4주차 보고서

© Created	@October 13, 2021 5:24 PM
Created by	20190258 김혜린

프로그램 구동 방법

프로그램은 Newton-Raphson, Secant, Bisection 방법에 대한 비선형 방정식의 풀이 과정을 수행한다.

function.cpp 에 실험해보고자하는 함수와 도함수가 정의되어 있으며 해당 함수를 main.cpp 에 각각 [f] 와 [fp] 변수에 할당한 뒤, 원하는 방법이 구현된 함수를 실행해주면된다.

풀이 과정은 "result.txt"에 저장되며 따라서 풀이 방법이 구현된 함수는 파일 포인터 fp 를 파라 미터로 가진다.

각 방법은 모두 초기값이 필요한데 이는 사용자에게 입력을 받는 방식으로 구동된다. 각 방법은 아래의 함수에 구현되어 있다.

- Newton-Raphson
 - void program1_1(FILE* fp) in program1_1.cpp
- Secant
 - void program1_2(FILE* fp) in program1_2.cpp
- Bisection
 - void program1_3(FILE* fp) in program1_3.cpp

void program1_1(FILE* fp)

Newton-Raphson 방법의 경우, 초기값 x_0 를 사용자로부터 입력받아 프로그램의 종료조건을 만족할 때까지 $x_1 = x_0 - (f(x_0) / fp(x_0))$; 식을 이용해 다음 x_0 를 구한다.

void program1_2(FILE* fp)

Secant 방법의 경우, 초기값 x_0 , x_1 를 사용자로부터 입력받아 프로그램의 종료조건을 만족할 때까지 $t_{emp} = x_1 - f(x_1)^*((x_1-x_0)/(f(x_1)-f(x_0)))$; 식을 이용해 다음 $x(t_{emp})$ 를 구한다.

```
void program1_3(FILE* fp)
```

Bisection 방법의 경우, 초기값 a_0 , b_0 를 사용자로부터 입력받아 프로그램의 종료조건을 만족할 때까지 $x_1 = (a_0 + b_0) / 2$; 식을 이용해 다음 $x_0 = x_0$ 가 다음 x

이때 다음 구간을 적절히 설정해주어 다시 ⓐ 와 ⓑ 을 할당해 다음 x를 구하는 과정을 진행하는데 이에 대한 로직은 아래 'Bisection 방법을 이용한 비선형 방정식의 풀이 분석 (숙제1)' 파트에 자세히 설명되어 있다.

프로그램 종료 조건의 경우 아래에 자세히 설명되어 있다.

Newton-Raphson 방법과 Secant 방법을 이용한 비선형 방정식의 풀이 비교(실습1-1)

$$f_1(x) = x^2 - 4x + 4 - lnx = 0$$

비선형 방정식 $f_1(x)$ 를 Newton-Raphson방법과 Secant방법을 이용하여 풀어보았다.

Newton-Raphson 방법을 이용하든 Secant 방법을 이용하든 프로그램에서는 처음 설정한 초 기값에서 방정식의 근을 찾기 위해 각 방법을 반복문을 이용해 반복적으로 수행한다. 이때 프로 그램이 무한히 수행되는 것을 막기 위해 적절한 종료 조건을 걸어주었다.

현재 반복문을 통해 구한 x_{n+1} 이 주어진 방정식의 근이라고 판단하려면 충분히 많은 횟수의 근 찾기가 진행됐을 때 $|f(x_{n+1})|$ 이 0에 가까워야하고 직전에 구한 x_n 과 매우 작은 차이를 보일 경우 즉, 더 이상의 진전이 없다고 판단될 경우 x_{n+1} 충분히 f의 근에 가깝다고 판단할 수 있다.

위의 종료 조건을 정리하면 아래와 같다.

- 1. $|f(x_{n+1})| < \delta$
- 2. $n \geq N_{max}$
- 3. $|x_{n+1}-x_n|<\epsilon$

프로그램에서는 δ , N_{max} , ϵ 을 각각 0.000001, 50, 0.00001 설정하여 진행하였다.

Newton-Raphson

초기값 x_0

•
$$x_0 = 3.0$$

결과 분석

초기값을 3.0으로 하고 주어진 비선형 방정식 f_1 의 근을 구할 경우, 초기값 제외 총 3번의 반복후, 위의 종료조건을 만족하고 프로그램이 종료됨을 확인할 수 있다.

i	x _{n+1}	$ f(x_{n+1}) $
0	3.00000000000000e+00	9.861228866810978e-02
1	3.059167373200866e+00	3.692745776079587e-03
2	3.057106054691600e+00	4.476150597731987e-06
3	3.057103549998436e+00	6.609823799408332e-12

프로그램 실행 동안의 x와 |f(x)|의 값

마지막 iteration에서 나온 값이자 프로그램이 구한 f_1 의 근이라고 할 수 있는 $3.057103549998436e^0$ 의 |f| 값을 보면 $6.609823799408332e^{-12}$ 로 프로그램에서 설정한 δ 보다 작은 값으로 매우 작은 0에 가까운 값이라고 분석할 수 있다. 또한 x_3 과 x_2 의 차이를 비교해보면 대략 0.0000035 로 프로그램의 종료 조건 ϵ 보다 작은 차이를 보이는 것을 알수 있다. 따라서 원하는 근을 정확히 찾고 있다고 판단할 수 있다.

