Part 2 (Fuzzy)

Problem (4)

(a) Show that the setA $=\int \frac{1}{\sqrt{1+5x}}$ is convex

- Consider the fuzzy sets Fand G defined in interval [0,10] by the memberships $\mu_F = 2^{-x}$ and $\mu_G = \frac{1}{1+10(x-2)^2}$. Determine the mathematical formulas and graphs of memberships functions of (i) μ_F and μ_G^- (ii) $\mu_{F\cup G}$ and $\mu_{F\cap G}$
- Find sup(A), center of A, height of A and relative cardinality of (||A||) where A is fuzzy set $A = \frac{0.2}{a} + \frac{0.3}{b} + \frac{0.6}{c} + \frac{0.7}{d}$

Problem (5)

Let $A = \int \frac{\mu_A(x)}{x}$, $B = \int \frac{\mu_B(x)}{x}$ be fuzzy sets with memberships

aggregate two fuzzy sets to defuzzificate it to single most nearly value by centriod method

(b) A product with memberships represents, degree of high expensive $\mu_A(x)$, degree of medium expensive $\mu_B(x)$ and degree of cheap

expensive $\mu_c(x)$. Us defuzzification methods to find suitable price, if

its medium degree is 0.5 and high degree 0.8 where

A fuzzy system constructed to get the price of a car type with respect to car age and distance. The manufactured data say that this system has two inputs that are age and

(page 1/2)

Lesp part 2

used distance, one output which is car price, where $\mu_A(x)$, $\mu_B(x)$ and $\mu_C(x)$ are memberships represents car age, used distance by care and price with thousands

VN= Very new, N= new, M = medium, O = old, VO = Very old

VS = Very small, S= Small, M = medium, B = Long, VB = Very Long

VS = Very low price, L= Low price, M = medium price, H = high price,

VH = Very high price. Try to get the price of a care manufactured since 6 year ago and used it in distance

80000 km.

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 0 & .8 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & .9 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 0 & 0 & .8 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & .9 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Find fuzzy relation matrices $M_{R \cup S} M_{R \cap S}$ and $M_{R \circ S}$ corresponding $R \cup S$, $R \cap S$ and $R \circ S$,where R and S subsets of AXB, $A=\{a,b,c,d\}$ and $B=\{1,2,3,4\}$

(/23/3