

1.7 小结

(1) 测速管(皮托管)

内管——冲压能;外管——静压能

(2) 孔板流量计

$$q_V = u_0 A_0 = C_0 A_0 \sqrt{\frac{2Rg(\rho_0 - \rho)}{\rho}}$$

$$C_0 = f(\text{Re}_d, \frac{A_0}{A_1}) \xrightarrow{\text{Re} \times \text{Re}c} C_0 = f(\frac{A_0}{A_1})$$
 —\text{\text{\text{\$\omega\$}}} C_0 = 0.6 \times 0.7

- •特点:恒截面、变压差——差压式流量计
- (3) 文丘里流量计结构: 从锐孔变为渐缩渐扩管(W_f \downarrow) 从 C_v 代替 C_0 计算流量,此时 C_v > C_0 。
- (4) 转子流量计

$$q_V = C_R A_R \sqrt{\frac{2(\rho_f - \rho)V_f g}{\rho A_f}}$$

•特点:恒压差、变截面——截面式流量计 有刻度换算问题 (恒环隙流速、恒能量损失)

各种流量计的安装及使用、优缺点

孔板流量计	转子流量计
差压式流量计	截面式压差计
恒截面、变压差	恒压差、变截面
$q_V = C_0 A_0 \sqrt{\frac{2Rg(\rho_0 - \rho)}{\rho}}$	$q_V = C_R A_R \sqrt{\frac{2(\rho_f - \rho)V_f g}{\rho A_f}}$
能量损失大	有刻度换算问题
文丘里流量计	$\frac{q_{V2}}{q_{V1}} = \sqrt{\frac{\rho_1(\rho_f - \rho_2)}{\rho_2(\rho_f - \rho_1)}}$

1.8 流体输送机械

流体输送机械: 向流体作功以提高流体机械能的装置。

●流体输送机械的作用

供料点 —— 需料点

$$w_e = g\Delta z + \frac{\Delta p}{\rho} + \frac{\Delta u^2}{2} + \Sigma w_f \qquad [J/kg]$$

$$He = \Delta z + \frac{\Delta p}{\rho g} + \frac{\Delta u^2}{2 g} + \Sigma h_f \qquad [m]$$

$$\begin{cases} & A \quad g \Delta z, \Delta z \\ & \Delta p, \Delta p \\ & \rho g \\ &$$

- 流体输送机械的分类
- 按输送的介质:

液体 ── 泵

气体 ──── 风机、压缩机

• 根据作用原理

液体输送机械

动力式(叶轮式) 容积式(正位移式) 流体作用式 离心泵 旋涡泵 往复式 旋转式 喷射泵 往复泵 计量泵 隔膜泵 齿轮泵

离心泵

- ★ 离心泵的性能参数与特性曲线
- ★ 离心泵的工作点和流量调节
 - 离心泵的安装高度
 - 离心泵的类型、选用、安装与操作

1.8.1 离心泵的基本结构和工作原理

●离心泵的基本结构

●离心泵的主要部件

(1) 叶轮——叶片+(盖板) 叶轮是离心泵对流体作功的部件

●离心泵的主要部件

(2) 泵壳(蜗壳)

泵壳不仅能收集和导出液体,同时又是能量转换装置。

●离心泵的主要部件

(3) 轴封: 防止转动轴与静止的泵体之间液体的泄漏。

填料密封

机械密封

●輸送液体原理

●輸送液体原理

防止气缚现象的措施:

- (1) 启动前,灌泵排气; (2) 运转时,防止空气进入离心泵的吸入管;

1.8.2 离心泵的性能参数与特性曲线

- ●主要性能参数
- (1) (体积)流量 Q单位时间泵所输送的液体体积, $[m^3/s]$, $[m^3/min]$ 或 $[m^3/hr]$;
- (2) 压头(扬程) H 单位重量(1N)流体流经泵所获得的能量,[m]; 当离心泵的结构确定时,H=f(n,Q); 扬程与升扬高度的区别?
- (3) (轴)功率N 轴功率N: 电动机传给泵轴的功率, [W]
- 有效功率Ne: 单位时间内液体从离心泵叶轮获得的能量,[W]

●主要性能参数

(4) 效率 η Ne < N, $\eta = \frac{N_e}{N}$ ——衡量泵工作时机械能损失的相对大小一般约为 $\eta = 0.5 \sim 0.7$,大型泵 $\eta = 0.9$

功率损失原因有三种:

- (1) 水力损失: 泵内流体流动的摩擦损失。
- (2) 容积损失: 高压液体泄漏到低压区造成的损失。
- (3) 机械损失: 泵轴与密封以及轴承等处的机械摩擦造成的损失。

● 离心泵的特性曲线

离心泵的H、N、 η 与Q之间的关系曲线,称为离心泵特性曲线。

1 关出口阀; 2 灌泵; 3 排气; 4 压力表读数 5 真空表读数

● 离心泵的特性曲线

/......

