Probability - Session 2

Bayes's Theorem, Random variables, Expectation and Variance

Elizabeth Williamson with thanks to Jennifer Rogers

Foundations of Medical Statistics

Session objectives

By the end of this session you should be able to:

- state and apply Bayes' Theorem
- define sensitivity, specificity and the predictive value of a screening/diagnostic test
- explain the concepts of a discrete random variable and its distribution function
- calculate the expectation and variance of a discrete random variable
- define a joint distribution and independence

Outline

Bayes theorem

Random variables

Expectation and variance

Joint distributions

Example: Smoking and asthma

Reminder:

this is the information we have about smoking and asthma

Example: Reversing conditioning

We often wish to reverse the conditioning in probabilities.

For example, suppose an asthma clinic wants to know how many resources to dedicate to anti-smoking measures.

- ▶ the clinic would want to know what proportion of asthmatic patients smoke, i.e. P(S|A)
- we only have information about P(A|S)

Bayes theorem - I

▶ We can express $P(A \cap S)$ in two different ways

$$P(A \cap S) = P(A|S)P(S)$$

or
 $P(A \cap S) = P(S|A)P(A)$.

Equating the two, we have

$$P(S|A)P(A) = P(A|S)P(S)$$

 $\Rightarrow P(S|A) = \frac{P(A|S)P(S)}{P(A)}.$

Bayes theorem - II

We have:

$$P(S|A) = \frac{P(A|S)P(S)}{P(A)}$$

We are now going to express the denominator in terms of conditional probabilities:

- \blacktriangleright $\{S, \bar{S}\}$ is a partition of the sample space
- From the theorem of total probability we know that

$$P(A) = P(A|S)P(S) + P(A|\bar{S})P(\bar{S})$$

Putting this into the equation above gives:

$$P(S|A) = \frac{P(A|S)P(S)}{P(A|S)P(S) + P(A|\overline{S})P(\overline{S})}$$

This is Bayes' Theorem.

Bayes theorem: Example

For someone with asthma, applying Bayes' Theorem, the probability of being a smoker is:

$$P(S|A) =$$

Bayes theorem: Example

For someone with asthma, applying Bayes' Theorem, the probability of being a smoker is:

$$P(S|A) = \frac{P(A|S)P(S)}{P(A|S)P(S) + P(A|\bar{S})P(\bar{S})}$$

Bayes theorem: Example

For someone with asthma, applying Bayes' Theorem, the probability of being a smoker is:

$$P(S|A) = \frac{P(A|S)P(S)}{P(A|S)P(S) + P(A|\bar{S})P(\bar{S})}$$

$$= \frac{0.09 \times 0.2}{0.09 \times 0.2 + 0.07 \times 0.8}$$

$$= 0.243.$$

Bayes theorem: General statement

Let A be some event and let $B_1, ..., B_n$ be a partition of the sample space.

Suppose we are interested in $P(B_i|A)$, for some i.

Bayes' Theorem states that:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}.$$

Example: Cystic Fibrosis screening tests

- Cystic fibrosis (CF) is an inherited disease
- ▶ The sweat chloride test is the gold standard diagnostic test.
- ▶ In low income settings the simpler sweat conductivity test may be more appropriate.

Properties of the new sweat conductivity test:

- Among people with CF
 - P(+ve|CF) = 0.875
 - ► We say the sensitivity of the test is 87.5%
- Among people without CF
 - $P(+ve|\bar{CF}) = 0.004$, i.e. $P(-ve|\bar{CF}) = 0.996$
 - ► We say the **specificity** of the test is 99.6%

Example: Screening tests

The question we really want to answer is: "If a patient has a positive sweat conductivity test, what is the probability that the patient has CF?"

$$P(+ve|CF) = 0.875$$
 $P(CF) = 0.0325$ $P(+ve|\bar{CF}) = 0.004$ $\{CF, \bar{CF}\}$ is a partition

[Note: For this calculation, P(CF) is the probability of CF in the population the test is being used in.]

We want the **Positive Predictive Value (PPV)**, P(CF|+ve)

$$P(CF|+ve) = \frac{P(+ve|CF)P(CF)}{P(+ve|CF)P(CF) + P(+ve|\bar{CF})P(\bar{CF})}$$
$$= \frac{0.875 \times 0.0325}{0.875 \times 0.0325 + 0.004 \times (1 - 0.0325)} = 0.88$$

A patient whose sweat test comes back positive has an 88% chance of having CF.

