

	XV-1P								
References: XP-101	References: XP-113	References: XP-119							
Ø25.4 FLANGE	Ø30 FLANGE	Ø32 BH FLANGE							
References : XP-140	References: XP-161	References: XP-168							
Ø32 HY FLANGE	Standard German Ø32 BH	Ø50.8 SAE AA FLANGE							

	XV-2P									
References : XP-201	References : XP-210	References: XP-213								
Ø36.5 FLANGE	Ø50 BH FLANGE	Ø50 HY FLANGE								
References: XP-216	References : XP-217	References : XP-219								
Standard German Ø52 BH FLANGE	Standard German Ø80 FLANGE	Ø82.5 SAE A FLANGE								

Vivoil Oleodinamica Vivolo s.r.l. presents a new series of gear pumps called XV-P.

The quality of the product has been improved on by exploiting new and innovative solutions, both technical and constructive, for which the company has been awarded 3 patents.

The pumps are divided into four groups:

XV-0P XV1-P XV-2P XV-3P

The main features of the XV-0P are the following

Displacements from 0.16 cm³ / revolution to 2.28 cm³/revolution.

Maximum pressures up to **280 bar**.

Versions w/ flanges: Ø22 – Standard;

Ø22 BH – Sagomata; Ø22 HY – Sagomata.

Rotation speeds up to 9000 rpm.

Configurations with inlet and outlet in the body, flange and cover.

Available shafts: Cylindrical with Woodruff key;

Milled shank;

Tapered 1:8 Woodruff key.

The main features of the XV-1P are the following

Displacements from 0.91 cm³ / revolution to 9.88 cm³ / revolution.

Maximum pressures up to 300 bar.

Versions w/ flanges: Ø25.4 – Standard European;

Ø30 - Standard;

Ø32 BH – Body-Shaped; Ø32 HY – Body-Shaped;

Ø32 BH - Standard German - Body-Shaped;

Ø50.8 - SAE AA

Rotation speeds up to 6000 rpm

Configurations with inlet and outlet in the body, flange and cover.

Available shafts: Tapered 1:8 Woodruff key;

Parallel with key; Milled shank; Splined.

The main features of the XV-2P are the following:

Displacements from 4.2 cm³ / revolution a 39.6 cm³ / revolution.

Maximum pressures up to 300 bar.

Versions w/ flanges: Ø36,5 – Standard Europea;

Ø50 BH – Body-Shaped; Ø50 HY – Body-Shaped;

Ø52 BH - Standard German - Body-Shaped;

Ø80 - Standard German;

Ø82,5 - SAE A.

Rotation speeds up to 3500 rpm

Configurations with inlet and outlet in the body, flange and cover.

Available shafts: Tapered 1:8 Woodruff key;

Parallel with key; Milled shank; Splined.

The main features of the XV-3P are the following:

Displacements from 14.89 cm³ / revolution to 86.87cm³ / revolution.

Maximum pressures up to 320 bar.

Versions w/ flanges: Ø50,8 – Standard European;

Rotation speeds up to 3000 rpm.

Available shafts: Tapered 1:8 Woodruff key;

Parallel with key;

Splined.

