北京郵電大學

实验报告

课程名称 <u>计算机组成原理</u> 实验名称

运算器、双端口储存器、数据通路联合实验

班级: 2022211305

学号: 2022212408

姓名: 胡宇杭

学院: 计算机学院 (国家示范性软件学院)

时间: 2024 年 5 月 7 日

目录

1	实验	:一:运算器组成实验	3
	1.1	实验目的及任务	3
	1.2	实验电路分析	3
	1.3	思考题解答	4
	1.4	实验过程及结果	4
		1.4.1 实验过程记录表	4
	1.5	实验收获及体会	4
2	双端	口存储器实验	6
	2.1	实验目的及任务	6
	2.2	实验电路分析	6
	2.3	思考题解答	7
	2.4	实验过程及结果	7
	2.5	实验收获及体会	7
3	双端	口存储器实验	9
	3.1	实验目的及任务	9
	3.2	实验电路分析	9
	3.3	思考题解答	10
	3.4	实验过程及结果	10
	2 5	☆心此基乃从 △	10

1 实验一:运算器组成实验

1.1 实验目的及任务

- 实验目的:
 - 1. 熟悉 TEC-8 模型计算机的节拍脉冲 T1、T2、T3
 - 2. 熟悉双端口通用寄存器组的读写操作
 - 3. 熟悉运算器的数据传送通路
 - 4. 熟悉 ALU (74LS181) 的加减与或功能
- 实验任务:
 - 1. 熟悉手工连线方式: 完成控制信号模拟开关与运算模块的外部连线
 - 2. 熟悉利用数据开关向通用寄存器 R3-R0 中置入数据
 - 3. 验证 ALU 的算术运算和逻辑运算功能

1.2 实验电路分析

- 一次完整的运算步骤的电路分析如下:
- 1. 通过数据开关 SD7-SD0 将两位 16 进制数输入到 SWD 中,当 SBUS=1 时,数据被送入 DBUS 总线上
- 2. 通过 2-4 译码器片选输入 RD0、RD1 进行寄存器的选择

- $3. \Leftrightarrow DRW = 1$, 此时被选中的寄存器可以写入
- 4. 按下 QD 输入时钟信号,在 T3 时钟上升沿 DBUS 中的数据被写入寄存器中
- 5. 重复,将所需数据全部存入寄存器后,关闭 DRW,通过 4 选 1 数据选择器 A、B 输入 RD0、RD1、RS0、RS1 将对应寄存器中的数据输入至 ALU 的 A 端口和 B 端口
- 6. 通过 M、S3-S0、CIN 选择运算器的运算模式,关闭 SBUS,开启 ABUS,可以将计算结果送入 DBUS 中。其中,当 LDC=1 时,将进位标志输入 C 标志寄存器中;当 LDZ=1 时,将零标志输入 Z 寄存器中
- 7. 按下 QD, 计算结果在 T3 时钟上升沿被送入 DBUS 中

1.3 思考题解答

题目. 是否能将 ALU 的运算结果存入寄存器 R3 中? WHYYYYYY?

解答. 当且仅当运算器 A 端口的输入是 R3 寄存器中的数据时可以。其他情况,由电路图可知,RD0、RD1 同时负责选中输入 A 端口的寄存器和 2-4 译码器的片选,由于 ALU 是组合逻辑电路,一旦改变选中的寄存器为 R3 输入和输出的值会立刻发生改变

