Unité d'Enseignement MAT203

1 Nombres réels

Vrai-Faux 1. Soit A une partie non vide de \mathbb{R} . Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. $\boxtimes A$ possède une borne supérieure, finie ou infinie.
- 2. \boxtimes Si A est minorée, alors A possède une borne inférieure finie.
- 3. \square Si $x \leq \sup(A)$ alors $x \in A$.
- 4. \square Si A contient au moins 2 réels distincts, alors A contient un rationnel.
- 5. \square Si A est infinie, alors A contient une infinité d'irrationnels.
- 6. \boxtimes Si A contient un intervalle de \mathbb{R} , contenant lui-même deux points distincts, alors A contient une infinité d'irrationnels.

Vrai-Faux 2. Soit A une partie non vide de \mathbb{R} . On note $|A| = \{|x|, x \in A\}$. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si A est majorée, alors |A| possède une borne supérieure finie.
- 2. \boxtimes 0 est un minorant de |A|.
- 3. $\boxtimes |A|$ possède toujours une borne inférieure finie.
- 4. $\square |A|$ possède toujours une borne supérieure finie.
- 5. $\boxtimes A$ est bornée si et seulement si |A| est majorée.
- 6. \boxtimes Si A est un intervalle, alors |A| est un intervalle.
- 7. \square Si |A| est un intervalle, alors A est un intervalle.
- 8. \boxtimes Si A est un intervalle fermé, alors |A| est un intervalle fermé.

Vrai-Faux 3. Soit *a* un réel quelconque. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si $(\forall \varepsilon > 0, a < \varepsilon)$, alors a < 0.
- 2. \boxtimes Si $(\forall \varepsilon > 0, a > 1 \varepsilon)$, alors $a \ge 1$.
- 3. \boxtimes Si $(\forall \varepsilon > 0, \ a > 1 \varepsilon^2)$, alors $(\forall \varepsilon > 0, \ a > 1 2\varepsilon)$.
- 4. \square Si $(\forall \varepsilon > 0, \ a > 1 \varepsilon)$, alors $(\forall \varepsilon \geqslant 0, \ a > 1 \varepsilon^2)$.
- 5. \boxtimes Si $(\forall n \in \mathbb{N}^*, a > 1/\sqrt{n})$, alors a > 1.
- 6. \square Si $(\forall n \in \mathbb{N}^*, \ a < 1/\sqrt{n})$, alors a < 0.

Vrai-Faux 4. Soient a et b deux réels quelconques. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si a + b est rationnel, alors soit a est rationnel soit b est rationnel.
- 2. \boxtimes Si a + b est irrationnel, alors soit a est irrationnel soit b est irrationnel.
- 3. \boxtimes Si a est rationnel, alors sa partie décimale est rationnelle.
- 4. \square Si a est irrationnel, alors la partie décimale de a + b est irrationnelle.
- 5. \boxtimes Si la partie décimale de a est rationnelle, alors a est rationnel.

Vrai-Faux 5. Soient a et b deux réels quelconques. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. $\boxtimes |ab| = |a| |b|$.
- $2. \boxtimes |a| |b| \leqslant |a b|.$
- 3. $\Box |a b| \leq \max\{|a|, |b|\}.$
- 4. $\boxtimes |a-b| = |a-(a+b)/2| + |(a+b)/2-b|$.
- 5. \square Si |a-b| < |a|, alors |ab| = ab.
- 6. $\Box |a+b| = |a| + |b|$.
- 7. $\boxtimes |a+b| \ge |a| + |b|$.
- 8. $\boxtimes |a+b| \le |a| + |b| + 1$.

Exercice 1. Montrer que pour tout $x \ge 1$, $\frac{1-x}{\sqrt{x}+1} \ge \frac{1-x}{2}$.

Exercice 2. 1) A quel intervalle appartient x^2 si $x \in]-5,1[?]$

2) Quel est l'ensemble des solutions réelles de l'inéquation 1/x < -2?

Exercice 3. On considère le sous-ensemble A de \mathbb{R} défini par

$$A = \left\{ \frac{x - y}{x + y + 3}; \ x \in [-1, 1], \ y \in [-1, 1] \right\}.$$

Trouver un majorant et un minorant de

Exercice 4. Dessiner les sous-ensembles suivants (a est un réel fixé, $\varepsilon > 0$):

$$I = \{x \in \mathbb{R} \mid |x| > 3\}, \quad I' = \{x \in \mathbb{R} \mid |x - 5| < 1\}, \quad I'' = \{x \in \mathbb{R} \mid |x + 5| < 2\}$$
$$I_{a,\varepsilon} = \{x \in \mathbb{R} \mid |x - a| < \varepsilon\}, \quad K_{a,\varepsilon} = \{x \in \mathbb{R} \mid |x - a| > \varepsilon\}$$

Exercice 5. Définir A l'aide d'une valeur absolue les encadrements suivants :

$$x \in [-2, 2]$$
 $x \in]-3, 5[$ $x \in [-1, 6]$

Exercice 6. Démontrer que pour tous réels
$$a$$
 et b donnés, les relations suivantes sont vérifiées :
$$\max(a,b) = \frac{a+b+|b-a|}{2} \quad \min(a,b) = \frac{a+b-|b-a|}{2}.$$

Exercice 7. Déterminer (s'ils existent): les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q}, \quad]0,1[\cap \mathbb{Q}, \quad \mathbb{N}, \quad \left\{ (-1)^n + \frac{1}{n^2}, \ n \in \mathbb{N}^* \right\}.$$

Exercice 8. Pour chacun des ensembles de réels suivants :

$$\left\{ (-1)^n \,, \ n \in \mathbb{N} \right\} \,, \, \left\{ (-1)^n / n \,, \ n \in \mathbb{N}^* \right\} \,, \, \left\{ (-1)^n n \,, \ n \in \mathbb{N} \right\} \,,$$

$$\left\{ \frac{n+1}{n+2} \,, \ n \in \mathbb{N} \right\} \,, \, \left\{ \frac{2n+(-1)^n}{n+2} \,, \ n \in \mathbb{N} \right\} \,, \, \left\{ \frac{m+n}{m+2n} \,, \ m, n \in \mathbb{N}^* \right\} \,,$$

- 1. L'ensemble est-il majoré? minoré?
- 2. L'ensemble admet-il un plus grand élément? un plus petit élément?
- 3. Déterminer la borne supérieure et la borne inférieure de l'ensemble.

Exercice 9. On considère les ensembles de réels suivants :

$$\left\{ x \in \mathbb{R} \,, \, |x| > 1 \right\} \,, \, \left\{ x \in \mathbb{R} \,, \, x^2 \leqslant 1 \right\} \,, \, \left\{ x \in \mathbb{R} \,, \, x^3 < 1 \right\}$$

$$\left\{ x \in \mathbb{R}^* \,, \, 1/x \leqslant 1 \right\} \,, \, \left\{ x \in \mathbb{R}^* \,, \, 1/x > 1 \right\} \,, \, \left\{ x \in \mathbb{R}^+ \,, \, \sin x \leqslant 0 \right\}$$

- 1. Ecrire l'ensemble comme un intervalle ou une réunion d'intervalles disjoints.
- 2. L'ensemble est-il majoré? minoré?
- 3. L'ensemble admet-il un plus grand élément? un plus petit élément?
- 4. Déterminer la borne supérieure et la borne inférieure de l'ensemble.

Exercice 10. Soient A et B deux parties non vides et bornées de \mathbb{R} .

- 1. Montrer que $A \subset B$ implique $\sup(A) \leq \sup(B)$ et $\inf(A) \geq \inf(B)$.
- 2. Montrer que $A \cup B$ admet une borne supérieure et une borne inférieure finies. Montrer que

$$\sup(A \cup B) = \max\{\sup(A), \sup(B)\} \quad \text{et} \quad \inf(A \cup B) = \min\{\inf(A), \inf(B)\}.$$

3. Montrer que si l'intersection $A \cap B$ est non vide, alors elle admet une borne supérieure et une borne inférieure finies. Montrer que

$$\sup(A \cap B) \leqslant \min\{\sup(A), \sup(B)\}\ \text{ et } \inf(A \cap B) \geqslant \max\{\inf(A), \inf(B)\}\ .$$

4. On note $A + B = \{a + b, a \in A, b \in B\}$. Montrer que A + B admet une borne supérieure et une borne inférieure finies. Montrer que

$$\sup(A+B) = \sup(A) + \sup(B)$$
 et $\inf(A+B) = \inf(A) + \inf(B)$.

Exercice 11. Soient A et B deux intervalles de \mathbb{R} .

- 1. Montrer que $A \cap B$ est un intervalle.
- 2. Montrer que si $A \cap B$ est non vide, alors $A \cup B$ est un intervalle.
- 3. Montrer par un exemple que $A \cup B$ peut être un intervalle même si $A \cap B$ est vide.
- 4. On note $A+B=\{a+b\,,\ a\in A,b\in B\}$. Montrer que A+B est un intervalle.

Exercice 12. Soient x et y deux rationnels distincts tels que \sqrt{x} et \sqrt{y} soient irrationnels.

- 1. On considère les deux réels $\sqrt{x} + \sqrt{y}$ et $\sqrt{x} \sqrt{y}$. Montrer que leur produit est rationnel, leur somme irrationnelle. En déduire qu'ils sont irrationnels.
- 2. Soient r et s deux rationnels. Montrer que $r\sqrt{x} + s\sqrt{y}$ est irrationnel.
- 3. Montrer par des exemples que $\sqrt{x}\sqrt{y}$ peut être rationnel ou irrationnel.
- 4. Montrer que les réels suivants sont irrationnels.

$$1 + \sqrt{2}$$
, $\sqrt{2} + \sqrt{3}$, $(\sqrt{2} + \sqrt{3})^2$, $\sqrt{2} + \sqrt{3} - \sqrt{6}$

Exercice 13. Soit I un intervalle de \mathbb{R} contenant deux points distincts. Montrer que I contient :

- 1. une infinité de rationnels,
- 2. une infinité d'irrationnels,
- 3. une infinité de nombres décimaux,

2 Suites numériques

Vrai-Faux 6. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si x est rationnel, la suite des décimales de x est périodique.
- 2. \boxtimes Si x est décimal, la suite des décimales de x est constante à partir d'un certain rang.
- 3.

 Toute suite récurrente qui ne prend qu'un nombre fini de valeurs distinctes, est périodique à partir d'un certain rang.
- 4. \square Si F est une application croissante, la suite $(F^{\circ n}(u_0))$ est croissante.
- 5. \boxtimes Si f est une application croissante, la suite (f(n)) est croissante.
- 6. \boxtimes Si P est une application polynôme, la suite (P(n)) est monotone à partir d'un certain rang.
- 7. \square La suite $(e^{ni\pi/4})$ est périodique de période 4.
- 8. \boxtimes La suite $((-1)^k)$ est une suite extraite de la suite $(e^{ni\pi/4})$.
- 9. \boxtimes On peut extraire de la suite $(e^{ni\pi/4})$ une sous-suite constante.

Vrai-Faux 7. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Toute suite croissante et minorée tend vers $+\infty$.
- 2. \boxtimes Toute suite décroissante et non minorée tend vers $-\infty$.
- 3. \(\subseteq \) Toute suite croissante et bornée converge.
- 4. \square Une suite à termes positifs qui converge vers 0 est décroissante à partir d'un certain rang.
- 5. \boxtimes Si la suite des décimales de x converge, alors x est un nombre rationnel.
- 6. \square Si $r \leq 1$ alors $(\cos(n) r^n)$ tend vers 0.
- 7. \boxtimes Si r < 1 alors $(\cos(n) r^n)$ tend vers 0.

Vrai-Faux 8. Soit (u_n) une suite de réels. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si (u_n) tend vers 0, alors pour tout $n, u_n < 1$.
- 2. \boxtimes Si (u_n) tend vers 0, alors $u_n < 1$ pour n assez grand.
- 3. \boxtimes Si (u_n) tend vers 2, alors $u_n > 1$ pour n assez grand.
- 4. \boxtimes Si (u_n) tend vers 0 alors $(\cos(n) u_n)$ tend vers 0.
- 5. \square Si (u_n) tend vers 1 alors $(\cos(n) u_n)$ tend vers 1.
- 6. \boxtimes Si (u_n) tend vers 1 alors $(\cos(n) u_n)$ est bornée.
- 7. \square Si la suite ($|u_n|$) converge vers l, alors la suite (u_n) converge vers l ou vers -l.
- 8. \boxtimes Si la suite (u_n) converge vers l, alors la suite $(|u_n|)$ converge vers |l|.
- 9. \boxtimes Si la suite (u_n) converge vers l, alors la suite (u_{n^2}) converge vers l.
- 10. \boxtimes Si la suite (u_n) converge vers 1, alors la suite (u_n^2) converge vers 1.
- 11. \square Si la suite (u_n) converge vers 1, alors la suite (u_n) converge vers 1.

Vrai-Faux 9. Soient (u_n) , (v_n) et (w_n) trois suites de réels. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \boxtimes Si pour tout n, $(u_n) \geqslant \sqrt{n}$ alors (u_n) tend vers $+\infty$.
- 2. \square Si pour tout n, $(u_n) \geqslant -\sqrt{n}$ alors (u_n) tend vers $-\infty$.
- 3. \boxtimes Si à partir d'un certain rang $u_n \leqslant v_n \leqslant w_n$ et si les suites (u_n) et (w_n) tendent vers 1, alors (v_n) tend vers 1.
- 4. \square Si à partir d'un certain rang $u_n \leq v_n \leq w_n$ et si les suites (u_n) et (w_n) convergent, alors (v_n) converge.
- 5. \boxtimes Si à partir d'un certain rang $u_n \leqslant v_n \leqslant w_n$ et si les suites (u_n) et (w_n) convergent, alors (v_n) est bornée.
- 6. \boxtimes Si $u_n = o(v_n)$ alors $u_n = O(v_n)$.
- 7. \square Si $u_n = O(v_n)$ et $v_n = O(u_n)$ alors $u_n \sim v_n$.
- 8. \boxtimes Si $u_n \sim v_n$ alors (u_n/v_n) est bornée.
- 9. \square Si $u_n \sim v_n$ alors $u_n v_n$ tend vers 0.
- 10. \boxtimes Si $u_n \sim v_n$ alors $u_n v_n = o(v_n)$.

