CENG 3549 – Functional Programming

Burak Ekici

December 8, 2022

Outline

1 Mathematical Induction

- 2 Structural Induction
- 3 The Coq Proof Assistant

ullet prove some property ${\it P}$ for all natural numbers

- ullet prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

- prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

How is it Applied?

• mathematical induction consists of two steps:

- prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

How is it Applied?

- mathematical induction consists of two steps:
 - prove base case

P(0)

- prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

How is it Applied?

- mathematical induction consists of two steps:
 - prove base case

show property for 0

- prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

How is it Applied?

00000

• mathematical induction consists of two steps:

1 prove base case

P(0)

2 prove step case

 $\forall k. (P(k) \implies P(k+1))$

- prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

How is it Applied?

• mathematical induction consists of two steps:

prove base case

P(0)

prove step case

$$\forall k. (P(k) \implies P(k+1))$$

assume P(k) (induction hypothesis), show P(k+1)

- have two facts:
 - 1 P true for 0 2 for arbitrary k, if P true for k then P true for k+1
- want to show P for every natural number $(\forall n. P(n))$

- have two facts:
 - 1 P true for 0 2 for arbitrary k, if P true for k then P true for k+1
- want to show P for every natural number $(\forall n. P(n))$

Example (**P**(**3**))

• have *P*(0)

- have two facts:
 - 1 P true for 0 2 for arbitrary k, if P true for k then P true for k+1
- want to show P for every natural number $(\forall n. P(n))$

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$

- have two facts:
 - 1 P true for 0 2 for arbitrary k, if P true for k then P true for k+1
- want to show P for every natural number $(\forall n. P(n))$

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)

- have two facts:
 - 1 P true for 0 2 for arbitrary k, if P true for k then P true for k+1
- want to show P for every natural number $(\forall n. P(n))$

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \implies P(3)$
- have *P*(3)

- have two facts:
 - ① P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (**P**(**3**))

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \implies P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have *P*(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- 1 first domino falls
- 2 if domino falls, right neighbor falls

Why does this Work?

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

Why does this Work?

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

Why does this Work?

- have two facts:
 - P true for 0
 - 2 for arbitrary k, if P true for k then P true for k+1
- want to show P for every natural number $(\forall n. P(n))$

<u>Exa</u>mple (**P**(**3**))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

Why does this Work?

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

<u>Exa</u>mple (**P**(**3**))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

Why does this Work?

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

Why does this Work?

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

00000

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

00000

- have two facts:
 - P true for 0

2 for arbitrary k, if P true for k then P true for k+1

• want to show P for every natural number $(\forall n. P(n))$

Example (P(3))

- have P(0)
- and $P(0) \Longrightarrow P(1)$
- thus *P*(1)
- with $P(1) \Longrightarrow P(2)$
- have *P*(2)
- with $P(2) \Longrightarrow P(3)$
- have *P*(3)

Idea

- reach arbitrary n s.t. P(n)
- hence, $\forall n. P(n)$

- first domino falls
- 2 if domino falls, right neighbor falls

What is a "Property"?

- anything that depends on some input and is either true or false
- that is, some function p :: a -> Bool

What is a "Property"?

- anything that depends on some input and is either true or false
- that is, some function p :: a -> Bool

Remark

- base case may be changed
- e.g., if base case P(1), property holds for all $n \ge 1$

What is a "Property"?

- anything that depends on some input and is either true or false
- that is, some function p :: a -> Bool

Remark

- · base case may be changed
- e.g., if base case P(1), property holds for all $n \ge 1$

Induction Principle

$$(P(m) \land \forall k \ge m. (P(k) \implies P(k+1))) \implies \forall n \ge m. P(n)$$

emma (Gauß's Formula)	

•
$$P(x) = (1+2+\cdots+x = \frac{x(x+1)}{2})$$

- $P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$
- base case: *P*(0)

•
$$P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \cdots + 0)$$

•
$$P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$$

• base case:
$$P(0) = (1+2+\cdots+0=0)$$

•
$$P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$$

0000

Lemma (Gauß's Formula)

- $P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$
- base case: $P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$
- step case: $P(k) \implies P(k+1)$

0000

- $P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$
- base case: $P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$
- step case: $P(k) \Longrightarrow P(k+1)$ IH: $P(k) = (1+2+\cdots+k=\frac{k(k+1)}{2})$

0000

- $P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$
- base case: $P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$
- step case: $P(k) \Longrightarrow P(k+1)$ IH: $P(k) = (1+2+\cdots+k=\frac{k(k+1)}{2})$ show: P(k+1)

•
$$P(x) = (1 + 2 + \cdots + x = \frac{x(x+1)}{2})$$

• base case: $P(0) = (1 + 2 + \cdots + 0 = 0 = \frac{0(0+1)}{2})$

• step case: $P(k) \Longrightarrow P(k+1)$ IH: $P(k) = (1+2+\cdots+k=\frac{k(k+1)}{2})$ show: P(k+1)

$$1+2+\cdots+(k+1)$$

Mathematical Induction

0000

•
$$P(x) = (1 + 2 + \cdots + x = \frac{x(x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$$

