

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 9/10, 15/11, C08B 30/04	A1	(11) International Publication Number: WO 98/37213 (43) International Publication Date: 27 August 1998 (27.08.98)
--	----	--

(21) International Application Number: PCT/IB98/00270 (22) International Filing Date: 23 February 1998 (23.02.98) (30) Priority Data: 9703663.6 21 February 1997 (21.02.97) GB 9706060.2 24 March 1997 (24.03.97) GB (71) Applicant (for all designated States except US): DANISCO A/S [DK/DK]; Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK). (72) Inventor; and (75) Inventor/Applicant (for US only): POULSEN, Peter [DK/DK]; Danisco a/s, Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK). (74) Agents: MASCHIO, Antonio et al.; D Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB).	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW. ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
---	--

(54) Title: ANTISENSE INTRON INHIBITION OF STARCH BRANCHING ENZYME EXPRESSION

(57) Abstract

A method of inhibiting gene expression is described. The method, which affects enzymatic activity in a plant, comprises expressing in a plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation of a class A SBE; and wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

Reducing end

Reducing end

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

ANTISENSE INTRON INHIBITION OF STARCH BRANCHING ENZYME EXPRESSION

The present invention relates to a method of inhibiting gene expression, particularly inhibiting gene expression in a plant. The present invention also relates to a nucleotide sequence useful in the method. In addition, the present invention relates to a promoter that is useful for expressing the nucleotide sequence.

Starch is one of the main storage carbohydrates in plants, especially higher plants. The structure of starch consists of amylose and amylopectin. Amylose consists essentially of straight chains of α -1-4-linked glycosyl residues. Amylopectin comprises chains of α -1-4-linked glycosyl residues with some α -1-6 branches. The branched nature of amylopectin is accomplished by the action of *inter alia* an enzyme commonly known as the starch branching enzyme ("SBE"). SBE catalyses the formation of branch points in the amylopectin molecule by adding α -1,4 glucans through α -1,6-glucosidic branching linkages. The biosynthesis of amylose and amylopectin is schematically shown in Figure 1, whereas the α -1-4-links and the α -1-6 links are shown in Figure 2.

In Potato, it is known that two classes of SBE exist. In our copending international patent applications PCT/EP96/03052 and PCT/EP96/03053, class B potato SBE and a gene encoding it are discussed. In international patent application WO96/34968, class A potato SBE and a cDNA encoding it are disclosed.

It is known that starch is an important raw material. Starch is widely used in the food, paper, and chemical industries. However, a large fraction of the starches used in these industrial applications are post-harvest modified by chemical, physical or enzymatic methods in order to obtain starches with certain required functional properties.

Within the past few years it has become desirable to make genetically modified plants which could be capable of producing modified starches which could be the same as the post-harvest modified starches. It is also known that it may be possible to prepare such genetically modified plants by expression of antisense nucleotide coding sequences. In this regard, June Bourque provides a detailed summary of antisense strategies for the genetic manipulations in plants (Bourque 1995 Plant Science 105 pp 125-149). At this stage, reference could be made to Figure 3 which is a schematic diagram of one of the proposed mechanisms of antisense-RNA inhibition.

In particular, WO 92/11375 reports on a method of genetically modifying potato so as to form amylose-type starch. The method involves the use of an anti-sense construct that can apparently inhibit, to a varying extent, the expression of the gene coding for formation of the branching enzyme in potato. The antisense construct of WO 5 92/11375 consists of a tuber specific promoter, a transcription start sequence and the first exon of the branching enzyme in antisense direction. However, WO 92/11375 does not provide any antisense sequence data. In addition, WO 92/11375 only discloses the use of the potato GBSS promoter.

WO 92/14827 reports on a plasmid that, after insertion into the genome of a plant, 10 can apparently cause changes in the carbohydrate concentration and carbohydrate composition, such as the concentration and composition of amylose and amylopectin, in the regenerated plant. The plasmid contains part of the coding sequence of a branching enzyme in an antisense orientation.

EP-A-0647715 reports on the use of antisense endogenous mRNA coding DNA to 15 alter the characteristics and the metabolic pathways of ornamental plants.

EP-A-0467349 reports on the expression of sequences that are antisense to sequences upstream of a promoter to control gene expression.

EP-A-0458367 and US-A-5107065 report on the expression of a nucleotide sequence to regulate gene expression in a plant. The nucleotide sequence is 20 complementary to a mRNA sequence of a gene and may cover all or a portion of the non-coding region of the gene. In other words, the nucleotide sequences of EP-A-0458367 and US-A-5107065 must at least comprise a sequence that is complementary to a coding region. EP-A-0458367 and US-A-5107065 contain minimal sequence information.

WO96/34968 discusses the use of antisense sequences complementary to 25 sequences which encode class A and class B potato SBE to downregulate SBE expression in potato plants. The sequences used are complementary to SBE coding sequences.

Kuipers *et al* in Mol. Gen. Genet. [1995] 246 745-755 report on the expression of a series of nucleotides that are antisense to part of the genomic intron sequences of potato granule bound starch synthetase. Here the antisense intron sequences are attached to a 30 part of the antisense exon sequences - wherein the intron sequences and the exon

sequences are naturally associated with each other. In addition, the expressed antisense intron sequences are at most 231 bp in length.

Likewise, Kull *et al* in *J. Genet & Breed.* [1995] **49** 69-76 report on the expression of a series of nucleotides that are antisense to part of the genomic intron 5 sequences of potato granule bound starch synthetase. Likewise, here the antisense intron sequences are attached to a part of the antisense exon sequences - wherein the intron sequences and the exon sequences are naturally associated with each other. In addition, likewise, the expressed antisense intron sequences are at most 231 bp in length.

Shimada *et al* in *Theor. Appl. Genet.* [1993] **86** 665-672 report on the expression 10 of a series of nucleotides that are antisense to part of the genomic intron sequences of rice granule bound starch synthetase. Here the antisense intron sequences are attached to a part of the antisense exon sequences - wherein the intron sequences and the exon sequences are naturally associated with each other. In addition, the expressed antisense intron sequences are less than 350 bp in length.

15 Reviews on how enzymatic activity can be affected by expression of particular nucleotide sequences may be found in the teachings of Finnegan and McElroy [1994] *Biotechnology* **12** 883-888; and Matzke and Matzke [1995] *TIG* **11** 1-3.

Whilst it is known that enzymatic activity can be affected by expression of 20 particular nucleotide sequences there is still a need for a method that can more reliably and/or more efficiently and/or more specifically affect enzymatic activity.

According to a first aspect of the present invention there is provided a method of 25 affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence partially or completely codes for (is) an intron of the potato class A SBE gene in an antisense orientation optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

30 According to a second aspect of the present invention there is provided a method of affecting enzymatic activity in a starch producing organism (or a cell, a tissue or an

organ thereof) comprising expressing in the starch producing organism (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of the potato class A SBE gene, in an antisense orientation optionally together with a nucleotide sequence which codes, partially or 5 completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

Preferably, the class A SBE gene antisense intron construct is used in combination with a potato class B SBE gene antisense intron construct as defined in PCT/EP96/03052. 10 However, it may also be used independently thereof, to target class A SBE alone, or in combination with other transgenes, to further manipulate starch quality in potato plants.

According to a third aspect of the present invention, therefore, there is provided an antisense sequence comprising the nucleotide sequence shown as any one of SEQ.I.D. No. 15 to SEQ.I.D. No. 27 and the complement of SEQ. ID. No.38, or a variant, 15 derivative or homologue thereof.

According to a fourth aspect of the present invention there is provided a promoter comprising the sequence shown as SEQ.I.D. No. 14 or a variant, derivative or homologue thereof.

According to a fifth aspect of the present invention there is provided a construct 20 capable of comprising or expressing the present invention.

According to a sixth aspect of the present invention there is provided a vector comprising or expressing the present invention.

According to a seventh aspect of the present invention there is provided a cell, tissue or organ comprising or expressing the present invention.

25 According to an eighth aspect of the present invention there is provided a transgenic starch producing organism comprising or expressing the present invention.

According to a ninth aspect of the present invention there is provided a starch obtained from the present invention.

According to a tenth aspect of the present invention there is provided pSS17 and 30 pSS18.

According to an eleventh aspect of the present invention there is provided a nucleotide sequence that is antisense to any one or more of the intron sequences obtainable from class A SBE, and especially those obtainable from intron 1 of class A SBE as set forth in SEQ. ID. No. 38.

5 A key advantage of the present invention is that it provides a method for preparing modified starches that is not dependent on the need for post-harvest modification of starches. Thus the method of the present invention obviates the need for the use of hazardous chemicals that are normally used in the post-harvest modification of starches.

In addition, the present invention provides *inter alia* genetically modified plants
10 which are capable of producing modified and/or novel and/or improved starches whose properties would satisfy various industrial requirements.

Thus, the present invention provides a method of preparing tailor-made starches in plants which could replace the post-harvest modified starches.

Also, the present invention provides a method that enables modified starches to be
15 prepared by a method that can have a more beneficial effect on the environment than the known post-harvest modification methods which are dependent on the use of hazardous chemicals and large quantities of energy.

An other key advantage of the present invention is that it provides a method that may more reliably and/or more efficiently and/or more specifically affect enzymatic
20 activity when compared to the known methods of affecting enzymatic activity. With regard to this advantage of the present invention it is to be noted that there is some degree of homology between coding regions of SBEs. However, there is little or no homology with the intron sequences of SBEs.

Thus, antisense intron expression provides a mechanism to affect selectively the
25 expression of a particular class A SBE. This advantageous aspect could be used, for example, to reduce or eliminate a particular SBE enzyme, especially a class A SBE enzyme, and replace that enzyme with another enzyme which can be another branching enzyme or even a recombinant version of the affected enzyme or even a hybrid enzyme which could for example comprise part of a SBE enzyme from one source and at least a
30 part of another SBE enzyme from another source. This particular feature of the present

invention is covered by the combination aspect of the present invention which is discussed in more detail later.

Thus the present invention provides a mechanism for selectively affecting class A SBE activity. This is in contrast to the prior art methods which are dependent on the use 5 of for example antisense exon expression whereby it would not be possible to introduce new SBE activity without affecting that activity as well.

In the context of the present invention, class B SBE is synonymous with SBE I; class A SBE is synonymous with SBE II. Class A SBE is as defined in WO96/34968, incorporated herein by reference. Preferably, the antisense intron construct used 10 comprises intron 1 of class A SBE, which is 2.0 kb in length and is located starting at residue 45 of the coding sequence of class A SBE. The boundaries of the intron may be calculated by searching for consensus intron boundary sequences, and are shown in attached figure 13. Class B SBE is substantially as defined in the sequences given herein and in PCT/EP96/03052.

15 Preferably with the first aspect of the present invention starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

Preferably with the second aspect of the present invention the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with 20 the intron.

Preferably with the fourth aspect of the present invention the promoter is in combination with a gene of interest ("GOI").

Preferably the enzymatic activity is reduced or eliminated.

25 Preferably the nucleotide sequence codes for at least substantially all of at least one intron in an antisense orientation.

Preferably the nucleotide sequence codes, partially or completely, for two or more introns and wherein each intron is in an anti-sense orientation.

Preferably the nucleotide sequence comprises at least 350 nucleotides (e.g. at least 350 bp), more preferably at least 500 nucleotides (e.g. at least 500 bp).

30 Preferably the nucleotide sequence comprises the complement of the sequence shown in SEQ. ID. No. 38, or a fragment thereof.

Preferably the nucleotide sequence is expressed by a promoter having a sequence shown as SEQ. I.D. No 14 or a variant, derivative or homologue thereof.

Preferably the transgenic starch producing organism is a plant.

A preferred aspect of the present invention therefore relates to a method of
5 affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron; and wherein starch
10 branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

A more preferred aspect of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence
15 wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron; wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed; and wherein the nucleotide sequence comprises the
20 sequence shown as any one of SEQ.I.D. No. 15 to SEQ.I.D. No. 27 or a variant, derivative or homologue thereof, including combinations thereof.

The term "nucleotide" in relation to the present invention includes DNA and RNA. Preferably it means DNA, more preferably DNA prepared by use of recombinant DNA techniques.

25 The term "intron" is used in its normal sense as meaning a segment of nucleotides, usually DNA, that is transcribed but does not encode part or all of an expressed protein or enzyme.

The term "exon" is used in its normal sense as meaning a segment of nucleotides, usually DNA, encoding part or all of an expressed protein or enzyme.

30 Thus, the term "intron" refers to gene regions that are transcribed into RNA molecules, but which are spliced out of the RNA before the RNA is translated into a

protein. In contrast, the term "exon" refers to gene regions that are transcribed into RNA and subsequently translated into proteins.

The terms "variant" or "homologue" or "fragment" in relation to the nucleotide sequence of the present invention include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the respective nucleotide sequence providing the resultant nucleotide sequence can affect enzyme activity in a plant, or cell or tissue thereof, preferably wherein the resultant nucleotide sequence has at least the same effect as the complement of the sequence shown as SEQ.I.D. No. 38. In particular, the term "homologue" covers homology with respect to similarity of structure and/or similarity of function providing the resultant nucleotide sequence has the ability to affect enzymatic activity in accordance with the present invention. With respect to sequence homology (i.e. similarity), preferably there is more than 80% homology, more preferably at least 85% homology, more preferably at least 90% homology, even more preferably at least 95% homology, more preferably at least 98% homology. The above terms are also synonymous with allelic variations of the sequences.

Likewise, the terms "variant" or "homologue" or "fragment" in relation to the promoter of the present invention include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the respective promoter sequence providing the resultant promoter sequence allows expression of a GOI, preferably wherein the resultant promoter sequence has at least the same effect as SEQ.I.D. No. 14. In particular, the term "homologue" covers homology with respect to similarity of structure and/or similarity of function providing the resultant promoter sequence has the ability to allow for expression of a GOI, such as a nucleotide sequence according to the present invention. With respect to sequence homology (i.e. similarity), preferably there is more than 80% homology, more preferably at least 85% homology, more preferably at least 90% homology, even more preferably at least 95% homology, more preferably at least 98% homology. The above terms are also synonymous with allelic variations of the sequences.

The term "antisense" means a nucleotide sequence that is complementary to, and can therefore hybridise with, any one or all of the intron sequences of the present invention, including partial sequences thereof.

With the present invention, the antisense intron can be complementary to an entire 5 intron of the gene to be inhibited. However, in some circumstances, partial antisense sequences may be used (i.e. sequences that are not or do not comprise the full complementary sequence) providing the partial sequences affect enzymatic activity. Suitable examples of partial sequences include sequences that are shorter than the full complement of SEQ. ID. No. 38 but which comprise nucleotides that are at least 10 antisense to the sense intron sequences adjacent the respective exon or exons.

With regard to the second aspect of the present invention (i.e. specifically affecting SBE activity), the nucleotide sequences of the present invention may comprise one or more sense or antisense exon sequences of the SBE gene, including complete or partial sequences thereof, providing the nucleotide sequences can affect SBE activity, 15 preferably wherein the nucleotide sequences reduce or eliminate SBE activity. Preferably, the nucleotide sequence of the second aspect of the present invention does not comprise an antisense exon sequence.

The term "vector" includes an expression vector and a transformation vector. The term "expression vector" means a construct capable of *in vivo* or *in vitro* expression. The 20 term "transformation vector" means a construct capable of being transferred from one species to another - such as from an *E.Coli* plasmid to a fungus or a plant cell, or from an *Agrobacterium* to a plant cell.

The term "construct" - which is synonymous with terms such as "conjugate", "cassette" and "hybrid" - in relation to the antisense nucleotide sequence aspect of the 25 present invention includes the nucleotide sequence according to the present invention directly or indirectly attached to a promoter. An example of an indirect attachment is the provision of a suitable spacer group such as an intron sequence, such as the *Sh1*-intron or the ADH intron, intermediate the promoter and the nucleotide sequence of the present invention. The same is true for the term "fused" in relation to the present invention 30 which includes direct or indirect attachment. The terms do not cover the natural

combination of the wild type SBE gene when associated with the wild type SBE gene promoter in their natural environment.

The construct may even contain or express a marker which allows for the selection of the genetic construct in, for example, a plant cell into which it has been 5 transferred. Various markers exist which may be used in, for example, plants - such as mannose. Other examples of markers include those that provide for antibiotic resistance - e.g. resistance to G418, hygromycin, bleomycin, kanamycin and gentamycin.

The construct of the present invention preferably comprises a promoter. The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site in 10 the Jacob-Monod theory of gene expression. Examples of suitable promoters are those that can direct efficient expression of the nucleotide sequence of the present invention and/or in a specific type of cell. Some examples of tissue specific promoters are disclosed in WO 92/11375.

The promoter could additionally include conserved regions such as a Pribnow Box 15 or a TATA box. The promoters may even contain other sequences to affect (such as to maintain, enhance, decrease) the levels of expression of the nucleotide sequence of the present invention. Suitable examples of such sequences include the *Sh1*-intron or an ADH intron. Other sequences include inducible elements - such as temperature, chemical, light or stress inducible elements. Also, suitable elements to enhance 20 transcription or translation may be present. An example of the latter element is the TMV 5' leader sequence (see Sleat Gene 217 [1987] 217-225; and Dawson Plant Mol. Biol. 23 [1993] 97).

As mentioned, the construct and/or the vector of the present invention may include a transcriptional initiation region which may provide for regulated or constitutive 25 expression. Any suitable promoter may be used for the transcriptional initiation region, such as a tissue specific promoter. In one aspect, preferably the promoter is the patatin promoter or the E35S promoter. In another aspect, preferably the promoter is the SBE promoter.

If, for example, the organism is a plant then the promoter can be one that affects 30 expression of the nucleotide sequence in any one or more of seed, tuber, stem, sprout, root and leaf tissues, preferably tuber. By way of example, the promoter for the

nucleotide sequence of the present invention can be the α -Amy 1 promoter (otherwise known as the Amy 1 promoter, the Amy 637 promoter or the α -Amy 637 promoter) as described in our co-pending UK patent application No. 9421292.5 filed 21 October 1994. Alternatively, the promoter for the nucleotide sequence of the present invention can be the 5 α -Amy 3 promoter (otherwise known as the Amy 3 promoter, the Amy 351 promoter or the α -Amy 351 promoter) as described in our co-pending UK patent application No. 9421286.7 filed 21 October 1994.

The present invention also encompasses the use of a promoter to express a nucleotide sequence according to the present invention, wherein a part of the promoter is 10 inactivated but wherein the promoter can still function as a promoter. Partial inactivation of a promoter in some instances is advantageous. In particular, with the Amy 351 promoter mentioned earlier it is possible to inactivate a part of it so that the partially inactivated promoter expresses the nucleotide sequence of the present invention in a more specific manner such as in just one specific tissue type or organ. The term "inactivated" 15 means partial inactivation in the sense that the expression pattern of the promoter is modified but wherein the partially inactivated promoter still functions as a promoter. However, as mentioned above, the modified promoter is capable of expressing a gene coding for the enzyme of the present invention in at least one (but not all) specific tissue of the original promoter. Examples of partial inactivation include altering the folding 20 pattern of the promoter sequence, or binding species to parts of the nucleotide sequence, so that a part of the nucleotide sequence is not recognised by, for example, RNA polymerase. Another, and preferable, way of partially inactivating the promoter is to truncate it to form fragments thereof. Another way would be to mutate at least a part of the sequence so that the RNA polymerase can not bind to that part or another part. 25 Another modification is to mutate the binding sites for regulatory proteins for example the CreA protein known from filamentous fungi to exert carbon catabolite repression, and thus abolish the catabolite repression of the native promoter.

