Revision

HARD MARGIN SVM

References

- Machine Learning for Intelligent Systems, Kilian Weinberger, Cornell, Lecture 9,
 - https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html
- ■Support Vector Machine: how it really works,
 - https://www.youtube.com/watch?v=A7FeQekjd9Q, Victor Lavrenko, Assistant Professor at the University of Edinburgh
- ■Support Vector Machine Python Example, Cory Maklin,
 - https://towardsdatascience.com/support-vector-machine-pythonexample-d67d9b63f1c8
- Support Vector Machine: Complete Theory, Saptashwa Bhattacharyya,
 - https://towardsdatascience.com/understandingsupport-vector-machine-part-1-lagrange-multipliers-5c24a52ffc5e
- □ Support Vector Machine: Digit Classification with Python; Including my Hand Written Digits, Saptashwa Bhattacharyya
 - https://towardsdatascience.com/support-vector-machine-mnist-digitclassification-withpython-including-my-hand-written-digits-83d6eca7004a
- ■Support Vector Machine: Kernel Trick; Mercer's Theorem, Saptashwa Bhattacharyya,
 - https://towardsdatascience.com/understanding-supportvector-machine-prt-2-kernel-trick-mercers-theorem-e1e6848c6c4d

Hard Margin Support Vector Classifier

$$\min_{\substack{w,b \\ w,b}} w^T w \\
\forall i \ y_i (W^T x_i + b) \ge 0 \\
\min_i |w^T x_i + b| = 1$$

☐ Hard constraints! Luckily, we have an equivalent formulation for the optimal solution:

$$\min_{\substack{w,b\\ w,b}} w^T w$$

$$such that \forall i \ y_i (W^T x_i + b) \ge 1$$

☐ This is a linearly constrained quadratic optimization problem, that could be solved using quadratic programming, e.g., using Lagrange Multipliers.

Some Intuition

$$\max_{w,b} \frac{1}{\left| |\overrightarrow{w}| \right|_2} \cdot 1 = \min_{w,b} \left| |w| \right|_2$$

$$\min_{w,b} ||w||_{2}$$
such that $\forall i \ y_{i}(W^{T}x_{i} + b) \geq 1$

$$\min_{w,b} w^T w$$
such that $\forall i \ y_i (W^T x_i + b) \ge 1$

The width of the "road" that we are building have 1 distance to the edges on the both sides from the hyperplane, thus $\frac{2}{||w||_2}$ is the total width, which is maximized by minimizing $||w||_{2^-}$

Image ref: https://en.wikipedia.org/wiki/Support-vector_machine

Soft Margin SVMs

- ☐ For low-dimensional data, there might be no separating hyperplane between the two classes
- ☐ In this case, there is no solution to the optimization problems for the hard margin SVMs.
- **Solution:** Allow the constraints to be slightly violated using slack variables:

C determines how amplified the slack would be!

Width of the "road" is no cumulative number of actual "road" plus some slack!

$$\min_{w,b} w^T w + C \sum_{i=1}^n \xi_i$$

$$such that \quad \forall i \ y_i (W^T x_i + b) \ge 1 - \xi_i$$

$$\forall \xi_i \ge 0$$

It will be forced to be positive integer

Allow point i to be on the road

Soft Margin SVMs

$$\min_{w,b} w^{T}w + C \sum_{i=1}^{n} \xi_{i}$$

$$such that \quad \forall i \ y_{i}(W^{T}x_{i} + b) \ge 1 - \xi_{i}$$

$$\forall \xi_{i} \ge 0$$

- \Box The slack variable ξ_i allows the input x_i to be closer to the hyperplane (or even on the wrong side)
 - There is a penalty in the objective function for such "slack"
 - If C is very small: the SVM becomes very lenient and may sacrifice some points to obtain a simpler (i.e., lower $||w||_2$) solution.
 - If C is very large: the SVM becomes very strict and tries to get all pints to beon the correct side of the hyperplane.

Soft Margin Example

- $\square C$ adds penalty to each misclassified point.
- □ If the C value is small, then essentially, the penalty for misclassified points is also small, thus resulting in a larger margin-based boundary.
- \square If the C value is large, then SVM tries to minimize the number of misclassified points by reducing the margin width.

