

Report No:CCISE160711803

FCC REPORT

(Bluetooth)

Applicant: SUN CUPID TECHNOLOGY(HK) LIMITED

Address of Applicant: 16/F,CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong

Kong

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A3

Trade mark: NUU

FCC ID: 2ADINNUUA3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 04 Aug., 2016

Date of Test: 05 Aug., to 31 Aug., 2016

Date of report issued: 31 Sep., 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE160711803

2 Version

Version No.	Date	Description
00	05 Sep., 2016	Original

Reviewed by: Os Sep., 2016

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		2
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	5
	5.3 TEST MODE	7
	5.4 MEASUREMENT UNCERTAINTY	7
	5.5 LABORATORY FACILITY	7
	5.6 LABORATORY LOCATION	7
	5.7 TEST INSTRUMENTS LIST	8
6	6 TEST RESULTS AND MEASUREMENT DATA	9
	6.1 Antenna requirement	9
	6.2 CONDUCTED EMISSIONS	10
	6.3 CONDUCTED OUTPUT POWER	13
	6.4 20dB Occupy Bandwidth	17
	6.5 CARRIER FREQUENCIES SEPARATION	21
	6.6 HOPPING CHANNEL NUMBER	26
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
	6.10 Spurious Emission	
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	
7	7 TEST SETUP PHOTO	62
8	8 EUT CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Project No.:CCISE1607118

Report No: CCISE160711803

5 General Information

5.1 Client Information

Applicant:	SUN CUPID TECHNOLOGY(HK) LIMITED
Address of Applicant:	16/F,CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong Kong
Manufacturer:	Sun cupid (Shen Zhen) Electronic Ltd
Address of Manufacturer:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7

5.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	A3
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-0.2dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: HJ-0501000E1-US Input: AC100-240V 50/60Hz 0.2A Output: DC 5.0V, 1A

Page 5 of 63

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

•	o.o restillode	
	Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.

Remark GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully described a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Project No.: CCISE1607118

Report No: CCISE160711803

Report No: CCISE160711803

5.7 Test Instruments list

Radia	Radiated Emission:									
Item	tem Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017				
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017				
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017				
4	Pre-amplifier (10kHz-1.3GHz)		8447D	CCIS0003	04-01-2016	03-31-2017				
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017				
6	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017				
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017				
8 Spectrum analyzer 9k-30GHz		Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017				
9	9 EMI Test Receiver Rohde & Schwarz		ESRP7	CCIS0167	03-28-2016	03-28-2017				
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017				
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017				
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Page 8 of 63

Project No.:CCISE1607118

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetoothantenna is anintegral antenna which permanently attached, and the best case gain of the antenna is-0.2dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz, Sweep time=auto						
Limit:	Frequency range Limit (dBuV) (MHz) Quasi-peak Average						
	0.15-0.5	56 to 46*					
	0.5-5 56 46						
	5-30 60 50						
	* Decreases with the log	arithm of the frequency.					
Test setup:	Reference	e Plane					
	AUX Equipment Remark E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Instruments:	Refer to section 5.7 for d	letails					
Test mode:	Bluetooth (Continuous tr	ansmitting) mode					
Test results:	Pass						
 -							

Measurement Data:

Line:

Trace: 3

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : mobile phone Model A3

: Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Peter

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu₹	dB	
0.162	24.70	0.14	10.77	35.61	55.34	-19.73	Average
0.166	40.89	0.14	10.77	51.80	65.16	-13.36	QP
0.214	35.90	0.15	10.76	46.81	63.05	-16.24	QP
0.214	18.71	0.15	10.76	29.62	53.05	-23.43	Average
0.270	32.76	0.16	10.75	43.67	61.12	-17.45	QP
0.270	14.07	0.16	10.75	24.98	51.12	-26.14	Average
0.327	29.89	0.18	10.73	40.80	59.53	-18.73	QP
1.197	26.31	0.28	10.89	37.48	56.00	-18.52	QP
1.388	11.37	0.29	10.91	22.57	46.00	-23.43	Average
1.949	9.25	0.32	10.96	20.53	46.00	-25.47	Average
21.715	28.74	0.35	10.91	40.00	60.00	-20.00	QP
28.908	15.03	0.34	10.87	26.24	50.00	-23.76	Average
	MHz 0. 162 0. 166 0. 214 0. 270 0. 270 0. 327 1. 197 1. 388 1. 949 21. 715	Freq Level MHz dBuV 0.162 24.70 0.166 40.89 0.214 35.90 0.214 18.71 0.270 32.76 0.270 14.07 0.327 29.89 1.197 26.31 1.388 11.37 1.949 9.25 21.715 28.74	Freq Level Factor MHz dBuV dB	MHz dBuV dB dB 0.162 24.70 0.14 10.77 0.166 40.89 0.14 10.77 0.214 35.90 0.15 10.76 0.214 18.71 0.15 10.76 0.270 32.76 0.16 10.75 0.270 14.07 0.16 10.75 0.327 29.89 0.18 10.73 1.197 26.31 0.28 10.89 1.388 11.37 0.29 10.91 1.949 9.25 0.32 10.96 21.715 28.74 0.35 10.91	MHz dBuV dB dB dBuV 0.162 24.70 0.14 10.77 35.61 0.166 40.89 0.14 10.77 51.80 0.214 35.90 0.15 10.76 46.81 0.214 18.71 0.15 10.76 29.62 0.270 32.76 0.16 10.75 43.67 0.270 14.07 0.16 10.75 24.98 0.327 29.89 0.18 10.73 40.80 1.197 26.31 0.28 10.89 37.48 1.388 11.37 0.29 10.91 22.57 1.949 9.25 0.32 10.96 20.53 21.715 28.74 0.35 10.91 40.00	MHz dBuV dB dB dBuV dBuV 0.162 24.70 0.14 10.77 35.61 55.34 0.166 40.89 0.14 10.77 51.80 65.16 0.214 35.90 0.15 10.76 46.81 63.05 0.214 18.71 0.15 10.76 29.62 53.05 0.270 32.76 0.16 10.75 43.67 61.12 0.270 14.07 0.16 10.75 24.98 51.12 0.327 29.89 0.18 10.73 40.80 59.53 1.197 26.31 0.28 10.89 37.48 56.00 1.388 11.37 0.29 10.91 22.57 46.00 21.715 28.74 0.35 10.91 40.00 60.00	MHz dBuV dB dB dBuV dBuV dB 0.162 24.70 0.14 10.77 35.61 55.34 -19.73 0.166 40.89 0.14 10.77 51.80 65.16 -13.36 0.214 35.90 0.15 10.76 46.81 63.05 -16.24 0.214 18.71 0.15 10.76 29.62 53.05 -23.43 0.270 32.76 0.16 10.75 43.67 61.12 -17.45 0.270 14.07 0.16 10.75 24.98 51.12 -26.14 0.327 29.89 0.18 10.73 40.80 59.53 -18.73 1.197 26.31 0.28 10.89 37.48 56.00 -18.52 1.388 11.37 0.29 10.91 22.57 46.00 -23.43 1.949 9.25 0.32 10.96 20.53 46.00 -25.47 21.715 28.74 0.35

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : mobile phone

Model : A3 Test Mode : BT mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Peter

