Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 067 188 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 10.01.2001 Bulletin 2001/02

(21) Application number: 99202234.3

.

(51) Int CI.7: **C12N 15/34**, C12N 15/86, C12N 15/10, A61K 48/00, C07K 14/705

(22) Date of filing: 08.07.1999

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: Introgene B.V. 2333 AL Leiden (NL)

(72) Inventors:

Havenga, Menzo
 2401 BV Alphen aan den Rijn (NL)

Vogels, Ronald
 3461 HW Linschoten (NL)

 (74) Representative: Ottevangers, Sietse Ulbe et al Vereenigde, Postbus 87930
 2508 DH Den Haag (NL)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

- (54) Infection with chimaeric adenoviruses of cells negative for the adenovirus serotype 5 Coxsacki adenovirus receptor (CAR)
- (57) The invention relates to the field of molecular genetics and medicine. The invention discloses a method for delivering a nucleic acid of interest to a host cell by means of a gene delivery vehicle based on adenoviral material, whereby said gene delivery vehicle delivers

the nucleic acid to the host cell by associating with a binding site and/or a receptor present on CAR-negative cells, said binding site and/or receptor being a binding site and/or a receptor for adenovirus subgroups D and/or F.

Description

20

45

55

[0001] The invention relates to the field of molecular genetics and medicine. In particular the present invention relates to the field of gene therapy, more in particular to gene therapy using adenoviruses.

[0002] In gene therapy, genetic information is delivered to a host cell in order to either correct (supplement) a genetic deficiency in said cell, or to inhibit an unwanted function in said cell, or to eliminate said host cell. Of course the genetic information can also be intended to provide the host cell with a wanted function, for instance to supply a secreted protein to treat other cells of the host, etc.

[0003] Thus there are basically three different approaches in gene therapy, one directed towards compensating a deficiency present in a (mammalian) host; the second directed towards the removal or elimination of unwanted substances (organisms or cells) and the third towards providing a cell with a wanted function.

[0004] For the purpose of gene therapy, adenoviruses have been proposed as suitable vehicles to deliver genes to the host. Gene-transfer vectors derived from adenoviruses (so-called adenoviral vectors) have a number of features that make them particularly useful for gene transfer. 1) the biology of the adenoviruses is characterised in detail, 2) the adenovirus is not associated with severe human pathology, 3) the virus is extremely efficient in introducing its DNA into the host cell, 4) the virus can infect a wide variety of cells and has a broad host-range, 5) the virus can be produced at high virus titers in large quantities, and 6) the virus can be rendered replication defective by deletion of the early-region 1 (E1) of the viral genome (Brody et al, 1994).

[0005] However, there are still drawbacks associated with the use of adenoviral vectors especially the well investigated serotypes of subgroup C adenoviruses. These serotypes require the presence of the Coxsacki adenovirus receptor (CAR) on cells for successful infection. Although this protein is expressed by many cells and established cell lines, this protein is absent for many other primary cells and cell lines making the latter cells difficult to infect with serotypes 1, 2, 5, and 6.

[0006] The adenovirus genome is a linear double-stranded DNA molecule of approximately 36000 base pairs. The adenovirus DNA contains identical Inverted Terminal Repeats (ITR) of approximately 90-140 base pairs with the exact length depending on the serotype. The viral origins of replication are within the ITRs exactly at the genome ends.

[0007] Most adenoviral vectors currently used in gene therapy have a deletion in the E1 region, where novel genetic information can be introduced. The E1 deletion renders the recombinant virus replication defective (Levrero et al, 1991). It has been demonstrated extensively that recombinant adenovirus, in particular serotype 5 is suitable for efficient transfer of genes *in vivo* to the liver, the airway epithelium and solid tumours in animal models and human xenografts in immunodeficient mice (Bout, 1996; Blaese *et al.*, 1995). Thus, preferred methods for *in vivo* gene transfer into target cells make use of adenoviral vectors as gene delivery vehicles.

[0008] At present, six different subgroups of human adenoviruses have been proposed which in total encompasses 51 distinct adenovirus serotypes. Besides these human adenoviruses an extensive number of animal adenoviruses have been identified (see Ishibashi et al, 1983).

[0009] A serotype is defined on the basis of its immunological distinctiveness as determined by quantitative neutralisation with animal antisera (horse, rabbit). If neutralisation shows a certain degree of cross-reaction between two viruses, distinctiveness of serotype is assumed if A) the hemagglutinins are unrelated, as shown by lack of cross-reaction on hemagglutination-inhibition, or B) substantial biophysical/ biochemical differences in DNA exist (Francki et al, 1991). The nine serotypes identified last (42-51) were isolated for the first time from HIV- infected patients (Hierholzer et al 1988; Schnurr et al 1993; De Jong et al 1998). For reasons not well understood, most of such immuno-compromised patients shed adenoviruses that were rarely or never isolated from immuno-competent individuals (Hierholzer et al 1988, 1992; Khoo et al, 1995, De Jong et al, 1998).

[0010] The adenovirus serotype 5 is most widely used for gene therapy purposes. Similar to serotypes 2, 4 and 7, serotype 5 has a natural affiliation towards lung epithelia and other respiratory tissues. In contrast, it is known that, for instance, serotypes 40 and 41 have a natural affiliation towards the gastrointestinal tract. For a detailed overview of the disease association of the different adenovirus serotypes see table 1. The underlying reason for the different natural affiliations of serotypes towards specific organs can be manifold. Such reasons may include but need not be limited to the observation that serotypes differ in the route of infection or make use of different receptor molecules or internalisation pathways or that a serotype can infect many tissues/organs but it can only replicate in one organ because of the requirement of certain cellular factors for replication. As mentioned before, it is presently unknown which mechanisms are responsible for the observed differences in human disease association.

[0011] One of the problems associated with the development of effective Gene Therapy protocols for the treatment of disease is the limitation of the current vectors to effectively transduce cells *in vivo*. One of the most effective ways to deliver foreign genetic material to cells *in vivo* is through the use of adenovirus vectors. Although, the vector system is very efficient the current adenovirus vector technology has its limitation. Specifically were certain cell types need to be transduced that are normally not very efficiently transduced by Adenovirus 2 or 5. Examples of such relatively resistant cell types include endothelial cells, smooth muscle cells, dendritic cells, neuronal cells, glial cells, synoyical

cells, primary fibroblasts, cells from the amniotic fluid, hemopoietic stem cells, and monocytic/ macrophage cells etc. Thus in one aspect the invention provides a method for delivering a nucleic acid of interest to a host cell by means of a gene delivery vehicle based on adenoviral material, whereby said gene delivery vehicle delivers the nucleic acid to the host cell by associating with a binding site and/or a receptor present on CAR-negative cells, said binding site and/or receptor being a binding site and/or a receptor for adenovirus subgroups D and/or F. The method may advantageously be used to efficiently transduce cells both *in vitro* and *in vivo*.

[0012] The present invention was made during research with chimaeric adenoviruses. Said chimaeric adenoviruses comprising capsids derived from adenovirus 5 of which at least part of the adenovirus 5 fiber protein was replaced by a fiber protein from a different adenovirus serotype. It was observed that chimaeric adenoviruses comprising fiber protein from adenovirus serotypes belonging to subgroup D or subgroup F were capable of efficiently transducing CAR negative target cells.

[0013] Adenovirus 2 and 5 belong to adenovirus subgroup C. Together with the adenoviruses of subgroups A, D-F, the subgroup C adenoviruses were before the present invention thought to attach to cells via the Coxsacki adenovirus receptor (CAR) (Roelvink et al, 1998).

[0014] It has been shown that adenoviruses of subgroup B such as Ad3 bind to a different receptor than CAR (Defer et al, 1990). Likewise, it was demonstrated that receptor specificity could be altered by exchanging the Ad3 with the Ad 5 knob protein, and vice versa (Krasnykh et al, 1996; Stevenson et al, 1995, 1997).

[0015] A host cell may be any host cell as long at it comprises a binding site and/or a receptor present on CAR-negative cells, said binding site and/or receptor being a binding site and/or a receptor for adenovirus subgroups D and/or F. Preferably, said cell is a human cell. Said cell may be a cell present in a culture dish or be part of a whole organism.

[0016] Preferably said CAR-negative cells are hemopoietic cells or amniotic fluid cells or derivatives thereof. Preferably, said CAR-negative hemopoietic cells are K562 cells. Preferably, said CAR-negative amniotic fluid cells are amniotic villi or chorion villi cells or derivatives thereof.

20

30

40

45

[0017] A gene delivery vehicle according to the invention may be any vehicle capable of transferring nucleic acid into cells. Preferably, said gene delivery vehicle is a viral vector particle, more preferably said gene delivery vehicle is an adenoviral vector particle. The word gene in the term gene delivery vehicle does not reflect a situation wherein always an entire gene is delivered by said vehicle. The word gene in this respect merely reflects the presence of a nucleic acid of interest. Said nucleic acid may comprise an entire gene, an artificial sequence, a recombinant nucleic acid, a protein coding domain, a cDNA, a sequence coding for anti-sense RNA, mRNA and/or other kind of nucleic acid. [0018] Suitable adenovirus material may comprise an adenovirus capsid or a functional part, derivative and/or analogue thereof. Said adenovirus subgroup D or subgroup F capsid, or a functional part, derivative and/or analogue thereof. Said adenovirus capsid may also be a chimaeric capsid comprising proteins or parts thereof from at least two different adenovirus serotypes or derivatives and/or analogues thereof. Preferably, at least part of a fiber protein of said chimaeric capsid is derived from an adenovirus of subgroup D and/or subgroup F or a functional derivative and/or analogue thereof. Preferably, capsid proteins other then said part of a fiber protein, are derived from an adenovirus of subgroup C, preferably of adenovirus 5 or adenovirus 2. Suitable derivatives of said adenovirus capsids may, among other, be obtained through so-called silent amino-acid substitution in one or more capsid proteins.

[0019] Preferably, said adenovirus material comprises at least part of an adenovirus fiber protein. Preferably, said adenovirus fiber protein is derived from an adenovirus of subgroup D or subgroup F or a functional part, derivative and/or analogue thereof. Preferably, said part of a fiber protein is a part involved in binding to a receptor and/or a binding site on a target cell. Typically, but not necessarily said part of an adenovirus fiber protein involved in binding to a receptor and/or a binding site on a target cell is a part of the knob. Adenovirus fiber protein comprises at least three functional regions. One region, the base, is responsible for anchoring the fiber to a penton base of the adenovirus capsid. Another region, the knob, is typically associated with receptor recognition whereas the shaft region functions as a spacer separating the base from the knob. Various regions may also have other functions. For instance, the shaft is presumably also involved in target cell specificity. Each of the regions mentioned above may be used to define a part of a fiber. However, regions of a fiber may also be identified in another way. For instance the knob region comprises of a receptor binding region and a shaft binding region. The base region comprises of a penton base binding region and a shaft binding region. Moreover, the shaft comprises of repeated stretches of amino acids. Each of these repeated stretches may be a part.

A receptor and/or binding site binding part of a fiber protein may be a single region of a fiber protein or a functional part thereof, or a combination of regions or parts thereof of at least one fiber protein, wherein said receptor and/or binding site binding part of a fiber protein, either alone or in combination with one or more other proteins of a adenovirus capsid, determines the efficiency with which a gene delivery vehicle can transduce a given cell or cell type, preferably but not necessarily in a positive way. Needless to say that said fiber and/or a capsid may comprise further modifications to adapt the fiber protein and/or the capsid to specific other needs, which a person skilled in the art will be capable of doing.

[0020] A receptor and/or a binding site for adenovirus subgroups D and/or F may be any kind of molecule capable of associating with an adenovirus of subgroup D and/or F. In and/or on the surface of a cell, said receptor and/or binding site must be able to associate with said adenovirus of subgroup D and/or F provided to said cell. Said receptor and/or binding site may be part of a complex present in and/or on said cell. Said receptor and/or binding site does not need to be able to associate with an adenovirus of subgroup D and/or F all the time as long as it is capable of doing so some of the time. Said receptor and/or binding site may further also be a receptor and/or binding site for another virus and/or gene delivery vehicle, although this does not have to be so. A person skilled in the art may want to determine whether an adenovirus serotype belonging to another subgroup than D and/or F can also utilise the receptor and/or binding site for adenovirus subgroups D and/or F.

[0021] In another aspect the invention provides the use of a gene delivery vehicle comprising a nucleic acid of interest and comprising adenoviral material involved in binding to a host cell, said material being from a subgroup D and/or F adenovirus, in delivering said nucleic acid of interest to a CAR-negative cell. With the knowledge of a novel pathway for the transduction of cells using adenovirus material it becomes possible to approach this novel pathway also through other means then said material derived from a subgroup D and/or F. A person skilled in the art recognises this and will be able to devise means to accomplish this for instance through the use of antibodies directed toward a crucial component of said pathway, together with a membrane fusion peptide. Such means and methods are also within the scope of the invention.

10

15

55

[0022] In another aspect the invention provides a gene delivery vehicle being a chimaera based on at least two adenoviruses, whereby a cell recognising element of said gene delivery vehicle is based on adenoviral material from a subgroup D and/or F adenovirus, which material confers the capability of infecting CAR negative cells.

[0023] Preferably, said adenoviral material is based on the fiber, penton and/or hexon proteins of a subgroup D and/or subgroup F adenovirus.

[0024] To date, six different subgroups of human adenoviruses have been proposed which in total encompasses 51 distinct adenovirus serotypes. A serotype is defined on the basis of its immunological distinctiveness as determined by quantitative neutralisation with animal antisera (horse, rabbit). If neutralisation shows a certain degree of cross-reaction between two viruses, distinctiveness of serotype is assumed if A) the hemagglutinins are unrelated, as shown by lack of cross-reaction on hemagglutination-inhibition, or B) substantial biophysical/ biochemical differences in DNA exist (Francki et al, 1991). The nine serotypes identified last (42-51) were isolated for the first time from HIV-infected patients (Hierholzer et al 1988; Schnurr et al 1993;). For reasons not well understood, most of such immune-compromised patients shed adenoviruses that were rarely or never isolated from immune-competent individuals (Hierholzer et al 1988, 1992; Khoo et al, 1995, De Jong et al, 1998). The usefulness of these adenoviruses or cross-immunising adenoviruses to prepare gene delivery vehicles may be seriously hampered, since the individual to which the gene delivery vehicle is provided, will raise a neutralising response to such a vehicle before long.

[0025] There is thus a need in the field of gene therapy to provide gene delivery vehicles, preferably based on adenoviruses, which do not encounter pre-existing immunity and/or which are capable of avoiding or diminishing neutralising antibody responses. Thus preferably, a gene delivery vehicle of the invention further comprises an element from adenovirus 35 or a functional equivalent thereof, responsible for at least partially avoiding an immune response against adenovirus 35. A functional equivalent/homologue of adenovirus 35 (element) for the purpose of the present invention is an adenovirus (element) which, like adenovirus 35, encounters pre-existing immunity in less than about 10% of the hosts, at least in a significant geographic region of the world, to which it is administered for the first time, or which is capable in more than about 90% of the hosts, at least in a significant geographic region of the world, to which it is administered to avoid or diminish the immune response. Typical examples of such adenoviruses are adenovirus serotypes 34, 26 and 48.

[0026] In another embodiment a gene delivery vehicle according to the invention comprises an element of adenovirus 16 or a functional equivalent thereof, which element confers said virus with an enhanced capability to infect smooth muscle cells and/or synoviocytes. A functional equivalent of an element of adenovirus 16 in this respect is an element from another subgroup B virus. Preferably, said element is a tissue tropism determining part of a fiber protein. Typically, a tissue tropism determining part of an adenovirus fiber protein is a part that influences the transduction efficiency of a cell.

[0027] For Gene Therapeutic purposes one typically does not want an adenovirus batch to be administered to a host cell which contains replication competent adenovirus, although this is not always true. In general therefor it is desired to omit a number of genes (but at least one) from the adenoviral genome on the vector encoding the virus and to supply these genes in the genome of the cell in which the vector is brought to produce adenovirus. Such a cell is usually called a packaging cell. The invention thus also provides a packaging cell for producing an adenovirus according to the invention, comprising in trans, all elements necessary for adenovirus production not present on the adenoviral vector according to the invention. Typically vector and packaging cell have to be adapted to one another in that they have all the necessary elements, but that they do not have overlapping elements which lead to replication competent virus by recombination. In a preferred embodiment said packaging cell is, or is derived from PER.C6 (ECCAC deposit number

96022940).

25

30

35

50

[0028] In another embodiment, a gene delivery vehicle according to the invention comprises an adenovirus vector. Said adenovirus vector may be a classical adenovirus vector, a minimal adenovirus vector or an integrating adenovirus such as an Ad/AAV chimaeric vector, a retro-adenovirus or a transposon-adenovirus or yet another different kind of adenovirus vector. With an integrating adenovirus vector for the purpose of the invention is meant a vector comprising nucleic acid derived from an adenovirus and further comprising means for the integration of at least part of the nucleic acid of said vector into the host cell genome. Said means are preferably derived from a nucleic acid with the inherent capacity to integrate into the host cell genome. Such nucleic acid with the inherent capacity to integrate into the host cell genome may derived from a transposon or transposon-like element, a retrovirus and/or an adeno-associated virus or a different virus with the capacity to integrate nucleic acid into the host cell genome.

[0029] In a preferred embodiment said adenovirus vector comprises nucleic acid encoding at least a receptor and/ or binding site determining part of a fiber protein of an adenovirus of subgroup D or subgroup F. In a preferred embodiment the invention provides a method for producing said adenovirus vector, comprising welding together, preferably through homologous recombination, two nucleic acid molecules comprising partially overlapping sequences wherein said overlapping sequences allow essentially only one homologous recombination which leads to the generation of a physically linked nucleic acid comprising at least two functional adenovirus inverted terminal repeats, a functional encapsulation signal and a nucleic acid of interest or functional parts, derivatives and/or analogues thereof. In a preferred embodiment at least one of said at least two nucleic acid molecules comprises nucleic acid encoding at least a receptor and/or binding site determining part of a fiber protein of an adenovirus of subgroup D or subgroup F. An important aspect in this embodiment of the invention is that said partially overlapping sequences allow essentially only homologous recombination leading to the generation of a functional adenovirus vector capable of being replicated and packaged into adenovirus particles in the presence of the required transacting functions. With essentially only one is meant that said overlapping sequences in each nucleic acid comprise essentially only one continuous sequence wherein homologous recombination leading to the generation of a functional adenovirus may occur. Within said continuous sequence the actual number of homologous recombination events may be higher than one. Non continuous overlapping sequences are not desired because they reduce the reliability of said method. Non continuous overlapping sequences are also not desired because they reduce the overall efficiency of said method, presumably due to the generation of undesired homologous recombination products.

[0030] A preferred embodiment of the invention provides a method for generating an adenovirus vector wherein both of said nucleic acid molecules comprise only one adenovirus inverted terminal repeat or a functional part, derivative and/or analogue thereof. In one aspect one or both of said two nucleic acid molecules have undergone modifications prior to said welding together. Said modification may include the welding together of different nucleic acid molecules leading to the generation of one or both of said two nucleic acid molecules. In a preferred embodiment said different nucleic acids are welded together through homologous recombination of partially overlapping sequences. In a further aspect said welding together is performed in a cell or a functional part, derivative and/or analogue thereof. Preferably said cell is a mammalian cell. More preferably, said welding together is performed in a cell expressing E1-region encoded proteins. Preferably said cell is a PER.C6 cell (ECACC deposit number 96022940) or a derivative thereof. In a preferred embodiment said nucleic acid molecules are not capable of replicating in said mammalian cell prior to said welding together. Said replication is undesired since it reduces the reliability of the methods of the invention presumably through providing additional targets for undesired homologous recombination. Said replication is also not desired because it reduces the efficiency of the methods of the invention presumably because said replication competes for substrate or adenovirus transacting functions with the replication of said adenovirus vector.

[0031] In a preferred embodiment, one of said nucleic acid molecules is relatively small and the other is relatively large. This configuration is advantageous because it allows easy manipulation of said relatively small nucleic acid molecule allowing for example the generation of a large number of small nucleic acid molecules comprising different nucleic acid of interest for instance for the generation of an adenovirus vector library. Said configuration is also desired because it allows the production of a large batch of quality tested large nucleic acid molecule. The amplification of large nucleic acid molecules for instance in bacteria is difficult in terms of obtaining sufficient amounts of said large nucleic acid. The amplification of large nucleic acid molecules for instance in bacteria is also difficult to control because a small modification of said large nucleic acid molecules for instance in bacteria is also difficult to control because a small modification of said large nucleic acid is not easily detected. Moreover, for reasons not quite understood some large vectors are more stable in bacteria or yeasts than others. Said configuration however, allows the generation of a standard batch of a large nucleic acid molecule which can be thoroughly tested, for instance through generating a control adenovirus of which the efficiency and the reliability of production is known, and determining said parameters of a new batch of large nucleic acid molecule. Once validated said batch may be used for the generation of a large number of different adenovirus vectors through combining said large molecule with a large number of different small nucleic acid molecules. Said system therefore also allows for the selection and/or manipulation of vectors comprising a large nucleic acid molecule of the invention to allow a suitable yield of intact large nucleic acid.

[0032] In another embodiment said cell comprising nucleic acid encoding E1-region proteins further comprises a

nucleic acid encoding an adenovirus E2-region and/or an adenovirus E4-region protein. Preferably, said cell further comprising nucleic acid encoding an adenovirus E2-region and/or an adenovirus E4-region protein is a derivative of PER.C6.

[0033] In another aspect the invention provides a receptor and/or a binding site for adenoviruses type D and/or F, present on or associated with CAR negative cells. Preferably said receptor and/or a binding site is present on K562 cells, amniotic fluid derived cells and/or primary fibroblast cells.

[0034] In yet another aspect, the invention provides the use of receptor and/or a binding site for adenoviruses type D and/or F, present in and/or on a cell, for the delivery nucleic acid to said cell.

[0035] In yet another embodiment the invention provides the use of a gene delivery vehicle according to anyone of claims 1-14, in a pharmaceutical.

[0036] In another aspect the invention provides a capsid protein derived from a subgroup D and/or a subgroup F adenovirus or a functional part, derivative and/or analogue thereof. Preferably, said protein is a fiber protein. The invention further provides a nucleic acid encoding a capsid protein of the invention. Preferably, said nucleic acid comprises a fiber sequence from a subgroup D and/or a subgroup F as depicted in figure 7.

Detailed description.

15

20

35

[0037] It has been demonstrated in mice that upon *in vivo* systemic delivery of recombinant adenovirus serotype 5 for gene therapy purposes approximately 99% of the virus is trapped in the liver (Herz et al, 1993). Therefore, alteration of the adenovirus serotype 5 host cell range to be able to target other organs *in vivo* is a major interest of the invention. [0038] The initial step for successful infection is binding of adenovirus to its target cell, a process generally thought to be mediated through fiber protein. The fiber protein has a trimeric structure (Stouten et al, 1992) with different lengths depending on the virus serotype (Signas et al 1985; Kidd et all 1993). Different serotypes have polypeptides with structurally similar N and C termini, but different middle stem regions. N-terminally, the first 30 amino acids are involved in anchoring of the fiber to the penton base (Chroboczek et al, 1995), especially the conserved FNPVYP region in the tail (Arnberg et al 1997). The C-terminus, or knob, is generally thought to be responsible for initial interaction with the cellular adenovirus receptor. After this initial binding secondary binding between the capsid penton base and cell-surface integrins is proposed to lead to internalisation of viral particles in coated pits and endocytosis (Morgan et al, 1969; Svensson et al, 1984; Varga et al, 1992; Greber et al, 1993; Wickham et al, 1994).

[0039] Integrins are $\alpha\beta$ -heterodimers of which at least 14 α -subunits and 8 β -subunits have been identified (Hynes et al, 1992). The array of integrins expressed in cells is complex and will vary between cell types and cellular environment. Although the knob contains some conserved regions, between serotypes, knob proteins show a high degree of variability, indicating that different adenovirus receptors might exist. For instance, it has been demonstrated that adenoviruses of subgroup C (Ad2, Ad5) and adenoviruses of subgroup B (Ad3) bind to different receptors (Defner et al, 1990). By using baculovirus produced soluble CAR as well as adenovirus serotype 5 knob protein, Roelvink et all concluded via interference studies that all adenovirus serotypes, except serotypes of subgroup B, enter cells via CAR (Roelvink et al, 1998). The latter, which is now generally accepted in the field, if valid should thus limit the complexity of using different serotypes for gene therapy purposes.

[0040] Besides the involvement in cell binding, the fiber protein also contains the type specific γ -antigen, which together with the ϵ -antigen of the hexon determines the serotype specificity. The γ -antigen is localised on the fiber and it is known that it consists of 17 amino acids (Eiz et al, 1997). The anti-fiber antibodies of the host are therefore directed to the trimeric structure of the knob. To obtain re-directed infection of recombinant adenovirus serotype 5, several approaches have been or still are under investigation. Wickham et al has altered the RGD (Arg, Gly, Asp) motif in the penton base which is believed to be responsible for the $\alpha_v\beta_3$ and $\alpha_v\beta_5$ integrin binding to the penton base. They have replaced this RGD motif by another peptide motif which is specific for the $\alpha_4\beta_1$ receptor. In this way targeting the adenovirus to a specific target cell could be accomplished (Wickham et al, 1995, 1996). Krasnykh et al has made use of the HI loop available in the knob. This loop is, based on X-ray crystallographics, located on the outside of the knob trimeric structure and therefore is thought not to contribute to the intramolecular interactions in the knob (Krasnykh et al, 1998). However, complete CAR independent infection was not observed.

[0041] It is an object of the present invention to provide a method and means by which an adenovirus can infect cells negative for the CAR protein. Therefore, the generation of chimaeric adenoviruses based on adenovirus serotype 5 with a modified fiber gene is described. For this purpose, two or three plasmids, which together contain the complete adenovirus serotype 5 genome, were constructed. From a plasmid the DNA encoding the adenovirus serotype 5 fiber protein was essentially removed and replaced by linker DNA sequences which facilitate easy cloning. This plasmid subsequently served as template for the insertion of DNA encoding for fiber protein derived from different adenovirus serotypes (human or animal). The DNAs derived from the different serotypes were obtained using the polymerase chain reaction technique in combination with (degenerate) oligonucleotides. At the former E1 location in the genome of adenovirus serotype 5, any gene of interest can be cloned. A single transfection procedure of the two or three

plasmids together resulted in the formation of a recombinant chimaeric adenovirus. Although successful introduction of changes in the adenovirus serotype 5 fiber and penton-base have been reported, the complex structure of knob and the limited knowledge of the precise amino acids interacting with CAR render such targeting approaches laborious and difficult. To overcome the limitations described above we used pre-existing adenovirus fibers to maximise the chance of obtaining recombinant adenovirus which can normally assemble in the nucleus of a producer cell and which can be produced on pre-existing packaging cells. By generating a chimaeric adenovirus serotype 5 based fiber library containing fiber proteins of all other human adenovirus serotypes, we have developed a technology which enables rapid screening for a recombinant adenoviral vector with preferred infection characteristics.

[0042] In one aspect this invention describes chimaeric adenoviruses and methods to generate these viruses that have an tropism different from that of adenovirus serotype 5. This chimaeric adenovirus serotype 5 is able to infect cell types which do not express the CAR protein much more efficiently both *in vitro* and *in vivo* than the adenovirus serotype 5. Such cells include but are not limited to endothelial cells, smooth muscle cells, dendritic cells, neuronal cells, glial cells, synovical cells, primary fibroblasts, cells from the amniotic fluid, hemopoietic stem cells, and monocytic/macrophage cells etc.

[0043] In another aspect the invention describes the construction and use of plasmids consisting of distinct parts of adenovirus serotype 5 in which the gene encoding for fiber protein has been replaced with DNA derived from alternative human or animal serotypes. This set of constructs, in total encompassing the complete adenovirus genome, allows for the construction of unique chimaeric adenoviruses customised for transduction of particular cell types or organ(s). [0044] In all aspects of the invention the chimaeric adenoviruses may, or may not, contain deletions in the E1 region and insertions of heterologous genes linked either or not to a promoter. Furthermore, chimaeric adenoviruses may, or may not, contain deletions in the E3 region and insertions of heterologous genes linked to a promoter. Furthermore, chimaeric adenoviruses may, or may not, contain deletions in the E2 and/ or E4 region and insertions of heterologous genes linked to a promoter. In the latter case E2 and/ or E4 complementing cell lines are required to generated recombinant adenoviruses.

Example 1: Generation of adenovirus serotype 5 genomic plasmid clones

[0045] The complete genome of adenovirus serotype 5 has been cloned into various plasmids or cosmids to allow easy modification of parts of the adenovirus serotype 5 genome, while still retaining the capability to produce recombinant virus. For this purpose the following plasmids were generated:

1. pBr/Ad.Bam-rITR (ECACC deposit P97082122)

15

20

25

35

45

55

[0046] In order to facilitate blunt end cloning of the ITR sequences, wild-type human adenovirus type 5 (Ad5) DNA was treated with Klenow enzyme in the presence of excess dNTPs. After inactivation of the Klenow enzyme and purification by phenol/chloroform extraction followed by ethanol precipitation, the DNA was digested with BamHI. This DNA preparation was used without further purification in a ligation reaction with pBr322 derived vector DNA prepared as follows: pBr322 DNA was digested with EcoRV and BamHI, dephosphorylated by treatment with TSAP enzyme (Life Technologies) and purified on LMP agarose gel (SeaPlaque GTG). After transformation into competent *E.coli* DH5a (Life Techn.) and analysis of ampicilline resistant colonies, one clone was selected that showed a digestion pattern as expected for an insert extending from the BamHI site in Ad5 to the right ITR.

