Something before Real Deep Learning - Overfitting

Yizhen Lao

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Testing data:
$$\{x^{N+1}, x^{N+2}, ..., x^{N+M}\}$$

Speech Recognition

 \hat{y} : phoneme

Image Recognition

 \hat{y} : soup

Speaker Recognition

x: *******

 \hat{y} : John

(speaker)

Machine Translation

x: 痛みを知れ

 \hat{y} : 了解痛苦吧

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Training:

Testing data:
$$\{x^{N+1}, x^{N+2}, ..., x^{N+M}\}$$

Use $y = f_{\theta^*}(x)$ to label the testing data

$$\{y^{N+1}, y^{N+2}, ..., y^{N+M}\}$$
 Upload to Kaggle

Model Bias

The model is too simple.

 $y = f_{\theta}(x)$ $f_{\theta^1}(x)$ $f^*(x)$ small loss

find a needle in a haystack ...

... but there is no needle

 Solution: redesign your model to make it more flexible

More features
$$y = b + wx_1$$
Deep Learning (more neurons, layers)
$$y = b + \sum_{i=1}^{56} w_i x_j$$

$$y = b + \sum_{i=1}^{56} w_i x_j$$

too small ...

Optimization Issue

• Large loss not always imply model bias. There is another possibility ...

Model Bias

find a needle in a haystack ...

... but there is no needle

Which one???

Optimization Issue

A needle is in a haystack ...

... Just cannot find it.

Ref:

http://arxiv.org/abs/1512.03385

Model Bias v.s. Optimization Issue

Gaining the insights from comparison

Ref:

http://arxiv.org/abs/1512.03385

Optimization Issue

- Gaining the insights from comparison
- Start from shallower networks (or other models), which are easier to optimize.
- If deeper networks do not obtain smaller loss on training data, then there is optimization issue.

	1 layer	2 layer	3 layer	4 layer	5 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k	0.34k

 Solution: More powerful optimization technology (next lecture)

 Small loss on training data, large loss on testing data. Why?

An extreme example

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

$$f(x) = \begin{cases} \hat{y}^i & \exists x^i = x \\ random & otherwise \end{cases}$$
 Less than useless ...

This function obtains zero training loss, but large testing loss.

- Training data
- Testing data

Data augmentation

 χ

- Real data distribution (not observable)
 - Training data
 - Testing data

- Real data distribution (not observable)
 - Training data
 - Testing data

- Less parameters, sharing parameters
- Less features
- Early stopping
- Regularization
- Dropout

- Training data
- Testing data

Bias-Complexity Trade-off

Model becomes complex (e.g. more features, more parameters)

The extreme example again

It is possible that $f_{56789}(x)$ happens to get good performance on public testing set.

So you select $f_{56789}(x)$ Random on private testing set

Homework

public

private

Training Set

Testing Set

Testing Set

Why?

Model 1 \longrightarrow mse = 0.9

Model 2 \longrightarrow mse = 0.7

Model 3 \longrightarrow mse = 0.5

Pick this one!

mse > 0.5

May be poor ...

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

This explains why machine usually beats human on benchmark corpora. ©

RANKED 3XX IN PRIVATE LEADERBOARD

Cross Validation

N-fold Cross Validation

Mismatch

 Your training and testing data have different distributions. Be aware of how data is generated.

Training Data

Simply increasing the training data will not help.

Testing Data

