1985. PAPER II	MARKS	REMARKS
30LUTIONS	CAAAII	
General term = $C_r^n (ax)^{n-r} \frac{1}{x^{2r}}$.		If other terms given, disregard wrong but irrelevant terms.
The 4th term of the expansion		TireTeAque cermo.
$= C_3^n (ax)^{n-3} \frac{1}{x^6}$	·	
$= c_3^n a^{n-3} x^{n-9} \dots$	2A	
If this term is independent of x , $n - 9 = 0$		
n = 9	1 A	:
$c_3^9 \ a^6 = \frac{21}{2} \dots $ $a^6 = \frac{21}{2} \cdot \frac{3 \cdot 2}{9 \cdot 8 \cdot 7}$	1 M	,
$=\frac{1}{8}$		
$a = \frac{1}{\sqrt{2}}$ (as a > 0) (or $\frac{\sqrt{2}}{2}$ or 0.707)	1 <u>A</u> 5	
For $n = 1$, L.3. $= \frac{1 \times (1 + 2)}{(1 + 1)^2} = \frac{3}{4}$		
R.S. = $\frac{1+2}{2(1+1)}$ = L.S	1	
Assume that the equality holds for some positive integer k,	1	
then for $n = k + 1$,		
L.S. = $T_1 \times T_2 \times \ldots \times T_{k+1}$		
$= (T_1 \times T_2 \times \dots \times T_k) \times T_{k+1}$		
$= \frac{k+2}{2(k+1)} \times \frac{(k+1)(k+3)}{(k+2)^2} \dots$	l A	
$=\frac{\cdot k+3}{2(k+2)}$	l A	
= R.S.		
: the equality also holds for $n = k + 1$.		
By mathematical induction, the equality holds for all positive integers n.	1_5	Awarded only if above correct.

