Diferencialinės lygtys P4

Raimundas Vidunas Vilniaus Universitetas

MIF, 2023 rugsėjo 25 d.

Einamos temos

Vis dar nagrinėjame pirmos eilės lygčių sprendimą. Praeitas savaites sprendėme pirmos eilės lygtis su atsiskiriančiais kintamaisiais, arba lygtis, kurias galima suvesti į atsiskiriančių kintamųjų atvejį.

Praeitą kartą suvedėme lygtis y' = F(ax + by) ir y' = F(y/x) į lygtis su atsiskiriančiais kintamaisiais.

Šiandien:

- Nagrinėsime pirmos eilės lygties $\frac{dy}{dx} = F\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$ sprendimą suvedant ją į atsiskiriančių kintamųjų atvejį.
- Susipažinsime su diferencialų lygtimis.
- Spręsime diferencialų lygtis naudojant integruojančius daugiklius.

Lygtis
$$y' = F((a_1x + b_1y + c_1)/(a_2x + b_2y + c_2))$$

Tarkime, turime šio pavidalo pirmos eilės diferencialinę lygtį:

$$\frac{dy}{dx} = F\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right).$$

Čia galima daryti keitimą $u=\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}$, bet gaunasi sudėtingos formulės, pvz., $y=\frac{a_1x+c_1-(a_2x+c_2)u}{b_2u-b_1}$.

Aiškiau yra spręsti panagrinėjus užduotį geometriškai.

Prilyginus skaitiklį $a_1x + b_1y + c_1 = 0$ ir vardiklį $a_2x + b_2y + c_2 = 0$ turime dvi tieses (x, y)-plokštumoje. Pažymėkime $\Delta = \det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$.

Tos dvi tiesės arba kertasi viename taške kai $\Delta \neq 0$, arba yra lygiagrečios (arba sutampa) kai $\Delta = 0$. Šiuos du atvejus nagrinėsime atskirai.

Atvejis $\Delta \neq 0$

Kai dvi tiesės kertasi, tada $\,\Delta
eq 0\,$ ir lygčių sistema

$$a_1x + b_1y + c_1 = 0,$$

 $a_2x + b_2y + c_2 = 0$

turi vienintelį sprendinį:

$$(x,y) = (\xi,\eta) = \left(\frac{1}{\Delta} \det \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix}, -\frac{1}{\Delta} \det \begin{pmatrix} a_1 & c_1 \\ a_2 & c_2 \end{pmatrix} \right).$$

Diferencialinės lygties $\frac{dy}{dx} = F\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$

izoklinės sudarys tiesių šeimą, einančią per $(x, y) = (\xi, \eta)$.

Tada keičiame kintamuosius $X=x-\xi$, $Y=y-\eta$, gauname lygtį

$$\frac{dY}{dX} = F\left(\frac{a_1X + b_1Y}{a_2X + b_2Y}\right).$$

Dešinėje pusėje turime nulinio laipsnio homogeninę funkciją, t.y. funkciją nuo Y/X. Darome praeitos paskaitos keitimą u = Y/X...

Pavyzdys 1

Spręskime diferencialinę lygtį $\frac{dy}{dx} = \frac{x+y-3}{x-y+1}$.

Tiesės x+y-3=0 ir x-y+1=0 kertasi taške x=1,y=2,

$$\mathsf{tad}\ \Delta = \mathsf{det} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) = -2 \neq 0.$$

Su kintamaisiais X=x-1 ir Y=y-2, t.y., įstatę x=X+1 ir y=Y+2, gauname:

$$\frac{dY}{dX} = \frac{X+Y}{X-Y} = \frac{1+u}{1-u} \quad \text{su} \quad u = \frac{Y}{X}.$$

Iš
$$Y = X u$$
 gauname $X \frac{du}{dX} + u = \frac{1+u}{1-u}$.

Perrašome
$$X \frac{du}{dX} = \frac{1+u^2}{1-u}$$
.

Pavyzdžio 1 tęsinys

Atskiriame kintamuosius $\frac{(1-u) du}{1+u^2} = \frac{dX}{X}$

ir integruojame:
$$\int \frac{(1-u)\,du}{1+u^2} = \int \frac{dX}{X}.$$

Kairėje pusėje skaidome:

$$\int \frac{(1-u)\,du}{1+u^2} = \int \left(\frac{1}{1+u^2} - \frac{u}{1+u^2}\right)du$$

$$= \arctan u - \frac{1}{2}\ln(u^2+1) + C_0.$$

Neišreikštine forma, turime: $\arctan u = \ln \left(|X| \sqrt{u^2 + 1} \right) + C_1$, arba $\arctan \frac{Y}{X} = \ln \sqrt{Y^2 + X^2} + C_1$, arba $\arctan \frac{y-2}{y-1} = \ln \sqrt{x^2 + y^2 - 2x - 4y + 5} + C_1$.

