Metodi di Monte Carlo Applicati Alla Computer Grafica

Presentata da: Tanzi Alessio

Relatore: Prof.ssa Marina Popolizio

Politecnico di Bari, Anno Accademico 2022/2023

1/18

Introduzione

Stima della funzione immagine $r_f(x,y)$ attraverso Path Tracing.

• Calcolo della Funzione Immagine

$$r_f(x,y) = \int_{A_{px}} r(x',y') \mathrm{d}A$$

2 / 10

Introduzione

Stima della funzione immagine $r_f(x,y)$ attraverso Path Tracing.

- · Calcolo della Funzione Immagine
- Attraverso il suo campionamento

$$r_f(x,y) = \int_{A_{nx}} f(x-x',y-y') r(x',y') \mathrm{d}A$$

Introduzione

Stima della funzione immagine $r_f(x,y)$ attraverso Path Tracing.

- Calcolo della Funzione ImmagineAttraverso il suo campionamento
- Approssimazione con MC

$$r_f(x,y) \approx \frac{\left\|A_{px}\right\|}{n} \sum_{i=1}^n f(x-x_i,y-y_i) r(x_i,y_i)$$

Introduzione

Stima della funzione immagine $r_f(x,y)$ attraverso Path Tracing.

Path Tracing

```
Input: scena \sigma, risoluzione richiesta (w,h), camera c Output: funzione immagine filtrata r_f(x,y) r_f \leftarrow \operatorname{Array}(w,h); for each pixel (x,y) in r_f do \operatorname{ss} \leftarrow \operatorname{GenerateSamplesWithinPixel(x,y);} for each sample (\vec{s}) in ss.positions do \rho \leftarrow \operatorname{CastRay}\left(c.\vec{p},\frac{\vec{s}-c.\vec{p}}{\vec{p}-c.\vec{p}}\right); ss.contributions(\vec{s})\leftarrow \operatorname{SampleRadiance}(\sigma,\rho,\operatorname{depth}=0); end for r_f(x,y)\leftarrow \operatorname{Aggregate}(\operatorname{ss.contributions}); end for
```


2/18

Indice

- Monte Carlo Integration
- Rendering Fundamentals
- Campionamento e Ricostruzione
- Simulazione

3/18

Indice: Monte Carlo Integration

- Monte Carlo Integration
- Rendering Fundamentals
- 3 Campionamento e Ricostruzione
- Simulazione

Preliminari

Probabilità $\Pr(A)$: Funzione definita su un dominio Σ avente immagine [0,1].

Variabile Casuale X: Formalizzazione matematica di quantità numerica dipendente da eventi aleatori.

Caratterizzata univocamente da

CDF:
$$P(x) = Pr(X \le x)$$

PDF:
$$p(x) = \frac{\mathrm{d}}{\mathrm{d}x} P(x)$$

4/18

Preliminari

Stimatore \tilde{F}_n : funzione di una collezioni di variabili aleatorie X_i , n campioni, mappati ad una stima di uno stimando F

Aspettazione :
$$E[f(X)] = \int_{\mathcal{D}} f(x)p(x)dx$$

$$\begin{array}{lll} \text{Aspettazione}: & E[f(X)] &= \int_{\mathcal{D}} f(x) p(x) \mathrm{d}x \\ \text{Varianza}: & V[f(X)] &= E\left[(f(X) - E[f(X)])^2\right] \\ \text{Bias}: & \beta &= E\left[\tilde{F}_n(X_1, \dots, X_n)\right] - F \\ \text{Efficienza}: & \epsilon\left[\tilde{F}_n\right] &= \frac{1}{T\left[\tilde{F}_n\right] V\left[\tilde{F}_n\right]} \\ \text{MSE}: & \textit{MSE}\left[\tilde{F}_n\right] &= E\left[(\tilde{F}_n - F)^2\right] = V\left[\tilde{F}_n\right] + \beta^2 \end{array}$$