The construct and/or the vector of the present invention may include a transcriptional termination region. 30 The nucleotide according to the present invention can be expressed in combination (but not necessarily at the same time) with an additional construct. Thus the present

invention also provides a combination of constructs comprising a first construct comprising the nucleotide sequence according to the present invention operatively linked to a first promoter; and a second construct comprising a GOI operatively linked to a second promoter (which need not be the same as the first promoter). With this aspect of
5 the present invention the combination of constructs may be present in the same vector, plasmid, cells, tissue, organ or organism. This aspect of the present invention also covers methods of expressing the same, preferably in specific cells or tissues, such as expression in just a specific cell or tissue, of an organism, typically a plant. With this aspect of the present invention the second construct does not cover the natural combination of the gene
10 coding for an enzyme ordinarily associated with the wild type gene promoter when they are both in their natural environment.

An example of a suitable combination would be a first construct comprising the nucleotide sequence of the present invention and a promoter, such as the promoter of the present
15 invention, and a second construct comprising a promoter, such as the promoter of the present invention, and a GOI wherein the GOI codes for another starch branching enzyme either in sense or antisense orientation.

The above comments relating to the term "construct" for the antisense nucleotide aspect of the present invention are equally applicable to the term "construct" for the
20 promoter aspect of the present invention. In this regard, the term includes the promoter according to the present invention directly or indirectly attached to a GOI.

The term "GOI" with reference to the promoter aspect of the present invention or the combination aspect of the present invention means any gene of interest, which need not necessarily code for a protein or an enzyme - as is explained later. A GOI can be any
25 nucleotide sequence that is either foreign or natural to the organism in question, for example a plant.

Typical examples of a GOI include genes encoding for other proteins or enzymes that modify metabolic and catabolic processes. The GOI may code for an agent for introducing or increasing pathogen resistance.

The GOI may even be an antisense construct for modifying the expression of natural transcripts present in the relevant tissues. An example of such a GOI is the nucleotide sequence according to the present invention.

The GOI may even code for a protein that is non-natural to the host organism - 5 e.g. a plant. The GOI may code for a compound that is of benefit to animals or humans. For example, the GOI could code for a pharmaceutically active protein or enzyme such as any one of the therapeutic compounds insulin, interferon, human serum albumin, human growth factor and blood clotting factors. The GOI may even code for a protein giving additional nutritional value to a food or feed or crop. Typical examples include plant 10 proteins that can inhibit the formation of anti-nutritive factors and plant proteins that have a more desirable amino acid composition (e.g. a higher lysine content than a non-transgenic plant). The GOI may even code for an enzyme that can be used in food processing such as xylanases and α -galactosidase. The GOI can be a gene encoding for any one of a pest toxin, an antisense transcript such as that for α -amylase, a protease or a 15 glucanase. Alternatively, the GOI can be a nucleotide sequence according to the present invention.

The GOI can be the nucleotide sequence coding for the arabinofuranosidase enzyme which is the subject of our co-pending UK patent application 9505479.7. The GOI can be the nucleotide sequence coding for the glucanase enzyme which is the subject 20 of our co-pending UK patent application 9505475.5. The GOI can be the nucleotide sequence coding for the α -amylase enzyme which is the subject of our co-pending UK patent application 9413439.2. The GOI can be the nucleotide sequence coding for the α -amylase enzyme which is the subject of our co-pending UK patent application 9421290.9. The GOI can be any of the nucleotide sequences coding for the α -glucan lyase enzyme 25 which are described in our co-pending PCT patent application PCT/EP94/03397.

In one aspect the GOI can even be a nucleotide sequence according to the present invention but when operatively linked to a different promoter.

The GOI could include a sequence that codes for one or more of a xylanase, an arabinase, an acetyl esterase, a rhamnogalacturonase, a glucanase, a pectinase, a 30 branching enzyme or another carbohydrate modifying enzyme or proteinase. Alternatively, the GOI may be a sequence that is antisense to any of those sequences.

As mentioned above, the present invention provides a mechanism for selectively affecting a particular enzymatic activity. In an important application of the present invention it is now possible to reduce or eliminate expression of a genomic nucleotide sequence coding for a genomic protein or enzyme by expressing an antisense intron 5 construct for that particular genomic protein or enzyme and (e.g. at the same time) expressing a recombinant version of that enzyme or protein - in other words the GOI is a recombinant nucleotide sequence coding for the genomic enzyme or protein. This application allows expression of desired recombinant enzymes and proteins in the absence of (or reduced levels of) respective genomic enzymes and proteins. Thus the desired 10 recombinant enzymes and proteins can be easily separated and purified from the host organism. This particular aspect of the present invention is very advantageous over the prior art methods which, for example, rely on the use of anti-sense exon expression which methods also affect expression of the recombinant enzyme.

Thus, a further aspect of the present invention relates to a method of expressing a 15 recombinant protein or enzyme in a host organism comprising expressing a nucleotide sequence coding for the recombinant protein or enzyme; and expressing a further nucleotide sequence wherein the further nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the intron is an intron normally associated with the genomic gene encoding a protein or an enzyme 20 corresponding to the recombinant protein or enzyme; and wherein the further nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron. Additional aspects cover the combination of those nucleotide sequences including their incorporation in constructs, vectors, cells, tissues and transgenic organisms.

25 Therefore the present invention also relates to a combination of nucleotide sequences comprising a first nucleotide sequence coding for a recombinant enzyme; and a second nucleotide sequence which corresponds to an intron in antisense orientation; wherein the intron is an intron that is associated with a genomic gene encoding an enzyme corresponding to the recombinant enzyme; and wherein the second nucleotide sequence 30 does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

The GOI may even code for one or more introns, such as any one or more of the intron sequences presented in the attached sequence listings. For example, the present invention also covers the expression of for example an antisense intron (e.g. the complement of SEQ. ID. No. 38) in combination with for example a sense intron which 5 preferably is not complementary to the antisense intron sequence (e.g. SEQ.I.D.No. 2 or another class A SBE intron).

The terms "cell", "tissue" and "organ" include cell, tissue and organ *per se* and when within an organism.

The term "organism" in relation to the present invention includes any organism 10 that could comprise the nucleotide sequence according to the present invention and/or wherein the nucleotide sequence according to the present invention can be expressed when present in the organism. Preferably the organism is a starch producing organism such as any one of a plant, algae, fungi, yeast and bacteria, as well as cell lines thereof. Preferably the organism is a plant.

15 The term "starch producing organism" includes any organism that can biosynthesise starch. Preferably, the starch producing organism is a plant.

The term "plant" as used herein includes any suitable angiosperm, gymnosperm, monocotyledon and dicotyledon. Typical examples of suitable plants include vegetables such as potatoes; cereals such as wheat, maize, and barley; fruit; trees; flowers; and other 20 plant crops. Preferably, the term means "potato".

The term "transgenic organism" in relation to the present invention includes any organism that comprises the nucleotide sequence according to the present invention and/or products obtained therefrom, and/or wherein the nucleotide sequence according to the present invention can be expressed within the organism. Preferably the nucleotide 25 sequence of the present invention is incorporated in the genome of the organism. Preferably the transgenic organism is a plant, more preferably a potato.

To prepare the host organism one can use prokaryotic or eukaryotic organisms. Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts is well documented in the art, for example see 30 Sambrook *et al* (Sambrook *et al.* in Molecular Cloning: A Laboratory Manual, 2nd edition. 1989, Cold Spring Harbor Laboratory Press).

Even though the enzyme according to the present invention and the nucleotide sequence coding for same are not disclosed in EP-B-0470145 and CA-A-2006454, those two documents do provide some useful background commentary on the types of techniques that may be employed to prepare transgenic plants according to the present 5 invention. Some of these background teachings are now included in the following commentary.

The basic principle in the construction of genetically modified plants is to insert genetic information in the plant genome so as to obtain a stable maintenance of the inserted genetic material.

10 Several techniques exist for inserting the genetic information, the two main principles being direct introduction of the genetic information and introduction of the genetic information by use of a vector system. A review of the general techniques may be found in articles by Potrykus (*Annu Rev Plant Physiol Plant Mol Biol* [1991] 42:205-225) and Christou (*Agro-Food-Industry Hi-Tech* March/April 1994 17-27).

15 Thus, in one aspect, the present invention relates to a vector system which carries a nucleotide sequence or construct according to the present invention and which is capable of introducing the nucleotide sequence or construct into the genome of an organism, such as a plant.

20 The vector system may comprise one vector, but it can comprise two vectors. In the case of two vectors, the vector system is normally referred to as a binary vector system. Binary vector systems are described in further detail in Gynheung An *et al.* (1980), *Binary Vectors, Plant Molecular Biology Manual A3*, 1-19.

25 One extensively employed system for transformation of plant cells with a given promoter or nucleotide sequence or construct is based on the use of a Ti plasmid from *Agrobacterium tumefaciens* or a Ri plasmid from *Agrobacterium rhizogenes* An *et al.* (1986), *Plant Physiol.* 81, 301-305 and Butcher D.N. *et al.* (1980), *Tissue Culture Methods for Plant Pathologists*, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. Several different Ti and Ri plasmids have been constructed which are suitable for the construction 30 of the plant or plant cell constructs described above. A non-limiting example of such a Ti plasmid is pGV3850.

The nucleotide sequence or construct of the present invention should preferably be inserted into the Ti-plasmid between the terminal sequences of the T-DNA or adjacent a T-DNA sequence so as to avoid disruption of the sequences immediately surrounding the T-DNA borders, as at least one of these regions appears to be essential for insertion of 5 modified T-DNA into the plant genome.

As will be understood from the above explanation, if the organism is a plant the vector system of the present invention is preferably one which contains the sequences necessary to infect the plant (e.g. the *vir* region) and at least one border part of a T-DNA sequence, the border part being located on the same vector as the genetic construct.

10 Furthermore, the vector system is preferably an *Agrobacterium tumefaciens* Ti-plasmid or an *Agrobacterium rhizogenes* Ri-plasmid or a derivative thereof. As these plasmids are well-known and widely employed in the construction of transgenic plants, many vector systems exist which are based on these plasmids or derivatives thereof.

In the construction of a transgenic plant the nucleotide sequence or construct of 15 the present invention may be first constructed in a microorganism in which the vector can replicate and which is easy to manipulate before insertion into the plant. An example of a useful microorganism is *E. coli*, but other microorganisms having the above properties may be used. When a vector of a vector system as defined above has been constructed in 20 *E. coli*, it is transferred, if necessary, into a suitable *Agrobacterium* strain, e.g. *Agrobacterium tumefaciens*. The Ti-plasmid harbouring the nucleotide sequence or construct of the present invention is thus preferably transferred into a suitable *Agrobacterium* strain, e.g. *A. tumefaciens*, so as to obtain an *Agrobacterium* cell harbouring the promoter or nucleotide sequence or construct of the present invention, which DNA is subsequently transferred into the plant cell to be modified.

25 If, for example, for the transformation the Ti- or Ri-plasmid of the plant cells is used, at least the right boundary and often however the right and the left boundary of the Ti- and Ri-plasmid T-DNA, as flanking areas of the introduced genes, can be connected. The use of T-DNA for the transformation of plant cells has been intensively studied and is described in EP-A-120516; Hoekema, in: The Binary Plant Vector System Offset- 30 drukkerij Kanters B.B., Albllasserdam, 1985, Chapter V; Fraley, *et al.*, Crit. Rev. Plant Sci., 4:1-46; and An *et al.*, EMBO J. (1985) 4:277-284.

Direct infection of plant tissues by *Agrobacterium* is a simple technique which has been widely employed and which is described in Butcher D.N. *et al.* (1980), *Tissue Culture Methods for Plant Pathologists*, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. For further teachings on this topic see Potrykus (*Annu Rev Plant Physiol Plant Mol Biol* 5 [1991] 42:205-225) and Christou (*Agro-Food-Industry Hi-Tech* March/April 1994 17-27). With this technique, infection of a plant may be performed in or on a certain part or tissue of the plant, i.e. on a part of a leaf, a root, a stem or another part of the plant.

Typically, with direct infection of plant tissues by *Agrobacterium* carrying the GOI (such as the nucleotide sequence according to the present invention) and, optionally, 10 a promoter, a plant to be infected is wounded, e.g. by cutting the plant with a razor blade or puncturing the plant with a needle or rubbing the plant with an abrasive. The wound is then inoculated with the *Agrobacterium*. The inoculated plant or plant part is then grown on a suitable culture medium and allowed to develop into mature plants.

When plant cells are constructed, these cells may be grown and maintained in 15 accordance with well-known tissue culturing methods such as by culturing the cells in a suitable culture medium supplied with the necessary growth factors such as amino acids, plant hormones, vitamins, etc.

Regeneration of the transformed cells into genetically modified plants may be accomplished using known methods for the regeneration of plants from cell or tissue 20 cultures, for example by selecting transformed shoots using an antibiotic and by subculturing the shoots on a medium containing the appropriate nutrients, plant hormones, etc.

Further teachings on plant transformation may be found in EP-A-0449375.

As reported in CA-A-2006454, a large amount of cloning vectors are available 25 which contain a replication system in *E. coli* and a marker which allows a selection of the transformed cells. The vectors contain for example pBR 322, pUC series, M13 mp series, pACYC 184 etc. In this way, the nucleotide or construct of the present invention can be introduced into a suitable restriction position in the vector. The contained plasmid is then used for the transformation in *E. coli*. The *E. coli* cells are cultivated in a suitable 30 nutrient medium and then harvested and lysed. The plasmid is then recovered. As a method of analysis there is generally used sequence analysis, restriction analysis,

electrophoresis and further biochemical-molecular biological methods. After each manipulation, the used DNA sequence can be restricted and connected with the next DNA sequence. Each sequence can be cloned in the same or different plasmid.

After the introduction of the nucleotide sequence or construct according to the present invention in the plants the presence and/or insertion of further DNA sequences may be necessary - such as to create combination systems as outlined above (e.g. an organism comprising a combination of constructs).

The above commentary for the transformation of prokaryotic organisms and plants with the nucleotide sequence of the present invention is equally applicable for the transformation of those organisms with the promoter of the present invention.

In summation, the present invention relates to affecting enzyme activity by expressing antisense intron sequences.

Also, the present invention relates to a promoter useful for the expression of those antisense intron sequences.

The following samples have been deposited in accordance with the Budapest Treaty at the recognised depositary The National Collections of Industrial and Marine Bacteria Limited (NCIMB) at 23 St Machar Drive, Aberdeen, Scotland, AB2 1RY, United Kingdom, on 13 July 1995:

- NCIMB 40753 (which refers to pBEA 8 as described herein);
- 20 NCIMB 40751 (which refers to λ-SBE 3.2 as described herein), and
- NCIMB 40752 (which refers to λ-SBE 3.4 as described herein).

The following sample has been deposited in accordance with the Budapest Treaty at the recognised depositary The National Collections of Industrial and Marine Bacteria Limited (NCIMB) at 23 St Machar Drive, Aberdeen, Scotland, AB2 1RY, United Kingdom, on 9 July 1996:

- NCIMB 40815 (which refers to pBEA 9 as described herein).

A highly preferred embodiment of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the nucleotide sequence does not contain a sequence that

is antisense to an exon sequence normally associated with the intron; wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed; and wherein the nucleotide sequence is antisense to intron 1 of class A SBE as set forth in SEQ. ID. No. 38, or any other intron of class A
5 SBE, including fragments thereof, and including combinations of class A antisense intron sequences and class B antisense intron sequences. The sequence of introns of class A SBE other than intron 1 may be obtained by sequencing of, for example, potato class A SBE genomic DNA, isolatable by hybridisation screening of a genomic DNA library with class A SBE cDNA obtainable according to WO96/34968 according to methods well
10 known in the art and set forth, for example, in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 1989.

The present invention will now be described only by way of example, in which reference is made to the following attached Figures:

Figure 1, which is a schematic representation of the biosynthesis of amylose and
15 amylopectin;

Figure 2, which is a diagrammatic representation of the α -1-4-links and the α -1-6 links of amylopectin;

Figure 3, which is a diagrammatic representation of a possible antisense-RNA inhibition mechanism;

20 Figure 4, which is a diagrammatic representation of the exon-intron structure of a genomic SBE clone;

Figure 5, which is a plasmid map of pPATA1, which is 3936 bp in size;

Figure 6, which is a plasmid map of pABE6, which is 5106 bp in size;

Figure 7, which is a plasmid map of pVictorIV Man, which is 7080 bp in size;

25 Figure 8, which is a plasmid map of pBEA8, which is 9.54 kb in size;

Figure 9, which is a plasmid map of pBEA9, which is 9.54 kb in size;

Figure 10, which is a plasmid map of pBEP2, which is 10.32 kb in size;

Figure 11, which is a plasmid map of pVictor5a, which is 9.12 kb in size;

30 Figure 12, which shows the full genomic nucleotide sequence for SBE including the promoter, exons and introns;

Figure 13, which shows the positioning of intron 1 in the class A and class B SBE genes;

Figure 14, which shows the sequence of intron 1 of the potato class A SBE;

Figure 15, which shows the structure of pSS17; and

5 Figure 16, which shows the structure of pSS18.

Figures 1 and 2 were referred to above in the introductory description concerning starch in general. Figure 3 was referred to above in the introductory description concerning antisense expression.

As mentioned, Figure 4 is a diagrammatic representation of the exon-intron structure of a genomic SBE clone, the sequence of which is shown in Figure 12. This 10 clone, which has about 11.5 k base pairs, comprises 14 exons and 13 introns. The introns are numbered in increasing order from the 5' end to the 3' end and correspond to SEQ.I.D.No.s 1-13, respectively. Their respective antisense intron sequences are shown as SEQ.I.D.No.s 15-27.

15 In more detail, Figures 4 and 12 present information on the 11478 base pairs of a potato SBE gene. The 5' region from nucleotides 1 to 2082 contain the promoter region of the SBE gene. A TATA box candidate at nucleotide 2048 to 2051 is boxed. The homology between a potato SBE cDNA clone (Poulsen & Kreiberg (1993) Plant Physiol 102: 1053-1054) and the exon DNAs begin at 2083 bp and end at 9666 bp.

20 The homology between the cDNA and the exon DNA is indicated by nucleotides in upper case letters, while the translated amino acid sequences are shown in the single letter code below the exon DNA. Intron sequences are indicated by lower case letters.

Figures 5 to 7 are discussed below. As mentioned, Figure 8 is a plasmid map of 25 pBEA8, which is 9.54 k base pairs in size; and Figure 9 is a plasmid map of pBEA9, which is 9.54 k base pairs in size. Each of pBEA 8 and pBEA 9 comprises an antisense sequence to the first intron sequence of the potato SBE gene. This first intron sequence, which has 1177 base pairs, is shown in Figure 4 and lies between the first exon and the second exon.

These experiments and aspects of the present invention are now discussed in more 30 detail.

EXPERIMENTAL PROTOCOL**ISOLATION, SUBCLONING IN PLASMIDS, AND SEQUENCING OF GENOMIC
CLASS B SBE CLONES**

5 Various clones containing the potato class B SBE gene are isolated from a Desiree potato genomic library (Clontech Laboratories Inc., Palo Alto CA, USA) using radioactively labelled potato SBE cDNA (Poulsen & Kreiberg (1993) Plant Physiol. 102:1053-1054) as probe. The fragments of the isolated λ -phages containing SBE DNA (λ SBE 3.2 - NCIMB 40751 - and λ SBE-3.4 - NCIMB 40752) are identified by Southern analysis and then subcloned into pBluescript II vectors (Clontech Laboratories Inc., Palo Alto CA, USA). λ SBE 3.2 contains a 15 kb potato DNA insert and λ SBE-3.4 contains a 13 kb potato DNA insert. The resultant plasmids are called pGB3, pGB11, pGB15, pGB16 and pGB25 (see discussion below). The respective inserts are then sequenced using the Pharmacia Autoread Sequencing Kit (Pharmacia, Uppsala) and a A.L.F. DNA sequencer (Pharmacia, Uppsala).

