Магнітне поле у вакуумі

Лекції з електрики та магнетизму

Пономаренко С. М.

- 1. Означення
- 2. Характеристика магнітного поля
- 3. Дія магнітного поля на заряджені частинки та сруми
- 4. Закон Біо-Савара-Лапласа
- 5. Вектор-потенціал магнітного поля
- 6. Теореми магнітостатики
- 7. Магнітний момент
- 8. Потенціальна енергія диполя та сила, що діє на диполь в магнітному полі

Дослід Ерстеда, проведений 1820 року Ерстедом — є першим експериментальним доказом впливу електричного струму на магніт (магнітну стрілку).

Магнітним полем називається силове поле, що діє на рухомі заряди і як наслідок — на електричні струми і на тіла, які мають магнітний момент.

Магнітне поле створюється рухомими зарядами (електричним струмом). Незмінні в часі струми створюють постійні магнітні поля.

Характеристика магнітного поля

4

Магнітних зарядів (магнітних монополів) у в природі немає (експериментальний факт). Характеристику магнітного поля, аналогічно до $\vec{E}=rac{\vec{F}}{q}$ ввести не можна. Однак в природі є магнітні диполі (магнітна стрілка, коловий виток зі струмом тощо), тому використовуючи аналогію з моментом сил, що діє на електричний диполь в електричному полі $\vec{M}=\left[\vec{p}_e imes\vec{E}\right]$, можна ввести характеристику магнітного поля:

$$\vec{M} = \left[\vec{p}_m \times \vec{B} \right], \quad M_{\text{max}} = p_m B$$

Характеристику магнітного поля, вектор \vec{B} , по історичним причинам називають не напруженістю, а індукцією магнітного поля.

Величина вектора індукції чисельно дорівнює максимальному обертальному моменту, що діє на одиничний магнітний момент вміщений у магнітне поле:

$$B = \frac{M_{\text{max}}}{p_{\text{m}}}$$

Характеристика магнітного поля

Магнітних зарядів (магнітних монополів) у в природі немає (експериментальний факт). Характеристику магнітного поля, аналогічно до $\vec{E}=rac{\vec{F}}{q}$ ввести не можна. Однак в природі є магнітні диполі (магнітна стрілка, коловий виток зі струмом тощо), тому використовуючи аналогію з моментом сил, що діє на електричний диполь в електричному полі $\vec{M}=\left[\vec{p}_e imes\vec{E}\right]$, можна ввести характеристику магнітного поля:

$$\vec{M} = \left[\vec{p}_m \times \vec{B} \right], \quad M_{\text{max}} = p_m B$$

Характеристику магнітного поля, вектор \vec{B} , по історичним причинам називають не напруженістю, а індукцією магнітного поля.

В гауссовій системі одиниць величину магнітного поля називають Гаусом (Гс). С системі СІ Теслою (Тл):

$$1 \text{ Тл} = 10^4 \text{ Гс.}$$

Сила Лоренца та сила Ампера

5

Магнітною складовою сили Лоренца називається сила, що діє на рухомий заряд q з боку магнітного поля:

$$\vec{F} = q \left[\frac{\vec{v}}{c} \times \vec{B} \right].$$

Повна сила (власне і є сила Лоренца), що діє на заряд, включає також силу з боку електричного поля:

$$\vec{F} = q \left(\vec{E} + \left[\frac{\vec{v}}{c} \times \vec{B} \right] \right).$$

Силою Ампера називають силу, що діє на струми з боку магнітного поля:

$$d\vec{F} = \frac{1}{c} \left[\vec{j} dV \times \vec{B} \right],$$

де $\vec{j}dV$ — називається елементом об'ємного струму.

Елемент струму

Якщо в задачі не цікавляться внутрішньою будовою провідника, та розподілом струму в його товщі, то можна ввести елемент лінійного струму.

