

天津 VALSE 2022

Affective Image Content Analysis: Two Decades Review and New Perspectives

Email: exped1230@exped.com

Website: cv.nankai.edu.cn

Sicheng Zhao¹, Xingxu Yao², Jufeng Yang², Guoli Jia², Guiguang Ding¹, Tat-Seng Chua³, Bjorn W. Schuller⁴, Kurt Keutzer⁵

- ¹Tsinghua University, ²Nankai University, ³National University of Singapore,
- ⁴Imperial College London, ⁵University of California, Berkeley

This paper has been accepted by TPAMI 2021

Introduction

Affective Image Content Analysis (AICA) aims for analyzing viewer's feeling after seeing the image.

- Main contributions:
- > Emotion models: Categorical emotion states (CES)
- Dimensional emotion space (DES)
- We summarize the available datasets and representative **features** in the past two decades.
- we share some **potential** research directions of AICA in the future.

Brief history of AICA

Features

Features can be simply divided into hand-crafted features and deep features. One of the goal of the features is to bridge the affective gap, which is a main challenge of AICA.

- Hand-crafted features:
- Low-level features, such as color, texture.
- Mid-level features, such as Principles-of-art, Sentribute.
- High-level features, such as Sentibank, expressions.
- # Feat orientation and length information of lines uminance-warm-cool fuzzy histogram, saturation-warm-cool fuzzy histogram, luminance contrast shape, edge, texture, polynomial, image statistics Eleven Groups Gist, HOG2x2, self-similarity and geometric context color histogram features color: mean saturation, brightness and hue, emotional coordinates, colorfulness, color names, Itten contrast, Wang's semantic descriptions of colors, area statistics; texture: Tamura, Wavelet and gray-level co-occurrence matrix color: layout, structure, scalable color, dominant color; texture: edge histogram, texture browsing line segments, continuous lines, angles, curves color co-occurrence features and patch-based color-combination features scene attributes, eigenfaces roundness, angularity, complexity evel of detail, low depth of field, dynamics, rule of thirds figure-ground relationship, color pattern, shape, composition principles-of-art: balance, contrast, harmony, variety, gradation, movement bag-of-visual-words on SIFT, latent topics number of faces and skin pixels, size of the biggest face, amount of skin w.r.t. the size of faces 1,200 automatically assessed facial expressions (anger, contempt, disgust, fear, happiness, sadness, surprise, neutral) 1,205

Affective gap examples

- Different perspectives of deep features:
- Combining local and global features, such as WSCNet.
- Extracting multi-level features, such as MldrNet, CNN-RNN.
- Considering emotional polarity, such as RCA, APSE.

Future

- Based on the understanding of images, considering the context of the image may be helpful.
- Based on the cost of data collection, learning from noisy data or few labels may be more useful.
- Based on the **subjective** of emotion, creating a large-scale dataset with high-quality annotation, may be significantly advance the development of AICA.
- Based on the **reality** of research, some novel and real-world AICA-based applications may bring more chances.

The importance of context

The example of subjective

PDANet [111]

Minsky (a Turing Award winner in 1970) claimed that "The question is not whether intelligent machines can have any emotions, but whether machines can be intelligent without emotions." An emotional intelligence era with more AICA-based real-world applications is coming.

Datasets

- Different Tasks of datasets:
- Dominant emotion recognition, such as FI, IAPSa, Artphoto, Abstract,
- **Emotion distribution** learning, such as Emotion6, Flickr_LDL and Twitter_LDL.
- Personalized emotion prediction, such as IESN.
- Learning from noisy data, such as WEBEmo, StockEmotion.