Secant

초기값 x_0, x_1

- $x_0 = 2.0$
- $x_1 = 4.0$

결과분석

초기값을 2.0, 4.0으로 하고 방정식의 근을 구한 경우, 초기값 제외 총 8번의 반복 후, 위의 종료조건을 만족하고 프로그램이 종료되었음을 확인할 수 있다.

i	x_{n+1}	$ f(x_{n+1}) $
0	2.00000000000000e+00	6.931471805599453e-01
1	4.000000000000000e+00	2.613705638880109e+00
2	2.419218645889003e+00	7.077003413730973e-01
3	2.756039712206013e+00	4.421987159786218e-01
4	3.317022504001122e+00	5.354807316593719e-01
5	3.009768959371032e+00	8.222996682146211e-02
6	3.050670709725762e+00	1.145253099628074e-02
7	3.057289041659921e+00	3.315284194800316e-04
8	3.057102843928875e+00	1.261809842834083e-06
9	3.057103549917540e+00	1.379611980212303e-10

프로그램 실행 동안의 x와 |f(x)|의 값

Newton-Raphson 방법에서 분석한 방법과 마찬가지로 마지막 iteration의 x값과 |f(x)|의 값을 보면 $|x_9-x_8|\approx 0.0000013$ 로 ϵ 보다 작은 차이를 보이고 $|f(x_9)|$ 도 δ 보다 작은 값을 가지는 것을 알 수 있다. 따라서 원하는 근을 정확히 찾고 있다고 판단할 수 있다.

두 방법의 수렴 속도 분석

Newton-Raphson 방법의 경우 이론상 근에 2차 수렴을 하고 Secant 방법의 경우 이론상 1.62의 속도로 근에 수렴한다. f_1 의 방정식의 근을 찾는 과정에서 Newton-Raphson의 경우 3번의 반복, Secant 방법의 경우 8번의 반복을 수행하였다. 이 결과를 통해 두 방법 모두 빠른 속도로 근에 수렴하고 Newton-Raphson 방법이 Secant 방법보다 더 빠른 속도로 근에 수렴함을 알수 있다.

이때 Secant 방법에서 Newton-Raphson에서 설정한 초기값 3.0과 유사한 x와 |f(x)|를 보이는 iteration이 존재한다. iteration 5번에서 유사함을 확인할 수 있다. 해당 iteration에서부터 4번의 반복문 수행 후 프로그램이 종료됨을 알 수 있다. 따라서 근과 유사한 오차를 보이는 순간

부터 Newton-Raphson 방법이 Secant 방법보다 $\frac{4}{3}$ 만큼 빠르게 오차 감소를 보이는 것을 알수 있고 이는 이론상 보이는 속도차와 유사하다고 할 수 있다.

임의의 초기값에 대해 두 방법의 수렴속도 분석

위의 방정식 f_1 에서 초기값을 변경한 뒤 다시 Newton-Raphson 방법과 Secant 방법을 이용해 방정식을 풀이하면 아래와 같은 결과가 나온다.

초기값 설정

Newton-Raphson

•
$$x_0 = 2.7$$

Secant

- $x_0 = 1.7$
- $x_1 = 3.7$

결과: Newton-Raphson

초기값을 2.7으로 하고 주어진 비선형 방정식 f_1 의 근을 구할 경우, 초기값 제외 총 5번의 반복후, 위의 종료조건을 만족하고 프로그램이 종료됨을 확인할 수 있다.

i	xn1	f(xn1)
0	2.70000000000000e+00	5.032517730102832e-01
1	3.188769707599915e+00	2.535382468996263e-01
2	3.065927769928115e+00	1.585178893750805e-02
3	3.057148971254527e+00	8.117451094169503e-05
4	3.057103551210869e+00	2.173347279921245e-09
5	3.057103549994738e+00	0.000000000000000e+00

마지막 iteration에서 3.057103549994738e + 00의 값을 가짐을 확인 할 수 있고 |f(x)|이 0인 것을 통해 해당 프로그램으로 정확한 근을 구해냈음을 알 수 있다.

초기값을 3.0으로 했던 기존의 수행 결과보다 좀 더 많은 반복문이 소요되었지만 종료조건을 만족하면서 매우 정확한 근을 찾아냈음을 알 수 있다.

결과: Secant

초기값을 1.7, 3.7으로 하고 방정식의 근을 구한 경우, 초기값 제외 총 9번의 반복 후, 위의 종료조건을 만족하고 프로그램이 종료되었음을 확인할 수 있다.

i	xn1	f(xn1)
0	1.70000000000000e+00	4.406282510621705e-01
1	3.70000000000000e+00	1.581667180349822e+00
2	2.135770406457892e+00	7.403938244376536e-01
3	2.634528160312509e+00	5.660781134344021e-01
4	4.254209178953081e+00	3.633550134609810e+00
5	2.852848907113028e+00	3.209668531636551e-01
6	2.966589775591207e+00	1.531172751165957e-01
7	3.070347509470592e+00	2.385304056960025e-02
8	3.056362466690744e+00	1.323811448244561e-03
9	3.057097807221920e+00	1.026287507888135e-05
10	3.057103552504711e+00	4.485571691859036e-09

마지막 iteration에서 3.057103552504711e+00의 값을 가짐을 확인 할 수 있고 해당 iteration에서 함수값이 4.485571691859036e-09을 만족함을 통해 종료 조건인 δ 보다 작은 함수값을 가지고 $|x_{10}-x_{9}|<\epsilon$ 을 만족함을 통해 프로그램이 원하는 근을 정확하게 찾고 있다고 판단할 수 있다.

두 방법의 수렴 속도

Newton-Raphson과 Secant 방법에서 각각 5번, 9번의 반복 후 프로그램을 종료한 것을 통해 두 방법 모두 이론상 확인한 것처럼 빠른 속도로 근에 수렴함을 알 수 있고 두 방법 중 Newton-Raphson방법이 더 빠른 속도로 근에 가까워짐을 확인할 수 있다.

부동 소수점 연산의 정밀도에 따른 근의 차이(실습 1-4)

$$f_1(x) = lnx - 1 = 0$$

위 비선형 방정식 f_1 의 경우 근이 e로 알려져 있다. 위 방정식의 근을 프로그램을 이용해 Newton-Raphson 방법으로 구하려 할 때 동일한 초기값에 대해 double precision 방법과 single precision 방법 모두를 이용해 근을 구해 부동 소수점 연산의 정밀도에 따른 근의 차이를 분석해보았다.

초기값 설정

초기값은 실제 근인 e=2.718281828459045235360287471352...과 유사한 2.6으로 하여 프로그램을 실행하였다.

• $x_0 = 2.6$

double precision 결과

double precision의 경우 프로그램에서 double 타입으로 모든 연산을 처리하였다.

i	x_{n+1}	$ f(x_{n+1}) $
0	2.600000000000000e+00	4.448855497256365e-02
1	2.715670242928665e+00	9.612104402638710e-04
2	2.718280573518483e+00	4.616669394552630e-07

프로그램 실행 동안의 x와 |f(x)|의 값

single precision 결과

single precision의 경우 프로그램에서 float 타입으로 모든 연산을 처리하였다.

i	X _{n+1}	$ f(x_{n+1}) $
0	2.599999904632568e+00	4.448860883712769e-02
1	2.715670347213745e+00	9.611845016479492e-04
2	2.718280553817749e+00	4.768371582031250e-07

프로그램 실행 동안의 x와 |f(x)|의 값

double precision, single precision 연산의 정밀도 차이 분 석

프로그램에서 double 타입은 float 타입보다 두 배 더 많은 부동 소수점 연산 정밀도를 가진다. 프로그램 실행 결과를 비교했을 때 알 수 있는 정보는 아래와 같다.

- 1. double precision이 초기값을 좀 더 정확하게 계산해 프로그램에 넣는다.
 - a. 결과 표에서 iteration 0은 프로그램 실행 시 입력한 초기값으로 2.6을 입력하였다. 하 지만 single precision의 경우 정확히 2.6이 아닌 2.6과 유사한
 - 2.599999904632568e + 00가 초기값이 되어 계산이 진행되었음을 알 수 있다.
- 2. 프로그램 종료조건을 만족하는 x, 즉 Newton-Raphson 방법이 구해낸 방정식 f_1 의 근의 정확도를 비교했을 때 double precision이 좀 더 나은 정확도를 보임을 확인할 수 있다.

- a. 실제로 알려진 근 e와 프로그램을 이용해 구한 근 2.718280573518483e + 00과 2.718280553817749e + 00을 비교했을 때 double prescision의 경우 대략 0.00001254940562의 오차를 가지고 single precision의 경우 대략 0.00001274641296 의 오차를 가져 미세하게 double precision이 더 정확한 근을 구해냈음을 알 수 있다.
- b. 또한 |f(x)|도 double preicision의 경우 같은 e^{-7} 에 대해 4.6xxx로 표현되고 single precision의 경우 4.7xxx로 표현되므로 double precision이 좀 더 0에 가까운 근을 찾아냈다고 분석할 수 있다.

Bisection 방법을 이용한 비선형 방정식의 풀이 분석 (숙제1)

Bisection 방법을 이용해 근을 구할 때 다음 구간 설정 시 $[a_0, \frac{a_0+b_0}{2}]$ 또는 $[\frac{a_0+b_0}{2}, b_0]$ 중 알맞은 구간을 선택해야한다. 이때 구간 선택 로직은 아래와 같다.