• step case:
$$P(k) \Longrightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k=\frac{k(k+1)}{2})$
show: $P(k+1)$

$$1+2+\cdots+(k+1)=(1+2+\cdots+k)+(k+1)$$

0000

Lemma (Gauß's Formula)

•
$$P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$$

• step case:
$$P(k) \Longrightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k=\frac{k(k+1)}{2})$
show: $P(k+1)$

$$\begin{aligned} 1 + 2 + \dots + (k+1) &= (1+2+\dots + k) + (k+1) \\ &\stackrel{\text{IH}}{=} \frac{k(k+1)}{2} + (k+1) \end{aligned}$$

•
$$P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$$

• step case:
$$P(k) \Longrightarrow P(k+1)$$

IH: $P(k) = (1+2+\dots+k = \frac{k(k+1)}{2})$
show: $P(k+1)$

$$1+2+\dots+(k+1) = (1+2+\dots+k) + (k+1)$$

$$\stackrel{\underline{H}}{=} \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{(k+1)(k+2)}{2}$$

Outline

1 Mathematical Induction

- 2 Structural Induction
- 3 The Coq Proof Assistant

- proof principle similar to mathematical induction
- works in the domain of recursively defined structures (not only in $\ensuremath{\mathbb{N}}\xspace)$

- proof principle similar to mathematical induction
- works in the domain of recursively defined structures (not only in $\mathbb N$)

Example (Lists)

```
data List a where
```

Nil :: [a]

Cons :: a -> [a] -> [a]

- proof principle similar to mathematical induction
- works in the domain of recursively defined structures (not only in \mathbb{N})

Example (Lists)

```
data List a where
```

Nil :: [a]

Cons :: a -> [a] -> [a]

Notatio

Denote

- Nil by []
- Cons x xs by x : xs

- proof principle similar to mathematical induction
- works in the domain of recursively defined structures (not only in N)

Example (Lists)

```
data List a where
```

```
Nil :: [a]
Cons :: a -> [a] -> [a]
```

NULati

Denote

- Nil by []
- Cons x xs by x : xs

Remark (notes)

- lists are recursive structures
- non-recursive constructor (base case): []
- recursive constructor (step case): x:xs

Induction Principle for Lists – Informally

- to show P(I) for all lists I
- show base case: P([])
- show step case: $P(xs) \implies P(x:xs)$ for arbitrary x and xs

Induction Principle for Lists – Informally

- to show P(I) for all lists I
- show base case: P([])
- show step case: $P(xs) \implies P(x:xs)$ for arbitrary x and xs

Induction Principle for Lists – Formally

$$(P([]) \land \forall x. \, \forall xs. \, (P(xs) \implies P(x \mathbin{:} xs))) \implies \forall I. \, P(I)$$

Induction Principle for Lists – Informally

- to show P(I) for all lists I
- show base case: P([])
- show step case: $P(xs) \implies P(x:xs)$ for arbitrary x and xs

Induction Principle for Lists – Formally

$$(P([]) \land \forall x. \forall xs. (P(xs) \Longrightarrow P(x:xs))) \Longrightarrow \forall I. P(I)$$

Remark

• for lists, P can be seen as function p :: [a] -> Bool

Definition (Append)

[]
$$++ l_2 = l_2$$

(x:xs) $++ l_2 = x$: (xs $++ l_2$)

Definition (Append)

[]
$$++ l_2 = l_2$$

(x:xs) $++ l_2 = x$: (xs $++ l_2$)

Lemma (Nil is right identity of append)

[] is right identity of ++, that is,

$$I ++[] = I$$

Definition (Append)

[]
$$++ l_2 = l_2$$

(x:xs) $++ l_2 = x$: (xs $++ l_2$)

Lemma (Nil is right identity of append)

[] is right identity of ++, that is,

$$I + + [1 = I]$$

Lemma (Append is associative)

++ is associative, that is,

$$(I_1 ++ I_2) ++ I_3 = I_1 ++ (I_2 ++ I_3)$$

Definition (Length)

length [] = 0length ($_:xs$) = 1 + length xs

Definition (Length)

length [] = $\frac{0}{1}$ + length xs

Lemma (Length and append)

length of combined list is sum of lengths, that is,

length
$$(I_1 ++ I_2)$$
 = length I_1 + length I_2

Example (Binary Trees)

data BTree a where

Empty :: BTree a

Node :: a -> BTree a -> BTree a

Example (Binary Trees)

data BTree a where

Empty :: BTree a

Node :: a -> BTree a -> BTree a

Induction Principle for Binary Trees

$$(P(\mathsf{Empty}) \land \forall x. \forall I. \forall r. ((P(I) \land P(r)) \implies P(\mathsf{Node} \ x \ I \ r))) \implies \forall t. P(t)$$

Example (Perfect Binary Trees)

• a binary tree is perfect if all leaf nodes have same depth

```
perfect Empty = True
perfect (Node _ l r) =
  height l == height r && perfect l && perfect r

height Empty = 0
height (Node _ l r) =
  max (height l) (height r) + 1

size Empty = 0
size (Node _ l r) = size l + size r + 1
```