● 离心泵的特性曲线

说明:

- ① $H \sim Q$ 曲线, $Q \uparrow$, $H \downarrow$ 。
- ② $N\sim Q$ 曲线: $Q\uparrow$, $N\uparrow$ 。

大流量→大电机

关闭出口阀启动泵,启动电流最小

③ η ~Q曲线: 小Q ↑, η ↑; 大Q ↑, η ↓ 。 \to η_{max}

泵的铭牌~与 η_{max} 对应的性能参数

选型时 $o\eta_{ ext{max}}$

使用时 $\rightarrow \geq 92\% \eta_{\text{max}} \rightarrow$ 高效区工作;

●离心泵的特性曲线的影响因素

(1) 流体的性质

密度: $H\sim Q$ 及 $\eta\sim Q$ 与 ρ 无关; $\rho\uparrow$, $(N,N_e)\uparrow N\sim Q\uparrow$

粘度: $\mu\uparrow$, $H\sim Q$ 及 $\eta\sim Q\downarrow$; $N\uparrow$ $N\sim Q\uparrow$

工作流体~20°C水差别大 →参数和曲线变化

(2) 转速——比例定律 $(n \pm 20\%)$ 以内)

$$\frac{\mathbf{Q}_2}{\mathbf{Q}_1} = \frac{\mathbf{n}_2}{\mathbf{n}_1} \qquad \frac{\mathbf{H}_2}{\mathbf{H}_1} = \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)^2 \qquad \frac{\mathbf{N}_2}{\mathbf{N}_1} = \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)^3$$

(3) 叶轮直径——切割定律 (**D**-5%以内)

$$egin{align} egin{align} oldsymbol{Q}_2 \ oldsymbol{Q}_1 \ oldsymbol{Q}_1 \ \end{pmatrix}^2 & oldsymbol{N}_2 \ oldsymbol{D}_1 \ \end{pmatrix}^2 & oldsymbol{N}_2 \ oldsymbol{N}_1 \ \end{pmatrix}^2 & oldsymbol{N}_2 \ oldsymbol{N}_1 \ \end{pmatrix}^2 \ oldsymbol{N}_2 \ oldsymbol{N}_1 \ \end{pmatrix}^2 \ oldsymbol{N}_2 \ oldsymbol{N}_1 \ \end{pmatrix}^2 \ oldsymbol{N}_2 \ o$$

1.8.3 离心泵的工作点与流量调节

问题: 离心泵工作时, $Q, H, N, \eta=?$

● 管路特性曲线

在特定的管路系统中,输液量与所需压头的关系。

外加压头
$$He = \Delta z + \frac{\Delta p}{\rho g} + \frac{\Delta u^2}{2g} + \Sigma h_f$$

于是
$$He = A + f(Q)$$

——管路特性方程(曲线)

其中,
$$A = \Delta z + \frac{\Delta p}{\rho g}$$

●管路特性曲线

示例 已知:等径管路,流动处于完全湍流区。 确定管路特性曲线。

管路特性曲线

说明:

①
$$A = \Delta z + \frac{\Delta p}{\rho g}$$
 曲线在H轴上截距;

管路所需最小外加压头

- ②管路特性曲线与流动状态有关。
 - •阻力平方区, λ 与Q无关 •等径管路或忽略动能差

其中
$$k = \frac{8\lambda}{\pi^2 g} \frac{l + \Sigma l_e}{d^5}$$
 管路特性系数

③ 高阻管路, 曲线较陡; 低阻管路,曲线较平缓。

●离心泵的工作点

离心泵的特性曲线与管路特性曲线的交点为离心泵的工作点

● 流量调节

流量调节实质上就是改变泵的工作点。

- (1) 改变阀门开度
- \star 关小出口阀 $\to \Sigma l_{\rm e} \uparrow$
 - →管路特线曲线变陡
 - → 工作点左上移
 - $\rightarrow H \uparrow$, $Q \downarrow$
- $^{\frown}$ 开大出口阀 $\rightarrow \sum l_{\rm e}$ ↓
 - → 管路特性曲线变缓
 - → 工作点右下移
 - $\rightarrow H \downarrow$, $Q \uparrow$