Remark

Kemark		D J	TTCN	C-11-		Tours	A	
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹			dBu₹	dBu∀	<u>dB</u>	
1	0.166	43.88	0.13	10.77	54.78	65.16	-10.38	QP
2	0.166	25.42	0.13	10.77	36.32	55.16	-18.84	Average
3	0.214	21.41	0.16	10.76	32.33	53.05	-20.72	Average
4	0.219	38.83	0.16	10.76	49.75	62.88	-13.13	QP
1 2 3 4 5 6 7 8 9	0.270	34.82	0.18	10.75	45.75	61.12	-15.37	QP
6	0.668	15.22	0.32	10.77	26.31	46.00	-19.69	Average
7	1.396	29.31	0.26	10.91	40.48	56.00	-15.52	QP
8	1.449	13.44	0.26	10.92	24.62	46.00	-21.38	Average
9	1.980	28.59	0.26	10.96	39.81	56.00	-16.19	QP
10	11.139	10.35	0.25	10.93	21.53	50.00	-28.47	Average
11	29.216	29.83	0.31	10.87	41.01	60.00	-18.99	QP
12	29.216	16.62	0.31	10.87	27.80	50.00	-22.20	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

	GFSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	2.22	21.00	Pass			
Middle	1.73	21.00	Pass			
Highest	1.30	21.00	Pass			
	π/4-DQPSK	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	Lowest 1.55		Pass			
Middle	Middle 1.67		Pass			
Highest 0.75		21.00	Pass			
	8DPSK mo	ode				
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	Lowest 1.76		Pass			
Middle	1.88	21.00	Pass			
Highest 1.51 21.00 Pass						

Test plot as follows:

Modulation mode:GFSK

Date: 5.AUG.2016 21:30:01

Lowest channel

Date: 5.AUG.2016 21:30:45

Middle channel

Date: 5.AUG.2016 21:31:18

Highest channel

Modulation mode:π/4-DQPSK

Date: 5.AUG.2016 21:38:36

Lowest channel

Date: 5.AUG.2016 21:39:12

Middle channel

Date: 5.AUG.2016 21:32:24

Highest channel

Modulation mode:8DPSK

Date: 5.AUG.2016 21:40:09

Lowest channel

Date: 5.AUG.2016 21:40:40

Middle channel

Date: 5.AUG.2016 21:41:19

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30kHz, VBW=100kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Toot shannel	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	748	1120	1164	
Middle	828	1118	1164	
Highest	824	1116	1164	

Test plot as follows:

Modulation mode:GFSK

Date: 5.AUG.2016 21:44:13

Lowest channel

Date: 5.AUG.2016 21:45:56

Middle channel

Date: 5.AUG.2016 21:47:27

Highest channel

Modulation mode:π/4-DQPSK

Date: 5.AUG.2016 21:50:04 Lowest channel

Date: 5.AUG.2016 21:52:16 Middle channel

Date: 5.AUG.2016 21:53:36 Highest channel

Modulation mode:8DPSK

Date: 5.AUG.2016 21:54:44

Lowest channel

Date: 5.AUG.2016 21:55:53

Middle channel

Date: 5.AUG.2016 21:57:11

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

GFSK mode					
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1004	552.00	Pass		
Middle	1004	552.00	Pass		
Highest	1004	552.00	Pass		
	π/4-DQPSK mo	de			
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1008	746.67	Pass		
Middle	1004	746.67	Pass		
Highest	Highest 1004		Pass		
	8DPSK mode				
Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result		
Lowest	1004	776.00	Pass		
Middle	1008	776.00	Pass		
Highest 1004		776.00	Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)	
GFSK	828	552.00	
π/4-DQPSK	1120	746.67	
8DPSK	1164	776.00	

Test plot as follows:

Modulation mode:GFSK

Date: 5.AUG.2016 21:58:55

Lowest channel

Date: 5.AUG.2016 22:00:12

Middle channel

Date: 5.AIIG.2016 22:01:30

Modulation mode:π/4-DQPSK

Date: 5.AUG.2016 22:03:20

Lowest channel

Date: 5.AUG.2016 22:04:27

Middle channel

Date: 5.AUG.2016 22:05:52

Modulation mode:8DPSK

Date: 5.AUG.2016 22:08:06

Lowest channel

Date: 5.AUG.2016 22:11:24

Middle channel

Date: 5.AIG.2016 22:13:24

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 5.AUG.2016 22:22:12

$\pi/4$ -DQPSK

Date: 5.AUG.2016 22:20:29

8DPSK

Date: 5.AUG.2016 22:18:14

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

	-			
Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12672		
GFSK	DH3	0.26592	0.4	Pass
	DH5	0.31403		
π/4-DQPSK	2-DH1	0.12608		
	2-DH3	0.26784	0.4	Pass
	2-DH5	0.31061		
	3-DH1	0.12800		
8DPSK	3-DH3	0.26496	0.4	Pass
	3-DH5	0.31317		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.396*(1600/(2*79))*31.6=126.72ms DH3 time slot=1.662*(1600/(4*79))*31.6=265.92ms DH5 time slot=2.944*(1600/(6*79))*31.6=314.03ms

2-DH1 time slot=0.394*(1600/ (2*79))*31.6=126.08ms 2-DH3 time slot=1.674*(1600/ (4*79))*31.6=267.84ms

2-DH5 time slot=2.912*(1600/ (6*79))*31.6=310.61ms

3-DH1 time slot=0.400*(1600/ (2*79))*31.6=128.00ms

3-DH3 time slot=1.656*(1600/ (4*79))*31.6=264.96ms

3-DH5 time slot=2.936*(1600/ (6*79))*31.6=313.17ms

Test plot as follows:

Modulation mode:GFSK

Date: 5.AUG.2016 22:26:07

DH1

Date: 5.AUG.2016 22:27:00

DH3

Date: 5.ANG.2016 22:28:02

DH5

Modulation mode:π/4-DQPSK

Date: 5.AUG.2016 22:28:45

2-DH1

Date: 5.AUG.2016 22:30:01

2-DH3

Date: 5.AUG.2016 22:30:53

2-DH5

Modulation mode:8DPSK

Date: 5.AUG.2016 22:31:42

3-DH1

Date: 5.AUG.2016 22:34:03

3-DH3

Date: 5.AUG.2016 22:34:51

3-DH5

Report No: CCISE160711803

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FC0

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Project No.:CCISE1607118

Test plot as follows:

GFSK

Lowest Channel

Date: 5.AUG.2016 22:38:46

No-hopping mode

Date: 5.AUG.2016 22:53:04

Hopping mode

Highest Channel

Date: 5.AUG.2016 22:54:43

No-hopping mode

Date: 5.AUG.2016 23:05:05

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 5.AUG.2016 22:40:27

No-hopping mode

Date: 5.AUG.2016 22:48:51

Hopping mode

Highest Channel

Date: 5.AUG.2016 22:56:03

No-hopping mode

Date: 5.AUG.2016 23:02:03

Hopping mode

8DPSK

Lowest Channel

Date: 5.AUG.2016 22:42:04

No-hopping mode

Date: 5.AIIG.2016 22:45:32

Hopping mode

Highest Channel

Date: 5.AUG.2016 22:57:33

No-hopping mode

Hopping mode

Date: 5.AUG.2016 23:00:00

6.9.2 Radiated Emission Method

Above 1GHz Peak 1MHz 3MHz Peal	mark k Value ge Value								
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Receiver setup: Above 1GHz Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average Limit: Frequency Limit (dBuV/m @3m) Remain Above 1GHz 54.00 Average \tag{1} 74.00 Peak Value	k Value ge Value								
Receiver setup: Frequency Above 1GHz Detector Peak RBW VBW Receiver setup Above 1GHz Peak 1MHz 3MHz Peal RMS 1MHz 3MHz Average Name Limit: Frequency Limit (dBuV/m @3m) Remain Above 1GHz 54.00 Average Name 74.00 Peak Value	k Value ge Value								
Above 1GHz Peak RMS 1MHz 3MHz Peal Avera RMS 1MHz 3MHz Avera Limit: Frequency Limit (dBuV/m @3m) Remain Above 1GHz 54.00 Average No. 74.00 Peak Value	k Value ge Value								
Above 1GHz	ge Value								
RMS 1MHz 3MHz Avera									
Above 1GHz 54.00 Average \ 74.00 Peak Va									
Above 1GHz 54.00 Average \ 74.00 Peak Va	'k								
74.00 Peak Va	/alue								
Test setup:	lue								
Horn Antanna Antenna Tower Ground Reference Plane Test Receiver Pre- Amplier Controller									
groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receivin antenna, whichwas mounted on the top of a variable-height ant tower. 3. The antenna height is varied from one meter to four meters abordered ground to determine the maximum value of the field strength. Be horizontal and vertical polarizations of the antenna are set to measurement. 4. For each suspected emission, the EUT was arranged to its wor and thenthe antenna was tuned to heights from 1 meter to 4 measurement the rotatablewas turned from 0 degrees to 360 degrees to find maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower limit specified, then testing could be stopped and the peak value.	 The EUT was placed on the top of a rotating table 1.5meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 								
Test Instruments: Refer to section 5.7 for details									
Test mode: Non-hopping mode									
Test results: Passed									

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone Model : A3

Test mode : DH1-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Mike

Huni:55%

REMARK

Freq						Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2390.000	14.98	23.68	6.63	0.00	45.29	74.00	-28.71	Peak
	Freq MHz 2360.882 2360.882 2390.000	Read. Level MHz dBuV 2360.882 20.25 2360.882 10.33 2390.000 14.98	ReadAntenna Freq Level Factor MHz dBuV dB/m 2360.882 20.25 23.67 2360.882 10.33 23.67 2390.000 14.98 23.68	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 2360.882 20.25 23.67 6.57 2360.882 10.33 23.67 6.57 2390.000 14.98 23.68 6.63	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 2360.882 20.25 23.67 6.57 0.00 2360.882 10.33 23.67 6.57 0.00 2390.000 14.98 23.68 6.63 0.00	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2360.882 20.25 23.67 6.57 0.00 50.49 2360.882 10.33 23.67 6.57 0.00 40.57 2390.000 14.98 23.68 6.63 0.00 45.29	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone Model : A3

Test mode : DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

	Freq		Antenna Factor						Remark
	MHz	dBu₹	$-\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2310,729 2310,729	20.07		6.47 6.47				-23.80	Peak Average
3	2390.000	785000000000000000000000000000000000000	기구하기 잃었다니다.	6.63				-27.00	
4	2390.000	7.53	23.68	6.63	0.00	37.84	54.00	-16.16	Average

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone Model : A3
Test mode : DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Mike
RFMARK

Humi: 55%

REMARK

TIMM									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜			dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2483.500	18.17	23.70	6.85	0.00			-25.28	
2	2483.500	7.79	23.70	6.85	0.00	38.34	54.00	-15.66	Average
3	2494.261	19.90	23.70	6.86	0.00			-23.54	
4	2494.261	9.93	23.70	6.86	0.00				Average

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: mobile phone EUT

Model : A3

Test mode : DH1-H Mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% Test Engineer: Mike REMARK:

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor					1000	Remark	
2	MHz	dBu₹	$\overline{dB/m}$	<u>dB</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>		
1	2483.500	18.32	23.70	6.85	0.00	48.87	74.00	-25.13	Peak	
2	2483.500	7.78	23.70	6.85	0.00	38.33	54.00	-15.67	Average	
3	2491.353	19.79	23.70	6.86		50.35				
4	2491.353	9.78	23.70	6.86					Average	

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: mobile phone EUT

Model

: A3 : 2DH1-L Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

THAI		D J	A A	C-11-	D		T 2-24	0	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	$\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBu∜/m	dBu√/m	<u>dB</u>	
1	2337.239	20.99	23.67	6.53	0.00	51.19	74.00	-22.81	Peak
2	2337.239	10.97	23.67	6.53	0.00	41.17	54.00	-12.83	Average
3	2390.000	16.47	23.68	6.63	0.00	46.78		-27.22	
4	2390.000	7.56	23.68	6.63	0.00	37.87	54.00	-16.13	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : mobile phone Condition

