Stat 416 Statistical Analysis of Time Series

Julia Schedler

2024 - 09 - 23

Table of contents

Welcome to Time Series!

The lecture slides and code here are heavily drawn from the book I have selected for this course.

Also, big thanks to our Lab Assistant, Bena Smith, for serving as editor for these notes!

Part I

Week 1

Welcome to week 1! We will cover Chapter 1 and part of Chapter 2.

1 Lecture 1

2 Welcome!

2.1 Agenda

10:10 Introductions

10:30 Course Rhythm/Roadmap

10:45 Syllabus

11:00 R Setup

11:15 Activity

11:45 Introduction to Time Series Models

Extra time: Get started on Exercises

2.2 Introductions

Arrange yourselves into groups of 3-4 and share the following:

- Name
- Major
- Whether you spend more time thinking about the past or the future
- Whether you are more certain when you think about the past or the future

Please be prepared to share summary data with the class!

2.3 About Me (Professional)

- Cal Poly SLO B.S. in Statistics and Pure Math
- PhD (and MA) in Statistics from Rice University
 - Expertise: Spatial/Spatiotemporal Statistics (specifically spatial weight matrices)
 - Also did graduate certificate in teaching and learning

- 1.5 years authoring online interactive course material for zyBooks/Wiley (EdTech portion Higher Education industry)
- 1.5 years managing a team of Statistics authors at zyBooks/Wiley
- 1.5 years as Research Scientist (wastewater epidemiology) at Rice University

2.4 Teaching Philosophy

- Minimize yapping
- Promote collaboration
- Provide varied opportunities for feedback

2.5 Course Rhythm

- Assignments due Monday nights at Midnight (11:59:59 PM)
- New assignments posted Mondays at 5pm
- Quizzes due Thursday nights at midnight
- One Midterm on Wednesday October 23, in class
- One cumulative final exam
 - Section 1 (10am): Wednesday, December 11 from 10am-1pm
 - Section 2 (2pm): Friday, December 13 from 1pm-4pm

2.6 Syllabus

```
Syllabus on Canvas (section 1)
```

Syllabus on Canvas (section 2)

3 Software Setup

3.1 Installing R

- Go to https://cran.r-project.org/
- Select your operating system
- Follow the download instructions

3.2 Installing RStudio

- Go to https://posit.co/download/rstudio-desktop/
- Step 2 should have a clickable link with your operating system (auto-detected)
- Follow the download instructions

3.3 Getting Started

- In R Studio, Click File -> New -> Quarto Document
- Title it Lecture 1 Notes
- Delete the template material
- Add setup chunk

library(astsa)

4 Activity

4.1 Group time!

Split into groups of 4, I will come around and assign an example to you

- In your quarto document, create a heading with a title of your example and "Equations" and "Visualizations"
- Read over the description of the example (access the book through Canvas) install and load the astsa package.
- Copy the R code from https://github.com/nickpoison/tsda/blob/main/R code.md# chapter-1
- Run the R code and verify whether you can reproduce the figure from the text
- Write down a research question that could be answered using the time series data for your example

4.2 Example 1.1 (Quarterly Earnings)

```
par(mfrow=2:1)
tsplot(jj, ylab="QEPS", type="o", col=4, main="Johnson & Johnson Quarterly Earnings")
tsplot(log(jj), ylab="log(QEPS)", type="o", col=4)
```


4.3 Example 1.2 (Climate Change)

4.4 Example 1.3 (Dow Jones Industrial Average)

```
library(xts)  # install.packages("xts") if you don't have it already

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':
    as.Date, as.Date.numeric

djia_return = diff(log(djia$Close))[-1]
#par(mfrow=2:1)
plot(djia$Close, col=4)
```


plot(djia_return, col=4)


```
tsplot(diff(log(gdp)), type="o", col=4)  # using diff log
points(diff(gdp)/lag(gdp,-1), pch="+", col=2) # actual return
```


4.5 Example 1.4 El Niño

```
par(mfrow = c(2,1))
tsplot(soi, ylab="", xlab="", main="Southern Oscillation Index", col=4)
text(1970, .91, "COOL", col=5)
text(1970, -.91, "WARM", col=6)
tsplot(rec, ylab="", main="Recruitment", col=4)
```


4.6 Example 1.5 (Predator-Prey Interactions)

Link to more info!