● 流量调节

- (2) 改变叶轮转速
- ★ n^{\uparrow} →泵 $H^{\sim}Q$ 曲线上移 →工作点右上移, → H^{\uparrow} , Q^{\uparrow}
- - (3) 车削叶轮直径
 - (4) 离心泵的串、并联(组合操作)

例题: 如图所示的输水管路系统,d=50mm,阀门全开时 $l+l_e=50$ m, $\lambda=0.03$,泵在6~15m³/h范围内的特性方程为 $H=24.10-0.82Q^{0.8}$,H单位m,Q单位m³/h;试求:

- $\overline{(1)}$ 阀全开时管路特性方程;如管路 $Q=10\mathrm{m}^3/\mathrm{h}$,此时 W_e 和 H_e 分别为多少,该离心泵能否完成任务?
- (2) 如果泵能完成任务, 计算多消耗在阀门上的有效功率?
- (3) 调节出口阀将流量减少到 $8m^3/h$,泵的轴功率减少多少?假设 η 不变

1.8.4 离心泵的安装高度

安装高度:液面到泵入口处的垂直距离 (H_g)

问题: 安装高度有无限制?

• 汽蚀现象

截面0-0~1-1,列B.E.

$$\frac{p_0}{\rho g} = H_g + \frac{p_1}{\rho g} + \frac{u_1^2}{2g} + \sum h_{f\,0-1}$$

$$H_{\mathrm{g}}$$
 , 则 p_{1} $\downarrow p_{\mathrm{K}}$ \downarrow

- →汽泡凝结→局部真空
- →周围液体高速冲向汽泡中心
- → 撞击叶片(水锤)

● 汽蚀现象

离心泵在汽蚀状态下运行的后果:

- 泵体振动并发出噪音;
- q_{V} 、H、 $\eta \downarrow \downarrow$; 严重时不送液;
- 时间长久,水锤冲击和化学腐蚀,损坏叶片。
- 2 区分离心泵气缚现象和汽蚀现象。

安装高度↑↑→汽蚀

问题:如何确定 H_g 的上限?

–允许安装高度

●允许安装高度

由(NPSH)_r计算H_{g允}

$$H_{g} = \frac{p_{0}}{\rho g} - \left(\frac{p_{1}}{\rho g} + \frac{u_{1}^{2}}{2g}\right) - \sum h_{f \, 0-1}$$

$$= \frac{p_0}{\rho g} - \left(\frac{p_1}{\rho g} + \frac{u_1^2}{2g} - \frac{p_v}{\rho g}\right) - \frac{p_v}{\rho g} - \sum h_{f \, 0-1}$$

$$= \frac{p_0}{\rho g} - \frac{p_v}{\rho g} - (NPSH)_a - \sum h_{f \, 0-1}$$

$$H_{g fi} = \frac{p_0}{\rho g} - \frac{p_v}{\rho g} - (NPSH)_r - \sum h_{f 0-1}$$

讨论题: 如图所示,出口阀门开大,定性分析真空表和压力表的读数如何变化? (设λ不变)

讨论题

用离心泵将水从水池送*入* 具有一定压力的密闭高位 槽中。在一定转速下测得 离心泵流量、扬程、泵出 口压力表读数、泵进口真 空表读数以及泵的轴功率。 路按等径考虑。改变下列 条件之一而其他条件及流 动状态不变。问上述各参 数如何变化

- (1) 出口阀门开度增大;
- (2) 输送另一种密度比水大的流体;
- (3) 叶轮直径减小5%;
- (4) 离心泵转速提高5%。

1.8 流体输送机械

流体输送机械的作用流体输送机械的分类

- 1.8.1 离心泵的基本结构与工作原理
- 1.8.2 离心泵的性能参数与特性曲线
- 1.8.3 离心泵的工作点与流量调节
- 1.8.4 离心泵的安装高度

离心泵的基本结构 离心泵的主要部件 输送液体原理 气缚现象

性能参数 特性曲线 特性曲线的影响因素

管路特性曲线 工作点 流量调节

汽蚀现象 汽蚀余量 允许安装高度