Нехай струм тече провідником із площею поперечного перерізу S. Уведемо вектор ділянки провідника завдовжки $d\vec{\ell}$ за формулою $d\vec{\ell}=\vec{n}\ell$, де \vec{n} — одиничний вектор уздовж осі провідника. Тоді $\vec{j}=j\vec{n}$, а I=jS і вираз для елемента об'ємного струму можна переписати у вигляді:

$$\vec{j}dV = j\vec{n}Sd\ell = Id\vec{\ell}.$$

Для елемента лінійного струму сила Ампера:

$$d\vec{F} = \frac{1}{c} \left[I d\vec{\ell} \times \vec{B} \right].$$

Елемент струму

Елемент об'ємного струму $\vec{j}dV$

Елемент лінійного струму $Id\vec{\ell}$

Поверхнева густина струму $i=\frac{I}{l}$. Елемент струму $I\ell=il\ell=iS$, де ℓ та ℓ — сторони виділеного елемента, площа якого $S=l\cdot\ell$. Елемент поверхневого струму idS

Зв'язок сили Лоренца та сили Ампера

Сила Лоренца, що діє на заряд dq, дорівнює

$$d\vec{F} = \left[\frac{dq\vec{v}}{c} \times \vec{B}\right].$$

Оскільки $dq\vec{v}=\rho\vec{v}dV=\vec{j}dV$, то одразу отримуємо силу Ампера, що діє на об'ємний елемент струму:

$$d\vec{F} = \frac{1}{c} \left[\vec{j} dV \times \vec{B} \right].$$

Для рухомого заряду q, що рухається з швидкістю \vec{v} — елементом струму струму є $q\vec{v}$.

Робота магнітного поля

Робота сили Лоренца:

$$\delta A = \vec{F} \cdot d\vec{r} = \vec{F} \cdot \vec{v} dt = \left[\frac{q\vec{v}}{c} \times \vec{B} \right] \cdot \vec{v} dt.$$

$$\vec{A} \cdot \left[\vec{B} \times \vec{C} \right] = \vec{C} \cdot \left[\vec{A} \times \vec{B} \right].$$

$$\vec{v} \cdot \left[\vec{v} \times \vec{B} \right] = \vec{B} \cdot \left[\vec{v} \times \vec{v} \right] = 0.$$

$$\delta A = 0.$$

За теоремою про зміну кінетичної енергії $A = \Delta\left(\frac{mv^2}{2}\right) = 0$, кінетична енергія частинки не змінюється.

Магнітне поле не виконує роботи над частинкою!

Закон Біо-Савара-Лапласа

9

Закон Біо-Савара встановлено експериментально (1820 р.) шляхом аналізу експериментальних даних і визначає магнітне поле, що створюється елементом струму.

Якщо радіус-вектор точки спостереження відносно розглянутого елемента струму $\vec{\epsilon}$, то поле, створюване елементом струму $\vec{i}dV'$, дорівнює

$$d\vec{B} = \frac{1}{c} \frac{\left[\vec{j} dV' \times \vec{r} \right]}{r^3}.$$

Магнітне поле підкоряється принципу суперпозиції: $\vec{B}=\int d\vec{B}$.

10

Відносність величини магнітного поля

Магнітного поля навколо заряду відносно спостерігача A немає. Відносно спостерігача B буде магнітне поле:

$$\vec{B} = \frac{1}{c} \frac{q\vec{v} \times \vec{r}}{r^3} = \frac{\vec{v}}{c} \times \frac{q\vec{r}}{r^3} = \frac{\vec{v}}{c} \times \vec{E}.$$

Електричне і магнітне поле — ε прояв єдиного цілого, яке можна назвати електромагнітним полем.

Приклади застосування закону Біо-Савара-Лапласа

Задача 1

Визначити магнітне поле на відстані r від нескінченно довгого провідника зі струмом I.

Задача 2

Визначте магнітне поле в точці P на відстані r від короткого провідника зі струмом. Положення точки P визначається кутами α_1 та α_2 .

Взаємодія струмі

Досліди Ампера

1820 р. А. Ампером було встановлено закон, що визначає силу, яка діє на елемент струму в магнітному полі. Оскільки створити відокремлений елемент не можна, то Ампер вивчав вплив паралельних дротів один на одного та поведінку дротяних замкнутих контурів різної форми в магнітному полі.

Вектор-потенціал магнітного поля

Закон Біо-Савара-Лапласа

$$\vec{B}(\vec{r}) = \iiint\limits_{V'} \frac{1}{c} \frac{\vec{j}(\vec{r}')dV' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

Використаємо тотожність: $\frac{(\vec{r}-\vec{r}')}{|\vec{r}-\vec{r}'|^3} = -\vec{\nabla}_{\vec{r}} \frac{1}{|\vec{r}-\vec{r}'|}$, у якому операція $\vec{\nabla}$ діє на координати \vec{r} , а також рівність $\mathrm{rot}(\varphi\vec{C}) = \varphi \, \mathrm{rot} \, \vec{C} + \left[\vec{\nabla}\varphi \times \vec{C}\right]$.

