Adjusting the Stabilizer of the Shadow Function to Avoid Ambiguity

Attila Csordas

December 28, 2024

Initially, we defined the Shadow Function with an exponential stabilizer term containing two free parameters:

Definition 1 (Shadow Function with Exponential Stabilizer). We define the shadow function $\zeta^*(s)$ as:

$$\zeta^*(s) = e^{A+Bs} \frac{1}{s} \prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho} \prod_{k=1}^{\infty} \left(1 - \frac{s}{-2k} \right)^{-1},$$

where:

- ρ denotes the non-trivial zeros of $\zeta(s)$,
- $k \in \mathbb{N}^+$ denotes the trivial poles,
- ullet e^{A+Bs} is an exponential stabilizer controlling growth at infinity,
- $\frac{1}{s}$ introduces a simple pole at s = 0.

However, an anonymous commenter raised concerns about the ambiguity of the two free parameters. While this stabilizer is theoretically sufficient, we propose a simpler alternative that avoids ambiguity while preserving the desired properties. This strengthens the Zeropole Balance proof of the Riemann Hypothesis.

Simplified Stabilizer

Instead of the two-parameter stabilizer e^{A+Bs} , we introduce a single-parameter stabilizer e^{Cs} :

Definition 2 (Shadow Function with Simplified Exponential Stabilizer). We define the shadow function $\zeta^*(s)$ as:

$$\zeta^*(s) = e^{Cs} \frac{1}{s} \prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho} \prod_{k=1}^{\infty} \left(1 - \frac{s}{-2k} \right)^{-1},$$

where:

- ρ denotes the non-trivial zeros of $\zeta(s)$,
- $k \in \mathbb{N}^+$ denotes the trivial poles,
- \bullet e^{Cs} is the exponential stabilizer ensuring finite behavior at infinity,
- $\frac{1}{s}$ introduces a simple pole at s = 0,
- C is a constant chosen to regulate the growth.

Remark 1. The simplified stabilizer e^{Cs} resolves all ambiguity while preserving essential properties:

- Preservation of the Simple Pole at the Origin: The $\frac{1}{s}$ term introduces a simple pole at s = 0, and the stabilizer e^{Cs} does not interfere with this.
- Moderation of Growth at Infinity: The exponential stabilizer dynamically controls the growth of $\zeta^*(s)$, ensuring meromorphic behavior at $s = \infty$.
- Compatibility with Compactification: The stabilizer ensures that $\zeta^*(s)$ remains meromorphic on the compactified Riemann sphere.
- Elimination of Ambiguity: The single parameter C simplifies the stabilizer, removing the need for normalization conditions and avoiding redundancy.

Behavior of $\zeta^*(s)$ at the Point of Infinity

Lemma 1 (Meromorphic Compactification of $\zeta^*(s)$). The shadow function $\zeta^*(s)$ remains meromorphic at the point at infinity on the Riemann sphere.

Proof. To confirm that $\zeta^*(s)$ is meromorphic at $s = \infty$, consider the stabilizer's impact on the growth of the infinite products:

• Growth Moderation by the Stabilizer: The stabilizer e^{Cs} ensures that the exponential growth of the infinite product terms is tempered, preventing unbounded growth.

- Compatibility with the Infinite Products: The factors $\prod_{\rho} \left(1 \frac{s}{\rho}\right) e^{s/\rho}$ and $\prod_{k=1}^{\infty} \left(1 \frac{s}{-2k}\right)^{-1}$ contribute logarithmic or higher-order terms to the growth of $\zeta^*(s)$. These terms are tempered by the stabilizer, ensuring finite behavior.
- Preservation of Divisor Structure: The $\frac{1}{s}$ term at the origin introduces a simple pole, contributing -1 to the divisor degree. This contribution is preserved without introducing an essential singularity at infinity, consistent with the Riemann-Roch framework for compactification.

Thus, the growth of $\zeta^*(s)$ is moderated to ensure meromorphic compactification, with no essential singularities arising at $s = \infty$.

Remark 2. The stabilizer e^{Cs} ensures that the shadow function behaves predictably along the critical line. Its dependence on t^2 (from the s(1-s) factor encoded in $\zeta(s)$) preserves the symmetry and zeropole balance framework inherent in the Riemann zeta function.

License

This manuscript is licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0) License. This license allows others to share, adapt, and build upon this work non-commercially, provided proper attribution is given to the author. For more details, visit https://creativecommons.org/licenses/by-nc/4.0/.