

המחלקה למדעי המחשב המחשב מיד בתמוז תשפ"ה 10/07/2025

09:00-12:00

# אלגברה לינארית 2 למדמ"ח

מועד א'

מרצים: ד"ר זהבה צבי, ד"ר ירמיהו מילר.

תשפ"ה סמסטר ב'

השאלון מכיל 6 עמודים (כולל עמוד זה).

# בהצלחה!

\_\_\_\_\_

### הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

### חומר עזר

. אמורפים שאלון. (A4 עמודים בפורמט (A4 עמודים הקורס (A4 עמודים הקורס).

### אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
  - . יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות.
  - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
    - יש לרשום בראש המחברת איזה שאלות לבדוק.

\_\_\_\_\_\_



# שאלה 1 (25 נקודות)

(16 נק') (א

ב) (3 נק')

 $p_B(x)=(x-1)^3(x-2)^3$  תהי מטריצה עבורה הפולינום האופייני הוא  $B\in\mathbb{R}^{6 imes 6}$  והפולינום המינימלי הוא  $m_B(x)=(x-1)^2(x-2)$  מצאו את כל צורות ז'ורדן האפשריות של

(3 נק')

 $\operatorname{tra}(A)=i$  הוכיחו או הפריכו: קיימת מטריצה  $A\in\mathbb{C}^{n imes n}$  הוכיחו או הפריכו

ד) (3 נק')

 $A^2=I$  אז  $A\in\mathbb{C}^{n imes n}$  או הפריכו: אם הפריכו: אל לכסינה וכל הערכים העצמיים אל לכסינה או הוכיחו

# שאלה 2 (25 נקודות)

א) נתונה העתקה ליניארית  $T:\mathbb{R}^{2 imes2} o\mathbb{R}^{2 imes2}$  המוגדרת ע"י אונה העתקה ליניארית

$$T(A) = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$$

 $A \in \mathbb{R}^{2 imes 2}$  לכל מטריצה

האם ההעתקה ניתנת ללכסון? במידה וכן, מצאו בסיס שבו המטריצה המייצגת של ההעתקה היא מטריצה אלכסונית. במידה ולא, נמקו מדוע.

יהי ענו על הסעיפים בת"ל. ענו על הסעיפים ויהיו  $\mathbb R$  ויהיו שלושה וקטורים שונים עונים  $u_1,u_2,u_3\in V$  בת"ל. ענו על הסעיפים ב' וג' הבאים:

- בת"ל.  $\{u_1,u_2,u_3,w\}$  המקיים  $v \neq 0 \in V$  הוכיחו כי הקבוצה  $\{u_1,u_2,u_3,w\}$  בת"ל.
  - . אינה אורתוגונלית.  $\{u_1,u_2,u_3\}$  נתון כי  $\{u_1,u_2,u_3\}$  אינה אורתוגונלית.  $\langle u_1-u_3,u_2\rangle=\langle u_1+u_2,u_1\rangle$  אינה אורתוגונלית.

שאלה 3 (25 נקודות)



- א) (14 נקי) הוכיחו כי המטריצה  $A=\begin{pmatrix}11&-8&4\\-8&-1&-2\\4&-2&-4\end{pmatrix}$  לכסינה אורתוגונלית ומצאו מטקיצה אורתוגונלית (16 נקי) הוכיחו כי המטריצה  $A=\begin{pmatrix}11&-8&4\\4&-2&-4\end{pmatrix}$  נמקו היטב את תשובתכם.  $P^tAP=D$  ש
- ב) אוניטרית אם ורק אם B לכסינה אוניטרית אמודה לעצמה אוניטרית פי מטריצה מטריצה אוניטרית  $B\in\mathbb{C}^{n\times n}$  הוכיחו כי מטריצה  $B^2=I$  ומקיימת

