In [49]:	#Loading the dataset				
In [50]:	<pre>from sklearn.datasets import load_digits</pre>				
In [51]: In [52]:	<pre>digits=load_digits() type(digits)</pre>				
Out[52]: In [53]:	sklearn.utils.Bunch				
	<pre>print(digits.DESCR) digits_dataset: Optical recognition of handwritten digits dataset</pre>				
	Data Set Characteristics: :Number of Instances: 5620				
	:Number of Attributes: 64 :Attribute Information: 8x8 image of integer pixels in the range 016. :Missing Attribute Values: None :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)				
	:Date: July; 1998 This is a copy of the test set of the UCI ML hand-written digits datasets https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits				
	The data set contains images of hand-written digits: 10 classes where each class refers to a digit. Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from a preprinted form. From a				
	total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This generates an input matrix of 8x8 where each element is an integer in the range				
	016. This reduces dimensionality and gives invariance to small distortions.For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.				
	L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994. topic:: References				
	 C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition, MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University. E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika. Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin. 				
	Linear dimensionalityreduction using relevance weighted LDA. School of Electrical and Electronic Engineering Nanyang Technological University.2005.Claudio Gentile. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000.				
In [54]: Out[54]:	digits.target.data.snape				
In [55]:	digits.target[::10]				
Out[55]:	array([0, 0, 0, 0, 8, 2, 3, 1, 1, 1, 4, 4, 5, 0, 0, 0, 0, 8, 2, 3, 1, 1, 9, 5, 7, 4, 4, 4, 4, 6, 7, 2, 4, 5, 2, 7, 6, 8, 4, 4, 4, 4, 4, 6, 7, 2, 4, 5, 2, 7, 6, 8, 4, 4, 4, 5, 2, 7, 6, 8, 4, 4, 4, 4, 6, 7, 2, 4, 5, 2, 7, 6, 8, 4, 4, 4, 4, 6, 7, 2, 4, 5, 2, 7, 6, 8, 4, 5, 5, 5, 5, 5, 5, 5, 3, 6, 4, 0, 3, 1, 5, 9, 1, 1, 1, 9, 4, 8, 3,				
	9, 3, 1, 3, 2, 8, 3, 3, 3, 5, 7, 8, 3, 9, 3, 1, 3, 2, 8, 3, 3, 3, 3, 5, 7, 8, 3, 9, 3, 1, 3, 2, 8, 5, 5, 5, 5, 5, 5, 5, 5, 3, 0, 6, 2, 1, 6, 9, 2, 9, 5, 5, 7, 9, 1, 2, 6, 0, 3, 1, 5, 4, 3, 3, 3, 5, 7, 8, 3, 9, 3, 1, 3, 2, 8])				
In [56]: Out[56]:	digits.data[5] array([0., 0., 12., 10., 0., 0., 0., 0., 0., 14., 16., 16., 16., 14., 0., 0., 0., 13., 16., 15., 10., 1., 0., 0., 0., 0.,				
In [57]:	14., 0., 0., 0., 13., 16., 15., 10., 1., 0., 0., 0., 11., 16., 16., 7., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0				
	array([[0., 0., 12., 10., 0., 0., 0.],				
	[0., 0., 13., 16., 15., 10., 1., 0.], [0., 0., 11., 16., 16., 7., 0., 0.], [0., 0., 0., 4., 7., 16., 7., 0.], [0., 0., 0., 0., 4., 16., 9., 0.], [0., 0., 5., 4., 12., 16., 4., 0.], [0., 0., 9., 16., 16., 10., 0., 0.]])				
