图》	4七年	<u>.</u> 5400	λÅ	歌ん	γ 斛米ξ	カ海长き	1					它是 1.2 eV		
Г	(A)	53	50	Å	(B)	500	00 Å		(C)	4350	Å	(D)	3550	À
L	2. 4] 4244:	在均	匀磁	场 <i>B</i> 内	放置一	极薄的	金属片	남, 其	红限波	长为	lo。今用单	9色光照	射,
	见有电	已子放	出,	有些放	女出的 电		量为 m ,	电荷	的绝			垂直于磁场		
		$\frac{hc}{}$			\underline{hc}	(eRB)2		hc	eR	B	<u> </u>	\underline{hc}	
[(A)	λ_0		(B)	λ_0	2m		(C)	λ_{0}	$+\frac{eR}{n}$	ı	(D) '	$\frac{\partial c}{\partial_0} + 2\epsilon$	₽RB
频率										出光电 大动能	为:	大动能为		
Γ	(A)		E_K		(B)	2 <i>h v</i> ⁻	E_K		(C)	hv−	E_K	(D)) hv+	E_K
_	4. 4	4737:			放应实 之比 $ \varepsilon $		若散射	光波七	长是)	、射光波	长 的	1.2 倍,贝	散射光	光子
Γ	(A)	2		,,,,,,		(B)	3			(C)	4		(D)	5
_	5. 4	- 1190:											基态发射	的各
		1.5								原子提 10.2		区里定 (D)	13.6	eV
[6. 4] 4197.	由氢	原子	理论知	. 当大·	量氢原-	子州王	n=3	8 的激失		,原子跃运	千将发出	١.
г		一种										J光 (D		
	7. 4] 4748:	己知	氢原	子从基	态激发:	到某一	定态所	信需能	量为 10).19 e'	V,当氢原	[子从能	量为
-0						态时,月					- 17	(D)	0.05	- 3.7
	(A)]										(D)		
氢原					电管中 り能量 5		量为 12	2.1 eV	的电	 子去轰	击处,	F基态的 氢	[原子,	此时
										2 eV 和 eV			3.4	еV
[]												
道边				的德布	罗意波	长是						沿半径为	IR 的圆:	形轨
г	(A)	h/	(2eR	(B)	(B)	h/(eRB)	((C)	1/(2 <i>eF</i>	RBh)	(D)	1/(<i>eR</i>	Bh)
[10.] 4770	· 如:	果两和	中不同原	5量的粒	ž子,其	L 德布5	罗意》	皮长相同	司,则	这两种粒	子的	
Е	(A)	动量]	1 相同	司	(B)	能量	相同		(C)	速度相	目同	(D)	动能机	11同
_		_										$\psi(x) = -$	$\frac{1}{\sqrt{\cos^2 x}} \cdot \cos^2 x$	$\frac{3\pi x}{2}$
(- 0						矩形无阵 a/6 处出				其波函数	数为:	·		
[(A)	1/	'(2 <i>a</i>)		(B)	1/ <i>a</i>		(C)	-	$1/\sqrt{2a}$		(D)	$1/\sqrt{a}$	- !
	12. 子	_))所示,那 是 哪		
4 <u>.7</u>	1	4))	里	нυ	7月 7円	1 尺	双 「	-и пу	1111	. [12]	双		1 🖾	•

一、选择题

13. 5619: 波长 λ =5000 Å 的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda$ =10⁻³ Å,则 利用不确定关系式 $\Delta p_x \Delta x \geq h$ 可得光子的 x 坐标的不确定量至少为:

- (A) 25 cm (B) 50 cm (C) 250 cm

14. 8020: 将波函数在空间各点的振幅同时增大 D 倍,则粒子在空间的分布概率将

- - (A) 增大 D² 倍 (B) 增大 2D 倍 (C) 增大 D 倍 (D) 不变

15. 4965: 下列各组量子数中,哪一组可以描述原子中电子的状态?

