# **Pampered Pets Risk Identification Report**

### 1. Introduction

This report assesses risks in maintaining Pampered Pets' current business model versus adopting a digitalised approach, to identify the most effective path for sustainable growth. The analysis is structured around three strategic questions:



Could an online presence grow the business by up to 50%?



Could shifting to an international supply chain reduce costs by up to 24%?



Could the business lose up to 33% of its customers if it does not provide online features?

It also considers technical risks and compliance with GDPR (EU, 2016) and PCI DSS (PCI Security Standards Council, 2018).

#### 2. Pampered Pets' current situation

#### 2.1 Risk assessment methodology

For this assessment, the ISO 27005:2022 framework has been selected as the basis for risk identification and analysis. ISO 27005 provides structured guidance on managing information security risks by systematically mapping assets, threats, vulnerabilities, and impacts (ISO, 2022). This makes it suitable for SMEs such as Pampered Pets, where resources are limited but structured risk prioritisation is essential (ENISA, 2021).

To complement this, the STRIDE model (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege) was applied to threat modelling. STRIDE provides a granular way of categorising attack vectors against digital assets (Shostack, 2014). Combining ISO/IEC 27005 with STRIDE increases analytical rigour by linking business-oriented risk analysis with technical threat categories, thereby ensuring both strategic and operational risks are captured.

### 2.2 Risk and thread modelling exercise

#### Risk identification (IEC/ISO 27005)

The risk identification process mapped Pampered Pets' assets against threats, vulnerabilities, and potential impacts.

| Asset                                                 | Threats                                                           | Vulnerabilities                                                                           | Potential Impact                                                                       | Impact        | Likelihood    | Risk<br>Level |
|-------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|---------------|---------------|
| Warehouse<br>Computer (old<br>PC with<br>spreadsheet) | Malware,<br>ransomware, data<br>corruption, insider<br>misuse     | Outdated OS,<br>lack of<br>patches/antivirus,<br>no backup, weak<br>access controls       | Loss of stock<br>records,<br>operational<br>disruption,<br>downtime                    | High (3)      | High (3)      | 9 –<br>High   |
| Point-of-Sale<br>(POS)<br>Computer                    | System failure,<br>malware,<br>unauthorized<br>access             | Single point of<br>failure, insecure<br>Wi-Fi connection,<br>no redundancy                | Loss of sales<br>data, inaccurate<br>VAT/tax records,<br>financial reporting<br>errors | High (3)      | Medium<br>(2) | 6 –<br>High   |
| Wireless<br>Network (shop<br>Wi-Fi)                   | Unauthorized<br>access, sniffing,<br>man-in-the-middle<br>attacks | Weak WPA2<br>encryption,<br>default<br>password,<br>shared with staff<br>personal devices | Customer/financial<br>data breach,<br>regulatory<br>penalties                          | High (3)      | High (3)      | 9 –<br>High   |
| Customer<br>Data<br>(emails/orders)                   | Data breach,<br>phishing, GDPR<br>non-compliance                  | Stored without<br>encryption, no<br>secure handling<br>policies, weak<br>email security   | Legal fines,<br>reputational<br>damage, loss of<br>customer trust                      | High (3)      | Medium<br>(2) | 6 –<br>High   |
| Local Supply<br>Chain (farms)                         | Supply disruption,<br>quality<br>inconsistency                    | Manual ordering,<br>no formal<br>contracts, limited<br>resilience                         | Stock shortages,<br>inability to meet<br>demand, reduced<br>quality                    | Medium<br>(2) | Medium<br>(2) | 4 –<br>Medium |
| Staff<br>Smartphones<br>(using shop<br>Wi-Fi)         | Malware, data<br>leakage, rogue<br>access                         | No mobile device<br>management<br>(MDM), insecure<br>apps,<br>unsegmented<br>network      | Breach of<br>sensitive data,<br>gateway to wider<br>network<br>compromise              | Medium<br>(2) | High (3)      | 6 –<br>High   |
| E-commerce<br>Website<br>(future)                     | Hacking, SQL<br>injection, DDoS,<br>defacement                    | Insecure coding,<br>poor hosting<br>security, weak<br>patch<br>management                 | Website<br>downtime, lost<br>revenue,<br>reputational loss                             | High (3)      | High (3)      | 9 –<br>High   |
| Payment<br>System<br>(future)                         | Fraud, theft of cardholder data                                   | Lack of PCI-DSS<br>compliance, poor<br>fraud detection<br>controls                        | Financial loss,<br>penalties, legal<br>liability                                       | High (3)      | Medium<br>(2) | 6 –<br>High   |

