Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Conjuntos disjuntos

Dado un universo de elementos $U = \{u_1, u_2, \dots, u_n\}$

Se quiere tener una estructura de datos que almacene una colección $\{S_1, S_2, \dots, S_m\}$ de subconjuntos no vacíos y disjuntos de U

Dicha colección es **dinámica**; i.e. cambian a lo largo de la ejecución del programa

Cada S_i es representado por un elemento del subconjunto al que llamamos el **representante de** S_i

Estructura de datos para conjuntos disjuntos (Union-Find)

© 2014 Blai Bonet CI2613

ED para conjuntos disjuntos

La ED debe soportar la siguientes operaciones:

- make-set(x): crea el conjunto $\{x\}$ en la colección cuyo representante es x
- union(x,y): dados dos elementos x,y del universo, **reemplaza** los **subconjuntos disjuntos** S_i and S_j que contienen a x y y respectivamente, por el subconjunto $S_i \cup S_j$. El representante del nuevo subconjunto $S_i \cup S_j$ es un elemento arbitrario del mismo
- ${\sf find}(x)$: retorna un apuntador al único subconjunto en la colección que contiene a x

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

ED para conjuntos disjuntos: Ejemplo

$$U = \{a, b, c, d, e, f, g, h, i, j\}$$

make-set(a)

 ${\tt make-set}(f)$

 $\mathsf{make-set}(c)$

union(a, f)

 $\{\mathbf{a}, f\}$ $\{\mathbf{c}\}$

.

 $\{a, f\}$ $\{b, h, j\}$ $\{c\}$ $\{d, e\}$ $\{g\}$ $\{i\}$

 $\mathrm{union}(e,h)$

 ${\tt union}(g,i)$

 $\{ \mathbf{a}, f \} \quad \{ b, d, e, h, \mathbf{j} \} \quad \{ \mathbf{c} \} \quad \{ \mathbf{g}, i \}$

© 2014 Blai Bonet

CI2613

CI2613

Primera implementación: Listas

Podemos utilizar listas enlazadas para implementar la ED

Ejemplo: $\{b, c, d, e, \mathbf{f}, g, h\}$

Primera implementación: Listas

Podemos utilizar listas enlazadas para implementar la ED

Ejemplo: $\{b, \mathbf{c}, e, h\}$ $\{d, \mathbf{f}, g\}$

© 2014 Blai Bonet

CI2613

Análisis de implementación con listas

Para un secuencia σ arbitraria de O(n) operaciones, se puede necesitar hasta $\Theta(n^2)$ unidades de tiempo para ejecutar σ dando un **tiempo amortizado** de O(n) unidades de tiempo por operación

operación	unidades de tiempo requeridos
make-set (x_1)	1
$make\text{-}set(x_2)$	1
$make\text{-}set(x_n)$	1
union (x_2,x_1)	1
$union(x_3,x_2)$	2
$union(x_4,x_3)$	3
$\frac{\text{union}(x_n,x_{n-1})}{}$	n-1

© 2014 Blai Bonet

CI2613

Segunda implementación: Bosque de árboles

Ejemplo: (a) $\{b, \mathbf{c}, e, h\}$ $\{d, \mathbf{f}, g\}$

(b) $\{b, c, d, e, \mathbf{f}, g, h\}$

© 2014 Blai Bonet

CI2613

Análisis de implementación con bosque de árboles

Nada evita que se forme un árbol con una sóla rama de profundidad n, lo que da un tiempo amortizado de $\Theta(n)$ unidades por operación

Mejoras (heurísticas):

- Unión por rango
- Compresión de caminos

Segunda implementación: Pseudocódigo

Asociamos a cada elemento un "apuntador" al padre en el árbol:

```
void make-set(x)
        \pi[x] = x
3
   void union(x,y)
        link(find(x), find(y))
   void link(x, y)
        \pi[x] = y
   T find(x)
10
        if x == \pi[x]
11
            return x
12
13
        else
            return find(\pi[x])
14
```

© 2014 Blai Bonet

© 2014 Blai Bonet

CI2613

Unión por rango

Para cada nodo en el árbol mantenemos un entero rank que acota la altura del nodo en el árbol:

```
void make-set(x)
        \pi[x] = x
        rank[x] = 0
3
   void union(x,y)
        link(find(x), find(y))
   void link(x, y)
        if rank[x] > rank[y]
            \pi[y] = x
10
        else
11
12
            \pi[x] = y
            if rank[x] == rank[y]
13
                rank[y] = rank[y] + 1
14
```