Sequence analysis of the cloning border at the right ITR revealed that the most 3' G residue of the ITR was missing, the remainder of the ITR was found to be correct. Said missing G residue is complemented by the other ITR during replication.

2. pBr/Ad.Sal-rITR (ECACC deposit P97082119)

[0047] pBr/Ad.Bam-rITR was digested with BamHI and Sall. The vector fragment including the adenovirus insert was isolated in LMP agarose (SeaPlaque GTG) and ligated to a 4.8 kb Sall-BamHI fragment obtained from wt Ad5 DNA and purified with the Geneclean II kit (Bio 101, Inc.). One clone was chosen and the integrity of the Ad5 sequences was determined by restriction enzyme analysis. Clone pBr/Ad.Sal-rITR contains adeno type 5 sequences from the Sall site at bp 16746 up to and including the rITR (missing the most 3' G residue).

3. pBr/Ad.Cla-Bam (ECACC deposit P97082117)

[0048] wt Adeno type 5 DNA was digested with Clal and BamHI, and the 20.6 kb fragment was isolated from gel by electro-elution. pBr322 was digested with the same enzymes and purified from agarose gel by Geneclean. Both fragments were ligated and transformed into competent DH5a. The resulting clone pBr/Ad.Cla-Bam was analysed by re-

striction enzyme digestion and shown to contain an insert with adenovirus sequences from bp 919 to 21566.

4. pBr/Ad.AfIII-Bam (ECACC deposit P97082114)

15

30

45

55

[0049] Clone pBr/Ad.Cla-Bam was linearised with EcoRI (in pBr322) and partially digested with AfIII. After heat inactivation of AfIII for 20' at 65°C the fragment ends were filled in with Klenow enzyme. The DNA was then ligated to a blunt double stranded oligo linker containing a PacI site (5'-AATTGTCTTAATTAACCGCTTAA-3'). This linker was made by annealing the following two oligonucleotides: 5'-AATTGTCTTAATTAACCGC-3' and 5'-AATTGCGGTTAATTAAGAC-3', followed by blunting with Klenow enzyme. After precipitation of the ligated DNA to change buffer, the ligations were digested with an excess PacI enzyme to remove concatameres of the oligo. The 22016 bp partial fragment containing Ad5 sequences from bp 3534 up to 21566 and the vector sequences, was isolated in LMP agarose (SeaPlaque GTG), religated and transformed into competent DH5a. One clone that was found to contain the PacI site and that had retained the large adeno fragment was selected and sequenced at the 5' end to verify correct insertion of the PacI linker in the (lost) AfIII site.

5. pBr/Ad.Bam-rITRpac#2 (ECACC deposit P97082120) and pBr/Ad.Sam-rITR#8 (ECACC deposit P97082121)

[0050] To allow insertion of a PacI site near the ITR of Ad5 in clone pBr/Ad.Bam-rITR about 190 nucleotides were removed between the Clal site in the pBr322 backbone and the start of the ITR sequences. This was done as follows: pBr/Ad.Bam-rITR was digested with Clal and treated with nuclease Bal31 for varying lengths of time (2', 5', 10' and 15'). The extent of nucleotide removal was followed by separate reactions on pBr322 DNA (also digested at the Clal site), using identical buffers and conditions. Bal31 enzyme was inactivated by incubation at 75°C for 10 minutes, the DNA was precipitated and resuspended in a smaller volume of TE buffer. To ensure blunt ends, DNAs were further treated with T4 DNA polymerase in the presence of excess dNTPs. After digestion of the (control) pBr322 DNA with SalI, satisfactory degradation (~150 bp) was observed in the samples treated for 10' or 15'. The 10' or 15' treated pBr/Ad.Bam-rITR samples were then ligated to the above described blunted PacI linkers (See pBr/Ad.AfIII-Bam). Ligations were purified by precipitation, digested with excess PacI and separated from the linkers on an LMP agarose gel. After religation, DNAs were transformed into competent DH5a and colonies analysed. Ten clones were selected that showed a deletion of approximately the desired length and these were further analysed by T-track sequencing (T7 sequencing kit, Pharmacia Biotech). Two clones were found with the PacI linker inserted just downstream of the rITR. After digestion with PacI, clone #2 has 28 bp and clone #8 has 27 bp attached to the ITR.

pWE/Ad.Afill-rITR (ECACC deposit P97082116)

[0051] Cosmid vector pWE15 (Clontech) was used to clone larger Ad5 inserts. First, a linker containing a unique PacI site was inserted in the EcoRI sites of pWE15 creating pWE.pac. To this end, the double stranded PacI oligo as described for pBr/Ad.AfIII-BamHI was used but now with its EcoRI protruding ends. The following fragments were then isolated by electro-elution from agarose gel: pWE.pac digested with PacI, pBr/AfIII-Bam digested with PacI and BamHI and pBr/Ad.Bam-rITR#2 digested with BamHI and PacI. These fragments were ligated together and packaged using 1 phage packaging extracts (Stratagene) according to the manufacturers protocol. After infection into host bacteria, colonies were grown on plates and analysed for presence of the complete insert. pWE/Ad.AfIII-rITR contains all adenovirus type 5 sequences from bp 3534 (AfIII site) up to and including the right ITR (missing the most 3' G residue).

pBr/Ad.IITR-Sal(9.4) (ECACC deposit P97082115)

[0052] Adeno 5 wt DNA was treated with Klenow enzyme in the presence of excess dNTPs and subsequently digested with Sall. Two of the resulting fragments, designated left ITR-Sal(9.4) and Sal(16.7)-right ITR, respectively, were isolated in LMP agarose (Seaplaque GTG). pBr322 DNA was digested with EcoRV and Sall and treated with phosphatase (Life Technologies). The vector fragment was isolated using the Geneclean method (BIO 101, Inc.) and ligated to the Ad5 Sall fragments. Only the ligation with the 9.4 kb fragment gave colonies with an insert. After analysis and sequencing of the cloning border a clone was chosen that contained the full ITR sequence and extended to the Sall site at bp 9462.

pBr/Ad.IITR-Sal(16.7) (ECACC deposit P97082118)

[0053] pBr/Ad.IITR-Sal(9.4) is digested with Sall and dephosphorylated (TSAP, Life Technologies). To extend this clone up to the third Sall site in Ad5, pBr/Ad.Cla-Bam was linearised with BamHI and partially digested with Sall. A 7.3 kb Sall fragment containing adenovirus sequences from 9462-16746 was isolated in LMP agarose gel and ligated to

the Sall-digested pBr/Ad.IITR-Sal (9.4) vector fragment.

pWE/Ad.AfIII-EcoRI

30

40

45

55

[0054] pWE.pac was digested with Clal and 5' protruding ends were filled using Klenow enzyme. The DNA was then digested with PacI and isolated from agarose gel. pWE/AfIII-rITR was digested with EcoRI and after treatment with Klenow enzyme digested with PacI. The large 24 kb fragment containing the adenoviral sequences was isolated from agarose gel and ligated to the Clal-digested and blunted pWE.pac vector using the Ligation Express™ kit from Clontech. After transformation of Ultracompetent XL10-Gold cells from Stratagene, clones were identified that contained the expected insert. pWE/AfIII-EcoRI contains Ad5 sequences from bp 3534-27336.

Construction of new adapter plasmids

[0055] The absence of sequence overlap between the recombinant adenovirus and E1 sequences in the packaging cell line is essential for safe, RCA-free generation and propagation of new recombinant viruses. The adapter plasmid pMLPI.TK (figure. 1) is an example of an adapter plasmid designed for use according to the invention in combination with the improved packaging cell lines of the invention. This plasmid was used as the starting material to make a new vector in which nucleic acid molecules comprising specific promoter and gene sequences can be easily exchanged. [0056] First, a PCR fragment was generated from pZipΔMo+PyF101(N-) template DNA (described in PCT/ NL96/00195) with the following primers: LTR-1: 5'-CTG TAC GTA CCA GTG CAC TGG CCT AGG CAT GGA AAA ATA CAT AAC TG-3' and LTR-2: 5'-GCG GAT CCT TCG AAC CAT GGT AAG CTT GGT ACC GCT AGC GTT AAC CGG GCG ACT CAG TCA ATC G-3'. Pwo DNA polymerase (Boehringer Mannheim) was used according to manufacturers protocol with the following temperature cycles: once 5' at 95°C; 3' at 55°C; and 1' at 72°C, and 30 cycles of 1' at 95°C, 1' at 60°C, 1' at 72°C, followed by once 10' at 72°C. The PCR product was then digested with BamHI and ligated into pMLP10 (Levrero et al., 1991) vector digested with Pvull and BamHI, thereby generating vector pLTR10. This vector contains adenoviral sequences from bp 1 up to bp 454 followed by a promoter consisting of a part of the Mo-MuLV LTR having its wild-type enhancer sequences replaced by the enhancer from a mutant polyoma virus (PyF101). The promoter fragment was designated L420. Next, the coding region of the murine HSA gene was inserted. pLTR10 was digested with BstBI followed by Klenow treatment and digestion with Ncol. The HSA gene was obtained by PCR amplification on pUC18-HSA (Kay et al., 1990) using the following primers: HSA1, 5'-GCG CCA CCA TGG GCA GAG CGA TGG TGG C-3' and HSA2, 5'-GTT AGA TCT AAG CTT GTC GAC ATC GAT CTA CTA ACA GTA GAG ATG TAG AA-3'. The 269 bp amplified fragment was subcloned in a shuttle vector using the Ncol and Bglll sites. Sequencing confirmed incorporation of the correct coding sequence of the HSA gene, but with an extra TAG insertion directly following the TAG stop codon. The coding region of the HSA gene, including the TAG duplication was then excised as a Ncol (sticky)-Sall (blunt) fragment and cloned into the 3.5 kb Ncol(sticky)/BstBl(blunt) fragment from pLTR10, resulting in pLTR-HSA10.

Finally, pLTR-HSA10 was digested with EcoRI and BamHI after which the fragment containing the left ITR, packaging signal, L420 promoter and HSA gene was inserted into vector pMLPI.TK digested with the same enzymes and thereby replacing the promoter and gene sequences. This resulted in the new adapter plasmid pAd/L420-HSA (figure. 2) that contains convenient recognition sites for various restriction enzymes around the promoter and gene sequences. SnaBI and AvrII can be combined with HpaI, NheI, KpnI, HindIII to exchange promoter sequences, while the latter sites can be combined with the ClaI or BamHI sites 3' from HSA coding region to replace genes in this construct.

Another adapter plasmid that was designed to allow easy exchange of nucleic acid molecules was made by replacing the promoter, gene and poly A sequences in pAd/L420-HSA with the CMV promoter, a multiple cloning site, an intron and a poly-A signal. For this purpose, pAd/L420-HSA was digested with AvrII and BgIII followed by treatment with Klenow to obtain blunt ends. The 5.1 kb fragment with pBr322 vector and adenoviral sequences was isolated and ligated to a blunt 1570 bp fragment from pcDNA1/amp (Invitrogen) obtained by digestion with Hhal and AvrII followed by treatment with T4 DNA polymerase. This adapter plasmid was named pCLIP (figure. 3).

Generation of recombinant adenoviruses

[0057] To generate E1 deleted recombinant adenoviruses with the new plasmid-based system, the following constructs are prepared:

- a) An adapter construct containing the expression cassette with the gene of interest linearised with a restriction enzyme that cuts at the 3' side of the overlapping adenoviral genome fragment, preferably not containing any pBr322 vector sequences, and
- b) A complementing adenoviral genome construct pWE/Ad.AfIII-rITR digested with Pacl.

These two DNA molecules are further purified by phenol/ chloroform extraction and EtOH precipitation. Co-transfection of these plasmids into an adenovirus packaging cell line, preferably a cell line according to the invention, generates recombinant replication deficient adenoviruses by a one-step homologous recombination between the adapter and the complementing construct (figure. 4).

Alternatively, in stead of pWE/Ad.AfIII-rITR other fragments can be used, e.g., pBr/Ad.Cla-Bam digested with EcoRI and BamHI or pBr/Ad.AfIII-BamHI digested with PacI and BamHI can be combined with pBr/Ad.Sal-rITR digested with Sall. In this case, three plasmids are combined and two homologous recombinations are needed to obtain a recombinant adenovirus (figure. 5). It is to be understood that those skilled in the art may use other combinations of adapter and complementing plasmids without departing from the present invention. A general protocol as outlined below and meant as a nonlimiting example of the present invention has been performed to produce several recombinant adenoviruses using various adapter plasmids and the Ad.AfIII-rITR fragment. Adenovirus packaging cells (PER.C6) were seeded in ~25 cm2 flasks and the next day when they were at ~80% confluency, transfected with a mixture of DNA and lipofectamine agent (Life Techn.) as described by the manufacturer. Routinely, 40 μl lipofectamine, 4 μg adapter plasmid and 4 µg of the complementing adenovirus genome fragment Afill- rITR (or 2 µg of all three plasmids for the double homologous recombination) are used. Under these conditions transient transfection efficiencies of ~50% (48 hrs post transfection) are obtained as determined with control transfections using a pAd/CMV-LacZ adapter. Two days later, cells are passaged to ~ 80 cm² flasks and further cultured. Approximately five (for the single homologous recombination) to eleven days (for the double homologous recombination) later a cytopathogenic effect (CPE) is seen, indicating that functional adenovirus has formed. Cells and medium are harvested upon full CPE and recombinant virus is released by freeze-thawing. An extra amplification step in an 80 cm² flask is routinely performed to increase the yield since at the initial stage the titers are found to be variable despite the occurrence of full CPE. After amplification, viruses are harvested and plaque purified on PER.C6 cells. Individual plaques are tested for viruses with active transgenes.

[0058] Besides replacements in the E1 region it is possible to delete or replace (part of) the E3 region in the adenovirus because E3 functions are not necessary for the replication, packaging and infection of the (recombinant) virus. This creates the opportunity to use a larger insert or to insert more than one gene without exceeding the maximum package size (approximately 105% of wt genome length). This can be done, e.g., by deleting part of the E3 region in the pBr/Ad.Bam-rITR clone by digestion with Xbal and religation. This removes Ad5 wt sequences 28592-30470 including all known E3 coding regions. Another example is the precise replacement of the coding region of gpl9K in the E3 region with a polylinker allowing insertion of new sequences. This, 1) leaves all other coding regions intact and 2) obviates the need for a heterologous promoter since the transgene is driven by the E3 promoter and pA sequences, leaving more space for coding sequences.

To this end, the 2.7 kb EcoRI fragment from wt Ad5 containing the 5' part of the E3 region was cloned into the EcoRI site of pBluescript (KS-) (Stratagene). Next, the HindIII site in the polylinker was removed by digestion with EcoRV and HincII and subsequent religation. The resulting clone pBS.Eco-Eco/ad5DHIII was used to delete the gp19K coding region. Primers 1 (5'-GGG TAT TAG GCC AA AGG CGC A-3') and 2 (5'-GAT CCC ATG GAA GCT TGG GTG GCG ACC CCA GCG-3') were used to amplify a sequence from pBS.Eco-Eco/Ad5DHIII corresponding to sequences 28511 to 28734 in wt Ad5 DNA. Primers 3 (5'-GAT CCC ATG GGG ATC CTT TAC TAA GTT ACA AAG CTA-3') and 4 (5'-GTC GCT GTA GTT GGA CTG G-3') were used on the same DNA to amplify Ad5 sequences from 29217 to 29476. The two resulting PCR fragments were ligated together by virtue of the new introduced Ncol site and subsequently digested with Xbal and Munl. This fragment was then ligated into the pBS.Eco-Eco/ad5 ΔHIII vector that was digested with Xbal (partially) and MunI generating pBS.Eco-Eco/ad5∆HIII.∆gp19K. To allow insertion of foreign genes into the HindIII and BamHI site, an Xbal deletion was made in pBS.Eco-Eco/ad5∆HIII.∆gp19K to remove the BamHI site in the Bluescript polylinker. The resulting plasmid pBS.Eco-Eco/ad5ΔHIIIΔgp19KΔXbal, contains unique HindIII and BamHI sites corresponding to sequences 28733 (HindIII) and 29218 (BamHI) in Ad5. After introduction of a foreign gene into these sites, either the deleted Xbal fragment is re-introduced, or the insert is recloned into pBS.Eco-Eco/ad5ΔHII.Δgp19K using HindIII and for example MunI. Using this procedure, we have generated plasmids expressing HSV-TK, hIL-1a, rat IL-3, luciferase or LacZ. The unique Srfl and NotI sites in the pBS.Eco-Eco/ad5∆HIII.∆gp19K plasmid (with or without inserted gene of interest) are used to transfer the region comprising the gene of interest into the corresponding region of pBr/Ad.Bam-rITR, yielding construct pBr/Ad.Bam-rITR∆gp19K (with or without inserted gene of interest). This construct is used as described supra to produce recombinant adenoviruses. In the viral context, expression of inserted genes is driven by the adenovirus E3 promoter.

[0059] Recombinant viruses that are both E1 and E3 deleted are generated by a double homologous recombination procedure as described above for E1-replacement vectors using a plasmid-based system consisting of:

- a) an adapter plasmid for E1 replacement according to the invention, with or without insertion of a first gene of interest.
- b) the pWE/Ad.AfIII-EcoRI fragment, and

10

25

30

35

45

55

c) the pBr/Ad.Bam-rITRAgp19K plasmid with or without insertion of a second gene of interest.

In addition to manipulations in the E3 region, changes of (parts of) the E4 region can be accomplished easily in pBr/Ad.Bam-rITR. Generation and propagation of such a virus, however, in some cases demands complementation in trans.

Example 2: Generation of adenovirus serotype 5 based viruses with chimaeric fiber proteins

[0060] The method described *infra* to generate recombinant adenoviruses by co-transfection of two, or more separate cloned adenovirus sequences. One of these cloned adenovirus sequences was modified such that the adenovirus serotype 5 fiber DNA was deleted and substituted for unique restriction sites thereby generating itemplate clonesi which allow for the easy introduction of DNA sequences encoding for fiber protein derived from other adenovirus serotypes.

Generation of adenovirus template clones lacking DNA encoding for fiber

5

15

20

35

40

45

[0061] The fiber coding sequence of adenovirus serotype 5 is located between nucleotides 31042 and 32787. To remove the adenovirus serotype 5 DNA encoding fiber we started with construct pBr/Ad.Bam-rITR. First a Ndel site was removed from this construct. For this purpose, pBr322 plasmid DNA was digested with Ndel after which protruding ends were filled using Klenow enzyme. This pBr322 plasmid was then re-ligated, digested with Ndel and transformed into *E.coli* DH5α. The obtained pBr/ΔNdel plasmid was digested with Scal and Sall and the resulting 3198 bp vector fragment was ligated to the 15349 bp Scal-Sall fragment derived from pBr/Ad.BamrlTR, resulting in plasmid pBr/Ad.Bam-rITRΔNdel which hence contained a unique Ndel site. Next a PCR was performed with oligonucleotides NY-up: 5'- CGA CAT ATG TAG ATG CAT TAG TTT GTG TTA TGT TTC AAC GTG-3'

And NY-down:5'-GGA GAC CAC TGC CAT GTT-3'(figure 6). During amplification, both a Ndel (bold face) and a Nsil restriction site (underlined) were introduced to facilitate cloning of the amplified fiber DNAs. Amplification consisted of 25 cycles of each 45 sec. at 94°C, 1 min. at 60°C, and 45 sec. at 72°C. The PCR reaction contained 25 pmol of oligonucleotides NY-up or NY-down, 2mM dNTP, PCR buffer with 1.5 mM MgCl₂, and 1 unit of Elongase heat stable polymerase (Gibco, The Netherlands). One-tenth of the PCR product was run on an agarose gel which demonstrated that the expected DNA fragment of ± 2200 bp was amplified. This PCR fragment was subsequently purified using Geneclean kit system (Bio101 Inc.). Then, both the construct pBr/Ad.Bam-rITRANdel as well as the PCR product were digested with restriction enzymes Ndel and Sbfl. The PCR fragment was subsequently cloned using T4 ligase enzyme into the NdeI and SbfI digested pBr/Ad.Bam-rITR∆NdeI, generating pBr/Ad.BamR∆Fib. This plasmid allows insertion of any PCR amplified fiber sequence through the unique Ndel and Nsil sites that are inserted in place of the removed fiber sequence. Viruses can be generated by a double homologous recombination in packaging cells described infra using an adapter plasmid, construct pBr/Ad.AfIII-EcoRI digested with PacI and EcoRI and a pBr/Ad.BamR∆Fib construct in which heterologous fiber sequences have been inserted. To increase the efficiency of virus generation, the construct pBr/Ad.BamR∆Fib was modified to generate a PacI site flanking the right ITR. Hereto, pBr/Ad.BamR∆Fib was digested with AvrII and the 5 kb adeno fragment was isolated and introduced into the vector pBr/Ad.Bam-rITR. pac#8 replacing the corresponding AvrII fragment. The resulting construct was named pBr/Ad.BamR∆Fib.pac. Once a heterologous fiber sequence is introduced in pBr/Ad.BamR∆Fib.pac, the fiber modified right hand adenovirus clone may be introduced into a large cosmid clone as described for pWE/Ad.AfIII-rITR in example 1. Such a large cosmid clone allows generation of adenovirus by only one homologous recombination making the process extremely efficient.

Amplification of fiber sequences from adenovirus serotypes

[0062] To enable amplification of the DNAs encoding fiber protein derived from alternative serotypes degenerate oligonucleotides were synthesised. For this purpose, first known DNA sequences encoding for fiber protein of alternative serotypes were aligned to identify conserved regions in both the tail-region as well as the knob-region of the fiber protein. From the alignment, which contained the nucleotide sequence of 19 different serotypes representing all 6 subgroups, (degenerate) oligonucleotides were synthesised (see table 2). Also shown in table 3 is the combination of oligonucleotides used to amplify the DNA encoding fiber protein of a specific serotype. The amplification reaction (50 µl) contained 2 mM dNTPs, 25 pmol of each oligonucleotide, standard 1x PCR buffer, 1,5 mM MgCl₂, and 1 Unit Pwo heat stable polymerase (Boehringer) per reaction. The cycler program contained 20 cycles, each consisting of 30 sec. 94°C, 60 sec. 60-64°C, and 120 sec. At 72°C. One-tenth of the PCR product was run on an agarose gel which demonstrated that a DNA fragment was amplified. Of each different template, two independent PCR reactions were performed after which the independent PCR fragments obtained were sequenced to determine the nucleotide sequence. From 11 different serotypes, the nucleotide sequence could be compared to sequences present in Genbank. Of all other serotypes, the DNA encoding fiber protein was previously unknown and was therefore aligned with known se-

quences from other subgroup members to determine homology i.e. sequence divergence. Of the 51 human serotypes known to date, all fiber sequences, except for serotypes 1, 6, and 26, have been amplified and sequenced. The protein sequences of the fiber from different adenovirus serotypes is given in figure 7.

Generation of fiber chimaeric adenoviral DNA constructs

10

15

20

25

35

55

[0063] All amplified fiber DNAs as well as the vector (pBr/Ad.BamRΔ Fib) were digested with Ndel and Nsil. The digested DNAs was subsequently run on a agarose gel after which the fragments were isolated from the gel and purified using the Geneclean kit (Bio101 Inc). The PCR fragments were then cloned into the Ndel and Nsil sites of pBr/Ad-BamRAFib, thus generating pBr/AdBamRFibXX (where XX stands for the serotype number of which the fiber DNA was isolated). So far the fiber sequence of serotypes 5/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 16/ 17/ 19/ 21/ 24/ 27/ 28/ 29/ 30/ 32/ 33/ 34/ 35/ 36/ 37/ 38/ 40-S/ 40-L/ 41-S/ 42/45/ 47/ 49/ 51 have been cloned into pBr/AdBamRFibXX. From pBr/AdBamRFibXX (where XX is 5/ 8/ 9/ 10/ 11/ 13/ 16/ 17/ 24/ 27/ 30/ 32/ 33/ 34/ 35/ 38/ 40-S/ 40-L/ 45/ 47/ 49/ 51) an 6 kb AvrII fragment encompassing the fiber sequence was isolated via gelelectrophoresis and Geneclean. This AvrII fragment was subsequently cloned in plasmid pBr/Ad.Bam-rITR.pac (see example 1) which was digested to completion with AvrII and dephosphorylated as described previously, leading to the generation of the plasmid pBr/Ad.Bam-rITR.pac.fibXX. This plasmid was subsequently used to generate a cosmid clone with a modified fiber using the constructs pWE.pac, pBr/AfIII-Bam and pBr/Ad.Bam-rITR.pac.fibXX. This cosmid cloning resulted in the formation of construct pWE/Ad.AfIII-rITR/FibXX (where XX stands for the serotype number of which the fiber DNA was isolated).

Generation of pAd5/L420.HSA, pAd5/Clip and pAd5/Clipsal

[0064] pMLPI.TK was used to make a new vector in which nucleic acid molecules comprising specific promoter and gene sequences can be easily exchanged.

First, a PCR fragment was generated from pZip∆Mo+PyF101(N-) template DNA (described in PCT/NL96/00195) with the following primers: LTR-1: 5'-CTG TAC GTA CCA GTG CAC TGG CCT AGG CAT GGA AAA ATA CAT AAC TG-3' and LTR-2: 5'-GCG GAT CCT TCG AAC CAT GGT AAG CTT GGT ACC GCT AGC GTT AAC CGG GCG ACT CAG TCA ATC G-3'. Pwo DNA polymerase (Boehringer Mannheim) was used according to manufacturers protocol with the following temperature cycles: once 5' at 95°C; 3' at 55°C; and 1' at 72°C, and 30 cycles of 1' at 95°C, 1' at 60°C, 1' at 72°C, followed by once 10' at 72°C. The PCR product was then digested with BamHl and ligated into pMLP10 (Levrero et al., 1991; Gene 101, 195-202) digested with Pvull and BamHI, thereby generating vector pLTR10. This vector contains adenoviral sequences from bp 1 up to bp 454 followed by a promoter consisting of a part of the Mo-MuLV LTR having its wild-type enhancer sequences replaced by the enhancer from a mutant polyoma virus (PyF101). The promoter fragment was designated L420. Sequencing confirmed correct amplification of the LTR fragment however the most 5' bases in the PCR fragment were missing so that the Pvull site was not restored. Next, the coding region of the murine HSA gene was inserted. pLTR10 was digested with BstBI followed by Klenow treatment and digestion with Ncol. The HSA gene was obtained by PCR amplification on pUC18-HSA (Kay et al., 1990; J. Immunol. 145, 1952-1959) using the following primers: HSA1, 5'-GCG CCA CCA TGG GCA GAG CGA TGG TGG C-3' and HSA2, 5'-GTT AGA TCT AAG CTT GTC GAC ATC GAT CTA ACA GTA GAG ATG TAG AA-3'. The 269 bp amplified fragment was subcloned in a shuttle vector using the Ncol and BgIII sites. Sequencing confirmed incorporation of the correct coding sequence of the HSA gene, but with an extra TAG insertion directly following the TAG stop codon. The coding region of the HSA gene, including the TAG duplication was then excised as a Ncol(sticky)-Sall(blunt) fragment and cloned into the 3.5 kb Ncol(sticky)/BstBI(blunt) fragment from pLTR10, resulting in pLTR-HSA10.

Finally, pLTR-HSA10 was digested with EcoRI and BamHI after which the fragment containing the left ITR, packaging signal, L420 promoter and HSA gene was inserted into vector pMLPI.TK digested with the same enzymes and thereby replacing the promoter and gene sequences. This resulted in the new adapter plasmid pAd5/L420-HSA that contains convenient recognition sites for various restriction enzymes around the promoter and gene sequences. SnaBI and AvrII can be combined with HpaI, NheI, KpnI, HindIII to exchange promoter sequences, while the latter sites can be combined with the Clal or BamHI sites 3' from HSA coding region to replace genes in this construct.

[0065] Another adapter plasmid that was designed to allow easy exchange of nucleic acid molecules was made by replacing the promoter, gene and polyA sequences in pAd5/L420-HSA with the CMV promoter, a multiple cloning site, an intron and a polyA signal. For this purpose, pAd5/L420-HSA was digested with AvrII and BgIII followed by treatment with Klenow to obtain blunt ends. The 5.1 kb fragment with pBr322 vector and adenoviral sequences was isolated and ligated to a blunt 1570 bp fragment from pcDNA1/amp (Invitrogen) obtained by digestion with Hhal and AvrII followed by treatment with T4 DNA polymerase. This adapter plasmid was named pAd5/Clip. To enable removal of vector sequences from the adenoviral fragment pAd5/Clip was partially digested with EcoRI and the linear fragment was isolated. An oligo of the sequence 5' TTAAGTCGAC-3' was annealed to itself resulting in a linker with a SaII site and EcoRI overhang. The linker was ligated to the partially digested pAd5/Clip vector and clones were selected that had the linker

inserted in the EcoRI site 23 bp upstream of the left adenovirus ITR in pAd5/Clip resulting in pAd5/Clipsal.

