Computer System Architecture

DR. Howida Youssry

Digital Computers

Computer Hardware(H/W)

CPU

Memory

Program Memory(ROM)

Data Memory(RAM)

I/O Device

Input Device: Keyboard, Mouse,

Scanner

Output Device: Printer, Plotter,

Display

Storage Device(I/O): FDD, HDD,

MOD

Figure 1-1 Block Diagram of a digital Computer

Logic Gates

Gate

The manipulation of binary information is done by logic circuit called "gate".

Blocks of H/W that produce signals of binary 1 or 0 when input logic requirements are satisfied.

Digital Logic Gates: Fig. 1-2

AND, OR, INVERTER, BUFFER, NAND, NOR, XOR, XNOR

COMBINATIONAL GATES

Name	Symbol	Function	Truth Table	
AND	A	—х	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR	A B)—х	X = A + B	A B X 0 0 0 0 1 1 1 0 1 1 1 X
I	<u>A</u>	<u> </u>	X = A	A X 0 1 1 0
Buffer	A	 *	X = A	A X 0 0 1 1
NAND	A B) - x -	X = (AB)'	A B X 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A)• x−	X = (A + B)'	A B X 0 0 1 0 1 0 1 0 0 1 1 0
XOR Exclusive OR	A B) x	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 0 1 1 1 0
XNOR Exclusive NOR or Equivalence	A B	<u>х</u>	X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1

Boolean Algebra

Boolean Algebra

- * Algebra with Binary(Boolean) Variable and Logic Operations
- * Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits
 - Input and Output signals can be represented by Boolean Variables, and
 - Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s)
 - From a Boolean function, a logic diagram can be constructed using AND, OR, and I

Truth Table

- * The most elementary specification of the function of a Digital Logic Circuit is the Truth Table
 - Table that describes the Output Values for all the combinations of the Input Values, called *MINTERMS*
 - n input variables --> 2ⁿ minterms

Boolean Algebra

Boolean Function: variable + operation

$$F(x, y, z) = x + y'z$$

Truth Table: *Fig. 1-3(a)*Relationship between a function and variable

Logic Diagram: Fig. 1-3(b)
Algebraic Expression
Logic Diagram

Purpose of Boolean Algebra

To facilitate the analysis and design of digital circuit

Boolean function = Algebraic form = convenient tool

Truth table (relationship between binary variables : Fig 1-3a) — Algebraic form

Logic diagram (input-output relationship : *Fig. 1-3b*) → Algebraic form

Find simpler circuits for the same function : by using Boolean algebra rules

Boolean Algebra Rule: Tab. 1-1

```
[1] x + 0 = x

[3] x + 1 = 1

[5] x + x = x

[6] x \cdot x = x

[7] x + x' = 1

[8] x \cdot x' = 0

[9] x + y = y + x

[10] xy = yx

[11] x + (y + z) = (x + y) + z

[12] x(yz) = (xy)z

[13] x(y + z) = xy + xz

[14] x + yz = (x + y)(x + z)

[15] (x + y)' = x'y'

[16] (xy)' = x' + y'
```

[15] and [16]: De Morgan's Theorem

[ex.1] [ex.2] Fig. 1-6(a)

$$F = AB' + C'D + AB' + C'D$$
 $= x + x \text{ (let } x = AB' + C'D)$
 $= x$
 $= AB' + C'D$

[ex.2]

 $F = ABC + ABC' + A'C$
 $= AB(C + C') + A'C$
Fig. 1-6(b)
 $= AB + A'C$
 $= AB' + C'D$

1 inverter, 1 AND gate

Fig. 1-4 2 graphic symbols for NOR gate

Fig. 1-5 2 graphic symbols for NAND gate

EQUIVALENT CIRCUITS

Many different logic diagrams are possible for a given Function

COMPLEMENT OF FUNCTIONS

A Boolean function of a digital logic circuit is represented by only using logical variables and AND, OR, and Invert operators.

- --> Complement of a Boolean function
 - Replace all the variables and subexpressions in the parentheses appearing in the function expression with their respective complements

$$A,B,...,Z,a,b,...,z \Rightarrow A',B',...,Z',a',b',...,z'$$

 $(p+q) \Rightarrow (p+q)'$

Replace all the operators with their respective complementary operators

$$\begin{array}{c} \mathsf{AND} \Rightarrow \mathsf{OR} \\ \mathsf{OR} \Rightarrow \mathsf{AND} \end{array}$$

- Basically, extensive applications of the DeMorgan's theorem

$$(x_1 + x_2 + ... + x_n)' \Rightarrow x_1'x_2'... x_n'$$

 $(x_1x_2 ... x_n)' \Rightarrow x_1' + x_2' + ... + x_n'$

SIMPLIFICATION

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain
 a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map(K-map) is a simple procedure for simplifying Boolean expressions.