₽.2

Let $u = 25 - x^2$, $du = -2xdx$. IA When $x = 3$, $u = 16$ $x = 4$, $u = 9$ $\begin{cases} 4 & x = 4, u = 9 \\ 3 & \sqrt{25 - x^2} & dx = \frac{69}{12\sqrt{u}} & du \\ & = \frac{1}{2} \left[2u^{\frac{1}{2}} \right]^{\frac{1}{9}} \\ & = 1 & \frac{1A}{5} \end{cases}$ Alt. Solution: Let $u = 25 - x^4$, $du = -2xdx$. IA $\begin{cases} \frac{x}{\sqrt{25 - x^2}} & dx = -\frac{1}{2} \int \frac{1}{u} du \\ & = -\sqrt{u} + c \\ & = -\sqrt{25 - x^2} = 1 \end{cases}$ Area of the shadedpart = area of PQR + area of RQS Area of PQR = $\frac{1}{2}$ X 3 X 2 = 3 Area of RQS = $\begin{pmatrix} 2 & 4 & -2x & 4x \\ -25 & -x^2 & -2x \\ -25 & $, and a second s	SOLUTIONS	MARKS		REMARKS	**************************************
	3. Let u =	$25 - x^2$, $du = -2xdx$	1A			•
	When x = x =	= 3, u = 16) = 4, u = 9)	1A			
$\frac{\text{Alt. Solution}:}{\text{Let } u = 25 - x^2, \ du = -2x dx.} \qquad \qquad 1A$ $\int \frac{x}{\sqrt{25 - x^2}} dx = -\frac{1}{2} \int \frac{1}{3} u du \qquad \qquad 1A$ $= -\sqrt{u + c} \qquad \qquad 1A$ $= -\sqrt{25 - x^2} - 3 \qquad \qquad 1A$ $\frac{\sqrt{3}}{\sqrt{25 - x^2}} dx = \left[-\sqrt{25 - x^2} \right]_{3} \qquad \qquad 1A$ $\frac{\sqrt{3}}{\sqrt{25 - x^2}} dx = \left[-\sqrt{25 - x^2} \right]_{3} \qquad \qquad 1A$ Area of the shadedpart = area of PQR + area of RQS $\frac{\sqrt{3}}{\sqrt{25 - x^2}} dx = \left[-\sqrt{25 - x^2} \right]_{3} \qquad \qquad 1A$ $\frac{\sqrt{3}}{\sqrt{25 - x^2}} dx = \left[-\sqrt{25 - x^2} \right]_{3} \qquad \qquad 1A$ $\frac{\sqrt{3}}{\sqrt{3}} dx = \frac{1}{2} x 3 x 2 = 3 \qquad \qquad 1A$ $\frac{\sqrt{3}}{\sqrt{3}} dx = \frac{1}{2} x 3 x 2 = 3 \qquad \qquad 1A$ $\frac{\sqrt{3}}{\sqrt{3}} dx = \frac{1}{2} x 3 x 2 = 3 \qquad \qquad 1A$ $= \left[4x - \frac{x^3}{3} \right]_{1}^{2} \qquad \qquad 1A$	$\int_{3}^{4} \frac{x}{\sqrt{25-x}}$	$\frac{1}{e^{2}} dx = \int_{16}^{9} -\frac{1}{2\sqrt{u}} du \dots$ $-\frac{1}{2} \left[2u^{\frac{1}{2}} \right]^{16}$	LM+1A	IM For 1 IA for -	$\frac{\text{imits}}{2\sqrt{u}}$ du	· !
Let $u = 25 - x^2$, $du = -2xdx$. 1A $\int \frac{x}{\sqrt{25 - x^2}} dx = -\frac{1}{2} \int \sqrt{\frac{1}{u}} du$ $= -\sqrt{u} + c$ $= -\sqrt{25 - x^2} + c$ $= 1$ Area of the shadedpart = area of PQR + area of RQS Area of PQR = $\frac{1}{2}$ X 3 X 2 = 3 Area of RQS = $\int_{1}^{2} (4 - x^2) dx$ $= \left[4x - \frac{x^3}{3} \right]_{1}^{2}$ $= \left[4x - \frac{x^3}{3} \right]_{1}^{2}$ $= \left[8 - \frac{8}{3} \right] - \left(4 - \frac{1}{3} \right) = 1\frac{2}{3} \text{ (or } 1.67)$ $\Rightarrow \text{ total area} = 3 + 1\frac{2}{3} = 4\frac{2}{3} \text{ (or } 4.67)$ $= \frac{1A}{5}$ Alt. Solution: Equation of L: $y - 3 = \frac{2}{2} (x - 1)$ $= \frac{2}{3} y - 1$ $= \frac{2}{3} y - 1$ $= \frac{2}{3} (4 - y)^{\frac{3}{2}} - \frac{1}{3} y^2 + y \Big _{0}^{3}$ Althorized A		= 1	1A 5			
$\int \frac{x}{\sqrt{25-x^2}} dx = -\frac{1}{2} \int \frac{1}{\sqrt{1}} du$ $= -\sqrt{u} + c$ $= -\sqrt{25-x^2} + c$	Alt. Solu	ition:				
			1 A			
$= -\sqrt{25 - x^{2}} + 2$ $= -\sqrt{25 - x^{2}} + 2$ $= 1$ $= 1$ Area of the shadedpart = area of PQR + area of RQS Area of PQR = $\frac{1}{2}$ X 3 X 2 = 3 Area of RQS = $\int_{1}^{2} (4 - x^{2}) dx$ $= \left[4x - \frac{x^{3}}{3} \right]_{1}^{2}$ $= (8 - \frac{8}{3}) - (4 - \frac{1}{3}) = 1\frac{2}{3} \text{ (or 1.67)}$ $= (8 - \frac{8}{3}) - (4 - \frac{1}{3}) = 1\frac{2}{3} \text{ (or 4.67)}$ Alt. Solution: Equation of L: $y - 3 = \frac{2}{2} (x - 1)$ $x = \frac{2}{3} y - 1$ Area = $\int_{0}^{3} \left[\sqrt{4 - y} - \left(\frac{2}{3}y - 1 \right) \right] dy$ $= \left[-\frac{2}{3} (4 - y)^{\frac{3}{2}} - \frac{1}{3}y^{2} + y \right]_{0}^{3}$ IM IA IA IA IA IA IA for limits IA for integrand IM for ' - ' '	$\sqrt{\frac{1}{2}}$		1 A			
$\int_{3}^{4} \frac{x}{\sqrt{25 - x^{2}}} dx = [-\sqrt{25 - x^{2}}]^{4}$ $= 1 \qquad 1A$ Area of the shadedpart = area of PQR + area of RQS Area of PQR = $\frac{1}{2}$ X '3 X 2 = 3 \qquad 1A Area of RQS = $\int_{1}^{2} (4 - x^{2}) dx$ \qquad 1A $= [4x - \frac{x^{3}}{3}]^{1}$ $= (8 - \frac{8}{3}) - (4 - \frac{1}{3}) = \frac{12}{3} \text{ (or 1.67)}$ $\Rightarrow \text{ total area} = 3 + \frac{12}{3} = \frac{42}{3} \text{ (or 4.67)}$ $\frac{Alt. Solution}{x = \frac{2}{3}y - 1}$ $\text{Area} = \int_{0}^{3} [\sqrt{4 - y} - (\frac{2}{3}y - 1)] dy$ $= [-\frac{2}{3}(4 - y)^{\frac{3}{2}} - \frac{1}{3}y^{2} + y]_{0}^{3}$ $\text{IA} + \text{IA} + \text{IM} \text{IA} \text{ for limits} \text{ IA for integrand lim for ''}$			'. A			
$ \begin{array}{c} = 1 & \dots & 1A \\ \hline \\ \text{Area of the shadedpart} = \text{area of PQR} + \text{area of RQS} \\ \underline{\text{Area of PQR}} = \frac{1}{2} \times 3 \times 2 = 3 \\ \hline \\ \text{Area of RQS} = \int_{1}^{2} (4 - x^{2}) dx \\ \hline \\ = \left[4x - \frac{x^{3}}{3} \right]_{1}^{2} \\ \hline \\ = \left[8 - \frac{8}{3} \right] - \left(4 - \frac{1}{3} \right) = 1\frac{2}{3} \left(\text{or } 1.67 \right) \\ \hline \\ \text{Atal total area} = 3 + 1\frac{2}{3} = 4\frac{2}{3} \left(\text{or } 4.67 \right) \\ \hline \\ \times \text{ total area} = 3 + 1\frac{2}{3} = \frac{2}{3} \left(\text{or } 4.67 \right) \\ \hline \\ \text{Area} = \begin{cases} 3 \\ 0 \end{cases} \left[\sqrt{4 - y} - \left(\frac{2}{3}y - 1 \right) \right] dy \\ \hline \\ = \left[-\frac{2}{3} \left(4 - y \right)^{\frac{3}{2}} - \frac{1}{3}y^{2} + y \right]_{0}^{3} \\ \hline \end{array} \right] $		$=-\sqrt{25-x^2}+z \ldots \ldots$	IM			
Area of PQR = $\frac{1}{2}$ X 3 X 2 = 3	$\therefore \int_{3}^{4} \sqrt{25}$	$\frac{x}{5 - x^2} dx = \left[-\sqrt{25 - x^2} \right]_{3}^{4}$ = 1	1A			
Area of PQR = $\frac{1}{2}$ X 3 X 2 = 3		at a balabase a group of POP + area of ROS	1 M		<i>y</i> .	
Area of RQS = $\int_{1}^{2} (4 - x^{2}) dx$						L ·
$= \begin{bmatrix} 4x - \frac{x^3}{3} \end{bmatrix}_{1}^{2}$ $= (8 - \frac{8}{3}) - (4 - \frac{1}{3}) = 1\frac{2}{3} \text{ (or 1.67)}$ $\text{total area} = 3 + 1\frac{2}{3} = 4\frac{2}{3} \text{ (or 4.67)} \dots \qquad \qquad \frac{1A}{5}$ $\frac{1A}{5}$ Alt. Solution: Equation of L: $y - 3 = \frac{3}{2} (x - 1)$ $x = \frac{2}{3} y - 1 \dots \qquad \qquad 1A$ $Area = \begin{cases} 3 \\ 0 \end{cases} [\sqrt{4 - y} - (\frac{2}{3}y - 1)] dy$ $= [-\frac{2}{3} (4 - y)^{\frac{3}{2}} - \frac{1}{3}y^2 + y] \\ 0$			1.A	7		(1, 3)
$\frac{1A}{5} = \frac{1}{3} = 4\frac{2}{3} \text{ (or 4.67)} \dots \frac{1}{5}$ Alt. Solution: Equation of L: $y - 3 = \frac{3}{2} (x - 1)$ $x = \frac{2}{3} y - 1 \dots 1$ Area = $\int_{0}^{3} [\sqrt{4 - y} - (\frac{2}{3}y - 1)] dy$ $= [-\frac{2}{3} (4 - y)^{\frac{3}{2}} - \frac{1}{3}y^{2} + y]_{0}^{3}$ $1A + 1A + 1M = 1A \text{ for limits lA for integrand lM for '-'}$				",		
Alt. Solution: Equation of L: $y - 3 = \frac{3}{2}(x - 1)$ $x = \frac{2}{3}y - 1$ Area = $\begin{cases} 3 \\ 0 \end{cases} \left[\sqrt{4 - y} - (\frac{2}{3}y - 1) \right] dy$ $= \left[-\frac{2}{3}(4 - y)^{\frac{3}{2}} - \frac{1}{3}y^2 + y \right]_{0}^{3}$ IA+1A+1M IA for limits lA for integrand lM for '-'		$= (8 - \frac{8}{3}) - (4 - \frac{1}{3}) = 1\frac{2}{3}$ (or 1.67)	1A		,/\\;	R √S
Equation of L: $y - 3 = \frac{3}{2} (x - 1)$ $x = \frac{2}{3} y - 1$ Area =	√ tota	al area = $3 + 1\frac{2}{3} = 4\frac{2}{3}$ (or 4.67)	1A 5	(-1,	0, 0	
Equation of L: $y - 3 = \frac{3}{2} (x - 1)$ $x = \frac{2}{3} y - 1$ Area =	Alt. Sol	ution :				
Area =	1					
$= \left[-\frac{2}{3} (4 - y)^{\frac{3}{2}} - \frac{1}{3}y^2 + y\right]_0^3$			1 A			
$= \left[-\frac{2}{3} \left(4 - y \right)^{\frac{3}{2}} - \frac{1}{3} y^2 + y \right]_0$			1A+1A+1M	lA for i	ntegrand.	
$= 4\frac{2}{3} \qquad 1A$	=	$\left[-\frac{2}{3} (4 - y)^{\frac{3}{2}} - \frac{1}{3}y^2 + y\right]_0^3$			-	
	= 4	<u>2</u> 3	1 A			

