	<pre>import numpy as np from numpy.linalg import inv import math as m from math import sqrt import sympy as sp from sympy import collect, simplify, expand, fraction, latex from IPython.display import display, Markdown, Math import control as co import seaborn as sns import matplotlib.pyplot as plt from matplotlib import colors as mcolors sp.init_printing(use_latex='mathjax') plt.rcParams['figure.figsize'] = [20, 10]</pre>
In [2]	<pre>class numden_coeff: definit(self, expr, symb): self.num, self.denum = fraction(expr) self.symb = symb self.common_factor = None self.lst_denum_coeff = self.build_lst(self.denum) self.lst_num_coeff = self.build_lst(self.num) def build_lst(self, poly): order = sp.Poly(poly, self.symb).degree() lst = [expand(poly).coeff(self.symb**i) for i in range((order), 0, -1)] lst.append(poly.subs(self.symb,0))</pre>
In [3]	<pre>if (self.common_factor == None): self.common_factor = lst[0] lst = [simplify(lst[i]/self.common_factor) for i in range(order + 1)] return lst def disp(self): display(Markdown(r"Numerator coefficients (\beta)"), self.lst_num_coeff) display(Markdown(r"Denominator coefficients (alpha)"), self.lst_denum_coeff) def theta_hat_ploter(df, theta0, title, line_width=1.2): lst_color = ['b', 'y', 'g', 'r'] lst_labels = df.columns</pre>
	<pre>graph = sns.lineplot(data=df, dashes=False) for i in range(len(theta0)): graph.axhline(y=theta0[i], color=lst_color[i], linestyle='', linewidth=line_width, label=lst_labels plt.title(title, fontsize=20) plt.ylabel('Magnitude of "Theta_hat"', fontsize=18) plt.xlabel('Time Stamps "t"', fontsize=18) plt.legend(bbox_to_anchor=(1.05, 1),</pre>
In [38]	<pre>c, d= sp.symbols(c d) s, zeta, omega = sp.symbols('s zeta omega') r1, s0, s1, a0, t0 = sp.symbols('r_1 s_0 s_1 a_0 t_0') a = 1 b = 1 G1 = b/(s + a) G2 = c/(s+d) G = collect(expand(G1*G2), s) B, A = fraction(G)</pre>
	B_minus = B $G_1(s)G_2(s)=G(s)=\frac{c}{d+s^2+s(d+1)}$ Therefore $B=c$ $A=d+s^2+s(d+1)$ Since $Deg(B)$ is clearly $0,B^+=1$ and $B^-=c$
	$Bm=1$ $Gm=Bm/Am$ $Bm_prime=Bm/B_minus$ A_m is given to be s^2+2s+1 . Letting the desired model take the form of $G_m=rac{\omega^2}{s^2+2\zeta\omega+\omega^2}$ ω and ζ are equivalent to 1. Since $\omega=1$, B_m must be equal to 1 which yeilds
	$G_m = \frac{1}{s^2 + 2s + 1}$ Additionally, $B_m' = \frac{B_m}{B^-} = \frac{1}{c}$ In order for minimum phase to be achived, the following conditions on the degrees of the polynomials making up the system must be met and will ultimatley guide the desing, $Deg(A_0) = Deg(A) - Deg(B^+) - 1 = 2 - 0 - 1 = 1$ $Deg(A_c) = 2(Deg(A)) - 1 = 2 * 2 - 1 = 3$ $Deg(R) = Deg(S) = Deg(A_c) - Deg(A) = 3 - 2 = 1$ \vdots A0 = s + a0
