Лабораторная работа 2. Исследование протокола TCP и алгоритма управления очередью RED.

Баулин Егор Александрович

Цель работы

Ознакомиться с протоколом TCP и алгоритмом управления очередями RED.

Задачи

- Реализовать пример алгоритма RED на NS-2 с получением графиков через хgraph.
- Внести изменения в скрипт заменив TCP Reno на NewReno и Vegas, а также сравнить результаты.

Моделируемая в примере сеть

Рис. 1: Схема моделируемой сети

Графики для первого случая

Рис. 2: График динамики размера окна TCP (Reno)

Графики для первого случая

Рис. 3: График динамики длины очереди и средней длины очереди
(Reno)

При смене Reno на NewReno

Рис. 4: График динамики размера окна TCP (NewReno)

При смене Reno на NewReno

Рис. 5: График динамики длины очереди и средней длины очереди
(NewReno)

При смене Reno на Vegas

Рис. 6: График динамики размера окна TCP (Vegas)

При смене Reno на Vegas

Рис. 7: График динамики длины очереди и средней длины очереди
(Vegas)

Сравнение результатов

Результаты изменений Reno на NewReno практически не дали разницы в показателях. В свою очередь протокол Vegas сокращает частоту колебания размера окна, но амплитуда колебаний выше, чем при NewReno

Выводы

 Ознакомился с алгоритмом управления очередями RED, произвел моделирование на NS-2, а также сравнил результаты с разными TCP.