Foundations of Programming: Discrete Mathematics

Set Identities

Name	Identities	
Communtative Laws	AnB = BnA	AUB = BUA
Associative Laws	(ANB)NC = AN(BNC)	(AUB)UC = AU(BUC)
Distributive Laws	$A\cap(B\cup C)=(A\cap B)\cup(A\cap C)$	$AU(B\cap C) = (AUB)\cap (AUC)$
Identity Laws	AU{} = A	Anu = A
Complement Laws	$AU\overline{A} = U$	$A \cap \overline{A} = \{\}$
Domination/Universal Bond Laws	AUU = U	An{} = {}
Indempotent Laws	AUA = A	$A \cap A = A$
Double Complement Law	= A = A	
De Morgan's Law	 AnB = AuB	 AuB = AnB
Absorption Laws	A∪(A∩B) = A	An(AuB) = A
Set Difference	A-B = A∩B	
Complements of U and {}	<u>U</u> = {}	{} = U

{ }: the empty set
-: universal set

 \overline{A} or A^{C} : the complement of A