MATHEMATICS

Calculus

Basic theorems

Chain rule
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Product rule $\frac{d}{dx}(u \cdot v) = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$
Integration by parts $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$

Calculus of variations

$$\begin{split} J &= \int_{x_1}^{x_2} f\{y(x), y(x); x\} \\ \frac{\partial f}{\partial y} &= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} = 0 \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial x} \left(f - yt \frac{\partial f}{\partial y} \right) = 0 \\ f &= yt \frac{\partial f}{\partial yt} = const \text{ for } \frac{\partial f}{\partial x} = 0 \end{split}$$

Vectors

Divergence theorem (Gauss' thm): $\int_V (\nabla \cdot \mathbf{F}) dV = \oint_S \mathbf{F} \cdot \mathbf{n} dS$ **Stokes theorem:** $\int_{S} \nabla \times \mathbf{F} \cdot dS = \oint_{C} \mathbf{F} \cdot d\mathbf{r}$ **Dot product:** $\mathbf{A} \cdot \mathbf{B} = |A||B|\cos\theta \hat{\mathbf{n}} = A_x B_x + A_y B_y + A_z B_z$ **Cross product:** $\mathbf{A} \times \mathbf{B} = |A||B|\sin\theta\hat{\mathbf{n}}$

Coordinate systems & conversions

Coordinate Conversion

cartesian to	cylindrical to	spherical to		
cylindrical	cartesian	cartesian		
$\rho = \sqrt{x^2 + y^2}$	$x = \rho \cos \phi$	$x = r \sin \theta \cos \phi$		
$\phi = \arctan(y/x)$	$y = \rho \sin \phi$	$y = r \sin \theta \sin \phi$		
z = z	z = z	$z = r \cos \theta$		
spherical	spherical	cylindrical		
$r = \sqrt{x^2 + y^2 + z^2}$	$r = \sqrt{\rho^2 + z^2}$	$\rho = r \sin \theta$		
$\theta = \arccos(z/r)$	$\theta = \arctan(\rho/z)$	$\phi = r \sin \theta$		
$\phi = \arctan(y/x)$	$\phi = \phi$	$z = r\cos\theta$		

Unit Vector Conversion

cartesian to	cylindrical to	spherical to
cylindrical	cartesian	cartesian
$\hat{oldsymbol{ ho}} = rac{x}{ ho}\hat{oldsymbol{x}} + rac{y}{ ho}\hat{oldsymbol{y}}$	$\hat{\mathbf{x}} = \cos\phi\hat{\boldsymbol{\rho}} - \sin\phi\hat{\boldsymbol{\phi}}$	$\hat{\boldsymbol{x}} = \sin\theta\cos\phi\hat{\boldsymbol{r}} +$
		$\cos\theta\cos\phi\hat{\boldsymbol{\theta}}-\sin\phi\hat{\boldsymbol{\phi}}$
$\hat{\boldsymbol{\phi}} = -rac{y}{ ho}\hat{\boldsymbol{x}} + rac{x}{ ho}\hat{\boldsymbol{y}}$	$\hat{\mathbf{x}} = \cos\phi\hat{\boldsymbol{\rho}} - \sin\phi\hat{\boldsymbol{\phi}}$	$\hat{\mathbf{y}} = \sin\theta\sin\phi\hat{\mathbf{r}} +$
		$\cos\theta\sin\phi\hat{\boldsymbol{\theta}} + \cos\phi\hat{\boldsymbol{\phi}}$
$\frac{\hat{z} = \hat{z}}{\text{spherical}}$	$\hat{z} = \hat{z}$ spherical	$ \frac{\hat{\mathbf{z}} = \cos\theta \hat{\mathbf{r}} - \sin\theta \hat{\mathbf{\theta}}}{\text{cylindrical}} $
spherical	spherical	cylindrical
$\hat{r} = \frac{x\hat{x} + y\hat{y} + z\hat{z}}{r}$	$\hat{\pmb{r}} = \frac{\rho}{r}\hat{\pmb{\rho}} + \frac{z}{r}\hat{\pmb{z}}$	$\hat{\boldsymbol{\rho}} = \sin\theta \hat{\boldsymbol{r}} + \cos\theta \hat{\boldsymbol{\theta}}$
$\hat{\boldsymbol{\theta}} = \frac{xz\hat{\mathbf{x}} + yz\hat{\mathbf{y}} - \rho^2\hat{\mathbf{z}}}{r\rho}$	$\hat{m{ heta}} = rac{z}{r}\hat{m{ ho}} - rac{ ho}{r}\hat{m{z}}$	$\hat{\pmb{\phi}} = \hat{\pmb{\phi}}$
$\hat{\boldsymbol{\phi}} = \frac{-y\hat{\mathbf{x}} + x\hat{\mathbf{y}}}{\rho}$	$\hat{\pmb{\phi}} = \hat{\pmb{\phi}}$	$\hat{\boldsymbol{z}} = \cos\theta \hat{\boldsymbol{r}} - \sin\theta \hat{\boldsymbol{\theta}}$

