Kompiuterių tinklai - Tarptinklinis maršrutizavimas, LAN komutavimas ir VLAN Dvylikta paskaita

lekt. Vytautas Jančauskas

Tarptinklinis maršrutizavimas

Skirtingo tipo tinklų sujungimas

- Existuoja daug tipų tinklų PAN, LAN, MAN, WAN ir t.t.
- Visi naudoja skirtingų tipų technologijas ir protokolus, geriausiai pritaikytus konkretaus tipo tinklui.
- Norint, kad vieno tinklo naudotojai būtų pasiekiami reikia tinklus jungti tarpusavyje.
- Žinomiausias tinklų jungimo tarpusavyje pavyzdys yra Internetas.
- Aptarsime problemas iškylančias sprendžiant tinklų sujungimo tarpusavyje uždavinį.

Kuo skiriasi tinklai

- Mums rūpi tik skirtumai tinklo lygyje duomenų kanalų ir fizinio sluoksnio skirtumai tinklų sluoksnyje neturi reikšmės.
- Problemų gali kilti jeigu, pavyzdžiui, vienas tinklas palaiko tik duomenų perdavimą su sujungimo, o kitas tik be sujungimo.
- Kaip atlikti multicast, jeigu vieno iš adresatų tinklas nepalaiko multicast?
- Ką daryti dėl skirtingų maksimalių paketo dydžių?
- Jeigu paketai ateina į tinklą palaikantį tik duomenų perdavimą su sujungimu iš tinklo nepalaikančio sujungimų paketai gali ateiti ne eilės tvarka.
- Gali kilti problemų dėl paslaugos kokybės užtikrinimo. Jeigu tarpinis tinklas neužtikrina perdavimo kokybės, iš jos nelieka jokios naudos.

Item	Some Possibilities
Service offered	Connectionless versus connection oriented
Addressing	Different sizes, flat or hierarchical
Broadcasting	Present or absent (also multicast)
Packet size	Every network has its own maximum
Ordering	Ordered and unordered delivery
Quality of service	Present or absent; many different kinds
Reliability	Different levels of loss
Security	Privacy rules, encryption, etc.
Parameters	Different timeouts, flow specifications, etc.
Accounting	By connect time, packet, byte, or not at all

Figure 5-38. Some of the many ways networks can differ.

Kaip sujungti tinklus? (I)

- Galima sukurti įrenginius kurie konvertuotų kiekvieno tinklo paketus į kiekvieno kito tinklo paketus.
- ▶ IP paketai sukurti taip, kad jie tiktų beveik visų tipų tinklams.
- ▶ Tarkime, norime nugabenti paketą $802.11 \rightarrow MPLS \rightarrow Ethernet tinklais.$
- ▶ IP adresas identifikuoja įrenginius visuose šiuose tinkluose.
- Paketui atėjus iki MPLS tinklo reikia sukurti VC.
- Paketui atėjus iki Ethernet jis gali netilpti į Ethernet kadrą. Paketas turės būti suskaidytas į fragmentus, kurie bus siunčiami nepriklausomai vienas nuo kito atskirais Ethernet kadrais.
- ► Visų etapų metu, IP adresas naudojamas nustatyti sekantį maršrutizatorių.

Figure 5-39. (a) A packet crossing different networks. (b) Network and link layer protocol processing.

Kaip sujungti tinklus? (II)

- Tinklų sujungimas yra įmanomas tik tuo atveju jeigu naudojamas bendras tinklo sluoksnio protokolas (nagrinėtu atveju IP).
- Kitų protokolų pavyzdžiai IPX, SNA ir AppleTalk. Tačiau dabar beveik universaliai naudojamas IP.
- ► Toli nesudarinamų tinklų ieškoti nereikia IPv4 ir IPv6.
- Maršrutizatorius gali palaikyti kelis skirtingus protokolus.
- Galima bandyti išversti vieno tipo paketus į kito. Tačiau ar pavyktų iš IPv6 paketo padaryti IPv4 paketą? O atvirkščiai?