Dataset	Ref	# Images	Type	# Annotators	Emotion model	Label de
IAPS	[28]	1,182	natural	\approx 100 (half f)	VAD	empirica
IAPSa	[29]	390	natural	20 (10f,10m)	Mikels	at least o
Abstract	[8]	280	abstract	≈230	Mikels	the detai
ArtPhoto	[8]	806	artistic	_	Mikels	one DEC
GAPED	[74]	730	natural	60	Sentiment, VA	one DEC
MART	[75]	500	abstract	25 (11f,14m)	Sentiment	one DEC
devArt	[75]	500	abstract	60 (27f,33m)	Sentiment	one DEC
Twitter I	[76]	1,269	social	5 per image	Sentiment	one sent
Twitter II	[10]	603	social	3 per image	Sentiment	one sent
VSO	[10]	$\approx 500,000$	social	_	Plutchik	one emo
MVSO	[77]	7.36M	social	_	Plutchik	one emo
Flickr I	[78]	354,192	social	6,735	Ekman	one emo
Flickr II	[79]	60,745	social	3 per image	Sentiment	one sent
Instagram	[79]	42,856	social	3 per image	Sentiment	one sent
Emotion6	[14]	1,980	social	432	Ekman+neutral, VA	the discr
FI	[4]	23,308	social	225	Mikels	one DEC
IESN	[15]	1,012,901	social	118,035	Mikels, VAD	the emot
T4SA	[80]	1,473,394	social	-	Sentiment+neutral	one sent
B-T4SA	[80]	470,586	social	-	Sentiment+neutral	one sent
Comics	[81]	11,821	comic	10 (5f,5m)	Mikels	one DEC
Event	[82]	8,748	social	3 each image	Sentiment+neutral	one sent
EMOTIC	[83]	18,316	social	3 each image	Ekman, VAD	one DEC
EMOd	[84]	1,019	natural	3	Sentiment+neutral	object co
WEBEmo	[22]	268,000	social	-	Parrott	one DEC
LUCFER	[85]	3.6M	social	-	Plutchik, VAD, context	one DEC
FlickrLDL	[16]	10,700	social	11	Mikels	the discr
TwitterLDL	[16]	10.045	social	8	Mikels	the discr

cally derived mean and standard deviation one emotion category for each image ailed votes of all emotions for each image EC for each image EC and average VA values for each image EC for each image EC for each image ntiment category for each image ntiment category for each image otion category for each image otion category for each image otion category for each image ntiment category for each image ntiment category for each image crete probability distribution EC for each image otion of involved users for each image ntiment category for each image ntiment category for each image EC for each image ntiment category for each image EC and VAD values for each image contour, object name, sentiment category EC for each image C, average VAD values, and context for each image crete probability distribution the discrete probability distribution

Experiments

Dotogot	PAEF [9]				Sun attribute [7]				SentiBank [10]			
Dataset	kNN	NB	SVM	Avg	kNN	NB	SVM	Avg	kNN	NB	SVM	Avg
Emotion6	0.246	0.288	0.359	0.298	0.268	0.323	0.306	0.299	0.283	0.290	0.342	0.305
FI2	0.687	0.733	0.730	0.717	0.698	0.697	0.739	0.711	0.603	0.815	0.815	0.744
FI8	0.286	0.299	0.343	0.309	0.300	0.271	0.372	0.314	0.445	0.288	0.506	0.413
Flickr	0.627	0.640	0.674	0.647	0.634	0.639	0.683	0.652	0.581	0.608	0.694	0.628
Instagram	0.556	0.589	0.638	0.594	0.561	0.586	0.631	0.593	0.584	0.576	0.662	0.607
Twitter I	0.593	0.633	0.675	0.634	0.565	0.615	0.643	0.608	0.526	0.564	0.602	0.564
Twitter II	0.659	0.777	0.777	0.738	0.672	0.606	0.777	0.685	0.632	0.661	0.777	0.690

Note that Sun attribute represent low-level feature here.

- Comparison of different types of hand-crafted-features:
- On large-scale datasets, high level features have best performance.
- Comparison between hand-crafted features and deep features:
- Deep features are much better than hand-crafted features.

		_			_		
-	FI2	0.894 (3)	0.894 (3)	0.896 (1)	0.807 (3)	0.876 (2)	0.878 (1)
-	FI8	0.671 (3)	0.675(2)	0.679(1)	0.606 (3)	0.696(1)	0.694(2)
	Flickr_LDL	0.697 (3)	0.707(2)	0.709(1)	0.592 (3)	0.703(1)	0.703(1)
	Twitter_LDL	0.764 (3)	0.773(1)	0.766 (2)	0.725 (3)	0.762(2)	0.763(1)
	Comics	0.531 (3)	0.532(2)	0.542 (1)	0.263 (3)	0.595(1)	0.588(2)
	GAPED	0.899 (2)	0.889(3)	0.919(1)	0.697 (3)	0.939(2)	0.950(1)
	Event	0.938 (2)	0.937(3)	0.948 (1)	0.791 (3)	0.937(2)	0.946(1)
	Flickr	0.800 (3)	0.801(2)	0.807 (1)	0.757 (3)	0.808(2)	0.819(1)
-	Instagram	0.804 (3)	0.816(1)	0.804(3)	0.672 (3)	0.811(1)	0.807(2)
	Twitter I	0.819 (3)	0.827(1)	0.827 (1)	0.606 (3)	0.839(2)	0.858(1)
	Twitter II	0.824 (1)	0.824(1)	0.815 (3)	0.815 (1)	0.815 (1)	0.815(1)
	Average rank	2.636 (3)	1.909 (2)	1.455 (1)	2.818 (3)	1.545 (2)	1.273 (1)
,							
	Compariso	n of diff	erent tvi	pe of de	ep featui	res:	
	•		, ,		•		
	Global feat	tures bet	tter than	local fe	atures in	ı general	•

- Combining local and global features have best performance.