Differential Elements

cartesian	cylindrical	spherical
$d\mathbf{l} = dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} +$	$d\boldsymbol{l} = d\rho\hat{\boldsymbol{\rho}} + \rhod\phi\hat{\boldsymbol{\phi}} +$	$d\boldsymbol{l} = dr\hat{\boldsymbol{r}} + rd\theta\hat{\boldsymbol{\theta}} +$
$dz\hat{oldsymbol{z}}$	$dz\hat{oldsymbol{z}}$	$r\sin\theta d\phi\hat{\phi}$
$d\mathbf{A} = dy dx \hat{\mathbf{x}} + dx dz \hat{\mathbf{y}} + dx dy \hat{\mathbf{z}}$	$d\mathbf{A} = \rho d\phi dz \hat{\mathbf{p}} + \\ d\rho dz \hat{\boldsymbol{\phi}} + \\ \rho d\rho d\phi \hat{\boldsymbol{z}}$	$d\mathbf{A} = r^{2} \sin \theta d\theta d\phi \hat{\mathbf{r}} + $ $r \sin \theta dr d\phi \hat{\boldsymbol{\theta}} + $ $r dr d\theta \hat{\boldsymbol{\phi}} $
dV = dx dy dz	$dV = \rho d\rho d\phi dz$	$dV = r^2 \sin\theta dr d\theta d\phi$

POSITIONS, VELOCITIES, & ACCELERATIONS

$$\begin{aligned} & \mathbf{r} = \rho \mathbf{e}_{\boldsymbol{\rho}} \\ & \mathbf{v} = \dot{\rho} \mathbf{e}_{\boldsymbol{\rho}} + \rho \dot{\boldsymbol{\theta}} \mathbf{e}_{\boldsymbol{\theta}} \\ & \mathbf{a} = \left(\ddot{\rho} - \rho \, \dot{\theta}^2 \right) \mathbf{e}_{\boldsymbol{\rho}} + \left(\rho \, \ddot{\theta} + 2 \dot{\rho} \, \dot{\theta} \right) \mathbf{e}_{\boldsymbol{\theta}} \\ & \text{cylindrical} \\ & \mathbf{r} = \rho \mathbf{e}_{\boldsymbol{\rho}} + z \mathbf{e}_{z} \end{aligned}$$