4.6.1 Cute animal pictures

4.7 Example 1.6 fMRI Imaging

5 Introduction to Time Series Models

5.1 White Noise

- in general, a collection of random variables w_t
 - uncorrelated
 - mean 0, variance σ_w^2
 - denoted $w_t \sim wn(0,\sigma_w^2)$
- for us, usually independent and identically distributed (i.i.d.) normal
 - $-\ w_t \sim \mathrm{iid}\ N(0,\sigma_w^2)$

5.2 Plotting White Noise

Which example does this bear the most resemblance to?

```
w <- rnorm(500, 0, 1)
plot(w, type = "p", col = "blue", xlab = "t (order of sampling)")</pre>
```


5.3 What White Noise isn't

- serially correlated no temporal structure
- smooth "nice" trend/temporal structure

How can we build this "nice" structure into the model?

5.4 Moving Averages, Smoothing, and Filtering

Replace w_t with an average of its current value and two previous values:

$$v_t = \frac{1}{3}(w_{t-2} + w_{t-1} + w_t)$$

- Why do we divide by 3?
- If $w_t \sim \text{iid } N(0, \sigma_w^2)$, what is the distribution of v_t ?
- Why only the previous two values? Why not one in the past and one in the future?

5.5 Plotting a Moving Average

```
v = stats::filter(w, sides = 2, filter = rep(1/3, 3))
v_alt = stats::filter(w, sides = 1, filter = rep(1/3,3))
par(mfrow=2:1)
tsplot(v, ylim = c(-3, 3), col = 4, main="moving average")
tsplot(v_alt, ylim = c(-3, 3), col = 4, main="moving average")
```


Compare this moving average to the SOI and Recruitment series. How do they differ?

5.6 Autoregressions

Starting with white noise w_t , consider the equation:

$$x_t = 1.5x_{t-1} - 0.75x_{t-2} + w_t$$

- a "second-order equation" (why?)
- A regression of the current value x_t of a time series as a function of the past two values of the series

- "auto" means self
- recall (multiple) regression of Y on $X=(X_1,X_2)$ is $Y=\beta_0+\beta_1X_1+\beta_2X_2+\varepsilon$ and compare to autoregression formula above
- See (or hear) details in textbook page 11

5.7 Plotting Autoregressions

```
set.seed(90210)
w = rnorm(250 + 50) # 50 extra to avoid startup problems
x = filter(w, filter=c(1.5,-.75), method="recursive")[-(1:50)]
tsplot(x, main="autoregression", col=4)
```


5.8 Random Walk with Drift

Again starting with white noise $w_t \sim wn(0, \sigma_2^2)$, consider the time series

$$x_t = \delta + x_{t-1} + w_t$$

This is called the "random walk with drift" model.

- δ is the drift term ($\delta = 0$ corresponds to "random walk"- no drift)
- initial condition $x_0 = 0$

Can be rewritten

$$x_t = \delta t + \sum_{j=1}^t w_j$$

5.9 Plotting a Random Walk with Drift

```
set.seed(314159265) # so you can reproduce the results
w = rnorm(200) ## Gaussian white noise
x = cumsum(w)
wd = w +.3
xd = cumsum(wd)
tsplot(xd, ylim=c(-2,80), main="random walk", ylab="", col=4)
clip(0, 200, 0, 80)
abline(a=0, b=.3, lty=2, col=4) # drift
lines(x, col=6)
clip(0, 200, 0, 80)
abline(h=0, col=6, lty=2)
```


5.10 Signal Plus Noise

Consider the model:

$$x_t = 2\cos(2\pi\frac{t+15}{50}) + w_t$$

- $2\cos(2\pi\frac{t+15}{50})$ is the signal
- w_t is the noise

5.11 Plotting Signal Plus Noise (two scenarios)

```
# cs = 2*cos(2*pi*(1:500)/50 + .6*pi)  # as in the text
cs = 2*cos(2*pi*(1:500+15)/50)  # same thing
w = rnorm(500,0,1)
par(mfrow=c(3,1))
tsplot(cs, ylab="", main = expression(x[t]==2*cos(2*pi*t/50+.6*pi)))
tsplot(cs + w, ylab="", main = expression(x[t]==2*cos(2*pi*t/50+.6*pi)+N(0,1)))
tsplot(cs + 5*w, ylab="", main = expression(x[t]==2*cos(2*pi*t/50+.6*pi)+N(0,25)))
```


5.12 Next Time

- \bullet Exercises at the end of chapter 1
- Start Chapter 2
 - Review definition of covariance, correlation, expected value, and variance (good use of AI– prompt then Wikipedia?)

