VE414 Project

Shengyuan Xu 518370910200

Fan Chen 518021910739

Qiansiqi Hu 519370910097

Magic Trip

EM Clustering

- Assumption: Gaussian mixture model
- Goal:
 - estimate the number of clusters (Jiuling)

find out the approximate position of each Jiuling

look for possible improvements based on the result

Analysis

• BIC—Bayesian Information Criterion $BIC = k \ln(n) - 2 \ln(L)$

Analysis

- Limitation
 - Concentrated distribution of data points
 - Based on nearby Tayes counts, rather than the actual number and location of Tayes a

>

- Possible solution
 - Aggregation of the data
 - Estimation of actual number and location of Tayes

Tayes Distribution Estimation

Key Problem: Estimate the number and location of Tayes

Maybe we can act as minesweepers

Tayes Distribution Estimation

Mine Algorithm

```
Algorithm 1: Generate the prediction on fruit distribution
   Input: Nearby Fruit Distribution Target
   Output: Prediction of fruit number and location Prediction
1 function predict(Target)
2 Initialize Prediction, loss, tot_{loss}, \Delta_{tot_{loss}},
3 while \Delta_{tot_{loss}} > 3 or max term in loss > 2 or min term in loss < -2 do
       newLoss, MSE, loss = getLoss(target, prediction)
       update \Delta_{tot_{loss}}, tot_{Loss}, loss_{max}, loss_{min}
       if loss_{max} + loss_{min} > 0 or loss_{max} + loss_{min} == 0 and tot_{loss} > 0 then
           while loss_{max} doesn't change do
               x, y is the position of loss_{max}
              increase Prediction[x, y]
              update \Delta_{tot_{loss}}, tot_{Loss}, loss_{max}, loss_{min}
10
       else if loss_{max} + loss_{min} < 0 or loss_{max} + loss_{min} == 0 and tot_{loss} < 0 then
11
           while loss_{min} doesn't change do
12
               x, y is the position of loss_{min}
13
              decrease Prediction[x, y]
14
              update \Delta_{tot_{loss}}, tot_{Loss}, loss_{max}, loss_{min}
15
       else
16
          return Prediction
17
```

Algorithm 2: Sum the quantities in a cross area of Prediction

```
Input: Prediction of fruit number and location Prediction, Center Position (x,y)
Output: local sum of the cross area centering at (x,y)

1 function LocalSum(Prediction, x, y)
2 return Prediction[i, j-1: j+2] + prediction[i-1: i+2, j] - prediction[i, j]
```

Tayes Distribution Estimation

Result Comparison

Tayes Distribution Estimation

Tayes Number pre Jiuling

• Roughly a Gaussian Distribution with $\mu = 30$

- Left part slightly higher than Gaussian Distribution
 - little information on clusters at the edge of explored area

What about the total number of Jiuling?

- Assumption
 - Jiuling are uniformly randomly distributed
- Quantity predicted >> Total quantity
- Area detected >> Total area
- Estimation of area detected
 - Modified Graham-scan Algorithm
 - Sum of detected grid

Regular Graham-scan Algorithm

Regular Graham-scan algorithm

Size: 2927.89

Modified Graham-scan Algorithm

Regular Graham-scan algorithm

Size: 2927.89

Proportion: 25.57%

Modified Graham-scan

algorithm

Size: 2480.89

Proportion: 21.66%

Area Estimation

General idea:

- Divide the forest into 107 *107 tiny grids
- For each grid, if there exists any record of trip within one meter, mark this grid as **detected**.
- Calculated the total size of grids detected.

Area Estimation

Total Size: 3228

Proportion: 28.19%

Area Estimation

Method	Value	Proportion	Tree cnt
Regular Graham scan	2927.89	25.57%	58.66
Modified Graham scan	2480.89	21.66%	69.25
Circular Coverage	3228	28.19%	53.21
Loose Grid	2743	23.96%	62.60
Strict Grid	2283	19.94%	75.23

What if Jiuling can move?

• Two key questions:

Existence of Tayes (permanent or not)?

How Tayes fall from Jiuling (continuous or periodic)? (frequent or rare)?

And we'll Need:

Starting time of each trip

More groups of data covering the whole forest

More people travelling at the same time

Work Distribution

Name	Aka	Contribution
Fan Chen	PowerPointer	Area Estimation, K-means
Qiansiqi Hu	EMaster	EM Clustering, Problem Analysis
Shengyuan Xu	MachineLearner	Taye num&loc Estimation, Data Visualization

Thanks!