Extending Loglinear Models

Michael Friendly

Psych 6136

November 16, 2017

Visual overview: Models for frequency tables

- Related models: logistic regression, polytomous regression, log odds models, ...
- Goals: Connect all with visualization methods

Loglinear models: Perspectives

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models, where *multiplicative* relations (under independence) are re-expressed in *additive* form as models for log(frequency).

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} \equiv [A][B] \equiv \sim A + B$$

- This expresses the model of independence for a two-way table (no A*B association, or $A \perp B$)
- The notations $[A][B] \equiv \sim A + B$ are shorthands
- Three-way tables: models [A][B][C] (mutual indep.), [AB][C] (joint indep.),
 [AB][AC] (cond. indep.), ... [ABC] (saturated)

Extended loglinear models

Loglinear models can be extended in a variety of ways:

- Models for ordinal factors allow a more parsimonious description of association
- Specialized models for square tables provide more nuanced hypotheses
- These ideas apply to higher-way tables
- Some of these extensions are more easily understood or used when loglinear models are re-cast in an equivalent, but simpler or more general form

Loglinear models: Perspectives

GLM approach

More generally, loglinear models are also generalized linear models (GLMs) for log(frequency), with a Poisson distribution for the cell counts.

$$\log \boldsymbol{m} = \boldsymbol{X}\boldsymbol{\beta}$$

- This looks just like the general linear ANOVA, regression model, but for log frequency
- This approach allows quantitative predictors and special ways of treating ordinal factors

Loglinear models: Perspectives

Logit models

When one table variable is a binary response, a logit model for that response is equivalent to a loglinear model.

$$\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$$

- $\log(m_{1jk}/m_{2jk})$ represents the log odds of response category 1 vs. 2
- The model formula includes only terms for the effects on A of variables B and C
- The equivalent loglinear model is [AB] [AC] [BC]
- ullet The logit model assumes [BC] association, and [AB] o $eta^{\mathcal{B}}_{j}$, [AC] o $eta^{\mathcal{C}}_{k}$

Logit models

For a *binary* response, each loglinear model is equivalent to a logit model (logistic regression, with categorical predictors)

ullet e.g., Admit ot Gender | Dept (conditional independence \equiv [AD][DG])

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G + \lambda_{ij}^{AD} + \lambda_{jk}^{DG}$$

So, for admitted (i = 1) and rejected (i = 2), we have:

$$\log m_{1jk} = \frac{\mu}{\mu} + \lambda_1^A + \frac{\lambda_j^D}{\lambda_j^D} + \frac{\lambda_k^G}{\lambda_k^A} + \lambda_{1j}^{AD} + \frac{\lambda_{jk}^{DG}}{\lambda_{jk}^A}$$
(1)

$$\log m_{2jk} = \frac{\mu}{\mu} + \lambda_2^A + \frac{\lambda_j^D}{\lambda_j^D} + \frac{\lambda_k^G}{\lambda_k^G} + \lambda_{2j}^{AD} + \frac{\lambda_{jk}^{DG}}{\lambda_{jk}^{DG}}$$
(2)

Thus, subtracting (1)-(2), terms not involving Admit will cancel:

$$\begin{array}{lll} L_{jk} & = & \log m_{1jk} - \log m_{2jk} = \log(m_{1jk}/m_{2jk}) = \log \text{ odds of admission} \\ & = & (\lambda_1^A - \lambda_2^A) + (\lambda_{1j}^{AD} - \lambda_{2j}^{AD}) \\ & = & \alpha + \beta_i^{\text{Dept}} & \text{(renaming terms)} \end{array}$$

where, α : overall log odds of admission; β_j^{Dept} : effect on admissions of department

Logit models

Other loglinear models have similar, simpler forms as logit models, where only the relations of the response to the predictors appear in the equivalent logit model.

Admit ⊥ Gender ⊥ Dept (mutual independence ≡ [A][D][G])

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G$$

$$\equiv L_{jk} = (\lambda_1^A - \lambda_2^A) = \alpha \quad \text{(constant log odds)}$$

Admit ⊥ Gender | Dept, except for Dept. A

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G + \lambda_{ij}^{AD} + \lambda_{jk}^{DG} + \delta_{(j=1)} \lambda_{ik}^{AG}$$

$$\equiv L_{jk} = \log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^{\text{Dept}} + \delta_{(j=1)} \beta^{\text{Gender}}$$

where,

- β_i^{Dept} : effect on admissions for department j,
- $\delta_{(j=1)}\beta^{\text{Gender}}$: 1 df term for effect of gender in Dept. A.

