第十三周作业参考解答及补充

作业

1. (习题 4.1.1)

设 G 是一个群, 定义映射 $G \xrightarrow{\varphi} G$, $x \mapsto x^{-1}$. 试证明: φ 是 G 的自同构当且仅 当 G 是阿贝尔群.

proof

- (1) 若 φ 是同态, 对 $\forall g, h \in G$, 有 $g^{-1}h^{-1}gh = (gh)^{-1}gh = 1$, 而 $g^{-1}h^{-1} = (hg)^{-1}(1.3.2)$, 从而有 gh = hg.
- (2) " , G 是 Abel 群则有 $(gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1}$. 因此 φ 是同态.

2. (习题 4.1.2)

证明: 子群 $H \subseteq G$ 是正规子群当且仅当, $\forall g \in G$, $gHg^{-1} \subseteq H$.

proof

即教材的推论 4.1.6.

由定义, $H \triangleleft G \iff \forall g \in G, gHg^{-1} = gg^{-1}H = H$. 那么我们实际上要证明的是 $\forall g \in G, gHg^{-1} \subseteq H \implies gHg^{-1} = H$. 即只需说明此时也有反向的包含. 对 $\forall h \in H, g \in G$, 考虑 $g^{-1} \in G$, 则有 $g^{-1}Hg \subseteq H$. 则 $g^{-1}hg = H' \implies h = gh'g^{-1} \in gHg^{-1}$. 因此 $H \subseteq gHg^{-1}$.

3. (习题 4.1.3)

设 $G \stackrel{\varphi}{\to} G'$ 是群同态, $K = \ker(\varphi)$ 是同态 φ 的核. 试证明:

- (1) 对于任意子群 $H' \subset G', H = \varphi^{-1}(H') \subset G$ 是子群, 且包含 K.
- (2) 当 φ 是满射时, $H' \mapsto \varphi^{-1}(H')$ 建立了集合

$$\Gamma' = \{ H' \subseteq G' \mid H' \text{ 是子群} \},$$

与集合 $\Gamma = \{H \subseteq G \mid H \ \& G \ \text{的子群}, \ \exists H \supseteq K\}$ 之间的双射, 此时 $H' \subseteq G'$ 是正规子群当且仅当 $\varphi^{-1}(H') \subseteq G$ 是正规子群.

proof

类似定理 2.1.2.

(1) 注意到 $1 \in H'$ 而按定义 $K = \ker(\varphi) = \varphi^{-1}(1)$. 故有 $K \subseteq \varphi^{-1}(H')$. 验证是一个子群用 1.3.12 后提到的命题即可, $\forall a, b \in \varphi^{-1}(H')$,

$$\varphi(a), \varphi(b) \in H' \implies \varphi(ab^{-1}) = \varphi(a)\varphi(b)^{-1} \in H' \implies ab^{-1} \in \varphi^{-1}(H')$$

而反过来, 若 $H \subseteq G$ 是子群, $\varphi(H) \subseteq G'$ 也是子群.

注:

需要注意对于环同态 $R \stackrel{\varphi}{\to} R'$ 来说, $\varphi^{-1}(J)$ 是理想, 但 $\varphi(I)$ 只有当 φ 是满射时才是理想, 其中 $I \subseteq R, J \subseteq R'$ 是理想.

(2) φ 是满射时, 由同态基本定理, $G' \cong G/K$, 我们把 φ 看成商映射 $g \mapsto gK$. 由 (1), $H' \in \Gamma'$, $\varphi^{-1}(H') \in \Gamma$, 且 $\varphi^{-1}(H') = \{g \in G \mid gK \in H'\}$; $H \in \Gamma$, $\varphi(H) \in \Gamma'$, 且 $\varphi(H) = \{hK \mid h \in H\} = H/K(把 <math>\varphi$ 限制在 H 上, 而且 $\ker(\varphi) = K \subseteq H$, 因此按定义 $\ker(\varphi|_H)$ 仍是 K, 因此 $K \triangleleft H$, 商群 H/K 在这里是合理的). 我们只需说明 $H \mapsto \varphi(H)$ 和 $H' \mapsto \varphi^{-1}(H')$ 互逆, 按定义这是很简单的:

$$\varphi^{-1}(\varphi(H)) = \varphi^{-1}(H/K) = \{g \in G \mid gK \in H/K\} = H,$$
 $\varphi(\varphi^{-1}(H')) = \varphi(\{g \in G \mid gK \in H'\}) = \{hK \mid h \in \{g \in G \mid gK \in H'\}\} = H'$
剩下的部分使用注记中的定理来说明. 根据上面的双射, 我们设 $H' = \varphi(H) = H/K, H \in \Gamma$.