In total, a stretch of 11.5 kb of the class B SBE gene is sequenced. The sequence is deduced from the above-mentioned plasmids, wherein: pGB25 contains the sequences from 1 bp to 836 bp, pGB15 contains the sequences from 735 bp to 2580 bp, pGB16 contains the sequences from 2580 bp to 5093 bp, pGB11 contains the sequences from 3348 bp to 7975 bp, and pGB3 contains the sequences from 7533 bp to 11468 bp.

In more detail, pGB3 is constructed by insertion of a 4 kb *EcoRI* fragment isolated from λ SBE 3.2 into the *EcoRI* site of pBluescript II SK (+). pGB11 is constructed by insertion of a 4.7 kb *XhoI* fragment isolated from λ SBE 3.4 into the *XhoI* site of pBluescript II SK (+). pGB15 is constructed by insertion of a 1.7 kb *SpeI* fragment isolated from λ SBE 3.4 into the *SpeI* site of pBluescript II SK (+). pGB16 is constructed by insertion of a 2.5 kb *SpeI* fragment isolated from λ SBE 3.4 into the *SpeI* site of pBluescript II SK (+). For the construction of pGB25 a PCR fragment is produced with the primers

5' GGA ATT CCA GTC GCA GTC TAC ATT AC 3'

5' CGG GAT CCA GAG GCA TTA AGA TTT CTG G 3'

(SEQ. ID. No. 31)

and λ SBE 3.4 as a template.

The PCR fragment is digested with *BamHI* and *EcoRI*, and inserted in pBluescript
5 II SK (+) digested with the same restriction enzymes.

A class A SBE clone is derived similarly.

CONSTRUCTION OF CLASS B SBE ANTISENSE INTRON PLASMIDS pBEA8 and pBEA9

10 The SBE intron 1 is amplified by PCR using the oligonucleotides:

5' CGG GAT CCA AAG AAA TTC TCG AGG TTA CAT GG 3'

(SEQ. ID. No. 32)

and

5' CGG GAT CCG GGG TAA TTT TTA CTA ATT TCA TG 3'

15 (SEQ. ID. No. 33)

and the λ SBE 3.4 phage containing the SBE gene as template.

The PCR product is digested with *BamHI* and inserted in an antisense orientation
in the *BamHI* site of plasmid pPATA1 (described in WO 94/24292) between the patatin
promoter and the 35S terminator. This construction, pABE6, is digested with *KpnI*, and
20 the 2.4 kb "patatin promoter-SBE intron 1- 35S terminator" *KpnI* fragment is isolated and
inserted in the *KpnI* site of the plant transformation vector pVictorIV Man. The *KpnI*
fragment is inserted in two orientations yielding plasmids pBEA8 and pBEA9. pVictorIV
Man is shown in Figure 7 and is formed by insertion of a filled in *XbaI* fragment
containing a E35S promoter-manA-35S terminator cassette isolated from plasmid
25 pVictorIV SGiN Man (WO 94/24292) into the filled in *XhoI* site of pVictor IV. The
pVictor regions of pVictor IV Man contained between the co-ordinates 2.52 bp to 0.32 bp
(see Figure 7).

CONSTRUCTION OF CLASS A SBE ANTISENSE INTRON PLASMIDS pSS17 and pSS18

Construction of plasmid pSS17.

5 The 2122 bp intron 1 sequence of the potato SBEII gene is amplified by PCR from a genomic SBEII subclone using the primers 5' - CGG GAT CCC GTA TGT CTC ACT GTG TTT GTG GC - 3' (SEQ. ID. No. 34) and 5' - CGG GAT CCC CCT ACA TAC ATA TAT CAG ATT AG - 3' (SEQ. ID. No. 35). The PCR product is digested with BamHI and inserted in antisense orientation after a patatin promoter in the
10 BamHI site of a plant transformation vector in which the NPTII gene is used as selectable marker (see figure 15).

Construction of plasmid pSS18.

The 2122 bp intron 1 sequence of the potato SBEII gene is amplified by PCR
15 from a genomic SBEII subclone using the primers 5' - CGG GAT CCC GTA TGT CTC ACT GTG TTT GTG GC - 3' (SEQ. ID. No. 34) and 5' - CGG GAT CCC CCT ACA TAC ATA TAT CAG ATT AG - 3' (SEQ. ID. No. 35). The PCR product is digested with BamHI and inserted in antisense orientation after a patatin promoter in the
BamHI site of a plant transformation vector in which the *manA* gene is used as
20 selectable marker (see figure 16).

PRODUCTION OF TRANSGENIC POTATO PLANTS

Axenic stock cultures

Shoot cultures of *Solanum tuberosum* 'Bintje' and 'Dianella' are maintained on a
25 substrate (LS) of a formula according to Linsmaier, E.U. and Skoog, F. (1965), Physiol.
Plant. 18: 100-127, in addition containing 2 µM silver thiosulphate at 25°C and 16 h
light/8 h dark.

The cultures are subcultured after approximately 40 days. Leaves are then cut off
the shoots and cut into nodal segments (approximately 0.8 cm) each containing one node.

Inoculation of potato tissues

Shoots from approximately 40 days old shoot cultures (height approximately 5-6 cms) are cut into internodal segments (approximately 0.8 cm). The segments are placed into liquid LS-substrate containing the transformed *Agrobacterium tumefaciens* containing the binary vector of interest. The *Agrobacterium* are grown overnight in YMB-substrate (di-potassium hydrogen phosphate, trihydrate (0.66 g/l); magnesium sulphate, heptahydrate (0.20 g/l); sodium chloride (0.10 g/l); mannitol (10.0 g/l); and yeast extract (0.40 g/l)) containing appropriate antibiotics (corresponding to the resistance gene of the *Agrobacterium* strain) to an optical density at 660 nm (OD-660) of approximately 0.8, centrifuged and resuspended in the LS-substrate to an OD-660 of 0.5.

The segments are left in the suspension of *Agrobacterium* for 30 minutes and then the excess of bacteria are removed by blotting the segments on sterile filter paper.

Co-cultivation

15 The shoot segments are co-cultured with bacteria for 48 hours directly on LS-substrate containing agar (8.0 g/l), 2,4-dichlorophenoxyacetic acid (2.0 mg/l) and trans-zeatin (0.5 mg/l). The substrate and also the explants are covered with sterile filter papers, and the petri dishes are placed at 25°C and 16 h light/ 8 dark.

20 "Washing" procedure

After the 48 h on the co-cultivation substrate the segments are transferred to containers containing liquid LS-substrate containing 800 mg/l carbenicillin. The containers are gently shaken and by this procedure the major part of the *Agrobacterium* is either washed off the segments and/or killed.

25

Selection

After the washing procedure the segments are transferred to plates containing the LS-substrate, agar (8 g/l), trans-zeatin (1-5 mg/l), gibberellic acid (0.1 mg/l), carbenicillin (800 mg/l), and kanamycin sulphate (50-100 mg/l) or phosphinotricin (1-5 mg/l) or mannose (5 g/l) depending on the vector construction used. The segments are sub-cultured to fresh substrate each 3-4 weeks.

In 3 to 4 weeks, shoots develop from the segments and the formation of new shoots continued for 3-4 months.

Rooting of regenerated shoots

5 The regenerated shoots are transferred to rooting substrate composed of LS-substrate, agar (8 g/l) and carbenicillin (800 mg/l).

The transgenic genotype of the regenerated shoot is verified by testing the rooting ability on the above mentioned substrates containing kanamycin sulphate (200 mg/l), by performing NPTII assays (Radke, S. E. et al, Theor. Appl. Genet. (1988), 75: 685-694) 10 or by performing PCR analysis according to Wang *et al* (1993, NAR 21 pp 4153-4154). Plants which are not positive in any of these assays are discarded or used as controls. Alternatively, the transgenic plants could be verified by performing a GUS assay on the co-introduced β -glucuronidase gene according to Hodal, L. *et al.* (Pl. Sci. (1992), 87: 115-122).

15

Transfer to soil

The newly rooted plants (height approx. 2-3 cms) are transplanted from rooting substrate to soil and placed in a growth chamber (21°C, 16 hour light 200-400uE/m²/sec). When the plants are well established they are transferred to the greenhouse, where they 20 are grown until tubers had developed and the upper part of the plants are senescing.

Harvesting

The potatoes are harvested after about 3 months and then analysed.

25 **BRANCHING ENZYME ANALYSIS**

The class A and class B SBE expression in the transgenic potato lines is measured using the SBE assays described by Blennow and Johansson (Phytochemistry (1991) 30:437-444) and by standard Western procedures using antibodies directed against potato SBE.

STARCH ANALYSIS

Starch is isolated from potato tubers and analysed for the amylose:amylopectin ratio (Hovenkamp-Hermelink et al. (1988) Potato Research 31:241-246). In addition, the chain length distribution of amylopectin is determined by analysis of isoamylase digested 5 starch on a Dionex HPAEC.

The number of reducing ends in isoamylase digested starch is determined by the method described by N. Nelson (1944) J. Biol. Chem. 153:375-380.

The results reveal that there is a reduction in the level of synthesis of SBE and/or the level of activity of SBE and/or the composition of starch SBE in the transgenic plants.

10

CONSTRUCTION OF SBE PROMOTER CONSTRUCT

An SBE promoter fragment is amplified from λ -SBE 3.4 using primers:

5' CCA TCG ATA CTT TAA GTG ATT TGA TGG C 3'
(SEQ. ID. No. 36)

15

and

5' CGG GAT CCT GTT CTG ATT CTT GAT TTC C 3'.
(SEQ. ID. No. 37)

The PCR product is digested with *Cla*I and *Bam*HI. The resultant 1.2 kb fragment is then inserted in pVictor5a (see Figure 11) linearised with *Cla*I and *Bgl*II yielding pBEP2 (see 20 Figure 10).

STARCH BRANCHING ENZYME MEASUREMENTS OF POTATO TUBERS

Potatoes from potato plants transformed with pBEA8, pBEA9, pSS17 or pSS18 are cut in small pieces and homogenised in extraction buffer (50 mM Tris-HCl pH 7.5, 25 Sodium-dithionite (0.1 g/l), and 2 mM DTT) using a Ultra-Turax homogenizer; 1 g of Dowex xl. is added pr. 10 g of tuber. The crude homogenate is filtered through a miracloth filter and centrifuged at 4°C for 10 minutes at 24.700 g. The supernatant is used for starch branching enzyme assays.

The starch branching enzyme assays are carried out at 25°C in a volume of 400 μ l composed of 0.1 M Na citrate buffer pH 7.0, 0.75 mg/ml amylose, 5 mg/ml bovine serum albumin and the potato extract. At 0, 15, 30 and 60 minutes aliquots of 50 μ l are

removed from the reaction into 20 µl 3 N HCl. 1 ml of iodine solution is added and the decrease in absorbance at 620 nm is measured with an ELISA spectrophotometer.

The starch branching enzyme (SBE) levels are measured in tuber extracts from 34 transgenic Dianella potato plants transformed with plasmid pBEA8, pSS17 and pSS18.

5 The transformed transgenic lines produce tubers which have SBE levels that are 10% to 15% of the appropriate class A or class B SBE levels found in non transformed Dianella plants.

In a further experiment, plasmids pSS17 and pBEA8 are cotransfected into potato plants, as described above. In the cotransfectants, when analysed as set forth above, 10 simultaneous reduction of class A and class B SBE levels are observed.

SUMMATION

The above-mentioned examples relate to the isolation, sequencing and utilisation of antisense intron constructs derived from a gene for potato class A and class B SBE. 15 These SBE intron antisense constructs can be introduced into plants, such as potato plants. After introduction, a reduction in the level of synthesis of SBE and/or the level of activity of SBE and/or the composition of starch in plants can be achieved.

Without wishing to be bound by theory it is believed that the expressed anti-sense nucleotide sequence of the present invention binds to sense introns on pre-mRNA and 20 thereby prevents pre-mRNA splicing and/or subsequent translation of mRNA. This binding therefore is believed to reduce the level of plant enzyme activity (in particular class A and class B SBE activity), which in turn for SBE activity is believed to influence the amylose:amylopectin ratio and thus the branching pattern of amylopectin.

Thus, the present invention provides a method wherein it is possible to manipulate 25 the starch composition in plants, or tissues or cells thereof, such as potato tubers, by reducing the level of SBE activity by using an antisense-RNA technique using antisense intron sequences.

The simultaneous reduction or elimination of class A and class B SBE sequences from the doubly transformed potato plants, moreover, offers the possibility to transform 30 such plants with different SBE genes at will, thus allowing the manipulation of branching in starch according to the desired result.

Other modifications of the present invention will be apparent to those skilled in the art without departing from the scope of the present invention.

The following pages present a number of sequence listings which have been consecutively numbered from SEQ.I.D. No. 1 - SEQ.I.D. No. 38. In brief, SEQ.I.D. 5 No. 1 - SEQ.I.D. No. 13 represent sense intron sequences (genomic DNA); SEQ.I.D. No. 14 represents the SBE promoter sequence (genomic sequence); SEQ.I.D. No. 15 - SEQ.I.D. No. 27 represent antisense intron sequences; and SEQ. I.D. No. 28 represents is the sequence complementary to the SBE promoter sequence - i.e. the SBE promoter sequence in antisense orientation. The full genomic nucleotide sequence for class B SBE 10 including the promoter, exons and introns is shown as SEQ. I.D. No. 29 and is explained by way of Figures 4 and 12 which highlight particular gene features. SEQ. ID. No. 30 to 37 show primers used in the methods set forth above. SEQ. ID. No. 38 shows the sequence of intron 1 of class A SBE.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5

(i) APPLICANT:

- (A) NAME: DANISCO A/S
- (B) STREET: LANGEBROGADE 1
- (C) CITY: COPENHAGEN K
- 10 (E) COUNTRY: DENMARK
- (F) POSTAL CODE (ZIP): DK-1001

(ii) TITLE OF INVENTION: INHIBITION OF GENE EXPRESSION

15 (iii) NUMBER OF SEQUENCES: 38

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- 20 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1165 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 30 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

35

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GTAATTTTA CTAATTCAT GTTAATTCA ATTATTTTA GCCTTGAT TTCATTTCC	60
AATATATCTG GATCATCTCC TTAGTTTTT ATTTTATTT TTATAATATC AAATATGGAA	120
GAAAAATGAC ACTTGTAGAG CCATATGTAA GTATCATGTG ACAAAATTGC AAGGTGGTTG	180
AGTGTATAAA ATTCAAAAAT TGAGAGATGG AGGGGGGGTG GGGGAAGACA ATATTTAGAA	240
50 AGAGTGTCT AGGAGGTTAT GGAGGACACG GATGAGGGGT AGAAGGTTAG TTAGGTATTT	300
GAGTGTGTC TGGCTTATCC TTTCATACTA GTAGTCGTGG AATTATTTGG GTAGTTCTT	360
55 GTTTTGTAT TTGATCTTG TTATTCTATT TTCTGTTCT TGTACTTCGA TTATTGTATT	420
ATATATCTG TCGTAGTTAT TGTTCCCTCGG TAAGAATGCT CTAGCATGCT TCCTTAGTG	480

	TTTTATCATG CCTTCTTTAT ATTCCGCGTTG CTTTGAAATG CTTTTACTTT AGCCGAGGGT	540
5	CTATTAGAAA CAATCTCTCT ATCTCGTAAG GTAGGGGTAA AGTCCTCACC ACACCTCCACT	600
	TGTGGGATTA CATTGTGTTT GTTGTGTAA ATCAATTATG TATACATAAT AAGTGGATT	660
	TTTACAACAC AAATACATGG TCAAGGGCAA AGTTCTGAAC ACATAAAGGG TTCATTATAT	720
10	GTCCAGGGAT ATGATAAAAA TTGTTTCTTT GTGAAAGTTA TATAAGATT GTTATGGCTT	780
	TTGCTGGAAA CATAATAAGT TATAATGCTG AGATAGCTAC TGAAAGTTGT TTTTTCTAGC	840
15	CTTTAAATG TACCAATAAT AGATTCCGTA TCGAACGAGT ATGTTTGAT TACCTGGTCA	900
	TGATGTTCT ATTTTTACA TTTTTTGTT GTTGAACTCGC AATTGAAAAT GTTGTATCCT	960
	ATGAGACGGA TAGTTGAGAA TGTGTTCTTT GTATGGACCT TGAGAAGCTC AAACGCTACT	1020
20	CCAATAATT CTATGAATTC AAATTCAAGTT TATGGCTACC AGTCAGTCCA GAAATTAGGA	1080
	TATGCTGCAT ATACTTGTTC AATTATACTG TAAAATTCT TAAGTTCTCA AGATATCCAT	1140
	GTAACCTCGA GAATTTCCTT GACAG	1165
25	(2) INFORMATION FOR SEQ ID NO: 2:	

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 317 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

45	GTATGTTGA TAATTTATAT GGTTGCATGG ATAGTATATA AATAGTTGGA AAACTTCTGG	60
	ACTGGTGCTC ATGGCATATT TGATCTGTGC ACCGTGTGGA GATGTCAAAC ATGTGTTACT	120
50	TCGTTCCGCC AATTTATAAT ACCTTAACCTT GGGAAAGACA GCTCTTACT CCTGTGGGCA	180
	TTTGTATTT GAATTACAAT CTTTATGAGC ATGGTGTGTTT CACATTATCA ACTTCTTTCA	240
	TGTGGTATAT AACAGTTTT AGCTCCGTTA ATACCTTTCT TCTTTTGAT ATAAACTAAC	300
55	TGTGGTGCAT TGCTTGC	317

(2) INFORMATION FOR SEQ ID NO: 3:

- 5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 504 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

15 (iii) HYPOTHETICAL: NO

20 (iv) ANTI-SENSE: NO

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

30 GTAACAGCCA AAAGTTGTGC TTTAGGCAGT TTGACCTTAT TTTGGAAGAT GAATTGTTTA 60
TACCTACTTT GACTTGCTA GAGAATTGAG CATAACGGGG AGTAAGTAGT GGCTCCATT 120
AGGTGGCACC TGGCCATTT TTTGATCTTT TAAAAAGCTG TTTGATTGGG TCTTCAAAAAA 180
AGTAGACAAG GTTTTGAG AAGTGACACA CCCCCGGAGT GTCAGTGGCA AAGCAAAGAT 240
TTTCACTAAG GAGATTCAAA ATATAAAAAA AGTATAGACA TAAAGAAGCT GAGGGGATT 300
AACATGTACT ATACAAGCAT CAAATATAGT CTTAAAGCAA TTTGTAGAA ATAAAGAAAG 360
TCTTCCTTCT GTTGCTTCAC AATTCCTTC TATTATCATG AGTTACTCTT TCTGTTGAA 420
ATAGCTTCCT TAATATTAAA TTCATGATAC TTTTGTGAG ATTTAGCAGT TTTTCTTGT 480
35 GTAAACTGCT CTCTTTTT GCAG 504

40 (2) INFORMATION FOR SEQ ID NO: 4:

45 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 146 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (genomic)

55 (iii) HYPOTHETICAL: NO

60 (iv) ANTI-SENSE: NO

65 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

70 GTAGGTCTC GTCTACTACA AAATAGTAGT TTCCATCATC ATAACAGATT TTCTATTAA 60

33

AGCATGATGT TGCAGCATCA TTGGCTTCT TACATGTTCT AATTGCTATT AAGGTTATGC 120
 TTCTAATTAA CTCATCCACA ATGCAG 146

5 (2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 218 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 15 (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

