

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00400 NI	N 4	000000 Name	_	75000 N/m = 2
N	= 20100 N	M_x	= 202000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1070 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 25700 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	_d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$, =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
♠ ∧		1: B 4:1	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

				_	2
Ν	= 23600 N	M_x	= 228000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1070 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 20400 Nmm	E	= 200000 N/mm ²		
\mathbf{x}_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	_d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
∧ -I	lalfa Zavalani Dagai Dalitaaniaa	-I: N 4:1-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	• •		OF 4000 Norms	_	75000 N/m = 2
N	= 27300 N	M_x	= 254000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 743 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= 24300 Nmm	E	$= 200000 \text{ N/mm}^2$		
\mathbf{x}_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{lls}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$		$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
@ 14	lalfa Zavalani Dassi Dalitasnias	d: N/:1a	no vere 04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	04000 N		000000 N	_	2=000 11/ 2
Ν	= 21200 N	M_x	= 280000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 783 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 28600 Nmm	Ε̈́	= 200000 N/mm ²		
X_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	_d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$, =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
♠ ▲		1: B 4:1	04.00.00	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24900 N	M_{x}	= 208000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 823 N	$\hat{\sigma_a}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 33300 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
Su	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	_d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$, =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21300 N	$M_{x} = 279000 \text{ Nr}$	nm G	$= 75000 \text{ N/mm}^2$
T,	= 1470 N		2	
$\dot{M_t}$	= 17500 Nmm	$\sigma_{a} = 220 \text{ N/mm}^{2}$ $E = 200000 \text{ N/m}^{2}$	mm^2	
x_G	=	α =	σ_{ls}	=
y_{G}	=	$J_t =$	$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$	$\sigma_{\sf Id}$	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d =$	σ_{treso}	_a =
S_u	=	$\tau(T_{yc}) =$	σ_{mise}	s =
C_{w}	=	$\tau(T_{yb})_d =$	$\sigma_{\sf st.ve}$	
J_{xx}	=	$\tau(T_y)_s =$	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d =$	\mathbf{r}_{u}	=
J_{xy}	=	σ =	r_{v}	=
J_{u}	=	$\tau_s =$	r_{o}	=
J_v	=	τ_{d} =	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	• •		admonto delle terior tangenziam	_	2
N	= 24700 N	M_x	= 312000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 971 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= 21100 Nmm	Ē	$= 200000 \text{ N/mm}^2$		
\mathbf{x}_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A _*	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
	=	$\tau(T_{yb})$		$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$		Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$\boldsymbol{\tau}_{\text{d}}$	=	J_p	=
@ \ \	lalfa Zavalani Dagai Dalitaaniaa	d: N/1:1a			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 1	3		. 2
Ν	= 19300 N	$M_{x} = 345000 \text{ Nmm}$	G	$= 75000 \text{ N/mm}^2$
T_v	= 986 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 25000 Nmm	$E^{a} = 200000 \text{ N/mm}^{2}$		
x_{G}	=	α =	σ_{ls}	=
y_{G}	=	$J_t =$	$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_{y})_{s} =$	θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J_u	=	τ_s =	r_{o}	=
J_{v}	=	τ_{d} =	J_p	=
_ ^		" N A !! 0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	00000 N		057000 N	_	75000 N/ 2
Ν	= 22800 N	M_x	= 257000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1000 N	σ_{a}	$= 220 \text{ N/mm}^2$		
Μ́ _t	= 29300 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$\tau_{\sf d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 26500 N	M_x	= 289000 Nmm	G	$= 75000 \text{ N/mm}^2$
T _v	= 1030 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 23000 Nmm	σ_{a} E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ·			0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	00000 11	NA 074000 NI	_	7=000 11/ 2
Ν	= 22300 N	$M_{x} = 371000 \text{ Nmm}$	G	= 75000 N/mm ²
T_v	= 1490 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 17900 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	σ_{ls}	=
y_G	=	$J_t =$	σ_{IIs}	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
S_u	=	$\tau(T_{yc}) =$	σ_{mises}	=
A S _u C _w	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	=
J_{xx}	=	$\tau(T_{y})_{s} =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J_{u}	=	τ_s =	r_{o}	=
J_{v}	=	τ_{d} =	J_{p}	=
_ ·		U. N. 411		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	47500 N		440000 N	_	772 2 2 2 2 2 2 2 2 2
Ν	= 17500 N	M_x	= 412000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1400 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 21400 Nmm	Ē	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{lls}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A _*	=	$\tau(M_t)_d$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	_d =	$\sigma_{\text{st.ven}}$	=
J_{xx}	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
