sdcSpatial: Privacy protected density maps

Edwin de Jonge @edwindjonge

Statistics Netherlands Research & Development @edwindjonge

useR! 2019

sdcSpatial: Privacy protected maps

sdcSpatial: Privacy protected maps

Goal:

Create maps, and ensure that no details are revealed on individuals.

sdcSpatial: Privacy protected maps

sdcSpatial has methods for:

- Creating a raster map: sdc_raster for pop density, value density and mean density.
- Which locations are sensitive: plot_sensitive, is_sensitive
- Adjust raster map to protect data: protect_smooth, protect_quadtree
- · Remove sensitive locations.

Who am I?

- Statistical consultant, Data Scientist @cbs.nl / Statistics NL
- Expertise:
 - R programming
 - Data Cleaning with R
 - Data visualization
 - Complex networks analysis
 - @edwindjonge / https://github.com/edwindj

What is SN / CBS?

Statistics Netherlands is producer of all main official statistics in the Netherlands:

- Stats on Demographics, economy (GDP), education, environment, agriculture, Finance etc.
- Part of the European Statistical System, ESS.

Privacy motivation

 ESS has European Code of Statistical Practice (predates GDPR, European law on Data Protection): no individual information on persons and enterprises may be revealed.

Sdc in sdcSpatial?

SDC = "Statistical Disclosure Control"

Collection of statistical methods to:

- · Check if density map is safe to be published
- Protect data by slightly altering (aggregated) data
 - adding noise
 - shifting mass
- Most SDC methods operate on records.
- sdcSpatial works upon location data.

Lets create a raster map with sdc_raster

```
## resolution: 500 500 , max_risk: 0.95 , min_count: 10 mean sensitivity score [0,1]: 0.4249471
```

logical sdc_raster object:

What is the sensitivity?
Binary score (logical) per raster cell indicating if it's unsafe to publish.

Calculated:

- a) Per location (x_i, y_i) (raster cell)
- b) Using risk function disclosure_risk $r(x,y) \in [0,1]$. How

Type of raster density maps:

Density can be area-based:

- number of people per square (unemployed\$value\$count): population density
- (total) value per square (unemployed\$value\$sum): number of unemployed per square.

Or density can population based: - Mean value per square (unemployed\$value\$mean): probability of being unemployed per square.

All types can be valid, but note that (total) value per square strongly interacts with population density. (see https://xkcd.com/1138)

So let's plot!

plot(unemployed)

how to improve?

- Use a coarser raster: sdc_raster.
- Spatial smoothing: protect_smooth[^jonge].
- Quadtree aggregation: protect_quadtree.
- Removing sensitive locations: remove_sensitive.

Option: coarsening

unemployed_1km <- sdc_raster(dwellings[c("x", "y")], dwell
plot(unemployed_1km)</pre>

Option Smoothing

unemployed_smoothed <- protect_smooth(unemployed, bw = 1500
plot(unemployed_smoothed)</pre>

@edwindjonge #sdcSpatial

Quadtree

unemployed_100m <- sdc_raster(dwellings[c("x","y")], dwell: unemployed_qt <- protect_quadtree(unemployed_100m) plot(unemployed_qt)

Implementation sdc_raster

- built upon excellent raster
- Creates internally an raster::brick object
- Stores the stats needed for calculating disclosure.

The end

Thank you for your antention!

Questions?

Curious?

install.packages("sdcSpatial")

Feedback and suggestions?

https://github.com/edwindj/sdcSpatial/issues

