

集成电压调整器的 CA-IF1028-Q1 LIN 收发器

1. 产品特性

- 符合面向汽车应用的 AEC-Q100 标准(认证中)
- 符合 LIN2.0、LIN2.1、LIN2.2、LIN2.2A 和 ISO 17987-4:2016(12V)电气物理层(EPL)标准
- 符合面向车辆应用的 SAE J2602-1 LIN 网络标准和面向车辆应用的 SAE J2602-2 LIN 网络标准符合性测试
- 支持 12V 应用
- 宽工作输入电压范围:
 - V_{BAT} 范围为 5.5V 至 28V
- LIN 传输数据速率高达 20kbps
- 工作模式:
 - 正常模式
 - 低功耗待机模式(典型值 25 µ A)
 - 低功耗睡眠模式(典型值 16 µ A)
- 支持低功耗模式唤醒:
 - 通过 LIN 总线实现远程唤醒
 - 通过 EN 引脚实现直接唤醒
- 集成 30kΩ LIN 上拉电阻
- 在 LIN 总线和 RXD 输出实现上电/断电无干扰运行
- 保护功能: ±42V LIN 总线容错、42V 负载突降支持、IEC ESD 保护、V_{BAT}输入端上的欠压保护、TXD 显性状态超时、热关断、系统级未供电节点或接地断开失效防护
- V_{CC}管脚对外提供 5V 或 3.3V 输出电压,可提供 100mA(SOIC8 封装)和 125mA 电流能力(DFN8 封装)
- 结温范围: -40℃至 150℃
- 可提供 SOIC8 封装和无引线 DFN8 封装

2. 应用

• 车身电子装置和照明

- 信息娱乐系统和仪表组
- 混合动力电动汽车和动力总成系统
- 被动安全
- 电器

3. 概述

CA-IF1028-Q1 是一款本地互联网络(LIN)收发器,LIN 是支持汽车车载网络的低速通用异步收发器(UART)通信协议。CA-IF1028-Q1 通过 TXD 引脚控制 LIN 总线的状态,使其具备最佳压摆率和波形整形,以减少电磁辐射(EME),并通过 RXD 输出引脚报告总线的状态。

CA-IF1028-Q1 通过宽输入电压范围来支持 12V 应用,此外还支持低功耗睡眠模式。该器件支持通过从 LIN 和 EN 引脚唤醒的功能。

CA-IF1028-Q1 集成了用于从节点应用和 ESD 保护的电阻器。一旦发生接地漂移或者电源电压断开,该器件可防止反馈电流经 LIN 流向电源输入。

CA-IF1028-Q1 集成了低压稳压器 (LDO), 提供 5V 或 3.3V 电压输出, 供电电流高达 100mA (SOIC8) 和 125 mA (DFN8), 以给其他器件供电。

表 3-1 器件信息

零件号	封装	封装尺寸(标称值)
CA-IF10285S-Q1	SOIC8	4.9mm x 3.9mm
CA-IF10285D-Q1	DFN8	3mm x 3mm
CA-IF10283S-Q1	SOIC8	4.9mm x 3.9mm
CA-IF10283D-Q1	DFN8	3mm x 3mm

图 3-1 简化芯片结构图

4. 订购指南

表 4-1 有效订购零件编号

型号	V _{cc} 电压(LDO 输出)	特性	封装
CA-IF10285S-Q1	5V	车规级型号	SOIC8
CA-IF10285D-Q1	5V	车规级型号	DFN8
CA-IF10283S-Q1	3.3V	车规级型号	SOIC8
CA-IF10283D-Q1	3.3V	车规级型号	DFN8

目录

1.	产品	持性		1
2.	应用			1
3.	概述			1
4.	订购	指南		2
5.	修订	历史		3
6.	引脚	功能	描述	4
7.	产品	规格		5
	7.1.	绝对	付最大额定值 ¹	5
	7.2.	ESC) 额定值	5
	7.3.	建议	义工作条件	5
	7.4.	热量	量信息	5
	7.5.	电	气特性	6
	7.5	5.1.	直流特性(V _{BAT})	6
	7.5	5.2.	上电复位(V _{BAT})	6
	7.5	5.3.	直流特性(Vcc)	6
	7.5	5.4.	TXD 引脚	6
		5.5.	RXD 引脚	_
		5.6.	EN 引脚	_
		5.7.	RSTN 引脚	
	7.5	5.8.	LIN 引脚	7

