Hypothesis Test and Comparison STAT-UB.0001 Statistics for Business Control

Ningshan Zhang

IOMS Department nzhang@stern.nyu.edu

Aug 2, 2018

Review: CI for Population Mean

Setup: let \bar{X} and S be the mean and standard deviation of a random sample of n observations.

When n is large $(n \ge 30)$ or the population is normal, a $1 - \alpha$ CI for population mean μ is

$$(\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$$

▶ When *n* is large, $t_{\alpha/2,n-1} \approx z_{\alpha/2}$.

Review: CI for Population Proportion

Setup: let \hat{p} be the sample proportion of a random sample of n observations.

When $np \ge 15$ and $n(1-p) \ge 15$, a $1-\alpha$ CI for population proportion p is

$$\left(\widehat{p}-z_{\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},\,\widehat{p}+z_{\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right)$$

▶ In practice, check for $n\widehat{p} \geq 15$ and $n(1-\widehat{p}) \geq 15$.

Hypothesis Testing

Often, someone makes a claim about the world, such as

- ► The revenue of a company is normally distributed with mean \$1.5 B and standard deviation \$0.1 B.
- David throws 10 heads in a roll with a fair coin.

We collect some data, and we want to evaluate the plausibility of that claim in the face of data.

Hypothesis Testing

Hypothesis:

▶ A statement about the numerical value of a population parameter.

Null Hypothesis (H_0) :

▶ The statement is true.

Alternative Hypothesis (H_A) :

▶ The statement is false.

Hypothesis Testing

Procedure of a hypothesis testing:

- 1. Specify the null (H_0) and alternative (H_a) hypothesis.
- 2. Collect a sample, find evidence against H_0 in the sample.
- Make a conclusion:
 - reject H_0 if the evidence is strong.
 - ▶ otherwise do not reject H₀.

Hypothesis tests work like criminal courts: the defendant is presumed innocent, until proven guilty beyond a reasonable doubt.

Hypothesis Testing for Population Mean

- ▶ Setup: Population has unknown mean μ . Let \bar{X} and S be the mean and standard deviation of a random sample of n observations.
- ▶ Goal: test whether or not $\mu = \mu_0$ for some given value of μ_0 .

Step 1: Specify the null (H_0) and alternative (H_a) hypothesis.

Test Statistic

Step 1: $H_0: \mu = \mu_0, \quad H_A: \mu \neq \mu_0.$

Step 2: Collect a sample, find evidence against H_0 in the sample.

Given a random sample, define the test statistic

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}.$$

- ► T is a random variable. (Why?)
- ▶ If null hypothesis is true, i.e. $\mu = \mu_0$, then T is t-distributed with df = n-1, when $n \ge 30$ or population is normal.

Test Statistic

Step 2: Collect a sample, find evidence against H_0 in the sample.

Given a random sample, define the test statistic

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}.$$

The observed test statistic, t is the evidence:

- ▶ If H_0 is true, it is not very likely to observe extreme values of t, such as $t \ge 2$ or $t \le -2$.
- ▶ Larger value of |t| means stronger evidence against H_0 .

p-value

Step 2: Collect a sample, find evidence against H_0 in the sample.

Evidence (test stat.): $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$, t is the observed value.

The p-value tells us how strong is the evidence against H_0 :

▶ If *H*₀ is true, p-value is the probability of getting a test statistic as least as extreme as the one we observed:

$$p$$
-value = $\mathbb{P}(|T| \ge |t|)$ under H_0 .

When the p-value is small, the evidence is strong, and vice versa.

Conclusion

- Step 1: Specify the null (H_0) and alternative (H_a) hypothesis.
- Step 2: Collect a sample, find evidence against H_0 in the sample.

Step 3: Make a conclusion

For significance level α (often use $\alpha = 0.05$),

- reject H_0 if the p-value $\leq \alpha$.
- do not reject H_0 if p-value $> \alpha$.

Interpretation of Significance Level α

When H_0 is rejected, we say that the result is statistically significant at level α . A common choice is $\alpha = 0.05$.

- ▶ Caution: α is not the probability that H_0 is true (there is nothing random about H_0 !)
- ▶ It is possible that H_0 is true but we reject it.
- Rather, α is the probability, or proportion of the time, that a test of this kind would reject H₀ when H₀ is true.

Hypothesis Testing by Rejection Region

An alternative way of hypothesis testing: reject H_0 if the observed t falls into a pre-specified *rejection region*.

- ▶ For significance level α , reject H_0 when $|t| \ge t_{\alpha/2,n-1}$.
- ▶ Thus the rejection region is $(-\infty, -t_{\alpha/2, n-1}] \cup [t_{\alpha/2, n-1}, +\infty)$.

Figure: The rejection region (when n is large, T is Z-distributed).