Generation of pAd5ClipLacZ, PAd5Clip.Luc, pAd5Clip.TK and pAd5Clipsal.Luc

[0066] The adapter plasmid pAd5/Clip.LacZ was generated as follows: The E.coli LacZ gene was amplified from the plasmid pMLP.nlsLacZ (EP 95-202 213) by PCR with the primers 5'GGGTGGCCAGGGTACCTCTAGGCTTTTGCAA and

5'GGGGGGATCCATAAACAAGTTCAGAATCC. The PCR reaction was performed Ex Taq (Takara) according to the suppliers protocol at the following amplification program: 5 minutes 94°C, 1 cycle; 45 seconds 94°C and 30 seconds 60°C and 2 minutes 72°C, 5 cycles; 45 seconds 94°C and 30 seconds 65°C and 2 minutes 72°C, 25 cycles; 10 minutes 72; 45 seconds 94°C and 30 seconds 60°C and 2 minutes 72°C, 5 cycles, I cycle. The PCR product was subsequently digested with Kpnl and BamHl and the digested DNA fragment was ligated into Kpnl/BamHl digested pcDNA3 (Invitrogen), giving rise to pcDNA3.nlsLacZ. Next, the plasmid pAd5/Clip was digested with Spel. The large fragment containing part of the 5' part CMV promoter and the adenoviral sequences was isolated. The plasmid pcDNA3.nlsLacZ was digested with Spel and the fragment containing the 3'part of the CMV promoter and the lacZ gene was isolated. Subsequently, the fragments were ligated, giving rise to pAd/Clip.LacZ. The reconstitution of the CMV promoter was confirmed by restriction digestion.

[0067] The adapter plasmid pAd5/Clip.Luc was generated as follows: The plasmid pCMV.Luc (EP 95-202 213) was digested with HindIII and BamHI. The DNA fragment containing the luciferase gene was isolated. The adapter plasmid pAd5/Clip was digested with HindIII and BamHI, and the large fragment was isolated. Next, the isolated DNA fragments were ligated, giving rise to pAd5/Clip.Luc. The adapter pClipsal.Luc was generated in the same way but using the adapter pClipsal digested with HIII and BamHI as vector fragment. Likewise, the TK containing HIII-BamHI fragment from pCMV.TK (EP 95-202 213) was inserted in pClipsal to generate pAd5/Clip.TK. The presence of the Sall site just upstream of the left ITR enables liberation of vector sequences from the adeno insert. Removal of these vector sequences enhances frequency of vector generation during homologous recombination in PER.C6.

Generation of recombinant adenovirus chimaeric for fiber protein

15

25

35

40

45

[0068] To generate recombinant Ad 5 virus carrying the fiber of serotype 12, 16, 28, 40-L, 51, and 5, three constructs, pCLIP.Luc, pWE/AdAfill-Eco and pBr/AdBamriTR.pac/fibXX (XX = 12, 16, 28, 40-L, 51, and 5) were transfected into adenovirus producer cells. To generate recombinant Ad 5 virus carrying the fiber of 5/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 16/ 17/ 19/ 21/ 24/ 27/ 28/ 29/ 30/ 32/ 33/ 34/ 35/ 36/ 37/ 38/ 40-S/ 40-L/ 41-S/ 42/45/ 47/ 49/ 51, two constructs pCLIP. Luc and pWE/Ad.Afill-rITR/FibXX were transfected into adenovirus producer cells.

For transfection, 2 μ g of pCLIP.Luc, and 4 μ g of both pWE/AdAfill-Eco and pBr/AdBamrITR.pac/fibXX (or in case of cosmids: 4 μ g of pCLIP.Luc plus 4 μ g of pWE/Ad.Afill-rITR/FibXX) were diluted in serum free DMEM to 100 μ l total volume. To this DNA suspension 100 μ l 1x diluted lipofectamine (Gibco) was added. After 30 minutes at room temperature the DNA-lipofectamine complex solution was added to 2.5 ml of serum-free DMEM which was subsequently added to a T25 cm² tissue culture flask. This flask contained 2x106 PER.C6 cells that were seeded 24-hours prior to transfection. Two hours later, the DNA-lipofectamine complex containing medium was diluted once by the addition of 2.5 ml DMEM supplemented with 20% foetal calf serum. Again 24 hours later the medium was replaced by fresh DMEM supplemented with 10% foetal calf serum. Cells were cultured for 6-8 days, subsequently harvested, and freeze/thawed 3 times. Cellular debris was removed by centrifugation for 5 minutes at 3000 rpm room temperature. Of the supernatant (12.5 ml) 3-5 ml was used to infect again infect PER.C6 cells (T80 cm² tissue culture flasks). This re-infection results in full cytopathogenic effect (CPE) after 5-6 days after which the adenovirus is harvested as described above.

Example 3: Production, purification, and titration of fiber chimaeric adenoviruses

[0069] Of the supernatant obtained from transfected PER.C6 cells typically 10 ml was used to inoculate a 1 litre fermentor which contained 1 - 1.5 x 10⁶ cells/ ml PER.C6 that were specifically adapted to grow in suspension. Three days after inoculation, the cells were harvested and pelleted by centrifuging for 10 min at 1750 rpm at room temperature. The chimaeric adenoviruses present in the pelleted cells were subsequently extracted and purified using the following downstream processing protocol. The pellet was dissolved in 50 ml 10 mM NaPO₄⁻ and frozen at -20°C. After thawing at 37°C, 5.6 ml deoxycholate (5% w/v) was added after which the solution was homogenated. The solution was subsequently incubated for 15 minutes at 37°C to completely crack the cells. After homogenising the solution, 1875 μl (1M) MgCl₂⁻ was added and 5 ml 100% glycerol. After the addition of 375 μl DNase (10 mg/ ml) the solution was incubated for 30 minutes at 37°C. Cell debris was removed by centrifugation at 1880xg for 30 minutes at room temperature without the brake on. The supernatant was subsequently purified from proteins by loading on 10 ml of freon. Upon centrifugation for 15 minutes at 2000 rpm without brake at room temperature three bands are visible of which

the upper band represents the adenovirus. This band was isolated by pipetting after which it was loaded on a Tris/HCl (1M) buffered caesiumchloride blockgradient (range: 1.2 to 1.4 gr./ml). Upon centrifugation at 21000 rpm for 2.5 hours at 10° C the virus was purified from remaining protein and cell debris since the virus, in contrast to the other components, does not migrate into the 1.4 gr./ ml caesiumchloride solution. The virus band is isolated after which a second purification using a Tris/ HCl (1M) buffered continues gradient of 1.33 gr./ml of caesiumchloride is performed. After virus loading on top of this gradient the virus is centrifuged for 17 hours at 55000 rpm at 10° C. Subsequently the virus band is isolated and after the addition of 30 μ l of sucrose (50 ν 0 excess caesiumchloride is removed by three rounds of dialysis, each round comprising of 1 hour. For dialysis the virus is transferred to dialysis slides (Slide-a-lizer, cut off 10000 kDa, Pierce, USA). The buffers used for dialysis are PBS which are supplemented with an increasing concentration of sucrose (round 1 to 3: 30 ml, 60 ml, and 150 ml sucrose (50% ν 0) 1.5 litre PBS, all supplemented with 7.5 ml 2% (ν 0) CaMgCl₂). After dialysis, the virus is removed from the slide-a-lizer after which it is aliquoted in portions of 25 and 100 ν 1 upon which the virus is stored at -85°C.

[0070] To determine the number of virus particles per millilitre, 100 µl of the virus batch is run on an high pressure liquid chromatograph (HPLC). The adenovirus is bound to the column (anion exchange) after which it is eluted using a NaCl gradient (range 300-600 mM). By determining the area under the virus peak the number of virus particles can be calculated. To determine the number of infectious units (IU) per ml present in a virus batch, titrations are performed on 911 cells. For this purpose, 4x10⁴ 911 cells are seeded per well of 96-well plates in rows B, D, and F in a total volume of 100 µl per well. Three hours after seeding the cells are attached to the plastic support after which the medium can be removed. To the cells a volume of 200 µl is added, in duplicate, containing different dilutions of virus (range: 10² times diluted to 2x10⁹). By screening for CPE the highest virus dilution which still renders CPE after 14 days is considered to contain at least one infectious unit. Using this observation, together with the calculated amount of virus volume present in these wells renders the number of infectious units per ml of a given virus batch. The production results i.e. virus particles per ml and IU per ml or those chimaeric adenoviruses that were produced so far, are shown in table 3

Example 4: Presence of Ad5 Receptor molecules on human cells

10

20

25

35

55

[0071] To investigate the importance of the presence of CAR on target cells for infection with chimaeric adenoviruses, a panel of human cell lines and primary cells were tested for the presence and/ or absence of CAR, MHC class I, and integrins (ανβ3, ανβ5). For this purpose, 1x10⁵ target cells or were transferred to tubes (4 tubes per cell type) designed for flow cytometry. Cells were washed once with PBS/ 0.5% BSA after which the cells were pelleted by centrifugation for 5 minutes at 1750 rpm at room temperature. Subsequently, 10 μl of a 100 times diluted α,β3 antibody (Mab 1961, Brunswick chemie, Amsterdam, The Netherlands), a 100 times diluted antibody α,β5 (antibody (Mab 1976, Brunswick chemie, Amsterdam, The Netherlands), or 2000 times diluted CAR antibody was a kind gift of Dr. Bergelson, Harvard Medical School, Boston, USA (Hsu et al) was added to the cell pellet after which the cells were incubated for 30 minutes at 4°C in a dark environment. After this incubation, cells were washed twice with PBS/0.5% BSA and again pelleted by centrifugation for 5 minutes at 1750 rpm room temperature. To label the cells, 10 µl of rat anti mouse IgGI labelled with phycoerythrin (PE) was added to the cell pellet upon which the cells were again incubated for 30 minutes at 4°C in a dark environment. Finally the cells were washed twice with PBS/0.5% BSA and analysed on a flow cytometer. The results of flow cytometric analysis of these experiments are shown in table 4. These results show that human erythroid leukemia cells (K562, ATCC: CCL-243), human primary fibroblasts (GM09503), human primary smooth muscle cells, and primary human synoviocytes do not express detectable levels of the CAR receptor. In contrast, human lung carcinoma cells (A549, ATCC: CCL-1185), human lymphoblast cells (SupT1 (B and T cell hybrid, ATCC, CRL-1991), and human liver cells (HEPG2, ATCC, HB8065) express high amounts of CAR protein. Human lymphoblast cells (CEM, ATCC: CRL-1992), primary human umbilical vein endothelial cells (HUVEC), and human primary chorion villi express low amounts of CAR protein.

Example 5: Infection of CAR negative cells with fiber chimaeric adenovirus

[0072] Several of the cell types described in example 4, i.e. A549, K562, GM09503, SupT1, chorion villi, and HepG2 were infected with a panel of chimaeric adenoviruses. This panel consists of adenovirus serotype 5 (subgroup C), and of adenovirus serotype 5 containing the fiber of serotypes 16 and 51 (subgroup B), of 28, 32, and 49 (subgroup D), of 12 (subgroup A), and of 40 (40-S and/or 40-L: subgroup F). For this purpose target cells are seeded at a concentration of 10⁵ cells per well of 6-well plates in 2 ml Dulbecco's modified Eagles medium (DMEM, Life Technologies, The Netherlands) supplemented with 10% Foetal calf serum. Twenty-four hours later the medium is replaced by fresh medium containing the different chimaeric adenoviruses at an increasing MOI of 0, 10, 50, 250, 1250, 2500, 5000 (MOI based on virus particles per millilitre). Approximately 2 hours after the addition of virus the medium containing the virus is discarded, cells are washed once with PBS, and subsequently 2 ml of fresh medium (not containing virus) is added

to each well. Forthy-eight hours later cells are harvested, washed and pelleted by centrifuging 5 minutes at 1500 rpm. Cells are subsequently lysed in 0,1 ml lysis buffer (1% Triton-X-100, 15% Glycerol, 2 mM EDTA, 2 mM DTT, and 25 mM MgCl₂ in Tris-phosphate buffer pH 7.8) after which the total protein concentration of the lysate is measured (Biorad, protein standard II). To determine marker gene expression (luciferase activity) 20 µl of the protein sample is mixed with 100 μl of a luciferase substrate (Luciferine, Promega, The Netherlands) and subsequently measured on a Lumat LB 9507 apparatus (EG & G Berthold, The Netherlands). The results of these infection experiments, given as the amount of luciferase activity (RLU) per µg protein, are shown in figures 8-14. From these infection experiments several conclusions can be drawn. The infection of A549 cells (figure 8) demonstrates that all chimaeric adenoviruses tested infect with relative high efficiency these cells. The infection of K562 cells (figure 9) demonstrates that these cells cannot be transduced with adenovirus serotype 5 (subgroup C) or the fiber chimera 12 (subgroup A). All other chimaeric adenoviruses (16/51: subgroup B; 28/32/49: subgroup D; 40-L: subgroup F) are able to infect these cells with different efficiencies. The infection of GM09503 primary human fibroblasts (figure 10) demonstrates that these cells can be transduced with all fiber chimeras including Adenovirus serotype 5 albeit with different efficiencies. The infection of SupT1 cells (figure 11) demonstrates that these cells can be transduced with all fiber chimeras albeit with different efficiencies except for fiber chimera 49 which does not infect these human lymphoblast cells. The infection of human chorion villi cells (figure 12) shows a similar transduction pattern as observed with K562 cells except for adenovirus chimera 49 which does not infect these cells. The infection of HEPG2 cells (figure 13) shows a similar transduction pattern as observed with A549 cells. Linking the CAR expression data of these cells to the infection efficiency data obtained, several conclusions can be drawn. 1) Infection of adenovirus serotype 5 is correlated with the presence of CAR (figure 8-13). 2) In the absence of CAR but in the presence of high amount of MHC class I, poor infection is observed using adenovirus serotype 5, indicating that MHC class I is a worse receptor for adenovirus serotype 5 as compared to CAR (figure 10). 3) In the absence of CAR adenovirus fiber chimeras 16 and 51 (subgroup B) as well as chimeras 28 and 32 (subgroup D) as well as chimera 40-L (subgroup F) can infect cells with high efficiency, indicating that these viruses can utilise receptors other than CAR (figures 9 and 12). 4) A comparison of the infection data of the chimaeric adenoviruses carrying the fiber of 28, 32, and 49 teaches that within an adenovirus subgroup differences in transduction efficiencies exist, indicating that adenovirus members of one subgroup either have different affinities for the same receptor, or that different adherence molecules can be used (figures 8-13) by members of an adenovirus subgroup.

30 Example 6: Complexity of receptor recognition of adenovirus serotypes

[0073] To investigate the complexity and/or the number of different adherence molecules which can be used by human adenoviruses from different subgroups or between members within one subgroup the following strategies are designed.

1) Interference studies with total chimaeric viruses

35

40

50

55

[0074] Via infection experiments described in example 5, cell lines are identified that are poorly transducible with a chimaeric viruses carrying the fiber protein of for example serotype 49 (subgroup D) indicating that such a cell expresses low levels of the adherence molecule required for D group adenovirus infection. Next, chimaeric adenoviruses carrying the fiber protein of other members of subgroup D are mixed in different concentrations with the fiber 49 chimaeric adenovirus and subsequently added to the cells. Since the fiber 49 chimaeric adenovirus carries a transgene other than the other subgroup D chimaeric adenoviruses (including but not limited to LacZ, Green Fluorescent Protein Yellow Fluorescent Protein, luciferase etc) interference of infection can be visualised. As a positive control two fiber 49 chimaeric adenoviruses carrying different marker genes is used. Identical to the example for subgroup D described above experiments are conducted with different members of subgroup A, B, C, E, and F. These experiments show if the fiber protein of members of the same adenovirus subgroup recognise the same adherence molecules on a cell membrane. Naturally, this approach is also used to investigate inter-subgroup variation for example usage of adherence molecules by subgroup D and B members

2) Interference studies with fiber protein derived peptides

[0075] Peptides of 6-12 amino acids are synthetically synthesised which together form the complete knob domain of a fiber from a subgroup D, for example 49. Next, one or more peptides are mixed in various concentrations with the fiber 49 chimaeric adenovirus after which the mixture is added to the cells. Using this approach one or more peptides are identified which block, at a certain concentration, the infection of the fiber 49 chimaeric adenovirus. This peptide or these peptides are subsequently used to investigate whether the infection of other subgroup D members is blocked by addition of the peptide(s) and whether inhibition of infection occurs using the same concentration of peptide. Identical

to the example for subgroup D described above peptides are synthesised using the knob domain of a member of subgroup A, B, C, E, and F. These experiments show not only which adherence molecules are used but also which part of the fiber protein is directly involved in binding to target cells. Naturally these peptides are also used to investigate inter-subgroup variation.

3) Interference studies with baculovirus produced recombinant knob proteins

[0076] Of each adenovirus subgroup, the knob region of one member is amplified by PCR. The forward oligonucleotide hybridises to the final repeat of the shaft part of the fiber just upstream of the start of the knob protein. This oligonucleotide contains a restriction site to facilitate cloning, a Histidine (6x) tag for purification after production, and a mutation thereby introducing a Methionine start codon. The reverse oligonucleotide hybridises after the polyA signal and contains a restriction site to facilitate cloning into a baculovirus expression construct. After generation of recombinant baculovirus, insect cells for instance Sf9, are infected. 4-6 days after infection cells are cracked by 3 cycles of freeze/ thaw. Recombinant knob protein is purified from the supernatant using an antibody specifically recognising the His tag. The recombinant knobs are subsequently used in interference studies to investigate the complexity of adenovirus binding between members of different subgroups as well as members within one subgroup.

Example 7: identification of adherence molecules involved in adenovirus subgroup B, D, and F binding and internalisation

[0077] To investigate what adherence molecules are involved in binding and internalisation of adenovirus serotypes from different subgroups in particular subgroups B, D, and F, the following strategies are designed.

1) Phage display libraries

10

15

20

25

35

45

50

55

[0078] Phage display libraries, containing random 6-12 amino acids peptides are lmixedî with synthetically synthesised peptides which have identified to block infection of one or more members of either subgroup B, D, and/ or F. Mixing of phages with peptide(s) is performed in an ELISA setting in which the peptide(s) are coated to a plastic support. Several rounds of mixing, washing and elution are performed to obtain an enrichment for phages that truly and specifically bind to the peptide(s). Finally the phages retrieved are amplified and plaque purified after which approximately 20 are sequenced to establish the nature of the peptide insert of the phages. From the consensus sequence of all 20 phages, a (degenerate) oligonucleotide is synthesised which together with a polyA hybridising oligonucleotide is used for the amplification of cDNA sequences both from cells which can or cannot (negative control) be infected with a subgroup B, D, and/or F chimaeric adenovirus. Amplified cDNAs are cloned, sequenced and aligned, amongst others, against existing Genbank sequences.

2) cDNA expression library screening

[0079] cDNA libraries, either commercially available or generated using a CAR-negative cell line which is highly transducible with chimaeric adenoviruses carrying the fiber protein of members of for example subgroup D or subgroup F, are used for expression library screening using either radiolabelled adenovirus or recombinant produced knob proteins as probes. Clones or plaques which bind to the probe are picked, amplified and re-tested for enrichment of probe binding. Finally phages are picked after which the cDNA content is elucidated by sequence analysis. Retrieved cDNAs are cloned, sequenced and aligned, amongst others, against existing Genbank sequences.

3) Peptidase treatment of cells after adenovirus binding

[0080] Cells which are highly transducible with chimaeric adenoviruses carrying the fiber protein of members of for example subgroup D, are treated with different peptidases after binding of the chimaeric adenovirus. The panel of peptidases suited is first tested on the chimaeric adenovirus only to ensure that capsid proteins of the chimaeric virus is not cleaved. Peptidae treated cells are spun down after which the supernatant is added to 24-well plates precoated with anti-adenovirus hexon and/ or penton antibodies. After binding of adenovirus to the precoated plastic support, wells are washed extensively with PBS. Upon washing, the adenovirus is harvested after which either protein gel electrophoresis or Malditoff is used to identify whether parts of a cellular protein is bound to the fiber protein or whether extra protein bands are visible as compared to protein gel electrophoresis or Malditoff of a purified batch of adenovirus only. As a negative control for the above described experiments cells negative for infection with a chimaeric adenovirus carrying a fiber of a member of subgroup D can be used. Alternatively, cells which are highly transducible with chimaeric adenoviruses carrying the fiber protein of members of for example subgroup D, are first treated with peptidases after

which the medium is incubated with adenoviruses bound to a plastic support.

[0081] The above described examples encompasses the construction of recombinant adenoviral vectors chimaeric for the fiber protein which results in an altered infection hostrange. The alteration of the infection host range results in highly efficient infection of cells negative for the CAR protein which is the protein required by adenovirus serotype 5 for efficient infection. These vectors are generated for the purpose of gene transfer and recombinant DNA vaccines. These vectors are thus ideally suited for gene transfer to tissues, and/or organs of which de cells do not express detectable levels of CAR.

Table 1: Association of human adenovirus serotypes with human disease.

Figure and table legends

10

15

20

25

30

35

Table 2: Oligonucleotides and degenerate oligonucleotides used for the amplification of DNA encoding for fiber protein derived from alternative human adenovirus serotypes. Bold letters in oligonucleotides A-E represent an Ndel restriction site. Bold letters in oligonucleotides 1-6 and 8 represent an Nsil restriction site. Bold letters in oligonucleotide 7 represents a Pacl restriction site.

Table 3: Production results of fiber chimaeric adenoviruses. The number of virus particles per ml were determined using HPLC. The number of infectious units (IU) per millilitre were determined through titration on human 911 cells. For infection experiments, the number of virus particles per millilitre is taken from all chimaeric adenoviruses since IU/ ml reflects a receptor mediated process.

Table 4: Flow cytometric results on expression of integrins $\alpha_v\beta3$ and $\alpha_v\beta5$, the Coxsacki adenovirus receptor (CAR), and MHC class I on the membranes of human cell lines and human primary cells. A549: Human lung carcinoma cell line (ATCC, CCL-1185). K562: Human erythroid leukemia (ATCC, CCL-243). SupT1: Human Lymphoblast hybrid B and T (ATCC, CRL-1991). GM09503: Human primary fibroblasts. HEPG2: Human liver carcinoma (ATCC, HB8065). CEM: human lymphoblast cells (ATCC, CRL-1992). HeLa: Human cervix carcinoma (ATCC, CCL-2). Primary amniocytes and chorion villi cells were obtained from department of antropogenetics, Leiden, The Netherlands. Primary Smooth muscle cells, Human umbilical vein endothelial cells, and synoviocytes were obtained from TNO-PG, Leiden, The Netherlands. Shown is the percentage of cells expressing either molecule on their membrane. ND: not determined. 0% means undetectable expression of the molecule on the membrane of the cell using flow cytometry. 100% means high expression of the molecule on the cell membrane.

[0082] Figure 1: Schematic presentation of adapter plasmid pMLPI.TK.

[0083] Figure 2: Schematic presentation of adapter plasmid pAd/L420-HAS.

[0084] Figure 3: Schematic presentation of adapter plasmid pAd5/CLIP

[0085] Figure 4: Schematic presentation of plasmid system which requires only one recombinational event to generate recombinant adenoviruses.

[0086] Figure 5: Schematic presentation of plasmid system which requires two recombinational events to generate recombinant adenoviruses.

[0087] Figure 6: Schematic presentation of generation of plasmid pBr/AdBamRDeltaFib in which the Adenovirus type 5 fiber DNA is replaced by a short DNA stretch containing an unique Nsil site.

[0088] Figure 7: Fiber protein sequences of adenovirus serotypes 8, 9, 13, 14,20, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, and 51. Bold letters represent part of the tail of adenovirus serotype 5. If bold letters not present it means that a PCR fragment was sequenced which does not contain the Ad5 tail. An X, present in the sequence means unidentified amino acid due to unidentified nucleotide. At the end of the sequence the stop codon of the fiber is presented by a dot.

[0089] Figure 8: Transduction of human lung carcinoma cells (A549) with a panel of chimaeric adenoviruses carrying the fiber of adenovirus 12, 16, 17, 28, 32, 40-L, or 51. Adenovirus 5 served as reference. Cells were infected with increasing MOI based on virus particles per cell: 10, 50, 250, 1250, 2500 (see legend on the right of graph). Luciferase transgene expression is expressed as relative light units (RLU) per µg of protein.

[0090] Figure 9: Transduction of human erythroid leukemia cells (K562) with a panel of chimaeric adenoviruses carrying the fiber of adenovirus 12, 16, 28, 32, 40-S, 40-L, 49, or 51. Adenovirus 5 served as reference. Cells were infected with increasing MOI based on virus particles per cell: 10, 50, 250, 1250, 2500, 5000 (see legend on the right of graph). Luciferase transgene expression is expressed as relative light units (RLU) per µg of protein. Error bars represent SD.

[0091] Figure 10: Transduction of human primary fibroblasts (GM09503) with a panel of chimaeric adenoviruses carrying the fiber of adenovirus 12, 16, 28, 32, 40-L, 49, or 51. Adenovirus 5 served as reference. Cells were infected with increasing MOI based on virus particles per cell: 10, 50, 250, 1250, 2500, 5000 (see legend on the right of graph).

Luciferase transgene expression is expressed as relative light units (RLU) per μg of protein. Error bars represent SD. [0092] Figure 11: Transduction of human lymphoblast cells (SupT1) with a panel of chimaeric adenoviruses carrying the fiber of adenovirus 12, 16, 28, 32, 40-S, 40-L, 49, or 51. Adenovirus 5 served as reference. Cells were infected with increasing MOI based on virus particles per cell: 10, 50, 250, 1250, 2500, 5000 (see legend on the right of graph). Luciferase transgene expression is expressed as relative light units (RLU) per μg of protein. Error bars represent SD. [0093] Figure 12: Transduction of human chorion villi cells with a panel of chimaeric adenoviruses carrying the fiber of adenovirus 12, 16, 28, 32, 40-L, 49, or 51. Adenovirus 5 served as reference. Cells were infected with increasing MOI based on virus particles per cell: 10, 50, 250, 1250, 2500, 5000 (see legend on the right of graph). Luciferase transgene expression is expressed as relative light units (RLU) per μg of protein. Error bars represent SD.

[0094] Figure 13: Transduction of human hepatic cells (HEPG2) with a panel of chimaeric adenoviruses carrying the fiber of adenovirus 12, 16, 28, 32, 40-S, 40-L, 49, or 51. Adenovirus 5 served as reference. Cells were infected with increasing MOI based on virus particles per cell: 10, 50, 250, 1250, 2500, 5000 (see legend on the right of graph). Luciferase transgene expression is expressed as relative light units (RLU) per μg of protein. Error bars represent SD.

15 REFERENCES

55

[0095] Arnberg N., Mei Y. and Wadell G., 1997. Fiber genes of adenoviruses with tropism for the eye and the genital tract. Virology 227: 239-244.

[0096] Bout A., 1997. Gene therapy, p. 167-182. In: D.J.A. Crommelin and R.D. Sindelar (ed.), Pharmaceutical biotechnology, Harwood Academic Publishers.

[0097] Bout, A. 1996. Prospects for human Gene therapy. Eur. J. drug Met. And Pharma. 2, 175-179.

[0098] Blaese et al., Cancer Gene Ther., 2 (1995):291-297).

[0099] Brody and Crystal, Ann. N. Y. Acad. Sci. 716(1994):90-101.

[0100] Chroboczek J., Ruigrok R.W.H., and Cusack S., 1995. Adenovirus fiber, p. 163-200. In: W. Doerfier and P. Bohm (ed.), The molecular repertoire of adenoviruses, I. Springer-Verlag, Berlin.

[0101] Defer C., Belin M., Caillet-Boudin M. and Boulanger P., 1990. Human adenovirus-host cell interactions; comparative study with members of subgroup B and C. Journal of Virology 64 (8): 3661-3673.

[0102] De Jong, J.C., Wermenbol, A.G., Verweij-Uijterwaal, M.W., Slaterus, K.W., Wertheim-van Dillen, P., van Doornum, G.J.J., Khoo, S.H., and Hierholzer, J.C. (1998) Adenoviruses from HIV-infected patients, including two new candidate serotypes Ad50 and Ad51 of Subgenus D and B1 respectively. In preparation.

[0103] Eisenlohr, L.C., Gerard, W., and Hackett, C.J. (1987). Role of receptor-binding activity of the viral hemagglutin molecule in the presentation of influenza virus antigens to helper T-cells. J. Virol 61, 1375-1383

[0104] Eiz B and Pring-0kerblom P., 1997. Molecular characterization of the type-specific g-determinant located on the adenovirus fiber. Journal of Virology 71: 6576-6581.

[0105] Francki, R.I.B., Fauquet, C.M., Knudson, D.L. and Brown, F. (1991) Classification and nomenclature of viruses. Fifth report of the international Committee on taxonomy of viruses. Arch. Virol. Suppl. 2, 140-144

[0106] GahEry-SEgard H., Farace F., Godfrin D., Gaston J., Lengagne R., Tursz T., Boulanger P. and Guillet J., 1998.Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base anti-bodies have a synergistic effect on neutralizing activity. Journal of Virology 72: 2388-2397.

