#### Introduction à l'apprentissage automatique (GIF-7005) Département de génie électrique et de génie informatique Automne 2022



#### **EXAMEN**

| <ul> <li>Identifiez-vous bien sur la page titre;</li> <li>Répondez directement dans le questionnaire fourni;</li> <li>Une feuille aide-mémoire recto verso manuscrite est permise;</li> <li>Durée de l'examen : 1 h 50.</li> <li>Cet examen compte pour 20% de la note finale.</li> </ul> |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Cet examen compte pour 2070 de la note imaie.                                                                                                                                                                                                                                             |   |
|                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                           |   |
| Prénom :                                                                                                                                                                                                                                                                                  |   |
| Nom:                                                                                                                                                                                                                                                                                      |   |
| NI:                                                                                                                                                                                                                                                                                       |   |
| Signature :                                                                                                                                                                                                                                                                               | - |

# GIF-7005

### **Question 1** (24 points sur 100)

Soit un système de classement paramétrique à deux classes et comportant une variable en entrée. La modélisation des distributions pour chaque classe est donnée par les équations suivantes :

$$p(x|C_1) = \begin{cases} \frac{-2(x-\theta_1)}{(\theta_1)^2} & \text{si } x \in [0,\theta_1] \\ 0 & \text{autrement} \end{cases},$$

$$p(x|C_2) = \begin{cases} \frac{2(x-\theta_2)}{(4-\theta_2)^2} & \text{si } x \in [\theta_2,4] \\ 0 & \text{autrement} \end{cases}.$$

Ainsi, la paramétrisation de la distribution de la classe  $C_1$  est donnée par  $\theta_1$ , alors que celle de la classe  $C_2$  est donnée par  $\theta_2$ . On fait également l'hypothèse que  $0 \le \theta_2 \le \theta_1 \le 4$ . La figure suivante présente le tracé de ces distributions de classes.



| (8 pts) | (a) | Supposons que $\theta_1=3$ et $\theta_2=2$ , donnez la fonction $h(x)$ correspondant à la prise de décision pour le classement de données selon la valeur de $x\in[0,4]$ . Supposez que les probabilités <i>a priori</i> des classes sont égales, soit $P(C_1)=P(C_2)=0,5$ . Supposez également une perte égale pour les différents types d'erreurs. Donnez les développements menant à votre fonction de décision. |  |  |
|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

| (8 pts) | (b) Calculez le taux d'erreur bayésien optimal que l'on obtient avec le classifieur calculé au<br>point précédent. Le taux d'erreur bayésien optimal correspond au taux d'erreur obtenu<br>lorsque les données classées suivent parfaitement les distributions estimées pour le clas-<br>sement. |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                  |

| (8 pts) | (c) | Supposons maintenant que la fonction de perte est variable selon le type d'erreur que fait notre classifieur. Plus précisément, si une donnée est classée comme étant dans la classe $C_2$ mais appartient en fait à la classe $C_1$ , la perte est de $\mathcal{L}(\alpha_2, C_1) = 1$ , alors que la perte pour une donnée classée comme étant de la classe $C_1$ , mais appartenant en fait à la classe $C_2$ to $C_1$ and $C_2$ and $C_3$ are $C_4$ and $C_4$ are $C_4$ are $C_4$ are $C_4$ and $C_4$ are $C_4$ and $C_4$ are $C_4$ are $C_4$ and $C_4$ are $C_4$ |
|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |     | $C_2$ est de $\mathcal{L}(\alpha_1, C_2) = 0.5$ . Calculez la nouvelle fonction $h(x)$ correspondant à la prise de décision pour le classement de données selon cette fonction de perte dans le domaine $x \in [0, 4]$ . Supposez que les autres paramètres sont les mêmes qu'aux points précédents, soit que $\theta_1 = 3$ , $\theta_2 = 2$ et $P(C_1) = P(C_2) = 0.5$ . Donnez les développements menant à votre fonction de décision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### Question 2 (32 points sur 100)

Soit un réseau de neurones de type RBF pour deux classes, composé d'une couche cachée de R neurones de type gaussien, suivi d'une couche de sortie d'un neurone avec fonction de transfert linéaire. La valeur de la sortie pour un tel réseau de neurones pour une valeur d'entrée  $\mathbf{x}$  est donnée par l'équation suivante,

$$h(\mathbf{x}) = \sum_{i=1}^{R} w_i \phi_i(\mathbf{x}) + w_0 = \sum_{i=1}^{R} w_i \exp\left[-\frac{\|\mathbf{x} - \mathbf{m}_i\|^2}{2s_i^2}\right] + w_0,$$

où:

- $\mathbf{m}_i$  est la valeur du centre du i-ème neurone gaussien de la couche cachée;
- $s_i$  est l'étalement du i-ème neurone gaussien;
- $w_i$  est le poids connectant le *i*-ème neurone gaussien de la couche cachée au neurone de sortie ;
- $w_0$  est le poids-biais du neurone de sortie.

