Hierarchical Machine Translation

Miguel Rios

Universiteit van Amsterdam

May 2, 2018

- Motivation
- 2 Hierarchical models of translation Hiero
- 3 Decoding
- 4 Tuning

Figure: Koehn [2010]

Why hierarchical structure?

Motivation

Better generalisation

- compositionality
- reordering

Monotone translation is unrealistic

languages differ wrt word-order

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Reordering is arguably one of the hardest problems in MT

Why is reordering important?

Monotone translation is unrealistic

 languages differ wrt word-order e.g. different syntactic structure e.g. rich morphology

Reordering is arguably one of the hardest problems in MT

 part of the model of translational equivalences the part that determines the space of translations

Key aspects

Motivation

Expressiveness

how much can two languages differ wrt word order?

Key aspects

Motivation

Expressiveness

how much can two languages differ wrt word order?

Modelling

how many parameters do we have to estimate?

- 1 Motivation
- 2 Hierarchical models of translation Hiero
- 3 Decoding
- 4 Tuning

Hierarchical phrase-based - Motivation

Local Reordering

Local Reordering

Monotone

 J'_1 $ai_2 \rightarrow I_1$ have₂

Local Reordering

 Swap les yeux₄ noirs₅ → black₃ eyes₄

Local Reordering

 $\begin{array}{c} \bullet \quad \text{Discontinuous} \\ \quad \text{ai}_2 \ X_{3-4} \ \text{noirs}_5 \rightarrow \text{have}_2 \ \text{black}_3 \\ \quad X_4 \end{array}$

Hierarchical phrase-based - Motivation

Discontiguous Phrases

Discontiguous Phrases

• Gappy phrase ne vais pas o do not go ne X_{vais} pas o do not X_{qo}

Long Distance Reordering

Long Distance Reordering

How can we extract a biphrase for shall be passing on?

Long Distance Reordering

- How can we extract a biphrase for shall be passing on?
- We cannot, we need to extract to you some comments along

Long Distance Reordering

- How can we extract a biphrase for shall be passing on?
- We cannot, we need to extract to you some comments along
- Unless we replace all those words by a variable

Long Distance Reordering

shall be passing on to you some comments

werde Ihnen die entsprechenden Anmerkungen aushändigen

Long Distance Reordering

shall be passing on the hope the transfer of the same werde //h/n/e/n/di/e/e/n/tsprechheh/de/n/Anhhe/k/un/e/k/un/e/e/n aushändigen

Long Distance Reordering

shall be passing on Xwerde X aushändigen

Hiero

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

conditions on word alignment

- conditions on word alignment
- heuristic rule extraction

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Motivation

long-distance reordering

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

- conditions on word alignment
- heuristic rule extraction
- heuristic scoring by relative frequency counting
- log-linear model
- SCFG decoding

Motivation

- long-distance reordering
- lexicalised reordering

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on to you some comments

werde Ihnen die entsprechenden Anmerkungen aushändigen

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on the some comments

werde //////// die entsprechenden Anmerkungen aushändigen

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on X_1 some comments

werde X_1 die entsprechenden Anmerkungen aushändigen

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on X_1 some depth of the passing of X_1 so the

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on
$$X_1$$
 X_2 \updownarrow werde X_1 X_2 aushändigen

Initial phrase pairs created with same heuristic as PBSMT.

- $[X] \rightarrow \text{shall be passing on } X_1 X_2 \mid \text{werde } X_1 X_2 \text{ aushändigen}$
- $[X] \rightarrow \text{shall be passing on } X_3 \mid \text{werde } X_3 \text{ aushändigen}$
- $[X] \rightarrow \text{to you} \mid \text{Ihnen}$
- $[X] \rightarrow$ some comments | die entsprechenden Anmerkungen
- [X]
 ightarrow to you some comments | Ihnen die entsprechenden Anmerkungen

Hiero - Scoring

Relative frequency: assume all fragments have been "observed" Give a count of one to phrase pair occurrence, then distribute its weight equally among the obtained rules.