[0107] Gall J., Kass-Eisler A., Leinwand L. and Falck-Pedersen E., 1996. Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralisation epitopes. Journal of Virology 70 (4): 2116-2123.

[0108] Greber, U.F., Willets, M., Webster, P., and Helenius, A. (1993). Stepwise dismanteling of adenovirus 2 during entry into cells. Cell 75, 477-486.

[0109] Hynes, R.O. (1992) Integrins: versatility, modulation and signalling in cell adhesion. Cell 69, 11-25

[0110] Herz and Gerard, Proc. Natl. Acad. Sci. U.S.A., 96 (1993):2812-2816

[0111] Hierholzer, J.C. (1992) Adenovirus in the immunocompromised host. Clin. Microbiol Rev. 5, 262-274.

[0112] Hierholzer, J.C., Wigand, R., Anderson, L.J., Adrian, T., and Gold, J.W.M. (1988) Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types43-47). J. Infect. Dis. 158, 804-813.

[0113] Ishibashi, M. and Yasue (1983) in Adenoviruses of Animals, Chapter 12, p497-561

[0114] Kay, R., Takei, F., and Humphries, R.K. (1990). Expression cloning of a cDNA encoding M1/69-J11d heat-stable antigens. J. Immunol. 145 (6), 1952-1959

[0115] Khoo, S.H., Bailey, A.S., De Jong, J.C., and Mandal, B.K. (1995). Adenovirus infections in human immunodeficiency virus-positive patients: Clinical features and molecular epidemiology. J. Infect. Dis 172, 629-637

[0116] Kidd, A.H., Chrboczek, J., Cusack, S., and Ruigrok, R.W.|H. (1993) Adenovirus type 40 virions containtwo distinct fibers. Virology 192, 73-84.

[0117] Krasnykh V.N., Mikheeva G.V., Douglas J.T. and Curiel D.T., 1996.Generation of recombinant adenovirus

vectors with modified fibers for altering viral tropism. Journal of Virology 70(10): 6839-6846.

[0118] Krasnykh V., Dmitriev I., Mikheeva G., Miller C.R., Belousova N. and Curiel D.T.,1998.

Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. Journal of Virology 72(3): 1844-1852.

- [0119] Leopold, P.L., Ferris, B., Grinberg, I., Worgall, S., Hackett, N.R., and Crystal, R.G. (1998). Fluorescent virions: Dynamic tracking of the pathway of adenoviral vectors in living cells. Hum. Gene Ther. 9, 367-378.
 - [0120] Levrero, M., Barban, V., Manteca, S., Ballay, A., Balsamo, C., Avantaggiata, M.L., Natoli, G., Skellekens, H., Tiollais, P., and Perricaudet, M. (1991). Defective and non-defective adenovirus vectors for expression foreign genes in vitro and in vivo. Gene 101, 195-202.
- [0121] Matlin, K.S., Reggio, H., Helenius, A., and Simons, K. (1981). Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 91, 601-613
 - [0122] Morgan, C., Rozenkrantz, H.S., and Mednis, B. (1969(Structure and development of viruses as observed in the electron microscope.X. Entry and uncoating of adenovirus. J.Virol 4, 777-796.
 - [0123] Roelvink, P.W., Lizonova, A.,Lee, J.G.M., Li, Y., Bergelson, J.M. Finberg, R.W., Brough, D.E., Kovesdi, I., and Wickham, T.J. (1998). The Coacksackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A,C,D,E, and F. J. Virology 72 (No. 10), 7909-7915
 - [0124] Richman, D.D., Hostetler, K.Y., Yazaki, P.J., and Clark, S. (1986). Fate of influenza A virion proteins after entry into subcellular fractions of LLC cells and the effect of amantadine. Virology 151, 200-210
 - [0125] Stevenson S.C., Rollence M., White B., Weaver L. and McClelland A., 1995.
- [0126] Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. Journal of Virology 69(5): 2850-2857.
 - [0127] Stevenson S.C., Rollence M., Marshall-Neff J. and McClelland A., 1997. Selective targeting of human cells by a chimaeric adenovirus vector containing a modified fiber protein. Journal of Virology 71(6): 4782-4790.
 - [0128] Signas, G., Akusjarvi, G., and Petterson, U. (1985). Adenovirus 3 fiberpolypeptide gene: Complications for the structure of the fiber protein. J. Virol. 53, 672-678.
 - [0129] Stouten, P.W.F., Sander, C., Ruigrok, R.W.H., and Cusack, S. (1992) New triple helical model for the shaft of the adenovirus fiber. J. Mol. Biol. 226, 1073-1084.
 - [0130] Schulick, A.H., Vassalli, G., Dunn, P.F., Dong, G., Rade, J.J., Zamarron, C. and Dichek, D.A. (1997). Established immunity precludes adenovirus-mediated gene transfer inrat carotid arteries.
 - [0131] Schnurr, D and Dondero, M.E. (1993) Two new candidate adenovirus serotypes Intervirol. 36, 79-83
 - [0132] Svensson, V. and Persson, R. (1984). Entry of adenovirus 2 into Hela cells. J. Virol. 51, 687-694.
 - [0133] Varga, M.J., Weibull, C., and Everitt, E. (1991). Infectious entry pathway of adenovirus type 2. J. Virol 65, 6061-6070.
 - [0134] Wickham T.J., Carrion M.E. and Kovesdi I., 1995. Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Therapy 2: 750-756.
 - [0135] Wickham T.J., Segal, D.M., Roelvink, P.W., Carrion M.E., Lizonova, A., Lee, G-M., and Kovesdi, I. (1996). Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J. Virol. 70 (10) 6831-6838
 - [0136] Wickham, T.J., Mathias, P., Cherish, D.A., and Nemerow, G.R. (1993) Integrins avb3 and avb5 promote adenovirus internalisation but not virus attachment. Cell 73, 309-319.

Tables and figures

[0137]

45

50

55

-

Table 1

Syndrom	Subgenus	Serotype
Respiratory illness	Α	31
	В	3, 7, 11, 14, 21, 34, 35, 51
	С	1,2,5,6
	D	39, 42-48
	E	4 .
Keratoconjunctivitis (eye)	В	11 ·
•	D	8, 19, 37, 50
Hemorrhagic cystitis (Kidney)	В	7, 11, 14, 16, 21, 34, 35
And urogenital tract infections	С	5

Table 1 (continued)

Syndrom Subgenus Serotype D 39, 42-48 Sexual transmission С D 19, 37 Gastroenteritis 31 Α В 3 С 1, 2, 5 D 28 F 40, 41 CNS disease Α 12, 31 В 3, 7 С 2, 5, 6 D 32, 49 Hepatitis 31 Α C 1,2,5 Disseminated Α 31 В 3, 7, 11, 21 D 30, 43-47 None (???) Α 18 D 9, 10, 13, 15 17, 20, 22-29, 33, 36, 38

Table 2

	lable	4
Serotype	Tail oligonucleotide	Knob oligonucleotide
4	A	. 1
8	В	2
9	В	2
12	E	3
16	С	4
19p	В	2
28	В	2
32	• В	2
36	В	2
37	В	2
40-1	. D	5
40-2	D	6
41-s	D	5
41-1	D	. 7
49	В	2

A: 5'- CCC GTG TAT CCA TAT GAT GCA GAC AAC GAC CGA CC- 3'

B: 5'- CCC GTC TAC CCA TAT GGC TAC GCG CGG- 3'

C: 5'- CCK GTS TAC CCA TAT GAA GAT GAA AGC- 3'

D: 5'- CCC GTC TAC CCA TAT GAC ACC TYC TCA ACT C- 3'

E: 5'- CCC GTT TAC CCA TAT GAC CCA TTT GAC ACA TCA GAC- 3'

1: 5"- CCG ATG CAT TTA TTG TTG GGC TAT ATA GGA - 3'

2: 5'- CCG ATG CAT TYA TTC TTG GGC RAT ATA GGA - 3'

3: 5'- CCG ATG CAT TTA TTC TTG GGR AAT GTA WGA AAA GGA - 3'

4: 5'- CCG ATG CAT TCA GTC ATC TTC TCT GAT ATA - 3'

20

5

10

15

20

25

30

35

40

45

50

55

Table 2 (continued)

Serotype	Tail oligonucleotide	Knob oligonucleotide
50	В	2
51	c ·	8
5: 5'- CC	ATG CAT TTA TTG TTC AC	GT TAT GTA GCA - 3'
6: 5'- GC	C ATG CAT TTA TTG TTC TO	ST TAC ATA AGA - 3'
7: 5' - CC	G TTA ATT AAG CCC TTA T	TG TTC TGT TAC ATA AGA A - 3'
8: 5'- CC	B ATG CAT TCA GTC ATC Y	TC TWT AAT ATA - 3'

Table 3

Adenovirus	Virus particles/ m!	Infectious units/ ml
Ad5Fib5	2.2 x 10 ¹²	6.8 x 10 ¹¹
Ad5Fib12	4.4 x 10 ¹²	1.9 x 10 ¹²
Ad5Fib16	1.4 x 10 ¹²	3.0 x 10 ¹⁰
Ad5Fib17	9.3 x 10 ¹¹	9.5 x 10 ⁹
Ad5Fib28	5.4 x 10 ¹⁰	2.8 x 10 ⁸
Ad5Fib32	2.0 x 10 ¹²	1.1 x 10 ¹²
Ad5Fib40-S	3.2 x 10 ¹⁰	1.0 x 10 ¹⁰
Ad5Fib40-L	2.0 x 10 ¹²	6.4 x 10 ¹¹
Ad5Fib49	1.2 x 10 ¹²	4.3 x 10 ¹¹
Ad5Fib51	5.1 x 10 ¹²	1.0 x 10 ¹²

Table 4

Cell line	α _ν β3	α _ν β5	CAR	MHC class I
A549	17%	98%	100%	ND .
K562	12%	55%	0%	15%
GM09503	20%	50%	0%	100%
CEM	0%	0%	3%	100%
SupT1	5%	1%	70%	100%
Smooth muscle cells	100%	70%	0%	15%
HUVEC	100%	15%	10%	90%
Synoviocytes	30%	40%	0%	100%
1 ⁰ chorionvilli	100%	0%	12%	100%
HepG2	0%	10%	100%	80%

30-

Annex to the application documents - subsequently filed sequences listing

[0138]

5

55

SEQUENCE LISTING

```
<110> Introgene BV
                   <120> Infection with chimaeric adenoviruses of cells negative
 10
                         for the adenovirus serotype 5 Coxsacki adenovirus
                         receptor (CAR).
                   <130> P50220EP00
                   <140> 99202234.3
 15
                   <141> 1999-07-08
                   <160> 58
                   <170> PatentIn Ver. 2.1
 20
                   <210> 1
                   <211> 23
                   <212> DNA
                   <213> Artificial Sequence
                   <220>
                   <223> Description of Artificial Sequence: "oligo linker"
 25
                   <220>
                   <221> misc_feature <222> (1)..(23)
                   <223> /note="Linker containing a PacI site"
30
                   <400> 1
                   aattgtctta attaaccgct taa
                                                                                         23
                   <210> 2
                   <211> 19
                   <212> DNA
35
                   <213> Artificial Sequence
                   <220>
                   <223> Description of Artificial Sequence: "oligo linker"
                   <220>
40
                   <221> misc_feature <222> (1)..(19)
                   <223> /note="Linker containing a PacI site"
                   <400> 2
                   aattgtctta attaaccgc
                                                                                         19
45
                   <210> 3
                   <211> 19
                   <212> DNA
                   <213> Artificial Sequence
50
                   <220>
                   <223> Description of Artificial Sequence: "oligo linker"
                   <220>
                   <221> misc_feature
```

```
<222> (1)..(19)
            <223> /note="Linker containing a PacI site"
5
            <400> 3
                                                                                  19
            aattgcggtt aattaagac
            <210> 4
            <211> 47
10
            <212> DNA
            <213> Artificial Sequence
            <223> Description of Artificial Sequence: "primer"
15
            <220>
            <221> primer_bind
            \langle 222 \rangle (1)..(\overline{4}7)
            <223> /note="Primer LTR-1"
20
            <400> 4
                                                                                   47
            ctgtacgtac cagtgcactg gcctaggcat ggaaaaatac ataactg
            <210> 5
25
            <211> 64
            <212> DNA
            <213> Artificial Sequence
            <223> Description of Artificial Sequence: "primer"
30
            <220>
            <221> primer_bind
            <222> (1)..(64)
            <223> /note="Primer LTR-2"
35
            <400> 5
            geggateett egaaceatgg taagettggt accgetageg ttaaceggge gacteagtea 60
            atcg
40
            <210> 6
            <211> 28
            <212> DNA
            <213> Artificial Sequence
45
            <223> Description of Artificial Sequence: "primer"
            <220> .
            <221> primer_bind
            <222> (1)..(28)
            <223> /note="Primer HSA1"
50
            <400> 6
                                                                                   28
            gcgccaccat gggcagagcg atggtggc
55
            <210> 7
            <211> 50
```

```
<212> DNA
           <213> Artificial Sequence
5
           <220>
           <223> Description of Artificial Sequence: "primer"
           <220>
           <221> primer bind
10
           <222> (1)..(50)
           <223> /note="Primer HSA2"
           <400> 7
           gttagatcta agcttgtcga catcgatcta ctaacagtag agatgtagaa
                                                                               50
15
           <210> 8
           <211> 21
           <212> DNA
           <213> Artificial Sequence
20
           <223> Description of Artificial Sequence: "primer"
           <220>
           <221> primer_bind
25
           <222> (1)..(21)
           <223> /note="Primer 1"
           <400> 8
           gggtattagg ccaaaggcgc a
                                                                               21
30
           <210> 9
           <211> 33
           <212> DNA
           <213> Artificial Sequence
35
           <220>
           <223> Description of Artificial Sequence: "primer"
           <221> primer_bind
           <222> (1)..(33)
40
           <223> /note="Primer 2"
           <400> 9
                                                                               33
           gatcccatgg aagcttgggt ggcgacccca gcg
45
           <210> 10
           <211> 36
           <212> DNA
           <213> Artificial Sequence
50
           <223> Description of Artificial Sequence: "primer"
           <220>
            <221> primer_bind
55
            <222> (1)..(36)
            <223> /note="Primer 3"
```

```
<400> 10
                                                                                36
5
          gatcccatgg ggatccttta ctaagttaca aagcta
          <210> 11
          <211> 19
          <212> DNA
10
          <213> Artificial Sequence
          <223> Description of Artificial Sequence: "primer"
          <220>
15
          <221> primer_bind
          <222> (1)..(19)
          <223> /note="Primer 4"
          <400> 11
                                                                                19
20
          gtcgctgtag ttggactgg
          <210> 12
          <211> 42
          <212> DNA
25
          <213> Artificial Sequence
          <220>
          <223> Description of Artificial Sequence: "primer"
          <220>
30
          <221> primer_bind
          <222> (1)..(42)
<223> /note="Primer NY-up"
          <400> 12
          cgacatatgt agatgcatta gtttgtgtta tgtttcaacg tg
                                                                                42
35
           <210> 13
           <211> 19
           <212> DNA
40
           <213> Artificial Sequence
           <220>
           <223> Description of Artificial Sequence: "primer"
           <220>
45
           <221> primer_bind
           <222> (1)..(19)
           <223> /note="Primer NY-down"
           <400> 13
                                                                                 19
           ggagaccact gccatgttg
50
           <210> 14
           <211> 10
           <212> DNA
55
           <213> Artificial Sequence
```

```
<220>
           <223> Description of Artificial Sequence: "oligo linker"
5
           <221> misc_feature
           <222> (1) .. (10)
           <223> /note="Linker with SalI and EcoRI-site"
10
           <400> 14
                                                                                 10
           ttaagtcgac
           <210> 15
           <211> 32
15
           <212> DNA
           <213> Artificial Sequence
           <223> Description of Artificial Sequence: "primer"
20
           <220>
           <221> primer_bind
            <222> (1)..(32)
            <223> /note="LacZ primer 1"
25
            <400> 15
                                                                                 32
            ggggtggeca gggtacctct aggettttgc aa
            <210> 16
            <211> 29
30
            <212> DNA
            <213> Artificial Sequence
            <220>
            <223> Description of Artificial Sequence: "primer"
35
            <220>
            <221> primer_bind
            <222> (1)..(29)
<223> /note="LacZ primer 2"
40
            <400> 16
                                                                                  29
            ggggggatcc ataaacaagt tcagaatcc
            <210> 17
             <211> 35
 45
             <212> DNA
             <213> Artificial Sequence
             <220>
             <223> Description of Artificial Sequence: "oligonucleotide"
 50
             <220>
             <221> misc_feature
             <222> (1)..(35)
             <223> /note="Tail oligonucleotide"
 55
             <400> 17
                                                                                  35
             cccgtgtatc catatgatgc agacaacgac cgacc
```

```
<210> 18
5
          <211> 27
          <212> DNA
          <213> Artificial Sequence
          <220>
10
          <223> Description of Artificial Sequence: "oligonucleotide"
          <220>
          <221> misc_feature
          <222> (1)..(27)
          <223> /note="Tail oligonucleotide"
15
          <400> 18
                                                                               27
          cccgtctacc catatggcta cgcgcgg
          <210> 19
20
          <211> 27
          <212> DNA
          <213> Artificial Sequence
          <220>
          <223> Description of Artificial Sequence: "oligonucleotide"
25
          <220>
          <221> misc_feature
          <222> (1)..(27)
          <223> /note="Tail oligonucleotide"
30
          <400> 19
                                                                               27
          cckgtstacc catatgaaga tgaaagc
           <210> 20
35
           <211> 31
           <212> DNA
           <213> Artificial Sequence
           <223> Description of Artificial Sequence: "oligonucleotide"
40
           <220>
           <221> misc_feature
           <222> (1)..(31)
           <223> /note="Tail oligonucleotide"
45
           <400> 20
                                                                               31
           cccgtctacc catatgacac ctyctcaact c
           <210> 21
50
           <211> 36
           <212> DNA
           <213> Artificial Sequence
           <223> Description of Artificial Sequence: "oligonucleotide"
55
```

```
<220>
           <221> misc_feature
           <222> (1) ... (36)
5
           <223> /note="Tail oligonucleotide"
           <400> 21
           cccgtttacc catatgaccc atttgacaca tcagac
                                                                                36
10
           <210> 22
           <211> 30
           <212> DNA
           <213> Artificial Sequence
15
           <223> Description of Artificial Sequence: "oligonucleotide"
           <220>
           <221> misc feature
           <222> (1)..(30)
20
           <223> /note="Knob oligonucleotide"
           <400> 22
           ccgatgcatt tattgttggg ctatatagga
                                                                                30
25
           <210> 23
           <211> 30
           <212> DNA
           <213> Artificial Sequence
30
           <220>
           <223> Description of Artificial Sequence: "oligonucleotide"
           <220>
           <221> misc_feature
           <222> (1)..(30)
35
           <223> /note="Knob oligonucleotide"
           <400> 23
           ccgatgcatt yattcttggg cratatagga
                                                                                30
40
           <210> 24
           <211> 36
           <212> DNA
           <213> Artificial Sequence
45
           <220>
           <223> Description of Artificial Sequence: "oligonucleotide"
           <220>
           <221> misc_feature
           <222> (1)..(36)
50
           <223> /note="Knob oligonucleotide"
           ccgatgcatt tattcttggg raatgtawga aaagga
                                                                                36
55
           <210> 25
```

```
<211> 30
            <212> DNA
            <213> Artificial Sequence
5
            <220>
            <223> Description of Artificial Sequence: "oligonucleotide"
            <220>
 10
            <221> misc_feature
            <222> (1)..(30)
            <223> /note="Knob oligonucleotide"
            <400> 25
                                                                                 30
            ccgatgcatt cagtcatctt ctctgatata
 15
            <210> 26
            <211> 30
            <212> DNA
            <213> Artificial Sequence
 20
            <220>
            <223> Description of Artificial Sequence: "oligonucleotide"
            <220>
            <221> misc_feature
            <222> (1)..(30)
            <223> /note="Knob oligonucleotide"
            <400> 26
                                                                                 30
            ccgatgcatt tattgttcag ttatgtagca
 30
            <210> 27
            <211> 30
            <212> DNA
            <213> Artificial Sequence
 35
            <223> Description of Artificial Sequence: "oligonucleotide"
            <220>
            <221> misc_feature
 40
            <222> (1)..(30)
            <223> /note="Knob oligonucleotide"
            <400> 27
            gccatgcatt tattgttctg ttacataaga
                                                                                 30
 45
            <210> 28
            <211> 37
            <212> DNA
            <213> Artificial Sequence
 50
            <220>
            <223> Description of Artificial Sequence: "oligonucleotide"
            <220>
             <221> misc_feature
 55
             <222> (1)..(37)
```

	<223> /note="Knob oligonucleotide"													
5	<400> 28 ccgttaatta agcccttatt gttctgttac ataagaa	37 -												
	<210> 29 <211> 30 <212> DNA													
10	<213> Artificial Sequence													
	<220> <223> Description of Artificial Sequence: "oligonucleotide"													
15	<220> <221> misc_feature <222> (1)(30) <223> /note="Knob oligonucleotide"													
20	<400> 29 ccgatgcatt cagtcatcyt ctwtaatata	30												
25	<210> 30 <211> 377 <212> PRT													
	<213> adenoviridae <220> <221> VARIANT <222> (1)(377)													
30	<223> /note="Serotype 8 fiber protein"													
	<pre><400> 30 Ser Cys Ser Cys Pro Ser Ala Pro Thr Ile Phe Met Leu Leu Gln Met 1 5 10 15</pre>													
35	Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro Tyr 20 25 30													
	Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe Val 35 40 45													
40	Ser Ser Asn Gly Phe Gln Asn Phe Pro Pro Gly Val Leu Ser Leu Lys 50 55 60													
45	Leu Ala Asp Pro Ile Thr Ile Asn Asn Gln Asn Val Ser Leu Lys Val 65 70 75 80													
,,	Gly Gly Gly Leu Thr Leu Gln Glu Glu Thr Gly Lys Leu Thr Val Asn 85 90 95													
50	Thr Glu Pro Pro Leu His Leu Thr Asn Asn Lys Leu Gly Ile Ala Leu 100 105 110													
	Asp Ala Pro Phe Asp Val Ile Asp Asn Lys Leu Thr Leu Leu Ala Gly 115 120 125													
55	His Gly Leu Ser Ile Ile Thr Lys Glu Thr Ser Thr Leu Pro Gly Leu 130 135 140													

	Val 145	Asn	Thr	Leu	Val	Val 150	Leu	Thr	Gly	Lys	Gly 155	Ile	Gly	Thr	Asp	Leu 160
5	Ser	Asn	Asn	Gly	Gly 165	Àsn	Ile	Суз	Val	Arg 170	Val	Gly	Glu	Gly	Gly 175	Gly
	Leu	Ser	Phe	Asn 180	Asp	Asn	Gly	Asp	Leu 185	Val	Ala	Phe	Asn	Lys 190	Lys	Glu
10	Asp	Lys	Arg 195	Thr	Leu	Trp	Thr	Thr 200	Pro	Asp	Thr	Ser	Pro 205	Asn	Суз	Arg
15	Ile	Asp 210	Gln	Asp	Lys	Asp	Ser 215	Lys	Leu	Thr	Leu	Val 220	Leu	Thr	Lys	Cys
	Gly 225		Gln	Ile	Leu	Ala 230	Asn	Val	Ser	Leu	Ile 235	Val	Val	Ala	Gly	Arg 240
20	-				245		Asn			250					255	
		-		260			Lys		265					270		
25	Leu	Gly	Lys 275	Ser	Tyr	Trp	Asn	Phe 280	Arg	Asn	Gln	Asn	Ser 285	Ile	Met	Ser
		290	-				Ile 295					300		٠		
30	305	_				310					315					320
					325		Gly			330					335	
35				340			Thr		345					350		
·			355		,		Tyr	360			Glu	Phe	Glu 365	Thr	Thr	Ser
40	Phe	Thr 370		Ser	Туг	Ile	Ala 375		Glu				•			•
45	<21 <21	0> 3 1> 3 2> P 3> a	77	viri	dae											
50	<22	1> V 2> (ARIA 1) note	(377		pe 9	fib	er p	rote	in"						
55		-		Cys	Pro 5		: Ala	Pro	Thr	Ile 10		Met	Leu	Leu	Gln 15	

	Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25	Phe	Asn	Pro	Val	Tyr 30	Pro	Tyr
5	Gly	Tyr	Ala 35	Arg	Asn	Gln	Asn	Ile 40	Pro	Phe	Leu	Thr	Pro 45	Pro	Phe	Val
	Ser	Ser 50	Asp	Gly	Phe	Gln	Asn 55	Phe	Pro	Pro	Gly	Val 60	Leu	Ser	Leu	Lys
10	Leu 65	Ala	Asp	Pro	Ile	Ala 70	Ile	Val	Asn	Gly	Asn 75	Val	Ser	Leu	Lys	Val 80
15			Gly	٠	85			-	_	90		•			95	
			Pro	100		*			105				_	110		
20			Pro 115					120					125			_
		130	Leu				135					140			_	
25	145		Thr			150					155					160
		•	Asn		165					170					175	_
30			Phe	180				_	185		•			190	-	
			195 Gln					200					205			
35		210	Gln				215			•		220			-	-
40	225 Tyr					230		٠			235				_	240
40			Leu		245					250				_	255	
45			Lys	260					265	-				270		
			275 Tyr		•			280					285			
50		290	Pro				295					300				
	305		Ile		•	310					315					320
55			Phe		325					330					335	
,								2	- 1 -		-] ~					p

				340					345					350		
5	Phe		Trp 355	Ala	Lys	Thr	Tyr	Val 360	Asn	Val	Glu	Phe	Glu 365	Thr	Thr	Ser
-	Phe	Th <i>r</i> 370	Phe	Ser	Tyr	Ile	Ala 375	Gln	Glu							
10	<210 <211 <212 <213	> 39 > PR	1 T	ririo	lae										•	-
15	<220 <221 <222 <223	> VA > (1	.) (391)		oe 13	3 fib	er p	rote	ein"						
20	<400 Xaa 1	> 32 Xaa	: Xaa	Xaa	Xaa 5	Ser	Ala	Pro	Thr	Ile 10	Phe	Met	Leu	Leu	Gln 15	Met
25	Lys			20					25					30		
	_	_	35					40					45		Phe	
30		50	_				55					60			Leu	
	65					70					75				Lys	80
35	_		-	Gln	85				Lys	90				Val	95 Tyr	
40	Asp	Pro	Phe 115	100 Glu	Val	Ser	Thr	Asn 120	105 Lys	Leu	Ser	Leu	Lys 125	110 Val	Glý	His
•	Gly	Leu 130	Lys	Val	Leu	Asp	Asp 135	Lys	Ser	Ala	Gly	Gly 140		Lys	Asp	Leu
45	Ile 145	Gly	Lys	Leu	Val	Val 150		Thr	Gly	Lys	Gly 155	Ile	Gly	Ile	Glu	Asn 160
					165					170					Val 175	
50		_		180					185					190		Val
	Ala	Trp	Asn 195		Lys	Asp	Asp	Arg 200		Thr	Leu	Trp	205		Pro	Asp

Pro Ser Pro Asn Cys Lys Ala Glu Thr Glu Lys Asp Ser Lys Leu Thr

	210	215	220
5	Leu Val Leu Thr Lys Cys 225 230	-	Ala Thr Val Ser Ile 240
	Ile Val Leu Lys Gly Lys 245	Tyr Glu Phe Val Lys 250	Lys Glu Thr Glu Pro 255
10	Lys Ser Phe Asp Val Lys 260	Leu Leu Phe Asp Ser 265	Lys Gly Val Leu Leu 270
	Pro Thr Ser Asn Leu Ser 275	t Lys Glu Tyr Trp Asn 280	Tyr Arg Ser Tyr Asp 285
15	Asn Asn Ile Gly Thr Pro	Tyr Glu Asn Ala Val 295	Pro Phe Met Pro Asn 300
• .	Leu Lys Ala Tyr Pro Lys 305 310	_	Ser Asp Lys Ala Glu 320
20	Asn Lys Ile Ser Ser Ala 325	Lys Asn Lys Ile Val	Ser Asn Phe Tyr Phe 335
25	Gly Gly Gln Ala Tyr Glr 340	n Pro Gly Thr Ile Ile 345	Ile Lys Phe Asn Glu 350
25	Glu Ile Asp Glu Thr Cy: 355	360	365
30	Gly Lys Val Tyr Asp Ass 370	375	Thr Thr Ser Phe Thr 380
	Xaa Ser Tyr Ile Ala Gli 385 390		
35	<210> 33 <211> 290 <212> PRT <213> adenoviridae		
40	<220> <221> VARIANT <222> (1)(290) <223> /note="Serotype"	14 fiber protein"	
45	<400> 33 His Pro Phe Ile Asn Pro 1 5	o Gly Phe Ile Ser Pro 10	Asn Gly Phe Thr Gln 15
	Ser Pro Asp Gly Val Le	u Thr Leu Lys Cys Leu 25	Thr Pro Leu Thr Thr 30
50	Thr Gly Gly Ser Leu Gl 35	n Leu Lys Val Gly Gly 40	Gly Leu Thr Val Asp 45
55	Asp Thr Asp Gly Thr Le 50	u Gln Glu Asn Ile Gly 55	Ala Thr Thr Pro Leu
	Val Lys Thr Gly His Se	r Ile Gly Leu Ser Leu	Gly Ala Gly Leu Gly