Lemm

a perfect binary tree t of height n has exactly $2^n - 1$ nodes, that is,

$$P(t) = (perfect t \implies size t = 2^{height t} - 1)$$

Example

data Term where

Var :: String -> Term
Lambda :: String -> Term -> Term

App :: Term -> Term -> Term

Example

```
data Term where
```

Var :: String -> Term
Lambda :: String -> Term -> Term
App :: Term -> Term -> Term

General Structures - Induction Principle

- for every non-recursive constructor, show base case
 - base case: P(Var x)
- for every recursive constructor, show step case
 - step case 1: $(P(s) \land P(t)) \implies P(App s t)$
 - step case 2: $P(t) \implies P(Lambda \times t)$

Outline

1 Mathematical Induction

2 Structural Induction

3 The Coq Proof Assistant

Curry-Howard Isomorphism

Logic	~	Type Theory
Proposition		Туре
Proof		Program
:		

The Coq Proof Assistant

- by Thierry Coquand (1985)
 - implements Curry-Howard Isomorphismprovides recursors + inductors

The Coq Proof Assistant 🦩

• Coq is a general purpose proof management system based on a rich type system called the Calculus of Inductive Constructions (CIC)

The Cog Proof Assistant 🧚

- Coq is a general purpose proof management system based on a rich type system called the Calculus of Inductive Constructions (CIC)
- CIC is a constructive logic: a proof is a process of constructing a witness for a given formula (statement) without employing classical axioms as LEM $\forall P, P \lor \neg P$ or any equivalent e.g., DNE $\neg \neg P \Longrightarrow P$

The Cog Proof Assistant 🦩

- Coq is a general purpose proof management system based on a rich type system called the Calculus of Inductive Constructions (CIC)
- CIC is a constructive logic: a proof is a process of constructing a witness for a given formula (statement) without employing classical axioms as LEM $\forall P, P \lor \neg P$ or any equivalent e.g., DNE $\neg \neg P \Longrightarrow P$
- In CIC, proofs are programs and formulae are types

The Coq Proof Assistant 🧚

- Coq is a general purpose proof management system based on a rich type system called the Calculus of Inductive Constructions (CIC)
- CIC is a constructive logic: a proof is a process of constructing a witness for a given formula (statement) without employing classical axioms as LEM $\forall P, P \lor \neg P$ or any equivalent e.g., DNE $\neg \neg P \Longrightarrow P$
- In CIC, proofs are programs and formulae are types
- CIC is higher-order: quantifiers over predicates (propositional valued function) allowed

Coq allows for

- Coq allows for
 - defining functions and predicates;

- Coq allows for
 - defining functions and predicates;
 - stating mathematical theorems and software specifications;

- Coq allows for
 - · defining functions and predicates;
 - stating mathematical theorems and software specifications;
 - interactively developing formal proofs of these theorems;

- Cog allows for
 - defining functions and predicates:
 - stating mathematical theorems and software specifications:

 - interactively developing formal proofs of these theorems;
 machine-checking proofs by a relatively small "(trusted) certification kernel"

- Coq allows for
 - · defining functions and predicates;
 - stating mathematical theorems and software specifications;
 - interactively developing formal proofs of these theorems;
 - machine-checking proofs by a relatively small "(trusted) certification kernel"
 - extracting certified programs from the constructive proof of its formal specification

- Coq allows for
 - defining functions and predicates;
 - stating mathematical theorems and software specifications;
 - interactively developing formal proofs of these theorems;
 - machine-checking proofs by a relatively small "(trusted) certification kernel"
 - extracting certified programs from the constructive proof of its formal specification
- 2 Coq embodies

- Coq allows for
 - defining functions and predicates;
 - stating mathematical theorems and software specifications;
 - interactively developing formal proofs of these theorems;
 - machine-checking proofs by a relatively small "(trusted) certification kernel"
 - extracting certified programs from the constructive proof of its formal specification
- 2 Coq embodies
 - functional programming language: to implement programs/mathematical objects

- Coq allows for
 - defining functions and predicates;
 - stating mathematical theorems and software specifications:
 - interactively developing formal proofs of these theorems;
 - machine-checking proofs by a relatively small "(trusted) certification kernel"
 - extracting certified programs from the constructive proof of its formal specification
- 2 Coq embodies
 - functional programming language: to implement programs/mathematical objects
 - specification language: to develop property proofs of programs/mathematical objects

- Coq allows for
 - defining functions and predicates;
 - stating mathematical theorems and software specifications;
 - interactively developing formal proofs of these theorems;
 - machine-checking proofs by a relatively small "(trusted) certification kernel"
 - extracting certified programs from the constructive proof of its formal specification
- 2 Cog embodies
 - functional programming language: to implement programs/mathematical objects
 - specification language: to develop property proofs of programs/mathematical objects
 - tactic language Ltac: to develop small code pieces (tactics) in order to manipulate proof states

- Coq allows for
 - defining functions and predicates;
 - stating mathematical theorems and software specifications;
 - interactively developing formal proofs of these theorems;
 - machine-checking proofs by a relatively small "(trusted) certification kernel"
 - extracting certified programs from the constructive proof of its formal specification
- 2 Cog embodies
 - functional programming language: to implement programs/mathematical objects
 - specification language: to develop property proofs of programs/mathematical objects
 - tactic language Ltac: to develop small code pieces (tactics) in order to manipulate proof states
 - vernacular command language: to query and interact with the Coq type system

