2.1. КРАЙНИ АВТОМАТИ

1. Определение

Краен ориентиран граф с дефинирано начало и крайни върхове представлява *краен автомат без памет A* над азбуката $\Sigma = \{a_1, a_2, ...a_n, \}$.

Ако $G = \langle \Sigma, N, S, P \rangle$ е автоматна граматика, то тя се представя чрез ориентиран граф с върхове — нетерминалните символи от N и дъги — терминалните елементи на Σ . Например, автоматната граматика

$$G = \langle \{a,b\}, \{S,A,B\}, S,P \rangle$$
 с продукции $P = \{S \rightarrow aA|bB, A \rightarrow aA|a,B \rightarrow bB|b \}$

се представя с ориентирания граф на фиг. 1, където върхът \underline{S} е начало на всеки път по графа. Всеки един от върхове A и B може да е краен за пътищата в графа. Пътят $S \!\!\!\! \to A \!\!\!\! \to A \!\!\!\! \to A \!\!\!\! \to A$ еднозначно дефинира думата aaa над азбуката Σ .

Детерминиран краен автомат (ДКА) е всяка наредена петорка $A = \langle N, \Sigma, \Delta, S, F \rangle$, където

- N е крайното множество от състояния на автомата (азбука на състоянията);
- Σ крайното множество от входни букви (входна азбука);
- Δ : $N \times \Sigma \to N$ функцията на преходите, която по текущото състояние и входната буква привежда автомата в ново състояние;
- S началното състояние на автомата;
- $F \subset N$ множеството от крайни състояния на автомата.

2. Принцип на работа на крайния автомат

Допуска се, че $w = a_1 a_2 ... a_I \in \Sigma^*$ е произволна дума над Σ . По начално състояние $n_0 = S$ и първия символ a_1 на w, чрез функцията на преходите Δ се определя следващото състояние на автомата n_1 с равенството

$$n_1 = \Delta(S, a_1)$$
.

На i+1- та стъпка, по текущото състояние n_i и входен символ a_{i+1} се определя следващото състояние:

$$n_{i+1} = \Delta(n_i, a_{i+1}) \ \forall i$$
 в интервала $0 \le i \le I - 1$.

След изчерпване на всички входни символи $a_i\,,\,\,i=\overline{1,I}\,,\,\,$ се стига до състояние

$$n_I = \Delta(n_{I-1}, a_I) .$$

Ако състояние $n_I \in F$ автоматът A разпознава думата w. При $n_I \notin F$ автоматът A не разпознава думата w.

Пример:

Автоматът A е от вида $A = \langle \{A, B, C, D, E\}, \{a, b\}, \Delta, A, \{D, E\} \rangle$, където $\Delta: N \times \Sigma \to N$ е изображение, определящо функцията на прехода, която са задава таблично:

Състояние	Символ	$\Delta(n,a_i)$
n	a_i	
A	а	В
A	b	C
B	b	B
<i>C C</i>	a	D
C	b	C
D	а	В
D	b	E
E	а	E

Функцията на прехода $\Delta(n,a_i)$ може да се зададе и с матрицата на прехода A_Δ . Елементите на Σ и N се номерират по следния начин: $\Sigma = \left\{a_1,a_2,...a_j,...a_q\right\}; \ N = \left\{n_1,n_1,...n_i,...n_p\right\}$. Матрицата на прехода A_Δ е с p - реда и q стълба и елементи, дефинирани от израза

$$A_{\Delta}(i,j) = l \Leftrightarrow \Delta(n_i,a_j) = n_l$$
.

За разглеждания автомат: $n_1=A$, $n_2=B$, $n_3=C$, $n_4=D$, $n_5=E$, $a_1=a$, $a_2=b$. Елементи на матрицата на прехода:

$$\Delta(n_1, a_1) \rightarrow n_2 = B(2); \Delta(n_1, a_2) \rightarrow n_3 = C(3);$$

 $\Delta(n_2, a_1) \rightarrow *$ (не дефиниран); $\Delta(n_2, a_2) \rightarrow n_2 = B(2);$

$$\Delta(n_3, a_1) \rightarrow n_4 = D$$
 (4); $\Delta(n_3, a_2) \rightarrow n_3 = C$ (3); $\Delta(n_4, a_1) \rightarrow n_2 = B$ (2); $\Delta(n_4, a_2) \rightarrow n_5 = E$ (5); $\Delta(n_5, a_1) \rightarrow n_5 = E$ (5); $\Delta(n_5, a_2) \rightarrow^*$ (не дефиниран).