" \Longrightarrow " 当 $H/K \lhd G' = G/K$ 时,我们考虑商映射 $\pi': G/K \to \frac{G/K}{H/K}$ 和 φ 的复合 f,即

$$G \xrightarrow{\varphi} G/K \xrightarrow{\pi'} \frac{G/K}{H/K}$$

注意到 $\ker(f) = \{g \in G \mid gK \in H/K\} = H, 从而 H \triangleleft G.$

" ← " 反过来若 $H \triangleleft G$,则考虑商映射 $\pi: G \rightarrow G/H$. 注意到 $K \subseteq \ker(\pi) = H$,由注记中的商群的泛性质,存在唯一的同态

$$\overline{\pi}:G/K\to G/H$$

且 $\ker(\overline{\pi}) = H/K = H'$, 则有 $H' \triangleleft G/K = G'$.

注:

和 2.1.8 一样, 群同态基本定理也要推广为商群的泛性质:

定理 设 G 是群, $H \triangleleft G$, 对任意的同态 $G \stackrel{f}{\to} G'$, 若 $H \subseteq \ker(f)$, 则存在唯一的同态 $\overline{f}: G/H \to G'$ 使得图表交换:

$$G \xrightarrow{\pi} G$$

$$G/H$$

$$G/H$$

同样的有 $\ker(\overline{f}) = \ker(f)/H$, $H = \ker(f)$ 时就是同态基本定理.

4. (习题 4.1.4)

设 H,N 都是 G 的正规子群, 并且 $N\subseteq H$. 令 $\overline{H}=H/N,\overline{G}=G/N$.

- (1) 证明 \overline{H} 是 \overline{G} 的正规子群.
- (2) 证明 $G/H \cong \overline{G}/\overline{H}$.

proof

这题实际上是上题的推论, 此处我们考虑的同态是商同态 $\pi: G \to G/N$.

- (1) 根据 4.1.3, $\overline{H}=\pi(H)$, $\overline{G}=\pi(G)$. 由于 $H\lhd G$, 所以有 $\overline{H}=\pi(H)\lhd G/N=\overline{G}$.
- (2) 这里的同构实际上是在 4.1.3" \iff " 的部分最后再用一下同态基本定理. 记商同态 $f:G\to G/H$, 则有 $N\subseteq H=\ker(f)$, 由商群的泛性质, 存在唯一的同态 $\overline{f}:G/N\to G/H$, 且 $\ker(\overline{f})=H/N$, 因此有同构 $\overline{G}/\overline{H}=\frac{G/N}{H/N}\cong G/H$.

5. (习题 4.1.5)

设 $H \subseteq G$ 是 G 的子群, $K \triangleleft G$, 试证明:

- (1) $H \cdot K = \{hk \mid \forall h \in H, k \in K\}$ 是 G 中包含 H 和 K 的子群;
- (2) H 在商同态 $G \to G/K$, $(g \mapsto \overline{g})$ 下的像是 $(H \cdot K)/K$;
- (3) $\varphi: H \to (HK)/K$, $(\varphi(h) = \overline{h})$ 的核是 $H \cap K$;
- (4) φ 诱导群同构 $H/(H \cap K) \cong (HK)/K$.

proof

(1) 考虑商同态 $\pi: G \to G/K$. 注意这里前两题不一样, H 和 K 不一定有包含关系,

$$\pi(H) = \{hK \mid h \in H\} \implies \pi^{-1}(\pi(H)) = \bigcup_{h \in H} hK = HK.$$

因此 HK 是 G 的子群 (4.1.3 的 (1)).

- (2) 见(1).
- (3) 由 (1), 把 π 限制在H上, 就得到

$$\varphi: H \to (HK)/K$$

因此

$$\ker(\varphi) = \{\overline{h} = hK = \overline{1} = K \mid h \in H\} = \{h \in K \mid h \in H\} = H \cap K$$

(4) 对 (3) 中的 φ 用同态基本定理.