1 In CIC, every single construction has a type; there are

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)
 - types for functions/programs

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)
 - types for functions/programstypes for proofs

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)
 - types for functions/programs
 - types for proofs
 - types for types themselves (sorts)

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)
 - types for functions/programs
 - types for proofs
 - types for types themselves (sorts)
- Sorts are categorized in the three kinds:
 - Prop: sort (universe) of logical propositions

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)
 - types for functions/programs
 - types for proofs
 - types for types themselves (sorts)
- 2 Sorts are categorized in the three kinds:
 - Prop: sort (universe) of logical propositions
 - Set: sort (universe) of computations

- 1 In CIC, every single construction has a type; there are
 - types for basic data/terms (atomic data-types)
 - types for functions/programs
 - types for proofs
 - types for types themselves (sorts)
- 2 Sorts are categorized in the three kinds:
 - Prop: sort (universe) of logical propositions
 - Set: sort (universe) of computations
 - Type: super-sort of both

a universe U is called impredicative if $\forall (P:U), P \rightarrow P: U$ holds

a universe *U* is called impredicative if $\forall (P:U), P \rightarrow P: U$ holds

Fac

 $impredicativity + LEM + large \ elimination \ (computation) \rightarrow False$

a universe *U* is called impredicative if $\forall (P:U), P \rightarrow P: U$ holds

Fac

 $impredicativity + LEM + large elimination (computation) \rightarrow False$

Coq Features 🧚 (Predicativity and Impredicativity)

impredicativity + LEM + computation Prop: Type

a universe *U* is called impredicative if $\forall (P:U), P \rightarrow P: U$ holds

Fac

impredicativity + LEM + large elimination (computation) → False

Prop: Type

Set: Type

Coq Features 🧚 (Predicativity and Impredicativity)

impredicativity + LEM + computation
predicativity + LEM + computation

a universe *U* is called impredicative if $\forall (P:U), P \rightarrow P: U$ holds

Fac

impredicativity + LEM + large elimination (computation) → False

Coq Features 🦩 (Predicativity and Impredicativity)

impredicativity + LEM + computation Prop: Type predicativity + LEM + computation Set: Type

Coq Features 🦩 (Stratification of Type)

 $Type_0: Type_1: Type_2: Type_3 \cdots$

Coq Features 🧚 (Inductive Definitions)

1 the declaration

Variable T: Type

gives no a priori information on the number, or the properties of its inhabitants.

Coq Features 🤌 (Inductive Definitions)

- 1 the declaration

 Variable T: Type
 gives no a priori information on the number, or the properties of its inhabitants.
- 2 In CIC, one can define a new type I inductively by giving its constructors together with their types which must be of the form:

$$\tau_1 \to \tau_2 \to \ldots \to \tau_n \to \mathbf{I}$$
 with $n \ge 0$

any instance of I can be obtained by finite number of constructor applications

Coq Features 🦩 (Inductive Definitions)

1 the declaration

Variable T: Type

gives no a priori information on the number, or the properties of its inhabitants.

2 In CIC, one can define a new type I inductively by giving its constructors together with their types which must be of the form:

$$\tau_1 \to \tau_2 \to \ldots \to \tau_n \to \mathbf{I}$$
 with $n \ge 0$

- any instance of I can be obtained by finite number of constructor applications
- inductive types must be well-founded assured by the strict positivity

Inductive nat : Set \triangleq

0 : **nat**

 $S : nat \rightarrow nat.$

Inductive nat : Set ≜

0 : **nat**

 $S : nat \rightarrow nat$.

 $\textbf{nat_ind} \colon \ \forall (\texttt{P} \ \colon \ \textbf{nat} \ \rightarrow \ \textbf{Prop}) \ , \ \texttt{P} \ \texttt{0} \ \rightarrow \ (\forall \ \texttt{n} \ \colon \ \textbf{nat}, \ \texttt{P} \ \texttt{n} \ \rightarrow \ \texttt{P} \ (\texttt{S} \ \texttt{n})) \ \rightarrow \ \forall \ \texttt{n} \ \colon \ \textbf{nat}. \ \ \texttt{P} \ \texttt{n}$

Inductive nat : Set ≜

```
 \begin{array}{c} | \ 0 \ : \ nat \\ | \ S \ : \ nat \rightarrow \ nat. \\ \\ nat\_ind: \ \forall (P \ : \ nat \rightarrow \ Prop), \ P \ 0 \rightarrow (\forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n)) \rightarrow \forall \ n \ : \ nat, \ P \ n \rightarrow P \ (S \ n) \rightarrow P \ (S \ n)
```

Inductive True: Prop ≜
 | I: True.

Inductive True: Prop ≜
 | I: True.

True_ind: $\forall P : Prop, P \rightarrow True \rightarrow P$

Inductive True: Prop ≜
 | I: True.

True_ind: $\forall P : Prop, P \rightarrow True \rightarrow P$

Inductive False: Prop ≜.