INTRODUCTION XV-0P XV-1P XV-2P

XV-3P

Summary: Displacements - Pressures - Speeds

	Туре	Displacement	Max. Pressure	Min speed	Max speed
	XV-0P/0.17	0.16 cm ³ /rev	260 bar	700 rpm	9000 rpm
	XV-0P/0.25	0.24 cm ³ /rev	260 bar	700 rpm	9000 rpm
	XV-0P/0.45	0.45 cm ³ /rev	280 bar	700 rpm	9000 rpm
_	XV-0P/0.57	0.56 cm ³ /rev	280 bar	700 rpm	9000 rpm
XV-0P	XV-0P/0.76	0.75 cm ³ /rev	280 bar	700 rpm	9000 rpm
\sim	XV-0P/0.98	0.92 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-0P/1.27	1.26 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-0P/1.52	1.48 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-0P/2.30	2.28 cm ³ /rev	210 bar	700 rpm	5000 rpm
	XV-1P/0.9	0.91 cm ³ /rev	280 bar	700 rpm	6000 rpm
	XV-1P/1.2	1.17 cm ³ /rev	290 bar	700 rpm	6000 rpm
	XV-1P/1.7	1.56 cm ³ /rev	290 bar	700 rpm	6000 rpm
	XV-1P/2.2	2.08 cm ³ /rev	290 bar	700 rpm	6000 rpm
	XV-1P/2.6	2.60 cm ³ /rev	300 bar	700 rpm	6000 rpm
a	XV-1P/3.2	3.12 cm ³ /rev	300 bar	700 rpm	6000 rpm
XV-1P	XV-1P/3.8	3.64 cm ³ /rev	300 bar	700 rpm	6000 rpm
×	XV-1P/4.3	4.16 cm ³ /rev	300 bar	700 rpm	6000 rpm
	XV-1P/4.9	4.94 cm ³ /rev	300 bar	700 rpm	6000 rpm
	XV-1P/5.9	5.85 cm ³ /rev	300 bar	700 rpm	5000 rpm
	XV-1P/6.5	6.50 cm ³ /rev	300 bar	700 rpm	5000 rpm
	XV-1P/7.8	7.54 cm ³ /rev	260 bar	700 rpm	5000 rpm
	XV-1P/9.8	9.88 cm ³ /rev	230 bar	700 rpm	4000 rpm
	XV-2P/4	4.2 cm ³ /rev	300 bar	700 rpm	3500 rpm
	XV-2P/6	6.0 cm ³ /rev	300 bar	700 rpm	3500 rpm
	XV-2P/9	8.4 cm ³ /rev	300 bar	700 rpm	3500 rpm
	XV-2P/11	10.8 cm ³ /rev	300 bar	700 rpm	3500 rpm
0	XV-2P/14	14.4 cm ³ /rev	290 bar	700 rpm	3500 rpm
XV-2P	XV-2P/17	16.8 cm ³ /rev	270 bar	700 rpm	3500 rpm
>	XV-2P/19	19.2 cm ³ /rev	250 bar	700 rpm	3000 rpm
	XV-2P/22	22.8 cm ³ /rev	240 bar	700 rpm	3000 rpm
	XV-2P/26	26.2 cm ³ /rev	210 bar	700 rpm	3000 rpm
	XV-2P/30	30.0 cm ³ /rev	200 bar	700 rpm	2500 rpm
	XV-2P/34	34.2 cm ³ /rev	190 bar	700 rpm	2500 rpm
	XV-2P/40	39.6 cm ³ /rev	180 bar	700 rpm	2000 rpm
	XV-3P/15	14.89 cm ³ /rev	320 bar	700 rpm	3000 rpm
	XV-3P/18	17.37 cm ³ /rev	320 bar	700 rpm	3000 rpm
	XV-3P/21	21.10 cm ³ /rev	300 bar	700 rpm	3000 rpm
	XV-3P/27	26.97 cm ³ /rev	270 bar	700 rpm	3000 rpm
	XV-3P/32	32.27 cm ³ /rev	270 bar	700 rpm	3000 rpm
	XV-3P/38	38.47 cm ³ /rev	270 bar	700 rpm	2800 rpm
XV-3P	XV-3P/43	43.44 cm ³ /rev	250 bar	700 rpm	2800 rpm
	XV-3P/47 XV-3P/51	47.16 cm ³ /rev 50.88 cm ³ /rev	250 bar	700 rpm	2800 rpm
×	XV-3P/51 XV-3P/54	50.88 cm ⁻ /rev 54.60cm ³ /rev	250 bar	700 rpm	2800 rpm
	XV-3P/54 XV-3P/61	54.60cm ⁻ /rev 60.81 cm ³ /rev	250 bar	700 rpm	2300 rpm
	XV-3P/61 XV-3P/64	60.81 cm ⁻ /rev	220 bar	700 rpm	2300 rpm
	XV-3P/64 XV-3P/70	70.74 cm ³ /rev	220 bar 210 bar	700 rpm 700 rpm	2300 rpm 2300 rpm
	XV-3P/70 XV-3P/74	70.74 cm ³ /rev		•	
	XV-3P/90	86.87 cm ³ /rev	190 bar 160 bar	700 rpm 700 rpm	2300 rpm 2300 rpm
	AV-01 /00	oo.or un /lev	100 bal	700 Ipili	2300 IPIII

General technical data

Type of fluid to be used	Mineral-based hydraulic oil HLP HV (D IN 51524)
Minimum operating viscosity	10 mm ² /s
Maximum operating viscosity	100 mm ² /s
Maximum admissible viscosity at start-up	1500 mm ² /s
Recommended viscosity	20 mm ² /s - 100 mm ² /s
Ambient temperature	-20 ℃ - 60℃
Fluid operating temperature	-15℃ - 80℃
Recommended fluid operating temperature	30℃ - 50° C
For temperatures above 120℃	Request FKM seals (V iton)
Max. inlet fluid suction pressure (IN)	0.02-0.08 bars
Max. inlet fluid pressure (IN)	0.3 - 0.5 bars (for higher pressures consult the manufacturer)
Inlet fluid filtering (IN)	30 - 60 Microns
Outlet fluid filtering (OUT)	10 - 25 Microns
Max. inlet fluid speed (IN)	0.5 - 1.5 m/s
Max. outlet fluid speed (OUT)	3.0 - 5.5m/s
Use of water-glycol (HF-C)	max n. of revolutions 1100 rpm; max pressure 170 bars