| ERP System<br>(future)                          | Insider misuse,<br>downtime,<br>misconfigurations                | Complexity, lack<br>of staff training,<br>weak access<br>controls           | Inventory errors,<br>disruption to<br>sales/warehouse<br>operations       | Medium<br>(2) | Medium<br>(2) | 4 –<br>Medium |
|-------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|---------------|---------------|
| International<br>Supply Chain<br>(future)       | Delays, counterfeit<br>goods,<br>political/geopolitical<br>risks | Long lead times,<br>no supplier due<br>diligence, lack of<br>monitoring     | Stock shortages,<br>reduced product<br>quality,<br>reputational<br>damage | Medium<br>(2) | Medium<br>(2) | 4 –<br>Medium |
| Business<br>Reputation &<br>Customer<br>Loyalty | Customer attrition,<br>negative online<br>reviews                | No online<br>services, weak<br>customer<br>engagement<br>strategy           | Up to 33%<br>customer loss,<br>long-term revenue<br>decline               | High (3)      | High (3)      | 9 –<br>High   |
| Financial Data<br>& Tax Records                 | Insider theft,<br>ransomware,<br>corruption                      | Unencrypted<br>storage, no<br>regular backups,<br>limited access<br>control | Inability to meet regulatory requirements, financial penalties            | High (3)      | Medium<br>(2) | 6 –<br>High   |

# Table 2-1 Risk identification for Pampered Pets' current and future assets using the ISO/IEC 27005 structure.

The table 2-1 links assets to threats, vulnerabilities, and impacts, with risk levels derived from impact and likelihood scores. High risks focus on digital assets handling sensitive data, while medium risks relate to ERP and supply chain dependencies.

| Risk Level | Score | Assets / Key Risks                                                  |
|------------|-------|---------------------------------------------------------------------|
| High       | 9     | Warehouse computer (malware/ransomware); Wireless network           |
|            |       | (data breach); E-commerce website (SQL injection/DDoS); Business    |
|            |       | reputation (customer attrition)                                     |
| Medium-    | 6     | POS system (single point of failure); Customer data (unencrypted    |
| High       |       | storage); Payment system (fraud); Staff smartphones (rogue access); |
|            |       | Financial records (ransomware)                                      |
| Medium     | 4     | ERP system (downtime/misconfigurations); International supply       |
|            |       | chain (delays, counterfeit goods)                                   |

Table 2-2 Summary of risk prioritisation for Pampered Pets' assets

This prioritisation highlights that customer trust, compliance obligations, and revenue stability are the most vulnerable areas.

# Threat modelling (ISO 27005 + STRIDE)

The STRIDE model was applied to classify threats:

| STRIDE Category                                                    | Example Threat                                        | Target Asset(s)       |
|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
| Spoofing /                                                         | ofing / SQL injection                                 |                       |
| Tampering                                                          |                                                       |                       |
| Information                                                        | Eavesdropping on weak Wi-Fi                           | Customer data via     |
| Disclosure                                                         |                                                       | wireless network      |
| <b>Denial of Service</b>   Malware disabling POS system; ERP   POS |                                                       | POS system, ERP       |
| (DoS)                                                              | misconfigurations causing downtime                    | system                |
| Repudiation                                                        | Customer disputes due to weak data                    | Transaction and order |
|                                                                    | integrity controls                                    | records               |
| Elevation of                                                       | ion of Fraudulent transactions through Online payment |                       |
| Privilege                                                          | misconfigured payment system                          | gateway               |

This blended approach demonstrates how vulnerabilities such as outdated systems, weak encryption, poor input validation, and untrained staff could be exploited, leading to data breaches, reputational loss, or regulatory penalties.

