



# □请在"国科大在线"APP签到

#### B0911007Y-01/02 2021-2022学年春季学期

### 计算机组成原理 (研讨课)

## 实验项目4 定制RISC-V功能型处理器设计

2022年4月29日



#### 0.1 实验内容与实验目的





- □基于实验项目3已实现的微结构,设计支持RISC-V 32-bit 整型指令集(RV32I)的功能型处理器
  - 通过阅读手册,初步了解新兴RISC-V指令集
  - 进一步理解理论课讲授的精简指令集架构
  - **通过功能和性能评估**,对比RISC-V/MIPS指令集译码器的实现开销,理解RISC-V 指令格式的设计思想

#### 0.2 实验项目进度安排





| 课程内容   | 2022<br>4.15 | 4.22 | 4.29     | 5.6 | 5.13 | 5.20 | 5.27             | 5.30<br>(周一)     |
|--------|--------------|------|----------|-----|------|------|------------------|------------------|
| 实验项目内容 | 实验<br>发布     |      | 课堂<br>讲解 |     |      |      |                  |                  |
| 课堂验收   |              |      |          |     |      |      | 截止时间<br>18:59:59 |                  |
| 最终推送   |              |      |          |     |      |      |                  | 截止时间<br>23:59:59 |

- □ 本次实验不设阶段提交
- □ 自5月6日上课时间起开始进行课堂验收
- □ 课堂验收截止: 5月27日下课时(18:59:59)
- □ 最终提交截止时间前(5月30日周一23:59:59)需提交完整Verilog HDL代码及实验报告

### RISC-V 32-bit整型指令集 (RV32I)



#### The RISC-V Instruction Set Manual Volume I: User-Level ISA

Document Version 2.2

Editors: Andrew Waterman<sup>1</sup>, Krste Asanović<sup>1,2</sup>

<sup>1</sup>SiFive Inc.,

<sup>2</sup>CS Division, EECS Department, University of California, Berkeley andrew@sifive.com, krste@berkeley.edu

May 7, 2017

#### RISC-V指令集手册(已上传至SEP网站)

| 31                    | 27       | 26   | 25   | 24 | 20  | 19 | 15 | 14  | 12                  | 11   | 7                | 6      | 0   |        |
|-----------------------|----------|------|------|----|-----|----|----|-----|---------------------|------|------------------|--------|-----|--------|
|                       | funct7   |      |      |    | rs2 | rs | s1 | fun | ct3                 |      | $^{\mathrm{rd}}$ | opco   | ode | R-type |
|                       | ir       | nm[  | 11:0 | )] |     | rs | s1 | fun | ct3                 |      | $^{\mathrm{rd}}$ | opco   | ode | I-type |
| i                     | mm[11:   | 5]   |      |    | rs2 | rs | s1 | fun | ct3                 | im   | m[4:0]           | opco   | ode | S-type |
| im                    | m[12 10] | ):5] |      |    | rs2 | rs | s1 | fun | ct3                 | imm  | [4:1 11]         | opco   | ode | B-type |
| imm[31:12]            |          |      |      |    |     |    |    |     | $\operatorname{rd}$ | opco | ode              | U-type |     |        |
| imm[20 10:1 11 19:12] |          |      |      |    |     |    |    |     | $_{\mathrm{rd}}$    | opco | ode              | J-type |     |        |