∧ -I	lalfa Zavalani Dasai Dalitassias	-I: N /I:I-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20700 N	M _x	= 308000 Nmm	G	= 75000 N/mm ²
T	= 1350 N		= 220 N/mm ²	0	- 70000 TV/IIIII
у		σ_a			
M_t	= 25300 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_d$	=	J_{p}	=
@ A -I	lalfa Zavalani Dasai Dalifaanisa	-I: N 4:1-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	04000 NI	M 0.47000 Norm	C 75000 N/m = 2
Ν	= 24200 N	$M_x = 347000 \text{ Nmm}$	$G = 75000 \text{ N/mm}^2$
T_v	= 1320 N	$\sigma_a = 220 \text{ N/mm}^2$	
$\dot{M_t}$	= 20100 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$	
x_{G}	=	α =	σ_{ls} =
y_G	=	$J_t =$	$\sigma_{IIs} =$
u_o	=	$\sigma(N) =$	σ_{ld} =
V_{o}	=	$\sigma(M_x) =$	$\sigma_{IId} =$
$A_{_{\star}}$	=	$\tau(M_t)_d =$	$\sigma_{tresca} =$
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises} =
C_{w}	=	$\tau(T_{yb})_{d} =$	$\sigma_{\rm st.ven}$ =
J_{xx}	=	$\tau(T_{y})_{s} =$	$\theta_{t} =$
J_{yy}	=	$\tau(T_{y})_{d} =$	$r_u =$
J_{xy}	=	σ =	$r_{v} =$
J_{u}	=	τ_s =	r _o =
J_v	=	τ_{d} =	$J_p =$
_ ^		" A 4"	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	00000 N		007000 N	_	75000 N/ 2
Ν	= 28000 N	M_x	= 387000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 895 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 24000 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_v	=	$\tau_{\sf d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16000 N	N/I	- 456000 Nmm	G	= 75000 N/mm ²
		M_x	= 456000 Nmm	G	= 75000 N/IIIII
T_v	= 2240 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 18600 Nmm	Ĕ	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$		θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19000 N	M_x	= 343000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1950 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 22100 Nmm	σ _a Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$		σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\epsilon}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ·		11 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22300 N	M_x	= 388000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1780 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 17700 Nmm	$\begin{matrix}\sigma_{a}\\E\end{matrix}$	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$		σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\xi}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_{c}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	1	= 25800 N	M,	= 21300 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
Т	- У	= 1140 N	M_x	= 433000 Nmm	E	= 200000 N/mm ²		
X	G	=	J_{xy}		$\tau(T_{yb})_{c}$		σ_{IId}	=
У	G	=	J_u		$\tau(T_y)_s$		σ_{tresca}	=
u	o	=	J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=
٧	0	=	α	=	σ	=	$\sigma_{\text{st.ven}}$	=
Α	١.	=	J_t	=	$ au_{s}$	=	θ_{t}	=
S	s _u	=	$\sigma(N)$	=	$ au_d$	=	r_u	=
C	, w	=	$\sigma(M_x)$	=	σ_{ls}	=	r_{v}	=
J	XX	=	$\tau(M_t)_d$		σ_{IIs}	=	r_{o}	=
	уу	=	$\tau(T_{yc})$	=	σ_{ld}	=	J_p	=
		alfa Zarralani Danai Di			00.00		-	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20100 N	$M_x = 479000 \text{ Nmm}$	$G = 75000 \text{ N/mm}^2$
	= 1140 N		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
T_{y}			
$\dot{M_t}$	= 25200 Nmm	$E = 200000 \text{ N/mm}^2$	
x_G	=	α =	σ_{ls} =
y_{G}	=	$J_t =$	$\sigma_{IIs} =$
u_o	=	$\sigma(N) =$	σ_{ld} =
V_{o}	=	$\sigma(M_x) =$	$\sigma_{IId} =$
$A_{_{\star}}$	=	$\tau(M_t)_d =$	$\sigma_{tresca} =$
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises} =
	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}} =$
J_xx	=	$\tau(T_{y})_{s} =$	$\theta_{t} =$
J_{yy}	=	$\tau(T_{y})_{d} =$	$r_u =$
J_{xy}	=	σ =	$r_v =$
J _u	=	τ_s =	r _o =
J_v	=	$\tau_{d} =$	$J_p =$
\sim		11 1 11 11 11 11 11 11 11 11 11 11 11 1	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17400 N	M_x	= 374000 Nmm	G	= 75000 N/mm ²
T_v	= 3720 N	$\sigma_{a}^{}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 19200 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _.	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	o _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$; =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
@ A	dolfo Zavoloni Possi, Politosnios	Ai Mila	ano voro 24 00 06		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20400 N	$M_{x} = 427000 \text{ Nmn}$	n Ğ	$= 75000 \text{ N/mm}^2$
T_v	= 2870 N			
$\dot{M_t}$	= 15400 Nmm	$\sigma_{a} = 220 \text{ N/mm}^2$ $E = 200000 \text{ N/mi}$	m^2	
x_G	=	α =	σ_{ls}	=
y_{G}	=	$J_t =$	$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d =$	σ_{tresca}	_a =
S_u	=	$\tau(T_{yc}) =$	$\sigma_{\sf mises}$	₃ =
C_{w}	=	$\tau(T_{yb})_{d}=$	$\sigma_{st.ver}$	
J_{xx}	=	$\tau(T_y)_s =$	$ heta_{t}$	=
J_{yy}	=	$\tau(T_y)_d =$	r_{u}	=
J_{xy}	=	σ =	r_{v}	=
J_{u}	=	$\tau_s =$	r_{o}	=
J_v	=	τ_{d} =	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 23700 N	M_x	= 479000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1660 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 18700 Nmm	σ_{a} E	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\xi}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
<u> </u>					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	1	= 18500 N	M,	= 22300 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
Т	- y	= 1550 N	M_x	= 531000 Nmm	Ĕ	= 200000 N/mm ²		
Х	G	=	J_{xy}		$\tau(T_{yb})_{c}$		σ_{IId}	=
У	G	=	J_u		$\tau(T_y)_s$		σ_{tresca}	=
u	o	=	J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=
V	0	=	α	=	σ	=	$\sigma_{\text{st.ven}}$	=
Α	١.	=	J_t	=	$ au_{s}$	=	θ_{t}	=
