Chapitre 6 - Les diodes

Justine Philippe

■ La diode à jonction

■ La diode Zener

□ La diode à jonction

■ La diode Zener

Caractéristique électrique

Tracé de la caractéristique électrique :

Modélisation :

JPH - CIR1/CNB1 - Chapitre 6

Relation I_D - V_D

□ Relation générale :

$$I_D = I_S \cdot \left(\exp\left(\frac{V_D}{V_t}\right) - 1 \right)$$
 avec $Vt = kT/q$ $\approx 25 \text{ mV } @ 300 \text{ K}$

Polarisation directe :

$$I_D \approx I_S \cdot \exp\left(\frac{V_D}{V_t}\right)$$

$$V_D \approx V_t . \ln \left(\frac{I_D}{I_S}\right) \approx cste$$

Polarisation indirecte :

$$I_D \approx 0$$

Modélisations

Modèle « interrupteur » :

DIRECT

INVERSE

Modèle « interrupteur avec offset »:

DIRECT

INVERSE

Modèle « interrupteur résistif avec offset »:

Applications (1/2)

Redressement de tension alternative dans un convertisseur AC/DC :

Applications (2/2)

Commutation d'alimentations :

Fonctionnement sur alimentation principale

Fonctionnement sur alimentation de secours

■ La diode à jonction

La diode Zener

Modèle

Polarisation directe : diode classique

$$V_D \approx 0.6 \text{ V ou } 0.7 \text{ V}$$

□ Polarisation inverse :

Caractéristique

 Caractéristique électrique comparée à celle de la diode à jonction :

Cas d'utilisation de la diode Zener

□ Fonction de régulation de la tension d'une charge :

- Diode Zener montée en inverse
- V_{in} tension d'entrée variable à réguler, V_{in} > V_{Z0}
- Tension de sortie maintenue à V_{Z0}
- Valeur de R_{lim} à choisir avec précautions :
 - Si R_{lim} trop grande, I_Z pas assez fort
 => la diode ne fonctionne pas
 - Si R_{lim} trop petite, I_Z trop important
 destruction de la diode

■ La diode à jonction

■ La diode Zener

LEDs (1/2)

□ LED: Light-Emitting Diode

=> Diode électroluminescente

□ Polarisation directe => émission de lumière

 L'intensité lumineuse est proportionnelle au courant direct

LEDs (2/2)

- La longueur d'onde varie en fonction du substrat utilisé :
 - GaAs : infrarouge
 - GaAsP : rouge ou jaune
 - GaP : rouge ou vert
 - InGaN : bleu ou vert

Photodiodes

□ Éclairement de la jonction => courant inverse

Polarisation inverse : courant inverse
 proportionnel à l'illumination du dispositif (mW/cm²)
 => Courant d'obscurité (dark current) : I_R ~ qq 10 nA

Fin du chapitre 6