Unconstrained Formulation

 \square Assuming $C \neq 0$

Slack amount equals how closer the data point is than 1 from hyperplane

$$\xi_i = \begin{cases} 1 - y_i(W^T x_i + b) & \text{if } y_i(W^T x_i + b) < 1 \\ 0 & \text{if } y_i(W^T x_i + b) \ge 1 \end{cases}$$

■Which is equivalent to:

No slack if the data point *i* is already far away from hyperplane.

$$\xi_i = \max \left(1 - y_i (W^T x_i + b), 0\right)$$

Unconstrained Formulation

$$\xi_i = max \left(1 - y_i (W^T x_i + b), 0\right)$$

■Plugging this closed form into the objective of our SVM optimization problem, we obtain the following unconstrained version as loss function and regularizer:

$$\min_{w,b} w^T w + C \sum_{i=1}^n \max \left(1 - y_i (W^T x_i + b), 0 \right)$$
Regularizer

Loss (Hinge-loss)

 \square This formulation allows us to optimize the SVM parameters (w, b) just like logistic regression (e.g., through gradient descent)

What if data is not linearly separable?

Kernel SVM

Kernel Functions

 \square Kernel Functions Φ are applied to increase the dimensions of the data, thus making it linearly separable, before applying SVM.

$$\Phi(X)=X^2$$

Kernel Functions

- □Class A = even numbers
- ☐ Class B = odd numbers

$$\Phi(X) = X \bmod 2$$

Kernel Functions

$$\Phi(X) = \begin{pmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{pmatrix}$$

2nd-degree polynomial

Side Note

- "Kernel Trick" allows using kernels, without actually computing them!
- ■Example: 2nd degree polynomial mapping

$$\phi(\mathbf{a})^{T} \cdot \phi(\mathbf{b}) = \begin{pmatrix} a_{1}^{2} \\ \sqrt{2} a_{1} a_{2} \\ a_{2}^{2} \end{pmatrix}^{T} \cdot \begin{pmatrix} b_{1}^{2} \\ \sqrt{2} b_{1} b_{2} \\ b_{2}^{2} \end{pmatrix} = a_{1}^{2} b_{1}^{2} + 2 a_{1} b_{1} a_{2} b_{2} + a_{2}^{2} b_{2}^{2}$$
$$= (a_{1} b_{1} + a_{2} b_{2})^{2} = \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix}^{T} \cdot \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix}^{2} = (\mathbf{a}^{T} \cdot \mathbf{b})^{2}$$

Famous Kernels

 $K(x_i,x_j)=(x_i\cdot x_j+1)^p$; polynomial kernel. (1.22) $K(x_i,x_j)=e^{\frac{-1}{2\sigma^2}(x_i-x_j)^2}$; Gaussian kernel; Special case of Radial Basis Function. $K(x_i,x_j)=e^{-\gamma(x_i-x_j)^2}$; RBF Kernel $K(x_i,x_j)=\tanh\left(\eta\,x_i\cdot x_j+\nu\right)$; Sigmoid Kernel; Activation function for NN.

A Comprehensive Lecture

- ☐A great explanation on the concepts
- https://www.youtube.com/watch?v=ny1iZ5A8ilA&list=PLUE9cBml08yjxtiDUgPRIsSL f8K7zBKd&index=72&t=180s&ab channel=IntuitiveMachineLearning
- ☐ Smaller explanation
- https://www.youtube.com/watch?v=Q7vT0-5VII&list=PLUE9cBml08yjxtiDUgPRIsSL f8K7zBKd&index=70&ab channelel=VisuallyExplained

Project: Explanation

- ☐ If you will do fine-tuning of existing pretrained models available on your dataset, you will get a higher performance!
- ☐ List of available models with TensorFlow
 - https://keras.io/api/applications/

Assignment 4: Task 2

- □ Implement SVM Classifier on your me/not me dataset
- ☐ Implement SVM Classifier on your multi-class labels
 - How would a binary classifier work on multi-class labels?
- \square Use best possible value of C
- ☐ Use best possible kernel
- □Compute relevant metrics on test split

