1.Stars 1.notebook October 31, 2021

Sep 29-15:54

Sep 29-15:54

Sep 29-15:54

Sep 29-15:54

Sep 29-15:54

Sep 29-15:54

1.Stars 1.notebook October 31, 2021

(6) M - Describe the main structures in the universe (7) S - Describe the evolution of a low mass star and compare to a high mass star.			
(8) C - Explain the significance of the Chandrasekhar limit in star evolution			
a Des	ribe the formation of a star such as our Sun	and its most probable evolution	
In your answer you should make clear how the steps in the process are			
sequenced. (6 marks) —			
	Extension: Contrast with a high ma	ss star by stating	
	the main differences.		
	0.5		
	Six from:	ALLOW alternative wording	
	Matter/gases/dust attracted by gravitational forces	Maximum five out of six if the sequence of events is incorrect	
	GPE converted to gain in KE		
	(rise in temperature)		
	Temperature high enough for hydrogen to begin		
	fusion process		
	Hydrogen/fuel runs out so core of Sun begins to collapse		
	Hydrogen fusion continues in the outer layers of Sun		
	Sun expands to form red giant		
	Outer layers drift away/form planetary nebula		
	Core forms a white dwarf/slowly cools and becomes dimmer		

Sep 29-15:54

(6) M - Describe the main structures in the universe (7) S - Describe the evolution of a low mass star and compare to a high mass star (8) C - Explain the significance of the Chandrasekhar limit in star evolution			
Artaines is a red supergiant star in the constellation Scorpius. The Stature evolution of Antaines will be very different from that of our own Sur. Describe how you would expect Antaines to evolve.			
(4 marks)			
Four from:			
Temperature rises as super giant's core collapses Helium fusion/burning starts in core			
Supernova explosion occurs If mass of core is greater than Chandrasekhar limit a	\dashv		
neutron star is formed If mass of core is greater than ~3 time mass of Sun a			
black hole is formed Other relevant points, for example, formation of heavier elements, tusion of elements up to iron, reference to Schwarz child radius			
	\dashv		
	\dashv		

Sep 29-15:54