	7.5.	9. 占空比	7
	7.5.	10. 热关断	_
	7.5.	.11. 时序特性	8
8.	参数测	测量信息	9
9.	详细说	兑明	12
	9.1.	短路保护功能	12
	9.2.	过温保护功能	12
	9.3.	Vcc 欠压保护功能	12
	9.4.	显性超时功能	12
	9.5.	工作模式	12
	9.6.	远程唤醒	13
10.	应用信	言息	14
11.	封装信	言息	15
	11.1 SO	IC8 外形尺寸	15
	11.2 DF	N8 外形尺寸	16
12.	焊接偏	言息	17
13.	包装信	言息	18
14.	重要詞	5明	19

5. 修订历史

修订版本号	修订内容	页码
Preliminary	NA	NA

6. 引脚功能描述

表 6-1 CA-IF1028 引脚功能描述

引脚名称	引脚编 号	类型	描述
V_{BAT}	1	电源	电池电源电压
EN	2	输入	使能输入端口
GND	3	电源	地
LIN	4	输入/输出	LIN 总线输入/输出端口
RXD	5	输出	接收器数据输出端口;发生唤醒事件后置为低电平
TXD	6	输入	发送器数据输入端口
RSTN	7	输出	输出复位端口, V _{cc} 正常输出时 RSTN 为高电平; V _{cc} 欠压时 RSTN 为低电平
V _{CC}	8	输出	内部 LDO 的输出

7. 产品规格

7.1. 绝对最大额定值 1

上海川土微电子有限公司

符号	参数	测试条件	最小值	最大值	単位
V _{BAT}	电源电压	对 GND 电位, 对 LIN 电位	-0.3	42	V
V _{CC}	LDO 输出电压	对 GND 电位	-0.3	7	V
TXD		对 GND 电位	-0.3	V _{CC} +0.3	V
RXD		对 GND 电位	-0.3	V _{CC} +0.3	V
RSTN		对 GND 电位	-0.3	V _{CC} +0.3	V
EN		对 GND 电位	-0.3	V _{CC} +0.3	V
LIN		对 GND 电位, 对 V _{BAT} 电位	-42	42	V
T _{vJ}	结温		-40	150	$^{\circ}\!\mathbb{C}$
T _{STG}	存储温度		-55	150	$^{\circ}\mathbb{C}$

备注:

7.2. ESD 额定值

	测节	式条件	数值	单位
HBM ESD	V _{BAT} 和 LIN 引脚		±8000	V
HEIVI E3D	V _{CC} 、RSTN、RXD、EN 和 TXD 引脚			V
CDM ESD	所有管脚	所有管脚		V
System Level ESD	LIN 和 V _{BAT}	IEC 61000-4-2: 不上电接触放电	±6000	V

7.3. 建议工作条件

	参数	最小值	最大值	单位
V _{BAT}	电池电源电压	5.5	28	V
V _{LIN}	LIN 总线电压	0	28	V
V _{LOGIC}	逻辑引脚电压(RSTN、RXD、EN 和 TXD)	0	5.5	V
T _A	工作环境温度范围	-40	125	°C

7.4. 热量信息

	热量表	SOIC8	DFN8	单位
R _{θJA} IC 结至环境	的热阻	126	TBD	°C/W

^{1.} 等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。

7.5. 电气特性

建议工作条件下,环境温度 T_A=-40℃到 125℃;如无另外说明,所有典型值均在 25℃且 V_{BAT}=12V 下进行。

7.5.1. 直流特性(V_{BAT})

