

Lecture 8: Logistic Regression

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Logistic Regression
02	Evaluating Classification Models
03	R Exercise

Logistic Regression: Intro.

http://channel.hyundaicard.com/v/dh0005

Logistic Regression

Classification

Men Vs. Women

Revisit Multiple Linear Regression

Goal

✓ Fit a linear relationship between a quantitative dependent variable Y and a set of predictors $X_1, X_2, ..., X_d$.

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

Example I

✓ Age and systolic blood pressure (SBP) among 33 adult women.

Age	SBP	Age	SBP	A	ge SBP
22	131	41	139		52 128
23	128	41	171	5	54 105
24	116	46	137	5	66 145
27	106	47	111	5	57 141
28	114	48	115	5	58 153
29	123	49	133	5	59 157
30	117	49	128	ϵ	3 155
32	122	50	183	ϵ	57 176
33	99	51	130	7	172
35	121	51	133	7	77 178
40	147	51	144	8	31 217

Revisit Multiple Linear Regression

What If

• Example 2

√ Age and signs of coronary heart disease (CD)

22 0 40 0 54 23 0 41 1 55 24 0 46 0 58 27 0 47 0 60 28 0 48 0 60 30 0 49 1 62	CD
24 0 46 0 58 27 0 47 0 60 28 0 48 0 60	0
27 0 47 0 60 28 0 48 0 60	1
28 0 48 0 60	1
	1
30 0 49 1 62	0
	1
30 0 49 0 65	1
32 0 50 1 67	1
33 0 51 0 71	1
35 1 51 1 77	1
38 0 52 0 81	1

What If

Linear regression does not estimate Pr(Y=1|X) well

For Classification Task

- Consider when there are only two outcomes (0 & I)
 - √ Is a linear model appropriate?

For Classification Task

- In real cases...
 - ✓ The probability may follow a certain type of curve rather than a straight line.

For Classification Task

Is it appropriate to model the probability as a function of predictors?

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

✓ May have a probability that is greater than I or less than 0

Logistic Regression

Goal:

√ Find a function of the predictor variables that relates them to a 0/1 outcome

• Features:

- ✓ Instead of Y as outcome variable (like in linear regression), we use a function of Y called the "logit".
- ✓ Logit can be modeled as a linear function of the predictors.
- ✓ The logit can be mapped back to a probability, which, in turn, can be mapped to a class.

Logistic Regression: Odds

2010 World Cup Betting Odds

Logistic Regression: Odds

Odds

 \checkmark p = probability of belonging to class I (success).

$$Odds = \frac{p}{1-p}$$

- For the previous examples
 - \checkmark Winning odds of the Spain = 2/9, then the winning probability of the Spain = 2/11.
 - ✓ Winning odds of the Korea = 1/250, then the winning probability of the Korea = 1/251 = 0.00398 (0.398%)

Logistic Regression: Odds

Logistic Regression: Log odds

- The limitation of the odds
 - √ 0 < odds < ∞
 </p>
 - √ Asymmetric
- Take the logarithm of the odds

$$\log(Odds) = \log\left(\frac{p}{1-p}\right)$$

- \checkmark ∞ < log(odds) < ∞
- √ Symmetric
- ✓ Negative when p is small and positive when p is large

Logistic Regression: Log odds

Logistic Regression: Equation

- Logistic regression equation
 - ✓ Linear equation for the odds:

$$log(Odds) = log\left(\frac{p}{1-p}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

✓ Take the exponential for the both sides:

$$\frac{p}{1-p} = e^{\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d}$$

✓ For the probability of the success:

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d)}}$$

• Gradient Descent

- Gradient Descent Algorithm
 - ✓ Blue line: the objective function to be minimized
 - ✓ Black circle: the current solution
 - ✓ Direction of the arrows: the direction that the current solution should move to improve the quality of solution

20/67

Gradient descent with two input variables

$$h = \sum_{i=0}^{2} w_i x_i$$

$$y = \frac{1}{1 + exp(-h)}$$

- Let's define the squared loss function $\,L=rac{1}{2}(t-y)^2\,$
- How to find the gradient w.r.t. w or x?