Logit models

- Each logit model for a binary response, C is \equiv a loglinear model
- The loglinear model must include the [AB] association of predictors
- When the response, C has m > 2 levels, models for generalized logits have equivalent loglinear form.

Table: Equivalent loglinear and logit models for a three-way table, with ${\it C}$ as a binary response variable.

Loglinear model	Logit model	Logit formula	
[AB][C]	α	C ~ 1	
[<i>AB</i>][<i>AC</i>]	$\alpha + \beta_i^A$	C ~ A	
[<i>AB</i>][<i>BC</i>]	$\alpha + \beta_i^B$	C ~ B	
[AB][AC][BC]	$\alpha + \beta_i^A + \beta_i^B$	C ~ A + B	
[ABC]	$\alpha + \beta_i^A + \beta_j^B + \beta_{ij}^{AB}$	C ~ A * B	

Example: Berkeley data—loglinear approach

Loglinear approach, using MASS::loglm()

- Uses UCBAdmissions in table form
- Fit model of conditional independence of gender and admission given department, [AD][GD]

```
library (MASS)
berk.loglm1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.loglm1
## Call:
  loglm(formula = "Dept * (Gender + Admit), data = UCBAdmissions)
##
## Statistics:
##
                      X^2 df P(> X^2)
  Likelihood Ratio 21.736 6 0.0013520
## Pearson
            19.938 6 0.0028402
```

Example: Berkeley data—GLM approach

GLM approach, using glm()

- Convert UCBAdmissions to a frequency data frame form
- The frequency Freq will be used as the response variable

```
berkeley <- as.data.frame(UCBAdmissions)
head(berkeley)

## Admit Gender Dept Freq
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
```

Example: Berkeley data—GLM approach

GLM approach, using glm()

- Fit the same model of conditional independence, [AD][GD]
- This uses family="poisson" to give a model for log(Freq)

Model: [AdmitDept][GenderDept]

Example: Berkeley data—logit approach

Logit approach, using glm()

- The equivalent logit model is $L_{ij} = \alpha + \beta_i^{\text{Dept}} + \beta_i^{\text{Gender}}$
- Fit this with glm() using Admit=="Admitted" as the response, and family=binomial
- Need to specify weights=Freq with the data in frequency form

Plots for logit models

- Logit models are easier to interpret because there are fewer parameters
- Easiest to interpret from plots of the fitted log odds
- Get these using the predict () method for the model

```
obs <- log(UCBAdmissions[1,,] / UCBAdmissions[2,,])
pred2 <- cbind(berkeley[,1:3], fit=predict(berk.logit2))
pred2 <- cbind(subset(pred2, Admit=="Admitted"), obs=as.vector(obs))
head(pred2)

## Admit Gender Dept fit obs
## 1 Admitted Male A 0.582 0.492
## 3 Admitted Female A 0.682 1.544
## 5 Admitted Female B 0.539 0.534
## 7 Admitted Female B 0.639 0.754
## 9 Admitted Male C -0.681 -0.536
## 11 Admitted Female C -0.581 -0.660</pre>
```

Plots for logit models

- Large effects of Dept on admission
- Small effect of Gender (NS)
- Reason for lack of fit: Dept. A

A better model

Allow an association between Admit and Gender only in Dept. A

Loglinear form:

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^D + \lambda_k^G + \lambda_{ij}^{AD} + \lambda_{jk}^{DG} + I(j=1)\lambda_{ik}^{AG} \ ,$$

Equivalent logit form:

$$L_{ij} = \alpha + \beta_i^{\text{Dept}} + I(j=1)\beta^{\text{Gender}}$$
.