Vrai-Faux 10. Soit (u_n) une suite de réels croissante et non majorée. Vous pouvez en déduire que (vrai ou faux et pourquoi) :

- 1. \boxtimes La suite (u_n) est positive à partir d'un certain rang.
- 2. \square La suite (u_n^2) est croissante.
- 3. \boxtimes La suite $(\sqrt{|u_n|})$ tend vers $+\infty$.
- 4. \boxtimes La suite $(\exp(-u_n))$ tend vers 0.
- 5. \square La suite $(1/u_n)$ est décroissante.

Vrai-Faux 11. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. $\Box n2^n = O(2^n)$.
- 2. $\boxtimes 2^{n+1} = O(2^n)$.
- 3. $\square 2^{n^2+n} = O(2^{n^2}).$
- $4. \boxtimes n2^n = o(3^n).$
- 5. $\Box n2^n/\sqrt{n+1} = O(2^n)$.
- 6. $\boxtimes n2^n/\sqrt{n^2+1} \sim 2^n$.
- 7. $\Box 3^n/n = O(2^n)$.
- 8. $\boxtimes 2^n/n = o(2^n)$.
- 9. $\square n2^{-n} = O(2^{-n}).$
- 10. $\boxtimes n3^{-n} = o(2^{-n}).$
- 11. $\square n2^{-n}/\sqrt{n+1} = O(2^{-n}).$
- 12. $\boxtimes n2^{-n}/\sqrt{n^2+1} \sim 2^{-n}$.
- 13. $\boxtimes 3^{-n}/n = O(2^{-n}).$
- 14. $\boxtimes 2^{-n}/n = o(2^{-n}).$

Exercice 14. On considère les suites (u_n) définies par :

$$u_n = 1 + \frac{\sqrt{n}}{n+1}$$
, $u_n = \frac{2n+3}{2n+1}$, $u_n = 1 + \frac{\sin(n^2)}{n+1}$, $u_n = \frac{2n+(-1)^n}{2n+1}$

Pour chacune de ces suites :

- 1. Montrer qu'elle converge vers 1.
- 2. Pour $\varepsilon > 0$ fixé, déterminer en fonction de ε le rang n_0 à partir duquel tous les termes de la suite restent dans l'intervalle $[1 \varepsilon, 1 + \varepsilon]$.

Exercice 15. On considère les suites (u_n) et (v_n) définies comme suit :

1.

$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$.

2.

$$u_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $v_n = u_n + \frac{1}{n^2}$.

3.

$$u_0 = a > 0$$
, $v_0 = b > a$ et $u_{n+1} = \sqrt{u_n v_n}$, $v_{n+1} = \frac{u_n + v_n}{2}$.

4.

$$u_0 = a > 0$$
, $v_0 = b > a$ et $u_{n+1} = \frac{u_n + v_n}{2}$, $v_{n+1} = \frac{2}{1/u_n + 1/v_n}$.

Montrer que les suites (u_n) et (v_n) sont adjacentes.

Exercice 16. Soit (u_n) une suite de réels.

- 1. Montrer que si les suites extraites (u_{3n}) , (u_{3n+1}) et (u_{3n+2}) convergent vers la même limite, alors (u_n) converge.
- 2. Montrer que si les suites extraites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent, alors (u_n) converge.
- 3. Montrer que si les suites extraites (u_{2n}) , (u_{2n+1}) et (u_{n^2}) convergent, alors (u_n) converge.
- 4. Montrer par un exemple que les suites extraites (u_{3n}) , (u_{3n+1}) , (u_{3n+2}) et (u_{n^2}) peuvent converger sans que (u_n) converge.

Exercice 17. Démontrer les relations de comparaison suivantes.

1. Suites tendant vers 0:

$$\frac{\ln n}{n} = o(\frac{1}{\sqrt{n}}) , \quad \frac{n^2 \ln n}{2^n} = o(\frac{1}{n^4}) , \quad \frac{10^n}{n!} = o((3/2)^{-n}) .$$

2. Suites tendant vers $+\infty$:

$$10^{n} = o(\frac{\sqrt{n!}}{(4/3)^{n}}), \quad n^{4} 2^{n^{2}} = o((6/5)^{n^{3}}), \quad (\ln n)^{4} \sqrt{n} = o(n^{2} \ln(\ln n)).$$

Exercice 18. Démontrer les relations de comparaison suivantes.

1. Suites tendant vers 0 :

$$\frac{\ln(n^2+n)}{n} = O(\frac{\ln(n)}{n}) \;, \quad \frac{n^2 + \ln(n^2)}{(2n+1)^3} = O(\frac{1}{n}) \;, \quad \frac{3}{2^{2n+1} + n^4} = O(4^{-n}) \;.$$

2. Suites tendant vers $+\infty$:

$$\frac{2n+\sqrt{n}}{\sqrt[3]{2n+3}} = O(n^{2/3}) , \quad \ln(n^2+2n+3) = O(\ln(n)) , \quad \frac{4n^2+3n\cos(n)}{5n-\sin(n+3)} = O(n) .$$

Exercice 19. Démontrer les relations de comparaison suivantes.

1. Suites tendant vers 0:

$$\frac{4n^3 - \sqrt{n^5 + 3n^4}}{(\sqrt{2}n + \sqrt{n})^4} \sim \frac{1}{n} , \quad \frac{\ln(2^{n + \sqrt{n}})}{\ln(2^{n\sqrt{n}})} \sim \frac{1}{\sqrt{n}} , \quad \frac{\sqrt[3]{n^2 + 2n\cos(n)}}{\sqrt{n^3 + n^2\sin(n)}} \sim n^{-5/6} .$$

2. Suites tendant vers $+\infty$:

$$\frac{2n + \ln(n^3)}{\sqrt{4n + 5}} \sim \sqrt{n} \;, \quad \frac{\ln(2^{n^2 + 3n})}{\ln(2^{n\sqrt{n}})} \sim \sqrt{n} \;, \quad \frac{\sqrt[3]{n^2 + 2n\cos(n)}}{\sqrt{n + \sin(n)}} \sim \sqrt[6]{n} \;.$$

Exercice 20. Démontrer les résultats suivants.

1.
$$\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^n = \sqrt{e} \;, \quad \lim_{n\to\infty} \left(1+\frac{1}{n^{1/2}}\right)^n = +\infty \;, \quad \lim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^n = 1 \;.$$

2.
$$\lim_{n \to \infty} \frac{n^2 + 2^n}{n^6 + 2^{3n}} = 0 , \quad \lim_{n \to \infty} \frac{n^{-1} + (-1)^n}{n^{-3} + (-1)^{3n}} = 1 , \quad \lim_{n \to \infty} \frac{n^{-1/2} + (-1/2)^n}{n^{-3} + (-1/2)^{3n}} = +\infty .$$

3.
$$\lim_{n\to\infty} \sqrt{n^2+1} - \sqrt{n^2-1} = 0 \ , \quad \lim_{n\to\infty} \sqrt{n^2+n} - \sqrt{n^2-n} = 1 \ .$$

Exercice 21. Soit A une partie de \mathbb{R} . On dit que A est dense dans \mathbb{R} , si pour tous réels a, b tels que $a < b, A \cap]a, b \neq \emptyset$.

- 1. Soient a et b deux réels tels que a < b. Montrer que si A est dense dans \mathbb{R} , alors l'intervalle a, b contient une infinité d'éléments de a.
- 2. Soit A une partie dense dans \mathbb{R} , et x un réel quelconque. Montrer que x est la limite d'une suite d'éléments de A. Indication : considérer les intervalles |x-1/n, x+1/n[, pour $n \in \mathbb{N}$.
- 3. Réciproquement, soit A une partie de \mathbb{R} telle que tout réel soit limite d'une suite d'éléments de A. Montrer que A est dense dans \mathbb{R} .

Exercice 22. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels. Pour tout $n\geqslant 1$, on note

$$c_n = \frac{1}{n}(u_1 + \dots + u_n)$$

la moyenne arithmétique des n premiers termes. La suite (c_n) est appelée « suite des moyennes de Cesaro » de (u_n) .

- 1. Montrer que si la suite (u_n) converge vers 0, alors la suite (c_n) converge aussi vers 0.
- 2. En déduire que si la suite (u_n) converge vers l, alors la suite (c_n) converge aussi vers l.
- 3. Pour $u_n = (-1)^n$, montrer que (c_n) tend vers 0.
- 4. Soit (u_n) une suite de réels telle que la suite $(u_{n+1} u_n)$ converge vers l. Montrer que la suite (u_n/n) converge également vers l.
- 5. Soit (u_n) une suite de réels strictement positifs telle que la suite (u_{n+1}/u_n) converge vers l > 0. Montrer que la suite $(\sqrt[n]{u_n})$ converge également vers l.

Exercice 23. On considère la suite (u_n) définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = F(u_n)$, avec :

$$F(x) = \frac{x^3}{4} \ .$$

- 1. Représenter le graphe de F. Utiliser les diagrammes en toile d'araignée pour deviner le comportement de la suite (u_n) pour $u_0 = -3$, $u_0 = -1$, $u_0 = 1$, $u_0 = 3$.
- 2. Déterminer les points fixes de F.
- 3. Montrer que $F([0,2]) \subset [0,2]$ et que $F([-2,0]) \subset [-2,0]$.
- 4. Montrer que (u_n) est décroissante, pour tout $u_0 \in]-\infty, -2[\cup]0, 2[$, croissante pour tout $u_0 \in]-2, 0[\cup]2, +\infty[$.
- 5. Donner la limite de (u_n) selon les valeurs de u_0 .

Exercice 24. On considère la suite (u_n) définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = F(u_n)$, avec :

$$F(x) = \frac{x}{x^2 + 1} \ .$$

- 1. Représenter le graphe de F. Utiliser les diagrammes en toile d'araignée pour deviner le comportement de la suite (u_n) pour $u_0 = -1$, puis $u_0 = 1$. Montrer que 0 est le seul point fixe de F.
- 2. On suppose $u_0 < 0$. Montrer que (u_n) est croissante et tend vers 0.
- 3. On suppose $u_0 > 0$. Montrer que (u_n) est décroissante et tend vers 0.

Exercice 25. On considère la suite (u_n) définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = F(u_n)$, avec :

$$F(x) = \frac{1}{2}(x + x^2) \ .$$

- 1. Représenter le graphe de F. Utiliser les diagrammes en toile d'araignée pour deviner le comportement de la suite (u_n) pour $u_0 = 1/2$, $u_0 = 2$, $u_0 = -1/2$. Déterminer les points fixes de F. Montrer que $F([0,1]) \subset [0,1]$ et que $F([-1,0]) \subset [-1,0]$.
- 2. On suppose $u_0 \in [0,1[$. Montrer que (u_n) est décroissante et donner sa limite.
- 3. On suppose $u_0 > 1$. Montrer que (u_n) est croissante et tend vers $+\infty$.
- 4. On suppose $u_0 \in [-1,0]$. Montrer que pour tout $n \in \mathbb{N}$, $|u_n| \leq 2^{-n}$. En déduire que (u_n) tend vers 0.
- 5. On suppose $u_0 < -1$. Montrer qu'on peut se ramener aux trois cas précédents. Donner la limite de (u_n) selon les valeurs de u_0 .

Exercice 26. Soit a un réel tel que 0 < a < 1. On considère la suite (u_n) définie par $u_0 = a$, et pour tout $n \ge 0$,

$$u_{n+1} = \frac{n + u_n}{n+1} \ .$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < 1$.
- 2. Montrer que la suite (u_n) est croissante.
- 3. Montrer que pour tout $n \in \mathbb{N}$,

$$u_{n+1} - 1 = \frac{u_n - 1}{n+1} \ .$$

4. Montrer que pour tout $n \in \mathbb{N}$,

$$u_n = 1 + \frac{a-1}{n!} \ .$$

Exercice 27. On considère la suite (u_n) définie par $u_0 = 3$ et pour tout $n \in \mathbb{N}^*$:

$$u_n = \frac{u_{n-1} + 2n^2 - 2}{n^2} \ .$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \ge 2$.
- 2. Montrer que la suite (u_n) est décroissante.
- 3. Montrer que la suite (u_n) converge vers 2.

Exercice 28. Soit a un réel et r un réel non nul. On considère la suite (u_n) définie par $u_0 \in \mathbb{R}$ et

$$(E) \qquad \forall n \in \mathbb{N} , \quad u_{n+1} = r u_n + a .$$

- 1. Montrer que la suite $(u_{n+1} u_n)$ est une suite géométrique de raison r.
- 2. On pose $\lambda = a/(1-r)$. Montrer que la suite constante dont tous les termes sont égaux à λ est solution de l'équation de récurrence (E).
- 3. Montrer que la suite $(u_n \lambda)$ est une suite géométrique.
- 4. En déduire l'expression suivante de u_n :

$$u_n = \frac{a}{1-r} + \left(u_0 - \frac{a}{1-r}\right) r^n .$$

Exercice 29. On considère l'équation de récurrence qui engendre la suite de Fibonacci :

$$(E) \forall n \in \mathbb{N} , \quad u_{n+2} = u_{n+1} + u_n .$$

- 1. Soit r un réel. Montrer qu'une suite géométrique de raison r vérifie (E) si et seulement si r est solution de l'équation $r^2 = r + 1$.
- 2. Pour tout $n \in \mathbb{N}$, définissons $u_n = a\phi^n + b(-1/\phi)^n$, où a et b sont deux réels, et ϕ est le nombre d'or :

$$\phi = \frac{1+\sqrt{5}}{2}$$
 , $-\frac{1}{\phi} = \frac{1-\sqrt{5}}{2}$.

Montrer que la suite (u_n) vérifie l'équation de récurrence (E).

3. Calculer les valeurs de a et b telles que

$$\begin{cases} a+b &= 1 \\ a\phi - b/\phi &= 1 \end{cases}$$

4. En déduire l'expression suivante du *n*-ième nombre de Fibonacci :

$$a_n = \frac{1}{2^{n+1}\sqrt{5}} \left((1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1} \right) .$$

5. À partir de cette expression, retrouver le résultat du cours :

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \phi .$$

3 Limites et continuité

Vrai-Faux 12. Soit a un réel et f une application définie sur un intervalle ouvert contenant a sauf peut-être en a. Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \boxtimes Si f admet une limite finie en a alors f est bornée au voisinage de a.
- 2. \square Si f admet une limite finie en a alors f est monotone au voisinage de a.
- 3. \boxtimes Si f admet une limite en a, alors f admet une limite à droite en a.
- 4. \square Si f admet une limite à gauche et une limite à droite en a alors f admet une limite en a.
- 5. $\boxtimes f$ admet l pour limite à gauche et pour limite à droite en a si et seulement si f(x) tend vers l quand x tend vers a.