Outline

Bayes theorem

Random variables

Expectation and variance

Joint distributions

Random variables

A random variable X is a variable which takes a numerical value which depends on the outcome of the random experiment under consideration.

Discrete random variables take values in:

- a finite set
 e.g. the number of boys in a 4-child family (0,1,2,3,4)
- or a countably infinite set (e.g. set of positive integers).
 e.g. the number of hospital admissions in a day (0, 1, 2, 3, ...).

In contrast, **continuous random variables** take values in an uncountable set (e.g. positive real numbers).

Today we will focus on discrete random variables.

The probability distribution function

A discrete random variable can be characterised by its probability distribution function.

The probability distribution of the discrete random variable X is a function which tells us, for any value x which X might take, the probability X will take this value.

ightharpoonup P(X=x) for all the x values which X can take.

The probability distribution function has the following properties:

- $ightharpoonup 0 \le P(X = x) \le 1$

where the sum is over all possible values of X

Example: boys in a 4-child family

Let X be the number of boys in a 4-child family.

The probability distribution function for X is:

P(X = x)
0.06
0.24
0.37
0.26
0.07

[Note: we will see where these numbers come from in Session 3]

Cumulative distribution function

- ► The cumulative distribution function (CDF) is an alternative way of characterising a random variable.
- ► For a random variable X, the cumulative distribution function (CDF) is given by:

$$F(x) = P(X \le x)$$

For our example of the number of boys:

X	P(X = x)	$F(x) = P(X \le x)$
0	0.06	0.06
1	0.24	0.30
2	0.37	0.67
3	0.26	0.93
4	0.07	1

Outline

Bayes theorem

Random variables

Expectation and variance

Joint distributions

Expectation of a random variable

- ► The expectation (or mean) of a random variable *X* is one measure of the centre of its distribution (another is the median).
- For discrete random variables X, it is defined as:

$$E(X) = \sum_{x} x P(X = x),$$

the summation is over all possible values x that X can take.

- ▶ One way to think of E(X) is the average value of X over a large number of repetitions of the experiment or random process that produces X.
- ▶ The Greek letter μ is often used for E(X).

Example: Expected number of boys

For our example of the number of boys in a 4-child family:

X	P(X = x)	$F(x) = P(X \le x)$	$x \times P(X = x)$
0	0.06	0.06	0×0.06
1	0.24	0.30	1×0.24
2	0.37	0.67	2×0.37
3	0.26	0.93	3×0.26
4	0.07	1	4×0.07

$$E(X) = 0 \times 0.06 + 1 \times 0.24 + 2 \times 0.37 + 3 \times 0.26 + 4 \times 0.07 = 2.04$$

Note - we do not actually expect to find 2.04 boys in a 4 child family!

Properties of expectation

Expectations of functions of random variables satisfy certain rules.

If a and b are constants,

- ► E(X + b) = E(X) + b
 - Adding b just shifts the distribution of X by b.
- ightharpoonup E(aX) = aE(X)
 - For each value x which X takes, aX takes the value ax.
- ightharpoonup E(aX + b) = aE(X) + b.
 - By combining the results above.

The expectation of a function, g(X), of a discrete random variable X is

$$E(g(X)) = \sum_{x} g(x)P(X = x)$$

Proof:

▶ The expectation of a function, g(X), of a discrete random variable X is

$$E(g(X)) = \sum_{x} g(x)P(X = x)$$

Proof:

$$E(aX+b) = \sum_{x} (ax+b)P(X=x)$$

▶ The expectation of a function, g(X), of a discrete random variable X is

$$E(g(X)) = \sum_{x} g(x)P(X = x)$$

Proof:

$$E(aX + b) = \sum_{x} (ax + b)P(X = x)$$
$$= \sum_{x} axP(X = x) + \sum_{x} bP(X = x)$$

The expectation of a function, g(X), of a discrete random variable X is

$$E(g(X)) = \sum_{x} g(x)P(X = x)$$

Proof:

$$E(aX + b) = \sum_{x} (ax + b)P(X = x)$$

$$= \sum_{x} axP(X = x) + \sum_{x} bP(X = x)$$

$$= a\sum_{x} xP(X = x) + b\sum_{x} P(X = x)$$

▶ The expectation of a function, g(X), of a discrete random variable X is

$$E(g(X)) = \sum_{x} g(x)P(X = x)$$

Proof:

$$E(aX + b) = \sum_{x} (ax + b)P(X = x)$$

$$= \sum_{x} axP(X = x) + \sum_{x} bP(X = x)$$

$$= a\sum_{x} xP(X = x) + b\sum_{x} P(X = x)$$

$$= aE(X) + b.$$

- ► The variance of a random variable *X* is one measure of the variable's dispersion, or 'variability'
- It is defined as:

$$Var(X) = E((X - \mu)^2),$$

where $\mu = E(X)$.