25 GTTTTGTAT TCATACCTTG AAGCTGAATT TTGAACACCA TCATCACAGG CATTTCGATT 60
 CATGTTCTTA CTAGTCTTGT TATGTAAGAC ATTTGAAAT GCAAAAGTTA AAATAATTGT 120
 GTCTTTACTA ATTTGGACTT GATCCCATAAC TCTTTCCCTT AACAAAATGA GTCAATTCTA 180
 30 TAAGTGCTTG AGAACTTACT ACTTCAGCAA TTAAACAG 218

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 198 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 40 (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

50 GTATTTAAA TTTATTTCTA CAACTAAATA ATTCTCAGAA CAATTGTTAG ATAGAATCCA 60
 AATATATAACG TCCTGAAAGT ATAAAAGTAC TTATTTCGC CATGGGCCTT CAGAATATTG 120
 55 GTAGCCGCTG AATATCATGA TAAGTTATT ATCCAGTGAC ATTTTATGT TCACTCCTAT 180
 TATGTCTGCT GGATACAG 198

(2) INFORMATION FOR SEQ ID NO: 7:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 208 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

15 (iii) HYPOTHETICAL: NO

15 (iv) ANTI-SENSE: NO

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
 GTTTGTCTGT TTCTATTGCA TTTTAAGGTT CATATAGGTT AGCCACGGAA AATCTCACTC 60
 TTTGTGAGGT AACCAAGGGTT CTGATGGATT ATTCAATTTC CTCGTTTATC ATTTGTTTAT 120
 25 TCTTTTCATG CATTGTGTTT CTTTTCAAT ATCCCTCTTA TTTGGAGGTA ATTTTTCTCA 180
 TCTATTCACT TTTAGCTTCT AACCAACAG 208

30 (2) INFORMATION FOR SEQ ID NO: 8:

30 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 293 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 35 (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: DNA (genomic)

40 (iii) HYPOTHETICAL: NO

40 (iv) ANTI-SENSE: NO

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
 GTATGTCTTA CATCTTTAGA TATTTGTGA TAATTACAAT TAGTTGGCT TACTTGAAACA 60
 50 AGATTCAATTC CTCAAAATGA CCTGAACTGT TGAACATCAA AGGGGTTGAA ACATAGAGGA 120
 AAACAAACATG ATGAATGTTT CCATTGTCTA GGGATTCTA TTATGTTGCT GAGAACAAAT 180
 55 GTCATCTTAA AAAAACATT GTTTACTTTT TTGTAGTATA GAAGATTACT GTATAGAGTT 240
 TGCAAGTGTG TCTGTTTGG AGTAATTGTG AAATGTTGA TGAACTTGTA CAG 293

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 376 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

20	GTTCAAGTAT TTTGAATCGC AGCTTGTAA ATAATCTAGT AATTTTAGA TTGCTTACTT	60
	GGAAGTCTAC TTGGTTCTGG GGATGATAGC TCATTTCATC TTGTTCTACT TATTTCCAA	120
	CCGAATTCT GATTTTGTT TCGAGATCCA AGTATTAGAT TCATTTACAC TTATTACCGC	180
25	CTCATTCTA CCACTAAGGC CTTGATGAGC AGCTTAAGTT GATTCTTGA AGCTATAGTT	240
	TCAGGCTACC AATCCACAGC CTGCTATATT TGTTGGATAC TTACCTTTTC TTTACAATGA	300
30	AGTGATACTA ATTGAAATGG TCTAAATCTG ATATCTATAT TTCTCCGTCT TTCCCTCCCC	360
	TCATGATGAA ATGCAG	376

(2) INFORMATION FOR SEQ ID NO: 10:

35

(i) SEQUENCE CHARACTERISTICS:

- 40 (A) LENGTH: 172 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

	GTAAAATCAT CTAAAGTTGA AAGTGTGGG TTTATGAAGT GCTTTAACAT TATCCAAGGA	60
55	CAAGTAGAAA CCTTTTACCTTCCATTCT TGATGATGGA TTICATATTA TTTAATCCAA	120
	TAGCTGGTCA AATTGGTAA TAGCTGTACT GATTAGTTAC TTCACTTTGC AG	172

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 797 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: DNA (genomic)

10

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GTACAGTTCT TGCCGTGTGA CCTCCCTTTT TATTGTTGGTT TTGTTCATAG TTATTTGAAT	60
20 GCGATAGAAC TAAACTATTG ATTACCGCCA CAATGCCAG TTAAGTCCTC TGAACACTA	120
ATTTGAAAGG TAGGAATAGC CGTAATAAGG TCTACTTTG GCATCTTACT GTTACAAAAC	180
25 AAAAGGATGC CAAAAAAATT CTTCTCTATC CTCTTTTCC CTAAACCAGT GCATGTAGCT	240
TGCACCTGCA TAAACTTAGG TAAATGATCA AAAATGAAGT TGATGGGAAC TTAAAACCGC	300
CCTGAAGTAA AGCTAGGAAT AGTCATATAA TGTCCACCTT TGGTGTCTGC GCTAACATCA	360
30 ACAACAAACAT ACCTCGTGTAA GTCCCACAAA GTGGTTTCAG GGGGAGGGTA GAGTGTATGC	420
AAAACTTACT CCTATCTCAG AGGTAGAGAG GATTTTTCA ATAGACCCTT GGCTCAAGAA	480
35 AAAAAGTCCA AAAAGAAGTA ACAGAAGTGA AAGCAACATG TGTAGCTAAA GCGACCCAAC	540
TTGTTTGGGA CTGAAGTAGT TGTGTTGTT GAAACAGTGC ATGTAGATGA ACACATGTCA	600
GAAAATGGAC AACACAGTTA TTTTGTCAA GTCAAAAAAA TGTACTACTA TTTCTTGTG	660
40 CAGCTTATG TATAGAAAAG TAAATAACT AATGAATTG GCTAGCAGAA AAATAGCTTG	720
GAGAGAAATT TTTTATATTG AACTAAGCTA ACTATATTCA TCTTTCTTT TGCTTCTCT	780
45 TCTCCTTGTGTT TGTGAAG	797

45

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2169 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

50

(ii) MOLECULE TYPE: DNA (genomic)

55

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

	ATCATGGCCA ATTACTGGTT CAAATGCATT ACTTCCTTTC AGATTCTTTC GAGTTCTCAT	60
10	GACCGGT CCT ACTACAGACG ATACTAACCC GTGGAACGT TGCACTGCT TCTTAGAACT	120
	CTATGGCTAT TTTCGTTAGC TTGGCGTCGG TTTGAAACATA GTTTTGTTT TCAAACCTTT	180
15	CATTTACAGT CAAAATGTTG TATGGTTTTT GTTTCTCA ATGATGTTA CAGTGTGTG	240
	TTGTCATCTG TACCTTGCC TATTACTTGT TTTGAGTTAC ATGTTAAAAA AGTGTATT	300
	TTGCCATATT TTGTTCTCTT ATTATTATTA TCATACATAC ATTATTACAA GGAAAAGACA	360
20	AGTACACAGA TCTTAACGTT TATGTTCAAT CAACTTTGG AGGCATTGAC AGGTACCACA	420
	AATTTGAGT TTATGATTAA GTTCAATCTT AGAATATGAA TTTAACATCT ATTATAGATG	480
	CATAAAAATA GCTAATGATA GAACATTGAC ATTTGGCAGA GCTTAGGGTA TGGTATATCC	540
25	AACGTTAATT TAGTAATT TTGTTACGTAC GTATATGAAA TATTGAATTAA ATCACATGAA	600
	CGGTGGATAT TATATTATGA GTTGGCATCA GCAAAATCAT TGGTGTAGTT GACTGTAGTT	660
30	GCAGATTTAA TAATAAAATG GTAATTAACG GTCGATATTAA AAATAACTCT CATTCAAGT	720
	GGGATTAGAA CTAGTTATTAA AAAAATGTA TACTTTAAGT GATTTGATGG CATATAATT	780
	AAAGTTTTTC ATTCATGCT AAAATTGTTA ATTATTGAA TGTAGACTGC GACTGGAATT	840
35	ATTATAGTGT AAATTTATGC ATTCACTGTA AAATTAAAGT ATTGAACTTG TCTGTTTAG	900
	AAAATACTTT ATACTTTAAT ATAGGATT TTGATGCGAA TTTAAATTAA TCGATATTGA	960
40	ACACGGAATA CCAAAATTAA AAAGGATACA CATGGCTTTC ATATGAACCG TGAACCTTIG	1020
	ATAACGTGGA AGTTCAAAGA AGGTAAAGTT TAAGAATAAA CTGACAAATT AATTCCTTT	1080
	ATTTGGCCCA CTACTAAATT TGCTTTACTT TCTAACATGT CAAGTTGTGC CCTCTTAGTT	1140
45	GAATGATATT CATTTCAT CCCATAAGTT CAATTGATT GTCATACAC CCATGATGTT	1200
	CTGAAAAATG CTTGGCCATT CACAAAGTTT ATCTTAGTTC CTATGAACCTT TATAAGAAGC	1260
50	TTTAATTGA CATGTTATT TTGAGTGTGT CTACATCTTA TTCAATCATT TAAGGTCTT	1320
	TTAATATTGT AACTTTGAA TTGAGTGTGT CTACATCTTA TTCAATCATT TAAGGTCTT	1380
55	AAAATAAATT ATTTTTGAC ATTCTAAAAC TTTAAGCAGA ATAAATAGTT TATCAATTAT	1440
	TAAAAACAAA AAACGACTTA TTTATAAATC AACAAACAAT TTTAGATTGC TCCAACATAT	1500

39

	TTTTCCAAAT TAAATGCAGA AAATGCATAA TTTTATACTT GATCTTATA GCTTATTTT	1560
	TTTAGCCTAA CCAACGAATA TTTGTAAACT CACAACITGA TTAAAAGGGA TTTACAACAA	1620
5	GATATATATA AGTAGTGACA AATCTTGATT TTAAATATTT TAATTTGGAG GTCAAAATTT	1680
	TACCATAATC ATTTGTATT ATAATTAAAT TTTAAATATC TTATTTATAC ATATCTAGTA	1740
10	AACTTTAAA TATACGTATA TACAAAATAT AAAATTATTG GCGTTCATAT TAGGTCAATA	1800
	AATCCTTAAC TATATCTGCC TTACCACTAG GAGAAAGTAA AAAACTCTTT ACCAAAAATA	1860
	CATGTATTAT GTATACAAAA AGTCGATTAG ATTACCTAAA TAGAAATTGT ATAACGAGTA	1920
15	AGTAAGTACA AATATAAAAA AACTACAATA CTAAAAAAAA TATGTTTAC TTCAATTTCG	1980
	AAACTAATGG GGTCTGAGTG AAATATTCAAG AAAGGGGAGG ACTAACAAAA GGGTCATAAT	2040
20	GTTTTTTAT AAAAGCCAC TAAAATGAGG AAATCAAGAA TCAGAACATA CAAGAAGGCA	2100
	GCAGCTGAAG CAAAGTACCA TAATTTAATC AATGGAAATT AATTCAAAG TTTTATCAA	2160
	ACCCATTAG	2169

25 (2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1165 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 35 (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

45	CTGTCAAAGA AATTCTCGAG GTTACATGGA TATCTTGAGA ACTTAAGAAA TTTTACAGTA	60
	TAATTGAACA AGTATATGCA GCATATCCTA ATTTCTGGAC TGACTGGTAG CCATAAACTG	120
	AATTGAAATT CATAGAAATT ATTGGAGTAG CGTTTGAGCT TCTCAAGGTC CATAACAAAGA	180
50	ACACATTCTC AACTATCCGT CTCATAGGAT ACAACATTT CAATTGCAGT TCAACACCAA	240
	AAAAATGTAA AAAATAGAAA CATCATGACC AGGTAATCAA AACATACTCG TTGATAACGG	300
55	AATCTATTAT TGGTACATT AAAAGGCTAG AAAAACAAA CTTCAGTAGC TATCTCAGCA	360
	TTATAACTTA TTATGTTCC AGCAAAAGCC ATAACAAATC TTATATAACT TTCACAAAGA	420

40

AACAATTTT ATCATATCCC TGGACATATA ATGAACCCCTT TATGTGTTCA GAACTTTGCC	480
CTTGACCATG TATTTGTGTT GTAAAAAATC CACTTATTAT GTATACATAA TTGATTTACA	540
5 ACAACAAACA CAATGTAATC CCACAAGTGG AGTGTGGTGA GGACTTTACC CCTACCTTAC	600
GAGATAGAGA GATTGTTCT AATAGACCCT CGGCTAAAGT AAAAGCATT CAAAGCAACG	660
CGAATATAAA GAAGGCATGA TAAAACACTA AAGGAAGCAT GCTAGAGCAT TCTTACCGAG	720
10 GAACAATAAC TACGACAAGA TATATAATAC AATAATCGAA GTACAAGAAA CAGAAAATAG	780
AATAACAAAG ATCAAATAAC AAAACAAGAA ACTACCCAAA TAATTCCACG ACTACTAGTA	840
15 TGAAAGGATA AGCCAGACAA CACTCAAATA CCTAACTAAC CTTCTACCCC TCATCCGTGT	900
CCTCCATAAC CTCCTAGAAC ACTCTTTCTA AATATTGTCT TCCCCCACCC CCCCTCCATC	960
TCTCAATT TTGAAATTAT ACACCTAACCC ACCTTGCAAA TTTGTCACAT GATACTTACA	1020
20 TATGGCTCTA CAAGTGTCA TTTTCTTCCA TATTTGATAT TATAAAAAT AAAATAAAA	1080
ACTAAGGAGA TGATCCAGAT ATATTGGAAA ATGAAATGCA AAGGCTAAAA ATAATTGAAA	1140
25 TTAACATGAA ATTAGTAAAA ATTAC	1165

(2) INFORMATION FOR SEQ ID NO: 16:

30	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 317 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: NO
40	(iv) ANTI-SENSE: YES

45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	GCAAGCAATG CACCACAGTT AGTTTATATC AAAAAGAAGA AAGGTATTAA CGGAGCTAAA	60
	AACTGTTATA TACCACATGA AAGAAGTTGA TAATGTGAAA ACACCATGCT CATAAAGATT	120
50	GTAATTCAA TAACAAATGC CCACAGGAGT AAAGAGCTGT CTTTCCCAAG TTAAGGTATT	180
	ATAAATTGGC GGAACGAAGT AACACATGTT TGACATCTCC ACACGGTGCA CAGATCAAAT	240
	ATGCCATGAG CACCAGTCCA GAAGTTTCC AACTATTTAT ATACTATCCA TGCAACCATA	300
55	TAAATTATCA AACATAC	317

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 504 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

20	CTGCAAAAAA AGAGAGCAGT TTACACAAGA AAAAACTGCT AAATCTCAAC AAAAGTATCA	60
	TGAATTAAAT ATTAAGGAAG CTATTCGAA CAGAAAGAGT AACTCATGAT AATAGAAGGA	120
	AATTGTGAAG CAACAGAAGG AAGACTTTCT TTATTCTAC AAAATTGCTT TAAGACTATA	180
25	TTTGATGCTT GTATAGTACA TGTTGAATCC CCTCAGCTTC TTTATGTCTA TACTTTTTT	240
	ATATTTGAA TCTCCTTAGT GAAAATCTTT GCTTGCCAC TGACACTCCG GGGGTGTGTC	300
30	ACTTCTCCAA AACACCTTGTC TACTTTTTG AAGACCCAAT CAAACAGCTT TTTAAAAGAT	360
	CAAAAAAAATG GCCAGGTGCC ACCTAAATGG AGCCACTACT TACTCCCCGG TATGCAAAAT	420
	TCTCTAGCAA AGTCAAAGTA GGTATAAACCA ATTCACTTTC CAAAATAAGG TCAAACGTGCC	480
35	TAAAGCACAA CTTTGGCTG TTAC	504

(2) INFORMATION FOR SEQ ID NO: 18:

- 40 (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 146 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

50 (iv) ANTI-SENSE: YES

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

CTGCATTGTG GATGAGTTAA TTAGAAGCAT AACCTTAATA GCAATTAGAA CATGTAAGAA

60

AGCCAATGAT GCTGCAACAT CATGCTTAA TAGAAAATC TGTTATGATG ATGGAAACTA 120

CTATTTGTA GTAGACGAGG ACCTAC 146

5

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 218 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

25 CTGTTAATT GCTGAAGTAG TAAGTTCTCA AGCACTTATA GAATTGACTC ATTTTGTAA 60

GGGAAAGAGT ATGGGATCAA GTCCAAATTA GTAAAGACAC AATTATTTA ACTTTTGCAT 120

30 TTCAAAATGT CTTACATAAC AAGACTAGTA AGAACATGAA TCGAAATGCC TGTGATGATG 180

GTGTTCAAAA TTCAGCTTCA AGGTATGAAT AACAAAAC 218

(2) INFORMATION FOR SEQ ID NO: 20:

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 198 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

40

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

45 (iv) ANTI-SENSE: YES

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CTGTATCCAG CAGACATAAT AGGAGTGAAC ATAAAAATGT CACTGGATAA ATAACCTTATC 60

ATGATATTCA GCGGCTACCA ATATTCTGAA GGCCCATGGC GAAAATAAGT ACTTTTATAC 120

55

TTTCAGGACG TATATATTTG GATTCTATCT AACAAATTGTT CTGAGAATTA TTTAGTTGTA 180

GAAATAAATT TAAAATAC

198

(2) INFORMATION FOR SEQ ID NO: 21:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 208 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO

15 (iv) ANTI-SENSE: YES

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

CTGTGGTTAG AAGCTAAAAG TGAATAGATG AGAAAAATT CCTCCAAATA AGAGGGATAT	60
TGAAAAAGAA ACACAATGCA TGAAAAGAAT AAACAAATGA TAAACGAGAA AATTGAATAA	120
25 TCCATCAGAA CCCTGGTTAC CTCACAAAGA GTGAGATTTT CCGTGGCTAA CCTATATGAA	180
CCTTAAAATG CAATAGAAC AGACAAAC	208

30 (2) INFORMATION FOR SEQ ID NO: 22:

35 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 293 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO

45 (iv) ANTI-SENSE: YES

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

CTGTACAAGT TCATCAAACA TTTCACAATT ACTCCAAAAC AGACACACTT GCAAACCTCTA	60
50 TACAGTAATC TTCTATACTA CAAAAAAAGTA AACAAATGTTT TTTTTAAGAT GACATTGTT	120
CTCAGCAACA TAATAGAAAT CCCTAGACAA TGGAAACATT CATCATGTTG TTTTCCTCTA	180
55 TGTTTCAACC CCTTTGATGT TCAACAGTTC AGGTCAATTTT GAGGAATGAA TCTTGTTCAA	240
GTAAGCCAAA CTAATTGTAA TTATCACAAA ATATCTAAAG ATGTAAGACA TAC	293

(2) INFORMATION FOR SEQ ID NO: 23:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 376 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO

15 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

20	CTGCATTTCA TCATGAGGGG GAGGAAAGAC GGAGAAAATAT AGATATCAGA TTTAGACCAT	60
	TTCAATTAGT ATCACTTCAT TGAAAGAAA AGGTAAGTAT CCAACAAATA TAGCAGGCTG	120
25	TGGATTGGTA GCCTGAAACT ATAGCTTCAA AGAACAAACT TAAGCTGCTC ATCAAGGCCT	180
	TAGTGGTAGA AATGAGGCCGG TAATAAGTGT AAATGAATCT AATACTTGGAA TCTCGAAACA	240
30	AAAATCAGAA ATTGGTTGG AAAATAAGTA GAACAAGATG AAATGAGCTA TCATCCCCAG	300
	AACCAAGTAG ACTTCCAAGT AAGCAATCTA AAAATTACTA GATTATTTAA CAAGCTGCCGA	360
	TTCAAAATAC TTGAAC	376

