Math 4310 Assignment #10 Solutions University of Lethbridge, Fall 2014

Sean Fitzpatrick

November 15, 2014

1. Let $f: S^1 \to \mathbb{R}$ be a continuous map, where $S^1 = \{(x,y)|x^2 + y^2 = 1\}$. Show that there exists a point $(x,y) \in S^1$ such that f(x,y) = f(-x,-y). (Hint: S^1 is connected; in fact, it is path-connected.)

Given $f: S^1 \to \mathbb{R}$, let g(x,y) = f(x,y) - f(-x,-y). Choose a point $(x_0,y_0) \in S^1$ and let $\gamma: [0,1] \to S^1$ be a path from (x_0,y_0) to $(-x_0,-y_0)$, and let $h=g\circ\gamma: [0,1] \to \mathbb{R}$. Then $h(0)=g(\gamma(0))=f(x_0,y_0)-f(-x_0,y_0)$. If h(0)=0, we're done. If not, note that $h(1)=g(\gamma(1))=f(-x_0,-y_0)-f(x_0,y_0)=-h(0)$. Then either h(0)<0 and h(1)>0 or h(0)>0 and h(1)<0; in either case, the Intermediate Value Theorem guarantees the existence of some $c\in(0,1)$ such that h(c)=0, and $(x,y)=\gamma(c)$ is the desired point.

Alternative solution: suppose that no such point exists. Then the function $g(x,y) = \frac{f(x,y) - f(-x,-y)}{|f(x,y) - f(-x,-y)|}$ is defined on all of S^1 , since $f(x,y) - f(-x,-y) \neq 0$, and since g(-x,-y) = -g(x,y), g is a continuous surjection from S^1 to $\{-1,1\}$. But this is impossible, since S^1 is connected.

2. Let X be a topological space. Prove that CX, the cone over X, is path-connected. (Recall that CX is the quotient of $X \times [0,1]$ obtained by collapsing $X \times \{1\}$ to a single point.)

Let $p: X \to CX$ denote the quotient map, and let $a \in CX$ denote the apex of the cone; that is, such that $p^{-1}(a) = X \times \{1\}$. It suffices to show that for any point $y \in CX$, there exists a path $\gamma: [0,1] \to CX$ from y to a, since for any two points $y_1, y_2 \in CX$ with paths γ_1, γ_2 from y_1, y_2 to a, respectively, the path $\gamma_1 \star \gamma_2^{-1}$ given by

$$\gamma_1 \star \gamma_2^{-1}(s) = \begin{cases} \gamma_1(s) & \text{if } 0 \le s \le 1/2\\ \gamma_2(2-2s) & \text{if } 1/2 \le s \le 1 \end{cases}$$

is a path from y_1 to y_2 . So, let $y \in CX$. If y = a, we can take the constant path. If $y \neq a$, then y = p(x, t) for some $x \in X$ and $t \in [0, 1)$. Let $\alpha : [0, 1] \to X \times [0, 1]$ be the path given by

$$\alpha(s) = (x, t + s - st).$$

Then α is clearly continuous, since the map $f:[0,1]\to [0,1]$ given by f(s)=t+(1-t)s is continuous, and α is the product of f and a constant map. Moreover, $\alpha(0)=(x,t)$ and $\alpha(1)=(x,1)$, so α is a path in $X\times [0,1]$ from (x,t) to (x,1). It follows that the composition $\gamma=p\circ\alpha:[0,1]\to CX$ is a path from y to a.

3. (a) Let X be a connected topological space, and call a point $p \in X$ a cut point if $X \setminus \{p\}$ is not connected. Prove that the existence of a cut point is a topological property. (That is, if $f: X \to Y$ is a homeomorphism and X has a cut point p, q = f(p) must be a cut point of Y.)

We first prove the following more general result: if $f: X \to Y$ is a homeomorphism, and $p \in X$ is any point, then the function $g: X \setminus \{p\} \to Y \setminus \{f(p)\}$ given by g(x) = f(x) for all $x \in X \setminus \{p\}$ is also a homeomorphism. (As usual we assume $X \setminus \{p\}$ and $Y \setminus \{f(p)\}$ are given the subspace topology.) To see this, we note that since f is a bijection that maps p to f(p), g must also be a bijection. We know that g is continuous, since it's the restriction of a continuous function. Moreover, g^{-1} is continuous, since g^{-1} is just the restriction of f^{-1} to $Y \setminus \{f(p)\}$.

Now, if X is connected and $f: X \to Y$ is a homeomorphism, then Y must be connected as well. If $p \in X$ is a cut point, then $X \setminus \{p\}$ is no longer connected, and since $X \setminus \{p\} \cong Y \setminus \{f(p)\}$, $Y \setminus \{f(p)\}$ must also no longer be connected, and thus f(p) is a cut point of Y.

Alternative solution: let $\{U, V\}$ be a separation of $X \setminus \{p\}$. Given a homeomorphism $f: X \to Y$, explain why f(U) and f(V) must give a separation of $Y \setminus \{f(p)\}$.

(b) Prove that none of the intervals [0,1], (0,1), or [0,1) can be homeomorphic.

We know that [0,1] cannot be homeomorphic to either of the other two intervals, since [0,1] is compact and (0,1) and [0,1) are not. It remains to show that (0,1) cannot be homeomorphic to [0,1). To see this, note that both intervals are connected, and suppose that $f:(0,1)\to [0,1)$ is a bijection. Then there is some $x\in(0,1)$ such that f(x)=0. Then $x\in(0,1)$ is a cut point, since $(0,1)\setminus\{x\}=(0,x)\cup(x,1)$ is no longer connected. However, $[0,1)\setminus\{0\}=(0,1)$ is still connected, so f cannot be a homeomorphism, by part (a).