- (A) $n=2, l=2, m_l=0,$ $m_s=\frac{1}{2}$ (B) $n=3, l=1, m_l=-1,$

(C) $n=1, l=2, m_l=1,$ $m_s=\frac{1}{2}$ (D) $n=1, l=0, m_l=1,$ $m_s=-\frac{1}{2}$

16. 8022: 氢原子中处于 3d 量子态的电子,描述其量子态的四个量子数 (n, l, m_l, m_s) 可能取的值为

- (A) (3, 0, 1, ⁻2) (B) (1, 1, 1, ²)
- (C) (2, 1, 2, 2) (D) (3, 2, 0, 2)

17. 4785: 在氢原子的 K 壳层中,电子可能具有的量子数 (n, l, m_l, m_s) 是

- (A) $(1, 0, 0, \overline{2})$ (B) $(1, 0, -1, \overline{2})$
- (C) (1, 1, 0, 2) (D) (2, 1, 0, 2)

٦

18. 4222: 与绝缘体相比较,半导体能带结构的特点是

(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电 子

19. 4789: p 型半导体中杂质原子所形成的局部能级(也称受主能级),在能带结构中应 外干

- (A) 满带中
 (B) 导带中
 (C) 禁带中,但接近满带顶

 (D) 禁
 带
 中
 ,
 但
 接
 近
 导

20. 8032: 按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们 所产生的光的特点是:

- (A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的
- (B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的

的	(C) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的分	光与入射光是不相干
ПΊ	(D) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光	与入射光是相干的
	21. 9900: \hat{x} 与 \hat{P}_x 的互易关系[\hat{x} , \hat{P}_x]等于	
		г э
	(A) $i\hbar$ (B) $-i\hbar$ (C) $i\hbar$ (D) $-i\hbar$	[]
	22. 9901: 厄米算符 \hat{A} 满足以下哪一等式(u 、 v 是任意的态函数	()
	$\int u^* \hat{A} v dx = \int (\hat{A} u^*) v dx \qquad (B) \int v^* \hat{A} u dx = \int v (\hat{A} u)^* dx$	
		· ^
	$\int v^* \hat{A} u dx = \int \left(\hat{A} v\right)^* u dx \qquad \qquad \int u^* dx$	$\int Avdx = \int (Au)v^*dx$
]	
_	1+ 2a 155	
_,	填空题	任 县
	1. 4179: 光子波长为λ,则其能量=; 动量的大小 =; 2. 4180: 当波长为 3000 Å 的光照射在某金属表面时,光电子的能	
10-19	$^{\prime}$ $_{\rm J}$ 。在作上述光电效应实验时遏止电压为 $_{\rm U}$ $_{\rm d}$ $_{\rm l}$ $_{\rm l}$ $_{\rm l}$	
	Hz。	
	3. 4388: 以波长为λ= 0.207 μm 的紫外光照射金属钯表面产生光电影	
频率	$\mathbb{E}[V_0=1.21 imes 10^{15}$ 赫兹,则其遏止电压 $[U_a]=$	
네뉴 주네	4. 4546: 若一无线电接收机接收到频率为 10 ⁸ Hz 的电磁波的功率之间的光子数为	为1微瓦,则每杪接
収土!	5. 4608: 钨的红限波长是 230 nm,用波长为 180 nm 的紫外光照射	村时,从表面 逸出的
电子	·的最大动能为eV。	in, ////////////////////////////////////
	6. 4611: 某一波长的 X 光经物质散射后, 其散射光中包含波	
	的两种成分,其中的散射成分称为康普顿散射。	
古 フ	7.4191:在氢原子发射光谱的巴耳末线系中有一频率为 6.15×10 ¹⁴	
	$E_{\rm A}$ 从能级 E_n =eV 跃迁到能级 E_k =eV 而发出的 8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的	
系)自	的最短波长的谱线所对应的光子能量为eV;巴耳末刻	
	应的光子的能量为eV。	,, ,
<u>.</u> .	9. 4200: 在氢原子光谱中, 赖曼系(由各激发态跃迁到基态所发射的	
. , .	的最短波长的谱线所对应的光子能量为eV;巴耳末刻	系的最短波长的谱线
所刈	应的光子的能量为eV。 10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射的	力逆线构成)由波长
为1		eV。
/ 🕽 🗜	11. 4754: 氢原子的部分能级跃迁示意如图。在这些能级跃迁	n = 4
	(1) 从 $n =$ 的能级跃迁到 $n =$ 的能级时所发射的光子	n = 3
	\mathcal{E} 长最短; (2) 从 $n = _$ 的能级跃迁到 $n = _$ 的能级时所	- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
发射	的光子的频率最小。	
右	12. 4755: 被激发到 $n=3$ 的状态的氢原子气体发出的辐射中, 条可见光谱线和 条非可见光谱线。	$-\psi\psi\psi$ $n=1$
H	$_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{}$ $_{$	4754 图 一个基态氢原子时,
所发	出的单色光频率是。	, ,
	14. 4207: \diamondsuit $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电	子静止质量, c 为直
空中	1光速, h 为普朗克常量)。当电子的动能等于它的静止能量时,它	
	λ_c .	
·	15. 4429: 在戴维孙——革末电子衍射实验装置中,自热	\
	KK 发射出的电子束经 $U=500$ V 的电势差加速后投射到晶	
14上	eta 。这电子束的德布罗意波长 λ =nm。 ————————————————————————————————————	3 > 1 4 ////
		$\stackrel{U}{\Longleftrightarrow}$

