(\mathbf{x}) = \begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} \mathbf{x}$$

3.2 Matrix Algebra

Properties of Elementary Matrices

a.
$$A(BC) = (AB)C$$

b.
$$A(B+C)=AB+AC$$

c.
$$(A+B)C = AC + BC$$

$$\mathsf{d.}\ s(AB) = (sA)B = A(sB)$$

e.
$$AI = IA = A$$

Non-Properties of Nonzero Matrices

a. It is possible that $AB \neq BA$

b.
$$AB=0$$
 does not imply that $A=0$ and $B=0$

c. AC = BC does not imply that A = B or C = 0 (unless A is invertible)

Transpose of a Matrix

a.
$$(A + B)^T = A^T + B^T$$

b.
$$(sA)^T = sA^T$$

c.
$$(AC)^T = C^T A^T$$

3.3 Inverses

Definition: If T is a linear transformation, Then

- a. T has an inverse $\implies m = n$
- b. If T is invertible, then T^{-1} is also a linear transformation

 $(T \text{ is invertible}) \iff (T \text{ is one-to-one AND onto})$

How to: find an invertible matrix A^{-1} ?

a. Augment matrix A with I_n , then row reduce until you get I_n augmented with A^{-1} (aka $[A|I_n] o [I_n|A^{-1}]$)

Thm: Elementary matrices are invertible

Properties of Inverses

a.
$$(A^{-1})^{-1} = A$$

b.
$$(AB)^{-1} = B^{-1}A^{-1}$$

c.
$$AC = AD \implies C = D$$

d.
$$AC=0_{nm} \implies C=0_{nm}$$

Ch 4

4.1 Subspaces

<u>Definition</u>: A subset of S is a subspace if all three conditions are true:

- a. S contains 0 (S contains the origin)
- b. If \mathbf{u} and \mathbf{v} are both in S, then $(\mathbf{u} + \mathbf{v})$ is in S (S is closed under addition)
- c. If $r \in \mathbb{R}$, then $r\mathbf{u}$ is also in S (S is closed under scalar multiplication)

<u>Thm</u>: If $S = span\{\mathbf{u_1...u_m}\}$ in \mathbb{R}^n , then S is a subspace of \mathbb{R}^n

How to: Check if S is a subspace?

- a. Check if 0 is in S, which it must be to be a subspace
- b. Try to show S is generated by a set of vectors (See if it can be composed as a matrix of coefficients)

<u>Definition</u>: If **A** is a $n \times m$ matrix, then the set of solutions to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is called $null(\mathbf{A})$

(aka the null space is all linear combinations where $\mathbf{A}\mathbf{x}=\mathbf{0}$)

(aka the null space is the solution to the homogenous system)

Thm: If **A** is a $n \times m$ matrix, then the set of solutions to $\mathbf{A} \times \mathbf{a} = \mathbf{0}$ forms a subspace of \mathbb{R}^m (aka null space is a subspace)

<u>Thm</u>: Given $T: \mathbb{R}^m \to \mathbb{R}^n$ is a *linear* transformation:

- a. ker(T) is a subspace of the domain \mathbb{R}^m
- b. range(T) is a subspace of the codomain \mathbb{R}^n
- > "The kernel is the set of vectors that are sent to $\{0\}$ after applying T"
- > "The range of T is the span after applying T"

How to: Find ker(T) of $T(\mathbf{x}) = A(\mathbf{x})$?

a.
$$(T(\mathbf{x}) = \mathbf{A}\mathbf{x}) \implies (ker(T) = null(A))$$
, so solve for $\mathbf{A}\mathbf{x} = \mathbf{0}$, and $ker(T)$ is the span of that answer

How to: Find null(T) of $T(\mathbf{x}) = A(\mathbf{x})$?

a. $range(T) = span(\mathbf{a_1...a_m})$, so just delete any linearly dependent columns of $\mathbf A$ and that's your answer

 $\underline{\mathsf{Thm}}$: (T is one-to-one) \iff ($ker(T) = \{\mathbf{0}\}$)

4.2 Basis vectors

<u>Definition</u>: Set $B = \{\mathbf{u_1...u_m}\}$ is a *basis* of subspace S iff:

- a. B spans S
- b. B is linearly independent

"To get to any point in S, you can take a linear combination of the basis vectors to get there"

<u>How to</u>: find a basis for $S = \text{span}\{u_1 \dots u_m\}$?

Method 1 (Thm 4.10):

- a. Create a matrix $\begin{pmatrix} u_1 \\ \dots \\ u_m \end{pmatrix}$
- b. Row reduce to B
- c. The nonzero rows of B give a basis of S

Method 2 (Thm 4.11):

- a. Create a matrix out of $\{\mathbf{u_1...u_m}\}$
- b. Row reduce to B. The pivot columns of B are linearly independent (the other cols will depend on the pivot columns)
- c. The columns of A corresponding to the pivot columns of B form a basis of S.

Dimension

<u>Thm</u>: If S is a subspace of \mathbb{R}^n , then every basis of S has the same number of vectors

<u>Definition</u>: If S is a subspace of \mathbb{R}^n , then the dimension of S is the number of vectors in any basis of S

<u>Thm</u>: If $U = \{\mathbf{u_1 \dots u_m}\}$ is a set of m vectors in subspace S of dimension m, if U is *either* linearly independent or spans S, THEN U is a basis for S.