SOLUTIONS	MARKS	REMARKS
. The equation of the family of circles passing through A and B is		
$x^2 + y^2 - 2y + k(x - y) = 0$	1 A	
$[or x - y + k(x^2 + y^2 - 2y) = 0, (k \neq 0)]$		
The equation can be written as		
$x^2 + y^2 + kx - (2 + k)y = 0$		
Radius of the circle = $\sqrt{(\frac{k}{2})^2 + (\frac{2+k}{2})^2}$	1M	
$-\sqrt{(\frac{k}{2})^2 + (\frac{2+k}{2})^2} = \sqrt{5}$	1M	
$k^2 + 2k - 8 = 0$	1A	
3. k = 2 or -4		If kiewng, no marks
The two circles are $x^2 + y^2 + 2x - 4y = 0$	1A	Velow
and $x^2 + y^2 - 4x + 2y = 0$	1 <u>A</u>	
$(or (x+1)^2 + (y-2)^2 = 5$		
$(x-1)^2 + (y+1) = 5$		
. Let the equation of the line through (-1, 0) be		Alt. Solution:
$y = m(x + 1) \dots$	1A	Eqn. of the tangent at (x_1, y_1) is
Substituting in the equation of the parabola	lM	$y_1y = 2(x_1+x)$ 1
$m^2(x+1)^2 = 4x$		If the tangent passes
$m^2x^2 + (2m^2 - 4)x + m^2 = 0$	1A	through (-1, 0),
$(2m^2 - 4)^2 - 4m^4 = 0$	1M	$0 = 2(x_1 - 1) \dots 1$
For the line to be a tangent,		x ₁ = 11
$m^2 = 1$		Putting $x=1$ in $y^2=4x$ 1
$m = \pm 1$		$y_1 = \pm 2$
		Equations of tangents are
the equations of the tangents are		$y = \pm (x + 1) \dots 1A+1$
$y = \pm(x + 1) \dots$	lA+lA	i.e. $x - y + 1 = 0$
i.e. $x - y + 1 = 0$		and $x + y + 1 = 0$
x + y + 1 = 0		
	6	

