Question 1. Determine whether the following sequence of functions converges pointwise on \mathbb{R} and if so, find the limit function $f_n(x) = \frac{x}{n+x}$ for $n \in \mathbb{N}$.

Solution 1. We claim that the sequence of functions $f_n(x) = \frac{x}{n+x}$ converges pointwise to f(x) = 0 on \mathbb{R} . To see that this is true, note that

$$f(x) = \lim_{n \to \infty} \frac{x}{n+x} = \lim_{n \to \infty} \frac{\frac{x}{n}}{1 + \frac{x}{n}} = 0$$

Hence, the pointwise convergence of $f_n(x)$ is f(x) = 0.

Question 2. Determine whether the series of functions converges uniformly on [0,1]: $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

Solution 2. We claim that the series of functions $\sum_{n=1}^{\infty} \frac{x^n}{n}$ does not converge uniformly on [0,1]. To see that this is true, we will use the Weierstrass M-Test. If $f_n(x) = \frac{x^n}{n}$ for $x \in [0,1]$, then

$$\left|\frac{x^n}{n}\right| \le \frac{1}{n} = M_n$$

Then since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series that diverges, then this implies that the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ does not converge uniformly on $x \in [0,1]$.

Question 3. Show that the sequence of functions $f_n(x) = x^n$ converges pointwise to the function

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

on [0,1] but does not converge uniformly.

Solution 3. We want to show that $f_n(x) = x^n$ converges pointwise to the given f(x). For x = 0, we have that for each $n \in \mathbb{N}$,

$$f(0) = \lim_{n \to \infty} f_n(0) = \lim_{n \to \infty} 0 = 0$$

for x = 1, for each $n \in \mathbb{N}$,

$$f(1) = \lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} 1 = 1$$

and for $x \in (0,1)$, for each $n \in \mathbb{N}$,

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0$$

(since x is small and raised to a large number will simply be very small). Therefore, we have that $f_n(x)$ converges pointwise to the function

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

The convergence of $f_n(x)$ is not uniform since each $f_n(x)$ is continuous at x=1 but f(x) is not continuous at x=1. Alternatively, if $x_n = \sqrt[n]{\frac{1}{2}}$ and $\epsilon = \frac{1}{4}$, then $x_n \in (0,1)$

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| \ge |f_n(x_n) - f(x_n)| = \frac{1}{2} > \frac{1}{4} = \epsilon$$

Therefore, the convergence is not uniform.

Question 4. Let $f_n(x) = \frac{x^n}{n^2}$ for $x \in [0,1]$ and $n \in \mathbb{N}$. Use the Weierstrass M-Test to show that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [0,1].

Solution 4. We will use the Weierstrass M-Test to show that the series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ converges uniformly on $x \in [0,1]$. We have

$$\left|\frac{x^n}{n^2}\right| \le \frac{1}{n^2} = M_n$$

Here since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, then we have that $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ converges uniformly on [0, 1].

Question 5. Show that the sequence of functions $f_n(x) = \frac{nx}{1+n^2x^2}$ converges uniformly to the function f(x) = 0 on [0,1].

Solution 5. We want to show that the sequence of functions $f_n(x) = \frac{nx}{1+n^2x^2}$ converges uniformly to f(x) = 0 on [0,1]. Since

$$f(x) = \lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} = \lim_{n \to \infty} \frac{\frac{x}{n}}{\frac{1}{n^2} + x^2} = 0$$

Then we have that the pointwise limit is f(x) = 0 on $x \in [0,1]$. Now we want to show that the convergence is uniform. Let $\epsilon > 0$ be arbitrary. Since $f_n(x) \to 0$, there exists an $N \in \mathbb{N}$ such that

$$\left| \frac{nx}{1 + n^2 x^2} \right| \le \left| \frac{nx}{n^2 x^2} \right| = \frac{1}{nx}$$

Then as $n \to \infty$, we have that for $N > \frac{1}{\epsilon}$,

$$\left| \frac{nx}{1 + n^2 x^2} \right| \le \frac{1}{nx} < \frac{\epsilon}{n} < \epsilon$$

Therefore, as $\epsilon > 0$ was arbitrary, $f_n(x) = \frac{nx}{1+n^2x^2}$ converges uniformly to f(x) = 0 on [0,1].

Question 6. Determine whether the following series of functions converges uniformly on \mathbb{R} :

$$\sum_{n=1}^{\infty} \frac{1}{n(1+nx^2)}$$

Solution 6. To determine whether the series of functions converges uniformly on \mathbb{R} , we can use the Weierstrass M-Test to do so. Since

$$\left| \frac{1}{n(1+nx^2)} \right| \le \frac{1}{n}$$

Since $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges, it follows that $\sum_{n=1}^{\infty} \frac{1}{n(1+nx^2)}$ does not converges uniformly on \mathbb{R} .

Question 7. Consider the series of functions $\sum_{n=1}^{\infty} \frac{x^n}{n!}$. Use the Weierstrass M-Test to show that the series converges uniformly on any bounded interval [-a,a].

Solution 7. Using the Weierstrass M-Test,

$$\left| \frac{x^n}{n!} \right| \le \frac{a^n}{n!} = M_n$$

Since the series $\sum_{n=1}^{\infty} \frac{a^n}{n!} = e^a$ which is a finite number, so it converges for all $x \in [-a, a]$, it follows that $\sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x$ converges uniformly on $x \in [-a, a]$ as well.