# Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет Программной Инженерии и Компьютерной Техники



#### Домашнее задание по теории графов №5

Вариант 92

Выполнил:

Степанов Арсений Алексеевич

Группа:

P3109

Преподаватель:

Поляков Владимир Иванович

### Матрица смежности графа $G_1$

| V/V      | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ | $e_7$ | $e_8$ | $e_9$ | $e_{10}$ | $e_{11}$ | $e_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| $e_1$    | 0     |       |       | 5     |       |       |       | 4     | 1     | 4        |          | 1        |
| $e_2$    |       | 0     |       |       | 4     |       | 4     |       | 1     |          |          |          |
| $e_3$    |       |       | 0     | 5     |       | 4     | 3     | 4     |       | 3        | 3        |          |
| $e_4$    | 5     |       | 5     | 0     |       |       | 1     |       |       |          |          | 1        |
| $e_5$    |       | 4     |       |       | 0     | 4     | 4     |       |       |          |          | 5        |
| $e_6$    |       |       | 4     |       | 4     | 0     | 5     |       | 3     |          |          | 2        |
| $e_7$    |       | 4     | 3     | 1     | 4     | 5     | 0     | 2     |       |          | 5        |          |
| $e_8$    | 4     |       | 4     |       |       |       | 2     | 0     |       |          | 1        |          |
| $e_9$    | 1     | 1     |       |       |       | 3     |       |       | 0     | 4        | 4        |          |
| $e_{10}$ | 4     |       | 3     |       |       |       |       |       | 4     | 0        | 5        | 5        |
| $e_{11}$ |       |       | 3     |       |       |       | 5     | 1     | 4     | 5        | 0        | 2        |
| $e_{12}$ | 1     |       |       | 1     | 5     | 2     |       |       |       | 5        | 2        | 0        |

## Матрица смежности графа $G_2$

| V/V      | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ | $e_7$ | $e_8$ | $e_9$ | $e_{10}$ | $e_{11}$ | $e_{12}$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| $e_1$    | 0     |       | 3     | 4     |       |       |       | 4     | 2     |          | 5        |          |
| $e_2$    |       | 0     | 1     |       |       |       |       | 4     |       |          | 4        |          |
| $e_3$    | 3     | 1     | 0     |       | 4     | 4     |       |       |       | 1        |          |          |
| $e_4$    | 4     |       |       | 0     | 3     | 3     | 4     |       |       |          | 3        | 5        |
| $e_5$    |       |       | 4     | 3     | 0     | 5     | 1     |       | 2     |          | 5        |          |
| $e_6$    |       |       | 4     | 3     | 5     | 0     |       |       | 5     | 4        |          |          |
| $e_7$    |       |       |       | 4     | 1     |       | 0     |       |       | 4        | 2        |          |
| $e_8$    | 4     | 4     |       |       |       |       |       | 0     | 5     |          | 4        |          |
| $e_9$    | 2     |       |       |       | 2     | 5     |       | 5     | 0     | 1        |          | 1        |
| $e_{10}$ |       |       | 1     |       |       | 4     | 4     |       | 1     | 0        |          | 5        |
| $e_{11}$ | 5     | 4     |       | 3     | 5     |       | 2     | 4     |       |          | 0        | 1        |
| $e_{12}$ |       |       |       | 5     |       |       |       |       | 1     | 5        | 1        | 0        |

### Проверка изоморфности графов

$$\sum \rho_{G_1}(x) = 60, \ P(x) = \{7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 3\}$$
$$\sum \rho_{G_2}(x) = 60, \ P(y) = \{7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 3\}$$

Сопоставим вершины графа  $G_1$ , вершинам графа  $G_2$ :

| ρ    | 7        | 6                     | 5                       | 4                  | 3     |
|------|----------|-----------------------|-------------------------|--------------------|-------|
| P(x) | $x_7$    | $x_3, x_{11}, x_{12}$ | $x_1, x_6, x_9, x_{10}$ | $x_4, x_5, x_8$    | $x_2$ |
| P(y) | $y_{11}$ | $y_4, y_5, y_9$       | $y_1, y_3, y_6, y_{10}$ | $y_7, y_8, y_{12}$ | $y_2$ |

Получаем следующее соответствие между вершинами графов:

| P(x)  | P(y)     |
|-------|----------|
| $x_2$ | $y_2$    |
| $x_7$ | $y_{11}$ |

Для определения соответствия вершин с  $\rho=4$  проанализируем их связи с неустановленными вершинами

$$x_4 - \{x_1, x_3, x_{12}\}$$

$$x_5 - \{x_6, x_{12}\}$$

$$x_8 - \{x_1, x_3, x_{11}\}$$

$$y_7 - \{y_4, y_5, y_{10}\}$$

$$y_8 - \{y_1, y_9\}$$

$$y_{12} - \{y_4, y_9, y_{10}\}$$

Проанализировав, получаем:

| P(x)     | P(y)     |
|----------|----------|
| $x_3$    | $y_4$    |
| $x_5$    | $y_8$    |
| $x_6$    | $y_1$    |
| $x_{11}$ | $y_5$    |
| $x_{12}$ | $y_9$    |
| $x_2$    | $y_2$    |
| $x_7$    | $y_{11}$ |

Продолжим анализ для вершин с  $\rho=5$ 

$$x_1 - \{x_4, x_8, x_9, x_{10}\}$$

$$x_6 - \{x_9\}$$

$$x_9 - \{x_1, x_6, x_{10}\}$$

$$x_{10} - \{x_1, x_9\}$$

$$y_1 - \{y_3\}$$

$$y_3 - \{y_1, y_6, y_{10}\}$$

$$y_6 - \{y_3, y_{10}\}$$

$$y_{10} - \{y_3, y_6, y_7, y_{12}\}$$

Проанализировав, получаем:

| P(y)     |
|----------|
| $y_{10}$ |
| $y_3$    |
| $y_6$    |
| $y_2$    |
| $y_4$    |
| $y_8$    |
| $y_1$    |
| $y_{11}$ |
| $y_5$    |
| $y_9$    |
|          |

Проанализируем оставшиеся вершины:

$$x_4 - \{x_{12}\}$$

$$x_8 - \{x_{11}\}$$

$$y_7 - \{y_5\}$$

$$y_{12} - \{y_9\}$$

Проанализировав, получаем:

| P(x)     | P(y)     |
|----------|----------|
| $x_4$    | $y_{12}$ |
| $x_8$    | $y_7$    |
| $x_1$    | $y_{10}$ |
| $x_2$    | $y_2$    |
| $x_3$    | $y_4$    |
| $x_5$    | $y_8$    |
| $x_6$    | $y_1$    |
| $x_7$    | $y_{11}$ |
| $x_9$    | $y_3$    |
| $x_{10}$ | $y_6$    |
| $x_{11}$ | $y_5$    |
| $x_{12}$ | $y_9$    |

Каждой из вершин графа  $G_1$  можно сопоставить вершину графа  $G_2$ , следовательно, они изоморфны