

2

5

Example: Backgammon

4

- Dice rolls increase b: 21 possible rolls with 2 dice
- Backgammon ≈ 20 legal moves
- Depth 2 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given search node shrinks
- So usefulness of search is diminished
- So limiting depth is less damaging
- But pruning is trickier...
- Historic Al: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st Al world champion in any game!

* What if the game is not zero-sum, or has multiple players? * Generalization of minimax: • Terminals have utility tuples • Node values are also utility tuples • Each player maximizes its own component • Can give rise to cooperation and competition dynamically...

Games Summary

- · Games require decisions
- optimality is impossible (for most games/problems)
- bounded-depth search and evaluation functions
- alpha-beta pruning
- Important advances (from game playing)
- reinforcement learning
- iterative deepening
- monte carlo tree search
- · Video games?
 - greater challenges

7 8 9

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
- A rational agent should chose the action that maximizes it: expected utility, given its knowledge

- Questions:
- Where do utilities come from?
- How do we know such utilities even exist?
- · How do we know that averaging even makes sense?
- · What if our behavior (preferences) can't be described by

What Utilities to Use?

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

10 11 12

Utilities Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences Where do utilities come from? In a game, may be simple (+1/-1) Utilities summarize the agent's goals Theorem: any "rational" preferences can be summarized as a utility function · We hard-wire utilities and let behaviors emerge Why don't we let agents pick utilities? Why don't we prescribe behaviors?

13 14 15

Rational Preferences

• We want some constraints on preferences before we call them rational,

Axiom of Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$

- For example: an agent with intransitive preferences can If B > C, then an agent with C would pay (say) 1 cent to get B
- If A > B, then an agent with B would pay (say) 1 cent to get A
- If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences The Axioms of Rationality Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow \overline{[p, A; 1-p, C]} \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow \lceil p, A; \ 1-p, B \rceil \succeq \lceil q, A; \ 1-q, B \rceil)$ Theorem: Rational preferences imply behavior describable as

maximization of expected utility

MEU Principle

- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility
 Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

 - E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

• In this sense, people are risk-averse

Given a lottery L = [p, \$X; (1-p), \$Y]

• $U(L) = p^*U(\$X) + (1-p)^*U(\$Y)$

Typically, U(L) < U(EMV(L))

Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)

■ The expected monetary value EMV(L) is p*X + (1-p)*Y

Money

Example: Insurance

- Consider the lottery [0.5, \$1000; 0.5, \$0]
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 \$400 for most people
 - · Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance
 - . It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)

21

20 19

Example: Human Rationality?

- Famous example of Allais (1953)

- C: [0.2, \$4k; 0.8, \$0] D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then B > A ⇒ U(\$3k) > 0.8 U(\$4k)
- C > D ⇒ 0.8 U(\$4k) > U(\$3k)

