Universidade do Minho

11 de novembro de 2016

$1^{\underline{\mathrm{o}}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h30min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b, c\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4, 5\}, A, A \cup \{\Delta\}, \delta, 0, 5, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	c	Δ
0				$(1, \Delta, D)$
1			(2, c, D)	$(3, \Delta, E)$
2			(1, c, D)	$(4, \Delta, E)$
3			(3, a, E)	$(5, \Delta, C)$
4			(4, b, E)	$(5, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}ccc)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $u \in D$, determine a palavra g(u).
- 2. Seja $A = \{a, b\}$. Mostre que a função

$$g: A^* \times A^* \longrightarrow \mathbb{N}_0$$

$$(u,v) \longmapsto \begin{cases} |u| - |v| & \text{se } |u| \ge |v| \\ 0 & \text{senão} \end{cases}$$

é Turing-computável.

- 3. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Existem linguagens L e K tais que L e $L \cap K$ são recursivas e K não é recursiva.
 - b) O problema "Dada uma máquina de Turing \mathcal{T} , será que $L(\mathcal{T}) \subseteq a^*$?" é decidível.
 - c) A palavra $x^2yx^2yxyx^3yxyx^3y^2x^3yx^2yx^3yxyx^2y^2x^2yx^3yxyxyxy^2$ é o código de uma máquina de Turing com exatamente 2 estados.
 - d) Se \mathcal{T} é uma máquina de Turing que efetua movimentos do cursor apenas para a direita, então \mathcal{T} nunca entra em ciclo.

4. Seja $A = \{a, b, c\}$ e seja \mathcal{T}_{igual} a máquina de Turing capaz de testar a igualdade entre duas palavras x e y de A^* , ou seja, começando com a fita em $\underline{\Delta}x\Delta y$, \mathcal{T}_{igual} atinge uma configuração de aceitação se e só se x = y. Seja \mathcal{T} a seguinte máquina de Turing não-determinista,

- a) Indique a palavra $u \in A^*$ para a qual é possível computar a configuração $(2, \underline{\Delta}aba\Delta aba)$ a partir da configuração $(0, \underline{\Delta}u)$. Indique a sequência de configurações que permitem passar de $(0, \Delta u)$ para $(2, \Delta aba\Delta aba)$.
- b) Diga, justificando, se a palavra u da alínea anterior é aceite por \mathcal{T} .
- c) Para que palavras $v \in A^*$, $(0, \underline{\Delta}v)$ é uma configuração de ciclo? Justifique.
- d) Identifique, justificando, a linguagem L reconhecida por \mathcal{T} .
- **5**. Seja A o alfabeto $\{a, b, c\}$ e seja L a linguagem $L = \{a^n b^n c^n : n \in \mathbb{N}_0\}$.
 - a) Construa uma máquina de Turing (usual ou com duas fitas) que reconheça L e descreva informalmente a estratégia dessa máquina.
 - b) Explique se o problema de decisão P(w): " $w \in \overline{L}$?" é ou não decidível.

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1.} & 4.5 \text{ valores } (1+1+1.25+1.25) \\ \textbf{2.} & 2.5 \text{ valores} \\ \textbf{3.} & 4 \text{ valores } (1+1+1+1) \\ \textbf{4.} & 5 \text{ valores } (1.25+1+1.25+1.5) \\ \textbf{5.} & 4 \text{ valores } (2.5+1.5) \end{cases}$$