# שאלה <u>4</u> (25 נקודות)

- - .|A| מטריצה מטריצה את מצאו את מצאו את מטריצה המקיימת  $A\in\mathbb{C}^{n imes n}$  מטריצה מטריצה (6 נקודות מטריצה המקיימת און מטריצה המקיימת מטריצה המקיימת און מטריצה המקיימת מטריצה המטריצה המטריצה
- $A^2=I$  עבור  $k\geq 1$  כלשהו. הוכיחו כי  $A\in\mathbb{C}^{n imes n}$  מטריצה הרמיטית ונניח כי  $A^k=I$  עבור
- וקטורים  $u_1,u_2$  וכן  $A\in\mathbb{R}^{n\times n}$  תהי שונים של א ערכים עצמיים אורית ויהיו ויהיו  $A\in\mathbb{R}^{n\times n}$  תהי אורתו. אורתוגונליים. אורתוגונליים המתאימים ל-  $\lambda_1,\lambda_2$  הוכיחו כי  $\lambda_1,\lambda_2$  אורתוגונליים.

V אופרטור במרחב וקטורי T:V o V יהי (בקודות) אופרטור במרחב וקטורי

הוכיחו או הפריכו ע"י דוגמה נגדית את הענות הבאות:

- T שווה ל- שווה T אם אוניטרי אז הערך מוחלט של כל ערך עצמי של אוניטרי אז הערך מוחלט של אוניטרי אז אוניטרי אז הערך מוחלט של אוניטרי איניטרי איניטרי אוניטרי איניטרי איניטרי
  - ב) אם T צמוד לעצמו. T צמוד לעצמו.
  - . שמור.  $V_{\lambda}$  יהי  $V_{\lambda}$  יהי  $\lambda$  ערך עצמי של T, אז המרחב העצמי  $\lambda$  יהי  $\lambda$  יהי  $\lambda$ 
    - . מדומה T אנטי הרמיטי, אז כל ערך עצמי של T מדומה טהור T

 $|\langle u, \mathbf{v} \rangle| \le ||u|| \cdot ||\mathbf{v}||$ 

 $||u + v|| \le ||u|| + ||v||$ 

 $\mathbb{R}$  מרחב אוקלידי: מרחב מכפלה פנימית מעל

 $\mathbb C$  מרחב אוניטרי: מרחב מכפלה פנימית מעל

 $:\mathbb{R}$  מעל V מעל ווקטורי מכפלה פנימית במרחב  $: \lambda \in \mathbb{R}$  ולכל סקלר  $u, \mathbf{v}, w \in V$  לכל

$$\langle u, \mathbf{v} \rangle = \langle \mathbf{v}, u \rangle$$
 בימטריות: (1

$$\langle u+{\bf v},w\rangle=\langle u,w\rangle+\langle {\bf v},w\rangle$$
 ביניאריות: (2  $\langle \lambda u,{\bf v}\rangle=\lambda\,\langle u,{\bf v}\rangle$ 

$$\langle u,u \rangle \geq 0.$$
 ביות: (3 
$$\langle u,u \rangle = 0 \quad \Leftrightarrow \quad u=0$$

 $:\mathbb{C}$  מעל V מעל ווקטורי מכפלה פנימית במרחב  $\lambda \in \mathbb{C}$  ולכל סקלר  $u, \mathbf{v}, w \in V$  לכל

$$\langle u, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, u \rangle}$$
 ברמיטיות:

$$\langle u+{f v},w
angle=\langle u,w
angle+\langle {f v},w
angle$$
 ניניאריות: (2 
$$\langle \lambda u,{f v}
angle=\lambda\,\langle u,{f v}
angle$$

$$\langle u,u \rangle \geq 0$$
 ביות: (3 
$$\langle u,u \rangle = 0 \quad \Leftrightarrow \quad u=0$$

:אי-שוויון קושי שוורץ

:אי-שוויון המשולש

$$u_1,\ldots,u_n$$
 היטל אורתוגונלי של ווקטור v אוקטור v היטל אורתוגונלי אורתוגונלי  $P_U(\mathbf{v})=rac{\langle \mathbf{v},u_1
angle}{\|u_1\|^2}u_1+rac{\langle \mathbf{v},u_2
angle}{\|u_2\|^2}u_2+\cdots+rac{\langle \mathbf{v},u_n
angle}{\|u_n\|^2}u_n$  .