6 Lecture 2

6.1 Recap from last time

- Several examples of time series data sets
- Experience plotting the time series
- Exposure to some common time series models

6.2 Today

- Notation review
- Mean and covariance function of a time series
- R code activity
- Stationarity (if time)

6.3 Coming up/notices

- I combined the Canvas sections (applies to section 2)
- Quiz 1 posted today, due tomorrow at midnight (20 minutes to do it)
- Assignment 1 will also be posted today, due Monday at midnight (boundary between Monday and Tuesday)
- Next week's office hours: M 4-5, T 12-2

7 Review of notation

7.1 Notation and Data- White noise

"Let w_t be a white noise series"

t	Random Variable	Example data
1	$w_1 \sim N(0, \sigma_w^2)$	-0.0777401
2	$w_2 \sim N(0, \sigma_w^2)$	-1.2742499
	:	:
\mathbf{t}	$w_t \sim N(0, \sigma_w^2)$	-0.3434436
:	:	:
n	$w_n \sim N(0, \sigma_w^2)$	0.068451

If we interpret the collection of w_t as a random vector, then $w_t \sim MVN(\vec{0}, I)$ (why I?)

Note: sometimes w_t could mean a (univariate) value of a white noise series for a particular time t (kind of like how you refer to an arbitrary x_i when you have a sample x_1, \ldots, x_n).

7.2 (Aside) The Multivariate normal distribution

Let's look on Wikipedia. What are the parameters?

- mean vector
- variance (covariance) matrix
 - If the covariance matrix is the identity matrix, the the covariances are 0

7.3 (Aside) Bivariate normal distribution for uncorrelated case

7.4 (Aside) Bivariate normal distribution for correlated case

7.5 Building time series models from White Noise

Model	Inputs	Output
White noise	probability distribution,	
	independence assumption,	
	σ_w^2	
Moving average with p points	w_1, w_2, \dots, w_n	
Autoregression of order p	w_1, w_2, \dots, w_n and	
	$\phi = (\phi_1, \dots, \phi_p)$	
Random walk with drift	w_1, w_2, \dots, w_n and δ	
Signal plus noise	w_1, w_2, \dots, w_n and a function	
	f(t)	

Identify which of the inputs are random variables, pre-specified constants, pre-specified functions, or parameters to be estimated.

7.6 Building time series models from White Noise

Model	Inputs	Output
White noise	probability distribution,	w_1, w_2, \dots, w_n ; for each
	independence assumption,	$t = 1, \dots, n$ we have
	σ_w^2	$w_t \sim N(0, \sigma_w^2)$
Moving average with p points	w_1, w_2, \dots, w_n	$v_t = \frac{1}{p} \sum_{i=1}^{p} w_{t-(p-i)}$
Autoregression of order p	w_1, w_2, \dots, w_n and	$x_t = \sum_{i=1}^p \phi_i x_{t-i} + w_t$
	$\phi = (\phi_1, \dots, \phi_p)$	
Random walk with drift	w_1, w_2, \dots, w_n and δ	$x_t = \delta + x_{t-1} + w_t$
Signal plus noise	w_1, w_2, \dots, w_n and a function	$x_t = f(t) + w_t$
	f(t)	

Identify which of the inputs are random variables, pre-specified constants, pre-specified functions, or parameters to be estimated.

7.7 Notation and Data

Consider the general version of the autoregressive model of order 1:

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$$

If you had data representing this process, what would it look like in R?

