Lokalizacja punktu w przestrzeni dwuwymiarowej – metoda doskonalenia triangulacji – algorytm Kirkpatrick'a

Łukasz Kwinta, Wiktor Warzecha



## Algorytm lokalizacji punktu Kirkpatrick'a

- Wymaga triangulacji jako dane wejściowe.
- Można przekształcić podział płaszczyzny z n wierzchołkami na triangulację
- Rozmiar triangulowanego podziału płaszczyzny pozostaje wciąż O(n), zgodnie z wzorem Eulera.
- Konwersję można wykonać w czasie O(nlogn) triangulacja Delaunaya.



# Hierarchia Kirkpatricka



- Obliczamy sekwencję  $T_0$ ,  $T_1$ , ...,  $T_k$  coraz bardziej zbiorczych triangulacji, taką, że ostatnia ma stałą złożoność.
- Sekwencja T<sub>0</sub>, T<sub>1</sub>, ..., T<sub>k</sub> powinna mieć następujące właściwości:
  - $-T_0$  to triangulacja wejściowa,  $T_k$  to trójkąt zewnętrzny.
  - $-k \in O(\log n)$
  - Każdy trójkąt w  $T_{i+1}$  pokrywa się z O(1) trójkątami w  $T_i$ .
- Jak zbudować taką sekwencję?
  - Konieczne jest usuwanie wierzchołków z Ti.
  - Usunięcie wierzchołków tworzy dziury, które trzeba ponownie triangulować.
- Jak przejść od  $T_0$  o rozmiarze O(n) do  $T_k$  o rozmiarze O(1) w k= $O(\log n)$  krokach?
  - W każdym kroku usuń stałą frakcję wierzchołków z T<sub>i</sub>.
- Musimy również zapewnić, że każdy nowy trójkąt w  $T_{i+1}$  pokrywa się tylko z O(1) trójkątami w  $T_i$ .

## Usuwanie Wierzchołków a Zbiory Niezależne

Podczas tworzenia  $T_{i+1}$  z  $T_i$  usuwamy wierzchołki z  $T_i$ , które posiadają następujące cechy:

- Stały stopień: Każdy wierzchołek v do usunięcia ma stopień O(1) w grafie  $T_i$ .
  - Jeśli v ma stopień d, wynikową dziurę można ponownie triangulować za pomocą d-2 trójkątów.
  - Każdy nowy trójkąt w T<sub>i+1</sub> pokrywa się co najwyżej z d oryginalnymi trójkątami w T<sub>i</sub>
- Zbiory niezależne: Żadne dwa usunięte wierzchołki nie są sąsiednie.
  - Każda dziura może być ponownie triangulowana niezależnie.



## Lemat o Zbiorze Niezależnym



Lemat: Każdy ztriangulowany graf planarny o n≥4 wierzchołkach zawiera zbiór niezależny o rozmiarze n/18, w którym każdy wierzchołek ma stopień co najwyżej 8. Taki zbiór można obliczyć w czasie O(n).

Wykorzystujemy ten lemat do skonstruowania hierarchii Kirkpatricka:

- Rozpocznamy od T<sub>0</sub> i wybieramy zbiór niezależny S o rozmiarze n/18, w którym każdy wierzchołek ma maksymalny stopień 8. [Pomijamy wierzchołki zewnętrznego trójkąta]
- Usuwamy wierzchołki ze zbioru S i ponownie triangulujemy dziury.
- Wynikowa triangulacja, T<sub>1</sub>, ma co najwyżej 17/18n wierzchołków.
- Powtórzamy proces, aby zbudować hierarchię, aż T<sub>k</sub> będzie równy zewnętrznemu trójkątowi.
- Głębokość hierarchii wynosi k = log18/17 n.

## Przykład Hierarchii

Korzystamy z lematu Zbiorze Niezależnym o do skonstruowania hierarchii Kirkpatricka:

- Rozpoczynamy od T<sub>0</sub> i wybieramy niezależny zbiór S o rozmiarze n/18, w którym każdy wierzchołek ma maksymalny stopień 8. [Nigdy nie wybieramy wierzchołków zewnętrznego trójkąta]
- Usuwamy wierzchołki ze zbioru S i ponownie triangulujemy dziury.
- Wynikowa triangulacja, T<sub>1</sub>, ma co najwyżej 17/18n wierzchołków.
- Powtarzamy ten proces, aby zbudować hierarchię, aż T<sub>k</sub> będzie równy zewnętrznemu trójkątow.
- Głębokość hierarchii wynosi k = log n.



