6) During this mighty struggle, we have generated the boxed equation in Eq. (15). This has an important (~ pictorial) interpretation regarding how some \$\overline{T}\$- vector "moves" in a given ligenstate of 4 momentum.

Set d'= & and m'= m in Eq. (15), so that you are in a given eigenstate. The expectation value of T in that state can then be written...

$$\rightarrow \langle \alpha_{J}m|\vec{T}|\alpha_{J}m\rangle = \left[\frac{\langle \alpha_{J}m|\vec{J}\cdot\vec{T}|\alpha_{J}m\rangle}{\langle \alpha_{J}m|\vec{J}\cdot\vec{J}|\alpha_{J}m\rangle}\right]\langle \alpha_{J}m|\vec{J}|\alpha_{J}m\rangle, \qquad (16)$$

or, symbolically...

 $\langle \vec{T} \rangle = \langle \hat{n} \cdot \vec{T} \rangle \langle \hat{n} \rangle$, $\hat{n} = \vec{J}/|\vec{J}| = \text{unit vector along } \vec{J}$. (17)

The interpretation is this: in a given state of 4 momentum \vec{J} , the only component of \vec{T} which survives a QM winaying (expectation value) is the \vec{T} -component along \vec{J} . It is as though \vec{T} precesses rapidly about \vec{J} , so as to average-to-zero all its components $L\vec{J}$.

"precession"

VECTOR MODEL

This (somewhat fanciful) picture is known as the Vector Model, as shown.

The Vector Model can be used to "see" what happens when two 4 momenta couple. Suppose the orbital \vec{L} and spin \vec{S} 4 momenta couple to form the total system 4 momentum: $\vec{J} = \vec{L} + \vec{S}$. Then $\vec{L} + \vec{S} = \vec{S} = \vec{I} + \vec{J} = \vec{I} + \vec{J} = \vec$

Frecession

T.S COUPLING

by precess about \vec{J} , and their only observable components are their projections along \vec{J} . In this sense, \vec{J} (or more accurately \hat{z} J_z) serves as a true quantization axis for the system.

(17)	DATE Mon. 21 Feb. Wed. 23 " Fri. 25 "	HOLIDAY (President's Day) Matrix Elements of \overline{T} -vectors. Magnetic Interactions in Atoms.	ASSIGNMENT - #20 Prots. 65 - [#@due]
	Mon. 28 Feb. Wed. 2 Mar. Fri. 4 n	Fine-structure in H-like atoms. Thomas precession. Pauli's correction. Klein-Gordon Egth for the H-atom.	- no assignment [#@due]
(23)	Mon, 4 Mar. Wed. 9 " Fri. 11 n	Integral Formulation of QM: I. Integral Form II: Propagators. Integral Form III: Free-particle G-fon.	#21 (due 21 Mar) - -
	Mon. 14 Mar. Wed. 16 n Fri. 18 n	SPRING BREAK " "	no assignment
	Mon, 21 Mar. Wed. 23 n Fri, 25 n	MID-TERM EXAM (inclass, 2 hrs)* Integral Form IV: Scattering. Integral Form V: S-Matrix & Pert The	-

^{*} The MID-TERM will cover material through lecture of 11 Mar.