(c) Prove that the letters X and Y (viewed as subsets of \mathbb{R}^2 with the subspace topology) are not homeomorphic.

(Hint: extend your proof from (a) to show that if $f: X \to Y$ is a homeomorphism, p is a cut point of X, and q = f(p), then $X \setminus \{p\}$ has the same number of connected components as $Y \setminus \{f(p)\}$.

First, we note that any homeomorphism $f:A\to B$ between topological spaces A and B determines a one-to-one correspondence between connected components, since f maps disjoint open subsets to disjoint open subsets. Thus, if $A\cong B$, then A and B have the same number of connected components.

Now let p denote the point at the center of the letter X. Removing p from X leaves us with four connected components (the four "legs" of X). If there was a homeomorphism f from X to Y, it would have to induce a homeomorphism from X with p removed to the space obtained by removing f(p) from Y. However, it is clear that we can obtain at most three connected components by removing a point from Y, so X and Y cannot be homeomorphic.

4. Prove that any infinite subset of a compact space must have a limit point.

Let X be a compact space, and suppose that $A \subseteq X$ does not have a limit point. Then A is closed, since it contains its (non-existent) limit points. Thus, $X \setminus A$ is open. If we choose an open neighbourhood U_a of each $a \in A$, then the collection

$$\mathcal{A} = \{ U_a | a \in A \} \cup \{ X \setminus A \}$$

is an open cover of X. Moreover, since A does not have any limit points, we can choose each U_a such that $U_a \cap A = \{a\}$. Since X is compact, there must exist a finite subcover; that is, we must have

$$X = U_{a_1} \cup U_{a_2} \cup \cdots \cup U_{a_n} \cup (X \setminus A)$$

for some points $a_1, a_2, \ldots, a_n \in A$. It follows that $A \subseteq U_{a_1} \cup U_{a_2} \cup \cdots \cup U_{a_n}$, so

$$A \subseteq (U_{a_1} \cup U_{a_2} \cup \cdots \cup U_{a_n}) \cap A$$

$$= (U_{a_1} \cap A) \cup (U_{a_2} \cap A) \cup \cdots \cup (U_{a_n} \cap A)$$

$$= \{a_1\} \cup \{a_2\} \cup \cdots \cup \{a_n\}$$

$$= \{a_1, a_2, \dots, a_n\}.$$

It follows that $A = \{a_1, a_2, \dots, a_n\}$ is finite, and the result follows by taking the contrapositive.

5. A closed map $p: X \to Y$ is called a *perfect map* if p is a surjection and $p^{-1}(y)$ is a compact subset of X for every $y \in Y$. A quotient map $p: X \to Y$ is called a *proper map* if $p^{-1}(K)$ is compact whenever $K \subseteq Y$ is compact. Prove that any perfect map is proper.

(Hint: any open cover of $p^{-1}(K)$ is also an open cover of $p^{-1}(k)$ for each $k \in K$. If $p^{-1}(k) \subseteq U = U_1 \cup \cdots \cup U_n$, then $F = X \setminus U$ is closed in X, and p is a closed map, so p(F) is closed in Y, and thus $Y \setminus p(F)$ is an open neighbourhood of k in Y.)

Let $K \subseteq Y$ be compact, and assume that $p: X \to Y$ is perfect. We wish to show that $p^{-1}(K) \subseteq X$ is compact. Let \mathcal{A} be an open cover for $p^{-1}(K)$. If $k \in K$, then $p^{-1}(k) \subseteq p^{-1}(K)$, so \mathcal{A} is also an open cover of $p^{-1}(k)$. Since $p^{-1}(k)$ is compact, there exist finitely many sets $A_{1,k}, \ldots, A_{n_k,k}$ such that

$$p^{-1}(k) \subseteq A_k = A_{1,k} \cup \cdots \cup A_{n_k,k}.$$

Since A_k is open, $F_k = X \setminus A_k$ is closed. Since p is perfect, it's in particular a closed map, so $p(F_k)$ is a closed subset of Y. Since $p^{-1}(k) \cap F_k = \emptyset$, we must have $k \in U_k = Y \setminus p(F_k)$. The collection $\mathcal{U} = \{U_k | k \in K\}$ is then an open cover of K, and since K is compact, there exists a finite subcover $\{U_{k_1}, \ldots, U_{k_m}\}$ with

$$K \subseteq U = U_{k_1} \cup \cdots \cup U_{k_m}$$
.

Since $K \subseteq U$, we have

$$p^{-1}(K) \subseteq p^{-1}(U) = p^{-1}(U_{k_1}) \cup \cdots \cup p^{-1}(U_{k_m}),$$

and for each $j \in \{1, ..., m\}$ we have

$$p^{-1}(U_{k_i}) = p^{-1}(Y \setminus p(F_{k_i})) = X \setminus p^{-1}(p(F_{k_i})).$$

Since $F_{k_j} \subseteq p^{-1}(p(F_{k_j}))$, we have $X \setminus p^{-1}(p(F_{k_j})) \subseteq X \setminus F_{k_j} = A_{k_j}$, and each A_{k_j} is a finite union of open sets. Thus, the collection

$$\{A_{1,k_1},\ldots,A_{n_{k_1},k_1},\ldots,A_{1,k_m},\ldots,A_{n_{k_m},k_m}\}$$

is a finite subcover.