The group G is isomorphic to the group labelled by [48, 6] in the Small Groups library. Ordinary character table of $G \cong C24 : C2$:

	1a	2a	8a	4a	2b	3a	4b	8b	24a	12a	6a	24b	24c	12b	24d
(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	1	-1
(3	1	-1	1	1	1	1	-1	1	1	1	1	1	1	1	1
Χ 4	1	1	-1	1	1	1	-1	-1	-1	1	1	-1	-1	1	-1
ζ5	2	0	-2	2	2	-1	0	-2	1	-1	-1	1	1	-1	1
χ6	2	0	2	2	2	-1	0	2	-1	-1	-1	-1	-1	-1	-1
χ7	2	0	0	-2	2	2	0	0	0	-2	2	0	0	-2	0
(8	2	0	$E(8) + E(8)^3$	0	-2	2	0	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	0	-2	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	0	$-E(8) - E(8)^3$
χ9	2	0	$-E(8) - E(8)^3$	0	-2	2	0	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	0	-2	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	0	$E(8) + E(8)^3$
χ ₁₀	2	0	0	-2	2	-1	0	0	$-E(12)^7 + E(12)^{11}$	1	-1	$E(12)^7 - E(12)^{11}$	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$
χ11	2	0	0	-2	2	-1	0	0	$E(12)^7 - E(12)^{11}$	1	-1	$-E(12)^7 + E(12)^{11}$	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$
χ ₁₂	2	0	$-E(8) - E(8)^3$	0	-2	-1	0	$E(8) + E(8)^3$	$-E(24) - E(24)^{11}$	$E(12)^7 - E(12)^{11}$	1	$-E(24)^{17} - E(24)^{19}$	$E(24) + E(24)^{11}$	$-E(12)^7 + E(12)^{11}$	$E(24)^{17} + E(24)^{19}$
χ ₁₃	2	0	$-E(8) - E(8)^3$	0	-2	-1	0	$E(8) + E(8)^3$	$-E(24)^{17} - E(24)^{19}$	$-E(12)^7 + E(12)^{11}$	1	$-E(24) - E(24)^{11}$	$E(24)^{17} + E(24)^{19}$	$E(12)^7 - E(12)^{11}$	$E(24) + E(24)^{11}$
χ14	2	0	$E(8) + E(8)^3$	0	-2	-1	0	$-E(8) - E(8)^3$	$E(24)^{17} + E(24)^{19}$	$-E(12)^7 + E(12)^{11}$	1	$E(24) + E(24)^{11}$	$-E(24)^{17} - E(24)^{19}$	$E(12)^7 - E(12)^{11}$	$-E(24) - E(24)^{11}$
χ ₁₅	2	0	$E(8) + E(8)^3$	0	-2	-1	0	$-E(8) - E(8)^3$	$E(24) + E(24)^{11}$	$E(12)^7 - E(12)^{11}$	1	$E(24)^{17} + E(24)^{19}$	$-E(24) - E(24)^{11}$	$-E(12)^7 + E(12)^{11}$	$-E(24)^{17} - E(24)^{19}$

Trivial source	character	table of	$G \cong$	C24:	C2 at $p = 2$:	
NT 1:	N T					_

Normalisers N_i	N	V_1	Λ	V_2	N_3	1	N_4	N_5	N_6	N_7	7	N_8	N_9	N_{10}
p-subgroups of G up to conjugacy in G	I	1	I	$\overline{2}$	P_3	i	P_4	P_5	P_6	P_7	,	P_8	P_9	P_{10}
Representatives $n_j \in N_i$	1a	3a	1a	3a	1a	1a	3a	1 <i>a</i>	1a	1 <i>a</i>	3a	1a	1a	1a
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 2 \cdot \chi_8 + 2 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}}$	16	16	0	0	0	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} 0 \cdot \chi_1 + 0 \cdot \chi_1 + 0 \cdot \chi_1 + 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_2 + 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi$	16	-8	0	0	0	0	0	0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}}$	8	8	8	8	0	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	8	-4	8	-4	0	0	0	0	0	0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}}$	8	8	0	0	2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	4	4	4	4	0	4	4	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	4	-2	4	-2	0	4	-2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	4	4	4	4	2	0	0	2	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	4	4	4	4	0	0	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	2	2	2	2	0	2	2	0	0	2	2	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	2	-1	2	-1	0	2	-1	0	0	2 -	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	2	2	2	2	2	2	2	2	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	2	2	2	2	0	2	2	0	2	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1