Vrai-Faux 13. Soit f une fonction définie sur $]0, +\infty[$, à valeurs dans \mathbb{R} . Parmi les affirmations suivantes lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si f n'est pas bornée, alors f tend vers l'infini quand x tend vers $+\infty$.
- 2. \square Si f(x) tend vers $+\infty$ quand x tend vers $+\infty$, alors f est monotone au voisinage de $+\infty$.
- 3. \boxtimes Si pour toute suite (x_n) convergeant vers $+\infty$, la suite $(f(x_n))$ converge vers 1, alors f a pour limite 1 en $+\infty$.
- 4. \boxtimes Si la suite (f(n)) converge vers 0 et la suite (f(n+1/2)) converge vers 1/2, alors f(x) n'a pas de limite en $+\infty$.
- 5. \square Si f est strictement positive au voisinage de $+\infty$, alors la limite de f en $+\infty$, si elle existe, est strictement positive.

Vrai-Faux 14. Soit a un réel et f une application définie sur un intervalle ouvert contenant 0. Parmi les propositions suivantes, lesquelles sont équivalentes à $\lim_{x\to 0} f(x) = 0$ lesquelles ne le sont pas et pourquoi?

- 1. $\square \forall \varepsilon > 0$, $\exists \eta > 0$, $\forall x \leqslant \eta$, $|f(x)| \leqslant \varepsilon$
- $2. \ \boxtimes \forall \varepsilon \in]0,1[\ , \ \exists \eta \in]0,1[\ , \ 0<|x|\leqslant \eta \implies |f(x)|\leqslant \varepsilon$
- 3. $\square \forall \varepsilon > 0, \exists \eta > 0, \forall x \in [-\eta, \eta], \quad |f(x)| \leq \varepsilon$
- 4. $\boxtimes \forall \varepsilon > 0$, $\exists \eta > 0$, $\forall x \in [-\eta, 0[\cup]0, \eta]$, $|f(x)| < \varepsilon$
- 5. $\boxtimes \forall n \in \mathbb{N}^*, \exists \eta > 0, \forall x \in [-\eta, 0[\cup]0, \eta], |f(x)| < (1/n)$
- 6. $\square \ \forall n \in \mathbb{N}, \ \exists m \in \mathbb{N}, \ |x| \leqslant (1/m) \Longrightarrow |f(x)| \leqslant (1/n)$
- 7. $\boxtimes \forall n \in \mathbb{N}, \exists m \in \mathbb{N}, \quad 0 < |x| \leq (1/m) \Longrightarrow |f(x)| \leq (1/n^2)$

Vrai-Faux 15. Soit f une fonction définie sur \mathbb{R} telle que $\lim_{x\to 0} f(x) = f(1) = 1$ Vous pouvez en déduire que (vrai ou faux et pourquoi?)

- 1. $\boxtimes f$ est bornée au voisinage de 0.
- 2. $\square f$ est monotone au voisinage de 0.
- 3. $\square \ f$ est minorée par 1 au voisinage de 0.
- 4. $\boxtimes f$ est minorée par 0 au voisinage de 0.
- 5. $\boxtimes f$ est majorée par 2 au voisinage de 0.
- 6. \square la fonction $x \mapsto f(1/x)$ est bornée au voisinage de 0.
- 7. \boxtimes la fonction $x \mapsto \ln(f(x))$ est définie sur un intervalle ouvert contenant 0.

Vrai-Faux 16. Soit f une fonction définie sur \mathbb{R} telle que

$$\lim_{x \to 0} f(x) = 1$$

Vous pouvez en déduire que (vrai ou faux et pourquoi?)

1.
$$\Box \lim_{x\to 0} f(1-x) = 0$$

$$2. \boxtimes \lim_{x \to 0} 1/f(x) = 1$$

3.
$$\boxtimes \lim_{x \to 1} 1 - 1/f(1-x) = 0$$

$$4. \boxtimes \lim_{x \to 0} \sqrt{f(\sqrt{x})} = 1$$

6.
$$\boxtimes \lim_{x \to 0} 1/f(\sin(x)) = 1$$

7.
$$\Box \lim_{x\to 0} f(e^{-x}) = 1$$

8.
$$\boxtimes \lim_{x \to +\infty} \ln(f(e^{-x})) = 0$$

Vrai-Faux 17. Toutes les affirmations suivantes concernent des comparaisons de fonctions *au voisinage de* 0. Parmi elles, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box 2x^3 + \sqrt{x^4 + x^2} = O(x^2)$$

2.
$$\boxtimes 2x^3 + \sqrt{x^4 + x^2} = O(x)$$

3.
$$\boxtimes 2x^3 + \sqrt{x^4 + x^2} = o(\sqrt{|x|})$$

4.
$$\Box \frac{1}{2x^3 + \sqrt{x^4 + x^2}} = o(1/\sqrt{|x|})$$

5.
$$\boxtimes \frac{1}{2x^3 + \sqrt{x^4 + x^2}} = O(1/|x|)$$

6.
$$\boxtimes \ln(|x|) = o(1/|x|)$$

Vrai-Faux 18. Toutes les affirmations suivantes concernent des comparaisons de fonctions au voisinage $de +\infty$. Parmi elles, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box 2x^3 + \sqrt{x^4 + x^2} = O(x^2)$$

2.
$$\boxtimes 2x^3 + \sqrt{x^4 + x^2} = O(x^3)$$

3.
$$\square 2x^3 + \sqrt{x^4 + x^2} = o(x^2)$$

4.
$$\boxtimes \frac{1}{2x^3 + \sqrt{x^4 + x^2}} = o(1/x^2)$$

5.
$$\boxtimes \frac{1}{2x^3 + \sqrt{x^4 + x^2}} = O(\sin(1/x^3))$$

6.
$$\boxtimes \ln(x) = o(x)$$

7.
$$\Box e^{2x} = O(e^x)$$

Vrai-Faux 19. Soit f une application définie sur un intervalle ouvert contenant 0. Toutes les affirmations suivantes concernent les propriétés de f au voisinage de 0. Parmi elles, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

- 1. \square Si f(x) est équivalent à x, alors f est croissante au voisinage de 0.
- 2. \boxtimes Si f(x) est équivalent à x, alors $f^2(x)$ est équivalent à x^2 .
- 3. \boxtimes Si f(x) est un grand O de x, alors $f^2(x)$ est un petit o de x.
- 4. \square Si f(x) est dominé par x, alors f(x) x est négligeable devant x.
- 5. \boxtimes Si f(x) est équivalent à x, alors f(x) x est négligeable devant x.

Vrai-Faux 20. Soit f une application continue sur [0,1]. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

- 1. $\boxtimes f$ est bornée sur [0,1].
- 2. $\boxtimes f([0,1])$ est un intervalle fermé borné.
- 3. \square si le produit f(0)f(1) est strictement positif, alors f est de signe constant sur [0,1].
- 4. \boxtimes si le produit f(0)f(1) est strictement négatif, alors f s'annule sur [0,1].
- 5. \square si le produit f(0)f(1)f(1/2) est strictement négatif, alors f s'annule en au moins deux points distincts de [0,1].
- 6. \boxtimes les produits f(0)f(1/2) et f(1/2)f(1) sont strictement négatifs, alors f s'annule en au moins deux points distincts de [0,1].
- 7. \square pour tout $y \in f([0,1])$, l'équation f(x) = y a au plus une solution dans [0,1].

Vrai-Faux 21. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

- 1. \square Il existe une application continue et surjective de \mathbb{R} vers \mathbb{R}^* .
- 2. \boxtimes Il existe une application continue et bijective de $\mathbb R$ vers] -1,1[.
- 3. \boxtimes Pour tout $\varepsilon > 0$, il existe une application continue et bijective de \mathbb{R} vers $] \varepsilon, +\varepsilon[$.
- 4. \square Il existe une application continue et bijective de [-1,1] vers \mathbb{R} .
- 5. \boxtimes Il existe une application continue et bijective de] -1,1[vers \mathbb{R} .
- 6. \square Il existe une application continue et strictement croissante de]-1,1[vers [-1,1].
- 7. \square Il existe une application continue et strictement croissante de [-1,1[vers]-1,1[.
- 8. \boxtimes Il existe une application continue et strictement décroissante de [-1,1[vers]-1,1].

Exercice 30. Soient f et g deux fonctions définies sur]0,1], à valeurs dans \mathbb{R} . Démontrer :

1. La limite à droite de f en 0 est $+\infty$ si et seulement si

$$\forall n \in \mathbb{N}, \exists m \in \mathbb{N}^*, \quad 0 < x \le (1/m) \implies f(x) \geqslant n$$

- 2. La limite à droite de f en 0 est $+\infty$ si et seulement si, pour toute suite (x_n) de réels strictement positifs, convergeant vers 0, la suite $(f(x_n))$ tend vers $+\infty$.
- 3. La limite à droite de f en 0 est $+\infty$ si et seulement si pour tout $a \in \mathbb{R}$,

$$\lim_{x \to a^+} f(x - a) = +\infty$$

- 4. La limite à droite de f en 0 est $\pm \infty$ si et seulement si : $\lim_{x\to +\infty} 1/f(1/x)=0$
- 5. Si la limite à droite de f et de g en 0 est $+\infty$, alors il en est de même pour f+g et f*g.

Exercice 31. Soit f une fonction définie sur \mathbb{R} , à valeurs dans \mathbb{R} . Soient a et l deux réels. Pour chacune des propriétés suivantes, que peut-on dire de f lorsqu'elle est vérifiée?

1.
$$\forall \varepsilon > 0$$
, $|x - a| \leq 1 \implies |f(x) - l| \leq \varepsilon$

2.
$$\exists \eta > 0$$
, $|x - a| \leqslant \eta \implies |f(x) - l| \leqslant 1$

3.
$$\forall \varepsilon > 0$$
, $\exists \eta > 0$, $x - a \leqslant \eta \implies |f(x) - l| \leqslant \varepsilon$

4.
$$\forall \varepsilon > 0$$
, $\exists \eta > 0$, $|x - a| \leqslant \eta \implies f(x) - l \leqslant \varepsilon$

5.
$$\exists \eta > 0, \ \forall \varepsilon > 0, \ |x - a| \leqslant \eta \implies |f(x) - l| \leqslant \varepsilon$$

Exercice 32. Démontrer que les applications suivantes n'ont pas de limite à droite en 0 (ni finie, ni infinie). On rappelle que si x est une réel, $\lfloor x \rfloor$ désigne sa partie entière et D(x) sa partie décimale.

1.
$$f: x \mapsto \sin(1/x)$$

2.
$$f: x \mapsto D(1/x)$$

3.
$$f: x \mapsto \tan(1/x)$$

4.
$$f: x \mapsto \ln(x)\cos(1/x)$$

5.
$$f: x \mapsto (-1)^{\lfloor 1/x \rfloor}$$

6.
$$f: x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Exercice 33. Démontrer que les fonctions suivantes n'ont pas de limite en $+\infty$ (ni finie, ni infinie).

1.
$$f: x \mapsto \sin(x)$$

2.
$$f: x \mapsto \tan(x)$$

3.
$$f: x \mapsto \ln(x)\cos(x)$$

4.
$$f: x \mapsto (-1)^{\lfloor x \rfloor}$$

5.
$$f: x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

6.
$$f: x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{N} \\ 0 & \text{sinon} \end{cases}$$

Exercice 34. Démontrer les résultats suivants.

$$\lim_{x \to 0} \frac{\sqrt{4x^2 + 1}}{2x + 3} = \frac{1}{3} \quad ; \quad \lim_{x \to 0} \frac{\sqrt{4x^2 + x^3}}{|2x + x^2|} = 1$$

$$\lim_{x \to 0} \frac{x + \sqrt{|x|}}{x - \sqrt{|x|}} = -1 \quad ; \quad \lim_{x \to 0} \frac{\sqrt[3]{|x|} + \sqrt{|x|}}{\sqrt[3]{|x|} - \sqrt{|x|}} = 1$$

$$\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x} = 1 \quad ; \quad \lim_{x \to +\infty} \frac{\sqrt[3]{1 + x} - \sqrt[3]{1 - x}}{x} = \frac{2}{3}$$

Exercice 35. Démontrer les résultats suivants.

$$\lim_{x \to +\infty} \frac{\sqrt{4x^2 + 1}}{2x - 3} = 1 \quad ; \quad \lim_{x \to +\infty} \frac{\sqrt[3]{x^6 + 3x^4 + 1}}{\sqrt{4x^4 - 3}} = \frac{1}{2}$$

$$\lim_{x \to +\infty} \frac{x + \sqrt{x}}{x - \sqrt{x}} = 1 \quad ; \quad \lim_{x \to +\infty} \frac{\sqrt[3]{x} + \sqrt{x}}{\sqrt[3]{x} - \sqrt{x}} = -1$$

$$\lim_{x \to +\infty} \frac{e^{2x} + 1}{(e^x + 1)(e^x + 2)} = 1 \quad ; \quad \lim_{x \to -\infty} \frac{e^{2x} + 1}{(e^x + 1)(e^x + 2)} = \frac{1}{2}$$

$$\lim_{x \to +\infty} \sqrt{x + 1} - \sqrt{x - 1} = 0 \quad ; \quad \lim_{x \to 0} \sqrt[3]{1 + x} - \sqrt[3]{x - 1} = 0$$

Exercice 36. Démontrer les résultats suivants.