S	s _u	=	$\sigma(N)$	=	$ au_d$	=	r_u	=
C	, w	=	$\sigma(M_x)$	=	σ_{ls}	=	r_{v}	=
J	XX	=	$\tau(M_t)_d$		σ_{IIs}	=	r_{o}	=
- 1	уу	=	$\tau(T_{yc})$	=	σ_{ld}	=	J_p	=
		- K - 7 D D			00.00		-	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 21900 N	M_{x}	= 396000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1480 N	$\hat{\sigma_a}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 26200 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A _.	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
_ ^		11 8 411	0.4.00.00	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20400 N	M_x	= -281000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1340 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -16500 Nmm	σ_{a} E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_{t}	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	₁ =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	l _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$; =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

				_	2
Ν	= 23200 N	M_x	= -312000 Nmm	G	= 75000 N/mm ²
T_v	= 864 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -18900 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ·			04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17800 N	M_{x}	= -343000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 853 N	σ_a	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -21400 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A _*	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{mises}	
A S _u C _w	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$		Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
@ Ad	lolfo Zavelani Rossi, Politecnico	di Mila	ano, vers.24.08.06	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	20000 N	N /	05 4000 Nimomo	_	75000 N/mm ²
N	= 20600 N	M_x	= -254000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 847 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= -24000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	o _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$; =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ·		11 8 411	040000		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 23600 N	N/I	= -285000 Nmm	G	$= 75000 \text{ N/mm}^2$
		M_x		G	= 75000 11/111111
T_v	= 843 N	$\sigma_{\rm a}$	= 220 N/mm ²		
$\dot{M_t}$	= -18100 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$, =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{\sf d}$	=	J_{p}	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22700 N	M _x	= -390000 Nmm	G	= 75000 N/mm ²
T	= 1480 N	σ_a	= 220 N/mm ²	O	- 70000 N/IIIII
M _t	= -19500 Nmm	E E	= 200000 N/mm ²		
x _G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$\boldsymbol{\tau}_{\text{d}}$	=	J_{p}	=
@ A =	laka Zavalani Dasai Dalikassisa	-I: N 4:1-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17300 N	M_{x}	= -428000 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ,,	= 1370 N	$\hat{\sigma_{a}}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -21900 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)$	s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)$		r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
	dolfo Zavelani Possi Politecnio	o di Mil	and vers 24.08.06	-	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00000 NI	M 047000 Nissus	_	75000 N/m = 2
Ν	= 20000 N	$M_x = -317000 \text{ Nmm}$	G	$= 75000 \text{ N/mm}^2$
T_v	= 1290 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -24500 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	σ_{l}	s =
y_G	=	$J_t =$	σ_{l}	ıs =
u_o	=	$\sigma(N) =$	σ_{l}	d =
V_{o}	=	$\sigma(M_x) =$	σ_{l}	_{ld} =
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{t}	resca =
A S _u C _w	=	$\tau(T_{yc}) =$		nises =
C_{w}	=	$\tau(T_{yb})_d =$		st.ven =
J_xx	=	$\tau(T_{y})_{s} =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_{u}	=
J_{xy}	=	σ =	r_{v}	=
J_u	=	τ_s =	r_{o}	=
J_{v}	=	τ_{d} =	J_{p}	=
_ ·		" 1 4" 0 0 0 0		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00000 NI	B 4	055000 Nissass	_	75000 N/m = 2
N	= 22900 N	M_x	= -355000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1240 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -18500 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\epsilon}$	s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	τ_{d}	=	J_{p}	=
_ ^		11 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	' '		3		. 2
Ν	= 26000 N	M_x	= -393000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 816 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -21100 Nmm	E	= 200000 N/mm ²		
X_{G}	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _*	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	o _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$; =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	₁ =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$\boldsymbol{\tau}_{\text{d}}$	=	J_{p}	=
_ ·		11 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17300 N	M_x	= -529000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2670 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -23100 Nmm	σ _a Ε	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\epsilon}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
<u> </u>					

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 19800 N	M_x	= -389000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2290 N		$= 220 \text{ N/mm}^2$		
