SS1 PHYSICS – FIRST TERM

WEEK 8 – 9: RECTILINEAR ACCELERATION

1. INTRODUCTION

Motion is a fundamental concept in physics and our daily lives. Whether it's a car speeding down the road, a ball rolling, or a rocket launching — these involve motion. When this motion happens in a **straight line** and involves changes in **velocity**, we refer to it as **Rectilinear Acceleration**.

2. WHAT IS ACCELERATION?

Acceleration is the rate at which velocity changes with time. It tells us how quickly something is speeding up or slowing down.

Formula:

 $a=v-uta = \frac{v - u}{t}a=tv-u$

Where:

- aaa = acceleration (in $m/s2m/s^2m/s^2$)
- vvv = final velocity (in m/sm/sm/s)
- uuu = initial velocity (in m/sm/sm/s)
- ttt = time taken (in seconds)

Note: If a>0a>0, the object is speeding up. If a<0a<0, it is slowing down.

3. WHAT IS RECTILINEAR ACCELERATION?

Rectilinear acceleration is acceleration that occurs along a straight line. The word "rectilinear" comes from Latin:

- *Rectus* = straight
- Linea = line
- Real-Life Examples of Rectilinear Acceleration:

Scenario	Type of Acceleration	Explanation
A car speeding up on a straight road	Uniform	Same increase in velocity every second
A bus braking to stop	Deceleration	Velocity decreases every second
An object in free fall	Uniform (due to gravity)	Acceleration = $9.8 \text{ m/s} 29.8 \setminus$, m/s^29.8m/s2 downwards
A sprinter leaving the blocks	Non-uniform	Initial acceleration increases rapidly

4. TYPES OF ACCELERATION

a) Uniform Acceleration

Occurs when velocity changes by equal amounts in equal time intervals.

Example: A body increases its velocity by 2 m/s2 \, m/s2m/s every second.

b) Non-Uniform Acceleration

Occurs when the rate of velocity change is irregular.

Example: A car stuck in traffic, speeding up and slowing down unpredictably.

c) Deceleration (Negative Acceleration)

Occurs when an object is slowing down.

Example: A ball rolling uphill or a vehicle applying brakes.

5. GRAPHICAL REPRESENTATION

☑ Velocity-Time Graphs

a) Uniform Acceleration

Straight slanted line → constant increase in velocity

b) Uniform Deceleration

Line slopes downward → velocity decreases steadily

c) Non-uniform Acceleration

6. EQUATIONS OF MOTION (FOR UNIFORMLY ACCELERATED RECTILINEAR MOTION)

These are the three golden equations used in problems involving constant acceleration:

1. First Equation:

$$v=u+atv = u + atv=u+at$$

2. Second Equation:

$$s=ut+12at2s = ut + \frac{1}{2}at^2s=ut+21at2$$

3. Third Equation:

$$v2=u2+2asv^2 = u^2 + 2asv^2 = u^2$$

Where:

- sss = displacement (in meters)
- aaa = acceleration (in m/s2m/s 2 m/s2)

7. SOLVED EXAMPLES

Example 1

A car accelerates uniformly from rest at $3 \text{ m/s}23 \setminus, \text{ m/s}^23\text{m/s}2$ for 6 seconds. Find its final velocity.

Solution:

- u=0u=0u=0
- $a=3 \text{ m/s} 2a = 3 \text{ }, \text{ m/s}^2 a = 3 \text{ m/s} 2$
- $t=6 \text{ st} = 6 \setminus, \text{ st} = 6 \text{ s}$

Using: v=u+atv=u+atv=u+at

 $v=0+3\times6=18 \text{ m/s}v = 0+3 \text{ \times } 6=18 \text{ \times } 6=18 \text{ \times } 6=18 \text{ m/s}$

Answer: 18 m/s18 \, m/s18m/s

Example 2

A cyclist reduces speed from 15 m/s15 \, m/s15m/s to 5 m/s5 \, m/s5m/s in 4 seconds. Find acceleration.

Solution:

- $u=15 \text{ m/su} = 15 \text{ \, m/su} = 15 \text{ m/s}$
- v=5 m/s v = 5 , m/s v = 5 m/s
- $t=4 \text{ st} = 4 \setminus \text{, st} = 4 \text{ s}$

Using: $a=v-uta = \frac{v - u}{t}a=tv-u$

$$a=5-154=-104=-2.5 \text{ m/s} \\ 2a = \frac{5-15}{4} = \frac{-10}{4} = -2.5 \text{ m/s} \\ 2a=45-15 = 4-10=-2.5 \text{ m/s} \\ 2a=45-15 = 4-10=-2$$

✓ Answer: −2.5 m/s2-2.5 \, m/s^2−2.5 m/s2 (Negative means deceleration)

Example 3

A stone falls freely for 3 seconds. How far has it fallen? (Use g=9.8 m/s2g=9.8 m/s/2g=9.8 m/s/2g

Solution:

- u=0u=0u=0
- a=9.8a=9.8a=9.8
- t=3t=3t=3

Using: $s=ut+12at2s = ut + \frac{1}{2}at^2s=ut+21at2$

$$s=0+12\times9.8\times32=12\times9.8\times9=44.1\ ms=0+\left\{1\right\}\left\{2\right\}\ \text{$times 9.8 \times9=44.1\ ms}=0+\left\{1\right\}\left\{2\right\}\ \text{$times 9.8 \times9=44.1\ ms}=0+21\times9.8\times32=21\times9.8\times9=44.1\ ms=0+21\times9.8\times32=21\times9.8\times9=44.1\ ms=0+21\times9.8\times32=21\times9.8\times9=44.1\ ms=0+21\times9.8\times32=21\times9.8\times9=44.1\ ms=0+21\times9.8\times32=21\times9.8\times9=44.1\ ms=0+21\times9.8\times32=21\times9.8\times9=44.1\ ms=0+21\times9.8\times9=44.1\ ms=0+21\times9.8\times9=41.1\ ms=0+21\times9.1\ ms=0+21\times9.1\$$

✓ Answer: 44.1 m44.1 \, m44.1 m

8. EXPERIMENTAL DEMONSTRATION

You can demonstrate rectilinear acceleration using:

Slope and Toy Car Experiment

- Use a board as an inclined plane.
- Release a toy car from the top.
- Mark distances and measure time using stopwatch.
- Calculate velocity and plot velocity-time graph.
- Observe uniform acceleration due to gravity.

9. PRACTICAL APPLICATIONS IN REAL LIFE

Real-Life Application Physics Explanation

A Driving a car Car accelerates/decelerates when gas/brake pedals are pressed.

Roller Coaster Rapid acceleration and deceleration cause thrill.

Rocket Launch Rocket accelerates from 0 to very high speeds in seconds.

Athletics Sprinters show high acceleration at race start.

Falling Apple Free fall shows uniform acceleration due to gravity.