Plots for logit models

- Large effects of Dept on admission
- No effect of Gender
- Perfect fit now in Dept. A

Loglinear models for ordinal variables

Ordinal variables reveal themselves in different ways in exploratory plots:

- With correspondence analysis, one large dimension accounting for most of the association
- With mosaic plots, an opposite-corner pattern of residuals

Mental health data: Independence

2.0

0.0

-2.0

Advantages of ordinal models

- More focused tests ⇒ more powerful tests
- \bullet Consume fewer df \implies can fit unsaturated models in between [A][B] and [AB]
- Fit fewer parameters (usually) \implies smaller standard errors

These are similar to reasons for using

- Cochran-Mantel-Haenzel (CMH) tests
- Testing linear or polynomial trends/contrasts in ANOVA

Models for ordered categories

Consider an $R \times C$ table having ordered categories

- In many cases, the RC association may be described more simply by assigning numeric scores to the row & column categories.
- For simplicity, we consider only integer scores, 1, 2, ... here
- These models are easily extended to stratified tables

R:C model	μ_{ij}^{RC}	df	Formula
Uniform association	$i \times j \times \gamma$	1	i:j
Row effects	$a_i \times j$	(I-1)	R:j
Col effects	$i \times b_i$	(J-1)	i:C
Row+Col eff	$ja_i + ib_i$	1 + J - 3	R:j + i:C
RC(1)	$\phi_i \psi_i \times \gamma$	I + J - 3	Mult(R, C)
Unstructured (R:C)	μ_{ij}^{RC}	(I-1)(J-1)	R:C

Linear x Linear Model (Uniform association)

- Assume linear ordering of both the row and column variables
- Assign scores (usually integers, 1, 2, ...)

$$\mathbf{a} = \{a_i\}, \quad a_1 \le a_2 \le \cdots a_l$$

 $\mathbf{b} = \{b_i\}, \quad b_1 < b_2 < \cdots b_l$

• Then, the *linear-by-linear model* $(L \times L)$ model is:

$$\log(m_{ij}) = \mu + \lambda_i^A + \lambda_j^B + \gamma a_i b_j.$$

• The local odds ratios for adjacent 2 × 2 tables are:

$$\log(\theta_{ij}) = \gamma(a_{i+1} - a_i)(b_{j+1} - b_j) \implies \log(\theta_{ij}) = \gamma \text{ for integer scores}$$

- Only one more parameter (γ) than the independence model
- Independence model: special case, $\gamma = 0$

Row effects and column effects models: R, C, R+C

 In the row effects model (R), the row variable, A, is treated as nominal, but B is assigned scores

$$\log(m_{ij}) = \mu + \lambda_i^{A} + \lambda_j^{B} + \alpha_i b_j \quad \ni \quad \sum_i \alpha_i = 0 \text{ or } \alpha_1 = 0$$

- In the analogous column effects model (C), the row variable, A, is assigned scores, but B is nominal
- The row plus column effects model (R+C), assigns scores to both the rows and column variables.

$$\log(m_{ij}) = \mu + \lambda_i^{A} + \lambda_i^{B} + (\alpha_i b_j + a_i \beta_j)$$

Models for ordered categories

Nesting relationships among association models for ordinal variables

Any pair connected by an arrow path can be tested by a LR test of the form $G^2(M_2|M_1)$

Example: Mental impariment & SES

Data on mental health status of NYC youth in relation to parents' SES

Test the independence model:

Example: Mental impariment & SES

Mental health data: Independence

- The mosaic shows the classic opposite-corner pattern for ordered factors
- Standardized residuals (rstandard) have better statistical properties
- Cells are labeled with residual values

Fitting ordinal models

To fit ordinal models, use as.numeric() on a factor variable to assign integer scores (or other numeric scores)

```
Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)</pre>
```

Then, add the appropriate $L \times L$, R, or C terms to the independence model:

```
linlin <- update(indep, . ~ . + Rscore:Cscore)
roweff <- update(indep, . ~ . + mental:Cscore)
coleff <- update(indep, . ~ . + Rscore:ses)</pre>
```

Comparing models

- All ordinal models are acceptable by LR tests
- The $L \times L$ model is judged the best by both AIC and BIC.
- This has only 1 more parameter than the independence model

Comparing models

When overall tests are unclear, you can carry out tests of nested sets of models using anova (), giving tests of ΔG^2 . For example the indep, linlin and roweff models are one nested set:

The $L \times L$ model is a signif. improvement; the R model is not.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpereting the $L \times L$ model

In the $L \times L$ model, the parameter γ is the constant local odds ratio:

```
# interpret linlin association parameter
coef(linlin)[["Rscore:Cscore"]]
## [1] 0.090687
exp(coef(linlin)[["Rscore:Cscore"]])
## [1] 1.0949
```

- $\hat{\gamma} = 0.0907 \implies \text{local odds ratio}, \ \hat{\theta}_{ii} = \exp(0.0907) = 1.095.$
- each step down the SES scale increases the odds of being classified one step poorer in mental health by 9.5%.
- a very simple interpretation of association!

