3

Linear Regression Least Squares Method Simple model evaluation

Linear regression, polynomials

■ Linear regression works not only with a line/plane:

- 1st degree polynomial (straight line) $\hat{y} = a_0 + a_1 x$
- 2nd degree polynomial (parabola) $\hat{y} = a_0 + a_1 x + a_2 x^2$

■ Polynomial of degree *d*

Other functions

Quadratic polynomial (d = 2)

Equation for parabola

$$\hat{y} = a_0 + a_1 x + a_2 x^2$$

• when $a_2 \rightarrow 0$, shape of parabola approaches straight line

Dataset

X	у
Marketing expenses	Profit
2.0	27.33
1.5	28.20
4.0	26.54
5.0	21.24
1.0	26.35
3.2	25.88
6.0	19.62
2.5	29.69
0.5	25.10
4.3	25.14
7.0	7.41
0.1	20.10
5.5	19.63
6.2	15.36

$$n = 14$$

$$\hat{y} = a_0 + a_1 x + a_2 x^2$$

$$a_0 = ?$$
 $a_1 = ?$

$$a_2 = ?$$

The same RSS criterion

We minimize Residual Sum of Squares (RSS)

$$S = \sum_{i=1}^{n} (l_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \to \min$$

Find parameters

$$a_0 = ?$$
 $a_1 = ?$
 $a_2 = ?$
 $\hat{y} = a_0 + a_1 x + a_2 x^2$

Solve in the same way as for the straight line in the previous lecture

Least Squares Method

Model Criterion Data $\hat{y} = a_0 + a_1 x + a_2 x^2 \qquad S = \sum_{i=1}^n (l_i)^2 \to \min$

 $\boldsymbol{\mathcal{X}}$ 2.0 27.33 28.20 26.54 21.24 26.35 25.88 3.2 6.0 19.62 29.69 25.10 0.5 4.3 25.14 7.0 7.41 20.10 19.63 15.36

■ Replace l_i with $(y_i - \hat{y}_i)$

$$S = \sum_{i=1}^{n} (l_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 \blacksquare Replace \hat{y}_i with our equation's left side

$$S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

So we have to minimize this:

$$S = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2 \to \min$$

$$n = 14$$

Partial derivatives

$$S = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2 \to \min$$

Partial derivatives for each parameter

$$\frac{\partial S}{\partial a_0} = -2\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S}{\partial a_1} = -2\sum_{i=1}^{n} x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S}{\partial a_2} = -2\sum_{i=1}^{n} x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

We want it to be zero as there is the minimum

$$\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0$$

$$\sum_{i=1}^{n} x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0$$

$$\sum_{i=1}^{n} x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0$$

System of equations

■ We get linear system of equations:

$$\begin{cases} na_0 + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

-	T .	Ī			
П	Incart	numbers	trom	the	tanie
ш.		Hullburs	110111		Labic

Solve using, e.g., Gaussian elimination

X	y
2.0	27.33
1.5	28.20
4.0	26.54
5.0	21.24
1.0	26.35
3.2	25.88
6.0	19.62
2.5	29.69
0.5	25.10
4.3	25.14
7.0	7.41
0.1	20.10
5.5	19.63
6.2	15.36

$$n = 14$$

Estimated parameters

Model

$$\hat{y} = a_0 + a_1 x + a_2 x^2$$

Criterion

$$S = \sum_{i=1}^{n} (l_i)^2 \to \min$$

Parameters:

$$a_0 = 21.379$$

$$a_1 = 5.3613$$

$$a_2 = -1.026$$

■ Usage:

If
$$x = 3$$
 then $\hat{y} = 21.379 + 5.3613*3 - 1.026*9 = 28.2$

Again: Linear model

Any linear model can be written as a sum of features:

$$\hat{y} = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m$$
 or $\hat{y} = a_0 + \sum_{j=1}^m a_j x_j$

where x_j is jth feature, m is number of features, k = m + 1 is number of parameters. Or, by assuming $x_0 = 1$:

$$\hat{y} = a_0 x_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m$$
 or $\hat{y} = \sum_{j=0}^m a_j x_j$

- But what if we need something more complex than just a sum of features?
 - This too can be achieved using linear regression

Feature transformation

- Why would we need to transform input variables?
 - \blacksquare EUR^2
 - $log(number_of_doctors)$
 - **I** ...

Feature transformation

- $f \square$ We can use our m features to make any needed feature transformations
 - (even if we don't know which ones are needed we will talk about that in another lecture)
- Simply "synthetically" increase the number of features using mathematical functions that transform our original features. For instance:
 - Power (create polynomials this is the most often used type)
 - Log
 - Exp
 - Sin
 - Cos
 - Min
 - Max
 - etc.

Examples

■ Model $\hat{y} = a_0 + a_1x_1 + a_2x_2$ can be written as:

$$\hat{y} = a_0 x_0 + a_1 x_1 + a_2 x_2$$

by defining: $x_0 = 1$

■ Model $\hat{y} = a_0 + a_1 x_1 + a_2 x_1^2$ can be written as:

$$\hat{y} = a_0 x_0 + a_1 x_1 + a_2 x_2$$

by defining: $x_0 = 1$, $x_2 = x_1^2$

$$\hat{y} = a_0 x_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5$$

by defining: $x_0 = 1$, $x_3 = x_1^2$, $x_4 = \log(x_2)$, $x_5 = x_1x_2$

If such redefinition of a model is not possible, we are talking about a non-linear model, for example:

$$\hat{y} = a_0 + a_1 \sin(a_2 x_1) + x_2^{a_3}$$

Linear model

$$\hat{y} = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1 x_2 + a_5 x_1 x_3 + a_6 x_3^2$$

$$\hat{y} = a_0 x_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 x_6$$

Least Squares Method generalized

Model:
$$\hat{y} = a_0 x_0 + a_1 x_1 + ... + a_m x_m$$

$$S = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \to \min$$

$$S = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - a_0 x_{i0} - a_1 x_{i1} - ... - a_m x_{im})^2 \to \min$$

$$\frac{\partial S}{\partial a_j} = (-2) \sum_{i=1}^n x_i (y_i - a_0 x_{i0} - a_1 x_{i1} - ... - a_m x_{im}) \qquad j = 0,1,..., m$$

$$\begin{cases} a_0 (\sum_{i=1}^n x_i (y_i - a_0 x_{i0} - a_1 x_{i1} - ... - a_m x_{im}) & j = 0,1,..., m \\ a_0 (\sum_{i=1}^n x_i (y_i - a_0 x_{i0}) + a_1 (\sum_{i=1}^n x_{i1} x_{i0}) + ... + a_m (\sum_{i=1}^n x_{im} x_{i0}) = \sum_{i=1}^n x_i y_i \\ \vdots & \vdots \\ a_0 (\sum_{i=1}^n x_{i0} x_{im}) + a_1 (\sum_{i=1}^n x_{i1} x_{im}) + ... + a_m (\sum_{i=1}^n x_{im} x_{im}) = \sum_{i=1}^n x_i y_i \end{cases}$$

$$\begin{bmatrix} \sum x_{i0} x_{i0} & \sum x_{i1} x_{i0} & \cdots & \sum x_{im} x_{i0} \\ \sum x_{i0} x_{i1} & \sum x_{i1} x_{i1} & \cdots & \sum x_{im} x_{i1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_{i0} x_{im} & \sum x_{i1} x_{im} & \vdots & \sum x_{im} x_{im} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} \sum x_{i0} y_i \\ \sum x_{i1} y_i \\ \vdots \\ \sum x_{im} y_i \end{bmatrix}$$

← System of equations to solve

Solving in matrix form

$$\mathbf{a} = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,m} \\ x_{2,0} & x_{2,1} & \cdots & x_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,0} & x_{n,1} & \cdots & x_{n,m} \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

So we have this: $\mathbf{X}^T\mathbf{X}\mathbf{a} = \mathbf{X}^T\mathbf{y}$

And solution is this: $\mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

<u>Data</u>

\mathbf{x}_0	\mathbf{x}_1	\mathbf{x}_2	y
1	5.6	6.0	5.0
1	6.5	7.0	7.1
1	6.8	7.2	8.4
1	6.9	6.8	7.3
1	7.0	7.2	7.8
1	7.4	8.5	8.1
1	8.0	6.5	7.4
1	8.3	7.9	8.9
1	8.7	7.3	9.0
1	9.0	9.1	10.0

 \mathbf{x}_0 =1 is introduced to provide the a_0 parameter

^T is transpose ⁻¹ is inverse

Let's begin our next topic:

Model evaluation

Regression model evaluation criteria

- "Looks good", but how exactly "good" is the model?
 - And if we have more than one model then which one should we choose?
- The simplest way compute prediction error using the same training data

Sum of Absolute Error, SAE

$$SAE = \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Mean Absolute Error, MAE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Model evaluation criteria

Sum of Squared Error, SSE

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean Squared Error, MSE

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error, RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$\boldsymbol{\mathcal{X}}$	у
2.0	27.33
1.5	28.20
4.0	26.54
5.0	21.24
1.0	26.35
3.2	25.88
6.0	19.62
2.5	29.69
0.5	25.10
4.3	25.14
7.0	7.41
0.1	20.10
5.5	19.63
6.2	15.36

For our model:

$$SSE = 25.77$$

 $MSE = 25.77 / n = 1.84$
 $RMSE = \sqrt{1.84} = 1.36$

All these criteria depend on the units of y and their interpretation depends on what is y and on the specific problem at hand. They don't have universally consistent range.

Coefficient of determination, R²

 ■ R² is independent from data range – it normalizes the quadratic error rescaling it between 0 and 1

$$R^2 = 1 - \frac{SSE}{SSE_{tot}}$$

$\boldsymbol{\mathcal{X}}$	У
2.0	27.33
1.5	28.20
4.0	26.54
5.0	21.24
1.0	26.35
3.2	25.88
6.0	19.62
2.5	29.69
0.5	25.10
4.3	25.14
7.0	7.41
0.1	20.10
5.5	19.63
6.2	15.36

where SSE_{tot} is "total sum of squares" is variance of y around it's mean. So R^2 is 1 – ratio between variance that the model can't explain (SSE) and variance that exists in the data (SSE_{tot}).

$$SSE_{tot} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

 \overline{y} is mean of y

$$SSE = 25.77$$
 $SSE_{tot} = 465.90$

$$R^2 = 0.9447$$

Interpreting R²

- $\mathbb{R}^2 = 1$ means that the model explains 100% of y variance (it perfectly fits all the data points)
- $\mathbb{R}^2 = 0.5$ means that the model explains 50% of y variance
- $\mathbb{R}^2 = 0$ means that the model doesn't explain anything useful about the data
- $Arr R^2 < 0$ means that the model is worse than a simple mean of y. It is completely unsuitable for the data (such situations can occur when for example R^2 is computed on separate data other than training data)

 $R^2 = 0$

 $R^2 = 0.5$

 $R^2 = 1.0$