Proposition 14.1 shows that a sesquilinear form is completely determined by the quadratic form $\Phi(u) = \varphi(u, u)$, even if φ is not Hermitian. This is false for a real bilinear form, unless it is symmetric. For example, the bilinear form $\varphi \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined such that

$$\varphi((x_1, y_1), (x_2, y_2)) = x_1 y_2 - x_2 y_1$$

is not identically zero, and yet it is null on the diagonal. However, a real symmetric bilinear form is indeed determined by its values on the diagonal, as we saw in Chapter 12.

As in the Euclidean case, Hermitian forms for which $\varphi(u,u) \geq 0$ play an important role.

Definition 14.4. Given a complex vector space E, a Hermitian form $\varphi \colon E \times E \to \mathbb{C}$ is positive if $\varphi(u,u) \geq 0$ for all $u \in E$, and positive definite if $\varphi(u,u) > 0$ for all $u \neq 0$. A pair $\langle E, \varphi \rangle$ where E is a complex vector space and φ is a Hermitian form on E is called a pre-Hilbert space if φ is positive, and a Hermitian (or unitary) space if φ is positive definite.

We warn our readers that some authors, such as Lang [111], define a pre-Hilbert space as what we define as a Hermitian space. We prefer following the terminology used in Schwartz [150] and Bourbaki [27]. The quantity $\varphi(u, v)$ is usually called the *Hermitian product* of u and v. We will occasionally call it the inner product of u and v.

Given a pre-Hilbert space $\langle E, \varphi \rangle$, as in the case of a Euclidean space, we also denote $\varphi(u, v)$ by

$$u \cdot v$$
 or $\langle u, v \rangle$ or $\langle u|v \rangle$,

and $\sqrt{\Phi(u)}$ by ||u||.

Example 14.1. The complex vector space \mathbb{C}^n under the Hermitian form

$$\varphi((x_1,\ldots,x_n),(y_1,\ldots,y_n))=x_1\overline{y_1}+x_2\overline{y_2}+\cdots+x_n\overline{y_n}$$

is a Hermitian space.

Example 14.2. Let ℓ^2 denote the set of all countably infinite sequences $x=(x_i)_{i\in\mathbb{N}}$ of complex numbers such that $\sum_{i=0}^{\infty}|x_i|^2$ is defined (i.e., the sequence $\sum_{i=0}^{n}|x_i|^2$ converges as $n\to\infty$). It can be shown that the map $\varphi\colon\ell^2\times\ell^2\to\mathbb{C}$ defined such that

$$\varphi\left((x_i)_{i\in\mathbb{N}},(y_i)_{i\in\mathbb{N}}\right) = \sum_{i=0}^{\infty} x_i \overline{y_i}$$

is well defined, and ℓ^2 is a Hermitian space under φ . Actually, ℓ^2 is even a Hilbert space.

Example 14.3. Let $C_{\text{piece}}[a, b]$ be the set of bounded piecewise continuous functions $f: [a, b] \to \mathbb{C}$ under the Hermitian form

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

It is easy to check that this Hermitian form is positive, but it is not definite. Thus, under this Hermitian form, $C_{\text{piece}}[a, b]$ is only a pre-Hilbert space.