תהליך גרם שמידט לבניית בסיס אורתוגונלי:

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2}$$

 $u_n = \mathbf{v}_n - \frac{\langle \mathbf{v}_n, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle \mathbf{v}_n, u_2 \rangle}{\|u_2\|^2} u_2 - \dots - \frac{\langle \mathbf{v}_n, u_{n-1} \rangle}{\|u_{n-1}\|^2} u_{n-1}$ .

 $Au = \lambda u$ 

אם:  $A\in\mathbb{F}^{n imes n}$  אם: ערך עצמי ו-  $u\in\mathbb{F}^n$  ווקטור עצמי (u
eq 0) אם ווקטור עצמי ו $\lambda\in\mathbb{F}$ 

 $T(u) = \lambda u$ 

אם: T:V o V אופרטור עצמי (u
eq 0) אם:  $u\in V$  אם:  $\lambda\in\mathbb{F}$ 

 $p_A(\lambda) = |\lambda I - A|$ 

 $A \in \mathbb{F}^{n imes n}$  פולינום אופייני של מטריצה ריבועית

יכך ש:  $u \neq 0$  כאשר  $u \in \mathbb{F}^n$  כל וקטור  $\lambda$  הוא כל שיייך לערך ששייך ששייך לערך אשיי של מטריצה ריבועית  $A \in \mathbb{F}^{n \times n}$  $Au = \lambda u$ .

יכך שנייך עצמי  $u \neq 0$  כאשר כל וקטור אופרטור  $T: V \to V$  מרחב עצמי של אופרטור שטייך לערך עצמי לערך אופרטור  $T(u) = \lambda u$ .

#### בסיס אורתונורמלי:

יהי את מקיים א $\{b_1,\dots,b_n\}$ מסומן מסומלי, בסיס אורתונורמלי. בסיס מנימית מעל מכפלה מרחב עV $\langle b_i, b_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \quad 1 \leq i, j \leq n.$ 

:כל וקטור  $u \in V$  ניתן לרשום בבסיס אורתונורמליי  $b_i 
angle b_i$ 

$$u = \sum_{i=1}^{n} \langle u, b_i \rangle b_i$$

סימון חלופי:

$$[u]_{B} = \begin{pmatrix} \langle u, b_{1} \rangle \\ \langle u, b_{2} \rangle \\ \vdots \\ \langle u, b_{i} \rangle \\ \vdots \\ \langle u, b_{n} \rangle \end{pmatrix}_{B}$$

יהי B אופרטור. המצרטיצה המייצגת על פי בסיס T:V o V יהי

$$[T]_{B} = \begin{pmatrix} \langle T(b_{1}), b_{1} \rangle & \langle T(b_{2}), b_{1} \rangle & \cdots & \langle T(b_{i}), b_{1} \rangle & \cdots & \langle T(b_{n}), b_{1} \rangle \\ \langle T(b_{1}), b_{2} \rangle & \langle T(b_{2}), b_{2} \rangle & \cdots & \langle T(b_{i}), b_{2} \rangle & \cdots & \langle T(b_{n}), b_{2} \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle T(b_{1}), b_{i} \rangle & \langle T(b_{2}), b_{i} \rangle & \cdots & \langle T(b_{i}), b_{i} \rangle & \cdots & \langle T(b_{n}), b_{i} \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle T(b_{1}), b_{n} \rangle & \langle T(b_{2}), b_{n} \rangle & \cdots & \langle T(b_{i}), b_{n} \rangle & \cdots & \langle T(b_{n}), b_{n} \rangle \end{pmatrix}.$$

 $[T]_{ij} = \langle T(b_j), b_i 
angle$  . היא הבסיס פי על פי המייצגת של המטריצה המייצגת של ij היא כלומר כלומר

#### ההגדרה של אופרטור הצמוד:

$$\langle T(u), w \rangle = \langle u, T^*(w) \rangle$$
 . (\*1)

מההגדרה (1\*) נובע:

$$\langle T^*(u), w \rangle = \langle u, T(w) \rangle \tag{*2}$$

 $\{b_1,\cdots,b_n\}$  נוסחה ל-  $T^*(u)$  ו-  $T^*(u)$  במונחי בסיס אורתונורמלי

$$T(u) = \sum_{i=1}^{n} \langle T(u), b_i \rangle b_i \tag{*3}$$

$$T^*(u) = \sum_{i=1}^n \langle u, T(b_i) \rangle b_i$$
 (\*4)

