

Strong Lottery Ticket Hypothesis with ε -Perturbation

Zheyang Xiong*, Fangshuo Liao*, Anastasios Kyrillidis Department of Computer Science, Rice University

> {zx21, Fangshuo.Liao, anastasios}@rice.edu *Equal Contribution

CENTRAL QUESTION

Strong Lottery Ticket Hypothesis: There exists a subnetwork in a sufficiently over-parameterized, randomly initialized neural network that approximates a target neural network.

Limitation: Strong LTH does not deal with the weight change during the pre-training of LTH.

Idea: Weight change during pre-training = Perturbation around initialization.

Central Question: By allowing an ε -perturbation on the initial weights, can we reduce the overparameterization for the candidate network in the SLTH? If so, how can we find such a good perturbation?

PERTURBED SUBSET SUM PROBLEM

Given a set of random candidates $\{x_i\}_{i=1}^n$ and a target value z, the ε -perturbed subset sum problem considers the following approximation

 $\eta^* = \min_{\boldsymbol{\delta} \in \{0,1\}^n, \mathbf{y} \in [-\varepsilon, \varepsilon]^n} \left| \sum_{i=1}^n \delta_i \left(x_i + y_i \right) - z \right|.$

Theorem 1. For all $K \ge 0$, with probability at least $1 - \exp\left(-\frac{(n-K)(1+\varepsilon)^2}{8(3-\varepsilon)}\right)$ $-\exp(-K)$, every $z \in [-1/2, 1/2]$ has an 2η approximation as long as the number of candidates n satisfies

$$n = O\left(\frac{\log \eta^{-1}}{1+\varepsilon} + K\right).$$

E-PERTURBED STRONG LTH

Let \mathcal{F} be a target neural network with depth L, and the width of the ℓ th layer is d_{ℓ} , and let $\mathcal{G}_{\mathbf{W}}$ be the candidate neural network with depth 2L. We approximate f using $\mathcal{G}_{\mathbf{W}}$ by allowing pruning and perturbation on the weights of ${\cal G}$

$$\eta = \min_{\Delta \mathbf{W}, \mathcal{M}} \sup_{\mathbf{x}} \| \mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G}_{\mathbf{W} + \Delta \mathbf{W}})(\mathbf{x}) \|.$$
(2)

Theorem 2. For \mathcal{G} , if the width of the $(2\ell-1)$ th layer is d_{ℓ} , the width of the 2ℓ th layer is d_{ℓ} . As long as

$$d'_{\ell} = O\left(d_{\ell-1} \frac{\log(\hat{\eta}^{-1} d_{\ell} d_{\ell-1} L)}{1+\varepsilon}\right),\,$$

then with high probability η defined in Equation (2) has $\eta \leq \hat{\eta}$

Remark: The original SLTH requires $d'_{\ell} = O(d_{\ell-1}\log(\hat{\eta}^{-1}d_{\ell}d_{\ell-1}L))$. Compared with the original SLTH, our result is smaller by a factor of $\frac{1}{1+\varepsilon}$. As $\varepsilon \to \infty$, the required width of the candidate network goes to d_ℓ .

PSSP EXPERIMENTS

With the goal of approximating some target value z, we search for the number n such that 90% of the randomly generated candidate sets with n elements gives an η approximation of z.

PGD+EDGE-POPUP

Idea: Training the neural network using SGD while bounding the max-norm of the weight change to ε . How does the pruned accuracy vary as we vary ε

Algorithm 1 PGD+StrongLTH

Input: Perturbation scale ε , neural network loss \mathcal{L} , initial weight \mathbf{W}_0 , learning rate $\{\alpha_t\}_{t=0}^{T-1}$

weight
$$\mathbf{W}_0$$
, learning rate $\{\alpha_t\}_{t=0}^{T-1}$
1: $\Delta \mathbf{W} \leftarrow 0$
2: $\mathbf{for} \ t \in \{0, \dots, T-1\} \ \mathbf{do}$
3: $\hat{\mathbf{W}} \leftarrow \Delta \mathbf{W} - \alpha_t \nabla \mathcal{L}(\mathbf{W}_t)$
4: $\Delta \mathbf{W} \leftarrow \operatorname{sign}(\hat{\mathbf{W}}) \cdot \min\{\operatorname{abs}(\hat{\mathbf{W}}), \varepsilon\}$
5: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_0 + \Delta \mathbf{W}$
6: $\mathbf{end} \ \mathbf{for}$
7: $\ell^* \leftarrow \infty$, $\mathcal{M}^* \leftarrow \mathrm{None}$
8: $\mathbf{for} \ \mathrm{pruning} \ \mathrm{level} \ s \in \{0.1, 0.2, \dots, 0.9\} \ \mathbf{do}$
9: ℓ , $\mathcal{M} \leftarrow \mathrm{Edge-Popup}(\mathcal{L}, \mathbf{W}_T, s)$
10: $\mathbf{if} \ \ell \leq \ell^* \ \mathbf{then}$
11: $\ell^* \leftarrow \ell$, $\mathcal{M}^* \leftarrow \mathcal{M}$

- end if
- 13: **end for**
- 14: **return** Optimal loss ℓ^* , mask \mathbf{M}^* and sparsity level s

SGD FINDS A GOOD WEIGHT PERTURBATION

Red: Strong LTH

Blue:

Standard Training with SGD

Orange:

Pruning Dominated by SGD

Sparsity s	Perturbation Scale ε										
	0	10^{-3}	$5 \cdot 10^{-3}$	10 ⁻²	$2 \cdot 10^{-2}$	$3 \cdot 10^{-2}$	$4 \cdot 10^{-2}$	$5 \cdot 10^{-2}$	10^{-1}	$2 \cdot 10^{-1}$	$3 \cdot 10^{-1}$
0	0.12	0.14	0.25	0.42	0.68	0.84	0.90	0.93	0.96	0.97	0.98
0.1	0.49	0.48	0.65	0.70	0.78	0.82	0.87	0.87	0.94	0.97	0.98
0.2	0.75	0.76	0.77	0.79	0.84	0.86	0.88	0.87	0.93	0.96	0.97
0.3	0.83	0.82	0.82	0.82	0.88	0.88	0.86	0.90	0.92	0.94	0.93
0.4	0.82	0.86	0.88	0.89	0.90	0.89	0.90	0.90	0.88	0.91	0.86
0.5	0.85	0.88	0.86	0.89	0.87	0.88	0.89	0.89	0.90	0.89	0.76
0.6	0.83	0.87	0.87	0.83	0.86	0.88	0.87	0.88	0.87	0.85	0.54
0.7	0.81	0.85	0.84	0.83	0.86	0.82	0.81	0.81	0.79	0.74	0.29
0.8	0.73	0.71	0.71	0.75	0.77	0.75	0.73	0.68	0.77	0.55	0.17

REFERENCE

- Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos. Optimal Lottery Tickets via SUBSETSUM: Logarithmic over-Parameterization is Sufficient. Curran Associates Inc., Red Hook, NY, USA, 2020.
- [2] George S. Lueker. Exponentially small bounds on the expected optimum of the partition and subset sum problems. Random Structures & Algorithms, 12(1):51–62, 1998.
- [3] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *In*ternational Conference on Learning Representations, 2019.
- Arthur da Cunha, Francesco d'Amore, Frédéric Giroire, Hicham Lesfari, Emanuele Natale, and Laurent Viennot. Revisiting the random subset sum problem, 2022.