Map Simplification

Karnaugh Map(K-Map)

Map method for simplifying Boolean expressions

Minterm / Maxterm

Minterm: n variables *product* (x=1, x'=0)

Maxterm: n variables sum (x=0, x'=1)

2 variables example

X	У	Minte	erm	Maxte	rm
0	0	x'y'	m ₀	χ + y	Mo
0	1	x'y	M1	χ + y'	M 1
1	0	x y'	m2	χ'+ y	M2
1	1	ху	mз	x'+ y'	Мз

$$F = \underbrace{x'y + \underline{x}\underline{y}}_{m_1 \quad m_3}$$

$$= \mathbb{C}(1,3) \quad (m_1 + m_3)$$

$$= \angle(0,2) \quad (Complement = M_0 \square M_2)$$

KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products form of Boolean Function, or Truth Table) is

- Rectangle divided into 2ⁿ cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a mintern is written in the cell representing the minterm
- --> 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation is identical to the binary interpretation of the input values of the minterm.

Karnaugh Map

$$F(x) = \sum_{1 \text{-cell}} (1)$$

$$F(x,y) = \sum (1,2)$$

KARNAUGH MAP

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	10

	VZ	7		У	7
	X	00	01	11	10
	0	0	01 1	3	2
X	1	4	5	7	6
			Z		

yz x 0 1	00	01	11	10	
0	0	1	0	1	
1	1	0	0	0	
					,2,4)

u	٧	w	Х	F
0	0	0	0	0
0	0	0	1	1
0	0		0	0
0	0	1	1	1
0	1	0	0	0
0	0 0 1 1 1	1 0 0	1	0
0	1	1	0	1
0	1 0	1 1 0	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1 1	1	1
1	1	0	0	0
0 0 0 0 0 0 1 1 1 1 1 1	1 1 1	0 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 0 1 0 0 1 0 1 0 1 0 1
1	1	1	0	1
1	1	1	1	<u> </u>

. WY			٧	V	
uv^	00	01	11	10	1
00	0	1	3	2	
01	4	5	7	6	V
ս ¹¹	12	13	15	14	
ິ 10	8	9	11	10	
		Х	(
wx	00	01	11	L 1	0
uv 00	0	1	T_{1}	T_{c}	
	0	<u> </u>	0	+	_
01	U	0	10	_	1
11	0	0	0	<u> </u>	1
10	1	1	1)

$$F(u,v,w,x) = \sum (1,3,6,8,9,11,14)$$

Ex)
$$F= x + y'z$$

(1) Truth Table

X	У	Z	F	Minterm
0	0	0	0	mo
0	0	1	1	m1
0	1	0	0	m2
0	1	1	0	mз
1	0	0	1	m4
1	0	1	1	m ₅
1	1	0	1	m ₆
1	1	1	1	m7

(2)
$$F(x, y,z) = \mathbb{C}(1,4,5,6,7)$$

(3)

[ex.]
$$F(A,B,C) = \mathbb{C}(3,4,6,7)$$

F=AC' + BC

[ex.]
$$F(A,B,C) = \mathbb{C}(0,2,4,5,6)$$

F=C' + AB'

[ex.]
$$F(A,B,C,D) = \mathbb{C}(0,1,2,6,8,9,10)$$

F=B'D' + B'C' + A'CD'

Product-of-Sums Simplification

$$F(A,B,C,D) = @(0,1,2,5,8,9,10)$$

F=B'D' + B'C' + A'C'D Sum of product

$$F'=AB + CD + BD'$$
(square marked 0's)
 $F''(F)=(A'+B')(C'+D')(B'+D)$ 전개

Product of Sum

Combinational Circuits

A connected arrangement of *logic gates* with a set of inputs and outputs

Fig. 1-15 Block diagram of a combinational circuit

A sequential circuit

is an interconnection of F/F and Gate Clocked synchronous sequential circuit

Flip-Flops

Flip-Flop

Combinational Circuit = Gate Sequential Circuit = Gate + F/F

The *storage elements* employed in clocked *sequential circuit* A binary cell capable of storing one bit of information

SR(Set/Reset) F/F

SR	Q(t+1)
0 0	Q(t) no change
0 1	0 clear to 0
1 0	1 set to 1
1 1	? Indeterminate

D(Data) F/F

D		Q(t+1)
0	0	clear to 0
1	1	set to 1

"no change" condition : Q(t+1)=D

- 1) Disable Clock
- 2) Feedback output into input p.52

JK(Jack/King) F/F

J K		Q(t+1)
0 0	Q(t)	no change
0 1	0	clear to 0
1 0	1	set to 1
1 1	Q(t)'	Complement

JK F/F is a refinement of the SR F/F The indeterminate condition of the SR type is defined in complement

T(Toggle) F/F

Q (t) no change
Q'(t) Complement

T=1(J=K=1), T=0(J=K=0) 이면 JK F/F 수식 표현 : Q(t+1)=Q(t) \square T xor

1-7 Sequential Circuits

A sequential circuit is an interconnection of F/F and Gate

Clocked synchronous sequential circuit

Input Equation

$$D_A = Ax + Bx$$
, $D_B = A'x$
Output Equation

$$y = Ax' + Bx'$$

Fig. 1-25 Example of a sequential circuit

