Combinatorial proof

MTH 225 - Module 8B 30 October 2020

How mathematics actually works

Experimentation

1 5 10 10 5 1 \rightarrow

Conjecture

The sum of numbers in row n is 2^n .

Proof

What is a mathematical proof? And why?

- A logically sound and clearly expressed explanation for why a conjecture is always true, under the conditions given.
- A ton of examples is not a proof (<u>link to Colab notebook</u>) -- why not?
- A sincerely held, strenuously asserted claim (e.g. "It's obvious that the pattern continues") is not a proof -- why not?
- Proofs are necessary for mathematical conjectures so that the pattern we
 THINK we see, can be used with confidence

Different ways to prove conjectures

- Mathematical proof is a creative process and hard to boil down to a few bullet points.
- There are MANY different approaches to proof (see: MTH 210).
- Analytic proofs: Give an explanation by using formulas and a lot of computation.
- Combinatorial proofs: (Used in conjectures about counting/identities)
 - Explain that the left-hand side and right-hand side of an identity are both solutions to the same counting problem. Or,
 - Explain that the left-hand side counts the objects in a set, the right-hand side count objects in another set, then **build a bijection** between the sets.

We've seen this before

Number of k-element subsets of a n-element set = Number of n-bit strings with weight k

Strategy: Build a bijection between these two (finite) sets of objects. They therefore have the same number of elements, binom(n,k).

An analytical proof of our conjecture

For every natural number n,

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$$

PROOF: Let n be any natural number, and let's compute and simplify:

$$\frac{n!}{n!0!} + \frac{n!}{(n-1)!1!} + \frac{n!}{(n-2)!2!} + \cdots + \frac{n!}{(0)!n!}$$

A combinatorial proof of our conjecture

For every natural number n,

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$$

PROOF: Let n be any natural number, and let A be an n-element set. The expression on the left is:

(number of 0-element subsets of A) + (number of 1-element subsets of A) + (number of 2-element subsets of A) + ... + (number of n-element subsets of A)

This is just the sum total of all possible subsets of A, and we already know that this number is 2ⁿ.

ANOTHER combinatorial proof of our conjecture

For every natural number n,

$$\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^n$$

PROOF: Since binom(n,k) is the coefficient on x^ky^{n-k} in the expansion of $(x+y)^n$, we can write

$$(x+y)^n = inom{n}{0} x^0 y^n + inom{n}{1} x^1 y^{n-1} + inom{n}{2} x^2 y^{n-2} + \dots + inom{n}{n} x^n y^0$$

Now just plug in x = 1 and y = 1.

Another binomial identity

Proving another identity

For any natural numbers n and k (with $n \ge k$),

$$\binom{n}{k} = \binom{n}{n-k}$$

Cardinality of
The set of n-bit
strings with k "1" bits

Cardinality of
The set of n-bit strings
with n-k "1" bits

Come up with a bijection between these two sets.

Look at an example first: Set of 5-bit strings with weight 3 and then the set of 5-bit strings of weight 2

Formalizing the proof

- Let B(n,k) and B(n,n-k) be the sets of n-bit strings with weight k and weight n-k respectively. By definition binom(n,k) is the cardinality of the first set.
- Let f: B(n,k) \rightarrow B(n, n-k) be defined as follows: the output when we plug in a bitstring returns another bit string with all the bits flipped $(0 \rightarrow 1, 1 \rightarrow 0)$
- This is a function because...
- This is an injective function because...
- This is a surjective function because...
- Therefore this is a bijection, and since the sets are finite it means....

Yet another identity

Adding squares of binomial coefficients

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

Strategy: Show that the left and the right sides count the same number of objects, and therefore they must be equal.

Number of ways to choose n objects from a set of 2n objects

- Take a set of 2n objects and divide it into two groups of n objects each, "Group A" and "Group B".

 Then select n items from the whole group.
- Your selection must contain some number of items from Group A and some other number of items from Group B.
- There are ___ possible cases....

- The number of ways to encounter the first case:
- Number of ways to encounter the second case:
- ...
- Number of ways to encounter the last case:
- Therefore the total number of ways to draw n items from 2n is...
- But notice....