(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1 1881 | 1

(43) International Publication Date 6 September 2002 (06.09.2002)

PCT

(10) International Publication Number WO 02/067654 A2

(51) International Patent Classification: Not classified

(21) International Application Number: PCT/US02/06002

(22) International Filing Date: 27 February 2002 (27.02.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/794,825 27 February 2001 (27.02.2001) U

(71) Applicant (for all designated States except US): BRIS-TOL-MYERS SQUIBB PHARMA COMPANY [US/US]; P.O. Box 4000, Route 206 and Provinceline Road, Princeton, NJ 08543-4000 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MARKWALDER, Jay, A. [US/US]; 124 Shepherd Lane, London University, PA 19353 (US). SEITZ, Steven, P. [US/US]; 333 Haverford Place, Swarthmore, PA 19081 (US). SHERK, Susan, R. [US/US]; 402 Fould Road, Apt. 2B7, Wilmington, DE 19803 (US). (74) Agents: PATEL, Rena et al.; Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543-4000 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: 6-SUBSTITUTED PYRAZOLO[3,4-D]PYRIMIDIN-4-ONES USEFUL AS CYCLIN DEPENDENT KINASE INHIBITORS

(57) Abstract: The present invention relates to the synthesis of a novel class of pyrazolo[3,4-d]pyrimidin-4-ones of formula (I), alternatively represented by the tautomer (II), that are potent inhibitors of the class of enzymes known as cyclin dependent kinases, which relate to the catalytic subunits cyclin dependent kinase 1-8 and their regulatory subunits know as cyclins A-H, K, N, and T. This invention also provides a novel method of treating cancer or other proliferative diseases by administering a therapeutically effective amount of one of these compounds or a pharmaceutically acceptable salt form thereof. Alternatively, one can treat cancer or other proliferative diseases by administering a therapeutically effective combination of one of the compounds of the present invention and one or more other known anti-cancer or anti-proliferative agents.

TITLE

6-Substituted pyrazolo[3,4-d]pyrimidin-4-ones Useful as Cyclin Dependent Kinase Inhibitors

5

10

15

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Serial No. 09/794,825 filed February 27, 2001 in the name of Markwalder et al., the disclosure of which is herein incorporated by reference as though set forth in full.

FIELD OF THE INVENTION

6-substituted to relates invention This cyclin useful pyrazolo[3,4-d]pyrimidin-4-ones pharmaceutical (cdk) inhibitors, kinase dependent compositions comprising the same, methods for using these compounds for treating cancer and proliferative diseases, and intermediates and processes for making the same.

20

25

30

35

BACKGROUND OF THE INVENTION

One of the most important and fundamental processes in biology is the division of cells mediated by the cell cycle. This process ensures the controlled production of subsequent generations of cells with defined biological is a highly regulated phenomenon and Τt function. responds to a diverse set of cellular signals both within the cell and from external sources. A complex network of tumor promoting and suppressing gene products are key cellular signaling process. of this components Overexpression of the tumor promoting components or the subsequent loss of the tumor suppressing products will lead to unregulated cellular proliferation and the generation of tumors (Pardee, Science 246:603-608, 1989).

Cyclin dependent kinases play a key role in regulating the cell cycle machinery. These complexes consist of two components: a catalytic subunit (the kinase) and a regulatory subunit (the cyclin). To date,

eight kinase subunits (cyclin dependent kinase 1-8) have been identified along with several regulatory subunits (cyclins A-H, K, N, and T). Each kinase associates with a specific regulatory partner and together make up the active catalytic moiety. Each transition of the cell cycle is regulated by a particular cyclin dependent kinase complex: G1/S by cyclin dependent kinase2/cyclin cvclin dependent kinase4/cyclin D1 dependent kinase6/cyclinD2; S/G2 by cyclin dependent kinase2/cyclin A and cyclin dependent kinase1/cyclin A; G2/M by cyclin dependent kinasel/cyclinB. The coordinated activity of these kinases guides the individual cells through the replication process and ensures the vitality of each subsequent generation (Sherr, Cell 73:1059-1065, 1993; Draetta, Trends Biochem. Sci. 15:378-382, 1990).

10

15

20

25

30

35

An increasing body of evidence has shown a link between tumor development and cyclin dependent kinase related malfunctions. Over expression of the cyclin regulatory proteins and subsequent kinase hyperactivity have been linked to several types of cancers (Jiang, Proc. Natl. Acad. Sci. USA 90:9026-9030, 1993; Wang, Nature 343:555-557, 1990). More recently, endogenous, highly specific protein inhibitors of cyclin dependent kinases were found to have a major affect on cellular proliferation (Kamb et al., Science 264:436-440, 1994; 1993). Nature 336:701-704, These inhibitors Beach, $p16^{\text{INK4}}$ (an inhibitor of cyclin dependent include kinase4/D1), p21^{CIP1} (a general cyclin dependent kinase inhibitor), and p27KIP1 (a specific cyclin dependent kinase2/E inhibitor). A recent crystal structure of p27 bound to cyclin dependent kinase2/A revealed how these proteins effectively inhibit the kinase activity through multiple interactions with the cyclin dependent kinase complex (Pavletich, Nature 382:325-331, 1996). proteins help to regulate the cell cycle through specific interactions with their corresponding cyclin dependent

kinase complexes. Cells deficient in these inhibitors are prone to unregulated growth and tumor formation.

Schmidt et al. describe in U.S. Pat. No. 3,211,731 (issued Oct. 12, 1965) pyrazolo[3,4-d]pyrimidines of the formula:

where:

5

30

R₁ represents hydrogen, alkyl, cycloalkyl, aralkyl, 10 oxalkyl, hydroxyalkyl, halogenoalkyl, cycloalkylalkyl, heteroaralkyl, mono- or binuclear aryl or heteroaryl; R₁ represents hydrogen or lower alkyl;

 \mathbf{R}_{ϵ} represents substituted or unsubstituted aralkyl or heteroaralkyl.

These compounds are claimed to have utility as coronary dilating agents. Schmidt et al. disclose as intermediates, in U.S. Pat. No. 3,211,732 (issued Oct. 12, 1965) pyrazolo[3,4-d]pyrimidines within the above scope.

20 The two references cited above do not describe compounds in which the R^1 group is a substituted phenyl or pyridyl.

SUMMARY OF THE INVENTION

The present invention is directed to 6-substituted pyrazolo [3,4-d] pyrimidin-4-ones or pharmaceutically acceptable salt or prodrug forms thereof, that are inhibitors of the class of enzymes known as cyclin dependent kinases.

The present invention is also directed to methods of treating cancer or other proliferative diseases by administering a therapeutically effective amount of at

5

10

15

20

25

least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof to a patient in need of such treatment.

Additionally the present invention is directed to methods of treating cancer or other proliferative diseases, which comprises administering a therapeutically effective combination of at least one of the compounds of the present invention and at least one other known anticancer or anti-proliferative agent.

Compounds of the present invention have formula (I), alternatively represented by the tautomer (II):

wherein R^1 , R^2 , R^3 , R^4 , R^5 , Q, Y, and Z as defined below or pharmaceutically acceptable salts thereof, are cyclin dependent kinase inhibitors.

οf inhibitors described herein, the As invention are capable of inhibiting the cell-cycle machinery and consequently would be useful in modulating cell-cycle progression, which would ultimately control cell growth and differentiation. Such compounds would be useful for treating subjects having disorders associated with excessive cell proliferation, such as cancer, immunological disorders involving unwanted psoriasis, leukocyte proliferation, in the treatment of restenosis and other smooth muscle cell disorders, and the like.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a class of compounds of formula (I) or it's tautomer, formula (II):

5

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

10 Q is selected from the group consisting of: H, OH, and C_{1-7} alkyl;

Y is selected from the group consisting of: F, Cl, Br, and I;

15

20

25

Z is selected from the group consisting of: N, C-H, C-F, C-Cl, C-Br, C-I, C-CF₃, C-NO₂, C-C₁₋₄ alkyl optionally containing from 1-8 substitution groups, C-C₂₋₄ alkenyl optionally containing from 1-8 substitution groups, C-C₂₋₄ alkynyl optionally containing from 1-8 substitution groups, C-C₂₋₄ alkynyl optionally containing from 1-8 substitution groups, C-C₁₋₄ alkoxy optionally containing from 1-8 substitution groups, C-CO₂H, C-CHO, C-CONR⁶R⁹, C-CO₂C₁₋₃ alkyl, C-C(O)C₁₋₂ alkyl, C-CH₂NHR⁶, C-CONR⁶NR⁶R⁹, C-NR⁶R⁹; C-SO₂NR⁶R⁹, C-CR=NNR⁶R⁹, C-CR⁶=NOR⁶, and C-R⁶;

5

20

25

R¹ is selected from the group consisting of aryl and 5-10 membered aromatic heterocycle containing from 1-4 heteroatoms selected from O, N, and S, and wherein the aryl or the 5-10 membered aromatic heterocycle is optionally substituted with 1-5 R⁷ groups;

- R² is selected from the group consisting of: C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, S-C₁₋₃ alkyl, O-C₁₋₃ alkyl, NH₂, NH-C₁₋₃ alkyl, N(C₁₋₂ alkyl)₂, OCF₃, cyclopropyl optionally containing from 1-4 substitution groups, cyclobutyl, cyclopropylmethyl, cyclobutylmethyl, 1-methylcyclopropyl, 1-methylcyclobutyl, CH₂CN, CH₂OH, CH₂OCH₃, CH₂NH₂, CH₂NHC₁₋₃ alkyl, CH₂NMe₂, CF₃, CHO, OCH₂CH₂OH, OCH (Me) CH₂OH, OCH₂CH (Me) OH, OCH₂CH₂NMe₂, and CHF₂;
 - R³ is selected from the group consisting of: H, F, Cl, Br, I, CF₃, CHO, CHR⁶OH, COCF₃, CH=NOH, CH=NOCH₃, CH=NNH₂, CH=NNHMe, CH=NNMe₂, CH=CHR⁶, C₁₋₃ alkyl, C₁₋₃ alkoxy, CO₂H, CONH₂, CONH(C₁₋₃ alkyl), CONR⁶R⁹, CO₂C₁₋₃ alkyl, C(O)C₁₋₂ alkyl, NH₂, NHR⁶, and NR⁶R⁹;
 - $\rm R^4$ is selected from the group consisting of: H, F, Cl, Br, I, CF, Cl, alkyl, C2-3 alkenyl, NH2, NHR6, and NR6R9;
 - R⁵ is selected from the group consisting of: H, C₁₋₃ alkyl, F, Cl, Br, I, CF₃, and C₂₋₃ alkenyl;
- R⁶ and R⁹ are independently, at each occurrence, the same or different, and are selected from the group consisting of: H, C₁₋₈ alkyl optionally containing from 1-8 substitution groups, and C₃₋₇ cyclo-alkyl,
- alternatively, R⁶ and R⁹, together with the atoms to which
 they are attached, form a heterocycle having 5-7
 atoms in the ring and containing 0-1 additional N,
 O, or S atom; or, R⁶ and R⁹, together with the atoms

5

35

to which they are attached, form a bicyclic heterocycle having 9-11 atoms in the ring and containing one additional N, S, or O atom; or, R^6 and R^9 , together with the atoms to which they are attached, form a 5-7 membered ring and containing 0-3 additional N, S, or O atoms;

- R' is independently, at each occurrence, selected from the group consisting of: OH, C1-6 alkoxy, OC2-6 alkyl-CO2H, $O-C_{2-6}-alkyl-NR^6R^9$, F, Cl, Br, I, CF₃, OCF₃, -CN, -NO₂, 10 CO₂H, CO₂(C₁₋₆ alkyl), CONR⁶R⁹, NR⁶CONHOR⁶, NR⁶CONHSO₂R⁶, $\label{eq:nhnreconstraints} \mbox{NHNR}^{6}\mbox{C(O)OR}^{6}, \ \mbox{NR}^{6}\mbox{C(O)NR}^{6}\mbox{R}^{9}, \ \mbox{NH}_{2}, \ \mbox{NH(C}_{1-3} \ \mbox{alkyl)}, \ \mbox{N(C}_{1-3}$ -SO₂NR⁶R⁹, NHSO₂NHCO₂C₁₋₄ alkyl, NR⁶SO₂NR⁶R⁹, alkyl),, NR⁶SO₂CHR⁶CH₂NR⁶R⁹, NR⁶COCHR⁶NR⁶CHR⁶R⁹, NR⁶COCHR⁶NR⁶CHR⁶R⁹, $NR^6COCH_2CHR^6NR^6R^9$, $NR^6COCHR^6CH_2NR^6R^9$, $NR^6CO(CH_2)_mNR^6R^9$, 15 CONR'NR'R', NR⁶CONR⁶ (CH₂) "NR⁶R⁹, NR⁶CO₂ (CHR⁶) _nNR⁶R⁹, $NR^6CONR^6NR^6R^9$, C_{3-10} carbocycle, $NHCONR^6$, $NHCONHCH_2R^6$, ${\tt NHCOR}^6, \quad {\tt NHCOCH_2R}^6, \quad {\tt C_{1-10}} \quad {\tt alkyl} \quad {\tt optionally} \quad {\tt substituted}$ with 1-5 substitution groups, C2-10 alkenyl optionally substituted with 1-5 substitution groups, 20 alkynyl optionally substituted with 1-5 substitution and C₃₋₁₀ heterocycle containing heteroatoms selected from O, N, and S;
- 25 R^8 is independently, at each occurrence, selected from the group consisting of: =O, OH, C_{3-6} cycloalkyl, C_{1-6} alkoxy, NH₂, NH(C_{1-6} alkyl), N(C_{1-6} alkyl)₂, F, Cl, Br, I, CO_2H , COR^6 , CO_2 (benzyl), CO_2 (C_{1-6} alkyl), and $CONR^6R^9$;
- 30 n at each occurrence is independently selected from 2, 3, 4, 5, and 6; and,
 - m at each occurrence is independently selected from 3, 4,
 5, and 6.
 - The term "alkyl" is intended to include both C_{1-10} branched and straight-chain saturated aliphatic

hydrocarbon groups having the specified number of carbon atoms. Examples of alkyl include but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, s-pentyl, n- and s- hexyl, n-and s-heptyl, and, n- and s- octyl.

For purposes of the present invention the term "alkenyl" is defined as a C_{2-10} branched or straight-chain unsaturated aliphatic hydrocarbon groups having one or more double bonds between two or more carbon atoms. Examples of alkene groups include ethenyl, propenyl, 10 butenyl, pentenyl, hexenyl, heptenyl, octenyl and nonenyl and the corresponding C_{2-10} dienes, trienes and quadenes. The term "alkynyl" is defined as a C2-10 branched or straight-chain unsaturated aliphatic hydrocarbon groups having one or more triple bonds between two or more 15 Examples of alkynes include ethynyl, carbon atoms. propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl and nonynyl.

The term "substitution groups" means that one or more hydrogens on the molecule or atom modified by the 20 words "optionally containing" are replaced with 1, 2, 3, 4, 5, 6, 7, 8 or 9 substitution groups provided that the indicated atom's normal valency is not exceeded, and that the substitution results in a stable compound. "substitution groups" may be selected from the group 25 consisting of H, -OH, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, -OR, -NH2, -NHR, -NR'R, -COOH, -COOR, -CONHR, -CONR'R, -CHO, -CRO, $-SC_{1-8}$ alkyl, -halo, -CN, $-NO_2$, $-SO_2$, imino, sulfhydryl, alklthio, thioester, phosphory1, carbocyclic, aryl, heteroaryl, bicyclic and tricyclic 30 groups. When a substitution group is a keto (i.e., =0) group, then 2 hydrogens on the atom are replaced. Keto substituents are not present on aromatic moieties. The terms R and R' refer to substitution groups, which may be the same or different and may be selected from H, -OH, $C_{\scriptscriptstyle 1-}$ 35 alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, $-NH_2$, -COOH, -CHO, $-SC_{1-10}$

 $_{\rm 8}$ alkyl, -halo, -CN, -NO $_{\rm 2}$, -SO $_{\rm 2}$, carbocyclic, aryl, heteroaryl, bicyclic and tricyclic structures.

The scope of the present invention is intended to include all permutations and combinations of the substitution groups on the backbone structure specified by formulas I and II above with the proviso that each permutation or combination can be selected by specifying the appropriate R or substitution groups.

5

10

15

20

25

30

35

Thus, for example, the term "C₁₋₁₀ alkyl optionally containing from 1-8 substitution groups" refers to alkyl moieties containing saturated bonds or having one or more hydrogens replaced by, for example, halogen, hydroxyl, carbonyl, alkoxy, ester, ether, cyano, phosphoryl, amino, imino, amido, sulfhydryl, alklthio, thioester, sulfonyl, nitro, heterocyclo, aryl, or hetero-aryl.

The terms "halo" or "halogen" as used herein refer to fluoro, chloro, bromo and iodo.

The term "aryl" is intended to mean an aromatic moiety containing the specified number of carbon atoms, such as, but not limited to phenyl, tropone, indanyl or naphthyl.

The terms "cycloalkyl" and "bicycloalkyl" are intended to mean any stable ring system, which may be saturated or partially unsaturated. Examples of such include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, bicyclo[2.2.2]nonane, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7-membered monocyclic or bicyclic or 7- to 13-membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane,

5

10

15

20

25

30

35

fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

term "heterocycle" the used herein, "heterocyclic system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated partially unsaturated, unsaturated or aromatic, and which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and including any bicyclic group in which any of the abovedefined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be The heterocyclic ring may be attached to its oxidized. pendant group at any heteroatom or carbon atom that In this regard, a results in a stable structure. optionally the heterocycle may in nitrogen It is preferred that when the total number quaternized. of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than 1.

As used herein, the term "aromatic heterocyclic system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and from 1 to 4 heterotams independently selected from the group consisting of N, O and S. It is preferred that the total number of S and O atoms in the aromatic heterocycle is not more than 1.

but are include, Examples of heterocycles 2H,6H-1,5,2-1H-indazole, 2-pyrrolidonyl, limited to, dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-6H-1,2,5-thiadiazinyl, 4H-quinolizinyl, carbazole, benzofurany1, benzimidazoly1, acridinyl, azocinyl, benzoxazolyl, benzothiophenyl, benzothiofuranyl, benztetrazolyl, benzthiazolyl, benztriazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl,

 β -carbolinyl, chromanyl, carbazolyl, 4aH-carbazolyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-5 indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, isochromanyl, isoindazolyl, isobenzofuranyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, naphthyridinyl, isoxazolyl, morpholinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,4-oxadiazolyl, 10 oxazolidinylperimidinyl, oxazolidinyl, oxazolyl, phenarsazinyl, phenanthrolinyl, phenanthridinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, piperazinyl, piperidinyl, pteridinyl, phthalazinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, 15 pyrazolyl, pyrazolidinyl, pyrazolinyl, pyrazinyl, pyridoimidazole, pyridooxazole, pyridazinyl, pyrimidinyl, pyridinyl, pyridyl, pyridothiazole, quinazolinyl, pyrrolyl, pyrrolidinyl, pyrrolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, 20 carbolinyl, tetrahydrofuranyl, tetrahydroisoguinolinyl, 6H-1,2,5-thiadiazinyl, tetrahydroquinolinyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienooxazolyl, thienoimidazolyl, thienothiazolyl, 25 thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, xanthenyl. heterocycles include, but are not limited to, pyridinyl, pyrrolyl, pyrazolyl, imidazolyl, furanyl, thienyl, 1H-indazolyl, oxazolidinyl, benzimidazolyl, 30 indoly1, oxindolyl, benzisoxazolyl, benzotriazolyl, benzoxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

35 The term "independently selected from",
"independently, at each occurance" or similar language,
means that the labeled R substitution group may appear

more than once and may be the same or different when appearing multiple times in the same structure. Thus if the labeled R^6 substitution group appears four times in a given permutation of Formula I, then each of those labeled R^6 substitution groups may be, for example, a different alkyl group falling within the definition of R^6 . In one embodiment of the present invention, the

compound of formula (I) or formula (II) is selected from:

- 10 a) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-hydroxy-3methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - b) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - c) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- d) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-20 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- e) 1-(2,4,6-trichloropheny1)-3-ethyl-6-(3-hydroxybenzy1)pyrazolo[3,4-d]pyrimidin-4-one;
- 25 f) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - g) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-acetamidobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- h) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N-(t-butoxycarbonyl)glycinamido)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- i) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(2-(N,N-dimethylamino)) ethylaminocarbonylamino) benzyl) pyrazolo [3,4-d] pyrimidin-4-one;

j) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-amino-2-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 k) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(pyrid-2-ylmethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- 1) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4 10 glycinamidobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - m) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(pyrid-4-ylmethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- n) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(para-biphen-4ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- o) 1-(2,6-dichlorophenyl)-3-ethyl-6-(4-20 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - p) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(4-methylpiperazin-1-ylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- q) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(dimethylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- r) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(2-30 (hydroxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - s) 1-(2,6-dichlorophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
u) 1-(2,6-dichlorophenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 v) 1-(2,6-dichlorophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - w) 1-(2-chloro-6-methylphenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 10
 x) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3,5dihydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- y) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-hydroxy-3-15 methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - z) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-amino-3-nitrobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ab) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-(methane sulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ac) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(methane sulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 30 ad) 1-(2,6-dichloro-4-(pyrid-3-ylaminocarbonyl)phenyl)3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4one;
- ae) 1-(2,6-dichloro-4-(pyrid-4-ylaminocarbonyl)phenyl)35 3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4one;

af) 1-(2,6-dichloro-4-(cyclopropylaminocarbonyl) phenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 ag) 1-(2,6-dichloro-4-(N-(pyrid-3-ylmethyl)
 aminocarbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- ah) 1-(2,6-dichloro-4-(N-(pyrid-2-ylmethyl)

 10 aminocarbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;

15

- ai) 1-(2,6-dichloro-4-(ethylaminocarbonyl)phenyl)-3ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- aj) 1-(2,6-dichloro-4-(benzylaminocarbonyl)phenyl)-3ethyl-6-(3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ak) 1-(2,6-dichloro-4-(2-(dimethylamino)ethylamino
 20 carbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4d]pyrimidin-4-one;
 - al) 1-(2,6-dichloro-4-(methylaminocarbonyl)phenyl)-3ethyl-6-(4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- am) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-(N,N-dimethylglycinamido)-2-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- an) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N,N-dimethyl glycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ao) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N-methylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ap) 1-(2,6-dichloro-4-bromophenyl)-3-ethyl-6-(4hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
aq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(meth oxycarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 ar) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - as) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- at) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- au) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(methane
 15 sulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - av) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(difluoroacetamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 20 aw) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3(acetamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ax) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(methylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
- 25 pyrimidin-4-one;

- ay) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 30 az) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(azetidin-3-ylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ba) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(235 aminoethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;

bb) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(isopropylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 bc) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4fluorobenzylaminomethylcarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
- bd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(410 (pyrrolidin-1-ylmethylcarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;

- be) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrid-2-ylmethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
- bf) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(t-butoxycarbonylamino)ethylaminomethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- bg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrid-3ylmethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
- bh) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrid-4ylmethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- bi) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-30 (morpholin-4-yl)ethylaminomethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- bj) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4 (methylaminocarbonylmethyl)benzyl)pyrazolo[3,4-d]

 35 pyrimidin-4-one;

bk) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(ethylaminocarbonylmethyl)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;

- 5 bl) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(piperazin-1-ylcarbonylmethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - bm) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4methylpyrid-3-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;

bn) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino)ethylaminocarbonylmethyl)benzyl)pyrazolo
[3,4-d]pyrimidin-4-one;

- bo) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2,2-dimethylhydrazin-1-ylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- bp) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(120 hydroxybut-4-ylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - bq) (+/-)1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-hydroxyprop-1-ylaminomethylcarbonylamino)benzyl)
- 25 pyrazolo[3,4-d]pyrimidin-4-one;

- br) (+/-)1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1-hydroxyprop-2-ylaminomethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- bs) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(pyrid-3ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- bt) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-35 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

bu) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(dimethylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- bv) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(pyrid-4ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - bw) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)-3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

bx) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)-3-methoxybenzyl)pyrazolo[3,4-d]
pyrimidin-4-one;

- by) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4(methylaminocarbonylamino)-3-methoxybenzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
- bz) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-(3-20 (dimethylamino)propyl)aminocarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;

25

ca) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(benzoxazol-2-on-6-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;

cb) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-1-ylcarbonylmethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 30 cc) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonylmethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(435 (methylaminocarbonylamino)-3-hydroxybenzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;

ce) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-1-ylmethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;

- 5 cf) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(piperazin-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
- cg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(410 (morpholin-4-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - ch) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(imidazol-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ci) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl-N-(1-methylpiperidin-4-yl)aminomethylcarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

15

- cj) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4(cyclopropylaminomethylcarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
- 25 ck) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cl) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 30 pyrimidin-4-one;
 - cm) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-aminoindazol-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 35 cn) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl,N-(2-(dimethylamino)ethyl)aminomethylcarbonyl amino)benzyl)-pyrazolo[3,4-d]pyrimidin-4-one;

co) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-1-ylcarbonylmethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

5

- cp) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(azetidin-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 10 cq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxy-4-(imidazol-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cr) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-15 methylpiperazin-1-ylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
 - cs) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(3-(dimethylamino)prop-1-ylaminocarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
 - ct) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylhomopiperazin-1-ylcarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;

25

- cu) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-2-ylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 30 cv) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(t-butoxycarbonylaminosulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cw) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-35 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
cx) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(morpholin-4-yl)ethylaminothiocarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 cy) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - cz) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-bromobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- da) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4(piperazin-2-ylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- db) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1,4-dimethylpiperazin-2-ylcarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
- dc) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(220 (dimethylamino)ethylsulfonamido)benzyl)pyrazolo[3,4d]pyrimidin-4-one;
 - dd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-amino-3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- de) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-hydantoin-3-ylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- df) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(2H-1,4-benz 30 oxazin-3-on-7-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - dg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-(2-(dimethylamino)ethyl)aminocarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;

35

PCT/US02/06002 WO 02/067654

1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2hydroxyethylaminocarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;

- 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-
- methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one; 5
 - 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(2di) methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-10 dk) glycinamidobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(Nmethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 15 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino) ethylaminomethylcarbonylamino) benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-20 (aminomethyl)piperidin-1-ylmethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(homopiperazin-1-ylmethylcarbonylamino)benzyl) 25 pyrazolo[3,4-d]pyrimidin-4-one;
 - 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(ethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
- pyrimidin-4-one; 30
 - 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(dimethylaminomethyl)-3-hydroxybenzyl)pyrazolo[3,4-d] pyrimidin-4-one;
- 35 (S)-1-(2,4,6-trichloropheny1)-3-isopropyl-6-(4-(Nmethylprolinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
ds) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-,N-dimethylalaninamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 dt) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1,4,7-triazacyclonon-1-ylmethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- du) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-amino-2-10 methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - dv) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(morpholin-4-yl)ethylaminocarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;

dw) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(N-,Ndimethylglycinamido)-2-methylbenzyl)pyrazolo[3,4-d]
pyrimidin-4-one;

- 20 dx) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-1-ylaminocarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- dy) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(425 (morpholin-4-ylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - dz) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methoxyaminocarbonylamino)benzyl)pyrazolo[3,4-d]
- 30 pyrimidin-4-one;
 - ea) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methanesulfonamidocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

eb) $1-(2,4,6-\text{trichlorophenyl})-3-\text{isopropyl}-6-(4-(N-\text{methyl},N-(2-(dimethylamino)ethyl)aminocarbonylamino)}$ benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 ec) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(1-methylpiperidin-4-yl)aminocarbonylamino)
 benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ed) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-10 (tetrahydrofur-2-ylmethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ee) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1-hydroxypent-2-ylaminocarbonylamino)benzyl)pyrazolo
- 15 [3,4-d]pyrimidin-4-one;
 - ef) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1-hydroxyprop-2-ylaminocarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- eg) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-hydroxyprop-1-ylaminocarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
- 25 eh) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino)prop-1-ylaminocarbonylamino)benzyl)

 pyrazolo[3,4-d]pyrimidin-4-one;
- ei) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(3-30 hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ej) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(indazol-6-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 35 ek) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(indazol-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;

el) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(indazol-4-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;

- em) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(benz oxazol-2-on-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - en) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(3-hydroxy-4-nitrobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 10 eo) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

15

- ep) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(4-(N,N-dimethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- eq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(cis-3,4-dimethylpiperazin-1-ylmethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- er) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(trans-2,5-dimethylpiperazin-1-ylmethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- es) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(3-methylpiperazin-1-ylmethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- et) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(5-30 (dimethylaminomethyl)-1-methylpyrrol-2-yl)pyrazolo[3,4-d]pyrimidin-4-one;
- eu) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4methylpiperazin-1-ylaminocarbony)benzyl)pyrazolo[3,435 d]pyrimidin-4-one;

ev) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 ew) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-(N-methyl, N-(1-methylpiperidin-4-yl)aminocarbonylamino) benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ex) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-(N-10 methyl-N-(1-methylpiperidin-4-yl)aminomethylcarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ey) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N-methyl,N-((3S, 4S)-4-dimethylaminotetrahydrofur-3-yl)aminocarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ez) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonyl) benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- fa) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-pyrrolidin-1-ylethylaminocarbonyamino)benzyl)pyrazolo
 [3,4-d] pyrimidin-4-one;
- 25 fb) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonymethyl)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- fc) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(N-(2-(di methylamino)ethyl)aminocarbonymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

fe) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

ff) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl-N-(1-methylpiperidin-4-yl)aminocarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

10

20

- fg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- fh) 1-(2,6-dichloro-4-sulfonamidophenyl)-3-isopropyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one; and
- fi) 1-(4-aminomethyl-2, 6-dichlorophenyl)-3-isopropyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one.