1.4 实验过程及结果

1.4.1 实验过程记录表

1.5 实验收获及体会

理解了计算机进行计算的基本流程和 ALU 的运算原理

			运算器组成实验		
序号	操作	数据开关	操作目的	实验现象	备注
1	CLR		复位		
2	DP=1		设置操作模式		
3	SBUS=1	0FH	将 0FH 送入 DBUS 上	D7-D0=0FH	
4	RD1=0, RD0=0		选中 R0 寄存器	D7-D0=0FH	
5	DRW=1, QD		将 DBUS 上的数据写入寄存器 R0 中	D7-D0=0FH	
				$A7\text{-}A0\text{=}0\mathrm{FH}$	
6	SBUS=1	10H	将 10H 送入 DBUS 上	D7-D0=10H	
7	RD1=0, RD0=1		选中 R1 寄存器	D7-D0=10H	台泽田安有职换山的 D2 D0 黑) 粉提
8	DRW=1, QD		将 DBUS 上的数据写入寄存器 R1 中	D7-D0=10H	- 向通用寄存器堆内的 R3-R0 置入数据
				A7-A0=10H	
9	SBUS=1	03H	将 03H 送入 DBUS 上	D7-D0=03H	
10	RD1=1, RD0=0		选中 R2 寄存器	D7-D0=03H	
11	DRW=1, QD		将 DBUS 上的数据写入寄存器 R2 中	D7-D0=03H	
				A7-A0=03H	
12	SBUS=1	05H	将 05H 送入 DBUS 上	D7-D0=05H	
13	RD1=1, RD0=1		选中 R3 寄存器	D7-D0=05H	
14	DRW=1, QD		将 DBUS 上的数据写入寄存器 R3 中	D7-D0=05H	
				A7-A0=05H	
15	S3-S0=FH,M=1,		将 R0 的数据送入 DBUS 上	$D7\text{-}D0\text{=}0\mathrm{FH}$	读取寄存器中的数据
	$CIN{=}0,RD1{=}0,$			A7-A0=0FH	
	RD0=0, ABUS=1				
16	S3-S0=9H, M=0,		选中 R1(B), R0(A) 在上一步已选中,加法运算 10F+0FH	D7-D0=1FH,	
	$CIN{=}1,RS1{=}1,$			A7-A0=0FH,	
	RS0=0, ABUS=1			B7-B0=10H	
17	S3-S0=6H, M=1,		减法运算, 0FH-10H	D7-D0=FFH	
	CIN=0, $ABUS=1$				
18	S3-S0=BH, M=1,		与运算, 0FH&10H	D7-D0=00H	
	CIN=0, $ABUS=1$				
19	$S3\text{-}S0\text{=}EH,\;M\text{=}1,$		或运算, 0FH 10H	D7-D0=1FH	
	CIN=0, ABUS=1				

实验数据记录表								
实验数据			实验过程	实验结果				
A	В	操作	控制信号	数据结果	\mathbf{C}	\mathbf{Z}		
0FH	10H	A ++	M=0, S3-S0=0H, CIN=0	10H	0	0		
0FH	10H	A + B	M=0, S3-S0=9H, CIN=1	1FH	0	0		
0FH	10H	A - B	M=0, S3-S0=6H, CIN=0	FFH	0	0		
0FH	10H	A & B	M=1, S3-S0=BH, CIN=0	00Н	0	0		
0FH	10H	A B	M=1, S3-S0=EH, CIN=0	1FH	0	0		

2 双端口存储器实验

2.1 实验目的及任务

- 实验目的:
 - 1. 了解双端口静态随机存储器 IDT7132 的工作特性及使用方法
 - 2. 了解半导体存储器存储和读取数据的方式
 - 3. 了解双端口存储器并行读写的方式
 - 4. 熟悉 TEC-8 模型计算机存储器部分的数据通路
- 实验任务:
 - 1. 向双端口 RAM 的某个地址写入数据(左端口)
 - 向连续的地址写入
 - 向非连续的地址写入
 - 2. 从双端口 RAM 的某个地址中读出数据(左、右端口)
 - 从连续的地址读出
 - 从非连续的地址读出
 - 通过左右端口从同一个地址同时读出

2.2 实验电路分析

一次完整的运算步骤的电路分析如下:

- 1. 通过数据开关 SD7-SD0 将两位 16 进制数输入到 SWD 中,当 SBUS = 1 时,数据被送入 DBUS 总线上
- 2. 令 LAR = 1,此时地址寄存器可以写入
- 3. QD, 在 T3 时钟上升沿 DBUS 上的数据被送入地址寄存器 AR 中
- 4. 此时 AR 中的数据被送至 A7L-A0L 端口, 选中对应的内存地址, 令 LAR = 0, 关闭地址寄存器写入, 令 MEMW = 1, 开启双端口 RAM 的写入功能
- 5. QD, 在 T2 时钟上升沿 DBUS 上的数据被送入双端口 RAM 中由 AR 寄存器指 定的地址中
- 6. 令 MEMW = 0, SBUS = 0, MBUS = 1, 此时由 AR 选中的内存地址中的数据 被送到 DBUS 上

2.3 思考题解答

题目. 如果 LAR 为 1, 45H 是否可以正确写入 23H 单元?

解答. 可以正常写入,因为控制内存写入的是 T2,比控制 AR 写入的 T3 早,所以可以正确写入,但之后 AR 被写入 45H,需要重新将 23H 写入 AR 才能正确显示

题目. 如果 MEMW 为 1 会发生什么事情?

解答. MEMW 为 1 会导致写入地址时 RAM 原来地址位置的数据被覆盖为地址数据

题目. 如果 SBUS 为 1 会发生什么事情?

