# controller block diagram



## **Circuit Description**



Figure 2: **CC2500** Simplified Block Diagram

A simplified block diagram is shown in Figure 2.

CC2500 RF module features a low-IF receiver. The received RF signal is amplified by the low-noise amplifier (LNA) and down-converted in quadrature (I and Q) to the intermediate frequency (IF). At IF, the I/Q signals are digitised by the ADCs. Automatic gain control (AGC), fine channel filtering demodulation bit/packet synchronization is performed digitally.

The transmitter part of RF Module **CC2500** is based on direct synthesis of the RF frequency. The

# **Application Circuit**

Application circuit is shown in Figure 3. The external components are described in Table 1.

frequency synthesizer includes a completely on-chip LC VCO and a 90 degrees phase shifter for generating the I and Q LO signals to the down-conversion mixers in receive mode.

A crystal is to be connected to XOSC\_Q1 and XOSC\_Q2. The crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the ADC and the digital part.

A 4-wire SPI serial interface is used for configuration and data buffer access.

The digital baseband includes support for channel configuration, packet handling and data buffering.

#### **Bias resistor**

The bias resistor R171 is used to set an accurate bias current.

### **Balun and RF matching**

C122, C132, L121 and L131 form a balun that converts the differential RF port on **CC2500** to a single-ended RF signal (C121 and C131 are also needed for DC blocking). Together with an appropriate LC network, the balun components also transform the impedance to match a  $50\Omega$  antenna (or cable).