

AULA 16 – DATA WAREHOUSE

PROFA. DRA. LEILA BERGAMASCO

CC5232 – Banco de Dados

NA AULA DE HOJE

- Data Warehouse
- Data Lakes

O CENÁRIO

- Corporações
 - Necessitam de decisões rápidas e precisas
 - Reação rápida a mudanças do ambiente
 - Obtenção de vantagem competitiva
- Dados
 - Disponíveis em sistemas não integrados
 - Espalhados em múltiplas e independentes plataformas
 - Dificuldade de análise

- Processamento Operacional (OLTP)
 - Funcionalidades do negócio
 - Processamento de transações: inserção, atualização, consulta e deleção
 - Reflete valor corrente, não-redundante e atualizável
 - Altamente voláteis
 - Modelagem E/R

- Processamento Analítico (OLAP)
 - Suporte à tomada de decisão
 - Dados históricos, não voláteis, ready-only
 - Integram informações de diversos sistemas operacionais
 - Permitem identificações de perfis, tendências e padrões
 - Redundância de dados aceita
 - Alto desempenho na recuperação de dados vs. economia de espaço
 - Banco de Dados Multidimensional

OLTP X OLAP

OLTP	OLAP
Orientados a aplicações	Orientados a assuntos
As Vezes de Grande tamanho	Quase sempre grandes
Dados granulados	Dados constituídos de sumarizações
Dados de pouca fontes	Dados de múltiplas fontes
Suporta consultas e atualizações	Atualizações em modo <i>batch</i>
Dados que mudam constantemente	Dados mais estáveis
Dados atuais	Dados históricos

Data Warehouse

- Sistema de Apoio à Decisão (SAD)
 - Realizam processamento analítico
 - Provêm as informações necessárias ao usuário
 - Permitem análise de situações e tomada de decisões
 - Necessidades estratégicas e táticas

DATA WAREHOUSE

- Data Warehouse
 - Fornece informações para auxiliar a tomada de decisões estratégicas
 - Une, de forma organizada, informações espalhadas em diversas fontes

DEFINIÇÃO DE DW

Data Warehouse

- Data Warehouse é uma coleção de dados orientados à assunto, integrada, dinâmica e não-volátil, para o suporte a decisões de gerenciamento.
- Focado na recuperação da informação.

Data Mart

- Subconjunto lógico do DW
- Projetado para representar uma função particular do negócio
- Rapidamente implementável e de baixo custo
- Controle local, em vez de centralizado
- Redução do tempo de resposta a consultas

DATA MART

- Problemas
 - Pode acarretar a fragmentação de dados da organização
- Solução
 - Deve haver planejamento para futura integração com um DW único de toda empresa
 - Construção de um DW na forma de DM distribuídos em unidades individuais

DATA WAREHOUSE X DATA MARTS

CARACTERÍSTICAS BÁSICAS DE UM DW

- Orientado por tema
- Integrado
- Não-volátil
- Variante no tempo
- Dados sumarizados
- Metadados
- Dados oriundos de fontes internas e/ou externas

ORIENTADO POR TEMAS

- Refere-se ao fato do DW armazenar informações sobre temas específicos importantes para o negócio da empresa
 - Exemplos produtos, atividades, contas, clientes, etc.
- O ambiente operacional é organizado por aplicações funcionais
 - Exemplo, em uma organização bancária, estas aplicações incluem empréstimos, investimentos e seguros.

INTEGRADO

Refere-se à consistência de nomes das unidades das variáveis

- Dados foram transformados até um estado uniforme
 - Por exemplo, todas as medidas (cm, polegadas, jardas) são convertidas para metros.

NÃO VOLÁTIL

Permite o "load-and-access"

 Os dados após serem extraídos, transformados e transportados para o DW estão disponíveis aos usuários somente para consulta

VARIANTE NO TEMPO

Os DW armazenam dados por um período de tempo de 5 a 10 anos

- Refere-se a algum momento específico
 - não é atualizável

 No DW haverá sempre uma tabela dimensão ou fato, cuja estrutura registrará o elemento tempo

METADADOS

"Dados sobre dados"

 Provêm informações sobre a estrutura de dados e as relações entre estas dentro ou entre bancos de dados

"São todas as informações do ambiente do DW que não são seus próprios dados"

GRANULARIDADE

• É o nível de detalhes dentro do banco de dados do DW

 Quanto menor a granularidade, maior o nível de detalhes e, consequentemente, maior o volume de dados armazenado

- Exemplo, Registro de Vendas de uma rede de supermercados:
 - diária: sumarização de vendas e carga diária no Banco de Dados
 - mensal: sumarização de dados e carga a cada 30 dias no Banco de Dados

AGREGAÇÃO

São registros sumarizados logicamente redundantes com os dados básicos do DW

VENDAS - LOJA XX (R\$)								
FILIAL	DIA							
FILIAL	13/09	14/09	15/09	16/09	17/09			
1	3000	2500	2000	3000	5000			
2	1000	1500	1200	1800	2500			
3	4000	3500	3000	3400	6000			

VENDAS - LOJA XX (R\$)			
FILIAL	SEMANA		
1	15500		
2	8000		
3	19900		

- Finalidades:
 - melhorar o tempo de reposta as consultas
 - reduzir o tempo de processamento
 - reduzir espaço de armazenamento

- Problemas da Modelagem E/R
 - Redução de visão global do negócio para grandes modelos
 - Não tem alto desempenho na recuperação de dados (principalmente joins)
 - Para cada variação na estrutura do modelo, há necessidade de reescrever e ajustar as implementações

- Modelagem Dimensional
 - Específica para processamento analítico
 - Apresentação de dados padronizada, intuitiva e que permite alto desempenho de acesso
 - Dois tipo de tabelas: Fato e dimensão.
 - Chave primária simples da tabela dimensão corresponde à chave estrangeira de fato (Esquema estrela)

- Uma tabela é bidimensional
- Problema de vendas:
 - Você é um fabricante de produtos hospitalares e precisa armazenar os dados de venda em diferentes regiões do Estado de São Paulo

E se eu quisesse saber ao longo de diferentes trimestres?