Atvejis $\Delta = 0$

Kitu atveju $\Delta=0$ turime tiesinę priklausomybę $\begin{pmatrix} a_1 \\ b_2 \end{pmatrix}=\lambda \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$,

t.y., $a_1 = \lambda a_2$, $b_1 = \lambda b_2$ kažkuriai konstantai λ .

Tada turime, su $u = a_2x + b_2y$ (arba panašiai su $u = a_1x + b_1y$)

$$F\left(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}\right)=F\left(\frac{\lambda u+c_1}{u+c_2}\right)=F\left(\lambda+\frac{c_1-\lambda c_2}{u+c_2}\right).$$

Čia yra funkcija nuo $u = a_2x + b_2y$. Tokie atvejai nagrinėti praeitoje pskaitoje; žr. skaidres 9, 10.

Pavyzdžiui, lygčiai $\frac{dy}{dx} = \frac{2x + y + 1}{4x + 2y - 3}$ keičiame u = 2x + y, sprendžiame:

$$\frac{du}{dx} = 2 + \frac{u+1}{2u-3}; \qquad \frac{2u-3}{u-1} du = 5dx; \qquad \int \left(2 - \frac{1}{u-1}\right) du = 5x + C;$$

$$2u - \ln|u-1| = 5x + C, \quad 2y - \ln|y+2x-1| = x + C,$$

Diferencialinės lygtys P4

arba
$$y + 2x - 1 = \widehat{C}e^{2y - x}$$
.

Diferencialų lygtys

Spręsdami pirmos eilės lygtis $\frac{dy}{dx} = \varphi(x)\psi(y)$ su atsiskiriančiais kintamaisiais mes jas perrašome kaip diferencialų lygtis $\frac{dy}{\psi(y)} = \varphi(x)dx$.

Bet kurią pirmos eilės diferencialinę lygtį $\frac{dy}{dx} = \Phi(x, y)$ galime perrašyti kaip diferencialų lygtį $dy = \Phi(x, y)dx$.

Bendru atveju, (tiesinė homogeninė pirmosios eilės) diferencialų lygtis

$$P(x,y)dx + Q(x,y)dy = 0$$
 yra tiesiog alternatyvi diferencialinės lygties $\frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$ forma.

Diferencialų lygties apibrėžimo sritimi vadinama sritis $(x,y) \in \mathbb{R}^2$ plokštumoje, kur funkcijos P(x,y) irQ(x,y) yra apibrėžtos ir tolydžios.

Taškas $(x_0, y_0) \in D$, kuriame $P(x_0, y_0) = Q(x_0, y_0) = 0$, yra vadinamas diferencialų lygties ypatinguoju tašku.

Diferencialų lygties sprendiniai

Diferencialų lygties P(x,y)dx + Q(x,y)dy = 0 sprendiniu vadinama glodi funkcija $y(x) \in C^1(a,b)$ tokia, kad visiems $x \in (a,b)$ taškas (x,y(x)) yra apibrėžimo srityje, ir P(x,y(x)) + Q(x,y(x))y'(x) = 0.

Diferencialų lygtis apibrėžia krypčių lauką savo apibrėžimo srityje, išskyrus ypatinguose taškuose. Liestinės lygtis sprendinio grafikui taške (x_0, y_0) yra $P(x_0, y_0)(x - x_0) + Q(x_0, y_0)(y - y_0) = 0$.

Sprendinių grafikai bus *integralinės kreivės*, kurių liestinės kryptis kiekviename taške sutampa su krypčių lauko kryptimi tame taške.

Kadangi diferencialų lygtis yra simetrinė x ir y atžvilgiu, ji vienodai simetriškai apibrėžia ir atvirkštinius sprendinius x(y).

Pilnų diferencialų lygtys

Diferencial lygtis P(x, y)dx + Q(x, y)dy = 0

yra vadinama pilnų diferencialų lygtimi, jei egzistuoja diferencijuojama funkcija U(x,y) tokia, kad

$$\frac{\partial U(x,y)}{\partial x} = P(x,y), \qquad \frac{\partial U(x,y)}{\partial y} = Q(x,y).$$

Tada diferencialų lygtį galime rašyti: dU(x, y) = 0.