Equivalently, it can be expressed as:

$$Var(X) = E(X^2) - E(X)^2$$

We have two definitions:

$$Var(X) = E((X - \mu)^2), \qquad Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = E((X - \mu)^2)$$

We have two definitions:

$$Var(X) = E((X - \mu)^2), \qquad Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = E((X - \mu)^2)$$

= $E(X^2 - 2X\mu + \mu^2)$

We have two definitions:

$$Var(X) = E((X - \mu)^2), \qquad Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = E((X - \mu)^{2})$$

$$= E(X^{2} - 2X\mu + \mu^{2})$$

$$= E(X^{2}) - 2\mu E(X) + \mu^{2}$$

We have two definitions:

$$Var(X) = E((X - \mu)^2), \qquad Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = E((X - \mu)^{2})$$

$$= E(X^{2} - 2X\mu + \mu^{2})$$

$$= E(X^{2}) - 2\mu E(X) + \mu^{2}$$

$$= E(X^{2}) - 2\mu^{2} + \mu^{2}$$

We have two definitions:

$$Var(X) = E((X - \mu)^2), \qquad Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = E((X - \mu)^{2})$$

$$= E(X^{2} - 2X\mu + \mu^{2})$$

$$= E(X^{2}) - 2\mu E(X) + \mu^{2}$$

$$= E(X^{2}) - 2\mu^{2} + \mu^{2}$$

$$= E(X^{2}) - \mu^{2}$$

We have two definitions:

$$Var(X) = E((X - \mu)^2), \qquad Var(X) = E(X^2) - E(X)^2$$

$$Var(X) = E((X - \mu)^{2})$$

$$= E(X^{2} - 2X\mu + \mu^{2})$$

$$= E(X^{2}) - 2\mu E(X) + \mu^{2}$$

$$= E(X^{2}) - 2\mu^{2} + \mu^{2}$$

$$= E(X^{2}) - \mu^{2}$$

$$= E(X^{2}) - E(X)^{2}.$$

Properties of variance

Variances of functions of random variables satisfy certain rules.

If a and b are constants,

- ightharpoonup Var(X+b) = Var(X)
 - Adding b doesn't affect the spread of the distribution.
- $ightharpoonup Var(aX) = a^2 Var(X)$
 - Constant multipliers have a squared effect on the variance
- $Var(aX + b) = a^2 Var(X).$
 - By combining the results above.

Proof: $Var(aX + b) = a^2 Var(X)$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

Proof:

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^2)$$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^2)$$

= $E(\{aX + b - a\mu - b\}^2)$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^{2})$$

$$= E(\{(aX + b) - a\mu - b\}^{2})$$

$$= E(\{(a(X - \mu)\}^{2}))$$

Proof:
$$Var(aX + b) = a^2 Var(X)$$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^{2})$$

$$= E(\{aX + b - a\mu - b\}^{2})$$

$$= E(\{a(X - \mu)\}^{2})$$

$$= \sum_{X} a^{2}(x - \mu)^{2} P(X = x)$$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^{2})$$

$$= E(\{(aX + b) - a\mu - b\}^{2})$$

$$= E(\{(a(X - \mu))^{2}\})$$

$$= \sum_{x} a^{2}(x - \mu)^{2}P(X = x)$$

$$= a^{2}\sum_{x} (x - \mu)^{2}P(X = x)$$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^{2})$$

