$$L^{P}(\theta) = \sum_{(u,i^{+}) \in P} \sum_{(u,i^{-}) \notin P} L^{P}_{C}(u,i^{+},i^{-}) + \lambda L^{P}_{S}(u,i^{+},i^{-})$$
Experiments $Score(u,i) = -\{d(C,T_{u,i}) + \gamma d(S,T_{u,i})\}$
Effect of Balancing Coefficients
(a) Toys
(b) Health
(c) Yelp

- Illustrates the sensitivity of the balance coefficients λ and γ :
 - CRIS achieves the best performance with small λ but large γ , which indicates the importance of the ISSs.
 - Conjecture the inconsistency between training and evaluation time is caused by the noise in the ISSs.
 - While training, CRIS depends less on the L_S^{P} to avoid overfitting to noisy ISSs.
 - In the evaluation time, CRIS largely depends on the denoised ISSs when determining the recommendation scores.
- CRIS can handle the noise in the ISSs by adjusting the balance coefficients λ and γ
- λ less than 0.5 is the best, reaffirms that ISSs should modeled with L_C^P to learn users' personalized preference.

Experiments Effect of Periods

Fig. 2: Training process of a propose classifier on the interest sustainability prediction.

Fig. 8: Sensitivity analysis on the periods of data D_b and frequency bins. The numbers in both axes denote the number of weeks.

- Performances are sensitive to the period of D_b , and long periods show the best perf.
- Speculate the period of data D_b should be long enough to reliably determine whether an item will be consumed in the future.
- Second, the long period of the frequency bins generally shows better classification performances. If the period too short, will makes feature of items noisy.
- Therefore, adjusting these two periods is essential to successfully predicting the interest sustainability of items.