In [58]:	<pre>axes=plt.subplot() image=plt.imshow(digits.images[1700], cmap=plt.cm.gray_r) xticks=axes.set xticks([])</pre>				
	yticks=axes.set_yticks([])				
In [59]: In [60]:	<pre>import matplotlib.pyplot as plt figure, axes=plt.subplots(nrows=4,ncols=6, figsize=(6,4))</pre>				
	<pre>for item in zip(axes.ravel(), digits.images, digits.target): axes, image, target=item axes.imshow(image, cmap=plt.cm.gray_r) axes.set_xticks([]) axes.set_yticks([])</pre>				
	<pre>axes.set_yticks([]) axes.set_title(target) plt.tight_layout() 0 1 2 3 4 5</pre>				
	0 1 2 3 4 5 0 7 8 9 0 1				
	6 7 8 9 0 1 2 3 4 5 6 7				
-	8 3 0 1 2 3				
In []:	<pre>from sklearn.model_selection import train_test_split</pre>				
In [62]:	<pre>X_train, X_test, y_train,y_test=train_test_split(digits.data, digits.target, random_state=11)</pre>				
In [63]: Out[63]:	<pre>X_train.shape (1347, 64)</pre>				
In [64]:	X_test.shape				
Out[64]:	a) The processing of familiarizing self with the data is called data exploration b) display the image for a sample in number 1700 and 1900 of the digits dataset c) X_train, X_test, y_train,y_test=train_test_split(digits.data, digits.target, random_state=11, test_size=0.4) -				
	what numbers of samples would be reserved for training and tesing using the above code 1078, 719 d) You should use all you data for training and testing: False or True explain? - False -				
In []:	# model is called an estimator # KNeighborsClassifier - implements the k-nearest Neighbors Algorithm				
In [65]:	# KNeighborsClassifier - implements the k-nearest Neighbors Algorithm from sklearn.neighbors import KNeighborsClassifier				
In [66]:	knn=KNeighborsClassifier()				
In [67]: Out[67]:	knn KNeighborsClassifier()				
In [68]:	Training the Model with KNeighborsClassifier object fit method				
	<pre>knn.fit(X=X_train, y=y_train) KNeighborsClassifier()</pre>				
In []:	# Tazy estimator - Job done when you use the moder to make predictions				
In [69]:	Predicting Digit Class predicted=knn.predict(X=X_test)				
In [72]:	predicted array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 5, 6, 9, 6,				
340[/2].	0, 6, 9, 3, 2, 1, 8, 1, 7, 0, 4, 4, 1, 5, 3, 0, 5, 7, 3, 9, 6, 5, 5, 8, 8, 1, 1, 2, 4, 8, 5, 6, 9, 2, 1, 8, 5, 3, 2, 7, 9, 6, 3, 7, 4, 2, 0, 1, 0, 2, 7, 3, 5, 1, 8, 7, 7, 2, 0, 6, 6, 4, 6, 8, 3, 7, 4, 1, 9, 3, 5, 4, 0, 3, 1, 3, 3, 1, 2, 8, 5, 0, 1, 7, 2, 1, 3, 3, 7, 4, 0, 2, 9, 0, 4, 2, 5, 6, 1, 2, 6, 1, 8, 6, 0, 2, 6, 2, 6, 1,				