	65					70					75					80
5	Thr	Asp	Glu	Asn	Lys 85	Leu	Cys	Thr	Lys	Leu 90	Gly	Glu	Gly	Leu	Thr 95	Phe
•	Asn	Ser	Asn	Asn 100	Ile	Cys	Ile	Asp	Asp 105	Asn	Ile	Asn	Thr	Leu 110	Trp	Thr
10	Gly	Val	Asn 115	Pro	Thr	Glu	Ala	Asn 120	Cys	Gln	Met	Met	Asp 125	Ser	Ser	Glu
	Ser	Asn 130	Asp	Cys	Lys	Leu	Ile 135	Leu	Thr	Leu	Val	Lys 140	Thr	Gly	Ala	Leu
15	Val 145	Thr	Ala	Phe	Val	Tyr 150	Val	Ile	Gly	Val	Ser 155	Asn	Asn	Phe	Asn	Met 160
20	Leu	Thr	Thr	Tyr	Arg 165	Asn	Ile	Asn	Phe	Thr 170	Ala	Glu	Leu	Phe	Phe 175	Asp
	Ser	Ala	Gly	Asn 180	Leu	Leu	Thr		Leu 185	Ser	Ser	Leu	Lys	Thr 190	Pro	Leu
25	Asn	His	Lys 195	Ser	Gly	Gln	Thr	Trp 200	Leu	Leu	Val	Pro	Leu 205	Leu	Met	Leu
	Lys	Val 210	Ser	Сув	Pro	Ala	Gln 215	Leu	Leu	Ile	Leu	Ser 220	Ile	Ile	Ile	Leu
30	Glu 225	Lys	Asn	Lys	Thr	Thr 230	Phe	Thr	Glu	Leu	Val 235	Thr	Thr	Gln	Leu	Val 240
	Ile	Thr	Leu	Leu	Phe 245	Pro	Leu	Thr	Ile	Ser 250	Val	Met	Leu	Asn	Gln 255	Arg
35	Ala	Ile	Arg	Ala 260	Asp	Thr	Ser	Tyr	Cys 265	Ile	Arg	Ile	Thr	Trp 270	Ser	Trp
	Asn	Thr	Gly 275	Asp	Ala	Pro	Glu	Gly 280	Gln	Thr	Ser	Ala	Thr 285	Thr	Leu	Val
40	Thr	Ser 290													•	٠
	<21	0> 3·	4			٠										
45	<21	1> 3- 2> Pi 3> a:	RT	viri	dae											
50	<22	1> V 2> (1)	(345		pe 2	0 fi	ber ;	prot	ein"						
		0> 3 Gln		Ile			Leu	Thr	Pro		Phe	Val	Ser	Ser	Asp	Gly
55	1 Leu		Asn	Phe	5 Pro		Gly	Val	Leu	10 Ser	Leu	Lys	Leu	Ala	15 Asp	

				20					25					30		
5	Ile	Ala	Ile 35	Val	Asn	Gly	Asn	Val 40	Ser	Leu	Lys	Val	Gly 45	Gly	Gly	Ile
	Thr	Val 50	Glu	Gln	Asp	Ser	Gly 55	Gln	Leu	Ile	Ala	Asn 60	Pro	Lys	Ala	Pro
. 10	Leu 65	Gln	Val	Ala	Asn	Asp 70	Lys	Leu	Glu	Leu	Ser 75	Tyr	Ala	Tyr	Pro	Phe 80
	Glu	Thr	Ser	Ala	Asn 85	Lys	Leu	Ser	Leu	Lys 90	Val	Gly	Gln	Gly	Leu 95	Lys
15	Val	Leu	Asp	Glu 100	Lys	Asp	Ser	Gly	Gly 105	Leu	Gln	Asn	Leu	Leu 110	Gly	Lys
			115				Lys	120					125			
20		130					Gly 135					140				
٠.	145	_				150	Asn				155					160
25	-				165		Thr			170					175	
			_	180			Val		185					190		
30		_	195				Ile	200					205			
25		210					Ile 215					220				
35	225		_			230					235					Ser 240
40					245		Trp			250					255	
				260					265	•				270		Ala
4 5			275					280					285			Asn
		290	•				295					300)			Tyr
50	305	•				310)				315	•				320
	_				325	5				33(TNI	. ryr	. nsp	335	Pro
55	île	Pro) Phe	340		. sei	Ser	. rne	345							

5	<210> 35 <211> 346 <212> PRT <213> adenoviridae
10	<220> <221> VARIANT <222> (1)(346) <223> /note="Serotype 23 fiber protein"
15	<400> 35 Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe Val Ser Ser Asp Gly Phe 1 5 10 15
	Gln Asn Phe Pro Pro Gly Val Leu Ser Leu Lys Leu Ala Asp Pro Ile 20 25 30
20	Ala Ile Thr Asn Gly Asp Val Ser Leu Lys Val Gly Gly Leu Thr 35 40 45
	Val Glu Gln Asp Ser Gly Asn Leu Lys Val Asn Thr Lys Ala Pro Leu 50 55 60
25	Gln Val Ala Ala Asp Lys Gln Leu Glu Ile Ala Leu Ala Asp Pro Phe 65 70 75 80
	Glu Val Ser Lys Gly Arg Leu Gly Ile Lys Ala Gly His Gly Leu Lys 85 90 95
30	Val Ile Asp Asn Ser Ile Ser Gly Leu Glu Gly Leu Val Gly Thr Leu 100 105 110
	Val Val Leu Thr Gly His Gly Ile Gly Thr Glu Asn Leu Leu Asn Asn 115 120 125
35	Asp Gly Ser Ser Arg Gly Val Gly Ile Asn Val Arg Leu Gly Lys Asp 130 135 140
	Gly Gly Leu Ser Phe Asp Lys Lys Gly Asp Leu Val Ala Trp Asn Lys 145 150 155 160
40	Lys Tyr Asp Thr Arg Thr Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn 165 170 175
	Cys Lys Val Ile Glu Ala Lys Asp Ser Lys Leu Thr Leu Val Leu Thr 180 185 190
45	Lys Cys Gly Ser Gln Ile Leu Ala Asn Met Ser Leu Leu Ile Leu Lys 195 200 205
50	Gly Thr Tyr Glu Tyr Ile Ser Asn Ala Ile Ala Asn Lys Ser Phe Thr 210 215 220
	Ile Lys Leu Leu Phe Asn Asp Lys Gly Val Leu Met Asp Gly Ser Ser 225 230 235 240
55	Leu Asp Lys Asp Tyr Trp Asn Tyr Lys Ser Asp Asp Ser Val Met Ser 245 250 255

	Lys	Ala		Glu 260	Asn	Ala	Val	Pro	Phe 265	Met	Pro	Asn	Leu	Lys 270	Ala	Tyr
5	Pro		Pro 275	Thr	Thr	Ser	Thr	Thr 280	Asn	Pro	Ser	Thr	Asp 285	Lys	Lys	Ser
		Gly 290	Lys	Asn	Ala	Ile	Val 295	Ser	Asn	Val	Tyr	Leu 300	Glu	Gly	Arg	Ala
10	Tyr 305	Gln	Pro	Val	Ala	Ile 310	Thr	Ile	Thr	Phe	Asn 315	Lys	Glu	Thr	Gly	Cys 320
15	Thr	Tyr	Ser	Met	Thr 325	Phe	Asp	Phe	Gly	Trp 330	Ser	Lys	Val	Tyr	Asn 335	Asp
	Pro	Ile	Pro	Phe 340	Asp	Thr	Ser	Ser	Leu 345	Thr			•			
•																
20	<21 <21	0> 30 1> 39 2> P1 3> ac	90 RT	viri	dae											
25	<22	1> V. 2> (1)	(390		pe 2	4 fi	ber	prot	.ein"						
30	<40 Ser 1	0> 3 Сув	6 Şer	Cys	Pro 5		: Ala	Pro	Thr	Ile 10		Met	Leu	. Leu	Gln 15	Met
	Lys	Arg	Ala	Arg 20		Ser	: Glu	Asp	Thr 25		: Asn	Pro	Val	. Tyr 30		Tyr
35	Gly	Туг	Ala 35		Asn	Glr	a Asn	11e		·Phe	e Lev	Thr	Pro 45		Phe	e Val
	Ser	Ser 50	_	Gly	Phe	Glr	Asn 55		Pro	Pro	G13	Val 60		ı Sei	Lev	ı Lys
40	65	i				70)				75	5				s Val 80
	GŢĀ	, Gly	Gly	Le	1 Thi 85		l Glu	Ly:	s Ası	9 .Se		, Ası	ı Le	u Ly:	9 Va	l Asn 5
45	Pro	Lys	Ala	100		ı Glı	n Val	Th:	10:		p Lys	s Gl	n Le	u Gl:	1 Il	e Ala
50			115	5				12	0				12	5		s Ala
		130)		·		13	5				14	0		٠.	y Leu
55	A1:		y Th	r Le	u Va	l Va 15		u Th	r Gl	y Ly	s Gl; 15		e Gl	y Th	r Gl	160

5	Leu	Glu	Asn	Ser	Asp 165	Gly	Ser	Ser	Arg	Gly 170	Val	Gly	Ile	Asn	Val 175	Arg
	Leu	Ala	Lys	Asp 180	Gly	Gly	Leu	Ser	Phe 185	Asp	Lys	Lys	Gly	Asp 190	Leu	Val ·
10	Ala	Trp	Asn 195	Ĺys	His	Asp	Asp	Arg 200	Arg	Thr	Leu	Trp	Thr 205	Thr	Pro	Asp
	Pro	Ser 210	Pro	neA	Cys	Thr	Ile 215	Asp	Gln	Glu	Arg	Asp 220	Ser	Lys	Leu	Thr
15	Leu 225	Val	Leu	Thr	Lys	Cys 230	Gly	Ser	Gln	Ile	Leu 235	Ala	Asn	Val	Ser	Leu 240
					245					250				Thr	255	
20	Thr	Asp	Lys	Lys 260	Ile	Thr	Val	Lys	Leu 265	Leu	Phe	Asn	Glu	Lys 270	Gly	Val
	Leu	Met	Asp 275		Ser	Thr	Leu	Lys 280		Glu	Tyr	Trp	Asn 285	Tyr	Arg	Asn
25	Asp	Asn 290		Thr	Val	Ser	Gln 295		Tyr	Asp	Asn	Ala 300	Val	Pro	Phe	Met
20	Pro 305		Ile	Lys	Ala	Tyr 310		Lys	Pro	Thr	Thr 315	Asp	Thr	Ser	Ala	Lys 320
30					325	1				330	ì			Ser	335	
35	_			340)				345	5				: Ile 350		
			355	i				360)				365	5		Trp
40	Ala	1 Lys 370		Phe	Glu	Asp	Val 375		Phe	e Asp	Ser	380	Se)	. Phe	Thr	Phe
	Se:		: Ile	Ala	Glr	1 · Glu 39(
45	<2: <2:	10> 3 11> 3 12> 1 13> 4	375	ovir:	idae											
50	<2: - <2:	22>	VARIA (1). /not	. (37	5) erot	ype :	25 f:	iber	pro	tein	Ħ					
55	Se	00> r Cy 1	37 s Se	r Cy		o Se 5	r Al	a Pr	o Th		e Ph O	e Me	t Le	u Le	u Gla	n Met 5

	Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25	Phe	Asn	Pro	Val	Tyr 30	Pro	Tyr
5	Gly	Tyr	Ala 35	Arg	Asn	Gln	Asn	Ile 40	Pro	Phe	Leu	Thr	Pro 45	Pro	Phe	Val
	Ser	Ser 50	Asp	Gly	Phe	Gln	Asn 55	Phe	Pro	Pro	Gly	Val 60	Leu	Ser	Leu	Lys
10	Leu 65	Ala	Asp	Pro	Ile	Thr 70	Ile	Ser	Asn	Gly	Asp 75	Val	Ser	Leu	Lys	Val 80
	Gly	Gly	Gly	Leu	Thr 85	Val	Glu	Gln	Asp	Ser 90		Asn	Leu	Ser	Val 95	Asn
15	Pro	Lys	Ala	Pro 100	Leu	Gln	Val	Gly	Thr 105	Asp	Lys	Lys	Leu	Glu 110	Leu	Ala
20	Leu	Ala	Pro 115	Pro	Phe	Asn	Val	Lys 120	Asp	Asn	Lys	Leu	Asp 125	Leu	Leu	Val
	Gly	Asp 130	Gly	Leu	Lys	Val	Ile 135	Asp	ГÀЗ	Ser	Ile	Ser 140	Xaa	Leu	Pro	Gly
25	145			-		150				-	155					160
					165		GŢĀ			170					175	
30			_	180	_				185					190		Leu
	Val	Ala	Trp 195	Asn	Lys	Lys	His	Asp 200	lle	Arg	Thr	Leu	Trp 205	Thr	Thr	Leu
35		210			•	_	215			,	-	220	_			Leu
	Thr 225		Val	Ļeu	Thr	Lys 230	_	Gly	Ser	Gln	11e 235		Ala	Asn	Val	Ser 240
40	Leu	Leu	Val	Val	Lys 2 4 5	-	Arg	Phe	Gln	Asn 250		Asn	Tyr	Lys	Thr 255	Asn
	Pro	Asn	Leu	Pro 260	-	Thr	Phe	Thr	11e 265	_	Leu	Leu	Phe	Asp 270	Glu	Asn
45	Gly	Ile	Leu 275	-	Asp	Ser	Ser	Asn 280		Asp	Lys	Asn	Tyr 285	-	Asn	Tyr
	Arg	290	_	Asn	Ser	Ile	295		Glu	Gln		300		Ala	Val	Gly
50	Phe 305		Pro	Asn	Leu	310		Туг	Pro	Lys	Ser 315		Thr	Thr	Gln	Ser 320
	Lys	Lev	Туг	Ala	325		Thr	Ile	Phe	Gly 330		Ile	Tyr	Leu	Asp 335	Ser

	Gln	Ala		Asn 340	Pro	Val	Val	Ile	Lys 345	Ile	Thr	Phe	Asn	Gln 350	Glu	Ala
	Asp	Ser			Ser	Ile	Thr	Leu		Tyr	Ser	Trp	Gly	Lys	Asp	Tyr
5			355					360	•				365			
	Glu	Asn 370	Ile	Pro	Phe	Asp	Ser 375									
10															,	
	<211 <212	> 38 .> 33 !> PR !> ad	5 T	ririd	lae											
15	<220)>														÷
	<222	.> VA ?> (1	.)(335)								•			,	
	<223	3> /r	ote=	"Ser	oty	e 27	fik	er p	rote	≥in"						
20	<400 Ile 1)> 36 Pro	Phe	Leu	Thr 5	Pro	Pro	Phe	Val	Ser 10	Ser	Asp	Gly	Phe	Lys 15	Asn
25	Phe	Pro	Pro	Gly 20	Val	Leu	Ser	Leu	Lys 25	Leu	Ala	Asp	Pro	Ile 30	Thr	Ile
	Thr	Asn	Gly 35	Asp	Val	Ser	Leu	Lys 40	Val	Gly	Gly	Gly	Leu 45	Val	Val	Glu
30	Lys	Glu 50	Ser	Gly	Lys	Leu	Ser 55	Val	Asp	Pro	Lys	Thr 60		Leu	Gln	Val
	65	Ser				70					75					. 80
35		Asn			85					90					95	
	_	Asn		100					105					110		
40		Thr	115					120					125			
		Lys 130					135					140				
4 5	145					150					155					Asp 160
		Arg			165					170					175	
50				180					185					190		Gly
	Ser	Gln	Ile 195		Gly	Asn	. Val	Ser 200		Leu	Ala	Val	. Ser 205		Lys	Tyr
55																

	Leu A	Asn 1 210	Met	Thr	Lys	Asp	Glu 215	Thr	Gly	Val	_	11e 220	Ile	Leu	Leu	Phe
5	Asp / 225	Arg .	Asn	Gly	Val	Leu 230	Met	Gln	Glu	Ser	Ser 235	Leu	Asp	Lys	Glu	Tyr 240
	Trp 1	Asn	Tyr	Arg	Asn 245	Asp	Asn	Asn	Val	Ile 250	Gly	Thr	Pro	Tyr	Glu 255	Asn
10	Ala '	Val	Gly	Phe 260	Met	Pro	Asn	Leu	Val 265	Ala	Tyr	Pro	Lys	Pro 270	The	Ser
15	Ala	Asp	Ala 275	Lys	Asn	Tyr	Ser	Arg 280	Ser	Lys	Ile	Ile	Ser 285	Asn	Val	Tyr
	Leu	Lys 290	Gly	Leu	Ile	Tyr	Gln 295	Pro	Val	Ile	Ile	Ile 300	Ala	Ser	Phe	Asn
20	Gln 305	Glu	Thr	Thr	Asn	Gly 310	Cys	Val	Tyr	Ser	Ile 315	Ser	Phe	Asp	Phe	Thr 320
	Суз	Ser	Lys	Asp	Tyr 325	Thr	Gly	Gln	Gln	Phe 330	Asp	Val	Thr	Ser	Phe 335	
25	<210 <211 <212	> 3	74													
	<213	> a	deno	viri	dae											
30	<220 <221 <222)> .> V) :> (:	ARIA	NT (374)	pe 2	8 fi	ber	prot	ein"						
30 35	<220 <221 <222 <223	> > V > (> /	ARIA 1) note	NT (374 ="Se) roty	pe 2 Ser						Met	Leu	Leu	Gln 15	
	<220 <221 <222 <223 <400 Ser 1)> > V; > (; > /; Cys	ARIA 1) note 9 Ser	NT (374 ="Se Cys) roty Pro 5	Ser	Ala	Pro	Thr	Ile 10 Phe				•	15 Pro	
	<220 <221 <222 <223 <400 Ser 1	> V; > (; > /; > 3 Cys	ARIA l) note 9 Ser Ala	NT (374 ="Se Cys Arg 20) roty Pro 5	Ser Ser	Ala Glu	Pro	Thr Thr 25	Ile 10 Phe	Asn	Pro	Val	Tyr 30	15 Pro	
35	<220 <221 <222 <223 <400 Ser 1 Lys	> V; > (: > :> (: > /: Cys Arg	ARIA 1) note 9 Ser Ala Ala 35	NT (374 ="Se Cys Arg 20	Pro Pro Pro Pro	Ser Ser	Ala Glu Asn	Pro Asp Ile	Thr Thr 25	Ile 10 Phe	Asn Leu	Pro	Val	Tyr 30 Pro	Pro	Tyr
· 35	<220 <221 <222 <223 <400 Ser 1 Lys Gly Ser	>> V:> (: >> (: >> /: >> 3 Cys Arg Tyr Ser 50	ARIA 1) 9 Ser Ala Ala 35	NT (374 ="Se Cys Arg 20 Arg	Proty Pro	Ser Ser Gln	Ala Glu Asn 55	Pro Asp Ile 40	Thr 25 Pro	Ile 10 Phe Phe	Asn Leu Gly	Pro Thr Val 60	Val	Tyr 30 Pro	Pro Phe Leu	Tyr Val
35 40 45	<220 <221 <222 <223 <400 Ser 1 Lys Gly Ser Leu 65	>> V:> V:> (:> (:> (:> (:> (:> (:	ARIA 1) note 9 Ser Ala Ala 35 Asp	NT (374 ="Se Cys Arg 20 Arg	Proty Pro Asn Phe	Ser Ser Glm Glm Thr 70	Ala Glu Asn 55	Pro Asp Ile 40 Phe	Thr 25 Pro	The 10 Phe Phe Pro	Asn Leu Gly Asp 75	Pro Thr Val	Val	Tyr 30 Pro	Pro Phe Leu	Tyr Val Lys Leu 80 Asn
35	<pre><220 <221 <222 <223 <400 Ser 1 Lys Gly Ser Leu 65</pre>	> V/ > () () > () /) > 3 Cys Arg Tyr Serr 50 Ala	ARIAA 1) note 9 Ser Ala 35 Asp Asp	NT (374 ="Se Cys Arg 20 Arg	Proty Pro Pro Asn Phe Thi 85	Ser Ser Gln Cln CVal	Ala Glu Asn 55	Pro Asp Ile 40 Phe	Thr 25 Pro	The 100 Phe Pro Gly Ser 900 Ct Gly Ct Gly	Asn Leu Gly Asp 75	Pro Thr Val 60 Val	Val Pro 45 Leu Ser	Tyr 30 Pro Ser Leu	Pho Phe Leu Lys Val	Tyr Val Lys Leu 80 Asn

·	His	Gly 130	Leu	Ala	Val	Val	Thr 135	Lys	Asp	Asn	Thr	Asp 140	Leu	Gln	Pro	Leu
5	Met 145	Gly	Thr	Leu	Val	Val 150	Leu	Thr	Gly	Lys	Gly 155	Ile	Gly	Thr	Gly	Thr 160
	Ser	Ala	His	Gly	Gly 165	Thr	Ile	Asp	Val	Arg 170	Ile	Gly	Lys	Asn	Gly 175	Ser
10	Leu	Ala	Phe	Asp 180	Lys	Asn	Gly	Asp	Leu 185	Val	Ala	Trp	λѕр	Lys 190	Glu	Asn
	Asp	Arg	Arg 195	Thr	Leu	Trp	Thr	Thr 200	Pro	Asp	Thr	Ser	Pro 205	Asn	Cys	Lys
15	Met	Ser 210	Glu	Val	Lys	Asp	Ser 215	Lys	Leu	Thr	Leu	11e 220	Leu	Thr	Lys	Cys
	Gly 225		Gln	Ile	Leu	Gly 230	Ser	Val	Ser	Leu	Leu 235	Ala	Val	Lys	Gly	Glu 240
	Tyr	Gln	Asn	Met	Thr 245	Ala	Ser	Thr	Asn	Lys 250		Val	Lys	Ile	Thr 255	Leu
25	Leu	Phe	Asp	Ala 260		Gly	Val	Leu	Leu 265		Gly	Ser	Ser	Leu 270	Asp	Lys
• •		_	275					280					285			
30		290		Val			295					300				
	305	i		Ser		310					315					320
35	_	•			325					330	1				335	
				340	١				345		•			350		Cys
40		_	355				٠	Gln 360		: Asp	Val	Thr	Ser -365		Thr	Phe
	Sei	370		: Ala	Gln	Glu	Į.									
45									,							
50	<2: <2:	10> 4 11> 3 12> 1 13> a	343 PRT	oviri	dae			•								
	<2: <2:	22>		ANT . (343 =="Se		me 1	og es	ber	prof	ein'				-		
55		00>		,- J	-2003	, , , ,										

	Gln 1	Asn	Ile	Pro	Phe 5	Leu	Thr	Pro	Pro	Phe 10	Val	Ser	Ser	Asp	Gly 15	Phe
5	Lys	Asn	Phe	Pro 20	Pro	Gly	Val	Leu	Ser 25	Leu	Lys	Leu	Ala	Asp 30	Pro	Ile
	Ala	Ile	Thr 35	Asn	Gly	Asp	Val	Ser 40	Leu	Lys	Val	Gly	Gly 45	Gly	Leu	Thr
10	Val	Glu 50	Gln	Asp	Ser	Gly	Asn 55	Leu	Ser	Val	Asn	Pro 60	Lys	Ala	Pro	Leu
	Gln 65	Val	Gly	Thr	Asp	Lys 70	Lys	Leu	Glu	Leu	Ala 75	Leu	Ala	Pro	Pro	Phe 80
15					85					90					Leu 95	
20				100					105					110	Tyr	
			115		_	-	_	120					125		Asn	
25	_	130					135					140			Glu	
	145					150		•			155				Asn	160
30					165					170		. ,			175	
	-	-		180			•	Ī	185					190	Leu Val	
35			195				٠	200	1				205		Pro	
		210					215					220			Leu	
40	225				•	230			-		235	-			Asp	240
4 5					245					250					255 Asn	
				260		_	-		265			,		270		Arg
50			275					280					285		Asn	-
		290		,			295					300				Ser
55	305	ı		_		310					315	•			•	320 Phe
							-				- 4 -					

Asp Ser Thr Ser Phe Thr Ser 340

<210> 41 <211> 386 <212> PRT 10 <213> adenoviridae <220> <221> VARIANT <222> (1)..(386) 15 <223> /note="Serotype 30 fiber protein" <400> 41 Ser Cys Ser Cys Pro Ser Ala Pro Thr Ile Phe Met Leu Leu Gln Met 10 20 Lys Arg Ala Arg Pro Ser Xaa Asp Thr Phe Asn Pro Val Tyr Pro Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Xaa Thr Pro Pro Phe Val 40 25 Xaa Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu Lys Leu Ala Asp Pro Ile Ala Ile Thr Asn Gly Asp Val Ser Leu Lys Val 30 Gly Gly Gly Leu Thr Val Glu Gln Asp Ser Gly Asn Leu Ser Val Asn Xaa Lys Ala Pro Leu Gln Val Gly Thr Asp Lys Lys Leu Glu Leu Ala 35 105 Leu Ala Pro Pro Phe Asp Val Arg Asp Asn Lys Leu Ala Ile Leu Val 120 Gly Asp Gly Leu Lys Val Ile Asp Arg Ser Ile Ser Asp Leu Pro Gly 40 135 Leu Leu Asn Tyr Leu Val Val Xaa Thr Gly Lys Gly Ile Gly Asn Glu Glu Leu Lys Asn Asp Asp Gly Ser Asn Lys Gly Val Gly Leu Cys Val 45 Arg Ile Gly Glu Gly Gly Leu Thr Xaa Asp Asp Lys Gly Tyr Leu Val Ala Trp Asn Asn Lys His Asp Ile Arg Thr Leu Trp Thr Thr Leu

Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Asn Val Ser

Asp Pro Ser Pro Asn Cys Lys Ile Asp Ile Glu Lys Asp Ser Lys Leu

200

195

	225	230	235 240	
5	Leu Ile Ile Val Asr 245	- -	Leu Asn Asn Lys Thr Asp 255	
	Pro Ser Leu Pro Lys 260	S Ser Phe Asn Ile Lys 265	Leu Leu Phe Asp Gln Asn 270	
10	Gly Val Leu Leu Glu 275	ı Asn Ser Asn Ile Glu 280	Lys Gln Tyr Leu Asn Phe 285	
	Arg Ser Gly Asp Ser 290	r Ile Leu Pro Glu Pro 295	Tyr Lys Asn Ala Ile Gly	,
15	Phe Met Pro Asn Let 305	u Leu Ala Tyr Ala Lys 310	Ala Thr Thr Asp Gln Ser 315 320	
· .	Lys Ile Tyr Ala Arc		Asn Ile Tyr Leu Asp Asn 335	,
20	Gln Pro Tyr Asn Pro 340	o Val Val Ile Lys Ile 345	Thr Phe Asn Asn Glu Ala 350	٠
	Asp Ser Ala Tyr Se 355	r Ile Thr Phe Asn Tyr 360	Ser Trp Thr Lys Asp Tyr 365	•
25	Asp Asn Ile Pro Pho 370	e Asp Ser Thr Ser Phe 375	Thr Phe Ser Tyr Ile Ala 380	
	Gln Glu 385	•		
30	101 05 42			
· 35	<210> 42 <211> 391 <212> PRT <213> adenoviridae			
	<220> <221> VARIANT <222> (1)(391)			
40		ype 32 fiber protein"		
	-	o Ser Ala Pro Thr Ile 5 10	Phe Met Leu Leu Gln Met 15	:
45	Lys Arg Ala Arg Pr 20	o Ser Glu Asp Thr Phe 25	Asn Pro Val Tyr Pro Tyr 30	Ξ
	Gly Tyr Ala Arg As 35	n Gln Asn Ile Pro Phe 40	Leu Thr Pro Pro Phe Val	Ĺ
50	Ser Ser Asp Gly Ph 50	e Gln Asn Phe Pro Pro 55	Gly Val Leu Ser Leu Lys 60	3
55	Leu Ala Asp Pro Il 65	e Thr Ile Ala Asn Gly 70	Asn Val Ser Leu Lys Val 75 80	
	Gly Gly Gly Leu Th	r Leu Glu Gln Asp Ser	Gly Lys Leu Ile Val Asn	1

