模型-评价主题-打分式评价-网络分析法【hxy】

- 1. 模型名称
- 2. 适用范围
- 3. 形式
- 4. 求解过程
 - 4.1 步骤
 - 4.2 实例
 - 4.3 代码实现
- 5. 参考资料

模型-评价主题-打分式评价-网络分析法【hxy】

1. 模型名称

网络分析法(Analytic Network Process, ANP)

2. 适用范围

分层的评价系统,且同一层次内部元素可能存在相互关系 ¹ ,低层元素对高层元素亦有支配作用

3. 形式

4. 求解过程

4.1 步骤

- 1. 建立不同层之间所有**判断矩阵** A_i ,同层的**权重矩阵**C和**加权矩阵**A
- 2. 对**判断矩阵** A_i 进行**一致性检验**并计算**权向量** w_i
 - a) 判断是否为一致阵矩阵
 - b) 计算**最大特征值** λ_i 和其对应的**特征向**量 B_i
 - i) 若是**一致阵矩阵** (*n*为矩阵的**阶数**)

$$\lambda_i = n$$
 $B_i = A_i$ 的第一列

- ii) 若不是一致阵矩阵,求**最大特征值** λ_i 和其对应的**特征向**量 B_i
- c) 计算**一致性指标** CI_i (n为矩阵的**阶数**)

$$CI_i = rac{\lambda_i - n}{n - 1}$$

d) 查表得**平均随机一致性指标**RI(n)

n	1	2	3	4	5	6	7	8	9
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45

e) 计算一致性比率 CR_i

$$CR_i = rac{CI_i}{RI(n)}$$

若 $CR_i < 0.1$,则通过**一致性检验**,模型有效

- f) 将**特征向**量 B_i 归一化后得到**权向**量 w_i
- 3. 由权重矩阵C和权向量 w_i 建立初始超矩阵S

$$S = egin{bmatrix} S_1 & S_2 \ S_3 & S_4 \end{bmatrix} \ S_1 = C, \quad S_2 = [w_{n+1} \ w_{n+2} \ \dots \ w_{2n}], \quad S_3 = [w_1 \ w_2 \ \dots \ w_n], \quad S_4 = zeros(n) \ \end{pmatrix}$$

4. 由加权矩阵A得到加权超矩阵AS

$$AS_1 = A(1,1)*S_1, \quad AS_2 = A(1,2)*S_2, \quad AS_3 = A(2,1)*S_3, \quad AS_4 = A(2,2)*S_4 \ AS = egin{bmatrix} AS_1 & AS_2 \ AS_3 & AS_4 \end{bmatrix}$$

5. 将**加权超矩阵**AS进行**稳定处理**,得到**稳定的极限超矩阵**AS'进行归一化处理后**自乘**,重复**4~6次**,自乘公式如下:

$$AS' = AS^2$$

6. 根据**极限超矩阵**AS', 得出结果

4.2 实例

考虑成本、维修和耐用性三个方面,在美国车、日本车以及欧洲车之间进行选择。其中,成本、维修和耐用性之间相互影响,已知三者的权重矩阵如下:

	成本	维修	耐用性
成本	0.3	0.2	0.6
维修	0.4	0.25	0.3
耐用	0.3	0.55	0.1

判断矩阵如下:

成本	美国车	欧洲车	日本车
美国车	1	5	3
欧洲车	1/5	1	1/3
日本车	1/3	3	1

维修	美国车	欧洲车	日本车
美国车	1	5	2
欧洲车	1/5	1	1/3
日本车	1/2	3	1

耐用性	美国车	欧洲车	日本车
美国车	1	1/5	1/3
欧洲车	5	1	3
日本车	3	1/3	1

美国车	成本	维修	耐用性
成本	1	3	4
维修	1/3	1	1
耐用性	1/4	1	1

欧洲车	成本	维修	耐用性
成本	1	1	1/2
维修	2	1	1/2
耐用性	2	2	1

日本车	成本	维修	耐用性
成本	1	2	1
维修	1/2	1	1/2
耐用性	1	2	1

加权矩阵如下:

0.5	1
0.5	0

1. 建立不同层之间所有**判断矩阵A_i**,同层的**权重矩阵C**和**加权矩阵A**

$$A_{1} = \begin{bmatrix} 1 & 5 & 3 \\ 1/5 & 1 & 1/3 \\ 1/3 & 3 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 1 & 5 & 2 \\ 1/5 & 1 & 1/3 \\ 1/2 & 3 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 1 & 1/5 & 1/3 \\ 5 & 1 & 3 \\ 3 & 1/3 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} 1 & 3 & 4 \\ 1/3 & 1 & 1 \\ 1/4 & 1 & 1 \end{bmatrix} \quad A_{5} = \begin{bmatrix} 1 & 1 & 1/2 \\ 1 & 1 & 1/2 \\ 2 & 2 & 1 \end{bmatrix} \quad A_{6} = \begin{bmatrix} 1 & 2 & 1 \\ 1/2 & 1 & 1/2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0.3 & 0.2 & 0.6 \\ 0.4 & 0.25 & 0.3 \\ 0.3 & 0.55 & 0.1 \end{bmatrix} \quad A = \begin{bmatrix} 0.5 & 1 \\ 0.5 & 0 \end{bmatrix}$$