Inductive True: Prop ≜
 | I: True.

True_ind: $\forall P : Prop, P \rightarrow True \rightarrow P$

Inductive False: Prop ≜.

 $False_ind : \forall P: Prop, False \rightarrow P$

```
Inductive True: Prop ≜
    | I: True.

True_ind: ∀P: Prop, P → True → P
Inductive False: Prop ≜.

False_ind: ∀ P: Prop, False → P
Inductive and (A B: Prop): Prop ≜
    | conj: A → B → A ∧ B.
```

```
Inductive True: Prop ≜
    | I: True.

True_ind: ∀P : Prop, P → True → P

Inductive False: Prop ≜.

False_ind : ∀ P: Prop, False → P

Inductive and (A B : Prop) : Prop ≜
    | conj : A → B → A ∧ B.

and_ind: ∀A B P : Prop, (A → B → P) → A ∧ B → P
```

```
Inductive True: Prop ≜
   | I: True.
True_ind: \forall P : Prop, P \rightarrow True \rightarrow P
Inductive False: Prop ≜.
False_ind : \forall P: Prop, False \rightarrow P
Inductive and (A B : Prop) : Prop ≜
   | conj : A \rightarrow B \rightarrow A \wedge B.
and_ind: \forall A \ B \ P : Prop, (A \rightarrow B \rightarrow P) \rightarrow A \land B \rightarrow P
Inductive or (A B : Prop) : Prop ≜
     or_introl : A \rightarrow A \lor B
     or_intror : B \rightarrow A \vee B.
```

```
Inductive True: Prop ≜
   | I: True.
True_ind: \forall P : Prop. P \rightarrow True \rightarrow P
Inductive False: Prop ≜.
False_ind : \forall P: Prop, False \rightarrow P
Inductive and (A B : Prop) : Prop ≜
     coni : A \rightarrow B \rightarrow A \wedge B.
and_ind: \forall A \ B \ P : Prop. \ (A \rightarrow B \rightarrow P) \rightarrow A \land B \rightarrow P
Inductive or (A B : Prop) : Prop ≜
      or_introl : A → A ∨ B
      or_intror : B \rightarrow A \vee B.
or_ind: \forall A \ B \ P : Prop, (A \rightarrow P) \rightarrow (B \rightarrow P) \rightarrow A \lor B \rightarrow P
```

Remark

• inductive type constructors are introduction rules

Remark

- inductive type constructors are introduction rules
- induction principles (_ind) are elimination rules

Remark

- inductive type constructors are introduction rules
- induction principles (ind) are elimination rules
- how to prove

$$\forall$$
 (A B: **Prop**), A \vee B \rightarrow B \vee A.

then?

Remark

- inductive type constructors are introduction rules
- induction principles (ind) are elimination rules
- how to prove

$$\forall$$
 (A B: **Prop**), A \vee B \rightarrow B \vee A.

then? (coming soon!)

• no primitive notion named equality

- no primitive notion named equality
- inductively defined propositional (or Leibniz) equality:

```
Inductive eq (A : Type) (x : A) : A \rightarrow Prop \triangleq | eq\_reft : x = x |
eq_ind: \forall (A : Type) (x : A) (P : A \rightarrow Prop), P x \rightarrow (\forall y : A, x = y \rightarrow P y)
```

- no primitive notion named equality
- inductively defined propositional (or Leibniz) equality:

```
Inductive eq (A : Type) (x : A) : A \rightarrow Prop \triangleq | eq\_reft : x = x |
eq_ind: \forall (A : Type) (x : A) (P : A \rightarrow Prop), P x \rightarrow (\forall y : A, x = y \rightarrow P y)
```

rewriting relies on the substitution principle eq_ind

- no primitive notion named equality
- inductively defined propositional (or Leibniz) equality:

```
Inductive eq (A : Type) (x : A) : A \rightarrow Prop \triangleq | eq\_reft : x = x |
eq_ind: \forall (A : Type) (x : A) (P : A \rightarrow Prop), P x \rightarrow (\forall y : A, x = y \rightarrow P y)
```

- rewriting relies on the substitution principle eq_ind
- no "extensionality property"

```
\forall (A B: Set) (f g: A \rightarrow B) (x: A), f x = g x \rightarrow f = g
```

- no primitive notion named equality
- inductively defined propositional (or Leibniz) equality:

```
Inductive eq (A : Type) (x : A) : A \rightarrow Prop \triangleq |eq\_reft : x = x| eq_ind: \forall (A : Type) (x : A) (P : A \rightarrow Prop), P \times \rightarrow (\forall y : A, x = y \rightarrow P y)
```

- rewriting relies on the substitution principle eq_ind
- no "extensionality property"

```
\forall (A B: Set) (f q: A \rightarrow B) (x: A), f x = q x \rightarrow f = q
```

• terms can also be definitionally equal (next slide, ι-reduction)

Coq Features * (Recursive Definitions/Functions)

• enables direct encoding of total recursive functions

Coq Features ? (Recursive Definitions/Functions)

- enables direct encoding of total recursive functions
- provides pattern matching

Cog Features ? (Recursive Definitions/Functions)

