Integer Multiplication

Multiplication of Positive Integers

Paper-And-Pencil Method

 \bullet In a positional number system, multiplication is performed by multiplying the multiplicand M by each digit of the multiplier Q. These are then weighted and added.

				1	1	0	1	M
			×	1	0	1	1	Q
				1	1	0	1	
			1	1	0	1		
		0	0	0	0			
	1	1	0	1				
1	0	0	0	1	1	1	1	P

- \triangleright The length of the product p is the sum of the lengths of the multiplicand m and the multiplier q.
- The addend exists only, and is a copy of the multiplicand, if the multiplier bit is 1.
- ❖ The integer multiplier can be implemented using full-adders and AND gates. *Parallel Multiplier*
 - > Since addition is performed using 2 operands at a time, *partial products* can be obtained while the addends are being generated.

- Impractical for a dedicated circuit.
 - \triangleright Requires $m \times q$ blocks with 1 full-adder and 1 AND gate each.
 - > Very long propagation delay.

Serial Integer Multiplier

- ❖ The circuit size may be reduced by using the existing adder of the ALU. Additionally requires
 - \triangleright 2 shift registers A and Q to hold the product
 - > 1 register *M* to hold the multiplicand
 - ➤ 1 binary cell C to hold the carry-out of the partial product
 - > A control sequencer

Process

- Initialization
 - Clear A.
 - *M* gets multiplicand.
 - Q gets multiplier.
- ➤ Loop for each bit of multiplier
 - If $Q_0 = 1$ then Add.
 - Shift right *CAQ*.
- Result contained in register combination AQ.

Comments

- \triangleright Size of A at least equal to M, not necessarily but typically equal to Q.
- > Speed is a little slower (due to extra shifting time).
- > Size is a lot smaller.

Example: 13'11

	M	1101		
	C	A	Q	
Init	0	0000	1011	
Bit 0	0	1101		Add
		0110	1101	Shift
Bit 1	1	0011		Add
		1001	1110	Shift
Bit 2		0100	1111	Shift
Bit 3	1	0001		Add
		1000	1111	Shift

Signed Integer Multiplication

- ❖ Basically magnitude multiplication + sign adjustment
- Result is size of magnitudes + 1 for sign bit. Computers typically use just the sum of the sizes.
- Need to extend the sign bits.

Example: -13´11

❖ If multiplier is negative, need to add negative (2's complement) of multiplicand, sign-extended and shifted to sign-bit position. Note: msb of multiplier is actually the sign bit, *i.e.*, a 1 means a negative multiplier.

Example: 11´-13

Example: -11´-13

Comments

Different last step for negative multiplier. Leads to difficulty in circuit design.

Booth's Algorithm

- * Treats positive and negative multipliers uniformly.
- * Rewrites multiplier in terms of sums and differences.
 - > Convert code according to next bit at right
 - 0 to $1 \Rightarrow +1$
 - 1 to $0 \Rightarrow -1$
 - Otherwise, 0
 - ➤ Right of lsb is "nothing", i.e., equal to 0. ©

$$\begin{array}{rcl}
13 & = & 0 & 1 & 1 & 0 & 1 \\
\Rightarrow & +1 & 0 & -1 & +1 & -1 \\
& = & +2^4 - 2^2 + 2^1 - 2^0
\end{array}$$

$$\begin{array}{rcl}
-13 & = & 1 & 0 & 0 & 1 & 1 \\
\Rightarrow & -1 & 0 & +1 & 0 & -1 \\
& = & -2^4 + 2^2 - 2^0$$

 \bullet Multiplication is performed via add (if +1) and subtract (if -1).

Example: 11'13

Example: 11´-13

Fast Integer Multiplication

- ❖ Bit-Pair Recording reduces to half the number of summands
- ❖ Carry-Save Addition reduces time of addition in parallel multipliers

Bit-Pair Recording

❖ The number of summands is reduced by pairing multiplier bits and ensuring left bit is 0 (*Extended Booth Representation*), *i.e.*,

- ➤ Multiplication is either by:
 - 1 (copy) or 2 (copy shift)
 - positive (M) or negative (-M)

Example: 11'9

Example: 11'-9

Carry-Save Addition

- ❖ The parallel multiplier can be improved by improving the adder portion.
- Consider the addition of 3 numbers: W + X + Y = Z
- Using standard ripple-carry adders

A carry-lookahead circuit can improve the upper level. The lower level cannot benefit from a carry-lookahead circuit due to the large diversity in the delays.

This process can be improved by using carry-save addition.