与MIPS相比,RISC-V具有更加规整的指令格式

指令格式及指令集详见指令手册第104页 具体指令语义请查看指令手册第2章

|              | RV32I Base Instruction Set |          |               |            |            |             |                    |                  |  |  |  |  |
|--------------|----------------------------|----------|---------------|------------|------------|-------------|--------------------|------------------|--|--|--|--|
| I            |                            |          | imm 31:12     | rd         | 0110111    | LUI         |                    |                  |  |  |  |  |
|              |                            |          | imm 31:12     |            |            | rd          | 0010111            | AUIPC            |  |  |  |  |
|              |                            | imm      | [20]10:1[11]1 | 9:12]      |            | rd          | 1101111            | JAL              |  |  |  |  |
|              | iı                         | mm 11:0  |               | rs1        | 000        | rd          | 1100111            | JALR             |  |  |  |  |
|              | imm[12]10                  | 0:51     | rs2           | rs1        | 000        | imm[4:1 11] | 1100011            | BEQ              |  |  |  |  |
|              | imm 12 10                  |          | rs2           | rs1        | 001        | imm 4:1 11  | 1100011            | BNE              |  |  |  |  |
|              | imm 12 10                  |          | rs2           | rs1        | 100        | imm 4:1 11  | 1100011            | BLT              |  |  |  |  |
|              | imm 12 10                  | 0:5      | rs2           | rs1        | 101        | imm[4:1 11] | 1100011            | BGE              |  |  |  |  |
| 1 5.7        | imm 12 10                  | 0:5      | rs2           | rs1        | 110        | imm 4:1 11  | 1100011            | BLTU             |  |  |  |  |
| 本次           | imm 12 10                  | 0:5      | rs2           | rs1        | 111        | imm[4:1[11] | 1100011            | BGEU             |  |  |  |  |
| 十八           | iı                         | mm[11:0] |               | rs1        | 000        | rd          | 0000011            | LB               |  |  |  |  |
| <b>→</b> ₹ ₹ | iı                         | mm[11:0] |               | rs1        | 001        | rd          | 0000011            | LH               |  |  |  |  |
| 实验           | iı                         | mm[11:0] |               | rs1        | 010        | rd          | 0000011            | LW               |  |  |  |  |
|              | iı                         | mm[11:0] |               | rs1        | 100        | rd          | 0000011            | LBU<br>LHU<br>SB |  |  |  |  |
| 要实           | iı                         | mm[11:0] |               | rs1        | 101        | rd          | 0000011            |                  |  |  |  |  |
| <b>宏</b>     | imm 11:                    | _        | rs2           | rs1        | 000        | imm[4:0]    | 0100011            |                  |  |  |  |  |
| _ , _ ,      | imm[11:                    |          | rs2           | rs1        | 001        | imm[4:0]    | 0100011            | SH<br>SW         |  |  |  |  |
| 그리 상사        | imm[11:                    |          | rs2           | rs1        | 010        | imm[4:0]    | 0100011            |                  |  |  |  |  |
| 现的           |                            | mm[11:0] |               | rs1        | 000        | rd          | 0010011            | ADDI             |  |  |  |  |
|              |                            | mm[11:0] |               | rs1        | 010        | rd          | 0010011            | SLTI             |  |  |  |  |
| 37条          |                            | mm[11:0] |               | rs1        | 011        | rd          | 0010011            | SLTIU            |  |  |  |  |
| 3/示          |                            | mm[11:0] |               | rs1        | 100        | rd          | 0010011            | XORI             |  |  |  |  |
|              |                            | mm[11:0] |               | rs1        | 110        | rd          | 0010011            | ORI              |  |  |  |  |
| 基本           |                            | mm[11:0] |               | rs1        | 111        | rd          | 0010011            | ANDI             |  |  |  |  |
| 坐坐           | 000000                     |          | shamt         | rs1        | 001        | rd          | 0010011            | SLLI             |  |  |  |  |
| 114 Å        | 000000                     |          | shamt         | rs1        | 101        | rd          | 0010011            | SRLI             |  |  |  |  |
| 指今           | 010000                     |          | shamt         | rsl        | 101        | rd          | 0010011            | SRAI             |  |  |  |  |
| 1H 🗸         | 000000                     |          | rs2           | rs1        | 000        | rd          | 0110011            | ADD              |  |  |  |  |
|              | 010000                     |          | rs2           | rs1        | 000        | rd          | 0110011            | SUB              |  |  |  |  |
|              | 000000                     |          | rs2           | rsl        | 001        | rd          | 0110011            | SLL              |  |  |  |  |
|              | 000000                     |          | rs2           | rs1        | 010        | rd          | 0110011            | SLT              |  |  |  |  |
|              | 000000                     |          | rs2           | rs1        | 011        | rd          | 0110011            | SLTU             |  |  |  |  |
|              | 0000000                    |          | rs2           | rs1        | 100        | rd          | 0110011            | XOR              |  |  |  |  |
|              | 0000000                    |          | rs2<br>rs2    | rs1        | 101<br>101 | rd<br>rd    | 0110011<br>0110011 | SRL<br>SRA       |  |  |  |  |
|              | 0100000<br>0000000         |          | rs2           | rs1<br>rs1 | 110        | rd<br>rd    | 0110011            | OR               |  |  |  |  |
|              | 0000000                    |          | rs2           | rs1        | 111        | rd          | 0110011            | AND              |  |  |  |  |
|              | 0000                       | pred     | rsz<br>succ   | 00000      | 000        | 00000       | 0001111            | FENCE            |  |  |  |  |
|              | 0000                       | 0000     |               | 00000      | 000        | 00000       | 0001111            | FENCE            |  |  |  |  |
|              | 000000000                  |          |               | 00000      | 000        | 00000       | 1110011            | ECALL            |  |  |  |  |
|              |                            | 00000000 |               | 00000      | 000        | 00000       | 1110011            | EBREAK           |  |  |  |  |
|              |                            | CST      |               | rs1        | 001        | rd          | 1110011            | CSRRW            |  |  |  |  |
|              |                            | CST      |               | rs1        | 010        | rd          | 1110011            | CSRRS            |  |  |  |  |
|              |                            | csr      |               | rs1        | 011        | rd          | 1110011            | CSRRC            |  |  |  |  |
|              |                            | CST      |               | zimm       | 101        | rd          | 1110011            | CSRRWI           |  |  |  |  |
|              |                            | csr      |               | zimm       | 110        | rd          | 1110011            | CSRRSI           |  |  |  |  |
|              |                            | CST      |               | zimm       | 111        | rd          | 1110011            | CSRRCI           |  |  |  |  |
| '            |                            |          |               |            |            |             |                    | 1                |  |  |  |  |