Flow rate tables

TYPE	cm3/									rpm								
	rev		700	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	7000	8000	9000	
XV 0P/0.17	0,16		0,106	0,152	0,228	0,304	0,380	0,456	0,532	0,608	0,684	0,760	0,836	0,912	1,064	1,216	1,368	
XV 0P/0.25	0,24		0,160	0,228	0,342	0,456	0,570	0,684	0,798	0,912	1,026	1,140	1,254	1,368	1,596	1,824	2,052	
XV 0P/0.45	0,45	_	0,299	0,428	0,641	0,855	1,069	1,283	1,496	1,710	1,924	2,138	2,351	2,565	2,993	3,420	3,848	_
XV 0P/0.57	0,56	l/min	0,372	0,532	0,798	1,064	1,330	1,596	1,862	2,128	2,394	2,660	2,926	3,192	3,724	4,256	4,788	l/min
XV 0P/0.76	0,75	rate	0,499	0,713	1,069	1,425	1,781	2,138	2,494	2,850	3,206	3,563	3,919	4,275	4,988	5,700	6,413	rate
XV 0P/0.98	0,92	Flow	0,612	0,874	1,311	1,748	2,185	2,622	3,059	3,496	3,933	4,370	4,807	5,244				Flow
XV 0P/1.27	1,26	ъ.	0,838	1,197	1,796	2,394	2,993	3,591	4,190	4,788	5,387	5,985	6,584	7,182				
XV 0P/1.52	1,48		0,984	1,406	2,109	2,812	3,515	4,218	4,921	5,624	6,327	7,030	7,733	8,436				
XV 0P/2.30	2,28		1,516	2,166	3,249	4,332	5,415	6,498	7,581	8,664	9,747	10,830						

TVDE	cm3/							ı	rpm						
TYPE	rev		700	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	
XV 1P/0.9	0,91		0,630	0,900	1,350	1,800	2,250	2,700	3,150	3,600	4,050	4,500	4,950	5,400	
XV 1P/1.2	1,17		0,840	1,200	1,800	2,400	3,000	3,600	4,200	4,800	5,400	6,000	6,600	7,200	
XV 1P/1.7	1,56		1,190	1,700	2,550	3,400	4,250	5,100	5,950	6,800	7,650	8,500	9,350	10,200	
XV 1P/2.2	2,08		1,540	2,200	3,300	4,400	5,500	6,600	7,700	8,800	9,900	11,000	12,100	13,200	
XV 1P/2.6	2,6	,	1,820	2,600	3,900	5,200	6,500	7,800	9,100	10,400	11,700	13,000	14,300	15,600	_
XV 1P/3.2	3,12	l/min	2,240	3,200	4,800	6,400	8,000	9,600	11,200	12,800	14,400	16,000	17,600	19,200	l/min
XV 1P/3.8	3,64	rate	2,660	3,800	5,700	7,600	9,500	11,400	13,300	15,200	17,100	19,000	20,900	22,800	rate
XV 1P/4.3	4,16	Flow	3,010	4,300	6,450	8,600	10,750	12,900	15,050	17,200	19,350	21,500	23,650	25,800	Flow
XV 1P/4.9	4,94	_	3,430	4,900	7,350	9,800	12,250	14,700	17,150	19,600	22,050	24,500	26,950	29,400	
XV 1P/5.9	5,85		4,130	5,900	8,850	11,800	14,750	17,700	20,650	23,600	26,550	29,500			
XV 1P/6.5	6,5		4,550	6,500	9,750	13,000	16,250	19,500	22,750	26,000	29,250	32,500			
XV 1P/7.8	7,54		5,460	7,800	11,700	15,600	19,500	23,400	27,300	31,200	35,100	39,000			
XV 1P/9.8	9,88		6,860	9,800	14,700	19,600	24,500	29,400	34,300	39,200					

XV-1P

XV-2P

TVDE	am2/rav					rpm				
TYPE	cm3/rev		700	1000	1500	2000	2300	2500	3000	
XV 3P/15	14,89		9,90	14,15	21,22	28,29	32,54	35,37	42,44	
XV 3P/18	17,37		11,55	16,51	24,76	33,01	37,96	41,26	49,52	
XV 3P/21	21,10		14,03	20,04	30,06	40,08	46,10	50,11	60,13	
XV 3P/27	26,97		17,94	25,62	38,43	51,24	58,93	64,05	76,86	
XV 3P/32	32,27		21,46	30,65	45,98	61,31	70,50	76,63	91,96	
XV 3P/38	38,47		25,58	36,55	54,82	73,09	84,06	91,37		
XV 3P/43	43,44	/min	28,88	41,26	61,89	82,53	94,91	103,16		/min
XV 3P/47	47,16	Flow rate I/min	31,36	44,80	67,20	89,60	103,04	112,00		Flow rate I/min
XV 3P/51	50,88	Flow	33,84	48,34	72,51	96,67	111,17			Flow
XV 3P/54	54,60		36,31	51,87	77,81	103,75	119,31			
XV 3P/61	60,81		40,44	57,77	86,65	115,54	132,87			
XV 3P/64	64,53		42,91	61,31	91,96	122,61	141,00			
XV 3P/70	70,74		47,04	67,20	100,80	134,40	154,56			
XV 3P/74	74,46		49,52	70,74	106,11	141,47	162,70			
XV 3P/90	86,87		57,77	82,53	123,79	165,05	189,81			

