CATEGORICAL DATA ANALYSIS NOTE EDGARD MABOUDOU

Chapter 2: Two-way Contingency Tables

I Introduction

ullet Bivariate Analysis: Suppose X and Y are 2 categorical variables – two way table.

```
X has I categories or levels i.e. X takes on values 1, 2, \ldots, I; Y has J categories or levels i.e. Y takes on values 1, 2, \ldots, J;
```

- There are IJ cells in a cross-classification of X and Y.
- X is the row variable, which is indexed by i.
- Y is the column variable, which indexed by j.
- Display the *IJ* possible combinations of outcomes in a rectangular table having *I* rows for the categories of *X* and *J* columns for the categories of *Y*.
- A table of this form in which the cells contain frequency counts of outcomes is called a contingency table.
- A contingency table that cross classifies two variables is called a two-way table.
- A table which cross classifies three variables is called a three-way table.
- A "2-way contingency table" is a cross-classification of observations by the levels of 2 discrete variables.
- The cells of the table contain frequency counts.
- The number of variables is often referred to as the "dimension of the table".
- The "size" of the table often refers to the number of cells.
- A two-way table having I rows and J columns is called an $I \times J$ table.
- The size of a two-way table is $I \times J$.
- Focus for now on a two-way table

- ullet In some situations, Y is a response variable and X is an explanatory variable.
- In other situations, both are response variables.

1. Joint, Marginal, and Conditional Distributions

- Notation: Joint probability $\pi_{ij} = P(X = i, Y = j)$. This is the probability that (X, Y) falls in the cell in row i and column (j).
- The probabilities $\{\pi_{ij}\}$ form the joint distribution of X and Y. Note that,

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \pi_{ij} = 1.$$

• The marginal distribution of X is π_{i+} , which is obtained by the row sums or the sum of cell probabilities across the rows, that is,

$$\pi_{i+} = P(X = i) = \sum_{j=1}^{J} \pi_{ij}$$

• The marginal distribution of Y is π_{+j} , which is obtained by the column sums or the sum of cell probabilities across the columns, that is,

$$\pi_{+j} = P(Y = j) = \sum_{i=1}^{I} \pi_{ij}$$

• Cell counts are denoted by $\{n_{ij}\}$, with

$$n = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij}.$$

• Cell proportions are

$$p_{ij} = \frac{n_{ij}}{n}$$

- This is the proportion of observations in the $(i, j)^{th}$ cell.
- The marginal frequencies are row totals $\{n_{i+}\}$ and column totals $\{n_{+j}\}$

- Let Y be a binary response variable and X be an explanatory variable, it is informative to construct separate probability distributions for Y at each level of X,
- i.e. we would be interested in the conditional probability of Y given X: $\pi_{j|i} = P(Y = j|X = i) = \pi_i$ and is called a conditional distribution.
- If Y is the response variable and X is the explanatory variable, we would be interested in the conditional probability of Y given X: $\pi_{j|i} = P(Y = j|X = i) = \pi_i$
- Corresponding sample proportions are denoted using p. Example: p_{ij} for π_{ij} , p_{i+} for π_{i+} , $p_{j|i} = p_i$ for $\pi_{j|i} = \pi_i$
- Corresponding cell counts on frequencies are n_{ij} , n_{i+} . For instance, for 2×2 table, we would have:

$$\begin{array}{c|ccccc} X \setminus Y & 1 & 2 & \to \sum & \text{Prop.} \\ 1 & n_{11} & n_{12} & n_{1+} & p_{11} = \frac{n_{11}}{n} \\ 2 & n_{21} & n_{22} & n_{2+} & p_{1+} = \frac{n_{1+}}{n} \\ \hline \sum \downarrow & n_{+1} & n_{+2} & n \end{array}$$

 \bullet Divide any cell by n to get corresponding proportion.

2. Example

2013 workers were classified according to whether or not they have a stressful job and whether or not they develop coronary heart disease (CHD).

Stress\CHD	Y	N	
Y	97	307	404
N	200	1409	1609
	297	1716	2013

Solution: First, divide by n to get the sample proportion

$$\begin{array}{c|cccc} X \setminus Y & Y & N \\ Y & & \\ \hline N & & & \\ \end{array}$$

• Here, "CHD" would be the response variable and "Stress" the explanatory variable.

- So, we would be interested in the conditional distribution of CHD given stress
- Estimate of $P(CHD = 1 | Stress = 1) = \pi_1$

• Estimate of $P(CHD = 1|Stress = 2) = \pi_2$

- The difference in these proportions may suggest that $\pi_1 \neq \pi_2$.
- This would mean that CHD and Stress are dependent.
- Equivalently, we can compare their joint probability to the product of the marginal probabilities

$$\pi_{ij} = \pi_{i+}\pi_{+j} \ \forall i,j \quad \Leftrightarrow \quad \text{independent}$$

3. Independence

• Two variables are statistically independent if all joint probabilities equal the product of their marginal probabilities

$$\pi_{ij} = \pi_{i+}\pi_{+j}$$
, for $i = 1, \dots, I$, and $j = 1, \dots, J$.