משפט:

$$T^{**} = T \tag{*5}$$

משפט: המטריצה המייצגת של אופרטור אווד  $T^*$  נתונה ע"י משפט:  $[T^*] = [T]^*$  (\*6)

תהי  $A \in \mathbb{F}^{n \times n}$  מטריצה ריבועית.

$$A=A^*$$
 :הרמיטית  $A$  אנטי-הרמיטית  $A$  אנטי-הרמיטית  $A$  אוניטרית  $A$  אוניטרית  $A$  אורתוגונלית  $A$   $AA^t=I=A^tA$  : גורמלית  $A$ 

A = [T] אופרטור המייצגת נסמן נסמן מרחב מעל מרחב מעל אופרטור אופרטור T: V o Vיהי

$$T=T^*$$
 אוד לעצמו:  $T$  צמוד לעצמו:  $T^*=-T$  אנטי-הרמיטי:  $T$  אנטי-הרמיטי:  $T$  אוניטרי:  $T$  אוניטרי:  $T$  אוניטרי:  $T$  אוניטרי:  $T$  עורמלי:  $T$  אורי א אוניטרי:  $T$ 

מטריצה D אלכסונית ומטריצה אוניטרית אם קיימת אוניטרית אם לכסינה אלכסונית אלכסונית אוניטרית אוניטרית

מטריצה D אלכסונית ומטריצה אורתוגונלית אם קיימת אם קיימת אורתוגונלית לכסינה  $A\in\mathbb{F}^{n\times n}$  מטריצה אורתוגונלית אורתוגונלית אורתוגונלית אורתוגונלית אורתוגונלית אורתוגונלית האורתוגונלית אורתוגונלית אורתוגונלית

### פתרונות

# שאלה 1

### שאלה 3

(א) (16 נק')

$$A = \begin{pmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{pmatrix} \quad \Rightarrow \quad A^t = \begin{pmatrix} 11 & -8 & 4 \\ -8 & -1 & -2 \\ 4 & -2 & -4 \end{pmatrix} = A$$

ז"א  $A \Leftarrow A^t = A$  סימטרית אורתוגונלית.

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 11 & 8 & -4 \\ 8 & x + 1 & 2 \\ -4 & 2 & x + 4 \end{vmatrix}$$

$$= (x - 11) \begin{vmatrix} x + 1 & 2 \\ 2 & x + 4 \end{vmatrix} - 8 \begin{vmatrix} 8 & 2 \\ -4 & x + 4 \end{vmatrix} + 4 \begin{vmatrix} 8 & x + 1 \\ -4 & 2 \end{vmatrix}$$

$$= (x - 11) (x^{2} + 5x) - 8 (8x + 40) - 4 (4x + 20)$$

$$= x(x - 11) (x + 5) - 64 (x + 5) - 16 (x + 5)$$

$$= x(x - 11) (x + 5) - 80 (x + 5)$$

$$= (x^{2} - 11x - 80) (x + 5)$$

$$= (x - 16) (x + 5) (x + 5)$$

$$= (x - 16) (x + 5)^{2}$$

#### $\lambda=16$ מרחב עצמי של

$$\operatorname{Nul}(A-16I) = \begin{pmatrix} -5 & -8 & 4 \\ -8 & -17 & -2 \\ 4 & -2 & -20 \end{pmatrix} \xrightarrow{R_2 \to 5R_2 - 8R_1 \atop R_3 \to 5R_3 + 4R_1} \begin{pmatrix} -5 & -8 & 4 \\ 0 & -21 & -42 \\ 0 & -42 & -84 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} -5 & -8 & 4 \\ 0 & -21 & -42 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \to \frac{-1}{21}R_2} \begin{pmatrix} -5 & -8 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 + 8R_2} \begin{pmatrix} -5 & 0 & 20 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{-1}{5}R_1} \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V_{16} = \operatorname{span}\left\{ \begin{pmatrix} 4\\-2\\1 \end{pmatrix} \right\} \setminus \{0\}$$

