

Современные технологии в селекции растений. Начальный уровень. 6 февраля, 2023

Молекулярные механизмы изменчивости признаков

Анализ наследования качественных признаков

→ Молекулярные механизмы изменчивости признаков

→ Наследование дискретных признаков. Статистическая проверка гипотез. Генетическое сцепление.

→ Генетические последствия самоопыления и панмиксии

→ Методы ускорения селекционного процесса: молекулярные технологии

Изменчивость качественных признаков обусловлена молекулярным полиморфизмом небольшого числа генов, изменяющих функции кодируемых белков

"Жизнь – есть форма существования белковых тел..." (Энгельс, 1883)

The video: https://xvivo.com/inner-life-of-the-cell/, YouTube: Жизнь клетки Inner Life Of A Cell Full Version Русская озвучка

Белки выполняют бесчисленные функции в клетках живых организмов

The video: http://pdb101.rcsb.org/learn/videos/what-is-a-protein-video, YouTube: wvTv8TqWC48

Несмотря на многообразие выполняемых функций, все белки представляют собой полимеры, собранные из одних и тех же мономеров - 20 аминокислот

The video: http://pdb101.rcsb.org/learn/videos/what-is-a-protein-video, YouTube: wvTv8TqWC48

20 аминокислот сходны по строению и различаются между собой лишь своим «радикалом» (**R**). Именно радикал определяет структуру и свойства конкретной аминокислоты

Аминокислоты соединяются между собой пептидными связями, образуя полипептидную цепь – первичную структуру белковой молекулы

Аминокислоты соединяются между собой пептидными связями, образуя полипептидную цепь – первичную структуру белковой молекулы

The video: http://pdb101.rcsb.org/learn/videos/what-is-a-protein-video

Последовательность аминокислот в полипептидной цепи определяет вторичную структуру белковой молекулы...

The video: http://pdb101.rcsb.org/learn/videos/what-is-a-protein-video

Последовательность аминокислот в полипептидной цепи определяет вторичную и третичную структуру белковой молекулы

Например, субъединицы гемоглобина должны правильно взаимодействовать с кофактором – гемом, несущим атом *F*e. Неправильная третичная структура белка влияет на взаимодействие.

Гемоглобин – пример белковой молекулы с четвертичной структурой

Пример: четыре полипептидные цепи формируют одну функциональную белковую молекулу гемоглобина. В нормальном состоянии человеческий гемоглобин (HbA) – тетрамер, состоящий из двух альфа- и двух бета субъединиц

В каждом эритроците ~ 280 млн молекул гемоглобина

Лишь одна аминокислотная замена (Glu → Val) в полипептидной цепи гемоглобина может привести к изменению структуры белка и вызвать болезнь

Нормальные эритроциты

Серповидно-клеточная анемия

Сравнение молекулы нормального гемоглобина и гемоглобина с измененной структурой, вызывающей серповидно-клеточную анемию

Normal Hemoglobin

Sickle Cell Hemoglobin

Нормальный гемоглобин содержит отрицательно заряженную, полярную и гидрофильную <u>глутаминовую кислоту</u>. Гемоглобин серповидных клеток содержит <u>валин</u>, который имеет неполярный радикал, располагающийся на поверхности молекулы. В результате этой замены растворимость гемоглобина резко падает, эритроциты, несущие гемоглобин S, деформируются из-за кристаллизации в них гемоглобина.

Изменчивость фенотипического признака часто можно объяснить лишь одной аминокислотной заменой в белковой молекуле, формирующей этот фенотип

→ Используя гемоглобин в качестве примера, мы убедились что порядок следования аминокислот в полипептидной цепи непосредственным образом влияет на изменчивость фенотипических признаков

→ Следующий вопрос – какой биологический механизм задает порядок следования аминокислот в первичной структуре белковой молекулы?

Как изменчивость внешних признаков детерминируется на уровне ДНК?

Геном располагается в ядре клетки

The video: https://www.yourgenome.org/video/from-dna-to-protein

Например, геном человека распределен между 23 парами хромосом

Двойная спираль ДНК состоит из двух антипараллельных цепей

Каждая цепь состоит из последовательности четырех нуклеотидов: A, C, T и G.

Точный порядок следования нуклеотидов в молекуле ДНК задает (кодирует) информацию

Эта система кодирования похожа на двоичную (0/1) систему кодирования компьютеров

Одна цепь ДНК – комплементарное «отображение» второй цепи: "А" комплементарно "Т"; "С" комплементарно "G"

Таким образом, зная последовательность одной цепи ДНК, всегда можно «собрать» и вторую

Лишь 1% от трех миллиардов нуклеотидов генома человека непосредственно кодирует белки. Этот 1% кодирующих участков ДНК мы называем генами

Информация о первичной структуре белковой молекулы кодируется точным порядком следования нуклеотидов в гене. Один ген – один белок.

