Trabalho Final de Concepção de Circuitos Integrados

Mateus Brugnaroto, Vinícius Renato Rocha Geraldo {mbrugnaroto, vrrgeraldo}@inf.ufpel.edu.br}

Resumo: O trabalho a ser descrito é um somador de 1-bit desenvolvido em nível de síntese lógica e física. Foi projetado o circuito em layout e assim extraído o SPICE da célula para análise dos resultados. Na simulação lógica do circuito é analisado os resultados do somador completo.

1- Introdução

Esse trabalho envolve o desenvolvimento de um somador completo de 1 bit conforme a Figura 1. Cada equação foi implementada separadamente e assim instanciada e roteados em uma única célula. A tecnologia adotada para implementação é AMS 0.35µm.

Figura 1 – Somador Completo de 1 bit

A ferramenta utilizada para fazer o desenho do *layout* é a L-Edit, onde foi implementada todas as portas básicas (NAND, NOR, AND, OR, XOR)

2- Metodologia

Utilizamos o primeiro trabalho como referência para o tamanho dos transistores e para o desenvolvimento do trabalho de extração de circuito em layout. Para os transistores o *length* (L) utilizado foi de 0,3µm. O tamanho (W) dos transistores foi estimado da seguinte maneira:

$$w = \begin{cases} w_{min} * n_{serie} * \lambda, & se \ PMOS, \\ w_{min} * n_{serie}, & se \ NMOS \end{cases}$$

Onde o n_{serie} equivale ao número de elementos em série no plano e W_{min} , largura mínima do canal, foi utilizado um tamanho de 1,2 μ m. Transistores PMOS devem ser maiores que os NMOS. Dessa forma, o parâmetro λ foi definido como 2, representando o dobro do tamanho de NMOS.

2.1- NAND e AND

As simulações das portas básicas podem ser vistas nas Figura 2 e Figura 3, onde foi desenvolvido o layout de cada porta e testado o valor lógico no T-Spice. O layout das portas segue na Figura 4 e Figura 5.

Figura 2 – Simulação AND

Figura 3 – Simulação NAND

Figura 4 – Layout da porta AND

Figura 5 – Layout da porta NAND

Abaixo se encontra a tabela de atrasos das portas NAND e AND

Medidas	NAND	AND
pHL	13.4438ps	54.4897ps
pLH	18.7625ps	68.7023ps
tR	25.4475ps	23.6744ps
tF	13.8580ps	6.5068ps

2.2 - NOR e OR

As simulações das portas básicas podem ser vistas nas Figura 6 e Figura 7, onde foi desenvolvido o layout de cada porta e testado o valor lógico no T-Spice. O layout das portas segue na Figura 8 e Figura 9.

Figura 6 – Simulação NOR

Figura 7 – Simulação OR

Figura 8 – Layout da porta NOR

Figura 9 – Layout da porta OR

Abaixo se encontra a tabela de atrasos das portas NOR e OR

Medidas	NOR	OR
pHL	26.1622ps	153.9259ps
pLH	32.9714ps	68.7023ps
tR	56.2355ps	23.5921ps
tF	9.9868ps	18.1549ps

2.3 - XOR

As simulações das portas básicas podem ser vistas nas Figura 10, onde foi desenvolvido o layout de cada porta e testado o valor lógico no T-Spice. O layout das portas segue na Figura 11.

Figura 10 – Simulação XOR

Figura 11 – Layout da porta XOR

Abaixo se encontra a tabela de atrasos da porta XOR

Medidas	NOR
pHL	238.1723ps
pLH	187.4058ps
tR	26.8463ps
tF	13.0757ps

3 – Somador Completo

No desenvolvimento final do projeto realizado foi a implementação de um somador de 1 bit. Nisso utilizamos como base nosso primeiro trabalho desenvolvido em SPICE da disciplina para dimensionamento dos transistores e como base do circuito final.

As portas básicas foram utilizadas para o desenho final do circuito onde pegamos o esquemático abaixo para descrição do projeto.

Α	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(a) (b)

O layout do circuito como fizemos no L-Edit e a validação da porta foi feita no T-Spice. Podemos ver as simulações e o desenho da porta final do somador de 1 bit nas Figura 12 e Figura 13.

Figura 12 – Layout do Somador completo de 1 bit

Figura 13 – Simulação Somador Completo de 1 bit

Foi feito os cálculos dos atrasos da soma e do carry de saída do somador e obtemos os seguintes valores:

	Soma (out_adder)	Carry (carry_out)
pHL	83.4690p	4.0667n
pTL	252.2883p	4.2750n
tR	28.6476р	22.4392p
tF	14.5643p	17.6787p