Midtveis eksamen Mat1110 våren 2017

(Fasit: Se siste side)

Oppgave 1

 $\mathrm{La}\;\mathbf{r}(t)\;\mathrm{være\;en\;kurve\;i}\;\mathbb{R}^3\;\mathrm{der}\;\mathbf{r}(1)=\mathbf{i}+\mathbf{k},\mathbf{r}'(1)=\mathbf{i}-\mathbf{j}.$

La F være en avbildning $F:\mathbb{R}^3 \to \mathbb{R}^2$ som er slik at

$$F'(\mathbf{i} + \mathbf{k}) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
. Sett $\mathbf{h}(t) = F(\mathbf{r}(t))$

Da blir $\mathbf{h}'(1)$ lik:

Velg ett alternativ

- O_{i+j+k}
- O h er ikke deriverbar for t = 1.
- o_{2j}
- O_{2i+j-k}
- $O\begin{pmatrix}1&0&1\\1&-1&0\end{pmatrix}$

Oppgave 2

Tangentplanet til ellipsoiden $\frac{x^2}{2} + \frac{y^2}{4} + z^2 = 1$ i punktet (x, y, z) = (1, 1, 1/2) har ligning:

$$O_{z=2-x-rac{y}{2}}$$

O
$$z = \sqrt{1 - \frac{x^2}{2} - \frac{y^2}{4}}$$

O
$$z=-2+x+rac{y}{2}$$

$$O_{z=2-\frac{x}{2}-y}$$

O
$$z = \frac{1}{2} + \frac{(x-1)^2}{2} + \frac{(y-1)^2}{4}$$

 $\operatorname{La} A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ -1 & 4 & 7 \end{pmatrix}. \quad \text{Hvilken av påstandene under er riktige?}$

Velg ett alternativ

- O $A\mathbf{x} = 0$ har kun løsningen $\mathbf{x} = \mathbf{0}$.
- O $A\mathbf{x} = 0$ har kun løsningene $\mathbf{x} = \mathbf{0}$ og $\mathbf{x} = (1, -5, 3)$.
- O Alle punkter på den rette linja gjennom (0,0,0) og (1,-5,3) er en løsning av $A\mathbf{x}=\mathbf{0}$.
- O Ligningen $A\mathbf{x} = \mathbf{0}$ har ingen løsninger.
- O Alle $\mathbf{x} \in \mathbb{R}^3$ løser $A\mathbf{x} = \mathbf{0}$.

Oppgave 4

Egenverdiene til matrisen

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

er:

- $O_{\{1,2,3\}}$
- ${\rm O}_{\,\{0,\,2\}}$
- ${\rm O}_{\,\{0,\,1,\,-2\}}$
- ${\sf o}_{\{-1,0,2\}}$
- ${\sf O}_{\,\{0,1,2\}}$

La A være en $n \times n$ matrise. Anta at ligningen $A\mathbf{x} = \mathbf{b}$ ikke har løsning for en $\mathbf{b} \in \mathbb{R}^n$. Hvilket av følgende utsagn er riktig:

Velg ett alternativ

- O $A\mathbf{x} = \mathbf{c}$ har en eller ingen løsning for alle $\mathbf{c} \in \mathbb{R}^n$.
- O $_{A\mathbf{x}=-\mathbf{b}}$ har kun en løsning.
- O $_A$ er ikke inverterbar.
- O $A\mathbf{x} = \mathbf{0}$ har kun løsningen $\mathbf{x} = \mathbf{0}$.
- ${\sf O}_{{\sf S\"{o}ylene}\; {\sf i}\; A}$ er lineært avhengige, men radene er lineært uavhengige.

Oppgave 6

Et kraftfelt er gitt ved $\mathbf{F}(x,y) = y\cos(xy)\mathbf{i} + x\cos(xy)\mathbf{j}$. Da er en potensialfunksjon til \mathbf{F} gitt ved:

- $O_{-\frac{1}{2}x^2\cos(xy) + \frac{1}{2}y^2\cos(xy)}$
- $O_{\cos(xy)}$
- $O_{\cos(xy)\mathbf{i} + \sin(xy)\mathbf{j}}$
- $\circ_{\mathbf{F} \text{ har ingen potensial funksjon.}}$
- $O_{\sin(xy)}$

La C_1 være en kontinuerlig deriverbar kurve i \mathbb{R}^n gitt ved $\mathbf{r}(t)$, $t \in [0,1]$.

