PREPARATION /

+ From unsaturated hydrocarbons

$$CH_2 = CH_2 \xrightarrow{Pt/Pd/Ni} CH_3 - CH_3$$

+ From alkyl halides

$$CH_3 - CH_2 - CI \xrightarrow{Zn} C_2H_6 + Na$$

+ Wurtz RX

$$2CH_3$$
— $Cl + Na \xrightarrow{dry ether} CH_3CH_3$

→ From carboxylic acids

$$CH_3COO^{T}Na^{+} + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

+ Kolbe's Electrolytic Method

$$2CH_3COONa^+ + 2H_2O \xrightarrow{\text{electrolysis}}$$

 $CH_3-CH_3 + 2CO_2 + H_2 + 2NaOH$

PHYSICAL PROPERTIES /

- → Generally, Non-polar in Nature.
- → Boiling point

 Molecular mass

CHEMICAL PROPERTIES

$$CH_4 + Cl_2 \xrightarrow{UV} CH_3Cl + HCl$$

Substitution Reaction → Halogenation

- 1. Initiation ----

$$Cl_2 \xrightarrow{hv} \dot{C}l + \dot{C}l$$

2. Propagation
$$CH_4+\dot{C}l\longrightarrow \dot{C}H_3+HCl$$

$$\dot{C}H_4+Cl\longrightarrow \dot{C}H_4Cl+\dot{C}l$$

$$3. Termination$$

$$\dot{Cl} + \dot{Cl} \longrightarrow Cl_2$$

+ Combustion

$$C_x H_y + (x + \frac{y}{4})O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$

+ Isomerization

→ Reaction with Steam

$$CH_4+ H_2O \xrightarrow{Ni} CO + 3H_2$$

+ Controlled Oxidation

$$CH_4 + O_2 \xrightarrow{Cu/523 \text{ K}} 2CH_3OH$$

$$CH_4+O_2 \xrightarrow{MO_2O_3} HCHO + H_2O$$

+ Aromatic Reforming

+ Pyrolysis

$$C_6H_{14} \xrightarrow{773 \text{ K}} C_6H_{12} + H_2$$
 $C_4H_8 + C_2H_6$
 $C_3H_6 + C_2H_4 + CH_4$

ALKANES

CONFORMERS

→ Sawhorse Projection

→ Newman Projection

10.HYDROCARBONS

ALKENES

C_n H_{2n}

PREPARATION

+ From acidic dehydration of alcohols

$$HO-CH_{2}-CH_{3} \xrightarrow{conc. H_{2}SO_{4}} \xrightarrow{H} \xrightarrow{H} + H_{2}O$$

+ From vicinal dihalides

$$\mathsf{Br}\mathsf{--CH}_2\mathsf{--CH}_2\mathsf{--Br} \xrightarrow{\mathsf{Zn}} \overset{\mathsf{H}}{\underset{\mathsf{H}}{\longleftarrow}} \overset{\mathsf{H}}{\underset{\mathsf{H}}{\longleftarrow}} \mathsf{+} \mathsf{ZnBr}_2$$

+ From alkyl halides

$$CH_3-CH_2-X \xrightarrow{alc. KOH} H + Hx$$

+ From alkynes

$$R_2C = CR_1 + H_2 \xrightarrow{Pd/C} R_2$$

PHYSICAL PROPERTIES

- → Alkenes are insoluble in water but soluble non-polar solvents.
- → First few members are gases and rest are liquids & solids.

CHEMICAL PROPERTIES IN ALKENES

+ ELECTROPHILIC REACTIONS

$CH_3-CH=CH_2 \xrightarrow{cold conc.} CH_3-CH-CH_3$ $CH_{3}-CH=CH_{2}\xrightarrow{H_{2}O}CH_{3}-CH-CH_{3}$ OH

→ ADDITION OF HYDROGEN HALIDES —

Symmetrical Alkene

$$CH_2 = CH_2 + HBr \longrightarrow BrCH_2 - CH_3$$

Asymmetrical alkene

$$CH_{3}-CH = CH_{2} + HBr$$
(I) $CH_{3}CH BrCH_{3}$ (II) $CH_{3}CH_{2}CH_{2}Br$

+ OXIDATION

$$CH_2 = CH_2 + H_2O \xrightarrow{\text{dil. KMnO}_4} CH_2 - CH_2 - CH_2$$

$$0H OH$$

+ OZONOLYSIS

Anti-Markovnikov Effect / Kharash Effect/ Anti-Peroxide Effect

This mechanism proceeds via free radical mechanism and the minor product via Markovnikov effect becomes major product. (II) is major product.

Markovnikov's rule

"Negative part of the addendum gets attached to the carbon containing lesser number of hydrogens". (I) is major product.

+ POLYMERIZATION

n-(
$$CH_2$$
= CH_2 -) High temp. $-(CH_2-CH_2-)_n$

CH2- CH_2 -CH2- $-$ 1

ALKYNES

C_n H_{2n-2}

CHEMICAL PROPERTIES /

ELECTROPHILIC ADDITION

$$HC \equiv CH \xrightarrow{Pt, Pd, Ni} CH_2 = CH_2 \xrightarrow{H_2} CH_3 - CH_3$$

$$HC \equiv CH \xrightarrow{Br_2} CH = CH$$

$$Br Br$$

$$HC \equiv CH \xrightarrow{H_2O} CH_2 = C - H$$

$$OH$$

$$HC \equiv CH \xrightarrow{HCI/} CH_3COOH$$

$$CH_2 = CH - H$$

$$OH$$

$$CH_2 = CH - H$$

PREPARATION

+ From Calcium Carbide

$$CaC_2 \xrightarrow{H_2O} C_2H_2 + Ca(OH)_2$$

→ From Vicinal dihalides

$$CH_{2} - CH_{2} - H + KOH$$

$$Cl \quad Cl$$

$$\downarrow \text{alcohol}$$

$$CH_{2} = CH_{2} - Cl \xrightarrow{\text{NaNH}_{2}} CH \equiv CH$$

PHYSICAL PROPERTIES /

- ★ First few members of alkynes are gases.

- ◆ Soluble in non-polar solvents and insoluble in water.

POLYMERISATION

Cyclic polymerisation

Electrophilic

PHYSICAL PROPERTIES /

- → Immiscible in water but completely soluble in polar solvents.
- → Characteristic smell.
- → Burn with a sooty flame.
- → Highly volatile in nature.

AROMATICITY

- 1. Planarity
- 2. Delocalisation of π -electrons.
- 3. Presence of $(4n + 2)-\pi$ electrons.

ARENES

Conc. H₂SO₄ (323-333 K)

Conc. HNO₃

CHEMICAL PROPERTIES /

Addition

PREPARATION

+ Decarboxylation of carboxylic acids

+ Reduction of Phenol Using Zn Dust

$$OH \qquad Zn \qquad D + ZnO$$

Conc. H, SO₄ + SO₅

CARCINOGENICITY AND TOXICITY Aromatic compounds are toxic in nature and most of them are classified as carcinogens.