 $\lambda = -5$  מרחב עצמי של

$$\operatorname{Nul}(A+5I) = \begin{pmatrix} 16 & -8 & 4 \\ -8 & 4 & -2 \\ 4 & -2 & 1 \end{pmatrix} \xrightarrow{\substack{R_2 \to 2R_2 + R_1 \\ R_3 \to 4R_3 - R_1 \\ }} \begin{pmatrix} 16 & -8 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{1}{4}R_1} \begin{pmatrix} 4 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V_{-5} = \operatorname{span} \left\{ \begin{pmatrix} 1/2 \\ 1 \\ 0 \end{pmatrix} , \begin{pmatrix} -1/4 \\ 0 \\ 1 \end{pmatrix} \right\} \backslash \{0\} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} , \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} \right\} \backslash \{0\}$$

נסמן

$$\mathbf{v}_1 = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
 ,  $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$  ,  $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$  .

נפעיל האלגוריתם של גרם שמידט כדי למצוא בסיס אורתוגונלי:

$$u_1 = \mathbf{v}_1 = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} .$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} - \frac{0}{21} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$$
$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - \frac{0}{21} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} - \frac{-1}{17} \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} = \frac{1}{17} \begin{pmatrix} 16 \\ 34 \\ 4 \end{pmatrix}$$

לכן מצאנו בסיס אורתוגונלי:

$$u_1 = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
 ,  $u_2 = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$  ,  $u_3 = \begin{pmatrix} 8 \\ 17 \\ 2 \end{pmatrix}$  .

בסיס אורתונוגמלי:

$$\hat{u}_1 = \frac{1}{\sqrt{21}} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
,  $\hat{u}_2 = \frac{1}{\sqrt{17}} \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$ ,  $\hat{u}_3 = \frac{1}{\sqrt{357}} \begin{pmatrix} 8 \\ 17 \\ 2 \end{pmatrix}$ .

 $\Leftarrow$  כיוון

נניח כי B צמודה לעצמה וגם B אוניטרית.

$$.BB^* = I$$
 וגם  $B = B^* \Leftarrow$  (1)

. מכיוון ש-  $B \Leftarrow$  צמודה לעצמה  $B \Leftarrow$  נורמלית שמשפט הלכסון אוניטרית לכסינה אוניטרית (2)

$$B = QDQ^*$$
 -שימת כך ש- אוניטרית ו-  $D$  אוניטרית (3)

B -ומכיוון

 $D^* = D$  ממשית: ממשי של כל ערך עצמי ממשי כל ערך עצמה צמודה לעצמה

אז (1) מכיוון ש- $BB^*=I$  מ- (4)

$$QDQ^*(QDQ^*)^* = I \quad \Rightarrow \quad QDQ^*QD^*Q^* = I \quad \Rightarrow \quad QDID^*Q^* = I \quad \Rightarrow \quad QD^2Q^* = I \quad \Rightarrow \quad D^2 = I$$

(5) לכן

$$B^{2} = QDQ^{*}QDQ^{*} = QD^{2}Q^{*} \stackrel{(4)}{=} QQ^{*} = I$$

כנדרש.

 $\Rightarrow$  כיוון

. נניח כי  $B^2=I$  וגם אוניטרית לכסינבה אוניטרית

 $AB=QDQ^*$  -ש אלכסונית כך אלכסונית ואניטרית ו-  $B^2=I$  (1)

(2)

$$I=B^2=QDQ^*QDQ^*=QD^2Q^*\quad \Rightarrow \quad D^2=Q^*IQ=Q^*Q=I\ .$$

$$\lambda_i=\pm 1$$
 כשאר  $D={
m diag}\,(\lambda_1, \quad \cdots \quad \lambda_n)$  לכן

 $D=D^* \Leftarrow D$ ממשית ואלכסונית ממשית ואלכסונית ל

(4) לכן

$$B^* \stackrel{(1)}{=} (QDQ^*)^* = QD^*Q^* \stackrel{(3)}{=} QDQ^* = B$$

לכן  $B=B^*$  ולכן  $B=B^*$ 

(5)

$$BB^* \stackrel{(1)}{=} QDQ^*(QDQ^*)^* = QDQ^*QD^*Q = QDD^*Q \stackrel{(3)}{=} QD^2Q^* \stackrel{(2)}{=} QQ^* = I$$

לכן B אוניטרית, כנדרש.

