INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4076B MSI

Quadruple D-type register with 3-state outputs

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple D-type register with 3-state outputs

HEF4076B MSI

DESCRIPTION

The HEF4076B is a quadruple edge-triggered D-type flip-flop with four data inputs (D_0 to D_3), two active LOW data enable inputs (\overline{ED}_0 and \overline{ED}_1), a common clock input (CP), four 3-state outputs (D_0 to D_3), two active LOW output enable inputs (\overline{EO}_0 and \overline{EO}_1), and an overriding asynchronous master reset input (MR).

Information on D_0 to D_3 is stored in the four flip-flops on the LOW to HIGH transition of CP if both \overline{ED}_0 and \overline{ED}_1 are LOW. A HIGH on either \overline{ED}_0 or \overline{ED}_1 prevents the flip-flops from changing on the LOW to HIGH transition of CP, independent of the information on D_0 to D_3 . When both \overline{EO}_0 and \overline{EO}_1 are LOW, the contents of the four flip-flops are available at O_0 to O_3 . A HIGH on either \overline{EO}_0 or \overline{EO}_1 forces O_0 to O_3 into the high impedance OFF-state. A HIGH on MR resets all four flip-flops, independent of all other input conditions.

HEF4076BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4076BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4076BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

 D_0 to D_3 data inputs

 \overline{ED}_0 , \overline{ED}_1 data enable inputs (active LOW) \overline{EO}_0 , \overline{EO}_1 output enable inputs (active LOW)

CP clock input (LOW to HIGH, edge-triggered)

 $\begin{array}{ll} \text{MR} & \text{master reset input} \\ \text{O}_0 \text{ to O}_3 & \text{data outputs} \end{array}$

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Quadruple D-type register with 3-state outputs

HEF4076B MSI

Quadruple D-type register with 3-state outputs

HEF4076B MSI

FUNCTION TABLE

	OUTPUTS				
MR	СР	ED ₀	ED₁	D _n	O _n
Н	Х	Х	Х	Х	L
L	_	Н	X	Х	no change
L		Х	Н	Х	no change
L		L	L	Н	Н
L		L	L	L	L
L	~	Х	Х	Х	no change

Notes

1. $\overline{EO}_0 = \overline{EO}_1 = LOW$

When either \overline{EO}_0 or \overline{EO}_1 is HIGH, the outputs are disabled (high impedance OFF-state).

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

→ = negative-going transition

AC CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \, ^{\circ}\text{C}$; $C_L = 50 \, \text{pF}$; input transition times $\leq 20 \, \text{ns}$; see also waveforms Fig.4

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5			150	305	ns	123 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		60	120	ns	49 ns + (0,23 ns/pF) C _L
	15			45	85	ns	37 ns + (0,16 ns/pF) C _L
	5			160	320	ns	133 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
$MR \to O_n$	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	85	ns	29 ns + (0,23 ns/pF) C _L
	15			30	65	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
3-state propagation times							
Output disable times	5			50	105	ns	
$\overline{EO}_n \to O_n$	10	t _{PHZ}		35	70	ns	
HIGH	15			30	65	ns	
	5			45	90	ns	
LOW	10	t _{PLZ}		30	65	ns	
	15			30	60	ns	

Philips Semiconductors Product specification

Quadruple D-type register with 3-state outputs

HEF4076B MSI

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output enable times	5			65	130	ns	
$\overline{EO}_n o O_n$	10	t _{PZH}		30	55	ns	
HIGH	15			20	40	ns	
	5			60	120	ns	
LOW	10	t _{PZL}		25	50	ns	
	15			20	35	ns	

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Set-up times	5		10	-15	ns	
$D_n \to CP$	10	t _{su}	0	-10	ns	
	15		0	-5	ns	
	5		0	-50	ns	
$\overline{ED}_n \to CP$	10	t _{su}	0	-20	ns	
	15		0	-15	ns	
Hold times	5		55	30	ns	
$D_n \to CP$	10	t _{hold}	20	10	ns	
	15		15	10	ns	
	5		25	-25	ns	
$\overline{ED}_n \to CP$	10	t _{hold}	10	-10	ns	
	15		5	-5	ns	see also waveforms
Minimum clock	5		120	60	ns	Fig.4
pulse width; LOW	10	t _{WCPL}	45	20	ns	
	15		30	15	ns	
Minimum MR pulse	5		55	25	ns	
width; HIGH	10	t _{WMRH}	30	15	ns	
	15		20	10	ns	
Recovery time	5		90	45	ns	
for MR	10	t _{RMR}	35	15	ns	
	15		20	10	ns	
Maximum clock	5		4	8	MHz	
pulse frequency	10	f _{max}	11	22	MHz	
	15		16	32	MHz	

Philips Semiconductors Product specification

Quadruple D-type register with 3-state outputs

HEF4076B MSI

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	2200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	9300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_i = input freq. (MHz)
package (P)	15	24 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_0 = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

outputs

NSI

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.