Neural Text-to-Speech

Russel Shawn Dsouza

Electronics and Communications Engg. National Institute of Technology Karnataka Surathkal, India - 575025

October 9, 2019

Speech synthesis

Artificial production of human speech

Figure: A typical text-to-speech system¹

¹Andy0101, *A typical text-to-speech system*, https://commons.wikimedia.org/wiki/File:TTS_System.svg, [Online; accessed 10/08/2019], 2010.

History of speech synthesis

Concatenative

Large database of human speech used

Parametric

Simulate human voice using a function

Neural

 Generate human voice using neural networks

Approaches in Neural text-to-speech

LSTM WaveNet WaveNet based

WaveNet

A deep neural network for generating raw audiowaveforms.

- Probabilistic
- Autoregressive
- Beats all previously known methods

Figure: Time domain representation of 1 second of generated speech

WaveNet: Architecture

- Dilated convolution
- $ightharpoonup \mu$ law companding
- Gated activation
- Residual and skip connection
- Conditional wavenets
- Context stacks

1. Dilated Convolution

Figure: Stack of dilated causal convolution layers²

²A. v. d. Oord, S. Dieleman, H. Zen, et al., "WaveNet: A Generative Model for Raw Audio," en, arXiv:1609.03499 [cs], Sep. 2016, arXiv: 1609.03499. [Online]. Available: http://arxiv.org/abs/1609.03499 (visited on 10/08/2019).

2. μ -law companding

$$f(x_t) = \operatorname{sign}(x_t) \frac{\ln(1 + \mu|x_t|)}{\ln(1 + \mu)}$$

where, x_t is the time domain speech signal

3. Gated activation

$$\mathbf{z} = \tanh(W_{f,k} * \mathbf{x}) \circledast \sigma(W_{g,k} * \mathbf{x})$$

4. Residual and skip connections

Figure: Overview of residual block and entire architecture³

³A. v. d. Oord, S. Dieleman, H. Zen, et al., "WaveNet: A Generative Model for Raw Audio," en, arXiv:1609.03499 [cs], Sep. 2016, arXiv: 1609.03499. [Online]. Available: http://arxiv.org/abs/1609.03499 (visited on 10/08/2019).

5. Conditional WaveNets

$$p(\mathbf{x}|\mathbf{h}) = \prod_{t=1}^{T} p(x_t|x_1,\ldots,x_{t-1},\mathbf{h})$$

6. Context Stacks

WaveNet: Pros and Cons

Pros

Fast training

Cons

Slow inference

Tacotron 2

Neural network composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize time-domain waveforms from those spectrograms.

Tacotron 2: Architecture

Figure: Block diagram of Tacotron 2 system architecture⁴

⁴J. Shen, R. Pang, R. J. Weiss, *et al.*, "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions," en, *arXiv:1712.05884* [cs], Dec. 2017, arXiv: 1712.05884. [Online]. Available: http://arxiv.org/abs/1712.05884 (visited on 10/08/2019).

Mel spectrogram

- Related to the short-time Fourier transform (STFT) magnitude
- Obtained by applying a nonlinear transform to the frequency axis of the STFT
- Emphasizes details in lower frequencies
- De-emphasizes high frequency details

Features derived from the mel scale have been used as an underlying representation for speech recognition for many decades.⁵

⁵S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," *IEEE transactions on acoustics, speech, and signal processing*, vol. 28, no. 4, pp. 357–366, 1980.

Tacotron 2: Training

Feature detection

- Maximum likelihood training procedure
- Batch size = 64 on a single GPU
- Adam optimizer w/ $\beta_1 = 0.9, \ \beta_2 = 0.999, \ \epsilon = 10^{-6}$
- ► LR = 10^{-3} , exponentially decaying to 10^{-5}
- Warmup training till 50,000 iterations
- ► L2 regularization with weight 10⁻⁶

WaveNet

- ► Batch size = 128 on 32 GPUs
- Adam optimizer w/ $\beta_1=0.9,\ \beta_2=0.999,\ \epsilon=10^{-8}$
- ▶ Fixed LR = 10⁻⁴
- Exponentially-weighted moving average of the network parameters over update steps with a decay of 0.9999
- ▶ Scaling by 127.5
- ► US English dataset

Tacotron 2: Reported results

Tacotron 2: Improvements over WaveNet

Neural TTS: The future

Summary

Conclusion