$$\vec{B}(\vec{r}) = \int\limits_{V'} \frac{1}{c} \vec{\nabla} \frac{1}{|\vec{r} - \vec{r}'|} \times \vec{j}(\vec{r}') dV' = \operatorname{rot} \frac{1}{c} \int\limits_{V'} \frac{\vec{j} dV'}{|\vec{r} - \vec{r}'|} = \operatorname{rot} \vec{A}(\vec{r}),$$

$$\vec{B}(\vec{r}) = \operatorname{rot} \vec{A}(\vec{r}).$$

Вектор-потенціал магнітного поля

Калібруванні вектор-потенціалу

$$\vec{B} = \operatorname{rot} \vec{A},$$

Введений тут вектор \vec{A} називається вектор-потенціалом:

$$\vec{A}(\vec{r}) = \frac{1}{c} \int\limits_{V'} \frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} dV', \ \vec{A}(\vec{r}) = \frac{1}{c} \sum_{i} \frac{q_{i} \vec{v}_{i}}{|\vec{r} - \vec{r}_{i}|}$$

Вектор-потенціал вводиться при цьому неоднозначно. Векторні потенціали \vec{A} і $\vec{A}' = \vec{A} + \vec{\nabla} f(\vec{r})$ призводять до одного й того ж магнітного поля \vec{B} . Цією обставиною можна скористатися для того, щоб накласти на \vec{A} яке-небудь обмеження. Зручно накласти на \vec{A} умову

$$\operatorname{div} \vec{A} = 0,$$

Теорема Гаусса для магнітного поля

Маючи на увазі тотожність div rot $\vec{A}=0$, з формули $\vec{B}=\operatorname{rot}\vec{A}$ отримуємо теорему Гауса в диференціальній формі:

$$\operatorname{div} \vec{B} = 0$$

Застосовуючи теорему Остроградського-Гауса отримуємо теорему Гауса в інтегральній формі:

$$\iint\limits_{S} \vec{B} \cdot d\vec{S} = 0.$$

Теорема Гауса стверджує, що немає вільних (незв'язаних) магнітних зарядів, на яких могли б починатися або закінчуватися силові лінії індукції магнітного поля. Знайдемо ротор вектора \vec{B} :

$$\operatorname{rot} \vec{B} = \operatorname{rot} \operatorname{rot} \vec{A} = \vec{\nabla} \times \left[\vec{\nabla} \times \vec{A} \right] = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{A} \right) - \nabla^2 \vec{A} \stackrel{\vec{\nabla} \cdot \vec{A} = 0}{=} - \nabla^2 \vec{A}.$$

Аналогія з рівнянням Пуассона з електростатики

Рівняння Пуассона та його розв'язок:

$$\nabla^2 \varphi = -4\pi \rho, \ \varphi = \iiint\limits_{V'} \frac{\rho dV'}{|\vec{r} - \vec{r}'|}, \qquad \nabla^2 \vec{A} = -\frac{4\pi}{c} \vec{j}, \ \vec{A} = \frac{1}{c} \iiint\limits_{V'} \frac{\vec{j} dV'}{|\vec{r} - \vec{r}'|}$$

Однакові рівняння мають однакові розв'язки!

Теорема про циркуляцію для вектора \vec{B} :

$$\operatorname{rot} \vec{B} = \frac{4\pi}{c} \vec{j}.$$

$$\oint_{I} \vec{B} \cdot d\vec{r} = \frac{4\pi}{c} \iint_{S} \vec{j} \cdot d\vec{S}.$$

Приклади на теорему про циркуляцію №1

Приклади на теорему про циркуляцію №1

$$\oint\limits_L \vec{B} \cdot d\vec{r} = \frac{4\pi}{c} \iint\limits_S \vec{j} \cdot d\vec{S}$$

Поле всередині нескінченного циліндричного провідника

$$\vec{j}_{\uparrow L}$$

$$B = \frac{2\pi}{c} jr$$

Поле зовні нескінченного циліндричного провідника

$$B = \frac{2}{cr} j\pi R^2 = \frac{2}{c}$$

Порівняння законів електро- та магнітостатики у вакуумі

Диференціальні теореми

Теорема	Електростатика	Зміст	Магнітостатика	Зміст
Зв'язок потенціалу та поля	$\vec{E} = -\vec{\nabla}\varphi$	Скалярний потенціал, поле потенціальне	$\vec{B} = \vec{\nabla} \times \vec{A}$	Вектор- потенціал. Поле вихрове.
Теорема Гаусса	$\operatorname{div} \vec{E} = 4\pi\rho$	Джерелами поля є електричні заряди	$\operatorname{div} \vec{B} = 0$	Джерел у магнітного поля немає
Теорема про циркуляцію	$\operatorname{rot} \vec{E} = 0$	Електростати- чне поле є потенціальним	$\operatorname{rot} \vec{B} = \frac{4\pi}{c} \vec{j}$	Магнітне поле є вихровим. Вихором є струм.