#### 处理器状态机







多周期处理器状态机要求保持一致

(RDW)

#### FPGA运行测试方法





#### □在平台板卡的SoC-FPGA芯片中

- a) 由ARM处理器向DDR4内存加载RISC-V处理器的各benchmark测试用例
- b) ARM处理器释放RISC-V处理器核的复位信号,使RISC-V处理器开始运行
- c) ARM处理器读取DDR4内存的0x0C地址,检查RISC-V是否正确运行测试用例



#### \*设计输入——设置实验流程的目标模块

- □ 同步框架更新
- cd ~/COD-Lab && git pull upstream master
- □ 编辑脚本文件
- cd ~/COD-Lab && vim lab\_env.yml
- □ 确认TARGET\_DESIGN设置为custom\_cpu
- □ 将CPU\_ISA设置为riscv32(如右图)
- □ 确认SIM\_DUT\_TYPE设置为multi\_cycle
- □ 将修改提交到代码仓库

cd ~/COD-Lab && git add lab\_env.yml && git commit -m "lab\_env: set design flow for RISC-V custom\_cpu"

#### —— RTL代码编写

□添加多周期定制处理器数据及控制通路代码

cd ~/COD-Lab && vim fpga/design/ucas-cod/hardware/sources/custom\_cpu/riscv32/custom\_cpu.v

□其他软硬件代码无需修改

```
module custom_cpu(
        input
                      clk,
        input
                      rst.
        //Instruction request channel
        output [31:0] PC,
        output
                      Inst_Req_Valid,
        input
                      Inst_Req_Ready,
        //Instruction response channel
              [31:0] Instruction,
        input
                      Inst_Valid,
                      Inst_Ready,
        output
        //Memory request channel
        output [31:0] Address,
                      MemWrite.
        output
        output [31:0] Write_data,
        output [ 3:0] Write_strb,
        output
                      MemRead,
        input
                      Mem_Req_Ready,
        //Memory data response channel
              [31:0] Read_data,
        input
                      Read data Valid,
                      Read data Ready,
        output
                      intr,
        input
        output [31:0] cpu_perf_cnt_0,
        output [31:0] cpu_perf_cnt_1,
        output [31:0] cpu perf cnt 2,
        output [31:0] cpu perf cnt 3,
        output [31:0] cpu_perf_cnt_4,
        output [31:0] cpu_perf_cnt_5,
        output [31:0] cpu_perf_cnt_6,
        output [31:0] cpu perf cnt 7,
        output [31:0] cpu_perf_cnt_8,
        output [31:0] cpu_perf_cnt_9,
        output [31:0] cpu_perf_cnt_10,
        output [31:0] cpu_perf_cnt_11,
        output [31:0] cpu_perf_cnt_12,
        output [31:0] cpu_perf_cnt_13,
        output [31:0] cpu_perf_cnt_14,
        output [31:0] cpu_perf_cnt_15
```

