

Art of Problem Solving

2005 China Girls Math Olympiad

China Girls Math Olympiad 2005

Day 1

As shown in the following figure, point P lies on the circumcicle of triangle ABC. Lines AB and CP meet at E, and lines AC and BP meet at E. The perpendicular bisector of line segment E meets line segment E at E and the perpendicular bisector of line segment E meets line segment E at E at E at E at E meets line segment E at E at E at E at E at E meets line segment E at E at E at E at E at E meets line segment E at E at

$$\left(\frac{CE}{BF}\right)^2 = \frac{AJ \cdot JE}{AK \cdot KF}.$$

2 Find all ordered triples (x, y, z) of real numbers such that

$$5\left(x+\frac{1}{x}\right) = 12\left(y+\frac{1}{y}\right) = 13\left(z+\frac{1}{z}\right),$$

and

Prove that

$$xy + yz + zy = 1.$$

- 3 Determine if there exists a convex polyhedron such that
 - (1) it has 12 edges, 6 faces and 8 vertices;
 - (2) it has 4 faces with each pair of them sharing a common edge of the polyhedron.
- Determine all positive real numbers a such that there exists a positive integer n and sets A_1, A_2, \ldots, A_n satisfying the following conditions:
 - (1) every set A_i has infinitely many elements;
 - (2) every pair of distinct sets A_i and A_j do not share any common element
 - (3) the union of sets A_1, A_2, \ldots, A_n is the set of all integers;
 - (4) for every set A_i , the positive difference of any pair of elements in A_i is at least a^i .

Contributors: orl

Art of Problem Solving

2005 China Girls Math Olympiad

Day 2

7

5 Let x and y be positive real numbers with $x^3 + y^3 = x - y$. Prove that

$$x^2 + 4y^2 < 1$$
.

An integer n is called good if there are $n \geq 3$ lattice points P_1, P_2, \ldots, P_n in the coordinate plane satisfying the following conditions: If line segment P_iP_j has a rational length, then there is P_k such that both line segments P_iP_k and P_jP_k have irrational lengths; and if line segment P_iP_j has an irrational length, then there is P_k such that both line segments P_iP_k and P_jP_k have rational lengths.

(1) Determine the minimum good number.

(2) Determine if 2005 is a good number. (A point in the coordinate plane is a lattice point if both of its coordinate are integers.)

Let m and n be positive integers with $m > n \ge 2$. Set $S = \{1, 2, ..., m\}$, and $T = \{a_1, a_2, ..., a_n\}$ is a subset of S such that every number in S is not divisible by any two distinct numbers in T. Prove that

$$\sum_{i=1}^{n} \frac{1}{a_i} < \frac{m+n}{m}.$$

Given an $a \times b$ rectangle with a > b > 0, determine the minimum side of a square that covers the rectangle. (A square covers the rectangle if each point in the rectangle lies inside the square.)