					1		
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1+}^{\#1} + \alpha \beta \qquad \frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u> </u>
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

_	$\sigma_0^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	1 -	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_2^{\#1} + ^{lphaeta}$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{\alpha \beta \chi}$	

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_0^{\#1}$	$6 k^2 r_3$	0	0	0
·	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0^{\text{-}}}^{\#1} \uparrow$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_{0}^{#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} == 0$	$t_1^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + \bar{l}k\sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{2+}^{\#1}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}^{\alpha\beta} = 0$	Total #:

? k^{μ} ?

_	?		
$^{?}$ $^{\sim}$ $^{k\mu}$. /	Quadratic pole	2
	?	Pole residue:	$\left -\frac{1}{(2r_3 + r_5)t_1^2} > 0 \right $
?		Polarisations:	2
•	?		

 $\frac{1}{2}t_{1}\partial^{\alpha}f_{\theta k}\partial^{k}f_{\alpha}^{\ \theta} - \frac{1}{2}t_{1}\partial^{\alpha}f_{k\theta}\partial^{k}f_{\alpha}^{\ \theta} - \frac{1}{2}t_{1}\partial^{\alpha}f^{\lambda}_{\ k}\partial^{k}f_{\alpha\lambda} + \frac{1}{3}t_{1}\omega_{k\lambda}^{\ \lambda}\partial^{k}f'_{\beta} + \frac{1}{3}t_{1}\omega_{k\lambda}^{\ \lambda}\partial^{k}f'_{\beta} + \frac{1}{3}t_{1}\partial^{\alpha}f_{\beta}^{\ \lambda}\partial^{\alpha}f'_{\beta} + \frac{1}{3}t_{1}\partial^{\alpha}f'_{\beta} + \frac{1}{3}t_{1}\partial^{\alpha}f'_{$

 $r_5 \, \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \, \partial_{\kappa} \omega^{\kappa \lambda \theta} + 4 \, r_3 \, \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \, \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \, \partial_{\kappa} \omega^{\kappa \lambda \theta} -$

 $2 r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - 2 r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$

 $\frac{2}{3} r_2 \, \partial_\theta \omega_{\alpha\beta}^{} \, \partial_\kappa \omega^{\theta\alpha\beta} + 2 \, r_3 \, \partial_\alpha \omega_{\lambda}^{\alpha} \, \partial_\kappa \omega^{\theta\kappa\lambda} - r_5 \, \partial_\alpha \omega_{\lambda}^{\alpha} \, \partial_\kappa \omega^{\theta\kappa\lambda} - \sigma_{\lambda}^{\alpha} \, \partial_\kappa \omega_{\lambda}^{\alpha} \, \partial_\kappa \omega^{\lambda} + \sigma_{\lambda}^{\alpha} \, \partial_\kappa \omega^{\lambda} \, \partial_\kappa \omega^{\lambda} \, \partial_\kappa \omega^{\lambda} + \sigma_{\lambda}^{\alpha} \, \partial_\kappa \omega^{\lambda} \, \partial_\kappa \omega^{\lambda} \, \partial_\kappa \omega^{\lambda} + \sigma_{\lambda}^{\alpha} \, \partial_\kappa \omega^{\lambda} \, \partial_\kappa \omega^{$

 $r_5\,\partial_i\omega^{\kappa\lambda}_{\kappa}\,\partial^i\omega_{\alpha}^{\alpha} + frac{2}{3}\,r_2\,\partial^\beta\omega^{\theta\alpha}_{\kappa}\,\partial_\theta\omega_{\alpha\beta}^{\kappa} - frac{1}{3}\,r_2\,\partial_\theta\omega_{\alpha\beta}^{\kappa}\,\partial_\kappa\omega^{\alpha\beta\theta} - frac{1}{3}\,r_2\,\partial_\theta\omega^{\alpha\beta}\,\partial_\kappa\omega^{\alpha\beta} + frac{1}{3}\,r_2\,\partial_\phi\omega^{\alpha\beta}\,\partial_\kappa\omega^{\alpha\beta} + frac{1}{3}\,r_2\,\partial_\phi\omega^{\alpha\beta}\,\partial_\kappa\omega^{\alpha\beta} + frac{1}{3}\,r_2\,\partial_\phi\omega^{\alpha\beta}\,\partial_\kappa\omega^{\alpha\beta} + frac{1}{3}\,r_2\,\partial_\phi\omega^{\alpha\beta} + frac{1}{3}\,r_2\,\partial_\phi\omega^{$

 $-\frac{1}{3}t_1\;\omega_i^{\alpha i}\;\omega_{\kappa\alpha}^{\kappa}-t_1\;\omega_i^{\kappa\lambda}\;\omega_{\kappa\lambda}^{\prime}-2\,r_3\,\partial_i\omega^{\kappa\lambda}_{\kappa}\,\partial^i\omega_{\lambda}^{\alpha}-$

Lagrangian density

 $\frac{1}{3} r_2 \, \partial_\kappa \omega^{\alpha\beta\theta} \, \partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \, \partial_\kappa \omega^{\theta\alpha\beta} \, \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \, \partial^\beta \omega^{\alpha\lambda}_{\ \ \alpha\beta} + \frac{1}{3} v_2 \, \partial^\beta \omega^{\alpha\lambda}_{\ \ \alpha\beta} + \frac{1}{3} v_3 \, \partial^$

 $\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\ \lambda}\partial^\kappa f_{\lambda}^{\ \theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\ \theta}\partial^\kappa f_{\lambda}^{\ \theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\ \alpha}\partial^\kappa f_{\lambda\kappa} +$

 $\frac{2}{3} r_2 \, \partial^\beta \omega_{\lambda}{}^{\lambda \alpha} \partial_\lambda \omega_{\alpha\beta}{}^{\prime} - 4 \, r_3 \, \partial^\beta \omega_{\lambda}{}^{\lambda \alpha} \, \partial_\lambda \omega_{\alpha\beta}{}^{\prime} - 2 \, r_3 \, \partial_\alpha \omega_{\lambda}{}^{\alpha} \, \partial^\lambda \omega^{\theta \kappa}{}_{\kappa} +$

 $r_5 \partial_{\alpha} \omega_{\lambda}^{ a} \partial^{\lambda} \omega^{\theta \kappa}_{ \kappa} + 2 \, r_3 \, \partial_{\theta} \omega_{\lambda}^{ a} \, \partial^{\lambda} \omega^{\theta \kappa}_{ \kappa} - r_5 \, \partial_{\theta} \omega_{\lambda}^{ a} \, \partial^{\lambda} \omega^{\theta \kappa}_{ \kappa}$

Added source term: $f^{\alpha\beta} \, \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi}$

Massive particle				
Pole residue:	$-\frac{1}{r_2} > 0$			
Polarisations:	1			
Square mass:	$\frac{t_1}{r_2} > 0$			
Spin:	0			
Parity:	Odd			
	Pole residue: Polarisations: Square mass: Spin:			

pole	1	$r_2 < 0 \& 8$	Unitarit
ns:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$	$r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$	Unitarity conditions
		$\& t_1 < 0$	0,