	参数	测试条件	最小值	典型值	最大值	单位
I _{BAT}	V _{BAT} 引脚电流	待机模式: V _{LIN} =V _{BAT}		25	49	μΑ
I _{BAT}	V _{BAT} 引脚电流	休眠模式: V _{LIN} =V _{BAT}		16	25	μΑ
I _{BAT}	V _{BAT} 引脚电流	正常模式 (隐性): V _{LIN} =V _{BAT} V _{RXD} =V _{CC} V _{RSTN} =HIGH		135	1800	μΑ
I _{BAT}	V _{BAT} 引脚电流	正常模式 (显性): V _{BAT} =12V V _{RXD} =0 V _{RSTN} =HIGH		1.5	4.5	mA

7.5.2. 上电复位(V_{BAT})

	参数	测试条件	最小值	典型值	最大值	单位
V _{th(det)pon}	上电复位高阈值电压			4.05	5.25	V
$V_{th(det)poff}$	上电复位低阈值电压		3	3.7	4.2	V
V _{hys(det)pon}	上电复位迟滞电压		50	350		mV

7.5.3. 直流特性(Vcc)

	参数	测试条件		最小值	典型值	最大值	单位
		V _{CC} =5V; V _{BAT} =12V;					
		I _{VCC} =-100mA to 0mA(SOIC8),		4.9	5	5.1	V
V_{CC}	V _{cc} 引脚电压	I _{VCC} =-125mA to 0mA(DNF-8) ,V _{CC} 供电	电流如图 8-3				
		V _{CC} =3.3V;V _{BAT} =12V;					
		I _{VCC} =-100mA to 0mA(SOIC8)		3.234	3.3	3.366	V
		I _{VCC} =-1250mA to 0mA(DNF-8) ,V _{CC} 供电	电流如图 8-3				
I _{olim}	输出电流限流	V _{CC} =0V to 5.5V	V _{CC} =0V to 5.5V			-150	mA
V_{uvd}	VCC 欠压保护低阈	V _{CC(nom)} =5V, Ramp Down		4.3	4.5	4.75	V
	值电压	V _{CC(nom)} =3.3V, Ramp Down		2.7	2.95	3.135	V
V _{uvr}	VCC 欠压保护高阈	V _{CC(nom)} =5V, Ramp Up		4.4	4.62	4.9	V
	值电压	V _{CC(nom)} =3.3V, Ramp Up		2.8	3.1	3.234	V
R _(VBAT-VCC) ¹	V _{BAT} 与 V _{CC} 脚之间	V _{CC(nom)} =5V;V _{BAT} =4.5V to 5.5V;I _{VCC} =-	T _{vj} =85°C		5	7	Ω
	的电阻	70mA to -5mA;LDO 处于饱和区;	T _{vj} =150°C		5.7	9	Ω
C _o ¹	输出补偿电容	等效串联电阻<5Ω		1	10		uF
注:		•					
1.测试数据基	基于实验室验证和仿真结果	₹.					

7.5.4. TXD 引脚

	参数	测试条件	最小值	典型值	最大值	单位
V _{th(sw)}	开关阈值电压	V _{CC} =2.97V to 5.5V	0.3xV _{CC}		0.7xV _{CC}	V
V _{hys(i)}	输入迟滞电压	V _{CC} =2.97V to 5.5V	200			mV
R _{pu}	上拉电阻		5	12	25	kΩ

7.5.5. RXD 引脚

	参数	测试条件	最小值	典型值	最大值	单位
I _{OH}	高电平输出电流	正常模式: V _{RXD} = V _{CC} -0.4V;V _{LIN} = V _{BAT}			-0.4	mA
I _{OL}	低电平输出电流	正常模式: V _{RXD} =0.4V;V _{LIN} =0V	0.4			mA

7.5.6. EN 引脚

	参数	测试条件	最小值	典型值	最大值	单位
V _{th(sw)}	开关阈值电压		0.8		2	V
R _{pd}	下拉电阻		50	130	400	kΩ

上海川土微电子有限公司

RSTN 引脚 7.5.7.