Μ́ _t	= -25400 Nmm	σ_{a} E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _*	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ·			0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22500 N	M _v = -434000 Nmm	G	$= 75000 \text{ N/mm}^2$
		^ 2	G	= 73000 11/111111
T_{v}	= 2040 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_{t}}$	= -19000 Nmm	$E = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	σ_{ls}	=
y_{G}	=	$J_t =$	σ_{IIs}	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
A _*	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
	=	$\tau(\underline{T}_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s =$	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d =$	r_u	=
J _{xy}	=	σ =	r_{v}	=
J _u	=	τ_s =	r _o	=
J_v	=	τ_{d} =	J_p	=
\sim		U B 4U 0 4 0 0 0 0		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25400 N	M _x	= -479000 Nmm	G	= 75000 N/mm ²
T	= 1270 N	σ_a	= 220 N/mm ²	J	= 70000 N/IIIII
M _t	= -21600 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_d$	=	J_{p}	=
@ A =	laka Zawalawi Dagai Dalikasaisa	-I: N 4:1-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

				_	2
Ν	= 19300 N	M_{x}	= -526000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1230 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -24300 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	σ_{IIs}	=
u_{o}	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{s}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ·		11. 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 19600 N	M_x	= 443000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 4340 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -26200 Nmm	σ_{a} E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$		σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$		$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$; =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	_i =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ^		11 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22400 N	M_x	= -499000 Nmm	G	$= 75000 \text{ N/mm}^2$
T _v	= 3540 N		= 220 N/mm ²	Ū	70000 14/111111
		σ_{a}			
$\dot{M_t}$	= -19700 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$		θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J _u	=	$\tau_{_{S}}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25000 N	M_x	= -548000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2030 N	$\sigma_{a}^{}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -22100 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	$\sigma_{\sf Id}$	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _.	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)$		θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$		r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
@ A	dolfo Zavelani Possi Politecnico	di Mil	and vers 24.08.06	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 18900 N	M_x	= -599000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1840 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -24700 Nmm	σ_{a} E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$		σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\xi}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_{c}$	_d =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 21800 N	M_x	= -442000 Nmm	G	= 75000 N/mm ²
T_v	= 1710 N	$\sigma_{a}^{}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -27500 Nmm	Ε̈́	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _.	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	₃ =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
@ A	dolfo Zavoloni Possi, Politoonios	Ai Mila	ana vara 24.09.06		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21900 N	M_x	= -550000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 7490 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -20000 Nmm	$\begin{matrix}\sigma_a\\E\end{matrix}$	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_{i}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_d$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24800 N	M_x	= 620000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 3830 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -22800 Nmm	σ_{a}	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$egin{array}{c} A \ S_u^{^\star} \ C_w \end{array}$	=	$\tau(M_t)$		σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$		$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{s}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$\boldsymbol{\tau}_{d}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 18900 N	M_{x}	= -685000 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ,,	= 3180 N	$\sigma_{a}^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -25600 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)$	s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)$		\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{\sf d}$	=	J_{p}	=
	dolfo Zavelani Possi Politecnio	o di Mil	and vers 24.08.06	-	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21500 N	M _v = -502000 Nmm	G	$= 75000 \text{ N/mm}^2$
		^ 2	G	= 75000 11/111111
T_v	= 2730 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -28200 Nmm	$E = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	σ_{ls}	=
y_G	=	$J_t =$	σ_{IIs}	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
A _*	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
	=	$\tau(T_{yb})_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s =$	θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J _{xy}	=	σ =	r_{v}	=
J _u	=	τ_s =	r _o	=
J_v	=	τ_{d} =	J_p	=