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \quad ; \quad \lim_{x \to 0} \frac{\ln(1 - 2x)}{\sin(3x)} = -\frac{2}{3}$$
$$\lim_{x \to 0} (1 + x)^{1/x} = e \quad ; \quad \lim_{x \to 0} (1 - x^2)^{1/x} = 1$$

Exercice 37. Déterminer les limites suivantes.

$$\lim_{x \to +\infty} x^2 e^{-\sqrt{x}} \quad ; \quad \lim_{x \to +\infty} x^4 \ln^2(x) e^{-\sqrt{x}}$$

$$\lim_{x \to +\infty} \frac{x \ln(x)}{x^2 + 1} \quad ; \quad \lim_{x \to +\infty} \frac{x^2 (\ln(x) + \cos(x))}{x^2 + \sin(x)}$$

$$\lim_{x \to +\infty} \frac{e^{-\sqrt[3]{x}}}{x^3 \ln^3(x)} \quad ; \quad \lim_{x \to +\infty} \frac{\sqrt{x}}{\ln^2(x)}$$

Exercice 38. Démontrer les résultats suivants.

$$\lim_{x \to 1^{-}} \frac{1 - x^{2}}{\sqrt{1 - x}} = 0 \quad ; \quad \lim_{x \to 1} \frac{1 - x^{2}}{1 - \sqrt{x}} = 4$$

$$\lim_{x \to 1} \frac{1 - x^{2}}{\sqrt{x} - \sqrt{2x - 1}} = 4 \quad ; \quad \lim_{x \to 1} (\sqrt{x} - 1) \ln(\ln(x)) = 0$$

$$\lim_{x \to \pi/2} \frac{\cos(x)}{2x - \pi} = -\frac{1}{2} \quad ; \quad \lim_{x \to \pi/2} (1 - \sin(x)) \tan(x) = 0$$

$$\lim_{x \to \pi/4} \frac{\sin(x) - \cos(x)}{1 - \tan(x)} = \sqrt{2} \quad ; \quad \lim_{x \to \pi/4} \frac{\sin(x) - \cos(x)}{x - \pi/4} = \sqrt{2}$$

Exercice 39. Soit f une fonction définie sur un intervalle contenant 0. Démontrer les résultats suivants, qui concernent tous des comparaisons au voisinage de 0.

- 1. Si $f(x) = O(x^2)$ alors f = o(x).
- 2. Si $xf(x) = O(x^2)$ alors f = O(x).
- 3. Si f(x) = o(x) alors $f(x) = o(\sqrt{x})$.
- 4. Si f(x) x = o(x) alors $f(x) \sim x$.
- 5. Si $f(x) \sim x$ alors f(x) x = o(x).
- 6. Si $f(x) = O(x^2)$ alors $f(x) x \sim -x$.

Exercice 40. Soit f une fonction définie sur un intervalle de la forme $[A, +\infty[$. Démontrer les résultats suivants, qui concernent tous des comparaisons au voisinage $de +\infty$.

- 1. Si f(x) = O(x) alors $f(x) = o(x^2)$.
- 2. Si $xf(x) = O(x^2)$ alors f = O(x).
- 3. Si $f(x) = o(\sqrt{x})$ alors f(x) = o(x).
- 4. Si f(x) x = o(x) alors $f(x) \sim x$.
- 5. Si $f(x) \sim x$ alors f(x) x = o(x).
- 6. Si $f(x) = O(\sqrt{x})$ alors $f(x) x \sim -x$.

Exercice 41. Justifier les équivalents suivants, au voisinage de 0

$$\frac{x^3 - 2x^2}{x^2 - x} \sim 2x$$
 ; $\frac{x^3 - 2x^2 - 1}{x^2 - x} \sim \frac{1}{x}$

$$x^{2} - 2x^{3}\sin(1/x) \sim x^{2}$$
 ; $\frac{x + x^{2}\sin(1/x)}{x^{2} - x^{3}\cos(1/x)} \sim \frac{1}{x}$

Exercice 42. Justifier les équivalents suivants, au voisinage de $+\infty$

$$\frac{x^3-2x^2}{x^2-x} \sim x \quad ; \quad \frac{x^3-2x^2-1}{x^2-x^4} \sim -\frac{1}{x}$$

$$\lfloor x \rfloor \sim x$$
 ; $\frac{x^2 + \cos(x)}{x + \sin(x)} \sim x$

$$\frac{e^{2x} - 2}{e^x - 1} \sim e^x$$
 ; $\frac{e^{-2x} - 2e^{-x}}{e^{-x} - 1} \sim 2e^{-x}$

Exercice 43. Pour chacune des fonctions f suivantes, démontrer directement qu'elle est continue en tout point de son domaine de définition, sans utiliser les théorèmes du cours.

- 1. $f: x \mapsto x^2$
- $2. f: x \mapsto \frac{1}{x^2}$
- 3. $f: x \mapsto \sqrt{x}$

Exercice 44. Si x est un réel, on note $\lfloor x \rfloor$ sa partie entière et $D(x) = x - \lfloor x \rfloor$ sa partie décimale. Pour chacune des fonctions f suivantes : dire en quels points de \mathbb{R} elle est continue, continue à gauche ou continue à droite, et le démontrer.

- 1. $f: x \mapsto D(x)$
- 2. $f: x \mapsto D(1-x)$
- 3. $f: x \mapsto D(1/x)$
- 4. $f: x \mapsto x \lfloor 1/x \rfloor$
- 5. $f: x \mapsto \lfloor x \rfloor + 2D(x)$
- 6. $f: x \mapsto \lfloor x \rfloor + D(x)^2$
- 7. $f: x \mapsto \sqrt{\lfloor x \rfloor} + D(x)$
- 8. $f: x \mapsto \lfloor \cos(1/x) \rfloor$
- 9. $f: x \mapsto \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{sinon} \end{cases}$

Exercice 45. Pour chacune des fonctions f suivantes : déterminer son domaine de définition, représenter son graphe, et montrer qu'elle se prolonge par continuité en une fonction définie et continue sur \mathbb{R} .

- 1. $f: x \mapsto (x^2 + x)/\sqrt{|x|}$
- 2. $f: x \mapsto x \cos(1/x)$
- 3. $f: x \mapsto (1/x^2)e^{-1/x^2}$
- 4. $f: x \mapsto (1/(x^2 1))e^{-1/(x^2 1)^2}$

Exercice 46.

- 1. Soit f une fonction définie sur \mathbb{R} , continue en 0, et telle que $\forall x \in \mathbb{R}$, f(2x) = f(x)Démontrer par récurrence que $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $f(x) = f(2^{-n}x)$ En déduire que f est constante.
- 2. Soit f une fonction définie sur \mathbb{R}^{+*} , continue en 1, et telle que

$$\forall x \in \mathbb{R} , \quad f(x^2) = f(x)$$

Démontrer par récurrence que

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \quad f(x) = f(x^{1/2n})$$

En déduire que f est constante.

Exercice 47.

1. Soit f une fonction de \mathbb{R} dans \mathbb{R} , continue sur \mathbb{R} . On définit q par

$$g(x) = \begin{cases} 0 & \text{si } x \leq 0\\ f(\sqrt{x}) - f(-\sqrt{x}) & \text{si } x > 0 \end{cases}$$

Démontrer que q est continue sur \mathbb{R} .

2. Soit f une fonction de \mathbb{R} dans \mathbb{R} , continue en 0. On suppose que :

$$\forall x, y \in \mathbb{R}$$
, $f(x+y) = f(x) + f(y)$

Démontrer que f est continue sur \mathbb{R} .

3. Soit f une fonction de \mathbb{R} dans \mathbb{R} , continue en 0. On suppose que :

$$\forall x, y \in \mathbb{R}$$
, $f(x+y) = f(x)f(y)$

Démontrer que f est continue sur \mathbb{R} .

4. Soit f une fonction de [0,1] dans \mathbb{R} , croissante. On suppose que :

$$\forall y \in [f(0), f(1)], \ \exists x \in [0, 1], \ f(x) = y$$

Démontrer que f est continue sur [0,1].

Exercice 48. Pour chacune des fonctions f suivantes, définie sur un intervalle I, et à valeurs dans \mathbb{R} : déterminer le sens de variation de f. Déterminer le nombre de solutions de l'équation f(x) = 0 dans I. Donner un intervalle d'approximation d'amplitude 10^{-2} pour chaque solution.

- 1. $I = \mathbb{R}, f : x \longmapsto x^3 + 1$
- 2. $I = \mathbb{R}, f : x \longmapsto x^5 + 1$
- 3. $I = \mathbb{R}, f : x \longmapsto x^5 5x + 1$
- 4. $I =]-2,0[, f : x \longmapsto 2x\sqrt{x+2} + 1]$
- 5. $I =]0, 1[, f : x \mapsto x \cos(x)]$
- 6. $I =]0, \pi/2[, f : x \mapsto \tan(x) x + 2]$

Exercice 49. Pour chacune des fonctions f suivantes, définie sur un intervalle I, et à valeurs dans \mathbb{R} : déterminer le sens de variation de f. Déterminer f(I). Démontrer que f est une bijection de I vers f(I).

- 1. $I = [0, +\infty[, f : x \longmapsto x^2]$
- 2. $I = \mathbb{R}, f : x \longmapsto x^3$ 3. $I = \mathbb{R}, f : x \longmapsto \frac{x}{1 + |x|}$

4.
$$I = [0, \pi/2[, f : x \mapsto \frac{\sqrt{x^2 + 1}}{\cos(x)}]$$

4 Dérivabilité et convexité

Vrai-Faux 22. Soit f une fonction de \mathbb{R} dans \mathbb{R} définie sur un intervalle ouvert I. Soit a un point de I. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \boxtimes Si f est dérivable en a, alors le taux d'accroissement de f en a est prolongeable par continuité en a.
- 2. \square Si f est dérivable en $a \in I$, alors f est continue sur un intervalle ouvert contenant a.
- 3. \boxtimes Si f est dérivable sur I, alors f est continue sur I.
- 4. \boxtimes Si f est dérivable à gauche en a, alors f est continue à gauche en a.
- 5. \square Si f est dérivable à gauche et à droite en a, alors f est dérivable en a.
- 6. \boxtimes Si la tangente au graphe de f en a est verticale, f n'est pas dérivable en a.

Vrai-Faux 23. Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} , dérivables sur un intervalle ouvert I. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \boxtimes La dérivée de f + g est la somme des dérivées de f et de g.
- 2. \square La dérivée de fg est le produit des dérivées de f et de g.
- 3. \boxtimes Le quotient f/g est dérivable en tout point où g ne s'annule pas.
- 4. \boxtimes La fonction $x \mapsto \exp(f(x)g(x))$ est dérivable sur I.
- 5. \square La fonction $x \mapsto f(\exp(x))$ est toujours dérivable sur I.

Vrai-Faux 24. Soit f une fonction de \mathbb{R} dans \mathbb{R} , définie sur un intervalle ouvert I. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \boxtimes Si f est de classe \mathcal{C}^1 sur I, alors f' est continue sur I.
- 2. \square Si f' est dérivable sur I, alors f est de classe \mathcal{C}^2 sur I.
- 3. \boxtimes Si f' est dérivable sur I, alors f est de classe \mathcal{C}^1 sur I.
- 4. \boxtimes Si f est de classe \mathcal{C}^{∞} sur I alors ses dérivées successives sont toutes continues sur I.
- 5. \square Si f est de classe \mathcal{C}^1 sur I, alors |f| est de classe \mathcal{C}^1 sur I.
- 6. \boxtimes Si f est de classe \mathcal{C}^{∞} sur I, alors $x \mapsto e^{f(x)}$ est aussi de classe \mathcal{C}^{∞} sur I.

Vrai-Faux 25. Soit f une fonction de \mathbb{R} dans \mathbb{R} , dérivable sur un intervalle ouvert I. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1. \square Si la dérivée de f s'annule en $x_0 \in I$, alors x_0 est un extremum local pour f.
- 2. \boxtimes Si f prend la même valeur en deux points distincts, alors la dérivée de f s'annule entre ces deux points.
- 3. \square Si f admet un maximum local, alors f admet un maximum global.
- 4. \boxtimes Si f admet un maximum local, alors la dérivée de f s'annule en ce point.
- 5. \boxtimes Si la dérivée de f est positive ou nulle sur I, alors f est croissante sur I.
- 6. \boxtimes Si la dérivée de f est strictement positive sur I, alors f est strictement croissante sur I.
- 7. \square Si f est strictement croissante sur I, alors sa dérivée est strictement positive sur I.
- 8. \boxtimes Soient x, y avec $x \neq y$ et f(y) f(x) = y x, alors il existe $c \in]x, y[$ tel que f'(c) = 1.

Vrai-Faux 26. Soit f une fonction de \mathbb{R} dans \mathbb{R} , définie sur un intervalle ouvert I. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1. \boxtimes Si f est convexe sur I, alors f est continue sur I.

- 2. \boxtimes Si f est convexe sur I, alors f est dérivable à droite en tout point de I.
- 3. \square Si f est convexe sur I, alors f est dérivable en tout point de I.
- 4. \boxtimes Si f est convexe et dérivable sur I, alors la dérivée de f est croissante sur I.
- 5. \square Si f et convexe et dérivable sur I, alors f est deux fois dérivable sur I.
- 6. \boxtimes Si f est deux fois dérivable sur I, et si sa dérivée seconde est positive, alors f est convexe sur I.

Exercice 50. Pour chacune des fonctions f définies ci-dessous :

- 1. Donner une expression explicite du taux d'accroissement de f en un point a quelconque du domaine de définition.
- 2. Calculer la limite en a de ce taux d'accroissement et retrouver l'expression de la dérivée de f en a.

$$f(x) = x^2$$
; $f(x) = \sqrt{x}$; $f(x) = x\sqrt{x}$.

Exercice 51. Règle de l'Hôpital : Soient f et g deux fonctions définies sur un intervalle ouvert I. On suppose que f et g sont dérivables en $a \in I$ et que $g'(a) \neq 0$. Montrer que :

$$\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(a)}{g'(a)} .$$

Exercice 52. Pour chacune des applications f définies ci-dessous sur \mathbb{R}^* :

- 1. Verifiez que f est prolongeable par continuité en 0.
- 2. L'application prolongée est-elle dérivable en 0?

$$f(x) = x|x| \; ; \quad f(x) = \frac{x}{1+|x|} \; ; \quad f(x) = \frac{1}{1+|x|} \; ; \quad f(x) = \cos(\sqrt{|x|}) \; ;$$
$$f(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \; ; \quad f(x) = \sqrt{x} \ln|x| \; ; \quad f(x) = \frac{e^x - 1}{\sqrt{x}} .$$

Exercice 53. Pour chacune des fonctions f définies ci-dessous :

- 1. Préciser le domaine de définition de f.
- 2. Soit I un intervalle ouvert inclus dans \mathcal{D}_f . Démontrer que f est dérivable sur I.
- 3. Calculer l'expression de la dérivée de f.

$$f(x) = \frac{1}{\sqrt[3]{x^2}} - \frac{1}{\sqrt{x^3}}; \quad f(x) = \sqrt{x + \sqrt{1 + x^2}}; \quad f(x) = \left(1 + \frac{1}{x}\right)^x$$
$$f(x) = \sqrt{1 + x^2 \sin^2(x)}; \quad f(x) = \frac{x + \ln(x)}{x - \ln(x)}; \quad f(x) = \frac{e^{1/x} + 1}{e^{1/x} - 1}.$$

Exercice 54. Pour chacune des fonctions f définies ci-dessous, sur un intervalle [a,b]:

- 1. Démontrer que f est dérivable sur [a, b].
- 2. La fonction f est-elle dérivable à droite en a?
- 3. La fonction f est-elle dérivable à gauche en b?

$$f(x) = \sqrt{x(1-x)} \text{ sur } [0,1]; \quad f(x) = \sqrt{(1-x^2)(1-x)} \text{ sur } [-1,1];$$

$$f(x) = x^{2/3}(1-x)^{3/2} \text{ sur } [0,1]; \quad f(x) = \sqrt{x\sin(x)(1-\sin(x))} \text{ sur } [0,\pi/2].$$

Exercice 55. Pour tout $k \in \mathbb{N}$, calculer la dérivée d'ordre k des fonctions suivantes.

$$x \mapsto \frac{1}{1+x}$$
; $x \mapsto x^2 e^x$; $x \mapsto \ln(1-x^2)$;

$$x \mapsto e^x \sin(x)$$
; $x \mapsto x^2 \ln(1+x)$; $x \mapsto x^2 (1+x)^n$.