ДНК располагается в ядре, а синтез белковой молекулы происходит в цитоплазме. Информация о структуре синтезируемого белка должна быть «доставлена» из ядра в цитоплазму специальной молекулой – информационной РНК (иРНК). Процесс называется транскрипцией.

Процессинг иРНК. Что такое интрон и экзон гена?

Процессинг иРНК. Что такое интрон и экзон гена?

Биологическое значение процессинга иРНК - получение различных комбинаций экзонов гена, а значит, получения большего разнообразия белков, кодируемых одной нуклеотидной последовательностью ДНК

У человека 94 % генов подвержено альтернативному сплайсингу

В ходе сплайсинга из мРНК участки, не кодирующие белок (интроны) удаляются, а экзоны - участки, кодирующие аминокислотную последовательность, соединяются друг с другом, и незрелая пре-мРНК превращается в зрелую мРНК, с которой синтезируются (транслируются) белки клетки.

Рибосомы, на которых происходит синтез полипептида, располагаются в цитоплазме клетки

иРНК перемещается из ядра в цитоплазму через ядерную пору

В цитоплазме рибосомы прикрепляются к «прибывшей» из ядра иРНК

Рибосома считывает код с информационной РНК, синтезируя полипептид. Процесс называется трансляцией.

Транспортная РНК (тРНК) доставляет аминокислоты к рибосоме. В каждой тРНК имеется строгое соответствие между антикодоном (3 нуклеотида в особой части молекулы) и аминокислотой, которую доставляет эта тРНК

The video: https://www.yourgenome.org/video/from-dna-to-protein

Рибосома считывает код с информационной РНК, синтезируя полипептид. Процесс называется трансляцией.

Информация с иРНК считывается сразу с трех нуклеотидов (триплетов)

Для каждого прочитанного триплета тРНК доставляет соответствующую аминокислоту, добавляя ее к растущей полипептидной цепи

Как только последняя аминокислота добавлена, полипептидная цепь последовательно «укладывается» во вторичную и третичную структуру, формируя белковую молекулу

Генетический код и синтез полипептида

- → Код формируется 64 комбинациями нуклеотидов
- → В генетическом коде имеется 3 "стоп-кодона"
- → Генетический код «вырожден» многие аминокислоты закодированы несколькими комбинациями нуклеотидов

2nd base in codon

	U	C	A	G	
	Phe	Ser	Tyr	Cys	UCA
U	Phe	Ser	Tyr	Cys	C
~	Leu	Ser	STOP	STOP	A
	Leu	Ser	STOP	Trp	G
12000	Leu	Pro	His	Arg	C
С	Leu	Pro	His	Arg	C
	Leu	Pro	GIn	Arg	CA
	Leu	Pro	GIn	Arg	G
	lle	Thr	Asn	Ser	U
A	lle	Thr	Asn	Ser	C
^	lle	Thr	Lys	Arg	CA
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	C
G	Val	Ala	Glu	Gly	CA
	Val	Ala	Glu	Gly	G

The Genetic Code

1st base in codon

3rd base in codor

Генетический код и синтез полипептида

Это фрагмент гена, кодирующего бета-субъединицу гемоглобина:

CTC ACT CCC GAG GAA AAG

Последовательность соответствующей иРНК:

CUC ACU CCC GAG GAA AAG

Каким будет полипептид, синтезируемый на рибосоме, прикрепившейся к такой иРНК?

Leu Thr Pro Glu Glu Lys

2nd base in codon

	U	C	A	G	
	Phe	Ser	Tyr	Cys	U
U	Phe	Ser	Tyr	Cys	C
\sim	Leu	Ser	STOP	STOP	A
	Leu	Ser	STOP	Тгр	G
11000	Leu	Pro	His	Arg	C
C	Leu	Pro	His	Arg	C
	Leu	Pro	GIn	Arg	CA
	Leu	Pro	GIn	Arg	G
	lle	Thr	Asn	Ser	U
Α	lle	Thr	Asn	Ser	CA
	lle	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	CA
	Val	Ala	Glu	Gly	G

3rd base in codor

The Genetic Code

Генетический код и синтез полипептида

Это фрагмент гена, кодирующего бета-субъединицу гемоглобина:

CTC ACT CCC GAG GAA AAG

Что произойдет, если заменить всего один нуклеотид?

CTC ACT CCC GTG GAG AAG

Каким будет полипептид, синтезируемый на рибосоме с такой иРНК мутировавшего гена?