Use chain rule

$$\frac{\partial L}{\partial y} = y - t$$

$$\frac{\partial y}{\partial h} = \frac{exp(-h)}{(1 + exp(-h))^2} = \frac{1}{1 + exp(-h)} \cdot \frac{exp(-h)}{1 + exp(-h)} = y(1 - y)$$

$$\frac{\partial h}{\partial w_i} = x_i$$

Gradients for w and x

$$\frac{L}{\partial w_i} = \frac{L}{\partial y} \cdot \frac{\partial y}{\partial h} \cdot \frac{\partial h}{\partial w_i} = (y - t) \cdot y(1 - y) \cdot x_i$$

Update w

$$w_{new} = w_{old} - \alpha \times \frac{L}{\partial w_i} = w_{old} - \alpha \times (y - t) \cdot y(1 - y) \cdot x_i$$

Logistic Regression: Prediction

Success probability

√ When a set of predictors (independent variables) are given, we can estimate the
probability of the success.

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d)}}$$

Logistic Regression: Cut-off

Determine the cut-off for the binary classification

- ✓ 0.50 is popular initial choice
- ✓ Additional considerations: max. classification accuracy, max. sensitivity (subject to min. level of specificity), min. false positives (subject to max. false negative rate), min. expected cost of misclassification (need to specify costs)

- Meaning of coefficients
 - √ Linear regression

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

- The amount of target variable changes when the input variable is increased by I
- √ Logistic regression

$$log(Odds) = log(\frac{p}{1-p}) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d)}}$$

The amount of log odd changes when the input variable is increased by I (not intuitive)

Credit Card Default

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

Credit Card Default: single variable

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Credit Card Default: multiple variables

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Personal Loan Offer

✓ Predict a new customer whether he/she will accept the bank's personal loan offer

일련 번호	나이	경력	소득	가족 수	월별 신용카드 평균사용액	교육 수준	담보부 채권	개인 대출	증권 계좌	CD 계좌	온라인 뱅킹	신용 카드
1	25	1	49	4	1.60	UG	0	No	Yes	No	No	No
2	45	19	34	3	1.50	UG	0	No	Yes	No	No	No
3	39	15	11	1	1.00	UG	0	No	No	No	No	No
4	35	9	100	1	2.70	Grad	0	No	No	No	No	No
5	35	8	45	4	1.00	Grad	0	No	No	No	No	Yes
6	37	13	29	4	0.40	Grad	155	No	No	No	Yes	No
7	53	27	72	2	1.50	Grad	0	No	No	No	Yes	No
8	50	24	22	1	0.30	Prof	0	No	No	No	No	Yes
9	35	10	81	3	0.60	Grad	104	No	No	No	Yes	No
10	34	9	180	1	8.90	Prof	0	Yes	No	No	No	No
11	65	39	105	4	2.40	Prof	0	No	No	No	No	No
12	29	5	45	3	0.10	Grad	0	No	No	No	Yes	No
13	48	23	114	2	3.80	Prof	0	No	Yes	No	No	No
14	59	32	40	4	2.50	Grad	0	No	No	No	Yes	No
15	67	41	112	1	2.00	UG	0	No	Yes	No	No	No
16	60	30	22	1	1.50	Prof	0	No	No	No	Yes	Yes
17	38	14	130	4	4.70	Prof	134	Yes	No	No	No	No
18	42	18	81	4	2.40	UG	0	No	No	No	No	No
19	46	21	193	2	8.10	Prof	0	Yes	No	No	No	No
20	55	28	21	1	0.50	Grad	0	No	Yes	No	No	Yes

Data Preprocessing

- A total of 5,000 customers
- Predictors
 - ✓ Demographic: age, income, etc.
 - ✓ Relationship with the bank: mortgage, security account, etc.
- Only 48o(9.6%) accepted the personal loan.
- 60% for training, 40% for validation.
- Create dummy variables for the categorical predictors.

$$EducProf = \begin{cases} 1 \text{ if education is } Professional \\ 0 \text{ otherwise} \end{cases}$$

$$EducGrad = \begin{cases} 1 \text{ if education is at } Graduate \text{ level} \\ 0 \text{ otherwise} \end{cases}$$

