HW 5

1

a

Let $\phi(g) = g^{-1}$. We will show that ϕ maps left cosets to right cosets.

a, b are in the same left coset $\iff aH = bH \iff b^{-1}aH = H \iff b^{-1}a \in H \iff Ha^{-1} = Hb^{-1} \iff \phi(a), \phi(b)$ are in the same right coset.

Hence consider ϕ_1 as a map from left cosets to right cosets, defined by $\phi_1(T) = \{\phi(t)|t \in T\}$, and ϕ_2 a map from right cosets to left cosets defined by $\phi_2(T) = \{\phi(t)|t \in T\}$ (these have the stated domains and codomains by the fact that ϕ maps left cosets to right cosets). It is easy to check that ϕ_1 and ϕ_2 are inverses of each other (since ϕ is self-inverse). Hence ϕ is a bijection between left and right cosets.

b

Let $N \leq G$ be such a subgroup of index 2; by theorem 6, it suffices to show that gN = Ng for all $g \in G$, and for this it suffices to show that the bijection ϕ defined in 1a is an identity. We have $\phi(N) = eNe = N$. Hence ϕ maps the remaining coset N^C (the complement of N in G) to itself.

 \mathbf{c}

Among S_n the even permutations are closed under composition. Furthermore, an even permutation can be written as $g = t_1 t_2 \dots t_{2n}$ where each t_i is a transposition; hence $g^{-1} = t_{2n}^{-1} \dots t_1^{-1}$ is even as well. Hence the even permutations form a subgroup.

Let $A_n \leq S_n$ be the subgroup of even permutations. Choose a transposition t; then every element of tA_n is odd. Furthermore, every odd permutation g can be written as $g = t(tg) \in tA_n$, hence $S_n = A_n \sqcup tA_n$ and A_n has index 2.

 \mathbf{d}

Consider the set $N = \{e, (1,2)(3,4), (1,3)(2,4)(1,4)(2,3)\}$ consisting of all the permutations of cycle structure 2+2 together with the identity. By brute force computation, this is a subgroup since

$$(1,2)(3,4)(1,3)(2,4) = (1,4)(2,3)$$

$$(1,2)(3,4)(1,4)(2,3) = (1,3)(2,4)$$

$$(1,3)(2,4)(1,4)(2,3) = (1,2)(3,4)$$

Since the conjugate pnp^{-1} is n with relabelled elements, it has the same cycle structure as n; hence conjugation by $g \in S_n$ fixes N. (To be more rigorous, it suffices to verify this for all 6 transpositions in S_n since conjugation by p can be written as a sequence of conjugations by transpositions).

$\mathbf{2}$

 C_2 as quotient: let $N = \langle r \rangle = e, r^1, r^2 \dots r^n$. Since |G:N| = 2, N is normal and the quotient Dic_n/N has order 2; hence it must be isomorphic to C_2 .

 D_n as quotient: consider the subgroup $E=\{1,s^2\}$ (this is a subgroup since $s^4=1$). To show that E is normal, it suffices to show that s^2 commutes with every element of D_n , and it suffices to show that it commutes with every generator. s^2 commutes with s is trivial, and $s^2=r^{\frac{n}{2}}$ hence it commutes with r as well.

In terms of the matrix representation, this is $E = \{I, -I\}$, and this commutes with everything in the group since it consists of diagonal matrices.

Hence Dic_n/E is a quotient group with the same order as D_n ; it remains to find an isomorphic copy of D_n in it; in fact R=rE and S=sE satisfies the correct relations. $\langle R \rangle = \{R^1,R^2\dots R^{\frac{n}{2}}=E\}$ where the inner equality holds because $r^{\frac{n}{2}}\{e,r^{\frac{n}{2}}\}=\{r^{\frac{n}{2}},e\}$ and the list has no duplicates since $r^aE=r^bE\iff \{r^a,r^{a+\frac{n}{2}}\}=\{r^b,r^{b+\frac{n}{2}}\}\iff \{[a],[a+\frac{n}{2}]\}=\{[b],[b+\frac{n}{2}]\}$ where $[\cdot]$ denotes congruence classes modulo n. Hence $r^aE=r^bE\iff \text{either }a=b\pmod N$ or $a=b+\frac{n}{2}\pmod n$; in either case, $a=b\pmod {\frac{n}{2}}$. Similarly, $\langle S \rangle=\{e,s^2E\}$. Lastly, $RSRS=rsrsE=s^2E=E$.