\sim		I' N A''		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24400 N	M_x	= -559000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2420 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -21000 Nmm	σ_a E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ·		11 8 411	040000		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 31400 N	M_x	= 382000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1530 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 31700 Nmm	σ_{a} E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25000 N	M_x	= 425000 Nmm	G	$= 75000 \text{ N/mm}^2$
				O	= 73000 N/IIIII
T_{y}	= 1470 N	σ_{a}	= 220 N/mm ²		
M_t	= 38300 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BD

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	m^2
$M_{t}^{\prime} = 45600 \text{ Nmm}$ $E^{\prime\prime} = 200000 \text{ N/mm}^{2}$ $X_{G} = 0.0000 \text{ M/mm}^{2}$ $\sigma_{ls} = 0.00000 \text{ M/mm}^{2}$ $\sigma_{ls} = 0.0000 \text{ M/mm}^{2}$ $\sigma_{ls} = 0.00000 \text{ M/mm}^{2}$ $\sigma_{ls} = 0.0000 \text{ M/mm}^{2}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$u_o = \sigma(N) = \sigma_{ld} =$	
i i	
-/AA\	
$v_o = \sigma(M_x) = \sigma_{IId} =$	
$A_{\star} = \tau(M_t)_d = \sigma_{tresca} = 0$	
$S_u = \tau(T_{yc}) = \sigma_{mises} =$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$J_{xx} = \tau(\overline{T_y})_s = \theta_t = \theta_t$	
$J_{yy} = \tau(\overline{T_y})_d = r_u = r_u$	
$J_{xy} = \sigma = r_v =$	
$J_u = r_o =$	
J_{v} = J_{p} =	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 35300 N	M_{x}	= 359000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1440 N	σ_a	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 36400 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A _.	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_{v}	=
$\mathbf{J}_{\mathrm{u}}^{'}$	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	lolfo Zavelani Rossi, Politecnico	di Mila	ano, vers.24.08.06	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	44400 N	B 4	000000 Nimm	_	75000 N/m = 2
N	= 41100 N	M_x	= 399000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 992 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 43700 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{s}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ^			04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22300 N	M_{x}	= 505000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2280 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 32600 Nmm	$\begin{matrix}\sigma_{a}\\E\end{matrix}$	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\xi}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_{c}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00000 NI	M 000000 Name	_	75000 N/m == 2
N	= 26900 N	$M_{x} = 380000 \text{ Nmm}$	G	= 75000 N/mm ²
T_v	= 2030 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 39300 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	$\sigma_{\sf ls}$	=
y_G	=	$J_t =$	$\sigma_{\sf lls}$	=
u_o	=	$\sigma(N) =$	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	=
J_{xx}	=	$\tau(T_{y})_{s} =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J_{u}	=	τ_s =	r_{o}	=
J_v	=	τ_{d} =	J_{p}	=
_ ^		" N A !! 0 4 0 0 0 0		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 31900 N	M - 420000 Nmm	G	= 75000 N/mm ²
		$M_{x} = 430000 \text{ Nmm}$	G	= 75000 N/IIIII
T_v	= 1890 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 31700 Nmm	$E = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	σ_{ls}	=
y_G	=	$J_t =$	$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	=
J_{xx}	=	$\tau(T_y)_s =$	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J _u	=	τ_s =	r _o	=
J_v	=	τ_{d} =	J_p	=
\sim		" N A"		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 37400 N	M_x	= 480000 Nmm	G	$= 75000 \text{ N/mm}^2$
				G	- 73000 N/IIIII
T_{v}	= 1240 N	σ_{a}	= 220 N/mm ²		
$\dot{M_{t}}$	= 38500 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\epsilon}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J _u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 29400 N	M_x	= 529000 Nmm	G	$= 75000 \text{ N/mm}^2$
				O	- 73000 N/IIIII
T_{v}	= 1260 N	σ_{a}	= 220 N/mm ²		
$\dot{M_{t}}$	= 45800 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\epsilon}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 23900 N	M_x	= 439000 Nmm	G	$= 75000 \text{ N/mm}^2$
				•	- 70000 H/IIIII
T_y	= 3780 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= 33200 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{s}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11. 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28600 N	M_x	= 502000 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ,,	= 2970 N	$\sigma_{a}^{}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 27100 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)$		θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$		r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
@ A	dolfo Zavelani Possi Politecnic	di Mil	and vers 24.08.06	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 33800 N	M_x	= 564000 Nmm	G	$= 75000 \text{ N/mm}^2$
				O	- 73000 N/IIIII
T_{v}	= 1750 N	σ_{a}	= 220 N/mm ²		
$\dot{M_{t}}$	= 33300 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\epsilon}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$\boldsymbol{\tau}_{\text{d}}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 26700 N	M - 625	000 Nmm	G	= 75000 N/mm ²
		^		G	= 75000 11/111111
T_v	= 1660 N		N/mm ²		
$\dot{M_{t}}$	= 40100 Nmm	E = 200	000 N/mm ²		
x_{G}	=	α =		σ_{ls}	=