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SOLUTIONS	MARKS	REMARKS
7.	(a)	Since $A + B + C = T$		
		$\sin C = \sin(\pi - (A + B))$	1 A	•
		$= \sin(A + B)$		
		= sin A cos B + cos A sin B	LA	
		Since A, B, C are acute		
		$\sin A = \frac{5}{13} \Rightarrow \cos A = \frac{12}{13}$	7.4	i
		$\sin A = \frac{5}{13} \implies \cos A = \frac{12}{13} $ $\sin B = \frac{3}{5} \implies \cos B = \frac{4}{5} $	1A	·
	_	$\sin C = \frac{5}{13} \cdot \frac{4}{5} + \frac{12}{13} \cdot \frac{3}{5}$		
		$=\frac{56}{65}$	1A	
	(b)	The 3 sides a, b, c satisfy		
		a : b : c = sin A : sin B : sin C	1M	for sine rule
		$=\frac{5}{13}:\frac{3}{5}:\frac{56}{35}$!	
		= 25 : 39 : 56		
		If the perimeter is 12 cm,		
		the longest side $c = \frac{56}{120} \times 12 = 5.6 \text{ cm}$	2 <u>A</u>	
8.	(a)	$\int_{0}^{\frac{\pi}{2}} \sin^{3}t \cos^{4}t dt = \int_{0}^{\frac{\pi}{2}} \sin t \cos^{4}t (1 - \cos^{2}t) dt$	1M	For $\sin^3 t = \sin t(1-\cos^2 t)$
	•	$= \int_{0}^{\frac{\pi}{2}} \sin t \cos^4 t dt - \int_{0}^{\frac{\pi}{2}} \sin t \cos^6 t dt$		
		$= \left[-\frac{1}{5} \cos^5 t + \frac{1}{7} \cos^7 t \right]_0^{\frac{17}{2}} \dots$	1A+1A	
		$=\frac{2}{35}$	1 <u>A</u>	
	(b)	Putting $t = \frac{\pi}{2} - u$, $dt = -du$		
		When $t = 0$, $u = \frac{\pi}{2}$;		
		$z = \frac{\pi}{2}$, $\alpha = 0$	1A	
		$\int_{0}^{\frac{\pi}{2}} \cos^{3} t \sin^{4} t dt = -\int_{\frac{\pi}{2}}^{0} \cos^{3}(\frac{\pi}{2} - u) \sin^{4}(\frac{\pi}{2} - u) du$	i lA	
		$= \int_{0}^{\frac{\pi}{2}} \sin^{3} u \cos^{4} u du \dots$	1A	
		$= \int_{0}^{\frac{\pi}{2}} \sin^3 t \cos^4 t dt \dots$	<u> 1A</u> <u> 4</u>	. Provided by dse.li