Jos bendrasis sprendinys neišreikštine forma yra U(x,y) = C.

Pvz., sprendžiame $(x^2 - y)dx + (y^2 - x)dy = 0$.

Pertvarkome: $x^2 dx - (y dx + x dy) + y^2 dy = 0$,

gauname
$$d\left(\frac{x^3}{3}\right) - d(xy) + d\left(\frac{y^3}{3}\right) = 0$$
, arba $d\left(\frac{x^3}{3} - xy + \frac{y^3}{3}\right) = 0$.

Bendrasis neišreikštinis sprendinys yra $\frac{x^3}{3} - xy + \frac{y^3}{3} = C$.

Pilnų diferencialų lygties būtina salyga

Pilnų diferencialų lygčiai P(x, y)dx + Q(x, y)dy = 0

turime
$$P(x,y) = \frac{\partial U(x,y)}{\partial x}$$
, $Q(x,y) = \frac{\partial U(x,y)}{\partial y}$

kažkokiai diferencijuojamai funkcijai U(x,y). Kadangi

$$\frac{\partial^2 U(x,y)}{\partial x \partial y} = \frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x},$$

būtinoji pilnos lygties sąlyga yra $\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x}$.

Tokia lygtis vadinama tiksliojo diferencialo lygtimi.

Ši sąlyga yra pakankama pasirinktoje srityje, jei sritis yra vienajungė (t.y., joje nėra ir izoliuotų ypatingų taškų), ir

$$P(x,y), Q(x,y), \frac{\partial P(x,y)}{\partial y}, \frac{\partial Q(x,y)}{\partial x}$$
 yra tolydžios funkcijos joje;

žr. Teoremą 4 Golokvosčiaus knygoje, psl. 83-86.

Neapibrėžtinio integralo metodas

Sprendžiame
$$\frac{\partial U(x,y)}{\partial x} = P(x,y), \quad \frac{\partial U(x,y)}{\partial y} = Q(x,y).$$

Pirmąją lygybę integruodami pagal x, gauname $U(x,y) = \int P(x,y) dx + C(y)$.

Laisvoji funkcija C(y) turi būti tolydžiai diferencijuojama. Ji pasirenkama taip,

kad būtų tenkinama antroji lygybė:
$$\frac{\partial}{\partial y} \left(\int P(x,y) dx + C(y) \right) = Q(x,y).$$

Iš čia
$$C'(y) = Q(x,y) - \frac{\partial}{\partial y} \int P(x,y) dx$$
.

Dešinioji pusė turi priklausyti tik nuo y, t.y.,

$$0 = \frac{\partial}{\partial x} \left(Q(x, y) - \frac{\partial}{\partial y} \int P(x, y) dx \right) = \frac{\partial Q(x, y)}{\partial x} - \frac{\partial P(x, y)}{\partial y}.$$

Tad pilnų diferencialų lygtis integruojasi.

Neapibrėžtinio integralo metodo pavyzdys

Sprendžiame tą patį $(x^2 - y)dx + (y^2 - x)dy = 0$.

Turime
$$P(x,y) = x^2 - y$$
, $Q(x,y) = y^2 - x$, ir $\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x} = -1$.

Galime tikėtis, kad tai yra pilnų diferencialų lygtis.

Interguojame
$$\frac{\partial U(x,y)}{\partial x} = P(x,y)$$
:

$$U(x,y) = \int (x^2 - y)dx + C(y) = \frac{x^3}{3} - xy + C(y).$$

Prilygindami
$$Q(x,y) = \frac{\partial U(x,y)}{\partial y}$$
, gauname

$$y^{2}-x=\frac{\partial}{\partial y}\left(\frac{x^{3}}{3}-xy+C(y)\right)=0-x+C'(y)$$

Gavome
$$C'(y) = y^2$$
. Tad $C(y) = \frac{y^3}{3} + \widetilde{C}$, ir $U(x, y) = \frac{x^3}{3} - xy + \frac{y^3}{3}$.

Integruojantis daugiklis

Bendru atveju, diferencialų lygtis P(x, y)dx + Q(x, y)dy = 0

netenkina
$$\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x}$$
 norimoje srityje,

tad ji nėra pilnų diferencialų lygtis.