Log-multiplicative (RC) models I

- ullet The $L \times L$, R, and C models are all simpler to interpret than the saturated model
- But, all depend on assigning fixed scores to the categories
- The row-and-column effects model (RC(1)) makes these parameters

$$\log(m_{ij}) = \mu + \lambda_i^A + \lambda_j^B + \gamma \alpha_i \beta_j \quad \text{or, } \lambda_{ij}^{AB} = \gamma \alpha_i \beta_j$$

where γ , α and β comprise additional parameters to be estimated beyond the independence model.

- γ here is \sim to γ in the $L \times L$ model
- The ordering and spacing of the categories is estimated from the data (as in CA)
- Requires some constraints to be identifiable: e.g., unweighted solution—

$$\sum_{i} \alpha_{i} = \sum_{j} \beta_{j} = 0$$

$$\sum_{i} \alpha_{i}^{2} = \sum_{i} \beta_{j}^{2} = 1$$

Log-multiplicative (RC) models II

This generalizes to multiple bilinear terms, the RC(M) model

$$\lambda_{ij}^{AB} = \sum_{k=1}^{M} \gamma_k \; \alpha_{ik} \beta_{jk} \qquad M = \min(I-1, J-1)$$

e.g., the RC(2) model has two bilinear terms (like a 2D CA solution)

$$\lambda_{ij}^{AB} = \gamma_1 \ \alpha_{i1}\beta_{j1} + \gamma_2 \ \alpha_{i2}\beta_{j2}$$

- RC models are not loglinear

 contain multiplicative terms
 - Can't use glm()
 - The gnm () function in gnm fits a wide variety of such generalized nonlinear models
 - The rc () function in logmult uses gnm () and makes plotting easier.

Generalized nonlinear models

The gnm package provides fully general ways to specify nonlinear GLMs

- Basic nonlinear functions: Exp(), Inv(), Mult()
- The RC(1) model: gnm(Freq ~A + B + Mult(A,B)
- The RC(2) model: qnm (Freq ~A + B + instances (Mult (A, B), 2)
- Models for mobility tables— the UNIDIFF model

$$\log m_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\gamma_k)\delta_{ij}$$

the exponentiated multiplier is specified as Mult (Exp(C), A:B)

User-defined functions allow further extensions

Example: Mental impairment & SES

Fit the RC(1) and RC(2) models by adding terms using Mult () to the independence model

Compare models:

```
vcdExtra::LRstats(indep, linlin, roweff, coleff, RC1, RC2)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## indep 209.6 220.2 47.42 15 3.16e-05 ***
## linlin 174.1 185.8 9.90 14 0.770
## roweff 174.4 188.6 6.28 12 0.901
## coleff 179.0 195.5 6.83 10 0.741
## RC1 179.7 198.6 3.57 8 0.894
## RC2 186.7 211.4 0.52 3 0.914
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comparing models

- Are estimated RC scores better than integer scores?
- If so, do we need more than one dimension?