					85					90					95	
<i>5</i>	Pro	Lys	Ala	Pro 100	Leu	Gln	Val	Ala	Asn 105	Asp	Lys	Leu	Glu	Leu 110	Ser	Tyr
	Ala	Asp	Pro 115	Phe	Glu	Thr	Ser	Ala 120	Asn	Lys	Leu	Ser	Leu 125	Lys	Val	Gly
10.	His	Gly 130	Leu	Lys	Val	Leu	Asp 135	Glu	Lys	Asn	Ala	Gly 140	Gly	Leu	Lys	Asp
	Leu 145	Ile	Gly	Thr	Leu	Val 150	Val	Leu	Thr	Gly	Lys 155	Gly	Ile	Gly	Val	Glu 160
15	G1 u	Leu	Lys	Asn	Ala 165	Asp	Asn	Thr	Asn	Arg 170	Gly	Val	Gly	Ile	Asn 175	Val
	Λrg	Leu	Gly	Lys 180	Asp	Gly	Gly	Leu	Ser 185	Phe	Λsp	Lys	Lys	Gly 190	Asp	Leu
20	Val	Ala	Trp 195	Asn	Lys	His	Asp	Asp 200	Arg	Arg	Thr	Leu	Trp 205	Thr	Thr	Pro
	_	210					215		*	Glu		220				
25	225					230			,	Gln	235					240
30	Leu	Leu	Val	Val	Lys 245	Gly	Lys	Phe	Ser	Asn 250	Ile	Asn	Asn	Asn	Thr 255	
	Pro	Thr	Asp	Lys 260	-	Ile	Thr	Val	Lys 265	Leu	Leu	Phe	Asn	Glu 270	Lys	Gly
35			275					280		Lys			285			
		290					295			Tyr		300				
40	305					310	-			Pro	315		-			320
•	-			-	325	_				330		-			335	•
45	Val	Tyr	Ile	Gly 340		Leu	Pro	Asp	Lys 345	Thr	Val	Val	Ile	Thr 350		Lys
	Leu	Asn	Ala 355		Thr	Glu	Ser	Ala 360		: Ser	Met		Phe 365		Phe	Thr
50	Trp	Ala 370	_	Thr	Phe	Glu	Asn 375		Gln	Phe	: Asp	380		: Ser	Phe	Thr
	Phe 385		Tyr	Ile	Ala	Gln 390		l								

	<211 <212	> 43 > 39 > PR	0 T	irid	ae											
5	<222	> > VA > (1 > /n) (390)	otyp	e 33	fib	er p	rote	in"						
10																
)> 43 Cys		Cys	Pro 5	Ser	Ala	Pro	Thr	Ile 10	Phe	Met	Leu	Leu .	Gln 15	Met
15	Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25	Phe	Asn	Pro	Val	Tyr 30	Pro	Tyr
	ela	Tyr	Ala 35	Arg	Asn	Gln	Asn	Ile 40	Pro	Phe	Leu	Thr	Pro 45	Pro	Phe	Val
20	Ser	Ser 50	Asp	Gly	Phe	Lys	Asn 55	Phe	Pro	Pro	Gly	Val 60	Leu	Ser	Leu	Lys
	Leu 65	Ala	Asp	Pro	Ile	Thr 70	Ile	Thr	Asn	Gly	Asp 75	Val	Ser	Leu	Lys	Val 80
25	Gly	Gly	Gly	Leu	Thr 85	Leu	Gln	Glu	Gly	Ser 90	Leu	Thr	Val	Asn	Pro 95	Lys
	Ala	Pro	Leu	Gln 100	Leu	Ala	Asn	Asp	Lys 105	Lys	Leu	Glu	Leu	Vál 110	Tyr	Asp
30	Asp	Pro	Phe 115	Glu	Val	Ser	Thr	Asn 120	Lys	Leu	Ser	Leu	Lys 125	Val	Gly	His
35	Gly	Leu 130	Lys	Val	Leu	Asp	Asp 135		Ser	Ala	Gly	Gly 140		Gln	Asp	Leu
•	Ile 145	_	Lys	Leu	Val	Val 150		Thr	Gly	Lys	Gly 155		Gly	Ile	Glu	Asn 160
40					165					170					175	
		-		180				٠.	185					190		Val
45			195					200					205			Asp
	Pro	Ser 210		Asn	Cys	Lys	215		Thr	Glu	Lys	220		Lys	Leu	Thr
50	225	i		,		230)				235	i				11e 240
	Il€	val	. Lev	Lys	Gly 245		Tyr	: Glu	Phe	Val 250		Lys	Glu	Thr	Glu 255	Pro
55	Lys	S Ser	Phe	260		. Lys	. Lev	ı Lev	265		Ser	. Lys	Gly	Val 270		l Leu

	Pro	Thr	Ser 275	Asn	Leu	Ser	Lys	Glu 280	Tyr	Trp	Asn	Tyr	Arg 285	Ser	Tyr	Asp	
5	Asn	Asn 290	Ile,	Gly	Thr	Pro	Tyr 295	Glu	Asn	Ala	Val	Pro 300	Phe	Met	Pro	Asn	
10	305					310	Pro				315					320	
		_			325		Lys			330					335		
15		_		340			Pro		345					350			
		•	355				Ala	360					365				
20		370		,			Pro 375	Phe	Pro	Phe	Asp	380	Thr	Ser	Phe	Thr	
	Phe 385	Ser	Tyr	Ile	Ala	Gln 390	Glu										
25	<21 <21	0> 4 1> 3 2> P	37	wi ri	dae												
30		1> V	ARIA														
ne.	<22	3> /				pe 3	4 fil	ber	prot	ein"							
35	Ser 1		Ser		5	•	Ala			10					15		
40	_			. 20	1				25					30		Tyr	
			35	5				40					45	•		Ile	
45	Se	Pro 5		ı Gly	/ Phe	th:	: Gln 55		Pro	AST	Gly	60	L Let	ı Tni	reu	Lys	
				_	_		- 1	. m	- 61.					. T.O.	Tue	. Val	
	6	5				70)				75	•				Val 80	
50	6! G1:	S y Gl	y Gl	y Let	1 Th:	70 r Val) L Asp) Asp	Thr	: Ası 90	75 Gly	Th:	r Lei	u Glr	Lys 95	80 S Asn	
50 55	6! Gl;	y Gl	y Gly	y Let a Th: 10	Thi 8! Thi	70 r Val	Asp	Asp Thi	Lys 105	Ası 90 Ası	75 o Gly o Asr	Th:	r Let	u Glr r Val	Lys 95 L Glu	80 Asn	

•	Leu	Gly 130	Asn	Gly	Leu	Lys	Phe 135	Asn	Asn	Gly	Asp	Ile 140	Сув	Ile	Lys	Asp
	Ser 145	Ile	Asn	Thr	Leu	Trp 150	Thr	Gly	Ilė	Asn	Pro 155	Pro	Pro	Asn	Cys	Gln 160
10	Ile	Val	Glu	Asn	Thr 165	Asn	Thr	Asn	Asp	Gly 170	Lys	Leu	Thr	Leu	Val 175	Leu
	Val	Lys	Asn	Gly 180	Gly	Leu	Val	Asn	Gly 185	Tyr	Val	Ser	Leu	Val 190		Val
15	Ser	Ąsp	Thr 195	Val	Asn	Gln	Met	Phe 200	Thr	Gln	Lys		Ala 205	Asn	Ile	Gln
	Leu	Arg 210	Leu	Tyr	Phe	Asp	Ser 215	Ser	Gly	Asn	Leu	Leu 220	Thr	Asp	Glu	Ser
20	Asp 225	Leu	Lys	Ile	Pro	Leu 230	Lys	Asn	Lys	Ser	Ser 235	Thr	Ala	Thr	Ser	Glu 240
	Thr	Val	Ala	Ser	Ser 245	Lys	Ala	Phe	Met	Pro 250	Ser	Thr	Thr	Ala	Tyr 255	Pro
25	Phe	Asn	Thr	Thr 260	Thr	Arg	Asp	Ser	Glu 265	Asn	Tyr	Ile	His	Gly 270	Ile	Cys
	Tyr	Tyr	Met 275		Ser.	Tyr	Asp	Arg 280		Leu	Phe	Pro	Leu 285	Asn	Ile	Ser
30	Ile	Met 290		Asn	Ser	Arg	Met 295		Ser	Ser	Asn	Val 300		Tyr	Ala	Ile
35	Gln 305		Glu	Trp	Asn	Leu 310		Ala	Ser	Glu	Ser 315		Glu	Lys	Gln	His 320
	Met	Thr	Leu	Thr	Thr 325		Pro	Phe	Phe	Phe 330		Tyr	Ile	Ile	Glu 335	Asp
	Asp	Asn														
40																
45	<21 <21	0> 4 1> 3 .2> P .3> a	37	viri	.dae								•			
		1> V	/ARIA											•		
50						ηpe 3	5 fi	.ber	prot	ein"	•					
		-		: Cys	Pro	_	: Ala	Pro	Thi	: Ile		: Met	: Leu	Let	Glr 15	n Met
55	Lys	s Arq	g Ala	Arc 20		Se:	: Glu	Asp	25 25		e Asr	Pro	Va]	Ту1 30		o Tyr

	Glu	Asp	Glu 35	Ser	Thr	Ser	Gln	His 40	Pro	Phe	Ile	Asn	Pro 45	Gly	Phe	Ile
5	Ser	Pro 50	Asn	Gly	Phe	Thr	Gln 55	Ser	Pro	Asp	Gly	Val 60	Leu	Thr	Leu	Lys
10	Cys 65	Leu	Thr	Pro	Leu	Thr 70	Thr	Thr	Gly	Gly	Ser 75	Leu	Gln	Leu	Lys	Val 80
	Gly	Gly	Gly	Leu	Thr 85	Val	Asp	Asp	Thr	Asp 90	Gly	Thr	Leu	Gln	Glu 95	Asn
15				100					105	Asn				110		
		٠	115					120		Asn			125			
20		130					135			Gly		140				
	145					150				Asn	155		٠			160
25					165					Gly 170					175	
		_		180					185					190		
30			195					200		Gln			205			
35		210	-				215			Asn		220				•
	225		_			230				Ser	235					240
40					245					250					255	
				260					265					270		
45			275					280		Leu			285			Ile
		290					295	•				300				
50	305					310	1				315	•				Ile 320
				TNE	325		. Pro	rne	: PNE	330		. iyi			335	Asp
55	Asp	Asn	l .													

5	<210> 46 <211> 392 <212> PRT <213> adenoviridae	
10	<220> <221> VARIANT <222> (1)(392) <223> /note="Serotype 36 fiber protein"	
15	<400> 46 Ser Cys Ser Cys Pro Ser Ala Pro Thr Ile Phe Met Leu Leu Gln M 1 5 10 15	
	Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro T 20 25 30	ÇÀL
20	Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe V 35 40 45	/al
	Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu I 50 55 60	Lys
25	Leu Ala Asp Pro Ile Ala Ile Val Asn Gly Asp Val Ser Leu Lys V 65 70 75	Val 80
	Gly Gly Gly Leu Thr Val Glu Gln Asp Ser Gly Lys Leu Lys Val A	Asn
30	Pro Lys Ile Pro Leu Gln Val Val Asn Asp Gln Leu Glu Leu Ala 100 105 110	Thr
	Asp Lys Pro Phe Lys Ile Glu Asn Asn Lys Leu Ala Leu Asp Val 6	Gly
35	His Gly Leu Lys Val Ile Asp Lys Thr Ile Ser Asp Leu Gln Gly 130 135 140	Leu
40	Val Gly Lys Leu Val Val Leu Thr Gly Val Gly Ile Gly Thr Glu 145 150 155	Thr 160
40	Leu Lys Asp Lys Asn Asp Lys Val Ile Gly Ser Ala Val Asn Val 165 170 175	Arg
45	Leu Gly Lys Asp Gly Gly Leu Asp Phe Asn Lys Lys Gly Asp Leu 180 185 190	Val
	Ala Trp Asn Arg Tyr Asp Asp Arg Arg Thr Leu Trp Thr Thr Pro 195 200 205	Asp
50	Pro Ser Pro Asn Cys Lys Val Ser Glu Ala Lys Asp Ser Lys Leu 210 215 220	Thr
	Leu Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Ser Val Ala 225 230 235	Leu 240
55	Leu Ile Val Lys Gly Lys Tyr Gln Thr Ile Ser Glu Ser Thr Ile 245 250 255	Pro

		Lys	Asp	Gln	Arg 260	Asn	Phe	Ser	Val	Lys 265	Leu	Met	Phe	qaA	Glu 270	Lys	Gly
<i>š</i>		Lys	Leu	Leu 275	Asp	Lys	Ser	Ser	Leu 280	Asp	Lys	Glu	Tyr	Trp 285	Asn	Phe	Arg
		Ser	Asn 290	Asp	Ser	Val	Val	Gly 295	Thr	Ala	Tyr	Asp	Asn 300	Ala	Val	Pro	Phe
10		Met 305	Pro	Asn	Leu	Lys	Ala 310	Tyr	Pro	Lys	Asn	Thr 315	Thr	Thr	Ser	Ser	Thr 320
		Asn	Pro	Asp	Asp	Lys 325	Ile	Ser	Ala	Gly	Lys 330	Lys	Asn	Ile	Val	Ser 335	Asn
15		Val	Tyr	Leu	Glu 340	Gly	Arg	Val	Tyr	Gln 345	Pro	Val	Ala	Leu	Thr 350	Val	Lys
20		Phe	Asn	Ser 355	Glu	Asn	Asp	Cys	Ala 360	Tyr	Ser	Ile	Thr	Phe 365	Asp	Phe	Val
		Trp	Ser 370	Lys	Thr	Tyr	Glu	Ser 375	Pro	Val	Ala	Phe	Asp 380	Ser	Ser	Ser	Phe
25		Thr 385	Phe	Ser	Tyr	Ile	Ala 390	Gln	Glu						•	•	
30		<21 <21	0> 4° 1> 3° 2> P° 3> a°	BO RT	virio	dae											
35		<22	1> V 2> (1)	NT (380 ="Se		pe 3'	7 fil	ber]	prot	ein"				•		
	•		-		Cys	Pro 5	Ser	Ala	Pro	Thr	Ile 10	Phe	Met	Leu	Leu	Gln . 15	Met
40		Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25	Phe	Asn	Pro	Val	Tyr 30	Pro	Tyr
45		Gly	Tyr	Ala 35	Arg	Asn	Gln	Asn	Ile 40	Pro	Phe	Leu	Thr	Pro 45	Pro	Phe	Val
		Ser	Ser .50	-	Gly	Phe	Lys	Asn 55	Phe	Pro	Pro	Gly	Val 60	Leu	Ser	Leu	Lys
50		Leu 65		Asp	Pro	Ile	Thr 70	Ile	Thr	Asn	Gly	Asp 75	Val	Ser	Leu	Lys	Val 80
		Gly	Gly	Gly	Leu	Thr 85		Gln	Asp	Gly	Ser 90	Leu	Thr	Val	Asn	Pro 95	Lys
55		Ala	Pro	Leu	Gln 100		Asn	Thr	Asp	Lys 105	_	Leu	Glu		Ala 110	Týr	gzA

	Asn	Pro	Phe 115	Glu	Ser	Ser	Ala	Asn 120	Lys	Leu	Ser	Leu	Lys 125	Val	Gly	His
5	Gly	Leu 130	Lys	Val	Leu	Asp	Glu 135	Lys	Ser	Ala	Ala	Gly 140	Leu	Lys	Asp	Leu
	Ile 145	Gly	Lys	Leu	Val	Val 150	Leu	Thr	Gly	Lys	Gly 155	Ile	Gly	Thr	Glu	Asn 160
10	Leu	Glu	Asn	Thr	Asp 165	Gly	Ser	Ser	Arg	Gly 170	Ile	Gly	Ile	Asn	Val 175	Arg
15	Ala	Arg	Glu	Gly 180	Leu	Thr	Phe	Asp	Asn 185	Asp	Gly	Tyr	Leu	Val 190	Ala	Trp
	Asn	Pro	Lys 195	Tyr	Asp	Leu	Arg	Thr 200	Leu	Trp	Thr	Thr	Pro 205	Asp	Thr	Ser
20	Pro	Asn 210	Cys	Thr	Ile	Ala	Gln 215	Asp	Lys	Asp	Ser	Lys 220	Leu	Thr	Leu	Val
	225	Thr	-	-	_	230		,			235					240
25		Ala			245				,	250					255	
	•	Ser	•	260		-			265		•		•	270		
30		Asn	275					280					285		_	•
		Asn 290					295					300				-
35	305	Val				310					315		-			320
40		Val Ile			325					330					335	_
		Phe		340					345					350		
45		Thr	355					360				•	365	GIU	rne	GIU
	****	370		THE	****	THE	375	_	110	744		380				
50	<21 <21	0> 40 1> 30 2> P0 3> a0	91 RT	viri:	dae											
55		0> 1> V 2> ()	٠									٠	

	<223	> /n	ote=	"Ser	otyp	e 38	fib	er p	rote	in"						
5	<400 Ser 1)> 48 Cys	Ser	Cys	Pro 5	Ser	Ala	Pro	Thr	Ile 10	Phe	Met _.	Leu	Leu	Gln 15	Met
	Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25	Phe	Asn	Pro	Val	Tyr 30	Pro	Туг
10	Gly	Tyr	Ala 35	Arg	Asn	Gln	Asn	Ile 40	Pro	Phe	Xaa	Thr	Pro 45	Pro	Phe	Val
	Xaa	Ser 50	Asp	Gly	Phe	Gln	Asn 55	Phe	Pro	Pro	Gly	Val 60	Leu	Ser	Leu	Lys
15	Leu 65	Ala	Asp	Pro	Ile	Thr 70	Ile	Ala	Asn	Gly	Asn 75	Val	Ser	Leu	Lys	Val 80
20	Gly	Gly	Gly	Leu	Thr 85	Leu	Glu	Gln	Asp	Ser 90	Gly	Lys	Leu	Ile	Val 95	Asn
	Xaa	Lys	Ala	Pro 100	Leu	Gln	Val	Ala	Asn 105	Asp	Lys	Leu	Glu	Leu 110	Ser	Tyr
25			115					120			Leu		125			
		130				•	135				Ala	140				
30	145					150					Lys 155					160
			_		165					170	Gly				175	
35	_			180					185					190		Xaa.
			195					200					205			Pro
40	_	210					215					220				Leu
45	225	•				230					235					Ser 240
45					245					250	•			•	255	
50				260)				265	i				270	1	Gly
			275					280)				285	•		Arg
55		290)				295	,				300)			Phe
	Me	r Pro) Asr	ıle	Lys	Äla	туг	Pro) Lys	Pro	Thr	Thr	Asp	Thr	Ser	Ala

	305				310					315					320
5	Lys P	ro Gl	u Asp	Lys 325	Lys	Ser	Ala	Ala	Lys 330	Arg	Tyr	Ile	Val	Ser 335	Asn
	Val T	yr Il	e Gly 340	Gly	Leu	Pro	Asp	Lys 345	Thr	Val	Val	Ile	Thr 350	Ile	Lys
10	Leu A	sn Al 35	a Glu 5	Thr	Glu	Ser	Ala 360	Tyr	Ser	Met	Thr	Phe 365	Glu	Phe	Thr
• ·	_	la Ly 370	s Thr	Phe	Glu	Asn 375	Leu	Gln	Phe	Asp	Ser 380	Ser	Ser	Phe	Thr
15	Phe S 385	er Ty	r Ile	Ala	Gln 390	Glu									
	<210>	. 40						į							
20	<211> <212>	> 338 > PRT	oviri	dae					•						
25	<222>	> VARI > (1).	ANT .(338 e="5e		pe 39) fil	oer p	orote	∍in"						
30	<400> Ile A		e Ser	Pro 5	Ser	Ser	Leu	Pro	Pro 10	Leu	Ser	Pro	Pro	Met 15	Asp
	Ser I	Lys Th	r Ser 20		Leu	Gly	Суѕ	Tyr 25	His	Ser	Asn	Trp	Leu 30	Thr	Gln
35	Ser E		r Pro	Met	Gly	Met	Ser 40	His	Ser	Arg	Trp	Glu 45	Gly	Gly	Ser
,	Pro 1	rp Gl	.n Glu	Gly	Thr	Gly 55	Asp	Leu	Lys	Val	Asn 60	Ala	Lys	Ser	Pro
40	Leu (65	Gln Va	il Ala	Thr	Asn 70	Lys	Gln	Leu	Glu	Ile 75	Ala	Leu	Ala	Lys	Pro 80
	Phe (Glu Gl	.u Lys	Asp 85	Gly	Lys	Leu	Ala	Leu 90	Lys	Ile	Gly	His	Gly 95	Leu
45	Ala \	Val Va	1 Asp 100		Asn	His	Thr	His 105	Leu	Gln	Ser	Leu	Ile 110	Gly	Thr
50		13	le Leu 15				120					125			
		Gly Th 130	nr Ile	Asp	Val	Arg 135	Leu	Gly	Ser	Gly	Gly 140	Gly	Leu	Ser	Phe
55	145	-	sp Gly		150			·		155	_				160
	Thr 1	Leu T	rp Thr	Thr	Pro	Asp	Pro	Ser	Pro	Asn	Cys	Lys	Ile	Asp	Gln

		•		165					170					175	
5	Asp Ly	s Asp	Ser 180	Lys	Leu	Thr	Phe	Val 185	Leu	Thr	Lys	Cys	Gly 190	Ser	Gln
	Ile Le	195	Asn	Met	Ser	Leu	Leu 200	Val	Val	Lys	Gly	Lys 205	Phe	Ser	Met
10	Ile As 21		Lys	Val	Asn	Gly 215	Thr	Asp	Asp	Tyr	Lys 220	Lys	Phe	Thr	Ile
	Lys Le 225	u Leu	Phe	Asp	Glu 230	Lys	Gİy	Val	Leu	Leu 235	Lys	Asp	Ser	Ser	Leu 240
15	Asp Ly	s Glu	Tyr	Trp 245	Asn	Tyr	Arg	Ser	Asn 250	Asn	Asn	Asn	Val	Gly 255	Ser
	Ala Ty	r Glu	Glu 260	Ala	Val	Gly	Phe	Met 265		Ser	Thr	Thr	Ala 270	Tyr	Pro
20	Lys Pr	o Pro 275		Pro	Pro	Thr	Asn 280	Pro	Thr	Thr	Pro	Leu 285	Glu	Lys	Ser
25	Gln Al 29		Asn	Lys	Tyr	Val 295	Ser	Asn	Val	Tyr	Leu 300	Gly	Gly	Gln	Ala
25	Gly As 305	n Pro	Val	Ala	Thr 310	Thr	Val	Ser	Phe	Asn 315		Glu	Thr	Gly	Cys 320
30	Thr Ty	r Ser	Ile	Thr 325	Phe	Asp	Phe	Ala	Trp 330	Asn	Lys	Thr	Tyr	Glu 335	Asn
	Val Gl	n Cys													
35	<210> <211> <212> <213>	379 PRT	viri	dae											
40	<220> <221> <222> <223>	(1)	(379		pe 4	2 fi	ber	prot	ein"						
45	<400> Ser Cy 1		: Cys	Pro .5		Ala	Pro	Thr	Ile 10		Met	Leu	Leu	Gln 15	
	Lys A	g Ala	Arg 20		Ser	Glu	Asp	Thr 25		Àsn	Pro	Val	Tyr 30		Tyr
50	Gly T	r Ala 35		Asn	Gln	Asn	Ile 40		Phe	Lev	Thr	Pro 45		Phe	Val
55	Ser Se	er Asp 50	Gly	Phe	Lys	Asn 55		Pro	Pro	Gly	/ Val		Ser	Leu	Lys
	Leu A	la Asr	n Pro	Ile	Ala	Ile	Thr	Asn	Gly	Asp	Val	. Ser	Leu	Lys	Val

	65				70					75					80
. . .	Gly (51y Gl	y Leu	Thr 85	Leu	Gln	Asp	Gly	Thr 90	Gly	Lys	Leu	Thr	Ile 95	Asp
	Thr I	Lys Th	r Pro 100	Leu	Gln	Val	Ala	Asn 105	Asn	Lys	Leu	Glu	Leu 110	Ala	Phe
10	Asp A	Ala Pr 11		Tyr	Glu	Lys	Asn 120	Gly	Lys	Leu	Ala	Leu 125	Lys	Thr	Gly
		Gly Le 130	u Ala	Val	Leu	Thr 135	Lys	Asp	Ile	Gly	Ile 140	Pro	Glu	Leu	Ile
15	Gly 5 145	Ser Le	u Val	Ile	Leu 150	Thr	Gly	Lys	Gly	11e 155	Gly	Thr	Gly	Thr	Val 160
	Ala (Gly Gl	y Gly	Thr 165	Ile	Asp	Val	Arg	Leu 170	Gly	Asp	Asp	Gly	Gly 175	Leu
20	Ser I	Phe As	p Lys 180	Lys	Gly	Asp	Leu	Val 185	Ala	Trp	Asn	Lys	Lys 190	Asn	Asp
25	Arg A	Arg Th		Trp	Thr	Thr	Pro 200	Asp	Pro	Ser	Pro	Asn 205	Cys	Arg	Val
25		Glu As 210	p Lys	Asp	Ser	Lys 215	Leu	Thr	Leu	Ile	Leu 220	Thr	Lys	Суз	Gly
30	Ser (225	Gln Il	e Leu	Ala	Ser 230	Phe	Ser	Leu	Leu	Val 235	Val	Xaa	Gly	Thr	Tyr 240
	Thr 1	Thr Va	l Asp	Lys 245	Asn	Thr	Thr	Asn	Lys 250	Gln	Phe	Ser	Ile	Lys 255	Leu
35	Leu 1	Phe As	p Ala 260		Gly	Lys	Leu	Lys 265	Ser	Glu	Ser	Asn	Leu 270	Ser	Gly
	Tyr 7	Frp As 27		Arg	Ser	Asp	Asn 280	Ser	Val	Val	Ser	Thr 285	Pro	Tyr	Asp
40		Ala Va 290	l Pro	Phe	Met	Pro 295	Asn	Thr	Thr	Ala	Tyr 300	Pro	Lys	Ile	Ile
•	Asn : 305	Ser Th	r Thr	Asp	Pro 310	Glu	Asn	Lys	Lys	Ser 315	Ser	Ala	Lys	Lys	Thr 320
45 .	Ile V	Val Gl	y Asn	Val 325		Leu	Glu	Gly	Asn 330	Ala	Gly	Gln	Pro	Val 335	Ala
	Val 1	Ala II	e Ser 340		Asn	Lys	Glu	Thr 345	Thr	Ala	Asp	Tyr	Ser 350	Ile	Thr
50	Phe 1	Asp Ph 35		Trp	Ser	Lys	Ala 360	Tyr	Glu	Thr	Pro	Val 365	Pro	Phe	Asp
		Ser Se 370	r Met	Thr	Phe	Ser 375	Tyr	Ile	Ala	Gln	Glu 380				
55															

5	<211 <212	> PF	8 T	virid	lae											
	<222	> VA !> (1	.) ((328)		e 43	fib	er p	rote	in"						
10	<400	> 51									•					
				Xaa	Leu 5	Thr	Pro	Pro	Phe	Val 10	Ser	Ser	Asp	Gly	Phe 15	Lys
15	Asn	Phe	Pro	Pro 20	Gly	Val	Leu	Ser	Leu 25	Lys	Leu	Ala	Asp	Pro 30	Ile	Thr
	Ile	Thr	Asn 35	Gly	Asp	Val	Ser	Leu 40	Lys	Val	Gly	Gly	Gly 45	Leu	Thr	Val
20	Glu	Lys 50	Glu	Ser	Gly	Asn	Leu 55	Thr	Val	Asn	Pro	Lys 60	Ala	Pro	Leu	Gln
	Val 65	Ala	Lys	Gly	Gln	Leu 70	Glu	Leu	Ala	Tyr	Asp 75	Ser	Pro	Phe	Asp	Val 80
25	Lys	Asn	Asn	Met	Leu 85	Thr	Lėu	Lys	Ala	Gly 90	His	Gly	Leu	Ala	Val 95	Val
20	Thr	Lys	Asp	Asn 100	Thr	Asp	Leu	Gln	Pro 105	Leu	Met	Gly	Thr	Leu 110	Val	Val
30	Leu	Thr	Gly 115	Lys	Gly	Ile	Gly	Thr 120	Gly	Thr	Ser	Ala	His 125	Gly	Gly	Thr
35	Ile	Asp 130	Val	Arg	Ile	Gly	Lys 135	Asn	Gly	Ser	Leu	Ala 140	Phe	Asp	Lys	Asp
	Gly 145	Asp	Leu	Val	Ala	Trp 150	Asp	Lys	Glu	Asn	Asp 155	Arg	Arg	Thr	Leu	Trp 160
40	Thr	Thr	Pro	Asp	Thr 165	Ser	Pro	Asn	Cys	Lys 170	Met	Ser	Glu	Ala	Lys 175	Asp
		•		180					185	-	•		Gln	190		
45	Ser	Val	Ser 195		Leu	Ala	Val	Lys 200		Glu	Tyr	Gln	Asn 205	Met	Thr	Ala
	Asn	Thr 210	_	Lys	Asn	Val	Lys 215	Ile	Thr	Leu	Leu	Phe 220	Asp	Ala	Asn	Gly
50	225					230					235		Trp			240
	Ser	Asn	Asp	Ser	Thr 245		Ser	Gly	Asn	Tyr 250	Glu	Asn	Ala	Val	Gln 255	Phe
55	Met	Pro	Àsn	11e 260		Ala	Tyr	Lys	Pro 265		Asn	Ser	Lys	Ser 270	Tyr	Ala