- 2. 对**判断矩阵** A_i 进行**一致性检验**并计算**权向**量 w_i
 - a) 判断是否为一致阵矩阵

 A_5 和 A_6 为一致阵矩阵

b) 计算**最大特征值** λ_i 和其对应的**特征向**量 B_i

$$\lambda_1=3.0385,\ \lambda_2=3.0037,\ \lambda_3=3.0385, \lambda_4=3.0092$$
一致阵矩阵: $\lambda_5=3, B_5=[1,1,2]^T;\ \lambda_6=3, B_6=[1,1/2,1]^T$

c) 计算**一致性指标** CI_i (n为矩阵的**阶数**)

$$CI_1=0.0193,\;CI_2=0.0018,\;CI_3=0.0193,\;CI_4=0.0046,\;CI_5=0,\;CI_6=0$$

d) 查表得**平均随机一致性指标**RI(n)

$$RI(3) = 0.58$$

e) 计算一致性比率 CR_i

$$CR_1=0.0332,\ CR_2=0.0032,\ CR_3=0.0332,\ CR_4=0.0079,\ CR_5=0,\ CR_6=0$$
全部满足 $CR_i<0.1,\$ 一致性检验通过,模型有效

f) 将**特征向**量 B_i 归一化后得到**权向**量 w_i

$$w_1 = egin{bmatrix} 0.6370 \ 0.1047 \ 0.2583 \end{bmatrix} \quad w_2 = egin{bmatrix} 0.5816 \ 0.1095 \ 0.3090 \end{bmatrix} \quad w_3 = egin{bmatrix} 0.1047 \ 0.6370 \ 0.2583 \end{bmatrix} \ w_4 = egin{bmatrix} 0.6337 \ 0.1919 \ 0.1744 \end{bmatrix} \quad w_5 = egin{bmatrix} 0.2500 \ 0.2500 \ 0.5000 \end{bmatrix} \quad w_6 = egin{bmatrix} 0.4000 \ 0.2000 \ 0.4000 \end{bmatrix}$$

3. 由权重矩阵C和权向量 w_i 建立初始超矩阵S

$$S = \begin{bmatrix} 0.3000 & 0.2000 & 0.6000 & 0.6337 & 0.2500 & 0.4000 \\ 0.4000 & 0.2500 & 0.3000 & 0.1919 & 0.2500 & 0.2000 \\ 0.3000 & 0.5500 & 0.1000 & 0.1744 & 0.5000 & 0.4000 \\ 0.6370 & 0.5816 & 0.1047 & 0 & 0 & 0 \\ 0.1047 & 0.1095 & 0.6370 & 0 & 0 & 0 \\ 0.2583 & 0.3090 & 0.2583 & 0 & 0 & 0 \end{bmatrix}$$

4. 由加权矩阵A得到加权超矩阵AS

$$AS_1 = A(1,1) * S_1 = 0.5 * \begin{bmatrix} 0.3000 & 0.2000 & 0.6000 \\ 0.4000 & 0.2500 & 0.3000 \\ 0.3000 & 0.5500 & 0.1000 \end{bmatrix} = \begin{bmatrix} 0.1500 & 0.1000 & 0.3000 \\ 0.2000 & 0.1250 & 0.1500 \\ 0.1500 & 0.2750 & 0.0500 \end{bmatrix}$$

$$AS_2 = A(1,2) * S_2 = 1 * \begin{bmatrix} 0.6337 & 0.2500 & 0.4000 \\ 0.1919 & 0.2500 & 0.2000 \\ 0.1744 & 0.5000 & 0.4000 \end{bmatrix} = \begin{bmatrix} 0.6337 & 0.2500 & 0.4000 \\ 0.1919 & 0.2500 & 0.2000 \\ 0.1744 & 0.5000 & 0.4000 \end{bmatrix}$$

$$AS_3 = A(2,1) * S_3 = 0.5 * \begin{bmatrix} 0.6370 & 0.5816 & 0.1047 \\ 0.1047 & 0.1095 & 0.6370 \\ 0.2583 & 0.3090 & 0.2583 \end{bmatrix} = \begin{bmatrix} 0.3185 & 0.2908 & 0.0524 \\ 0.0524 & 0.0547 & 0.3185 \\ 0.1291 & 0.1545 & 0.1291 \end{bmatrix}$$

