Aula 01 - Introdução ao Cisco Packet Tracer 5.3

Uma solução interessante que pode ajudar a quem for criar uma rede na prática, seria antes de tudo, criar, configurar e simular o funcionamento de uma rede de computador através de um software específico para este fim.

Entre os softwares existentes no mercado, destaca-se o software grátis Cisco Packet Tracer desenvolvido pela maior empresa de equipamentos para rede do mundo, conhecida por CISCO SYSTEM e que pode ser baixado por este site:

O PT 5.3 (Packet Tracer) permite criar ambientes de redes LANs e WANs e além disso simular também, permitindo realizar diversas situações como por exemplo: roteamento entre LANs, montagem de redes locais simples, criação de VLANs, montagem de rede Frame Relay e outros.

Cabe ressaltar que o PT 5.3 é limitado, pois não é possível criar redes utilizando tecnologia de servidores ou com outros equipamentos que não sejam comercializados pela CISCO Systems. A função principal deste programa, além de simular diversos tipos de redes, é também servir como base de estudo para as certificações oferecida pela CISCO e demais configurações nos produtos por ela comercializados.

Figura 1 - Tela inicial do Cisco Packet Tracer 5.3

O Ambiente do Cisco Packet Tracer 5.3 é constituído por:

Espaço de Trabalho: área na qual se cria todo o ambiente de rede, seja ela uma rede local ou global.

Barra de Botões de uso geral: contém botões para realização de tarefas básicas, como Salvar, Criar Novo Documento, imprimir, entre outras funções básicas.

Barra de Ajustes: através desta barra é possível inserir notificações em sua rede, bem como deletar algum dispositivo e trabalhar com o uso de pacotes para um futuro teste simulado.

Barra de Dispositivos: Nesta barra se encontram todos os dispositivos que o Cisco Packet Tracer suporta. Nela está disponível desde dispositivos básicos como Hub, Switch, Pcs. Cabos e avançados como Roteador, Equipamentos WAN e VOIP.

OBS: Durante as atividades, o prévio conhecimento das opções disponíveis no programa, facilitará a sua utilização. Neste curso utilizaremos funções básicas e intermediárias deste software e o avanço para tarefas avançadas poderá ser alcançado através de um bom conhecimento em redes de computadores.

Aula 02 - Criando uma Rede Local Ponto-a-Ponto

Primeiramente será criado uma simples rede do tipo ponto-aponto utilizando recursos básicos de equipamentos e endereçamento IPv4.

01. Salve esta aula como exerc_1.pkt

- **02**. . Selecione na Barra de Dispositivos (canto inferior esquerdo) o componente End Devices para isto clique somente uma vez neste elemento.
- **03**. Na janela que se abre a direita, clicando apenas uma vez com o botão esquerdo do mouse, escolha o primeiro computador da esquerda chamado PC-PT.
- * **OBS**: note que somente o ato de posicionar o mouse sobre os dispositivos é apresentado logo abaixo sua descrição.
- **04**. Ao posicionar o mouse na área de trabalho do programa, o mouse deverá estar com um formato de uma cruz. Após isso basta clicar somente uma vez em qualquer área em branco.

Veja na imagem abaixo a sequência a ser seguida até agora:

- Repita as etapas 2, 3 e 4 para inserir mais um em sua área de trabalho.

Após isto iremos conectar estes dois PCs (PC0 e PC1) através de um cabo UTP do tipo Cross-over.

05. Clique no símbolo de um raio avermelhado na Barra de Dispositivos

06. Ao lado irá estará disponível diversos tipos de cabos, entre eles estão cabos de configuração de roteador (Console), cabos para conectar roteador com modelo (Serial DCE/DTE), Flbra Óptica (Flber),

entre outros. Neste curso utilizaremos somente os cabos Copper Straight-Through (Direto) e o Copper Cross-over (Cruzado) , pois ambos os cabos UTPs são os mais utilizados em uma infraestrutura de rede local (LAN).