Exercice 56.

1. Déterminer les réels α et β tels que la fonction f définie ci-dessous soit de classe \mathcal{C}^1 sur \mathbb{R} .

$$f(x) = \begin{cases} e^x & \text{si } x \leq 0 \\ \alpha x + \beta & \text{si } x > 0 \end{cases}.$$

2. Déterminer les réels α , β , γ tels que la fonction f définie ci-dessous soit de classe \mathcal{C}^2 sur \mathbb{R} .

$$f(x) = \begin{cases} e^x & \text{si } x \leq 0 \\ \alpha x^2 + \beta x + \gamma & \text{si } x > 0 \end{cases}.$$

Exercice 57. On dit qu'une fonction de \mathbb{R} dans \mathbb{R} est paire si pour tout $x \in \mathbb{R}$, f(x) = f(-x). On dit qu'elle est est *impaire* si $\forall x \in \mathbb{R}$, f(x) = -f(-x). Soit f une fonction dérivable sur \mathbb{R} .

- 1. Montrer que si f est paire alors f' est impaire.
- 2. Montrer que si f est impaire alors f' est paire.

Exercice 58. Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par $f(x) = e^{-1/x^2}$ si $x \neq 0$ et f(0) = 0.

- 1. Montrer que pour tout $k \in \mathbb{N}$, $f^{(k)}(0) = 0$.
- 2. Soit g la fonction de \mathbb{R} dans \mathbb{R} définie par g(x) = f(x) si x > 0 et g(x) = 0 si $x \leq 0$. Montrer que g est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Exercice 59. Soient a et b deux réels tels que a < b. Soit f une fonction définie sur [a, b], dérivable à gauche et à droite en tout point de [a, b]. On suppose que f est continue à gauche en a, à droite en b et que f(a) = f(b). Montrer qu'il existe un point $c \in [a, b]$ tel que le produit de la dérivée à gauche en c par la dérivée à droite en c soit négatif ou nul.

Exercice 60. Soit f une fonction continue sur $[0, +\infty[$, dérivable sur $]0, +\infty[$, telle que

$$\lim_{x \to +\infty} f(x) = f(0) \ .$$

Montrer qu'il existe c > 0 tel que f'(c) = 0.

Exercice 61. Soient a et b deux réels tels que a < b. Soient f et g deux fonctions définies sur [a, b], dérivables sur [a, b[. On suppose que g' ne s'annule pas sur [a, b[.

1. Montrer que le théorème de Rolle s'applique à la fonction

$$x \longmapsto (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$$
.

2. En déduire qu'il existe un point $c \in]a, b[$ tel que : $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Exercice 62. Soit f une fonction continue sur $[0, +\infty[$, dérivable sur $]0, +\infty[$, telle que f(0) = 0. On suppose que f' est croissante sur $]0, +\infty[$. Démontrer que la fonction g définie sur $]0, +\infty[$ par g(x) = f(x)/x est croissante.

Exercice 63.

- 1. Etudier les variations de la fonction $x \mapsto x^5 5x + 1$ sur \mathbb{R} . En déduire que l'équation $x^5 5x + 1 = 0$ a trois solutions réelles.
- 2. Soient a et b deux réels et n un entier naturel. Montrer que l'équation $x^n + ax + b = 0$ a au plus trois solutions réelles.
- 3. Soit n un entier naturel supérieur ou égal à 2. Montrer que l'équation $x^n + x^{n-1} + x^2 + x 1 = 0$ a une seule solution réelle positive.

Exercice 64.

1. Soient α , β et γ trois réels. On considère la fonction f définie par

$$f(x) = \alpha x^2 + \beta x + \gamma .$$

Soient a et b deux réels tels que a < b. Déterminer le point $c \in]a,b[$ tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c) .$$

2. Soient α , β et γ trois réels. On considère la fonction f définie par

$$f(x) = \alpha + \beta x + \gamma e^x.$$

Soient a et b deux réels tels que a < b. Déterminer le point $c \in [a, b]$ tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c) .$$

Exercice 65. Utiliser le théorème des accroissements finis pour donner un majorant des réels suivants. Comparer ce majorant avec une approximation numérique à 10^{-6} près.

$$\sqrt{10001} - 100$$
; $\frac{1}{0.998} - 1$; $0.001 - \frac{1}{1003}$; $\sin(3.14)$; $\ln(1.001)$; $e^{0.002} - 1$.

Exercice 66.

- 1. (a) Soient a et b deux réels tels que 0 < a < b. Montrer que : $\frac{1}{2\sqrt{b}} < \frac{\sqrt{b} \sqrt{a}}{b a} < \frac{1}{2\sqrt{a}}$.
 - (b) Pour tout $n \in \mathbb{N}^*$, on pose : $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

Démontrer que pour tout $n: S_{n+1} - 1 < 2\sqrt{n+1} < S_n$.

- 2. (a) Soient a et b deux réels tels que 0 < a < b. Montrer que : $\frac{1}{b} < \frac{\ln(b) \ln(a)}{b a} < \frac{1}{a}$.
 - (b) Pour tout $n \in \mathbb{N}^*$, on pose : $S_n = \sum_{k=1}^n \frac{1}{k}$. Démontrer que pour tout n,

$$S_{n+1} - 1 < \ln(n+1) < S_n .$$

Exercice 67.

- 1. Démontrer la Règle de L'Hôpital généralisée : Si f et g sont deux fonctions dérivables sur]a,b[dont la limite en a est nulle, si g' ne s'annule pas sur]a,b[et si $\lim_{x\to a^+}\frac{f'(x)}{g'(x)}=\ell,$ alors $\lim_{x\to a^+}\frac{f(x)}{g(x)}=\ell.$
- 2. En utilisant deux fois cette règle déterminer les limites suivantes :

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \; ; \quad \lim_{x \to 0} \frac{\ln(1 + x) - x}{x^2} \; ; \quad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \cdot$$

Exercice 68. Soient a et b deux réels tels que a < b. Soit f une fonction deux fois dérivable sur [a,b] telle que f(a) = f(b) = 0 et pour tout $x \in [a,b]$, $f''(x) \leq 0$. Montrer que, pour tout $x \in [a,b]$, $f(x) \geq 0$.

Exercice 69. Soit f une fonction deux fois dérivable sur \mathbb{R} telle que pour tout $x \in \mathbb{R}$, $f(x) \ge 0$, $f'(x) \ge 0$ et $f''(x) \ge 0$.

- 1. Montrer que si f est majorée alors f est constante.
- 2. Montrer que si f n'est pas majorée, alors : $\lim_{x\to+\infty} f(x) = +\infty$.
- 3. Montrer que la limite quand x tend vers $+\infty$ de f(x)/x existe, et qu'elle est soit infinie, soit finie et strictement positive.
- 4. Soit $f: x \mapsto x + \sqrt{x^2 + 1}$. Montrer que f vérifie les hypothèses de l'exercice, et calculer la limite quand x tend vers $+\infty$ de f(x)/x.

Exercice 70. Soit f une fonction convexe sur un intervalle ouvert I, dérivable en un point $c \in I$, et telle que f'(c) = 0. Montrer que c est un minimum global pour f sur $I : \forall x \in I$, $f(c) \leq f(x)$.

Exercice 71.

1. Soit f une fonction convexe sur un intervalle I. Montrer que pour tout $n \in \mathbb{N}^*$, pour tout $x_1, \ldots, x_n \in I$,

$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) \leqslant \frac{1}{n}\sum_{i=1}^{n}f(x_i) .$$

2. Démontrer que pour tout $n \in \mathbb{N}^*$, et pour tout $x_1, \ldots, x_n \in \mathbb{R}^+$,

$$\left(\frac{1}{n}\sum_{i=1}^n \sqrt{x_i}\right)^2 \leqslant \frac{1}{n}\sum_{i=1}^n x_i \leqslant \sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}.$$

3. Démontrer que pour tout $n \in \mathbb{N}^*$, et pour tout $x_1, \ldots, x_n \in \mathbb{R}^{+*}$,

$$\left(\prod_{i=1}^n x_i\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^n x_i .$$

4. Démontrer que pour tout $n \in \mathbb{N}^*$, et pour tout $x_1, \ldots, x_n \in \mathbb{R}^{+*}$,

$$\left(\frac{1}{n}\sum_{i=1}^n \frac{1}{x_i}\right)^{-1} \leqslant \frac{1}{n}\sum_{i=1}^n x_i .$$

5 Fonctions usuelles

Vrai-Faux 27. Soit a un réel strictement positif, x et y deux réels quelconques. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes a^{x-y} = a^x/a^y$$
.

2.
$$\Box a^{(x^y)} = a^{xy}$$
.

3.
$$\Box a^{2xy} = a^{x^2} a^{y^2}$$
.

4.
$$\boxtimes a^{(x+y)/2} = \sqrt{a^x a^y}$$
.

5.
$$\boxtimes a^{-x+y/2} = \sqrt{a^y}/a^x$$
.

6.
$$\Box a^{2x-y} = (a^x/a^y)^2$$
.

Vrai-Faux 28. Soient a et b deux réels strictement positifs. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes \ln(\sqrt{a/b}) = (1/2)(\ln(a) - \ln(b)).$$

2.
$$\Box \ln((ab)/2) = \sqrt{\ln(a)\ln(b)}$$
.

3.
$$\Box \ln(a^b) = (\ln(a))^{\ln(b)}$$
.

4.
$$\boxtimes \ln((a^2)^b) = 2b \ln(a)$$
.

5.
$$\Box \ln(a^2/b^2) = -2\ln(ab)$$
.

6.
$$\boxtimes \ln(a^2/b) = \ln(a) - \ln(b/a)$$
.

Vrai-Faux 29. Soit *a* un réel strictement positif. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\Box \ln(e^{\sqrt{a}}) = a/2$$
.

2.
$$\boxtimes \ln(a^e) = e \ln(a)$$
.

3.
$$\Box e^{\ln^2(a)} = a^2$$
.

4.
$$\Box e^{\ln(a/2)} = a - 2$$
.

5.
$$\boxtimes \ln(a^{e+a}) = (e+a)\ln(a)$$
.

6.
$$\boxtimes e^{2\ln(a)-\ln(a)/2} = a^{3/2}$$
.

Vrai-Faux 30. Soit x un réel quelconque. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes \sin(x - 3\pi) = -\sin(x)$$
.

$$2. \ \Box \sin(x+3\pi) = \sin(x).$$

3.
$$\boxtimes \cos(3\pi - x) = -\cos(x)$$
.

$$4. \ \boxtimes \cos(-x - 3\pi) = -\cos(x).$$

5.
$$\Box \sin(x + 3\pi) = \sin(x).$$

6.
$$\boxtimes \sin(x + 3\pi/2) = -\cos(x)$$
.

7.
$$\Box \cos(x - 3\pi/2) = \sin(x)$$
.

8.
$$\boxtimes \cos(x + 3\pi/2) = \sin(x)$$
.

Vrai-Faux 31. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes \sin(-7\pi/2) = 1$$
.

2.
$$\Box \sin(5\pi/4) = \sqrt{2}/2$$
.

3.
$$\Box \sin(8\pi/3) = -\sqrt{3}/2$$
.

4.
$$\boxtimes \cos(9\pi/2) = 0$$
.

5.
$$\Box \cos(-7\pi/3) = -1/2$$
.

6.
$$\boxtimes \cos(-7\pi/4) = \sqrt{2}/2$$
.

7.
$$\boxtimes \tan(-7\pi/3) = -\sqrt{3}$$
.

8.
$$\boxtimes \tan(-7\pi/4) = 1$$
.

9.
$$\Box \tan(-7\pi/6) = -\sqrt{3}/3$$
.

Vrai-Faux 32. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

2.
$$\Box \lim_{x \to -\pi^+} \tan(x) = +\infty.$$

3.
$$\boxtimes \lim_{x \to 5\pi/2^+} \tan(x) = -\infty$$
.

4.
$$\boxtimes \lim_{x \to -5\pi/2^+} \tan(x) = -\infty$$
.

5.
$$\Box \lim_{x \to 7\pi/2^{-}} \tan(x) = -\infty$$
.

Vrai-Faux 33. Soit x un réel quelconque. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes \cos(2x) = 1 - 2\sin^2(x)$$
.

2.
$$\Box \cos(2x) - \sin(2x) = (\cos(x) + \sin(x))^2 + 2\sin^2(x)$$
.

3.
$$\boxtimes \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

4.
$$\Box \cos(x) + \cos(3x) = 2\sin(x)\sin(2x).$$

5.
$$\Box \sin(x) + \sin(3x) = 2\sin(x)\cos(2x).$$

6.
$$\boxtimes \sin(3x) - \sin(x) = 2\sin(x)\cos(2x)$$
.

Vrai-Faux 34. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\square \arccos(-1/2) = -\pi/3$$
.

2.
$$\boxtimes \arccos(-\sqrt{2}/2) = 3\pi/4$$
.

3.
$$\boxtimes \arcsin(-1/2) = -\pi/6$$
.

4.
$$\Box \arcsin(\sqrt{3}/2) = 2\pi/3$$
.

5.
$$\boxtimes \arctan(-1) = -\pi/4$$
.

6.
$$\square \arctan(-\sqrt{3}) = -\pi/6$$
.

Vrai-Faux 35. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes \forall x \in [-1, 1]$$
, $\sin(\arcsin(x)) = x$.

