

Combinatorics, Chemistry, and Crystals Slides at duncanadamson.github.io/talks/slides/LRC2024.pdf Duncan Adamson November 12, 2024

Computer Science and Chemistry

Current Interdisciplinary Links with Computer Science and New Perspectives

• The mathematics of "counting".

- The mathematics of "counting".
- The mathematics of discrete structures.

- The mathematics of "counting".
- The mathematics of discrete structures.
- The mathematics of optimisation.

- The mathematics of "counting".
- The mathematics of discrete structures.
- The mathematics of optimisation.
- The mathematics of finding good structures.

• The science of substances.

- The science of substances.
- The science of:

- The science of substances.
- The science of:
 - acids,

- The science of substances.
- The science of:
 - acids,
 - conductors,

- The science of substances.
- The science of:
 - acids,
 - conductors,
 - batteries.

- The science of substances.
- The science of:
 - acids,
 - conductors,
 - batteries.
 - reactions.

- The science of substances.
- The science of:
 - acids,
 - conductors,
 - batteries.
 - reactions,
 - structures.

Stuctures

Structures

The natural intersection between chemistry and combinatorics is

Combinatorial representation.

Chemical Representation.

Structures

- Computers are optimised for dealing with *discrete* structures.
 - >>> 0.1 + 0.2
 - 0.30000000000000004
- This contrasts with the more natural representation, where chemical structures are defined in terms of the angles and length of bonds.
- We will focus on *inorganic crystal structures*, however much of these problems can be extended to other areas of computational chemistry.

Problem: How can we represent a crystal structure in discrete space?

Problem: How can we find good crystal structures with this representation?

Representing Crystals

We represent crystal structures as a periodic motif defined by translationally invariant three-dimensional array over a finite alphabet of symbols.

Periodic Motif: Crystals are, functionally, an infinite repeating structure. The periodic motif, also known as the *unit cell*, is the basic unit of this structure.

Three Dimensional Array: We represent the unit cell by a 3D grid, with each cell either empty or containing some ion.

Transitionally Invariant: We treat two arrays, A and B, as representing the same crystal if one can create A by shifting every ion in B be some vector \overline{v} .

Representing Crystals

Good Crystals

- A crystal is only going to exist in reality if the ions are going to hold together.
- As a metric to represent stability, we use pairwise interaction.

Pairwise Potential: A function computing the attraction (or repulsion) between a pair of ions at a given position in a unit cell.

Crystal Structure Prediction Problem (CSP).

Goal: Minimise the sum of pairwise potential between every pair of ions in the unit cell.

Hard Problems

Can we solve CSP?

Crystal Structure Prediction

In general, CSP is undecidable.

This means that no algorithm exists to solve this problem in general.

Fixed Unit cell CSP

If the size of the unit cell is fixed, then there is a finite number of possible structures. However, this remains **NP-Complete**, meaning that it is unlikely that this problem can be guaranteed to

be solved optimally and quickly.

Solving CSP

Solving Hard Problems

• In general, we know we can not solve this problem quickly.

Solving Hard Problems

- In general, we know we can not solve this problem quickly.
- Fortunately, computer science has some tools to solve hard problems exactly quickly **most of the time**.

Solving Hard Problems

- In general, we know we can not solve this problem quickly.
- Fortunately, computer science has some tools to solve hard problems exactly quickly most of the time.
- We have used two such tools:
 - Integer Programming,
 - Quantum Computing.
- Both of these require us to represent crystal as discrete structures.

- Integer Programming provide a model for solving NP-hard problems exactly.
- In this problem, we represent CSP as an optimisation problem, using integer (binary) variables to represent the structure.

 We use a set of equations to constrain the space so that all candidate solutions satisfy some basic conditions regarding the composition and common sense (ions can't overlap).

- Finally, we optimise over the total pairwise energy.
- This gives a relatively fast way of exactly solving even hard problems using highly studied tools.

- Finally, we optimise over the total pairwise energy.
- This gives a relatively fast way of exactly solving even hard problems using highly studied tools.
- A successful proof of concept of integer programming for crystal structure prediction was published in Nature.

Quantum computing

- Quantum computing is the frontier in solving hard problems.
- We have restructured our integer programming model to work on the D-Wave quantum machine.
- Our goal is to make quantum ready algorithms.
 - This means algorithms that work with what we have now, and will get better with better computers.

What next?

Quantum Ready Algorithms

- Quantum Computing: Even if it is always 10 years away, we want to hit the ground running when large scale quantum computing becomes a reality.
 - Goal: Develop hybrid algorithms, algorithms that can work on classical computers, while offloading a certain amount of work to quantum computers.
 - The amount offloaded will scale with the power of the quantum machines.
 - In the short term, we will be able to use the algorithms immediately.
 - In the long run, this will allow us to have a pure quantum algorithm.

Classical Gaurentees

• There are two other approaches in TCS that can give soloutions to hard problems.

Classical Gaurentees

- There are two other approaches in TCS that can give soloutions to hard problems.
- Approximation Algorithms with Guarantees:
 - Goal: Develop approximation algorithms, where we don't know if we can get the optimal answer, but we know that we can get an answer that is "good enough" in a short amount of time.
 - "Good enough" means we have some known upper bound on how far away from the optimal we are.

Classical Gaurentees

 There are two other approaches in TCS that can give soloutions to hard problems.

Approximation Algorithms with Guarantees:

- Goal: Develop approximation algorithms, where we don't know if we can get the optimal answer, but we know that we can get an answer that is "good enough" in a short amount of time.
- "Good enough" means we have some known upper bound on how far away from the optimal we are.

• Parameterised Algorithms:

- CSP is hard in theory, but only for very specific instances.
- This means we can't guarantee that we can solve the problem in general, but we might be able to solve it for limited settings.
- A parameterised algorithm is an algorithm where we know we can solve the problem, if we limit the instance in some way (e.g., only using specific ion species).

Summary

- CSP is very hard to optimise in general, but TCS has tools to solve hard problems optimally.
- Three open fronts for future research:
 - Quantum Computing,
 - Approximation Algorithms,
 - Parameterised Algorithms.