7.4
$$\int \frac{x^2 + 2x - 1}{x^3 - x} dx$$
.

Factor
$$x^3 - x = x(x-1)(x+1)$$

$$\frac{\chi^{2} + 2\chi - 1}{\chi^{3} - \chi} = \frac{A}{\chi} + \frac{B}{\chi - 1} + \frac{C}{\chi + 1}$$

$$\chi^{2} + 2\chi - 1 = A(\chi - 1)(\chi + 1) + B(\chi)(\chi + 1) + C(\chi)(\chi - 1)$$

= $\chi^{2}[A + B + C] + \chi[B - C] + [-A]$.

So:
$$A = 1$$
.
 $1 + B + C = 1$, and so $B + C = 0$
 $B = -C$.

$$B-C=2$$
, so $2B=2$.
 $B=1$ and $C=-1$.

$$B=1$$
 and $C=-1$.

$$S_0$$
, $\frac{X^2 + 2X - 1}{X^3 - X} = \frac{1}{X} + \frac{1}{X - 1} - \frac{1}{X + 1}$

$$= |u|x| + |u|x-1| = |u|x+1| + C.$$

6.1,12.

Find the area between $y = x^2$ and $y = 12x - x^2$.

The graph of y=12x-x2:

$$|f y' = 0, y' = \frac{dy}{dx} = |2 - 2x = 0$$

So $x = 6$.

Intersection points:

$$x^{2} = 12x - x^{2}$$

$$x^2 - 6x = 0$$

$$x(x-6)=0,$$

A typical slice looks like this! (Top) - (Botton) = (12x - x2) - x2

Height is
$$(Top) - (Rotton)$$

$$= (12 \times - \times^{2}) - \times^{2}$$

$$= 12 \times - 2 \times^{2}$$

width is dx.

We range from 0 to 6.

 $\int_{0}^{6} \left(12 \times -2 \times^{2} \right) dx$ $= (6x^{2} - \frac{2}{3}x^{3})^{6} = (6.6^{2} - \frac{2}{3}.6^{3} - (6.0^{2} - \frac{2}{3}0^{3})$ $\frac{1}{2} \left(\frac{3}{2} - \frac{2}{3} \cdot 6^{3} \right)$

$$=\frac{1}{3}$$
, $6^3 = \frac{1}{3}$, $216 = 72$.

This area fits in a box of width 6 and height 36, and 72 = \frac{1}{3} \cdot 216, so our competation shows that we have filled up one third of the box.

7.8/9.
$$\int_{1}^{\infty} e^{-y/3} dy.$$
This is $\lim_{t\to\infty} \int_{1}^{t} e^{-y/3} dy.$

$$\int_{1}^{\infty} e^{-y/3} dy.$$
The above is $\lim_{t\to\infty} \int_{1}^{y=t} e^{-y/3} dy.$

Set
$$u = \frac{y}{3}$$
, $y = 3u$, $dy = 3du$
The above is $\lim_{t \to \infty} \begin{cases} y = t \\ -u \end{cases}$ $y = 1$
 $\lim_{t \to \infty} \left[-3e^{-u} \right] y = t$
 $\lim_{t \to \infty} \left[-3e^{-y/3} \right] y = t$
 $\lim_{t \to \infty} \left[-3e^{-y/3} \right] y = t$
 $\lim_{t \to \infty} \left[-3e^{-y/3} \right] y = t$
 $\lim_{t \to \infty} \left[-3e^{-y/3} \right] y = t$

$$\int_{1}^{3} \frac{3+}{(++1)^{2}} d+.$$

$$\int_{+21}^{+23} \frac{3+}{(++1)^2} d+$$

$$= \int_{u=2}^{u=4} \frac{3(u-1)}{u^2} du$$

$$= \int_{2}^{4} \left(\frac{3}{u} - \frac{3}{u^2} \right) du$$

=
$$\left[3 \ln |u| + \frac{3}{u}\right]_{2}^{4}$$

$$1f + = 1, \frac{3+}{(++1)^2} = \frac{3}{4}$$

$$|f + = 2, \frac{31}{(1+1)^2} = \frac{6}{9} = \frac{2}{3}$$

$$1f + = 3, \frac{3+}{(++1)^2} = \frac{9}{16}.$$

$$= \left[3 \ln \left|n\right| + \frac{3}{u}\right]_{2}^{4} = \left(3 \ln 4 + \frac{3}{4}\right) - \left(3 \ln 2 + \frac{3}{2}\right)$$

$$= 3 \ln 4 - 3 \ln 2 - \frac{3}{2} + \frac{3}{4}$$

$$= 3 \ln 2 - \frac{3}{4}$$

This is between I and 2.

$$\frac{1}{\sqrt{1+2-1}}$$

$$\frac{1}{\sqrt{1$$

= \(\frac{1}{2} - 1 - \frac{1}{a} - 1\) + C.

$$\int \frac{1}{t^{2}-1} dt = \int tan \theta \cdot cos \theta \cdot sec \theta \cdot tan \theta d\theta$$

$$= \int \frac{sin \theta}{cos \theta} \cos \theta \cdot \frac{1}{cos \theta} \frac{sin \theta}{cos \theta} d\theta$$

$$= \int \frac{sin^{2} \theta}{cos^{2} \theta} d\theta$$

$$= \int \frac{1 - cos^{2} \theta}{cos^{2} \theta} d\theta$$

$$= \int (sec^{2} \theta - 1) d\theta$$

$$= \int an \theta - \theta + C$$

(7.1,17)
$$\int_{1}^{e} (\ln x)^{2} dx$$
.
Set $u = (\ln x)^{2}$, $dv = dx$
 $du = 2 \cdot \ln x \cdot \frac{1}{x} dx$, $v = x$.
Then $\int_{1}^{e} (\ln x)^{2} dx = (\ln x)^{2} \cdot x \Big|_{1}^{e} - \int_{1}^{e} x \cdot 2 \ln x \cdot \frac{1}{x} dx$
 $= x (\ln x)^{2} \Big|_{1}^{e} - 2 \int_{1}^{e} \ln x dx$.
We evaluate $\int \ln x dx = \int x dx$ by parts again.
 $u = \ln x$, $dx = dx$
 $u = \frac{1}{x} dx = x dx$
 $= \ln x \cdot x \Big|_{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx$
 $= \ln x \cdot x \Big|_{1}^{e} - x \Big|_{1}^{e}$.
Our original integral is $x = \ln x \cdot x + 2x \Big|_{1}^{e}$.
 $= \left[e(\ln e)^{2} - 2 \ln (e) \cdot e + 2e \right]$
 $= \left[e(\ln e)^{2} - 2 \ln (e) \cdot e + 2e \right]$
 $= \left[e - 2e + 2e \right] - 2 = e - 2$.
This is concave up but that is not obvious.