Progettazione concettuale

La costruzione di uno schema concettuale deve tenere conto di alcune **proprietà generali** che ne determinano la **qualità**:

- Correttezza: utilizzo corretto sintattico e semantico dei costrutti del modello E/R
- **Completezza**: rappresentazione di tutti i dati d'interesse descritti nel documento di specifica

Per garantire tali proprietà vengono utilizzate diverse **metodologie di progettazione concettuale**. Alcune di queste possono essere:

Strategie di progettazione

Il documento di specifica potrebbe essere molto complesso e denso di contenuti. Per costruire il modello E/R si possono utilizzare diverse strategie:

- Strategia top-down: lo schema concettuale viene ottenuto attraverso una serie di raffinamenti successivi a partire da uno schema iniziale molto astratto

- Strategia bottom-up: le specifiche iniziali sono suddivise in componenti via via più piccole, ed in un secondo momento i vari schemi sono integrati tra loro

- Strategia inside-out: si individuano una serie di concetti importanti e poi si procede a partire da questi verso concetti correlati, con un'estensione a macchia d'olio. E' un caso particolare della strategia bottom-up

- **Strategia mista**: si utilizza una combinazione delle strategie precedenti. Si suddivide quindi in diversi step:
 - 1. Si individuano i **concetti principali** o più citati
 - 2. Si realizza uno schema scheletro
 - 3. Si decompone lo schema
 - 4. Si raffina lo schema, si espande e si integra

In molti casi pratici di una certa complessità, la strategia mista rappresenta la scelta migliore

Pattern di progettazione

Si parte dal concetto che **non esiste una rappresentazione univoca delle specifiche**, quindi è meglio attenersi alle **Regole Concettuali** (RC) del diagramma E/R. Le tre *regole concettuali* sono:

- RC1: se un concetto ha proprietà significative e descrive oggetti con esistenza autonoma, si utilizzano Entità
- RC2: se un concetto correla due o più Entità, si utilizzano Relazioni
- RC3: se un concetto è un caso particolare dell'altro, si utilizzano Generalizzazioni

Esistono molti **pattern**, ovvero **soluzioni di problemi ricorrenti**, usati nella progettazione concettuale. Se ne osservino alcuni.

$Pattern_1$

Concetti di tipo "parte di" attraverso l'utilizzo di relazioni uno a molti.

$Pattern_2$

Introduzione di nuove entità in relazioni uno a molti per la gestione dei duplicati.

$Pattern_3$

Utilizzo di **generalizzazioni** per tenere traccia della **storia di un concetto**, ossia della sua istanza attuale e di quelle pregresse.

$Pattern_4$

Utilizzo di generalizzazioni per tenere traccia dell'evoluzione nel tempo di un certo concetto, ossia la creazione di nuove istanze diverse dal concetto originario.

Analisi di prestazione

Una volta realizzato il modello E/R, è importante analizzarne l'efficienza dal punto di vista prestazionale. Alcuni indici di prestazione possono essere:

- Costo operazionale: numero di entità/associazioni mediamente visitate per implementare una certa operazione sui dati
- Occupazione di memoria: spazio di memoria necessario per memorizzare i dati

Per poter stimare correttamente l'efficienza prestazionale di uno schema E/R, abbiamo necessità di informazioni aggiuntive.

Tavola dei volumi

La tavola dei volumi fornisce una stima del numero di occorrenze entità/relazioni presenti nel modello E/R. Si osservi un esempio:

Concetto	Tipo	Volume
Progetto	E	100
Release	E	1000
Dipendente	E	500
Tecnico	E	200
Sviluppatore	E	100
Programmatore	E	70
Analista	E	30
_		

Concetto	Tipo	Volume
Direzione	R	100
Partecipazione	R	2000
Versioni	R	1000

Stima del **numero medio** di occorrenze di una relazione

Stima del numero medio di occorrenze di una entità

In questo caso, le **assunzioni** possibili sono due: ogni progetto ha in media 10 *release*, e ad ogni progetto lavorano in media 20 *dipendenti*.

Tavola delle operazioni

La tavola delle operazioni definisce l'insieme delle operazioni che devono essere implementate. Inoltre definisce la tipologia delle operazioni (interattive/batch) e la frequenza delle operazioni.

Le informazioni riguardanti le due tavole vengono fornite durante la **raccolta ed analisi** dei requisiti.