$$= E(\{(aX + b) - a\mu - b\}^{2})$$

$$= E(\{(a(X - \mu))^{2}\})$$

$$= \sum_{x} a^{2}(x - \mu)^{2}P(X = x)$$

$$= a^{2}\sum_{x} (x - \mu)^{2}P(X = x)$$

$$= a^{2}E((X - \mu)^{2})$$

▶ The variance of a function, g(X), is given by

$$Var(g(X)) = E[\{g(X) - E(g(X))\}^2]$$

$$Var(aX + b) = E(\{(aX + b) - E(aX + b)\}^{2})$$

$$= E(\{(aX + b - a\mu - b)\}^{2})$$

$$= E(\{(a(X - \mu))^{2}\})$$

$$= \sum_{x} a^{2}(x - \mu)^{2}P(X = x)$$

$$= a^{2}\sum_{x} (x - \mu)^{2}P(X = x)$$

$$= a^{2}E(((X - \mu)^{2}))$$

$$= a^{2}Var(X).$$

The Bernoulli distribution

The Bernoulli distribution corresponds to a single binary outcome (1=success, 0=failure), with $P(X=1)=\pi$.

► The expectation is:

$$E(X) =$$

- Note that $x = x^2$ for x = 0, 1, so $E[X^2] = E[X]$
- So the variance is:

$$Var(X) =$$

The Bernoulli distribution

The Bernoulli distribution corresponds to a single binary outcome (1=success, 0=failure), with $P(X=1)=\pi$.

► The expectation is:

$$E(X) = \sum_{x} xP(X = x)$$

$$= 0 \times (1 - \pi) + 1 \times \pi$$

$$= \pi.$$

- Note that $x = x^2$ for x = 0, 1, so $E[X^2] = E[X]$
- So the variance is:

$$Var(X) =$$

The Bernoulli distribution

The Bernoulli distribution corresponds to a single binary outcome (1=success, 0=failure), with $P(X=1)=\pi$.

► The expectation is:

$$E(X) = \sum_{x} xP(X = x)$$

$$= 0 \times (1 - \pi) + 1 \times \pi$$

$$= \pi.$$

- Note that $x = x^2$ for x = 0, 1, so $E[X^2] = E[X]$
- So the variance is:

$$Var(X) = E[X^2] - E(X)^2$$

= $\pi - \pi^2 = \pi(1 - \pi)$

Outline

Bayes theorem

Random variables

Expectation and variance

Joint distributions

Joint distributions

- ▶ So far we have considered a single random variable *X*.
- Often we are interested in the relationship between two (or more) variables.

Let X and Y be two discrete random variables.

► To consider the relationship between *X* and *Y*, we need to define their *joint* distribution.

Joint distribution function

The joint distribution function of X and Y is given by,

- ightharpoonup P(X=x,Y=y) for values x,y which X and Y can take
- ▶ This is defined as the probability $P(X = x \cap Y = y)$.
- ▶ We often abbreviate this to P(x, y).
- The joint distribution function must satisfy:

$$P(x,y) \ge 0 \text{ for all } x,y$$

 $\sum_{x} \sum_{y} P(x,y) = 1.$

We are interested in the relationship between exercise and obesity

- Let *X* be the typical number of days per week a person does vigorous exercise (grouped)
- ▶ Let Y be the (grouped) weight of a person

The joint distribution of obesity (Y) and exercise (X) is:

		Obesity		
Exercise	Underweight	Normal weight	Overweight	Total
(days/week)	(y=1)	(y = 2)	(y = 3)	
$0-1 \ (x=0)$	0.05	0.1	0.15	0.3
2-4 $(x = 1)$	0	0.05	0.05	0.1
5-7 $(x = 2)$	0.05	0.35	0.2	0.6
Total	0.1	0.5	0.4	1

Marginal distributions

- ▶ The marginal distribution of X, P(X = x), is simply the distribution of X, ignoring Y.
- ► The marginal distribution of *X* can be found from the joint distribution as:

$$P(X = x) = \sum_{y} P(x, y).$$

Conditional distributions

- ▶ The **conditional** distribution of X given Y = y, is the distribution of X given that Y = y.
- It can be expressed as a function of the joint distribution function:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}.$$

Suppose we want to know the overall distribution of obesity.

What is the marginal distribution of obesity (Y)?

Suppose we want to know how much exercise (X) overweight people (Y=3) are doing.

▶ What is the conditional distribution X given Y = 3?

		Obesity		
Exercise	Underweight	Normal weight	Overweight	Total
(days/week)	(y=1)	(y = 2)	(y = 3)	
$0-1 \ (x=0)$	0.05	0.1	0.15	0.3
2-4 $(x = 1)$	0	0.05	0.05	0.1
5-7 $(x = 2)$	0.05	0.35	0.2	0.6
Total	0.1	0.5	0.4	1

Suppose we want to know the overall distribution of obesity.

