TEMA 3: FUNDAMENTOS DE MAGNETISMO

- Movimiento de cargas en campos magnéticos
- Fuerzas sobre corrientes. Dipolo Magnético
- Ley de Biot y Savart.
- Ley de Gauss para el campo magnético
- Ley de Ampère: Aplicaciones

Fuerza magnética sobre una carga en movimiento

Características de $\vec{F}_{\scriptscriptstyle R}$

- Es proporcional a la q
- → Es proporcional al |v|
- **7** Es proporcional al **sen**(θ)
- **>** Es ⊥ a **v** y **B**

$$\vec{F}_{\scriptscriptstyle B} = q\,\vec{v} \wedge \vec{B}$$

$$|\vec{F}_B| = |q||\vec{v}||\vec{B}|\sin(\theta)$$

$${m B} \perp {m v} \Rightarrow {m F} \, {\sf m} \, {\sf axima}$$

$$B \mid v \Rightarrow F = 0$$

UNIDAD DEL CAMPO MAGNÉTICO EN EL S.I.: Tesla (T)

"Un tesla (T) corresponde al campo magnético que produce una fuerza de un newton sobre una carga de un culombio que se mueve perpendicularmente al campo a razón de un metro por segundo"

1 T = 1 kg · s⁻¹ · C = 1 kg · s⁻² · A⁻¹

$$[B] = [M][T]^{-2}[I]^{-1}$$
1 tesla (T) = 10⁴ gauss (G)

ÓRDENES DE MAGNITUD DE CAMPOS MAGNÉTICOS TÍPICOS

	B (en T)
spacio interestelar	< 10 ⁻⁹
Campo magnético de la Tierra (en al superficie)	5 x 10 ⁻⁵
Superficie de las estrellas	10 ⁻² a 5
manes permanentes	10 ⁻² a 1
Electroimán con núcleo de hierro	> 3
manes superconductores	> 20
Bobinas de alta corriente	> 20
Bobinas pulsantes (duración 10 ⁻¹ s)	10 a 30

$$|\vec{F}_B| = |q||\vec{v}||\vec{B}| \sin(\theta)$$

Líneas del campo B

- Son cerradas sobre sí mismas
- → Van del Norte al Sur (fuera del imán)
- → Van del Sur al Norte (dentro del imán)
- → Son tangentes en cada punto a B

Representación

Puntos • Campo ⊥ al folio (el campo sale del folio)

Cruces X Campo ⊥ al folio (el campo entra en el folio)

Líneas del campo B

- → Son cerradas sobre sí mismas
- → Van del Norte al Sur (fuera del imán)
- → Van del Sur al Norte (dentro del imán)
- → Son tangentes en cada punto a B

Campo Eléctrico (electrostático):

Campo Magnético

no conservativo
$$\iff \int_{L} \vec{B} \cdot d\vec{l} \neq 0$$

no podemos definir ni energía potencial ni potencial escalar magnético

Más propiedades de la fuerza magnética sobre una carga:

$$\vec{F}_B = q \, \vec{v} \wedge \vec{B}$$

$$\vec{F}_{B} \perp \vec{v} \; \left(\vec{F}_{B} \perp d\vec{l} \right) \implies$$
 el trabajo W de la fuerza magnética al mover la carga es nulo.

- la energía cinética de la partícula se mantiene constante (no cambia el módulo de v sino sólo su dirección)
- si la partícula cargada se mueve en región con campo eléctrico y magnético, la fuerza total es:

$$\vec{F} = q \left(\vec{E} + \vec{v} \wedge \vec{B} \right)$$

FUERZA DE LORENTZ

Caso A: \overrightarrow{B} uniforme, $\overrightarrow{v} \perp \overrightarrow{B}$

$$\vec{F}_{B} = q \, \vec{v} \wedge \vec{B}$$

$$\vec{F}_B \perp \vec{v} \implies |\vec{v}|$$
 no varía \vec{B} uniforme $\implies |\vec{F}_B|$ constante

Mov. Circular Uniforme (M.C.U.)

$$\vec{F}_C = m\vec{a}_C$$
 $\vec{F}_B = q\vec{v} \wedge \vec{B}$

aceleración centrípeta:
$$|\vec{a}_C| = \frac{v^2}{r}$$

radio de giro

Campo que entra
$$\times$$
 Campo que sale $|\vec{F}_C| = |\vec{F}_B|$; $m \frac{v^2}{r} = q |\vec{v}| |\vec{B}|$ $r = \frac{mv}{qB}$

Caso A: \overrightarrow{B} uniforme, $\overrightarrow{v} \perp \overrightarrow{B}$

Campo que entra x Campo que sale •

Mov. Circular Uniforme (M.C.U.)

radio de giro
$$r = \frac{mv}{qB}$$

período de
$$T = \frac{2\pi r}{v} = \frac{2\pi}{v} \frac{mv}{qB}$$

frecuencia
$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$

frec. angular (FRECUENCIA CICLOTRÓNICA)

$$\omega = 2\pi v = \frac{qB}{m}$$

$$\vec{w} = -\frac{q}{m}\vec{B}$$

FRECUENCIA CICLOTRÓNICA

Caso B: B uniforme, VLB

 $v_{\perp} \perp \vec{B}$ Fuerza magnética. Mov. circular uniforme.

La combinación de los dos movimientos:

> Movimiento helicoidal de paso de hélice constante

radio de giro frec. angular paso de hélice

$$r = \frac{mv_{\perp}}{qB}$$

$$\omega = \frac{qB}{m}$$

$$\omega = \frac{qB}{m} \qquad p = v_{\parallel} T = v_{\parallel} \frac{2\pi m}{qB}$$

Caso C: B no uniforme, V & B

- radio de giro y paso de hélice variables
- fuerza magnética perpendicular a la línea de campo B: la componente de la velocidad paralela al campo B puede variar.

Botella magnética: confina partículas cargadas (plasma)

Cinturón de Van Allen

ESPECTRÓMETRO DE MASAS

Energía cinética:

$$\frac{1}{2}mv^2 = qV \longrightarrow v^2 = \frac{2qV}{m}$$

Radio:

$$r = \frac{mv}{qB} \qquad \Longrightarrow \quad v^2 = \frac{r^2 q^2 B^2}{m^2}$$

Relación
$$q/m$$
: $\frac{q}{m} = \frac{2V}{r^2B^2}$

Masa de una partícula:
$$m = \frac{qr^2B^2}{2V}$$

podemos diferenciar entre isótopos de un mismo elemento

SELECTOR DE VELOCIDADES

las partículas que no se desvían:

$$\left| ec{F}_{E}
ight| = \left| ec{F}_{B}
ight|$$