 \bullet or Conditional distributions of Y are identical at each levels of X,

$$\pi_{j|i} = \pi_{+j} \ \forall i, j$$

•

II Sampling Designs $(2 \times 2 \text{ Table})$

These are extensions of the Poisson, Binomial, and multinomial models that we have discussed for 1 variable, in chapter 1, to 2 variables.

1. Poisson Sampling

- No margins of a table are fixed by design. Each cell is considered an independent Poisson random variable.
- Each cell contains a frequency over a period of time.
- the n_{ij} 's are independent Poisson random variables.

2. Independent Binomial Sampling

- \bullet Independent samples from each level of X
- One margin is fixed by design while the other is free to vary. Classified according to level of Y. Thus, marginal totals are fixed, i.e. n_{1+} and n_{2+} are fixed.
- Conditional distributions of Y at each level of X are binomial.
- note that we can estimate the conditional distribution of Y given X, but not the joint distribution of X and Y.

3. Multinomial Sampling

- the total number of observations, n, is fixed by design but not the row or column totals and they are classified according to the 2 variables.
- The margins are free to vary

4. Pseudo-Independent Binomial Sampling

- When one variable is considered the response and the other variable is considered the explanatory variable, but only the total n is fixed by design,
- we may want to treat the data as if it were independent binomial samples.

5. Analysis

- Most analysis do not depend on which sampling scheme was used.
- When one variable is considered the response and the other variable is considered the explanatory variable, but only the total n is fixed by design, we may want to treat the data as if it were independent binomial samples.

- Different sampling models usually lead to the same inferential methods.
- Importance of Considering Sampling Design: sampling and design do make a difference regarding conclusions that can be made.

III. Measuring Association in 2×2 Tables

- Ways to study and analyze the relationship between two variables.
- Multiple ways to do measure association:
 - 1. Differences of Proportions
 - 2. Relative risk
 - 3. Odds Ratios

1. Differences of proportions – independent binomial sampling – compare conditional probabilities

- Assume that the row totals are fixed and hence we have a binomial model.
- ullet Suppose the two categories of Y are success and failure.
- Let $\pi_{1|1} = \pi_1 = \text{Probability of "success"}$ given row 1
- $\pi_{2|1} = 1 \pi_{1|1} = 1 \pi_1 = \text{probability of "failure" given row 1}$
- and $\pi_{1|2} = \pi_2 = \text{Probability of "success" given row 2.}$
- $\pi_{2|2} = 1 \pi_{1|2} = 1 \pi_2 = \text{probability of "failure" given row 2}$
- These are conditional probabilities.
- The difference in probabilities $\pi_1 \pi_2$ compares the success probabilities in the two rows.
- In this setting, we want to compare the conditional probabilities

$$\begin{array}{c|ccccc}
X \setminus Y & 1 & 2 \\
\hline
1 & \pi_1 & 1 - \pi_1 \\
2 & \pi_2 & 1 - \pi_2
\end{array}$$

• If X and Y are independent, then $\pi_1 = \pi_2$ and $\pi_1 - \pi_2 = 0$. We compare π_1 and π_2 (test or CI).

- Standard Inference for 2 Populations: $H_0: \pi_1 = \pi_2$ v.s. $H_0: \pi_1 \neq \pi_2$
- Let p_1 and p_2 be sample proportions of success for the two rows.
- The sample difference $p_1 p_2$ estimates $\pi_1 \pi_2$.
- Let's denote n_{1+} and n_{2+} by n_1 and n_2 respectively.
- If the counts in two rows are independent samples, the estimated standard error of $\pi_1 \pi_2$ is

$$\hat{\sigma}(p_1 - p_2) = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}.$$

• For example, a large sample $(1 - \alpha) \times 100\%$ CI for $\pi_1 - \pi_2$ is

$$p_1 - p_2 \pm z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

where $z_{\alpha/2}$ denotes the standard normal percentile having a right tail probability equals to $\alpha/2$.

Example: A survey was conducted to examine the attitude of males and females about abortion. Of 500 females, 309 supported legalized abortion. Of 600 males, 319 supported legalized abortion. Let Y=1 be "supported legalized abortion".

$$\begin{array}{c|ccccc} X \setminus Y & 1 & 2 & \\ F & 309 & 191 & 500 \\ M & 319 & 281 & 600 \\ \hline & 628 & 472 & 1100 \\ \end{array}$$

Solution

Solution continued

Method 2: Ratio of Proportion - Relative Risk (R.R.)

• In 2×2 tables, the relative risk of a "success" is the ratio of the success probabilities for the two groups

$$R.R. = \frac{\pi_1}{\pi_2}.$$

• Why it might be a good idea to use R.R. rather than Z-test?