y_G	=	$J_t =$		$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$		σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$		σ_{IId}	=
A _*	=	$\tau(M_t)_d =$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$		σ_{mises}	=
	=	$\tau(T_{yb})_d =$		$\sigma_{\text{st.ven}}$	=
J_{xx}	=	$\tau(T_y)_s =$		θ_{t}	=
J_{yy}	=	$\tau(T_y)_d =$		r_u	=
J _{xy}	=	σ =		r_{v}	=
J _u	=	$\tau_s =$		r _o	=
J_v	=	τ_{d} =		J_p	=
\sim		1. 8 4.1			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 31900 N	M_x	= 465000 Nmm	G	$= 75000 \text{ N/mm}^2$
				O	= 73000 N/IIIII
T_y	= 1620 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= 47500 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _*	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27100 N	M_x	= 602000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 7400 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 24200 Nmm	σ_{a} E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ·			0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 30200 N	M_{x}	= 644000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 3300 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 28200 Nmm	σ_{a} E	= 200000 N/mm ²		
X_G	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _.	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$		\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ·		11. 8.411	0.4.00.00	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24100 N	M_x	= 720000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2630 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 34400 Nmm	$\sigma_{\!a}$ E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\epsilon}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28900 N	$M_{x} = 540000 \text{ Nmm}$	G	$= 75000 \text{ N/mm}^2$
			O	- 7 3000 N/IIIII
T_{v}	= 2310 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 41300 Nmm	$E = 200000 \text{ N/mm}^2$		
x_G	=	α =	$\sigma_{\sf ls}$	=
y_{G}	=	$J_t =$	$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$	σ_{ld}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_{y})_{s} =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J _u	=	τ_s =	r_{o}	=
J_v	=	τ_{d} =	J_{p}	=
_ ^		" N 4"		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 34100 N	M_x	= 609000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2130 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 33100 Nmm	σ_{a} E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A,	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$; =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	_i =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{\sf d}$	=	J_p	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 30500 N	M_{x}	= -789000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 10600 N	$\hat{\sigma_a}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -26600 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	_d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$, =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ·		11 8 411	040000		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 22800 N	M_x	= 852000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 6670 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 30800 Nmm	σ_{a} E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ^			0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25900 N	 M₊	= 35200 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 4390 N	M_x	= 610000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	$\tau(T_{yb})$	d=	σ_{IId}	=
y_G	=	J_u	=	$\tau(T_y)_s$, =	σ_{tresca}	=
u_o	=	J_v	=	$\tau(T_y)_d$	₁ =	σ_{mises}	
V_{o}	=	α	=	σ	=	$\sigma_{\text{st.ven}}$	=
Α	=	J_t	=	$ au_{s}$	=	θ_{t}	=
$S_{u}^{^{\star}}$	=	σ(N)	=	$ au_{\sf d}$	=	r_u	=
C_{w}	=	$\sigma(M_x)$) =	σ_{ls}	=	r_{v}	=
J_{xx}	=	$\tau(M_t)$	_d =	σ_{IIs}	=	r_{o}	=
J_{yy}	=	$\tau(T_{yc})$	=	σ_{Id}	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 30800 N	$M_x = 695000 \text{ Nmm}$	$G = 75000 \text{ N/mm}^2$
	= 3400 N		= 70000 14/11111
T_y			
$\dot{M_t}$	= 28600 Nmm	$E = 200000 \text{ N/mm}^2$	
x_{G}	=	α =	σ_{ls} =
y_G	=	$J_t =$	$\sigma_{IIs} =$
u_o	=	$\sigma(N) =$	σ_{ld} =
V_{o}	=	$\sigma(M_x) =$	$\sigma_{IId} =$
$A_{_{\star}}$	=	$\tau(M_t)_d =$	$\sigma_{tresca} =$
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises} =
	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}} =$
J_{xx}	=	$\tau(T_y)_s =$	$\theta_{t} =$
J_{yy}	=	$\tau(T_{y})_{d} =$	$r_u =$
J_{xy}	=	σ =	$r_v =$
J _u	=	τ_s =	r _o =
J_{v}	=	$\tau_{d} =$	$J_p =$
\sim		11 1 11 11 11 11 11 11 11 11 11 11 11 1	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 36100 N	M_x	= 777000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1980 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= 34900 Nmm	$\sigma_{\!a}$ E	$= 200000 \text{ N/mm}^2$		
X_G	=	α	=	σ_{ls}	=
y_{G}	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\epsilon}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21700 N	M_x	= -509000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1950 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -31600 Nmm	σ_{a} E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	od=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_s$; =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	_i =	\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
_ ^		11 8 411	04.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 25400 N	M_x	= -377000 Nmm	G	$= 75000 \text{ N/mm}^2$
				G	- 7 3000 N/IIIII
T_{v}	= 1710 N	$\sigma_{\rm a}$	= 220 N/mm ²		
