

Filière image (IMA)

Y. Gousseau, F. Tupin

Equipe pédagogique : E. Angelini, P. Gori, C. Kervazo, S. Ladjal, A. Leclaire, L. Le Folgoc, H. Maître, , A. D. Parakkat

Captation de la lumière : presque 200 ans d'histoire

Explosion des volumes et usages

Photographie grand public

SOURCE: InfoTrends via Bitkom * Estimates

Contexte

Captation de la lumière : presque 200 ans d'histoire

Explosion des volumes et usages

- Photographie grand public
- Imagerie aérienne

Contexte

Captation de la lumière : presque 200 ans d'histoire

Explosion des volumes et usages

- Photographie grand public
- Imagerie aérienne
- Imagerie bio-médicale

Le domaine en quelques mots

- Fort contenu méthodologique et pluridisciplinaire
 - Informatique
 - Mathématiques appliquées
 - Intelligence artificielle
 - Perception
 - Physique
- Multiples applications industrielles

- Nombreux débouchés, majoritairement de type R & D
 - Grands groupes (EDF, Valeo, Thales, Idemia, Safran, General Electric, Philips, Apple, etc.)
 - Etablissements publics de recherche (CNES, ONERA, Universités, etc.)
 - Start-ups et PME

Deuxième année

Cours :

- Bases de l'imagerie numérique, de la vidéo et de la 3D
- Cours méthodologiques : représentation des images, outils de traitement et d'analyse, apprentissage automatique, etc.
- Domaines d'application : bio-médical, aérien, photographie, etc.

Deuxième année

Cours :

- Bases de l'imagerie numérique, de la vidéo et de la 3D
- Cours méthodologiques : représentation des images, outils de traitement et d'analyse, apprentissage automatique, etc.
- Domaines d'application : bio-médical, aérien, photographie, etc.
- Mise en œuvre pratique
 - travaux pratiques
 - projets (lecture et implémentation d'articles de recherche)
 - challenge en apprentissage automatique

Deuxième année

Cours :

- Bases de l'imagerie numérique, de la vidéo et de la 3D
- Cours méthodologiques : représentation des images, outils de traitement et d'analyse, apprentissage automatique, etc.
- Domaines d'application : bio-médical, aérien, photographie, etc.
- Mise en œuvre pratique
 - travaux pratiques
 - projets (lecture et implémentation d'articles de recherche)
 - challenge en apprentissage automatique
- Enseignement et encadrement en lien étroit avec la recherche

Troisième année

Au choix

- Masters M2 :
 - Informatique : Data and Artificial Intelligence (IPP), IMA (Sorbonne Université)
 - Math. + info.: MVA (Mathématique, Vision, Apprentissage, IPP/UPSa), Data Science (IPP)
 - Applications: BIM, imagerie bio-médicale (Paris Cité), Méthodes physiques en télédétection (Sorbonne Université)
 Certains masters sont très sélectifs: → soignez vos notes!
- Option interne IA (partenariat ENSTA et TSP)
- Option interne IMA: projet long (PRIM)+ cours à la carte
- Cursus étranger (TUM, KTH, ETH Zurich, NUS, etc.)
 Correspondante filière : Elsa Angelini

Troisième année

Stage de fin d'étude typiquement en recherche et développement, possible également en recherche académique.

Egalement possibilité de PhD tracks : Computer Science, Biomedical Imaging , maths

Formation adaptée à une poursuite en thèse

Déroulement détaillé de la 2A

- Introduction (4IM01)
 Acquisition, traitements, analyse
 Méthodes multi-échelles et morphologiques
- Méthodes avancées (4IM03)
 Méthodes variationelles et bayésiennes, optimisation discrète, etc.
- Imagerie médicale et biologique (4IM04)

 Physique de l'acquisition, recalage, segmentation, analyse de formes
- Apprentissage pour l'image (4IM205)
 Apprentissage supervisé et non-supervisé, réseaux de neurones, apprentissage profond
- vision 3D / vidéo (4IM08)
 Acquisition et représentation des données 3D / traitement et analyse de vidéos
- Télédection et applications industrielles (4IM07)
 Télédétection, imagerie cohérente, séparation de sources, intervenants industriels
- Apprentissage pour l'image 2 / Méthodes par patchs (4IM06) Apprentissage profond et modèles génératifs Restauration d'images, photographie computationnelle