Інтегральні теореми

Теорема	Електростатика	Магнітостатика
Теорема Гаусса	$ \oint_{S} \vec{E} \cdot d\vec{S} = 4\pi \iiint_{V} \rho dV $	$\iint\limits_{S} \vec{B} \cdot d\vec{S} = 0$
Теорема про циркуляцію	$\oint\limits_L \vec{E} \cdot d\vec{r} = 0$	$\oint\limits_L \vec{B} \cdot d\vec{r} = \frac{4\pi}{c} \iint\limits_S \vec{j} \cdot d\vec{S}$

Магнітний момент

Моменту імпульсу $\vec{L} = \vec{r} \times (m\vec{v})$ для руху мас є аналогом магнітного моменту для руху зарядів!

Момент імпульсу

$$\vec{L} = \iiint\limits_V \vec{r} \times \rho \vec{v} \ dV$$

Магнітний момент

$$\vec{p}_m = \frac{1}{2c} \iiint\limits_V \vec{r} \times \rho \vec{v} \ dV$$

Оскільки густина струму $\vec{j}=\rho\vec{v}$, а $\vec{j}dV$ — є елементом струму, то можна для різних випадків записати різні варіації формули магнітного моменту:

Випадок	Магнітний момент
Об'ємні струми	$\vec{p}_m = \frac{1}{2c} \iiint\limits_V \vec{r} \times \vec{j} dV$
Лінійні замкнені постійні струми	$\vec{p}_m = \frac{I}{2c} \oint_L \vec{r} \times d\vec{\ell}$

Магнітні та механічні моменти різних тіл

Відношення магнітного моменту зарядженого тіла, до його механічного моменту називається гіромагнітним відношенням:

$$\vec{p}_m = \gamma \vec{L}.$$

Для любих класичних тіл $\gamma = \frac{Q}{2Mc}$

Тіло	Момент імпульсу	Магнітний момент	Гіромагнітне відношення γ
Куля	$\vec{L} = \frac{2}{5} mR^2 \vec{\omega}$	$\vec{p}_m = \frac{1}{5c} Q R^2 \vec{\omega}$	$\frac{Q}{2Mc}$
Електрон	$L = \frac{1}{2}\hbar$	$p_m = \frac{e}{2mc}\hbar$	$-\frac{e}{m_e c}$

Вектор-потенціал на далеких відстанях

Магнітний момент системи тіл:

$$\vec{A} = \frac{1}{c} \sum_{i} \frac{q_i \vec{v}_i}{|\vec{r} - \vec{r}_i|}$$

На далеких відстанях $r_i \ll r$ наближено $rac{1}{|ec{r}-ec{r}_i|} pprox rac{1}{r} \left(1 + rac{ec{r}}{r^2} rac{ec{r}_i}{r^2}
ight).$

Для стаціонарних рухів, які відбуваються в малих областях, можна зробити усереднення вектор-потенціалу, при цьому $\frac{d}{dt} \dots = 0$.

$$\overline{\vec{A}} = \frac{1}{cr^3} \sum_{i} q_i \overline{v_i(\vec{r} \ \vec{r}_i)}$$

$$v_i(\vec{r}\;\vec{r}_i) = \frac{1}{2} \left[v_i(\vec{r}\;\vec{r}_i) - \vec{r}_i(\vec{r}\;\vec{v}_i) \right] + \frac{1}{2} \left[v_i(\vec{r}\;\vec{r}_i) + \vec{r}_i(\vec{r}\;\vec{v}_i) \right] = \frac{1}{2} \vec{r} \times \vec{v}_i \times \vec{r}_i + \frac{1}{2} \frac{d}{dt} \left(\vec{r}_i(\vec{r}\;\vec{r}_i) \right).$$

