Rates Série A 2014-2019

```
library(dplyr)
library(knitr)
library(reshape2)
library(ggplot2)
load("input_2014_2019.RData")
x = list(); y = list()
for(k in 1:N) {
  x[[k]] = c(x1[[k]], x2[[k]])
  y[[k]] = c(y1[[k]], y2[[k]])
intensity_x = list(); intensity_y = list()
for(k in 1:N) {
  intensity_x[[k]] = x[[k]]/(1:length(x[[k]]))
  intensity_y[[k]] = y[[k]]/(1:length(y[[k]]))
}
intensity_x %>%
  unlist() %>%
  summary()
      Min. 1st Qu. Median
                              Mean 3rd Qu.
## 0.00000 0.00000 0.00000 0.01205 0.02041 0.50000
intensity_y %>%
  unlist() %>%
  summary()
##
       Min. 1st Qu.
                       Median
                                  Mean 3rd Qu.
                                                    Max.
## 0.000000 0.000000 0.000000 0.007869 0.012658 0.500000
tibble(Intensity = c(unlist(intensity_x), y = unlist(intensity_y)),
       Team = c(rep("Home", length(unlist(intensity_x))),
                rep("Away", length(unlist(intensity_y))))) %>%
  ggplot(aes(Team, Intensity)) +
  geom_boxplot() +
  theme_bw()
```



```
# 1 2 3 4
intervals = c(0, 0.015, 0.03, 0.045, Inf)
interval_x = list(); interval_y = list()
for(k in 1:N) {
  tmp_interval_x = rep(NA, length(intensity_x[[k]]))
  tmp_interval_y = rep(NA, length(intensity_y[[k]]))
  for(i in 1:(length(intervals)-1)) {
    tmp_interval_x[which(intensity_x[[k]] >=
                           intervals[i] & intensity_x[[k]] < intervals[i+1])] = i</pre>
    tmp_interval_y[which(intensity_y[[k]] >=
                           intervals[i] & intensity_y[[k]] < intervals[i+1])] = i</pre>
  interval_x[[k]] = tmp_interval_x
  interval_y[[k]] = tmp_interval_y
}
interval_x %>%
 unlist() %>%
table()
```

```
## .
## 1 2 3 4
## 152997 41171 19075 11067
```

```
interval_y %>%
  unlist() %>%
table()
## .
               2
                             4
        1
                      3
## 177786 30111 10307
                          6106
xy = list()
for(k in 1:N) {
 xy[[k]] = paste(interval_x[[k]], interval_y[[k]], sep = "-")
tables = lapply(xy, table)
scores = NULL
c = 0
for(i in 1:4) {
 for(j in 1:4) {
   c = c + 1
    scores[c] = paste(i, j, sep = "-")
  }
}
diff_x = list(); diff_y = list()
for(k in 1:N) {
 diff_x[[k]] = c(diff(x[[k]]))
  diff_y[[k]] = c(diff(y[[k]]))
}
t_x = list(); t_y = list()
for(k in 1:N) {
 t_x[[k]] = which(diff_x[[k]] == 1)
  t_y[[k]] = which(diff_y[[k]] == 1)
delta_home = list(); delta_away = list(); t = list()
for(i in 1:length(scores)) {
  tmp_delta_home = NULL; tmp_delta_away = NULL; tmp_t = NULL
  for(k in 1:N) {
    if(scores[i] %in% names(tables[[k]])) {
      tmp_t[k] = tables[[k]][scores[i]]
      minutes = which(xy[[k]] == scores[i])
      tmp_delta_home[k] = sum(t_x[[k]] %in% minutes)
      tmp_delta_away[k] = sum(t_y[[k]] %in% minutes)
      tmp_delta_home[k] = 0
     tmp_delta_away[k] = 0
      tmp_t[k] = 0
    }
  }
  delta_home[[i]] = tmp_delta_home
  delta_away[[i]] = tmp_delta_away
```

kable(tib, digits = 4, caption = "Estimates and standard errors of the rate of the time
 to the next goal")

