

Discrete Structures

Lecture 12: Functions

based on slides by Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by McGraw-Hill

Muhammad Adeel Zahid

Department of Computer Science Government College University Faisalabad

Functions

- From calculus, you are familiar with the concept of a real-valued function f, which assigns to each number $x \in R$ a value y = f(x), where $y \in R$.
- But, the notion of a function can also be naturally generalized to the concept of assigning elements of any set to elements of any set. (Also known as a map.)

Function: Formal Definition

- For any sets A and B, we say that a function (or "mapping") f from A to B ($f:A \rightarrow B$) is a particular assignment of exactly one element $f(x) \in B$ to each element $x \in A$.
- Functions can be represented graphically in several ways:

Terminology

- If it is written that $f:A\to B$, and f(a)=b (where $a\in A$ and $b\in B$), then we say:
 - *A* is the domain of *f*
 - *B* is the codomain of *f*
 - b is the image of a under f
 - a can not have more than 1 image
 - a is a pre-image of b under f
 - b may have more than 1 pre-image
- The range $R \subseteq B$ of f is $R = \{b \mid \exists a \ f(a) = b\}$

Range vs Codomain

- The range of a function might not be its whole codomain
- The codomain is the set that the function is declared to map all domain values into
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to

Example

- Suppose I declare that: "f is a function mapping students in this class to the set of grades $\{A, B, C, D, F\}$ "
- At this point, you know f 's codomain is: $\{A, B, C, D, F\}$ and its range is unknown
- Suppose the grades turn out all As and Bs
- Then the range of f is $\{A, B\}$, but its codomain is still $\{A, B, C, D, F\}$

Function and Non-Function

Function Operators

- $+ \times$ ("plus", "times") are binary operators over R. (Normal addition & multiplication.)
- Therefore, we can also add and multiply two real-valued functions $f,g\colon R\to R$
 - $(f + g): R \to R$, where (f + g)(x) = f(x) + g(x)
 - (fg): $R \to R$, where (fg)(x) = f(x)g(x)
- Example:
- Let f and g be functions from R to R such that $f(x) = x^2$ and $g(x) = x x^2$
- What are the functions f + g and fg?
 - $(f+g)(x) = f(x) + g(x) = x^2 + x x^2 = x$
 - $(fg)(x) = f(x)g(x) = (x^2)(x x^2) = x^3 x^4$

Function Composition Operator

- For functions $g: A \to B$ and $f: B \to C$, there is a special operator called compose (" \circ ")
- ullet It composes (creates) a new function from f and g by applying f to the result of applying g
- We say $(f \circ g)$: $A \to C$, where $(f \circ g)(a) = f(g(a))$
- Note: $f \circ g$ cannot be defined unless range of g is a subset of the domain of f.
- Note $g(a) \in B$, so f(g(a)) is defined and $\in C$
- Note that \circ is non-commuting. (Like Cartesian \times , but unlike $+, \wedge, \cup$) (Generally, $f \circ g \neq g \circ f$)

Function Composition

• $g: A \rightarrow B, f: B \rightarrow C$

Function Composition

• $g: A \rightarrow B, f: B \rightarrow C$

Function Composition Example

- Example: Let $g: \{a, b, c\} \rightarrow \{a, b, c\}$ such that
 - g(a) = b, g(b) = c, g(c) = a
- Let $f : \{a, b, c\} \rightarrow \{1, 2, 3\}$ such that
 - f(a) = 3, f(b) = 2, f(c) = 1
- What is the composition of f and g, and what is the composition of g and f?
- $f \circ g: \{a, b, c\} \rightarrow \{1, 2, 3\}$ such that
- $(f \circ g)(a) = 2, (f \circ g)(b) = 1, (f \circ g)(c) = 3$
 - $(f \circ g)(a) = f(g(a)) = f(b) = 2$
 - $(f \circ g)(b) = f(g(b)) = f(c) = 1$
 - $(f \circ g)(c) = f(g(c)) = f(a) = 3$

- $g \circ f$ is not defined (why?): $(g \circ f)(x) = g(f(x))$
 - f(a) = 3, but g(3) is not defined
 - f(b) = 2, but g(2) is not defined
 - f(c) = 1, but g(1) is not defined
- Range of f is not subset of domain of g
 - Range of $f = \{1,2,3\}$
 - Domain of $g = \{a, b, c\}$

Function Composition Example

• If $f(x) = x^2$ and g(x) = 2x + 1, then what is the composition of f and g, and what is the composition of g and f?