35 (2) INFORMATION FOR SEQ ID NO: 24:

40 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 172 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO

 (iv) ANTI-SENSE: YES

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

55	CTGCAAAGTG AAGTAACCAA TCAGTACAGC TATTACCGAA TTTGACCAGC TATTGGATTA	60
	AATAATATGA AATCCATCAT CAAGAAATGG AAGGTAAAAA GGTTTCTACT TGTCTTGGA	120

TAGAATTAAA GCACCTCATA AACCCAACAC TTTCAACTTT AGATGATTTT AC 172

(2) INFORMATION FOR SEQ ID NO: 25:

- 5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 145 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO

15 (iv) ANTI-SENSE: YES

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

CTGTTTCGT CATCGAGGA TCAGAAAAAA GAGTAAATT AGACAATGTG AAAATGATT	60
GTTTCAGTTA CTTCTCCATA AAACTTGTT AGTACATTAA AAACAAGCAG AGCAATAATT	120
25 TCATGGATAA GTAAAACATA TATAC	145

(2) INFORMATION FOR SEQ ID NO: 26:

- 30 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 242 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO

40 (iv) ANTI-SENSE: YES

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CTGTCATGAG AACAGATTGT ATGTCAGCAT GAAGACAAAG ATCATCAATA AACAGTTTC	60
50 TCCTTTTGA ATTAGCTAAA CAACGCAGGG GGAGGGCAGG AGGCTCAAAC ACTTCCGAAC	120
TCAGACAGTC GGATATCTTA TACAACAAA GATGGATGAG ACAATTACAG TTCTTTTGG	180
55 TGAGAGAACT GTACCCTACA TCTGTTATCT TATTATCAA AGTTATTCAA GCCTT	240
AC	242

(2) INFORMATION FOR SEQ ID NO: 27:

- 5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 797 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: DNA (genomic)
- 15 (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
- | | | |
|----|--|-----|
| 20 | CTTCACAAAC AAGGAGAAGA AGAACAAAA AGAAAGATGA ATATAGTTAG CTTAGTTCAA | 60 |
| | TATAAAAAT TTCTCTCCAA GCTATTTTC TGCTAGCAA ATTCAATTGT TATTTAACTT | 120 |
| | TTCTATACAT AAAGCTGCAC AAAGAAATAG TAGTACATTT TTTTGACTTG CACAAAATAA | 180 |
| 25 | CTGTGTTGTC CATTTCCTGA CATGTGTTCA TCTACATGCA CTGTTCAAC AACAAACAAT | 240 |
| | ACTTCAGTCC CAAACAAGTT GGGTCGCTTT AGCTACACAT GTTGCTTTCA CTTCTGTTAC | 300 |
| 30 | TTCTTTTGG ACTTTTTTC TTGAGCCAAG GGTCTATTGA AAAAATCCTC TCTACCTCTG | 360 |
| | AGATAGGAGT AAGTTTGCA TACACTCTAC CCTCCCCCTG AAACCACTTT GTGGGACTAC | 420 |
| | ACGAGGTATG TTGTTGTTGA TGTTAGCGCA GACACCAAAG GTGGACATTA TATGACTATT | 480 |
| 35 | CCTAGCTTA CTTCAAGGGCG GTTTAAGTT CCCATCAACT TCATTTGA TCATTTACCT | 540 |
| | AAGTTTATGC AGGTGCAAGC TACATGCACT GGTTAGGGA AAAAGAGGAT AGAGAAGAAT | 600 |
| | TTTTTGGCA TCCTTTGTT TTGTAACAGT AAGATGCCAA AAGTAGACCT TATTACGGCT | 660 |
| 40 | ATTCCTACCT TTCAAATTAG TAGTCAGAG GACTTAAC TGCGATTGTGG CGGTAATCAA | 720 |
| | TAGTTAACCTT CTATCGCATT CAAATAACTA TGAACAAAAC CACAATAAAA AGGGAGGTCA | 780 |
| 45 | CACGGCAAGA ACTGTAC | 797 |
- (2) INFORMATION FOR SEQ ID NO: 28:
- 50 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2169 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- 55 (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

CGAATGGGTT	TTGATAAAAC	TTTGAAATT	ATTTCCATTG	ATTAAATTAT	GGTACTTTGC	60	
10	TTCAGCTGCT	GCCTCTTGT	ATGTTCTGAT	TCTTGATTTC	CTCATTTAG	TGGCTTTTA	120
	TAAAAAAACA	TTATGACCCT	TTTGTAGTC	CTCCCCTTTC	TGAATATTC	ACTCAGACCC	180
15	CATTAGTTTC	GAAATTGAAG	TAAAACATAT	TTTTTTAGT	ATTGTAGTTT	TTTTATATTT	240
	CTACTTACTT	ACTCGTTATA	CAATTCTAT	TTAGGTAATC	TAATCGACTT	TTTGTATACA	300
20	TAATACATGT	ATTTTGGTA	AAGAGTTTT	TACTTCTCC	TAGTGGTAAG	GCAGATATAG	360
	TTAAGGATT	ATTGACCTAA	TATGAACGCC	AATAATTTA	TATTTGTAT	ATACGTATAT	420
	TTAAAAGTT	ACTAGATATG	TATAAATAAG	ATATTTAAA	TTTAATTATA	AATACAAATG	480
25	ATTATGGTAA	AATTGGACC	TCCAAATTAA	AATATTAAA	ATCAAGATT	GTCACTACTT	540
	ATATATATCT	TGTTGTAAAT	CCCTTTAAT	CAAGTTGTGA	GTTCACAAAT	ATTCGTTGGT	600
	TAGGCTAAA	AAAATAAGCT	ATAAAGATCA	AGTATAAAAT	TATGCATT	CTGCATTAA	660
30	TTTGGAAAAA	TATGTTGGAG	CAATCTAAA	TTGTTGTTG	ATTTATAAAAT	AAGTCGTTT	720
	TTGTTTTAA	TAATTGATAA	ACTATTATT	CTGCTTAAAG	TTTAGAATG	TCAAAAAATA	780
35	ATTTATTTA	ATGACCTAA	ATGATTGAAT	AAGATGTAGA	CACACTCAAT	TACAAAGTTA	840
	CAATATTAAAT	ACACTTGCT	ATTGGTCAT	GGATTATATC	ATCTAATATA	AATAACATGT	900
	CAAATTAAAG	CTTCTTATAA	AGTCATAGG	AACTAAGATA	AACTTTGTGA	ATGGCCAAGC	960
40	ATTTTCAGA	ACATCATGGG	TGGTATGACA	ATCAAATTGA	ACTTATGGGA	TGAAAAATGA	1020
	ATATCATTCA	ACTAAGAGGG	CACAACTTGA	CATGTTAGAA	AGTAAAGCAA	ATTTAGTAGT	1080
45	GGGCCAAATA	AAAGAAATTA	ATTTGTCAGT	TTATTCTTAA	ACTTTACCTT	CTTGAACTT	1140
	CCACGTTATC	AAAGGTTCAC	GGTCATATG	AAGGCCATGT	GTATCCTTT	TAATTTGGT	1200
	ATCCGTGTT	CAATATCGAT	TAATTAAAT	TCGCATGACA	AAATCCTATA	TTAAAGTATA	1260
50	AAGTATTTTC	TAAAACAGAC	AAGTCAATA	CTTAAATT	ACACTGAATG	CATAAAATT	1320
	CACTATAATA	ATTCCAGTCG	CAGTCTACAT	TACAATAATT	AACAATT	GCATGAAATG	1380
55	AAAAACTTTA	AATTATATGC	CATCAAATCA	CTTAAAGTAT	ACATT	TTTAACTAGT	1440
	TCTAATCCCA	CTTGAAATGA	GAGTTATT	AATATCGACC	GTAAATTACC	ATTTTATTAT	1500

	TAAATCTGCA ACTACAGTCA ACTACACCAA TGATTTGCT GATGCCAAT CATAATATAA	1560
5	TATCCACCGT TCATGTGATT AATTCAATAT TTCATATAACG TACGTAACAA AAATTACTAA	1620
	ATTAACGTG GATATACCCT ACCCTAACGCT CTGCCAAATG TCAATGTTCT ATCATTAGCT	1680
	ATTTTATGC ATCTATAATA GATGTTAAAT TCATATTCTA AGATTGAAC TAATCATAAA	1740
10	CTCAAAATTT GTGGTACCTG TCAATGCCTC CAAAAGTTGA TTGAACATAA ACGTTAACAT	1800
	CTGTGTACTT GTCTTTCTTG TGTAATAATG TATGTATGAT AATAATAATA AGAGAACAAA	1860
15	ATATGGCAAATAAACACTT TTTAACATG TAACTCAAAA CAAGTAATAG GCACAAAGTAC	1920
	AGATGACAAC ACAACACTGT AACATCATT GAGGAAACAA AAAACCATAC AACATTTGA	1980
	CTGTAAATGA AGAGTTTGAA AACAAAAACT ATGTTCAAAC CGACGCCAAG CTAACGAAAA	2040
20	TAGCCATAGA GTTCTAAGAA GCAGATGCAA CAGTTCCACG GGTTAGTATC GTCTGTAGTA	2100
	GGACCGGTCA TGAGAACTCG AAAGAATCTG AAAGGAAGTA ATGCATTGAA ACCAGTAATT	2160
	GGCCATGAT	2169

25 (2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11469 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (genomic)

35 (iii) HYPOTHETICAL: NO

40 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

45	ATCATGGCCA ATTACTGGTT CAAATGCATT ACTTCCTTTC AGATTCTTC GAGTTCTCAT	60
	GACCGGTCT ACTACAGACG ATACTAACCC GTGGAACGT TGCACTGCT TCTTAGAACT	120
50	CTATGGCTAT TTTCGTTAGC TTGGCGTCGG TTTGAACATA GTTTTGTTT TCAAACTCTT	180
	CATTTACAGT CAAAATGTTG TATGGTTTTT GTTTCCCTCA ATGATGTTA CAGTGTGTTG	240
	TTGTCATCTG TACCTTGCC TATTACTTGT TTTGAGTTAC ATGTTAAAAA AGTGTATT	300
55	TTGCCATATT TTGTTCTCTT ATTATTATTA TCATACATAC ATTATTACAA GGAAAGACA	360
	AGTACACAGA TCTTAACGTT TATGTTCAAT CAACTTTGG AGGCATTGAC AGGTACCACA	420

	AATTTTGAGT TTATGATTAA GTTCAATCTT AGAATATGAA TTTAACATCT ATTATAGATG	480
5	CATAAAAATA GCTAATGATA GAACATTGAC ATTTGGCAGA GCTTAGGGTA TGGTATATCC	540
	AACGTTAATT TAGTAATTIT TGTTACGTAC GTATATGAAA TATTGAATTA ATCACATGAA	600
	CGGTGGATAT TATATTATGA GTTGGCATCA GCAAATCAT TGGTAGTT GACTGTAGTT	660
10	GCAGATTTAA TAATAAAATG GTAATTAACG GTCGATATTA AAATAACTCT CATTCAAGT	720
	GGGATTAGAA CTAGTTATTA AAAAAATGTA TACTTTAAGT GATTTGATGG CATATAATT	780
15	AAAGTTTTC ATTCATGCT AAAATTGTTA ATTATTGTA TGTTAGTGC GACTGGAATT	840
	ATTATAGTGT AAATTTATGC ATTCACTGTA AAATTAAGT ATTGAACCTG TCTGTTTAG	900
	AAAATACTTT ATACTTAAT ATAGGATTTT GTCATGCGAA TTTAAATTAA TCGATATTGA	960
20	ACACGGAATA CCAAAATTAA AAAGGATACA CATGGCCTTC ATATGAACCG TGAACCTTG	1020
	ATAACGTGGA AGTCAAAGA AGGTAAAGTT TAAGAATAAA CTGACAAATT AATTCTTT	1080
25	ATTGGCCCA CTACTAAATT TGCTTACTT TCTAACATGT CAAGTTGTGC CCTCTTAGTT	1140
	GAATGATATT CATTTCAT CCCATAAGTT CAATTGATT GTCATACAC CCATGATGTT	1200
	CTGAAAATG CTTGGCCATT CACAAAGTTT ATCTTAGTTC CTATGAACCT TATAAGAAC	1260
30	TTTAATTGATTT ATATTAGATG ATATAATCCA TGACCCAATA GACAAGTGT	1320
	TTAATATTGT AACTTTGTA TTGAGTGTGT CTACATCTTA TTCAATCATT TAAGGTCA	1380
35	AAAATAAATT ATTTTGAC ATTCTAAAC TTTAAGCAGA ATAAATAGTT TATCAATTAT	1440
	TAAAAACAAA AACGACTTA TTTATAAAC AACAAACAAT TTTAGATTGC TCCAACATAT	1500
	TTTCCAAAT TAAATGCAGA AAATGCATAA TTTTATACTT GATCTTATA GCTTATTTT	1560
40	TTTAGCCTAA CCAACGAATA TTTGTAAACT CACAACCTGA TTAAAAGGGA TTTACAACAA	1620
	GATATATATA AGTAGTGACA AATCTTGATT TTAAATATTT TAATTGGAG GTCAAAATT	1680
45	TACCATAATC ATTTGTATTT ATAATTAAAT TTTAAATATC TTATTTATAC ATATCTAGTA	1740
	AACTTTAAA TATACGTATA TACAAAATAT AAAATTATTG GCGTCATAT TAGGTCAATA	1800
	AATCCTTAAC TATATCTGCC TTACCACTAG GAGAAAGTAA AAAACTCTTT ACCAAAAATA	1860
50	CATGTATTAT GTATACAAAA AGTCGATTAG ATTACCTAAA TAGAAATTGT ATAACGAGTA	1920
	AGTAAGTACA AATATAAAAA AACTACAATA CTAAAAAAAAA TATGTTTAC TTCAATTTCG	1980
55	AAACTAATGG GGTCTGAGTG AAATATTCAAG AAAGGGGAGG ACTAACAAAA GGGTCATAAT	2040
	GTTTTTTAT AAAAGCCAC TAAATGAGG AAATCAAGAA TCAGAACATA CAAGAAGGCA	2100

50

	GCAGCTGAAG CAAAGTACCA TAATTTAAC AATGGAAATT AATTCAAAG TTTTATCAA	2160
	ACCCATTGCA GGATCTTTTC CATCTTTCTC ACCTAAAGTT TCCTCAGGGG TAATTTTAC	2220
5	TAATTCATG TTAATTCAA TTATTTTAG CCTTGCATT TCATTTCCA ATATATCTGG	2280
	ATCATCTCCT TAGTTTTTA TTTTATTTT TATAATATCA AATATGGAAG AAAAATGACA	2340
	CTTGTAGAGC CATATGTAAG TATCATGTGA CAAATTGCA AGGTGGTTGA GTGTATAAAA	2400
10	TTCAAAAATT GAGAGATGGA GGGGGGGTGG GGGAAAGACAA TATTTAGAAA GAGTGTCTA	2460
	GGAGGTTATG GAGGACACGG ATGAGGGTA GAAGGTTAGT TAGGTATTTG AGTGTGTCT	2520
15	GGCTTATCCT TTCATACTAG TAGTCGTGGA ATTATTTGGG TAGTTCTTG TTTGTATT	2580
	TGATCTTGT TATTCTATT TCTGTTCTT GTACTTCGAT TATTGTATTA TATATCTTGT	2640
20	CGTAGTTATT GTTCCTCGGT AAGAATGCTC TAGCATGCTT CCTTGTGT TTTATCATGC	2700
	CTTCTTATA TTGCGTTGC TTTGAAATGC TTTTACTTTA GCCGAGGGTC TATTAGAAAC	2760
	AATCTCTCTA TCTCGTAAGG TAGGGTAAA GTCCCTCACCA CACTCCACTT GTGGGATTAC	2820
25	ATTGTGTTTG TTGTTGTAAA TCAATTATGT ATACATAATA AGTGGATTT TTACAACACA	2880
	AATACATGGT CAAGGGAAA GTTCTGAACA CATAAAGGGT TCATTATATG TCCAGGGATA	2940
	TGATAAAAAT TGTTTCTTG TGAAAGTTAT ATAAGATTTG TTATGGCTTT TGCTGGAAAC	3000
30	ATAATAAGTT ATAATGCTGA GATAGCTACT GAAGTTGTT TTTCTAGCC TTTAAATGT	3060
	ACCAATAATA GATTCCGTAT CGAACGAGTA TGTTTGATT ACCTGGTCAT GATGTTCTA	3120
35	TTTTTACAT TTTTTGGTG TTGAACTGCA ATTGAAAATG TTGTATCCTA TGAGACGGAT	3180
	AGTTGAGAAT GTGTTCTTG TATGGACCTT GAGAAGCTCA AACGCTACTC CAATAATTTC	3240
	TATGAATTCA AATTCAAGTTT ATGGCTACCA GTCAGTCCAG AAATTAGGAT ATGCTGCATA	3300
40	TACTTGTCA ATTACTGT AAAATTCTT AAGTTCTCAA GATATCCATG TAACCTCGAG	3360
	AATTCTTTG ACAGGCTTCT AGAAATAAGA TATGTTTCC TTCTAACAT AGTACTGGAC	3420
45	TGAAGTTGG ATCTCAGGAA CGGTCTTGGG ATATTTCTTC CACCCCCAAA TCAAGAGTTA	3480
	GAAAAGATGA AAGGGTATGT TTGATAATT ATATGGTTGC ATGGATAGTA TATAAATAGT	3540
	TGGAAAACCTT CTGGACTGGT GCTCATGGCA TATTTGATCT GTGCACCGTG TGGAGATGTC	3600
50	AAACATGTGT TACTTCGTTT CGCCAATTAA TAATACCTTA ACTTGGGAAA GACAGCTCTT	3660
	TACTCCTGTG GGCATTTGTT ATTTGAATTA CAATCTTAT GAGCATGGTG TTTTCACATT	3720
55	ATCAACTTCT TTCATGTGGT ATATAACAGT TTTTAGCTCC GTTAATACCT TTCTTCTTT	3780
	TGATATAAAC TAACTGTGGT GCATTGCTTG CATGAAGCAC AGTCAGCTA TTTCCGCTGT	3840