Modeling with all input variables

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d)}}$$

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

Coefficient

- √ The beta values for corresponding input variables
- \checkmark The value is the changing ratio of log odds when the input variable increases by I
- ✓ Positive value: positively correlated with the success class
- ✓ Negative value: negatively correlated with the success class

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

p-value

- √ Indicating whether the corresponding input variable is statistically significant or not.
- √ Significance is strongly supported when the p-value is close to 0

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

Odds ratio

√ The ratio of odds when the value of the corresponding input variable increases by I

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	o	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	o	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

Geometric interpretation

✓ Can be thought of as finding a hyper-plane to separate positive and negative data points.

Classifier
$$y = \frac{1}{(1 + \exp(-\beta^{T} x))} \quad \begin{cases} y \to 1 & \text{if} \quad \beta^{T} x \to \infty \\ y = \frac{1}{2} & \text{if} \quad \beta^{T} x = 0 \\ y \to 0 & \text{if} \quad \beta^{T} x \to -\infty \end{cases}$$

Odds ratio

- ✓ Suppose that the value of x_1 is increased by one unit from x_1 to x_1+1 , while the other predictors are held at their current value.
- ✓ Odds ratio:

$$\frac{odds(\mathbf{x_1} + 1, \cdots, x_d)}{odds(x_1, \cdots, x_d)} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1(\mathbf{x_1} + 1) + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_d x_d}}{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_d x_d}} = e^{\hat{\beta}_1}$$

- \checkmark When x_1 is increased by 1, then the odds is increased(decreased) by a factor of e^{β_1}
 - Coefficient is positive → success probability increases when the corresponding input value increases (success class and coefficient are positively correlated)
 - Coefficient is positive → success probability increases when the corresponding input value increases (success class and coefficient are negatively correlated)

Logistic Regression: Interpretation

Profiling

- ✓ Finding factors that differentiate between the two classes.
- ✓ After variable selection:

$$\frac{p}{1-p} = e^{\hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \dots + \hat{\beta_d} x_d}$$

- \checkmark Variables associated with positive β_i increase the probability of the success.
- \checkmark Variables associated with negative β_i decrease the probability of the success.

AGENDA

01	Logistic Regression
02	Evaluating Classification Models
03	R Exercise

Why Evaluate?

• Over-fitting for training data

Why Evaluate?

• Over-fitting for training data

Why Evaluate?

- Multiple methods are available to classify or predict.
 - ✓ Classification:
 - Naïve bayes, linear discriminant, k-nearest neighbor, classification trees, etc.
 - ✓ Prediction:
 - Multiple linear regression, neural networks, regression trees, etc.
- For each method, multiple choices are available for settings.
 - ✓ Neural networks: # hidden nodes, activation functions, etc.
- To choose best model, need to assess each model's performance.
 - ✓ Best setting (parameters) among various candidates for an algorithm (validation).
 - ✓ Best model among various data mining algorithms for the task (test).

Example: Gender classification

Classify a person based on his/her body fat percentage (BFP).

■ Simple classifier: if BFP > 20 then female else male.

■ How do you evaluate the performance of the above classifier?

Confusion Matrix

Summarizes the correct and incorrect classifications that a classifier produced for a certain data set.

Confusion matrix can be constructed as

Confusion Matrix		Pred	icted
		F	М
Actual	F	4	1
	М	2	3

Confusion Matrix

Summarizes the correct and incorrect classifications that a classifier produced for a certain data set.

Confusion Matrix		Pred	icted
		1(+)	0(-)
A ctual	1(+)	n ₁₁	n ₁₀
Actual	0(-)	n _{o1}	n _{oo}

Conf	usion	Pred	icted
Matrix		F	M
Astrol	F	4	1
Actual	M	2	3

- Misclassification error = $(n_{01} + n_{10})/(n_{11} + n_{10} + n_{01} + n_{00}) = (2+1)/10 = 0.3$
- Accuracy = (I-Misclassification error) = $(n_{11}+n_{00})/(n_{11}+n_{10}+n_{01}+n_{00}) = (4+3)/10$ = 0.7

Confusion Matrix

Summarizes the correct and incorrect classifications that a classifier produced for a certain data set.