구간 선택 Logic

- ullet 구간 $[a_n,b_n]$ 에 항상 근이 존재하려면 $f(a_n)f(b_n)<0$ 을 만족해야한다.
- $\frac{a_n+b_n}{2}$ 에 대해 $f(a_n)f(\frac{a_n+b_n}{2})<0$ 또는 $f(\frac{a_n+b_n}{2})f(b_n)<0$ 를 판단해 부등식을 만족하는 값으로 다음 구간을 정한다.

위 로직을 이용해 프로그램에 구현한 Bisection 방법에 대해 Bisection 방법을 이용한 비선형방 정식의 풀이를 분석하고자 한다.

$$f_1(x)=x^2-4x+4-lnx=0 \ f_2(x)=x+1-2sin\pi x=0 \ f_3(x)=x^4-11.0x^3+42.35x^2-66.55x+35.184=0$$

위 세 비선형 방정식에 대해 Bisection 방법을 이용해 근을 구한 결과는 아래와 같다.

초기값 설정

f_1

- $a_0 = 2.0$
- $b_0 = 4.0$

f_2

- $a_0 = 0.5$
- $b_0 = 1.0$

f_3

[1.02, 1.48]

- $a_0 = 1.02$
- $b_0 = 1.48$

[1.95, 2.37]

- $a_0 = 1.95$
- $b_0 = 2.37$

[3.11, 3.73]

- $a_0 = 3.11$
- $b_0 = 3.73$

[3.83, 4.61]

- $a_0 = 3.83$
- $b_0 = 4.61$

결과 분석

f_1

초기 구간을 [2.0,4.0]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯이 초기 구간을 이용해 구한 x_0 포함 총 20번의 반복 후 프로그램의 종료 조건을 만족한다.

초기 구간을 [2.0,4.0]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯이 초기 구간을 이용해 구한 x_0 포함 총 20번의 반복 후 프로그램의 종료 조건을 만족한다.

i	xn1	f(xn1)
0	3.00000000000000e+00	9.861228866810978e-02
1	3.500000000000000e+00	9.972370315046319e-01
2	3.250000000000000e+00	3.838450036583538e-01
3	3.125000000000000e+00	1.261907168116352e-01
4	3.062500000000000e+00	9.674674129154681e-03
5	3.031250000000000e+00	4.549851320365628e-02
6	3.046875000000000e+00	1.816920957907486e-02
7	3.054687500000000e+00	4.311573409498504e-03
8	3.058593750000000e+00	2.665476027821967e-03
9	3.056640625000000e+00	8.270675343551304e-04
10	3.057617187500000e+00	9.181995684575117e-04
11	3.057128906250000e+00	4.531484340919434e-05
12	3.056884765625000e+00	3.909391393928097e-04
13	3.057006835937500e+00	1.728278464081523e-04
14	3.057067871093750e+00	6.376042609557153e-05
15	3.057098388671875e+00	9.223772491129267e-06
16	3.057113647460938e+00	1.804529017213063e-05
17	3.057106018066406e+00	4.410697518775208e-06
18	3.057102203369141e+00	2.406552816580643e-06
19	3.057104110717773e+00	1.002068518385357e-06

결과를 보면 마지막 iteration 값인 3.057104110717773e + 00 을 방정식의 근으로 반환하였고 이는 앞의 Newton-Raphson 방법과 Secant 방법으로 구한 근과 유사함을 알 수 있다.

 x_{19} 와 x_{18} 의 차이가 ϵ 보다 작고 $|f(x_{19})|$ 또한 δ 보다 작은 충분히 0에 가까운 값이므로 적절한 초기구간을 사용하여 올바르게 근에 수렴한다고 판단할 수 있다.

f_2

초기 구간을 [0.5,1.0]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯이 초기 구간을 이용해 구한 x_0 포함 총 19번의 반복 후 프로그램의 종료 조건을 만족한다.

i	xn1	f(xn1)
0	7.500000000000000e-01	3.357864376269049e-01
1	6.250000000000000e-01	2.227590650225735e-01
2	6.875000000000000e-01	2.456077539490931e-02
3	6.562500000000000e-01	1.075925286967101e-01
4	6.718750000000000e-01	4.358222000054424e-02
5	6.796875000000000e-01	1.001963049941446e-02
6	6.835937500000000e-01	7.144338890323620e-03
7	6.816406250000000e-01	1.469329873796887e-03
8	6.826171875000000e-01	2.829599108000957e-03
9	6.821289062500000e-01	6.781563090836329e-04
10	6.818847656250000e-01	3.960816035961656e-04
11	6.820068359375000e-01	1.409136779404463e-04
12	6.819458007812500e-01	1.276148853435188e-04
13	6.819763183593750e-01	6.641666146611769e-06
14	6.819610595703125e-01	6.048854219597999e-05
15	6.819686889648438e-01	2.692392116654396e-05
16	6.819725036621094e-01	1.014124829468166e-05
17	6.819744110107422e-01	1.749821270324858e-06
18	6.819753646850586e-01	2.445914888848932e-06