$$\begin{aligned} \mathbf{v} &= \dot{\rho} \mathbf{e}_{\boldsymbol{\rho}} + \rho \dot{\theta} \mathbf{e}_{\boldsymbol{\theta}} + \dot{z} \mathbf{e}_{\boldsymbol{z}} \\ \mathbf{a} &= \left(\ddot{\rho} - \rho \dot{\theta}^2 \right) \mathbf{e}_{\boldsymbol{\rho}} + \left(\rho \ddot{\theta} + 2 \dot{\rho} \dot{\theta} \right) \mathbf{e}_{\boldsymbol{\theta}} + \ddot{z} \mathbf{e}_{\boldsymbol{z}} \end{aligned}$$
spherical
$$\begin{aligned} \mathbf{r} &= \rho \mathbf{e}_{\boldsymbol{\rho}} \\ \mathbf{v} &= \dot{\rho} \mathbf{e}_{\boldsymbol{\rho}} + \rho \dot{\theta} \mathbf{e}_{\boldsymbol{\theta}} + \rho \dot{\phi} \sin \theta \mathbf{e}_{\boldsymbol{\phi}} \\ \mathbf{a} &= \left(\ddot{\rho} - \rho \dot{\theta}^2 - \rho \dot{\phi}^2 \sin^2 \theta \right) \mathbf{e}_{\boldsymbol{\rho}} + \left(\rho \ddot{\theta} + 2 \dot{\rho} \dot{\theta} - \rho \dot{\phi}^2 \sin \theta \cos \theta \right) \mathbf{e}_{\boldsymbol{\theta}} + \left(\rho \ddot{\phi} \sin \theta + 2 \rho \dot{\phi} \sin \theta + 2 \rho \dot{\phi} \cos \theta \right) \mathbf{e}_{\boldsymbol{\theta}} \end{aligned}$$

del. ∇. in CARTESIAN

del operator:
$$\nabla = \mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z}$$

gradient: $\nabla \phi = \operatorname{grad} \phi = \mathbf{e}_x \frac{\partial \phi}{\partial x} + \mathbf{e}_y \frac{\partial \phi}{\partial y} + \mathbf{e}_z \frac{\partial \phi}{\partial z}$
directional derivative: $\frac{d\phi}{ds} = \nabla \phi \cdot \frac{\mathbf{A}}{|\mathbf{A}|}$
divergence: $\nabla \cdot \mathbf{V} = \operatorname{div} \mathbf{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$
curl: $\nabla \times \mathbf{V} = \mathbf{e}_x \left(\frac{\partial V_x}{\partial y} - \frac{\partial V_y}{\partial z}\right) + \mathbf{e}_y \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) + \mathbf{e}_z \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right)$
Laplacian: $\Delta f = \nabla^2 \phi = \nabla \cdot (\nabla \phi) = \operatorname{div} \operatorname{grad} \phi = \frac{\partial^2 \phi}{\partial z} + \frac{\partial^2 \phi}{\partial z} + \frac{\partial^2 \phi}{\partial z}$

del, ∇, in CYLINDRICAL

del, ∇, in SPHERICAL

gradient:
$$\nabla f = grad f = \frac{\partial f}{\partial r} \boldsymbol{e_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \boldsymbol{e_\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \boldsymbol{e_\phi}$$
divergence: $\nabla \cdot \boldsymbol{V} = div \boldsymbol{V} = \frac{1}{r^2} \frac{\partial (r^2 V_f)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \theta} (V_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial V_\phi}{\partial \phi}$
curl: $\nabla \times \boldsymbol{V} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (V_\phi \sin \theta) - \frac{\partial V_\theta}{\partial \phi} \right) \boldsymbol{e_r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial V_f}{\partial \phi} - \frac{\partial}{\partial r} (r V_\phi) \right) \boldsymbol{e_\theta} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r V_\theta) - \frac{\partial V_f}{\partial \theta} \right) \boldsymbol{e_\phi}$
Laplacian:
$$\Delta f = \nabla^2 f = \nabla \cdot (\nabla f) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial r^2} \frac{\partial f}{\partial r}$$

Taylor series

Taylor series of f(x) about x = a:

$$f(x) = f(a) + (x-a)f'(a) + \frac{1}{2!}(x-a)^2 f''(a) + \dots + \frac{1}{n!}(x-a)^n f^{(n)}(a) + \dots$$

Ordinary differential equations

Separable 1st-order

Equation can be written as f(y)dy = f(x)dx, such as $\frac{dy}{dx} = N(1-y)$. Evaluate integrals

