FUZZY LOGIC

Aditya Raj

Afzal Ahmad

Arun Ravindran 11BIT0035

11BIT0155

11BIT0038

OVERVIEW

- What is Fuzzy Logic?
- Where did it begin?
- Fuzzy Logic vs. Neural Networks
- Fuzzy Logic in Control Systems
- Fuzzy Logic in Other Fields

WHAT IS FUZZY LOGIC?

Definition of fuzzy

- A way to represent variation or imprecision in logic
- A way to make use of natural language in logic
- Approximate reasoning
- ☐ Humans say things like "If it is sunny and warm today, I will drive fast"

TRADITIONAL REPRESENTATION OF LOGIC

FUZZY LOGIC REPRESENTATION

 For every problem must represent in terms of fuzzy sets.

• What are fuzzy sets?

Slowest

[0.0 - 0.25]

Slow

[0.25 - 0.50]

Fast

[0.50 - 0.75]

[0.75 - 1.00]

FUZZY LOGIC REPRESENTATION

Slowest

Slow

Fast

Fastest

```
float speed;
get the speed
if ((speed \geq 0.0) &&(speed < 0.25)) {
         // speed is slowest
else if ((speed \geq 0.25) && (speed < 0.5))
         // speed is slow
else if ((speed \geq 0.5) &&(speed < 0.75))
         // speed is fast
else // speed \geq 0.75 && speed < 1.0
            speed is fastest
```

ORIGINS OF FUZZY LOGIC

- Traces back to Ancient Greece
- Lotfi Asker Zadeh (1965)
 - First to publish ideas of fuzzy logic.
- Professor Toshire Terano (1972)
 - Organized the world's first working group on fuzzy systems.
- F.L. Smidth & Co. (1980)
 - First to market fuzzy expert systems.

FUZZY LOGIC VS. NEURAL NETWORKS

• How does a Neural Network work?

Both model the human brain.

- Fuzzy Logic
- Neural Networks
- Both used to create behavioral

systems.

Fig. 2 A simple, single-unit adaptive network

FUZZY LOGIC IN CONTROL SYSTEMS

• Fuzzy Logic provides a more efficient and resourceful way to solve Control Systems.

TEMPERATURE CONTROLLER

- The problem
 - Change the speed of a heater fan, based off the room temperature and humidity.
- A temperature control system has four settings
 - Cold, Cool, Warm, and Hot
- Humidity can be defined by:
 - Low, Medium, and High

Membership Functions

- Temp: {Freezing, Cool, Warm, Hot}
- Degree of Truth or "Membership"

Membership Functions

- How cool is 36 F°?
- It is 30% Cool and 70% Freezing

Inputs: Temperature, Cloud Cover

• Temp: {Freezing, Cool, Warm, Hot}

Cover: {Sunny, Partly, Overcast}

Example Speed Calculation

- How fast will I go if it is
 - $-65 \, F^{\circ}$
 - 25 % Cloud Cover?

Rules

If it's Sunny and Warm, drive Fast
 Sunny(Cover)∧Warm(Temp)⇒ Fast(Speed)

If it's Cloudy and Cool, drive Slow
 Cloudy(Cover)∧Cool(Temp)⇒ Slow(Speed)

 Driving Speed is the combination of output of these rules...

Fuzzification:

Calculate Input Membership Levels

• 65 F° \Rightarrow Cool = 0.4, Warm= 0.7

• 25% Cover \Rightarrow Sunny = 0.8, Cloudy = 0.2

...Calculating...