결과를 보면 마지막 iteration 값인 6.819753646850586e-01 을 방정식의 근으로 반환하였고 이는 앞의 Newton-Raphson 방법과 Secant 방법으로 구한 근과 유사함을 알 수 있다.

 x_{18} 와 x_{17} 의 차이가 ϵ 보다 작고 $|f(x_{18})|$ 또한 δ 보다 작은 충분히 0에 가까운 값이므로 적절한 초기구간을 사용하여 올바르게 근에 수렴한다고 판단할 수 있다.

f_3

$\left[1.02, 1.48\right]$

초기 구간을 [1.02,1.48]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯 이 초기 구간을 이용해 구한 x_0 포함 총 19번의 반복 후 프로그램의 종료 조건을 만족한다.

i	xn1	f(xn1)
0	1.250000000000000e+00	9.201937500000028e-01
1	1.135000000000000e+00	2.634867243750065e-01
2	1.077500000000000e+00	1.864986219140619e-01
3	1.106250000000000e+00	4.939418792725547e-02
4	1.091875000000000e+00	6.576846241470946e-02
5	1.099062500000000e+00	7.498578681186530e-03
6	1.102656250000000e+00	2.111902525615506e-02
7	1.100859375000000e+00	6.853143165336917e-03
8	1.099960937500000e+00	3.119734348402403e-04
9	1.100410156250000e+00	3.273269151200964e-03
10	1.100185546875000e+00	1.481319153988636e-03
11	1.100073242187500e+00	5.848407115607301e-04
12	1.100017089843750e+00	1.364756048616300e-04
13	1.099989013671875e+00	8.773842294118595e-05
14	1.100003051757813e+00	2.437121394649466e-05
15	1.099996032714844e+00	3.168294875166566e-05
16	1.099999542236328e+00	3.655703466165505e-06
17	1.100001296997070e+00	1.035779622071686e-05
18	1.100000419616699e+00	3.351056619749215e-06

결과를 보면 마지막 iteration 값인 1.100000419616699e+00 을 방정식의 근으로 반환하였고 이는 앞의 Newton-Raphson 방법과 Secant 방법으로 구한 근과 유사함을 알 수있다.

 x_{18} 와 x_{17} 의 차이가 ϵ 보다 작고 $|f(x_{18})|$ 또한 δ 보다 작은 충분히 0에 가까운 값이므로 적절한 초기구간을 사용하여 올바르게 근에 수렴한다고 판단할 수 있다.

[1.95, 2.37]

초기 구간을 [1.95, 2.37]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯이 초기 구간을 이용해 구한 x_0 포함 총 16번의 반복 후 프로그램의 종료 조건을 만족한다.

i	xn1	f(xn1)
0	2.160000000000000e+00	1.082726399999885e-01
1	2.265000000000000e+00	1.673314256250151e-01
2	2.212500000000000e+00	3.308166503905596e-02
3	2.186250000000000e+00	3.682551073973883e-02
4	2.199375000000000e+00	1.664222118954228e-03
5	2.205937500000000e+00	1.576250851211825e-02
6	2.202656250000000e+00	7.062358964738280e-03
7	2.201015625000000e+00	2.702343338434332e-03
8	2.200195312500000e+00	5.198757007818244e-04
9	2.199785156250000e+00	5.719698916593075e-04
10	2.199990234375000e+00	2.599620915333389e-05
11	2.200092773437500e+00	2.469524744768137e-04
12	2.200041503906250e+00	1.104813139605199e-04
13	2.200015869140625e+00	4.224334762881199e-05
14	2.200003051757812e+00	8.123768019174804e-06
15	2.199996643066406e+00	8.936170893036888e-06

결과를 보면 마지막 iteration 값인 2.199996643066406e+00 을 방정식의 근으로 반환하였고 이는 앞의 Newton-Raphson 방법과 Secant 방법으로 구한 근과 유사함을 알 수있다.

 x_{16} 와 x_{15} 의 차이가 ϵ 보다 작고 $|f(x_{16})|$ 또한 δ 보다 작은 충분히 0에 가까운 값이므로 적절한 초기구간을 사용하여 올바르게 근에 수렴한다고 판단할 수 있다.

[3.11, 3.73]

초기 구간을 [3.11, 3.73]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯이 초기 구간을 이용해 구한 x_0 포함 총 18번의 반복 후 프로그램의 종료 조건을 만족한다.

i	xn1	f(xn1)
0	3.420000000000000e+00	3.328550399999628e-01
1	3.265000000000000e+00	9.159492562512384e-02
2	3.342500000000000e+00	1.151484155859279e-01
3	3.303750000000000e+00	9.999399411576348e-03
4	3.284375000000000e+00	4.129000711439090e-02
5	3.294062500000000e+00	1.576250851210403e-02
6	3.298906250000000e+00	2.910112113063690e-03
7	3.301328125000000e+00	3.537597931305925e-03
8	3.300117187500000e+00	3.119697382700792e-04
9	3.299511718750000e+00	1.299515944999996e-03
10	3.299814453125000e+00	4.938841097796853e-04
11	3.299965820312500e+00	9.098491450032498e-05
12	3.300041503906250e+00	1.104854825868529e-04
13	3.300003662109375e+00	9.748551370591940e-06
14	3.299984741210937e+00	4.061861475435080e-05
15	3.299994201660156e+00	1.543514000701407e-05
16	3.299998931884765e+00	2.843321375678443e-06
17	3.300001296997070e+00	3.452608204668195e-06