EUT Model : A3
Test mode : 2DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

EMARI	:								
	Freq		ReadAntenna Cable I Level Factor Loss I				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	<u>d</u> B	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2323.992	19.57	23.67	6.50	0.00	49.74	74.00	-24.26	Peak
2	2323.992	9.64	23.67	6.50	0.00	39.81	54.00	-14.19	Average
3	2390.000	16.00	23.68	6.63	0.00	46.31	74.00	-27.69	Peak
4	2390.000	7.57	23.68	6.63	0.00	37.88			Average

Test channel:Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: mobile phone EUT

Model

: A3 : 2DH1-H Mode Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C

Huni:55%

LMARI	275		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∀				dBuV/m			12000000000
1	2483.500	16.91	23.70	6.85	0.00			-26.54	
2	2483.500 2488.448	7.78 19.61	23.70 23.70	6.85 6.85	0.00			-15.67	Average Peak
4	2488.448	9.55		6.85					Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone

: A3 Model

Test mode : 2DH1-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

EMARI			Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	$-\frac{dB}{m}$	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4	2483,500 2483,500 2489,636 2489,636	7.76 20.45	23.70	6.85 6.85 6.86 6.86	0.00 0.00	38.31 51.01	54.00 74.00	-22.99	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone Model : A3 Test mode : 3DH1-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Mike

REMARK

PHEHIT										
	Freq		Antenna Factor							
-	MHz	dBu∜	$\overline{-dB/m}$		dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	2337.792	20.63	23.67	6.53	0.00	50.83	74.00	-23.17	Peak	
2	2337.792	10.65	23.67	6.53	0.00	40.85	54.00	-13.15	Average	
3	2390.000	15.85	23.68	6.63	0.00	46.16	74.00	-27.84	Peak	
4	2390.000	7.55	23.68	6.63	0.00	37.86	54.00	-16.14	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : mobile phone Condition

EUT

Model : A3

Test mode : 3DH1-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

MAK	K :								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2338.346	20.57	23.67	6.53	0.00	50.77	74.00	-23.23	Peak
2	2338.346	10.52	23.67	6.53	0.00	40.72	54.00	-13.28	Average
3	2390.000	14.54	23.68	6.63	0.00			-29.15	
4	2390.000	7.52	23.68	6.63	0.00	37.83	54.00	-16.17	Average

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone

Test mode : 3DH1-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Mike REMARK :

Huni:55%

	977		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	17.98	23.70	6.85	0.00			-25.47	
2	2483.500	7.80	23.70	6.85	0.00	38.35	54.00	-15.65	Average
3	2491.948	20.63	23.70	6.86	0.00			-22.81	
4	2491.948	10.65	23.70	6.86	0.00	41.21	54.00	-12.79	Average

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : mobile phone Model : A3

Test mode : 3DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

	7 .: (7.0)	Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
2	MHz	dBu₹	$-\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2483.500	19.99	23.70	6.85	0.00	50.54	74.00	-23.46	Peak
2	2483.500	7.75	23.70	6.85	0.00	38.30	54.00	-15.70	Average
3	2490.230	20.74	23.70	6.86	0.00	51.30	74.00	-22.70	Peak
4	2490.230	10.78	23.70	6.86	0.00				Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

Page 50 of 63

Test plot as follows:

GFSK Lowest channel

Date: 5.AUG.2016 23:07:06

30MHz~25GHz

Middle channel

Date: 5.AUG.2016 23:08:37

Highest channel

Date: 5.AUG.2016 23:10:33

π/4-DQPSK

Lowest channel

Date: 5.AUG.2016 23:12:36

30MHz~25GHz

Middle channel

Date: 5.AUG.2016 23:13:16

Highest channel

Date: 5.AUG.2016 23:15:49

Date: 5.AUG.2016 23:19:51

30MHz~25GHz

Middle channel

Date: 5.AUG.2016 23:17:55

Highest channel

Date: 5.AUG.2016 23:16:45

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M	etnoa								
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kH	Ηz	Quasi-peak Value		
	Above 1GHz	Peak	k 1MHz		3МН	z	Peak Value		
	Above Toriz	RMS		1MHz	ЗМН	z	Average Value		
Limit:	Frequenc	y	Lim	it (dBuV/m @	23m)		Remark		
	30MHz-88N	ИHz		40.0		Q	uasi-peak Value		
	88MHz-216	ИНz		43.5		Q	uasi-peak Value		
	216MHz-960	MHz		46.0		Q	uasi-peak Value		
	960MHz-10	SHz		54.0		Q	uasi-peak Value		
	Above 1GI	H2 -		54.0			Average Value		
	7,5070 101	12		74.0			Peak Value		
	Above 1GHz 54.0 Average Value						Search Antenna est ver		

Report No: CCISE160711803

Test Procedure:	The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Page 58 of 63

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : mobile phone

: A3 : BT Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

$x_{11}x_{17}x_{1}$									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	45.375	38.44	17.32	1.29	29.86	27.19	40.00	-12.81	QP
2	91.816	44.36	8.35	2.03	29.56	25.18	43.50	-18.32	QP
3	109.796	45.66	10.30	2.05	29.46	28.55	43.50	-14.95	QP
4	120.277	43.83	11.83	2.17	29.39	28.44	43.50	-15.06	QP
5	208.580	40.77	10.61	2.86	28.78	25.46	43.50	-18.04	QP
6	295.147	34.91	12.47	2.93	28.46	21.85	46.00	-24.15	QP

Horizontal:

Site Condition

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

EUT : mobile phone : A3 : BT Mode Model

Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

TENEDITY									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	-dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	46.178	30.78	17.08	1.28	29.85	19.29	40.00	-20.71	QP
1 2 3 4 5	54.835	30.60	12.79	1.36	29.80	14.95	40.00	-25.05	QP
3	179.386	37.35	9.25	2.73	28.98	20.35	43.50	-23.15	QP
4	193.773	39.48	9.88	2.82	28.87	23.31	43.50	-20.19	QP
5	316.589	34.25	13.21	2.99	28.49	21.96	46.00	-24.04	QP
6	370.702	33.08	14.91	3.09	28.65	22.43	46.00	-23.57	QP

Above 1GHz:

Te	st channel:		Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	42.99	35.99	10.57	40.24	49.31	74.00	-24.69	Vertical	
4804.00	42.69	35.99	10.57	40.24	49.01	74.00	-24.99	Horizontal	
Te	st channel:	•	Low	vest	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	32.56	35.99	10.57	40.24	38.88	54.00	-15.12	Vertical	
4804.00	32.74	35.99	10.57	40.24	39.06	54.00	-14.94	Horizontal	

Te	st channel:		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	42.81	36.38	10.66	40.15	49.70	74.00	-24.30	Vertical
4882.00	43.22	36.38	10.66	40.15	50.11	74.00	-23.89	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	32.87	36.38	10.66	40.15	39.76	54.00	-14.24	Vertical
4882.00	33.26	36.38	10.66	40.15	40.15	54.00	-13.85	Horizontal

Te	st channel:		Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	44.62	36.71	10.73	40.03	52.03	74.00	-21.97	Vertical	
4960.00	44.07	36.71	10.73	40.03	51.48	74.00	-22.52	Horizontal	
Te	st channel:	•	Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	34.56	36.71	10.73	40.03	41.97	54.00	-12.03	Vertical	
4960.00	34.12	36.71	10.73	40.03	41.53	54.00	-12.47	Horizontal	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.