111 [40]	A0 = s + a0 R_prime = s + r 1 R = R_prime S = s 0* s + s 1 T_ = a 0*Bm_prime Since $Deg(B^+) = 0$ then $Deg(R') = 1$ and therfore $R = B^+R' = R' = r_1 + s$ Additionally, considering the polynomial degrees derived above, we know that $A_0 = a_0 + s$ $S = ss_0 + s_1$
In [41]	Lastly, $T = A_0 B_m' = \frac{a_0 + s}{c}$ $\vdots \text{# derivation of diophantine equation}$ $\text{LHS} = \text{collect}(\text{expand}(\text{A*R_prime} + \text{B_minus*S}), \text{ s})$ $\text{RHS} = \text{collect}(\text{expand}(\text{A0*Am}), \text{ s})$ $\text{equ} = \text{sp.Eq}(\text{LHS, RHS})$ $\text{# Derivation of control parameters}$ $\text{r.1} = \text{sp.solve}(\text{sp.Eq}(\text{LHS.coeff}(\text{s**2}), \text{RHS.coeff}(\text{s**2})), \text{ r1})[0]$ $\text{s.0} = \text{sp.solve}(\text{sp.Eq}(\text{LHS.coeff}(\text{s**1}), \text{RHS.coeff}(\text{s**1})), \text{ s0})[0]$ $\text{s.1} = \text{sp.solve}(\text{sp.Eq}(\text{LHS.subs}(\text{s,0}), \text{RHS.subs}(\text{s,0})), \text{ s1})[0]$ The Diophantine equation in terms of control parameters is given by
	$AR'+B^-S=A_0A_m$ $\Rightarrow cs_1+dr_1+s^3+s^2\left(d+r_1+1\right)+s\left(cs_0+dr_1+d+r_1\right)=a_0+s^3+s^2\left(a_0+2\right)+s\left(2a_0+1\right)$ Grouping the coefficients of the same ordered s terms and solving for the control parameters yields $r_1=a_0-d+1$ $s_0=\frac{2a_0-dr_1-d-r_1+1}{c}$ $s_1=\frac{a_0-dr_1}{c}$
	ODE of Plant
	where p is the time shifting operator. The reliance of the RHS of the equation on derivatives can be changed to integrals by filtering the input $u(t)$ and output $y(t)$ of the plant by a filter whose denominator polynomial is of a greater order than the highest derivative term. The above equation becomes $p^2y_f(t)=-(d+1)py_f(t)-dy_f(t)+cu_f(t)$ $\Rightarrow p^2H_f(p)y(t)=-(d+1)pH_f(p)y(t)-dH_f(p)y(t)+cH_f(p)u(t)$ $\Rightarrow \frac{p^2}{A_m}y(t)=-(d+1)\frac{p}{A_m}y(t)-d\frac{1}{A_m}y(t)+c\frac{1}{A_m}u(t)$ For simplicity, let $(d+1)=x$. The ODE then becomes $\Rightarrow \frac{p^2}{A_m}y(t)=-x\frac{p}{A_m}y(t)-d\frac{1}{A_m}y(t)+c\frac{1}{A_m}u(t)$ This equation can be further simplified as
In [43]	$\Rightarrow y_{f2}(t) = -xy_{f1}(t) - dy_{f0}(t) + cu_{f0}(t)$ This equation will be used for the measurment model i.e. $y_{f2}(t) = \phi(t)^T \theta = [-y_{f1}(t) - y_{f0}(t) \ u_{f0}(t)][x \ d \ c]^T$ $\textbf{Bilinear Transformation of Filtered ODE}$ $\vdots \qquad $
	The filter $H_f(p)$ is given to be $H_f(p) = \frac{1}{A_m} = \frac{1}{p^2 + 2p + 1}$ This filter ,and the ODE above, are however, in terms of p and are therfore, in continuous time domain. To converte the filter to discrete time (q) , a bilinear transformation will be performed. i.e. $p \to \frac{2(1 - \frac{1}{q})}{T(1 + \frac{1}{q})}$ The ODE can now be represented in the discret time domain by