	参数	测试条件	最小值	典型值	最大值	单位
R _{pu}	上拉电阻	V _{RSTN} =V _{CC} -0.4V; V _{CC} =2.97V to 5.5V	3	6	12	kΩ
I _{OL}	低电平输出电流	V_{RSTN} =0.4V; V_{CC} =2.97V to 5.5V;-40°C< $T_{\nu j}$ <195°C	3.2	11	40	mA
V _{OL}	低电平输入电压	V _{CC} =2.5V to 5.5V;-40°C <t<sub>vj<195°C</t<sub>	0		0.5	٧
V _{OH}	高电平输入电压	-40°C <t<sub>vj<195°C</t<sub>	0.8xV _{CC}		V _{CC} +0.3	V

7.5.8. LIN 引脚

	参数	测试条件	最小值	典型值	最大值	单位
I _{BUS_LIM}	驱动器显性状态限制电流	V _{TXD} =0V;V _{LIN} =V _{BAT} =18V	40		125	mA
I _{BUS_PAS_rec}	接收器隐性输入漏电流	V _{TXD} =V _{CC} ;V _{LIN} = 18V;V _{BAT} =5.5V			20	μΑ
I _{BUS_PAS_dom}	接收器显性输入漏电流	正常模式; V _{TXD} =V _{CC} ;V _{LIN} = 0V;V _{BAT} =12V	-600			μΑ
V _{SerDiode} ¹	串联二极管的压降	在 R _{slave} 的上拉通路,I _{SerDiode} =10μA ^[1]	0.4		1	V
I _{BUS_NO_GND}	没有地时的总线电流	V _{BAT} =18V; V _{LIN} = 0V	-750		10	μΑ
I _{BUS_NO_BAT}	没有电源时的总线电流	V _{BAT} =0V; V _{LIN} = 18V			10	μΑ
V _{BUSdom}	接收器显性翻转阈值电压	V _{BAT} =5.5V to 18V			0.4V _{BAT}	V
V _{BUSrec}	接收器隐性翻转阈值电压	V _{BAT} =5.5V to 18V	0.6V _{BAT}			V
V _{BUS_CNT}	接收器中心翻转阈值电压	V _{BAT} =5.5V to 18V;V _{BUS_CNT} =(V _{BUSdom} + V _{BUSrec})/2	0.45V _{BAT}	0. 5V _{BAT}	0.55V _{BAT}	V
V _{HYS}	接收器迟滞阈值电压	V _{BAT} =5.5V to 18V;V _{HYS} =V _{BUSrec} -V _{BUSdom}			0.175V _{BAT}	V
R _{slave}	从机电阻	LIN 和 VBAT 之间的电阻,VLIN=0V;V _{BAT} =12V	20	30	60	kΩ
C _{LIN} ¹	LIN 引脚等效电容				30	pF
	目州於山市匠	正常模式;V _{TXD} =0V;V _{BAT} = 7V			1.4	V
$V_{O(DOM)}$	显性输出电压	正常模式;V _{TXD} =0V;V _{BAT} = 18V			2.0	V
注:		•	•	•	•	•
1.测试数据基	于实验室验证和仿真结果。					