#### 2.3 Mitigation measures

Mitigations were prioritised based on risk score, regulatory obligations (GDPR, PCI DSS), strategic drivers (growth, customer trust), and feasibility of implementation.

Table 2-3 Mapping of key risks, mitigation strategies, and justifications for Pampered Pets

| Risk area                     | Key threats                        | Mitigation strategy                                              | Justification                                                |
|-------------------------------|------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|
| Warehouse<br>PC               | Malware,<br>ransomware             | Upgrade hardware; apply patches; enable backups                  | Reduces single point of failure; ensures business continuity |
| POS system                    | System failure,<br>malware         | Segmented network; redundancy; updated AV                        | Prevents disruption of sales and financial reporting         |
| Wireless<br>network           | Eavesdropping,<br>MITM             | WPA3, strong passwords, staff Wi-Fi separation                   | Protects customer/financial data against interception        |
| Customer<br>data              | GDPR non-<br>compliance,<br>breach | Encryption (AES-256),<br>RBAC, secure email<br>handling          | Meets GDPR principles of confidentiality and integrity       |
| E-commerce<br>portal          | SQL injection,<br>DDoS             | Secure coding, WAF, regular penetration testing                  | Protects availability and customer trust                     |
| Payment<br>system             | Fraud, card theft                  | Tokenisation, PCI DSS-<br>compliant provider, fraud<br>detection | Reduces exposure and shifts compliance burden                |
| ERP system                    | Insider misuse,<br>downtime        | RBAC,<br>logging/monitoring,<br>vendor SLA                       | Ensures resilience and accountability                        |
| Supply chain                  | Delays, counterfeit goods          | Supplier vetting, contracts, diversification                     | Strengthens resilience to external disruption                |
| Reputation & customer loyalty | Poor UX, attrition                 | UX testing, 24/7 support, customer engagement                    | Protects long-term growth by reducing churn                  |
| Financial records             | Insider theft,<br>ransomware       | Encryption, backups, limited access                              | Meets compliance requirements and ensures recovery           |

#### 2.4 Critical Discussion

While ISO 27005 and STRIDE provide a clear and systematic structure for assessing risks, both have limitations. ISO 27005 relies heavily on qualitative scoring, which can change over time as threats evolve or as stakeholder perceptions shift. STRIDE, while effective at categorising technical threats, does not fully capture wider business considerations such as strategic objectives, regulatory pressures, or resource constraints.

# 3. Proposed digitalisation process

#### 3.1 Risk assessment methodology

The OCTAVE-S (Operationally Critical Threat, Asset, and Vulnerability Evaluation – Simplified) framework (Alberts and Dorofee, 2002) has been selected for assessing the digitalisation process with following benefits:

- **Designed for small organisations**: Fits Pampered Pets' scale of operations (Shevchenko et al., 2018).
- **Business-centric**: Focuses on organisational risk and technical vulnerabilities, unlike STRIDE, LINDDUN, or Attack Trees (Shostack, 2014; Shevchenko, Frye and Woody, 2018).
- Supports qualitative analysis: Asset-focused approach without requiring quantitative data
- **Scalable**: Can integrate with frameworks like FAIR or ISO 27005 once sufficient data is available (Al-Dosari and Fetais, 2023).

# 3.2 Proposed changes

We propose three digitalisation initiatives to support Pampered Pets' strategic objectives:

#### E-commerce portal

Enables online sales, expanding reach beyond local customers and offering 24/7 convenience. SMEs adopting e-commerce have reported revenue increases of up to 50% (KPMG, 2015), driven by broader market access and efficiency. However, research shows that up to one-third of customers may abandon a brand after just one poor online experience, and two bad experiences could drive away over four-fifths—even among loyal customers (PwC, 2018; Emplifi, 2022). This risk is heightened if features like clear navigation, secure payment, and effective support are missing (Kim et al., 2010; Hossain et al., 2024; Majumder, 2025).