$$AS_4 = A(2,2) * S_4 = 0 * \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$AS_4 = A(2,2) * S_4 = 0 * \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0.2000 & 0.1250 & 0.1500 & 0.1919 & 0.2500 & 0.4000 \\ 0.2000 & 0.1250 & 0.1500 & 0.1744 & 0.5000 & 0.4000 \\ 0.3185 & 0.2908 & 0.0524 & 0.0000 & 0.0000 & 0.0000 \\ 0.0524 & 0.0547 & 0.3185 & 0.0000 & 0.0000 & 0.0000 \\ 0.1291 & 0.1545 & 0.1291 & 0.0000 & 0.0000 & 0.0000 \end{bmatrix}$$

5. 将加权超矩阵AS进行稳定处理,得到稳定的极限超矩阵AS'

$$AS' = egin{bmatrix} 0.2776 & 0.2776 & 0.2776 & 0.2776 & 0.2776 \ 0.1794 & 0.1794 & 0.1794 & 0.1794 & 0.1794 \ 0.2097 & 0.2097 & 0.2097 & 0.2097 & 0.2097 \ 0.1515 & 0.1515 & 0.1515 & 0.1515 & 0.1515 \ 0.0911 & 0.0911 & 0.0911 & 0.0911 & 0.0911 \ 0.0906 & 0.0906 & 0.0906 & 0.0906 & 0.0906 & 0.0906 \ \end{bmatrix}$$

6. 由AS'得到表格

	成本	维修	耐用性	美国	欧洲	日本
成本	0.2776	0.2776	0.2776	0.2776	0.2776	0.2776
维修	0.1794	0.1794	0.1794	0.1794	0.1794	0.1794
耐用性	0.2097	0.2097	0.2097	0.2097	0.2097	0.2097
美国	0.1515	0.1515	0.1515	0.1515	0.1515	0.1515
欧洲	0.0911	0.0911	0.0911	0.0911	0.0911	0.0911
日本	0.0906	0.0906	0.0906	0.0906	0.0906	0.0906