Linear 1st-order

Write the equation in the form y' + P(x)y = Q(x) and then define $I = \int P(x)dx$

and find y by solving

$$ye^I = \int Q(x)e^I dx + c$$

Linear 2nd-order homogeneous with constant coefficients

Equations of the form

$$a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = 0$$

Write the characteristic polynomial $a_2D^2y + a_1Dy + a_0y = 0$ and factor into (D-a)(D-b)y = 0. In general, this can be solved by letting u = (D-a)y, solving the 1st-order diff eq (D-b)u=0 for u(x), substituting this solution into the equation (D-a)y = u(x), and finally solving this linear 1st-order ODE. In fact, this method can be generalized to higher-order linear diff eq's. However, there are pre-determined solution forms based upon the relationships between a and b:

$$a,b \in \mathbb{R}, a \neq b \Rightarrow y = c_1 e^{ax} + c_2 e^{bx}$$

 $a,b \in \mathbb{R}, a = b \Rightarrow y = (Ax + B)e^{ax}$

For

 $a, b \in \mathbb{C}, a = b^* = \alpha \pm i\beta$.

any of the following forms are solutions:

$$y = Ae^{\alpha + i\beta x} + Be^{\alpha - i\beta x}$$

$$y = e^{\alpha x} \left(Ae^{i\beta x} + Be^{-i\beta x} \right)$$

$$y = e^{\alpha x} \left(c_1 \sin \beta x + c_2 \cos \beta x \right)$$

$$y = ce^{\alpha x} \sin (\beta x + \gamma)$$

$$y = ce^{\alpha x} \cos (\beta x + \delta)$$

Linear 2nd-order inhomogeneous with constant coefficients

Equations of one of the forms

$$a_2 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_0 y = f(x)$$

$$\frac{d^2y}{dx^2} + \frac{a_1}{a_2}\frac{dy}{dx} + \frac{a_0}{a_2}y = F(x)$$

can be solved, generally, as described for the homogeneous case, but with F(x) on the right-hand side when solving the first 1st-order ODE, (D-b)u = F(x). (This gives both the particular and complementary solution.) Otherwise, find $y = y_c + y_p$ where y_c , the complementary solution, comes from solving the homogeneous equation and y_p is a particular solution from a pre-computed form for specific F(x):

$$(D-a)(D-b)y = F(x) = ke^{cx}$$
, particular solution y_p is given by:
 $y_p = Ce^{ex}$ if c is not equal to either a or b ;
 $y_p = Cx^2e^{cx}$ if c equals a or b , $a \neq b$;
 $y_p = Cx^2e^{cx}$ if $c = a = b$

(For $F(x) = k \cos \alpha x$ or $F(x) = k \sin \alpha x$, solve the above with $F(x) = ke^{c=i\alpha x}$ and take the real or imag part, respectively. For F(x) = const, set c = 0.)

A more general form of this (called the *method of undetermined coefficients*) follows:

$$(D-a)(D-b)y = F(x) = e^{cx}P_n(x)$$
; $P_n(x)$ is a polynomial of degree n:

$$y_p = \begin{cases} e^{cx}Q_n(x) & \text{if } c \neq a \text{ and } c \neq b \\ xe^{cx}Q_n(x) & \text{if } c = a \text{ or } c = b, a \neq b \\ x^2e^{cx}Q_n(x) & \text{if } c = a = b \end{cases}$$

CLASSICAL MECHANICS

Newton's laws

1st: Body remains at rest or in uniform motion unless acted upon by a force

2nd:
$$F_{tot} = \frac{d\mathbf{p}}{dt} = m\mathbf{a}$$

$$3^{\text{rd}}$$
: $\boldsymbol{F}_{A \to B} = -\boldsymbol{F}_{B \to A}$

Lagrangian dynamics

Hamilton's principle — Nature minimizes (makes stationary) the action. **Constrained** — If a 3D system of N particles has n < 3N minimum generalized coordinates, the system is constrained.

Natural — The coordinates q_n are *natural* if the relationships of r_α (every particle's position) to q_n doesn't change with time.

Ignorable — a coordinate q_i is *ignorable* if the corresponding generalized momentum p_i is constant.