TORQUES ALLOWED ON SHAFT:

FORMULA FOR EVALUATING SH	AFT	SHAFT [IDENTIFIER] - CODE - DESCRIPTION	T.2 [Nm]
	Д.	[A] - Cl001 - Parallel ø 7 - M 7x1 - key thk sp.2	2
	XV-0P	[B] - CF001 - Milled shank ø 7 - sp. 5	9,2
	×	[F] - CF005 - Milled shank ø 7 - sp.4,5 L = 9	8
		[A] - Cl001 - Parallel ø12 - M10x1 - key thk. 3	25,8
		[B] - Cl002 - Parallel ø12.7 - key thk. 3.2 (SAE)	32,8
		[C] - CF001 - Milled shank ø10 - thk.5 ("BH" Standard German)	13,8
		[D] - CF002 - Milled shank ø10 - thk.5	13,8
		[E] - CF003 - Milled shank ø11 - thk.6.63 (SAE)	25,8
		[F] - CO001 - Tapered 1:8 - ø10 - M7x1 - key thk.2.4	43
	<u>a</u>	[G] - CO002 - Tapered 1:8 - ø14 - M10x1 - key thk.3	119,8
	XV-1P	[I] - CO004 - Tapered 1:8 - ø12.7 - 5/16" 24UNF-2A - key thk.3.2 (SAE)	90,4
	×	[J] - SCF04 - Splined ø11.7 - z=6, H=17.5, m=1.6, DIN 5482 12x9	22,6
		[K] - SCF05 - Splined ø12.344, z=9, H=19, SAE J498 9T 20/40DB	32,2
		[L] - SCF02 - Splined ø11.9, z=15, H=17.5, m=0.75	42,8
		[O] - CO002+HK - Tapered 1:8 - ø14 - M10x1, HK 14-12, key thk.3	119,8
$vi \times \Delta p$		[P] - Cl001+HK - Parallel ø12 - M10x1 with bearing HK 14-12 - key thk.3	25,8
$T.2 \le \frac{vi \times \Delta p}{20 \times \pi \times \eta m}$		[Q] - SCF01 - Splined ø11.9, z=15, H=9, m=0.75	42,8
T.2 = max. torque allowed by		[R] - SCF03 - Splined ø11.9, z=15, H=9, m=0.75	42,8
shaft [Nm]		[A] - Cl001 - Parallel ø15 - M6x1 - key thk.4	44.1
		[B] - Cl002 - Parallel ø15.875 – 1/4"28-UNF key thk.4 (SAE A)	67.5
		[C] - CF001 - Miled shank ø15 - thk.8 ("BH" Standard German)	60.5
		[E] - CO001 - Tapered 1:8 - ø17,4 - M12x1,5 - key thk.4	233.2
	<u>a</u>	[F] - CO002 - Tapered 1:5 - ø17,4 - M12x1,5 - key thk.3	233.2
	XV-2P	[G] - SCF02 - Splined ø16,5 - z=9, H=13, m=1.6 DIN 5482 17x14	86.1
	×	[H] - SCF03 - Splined ø16.5 - z=9, H=18,8, m=1,6 DIN 5482 17x14	86.1
		[1] - SCF04 - Splined ø15.456 z=9, H=22.5, SAE J498 9T 16/32DP	67.1
		[K] - SCF05 - Splined ø16.5 z=9 H=8,1 m=1.6 DIN 5482 17x14	86.2
		[L] - SCF01- Splined ø16.5 z=9 H=9,2 m=1.6 DIN 5482 17x14	86.2
		[M] - CO001 - Tapered 1:8 - ø17,4 - M12x1,5 - key thk.3,2	233.2
		[A] - CO001 - Tapered 1:8 - ø22 - M14x1.5 - key thk.4	482
	<u>a</u>	[B] - Cl001 - Parallel ø20 - M8 - key thk.5	181
	XV-3	[C] - SCF03 - Splined ø21.5, z=13, H=25, m=1,6	223
	×	[H] - Cl004 - Parallel ø22.225– 1/4"28-UNF key thk.6.35 (SAE B)	180
		[I] - SCF04 - Splined ø21.8059, z=13, H=25, SAE J498 9T 16/32DP	264

NOTES:

For assemblies with a coupling, you should choose one as balanced as possible in order to reduce the vibrations and dynamic stresses to which the pump shaft may be subject.