# ERP system for global supply chain integration

Enables integrated management of procurement, inventory, and logistics—vital for international expansion. Although global supply chains are notably cost-intensive, research demonstrates that Industry 4.0-enabled systems can reduce overall supply chain costs by 20–30 % (Baumgartner, Malik and Padhi, 2020).

# • Third-party payment gateway

Provides encrypted transactions with fraud protection simplifying the burden of PCI DSS and GDPR compliance.

#### 3.3 Threat model and risk assessment

The proposed digitalisation introduces interconnected risks across Pampered Pets' e-commerce ecosystem. Figure 3-1 illustrates the conceptual threat model and interaction of critical assets.



Figure 3-1 - Threat model digitalised e-commerce ecosystem

Table 3-1 defines prioritisation criteria as assessed by the stakeholders.

|          |                |                      | Impact score               |                          |
|----------|----------------|----------------------|----------------------------|--------------------------|
| Priority | Impact Area    | Low (1)              | Medium (2)                 | High (3)                 |
| 4        | Customer       | <10% reduction in    | 10–30% reduction in        | >30% reduction in        |
|          | Trust &        | customers; minor     | customers; reputational    | customers; permanent     |
|          | Retention      | complaints, quickly  | damage requiring recovery  | loss of trust, long-term |
|          |                | recoverable          | investment                 | brand harm               |
| 3        | Financial      | <2% increase in      | €10,000–€50,000 losses;    | >€50,000 losses; failure |
|          |                | costs, <€10,000 one- | partial failure to achieve | to achieve 50% growth or |
|          |                | time loss            | 24% cost reduction         | 24% savings; existential |
|          |                |                      |                            | risk                     |
| 2        | Productivity & | Minor disruption (<4 | Moderate disruption (4–24  | Major disruption (>1     |
|          | Operations     | hours), no lasting   | hours); temporary          | day); systemic ERP/e-    |
|          |                | effect               | stock/order issues         | commerce failure         |
| 1        | Regulatory /   | Internal compliance  | GDPR fines up to €10k;     | GDPR fines up to €20m    |
|          | Legal (GDPR    | issue; warning only  | PCI fines up to €5k/month; | or 4% turnover; PCI DSS  |
|          | & PCI)         |                      | no compromised             | termination, lawsuits,   |
|          |                |                      | cardholder data            | data compromise          |

Table 3-1 - Impact area prioritisation - risk criteria

Table 3-2 presents the risk register for the digitalisation process. The total risk score is derived by multiplying priority and impact score across all areas.