```
anova(linlin, RC1, RC2, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: Freq ~ mental + ses + Rscore:Cscore
## Model 2: Freq ~ mental + ses + Mult(mental, ses)
## Model 3: Freq ~ mental + ses + Mult(mental, ses, inst = 1) + Mult(mental
      ses, inst = 2)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
         14 9.90
## 1
                3.57 6 6.32 0.39
## 3
                0.52 5 3.05 0.69
```

Visualizing RC scores

- The RC(1) model can be interpreted visually using a dotplot of the scaled category scores together with error bars.
- ullet This allows you to see where this model differs from the $L \times L$ model with integer spacing

Visualizing RC scores

- For the RC(2) model, plot the category scores for dim. 1 and 2
- The logmult package makes these plots much easier
- Also, provides bivariate confidence ellipses

Square tables

Square tables arise when the row and column variables have the same categories, often ordered

Visual acuity data

Hauser social mobility data

Square tables: Models

In such cases, general association is a given, because of the diagonal cells. More interesting models concern associations in the off-diagonal cells

• Quasi-independence: ignore the diagonal cells

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \delta_i I(i = j) .$$

This model adds one parameter, δ_i , for each diagonal cell, which fits those frequencies perfectly.

- **Symmetry**: $\pi_{ij} = \pi_{ji}$, but this implies marginal homogeneity, $\pi_{i+} = \sum_i \pi_{ij} = \sum_i \pi_{ji} = \pi_{+i}$ for all i.
- Quasi-symmetry:

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_i^B + \lambda_{ij} , \quad \lambda_{ij} = \lambda_{ji}$$

It can be shown that

symmetry = quasi-symmetry + marginal homogeneity
$$G^2(S) = G^2(QS) + G^2(MH)$$

Square tables: Models

For these models, the essential idea is to construct factor levels corresponding to the unique parameters representing association

$$\mathsf{Diag}_{4\times 4} = \left[\begin{array}{cccc} 1 & . & . & . \\ . & 2 & . & . \\ . & . & 3 & . \\ . & . & . & 4 \end{array} \right] \quad \mathsf{Symm}_{4\times 4} = \left[\begin{array}{ccccc} 11 & 12 & 13 & 14 \\ 12 & 22 & 23 & 24 \\ 13 & 23 & 33 & 34 \\ 14 & 24 & 34 & 44 \end{array} \right]$$

More general topological models allow any arbitrary pattern:

$$\mathsf{Topo}_{4\times 4} = \left[\begin{array}{ccccc} 2 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \\ 4 & 4 & 5 & 5 \\ 4 & 4 & 5 & 1 \end{array} \right]$$

Square tables: Using gnm

Some models for structured associations in square tables:

quasi-independence (ignore diagonals)

```
gnm(Freq ~ row + col + Diag(row, col), family=poisson)
```

• symmetry $(\lambda_{ij}^{RC} = \lambda_{ji}^{RC})$

```
gnm(Freq ~ Symm(row, col), family=poisson)
```

quasi-symmetry = quasi + symmetry

```
gnm(Freq ~ row + col + Symm(row, col), family=poisson)
```

fully-specified "topological" association patterns

```
gnm(Freq ~ row + col + Topo(row, col, spec=RCmatrix), ...)
```

All of these are actually GLMs, but the gnm package provides convienence functions Diag, Symm, and Topo to facilitate model specification.

Example: Visual acuity

```
data("VisualAcuity", package="vcd")
women <- subset(VisualAcuity, gender=="female", select=-gender)</pre>
```


- The diagonal cells clearly dominate
- What associations remain, ignoring these?
- Is there evidence for quasi-symmetry?

Example: Visual acuity— fitting models

```
indep <- glm(Freq ~ right + left, data = women, family = poisson)
quasi <- update(indep, . ~ . + Diag(right, left))

symm <- glm(Freq ~ Symm(right, left), data = women, family = poisson)
qsymm <- update(symm, . ~ right + left + .)</pre>
```

The QS model fits reasonably well, but none of the others do by likelihood-ratio tests or AIC or BIC.

```
vcdExtra::LRstats(indep, quasi, symm, qsymm)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## indep 6803 6808 6672 9 <2e-16 ***
## quasi 338 347 199 5 <2e-16 ***
## symm 157 164 19 6 0.0038 **
## qsymm 151 161 7 3 0.0638 .
## = --
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Example: Visual acuity— visualizing model fit

More complex models

- Extensions of these methods arise in a variety of contexts:
 - Panel surveys, where given attitude items are analyzed over time and space
 - Social mobility data, where occupational status of parents and children may admit subtly different models
 - Migration data, where geographical and political factors require some special treatment (e.g., mover-stayer models)
- These often involve:
 - ordinal variables: support for abortion, occumpational status
 - square tables: husbands/wives, fathers/sons, ...
 - strata or layers to control for other factors or analyze change over time or differences over geography

More complex models

 For example, the *log-multiplicative uniform difference* (UNIDIFF) model, for factors R, C, with layer variable L:

$$\log m_{ijk} = \mu + \lambda_i^R + \lambda_j^C + \lambda_k^L + \lambda_{ik}^{RL} + \lambda_{jk}^{CL} + \gamma_k \delta_{ij}^{RC}$$

- The term for the three-way association [RCL] pertains to how the [RC] association varies with layer (L)
- The UNIDIFF model says there is a multiplier γ_k for a common δ^{RC}_{ij} association
- Special cases: R, C, RC(1) models for the [RC] association;
- Special cases: homogeneous associations ($\gamma_k = 0$) for layers
- gnm () notation uses Exp (L), so layer effects are on a log scale.
- The logmult package provides a unidiff() function that makes this easier.

