Corrigé de l'examen

vendredi 4 juin

1 Ensembles et applications

Solution de l'exercice 1.

Les réponses sont dans le cours pour les deux premières questions et dans la feuille 1 de TD pour la dernière question.

Solution de l'exercice 2.

1.
$$g^{-1}(A) = \{1, 2, 3\}.$$

2.(a) Soit $x \in f^{-1}(A)$. Alors, $f(x) \in A$, donc également $f(x) \in B$, i.e $x \in f^{-1}(B)$. D'où $f^{-1}(A) \subseteq f^{-1}(B)$.

2.(b) Procédons par double inclusion. Commençons par montrer que

$$f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B).$$

Soit $x \in f^{-1}(A \cap B)$. On a alors $f(x) \in A \cap B$, donc $f(x) \in A$ et $f(x) \in B$, i.e. $x \in f^{-1}(A)$ et $x \in f^{-1}(B)$, i.e. $x \in f^{-1}(A) \cap f^{-1}(B)$. On a bien montré $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$. Montrons maintenant que

$$f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B).$$

Soit $x \in f^{-1}(A) \cap f^{-1}(B)$. Alors, $f(x) \in A$ et $f(x) \in B$, i.e. $f(x) \in A \cap B$, i.e. $x \in f^{-1}(A \cap B)$. On a donc bien $f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$.

2.(c) Procédons par double inclusion. Commençons par montrer que

$$f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B).$$

Soit $x \in f^{-1}(A \cup B)$. On a alors que $f(x) \in A \cup B$, donc $f(x) \in A$ ou $f(x) \in B$, i.e. $x \in f^{-1}(A)$ ou $x \in f^{-1}(B)$, i.e. $x \in f^{-1}(A) \cup f^{-1}(B)$. On a donc bien l'inclusion. Montrons désormais que

$$f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B).$$

Soit $x \in f^{-1}(A) \cup f^{-1}(B)$. Alors, $f(x) \in A$ ou $f(x) \in B$, i.e. $f(x) \in A \cup B$, i.e. $x \in f^{-1}(A \cup B)$. On a donc bien l'inclusion.

- **3.** Procédons par double inclusion. Montrons que $(g \circ f)^{-1}(C) \subseteq f^{-1}(g^{-1}(C))$. Soit $x \in (g \circ f)^{-1}(C)$. Alors, $g \circ f(x) \in C$, i.e. $g(f(x)) \in C$, i.e. $f(x) \in g^{-1}(C)$, i.e. $x \in f^{-1}(g^{-1}(C))$. De $m \hat{e} m e$, $si \ x \in f^{-1}(g^{-1}(C))$, alors $f(x) \in g^{-1}(C)$, donc $g(f(x)) \in C$, i.e. $g \circ f(x) \in C$, i.e. $x \in (g \circ f)^{-1}(C)$.
- **4.** Montrons que f est injective. Soient $x \in X$ et $x' \in X$ tels que f(x) = f(x'). Alors, si l'on pose y = f(x) = f(x'), on a que $f(x) \in \{y\}$ et $f(x') \in \{y\}$, i.e. $x \in f^{-1}(\{y\})$ et $x' \in f^{-1}(\{y\})$. Or, $f^{-1}(\{y\})$ ne contient qu'un seul élément, donc x = x'.
- **5.(a)** L'application ϕ est injective si pour tout $A \in \mathcal{P}(Y)$ et tout $A' \in \mathcal{P}(Y)$ tels que $A \neq A'$, on a $\phi(A) \neq \phi(A')$, i.e. $f^{-1}(A) \neq f^{-1}(A')$.
- **5.(b)** L'application ϕ est injective si pour tout $A \in \mathcal{P}(Y)$ et tout $A' \in \mathcal{P}(Y)$ tels que $\phi(A) = \phi(A')$ i.e. $f^{-1}(A) = f^{-1}(A')$, on a A = A'.
- **5.(c)** Soit A et A' deux parties de Y telles que $\phi(A) = \phi(A')$, i.e. $f^{-1}(A) = f^{-1}(A')$. Montrons que A = A'. Procédons par double inclusion et commençons par montrer que $A \subseteq A'$. Soit $y \in A$. Comme f est surjective, il existe $x \in X$ tel que y = f(x). Alors, $f(x) \in A$ et donc $x \in f^{-1}(A)$. Comme par hypothèse $f^{-1}(A) = f^{-1}(A')$, on a aussi $x \in f^{-1}(A')$ et donc $y = f(x) \in A'$. On a donc bien montré que pour tout $y \in A$, on a $y \in A'$, i.e. $A \subseteq A'$. L'autre inclusion est symétrique, d'où le résultat : A = A'. On a donc bien montré l'injectivité de ϕ .

2 Suites et limites

Solution de l'exercice 3.

Les réponses sont dans le cours.

Solution de l'exercice 4.

1.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 0 \end{array}$$

2.

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & n \end{array}$$

3.

$$w: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 1 + \frac{1}{n+1} \end{array}$$

4.

$$x: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 1 - \frac{1}{n+1} \end{array}$$

5.

$$y: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 0 \end{array}$$

On pose M=0. On a alors que pour tout $n \in \mathbb{N}$, $y_n=0 \le 0=M$, i.e. y est majorée par 0.

6.

$$z: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & n \end{array}$$

Soit $M \in \mathbb{R}$. Comme \mathbb{R} est archimédien et M > 0 et 1 > 0, il existe $n \in \mathbb{N}$ tel que $M < n = z_n$. On a donc bien montré que z n'était pas majorée.

7.

$$a: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ a: & & \frac{1}{n+1} \end{array}$$

La suite a n'est pas constante car $a_0 = 1 \neq 1/2 = a_1$. De plus, elle tend vers 0, la preuve figure dans le corrigé de la feuille 2 de TD.