07. Como é uma conexão entre PCs somente sem envolver concentradores, utilizaremos o cabo do tipo
Crorr-over. Para isto selecione-o clicando apenas uma vez.

08. O mouse neste momento assumirá um símbolo com o formato de um cabo. Clique apenas uma vez

RS 232

FastEthernet

no PC0 e em seguida aparecerá uma pequena janela ao seu lado com as portas disponíveis (RS 232 e FastEthernet) para conectar o cabo. Clique na opção FastEthernet, conforme indica a figura.

- 09. Arraste a conexão do cabo até o PC1 e repita a etapa 08.
- Se tudo ocorreu sem maiores problemas, sua tela deverá estar semelhante com a figura 1.2 abaixo:

Fig, 1.2 - Conexão entre dois PCs

ATENÇÃO:

- Se ao conectar um cabo errado entre os PCs ou outros dispositivos, ascenderá um led na cor vermelha ao lado os equipamentos (veja imagens abaixo) e neste caso será preciso clicar uma vezes sobre o cabo que esta conectando os dispositivos e apertar a tecla Del (Delete) do seu teclado e em seguida escolher o cabo adequado para realziar a conexão física.

CORRETO:

CONFIGURANDO O IP:

Após certificar que fisicamente os dois PCs estão conectados através do led verde, vamos configurar o IP nas máquinas.

01. Clique uma vez no PC0 e abrirá uma nova janela

- 02. Clique na aba Desktop e em seguida na opção IP Configuration Configuration
- 03. Preencha os campos conforme o exemplo:
 - Marque a opção Static
 - Ip Address: 192.168.10.1
 - Subnet Mask: 255.255.255.0
 - Feche a janela
- **04**. Posicione o mouse sobre o PC0 que você acabou de configurar e sem clicar em nada, deverá aparecer uma tela semelhante com a imagem abaixo, na qual informa o IP configurado, MAC Address e demais configurações. Observe que a notificação Link está como Up, ou seja, a conexão física está ok.

05. Agora clique no PC1 e faça o mesmo procedimento da etapa 1, 2 e 3 para inserir o endereço IP. Neste caso o IP dessa máquina será: 192.168.10.2 / Máscara: 255.255.255.0

Na próxima aula iremos abrir novamente este arquivo para realizar alguns testes e modificações.

Aula 03 - Testando uma Rede de Computador

Um teste básico que existe em uma rede de computador, é o comando PING, o qual, envia alguns pacotes da máquina transmissora para a receptora afim de checar se há uma conexão física e lógica básica. O Cisco Packet Tracer oferece também este tipo de teste, para isto siga as seguintes etapas:

TESTE COM O COMANDO PING:

- 01. Abra o arquivo exerc1.pkt
- 02. Selecione o PC0 (192.168.10.1) e clique uma vez sobre ele
- 03. Na janela que se abre, clique na aba Desktop e em seguida clique no botão Command Prompt
- 04. Abrirá uma janela semelhante ao do bom e velho MS-DOS. Cabe ressaltar, que é apenas um pequeno emulador e não contém todos os comandos do MS-DOS.
- run **05**. Command Prompt

Digite no prompt de comando: PING 192.168.10.2, ou seja, neste caso desejamos efetuar um ping no PC1 cujo qual tem o IP citado no início desta

- **06**. Se tudo ocorrer bem, não deverá haver perda de pacotes.
- 07. Feche a Janela
- **08**. Repita a operação de PING do PC1(192.168.10.2) para o PC0 (192.168.10.1).

TESTE COM O ENVIO DE PDU (Protocol Data Unit - Unidade de Dados de Protocolo):

Podemos realizar também um teste mais eficaz dentro do Cisco Packet Tracer, afim de certificar que o endereçamento IP esteja correto. Este tipo de teste nos permite filtrar o que queremos enviar para o destinatário; como por exemplo enviar somente pacotes com o protocolo HTTP, DNS e outros tipos.