7.5.9. 占空比

	参数	测试条件	最小值	典型值	最大值	单位
δ1 ^{1,2}	占空比 1	V _{th(rec)(max)} =0.744xV _{BAT} ; V _{th(dom)(max)} =0.581xV _{BAT} ; t _{bit} =50µs; V _{BAT} =7V~18V,如图 8- 1	0.396			
01-7-	日土ル1	V _{th(rec)(max)} =0.76xV _{BAT} ; V _{th(dom)(max)} =0.593xV _{BAT} ; t _{bit} =50μs; V _{BAT} =5.5V~7V,如图 8-1	0.396			
δ2 ^{2,3}	占空比 2	V _{th(rec)(min)} =0.422xV _{BAT} ; V _{th(dom)(min)} =0.284xV _{BAT} ; t _{bit} =50μs; V _{BAT} =7.6V~18V,如图 8- 1			0.581	
022,5	白工儿 2	V _{th(rec)(min)} =0.41xV _{BAT} ; V _{th(dom)(min)} =0.275xV _{BAT} ; t _{bit} =50µs; V _{BAT} =6.1V~7.6V,如图 8- 1			0.581	
δ31,2	占空比 3	V _{th(rec)(max)} =0.778xV _{BAT} ; V _{th(dom)(max)} =0.616xV _{BAT} ; t _{bit} =96μs; V _{BAT} =7V~18V,如图 8- 1	0.417			
03-7-	日工儿 3	V _{th(rec)(max)} =0.797xV _{BAT} ; V _{th(dom)(max)} =0.630xV _{BAT} ; t _{bit} =96μs; V _{BAT} =5.5V~7V,如图 8-1	0.417			
δ4 ^{2,3} 占空比 4	V _{th(rec)(min)} =0.389xV _{BAT} ; V _{th(dom)(min)} =0.251xV _{BAT} ; t _{bit} =96μs; V _{BAT} =7.6V~18V,如图 8- 1			0.590		
04年 白至几 4		V _{th(rec)(min)} =0.378xV _{BAT} ; V _{th(dom)(min)} =0.242xV _{BAT} ; t _{bit} =96μs; V _{BAT} =6.1V~7.6V,如图 8- 1			0.590	

注:

- δ1, δ3= $\frac{t_{bus(rec)(min)}}{2 \times t_{bit}}$ 1.
- 2. 总线负载情况: (1) C_{BUS} =1nF, R_{BUS} =1 $k\Omega$; (2) C_{BUS} =6.8nF, R_{BUS} =660 Ω ; (3) C_{BUS} =10nF, R_{BUS} =500 Ω
- $\delta 2, \, \delta 4 = \frac{t_{bus(rec)(max)}}{2 \times t_{bit}}$ 3.

CA-IF1028

Preliminary,2023/07/10

上海川土微电子有限公司

7.5.10. 热关断

	参数	测试条件	最小值	典型值	最大值	单位
T _{th(act)otp} ¹	关断结温		165	180	195	$^{\circ}\mathbb{C}$
T _{th(rel)otp} ¹	恢复结温		126	138	150	$^{\circ}\mathbb{C}$
注:						
1.测试数据基	于实验室验证和仿真结果。					

7.5.11. 时序特性

	参数	测试条件	最小值	典型值	最大值	单位
t _{P(RX)}	接收器传播延时	上升和下降,C _{RXD} =20pF			6	μs
t _{P(RX)sym}	接收器传播延时对称性	C _{RXD} =20pF	-2		2	μs
t _{wake(dom)LIN}	LIN 显性唤醒时间(远程唤醒)	休眠模式	30	80	150	μs
t _{to(dom)TXD}	TXD 显性超时时间	V _{TXD} =0V	6	13	20	ms
t _{msel}	模式切换时间		3	11.5	20	μs
t _{det(uv)(vcc)}	V _{cc} 欠压保护时间	C _{RSTN} =20pF	1	8	15	μs
t _{rst}	复位时间		2		8	ms

参数测量信息

图 8-1 总线信号传输时序图

图 8-2 开关特性测试电路

图 8-3 Vcc 供电电流降额曲线 (SOIC8)

图 8-4 Vcc 供电电流降额曲线 (DFN8)

图 8-5 R_(VBAT-VCC) 典型值随温度变化曲线

9. 详细说明

CA-IF1028 是一款应用于 LIN 协议控制器和物理总线之间的接口芯片,可应用于卡车、公交、小汽车和工业控制等领域,传输速率高达 20kbps。CA-IF1028 在发送数据输入(TXD)端接收协议控制器的发送数据流,并将其转换为具有最佳压摆率和波形整形的总线信号;LIN 总线上的输入数据由接收器的 RXD 端口输出至外部的微控制器。此器件兼容"LIN 2.x/ISO 17987-4:2016/SAE J2602"标准。