		Região						
		Reg 1	Reg 2	Reg 3	• • •			
to	P123							
	P124							
Produto	P125							
	P126							
	•							

- Modelos multidimensionais tiram proveito dos relacionamentos inerentes nos dados para preencher os dados em matrizes multidimensionais, chamadas cubos de dados.
- Ao acrescentar uma dimensão de tempo, como os trimestres fiscais de uma organização, seria produzida uma matriz tridimensional, que poderia ser representada usando um cubo de dados:

MODELAGEM DIMENSIONAL

Também chamado de hipercubo

O AMBIENTE DE UM DW

Arquitetura resumida de DW

-carga dentro do warehouse

MODELAGEM DIMENSIONAL

- O modelo multidimensional (também chamado de modelo dimensional) envolve dois tipos de tabelas: tabelas de dimensão e tabelas de fatos:
- Tabelas fatos
 - Contêm as medições numéricas do negócio
 - Exemplo: unidades_vendidas, custo_dolar
 - Grande quantidade de dados
 - Chave primária composta por FKs
 - Atributos numéricos e valorados

MODELAGEM DIMENSIONAL

- Tabelas dimensão
 - Contém dados descritivos do negócio
 - Chave primária simples
 - Pequena quantidade de informações se comparadas com as tabelas fato
 - Modelos reais contêm entre 4 e 15 dimensões
 - Modelos com mais de 20 dimensões devem ser melhor estudados

ESQUEMA ESTRELA

Este esquema é chamado de estrela, por apresentar a tabela de fatos "dominante" no centro do esquema e as tabelas de dimensões nas extremidades.

Quem é chave primária e chave estrangeira?

ESQUEMA FLOCO DE NEVE

 O esquema floco de neve é uma variação do esquema estrela em que as tabelas dimensionais de um esquema estrela são organizadas em uma hierarquia :

QUAL MELHOR?

- Floco de neve:
 - Normalização alta
 - Problemas na recuperação
- **E**strela:
 - Mais simples
 - Mais dispendioso no espaço

TOPOLOGIAS DE DWS

- Centralizada
 - Único Banco de Dados Físico
 - usados onde existe uma necessidade comum de informações
- Distribuída
 - Vários DW interligados através de uma rede com forte suporte a processamento distribuído
 - Usuário pode conectar-se a qualquer DW
 - Apresenta problemas de desempenho
 - Será muito utilizada para dar suporte às aplicações para Web.

ARQUITETURA DE UM DW

- Arquitetura de Dados
 - Uma camada (one tier)
 - Dados armazenados uma única vez
 - Duas camadas (two tier)
 - Dados operacionais e analíticos separados em camadas distintas
 - Três camadas (three tier)
 - Transformação de dados não é executada em um único passo

ARQUITETURA DE DADOS DO DW

Uma camada

ARQUITETURA DE DADOS DO DW

Duas camadas

ARQUITETURA DE DADOS DO DW

■ Três camadas

COMO CRIAR UM DW

- A aquisição de dados para o data warehouse envolve as seguintes etapas:
- Os dados precisam ser extraídos de várias fontes heterogêneas.
- Os dados precisam ser formatados por coerência dentro do data warehouse.
- Os dados precisam ser limpos para garantir a validade.
- Os dados precisam ser ajustados ao modelo de dados do data warehouse.
- Os dados precisam ser carregados no data warehouse.

PROBLEMAS DE UM DW

- Manutenção
 - Outras equipes irão consultar o seu DW?
- Mudanças das fontes de coleta
- Mudanças de necessidades de negócio

DATA WAREHOUSE X DATA LAKES

Data is processed and organized into a single schema before being put into the warehouse

Raw and •— unstructured data goes into a data lake

The analysis is done on the cleansed data in the warehouse

Data is selected and organized as and when needed

FERRAMENTAS

- DBMINER
- MS SQL Server
- AWS Redshift
- Azure DW

Amazon

EMR

图

Amazon

aws

CONCLUSÕES

- Data Warehouse integra grandes volumes de dados originados em sistemas separados
- Necessitam de grande esforço para seu desenvolvimento
- Torna possível a descoberta de conhecimento escondido nos dados
- Útil para organizações que precisem tomar decisões estratégicas de risco e que necessitem se posicionar de forma vantajosa
- Desenvolvimento de servidores de BD paralelos poderá viabilizar o suporte a Data Warehouses cada vez maiores
- De 2009
 - Tratará dados multimídia
 - Data Warehouse deverá também ser viabilizado na Internet.

OBRIGADO E ATÉ A PRÓXIMA AULA!