Efficienza:
$$\epsilon \left[\tilde{F}_n \right] \ = \frac{1}{T \left[\tilde{F} \ \right] V \left[\tilde{F} \ \right]}$$

MSE:
$$MSE\left[\tilde{F}_{n}\right] = E\left[\left(\tilde{F}_{n} - F\right)^{2}\right] = V\left[\tilde{F}_{n}\right] + \beta^{2}$$

Integrazione di Monte Carlo

Stimatore Unbiased per l'Integrazione Monte Carlo

$$\tilde{F}_n = \|\mathcal{D}\|\tilde{E}_n[f(X)] = \frac{1}{n}\sum_{i=1}^n \frac{f(X_i)}{p(x)}$$

Il campionamento secondo PDF p(x) permette di scegliere accuratamente i campioni più significativi (Importance Sampling)

5/18

Integrazione di Monte Carlo

Stimatore Unbiased per l'Integrazione Monte Carlo

$$\tilde{F}_n = \|\mathcal{D}\|\tilde{E}_n[f(X)] = \frac{\|\mathcal{D}\|}{n}\sum_{i=1}^n f(X_i)$$

(Campionamento $\mathcal{U}(\mathcal{D})$)

Integrazione di Monte Carlo

$$\tilde{F}_n = \|\mathcal{D}\|\tilde{E}_n[f(X)] = \frac{\|\mathcal{D}\|}{n}\sum_{i=1}^n f(X_i)$$

Per n campioni, la deviazione standard diminuisce di \sqrt{n}

$$\sigma[\tilde{F}_n] = \sqrt{V[\tilde{F}_n]} = \sqrt{\frac{\|\mathcal{D}\|^2}{n}V[f(X)]} = \frac{\|\mathcal{D}\|}{n^{\frac{1}{2}}}\sigma[f(X)]$$

Esempio: Integrale monodimensionale

analitica $-10e^{\pi} + 10$

è possibile giungere alla soluzione

$$F = \frac{10e^{\pi} + 10}{\pi^2} \approx 24.45963551499059$$

Possiamo applicare il Metodo di Monte Carlo

$$\sqrt{\frac{\pi^2}{10}x} \mathrm{d}x \qquad \tilde{F}_n = \|\mathcal{D}\|\tilde{E}_n[f(X)] = \frac{10}{n} \sum_{i=1}^n f(X_i)$$

Campionando uniformemente [0, 10]

Esempio: Integrale monodimensionale

(a) $MSE[\tilde{F}_n]$ dello stimatore unbiased (b) Funzione errore per stimatore biased $\tilde{F}_n^\beta=\frac{1}{2}\max\{f(X_1),\ldots\}$

7.

Metodi di Riduzione della Varianza

Stratified Sampling: Suddivisione del dominio di integrazione in n regioni chiamate strata

Importance Sampling: Concentra i punti campionati per la stima dell'integrale utilizzando PDF proporzionale alla funzione integranda, per catturarne più rapidamente i contributi più significativi

Russian Roulette: Salta la valutazione di campioni che contribuiscono poco

Splitting: Aumenta il numero di campioni in alcune dimensioni di un integrale multidimensionale

Indice: Rendering Fundamentals

- Monte Carlo Integration
- 2 Rendering Fundamentals
- Campionamento e Ricostruzione
- Simulazione

9/18

Radiometria

Modello matematico per studiare e misurare la propagazione delle radiazioni elettromagnetiche con la sola ottica geometrica.