- $P_2 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)]) \cong \mathbb{C}_2$ $P_3 = Group([(1,2)(3,18)(4,21)(5,9)(6,24)(7,11)(8,14)(10,17)(12,32)(13,44)(15,46)(16,38)(19,25)(20,40)(22,42)(23,31)(26,35)(27,48)(28,33)(29,37)(30,36)(34,47)(39,45)(41,43)]) \cong \mathbf{C2}$

- $P_7 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(6,15,16,29)(7,18,19,32)(10,22,33,36)(13,26,27,39)(17,30,31,42)(20,33,34,36,43)(17,28,30,40,31,41,42,47)(24,35,37,44,38,45,46,48)]) \\ \cong C8 Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(6,15,16,29)(7,18,19,32)(10,22,33,36)(13,26,27,39)(17,30,31,42)(20,33,34,36)(24,37,38,46)(24,37,38$
- $P_8 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(26,35)(27,48)(28,33)(29,37)(30,36)(34,47)(39,45)(41,43)] \\ \cong D_8 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(26,37)(36,47)(39,45)(41,47)(39,47)$
- $P_9 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(27,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)(17,45,14)(28,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,23,36)(13,26,27,39)(17,30,31,42)(20,33,44)(24,36,38)(26,39)(28,41)(30,42)(33,43)(24,36,36)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)(17,45,14)(28,43,43)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)(17,45,14)(28,43,43)($
- $P_{10} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,24)(24,38)$

- $N_4 = Group([(1,4,5,14)(2,3,3)(24,31)(24,35)(24,34)(24,34)(24,3$ $N_5 = Group([(1,2)(3,18)(4,21)(5,9)(6,24)(7,11)(8,14)(10,17)(12,32)(13,44)(15,46)(20,34)(22,33)(29,37)(30,36)(34,47)(39,45)(41,43), (1,5)(2,9)(3,11,12,25)(6,15,16,29)(7,18)(19,23)(13,24)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,33)(29,37)(30,36)(34,47)(39,45)(41,43), (1,5)(2,33)(24,37)(36,34)(24,37,38,46)(28,40)(24,37)(36,34)(24,37)(36,34)(36,3$
- $N_8 = Group([1,2)(3,18)(4,21)(5,31)(24,37)(35,44)(15,41)(25,31)(26,37)(15,29)(17,31)(18,32)(20,34)(22,33)(26,37)(30,36)(34,47)(39,45)(41,43)(17,28)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)(17,28)(20,33,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)(17,28)(20,33,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)(17,28,30,40,47)(19,28)(1$
- $N_9 = Group([(1,18,5,32)(2,11,9,25)(3,21,12,8)(4,7)(15,32)(2,11,9,25)(3,21,12,8)(4,7)(15,32)(2,33,43)(22,33,43)(22,33,43)(24,34,32)(24,34,33)(24,34,33)(24,34,33)(24,34,34)(24$
- $N_{10} = Group([(1,2)(3,18)(4,21)(5,9)(6,24)(7,11)(8,14)(10,17)(12,32)(13,44)(15,46)(16,38)(19,25)(20,34)(22,36)(24,38)(29,37)(30,36)(34,47)(39,45)(41,43)(17,28,30,40,31,41,42,47)(24,35,37,44,38,45,46,48), \\ N_{10} = Group([(1,2)(3,18)(4,21)(5,9)(6,13,15,26,16,27,29,39)(10,20,22,33,23,34,36,43)(17,28,30,40,31,41,42,47)(24,35,37,44,38,45,46,48), \\ N_{10} = Group([(1,2)(3,18)(4,21)(5,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(13,44)(15,46)(16,38)(19,25)(20,34)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ N_{10} = Group([(1,2)(3,18)(4,21)(5,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(13,44)(15,46)(16,38)(19,25)(20,34)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ N_{10} = Group([(1,2)(3,18)(4,21)(5,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(13,44)(15,46)(16,38)(19,25)(20,34)(24,37,38,46)(28,40,41,47)(24,35,37,44,38,45)(24,37,38,46$