7.8 Notation and Data

Suppose $\phi_1 = 1.5$ and $\phi_2 = -0.75$.

```
set.seed(90210)
w = rnorm(250 + 50) # 50 extra to avoid startup problems
x = filter(w, filter=c(1.5,-.75), method="recursive")[-(1:50)]
x
```

```
[1] -0.635871231 -3.159366457 -3.336983558 -0.670017029 1.928041062
  [6] 6.262719337 8.811276769 6.994297589 6.964249838 4.172630149
 [11] 0.109387891 -2.838470465 -3.650839732 -5.293859716 -4.924149166
 [16] -3.496962661 -0.001206165 3.982335012 5.166059171 5.391303364
 [21] 4.598152813 2.726933281 -0.656314289 -2.634587218 -3.070392399
 [26] -2.447369835 -2.377035961 -3.272222376 -2.212579163 -1.609152064
 [31] 0.088151906 1.834292884 1.566977751 1.162326919 1.731270484
 [36] 0.452095019 0.751851590 2.197474589 2.037090911 2.053962776
 [41] 1.057859241 0.173798276 -1.559467228 -1.275347235 -1.934447794
 [46] -0.637721288 1.108281203 1.703590245 2.757116948 3.535041828
 [51] 2.785518718 -0.255025902 -3.601017151 -5.665073618 -5.320832378
 [56] -3.801870752 -1.843797185 0.540063136 1.577259338 2.719389114
 [61] 2.386440948 0.360417214 0.130240105 1.213682241 0.970840444
 [66] 1.672645132 1.169230978 -0.197824215 -0.552895930 0.483295378
 [71] 2.002207259 2.483139041 4.761206339 7.166338800 7.329547964
 [76] 5.238955522 1.955859515 -1.445155254 -3.624225029 -3.976740747
 [81] -2.522488940 -0.560280191 1.716462129 2.956985039 3.167747954
 [86] 2.655920142 2.503263867 0.243980727 -1.733850533 0.218414375
 [91] 1.212655465 1.188737220 -0.024525903 0.824315000 -0.929797989
 [96] -3.643408960 -4.872924684 -5.365789994 -4.379073769 -0.816292614
[101] 2.069716217 3.317790830 4.024356559 4.445225438 4.807260941
[106] 3.077726417 0.597309443 -1.889650709 -3.193428803 -4.189085934
[111] -5.056410971 -5.113692514 -1.701862879 0.197898712 1.872046685
[116] 2.519653174 1.995693810 1.375972346 2.342728546 1.412737664
[121] -1.604693814 -4.224595521 -6.808370201 -8.238970434 -7.267053979
[126] -5.073807901 -0.614874790 1.926334410 3.620792660 4.301297376
[131] 2.938794190 2.482699730 2.062144627 0.145550378 -2.263580334
[136] -3.515516041 -5.626740964 -5.675586843 -5.285219511 -3.877662550
[141] -2.843191932 -2.159754220 -1.134175851 0.621526810 2.144676177
[146] 1.301986893 1.090681772 0.483465932 -1.699760373 -0.907358670
[151] -1.964189610 -2.083464483 -2.401372850 -1.102177741 0.090984198
[156] 1.539763874 1.675986590 1.340872200 -0.451023892 -1.070116007
[161] -1.485934032 0.223487236 2.011408533 1.630095949 3.323091734
```

```
[166] 4.997983168 5.156394449 4.241727271 0.336603262 -1.668930450
[171] \ -3.056412007 \ -2.346607210 \ 0.799083342 \ 0.765047225 \ 0.480923824
[176] 0.301524245 1.422952841 2.820001236 3.981388964 2.988835261
[181] -0.058956147 -2.066827932 -4.518505369 -5.447774381 -5.746818410
[186] -5.473607376 -3.515892394 0.432262861 4.283988479 6.685899229
[191] 6.379550991 5.781828167 5.127569880 2.228597185 1.512254758
[196] 1.407053783 -0.275040161 -2.623401872 -4.707758722 -6.845203817
[201] -8.189848947 -8.441072069 -5.100352049 -1.929194703 -0.289395357
[206] 2.511067946 4.007902754 2.638931037 0.953911823 -0.914044608
[211] -3.131803887 -4.574239309 -4.239263041 -1.278975512 -1.720543477
[216] -1.393708189 -0.978071153 -0.052109821 -0.479546542 -1.072444773
[221] -1.940146902 -2.221618511 -1.892476988 -0.145214604 1.941929437
[226] 2.662695670 1.548128421 1.266366609 -1.415637008 -2.255649300
[231] -2.492380384 -1.758574495 -0.272146596 1.472164787 1.788881267
[241] -5.023127496 -5.240398677 -5.705131625 -3.494170488 -0.385992861
[246] 1.270003055 3.142585019 5.720389808 5.393790259 1.711581565
```

7.9 R example - Moving Average

```
# generate white noise
w_t <- rnorm(10, 0, 1)

## manually lag terms
w_t1 <- c(NA, w_t[1:9])
w_t2 <- c(NA, NA, w_t[1:8])

## manually compute MA(3)
v_t <- (w_t + w_t1 + w_t2)/3

## compare the vectors
ma_3 <- cbind(v_t, w_t, w_t1, w_t2)
round(ma_3, 3)</pre>
```

```
V_t W_t W_t1 W_t2

[1,] NA -1.542 NA NA

[2,] NA 0.347 -1.542 NA

[3,] -0.032 1.099 0.347 -1.542
```

```
[4,] 0.316 -0.499 1.099 0.347 [5,] -0.112 -0.938 -0.499 1.099 [6,] -0.523 -0.132 -0.938 -0.499 [7,] -0.265 0.276 -0.132 -0.938 [8,] -0.087 -0.405 0.276 -0.132 [9,] -0.609 -1.696 -0.405 0.276 [10,] -0.569 0.394 -1.696 -0.405
```

```
## plot
#par(mfrow = 2:1)
plot(1:10, w_t, type = "b", lwd = 2, pch = 16, col = "darkgrey")
points(1:10, v_t, type = "b", lwd = 2, pch = 17, col = "blueviolet")
```