CA-IF1028 集成 LDO, 通过 V_{CC} 脚可向微控制器或其它外围设备供电。LDO 输出电压分 5V 和 3.3V 两个版本;其供电电流高达 100mA(SOIC8)和 125 mA(DFN8),应用中应参数输入 VBAT 电压和环境温适当将额使用,如图 8-3 和图 8-4。

9.1. 短路保护功能

CA-IF1028 具有过温保护功能。在关断模式、正常模式和待机模式下,当结温超过关断结温 T_{th(act)otp} 时,芯片将进入关断模式,即关断 LDO 功能,RSTN 变为低电平;当结温降至 T_{th(rel)otp} 以下时,芯片重新进入待机模式,LDO 正常输出。

在休眠模式下,LDO 和发送器已经处于关断状态,即使触发过温保护,芯片保持在休眠模式。

CA-IF1028 具有 Vcc 输出电压短路保护和 LIN 总线短路保护功能。

当Vcc 输出短路到GND时,内部电路通过限流的方式将最大电流限制在Iolim以内,从而防止芯片由于功耗过大而烧毁;当LIN总线电压短路到VBAT电源且芯片处于显性状态时,发送器内部通过限流的方式将最大电流限制在IBUS LIM以内,从而防止芯片由于功耗过大而烧毁。

9.2. 过温保护功能

CA-IF1028 具有过温保护功能。在关断模式、正常模式和待机模式下,当结温超过关断结温 T_{th(act)otp} 时,芯片将进入关断模式,即关断 LDO 功能,RSTN 变为低电平;当结温降至 T_{th(rel)otp} 以下时,芯片重新进入待机模式,LDO 正常输出。

在休眠模式下,LDO 和发送器已经处于关断状态,即使触发过温保护,芯片保持在休眠模式。

9.3. Vcc 欠压保护功能

CA-IF1028 的 LDO 输出电压是持续监测的,并最终反映到系统复位信号 RSTN 上。当 Vcc<Vuvd 且持续时间超过 tdet(uv)(Vcc), RSTN 输出拉低;当 Vcc>Vuvr 且持续时间超过 trst, RSTN 输出拉高。

9.4. 显性超时功能

如果 TXD 引脚因硬件和(或)软件应用故障而被强制为永久低电平时,内置的 TXD 显性超时定时器电路可防止总线线路被驱动至永久显性状态(阻塞所有网络通信)。定时器由 TXD 引脚上的下降沿触发。如果 TXD 引脚上的低电平维持时间超过内部定时器时间(t_{to(dom)TXD}),发送器将被禁用,驱动总线进入隐性状态。定时器通过 TXD 引脚上的上升沿复位。

9.5. 工作模式

图9-1所示, CA-IF1028主要有四种工作模式,分别为休眠模式、待机模式、正常模式和关断模式。

体眠模式: 当CA-IF1028处于正常模式且检测到EN由高到低且TXD=0且RSTN=1时,芯片进入休眠模式。处于休眠模式时,LDO功能关闭,发送器关闭,RXD= Vcc ,RSTN拉低。

待机模式: 当CA-IF1028处于休眠模式检测到远程唤醒事件,或处于正常模式下检测到EN=H且TXD=H,且RSTN=H(V_{CC}电压正常输出),或处于关断模式检测到VBAT不欠压且芯片不过温,芯片进入待机模式。处于待机模式时,发送器关闭,RXD表征唤醒事件。

正常模式: 当CA-IF1028处于待机模式检测到EN=H且RSTN=H,或处于休眠模式检测到EN=H时,芯片进入正常模式。处于在正常模式时,CA-IF1028能够通过LIN总线传输和接收数据,总线高电平代表隐性,低电平代表显性。接收器在检测到LIN总线输入引脚上的数据流后,通过RXD引脚将其输出至微控制器。

关断模式: 当 CA-IF1028 的 VBAT 电压处于欠压状态或芯片处于过温保护状态时,芯片进入关断模式。处于关断模 式时,发送器关闭,RXD 引脚悬空,RSTN 为低电平。

注:

- 在正常模式,LIN收发器开启 但如果EN或者RSTN变为低电平,LIN收发器就关闭;远程唤醒功能打开。 1.
- 2. RXD跟随VCC, 直到VCC 掉电到 2V以下;
- 当唤醒事件或进入睡眠事件同时发生,CA-IF1028不会RESET而直接进入待机模式

图 9-1 状态转换图

9.6. 远程唤醒

LIN 引脚上的远程唤醒: 当 LIN 引脚通过一个下降沿拉低至低电平后,下一时刻出现一个上升沿,且该上升沿与前 一时刻下降沿之间的低电平维持时间大于 twake(dom)LIN,则该过程被视为一个有效的远程唤醒(图 9-2 所示)。

当有效的远程唤醒事件发生后,芯片进入待机模式,且RXD为连续的低电平,以向微控制器发送中断请求。

图 9-2 远程唤醒时序图

10. 应用信息

在多点 LIN 组网应用中,主节点要用阻塞二极管和 1kΩ 电阻串联来上拉总线,从节点不需要这两个器件,靠芯片内部上拉就可以。并且通常主节点总线到地接 1nF 电容,而从节点总线到地接 220pF 电容。

图 10-1 LIN 总线典型应用图

上海川土微电子有限公司

11. 封装信息

11.1 SOIC8 外形尺寸

SOIC8 封装尺寸图和建议焊盘尺寸图。尺寸以毫米为单位

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

LEFT-SIDE VIEW

图 11-1 SOIC 封装尺寸图

11.2 DFN8 外形尺寸

	SYMBOL	MIN	NOM	MAX	
	A	0.7	0.75	0.8	
STAND OFF			0.02	0.05	
	A2		0.55		
	A3		0.203 REF	•	
	A4	0.075		0.18	
	b	0.25	0.3	0.35	
х	D		3 BSC		
Υ	E		3 BSC		
	e		0.65 BSC		
Х	D2	1.5	1.6	1.7	
Υ	E2	2.3	2.4	2.5	
	L	0.3	0.4	0.5	
	L1	0.01 0.09			
D EDGE	К		0.3 REF	•	
Έ	qqq		0.1		
	ccc		0.1		
	bbb	0.1			
LEAD OFFSET			0.05		
EXPOSED PAD OFFSET			0.1		
	Y	A A A1 A2 A3 A4 B B A4 B B A4 A4 B B A4 A4 B B A4 B	A 0.7 A1 0 A2 A3 A4 0.075 b 0.25 X D 7 E C C C C C C C C C C C C C C C C C C C	A 0.7 0.75 A1 0 0.02 A2 0.55 A3 0.203 REF A4 0.075 b 0.25 0.3 X D 3 BSC Y E 3 SSC X D2 1.5 1.6 Y E2 2.3 2.4 L 0.3 0.4 L1 0.01 D EDGE K 0.3 REF E adad 0.1 ccc 0.1 bbb 0.1 ddd 0.05	

BOTTOM VIEW

图 11-2 DFN8 外形尺寸

上海川土微电子有限公司

12. 焊接信息

表 12-1 焊接温度参数

简要说明	无铅焊接
温升速率(T _L =217℃ 至峰值 T _P)	最大 3°C/s
T _{smin} =150°C 到 T _{smax} =200°C 预热时间 t _s	60~120 秒
温度保持 217℃ 以上时间 tL	60~150 秒
峰值温度 T _P	260°C
小于峰值温度 5℃ 以内时间 tp	最长 30 秒
降温速率(峰值 T₂至 T∟=217°C)	最大 6°C/s
常温 25℃ 到峰值温度 Tp时间	最长8分钟

13. 包装信息

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component
	thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IF1028S-Q1	SOIC	S	8	2500	330	12.4	6.5	5.4	2.1	8	12	Q1
CA-IF1028D-Q1	DFN8	D	8	3000	330	12.4	3.3	3.3	1.1	8	12	Q1

14. 重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保 留因技术革新而改变上述资料的权利。

Chipanalog 产品全部经过出厂测试。 针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。 除此之外不得复制或展示所述资源, 如 因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等, Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

http://www.chipanalog.com