 \blacktriangleright What is the marginal distribution of obesity (Y)?

Suppose we want to know how much exercise (X) overweight people (Y=3) are doing.

▶ What is the conditional distribution X given Y = 3?

		Obesity		
Exercise	Underweight	Normal weight	Overweight	Total
(days/week)	(y=1)	(y = 2)	(y = 3)	
$0-1 \ (x=0)$	0.05	0.1	0.15	0.3
2-4 $(x = 1)$	0	0.05	0.05	0.1
5-7 $(x = 2)$	0.05	0.35	0.2	0.6
Total	0.1	0.5	0.4	1

Suppose we want to know the overall distribution of obesity.

What is the marginal distribution of obesity (Y)?

Suppose we want to know how much exercise (X) overweight people (Y=3) are doing.

▶ What is the **conditional** distribution X given Y = 3?

		Obesity		
Exercise	Underweight	Normal weight	Overweight	Total
(days/week)	(y=1)	(y = 2)	(y = 3)	
0-1 (x = 0)	0.05	0.1	0.15	0.3
2-4 $(x = 1)$	0	0.05	0.05	0.1
5-7 $(x = 2)$	0.05	0.35	0.2	0.6
Total	0.1	0.5	0.4	1

Cumulative distribution function

▶ It can be expressed as:

$$F(x,y) = P(X \le x, Y \le y).$$

Independence between two random variables

- ▶ If X and Y have no association/dependency, we say they are independent.
- X and Y are independent if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all possible values x and y that X and Y take.

Some properties of the expectation and variance involving two random variables

Let X and Y be discrete random variables. Then,

$$E(X + Y) = E(X) + E(Y)$$

If X and Y are **independent**, then also

- ightharpoonup E[XY] = E(X)E(Y), and
- ightharpoonup Var[X+Y] = Var(X) + Var(Y)

- X and Y are discrete random variables
- ▶ Let Z be their sum, Z = X + Y
- ► Then

$$E(X+Y)=E(Z)=\sum_{z}z\,P(Z=z)$$

- X and Y are discrete random variables
- ▶ Let Z be their sum, Z = X + Y
- ► Then

$$E(X + Y) = E(Z) = \sum_{z} z P(Z = z)$$

= $\sum_{x} \sum_{y} (x + y) P(X = x, Y = y)$

- X and Y are discrete random variables
- \blacktriangleright Let Z be their sum, Z = X + Y
- ► Then

$$E(X + Y) = E(Z) = \sum_{z} z P(Z = z)$$

$$= \sum_{x} \sum_{y} (x + y) P(X = x, Y = y)$$

$$= \sum_{x} \sum_{y} x P(X = x, Y = y) + \sum_{x} \sum_{y} y P(X = x, Y = y)$$

- X and Y are discrete random variables
- ▶ Let Z be their sum, Z = X + Y
- ► Then

$$E(X + Y) = E(Z) = \sum_{z} z P(Z = z)$$

$$= \sum_{x} \sum_{y} (x + y) P(X = x, Y = y)$$

$$= \sum_{x} \sum_{y} x P(X = x, Y = y) + \sum_{x} \sum_{y} y P(X = x, Y = y)$$

$$= \sum_{x} x P(X = x) + \sum_{y} y P(Y = y)$$

- X and Y are discrete random variables
- ▶ Let Z be their sum, Z = X + Y
- ► Then

$$E(X + Y) = E(Z) = \sum_{z} z P(Z = z)$$

$$= \sum_{x} \sum_{y} (x + y) P(X = x, Y = y)$$

$$= \sum_{x} \sum_{y} x P(X = x, Y = y) + \sum_{x} \sum_{y} y P(X = x, Y = y)$$

$$= \sum_{x} x P(X = x) + \sum_{y} y P(Y = y)$$

$$= E(X) + E(Y).$$

Summary

- Bayes theorem
 - Useful for reversing the conditioning.
- Random variables
 - Quantitative variables whose value depends on outcome of random experiment.
- Expectation and variance
 - We have defined the expectation and variance of discrete random variables, and looked at some of the properties of these.
- Joint distributions
 - We have introduced the notion of joint, marginal, and conditional distribution functions, and of independence.