implies $|\lambda| \le r < 1$ for some r and each $\lambda \in A\sigma(T(t_O))$. Consequently, $\exp(\omega(A) \cdot t_O) = r(T(t_O)) \le \max\{\exp(t_O \cdot s(A)), r)\} < 1$ or $\omega(A) < 0$. This proves "(b) + (a)". For a proof of the equivalence of (a) and (c) we refer to Datko (1972) or Pazy (1983), Thm. 4.4.1.

Rescaling a given semigroup $(T(t))_{t\geq 0}$ one obtains the following corollary from (1.1) and statement (c) of the above theorem.

Corollary 1.12. Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup on a Banach space E . Then the set of complex numbers λ for which $\int_0^\infty \|e^{-\lambda t} T(t)f\| dt$ exists for every $f \in E$ is an open right halfplane.

In the next theorem we give two necessary conditions for stability of $(T(t))_{t\geq 0}$ in terms of the generator A . We will see in Chapter C-IV that for positive semigroups a condition similar to statement (ii) below is even sufficient for stability of the semigroup. We emphasize that stable semigroups need not be uniformly bounded (see Ex.1.2(3)) and that $s(A) = \omega(A) = 0$ does not imply boundedness or even stability of the semigroup (see also A-I, Ex.1.4.(i)).

Theorem 1.13. Let A be the generator of a stable semigroup $(T(t))_{t \ge 0}$ on a Banach space E . Then the following assertions hold:

- (i) $s(A) \le 0$ and $Re \lambda < 0$ for every $\lambda \in P\sigma(A) \cup R\sigma(A)$.
- (ii) $\lim_{\lambda \to 0+} \lambda R(\lambda, A) f$ exists for every $f \in D(A)$.

<u>Proof.</u> (i) If $(T(t))_{t\geq 0}$ is stable, then $||T(t)f|| \leq M_f$ for every $f \in D(A)$. Therefore $s(A) \leq \omega_1(A) \leq 0$.

Assume there is $\lambda \in P^{\sigma}(A)$ with Re $\lambda = 0$. Then by A-III,Cor.6.4 there is $g \neq 0$ such that $T(t)g = e^{\lambda t}g$ for all $t \geq 0$. Since $|e^{\lambda t}| = 1$ this contradicts the stability of the semigroup.

Assume there is $\lambda \in R\sigma(A) = P\sigma(A')$ with $Re \lambda = 0$. Then there is $0 \neq \phi \in E'$ with $T(t)'\phi = \exp(\lambda t) \cdot \phi$ for all $t \geq 0$. Choose $f \in D(A)$ such that $\langle f, \phi \rangle \neq 0$. Then $|\langle T(t)f, \phi \rangle| = |\langle f, \phi \rangle| \geq 0$ for every $t \geq 0$ which contradicts the stability of the semigroup.

(ii) From the stability of the semigroup and the identity $\int_0^t T(s) Af \ ds = T(t) f - f \ \text{we see that} \ \int_0^\infty T(s) Af \ ds \ \text{exists for every} f \in D(A) \ . \ \text{But} \ \omega_1(A) \leq 0 \ \text{ and hence} \ R(\lambda,A) Af = \int_0^\infty e^{-\lambda s} \ T(s) Af \ ds \ \text{for every} \ \lambda > 0 \ \text{(see Thm.1.4)}. \ \text{By a classical theorem of Laplace} \ \text{transform theory (for a proof of the vector valued version one may}$