In [44]	bilinear_T = (2/T)*((1 - q**(-1))/(1 + q**(-1))) # what will be substituted for s (kept actual equations in tell H_fy2 = collect(simplify(expand(((s**2)*H_f).subs(s,bilinear_T))), q) H_fy1 = collect(simplify(expand((s*H_f).subs(s,bilinear_T))), q) H_fy0 = collect(simplify(expand((H_f).subs(s,bilinear_T))), q) H_fu0 = collect(simplify(expand((H_f).subs(s,bilinear_T))), q)
	# Creation of numerator and denominator coefficient extractor objects (numden_coeff() class defined at the to obj H_fy2 = numden_coeff(H_fy2, q) obj H_fy1 = numden_coeff(H_fy1, q) obj H_fy0 = numden_coeff(H_fy0, q) obj H_fu0 = numden_coeff(H_fu0, q) aH_fy2 = obj H_fy2.lst_denum_coeff bH_fy2 = obj H_fy2.lst_num_coeff bH_fy1 = obj H_fy1.lst_denum_coeff bH_fy1 = obj H_fy1.lst_num_coeff bH_fy1 = obj H_fy1.lst_denum_coeff bH_fy0 = obj H_fy0.lst_denum_coeff bH_fy0 = obj H_fy0.lst_num_coeff
	aH_fu0 = obj_H_fu0.lst_denum_coeff bH_fu0 = obj_H_fu0.lst_num_coeff bH_fu0 = obj_H_fu0.lst_num_coeff $\alpha y_{f1} = H_f(q^{-1})y(kT), \text{ the coefficients of the denominator } \alpha y_{f1} \text{ are }$ $\alpha y_{f1} = \left[1, \ \frac{2\left(T-2\right)}{T+2}, \ \frac{T^2-4T+4}{T^2+4T+4}\right]$ (ordered by powers of q going from q^0 to q^-2) and the coefficients of the numerator βy_{f1} are $\beta y_{f1} = \left[\frac{2T}{T^2+4T+4}, \ 0, \ -\frac{2T}{T^2+4T+4}\right]$
	which are also ordered by powers of q going from q^0 to q^-2 . Similarly, the coefficients for the denominator (α) and numerator (β) of y_{f0} and u_{f0} are $\alpha y_{f0} = \left[1, \ \frac{2\left(T-2\right)}{T+2}, \ \frac{T^2-4T+4}{T^2+4T+4}\right]$ $\beta y_{f0} = \left[\frac{T^2}{T^2+4T+4}, \ \frac{2T^2}{T^2+4T+4}, \ \frac{T^2}{T^2+4T+4}\right]$ $\alpha u_{f0} = \left[1, \ \frac{2\left(T-2\right)}{T+2}, \ \frac{T^2-4T+4}{T^2+4T+4}\right]$ $\beta u_{f0} = \left[\frac{T^2}{T^2+4T+4}, \ \frac{2T^2}{T^2+4T+4}, \ \frac{T^2}{T^2+4T+4}\right]$
	<pre>u_k, y_k_1, y_k_2 = sp.symbols('u(k) u(k-1) u(k-2)') u_k, u_k_1, u_k_2 = sp.symbols('u(k) u(k-1) u(k-2)') y1_k_1, y1_k_2 = sp.symbols('y_{1}(k-1) y_{1}(k-2)') y0_k_1, y0_k_2 = sp.symbols('y_{0}(k-1) y_{0}(k-2)') u0_k_1, u0_k_2 = sp.symbols('u_{0}(k-1) u_{0}(k-2)')</pre>