	TTTGACCGAT GACGACAATT CGACAATGGC ACCCCTAGAG GAAGATGTCA AGACTGAAAA	3900
5	TATTGGCCTC CTAAATTGG ATCCAACCTT GGAACCTTAT CTAGATCACT TCAGACACAG	3960
	AATGAAGAGA TATGTGGATC AGAAAATGCT CATTGAAAAA TATGAGGGAC CCCTTGAGGA	4020
	ATTTGCTCAA GGTAACAGCC AAAAGTTGTG CTTTAGGCAG TTTGACCTTA TTTTGGAAAGA	4080
10	TGAATTGTT ATACCTACTT TGACTTTGCT AGAGAATTT GCATACCGGG GAGTAAGTAG	4140
	TGGCTCCATT TAGGTGGCAC CTGGCCATT TTGATCTT TTAAAAAGCT GTTGATTGG	4200
15	GTCTTCAGAA AAGTAGACAA GGTTTTGGA GAAGTGACAC ACCCCCAGG TGTCAGTGGC	4260
	AAAGCAAAGA TTTCACTAA GGAGATTCAA AATATAAAA AAGTATAGAC ATAAAGAAC	4320
	TGAGGGGATT CAACATGTAC TATACAAGCA TCAAATATAG TCTTAAAGCA ATTTTGTAGA	4380
20	AATAAAAGAAA GTCTTCCTTC TGTTGCTTCA CAATTCCTT CTATTATCAT GAGTTACTCT	4440
	TTCTGTTCGA AATAGCTTCC TTAATATTAA ATTCAATGATA CTTTGTTGA GATTAGCAG	4500
25	TTTTTCTTG TGTAACACTGC TCTCTTTTG TGAGGTTAT TTAAAATTG GATTCAACAG	4560
	GGAAGATGGT TGCATAGTCT ATCGTGAATG GGCTCCTGCT GCTCAGTAGG TCCTCGTCTA	4620
	CTACAAAATA GTAGTTCCA TCATCATAAC AGATTTCCCT ATTAAAGCAT GATGTTGCAG	4680
30	CATCATTGGC TTTCTTACAT GTTCTAATTG CTATTAAGGT TATGCTTCTA ATTAACATCAT	4740
	CCACAATGCA GGGAAAGCAGA AGTTATTGGC GATTCAATG GATGGAACGG TTCTAACAC	4800
35	ATGATGGAGA AGGACCAGTT TGGTGTGG AGTATTAGAA TTCCTGATGT TGACAGTAAG	4860
	CCAGTCATTC CACACAACTC CAGAGTTAAG TTCTGTTCA AACATGGTAA TGGAGTGTGG	4920
	GTAGATCGTA TCCCTGCTTG GATAAAGTAT GCCACTGCAG ACGCCACAAA GTTGAGCA	4980
40	CCATATGATG GTGTCTACTG GGACCCACCA CCTTCAGAAA GGTTTGTTA TTCATACCTT	5040
	GAAGCTGAAT TTGAAACACC ATCATCACAG GCATTTCGAT TCATGTTCTT ACTAGTCTG	5100
45	TTATGTAAGA CATTGAAA TGCAAAAGTT AAAATAATTG TGTCTTACT AATTTGGACT	5160
	TGATCCCATA CTCTTCCCT TAACAAAATG AGTCAATTCT ATAAGTGCTT GAGAACTTAC	5220
	TACTTCAGCA ATTAAACAGG TACCACTTCA AATACCCCTCG CCCTCCAAA CCCCGAGCCC	5280
50	CACGAATCTA TGAAGCACAT GTCGGCATGA GCAGCTCTGA GCCACGTGTA AATTCTGATC	5340
	GTGAGTTGC AGATGATGTT TTACCTCGGA TTAAGGCAA TAACTATAAT ACTGTCCAGT	5400
55	TGATGGCCAT AATGGAACAT TCTTACTATG GATCATTGG ATATCATGTT ACAAACTTT	5460
	TTGCTGTGAG CAGTAGATAT GGAAACCCGG AGGACCTAAA GTATCTGATA GATAAAGCAC	5520

52

	ATAGCTTGGG TTTACAGGTT CTGGTGGATG TAGTCACAG TCATGCAAGC AATAATGTCA	5580
	CTGATGGCCT CAATGGCTTT GATATTGGCC AAGGTCTCA AGAACCTAC TTTCATGCTG	5640
5	GAGAGCGAGG GTACCATAAG TTGTGGATA GCAGGCTGTT CAACTATGCC AATTGGGAGG	5700
	TTCTTCGTTT CCTTCTTC CACTTGAGGT GGTGGCTAGA AGAGTATAAC TTTGACGGAT	5760
10	TTCGATTTGA TGGAAATACT TCTATGCTGT ATGTTCATCA TGGAATCAAT ATGGGATTTA	5820
	CAGGAAACTA TAATGAGTAT TTCAGCGAGG CTACAGATGT TGATGCTGTG GTCTATTAA	5880
	TGTTGGCCAA TAATCTGATT CACAAGATT TCCCAGATGC AACTGTTATT GCCGAAGATG	5940
15	TTTCTGGTAT GCCGGGCCTT GGCCGGCCTG TTTCTGAGGG AGGAATTGGT TTTGTTTACC	6000
	GCCTGGCAAT GGCAATCCC AATAAGTGG A TAGATTATT AAAGAATAAG AATGATGAAG	6060
20	ATTGGTCCAT GAAGGAAGTA ACATCGAGTT TGACAAATAG GAGATATACA GAGAAGTGT	6120
	TAGCATATGC GGAGACCCAT GATCAGGTAT TTTAAATTAA TTTCTACAAC TAAATAATTC	6180
	TCAGAACAAAT TGTTAGATAG AATCCAAATA TATACGTCT GAAAGTATAA AAGTACTTAT	6240
25	TTTCGCCATG GGCCCTTCAGA ATATTGGTAG CCGCTGAATA TCATGATAAG TTATTTATCC	6300
	AGTGACATT TTATGTTCAC TCCTATTATG TCTGCTGGAT ACAGTCTATT GTTGGTGACA	6360
30	AGACCATTGC ATTTCTCCTA ATGGACAAAG AGATGTATTC TGGCATGTCT TGCTTGACAG	6420
	ATGCTTCTCC TGTTGTTGAT CGAGGAATTG CGCTTCACAA GGTTTGTCTG TTTCTATTGC	6480
	ATTTTAAGGT TCATATAGGT TAGCCACGGA AAATCTCACT CTTTGTGAGG TAACCAGGGT	6540
35	TCTGATGGAT TATTCAATT TCTCGTTAT CATTGTTA TTCTTTCAT GCATTGTGTT	6600
	TCTTTTCAA TATCCCTCTT ATTTGGAGGT AATTTTCTC ATCTATTAC TTTAGCTTC	6660
	TAACCACAGA TGATCCATT TTTCACAAATG GCCTTGGAG GAGAGGGTA CCTCAATTTC	6720
40	ATGGGTAACG AGGTATGTCT TACATCTT GATATTGT GATAATTACA ATTAGTTGG	6780
	CTTACTTGAA CAAGATTCA TCCCTAAAAT GACCTGAAC GTGAAACATC AAAGGGTTG	6840
45	AAACATAGAG GAAAACAACA TGATGAATGT TTCCATTGTC TAGGGATTTC TATTATGTTG	6900
	CTGAGAACAA ATGTCATCTT AAAAAAAACA TTGTTTACTT TTTTGTAGTA TAGAAGATTA	6960
50	CTGTATAGAG TTTGCAAGTG TGTCTGTTT GGAGTAATTG TGAAATGTTT GATGAACCTTG	7020
	TACAGTTGG CCATCCTGAG TGGATTGACT TCCCTAGAGA GGGCAATAAT TGGAGTTATG	7080
	ACAAATGTAG ACGCCAGTGG AACCTCGCGG ATAGCGAAC CTTGAGATAAC AAGGTTCAAG	7140
55	TATTTGAAT CGCAGCTTGT TAAATAATCT AGTAATTGTT AGATTGCTTA CTTGGAAGTC	7200
	TACTTGGTTC TGGGGATGAT AGTCATTTC ATCTTGTCT ACTTATTTC CAACCGAATT	7260

	TCTGATTTT GTTCGAGAT CCAAGTATT AATTCAATT CACTTATTAC CGCCTCATTT	7320
5	CTACCACTAA GGCCCTTGATG AGCAGCTTAA GTTGATTCTT TGAAGCTATA GTTTCAGGCT	7380
	ACCAATCCAC AGCCTGCTAT ATTTGTTGGA TACTTACCTT TTCTTTACAA TGAAGTGATA	7440
	CTAATTGAAA TGGTCTAAAT CTGATATCTA TATTTCTCCG TCTTCCCTCC CCCTCATGAT	7500
10	GAAATGCAGT TTATGAATGC ATTTGATAGA GCTATGAATT CGCTCGATGA AAAGTTCTCA	7560
	TTCCTCGCAT CAGGAAAACA GATAGTAAGC AGCATGGATG ATGATAATAA GGTAAAATCA	7620
15	TCTAAAGTTG AAAGTGTGAG GTTTATGAAG TGCTTTAATT CTATCCAAGG ACAAGTAGAA	7680
	ACCTTTTAC CTTCCATTTC TTGATGATGG ATTTCATATT ATTTAATCCA ATAGCTGGTC	7740
	AAATTCCGTA ATAGCTGTAC TGATTAGTTA CTTCACTTTG CAGGTTGTTG TGTTTGAACG	7800
20	TGGTGACCTG GTATTTGTAT TCAACTTCCA CCCAAAGAAC ACATACGAAG GGTATATATG	7860
	TTTTACTTAT CCATGAAATT ATTGCTCTGC TTGTTTTAA TGTACTGAAC AAGTTTTATG	7920
25	GAGAAGTAAC TGAAACAAAT CATTTCACA TTGTCTAATT TAACTCTTT TTCTGATCCT	7980
	CGCATGACGA AACACAGGTAT AAAGTTGGAT GTGACTTGCC AGGGAAAGTAC AGAGTTGCAC	8040
	TGGACAGTGA TGCTTGGAA TTTGGTGGCC ATGGAAGAGT AAGGATTGTC TTGAATAACT	8100
30	TTTGATAATA AGATAACAGA TGTAGGGTAC AGTTCTCTCA CCAAAAAGAA CTGTAATTGT	8160
	CTCATCCATC TTTAGTTGTA TAAGATATCC GACTGTCTGA GTTCGGAAGT GTTTGAGCCT	8220
35	CCTGCCCTCC CCCTGCCTTG TTTAGCTAAT TCAGGAAAGGA GAAAAGTGT TATTGATGAT	8280
	CTTTGTCTTC ATGCTGACAT ACAATCTGTT CTCATGACAG ACTGGTCATG ATGTTGACCA	8340
	TTTCACATCA CCAGAAGGAA TACCTGGAGT TCCAGAAACA AATTTCAATG GTCGTCCAAA	8400
40	TTCCCTCAAA GTGCTGTCTC CTGCGCGAAC ATGTGTGGTA CAGTTCTTGC CGTGTGACCT	8460
	CCCTTTTAT TGTGGTTTG TTCATAGTTA TTTGAATGCG ATAGAAGTTA ACTATTGATT	8520
45	ACCGCCACAA TCGCCAGTTA AGTCCTCTGA ACTACTAATT TGAAAGGTAG GAATAGCCGT	8580
	AATAAGGTCT ACTTTGGCA TCTTACTGTT ACAGGAAAGAA AGGATGCCAA AAAAATTCTT	8640
	CTCTATCCTC TTTTCCCTA AACCAGTGCA TGTAGCTTGC ACCTGCATAA ACTTAGGTAA	8700
50	ATGATCAAAA ATGAAGTTGA TGGGAACCTA AAACCGCCCT GAAGTAAAGC TAGGAATAGT	8760
	CATATAATGT CCACCTTGG TGTCTGCCT AACATCAACA ACAACATACC TCGTGTAGTC	8820
55	CCACAAAGTG GTTCAAGGGG GAGGGTAGAG TGTATGCAA ACTTACTCCT ATCTCAGAGG	8880
	TAGAGAGGAT TTTTCATAA GACCTTGCGC TCAAGAAAAA AAGTCCAAA AGAAGTAACA	8940

	GAAGTGAAAG CAACATGTGT AGCTAAAGCG ACCCAACTTG TTTGGGACTG AAGTAGTTGT	9000
	TGTTGTTGAA ACAGTGCATG TAGATGAACA CATGTCAGAA AATGGACAAC ACAGTTATTT	9060
5	TGTGCAAGTC AAAAAAATGT ACTACTATTT CTTTGTGCAG CTTTATGTAT AGAAAAGTTA	9120
	AATAACTAAT GAATTTGCT AGCAGAAAAA TAGCTTGGAG AGAAATTTTT TATATTGAAC	9180
10	TAAGCTAACT ATATTCATCT TTCTTTTGC TTCTTCTTCT CCTTGTGTGT GAAGGCTTAT	9240
	TACAGAGTTG ATGAACGCAT GTCAGAAACT GAAGATTACC AGACAGACAT TTGTAGTGAG	9300
	CTACTACCAA CAGCCAATAT CGAGGAGAGT GACGAGAAC TTAAAGATTC GTTATCTACA	9360
15	AATATCAGTA ACATTGACGA ACGCATGTCA GAAACTGAAG TTTACCAGAC AGACATTTCT	9420
	AGTGAGCTAC TACCAACAGC CAATATTGAG GAGAGTGACG AGAAACTTAA AGATTCGTTA	9480
20	TCTACAAATA TCAGTAACAT TGATCAGACT GTTGTAGTT CTGTTGAGGA GAGAGACAAG	9540
	GAACTTAAAG ATTCAACCGTC TGTAAGCATE ATTAGTGATG TTGTTCCAGC TGAATGGGAT	9600
	GATTCAAGATG CAAACGTCTG GGGTGAGGAC TAGTCAGATG ATTGATCGAC CCTTCTACCG	9660
25	ATTGGTGATC GCTATCCTTG CTCTCTGAGA AATAGGTGAG GCGAAACAAA AAATAATTG	9720
	CATGATAAAA AGTCTGATTT TATGATCGCT ATCCTCGCTC TCTGAGAAAG AAGCGAAACA	9780
30	AAGGCGACTC CTGGACTCGA ATCTATAAGA TAACAAAGGC GACTCCTGGG ACTCGAATCT	9840
	ATAAGATAAC AAAGGCAATT CCAAGACTTG AATCTATAAA AAATTTAGTT AAGAATGATT	9900
	AACGTCCGAT CCTAATTGCA ATCGAGGCAT CTTACCACTC CATTGATAAT TATATAAGTC	9960
35	AATAAGTCAT ATAAAGTATT AAAAACTAAA TTGACTTGAT CGGTCTATCA AAAATAGATA	10020
	AATTGTGTC ATATGTAACA TTTTGTGAT CACAATTAGC TTAATTACAT CTTTCATGTG	10080
	CAATAACAAA GAAATGATAG GAATTAGAG ATTCCAATT TTTTGTGAC ACAATTAAC	10140
40	TAATTACATC TTTCATTGCA AATAACAAAG AAATGATAGG AATTTAGAGA TCCAGTGTCA	10200
	ATACACAAACC TAGGCCAACA TCGAAAGCAT AACTGTAAAC TCATGCATGA AGAAATCAGT	10260
45	CGTAAAATG AATAATGCG ACATAAAAAC AAATTGCATG TATCATTAAAT GTGACTTAAC	10320
	TACAAGTAAA AATAAATTAA ACAAAATGAA CTTAACTACA AGTAAAATA AATTGCTTCT	10380
50	ATCATTAAACA AACAAACAGA ATTAAAAGA AAAAAACATA CTAATCTTA CCGTCATTG	10440
	ATAAAAAAAAA ATACCAAATT CATAATGCAA GGAAAACGAA ACGCGTCCTG ATCGGGTATC	10500
	AACGATGAAA TGGACCAGTT GGATCGACTG CCTGCACAAC GTTAGGTATG CCAAAAAAAA	10560
55	GAACACGATC CTTGCACCC GTTCGATGAT TATCAGTATG TTCACAAAAA AAACCTTAAGT	10620
	TCATCCCAGT GTACAACAGC CCCAACATCT GCCCCAAGTA ACAAAAAACA ACCAATTAT	10680

	CTTATTCTTA TCTGCCACAA AATAATCGGT TTCACACTAT TCTCTTGTAA TACAAAATTG	10740
5	ACAAGTAGGA AGGAGAGGAG TCATCCAAAT AAACGGTGCA CGTTCTTGA GAAAAGTCTT	10800
	ATTTTCGTA AGATCCAATT TCAACAAACT TTTCTTCAAG TCAAAATTCC TGATAGTGTA	10860
	TCTCCTCTCG ACGACCTCTT GCATTGAACG ATCTCCGCTT ATCATGAAAA GTTGCTTGG	10920
10	TAACAAGTAT TGCAAGGGGG GGACAGTAGC TATTAAGTTA GTCGGCCCAA GGAAATGGAG	10980
	GAGTGATAGT CTCGAATATT ATTACACCTCT TTAGCATTAC CCGGTCTGGC TTTAAGGAGT	11040
15	TACGTCTTTT ACGCTCGCCA ATTTCTTTT TTAGAATGGT TGGTGTCAAATCGCGAGTT	11100
	GTGGAAGGTT CAAGTTACTC GATTGATTTT TTTCAAGTAT GAGTGGTGAG AGAGATTGCA	11160
	TATTTTCACG AGGTGTATTG GAGGTCTAGT AGAACGAAGG GTGTCACTAA TGAAAGTTTC	11220
20	AAGAGTTCAT CATCATCTTC TTCTAGTAGA TTTTCGCTTT CAAATGAGTA TGAAAATTCT	11280
	TCCTCTTTTC TATTGATTTT CTTCATTGTT TTCTTCATTG TTGTGGTTGT TATTGAAAAG	11340
25	AAAGAAAATT TATAACAGAA AAAGATGTCA AAAAAAAGGT AAAATGAAAG AGTATCATAT	11400
	ACTTAAAGAG TTGCGTAGAG ATAAGTCAAA AGAAACAGAA TTATAGTAAT TTCAGCTAAG	11460
	TTAGAATTCT	11469

30 (2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Synthetic DNA Primer"

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

50 GGAATTCCAG TCGCAGTCTA CATTAC 26

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

5

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

15 CGGGATCCAG AGGCATTAAG ATTTCTGG

28

(2) INFORMATION FOR SEQ ID NO: 32:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

(iii) HYPOTHETICAL: NO

30 (iv) ANTI-SENSE: YES

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

CGGGATCCAA AGAAATTCTC GAGGTTACAT GG

32

40 (2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

45

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

50

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGGATCCGG GGTAATTTT ACTAATTCA TG

32

(2) INFORMATION FOR SEQ ID NO: 34:

5

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10

- (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

15

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

20

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CGGGATCCCG TATGTCTCAC TGTGTTGTG GC

32

25

(2) INFORMATION FOR SEQ ID NO: 35:

30

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

35

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

40

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

45

CGGGATCCCC CTACATACAT ATATCAGATT AG

32

(2) INFORMATION FOR SEQ ID NO: 36:

50

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

55

- (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

5 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

5

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

CCATCGATAAC TTTAAGTGAT TTGATGGC

28

(2) INFORMATION FOR SEQ ID NO: 37:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Synthetic DNA Primer"

25

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

CGGGATCCTG TTCTGATTCT TGATTTC

28

35

(2) INFORMATION FOR SEQ ID NO: 38:

40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2122 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

