

Times: Friday 2019-08-09 at 09:00 to 11:30 Duration: 2 hours 30 minutes (150 minutes)

Exam ID: 4097543

Sections: STAT 331 LEC 001 Instructors: Nathaniel Stevens



Examination Final Spring 2019 STAT 331

### Special Materials

Candidates may bring only the listed aids.

- · Calculator Pink Tie
- · Study Notes Double-Sided 8.5x11

#### **Instructions:**

- This test consists of 20 pages including this cover page.
- Page 17 contains information relevant to Question 3.
- Page 18 contains tables of quantiles from the  $t_{(10)}$ ,  $t_{(45)}$ ,  $F_{(1,45)}$ ,  $F_{(2,45)}$ ,  $F_{(3,45)}$  and  $F_{(4,45)}$  distributions.
- Pages 19 and 20 contain additional space for rough work. If you use these pages for work that you would like to have marked, you must clearly indicate this.
- For your convenience you may remove pages 17-20.
- All numeric answers should be rounded to four decimal places (unless the answer is exact to fewer than four decimal places).
- Incorrect answers may receive partial credit if your work is shown. An incorrect answer with no work shown will receive 0 points.

| Question | Points |
|----------|--------|
| Q1       | /20    |
| Q2       | /25    |
| Q3       | /32    |
| Q4       | /5     |
| Q5       | /11    |
| Q6       | /7     |
| Total    | /100   |

#### **Signature:**

| • F | Please identify yourself by signing here: _ |  |
|-----|---------------------------------------------|--|
|-----|---------------------------------------------|--|

#### Question 1 [20 points]

- (a) [1] Suppose that you wish to use forward selection to choose among q = 7 explanatory variables for inclusion in a model. In the *worst-case scenario* how many separate models would you have to fit when applying this algorithm?
  - i. 28
  - ii. 29
  - iii. 21
  - iv. 22
- (b) [1] The regression model  $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$  is a *linear* regression.
  - i. True
  - ii. False
- (c) [1] In the context of a simple linear regression relating y to x, the point  $(\bar{x}, \bar{y})$  lies on the line-of-best fit.
  - i. True
  - ii. False
- (d) [1] A 99% prediction interval for  $y_0$  is narrower than the 99% confidence interval for  $\mu_0$ .
  - i. True
  - ii. False
- (e) [1] In the context of a linear regression model relating to y to  $x_1, x_2,..., x_p$  the null hypothesis corresponding to the test of *overall significance* in the linear regression is

$$H_0: \beta_0 = \beta_1 = \dots = \beta_p = 0$$

- i. True
- ii. False
- (f) [1] Suppose that the explanatory variables  $x_1$ ,  $x_2$  and  $x_3$  are together in a model. The variance inflation factor for  $x_1$  is  $VIF_1 = 2$ . What percentage of the variation of  $x_1$  is explained by  $x_2$  and  $x_3$ ?
  - i. 10%
  - ii. 20%
  - iii. 50%
  - iv. 80%
- (g) [1] Suppose that you wish to identify observations that have a large influence on your analysis. Which of the following metrics is best-suited for this purpose?
  - i. Cook's D-Statistics
  - ii. Leverages
  - iii. Studentized Residuals
- (h) [1] Suppose that a model with p = 77 explanatory variables and n = 100 observations is fit and the resulting  $R^2$  value is 0.9. What is  $R_{adj}^2$ ? Write your answer in the space below.
- (i) [1] The addition of an explanatory variable to a linear regression model always decreases the error sum of squares.

- i. True
- ii. False
- (j) [1] Leave-one-out cross validation is equivalent to:
  - i. 1-fold cross validation
  - ii. *n*-fold cross validation
  - iii. (n-1)-fold cross validation

(k) [4] Four datasets gave rise to the following histograms and QQ-plots. Match each QQ-plot with the histogram that is most likely based on the same data. To identify your matching, beside each histogram indicate which QQ-plot – either i., ii., iii., or iv. – matches it.



(1) [1] Suppose that we fit the following model:  $\ln(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ . Suppose also that the estimate of  $\beta_1$  is 0.4. By what factor do we expect y to increase if  $x_1$  is increased by 3 units (and  $x_2$  and  $x_3$  are held fixed)? Write your answer in the space below.

(m)[1] In every linear regression model, the average residual  $\bar{e}$  is zero.

- i. True
- ii. False

The context of questions (n)-(q) is the following model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \varepsilon_i$$
 for  $i = 1, 2, ..., 50$ .