	9, 4, 8, 0, 4, 0, 2, 3, 4, 4, 1, 7, 4, 7, 2, 0, 3, 7, 8, 8, 7, 5, 4, 3, 5, 4, 9, 1, 3, 8, 8, 1, 1, 6, 7, 3, 3, 9, 9, 0, 6, 1, 0, 1, 0, 7, 6, 1, 5, 9, 0, 2, 2, 8, 6, 8, 3, 2, 9, 2, 9, 3, 0, 1, 2, 7, 4, 9, 9, 7, 9, 3, 2, 7, 2, 6, 9, 8, 0, 2, 6, 3, 4, 2, 7, 6, 6, 7,				
	7, 6, 0, 7, 6, 6, 0, 7, 1, 4, 4, 1, 0, 9, 4, 0, 4, 2, 4, 6, 5, 3, 8, 4, 1, 3, 9, 8, 3, 8, 9, 4, 2, 0, 4, 9, 2, 3, 5, 0, 8, 2, 5, 4, 7, 5, 5, 1, 0, 2, 9, 0, 7, 7, 6, 2, 1, 5, 4, 1, 0, 5, 1, 6, 5, 4, 8, 7, 5, 9, 0, 2, 2, 3, 4, 4, 8, 8, 2, 5, 3, 0, 7, 0, 3, 0, 7, 9, 8, 8, 3, 3, 9, 8, 2, 8, 4, 7, 7, 9, 1, 3, 5, 9, 8, 2, 2, 9, 4, 6,				
	8, 0, 6, 1, 2, 7, 8, 8, 9, 7, 9, 0, 3, 7, 2, 3, 0, 7, 3, 9, 9, 4, 2, 1, 7, 4, 4, 5, 7, 4, 7, 4, 4, 5, 2, 4, 2, 0, 6, 3, 6, 4, 2, 7, 2, 2, 3, 2, 5, 8, 1, 0, 6, 6, 1, 5, 6, 8, 6, 7, 0, 1, 1, 9, 7, 2, 7, 8, 2, 4, 8, 9, 8, 4, 4, 2, 5, 5, 5, 2, 6, 6, 9, 6, 9, 8, 2, 1, 2, 3, 3, 7, 5, 9, 6, 6, 0, 0, 4, 7, 7, 7, 8, 2, 5, 5, 5, 1, 4, 6, 0, 5, 9, 1, 3, 1, 2, 2, 1, 0])				
In [73]:	expected=y_test				
In [74]: Out[74]:	expected array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 3, 6, 9, 6,				
	5, 8, 8, 1, 1, 2, 4, 9, 5, 6, 9, 2, 1, 8, 5, 3, 2, 7, 9, 6, 3, 7, 4, 2, 0, 1, 0, 2, 7, 3, 5, 1, 8, 7, 7, 2, 0, 6, 6, 4, 6, 8, 3, 7, 4, 1, 9, 3, 5, 4, 0, 3, 1, 3, 3, 1, 2, 8, 5, 0, 1, 7, 2, 1, 3, 3, 7, 4, 0, 2, 9, 0, 4, 2, 5, 6, 1, 2, 6, 1, 8, 6, 0, 2, 6, 2, 6, 1, 9, 4, 8, 0, 4, 0, 2, 3, 4, 4, 1, 7, 9, 7, 2, 0, 3, 7, 8, 8, 3, 5,				
	4, 3, 5, 4, 9, 1, 3, 8, 8, 1, 1, 6, 7, 3, 3, 9, 9, 0, 6, 1, 0, 1, 0, 7, 6, 1, 5, 9, 0, 2, 2, 8, 6, 8, 3, 2, 9, 2, 9, 3, 0, 1, 2, 7, 4, 9, 9, 4, 9, 3, 2, 7, 2, 6, 9, 8, 0, 2, 6, 3, 4, 2, 7, 6, 6, 7, 7, 6, 0, 7, 6, 6, 0, 7, 1, 4, 4, 1, 0, 9, 4, 0, 4, 2, 4, 6, 5, 3, 8, 4, 1, 3, 9, 8, 3, 8, 9, 4, 2, 0, 4, 9, 2, 3, 5, 0, 8, 2, 5, 4,				
	7, 5, 5, 1, 0, 2, 9, 0, 7, 7, 6, 2, 1, 5, 4, 1, 0, 5, 1, 6, 5, 4, 8, 7, 5, 9, 0, 2, 2, 3, 4, 4, 8, 8, 8, 5, 3, 0, 7, 0, 3, 0, 7, 9, 8, 8, 3, 3, 9, 8, 2, 8, 4, 7, 7, 9, 1, 3, 5, 8, 8, 2, 2, 9, 4, 6, 8, 0, 6, 1, 2, 7, 8, 8, 9, 7, 9, 0, 3, 7, 2, 3, 0, 7, 3, 9, 9, 4,				
	2, 1, 7, 4, 4, 5, 7, 4, 7, 4, 4, 5, 2, 4, 2, 0, 6, 3, 6, 4, 2, 7, 2, 2, 8, 2, 5, 8, 1, 0, 6, 6, 1, 5, 6, 8, 6, 7, 0, 1, 1, 9, 7, 2, 7, 8, 2, 4, 8, 9, 8, 4, 4, 2, 5, 5, 5, 2, 6, 6, 9, 6, 9, 8, 2, 1, 2, 3, 8, 7, 5, 9, 6, 6, 0, 0, 4, 7, 7, 7, 8, 2, 5, 5, 5, 8, 4, 6, 0, 5, 9, 1, 3, 1, 2, 2, 1, 0])				
In [85]: Out[85]:	<pre>predicted[:70] array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 5, 6, 9, 6,</pre>				