Confusion Matrix		Predicted	
		1(+)	o(-)
Actual	1(+)	n ₁₁	n ₁₀
ACLUAI	0(-)	n _{o1}	n _{oo}

Confusion Matrix		Predicted	
		F	M
A at al	F	4	1
Actual	M	2	3

• Balanced correction rate (BCR):
$$\sqrt{\frac{n_{11}}{n_{11} + n_{10}} \cdot \frac{n_{00}}{n_{01} + n_{00}}}$$
 = 0.69

$$= \sqrt{0.8 \times 0.6}$$

• FI-Measure:
$$\frac{2 \times Recall \times Precision}{Recall + Precision} = \frac{2 \times 0.8 \times 0.67}{0.8 + 0.67} = 0.85$$

Cut-off for classification

• A new classifier:: if BFP > θ then female else male.

Sort data in a descending order of BFS.

How do you decide the cut-off for classification?

Cut-off for classification

Performance measures for different cut-offs:

No.	BFS	Gender
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

■ If $\theta = 24$,

Confusion Matrix		Predicted	
		F	М
Actual	F	2	3
	M	1	4

- Misclassification error: 0.4
- Accuracy: 0.6
- Balanced correction rate: 0.57
- FI measure = 0.5

Cut-off for classification

Performance measures for different cut-offs:

No.	BFS	Gender
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

■ If $\theta = 22$,

Confusion Matrix		Predicted	
		F	М
Actual	F	4	1
	М	1	4

- Misclassification error: 0.2
- Accuracy: 0.8
- Balanced correction rate: 0.8
- FI measure = 0.8

Cut-off for classification

Performance measures for different cut-offs:

No.	BFS	Gender
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

• If $\theta = 18$,

Confusion Matrix		Predicted	
		F	М
Actual	F	5	0
	M	2	3

- Misclassification error: 0.2
- Accuracy: 0.8
- Balanced correction rate: 0.77
- FI measure = 0.83

Cut-off for classification

- In general, classification algorithms can produce the likelihood for each class in terms of <u>probability</u> or <u>degree of evidence</u>, etc.
- Classification performance highly depends on the cut-off of the algorithm.
- For model selection & model comparison, cut-off independent performance measures are recommended.
- Lift charts, receiver operating characteristic (ROC) curve, etc.

- Area Under Receiver Operating Characteristic Curve (AUROC)
 - ✓ Cancer diagnosis:
 - Predict patients' probability of malignant.
 - A total of 100 patients.
 - 20 patients are malignant.
 - Malignant ratio: 0.2.

Patient	P(Malignant)	Status									
1	0.976	1	26	0.716	1	51	0.410	0	76	0.186	0
2	0.973	1	27	0.676	0	52	0.406	1	77	0.183	0
3	0.971	0	28	0.672	0	53	0.378	0	78	0.178	0
4	0.967	1	29	0.662	0	54	0.376	0	79	0.178	0
5	0.937	0	30	0.647	0	55	0.362	0	80	0.173	0
6	0.936	1	31	0.640	1	56	0.355	0	81	0.170	0
7	0.929	1	32	0.625	0	57	0.343	0	82	0.133	0
8	0.927	0	33	0.624	0	58	0.338	0	83	0.120	0
9	0.923	1	34	0.613	1	59	0.335	0	84	0.119	0
10	0.898	0	35	0.606	0	60	0.334	0	85	0.112	0
11	0.863	1	36	0.604	0	61	0.328	0	86	0.093	0
12	0.863	1	37	0.601	0	62	0.313	0	87	0.086	0
13	0.859	0	38	0.594	0	63	0.285	1	88	0.079	0
14	0.855	0	39	0.578	0	64	0.274	0	89	0.071	0
15	0.847	1	40	0.548	0	65	0.274	0	90	0.069	0
16	0.847	1	41	0.539	1	66	0.272	0	91	0.047	0
17	0.837	0	42	0.525	1	67	0.267	0	92	0.029	0
18	0.833	0	43	0.524	0	68	0.265	0	93	0.028	0
19	0.814	0	44	0.514	0	69	0.237	0	94	0.027	0
20	0.813	0	45	0.510	0	70	0.217	0	95	0.022	0
21	0.793	1	46	0.509	0	71	0.213	0	96	0.019	0
22	0.787	0	47	0.455	0	72	0.204	1	97	0.015	0
23	0.757	1	48	0.449	0	73	0.201	0	98	0.010	0
24	0.741	0	49	0.434	0	74	0.200	0	99	0.005	0
25	0.737	0	50	0.414	0	75	0.193	0	100	0.002	52/67