- The carry-in inputs are used for the third input and carry-outs are saved for the next level.
- ➤ The inputs to both levels arrive at close intervals, hence, the second level may be improved with the use of a carry-lookahead circuit.
- Considering these, a parallel multiplier may be implemented using a tree structure by grouping summands by threes.

Integer Division

- Unlike subtraction, division cannot easily be performed using multiplication since it is difficult to take the reciprocal of a number.
- Division is performed by repeated subtraction.
 - > Loop for each digit of dividend from highest
 - Determine largest multiplier for divisor
 - Subtract
 - Bring down next digit

Comments

- The size of the quotient is the difference of the sizes (counted from leftmost 1) of the dividend and the divisor.
- There is no simple algorithm to implement signed division. Typically,
 - ➤ Both dividend and divisor are converted to positive,
 - > Unsigned division is performed, and
 - > Sign is adjusted accordingly.
- Another problem is on how to treat the remainder of a signed division, *i.e.*, whether or not the remainder should be negative if the quotient is negative.

Restoring (Unsigned) Division

- ❖ In *restoring division*, the multiplier to the divisor is determined by first subtracting the divisor. If the result is negative, the divisor is restored (added back).
 - > Initialization
 - Clear A. Requires 1 extra bit for A to be used as a sign bit.
 - Q gets dividend.
 - M gets divisor.
 - Loop for each bit of the dividend Q
 - Shift *AO* to the left.
 - Subtract $(A \leftarrow A M)$

- If negative $(A_n = 1)$, restore $(A \leftarrow A + M)$ and reset $Q_0 \leftarrow Q$
- Else set $Q_0 \leftarrow 1$
- \triangleright Quotient in Q while remainder in A.

Example: 11, 3

-M	11101		
M	00011		
	\overline{A}	Q	
Init	00000	1011	
Bit 0	00001	011-	Shift
	11110		Sub
	00001	0110	Restore
Bit 1	00010	110-	Shift
	11111		Sub
	00010	1100	Restore
Bit 2	00101	100-	Shift
	00010		Sub
		1001	No Restore
Bit 3	00101	001-	Shift
	00010		Sub
		0011	No Restore
Rem→	00010	0011	\leftarrow Quotient

Non-Restoring (Unsigned) Division

- * The non-restoring division defers restoration to reduce operations.
 - Addition is performed instead of subtraction in the next step.
 - > This requires a final restoration, when last operation yielded a negative remainder.
- ❖ The same set-up is used.
 - > Initialization
 - Clear A
 - Q gets dividend.
 - M gets divisor.
 - \triangleright Loop for each bit of the dividend Q
 - If A (previous result) is negative $(A_n = 1)$
 - Shift AQ to the left.
 - Add $(A \leftarrow A + M)$

- Else
 - Shift AQ to the left.
 - Subtract $(A \leftarrow A M)$
- $Q_0 \leftarrow \overline{A_n}$
- Perform restoration if last result in A is negative, i.e., if $A_n = 1$ then $A \leftarrow A + M$
- \triangleright Quotient in Q while remainder in A.

Example: 11, 3

Example: 13, 3

Floating-Point Arithmetic

 \diamond Real numbers are difficult to represent. This involves a certain amount of approximation with knowledge of a few significant digits at the start of the number, e.g.,

$$p \approx 3.1415926536$$

 $c \approx 299,792,458$

- One approach is to use *fixed-point representation* where the number is given according to a fixed number of decimal places (and precision).
 - > Conceals some of what we know for small numbers.
 - > Demands more than we know for large numbers.
- ❖ Scientists and engineers use scientific notation where a number is expressed as

$$M\times10^E$$

e.g.,

$$c \approx 2.998 \times 10^8$$

Avogadro's Number $\approx 6.0247 \times 10^{23}$

Planck's Constant
$$\approx 6.6254 \times 10^{-27}$$

- The mantissa M is a signed number and is said to be normalized if $1 \le |M| < 10$.
- \triangleright The power of 10 is always an integer and is called the *exponent E*.

Floating-Point Representation

• Computers represent real numbers using scientific notation in base $2. \Rightarrow floating-point$

$$(-1)^{S} \times M \times 2^{E}$$

The mantissa is also typically *normalized* $(1 \le |M| < 2)$ and can be represented as 1 plus a fraction, *i.e.*,

$$|M| = 1 + F \text{ or } 1.F$$

❖ Common schemes used include the IEEE-754 (Institute of Electrical and Electronics Engineers Standard 754).