Models for stratified mobility tables

Baseline models:

- Perfect mobility: Freq ~ (R+C) *L
- Quasi-perfect mobility: Freq ~ (R+C) *L + Diag(R, C)

Layer models:

- Homogeneous: no layer effects– $\gamma_k = 0$
- Heterogeneous: e.g., $\mu_{ijk}^{RCL} = \exp(\gamma_k^L) \, \delta_{ij}^{RC}$

Extended models: Baseline

Layer model(R:C model)

	Layer model	
R:C model	Homogeneous	log multiplicative
Row effects	~.+ R:j	~.+ Mult(R:j, Exp(L))
Col effects	~.+ i:C	~.+ Mult(i:C, Exp(L))
Row+Col eff	~.+ R:j + i:C	~.+ Mult(R:j + i:C, Exp(L))
RC(1)	~.+ Mult(R, C)	~.+ Mult(R, C, Exp(L))
Full R:C	~.+ R:C	~.+ Mult(R:C, Exp(L)

Example: Social mobility in US, UK & Japan

Data from Yamaguchi (1987): Cross-national comparison of occupational mobility in the U.S., U.K. and Japan.

```
Yama.tab <- xtabs(Freq ~ Father + Son + Country, data=Yamaquchi87)
structable (Country+Son~Father, Yama.tab[,,1:2])
          Country
                                              UK
                  MNol MNqU
                                  LoM Farm UpNM LoNM UpM
          Son
                            MqU
                                                           LoM Farm
## Father
                  1275
                             274
                                   272
                                         17
                                                  129
   MNqU
                        364
                                             474
                                                        87
                                                            124
                                                                   11
## LONM
                  1055
                        597
                             394
                                   443
                                         31
                                             300
                                                  218
                                                       171
                                                            2.2.0
                  1043 587 1045 951
                                      47
                                             438
                                                  254
                                                       669
                                                           703
                                                                  16
  MqU
                  1159
                        791 1323 2046
                                         52
                                                  388
                                                       932 1789
                                                                   37
## LoM
                                             601
## Farm
                  666
                        496 1031 1632
                                        646
                                           76
                                                   56
                                                       125
                                                            2.95
                                                                 191
```

Questions:

- Is occupational mobility the same for all countries?
- If not, how do they differ?
- Are there simple models that describe mobility?

See: demo("yamaguchi-xie", package="vcdExtra")

First thought: try MCA

```
library(ca)
Yama.dft <- expand.dft(Yamaguchi87)
yama.mjca <- mjca(Yama.dft)
plot(yama.mjca, what=c("none","all"))</pre>
```


- Dimensions seem to have reasonable interpretations
- Farm differs from others
- All sons seem to move up!
- But, how do dims relate to theories of social mobility?
- How to understand Country effects?

Yamaguchi data: Baseline models Minimal, null model asserts Father ⊥ Son | Country

[FC][SC] Null [FS] association (perfect mobility)

Yamaguchi data: Baseline models

But, for better theory \implies ignore diagonal cells

```
yamaDiag <- update(yamaNull, ~. + Diag(Father, Son):Country)
mosaic(yamaDiag, ~Country + Son + Father, condvars = "Country", ...)</pre>
```

[FC][SC] Quasi perfect mobility, +Diag(F,S)

Models for homogeneous association gnm makes it easy to fit collections of models, with simple update () methods

```
Rscore <- as.numeric(Yamaguchi87$Father)
Cscore <- as.numeric(Yamaguchi87$Son)

yamaRo <- update(yamaDiag, ~ . + Father:Cscore)
yamaCo <- update(yamaDiag, ~ . + Rscore:Son)
yamaRpCo <- update(yamaDiag, ~ . + Father:Cscore + Rscore:Son)
yamaRCo <- update(yamaDiag, ~ . + Mult(Father,Son))
yamaFio <- update(yamaDiag, ~ . + Father:Son)</pre>
```


Models for heterogeneous association

Can combine these with models allowing layer effects Log-multiplicative (UNIDIFF) models:

GNM model methods:

- Summary methods: print (model), summary (model),...
- Extractor methods: coef (model), residuals (model), ...