	$\begin{array}{l} \text{\# Derivation of filtered signal equations} \\ y1_k = -y1_k_1*aH_fy1[1] - y1_k_2*aH_fy1[2] + y_k*bH_fy1[0] + y_k_2*bH_fy1[2] \\ y0_k = -y0_k_1*aH_fy0[1] - y0_k_2*aH_fy0[2] + y_k*bH_fy0[0] + y_k_1*bH_fy0[1] + y_k_2*bH_fy0[2] \\ u0_k = -u0_k_1*aH_fu0[1] - u0_k_2*aH_fu0[2] + u_k*bH_fu0[0] + u_k_1*bH_fu0[1] + u_k_2*bH_fu0[2] \\ \end{array}$ $\begin{array}{l} \text{The equations for the filtered output and input } y_{f1}, y_{f0} \text{ and } u_{f0} \text{ equations are} \\ \\ y_{f1}(kT) = \frac{2Ty(k)}{T^2 + 4T + 4} - \frac{2Ty(k - 2)}{T^2 + 4T + 4} - \frac{2y_1(k - 1)\left(T - 2\right)}{T + 2} - \frac{y_1(k - 2)\left(T^2 - 4T + 4\right)}{T^2 + 4T + 4} \\ \\ \\ y_{f0}(kT) = \frac{T^2y(k)}{T^2 + 4T + 4} + \frac{2T^2y(k - 1)}{T^2 + 4T + 4} + \frac{T^2y(k - 2)}{T^2 + 4T + 4} - \frac{2y_0(k - 1)\left(T - 2\right)}{T + 2} - \frac{y_0(k - 2)\left(T^2 - 4T + 4\right)}{T^2 + 4T + 4} \\ \\ \\ \end{array}$
In [46]	$u_{f0}(kT) = \frac{T^2u(k)}{T^2 + 4T + 4} + \frac{2T^2u(k-1)}{T^2 + 4T + 4} + \frac{T^2u(k-2)}{T^2 + 4T + 4} - \frac{2u_0(k-1)(T-2)}{T + 2} - \frac{u_0(k-2)(T^2 - 4T + 4)}{T^2 + 4T + 4}$ $y_2_k, y_2_k_1, y_2_k_2 = \text{sp.symbols}(\text{'y_ff2}(k), y_ff2)(k-1), y_ff2)(k-2), y_ff2, y_ff$
	Isoalting $y(kT)$ gives $y(kT) = \frac{T^2y_{f2}(k)}{4} + \frac{T^2y_{f2}(k-1)}{2} + \frac{T^2y_{f2}(k-2)}{4} + Ty_{f2}(k) - Ty_{f2}(k-2) + 2y(k-1) - y(k-2) + y_{f2}(k) - 2y_{f2}(k-1) + y_{f2}(k-2)$ The above equation depends only on present and past values of $y_{f2}(kT)$, in which the present value can be obtained via the measurment model $(\phi^T(t)\theta)$ and past values of $y(kT)$
In [47]	<pre>T_R = simplify(T_/R) S_R = simplify(S/R) T_subd = T_ R_subd = R.subs(r1, r_1) S_subd = collect(expand(S.subs([(s0,s_0), (s1,s_1), (r1, r_1)])), s) T_R_subd = T_subd/R_subd S_R_subd = simplify(S_subd/R_subd) # bilinear transformation of T/R and S/R in terms of plant params # TR = collect(simplify(expand(T_R_subd.subs(s, bilinear_T))), q) # SR = collect(simplify(expand(S_R_subd.subs(s, bilinear_T))), q) # bilinear transformation of T/R and S/R in terms of control params TR = collect(simplify(expand(T_R.subs(s, bilinear_T))), q) SR = collect(simplify(expand(S_R.subs(s, bilinear_T))), q)</pre>
	The control signal of the system is given by $u(t) = \frac{T}{R}u_c(t) - \frac{S}{R}y(t)$ $u(t) = \frac{a_0 + s}{c\left(r_1 + s\right)}u_c(t) - \frac{ss_0 + s_1}{r_1 + s}y(t)$ $u(t) = \frac{a_0 + s}{c\left(a_0 - d + s + 1\right)}u_c(t) - \frac{-a_0d + a_0 + d^2 - d - s\left(a_0d - a_0 - d^2 + d\right)}{c\left(a_0 - d + s + 1\right)}y(t)$ This however, must also be converted to the discrete time doamin with a bilinear transformation as well. This will be done by directly performing the transformation on $\frac{T}{R}$ and $\frac{S}{R}$ (no filtering) and using the α and β coefficients to derive difference equations for $u_c(kT)$ and $y(kT)$ respectivley.