■Suppose you are given the following 2D dataset with labels

Step 1: Identify Support Vectors

x_1	x_2 y	
3	1	1
3	-1	1
6	1	1
6	-1	1
1	0	-1
0	1	-1
0	-1	-1
-1	0	-1

■Suppose you are given the following 2D dataset with labels

Step 2: Augment Each SV with Bias

x_1	x_2	b	у
3	1	1	1
3	-1	1	1
6	1		1
6	-1		1
1	0	1	-1
0	1		-1
0	-1		-1
-1	0		-1

$$S_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $S_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $S_3 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$

$$\widetilde{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 $\widetilde{S_2} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ $\widetilde{S_3} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$

1

■Suppose you are given the following 2D dataset with labels

Step 3: Write the equations needed to calculate the weight vector.

$$\widetilde{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad \widetilde{S_2} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \qquad \widetilde{S_3} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

1

1

$$\alpha_1\widetilde{S_1}\cdot\widetilde{S_1}+\alpha_2\widetilde{S_2}\cdot\widetilde{S_1}+\alpha_3\widetilde{S_3}\cdot\widetilde{S_1}=-1$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = +1$$

$$\alpha_1\widetilde{S_1}\cdot\widetilde{S_3}+\alpha_2\widetilde{S_2}\cdot\widetilde{S_3}+\alpha_3\widetilde{S_3}\cdot\widetilde{S_3}=+1$$

Solve for unknown value α for dot product of every support vector with all other support vectors!

For each SV, do $\alpha_i \widetilde{s_i}.\widetilde{S}$

■Suppose you are given the following 2D dataset with labels

Step 4: Put in known values of SVs

$$\widetilde{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 $\widetilde{S_2} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ $\widetilde{S_3} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$

$$\alpha_1\widetilde{S_1}\cdot\widetilde{S_1}+\alpha_2\widetilde{S_2}\cdot\widetilde{S_1}+\alpha_3\widetilde{S_3}\cdot\widetilde{S_1}=-1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = -1$$

$$\alpha_1\widetilde{S_1}\cdot\widetilde{S_2}+\alpha_2\widetilde{S_2}\cdot\widetilde{S_2}+\alpha_3\widetilde{S_3}\cdot\widetilde{S_2}=+1$$

$$\alpha_1\begin{pmatrix}1\\0\\1\end{pmatrix}\cdot\begin{pmatrix}3\\1\\1\end{pmatrix}+\alpha_2\begin{pmatrix}3\\1\\1\end{pmatrix}\cdot\begin{pmatrix}3\\1\\1\end{pmatrix}+\alpha_3\begin{pmatrix}3\\-1\\1\end{pmatrix}\cdot\begin{pmatrix}3\\1\\1\end{pmatrix}=+1$$

$$\alpha_1\widetilde{S_1}\cdot\widetilde{S_3}+\alpha_2\widetilde{S_2}\cdot\widetilde{S_3}+\alpha_3\widetilde{S_3}\cdot\widetilde{S_3}=+1$$

$$\alpha_1\begin{pmatrix}1\\0\\1\end{pmatrix}\cdot\begin{pmatrix}3\\-1\\1\end{pmatrix}+\alpha_2\begin{pmatrix}3\\1\\1\end{pmatrix}\cdot\begin{pmatrix}3\\-1\\1\end{pmatrix}+\alpha_3\begin{pmatrix}3\\-1\\1\end{pmatrix}\cdot\begin{pmatrix}3\\-1\\1\end{pmatrix}=+1$$

Step 5: Perform dot product

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = -1$$

$$\alpha_1(1+0+1) + \alpha_2(3+0+1) + \alpha_3(3+0+1) = -1$$

$$\alpha_1(2) + \alpha_2(4) + \alpha_3(4) = -1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = +1$$

$$\alpha_1(3+0+1) + \alpha_2(9+1+1) + \alpha_3(9-1+1) = +1$$

$$\alpha_1(4) + \alpha_2(11) + \alpha_3(9) = +1$$

$$\frac{\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = +1}{\alpha_1 (3+0+1) + \alpha_2 (9-1+1) + \alpha_3 (9+1+1) = +1}$$