- (n) [1] The null *t*-distribution associated with a test of  $H_0$ :  $\beta_4 = 0$  vs.  $H_A$ :  $\beta_4 \neq 0$  has how many degrees of freedom? Write your answer in the space below.
- (o) [1] The rejection region associated with the test in (n) is given by:

$$\{t|t \ge 2.015 \text{ or } t \le -2.015\}$$

If  $\hat{\beta}_4 = 1.07$  and  $SE[\hat{\beta}_4] = 0.06$ , is the hypothesis rejected? In the space below, state YES or NO.

- (p) [1] The null *F*-distribution associated with a test of  $H_0$ :  $\beta_3 = \beta_4 = \beta_5 = 0$  has how many degrees of freedom? Write your answer in the space below.
- (q) [1] The least squares estimate of  $\sigma^2$  is  $\hat{\sigma}^2 = 5$  and the sample variance of the response observations is 20. What is the value of  $R^2$ ? Write your answer in the space below.

#### Question 2 [25 points]

Consider the following regression equation:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

for i = 1, 2, ..., 13.

(a) [3] This model may be equivalently written in matrix form as

$$\mathbf{v} = X\mathbf{\beta} + \mathbf{\varepsilon}$$

Define each of y, X and  $\beta$  in this case (i.e., when n = 13 and p = 2).

(b) [9] Suppose that the following summaries are available:

$$(X^T X)^{-1} = \begin{bmatrix} 2 & -5 & -3 \\ -5 & 1 & -1 \\ -3 & -1 & 5 \end{bmatrix}$$
 and  $\widehat{\beta} = \begin{bmatrix} 52 \\ 10 \\ 3 \end{bmatrix}$  and  $SSE = 30$ 

- i. [1] Write down the equation for the fitted model.
- ii. [1] Compute  $\hat{\sigma}^2$ .
- iii. [1] Compute the estimated variance of  $\hat{\beta}_1$ ,  $Var[\hat{\beta}_1]$ .
- iv. [3] Test the following hypothesis at a 5% level of significance. [N.B. State the value of the test statistic and draw your conclusion by referring to the relevant quantiles found on page 18].

$$H_0: \beta_1 = 0 \text{ vs. } H_A: \beta_1 \neq 0$$

v. [3] Calculate a 95% confidence interval for  $\beta_2$ . [N.B. It will be useful for you to refer to the relevant quantiles found on page 18].

- (c) [11] Interest lies in doing inference for the response variable for specific values of  $x_1$  and  $x_2$ .
  - i. [3] Consider the row vector  $\mathbf{x_0} = [1 \quad x_{01} \quad x_{02}]$ . Given  $\widehat{\boldsymbol{\beta}} \sim \text{MVN}(\boldsymbol{\beta}, \sigma^2 (X^T X)^{-1})$ , derive the distribution of  $\hat{\mu}_0 = \mathbf{x_0} \widehat{\boldsymbol{\beta}}$ . For full points you must name the distribution and derive general expressions for the expected value and variance of  $\hat{\mu}_0 = \mathbf{x_0} \widehat{\boldsymbol{\beta}}$ .
    - Distribution name:
    - $E[\hat{\mu}_0] =$
    - $Var[\hat{\mu}_0] =$
  - ii. [2] By substituting the estimates  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}^2)$  and  $x_1 = 1$  and  $x_2 = 3$  into the equations above, calculate estimates of the  $E[\hat{\mu}_0]$  and  $Var[\hat{\mu}_0]$  when  $x_1 = 1$  and  $x_2 = 3$  (i.e., when  $x_0 = \begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$ ).

|     | $x_1 = 1$ and $x_2 = 3$ . [N.B. It will be useful for you to refer to the relevant quantiles found on page 18].                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                           |
| iv. | [3] Calculate a 90% prediction interval for the predicted response observation $y_0$ when $x_1 = 1$ and $x_2 = 3$ . [N.B. It will be useful for you to refer to the relevant quantiles found on page 18]. |
|     |                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                           |
| V.  | [2] Briefly explain why the widths of these intervals differs.                                                                                                                                            |
|     |                                                                                                                                                                                                           |

Please initial

[3] Calculate a 90% confidence interval for the expected response observation when

iii.

