

- **Fase 02:** Estimación de Pesos
- **03** Proximos pasos

FASE 01: Análisis descriptivo de variables

Objetivo del proyecto

Se realizó un análisis descriptivo exhaustivo para identificar y revisar:

- Distribución de variables independientes.
- Limpieza de variables.
- o Incorporación de nuevas variables para análisis.
- o Disponibilidad de datos temporales.
- o Validación de supuestos entre variables existentes.
- o Asociaciones entre variables existentes y la TEA.

Puntos revisados

- Validación de incorporación de nuevas variables a sabana TEA.
- · Análisis de la relación existente entre:
 - o TEA, precipitación y calidad de racimos
 - o TEA, precipitación y polinizadores
 - o TEA y los niveles de perdida en fábrica.
 - o TEA y la calidad de racimos.
 - o TEA y los niveles de saldos en campo
 - o TEA y los niveles de participación de Propios y Terceros
- Análisis de la relación existente entre precipitaciones y malformados
- Análisis de la relación existente entre la acidez y la calidad de racimos.

FASE 01: Análisis descriptivo de variables

Hallazgos encontrados

Nuevas variables validadas a nivel de completitud de datos para incorporar en sábana TEA

Acidez
 Pre

Precipitación

Participación RFF

Radiación

Temperatura

Humedad

Niveles de asociación detectados entre variables:

- Asociaciones negativas entre la <u>PRECIPITACION</u> y <u>TEA</u> cada 7 meses en promedio. Niveles mayores de lluvia van a generar menores niveles de TEA luego de 7 meses.
- **Asociaciones positivas** entre la <u>PRECIPITACION</u> y la cantidad de <u>MALFORMADOS</u> cosechados cada 8 meses en promedio. Niveles mayores de Iluvia van a generar mayores niveles de MALFORMADOS luego de 8 meses.
- Asociaciones positivas entre los <u>POLINIZADORES</u> y la <u>TEA</u> cada 4 meses en promedio. Niveles mayores de insectos polinizadores van a generar mayores niveles de TEA luego de 4 meses.
- Asociaciones negativas entre los niveles de PERDIDAS DE ACEITE EN FABRICA y la TEA en temporada alta. Mayores niveles de perdidas en aceite van a generar menores niveles de TEA.
- Asociaciones negativas entre los niveles de SALDOS EN CAMPO y la TEA. Mayores niveles de saldos en campo van a generar menores niveles de TEA.
- **Asociaciones positivas fuertes** entre los niveles de ACIDEZ y SOBRE MADUROS. Mayores niveles de racimos sobre maduros van a generar mayores niveles de acidez.
- Asociaciones positivas fuertes entre los niveles de ACIDEZ y la FRECUENCIA DE COSECHA. Mayores niveles de frecuencias de cosecha van a generar mayores niveles de acidez.

Variables que impactan en la TEA:

- Calidad de racimos
- · Pérdidas en fábrica
- Saldos en campo
- Polinizadores
- Precipitación

Objetivo del proyecto

Desarrollar modelos predictivos por plantaciones que asignen pesos a las variables influyentes en la TEA con el objetivo priorizar acciones de mejora.

Puntos revisados

- Construcción de modelos de explicabilidad a nivel de pesos de influencia. Creación de 4 modelos de pesos.
- Generación de pesos en base a porcentajes de importancia de explicabilidad por cada modelo.
- Simulaciones iniciales de variaciones de TEA según variaciones de volúmenes de variables

Hallazgos encontrados

Niveles de explicabilidad logrados con los modelos generados:

❖ Modelo sede shanusi:

- o 20 variables consideradas (Calidad de racimos propios, de terceros, perdidas fábrica, estacionalidad, precipitación, saldo en campo, polinizadores).
- o <u>81.5% de explicabilidad</u> lograda con las variables consideradas.

❖ Modelo sede Tulumayo:

- o <u>13 variables consideradas</u> (calidad racimos de terceros, perdidas fábrica, estacionalidad, precipitación).
- o 75% de explicabilidad lograda con las variables consideradas.

❖ Modelo Palmawasi:

- o <u>20 variables consideradas</u> (Calidad de racimos propios, de terceros, perdidas fábrica, estacionalidad, precipitación, saldo en campo, polinizadores).
- o 69% de explicabilidad lograda con las variables consideradas.

❖ Modelo Nuevo Horizonte:

- o <u>13 variables consideradas</u> (calidad racimos de terceros, perdidas fábrica, estacionalidad, precipitación).
- o 81% de explicabilidad lograda con las variables consideradas.