결과를 보면 마지막 iteration 값인 3.300001296997070e+00 을 방정식의 근으로 반환하였고 이는 앞의 Newton-Raphson 방법과 Secant 방법으로 구한 근과 유사함을 알 수있다.

 x_{17} 와 x_{16} 의 차이가 ϵ 보다 작고 $|f(x_{17})|$ 또한 δ 보다 작은 충분히 0에 가까운 값이므로 적절한 초기구간을 사용하여 올바르게 근에 수렴한다고 판단할 수 있다.

[3.83, 4.61]

초기 구간을 [3.83,4.61]으로 설정하고 Bisection 방법을 실행하면 결과 표에서 볼 수 있듯 이 초기 구간을 이용해 구한 x_0 포함 총 19번의 반복 후 프로그램의 종료 조건을 만족한다.

0 4.220000000000001e+00 1.043677439999946e+00 1 4.415000000000001e+00 1.228070756250830e-01 2 4.317500000000001e+00 5.719134905858638e-01 3 4.366250000000001e+00 2.546190068334724e-01 4 4.390625000000001e+00 7.370435628904914e-02 5 4.402812500000001e+00 2.256605607454532e-02 6 4.396718750000002e+00 2.606099208150425e-02 7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04 13 4.400003662109377e+00 2.924578399898792e-05
2 4.31750000000001e+00 5.719134905858638e-01 3 4.36625000000001e+00 2.546190068334724e-01 4 4.39062500000001e+00 7.370435628904914e-02 5 4.40281250000001e+00 2.256605607454532e-02 6 4.39671875000002e+00 2.606099208150425e-02 7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
3 4.3662500000000001e+00 2.546190068334724e-01 4 4.390625000000001e+00 7.370435628904914e-02 5 4.402812500000001e+00 2.256605607454532e-02 6 4.396718750000002e+00 2.606099208150425e-02 7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
4 4.390625000000001e+00 7.370435628904914e-02 5 4.402812500000001e+00 2.256605607454532e-02 6 4.396718750000002e+00 2.606099208150425e-02 7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
5 4.402812500000001e+00 2.256605607454532e-02 6 4.396718750000002e+00 2.606099208150425e-02 7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
6 4.396718750000002e+00 2.606099208150425e-02 7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
7 4.399765625000001e+00 1.870987694751136e-03 8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
8 4.401289062500002e+00 1.031658425427651e-02 9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
9 4.400527343750001e+00 4.215069552465422e-03 10 4.400146484375002e+00 1.170109841105216e-03 11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
10
11 4.399956054687502e+00 3.509215618962003e-04 12 4.400051269531252e+00 4.094734636694852e-04
12 4.400051269531252e+00 4.094734636694852e-04
13 4.400003662109377e+00 2.924578399898792e-05
14 4.399979858398440e+00 1.608454305070950e-04
15 4.399991760253908e+00 6.580170855130518e-05
16 4.399997711181642e+00 1.827843367863125e-05
17 4.400000686645510e+00 5.483557409036166e-06
18 4.399999198913576e+00 6.397467466001672e-06

결과를 보면 마지막 iteration 값인 4.399999198913576e+00 을 방정식의 근으로 반환하였고 이는 앞의 Newton-Raphson 방법과 Secant 방법으로 구한 근과 유사함을 알 수있다.

 x_{18} 와 x_{17} 의 차이가 ϵ 보다 작고 $|f(x_{18})|$ 또한 δ 보다 작은 충분히 0에 가까운 값이므로 적절한 초기구간을 사용하여 올바르게 근에 수렴한다고 판단할 수 있다.

수렴 속도 비교

위의 두 비선형 방정식 풀이 방법 Newton-Raphson 방법, Secant 방법, 그리고 Bisection 방법은 이론상 각각 다음과 같은 수렴 속도를 보인다.