$\dot{M_{t}}$	= -35600 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$; =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{\sf d}$	=	J_{p}	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 29400 N	M_{x}	= -423000 Nmm	G	$= 75000 \text{ N/mm}^2$
	= 1570 N		= 220 N/mm ²	Ŭ	- 70000 14/11111
T_{y}		σ_{a}			
M_t	= -27100 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_{G}	=	J_{t}	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$; =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 33700 N	M _v = -469000 Nmm	$G = 75000 \text{ N/mm}^2$
		^ 2	G = 75000 W/IIIII
T_{v}	= 1000 N	$\sigma_a = 220 \text{ N/mm}^2$	
$\dot{M_{t}}$	= -31300 Nmm	$E = 200000 \text{ N/mm}^2$	
x_{G}	=	α =	$\sigma_{ls} =$
y_{G}	=	$J_t =$	$\sigma_{IIs} =$
u_o	=	$\sigma(N) =$	σ_{ld} =
V_{o}	=	$\sigma(M_x) =$	$\sigma_{IId} =$
A _*	=	$\tau(M_t)_d =$	$\sigma_{\text{tresca}} =$
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises} =
	=	$\tau(T_{yb})_{d}=$	$\sigma_{\text{st.ven}} =$
J_{xx}	=	$\tau(T_y)_s =$	$\Theta_{t} =$
J_{yy}	=	$\tau(T_{y})_{d} =$	$r_u =$
J _{xy}	=	σ =	$r_v =$
J _u	=	τ_s =	r _o =
J_v	=	τ_{d} =	$J_p =$
\sim		11 8 411	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00000 N		E4E000 Norm	_	75000 N/2
Ν	= 26000 N	M_x	= -515000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 989 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= -35800 Nmm	E	$= 200000 \text{ N/mm}^2$		
\mathbf{x}_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$		$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_d$	=	J_p	=
∧	laka Zavalani Dasai Dalitaanisa	-I: N /I:I-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24700 N	M _y = -463000 Nmm	G	= 75000 N/mm ²
		^	G	= 73000 [N/11][[]
T_v	= 3320 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -36400 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	$\sigma_{\sf ls}$	=
y_G	=	$J_t =$	$\sigma_{\sf lls}$	=
u_o	=	$\sigma(N) =$	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	$\sigma_{ ext{tresca}}$	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
	=	$\tau(T_{yb})_{d} =$	$\sigma_{ ext{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J _u	=	τ_s =	r_{o}	=
J_{v}	=	τ_{d} =	J_p	=
\sim		11 8 411		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00000 N	M 540000 No	_	75000 N/2
Ν	= 28300 N	$M_x = -516000 \text{ Nmm}$	G	$= 75000 \text{ N/mm}^2$
T_v	= 2670 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -27400 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$		
x_G	=	α =	σ_{ls}	=
y_G	=	$J_t =$	$\sigma_{\sf lls}$	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_{y})_{s} =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J_u	=	τ_s =	r_{o}	=
J_{v}	=	τ_{d} =	J_{p}	=
_ ^		" 1 4" 0 0 0 0		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	00000 N	B 4	574,000 Nicero	_	75000 N/m = 2
Ν	= 32300 N	M_x	= -571000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1560 N	σ_{a}	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -31400 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$	s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	τ_{d}	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25000 N	$M_x = -626000 \text{ Nmm}$	Ğ	= 75000 N/mm ²
			G	- 7 3000 N/IIIII
T_{v}	= 1450 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_{t}}$	= -35700 Nmm	$E = 200000 \text{ N/mm}^2$		
x_G	=	α =	σ_{ls}	=
y_{G}	=	$J_t =$	$\sigma_{\sf IIs}$	=
u_o	=	$\sigma(N) =$	σ_{Id}	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_d =$	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises}	=
	=	$\tau(T_{yb})_d =$	$\sigma_{st.ven}$	
J_xx	=	$\tau(T_{y})_{s} =$	Θ_{t}	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r_u	=
J_{xy}	=	σ =	r_{v}	=
J _u	=	τ_s =	r_{o}	=
J_{v}	=	τ_d =	J_{p}	=
_ ^		I' 1 4'' 0 4 6 6 6 6		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I	20400 NI	M 462000 Nmm	0	75000 N/mm²
N	= 29100 N	$M_{x} = -463000 \text{ Nmm}$	G =	= 75000 N/mm ²
T_v	= 1380 N	$\sigma_a = 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -40300 Nmm	$E^{\circ} = 200000 \text{ N/mm}^2$		
x_{G}	=	α =	σ_{ls} =	=
y_G	=	$J_t =$	σ_{IIs} =	=
u_o	=	$\sigma(N) =$	σ_{ld} =	=
V_{o}	=	$\sigma(M_x) =$	σ_{IId} =	=
A _*	=	$\tau(M_t)_d =$	σ_{tresca} =	=
A S _u C _w	=	$\tau(T_{yc}) =$	σ_{mises} =	=
	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{st.ven}}$ =	=
J_{xx}	=	$\tau(T_y)_s =$	θ_{t} =	=
J_{yy}	=	$\tau(T_{y})_{d} =$	r _u =	=
J_{xy}	=	σ =	r_{v} =	=
J _u	=	τ_s =	r _o =	=
J_v	=	$\tau_{d} =$	J _p =	=
\sim				

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27500 N	M_x	= 613000 Nmm	G	$= 75000 \text{ N/mm}^2$
	= 6210 N		$= 220 \text{ N/mm}^2$	•	- 70000 14/11111
T_y		σ_{a}			
M_t	= -27800 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_{G}	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\epsilon}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J _u	=	$ au_{s}$	=	r _o	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 31700 N	M_x	= -690000 Nmm	G	$= 75000 \text{ N/mm}^2$
				O	= 7 3000 N/IIIII
T_{v}	= 3040 N	σ_{a}	= 220 N/mm ²		
$\dot{M_{t}}$	= -32100 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

NI.	24400 NI	N /	752000 Nmm	G	75000 N/mm ²
N	= 24100 N	M_x	= -752000 Nmm	G	= 75000 N/mm ²
T_v	= 2480 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= -36000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\epsilon}$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	00400 N		EEEOOO N	_	75000 11/ 2
Ν	= 28100 N	M_x	= -555000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2160 N	σ_{a}	$= 220 \text{ N/mm}^2$		