Tarkime, egzistuoja funkcija $\mu(x,y)$ lygties apibrėžimo srityje tokia, kad

- ji ir jos pirmos eilės išvestinės yra tolydžios;
- Padauginus diferencialų lygtį iš $\mu(x,y)$, gauname pilnų diferencialų lygtį.

Tokia funkcija $\mu(x, y)$ yra vadinama *integruojančiu daugikliu* duotai diferencialų lygčiai. Gauname diferencialų lygtį $\mu(x, y)P(x, y)dx + \mu(x, y)Q(x, y)dy = 0$.

Antra sąlyga reiškia, kad egzistuoja funkcija U(x,y) tokia, kad

$$\mu(x,y)P(x,y) = \frac{\partial U(x,y)}{\partial x}, \qquad \mu(x,y)Q(x,y) = \frac{\partial U(x,y)}{\partial y}.$$

Integruojančio daugiklio pavyzdys

Nagrinėkime lygtį $\left(\frac{y}{x^2} + 1\right) dx + \frac{dy}{x} = 0.$

Tikriname būtinąją tikslaus diferencialo sąlygą:

$$\frac{\partial}{\partial x}\left(\frac{1}{x}\right) = -\frac{1}{x^2}, \qquad \frac{\partial}{\partial y}\left(\frac{y}{x^2} + 1\right) = \frac{1}{x^2}.$$
 Netenkinama.

Padauginame diferencialų lygtį iš x^2 , gauname: $(y + x^2)dx + x dy = 0$.

Dabar būtinoji sąlyga tekninama: $\frac{\partial}{\partial x}x = 1$, $\frac{\partial}{\partial y}(y + x^2) = 1$.

Iš tiesų, gauta lygtis išreiškia pilnąjį diferencialą: $d(xy + \frac{1}{3}x^3) = 0$.

Sprendžiame: $xy + \frac{1}{3}x^3 = C$, $y = \frac{C}{x} - \frac{x^3}{3}$.

Tad x^2 iš tikrųjų yra integruojantis daugiklis pradinei lygčiai.

Paprasčiausias integruojančio daugiklio pavyzdys

Lygtis su atsiskirinčiais kintamaisiais:
$$p_1(x)q_1(y)dx + p_2(x)q_2(y)dy = 0$$
.

Padauginę iš
$$\frac{1}{p_2(x)q_1(y)}$$
, gauname: $\frac{p_1(x)}{p_2(x)}\,dx+\frac{q_2(y)}{q_1(y)}\,dy=0$.

Akivaizdu, kad šios formos P(x)dx + Q(y)dy = 0 diferencialų lygtys

yra pilnos. Jos sprendžiamos
$$\int P(x)dx + \int Q(y)dy = C$$
,

nes diferencialų lygtis yra ekvivalenti dU(x, y) = 0

su
$$U(x,y) = \int P(x)dx + \int Q(y)dy$$
.

Integruojantis daugiklis homogeninei lygčiai I

Prisimename, kad lygtyje $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$ pakeitę nežinomąją funkciją

$$y = ux$$
, gavome lygtį $(F(u) - u)dx - xdu = 0$.

Čia integruojantis daugiklis (kintamųjų atskyrimui) yra

$$\mu(x,u)=\frac{1}{x(F(u)-u)}.$$

Atitinkamai, integruojantis daugiklis lygčiai $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$ arba $dy - F\left(\frac{y}{x}\right)dx = 0$ yra $\mu(x, y) = \frac{1}{x F\left(\frac{y}{x}\right) - y}$.

arba
$$dy - F\left(\frac{y}{x}\right)dx = 0$$
 yra $\mu(x, y) = \frac{1}{x F\left(\frac{y}{x}\right) - y}$.

Jei $\Psi(u) = \int \frac{du}{F(u) - u}$, diferencialų lygtis yra ekvivalenti

$$d\left(\ln|x|-\Psi\left(\frac{y}{x}\right)\right)=0.$$

Galime dauginti $\mu(x,y)$ iš -1 ar kitos konstantos, liks integruojančiu daugikliu.

Integruojantis daugiklis homogeninei lygčiai II

Matėme, kad integruojantis daugiklis lygčiai $dy - F\left(\frac{y}{x}\right)dx = 0$ yra $\mu(x,y) = \frac{1}{y - x F\left(\frac{y}{x}\right)}$.