$$\psi(x) = \begin{cases} A \sin \frac{n\pi}{a} x & 0 < x < a \\ 0 & x \le 0 \quad x \ge a \end{cases}, \quad \text{xigh}$$

10. 体系在无限深方势阱中的波函数为 一化常数A。

$$U(x) = \begin{cases} 0 & 0 < x < a \\ \infty & x \le 0, x \ge a \end{cases}$$

11. 质量为m的粒子沿x轴运动,其势能函数可表示为: 求解粒子的归一化波函数和粒子的能量。

$$\psi(x) = \frac{4}{\sqrt{a}} \sin\left(\frac{\pi}{a}x\right) \cos^2\left(\frac{\pi}{a}x\right)$$

12. 设质量为粒子处在(0, a)内的无限方势阱中, $\psi(x) = \frac{4}{\sqrt{a}} \sin\left(\frac{\pi}{a}x\right) \cos^2\left(\frac{\pi}{a}x\right)$ 的能量进行测量。可能得到证据, 对它的能量进行测量,可能得到的值有哪几个?概率各多少?平均能量是多少?

 $\psi(x) = \sqrt{\frac{1}{3}}u_0(x) + \sqrt{\frac{1}{2}}u_2(x) + cu_3(x)$ _o 其中, $u_n(x)$ 是 13. 谐振子的归一化的波函数: 归一化的谐振子的定态波函数。求:c和能量的可能取值,以及平均能量E。

一、选择题 1. 4185: D 2. 4244: B 3. 4383: D 4. 4737: D 5. 4190: C 6. 4197: C 7. 4748: A 8. 4750: C 9. 4241: A 10. 4770: A 11. 4428: A 12. 4778: 13. 5619: C 14. 8020: D 15. 4965: B 16. 8022: D 17. 4785: A 18. 4222: D 19. 4789: C 20. 8032: B 21. 9900: A 22. 9901: C 二、填空题 h/λ _____2 \leftrightarrow . hc/λ $\frac{1}{2}$ $\frac{1}{2}$ 1. 4179: 分 4.0×10¹⁴-----2 分 2.5-----2 分: 2. 4180: 0.99-----3 分 3. 4388: 4. 4546: 1.5×10¹⁹ ------3 分 1.5 -----3 分 5. 4608: 变长-----1 分; 波长变长------1 不变-----1 分: 6. 4611: 分 -0.85-----2 分: -3.4------2 分: 7. 4191: 3.4-----2分 13.6-----2 分: 8. 4192: 6-----2 分: 973-----2 分 9. 4200: 10.2-----3 分 10. 4424: 4 3------2 分 2-----2 分 4 1-----2分; 11. 4754: 1-----2 分: 12. 4755: 6.56×10¹⁵ Hz-----3 分 13. 4760: $1/\sqrt{3}$ _____3 %14. 4207: 0.0549-----3 分 15. 4429: 1.45 Å------2 分; 6.63×10⁻¹⁹ Å-------2 分 16. 4629: 0.1 Å------3 分 17. 4630: 粒子在t时刻在(x, y, z)处出现的概率密度-----2分 18. 4203: 单值、有限、连续-----1分 $\iiint \left| \Psi \right|^2 dx dy dz = 1$ 2 \implies 2