• Newton-Raphson: $\epsilon_{n+1} pprox c\epsilon_n^2, \quad c>0$

。 근이 단근(simple root)일 경우 성립

 $\bullet \ \ {\rm Secant:} \ \epsilon_{n+1} \approx c \epsilon_n^{1.62}, \quad c>0$

• Newton-Raphson: $\epsilon_{n+1} pprox rac{1}{2} \epsilon_n$

 f_1, f_2, f_3 의 세 가지 방법에 대한 근에 수렴 속도를 분석하기 위해 위에서 보인 각 함수의 각 방법에 대한 결과를 제외한 나머지 결과를 아래에 정리해였다.

f_2 : Newton-Raphson

초기값을 0.75로 하여 Newton-Raphson방법을 수행할 경우 초기값 제외 3번의 반복문 수행후 프로그램을 종료한다.

i	x _{n+1}	$ f(x_{n+1}) $
0	7.50000000000000e-01	3.357864376269049e-01
1	6.883072460969516e-01	2.819126095597957e-02
2	6.820480690939008e-01	3.223569164387818e-04
3	6.819748188604164e-01	4.453119828440322e-08

f_2 : Secant

초기값을 0.5, 1.0으로 하여 Secant방법을 수행할 경우 초기값 제외 6번의 반복문 수행 후 프로그램을 종료한다.

i	X_{n+1}	$ f(x_{n+1}) $
0	5.00000000000000e-01	5.00000000000000e-01
1	1.000000000000000e+00	2.000000000000000e+00
2	6.00000000000001e-01	3.021130325903070e-01
3	6.524931709804664e-01	1.223535022158933e-01
4	6.882226997487054e-01	2.781052374266890e-02
5	6.816055562499178e-01	1.623411657736940e-03
6	6.819705209666883e-01	1.886410134188665e-05
7	6.819748117285146e-01	1.315406050750312e-08

f_3 : Newton-Raphson

[1.02, 1.48]

초기값을 구간의 중간값인 1.25로 하여 Newton-Raphson방법을 수행할 경우 초기값 제외 4번의 반복문 수행후 프로그램을 종료한다.

i	x _{n+1}	$ f(x_{n+1}) $
0	1.250000000000000e+00	9.201937500000028e-01
1	1.042046610169491e+00	5.088145931496086e-01
2	1.095070234545689e+00	3.969336566746762e-02
3	1.099959957849027e+00	3.197979590012778e-04
4	1.099999997327961e+00	2.133891285893696e-08

[1.95, 2.37]

초기값을 구간의 중간값인 2.16로 하여 Newton-Raphson방법을 수행할 경우 초기값 제외 2번의 반복문 수행후 프로그램을 종료한다.

i	x _{n+1}	$ f(x_{n+1}) $
0	2.160000000000000e+00	1.082726399999885e-01
1	2.199400753425052e+00	1.595628415664407e-03
2	2.199999837218690e+00	4.333238550202623e-07

[3.11, 3.73]

초기값을 구간의 중간값인 3.42로 하여 Newton-Raphson방법을 수행할 경우 초기값 제외 3번의 반복문 수행후 프로그램을 종료한다.

i	X_{n+1}	$ f(x_{n+1}) $
0	3.420000000000000e+00	3.328550399999628e-01
1	3.303227113773005e+00	8.603104076250645e-03
2	3.300004664519575e+00	1.241697736276137e-05
3	3.30000000009917e+00	2.639666263348772e-11

[3.83, 4.61]

초기값을 구간의 중간값인 4.22로 하여 Newton-Raphson방법을 수행할 경우 초기값 제외 4번의 반복문 수행후 프로그램을 종료한다.

i	x _{n+1}	$ f(x_{n+1}) $
0	4.220000000000000e+00	1.043677439999890e+00
1	4.493744853894648e+00	8.711305502691360e-01
2	4.412015995526431e+00	9.789296460457564e-02
3	4.400234056965293e+00	1.869908166845846e-03
4	4.400000091254408e+00	7.287577048487037e-07

f_3 : Secant

$\left[1.02, 1.48\right]$

초기값을 1.02, 1.48으로 하여 Secant방법을 수행할 경우 초기값 제외 7번의 반복문 수행후 프로그램을 종료한다.

i	xn1	f(xn1)
0	1.020000000000000e+00	7.274841599999959e-01
1	1.48000000000000e+00	1.454019840000001e+00
2	1.17339999999999e+00	5.170449001636470e-01
3	1.004210879085131e+00	8.929836181502111e-01
4	1.111359856133397e+00	8.901186301301323e-02
5	1.101647459029790e+00	1.312051236190115e-02
6	1.099968326623156e+00	2.529569403080245e-04
7	1.100000087132441e+00	6.958395815104268e-07
8	1.100000000004599e+00	3.671374315672438e-11

[1.95, 2.37]

초기값을 1.95, 2.37으로 하여 Secant방법을 수행할 경우 초기값 제외 5번의 반복문 수행후 프로그램을 종료한다.

i	xn1	f(xn1)
0	1.950000000000000e+00	7.028437499999640e-01
1	2.37000000000000e+00	4.075976099999892e-01
2	2.215835176564386e+00	4.184115640978092e-02
3	2.198199303220419e+00	4.797365407192444e-03
4	2.200013377196391e+00	3.560988029249756e-05
5	2.200000010904762e+00	2.902846318875163e-08
6	2.19999999999999e+00	1.918465386552271e-13

[3.11, 3.73]