La C_2 være kurven gitt ved $\{\mathbf{r}(1-t) \mid t \in [0,1]\}$

Hvilken av påstandene under er riktig?

Velg ett alternativ

- O $\int_{\mathcal{C}_1} f \, ds = \int_{\mathcal{C}_2} f \, ds$ for alle glatte funksjoner $f: \mathbb{R}^n \to \mathbb{R}$.
- $\bigcirc \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} \text{ for alle glatte funksjoner } \mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n.$
- O $\int_{\mathcal{C}_1} f \, ds = \int_{\mathcal{C}_2} f \, ds$ for alle glatte funksjoner $f: \mathbb{R}^n \to \mathbb{R}$.
- O $\int_{\mathcal{C}_1} f \, ds = \int_{\mathcal{C}_2} f \, ds = 0$ for alle glatte funksjoner $f: \mathbb{R}^n \to \mathbb{R}$.
- $\textstyle \mathsf{O}\, \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for alle glatte funksjoner } \mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n.$

Oppgave 8

Hvilket kjeglesnitt beskriver ligningen $x^2 - 2x + 4y^2 + 16y + 13 = 0$?

- O En ellipse med sentrum (1, -2) og brennpunkter $(1 \pm \sqrt{3}, -2)$.
- O En hyperbel med sentrum (1, -2) og brennpunkter $(1 \pm \sqrt{3}, -2)$.
- O En parabel med toppunkt (1,-2) og brennpunkt $(1+\sqrt{3},-2)$, og styringslinje $x=1-\sqrt{3}$
- O En sirkel med sentrum (1, -2) og radius $\sqrt{3}$.
- O De rette linjene $x = 1 \pm \sqrt{3}(y+2)$.

Lignings systemet $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 1 & 7 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$ har løsning:

Velg ett alternativ

O
$$_{x=2, y=1, z=-1.}$$

O
$$_{x=2-2z,\;y=1-z,\;z}$$
 fri.

O
$$_{x=1+z, y=1-2z, z \text{ fri.}}$$

O Systemet har ingen løsninger.

O
$$x = 2 - 2y - 3z$$
, $y \text{ og } z \text{ frie.}$

Oppgave 10

La $\mathbf{F}: \mathbb{R}^2 o \mathbb{R}^2$ være gitt ved $\mathbf{F}(x,y) = (\sqrt{x^2 + y^2}y, \sqrt{x^2 + y^2}x).$

Da er $\mathbf{F}'(x,y) =$

Velg ett alternativ

$$\mathsf{O}\left(egin{array}{cc} rac{xy}{\sqrt{x^2+y^2}} & rac{y^2}{\sqrt{x^2+y^2}} + \sqrt{x^2+y^2} \ rac{x^2}{\sqrt{x^2+y^2}} + \sqrt{x^2+y^2} & rac{xy}{\sqrt{x^2+y^2}} \end{array}
ight)$$

$$O\left(\sqrt{x^2 + y^2} + \frac{xy}{\sqrt{x^2 + y^2}}, \frac{xy}{\sqrt{x^2 + y^2}} + \sqrt{x^2 + y^2}\right)$$

O $_{F \text{ er ikke deriverbar.}}$

O
$$\frac{x^2+y^2}{\sqrt{x^2+y^2}}+xy$$

$$\mathsf{O}\left(egin{array}{cc} \sqrt{x^2+y^2} & rac{xy}{\sqrt{x^2+y^2}} \ rac{xy}{\sqrt{x^2+y^2}} & \sqrt{x^2+y^2} \end{array}
ight)$$

 $\operatorname{La} \mathcal{C} \text{ være kurven } \mathbf{r}(t) = 2\cos(t)\,\mathbf{i} + \sin(t)\,\mathbf{j}, \, t \in [0,2\pi], \, \text{og la } f(x,y) = \frac{1}{\sqrt{\frac{x^2}{4} + 4y^2}}.$

Da blir $\int_{\mathcal{C}} f \, ds$ lik:

Velg ett alternativ

- $O_{(2\pi)^2}$
- O_0
- O $\frac{1}{\sqrt{2\pi}}$
- O $\sqrt{2\pi}$
- $O_{2\pi}$

Oppgave 12

La matrisen A være gitt ved $A=egin{pmatrix} 1 & -1 & 3 \\ 3 & 5 & -7 \\ 2 & 1 & a \end{pmatrix},$ der a er en konstant.