Visualization:

- Diagnostics: plot (model)
- Mosaics, etc: mosaic (model)

Yamaguchi data: Comparing models

LRstats () and related methods facilitate model comparison

```
models <- glmlist(yamaNull, yamaDiag,
                yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo,
                yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIx)
LRstats (models)
## Likelihood summary table:
##
           AIC BIC LR Chisq Df Pr (>Chisq)
## yamaNull 6168 6231
                        5592 48
                                  < 2e-16 ***
  yamaDiag 1943 2040 1336 33 < 2e-16 ***
## yamaRo 771 877
                    156 29 < 2e-16 ***
## vamaRx 766 877 148 27 < 2e-16 ***
## yamaCo 682 789
                         68 29 6.1e-05 ***
## yamaCx 677 789
                         59 27
                               0.00038 ***
## yamaRpCo 659 773
                         39 26 0.05089 .
## yamaRpCx
          658 776
                         33 24
                                 0.10341
## yamaRCo 658 772
                         38 26 0.06423 .
## yamaRCx 657 775
                         32 24 0.12399
## yamaFIo 665 788
                         36 22
                               0.02878 *
  vamaFIx
           664 791
                         31 20
                                  0.05599 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Yamaguchi data: Comparing models

LRstats () and related methods facilitate model comparison

```
BIC <- matrix (LRstats (models) $BIC [-(1:2)], 5, 2, byrow=TRUE)
```

Yamaguchi-Xie models: R:C model by Layer model Summary

- Homogeneous models all preferred by BIC
- (Xie preferred heterogeneous models)
- Little diff^{ce} among Col, Row+Col and RC(1) models
- R: C association ∼ Row scores (Father's status)

Yamaguchi data: Comparing models

LRstats () and related methods facilitate model comparison

AIC <- matrix(LRstats(models)\$AIC[-(1:2)], 5, 2, byrow=TRUE)

Yamaguchi-Xie models: R:C model by Layer model Summary

- AIC prefers heterogeneous models
- Row+Col and RC(1) model fit best
- ➡ R: C association ~
 Father's status estimates
- Model summary plots provide sensitive comparisons!

Yamaguchi data: Interpreting associations

unidiff() in logmult uses gnm(), but makes summaries and plotting easier

```
library(logmult)
yamaUni <- unidiff(Yama.tab)</pre>
```

```
vamaUni
## Call:
## unidiff(tab = Yama.tab)
##
  Laver coefficients:
   US UK Japan
## 1.000 1.206 0.931
##
## Layer intrinsic association coefficients:
     US
           UK Japan
  0.412 0.600 0.357
##
## Full two-way interaction coefficients:
##
        Son
## Father UpNM LoNM UpM LoM Farm
    UpNM 1.0063 0.3024 -0.4399 -0.6048 -0.4394
##
. . .
```

Yamaguchi data: Interpreting associations

Plotting the "unidiff" object plots the layer coefficients

```
plot (yamaUni, cex=2, col="red", pch=16)
```


Father – Son occupational association is ordered *UK > US > Japan*

Yamaguchi data: Visualizing associations

The common association parameters, δ^{RC}_{ij} , are contained in the "unidiff" object

Yamaguchi data: Visualizing associations

Plot these as a shaded-square plot using corrplot ()

```
library(corrplot)
corrplot(inter.mat, method="square", is.corr=FALSE, ...)
```


Yamaguchi data: Visualizing associations

Plot these as a line plot using matplot ()

Summary

- Loglinear models, as originally formulated, were very general, but treated all table variables as unordered factors
 - The GLM perspective is more general still, allowing quantitative predictors and handling ordinal factors
 - The logit model perspective gives a simplified approach when one variable is a response
- Models for ordered factors give more powerful and focused tests
 - L × L, R, C and R+C models assign scores to the factors
 - RC(1), RC(2), ... models estimate the scores from the data
- Models for square tables provide ways of testing more subtle questions
 - quasi-independence: ignoring diagonals
 - symmetry and quasi-symmetry
 - theory-specific "topological" association patterns
- These methods can readily be combined to analyze complex tables