#### Question 3 [32 points]

There is a great deal of interest in determining the traits of a high school that predict the success of its students. In the US, student success beyond high school is often linked to high SAT (scholastic aptitude test) scores. A recent study aimed to identify attributes of a high school that may be used to predict the SAT scores of its students. In this study the following information was collected for each high school in a sample of n = 50 American high schools:

- SAT: average SAT (scholastic aptitude test) score (y)
- expend: average expenditures per student (in \$1000s)  $(x_1)$
- ratio: average student-teacher ratio  $(x_2)$
- salary: average annual salary of teachers (in \$1000s)  $(x_3)$
- takers: percentage of eligible students that actually took the SAT test  $(x_4)$

The linear regression model that relates SAT to the other variables may be written as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Partial R output for this model is shown on page 17. You may refer to this in the questions that follow.

- (a) [2] It is usually believed that students thrive in smaller classes.
  - [1] Interpret  $\hat{\beta}_2$  in the context of the problem.

• [1] Does the value of  $\hat{\beta}_2$  suggest that students perform better when class sizes are smaller? Circle one.

YES NO

- (b) [6] It is also typically believed that students perform better in schools that pay their teachers higher salaries.
  - [1] Interpret  $\hat{\beta}_3$  in the context of the problem

• [1] Does the value of  $\hat{\beta}_3$  suggest that students perform better when their teachers are paid more money? Circle one.

Please initial

YES

NO

| • | [4] Using an appropriate hypothesis test, at a 5% level of significance, test whether      |
|---|--------------------------------------------------------------------------------------------|
|   | higher salaries are associated with a significantly higher expected SAT score. Draw        |
|   | your conclusions in the context of the problem.                                            |
|   | [N.B. Clearly state the hypothesis you are testing; state the value of the test statistic; |
|   | draw your conclusion by referring to the relevant quantiles found on page 18].             |

(c) [1] What percentage of the variability in SAT scores is *not* explained by expend, ratio, salary and takers?

(d) [3] Complete the following ANOVA table:

| Source     | df | SS | MS | $\boldsymbol{\mathit{F}}$ |
|------------|----|----|----|---------------------------|
| Regression |    |    |    |                           |
| Error      |    |    |    |                           |
| Total      |    |    |    |                           |

Please initial:

**SPACE LEFT FOR ROUGH WORK:** 



$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \text{ vs. } H_A: \beta_j \neq 0 \text{ for some } j = 1,2,3,4$$

At a 1% level of significance, do you reject the null hypothesis? State YES or NO and provide a brief justification.

[N.B. Draw your conclusion by referring to the relevant quantiles found on page 18]

(f) [3] To evaluate the extent of multicollinearity, four separate regressions were fit between the explanatory variables. These models and their  $R^2$  values are summarized in the table below. In the space provided, state the value of the variance inflation factor for each explanatory variable.

| Response | Explanatory Variables  | $R^2$ | VIF |
|----------|------------------------|-------|-----|
| expend   | ratio, salary, takers  | 0.894 |     |
| ratio    | expend, salary, takers | 0.589 |     |
| salary   | expend, ratio, takers  | 0.892 |     |
| takers   | expend, ratio, salary  | 0.430 |     |

Does multicollinearity appear to be a problem for this data? Circle one.

YES NO

**SPACE LEFT FOR ROUGH WORK:** 

- (g) [5] Interest lies in finding a subset of the explanatory variables (and hence a reduced model) that adequately accounts for variation in SAT scores. The information provided in Table 1 on page 17 gives the model summary of *all possible regressions*, which in this case corresponds to  $2^4 = 16$  different models. Note: all models contain an intercept. Using the information in this table, answer the following questions.
  - i. [2] Perform *backward elimination* using the AIC as a basis for eliminating variables from the model. Specifically, indicate the order in which variables exit the model and state the final model.

ii. [2] Perform *forward selection* using the AIC as a basis for adding variables into the model. Specifically, indicate the order in which variables enter the model and state the final model.

iii. [1] The best overall model among *all possible regressions* is the one with the smallest AIC. Did either of these stepwise selection techniques choose the best overall model? Circle one.