CI2613

CI2613

Compresión de caminos

Cada vez que hacemos un find(x), colocamos a x (y todos sus **ancestros**) como hijos de la raíz del ábol al cual pertenece x

La idea es que los proximos find de x tomen menos tiempo

```
1 T find(x)

2 if x != π[x]

3 π[x] = find(π[x])

4 return π[x]
```

© 2014 Blai Bonet

© 2014 Blai Bonet

CI2613

CI2613

Implementación final: Pseudocódigo

```
void make-set(x)
        \pi[x] = x
        rank[x] = 0
4
   void union(x,y)
        link(find(x), find(y))
   void link(x, y)
        if rank[x] > rank[y]
            \pi[y] = x
10
        else
11
            \pi[x] = y
12
            if rank[x] == rank[y]
13
                 rank[y] = rank[y] + 1
14
15
   T find(x)
16
        if x != \pi[x]
17
            \pi[x] = find(\pi[x])
18
        return \pi[x]
19
```

Compresión de caminos: Ejemplo

© 2014 Blai Bonet

CI2613

Análisis: Resumen

Para una secuencia de m operaciones, con f find, sobre un universo de n objetos, se puede mostrar lo siguiente:

- Al utilizar sólo unión por rango: $\Theta(m \log n)$
- Al utilizar sólo compresión de caminos: $\Theta(n + f \cdot (1 + \log_{2+f/n} n))$
- Al utilizar las dos heurísticas: $O(m \alpha(n))$

donde la función $\alpha(n)$ es de crecimiento muy muy \dots lento

© 2014 Blai Bonet Cl2613

Crecimiento de $\alpha(n)$

$$\text{Considere } f(n) = \left\{ \begin{array}{ll} 1 & \text{si } n = 0 \\ 2 \uparrow \uparrow n & \text{si } n > 0 \end{array} \right. \quad \text{donde} \quad 2 \uparrow \uparrow n = \underbrace{2^{2^{2^{2^{-\cdot}}}}}_{n \ 2' \text{s}} \right.$$

La función $\alpha(n)$ es la **inversa** de f(n) (también denotada por $\log^*(n)$)

Para cualquier propósito práctico, $\alpha(n)$ es constante!

© 2014 Blai Bonet CI2613

Cálculo de la componentes conexas

```
void componentes-conexas
       % inicialización
       foreach vértice x
3
            make-set(x)
            componente[x] = new ArregloDinamico
5
6
       % cálculo de componentes
       foreach arista (u.v)
            if find(u) != find(v)
9
                union(u.v)
10
11
       % quardar componentes
12
       foreach vértice x
13
            componente[find(x)].push-back(x)
14
```

Aplicación: Componentes conexas

Considere un grafo no dirigido G = (V, E)

Una componente conexa de G es un subconjunto de vértices $C\subseteq V$ tal que:

- para todo $x, y \in C$, existe un camino de x a y (y viceversa porque G es no dirigido)
- -C es maximal

Como en el caso de las componentes fuertemente conectadas para grafos dirigidos, el conjunto de vértices se particiona de forma $\{C_1, C_2, \ldots, C_n\}$ donde cada C_i es una componente conexa

© 2014 Blai Bonet CI2613

Análisis de Union-Find

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Observaciones preliminares sobre rangos

Invariantes sobre los rangos para un universo U con n objetos:

 $oldsymbol{1}$ Si x no es raíz, su rango es menor estricto al rango de su padre

Prueba: Por inducción en el # operaciones en $\sigma = (op_1, op_2, \dots, op_k)$

 $oldsymbol{0}$ es cierto antes de op_1 . Asuma $oldsymbol{0}$ cierto después de ejecutar op_{i-1}

Si $op_i = make - set(x)$, 1 se cumple después de op_i

Si $op_i = find(x)$, 1 se cumple después de op_i porque ciertos nodos son hechos hijos de la raíz la cual tiene el mayor rango en el árbol

Si $op_i = \mathrm{union}(x,y)$ y rank[x] < rank[y], x es hecho hijo de y y \bigcirc se cumple después de op_i

Si $op_i = union(x, y)$ y rank[x] > rank[y], similar al caso anterior

© 2014 Blai Bonet

CI2613

Observaciones preliminares sobre rangos

Invariantes sobre los rangos para un universo U con n objetos:

- $oldsymbol{0}$ Si x no es raíz, su rango es menor estricto al rango de su padre
- 2 Para cualquier x y $S_x =$ "items en subárbol de x", $|S_x| \ge 2^{rank[x]}$
- **3** El mayor rango posible es $\lfloor \log_2 n \rfloor$