- Linearità
- Conservazione dell'energia
- No polarizzazione
- No fluorescenza o fosforescenza
- A regime

10 /10

Radiometria

Quantità	Simbolo	unità S.I.	Formula
Energia Radiante	Q_e	J	$Q_{e,\lambda} = \frac{\partial Q_e}{\partial \lambda}$
Flusso Radiante	Φ_e	W	$\Phi_e = \frac{\partial Q_e}{\partial t}$
Intensita Radiante	$I_{e,\Omega}$	W/sr	$\begin{split} \Psi_e = & \frac{1}{\partial t} \\ I_{e,\Omega} = & \frac{\partial \Phi_e}{\partial \Omega} \end{split}$
Irradianza Emittanza Radiante Radiosita	$egin{array}{c} E_e \ M_e \ J_e \end{array}$	W/m^2	$E_e J_e M_e = \frac{\partial \Phi_e}{\partial A}$
Radianza	$L_{e,\Omega}$	$W/(sr\cdot m^2)$	$L_{e,\Omega} = \frac{\partial^2 \Phi_e}{\partial \Omega \partial (A \cos \theta)}$

nomenclatura e misure delle quantità radiometriche per noi rilevanti

Rendering Equation

(a) Specular BRDF

(b) Glossy BRDF

(c) Diffuse BRDF

$$L_o(\vec{p},\hat{\omega}_o) = L_e(\vec{p},\hat{\omega}_o) + \int_{\mathcal{S}^2} L_o(t(\vec{p},\hat{\omega}_i), -\hat{\omega}_i) f_s(\vec{p},\hat{\omega}_o,\hat{\omega}_i) |\langle \hat{n},\hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i$$

10/18

Rendering Equation

$$L_o(\vec{p},\hat{\omega}_o) = L_e(\vec{p},\hat{\omega}_o) + \int_{\mathcal{S}^2} L_o(t(\vec{p},\hat{\omega}_i), -\hat{\omega}_i) f_s(\vec{p},\hat{\omega}_o,\hat{\omega}_i) |\langle \hat{n},\hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i$$

- $\vec{p}, \hat{\omega}_i, \hat{\omega}_o$ risp. punto superficie considerato, direzione incidente considerata, direzione uscente
- $t(\vec{p}, \hat{\omega}_i)$ Ray Tracing Function: dati punto di partenza e direzione, restituisce un punto \vec{q} , prima intersezione incontrata
- S^2 sfera unitaria di centro \vec{p}
- \int_{S^2} Integrale in tutte le direzioni $\hat{\omega}_i$

11/18

BSDF

Densità di Distribuzione¹ di radianza incidente riflessa (BRDF f_r) o trasmessa (BTDF f_t) in una data direzione

$$f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) + f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i)$$

dove

$$f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = 0, \quad \operatorname{se} \langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle \leq 0$$

$$f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = 0, \quad \operatorname{se} \langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle \geq 0$$

¹Non normalizzata, con integrale su emisfera proiettata pari all'albedo della superficie

12/18

BSDF

Lambertian BRDF:

$$f_r(\vec{p}) = \frac{\rho(\vec{p})}{\pi}$$

Perfectly Specular BRDF:

$$f_r(\vec{p}) = \frac{\rho(\vec{p})}{\pi} \qquad \qquad f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = F_r(\langle \hat{n}, \hat{\omega}_o \rangle) \frac{\delta(\hat{\omega}_i - \hat{\omega}_r)}{|\langle \hat{n}, \hat{\omega}_i \rangle|}$$

BSDF

Perfectly Specular BRDF:

$$\begin{split} F_r(\mu) &\approx F_0 + (1-F_0)(1-\mu)^5 \\ F_0 &= \frac{(\eta-1)^2 + \kappa^2}{(\eta+1)^2 + \kappa^2} \stackrel{\kappa \approx 0}{=} \left(\frac{\eta-1}{\eta+1}\right)^2 \\ \hat{\omega}_r &= 2\langle \hat{n}, \hat{\omega}_i \rangle - \hat{\omega}_i \end{split}$$

$$f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = F_r(\langle \hat{n}, \hat{\omega}_o \rangle) \frac{\delta(\hat{\omega}_i - \hat{\omega}_r)}{|\langle \hat{n}, \hat{\omega}_i \rangle|}$$