The skilled artisan will understand that all forms of the organic compounds set forth in the present invention are intended to fall within the scope of the present invention, including, but not limited to, pharmaceutically acceptable salts, prodrugs, isomers, enantiomers and crystal forms.

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein 25 the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic 30 acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include 35 those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and

PCT/US02/06002 WO 02/067654

the like; and the salts prepared from organic acids such acetic, propionic, succinic, glycolic, stearic, citric, ascorbic, palmoic, lactic, malic, tartaric, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, sulfanilic, salicylic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, EtOAc, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found Remington's Pharmaceutical Sciences, 18th ed., Mack 1990, p. 1445, Publishing Company, Easton, PA, 20 disclosure of which is hereby incorporated by reference, in it's entirity as though set forth in full...

10

15

25

30

35

The phrase "pharmaceutically acceptable" is employed refer those compounds, materials, herein to to compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive irritation, allergic toxicity, response, or other problem or complication commensurate with a reasonable benefit/risk ratio.

"Prodrugs", as the term is used herein, is intended to include any covalently bonded carriers which release an active parent drug of the present invention in vivo when such prodrug is administered to a mammalian subject. Since prodrugs are known to enhance numerous desirable (i.e., qualities of pharmaceuticals solubility, bioavailability, manufacturing, etc.) the compounds of the present invention may be delivered in prodrug form.

Thus, the present invention is intended to cover prodrugs of the presently claimed compounds, methods of delivering the same, and compositions containing the same. Prodrugs of the present invention are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds of the present invention wherein a hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug of the present invention is administered to a mammalian subject, it cleaves to form a free hydroxyl, free amino, or free Examples of prodrugs sulfydryl group, respectively. include, but are not limited to, acetate, formate, and benzoate derivatives of alcohol and amine functional groups in the compounds of the present invention.

10

15

20

25

30

35

The term "therapeutically effective amount" of a compound of the present invention means an amount effective to inhibit the action of the class of enzymes known as cyclin dependent kinases or treat the symptoms of cancer or other proliferative diseases in a host.

As used herein, the term "anti-cancer" or "antiproliferative" agent includes, but is not limited to, altretamine, busulfan, chlorambucil, cyclophosphamide, mechlorethamine, melphalan, thiotepa, ifosfamide, gemcitabine, fluorouracil, floxuridine, cladribine, thioquanine, pentostatin, methotrexate, 6-mercaptopurine, carmustine, lomustine, streptozotocin, cytarabine, oxaliplatin, cisplatin, iproplatin, carboplatin, JM216, JM335, fludarabine, lobaplatin, tetraplatin, aminoglutethimide, flutamide, goserelin, leuprolide, acetate, tamoxifen, acetate, cyproterone megestrol dexamethasone, anastrozole, bicalutamide, diethylstilbestrol, prednisone, bleomycin, dactinomycin, daunorubicin, doxirubicin, idarubicin, mitoxantrone, mitomycin-c, plicamycin, paclitaxel, losoxantrone, docetaxel, topotecan, irinotecan, 9-amino camptothecan,

5

10

15

20

25

30

35

9-nitro camptothecan, GS-211, etoposide, teniposide, vinblastine, vincristine, vinorelbine, procarbazine, asparaginase, pegaspargase, octreotide, estramustine, and hydroxyurea.

The compounds of the present invention may contain one or more asymmetrically substituted carbon atoms or chiral centers, and may be isolated in optically active or racemic forms. The skilled artisan will appreciate that it is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. diastereomeric, racemic forms and chiral, geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated. All processes used to prepare compounds of the present invention and intermediates made therein are considered to be part of the present invention.

The present invention is intended to include all isotopes of atoms occurring on the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include ¹³C and ¹⁴C.

DOSAGE AND FORMULATION

In another embodiment, the present invention provides a novel pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I) or (II) or a pharmaceutically acceptable salt form thereof.

The cyclic dependent kinase inhibitor compounds of this invention can be administered as treatment for cancer or proliferative diseases by any means that produces contact of the active agent with the agent's site of action in the body of a mammal. They can be

administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but preferably are administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the age, health and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; and the effect desired. A daily dosage of active ingredient can be expected to be about 0.001 to about 1000 milligrams per kilogram of body weight, with the preferred dose being about 0.1 to about 30 mg/kg.

10

15

20

25

30

35

forms οf compositions suitable for Dosage administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition. ingredient can be administered orally in solid dosage forms, such as capsules, tablets, suppositories powders, or in liquid dosage forms, such as elixirs, It can also be administered syrups and suspensions. parenterally, in sterile liquid dosage forms.

Gelatin capsules contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the

PCT/US02/06002 WO 02/067654

selective or coated for enteric atmosphere, disintegration in the gastrointestinal tract. dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous (glucose), and related sugar solutions and dextrose glycols such as propylene glycol or polyethylene glycols parenteral carriers for suitable parenteral administration preferably for Solutions contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer Antioxidizing agents such as substances. bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts, and sodium EDTA. 15 addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben Suitable pharmaceutical carriers and and chlorobutanol. as well as their methods of administration forms, manufacture are described in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Company, Easton, PA, a standard reference text in this field, disclosure of which is hereby incorporated by reference.

SYNTHESIS 25

5

10

20

30

35

The compounds of the present invention can be synthesized using the methods described below, with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated Each of the references by those skilled in the art. cited below are hereby incorporated herein by reference.

Key intermediates preparing the compounds of the aminonitriles, present invention are pyrazole aminocarboxamides, and aminoesters of the formulas II, The preparation of these III, and IV, respectively. in the chemical intermediates is has precedence

literature, and several methods are summarized in Schemes A (A. O. Abdelhamid, A. S. Shawali, et al. J. Heterocycl. Chem., 1984, 21, 1049.); B (C. C. Cheng and R. K. Robins, J. Org. Chem. 1956, 21, 1240.); C (P. Schmidt and J. Druey, Helv. Chem. Acta, 1956, 39, 986.); and D (Tominaga et al., J. Heterocycl. Chem., 1990, 27, 775). starting hydrazines and aldehydes variety of commercially available or can be prepared by standard substituents in the transformations. The following schemes, which are designated R1, R2, and Q, have the same definition as that defined above in the Detailed Description.

15

5

Scheme B

$$R^{2}C(OR)_{3} = \frac{1.) \text{ Ac}_{2}O, \text{ NCCH}_{2}CONH}_{2}}{2.) \text{ ArNHNH}_{2}} = \frac{1.) \text{ Ac}_{2}O, \text{ NCCH}_{2}CONH}_{2}}{\text{ acid or base hydrolysis}}$$

5

Scheme C

$$R^{2}C(OR)_{3} = \frac{1.) Ac_{2}O, NCCH_{2}CO_{2}R}{2.) ArNHNH_{2}}$$

$$H_{2}N$$

$$IV$$

10

15

Aminonitriles of the formula II can be converted to pyrazolo[3,4-d]pyrimidines of the present invention as shown in Scheme E. In summary, the aminocarboxamide is acylated, optionally in the presence of a suitable solvent such as dichloromethane by treatment with a

suitable base such as triethylamine followed by an acid halide of the formula R¹CHQCOX, preferably an acid chloride to give carboxamidonitriles of the formula V. Alternately carboxamidonitriles of the formula V can be prepared by coupling of aminonitriles II with carboxylic acids of the general formula R¹CHQCO₂H in the presence of a suitable base and coupling reagent in a suitable solvent. The coupling of amines and carboxylic acids has been reviewed (Klausnew and Bodansky Synthesis, 1972, 453-463), and the variety of reagents available for effecting it can be appreciated by those skilled in the art.

Transformation of carboxamidonitriles of the formula V to the compounds of the present invention can be accomplished by treatment with an excess of hydrogen peroxide in the presence of a suitable base, preferably a metal hydroxide or alkoxide base in a solvent, preferably water, an alcohol, or a water-alcohol mixture at a temperature in the range of about 0 °C up to 100 °C.

20

25

30

10

15

Scheme E

Alternatively, carboxamidonitriles of the formula V can be transformed to the compounds of the present invention by heating, preferably for about an hour in concentrated, strong acid, preferably 85% H₃PO₄.

Scheme F shows an alternative means for preparing the compounds of the present invention. Amino carboximides of the formula III in a suitable solvent, preferably a lower alkanol, are treated with an excess of an ester of the formula R¹CHQCO₂R, where R is lower alkyl and an excess of a base, preferably a metal lower

alkoxide, preferably at the boiling point of the solvent to give compounds of the present invention. Many arylacetic esters are commercialy available or can be prepared in one step from commercially available arylacetic acids by esterification with an excess of an alcohol, ROH, preferably at reflux with ethyl or methyl alcohol, used as solvent in the presence of an acid catalyst such as H2SO4 or p-TsOH. Alternatively, a coupling reagent such as DCC can be used, preferably in a solvent such as CH2Cl2 with a catalylst such as DMAP. Phenylacetic acids may be prepared by acid or base hydrolysis of arylacetonitriles which in turn may be prepared by treatment of aryl halides with CN-, preferably in solvents such as DMF, MeOH, EtOH, water, DMSO, or mixtures thereof. Further examples arylacetic esters may be prepared from aryl carboxylic acids under Arndt-Eistert (Meier and Zeller Angew. Chem. Int. Ed. Engl. 1975, 14, 32-43) or related homologation conditions.

20

15

10

Scheme F

$$H_2N$$
 N
 R^2
 R^1CHQCO_2R
 R

Wherein I represents compounds of formula I.

Aminoesters of the formula IV can be converted to compounds of the present invention by reaction with an excess of a nitrile of the formula R¹CHQCN and sodium. This reaction is preferably performed neat with heating.

Wherein I represents compounds of formula I

5

10

15

20

25

30

Pyrazolo[3,4-d]pyrimidin-4-ones further may be elaborated as described below to give additional compounds of the present invention. Electrophilic aromatic substitution reactions can be performed on the R' aryl or heteroaryl group to introduce substituents. reactions include, but are not limited to nitration, (Friedel-Crafts), halogenation, alkylation acylation (Friedel-Crafts), chloromethylation, sulfonation, aminomethylation (Mannich reaction). Conditions performing these reactions are familiar to those skilled in the art of organic synthesis, generally involving reaction of the electrophile with the aryl or heteroaryl substrate in the presence of a catalyst. In the case of Mannich reactions, the catalyst nitrations or preferably a protic acid which may serve as solvent, where the electrophile is generated in situ from saltpeter, or amine and a carbonyl component, an respectively. For other electrophilic aromatic substitution reactions, preferred catalysts are Lewis acids, including but not limited to FeX,, AlX,, and ZnX,, where X is halogen.

The compounds prepared above which have an amino group can be derivatized by reaction with electrophiles including, but not limited to acyl halides, anhydrides, isocyanates, chloroformates, sulfonyl halides, alkyl halides, lactones, or esters. Conditions for performing these addition reactions are familiar to those skilled in the art of organic synthesis, generally involving addition of the electrophile to the nucleophile,

PCT/US02/06002 WO 02/067654

preferably in solution at a temperature between 0 °C and Addition of a base may be necessary. It should be noted that the products of these reactions can react further with some electrophiles at the pyrimidinone nitrogen (N5). The resulting functional groups (amides, carbamates, etc.) are less stable to basic hydrolysis than the desired anilino- or aliphatic groups and can be cleaved back to the pyrimidinone having H on N5. Reaction of compounds bearing an amine group with agents such as haloacyl halides, α , β - unsaturated acid halides, or halosulfonyl halides gives intermediates which can react with nucleophiles such as primary or secondary amines, diamines, alkoxides, aminoalcohols or thiols.

10

15

25

30

35

The compounds prepared above, which have a carboxyl group, can be derivatized by activation and reaction with nucleophiles including, but not limited to amines and alcohols to give, respectively, amides and esters. The and carboxylic acids amines coupling of carbodiimides has been reviewed (Klausnew and Bodansky 20 Synthesis, 1972, 453-463), and the variety of additional reagents available for effecting it as well as the potential need for protecting groups (Green and Wuts "Protective Groups in Organic Synthesis" Second Edition, John Wiley & Sons, 1991) to mask reactive functionality can be appreciated by those skilled in the art. preparation of esters from acids has been described Reduction of these amides and esters to amines and alcohols can be performed using a suitable hydride reducing agent.

The compounds prepared above which have an amino by conversion derivatized can be group electrophilic species by activation with phosgene or a phosgene equivalent (Tetrahedron: Asymmetry 1995, 6, 745; Org. Chem. 1994, 59, 1937.), preferably in the presence of a base, and reaction with nucleophiles including, but not limited to amines, alcohols,

sulfonamides to give, respectively, ureas, carbamates, and sulfonylureas. Conditions for performing these reactions and the hazards associated with handling phosgene and phosgene equivalents are familiar to those skilled in the art of organic synthesis, and all appropriate precautions should be taken.

5

Further transformations which may be required to prepare compounds of the present invention include reductions of ketones, aldehydes, esters, acids, amides or reductive aminations by alumino- and borohydride 10 reagents (J. Seyden-Penne "Reductions by the Alumino and Borohydrides in Organic Synthesis" VCH Publishers, Inc., 1991) and oxidations of groups including but not limited to alcohols, aldehydes, olefins, thioethers, sulfoxides, and heteroaryl groups (Milos Hudlicky "Oxidations in 15 Organic Chemistry" American Chemical Society, Reduction of functional groups such as alkenes, alkynes, nitrogen, nitro- or cyano- groups could be accomplished by catalytic hydrogenation or by dissolving metal of intermediates elaboration reduction. 20 Further compounds of the containing electrophilic sites to present invention could be accomplished by displacement with nucleophiles including, but not limited to, CN, amines, alkoxides, mercaptans, or carbanions. invention could be other compounds of the present 25 prepared by coupling of aryl halides, triflates, stannames with the appropriate boronic acids (Stilk, J.K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508; Suzuki, A. Pure Appl. Chem. 1985, 57, 1749). The compounds prepared above, which have a carbonyl group, can be derivatized 30 further by reaction with nucleophiles to give secondary alcohols. Such nucleophiles include, but are not limited to, Grignard reagents, alkyl-, alkenyl-, and alkynyllithium reagents, and allyl- stannanes, silanes, and the Compounds prepared as described above could be 35 like. further elaborated by rearrangements such as the Beckmann

(Gawley in Org. React. 1988, 35, 1-420) or other rearrangements.

Further elaboration of the compounds prepared above can be accomplished by generation of an organomagnesium organolithium species by directed metallation (Beak and Meyers Acc. Chem. Res. 1986, 19, 356-363; Beak and Snieckus Acc. Chem. Res. 1982, 15, 306-312; Katritzky, Lam, and Sengupta Prog. Heterocycl. Chem. 1989, 1, 1-29) or from an aryl halide by lithium-halogen exchange (Parham and Bradsher, Acc. Chem. Res. 1982, 15, 300-305).

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments that are given for illustration of the invention and are not intended to be limiting thereof.

15

10

EXAMPLES

Abbreviations used in the Examples are defined as follows: "°C" for degrees Celsius, "MS or mass spec." for mass spectrum, "g" for gram or grams, "h" for hour or for milligram or milligrams, "mL" for 20 hours, "mg" milliliter or milliliters, "mmol" for millimoles, "M" for "DMF" for minute or minutes, "min" for molar, dimethylformamide, "THF" for tetrahydrofuran, "Boc" for (benzotriazol-1-"Bop" for t-butoxycarbonyl, yloxy) tris(dimethylamino) -phosphonium 25 hexafluorophosphate, "EDC" for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, "BopCl" for bis(2-oxo-3-oxazolidinyl)phosphinic chloride, "ether" for diethyl ether, "aq" for aqueous, "RT" for ambient temperature, "HOAc" for acetic acid, "EtOAc" for ethyl acetate "p-30 TsOH" for para-toluenesulfonic acid, "DIEA" for N, Ndiisopropylethylamine, "t-BuOH" for t-butanol, "EtOH" for N-"MeOH" methanol, "NBS" for ethanol, and "TFA" for trifluoroacetic acid. bromosuccinimide, "Mass spec." results refer to M/z for the product species 35

composed entirely of the most prevalent isotopes of each of its constituent atoms, i.e. 12 for carbon, 1 for

hydrogen, 35 for Cl, 14 for N, and 16 for O. Ionization techniques used give M⁺, (M+H)⁺, or (M-H)⁻ species. Proton (1H) nuclear magnetic resonance(NMR) experiments were performed on dilute solutions in the solvent indicated at the frequency (generally 300 MHz) indicated. Chemical 5 downfield from ppm are reported in shifts The following abbreviations are used: tetramethylsilane. "s" for singlet, "d" for doublet, "t" for triplet, "q" for quartet, "m" for multiplet, and "br." for broad. It is understood Reported integrations are approximate. 10 by those experienced in the interpretation of NMR spectra that some proton signals are absent, increased or diminished in measured intensity in a given spectrum due to factors such as poor instrument phase, rapid exchange with trace water or protons in the solvent, or because 15 they resonate at a frequency outside that recorded (generally -0.2 to +15 ppm). It is also understood that chemical shifts for a given compound may vary due to factors such as concentation or pH of the sample. due precision to the that 20 further understood measurement of coupling constants, signals for coupled protons may have coupling constants that differ slightly.

Example 1

1-(2,4,6-Trichlorophenyl)-3-(methylthio)-6-(3-25 methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 176 mg (0.5 mmol) of 5-amino-3-(methylthio) -1-(2,4,6-trichlorophenyl)pyrazole-4carboxamide in 6 mL of absolute ethanol was added 550 mg (3.0 mmol) of 3-methoxyphenylacetyl chloride followed by 30 2.3 mL (6.0 mmol) of 2.66 M sodium ethoxide in ethanol. The solution was stirred 18 h at reflux, and the heating mantle was then removed. The reaction was treated with 5 mL of 10% aq. HOAc, cooled to ambient temperature, and The filtrate was washed with 6 mL of 1:1 35 filtered. water-methanol then 6 mL of 1:1 ether-hexanes. The offwhite solid was briefly air-dried to give 220 mg (92%) of

1-(2,4,6-trichlorophenyl)-3-(methylthio)-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one, mp 245-248 °C. Mass spec. Calc'd for $C_{20}H_{16}N_4O_2SCl_3$: 481.0060. Found: 481.0076 (M+H) $^{+}$.

5

Example 2

1-(2,4,6-Trichlorophenyl)-3-(methylthio)-6-(3hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 55 mg (0.11 mmol) of 1-(2,4,6trichlorophenyl)-3-(methylthio)-6-(3-methoxy 10 benzyl)pyrazolo[3,4-d]pyrimidin-4-one in 2 mL of CH2Cl2 was added 1 mL (1 mmol) of 1 M boron tribromide in The solution was stirred 35 min. at ambient CH₂Cl₂. temperature, and it was then cooled to 0 °C. The reaction was quenched with 4 mL of 1 M aq. HCl. The 15 mixture was poured into water and extracted with EtOAc. The organic extract was washed with brine, dried (MgSO4), and concentrated under reduced pressure to afford 52 mg of 1-(2,4,6-trichlorophenyl)-3-(methylthio)-6-(3hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one as an off-20 white solid, m.p. 264-266 °C. Mass spec. Calc'd for $C_{19}H_{11}N_4O_{2}SCl_{3}$: 465.9825(M)⁺. Found: 465.9798.

Starting from 5-amino-3-(methylthio)-1-(2,4,6-25 trichlorophenyl)pyrazole-4-carboxamide, the following compounds were prepared by methods similiar to those used to synthesize the compounds above:

Table I

5	Ex. #	R ¹	m.p.(°C)	MS
	3	phenyl	234-238	
	4	imidazol-4-yl		441
	5	4-pyridyl	283-287	452
	6	3,4-dimethoxyphenyl	226-230	511
10	7	3-nitrophenyl	243-255	496
	8	4-methoxyphenyl	263-267	
	9	4-hydroxyphenyl	294-296	467
	10	2,5-dimethoxyphenyl	137-150	481
	11	2,5-dihydroxyphenyl		483
15	12	4-aminophenyl		466
	13	3,4-methylenedioxyphenyl	257-260	
	14	2-thienyl	218-222	457

Example 15

20 <u>1-(2,4,6-Trichlorophenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one</u>

Part A: To a stirred solution of 320 mg (1.9 mmol) of 2-cyano-3-ethoxypentenamide in 7 mL of MeOH was added 465 mg (2.2 mmol) of 2,4,6-trichlorophenylhydrazine. The solution was stirred 3 h at reflux, treated with 2 mL of water, and allowed to stir an additional 1 h, cooling to RT. The white solid which precipitated was filtered, washed with 2:1 MeOH-water, and air-dried to afford 520 mg (82%) of 5-amino-3-ethyl-1-(2,4,6-trichlorophenyl)

pyrazole-4-carboxamide, mp 186-188 °C, Mass Spec(CI+): $331.9989(M)^{+}$.

Part B: To a stirred solution of 167 mg (0.5 mmol) of 5amino-3-ethyl-1-(2,4,6-trichlorophenyl)pyrazole-4carboxamide in 6 mL of absolute ethanol was added 550 mg (3.0 mmol) of 3-methoxyphenylacetyl chloride followed by 2.3 mL (6.0 mmol) of 2.66 M sodium ethoxide in ethanol. The solution was stirred 18 h at reflux, and the heating mantle was then removed. The reaction was treated with 5 10 mL of 10% aq. HOAc, cooled to ambient temperature, and The filtrate was washed with 6 mL of 1:1 filtered. water-methanol then 6 mL of 1:1 ether-hexanes. The offwhite solid was briefly air-dried to give 170 mg (76%) of 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-methoxybenzyl) 15 pyrazolo[3,4-d]pyrimidin-4-one, mp 235-238 °C. Mass Spec. $463(M+H)^{\dagger}$.

Example 16

1-(2,4,6-Trichlorophenyl)-3-ethyl-6-(3-

hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one
To a stirred solution of 80 mg (0.17 mmol) of 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-methoxybenzyl)
pyrazolo[3,4-d]pyrimidin-4-one in 1 mL of CH2Cl2 was
added 1 mL (1 mmol) of 1 M boron tribromide in CH2Cl2.
The solution was stirred 1 h at ambient temperature and then cooled to 0 °C. The reaction was quenched with 4 mL of 1 M aq. HCl. The mixture was poured into water and extracted with 1:1 tetrahydrofuran-EtOAc. The organic
stract was washed with brine, dried (MgSO4), and

concentrated under reduced pressure to afford 77 mg (100%) of 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-hydroxybenzyl) pyrazolo[3,4-d]pyrimidin-4-one as an off-white solid. Mass Spec.: $449\,(\text{M+H})^{+}$.

35

20

Example 17

1-(2,4,6-Trichlorophenyl)-3-ethyl-6-(4-(4-

5

10

methoxyphenyl)benzyl))pyrazolo[3,4-d]pyrimidin-4-one

To a stirred mixture of 100 mg (0.2 mmol) of 1-(2, 4, 6trichlorophenyl)-3-ethyl-6-(4-bromobenzyl) pyrazolo[3, 4-38 mg (0.25 mmol) of d]pyrimidin-4-one and methoxyphenylboronic acid in 10 mL of toluene, 0.5 mL of EtOH, and 2 mL of 2 M Na_2CO_3 was added to 5 mg of $Pd(Ph_3P)_4$. The mixture was heated to reflux overnight, poured into water, and extracted with CHCl,. The organic extract was dried $(MgSO_4)$, filtered through celite, chromatographed (elution with MeOH/CH,Cl,), 5% recrystallized to afford 64 mg (59%) 1-(2,4,6o£ trichlorophenyl)-3-ethyl-6-(4-(4-methoxyphenyl)benzyl)

pyrazolo[3,4-d]pyrimidin-4-one as a pale brown powder, mp 275-277 °C, Mass spec.: 537 (M-H).

Starting from 5-amino-3-ethyl-1-(2,4,6 trichlorophenyl)pyrazole-4-carboxamide the following compounds were prepared by methods similiar to those used to synthesize the compounds above:

PCT/US02/06002

<u>Table II</u>

5				
	Ex. #	R ¹	m.p.(°C)	MS
	18	3-indolyl	296-299	474
	19	3-hydroxy-4-methylphenyl	amorphous	
	20	3-methoxy-4-methylphenyl	263-265	
10	21	4-hydroxy-3-methylphenyl	260-263	
	22	4-methoxy-3-methylphenyl	245-247	479
	23	phenyl	240-241	431
	24	3,4,5-trimethoxyphenyl	224-226	523
	25	4-bromophenyl	296-299	511
15	26	4-hydroxy-3-nitrophenyl	263-266	
	27	2-methoxyphenyl	188-191	463
	28	4-pyridyl	277-280	432
	29	3-amino-2-methylphenyl	242-243	
	30	3,4-dimethoxyphenyl	220-222	493
20	31	3,4-dihydroxyphenyl		465
	32	2-pyridyl'HOAc	164-169	433
	33	4-hydroxy-3-methoxyphenyl	260-280	479
	34	4-methoxyphenyl	261-262	463
	35	4-hydroxyphenyl	289-291	449
25	36	3-hydroxy-4-methoxyphenyl	237-240	479
	37	3-aminophenyl	236-240	447.0418
	38	4-aminophenyl	256-259	448
	39	3-methylphenyl	238-240	
	40	5-methoxy-3-indolyl	295-298	

PCT/US02/06002 WO 02/067654

	41	3-amino-4-hydroxyphenyl	amorphous	464
	42	3,4-dimethoxy-6-hydroxy-	203-205	
		methylphenyl		
	43	3-(dimethylaminomethyl)phenyl	amorphous	492
5		HCl salt		
	44	4-amino-3-nitrophenyl	amorphous	491
	45	4-(dimethylamino)phenyl		476
	46	3-(ethoxycarbonylmethyl)pheny	1168-169	517
	47	3-(carboxymethyl)phenyl	192-194	
10				

Example 48

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(3methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one

25

35

Part A: To a stirred solution of 106 g (500 mmol) of 15 2,4,6-trichlorophenyl hydrazine in 600 mL of absolute ethanol was added 48.1 mL (530 mmol) of isobutyraldehyde. The solution was stirred 2 h at RT and concentrated under The crude oil was reduced pressure to afford an oil. dissolved in 450 mL of dry DMF and cooled to 0 °C. 20 solution was treated with 94.3 g (530 mmol) of NBS in four portions over 10 min. The solution was stirred 1 h at 0 °C and poured onto ice. The mixture was diluted with water and extracted with 800 mL of ether. The organic extract was washed twice with water and once with brine, dried (MgSO4), and concentrated under reduced pressure to afford an oil. In a separate flask, 44.3 g (670 mmol) of malononitrile in 140 mL of EtOH was cooled to 0 $^{\circ}\mathrm{C}$ and treated with 252 mL (670 mmol) of 2.66 M NaOEt in EtOH This solution was added in four portions over 6 min. over 5 min. to a rapidly stirred solution of the crude bromohydrazone in 350 mL of absolute EtOH. Using a heat pistol, this solution was maintained at reflux for 10 min. further. The reaction was cooled, quenched with 5% aq. HOAc, and extracted twice with ether. The combined organic extracts were washed (brine), dried (MgSO4) and filtered over activated charcoal and celite, and concentrated under reduced pressure. The product was

chromatographed on silica gel (gradient elution with 1:3 ether-hexanes and 2:1 ether-CH₂Cl₂) to afford 93.5 g (57%) of 5-amino-4-cyano-3-isopropyl-1-(2,4,6-trichlorophenyl)pyrazole as a white solid. 1 H NMR(CDCl₃, 300 MHz) δ 7.51(s, 2H); 4.28(br. s, 2H); 3.05(septet, 1H, J = 7.0 Hz); 1.36(d, 6H, J = 7.0 Hz).

Part B: Thirty grams (91.0 mmol) of 5-amino-4-cyano-3-isopropyl-1-(2,4,6-trichlorophenyl)pyrazole was dissolved in 80 mL of con. H₂SO₄ and stirred 24 h at RT. The solution was added to cold aqueous NaOH, and the resulting precipitate was filtered, washed with water, and dried under vacuum to give 29.1 g (92%) of 5-amino-3-isopropyl-1-(2,4,6-trichlorophenyl)pyrazole-4-carboxamide as a white solid. H NMR (CDCl₃, 300 MHz) δ 7.49(s, 2H); 5.06-5.63(m, 4H); 3.06(septet, 1H, J = 6.8 Hz); 1.39(d, 6H, J = 6.9 Hz).

Part C: To a stirred solution of 167 mg (0.5 mmol) of 5amino-3-isopropyl-1-(2,4,6-trichlorophenyl)pyrazole-4-20 carboxamide in 6 mL of absolute ethanol was added 550 mg (3.0 mmol) of 3-methoxyphenylacetyl chloride followed by 2.3 mL (6.0 mmol) of 2.66 M sodium ethoxide in ethanol. The solution was stirred 18 h at reflux, and the heating mantle was then removed. The reaction was treated with 5 25 mL of 10% aq. HOAc, cooled to ambient temperature, and The filtrate was washed with 6 mL of 1:1 filtered. water-methanol then 6 mL of 1:1 ether-hexanes. The offwhite solid was briefly air-dried to give 170 mg (76%) of 1-(2,4,6-trichloropheny1)-3-isopropyl-6-(3-methoxybenzy1) 30 pyrazolo[3,4-d]pyrimidin-4-one, mp 204-205 °C, Mass Spec: $477(M+H)^{+}$.