2.
$$\square \forall x \in [-\pi, \pi]$$
, $\arcsin(\sin(x)) = x$.

3.
$$\boxtimes \forall x \in [-1, 1]$$
, $\cos(\arcsin(x)) = \sqrt{1 - x^2}$.

4.
$$\boxtimes \forall x \in [-1, 1]$$
, $\sin(\arccos(x)) = \sqrt{1 - x^2}$.

5.
$$\Box \forall x \in [-\pi/2, \pi/2]$$
, $\arcsin(\cos(x)) = \pi/2 - x$.

6.
$$\boxtimes \forall x \in [0, \pi/2]$$
, $\arccos(\sin(x)) = \pi/2 - x$.

7.
$$\square \forall x \in [-\pi/2, \pi/2]$$
, $\arctan(\sin(x)) = \frac{x}{\sqrt{1-x^2}}$.

8.
$$\square \forall x \in [-1, 1]$$
, $\tan(\arccos(x)) = \frac{x}{\sqrt{1 - x^2}}$.

9.
$$\boxtimes \forall x \in]-1,1[, \tan(\arcsin(x)) = \frac{x}{\sqrt{1-x^2}}.$$

Vrai-Faux 36. Soit x un réel quelconque. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\boxtimes \sinh(x) < \cosh(x)$$
.

2.
$$\boxtimes -1 < \tanh(x) < 1$$
.

3.
$$\Box \cosh(2x) = 2\cosh(x) - 1.$$

4.
$$\boxtimes \sinh(2x) = 2\sinh(x)\cosh(x)$$
.

5.
$$\Box \sinh(x) + \cosh(-x) = e^{-x}.$$

6.
$$\boxtimes \sinh(2x) + \cosh(2x) = e^{2x}$$

7.
$$\boxtimes \tanh(2x) = \frac{2\tanh(x)}{1+\tanh^2(x)}$$
.

8.
$$\Box \cosh(x) + \cosh(3x) = 2\sinh(x)\sinh(2x)$$
.

9.
$$\boxtimes \sinh(x) + \sinh(3x) = 2\sinh(2x)\cosh(2x)$$
.

10.
$$\Box \sinh(3x) - \sinh(x) = 2\cos(hx)\sinh(2x)$$
.

Vrai-Faux 37. Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

1.
$$\square \forall x \in \mathbb{R}$$
, $\operatorname{argcosh}(\cosh(x)) = x$.

2.
$$\boxtimes \forall x \in \mathbb{R}$$
, $\operatorname{argsinh}(\sinh(x)) = x$.

3.
$$\boxtimes \forall x \in \mathbb{R}$$
, $\operatorname{argtanh}(\tanh(x)) = x$.

4.
$$\boxtimes \forall x \in \mathbb{R}^+$$
, $\cosh(\operatorname{argcosh}(x)) = x$.

5.
$$\square \forall x \in \mathbb{R}$$
, $\operatorname{argcosh}(\sinh(x)) = 1 - x$.

6.
$$\Box \forall x \in \mathbb{R}$$
, $\operatorname{argtanh}(\sinh(x)) = \frac{x}{\sqrt{x^2 + 1}}$.

7.
$$\square \forall x \in \mathbb{R}^+$$
, $\tanh(\operatorname{argcosh}(x)) = \frac{x}{\sqrt{x^2 - 1}}$.

8.
$$\boxtimes \forall x \in \mathbb{R}$$
, $\tanh(\operatorname{argsinh}(x)) = \frac{x}{\sqrt{x^2 + 1}}$.

Exercice 72. Montrer que :

- 1. Pour tout entier $n \ge 2$: $\sqrt[n]{n + \sqrt[n]{n}} + \sqrt[n]{n \sqrt[n]{n}} < 2\sqrt[n]{n}$.
- 2. Pour tout entier $n \ge 7$: $\sqrt{n}^{\sqrt{n+1}} > \sqrt{n+1}^{\sqrt{n}}$

Exercice 73. Déterminer $x \in \mathbb{R}^{+*}$ vérifiant l'équation (E).

- 1. (E) $5(3^x) = 3(5^x).$
- 2. (E) $x^x = \sqrt{2}/2$.
- $3. (E) x^{\sqrt{x}} = \sqrt{x}^x.$

Exercice 74. Déterminer le couple $(x,y) \in (\mathbb{R}^{+*})^2$, vérifiant le système d'équations (S).

1.
$$(S)$$

$$\begin{cases} 8^x = 10^y \\ 2^x = 5^y \end{cases}$$

2. (S)
$$\begin{cases} 2^{3x+2y} = 5 \\ 4^{2x} = 2^{2y+3} \end{cases}$$

1. (S)
$$\begin{cases} 8^{x} = 10^{y} \\ 2^{x} = 5^{y} . \end{cases}$$
2. (S)
$$\begin{cases} 2^{3x+2y} = 5 \\ 4^{2x} = 2^{2y+3} . \end{cases}$$
3. (S)
$$\begin{cases} xy = 2^{2} \\ \ln^{2}(x) + \ln^{2}(y) = \frac{5}{2} \ln^{2}(2) . \end{cases}$$

Exercice 75.

1. Soient a et b deux réels strictement positifs. Montrer que :

$$\ln\left(\frac{a+b}{4}\right) = \frac{1}{2}\left(\ln(a) + \ln(b)\right) \iff a^2 + b^2 = 14 ab.$$

2. Soit a un réel strictement positif, différent de 1. Déterminer l'ensemble des $x \in \mathbb{R}^{+*}$ tels que:

$$\log_a(x) - \log_{a^2}(x) + \log_{a^4}(x) = \frac{3}{4}.$$

3. Déterminer l'ensemble des triplets de réels (a, b, c) tels que :

$$\log_{c+b}(a) + \log_{c-b}(a) = 2\log_{c+b}(a)\log_{c-b}(a) .$$

Exercice 76. Démontrer les formules de trigonométrie suivantes.

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a) ;$$

$$\cos^2(a) = \frac{1 + \cos(2a)}{2} ; \quad \sin^2(a) = \frac{1 - \cos(2a)}{2} ;$$

$$\sin(2a) = 2\sin(a)\cos(a) ; \quad \tan(2a) = \frac{2\tan(a)}{1 - \tan^2(a)} ;$$
en notant : $t = \tan(x/2)$, $\sin(x) = \frac{2t}{1 + t^2}$, $\cos(x) = \frac{1 - t^2}{1 + t^2}$, $\tan(x) = \frac{2t}{1 - t^2} ;$

$$\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} ; \quad \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)} ;$$

$$\sin(a)\sin(b) = \frac{1}{2} \Big(\cos(a - b) - \cos(a + b)\Big) ;$$

$$\sin(a)\cos(b) = \frac{1}{2} \Big(\sin(a + b) + \sin(a - b)\Big) ;$$

$$\sin(a) + \sin(b) = 2\sin\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right) ;$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right) .$$

Exercice 77. On pose :

$$F = \{ \arcsin, \arccos, \arcsin \}$$
 et $G = \{ \sin, \cos, \tan \}$.

- 1. Pour tout $f \in F$ et pour tout $g \in G$, donner une expression algébrique pour la composée $g \circ f$.
- 2. Pour tout $f \in F$ et pour tout $g \in G$, déterminer le domaine de définition de la composée $f \circ g$ et représenter son graphe.

Exercice 78. Vérifier que les égalités suivantes sont vraies pour tout réel x tel que les expressions écrites aient un sens.

1.
$$arccos(x) + arcsin(x) = \frac{\pi}{2}$$
.

2.
$$\arctan(x) + \arctan(1/x) = \frac{\pi}{2} \frac{x}{|x|}$$
.

3.
$$\sin(2\arctan(x)) = \frac{2x}{1+x^2}.$$

Exercice 79. Déterminer $x \in \mathbb{R}$ vérifiant l'équation (E).

1.
$$(E)$$
 $\arccos(x) = \arcsin(1/3) + \arcsin(1/4)$.

2.
$$(E)$$
 $\arcsin(\tan(x)) = x$.

3. (E)
$$\arcsin(2x) + \arcsin(x\sqrt{3}) = \arcsin(x)$$
.

4.
$$(E)$$
 $\operatorname{arccos}(x) = 2\operatorname{arccos}(3/4)$.

5.
$$(E)$$
 $\operatorname{arccos}(x) = \arcsin(1-x)$.

6.
$$(E)$$
 $\arctan(x) = 2\arctan(1/2)$.

7. (E)
$$\arctan(x) + 2\arctan(\sqrt{1+x^2} - x) = \pi/2$$
.

8.
$$(E)$$
 $\arctan(x) + \arctan(2x) = \pi/4$.

Exercice 80. Démontrer les formules de trigonométrie hyperbolique suivantes.

$$\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b) \; ; \\ \sinh(a+b) = \sinh(a)\cosh(b) + \cosh(a)\sinh(b) \; ; \\ \cosh(2a) = \cosh^2(a) + \sin^2(a) = 2\cosh^2(a) - 1 = 1 + 2\sinh^2(a) \; ; \\ \cosh^2(a) = \frac{\cosh(2a) + 1}{2} \; ; \quad \sinh^2(a) = \frac{\cosh(2a) - 1}{2} \; ; \\ \sinh(2a) = 2\sinh(a)\cosh(a) \; ; \quad \tanh(2a) = \frac{2\tanh(a)}{1 - \tanh^2(a)} \; ; \\ \text{en notant} : t = \tanh(x/2) \; , \; \sinh(x) = \frac{2t}{1 - t^2} \; , \; \cosh(x) = \frac{1 + t^2}{1 - t^2} \; , \; \tanh(x) = \frac{2t}{1 + t^2} \; ; \\ \tanh(a+b) = \frac{\tanh(a) + \tanh(b)}{1 + \tanh(b)} \; ; \quad \tanh(a-b) = \frac{\tanh(a) - \tanh(b)}{1 - \tanh(a) \tanh(b)} \; ; \\ \sinh(a)\sinh(b) = \frac{1}{2} \Big(\cosh(a+b) - \cosh(a-b)\Big) \; ; \\ \sinh(a)\cosh(b) = \frac{1}{2} \Big(\sinh(a+b) + \sinh(a-b)\Big) \; ; \\ \sinh(a)\cosh(b) = 2\sinh\Big(\frac{a+b}{2}\Big)\cosh\Big(\frac{a-b}{2}\Big) \; ; \\ \cosh(a) + \cosh(b) = 2\cosh\Big(\frac{a+b}{2}\Big)\cosh\Big(\frac{a-b}{2}\Big) \; .$$

Exercice 81. Soit n un entier. Démontrer que les égalités suivantes sont vraies pour tout réel x tel que les expressions écrites aient un sens.

1.
$$\sum_{k=0}^{n} \cosh(kx) = \frac{\sinh((n+\frac{1}{2})x) + \sinh(x/2)}{2\sinh(x/2)}.$$

2.
$$\sum_{k=0}^{n} \sinh(kx) = \frac{\cosh((n+\frac{1}{2})x) + \cosh(x/2)}{2\sinh(x/2)}.$$

3.
$$\sum_{k=0}^{n} \cos(kx) = \frac{\sin((n+\frac{1}{2})x) + \sin(x/2)}{2\sin(x/2)}.$$

4.
$$\sum_{k=0}^{n} \sin(kx) = \frac{-\cos((n+\frac{1}{2})x) + \cos(x/2)}{2\sin(x/2)}.$$

Exercice 82. On pose:

$$F = \{ \text{ argsinh}, \text{ argcosh}, \text{ argtanh} \}$$
 et $G = \{ \text{ sinh}, \text{ cosh}, \text{ tanh} \}$.

- 1. Pour tout $f \in F$ et pour tout $g \in G$, donner une expression algébrique pour la composée $g \circ f$.
- 2. Pour tout $f \in F$ et pour tout $g \in G$, déterminer le domaine de définition de la composée $f \circ g$ et représenter son graphe.

Exercice 83. Vérifier que les égalités suivantes sont vraies pour tout réel x tel que les expressions écrites aient un sens.

1.
$$\operatorname{argtanh}\left(\frac{x^2-1}{x^2+1}\right) = \ln(x)$$
.

2.
$$\operatorname{argsinh}(3x + 4x^3) = 3\operatorname{argsinh}(x)$$
.

3.
$$\cosh(2 \operatorname{argtanh}(x)) = \frac{1+x^2}{1-x^2}$$
.

4.
$$\sinh\left(\frac{1}{2}\operatorname{argcosh}(x)\right) = \sqrt{\frac{x-1}{2}}$$
.

5.
$$\operatorname{argcosh}\left(\sqrt{\frac{1+\cosh(x)}{2}}\right) = \frac{x}{2}$$
.

6.
$$2 \operatorname{argtanh}(\tan(x)) = \operatorname{argtanh}(\sin(2x))$$
.

Exercice 84. Déterminer $x \in \mathbb{R}$ vérifiant l'équation (E).

1.
$$(E)$$
 argsinh $(x) = \operatorname{argsinh}(2 - x)$.

2.
$$(E)$$
 $\operatorname{argcosh}(4x^3 - 3x) - \operatorname{argcosh}(2x^2 - 1) = 1.$

6 Développements limités

Vrai-Faux 38. Soit f une fonction définie sur un intervalle ouvert contenant 0, telle que

$$f(x) = x + x^2 + o(x^4).$$

On peut en déduire que (vrai ou faux et pourquoi?):

- 1. \square La fonction f est dérivable sur un intervalle ouvert contenant 0.
- 2. \boxtimes La fonction f est continue en 0.
- 3. \boxtimes La dérivée de f en 0 est égale à 1.
- 4. \square Si f est 2 fois dérivable sur un intervalle ouvert contenant 0, alors $f^{(2)}(0) = 1$.
- 5. \boxtimes Si f est 3 fois dérivable sur un intervalle ouvert contenant 0, alors $f^{(3)}(0) = 0$.
- 6. \square La fonction $x \mapsto f(x)/x$ admet un développement limité d'ordre 3 en 0.
- 7. \boxtimes La fonction $x \mapsto x^2 f(x)$ admet un développement limité d'ordre 5 en 0.
- 8. $\Box f^2(x) = x^2 + x^4 + o(x^6)$.
- 9. $\boxtimes f(x^2) = x^2 + x^4 + o(x^6)$
- 10. $\Box f(2x) = 2x + 2x^2 + o(x^4)$.
- 11. $\Box f(x^4) = o(x^4)$.
- 12. $\boxtimes f(2x^2) \sim 2x^2$.

