NUMERI COMPLESSI

18 gen '21

"Creati" da Bombelli, per visolvere eq. 3º grado - anche soluzioni redi viduiede La Notazione pesante estrazion di num. negativi

estrarve radici quadrate $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}$

Un numero complesso ha forma \rightarrow lo posso pensore z=a+ib, $a,b\in\mathbb{R}$ come una copyria di se $b=0 \Rightarrow z\in\mathbb{R}$

 $\frac{7}{3} = \frac{1}{3} + \frac{1}{3}$ $\frac{7}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$

•
$$(a+ib)$$
 + $(c+id)$ = $(a+c)$ + $i(b+d)$
significatio geometrico di somma di vettori

• (a+ib) (c+id) = ac+iad+ibc+i2bd =

= (ac-bd) + i (ad+bc)

e associativo, commutativo.

I numeri complessi NON hauno un ordine naturali

• il valore assoluto |z| et la distanta del punto dall'origine $|z| = \sqrt{a^2 + b^2}$

Signo z, ω compless; $z\omega = |z| |\omega| (\cos \alpha + i \sin \alpha) (\cos \beta + i \sin \beta) =$ $= |z| |\omega| [(\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i (\cos \alpha \sin \beta + \sin \alpha \cos \beta) =$ $= |z| |\omega| [\cos (\alpha + \beta) + i \sin(\alpha + \beta)]$

Aggirngen Stides