Example 49

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(3-

hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one

To a stirred solution of 65 mg (0.14 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-methoxybenzyl)pyra zolo[3,4-d]pyrimidin-4-one in 1 mL of CH2Cl2 was added 1 mL(1 mmol) of 1 M boron tribromide in CH2Cl2. The solution was stirred 1 h at ambient temperature and then cooled to 0 °C. The reaction was quenched with 4 mL of 1 M aq. HCl. The mixture was poured into water and extracted with 1:1 THF-EtOAc. The organic extract was washed with brine, dried (MgSO4), and concentrated under reduced pressure to afford 63 mg (100%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxybenzyl)pyrazolo

- 15 [3,4-d]pyrimidin-4-one as an amorphous solid. 1 H NMR (300 MHz, DMSO) δ 12.46(br. s, 1H); 9.33(br. s, 1H); 7.96(s, 2H); 7.03(t, 1H, J = 7.7 Hz); 6.55-7.08(m, 3H); 3.75(s, 2H); 3.19-3.36(m, 1H); 1.29(d, 6H, J = 7.0 Hz).
- 20 Starting from 5-amino-3-isopropyl-1-(2,4,6 trichlorophenyl)pyrazole-4-carboxamide the following compounds were prepared by methods similiar to those used to synthesize the examples above:

Table III

m.p.(OC)<u>MS</u> Ex. 491 3-hydroxy-4-methoxyphenyl 50 462 3-aminophenyl 51 223-225 462 4-aminophenyl 52 475 10 53 4-methoxyphenyl 4-amino-3-methoxyphenyl 238-240 54 210-217(dec.) 476 4-amino-3-hydroxyphenyl 55 278-281 (dec.) 4-(dimethylaminomethyl)phenyl 56 HC1 salt 528 57 5-methoxy-2-methylindol-3-yl 15 514 5-hydroxy-2-methylindol-3-yl 58 4-bromophenyl 229-230 59 448.0506 214-215 60 2-pyridyl 273-275 61 4-pyridyl 20 62

5

63

64

65

66

67

68

69

25

Example 70

1-(2,4,6-Trichlorophenyl)-3-cyclopropyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one
To a stirred solution of 146 mg (0.42 mmol) of 5-amino-3-cyclopropyl-1-(2,4,6-trichlorophenyl)pyrazole-4-carboxamide in 6 mL of absolute ethanol was added 533 mg (2.53 mmol) of ethyl 3-hydroxy-4-methoxyphenylacetate followed by 1.91 mL (5.1 mmol) of 2.66 M sodium ethoxide in ethanol. The solution was stirred 18 h at reflux, and the heating mantle was then removed. The reaction was treated with 5 mL of 10% aq. HOAc, cooled to ambient

temperature, and filtered. The filtrate was washed with 6 mL of 1:1 water-methanol then 6 mL of 1:1 ether-hexanes. The off-white solid was briefly air-dried to give 46 mg (22%) of 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-

d]pyrimidin-4-one. Mass Spec.: 489(M-H).

10

Starting from 5-amino-3-cyclopropyl-1-(2,4,6-20 trichlorophenyl)pyrazole-4-carboxamide the following compounds were prepared by methods similiar to those used to synthesize the examples above:

Table IV

5	Ex. #_	R ¹	m.p.(°C)	MS
	71	Indazol-4-yl		483
	72	Indazol-5-yl	274-283	483
	73	Indazol-6-yl		483
	74	4-Aminophenyl		460
10	75	Benzoxazol-2-on-5-yl		500
	76	3-Hydroxy-4-nitrophenyl	259-260	506
	77	4-(N,N-dimethylglycinamido)phenyl	250-253	

Example 78

1-(2,4,6-Trichlorophenyl)-3-trifluoromethyl-6-(3-15 methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 186 mg (0.50 mmol) of 5-amino-3trifluoromethyl-1-(2,4,6-trichlorophenyl)pyrazole-4carboxamide in 6 mL of absolute ethanol was added 555 mg (3.0 mmol) of 3-methoxyphenylacetyl chloride followed by 20 2.26 mL (6.0 mmol) of 2.66 M sodium ethoxide in ethanol. The solution was stirred 23 h at reflux, and the heating mantle was then removed. The reaction was treated with 10 mL of 10% aq. HOAc, cooled to ambient temperature, and The filtrate was washed with 6 mL of 1:125 filtered. water-methanol then 6 mL of 1:3 ether-hexanes. The offwhite solid was briefly air-dried to give 230 mg (91%) of

1-(2,4,6-trichlorophenyl)-3-trifluoromethyl-6-(3-

methoxybenzyl) pyrazolo[3,4-d]pyrimidin-4-one. Mass spec.: 503(M+H)⁺.

Example 79

1-(2,4,6-Trichlorophenyl)-3-trifluoromethyl-6-(3hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 60 mg (0.12 mmol) of 1-(2,4,6trichlorophenyl)-3-trifluoromethyl-6-(3-methoxy-4methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one in 2 mL of 10 CH₂Cl₂ was added 2 mL of a 1M solution of BBr₃ in CH₂Cl₂. The solution was stirred 2.5 h at RT and quenched with 1 The mixture was diluted with water and N ag. HCl. The organic extract was washed extracted with EtOAc. with brine, dried (MgSO4), and concentrated under reduced The crude product was chromatographed on pressure. silica gel (elution with 1:1 hexanes-THF, then THF) to 1-(2,4,6-trichlorophenyl)-3-trifluoromethyl-6-(3hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one, as an offwhite solid. Mass spec.: 487(M-H).

Starting from 5-amino-3-(trifluoromethyl)-1-(2,4,6-trichlorophenyl)pyrazole-4-carboxamide the following compounds were prepared by methods similiar to those used to synthesize the compounds above:

25

20

Table V

	Ex. #	R ¹	m.p.(°C)	MS
5	80	3-aminophenyl		488
	81	4-aminophenyl		488
	82	4-methoxyphenyl	263-265	501
	83	4-hydroxyphenyl		487
	84	4-pyridyl		474
	85	3-hydroxy-4-methoxyr	phenyl	517
	86	4-hydroxy-3-methoxyphenyl		517

10

Example 87

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(3-(N,N-dimethylglycinamido)-2-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one

Part A: To a stirred, cooled (0 °C) solution of 110 mg 15 (0.23 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-amino-2-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one in of (0.6 mmol) THFwas added 0.084 mL4 mL of triethylamine followed by 0.024 of (0.3 mmol) mL20 chloroacetyl chloride. The solution was stirred 2 h, The reaction was warming to ambient temperature. quenched by dropwise addition of 5 mL of 0.5 N aq. HCl, and the resulting solid was collected by filtration. product was washed with water then 1:1 ether-hexanes and air-dried to afford 96 mg (76%) of 1-(2,4,6-trichloro 25 phenyl)-3-isopropyl-6-(3-(chloroacetamido)-2-methyl benzyl)pyrazolo[3,4-d]pyrimidin-4-one, mp 237-238 °C. H NMR (300 MHz, DMSO) δ 12.42(s, 1H); 9.69(s, 1H); 7.93(s, 2H); 7.15(d, 1H, J = 7.3 Hz); 7.07(t, 1H, J = 7.7 Hz); 6.95(d, 1H, J = 8.7 Hz); 4.25(s, 2H); 3.90(s, 2H); 3.20-30 3.33(m, 1H); 2.07(s, 3H); 1.30(d, 6H, J = 6.9 Hz).

<u>Part B</u>: To a stirred solution of of 1-(2,4,6-trichloro phenyl)-3-isopropyl-6-(3-(chloroacetamido)-2-methyl

benzyl)pyrazolo[3,4-d]pyrimidin-4-one in 2 mL of THF was added 1 mL of 40% aq. dimethylamine. The solution was stirred overnight at ambient temperature and treated with

water until a precipitate formed. The precipitate was filtered, washed with water and 1:1 ether-hexanes, and air-dried to afford 46 mg (75%) of 1-(2,4,6-trichloro phenyl)-3-isopropyl-6-(3-(N,N-dimethylglycinamido)-2
5 methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one as an off-white solid, mp 219-222 °C. Mass spec.(ESI-): 561((M-H)). By allowing m-substituted anilines to react with suitable acylating agents and performing further synthetic manipulations as necessary, the following compounds wherein R¹ = phenyl were prepared by methods similiar to those used to synthesize the compounds above:

Table VI

15

Ex.	# R2	R ⁷ (meta)	R ⁷ (ortho)	mp(°C)	MS
88	Et	CH ₃ SO ₂ NH	Н		524
89	i-Pr	CH ₃ SO ₂ NH	H		538
90	i-Pr	CF ₂ HCONH	H		538
91	i-Pr	CH,CONH	H		502
92	i-Pr	CH,NHCONH	H		517
93	i-Pr	HOCH,CH,NHCONH	H		547
94	i-Pr	HO (CH ₂) 4NHCONH	H		577
95	i-Pr	(Fluorophen-4-yl)CH2NHCONH	Н		613
96	i-Pr	(Fluorophen-3-yl)CH₂NHCONH	H		613
97	i-Pr	Morpholin-4-ylCONH	H		575
98	i-Pr	PhCH,N (CH3) CONH	H		609
99	i-Pr	Tetrahydrofur-2-ylCH2NHCON	н н		585

100	i-Pr	4-hydroxypiperid-1-ylCONH	H		589
101	i-Pr	Pyrid-2-ylCH2NHCONH	H		596
102	i-Pr	Pyrid-3-ylCH2NHCONH	H		596
103	i-Pr	4-Methylpiperazin-1-ylNHCONH	H		603
104	i-Pr	Pyrid-3-ylNHCONH	H		582
105	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CONH$	Н		590
106	Et	(CH ₃) ₂ NCH ₂ CONH	Me	218-221	547
107	i-Pr	$(Methoxyphen-2-y1)CH_2NHCONH$	H		625
108	i-Pr	(Methoxyphen-4-yl)CH2NHCONH	H		625
109	i-Pr	2-hydroxypiperid-1-ylCONH	H		589
110	Et	CH₃CONH	H		488

WO 02/067654

PCT/US02/06002

Example 111

1-(2,4,6-Trichlorophenyl)-3-ethyl-6-(4methanesulfonylaminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 45 mg (0.1 mmol) of 1-(2,4,6trichlorophenyl)-3-ethyl-6-(4-aminobenzyl)pyrazolo[3,4d]pyrimidin-4-one in 2 mL of ether-CH,Cl, was added 0.5 mL 0.020 mL (0.26 mmol) of pyridine followed by methanesulfonyl chloride. The solution was stirred 39 h at ambient temperature and poured into 1 N aq. HCl. The mixture was extracted with EtOAc, then hexanes. The 10 combined organic extracts were washed with water then brine, dried (MgSO,), and concentrated under reduced pressure to afford 52 mg of 1-(2,4,6-trichlorophenyl)-3aminobenzyl)pyrazolo[3,4ethyl-6-(4-methanesulfonyl solid. Mass amorphous an 15 d]pyrimidin-4-one as spec.(ESI+): 526(M+H).

Example 112

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(piperazin-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one

Part A: To a stirred, cooled (0 °C) solution of 9.26 g (20 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one in 45 mL of THF and 10 mL of DMF was added 3.90 mL (28 mmol) of

THF and 10 mL of DMF was added 3.90 mL (28 mmol) of triethylamine followed by 1.99 mL (25 mmol) of chloroacetyl chloride over 5 min. The solution was stirred 30 min. at 0 °C and quenched by addition of 150 mL of 0.1 N aq. HCl. The resulting solid was collected by filtration, washed with water then 1:1 ether-hexanes, and air-dried to afford 10.2 g (95%) of 1-(2,4,6-trichloro phenyl)-3-isopropyl-6-(4-(chloroacetamido)benzyl)pyrazolo [3,4-d]pyrimidin-4-one as a white solid. H NMR (300 MHz, DMSO) δ 12.49(s, 1H); 9.74(s, 1H); 7.97(s, 2H); 7.46(d,

30

35 2H, J = 8.0 Hz); 7.20(d, 2H, J = 8.8 Hz); 4.19(s, 2H); 3.80(s, 2H); 3.20-3.33(m, 1H); 1.28(d, 6H, J = 6.9 Hz).

Part B: To a stirred solution of 300 mg (0.55 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(chloro acetamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one in 6 mL of 1:1 DMF-THF was added 1 g of piperazine. The solution was stirred overnight at ambient temperature and poured into water. The mixture was extracted twice with EtOAc, and the combined organic extracts were washed (brine), dried (MgSO₄), and concentrated under reduced pressure to afford 230 mg (71%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(piperazin-1-ylmethylcarbonylamino) benzyl)pyrazolo[3,4-d]pyrimidin-4-one as an off-white solid. Mass spec.(ESI+): 588((M+H)[†]).

Example 113

- 15 (S)-1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(N-t-butoxycarbonylprolinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one
 - To a stirred solution of 105 mg (0.22 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo
- [3,4-d]pyrimidin-4-one and 235 mg (1.09 mmol) of Boc-L-proline in 2 mL of DMF was added 0.35 mL (2.5 mmol) of triethylamine followed by 490 mg (1.11 mmol) of Bop. The solution was stirred overnight at ambient temperature then poured into EtOAc. This solution was washed sequentally with 0.5 M HCl then dilute aq. Na₂CO₃ then brine, dried (MgSO₄), and concentrated under reduced pressure. The crude product was recrystallized from
- prolinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one as a white solid, mp 225-226 °C, Mass spec.: 657 M-H⁻).

trichlorophenyl)-3-isopropyl-6-(4-(N-t-butoxycarbonyl

EtOAc-hexanes to afford 116 mg (80%) of (S)-1-(2,4,6-1)

Example 114

(S)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(prolinamido) benzyl) pyrazolo [3, 4-d] pyrimidin-4-one Fifty mg (0.076 mmol) of (S)-1-(2,4,6-trichloro phenyl)-3-isopropyl-6-(4-(N-t-butoxycarbonylprolinamido)benzyl) pyrazolo[3,4-d]pyrimidin-4-one was dissolved in 2 mL of 4 M HCl, and the solution was stirred 1 h at RT. The solution was concentrated under reduced pressure to afford 45 mg (100%) of (S)-1-(2,4,6-trichloropheny1)-3isopropyl-6-(4-(prolinamido)benzyl) pyrazolo[3,4-10 d]pyrimidin-4-one as a white, amorphous solid. H NMR (300 MHz, DMSO) δ 12.42(s, 1H); 10.67(s, 1H); 7.97(s, 2H); 7.49(d, 2H, J = 8.5 Hz); 7.23(d, 2H, J = 8.4 Hz); 4.27-4.31(m, 1H); 3.82(s, 2H); 3.18-3.34(m, 5H); 2.28-2.40(m, 5H)1H); 1.84-1.95 (m, 3H); 1.28 (d, 6H, J = 6.9 Hz). 15

Example 115

1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(dimethylamino methyl)-3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 464 mg (1.0 mmol) of 1-(2,4,6-20 trichlorophenyl)-3-isopropyl-6-(3-hydroxybenzyl)pyrazolo [3,4-d]pyrimidin-4-one in 10 mL of glacial HOAc was added 0.4 mL of 37% aq. formaldehyde followed by 0.5 mL of 40%aq. dimethylamine. The solution was stirred overnight at RT, and it was then heated to just below reflux for 20 25 The solution was poured into water and extracted The organic extract was washed (brine), with EtOAc. dried (MgSO,), and chromatographed on silica gel (elution with EtOAc) to afford, after removal of solvent, 135 mg 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-30 (26%) (dimethylaminomethyl)3-hydroxybenzyl)pyrazolo[3,4d]pyrimidin-4-one as an off-white, amorphous solid. Mass spec.(ESI+): 520(M+H)*.

Example 116

1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-pyridylmethyl)pyrazolo[3,4-d]pyrimidin-4-one

35

To a stirred solution of 167 mg (0.5 mmol) of 1-(2,4,6trichlorophenyl)-3-ethyl-4-carboxamido-5-aminopyrazole in 5 mL of ethanol was added 480 mg (3.0 mmol) of ethyl 3pyridyl acetate followed by 1.13 mL (3.0 mmol) of 2.66 M NaOEt in ethanol. The solution was stirred overnight at reflux, and the product was precipitated by treatment with 10 mL of 10% aq. HOAc. The mixture was filtered, and the product was washed with 1:1 MeOH-water then 1:1 ether-hexanes and air dried to afford 210 mg (97%) of 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-pyridylmethyl) 10 pyrazolo[3,4-d]pyrimidin-4-one as an off-white solid, mp 257-260 °C. ¹H NMR (300 MHz, DMSO) δ 12.56(s, <1H (exchanges with solvent)); 8.46(d, 1H, J = 1.5); 8.40(dd, 1H, J = 1.5); 8.40(dd, 1H, J = 1.5); 1H, J = 4.8, 1.5 Hz); 7.96(s, 2H); 7.60-7.64(m, 1H); 7.25-7.30(m, 1H); 3.90(s, 2H); 2.83(q, 2H, J = 7.3Hz); 15 1.23(t, 3H, J = 7.5 Hz).

Example 117

$(+/-)-1-(2,4,6-Trichlorophenyl)-3-ethyl-6-(\alpha-hydroxy$

benzyl)pyrazolo[3,4-d]pyrimidin-4-one 20 To a stirred solution of 167 mg (0.50 mmol) of 1-(2,4,6trichlorophenyl)-3-isopropyl-4-carboxamido-5-amino pyrazole in 6 mL of ethanol was added 544 mg (3.0 mmol) of (+/-) ethyl mandelate followed by 1.13 mL (3.0 mmol) of 2.66 M NaOEt in ethanol. The solution was stirred 25 overnight at reflux, and the product was precipitated by treatment with 10 mL of 10% aq. HOAc. The mixture was filtered, and the product was washed with 1:1 MeOH-water then 1:1 ether-hexanes and air dried to afford 210 mg 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(α -30 o£ (94왕) hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one as an offwhite solid, mp 246-248 °C. Mass spec.(ESI-): 449(M-H).

Example 118

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(ethenesulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred, cooled (0 °C) solution of 231 mg (0.5 mmol) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-5 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one and 0.14 mL (1.0 mmol) of Et_3N in 4 mL of THF was added 0.063 mL (0.6 mmol) of 2-chloroethanesulfonyl chloride. The solution was stirred 1 h, warming to ambient temperature. solution was poured into 10% aq. citric acid 10 The organic extract was washed extracted with EtOAc. (brine), dried (MgSO4), and concentrated under reduced The crude product was chromatographed (elution with 1:1 EtOAc-hexanes) to afford 221 mg (80%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(ethenesulfon 15 amido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one as an offwhite solid. ^{1}H NMR (300 MHz, DMSO) δ 12.47(br. s, 1H); 9.92(br. s, 1H); 7.97(s, 2H); 7.17(d, 2H, J = 8.4 Hz);7.02(d, 2H, J = 8.4 Hz); 6.69(dd, 1H, J = 16.5, 9.9Hz);6.04(d, 1H, J = 16.5 Hz); 5.96(d, 1H, J = 9.9 Hz);20 3.78(s, 2H); 3.18-3.32(m, 1H); 1.28(d, 6H, J = 7.0 Hz).

Example 119

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(2-

25 (dimethylamino) ethanesulfonamido) benzyl) pyrazolo[3,4-dlpyrimidin-4-one

To a stirred, solution of 23 mg(0.042 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(ethenesulfonamido) benzyl)pyrazolo[3,4-d]pyrimidin-4-one in 1 mL of THF was added 1 mL of 2M diethylamine in THF. The solution was stirred 3 h and concentrated under reduced pressure. The product was dissolved in 1 mL of benzene and 0.05 mL of MeOH, frozen, and lyophilized to afford 25 mg (100%) of

(dimethylamino) ethenesulfonamido) benzyl) pyrazolo [3,4-d] pyrimidin-4-one as an amorphous white solid. H NMR (300 MHz, DMSO) δ 7.96(s, 2H); 7.19(d, 2H, J = 8.5 Hz);

1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-

7.08(d, 2H, J = 8.8 Hz); 3.79(s, 2H); 3.18-3.32(m, 1H); 3.13(t, 2H, J = 7.5 Hz); 2.53(t, 2H, J = 7.5 Hz); 1.99(s, 6H); 1.28(d, 6H, J = 7.0 Hz).

5

30

35

Example 120

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(hydroxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 347 mg (1.0 mmol) of 5-amino-3isopropyl-1-(2,4,6-trichlorophenyl)pyrazole-4-carboxamide in 6 mL of absolute ethanol was added 777 mg (4.0 mmol) 10 of ethyl 4-(hydroxymethyl)phenylacetate followed by 2.0 mL (5.33 mmol) of 2.66 M sodium ethoxide in ethanol. solution was stirred 18 h at reflux, and the heating mantle was then removed. The reaction was treated with 25 mL of 5% ag. HOAc, cooled to ambient temperature, and 15 The organic extract was washed extracted with EtOAc. twice with water and once with brine, dried (MgSO,), and chromatographed on silica gel (elution with 1:1 EtOAchexanes) to give, after removal of solvent, 320 mg (67%) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(hydroxy 20 οf methyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one as a white, amorphous solid. ¹H NMR (300 MHz, CDCl₃) d 11.46(br. s, 1H); 7.54(s, 2H); 7.42(d, 2H, J = 8.1 Hz); 7.31(d, 2H, J= 8.5 Hz); 4.66(s, 2H); 4.00(s, 2H); 3.47(septet, 1H, J =7.0 Hz); 1.48(d, 6H, J = 7.0 Hz). 25

Example 121

(+/-)-1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(1,4-dimethylpiperazine-2-ylcarboxamido)benzyl) pyrazolo[3,4-dlpyrimidin-4-one

Part A: To a stirred, cooled (0 °C) solution of 463 mg (1.0 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one and 0.28 mL (2.0 mmol) of Et₃N in 8 mL of THF was added 0.131 mL (1.2 mmol) of 2,3-dichloropropanoyl chloride. The solution was stirred 0.5 h, warming to ambient temperature. The solution was quenched with water and filtered. The solid

was washed with 0.1 N aq. HCl, then water, then 1:1 hexanes-ether. The product was air-dried briefly to afford 390 mg (71%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-chloroacrylamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one as an amorphous solid. H NMR (300 MHz, DMSO) δ 12.49(br. s, 1H); 10.14(br. s, 1H); 7.97(s, 2H); 7.53(d, 2H, J = 8.4 Hz); 7.22(d, 2H, J = 8.4 Hz); 6.36(d, 1H, J = 2.6 Hz); 6.03(d, 1H, J = 2.5 Hz); 3.82(s, 2H); 3.18-3.32(m, 1H); 1.28(d, 6H, J = 7.0 Hz).

10

5

Part B: To a stirred, solution of 112 mg (0.2 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-chloroacryl amido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one in 2 mL of THF was added 0.5 mL of N, N'-dimethylethylene diamine.

The solution was stirred overnight, poured into water, and extracted with EtOAc. The organic extract was washed (brine), dried (MgSO₄), and concentrated under reduced pressure to afford 102mg (84%) of 1-(2,4,6-trichloro phenyl)-3-isopropyl-6-(4-(1,4-dimethyl piperazine-2-ylcarboxamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one as an amorphous white solid. Mass spec.(ESI+): 602.1608(M+H)[†].

Example 122

1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-

(carbethoxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one 25 5-amino-3-isopropyl-1-(2,6carboxamide, The amino (0.30)dichlorophenyl)pyrazole-4-carboxamide g, mmol), p-diethyl phenylenediacetate (8 eq. 1.92 g, 7.66 mmol) and sodium ethoxide (21% in ethanol, 8 eq, 2.90 mL, 7.66 mmol) were refluxed overnight in ethanol (20 mL). 30 The reaction was cooled and 10% aq HOAc was added. mixture was extracted with EtOAc, washed with water and brine, dried over MgSO4 and evaporated to dryness. The silica gel column by purified solid was chromotography with 1:1hexane/ether as the eluent. 35 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4product, (carbethoxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one

(0.44 g, 93 % yield), was recovered as a white solid, mp 168-169 °C. Mass Spec.: 499 (M+H) $^{+}$.

Example 123

1-(2,6-Dichlorophenyl)-3-isopropyl-6-(4-(carboxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-The ester, (carbethoxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one (1.20 g, 2.4 mmol) was stirred at RT overnight with THF (50 mL), water (15 mL) and 1 N lithium hydroxide (7.20 10 The solution was evaporated to near dryness, diluted with 1 N hydrochloric acid, vigorously stirred and the solid was collected by filtration and dried under high vacuum to give 1-(2,6-dichlorophenyl)-3-isopropyl-6-15 (4-carboxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one (1.01 g, 89 % yield) as a white solid, mp 212-214 $^{\circ}\text{C}$. Mass Spec.: 471 (M+H)*.

Example 124

1-(2,6-Dichlorophenyl)-3-isopropyl-6-(4-(2-(N,N-dimethyl)))20 amino)ethylaminocarbonylmethyl)benzyl) pyrazolo[3,4dlpyrimidin-4-one 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4acid, The carboxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one (0.100 g, 0.21 mmol) and N, N-dimethyethylenediamine (5 25 eq, 0.12 mL, 1.06 mmol) were suspended in DMF (3 mL). DIEA (5 eq, 0.18 mL, 1.06 mmol) was added and the suspension was stirred at RT for ten minutes. BOP (1.5 eq, 0.141 g, 0.32 mmol) was added and the reaction was stirred at RT overnight. The suspension was diluted with 30 water, extracted with EtOAc, washed with water and brine, dried over MgSO, and evaporated to dryness. residue was crystallized from a mixture of EtOAc, hexane and ether to give 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(2-(N, N-dimethylamino) ethylaminocarbonylmethyl) benzyl) 35 pyrazolo[3,4-d]pyrimidin-4-one (0.039 g, 34 % yield) as a white solid, mp 170-172 °C. Mass Spec.: 541 (M+H).

Example 125

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(2-(morpholine-4-yl)ethylaminocarbonylamino)benzyl)

- 5 pyrazolo[3,4-d]pyrimidin-4-one
 - A flask equipped with a reflux condensor was flame-dried in vacuo and a nitrogen atmosphere was introduced. The flask was charged with triphospene (1.37 g, 4.62 mmol). The reagent was dissolved in dry 1,2-dichloroethane (25
- 10 mL), and triethylamine (0.64 mL, 4.62 mmol) was added. The reaction was cooled to -30 °C, and 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo [3,4-d]pyrimidin-4-one (1.1 g, 2.38 mmol) was added.
- Stirring was continued for 10 minutes and the reaction was the warmed to reflux. After heating for one hour, the reaction was cooled, diluted with methylene chloride, and washed sequentially with water and brine. The organic phase was dried over magnesium sulfate, filtered and evaporated to give the isocyanate (1.2 g). This material
- 20 was of sufficient quality for the subsequent transformations.
 - The isocyanate (75.5 mg, 0.155 mmol) was dissolved in dry methylene chloride (2.0 mL) under a nitrogen atmosphere. 4-(2-aminoethyl)morpholine (30 $\mu\Lambda$, 0.232 mmol) was added,
- and stirring was continued for 1 hour. The precipitate was filtered and rinsed with three portions of methylene chloride and dried in vacuo to give 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(morphline-4-yl)ethylaminocarbonylamino)benzyl) pyrazolo[3,4-
- 30 d]pyrimidin-4-one (68 mg, 0.110 mmol, 71%). Mass spec. (ESI+) 618 (M+H).

Example 126

5 1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(2-hydroxyethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one

10

15

20

Alternatively, the ureas may be prepared by the following procedure, which is suitable for parallel synthesis. The isocyanate (74 mg, 0.152 mmol) was dissolved in dry methylene chloride (3.0 mL) under a nitrogen atmosphere. Ethanolamine (14 $\mu\Lambda$, 0.227 mmol) was added and stirring continued for 15 minutes. Methanol (1.0 mL) was added to generate a homogeneous solution. The acidic ion exchange resin AG 50W-X8 (158 mg) was added. The reaction was then filtered and the solvents removed by evaporation. The product 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-hydroxyethyl) aminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one was obtained in excellent yield (78 mg, 93%). Mass spec. (ESI-) 547 (M-H).

Example 127

1-(2-Chloro-6-methylphenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one

Part A: To a stirred suspension of 14.2 g (100 mmol) of 2-chloro-6-methylaniline in 40 mL conc. HCl at 0 °C was added a solution of 6.9 g (100 mmol) of sodium nitrite in 40 mL water dropwise via addition funnel. After stirring one hour at 0 °C a solution of 67.6 g (300 mmol) tin (II) chloride dihydrate in 70 mL conc. HCl was added dropwise

via addition funnel. The reaction was sealed and placed in the refrigerator for 24 h. The mixture was filtered and the solid was washed with brine and then petroleum ether. The solid was taken up in 250 mL of 2 N NaOH, stirred 10 min. and filtered. This solid was dissolved in 100 mL diethyl ether and acidified with 4N HCl in dioxane. The solid was collected by suction filtration, washed with diethyl ether and dried to afford 10.25 g (53%) of 2-chloro-6-methylhydrazine hydrochloride, mp 220-222 (dec) °C. Mass Spec (CI+): 157 (M+H)+.