<u>Unifying Theorem</u>: Given $S = \{a_1 \dots a_m\}, \{a_1 \dots a_m\} \in \mathbb{R}^n, A = [\mathbf{a_1} \dots \mathbf{a_m}], \text{ and } T : \mathbb{R}^m \to \mathbb{R}^n, T(\mathbf{x}) = A\mathbf{x}$:

- a. S spans \mathbb{R}^n
- b. S is linearly independent
- c. $A\mathbf{x} = \mathbf{b}$ has precisely 1 unique solution $\forall \ b \ \epsilon \ \mathbb{R}^n$
- $\mathsf{d}.\ T$ is onto
- e. T is one-to-one
- f. A is invertible
- g. $ker\{T\} = \{\mathbf{0}\} \iff null(A) = \{\mathbf{0}\}$
- h. S is a basis of \mathbb{R}^n

Ch 4.3 Row and Column Spaces

<u>Definition</u>: Given A is a $n \times m$ matrix:

- a. row(A) or row space is the subspace of \mathbb{R}^{m} spanned by *row vectors* of A
- b. col(A) or column space is the subspace of \mathbb{R}^{n} spanned by column vectors of A

How to:

<u>Thm</u>: Given matrix A and B in echelon form:

- a. Nonzero rows of B form a basis for row(A)
- b. The cols of A corresponding to pivot columns of B form a basis for col(A)

<u>Thm</u>: For any matrix A, the dimension of row(A) equals the dimension of col(A)

<u>Definition</u>: rank(A) is the dimension of row(A) or col(A)

Rank-Nullity Thm: IF A is a $n \times m$ matrix, THEN rank(A) + nullity(A) = m*Note: ker(T) is null(A), and range(T) is col(A)

<u>Thm</u>: IF A is a $n \times m$ matrix, and \mathbf{b} is a vector in \mathbb{R}^n :

- a. The system $A\mathbf{x} = \mathbf{b}$ is consistent $\iff \mathbf{b}$ is in col(A)
- b. The system $A\mathbf{x} = \mathbf{b}$ has a unique solution \iff **b** is in col(A) and columns of A are linearly independent

<u>Unifying Theorem</u>: Given $S=\{a_1\dots a_m\},\{a_1\dots a_m\}\epsilon\mathbb{R}^n,A=[\mathbf{a_1}\dots\mathbf{a_m}]$, and $T:\mathbb{R}^m\to\mathbb{R}^n,T(\mathbf{x})=A\mathbf{x}$:

- a. S spans \mathbb{R}^n
- b. S is linearly independent

c. $A\mathbf{x} = \mathbf{b}$ has precisely 1 unique solution $\forall \ b \ \epsilon \ \mathbb{R}^n$

d. T is onto

e. T is one-to-one

f. A is invertible

g.
$$ker\{T\} = \{\mathbf{0}\} \iff null(A) = \{\mathbf{0}\}$$

h. S is a basis of \mathbb{R}^n

i.
$$col(A) = \mathbb{R}^{\mathrm{n}}$$

j.
$$col(A) = \mathbb{R}^n$$

$$\mathsf{k.}\ rank(A) = n$$

Ch 4.4 Change of Basis

<u>Definition</u>: Suppose that $B=\{\mathbf{u_1...u_n}\}$ forms a basis of \mathbb{R}^n , and if $\mathbf{y}=y_1\mathbf{u_1}+\ldots+y_n\mathbf{u_n}$:

THEN: The *coordinate vector of
$$y$$
 w.r.t. *B** is $[\mathbf{y}]_B = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$

"the coordinate vector contains the coeffs required to express y as a linear combination of vectors in basis B"

$$Uegin{pmatrix} y_1 \ \dots \ y_n \end{pmatrix} = y_1 \mathbf{u_1} {+} \dots {+} y_n \mathbf{u_n}$$

 $\mathbf{y} = U[\mathbf{y}]_B$; where U is the *change of basis matrix* that transforms the coordinate vector wrt B back to the standard basis

(U is just the n x n matrix containing the basis vectors of set B: $[\mathbf{u_1...u_n}]$)

<u>Thm</u>: Let \mathbf{x} be expressed wrt standard basis, and $B = \{\mathbf{u_1...u_n}\}$ be any basis for \mathbb{R}^n :

If U =
$$[\mathbf{u_1...u_n}]$$
, then: $\mathbf{x} = U[\mathbf{x}]_B$ and $[\mathbf{x}]_B = U^{-1}\mathbf{x}$

How to: Move from one nonstandard basis to another?

If $B_1 = \{\mathbf{u_1} \dots \mathbf{u_n}\}$ corresponds to U and $B_2 = \{\mathbf{v_1} \dots \mathbf{v_n}\}$ corresponds to V, then:

$$[\mathbf{x}]_{B_2} = V^{-1}U[\mathbf{x}]_B$$

$$[{f x}]_{B_1} = U^{-1} V[{f x}]_{B_2}$$

> "To go from basis 1 to basis 2, apply U to go into standard basis, then apply $\,V^{-1}\,$ to return to basis 2 land"