Least: Event Most: Abstract > Observations:

➤ Noise:

	Obscivations.
•	Different types
•	Not mutual
•	Class distribution

	Class distribu
•	FI dataset

Dataset	ρ_{-1}	$ ho_{+1}$	$ ho_m$
Event	0.148	0.056	0.074
Twitter_LDL	0.404	0.068	0.097
WEBEmo	0.098	0.115	0.107
FI	0.169	0.082	0.108
Flickr_LDL	0.278	0.098	0.129
Comics	0.171	0.189	0.180
Flickr	0.184	0.176	0.180
GAPED	0.170	0.227	0.187
Instagram	0.195	0.179	0.187
Twitter I	0.290	0.156	0.209
Artphoto	0.245	0.271	0.257
Twitter II	0.492	0.198	0.264
IAPSa	0.315	0.257	0.283
Abstract	0.387	0.257	0.307

	V
Event	0.9
Twitter_LDL	0.7
WEBEmo	0.
FI	0.7
Flickr_LDL	0.7
Comics	0.7
Flickr	0.8
GAPED	0.6
Instagram	0.8
Twitter I	0.8
Artphoto	0.7
Twitter II	0.8
IAPSa	0.7
Abstract	0.7

	ENT	Witter	WELL	V
vent	0.931	0.841	0.452	0.694
er_LDL	0.793	0.918	0.444	0.732
BEmo	0.75	0.563	0.804	0.7
FI	0.752	0.673	0.602	0.875
r_LDL	0.787	0.905	0.448	0.754
omics	0.707	0.814	0.465	0.700
lickr	0.842	0.664	0.501	0.769
PED	0.624	0.589	0.472	0.60
agram	0.853	0.747	0.495	0.77
itter I	0.882	0.867	0.455	0.73
photo	0.717	0.584	0.494	0.67
itter II	0.826	0.908	0.437	0.7
APSa	0.762	0.83	0.464	0.734
stract	0.738	0.646	0.528	0.644

	Event	witter LI	NEBERI	o FI	flickr LD	L Comics	Flickt	GAPED	Instagran	Twitter	Artphoto	Twitter I	IAPSa	Abstract
nt	0.931	0.841	0.452	0.694	0.753	0.49	0.587	0.515	0.556	0.795	0.503	0.849	0.532	0.674
_LDL	0.793	0.918	0.444	0.732	0.842	0.542	0.519	0.404	0.523	0.634	0.596	0.832	0.675	0.609
Emo	0.75	0.563	0.804	0.7	0.573	0.601	0.677	0.747	0.669	0.713	0.683	0.681	0.74	0.609
[0.752	0.673	0.602	0.875	0.729	0.609	0.722	0.636	0.69	0.65	0.764	0.647	0.818	0.739
LDL	0.787	0.905	0.448	0.754	0.882	0.582	0.555	0.566	0.556	0.61	0.621	0.824	0.701	0.587
ics	0.707	0.814	0.465	0.706	0.721	0.813	0.562	0.545	0.601	0.614	0.627	0.739	0.766	0.522
kr	0.842	0.664	0.501	0.769	0.657	0.595	0.804	0.677	0.731	0.78	0.795	0.647	0.727	0.652
ED	0.624	0.589	0.472	0.605	0.616	0.584	0.585	0.919	0.585	0.575	0.571	0.63	0.662	0.609
ram	0.853	0.747	0.495	0.777	0.708	0.592	0.786	0.727	0.784	0.803	0.745	0.748	0.779	0.696
er I	0.882	0.867	0.455	0.735	0.803	0.494	0.616	0.505	0.582	0.823	0.534	0.815	0.662	0.652
oto	0.717	0.584	0.494	0.677	0.469	0.575	0.702	0.747	0.628	0.571	0.807	0.613	0.74	0.739
er II	0.826	0.908	0.437	0.7	0.816	0.47	0.505	0.333	0.498	0.654	0.491	0.824	0.532	0.63
Sa	0.762	0.83	0.464	0.734	0.759	0.519	0.549	0.727	0.551	0.543	0.584	0.739	0.818	0.674
ract	0.738	0.646	0.528	0.644	0.591	0.476	0.586	0.646	0.573	0.622	0.665	0.639	0.571	0.739
	(b) Dataset bias													

More Details

API Demos:

(a) Label noise

(b) Dataset bias