<u>.</u>	Arg	Ser	Val 275	Ile	Phe	Gly	Asn	Val 280	Tyr	Ile	Asp	Ala	Lys 285	Pro	Tyr	Asn
5	Pro	Val 290	Val.	Ile	Lys	Ile	Ser 295	Phe	Asn	Gln	Glu	Thr 300	Gln	Asn	Asn	Cys
10	Val 305	Tyr	Ser	Ile	Ser	Phe 310	Asp	Tyr	Thr	Leu	Ser 315	Lys	Asp	Tyr	Pro	Asn 320
·	Met	Gln	Phe	Λsp	Val 325	Thr	Leu	Ser								,
15	<212 <212	0> 52 1> 34 2> PF 3> ac	1	virio	iae											
20		1> V7 2> (1	ARIAN l)(note=	(341)		pe 44	i fil	oer i	prote	ein"						
25		0> 52 Ile	Pro	Phe	Leu 5	Thr	Pro	Pro	Phe	Val 10	Ser	Ser	Asp	Gly	Phe 15	
30	Asn	Phe	Pro	Pro 20	Gly	Val	Leu	Ser	Leu 25	Lys	Leu	Ala	Asp	Pro 30	Ile	Thr
	Ile	Thr	Asn 35	Gly	Asn	Val	Ser	Leu 40	Lys	Val	Gly	Gly	Gly 45	Leu	Thr	Leu
35		50	G1y		_	-	55	- - -				60				
	65		Thr	,	7	70					75		_			. 80
40		-	Glu	,	85					90	-				95	
		-		100					105				_	110		
45	Ile	Leu	Thr 115	Gly	Lys	Gly	Ile	Gly 120		Gly	Ser	Ala	Glu 125		Gly	Gly
	Thr	Ile 130	_	Val	Arg	Leu	Gly 135		Gly	Gly	Gly	Leu 140		Phe	Asp	Lys
50	Asp 145	_	Asn	Leu	Val	Ala 150	-	Asn	Lys	Asp	Asp 155	Asp	Arg	Arg	Thr	Leu 160
	Trp	Thr	Thr	Pro	Asp 165		Ser	Pro	Asn	Cys 170	_	Ile	Asp	Gln	Asp 175	-
55	Asp	Ser	Lys	Leu 180		Phe	Val	Leu	Thr 185	-	Cys	Gly	Ser	Gln 190		Leu

	Ala	Asn	Met 195	Ser	Leu	Leu	Val	Val 200	Lys	Gly	Lys	Phe	Ser 205	Met	Ile	Asn
5	Asn	Lys 210	Val	Asn	Gly	Thr	Asp 215	Asp	Tyr	Lys	Lys	Phe 220	Thr	Ile	Lys	Leu
. 10	Leu 225	Phe	Asp	Glu	Lys	Gly 230	Val	Leu	Leu	Lys	Asp 235	Ser	Ser	Leu	Asp	Lys 240
			Trp		245					250					255	
15			Ala	260					265					270		
			Pro 275					280					285			
20		290				•	295					300				
	305		Ala			310				•	315					320
25	Ser	Ile	Thr	Phe	Asp 325		Ala	Trp	Asn	Lys 330	Thr	Tyr	Glu	Asn	Val 335	Gln
	Phe	Asp	Ser	Ser 340												
30																
	<21 <21	0> 5 1> 3 2> F	45	vi ri	dae											
35	<21	.37 a	ideno	ATTI	uae											
	<22	1> \ 2>	ARIA (1)	(345		ре 4	5 fi	ber	prot	ein"						
40	<40	0> 5	53							•						
	. 1	L			. 5			-		10	l				15	
45				20)				25					30)	Ala
			35	•				. 40)				45	5		· Val
50		5	0				55	5				60)			Gln
	6	5				. 70)				75	•				e Glu 80
55	Va	l Se	r Ası	n Gl	y Lys 85		ı Gl	y Ile	Ly:	s Ala 90		/ Hi:	s Gl	y Lei	2 Ly:	s Val

e.	Ile	Asp	Lys	Ile 100	Ala	Gly	Leu	Glu	Gly 105	Leu	Ala	Gly	Thr	Leu 110	Val	Val
5	Leu	Thr	Gly 115	Lys	Gly	Ile	Gly	Thr 120	Glu	Asn	Leu	Glu	Asn 125	Ser	Asp	Gly
10	Ser	Ser 130	Arg	Gly	Val	Gly	Ile 135	Asn	Val	Arg	Leu	Ala 140	Lys	Asp	Gly	Val
• .	Leu 145	Ala	Phe	Asp	Lys	Lys 150	Gly	Asp	Leu	Val	Ala 155	Trp	Asn	Lys	His	Asp 160
15	Asp	Arg	Arg	Thr	Leu 165	Trp	Thr	Thr	Pro	Asp 170	Pro	Ser	Pro	Asn	Cys 175	Thr
	Ile	Asp	Gln	Glu 180	Arg	Asp	Ser	Lys	Leu 185	Thr	Leu	Val	Leu	Thr 190	Lys	Cys
20	Gly	Ser	Gln 195	Ile	Leu	Ala	Asn	Val 200	Ser	Leu	Leu	Val	Val 205	Lys	Gly	Lys
	Phe	Ser 210	Asn	Ile	Asn	Asn	Asn 215	Alá	Asn	Pro	Thr	Asp 220	Lys	Lys	Ile	Thr
25	Val 225	Lys	Leu	Leu	Phe	Asn 230	Glu	Lys	Gly	Val	Leu 235	Met	Asp	Ser	Ser	Thr 240
	Leu	Lys	Lys	Glu	Tyr 245	Trp	Asn	Tyr	Arg	Asn 250	Asp	Asn	Ser	Thr	Val 255	Ser
30			Tyr	260					265					270		-
35			Pro 275					280					285			
		290					295					300	_	_		Pro
40	305		Thr			310					315					320
			Ser		325					Trp 330		Lys	Thr	Phe	Glu 335	Asp
45	Val	Gln	Cys	Asp 340		Ser	Ser	Phe	Thr 345							
50	<21 <21	0> 5 1> 3 2> P 3> a	40	viri	dae							٠				
55	<22	1> V. 2> (ARIA 1) note	(340		pe 4	6 fi	ber	prot	ein"						

	<400> 54					_	1	DL - 7
	Asn Ile 1	Pro Phe	Leu Thr	Pro Pro	Phe Val	Ser Ser	Asp Gly	The Lys
5	Asn Phe	Pro Pro 20	Gly Val	Leu Ser	Leu Lys 25	Leu Ala	Asp Pro 30	Ile Ala
	Ile Val	Asn Gly 35	Asp Val	Ser Leu 40	Lys Val	ely ely	Gly Leu 45	Thr Leu
10	Gln Glu 50	Gly Asn	Leu Thr	Val Asp 55	Ala Lys	Ala Pro 60	Leu Gln	Val Ala
15	Asn Asp 65	Asn Lys	Leu Glu 70	Leu Ser	Tyr Ala	Asp Pro 75	Phe Glu	Val Lys 80
	Asp Thr	Lys Leu	Gln Leu 85	Lys Val	Gly His 90	Gly Leu	Lys Val	Ile Asp 95
20	Glu Lys	Thr Ser		Leu Gln	Ser Leu 105	Ile Gly	Asn Leu 110	
	Leu Thr	Gly Lys 115	Gly Ile	Gly Thr 120	Gln Glu	Leu Lys	Asp Lys	Asp Asp
25	Glu Thr 130	Lys Asn	Ile Gly	Val Gly 135	lle Asn	Val Arg 140		Lys Asn
	Glu Ser 145	Leu Ala	Phe Asp 150		Gly Asn	Leu Val	Ala Trp	Asp Asn 160
30	Glu Asn	Asp Arg	Arg Thr 165	Leu Trp	Thr Thr 170		Thr Ser	Ser Lys 175
	Phe Val	Lys Ile 180		: Glu Lys	Asp Ser 185	Lys Lev	Thr Lev 190	Val Leu
35	Thr Lys	Cys Gly 195	Ser Glr	lle Leu 200		Val Ser	Leu Leu 205	Ala Val
_	Ala Gly 210		Leu Asr	Met Thi 215	Ala Ser	Thr Glr 220		: Ile Lys
40	Val Ser 225	Leu Met	Phe Asp 230		s Gly Leu	Leu Met 235	Thr Thi	Ser Ser 240
45	Ile Asp	Lys Gly	Tyr Tri 245	Asn Ty	r Arg Asn 250	Lys Ası	n Ser Val	Val Gly 255
	Thr Ala	Tyr Glu 260		a Ile Pro	o Phe Met 265	Pro Asi	n Leu Val 270	l Ala Tyr
50	Pro Arg	p Pro Asi 275	n Thr Pro	Asp Sei		Tyr Ala	a Arg Se 285	t Lys Ile
	Val Gly 290		l Tyr Le	u Ala Gly 295	y Leu Ala	Tyr Gli		e Val Ile
55	Thr Val	l Ser Pho	e Asn Gl: 31		s Asp Ala	ser Cy 315	s Ala Ty	r Ser Ile 320

	Thr	Phe	Glu	Phe	Ala 325	Trp	Asn	Lys	Asp	Tyr 330	Val	Gly	Gln	Phe	Asp 335	Thr
5	Thr	Ser	Phe	Thr 340												
10	<21; <21;	0> 5! l> 3! 2> PI 3> ac	39 RT	/irio	iae											
15	<222	l> vz 2> (1	l) :	(389)		pe 41	7 fil	er p	rote	∍in"						
20		0> 59 Cys		Ser	Ala 5	Pro	Thr	Ile	Phe	Met 10	Leu	Leu	Gln	Met	Lys 15	Arg
	Ala	Arg	Pro	Ser 20	Glu	Asp	Thr	Phe	Asn 25	Pro	Val	Tyr	Pro	Tyr 30	Gly	Tyr
25	Ala	Arg	Asn 35	Gln	Asn	Ile	Pro	Phé 40	Leu	Thr	Pro	Pro	Phe 45	Val	Ser	Ser
	Asp	Gly 50	Phe	Lys	Asn	Phe	Pro 55	Pro	Gly	Val	Leu	Ser 60	Leu	Lys	Leu	Ala
30	Asp 65	Pro	Ile	Thr	Ile	Thr 70	Asn	Gly	Asp	Val	Ser 75	Leu	Lys	Val	Gly	Gly 80
	Gly	Leu	Thr	Leu	Gln 85	Glu	Gly	Thr	Gly	neA 0e	Leu	Thr	Val	Asn	Ala 95	Lys
	Ala	Pro	Leu	Gln 100	Val	Ala	Asp	Asp	Lys 105	Lys	Leu	Glu	Leu	Ser 110	Tyr	Asp
40	Asn	Pro	Phe 115	Glu	Val	Ser	Ala	Asn 120	Lys	Leu	Ser	Leu	Lys 125	Val	Gly	His
	Gly	Leu 130	Lys	Val	Leu	Asp	Glu 135	Lys	Asn	Ser	Gly	Gly 140	Leu	Gln	Glu	Leu
45	Ile 145	Gly	Lys	Leu	Val	Ile 150	Leu	Thr	Gly	Lys	Gly 155	Ile	Gly	Val	Glu	Glu 160
	Leu	Lys	Asn	Ala	Asp 165	Asn	Thr	Asn	Arg	Gly 170	Val	Gly	Ile	Asn	Val 175	Arg
50	Leu	Gly	Lys	Asp 180	Gly	Gly	Leu	Ser	Phe 185	Asp	Lys	Lys	Gly	Glu 190	Leu	Val
	Ala	Trp	Asn 195	Lys	His	Asn	Asp	Thr 200	Arg	Thr	Leu	Trp	Thr 205	Thr	Pro	Asp
55	Pro	Ser 210	Pro	Asn	Cys	Lys	Ile 215	Glu	Gln	Asp	Lys	Asp 220	Ser	Lys	Leu	Thr

	Leu 225	Val	Leu	Thr	ГÀЗ	Cys 230	Gly	Ser	Gln	Ile	Leu 235	Ala	Thr	Met	Ala	Phe 240
5	Gln	Val	Val	Lys	Gly 245	Thr	Tyr	Glu	Asn	Ile 250	Ser	Lys	Asn	Thr	Ala 255	Lys
	Lys	Ser	Phe	Ser 260	Ile	Lys	Leu	Leu	Phe 265	Asp	Asp	Asn	Gly	Lys 270	Leu	Leu
10	Glu	Gly	Ser 275	Ser	Leu	Asp	Lys	Asp 280	Tyr	Trp	Asn	Phe	Arg 285	Asn	Asp	Asp
		Ile 290	Met	Pro	Asn	Gln	Tyr 295	Asp	Asn	Ala	Val	Pro 300	Phe	Met	Pro	Asn
15	Leu 305	Lys	Ala	Tyr	Pro	Asn 310	Pro	Lys	Thr	Ser	Thr 315	Val	Leu	Pro	Ser	Thr 320
20	Asp	Lys	Lys	Ser	Asn 325	Gly	Lys	Asn	Thr	Ile 330	Val	Ser	Asn	Leu	Tyr 335	Leu
	Glu	Gly		Ala 340	Tyr	Gln	Pro	Val	Ala 345	Val	Thr	Ile	Thr	Phe 350	Asn	Lys
25	Glu	Thr	Gly 355	Cys	Thr	Tyr	Ser	11e 360	Thr	Phe	Glu	Phe	Gly 365	Trp	Ala	Lys
•	Thr	Tyr 370	Asp	Val	Pro	Ile	Pro 375	Phe	Asp	Ser	Ser	Ser 380	Phe	Thr	Phe	Ser
30	Tyr 385	Ile	Ala	Gln	Glu							٠				
35	<211 <212	0> 56 L> 34 2> PI 3> ac	13 RT	virio	dae				1							
40	<222	l> V7 2> (:	1)	(343)) rotyj	pe 4	8 fil	ber j	prot	ein"					-	
		> 50		Pro	Dhe	Lau	ምክ r	Pro	Pro	Phe	Val	Ser	Ser	Asp	Glv	Phe
45	1	vsħ	**6	110	5	Deu	1111	710	110	10	·	DCI	502	. - F	15	
	Gln	Asn	Phe	Pro 20	Pro	Gly	Val	Leu	Ser 25	Leu	Lys	Leu	Ala	Asp 30		Ile
50	Thr	Ile	Thr 35	Asn	Gly	Asn	Val	Ser 40	Leu	Lys	Val	Gly	Gly 45	Gly	Leu	Thr
	Leu	Gln 50	Glu	Gly	Thr	Gly	Asp 55		Lys	Val	Asn	Ala 60		Ser	Pro	Leu
55	Gln 65	Val	Ala	Thr	Asn	Lys 70		Leu	Сlи	Ile	Ala 75		Ala	Lys	Pro	Phe 80

	Glu	Glu	Lys	Asp	Gly 85	Lys	Leu	Ala	Leu	Lys 90	Ile	Gly	His	Glu	Leu 95	Ala
5	Val	Val	Asp	Glu 100	Asn'	Leu	Thr	His	Leu 105	Gln	Ser	Leu	Ile	Gly 110	Thr	Leu
	Val	Ile	Leu 115	Thr	Gly	Lys	Gly	11e 120	Gly	Thr	Gly	Arg	Ala 125	Glu	Ser	Gly
10	Gly	Thr 130	Ile	Asp	Val	Arg	Leu 135	Gly	Ser	Gly	Gly	Gly 140	Leu	Ser	Phe	Asp
	Lys 145	Asp	Gly	Asn	Leu	Val 150	Ala	Trp	Asn	Lys	Asp 155	Asp	Asp	Arg	Arg	Thr 160
15	Leu	Trp	Thr	Thr	Pro 165	Asp	Pro	Ser	Pro	Asn 170	Суз	Lys	Ile	Asp	Gln 175	Asp
20	Lys	Asp	Ser	Lys 180	Leu	Thr	Phe	Val	Leu 185	Thr	Lys	Cys	Gly	Ser 190	Gln	Ile
	Leu	Ala	Asn 195	Met	Ser	Leu	Leu	Val 200	Val	Lys	Gly	Lys	Phe 205	Ser	Met	Ile
25	Asn	Asn 210	Lys	Val	Asn	Gly	Thr 215	qaA	Asp	Tyr	Lys	Lys 220	Phe	Thr	Ile	Lys
	225					Lys 230					235					240
30	Lys	Glu	Tyr	Trp	Asn 245	Tyr	Arg	Ser	Asn	Asn 250	Asn	Asn	Val	Gly	Ser 255	Ala
	-			260		Gly			265					270		•
35	Pro	Pro	Thr 275		Pro	Thr	Asn	Pro 280		Thr	Pro	Leu	G1u 285		Ser	Gln
		290			-		295					300	•		,	Gly
40	Asn 305		Val	Ala	Thr	Thr 310		Ser	Phe	Asn	Lys 315		Thr	Gly	Cys	Thr 320
	-				325	_			Trp	Asn 330		Thr	Tyr	Lys	Met 335	Ala
45	Phe	Ile	Pro	Arg 340		Asn	Phe				,					
															•	
50	<21 <21	0> 5 1> 3 2> P 3> a	94 RT	viri	.dae		٠									
55		0> 1> V 2> (L)										•	

<223> /note="Serotype 49 fiber protein"																
5	<400 Ser 1)> 57 Cys	Ser	Cys	Pro 5	Ser	Ala	Pro	Thr	Ile 10	Phe	Met	Leu	Leu	Gln 15	Met
	Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25	Phe	Asn	Pro	Val	Tyr 30	Pro	Tyr
10	Gly	Tyr	Ala 35	Arg	Asn	Gln	Asn	Ile 40	Pro	Phe	Leu	Thr	Pro 45	Pro	Phe	Val
	Ser	Ser 50	Asp	ĊΙΆ	Phe.	Gln	Asn 55	Phe	Pro	Pro	Gly	Val 60	Leu	Ser	Leu	Lys
15	Leu 65	Ala	Asp	Pro	Ile	Ala 70	Ile	Thr	Asn	Gly	Asn 75	Val	Ser	Leu	Lys	Val 80
20	Gly	Gly	Gly	Leu	Thr 85	Val	Glu	Gln	qeA	Ser 90	Gly	Asn	Leu	Lys	Val 95	Asn
	Pro	Lys	Ala	Pro 100	Leu	Gln	Val	Ala	Thr 105	Asp	Asn	Gln	Leu	Glu 110	Ile	Ser
25	Leu	Ala	Азр 115	Pro	Phe	Glu	Val	Lys 120	Asn	Lys	Lys	Leu	Ser 125	Leu	Lys	Val
	Gly	His 130	Gly	Leu	Lys	Val	Ile 135	Asp	Glu	Asn	Ile	Ser 140	Thr	Leu	Gln	Gly
30	Leu 145	Leu	Gly	Asn	Leu	Val 150	Val	Leu	Thr	Gly	Met 155	Gly	Ile	Gly	Thr	Glu 160
•	Glu	Leu	Lys	Lys	Asp 165		Lys	Ile	Val	Gly 170	Ser	Ala	Val	Asn	Val 175	Arg
35	Leu	Gly	Gln	Asp 180		Gly	Leu	Thr	Phe 185		Lys	Lys	Gly	Asp 190	Leu	Val
	Ala	Trp	Asn 195	Lys	Glu	Asn	Asp	Arg 200		Thr	Leu	Trp	Thr 205	Thr	Pro	Asp
40		210					215					220				Thr
	Leu 225		Leu	Thr	Lys	230		Ser	Gln	Ile	Leu 235	Ala	Ser	Val	Ser	Leu 240
45	Leu	Val	Val	Lys	Gly 245		Phe	: Ala	Asn	11e 250	Asn	Asn	Lys	Thr	Asn 255	Pro
50	Gly	Glu	Asp	Tyr 260		: Xaa	Phe	Ser	265		: Leu	Leu	Phe	Asp 270		Asn
	Gl	/ Lys	Leu 275		Thi	Gly	/ Ser	280		ı Asp	Gly	Asn	285		Asn	Tyr
55	Lys	290	_	Asp	Se:	. Val	11e 295		, Sei	Pro	туг	Glu 300		Ala	Val	Pro
	Phe	e Met	Pro) Ası	n Sei	Thi	: Ala	Ту	r Pro	Ly:	s Ile	e Ile	e Asr	Asn	Gly	Thr

	305					310					315					320
<i>Š</i>	Ala	Asn	Pro	Glu	Asp 325	Lys	Lys	Ser	Ala	Ala 330	Lys	Lys	Thr	Ile	Val 335	Thr
	Asn	Val	Tyr	Leu 340	Gly	Gly	Asp	Ala	Ala 345	Lys	Pro	Val	Ala	Thr 350	Thr	Ile
10	Ser	Phe	Asn 355	Lys	Glu	Thr	Glu	Ser 360	Asn	Cys	Val	Tyr	Ser 365	Ile	Thr	Phe
	Asp	Phe 370	Ala	Trp	Asn	Lys	Thr 375	Tyr	Lys	Asn	Val	Pro 380	Phe	qeA	Ser	Ser
15	Ser 385	Leu	Thr	Phe	Ser	Tyr 390	Ile	Ala	Gln	Glu	٠					
20	<21:	0> 58 1> 3! 2> PI 3> ad	53 RT	virio	dae				٠							
25	<22	0> 1> V/ 2> (1 3> /1	1)	(353)		pe 5:	l fil	ber	prot	ein"						
30		0> 5: Cys		. Cys	Pro 5	Ser	Ala	Pro	Thr	Ile 10	Phe	Met	Leu	Leu	Gln 15	Met
	Lys	Arg	Ala	Arg 20	Pro	Ser	Glu	Asp	Thr 25		Asn	Pro	Val	Tyr 30		Tyr
35	Glu	Asp	Glu 35		Thr	Ser	Gln	His 40		Phe	Ile	Asn	Pro 45	Gly	Phe	Ile
	Ser	Pro 50		Gly	Phe	Thr	Gln 55		Pro	Asp	Gly	Val 60		Thr	Leu	Asn
40	65					70					75					80
	-	_			85					90					95	
45				100					105	•				110	•	Leu
50			115	•				120)				125	i		Lys
		130)				1,35	5				140)			: Asp
55	Se:		: Asr	Thr	: Lev	Trp 150		: Gl	/ Ile	Lys	155		Pro) Ası	Cys	160

	Ile	Val	Glu	Asn	Thr 165	Asp	Thr	Asn	Asp	Gly 170	Lys	Leu	Thr	Leu	Val 175	Leu
5	Val	Lys	Asn	Gly 180	Gly	Leu	Val	Asn	Gly 185	Tyr	Val	Ser	Leu	Val 190	Gly	Val
. 10	Ser	Asp	Thr 195	Val	Asn	Gln	Met	Phe 200	Thr	Gln	Lys	Ser	Ala 205	Thr	Ile	Gln
,,	Leu	Arg 210	Leu	Tyr	Phe	Asp	Ser 215	Ser	Gly	Asn	Leu	Leu 220	Thr	Asp	Glu	Ser
15	Asn 225	Leu	Lys	Ile	Pro	Leu 230	Lys	Asn	Lys	Ser	Ser 235	Thr	Ala	Thr	Ser	Glu 240
	Ala	Ala	Thr	Ser	Ser 245	Lys	Ala	Phe	Met	Pro 250	Ser	Thr	Thr	Ala	Tyr 255	Pro
20	Phe	Asn	Thr	Thr 260		Arg	Asp	Ser	Glu 265	Asn	Tyr	Ile	His	Gly 270	Ile	Cys
	Tyr	Tyr	Met 275	Thr	Ser	Tyr	Asp	Arg 280	Ser	Leu	Val	Pro	Leu 285	Asn	Ile	Ser
25	Ile	Met 290	Leu	Asn	Ser	Arg	Thr 295	Ile	Ser	Ser	Asn	Val 300	Ala	Tyr	Ala	Ile
30	Gln 305	Phe	Glu	Trp	Asn	Leu 310	Asn	Ala	Lys	Glu	Ser 315	Pro	Glu	Ser	Asn	Ile 320
	Ala	Thr	Leu	Thr	Thr 325		Pro	Phe	Phe	Phe 330		Tyr	Ile	Ile	Glu 335	Asp
35	Thr	Thr	Lys	Cys 340		Ser	Leu	Cys	Tyr 345		Ser	Thr	Cys	Leu 350	Phe	Phe
	Asn			٠												

Claims

5

10

15

25

30

40

- 1. A method for delivering a nucleic acid of interest to a host cell by means of a gene delivery vehicle based on adenoviral material, whereby said gene delivery vehicle delivers the nucleic acid to the host cell by associating with a binding site and/or a receptor present on CAR-negative cells, said binding site and/or receptor being a binding site and/or a receptor for adenovirus subgroups D and/or F.
- Use of a gene delivery vehicle comprising a nucleic acid of interest and comprising adenoviral material involved in binding to a host cell, said material being from a subgroup D and/or F adenovirus, in delivering said nucleic acid of interest to a CAR-negative cell.
 - A gene delivery vehicle being a chimaera based on at least two adenoviruses, whereby a cell recognising element
 of said gene delivery vehicle is based on adenoviral material from a subgroup D and/or F adenovirus, which material
 confers the capability of infecting CAR negative cells.
 - 4. A gene delivery vehicle according to claim 3, wherein said adenoviral material is based on a fiber, a penton and/ or a hexon protein of a subgroup D and/or subgroup F adenovirus.
- 5. A gene delivery vehicle according to claim 3 or 4, further comprising an element from adenovirus 35, responsible for at least partially avoiding an immune response against adenovirus 35.
 - 6. A gene delivery vehicle according to any one of claims 3-5, which comprises an element of adenovirus 16 or a functional analogue thereof, which element confers said virus with an enhanced capability to infect smooth muscle cells and/or synoviocytes.
 - 7. A gene delivery vehicle according to any one of claims 3-6, comprising a nucleic acid derived from an adenovirus.
 - 8. A gene delivery vehicle according to any one of claims 3-7, comprising a nucleic acid derived from at least two different adenoviruses.
 - A gene delivery vehicle according to claim 7 or claim 8, wherein said nucleic acid comprises at least one sequence
 encoding a capsid protein comprising at least a tissue tropism determining fragment of a subgroup D and/or subgroup F adenovirus capsid protein.
- 10. A gene delivery vehicle according to any one of claims 7-9, wherein said nucleic acid derived from adenovirus is modified such that the capacity of said nucleic acid to replicate in a target cell has been reduced or disabled.
 - 11. A gene delivery vehicle according to any one of claims 7-10, wherein said nucleic acid derived from adenovirus is modified such that the capacity of a host immune system to mount an immune response against adenovirus proteins encoded by said nucleic acid derived from adenovirus has been reduced or disabled.
 - 12. A gene delivery vehicle according to anyone of claims 7-11, comprising a minimal adenovirus vector or an integrating adenovirus such as an Ad/AAV chimaeric vector, a retro-adenovirus or a transposon-adenovirus.
- 45 13. A gene delivery vehicle according to anyone of the claims 1-12, further comprising at least one non-adenovirus nucleic acid.
 - 14. A gene delivery vehicle according to anyone of claims 7-13, wherein said nucleic acid derived from adenovirus is produced by welding together through homologous recombination two nucleic acid molecules comprising partially overlapping sequences wherein said overlapping sequences allow essentially only one homologous recombination which leads to the generation of a physically linked nucleic acid comprising at least two functional adenovirus inverted terminal repeats, a functional encapsulation signal, a nucleic acid of interest, or functional parts, derivatives and/or analogues thereof.
- 15. A cell for the production of a gene delivery vehicle according to anyone of the claims 3-14, comprising means for the assembly of said gene delivery vehicle wherein said means includes a means for the production of an adenovirus capsid protein, wherein said capsid protein comprises at least a receptor and/or binding site binding fragment of a subgroup D and/or subgroup F adenovirus capsid protein.

- A cell according to claim 15, wherein said cell is or is derived from a PER.C6 cell (ECACC deposit number 96022940).
- 17. The use of a gene delivery vehicle according to anyone of the claims 1-14 as a pharmaceutical.
- 18. A receptor and/or a binding site for adenoviruses type D and/or F, present on or associated with CAR negative cells.
- 19. A receptor and/or a binding site according to claim 18, present on K562 cells, amniotic fluid cells and/or primary fibroblast cells.
- 20. A capsid protein derived from a subgroup D and/or a subgroup F adenovirus or a functional part, derivative and/or analogue thereof.
- 21. A capsid protein according to claim 20, wherein said protein is a fiber protein.

5

10

15

20

25

30

35

40

45

50

- 22. An isolate and/or recombinant nucleic acid encoding a capsid protein according to claim 20 or claim 21.
- 23. An isolate and/or recombinant nucleic acid according to claim 22, wherein said nucleic acid comprises a sequence as depicted in figure 7.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7:

1.1: Serotype 8 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSNGFQ NFPPGVLSLKLADPITINNQNVSLKVGGGLTLQEETGKLTVNTEPPLHLTNNKLGI ALDAPFDVIDNKLTLLAGHGLSIITKETSTLPGLVNTLVVLTGKGIGTDLSNNGGN ICVRVGEGGGLSFNDNGDLVAFNKKEDKRTLWTTPDTSPNCRIDQDKDSKLTLV LTKCGSQILANVSLIVVAGRYKIINNNTNPALKGFTIKLLFDKNGVLMESSNLGKS YWNFRNQNSIMSTAYEKAIGFMPNLVAYPKPTTGSKKYARDIVYGNIYLGGKPH QPVTIKTTFNQETGCEYSITFDFSWAKTYVNVEFETTSFTFSYIAQE.

1.2: Serotype 9 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFQ NFPPGVLSLKLADPIAIVNGNVSLKVGGGLTLQDGTGKLTVNADPPLQLTNNKL GIALDAPFDVIDNKLTLLAGHGLSIITKETSTLPGLINTLVVLTGKGIGTESTDNGG SVCVRVGEGGGLSFNNDGDLVAFNKKEDKRTLWTTPDTSPNCKIDQDKDSKLTL VLTKCGSQILANVSLIVVAGKYKIINNNTQPALKGFTIKLLFDENGVLMESSNLGK SYWNFRNENSIMSTAYEKAIGFMPNLVAYPKPTAGSKKYARDIVYGNIYLGGKP DQPVTIKTTFNQETGCEYSITFDFSWAKTYVNVEFETTSFTFSYIAQE.