- A difference between two proportions of a certain fixed size may have greater importance when both proportions are near 0 or 1 than when they are near the middle of the range.
- e.g. the difference between 0.010 and 0.001 is the same as the difference between 0.410 and 0.401, namely 0.009 but the former one may be more important than the later one.

- Examples of such cases include a comparison of drugs on the proportion of subjects who have adverse reactions when using the drug.
- R.R. is helpful with small probabilities.
- When $\frac{\pi_1}{\pi_2} = 1$, the response is independent of the groups. Conditional probability equals marginal probability.
- The sample relative risk is $\widehat{R.R.} = \frac{p_1}{p_2}$.
- Its distribution (of $\frac{p_1}{p_2}$) is heavily skewed and cannot be well approximated by the normal distribution, unless the sample sizes are quite large.
- The log of the relative risk has a sampling distribution that is approximately normal with variance

$$\frac{1-p_1}{n_1p_1} + \frac{1-p_2}{n_2p_2}$$

- This permits the construction of a confidence interval (CI) which is symmetric around log(RR).
- A $(1-\alpha) \times 100\%$ CI of $\log\left(\frac{\pi_1}{\pi_2}\right) = \ln\left(\frac{\pi_1}{\pi_2}\right)$ is

$$\log\left(\frac{p_1}{p_2}\right) \pm z_{\alpha/2} \sqrt{\frac{1-p_1}{n_1 p_1} + \frac{1-p_2}{n_2 p_2}}$$

• Hence, a large sample $(1-\alpha) \times 100\%$ confidence interval of $\frac{\pi_1}{\pi_2}$ is given by

$$\exp\left\{\log\left(\frac{p_1}{p_2}\right) \pm z_{\alpha/2} \sqrt{\frac{1-p_1}{n_1 p_1} + \frac{1-p_2}{n_2 p_2}}\right\}$$

Example

In a study, 140 individuals were given a placebo while 139 were given a daily dose of ascorbic acid (Vitamin C). For each individual, it was determined whether or not they developed a cold sometime during winter season.

$$\begin{array}{c|cccc} X \setminus Y & \text{Cold} & \text{No Cold} \\ \text{Placebo} & 31 & 109 & 140 \\ \text{Vitamin C} & 17 & 122 & 139 \\ \hline & 48 & 231 & 279 \\ \end{array}$$

Solution

Method 3: Odds Ratio

1- Odd of Success - Odds Ratio

• Assume a binary variable, within row 1, the odds of success for population 1 is:

$$\Omega_1 = \frac{\pi_1}{1 - \pi_1} = \frac{P(Y = 1|X = 1)}{P(Y = 2|X = 1)} = \frac{P(S)}{P(F)}$$

• Similarly, within row 2, the odds of success for population 2 is:

$$\Omega_2 = \frac{\pi_2}{1 - \pi_2} = \frac{P(Y = 1|X = 2)}{P(Y = 2|X = 2)}$$

• Note: If we know Ω_i , we can compute π_i since

- Odds are non-negative and values greater than 1 indicates a success is more likely than a failure.
- $\Omega = 1 \iff$ success and failure equally likely
- $\Omega > 1 \iff$ success more likely than failure
- $\Omega < 1 \iff$ failure more likely than success
- A common measure of association is the odds ratio

$$\theta = \frac{\Omega_1}{\Omega_2} = \frac{\pi_1/(1 - \pi_1)}{\pi_2/(1 - \pi_2)}$$

• In a 2×2 table,

2- Properties of θ

- (i) Odds ratios are non-negative i.e. $\theta \in [0, +\infty)$
- (ii) When X and Y are independent, conditional distributions of Rows 1 and 2 are same, that is, $\pi_1 = \pi_2$ and this implies, $\theta = 1$.
- (iii) If $1 < \theta < +\infty$, the odds of success are higher in row 1 than in row 2.
- (iv) If $0 < \theta < 1$, the odds of success are less likely in row 1 than in row 2.
 - Values of θ farther from 1 (too small or too large) in a given direction indicates stronger level of association.
 - If the order of the rows or the order of the columns is reversed (but not both), the new value of θ is the inverse of the original value.
 - This ordering is usually arbitrary, so whether we get $\theta = 4.0$ or 0.25 is simply a matter of how we label the rows and columns.

