

4. Perform descriptive statistics on the dataset

0.75 - 0.

	5. Handle th	ne Missing values
[34]:	df.isnull().sum()	
:1341:	RowNumber	0
	CustomerId Surname CreditScore	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Geography Gender	0
	Age	o .
	Tenure	0
	Balance	0
	NumOfFroducts	0
	HasCrCard	0
	IsActiveMember	0
	EstimatedSalary	0
	Exited	0
	dtype: int64	

444

6. Find the outliers and replace the outliers

	400 500 600 700 800 CreditScore
In [45]:	<pre>import numpy as np import sklearn from sklearn.datasets import load_boston</pre>
	Ol = np.percentile (df("creditions"), 25, interpolation = "midpoint") Ol = np.percentile (df("creditions"), 75, interpolation = "midpoint") TOR = Ol = Ol TOR = Ol
Out[45]:	Old Shape: (9984, 14) New Shape: (9984, 14) <&xesSubplot:xlabel="CreditScore">

<AxesSubplot:xlabel='CreditScore'>

7. Check for Categorical columns and perform encoding

181: dt. hoad ()

Row Number Customeride Sur Asses Chediticons Geography Cle roler App Timure Balance NumOPhydole to Nat/Clard IslactiveMember East

11: Row Number Customeride Sur Asses Chediticons Geography Cle roler App Timure Balance NumOPhydole to Nat/Clard IslactiveMember East

In [40]: A = df.iloc[:, :-1].values
 print(A)

	branels)
	[[1 15634602 'Hargrave' 1 1 101348.88] [2 1567311 'Hill' 0 112542.88] [3 1561390' vioic' 1 0113931.57]
In [41]:	<pre>B = df.iloc(:, -1].values print(B)</pre>

In (42): from ablasm, proposeding import standardizate from litera, proposeding import Minhaddaler scaler = Minhaddaler() cf("Nustomerid")| = scaler.fit_transform(df("Nustomerid"))) print(df)

 $\it 9.\,$ Scale the independent variables

0			Surname	CreditScore	Geography	Gender Age \	
		0.275616	Harg		619	France Femal	e 42
1		0.326454		Hill	608		
2		0.214421		Onio	502	France Femal	
3	4	0.542636		Boni	699	France Femal	
4		0.688778		hell	850	Spain Femal	
9995	0000	0.163110			221	France Mal	- 20
9996	2220	0.162119	Johns	Laku	771 516	France Mal	
9996				Liu Liu		France Mai	
		0.075327					
9998		0.466637			772	Germany Mal	
9999	10000	0.250483	Wa	lker	792	France Femal	e 28
	Tenure Ba	lance NumOf	Products	HasCrCard I	sActiveMem	ber \	
0	2	0.00		1	1	1	
1	1 1	33807.86		1	0	1	
2	8 15	9660.80		3	1	0	
3	1	0.00		2	0	0	
4	2 12	5510.82		1	1	1	
9995	5	0.00		2	1	0	
9996	10 !	57369.61		1	1	1	
9997	7	0.00		1	0	1	
9998	3 *	75075.31		2	1	0	
9999	4 130	1142.79		1	1	0	
	Estimated	Dalary Pui	tod				
0		348.88					
		542.58	0				
1							
1 2		931.57	1				
	1139						
2	113 93	931.57	0				
2 3 4	1139 931 790	931.57 326.63 384.10	0				
2 3 4 	113: 93: 79:	931.57 326.63 384.10 270.64	0				
2 3 4 9995 9996	938 790 962 1010	931.57 326.63 384.10 270.64 599.77	0				
2 3 4 9995	113: 93: 79: 96: 101: 42:	931.57 326.63 384.10 270.64 599.77	0				

10. Split the data into training and testing

from without model selection import train test split
training data, testing data = train_test.split(of, test_size=0.2, random_state=0.5)
print(frib. of training exemples: (raining data.shape(0))*)
print(frib. of testing exemples: (seating_data.shape(0))*)
No. of training exemples: 1997
No. of testing exemples: 1997