19. 4632:

```
又 q=2e 则: m_{\alpha}v=2eRB ......4 分
              \lambda_{\alpha} = h/(2eRB) = 1.00 \times 10^{-11} \text{ m} = 1.00 \times 10^{-2} \text{ nm}
                          v = 2eRB/m_{\alpha}
    (2) 由上一问可得
                        \lambda = \frac{h}{m1} = \frac{h}{2eRB} \cdot \frac{m_{\alpha}}{m} = \frac{m_{\alpha}}{m} \cdot \lambda_{\alpha}
= 6.64 \times 10^{-34} \text{ m} - 3 \text{ }\%
对于质量为m的小球:
                      E_K = p^2 / (2m_e) = (h/\lambda)^2 / (2m_e) ______3 \(\frac{1}{2}\)
    3. 4506: 解:
                           =5.0\times10^{-6} \text{ eV}-----
                                    E_K = \frac{1}{2} m_e v^2
    4. 4535: 解: 非相对论动能:
                              E_K = \frac{p^2}{2m_e}  2m_e = 2 
    p = m_e v , 故有:
又根据德布罗意关系有 p=h/\lambda 代入上式------1 分
         E_K = \frac{1}{2}h^2/(m_e\lambda^2) = 4.98 \times 10^{-6} \text{ eV}
则:
    5. 4631: 解: 若电子的动能是它的静止能量的两倍,则: mc^2 - m_e c^2 = 2m_e c^2______1
分
         故:
由相对论公式: m = m_e / \sqrt{1 - v^2 / c^2}
                     3m_{e} = m_{e} / \sqrt{1 - v^{2} / c^{2}}
有:
        德布罗意波长为: \lambda = h/(mv) = h/(\sqrt{8}m_e c) \approx 8.58 \times 10^{-13} \text{ m------2} 分
                           \lambda = \frac{h}{p} = \frac{h}{m_e v} = \frac{1.04 \times 10^{-9} \text{ m}}{1.04 \times 10^{-9} \text{ m}} = 10.4 \text{ Å}
光电子的德布罗意波长为:
                      \lambda = h/(m_e v) ①----2 分
    6. 5248: 解:
                       v^2 - v_0^2 = 2ad (2)
                       eE = m_e a (3)-----2 \%
            v = h/(m_e \lambda) = 7.28 \times 10^6 \,\text{m/s}
由①式:
            a = eE/m_e = 8.78 \times 10^{13} \text{ m/s}^2
由③式:
            d = (v^2 - v_0^2)/(2a) = 0.0968 \text{ m} = 9.68 \text{ cm}
由②式:
    7. 4430: 解: 先求粒子的位置概率密度:
         |\psi(x)|^2 = (2/a)\sin^2(\pi x/a) = (2/2a)[1 - \cos(2\pi x/a)]_{-----2}
      \cos(2\pi x/a) = -1<sub>时</sub>, \left| \psi(x) \right|^2 有最大值. 在 0 \le x \le a 范围内可得 2\pi x/a = \pi
当:
                x = \frac{1}{2}a ......3 \Re
```

粒子位于 0-a/4 内的概率为

$$P = \int_{0}^{a/4} \frac{2}{a} \sin^{2} \frac{\pi x}{a} dx = \int_{0}^{a/4} \frac{2}{a} \frac{a}{\pi} \sin^{2} \frac{\pi x}{a} d(\frac{\pi x}{a})$$
$$= \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi x}{a} - \frac{1}{4} \sin \frac{2\pi x}{a} \right]_{0}^{a/4} = \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi}{a} \frac{a}{4} - \frac{1}{4} \sin(\frac{2\pi}{a} \frac{a}{4}) \right]_{0} = 0.091 - 2 \frac{1}{2}$$

9. 解:根据给出的氢原子波函数的表达式,可知能量 E 的可能值为: E_1 、 E_2 、 E_3 .

$$\frac{\left|\frac{2}{\sqrt{10}}\right|^2 + \left|\frac{1}{\sqrt{10}}\right|^2 + \left|\frac{\sqrt{2}}{\sqrt{10}}\right|^2 + \left|\frac{\sqrt{3}}{\sqrt{10}}\right|^2 = 1}{\sqrt{10}}$$