Confusion matrix

- Set the cut-off to 0.9
 - Malignant if P(Malignant) > 0.9, else benign.

Conf	usion	Predicted		
Ма	trix	М	В	
Actual	М	6	14	
	В	3	77	

- Misclassification error = 0.17
- Accuracy = 0.83
- Is it a good classification model?

Confusion matrix

- Set the cut-off to 0.8
 - Malignant if P(Malignant) > 0.8, else benign.

Conf	usion	Predicted		
Ма	trix	М	В	
A atual	М	10	10	
Actual	В	10	70	

- Misclassification error = 0.2
- Accuracy = 0.8
- Is it worse than the previous model?

5

Classification Performance

Receiver operating characteristics (ROC) curve

- Sort the records based on the P(interesting class) in a descending order.
- Compute the true positive rate and false positive rate by varying the cut-off.
- Draw a chart where x & y axes are false & true positive, respectively.

Patient	P(Malignant)	Status	True positive	false positive
1	0.976	1	0.050	0.000
2	0.973	1	0.100	0.000
3	0.971	0	0.100	0.013
4	0.967	1	0.150	0.013
5	0.937	0	0.150	0.025
6	0.936	1	0.200	0.025
7	0.929	1	0.250	0.025
8	0.927	0	0.250	0.038

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

96	0.019	0	1.000	0.950
97	0.015	0	1.000	0.963
98	0.010	0	1.000	0.975
99	0.005	0	1.000	0.988
100	0.002	0	1.000	1.000

Area Under ROC curve (AUROC)

- The area under the ROC curve.
- Can be a useful metric for parameter/model selection.
- I for the ideal classifier
- 0.5 for the random classifier.

6

AGENDA

01	Logistic Regression
02	Evaluating Classification Models
03	R Exercise

• Data Set: Personal Loan Prediction

Data Description:

ID	Customer ID
Age	Customer's Age in completed years
Experience	#years of professional experience
Income	Annual income of the customer (\$000)
ZIPCode	Home Address ZIP code.
Family	Family size (dependents) of the customer
CCAvg	Avg. Spending on Credit Cards per month (\$000)
Education	Education Level. 1: Undergrad; 2: Graduate; 3: Advanced/Professional
Mortgage	Value of house mortgage if any. (\$000)
Personal Loan	Did this customer accept the personal loan offered in the last campaign?
Securities Account	Does the customer have a Securities account with the bank?
CD Account	Does the customer have a Certificate of Deposit (CD) account with the bank?
Online	Does the customer use internet banking facilities?
CreditCard	Does the customer use a credit card issued by UniversalBank?

- Create a performance evaluation function
 - ✓ True positive rate, Precision, True negative rate, Accuracy, Balance correction rate, and FI-measure

```
# Performance Evaluation Function -----
perf eval2 <- function(cm){</pre>
    # True positive rate: TPR (Recall)
    TPR \leftarrow cm[2,2]/sum(cm[2,1)
    # Precision
    PRE \leftarrow cm[2,2]/sum(cm[,2])
    # True negative rate: TNR
    TNR <- cm[1,1]/sum(cm[1,])</pre>
    # Simple Accuracy
    ACC \leftarrow (cm[1,1]+cm[2,2])/sum(cm)
    # Balanced Correction Rate
    BCR <- sqrt(TPR*TNR)
    # F1-Measure
    F1 <- 2*TPR*PRE/(TPR+PRE)
    return(c(TPR, PRE, TNR, ACC, BCR, F1))
```