Always make sure that the torque applied is less than or equal to the admissible torque of the shaft.

Do not apply a direct axial or radial load on the pump shaft; if necessary, use suitable supports.

Always use well-filtered oils containing no water or other emulsifying substance.

Never run the pump with oil and air solutions.

For pumps with outlets on the flange, it is recommended not to exceed a flow rate of

4 l/min	XV-0P
20 l/min.	XV-1P
35 I/min	XV-2P

Useful calculation formulas

qv	l/min	Flow rate
vi	cm ³ /rev.	Displacement (volume of oil displaced per complete revolution of the shaft)
n	rpm	Shaft rotation speed
p1	bar	inlet pressure
p2	bar	outlet pressure
Δр	bar	Δp=p2 - p1 difference between outlet (OUT) and inlet (IN) pressure
Ph	kW	Hydraulic power delivered
Pm	kW	Mechanical power absorbed
Τ	Nm	Torque absorbed by shaft
ην	-	0.91 – 0.96 volumetric efficiency (volumetric ratio between operation under load and loadless operation)
ηm		0.85 – 0.90 mechanical efficiency
ηt	-	$\eta t = \eta v x \eta m \text{ total efficiency}$

Basic Formulas	Derived	Formulas
$qv = \frac{vi \times n}{1000} \times \eta v$	$vi = \frac{qv \times 1000}{n \times \eta v}$	$n = \frac{qv \times 1000}{vi \times \eta v}$
$T = \frac{vi \times \Delta p}{20 \times \pi \times \eta m}$	$vi = \frac{T \times 20 \times \pi \times \eta m}{\Delta p}$	$\Delta p = \frac{T \times 20 \times \pi \times \eta m}{vi}$
$Ph = \frac{qv \times \Delta p}{600}$	$qv = \frac{Ph \times 600}{\Delta p}$	$\Delta p = \frac{Ph \times 600}{qv}$
$Pm = \frac{vi \times \Delta p \times n}{600000 \times \eta m}$	$vi = \frac{Pm \times 600000 \times \eta m}{\Delta p \times n}$	$\Delta p = \frac{600000 \times \eta m}{vi \times n}$

Constructive features

PART	MATERIAL	MECHANICAL FEATURES
PUMP BODY		Rp = 345 N/mm ² (Yield strength) Rm = 382 N/mm ² (Breaking strength)
FLANGE AND COVER	mechanical features, heat treated and	Rp = 310÷350 N/mm ² (Yield strength) Rm = 350÷400 N/mm ² (Breaking strength)
GEAR BUSH BEARINGS	Special heat-treated tin alloy with excellen mechanical features and high anti-friction	_
GEARS	Steel UNI 7846	Rs = 980 N/mm ² (Yield strength) Rm =1270÷1570 N/mm ² (Breaking strength)
SEALS		70 Shore, thermal resistance 120℃ 80 Shore, thermal resistance 200℃
BACK-UP RINGS	Virgin PTFE Tecnil Q3	

XV-0P CHARACTERISTIC FLOW RATE CURVES

XV-0P MOTOR TORQUE

XV-1P CHARACTERISTIC FLOW RATE CURVES

XV-1P MOTOR TORQUE

XV-2P CHARACTERISTIC FLOW RATE CURVES

XV-2P MOTOR TORQUE

Outlet Pressure bar

XV-3P CHARACTERISTIC FLOW RATE CURVES

XV-3P MOTOR TORQUE

unidirectional pump - series XV

STANDARD PUMP ø22 FLANGE - PARALLEL SHAFT

	Technical data table																			
TYPE	Displacement	Max. Pressure			CODE															
	cm3/rev	P1 bar	P3 bar	Left rotation				Right rotation					ion							
XV-0P/0.17	0,16	220	260	Χ	0	Р	01	01	Α	В	B A	X	(0	Р	01	02	Α	В	В	Α
XV-0P/0.25	0,24	220	260	Χ	0	Р	02	01	Α	В	B A	X	0	Р	02	02	Α	В	В	Α
XV-0P/0.45	0,45	220	280	Χ	0	Р	04	01	Α	В	B A	X	(0	Р	04	02	Α	В	В	Α
XV-0P/0.57	0,56	220	280	Χ	0	Р	05	01	Α	В	B A	X	0	Р	05	02	Α	В	В	Α
XV-0P/0.76	0,75	220	280	Χ	0	Р	06	01	Α	В	B A	X	0	Р	06	02	Α	В	В	Α
XV-0P/0.98	0,92	220	280	Χ	0	Р	07	01	Α	В	B A	X	0	Р	07	02	Α	В	В	Α
XV-0P/1.27	1,26	220	280	Χ	0	Р	09	01	Α	В	B A	X	0	Р	09	02	Α	В	В	Α
XV-0P/1.52	1,48	220	280	Χ	0	Р	11	01	Α	В	B A	X	0	P	11	02	Α	В	В	Α
XV-0P/2.30	2,28	190	210	Χ	0	Р	13	01	A	В	B A	X	0	P	13	02	Ā	В	В	Α