解答. 不能正常读出,同时控制数据开关,只有原来 *MBUS* 该亮的地方才会亮

2.4 实验过程及结果

2.5 实验收获及体会

知道了计算机如何向存储器中写入和读出数据,如何连续的存储和读取数据

向 10H、20H、21H、22H 地址单元写入数据过程						
序号	操作	数据开关	操作目的	实验现象	备注	
1	CLR		复位			
2	DP=1		设置操作模式			
3	SBUS=1, LAR=1,	10H	设置第一个写入地址 10H, 打开	AR=10H		
	QD		SBUS 将 10H 送入数据总线			
			DBUS, 同时打开 AR 的写入信			
			号 LAR,按一次 QD,将 10H			
			地址写入 AR			
4	SBUS=1, MEMW=1,	55H	设置第一个写入数据 45H, 打开			
	LAR=0, QD		SBUS 将 55H 送入数据总线			
			DBUS,打开 RAM 的写入信号			
			MEMW,关闭 AR 的写入信号			
			LAR, 按一次 QD, 将 55H 写入			
			RAM			
5	SBUS=1, MEMW=0,	20H	设置第二个写入地址 20H	AR=20H		
	LAR=1, QD					
6	SBUS=1, MEMW=1,	AAH	将 AAH 写入内存地址 20H, 同	AR=21H		
	LAR=0, ARINC=1,		时 AR 自增			
	QD					
6	SBUS=1, MEMW=1,	10H	将 10H 写入内存地址 21H,同	AR=22H		
	LAR=0, ARINC=1,		时 AR 自增			
	QD					
7	SBUS=1, MEMW=1,	20H	将 20H 写入内存地址 22H,同	AR=23H		
	LAR=0, ARINC=1,		时 AR 自增			
	QD					

	通过左右端口并发从 10H、20H、21H、22H 地址单元读出数据过程						
序号	操作	数据开关	操作目的	实验现象	备注		
1	SBUS=1, MEMW=0,	10H	将地址 10H 写入 PC 和 AR	PC=AR=20H			
	LAR=1, LPC=1, QD			IR=INS=55H			
2	SBUS=0, LAR=0,		左侧读取数据送到 DBUS 上	D7-D0=55H			
	LPC=0, MBUS=1						
3	SBUS=1, MEMW=0,	20H	将地址 20H 写入 PC 和 AR	PC=AR=20H			
	LAR=1, LPC=1, QD			IR=INS=AAH			
4	SBUS=0, LAR=0,		读出 20H 的数据	D7-D0=AAH			
	LPC=0, MBUS=1						
5	SBUS=0, ARINC=1,		AR、PC 自增, 读出 21H 的数据	PC=AR=21H			
	LAR=0, LPC=0,			D7-D0=10H			
	PCINC=1, MBUS=1,			IR=INS=10H			
	QD						
6	SBUS=0, ARINC=1,		AR、PC 自增, 读出 22H 的数据	PC=AR=22H			
	LAR=0, LPC=0,			D7-D0=20H			
	PCINC=1, MBUS=1,			IR=INS=20H			
	QD						

3 双端口存储器实验

3.1 实验目的及任务

- 实验目的:
 - 1. 进一步熟悉 TEC-Plus 模型计算机的数据通路
 - 2. 熟练掌握数据通路中各种控制信号的作用和用法
 - 3. 掌握数据通路中数据流动的路径
- 实验任务:
 - 1. 向通用寄存器堆内的 R3-R0 写入数据
 - 2. 将寄存器 R0-R3 中的数据写入双端口 *RAM* 的 20H、21H、22H、23H 存储单元
 - 3. 从存储器 20H、21H、22H、23H 存储单元中读出数据,并存入寄存器 R3-R0
 - 4. 显示寄存器 R3-R0 的值,检查数据传送是否正确

3.2 实验电路分析

- 一次完整的运算步骤的电路分析如下:
- 1. 通过数据开关 SD7-SD0 将两位 16 进制数输入到 SWD 中,当 SBUS=1 时,数据被送入 DBUS 总线上
- 2. 通过 2-4 译码器片选输入 RD0、RD1 进行寄存器的选择
- $3. \Leftrightarrow DRW = 1$,此时被选中的寄存器可以写入