	The bilinear transformations of $\frac{T}{R}$ and $\frac{S}{R}$ are $\frac{T}{R}\Big _{s \to \frac{2(1-\frac{1}{q})}{T(1+\frac{1}{q})}} = \frac{Ta_0 + q\left(Ta_0 + 2\right) - 2}{c\left(Tr_1 + q\left(Tr_1 + 2\right) - 2\right)}$ $\frac{S}{R}\Big _{s \to \frac{2(1-\frac{1}{q})}{T(1+\frac{1}{q})}} = \frac{Ts_1 + q\left(Ts_1 + 2s_0\right) - 2s_0}{Tr_1 + q\left(Tr_1 + 2\right) - 2}$
	aTR = obj_TR.lst_denum_coeff bTR = obj_TR.lst_num_coeff aSR = obj_SR.lst_denum_coeff bSR = obj_SR.lst_num_coeff bSR = obj_SR.lst_num_coeff are $\alpha \frac{T}{R}, \text{ the coefficients of the numerator and denominator are}$ and
	$eta rac{T}{R} = \left[rac{Ta_0+2}{c\left(Tr_1+2 ight)}, rac{Ta_0-2}{c\left(Tr_1+2 ight)} ight]$ while the coefficients of the numerator and denominator for $rac{S}{R}$ are $lpha rac{S}{R} = \left[1, rac{Tr_1-2}{Tr_1+2} ight]$ and $eta rac{S}{R} = \left[rac{Ts_1+2s_0}{Tr_1+2}, rac{Ts_1-2s_0}{Tr_1+2} ight]$
	$ \begin{array}{l} uc_k, \ \ uc_k_1 = sp.symbols('u_\{c\}(k) \ \ u_\{c\}(k-1)') \\ uk = -u_k_1*aTR[1] + uc_k*bTR[0] + uc_k_1*bTR[1] - y_k*bSR[0] - y_k_1*bSR[1] \\ \\ The difference equation representing the control signal becomes \\ u(k) = -\frac{u(k-1)\left(Tr_1-2\right)}{Tr_1+2} - \frac{y(k)\left(Ts_1+2s_0\right)}{Tr_1+2} - \frac{y(k-1)\left(Ts_1-2s_0\right)}{Tr_1+2} + \frac{u_c(k)\left(Ta_0+2\right)}{c\left(Tr_1+2\right)} + \frac{u_c(k-1)\left(Ta_0-2\right)}{c\left(Tr_1+2\right)} \\ \\ \textbf{Part 3} \\ \vdots \\ T \ \ val \ = \ 0.1 \end{array} $
In [16]	<pre>1_val = 0.1 a_0_val = 1 y1_k = y1_k.subs(T,T_val) y0_k = y0_k.subs(T,T_val) u0_k = u0_k.subs(T,T_val) yk = yk.subs(T,T_val) uk = uk.subs([(T,T_val),(s0, s_0), (s1, s_1), (r1, r_1), (a0, a_0_val)]) # Convert control equation derived above symbolically into numeric function that can be used in implementation y1_k_func = sp.lambdify([y_k, y_k_2, y1_k_1, y1_k_2], y1_k_) y0_k_func = sp.lambdify([y_k, y_k_1, y_k_2, y0_k_1, y0_k_2], y0_k_) u0_k_func = sp.lambdify([u_k, u_k_1, u_k_2, u0_k_1, u0_k_2], u0_k_) yk_func = sp.lambdify([y2_k, y2_k_1, y2_k_2, y_k_1, yk_2], yk_)</pre>
