浙江工业大学

《概率论与数理统计BI》期末试卷

(2015/2016 学年第一学期)

任课教师_		学	浣			
姓名		学	号			
	_	_ _	<u>.</u>	三		合计
应得分	30	1	0	60		100
实得分						
 - 填空 (共 30 分, 每空 3 分) 1. 设事件 A, B 互斥, 若 P(A) = 0.6, P(ĀB) = 0.2, 则 P(B) =						
2. 设事件 A, B 相互独立,且 $P(A) = 0.6, P(A \cup B) = 0.7$,则 $P(B) =$ 。						
3. 100 件产品中有 10 件是不合格品,从该产品中依次不放回地随机抽取 2 件,则第二次抽到不合格品的概率是。 4. 已知随机变量 X 的概率密度函数为 $f(x) = \lambda e^{- x-1 }, -\infty < x < \infty$,则常数 $\lambda =$ 。						
5. 设随机变量 $X \sim P(4)$, 则随机变量 $Y = 3X - 2$ 的数学期望 $E(Y) =$ 。						
6. 已知随机变量 X, Y 相互独立且具有相同的分布律						
		X	0	1		
		Р	0.4	0.6		
则随机变量 $U = \max(X,Y)$ 的分布律为, $V = \min(X,Y)$ 的分布						
律为	•					
7. 设 <i>X</i> ₁ , <i>X</i>	₂ ,,X ₁₀ 是来自于ī	E态总体 N	(0,9)的一	个简单样本,	统计量	$\frac{aX_{10}}{\sqrt{\sum_{i=1}^{9}X_{i}^{2}}}$ 服从 T

分布,则自由度为_____, a = _____。

8. 设 X_1, \dots, X_9 是来自总体 $X \sim N(\mu, 1.5^2)$ 的一个简单样本,测得样本均值为 $\overline{x} = 11$,则 参数 μ 的置信度为 0.95 的置信区间是_____。 $(Z_{0.05}=1.65,Z_{0.025}=1.96)$

二选择 (共10分,每题2分)

1. 在电炉上安装 4 个温控器,各温控器显示温度的误差是随机的。在使用过程中,只要有 2 个温控器显示的温度不低于临界温度 t_0 ,电炉就断电。以E表示事件"电炉断电",设

 $T_{(1)} \le T_{(2)} \le T_{(3)} \le T_{(4)}$ 为 4 个温控器显示的由低到高的温度值,则事件 E 等于(

- A. $\left\{ T_{(1)} \ge t_0 \right\}$ B. $\left\{ T_{(2)} \ge t_0 \right\}$ C. $\left\{ T_{(3)} \ge t_0 \right\}$ D. $\left\{ T_{(4)} \ge t_0 \right\}$

- 2. 对任意事件 A,B,下列式子中与 P(A-B) 相等的是 ()
 - A. P(A) P(B) + P(AB) B. P(A) P(B)
 - C. P(A) + P(B) P(AB) D. P(A) P(AB)
- 3. 已知随机变量X的概率密度函数为

$$f(x) = \begin{cases} \frac{x}{a^2} e^{-\frac{x^2}{2a^2}} & x > 0\\ 0 & x \le 0 \end{cases}$$

则知随机变量 $Y = \frac{1}{V}$ 的期望E(Y)等于()

- A. $\frac{1}{2\pi}$ B. $\frac{\sqrt{2\pi}}{2\pi}$ C. $\sqrt{\pi}$
- D. $\frac{\sqrt{2\pi}}{}$
- 4. 设 X_1, X_2, X_3 为总体X的样本, $E(X) = \mu$, $Var(X) = \sigma^2$ 均存在,下列统计量中哪个 不是参数 μ 的无偏估计量 (
 - A $\hat{\mu}_1 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$ B $\hat{\mu}_2 = \frac{1}{2}X_1 + \frac{1}{2}X_3$

 - C $\hat{\mu}_3 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ D $\hat{\mu}_4 = \frac{2}{7}X_1 + \frac{3}{14}X_2 + \frac{9}{14}X_3$
- 5. 对总体中未知参数 θ ,用矩估计和极大似然估计两种方法所得的估计()
 - A 总相同
- B 总不相同
- C 有时相同,有时不同
- D 总是无偏的

三 解答题 (共60分,共7题)

- 1. (10 分) 假设某厂生产的每台仪器以 0.7 的概率直接出厂;以 0.3 的概率需进一步调试, 经调试后以 0.8 的概率可以出厂,以 0.2 的概率定为不合格不能出厂。假设每台仪器的 生产过程相互独立,求下列事件的概率:
 - (1) 一台仪器可以出厂的概率 α ;
 - (2) 100 台仪器恰好有 2 台不能出厂的概率 β 。

2. (10 分) 设离散型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ 0.3 & -1 \le x < 1 \\ 0.8 & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

求 $Y = X^2 + 1$ 的分布律,并计算 Y 的数学期望和方差。

3. (10 分) 设二维随机变量(X,Y)的联合密度函数为

- 1) 求随机变量 X,Y 的边缘密度函数 $f_{X}(x),f_{Y}(y)$, 并判断 X 和 Y 的独立性;
- 2) 求概率 P(X > 2Y)。

4. (5分) 设总体 X 具有密度函数

$$f(x,\theta) = \begin{cases} \frac{6x}{\theta^3} (\theta - x) & 0 < x < \theta \\ 0 & \text{其他} \end{cases}$$

 (X_1, X_2, \cdots, X_n) 是从该总体中抽出的简单样本,求参数 θ 的矩估计量.

5. (5 分) 设总体 *X* 的分布律为

其中参数 $\theta \left(0 < \theta < \frac{1}{2}\right)$ 为未知参数, $\left(X_1, X_2, \cdots, X_8\right)$ 是从该总体中抽出的简单样本,

其观测值为

求参数 θ 的极大似然估计值。

6. (10 分)设一种零件的强度服从正态分布,用过去铸造方法生产的零件强度的标准差为 1.6kg/mm^2 .为了降低成本,改变了铸造方法,测得用新方法铸出的 9 个零件的强度的均值 为 52.8,样本标准差为 1.1.问改变方法后零件强度的方差是否有显著变化(取显著性水平 α =0.05) $\left(\chi_{0.05}^2\left(9\right)=16.919,\chi_{0.05}^2\left(8\right)=15.507,\chi_{0.025}^2\left(9\right)=19.023,\chi_{0.025}^2\left(8\right)=17.535\right)$

7. (10 分) 某出租车公司有 500 辆的士参加保险,假设在一年里的出事故的概率为 0.004,参加保险的的士每年交 800 元的保险费. 若出事故,保险公司最多赔偿 50000 元, 试利用中心极限定理, 计算保险公司一年赚钱不小于 200000 元的概率。(Φ(1.42)=0.9222)