• Initialize the performance matrix & Load the dataset

```
# Initialize the performance matrix
perf_mat <- matrix(0, 1, 6)
colnames(perf_mat) <- c("TPR (Recall)", "Precision", "TNR", "ACC", "BCR", "F1")
rownames(perf_mat) <- "Logstic Regression"

# Load dataset
ploan <- read.csv("Personal Loan.csv")
input_idx <- c(2,3,4,6,7,8,9,11,12,13,14)
target_idx <- 10
ploan_input <- ploan[,input_idx]
ploan_target <- as.factor(ploan[,target_idx])
ploan_data <- data.frame(ploan_input, ploan_target)</pre>
```

- ✓ Column I & 5: id and zipcode (irrelevant variables)
- √ Column 10: target variable
- \checkmark Convert the target variable type: numeric \rightarrow factor

Normalize and split the dataset

```
# Conduct the normalization
ploan_input <- ploan[,input_idx]
ploan_input <- scale(ploan_input, center = TRUE, scale = TRUE)
ploan_target <- ploan[,target_idx]
ploan_data <- data.frame(ploan_input, ploan_target)

# Split the data into the training/validation sets
set.seed(12345)
trn_idx <- sample(1:nrow(ploan_data), round(0.7*nrow(ploan_data)))
ploan_trn <- ploan_data[trn_idx,] ploan_tst <- ploan_data[-trn_idx,]</pre>
```

- ✓ Conduct normalization for stable learning
- \checkmark Divide the entire dataset into the training set (70%) and test set (30%)

Training the logistic regression model

```
# Train the Logistic Regression Model with all variables
full_lr <- glm(ploan_target ~ ., family=binomial, ploan_trn)
summary(full_lr)</pre>
```

- √ glm(): generalized linear model
 - Arg I: Formula
 - Arg 2: type of model (family = binomial → logistic regression)
 - Arg 3: training dataset

Training the logistic regression model

```
> summary(full_lr)
Call:
glm(formula = ploan_target ~ ., family = binomial, data = ploan_trn)
Deviance Residuals:
   Min
             10
                  Median
                              3Q
                                      Max
-2.2973 -0.2366 -0.1081 -0.0482
                                   3.6007
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  -4.21016
                             0.22999 -18.306 < 2e-16 ***
                  -0.05479
                             1.06837 -0.051 0.95910
Age
Experience
                   0.23514
                             1.06214
                                     0.221 0.82480
Income
                   2.07961
                             0.17125 12.144 < 2e-16
Family
                   0.80944
                             0.13411 6.036 1.58e-09 ***
CCAvg
                   0.30738
                             0.10800 2.846 0.00442 **
Education
                             0.14325 7.907 2.63e-15 ***
                  1.13270
                   0.07188
                             0.08685 0.828 0.40790
Mortgage
Securities.Account -0.44039
                             0.15266 -2.885 0.00392 **
CD. Account
                  0.94355
                             0.12160 7.760 8.52e-15 ***
Online |
                             0.12191 -1.083 0.27859
                  -0.13209
CreditCard
                  -0.61753
                             0.15835 -3.900 9.63e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Test the model and evaluate the classification performance

```
lr_response <- predict(full_lr, type = "response", newdata = ploan_tst)
lr_target <- ploan_tst$ploan_target
lr_predicted <- rep(0, length(lr_target))
lr_predicted[which(lr_response >= 0.5)] <- 1
cm_full <- table(lr_target, lr_predicted)
cm_full</pre>
```

✓ predict function

- type = "response": return the probability belonging to the positive (1) class
- Set the cut-off value to 0.5
- Compute the confusion matrix

```
> cm_full
lr_predicted
lr_target 0 1
0 667 4
1 26 53
```

• Test the model and evaluate the classification performance

```
perf_mat[1,] <- perf_eval2(cm_full)
perf_mat</pre>
```

- √ The 67% of actual loan users are correctly identified by the logistic regression model
- √ The 93% of customers being identified by the model are actual loan users
- √ The 99.4% of actual non-users are correctly identified by the model
- √ The 96% of customers are correctly identified