Tuneliavimas

- Egzistuoja atvejis, kai tarptinklinis maršrutizavimas gerokai supaprastėja.
- Taip yra tada, kai siuntėjas ir gavėjas yra vienodo tipo tinkluose.
- ► Tarkime reikia IPv6 paketą Paryžiuje reikia nugabenti IPv6 tinklui Londone, o tarp jų yra IPv4 tinklas.
- Priėjus IPv6-IPv4 ribą siuntėjo IPv6 paketas supakuojamas IPv4 pakete ir siunčiamas IPv4 tinklu.
- Vėliau paketas išpakuojamas ir siunčiamas jau IPv6 gavėjui.
- Kitaip tariant IPv6 duomenys gabenami kaip paprasti duomenys IPv4 pakete.
- ► Trūkumas yra tas, kad negalima pasiekti kompiuterių tarpiniame tinkle. Tačiau tai gali būti ir privalumas.

Figure 5-40. Tunneling a packet from Paris to London.

Figure 5-41. Tunneling a car from France to England.

Tarptinklinis maršrutizavimas

- ► Tinklai gali naudoti skirtingų tipų maršrutizavimo algoritmus.
- Dėl maršrutizavimo skirtumų, suskaičiuoti trumpiausio kelio jei naudojami skirtingo tipo tinklai paprastai yra neįmanoma.
- Dėl to naudojamas dviejų lygių maršrutizavimas vienoks tinklo viduje, kitoks paketų perdavimui tarp tinklų.
- Užtenka kad tarptinklinio maršrutizavimo algoritmas būtų vienodas.
- Tarptinkliniame maršrutizavime naudojami kitokie kriterijai kelių parinkime - paprastai priklausantys nuo sutarčių tarp ISP.
- Internete naudojamas BGP (Border Gateway Protocol).

Paketų fragmentavimas (I)

- Tinklai paprastai turi nustatytus maksimalius paketų dydžius. Taip yra dėl įvairių priežasčių. Kokių?
- Maksimalūs dydžiai populiariems standartams: Ethernet -1500 baitų, 802.11 - 2272 baitų, IP - 65515 baitų.
- Problemų iškyla kai norima perduoti paketą, kuris yra per didelis konkrečiam tinklui.
- Vienas sprendimas būtų apriboti paketo dydį iki mažiausio maksimalaus paketo dydžio kelyje sutinkamuose tinkluose (dažnai tai Ethernet'o 1500 baitų).
- ► Kitas sprendimas paketų fragmentavimas. Bėda tai, kad suskaidyti paprasčiau nei surinkti atgal.

Paketų fragmentavimas (II)

- Yra dviejų tipų strategijos paketų fragmentavimui: permatomas ir nepermatomas fragmentavimas.
- Permatomo fragmentavimo atveju paketas yra išskaidomas į smulkesnius, paketai perduodami tinklu ir turi būti sujungiami vienam maršrutizatoriuje. Kiti tinklai net nežino, kad fragmentavimas jvyko.
- Kokie permatomo fragmentavimo trūkumai?
- Nepermatomo fragmentavimo atveju paketai suskaidomi visam laikui. Paketas atstatomas tik galutiniame taške.
- ▶ IP naudoja nepermatomą fragmentavimą.
- Kokie nepermatomo fragmentavimo trūkumai ir privalumai?

Figure 5-42. (a) Transparent fragmentation. (b) Nontransparent fragmentation.

Number of the first elementary fragment in this packet Packet End of number packet bit 1 byte В 27 Header (a) 27 0 Α В D Ε F G н 27 8 Header Header (b) 27 0 0 В С D Ε 27 5 0 F G н 27 8

Header

Header

Header

Paketų fragmentavimas (III)

- Kitas metodas yra path MTU discovery.
- Maršrutizatorius gavęs per didelį paketą paprasčiausiai išsiunčia klaidos pranešimą siuntėjui su maksimaliu paketo dydžiu.
- Gavęs tokį pranešimą siuntėjas pats perfragmentuoja paketą.
- Jeigu persiunčiant perfragmentuotą pranešimą vėl sutinkamas tinklas, kuriam pranešimas yra per didelis tai atliekama iš naujo, paketai vėl mažinami.
- ► Toks metodas naudojamas Internete.
- Ar galite sugalvoti geresnį metodą?

Figure 5-44. Path MTU discovery.

