Algebra II (ISIM), lista 2 (19.10.2021, deklaracje do 9:00).

p oznacza liczbę pierwszą, F, G, H sa grupami.

Teoria: Grupa i grupa abelowa: definicja, podstawowe własności, notacja multyplikatywna i addytywna. Rząd grupy. Podgrupa: definicja, podstawowe własności, charakteryzacja podgrupy jako podstruktury. Przykłady grup: grupa czwórkowa Kleina K_4 , n-ta grupa dihedralna D_n , n-ta grupa symetryczna S_n . Grupa automorfizmów struktury. Podgrupy $\langle a \rangle$ i $\langle A \rangle$ dla $a \in G, A \subseteq G$. Rząd ord(a) elementu w grupie. Grupy cykliczne: definicja, wyliczenie. Warstwy podgrupy. $|G| = [G:K] \cdot |K|$. Twierdzenie Lagrange'a: rząd podgrupy dzieli rząd grupy. Rząd elementu grupy dzieli rząd grupy.

Homomorfizmy grup: jądro, obraz, własności.

- 1. Dana jest grupa 4-elementowa $G=\{e,a,b,c\}$ taka, że $a^2=b^2=c^2=e$. Sporządzić tabelkę działania grupy G, z uzasadnieniem.
- 2. Załóżmy, że $f:G\to H$ jest homomorfizmem grup Udowodnic, że
 - (a) $f(e_G) = e_H$.
 - (b) $f(x^{-1}) = f(x)^{-1}$.
 - (c) Ker(f) < G, Im(f) < H.
- 3. (Małe tw. Fermata) Załóżmy, że liczba całkowita n nie jest podzielna przez p. Udowodnić, że $p|n^{p-1}-1$ (wsk: sprowadzić zadanie do przypadku, gdy $n \in \mathbb{Z}_{p}^{*}$).
- 4. (a) W grupie $(\mathbb{Z}_p^*, \cdot_p)$ obliczyć iloczyn wszystkich elementów.
 - (b) Udowodnić twierdzenie Wilsona: p|(p-1)! + 1.
- 5. Udowodnić, że jeśli G,H są grupami cyklicznymi tego samego rzędu, to są izomorficzne.
- 6. (a) Udowodnić, że podgrupa grupy cyklicznej jest cykliczna.
 - (b)– Udowodnić, że homomorficzny obraz grupy cyklicznje jest grupą cykliczną (nie trzeba dowodzić, że jest grupą).
 - (c)– Udowodnić, że wszystkie podgrupy grupy $(\mathbb{Z}, +)$ sa postaci $n\mathbb{Z}, n \geq 0$. Dla $n \neq 0$ sa one izomorficzne z $(\mathbb{Z}, +)$.
- 7. (a) Wyznaczyć wszystkie automorfizmy grupy ($\mathbb{Z}_{10}, +_{10}$).
 - (b) Zidentyfikować strukturę algebraiczną gruppy $Aut(\mathbb{Z}_{10}, +_{10})$ (tzn. wskazać, z którą z grup z wykładu grupa $Aut(\mathbb{Z}_{10}, +_{10})$ jest izomorficzna).
- 8. Załóżmy, że $f:G\to H$ jest homomorfizmem grup, $g\in G,$ ord(g)=n, $k\in\mathbb{N}^+.$ Uwododnić, że:
 - (a) $ord(g^k) = \frac{n}{NWD(n,k)}$
 - (b) ord(f(q)) dzieli ord(q).
- 9. * Załóżmy, że K jest podgrupą grupy G. Udowodnić, że $|G| = [G:K] \cdot |K|$ w ogólnym przypadku (tj. również dla grup nieskończonych).

- 10. (a) Udowodnić, że grupa (\mathbb{Q} , +) nie jest cykliczna.
 - Czy istnieje skończony zbiór $A \subseteq \mathbb{Q}$ generujący grupę $(\mathbb{Q}, +)$?
 - (b)* Wskazać właściwą nietrywialną podgrupę G grupy $(\mathbb{Q},+)$, która nie jest cykliczna.
 - (c)* Czy istnieje właściwa podgrupa grupy (\mathbb{Q} , +) izomorficzna z grupą (\mathbb{Q} , +)?