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

	Dimensions table												
TYPE	Weight A B C D					D							
	kg	mm	mm	mm	IN	OUT							
XV-0P/0.17	0,400	55,8	26,2	46,8	1/4" BSPP	1/4" BSPP							
XV-0P/0.25	0,410	56,4	26,5	47,4	1/4" BSPP	1/4" BSPP							
XV-0P/0.45	0,420	58,0	27,3	49,0	1/4" BSPP	1/4" BSPP							
XV-0P/0.57	0,430	59,0	27,8	50,0	1/4" BSPP	1/4" BSPP							
XV-0P/0.76	0,440	60,5	28,5	51,5	1/4" BSPP	1/4" BSPP							
XV-0P/0.98	0,460	62,0	29,3	53,0	1/4" BSPP	1/4" BSPP							
XV-0P/1.27	0,480	64,5	30,5	55,5	1/4" BSPP	1/4" BSPP							
XV-0P/1.52	0,500	66,5	31,5	57,5	1/4" BSPP	1/4" BSPP							
XV-0P/2.30	0,560	72,5	34,5	63,5	1/4" BSPP	1/4" BSPP							

07/12/04 X0P0602ABBA.dft

T.1 = 11.7÷13.7 [Nm] - screw tightening torque M6

XP001

T.3 = 11.5 [Nm] - torque wrench setting 11

T.2 = 2.1 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

Table of variations

Standard ø22 FLANGE

	Sh	aft	
Cl001 - Parallel		CF001 - Milled shank	
T.2 = 2.1 [Nm]	Α	T.2 = 9.2 [Nm]	В
5 8 8 8		Ø 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
CF005 - Milled shank		CO001 - Tapered	
T.2 = 8.4 [Nm]	F	T.2 = 21.9 [Nm]	Е
4.5 9 9		□ 1.8 × 9 × 1.8 × 9 × 1.8 × 9 × 1.8 × 9 × 1.8 × 9 × 1.8 × 9 × 1.8 × 9 × 1.8 × 9 × 1.8 × 1	_

Cov	er	
Left rotation	Right rotation	
		Α
dsg 11.5	11.5 ds 95 d	В
11.5 dg	9 11.5 9 20 11.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	С
11.5 de 88 av.	11.5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	D
Internal dra	ainage	N
External dra	ainage T	0

Displacement							
TYPE	CODE						
XV-0P/0.17	01						
XV-0P/0.25	02						
XV-0P/0.45	04						
XV-0P/0.57	05						
XV-0P/0.76	06						
XV-0P/0.98	07						
XV-0P/1.27	09						
XV-0P/1.52	11						
XV-0P/2.30	13						

XP001

Standard bodies										
Displacement cm3/rev Standard threads										
0.17	B - B	B-B Z-B Z-Z								
0.25	B - B	Z - B	Z - Z							
0.45	B - B	Z - B	Z - Z							
0.57	B - B	Z - B	Z - Z							
0.76	B - B	Z - B	Z - Z							
0.98	B - B	Z - B	Z - Z							
1.27	B - B	Z - B	Z - Z							
1.52	B - B	Z - B	Z - Z							
2.30	B - B	Z - B	Z - Z							

 $Table \ showing \ standard \ flange \ and \ thread$

 $combinations\ available\ in\ stock$

unidirectional pump - series XV

BH TYPE PUMP ø22 BODY-SHAPED FLANGE - MILLED SHANK

	Technical data table																		
TYPE	Displacement	Max. Pressure			\$)	CODE									‡			
	cm3/rev	P1 bar	P3 bar	Left rotation				Right rotation											
XV-0P/0.17	0,16	220	260	Χ	0	Ρ	01	11	В	ВВ	Α	Χ	0	Р	01	12	В	ВВ	Α
XV-0P/0.25	0,24	220	260	Χ	0	Р	02	11	В	ВВ	Α	Χ	0	Р	02	12	В	ВВ	Α
XV-0P/0.45	0,45	220	280	Χ	0	Р	04	11	В	ВВ	Α	Χ	0	Р	04	12	В	ВВ	Α
XV-0P/0.57	0,56	220	280	Χ	0	Р	05	11	В	ВВ	Α	Χ	0	Р	05	12	В	ВВ	Α
XV-0P/0.76	0,75	220	280	Χ	0	Р	06	11	В	ВВ	Α	Χ	0	Р	06	12	В	ВВ	Α
XV-0P/0.98	0,92	220	280	Χ	0	Р	07	11	В	ВВ	Α	Χ	0	Р	07	12	В	ВВ	Α
XV-0P/1.27	1,26	220	280	Χ	0	Р	09	11	В	ВВ	Α	Χ	0	Р	09	12	В	ВВ	Α
XV-0P/1.52	1,48	220	280	Χ	0	Р	11	11	В	ВВ	Α	Χ	0	Р	11	12	В	ВВ	Α
XV-0P/2.30	2,28	190	210	Χ	0	Р	13	11	В	ВВ	Α	Χ	0	Р	13	12	В	ВВ	Α