שאלה 4

שאלה 5

אט ערץ עצמי של Tהשייך לוקטור עצמי איי ז"א אופרטור אוניטרי, ונניח ש- א ערך עצמי א ז"א אופרטור אופרטור אוניטרי אוניטרי אוניטרי או $T:V\to V\to V$ אז גניח איי ז"א ז"א ז"א אז  $T({\bf v})=\lambda {\bf v}$ 

$$\langle T({
m v}), T({
m v}) 
angle = \langle \lambda {
m v}, \lambda {
m v} 
angle \qquad (T$$
 וקטור עצמי עצמי על יאריות של מכפלה פנימית) ולינאריות חלקית של מכפלה פנימית) ולינאריות חלקית של מכפלה פנימית)

מצד שני

$$\langle T({
m v}),T({
m v})
angle=\langle {
m v},T^*T({
m v})
angle$$
 (הגדרה של אופרטור הצמוד 
$$=\langle {
m v},I({
m v})
angle$$
 (אוניטרי  $T$ )
$$=\langle {
m v},{
m v}\rangle$$

נשווה ביניהם:

$$\lambda \bar{\lambda} \left\langle \mathbf{v}, \mathbf{v} \right\rangle = \left\langle \mathbf{v}, \mathbf{v} \right\rangle \quad \Rightarrow \quad (\lambda \cdot \bar{\lambda} - 1) \left\langle \mathbf{v}, \mathbf{v} \right\rangle = 0 \; .$$
  $|\lambda|^2 = 1 \Leftarrow \lambda \bar{\lambda} = 1 \Leftarrow (\lambda \cdot \bar{\lambda} - 1) = 0 \Leftarrow \left\langle \mathbf{v}, \mathbf{v} \right\rangle \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{$ 

ב) הטענה לא נכונה. דוגמה נגדית:  $T: \mathbb{R}^2 \to \mathbb{R}^2$  המוגדר:

$$T(u) = Au$$
,  $A = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}$ 

 $u \in \mathbb{R}^2$  לכל

$$[T] = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} , \qquad [T]^* = \begin{pmatrix} 0 & 1 \\ -i & 0 \end{pmatrix}$$
$$[T][T]^* = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = [T][T]^*$$

לכן Tלא צמוד לעצמו לכן  $[T]\neq [T]^*$  לאבל לורמלי לכן לכן לכן לכן

מתקיים  $u \in V_\lambda$  אם  $\lambda$  ערך עצמי של T אזי לכל וקטור עצמי  $\lambda$ 

$$T(u) = \lambda u \in \operatorname{span} \{u\} \subseteq V_{\lambda}$$

 $.T(u) \in V_{\lambda}$ מתקיים  $u \in V_{\lambda}$ לכן לכל

ז"א .v נניח ש- Tהשייך לוקטור עצמי ש-  $\lambda$ ערך עצמו, ונניח צמוד לעצמו, אופרטור די אופרטור אופרטור אופרטור  $T:V\to V$ אז נניח אז יויא . $T(\mathbf{v})=\lambda\mathbf{v}$ 

$$\langle T({
m v}),{
m v}
angle=\langle \lambda{
m v},{
m v}
angle$$
 ( $T$  וקטור עצמי של אוקטור עצמי של און אוקטור של מכפלה פנימית) (לינאריות של מכפלה פנימית)

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v} \rangle = \langle \mathbf{v},T^*(\mathbf{v}) \rangle$$
 (הגדרה של אופרטור הצמוד) 
$$= \langle \mathbf{v},-T(\mathbf{v}) \rangle$$
 (אנטי-הרמיטי $T$ ) 
$$= -\langle \mathbf{v},T(\mathbf{v}) \rangle$$
 
$$= -\langle \mathbf{v},\lambda\mathbf{v} \rangle$$
 ( $T$  וקטור עצמי של  $\mathbf{v}$ ) 
$$= -\bar{\lambda} \langle \mathbf{v},\mathbf{v} \rangle$$
 (לינאריות חלקית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = -\bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda + \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$
 
$$.\lambda = -\bar{\lambda} \Leftarrow (\lambda + \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{v} \neq 0 \Leftrightarrow$$