What is claimed:

	•			
1	1. A method for forming an air bearing surface on a slider, comprising,			
2	providing a silicon slider body;			
3	forming at least one trench in a surface of the silicon body; and			
4	forming a structure selected from the group consisting of a carbide structure and a			
5	nitride structure in the at least one trench.			
1	2. A method as in claim 1, wherein the structure comprises a carbide structure			
1	3. A method as in claim 1, further comprising forming at least one of a read			
2	element and a write element on the surface after forming the structure.			
1	4. A method as in claim 1, further comprising forming a carbon layer over at			
2	least a portion of the silicon body on the surface of the slider.			
1	5. A method as in claim 1, further comprising forming the trench by etching a			
2	portion of the silicon body.			
1	6. A method as in claim 2, further comprising forming a layer between the			
2	silicon body and the carbide structure.			
1	7. A method as in claim 6, wherein the layer comprises a material comprising			
2	titanium.			
1	8. A method as in claim 6, wherein the layer comprises a material that improv	ės		
2	adhesion between the carbide and the silicon.			

1	9. A n	nethod as in claim 2, wherein the carbide structure is formed by a process			
2	comprising:				
3	filling the trench in the silicon body with a metal carbide and anhydrous metal				
4	chloride material;				
5	heating the silicon body so that the metal carbide and anhydrous metal chloride				
6	material becomes a melt;				
7	after the heating the silicon body, cooling the silicon body to produce a product				
8	material from metal carbide and anhydrous metal chloride material; and				
9	removing chloride material formed from the product material.				
1	10. A r	nethod as in claim 9, further comprising, after the heating the silicon body			
2	so that the metal carbide and anhydrous metal chloride material becomes a melt, annealing				
3	the silicon body for a predetermined time period.				
1	11. A r	nethod as in claim 9, wherein removing chloride material comprises			
2	rinsing the surface	rinsing the surface of the material with at least one liquid selected from the group consisting			
3	of water and meth	anol to remove the chloride material.			
1	12. A r	nethod as in claim 9, further comprising planarizing the carbide using a			
2	method selected from the group consisting of etching and polishing.				
٠					
1	13. A r	nethod as in claim 12, further comprising etching the silicon slider body			
2	so that the carbide	extends outward from the etched silicon slider body.			
1	14. A r	nethod as in claim 9, wherein the heating the silicon body comprises			
2	heating the metal	heating the metal carbide and anhydrous metal chloride material to a temperature of at leas			
3	450°C.				

15. A method as in claim 1, wherein the structure comprises a nitride structure. 1 16. A method for forming a slider comprising: 1 forming at least one trench into a silicon body; 2 3 forming an air bearing surface pad structure in the trench that extends to a position at 4 or above the silicon body; and forming a read/write head on the silicon body after forming the air bearing surface 5 6 pad structure. 1 17. A method as in claim 16, wherein the air bearing surface pad structure comprises a material selected from the group consisting of a carbide material and a nitride 2 3 material. 18. A method as in claim 16, further comprising: 1 2 forming at least one groove in the silicon body extending from a first position at or 3 adjacent to the read/write head to second position at or adjacent to an edge of the slider; 4 forming an insulating layer in the groove; and 5 forming a conducting layer on the insulating layer in the groove to provide an 6 electrical path between the read/write head and the edge of the slider. 19. A method as in claim 16, wherein the silicon slider body is formed from a 1 2 material consisting of single crystal silicon. 1 20. A method as in claim 16, wherein the read/write structure is formed to 2 include an atomic force microscopy tip.

1	21. A method for processing a slider, comprising:				
2	forming at least one trench in a silicon slider body;				
3	depositing precursor materials in the at least one trench;				
4	heating the precursor materials to form a product including a metal carbide and a				
5	metal chloride; and				
6 removing the metal chloride.					
1	22. A method as in claim 21, further comprising forming a layer in the at least				
2	one trench prior to the depositing precursor materials in the trench.				
1	23. A method as in claim 21, further comprising depositing the precursor				
2	materials on a surface of the silicon slider body adjacent to the at least one trench and				
3	planarizing the metal carbide so that the metal carbide in the at least one trench is planarize				
4	to a level identical to that of the surface of the silicon slider body adjacent to the at least or				
5	trench.				
1	24. A method as in claim 23, further comprising, after the planarizing the metal				
2	carbide, etching the surface of the silicon slider body adjacent to the at least one trench so				
3	that the metal carbide in the at least one trench extends outward relative to the etched				
4	surface of the silicon slider body adjacent to the at least one trench.				
1	25. A method as in claim 21, wherein the precursor materials are selected so that				
2	the metal carbide comprises a carbide selected from the group consisting of titanium				
3	carbide, zirconium carbide, vanadium carbide, tungsten carbide, and molybdenum carbide.				
1	26. A method as in claim 21, wherein the silicon slider body is formed from a				

material consisting of single crystal silicon.

2

- 1 27. A method as in claim 24, further comprising forming a carbon layer on at 2 least part of the etched surface of the silicon slider body.
- 1 28. A method as in claim 24, further comprising forming a read/write structure 2 after the etching the surface of the silicon slider body adjacent to the at least one trench.
- 1 29. A method as in claim 28, wherein the read/write structure is formed to 2 include an atomic force microscopy tip.