- enables direct encoding of total recursive functions
- provides pattern matching

• embodies "definitional equality" though computational behavior (ι-reduction) of (recursive) functions

add
$$0 \text{ m} \xrightarrow{\iota} \text{m}$$

Cog Features ? (Recursive Definitions/Functions)

- enables direct encoding of total recursive functions
- provides pattern matching

• embodies "definitional equality" though computational behavior (ι-reduction) of (recursive) functions

add
$$0 \text{ m} \xrightarrow{\iota} \text{m}$$
 add $(S \text{ p}) \text{ m} \xrightarrow{\iota} S \text{ (add p m)}$

Cog Features ? (Recursive Definitions/Functions)

- enables direct encoding of total recursive functions
- provides pattern matching

• embodies "definitional equality" though computational behavior (ι-reduction) of (recursive) functions

add
$$0 \text{ m} \xrightarrow{\iota} \text{m}$$
 add $(S \text{ p}) \text{ m} \xrightarrow{\iota} S \text{ (add p m)}$

• runs termination checker over every single recursive definition

Remark (restricted form of general recursion)

- to convince Coq that your function terminates, you could embark on:
 - Fixpoint: termination measure "structurally decreasing arguments"

Remark (restricted form of general recursion)

- to convince Coq that your function terminates, you could embark on:
 - Fixpoint: termination measure "structurally decreasing arguments"
 - Fix: termination measure "well founded relations"

Remark (restricted form of general recursion)

- to convince Coq that your function terminates, you could embark on:
 - Fixpoint: termination measure "structurally decreasing arguments"
 - Fix: termination measure "well founded relations"
 - Program Fixpoint: takes a measure as an argument and generates a proof obligation that the measure decreases in each recursive call

Coq Features 🧚 (Tactics)

intro / intros introduces \forall quantified variables and premises of implications into the context

Coq Features 🦩 (Tactics)

 $\begin{array}{ccc} \hbox{intro\,/\,intros} & \hbox{introduces}~\forall~ \hbox{quantified variables and premises of implications into the context} \\ & \hbox{apply} & \hbox{employs implications to transform goals and hypotheses} \end{array}$

Cog Features 🦩 (Tactics)

intro/intros

introduces ∀ quantified variables and premises of implications into the context

apply

employs implications to transform goals and hypotheses

induction

performs induction on a given identifier, and generates a sub-goal for every constructor of an inductive type and provides an induction hypothesis for recursively defined

constructors

Coq Features 🥍 (Tactics)

intro / intros introduces \forall quantified variables and premises of implications into the context

apply employs implications to transform goals and hypotheses

induction performs induction on a given identifier, and generates a sub-goal for every constructor

of an inductive type and provides an induction hypothesis for recursively defined

constructors

destruct generates a sub-goal for every constructor of an inductive type

skipping potential induction hypotheses

Coq Features 🦩	(Tactics)
intro/intros	introduces ∀ quantified variables and pre
annly	ampleys implications to transform goals

emises of implications into the context

employs implications to transform goals and hypotheses apply

performs induction on a given identifier, and generates a sub-goal for every constructor induction

of an inductive type and provides an induction hypothesis for recursively defined

constructors

generates a sub-goal for every constructor of an inductive type destruct

skipping potential induction hypotheses

instantiates universally quantified hypotheses by concrete terms specialize

Coq Features 🦩 (Tactics)		
intro/intros	introduces ∀ quantified variables and premises of implications into the context	
apply	employs implications to transform goals and hypotheses	
induction	performs induction on a given identifier, and generates a sub-goal for every constructor	
	of an inductive type and provides an induction hypothesis for recursively defined constructors	
dootsust		
destruct	generates a sub-goal for every constructor of an inductive type skipping potential induction hypotheses	
specialize	instantiates universally quantified hypotheses by concrete terms	
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable	

specialize

simpl rewrite

Coq Features (Tactics) intro / intros intro / intros apply induction introduces V quantified variables and premises of implications into the context employs implications to transform goals and hypotheses performs induction on a given identifier, and generates a sub-goal for every constructor of an inductive type and provides an induction hypothesis for recursively defined constructors destruct generates a sub-goal for every constructor of an inductive type

performs evaluation and simplifies the goal or hypotheses in the context, if applicable

instantiates universally quantified hypotheses by concrete terms

skipping potential induction hypotheses

rewrites a goal using an equality

Coq Features	þ	(Tactics
--------------	---	----------

coq i catales :	(ractics)
intro/intros	introduces ∀ quantified variables and premises of implications into the context
apply	employs implications to transform goals and hypotheses
induction	performs induction on a given identifier, and generates a sub-goal for every constructor
	of an inductive type and provides an induction hypothesis for recursively defined
	constructors
destruct	generates a sub-goal for every constructor of an inductive type
	skipping potential induction hypotheses
specialize	instantiates universally quantified hypotheses by concrete terms
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable
rewrite	rewrites a goal using an equality
reflexivity	applies reflexivity property for equality