■ Joint rule probatility: $p(LHS, RHS_{source}, RHS_{target})$

$$p(X, \mathsf{Ia} \mathsf{ maison } X_1, \mathsf{the } X_1 \mathsf{ house})$$

- Rule application probability: $p(RHS_{source}, RHS_{target}|LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1, \mathsf{the} \; X_1 \; \mathsf{house} | X)$$

 \bullet Direct translation probability: $p(RHS_{target}|RHS_{source},LHS)$

$$p(\mathsf{the}\ X_1\ \mathsf{house}|\mathsf{la}\ \mathsf{maison}\ X_1,X)$$

■ Noisy-channel translation probability: $p(RHS_{source}|RHS_{target}, LHS)$

$$p(\mathsf{Ia} \; \mathsf{maison} \; X_1 | \mathsf{the} \; X_1 \; \mathsf{house}, X)$$

Lexical translation probability

$$\prod_{t_i \in RHS_{target}} p(t_i | RHS_{source}, a) \qquad \prod_{s_i \in RHS_{source}} p(s_i | RHS_{target}, a)$$

Hiero - Model

Log-linear combination of features

Hiero - Model

Log-linear combination of features Linear model

$$S_{\theta}(e, d, f) = \theta^{T} \sum_{r_{s,t} \in d} h_{i}(r_{s,t}|e, f)$$

where s is a span over F, t is a span over E and r is a rule. Weighted synchronous CFG. IM.

Content

- 2 Hierarchical models of translation
- 3 Decoding

Phrase-based

Tree-based

Phrase-based

Left-to-Right

Tree-based

Bottom-Up

Phrase-based

- Left-to-Right
- Beam Search

Tree-based

Decoding

- Bottom-Up
- Chart Parsing (In the next Lab.)

Phrase-based

- Left-to-Right
- Beam Search
- Formally intersection:

Tree-based

- Bottom-Up
- Chart Parsing (In the next Lab.)
- Formally intersection:

Phrase-based

- Left-to-Right
- Beam Search
- Formally intersection:
- FST (TM) × FSA (LM)

Tree-based

- Bottom-Up
- Chart Parsing (In the next Lab.)
- Formally intersection:
- SCFG (TM) × FSA (LM)

Content

- Motivation
- 2 Hierarchical models of translation
- 3 Decoding
- 4 Tuning

Discriminative Model

• model consists of features.

Tuning

Discriminative Model

- model consists of features.
- each feature has a weight.

- model consists of features.
- each feature has a weight.
- supervised learning: tune feature weights wrt. an evaluation metric on development data

- model consists of features.
- each feature has a weight.
- supervised learning: tune feature weights wrt. an evaluation metric on development data
- Which objective?
 Bilingual Evaluation Understudy metric BLEU

Task: find weights so that the model ranks best translations first.

 Translate development corpus using model with current feature weights,

N -best list of translations (N = 100, 1000, . . .)

Task: find weights so that the model ranks best translations first.

- Translate development corpus using model with current feature weights,
 - N -best list of translations (N = 100, 1000, . . .)
- Evaluate translations with the objective

Task: find weights so that the model ranks best translations first.

- Translate development corpus using model with current
 - feature weights, N -best list of translations (N = 100, 1000, . . .)
- Evaluate translations with the objective
- Adjust feature weights to increase the gain

G

Task: find weights so that the model ranks best translations first.

- Translate development corpus using model with current feature weights,
 - N -best list of translations (N = 100, 1000, . . .)
- Evaluate translations with the objective
- Adjust feature weights to increase the gain
- Iterate translation, evaluation, and adjustment of feature weights

Tuning

Minimum error rate training (MERT)

 coordinate ascent, where the search updates a feature weight which appears most likely to offer improvements.

Minimum error rate training (MERT)

- coordinate ascent, where the search updates a feature weight which appears most likely to offer improvements.
- Highest point in a hilly city with a grid of streets, like San Francisco. [Koehn, 2008]
 We start along a certain street.
 Find its highest point and continue along the cross-street.
 - Also in this cross-street we find the highest point.

Tuning

• Line search for best feature weights given: sentences with n-best lists of translations

MERT

- Line search for best feature weights given: sentences with n-best lists of translations
- iterate n times randomize starting feature weights

Line search for best feature weights

given: sentences with n-best lists of translations

 iterate n times randomize starting feature weights for each feature

- Line search for best feature weights given: sentences with n-best lists of translations
- iterate n times randomize starting feature weights for each feature
 - find best feature weight

- Line search for best feature weights given: sentences with n-best lists of translations
- iterate n times randomize starting feature weights for each feature
 - find best feature weight
 - update if different from current

- Line search for best feature weights given: sentences with n-best lists of translations
- iterate n times randomize starting feature weights for each feature
 - find best feature weight
 - update if different from current
- return best feature weights found in any iteration

David Chiang. A hierarchical phrase-based model for statistical machine translation. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05)*, pages 263–270, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi: 10.3115/1219840.1219873. URL http://www.aclweb.org/anthology/P05-1033.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN 0521874157, 9780521874151.