Class Test 1

26th August, 2025

Name:		
Time: 40 min	Marks:	/10

- Q1. Let $X=\mathbb{R}/\mathbb{Q}$ be the identification space, i.e, the quotient space induced by the relation $a\sim b$ if and only if $a,b\in\mathbb{Q}$ or $a=b\in\mathbb{R}\setminus\mathbb{Q}$. Let $q:\mathbb{R}\to X$ be the quotient map.
 - a) Describe the open sets $U\subset\mathbb{R}$ which are q-saturated (i.e, $U=q^{-1}(q(U))$).
 - b) What is the closure of the equivalence class $[x] \in X$ for any $x \in \mathbb{R} \setminus \mathbb{Q}$?
 - c) What is the closure of the equivalence class $[0] \in X$?
 - d) Determine (with brief explanation) whether X is T_2, T_1 , or T_0 . 1+2+2+1=6

Q2. Let X be an infinite set, and fix a point $p \in X$. Consider the collection

$$\mathcal{T}_p := \{ S \subset X \mid p \in S \} \cup \{\emptyset\} .$$

- a) Verify that \mathcal{T}_p is a topology on X (called the *particular point topology*).
- b) Consider a sequence $\{x_n\}$ in X, whose tail (i.e, the subsequence $\{x_n\}_{n\geq N}$ for some $N\geq 1$) looks like

$$x, p, x, p, x, p, \ldots$$

Show that x_n converges to x. If $x \neq p$, then show that the sequence does not converge to p.

c) Determine (with brief explanation) whether (X, \mathcal{T}_p) is T_2, T_1 , or T_0 . 1+2+1=4