LAN komutavimas

LAN komutavimas

- Organizacijos paprastai turi kelis fizinius LAN tinklus.
- Norint juos sujungti į vieną loginį tinklą naudojami bridžai.
- Vienas iš bridžų pavyzdžių yra Ethernet switchai.
- Bridžams nesvarbu kokie paketai jais gabenami IP,
 AppleTalk ar kažkokio kito protokolo. Jie yra tinklo įrenginiai ir atsižvelgia į fizinius adresus.
- Galimas ir priešingas scenarijus vieną fizinį LAN tinklą norima padalinti į kelis virtualius LAN (VLAN).

Bridžų panaudojimas

- Paprastai skirtingi organizacijos padaliniai kuria ir prižiūri savo LAN tinklus pagal savo poreikius.
- Tuos tinklus reikia sujungti taip, kad tinklai liktų savarankiški.
- Jeigu LAN tinklai yra geografiškai toli vienas nuo kito, neužtenka standartuose numatyto laido ilgio.
- Mažesni LAN veikia efektyviau nei vienas didelis. Jeigu visi prijungti prie vieno hub'o atitinkamai labiau apkraunamas tinklas.
- Bridžai yra visiškai permatomi. Jų LAN naudotojams visai nesimato.

Bridžai

- Bridžas priima visus kadrus ateinančius į visus portus, prie kurių prijungtos stotys.
- Bridžas turi nuspręsti ar kadrą ignoruoti ar perduoti. Jeigu perduoti tai į kurį portą.
- Sprendžiama pagal gavėjo adresą. Kadras perduodamas į kitą portą, jeigu jis yra skirtas kitam LAN tinklui.
- Bridže yra didelė (maišos) lentelė, kurioje saugomi visi gavėjų adresai ir su jais susieti portai.
- Kai bridžas pirmą kartą prijungiamas prie tinklo lentelės yra tuščios.
- ▶ Jeigu nėra įrašo lentelėje, fragmentas siunčiamas į visus portus išskyrus į tą iš kurio atėjo.

Figure 4-41. (a) Bridge connecting two multidrop LANs. (b) Bridges (and a hub) connecting seven point-to-point stations.

Backwards learning

- Jeigu konkrečios stoties fragmentas atėjo į konkretų portą, vadinasi ta stotis yra pasiekiama per tą portą.
- Ši informacija užfiksuojama lentelėje.
- Tinklo topologija gali keistis. Todėl lentelėje yra užregistruojamas kadro kuris sukūrė tą įrašą atėjimo laikas.
- Atėjus naujam kadrus, laikas lentelėje yra atnaujinamas.
- Kas kažkiek laiko lentelė peržiūrima ir senesni nei kelių minučių įrašai ištrinami.
- Visa procedūra atrodo taip:
 - 1. Jeigu siuntėjo ir gavėjo adresams priskirtas portas yra tas pats, kadras yra ignoruojamas.
 - Jeigu portai skiriasi, kadras yra perduodamas į atitinkamą portą.
 - Jeigu gavėjo portas yra nežinomas, naudojamas flooding ir kadras siunčiamas į visus portus išskyrus tą iš kurio atėjo.

Figure 4-42. Protocol processing at a bridge.

Aprėpiančio medžio bridžai

- Du bridžai gali būti sujungti keliomis jungtimis (pavyzdžiui užtikrinti patikimumui).
- Tokiu atveju gali atsirasti ciklai. Paaiškinkite kaip?
- Išspręsti problemai naudojami aprėpiantys medžiai.
- Kai kurios jungtys tokiu atveju bus ignoruojamos.
- Kaip ir kodėl aprėpiantys medžiai išsprendžia šią problemą?

Figure 4-43. Bridges with two parallel links.

Aprėpiančio medžio konstravimas

- Kiekvienas bridžas periodiškai transliuoja konfiguracinius pranešimus kiekienu portu.
- Šie pranešimai nėra perduodami toliau.
- Bridžai išrenka iš savo tarpo vieną kuris bus šakninis. Tai daroma siunčiant savo MAC adresus bei MAC adresą bridžo kurį jie laiko šakniniu.
- Galų gale šakniniu tampa tas bridžas kurio MAC adresas yra mažiausias. Kaip tai atsitinka?
- Sukonstruojamas trumpiausių kelių medis tarp šaknies ir kiekvieno bridžo.
- Norint rasti trumpiausią kelią bridžai įdeda trumpiausią kelią tarp savęs ir šaknies į konfiguracinius pranešimus.
- Galų gale bridžai išjungia portus nepriklausančius aprėpiančiam medžiui.