Coq Features 🦩	(Tactics)
intro/intros	introduces ∀ quantified variables and premises of implications into the context
apply	employs implications to transform goals and hypotheses
induction	performs induction on a given identifier, and generates a sub-goal for every constructor
	of an inductive type and provides an induction hypothesis for recursively defined
	constructors
destruct	generates a sub-goal for every constructor of an inductive type
	skipping potential induction hypotheses
specialize	instantiates universally quantified hypotheses by concrete terms
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable
rewrite	rewrites a goal using an equality
reflexivity	applies reflexivity property for equality
symmetry	applies symmetry property for equality

Coq Features 🦩 (Tactics)		
intro/intros	introduces ∀ quantified variables and premises of implications into the context	
apply	employs implications to transform goals and hypotheses	
induction	performs induction on a given identifier, and generates a sub-goal for every constructor	
	of an inductive type and provides an induction hypothesis for recursively defined	
	constructors	
destruct	generates a sub-goal for every constructor of an inductive type	
	skipping potential induction hypotheses	
specialize	instantiates universally quantified hypotheses by concrete terms	
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable	
rewrite	rewrites a goal using an equality	
reflexivity	applies reflexivity property for equality	
symmetry	applies symmetry property for equality	
transitivity	applies transitivity property for equality	

transitivity

assumption

Coq Features 🦩	(Tactics)
intro/intros	introduces ∀ quantified variables and premises of implications into the context
apply	employs implications to transform goals and hypotheses
induction	performs induction on a given identifier, and generates a sub-goal for every constructor
	of an inductive type and provides an induction hypothesis for recursively defined
	constructors
destruct	generates a sub-goal for every constructor of an inductive type
	skipping potential induction hypotheses
specialize	instantiates universally quantified hypotheses by concrete terms
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable
rewrite	rewrites a goal using an equality
reflexivity	applies reflexivity property for equality
symmetry	applies symmetry property for equality

applies transitivity property for equality

match conclusion with an hypothesis

Coq Features 🧚	(Tactics)
intro/intros	introduces ∀ quantified variables and premises of implications into the context
apply	employs implications to transform goals and hypotheses
induction	performs induction on a given identifier, and generates a sub-goal for every constructor
	of an inductive type and provides an induction hypothesis for recursively defined constructors
destruct	generates a sub-goal for every constructor of an inductive type
	skipping potential induction hypotheses
specialize	instantiates universally quantified hypotheses by concrete terms
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable
rewrite	rewrites a goal using an equality
reflexivity	applies reflexivity property for equality
symmetry	applies symmetry property for equality
transitivity	applies transitivity property for equality
assumption	match conclusion with an hypothesis
exact	gives directly the exact proof term of the goal

Coq Features 🦩	(Tactics)
intro/intros	introduces ∀ quantified variables and premises of implications into the context
apply	employs implications to transform goals and hypotheses
induction	performs induction on a given identifier, and generates a sub-goal for every constructor
	of an inductive type and provides an induction hypothesis for recursively defined
	constructors
destruct	generates a sub-goal for every constructor of an inductive type
	skipping potential induction hypotheses
specialize	instantiates universally quantified hypotheses by concrete terms
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable
rewrite	rewrites a goal using an equality
reflexivity	applies reflexivity property for equality
symmetry	applies symmetry property for equality
transitivity	applies transitivity property for equality
assumption	match conclusion with an hypothesis
exact	gives directly the exact proof term of the goal
left/right	replaces a goal consisting of a disjunction $P \vee Q$ with just P or Q