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

	Dimensions table												
TYPE	Weight A B C D					D							
					IN I	OUT							
	kg	mm	mm	mm	IN	OUT							
XV-0P/0.17	0,400	55,8	26,2	46,8	1/4" BSPP	1/4" BSPP							
XV-0P/0.25	0,410	56,4	26,5	47,4	1/4" BSPP	1/4" BSPP							
XV-0P/0.45	0,420	58,0	27,3	49,0	1/4" BSPP	1/4" BSPP							
XV-0P/0.57	0,430	59,0	27,8	50,0	1/4" BSPP	1/4" BSPP							
XV-0P/0.76	0,440	60,5	28,5	51,5	1/4" BSPP	1/4" BSPP							
XV-0P/0.98	0,460	62,0	29,3	53,0	1/4" BSPP	1/4" BSPP							
XV-0P/1.27	0,480	64,5	30,5	55,5	1/4" BSPP	1/4" BSPP							
XV-0P/1.52	0,500	66,5	31,5	57,5	1/4" BSPP	1/4" BSPP							
XV-0P/2.30	0,560	72,5	34,5	63,5	1/4" BSPP	1/4" BSPP							

07/12/04 X0P0612BBBA.dff

T.1 = 11.7÷13.7 [Nm] - screw tightening torque M6

XP012

T.2 = 9.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

Vivoil Oleodinamica Vivolo s.r.l. - Sole Shareholder Company - via Leone Ginzburg 2-4 40054 Budrio (BO) Italy tel: +39 051 803689 fax: +39 051 800061

www.vivoil.com - english 02/07/2009

Table of variations

ø22 "BH" Body-Shaped FLANGE

Shaft								
Cl001 - Parallel		CF001 - Milled shank						
T.2 = 2.1 [Nm]	Α	T.2 = 9.2 [Nm]	В					
5 8 8		Ø 5 3 3 3 3 3 4 4 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
CF005 - Milled shank		CO001 - Tapered						
T.2 = 8.4 [Nm]	F	T.2 = 21.9 [Nm]	Е					
4.5 9 9		1.8 1.8 √ 1						

C	Cover	
Left rotation	Right rotation	
		Α
11.5 83 .VI	11.5 ds	В
11.5 dsg. y	db 11.5	С
11.5 88 87 11.5 88 81 11.5 88 81 11.5	11.5 98 88 84 97 11.5 98 88 84 97 11.5 98 88 88 98 98 98 98 98 98 98 98 98 98	D
Internal	drainage	N
External	drainage	0

acement	Displac					
CODE	TYPE					
7 01	XV-0P/0.17					
5 02	XV-0P/0.25					
5 04	XV-0P/0.45					
7 05	XV-0P/0.57					
6 06	XV-0P/0.76					
B 07	XV-0P/0.98					
7 09	XV-0P/1.27					
2 11	XV-0P/1.52					
13	XV-0P/2.30					

XP012

Standard bodies									
Displacement cm3/rev	Standard threads								
0.17	B - B	Z - B	Z - Z						
0.25	B - B	Z - B	Z - Z						
0.45	B - B	Z - B	Z - Z						
0.57	B - B	Z - B	Z - Z						
0.76	B - B	Z - B	Z - Z						
0.98	B - B	Z - B	Z - Z						
1.27	B - B	Z - B	Z - Z						
1.52	B - B	Z - B	Z - Z						
2.30	B - B	Z - B	Z - Z						

Table showing standard flange and thread

combinations available in stock

Vivoil Oleodinamica Vivolo s.r.l. - Sole Shareholder Company - via Leone Ginzburg 2-4 40054 Budrio (BO) Italy tel: +39 051 803689 fax: +39 051 800061