Figure 4-44. A spanning tree connecting five bridges. The dashed lines are links that are not part of the spanning tree.

Tinklo įrangos vieta tinklo architektūros sluoksniuose

- Repeater veikia fiziniame sluoksnyje, atkartoja ir susitiprina gaunamą signalą.
- Hub fizinio sluoksnio įrenginys, leidžia sujungti tinklo įrenginius tarpusavyje.
- Bridžai sujungia LAN tarpusavyje. Atlieka panašią funkciją kaip hubai, tik jau kanalų sluoksnyje.
- Maršrutizatoriai naudojami perduoti tinklo sluoksnio paketams.
- Transport gateway Leidžia sujungit kompiuterius naudojančius skirtingus transporto sluoksnio protokolus (pvz. TCP/IP ir SCTP).
- Application gateway verčia pranešimus iš vieno formato į kitą.

Figure 4-45. (a) Which device is in which layer. (b) Frames, packets, and headers.

VLAN (I)

- Kokia prasmė turėti atskirus LAN vienoje organizacijoje?
- Išskirsime šias priežastis:
 - Saugumas kartais saugiau, kai dalis kompiuterių yra atskirame LAN, kuris yra prieinamas ne visiems.
 - Apkrovimas jeigu dalis jungčių apkraunamos labiau negu kitos jas gali būti naudinga išskirti į atskirą LAN.
 - Transliavimas kuo didesnis tinklas tuo daugiau broadcast tipo kadrų.
 - Broadcast storm.
- Ne visada yra įmanoma padaryti taip, kad fizinė tinklo struktūra atitiktų norimą loginę struktūrą.
- ► Fizinę struktūrą reiktų keisti kiekvieną kartą pasikeitus loginei struktūrai (pvz. reorganizavus įmonės padalinius).

Figure 4-46. A building with centralized wiring using hubs and a switch.

VLAN (II)

- Išeitis yra užtikrinti norimą loginę struktūrą programiškai.
- Tam naudojami virtualūs LAN (VLAN).
- VLAN turi būti naudojami VLAN palaikantys bridžai.
- Bridžuose naudojamos lentelės, kuriose pasakyta kurie VLAN pasiekiami per kuriuos portus.
- Gavus kadrą jis perduodamas į portus priklausančius reikiamam VLAN, bet neperduodamas kitiems.
- ► Taip užtikrinama norima loginė tinklo struktūra.

Figure 4-47. Two VLANs, gray and white, on a bridged LAN.

IEEE 802.1Q standartas (I)

- Šis standartas pakeičia esamą Ethernet antraštę. Pridedamas VLAN laukas.
- Iškyla šie klausimai:
 - 1. Ką daryti su egzistuojančiomis Ethernet kortomis?
 - 2. Jeigu jos nekeičiamos, kas generuos naujus laukus?
 - 3. Kas atsitiks kadrams kurių dydis ir taip maksimalus.
- VLAN laukus naudos tik bridžai. Jie laukus ir prideda.
- Naujas standartas padidina maksimalų kadro dydį.

Figure 4-48. Bridged LAN that is only partly VLAN aware. The shaded symbols are VLAN aware. The empty ones are not.

IEEE 802.1Q standartas (II)

- Pridedami du dviejų baitų laukai.
- ▶ Pirmas iš jų yra Protocol ID, jo reikšmė visada 0x8100.
- Kadangi jo dydis yra daugiau nei 1500 Ethernet kortos interpretuos jį kaip tipą o ne kaip duomenų dydį.
- Kitame dviejų baitų lauke yra trys laukai.
- Pirmas yra VLAN identifier užimantis 12 bitų.
- Toliau yra 3 bitų Priority laukas (su VLAN jis nesusijęs).
- ► Toliau eina CFI (su VLAN nesusijęs).
- Bridžai naudojami VLAN susikonfigūruoja savaime. Kaip?

Figure 4-49. The 802.3 (legacy) and 802.1Q Ethernet frame formats.