Si osservi un esempio di tavola delle operazioni:

Operazione	Tipo	Frequenza
Operazione ₁	I	10 volte/giorno
Operazione ₂	I	100 volte/giorno
Operazione ₃	В	5 volte/giorno

Operazione₁: assegnare un dipendente ad un progetto

Operazione₂: visualizzare tutti i dati di un progetto, delle release associate e del direttore

Operazione₃: per ciascun progetto, visualizzare tutti i dati dei dipendenti associati

Si definisce ora il concetto di **costo di una operazione**. Data un'operazione O di tipo T, definiamo il suo **costo** $\mathbf{c}(O_T)$ come:

$$c(O_T) = f(O_T) \cdot w_T \cdot (\alpha \cdot NCwrite + NCread)$$

Si osservi ora il glossario dei seguenti simboli:

 $f(O_T)$: frequenza dell'operazione

NCread: numero di accessi in lettura a componenti dello schema

NCwrite: numero di accessi in scrittura a componenti dello schema

 w_T : **peso** dell'operazione

 α : coefficiente moltiplicativo delle operazioni in scrittura

Tornando all'esempio delle operazioni visto in precedenza, calcoliamo il costo delle tre operazioni:

$Operazione_1$

Assegnare un dipendente ad un progetto. La sua frequenza è di 10 volte al giorno.

I parametri in questo caso sono:

 $f(O_T)$: 10

NCread: 0

370

NCwrite: 1

 w_T : 0.5

 α : 2

Ottenendo un costo di

$$c(Operazione1) = 10 \cdot 0.5 \cdot (2 \cdot 1 + 0) = 10$$

$Operazione_2\\$

Visualizzare tutti i dati di un progetto, delle release associate e del direttore. La frequenza è di 100 volte al giorno.

TAVOLA DEGLI ACCESSI

Concetto	Costrutto	Accessi	Tipo
Progetto	Entita'	1	L
Versioni	Relazione	10	L
Release	Entita'	10	L
Direzione	Relazione	1	L
Dipendente	Entita'	1	L

I parametri in questo caso sono:

 $f(O_T)$: 100

NCread: 23

NCwrite: 0

 w_T : 0.5

 α : 2

Ottenendo un costo di

$$c(Operazione2) = 100 \cdot 0.5 \cdot (2 \cdot 0 + 23) = 1150$$

$Operazione_3$

Per ciascun progetto, visualizzare tutti i dati dei dipendenti associati. La frequenza è di 5 volte al giorno.

TAVOLA DEGLI ACCESSI

Concetto	Costrutto	Accessi	Tipo
Progetto	Entita'	100	R
Partecipazione	Relazione	2000	R
Dipendente	Entita'	2000	R

I parametri in questo caso sono:

 $f(O_T)$: 5

NCread: 4100

NCwrite: 0

 w_T : 0.5

 α : 2

Ottenendo un costo di

$$c(Operazione3) = 5 \cdot 0.5 \cdot (2 \cdot 0 + 4100) = 10250$$

Si osservi ora come calcolare il **costo dello schema** completo. Dato uno schema S, ed un'insieme di operazioni sui dati O1, O2, ..., On, con costi c(O1), c(O2), c(On), il **costo dello schema** è definito come:

$$c(S) = \sum_{i=1}^{n} c(Oi)$$

Nell'esempio precedente si ottiene (10 + 1150 + 10250) = 11410.

L'obiettivo del progettista è quello di **determinare lo schema E/R di costo minimo**. Conoscendo la tavola dei volumi, il tipo di ciascun attributo e la sua dimensione del disco, è possibile stimare l'**occupazione di memoria dello schema**.

$$M(S) = \sum_{entita'e} V(e) \cdot size(e) + \sum_{relazioner} V(r) \cdot size(r)$$

Dove i parametri indicano:

V(e), size(e): tabella dei volumi e dimensione in termini di occupazione di memoria dell'entità e

V(r), size(r): tabella dei volumi e dimensione in termini di occupazione di memoria della relazione r

Si osservi un esempio: come stimare l'occupazione di memoria dell'entità Dipendente.

La **Memoria Occupata** per l'entità Dipendente è uguale a : 500 * (8B + 4B) = 6000B.

In pratica, si cerca di determinare il miglior trade-off tra occupazione di memoria e costo delle operazioni dello schema.

Gli indici di prestazione di un diagramma E/R sono forniti come input alla fase di **progettazione logica**, e sono utilizzati per la **traduzione dal modello concettuale** e per l'analisi delle ridondanze.