CHAPTER 4:	
DEFINING A PROJECT	
	1

DEFINING A PROJECT

3

Defining the Project

Step 1: Defining the Project Scope

Step 2: Establishing Project Priorities

Step 3: Creating the Work Breakdown Structure (WBS)

Step 4: Integrating the WBS with the Organization

Step 5: Coding the WBS for the Information System

Why we need to define the project scope?

Step 1: Defining the Project Scope

- Project Scope
 - A definition of the end result or mission of the project—a product or service for the client/customer in specific, tangible, and measurable terms.
- 2. Purpose of the Scope Statement
 - □ To clearly define the deliverable(s) for the end user.
 - □ To focus the project on successful completion of its goals.
 - To be used by the project owner and participants as a planning tool and for measuring project success.

- 1. Project objective
- 2. Deliverables
- 3. Milestones
- 4. Technical requirements
- 5. Limits and exclusions
- 6. Reviews with customer

7

Step 2: Establishing Project Priorities

- 1. Causes of Project Trade-offs
 - Shifts in the relative importance of criterions related to cost, time, and performance parameters
 - Budget–Cost
 - Schedule–Time
 - Performance-Scope
- 2. Managing the Priorities of Project Trade-offs
 - Constrain: a parameter is a fixed requirement.
 - □ Enhance: optimizing a parameter over others.
 - Accept: reducing (or not meeting) a parameter requirement.

Step 3: Creating the Work Breakdown Structure

- Work Breakdown Structure (WBS)
 - □ An hierarchical outline (map) that identifies the products and work elements involved in a project.
 - Defines the relationship of the final deliverable (the project) to its subdeliverables, and in turn, their relationships to work packages.
 - Best suited for design and build projects that have tangible outcomes rather than process-oriented projects.

How WBS Helps the Project Manager?

13

How WBS Helps the Project Manager

- Helps manage plan, schedule, and budget.
- □ Facilitates evaluation of cost, time, and technical performance of the organization on a project.
- □ Provides management with information appropriate to each organizational level.
- Helps in the development of the organization breakdown structure (OBS). which assigns project responsibilities to organizational units and individuals
- Defines communication channels and assists in coordinating the various project elements.

)) V

Work Packages

- 1. A work package is the lowest level of the WBS.
 - □ It is output-oriented in that it:
 - Defines work (what).
 - Identifies time to complete a work package (how long)
 - Identifies a time-phased budget to complete a work package (cost)
 - Identifies resources needed to complete a work package (how much)
 - Identifies a single person responsible for units of work (who)
 - Identifies monitoring points (milestones) for measuring success.

Step 4: Integrating the WBS with the Organization

- 1. Organizational Breakdown Structure (OBS)
 - Depicts how the firm is organized to discharge its work responsibility for a project.
 - Provides a framework to summarize organization work unit performance.
 - Identifies organization units responsible for work packages.
 - Ties the organizational units to cost control accounts.

Project Roll-up

Cost Account

- ☐ The intersection of the WBS and the OBS that is a budgetary control point for work packages.
- Used to provide a roll-up (summation) of costs incurred over time by a work package across organization units and levels, and by deliverables.

		Direct Labor Budge	t	
1.1.3	Hard drive	1,660		
1.1.3.1	Motor	10		
	Purchasing		10	
1.1.3.2	Circuit board	1,000		
	Design		300	
	Production		400	
	Testing		120	
	Software		180	
1.1.3.3	Chassis frame	50		
	Production		50	
1.1.3.4	Read/write head	600		
	Design		300	
	Production		200	
	Testing		100	

	ect Labor Budg		
		Direct Labor Budg	get
Design		600	
1.1.3.2	Circuit board		300
1.1.3.4	Read/write head		300
Production		650	
1.1.3.2	Circuit board		400
1.1.3.3	Chassis frame		50
1.1.3.4	Read/write head		200
Testing		220	
1.1.3.2	Circuit board		120
1.1.3.4	Read/write head		100
Purchasing		10	
1.1.3.1	Motor		10
Software		180	
1.1.3.2	Circuit board		180
Total	1.6	60	