45

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

55

GTATGTCTCA CTGTGTTGT GGCTGTGTGT GTTTTTCT CTGTCTTTT GTGTTTGTG

60

TAATTGGGGC TCTTAAAGT TGGTATTGTG TATACCCTTT TGAGTATAGT CTTTGAGGAA

120

	GCAAAATGAT	GAATCTTGAT	TGACATTAGT	AAGGGTTGTA	ACTTTTGAA	GTTTGGTTAG	180
	GTGTAATTGA	GTTTGGCTTG	TGTGTCGTG	TGTCGAGGTT	ATTTTTTGG	TTTGTGTTAT	240
5	TGGGGATTCT	TAAAAGTTGG	TATTGTGTAT	ACCCCTTTGA	GTATAGTCTT	TGAGGAAGCA	300
	AAAATGATGA	ATCTTGATTG	GCATTAGTAA	AGGTTGTAGC	TTTTGAAGT	GTGGTTAGGT	360
10	GTAATTGAGT	TTGGCTTGTG	TGTCTGTGTG	TTTGGAAC	CTGATGTGTG	TCAAGTCCTG	420
	ATATGGGTCG	AGGTTCTTC	TTTGGTTGT	GTAATTGGGG	GTTCTTAAAA	GTTGGTATTA	480
	TGTACCTTT	TAAGAATAGT	GTCTGAGAAA	GCAAAATCGA	TGAATTGAA	TTGACAGCAT	540
15	ATTCTTGAG	AAAGCAAAA	ATGGTGAGTT	TTCATGGAGA	AACTGATTG	ACATTACTAA	600
	AGGTAGCAAC	TTTTCAACT	CCTGATATGG	GTCAAGGTT	TTGTTGGT	TTGTGTAATT	660
20	TGGGGTTCTT	TGAAGTTTG	AGAAAGAAA	ATTATGATT	TTCATGGAGA	AATTTGATT	720
	ACATTAATAA	AGGTAGTAGC	TTTTAAAGT	GTGGTCAGCT	GTAATGAGTT	CAGCTTGGTT	780
	TAAAGGGGCC	CTACATATGG	TGCTTCTGG	TGAGATATT	GTTGCTCCAC	CATACGAGTT	840
25	ATAAGAATCA	TAGTGTAGG	ATCTTTTC	TTTTTTTT	CATTTTCAC	TTGACTAGCT	900
	ACTAGAGGAG	TGATCTTGAC	GGCGGAAAAT	CTTAGAAAGG	GGAAGGTTGT	TTGCATCAAC	960
30	TGGTGTATA	TGTGCAAGGA	GACGGGAGAT	GATGTAGATC	ATCTTCTTCT	TCATTGTTG	1020
	CTTTCCATGA	GGTTATGATG	TGATATGTT	GAATGGTTG	GTACTTCTG	GCTATGCCAA	1080
	GAACTGTGAA	AGAATTGATA	TTCAGTTGGA	AGTGTGGAGT	TGGAAGAGTG	GAAGAATTGA	1140
35	CACTTGGTTC	CATTAGCTT	AATGTGGGTG	GTGTGGAGAG	AGAGAGAAAAT	AGGAGAGCTT	1200
	TTGAGGGGGT	AGAGTTGAGC	TTTCCTCAGT	TGAGAAAGTAG	CCTTTGATAT	CTTTTTTTT	1260
40	TTTTTTGTA	CACCCATAGA	ATTCCAATT	GTATAGAAGA	TTGGGTGGAG	TTTGTAGAGA	1320
	ATCATCTTT	GTAGTAGATT	CTTTACCTT	TGGTATATCC	ATTGTATACA	GCCAGGCCTT	1380
	TGACTATGTT	TATGAATGAA	TATACATTAC	TTGAAAAAAA	AAGAAGTGAA	GCCAGTCTGT	1440
45	TGTACCTTG	TAGACAATGT	TGTTGCAGCA	TCTTGATAAT	TCCCTGAAAA	TTGTCTCCCT	1500
	GAAGGAATAG	TTGGTTGAT	ATTGATTATT	TCTTGGTTG	TTTAATTGG	TGTTCTTGAA	1560
50	GGCCATTTA	AATCCTTG	CATTGTTAAA	GGTGTGACA	AGTGTGGTC	TGGGTTAAA	1620
	AGCACCTCTT	GTATGGTGCT	TTCTGGAGTG	ATCTTCTTC	CTCCAAAAGA	GAAGTTGCAA	1680
	GAATCAGTGT	GTGTACTTTT	TTCTCTTGT	TGATCAGATC	TTTTTCAAT	TTTCCGTTT	1740
55	TAGTTGATT	ATCCATATAG	TGAAAGTTGG	TGTCATAGTT	GCTGTTGTG	GACTTCCTGT	1800
	AAAAGTTTT	TGATATACTT	AAAAAATTGT	CACACAGAAG	AAAGAGTTTT	TTACCATTAC	1860

60

TTAAGCTAGA TGGGACTGTT TGATTCTTAG ACCAAATAAT GAACCTTTT GTTCTCTTAA 1920
CGTGTACTTG AAATAGTTG GTAAAATTGT GATAGGAAAA AAGATAATTC TTGATTGCTT 1980
5 TTGGAGCATC ACTTCTAAC ATAAAAGTCT TTGCTCTCTT CAACCATGAA TGATAAATTG 2040
GACACTTATG TGGCCCTAAG TTGCTCTCAG TAGTGGCTTT TAATTGTGGA GATATAACTA 2100
10 ATCTGATATA TGTATGTAGG GA 2122

CLAIMS

1. A method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of a class A potato starch branching enzyme in an antisense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

2. A method according to claim 1 wherein starch branching enzyme activity is affected and/or wherein the levels of amylopectin are affected and/or the composition of starch is changed.

15

3. A method of affecting enzymatic activity in a starch producing organism (or a cell, a tissue or an organ thereof) comprising expressing in the starch producing organism (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of a class A starch branching enzyme in an antisense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

25

4. A method according to claim 3 wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

30 5. A method according to any one of the preceding claims wherein the enzymatic activity is reduced or eliminated.

6. A method according to any one of the preceding claims wherein the nucleotide sequence codes for at least substantially all of at least one intron in an antisense orientation.

5

7. A method according to any one of the preceding claims wherein the nucleotide sequence codes for all of at least one intron in an antisense orientation.

8. A method according to any one of the preceding claims wherein the
10 nucleotide sequence comprises the complement of SEQ. ID. No. 38, or a fragment thereof.

9. A method according to any one of the preceding claims wherein the nucleotide sequence is expressed by a promoter having a sequence shown as SEQ.I.D.
15 No. 14 or a variant, derivative or homologue thereof.

10. An antisense sequence comprising the nucleotide sequence as defined in claim 8 or a variant, derivative or homologue thereof.

20 11. A promoter having a sequence shown as SEQ.I.D. No. 14, or a variant, derivative or homologue thereof.

12. A promoter according to claim 11 in combination with a gene of interest ("GOI").

25

13. A construct capable of comprising or expressing the invention according to any one of claims 10 to 12.

30 14. A vector comprising or expressing the invention according to any one of claims 10 to 13.

15. A combination of nucleotide sequences comprising a first nucleotide sequence coding for a recombinant enzyme; and a second nucleotide sequence which corresponds to an *intron* in antisense orientation; wherein the *intron* is an *intron* that is associated with a genomic gene encoding an enzyme corresponding to the recombinant 5 enzyme; and wherein the second nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the *intron*.
16. A cell, tissue or organ comprising or expressing the invention according to any one of claims 10 to 15.
- 10 17. A transgenic starch producing organism comprising or expressing the invention according to any one of claims 10 to 16.
- 15 18. A transgenic starch producing organism according to claim 17 wherein the organism is a plant.
19. A starch obtained from the invention according to any one of the preceding claims.
20. 20. A nucleotide sequence that is antisense to an *intron* of class A SBE.

21. A method for modifying starch production in an organism, comprising transforming the organism with a transgene capable of expressing an antisense *intron* sequence relating to class A SBE and a transgene capable of expressing an antisense 25 *intron* sequence relating to class B SBE, thereby reducing or eliminating endogenous class A and class B production, and a further sequence encoding a SBE from a heterologous source.

1 / 27

Reducing end

Reducing end

FIG. 1

2 / 27

FIG. 2

SUBSTITUTE SHEET (rule 26)

3 / 27

FIG. 3

4 / 27

FIG. 4

5 / 27

SUBSTITUTE SHEET (rule 26)

6 / 27

FIG. 6

SUBSTITUTE SHEET (rule 26)

7 / 27

FIG. 7

8 / 27

FIG. 9

10 / 27

FIG. 10

11 / 27

FIG. 11

12 / 27

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					
ATCATGGCCAATTACTGGTCAAAATGCATTACTTCCTTCAGATTCTTCGAGTTCTCAT					60
GACCGGTCTACTACAGACGATACTAACCCGTGGAACGTGTCATCTGCTCTAGAAGT					120
CTATGGCTATTTCTGTTAGCTTGGCGTCGGTTGAACATAGTTTGTTTCAAACCTCTT					180
CATTTACAGTCAAAATGTTGTATGGTTTGTCTCAATGATGTTACAGTGTGTG					240
TTGTCATCTGTACTTTGCCTATTACTTGTGTTGAGTTACATGTTAAAAAGTGTATT					300
TTGCCATATTTGTTCTCTTATTATTATCATAACATACTTACATTACAAGGAAAAGACA					360
AGTACACAGATCTTAACGTTATGTTCAATCAACTTTGGAGGCATTGACAGGTACCACA					420
AATTTGAGTTATGATTAAGTTCAATCTAGAATATGAATTAAACATCTATTATAGATG					480
CATAAAAATAGCTAATGATAGAACATTGACATTGGCAGAGCTTAGGGTATGGTATATCC					540
AACGTTAATTAGTAATTTGTTACGTACGTATATGAAATATTGAATTACATGAA					600
CGGTGGATATTATATTATGAGTTGGCATCAGAAAATCATTGGTAGTTGACTGTAGTT					660
GCAGATTTAATAATAAAAATGGTAATTACGGTCGATATTAAAATAACTCTCATTCAAGT					720
GGGATTAGAACTAGTTATTAAAAAAATGTATACTTTAAGTGTATTGATGGCATATAATT					780
AAAGTTTTCATTCATGCTAAAATTGTTAATTATTGTAATGTAGACTGCGACTGGAATT					840
ATTATAGTGTAAATTATGCATTCACTGTTAAAGTATTGAACTTGTCTGTTAG					900
AAAATACTTATACTTTAATATAGGATTGTCATGCGAATTAAATTAAATCGATATTGA					960
ACACCGAATACCAAAATTAAAAAGGACACATGCCCTCATATGAACCGTGAACCTTG					1020
ATAACGTGGAAGTTCAAAGAAGGTAAAGTTAAGAATAAAACTGACAAATTAAATTCTTT					1080
ATTGGCCCACACTAAATTGCTTACTTCTAACATGTCAGTTGCCCTCTAGTT					1140
GAATGATATTCATTTCATCCCATAAGTTCAATTGATTGTCATACCACCCATGATGTT					1200
CTGAAAATGCTTGGCATTCAAAAGTTATCTTAGTTCTATGAACATTATAAGAAC					1260
TTAATTGACATGTTATTATATTAGATGATATAATCCATGACCCAATAGACAAGTGT					1320
TTAATATTGTAACTTGTAATTGAGTGTGTCTACATCTTATTCAATCATTAAAGGTCA					1380
AAAATAAATTATTTTGACATTCTAAAACTTAACCGAGAATAATAGTTATCAATTAT					1440
TAAAAACAAAAACGACTTATTATAACAAACAATTAGATTGCTCCAACATAT					1500

FIG. 12

SUBSTITUTE SHEET (rule 26)

13 / 27

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					
TTTCCAAATTAAATGCAGAAATGCATAATTATACCTGATCTTATAGCTTATTTT	1560				
TTTAGCCTAACCAACGAATATTGTAAACTCACAACTTGATTAAAAGGGATTACAACAA	1620				
GATATATATAAGTAGTGACAAATCTTGATTTAAATATTTAATTGGAGGTCAAAATT	1680				
TACCATTAATCATTTGTATTTATAATTAAATTAAATATCTTATTTATACATATCTAGTA	1740				
AACTTTAAATATACGTATATACAAAATATAAAATTATTGGCGTCATATTAGCTCAATA	1800				
AATCCTTAACATATATCTGCCTTACCACTAGGAGAAAGTAAAAAACTCTTACCAAAAATA	1860				
CATGTATTATGTATACAAAAAGTCGATTAGATTACCTAAATAGAAATTGTATAACGAGTA	1920				
AGTAAGTAGAAATATAAAAAACTACAATACTAAAAAAATATGTTTACTTCATTTCG	1980				
AAACTAATGGGGTCTGAGTGAAATATTCAAGAAAGGGGAGGACTAACAAAAGGGTCATAAT	2040				
GTTTTTTATEAAAAGCCACTAAAATGAGGAATCAAGAACATACAAGAAGGCA	2100				
GCAGCTGAAGCAAAGTACCCATAATTAAATCAATGAAATTAAATTCAAAGTTTATCAA	2160	M E I N F K V L S K			
ACCCATTGAGGATCTTCCATCTTCACCTAAAGTTCTCAGGGtaatccccac	2220	P I R G S F P S F S P K V S S G			
taatttcatgttaatttcaatttttagcccttgcatttccaaatatatctgg	2280	taatttcatgttaatttcaatttttagcccttgcatttccaaatatatctgg			
atcatctccctagtttttattttataatataatcaaataatggaagaaaatgaca	2340				
cttgttagccatatgttaagtattcatgtgacaaatttgcaggtggttgagtgtataaaa	2400				
ttcaaaaattgagagatggagggggggtggggbaragacaatattagaaagagtgttc	2460				
taggagttatggaggacacggatgagggtagaaggtagtttagtattgagttgt	2520				
ctggcttatcccttataacttagtagtcgtgaaattttggtagttttttgtttttgtta	2580				
tttgatctttgttattttatccccctgtttttttgtacttcgattattgtattatatctt	2640				
gtcgtagttatgtttccctcgtaagaatgccttagcatgcttcctttagtgtttatcat	2700				
gccttccttatattcgcttgcttggaaatgtttttacttttagccgagggtctatagaa	2760				
acaatctcttatctcgttaaggtagggtaaagtccctaccacactccacttggatt	2820				
acattgtttttgttggtaaaatcaattatgtataacataataagtggatttttacaaca	2880				
caaatacatggtcaaggcщаaggttctgaacacataaaagggttattatgtccaggga	2940				
tatgataaaaattgtttttgtgaaaggatataagattgttatggctttgtggaa	3000				

FIG. 12 CONTINUED

SUBSTITUTE SHEET (rule 26)

14 / 27

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					
acataataaagttataatgctgagatagctactgaagtttgtttttctagccttttaaaat					3060
gtaccaataatagattccgtatcgAACGAGTATGTTTgattacctggcatgtatgtttc					3120
tatTTTTacatTTTGGTGTGAACtgcAAATTGAAAATGTTGATCCTATGAGACGG					3180
atagttgagaatgtgtccccgtatggaccttgagaagctcaaACGCTACTCCAATAATT					3240
tctatgaattcaaattcagttatggctaccagtcaGTCAGAAATTAGGATatgtgcA					3300
tatacttgttcaattatactgtaaaatttttaagttctcaagatatccatgtAACCTCG					3360
agaattttttgacaggCTTCTAGAAATAAGATATGTTTCCTTCAACATAGTACTGG					3420
A S R N K I C F P S Q H S T G					
ACTGAAGTTGGATCTCAGGAACGGTCTGGATATTCTTCCACCCAAAATCAAGAGT					3480
L K F G S Q E R S W D I S S T P K S R V					
TAGAAAAGATGAAAGGGtatgtttgataattatatggttgcataggatagtataaaata					3540
R K D E R					
gttggaaaacttctggactggtgctcatggcatattgatctgtgcaccgtgtggagatg					3600
tcaaacatgtgttacttcgttccgccaattataataacctaacttggaaagacagctc					3660
tttactcctgtgggcatttgcatttgaattacaatctttagagcatggtgTTTcaca					3720
ttatcaacttcttcatgtggtatataaacatgttttagtccgttaataaccttttttt					3780
tttgcataaaactaactgtggtgcatgtgcattgcattgcblkdkATGAAGCACAGTCAGCTATTTC					3840
M K H S S A I S					
CGCTGTTTGACCGATGACGACAATTGACAATGGCACCCCTAGAGGAAGATGTCAAGAC					3900
A V L T D D N S T M A P L E E D V K T					
TGAAAATATTGGCCTCTAAATTGGATCCAACCTTGGAACCTTATCTAGATCACTTCAG					3960
E N I G L L N L D P T L E P Y L D H F R					
ACACAGAATGAAGAGATATGTGGATCAGAAAATGCTCATTGAAAAATATGAGGGACCCCT					4020
H R M K R Y V D Q K M L I E K Y E G P L					
TGAGGAATTGCTCAAAGgtaacagccaaaagttgtgcttttaggcagttgaccttatttt					4080
E E F A Q G					
ggaagatgaattttataacctactttgactttgctagagaattttgcataccggggagt					4140
aagttagtggctccatttaggtggcacctggccatTTTTgatTTTaaaaagctgttt					4200
gatggggcttcaaaaaaagttagacaagggtttttggagaagtgcacacaccccccggagtgtc					4260
agtggcaaagcaaagatTTTcaactaaggagatcAAAatataaaaaaagtatagacataa					4320
agaagctgagggattcaacatgtactatacaagcatcaaataatgtctaaagcaattt					4380
tgttagaaataaagaaagtcttccttctgttgcttcacaatttttttattatcatgagt					4440
tactttttctgtcgaaaatagcttccttaataatcaaattcatgataactttttgttgagatt					4500

FIG. 12 CONTINUED

SUBSTITUTE SHEET (rule 26)

15 / 27

10	20	30	40	50	60
<u>123456789012345678901234567890123456789012345678901234567890</u>					
tagcagtttttcttgtaaactgtctcttttttgtagGTTATTTAAATTGGATT	4560				
Y L K F G F					
CAACAGGGAAAGATGGTGCATAGTCTATCGTAATGGCTCCGTGCTGCTCAGtaggtcc:	4620				
N R E D G C I V Y R E W A P A A Q					
cgtctactacaaaatagttagtttccatcatcataacagattttctattaaaggatgatg	4680				
ttgcagcatcattggcttcttacatgtttcaattgttattaaaggatgtttcaatta	4740				
actcatccacaatgcagGGAAGCAGAAGTTATTGGCGATTCAATGGATGGAACGGTTCT	4800				
E A E V I G D F N G W N G S					
AACCACATGATGGAGAACGGACCAGTTGGTGTGGAGTATTAGAATTCTGATGTTGAC	4860				
N H M M E K D Q F G V W S I R I P D V D					
AGTAAGCCAGTCATTCCACACAACACTCCAGAGTTAACGTTCAAAACATGGTAATGGA	4920				
S K P V I P H N S R V K F R F K H G N G					
GTGTGGTAGATCGTATCCCTGCTGGATAAAAGTATGCCACTGGCAGACGCCACAAAGTT	4980				
V W V D R I P A W I K Y A T A D A T K F					
GCAGCACCATATGATGGTGTACTGGACCCACCACCTTCAGAAAGgtttgttattca	5040				
A A P Y D G V Y W D P P P S E R					
taccttgaagctgaattttgaacaccatcatcacaggcatttcgattcatgtttacta	5100				
gtcttgttatgttaagacatccccataactttcccttaacaaaatgagtcattctataagtgtttactaatt	5160				
tggacttgcattccataactttcccttaacaaaatgagtcattctataagtgtttgaga	5220				
acttactacttcagcaattaaacagGTACCACTTCAAATACCCCTGCCCTCCAAACCCC	5280				
Y H F K Y P R P P K P R					
GAGCCCCACGAATCTATGAAGCACATGTCGGCATGAGCAGCTCTGAGCCACGTGTAAATT	5340				
A P R I Y E A H V G M S S S E P R V N S					
CGTATCGTGAGTTGCAGATGATGTTACCTCGGATTAAGGCAAATAACTATAACTG	5400				
Y R E F A D D V L P R I K A N N Y N T V					
TCCAGTTGATGCCATAATGGAACATTCTACTATGGATCATTTGGATATCATGTTACAA	5460				
Q L M A I M E H S Y Y G S F G Y H V T N					
ACTTTTTGCTGTGAGCAGTAGATATGAAACCCGGAGGACCTAAAGTATCTGATAGATA	5520				
F F A V S S R Y G N P E D L K Y L I D K					
AAGCACATAGCTGGTTACAGGTTCTGGTGGATGAGTTCACAGTCATGCAAGCAATA	5580				
A H S L G L Q V L V D V V H S H A S N N					
ATGTCACTGATGCCCTCAATGGCTTTGATATTGGCCAAGGTTCTCAAGAATCCTACTTC	5640				
V T D G L N G F D I G Q G S Q E S Y F H					
ATGCTGGAGAGCGAGGGTACCATAGTTGTTGGATAGCAGGCTGTTCAACTATGCCAATT	5700				
A G E R G Y H K L W D S R L F N Y A N W					
GGGAGGTTCTCGTTCTTCTTCTTCCAACCTTGAGGTGGTGGCTAGAAGAGTATAACTTG	5760				
E V L R F L L S N L R W W L E E Y N F D					
ACGGATTTCGATTGATGGAATAACTCTATGCTGATGTTCATCATGGAATCAATATGG	5820				
G F R F D G I T S M L Y V H H G I N M G					
GATTTACAGGAAACTATAATGAGTATTTCAGCGAGGCTACAGATGTTGATGCTGTGGTCT	5880				
F T G N Y N E Y F S E A T D V D A V V Y					
ATTTAATGTTGCCAATAATCTGATTCAACAGATTTCAGGACTGCAACTGTTATTGCCG	5940				
L M L A N N L I H K I F P D A T V I A E					
AAGATGTTCTGGTATGCCGGGCCCTGGCCGGCCTGTTCTGAGGGAGGAATTGGTTTG	6000				
D V S G M P G L G R P V S E G G I G F V					