Coq Features 🦩	(Tactics)
intro/intros	introduces ∀ quantified variables and premises of implications into the context
apply	employs implications to transform goals and hypotheses
induction	performs induction on a given identifier, and generates a sub-goal for every constructor
	of an inductive type and provides an induction hypothesis for recursively defined
	constructors
destruct	generates a sub-goal for every constructor of an inductive type
	skipping potential induction hypotheses
specialize	instantiates universally quantified hypotheses by concrete terms
simpl	performs evaluation and simplifies the goal or hypotheses in the context, if applicable
rewrite	rewrites a goal using an equality
reflexivity	applies reflexivity property for equality
symmetry	applies symmetry property for equality
transitivity	applies transitivity property for equality
assumption	match conclusion with an hypothesis
exact	gives directly the exact proof term of the goal
left/right	replaces a goal consisting of a disjunction $P \lor Q$ with just P or Q
split	replaces a goal consisting of a conjunction $P \wedge Q$ with two sub-goals P and Q

```
Lemma exl_v1: ∀ (A B: Prop), A ∨ B → B ∨ A.
Proof. intros A B H.

destruct H as [ H | H ].

apply or_intror.

exact H.

apply or_introl.

exact H.

Qed.
```

```
Lemma exl_v1: ∀ (A B: Prop), A ∨ B → B ∨ A.
Proof. intros A B H.
destruct H as [ H | H ].
- apply or_intror.
exact H.
- apply or_introl.
exact H.
Qed.
```

```
Lemma ex1_v1: \forall (A B: Prop), A \lor B \to B \lor A.
                                                                 Lemma ex1_v2: \forall (A B: Prop), A \lor B \to B \lor A.
                                                                 Proof. intros A B H.
Proof. intros A B H.
        destruct H as [ H | H ].
                                                                         destruct H as [ H | H ].

    apply or_intror.

                                                                         - right.
          exact H.
                                                                           exact H.
        - apply or_introl.
                                                                         - left.
          exact H.
                                                                           exact H.
0ed.
                                                                 0ed.
Lemma ex2_v1: \forall (A B: Prop), A \land B \rightarrow B \lor A.
Proof. intros A B H.
        destruct H as (H1, H2).
        left.
        exact H2.
0ed.
```

```
Lemma ex1_v1: \forall (A B: Prop), A \lor B \to B \lor A.
                                                                  Lemma ex1_v2: \forall (A B: Prop), A \lor B \to B \lor A.
Proof. intros A B H.
                                                                  Proof. intros A B H.
        destruct H as [ H | H ].
                                                                          destruct H as [ H | H ].

    apply or_intror.

                                                                          - right.
          exact H.
                                                                            exact H.
        - apply or_introl.
                                                                          - left.
          exact H.
                                                                            exact H.
0ed.
                                                                  0ed.
Lemma ex2_v1: \forall (A B: Prop), A \land B \rightarrow B \lor A.
                                                                  Lemma ex2_v2: \forall (A B: Prop), A \land B \rightarrow B \lor A.
Proof. intros A B H.
                                                                  Proof. intros A B H.
        destruct H as (H1, H2).
                                                                          destruct H as (H1, H2).
        left.
                                                                          right.
        exact H2.
                                                                          exact H1.
0ed.
                                                                  0ed.
```

```
\label{eq:continuous_problem} \begin{array}{l} \textbf{Theorem ex3: } \forall \ (X: \ \textbf{Type}) \ (P: \ X \rightarrow \textbf{Prop}), \\ \sim (\exists \ (x: \ X), \ P \ x) \rightarrow (\forall \ (x: \ X), \ \sim P \ x). \\ \textbf{Proof. intros} \ X \ P \ H \ x. \\ \textbf{unfold not.} \\ \textbf{unfold not.} \\ \textbf{intro px}. \\ \textbf{apply H.} \\ \exists \ x. \\ \textbf{exact px}. \\ \\ \textbf{Qed.} \end{array}
```

Coq Features 🥊 (Proofs: Basic Logical Reasoning (cont'd))

```
Theorem ex3: \forall (X: Type) (P: X → Prop),

- (3 (x: X), P x) \rightarrow (\forall (x: X), - P x).

Proof. intros X P H x.

unfold not.

unfold not in H.

intro px.

apply H.

\exists x.

exact px.

Qed.
```



```
Theorem dne: ∀ P, ~~P → P.

Proof. intros P H.
unfold not in H.
specialize (LEM P); intro HL.
destruct HL as [ HL | HL ].
- exact HL.
- unfold not in HL.
specialize (H HL).
contradiction.

Qed.
```

Axiom LEM: ∀ P: Prop, P ∨ ~P.

```
Axiom LEM: \forall P: Prop, P \vee ~P.
```

```
Theorem dne: ∀ P, ¬¬P → P.

Proof. intros P H.

unfold not in H.

specialize (LEM P); intro HL.

destruct HL as [ HL | HL ].

exact HL.

unfold not in HL.

specialize (H HL).

contradiction.
```

Coq Features 🥊 (Proofs: Basic Equational Reasoning)

```
Lemma eq_trans_v1: 
 \forall (A: Type) (a b c: A), a = b \rightarrow b = c \rightarrow a = c. 
 Proof. intros A a b c Ha Hb. 
 specialize (@eq_ind A b (fun x \Rightarrow a = x) Ha c Hb); intro H. 
 simpl in H. 
 exact H. 
Qed.
```

Coq Features 🦩 (Proofs: Basic Equational Reasoning)

```
Lemma eq.trans.v1: 
 \forall (A: Type) (a b c: A), a = b \rightarrow b = c \rightarrow a = c.

Proof. intros A a b c Ha Hb.

specialize (@eq_ind A b (fun x \Rightarrow a = x) Ha c Hb); intro H.

simpl in H.

exact H.
```

```
Lemma eq_trans_v2:

∀ (A: Type) (a b c: A), a = b → b = c → a = c.

Proof. intros A a b c Ha Hb.

induction Ha.

exact Hb.

Oed.
```

Lemma eq_trans_v1:

Coq Features 🧚 (Proofs: Basic Equational Reasoning)

```
V (A: Type) (a b c: A), a = b → b = c → a = c.
Proof. intros A a b c Ha Hb.
    specialize (@eq_ind A b (fun x ⇒ a = x) Ha c Hb); intro H.
    simpl in H.
    exact H.

Qed.

Lemma eq_trans_v3:
∀ (A: Type) (a b c: A), a = b → b = c → a = c.
Proof. intros A a b c Ha Hb.
    rewrite Ha.
    exact Hb.
Qed.
```

```
Lemma eq.trans_v2:

∀ (A: Type) (a b c: A), a = b → b = c → a = c.

Proof. intros A a b c Ha Hb.

induction Ha.

exact Hb.

Qed.
```

Coq Features 🦩 (Proofs: Basic Equational Reasoning (cont'd))

Lemma add_comm: \forall (a b: nat), a + b = b + a.

Thanks! & Questions?