| ID | Critical Asset                                             | Business<br>Process                           | Threats.                                                                         | <u>Vulnerabilities</u>                                     | Financial | Trust | Regulatorx | Productivity | Risk<br>score |
|----|------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|-----------|-------|------------|--------------|---------------|
| R1 | Admin Portal -<br>Staff access                             | ERP admin,<br>reporting,                      | A01 Broken<br>Access,<br>phishing; insider<br>misuse                             | Weak employee<br>awareness, lack<br>of just culture        | н         | н     | н          | н            | 31            |
| R2 | Payment<br>Gateway -<br>Payment<br>Status/Confirm<br>ation | Transaction<br>validation                     | A08 Integrity<br>Failures;<br>replay/tamperin<br>g of tokens                     | No nonce/expiry<br>checks, weak<br>signature<br>validation | н         | Н     | Н          | М            | 28            |
| R3 | SAP ERP -<br>Customer<br>Records DB                        | Order<br>management<br>, CRM                  | A02<br>Cryptographic<br>Failures, A09<br>Logging<br>Failures; GDPR<br>violation  | Weak<br>encryption at<br>rest, insufficient<br>monitoring  | н         | н     | н          | М            | 28            |
| R4 | Payment<br>Gateway -<br>Transaction<br>APIs                | <u>Payment</u><br>processing                  | A07 Auth Failures, A10 SSRF; fraudulent/failed payments                          | Weak API<br>authentication,<br>poor sanitisation           | н         | н     | н          | М            | 28            |
| R5 | SAP ERP<br>Payment<br>Records                              | Finance<br>reconciliation                     | A02<br>Cryptographic<br>Failures;<br>reconciliation<br>errors + PCI<br>penalties | Insecure<br>storage of<br>payment tokens                   | н         | М     | н          | М            | 24            |
| R6 | Customer<br>Interface -<br>Web/App                         | Customer<br>shopping,<br>login                | A01 Broken<br>Access, A07<br>Authentication<br>failures; account<br>takeover     | Weak MFA,<br>reused,<br>passwords                          | М         | Н     | М          | М            | 22            |
| R7 | Customer<br>Interface -<br>Order/Delivery<br>Notifications | Order<br>confirmation,<br>delivery<br>updates | A08 Integrity<br>Failures;<br>spoofed/delayed<br>confirmations                   | Unsigned<br>notifications,<br>weak integrity<br>checks     | М         | н     | М          | М            | 22            |
| R8 | E-commerce<br>Portal -<br>Shopping Cart<br>/ Checkout      | Online<br>ordering                            | A03 Injection,<br>A05 Security<br>Miscontia;<br>cart/order<br>manipulation       | Insecure input<br>validation,<br>default configs           | М         | Н     | M          | М            | 22            |

(Table 3-2 continued)

| ID  | Critical Asset                     | Business<br>Process        | Threats.                                                     | <u>Vulnerabilities</u>                                    | Financial | Trust | Regulatorx | Productivity | Risk<br>score |
|-----|------------------------------------|----------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-----------|-------|------------|--------------|---------------|
| R9  | SAP ERP -<br>Stock /<br>Product DB | Procurement,<br>inventory  | A01 Broken<br>Access, insider<br>misuse;<br>inventory errors | Poor role-based<br>access, no<br>segregation of<br>duties | М         | М     | М          | Н            | 19            |
| R10 | Suppliers -<br>Procurement<br>API  | Stock<br>replenishmen<br>t | A08 Integrity<br>Failures, DoS<br>on supplier API            | No integrity<br>check, weak<br>availability<br>controls   | М         | М     | М          | Н            | 19            |

Table 3-2 - OCTAVE-S risk register

# 3.4 Mitigation approach

Mitigation measures were prioritised using four criteria:

- 1. **Total risk score** severity across all identified risk areas.
- 2. **Strategic drivers** risks threatening growth (50%), cost reduction (24%), or customer retention (33%) as outlined in paragraph 1.
- 3. **Regulatory/legal obligations** GDPR and PCI DSS compliance.
- 4. **Feasibility of implementation** preference for measures offering quick, high-impact results (e.g., MFA, encryption, API hardening) over resource-heavy redesigns.

Table 3-3 maps each risk to its recommended mitigation, aligning technical controls and business processes within a coherent digitalisation strategy.