10

15

20

25

Part B: To a stirred suspension of 3.0 g (15.5 mmol) of 2-chloro-6-methylhydrazine hydrochloride in 20 mL ethanol was added 2.2 mL (15.5 mmol) of triethylamine followed after 10 min by 1.5 mL (16.5 mmol) of isobutyraldehyde. The solution was stirred at room temperature for 2 h, poured into water and extracted with diethyl ether. organic extract was washed with brine, dried (MgSO4), and concentrated under reduced pressure to give 2.95 g (90%) of the imine intermediate as a liquid. The imine was taken up in 15 mL dimethylformamide, cooled to 0 $^{\circ}\text{C}$, and 2.99 g (16.8 mmol) of N-bromosuccinimide was added in small portions. After stirring at 0 °C for 30 min the reaction was diluted with diethyl ether and water. The layers were separated and the aqueous phase The organic extracts were extracted with diethyl ether. combined, washed with water and brine, dried (MgSO4) and give the pressure to concentrated under reduced bromohydrazone intermediate.

To a stirred solution of the bromohydrazone in 25 mL ethanol was added an ice cold solution of the anion of malononitrile prepared by adding 10.4 mL (28 mmol) of sodium ethoxide to 1.82 g (28 mmol) of malononitrile in 25 mL ethanol at 0 °C. The mixture was heated to reflux for 30 min and then concentrated to one third the volume under reduced pressure. This solution was treated with 10% glacial acetic acid, diluted with water, and

extracted with EtOAc. The organic extract was washed with brine, dried (MgSO4), and concentrated under reduced pressure. Purification by column chromatography on silica gel using 2:1 hexanes-EtOAc as eluant afforded 1.82 g (47%) of 5-amino-4-cyano-3-isopropyl-1-(2-chloro-6-methylphenyl)pyrazole, mp 116-118 °C. Mass Spec. (CI+): 275 (M+H)+.

5

Part C: A mixture of 1.5 g (5.5 mmol) of 5-amino-4-cyano3-isopropyl-1-(2-chloro-6-methylphenyl)pyrazole in 5 mL
conc. H₂SO₄ was stirred at room temperature for 24 hours.
The reaction was slowly quenched with ice and then
diluted with water. The solution was made basic with
saturated Na₂CO₃, stirred 2 h and filtered. The solid

was recrystallized from hexanes/EtOAc to afford 847 mg
(53%) of 5-amino-3-isopropyl-1-(2-chloro-6-methylphenyl)
pyrazole-4-carboxamide, mp 72-74 °C. Mass Spec. (ES-):
291 (M-H)⁻.

Part D: To a stirred solution of 1.4 g (4.8 mmol) 5-20 amino-3-isopropyl-1-(2-chloro-6-methyl-phenyl)pyrazole-4carboxamide in 100 mL absolute ethanol was added 5.14 g (28.8 mmol) of 4-amino-phenylacetate followed by 10.7 mL (28.8 mmol) of 2.66 M sodium ethoxide in ethanol. solution was stirred 18 h at reflux and the heating 25 mantle was then removed. The reaction was treated with water and 10% aq. HOAc, cooled to ambient temperature, The solid purified by filtered. and chromatography on silica gel using 1:1 hexanes-EtOAc as eluant to afford 743 mg (38%) of 1-(2-chloro-6-methyl 30 phenyl)-3-isopropyl-6-(4-aminobenzyl)-pyrazolo[3,4d]pyrimidin-4-one, mp 206-207 °C. Mass Spec.(CI+): 408 $(M+H)^{+}$.

PCT/US02/06002 WO 02/067654

Example 128

1-(2-Chloro-6-methylphenyl)-3-isopropyl-6-(4-(N,Ndimethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one hydrochloride salt

To a stirred solution of 500 mg (1.22 mmol) of 1-(2-1)chloro-6-methylphenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one in 10 mL dry CH2Cl2 was added 0.85 mL (6.1 mmol) triethylamine followed by 632 mg (6.1 mmol) N, N-dimethylglycine and then 1.17 g (6.1 mmol) 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide 10 The reaction was stirred for 18 h hydrochloride (EDC). at ambient temperature and then transferred directly to a flash column of silica gel and eluted with 5% MeOH in The isolated solid was dissolved in 20 mL dioxane and 1.1 mL of 4 N HCl in dioxane was added. 15 solid was collected by suction filtration and dried to (76%) of 1-(2-chloro-6-methylphenyl)-3give 490 mg isopropyl-6-(4-(N,N-dimethylglycinamido)benzyl)pyrazolo [3,4-d]pyrimidin-4-one hydrochloride salt, mp 297-299 °C.

20

30

Example 129

1-(2,6-Dichloro-4-methylcarboxamido phenyl)-3-ethyl-6-(4methoxybenzyl)pyrazolo[3,4-d] pyrimidin-4-one

Part A: To a stirred suspension of 4.33 g (18.5 mmol) of 25 ethyl 4-amino-3,5-dichlorobenzoate in 8 mL conc. HCl at 0 °C was added a solution of 1.28 g (18.5 mmol) of sodium nitrite in 8 mL water dropwise. After stirring at 0 °C for 45 min, a solution of 12.52 g (55.5 mmol) tin(II) chloride in 14 mL conc. HCl was added dropwise. reaction was sealed and placed in the refrigerator for The solid was collected by suction filtration, washed with brine and then 2:1 petroleum ether-diethyl ether, treated with 1 N NaOH, and filtered. This solid was dissolved in diethyl ether, acidified with 4 N HCl in dioxane, filtered and washed with diethyl ether to give 2.85 g (54%) of ethyl 3,5-dichloro-4-hydrazinobenzoate

hydrochloride, mp 225-227 (dec)°C. Mass Spec.: (CI+) 249 (M+).

Part B: A mixture of 2.5 g (8.75 mmol) ethyl 3,5dichloro-4-hydrazinobenzoate hydrochloride, 1.1 g (7.3 1-(ethoxypropylidine)malononitrile and 1.22 (8.75 mmol) triethylamine in 100 mL of ethanol was The reaction was taken to stirred at reflux for 66 h. one-third the volume via rotary evaportation under reduced pressure and the remaining solution was treated 10 water, 30 min and filtered. with stirred Recrystallization from hexanes/EtOAc gave 1.16 g (45%) of 5-amino-4-cyano-3-ethyl-1-(2,6-dichloro-4-carboethoxy phenyl)pyrazole, mp 173-175 °C. Mass Spec.: (CI+) 353 15 (M+).

Part C: A solution of 1.64 g (4.64 mmol) of 5-amino-4-cyano-3-ethyl-1-(2,6-dichloro-4-carboethoxyphenyl)-pyrazole in 8 mL conc. H₂SO₄ was stirred at room temperature for 4 hours. The reaction was quenched carefully with ice and diluted with water. The solid was collected by suction filtration, washed with water and dried to give 1.26 g (73%) of 5-amino-3-ethyl-1-(2,6-dichloro-4-carboethoxyphenyl)pyrazole-4-carboxamide, mp 194-196 °C. Mass Spec.: (CI+) 371 (M+).

Part D: To a stirred solution of 500 mg (1.35 mmol) of 5-amino-3-ethyl-1-(2,6-dichloro-4-carboethoxyphenyl) pyrazole-4-carboxamide in 10 mL ethanol was added 1.45 g (8.1 mmol) of methyl 4-methoxyphenylacetate followed by 2.6 mL (8.1 mmol) of 2.66 M sodium ehtoxide in ethanol. The reaction was heated at relux for 18 h and then 10% aq. HOAc was added. After stirring an additional hour at relux, the heat was removed and the reaction solution was poured into ice water, stirred 10 min. and filtered. The solid was washed with water and diethyl ether and dried to give 480 mg (75%) of 1-(2,6-dichloro-4-carboxyphenyl)-

3-ethyl-6-(4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one, mp 277 °C. Mass Spec.: (ES-) 471 (M-H)-.

Part E: To a stirred solution of 100 mg (0.21 mmol) of 1-(2,6-dichloro-4-carboxyphenyl)-3-ethyl-6-(4-methoxy benzyl)pyrazolo[3,4-d]pyrimidin-4-one was added 0.3 mL (2.1 mmol) of triethylamine followed by 71 mg (1.05 mmol) of methylamine hydrochloride and then 202 mg (1.05 mmol) of EDC. The reaction was stirred at ambient temperature for 18 h, transferred directly to a flash column of 10 silica gel and eluted with 5% MeOH in CH_2Cl_2 to give 14 1-(2,6-dichloro-4-(methylcarboxamido) of (14%)mg phenyl)-3-ethyl-6-(4-methoxybenzyl)pyrazolo[3,4-d] pyrimidin-4-one, mp 280-282 °C. Mass Spec.: (CI+) 486 (M+). 15

Example 130

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(t-butoxycarbonylaminosulfonamido)benzyl)pyrazolo [3,4-dlpyrimidin-4-one

- To a stirred, cooled solution of 0.11 mL (1.26 mmol) of chlorosulfonyl isocyanate in 5 mL of CH₂Cl₂ was added 0.13 mL of t-BuOH. The solution was stirred 10 min. and added to a stirred, cooled (0 °C) solution of 231 mg (0.5 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-
- aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one and 0.2 mL (1.4 mmol) of Et₃N in 5 mL of CH₂Cl₂. The solution was stirred 1 h warming to ambient temperature, and it was then poured into 1 N aq. HCl. The mixture was extracted with EtOAc, and the organic extract was washed (brine),
- dried (MgSO₄), concentrated under reduced pressure, and chromatographed on silica gel (elution with 1:1 EtOAchexanes, then EtOAc) to afford 250 mg (78%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(t-butoxycarbonyl aminosulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one as
- annihostifonamido) benzyi/pyrazoroto, i dipyramido a white solid. H NMR (300 MHz, DMSO) δ 12.44(s, 1H); 11.12(br. s, 1H); 9.70(br. s, 1H); 7.97(s, 2H); 7.21(d,

2H, J = 8.4 Hz); 7.02(d, 2H, J = 8.4 Hz); 3.78(s, 2H); 3.19-3.30(m, 1H); 1.27(d, 6H, J = 6.9 Hz); 1.21(s, 9H).

Example 131

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(3-aminoindazol-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one To a stirred solution of 139 mg (0.40 mmol) of 5-amino-3isopropyl-1-(2,4,6-trichlorophenyl)pyrazole-4-carboxamide in 3 mL of absolute ethanol was added 329 mg (1.50 mmol) of ethyl 3-aminoindazol-5-ylacetate followed by 1.13 mL 10 (3.0 mmol) of 2.66 M sodium ethoxide in ethanol. solution was stirred 16 h at reflux, and the heating mantle was then removed. The reaction was treated with 8 mL of 10% aq. HOAc, poured into water, and extracted with EtOAc. The organic extract was washed with brine, dried 15 under reduced pressure, concentrated chromatographed on silica gel (gradient elution with 5% to 10% MeOH-CH₂Cl₂) to give, after removal of solvent, 123 mg (61%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3aminoindazol-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one as 20 a white, amorphous solid. Mass spec. 502.0712(M + H)*.

Example 132

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(benzoxazol-2-on-6-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one

To a stirred, cooled (0 $^{\circ}$ C) solution of 309 mg (0.063 25 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4amino-3-hydroxybenz)pyrazolo[3,4-d]pyrimidin-4-one mL of THF was added 0.13 mL (1.0 mmol) of triethylamine followed by 0.05 mL (0.095 mmol) of 1.93 M phosgene in The solution was stirred 15 min., treated with 30 toluene. 4 mL of 0.1 N aq. NaOH, and stirred 64 h at RT. reaction was poured into 1 N aq. HCl and extracted with The organic extract was washed with brine, dried EtOAc. celite), charcoal and activated (MgSO, plus concentrated under reduced pressure to afford 26 mg (81%) 35 of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(benzoxazol-2on-6-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one

amorphous solid. ¹H NMR (300 MHz, DMSO) δ 12.48(s, 1H); 11.57(br. s, 1H); 7.98(s, 2H); 7.03(dd, 1H, J = 8.1, 1.4 Hz); 6.97(d, 1H, J = 8.1 Hz); 3.84(s, 2H); 3.19-3.30(m, 1H); 1.28(d, 6H, J = 7.0 Hz).

5

Example 133

1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino)ethoxycarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one

To a stirred, cooled(-78 °C) solution of 0.10 mL(1.0 mmol) 10 of N,N-dimethylethanolamine in 1 mL of THF was added 0.56 mL(0.90 mmol) of 1.6 M n-BuLi in hexanes over 2 min. solution was stirred 5 min. at -78 °C and treated with 49 mg (0.10 mmol) of the isocyanate prepared in Example 107 The mixture was stirred 10 min., becoming above. 15 homogeneous as it warmed to 0 °C. The reaction was diluted with 5% aq. HOAc, then made slightly basic with The mixture was extracted with saturated ag. NaHCO. EtOAc, and the organic extract was washed (brine), dried (MgSO₄), and concentrated under reduced pressure to afford 20 43 mg(74%) of 1-(2,4,6-Trichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino)ethoxycarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one as a white solid, mp. 218-220 °C. Mass spec: $577(M + H)^{+}$.

25

30

35

Example 134

1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(1-methylpyrroy-2-ylmethyl)pyrazolo [3,4-d]pyrimidin-4-one

To a stirred solution of 1.74 g (5.0 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-4-carboxamido-5-amino-pyrazole in 30 mL of ethanol was added 2.9 mL (20 mmol) of methyl 1-methyl-2-pyrroleacetate followed by 7.50 mL (20 mmol) of 2.66 M NaOEt in ethanol. The solution was stirred overnight at reflux, and the product was precipitated by treatment with 40 mL of 10% aq. HOAc. The mixture was filtered, and the product was washed with 1:1 MeOH-water then 1:1 ether-hexanes and air dried to

afford 2.07 g (92%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(1-methylpyrroy-2-ylmethyl)pyrazolo [3,4-d]pyrimidin-4-one as an off-white solid, mp 219-221 °C. Mass spec.(ESI+): $450 \, (\text{M}+\text{H})^{+}$.

5

Example 135

1-(3-Formyl-2,4,6-trichlorophenyl)-3-isopropyl-6-(1-methylpyrroy-2-ylmethyl)pyrazolo [3,4-d]pyrimidin-4-one

To a stirred, cooled(-60 °C) solution of 902 mg (2.0 mmol) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(1-methyl 10 pyrroy-2-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one in 10 mL of THF was added 2.56 mL (4.1 mmol) of 1.6 M n-BuLi in hexanes over 2 min. The solution was stirred 10 min. at $-60~^{\circ}\text{C}$ and treated with 1 mL DMF. The reaction solidified and was broken up by stirring, shaking, and warming to 15 The reaction was quenched with ambient temperature. deuteromethanol then aq. HOAc. The mixture was extracted with EtOAc, and the organic extraxt was washed (brine), dried (MgSO4), and concentrated under reduced pressure. The crude product was re-crystallized from EtOAc-hexanes 20 to afford 560 mg(60%) of 1-(3-formyl-2,4,6-trichloro phenyl)-3-isopropyl-6-(1-methylpyrroy-2-ylmethyl)pyrazolo solid. Mass orange [3,4-d]pyrimidin-4-one as an spec.(ESI-): 450(M-H).

25

Example 136

1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4methylpiperazin-1-ylaminocarbonyl)benzyl)pyrazolo [3,4-d]pyrimidin-4-one

Part A: To a stirred solution of 7.5 g(153 mmol) sodium cyanide in 75 mL of THF was added 40 mL of DMF followed by 11.5 g(50.2 mmol) of of methyl 4-(bromomethyl)benzoate in 30 mL of DMF over 10 min. The solution was stirred 18 and treated with 100 mL water. The mixture was filtered, rinsed with water, and air-dried briefly to give 6.7 g (76%) of 4-(carbomethoxy)phenylacetonitrile as a white

solid. ¹H NMR (300 MHz, DMSO) δ 7.95(d, 2H, J = 8.4 Hz); 7.47(d, 2H, J = 8.5 Hz); 4.14(s, 2H); 3.82(s, 3H).

Part B: The above nitrile ester was stirred with 120 mL of 6 N aq. HCl for 18 h at reflux and then cooled. The mixture was diluted with 160 mL water and then filtered. The white solid was rinsed with water, air-dried briefly, and placed in a vacuum oven at 75 °C for 1h. This affords 6.89 g (100%) of 4-(carboxy)phenylacetic acid. H NMR (300 MHz, DMSO) δ 7.92(d, 2H, J = 8.5 Hz); 7.49(d, 2H, J = 8.4 Hz); 3.63(s, 2H).

Part C: To a stirred solution of 2.0 g (11.1 mmol) of 4-(carboxy)phenylacetic acid in 28 mL of absolute ethanol was added 0.5 mL of conc. Sulfuric acid. The solution 15 was stirred 2 h at reflux and then cooled. The reaction was made basic with sodium carbonate and extracted with The organic extract was washed (brine), dried $(MgSO_4)$, and concentrated under reduced pressure to afford 2.3 g (88%) of ethyl 4-(carbethoxy)phenylacetate as an 20 oil. ¹H NMR (300 MHz, CDCl3) δ 8.01(d, 2H, J = 8.4 Hz); 7.36(d, 2H, J = 8.1 Hz); 4.37(q, 2H, J = 7.1 Hz); 4.16(q, 2H, 3Hz); 4.16(q, 3Hz); 4.2H, J = 7.2 Hz); 1.39(t, 3H, J = 7.2 Hz); 1.25(t, 3H, J =7.2 Hz).

25

30

35

Part D: To a stirred solution of 174 mg (0.50 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-4-carboxamido-5-aminopyrazole in 6 mL of ethanol was added 473 mg (2.0 mmol) of ethyl 4-(carbethoxy)phenylacetate followed by 0.94 mL (2.5 mmol) of 2.66 M NaOEt in ethanol. The solution was stirred overnight at reflux, and the product was precipitated by treatment with 8 mL of 10% aq. HOAc then 2 mL of saturated aq. NaHCO3. The mixture was filtered, and the product was washed with 1:1 MeOH-water then 1:1 ether-hexanes and air dried to afford 232 mg (89%) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-

(carbethoxy)benzyl)pyrazolo [3,4-d]pyrimidin-4-one as an off-white solid, mp 233-235 °C. Mass spec.(ESI+): 519.0754 (M+H)^{$^{+}$}.

- Part E: To a stirred solution of 130 mg (0.250 mmol) of 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(carbethoxy) benzyl)pyrazolo[3,4-d]pyrimidin-4-one in 2 mL of THF was added 42 mg (1.0 mmol) of lithium hydroxide hydrate in 2 mL of water followed by 0.25 mL of methanol. solution was stirred 3.5 h at RT and 10 min. at reflux. 10 The reaction was diluted with ether, and washed twice The combined aq. washings were with 0.1 N aq. NaOH. acidified, and the resulting mixture was extracted with The combined organic extracts chloroform, then EtOAc. were dried (MgSO₄) and concentrated under reduced pressure to afford 123 mg (100%) of 1-(2,4,6-trichlorophenyl)-3isopropyl-6-(4-(carboxy)benzyl)pyrazolo[3,4-d]pyrimidin-4-on as a white solid, mp. 294-295 °C.
- Part F: To a stirred solution of 49 mg (0.10 mmol) of 1-20 (2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(carboxy)benzyl) pyrazolo[3,4-d]pyrimidin-4-one and 0.06 mL(0.5 mmol) of 1-amino-4-methylpiperazine in 1 mL of DMF was added 0.052 mL of DIEA followed by 48 mg (0.15 mmol) of TBTU. solution was stirred 16 h at 45 °C, cooled to RT, and 25 poured into water. The mixture was extracted with EtOAc, and the organic extract was concentrated under reduced Chromatography with 4:1 chloroform-MeOH pressure. (58%) of 1-(2,4,6-trichlorophenyl)-3afforded 34 mg isopropyl-6-(4-(4-methylpiperazin-1-ylaminocarbonyl) 30 benzyl)pyrazolo[3,4-d]pyrimidin-4-on as a white solid. Mass spec: (ESI+) 588 $(M + H)^{\dagger}$.

Example 137

35 1-(4-(acetamidophenyl-3-yl)-2, 6-dichlorophenyl)-3isopropyl-6-(3-methoxybenzyl)pyrazolo [3,4-d]pyrimidin-4one

PCT/US02/06002 WO 02/067654

1-(4-bromo-2,6-dichlorophenyl)-3of solution isopropyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4one (200 mg, 0.383 mmol) and 3-acetamidobenzeneboronic acid (82 mg, 0.458 mmol) in a 25% solution of ethanol in toluene was stirred at RT under nitrogen for 30 min. Sodium carbonate solution (0.38 mL of a 2N solution, 0.766 mmol) was added followed by tetrabutylammonium 0.019 mmol) and bromide (6.1)mg, (2 mg, palladium(0) tetrakis(triphenylphosphine) at reflux stirred catalytic). The reaction was overnight, cooled to RT, filtered through Celite, washed with EtOAc, and concentrated. Purification by column chromatography using 1:1 hexanes-EtOAc as eluent afforded 114 mg (52%) of the title as a white solid, mp 224-225 °C. Mass Spec: 576 (M+H) . 15

Example 138

6-dichloro-4-formylphenyl)-3-isopropyl-6-(3methoxybenzyl)pyrazolo [3,4-d]pyrimidin-4-one

A two-neck flask was flame-dried, charged with 1-(4-bromo-20 6-dichlorophenyl)-3-isopropyl-6-(3-methoxy 2, benzyl)pyrazolo[3,4-d]pyrimidin-4-one (250 mg, 0.48 mmol) and 4 mL of THF, and placed under an argon atmosphere. solution was cooled to 0 °C and isopropylmagnesium chloride (0.26 mL, 0.523 mmol) was added dropwise via syringe. 25 reaction was stirred at -78 °C for 2 min and DMF (0.08 mL, 1.06 mmol) was added via syringe. The reaction was stirred at -78 °C for 15 min and at RT for 30 min. The reaction was quenched with 10% aq. citric acid and extracted with The organic extract was washed with water then EtOAc. 30 brine, dried (MgSO4), and evaporated. Purification by column chromatography on silica gel using 2:1 hexanes-EtOAc as eluent afforded 68 mg (30%) of the title as a white solid, mp 212-214 °C. Mass Spec: 469 (M-H) .

35

Starting from the appropriate 3-substituted 5-amino-1-arylpyrazole-4-carboxamides the following compounds were prepared by methods similiar to those used to synthesize compounds in the examples and tables above:

Ex.# Y		R²	R ¹	mp.(°C)	MS
139	Cl	Et	4-Methoxyphenyl	Amorphous	393
140	Cl	Et	4-Hydroxyphenyl	Amorphous	379
141	Cl	Et	3-Methoxyphenyl	Amorphous	393
142	Cl	Et	3-Hydroxyphenyl	Amorphous	379
143	Cl	<i>i</i> −Pr	3-Hydroxyphenyl	227-228	395
144	Cl	i-Pr	4-Aminophenyl	Amorphous	394
145	Cl	i-Pr	3-Methoxyphenyl		407
146	Cl	i-Pr	4-Methoxyphenyl	Amorphous	407
147	Cl	i-Pr	4-Hydroxyphenyl	Amorphous	395
148	Cl	Et	4-(N,N-dimethyl-		479
			glycinamido)phenylHCl		
149	Cl	SCH_3	4-Hydroxyphenyl	243-244	397
150·	Cl	SCH3	4-Methoxyphenyl	227-228	413
151	Br	Et	3-Methoxyphenyl	178-180	439
152	Br	Et	4-Aminophenyl	246-249	424
153	Br	Et	3-Hydroxyphenyl	199-201	425
154	F	Et	3-Methoxyphenyl	193-194	379
155	F	Et	3-Hydroxyphenyl	235-237	365
156	\mathtt{Br}	Et	4-(N,N-dimethyl-	156-158	509
			glycinamido)phenyl		
157	F	Et	4-Aminophenyl	231-233	364

Table VIII

5	Ex.#	R ⁶	R'	mp.(°C)_	MS
	158	Н	CH ₃ NHCH ₂ CH ₂ N (CH ₃) COCH ₂	154-155	541
	159	н	H ₂ NCH ₂ CH ₂ NHCOCH ₂	140-142	. 513
	160	Н	Piperazin-1-ylCOCH,	181-183	539
	161	н	CH,CH,NHCOCH ₂	242-244	496
	162	Н	CH,NHCOCH ₂	249-250	482
	163	Н	1-CH,-piperazin-4-ylCOCH,	236-237	553
	164	Н	(CH ₃) ₂ NCH ₂ CH ₂ N (CH ₃) COCH ₂	134-136	555
	165	Cl	4-CH,-piperazin-1-ylCOCH,	205-207	587

Table IX

5	<u>Ex.</u> #	ŧ R⁵	R⁵	R² _	R ¹	mp.(°C)	<u>MS</u>
•	166	Cl	CF,	Et	3-Methoxyphenyl	192-193	497
	167	Cl	CF,	Et	4-Aminophenyl	235-236	495
	168	C1	CF,	Et	4-Methoxyphenyl	240-241	497
	169	Cl	Br	Et	4-Hydroxyphenyl	284-286	493
	170	Cl	Br	Et	3-Hydroxyphenyl	242-244	495
	171	Cl.	Н	Et	4-Hydroxyphenyl	262-263	413
	172	C1	H	Et	4-Aminoxyphenyl	159-161	414
	173	Cl	H	Et	3-Hydroxyphenyl	242-244	413
	174	Cl	Br	Et	3-Methoxyphenyl	232-233	507
	175	Cl	Br	Et	4-Methoxyphenyl	252-253	507
	176	Cl	H	Et	4-Methoxyphenyl	220-222	427
	177	Cl	H	Et	3-Methoxyphenyl	186-187	427
	178	F	Н	SCH ₃	4-Hydroxyphenyl	267-268	415
	179	F	Н	SCH ₃	3-Hydroxyphenyl	252-253	415
	180	Cl	Br	SCH ₃	4-Hydroxyphenyl	255-256	511
	181	F	H	SCH ₃	4-Methoxyphenyl	193-194	429
	182	F	H	SCH₃	3-Methoxyphenyl	244-245	431
	183	Cl	Br	SCH ₃	4-Methoxyphenyl	267-268	524
	184	Ме	H	Et	4-Hydroxyphenyl	255-256	395
	185	Me	Cl	SCH_3	4-Methoxyphenyl	252-255	459
	186	Me	Н	SCH_3	4-Methoxyphenyl	233-235	425
	187	Ме	Cl	Et	4-Methoxyphenyl	245-246	441
	188	Me	Cl	SCH,	4-Hydroxyphenyl	277-279	445
	189	Me	Cl	Et	4-Hydroxyphenyl	Amorphous	429

WO 02/06	7654				PCT/US02/0600	2
190	Me	Н	SCH ₃	4-Hydroxyphenyl	264-266	413
191	Me	H	Et	4-Methoxyphenyl	220-221	409
192	Me	H	Et	4-Hydroxyphenyl	257-259	395
193	Me	Н	Et	3-Methoxyphenyl	188-190	409
194	Me	H	Et	4-Hydroxyphenyl	255-256	395
195	Cl	CO ₂ H	Et	4-Methoxyphenyl	292-294	
196	Cl	CO ₂ H	Et	4-Hydroxyphenyl	308-310	457
197	Cl	-	Et	3-Methoxyphenyl	Amorphous	471
198	Cl	CO ₂ H	Et	3-Hydroxyphenyl	280-282	
199	Me	Н	i-Pr	4-Aminophenyl	205-206	408
200	Me	Н	i-Pr	4-(N,N-Dimethylglycin	277-279	491
				amido)phenyl		
201	Cl	CONHMe	Et	4-Methoxyphenyl	278-280	486
202	Me	Н	Et	4-Methoxyphenyl	220-221	409
203	Ме	H	Et	4-Hydroxyphenyl	257-259	395
204	Me	H	Et	3-Methoxyphenyl	188-190	409
205	Cl	CO_2H	Et	4-Aminophenyl	226-228	458
206	Cl	Cl	t-Bu	3-Hydroxy-4-methoxy		505
				phenyl		
207	Cl	Cl	CHF ₂	3-Hydroxy-4-methoxy phenyl		499
208	Cl	Cl	СН,ОН	3-Methoxyphenyl	227-229	
209	Cl	Cl	i-Pr	3-(Ethoxycarbonyl-	174-175	
				methyl)phenyl		
210	Cl	Cl	i-Pr	3-(carboxymethyl)	210-211	
				phenyl		
211	Cl	Cl .	i-Pr	3-(2-hydroxyethyl)		489 ·
				phenyl		
212	Cl	Cl	n−Bu	3-Hydroxy-4-methoxy		505
				phenyl		
213	Me	H	i-Pr	4-(1-CH3-piperidin-4-		576
				ylN(CH3)CH2CONH)phenyl		5.60
214	Me	H	i-Pr	4-(1-CH3-piperidin-4-		562
				yln(CH ₃)CONH)phenyl		FOC
215	Me	Cl	i-Pr	4-(1-CH ₃ -piperidin-4-		596
			_	yln(CH ₃)CONH)phenyl	100 110	610
216	Me	C1	i-Pr	4-(1-CH3-piperidin-4-	108-110	610