Indice: Campionamento e Ricostruzione

- Monte Carlo Integration
- 2 Rendering Fundamentals
- Campionamento e Ricostruzione
- Simulazione

13/18

Campionamento

Affichè si sfruttino al meglio i campioni estratti per lo Stimatore di Monte Carlo

- Riduzione della Varianza per lo stimatore di Monte Carlo tramite scelta accurata della distribuzione dei campioni...
- ...Con conseguente bisogno di algoritmi capaci di estrarre osservazioni da una distribuzione arbitraria, dati campioni distribuiti uniformemente in $\mathcal{U}(0,1)$

14/18

Campionamento

Stima della funzione immagine $r_f(x,y)$ attraverso Path Tracing.

In un sistema di rendering,

- Ciascun pixel è campionato generando raggi e accumulando radianza in ciascuno di essi
- Ogni superficie intersecata da ciascun raggio è campionata per generare un nuovo raggio

14/18

Campionamento

Variance Reduction	PDF Sampling
Stratified Sampling Importance Sampling	Inverse Transform Sampling Acceptance-Rejection Sampling
Russian Roulette Splitting	Metropolis-Hastings Sampling

Inverse Transform Sampling Lambertian BRDF ($\xi_{\theta}, \xi_{\varphi} \sim \mathcal{U}(0,1)$)

$$\begin{split} \varphi_i &= 2\pi \xi_\varphi \\ \theta_i &= \arccos\left(\sqrt{1-\xi_\theta}\right) \end{split}$$

Filtro di Ricostruzione

Ricostruzione della funzione immagine dai suoi campioni. Box Filter: considera solamente campioni all'interno del pixel considerato, aggregati come spiegato nell'Introduzione

15/18

Indice: Simulazione

- Monte Carlo Integration
- 2 Rendering Fundamentals
- 3 Campionamento e Ricostruzione
- Simulazione

16/18

Simulazione: Cornell Box

Path Tracer semplificato, supportante

- Tre tipi di BRDF, in particolare Lambertiana, Speculare opaca o traslucente
- Russian Roulette, applicata per terminare la valutazione di una path
- Stratified Sampling, dividendo ciascun pixel in 4 caselle (strata)
- Ciascun sample in ciascun strata è scelto casualmente con PDF triangolare

Scena Cornell Box.

Risultati Simulazione

(b) 40 campioni per stratum

18/18

Risultati Simulazione

Componente analizzata		za trovata 40 campioni per stra- tum
Red Channel	0.07344142	0.05132978
Green Channel	0.06190188	0.04714374
Blue Channel	0.07339846	0.05175589
Luminance ¹	0.06380390	0.04621717

Tabella delle varianze per la resa con 8 campioni per stratum e 40 campioni per stratum

¹Più precisamente, Luma channel del color space ITU-R BT.709

18/18

Risultati Simulazione

(b) 1000 campioni per stratum

18/18

Risultati Simulazione

Componente analizzata	Varianza 200 campioni per stra- tum	a trovata 1000 campioni per stratum
Red Channel Green Channel Blue Channel	0.02482136 0.02453323 0.02517796	0.02023584 0.02019825 0.02031221
Luminance	0.02276842	0.01840096

Tabella delle varianze per la resa con 200 campioni per stratum e 1000 campioni per stratum

Risultati Simulazione

(a) 5k campioni per stratum

(b) 25k campioni per stratum

18/18

Risultati Simulazione

0 1' 1	Varianza trovata		
Componente analizzata	5000 campioni per stratum	25000 campioni per stratum	
Red Channel	0.01904086	0.01885027	
Green Channel	0.01936775	0.01919554	
Blue Channel	0.01930308	0.01911878	
Luminance	0.01754279	0.01737635	

Tabella delle varianze per la resa con 5000 campioni per stratum e 25000 campioni per stratum