| ID  | Mitigation<br>Approach | Justification                                                                                                                                                          |
|-----|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1  | Mitigate               | Highest score (31). Insider misuse + weak awareness training expose ERF to GDPR/PCI breaches. Controls such as MFA, RBAC, and just culture training are critical.      |
| R2  | Mitigate               | Payment validation tampering (28) risks direct fraud and PCI DSS fines. Strong financial and trust impacts. Implement nonce/expiry checks and signature validation.    |
| R3  | Mitigate               | Customer Records DB compromise (28) = GDPR violation + customer trust loss. Encryption at rest and enhanced logging are essential controls.                            |
| R4  | Mitigate               | Payment API exploitation (28) risks fraud and PCI DSS non-compliance. Requires stronger API authentication and SSRF protection.                                        |
| R5  | Mitigate               | Payment record failures (24) risk PCI penalties and financial errors.  Tokenisation and secure storage must be applied.                                                |
| R6  | Mitigate               | Customer login weaknesses (22) risk account takeovers and customer churn. Enforce MFA and password hygiene controls.                                                   |
| R7  | Mitigate               | Delivery notification spoofing (22) undermines customer trust, leading to abandonment. Apply digital signing and integrity controls.                                   |
| R8  | Mitigate               | Shopping cart manipulation (22) threatens 50% growth driver. Secure coding practices, input validation, and WAF required.                                              |
| R9  | Defer                  | Stock/Product DB access risks (19) threaten cost savings (24%) but less critical than customer/payment risks. RBAC improvements may be planned over time.              |
| R10 | Accept                 | Supplier API disruption (19) has limited direct impact on customers. Can be managed contractually with redundancy and SLAs rather than immediate technical investment. |

| Mitigation approach | Description                                                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------|
| Mitigate            | indicates risks requiring immediate or near-term controls                                                          |
| Defer               | indicates risks that can be addressed in the medium term due to lower priority                                     |
| Accept'             | indicates risks tolerated with monitoring or contractual/operational measures rather than new technical investment |

Table 3-3 - Proposed mitigation

This approach is based on assumptions and limitations that keep the assessment transparent and realistic, avoiding overestimation of certainty or underestimation of residual risks. Key assumptions include:

- Vulnerabilities and threats reflect conditions at the time of modelling and may shift as the threat landscape evolves.
- Cloud providers (AWS, SAP, payment gateway) are assumed to meet baseline compliance obligations according to service-level agreements (SLAs).
- Personnel for digitalisation will be scaled gradually, though SME skill shortages remain a challenge (ENISA, 2020).

These considerations highlight the need for a cautious, staged implementation, keeping risk management adaptive to Pampered Pets' evolving digital strategy

#### 4. Recommendation and timeline

Considering the assessment and the assumptions and limitations, we recommend that Pampered Pets proceed with digitalisation, as it is essential for achieving its strategic objectives outlined in the introduction.

Our risk assessment confirms that these goals are achievable, and risks can be managed through the identified mitigations. A phased implementation is needed, as research shows SMEs benefit from staged transformation to minimise disruption and optimise limited resources (Sagala and Őri, 2024). The timeline and sequencing are shown in Figure 3-2.



Figure 3-2 - Gantt chart with implementation timeline

By committing to this roadmap, Pampered Pets will not only meet its growth and efficiency targets but also build the trust and adaptability needed for long-term competitiveness in a digital marketplace.

#### Reference list

Alberts, C. J. and Dorofee, A. J. (2002) *Managing information security risks: the OCTAVE approach*. 1st edition. Boston: Addison-Wesley.

Al-Dosari, K. and Fetais, N. (2023) 'Risk-Management framework and information-security systems for small and medium enterprises (SMEs): A meta-analysis approach', *Electronics*, 12(17), 3629. Available at: <a href="https://doi.org/10.3390/electronics12173629">https://doi.org/10.3390/electronics12173629</a> (Accessed 21 August 2025).

Baumgartner, T., Malik, Y. and Padhi, A. (2020) *Reimagining industrial supply chains*, McKinsey & Company, 11 August. Available at: <a href="https://www.mckinsey.com/industrial-supply-chains">https://www.mckinsey.com/industrial-supply-chains</a> (Accessed: 17 August 2025).

Emplifi (2022) 86% of consumers will leave a brand after two poor experiences, study finds. Available at: <a href="https://emplifi.io/press/86-percent-consumers-will-leave-brand-after-two-poor-experiences">https://emplifi.io/press/86-percent-consumers-will-leave-brand-after-two-poor-experiences</a>/ (Accessed: 17 August 2025).