3- Interpretation of $\theta = 2$

4- More on the odds ratio

• Recall that $\pi_1 = P(Y = 1 | X = 1)$ and $\pi_2 = P(Y = 1 | X = 2)$.

$$\pi_1 = P(Y = 1 | X = 1) = \frac{P(Y = 1, X = 1)}{P(X = 1)} = \frac{\pi_{11}}{\pi_{1+}}$$
$$1 - \pi_1 = \frac{\pi_{1+} - \pi_{11}}{\pi_{1+}} = \frac{\pi_{12}}{\pi_{1+}} = P(Y = 2 | X = 1).$$

Similarly,
$$1 - \pi_2 = \frac{\pi_{2+} - \pi_{21}}{\pi_{2+}} = \frac{\pi_{22}}{\pi_{2+}} = P(Y = 2|X = 2).$$

• The odds ratio

$$\theta = \frac{\pi_1(1 - \pi_2)}{\pi_2(1 - \pi_1)} = \frac{\pi_{11}\pi_{22}}{\pi_{21}\pi_{12}}.$$

- That is θ can be computed directly from the joint distribution.
 - 1. As the odds ratio treats the variables symmetrically, it is unnecessary to identify one classification as a response variable to calculate it.
 - 2. It does not depend on the choice of a response and explanatory variables. If you switch X and Y, θ is the same.
 - 3. When both variables are responses, the odds ratio can be defined using the joint probability as

$$\theta = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

and called cross - product ratio.

4. It can be computed from the conditional probability X|Y.

5. Remark. Since $p_{ij} = \frac{n_{ij}}{n}$, the sample odds ratio reduces to

$$\widehat{\theta} = \frac{p_1(1 - p_2)}{p_2(1 - p_1)} = \frac{p_{11}p_{22}}{p_{21}p_{12}} = \frac{n_{11}n_{22}}{n_{21}n_{12}}.$$

5- Inference for Odds Ratio

- For small to moderate sample size, the distribution of sample odds ratio $\widehat{\theta}$ is highly skewed.
- So, consider the log odds ratio, $\log \theta$
- X and Y are independent implies $\log \theta = 0$.
- Log odds ratio is symmetric about zero in the sense that reversal of rows or reversal of columns changes its sign only.
- The sample log odds ratio, $\log \widehat{\theta}$ has a less skewed distribution and can be approximated by the normal distribution well.
- The asymptotic standard error of $\log \widehat{\theta}$ is given by

$$ASE(\log \widehat{\theta}) = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

• We can get a large sample CI for $\log \theta$ using the following result

$$\log \widehat{\theta} \pm z_{\alpha/2} ASE(\log \widehat{\theta})$$

• A large sample $(1 - \alpha) \times 100\%$ confidence interval for θ is:

$$\exp\left\{\log\widehat{\theta} \pm z_{\alpha/2}ASE(\log\widehat{\theta})\right\}$$

• Note: The notation "log" means "natural logarithm".

Example

Back to Vitamin C example:

- ullet $\widehat{\theta} =$
- ullet Interpretation:
- A 90% CI for θ is

• Conclusion:

Some Observations

• Recall the formula for sample odds ratio

$$\widehat{\theta} = \frac{n_{11}n_{22}}{n_{21}n_{12}}$$

- The sample odds ratio is 0 or 1 if any $n_{ij} = 0$ and it is undefined if both entries in a row or column are zero.
- Consider the slightly modified formula

$$\widehat{\theta} = \frac{(n_{11} + 0.5)(n_{22} + 0.5)}{(n_{21} + 0.5)(n_{12} + 0.5)}$$

- In the ASE formula also, n_{ij} 's are replaced by $n_{ij} + 0.5$.
- A sample odds ratio equals to 1.832 does not mean that p_1 is 1.832 times p_2 .
- A simple relation:

$$\theta = \frac{\pi_1(1 - \pi_2)}{\pi_2(1 - \pi_1)} = R.R. \times \frac{1 - \pi_2}{1 - \pi_1}$$

• If p_1 and p_2 are close to 0, the odds ratio and relative risk take similar values, i.e.

$$\theta = R.R. \times \frac{1 - \pi_2}{1 - \pi_1} \approx R.R.$$

• This relationship between odds ratio and relative risk is useful.

IV. Types of Studies

Y: response and X: explanatory variable.

1. Cross-sectional design.

- Take a sample from the population of interest and record which group a person falls into and the outcome of interest.
- Fix n and the observations are classified according to both variables.
- Can estimate joint probability and consequently conditional probability Y|X.

2. **Prospective design** or "look into the future".

- Take a sample, wait some period of time, then count the number of outcomes/events/attributes of interest.
- There are 2 kinds of prospective studies: Clinical trials and Cohort Studies
- Clinical trials (experiments): Subjects are randomly assigned to groups.

- Cohort study: Subjects make their own choice as to which group they belong or "come as they are".
- Fixed row sums, n_{1+} and n_{2+} , that is sampling from the 2 levels of Y.
- Can estimate conditional distribution of Y|X, but not the joint distribution.
- 3. Retrospective design or "look into the past".
 - Fixed column sums, n_{+1} and n_{+2} , that is sampling from the 2 levels of X.
 - Sample those with and those without attribute of interest.
 - Used to ensure that you have enough cases for events that are relatively rare in the population.
 - Can estimate conditional distribution of X|Y.
- Odds ratio can be estimated for all 3 types of design.
- R.R. is computed from the conditional distribution of Y|X.
- In general, we cannot get the conditional distribution from a retrospective study.
- However, $\theta =$

Example

49 women aged 50-59 at diagnosis of cervical cancer are compared to 310 controls.

	disease status			
		Cancer	Control	
age at 1st	≤ 25	42	203	245
pregnancy	> 25	7	107	114
		49	310	359

• This is a retrospective study.