$$\alpha_1(4) + \alpha_2(9) + \alpha_3(11) = +1$$

Step 6: Solve simultaneous equations

$$\alpha_1(2) + \alpha_2(4) + \alpha_3(4) = -1$$

$$\alpha_1(4) + \alpha_2(11) + \alpha_3(9) = +1$$

$$\alpha_1(4) + \alpha_2(9) + \alpha_3(11) = +1$$

$$2\alpha_1 + 4\alpha_2 + 4\alpha_3 = -1$$

$$4\alpha_1 + 11\alpha_2 + 9\alpha_3 = +1$$

$$4\alpha_1 + 9\alpha_2 + 11\alpha_3 = +1$$

How to solve simultaneous equations:

https://www.youtube.com/watch?v=Nlp ykbGDzF8&ab channel=tecmath

Online Calculator

Side Notes:

- Simultaneous equations are two or more algebraic equations that share variables.
- Linear simultaneous equations contain terms that are raised to a power that is no higher than one.
- Can be solved using elimination method.

$$2\alpha_1 + 4\alpha_2 + 4\alpha_3 = -1$$

$$4\alpha_1 + 11\alpha_2 + 9\alpha_3 = +1$$

$$4\alpha_1 + 9\alpha_2 + 11\alpha_3 = +1$$

$$2a_2 - 2a_3 = 0$$
$$2(-3a_2 - 1a_3 = -3)$$

$$2a_2 - 2a_3 = 0$$

 $-6a_2 - 2a_3 = -6$

$$2a_2 - 2a_3 = 0$$

 $-(-6a_2 - 2a_3 = -6)$

$$8a_3 = 6$$

$$4\alpha_{1} + 11\alpha_{2} + 9\alpha_{3} = +1$$

$$-(4\alpha_{1} + 9\alpha_{2} + 11\alpha_{3} = +1)$$

$$2\alpha_{2} - 2\alpha_{3} = 0$$

$$4\alpha_1 + 8\alpha_2 + 8\alpha_3 = -2$$
)
 $4\alpha_1 + 11\alpha_2 + 9\alpha_3 = +1$

$$4\alpha_1 + 8\alpha_2 + 8\alpha_3 = -2)$$

$$-(4\alpha_1 + 11\alpha_2 + 9\alpha_3 = +1)$$

$$-3\alpha_2 - 1\alpha_3 = -3$$

$$2\alpha_1 + 4\alpha_2 + 4\alpha_3 = -1$$

$$4\alpha_1 + 11\alpha_2 + 9\alpha_3 = +1$$

$$4\alpha_1 + 9\alpha_2 + 11\alpha_3 = +1$$

$$2a_2 - 2a_3 = 0$$
 $-3a_2 - 1a_3 = -3$
 $8a_3 = 6$

$$8a_3 = 6$$
 $a_3 = 6/8 = 3/4 = 0.75$

$$2a_2 - 2a_3 = 0$$
 $2a_2 - 2(0.75) = 0$
 $2a_2 - 1.5 = 0$
 $2a_2 = 0 + 1.5$
 $2a_2 = 1.5$
 $a_2 = 1.5/2 = 0.75$

$$2\alpha_1 + 4\alpha_2 + 4\alpha_3 = -1$$
 $2a_1 + 4(0.75) + 4(0.75) = -1$
 $2a_1 + 3 + 3 = -1$
 $2a_1 = -1 - 3 - 3$
 $2a_1 = -7$
 $a_1 = -7/2 = -3.5$

Step 7: Calculate Weight Vector

$$\widetilde{w} = \sum_{i} \alpha_{i} \widetilde{S}_{i}$$

$$\widetilde{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\widetilde{S_2} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$

$$\left| \widetilde{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right| \qquad \widetilde{S_2} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \qquad \widetilde{S_3} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

$$a_1 = -3.5$$

$$a_2 = 0.75$$

$$a_3 = 0.75$$

$$\widetilde{w} = -3.5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 0.75 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + 0.75 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

$$\widetilde{w} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

Step 7: Interpretation

Recall that last entry in \widetilde{w} is a result of bias value which can be used as hyperplane offset

$$\widetilde{w} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

$$y = wx + b$$

Where
$$\widetilde{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $b-2=0$

Line is vertical when $\widetilde{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Line is horizontal when $\widetilde{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

What if
$$\widetilde{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
?

Book Reading

- ☐ Murphy Chapter 1, Chapter 14
- Handouts