ENISA (2021) *Cybersecurity for SMEs – Challenges and Recommendations*. ENISA Publications, June. Available at: <a href="https://www.enisa.europa.eu/publications/enisa-report-cybersecurity-for-smes">https://www.enisa.europa.eu/publications/enisa-report-cybersecurity-for-smes</a> (Accessed: 16 August 2025).

European Union (2016) Regulation (EU) 2016/679 of the European Parliament and of the Council (General Data Protection Regulation). Official Journal of the European Union, L119, pp. 1–88. Available at: <a href="https://eur-lex.europa.eu/eli/reg/2016/679/oi">https://eur-lex.europa.eu/eli/reg/2016/679/oi</a> (Accessed: 17 August 2025).

Hossain, M.A., Islam, S. and Rahman, M.M. (2024) 'Impact of inline payment systems on customer trust and loyalty in e-commerce analyzing security and convenience', *Academic Journal on Science, Technology, Engineering & Mathematics Education*, 4(3), pp.1–15. Available at: <a href="https://doi.org/10.69593/ajsteme.v4i03.85">https://doi.org/10.69593/ajsteme.v4i03.85</a> (Accessed: 16 August 2025).

Kim, C., Tao, W., Shin, N. and Kim, K-S. (2010) 'An empirical study of customers' perceptions of security and trust in e-payment systems', *Electronic Commerce Research and Applications*, 9(1), pp. 84–95. Available at: <a href="https://doi.org/10.1016/j.elerap.2009.04.014">https://doi.org/10.1016/j.elerap.2009.04.014</a> (Accessed: 16 August 2025).

KPMG (2015) *Impact of e-commerce on SMEs in India*. Available at: <a href="https://assets.kpmg.com/content/dam/kpmg/pdf/2015/10/Snapdeal-Report -Impact-of-e-Commerce-on-Indian-SMEs.pdf">https://assets.kpmg.com/content/dam/kpmg/pdf/2015/10/Snapdeal-Report -Impact-of-e-Commerce-on-Indian-SMEs.pdf</a> (Accessed: 16 August 2025).

Majumder, A.S. (2025) 'The influence of UX design on user retention and conversion rates in mobile apps', *arXiv*, January. Available at: <a href="https://arxiv.org/abs/2501.13407">https://arxiv.org/abs/2501.13407</a> (Accessed: 16 August 2025).

PCI Security Standards Council (2018) PCI DSS Quick Reference Guide: Understanding the Payment Card Industry Data Security Standard. Wakefield, MA: PCI Security Standards Council. Available at: <a href="https://www.pcisecuritystandards.org/documents/PCI DSS-QRG-v3 2 1.pdf">https://www.pcisecuritystandards.org/documents/PCI DSS-QRG-v3 2 1.pdf</a> (Accessed: 17 August 2025).

PwC (2018) Future of customer experience: 'It's time for a change'. Available at: <a href="https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/future-of-customer-experience.html">https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/future-of-customer-experience.html</a> (Accessed: 17 August 2025).

Sagala, G.H. and Őri, D. (2024) 'Toward SMEs digital transformation success: a systematic literature review', *Information Systems and e-Business Management*, 22, pp. 667–719. Available at: https://doi.org/10.1007/s10257-024-00682-2 (Accessed: 21 August 2025).

Shevchenko, N., Chick, T., O'Riordan, P., Scanlon, T. and Woody, C. (2018) *Threat modelling: A summary of available methods.* Available at: <a href="https://www.sei.cmu.edu/documents/569/2018">https://www.sei.cmu.edu/documents/569/2018</a> 019 001 524597.pdf (Accessed 14 August 2025).

Shevchenko, N., Frye, B. and Woody, C. (2018) *'Threat modelling: Evaluation and recommendations*. Available at: <a href="https://apps.dtic.mil/sti/pdfs/AD1083907.pdf">https://apps.dtic.mil/sti/pdfs/AD1083907.pdf</a> (Accessed: 14 August 2025).

Shostack, A. (2014) Threat modeling: designing for security. 1st edition. Indianapolis, IN: John Wiley and Sons.