Vrai-Faux 39. Soient f et g deux fonctions, admettant un développement limité d'ordre 2 en 0. On peut en déduire que (vrai ou faux et pourquoi?) :

- 1. \boxtimes La fonction f+g admet un développement limité d'ordre 2 en 0.
- 2. \boxtimes La fonction fg admet un développement limité d'ordre 2 en 0.
- 3. \square La fonction f/g admet un développement limité d'ordre 2 en 0.
- 4. \boxtimes La fonction $x \mapsto x^2 f(x) g(x)$ admet un développement limité d'ordre 4 en 0.
- 5. \square La fonction $x \mapsto x^2 f(x) + g(x)$ admet un développement limité d'ordre 4 en 0.
- 6. \square La fonction $x \mapsto f^2(x)g^2(x)$ admet un développement limité d'ordre 4 en 0.

Vrai-Faux 40. Soient f et g deux fonctions telles que au voisinage de 0 :

$$f(x) = x + x^3 + o(x^3)$$
 et $g(x) = -x + x^3 + o(x^3)$.

On peut en déduire que (vrai ou faux et pourquoi?) :

- 1. $\boxtimes f(x) + g(x) = o(x^2)$.
- $2. \ \Box f(x) g(x) = o(x).$
- 3. $\Box f(x) + 2g(x) = o(f(x)).$
- 4. $\boxtimes 2f(x) + g(x) \sim f(x)$.
- 5. $\Box f(x)g(x) = -x^2 + x^6 + o(x^6)$.
- 6. $\boxtimes f^2(x) g^2(x) \sim 4x^4$.
- 7. $\Box f^2(x)g(x) \sim x^3$.
- 8. $\boxtimes f(x)g^2(x) \sim x^3$.

Vrai-Faux 41. Soit n un entier quelconque. On note f la fonction $x \mapsto \sin(x)/x$, prolongée par continuité en 0. Parmi les affirmations suivantes, lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

- 1. \boxtimes Pour tout n, f admet un développement limité d'ordre n en 0.
- 2. \square Pour tout n, le développement limité d'ordre n de f ne contient que des termes impairs.
- 3. \square Pour tout $n, x \mapsto f(x)/x$ admet un développement limité d'ordre n en 0.
- 4. $\boxtimes f(x^2) 1 = O(x^4)$.
- 5. $\boxtimes (f(x) 1)^2 = O(x^4)$.
- 6. $\Box f(x) \cos(x) = O(x^4)$.
- 7. $\boxtimes f(x) \cos(x/\sqrt{3}) = O(x^4)$.

Vrai-Faux 42. Soient n un entier et f une fonction indéfiniment dérivable sur \mathbb{R} . Les propositions portent sur des développements limités d'ordre n en 0. On suppose que f est paire. On peut en déduire que (vrai ou faux et pourquoi?) :

- 1. \square Le développement de 1/f ne contient que des termes impairs.
- 2. \square Le développement de $x \mapsto f(x^3)$ ne contient que des termes impairs.
- 3. \boxtimes Le développement de $x \mapsto f(\sin(x))$ ne contient que des termes pairs.
- 4. \boxtimes Le développement de $x \mapsto \sin(x) f(x)$ ne contient que des termes impairs.
- 5. \square Le développement de $x \mapsto xf(x)/|x|$ ne contient que des termes impairs.
- 6. \boxtimes Le développement de f'' ne contient que des termes pairs.
- 7. \square Si F est une primitive quelconque de f, le développement de F ne contient que des termes impairs.

Vrai-Faux 43. Sit n un entier. Les propositions suivantes portent sur des développements limités d'ordre n en 0. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\boxtimes \frac{1}{1-2x} = 1 + 2x + \dots + 2^n x^n + o(x^n)$$
.

2.
$$\Box \frac{1}{2-x} = 1 + (1-x) + \dots + (1-x)^n + o(x^n).$$

3.
$$\boxtimes \frac{1}{2-x} = \frac{1}{2} + \frac{x}{4} + \dots + \frac{x^n}{2^{n+1}} + o(x^n).$$

4.
$$\boxtimes \frac{1}{2+3x} = \frac{1}{2} - \frac{3x}{4} + \dots + \frac{(-1)^n 3^n x^n}{2^{n+1}} + o(x^n).$$

5.
$$\Box \frac{1+x}{1-x} = 1 + 2x - 2x^2 + \dots + \frac{(-1)^n 2x^n}{2^n + 1} + o(x^n).$$

6.
$$\Box \frac{1-x}{1+x} = 1 + 2x - 2x^2 + \dots + \frac{(-1)^n 2x^n}{2^n + 1} + o(x^n).$$

7.
$$\boxtimes \frac{1}{(1+x)^2} = 1 - 2x + 3x^2 + \dots + (-1)^n (n+1)x^n + o(x^n).$$

8.
$$\Box \frac{1}{(1-x)^3} = 1 + 3x + 6x^2 + \dots + 3nx^n + o(x^n).$$

Vrai-Faux 44. Les propositions suivantes portent sur des développements limités en 0. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box e^{x-1} = x + o(x)$$
.

2.
$$\boxtimes e^{x-1} = 1/e + o(1)$$
.

3.
$$\boxtimes e^{x^2} = 1 + x^2 + o(x^3)$$
.

4.
$$\Box e^{x^2-1} = e + e^2 + o(x^2)$$
.

5.
$$\boxtimes e^{(x-1)^2} = e - 2ex + 3ex^2 + o(x^2)$$
.

6.
$$\Box (e^x - 1)^2 = x^2 + 2x^3 + o(x^3)$$
.

7.
$$\Box (e^x)^2 - 1 = o(x)$$
.

8.
$$\boxtimes (e^x)^2 - 1 - 2x = 2x^2 + o(x^2)$$
.

Vrai-Faux 45. Les propositions suivantes portent sur des développements limités en 0. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box \sin(2x) = 2x - x^3/3 + o(x^3)$$
.

2.
$$\boxtimes \sin(\pi/2 - x) = 1 - x^2/2 + o(x^2)$$
.

3.
$$\boxtimes \sin(\tan(x)) = x + o(x^2)$$
.

4.
$$\Box \sin(\sin(x)) = x - x^3/6 + o(x^3)$$
.

5.
$$\boxtimes \cos(\sin(x)) = 1 - x^2/2 + o(x^2)$$
.

6.
$$\Box \sin(\cos(x)) = o(x)$$
.

7.
$$\Box \tan(\sin(x)) = x + x^3/3 + o(x^3)$$
.

8.
$$\boxtimes \tan(\sin(x)) - \sin(\tan(x)) = o(x^6)$$
.

Vrai-Faux 46. Les propositions suivantes portent sur des développements limités en 0. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box \sqrt{2+x} = 1 + (1+x)/2 + o(1+x)$$
.

2.
$$\Box \sqrt{4+x} = 2 + x/2 + o(x)$$
.

3.
$$\boxtimes 1/\sqrt{4+x} = 1/2 - x/16 + o(x)$$
.

4.
$$\Box \sqrt[3]{3+x} = 1 + x/3 + o(x)$$
.

5.
$$\boxtimes 1/\sqrt[3]{1-3x} = 1 + x + o(x)$$
.

6.
$$\boxtimes \sqrt[3]{1+3x^3} = 1 + x^3 + o(x^5)$$
.

7.
$$\boxtimes (8+3x)^{2/3} = 4+x+o(x)$$
.

8.
$$\Box (8+3x)^{-2/3} = 1/4 + x + o(x)$$
.

Vrai-Faux 47. Les propositions suivantes portent sur des développements limités en 0. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box \ln(1-x) = -x + x^2/2 + o(x^2)$$
.

2.
$$\boxtimes \ln(1-x^2) = -x^2 - x^4/2 - x^6/3 + o(x^6)$$
.

3.
$$\Box \ln(1 + e^x) = 1 + x + o(x)$$
.

4.
$$\boxtimes \ln(\cos(x)) = -x^2/2 + o(x^3)$$
.

5.
$$\boxtimes \ln(1 + \cos(x)) = \ln(2) - x^2/4 + o(x^3)$$
.

6.
$$\Box \ln(1 + \sin(x)) = x + o(x^2)$$
.

7.
$$\boxtimes \ln(1 + \sin(x)) - \ln(1 + \tan(x)) = o(x^2)$$
.

8.
$$\Box \ln(1+x^2) - \ln((1+x)^2) = o(x)$$
.

Vrai-Faux 48. Les propositions suivantes portent sur des développements asymptotiques au voisinage de $+\infty$. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\boxtimes \sin\left(\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{6x^3} + o\left(\frac{1}{x^3}\right)$$
.

2.
$$\Box$$
 $\arctan\left(\frac{x}{x+1}\right) = 1 - \frac{1}{x} + o\left(\frac{1}{x}\right)$.

3.
$$\Box \cos\left(\frac{1}{1+x}\right) = 1 - \frac{1}{2x^2} + \frac{1}{24x^4} + o\left(\frac{1}{x^4}\right)$$
.

4.
$$\boxtimes \frac{x}{x^2 - 1} = \frac{1}{x} + \frac{1}{x^3} + o\left(\frac{1}{x^3}\right)$$
.

5.
$$\boxtimes \ln \left(\frac{1}{1+x} \right) = -\ln(x) - \frac{1}{x} + o\left(\frac{1}{x}\right)$$
.

6.
$$\Box x^{1/x} = 1 + \frac{1}{x} + o\left(\frac{1}{x}\right)$$

7.
$$\boxtimes e^{-x} = o\left(\frac{1}{x^{314}}\right)$$
.

Vrai-Faux 49. Les propositions suivantes portent sur des développements asymptotiques au voisinage de 0⁺. Lesquelles sont vraies, lesquelles sont fausses, et pourquoi?

1.
$$\Box \sqrt{x+x^2} = \sqrt{x} + x/2 + o(x)$$
.

2.
$$\boxtimes \sqrt{x + \sqrt{x}} = x^{1/4} + x^{3/4}/2 + o(x^{3/4}).$$

3.
$$\Box \cos(x^{2/5}) = 1 + o(x)$$
.

4.
$$\Box \sin(\sqrt[3]{x^3 + x^5}) = x + o(x^2)$$
.

5.
$$\boxtimes \frac{\ln(x)}{\sin(x)} = \frac{\ln(x)}{x} + o(x\ln(x)).$$

6.
$$\boxtimes \frac{\ln(\sqrt{x})}{\sin(x)} = \frac{\ln(x)}{2x} + o(x\ln(x)).$$

7.
$$\Box \frac{\ln(\sqrt{x})}{\sin(\sqrt{x})} = \frac{\ln(x)}{2x} + o(x\ln(x)).$$

8.
$$\boxtimes \frac{\ln(\sqrt{1+x})}{\sin(\sqrt{x})} = \frac{1}{\sqrt{x}} + \frac{\sqrt{x}}{2} + o(\sqrt{x}).$$

Exercice 85. Pour chacune des fonctions f suivantes.

$$f: x \mapsto \sin(x)$$
, $f: x \mapsto \cos(x)$, $f: x \mapsto e^x$,

$$f: x \mapsto \ln(1+x)$$
, $f: x \mapsto \arctan(x)$, $f: x \mapsto \arcsin(x)$,

- 1. Calculer les dérivées de f jusqu'à l'ordre n=5. Écrire le polynôme de Taylor P_5 en 0.
- 2. Pour x = 0.1 puis x = 0.01, donner une valeur numérique approchée de $f(x) P_5(x)$.
- 3. Ecrire le développement limité d'ordre 5 en 0 de $x \mapsto f(2x)$.
- 4. Ecrire le développement limité d'ordre 5 en 0 de $x \mapsto f(x/3)$.
- 5. Ecrire le développement limité d'ordre 10 en 0 de $x \mapsto f(x^2)$.
- 6. Ecrire le développement limité d'ordre 5 en 0 de $x\mapsto f(x+x^2)$.

Exercice 86. Démontrer les résultats suivants.

1.
$$\cos(x)\ln(1+x) = x - \frac{x^2}{2} - \frac{x^3}{6} + o(x^4)$$
.

2.
$$\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4)$$
.

3.
$$\frac{1}{1-\sin(x)} = 1 + x + x^2 + \frac{5x^3}{6} + \frac{2x^4}{3} + o(x^4)$$
.

4.
$$\frac{1}{1 - \arctan(x)} = 1 + x + x^2 + \frac{2x^3}{3} + \frac{x^4}{3} + o(x^4).$$

5.
$$\ln(\cos(x)) = -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$
.

6.
$$\ln(1+x^2\sin(x)) = x^3 - \frac{x^5}{6} - \frac{x^6}{2} + o(x^6).$$

7.
$$\cos(\sin(x)) = 1 - \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4)$$
.

8.
$$\sin(2x - 4x^2) - 2\sin(x - x^2) = -2x^2 - x^3 + 7x^4 + o(x^4)$$
.

9.
$$\cosh(1 - \cos(x)) = 1 + \frac{x^4}{8} + o(x^4)$$
.

10.
$$\cos(1 - \cosh(x)) = 1 - \frac{x^4}{8} + o(x^4)$$
.

11.
$$\sin(x - \arctan(x)) = \frac{x^3}{3} - \frac{x^5}{5} + \frac{x^7}{7} + o(x^8)$$
.

12.
$$\sin(x - \arctan(x)) - x + \arctan(x) = o(x^8)$$
.

13.
$$\cosh(1 - \cos(x)) + \cos(\cosh(x) - 1) = 2 - \frac{x^6}{24} + o(x^6).$$

14.
$$(\cosh(x) - \cos(x))(\sinh(x) - \sin(x)) = \frac{x^5}{3} + o(x^8).$$

15.
$$\arcsin(\ln(1+x^2)) = x^2 - \frac{x^4}{2} + o(x^4)$$
.

16.
$$\ln\left(\frac{\ln(1+x)}{x}\right) = -\frac{x}{2} + \frac{5x^2}{24} - \frac{x^3}{8} + o(x^3).$$

17.
$$\ln(2\cos(x) + \sin(x)) = \ln(2) + \frac{x}{2} - \frac{5x^2}{8} + \frac{5x^3}{24} + o(x^3)$$
.

18.
$$\arctan(e^x) = \frac{\pi}{4} + \frac{x}{2} - \frac{x^3}{12} + o(x^4)$$
.