Prueba: Suponga que existe x con rango $\geq \lfloor \log_2 n \rfloor + 1$

Si $\log_2 n$ es entero, $2^{\lfloor \log_2 n \rfloor + 1} = 2^{1 + \log_2 n} > n$

Si $\log_2 n$ no es entero, $2^{\lfloor \log_2 n \rfloor + 1} = 2^{\lceil \log_2 n \rceil} > n$

En ambos casos, por 20, $|S_x|>n$ que es imposible ya que |U|=n

Observaciones preliminares sobre rangos

Invariantes sobre los rangos para un universo U con n objetos:

- $oldsymbol{0}$ Si x no es raíz, su rango es menor estricto al rango de su padre
- 2 Para cualquier x y $S_x =$ "items en subárbol de x", $|S_x| \ge 2^{rank[x]}$

Prueba: Por inducción en el # operaciones en $\sigma = (op_1, op_2, \dots, op_k)$

2 es cierto antes de op_1 . Asuma 2 cierto después de ejecutar op_{i-1}

Si $op_i = \mathsf{make-set}(x)$, 2 se cumple después de op_i

Si $op_i = find(x)$, 2 se cumple porque ningún subconjunto cambia

Si $op_i = link(x, y)$ y rank[x] < rank[y], x es hecho hijo de y y

$$|S_y'| = |S_x| + |S_y| \ge 2^{rank[x]} + 2^{rank[y]} \ge 2^{rank[y]}$$

Si $op_i = link(x, y)$ y rank[x] = rank[y], x es hecho hijo de y y

 $|S_y'| = |S_x| + |S_y| \ge 2^{rank[x]} + 2^{rank[y]} = 2^{rank[y]+1} = 2^{rank'[y]}$

© 2014 Blai Bonet

CI2613

CI2613

Observaciones preliminares sobre rangos

Invariantes sobre los rangos para un universo U con n objetos:

- $oldsymbol{0}$ Si x no es raíz, su rango es menor estricto al rango de su padre
- **2** Para cualquier x y $S_x =$ "items en subárbol de x", $|S_x| \ge 2^{rank[x]}$
- **3** El mayor rango posible es $\lfloor \log_2 n \rfloor$
- Sólo las raíces pueden cambiar rango

Prueba: Trivial ya que la única operación que cambia rangos es link y lo cambia sobre raíces

© 2014 Blai Bonet CI2613 © 2014 Blai Bonet

П

Observaciones preliminares sobre rangos

Invariantes sobre los rangos para un universo U con n objetos:

- $oldsymbol{0}$ Si x no es raíz, su rango es menor estricto al rango de su padre
- 2 Para cualquier x y $S_x =$ "items en subárbol de x", $|S_x| \ge 2^{rank[x]}$
- **3** El mayor rango posible es $\lfloor \log_2 n \rfloor$
- 4 Sólo las raíces pueden cambiar rango
- **5** Existen a lo sumo $\frac{n}{2^r}$ objetos con rango igual a r

Prueba: No es difícil ver que dos objetos distintos x y y con el mismo rango tienen descendientes disjuntos; i.e., $S_x \cap S_y = \emptyset$ si rank[x] = rank[y]

Sean x_1, x_2, \ldots, x_k los elementos en U con rango r:

$$n \geq \sum_{i=1}^{k} |S_{x_i}| \geq \sum_{i=1}^{k} 2^{rank[x_i]} = k2^r$$

Por lo tanto, $k \leq n/2^r$

© 2014 Blai Bonet

CI2613

CI2613

Partición de objetos en bloques

Particionamos los objetos en bloques asignando el objeto x al bloque $\log^*(rank[x])$

Como los rangos varían en $\{0, 1, \ldots, \lfloor \log_2 n \rfloor\}$ (por 3), los índices de bloques varían en $\{0, 1, \ldots, \log^*(\lceil \log n \rceil) = \log^*(n) - 1\}$

Por lo tanto, existen $\log^*(n)$ bloques distintos

Cota sobre el número total de objetos en bloque b (usando 6):

$$\begin{split} \sum_{r=2\uparrow\uparrow(b-1)+1}^{2\uparrow\uparrow b} \# \text{obj c/rango } r \; &\leq \; \sum_{r=2\uparrow\uparrow(b-1)+1}^{2\uparrow\uparrow b} \frac{n}{2^r} \; < \; \sum_{r=2\uparrow\uparrow(b-1)+1}^{\infty} \frac{n}{2^r} \\ &= \frac{n}{2^{2\uparrow\uparrow(b-1)}} \; = \; \frac{n}{2\; \uparrow\uparrow \; b} \end{split}$$

