

16TH EUROPEAN CONFERENCE ON COMPUTER VISION WWW.ECCV2020.EU





# Patch-based CNN evaluation for bark classification

Debaleena Misra, Carlos Crispim-Junior, Laure Tougne

Univ Lyon, Lyon 2, LIRIS, F-69676 Lyon, France



# Outline

- Background
  - Motivation
  - Objective
- Methodology
  - Patch preparation
    - Image up-scaling
    - Patch extraction
  - Transfer learning with patches
  - Compute image-level labels
    - **■** Majority voting
    - Tie-breaking strategies
- Experimental details
- Results
- Conclusion



### Motivation

Tree recognition from only <u>bark images</u> is a challenging and interesting problem.

The organ bark has several advantages:

- Is a consistent organ found round the year
- Has a slow aging process
- Easily accessible compared to higher-level fruits, flowers or leaves

### Challenges of bark recognition:

- Texture properties impacted by environmental factors and diseases
- Branch shadow clutter and occlusion
- Lack of large bark datasets



# Objective

**Evaluate the feasibility of using deep learning for bark recognition from challenging datasets having** 

- High number of classes
- Very few samples for some classes
- High intra-class variance & low inter-class variance
- Huge variation in image dimensions



## Dataset overview

### **Bark-101** dataset [1]

- 2587 images from 101 classes
- 50-50 train-test split













### Related work

### <u>Traditional statistical methods using hand-crafted features</u>

- Textual analysis methods with Gray level run-length method (RLM), Concurrence matrices (COMM) & Histogram inspection [4]
- Spectral methods using Gabor filters and descriptors SURF or SIFT [5]
- LBP-inspired texture descriptors (LCoLBP, SMBP, CLBP) with SVM & KNN classifiers [1]
- Gabor wavelets with radial basis probabilistic neural networks (RBPNN) [6]

### Recent deep learning based approaches

- AlexNet to study depth images of bark from 2 plant species [7]
- ResNet for BarkNet dataset with 23 classes [8]



Final label for the image

# Proposed methodology



**Step 4**: Majority voting with tie-breaking

8



# Image Up-scaling

#### **Method 1: Traditional Bicubic interpolation**

- Classical image upsampling algorithm
- Uses geometrical transformations in 2D images with Lagrange polynomials, cubic splines or cubic convolutions
- Output pixel value is computed as weighted sum of pixels in 4-by-4 pixel neighborhood

### Method 2: Efficient Sub-pixel Convolutional Neural Network (ESPCN) [2]

- 2 convolution layers for feature extraction in LR space
- 1 sub-pixel convolution layer for learning an array of upscaling filters to aggregate LR feature maps into SR image in single step







# **Majority Voting**







# Tie-breaking strategies

In case of occurence of ties, following strategies are applied on the set of tied classes:

- Random selection : Any one class is randomly selected
- Class proportions: Selects class having the highest number of training samples
- Class F1-score: Selects class having the best prediction accuracy (F1-score)
- Max-confidence: Selects class having the highest soft-max accumulation of all its votes [3]



# Experimental details

#### **Data**

#### **Bark-101 original image count**

- 1292 train
- 1295 test

### Count of patches (25% train as validation)

| Source image | Train | Test  | Validation |
|--------------|-------|-------|------------|
| Non-scaled   | 3156  | 1051  | 4164       |
| Up-scaled    | 74799 | 24932 | 99107      |

#### **Evaluation Metrics**

- <u>Patch-level accuracy</u>: Estimates how many test patches are correctly classified
- <u>Absolute accuracy</u>: Estimates how many test images (1295) are correctly classified after majority voting



### Results



- Patch-based CNN classification outperforms traditional methods (prior work on Bark-101 using LBP-like filters & SVM classifiers achieved a best accuracy of 41.9 %) & baseline settings with whole images
- Both methods of image up-scaling have comparable performance in our study



