Übung "Grundbegriffe der Informatik"

9.11.2012 Willkommen zur vierten Übung zur Vorlesung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Überblick

Invarianten

Algorithmer

Invarianten 2

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Ist am Ende mehr Zucker im Salzfass oder mehr Salz im Zuckerfass?

Invarianten 3/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Ist am Ende mehr Zucker im Salzfass oder mehr Salz im Zuckerfass?

Und was hat das mit Invarianten zu tun?

Invarianten 4/61

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Genau so viel Zucker im Salzfass wie Salz im Zuckerfass.

Invarianten 5/61

Gegeben: Ein Fass Salz, ein Fass Zucker.

Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Invariant: (Volumen-)Menge in Salzfass.

Invarianten 6/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.

▶ Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Invariant: (Volumen-)Menge in Salzfass.

Invariant: Menge an Salz.

Invarianten 7/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- ► Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Anfangs gilt: Genau so viel Zucker in Salzfass wie Salz in Zuckerfass.

Invarianten 8/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- ► Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Invarianten 9/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Invariant: (Volumen-)Menge in Salzfass.

Invariant: Menge an Salz.

Invarianten 10/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- ▶ Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Invariant: (Volumen-)Menge in Salzfass.

Invariant: Menge an Salz.

Es gilt immer: $s_z + s_s = z_s + s_s$

Invarianten 11/61

Gegeben: Ein Fass Salz, ein Fass Zucker. Wiederhole folgenden Prozess:

- Einen Löffel Inhalt des Salzfasses ins Zuckerfass.
- Einen Löffel Inhalt des Zuckerfasses ins Salzfass.

Zucker in Zuckerfass: z_z , Zucker in Salzfass: z_s Salz in Zuckerfass: s_z , Salz in Salzfass: s_s

Invariant: (Volumen-)Menge in Salzfass. Invariant: Menge an Salz.

Es gilt immer: $s_z + s_s = z_s + s_s$ Also $s_z = z_s$

Invarianten 12/61

und noch ein Beispiel

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Invarianten 13/61

Schale mit a blauen, b roten und c grünen Kugeln. Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

$$(3,2,4) o (2,1,5) o (1,2,4) o (2,1,3) o (1,2,2) o (2,1,1) o (1,0,2) o (0,1,1) o (1,0,0)$$

Invarianten 14/61

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe?

Invarianten 15/61

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? Suche Invariante ...

Invarianten 16/61

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? (a,b,c) o (a-1,b-1,c+1)

Invarianten 17/61

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? $(a,b,c) \rightarrow (a-1,b-1,c+1)$ **Alles** ändert sich!

Invarianten 18/61

$$(a,b,c) \to (a-1,b-1,c+1)$$
 Wie siehts mit Differenzen aus? $(a-1)-(b-1)=a-b$ $(a-1)-(c+1)=a-c-2$ $(b-1)-(c+1)=b-c-2$

Invarianten 19/61

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe? (a,b,c) o (a-1,b-1,c+1)

▶ Differenzen modulo 2 bleiben gleich.

Invarianten 20/61

Schale mit a blauen, b roten und c grünen Kugeln.

Wiederhole: Nimm zwei verschiedenfarbige Kugeln und ersetze sie durch eine Kugel der dritten Farbe.

Bekannt: Am Ende bleibe eine einzelne Kugel übrig. Welche Farbe?

- ► Ende: (0, 1, 0):
 - Für nicht vorhandene Kugelfarben gilt |(x-y)| mod 2=0
 - Für vorhandene Kugelfarbe gilt $|(y x)| \mod 2 = 1$

Invarianten 21/61

n	div 2	mod 2
0	0	0
1	0	1
2	1	0
3	1	1
4	2	0
5	2 2 3 3	1
6	3	0
7	3	1
2 3 4 5 6 7 8	4 4	0
9	4	1

Invarianten 22/61

n	div 3	mod 3
0	0	0
1	0	1
2	0	2
3	1	0
2 3 4 5	1	1
5	1	2
6	2	0
7	2 2 2 3	1
8	2	2
9	3	0

Invarianten 23/61

 $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : n - (n \bmod k)$ ist durch k teilbar. $\rightarrow n$ durch k teilbar bzw. k teilt $n \iff \exists m \in \mathbb{N}_0 : km = n$.

