Name:

Homework 6 Due 6 October 2020

1. Find the shear stress at points A and B when $V=450\,\mathrm{kN}$. Draw the state of stress on a volume element at each point.

2. Find the maximum shear stress acting on the beam shown.

3. The overhanging beam is subjected to a uniform load of $w=75\,\mathrm{kN/m}$. Find the maximum shear stress in the beam.

4. Two identical 20 mm plates are bolted to the top and bottom of a flange to form a built-up beam. For a shear force of $V=400\,\mathrm{kN}$ find the maximum bolt spacing, s, if each bolt has a shear strength of $45\,\mathrm{kN}$

5. The beam shown is made by gluing two 1/2 in c-channel strips together as sown. If the glue has a maximum shear stress of $\tau = 600$ psi find the maximum intensity, w_0 , of the triangular distributed loading.