Supposons que l'on fixe les étalements  $s_i$  à des valeurs prédéterminées et que l'on veut apprendre les valeurs  $w_i$ ,  $w_0$  et  $\mathbf{m}_i$  par descente du gradient, en utilisant comme critère l'erreur quadratique moyenne,

$$E = \frac{1}{2N} \sum_{\mathbf{x}^t \in \mathcal{X}} (e^t)^2 = \frac{1}{2N} \sum_{\mathbf{x}^t \in \mathcal{X}} [r^t - h(\mathbf{x}^t)]^2,$$

où:

- $r^t$  est la valeur désirée pour le neurone de sortie du réseau;
- $\mathcal{X}$  est l'ensemble des N données d'entraînement.

| (16 pts) | (a) Développez les équations permettant de mettre à jour les poids $w_i$ et $w_0$ du neurone de sortie par descente du gradient, en utilisant le critère de l'erreur quadratique moyenne. |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |
|          |                                                                                                                                                                                           |

| 16 pts) | 1 | Développez les équations permettant de mettre à jour les valeurs des centres $\mathbf{m}_i$ des neurones gaussiens de la couche cachée par descente du gradient, en utilisant le critère de l'erreur quadratique moyenne. |
|---------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |
|         |   |                                                                                                                                                                                                                           |

### Question 3 (24 points sur 100)

Soit le jeu de données suivant, en deux dimensions :

$$\mathbf{x}^1 = [0,3 \ 0,5]^{\top}, \quad \mathbf{x}^2 = [0,3 \ 0,4]^{\top}, \quad \mathbf{x}^3 = [0,35 \ 0,3]^{\top}, \quad \mathbf{x}^4 = [0,4 \ 0,4]^{\top}, \\ \mathbf{x}^5 = [0,45 \ 0,45]^{\top}, \quad \mathbf{x}^6 = [0,35 \ 0,5]^{\top}, \quad \mathbf{x}^7 = [0,45 \ 0,55]^{\top}, \quad \mathbf{x}^8 = [0,55 \ 0,4]^{\top}.$$

Les étiquettes de ces données sont  $r^1 = r^2 = r^3 = r^4 = -1$  et  $r^5 = r^6 = r^7 = r^8 = 1$ . Le graphique ici bas présente le tracé de ces données.



Nous obtenons le résultat suivant en effectuant l'entraînement d'un SVM linéaire à **marge douce** avec ces données, en utilisant comme valeur de paramètre de régularisation C = 200:

$$\alpha^1 = 180, \quad \alpha^2 = 0, \quad \alpha^3 = 0, \quad \alpha^4 = 200, \quad \alpha^5 = 180, \quad \alpha^6 = 200, \quad \alpha^7 = 0, \quad \alpha^8 = 0, \\ w_0 = -11.6.$$

| (8 pts) | (a) Calculez les valeurs du vecteur w de l'hyperplan séparateur de ce classifieur. |
|---------|------------------------------------------------------------------------------------|
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |
|         |                                                                                    |

| (8 pts) | (b) | Déterminez les données qui sont des vecteurs de support ainsi que les données qui sont dans la marge ou mal classées.                                                                                 |
|---------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
| (8 pts) | (c) | Supposons maintenant que l'on veut traiter une donnée $\mathbf{x} = [0.37 \ 0.45]^{\top}$ avec ce SVM Calculez la valeur $h(\mathbf{x})$ correspondante (valeur réelle avant seuillage de la sortie). |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |
|         |     |                                                                                                                                                                                                       |

## Question 4 (20 points sur 100)

En utilisant les données de la question précédente (question 3), en deux dimensions, répondez aux questions suivantes.

(10 pts) (a) Calculez le taux d'erreur de classement selon une approche leave-one-out avec un classifieur de type k-plus proches voisins, en employant k=1 voisins et la distance  $D_{\infty}$ . Explicitez la démarche menant au calcul du taux d'erreur.

| Doga 12 do 12 |
|---------------|

| (10 pts) | (b) | Effectuez une édition de Wilson de ce jeu de données, en utilisant un voisin $(k = 1)$ et une distance euclidienne. Traitez les données dans leur ordre d'indice, c'est-à-dire dans l'ordre $x^1, x^2, x^3, \ldots, x^8$ . Explicitez votre démarche et rapportez les données formant l'ensemble des prototypes après l'édition. |
|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |
|          |     |                                                                                                                                                                                                                                                                                                                                  |