- Let X = Age (explanatory variable) and Y = Disease status (response variable). We are interested in comparing $P(\text{cancer} | X \leq 25)$ to P(cancer | X > 25).
- We have a retrospective design \iff these conditional probabilities cannot be estimated.
- However, it is known that cervical cancer is a fairly rare disease ($\theta \approx R.R.$).

V. Goodness-of-Fit Test $(I \times J \text{ Table})$

- Consider a null hypothesis, H_0 , regarding the probability structure of this table.
- Let μ_{ij} be the expected cell frequency for the ij-th cell when H_0 is true $(\mu_{ij} = n\pi_{ij})$.
- The Pearson Chi-Square statistic for testing H_0 is

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \mu_{ij})^{2}}{\mu_{ij}}.$$

• If n is large and H_0 is true, $X^2 \sim \chi^2_{IJ-1-t}$ where t = # of underlying parameters that are needed to be estimated in getting estimates of μ_{ij} .

Example 1

A random sample of 100 observations is classified according to 2 variables X and Y. Suppose we wish to test $H_0: \pi_{11} = .1, \pi_{12} = .15, \pi_{21} = .25, \pi_{22} = .5$.

$$\begin{array}{c|cccc}
X \setminus Y & 1 & 2 & \\
1 & 12 & 16 & \\
2 & 29 & 43 & \\
\hline
& & & & & & \\
\hline
& & & & & & \\
100 & & & & & \\
\end{array}$$

Solution

Example 2

A random sample of 100 observations is classified according to 2 variables X and Y. Suppose we wish to test $H_0: \pi_{11} = 2\pi_{21}, \pi_{12} = 2\pi_{22}$.

$$\begin{array}{c|cccc} X \setminus Y & 1 & 2 & \\ 1 & 25 & 42 & \\ 2 & 15 & 18 & \\ \hline & 40 & 60 & 100 & \\ \end{array}$$

Solution

Solution continued

VI. Test of Independence $(I \times J \text{ Table})$

- Are X and Y related? $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ for all i, j (Joint = product of marginal).
- $\mu_{ij} = n\pi_{ij} = n\pi_{i+}\pi_{+j}$ and μ_{ij} can be estimated by $\widehat{\mu}_{ij} = np_{i+}p_{+j} = n\pi_{i+}$
- So, the Pearson Chi-Squared statistic is

$$X^{2} = \sum_{i} \sum_{j} \frac{(n_{ij} - \widehat{\mu}_{ij})^{2}}{\widehat{\mu}_{ij}}.$$

- \bullet For "large" samples, X^2 has an approximate chi-squared distribution.
- A good rule: "Large" means $\mu_{ij} \geq 5$ for all (i, j).
- For the null hypothesis, need to estimate I-1 π_{i+} 's and J-1 π_{+j} 's, so (I-1)+(J-1) parameters
- For the alternative hypothesis, need to estimate IJ-1 parameters
- Hence, t = (I-1) + (J-1), and then df = IJ 1 t = (I-1)(J-1).
- An alternative test statistic is the likelihood ratio statistic, defined as

$$G^2 := 2 \sum_{i} \sum_{j} n_{ij} \log \left(\frac{n_{ij}}{\widehat{\mu}_{ij}} \right),$$

• Like X^2 , $G^2 \sim \chi^2_{_{(I-1)(J-1)}}$ for large n.

Example

Rats were injected with a drug that cause breast cancer, then each rat was fed a controlled diet for 15 weeks. At the end of the feeding period, each rat was checked for cancer. Is the development of cancer related to diet?

Cancer \setminus Diet	HF wo. Fiber	HF w. Fiber	LF wo. Fiber	LF w. Fiber	
Y	27	20	19	14	80
N	3	10	11	16	40
	30	30	30	30	120

Are cancer and diet dependent, then test for independence.

 $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ for all i, j. Test for independence.

Method 1. Use Pearson's Chi-Squared Statistic

$$X^2 =$$

Method 2. Likelihood Ratio Statistic

$$G^2 =$$

VII. Understanding Dependence – Residuals for Cells in a Contingency Table

- Reject test of independence $\Rightarrow X$ and Y are related.
- Can better understand this relationship by looking at residuals, and partitioning our Chi-Squared statistic into pieces.

1. Residuals

- The residuals are $n_{ij} \widehat{\mu}_{ij}$
- Problem: These tend to be large when $\widehat{\mu}_{ij}$ is large.
- Pearson Residuals or often called "standardized residual,"

$$\frac{n_{ij} - \widehat{\mu}_{ij}}{\sqrt{\widehat{\mu}_{ij}}}$$

- Problem with Pearson Residuals: The variance (standard deviation) of Pearson residuals is a bit too small.
- The standardized adjusted residuals for the (i, j)th cell is

$$\frac{n_{ij} - \widehat{\mu}_{ij}}{\sqrt{\widehat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}}.$$

- Approximately standard normal N(0,1) for large n if the null hypothesis is true.
- Standardized adjusted residuals far from zero (say 2 or 3 units) correspond to cells that exhibit lack of independence.