Step 5: Coding the WBS for the Information System

WBS Coding System

- □ Defines:
 - Levels and elements of the WBS
 - Organization elements
 - Work packages
 - Budget and cost information
- Allows reports to be consolidated at any level in the organization structure

ID	Task Name	
1	1 Computer project	
2	1.1 Disk Storage units	
3	1.1.1 Floppy	
4	1.1.2 Optical	
5	1.1.3 Hard	
6	1.1.3.1 Motor	
7	1.1.3.1.1 Sourcing work package	
8	1.1.3.1.2*	
9	1.1.3.1.3*	MDO
10	1.1.3.1.4*	WBS
11	1.1.3.2 Read/write head	
12	1.1.3.2.1 Cost account	Coding
13	1.1.3.2.2 Cost account	Joaning
14	1.1.3.2.3 WP	
15	1.1.3.2.4 WP	
16	1.1.3.2.5 WP	
17	1.1.3.2.6 Cost account	
18	1.1.3.2.7*	
19	1.1.3.2.8*	
20	1.1.3.2.9*	

Responsibility Matrices

- 1. Responsibility Matrix (RM)
 - □ Also called a linear responsibility chart.
 - □ Summarizes the tasks to be accomplished and who is responsible for what on the project.
 - · Lists project activities and participants.
 - Clarifies critical interfaces between units and individuals that need coordination.
 - Provide an means for all participants to view their responsibilities and agree on their assignments.
 - Clarifies the extent or type of authority that can be exercised by each participant.

25

R = Responsible S = Supports/assists

Responsibility Matrix for the Conveyor Belt Project

				Organia	ration			
Deliverables	Design	Development	Documentation	Assembly	Testing	Purchasing	Quality Assur.	Manufacturing
Architechural design	1	2			2		3	3
Hardware specifications	2	1				2	3	
Kernel specifications	1	3						3
Utilities specification	2	1			3			
Hardware design	1			3		3		3
Disk drivers	3	1	2					
Memory management	1	3			3			
Operating system documentation	2	2	1					3
Prototypes	5		4	1	3	3	3	4
Integrated acceptance test	5	2	2		1		5	5

1 Responsible 2 Support 3 Consut 4 Notification 5 Approval

27

ESTIMATING PROJECT TIMES AND COSTS

Estimating Projects

1. Estimating

- ☐ The process of forecasting or approximating the time and cost of completing project deliverables.
- ☐ The task of balancing the expectations of stakeholders and the need for control while the project is implemented

2. Types of Estimates

- □ Top-down (macro) estimates: analogy, group consensus, or mathematical relationships
- □ Bottom-up (micro) estimates: estimates of elements of the work breakdown structure

29

Why Estimating Time and Cost Are Important

- Estimates are needed to support good decisions.
- Estimates are needed to schedule work.
- Estimates are needed to determine how long the project should take and its cost.
- Estimates are needed to determine whether the project is worth doing.
- Estimates are needed to develop cash flow needs.
- Estimates are needed to determine how well the project is progressing.
- Estimates are needed to develop time-phased budgets and establish the project baseline.

Estimating Guidelines for Times, Costs, and Resources

- 1. Have people familiar with the tasks make the estimate.
- 2. Use several people to make estimates.
- 3. Base estimates on normal conditions, efficient methods, and a normal level of resources.
- 4. Use consistent time units in estimating task times.
- 5. Treat each task as independent, don't aggregate.
- 6. Don't make allowances for contingencies.
- 7. Adding a risk assessment helps avoid surprises to stakeholders.