In [86]:	0, 6, 9, 3, 2, 1, 8, 1, 7, 0, 4, 4, 1, 5, 3, 0, 5, 7, 3, 9, 6, 5, 5, 8, 8, 1, 1, 2, 4, 8, 5, 6, 9, 2, 1, 8, 5, 3, 2, 7, 9, 6, 3, 7, 4, 2, 0, 1]) expected[:70]				
	array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 3, 6, 9, 6, 0, 6, 9, 3, 2, 1, 8, 1, 7, 0, 4, 4, 1, 5, 3, 0, 5, 7, 3, 9, 6, 5, 5, 8, 8, 1, 1, 2, 4, 9, 5, 6, 9, 2, 1, 8, 5, 3, 2, 7, 9, 6, 3, 7,				
In [78]:	# locate all the incorrect predictions for the entire test set				
In [79]:	wrong=[(p,e) for (p,e) in zip(predicted, expected) if p != e]				
	<pre>wrong [(5, 3), (8, 9), (4, 9),</pre>				
	<pre>(4, 9), (7, 3), (7, 4), (2, 8), (9, 8), (3, 8),</pre>				
In [87]:	(3, 8), (3, 8), (1, 8)]				
Out[87]:	440				
In [88]: Out[88]:	440 / 450*100 97.77777777777				
In [89]:	<pre>print(f'{knn.score(X_test,y_test):.2%}') 97.78%</pre>				
In [90]: In [91]:	<pre># we can improve the models performance by hyperparameter tuning - get the optinal value of k # Consusion Matrix</pre>				
In [92]:	# Consusion Matrix from sklearn.metrics import confusion_matrix				
In [93]:	confusion=confusion_matrix(y_true=expected,y_pred=predicted)				
In [94]: Out[94]:	confusion array([[45, 0, 0, 0, 0, 0, 0, 0, 0],				
	[0, 0, 54, 0, 0, 0, 0, 0, 0], [0, 0, 0, 42, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 49, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 38, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 42, 0, 0, 0],				
In [95]:	[0, 0, 0, 0, 0, 0, 45, 0, 0], [0, 1, 1, 2, 0, 0, 0, 39, 1], [0, 0, 0, 0, 1, 0, 0, 1, 41]], dtype=int64)				
Out[95]:	45745754742745756742745755741				
In [96]: In [97]:	<pre>import pandas as pd confusion_df=pd.DataFrame(confusion, index=range(10), columns=range(10))</pre>				
In [98]:	<pre>confusion_df=pd.DataFrame(confusion, index=range(10), columns=range(10)) confusion_df</pre>				
Out[98]:	0 45 0 0 0 0 0 0 0 0				
	1 0 45 0 0 0 0 0 0 0 0 2 0 0 54 0 0 0 0 0 0 0 0 3 0 0 42 0 1 0 1 0 0				
	4 0 0 0 49 0 0 1 0 0 5 0 0 0 0 38 0 0 0 0 6 0 0 0 0 42 0 0 0				
	7 0 0 0 0 0 0 45 0 0 8 0 1 1 2 0 0 0 39 1				
In [100	9 0 0 0 0 1 0 0 0 1 41 import matplotlib.pyplot as plt				
In [101	<pre>import matplotlib.pyplot as pit import seaborn as sns</pre>				
In [102	figure=sns.heatmap(confusion_df, annot=True,cmap=plt.cm.nipy_spectral_r)				
	- 45 0 0 0 0 0 0 0 0 0 0 0 0 0				
	$ \begin{array}{ccccccccccccccccccccccccccccccccc$				
In []:	0 1 2 3 4 5 6 7 8 9				

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js