Iremos agora fazer um teste simples com esse método. Veja:

01. Clique na janela Barra de Ajustes que se encontra à sua direita:

- **03**. Com o mouse com formato de uma pequena cruz com um envelope, clique sobre o PC0.
- 04. Na sequência, clique sobre o PC1
- 05. Parece que nada aconteceu, mas observe na Barra de Testes (canto direito inferior), que aparece a seguinte tela:

- Esta janela nos informa o resultado do teste.

Entendendo as colunas mais relevantes:

Last Status: Successful (tudo ocorreu conforme previsto), Failed (o envio do pacote falhou)

Source: Máquina de Origem Destination: Máquina de Destino

Type: Tipo do pacote a ser enviado (o pacote ICMP seria o pacote que contém o comando PING)

Time: Tempo de entrega do pacote ao destinatário

Num: Sequência dos pacotes

* Para realizar um novo teste você pode clicar no botão New na Barra de Ajustes ou então simplesmente repetir as etapas 2, 3 e 4. Cada processo que realizamos é armazenado como um cenário e portanto, você poderá analisar os cenários anteriormente testados. Para isso basta clicar no menu de seleção da Barra de Ajustes, o qual contém os cenários de testes.

06. Por fim salve esta atividade

Aula 04 - Criando e configurando uma Rede Local

Agora que você já foi capaz de montar e testar uma rede simples ponto-a-ponto, vamos nesta aula aprender a criar uma rede mais completa e para isso precisaremos de alguns dispositivos, os quais são:

- 01 Switch - =

Praticando:

- 01. Primeiramente salve esta atividade como: exerc2.pkt
- **02**. Insira os determinados elementos apresentados na tabela abaixo (caso não se recorde como inserir os dispositivos, consulte a aula 01):

Rede Local		
Equipamento	Modelo	
04 PCs	Generic (PC-PT)	
01 Switch	2950-24	
01 Impressora	Generic (Printer)	
Cabo UTP	Direto (Straight-Through)	

- 03. Organize os dispositivos conforme você desejar
- **04**. Ao conectar os cabos no Switch, você poderá escolher qualquer porta disponível e será normal durante a estabilização da conexão o led ficar na cor laranja, isto ocorre porque está sendo feito o estabelecimento da comunicação.
- 05. Vamos inserir um rótulo para nossa rede. Para isto clique na Barra de Ajustes no lado direito da janela

principal e escolha o botão Place Note

- 06. Posicione o mouse no acima de sua rede criada e digite: REDE LOCAL
- **07**. Para atribuir os IPs nos computadores basta seguir a Aula 01 no item configurando o IP.
- **08**. Configure os seguintes IPs nos computadores e impressora:

Faixa de IPs			
Equipamento	IP	Máscara de Rede	
PC0	192.168.100.1	255.255.255.0	
PC1	192.168.100.2	255.255.255.0	
PC2	192.168.100.3	255.255.255.0	
PC3	192.168.100.4	255.255.255.0	
Printer0	192.168.100.10	255.255.255.0	

- 09. Para inserir um IP na impressora (Printer0), clique uma vez sobre ela
- 10. Na janela que se abre, clique na aba Config
- **11**. Clique no botão FastEthernet (Interface)
- **12**. Localize a caixa de texto pertencente ao IP Address e insira o IP 192.168.100.10 e Subnet Mask (Máscara de Rede) 255.255.255.0.
- * Caso você não encontrou estas opções veja a figura abaixo já devidamente preenchida.

Fig. 1.5 - Tela de configuração da Impressora (Printer)

- 13. Feche a janela de configuração IP da Impressora (Printer)
- 14. Posicione o mouse sobre cada dispositivo até aparecer uma pequena janela com algumas informações, entre elas o número IP. Certifique de que todos os dispositivos estão devidamente configurados.
- 15. Faça os dois tipos de testes, ou seja, o Teste com Ping e o teste com envio de PDUs.

ATENÇÃO: a aula 02 (Testando uma Rede de Computador, explica como realizar estes dois tipos de testes.