Lyupanov Stability — If x_e is Lyapunov stable and all solutions that start out near x_e converge to x_e , then x_e is asymptotically stable

Lagrangian: $\mathcal{L} = T - U$

Action: $S = \int_{t_1}^{t_2} \mathcal{L}(q_1, q_2, \dots, q_N, \dot{q}_1, \dot{q}_2, \dots, \dot{q}_N, t) dt$

Euler-Lagrange equations: $\frac{\partial \mathcal{L}}{\partial a_1} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial a_2}, \dots$ etc.

Generalized forces: $F_i = \frac{\partial \mathcal{L}}{\partial q_i}$

Generalized momenta $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$

Orbits

Definitions: $M = m_1 + m_2$ $\mu = \frac{m_1 m_2}{m_1 + m_2}; \text{ e.g., } U(\rho) = \frac{-Gm_1 m_2}{\rho}$ from body 1 to body 2 R: vector from origin in inertial frame to system's CM **Kinetic energy:** $T = \frac{1}{2}M\dot{r}^2 + \frac{1}{2}\mu\dot{r}^2$ **Lagrangian:** $\mathcal{L} = \frac{1}{2}\mu\dot{\rho}^2 + \frac{1}{2}\mu\rho^2\dot{\phi}^2 - U(\rho)$ **Solution in \phi:** $\dot{\phi} = \frac{\ell}{\mu a^2} (\ell \text{ const} - \text{angular momentum})$ Solution in ρ : $\mu \ddot{\rho} = -\frac{d}{d\rho} U(\rho) + \frac{\ell^2}{\mu \rho^3} = -\frac{d}{d\rho} \left[U(\rho) + \frac{\ell^2}{2\mu \rho^2} \right]$ Effective potential: $U_{eff} = U(\rho) + \frac{\ell^2}{2u\rho^2}$ Note cons. of energy: $\frac{d}{dt}(\frac{1}{2}\mu\rho^2) = -\frac{d}{dt}U_{eff}(\rho); E = \frac{1}{2}\mu\rho^2 + U_{eff}(\rho)$ **Use:** u = 1/r and $\frac{d}{dt} = \frac{d\phi}{dt} \frac{d}{d\phi} = \dot{\phi} \frac{d}{d\phi} = \frac{\ell}{\mu \rho^2} \frac{d}{d\phi} = \frac{\ell u^2}{\mu} \frac{d}{d\phi}$ *u*-equation: $u''(\phi) = -u(\phi) - \frac{\mu}{\ell^2 u(\phi)^2 F(x)}$ Use: $\gamma = Gm_1m_2$ and $F(u) = -\gamma u^2$; then $U''(\phi) = -u(\phi) + \gamma \mu/\ell^2$; use $w(\phi) = u(\phi) - \gamma \mu / \ell^2$, so $W(\phi) = A\cos(\phi - \delta) \operatorname{ergo} u(\phi) = \frac{\gamma \mu}{\ell^2} + A\cos\phi$ **Radial eqn:** $r(\phi) = \frac{r_C}{1 + \varepsilon \cos \phi}$

Cartesian: $\left(\frac{x + \frac{r_c \varepsilon}{1 - \varepsilon^2}}{\frac{r_c}{1 - \varepsilon^2}}\right)^2 + \left(\frac{y}{\frac{r_c}{\sqrt{1 - \varepsilon^2}}}\right)^2$

Eccentricity: $\varepsilon = A \cdot r_c$ (A some constant)

Circular orbit: $r_c = \ell^2/\gamma\mu$

Min radius: $r_{min} = \frac{r_c}{1+\varepsilon} = \frac{\ell^2}{\eta\mu(1+\varepsilon)}$ (at $\phi = 0$; perihelion); $\ell = \mu r v_{tan}$ Max radius: $r_{max} = \frac{r_c}{1-\varepsilon}$ (at $\phi = \pi$; aphelion)

Radial velocity: $v_r = \sqrt{\frac{\mu}{r_c}} \cdot \varepsilon \cdot \sin \phi$

Tangential velocity: $v_t = \sqrt{\frac{\mu}{r_c}} \cdot (1 + \varepsilon \cdot \cos \phi)$

