DIGITAL SYSTEM DESIGN LAB

LAB #02

Spring 2021 CSE308L DSD LAB

Submitted by: Shah Raza

Registration No.: 18PWCSE1658

Class Section: **B**

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Student Signature: _____

Submitted to:

Engr. Madiha Sher

Wednesday, April 28th, 2021

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

Objectives:

This lab will enable students to:

- Learn top down and bottom up design methodologies
- Data flow level modeling

Task # 01:

- 1. First implement a Full adder using data gate level modeling.
- 2. Simulate the Full adder with a test bench.
- 3. Instantiate the Full adder four times and connect the circuit as shown.
- 4. Now again write a test bench and simulate the 4 bit RCA.

Problem Analysis:

Truth Table:

Full Adder:

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

```
Simplified Expressions:
S = A xor B xor C
Cout = AB + BC + AC
Code:
Half Adder:
module HalfAdder(Sum,Cout,A,B);
       input A,B;
       output Sum, Cout;
       xor (Sum,A,B);
       and (Cout,A,B);
endmodule
Test Bench for Half Adder:
module testHalfAdder;
       reg A,B;
       wire Sum, Cout;
       HalfAdder ha(Sum,Cout,A,B);
       initial begin
              $display("A B S C");
              $monitor("%b %b %b %b",A,B,Sum,Cout);
              A = 0; B=0;
              #5
              A = 0; B=1;
              A = 1; B=0;
              #5
              A = 1; B=1;
       end
endmodule
Full Adder:
module FullAdder(Sum,Cout,A,B,Cin);
       input A,B,Cin;
       output Sum, Cout;
       wire S,C,C1;
       HalfAdder HA1(S,C,A,B);
       HalfAdder HA2(Sum,C1,S,Cin);
       or (Cout,C,C1);
```

endmodule

```
Test Bench for Full Adder:
module testFullAdder;
       reg A,B,Cin;
       wire Sum, Cout;
       FullAdder fa(Sum,Cout,A,B,Cin);
       initial begin
              $display("A B Cin S Cout");
              $monitor("%b %b %b %b",A,B,Cin,Sum,Cout);
              A=0;B=0;Cin=0;
              #5
              A=0;B=1;Cin=0;
              A=1;B=0;Cin=0;
              #5
              A=1;B=1;Cin=0;
              #5
              A=0;B=0;Cin=1;
              A=0;B=1;Cin=1;
              #5
              A=1;B=0;Cin=1;
              A=1;B=1;Cin=1;
       end
endmodule
4-bit Ripple Carry Adder:
module fourBitAdder(Sum,Cout,A,B);
       input [3:0] A,B;
       wire [2:0] Cin;
       output [3:0] Sum;
       output Cout;
       FullAdder FA1(Sum[0],Cin[0],A[0],B[0],1'b0);
       FullAdder FA2(Sum[1],Cin[1],A[1],B[1],Cin[0]);
       FullAdder FA3(Sum[2],Cin[2],A[2],B[2],Cin[1]);
       FullAdder FA4(Sum[3],Cout,A[3],B[3],Cin[2]);
endmodule
```

```
Test Bench for 4-bit Ripple Carry Adder:
module test4bitAdder;
       reg [3:0] A,B;
       wire [3:0] Sum;
       wire Cout;
       fourBitAdder A4(Sum,Cout,A,B);
       initial begin
              $display("A B S Cout");
              $monitor("%d %d %d %d",A,B,Sum,Cout);
              A= 4'b0000;B=4'b0000;
              #5
              A = 4'b0000; B = 4'b0001;
              #5
              A= 4'b0000;B=4'b0010;
              #5
              A= 4'b0000;B=4'b0011;
              #5
              A= 4'b0010;B=4'b0011;
              #5
              A= 4'b0011;B=4'b0011;
              A= 4'b0100;B=4'b0010;
              #5
              A= 4'b1100;B=4'b0001;
              A= 4'b1011;B=4'b1011;
              A= 4'b1110;B=4'b1011;
              A= 4'b1111;B=4'b1011;
              A= 4'b1111;B=4'b1110;
              A= 4'b1111;B=4'b1111;
       end
```

endmodule

Output:

Waveform:

At 25ns:

⊞- ⊘ /test4bitAdder/A	0011	(0000				0010	0011	0100	1100	1011	1110	1111		
⊕- /test4bitAdder/B	0011	(0000	0001	0010	0011			0010	0001	1011			1110	1111
⊕	0110	(0000	0001	0010	0011	0101	0110	0110	1101	0110	1001	1010	1101	1110
/test4bitAdder/Cout	0													

At 35ns:

	1100	(0000				0010	0011	0100	1100	1011	1110	1111		
→ /test4bitAdder/B	0001	(0000	0001	0010	0011			0010	0001	1011			1110	1111
	1101	(0000	0001	0010	0011	0101	0110	0110	1101	0110	1001	1010	1101	1110
/test4bitAdder/Cout	0													

At 50ns:

⊕- /test4bitAdder/A	1111	(0000				0010	0011	0100	1100	1011	1110	1111		
⊞-49 /test4bitAdder/B	1011	(0000	0001	0010	0011			0010	0001	1011			1110	1111
⊞–🥙 /test4bitAdder/Sum	1010	(0000	0001	0010	0011	0101	0110	0110	1101	0110	1001	1010	1101	1110
/test4bitAdder/Cout	1													
-														

Dataflow:

Task # 02:

Design the 4 bit full adder using data flow level modeling.

Code:

```
Full Adder:
```

end

endmodule

```
module FA(Sum,Cout,A,B,Cin);
       input A,B,Cin;
       output Sum, Cout;
       assign {Cout,Sum} = A+B+Cin;
endmodule
Test Bench for Full Adder:
module testFullAdder;
       reg A,B,Cin;
       wire Sum, Cout;
       FullAdder fa(Sum,Cout,A,B,Cin);
       initial begin
              $display("A B Cin S Cout");
              $monitor("%b %b %b %b %b",A,B,Cin,Sum,Cout);
              A=0;B=0;Cin=0;
              #5
              A=0;B=1;Cin=0;
              #5
              A=1;B=0;Cin=0;
              #5
              A=1;B=1;Cin=0;
              A=0;B=0;Cin=1;
              #5
              A=0;B=1;Cin=1;
              A=1;B=0;Cin=1;
              #5
              A=1;B=1;Cin=1;
```

```
4-bit RCA:
module FBA(Sum,Cout,A,B);
       input [3:0] A,B;
       output [3:0] Sum;
       output Cout;
       wire [2:0] Cin;
       FA f1(Sum[0],Cin[0],A[0],B[0],1'b0);
       FA f2(Sum[1],Cin[1],A[1],B[1],Cin[0]);
       FA f3(Sum[2],Cin[2],A[2],B[2],Cin[1]);
       FA f4(Sum[3],Cout,A[3],B[3],Cin[2]);
endmodule
Test Bench for 4-bit RCA:
module testFBA;
       reg [3:0] A,B;
       wire [3:0] Sum;
       wire Cout;
       FBA A4(Sum,Cout,A,B);
       initial begin
              $display("A B S Cout");
              $monitor("%d %d %d %d",A,B,Sum,Cout);
              A= 4'b0000;B=4'b0000;
              #5
              A= 4'b0000;B=4'b0001;
              A= 4'b0000;B=4'b0010;
              A= 4'b0000;B=4'b0011;
              #5
              A= 4'b0010;B=4'b0011;
              A= 4'b0011;B=4'b0011;
              #5
              A= 4'b0100;B=4'b0010;
              A = 4'b1100; B = 4'b0001;
              A= 4'b1011;B=4'b1011;
              A= 4'b1110;B=4'b1011;
              A= 4'b1111;B=4'b1011;
              A= 4'b1111;B=4'b1110;
              A= 4'b1111;B=4'b1111;
       end
endmodule
```

Output:

Waveform:

At 25ns:

⊕	0011	(0000				0010	0011	0100	1100	1011	1110	1111		
⊕–🥙 /test4bitAdder/B	0011	(0000	0001	0010	0011			0010	0001	1011			1110	11111
→ /test4bitAdder/Sum	0110	(0000	0001	0010	0011	0101	0110	0110	1101	0110	1001	1010	1101	1110
🥏 /test4bitAdder/Cout	0													

At 35ns:

	1100	(0000				0010	0011	0100	1100	1011	1110	1111		
	0001	(0000	0001	0010	0011			0010	0001	1011			1110	1111
⊞-🥙 /test4bitAdder/Sum	1101	(0000	0001	0010	0011	0101	0110	0110	1101	0110	1001	1010	1101	1110
🥏 /test4bitAdder/Cout	0													

At 50ns:

⊕–🥙 /test4bitAdder/A	1111	(0000				0010	0011	0100	1100	1011	1110	1111		
⊞-🥙 /test4bitAdder/B	1011	(0000)	0001	0010	0011			0010	0001	1011			1110	1111
⊞-🥙 /test4bitAdder/Sum	1010	(0000	0001	0010	0011	0101	0110	0110	1101	0110	1001	1010	1101	1110
// /test4bitAdder/Cout	1													

Dataflow:

