(2) (2) (3)

every x ∈ [0, 1) has at least I decimal expansion

enapo	ints (of the	intervals	ie	10K	where	0 <	m	<10k	haw	e d	ole cimo	u exp.
every	other	xe (0,	1) has ex	cactly	1								
0. a	a _z a ₃									e'	cactly	one	
for a	any s	equence	(a,,aa,) u	here	an e {	ره	,	3 Y E	here i	5^ χ€		
	•		nsim O, a										
follows	fron	n:											
	Co		$a > \dots$ bits of a				ed (losed	intev	vals	with	In	-∋o
Outlin	1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000											
⇒ exi	stence	of a noi	n+ c∈ ∩	I _n									
fo	- 0061-	s class	so c GT										
			se cn EI (auchy										
		c _n → c∈R											
			n (>									
Si	ince	In 70	, there	Cannot	exis	t à poi	nts	w/	dist	0 :.	it is	unique	2 (
algeb	raic	apprach											
ane	ξ0, y.	9			oγ. α								
χ- (3. a, a	۱۵	means	χ =		n conv	enges						
everu	χe	[0,1]	has a d	ecimal	expan:	si On							
PI	ck	largest	a, st	$\frac{a_1}{10} \leq 3$	X	Then	x	- 0.	9.92.	. a.	≤ 1/1	0 ^	
P	icK	largest	a, st	100 c	X	for e	eich	ne	U)				
			89	9 ,									
	\\ \frac{7}{10^4}	=]	N=K+1	10 n = 10	آلا								
0.	q ₁	ak 999.	= 0.0	ι, α,	L-1 (a	k+1)							
		9											
?. d	ecimal	expansion	of rati	onals?									

frida	ay	3.7																			
COUY	table	. 8	un co	unt	able	sets															
964	a fi	uncti	on s	÷: χ=	y is	s bi	jectiv	ie (1	a bije	ctions	if	1+	is bot	h on	e-to	-one	and	ont)		
			X (3																	
				•																	
deti	a s	set .	χ is	finit	k if	eit	her	X=	Ø ov	for	801	me	ne M	, th	eve i	s a	bije	ction	from		
	χn	اع د	, a,	, nj	i.e	. X	= {2	, ⁷ 2,	, , }	in 3											
dett	χis	cour	ntabl	e infi	nitc i	if the	ere i	5 a	bijec	tion	frow	χ	to M	V ie	Me	can	list	- th	e ele.	ofz	
		يع	{×,	, Xa,	х _{з,}	. 3															
96+1	X	is	Cour	ntable	if	ei ti	eithe	u fi	nite (or co	unta	bly	infini	te.							
def 1	X	is	unco	untak	ole it	it	is n	ot c	ounto	ıble	ie	too	large	for i	ts e	lemen	ts to	be	liste	A	
ex (·N i	s co	untal	oly i	nfinit																
	°Z	is c	ount	able i	nfinit	e															
				1, a, -																	
	Tex	ercis	e: w	rite	a fo	rm u) a	to n	nap													
	• Q	is					(refi														
		0-	> -	> 1	2	-2	3	-3	-10		γ _ <	ا د اما	b/c ir	li a							
			1/2	7/12	1	- 1/2	3/2	3/2			K-3	rip	אנ אני	115+							
			1/3	-1/3	43	2/3	7,	2/3													
							: 04														
							r any	y list	of	humb	ers	fran	(0,1)	, tr	nene	is a	numbe	r fr	om lo)' ')	
				on H		15+															
				2013.																	
				aa aa																	
	χ_3	٤ 0.	. a31	92 0	33																
	• •																				
	fet	p.	= 0. k	, b ₂	b																

where
$$b_i = \begin{cases} 1 & \text{if } a_i \neq 1 \\ \lambda & \text{if } a_{ik} = 1 \end{cases}$$

• if X is countable, then any subset of X is countable

• if X is countable.

Open and closed Sets

Basic examples: open and closed intervals (a_ib) and (a_ib) in in in the space and (a_ib) in in in the space (a_ib) there is (a_ib) in in its complement (a_ib) in in its complement (a_ib) in in (a_ib) is open if for every point (a_ib) in the space (a_ib) in its complement (a_ib) in (a_ib) in