				$yln(CH_3)CH_2CONH)phenyl$		
217	Me	Cl	i-Pr	4-aminophenyl	212-213	442
218	Me	Cl	i-Pr	4-(morpholin-4-	256-258	555
				ylCONH)phenyl		
219	Me	Cl	i-Pr	$4-(4-CH_3-piperazin-1-$	154-156	568
				ylCONH)phenyl		
220	Me	Cl	i-Pr	$4-(4-CH_3-piperazin-1-$	199-210	582
				ylCH,CONH)phenyl		
221	Me	Cl	i-Pr	$4-({ m Me_2NCH_2CONH})$ phenyl	>300	561
				HCl		
222	Me	Cl	i-Pr	4-(morpholin-4-yl	246-249	569
				CH ₂ CONH) phenyl		
223	Cl	Cl	i-Pr	$5-(Me_2NCH_2)-1-methy1$	182-184	507
				pyrrol-2-yl		
224	Cl	CH_2NH_2	i-Pr	3-Methoxyphenyl		472
225	C1	SO_2NH_2	i-Pr	3-Methoxyphenyl	244-245	520

Table X

Ex.	#R¹	mp.(°C)	<u>MS</u>
226	4-(N,N-Dimethyl glycinami	.do)phenyl 235-237	533
227	3-Hydroxyphenyl	227-229	449

Table XI

5	Ex.#	R ⁶	mp(°C)	MS
	228	CONHCH ₂ CH ₂ N (CH ₃) ₂	203-205	543
	229	CONHCH2CH2CH3	229-231	512
	230	CONHCH (CH ₃) ₂	233-235	512
	231	CONHCH2Ph	239-240	560
	232	CO-(4-CH ₃ -piperazin)-1-yl	128-130	555
	233	CONHCH2pyridin-3-yl	Amorphous	563
	234	CONHCH2pyridin-2-yl	188-190	563
	235	CONHCH₂pyridin-4-yl	238-239	563
	236	CONHCH ₂ CH ₃	226-228	498
	237	CONHPh	Amorphous	546
	238	CONHC (CH ₃) ₃	222-224	528
	239	CO-piperazin-1-yl	Amorphous	541
	240	CONHCyclo-C3H5	236-239	510
	241	CONHpyridin-3-yl	256-258	549
	242	CONHpyridin-4-yl	Amorphous	549
	243	CONH(4-CH3-piperazin)-1-yl	Amorphous	570
	244	CONHpyridin-2-yl	237-239	549
	245	CONHOCH	204-206	502

Table XII

5	Ex.#	R ⁵	mp(°C)	MS
	246	CONHCH ₂ CH ₂ N (CH ₃) ₂	263-265	529
	247 (CONHCH,Ph	247-249	546

By reacting a *p*-substituted aniline with suitable acylating agents and performing further synthetic 10 manipulations as necessary, the following compounds were prepared:

Table XIII

5	Ex.	ŧ R²	R' (para)	R ⁷ (meta)) mp(°C)	MS
	248	c-Pr	(CH ₃) ₂ NCH ₂ CONH	н		545
	249	Et	CH,CONH	H		488
	250	Et	CH,OCONH	Н		504
•	251	Et	CH,NHCONH	H		503
	252	i-Pr	CH ₃ OCONH	H		518
	253	i-Pr	CH ₃ OCON (Me)	H		532
	254	Et	(CH ₃) ₂ NCH ₂ CONH	H		531
	255	i-Pr	CH3NHCONH	HO		535
	256	i-Pr	CH ₃ NHCON (Me)	H	235-237	531
	257	i-Pr	4-CH,-piperazin-1-ylN(Me) H		616
	258	i-Pr	$(CH_3)_2NCH_2CON(Me)$	H	235-237	561
	259	i-Pr	CH ₃ NHCON (Me)	H	235-237	531
	260	i-Pr	(CH ₃) ₂ NCH ₂ CONH	НО	255-258	563
	261	i-Pr	$(+/-)$ - $(CH_3)_2$ NCH (CH_3) CONH	H		561
	262	i-Pr	(CH ₃) ₂ NCH ₂ CONH	· MeO	Amorphous	577
	263	i-Pr	CH₃NHCONH	MeO	258-261	
	264	i-Pr	imidazol-1-ylCH2CONH	НО		586
	265	i-Pr	(CH ₃) ₂ NCH ₂ CONH	H	255-257	547
	266	i-Pr	4-CH,-piperazin-1-yl	H		602
			CH₂CONH			
	267	i-Pr	CH₃NHCONH	H	268-274	519
	268	i-Pr	Morpholin-4-ylCH2CONH	H	252-255	589
	269	i-Pr	Azetidin-1-ylCH2CONH	H		559
	270	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH	H		597.1011

271	i-Pr	EtO ₂ CCH ₂ NHCONH	H	229-230	589
272	i-Pr	Hydantoin-1-yl	H	>300	543
273	i-Pr	HOCH2CH2NHCONH	H	160-162	547.0799
274	i-Pr	HO ₂ C (CH ₂) ₂ CONH	H	256-258	560
275	i-Pr	$Imidazol-1-ylCH_2CONH$	H	276-278	570
276	i-Pr	Morpholin-4-ylCH2CH2	H		634
		NHCSNH			
277	i-Pr	HO ₂ CCH ₂ NHCONH	H		561
278	i-Pr	HO ₂ C (CH ₂) ₃ CONH	H		574
279	i-Pr	H ₂ NCH ₂ CONH	H	>300	519
280	i-Pr	CH3NHCH2CONH	H	Amorphous	533.1029
281	i-Pr	4-F-phenyl CH2NHCH2CONH	H	217-223	627
282	i-Pr	$Pyrrolidin-1-ylCH_2CONH$	H	235-240	573
283	i-Pr	pyrid-2-ylCH ₂ NHCH ₂ CONH	H		610
284	i-Pr	pyrid-3-ylCH2NHCH2CONH	H	145-150	610
285	i-Pr	pyrid-4-ylCH2NHCH2CONH	H	180-185	610
286	i-Pr	BocnhCh2Ch2NHCH2CONH	H		662.1829
287	i-Pr	HOCH ₂ CH (CH ₃) NHCH ₂ CONH	·H	190-192	577
288	i-Pr	CH_3CH (OH) CH_2NHCH_2CONH		152-160	577
289	i-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH	H		562
290	i-Pr	Morpholin-4-ylCH ₂ CH ₂	Ħ		632
		NHCH ₂ CONH			
291	i-Pr	1-CH,-piperidin-4-yl	H		630
		N (CH ₃) CH ₂ CONH			
292	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$	H	188-190	604
293	i-Pr	$(CH_3)_2NCH_2CH_2N$ (CH_3) CONH	H		590
294	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$	OH		606
295	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$	OMe		620
296	i-Pr	$(CH_3)_2$ NCH (CH_3) CONH	H	•	561
297	i-Pr	$1-CH_3-L-prolylNH$	H		
298	i-Pr	Homopiperazin-1-yl	H		602.1610
		CH ₂ CONH			
299	i-Pr	CH ₃ CH ₂ NHCH ₂ CONH	H		547
300	i-Pr	4~(H2NCH2)piperidin-1-yl	H	Amorphous	616
		CH₂CONH			
301	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH	H	133-135	590.1610
302	i-Pr	Cyclo-C3H5NHCH2CONH	H	213-216	559

303	i-Pr	Piperidin-4-ylCH $_2$ NH	H		616
		CH₂CONH			
304	i-Pr	HO (CH ₂) ₃ NHCH ₂ CONH	H	200-205	575
305	i-Pr	1-Bocpiperidin-4-ylCH,NH	H		716
		CH₂CONH			
306	i-Pr	HOCH2CH2NHCH2CONH	H	210-212	563
307	i-Pr	Cyclo-C4H7NHCH2CONH	H	225-228	573
308	i-Pr	Azetidin-3-ylCONH	H		545
309	i-Pr	D-prolylNH'HCl	H	225-226	559
310	i-Pr	Boc-D-prolylNH	H		559.1185
311	i-Pr	L-prolylNH'HCl	H	225-226	659.1707
312	i-Pr	Boc-L-prolylNH	H		657
313	i-Pr	Piperidin-1-	H	213-215	630
		ylch,ch,nhch,conh			
314	i-Pr	(CH ₃) ₂ CHNHCH ₂ CONH	H	130-135	559
315	i-Pr	BocnHCH2CH2CONH	Н		631
316	i-Pr	piperazin-2-yl-CONH	H	Amorphous	547.1286
317	i-Pr	4-Me-piperazin-2-yl-CONH	H	Amorphous	588.1448
318	i-Pr	piperidin-1-ylNHCONH	Н	264-266	588
319	i-Pr	H ₂ NCH ₂ CH ₂ NHCONH ⁻ F ₃ CCO ₂ H	Н		548
320	i-Pr	pyrid-2-ylnHCONH	H	277-281	
321	i-Pr	$(CH_3)_2$ NCH $_2$ CH $_2$ NHCONH	H	220-222	576
322	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	OMe	244-248	606
323	i-Pr	BocnhCh2Ch2NHCONH	H	208-210	646
324	i-Pr	HO (CH ₂) ₄ NHCONH	H	208-210	577
325	i-Pr	(CH ₃) ₂ NNHCONH	H	240-242	546
326	i-Pr	$(CH_3)_2N(CH_2)_3NHCONH$	H		590
327	i-Pr	$(CH_3)_2N(CH_2)_3NHCONH$	OMe	226-228	620
328	i-Pr	4-CH ₃ -homo-piperazin-1-	H		602
		yl-CONH			
329	i-Pr	CH₃SO₂NHCONH	H		581
330	i-Pr	CH ₃ ONHCONH	H		534
331	i-Pr	1-CH,-piperidin-4-yl	H		616
		N (CH ₃) CONH			
332	i-Pr	1-CH,-piperidin-4-yl	ОН	•	632
		N(CH ₃)CONH			
333	i-Pr	1-СH,-piperidin-4-yl	OMe	243-245	646
		•			

		N (CH,) CONH		•	
334	i-Pr	Tetrahydrofur-2-yl	H	•	587
		CH₂NHCONH			
335	í-Pr	CH ₃ (CH ₂) ₂ CH (OH) CH ₂ NHCONH	H		589
336	i-Pr	HOCH2CH (CH3) NHCONH	H	156-158	561
337	i-Pr	CH₃CH (OH) CH₂NHCONH	H		561
338	i-Pr	HOCH2CH2NHCONH	H	222-225	547
339	i-Pr	Morpholin-4-ylNHCONH	H	272-274	588
340	i-Pr	(CH ₃) ₂ NCH (CH ₃) CH ₂ NHCONH	H		590
341	i-Pr	4-CH,-piperazin-1-yl	H		603
		NHCONH			
342	i-Pr	4-CH,-piperazin-1-yl	OH		619
		NHCONH			
343	i-Pr	4-CH,-piperazin-1-yl	OMe	245-246	633
		NHCONH			
344	i-Pr	Morpholin-4-yl	H		618
		CH ₂ CH ₂ NHCONH			
345	i-Pr	4-CH,-piperazin-1-ylCONH	H		588
346	i-Pr	Piperazin-1-ylCONH HCl	H		574
347	Et	4-CH ₃ -piperazin-1-ylCONH	H		574
348	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	H		563
349	Et	pyrid-2-ylnHCONH	H	Amorphous	582
350	Et	pyrid-4-ylnHCONH	H	Amorphous	582
351	i-Pr	н	MeN		533
			HCO		
			NHC		
			H_2	•	
352	i-Pr	(+/-)-2-(Me2NCH2) piperid-	H		630
		1-ylCONH			
353	i-Pr	(+/-)-2-(Me2NCH2) piperid-	OH		646
		1-ylCONH CF ₃ CO ₂ H			
354	i-Pr	(+/-)-2-(Me2NCH2) piperid-	OMe	131-135	660
		1-ylCONH			
355		CH ₃ NCH ₂ CH ₂ N (CH ₃) CONH	OMe	146-148	606
356		(CH ₃) ₂ NCH ₂ CH ₂ NCO	H	278-280	561
357		(CH ₃) NCH ₂ CH ₂ N (CH ₃) CO	H		561
358	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CO$	H		575

Following procedures similar to those used to synthesize the examples above, the following compounds were prepared or could be prepared:

Table XIV

5	Ex.	‡ R²	R'(para)	R ⁷ (meta)	MS
	1	i-Pr	Pyrrolidin-1-ylCH2CH2NHCH2CONH	H	616
	2	i-Pr	Pyrrolidin-1-ylCH2CH2NHCONH	OMe	632
	3	i-Pr	pyrrolidin-1-ylCH2CH2NHCONH	OH	618
	4 .	i-Pr	pyrrolidin-1-ylCH ₂ CH ₂ NHCONH	H	602
	5	i-Pr	2-CH ₃ -piperazin-1-ylCONH	H	
	6	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH	H	602
	. 7	i-Pr	trans-2,5-di-CH,-piperazin-1-ylCH,CO	NH H	616
	8	i-Pr	cis-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Н	
	9	i-Pr	cis-3,4-di-CH3-piperazin-1-ylCH2CONH	Н	616
	10	i-Pr	cis-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Н	
	11	i-Pr	trans-2,6-di-CH,-piperazin-1-ylCH,CO	NH H	
	12	i-Pr	trans-3,5-di-CH,-piperazin-1-ylCH2CO	NH H	
	13	i-Pr	(R)-1-Ethylpyrrolidin-2-ylCH $_2$ NHCONH	Н	
	14	i-Pr	(S)-1-Ethylpyrrolidin-2-ylCH ₂ NHCONH	H	
	15	i-Pr	$5-CH_3-pyrazin-2-ylCH_2NHCH_2CONH$	Н	
	16	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ CH ₂ OCONH	H	591
	17	i-Pr	$(+/-)-N-(CH_3)$ piperidin-3-ylCH ₂ OCONH	Н	617
	18	i-Pr	$(+/-)-N-(CH_3)$ piperidin-3-yloCONH	H	603
	19	i-Pr	$(+/-)-N-(CH_3)$ piperidin-2-ylCH ₂ OCONH	Н	617
	20	i-Pr	$(+/-)-N-(CH_3)$ pyrrolidin-3-ylOCONH	Н	589
	21	i-Pr	2-CH ₃ -piperazin-1-ylCH ₂ CONH	Н	
	22	i-Pr	pyrrolidin-1-ylCH2CH2NHCH2CONH	H	
	23	i-Pr	$(CH_3)_2NCH_2CH_2N$ (CH_3) $CONH$	Н	590
	24	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ N (CH ₃) CO	Н	575
	25	i-Pr	2-CH ₃ -piperazin-1-ylCONH	H	
	26	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH	Н	,

i-Pr trans-2,5-di-CH₃-piperazin-1-ylCH₂CONH H
i-Pr cis-2,6-di-CH₃-piperazin-1-ylCH₂CONH H
i-Pr cis-3,5-di-CH₃-piperazin-1-ylCH₂CONH H
i-Pr trans-2,6-di-CH₃-piperazin-1-ylCH₂CONH H

Table XV

(a) (b)

(~ /		(1-7)
Ex.	# R ²	
1	i-Pr	$1-CH_3$ -piperazin- 4 -yl CH_2 CONH
2	i-Pr	BocNHSO ₂ NH
3	i-Pr	. Morpholin-4-ylCH2CONH
4	i-Pr	Azetidin-1-ylCH2CONH
5	i-Pr	$(CH_3)_2NCH_2CH_2SO_2NH$
6	i-Pr	EtO ₂ CCH ₂ NHCONH
7	i-Pr	HOCH2CH2NHCONH
8	i-Pr	Hydantoin-1-yl
9	i-Pr	HOCH2CH2NHCONH
10	i-Pr	$HO_2C(CH_2)_2CONH$
11	i-Pr	$imidazol-1-ylCh_2CONH$
12	i-Pr	Morpholin-4-ylCH,CH,NHCSNH
13	i-Pr	HO ₂ CCH ₂ NHCONH
14	i-Pr	$HO_2C(CH_2)_3CONH$
15	i-Pr	(CH ₃) ₂ NCH ₂ CONH
16	i-Pr	H_2NCH_2CONH
17	i-Pr	CH3NHCH2CONH
18	i-Pr	$4-F-phenylCH_2NHCH_2CONH$
19	i-Pr	pyrrolidin-1-ylCH2CONH
20	i-Pr	$pyrid-2-ylCh_2NHCh_2CONH$
21	i-Pr	pyrid-3-ylCH2NHCH2CONH

22	i-Pr	$pyrid-4-ylCh_2NHCh_2CONH$
23	i-Pr	BocnHCH2CH2NHCH2CONH
24	i-Pr	HOCH ₂ CH (CH ₃) NHCH ₂ CONH
25	i-Pr	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH
26	i-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
27	i-Pr	morpholin-4-ylCH2CH2NHCH2CONH
28	i-Pr	1-CH3-piperidin-4-ylN(CH3)CH2CONH
29	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
30	i-Pr	piperazin-1-ylCH2CONH
31	i-Pr	$(CH_3)_2$ NCH (CH_3) CONH
32	i-Pr	1-CH ₃ -L-proly1NH
33	i-Pr	Homopiperazin-1-ylCH2CONH
34	i-Pr	CH,CH,NHCH,CONH
35	i-Pr	4-(CH ₂ NH ₂)piperidin-1-ylCH ₂ CONH
36	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
37	i-Pr	H ₂ NCH ₂ CONH
38	i-Pr	cyclo-C3H5NHCH2CONH
39	i-Pr	piperidin-4-ylCH2NHCH2CONH
4 0	i-Pr	HO (CH ₂) ₃ NHCH ₂ CONH
41	i-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH
42	i-Pr	HOCH ₂ CH ₂ NHCH ₂ CONH
43	i-Pr	cyclo-C4H7NHCH2CONH
44	i-Pr	azetidin-3-ylCONH
45	i-Pr	D-prolylNH'HC1
46	i-Pr	Boc-D-prolylNH
47	i-Pr	L-prolylNH'HCl
48	i-Pr	Boc-L-prolylNH
49	i-Pr	piperidin-1-ylCH,CH,NHCH,CONH
50	i-Pr	(CH ₃) ₂ CHNHCH ₂ CONH
51	i-Pr	BocnHCH ₂ CH ₂ CONH
52	i-Pr	pyrrolidin-1-ylCH2CH2NHCH2CONH
53	i-Pr	2-CH ₃ -piperazin-1-ylCONH
54	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH
55	i-Pr	trans-2,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
56	i-Pr	$cis-2,6-di-CH_3-piperazin-1-ylCH_2CONH$
57	i-Pr	$cis-3,5-di-CH_3-piperazin-1-ylCH_2CONH$
58	i-Pr	trans-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH

59	i-Pr	trans-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
60	i-Pr	(R)-1-Ethylpyrrolidin-2-ylCH2NHCONH
61	i-Pr	(S)-1-Ethylpyrrolidin-2-ylCH $_2$ NHCONH
62	i-Pr	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH
63	i-Pr	piperazin-2-yl-CONH
64	i-Pr	4-Me-piperazin-2-ylCONH

Table XVI

5 (c) (b) (a) R7 Ex.# (CH₃),NCH,CONH 1 Cyc-Bu 1-CH₃-piperazin-4-ylCH₂CONH 2 Cyc-Bu CH,NHCONH 3 Cyc-Bu 4 Cyc-Bu Morpholin-4-ylCH2CONH Azetidin-1-ylCH2CONH 5 Cyc-Bu (CH₃),NCH₂CH₂SO₂NH 6 Cyc-Bu EtO, CCH, NHCONH 7 Cyc-Bu Hydantoin-1-yl 8 Cyc-Bu HOCH, CH, NHCONH 9 Cyc-Bu HO₂C (CH₂) ₂CONH 10 Сус-Ви $imidazol-1-ylCH_2CONH$ 11 Сус-Ви Morpholin-4-ylCH2CH2NHCSNH 12 Cyc-Bu 13 HO, CCH, NHCONH Cyc-Bu HO₂C (CH₂) ₃CONH 14 Cyc-Bu H,NCH,CONH 15 Cyc-Bu CH,NHCH,CONH 16 Cyc-Bu 17 Cyc-Bu 4-F-phenylCH,NHCH,CONH pyrrolidin-1-ylCH2CONH 18 Cyc-Bu pyrid-2-ylCH,NHCH,CONH 19 Cyc-Bu pyrid-3-ylCH,NHCH,CONH 20 Cyc-Bu

21	Cyc-Bu	pyrid-4-ylCH2NHCH2CONH
22	Cyc-Bu	BocnHCH2CH2NHCH2CONH
23	Cyc-Bu	HOCH ₂ CH (CH ₃) NHCH ₂ CONH
24	Cyc-Bu	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH
25	Cyc-Bu	H_NCH_CH_NHCH_CONH
26	Cyc-Bu	morpholin-4-ylCH2CH2NHCH2CONH
27	Cyc-Bu	1-CH3-piperidin-4-ylN(CH3)CH2CONH
28	Cyc-Bu	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
29	Cyc-Bu	$(CH_3)_2$ NCH (CH_3) CONH
30	Сус-Ви	1-CH ₃ -L-prolylNH
31	Cyc-Bu	Homopiperazin-1-ylCH2CONH
32	Cyc-Bu	CH ₃ CH ₂ NHCH ₂ CONH
33	Cyc-Bu	4-(CH2NH2)piperidin-1-ylCH2CONH
34	Cyc-Bu	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
35	Cyc-Bu	$cyclo$ - C_3H_5 NH CH_2 CONH
36	Cyc-Bu	Piperidin-4-ylCH2NHCH2CONH
37	Cyc-Bu	HO(CH ₂) ₃ NHCH ₂ CONH
38	Cyc-Bu	1-Bocpiperidin-4-ylCH2NHCH2CONH
39	Cyc-Bu	HOCH,CH,NHCH,CONH
40	Cyc-Bu	$cyclo$ - C_4 H, $NHCH_2$ CONH
41	Cyc-Bu	azetidin-3-ylCONH
42	Cyc-Bu	D-prolylNH'HCl
43	Cyc-Bu	Boc-D-prolylNH
44	Cyc-Bu	L-prolylNH'HCl
45	Cyc-Bu	Boc-L-prolylNH
46	Cyc-Bu	$piperidin-1-ylCh_2Ch_2NHCh_2CONH$
47	Cyc-Bu	(CH ₃) ₂ CHNHCH ₂ CONH
48	Cyc-Bu	BocnHCH, CH, CONH
49	Cyc-Bu	piperazin-2-yl-CONH
50	Cyc-Bu	4-Me-piperazin-2-yl-CONH
51	Cyc-Bu	piperidin-1-ylNHCONH
52	Cyc-Bu	$H_2NCH_2CH_2NHCONH^*F_3CCO_2H$
53	Cyc-Bu	pyrid-2-ylnHCONH
54	Cyc-Bu	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
55	Cyc-Bu	BocnHCH2CH2NHCONH
56	Cyc-Bu	HO(CH ₂) ₄ NHCONH
57	Cyc-Bu	$(CH_3)_2$ NNHCONH

```
Cyc-Bu
               (CH,),N(CH,),NHCONH
58
               1-CH,-homopiperazin-4-yl-CONH
59
    Cyc-Bu
               CH, SO, NHCONH
60
    Cyc-Bu
               CH, ONHCONH
    Cyc-Bu
61
               (CH,),NCH,CH,NHCONH
    Cyc-Bu
62
               1-CH,-piperidin-4-ylN(CH,)CONH
63
    Cyc-Bu
               tetrahydrofur-2-ylCH,NHCONH
    Cyc-Bu
64
               CH, (CH,), CH (OH) CH, NHCONH
65
    Cyc-Bu
               HOCH, CH (CH, ) NHCONH
66
    Cyc-Bu
               CH, CH (OH) CH, NHCONH
67
    Cyc-Bu
               HOCH, CH, NHCONH
68
    Сус-Ви
               morpholin-4-ylNHCONH
69
    Cyc-Bu
               (CH,),NCH (CH,)CH,NHCONH
70
    Cyc-Bu
               1-CH,-piperazin-4-ylNHCONH
71
    Cyc-Bu
               morpholin-4-ylCH,CH,NHCONH
72
    Cyc-Bu
               1-CH,-piperazin-4-ylCONH
73
    Cyc-Bu
               pyrid-2-ylNHCONH
74
    Cyc-Bu
               pyrid-4-ylNHCONH
75
    Cyc-Bu
               pyrrolidin-1-ylCH,CH,NHCH,CONH
76
    Cyc-Bu
               2-CH,-piperazin-1-ylCONH
77
    Cyc-Bu
               3-CH,-piperazin-1-ylCH,CONH
78
    Cyc-Bu
               trans-2,5-di-CH<sub>3</sub>-piperazin-1-ylCH<sub>2</sub>CONH
79
    Cyc-Bu
               cis-2,6-di-CH,-piperazin-1-ylCH2CONH
80
    Cyc-Bu
               cis-3,5-di-CH<sub>3</sub>-piperazin-1-ylCH<sub>2</sub>CONH
81
    Cyc-Bu
               trans-2,6-di-CH,-piperazin-1-ylCH,CONH
    Cyc-Bu
82
               trans-3,5-di-CH,-piperazin-1-ylCH,CONH
    Cyc-Bu
83
               (R)-1-Ethylpyrrolidin-2-ylCH,NHCONH
84
     Cyc-Bu
               (S) -1-Ethylpyrrolidin-2-ylCH,NHCONH
85
     Cyc-Bu
               5-CH,-pyrazin-2-ylCH,NHCH,CONH
86
     Cyc-Bu
```

Table XVII

_	_	u2	77.	Cl	D7/maha)
5		#_R²	R ⁷ (para)		R ⁷ (meta)
	1	i-Pr	(CH ₃) ₂ NCH ₂ CONH		Me
	2	i-Pr	1-CH3-piperazin-4-ylCH2CONH		Me
	3	i-Pr	CH₃NHCONH		Me
	4	i-Pr	Morpholin-4-ylCH2CONH		Me
	5	i-Pr	Azetidin-1-ylCH2CONH		Me
	6	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH		Me
	7	i-Pr	EtO2CCH2NHCONH	٠	Me
	8	i-Pr	Hydantoin-1-yl		Me
	9	i-Pr	HOCH2CH2NHCONH		Me
	10	i-Pr	HO ₂ C (CH ₂) ₂ CONH		Me
	11	i-Pr	imidazol-1-ylCH2CONH		Me
	12	i-Pr	Morpholin-4-ylCH2CH2NHCSNH		Me
	13	i-Pr	HO ₂ CCH ₂ NHCONH		Мę
	14	i-Pr	HO_2C (CH_2) $_3CONH$		Me
	15	i-Pr	H ₂ NCH ₂ CONH		Me
	16	i-Pr	CH3NHCH2CONH		Me
	17	i-Pr	4-F-phenylCH2NHCH2CONH		Ме
	18	i-Pr	pyrrolidin-1-ylCH2CONH		Me
	19	i-Pr	pyrid-2-ylCH2NHCH2CONH		Me
	20	i-Pr	pyrid-3-ylCH2NHCH2CONH		Ме
	21	i-Pr	pyrid-4-ylCH2NHCH2CONH		Me
	22	i-Pr	BocnhCh2Ch2NHCh2CONH		ме
	23	i-Pr	HOCH ₂ CH (CH ₃) NHCH ₂ CONH		Me
	24	i-Pr	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH		Me
	25	i-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH		Ме
			_		

26	i-Pr	morpholin-4-ylCH2CH2NHCH2CONH	Me
27	i-Pr	1-CH3-piperidin-4-ylN(CH3)CH2CONH	Me
28	i-Pr	$(CH_3)_2NCH_2CH_2N$ (CH_3) CH_2CONH	Me
29	i-Pr	$(CH_3)_2$ NCH (CH_3) CONH	Me
30	i-Pr	1-CH ₃ -L-prolylNH	Me
31	i-Pr	Homopiperazin-1-ylCH2CONH	Me
32	i-Pr	CH ₃ CH ₂ NHCH ₂ CONH	Me
33	i-Pr	4-(CH2NH2)piperidin-1-ylCH2CONH	Me
34	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH	Me
35	i-Pr	$Cyclo$ - C_3H_5 NHC H_2 CONH	Me
36	i-Pr	Piperidin-4-ylCH2NHCH2CONH	Me
37	i-Pr	HO (CH ₂) 3NHCH ₂ CONH	Me
38	i-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH	Me
39	i-Pr	HOCH,CH,NHCH,CONH	Me
40	i-Pr	$cyclo$ - C_4 H, n HCH $_2$ CONH	Me
41	i-Pr	azetidin-3-ylCONH	Me
42	i-Pr	D-prolylNH'HCl	Me
43	i-Pr	Boc-D-prolylNH	Me
44	i-Pr	L-prolylNH.HCl	Me
45	i-Pr	Boc-L-prolylNH	Me
46	i-Pr	piperidin-1-ylCH2CH2NHCH2CONH	Me
47	i-Pr	(CH ₃) ₂ CHNHCH ₂ CONH	Me
48	i-Pr	BocnHCH,CH,CONH	Me
49	i-Pr	piperazin-2-yl-CONH	Me
50	i-Pr	4-Me-piperazin-2-yl-CONH	Me
51	i-Pr	piperidin-1-ylNHCONH	Ме
52	i-Pr	H2NCH2CH2NHCONH F3CCO2H	Me
53	i-Pr	pyrid-2-y1NHCONH	Me
54	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	Me
55	i-Pr	BocnHCH2CH2NHCONH	Me
56	i-Pr	HO (CH ₂) ₄ NHCONH	Me
57	i-Pr	$(CH_3)_2$ NNHCONH	Me
58	i-Pr	$(CH_3)_2N(CH_2)_3NHCONH$	Me
59	i-Pr	1-CH ₃ -homopiperazin-4-yl-CONH	Me
60	i-Pr	CH₃SO₂NHCONH	Me
61	i-Pr	CH3ONHCONH	Me
62	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	Me

