Examenul de bacalaureat național 2021 Proba E. c)

Matematică M şt-nat

Testul 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Determinați suma primilor trei termeni ai progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_2=2$ și $b_3=4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 5x + 3$. Determinați produsul absciselor punctelor în care graficul funcției f intersectează axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2\sqrt{x+2} = 1-x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă toate cifrele pare.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,3), B(-1,0) și C(a,a+2), unde a este număr real. Determinați numărul real a pentru care vectorii \overrightarrow{OC} și \overrightarrow{AB} sunt coliniari.
- **5p** 6. Arătați că $\sin\left(x + \frac{\pi}{3}\right) + \sin\left(x \frac{\pi}{3}\right) = \sin x$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} a & a+1 \\ a+2 & a+3 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(0)) = -2$.
- **5p b)** Arătați că matricea A(a) este inversabilă, pentru orice număr real a.
- **5p** c) Demonstrați că, dacă a și b sunt numere întregi și $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât $A(a) \cdot X = A(b)$, atunci elementele matricei X sunt numere întregi.
 - **2.** Pe mulțimea $A = (0, +\infty)$ se definește legea de compoziție $x \circ y = \frac{2x}{y} + \frac{2y}{x}$.
- **5p** a) Arătați că numărul $a = 2 \circ 4$ este întreg.
- **5p b)** Arătați că $x \circ y \ge 4$, pentru orice $x, y \in A$.
- **5p** c) Arătați că legea de compoziție "o" **nu** admite element neutru.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(-1,1)\cup(1,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{x-1}-\frac{1}{x+1}$.
- **5p** a) Arătați că $f'(x) = \frac{-4x}{(x-1)^2(x+1)^2}, x \in (-1,1) \cup (1,+\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul în care graficul intersectează axa Oy.
- **5p** c) Calculați $\lim_{x \to +\infty} \frac{f(x)}{f(x+1)}$.
 - **2.** Se consideră funcția $f:(-4,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+2}{x+4}$.
- **5p** a) Arătați că $\int_{0}^{2} (x+4) f(x) dx = 6$.

- **5p b)** Calculați $\int_{0}^{1} f(x) dx$.
- **5p** c) Arătați că $\int_{0}^{n} f(x)e^{-x}dx < 1$, pentru orice număr natural nenul n.