	The for the implementation of the design, a sampling period of $0.1\ (T=0.1)$ and an observer polynomial parameter of $1\ (a_0=1)$ will be used. The difference equations for $y_1(kT), y_0(kT), u_0(kT), u(kT)$ and $y(kT)$ become $y_1(kT) = 0.0453514739229025y(k) - 0.0453514739229025y(k-2) + 1.80952380952381y_1(k-1) - 0.81859410430839y_1(k-2)$ $y_0(kT) = 0.00226757369614512y(k) + 0.00453514739229025y(k-1) + 0.00226757369614512y(k-2) + 1.80952380952381y_0(k-1) - 0.81859410430839y_0(k-2)$ $u_0(kT) = 0.00226757369614512u(k) + 0.00453514739229025u(k-1) + 0.00226757369614512u(k-2) + 1.80952380952381u_0(k-1) - 0.81859410430839y_0(k-2)$ $u_0(kT) = 0.00226757369614512u(k) + 0.00453514739229025u(k-1) + 0.00226757369614512u(k-2) + 1.80952380952381u_0(k-1) - 0.81859410430839u_0(k-2)$
In [17]	$ y(kT) = 2y(k-1) - y(k-2) + 1.1025y_{f2}(k) - 1.995y_{f2}(k-1) + 0.9025y_{f2}(k-2) $ $ u(kT) = \frac{u(k-1)(-0.1d-1.8)}{2.2 - 0.1d} + \frac{2.1u_c(k)}{c(2.2 - 0.1d)} - \frac{1.9u_c(k-1)}{c(2.2 - 0.1d)} - \frac{2.1y(k)(-d(2-d)+1)}{c(2.2 - 0.1d)} + \frac{1.9y(k-1)(-d(2-d)+1)}{c(2.2 - 0.1d)} $ $ \vdots $ sample_depth = int(100/T_val) # 1000 samples totalling 100 seconds (since sample time T is 0.1 secons) sample_range = range(sample_depth) starting_samples = 2 # calculation of input signal t = [i for i in sample_range] u_c = np.ones(sample_depth) u_c[np.where([m.sin(t[i]*m.pi*T_val/20)<=0 for i in sample_range])] = 0
	<pre># actual plant parameters c = 2 d = 0.5 x = d + 1 theta0 = np.array([x, d, c]).reshape(-1,1) theta_hat = [np.array([1]*3).reshape(-1,1) for _ in range(starting_samples)] # list for storing estimated par y = [0]*starting_samples u = [0]*starting_samples # starting filtered signal values y2 = [0]*starting_samples y1 = [0]*starting_samples</pre>
	<pre>y0 = [0]*starting_samples u0 = [0]*starting_samples lam = 0 # forgeting factor I = np.identity(3) p = 1000*I # P matrix for k in range(2, sample_depth): phi = np.array([-y1[-1], -y0[-1], u0[-1]]).reshape(-1,1) theta_hat.append(theta_hat[-1] + T_val*(p@phi)*(phi.T@theta0 - phi.T@theta_hat[-1])) p = p + T_val*(lam*I - p@phi@phi.T)@p y2.append(np.reshape(phi.T@theta0, ()))</pre>
	<pre>y.append(np.reshape(yk_func(y2[k], y2[k-1], y2[k-2], y[k-1], y[k-2]), ())) u.append(np.reshape(uk_func(u[k-1], u_c[k], u_c[k-1], y[k], y[k-1], theta_hat[-1][2], theta_hat[-1][1]), y1.append(np.reshape(y1_k_func(y[k], y[k-2], y1[k-1], y1[k-2]), ())) y0.append(np.reshape(y0_k_func(y[k], y[k-1], y[k-2], y0[k-1], y0[k-2]), ())) u0.append(np.reshape(u0_k_func(u[k], u[k-1], u[k-2], u0[k-1], u0[k-2]), ())) # ploting of estimated parameters df_theta = pd.DataFrame(np.asarray(theta_hat).reshape(-1,3,), columns=['x', 'd', 'c']) theta_hat_ploter(df_theta, theta0, 'Theta_hat Estimates') # ploting of control sig plt.plot(t,u) plt.title('Control Input', fontsize=20) plt.ylabel('u(t)', fontsize=18)</pre>