Invarianten 24/61

 $\forall n, m \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ : n \mod k = m \mod k \Rightarrow |n - m|$ ist durch k teilbar.

 $\rightarrow n$ durch k teilbar bzw. k teilt $n \iff \exists m \in \mathbb{N}_0(\mathbb{Z}) : km = n$.

Vergleiche: $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_+ :$

 $k \cdot (n \operatorname{div} k) + (n \operatorname{mod} k) = n.$

Invarianten 25/61

k heißt Teiler von n falls gilt: $\exists m \in \mathbb{N}_0(\mathbb{Z}) : km = n$. k ist gemeinsamer Teiler von a, b: k teilt a und k teilt b. Jede natürliche Zahl teilt 0.

Invarianten 26/61

k ist größter gemeinsamer Teiler von a, b (ggt(a, b)):

- ▶ k ist gemeinsamer Teiler von a und b und jeder gemeinsame Teiler k' von a und b erfüllt $k' \leq k$ ODER
- ▶ k ist gemeinsamer Teiler von a und b und jeder gemeinsame Teiler k' von a und b erfüllt k' teilt k.

Invarianten 27/61

Formal für k = ggt(a, b):

- ▶ $(\exists m_1, m_2 \in \mathbb{N}_0 : m_1 k = a \land m_2 k = b) \land \forall k' \in \mathbb{N}_0 : (\exists m'_1, m'_2 \in \mathbb{N}_0 : m'_1 k' = a \land m'_2 k' = b) \Rightarrow k' \leq k.$
- ▶ $(\exists m_1, m_2 \in \mathbb{N}_0 : m_1 k = a \land m_2 k = b) \land \forall k' \in \mathbb{N}_0 : (\exists m'_1, m'_2 \in \mathbb{N}_0 : m'_1 k' = a \land m'_2 k' = b) \Rightarrow \exists m_3 \in \mathbb{N}_0 : m_3 k' = k.$

Invarianten 28/61

a	Ь	ggt(a,b)
5	5	5
4	4	4
3	3	3
2	2	2
1	1	1
0	0	?

Invarianten 29/61

```
\forall n \in \mathbb{N}_+ : ggt(0, n) = ggt(n, 0) = n.

ggt(0, 0) undefiniert nach Definition 1.

ggt(0, 0) = 0 nach Definition 2.
```

Invarianten 30/61

Überblick

Invarianten

Algorithmen

```
x \leftarrow n
y \leftarrow 0
z \leftarrow 0
e \leftarrow 1
v \leftarrow 1
for i \leftarrow 0 to \lceil \log_2 n \rceil do
       y \leftarrow y + e \cdot x \mod 2
        z \leftarrow z + v \cdot x \mod 2
        x \leftarrow x \operatorname{div} 2
        e \leftarrow 2 \cdot e
        v \leftarrow -v
od
```

Algorithmen 32/61

Anfang:	n	0	0	1	1
	X	у	Z	e	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v

Wiederhole $1 + \lceil \log_2 n \rceil$ mal.

Algorithmen 33/61

Anfang:	n	0	0	1	1
	X	У	Z	е	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 34/61

Anfang:	n	0	0	1	1
	X	У	Z	е	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 35/61

Anfang:	n	0	0	1	1
	X	у	Z	е	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1
2. Iter.	1	1	1	4	1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 36/61

Anfang:	n	0	0	1	1
	X	У	Z	e	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1
2. Iter.	1	1	1	4	1
3. Iter.	0	5	2	8	-1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 37/

Anfang:	n	0	0	1	1
	X	у	Z	e	V
\rightarrow	x div 2	$y + e(x \mod 2)$	$z + v(x \mod 2)$	2 <i>e</i>	-v
Init. n=5:	5	0	0	1	1
1. Iter.	2	1	1	2	-1
2. Iter.	1	1	1	4	1
3. Iter.	0	5	2	8	-1
4. Iter.	0	5	2	16	1

Wiederhole $1+\lceil \log_2 n \rceil$ mal. \to 4 mal.