### Comparison of tie-breaking strategies

- Differences among tie-breaking strategies substantial only when there is a high number of ties
- When count of ties is high, breaking ties using *Maximum Confidence sum* gives the best accuracy

| CNN<br>model | Patch-level<br>accuracy(%) | Absolute accuracy(%) by Majority Voting |                     |                        |                     |  |
|--------------|----------------------------|-----------------------------------------|---------------------|------------------------|---------------------|--|
|              |                            | Random<br>selection                     | Max con-<br>fidence | Class pro-<br>portions | Class F1-<br>scores |  |
| Squeezenet   | 47.84                      | 43.47                                   | 44.09               | 43.17                  | 43.63               |  |
| VGG16        | 47.48                      | 44.40                                   | 45.25               | 44.32                  | 44.09               |  |
| MobilenetV2  | 41.83                      | 37.61                                   | 38.69               | 36.68                  | 37.22               |  |

### 1

#### With patches from non-scaled images

| CNN<br>model | Patch-level | Absolute accuracy(%) by Majority Voting |                     |                        |                     |
|--------------|-------------|-----------------------------------------|---------------------|------------------------|---------------------|
|              | accuracy(%) | Random                                  | Max con-<br>fidence | Class pro-<br>portions | Class F1-<br>scores |
| Squeezenet   | 35.69       | 48.32                                   | 48.57               | 48.11                  | 48.19               |
| VGG16        | 41.04       | 57.21                                   | 56.99               | 57.22                  | 57.14               |
| MobilenetV2  | 33.36       | 43.73                                   | 43.60               | 43.83                  | 43.60               |

| Patch Method        | Squeezenet | VGG16 | MobilenetV2 |
|---------------------|------------|-------|-------------|
| Non-Scaled Original | 217        | 283   | 274         |
| Upscaled by Bicubic | 52         | 45    | 45          |
| Upscaled by ESPCN   | 50         | 46    | 63          |

#### **Count of ties encountered**

| CNN<br>model | Patch-level accuracy(%) | Absolute accuracy<br>(%) by Majority Voting |                     |                        |                     |
|--------------|-------------------------|---------------------------------------------|---------------------|------------------------|---------------------|
|              |                         | Random                                      | Max con-<br>fidence | Class pro-<br>portions | Class F1-<br>scores |
| Squeezenet   | 34.85                   | 49.40                                       | 49.38               | 49.45                  | 49.38               |
| VGG16        | 39.27                   | 55.86                                       | 55.75               | 55.76                  | 55.75               |
| MobilenetV2  | 32.12                   | 42.19                                       | 41.78               | 41.93                  | 41.85               |



### Conclusions & future work

- Patch-based CNN classification outperforms traditional methods
- Image up-scaling can be useful, particularly when there is huge variety of image dimensions in the dataset as ours
- Incorporating tie-breaking strategies in majority voting is important when there are several ties
- In future, the proposed methodology would be applied to other plant organs (leaf, flower, fruit) and extended to develop a multi-modal tree recognition model
- The feasibility of the approach would be tested on mobile platforms



### References

- [1] Ratajczak, Rémi, et al. "Efficient Bark Recognition in the Wild." International Conference on Computer Vision Theory and Applications (VISAPP) 2019.
- [2] Shi, Wenzhe, et al. "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [3] Kokkinos, Y., & Margaritis, K. G. (2014, September). "Breaking ties of plurality voting in ensembles of distributed neural network classifiers using soft max accumulations." In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 20-28). Springer, Berlin, Heidelberg.
- [4] Wan, Y.Y., Du, J.X., Huang, D.S., Chi, Z., Cheung, Y.M., Wang, X.F., Zhang, G.J. "Bark texture feature extraction based on statistical texture analysis." In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004. pp. 482-485. IEEE (2004)
- [5] Bertrand, S., Ameur, R.B., Cerutti, G., Coquin, D., Valet, L., Tougne, L.. "Bark and leaf fusion systems to improve automatic tree species recognition." Ecological Informatics 46, 57-73 (2018)
- [6] Huang, Z.K., Huang, D.S., Du, J.X., Quan, Z.H., Guo, S.B. "Bark classification based on gabor filter features using rbpnn neural network." In: International conference on neural information processing. pp. 80-87. Springer (2006).
- [7] Mizoguchi, T., Ishii, A., Nakamura, H., Inoue, T., Takamatsu, H. "Lidar-based individual tree species classification using convolutional neural network." In: Videometrics, Range Imaging, and Applications XIV. vol. 10332, p. 1033200. International Society for Optics and Photonics (2017).
- [8] Carpentier, M., Giguere, P., Gaudreault, J. "Tree species identification from bark images using convolutional neural networks." In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1075-1081. IEEE (2018).