Ellipse params: $a = \frac{r_c}{1 - \varepsilon^2}$; $b = \frac{r_c}{\sqrt{1 - \varepsilon^2}}$; $d = a\varepsilon$; $\varepsilon = \sqrt{1 - (b/a)^2}$

Orbital period: $\tau = 2\pi \cdot a \cdot \sqrt{\frac{a}{\mu}}$

Energy: $E = \frac{\gamma^2 \mu}{2\ell^2} (\varepsilon^2 - 1)$

Kepler's 1st law: Orbits: ellipses w/ sun at a focus (approx. true)

Kepler's 2nd law: Line from Sun to planet, const. area/time

 $dA = \frac{1}{2}r^2d\phi$; $\frac{dA}{dt} = \frac{1}{2}\frac{\ell}{\mu}$, inep. of time **Kepler's** 3^{rd} **law:** $\tau = \frac{A}{dA/dt} = \frac{2\pi ab\mu}{\ell} \Rightarrow \tau^2 = 4\pi^2 \frac{a^3 r_c \mu^2}{\ell^2} = 4\pi^2 \frac{a^3 \mu}{\kappa} \approx \frac{4\pi^2}{\kappa} a^3$

Rigid Body Dynamics

center of mass:

 $\mathbf{R} = \frac{1}{M} \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{r}_{\alpha}$ (discrete point masses)

 $\mathbf{R} = \frac{1}{M} \int \mathbf{r} \, dm$ (continuous mass distr.)

momentum: $p \equiv mv$

kinetic energy:

 $T_{tot} = T(\text{motion of CM}) + T(\text{rotation about CM})$

 $T_{tot} = T_{rot}$ (about an instantaneously fixed point in body)

 $T_{trans} = \frac{1}{2}m|\mathbf{v}|^2$

 $T_{rot} = \frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{L}$

 $T_{rot} = \frac{1}{2} \left(\lambda_1 \omega_1^2 + \lambda_2 \omega_2^2 + \lambda_3 \omega_3^2 + \right)$ (if coord. sys = principal axes) $T_{rot} = \frac{1}{2} I \omega$ (freshman physics model)

moment of inertia, point mass: $I = \int r^2 dm$ or, for a point mass, $I = r^2 m$, where r is the perp. distance to axis of rotation

moment of inertia, rigid body: $\mathbb{I} = \int \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -yz & -xz & x^2 + y^2 \end{pmatrix} dM$

principal axes: Any axis through O with $\boldsymbol{\omega} \parallel \boldsymbol{L}$ when $\boldsymbol{\omega}$ points along that axis; i.e., $L = \lambda \omega$. Principal axes are eigenvectors of I.

parallel axis theorem: $I_z = I_{cm} + md^2$; I_{cm} : inertia about center of mass, m: mass, d: distance between axes

angular momentum: $L \equiv r \times p$ (r: position vec, p: linear momentum)

L = L(motion of CM) + L(motion relative to CM)torque: $N \equiv r \times F = \dot{L} = r \times \dot{p}$

work: $W = N\theta$, θ in rad

angle: θ

angular velocity: $\boldsymbol{\omega} = \dot{\boldsymbol{\theta}} = \frac{\boldsymbol{r} \times \boldsymbol{v}}{\ln 2}$

linear velocity: $v = \boldsymbol{\omega} \times \boldsymbol{r}$

angular acceleration: $\alpha = \dot{\omega} = \ddot{\theta} = a_T/r$; a_T is tangential acceleration newton's 2^{nd} -law: $N = I\alpha$

time deriv, unit vec in rotating frame: $\frac{de}{dt} = \boldsymbol{\omega} \times \boldsymbol{e}$ (\boldsymbol{e} fixed in body)

time deriv, vec in rotating frame: $\left(\frac{d\mathbf{r}}{dt}\right)_{S_0} = \left(\frac{d\mathbf{r}}{dt}\right)_S + \boldsymbol{\omega} \times \mathbf{r}$ (S_0 : inertial frame, S:

Newton's 2^{nd} in rotating frame: $m\ddot{r} = F + 2m\dot{r} \times \omega + m(\omega \times r) \times \omega$

Euler's equations of motion (body frame): $\dot{L} + \omega \times L = \tau \dots$

 $\lambda_1 \omega_1 - (\lambda_2 - \lambda_3) \omega_2 \omega_3 = \tau_1$ $\lambda_2 \dot{\omega}_2 - (\lambda_3 - \lambda_1) \omega_3 \omega_1 = \tau_2$ $\lambda_3 \dot{\omega}_3 - (\lambda_1 - \lambda_2) \omega_1 \omega_2 = \tau_3$

stability: If $\lambda_1 < \lambda_2 < \lambda_3$, rotations about \hat{e}_1 and \hat{e}_3 are stable, while rotations about \hat{e}_2 are not. If $\lambda_1 = \lambda_2$, rotations about all principal axes are stable.

Coupled Oscillators

 $\mathbf{M}\ddot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$, with $(\mathbf{M}, \mathbf{K}) \in \mathbb{R}^{N \times N}$ and $\mathbf{x} \in \mathbb{R}^{N \times 1}$ assume solution: $\mathbf{x} = \Re \left\{ \mathbf{z}(t) = \mathbf{a}_n e^{i(\omega_n t - \delta_n)} \right\}$ $\boldsymbol{a}_n \in \mathbb{R}^{N \times 1} = \text{eigenvectors}$ $\omega_n \in \mathbb{R}$ = eigenvalues

 $\delta_n \in \mathbb{R}$ = phase term (can be excluded, whereupon $a_n \in \mathbb{C}$)

actual solution: $\mathbf{x} = \Re \left\{ \sum_{n} A_{n} \mathbf{a}_{n} e^{i(\omega_{n}t - \delta_{n})} \right\}, A_{n} \in \mathbb{R}$

normal frequencies: ω_n , $n \in [1, N]$ where N is dimension of K; generalized eigenvalues of system.

normal modes: solutions to equations of motion with only one of $\{\omega_n\}$; all motion can be described as a weighted sum of the normal modes; equations of motion written in terms of ξ_n diagonalize both **M** and **K**

normal coordinates: vary independently of one another

e.g.: 2 m's, 3 k's, $k_1 = k_3$: use $\xi_1 = \frac{1}{2}(x_1 + x_2)$ and $\xi_2 = \frac{1}{2}(x_1 - x_2)$

Conservative Force

Conditions, given F has continuous first partials in a simply connected region...

No curl anywhere: $\nabla \times \mathbf{F} = 0$ Equal work regardless of path:

 $W_C = \int_C \mathbf{F} \cdot d\mathbf{s} = const. \ \forall \text{ paths } C$

 $W_C = \oint_C \mathbf{F} \cdot d\mathbf{s} = 0 \ \forall \ \text{closed contours } C$

 $\mathbf{F} \cdot d\mathbf{r}$ is exact differential $F = \nabla W$, W single-valued

Allows definition of potential: $F = -\nabla U$

Specific Forces

gravity

point mass or sph.-symm mass: $\mathbf{F} = -G \frac{Mm}{2} \mathbf{e_r} \approx -mg$ on earth

generally: $\mathbf{F} = -Gm \int_V \frac{\rho(\mathbf{r}')e_{\mathbf{r}}}{c^2} dv'$

grav field vector: $\mathbf{g} \equiv -\nabla \Phi = \mathbf{F}/m$ grav potential, point mass: $\Phi = -G\frac{M}{r}$

grav potential, mass distr: $\Phi = -G \int_V \frac{\rho(\mathbf{r}')}{r} dv$

potential energy: $U = m\Phi$

Gauss' law for grav, int: $\oint_S \mathbf{g} \cdot d\mathbf{A} = -4\pi GM$

Gauss' law for grav, dif: $\nabla \cdot \mathbf{g} = -4\pi G \rho$

Poisson's equation: $\nabla^2 \phi = 4\pi G \rho$, for rad-sym system, this is $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) = 4\pi G \rho(r)$ and $\mathbf{g}(r) = -\mathbf{e_r} \frac{\partial \phi}{\partial r}$

tidal (due to Moon's gravity)

e_R points from Moon's center to test mass on Earth

en is from center of Moon to center of Earth

(x, y) ECEF coord of test mass

 $\mathbf{F}_T = -GmM_m \left(\frac{\mathbf{e_R}}{R^2} - \frac{\mathbf{e_D}}{R^2} \right)$

