BOSCH'S ELECTRIC VEHICLE SIMULATION

Vehicle Selection

The vehicle segment chosen here is 2- wheeler.

Reasons for choosing this segment:

The Indian road conditions that are narrow and congested make the two-wheelers preferable to avoid traffic congestion.

Two-wheelers sales are skyrocketed and they are more preferred by Indian Market (Proof)

In major Indian cities, two-thirds of pollution load is due to two-wheelers. They give out 30% of the particulate matter load, 10% points more than the contribution from cars.

Performance Baselining

Equations and Assumptions

- 1. Vehicle weight with one passenger(M): **200 kg** (Normal curb weight of 120 kg + passenger of 80 kg)
- 2. Gradeability: 5% (for urban driving)
- 3. Considered speed(V): **50 km/h** (maximum allowable for scooter in city)
- 4. Frontal area(A_r): 0.65 m²
- 5. Coefficient of rolling resistance(μ_r): **0.004** (tyre on asphalt road)
- 6. Drag coefficient(C_D): **0.68**
- 7. Air density(ρ): **1.2** (dry air density)
- 8. Wheel radius(r): **8 in** (0.2032 m)
- 9. Torque provided by wheel at maximum speed: **36.33 N-m**
- 10. Single speed reduction ratio: 1.563

Performance Baselining

Calculated values:

- Gradient resistance: M*g*sin(α) = 98 N
- Rolling resistance: μ_r*M*g = 7.848 N
- Aerodynamic resistance: $0.5*C_D*A_f*\rho*V^2 = 49.57 N$
- Total drag: **155.48 N** (sum of the above three resistances)
- Angular velocity of wheel: 68.3 rad/s
- Time taken for reaching a speed of 50 km/h from rest: 22.957 s

Modelling and Analysis

Simulink Model of the Motor Control System (Download here)

Modelling and Analysis

A brief description about each of the subsystems used:

1. **PI controller**: Controller used to reduce the error between reference speed and measured speed. The controller gains are estimated using the following expressions:

$$Kp = 2ξω0L - R$$

$$Ki = ω02L$$

Where ω_0 is the natural frequency of the current closed-loop system (loop bandwidth) and ξ is the current loop attenuation.

2. **dq2abc**: Park and Clarke transformation

Modelling and Analysis: Speed Tracking

Modelling and Analysis: 3 Phase Currents

Modelling and Analysis: Torque

Modelling and Analysis: Avg Line Voltages

Modelling and Analysis: Line Voltage Vc

Modelling and Analysis: Phase Voltage

Motor Design: Assumptions

The following values have been assumed for the design of PMSM motor:

Battery voltage(V): 48V

Number of Poles(P): 8

Diameter of stator bore(D): 75 mm

Stator length(L): 52 mm

Magnetic Field Strength(B_{1q}): 0.4 T

Electrical Frequency(f): 50 Hz

Winding factor(k_w): 0.933

Length of air gap(I_a): 0.5 mm

Length of magnet(I_m): 2 mm

Carter coefficient(C): 1.7

Relative permeability of NdFeB(μ_r): 1.05

Slot Width Factor(SWF): 0.5

Slot Depth(SD): 12.3 mm

Slot space factor(f_s): 0.5

Motor Design: Governing Equations

- Rms value of linear current density $K_{1s} = (P_{out} \cdot 2p)/(\pi B_{1g} D^2 L \omega_s)$ where p = number of pole pairs = 4 and $\omega_s = 2\pi f = 100\pi$
- Ampere turns per phase $N_{ph}I_{ph} = (K_{1s}.\pi D)/(6.k_w)$
- Current density $J_c = K_s/f_s$.SWF.SD
- $E_{ph}(rms) = \epsilon . V/\sqrt{3}$
- $N_{ph} = 2E_{ph}/(k_w B_{1g}DL\omega_s)$
- $I_{ph} = N_{ph}I_{ph}/N_{ph}$

Motor Design: Governing Equations

- Cross-sectional area of conductor A_c = I_{ph}/J_c
- $L_d = 1.125\pi\mu_0 (N_{ph}/P)^2 (DL/g_d)$ (where $g_d = C.l_g + l_m/\mu_r$ and $L_d = L_q$)
- $\lambda_{\rm m} = (2N_{\rm ph}B_{1g}DL)/(P/2)$
- $R_s = 2N_{ph}.(\rho L/A_c)$ (where $\rho = 0.0171 \Omega - m/mm^2$ assuming copper conductors)

Motor Design: Lookup Table

Motor Parameter	Value
R_s	0.0775 Ω
L _d	0.5523 mH
L _q	0.5523 mH
λ_{m}	0.0585 Wb turns

Inverter Design

3 Phase PWM Inverter has been used here with the following specifications:

DC Supply: 48V

Relay switching operation-

Switch on point: 0.05

Switch off point: -0.05

Output when on: 48

Output when off: -48

Battery Dimensioning and Optimization: Driving Cycle

We will be considering the ECE R15 driving cycle for calculating the average energy per driving cycle. The parameters of the driving cycle are as follows:

Duration: 200s

Distance: 1.017 km

Max Speed: 13.88 m/s (50 km/h)

Average Speed: 5.085 m/s (18.306 km/h)

Min acceleration: 1.042 m/s Max acceleration: -0.972 m/s²

Battery Dimensioning and Optimization: Driving Cycle ECE R15

Battery Dimensioning and Optimization: Energy Consumption

- The energy consumption is calculated based on the road loads. The total road load F_{tot} is the sum of the inertial force, road slope force, road load (friction) force and aerodynamic drag force.
- The inertial force is the mass times instantaneous acceleration and the rest of the force expressions where calculated earlier.

Total Power
$$P_{tot} = F_{tot}$$
. V

Total energy consumption over the cycle E_{tot} = \int F_{tot} \cdot v . dt (where v is the instantaneous vehicle speed)

Battery Dimensioning and Optimization

Simulink Model for Calculating Energy Consumed

Battery Dimensioning and Optimization: Results

- After doing the calculations using MATLAB Simulink model shown in the previous slide, the average energy per driving cycle = 37.7 Wh/km.
- Assuming the target range to be 70 km, we arrive at a target battery size of 2639 Wh.
- We use a combination of 238 cells(each of 11Wh) to make battery for our vehicle which will ensure better performance, fast charging and easy maintenance.
- We will be using Li-ion Battery for its Efficiency and applications.

E/E Architecture

E/E Architecture

#