Exercice 87. Soit n un entier. Le but de l'exercice est de retrouver, par différentes méthodes, le développement limité d'ordre 2n en 0 de la fonction $x \mapsto 1/(1-x^2)$.

$$\frac{1}{1-x^2} = 1 + x^2 + x^4 + \dots + x^{2n} + o(x^{2n}) .$$

- 1. Écrire le développement d'ordre n de $x\mapsto 1/(1-x)$, puis composer avec $x\mapsto x^2$.
- 2. Écrire les développements d'ordre 2n de $x\mapsto 1/(1-x)$ et 1/(1+x), puis calculer la demi-somme.
- 3. Écrire les développements d'ordre 2n de $x\mapsto 1/(1-x)$ et 1/(1+x), puis calculer le produit.

Exercice 88. Soit n un entier. Le but de l'exercice est de retrouver, par différentes méthodes, le développement limité d'ordre n en 0 de la fonction $x \mapsto (1-x)^{-2}$.

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots + (n+1)x^n + o(x^n) .$$

- 1. Écrire le développement d'ordre n de $x\mapsto (1+x)^{\alpha}$ pour $\alpha=-2$, puis composer avec $x\mapsto -x$.
- 2. Écrire le développement d'ordre n+1 de $x\mapsto 1/(1-x)$, puis dériver.
- 3. Écrire le développement d'ordre n de $x \mapsto 1/(1-x)$, puis élever au carré.
- 4. Écrire le développement d'ordre n de $x \mapsto 1/(1-x)$, puis composer avec $x \mapsto 2x-x^2$.

Exercice 89. Soit n un entier. Démontrer les résultats suivants (utiliser une décomposition en éléments simples si nécessaire).

1.
$$\frac{1}{2+x^2} = \frac{1}{2} - \frac{x^2}{4} + \frac{x^4}{8} + \dots + \frac{(-1)^n x^{2n}}{2^{n+1}} + o(x^{2n})$$
.

2.
$$\frac{1}{(x-4)^2} = \frac{1}{16} + \frac{x}{32} + \frac{3x^2}{4^4} + \dots + \frac{(n+1)x^n}{4^{n+2}} + o(x^n)$$
.

3.
$$\frac{x^2}{x-4} = -\frac{x^2}{4} - \frac{x^3}{16} - \dots - \frac{x^n}{4^{n-1}} - \dots + o(x^n)$$
.

4.
$$\frac{x^2}{x^2 - 4} = -\frac{x^2}{4} - \frac{x^4}{16} - \dots - \frac{x^{2n}}{4^n} - \dots + o(x^{2n})$$
.

5.
$$\frac{x^2}{x^2+4} = \frac{x^2}{4} - \frac{x^4}{16} + \dots + \frac{(-1)^{n+1}x^{2n}}{4^n} + \dots + o(x^{2n})$$
.

6.
$$\frac{x}{(1-2x)(1-4x)} = 1 + 6x + 28x^2 + \dots + 2^n(2^{n+1}-1)x^n + o(x^n).$$

7.
$$\frac{x}{2x^2 - 3x + 1} = x + 3x^2 + \dots + (-1 + 2^n)x^n + \dots + o(x^n)$$
.

Exercice 90.

- 1. Ecrire les développements limités d'ordre 6 en 0 des fonctions sinus et cosinus.
- 2. Calculer, en effectuant le produit, les développements limités d'ordre 6 en 0 des fonctions :

$$x \mapsto \sin^2(x)$$
, $x \mapsto \cos^2(x)$, $x \mapsto \sin(x)\cos(x)$.

3. Retrouver les résultats de la question précédente, en utilisant les formules :

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$
, $\cos^2(x) = \frac{1 + \cos(2x)}{2}$, $\sin(x)\cos(x) = \frac{\sin(2x)}{2}$.

Exercice 91.

- 1. Écrire les développements limités d'ordre 6 en 0 des fonctions sinus et cosinus hyperboliques.
- 2. Calculer, en effectuant le produit, les développements limités d'ordre 6 en 0 des fonctions :

$$x \mapsto \sinh^2(x)$$
, $x \mapsto \cosh^2(x)$, $x \mapsto \sinh(x) \cosh(x)$.

3. Retrouver les résultats de la question précédente, en utilisant les formules :

$$\sinh^2(x) = \frac{\cosh(2x) - 1}{2}$$
, $\cosh^2(x) = \frac{\cosh(2x) + 1}{2}$,
 $\sinh(x)\cosh(x) = \frac{\sinh(2x)}{2}$.

Exercice 92. Le but de l'exercice est de retrouver, par différentes méthodes, le développement limité d'ordre 5 en 0 de la fonction arc sinus.

$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + o(x^5) .$$

On notera a, b, c les trois réels (supposés inconnus) tels que $\arcsin(x) = ax + bx^3 + cx^5 + o(x^5)$.

- 1. Écrire le développement limité d'ordre 4 de $x\mapsto 1/\sqrt{1-x^2}$. En déduire les valeurs de a,b,c.
- 2. Écrire les développements limités d'ordre 4 de sin puis de sin \circ arcsin. Retrouver les valeurs de a, b, c.
- 3. Écrire les développements limités d'ordre 5 de cos, puis de cos \circ arcsin, puis de $x \mapsto \sqrt{1-x^2}$. En utilisant la formule $\cos(\arcsin(x)) = \sqrt{1-x^2}$, retrouver les valeurs de a, b, c.
- 4. Écrire, en fonction de a, b, c, les développement limités d'ordre 6 de la primitive de arcsin nulle en 0, ainsi que de la fonction $x \mapsto x \arcsin(x) \sqrt{1 x^2} + 1$. En utilisant le fait que ces deux fonctions sont égales, retrouver les valeurs de a, b, c.

Exercice 93. Le but de l'exercice est de retrouver, par différentes méthodes, le développement limité d'ordre 5 en 0 de la fonction argument sinus hyperbolique.

$$\operatorname{argsinh}(x) = x - \frac{x^3}{6} + \frac{3x^5}{40} + o(x^5) .$$

On notera a, b, c les trois réels (supposés inconnus) tels que $\operatorname{argsinh}(x) = ax + bx^3 + cx^5 + o(x^5)$.

- 1. On rappelle la formule $\operatorname{argsinh}(x) = \ln(x + \sqrt{1 + x^2})$. Calculer le développement limité d'ordre 5 de la fonction $x \mapsto x + \sqrt{1 + x^2}$. Calculer les valeurs de a, b, c.
- 2. On rappelle que la dérivée de argsinh est la fonction $x \mapsto (1+x^2)^{-1/2}$. Calculer le développement limité d'ordre 4 de cette fonction. Retrouver les valeurs de a, b, c.
- 3. Écrire les développements limités d'ordre 4 de sinh puis de sinh \circ argsinh. Retrouver les valeurs de a,b,c.
- 4. Écrire les développements limités d'ordre 5 de cosh, puis de cosh \circ argsinh. En utilisant la formule $\cosh(\operatorname{argsinh}(x)) = \sqrt{1+x^2}$, retrouver les valeurs de a,b,c.
- 5. Écrire, en fonction de a, b, c, les développement limités d'ordre 6 de la primitive de argsinh nulle en 0, ainsi que de la fonction $x \mapsto x \operatorname{argsinh}(x) \sqrt{1+x^2} + 1$. En utilisant le fait que ces deux fonctions sont égales, retrouver les valeurs de a, b, c.

Exercice 94. Soit n un entier. Le but de l'exercice est de retrouver, par deux méthodes différentes, le développement limité d'ordre n en 0 de la fonction argument tangente hyperbolique.

$$\operatorname{argtanh}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^n}{n} + o(x^n)$$
.

- 1. On rappelle que $\operatorname{argtanh}(x)$ est la primitive, nulle en 0, de la fonction $x\mapsto 1/(1-x^2)$. Écrire le développement limité d'ordre n de $\operatorname{argtanh}'$, et en déduire celui de $\operatorname{argtanh}$.
- 2. On rappelle la formule :

$$\operatorname{argtanh}(x) = \frac{1}{2} (\ln(1+x) - \ln(1-x)).$$

Ecrire les développements limités d'ordre n de $x \mapsto \ln(1+x)$ et $x \mapsto \ln(1-x)$, en déduire celui de argtanh.

Exercice 95.

- 1. Écrire les développements limités d'ordre 5 en 0, des fonctions sin, arcsin, sinh, argsinh, tan, arctan tanh, argtanh.
- 2. En déduire qu'il existe $\varepsilon > 0$ tel que pour tout $x \in [-\varepsilon, \varepsilon]$:

$$\tanh(x) \leqslant \arctan(x) \leqslant \sin(x) \leqslant \operatorname{argsinh}(x) \leqslant x$$

 $\leqslant \sinh(x) \leqslant \arcsin(x) \leqslant \tan(x) \leqslant \operatorname{argtanh}(x)$.

Exercice 96. Démontrer les résultats suivants.

1.
$$\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2} = \frac{3}{2}$$
.

2.
$$\lim_{x \to 0} \frac{x(e^x + 1) - 2(e^x - 1)}{x^3} = \frac{1}{6}$$
.

3.
$$\lim_{x \to 0} \frac{e^x - \cos(x) - x}{x^2} = 1.$$

4.
$$\lim_{x \to 0} \frac{\ln(1+x) - \sin(x)}{x^2} = -\frac{1}{2}$$
.

5.
$$\lim_{x \to 0} \frac{\cos(x) - \sqrt{1 - x^2}}{x^4} = \frac{1}{6}$$

6.
$$\lim_{x \to 0} \frac{x \arctan(x) - x^2}{\cos(x^2) - 1} = \frac{2}{3}.$$

7.
$$\lim_{x \to 0} \frac{\arctan(x) - \sin(x)}{\tan(x) - \arcsin(x)} = -1.$$

8.
$$\lim_{x \to 0} \frac{\ln(1+x) - \ln(1-x)}{\arctan(1+x) - \arctan(1-x)} = 2.$$

Exercice 97. Pour chacune des fonctions f suivantes.

$$f: x \mapsto \sin(x)$$
, $f: x \mapsto \cos(x)$, $f: x \mapsto e^x$, $f: x \mapsto \ln(1+x)$,

$$f: x \mapsto \arctan(x)$$
, $f: x \mapsto \arcsin(x)$, $f: x \mapsto 1/(1-x)$, $f: x \mapsto \sqrt{1+x}$.

- 1. Écrire le développement limité d'ordre 5 de f en 0. Ce développement sera utilisé pour toutes les questions suivantes.
- 2. Écrire un développement asymptotique au voisinage de 0^+ pour $f(\sqrt{x})$.
- 3. Écrire un développement asymptotique au voisinage de $+\infty$ pour f(1/x).

Exercice 98. Démontrer les résultats suivants, qui expriment des développements asymptotiques au voisinage de 0^+ .

1.
$$\frac{1}{\ln^2(1+x)} = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{12} + o(x)$$
.

2.
$$\frac{1}{\sin^3(x^2)} = \frac{1}{x^6} + \frac{1}{2x^2} + o(x)$$
.

3.
$$\sqrt{x+2x^3} = x^{1/2} + x^{5/2} - \frac{x^{7/2}}{2}o\left(x^{7/2}\right)$$
.

4.
$$\frac{\sqrt{x+x^3}}{\sqrt[3]{x+x^2}} = x^{1/6} - \frac{x^{7/6}}{3} + \frac{13x^{13/6}}{18} + o\left(x^{13/6}\right)$$
.

5.
$$x^x = 1 + x \ln(x) + \frac{x^2 \ln^2(x)}{2} + o(x^2 \ln(x))$$
.

Exercice 99. Démontrer les résultats suivants, qui expriment des développements asymptotiques au voisinage de $+\infty$.

1.
$$\frac{1}{2+x} = \frac{1}{x} - \frac{2}{x^2} + \frac{4}{x^3} + o\left(\frac{1}{x^3}\right)$$
.

2.
$$\frac{1+x^2}{(1+x)(2-x)} = -1 - \frac{1}{x} - \frac{4}{x^2} - \frac{6}{x^3} + o\left(\frac{1}{x^3}\right).$$

3.
$$\frac{1}{x\sin(1/x)} = 1 + \frac{1}{6x^2} + \frac{7}{360x^4} + o\left(\frac{1}{x^4}\right)$$
.

4.
$$\frac{1}{x \arctan(1/x)} = 1 + \frac{1}{3x^2} - \frac{4}{45x^4} + o\left(\frac{1}{x^4}\right)$$
.

5.
$$\frac{\sqrt{x^3+1}}{\sqrt[3]{x^2+1}} = x^{5/6} - \frac{1}{3x^{7/6}} + \frac{1}{2x^{13/6}} + o\left(\frac{1}{x^{13/6}}\right)$$
.

6.
$$\frac{\sqrt{e^{-x} + e^{-3x}}}{\sqrt[3]{e^{-x} + e^{-2x}}} = e^{-x/6} - \frac{e^{-7x/6}}{3} + \frac{13e^{-13x/6}}{18} + o\left(e^{-13x/6}\right).$$

Exercice 100. Démontrer les résultats suivants.

1.
$$\lim_{x \to +\infty} \sinh(\sqrt{x^2 + x}) - \sinh(\sqrt{x^2 - x}) = +\infty.$$

2.
$$\lim_{x \to +\infty} \sinh(\cosh(x)) - \cosh(\sinh(x)) = +\infty.$$

3.
$$\lim_{x \to +\infty} \left(\cosh(\sqrt{x+1}) - \cosh(\sqrt{x}) \right)^{1/x} = e.$$

4.
$$\lim_{x \to +\infty} (e^x + x)^{e^x - x^2} - (e^x + x^2)^{e^x - x} = -\infty$$
.

Exercice 101. Pour chacune des applications f suivantes, déterminer les asymptotes de f en $+\infty$ et $-\infty$ ainsi que la position de la courbe représentative par rapport à ces asymptotes.

1.
$$f: x \longmapsto x\sqrt{\frac{x-1}{3x+1}}$$
.

2.
$$f: x \longmapsto \frac{x^3+2}{x^2-1}$$
.

3.
$$f: x \longmapsto (x+1)\arctan(x)$$
.

4.
$$f : x \longmapsto (x+1)e^{1/(x+1)}$$
.

5.
$$f: x \longmapsto \frac{\sqrt{1+x^2}}{x+1+\sqrt{1+x^2}}$$

6.
$$f : x \longmapsto x^2 \arctan\left(\frac{1}{1+x^2}\right)$$
.

7.
$$f: x \longmapsto x \arctan\left(\frac{1}{\sqrt{1+x^2}}\right)$$
.

8.
$$f: x \longmapsto \sqrt[3]{x^3 - 2x^2 + 1} - \sqrt{x^2 + x + 1}$$