Table 1: Estimates and standard errors of the rate of the time to the next goal

Rate	Est.(both)	Est.(home)	Est.(away)	S.e.(both)	S.e.(home)	S.e.(away)
$\overline{ u_{11}}$	0.0232	0.0140	0.0092	0.0004	0.0003	0.0003
ν_{12}	0.0257	0.0166	0.0092	0.0012	0.0010	0.0007
ν_{13}	0.0238	0.0140	0.0098	0.0019	0.0015	0.0012
ν_{14}	0.0197	0.0140	0.0057	0.0020	0.0017	0.0011
ν_{21}	0.0236	0.0142	0.0094	0.0009	0.0007	0.0006
ν_{22}	0.0264	0.0175	0.0089	0.0017	0.0014	0.0010
ν_{23}	0.0311	0.0206	0.0106	0.0043	0.0035	0.0025
ν_{24}	0.0271	0.0181	0.0090	0.0078	0.0064	0.0045
ν_{31}	0.0242	0.0142	0.0100	0.0013	0.0010	0.0008
ν_{32}	0.0243	0.0146	0.0097	0.0028	0.0022	0.0018
ν_{33}	0.0274	0.0157	0.0117	0.0037	0.0028	0.0024
ν_{34}	0.0309	0.0206	0.0103	0.0126	0.0103	0.0073
ν_{41}	0.0214	0.0131	0.0083	0.0015	0.0012	0.0010
ν_{42}	0.0243	0.0156	0.0087	0.0046	0.0037	0.0027
ν_{43}	0.0179	0.0108	0.0072	0.0080	0.0062	0.0051
ν_{44}	0.0182	0.0127	0.0055	0.0057	0.0048	0.0031

```
names(rates) = scores
names(rates_home) = scores
names(rates_away) = scores

mat = matrix(NA, nrow = 4, ncol = 4)
rownames(mat) = paste0(1:4)
```

```
colnames(mat) = paste0(1:4)
mat_home = mat
mat_away = mat
for(i in 1:4) {
  for(j in 1:4) {
    mat[i,j] = rates[paste(i, j, sep = "-")]
    mat_home[i,j] = rates_home[paste(i, j, sep = "-")]
    mat_away[i,j] = rates_away[paste(i, j, sep = "-")]
  }
}
melted_mat = melt(mat) %>%
  rename(x = Var1, y = Var2)
melted_mat_home = melt(mat_home) %>%
  rename(x = Var1, y = Var2)
melted_mat_away = melt(mat_away) %>%
  rename(x = Var1, y = Var2)
for(i in 1:(length(intervals)-1)) {
  melted_mat$x[which(melted_mat$x == i)] =
    paste0("[", intervals[i], ", ", intervals[i+1], ")")
  melted_mat_home$x[which(melted_mat_home$x == i)] =
    paste0("[", intervals[i], ", ", intervals[i+1], ")")
  melted_mat_away$x[which(melted_mat_away$x == i)] =
    paste0("[", intervals[i], ", ", intervals[i+1], ")")
  melted_mat$y[which(melted_mat$y == i)] =
    paste0("[", intervals[i], ", ", intervals[i+1], ")")
  melted_mat_home$y[which(melted_mat_home$y == i)] =
    paste0("[", intervals[i], ", ", intervals[i+1], ")")
  melted_mat_away$y[which(melted_mat_away$y == i)] =
    paste0("[", intervals[i], ", ", intervals[i+1], ")")
ggplot(data = melted_mat, aes(x, y, fill = value)) +
  geom_tile() +
  scale_fill_gradient2(low = "yellow", mid = "orange", high = "red",
                       midpoint = 0.029, limit = c(0.016, 0.042),
```

Rate of the time to the next goal

Rate of the time to the next home goal

Rate of the time to the next away goal