Ex. Previous example. We look at the standardized adjusted residual for (1,1)th cell

$$\frac{27 - 20}{\sqrt{20(1 - \frac{80}{120})(1 - \frac{30}{120})}} \approx 3.14$$

Cancer \ Diet	HF/NF	HF/F	LF/NF	LF/F	
Y					0
N					0
	0	0	0	0	

Some Comments

Reduced Table

Cancer \ Diet	HF/NF	LF/F	
Y			
N			
	30	30	

2. Partitioning Chi-Squares

- Another way to investigate the nature of association
- The sum of independent chi-squared statistics are themselves chi-squared statistics with degrees of freedom equal to the sum of the degrees of freedom for the individual statistics.
- $\chi_d^2 = \chi_{d_1}^2 + \chi_{d_2}^2 + \dots + \chi_{d_r}^2$ where $d = d_1 + d_2 + \dots + d_r$ and $\chi_{d_i}^2$ are independent.
- "Partitioning chi-squared" uses this fact, but in reverse:

- We start with a chi-squared statistic with df>1 and break it into component parts, each with df=1
- This works with G^2 exactly but only approximately with X^2 .
- Why partition?
- Partitioning chi-squared statistics helps to show that an association which was significant for the overall table primarily reflects differences between some categories and/or some groups of categories.

Ex. Partition G^2 into 3 parts $G^2 = G_1^2 + G_2^2 + G_3^2$.

- How to partition?

For G_1^2 , we use only the first 2 columns.

$X \setminus Y$	HF/NF	HF/F	
Y			47
N			13
	30	30	

$$-G_1^2 =$$

$$-df =$$

– For G_2^2 , we combine the first two columns and compare with the 3rd column (HF/NF + HF/F = HF).

$X \setminus Y$	HF	LF/NF	
Y			66
N			24
	60	30	90

[–] For G_3^2 , we combine the first three columns and compare with the 4th column (No LF/F).

$X \setminus Y$	Not LF/F	LF/F	
Y			80
N			40
	90	30	120

$$-df =$$

When n is small, we use another type of test.

VIII. Exact Test for Independence (for small n) – Fisher Exact Test

- ullet When samples are small, the distributions of X^2 and G^2 are not well approximated by the chi-squared distribution
- Solution: Perform "exact tests" (or "estimates of exact tests").
- Fisher's test conditions on the margins of the observed 2×2 table i.e test is based on conditioning on the marginals.
- Consider the set of all tables with the exact same margins as the observed table.

- In this set of tables, once you know the value in 1 cell, you can fill in the rest of the cells.
- Therefore, to find the probability of observing a table, we only need to find the probability of 1 cell in the table (rather than the probabilities of 4 cells).
- Typically, we use the (1, 1) cell, and compute the probabilities that $n_{11} = y$.
- That is for a 2×2 table, $n_{1+}, n_{2+}, n_{+1}, n_{+2}$ are fixed, which means that there is one free variable, say n_{11} .
- Computing Probabilities of Tables assuming $H_0: \theta = 1$
- When $\theta = 1$, n_{11} has a hypergeometric distribution with probability function:

$$P(n_{11}) = \frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}.$$

- Sometimes both marginal are fixed by the experiment (Tea taster in textbook).
- More often, both are not fixed, but we test as if fixed.
- The p-value equals
- p-value = \sum (hypergeometric probabilities of tables that favor H_a , including the probability for the observed table).
- To compute the p-value, we need the alternative H_a .
- $H_0: \theta = 1$ versus $H_a: \theta < 1$
 - Find the odds ratio of the observed table,

$$\theta = n_{11}n_{22}/n_{12}n_{21}$$

- Compute the hypergeometric probabilities for the tables where the odds ratios are less than odds ratio from the observed table, including the probability for the observed table.
- $H_0: \theta = 1$ versus $H_a: \theta > 1$

- Compute the hypergeometric probabilities for tables where $\hat{\theta} >$ the odds ratio from the observed table, including the probability for the observed table.
- $H_0: \theta = 1$ versus $H_a: \theta \neq 1$
- For this case, we use a different criterion.
- p-value = sum of hypergeometric probabilities of tables that are no more likely than the observed table.

Ex. A new treatment for a disease is to be compared with the current method. The current method is used on 6 patients and the new method is used on 9 patient with the following results:

	Success	Failure	
current	2	4	6
new	8	1	9
	10	5	15

Is there evidence to say that the new method is better?

Test: $H_0: \theta = 1$ v.s. $H_a: \theta < 1$.