$$(f \circ g)(x) = f(g(x))$$

= $f(2x + 1)$
= $(2x + 1)^2$

$$(g \circ f)(x) = g(f(x))$$
$$= g(x^2)$$
$$= 2x^2 + 1$$

• Note that $f \circ g \neq g \circ f \cdot (4x^2 + 4x + 1 \neq 2x^2 + 1)$

Images of Sets Under Functions

- Given $f: A \rightarrow B$, and $S \subseteq A$,
- The image of S under f is simply the set of all images (under f) of the elements of S

$$f(S) = \{f(t) \mid t \in S\}$$

= $\{b \mid \exists t \in S: f(t) = b\}$

• Note the range of f can be defined as simply the image (under f) of f 's domain

One-to-One Function

- A function f is one-to-one (1–1), or **injective**, or an **injection**, iff f(a) = f(b) implies that a = b for all a and b in the domain of f (i.e. every element of its range has only 1 pre-image)
- Formally, given $f: A \rightarrow B$,
 - "f is injective": $\forall a, b \ (f(a) = f(b) \rightarrow a = b)$ or equivalently
 - $\forall a, b \ (a \neq b \rightarrow f(a) \neq f(b))$
- Only one element of the domain is mapped to any given one element of the range
- Domain & range have the same cardinality
- What about codomain?

One-to-One Illustration

• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

One-to-one Functions

- Example:
 - Is the function $f : \{a, b, c, d\} \rightarrow \{1, 2, 3, 4, 5\}$ with
- f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 one-to-one?
- Yes, it is one-to-one
 - No element of the range is assigned more than once to any element of the domain
- Example:
- Let $f: Z \to Z$ such that $f(x) = x^2$. Is f one-to-one?
 - No, it is not because f(-2) = f(2) = 4 even though $2 \neq -2$
 - Generally for this function f(x) = f(-x) even though $x \neq -x$

Sufficient Conditions for one-to-oneness

- For functions *f* over numbers, we say:
- f is strictly (or monotonically) increasing iff $x > y \rightarrow f(x) > f(y)$ for all x, y in domain;
- f is strictly (or monotonically) decreasing iff $x > y \rightarrow f(x) < f(y)$ for all x, y in domain;
- If f is either strictly increasing or strictly decreasing, then f is one-to-one.
- E.g. x^3
 - $(-2)^3 = -8$
 - $(-1)^3 = -1$
 - $(0)^3 = 0$
 - $(1)^3 = 1$
 - $(2)^3 = 8$

Onto (Surjective) Functions

- A function $f:A\to B$ is onto or **surjective** or a **surjection** iff for every element $b\in B$ there is an element $a\in A$ with f(a)=b
 - $(\forall b \in B, \exists a \in A: f(a) = b)$ (i.e. its range is equal to its codomain)
- Think: An onto function maps the set A onto (over, covering) the entirety of the set B, not just over a piece of it
- E.g., for domain & codomain R, x^3 is onto, whereas x^2 isn't. (Why not?)
 - Because x^2 does not map any real number to any negative number hence the codomain and range are not equal

Illustration of Onto

• Some functions that are, or are not, onto their codomains:

- Example 13: Is the function f(x) = x + 1 from the set of integers to the set of integers onto?
 - Yes, because for every integer $n \in Z$ (codomain), we have $p \in Z$ (domain) such that f(p) = n

Bijections and Inversible Functions

- A function f is said to be a one-to-one correspondence, or a bijection, or reversible, or invertible, iff it is both one-to-one and onto
- Let $f: A \rightarrow B$ be a bijection
- The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b
- The inverse function of f is denoted by f^{-1} : $B \rightarrow A$
- Hence, $f^{-1}(b) = a$ when f(a) = b

Inverse Function Illustration

• Let $f: A \rightarrow B$ be a bijection

Inversible Function Examples

- Example: Let $f: \{a,b,c\} \rightarrow \{1,2,3\}$ such that f(a) = 2, f(b) = 3, f(c) = 1 Is finvertible, and if it is, what is its inverse?
- Yes. $f^{-1}(1) = c, f^{-1}(2) = a, f^{-1}(3) = b$
- Example: Let f be the function from R to R with $f(x) = x^2$ Is f invertible?
- No. f is neither a one-to-one function and nor an onto function f(-2) = f(2)
- So it's not invertible

Mappings in Java

- A discrete function can be represented by a Map interface or HashMap class in Java programming language
 - Map map < Integer, String > = new HashMap < Integer, String >
 ();
- Here, the domain is Integer, the codomain is String
- We can construct such a mapping by putting all pairs $\{a, f(a)\}$ into our map. (a is the key, f(a) is the value.)
 - map.put(2, "Jan");
- for (Kid kid: kids) {map.put(kid.id, kid.name); }
- If we put another pair with the same key, it will overwrite the previous pair

Images, Range, Bijection in Java

- map. keys() returns the image
 - it's a Java Set!
- map. values() returns the range
 - it's a Java Set!
- Is a map a bijection?
 - Iff the cardinalities of the image and range are the same:
- if(map.keys().size() == map.values().size()){
 - *System.out.println*("map is a bijection");
- }