3.1.36

Suppose G/Z(G) is cyclic with generator xZ(G). This means that any coset can be written as $(xZ(G))^a = x^aZ(G)$ for some $a \in \mathbb{Z}$. Since the cosets partition G, every element of G is of the form x^az for some $a \in \mathbb{Z}, z \in Z(G)$.

Let $g_1, g_2 \in G$; we can write $g_1 = x^a z_1, g_2 = x^b z_2$ for some $a, b \in \mathbb{Z}, z_1, z_2 \in Z(G)$. Then $g_1 g_2 = x^a z_1 x^b z_2 = x^a x^b z_1 z_2 = x^{a+b} z_1 z_2 = x^b x^a z_2 z_1 = x^b z_2 x^a z_1 = g_2 g_1$.

3.1.41

Let $M = \{x^{-1}y^{-1}xy | x, y \in G\}$, and $N = \bar{M}$.

Notation: let $[a,b] = a^{-1}b^{-1}ab$ be the comutator of a and b. We have $[b^{-1},a^{-1}]ab = bab^{-1}a^{-1}ab = ba$.

For $n \in N, g \in G$ we show that $gng^{-1} \in N$.

By the definition of N, we can write $n = c_1 c_2 \dots c_k$ where each $c_i = [x_i, y_i]$.

$$gn = gc_1c_2 \dots c_k$$

$$= [g^{-1}, c_1^{-1}]c_1gc_2 \dots c_k$$

$$= [g^{-1}, c_1^{-1}]c_1[g^{-1}, c_2^{-1}]c_2g \dots c_k$$

$$\dots$$

$$= [g^{-1}, c_1^{-1}]c_1[g^{-1}, c_2^{-1}]c_2 \dots [g^{-1}, c_k^{-1}]g$$

Hence $gng^{-1} = [g^{-1}, c_1^{-1}]c_1[g^{-1}, c_2^{-1}]c_2 \dots [g^{-1}, c_k^{-1}]$. This belongs to N since every factor is a comutator.

3.1.43

For each $g \in G$ let P(g) be the partition containing g. Let N = P(e) where e is the identity in G.

Notation: let Q be a part. Q^{-1} is the unique part satisfying $Q^{-1}Q = N$ where the operation is quotient multiplication (this exists and is unique because the partition is a group under quotient multiplication).

Claim: N is closed under the group operation. Suppose $a, b \in N$. By the well-definedness of the quotient operation, P(ab) = P(ee) = N. Hence $ab \in N$.

Claim: N is closed under inverse. For $a \in N$ we have $P(a^{-1})$ must be an identity element under quotient multiplication; since identities are unique in groups, $P(a^{-1}) = N$ hence $a^{-1} \in N$.

By the above two claims, N is a subgroup of G. We will prove that every part is a left coset of N, and every left coset is a part. This suffices to prove that N is normal by proposition 5 (page 81).

Claim: $P(g) = P(g') \iff g^{-1}g' \in N$. Proof: \implies : suppose P(g) = P(g'). Consider the equation $P(g)^{-1}P(g') = N$, which is true because $P(g)^{-1} = P(g')^{-1}$. By the well-definedness of quotient multiplication the LHS is $P(g^{-1}g')$ hence $P(g^{-1}g') \in N$ hence $g^{-1}g' = N$. \iff : suppose $g^{-1}g' \in N$, then $N = P(g^{-1}g') = P(g)^{-1}P(g')$. By multiplying the outer equation on the left with P(g), we have P(g) = P(g').

Now $g' \in P(g) \iff P(g') = P(g) \iff g^{-1}g' \in N \iff g' \in gN$ where the first biimplication holds because the P's form a partition. This shows that P(g) = gN, hence each part is a left coset. The fact that every left coset is a part follows because the parts partition (i.e. cover) G.