2.5

g de la companya de l	SOLUTIONS	MARKS	REMARKS
8. (6	Putting t = -u, dt = -du	ΙĄ	
	When $t = -\frac{\pi}{2}$, $u = \frac{\pi}{2}$;		•
	t = 0 , u = 0	1 A	
	$\int_{-\frac{\pi}{2}}^{0} \cos^{3}t \sin^{4}t dt = -\int_{\frac{\pi}{2}}^{0} \cos^{3}(-u) \sin^{4}(-u) du$	1A	
	$= \int_{0}^{\frac{\pi}{2}} \cos^{3} u \sin^{4} u du$	1	
~	$= \int_{0}^{\frac{\pi}{2}} \cos^3 t \sin^4 t dt \dots$	1A	
	$\int_{-\frac{\pi}{2}}^{0} \sin^{3}t \cos^{4}t dt = -\int_{\frac{\pi}{2}}^{0} \sin^{3}(-u) \cos^{4}(-u) du$	1A	•
	$= \int_{\frac{\pi}{2}}^{0} \sin^3 u \cos^4 u du$		
	$= -\int_{0}^{\frac{\pi}{2}} \sin^{3}t \cos^{4}t dt \dots$	1A 6	*
(d)	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{8} \sin^3 2t (\sin t + \cos t) dt$		
_	$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 t \cos^3 t (\sin t + \cos t) dt \dots$	1M	for sin 2t = 2sin t cos t
	$= \begin{cases} \frac{\pi}{2} \cos^3 t \sin^4 t dt + \int \frac{\pi}{2} \sin^3 t \cos^4 t dt & \dots \end{cases}$	1A	•
	$= \left[\int_{-\frac{\pi}{2}}^{0} \cos^{3}t \sin^{4}t dt + \int_{0}^{\frac{\pi}{2}} \cos^{3}t \sin^{4}t dt \right]$		
	$+ \left[\int_{-\frac{\pi}{2}}^{0} \sin^{3}t \cos^{4}t dt + \int_{0}^{\frac{\pi}{2}} \sin^{3}t \cos^{4}t dt \right]$	LМ	
	$= 2 \int_{0}^{\frac{\pi}{2}} \cos^{3} t \sin^{4} t dt$		
	$+ \left[-\int_{0}^{\frac{\pi}{2}} \sin^{3}t \cos^{4}t dt + \int_{0}^{\frac{\pi}{2}} \sin^{3}t \cos^{4}t dt \right]$		
	$= 2 \int_{0}^{\frac{\pi}{2}} \sin^3 t \cos^4 t dt \dots$	2A	
	$= 2 \times \frac{2}{35} = \frac{4}{35} (\text{or } 0.114) \dots$	1 <u>A</u> 6	

MATHS II SOLUTION	ŵ' • •	
SOLUTIONS	MARKS	REMARKS
9. Q B N N M		
(a) The radius of the semi-circle is 1 $P = (\cos \theta, \sin \theta)$ $Q = (\cos \beta, \sin \beta)$ Volume generated by rotating PONM about	the x-axis.	
$= \int \frac{\cos \theta}{\cos \beta} \qquad \pi(1 - x^2) dx \dots$ $= \pi \left[x - \frac{x^3}{3} \right]_{\cos \beta}$	1M+1M + 1A	lM for vol. lM for limits, accept -co lA for integrand
$= \pi[(\cos \theta - \cos \beta) - \frac{1}{3}(\cos^3 \theta - \cos^3 \beta)]$)] 1A	
Volume of the two cones generated by rot and QON are $\left \frac{1}{3} \pi \sin^2 \theta \cos \theta\right $, $\left \frac{1}{3} \pi \sin^2 \theta \cos \theta\right $	rating POM	Accept vol. without absolute value signs
Volume V of the solid $= \pi \left[(\cos \theta - \cos \beta) - \frac{1}{3} (\cos^3 \theta - \cos^3 \beta) \right]$ $- \frac{1}{3} \pi \sin^2 \theta \cos \theta + \frac{1}{3} \pi \sin^2 \beta \cos \beta + \cdots$		
$= \frac{\pi}{3} [3(\cos\theta - \cos\beta) - \cos^3\theta + \cos^3\beta - \sin^2\theta\cos\theta + \sin^2\theta\cos\theta +$	i i	
$=\frac{2\pi}{3}(\cos 9 - \cos \beta) \dots$		-

Provided by dse.life

100		2.	
<u> </u>	SOLUTIONS	MARKS	REMARKS
(b)	If $\beta = 2\theta$, $V = \frac{2}{3} \pi (\cos \theta - \cos 2\theta)$, $\frac{dV}{d\theta} = \frac{2}{3} \pi (-\sin \theta + 2\sin 2\theta)$	1A	Alt. Solution: If $\beta = 2\theta$, $V = \frac{2}{3}\pi(\cos\theta - \cos 2\theta)$ $= \frac{2}{3}\pi(1+\cos\theta-2\cos^2\theta)$ 1A $= \frac{4}{3}\pi(\frac{9}{16}-(\frac{1}{4}-\cos\theta)^2)$ 1M+1, V is a max. when $\cos\theta = \frac{1}{4}$ & the max. value is $\frac{3}{4}\pi$ (cu. units) 2A
(c)	If $\int 3 - \theta = \frac{\pi}{3}$, $V = \frac{2\pi}{3} (\cos \theta - \cos(\frac{\pi}{3} + \theta))$ $\frac{dV}{d\theta} = \frac{2\pi}{3} (-\sin \theta + \sin(\frac{\pi}{3} + \theta))$ $= \frac{2\pi}{3} (-\sin \theta + \sin \frac{\pi}{3} \cos \theta + \cos \frac{\pi}{3} \sin \theta)$ $= \frac{2\pi}{3} (-\frac{1}{2} \sin \theta + \frac{\sqrt{3}}{2} \cos \theta)$ Putting $\frac{dV}{d\theta} = 0$, $\tan \theta = \sqrt{3}$ $\theta = \frac{\pi}{3}$ $\frac{d^2V}{d\theta^2} = \frac{2\pi}{3} (-\cos \theta + \cos(\frac{\pi}{3} + \theta)) < 0 \text{ if } \theta = \frac{\pi}{3}$ $V \text{ is max. at } \theta = \frac{\pi}{3} \text{ and its value is}$ $\frac{2\pi}{3} (\frac{1}{2} + \frac{1}{2}) = \frac{2\pi}{3} \text{ (or 2.09) (cu. units)}$.	1M 1A	Alt. Solution: If $\beta - \theta = \frac{\pi}{3}$, $V = \frac{2\pi}{3}(\cos\theta - \cos(\frac{\pi}{3} + \theta))$ $= \frac{2}{3}\pi \left[2\sin\frac{1}{2}(\frac{\pi}{3} + 2\theta)\sin\frac{\pi}{6}\right] \cdot 1A$ $= \frac{2\pi}{3}\sin(\frac{\pi}{6} + \theta) \cdot \cdot \cdot \cdot 1A$ If $\theta = \frac{\pi}{3}$ is $\theta = \frac{\pi}{3}$ is $\theta = \frac{\pi}{3}$ is $\theta = \frac{\pi}{3}$. The sum of the max. Value is $\theta = \frac{2\pi}{3}$ is $\theta = \frac{2\pi}{3}$. The sum of the max. Value is $\theta = \frac{2\pi}{3}$.