成本 - 成本 = 0.2776最大,成本为决定性因素;美国车 - 美国车 = 0.1515最大,美国车为最优选择。

4.3 代码实现

ANP.m

```
clc
clear
close all
%选车算例的解答
% 列出所有的判断矩阵
%成本指标下美日欧三种车间的判断矩阵
A1=[1,5,3;
 1/5,1,1/3;
 1/3,3,11;
%维修指标下美日欧三种车间的判断矩阵
A2=[1,5,2;
 1/5,1,1/3;
 1/2,3,1];
%耐用性指标下美日欧三种车间的判断矩阵
A3=[1,1/5,1/3;
 5,1,3;
 3,1/3,11;
%美车三种指标下间的判断矩阵
A4 = [1, 3, 4;
 1/3,1,1;
 1/4,1,1];
%欧车三种指标下间的判断矩阵
A5=[1,1,1/2;
 1,1,1/2;
 2,2,11;
%日车三种指标下间的判断矩阵
A6=[1,2,1;
 1/2,1,1/2;
 1,2,1];
%% 计算6个判断矩阵的特征向量
%计算6个判断矩阵的特征向量和CR
[B1,D1]=eig(A1);
[B2,D2]=eig(A2);
[B3,D3]=eig(A3);
[B4,D4] = eig(A4);
&严格得说每个判断矩阵都需要判断是不是一致阵、如果是的话就不需要再求特征向量和特征根
%由于rank(A5)=rank(A6)=1是一致阵,故下面两步不再需要
%[B5,D5]=eig(A5);
%[B6,D6]=eig(A6);
%这里作者是算出来答案跟结果不对才回去判断的一致阵,所以程序编得不是很严谨,从逻辑上来说是错误的。即看着
结果推程序,所以很遗憾本程序对于解答的推广无积极意义。
8希望读者自行修改程序, 先判断是否是一致阵, 再计算特征根特征向量
```

```
%直接将各自的第一列设为特征向量
B5=A5(1:3,1);
B6=A6(1:3,1);
%求λmax最大特征根
lamdaMax1=max(max(D1));
lamdaMax2=max(max(D2));
lamdaMax3=max(max(D3));
lamdaMax4=max(max(D4));
%一致阵的最大特征根为阶数n
lamdaMax5=length(A5);
lamdaMax6=length(A6);
n=length(A1);
CI(1)=(lamdaMax1-n)/(n-1);
CI(2) = (lamdaMax2-n)/(n-1);
CI(3) = (lamdaMax3-n)/(n-1);
CI(4) = (lamdaMax4-n)/(n-1);
CI(5) = (lamdaMax5-n)/(n-1);
CI(6)=(lamdaMax6-n)/(n-1);
CI=(\lambda max-n)/(n-1)
%对于1-9阶判断矩阵, RI值如下:
%1 2 3 4 5 6 7 8
%0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45
%由于n=3故RI (3) =0.58
RI=0.58;
%判断矩阵的一致性指标CI与同阶平均随机一致性指标RI之比称为随机一致性比率CR, 当CR=CI/RI<0.10时,可以认
为判断矩阵具有满意的一致性,否则需要调整判断矩阵。
%CR=CI/RI=0.0285/1.12=0.0255<0.10 因此, 通过一致性检验。
for i=1:6
   CR(i)=CI(i)/RI;
   if CR(i)<0.1
       disp(strcat('判断矩阵',num2str(i),'通过一致性检验'));
   else
       disp(strcat('判断矩阵',num2str(i),'未通过一致性检验'));
   end
end
%权重即为最大特征根对应的特征向量w进行归一化后的结果, w=W./sum(W)
W1=B1(1:n,1);
w1=W1./sum(W1);
W2=B2(1:n,1);
w2=W2./sum(W2);
W3=B3(1:n,1);
w3=W3./sum(W3);
W4=B4(1:n,1);
```

```
w4=W4./sum(W4);
W5=B5(1:n,1);
w5=W5./sum(W5);
W6=B6(1:n,1);
w6=W6./sum(W6);
% 输出阶段结果
w1
w2
w3
w4
w5
w6
% 计算极限超矩阵
%再考虑成本、维修和耐用性之间的相互影响,得到三者的权重矩阵
C=[0.3,0.2,0.6;
   0.4 0.25 0.3;
    0.3 0.55 0.1];
%初始超矩阵
%行列均为: 成本 维修 耐用性 美 欧 日
super=[C w4 w5 w6
      w1 w2 w3 zeros(3)];
%令归一化的排序向量A为[0.5,1;0.5,0],则加权超矩阵为[0.5*ww1 1*ww2;0.5*ww3 0*ww4]
A=[ones(6,3)*0.5 ones(6,3)]; appears to be a bad example
WW1=super(1:3,1:3);
WW2=super(1:3,4:6);
WW3=super(4:6,1:3);
WW4=super(4:6,4:6);
%powerSuper=A.*super;appears to be a bad example
powerSuper=[0.5*WW1 1*WW2;0.5*WW3 0*WW4];
ppowerSuper=powerSuper;
for m= 1:6
   P1=ppowerSuper(1:6,1);
   P2=ppowerSuper(1:6,2);
   P3=ppowerSuper(1:6,3);
   P4=ppowerSuper(1:6,4);
   P5=ppowerSuper(1:6,5);
   P6=ppowerSuper(1:6,6);
   p1=P1./sum(P1);
   p2=P2./sum(P2);
   p3=P3./sum(P3);
   p4=P4./sum(P4);
   p5=P5./sum(P5);
   p6=P6./sum(P6);
   ppowerSuper=[p1,p2,p3,p4,p5,p6]^2;
end
% 输出最终结果
```

结果:

```
判断矩阵1通过一致性检验
判断矩阵2通过一致性检验
判断矩阵3通过一致性检验
判断矩阵4通过一致性检验
判断矩阵5通过一致性检验
判断矩阵6通过一致性检验
CR =
 Columns 1 through 3
   0.0332 0.0032
                   0.0332
 Columns 4 through 6
   0.0079
               0
                        0
w1 =
   0.6370
   0.1047
   0.2583
w2 =
   0.5816
   0.1095
   0.3090
w3 =
   0.1047
   0.6370
   0.2583
```

```
w4 =
    0.6337
    0.1919
    0.1744
w5 =
    0.2500
    0.2500
    0.5000
w6 =
    0.4000
    0.2000
    0.4000
ppowerSuper =
 Columns 1 through 3
    0.2776
              0.2776
                         0.2776
    0.1794
              0.1794
                         0.1794
    0.2097
              0.2097
                         0.2097
    0.1515
              0.1515
                         0.1515
    0.0911
              0.0911
                         0.0911
    0.0906
              0.0906
                         0.0906
 Columns 4 through 6
    0.2776
              0.2776
                         0.2776
    0.1794
              0.1794
                         0.1794
    0.2097
              0.2097
                         0.2097
    0.1515
              0.1515
                         0.1515
              0.0911
                         0.0911
    0.0911
    0.0906
              0.0906
                         0.0906
```

5. 参考资料

1. 数模官网---网络分析法

^{1.} 区别于AHP,AHP假设同一层次的元素视为相互独立 ↩