Introduction to Neural Networks and Keras

Meetup - Big data - Montpellier

Jie He

TabMo

June 29, 2017

Investment trending of Artificial Intelligence (AI)

Deep Learning and Artificial Intelligence

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

What I actually do

ㅁ > ◀집 > ◀불 > ◀불 > 될 = 옛 < @

- Brief History
- Information processing in DNNs
- Implementation with Keras
- 4 Summary

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- 2 Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

- 1943 Walter Pitts and Warren McCulloch proposed the first mathematical model of a neural network.
- 1965 Ivakhnenko and Lapa developed the earliest deep-learning-like algorithms which had multiple layers. But the training process was not optimized.
- 1970s Al winter came as a result of reduced funding and interest in AI research (which was due to the chain reaction of the AI hype).
- 1989 Yann LeCun provided the first practical demonstration of backpropagation at Bell Labs. He also combined convolutional neural networks with backpropagation to read handwritten digits.
- 1985-90s the second Al winter kicked in. Nevertheless, some significant advances were made, e.g., support vector machine, long short-term memory.
- And now Al regains its popularity. 62% of organizations will be using AI Technologies by 2018, according to the survey from Narrative Science.

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- 2 Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

8 / 29

Background

Availability of big data

Increase of computational power

Improved algorithms/architectures

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMEN

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

source:developer.nvidia.com/deep-learning-courses

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

Three kinds of variables

Categorical variables

A **finite number** of categories or distinct groups. Categorical data might not have a logical order. E.g., gender - male/female

Discrete variables

Numeric variables that have a **countable number** of values between any two values. E.g., the number of children in a family - 3.

Continuous variables

Numeric variables that have an **infinite number** of values between any two values. E.g., temperature - 25.9

Tensor representation of data

What is tensor?

Tensor is a general name of multidimensional array numeric data.

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- $oxed{2}$ Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

Problem definition

Binary classification

Table: Data examples

x1	x2	label		
1.4	2.7	0		
3.8	3.4	0		
1.5	0.7	1		
2.5	3.1	0		
0.5	0.3	1		
1.2	2.8	0		

▶ Demo on data transformation

The magic behind the transformation

Perceptron

The magic behind the transformation

Perceptron

The magic behind the transformation

Stack layers of perceptron cells

Deep neural network

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- $oxed{2}$ Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

Training a DNN means finding the optimal weights

Forward Propagation and Back Propagation

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

Which platform and language to use

Low-level: Google's Tensorflow, Microsoft's CNTK, Apple's core ML,

Amazon's mxnet, and University of Montreal's theano, PyTorch...

High-level: Keras, TFLearn, TensorLayer

About Keras

Keras is a model-level library, providing high-level building blocks for developing deep learning models, and has plugged several different backend engines:**TensorFlow** backend, **Theano** backend and **CNTK** backend.

If you're a beginner and interested in quickly implementing your ideas

Python + Keras: Super fast implementation, good extensibility

If you want to do fundamental research in Deep Learning

Python + Tensorflow or PyTorch: Excellent extensibility

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- 2 Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

4 steps to apply a DNN model

- Brief History
 - How Deep Neural networks was developed
 - Wide applications
- Information processing in DNNs
 - Data representation
 - Data transformation
 - How to train a DNN
- Implementation with Keras
 - Which platform and language to use
 - how to build a DNN model
 - Demo
 - Binary classification model
 - Decimal addition model
- 4 Summary

1 Binary classification model

Table: Synthetic data

	f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	label
0	16	41	3	95	45	8	19	56	95	40	0
1	26	79	51	85	55	40	35	7	54	70	1
2	17	79	48	14	17	37	3	84	66	22	0
3	85	42	12	70	51	9	51	51	0	37	0
4	88	28	61	22	80	52	10	74	7	27	1
										·	

Synthetic pattern

The label is 1 if:

$$f0 > 67, f1 < 32, f2 \mod 7 < 3, f3 \mod 30 > 12$$

▶ Demo on Sublime

2 Decimal addition model

How to do decimal addition on computer? Like

Use a calculator, how simple that would be!

But... a Deep Neural Network can do that too,
and in a human-like manner!

Figure: Recurrent Neural Network (from here)

▶ Demo on Sublime

58

Pros and cons about DNNs

Pros

- No need for feature engineering
- No limit for data volume
- Fast training on huge data
- Sustainability incremental learning

Cons

- Too many hyperparameters and variants
- Easy to train a good model but difficult to get an excellent one
- Black box how the model works

For Further Reading

Christopher Olah.

Neural Networks, Manifolds, and Topology

Jason Brownlee.

Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras

Andrew Trask.

A Neural Network in 11 lines of Python