Матрица на прехода:
$$A_{\Delta}(i,j) = \begin{pmatrix} 2 & 3 \\ * & 2 \\ 4 & 3 \\ 2 & 5 \\ 5 & * \end{pmatrix}$$

Автоматът A е представен с краен ориентиран граф на фиг. 2.

Ако A е детерминиран краен автомат множеството $L(A) = \{ w \in \Sigma * | \Delta(S, w) \in F \}$

е език, разпознаван от автомата A. L(A) се състои от всички входни думи $w \in \Sigma^*$, с които A достига състояние F от начално състояние S.

Hеdеmеpминиpан κ pаен автомат е наредена петорка $A = \langle N, \Sigma, \Delta, S, F \rangle$, където функцията на преходите $\Delta : N \times \Sigma \to P(N)$ е изображение на $N \times \Sigma$ в множеството P(N) от всички подмножества на N. Множествата от азбуки N, Σ , множеството от крайни състояния F и началното състояние S са дефинирани, както при детерминиран краен автомат.

Пример: Крайният автомат $A = \langle \{S, A, B, C\}, \{a, b\}, \Delta, S, F \rangle$ с функцията на преход Δ , дефинирана с таблица

N	W	P(N)
S S	a	$\{A\}$
S	b	{ <i>B</i> , <i>C</i> }
A	a	{ <i>C</i> }
A	b	{ <i>C</i> }
B	a	Ø
В	b	<i>{B,C}</i>
В С	a	Ø
C	b	Ø

и множество от крайни състояния $F = \{C\}$ е недетерминиран краен автомат с краен ориентиран граф, представен на фиг. 3.

Разширява се дефиниционното множество на функцията на преход Δ върху множеството $P(N) \times \Sigma^*$. Дефинира се функцията Δ' чрез равенството

$$\Delta'(N',a) = \bigcup_{n \in N'} \Delta(n,a) \mid \ \forall N' \in P(N)$$
 и $a \in \Sigma$.

При |N'|=1, т.е. върху множеството $N\times\Sigma$, $\Delta'\equiv\Delta$.

За всяко $N' \in P(N)$ и $w = \beta a \in \Sigma^*$ се дефинира функцията Δ'' върху множеството $P(N) \times \Sigma^*$ чрез равенствата

$$\Delta''(N',\varepsilon) = N',$$

$$\Delta''(N', w) = \Delta'(\Delta''(N', \beta), a),$$

Върху множеството $P(N) \times \Sigma^*$ функцията $\Delta'' \equiv \Delta'$, а върху множеството $N \times \Sigma$ - функцията $\Delta'' \equiv \Delta$.

За недетерминирания краен автомат от примера се получава

$$\Delta(\{S, A\}, ab) = \Delta(\Delta(\{S, A\}, a), b) =$$

$$= \Delta(\Delta(\{S\}, a) \cup \Delta(\{A\}, a), b) = \Delta(\{A\} \cup \{C\}, b) =$$

$$= \Delta(\{A\}, b) \cup \Delta(\{C\}, b) = \{C \cup \emptyset\} = \{C\}.$$

Множеството от думи, което разпознава недетерминиран краен автомат $A = \langle N, \Sigma, \Delta, S, F \rangle$, се дефинира като

$$L(A) = \{ w \in \Sigma * | \Delta(\{S\}, w) \cap F \neq \emptyset \}$$

и се нарича език, разпознаван или породен от A.

Пример:

Думата *aaa* не се разпознава от $A = \langle \{S, A, B, C\}, \{a, b\}, \Delta, S, F \rangle$:

$$\Delta(\{S\}, aaa) = \Delta(\Delta(\{S\}, a), a), a) = \Delta(\Delta(\{A\}, a), a) = \Delta(\{C\}, a) = \emptyset.$$

Думата bbb се разпознава от $A = \langle \{S, A, B, C\}, \{a, b\}, \Delta, S, F \rangle$:

$$\Delta(\{S\},bbb) = \Delta(\Delta(\{S\},b),b),b) = \Delta(\Delta(\{B\},b),b) =$$
= $\Delta(\{B,C\},b) = \Delta(\{B\},b) \cup \Delta(\{C\},b) = \{B,C\} \cup \varnothing = \{B,C\}.$
Следователно, думата $aaa \notin L(A)$, а думата $bbb \in L(A)$.

Дефиниции:

- 1. Два крайни автомата A_1 и A_2 са еквивалентни, ако $L(A_1) = L(A_2)$.
- 2. Формалният език L над азбуката Σ се разпознава от детерминиран краен автомат точно тогава, когато може да се разпознае от някой недетерминиран краен автомат.