7.10 R example - Moving Average

```
# generate white noise
n = 50
w_t <- rnorm(n, 0, 1)
## manually lag terms</pre>
```

```
w_t1 <- c(NA, w_t[1:(n-1)])
w_t2 <- c(NA, NA, w_t[1:(n-2)])

## manually compute MA(3)
v_t <- (w_t + w_t1 + w_t2)/3

## compare the vectors
ma_3 <- cbind(v_t, w_t, w_t1, w_t2)
round(ma_3, 3)</pre>
```

```
v_t
              w_t
                    w_{t1}
                          w_t2
 [1,]
         NA -0.834
                             NA
                      NA
 [2,]
         NA 0.799 -0.834
 [3,] 0.043 0.163 0.799 -0.834
 [4,] 0.752 1.292 0.163 0.799
 [5,] 0.491 0.018 1.292 0.163
 [6,] 0.435 -0.006 0.018 1.292
 [7,] 0.163 0.476 -0.006 0.018
 [8,] 0.652 1.486 0.476 -0.006
 [9,] 0.592 -0.186 1.486 0.476
[10,] 0.778 1.034 -0.186 1.486
[11,] -0.016 -0.896 1.034 -0.186
[12,] 0.006 -0.121 -0.896 1.034
[13,] -0.475 -0.408 -0.121 -0.896
[14,] -0.170 0.019 -0.408 -0.121
[15,] -0.164 -0.102 0.019 -0.408
[16,] -0.727 -2.098 -0.102 0.019
[17,] -0.798 -0.195 -2.098 -0.102
[18,] -0.996 -0.697 -0.195 -2.098
[19,] -0.145 0.457 -0.697 -0.195
[20,] 0.225 0.914 0.457 -0.697
[21,] 0.895 1.314 0.914 0.457
[22,] 0.410 -0.998 1.314 0.914
[23,] -0.048 -0.459 -0.998 1.314
[24,] -0.546 -0.181 -0.459 -0.998
[25,] -0.252 -0.116 -0.181 -0.459
[26,] -0.105 -0.017 -0.116 -0.181
[27,] -0.227 -0.547 -0.017 -0.116
[28,] -0.052 0.408 -0.547 -0.017
[29,] -0.231 -0.555 0.408 -0.547
[30,] -0.168 -0.356 -0.555 0.408
[31,] -0.328 -0.074 -0.356 -0.555
```

```
[32,] -0.608 -1.393 -0.074 -0.356
[33,] -0.604 -0.345 -1.393 -0.074
[34,] -1.214 -1.904 -0.345 -1.393
[35,] -0.917 -0.503 -1.904 -0.345
[36,] -0.564 0.715 -0.503 -1.904
[37,] 0.173 0.306 0.715 -0.503
[38,] 0.572 0.694 0.306 0.715
[39,] 0.361 0.083 0.694 0.306
[40,] 0.281 0.065 0.083 0.694
[41,] 0.308 0.776 0.065 0.083
[42,] 0.413 0.397 0.776 0.065
[43,] 0.162 -0.686 0.397 0.776
[44,] -0.371 -0.824 -0.686 0.397
[45,] -0.745 -0.725 -0.824 -0.686
[46,] 0.026 1.627 -0.725 -0.824
[47,] 0.733 1.298 1.627 -0.725
[48,] 0.424 -1.653 1.298 1.627
[49,] -0.927 -2.427 -1.653 1.298
[50,] -1.123 0.710 -2.427 -1.653
```

```
## plot
#par(mfrow = 2:1)
plot(1:n, w_t, type = "b", lwd = 2, pch = 16, col = "darkgrey")
points(1:n, v_t, type = "b", lwd = 2, pch = 17, col = "blueviolet")
```


8 Chapter 2: Correlation and Stationary Time Series

8.1 Motivation

How do we summarize characteristics of a distribution?

```
set.seed(2024)
x <- rnorm(1000, 10, 1)
y <- rnorm(1000, 8, .75)
z <- c(x,y)
hist(z)</pre>
```

Histogram of z

8.2 Motivation

How do we summarize characteristics of a distribution?

- mean
- variance(standard deviation)

Histogram of z

8.3 How do we summarize the characteristics of a distribution that changes over time?

- mean function (of time)
- (auto)(co)variance function (of time)