YES NO

(h) [4] The optimal model according to all possible regressions and the AIC metric is the reduced model

$$y = \beta_0 + \beta_1 x_1 + \beta_4 x_4 + \varepsilon$$

This model arises if the following null hypothesis is true:

$$H_0: \beta_2 = \beta_3 = 0 \tag{1}$$

i. [1] This null hypothesis may be equivalently stated as

$$H_0: A\boldsymbol{\beta} = \mathbf{0} \tag{2}$$

where  $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)^T$ . Define the matrix A that makes hypotheses (1) and (2) equivalent.

| 11.     | [3] Using the additional sum of squares principle, formally test this hypothesis at a 5% level of significance. [N.B. State the value of the test statistic and draw your conclusion by referring to the relevant quantiles found on page 18].            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| part (h | e six plots in Figure 1 (on page 17) were constructed using the reduced model from ). For each of the questions below answer YES or NO and provide a one-sentence ration. In each case, be sure to indicate which plot(s) you used to make your decision. |
| i.      | Does the independence assumption appear to be met?                                                                                                                                                                                                        |
| ii.     | Does the constant variance assumption appear to be met?                                                                                                                                                                                                   |
| iii.    | Does the normality assumption appear to be met?                                                                                                                                                                                                           |
| iv.     | Do there appear to be any outliers in the <i>y</i> -dimension?                                                                                                                                                                                            |
| V.      | Do there appear to be any outliers in the <i>x</i> -dimension?                                                                                                                                                                                            |
| vi.     | Do there appear to be any highly influential observations?                                                                                                                                                                                                |
|         | [6] The part (h justification i.                                                                                                                                                                                                                          |

#### **Question 4 [5 points]**

In class we showed that when SD[y] is proportional to  $\mu$  (where  $\mu = E[y]$ ) that the log-transformation is a variance stabilizing transformation. We also showed that when Var[y] is proportional to  $\mu$  that the square-root transformation is variance stabilizing. By the same methods, find the transformation  $g(\mu)$  that stabilizes the variance when  $SD[y] \propto \mu^2$ .

### Question 5 [11 points]

The Gauss-Markov Theorem states that in the linear regression model

$$y = X\beta + \varepsilon$$

the least squares estimator of  $\beta$  is the *best linear unbiased estimator* (BLUE) because among all possible linear and unbiased estimators of  $\beta$ ,  $\hat{\beta} = (X^T X)^{-1} X^T y$  has the smallest variance. In this question, you will prove this fact by considering another linear transformation  $\hat{\beta}^* = My$  where M is any  $(p+1) \times n$  matrix of fixed numbers. The matrix  $D = M - (X^T X)^{-1} X^T$  summarizes the difference between the two transformations.

(a) [5] Show that if 
$$DX = 0$$
 (where  $O$  is the  $(p + 1) \times (p + 1)$  matrix of zeros), then  $\mathbb{E}[\widehat{\beta}^*] = \beta$ 

(b) [5] Show that if 
$$\hat{\beta}^*$$
 is unbiased, then  $Var[\hat{\beta}^*] = Var[\hat{\beta}] + \sigma^2 DD^T$ 

(c) [1] Why does the result in part (b) imply that  $Var[\widehat{\beta}] \leq Var[\widehat{\beta}^*]$ ?

#### Question 6 [7 points]

- (a) [5] Suppose that we wish to model the relationship between a response variable y and p explanatory variables:  $x_1, x_2, ..., x_p$  and we observe the data in two batches: we observe  $n_1$  observations initially, and then another  $n_2$  observations at a later point in time. For time point k = 1, 2, let
  - $y_k$  be the  $n_k \times 1$  response vector containing the response observations
  - $X_k$  be the  $n_k \times (p+1)$  matrix containing the explanatory variable observations
  - $\widehat{\boldsymbol{\beta}}_k = (X_k^T X_k)^{-1} X_k^T \boldsymbol{y}_k$  be the least squares estimate of  $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$

Show that the least squares estimate of  $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T$  based on all of the data can be written as

$$\widehat{\boldsymbol{\beta}} = (X_1^T X_1 + X_2^T X_2)^{-1} (X_1^T X_1 \widehat{\boldsymbol{\beta}}_1 + X_2^T X_2 \widehat{\boldsymbol{\beta}}_2)$$

*Hint*: the full X matrix and y vector (based on all  $n = n_1 + n_2$  observations) can be obtained by stacking the respective time-specific matrices and vectors on top of each other.

(b) [2] Now suppose that you've collected data in K > 2 batches, and with each batch you estimate  $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T$  by  $\widehat{\boldsymbol{\beta}}_k = (X_k^T X_k)^{-1} X_k^T \boldsymbol{y}_k$ , k = 1, 2, ..., K. Write an expression for the least squares estimate of  $\boldsymbol{\beta}$  based on all  $n = n_1 + n_2 + \cdots + n_K$  observations and in terms of  $\widehat{\boldsymbol{\beta}}_1, \widehat{\boldsymbol{\beta}}_2, ..., \widehat{\boldsymbol{\beta}}_K$ .