## Struktura Danych Hierarchii

Przechowujemy hierarchię jako DAG (Skierowany Graf Acykliczny):

- Korzeń to T<sub>k</sub>.
- Węzły w każdym poziomie odpowiadają trójkątom T<sub>i</sub>.
- Każdy węzeł dla trójkąta w T<sub>i+1</sub> przechowuje wskaźniki do wszystkich trójkątów w T<sub>i</sub>, z którymi się pokrywa.

Jak zlokalizować punkt p w DAG:

- ustawiamy t jako T<sub>k</sub>
- $\bullet$  Sprawdzamy, każdy z co najwyżej 6 trójkątów  $T_{k-1}$ , które pokrywają się z D, czy zawierają p. Aktualizujemy t i schodzimy w hierarchii aż dojdziemy do  $T_0$ .



### Analiza

- Złożoność wyszukiwania to O(log n):
  - Istnieje O(log n) poziomów, a przemieszczanie się między poziomami zajmuje stały czas.
- Złożoność pamięciowa to O(n):
  - Sumujemy rozmiary wszystkich triangulacji w hierarchii.
  - Ze wzoru Eulera wystarczy zsumować liczbę wierzchołków.
  - Łączna liczba wierzchołków: n + 17/18 n +  $(17/18)^2$  n +  $(17/18)^3$  n + ... ≤ 1/(1 17/18) n = 18n
- Czas wstępnego przetwarzania to O(n log n):
  - Triangulacja podziału zajmuje czas O(n log n).
  - Złożoność budowy struktury hierarchii to O(n).

## Lemat o Zbiorze Niezależnym

Lemat: Każdy planarny triangulowany graf o n≥4 wierzchołkach zawiera zbiór niezależny o rozmiarze n/18, w którym każdy wierzchołek ma stopień co najwyżej 8. Taki zbiór można obliczyć w czasie O(n).

#### Dowód:

Algorytm zachłanny do konstrukcji zbioru niezależnego:

- Oznacz wszystkie wierzchołki stopnia ≥ 9.
- Dopóki istnieje nieoznaczony wierzchołek:
  - Niech v będzie nieoznaczonym wierzchołkiem.
  - Dodaj v do zbioru niezależnego.
  - Oznacz v i wszystkich jego sąsiadów.
- Można go zaimplementować w czasie O(n)



## Lemat o Zbiorze Niezależnym

Wciąż trzeba udowodnić odpowiednio dużego niezależnego zbioru.

• Wzór Eulera dla planarnego grafu triangulowanego o n wierzchołkach:

$$|krawedzie| = 3n - 6$$

Suma stopni wierzchołków:

$$\sum_{v} \text{deg(v)} = 2*|\text{krawedzie}| = 6n - 12 < 6n$$

Założenie: Przynajmniej n/2 wierzchołki mają stopień ≤ 8.

Dowód: Przez nie wprost.

Załóżmy inaczej.

- $\rightarrow$  n/2 wierzchołków ma stopień  $\geq$  9. Pozostałe mają stopień  $\geq$  3.
- $\rightarrow$  Suma stopni wynosi ≥ 9n/2 + 3n/2 = 6n. Sprzeczność.
- Na początku algorytmu przynajmniej n/2 węzłów jest nieoznaczonych. Każdy wybrany wierzchołek v oznacza ≤ 8 innych wierzchołków, więc razem z nim co najwyżej 9.
- Dlatego petla może być powtórzona co najmniej n/18 razy.
- To pokazuje, że istnieje niezależny zbiór o rozmiarze przynajmniej n/18, w którym każdy węzeł ma stopień ≤ 8.

#### Podsumowanie

- Struktura danych lokalizacji punktu Kirkpatricka wymaga O(n) czasu wstępnego przetwarzania, O(n) miejsca i ma O(log n) czas lokalizowania.
- Jednakże, ma wysoką stałą. Zatem, mimo że algorytm ten jest asymptotycznie optymalny, jest głównie obiektem zainteresowania teoretycznego.