1.3: Serotype 13 fiber protein

XXXXXSAPTIFMLLQMKRARSSXDTFNPVYPYGYARNQNIXFXTPPFVXSDGF KNFPPGVLSLKLADPITIANGDVSLKVGGGLTLQEGSLTVDPKAPLQLANDKKLE LVYDDPFEVSTNKLSLKVGHGLKVLDDKSAGGLKDLIGKLVVLTGKGIGIENLQ NDDGSSRGVGINVRLGTDGGLSFDRKGELVAWNRKDDRRTLWTTPDPSPNCKA ETEKDSKLTLVLTKCGSQILATVSIIVLKGKYEFVKKETEPKSFDVKLLFDSKGVL LPTSNLSKEYWNYRSYDNNIGTPYENAVPFMPNLKAYPKPTKTASDKAENKISS AKNKIVSNFYFGGQAYQPGTIIIKFNEEIDETCAYSITFNFGWGKVYDNPFPFDTTS FTXSYIAOE.

1.4: Serotype 14 fiber protein

HPFINPGFISPNGFTQSPDGVLTLKCLTPLTTTGGSLQLKVGGGLTVDDTDGTLQE NIGATTPLVKTGHSIGLSLGAGLGTDENKLCTKLGEGLTFNSNNICIDDNINTLWT GVNPTEANCQMMDSSESNDCKLILTLVKTGALVTAFVYVIGVSNNFNMLTTYRN INFTAELFFDSAGNLLTSLSSLKTPLNHKSGQTWLLVPLLMLKVSCPAQLLILSIIIL EKNKTTFTELVTTQLVITLLFPLTISVMLNQRAIRADTSYCIRITWSWNTGDAPEG QTSATTLVTS

1.5: Serotype 20 fiber protein

IQNIPFLTPPFVSSDGLQNFPPGVLSLKLADPIAIVNGNVSLKVGGGITVEQDSGQL IANPKAPLQVANDKLELSYAYPFETSANKLSLKVGQGLKVLDEKDSGGLQNLLG KLVVLTGKGIGVEELKNPDNTNRGVGINVRLGKDGGLSFNKNGELVAWNKHND

TGTLWTTPDPSPNCKIEEVKDSKLTLVLTKCGSQILATMAFQVVKGTYENISKNT AKNSFSIKLLFDDNGKLLEGSSLDKDYWNFRSDDSIIPNQYDNAVPFMPNLKAYP KPSTVLPSTDKNSNGKNTIVSNLYLEGKAYQPVAVTITFNKEIGCTYSITFDFGWA KTYDVPIPFDSSSFT

1.6: Serotype 23 fiber protein

QNIPFLTPPFVSSDGFQNFPPGVLSLKLADPIAITNGDVSLKVGGGLTVEQDSGNL KVNTKAPLQVAADKQLEIALADPFEVSKGRLGIKAGHGLKVIDNSISGLEGLVGT LVVLTGHGIGTENLLNNDGSSRGVGINVRLGKDGGLSFDKKGDLVAWNKKYDT RTLWTTPDPSPNCKVIEAKDSKLTLVLTKCGSQILANMSLLILKGTYEYISNAIAN KSFTIKLLFNDKGVLMDGSSLDKDYWNYKSDDSVMSKAYENAVPFMPNLKAYP NPTTSTTNPSTDKKSNGKNAIVSNVYLEGRAYQPVAITITFNKETGCTYSMTFDF GWSKVYNDPIPFDTSSLT

1.7: Serotype 24 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFQ NFPPGVLSLKLADPIAITNGDVSLKVGGGLTVEKDSGNLKVNPKAPLQVTTDKQL EIALAYPFEVSNGKLGIKAGHGLKVIDKIAGLEGLAGTLVVLTGKGIGTENLENS DGSSRGVGINVRLAKDGGLSFDKKGDLVAWNKHDDRRTLWTTPDPSPNCTIDQ ERDSKLTLVLTKCGSQILANVSLLVVKGKFSNINNNTNPTDKKITVKLLFNEKGV LMDSSTLKKEYWNYRNDNSTVSQAYDNAVPFMPNIKAYPKPTTDTSAKPEDKK SAAKRYIVSNVYIGGLPDKTVVITIKFNAETECAYSITFEFTWAKTFEDVQFDSSSF TFSYIAQE.

1.8: Serotype 25 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFQ NFPPGVLSLKLADPITISNGDVSLKVGGGLTVEQDSGNLSVNPKAPLQVGTDKKL ELALAPPFNVKDNKLDLLVGDGLKVIDKSISXLPGLLNYLVVLTGKGIGNEELKN DDGSNKGVGLCVRIGEGGGLTFDDKGYLVAWNKKHDIRTLWTTLDPSPNCRID VDKDSKLTLVLTKCGSQILANVSLLVVKGRFQNLNYKTNPNLPKTFTIKLLFDEN GILKDSSNLDKNYWNYRNGNSILAEQYKNAVGFMPNLAAYPKSTTTQSKLYAR NTIFGNIYLDSQAYNPVVIKITFNQEADSAYSITLNYSWGKDYENIPFDS

1.9: Serotype 27 fiber protein

IPFLTPPFVSSDGFKNFPPGVLSLKLADPITITNGDVSLKVGGGLVVEKESGKLSV DPKTPLQVASDNKLELSYNAPFKVENDKLSLDVGHGLKVIGNEVSSLPGLINKLV VLTGKGIGTEELKEQNSDKIIGVGINVRARGGLSFDNDGYLVAWNPKYDTRTLW TTPDTSPNCKMLTKKDSKLTLTLTKCGSQILGNVSLLAVSGKYLNMTKDETGVKI ILLFDRNGVLMQESSLDKEYWNYRNDNNVIGTPYENAVGFMPNLVAYPKPTSA DAKNYSRSKIISNVYLKGLIYQPVIIIASFNQETTNGCVYSISFDFTCSKDYTGQQF DVTSF

1.10: Serotype 28 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFQ NFPPGVLSLKLADPITIANGDVSLKLGGGLTVEKESGNLTVNPKAPLQVASGQLE LAYYSPFDVKNNMLTLKAGHGLAVVTKDNTDLQPLMGTLVVLTGKGIGTGTSA

HGGTIDVRIGKNGSLAFDKNGDLVAWDKENDRRTLWTTPDTSPNCKMSEVKDS KLTLILTKCGSQILGSVSLLAVKGEYQNMTASTNKNVKITLLFDANGVLLEGSSL DKEYWNFRNNDSTVSGKYENAVPFMPNITAYKPVNSKSYARSHIFGNVYIDAKP YNPVVIKISFNQETQNNCVYSISFDYTCSKEYTGMQFDVTSFTFSYIAQE.

1.11: Serotype 29 fiber protein

QNIPFLTPPFVSSDGFKNFPPGVLSLKLADPIAITNGDVSLKVGGGLTVEQDSGNL SVNPKAPLQVGTDKKLELALAPPFDVRDNKLAILVGDGLKVIDRSISDLPGLLNY LVVLTGKGIGNEELKNDDGSNKGVGLCVRIGEGGGLTFDDKGYLVAWNNKHDI RTLWTTLDPSPNCKIDIEKDSKLTLVLTKCGSQILANVSLIIVNGKFKILNNKTDPS LPKSFNIKLLFDQNGVLLENSNIEKQYLNFRSGDSILPEPYKNAIGFMPNLLAYAK ATTDQSKIYARNTIYGNIYLDNQPYNPVVIKITFNNEADSAYSITFNYSWTKDYD NIPFDSTSFTS

1.12: Serotype 30 fiber protein

SCSCPSAPTIFMLLQMKRARPSXDTFNPVYPYGYARNQNIPFXTPPFVXSDGFK NFPPGVLSLKLADPIAITNGDVSLKVGGGLTVEQDSGNLSVNXKAPLQVGTDKK LELALAPPFDVRDNKLAILVGDGLKVIDRSISDLPGLLNYLVVXTGKGIGNEELK NDDGSNKGVGLCVRIGEGGGLTXDDKGYLVAWNNKHDIRTLWTTLDPSPNCKI DIEKDSKLTLVLTKCGSQILANVSLIIVNGKFKILNNKTDPSLPKSFNIKLLFDQNG VLLENSNIEKQYLNFRSGDSILPEPYKNAIGFMPNLLAYAKATTDQSKIYARNTIY GNIYLDNQPYNPVVIKITFNNEADSAYSITFNYSWTKDYDNIPFDSTSFTFSYIAOE

1.13: Serotype 32 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFQ NFPPGVLSLKLADPITIANGNVSLKVGGGLTLEQDSGKLIVNPKAPLQVANDKLE LSYADPFETSANKLSLKVGHGLKVLDEKNAGGLKDLIGTLVVLTGKGIGVEELK NADNTNRGVGINVRLGKDGGLSFDKKGDLVAWNKHDDRRTLWTTPDPSPNCTI DEERDSKLTLVLTKCGSQILANVSLLVVKGKFSNINNNTNPTDKKITVKLLFNEK GVLMDSSSLKKEYWNYRNDNSTVSQAYDNAVPFMPNIKAYPKPTTDTSAKPED KKSAAKRYIVSNVYIGGLPDKTVVITIKLNAETESAYSMTFEFTWAKTFENLQFD SSSFTFSYIAQE.

1.14: Serotype 33 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFK NFPPGVLSLKLADPITITNGDVSLKVGGGLTLQEGSLTVNPKAPLQLANDKKLEL VYDDPFEVSTNKLSLKVGHGLKVLDDKSAGGLQDLIGKLVVLTGKGIGIENLQN DDGSSRGVGINVRLGTDGGLSFDRKGELVAWNRKDDRRTLWTTPDPSPNCKAE TEKDSKLTLVLTKCGSQILATVSIIVLKGKYEFVKKETEPKSFDVKLLFDSKGVLL PTSNLSKEYWNYRSYDNNIGTPYENAVPFMPNLKAYPKPTKTASDKAENKISSA KNKIVSNFYFGGQAYQPGTIIIKFNEEIDETCAYSITFNFGWGKVYDNPFPFDTTSF TFSYIAQE.

1.15: Serotype 34 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYEDESTSQHPFINPGFISPNGFTQ SPDGVLTLKCLTPLTTTGGSLQLKVGGGLTVDDTDGTLQKNIRATTPITKNNHSV ELTIGNGLETQHNKLCAKLGNGLKFNNGDICIKDSINTLWTGINPPPNCQIVENTN TNDGKLTLVLVKNGGLVNGYVSLVGVSDTVNQMFTQKTANIQLRLYFDSSGNL LTDESDLKIPLKNKSSTATSETVASSKAFMPSTTAYPFNTTTRDSENYIHGICYYM TSYDRSLFPLNISIMLNSRMISSNVAYAIQFEWNLNASESPEKQHMTLTTSPFFFSY IIEDDN.

1.16: Serotype 35 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYEDESTSQHPFINPGFISPNGFTQ SPDGVLTLKCLTPLTTTGGSLQLKVGGGLTVDDTDGTLQENIRATAPITKNNHSV ELSIGNGLETQNNKLCAKLGNGLKFNNGDICIKDSINTLWTGINPPPNCQIVENTN TNDGKLTLVLVKNGGLVNGYVSLVGVSDTVNQMFTQKTANIQLRLYFDSSGNL LTEESDLKIPLKNKSSTATSETVASSKAFMPSTTAYPFNTTTRDSENYIHGICYYM TSYDRSLFPLNISIMLNSRMISSNVAYAIQFEWNLNASESPESNIMTLTTSPFFFSYI TEDDN.

1.17 Serotype 36 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFK NFPPGVLSLKLADPIAIVNGDVSLKVGGGLTVEQDSGKLKVNPKIPLQVVNDQLE LATDKPFKIENNKLALDVGHGLKVIDKTISDLQGLVGKLVVLTGVGIGTETLKDK NDKVIGSAVNVRLGKDGGLDFNKKGDLVAWNRYDDRRTLWTTPDPSPNCKVS EAKDSKLTLVLTKCGSQILASVALLIVKGKYQTISESTIPKDQRNFSVKLMFDEKG KLLDKSSLDKEYWNFRSNDSVVGTAYDNAVPFMPNLKAYPKNTTTSSTNPDDKI SAGKKNIVSNVYLEGRVYQPVALTVKFNSENDCAYSITFDFVWSKTYESPVAFD SSSFTFSYIAQE.

1.18 Serotype 37 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFK NFPPGVLSLKLADPITITNGDVSLKVGGGLTLQDGSLTVNPKAPLQVNTDKKLEL AYDNPFESSANKLSLKVGHGLKVLDEKSAAGLKDLIGKLVVLTGKGIGTENLEN TDGSSRGIGINVRAREGLTFDNDGYLVAWNPKYDLRTLWTTPDTSPNCTIAQDK DSKLTLVLTKCGSQILANVSLIVVAGKYHIINNKTNPKIKSFTIKLLFNKNGVLLD NSNLGKAYWNFRSGNSNVSTAYEKAIGFMPNLVAVSKPSNSKKYARDIVYGNIY LGGKPDQPGVIKTTFNQETGCEYSITFNFSWSKTYENVEFETTSFTFSYIAQE.

1.19 Serotype 38 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFXTPPFVXSDGFQ NFPPGVLSLKLADPITIANGNVSLKVGGGLTLEQDSGKLIVNXKAPLQVANDKLE LSYADPFETSANKLSLKVGHGLKVLDEKNAGGLKDLIGTLVVLTGKGIGVEELK NADNTNRGVGINVRLGKDGGLSFDKKGDXVAWNKHDDRRTLWTTPDPSPNCTI DEERDSKLTLVLTKCGSQILANVSLLVVKGKFSNINNNTNPTDKKITVKLLFNEK GVLMDSSSLKKEYWNYRNDNSTVSQAYDNAVPFMPNIKAYPKPTTDTSAKPED KKSAAKRYIVSNVYIGGLPDKTVVITIKLNAETESAYSMTFEFTWAKTFENLQFD SSSFTFSYIAQE.

1.20 Serotype 39 fiber protein

IRISPSSLPPLSPPMDSKTSPLGCYHSNWLTQSPSPMGMSHSRWEGGSPWQEGTG DLKVNAKSPLQVATNKQLEIALAKPFEEKDGKLALKIGHGLAVVDENHTHLQSL IGTLVILTGKGIGTGRAESGGTIDVRLGSGGGLSFDKDGNLVAWNKDDDRRTLW TTPDPSPNCKIDQDKDSKLTFVLTKCGSQILANMSLLVVKGKFSMINNKVNGTD DYKKFTIKLLFDEKGVLLKDSSLDKEYWNYRSNNNNVGSAYEEAVGFMPSTTA YPKPPTPPTNPTTPLEKSQAKNKYVSNVYLGGQAGNPVATTVSFNKETGCTYSIT FDFAWNKTYENVQC.

1.21: Serotype 42 fiber protein

SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFK NFPPGVLSLKLANPIAITNGDVSLKVGGGLTLQDGTGKLTIDTKTPLQVANNKLE LAFDAPLYEKNGKLALKTGHGLAVLTKDIGIPELIGSLVILTGKGIGTGTVAGGGT IDVRLGDDGGLSFDKKGDLVAWNKKNDRRTLWTTPDPSPNCRVSEDKDSKLTLI LTKCGSQILASFSLLVVXGTYTTVDKNTTNKQFSIKLLFDANGKLKSESNLSGYW NYRSDNSVVSTPYDNAVPFMPNTTAYPKIINSTTDPENKKSSAKKTIVGNVYLEG NAGQPVAVAISFNKETTADYSITFDFAWSKAYETPVPFDTSSMTFSYIAQE.

1.22: Serotype 43 fiber protein

NIPXLTPPFVSSDGFKNFPPGVLSLKLADPITITNGDVSLKVGGGLTVEKESGNLT VNPKAPLQVAKGQLELAYDSPFDVKNNMLTLKAGHGLAVVTKDNTDLQPLMG TLVVLTGKGIGTGTSAHGGTIDVRIGKNGSLAFDKDGDLVAWDKENDRRTLWT TPDTSPNCKMSEAKDSKLTLILTKCGSQILGSVSLLAVKGEYQNMTANTKKNVKI TLLFDANGVLLAGSSXXKEYWNFRSNDSTVSGNYENAVQFMPNITAYKPTNSKS YARSVIFGNVYIDAKPYNPVVIKISFNQETQNNCVYSISFDYTLSKDYPNMQFDV TLS

1.23: Serotype 44 fiber protein

NIPFLTPPFVSSDGFQNFPPGVLSLKLADPITITNGNVSLKVGGGLTLQEGTGDLK VNAKSPLQVATNKQLEIALAKPFEEKDGKLALKIGHGLAVVDENHTHLQSLIGTL VILTGKGIGTGSAESGGTIDVRLGSGGGLSFDKDGNLVAWNKDDDRRTLWTTPD PSPNCKIDQDKDSKLTFVLTKCGSQILANMSLLVVKGKFSMINNKVNGTDDYKK FTIKLLFDEKGVLLKDSSLDKEYWNYRSNNNNVGSAYEEAVGFMPSTTAYPKPP TPPTNPTTPLEKSQAKNKYVSNVYLGGQAGNPVATTVSFNKETGCTYSITFDFA WNKTYENVOFDSSF

1.24: Serotype 45 fiber protein

NIPFLTPPFVSSDGFQNFPPGVLSLKLADPIAITNGDVSLKVGGGLTVEKDSGNLK VNPKAPLQVTTDKQLEIALAYPFEVSNGKLGIKAGHGLKVIDKIAGLEGLAGTLV VLTGKGIGTENLENSDGSSRGVGINVRLAKDGVLAFDKKGDLVAWNKHDDRRT LWTTPDPSPNCTIDQERDSKLTLVLTKCGSQILANVSLLVVKGKFSNINNNANPT DKKITVKLLFNEKGVLMDSSTLKKEYWNYRNDNSTVSQAYDNAVPFMPNIKAY PKPSTDTSAKPEDKKSAAKRYIVSNVYIGGLPDKTVVITIKFNAETECAYSITFEFT WAKTFEDVOCDSSSFT

1.25: Serotype 46 fiber protein

NIPFLTPPFVSSDGFKNFPPGVLSLKLADPIAIVNGDVSLKVGGGLTLQEGNLTVD AKAPLQVANDNKLELSYADPFEVKDTKLQLKVGHGLKVIDEKTSSGLQSLIGNL VVLTGKGIGTQELKDKDDETKNIGVGINVRIGKNESLAFDKDGNLVAWDNENDR RTLWTTPDTSSKFVKISTEKDSKLTLVLTKCGSQILASVSLLAVAGSYLNMTAST QKSIKVSLMFDSKGLLMTTSSIDKGYWNYRNKNSVVGTAYENAIPFMPNLVAYP RPNTPDSKIYARSKIVGNVYLAGLAYQPIVITVSFNQEKDASCAYSITFEFAWNKD YVGQFDTTSFT

1.26 Serotype 47 fiber protein

SCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFKNF PPGVLSLKLADPITITNGDVSLKVGGGLTLQEGTGNLTVNAKAPLQVADDKKLE LSYDNPFEVSANKLSLKVGHGLKVLDEKNSGGLQELIGKLVILTGKGIGVEELKN ADNTNRGVGINVRLGKDGGLSFDKKGELVAWNKHNDTRTLWTTPDPSPNCKIE QDKDSKLTLVLTKCGSQILATMAFQVVKGTYENISKNTAKKSFSIKLLFDDNGKL LEGSSLDKDYWNFRNDDSIMPNQYDNAVPFMPNLKAYPNPKTSTVLPSTDKKSN GKNTIVSNLYLEGKAYQPVAVTITFNKETGCTYSITFEFGWAKTYDVPIPFDSSSF TFSYIAQE.

1.27: Serotype 48 fiber protein SDIPFLTPPFVSSDGFQNFPPGVLSLKLADPITITNGNVSLKVGGGLTLQEGTGDLK VNAKSPLQVATNKQLEIALAKPFEEKDGKLALKIGHELAVVDENLTHLQSLIGTL VILTGKGIGTGRAESGGTIDVRLGSGGGLSFDKDGNLVAWNKDDDRRTLWTTPD PSPNCKIDQDKDSKLTFVLTKCGSQILANMSLLVVKGKFSMINNKVNGTDDYKK FTIKLLFDEKGVLLKDSSLDKEYWNYRSNNNNVGSAYEEAVGFMPSTTAYPKPP TPPTNPTTPLEKSQAKNKYVSNVYLGGQAGNPVATTVSFNKETGCTYSITFDFA WNKTYKMAFIPRFNF

1.28: Serotype 49 fiber protein SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYGYARNQNIPFLTPPFVSSDGFQ NFPPGVLSLKLADPIAITNGNVSLKVGGGLTVEQDSGNLKVNPKAPLQVATDNQ LEISLADPFEVKNKKLSLKVGHGLKVIDENISTLQGLLGNLVVLTGMGIGTEELK KDDKIVGSAVNVRLGQDGGLTFDKKGDLVAWNKENDRRTLWTTPDPSPNCKVS EEKDSKLTLVLTKCGSQILASVSLLVVKGKFANINNKTNPGEDYKXFSVKLLFDA NGKLLTGSSLDGNYWNYKNKDSVIGSPYENAVPFMPNSTAYPKIINNGTANPED KKSAAKKTIVTNVYLGGDAAKPVATTISFNKETESNCVYSITFDFAWNKTYKNV PFDSSSLTFSYIAQE.

1.29.: Serotype 51 Fiber protein SCSCPSAPTIFMLLQMKRARPSEDTFNPVYPYEDESTSQHPFINPGFISPNGFTQ SPDGVLTLNCLTPLTTTGGPLQLKVGGGLIVDDTDGTLQENIRVTAPITKNNHSV ELSIGNGLETQNNKLCAKLGNGLKFNNGDICIKDSINTLWTGIKPPPNCQIVENTD TNDGKLTLVLVKNGGLVNGYVSLVGVSDTVNQMFTQKSATIQLRLYFDSSGNLL TDESNLKIPLKNKSSTATSEAATSSKAFMPSTTAYPFNTTTRDSENYIHGICYYMT SYDRSLVPLNISIMLNSRTISSNVAYAIQFEWNLNAKESPESNIATLTTSPFFFSYIIE DTTKCISLCYVSTCLFFN

Figure 8:

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Application Number

which under Rule 45 of the European Patent ConventionEP 99 20 2234 shall be considered, for the purposes of subsequent proceedings, as the European search report

		DERED TO BE RELEVANT	T 80'	01 4001510 - 7001 05 711
Category	of relevant pas	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (int.Ci.7)
Y	WO 98 22609 A (ARM RICHARD J (US); GE 28 May 1998 (1998- * page 3, line 5- * page 3, line 22 * page 5, line 27 * page 9, line 26 * page 25; example * figures 4,5,7 * * sequences 2, 3 *	3,4, 7-14,17, 20-22 5,6	C12N15/34	
X	matched early region vectors prevent general replication compet HUMAN GENE THERAPY	ent adenoviruses"	15,16	·
	vol. 9, no. 9, 1 September 1998 (1 1909-1917, XP002111 ISSN: 1043-0342 * page 1909 * * abstract *	1998-09-01), pages 1070		TECHNICAL FIELDS SEARCHED (Int.Cl.7)
	→ dDStrdCt →			C12N
		-/		O1LIN
INCO	MPLETE SEARCH		J	
not comply be carried Claims sea Claims sea	th Division considers that the present y with the EPC to such an extent that out, or can only be carried out partial arched completely: arched incompletely: t searched:	t application, or one or more of its claims, doe t a meaningful search into the state of the art ally, for these claims.	ea/do cannot	·
Reason to	r the limitation of the search;			
	sheet C			
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	8 June 2000	Site	ch, W
X : partic	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with ano ment of the same category tological background	E : earlier patent do	cument, but publis ite in the application	nvention thed on, or

INCOMPLETE SEARCH SHEET C

Application Number EP 99 20 2234

Although claims 1, 2 partially, insofar as such concern in vivo methods, are directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

Claim(s) not searched: 18, 19

Reason for the limitation of the search:

Present claims 18 and 19 relate to a compound (a cell receptor / binding site) defined by reference to a desirable characteristic or property, namely that such is for adenovirus type D and/or F, and is present on or is associated with CAR negative cells. No concrete structural data, or defining parameters, in relation to the cell receptor, are provided by the application. Example 7 on pages 43-45 of the application describes a protocol by which putative adherence molecules involved in adenovirus subgroup B, D and F binding and internalisation may be identified; no such identification / characterisation of the putative cell receptor or receptors is actually made however.

Claims 18 and 19 cover all compounds having the above-mentioned characteristics or properties, and yet the application provides no support within the meaning of Article 84 EPC and/or disclosure within the meaning of Article 83 EPC for any of such compounds which may fall under such a definition. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search of the claims is impossible. Consequently, no search has been carried out in respect of these claims.

Application Numbe

EP 99 20 2234

	DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate,	APPLICATION (Int.CI.7)	
Category	of relevant passages	Relevant to claim	
x	PRING-AKERBLOM PATRICIA ET AL: "Characterization of adenovirus subgenus D fiber genes." VIROLOGY 1995, vol. 206, no. 1, 1995, pages 564-571, XP002139779 ISSN: 0042-6822 * page 568; figure 3 *	20-23	
X	MEI YA-FANG ET AL: "Highly heterogeneous fiber genes in the two closely related adenovirus genome types Ad35p and Ad34a." VIROLOGY 1995, vol. 206, no. 1, 1995, pages 686-689, XP002139780 ISSN: 0042-6822 * page 688; figure 2 *	20-23	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
D,X	ARNBERG NIKLAS ET AL: "Fiber genes of adenoviruses with tropism for the eye and the genital tract." VIROLOGY 1997, vol. 227, no. 1, 1997, pages 239-244, XP002139781 ISSN: 0042-6822 * page 240; figure 1 *	20-23	
X	DATABASE EMBL SEQUENCE DATABASE 'Online! Hinxton, UK Accession no. 056784. TREMBL., 1 June 1998 (1998-06-01) PRING-AKERBLOM ET AL: "Human Adenovirus type 28 Fiber Protein" XP002139784	20-23	
1			

Application Number

EP 99 20 2234

	DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant	APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages	to claim	
X	DATABASE EMBL SEQUENCE DATABASE 'Online! Hinxton, UK Accession no. Q67733. TREMBL., 1 November 1996 (1996-11-01) BASLER ET AL: "Human Adenovirus Type 35 Fiber" XP002139785	20-23	
X	DATABASE EMBL SEQUENCE DATABASE 'Online! Hinxton, UK Accession no. Q67712. TREMBL., 1 November 1996 (1996-11-01) SHIEH: "Human Adenovirus type 12 Fiber Protein" XP002139786	20-23	TECHNICAL FIELDS SEARCHED (Int.CI.7)
X	HUANG SHUANG ET AL: "A single amino acid in the adenovirus type 37 fiber confers binding to human conjunctival cells." JOURNAL OF VIROLOGY APRIL, 1999, vol. 73, no. 4, April 1999 (1999-04), pages 2798-2802, XP002139782 ISSN: 0022-538X * page 2798 * * abstract * * discussion * * page 2802 *	1,2	

EP 99 20 2234

	Citation of document with indication, where appropriate,	APPLICATION (Int.CI.7)	
Category	of relevant passages	Relevant to claim	
Y	BASLER C F ET AL: "Sequence of the immunoregulatory early region 3 and flanking sequences of adenovirus type 35" GENE, NL, ELSEVIER BIOMEDICAL PRESS. AMSTERDAM.	5	
	vol. 170, no. 2, 8 May 1996 (1996-05-08), pages 249-254, XP004042835 ISSN: 0378-1119 * page 249 *		
	* abstract * * page 253, paragraph 3 - paragraph 4 *		
Y	WICKHAM T J ET AL: "Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber	6	TECHNICAL FIELDS SEARCHED (int.Cl.7)
	proteins" JOURNAL OF VIROLOGY,US,THE AMERICAN SOCIETY FOR MICROBIOLOGY, vol. 11, no. 71,		
	1 November 1997 (1997-11-01), pages 8221-8229, XP002078898 ISSN: 0022-538X * page 8221 *		
	* abstract * * page 8226, paragraph 7 - page 8227, paragraph 2 *		
Y	HIDAKA CHISA ET AL: "CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts."	6	
	JOURNAL OF CLINICAL INVESTIGATION FEB., 1999, vol. 103, no. 4, February 1999 (1999-02), pages 579-587, XP002139783 ISSN: 0021-9738		
	* page 579 * * abstract *		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 20 2234

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-06-2000

	Patent document cited in search repo	rt	Publication date		Patent family member(s)	Publication date
	WO 98226 09	A	28-05-1998	US AU EP	5877011 A 5455298 A 0946742 A	02-03-199 10-06-199 06-10-199
				*		
		•				
	•					
					•	
			•			
			•			
			Official Journal of the Euro			
or mo	re details about this an	nex : see (Official Journal of the Euro	pean Patent C	Office, No. 12/82	

BEST AVAILABLE COPY

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)