	<pre>plt.xlabel('Time Stamps "t"', fontsize=18) plt.show() # ploting of input vs output plt.plot(t,u_c) plt.plot(t,y) plt.title('u_c(t) Vs y(t)', fontsize=20) plt.ylabel('Magnitude', fontsize=18) plt.xlabel('Time Stamps "t"', fontsize=18) plt.show()</pre> Theta_hat Estimates
	Theta hat 14. The point of the
	2 0.8 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	0.4 -
	-0.2
	06
In [18]	Problem 2 Part 1
Out[18]	$\overline{s^2+1.5s+0.5}$ $\text{H}__q = \text{co.sample_system}(\text{co.tf}([2], [1, 1.5, 0.5]), \text{ Ts=2, method='zoh'})$ The pulse tranfer function can be obtained by taking performing a zero order hold on the plant. The zero order hold equation is $H(q) = (1-q^{-1})Z[L^{-1}[\frac{G(s)}{s}](nT)](q)$ If T = 2s, then the pulse function is
In [20]	array([-0.36787857])
In [21]	Since -0.36787857 is sufficiently far from the unit circle edge, it can be canceld without risk.
	B_minus = b0
In [22]	S = s0*q + s1 R = q + r1 $R_prime = 1$
	$R_prime = 1 \\ Am = q**2 + am1*q + am2 \\ Bm = Am.subs(q, 1)*q**B_pol.degree() \\ \# T = simplify(AO*Bm/B_minus) \\ T = q*t0$ $The control polynomials become$ $A_0 = 1$ $S = qs_0 + s_1$ $R = q + r_1$ $R' = 1 \implies R = B^+R' = B^+ = q + \frac{b_1}{b_1}$
	$A_m=a_{m1}q+a_{m2}+q^2$ Additionally, to achive unity gain, the final value theorem can implemented on A_m to obtain the value of B_m . This is achived by the equation $B_m=A_m(1)q^m$. This way, when k goes to infinity $(q\to 1)$, $G_m=1$ and $Deg(B_m)=Deg(B)$. Therfore, $B_m=q\left(a_{m1}+a_{m2}+1\right)$ From this result, T can be calculated $T=A_0\frac{B_m}{B^-}=\frac{q\left(a_{m1}+a_{m2}+1\right)}{b_0}=qt_0$
In [23]	LHS_coeffs = sp.Poly(A*R_prime + B_minus*S, q).coeffs()[::-1] RHS_coeffs = sp.Poly(A0*Am, q).coeffs()[::-1] $ r_1 = b1/b0 \\ s_0 = sp.solve(sp.Eq(LHS_coeffs[1], RHS_coeffs[1]), s0)[0] \\ s_1 = sp.solve(sp.Eq(LHS_coeffs[0], RHS_coeffs[0]), s1)[0] \\ t_0 = (am1 + am2 + 1)/b0 $ We can see that $ r_1 = \frac{b_1}{b_0} $ and
	$t_0=\frac{a_{m1}+a_{m2}+1}{b_0}$ Solving the diophantine equation $AR'+B^-S=A_0A_m \Rightarrow a_1q+a_2+q^2\ +b_0qs_0+s_1=a_{m1}q+a_{m2}+q^2$ yeilds the following control paramters $s_0=\frac{-a_1+a_{m1}}{b_0}$ $s_1=\frac{-a_2+a_{m2}}{b_0}$