IEEE Single Precision Representation

- ❖ Uses 32 bits: 1-bit sign, 23-bit fraction, 8-bit exponent.
 - \triangleright The fraction is normalized. The smallest fraction is at 2^{-23} or approximately 1.2×10^{-7} for 7-digit precision.
 - For ease in comparing numbers, the exponent is biased by 127 to represent negative values (excess-127).
 - ➤ Due to some exceptions, the approximate effective range is $\pm 1.17 \times 10^{-38}$ to $\pm 3.40 \times 10^{38}$.

IEEE Double Precision Representation

- ❖ Uses 64 bits: 1-bit sign, 52-bit fraction, 11-bit exponent.
 - \triangleright The fraction is normalized. The smallest fraction is at 2^{-52} or approximately 2.2×10^{-16} for 16-digit precision.
 - ➤ The exponent is biased by 1023 (excess-1023).
 - \triangleright Due to some exceptions, the approximate effective range is $\pm 2.23 \times 10^{\pm 308}$ to $\pm 1.80 \times 10^{\pm 308}$.

IEEE-754 Exceptions

Single Precision E'		Double P	recision E'	Fraction F	Value
255	FFH	2047	7FFH	0	±Infinity
255	FFH	2047	7FFH	≠0	NaN, overflow, error etc.
0	00H	0	000H	0	0
0	00H	0	000H	≠0	Denormalized

Examples: 9.7578125 to IEEE Floating-Point Notation

Conversion to IEEE Single-Precision

■ Determine sign bit $\Rightarrow S = 0$ (positive)
■ Convert to binary $\Rightarrow 1001.1100001_2$ ■ Shift dot $\Rightarrow 1.0011100001_2 \times 2^3$

■ Determine E' $\Rightarrow E + 127 = 130 = 10000010_2 = 82H$

Conversion to IEEE Double-Precision

■ Differs mainly in E' $\Rightarrow E + 1023 = 1026 = 10000000010_2 = 402H$ ■ Combining gives $\Rightarrow 0.10000000010.00111000010000000...0$ $\Rightarrow 0100.00000010.001110000100000000...0$

 \Rightarrow 4023 8400 0000 0000H

➤ NB. It is actually easier to work in hexadecimal. ②

Guard Bits and Truncation

- ❖ Guard bits are extra bits in the fraction retained during arithmetic operations to increase accuracy.
- * *Truncation* refers to the removal of the guard bits to fit into the representation.
- 3 Common Truncation Methods: Chopping, von Neumann Method, Round-Off

Chopping

- Guard bits are dropped regardless of the value.
- \triangleright Biased error: 0 to +1 of 1sb

Von Neumann Method

- > Drop guard bits if all are 0, else set lsb to 1.
- \triangleright Unbiased error: -1 to +1 of lsb

Round-Off

- Add 1 to lsb if msb of guard bits is 1, else just chop.
- \triangleright Unbiased error: -0.5 to +0.5 of lsb

Examples:

Mantissa	Chopping	Von Neumann	Round-off
1.00000	1.000	1.000	1.000
1.0001×	1.000	1.001	1.001
1.0010×	1.001	1.001	1.001
1.0011×	1.001	1.001	1.010

Floating-Point Addition/Subtraction

- ❖ Adjust exponent to largest (Align mantissas).
- ❖ Add/subtract mantissas.
- ❖ Normalize mantissa and truncate

Floating-Point Multiplication/Division

- ❖ Add/Subtract exponents
- Multiply/divide mantissas
- Normalize mantissa and truncate

Examples:

$$100_{10} = +1.1001_2 \times 2^6 = 42C8\,0000H$$

 $-0.1_{10} = -1.1001100110011001101101_2 \times 2^{-4} = BDCC\,CCCDH$

- \rightarrow 100 + (-0.1)

 - Add (Subtract) $\Rightarrow +1.1000111111001100110011001100110011\times 2^6$
 - No need to normalize
 - Result \Rightarrow 42C7 CCCDH
- \rightarrow 100 (–0.1)

 - No need to normalize
 - Result \Rightarrow 42C8 3333H
- \rightarrow 100 × (-0.1)
 - Add exponents $\Rightarrow 6 + (-4) = 2$
 - Multiply mantissa ⇒ 10.1000000000000000000000000101
 - Normalize $\Rightarrow 1.0100000000000000000000000101 \times 2^3$
 - Adjust sign \Rightarrow 1 (negative)
 - Result \Rightarrow C120 0000H
- \rightarrow 100 ÷ (-0.1)
 - Subtract exponents $\Rightarrow 6 (-4) = 10$

 - Adjust sign ⇒ 1 (negative)Result ⇒ C47A 0000H
- HALJ Arithmetic Unit (Part 2) 11