• If it's Sunny and Warm, drive Fast

```
Sunny(Cover) \land Warm(Temp) \Rightarrow Fast(Speed)

0.8 \land 0.7 = 0.7

\Rightarrow Fast = 0.7
```

If it's Cloudy and Cool, drive Slow

```
Cloudy(Cover) \land Cool(Temp) \Rightarrow Slow(Speed)

0.2 \land 0.4 = 0.2

\Rightarrow Slow = 0.2
```

Defuzzification: Constructing the Output

Speed is 20% Slow and 70% Fast

Speed = weighted mean= (2*25+7*75)/(9)= 63.8 mph

Similarity Degree

- A = B if and only if that every element of the union A ∪ B also belongs to the intersection A ∩ B.
- So, it is reasonable to define the degree of similarity as $d=(A, B) = P(A \cap B)/P(A \cup B)$.
- The smaller the ratio, the more there are elements from one of the sets which do not belong to the other.
- So, the sets A and B are equal if, d=1. $\frac{c \cdot \sum_{x} \mu_{A \cap B}(x)}{c \cdot \sum_{x} \mu_{A \cup B}(x)} = \frac{\sum_{i=1}^{n} \overline{\min(a_i, b_i)}}{\sum_{i=1}^{n} \overline{\max(a_i, b_i)}}$

Intuitionistic Triangular Fuzzy Number

Let A={(x, t(x), s(x))/x∈X} be an IFS, then
 (t(x), s(x)) be an intuitionistic number for
 better understanding we take no. such as,
 A={(a,b,c)(l,m,n)} where (a,b,c) ∈ F(I) and
 (l,n,m) ∈ F(I)

For two intuitionistic fuzzy path length:

- L1 = ((a1,b1, c1) (l1,m1,n1)) and L2 = ((a2, b2, c2) (l2,m2,n2)),
- For membership function Lmin = (a b c)
 - a = min(a1,a2)
- b= {
 min(b1,b2) if min(b1,b2)<=max(a1,a2);
 (b1*b2)-(a1*a2)/(b1+b2)-(a1+a2)
 if min(b1,b2)>max(a1,a2);
 }

• c = min[min(c1, c2), max(b1, b2)]

For non membership function

- Lmax = (l m n)
- l = min(l1, l2)
- $m=\{ min(m1,m2)$ if max(m1,m2)>min(l1,l2)

```
(m1*m2)-(l1*l2)/(m1+m2)-(l1+l2)
if max(m1,m2)<=min(l1,l2)
```

• n = max[max(n1, n2), min(m1, m2)]

Step1: P1:
$$1-2-4-6 \rightarrow L1 = (4, 8, 15)$$

P2:
$$1-2-5-6 \rightarrow L2 = (6, 12, 17)$$

P3:
$$1-3-5-6 \rightarrow L3 = (7, 14, 18)$$

Step 2:
$$L_{min}$$
 = (a, b, c) = L1= (4, 8, 15)

Step 3: Compute (a, b, c):

b =
$$(12 * 8) - (6 * 4)/(12 + 8) - (6 + 4)=7.2$$

a = min $(4, 6) = 4$;
c = min $(15, 12) = 12$;

Step 5:

Set
$$L_{min}$$
 = (4, 7.2, 12)

$$S(L_{i}, L_{min}) = \begin{cases} 0 & L_{i} \cap L_{min} = \emptyset \\ \frac{100(c-a)^{2}}{2(c_{i}-a_{i})[(c-b)(b_{i}-a_{i})]} & L_{i} \cap L_{min} = \emptyset \end{cases}$$

And put the values in this formula for all path i.e. p_1, p_2, p_3 and get the value of that path

path	member function	
P1: 1-2-4-6	L1 = (4, 8, 15)	
P2: 1-2-5-6	L2=(6, 12, 17)	
P3: 1-3-5-6	L3=(7, 14, 18)	

Table 1 represents the only member function for the given path and it's length L_{min} =(4,8,15)

I	Path	S(L _{i,} L _{min})	RANK
1	P1: 1-2-4-6	3.12	1 st
2	P2: 1-2-5-6	7.2	2 nd
3	P3: 1-3-5-6	9.5	3 rd

Drawbacks to Fuzzy logic

Requires tuning of membership functions

 Fuzzy Logic control may not scale well to large or complex problems

Deals with imprecision, and vagueness, but not uncertainty

CONCLUSION

• Fuzzy logic provides an alternative way to represent linguistic and subjective attributes of the real world in computing.

• It is able to be applied to control systems and other applications in order to improve the efficiency and simplicity of the design process.