In [24]	$S_{-} = S. \operatorname{subs}(\lceil (s0, s_{-}0), (s1, s_{-}1) \rceil)$ $R_{-} = R. \operatorname{subs}(r1, r_{-}1)$ $T_{-} = T. \operatorname{subs}(t0, t_{-}0)$ The control polynomials in terms of control parameters are $R = q + \frac{b_{1}}{b_{0}}$ $S = \frac{q(-a_{1} + a_{m1})}{b_{0}} + \frac{-a_{2} + a_{m2}}{b_{0}}$ $T = \frac{q(a_{m1} + a_{m2} + 1)}{b_{0}}$
	$Part 3$ We know that the pulse transfer function is of the form $H(q) = \frac{b_0q + b_1}{a_1q + a_2 + q^2}$ Therefore, the measurment model can be found to be $y(t+2) = -a_1y(t+1) - a_2y(t) + b_0u(t+1) + b_1u(t)$ $\Rightarrow y(t) = -a_1y(t-1) - a_2y(t-2) + b_0u(t-1) + b_1u(t-2)$
In [25]	Therfore $y(t) = \phi^T(t)\theta = [-y(t-1) - y(t-2) \ u(t-1) \ u(t-2)][a_1 \ a_2 \ b_0 \ b_1]^T$ Control equation u(t) $TR = simplify(T_/R_) \\ SR = simplify(S_/R_)$ $obj_TR = numden_coeff(TR, q) \\ obj_SR = numden_coeff(SR, q)$
	aTR = obj_TR.lst_denum_coeff bTR = obj_TR.lst_num_coeff aSR = obj_SR.lst_denum_coeff bSR = obj_SR.lst_num_coeff bSR = obj_SR.lst_num_coeff aTR = $\left[1, \frac{b_1}{b_0}\right]$ and $\beta \frac{T}{R} = \left[\frac{a_{m1} + a_{m2} + 1}{b_0}, 0\right]$
	$\beta\frac{T}{R}=\left[\frac{a_{m1}+a_{m2}+1}{b_0},0\right]$ while the coefficients of the numerator and denominator for $\frac{S}{R}$ are $\alpha\frac{S}{R}=\left[1,\frac{b_1}{b_0}\right]$ and $\beta\frac{S}{R}=\left[\frac{-a_1+a_{m1}}{b_0},\frac{-a_2+a_{m2}}{b_0}\right]$ \vdots $\mathbf{u}_{\mathbf{k}},\mathbf{u}_{\mathbf{k}}_{\mathbf{l}},\mathbf{u}_{\mathbf{k}}_{\mathbf{l}},\mathbf{u}_{\mathbf{k}}_{\mathbf{k}},\mathbf{y}_{\mathbf{k}}_{\mathbf{l}},\mathbf{y}_{\mathbf{k}}_{\mathbf{l}}=\mathrm{sp.symbols}(\mathbf{u}_{\mathbf{k}})\mathbf{u}_{\mathbf{k}}(\mathbf{k})\mathbf{y}_{\mathbf{k}})\mathbf{y}_{\mathbf{k}}(\mathbf{k}-1)\mathbf{y}_{\mathbf{k}}(\mathbf{k}-2)\mathbf{y}_{\mathbf{k}}(\mathbf{k})}$
	$uk = -u_k_1 * aTR[1] + uc_k * bTR[0] - y_k * bSR[0] - y_k_1 * bSR[1]$ The control equation in terms of the plant and model parameters is $u(t) = -\frac{b_1 u(k-1)}{b_0} + \frac{u_c(k) \left(a_{m1} + a_{m2} + 1\right)}{b_0} - \frac{y(k) \left(-a_1 + a_{m1}\right)}{b_0} - \frac{y(k-1) \left(-a_2 + a_{m2}\right)}{b_0}$ $co.sample_system(co.tf([1], [1, 2, 1]), Ts=2, method='zoh') # pulse transfer function of model$
]	$rac{0.594z+0.1537}{z^2-0.2707z+0.01832} dt=2$ We can see from the pulse transfer function of model above that $a_{m1}=-0.2707$ and $a_{m2}=0.01832$

In [1]: import pandas as pd