所以,能量为
$$E_1$$
的概率为
$$P_1 = \left| \frac{2}{\sqrt{10}} \right|^2 = \frac{2}{5}$$

$$P_3 = \left| \frac{\sqrt{3}}{\sqrt{10}} \right|^2 = \frac{3}{10}$$
______1 \(\frac{1}{2}\)

能量为 E3 的概率为

能量的平均值为: $\overline{E} = P_1 E_1 + P_2 E_2 + P_3 E_3$ _____2 分

10. 解: 由归一化条件,应有 $\int_0^a A^2 \sin^2 \frac{n\pi}{a} x dx = 1$ ______3 分

$$A = \sqrt{\frac{2}{a}} \qquad 2 \text{ }$$

11. 解: 当 $x \le 0$ 或 $x \ge a$ 时, 粒子势能无限大, 物理上考虑这是不可能的, 所以粒子 在该区域出现纪律为零,即: $\psi(x)=0$

当
$$0 < x < a$$
 时, $U(x) = 0$,定态薛定谔方程为:
$$-\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} = E \psi$$
 设 $k = \sqrt{2\mu E/\hbar^2}$,则方程为:
$$\frac{d^2 \psi}{dx^2} + k^2 \psi = 0$$
 通解为:
$$\psi(x) = A \sin kx + B \cos kx$$

由波函数的连续性可知, 在x=0、x=a 处 $\psi(x)=0$, 即.

$$\psi(x) = A \sin 0 + B \cos 0 = 0$$

 $\psi(x) = A \sin(ka) + B \cos(ka) = 0$ $\Rightarrow k = \frac{n\pi}{a}$, $n = 1, 2, 3$

所以有:
$$\psi_n(x) = A \sin\left(\frac{n\pi}{a}\right)$$
, $n = 1, 2, 3$

归一化条件:
$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_0^a |\psi(x)|^2 dx = \int_0^a A^2 \sin^2\left(\frac{n\pi}{a}\right) dx = 1$$

所以:
$$A = \sqrt{\frac{2}{a}}$$
 ,即: $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}\right)$, $n = 1, 2, 3$ ……

$$E = E_n = \frac{\pi^2 \hbar^2}{2\mu a^2} n^2$$
粒子能量为: $n = 1, 2, 3......$

12.
$$mathrew{H}$$
:
$$\psi(x) = \frac{2}{\sqrt{a}} \sin\left(\frac{\pi x}{a}\right) \cos^2\left(\frac{\pi x}{a}\right) = \frac{2}{\sqrt{a}} \left[\sin\left(\frac{\pi x}{a}\right) + \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{2\pi x}{a}\right)\right]$$

$$= \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right) + \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \sin\left(\frac{3\pi x}{a}\right)$$

即 $\psi(x)$ 是第一和第三个能量本征态的叠加,所以测得能量值可为:

$$\frac{\pi^2 \hbar^2}{2\mu a^2}$$
, 相应概率为: $\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$

$$\frac{9\pi^2\hbar^2}{2\mu a^2}$$
, 相应概率为: $\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$

所以,能量平均值为: $\overline{E} = \frac{1}{2} \frac{\pi^2 \hbar^2}{2\mu a^2} + \frac{1}{2} \frac{9\pi^2 \hbar^2}{2\mu a^2} = \frac{5\pi^2 \hbar^2}{2\mu a^2}$

13. 解: 由归一化条件得:
$$\left|\sqrt{\frac{1}{3}}\right|^2 + \left|\sqrt{\frac{1}{2}}\right|^2 + \left|c\right|^2 = 1$$
 解得: $c = \sqrt{\frac{1}{6}}$

根据谐振子波函数的表达式,可知能量 E 的可能值为: E_0 、 E_2 、 E_3

因为:
$$E_n = \left(n + \frac{1}{2}\right)hv$$

所以: $E_0 = \frac{1}{2}hv \qquad E_2 = \frac{5}{2}hv \qquad E_3 = \frac{7}{2}hv$

$$\overline{E} = P_0 E_0 + P_2 E_2 + P_3 E_3 = \left| \sqrt{\frac{1}{3}} \right|^2 \cdot \frac{1}{2} h v + \left| \sqrt{\frac{1}{2}} \right|^2 \cdot \frac{5}{2} h v + \left| \sqrt{\frac{1}{6}} \right|^2 \cdot \frac{7}{2} h v = 2 h v$$