63	i-Pr	1-CH3-piperidin-4-ylN(CH3)CONH	Me
64	i-Pr	Tetrahydrofur-2-ylCH,NHCONH	Me
65	i-Pr	CH_3 (CH_2) $_2$ CH (OH) CH_2 NHCONH	Me
66	i-Pr	HOCH ₂ CH (CH ₃) NHCONH	Ме
67	i-Pr	CH ₃ CH (OH) CH ₂ NHCONH	Me
68	i-Pr	HOCH ₂ CH ₂ NHCONH	ме
69	i-Pr	morpholin-4-ylNHCONH	Me
70	i-Pr	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH	Me
71	i-Pr	1-CH3-piperazin-4-ylNHCONH	Me
72	i-Pr	morpholin-4-ylCH2CH2NHCONH	Me
73	i-Pr	1-CH,-piperazin-4-ylCONH	Me
74	i-Pr	pyrid-2-ylNHCONH	Me
75	i-Pr	pyrid-4-ylNHCONH	Me
76	i-Pr	Pyrrolidin-1-ylCH ₂ CH ₂ NHCH ₂ CONH	Me
77	i-Pr	2-CH ₃ -piperazin-1-ylCONH	Me
78	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
79	i-Pr	trans-2,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
80	i-Pr	cis-2,6-di-CH3-piperazin-1-ylCH2CONH	Me
81	i-Pr	cis-3,5-di-CH3-piperazin-1-ylCH2CONH	Me
82	i-Pr	trans-2,6-di-CH $_3$ -piperazin-1-ylCH $_2$ CONH	Me
83	i-Pr	trans-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
84	i-Pr	$(R)-1-Ethylpyrrolidin-2-ylCh_2NHCONH$	Me
85	i-Pr	$(S)-1-E$ thylpyrrolidin $-2-y$ lCH $_2$ NHCONH	Me
86	i~Pr	5-CH -pyrazin-2-vlCH NHCH CONH	Me

Table XVIII

5

Ex. # R² R³ (meta) R³ (ortho)

1	i-Pr	1 -CH $_3$ -piperazin- 4 -ylCH $_2$ CONH	Me
2	i-Pr	CH3NHCONH	Ме
3	i-Pr	morpholin-4-ylCH2CONH	Me
4	i-Pr	azetidin-1-ylCH,CONH	Me
5	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH	Me
6	i-Pr	EtO ₂ CCH ₂ NHCONH	Me
7	i-Pr	Hydantoin-1-yl	Me
8	i-Pr	HOCH ₂ CH ₂ NHCONH	Ме
9	i-Pr	HO ₂ C (CH ₂) ₂ CONH	Me
10	i-Pr	imidazol-1-ylCH2CONH	Me
11	i-Pr	Morpholin-4-ylCH2CH2NHCSNH	Me
12	i-Pr	HO2CCH2NHCONH	Me
13	i-Pr	HO ₂ C (CH ₂) ₃ CONH	Me
14	i-Pr	H ₂ NCH ₂ CONH	Ме
15	i-Pr	CH3NHCH2CONH	Me
16	i-Pr	4 -F-phenylCH $_2$ NHCH $_2$ CONH	Me
17	i-Pr	pyrrolidin-1-ylCH2CONH	Me
18	i-Pr	pyrid-2-ylCH ₂ NHCH ₂ CONH	Me
19	i-Pr	pyrid-3-ylCH,NHCH,CONH	Me
20	i-Pr	$pyrid-4-ylCh_2NHCh_2CONH$	Me
21	i-Pr	BocnhCh2Ch2NHCh2CONH	Me
22	i-Pr	$HOCH_2CH$ (CH_3) $NHCH_2CONH$	Me
23	i-Pr	CH_3CH (OH) CH_2NHCH_2CONH	Me
24	i-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH	Me
25	i-Pr	morpholin-4-ylCH,CH,NHCH,CONH	Me
26	i-Pr	1-CH3-piperidin-4-ylN(CH3)CH2CONH	Me
27	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$	Me
28	i-Pr	$(CH_3)_2$ NCH (CH_3) CONH	Me
29	i-Pr	1-CH ₃ -L-prolylNH	Me
30	i-Pr	Homopiperazin-1-ylCH ₂ CONH	Me
31	i-Pr	CH ₃ CH ₂ NHCH ₂ CONH	Ме
32	i-Pr	4-(CH ₂ NH ₂)piperidin-1-ylCH ₂ CONH	Ме
33	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH	Me
34	i-Pr	$Cyclo-C_3H_5NHCH_2CONH$	Me
35	i-Pr	Piperidin-4-ylCH $_2$ NHCH $_2$ CONH	Me
36	i∹Pr	HO (CH ₂) ₃ NHCH ₂ CONH	Ме
37	i-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH	Ме

38	i-Pr	HOCH ₂ CH ₂ NHCH ₂ CONH	Me
39	i-Pr	$cyclo-C_4H_7$ NHC H_2 CONH	Me
40	i-Pr	azetidin-3-ylCONH	Me
41	i-Pr	D-prolylNH'HCl	Me
42	i-Pr	Boc-D-prolylNH	Me
43	i-Pr	L-prolylNH'HCl	Me
44	i-Pr	Boc-L-prolylNH	Me
45	i-Pr	piperidin-1-ylCH,CH,NHCH,CONH	Me
46	i-Pr	(CH ₃) ₂ CHNHCH ₂ CONH	Me
47	i-Pr	BocnhCh2Ch2CONH	Me
48	i-Pr	piperazin-2-yl-CONH	Me
49	i-Pr	4-Me-piperazin-2-yl-CONH	Me
50	i-Pr	piperidin-1-ylNHCONH	Me
51	i-Pr	H ₂ NCH ₂ CH ₂ NHCONH F ₃ CCO ₂ H	Me
52	i-Pr	pyrid-2-y1NHCONH	Me
53	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	Me
54	i-Pr	BocNHCH2CH2NHCONH	Me
55	i-Pr	HO (CH ₂) ₄ NHCONH	Me
56	i-Pr	(CH ₃) ₂ NNHCONH	Me
57	i-Pr	$(CH_3)_2N(CH_2)_3NHCONH$	Me
58	i-Pr	1-CH3-homopiperazin-4-yl-CONH	Me
59	i-Pr	CH₃SO₂NHCONH	Me
60	i-Pr	CH ₃ ONHCONH	Me
61	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	Me
62	i-Pr	1 -CH $_3$ -piperidin- 4 -ylN(CH $_3$)CONH	Me
63	i-Pr	tetrahydrofur-2-ylCH,NHCONH	Me
64	i-Pr	CH_3 (CH_2) $_2CH$ (OH) $CH_2NHCONH$	Me
65	i-Pr	HOCH ₂ CH (CH ₃) NHCONH	Me
66	i-Pr	CH₃CH (OH) CH₂NHCONH	Me
67	i-Pr	HOCH ₂ CH ₂ NHCONH	Me
68	i-Pr	morpholin-4-ylNHCONH	Me
69	i-Pr	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH	Me
70	i-Pr	1-CH ₃ -piperazin-4-ylNHCONH	Me
71	i-Pr	$morpholin-4-ylCH_2CH_2NHCONH$	Me
72	i-Pr	1-CH ₃ -piperazin-4-ylCONH	Me
73	i-Pr	pyrid-2-ylnHCONH	Me
74	i-Pr	pyrid-4-ylNHCONH	Me

75	i-Pr	pyrrolidin-1-ylCH2CH2NHCH2CONH	Me
76	· i-Pr	2-CH ₃ -piperazin-1-ylCONH	Me
77	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
78	i-Pr	trans-2,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
79	i-Pr	cis-2,6-di-CH3-piperazin-1-ylCH2CONH	Me
80	i-Pr	cis-3,5-di-CH3-piperazin-1-ylCH2CONH	Me
81	i-Pr	trans-2,6-di-CH ₃ -piperazin-1-y1CH ₂ CONH	Me
82	i-Pr	trans-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
83	i-Pr	(R)-1-Ethylpyrrolidin-2-ylCH $_2$ NHCONH	Me
84	i-Pr	(S)-1-Ethylpyrrolidin-2-ylCH $_{\scriptscriptstyle 2}$ NHCONH	Me
85	i-Pr	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH	Me

Table XIX

Ex.	# R ²	R'(para)	R'(ortho)
1	i-Pr	(CH ₃) ₂ NCH ₂ CONH	Me
2	i-Pr	1-CH3-piperazin-4-ylCH2CONH	Me
3	i-Pr	CH3NHCONH	Me
4	i-Pr	Morpholin-4-ylCH2CONH	Me
5	i-Pr	Azetidin-1-ylCH2CONH	Me
6	i-Pr	$(CH_3)_2NCH_2CH_2SO_2NH$	Me
7	i-Pr	EtO ₂ CCH ₂ NHCONH	Me
8	i-Pr	Hydantoin-1-yl	Me
9	i-Pr	HOCH ₂ CH ₂ NHCONH	Me
10	i-Pr	HO ₂ C (CH ₂) ₂ CONH	Me
11	i-Pr	Imidazol-1-ylCH2CONH	Me
12	i-Pr	Morpholin-4-ylCH2CH2NHCSNH	Me
13	i-Pr	HO2CCH2NHCONH	Me

14	i-Pr	HO,C (CH,),CONH	Me
15	i-Pr		Me
16	i-Pr	-	Me
17	i-Pr	4-F-phenylCH,NHCH,CONH	Me
18	i-Pr		Me
19	i-Pr	pyrid-2-ylCH,NHCH,CONH	Me
20	i-Pr	pyrid-3-ylCH,NHCH,CONH	Me
21	i-Pr	pyrid-4-ylCH,NHCH,CONH	Me
22	i-Pr	BocnhCh2Ch2nhCh2CONH	Me
23	i-Pr	HOCH ₂ CH (CH ₃) NHCH ₂ CONH	Me
24	i-Pr	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH	Me
25	i-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH	Me
26	i-Pr	morpholin-4-ylCH2CH2NHCH2CONH	Me
27	i-Pr	1-CH3-piperidin-4-ylN(CH3)CH2CONH	Me
28	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$	Me
29	i-Pr	(CH ₃) ₂ NCH (CH ₃) CONH	Me
30	i-Pr	1-CH ₃ -L-proly1NH	Me
31	i-Pr	Homopiperazin-1-ylCH2CONH	Me
32	i-Pr	CH3CH2NHCH2CONH	Me
33	i-Pr	$4-(CH_2NH_2)$ piperidin-1-ylCH ₂ CONH	Me
34	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH	Me
35	i-Pr	CYClo-C3H5NHCH2CONH	Me
36	i-Pr	Piperidin-4-ylCH,NHCH,CONH	Me
37	i-Pr	HO (CH ₂) 3NHCH ₂ CONH	Me
38	i-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH	Me
39	i-Pr	HOCH ₂ CH ₂ NHCH ₂ CONH	Me
40	i-Pr	CYClo-C4H7NHCH2CONH	Me
41	i-Pr	azetidin-3-ylCONH	Me
42	i-Pr	D-prolylNH HCl	Me
43	i-Pr	Boc-D-prolylNH	Me
44	i-Pr	L-prolylNH HCl	Me
45	i-Pr	Boc-L-prolylNH	Me
46	i-Pr	piperidin-1-ylCH,CH,NHCH,CONH	Ме
47	i-Pr	(CH ₃) ₂ CHNHCH ₂ CONH	Me
48	i-Pr	BocnhCH ₂ CH ₂ CONH	Me
49	i-Pr	piperazin-2-yl-CONH	Me
50	i-Pr	4-Me-piperazin-2-yl-CONH	Me

51	i-Pr	piperidin-1-ylNHCONH	Me
52	i-Pr	H2NCH2CH2NHCONH F3CCO2H	Me
53	i-Pr	pyrid-2-ylNHCONH	Me
54	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	Me
55	i-Pr	BocnhCh, Ch, NHCONH	Me
56	i-Pr	HO (CH ₂) 4NHCONH	Me
57	i-Pr	$(CH_3)_2$ NNHCONH	Me
58	i-Pr	$(CH_3)_2N(CH_2)_3NHCONH$	Me
59	i-Pr	1-CH3-homopiperazin-4-yl-CONH	Me
60	i-Pr	CH ₃ SO ₂ NHCONH	Me
61	i-Pr	CH ₃ ONHCONH	Me
62	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH	Me
63	i-Pr	1-CH3-piperidin-4-ylN(CH3)CONH	Me
64	i-Pr	tetrahydrofur-2-ylCH,NHCONH	Me
65	i-Pr	CH_3 (CH_2) $_2$ CH (OH) CH_2 NHCONH	Me
66	i- P x	HOCH ₂ CH (CH ₃) NHCONH	Me
67	i-Pr	CH ₃ CH (OH) CH ₂ NHCONH	Me
68	i-Pr	HOCH ₂ CH ₂ NHCONH	Me
69	i-Pr	morpholin-4-ylNHCONH	Me
70	i-Pr	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH	Me
71	i-Pr	1-CH3-piperazin-4-ylNHCONH	Me
72	i-Pr	morpholin-4-ylCH2CH2NHCONH	Me
73	i-Pr	1-CH ₃ -piperazin-4-ylCONH	Me
74	i-Pr	pyrid-2-ylNHCONH	Me
75	i-Pr	pyrid-4-ylnHCONH	Me
76	i-Pr	$pyrrolidin-1-ylCH_2CH_2NHCH_2CONH$	Me
77	i-Pr	2-CH ₃ -piperazin-1-ylCONH	Me
78	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
79	i-Pr	trans-2,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
80	i-Pr	cis-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
81	i-Pr	cis-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
82	i-Pr	trans-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
83	i-Pr	trans-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH	Me
84	i-Pr	(R)-1-Ethylpyrrolidin-2-ylCH2NHCONH	Me
85	i-Pr	$(S)-1-Ethylpyrrolidin-2-ylCH_2NHCONH$	Me
86	i-Pr	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH	Me

Table XX

	R ₇	HN N	F ₂ OH HN HN R ₂ CI
5			či (i
		(a)	(b) (c)
	Ex.	#R²	
	1	Et	1-CH,-piperazin-4-ylCH,CONH
	2	Et	CH ₃ NHCONH
	3	Et	Morpholin-4-ylCH2CONH
	4	Et	Azetidin-1-ylCH2CONH
	5	Et	(CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH
	6	Et	EtO ₂ CCH ₂ NHCONH
	7	Et	Hydantoin-1-yl
	8	Et	HOCH ₂ CH ₂ NHCONH
	9	Et	HO ₂ C (CH ₂) ₂ CONH
	10	Et	Imidazol-1-ylCH ₂ CONH
	11	Et	Morpholin-4-ylCH, CH, NHCSNH
	12	Et	HO ₂ CCH ₂ NHCONH
	13	Et	HO ₂ C (CH ₂) ₃ CONH
	14	Et	H ₂ NCH ₂ CONH
	15	Et	CH3NHCH2CONH
	16	Et	4-F-phenylCH,NHCH,CONH
	17	Et	pyrrolidin-1-ylCH ₂ CONH
	18	Et	pyrid-2-ylCH2NHCH2CONH
	19	Et	pyrid-3~ylCH2NHCH2CONH
	20	Et	pyrid-4-ylCH2NHCH2CONH
	21	Et	BocnhCh, Ch, nhCh, CONH
	22	Et	HOCH ₂ CH (CH ₃) NHCH ₂ CONH
	23	Et	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH
	24	Et	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
	25	Et	morpholin-4-ylCH2CH2NHCH2CONH
	26	Et	1-CH ₃ -piperidin-4-ylN(CH ₃)CH ₂ CONH

27	Εt	(CH ₃) ₂ NCH ₂ CH ₂ N (CH ₃) CH ₂ CONH
28	Et	(CH ₃) ₂ NCH (CH ₃) CONH
29	Et	1-CH ₃ -L-prolylNH
30	Et	Homopiperazin-1-ylCH2CONH
31	Εt	CH ₃ CH ₂ NHCH ₂ CONH
32	Et	4-(CH2NH2)piperidin-1-ylCH2CONH
33	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
34	Et	cyclo-C3H5NHCH2CONH
35	Et	Piperidin-4-ylCH2NHCH2CONH
36	Et	HO (CH ₂) 3NHCH ₂ CONH
37	Et	$1-Bocpiperidin-4-ylCH_2NHCH_2CONH$
38	Et	HOCH2CH2NHCH2CONH
39	Et	cyclo-C4H,NHCH2CONH
40	Et	azetidin-3-ylCONH
41	Et	D-prolylNH.HCl
42	Εt	Boc-D-prolylNH
43	Et	L-prolylNH'HCl
,44	Et	Boc-L-prolylNH
45	Et	$piperidin-1-ylCH_2CH_2NHCH_2CONH$
46	Et	(CH ₃) ₂ CHNHCH ₂ CONH
47	Et	BocnhCh ₂ Ch ₂ CONH
48	Et	piperazin-2-yl-CONH
49	Et	4-Me-piperazin-2-yl-CONH
50	Et	piperidin-1-ylNHCONH
51	Et	H ₂ NCH ₂ CH ₂ NHCONH F ₃ CCO ₂ H
52	Et	pyrid-2-ylNHCONH
53	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
54	Et	BocnhCh2Ch2NHCONH
55	Et	HO (CH ₂) ₄ NHCONH
56	Et	(CH ₃) ₂ NNHCONH
57	Et	$(CH_3)_2N_1(CH_2)_3NHCONH$
58	Et	1-CH ₃ -homopiperazin-4-yl-CONH
59	Εt	CH,SO,NHCONH
60	Et	CH3ONHCONH
61	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
62	Et	1-CH3-piperidin-4-ylN(CH3)CONH
63	Et	Tetrahydrofur-2-ylCH $_2$ NHCONH

64	Et	CH_3 (CH_2) $_2CH$ (OH) $CH_2NHCONH$
65	Et	HOCH ₂ CH (CH ₃) NHCONH
66	Et	CH ₃ CH (OH) CH ₂ NHCONH
67	Et	HOCH ₂ CH ₂ NHCONH
68	Et	morpholin-4-ylNHCONH
69	Et	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH
70	Et	1-CH3-piperazin-4-ylNHCONH
71	Et	morpholin-4-ylCH2CH2NHCONH
72	Et	1-CH ₃ -piperazin-4-ylCONH
73	Et	pyrid-2-ylnHCONH
74	Et	pyrid-4-ylnHCONH
75	Et	pyrrolidin-1-ylCH,CH,NHCH,CONH
76	Et	2-CH ₃ -piperazin-1-ylCONH
77	Et	3-CH ₃ -piperazin-1-ylCH ₂ CONH
78	Et	$trans-2,5-di-CH_3-piperazin-1-ylCH_2CONH$
79	Et	cis-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH
80	Et	cis-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
81	Et	trans-2,6-di-CH3-piperazin-1-ylCH2CONH
82	Et	trans-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
83	Et	(R)-1-Ethylpyrrolidin-2-yl CH_2 NHCONH
84	Et	(S)-1-Ethylpyrrolidin-2-ylCH,NHCONH
85	Et	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH

Table XXI

10 Ex.# R² R⁷

- 1 cyc-Pr 1-CH₃-piperazin-4-ylCH₂CONH
- 2 cyc-Pr CH3NHCONH
- 3 cyc-Pr Morpholin-4-ylCH₂CONH

4	cyc-Pr	Azetidin-1-ylCH ₂ CONH
5	cyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH
6	cyc-Pr	EtO ₂ CCH ₂ NHCONH
7	cyc-Pr	Hydantoin-1-yl
8	cyc-Pr	HOCH2CH2NHCONH
9	cyc-Pr	HO ₂ C (CH ₂) ₂ CONH
10	cyc-Pr	imidazol-1-ylCH2CONH
11	cyc-Pr	Morpholin-4-ylCH2CH2NHCSNH
12	cyc-Pr	HO ₂ CCH ₂ NHCONH
13	cyc-Pr	HO ₂ C (CH ₂) ₃ CONH
14	cyc-Pr	H ₂ NCH ₂ CONH
15	cyc-Pr	CH3NHCH2CONH
16	cyc-Pr	4-F-phenylCH,NHCH,CONH
17	cyc-Pr	pyrrolidin-1-ylCH2CONH
18	cyc-Pr	pyrid-2-ylCH,NHCH,CONH
19	cyc-Pr	pyrid-3-ylCH,NHCH,CONH
20	cyc-Pr	pyrid-4-ylCH,NHCH,CONH
21	cyc-Pr	BocnHCH2CH2NHCH2CONH
22	cyc-Pr	HOCH ₂ CH (CH ₃) NHCH ₂ CONH
23	cyc-Pr	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH
24	cyc-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
25	cyc-Pr	$morpholin-4-ylCH_2CH_2NHCH_2CONH$
26	cyc-Pr	1-CH3-piperidin-4-ylN(CH3)CH2CONH
27	cyc-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
28	cyc-Pr	$(CH_3)_2$ NCH (CH_3) CONH
29	cyc-Pr	1-CH ₃ -L-prolylNH
30	cyc-Pr	Homopiperazin-1-ylCH2CONH
31	cyc-Pr	CH ₃ CH ₂ NHCH ₂ CONH
32	cyc-Pr	$4-(CH_2NH_2)$ piperidin-1-ylCH ₂ CONH
33	cyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
34	cyc-Pr	CYClo-C3H5NHCH2CONH
35	cyc-Pr	$Piperidin-4-ylCH_2NHCH_2CONH$
36	cyc-Pr	HO(CH ₂) ₃ NHCH ₂ CONH
37	cyc-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH
38	cyc-Pr	HOCH ₂ CH ₂ NHCH ₂ CONH
39	cyc-Pr	$cyc1o$ - C_4 H, $NHCH_2$ CONH
40	cyc-Pr	azetidin-3-ylCONH

41	cyc-Pr	D-prolylNH.HCl
42	cyc-Pr	Boc-D-prolylNH
43	cyc-Pr	L-prolylNH'HCl
44	cyc-Pr	Boc-L-prolylNH
45	cyc-Pr	piperidin-1-ylCH2CH2NHCH2CONH
46	cyc-Pr	(CH ₃) ₂ CHNHCH ₂ CONH
47	cyc-Pr	BocnHCH, CH, CONH
48	cyc-Pr	piperazin-2-yl-CONH
49	cyc-Pr	4-Me-piperazin-2-yl-CONH
50	cyc-Pr	piperidin-1-ylNHCONH
51	cyc-Pr	H2NCH2CH2NHCONH F3CCO2H
52	cyc-Pr	pyrid-2-ylnHCONH
53	cyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
54	cyc-Pr	BocnHCH2CH2NHCONH
55	cyc-Pr	HO(CH ₂) ₄ NHCONH
56	cyc-Pr	(CH ₃) ₂ NNHCONH
57	cyc-Pr	$(CH_3)_2N(CH_2)_3NHCONH$
58	cyc-Pr	1 -CH $_3$ -homopiperazin- 4 -yl-CONH
59	cyc-Pr	CH ₃ SO ₂ NHCONH
60	cyc-Pr	CH ₃ ONHCONH
61	cyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
62	cyc-Pr	1-CH3-piperidin-4-ylN(CH3)CONH
63	cyc-Pr	tetrahydrofur-2-ylCH ₂ NHCONH
64	cyc-Pr	CH_3 (CH_2) $_2$ CH (OH) CH_2 NHCONH
65	cyc-Pr	HOCH ₂ CH (CH ₃) NHCONH
66	cyc-Pr	CH,CH(OH)CH2NHCONH
67	cyc-Pr	HOCH ₂ CH ₂ NHCONH
68	cyc-Pr	morpholin-4-ylNHCONH
69	cyc-Pr	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH
70	cyc-Pr	1-CH3-piperazin-4-ylNHCONH
71	cyc-Pr	$morpholin-4-ylCH_2CH_2NHCONH$
7 2	cyc-Pr	1-CH3-piperazin-4-ylCONH
73	cyc-Pr	pyrid-2-ylNHCONH
74	cyc-Pr	pyrid-4-ylNHCONH
75	cyc-Pr	pyrrolidin-1-ylCH2CH2NHCH2CONH
76	cyc-Pr	2-CH ₃ -piperazin-1-ylCONH
77	cyc-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH

78	cyc-Pr	trans-2,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
79	cyc-Pr	cis-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH
80	cyc-Pr	$cis-3,5-di-CH_3$ -piperazin-1-ylCH ₂ CONH
81	cyc-Pr	trans-2,6-di-CH3-piperazin-1-ylCH2CONH
82	cyc-Pr	trans-3,5-di-CH3-piperazin-1-ylCH2CONH
83	cyc-Pr	(R) -1 -Ethylpyrrolidin -2 -ylCH ₂ NHCONH
84	cyc-Pr	(S)-1-Ethylpyrrolidin-2-ylCH2NHCONH
85	cyc-Pr	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH

Table XXII

Ex	.# R ²	<u>R</u> ²
1	1-Methylcyc-Pr	1-CH3-piperazin-4-ylCH2CONH
2	1-Methylcyc-Pr	CH ₃ NHCONH
3	1-Methylcyc-Pr	Morpholin-4-ylCH,CONH
4	1-Methylcyc-Pr	Azetidin-1-ylCH ₂ CONH
5	1-Methylcyc-Pr	$(CH_3)_2NCH_2CH_2SO_2NH$
6	1-Methylcyc-Pr	EtO2CCH2NHCONH
7	1-Methylcyc-Pr	Hydantoin-1-yl
8	1-Methylcyc-Pr	HOCH ₂ CH ₂ NHCONH
9	1-Methylcyc-Pr	${\rm HO_2C}$ (CH ₂) ₂ CONH
10	1-Methylcyc-Pr	Imidazol-1-ylCH,CONH
11	1-Methylcyc-Pr	Morpholin-4-ylCH2CH2NHCSNH
12	1-Methylcyc-Pr	HO ₂ CCH ₂ NHCONH
13	1-Methylcyc-Pr	HO ₂ C (CH ₂) ₃ CONH
14	1-Methylcyc-Pr	H ₂ NCH ₂ CONH
15	1-Methylcyc-Pr	CH3NHCH2CONH
16	1-Methylcyc-Pr	$4-F-phenylCH_2NHCH_2CONH$
17	1-Methylcyc-Pr	Pyrrolidin-1-ylCH ₂ CONH
18	1-Methylcyc-Pr	Pyrid-2-ylCH2NHCH2CONH
19	1-Methylcyc-Pr	Pyrid-3-ylCH2NHCH2CONH
20	1-Methylcyc-Pr	Pyrid-4-ylCH2NHCH2CONH
21	1-Methylcyc-Pr	BocnHCH2CH2NHCH2CONH
22	1-Methylcyc-Pr	HOCH ₂ CH (CH ₃) NHCH ₂ CONH
23	1-Methylcyc-Pr	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH
24	1-Methylcyc-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
25	1-Methylcyc-Pr	Morpholin-4-ylCH2CH2NHCH2CONH
26	1-Methylcyc-Pr	1-CH3-piperidin-4-ylN(CH3)CH2CONH

	27	1-Methylcyc-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
	28	1-Methylcyc-Pr	$(CH_3)_2$ NCH (CH_3) CONH
	29	1-Methylcyc-Pr	$1-CH_3-L-prolylNH$
	30	1-Methylcyc-Pr	Homopiperazin-1-ylCH2CONH
	31	1-Methylcyc-Pr	CH ₂ CH ₂ NHCH ₂ CONH
	32	1-Methylcyc-Pr	$4-(CH_2NH_2)$ piperidin $-1-ylCH_2CONH$
	33	1-Methylcyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
	34	1-Methylcyc-Pr	$Cyclo-C_3H_5NHCH_2CONH$
	35	1-Methylcyc-Pr	Piperidin-4-ylCH2NHCH2CONH
	36	1-Methylcyc-Pr	HO (CH ₂) ₃ NHCH ₂ CONH
	37	1-Methylcyc-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH
	38	1-Methylcyc-Pr	HOCH ₂ CH ₂ NHCH ₂ CONH
	39	1-Methylcyc-Pr	Cyclo-C4H,NHCH2CONH
	40	1-Methylcyc-Pr	Azetidin-3-ylCONH
	41	1-Methylcyc-Pr	D-prolylNH'HCl
	42	1-Methylcyc-Pr	Boc-D-prolylNH
	43	1-Methylcyc-Pr	L-prolylNH'HCl
	44	1-Methylcyc-Pr	Boc-L-prolylNH
	45	1-Methylcyc-Pr	Piperidin-1-ylCH2CH2NHCH2CONH
	46	1-Methylcyc-Pr	(CH ₃) ₂ CHNHCH ₂ CONH
	47	1-Methylcyc-Pr	BocnhCh ₂ Ch ₂ CONH
	48	1-Methylcyc-Pr	Piperazin-2-yl-CONH
	49	1-Methylcyc-Pr	4-Me-piperazin-2-y1-CONH
	50	1-Methylcyc-Pr	Piperidin-1-ylNHCONH
	51	1-Methylcyc-Pr	H ₂ NCH ₂ CH ₂ NHCONH F ₃ CCO ₂ H
	52	1-Methylcyc-Pr	Pyrid-2-ylnHCONH
	53	1-Methylcyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
	54	1-Methylcyc-Pr	BocnhCh ₂ Ch ₂ NhCONH
	55	1-Methylcyc-Pr	HO (CH ₂) ₄ NHCONH
	56	1-Methylcyc-Pr	(CH ₃) ₂ NNHCONH
	57	1-Methylcyc-Pr	$(CH_3)_2N(CH_2)_3NHCONH$
	58	1-Methylcyc-Pr	1-CH ₃ -homopiperazin-4-yl-CONH
	59	1-Methylcyc-Pr	CH₃SO₂NHCONH
	60	1-Methylcyc-Pr	CH ₃ ONHCONH
	61	1-Methylcyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
	62	1-Methylcyc-Pr	1-CH ₃ -piperidin-4-ylN(CH ₃)CONH
•	63	1-Methylcyc-Pr	Tetrahydrofur-2-ylCH2NHCONH