This page is left blank.

#### Coefficients:

|             | Estimate  | Std. Error | t value | Pr(> t ) |
|-------------|-----------|------------|---------|----------|
| (Intercept) | 1045.9715 | 52.8698    | 33333   | ?????    |
| expend      | 4.4626    | 10.5465    | 33333   | ?????    |
| ratio       | -3.6242   | 3.2154     | ?????   | ?????    |
| salary      | 1.6379    | 0.2387     | ?????   | ?????    |
| takers      | -2.9045   | 0.2313     | ?????   | 33333    |

\_\_\_

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 '' 1

Residual standard error: 32.7 on ?? degrees of freedom Multiple R-squared: 0.8246, Adjusted R-squared: 0.809 F-statistic: ????? on ?? and ?? DF, p-value: ?????

#### Partial R Output for the full model in Question 3

| Variables in Model      | AIC    | SSE       |
|-------------------------|--------|-----------|
| None (intercept only)   | 576.39 | 274307.68 |
| $x_1$                   | 570.57 | 234585.62 |
| $x_2$                   | 578.06 | 272496.65 |
| $x_3$                   | 567.64 | 221229.86 |
| $x_4$                   | 501.07 | 58433.15  |
| $x_1$ $x_2$             | 572.33 | 233442.95 |
| $x_1$ $x_3$             | 569.64 | 221225.01 |
| $x_1  x_4$              | 494.80 | 49520.06  |
| $x_2$ $x_3$             | 569.23 | 219441.23 |
| $x_2$ $x_4$             | 500.14 | 55096.98  |
| $x_3  x_4$              | 498.51 | 53338.38  |
| $x_1$ $x_2$ $x_3$       | 570.63 | 216811.94 |
| $x_1$ $x_2$ $x_4$       | 495.89 | 48627.32  |
| $x_1$ $x_3$ $x_4$       | 496.76 | 49482.54  |
| $x_2$ $x_3$ $x_4$       | 495.57 | 48315.37  |
| $x_1$ $x_2$ $x_3$ $x_4$ | 497.37 | 48123.90  |

Table 1: AIC and SSE for various models in Question 3(g)



Figure 1: Diagnostic plots for the reduced model in Question 3(h)

For the indicated value of p, the following tables provide  $x^*$  where  $P(X \ge x^*) = p$ 

| $X \sim t_{(10)}$ |          |  |
|-------------------|----------|--|
| p                 | $\chi^*$ |  |
| 0.005             | 3.1693   |  |
| 0.01              | 2.7638   |  |
| 0.025             | 2.2281   |  |
| 0.05              | 1.8125   |  |
| 0.1               | 1.3722   |  |

| $X{\sim}t_{(45)}$ |          |  |
|-------------------|----------|--|
| p                 | $\chi^*$ |  |
| 0.005             | 2.6896   |  |
| 0.01              | 2.4121   |  |
| 0.025             | 2.0141   |  |
| 0.05              | 1.6794   |  |
| 0.1               | 1.3006   |  |

| $X \sim F_{(1,45)}$ |        |
|---------------------|--------|
| p                   | $x^*$  |
| 0.005               | 8.7148 |
| 0.01                | 7.2339 |
| 0.025               | 5.3773 |
| 0.05                | 4.0566 |
| 0.1                 | 2.8205 |

| $X \sim F_{(2,45)}$ |        |
|---------------------|--------|
| p                   | $x^*$  |
| 0.005               | 5.9741 |
| 0.01                | 5.1103 |
| 0.025               | 4.0085 |
| 0.05                | 3.2043 |
| 0.1                 | 2.4245 |

| $X \sim F_{(3,45)}$ |        |
|---------------------|--------|
| p                   | $x^*$  |
| 0.005               | 4.8918 |
| 0.01                | 4.2492 |
| 0.025               | 3.4224 |
| 0.05                | 2.8115 |
| 0.1                 | 2.2097 |

| $X \sim F_{(4,45)}$ |        |
|---------------------|--------|
| <i>p</i>            | $x^*$  |
| 0.005               | 4.2941 |
| 0.01                | 3.7674 |
| 0.025               | 3.0860 |
| 0.05                | 2.5787 |
| 0.1                 | 2.0742 |
|                     |        |

LEFT BLANK FOR ROUGH WORK

LEFT BLANK FOR ROUGH WORK