31

Macro versus Micro Estimating

Conditions for Preferring Top-Down or Bottom-up Time and Cost Estimates

Condition	Macro Estimates	Micro Estimates
Strategic decision making	Χ	
Cost and time important		X
High uncertainty	Χ	
Internal, small project	Χ	
Fixed-price contract		X
Customer wants details		X
Unstable scope	Χ	

- 1. Make rough top-down estimates.
- 2. Develop the WBS/OBS.
- 3. Make bottom-up estimates.
- 4. Develop schedules and budgets.
- 5. Reconcile differences between top-down and bottom-up estimates

33

Methods for Estimating Project Times and Costs

- Macro (Top-down)
 Approaches
 - Consensus methods
 - Ratio methods
 - Apportion method
 - Function point methods for software and system projects

Simplified Basic Function Point Count Process for a Prospective Project or Deliverable Complexity Weighting Element Low Average High Total

	Complexity Weighting									
Element	Low	Average	High	Total						
Number of inputs	×2+	×3+	×4	=						
Number of outputs	$_{} \times 3 +$	×6+	×9	=						
Number of inquiries	×2+	×4+	×6	=						
Number of files	$_{} \times 5 +$	×8+	×12	=						
Number of interfaces	×5+	× 10 +	× 15	=						

36BLE 5.2

	Software	Project 13: Pati	ent Admitting and Billi	ing		
15	Inputs	Rated cor	nplexity as low	(2)		
5	Outputs	Rated cor	nplexity as average	(6)		
10	Inquiries	Rated cor	nplexity as average	(4)		
30	Files	Rated cor	nplexity as high	(12)		
20	Interfaces	Rated cor	nplexity as average	(10)		
	A	Application of Co	omplexity Factor			
Element	Count	Low	Average	High	Total	
Inputs	15	\times 2			= 30	
Outputs	5		\times 6		= 30	
Inquiries	10		$\times 4$		= 40	
Files	30			\times 12	= 360	
Interfaces	20		\times 10		= 200	
				Total	660	

Methods for Estimating Project Times and Costs

- Micro (Bottom-up) Approaches
 - □ Template method
 - Parametric ProceduresApplied to Specific Tasks
 - Detailed Estimates for the WBS Work Packages
 - □ Phase Estimating: A Hybrid

	_								_						
	ct Numbe						_			Cathlee	n Walli	ng			
Proje	ct Descrip	otion: Road Divers	on Projec	t			Date:		5 - 07						
													_		
			E	timato	- 1	E	timato	- 2	E-	timato	- 2	Ection	tor Av		Patio*
			Low				Aver.	-		Aver.		Estimator Averages Aver. Aver. Aver.			
WBS		Description	Est.	Est.	Est.	Est.	Est.	Est.	Est.	Est.	Est.	Low	7,440	High	Aver
ID			Days	Days	Days	Days	Days	Days	Days	Days	Days	Days	Days	_	
102	Engineer	ing	95	100	105	97	100	103	93	96	100	95.0	98.7	102.7	0.08
103		lanagement	14	15	17	14	16	18	13	14	15	13.7	15.0	16.7	0.20
104		perty Acceptances	44	48	52	45	50	52	43		49	44.0	48.0	51.0	0.15
105	Base Ma		36	38	40	36	37	39	35		37	35.7	37.0	38.7	0.08
106		te Utilities	7	8	9	7	8	9	8	_	10		8.3		0.24
107	EPA Acce		13		15	14		16	13		17	13.3	14.7	16.0	0.18
108	Alignmen	nt Surveys	32	35	38	32	35	37	32	34	35	32.0	34.7	36.7	0.13
							100		<u> </u>						
												gh)/Ave ty in the			

Types of Costs

- Direct Costs
 - □ Costs that are clearly chargeable to a specific work package.
 - Labor, materials, equipment, and other
- 2. Direct (Project) Overhead Costs
 - Costs incurred that are directly tied to an identifiable project deliverable or work package.
 - · Salary, rents, supplies, specialized machinery
- 3. General and Administrative Overhead Costs
 - Organization costs indirectly linked to a specific package that are apportioned to the project

41

Contract Bid Summary Costs

Direct costs	\$80,000
Direct overhead	\$20,000
G&A overhead (20%)	\$20,000
Profit (20%)	\$24,000
Total bid	\$144.000