www.vivoil.com - english 02/07/2009

unidirectional pump - series XV

HY TYPE PUMP ø22 BODY-SHAPED FLANGE - MILLED SHANK

Technical data table																			
TYPE	Displacement	Max. Pressure			★					CO	ODE OF								
	cm3/rev	P1 bar	P3 bar	Left rotation					Right rotation										
XV-0P/0.17	0,16	220	260	Χ	0	Ρ	01 2	21	В	ВВ	Α	Χ	0	Ρ	01	22	В	ВВ	Α
XV-0P/0.25	0,24	220	260	Χ	0	Р	02	21	В	ВВ	Α	Χ	0	Ρ	02	22	В	ВВ	Α
XV-0P/0.45	0,45	220	280	Χ	0	Р	04 2	21	В	ВВ	Α	Χ	0	Р	04	22	В	ВВ	Α
XV-0P/0.57	0,56	220	280	Χ	0	Р	05 2	21	В	ВВ	Α	Χ	0	Р	05	22	В	ВВ	Α
XV-0P/0.76	0,75	220	280	Χ	0	Р	06	21	В	ВВ	Α	Χ	0	Р	06	22	В	ВВ	Α
XV-0P/0.98	0,92	220	280	Χ	0	Р	07 2	21	В	ВВ	Α	Χ	0	Ρ	07	22	В	ВВ	Α
XV-0P/1.27	1,26	220	280	Χ	0	Р	09 2	21	В	ВВ	Α	Χ	0	Ρ	09	22	В	ВВ	Α
XV-0P/1.52	1,48	220	280	Χ	0	Р	11 2	21	В	ВВ	Α	Χ	0	Ρ	11	22	В	ВВ	Α
XV-0P/2.30	2,28	190	210	Χ	0	Р	13 2	21	В	ВВ	Α	Χ	0	Ρ	13	22	В	ВВ	Α

For heavy-duty applications, it is recommended to check the admissible torque of the shaft

Dimensions table										
TYPE	Weight	Α	В	С	D	D				
	kg	mm	mm	mm	IN	OUT				
XV-0P/0.17	0,400	55,8	26,2	46,8	1/4" BSPP	1/4" BSPP				
XV-0P/0.25	0,410	56,4	26,5	47,4	1/4" BSPP	1/4" BSPP				
XV-0P/0.45	0,420	58,0	27,3	49,0	1/4" BSPP	1/4" BSPP				
XV-0P/0.57	0,430	59,0	27,8	50,0	1/4" BSPP	1/4" BSPP				
XV-0P/0.76	0,440	60,5	28,5	51,5	1/4" BSPP	1/4" BSPP				
XV-0P/0.98	0,460	62,0	29,3	53,0	1/4" BSPP	1/4" BSPP				
XV-0P/1.27	0,480	64,5	30,5	55,5	1/4" BSPP	1/4" BSPP				
XV-0P/1.52	0,500	66,5	31,5	57,5	1/4" BSPP	1/4" BSPP				
XV-0P/2.30	0,560	72,5	34,5	63,5	1/4" BSPP	1/4" BSPP				

07/12/04 X0P0622BBBA.dft

T.1 = 11.7÷13.7 [Nm] - screw tightening torque M6

T.2 = 9.2 [Nm] - admissible shaft torque (N.B. When choosing a shaft, always check the admissible torque).

NOTE: This type of pump is also interchangeable

XP017

with distance between centres of fastening in M5 (see dim. a, b, c).

Table of variations

ø22 "HY" Body-Shaped FLANGE

Shaft						
Cl001 - Parallel		CF001 - Milled shank				
T.2 = 2.1 [Nm]	Α	T.2 = 9.2 [Nm]	В			
5 8 8		9 5.5 S S S S S S S S S S S S S S S S S S				
CF005 - Milled shank		CO001 - Tapered				
T.2 = 8.4 [Nm]	F	T.2 = 21.9 [Nm]	Е			
4.5 9 9	•	□ 1.8 1.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3				

Cover									
Left rotation	Right rotation								
		Α							
ds 11.5	11.5 ds s s s s s s s s s s s s s s s s s s	В							
11.5 ds	9 11.5 9 2 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	С							
11.5 11.5 0 88 d. b. l.	11.5 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	D							
Internal dra	ainage	N							
External dr	ainage	0							

Displacement						
TYPE	CODE					
XV-0P/0.17	01					
XV-0P/0.25	02					
XV-0P/0.45	04					
XV-0P/0.57	05					
XV-0P/0.76	06					
XV-0P/0.98	07					
XV-0P/1.27	09					
XV-0P/1.52	11					
XV-0P/2.30	13					

XP017

Standard bodies								
Displacement cm3/rev Standard threads								
0.17	B - B Z - B Z - Z							
0.25	B-B Z-B Z-Z							
0.45	B - B	Z - B	Z - Z					
0.57	B - B	Z - B	Z - Z					
0.76	B - B	Z - B	Z - Z					
0.98	Z - B	Z - Z						
1.27	B - B	Z - B	Z - Z					
1.52	B - B	Z - B	Z - Z					
2.30	B - B	Z - B	Z - Z					

 $Table \ showing \ standard \ flange \ and \ thread$

 $combinations\ available\ in\ stock$

Vivoil Oleodinamica Vivolo s.r.l. - Sole Shareholder Company - via Leone Ginzburg 2-4 40054 Budrio (BO) Italy tel: +39 051 803689 fax: +39 051 800061

www.vivoil.com - english 02/07/2009