Jei P(x,y), Q(x,y) yra to pačio laipsnio homogeninės funkcijos, tada prilyginame $F\left(\frac{y}{x}\right) = -\frac{P(x,y)}{Q(x,y)}$, ir gauname lygties P(x,y)dx + Q(x,y)dy = 0 integruojantį daugiklį $\mu(x,y) = \frac{1}{x P(x,y) + y Q(x,y)}$.

Pvz., lygties $(x-y)dx + x\,dy = 0$ integruojantis daugiklis yra $\mu(x,y) = \frac{1}{x^2}$. Iš tikrųjų, $\frac{x-y}{x^2}\,dx + \frac{1}{x}\,dy = \frac{dx}{x} + d\left(\frac{y}{x}\right)$. Integruodami gauname ln $|x| + \frac{y}{x} = C$, arba $y = x\,(C - \ln|x|)$.

Integruojantis daugiklis bendru atveju

leškome tokio $\mu(x,y)$, kad $P(x,y)\mu(x,y)dx + Q(x,y)\mu(x,y)dy = 0$ būtų pilnų diferencialų lygtis. Būtina sąlyga yra

$$\frac{\partial \big(\mu(x,y)P(x,y)\big)}{\partial y} = \frac{\partial \big(\mu(x,y)Q(x,y)\big)}{\partial x}.$$

Gauname

$$\frac{\partial \mu(x,y)}{\partial y}P(x,y) - \frac{\partial \mu(x,y)}{\partial x}Q(x,y) = \mu(x,y)\left(\frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y}\right).$$

Ši lygtis yra dalinių išvestinių lygtis nežinomajai funkcijai $\mu(x,y)$.

Bendru atveju ją spręsti nėra lengviau nei pradinę lygtį.

Bet atskirais atvejais yra paprasčiau rasti $\mu(x, y)$.

Uždaviniai

Raskite bendruosius sprendinius šioms lygtims:

1.
$$(x+y-3)y'+2x-4y+6=0$$
.

2.
$$(y-x+2)dy + (x-y-1)dx = 0$$
.

3.
$$(y+2)dx = (2x+y-4)dy$$

4.
$$(x+4y)y'=2x+3y-5$$
.

5.
$$y' = 2\left(\frac{y+2}{x+y-1}\right)^2$$
.

Patikrinkite, ar duotos lygtys yra pilnų diferencialų lygtys. Išspręskite.

6.
$$(2-9xy^2)x dx + (4y^2 - 6x^3)y dy = 0$$
.

7.
$$e^{-y}dx = (2y + xe^{-y})dy$$
.

8.
$$\frac{3x^2 + y^2}{y^2} dx = \frac{2x^3 + 5y}{y^3} dy.$$

9.
$$(y+x)dy = (y-x)dx.$$

10.
$$(x^2+y^2+x)dx+ydy=0$$
. Išbandykite integruojantį daugiklį $\frac{2}{x^2+y^2}$.

Trečios paskaitos uždavinių atsakymai

- 1. Pradinei sąlygai y(1)=0: $\left[\frac{2}{3},\frac{4}{3}\right]$ pradedant nuo a=b=1, arba $\left[\frac{3}{5},\frac{7}{5}\right]$ pradedant nuo $a=\frac{2}{5}$, b=1. Pradinei sąlygai y(0)=0: $\left[-\frac{1}{2},\frac{1}{2}\right]$ pradedant nuo a=b=1, arba $\left[-\frac{2}{3},\frac{2}{3}\right]$ pradedant nuo $a=b=\frac{2}{3}$.
- 2. $y(x) = Ce^x 2x + 1$.
- 3. $y(x) = -\frac{1}{2}x 1$; bendrasis sprendinys $x + 2y + 2 = Ce^y$.

4.
$$y(x) = \frac{x^2}{x+C}$$
 ir $y = 0$

- 5. y(x) = -x; bendrasis sprendinys $y(x) = Cx^2 x$
- 6. $y(x) = -\frac{x}{\sqrt{\ln x}}$; bendrasis sprendinys $y(x) = \pm \frac{x}{\sqrt{\ln Cx}}$
- 7. $y(x) = x \arcsin(Cx) + 2\pi kx$ su $k \in \mathbb{Z}$.
- 8. $y(x) = \frac{1}{4} x \ln(Cx)^2$.
- 9. $\sqrt{4x+2y-1}-2\ln(\sqrt{4x+2y-1}+2)=x+C$.
- 10. $y(x) = x + 2 \arctan \frac{1}{x+C} + 2k\pi$, ir $y(x) = x + 2\pi k$, su $k \in \mathbb{Z}$.