Observaciones preliminares sobre rangos

Invariantes sobre los rangos para un universo U con n objetos:

- $oldsymbol{0}$ Si x no es raíz, su rango es menor estricto al rango de su padre
- 2 Para cualquier x y $S_x =$ "items en subárbol de x", $|S_x| \ge 2^{rank[x]}$
- **3** El mayor rango posible es $\lfloor \log_2 n \rfloor$
- 4 Sólo las raíces pueden cambiar rango
- **5** Existen a lo sumo $\frac{n}{2r}$ objetos con rango igual a r

© 2014 Blai Bonet CI2613

Secuencias de operaciones

Dada una secuencia σ de operaciones sobre la ED, podemos reemplazar cada union por dos find y un link

Por lo tanto, consideramos sólo secuencias σ con m operaciones de tipo make-set, link y find

make-set y link toman tiempo constance

Así que nos enfocamos en las O(m) operaciones de tipo find

Análisis agregado en diferentes cuentas

Considere un operación $\mathrm{find}(x_0)$ y los objetos x_0,x_1,\ldots,x_ℓ en el camino desde x_0 a la raíz x_ℓ

El costo de dicha operacion es proporcional a $1+\ell$ unidades de tiempo: 1 unidad por cada objeto x_i en el camino.

Dichos costos los distribuimos en diferentes "cuentas":

- Cuenta ROOT
- Cuenta CHILD
- Cuenta BLOCK
- Cuenta PATH

© 2014 Blai Bonet CI2613

Balance final en ROOT, CHILD y BLOCK

Pagos efectuados para una operación $find(x_0)$:

- 1 unidad en la cuenta ROOT
- A lo sumo 1 unidad en la cuenta CHILD
- A lo sumo 1 unidad en la cuenta BLOCK por cada uno de los $\log^*(n)$ bloques

Después de ${\cal O}(m)$ operaciones find tendremos:

- $-\ O(m)$ unidades en la cuenta ROOT
- -O(m) unidades en la cuenta CHILD

© 2014 Blai Bonet

- $O(m \log^*(n))$ unidades en la cuenta BLOCK

Total: $O(m \log^*(n))$ unidades en ROOT, CHILD y BLOCK

CI2613

Pagos

Camino $x_0, x_1, \ldots, x_{\ell-1}, x_\ell$ asociado a una operación find (x_0)

Pagos asociados a cada objeto x_i en el camino:

- $-x_{\ell}$ paga 1 unidad a la cuenta ROOT
- $-x_{\ell-1}$ paga 1 unidad a la cuenta CHILD
- Si x_i pertenece a un bloque distinto que su padre x_{i+1} , x_i paga 1 unidad a la cuenta BLOCK
- Si x_i pertenece al mismo bloque que su padre x_{i+1} , x_i paga 1 unidad a la cuenta PATH

Como todos los objetos pagan 1 unidad y el costo de $find(x_0)$ es proporcional a $1+\ell$, el **balance final** en las cuentas es proporcional al tiempo agregado utilizado en todas las operaciones find

© 2014 Blai Bonet CI2613

Balance final en PATH

Considere un objeto x_i en bloque b que paga en la cuenta PATH

- x_i no es raíz así que su rango nunca cambia (por 4)
- Su padre x_{i+1} tampoco es raíz. Después de comprimir el camino, x_i obtiene un padre cuyo rango es > al anterior (por 1)
- ullet Cada vez que x_i paga en PATH, el rango de su padre incrementa. Eventualmente, el padre cambia de bloque y x_i no vuelve a pagar en PATH
- Así, x_i paga en PATH a lo sumo una vez por cada rango (no objeto) perteneciente al bloque b. El número de dichos rangos es $\leq 2 \uparrow \uparrow b$
- Como el bloque b contiene a lo sumo $n/2 \uparrow \uparrow b$ objetos, y cada uno paga $\leq 2 \uparrow \uparrow b$ unidades a PATH, el total de unidades en PATH pagadas por objetos del bloque b es a lo sumo n
- Existen $\log^*(n)$ bloques. El **balance final** en PATH es $\leq n \log^*(n)$

© 2014 Blai Bonet Cl2613

Costo amortizado por operación

Una secuencia de m operaciones la covertimos en una secuencia de $\Theta(m)$ operaciones de tipo make-set, link y find

El costo total de todas las operaciones en la secuencia es $O(m\log^*(n) + n\log^*(n))$

Para $m \ge n$ (el caso usual), el costo total es $O(m \log^*(n))$

Por lo tanto, el costo amortizado por operación es $O(\log^*(n))$ (constante en la práctica!)

© 2014 Blai Bonet Cl2613