Address Resolution Protocol (ARP)

Layers of Names

Application
Presentation
Session
Transport
Network
Link
Physical

Example Problem

Example Problem

Example Problem

Mapping Layer 3 to Layer 2

- Given an IP address, need to know link address
 - ▶ Send a frame to the link address, whose payload is an IP packet
- Example: gateway

 - Case I: IP packet destination is gateway IP
 Case 2: IP packet destination is not gateway IP

Address Resolution Protocol

- Generates mappings between layer 2 and layer 3 addresses
- Simple request-reply protocol
 - "Who has network address X?"
 - ► "I have network address X
 "
- Request sent to link layer broadcast address
- Reply sent to requesting address (not broadcast)
- Packet format includes redundant data
 - Request has sufficient information to generate a mapping
 - ► Makes debugging much simpler
- No "sharing" of state: bad state will die eventually

ARP Packet Format

Hardware		Protocol
Hardware length	Protocol length	Opcode
Source hardware address		
Source protocol address		
Destination hardware address		
Destination protocol address		
Data		
→ 32 bits —		

ARP Request

ARP Reply

Reverse ARP (RARP)

- Obsolete protocol (replaced by DHCP)
- Reverse address resolution: what is the network address for my link address?