MATHS II SOLUTION

RESTRICTED 內部文件

SOLUTIONS	MARKS REMARKS		
(a) Let $S = (x_1, y_1)$, $R = (x_2, y_2)$ $y_1 (= y_2) = h$ By similar triangles $\frac{-3 - x_1}{-3} = \frac{h}{2}$	1A	Alt. Solution: $y_1 (= y_2) = h , 1A$ Equation of AB is $y = \frac{2}{3}x - 2 \dots 1A$	
$x_1 = \frac{3h}{2} - 3$ $\frac{1 - x_a}{1} = \frac{h}{2} \qquad \dots$ $x_2 = 1 - \frac{h}{2} \qquad \dots$	1A 1A 1A	Substituting $y = a$ $x_1 = \frac{3}{2}(h - 2) \dots 1A$ Equation of AC is $y = 2-2 \times 1A$ Substituting $y = h$ $x_2 = 1 - \frac{h}{2} \dots 1A$	
b) If PQRS is a square $x_2 - x_1 = h$	1M 1A 1A		
$= -2(h^{2} - 2h + 1) + 2$ $= 2 - 2(h - 1)^{2} \dots \dots$	IM IA IA IA A B	or $\frac{dA}{dh} = 0$	

2.9

profession of the second	•		· · · · · · · · · · · · · · · · · · ·
	SOLUTIONS	MARKS	REMARKS
10. (c)	The coordinates of the centre $M(\mathbf{x},\ \mathbf{y})$ of PQRS are given by		
	$x = \frac{x_1 + x_1}{2}$		
	$=\frac{1}{2}(h-2) \qquad \dots$	1A	
	$y = \frac{h}{2} \dots$	1A	
	Eliminating h,	1M	Attempt to eliminate
	$x - y = \frac{1}{2}(h - 2) - \frac{h}{2}$		
-	= -1	1A	
	Since $0 \le h \le 2$ (or $0 \le h \le 2$), the locus of M is the part of the straight line $x - y = -1$ lying between $(-1, 0)$ and $(0, 1)$ (end-points included/excluded)		
	B $(-i,0) O C \chi$ Locus of M	3A	Line segment with end- point on axes End points correct (only awarded if equation correct)
l. (a)	(i) PQ = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ = $\sqrt{(x_1 - x_2)^2 + [(2x_1 + c) - (2x_2 + c)]^2}$ = $\sqrt{5} x_1 - x_2 \dots$	1M+1A	lM for sub. y
	(ii) Putting $y = 2x + c$, $x^2 + \frac{(2x + c)^2}{16} = 1$	1M	
	(ii) Putting $y = 2x + c$, $x + \frac{1}{16}$ $16x^2 + (4x^2 + 4cx + c^2) = 16$	12.1	
		1A	
	$20x^2 + 4cx + (c^2 - 16) = 0 \dots (*) \dots$		
	Since (x_1, y_1) (x_2, y_2) satisfy the equations	5	
	$y = 2x + c \text{ and } x^2 + \frac{y^2}{16} = 1$,		
	x_1 , x_2 are the roots of (*)		

MATHS II SOLUTION

P.10

AND THE STREET	₹ <i>?</i>			
. 		SOLUTIONS	MARKS	REMARKS
11.	(a)	(iii) If PQ = $2\sqrt{2}$, since x_1 , x_2 are roots of (*), $\sqrt{5} x_1 - x_2 = \sqrt{5} \sqrt{(x_1 + x_2)^2 - 4x_1 x_2}$	1A	
		$= \sqrt{5} \int (\frac{-4c}{20})^2 - \frac{4(c^2 - 16)}{20}$	1M+1M	Sub. $x_1 + x_2 = \frac{-4C}{20}$
		$=\sqrt{\frac{80-4c^2}{5}}$	1A	$x_1 x_2 = \frac{c^2 - 15}{20}$
		$= 2\sqrt{2}$ $\Rightarrow 80 - 4c^2 = 40$ $c^2 = 10$	IM	:
		$c = \pm \sqrt{10} \dots$	1A 11	
	(b)	Let the equations of P'Q' and P"Q" be		
		$y = 2x + \sqrt{10}$ and $y = 2x - \sqrt{10}$ respectively.		
		(i) $(0, \sqrt{10})$ is a point on $2^{1}Q^{1}$	iA	y
		Distance between P'Q' and P"Q" is $\frac{2 \times 0 - \sqrt{10} - \sqrt{10}}{\pm \sqrt{2^2 + 1^2}}$	1M	Q'
		$= 2\sqrt{2}$	1 A	
	-	Area of parallelogram = $2\sqrt{2} \times 2\sqrt{2}$	lM	2"
_		= 8 (sq. units)	1A	P' O
		(ii) If $P' = (x_1, y_1), Q' = (x_2, y_2)$ by symmetry $P'' = (-x_2, -y_2)$	1M	p"
		$= \sqrt{(x_1 + x_2)^2 + 4(x_1 + x_2 + c)^2}$	1M	
		$= \int (\frac{-c}{5})^2 + 4(\frac{4c}{5})^2$		
		$= \sqrt{\frac{65}{25}} e^2 \dots$	1A	
		$=\sqrt{\frac{130}{5}}$		
		$= \sqrt{26} \dots$	1 A 9	-