Algorithmen 38/61

n = 9:					
Anfangsbelegung:		0	0	1	1
Nach 1. Schleife	4	1	1	2	-1
Nach 2. Schleife	2	1	1	4	1
Nach 3. Schleife	1	1	1	8	-1
Nach 4. Schleife	0	9	0	16	1
Nach 5. Schleife	0	9	0	32	-1

Algorithmen 39/61

n = 16:					
Anfangsbelegung:	16	0	0	1	1
Nach 1. Schleife	8	0	0	2	-1
Nach 2. Schleife	4	0	0	4	1
Nach 3. Schleife	2	0	0	8	-1
Nach 4. Schleife	1	0	0	16	1
Nach 5. Schleife	0	16	1	32	-1
Nach 6. Schleife	0	16	1	64	1

Algorithmen 40/61

n = 21:					
Anfangsbelegung:	21	0	0	1	1
Nach 1. Schleife	10	1	1	2	-1
Nach 2. Schleife	5	1	1	4	1
Nach 3. Schleife	2	5	2	8	-1
Nach 4. Schleife	1	5	2	16	1
Nach 5. Schleife	0	21	3	32	-1
Nach 6. Schleife	0	21	3	64	1

Algorithmen 41/61

Was fällt auf?

- ightharpoons

Was fällt auf?

- Am Ende gilt y = n.

Was fällt auf?

- ▶ Am Ende gilt y = n.
- x wird in jedem Schritt halbiert, e wird in jedem Schritt verdoppelt.

Algorithmen 44/61

Was fällt auf?

- ▶ Am Ende gilt y = n.
- x wird in jedem Schritt halbiert, e wird in jedem Schritt verdoppelt.
- ▶ Schleifeninvariante 1: $x \cdot e + y = n$.

	×	У	Z	е	f
Anfangsbelegung:	21	0	0	1	1
Nach 1. Schleife	10	1	1	2	-1
Nach 2. Schleife	5	1	1	4	1
Nach 3. Schleife	2	5	2	8	-1
Nach 4. Schleife	1	5	2	16	1
Nach 5. Schleife	0	21	3	32	-1
Nach 6. Schleife	0	21	3	64	1

Algorithmen 45/61

Was fällt auf?

Was fällt auf?

y mod 3= z mod 3

Was fällt auf?

- $y \mod 3 = z \mod 3$
- Schleifeninvariante 2: y z ist durch 3 teilbar.

Skizze Beweis Schleifeninvariante 2:

$$y + e(x \mod 2) - (z + v(x \mod 2)) =$$

 $y - z + (x \mod 2)(e - v)$

Algorithmen 49/61

Skizze Beweis Schleifeninvariante 2: $y + e(x \mod 2) - (z + v(x \mod 2)) = y - z + (x \mod 2)(e - v)$ Schön wäre, wenn e - v immer durch 3 teilbar ist.

Algorithmen 50/61

Schleifeninvariante:

- $\triangleright x \cdot e + y = n \wedge$
- e v ist durch 3 teilbar \wedge
- y z ist durch 3 teilbar.

$$\begin{array}{l} x \leftarrow n \\ y \leftarrow 0 \\ z \leftarrow 0 \\ e \leftarrow 1 \\ v \leftarrow 1 \\ \textbf{for} \ \ i \leftarrow 0 \ \ \textbf{to} \ \lceil \log_2 n \rceil \ \ \textbf{do} \\ y \leftarrow y + e \cdot x \ \textbf{mod} \ 2 \\ z \leftarrow z + v \cdot x \ \textbf{mod} \ 2 \\ x \leftarrow x \ \textbf{div} \ 2 \\ e \leftarrow 2 \cdot e \\ v \leftarrow -v \\ \textbf{od} \end{array}$$

- ► Aussage *S_i*: Aussage der Schleifeninvariante gilt zu **Beginn** des *i*-ten Schleifendurchlaufs.
- ► Aussage *R_i*: Aussage der Schleifeninvariante gilt am **Ende** des *i*-ten Schleifendurchlaufs.