64	1-Methylcyc-Pr	CH_3 (CH_2) $_2$ CH (OH) CH_2 NHCONH
65	1-Methylcyc-Pr	HOCH ₂ CH (CH ₃) NHCONH
66	1-Methylcyc-Pr	CH ₃ CH (OH) CH ₂ NHCONH
67	1-Methylcyc-Pr	HOCH, CH, NHCONH
68	1-Methylcyc-Pr	Morpholin-4-ylNHCONH
69	1-Methylcyc-Pr	(CH ₃) ₂ NCH (CH ₃) CH ₂ NHCONH
70	1-Methylcyc-Pr	1 -CH $_3$ -piperazin- 4 -ylNHCONH
71	1-Methylcyc-Pr	Morpholin-4-ylCH,CH,NHCONH
72	1-Methylcyc-Pr	1-CH,-piperazin-4-ylCONH
73	1-Methylcyc-Pr	Pyrid-2-ylnHCONH
74	1-Methylcyc-Pr	Pyrid-4-ylnHCONH
75	1-Methylcyc-Pr	Pyrrolidin-1-ylCH,CH,NHCH,CONH
76	1-Methylcyc-Pr	2-CH ₃ -piperazin-1-ylCONH
77	1-Methylcyc-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH
78	1-Methylcyc-Pr	Trans-2,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
79	1-Methylcyc-Pr	Cis-2,6-di-CH3-piperazin-1-ylCH2CONH
80	1-Methylcyc-Pr	Cis-3,5-di-CH3-piperazin-1-ylCH2CONH
81	1-Methylcyc-Pr	Trans-2,6-di-CH3-piperazin-1-ylCH2CONH
82	1-Methylcyc-Pr	Trans-3,5-di-CH3-piperazin-1-ylCH2CONH
83	1-Methylcyc-Pr	(R)-1-Ethylpyrrolidin-2-ylCH2NHCONH
84	1-Methylcyc-Pr	(S)-1-Ethylpyrrolidin-2-ylCH₂NHCONH
85	1-Methylcyc-Pr	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH

Table XXIII

5

10

Ex.# R² R⁷

1 i-Bu 1-CH₃-piperazin-4-ylCH₂CONH
2 i-Bu CH₃NHCONH

3	i-Bu	Morpholin-4-ylCH2CONH
4	i-Bu	Azetidin-1-ylCH2CONH
5	i-Bu	(CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH
6	i-Bu	EtO2CCH2NHCONH
7	i-Bu	Hydantoin-1-yl
8	i-Bu	HOCH2CH2NHCONH
9	i-Bu	HO ₂ C (CH ₂) ₂ CONH
10	i-Bu	Imidazol-1-ylCH2CONH
11	i-Bu	Morpholin-4-ylCH2CH2NHCSNH
12	i-Bu	HO ₂ CCH ₂ NHCONH
13	i-Bu	HO ₂ C (CH ₂) ₃ CONH
14	i-Bu	H ₂ NCH ₂ CONH
15	i-Bu	CH3NHCH2CONH
16	i-Bu	4-F-phenylCH ₂ NHCH ₂ CONH
17	i-Bu	Pyrrolidin-1-ylCH2CONH
18	i-Bu	pyrid-2-ylCH2NHCH2CONH
19	i-Bu	pyrid-3-ylCH2NHCH2CONH
20	i-Bu	pyrid-4-ylCH2NHCH2CONH
21	i-Bu	BocnHCH2CH2NHCH2CONH
22	i-Bu	${\tt HOCH_2CH}$ (${\tt CH_3}$) ${\tt NHCH_2CONH}$
23	i-Bu	CH_3CH (OH) CH_2NHCH_2CONH
24	i-Bu	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
25	i-Bu	Morpholin-4-ylCH2CH2NHCH2CONH
26	i-Bu	$1-CH_3$ -piperidin- 4 -ylN(CH $_3$)CH $_2$ CONH
27	i-Bu	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
28	i-Bu	$(CH_3)_2$ NCH (CH_3) CONH
29	i-Bu	1-CH ₃ -L-prolylNH
30	i-Bu	Homopiperazin-1-ylCH2CONH
31	i-Bu	CH ₃ CH ₂ NHCH ₂ CONH
32	i-Bu	4-(CH2NH2)piperidin-1-ylCH2CONH
33	i-Bu	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
34	i-Bu	Cyclo-C ₃ H ₅ NHCH ₂ CONH
35	i-Bu	Piperidin-4-ylCH2NHCH2CONH
36	i-Bu	HO (CH ₂) ₃ NHCH ₂ CONH
37	i-Bu	$1-Bocpiperidin-4-ylCH_2NHCH_2CONH$
38	i-Bu	HOCH ₂ CH ₂ NHCH ₂ CONH
39	i-Bu	Cyclo-C4H,NHCH2CONH

40	i-Bu	azetidin-3-ylCONH
41	i-Bu	D-prolylNH HCl
42	i-Bu	Boc-D-prolylNH
43	i-Bu	L-prolylNH'HCl
44	i-Bu	Boc-L-prolylNH
45	i-Bu	Piperidin-1-ylCH,CH,NHCH,CONH
46	i-Bu	(CH ₃) ₂ CHNHCH ₂ CONH
47	i-Bu	BocnHCH2CH2CONH
48	i-Bu	Piperazin-2-yl-CONH
49	i-Bu	4-Me-piperazin-2-yl-CONH
50	i-Bu	Piperidin-1-ylNHCONH
51	i-Bu	H ₂ NCH ₂ CH ₂ NHCONH F ₃ CCO ₂ H
52	i-Bu	pyrid-2-ylNHCONH
53	i-Bu	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
54	i-Bu	BocnhCh2Ch2NHCONH
55	i-Bu	${ m HO}\left({ m CH_2}\right)_4{ m NHCONH}$
56	i-Bu	(CH ₃) ₂ NNHCONH
57	i-Bu	$(CH_3)_2N(CH_2)_3NHCONH$
58	i-Bu	1-CH ₃ -homopiperazin-4-yl-CONH
59	i-Bu	CH,SO,NHCONH
60	i-Bu	CH ₃ ONHCONH
61	i-Bu	$(CH_3)_2NCH_2CH_2NHCONH$
62	i-Bu	1-CH3-piperidin-4-ylN(CH3)CONH
63	i-Bu	Tetrahydrofur-2-ylCH2NHCONH
64	i-Bu	CH ₃ (CH ₂) ₂ CH (OH) CH ₂ NHCONH
65	i-Bu	HOCH ₂ CH (CH ₃) NHCONH
66	i-Bu	CH,CH(OH)CH2NHCONH
67	i-Bu	HOCH, CH, NHCONH
68	i-Bu	Morpholin-4-ylNHCONH
69	i-Bu	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH
70	i-Bu	1 -CH $_3$ -piperazin- 4 -ylNHCONH
71	i-Bu	$Morpholin-4-ylCH_2CH_2NHCONH$
72	i-Bu	1-CH,-piperazin-4-ylCONH
73	i-Bu	pyrid-2-ylNHCONH
74	i-Bu	pyrid-4-ylNHCONH
75	i-Bu	Pyrrolidin-1-ylCH ₂ CH ₂ NHCH ₂ CONH
76	i-Bu	2-CH ₃ -piperazin-1-ylCONH

77	i-Bu	3-CH ₃ -piperazin-1-ylCH ₂ CONH
78	i-Bu	$trans-2,5-di-CH_3-piperazin-1-ylCH_2CONH$
79	i-Bu	cis-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH
80	i-Bu	$cis-3,5-di-CH_3-piperazin-1-ylCH_2CONH$
81	i-Bu	$trans-2,6-di-CH_3-piperazin-1-ylCH_2CONH$
82	i-Bu	trans-3,5-di-CH3-piperazin-1-ylCH2CONH
83	i-Bu	(R)-1-Ethylpyrrolidin-2-ylCH2NHCONH
84	i-Bu	(S)-1-Ethylpyrrolidin-2-ylCH2NHCONH
85	i-Bu	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH

Table XXIV

10	Ex.	# R⁵	R ²	R ⁷
	1	Me	Et	1-CH3-piperazin-4-ylCH2CONH
	2	Me	Et	CH3NHCONH
	3	Me	Et	Morpholin-4-ylCH2CONH
	4	Me	Et	Azetidin-1-ylCH2CONH
	5	Me	Et	$(CH_3)_2NCH_2CH_2SO_2NH$
	6	Me	Et	EtO ₂ CCH ₂ NHCONH
	7	Me	Et	Hydantoin-1-yl
	8	Me	Et	HOCH ₂ CH ₂ NHCONH
	9	Me	Et	HO ₂ C (CH ₂) ₂ CONH
	10	Me	Et	Imidazol-1-ylCH2CONH
	11	Ме	Et	Morpholin-4-ylCH2CH2NHCSNH
	12	Me	Et	HO ₂ CCH ₂ NHCONH
	13	Me	Et	HO ₂ C (CH ₂) ₃ CONH
	14	Me	Εt	H ₂ NCH ₂ CONH
	15	Me	Et	CH3NHCH2CONH
	16	Me	Et	4-F-phenylCH2NHCH2CONH
	17	Me	Et	Pyrrolidin-1-ylCH2CONH

18	Me	Et	Pyrid-2-ylch,NHCh,CONH
19	Me	Et	Pyrid-3-ylCH2NHCH2CONH
20	Me	Et	Pyrid-4-ylCH2NHCH2CONH
21	Me	Et	BocnhCh2Ch2NHCh2CONH
22	Me	Et	HOCH ₂ CH (CH ₃) NHCH ₂ CONH
23	Me	Et	CH_3CH (OH) CH_2NHCH_2CONH
24	Me	Et	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
25	Me	Et	Morpholin-4-ylCH2CH2NHCH2CONH
26	Me	Et	1-CH3-piperidin-4-ylN(CH3)CH2CONH
27	Me	Et	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
28	Me	Et	$(CH_3)_2$ NCH (CH_3) CONH
29	Me	Et	1-CH ₃ -L-prolylNH
30	Me	Et	Homopiperazin-1-ylCH2CONH
31	Me	Et	CH ₃ CH ₂ NHCH ₂ CONH
32	Me	Et	$4-(CH_2NH_2)$ piperidin $-1-ylCH_2CONH$
33	Me	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
34	Me	Et	Cyclo-C ₃ H ₅ NHCH ₂ CONH
35	Me	Et	$Piperidin-4-ylCh_2NHCh_2CONH$
36	Me	$\mathbf{E}\mathbf{T}$	${ m HO}\left({ m CH}_2 ight)_3{ m NHCH}_2{ m CONH}$
37	Me	Et	$1 ext{-Bocpiperidin-}4 ext{-ylCH}_2 ext{NHCH}_2 ext{CONH}$
38	ме	ET	HOCH ₂ CH ₂ NHCH ₂ CONH
39	Me	Et	Cyclo-C4H,NHCH2CONH
40	Me	Et	Azetidin-3-ylCONH
41	Me	Et	D-prolylNH'HCl
42	Me	Et	Boc-D-prolylNH
43	Me	Et	L-prolylNH:HCl
44	Me	Et	Boc-L-prolylNH
45	Me	Et	$Piperidin-1-ylCH_2CH_2NHCH_2CONH$
46	Me	Et	(CH ₃) ₂ CHNHCH ₂ CONH
47	Me	Et	BocnHCH2CH2CONH
48	Me	Et	Piperazin-2-yl-CONH
49	Me	Et	4-Me-piperazin-2-yl-CONH
50	Me	Et	Piperidin-1-ylNHCONH
51	Me	Et	$\rm H_2NCH_2CH_2NHCONH^*F_3CCO_2H$
52	Me	Et	Pyrid-2-ylnHCONH
53	Me	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
54	Me	Εt	BocnhCh2Ch2nhCONH

55	Me	Et	HO(CH ₂) ₄ NHCONH
56	Me	Et	(CH ₃) ₂ NNHCONH
57	Me	Et	(CH ₃) ₂ N (CH ₂) ₃ NHCONH
58	Me	Et	1-CH ₃ -homopiperazin-4-yl-CONH
59	Me	Et	CH ₃ SO ₂ NHCONH
60	Me	Et	CH,ONHCONH
61	Me	Et	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
62	Me	Et	1-CH ₃ -piperidin-4-ylN(CH ₃)CONH
63	Me	Et	Tetrahydrofur-2-y1CH2NHCONH
64	Me	Et	CH ₃ (CH ₂) ₂ CH (OH) CH ₂ NHCONH
65	Me	Et	HOCH ₂ CH (CH ₃) NHCONH
66	Me	Et	CH ₃ CH (OH) CH ₂ NHCONH
67	Me	Et	HOCH ₂ CH ₂ NHCONH
68	Me	Et	Morpholin-4-ylNHCONH
69	Me	Et	$(CH_3)_2$ NCH (CH_3) CH_2 NHCONH
70	Me	Et	1-CH3-piperazin-4-ylNHCONH
71	Me	Et	Morpholin-4-ylCH2CH2NHCONH
72	Me	Et '	1-CH3-piperazin-4-ylCONH
73	Me	Et	Pyrid-2-ylnHCONH
74	Me	Et	Pyrid-4-ylnHCONH
75	Me	Et	Pyrrolidin-1-ylCH2CH2NHCH2CONH
76	Me	Et	2-CH ₃ -piperazin-1-ylCONH
77	Me	Et	3-CH ₃ -piperazin-1-ylCH ₂ CONH
78	Me	Et	Trans-2,5-di-CH3-piperazin-1-ylCH2CONH
79	Me	Εt	$cis-2,6-di-CH_3-piperazin-1-ylCH_2CONH$
80	Me	Et	$cis-3,5-di-CH_3-piperazin-1-ylCH_2CONH$
81	Me	Et	Trans-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH
82	Me	Et	$Trans-3, 5-di-CH_3-piperazin-1-ylCH_2CONH$
83	Me	Et	(R)-1-Ethylpyrrolidin-2-ylCH₂NHCONH
84	Me	Et	(S)-1-Ethylpyrrolidin-2-ylCH2NHCONH
85	Me	Et	5-CH3-pyrazin-2-ylCH2NHCH2CONH

Table XXV

1 Me cyc-Pr 1-CH ₃ -piperazin-4-ylCH ₂ CONH 2 Me cyc-Pr CH ₃ NHCONH 3 Me cyc-Pr Morpholin-4-ylCH ₂ CONH 4 Me cyc-Pr Azetidin-1-ylCH ₂ CONH 5 Me cyc-Pr (CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH 6 Me cyc-Pr EtO ₂ CCH ₂ NHCONH 7 Me cyc-Pr Hydantoin-1-yl 8 Me cyc-Pr HOCH ₂ CH ₂ NHCONH 9 Me cyc-Pr HOCL ₂ CH ₂ NHCONH 10 Me cyc-Pr Imidazol-1-ylCH ₂ CONH 11 Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH 12 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr Pyrrolidin-1-ylCH ₂ CONH 17 Me cyc-Pr Pyrrolidin-1-ylCH ₃ CONH	
Me cyc-Pr Morpholin-4-ylCH ₂ CONH Me cyc-Pr Azetidin-1-ylCH ₂ CONH Me cyc-Pr (CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH Me cyc-Pr EtO ₂ CCH ₂ NHCONH Me cyc-Pr Hydantoin-1-yl Me cyc-Pr HOCH ₂ CH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH Me cyc-Pr Imidazol-1-ylCH ₂ CONH Me cyc-Pr Morpholin-4-ylCH ₂ CONH Me cyc-Pr HO ₂ CCH ₂ NHCONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH	
4 Me cyc-Pr Azetidin-1-ylCh ₂ CONH 5 Me cyc-Pr (CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH 6 Me cyc-Pr EtO ₂ CCH ₂ NHCONH 7 Me cyc-Pr Hydantoin-1-yl 8 Me cyc-Pr HOCH ₂ CH ₂ NHCONH 9 Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH 10 Me cyc-Pr Imidazol-1-ylCh ₂ CONH 11 Me cyc-Pr Morpholin-4-ylCh ₂ CH ₂ NHCSNH 12 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr CH ₃ NHCH ₂ CONH	
Me cyc-Pr (CH ₃) ₂ NCH ₂ CH ₂ SO ₂ NH Me cyc-Pr EtO ₂ CCH ₂ NHCONH Me cyc-Pr Hydantoin-1-yl Me cyc-Pr HOCH ₂ CH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH Me cyc-Pr Imidazol-1-ylCH ₂ CONH Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH Me cyc-Pr HO ₂ CCH ₂ NHCONH Me cyc-Pr HO ₂ CCH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH	
6 Me cyc-Pr EtO ₂ CCH ₂ NHCONH 7 Me cyc-Pr Hydantoin-1-yl 8 Me cyc-Pr HOCH ₂ CH ₂ NHCONH 9 Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH 10 Me cyc-Pr Imidazol-1-ylCH ₂ CONH 11 Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH 12 Me cyc-Pr HO ₂ CCH ₂ NHCONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
Me cyc-Pr Hydantoin-1-yl Me cyc-Pr HOCH ₂ CH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH Me cyc-Pr Imidazol-1-ylCH ₂ CONH Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH Me cyc-Pr HO ₂ CCH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH Me cyc-Pr H ₂ NCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
Me cyc-Pr HOCH ₂ CH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH Me cyc-Pr Imidazol-1-ylCH ₂ CONH Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH Me cyc-Pr HO ₂ CCH ₂ NHCONH Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH Me cyc-Pr H ₂ NCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr CH ₃ NHCH ₂ CONH Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
9 Me cyc-Pr HO ₂ C (CH ₂) ₂ CONH 10 Me cyc-Pr Imidazol-1-ylCH ₂ CONH 11 Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH 12 Me cyc-Pr HO ₂ CCH ₂ NHCONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
10 Me cyc-Pr Imidazol-1-ylCH ₂ CONH 11 Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH 12 Me cyc-Pr HO ₂ CCH ₂ NHCONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
11 Me cyc-Pr Morpholin-4-ylCH ₂ CH ₂ NHCSNH 12 Me cyc-Pr HO ₂ CCH ₂ NHCONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
12 Me cyc-Pr HO ₂ CCH ₂ NHCONH 13 Me cyc-Pr HO ₂ C (CH ₂) ₃ CONH 14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
13 Me cyc-Pr HO ₂ C(CH ₂) ₃ CONH 14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
14 Me cyc-Pr H ₂ NCH ₂ CONH 15 Me cyc-Pr CH ₃ NHCH ₂ CONH 16 Me cyc-Pr 4-F-phenylCH ₂ NHCH ₂ CONH	
15 Me cyc-Pr CH,NHCH,CONH 16 Me cyc-Pr 4-F-phenylCH,NHCH,CONH	
16 Me cyc-Pr 4-F-phenylCH,NHCH,CONH	
17 Me Cyc-Pr Pyrrolidin-1-ylCH CONH	
I, IIC Cyc II I JIICIICIII I JICII2COMI	
18 Me cyc-Pr pyrid-2-ylCH2NHCH2CONH	
19 Me cyc-Pr pyrid-3-ylCH2NHCH2CONH	
20 Me cyc-Pr pyrid-4-ylCH2NHCH2CONH	
21 Me cyc-Pr BocNHCH2CH2NHCH2CONH	
22 Me cyc-Pr HOCH,CH(CH,)NHCH,CONH	
23 Me cyc-Pr CH ₃ CH(OH)CH ₂ NHCH ₂ CONH	
24 Me cyc-Pr H ₂ NCH ₂ CH ₂ NHCH ₂ CONH	
25 Me cyc-Pr Morpholin-4-ylCH2CH2NHCH2CONH	
26 Me cyc-Pr 1-CH ₃ -piperidin-4-ylN(CH ₃)CH ₂ CO	NH
27 Me cyc-Pr $(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$	

28	Me	cyc-Pr	$(CH_3)_2$ NCH (CH_3) CONH
29	Me	cyc-Pr	1-CH ₃ -L-prolylNH
30	Ме	cyc-Pr	Homopiperazin-1-ylCH2CONH
31	Me	cyc-Pr	CH ₃ CH ₂ NHCH ₂ CONH
32	Me	cyc-Pr	$4-(CH_2NH_2)$ piperidin-1-ylCH ₂ CONH
33	Me	cyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
34	Me	cyc-Pr	cyclo-C3H5NHCH2CONH
35	Me	cyc-Pr	Piperidin-4-ylCH2NHCH2CONH
36	Me	cyc-Pr	HO (CH ₂) ₃ NHCH ₂ CONH
37	Me	cyc-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH
38	Me	cyc-Pr	HOCH ₂ CH ₂ NHCH ₂ CONH
39	Me	cyc-Pr	cyclo-C4H,NHCH2CONH
40	Me	cyc-Pr	Azetidin-3-ylCONH
41	Me	cyc-Pr	D-prolylNH'HCl
42	Me	cyc-Pr	Boc-D-prolylNH
43	Me	cyc-Pr	L-prolylNH"HCl
44	Me	cyc-Pr	Boc-L-prolylNH
45	Me	cyc-Pr	Piperidin-1-ylCH,CH,NHCH,CONH
46	Me	cyc-Pr	(CH ₃) ₂ CHNHCH ₂ CONH
47	Me	cyc-Pr	BocnhCh,Ch,CONH
48	Me	cyc-Pr	Piperazin-2-yl-CONH
49	Me	cyc-Pr	4-Me-piperazin-2-yl-CONH
50	Me	cyc-Pr	Piperidin-1-ylNHCONH
51	Me	cyc-Pr	H ₂ NCH ₂ CH ₂ NHCONH F ₃ CCO ₂ H
52	Me	cyc-Pr	pyrid-2-ylNHCONH
53	Me	cyc-Pr	$(CH_3)_2NCH_2CH_2NHCONH$
54	Me	cyc-Pr	BocnHCH2CH2NHCONH
55	Me	cyc-Pr	HO (CH ₂) ₄ NHCONH
56	Me	cyc-Pr	(CH ₃) ₂ NNHCONH
57	Me	cyc-Pr	$(CH_3)_2N(CH_2)_3NHCONH$
58	Me	cyc-Pr	1-CH ₃ -homopiperazin-4-yl-CONH
59	Me	cyc-Pr	CH ₃ SO ₂ NHCONH
60	Me	cyc-Pr	CH₃ONHCONH
61	Me	cyc-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
62	Me	cyc-Pr	1-CH3-piperidin-4-ylN(CH3)CONH
63	Me	cyc-Pr	Tetrahydrofur-2-ylCH ₂ NHCONH
64	Me	cyc-Pr	CH_3 (CH_2) $_2CH$ (OH) $CH_2NHCONH$

65	Me	cyc-Pr	HOCH ₂ CH (CH ₃) NHCONH
66	Me	cyc-Pr	CH ₃ CH (OH) CH ₂ NHCONH
67	Me	cyc-Pr	HOCH2CH2NHCONH
68	Me	cyc-Pr	Morpholin-4-ylNHCONH
69	Me	cyc-Pr	$(CH_3)_2$ NCH $(CH_3)CH_2$ NHCONH
70	Me	cyc-Pr	1-CH ₃ -piperazin-4-ylNHCONH
71	Me	cyc-Pr	Morpholin-4-ylCH2CH2NHCONH
72	Me	cyc-Pr	1-CH ₃ -piperazin-4-ylCONH
73	Me	cyc-Pr	pyrid-2-ylnHconH
74	Me	cyc-Pr	pyrid-4-ylNHCONH
75	Me	cyc-Pr	Pyrrolidin-1-ylCH2CH2NHCH2CONH
76	Ме	cyc-Pr	2-CH ₃ -piperazin-1-ylCONH
77	Me	cyc-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH
78	Me	cyc-Pr	trans-2,5-di-CH3-piperazin-1-ylCH2CONH
79	Me	cyc-Pr	$cis-2,6-di-CH_3-piperazin-1-ylCH_2CONH$
80	Me	cyc-Pr	$cis-3,5-di-CH_3-piperazin-1-ylCH_2CONH$
81	Me	cyc-Pr	trans-2,6-di-CH3-piperazin-1-ylCH2CONH
82	Me	cyc-Pr	trans-3,5-di-CH3-piperazin-1-ylCH2CONH
83	Me	cyc-Pr	(R)-1-Ethylpyrrolidin-2-ylCH,NHCONH
84	Me	cyc-Pr	(S)-1-Ethylpyrrolidin-2-ylCH,NHCONH
85	Me	cyc-Pr	5-CH ₃ -pyrazin-2-ylCH ₂ NHCH ₂ CONH

Table XXVI

$$(a) \qquad (b) \qquad (c)$$

$$\frac{Ex. \# R^5}{R} \qquad \frac{R^2}{R^2} \qquad \frac{R^7}{R^2}$$

$$1 \qquad Me \qquad i-Pr \qquad 1-CH_3-piperazin-4-ylCH_2CONH$$

$$2 \qquad Me \qquad i-Pr \qquad CH_3NHCONH$$

$$3 \qquad Me \qquad i-Pr \qquad Morpholin-4-ylCH_2CONH$$

$$4 \qquad Me \qquad i-Pr \qquad Azetidin-1-ylCH_2CONH$$

5	Me	i-Pr	$(CH_3)_2NCH_2CH_2SO_2NH$
6	Me	i-Pr	EtO ₂ CCH ₂ NHCONH
7	Me	i-Pr	Hydantoin-1-yl
8	Me	i-Pr	HOCH ₂ CH ₂ NHCONH
9	Me	i-Pr	HO_2C (CH_2) $_2CONH$
10	Me	i-Pr	Imidazol-1-ylCH2CONH
11	Me	i-Pr	Morpholin-4-ylCH2CH2NHCSNH
12	Me	i-Pr	HO ₂ CCH ₂ NHCONH
13	Me	i-Pr	HO ₂ C (CH ₂) ₃ CONH
14	Me	i-Pr	H ₂ NCH ₂ CONH
15	Мe	i-Pr	CH3NHCH2CONH
16	Me	i-Pr	4-F-phenylCH2NHCH2CONH
17	Me	i-Pr	Pyrrolidin-1-ylCH2CONH
18	Me	i-Pr	Pyrid-2-ylCH2NHCH2CONH
19	Me	i-Pr	Pyrid-3-ylCH2NHCH2CONH
20	Me	i-Pr	Pyrid-4-ylCH,NHCH,CONH
21	Me	i-Pr	BocNHCH2CH2NHCH2CONH
22	Me	i-Pr	HOCH2CH (CH3) NHCH2CONH
23	Me	i-Pr	CH ₃ CH (OH) CH ₂ NHCH ₂ CONH
24	Me	i-Pr	H ₂ NCH ₂ CH ₂ NHCH ₂ CONH
25	Me	i-Pr	Morpholin-4-ylCH2CH2NHCH2CONH
26	Me	i-Pr	$1-CH_3-\texttt{piperidin}-4-\texttt{ylN}(CH_3)CH_2CONH$
27	Me	i-Pr	$(CH_3)_2NCH_2CH_2N(CH_3)CH_2CONH$
28	Me	i-Pr	$(CH_3)_2$ NCH (CH_3) CONH
29	Me	i-Pr	1-CH ₃ -L-prolylNH
30	Me	i-Pr	Homopiperazin-1-ylCH2CONH
31	Me	i-Pr	CH ₃ CH ₂ NHCH ₂ CONH
32	Me	i-Pr	$4-(CH_2NH_2)$ piperidin-1-ylCH ₂ CONH
33	Ме	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCH ₂ CONH
34	Me	i-Pr	$Cyclo-C_3H_5NHCH_2CONH$
35	Me	i-Pr	Piperidin-4-ylCH2NHCH2CONH
36	Me	i-Pr	HO (CH ₂) ₃ NHCH ₂ CONH
37	Me	i-Pr	1-Bocpiperidin-4-ylCH2NHCH2CONH
38	Me	i-Pr	HOCH2CH2NHCH2CONH
39	Me	i-Pr	$Cyclo-C_4H_7NHCH_2CONH$
40	Me	i-Pr	Azetidin-3-ylCONH
41	Me	i-Pr	D-prolylNH'HCl

1	42	Me	i-Pr	Boc-D-prolylNH
	43	Me	i-Pr	L-prolylNH'HCl
	44	Me	i-Pr	Boc-L-prolylNH
	45	Me	i-Pr	Piperidin-1-ylCH2CH2NHCH2CONH
	46	Me	i-Pr	(CH ₃) ₂ CHNHCH ₂ CONH
	47	Me	i-Pr	BocnhCh,Ch,CONH
	48	Me	i-Pr	Piperazin-2-yl-CONH
	49	Me	i-Pr	4-Me-piperazin-2-yl-CONH
	50	Me	i-Pr	Piperidin-1-ylNHCONH
	51	Me	i-Pr	H ₂ NCH ₂ CH ₂ NHCONH ⁻ F ₃ CCO ₂ H
	52	Me	i-Pr	Pyrid-2-ylNHCONH
	53	Me	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
	54	Me	i-Pr	BocnhCh2Ch2NhCONH
	55	Me	i-Pr	HO(CH ₂) ₄ NHCONH
	56	Me	i-Pr	$(CH_3)_2$ NNHCONH
	57	Me	i-Pr	(CH ₃) ₂ N (CH ₂) ₃ NHCONH
	58	Me	i-Pr	1-CH ₃ -homopiperazin-4-yl-CONH
	59	Me	i-Pr	CH ₃ SO ₂ NHCONH
	60	Me	i-Pr	CH ₃ ONHCONH
	61	Me	i-Pr	(CH ₃) ₂ NCH ₂ CH ₂ NHCONH
	62	Me	i-Pr	1-CH3-piperidin-4-ylN(CH3)CONH
	63	Me	i-Pr	Tetrahydrofur-2-ylCH2NHCONH
	64	Me	i-Pr	CH ₃ (CH ₂) ₂ CH (OH) CH ₂ NHCONH
	65	Me	i-Pr	HOCH ₂ CH (CH ₃) NHCONH
	66	Me	i-Pr	CH ₃ CH (OH) CH ₂ NHCONH
	67	Me	i-Pr	HOCH ₂ CH ₂ NHCONH
	68	Me	i-Pr	Morpholin-4-ylNHCONH
	69	Me	i-Pr	(CH ₃) ₂ NCH (CH ₃) CH ₂ NHCONH
	70	Me	i-Pr	1-CH3-piperazin-4-ylNHCONH
	71	Me	i-Pr	Morpholin-4-ylCH2CH2NHCONH
	72	Me	i-Pr	1-CH ₃ -piperazin-4-ylCONH
	73	Me	i-Pr	Pyrid-2-ylnHCONH
	74	Me	i-Pr	Pyrid-4-y1NHCONH
	75	Me	i-Pr	Pyrrolidin-1-ylCH2CH2NHCH2CONH
	76	Me	i-Pr	2-CH ₃ -piperazin-1-ylCONH
	77	Me	i-Pr	3-CH ₃ -piperazin-1-ylCH ₂ CONH
	78	Ме	i-Pr	${\tt Trans-2,5-di-CH_3-piperazin-1-ylCH_2CONH}$

79	Me	i-Pr	Cis-2,6-di-CH ₃ -piperazin-1-ylCH ₂ CONH
80	Me	i-Pr	Cis-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
81	Me	i-Pr	Trans-2,6-di-CH ₃ -piperazin-1-y1CH ₂ CONH
82	Me	i-Pr	Trans-3,5-di-CH ₃ -piperazin-1-ylCH ₂ CONH
83	Me	i-Pr	(R) -1 -Ethylpyrrolidin -2 -ylCH ₂ NHCONH
84	Me	i-Pr	$(S)-1-Ethylpyrrolidin-2-ylCH_2NHCONH$
85	Me	i-Pr	5-CH,-pyrazin-2-ylCH,NHCH,CONH

UTILITY

The present invention provides a method of treating cancer or other proliferative diseases comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of formula (I) or (II), or a pharmaceutically acceptable salt form thereof.