RESTRICTED 内部文件

	. 4-	SOLUTIONS	MARKS	REMARKS
Alt.	Solution:			`
11.	(a) (iii)	$x = \frac{-4c \pm \sqrt{16c^2 - 80(c^2 - 16)}}{40} = \frac{-c \pm \sqrt{80 - 4c^2}}{10}$	- 1A	
		$y = 2y + c = \frac{-c \pm \sqrt{80 - 4c^2}}{2} + c$		
		$= \frac{4c \pm \sqrt{80 - 4c^2}}{5}$ Let $P = (\frac{-c - \sqrt{80 - 4c^2}}{10}, \frac{4c - \sqrt{80 - 4c^2}}{5})$	I.IA	
		Q = $\left(\frac{-c + \sqrt{80 - 4c^2}}{10}, \frac{4c + \sqrt{80 - 4c^2}}{5}\right)$		
	•	$PQ^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2} \dots $ $= (\sqrt{\frac{80 - 4c^{2}}{5}})^{2} + (\frac{2\sqrt{80 - 4c^{2}}}{5})^{2}$. 1M	
		$= \frac{(\sqrt{35} - \sqrt{5})^2 + (\sqrt{5})^2}{5}$ $= \frac{80 - 4c^2}{5}$. la	
		$PQ = 2\sqrt{2} \Rightarrow \frac{80 - 4c^2}{5} = (2\sqrt{2})^2 \dots$	1	
		i.e. $c = \pm \sqrt{10}$		
	(5) (1)		1A	
		$2' = \left(\frac{-3\sqrt{10}}{10}, \frac{2\sqrt{10}}{5}\right)$ $= \left(\frac{-3\sqrt{10}}{10}, \frac{2\sqrt{10}}{5}\right) \dots$.lA	
		$Q' = \left(\frac{-\sqrt{10} + 2\sqrt{10}}{10}, \frac{4\sqrt{10} + 2\sqrt{10}}{5}\right)$		
		$ = \left(\frac{\sqrt{10}}{10}, \frac{6\sqrt{10}}{5} \right) \dots $ $ P'' = \left(\frac{\sqrt{10} - 2\sqrt{10}}{10}, \frac{-4\sqrt{10} - 2\sqrt{10}}{5} \right) $. 1A	
•	•••	$= \left(\frac{-\sqrt{10}}{10}, \frac{-6\sqrt{10}}{5} \right) \dots \dots$. 1A	
	Area of	parallelogram P'Q'Q"P" = 2 \(\Delta\) P'Q'P"	. 1M	
		$= \left \frac{-3\sqrt{10}}{10} \left(\frac{6\sqrt{10}}{5} - \frac{-6\sqrt{10}}{5} \right) + \frac{\sqrt{10}}{10} \left(\frac{-6\sqrt{10}}{5} - \frac{2\sqrt{10}}{5} \right) - \frac{\sqrt{10}}{10} \left(\frac{2\sqrt{10}}{5} - \frac{6\sqrt{10}}{5} \right) \right $		
		$= \left -\frac{36}{5} - \frac{8}{5} + \frac{4}{5} \right $		
		$= 8 \qquad \qquad 2\sqrt{10} \qquad 3\sqrt{10} \qquad 3$		
		$(p'p'')^2 = (\frac{2\sqrt{10}}{10})^2 + (\frac{8\sqrt{10}}{5})^2 \dots \dots \dots \dots = \frac{2}{5} + \frac{128}{5}$	· I· IM	
		= 26		
		r' , $p'p'' = \sqrt{26}$. 1A	-
				:

ATHS II SOLUTION

RESTRICTED 內部文件

JAPAN JAPAN			•
	SOLUTIONS	MARKS	REMARKS
12. (a)	$\angle ABC = \frac{2 \times 5 - 4}{5} \times 90^{\circ}$ $= 108^{\circ} \dots$ $\angle ABE = \frac{(180 - 108)^{\circ}}{2}$	IA	P S H
,		IA IA IA IA IA IA	see Alt. Solution
	$= \frac{1 + \sqrt{5}}{4}$ as cos 36° > 0)	1A 9	
- (b)	$\frac{l_2AB}{OA} = \cos 54^{\circ}$	1A	Alt. Solution:
	$= \sin 36^{\circ}$ $0A = \frac{1}{2 \sin 36^{\circ}}$ $= \frac{1}{2 \sqrt{1 - \cos^{2}36^{\circ}}}$	1A	$OA^{2} + OB^{2} - AB^{2}$ = 20A · 0B cos AOB1A $2OA^{2}-1 = 2OA^{2} \cos 72^{\circ}$ $OA^{2} = \frac{1}{2(1 - \cos 72^{\circ})}$ 1A
	$= 2\sqrt{1 - \frac{(1 + \sqrt{5})^2}{16}}$ $= \frac{2\sqrt{16 - (1 + 5 + 2\sqrt{5})}}{\sqrt{16 - (1 + 5 + 2\sqrt{5})}}$ $= \frac{2}{10 - 2\sqrt{5}} \text{ cm}$	IM	$= \frac{1}{2(1-\cos 36^{\circ} + \frac{1}{2})} \dots 1M$ $= \frac{1}{3 - \frac{1 + \sqrt{5}}{2}}$ $= \frac{2}{5 - \sqrt{5}} \dots 1A$
		5	$OA = \sqrt{\frac{2}{5 - \sqrt{5}}} = \frac{2}{\sqrt{10 - 2\sqrt{5}}} \dots 1A$

	MARKE	REMARKS
SOLUTIONS	MARKS	Manaco
(c) Each angle of a regular decagon $= \frac{2 \times 10 - 4}{10} \times 90^{\circ} = 144^{\circ} \dots$		or / AOP = 36°
$\frac{2 \times AP}{AO} = \cos 72^{\circ}$	1A	
$AP = 2 \cos 72^{\circ} \times A0^{\circ}$ = $2(\cos 36^{\circ} - \frac{1}{2}) \times A0^{\circ}$	1A	
$= 2(\cos 30 - \frac{2}{2}) \times 10^{-2}$ $= 2(\frac{\sqrt{5} - 1}{4}) \frac{2}{10 - 2\sqrt{5}} \dots$	1M	see Alt. Solution
$= \frac{(\sqrt{5}-1)(\sqrt{5}+1)}{\sqrt{10-2\sqrt{5}(\sqrt{5}+1)}}$		
$= \frac{4}{\sqrt{(10 - 2\sqrt{5})(6 + 2\sqrt{5})}}$ $= \frac{4}{\sqrt{40 + 8\sqrt{5}}}$		
$= \frac{2}{\sqrt{10 + 2\sqrt{5}}} \text{ cm}$	1A 6	
Solution		
2. (a) In \triangle ABE, BE = $\sqrt{1 + 1 - 2 \cos 108^{\circ}}$		
$= \sqrt{2 + 2 \cos 72^{\circ}} \dots$	1 A	
In \triangle BCE, BE = EC,		
$1^{2} = BE^{2} + BE^{2} - 2BE^{2} \cos 36^{\circ}$ $BE = \frac{1}{\sqrt{2 - 2 \cos 36^{\circ}}} \cdots \cdots$	1 A	
$\cos 36^{\circ} - \cos 72^{\circ} = \frac{3}{4} - \cos 72^{\circ} \cos 36^{\circ}$ $= \frac{3}{4} - \frac{\cos 36^{\circ} \cos 72^{\circ} \cdot \sin 36^{\circ}}{\sin 36^{\circ}}$ $= \frac{3}{4} - \frac{1}{2} \frac{\sin 72^{\circ} \cos 72^{\circ}}{\sin 36^{\circ}}$	1	
$= \frac{3}{4} - \frac{1}{2} = \frac{\sin 36^{\circ}}{\sin 36^{\circ}}$ $= \frac{3}{4} - \frac{1}{4} = \frac{\sin 144^{\circ}}{\sin 36^{\circ}}$ $= \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	1A	
2		

DESTRICTED 內部文件 Provided by dse.life

	SOLUTIONS	MARKS	REMARKS
Alt. Solution (1)			•
12. (c) L PAB = 72°	- 54°		
		1A	
$\cos 18^{\circ} = \frac{1_{6}}{AP}$			
$AP = {2}$	l cos 18°	:	4 T
2	$\frac{1}{\sqrt{\frac{1 + \cos 36^{\circ}}{2}}}$	1A	
2	$ \frac{1}{1 + \frac{1 + \sqrt{5}}{2}} $ $ \frac{\sqrt{2}}{5 + \sqrt{5}} $. IM	
7	$ \begin{array}{c} 5 + \sqrt{5} \\ 2 \\ 10 + 2\sqrt{5} \end{array} $	1A	
Alt. Solution (2)			
In \triangle PAO, AP = A	0,		
	$A0^2 - 2(A0)^2 \cos 36^\circ$. 2A	
$=\frac{8}{10-2}$	$\frac{2}{0-2\sqrt{5}})^{2} (1-\cos 36^{\circ})$ $\frac{\sqrt{5}}{\sqrt{5}} (1-\frac{1+\sqrt{5}}{4})$ $\frac{\sqrt{5})(3+\sqrt{5})}{2\sqrt{5}(3+\sqrt{5})}$. 1M	
$= \frac{4}{10 + 2}$ $\Rightarrow AP = \sqrt{10 + 2}$	\sqrt{5} 2 2\sqrt{5}	. 1A	
	•		