);

#### \*设计输入——将代码修改提交到本地仓库

- □每次修改代码后,都需要手动把修改提交(commit)到本地仓库
- cd ~/COD-Lab && git add 已修改的文件路径
- cd ~/COD-Lab && git commit (自行添加提交说明)
- □提交说明的编写要求请自学
  - 尽量使用英文,并充分描述本次代码修改的目的、内容、预期达到的效果等信息
  - 如何写好提交说明 https://www.ruanyifeng.com/blog/2016/01/commit\_message\_change\_log.html (中文参考)

### \*设计输入——触发自动化开发流程(1)

- □ 在完成一次或多次代码修改及提交后,可推送代码到SERVE个人远程仓库 cd ~/COD-Lab && git push origin master
- □ 推送之后,自动化开发及部署流程就会在云平台开始运行
  - 可在浏览器中打开GitLab上的个人远程仓库,查看开发任务的执行情况
  - 调试方法与实验项目三一致

#### \* 查看错误的行为仿真波形

在虚拟机中执行(注意: 下面的命令是一条完整的命令,一行写不下所以出现换行)
cd ~/COD-Lab && make FPGA\_PRJ=ucas-cod FPGA\_BD=nf SIM\_TARGET=custom\_cpu
SIM\_DUT=riscv32:multi\_cycle WORKLOAD=simple\_test:benchmark组名:benchmark名称 wav\_chk

- 需要保证虚机可以上网
- 注意: 命令第一行的最后有一个空格; 不要按回车, 直接输入第二行
- benchmark组名为: basic、medium、advanced、hello四个中的一个
- benchmark名称可根据SERVE网站上正在调试的仿真Job名称查看
- · 波形文件的最后是出错指令的情况(与上页PPT输出信息对应)
- 从波形中找到出错点,结合测试用例的汇编指令序列,向前找到出错点
- 可按需在波形中添加要观察的信号





# □提交及验收说明

### 1\* 在个人仓库中添加标签(十分重要)





- □在完成阶段I的所有设计和云上仿真、FPGA测试流程后,需在仓库中添加标签
- □便于助教老师后续进行代码评分
- □ 请执行如下命令(需要严格一致,否则影响成绩评分)

cd ~/COD-Lab && git tag -a custom\_cpu-riscv32\_multi\_cycle -m "Release RISC-V multi\_cycle custom CPU design"
cd ~/COD-Lab && git push origin master --tags

#### 2\* 实验报告撰写要求



- □ 描述定制RISC-V处理器的设计情况
  - 基本要求与实验项目3一致
- □ 实验报告大小尽量控制在5MB以内
- □实验报告请命名为"prj4.pdf"

#### 3\* 实验报告提交及远程推送方法





- ☐ cd ~/COD-Lab && mkdir -p reports
- □ 将prj4.pdf这个文件拷贝到~/COD-Lab/reports
  - 本地虚拟机:通过图形界面拷贝
  - 云端虚拟机:通过SFTP上传(具体需查看自己使用terminal终端的SFTP使用方法)
- □ 提交到个人本地仓库 cd ~/COD-Lab && git add reports/ && git commit -m "docs: add prj4 report"
- □ 推送到个人远程仓库 cd ~/COD-Lab && git push origin master
- □ 请确保提交报告前,实验编写的Verilog HDL代码已完成云端测试

#### 4. 课堂验收要求(5月6日开始)





- 1. 实验态度端正,完成代码编写和上板测试,可得基准成绩50分
  - 查看run/log目录下的五组benchmark运行结果
- 2. 其他检查要点 (满分40分)
  - 状态机编码用one-hot,并按照三段式正确表述(+10分)
  - 除状态机第二段外的组合逻辑必须用assign语句描述(+10分)
  - RISC-V/MIPS指令集性能分析对比(+20分)
- 3. 同学对代码及实验内容的思考(满分10分,助教根据沟通情况打分)
- 4. 同学需根据助教建议修改代码,并在实验报告中进行说明。助教会根据课堂验收记录,检查 最终提交代码修改情况
- 5. 如果明显抄袭0分记录(对代码完全说不清楚的,疑似抄袭)

# Q & A?