- 4. 按下 QD 输入时钟信号, 在 T3 时钟上升沿 DBUS 中的数据被写入寄存器中
- 5. 关闭所有开关, 令 SBUS = 0, LAR = 1, 此时地址寄存器可以写入
- 6. QD, 在 T3 时钟上升沿 DBUS 上的数据被送入地址寄存器 AR 中
- 7. 此时 AR 中的数据被送至 A7L-A0L 端口, 选中对应的内存地址, 令 LAR = 0, 关闭地址寄存器写入, 令 MEMW = 1, 开启双端口 RAM 的写入功能
- 8. 令 S3-S0=F, M=1, CIN=0, SBUS=0, ABUS=1, MBUS=0, 通过 RD1 和 RD0 选中寄存器,此时 ALU 将(A)端口的数据直接输出至 DBUS 上
- 9. QD,在 T2 时钟上升沿 DBUS 上的数据被送入双端口 RAM 中由 AR 寄存器指 定的地址中
- 10. 令 MEMW = 0, SBUS = 0, MBUS = 1, ABUS = 0, 此时由 AR 选中的内存地 址中的数据被送到 DBUS 上
- 11. 重复步骤 2-4 将内存中的数据写入寄存器中
- 12. 重复步骤 8 将内存中的数据读出至 DBUS 上

3.3 思考题解答

题目. 同步从 RAM 的右端口读出数据应该如何操作,信号如何设置,PC7-PC0、INS7-INS0 显示情况如何?

解答.

- 1. SBUS=1, LPC=1, 数据开关为 20H, QD, 将 20H 存入 PC, 此时 PC=20H, INS=75H
- 2. PCINC=1, QD, PC 自增,此时 PC=21H, INS=28H
- 3. 重复步骤 2, 此时 PC=22H, INS=89H
- 4. 重复步骤 2, 此时 PC=23H, INS=32H

3.4 实验过程及结果

3.5 实验收获及体会

熟悉了 TEC-Plus 模型计算机的数据通路,掌握了数据通路中各种控制信号的作用和用法,掌握了数据通路中数据流动的路径

			实验过程记录表		
序号	操作	数据开关	操作目的	实验现象	备注
1	CLR	2011/1/2	复位	7/2/2/2	мы
2	DP=1		设置操作模式		
3	SBUS=1, RD=00,	75H	R0 存数	A=10H D=75H	
	DRW=1		11.00		
4	SBUS=1, RD=01,	28H	R1 存数	A=28H D=28H	
	DRW=1		14.77		
5	SBUS=1, RD=10,	89H	R2 存数	A=89H D=89H	
	DRW=1		14.77		
6	SBUS=1, RD=11,	32H	R3 存数	A=32H D=32H	
	DRW=1				
6	SBUS = 1 LAR = 1	20H	AR 写入地址	AR=20H	
	QD			D=20H	
7	S3-S0=F, M=1,		R0 写入地址 20H, AR 自增	D=75H A=75H	
	CIN=0, SBUS=0,			AR=21H	
	ABUS=1,				
	MEMW=1,				
	ARINC=1, QD=00,				
	QD				
8	S3-S0=F, M=1,		R1 写入地址 21H, AR 自增	D=28H A=28H	
	CIN=0, SBUS=0,			AR=22H	
	ABUS=1,				
	MEMW=1,				
	ARINC=1, QD=01,				
	QD				
9	S3-S0=F, M=1,		R2 写入地址 22H, AR 自增	D=89H A=89H	
	CIN=0, SBUS=0,			AR=23H	
	ABUS=1,				
	MEMW=1,				
	ARINC=1, QD=10,				
	QD				
10	S3-S0=F, M=1,		R0 写入地址 23H, AR 自增	D=32H A=32H	
	CIN=0, SBUS=0,			AR=24H	
	ABUS=1,				
	MEMW=1,				
	ARINC=1, QD=11,				
	QD				
11	全关,LAR=1,	20H	AR 写入地址	AR=20H	
	SBUS=1			D=20H	
12	RD=11, MBUS=1,		将地址 20H 数据写入 R3, AR	D=75H A=75H	
	DRW=1 SBUS=0,		自增	AR=21H	
	LAR=0, ARINC=1				
13	RD=10, MBUS=1,		将地址 21H 数据写入 R2, AR	D=28H A=28H	
	DRW=1 SBUS=0,		自增	AR=22H	
	LAR=0, ARINC=1				
14	RD=01, MBUS=1,		将地址 22H 数据写入 R1, AR	D=89H A=89H	
	DRW=1 SBUS=0,		自增	AR=23H	
	LAR=0, ARINC=1				
15	RD=00, MBUS=1,		将地址 23H 数据写入 R0, AR	D=32H A=32H	
	DRW=1 SBUS=0,		自增	AR=24H	
	LAR=0, ARINC=1				
16	RD=00		读取 R0 中的数据	A=32H	
17	RD=01		读取 R1 中的数据	A=89H	
18	RD=10		读取 R2 中的数据	A=28H	
19	RD=11		读取 R3 中的数据	A=75H	