The present invention also provides a novel method of treating cancer or other proliferative diseases comprising administering to a host in need of such treatment a therapeutically effective amount of:

- (a) a compound of formula (I) or (II), or a pharmaceutically acceptable salt form thereof; and,
- (b) at least one compound selected from the group consisting of anti-cancer agents and anti-proliferative agents.

Selected species were selective for their activity against cyclin dependent kinases and their cyclin bound complexes and were less active against other known serine/threonine kinases such as Protein Kinase A (PKA) and Protein Kinase C (PKC). In addition, these inhibitors were less active against tyrosine kinases such as c-Abl.

25

30

5

10

15

20

Inhibition of Kinase/Cyclin Complex Enzymatic Activity

Several of the compounds disclosed in this invention were assayed for their inhibitory activity against cyclin dependent kinase4/D1, cyclin dependent kinase1/B kinase, cyclin dependent kinase2/A kinase, and cyclin dependent kinase2/E kinase complexes. Briefly, the *in vitro* assays

employ cell lysates from insect cells expressing either of the kinases and subsequently their corresponding regulatory units. The cyclin dependent kinase2/cyclinE is purified from insect cells expressing His-tagged cyclin dependent kinase 2 and cyclin E. The cyclin dependent kinase/cyclin lysate is combined in a microtitre-type plate along with a kinase compatible buffer, 32p-labeled ATP at a concentration of 50 mM, a GST-Rb fusion protein and the test compound at varying concentrations. kinase reaction is allowed to proceeded with radiolabled ATP, then effectively stopped by the addition of a large excess of EDTA and unlabeled ATP. The GST-Rb labeled protein is sequestered on a GSH-Sepharose bead suspension, washed, resuspended in scintillant, and the ³²P activity detected in a scintillation counter. The compound concentration which inhibits 50% of the kinase activity was calculated for each compound. A compound was considered active if its IC50 was found to be less than 1 μM.

10

15

25

30

20 <u>Inhibition of HCT 116 Cancer Cell Proliferation</u>

To test the cellular activity of several compounds disclosed in this invention, we examined the effect of these compounds on cultured HCT116 cells and determined cell-cycle progression by the their effect on colorimetric cytotoxcity test using sulforhodamine B (Skehan et al. J. Natl. Cancer Inst. 82:1107-12, 1990). Briefly, HCT116 cells are cultured in the presence of test compounds at increasing concentrations. At selected time points, groups ο£ cells are fixed with trichloroacetic acid and stained with sulforhodamine B (SRB). Unbound dye was removed by washing and proteinbound dye was extracted for determination of optical density. A compound was considered active if its IC50 was found to be less than 10 µM.

35 All patents, patent applications and other applicable publications mentioned herein, are

incorporated by reference as though set forth in full in this specification.

The scope of the following claims is intended to encompas all obvious chnages in the details, materials, and arrangement of steps that will occur to one of ordinary skill in the art.

CLAIMS

15

What is claimed is:

5 1. A compound of formula (I) or its tautomer, formula (II):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{3}

10 or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

Q is selected from the group consisting of: H, OH, and C_{1-7} alkyl;

Y is selected from the group consisting of: F, Cl, Br, and I;

Z is selected from the group consisting of: N, C-H, C-F, C-Cl, C-Br, C-I, C-CF₃, C-NO₂, C-C₁₋₄ alkyl optionally containing from 1-8 substitution groups, C-C₂₋₄ alkenyl optionally containing from 1-8 substitution groups, C-C₂₋₄ alkynyl optionally containing from 1-8 substitution groups, C-C₁₋₄ alkoxy optionally containing from 1-8 substitution groups, C-CO₂H, C-CHO, C-CONR⁶R⁹, C-CO₂C₁₋₃ alkyl, C-C(O)C₁₋₂ alkyl, C-CH₂NHR⁶, C-CONR⁶NR⁶R⁹, C-NR⁶R⁹; C-SO₂NR⁶R⁹, C-CR=NNR⁶R⁹, C-CR⁶=NOR⁶, and C-R⁶;

R¹ is selected from the group consisting of aryl and 5-10 membered aromatic heterocycle containing from 1-4 heteroatoms selected from O, N, and S, and wherein the aryl or the 5-10 membered aromatic heterocycle is optionally substituted with 1-5 R⁷ groups;

- R² is selected from the group consisting of: C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, S-C₁₋₃ alkyl, O-C₁₋₃ alkyl, NH₂,

 NH-C₁₋₃ alkyl, N(C₁₋₂ alkyl)₂, OCF₃, cyclopropyl optionally containing from 1-4 substitution groups, cyclobutyl, cyclopropylmethyl, cyclobutylmethyl, 1-methylcyclopropyl, 1-methylcyclobutyl, CH₂CN, CH₂OH, CH₂OCH₃, CH₂NH₂, CH₂NHC₁₋₃ alkyl, CH₂NMe₂, CF₃, CHO, OCH₂CH₂OH, OCH (Me) CH₂OH, OCH₂CH (Me) OH, OCH₂CH₂NMe₂, and CHF₂;
- R³ is selected from the group consisting of: H, F, Cl, Br, I, CF₃, CHO, CHR⁶OH, COCF₃, CH=NOH, CH=NOCH₃, CH=NNH₂, CH=NNHMe, CH=NNMe₂, CH=CHR⁶, C₁₋₃ alkyl, C₁₋₃ alkoxy, CO₂H, CONH₂, CONH(C₁₋₃ alkyl), CONR⁶R⁹, CO₂C₁₋₃ alkyl, C(O)C₁₋₂ alkyl, NH₂, NHR⁶, and NR⁶R⁹;
- R⁴ is selected from the group consisting of: H, F, Cl, Br, 25

 I, CF₃, C₁₋₃ alkyl, C₂₋₃ alkenyl, NH₂, NHR⁶, and NR⁶R⁹;
 - R^5 is selected from the group consisting of: H, $C_{1\text{--}3}$ alkyl, F, Cl, Br, I, CF_3 , and $C_{2\text{--}3}$ alkenyl;
- 30 R⁶ and R⁹ are independently, at each occurrence, the same or different, and are selected from the group consisting of: H, C₁₋₈ alkyl optionally containing from 1-8 substitution groups, and C₃₋₇ cyclo-alkyl
- 35 alternatively, R⁶ and R⁹, together with the atoms to which they are attached, form a heterocycle having 5-7 atoms in the ring and containing 0-1 additional N,

O, or S atom; or, R⁶ and R⁹, together with the atoms to which they are attached, form a bicyclic heterocycle having 9-11 atoms in the ring and containing one additional N, S, or O atom; or, R⁶ and R⁹, together with the atoms to which they are attached, form a 5-7 membered ring and containing 0-3 additional N, S, or O atoms;

R' is independently, at each occurrence, selected from the group consisting of: OH, C1-6 alkoxy, OC2-6 alkyl-CO2H, 10 $O-C_{2-6}-alkyl-NR^6R^9$, F, Cl, Br, I, CF₃, OCF₃, -CN, -NO₂, CO_2H , $CO_2(C_{1-6}$ alkyl), $CONR^6R^9$, $NR^6CONHOR^6$, $NR^6CONHSO_2R^6$, $NHNR^{6}C(0)OR^{6}$, $NR^{6}C(0)NR^{6}R^{9}$, NH_{2} , $NH(C_{1-3} \ alkyl)$, $N(C_{1-3}$ -SO,NR⁶R⁹, NHSO,NHCO,C₁₋₄ alkyl, NR⁶SO,NR⁶R⁹, alkyl),, NR⁶SO₂CHR⁶CH₂NR⁶R⁹, NR⁶COCHR⁶NR⁶CHR⁶R⁹, NR⁶COCHR⁶NR⁶CHR⁶R⁹, 15 NR°COCH,CHR°NR°R°, NR°COCHR°CH2NR°R°, NR°CO(CH2) MR°R°, NR⁶CONR⁶ (CH₂) NR⁶R⁹, NR⁶CO₂ (CHR⁶) NR⁶R⁹, CONR'NR'R', NRCONR'NR'R', C3-10 carbocycle, NHCONR', NHCONHCH2R', NHCOR⁶, NHCOCH₂R⁶, C₁₋₁₀ alkyl optionally substituted with 1-5 substitution groups, C_{2-10} alkenyl optionally 20 substituted with 1-5 substitution groups, alkynyl optionally substituted with 1-5 substitution groups, and C_{3-10} heterocycle containing heteroatoms selected from O, N, and S;

25

5

 R^8 is independently, at each occurrence, selected from the group consisting of: =0, OH, C_{3-6} cycloalkyl, C_{1-6} alkoxy, NH_2 , $NH(C_{1-6}$ alkyl), $N(C_{1-6}$ alkyl), $P(C_{1-6}$ alkyl), $P(C_{1-6}$ alkyl), and $P(C_{1-6}$ alkyl),

30

n at each occurrence is independently selected from 2, 3, 4, 5, and 6; and,

m at each occurrence is independently selected from 3, 4,
35 5, and 6.

2. A compound according to claim 1, wherein:

- Q is selected from the group: H, OH, and CH3;
- Y is selected from the group: F, Cl, and Br;

5

- Z is selected from the group consisting of: N, CH, CF, CCl, CBr, CI, C-CF₃, C-NO₂, C-C₁₋₄ alkyl optionally substituted with 1-5 substitution groups, C-C₂₋₄ alkenyl optionally substituted with 1-5 substitution groups, C-C₂₋₄ alkynyl optionally substituted with 1-5 substitution groups, C-C₁₋₄ alkoxy, C-CO₂H, C-CHO, C-CONR⁶R⁹, C-CO₂C₁₋₃ alkyl, C-C(O)C₁₋₂ alkyl, C-CH₂NHR⁶, C-CONR⁶NR⁶R⁹, C-NR⁶R⁹; C-SO₂NR⁶R⁹, C-CR=NNR⁶R⁹, C-CR⁶=NOR⁶, and C-R⁶;
- 15 R^1 is selected from the group: phenyl and a 5-10 membered aromatic heterocycle containing from 1-4 heteroatoms selected from O, N, and S, and R^1 is substituted with 0-3 R^7 ;
- 20 R² is selected from the group: C₂₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, S-C₁₋₂ alkyl, O-C₁₋₂ alkyl, cyclopropyl, cyclobutyl, 1-methylcyclopropyl, CH₂CN, CH₂OH, CH₂
- 25 R^3 is independently selected from the group: H, F, Cl, CH_3 , CH_2CH_3 , CHO, CHR^9OH , $COCF_3$, CH=NOH, $CH=NOCH_3$, $CH=NNH_2$, $CH=NNH_2$, $CH=NNH_2$, and $CH=CHR^3$;
- R^4 is independently selected from the group: H, F, Cl, and CH₃;
 - R^5 is independently selected from the group: H, CH_3 , F, C1, Br, and CF_3 ;
- 35 R^6 and R^9 are the same or different, and are selected from the group consisting of H, C_{1-8} optionally substituted with 1-5 substitution groups, and cyclo-alkyl C_{3-7} ,

alternatively, R⁶ and R⁹, together with the atoms to which they are attached, form a heterocycle having 5-7 atoms in the ring and containing 0-1 additional N, O, or S atom or, form a bicyclic heterocycle having 9-11 atoms in the ring and containing one additional N, S, or O atom or, form a 5-7 membered ring and containing 0-3 additional N, S, or O atoms;

5

- 10 R' is independently, at each occurrence, selected from the group consisting of: OH, C1-6 alkoxy, OC2-6 alkyl-CO2H, $O-C_{2-6}-alkyl-NR^6R^9$, F, Cl, Br, I, CF₃, OCF₃, -CN, -NO₂, CO_2H , $CO_2(C_{1-6} \text{ alkyl})$, $CONR^6R^9$, $NR^6CONHOR^6$, $NR^6CONHSO_2R^6$, $NHNR^{6}C(O)OR^{6}$, $NR^{6}C(O)NR^{6}R^{9}$, NH_{2} , $NH(C_{1-3} \ alkyl)$, $N(C_{1-3} \ alkyl)$ alkyl),, -SO,NR⁶R⁹, NHSO,NHCO,C₁₋₄ alkyl, NR⁶SO,NR⁶R⁹, 15 NR⁶SO,CHR⁶CH,NR⁶R⁹, NR⁶COCHR⁶NR⁶CHR⁶R⁹, NR⁶COCHR⁶NR⁶CHR⁶R⁹, NR°COCH, CHR°NR°R°, NR°COCHR°CH, NR°R°, NR°CO (CH₂) NR°R°, NR°CONR° (CH₂) NR°R°, NR⁶CO₂ (CHR⁶) _nNR⁶R⁹, CONR⁶NR⁶R⁹, NR⁶CONR⁶NR⁶R⁹, C₃₋₁₀ carbocycle, NHCONR⁶, NHCONHCH₂R⁶, NHCOR^6 , $\mathrm{NHCOCH_2R}^6$, $\mathrm{C_{1-10}}$ alkyl optionally substituted 20 with 0, 1, 2 or 3 R^{ϵ} groups, $C_{\scriptscriptstyle 2-10}$ alkenyl optionally substituted with 0, 1, 2 or 3 R⁸ groups, C₂₋₁₀ alkynyl optionally substituted with 0, 1, 2, or 3 R⁸ groups, and C_{3-10} heterocycle containing 1-4 heteroatoms 25 selected from O, N, and S;
 - R^8 is independently, at each occurrence, selected from the group: =O, OH, C_{3-6} cycloalkyl, C_{1-6} alkoxy, NH_2 , $NH(C_{1-6}$ alkyl), $N(C_{1-6}$ alkyl), CO_2 , CO_2 , CO_3 , CO_3 , CO_4 , CO_3 , CO_4 , CO_4 , CO_5 , CO_5 , CO_6 , CO_7 , CO_8 ,
 - n at each occurrence is independently selected from 2, 3, 4, 5, and 6; and,
- 35 m at each occurrence is independently selected from 3, 4, 5, and 6.

3. A compound according to claim 2, wherein: R^2 is selected from the group consisting of: ethyl, cyclopropyl, cyclobutyl, 1-methylcyclopropyl, and CF_3 .

5

4. A compound according to claim 3 wherein:

R⁵ is CH,

10

- 5. A compound according to claim 1, wherein the compound is selected from the group consisting of:
- 15 a) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-hydroxy-3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - b) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

20

- c) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- d) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-
- 25 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - e) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 30 f) 1-(2,4,6-trichloropheny1)-3-ethyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - g) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-acetamidobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

h) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N-(t-butoxycarbonyl)glycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 i) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(2-(N,N-dimethylamino)ethylaminocarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- j) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-amino-210 methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - k) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(pyrid-2-ylmethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 1) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4glycinamidobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

15

25

- m) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(pyrid-420 ylmethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - n) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(para-biphen-4-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - o) 1-(2,6-dichlorophenyl)-3-ethyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- p) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(4-30 methylpiperazin-1-ylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
 - q) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(dimethylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - r) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(2-(hydroxymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
s) 1-(2,6-dichlorophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 t) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(methoxyaminocarbonylmethyl)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
 - u) 1-(2,6-dichlorophenyl)-3-ethyl-6-(3-
- 10 methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - v) 1-(2,6-dichlorophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 15 w) 1-(2-chloro-6-methylphenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

20

- x) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3,5-dihydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- y) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-hydroxy-3-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- z) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-amino-3nitrobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - aa) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4(methylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- ab) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-(methane sulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ac) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(methane
 35 sulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
ad) 1-(2,6-dichloro-4-(pyrid-3-ylaminocarbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 ae) 1-(2,6-dichloro-4-(pyrid-4-ylaminocarbonyl)phenyl)3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4one;
- af) 1-(2,6-dichloro-4-(cyclopropylaminocarbonyl)

 10 phenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]

 pyrimidin-4-one;
 - ag) 1-(2,6-dichloro-4-(N-(pyrid-3-ylmethyl) aminocarbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ah) 1-(2,6-dichloro-4-(N-(pyrid-2-ylmethyl) aminocarbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)

pyrazolo[3,4-d]pyrimidin-4-one;

20

15

- ai) 1-(2,6-dichloro-4-(ethylaminocarbonyl)phenyl)-3ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- aj) 1-(2,6-dichloro-4-(benzylaminocarbonyl)phenyl)-325 ethyl-6-(3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ak) 1-(2,6-dichloro-4-(2-(dimethylamino)ethylamino carbonyl)phenyl)-3-ethyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- al) 1-(2,6-dichloro-4-(methylaminocarbonyl)phenyl)-3-ethyl-6-(4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- am) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(3-(N,N35 dimethylglycinamido)-2-methylbenzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;

an) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N,N-dimethyl glycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- ao) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N-methylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ap) 1-(2,6-dichloro-4-bromophenyl)-3-ethyl-6-(4-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 10 aq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(meth oxycarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ar) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- as) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- at) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-20 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

15

- au) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(methane sulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 25 av) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(difluoroacetamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - aw) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(acetamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ax) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3(methylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- 35 ay) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

```
az) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(azetidin-3-ylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 ba) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-aminoethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - bb) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-
- 10 (isopropylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - bc) 1-(2,4,6-trichloropheny1)-3-isopropy1-6-(4-(4-fluorobenzylaminomethylcarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;

15

- bd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrrolidin-1-ylmethylcarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- be) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrid-2-ylmethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
- bf) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(t-butoxycarbonylamino)ethylaminomethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
 - bg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrid-3-30 ylmethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
 - bh) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(pyrid-4ylmethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 35 pyrimidin-4-one;

```
bi) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(morpholin-4-yl)ethylaminomethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 bj) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4 (methylaminocarbonylmethyl)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- bk) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(410 (ethylaminocarbonylmethyl)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;

- bl) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(piperazin-1-ylcarbonylmethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- bm) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4methylpyrid-3-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- bn) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(220 (dimethylamino) ethylaminocarbonylmethyl) benzyl) pyrazolo
 [3,4-d] pyrimidin-4-one;
- bo) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2,2-dimethylhydrazin-1-ylcarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
 - bp) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1hydroxybut-4-ylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- bq) (+/-)1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-hydroxyprop-1-ylaminomethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- br) (+/-)1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1-hydroxyprop-2-ylaminomethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;

```
bs) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(pyrid-3-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
```

- 5 bt) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - bu) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(dimethylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- bv) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(pyrid-4ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- bw) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N,N15 dimethylglycinamido)-3-hydroxybenzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - bx) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)-3-methoxybenzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;

20

- by) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methylaminocarbonylamino)-3-methoxybenzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- bz) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-(3-(dimethylamino)propyl)aminocarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- 30 ca) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(benzoxazol-2-on-6-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cb) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(4methylpiperazin-1-ylcarbonylmethyl)benzyl)pyrazolo[3,4-d]
 35 pyrimidin-4-one;

cc) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonylmethyl)benzyl)-pyrazolo[3,4-d]pyrimidin-4-one;

- 5 cd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methylaminocarbonylamino)-3-hydroxybenzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- ce) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(410 methylpiperazin-1-ylmethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- cf) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(piperazin-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d] 15 pyrimidin-4-one;
 - cg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(morpholin-4-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

ch) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4(imidazol-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]
pyrimidin-4-one;

- 25 ci) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl-N-(1-methylpiperidin-4-yl)aminomethylcarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cj) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(430 (cyclopropylaminomethylcarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
 - ck) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

35

cl) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 cm) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-aminoindazol-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - cn) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl,N-(2-(dimethylamino)ethyl)aminomethylcarbonyl amino)benzyl)-pyrazolo[3,4-d]pyrimidin-4-one;

10

15

- co) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-1-ylcarbonylmethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cp) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4(azetidin-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- cq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-hydroxy-20 4-(imidazol-1-ylmethylcarbonylamino)benzyl)pyrazolo[3,4d]pyrimidin-4-one;
- cr) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4methylpiperazin-1-ylcarbonylamino)benzyl)pyrazolo[3,4-d]
 25 pyrimidin-4-one;
 - cs) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(3-(dimethylamino)prop-1-ylaminocarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
 - ct) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylhomopiperazin-1-ylcarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;
- 35 cu) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-methylpiperazin-2-ylcarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

cv) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(t-butoxycarbonylaminosulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

cw) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

5

15

- cx) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(210 (morpholin-4-yl)ethylaminothiocarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
 - cy) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-(N,N-dimethylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- cz) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-bromobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- da) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(420 (piperazin-2-ylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
- db) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1,4-dimethylpiperazin-2-ylcarbonylamino)benzyl)pyrazolo
 25 [3,4-d]pyrimidin-4-one;
 - dc) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino)ethylsulfonamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - dd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-amino-3methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- de) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(435 hydantoin-3-ylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

df) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(2H-1,4-benz oxazin-3-on-7-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;

- dg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-(25 (dimethylamino)ethyl)aminocarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
 - dh) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2hydroxyethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - di) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 15 dj) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(2-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - dk) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-glycinamidobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - dl) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methylglycinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- dm) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(225 (dimethylamino)ethylaminomethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
 - dn) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4(aminomethyl)piperidin-1-ylmethylcarbonylamino)benzyl)
- 30 pyrazolo[3,4-d]pyrimidin-4-one;

10

- do) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(homopiperazin-1-ylmethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- dp) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4 (ethylaminomethylcarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;

```
dq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-
(dimethylaminomethyl)-3-hydroxybenzyl)pyrazolo[3,4-d]
pyrimidin-4-one;
```

5

- dr) (S)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methylprolinamido)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ds) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-
- 10 (N-,N-dimethylalaninamido)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - dt) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1,4,7-triazacyclonon-1-ylmethylcarbonylamino)benzyl)
- 15 pyrazolo[3,4-d]pyrimidin-4-one;
 - du) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-amino-2-methylbenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 20 dv) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2 (morpholin-4-yl)ethylaminocarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;
- dw) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(N-,N25 dimethylglycinamido)-2-methylbenzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;
 - dx) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4methylpiperazin-1-ylaminocarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
 - dy) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4(morpholin-4-ylaminocarbonylamino)benzyl)pyrazolo[3,4-d]
 pyrimidin-4-one;

35

dz) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methoxyaminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 ea) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(methanesulfonamidocarbonylamino)benzyl)pyrazolo[3,4-d] pyrimidin-4-one;
- eb) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N10 methyl,N-(2-(dimethylamino)ethyl)aminocarbonylamino)
 benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ec) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl,N-(1-methylpiperidin-4-yl)aminocarbonylamino)
- 15 benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

20

ed) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(tetrahydrofur-2-ylmethylaminocarbonylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

ee) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1-hydroxypent-2-ylaminocarbonylamino)benzyl)pyrazolo [3,4-d]pyrimidin-4-one;

- ef) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(1-hydroxyprop-2-ylaminocarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
- eg) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(230 hydroxyprop-1-ylaminocarbonylamino)benzyl)pyrazolo
 [3,4-d]pyrimidin-4-one;
 - eh) (+/-)-1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(2-(dimethylamino)prop-1-ylaminocarbonylamino)benzyl)
- 35 pyrazolo[3,4-d]pyrimidin-4-one;

ei) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(3-hydroxy-4-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- ej) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(indazol-6-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ek) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(indazol-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 10 el) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(indazol-4-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - em) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(benz oxazol-2-on-5-ylmethyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - en) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(3hydroxy-4-nitrobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- eo) 1-(2,4,6-trichlorophenyl)-3-cyclopropyl-6-(4-20 aminobenzyl)pyrazolo[3,4-d]pyrimidin-4-one;

15

- ep) $1-(2,4,6-\text{trichlorophenyl})-3-\text{cyclopropyl}-6-(4-(N,N-\text{dimethylglycinamido})\ benzyl)\ pyrazolo[3,4-d]\ pyrimidin-4-one;$
- eq) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(cis-3,4-dimethylpiperazin-1-ylmethylcarbonylamino)benzyl) pyrazolo[3,4-d]pyrimidin-4-one;
- or) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(trans-2,5-dimethylpiperazin-1-ylmethylcarbonylamino)benzyl)

 pyrazolo[3,4-d]pyrimidin-4-one;
- es) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(3-35 methylpiperazin-1-ylmethylcarbonylamino)benzyl)
 pyrazolo[3,4-d]pyrimidin-4-one;

et) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(5-(dimethylaminomethyl)-1-methylpyrrol-2-yl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 eu) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(4-),
 methylpiperazin-1-ylaminocarbony)benzyl)pyrazolo[3,4d]pyrimidin-4-one;
- ev) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(N10 methyl, N-(2-(dimethylamino)ethyl)aminocarbonylamino)
 benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ew) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-(N-methyl, N-(1-methylpiperidin-4-yl)aminocarbonylamino) benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ex) 1-(2-chloro-6-methylphenyl)-3-isopropyl-6-(4-(N-methyl-N-(1-methylpiperidin-4-yl)aminomethylcarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- ey) 1-(2,4,6-trichlorophenyl)-3-ethyl-6-(4-(N-methyl,N-((3S, 4S)-4-dimethylaminotetrahydrofur-3-yl)aminocarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 25 ez) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(3-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonyl) benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- fa) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(230 pyrrolidin-1-ylethylaminocarbonyamino)benzyl)pyrazolo
 [3,4-d] pyrimidin-4-one;
 - fb) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonymethyl)benzyl)
- 35 pyrazolo[3,4-d]pyrimidin-4-one;

15

fc) 1-(2,6-dichlorophenyl)-3-isopropyl-6-(4-(N-(2-(dimethylamino)ethyl)aminocarbonymethyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

- 5 fd) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-(2-(dimethylamino)ethyl)aminocarbonyl)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - fe) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-
- 10 (methylamino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
 - ff) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl-N-(1-methylpiperidin-4-yl)aminocarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;

15

- fg) 1-(2,4,6-trichlorophenyl)-3-isopropyl-6-(4-(N-methyl, N-(2-(dimethylamino)ethyl)aminocarbonyl amino)benzyl)pyrazolo[3,4-d]pyrimidin-4-one;
- 20 fh) 1-(2,6-dichloro-4-sulfonamidophenyl)-3-isopropyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one; and
 - fi) 1-(4-aminomethyl-2, 6-dichlorophenyl)-3-isopropyl-6-(3-methoxybenzyl)pyrazolo[3,4-d]pyrimidin-4-one.

25

- 6. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier in combination with a therapeutically effective amount of a compound of any one
- 30 of claims 1, 2, 3, 4, or 5.
- 7. A method of inhibiting cyclin dependent kinase enzymatic activity in a patient, comprising: 35 administering to the patient in need of such treatment a

therapeutically effective amount of a compound of any one

of claims 1, 2, 3, 4, or 5, or a pharmaceutically acceptable salt form thereof.

- 8. A method of treating cancer or other proliferative 5 diseases, comprising: administering to a host in need of such treatment a therapeutically effective amount of:
 - (a) a compound of claim 1-5, or a pharmaceutically acceptable salt form thereof; and,
- (b) at least one compound selected from the group 10 consisting of anti-cancer agents and antiproliferative agents.