Algorithmen 53/61

- ► Aussage *S_i*: Aussage der Schleifeninvariante gilt zu **Beginn** des *i*-ten Schleifendurchlaufs.
- ► Aussage *R_i*: Aussage der Schleifeninvariante gilt am **Ende** des *i*-ten Schleifendurchlaufs.
- ▶ Wenn es i + 1-ten Schleifendurchlauf gibt, gilt $R_i = S_{i+1}$.

Algorithmen 54/61

Vorgehen:

- ightharpoonup Zeige S_0 .
- ▶ Zeige für zulässige $i: S_i \Rightarrow R_i$.

Algorithmen 55/61

Vorgehen:

- ightharpoonup Zeige S_0 .
- ▶ Zeige für zulässige $i: S_i \Rightarrow R_i$.

Dazu: Belegung der Variable V zu Anfang des i-ten Schleifendurchlaufs: V_i , am Ende des i-ten Schleifendurchlaufs: V_{i+1} .

Algorithmen 56/61

SI 1:
$$x_i \cdot e_i + y_i = n$$

- ► IA: i = 0: $x_0 \cdot e_0 + y_0 = n \cdot 1 + 0 = n$. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow x_i \cdot e_i + y_i = n.$
- ▶ IS: Es ist zu zeigen, dass dann auch $x_{i+1} \cdot e_{i+1} + y_{i+1} = n$: $x_{i+1} \cdot e_{i+1} + y_{i+1} =$ $(x_i \operatorname{div} 2) \cdot (e_i \cdot 2) + (y_i + e_i \cdot x_i \operatorname{mod} 2)$ $= y_i + e_i((x_i \operatorname{div} 2) \cdot 2 + x_i \operatorname{mod} 2) = y_i + e_i x_i \stackrel{IV}{=} n$

Algorithmen 57/61

SI 2: $e_i - v_i$ ist durch 3 teilbar.

- ▶ IA: i = 0: $e_0 v_0 = 1 1 = 0$ ist durch 3 teilbar. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow e_i - v_i$ ist durch 3 teilbar.
- ▶ IS: Es ist zu zeigen, dass dann auch $e_{i+1} v_{i+1}$ durch 3 teilbar ist:

$$e_{i+1} - v_{i+1} = 2 \cdot e_i - (-v_i) = 2 \cdot e_i + v_i$$

Algorithmen 58/61

SI 2: $e_i - v_i$ ist durch 3 teilbar.

- ▶ IA: i = 0: $e_0 v_0 = 1 1 = 0$ ist durch 3 teilbar. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow e_i - v_i$ ist durch 3 teilbar.
- ▶ IS: Es ist zu zeigen, dass dann auch $e_{i+1} v_{i+1}$ durch 3 teilbar ist:

$$e_{i+1} - v_{i+1} = 2 \cdot e_i - (-v_i) = 2 \cdot e_i + v_i = 2(e_i - v_i) + 3v_i$$
. Nach IV ist $e_i - v_i$ durch 3 teilbar, und damit auch $2(e_i - v_i) + 3v_i$.

SI 3: $y_i - z_i$ ist durch 3 teilbar.

- ▶ IA: i = 0: $y_0 z_0 = 0 0 = 0$ ist durch 3 teilbar. $\sqrt{}$
- ▶ IV: Für beliebiges, aber festes $i \in \mathbb{N}_0$ gilt: $i < \lceil \log_2 n \rceil \Rightarrow y_i - z_i$ ist durch 3 teilbar.
- ▶ IS: Es ist zu zeigen, dass dann auch $y_{i+1} z_{i+1}$ durch 3 teilbar ist:

$$y_{i+1} - z_{i+1} = y_i + e_i(x_i \mod 2) - (z_i + v_i(x_i \mod 2)) = (y_i - z_i) + (e_i - v_i)(x_i \mod 2)$$

Nach IV beziehungsweise SI 2 sind beide Summanden durch 3 teilbar, also auch $y_{i+1} - z_{i+1}$.

> Algorithmen 60/61

Das wars für heute...

Themen für das vierte Übungsblatt:

- Algorithmen
- Schleifeninvarianten

Schönes Wochenende!

Algorithmen 61/61