IX. Three Way Tables $2 \times 2 \times 2$

1. Introduction

- ullet Common situation: what effect does the explanatory variable X have on response Y implies bivariate analysis.
- What if the relationship between X and Y depends on the values of some other variable?
- Ex: Consider the outcome (Success or Failure) of 2 medical treatments classified by sex of the patients.

	Sex			
	M F			7
Outcome (Y)	S	F	S	F
X = 1	60	20	40	80
X=2	100	50	10	30

Does the choice of treatment (X) affect outcome (Y)? Case 1: No mention of (Z):

	Sex	
Outcome (Y)	S	F
X = 1	100	100
X = 2	110	80

Case 2: Just look at male:

	Sex	
	M	
Outcome (Y)	S	F
X = 1	60	20
X=2	100	50

- This contradicts conclusion for marginal table.
- This contradiction is known as Simpson's Paradox
- How can this happen?
- Probabilities from marginal table are weighted averages of those from males and females.
- Using the law of total probability

$$P(A) = P(A|B)P(B) + P(A|\overline{B})P(\overline{B}).$$
 That is $P_1 = .75 \left(\frac{80}{200}\right) + .33 \left(\frac{120}{200}\right) = .5$ and $P_2 = .67 \left(\frac{150}{190}\right) + .25 \left(\frac{40}{190}\right) = .25 \left(\frac{40}{190}\right)$

- P_2 is larger because males have much higher success probability than females and the majority of men had treatment 2 while the majority of females had treatment 1.
- In this example, it is important to control or adjust for gender when looking at the relationship between choice of treatment and outcome.

Remarks:

- 1. Table for males and table for females are called partial tables.
- 2. They are treatment \times outcome table conditioning on gender.
- 3. Odds computed from these tables are called *conditional or partial odds*.
- 4. Marginal table is 2 tables with combined gender.

Moral:

- (a) Don't collapse tables, that is, don't use marginal tables unless appropriate.
 - Appropriate if relationship between X and Y is the same in the marginal table as it is in the partial tables.
 - estimated probabilities need to be about the same in all 3 tables.
- (b) In designing experiments, record all potentially important variables. "Control variable(s)", that might possibly influence the relationship between X and Y.

2. Conditional and Marginal Odds ratio

• We have seen that the odds ratio for X, Y is

$$\theta = \theta_{XY} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} = \frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}}.$$

- Conditional Odds Ratios are odds ratios between two variables for fixed levels of the third variable.
- In an X Y Z table, the π 's and μ 's are obtained by summing over Z, so we can also write

$$\theta = \theta_{XY} = \frac{\pi_{11+}\pi_{22+}}{\pi_{12+}\pi_{21+}} = \frac{\mu_{11+}\mu_{22+}}{\mu_{12+}\mu_{21+}}.$$

• Conditional or partial odds ratios are computed from partial tables, i.e.

$$\theta = \theta_{XY(k)} = \frac{\mu_{11(k)}\mu_{22(k)}}{\mu_{12(k)}\mu_{21(k)}}.$$

describes the XY association when Z = k.

- Conditional odds ratios are sometimes referred to as measures of "partial association".
- Marginal Odds Ratios are the odds ratios between two variables in the marginal table.
- The marginal odds ratios need not equal the partial (conditional) odds ratios.
- Marginal association can be very different from conditional association.
- Marginal association is meaningful only when it is identical to the conditional association.

3. Marginal vs. Conditional Independence

- No relationship between marginal and conditional independence.
- a- Marginal Independence of X and Y is

$$\pi_{ij} = \pi_{i+}\pi_{+j} \Leftrightarrow \theta_{XY} = 1.$$

b- Conditional independence of X and Y given Z is

$$P(X=i,Y=j|Z=k) = P(X=i|Z=k)P(X=i|Z=k) \Leftrightarrow \theta_{XY(k)} = 1$$

Note:

- $b \not\Rightarrow a$. Conditional independence does not imply marginal independence. See table 2.11 on page 53.
- $a \Rightarrow b$. Marginal independence does not imply conditional independence.

Ex. π_{ijk} given as follows:

- Verify that (a) is true
- First, find the marginal table collapse over Z

$$\begin{array}{c|ccccc} & & Y \\ & 1 & 2 \\ \hline X & 1 & .3 & .3 \\ & 2 & .2 & .2 \\ \end{array}$$

- Next, look at the 2 conditional tables, partial odds ratios:

- X and Y are conditionally dependent given Z.
- When Z = 1, Y = 1 is less likely for X = 1 than X = 2.

When Z = 2, Y = 1 is more likely for X = 1 than X = 2.

4. Homogeneous XY Association

- ullet How are X and Y related? Look at conditional odds ratios.
- Generally, we have a different answer for each Z = k value.
- If we get the same relationship for all cases, i.e.

$$\theta_{XY(1)} = \theta_{XY(2)} = \dots = \theta_{XY(k)}, \quad (X, Ybinary)$$

then we say that we have Homogeneous XY association.