 $F_{T_x} \approx 2GmM_mx/D^3$ $F_{T_v} \approx -GmM_m y/D^3$

spring (simple, linear)

F = -kx (x: displ from eq lib, k: spring const)

inertial force, linear accel: $F_{inert} = -mA$ (A: frame's accel w.r.t. inertial frame) centrifugal (inertial force)

 $\mathbf{F}_{centr} = m(\mathbf{\Omega} \times \mathbf{r}) \times \mathbf{\Omega}$ (generally)

 $\boldsymbol{F}_{centr} = \frac{mv^2}{r} \boldsymbol{e_r} = mr\Omega^2 \boldsymbol{e_r}$ (for circular motion)

 $U_{centr}(r) = \frac{\ell^2}{2mr^2}$ (ℓ : angular momentum)

Free-fall accel (e.g., on Earth): $\mathbf{g} = \mathbf{g}_0 + (\mathbf{\Omega} \times \mathbf{R}) \times \mathbf{\Omega}$

coriolis (inertial force) $\mathbf{F}_{cor} = 2m\dot{\mathbf{r}} \times \mathbf{\Omega}$

friction (pseudo-force)

 $\vec{F}_f = \mu F_N (\mu: \text{static } (\mu_s) \text{ or kinetic } (\mu_k), F_N: \text{ normal force})$

Angle of friction (obj starts to move): $tan\theta = \mu_s$

Energy converted to heat: $E_{th} = \mu_k \int F_n(x) dx$

general retarding

 $\mathbf{F} = -bm\dot{\mathbf{x}}^n$ (b: damping const, m: mass, n: power of velocity dep., just 1 in simple cases)

air resistance / drag

 $W = \frac{1}{2} c_W \rho A v^2$, c_W : dimensionless drag coeff, ρ : air density, A:

cross-sectional area perp. to velocity (v)

buoyant

 $F = \rho_{fluid}Vg$, dir. opposite to grav.-induced pressure grad. in fluid; ρ_{fluid} : density, V: submerged volume, g: grav.

lorentz

 ${\pmb F}=q{\pmb v}\times{\pmb B},\,q$ is charge of particle, ${\pmb v}$ its velocity, ${\pmb B}$ is mag. field strength electrostatic $\mathbf{F} = q\mathbf{E}$, q is charge, \mathbf{E} electric field

Energy

potential energy: $\int_{-\infty}^{\infty} \mathbf{F} \cdot d\mathbf{r} \equiv U_1 - U_2$

(work, done by force \mathbf{F} , req'd to move particle from point 1 to point 2 with no change in kinetic energy); potential energy is the capacity to do work.

force due to the potential U: $F = -\nabla U$

kinetic energy: $T_{trans} \equiv \frac{1}{2}m|\mathbf{v}|^2$

$$T_{rot} \equiv \frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{L}$$

 $T = \frac{p^2}{2m}$ total energy: $E \equiv T + U$

1D solution given E and U(x), for conservative force only:

$$t - t_0 = \int_{x_0}^{x} \frac{\pm dx}{\sqrt{\frac{2}{m} [E - U(x)]}}$$

Conservation theorems

linear momentum: $\frac{d}{dt}(p_1+p_2)=0$ (or p_1+p_2 is const) if no external forces act

angular momentum: $\dot{\mathbf{L}} = \mathbf{r} \times \dot{\mathbf{p}} = 0$ (or \mathbf{L} is const) if no external torque acts upon

energy: $\mathbf{F} + \nabla U = 0$; $\frac{dE}{dt} = 0$ if the force field represented by \mathbf{F} is conservative