Surfaces

http://www.ibiblio.org/e-notes/Splines/fig/surf2.gif

Bezier Surfaces Introduction

- Constructing a surface relies very much on the ideas behind constructing curves
- Surfaces can be thought of as 'Bezier curves in all directions' across the surface
- Tensor products of Bezier curves
- Teapot most famous example
 - produced entirely by Bezier surfaces

http://cg.cs.ucl.ac.uk/playgroundGL.html

Tensor Product

Of two vectors:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \\ a_1b_4 & a_2b_4 & a_3b_4 \end{bmatrix}$$

 Similarly, we can define a surface as the tensor product of two curves....

Farin, Curves and Surfaces for Computer Aided Geometric Design

Bicubic Bezier Patch

Notation: $\mathbf{CB}(P_1, P_2, P_3, P_4, \alpha)$ is Bézier curve with control points P_i evaluated at α

Define "Tensor-product" Bézier surface

$$Q(s,t) = \mathbf{CB}(\quad \mathbf{CB}(P_{00}, P_{01}, P_{02}, P_{03}, t),$$

$$\mathbf{CB}(P_{10}, P_{11}, P_{12}, P_{13}, t),$$

$$\mathbf{CB}(P_{20}, P_{21}, P_{22}, P_{23}, t),$$

$$\mathbf{CB}(P_{30}, P_{31}, P_{32}, P_{33}, t),$$

$$s)$$

Editing Bicubic Bezier Patches

Surface Basis Functions

Control Points

- Consider the (m+1)*(n+1) array of 3D control points
- This array can be used to define a Bezier of surface of degree m and n.
- If m=n=3 this is called 'bi-cubic'.
- The same relation between surface and control points holds as in curves
 - If the points are on a plane the surface is a plane
 - If the edges are straight the Bezier surface edges are straight
 - The entire surface lies inside the convex hull of the control points.

Subdivision 4*4 Cubic Case

This gives 4 sets of 4*4 arrays of control points. In each case the middle values are shared by the two adjacent sets.

Rendering – de Casteljau

- Use de Casteljau to subdivide each row.
- Then use de Casteljau to subdivide each of the 7 resulting columns.
- This will result in 4 sets of (m+1)*(n+1) array with one common row and one common column.
- If all points are on a plane and the edges are straight line then we get a polygon with 4 vertices.
- So the recursive algorithm is as follows:

Rendering 3D de Casteljau

```
typedef struct{
            float x,y,z;
}Point3D;
typedef Point3D ControlPointArray[4][4];
void Bezier3D(ControlPointArray p) {
            ControlPointArray q,r,s,t;
            if(Coplanar(p)) RenderPolygon(p[0][0],p[3][0],p[3][3],p[0][3]);
            else{
                        /*split p into q,r,s,f*/
                        Split3D(p,q,r,s,t);
                        Bezier3D(q);
                        Bezier3D(r);
                        Bezier3D(s);
                        Bezier3D(t);
```


Testing Colinearity

- This is where the computational work of the algorithm is located.
- If the equation of the plane is ax+by+cz=d and (x,y,z) is a point then its distance from the plane is:

$$D^{2} = \frac{(ax + by + cz - d)^{2}}{a^{2} + b^{2} + c^{2}}$$

- So we have an analogy to the curve case, except also we should check that the edges are straight, and that adjacent regions have been split to the same level.
- A simple approach is to just run the recursion to the same level irrespective
 of testing whether the final pieces are really flat.

Modeling with Bicubic Bezier Patches

Original Teapot specified with Bezier Patches

Alternative Splines Surfaces

- You can make surfaces from B-Splines in a similar way
- A particular types of B-Spline generalisation, Non-uniform rational Basis spline (NURBS) surfaces are particularly common

Catmull-Clark Subdivision Surfaces

- A constructive way to get a smooth surface from a cage
 - Strongly related to interpolation/subdivision schemes used in recursive curve drawing (c.g. De Castlejau construction)

 In a recursive scheme each face is replaced by a new set of faces defined by interpolating the points/faces

Catmull-Clark Subdivision Surfaces

Figure 3: Recursive subdivision of a topologically complicated mesh: (a) the control mesh; (b) after one subdivision step; (c) after two subdivision steps; (d) the limit surface.

Conclusions

- Surfaces are a simple extension to curves
- Really just a tensor-product between two curves
 - One curve gets extruded along the other
- Subdivision surfaces are another way of generating curves
 - Particularly amenable to GPU implementation!