- There is "no interaction between any 2 variables in their effects on the third variable".
- There is "no 3-way interaction" among the variables.
- Note: conditional independence of X and Y is a special case of homogeneous association $\theta_{XY(k)} = 1$.

Ex. $(2 \times 2 \times 2 \text{ table})$

X: amount of prenatal care (primary variable)

Y: survival of infant (response variable)

Z: clinic attended

		Infant Survival		
	Care	died	survived	
Clinic	less	3	176	
A	more	4	293	
Clinic	less	17	197	
В	more	2	23	

– Calculate two partial odds ratios for X-Y

Approximately, $\theta_{XY(1)} = \theta_{XY(2)} \approx 1$ suggesting that given a clinic, it appears that survival is unrelated to prenatal care.

Note: Homogeneous association for one pair of variable implies homogeneous association for other pairs.

• In general,

$$\theta_{XY(1)} = \theta_{XY(2)} = \dots = \theta_{XY(K)}$$

$$\theta_{X(1)Z} = \theta_{X(2)Z} = \dots = \theta_{X(J)Z}$$

$$\theta_{(1)YZ} = \theta_{(2)YZ} = \dots = \theta_{(I)YZ}$$

- all three hold or none holds.
- ullet Conditional independence of X and Y is a special case of homogeneous association

Ex. XZ partial odds ratios

X. Testing for Conditional Independence

Any relationship between X and Y after adjusting for Z? That is $\theta_{XY(1)} = \theta_{XY(2)} = \cdots = \theta_{XY(k)} = 1$

1. Cochran-Mantel-Haenszel Test (CMH)

- From discussion of Fisher's exact test, we know that the distribution of 2×2 tables with fixed margins is hypergeometric.
- Regardless of sampling scheme, if we consider row and column totals of partial tables as fixed, we can use hypergeometric distribution to compute probabilities.
- The test for conditional association uses one cell from each partial table.
- For $2 \times 2 \times k$ table
- Under conditional independence, conditioning on marginal totals for X and Y at each level of Z, we have

 H_0 : X and Y are independent given Z.

$$\mu_{11k} = E[n_{11k}] = \frac{n_{1+k}n_{+1k}}{n_{++k}}$$
$$V(n_{11k}) = \frac{n_{1+k}n_{2+k}n_{+1k}n_{+2k}}{n_{++k}^2(n_{++k} - 1)}$$

T.S.

$$CMH = \frac{\left[\sum_{k} (n_{11k} - \mu_{11k})\right]^2}{\sum_{k} V(n_{11k})}$$

• If X and Y are conditionally independent (H_0 true), then approximately, $CMH \sim \chi_1^2$.

Ex. Rabbits are given a lethal injection of streptococci and an injection of penicillin either immediately or 1.5 hours delayed. Response is "cured or died".

		Respon	se (Y)		
	Delay (X)	cured	died	μ_{11k}	$V(n_{11k})$
1/8	none	0	6	$\frac{6 \times 0}{11} = 0$	0
	$1.5~\mathrm{hrs}$	0	5		
1/4	none	3	3	$\frac{6 \times 3}{12} = 1.5$	$\frac{6\times6\times3\times9}{12^2\times11}\approx\frac{27}{44}$
1/4	$1.5~\mathrm{hrs}$	0	6		
1/2	none	6	0	$\frac{6 \times 8}{12} = 4$	$\frac{32}{44}$
	$1.5~\mathrm{hrs}$	2	4		
1	none	5	1	$\frac{6 \times 11}{12} = 5.5$	$\frac{11}{44}$
1	1.5 hrs 6 0				
1	none	2	0	$\frac{2 \times 7}{7} = 2$	0
4	$1.5~\mathrm{hrs}$	5	0		

k = 5 levels of Z

- Using chi-Square table, $\alpha = .05$, df = 1, $\chi^2_{.05}(1) = 3.84$. Conclusion: we conclude that we do not have conditional independence. The cure rate and timing of penicillin injection are dependent given the penicillin level.
- This test works best when $\theta_{XY(1)} = \cdots = \theta_{XY(k)}$
- We will see later how to test this homogeneity association, $\theta_{XY(1)} = \cdots = \theta_{XY(k)}$.
- When $\theta_{XY(1)} = \cdots = \theta_{XY(k)}$, we can consider a pooled estimator of θ .

2. Mantel-Haenszel estimator of θ :

• When $\theta_{XY(1)} = \cdots = \theta_{XY(k)}$, the "Mantel-Haenszel Estimator" of a common value of the odds ratio is

$$\widehat{\theta}_{MH} = \frac{\sum (n_{11k} n_{22k} / n_{++k})}{\sum (n_{12k} n_{21k} / n_{++k})}$$

• Note that the standard error for $\widehat{\theta}_{MH}$ is complex, so we will rely on a software to get this and therefore confidence intervals for θ_{MH}