Hvilken av påstandene under er riktige:

- O Ligningen $A\mathbf{x} = \mathbf{0}$ har kun løsningen $\mathbf{x} = \mathbf{0}$ for alle a.
- O Ligningen $A\mathbf{x} = \mathbf{b}$ har løsninger kun hvis $\mathbf{b} = \mathbf{0}$.
- O Ligningen $A\mathbf{x} = \mathbf{b}$ har uendelig mange løsninger for alle \mathbf{b} dersom a = 0.
- O Ligningen $A\mathbf{x} = \mathbf{b}$ har ingen løsninger for noen \mathbf{b} dersom a = 0.
- O Ligningen $A\mathbf{x} = \mathbf{0}$ har uendelig mange løsninger dersom a = 0.

Sett
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 og $\mathbf{c} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

Da er A^{10} **c** lik

Velg ett alternativ

- $O\binom{2}{5}$
- $\begin{array}{c}
 O \begin{pmatrix} -2 \\ -5 \end{pmatrix} \\
 O \begin{pmatrix} 2^{10} \\ 5^{10} \end{pmatrix}
 \end{array}$
- $O\left(egin{array}{c} -2 \ 5 \end{array}
 ight)$
- $O\left(\frac{-5}{2}\right)$

Oppgave 14

Hvilken av matrisene under er ikke på trappeform:

Velg ett alternativ

$$\bigcirc \begin{pmatrix} 1 & 0 & -3 & 2 & -2 & -3 \\ 0 & 1 & -2 & -2 & 3 & -3 \\ 0 & 0 & 1 & 0 & -3 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{pmatrix}$$

0(1)

$$O\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $O_{(0)}$

 $O_{(1\ 2\ 3\ 4\ 5)}$

La $\mathcal C$ være kurven gitt ved $\mathbf r(t)=((1-t^2)\cos(t),(1-t^2)\sin(t),t)\in\mathbb R^3$ for $t\in[-1,1]$. Den rette linja som er tangent til $\mathcal C$ i punktet (1,0,0) har parameterframstilling:

Velg ett alternativ

- $O_{\mathbf{l}(\tau) = (\tau, 1, \tau), \ \tau \in \mathbb{R}}$
- $O_{\mathbf{l}(\tau) = (\tau, \tau, \tau), \ \tau \in \mathbb{R}}$
- $\mathsf{O}_{\mathbf{l}(au)=(0, au, au)},\ au\in\mathbb{R}$
- O $\mathbf{l}(\tau) = (1, \tau, \tau), \ \tau \in \mathbb{R}$
- O $\mathbf{l}(\tau) = (0, 1, \tau), \ \tau \in \mathbb{R}$

Oppgave 16

La A og B være $n \times n$ matriser, der B er en trappematrise.

Anta at A er radekvivalent med B; mao. $A \sim B$.

Da vet vi at:

- $O_{\det(A) = \det(B)}$
- $O_{\det(A)}$ har samme fortegn som $\det(B)$
- $O_{A\mathbf{x} = \mathbf{c} \text{ medfører at } B\mathbf{x} = \mathbf{c}}$
- O det(A) = 0 hvis og bare hvis det(B) = 0
- O $\det(AB) \neq 0$

La $\mathcal C$ være kurven gitt ved $\mathbf r(t) = \cos(t)\,\mathbf i + \sin(t)\,\mathbf j, t \in [0,\pi],$ og $\mathbf F$ være vektorfeltet $\mathbf F(x,y) = y\,\mathbf i - x\,\mathbf j.$ Da blir $\int_{\mathcal C} \mathbf F \cdot d\mathbf r$ lik:

Fasit:

31143 51111 55234 41 (altså alternativ 3 på oppgave 1, alternativ 1 på oppgave 2, osv.)