FIG. 12 CONTINUED

SUBSTITUTE SHEET (rule 26)

16 / 27

FIG. 12 CONTINUED

SUBSTITUTE SHEET (rule 26)

17 / 27

FIG. 12 CONTINUED

SUBSTITUTE SHEET (rule 26)

18 / 27

10	20	30	40	50	60
<u>12345678901234567890123456789012345678901234567890</u>					
agt	ttgtttgttggaaacagtgcatgttagatgaacacatgtcagaaaaatggacaacacag				9060
ttat	tttgtgcaggtaaaaaatgtactactatcttcgtgcagcttatgtatagaa				9120
aagt	ttaaataactaatgaattttgtctagcaaaaaatagcttggagagaaaattttata				9180
ttgaactaagctaactatattcatcttctttgtttcttctccctgttgcag					9240
GCTTATTACAGAGTTGATGAACGCATGTCA	GAAACTGAAGATTACCAGACAGACATTGT				9300
A Y Y R V D E R M S E T E D Y Q T D I C	AGTGAGCTACTACCAACAGCCAATATCGAGGGAGAGTGACGAGAACTTAAAGATTGTTA				9360
S E L L P T A N I E E S D E K L K D S L	TCTACAAAATATCAGTAACATTGACGAACGCATGTCA	GAGAACTGAAGTTACCAGACAGAC			9420
S T N I S N I D E R M S E T E V Y Q T D	ATTTCTAGTGAGCTACTACCAACAGCCAATTGAGGGAGAGTGACGAGAACTTAAAGAT	I S S E L L P T A N I E E S D E K L K D			9480
ATTTCTAGTGAGCTACTACCAACAGCCAATTGAGGGAGAGTGACGAGAACTTAAAGAT	TCGTATCTACAAAATATCAGTAACATTGATCAGACTGTTGTAGTTCTGTGAGGGAGAGA	S L S T N I S N I D Q T V V V S V E E R			9540
I S S E L L P T A N I E E S D E K L K D	GACAAGGAACCTAAAGATTCACCGTCTGTAAGCATCATTAGTGTGATGTTCCAGCTGAA	D K E L K D S P S V S I I S D V V P A E			9600
TCGTATCTACAAAATATCAGTAACATTGATCAGACTGTTGTAGTTCTGTGAGGGAGAGA	TGGGATGATTGAGATGCAAACGTCGGGGTGAGGACTAGTCAGATGATTGATCGACCCCTT	W D D S D A N V W G E D			9660
S L S T N I S N I D Q T V V V S V E E R	CTACCGATTGGTGTGATCGCTATCCTCTGCTCTGAGAAATAGGTGAGGCAGAAAAAT	C T A C C G A T T G G T G A T C G C T A T C C T C T G C T C T G A G A A A T A T T A A G A A			9720
GACAAGGAACCTAAAGATTCACCGTCTGTAAGCATCATTAGTGTGATGTTCCAGCTGAA	A A T T T G C A T G A T A A A A A G T C T G A T T T A T G A T C G C T A T C C T C G C T C T G A G A A A G A A G C	A A T T T G C A T G A T A A A A A G T C T G A T T T A T G A T C G C T A T C C T C G C T C T G A G A A A G A A G C			9780
D K E L K D S P S V S I I S D V V P A E	GAATCTATAAGATAACAAAGCAATTCCAAGACTTGAATCTATAAAAAATTAGTTAAGA	G A A C A A A A G G C G A C T C C T G G A C T C G A A T C T A T A A G A T A A C A A A G G C G A C T C C T G G G A C T C			9840
W D D S D A N V W G E D	ATGATTAACGTCCGATCCTAATTGAAATCGAGGCATCTTACCACTCCATTGATAATTATA	G A A T C T A T A A G T C A T A T A A W A G T A T T A A A A C T A A A T T G A C T T G A T C G G T C T A T C A A A A			9900
C T A C C G A T T G G T G A T C G C T A T C C T C T G C T C T G A G A A A T A G G T G A G G C G A A A C A A A A A T	TAAGTCAATAAGTCATATAAWAGTATTAAAAACTAAATTGACTTGTGATCGGTCTATCAA	A T G A T T A A C G T C C G A T C C T A A T T G A A A T C G A A T C G A G G C A T C T T A C C A C T C C A T T G A T A A T T A T A			9960
A T G A T T A A C G T C C G A T C C T A A T T G A A A T C G A A T C G A G G C A T C T T A C C A C T C C A T T G A T A A T T A T A	TAAGTCAATAAGTCATATAAWAGTATTAAAAACTAAATTGACTTGTGATCGGTCTATCAA	T A A G T C A A T A A G T C A T A T A A W A G T A T T A A A A C T A A A T T G A C T T G A T C G G T C T A T C A A A A			10020
T A A G T C A A T A A G T C A T A T A A W A G T A T T A A A A C T A A A T T G A C T T G A T C G G T C T A T C A A A A	ATMAGATMAAATTGTGTTCATATGTAACATTGTTGTACAATTAGCTTAATTACATC	A T M A G A T M A A A T T G T G T C A T A T G T A A C A T T T G T G T C A C A A T T A G C T T A A T T A C A T C			10080
A T M A G A T M A A A T T G T G T C A T A T G T A A C A T T T G T G T C A C A A T T A G C T T A A T T A C A T C	TTTCATGTGCAATAACAAAGAAATGATAGGAATTAGAGATTCCAATTGTTGTTGCCA	T T T C A T G T G C A A T A A C A A A G A A A T G A T A G G A A T T G A T G T G T C A C A A T T T T T G T G T G C C A			10140
T T T C A T G T G C A A T A A C A A A G A A A T G A T A G G A A T T G A T G T G T C A C A A T T T T T G T G T G C C A	CAATTAACCTAATTACATCTTCATTGCAATAACAAAGAAATGATAGGAATTAGAGAT	C A A T T A A C T T A A T T A C A T C T T C A T T G C A A T A A C A A A G A A A T G A T A G G A A T T G A G A G A T			10200
C A A T T A A C T T A A T T A C A T C T T C A T T G C A A T A A C A A A G A A A T G A T A G G A A T T G A G A G A T	CCAGTGTCAATACACAACCTAGGCCAACATCGAAAGCATAACTGTAAACTCATGCATGAA	C C A G T G T C A A T A C A C A A C C T A G G C C A A C A T C G A A A G C A T A A C T G T A A A C T C A T G C A T G A A			10260
C C A G T G T C A A T A C A C A A C C T A G G C C A A C A T C G A A A G C A T A A C T G T A A A C T C A T G C A T G A A	GAAATCAGTCGAAAAATGAATAATGCGACATAAAAACAATTGCATGTATCATTAAATG	G A A A T C A G T C G A A A A A T G A A T A A A T G C G A C A T A A A A C A A A T T G C A T G T A T C A T T A A T G			10320
G A A A T C A G T C G A A A A A T G A A T A A A T G C G A C A T A A A A C A A A T T G C A T G T A T C A T T A A T G	TGACTTAACCTACAAGTAAAAATAATTAAACAAATGTAACCTAACTACAAGTAAAATAA	T G A C T T A A C T A C A A G T A A A A T A A A T T A A C A A A T G T A A C T T A A C T A C A A G T A A A A T A A			10380
T G A C T T A A C T A C A A G T A A A A T A A A T T A A C A A A T G T A A C T T A A C T A C A A G T A A A A T A A	ATTGCTTCTATCATTAAACAAACAGAATTAAAAAGAAAAACATACTAAATCTTAC	A T T G C T T C T A T C A T T A A C A A A C A C A G A A T T A A A A G A A A A A A C A T A C T A A A T C T T A C			10440
A T T G C T T C T A T C A T T A A C A A A C A C A G A A T T A A A A G A A A A A A C A T A C T A A A T C T T A C	CGTCATTGATAAAAAAAATACCAAATTCTATAATGCAAGGAAAACGAAACGGCTCTGA	C G T C A T T G C A T A A A A A A T A C C A A A T T C T A T A A T G C A A G G A A A A C G A A A C G C G T C C T G A			10500

FIG. 12 CONTINUED

SUBSTITUTE SHEET (rule 26)

19 / 27

10	20	30	40	50	60
<u>123456789012345678901234567890123456789012345678901234567890</u>					
TCGGGTATCAACGATGAAATGGACCAGTTGGATCGACTGCCTGCACAACGTTAGGTATGC	10560				
CAAAAAAAAGAACACGATCCCTTGCACCCGTTGATGATTATCAGTATGTTACAAAAAA	10620				
AACTTAAGTTCATCCCAGTGTACAACAGCCCCAACATCTGCCCAAGTAACAAAAACAA	10680				
CCAATTATCTTATTCTTATCTGCCACAAAATAATCGGTTCACACTATTCTCTTGTAT	10740				
ACAAAATTGACAAGTAGGAAGGAGAGGAGTCATCAAATAACGGTGCACGTTCTTGAG	10800				
AAAAGTCTTATTTTCTGAAGATCCAATTCAACAAACTTTCTTCAAGTCAAAATT CCT	10860				
GATAGTGTATCTCCTCTCGACGACCTCTGCATTGAACGATCTCGCTTATCATGAAAAG	10920				
TTGCTTGGATAACAAGTATTGCAAGGGGGGACAGTAGCTATTAGTTAGTCGGCCCAAG	10980				
GAAATGGAGGAGTGATAGTCTCGAATATTACCTCTTAGCATTACCGGTCTGGCT	11040				
TTAAGGAGTTACGTCTTACGCTCGCAATTCTTTAGAATGGTTGGTGTCAAAA	11100				
TCGCGAGTTGGAAGGTTCAAGTTACTCGATTGTGATTTCAAGTATGAGTGGTGAGA	11160				
GAGATTGATATTTCACGAGGTGTATTGAGGTCTAGTAGAACGAAGGGTGTCACTAAT	11220				
GAAAGTTCAAGAGTTCATCATCTTCTTAGTGTGTTCAATTGAGTAT	11280				
GAAAATTCTCCTCTTCTATTGATTTCTCATTGTTCTCATTGTTGTGGTTGTT	11340				
ATTGAAAAGAAAGAAAATTATAACAGAAAAGATGTCAAAAAAGGTAAAATGAAAGA	11400				
GTATCATATACTAAAGAGTTGCGTAGAGATAAGTCAAAAGAAAACAGAATTATAGTAATT	11460				
TCAGCTAAGTTAGAATT	11478				

FIG. 12 CONTINUED

20 / 27

FIG. 13

SUBSTITUTE SHEET (rule 26)

21 / 27

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					

GTATAACACTCTGGAGTCGTTTCCACTGTCATCAGTGTACAAATCTAATGGATT 60
 Y T L S G V R F P T V P S V Y K S N G F

SspI
 BsmI
 CAGCAGTAATGGTGATCGGAGGAATGCTAATATTCTGTATTCTGAAAAAACACTCTCT 120
 S S N G D R R N A N I S V F L K K H S L

BsaAI
 ▼
 TTCACgtatgtctactgtgtttgtggctgtgtgtttttctctgtttttgtgtt 180
 S R

Bsp1286I
 BanII
 ▼
 ttgtgttaattggggctttaaagtttgtattgtgtataccctttgagtatagtcttg 240

aggaagcaaaatgatgaatcttgattgacatttagtaagggtttaacttttgaagttt 300

gttaggtgttaattgagttggcttgtgtctgtgtcgaggttattttttggttgt 360

gttattggggatcttaaaagtttgtattgtgtataaccctttgagtatagtcttgagga 420

agcaaaaatgatgaatcttgattggcatttagtaaaagggtttagcttttgaagtgtggtt 480

agggtgttaattgagttggcttgtgtctgtgtgttttggaaatcctgatgtgtgtcaagt 540

FIG. 14

SUBSTITUTE SHEET (rule 26)

22 / 27

10	20	30	40	50	60
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890

attatgtacccaaaaataagaatagtgtctgagaaagcaaaatcgatgaattttgattgaca 660

gcataattctttgagaaaagcaaaaaatggtgagtttcatggagaaacttgattgacatta 720

ctaaaggttagcaactttttcaactcctgatatgggtcaaggttttttgtttttgtgt 780

aatttgggttctttgaagtttgagaaaagaaaaattatgattttcatggagaaatttgc 840

AseI Pvull NspBII
▼ ▼
atttacattaataaaaggtagtagctttttaaagtgtggtcagctgtaatgagttcagtt 900

BspI286I
BamII
ApaI NdeI
ggtttaaaggggccctacatatggtgctttctggtagatattgttgcaccatac 960

FIG. 14 CONTINUED

SUBSTITUTE SHEET (rule 26)

23 / 27

10	20	30	40	50	60
1234567890	1234567890	1234567890	1234567890	1234567890	1234567890

Esp3I **BsaBI**

tcaactggcggttatatcgtagcaaggagacgggagatgatgttagatcatcttcttcatt 1140

gtggtccttccatgaggttatgargtgatatgtttgaatggtttgtacttcttggctat 1200

EarI
▼
gccaaagaactgtgaaagaattgatattcagttggaaagtgtggagttggaaagagtggaaga 1260

atgacactggttccatttagcttaatgtgggtggtgtggagagagagaaataggag 1320

agctttttagggggtagagttgagcttcctcagttgagaagtgccttgatatcccc EcorV 1380

ECORI MunI
ttttttttttgtacacccatagaattcccaatttgtatagaagatgggtggagtttgt 1440

agagaatcatcttttgttagattcttacaccttggtatatccattgtatacagccag 1500

StuI
▼gcctt~~gactatgttat~~gaat~~atacattactt~~gaaaaaaaaagaagtgaagccag 1560

tctgttgtacccgttagacaatgttgtgcagcatcttataattccctgaaaaattgtc 1620

FIG. 14 CONTINUED

SUBSTITUTE SHEET (rule 26)

24 / 27

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					

tccctgaaggaatagttgggtgatattgattattcttggttgttaattcggtgttc 1680

ttgaaggccatttaaatccttgacattgttaaagggtttacaagtgttggctgggt 1740

ttaaaagcacctttgtatggtgcttctggagtgtttttccaaaaagagaagt 1800

BclI BglII

tgcaagaatcagtgtgtactttttctttgtatgatcagatttttcaattttc 1860

cgttttagttgatttatccataatgtgaaagtgggtgtcatagttgtttgtggactt 1920

cctgtaaaagtttttgatatacttaaaaaattgtcacacagaagaaaagattttacc 1980

AflII

attacttaagctagatgggactgtttgatttttagaccaaataatgaaccttttgtct 2040

AflIII

cttaacgtgtacttggaaatagttggtaaaattgtgataggaaaaagataattttgtat 2100

EarI

tgctttggagcatcactttaatcataaaagtcttgccttcaaccatgaatgata 2160

FIG. 14 CONTINUED

SUBSTITUTE SHEET (rule 26)

25 / 27

10	20	30	40	50	60
123456789012345678901234567890123456789012345678901234567890					

aattggacacttatgtggccctaaagtgtcttcagtagtggtcttaatttgtggagatat 2220

BglII BbsI
aactaatctgatatatgtatgttagGGAAGATCTTGGCTGAAAAGTCTTCTTACAATTCCG 2280
K I L A E K S S Y N S E

SfcI
AATCCCGACCTTCTACAGTTGCAGCATCG 2309
S R P S T V A A S

FIG. 14 CONTINUED

SUBSTITUTE SHEET (rule 26)

26 / 27

FIG. 15

27 / 27

FIG. 16

INTERNATIONAL SEARCH REPORT

Int'l Appl. No.

PCT/IB 98/00270

A CLASSIFICATION OF SUBJECT MATTER				
IPC 6	C12N15/82	C12N9/10	C12N15/11	C08B30/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C08B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	WO 97 04112 A (DANISCO ;POULSEN PETER (DK)) 6 February 1997 cited in the application see the whole document ---	1-21
X	WO 97 04113 A (DANISCO ;POULSEN PETER (DK)) 6 February 1997 cited in the application see the whole document ---	1-21
Y	WO 96 34968 A (NAT STARCH CHEM INVEST ;COOKE DAVID (GB); DEBET MARTINE (GB); GIDL) 7 November 1996 cited in the application see page 5, paragraph 3 - paragraph 4 see page 9, paragraph 2 - page 10, paragraph 1 see page 11, paragraph 3 ---	1-21
X	17-19 ---	
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
29 May 1998	09/06/1998
Name and mailing address of the ISA European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl. Fax (+31-70) 340-3016	Authorized officer Chakravarty, A

INTERNATIONAL SEARCH REPORT

Inten	and Application No
PCT/IB 98/00270	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	WO 92 11375 A (AMYLOGENE HB) 9 July 1992 cited in the application see the whole document ---	1-21
Y	WO 94 09144 A (ZENECA LTD) 28 April 1994 see page 10, line 1 - line 18 ---	1-21
Y	WO 92 15680 A (UNIV TEXAS) 17 September 1992 see page 6, line 17 - line 28 ---	1-21
X	EP 0 240 208 A (CALGENE INC) 7 October 1987 see page 3, line 10 - line 13 -----	15

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte: Int'l Application No

PCT/IB 98/00270

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9704112	A	06-02-1997		AU 6614596 A EP 0839202 A		18-02-1997 06-05-1998
WO 9704113	A	06-02-1997		AU 6614696 A EP 0839203 A		18-02-1997 06-05-1998
WO 9634968	A	07-11-1996		AU 5509996 A EP 0826061 A		21-11-1996 04-03-1998
WO 9211375	A	09-07-1992		SE 467160 B AU 9109791 A EP 0563201 A PL 169859 B SE 9004095 A		01-06-1992 22-07-1992 06-10-1993 30-09-1996 01-06-1992
WO 9409144	A	28-04-1994		CA 2146998 A AU 690517 B AU 2696492 A EP 0664835 A		28-04-1994 30-04-1998 09-05-1994 02-08-1995
WO 9215680	A	17-09-1992		AU 663702 B AU 1570492 A CA 2108144 A EP 0575518 A US 5747469 A		19-10-1995 06-10-1992 07-09-1992 29-12-1993 05-05-1998
EP 0240208	A	07-10-1987		AT 114168 T AU 1301792 A AU 618234 B AU 7059787 A DE 3750755 D DE 3750755 T EP 0458367 A ES 2066759 T JP 2702921 B JP 62296880 A JP 10052283 A US 5107065 A US 5453566 A US 4801540 A		15-12-1994 03-09-1992 19-12-1991 01-10-1987 22-12-1994 18-05-1995 27-11-1991 16-03-1995 26-01-1998 24-12-1987 24-02-1998 21-04-1992 26-09-1995 31-01-1989