Combinatorics, 2018 Fall, USTC Homework12

- The due is on Thursday, Dec. 20.
- Please sign your name and student number.
- Please solve as many problems as you can.
- 1. Let A_1, \dots, A_n be a finite nonempty subsets of a field F with $|A_i| = k_i, i \in [n]$. Let $f(x_1, \dots, x_n) \in F[x_1, \dots, x_n] \setminus \{0\}$ and $\deg f \leq \sum_{i=1}^n (k_i 1) = d$. Let $g(x_1, \dots, x_n) = f(x_1, \dots, x_n) \cdot (x_1 + x_2 + \dots + x_n)^{d degf}$. If $[x_1^{k_1 1} x_2^{k_2 1} \dots x_n^{k_n 1}]g \neq 0$, then show that $|\{a_1 + \dots + a_n : a_i \in A_i, f(a_1, \dots, a_n) \neq 0\}| \geq d degf + 1$.

 (**Hint:** Consider a polynomial $h(x_1, \dots, x_n) = f \cdot (x_1 + x_2 + \dots + x_n)^{d |c| degf} \prod_{c \in C} (x_1 + x_2 + \dots + x_n c)$, where $C = \{a_1 + \dots + a_n : a_i \in A_i, f(a_1, \dots, a_n) \neq 0\}$)
- 2. Let p be a prime, suppose k < p, let (a_1, \dots, a_k) be a sequence of not necessarily distinct members of the finite field \mathbb{F}_p . And let B be a subset of cardinality k of \mathbb{F}_p . Show that there is a numbering $\{b_1, \dots, b_k\}$ of elements of B such that the sums $a_i + b_i$ are pairwise distinct in \mathbb{F}_p .

(**Hint:** Consider a polynomial
$$f(x_1, \dots, x_k) = \prod_{1 \le i < j \le k} (x_i - x_j)(a_i + x_i - a_j - x_j) \in \mathbb{F}_p[x_1, \dots, x_k]$$