Confidence Intervals and Hypothesis Testing

▶ Estimation: A $1 - \alpha$ CI for μ is derived from

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\in(-t_{\alpha/2,n-1},t_{\alpha/2,n-1}).$$

▶ Hypothesis test for $H_0: \mu = \mu_0$ and $H_a: \mu \neq \mu_0$: Reject H_0 at significance level α when

$$\frac{\bar{X}-\mu_0}{S/\sqrt{n}}\not\in (-t_{\alpha/2,n-1},t_{\alpha/2,n-1}).$$

Confidence Intervals and Hypothesis Testing

One can show the following two things are equivalent for a given sample:

- μ_0 is not in the $1-\alpha$ CI for μ .
- ▶ Reject the H_0 : $\mu = \mu_0$ with significance level α ;

Example: given a 95% CI for μ , and consider the hypothesis test

$$H_0: \mu = \mu_0, \quad H_a: \mu \neq \mu_0.$$

If μ_0 is not in the CI, reject H_0 with significance 0.05; otherwise do not reject H_0 .

Types of Errors

	Reject <i>H</i> ₀	Do not reject H_0
H₀ is true	False positive; Type I error	✓
H_0 is false	✓	False negative; Type II error

^{* &}quot;positive" means reject null.

Types of Errors

Type I Error: Rejecting H_0 when H_0 is true.

▶ Probability of Type I error = "significance level" = α .

Type II Error: Not rejecting H_0 when H_0 is false.

- ▶ Probability of Type II error = β .
- Usually not specified, and can be difficult to calculate.

Type I and type II errors are conflicting:

Decreasing $\alpha \iff$ Less likely to reject $H_0 \iff$ Increasing β .

Comparisons

Many experiments involve a comparison of two distinct groups.

Example:

- Are men superior drivers?
- ▶ Who has faster 4G LTE network: AT&T or Verizon?
- Do SAT prep courses improve scores?
- ▶ Is drug A more effective than drug B (i.e. A/B testing)?

Comparisons: Setup

- ▶ There are two populations, let μ_k , σ_k indicate the population mean and standard deviation, for population k = 1, 2.
- ▶ There are two independent random samples from each population, let n_k , \bar{X}_k , S_k indicate the sample size, sample mean, sample deviation, for population k = 1, 2.

	Population 1	Population 2
Population parameters	μ_1, σ_1	μ_2, σ_2
Sample statistics	$n_1,ar{X}_1,S_1$	n_2, \bar{X}_2, S_2

Comparisons: Goal

Given the sample statistics, we would like to

- ▶ Estimation: construct a confidence interval for $\mu_1 \mu_2$.
- Hypothesis Testing: test

$$H_0: \mu_1 = \mu_2, \quad H_a: \mu_1 \neq \mu_2.$$

It is equivalent to test

$$H_0: \mu_1 - \mu_2 = 0, \quad H_a: \mu_1 - \mu_2 \neq 0.$$

Review One Sample Case

When there is only one sample, we rely on the distribution of

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}.\tag{1}$$

• Estimation: A $1-\alpha$ CI for μ is derived from

$$T\in (-t_{\alpha/2,n-1},t_{\alpha/2,n-1}).$$

▶ Hypothesis test for H_0 : $\mu = \mu_0$ and H_a : $\mu \neq \mu_0$,

Reject
$$H_0$$
 when $T \notin (-t_{\alpha/2,n-1}, t_{\alpha/2,n-1}),$

with $\mu = \mu_0$ in (1).

Review One Sample Case

The key formula is

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{\bar{X} - \mathbb{E}(\bar{X})}{\operatorname{sd}(\bar{X})}.$$

Given an estimate \bar{X} of μ , we need to know:

- ▶ Its mean $\mathbb{E}(\bar{X})$ and standard deviation $sd(\bar{X})$;
- ► The estimate is approximately t or Z distributed.

Comparison

To study $\mu_1 - \mu_2$, we need to find:

▶ An esitmate of $\mu_1 - \mu_2$. Solution:

$$\bar{X}_1 - \bar{X}_2$$
.

▶ The mean of the estimate. Solution:

$$\mathbb{E}(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2.$$

▶ The standard deviation of the estimate. Solution:

$$\operatorname{sd}(\bar{X}_1 - \bar{X}_2) = ?$$

Standard Deviation of $\bar{X}_1 - \bar{X}_2$

Theorem

If X, Y are two independent random variables, then

$$var(X \pm Y) = var(X) + var(Y).$$

Thus,

$$\operatorname{var}(\bar{X}_{1} - \bar{X}_{2}) = \operatorname{var}(\bar{X}_{1}) + \operatorname{var}(\bar{X}_{2}) = \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}$$

$$\Rightarrow \operatorname{sd}(\bar{X}_{1} - \bar{X}_{2}) = \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

Finally, use $\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}$ as an estimate for $\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$.

Comparison

Assume

- Two independent random samples;
- ▶ Samples are sufficiently large $(n_1 \ge 30 \text{ and } n_2 \ge 30)$.

Then

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

is approximately Z distributed.

Comparison

▶ Estimaton: the $1 - \alpha$ CI for $\mu_1 - \mu_2$ is

$$(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}.$$

▶ Hypothesis test for H_0 : $\mu_1 = \mu_2$ and H_a : $\mu_1 \neq \mu_2$:

Reject
$$H_0$$
 when $\frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \not\in (-z_{\alpha/2}, z_{\alpha/2})$

at significance level α .