Μ́ _t	= -40400 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$	s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	04.00.00		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 32300 N	M_x	= -620000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1960 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -30700 Nmm	$\begin{matrix} \sigma_{a} \\ E \end{matrix}$	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A _*	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
_ ^		11 8 411	0.4.00.00	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 30100 N	M_x	= -778000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 9740 N		$= 220 \text{ N/mm}^2$		
Μ́ _t	= -32100 Nmm	σ_{a} E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_c$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	_s =	θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	040000		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 23500 N	M_x	= -882000 Nmm	G	$= 75000 \text{ N/mm}^2$
			$= 220 \text{ N/mm}^2$	O	- 70000 T4/TIIIT
T_y	= 5730 N	σ_{a}			
$\dot{M_t}$	= -36700 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_{G}	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_y)_{\xi}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J _u	=	$\tau_{_{S}}$	=	r_{o}	=
J_{v}	=	τ_{d}	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 27600 N	M_x	= -663000 Nmm	G	$= 75000 \text{ N/mm}^2$
				G	- 7 3000 N/IIIII
T_v	= 4200 N	$\sigma_{\rm a}$	= 220 N/mm ²		
$\dot{M_{t}}$	= -41500 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{\sf d}$	=	J_{p}	=
_ ·		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 31400 N	M_x	= -735000 Nmm	G	= 75000 N/mm ²
Τ.,	= 3350 N	$\hat{\sigma_a}$	$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -31000 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_{t}	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A _*	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u	=	$\tau(T_{yc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_{\alpha}$		\mathbf{r}_{u}	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
@ A	dolfo Zavelani Possi Politecnico	di Mil	and vers 24 08 06	-	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 35600 N	M_x	= -809000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1940 N		$= 220 \text{ N/mm}^2$		
$\dot{M_t}$	= -35400 Nmm	σ_{a} E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_{G}	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
A S _u C _w	=	$\tau(M_t)$	_d =	σ_{tresca}	=
S_u	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{\xi}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_{c}$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
<u> </u>					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22400 N	M _x	= -947000 Nmm	G	= 75000 N/mm ²
T	= 9430 N	σ_a	= 220 N/mm ²	Ū	- 70000 T4/TIIII
M _t	= 36700 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=
A S _u C _w	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_d$	=	J_{p}	=
@ A =	laka Zavalani Dasai Dalikassisa	-I: N /I:I-	04 00 00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I	00000 N		740000 Norm	_	$= 75000 \text{ N/mm}^2$
N	= 26300 N	M_x	= -740000 Nmm	G	= 75000 N/mm
T_v	= 13100 N	σ_{a}	= 220 N/mm ²		
$\dot{M_t}$	= -41400 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
v_o	=	$\sigma(M_x)$	=	σ_{IId}	=
Α,	=	$\tau(M_t)_d$		σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	d ⁼	$\sigma_{\text{st.ven}}$	=
J_{xx}	=	$\tau(T_y)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r _o	=
J_v	=	$ au_{d}$		J_p	=
@ A =	laka Zavalani Dagai Dalikaaniaa	-I: N 4:1-			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 30600 N	M _x	= -854000 Nmm	G	= 75000 N/mm ²		
T	= 7670 N		= 220 N/mm ²	O	= 73000 N/IIIII		
y		σ_a					
$\dot{M_t}$	= -31600 Nmm	Е	= 200000 N/mm ²				
x_{G}	=	α	=	$\sigma_{\sf ls}$	=		
y_G	=	J_t	=	σ_{IIs}	=		
u_o	=	σ(N)	=	σ_{Id}	=		
V_{o}	=	$\sigma(M_x)$		σ_{IId}	=		
A S _u C _w	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=		
S_u	=	$\tau(T_{yc})$	=	σ_{mises}	=		
	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$	=		
J_xx		$\tau(T_y)_s$		Θ_{t}	=		
J_{yy}	=	$\tau(T_y)_d$	=	r_u	=		
J_{xy}	=	σ	=	r_{v}	=		
J _u	=	$ au_{s}$	=	r_{o}	=		
J_{v}	=	$ au_{d}$	=	J_p	=		
@ Adalfa 7							

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 35200 N	M_x	= -959000 Nmm	G	$= 75000 \text{ N/mm}^2$
				O	= 7 3000 N/IIIII
T_{y}	= 3770 N	σ_{a}	= 220 N/mm ²		
M_t	= -36400 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_x)$) =	σ_{IId}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{tresca}	=
A S _u C _w	=	$\tau(T_{yc})$) =	σ_{mises}	=
C_{w}	=	$\tau(T_{yb})$	$)_{d}=$	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_y)_{s}$	_s =	Θ_{t}	=
J_{yy}	=	$\tau(T_y)_c$	_d =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_u	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_{p}	=
_ ^		11 8 411	0.4.00.00		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 26600 N	M_x	= -1030000 Nmm	G	= 75000 N/mm ²		
T_v	= 3060 N	$\sigma_{a}^{}$	$= 220 \text{ N/mm}^2$				
$\dot{M_t}$	= -40600 Nmm	E	= 200000 N/mm ²				
x_{G}	=	α	=	σ_{ls}	=		
y_G	=	J_t	=	$\sigma_{\sf lls}$	=		
u_{o}	=	$\sigma(N)$	=	σ_{Id}	=		
v_{o}	=	$\sigma(M_x)$	=	σ_{IId}	=		
A _*	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=		
A S _u	=	$\tau(T_{yc})$	=	σ_{mises}			
C_w	=	$\tau(T_{yb})$	d=	$\sigma_{\text{st.ven}}$			
J_xx	=	$\tau(T_y)_s$, =	Θ_{t}	=		
J_{yy}	=	$\tau(T_y)_d$	₁ =	r_u	=		
J_{xy}	=	σ	=	r_v	=		
J_{u}	=	$ au_{s}$	=	r_{o}	=		
J_v	=	$ au_{d}$	=	J_{p}	=		
@ Adolfo Zavolani Possi Politoonico di Milano, vara 24.09.06							