Leu Thr Pro Val Glu Lys

2nd base in codon

	U	C	A	G	
	Phe	Ser	Tyr	Cys	UCA
U	Phe	Ser	Tyr	Cys	C
~	Leu	Ser	STOP	STOP	A
	Leu	Ser	STOP	Trp	G
17,000	Leu	Pro	His	Arg	U
С	Leu	Pro	His	Arg	C
	Leu	Pro	GIn	Arg	C
	Leu	Pro	GIn	Arg	G
	lle	Thr	Asn	Ser	UCA
A	lle	Thr	Asn	Ser	C
^	lle	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	C
G	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	CAG

3rd base in codor

The Genetic Code

Одиночная нуклеотидная замена (Single Nucleotide Polymorphism, SNP) в гене, кодирующем бета субъединицу гемоглобина, ведет к замене аминокислоты в кодируемом белке (Glu – Val)

... и, как следствие, к серповидно-клеточной анемии

На этом примере обсудим термины «аллель» и «множественный аллелизм» с молекулярной точки зрения:

Ген, кодирующий бета субъединицу гемоглобина (*HBB*), имеет несколько структурных вариантов (аллелей), которые появились в результате одиночных нуклеотидных замен (SNP):

Аллель HbA – самый распространенный «нормальный» вариант

Аллель HbS – вызывает серповидно- ------ клеточную анемию в гомозиготном состоянии

Аллель HbC – также вызывает серповидноклеточную анемию, но при этом ---обеспечивает защиту от малярии

Несинонимичный SNP?

SNP – не единственный тип генных мутаций, встречающихся в ДНК живых организмов. Термином **InDel** обозначают вставки (In<u>sertion)</u> или выпадения (D<u>eletion</u>) нескольких нуклеотидов

Известный «менделевский» признак морщинистых семян гороха – тоже следствие InDel

The wrinkled-seed character of pea described by Mendel is caused by a transposon-like <u>insertion</u> in a gene encoding starch-branching enzyme (Bhattacharyya et al, 1990)

Ген «морщинистых семян» (R) кодирует фермент - starch-branching enzyme (SBE) - который катализирует одну из биохимических реакций синтеза крахмала

Amylose and Amylopectin differ in their branching

Amylose (Alpha-1,4 glucosidic linkage)

Amylopectin (Alpha-1,4 glucosidic linkage& Alpha-1,6 glucosidic linkage)

Во время синтеза крахмала в семенах гороха амилоза должна быть преобразована в амилопектин. Эта реакция катализируется ферментом SBE

Мутация (InDel) в гене R вызывает снижение активности фермента SBE. Потеря активности SBE приводит к уменьшению накопления крахмала и — «морщинистым семенам»!

Морщинистые семена?

Вставка (инсерция) в гене R (rugosus), кодирующем Starch-branching enzyme (SBE)

Окраска венчика: вставка 8 нуклеотидов – мутация в гене *bHLH*, задействованном в биосинтезе антоциана. Приводит к образованию стоп-кодона и потере функции белка

'A' Protein

Figure 3. Phenotypes of Wild-Type (w-type), a Mutant (a/a), and a2 Mutant (a2/a2) Flowers.

'A' mRNA 'A' DNA GT-----5775 bp-----AG 'a' DNA ATAAATCGGT 'a' mRNA +8 nt 'a' Protein В 20 D Hellens et al., 2010. https://doi.org/10.1371/journal.pone.0013230

Harker et al., 1990. The Plant Cell, Vol. 2, 185-194

Гены, отвечающие за изменчивость признаков, с которыми работал Мендель:

Table 1 Seven characters of P. sativum examined by Mendel and a summary of the genes, phenotypes, and presumed mutations involved

Trait	Dominant phenotype	Recessive phenotype	Symbol group	Linkage group	Cloned	Gene function	Molecular nature of mutation
Seed shape	Round	Wrinkled	R	V	Yes	Starch branching enzyme 1	0.8-kb insertion
Stem length	Tall	Dwarf	LE	III	Yes	GA 3-oxidase1	G-to-A substitution
Cotyledon color	Yellow	Green	1	1	Yes	Stay-green gene	6-bp insertion
Seed coat/flower color	Purple	White	A	II	Yes	bHLH transcription factor	G-to-A at splice site
Pod color	Green	Yellow	GP	V	No	Chloroplast structure in pod wall	Unknown
Pod form	Inflated	Constricted	V?	III	No	Sclerenchyma formation in pods	Unknown
Position of flowers	Axial	Terminal	FA	IV	No	Meristem function	Unknown

Reid and Ross, Genetics. 2011 Sep;189(1):3-10. doi: 10.1534/genetics.111.132118.

Морщинистые семена?

Вставка (инсерция) в гене R (rugosus), кодирующем Starch-branching enzyme (SBE)

Аллели, гомозиготные и гетерозиготные генотипы

aa

Гомозиготный организм по признаку окраски семени

У которого присутствуют два одинаковых аллеля одного гена

Aa

Гетерозиготный *организм по признаку окраски семени*

У которого присутствуют разные аллели одного гена

Неполное доминирование: «доза гена»

FR35 X WP3

A/A A/a

15 16 17 18 19 20 21