초기값을 3.11, 3.73으로 하여 Secant방법을 수행할 경우 초기값 제외 5번의 반복문 수행후 프로그램을 종료한다.

```
i xn1 | f(xn1) |
0 3.110000000000000e+00 4.483124100000353e-01
1 3.73000000000000e+00 1.159285589999904e+00
2 3.28290000000020e+00 4.515546893944844e-02
3 3.299662140424397e+00 8.992439850104006e-04
4 3.300002731018557e+00 7.269980322632819e-06
5 3.299999999580309e+00 1.117207659717678e-09
```

[3.83, 4.61]

초기값을 3.83, 4.61으로 하여 Secant방법을 수행할 경우 초기값 제외 8번의 반복문 수행후 프로그램을 종료한다.

i	xn1	f(xn1)
0	3.83000000000000e+00	1.344314789999963e+00
1	4.610000000000000e+00	2.327098409999969e+00
2	4.115602703667348e+00	1.339934858587121e+00
3	4.296255597389961e+00	6.925022448218598e-01
4	4.489484254360017e+00	8.259934490623735e-01
5	4.384376544492151e+00	1.215451563029362e-01
6	4.397859196230239e+00	1.703552336663705e-02
7	4.400056926930033e+00	4.546615977645274e-04
8	4.399999796387763e+00	1.626046632452471e-06
9	4.399999999980666e+00	1.542659333608754e-10

이론상과 마찬가지로 반복문의 수행 횟수를 기반으로 오차 감소 속도를 예측했을 때 Newton-Raphson, Secant, Bisection 순서로 반복문의 횟수가 증가하므로 상대적으로 Newton-Raphson과 Secant 방법이 빠른 근 수렴속도를 가짐을 알 수 있고 모든 함수에서 Newton-Raphson, Secant, Bisection 순서로 빠른 오차 감소 속도를 가짐을 알 수 있다.

각도 lpha구하기(숙제2)

$$f(lpha)=Asinlpha coslpha+Bsin^2lpha-Ccoslpha-Esinlpha=0 \ A=lsineta_1, \ B=lcoseta_1, \ C=(h+0.5D)sineta_1-0.5Dtaneta_1, \ E=(h+0.5D)coseta_1-0.5D \ l=89, h=49, D=55$$

위와 같은 비선형 방정식을 만족하는 lpha에 대해 Newton-Raphson방법으로 lpha를 추정하면 아래와 같은 과정을 가진다.

초기값 설정

• α_0 : 33.0

과정

Newton-Raphson 방법은 주어진 x에 대해 x의 f에 대한 접선의 방정식이 x축과 만나는 점을 다음 근으로 추정해 실제 근과의 오차를 줄여나간다. 위의 과정을 식으로 표현하면 아래와 같다.

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

따라서 방정식의 근에 매우 가까이 가게 될수록 x_n 과 x_{n+1} 의 차이는 0에 수렴하게된다.

프로그램에서는 초기값 x_0 을 입력받아 위의 식에 대입해 x_1 을 구한 뒤, x_1 이 프로그램의 종료 조건을 만족하는지 확인한 후, 아닐 경우 해당 식을 반복한다. 해당 식은 아래와 같이 구현되어 있다.

```
for(n; n<=Nmax; n++) {
    x1 = x0 - (_f(x0) / _fp(x0));
    if (fabs(_f(x1)) < DELTA && fabs(x1 - x0) < EPSILON) {
        break;
    }
    x0 = x1;
}</pre>
```

위 프로그램에서는 프로그램의 반복문이 무한히 수행되는 것을 막기 위해 최대 Nmax 만큼의 수행 횟수 제한을 두었다.

Newton-Raphson 방법을 사용하기 위해서는 함수 $f'(\alpha)$ 의 식을 알아야 하는데 이는 아래와 같다.

$$f'(lpha) = A(cos^2lpha - sin^2lpha) + 2Bsinlpha coslpha + Csinlpha - Ecoslpha = 0$$

위의 상수들을 변수로 설정한 뒤, $f(\alpha)$ 와 $f'(\alpha)$ 의 계산 결과를 반환하도록 **f** 와 **fp** 의 프로 그램해 처음 설정한 초기값을 넣어 방정식의 해를 구하면 아래와 같은 결과가 나온다.

결과

초기값을 33.0으로 하고 주어진 비선형 방정식 $f(\alpha)$ 의 근을 구할 경우, 초기값 제외 총 4번의 반복 후, 위의 종료조건을 만족하고 프로그램이 종료됨을 확인할 수 있다.

i	xn1	f(xn1)
0	3.300000000000000e+01	3.434111718478194e+01
1	3.242490719716647e+01	3.195993587951808e+00
2	3.248531333657944e+01	1.762793644939915e-01
3	3.248230378537768e+01	3.869300062593339e-04
4	3.248229715028958e+01	1.893502243888179e-09

프로그램 수행 결과 3.248229715028958e+01을 방정식의 근으로 반환하였고 이는 x_4 와 x_3 의 차이가 ϵ 보다 작고 $|f(x_4)|$ 의 값이 δ 보다 작으므로 프로그램이 정확한 근을 구했다고 판단할 수 있다.