Solution de l'exercice 5.

- **1.** Comme $u_n \geq 0$, on peut multiplier l'inégalité $v_n \leq 1$ par u_n pour obtenir $u_n v_n \leq u_n$.
- **2.** Comme $v_n \ge 0$, on peut multiplier l'inégalité $u_n \le 1$ par v_n pour obtenir $u_n v_n \le v_n$.
- **3.** Par la question 1, on a que $u_n v_n \leq u_n$ et on sait de plus que $u_n \leq 1$, donc

$$u_n v_n \le u_n \le 1$$
.

Par hypothèse $u_n v_n \xrightarrow[n \to +\infty]{} 1$ et on sait de plus que $1 \xrightarrow[n \to +\infty]{} 1$, d'où par le théorème d'encadrement $u_n \xrightarrow[n \to +\infty]{} 1$. Idem pour v en utilisant la question 2.

3 Probabilités

Solution de l'exercice 6.

Les réponses sont dans le cours.

Solution de l'exercice 7.

1. On modélise l'expérience par l'univers fini $\Omega = \{1, \ldots, 20\}$ muni de la loi de probabilité uniforme. L'évènement A ="tirer un multiple de 5" est alors $\{5, 10, 15, 20\}$ de cardinal 4. On a donc :

$$\mathbb{P}(A) = \frac{4}{20} = \frac{1}{5}.$$

2.(a) On peut calculer l'espérance de X :

$$\mathbb{E}[X] = 0 \times \mathbb{P}(X = 0) + 1 \times \mathbb{P}(X = 1) + 2 \times \mathbb{P}(X = 2) + 3 \times \mathbb{P}(X = 3),$$

= 0, 5 + 2 × 0, 1 + 3 × 0, 1,
= 1.

- **2.(b)** On a alors $Y(\Omega) = \{0, 1, 4\}$.
- **2.(c)** On a les égalités suivantes :

$$\{Y = 0\} = \{X = 1\}$$

$$\{Y = 1\} = \{X = 2\} \cup \{X = 0\}$$

$$\{Y = 4\} = \{X = 3\}.$$

2.(d) On peut donc calculer en utilisant la question précédente et le fait que $\{X=2\} \cap \{X=0\} = \emptyset$,

$$\mathbb{P}(Y = 0) = 0, 5,$$

 $\mathbb{P}(Y = 1) = 0, 1 + 0, 3,$
 $\mathbb{P}(Y = 4) = 0, 1.$

2.(e) On peut donc calculer

$$\begin{split} \mathbb{V}\left(X\right) &= \mathbb{E}\left[Y\right] \\ &= 0 \times \mathbb{P}(Y=0) + 1 \times \mathbb{P}(Y=1) + 4 \times \mathbb{P}(Y=4), \\ &= 0 + 0, 4 + 0, 4, \\ &= 0, 8. \end{split}$$

Solution de l'exercice 8.

- **1.** La variable aléatoire Y a pour ensemble image $\{0,1\}$ et l'on a de plus $\{Y=1\} = \{X=0\}$ donc $\mathbb{P}(Y=1) = \mathbb{P}(X=0) = 1 \mathbb{P}(X=1) = 1 p$. La variable aléatoire Y est donc une variable de Bernoulli de paramètre 1-p.
- **2.** Les variables X et Y ne sont pas indépendantes, en effet :

$$\mathbb{P}(X = 0 \cap Y = 0) = \mathbb{P}(\emptyset) = 0,$$

mais

$$\mathbb{P}(X=0) \times \mathbb{P}(Y=0) = (1-p)p \neq 0,$$

 $car \ 0$

3. L'univers image de XZ est $XZ(\Omega) = \{0, 1\}$. De plus,

$${XZ = 1} = {X = 1} \cap {Z = 1},$$

car si X = 0 ou Z = 0 alors XZ = 0. Donc, par indépendance de X et Z,

$$\mathbb{P}(XZ = 1) = \mathbb{P}(X = 1 \cap Z = 1) = \mathbb{P}(X = 1)\mathbb{P}(Z = 1) = pq.$$

La variable XZ est donc bien une variable de Bernoulli de paramètre pq.

Solution de l'exercice 9.

- **1.** Par définition de la covariance et de la variance, $Cov(X, X) = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])] = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{V}(X)$.
- 2. Par définition de la covariance,

$$\operatorname{Cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right] = \mathbb{E}\left[(Y - \mathbb{E}[Y])(X - \mathbb{E}[X]) \right] = \operatorname{Cov}(Y,X).$$

3. On peut calculer:

$$Cov(X, Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

= $\mathbb{E}\left[XY - X\mathbb{E}[Y] - \mathbb{E}[X]Y + \mathbb{E}[X]\mathbb{E}[Y] \right],$

d'où par linéarité de l'espérance et le calcul d'espérance pour une constante :

$$Cov (X, Y) = \mathbb{E} [XY] - \mathbb{E} [X\mathbb{E} [Y]] - \mathbb{E} [\mathbb{E} [X] Y] + \mathbb{E} [\mathbb{E} [X] \mathbb{E} [Y]]$$
$$= \mathbb{E} [XY] - \mathbb{E} [X] \mathbb{E} [Y] - \mathbb{E} [X] \mathbb{E} [Y] + \mathbb{E} [X] \mathbb{E} [Y]$$
$$= \mathbb{E} [XY] - \mathbb{E} [X] \mathbb{E} [Y].$$

4. Supposons X et Y indépendantes. On sait alors par le cours que $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. Par la question 3, ceci implique que Cov(X,Y) = 0.