Generación de pesos en base a niveles de importancia:

Importancia pesos sede shanusi:		Importancia pesos sede Tulumayo	:	❖ Importancia pesos sede Palmawasi:		
 Calidad racimos propios 	(27.5%)	 Perdidas fábrica 	(47.3%)	 Perdidas fábrica 	(24.4%)	
 Perdidas fábrica 	(26.9%)	 Calidad racimos terceros 	(19.5%)	 Calidad racimos propios 	(19.5%)	
 Calidad racimos terceros 	(14.1%)	 Precipitación 	(6.2%)	 Calidad racimos terceros 	(9.7%)	
 Estacionalidad 	(9.5%)	 Estacionalidad 	(2%)	 Precipitación 	(6%)	
 Precipitación 	(2.1%)	 Otras variables no consideradas 	(25%)	 Estacionalidad 	(5.7%)	
 Polinizadores 	(1.3%)			 Saldo en transporte 	(2.1%)	
 Saldo en transporte 	(0.1%)	❖ Importancia pesos sede Nuevo Ho	rizonte:	 Polinizadores 	(1.7%)	
 Otras variables no consideradas 	(18.5%)	Perdidas fábrica	(34%)	 Otras variables no consideradas 	(31%)	
		 Calidad racimos terceros 	(33.2%)			
		 Precipitación 	(9.8%)			
		 Estacionalidad 	(4%)			
		 Otras variables no consideradas 	(19%)			

Hallazgos encontrados

Estimaciones de TEA en base a estimaciones de volúmenes:

❖ Sede shanusi:

Volúmenes reales 2da sem sep.

> **Racimos** propios (6,218 TN)

Racimos terceros (595 TN)

Perdida aceite fábrica (127 TN)

> Saldos en campo (330 TN)

TEA = 22.82%

Volúmenes reducidos 2da sem sep.

> **Racimos** propios (6.140 TN)

> > Racimos terceros (594 TN)

Perdida aceite fábrica (120.8 TN)

> Saldos en campo (313 TN)

TEA = 22.99%

❖ Sede Tulumayo:

Volúmenes reales 2da sem sep.

Volúmenes reducidos 2da sem sep.

Racimos terceros (2120 TN) (2114 TN)

Perdida aceite fábrica (43.5 TN)

TEA = 22.62%

Racimos terceros

Perdida aceite fábrica (41.3 TN)

TEA = 22.83%

❖ Sede Palmawasi

Volúmenes reales 2da sem sep.

Volúmenes reducidos 2da sem sep.

Racimos propios (6,218 TN)

Racimos terceros (595 TN)

Perdida aceite fábrica (127 TN)

> Saldos en campo (330 TN)

TEA = 22.82%

Racimos propios (6,140 TN)

Racimos terceros (594 TN)

Perdida aceite fábrica (120.8 TN)

> Saldos en campo (313 TN)

TEA = 22.99%

Reduciendo el volumen de racimos, perdidas y saldos en -5% sobre sus volúmenes actuales

Reduciendo el volumen de racimos, perdidas y saldos en -5% sobre sus volúmenes actuales

Reduciendo el volumen de racimos, perdidas y saldos en -5% sobre sus volúmenes actuales

Hallazgos encontrados

Estimaciones de TEA en base a estimaciones de volúmenes:

❖ Sede Nuevo Horizonte:

Volúmenes reales Volúmenes reducidos 2da sem sep. 2da sem sep.

Racimos terceros (2,096 TN) Racimos terceros (2,092 TN)

Perdida aceite fábrica (44.9 TN) Perdida aceite fábrica (42.6 TN)

TEA = 23.61%

TEA = 22.87%

Reduciendo el volumen de racimos, perdidas y saldos en -5% sobre sus volúmenes actuales

Recomendaciones finales - proyecto analítico

Pendientes Proyecto analítico:

❖ Mejorar los niveles de explicabilidad:

- o Incrementar en 20% el volumen de datos (añadir más meses al análisis/ solicitud de data faltante a jefes agrícolas) para pasar de niveles de explicabilidad de 75% a 80% haciendo énfasis en hacer predicciones menos volátiles.
- o incorporar nuevas variables a los modelos ya generados para incrementar los niveles de explicablidad de 80% a 85%.
- o Analizar las diferentes medidas de potencial de aceite por variable y validar su nivel de influencia en la TEA.
- o Analizar el nivel de asociación de la TEA con las <u>pérdidas en escobajo</u> (merma). Validar si las perdidas actuales de merma del 20% influencian niveles bajos de TEA.
- Analizar la influencia de la edad de plantación y su relación con el potencial de aceite. Validar si los años de crecimiento de plantaciones generan niveles diferentes de potencial.
- Generación de simulaciones según variaciones de volúmenes de variables.
 - o Validar con jefes agrícolas los resultados de simulaciones. Reuniones semanales para realizar ajustes a los modelos.
- ❖ Creación de reportería en Power BI mostrando simulaciones de volúmenes e impactos sobre la TEA.

Pendientes requerimientos UpStream/ DownStream

**	Cam	bio d	de S	Stand	ares c	le tr	icanter

Cambio de Standares en malformados

Cambio de pérdidas en transporte

Plan de muestreo

Análisis de color de aceite

* Reporte de evaluación de RFF

Cálculo de potencial de aceite ponderado

Pruebas de hipótesis para pérdidas (base seca)

Prueba de hipótesis para pérdidas (base única)

❖ Correlaciones entre %POP vs SFC 0° Índice de refracción

Optimización y presentación de desviaciones

(solicitado: 1 sola vez) (Negocio: UpStream)

(solicitado: 1 sola vez) (Negocio: DownStream)

(solicitado: cada semana) (Negocio: UpStream)

(solicitado: cada mes) (Negocio: UpStream)

(solicitado: 1 sola vez) (Negocio: UpStream)

(solicitado: 1 sola vez) (Negocio: UpStream)

(solicitado: 1 sola vez) (Negocio: DownStream)

(solicitado: 1 sola vez) (Negocio: DownStream)