Вектор-потенціал на далеких відстанях

$$\vec{r}$$
 \vec{r}
 \vec{r}
 \vec{r}

Магнітний момент системи тіл:

$$\vec{A} = \frac{1}{c} \sum_{i} \frac{q_i \vec{v}_i}{|\vec{r} - \vec{r}_i|}$$

$$\overline{\vec{A}} = \frac{1}{r^3} \left(\frac{1}{2c} \sum_i \vec{r}_i \times (q_i \vec{v}_i) \right) \times \vec{r} = \frac{\vec{p}_m \times \vec{r}}{r^3}.$$

Магнітне поле знаходиться за формулою $\vec{B} = \operatorname{rot} \vec{A}$:

$$\operatorname{rot}\left[\vec{A} \times \vec{B}\right] = \left(\vec{B} \cdot \vec{\nabla}\right) \vec{A} - \left(\vec{A} \cdot \vec{\nabla}\right) \vec{B} + \vec{A} \operatorname{div} \vec{B} - \vec{B} \operatorname{div} \vec{A}$$
$$\vec{B} = \operatorname{rot}\left(\vec{p}_{m} \times \frac{\vec{r}}{r^{3}}\right) = -\left(\vec{p}_{m} \cdot \vec{\nabla}\right) \frac{\vec{r}}{r^{3}} = \frac{3\left(\vec{p}_{m} \cdot \vec{r}\right) \vec{r}}{r^{5}} - \frac{\vec{p}_{m}}{r^{3}}.$$

$$\vec{B} = \frac{3(\vec{p}_m \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}_m}{r^3}.$$

Детальние виведення

$$rot \left[\vec{A} \times \vec{B} \right] = \left(\vec{B} \cdot \vec{\nabla} \right) \vec{A} - \left(\vec{A} \cdot \vec{\nabla} \right) \vec{B} + \vec{A} \operatorname{div} \vec{B} - \vec{B} \operatorname{div} \vec{A}$$

$$\vec{B} = rot \left(\vec{p}_{m} \times \frac{\vec{r}}{r^{3}} \right) = -\left(\vec{p}_{m} \cdot \vec{\nabla} \right) \frac{\vec{r}}{r^{3}} = \frac{3 \left(\vec{p}_{m} \cdot \vec{r} \right) \vec{r}}{r^{5}} - \frac{\vec{p}_{m}}{r^{3}}.$$

$$\vec{A} = \vec{P}_{10} \qquad \vec{B} = \vec{P}_{13} \qquad \vec{P}_{14} = \operatorname{out} \vec{A} \qquad \operatorname{out} \vec{A}$$

Магнітний диполь

Полюса магніту

Отримана формула збігається за виглядом із формулою для електричного поля точкового електричного диполя.

$$\vec{B} = \frac{3\left(\vec{p}_m \cdot \vec{r}\right)\vec{r}}{r^5} - \frac{\vec{p}_m}{r^3}.$$

Це означає, що точковий магнітний момент можна розглядати формально як точковий диполь, складений з ефективних магнітних зарядів:

N (північного) та S (південного).

Магнітний диполь

Порівняння електричного та магнітного диполів

	Електричний диполь	Магнітний диполь	
Потенціал	$\varphi = \frac{\vec{p}_e \cdot \vec{r}}{r^3}$	$\vec{A} = \frac{\vec{p}_m \times \vec{r}}{r^3}$	
Поле	$\vec{E} = \frac{3(\vec{p}_e \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}_e}{r^3}$	$\vec{B} = \frac{3(\vec{p}_m \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}_m}{r^3}$	

Позначаючи величину ефективного магнітного заряду q_m і плече магнітного диполя $\vec{\ell}$, дипольний момент ефективного магнітного диполя можна записати як $\vec{p}_m = q_m \vec{\ell}$. Якщо не розглядати поле усередині такого магнітного диполя, то воно усюди буде таким самим, як і поле системи струмів із магнітним моментом \vec{p}_m .

Якщо виток перебуває в однорідному магнітному полі, то виникає момент сил, який орієнтує його магнітний момент за напрямком поля. За означенням моменту сил:

$$\vec{M} = \frac{1}{c} \oint_{L} \vec{r} \times (Id\vec{\ell} \times \vec{B}).$$

Треба витягнути \vec{B} з-під інтегралу. Всі інтеграли типу $\oint_I d(...) = 0$, як інтеграли повних диференціалів.

$$\overset{a}{\vec{r}} \times (d\vec{r} \times \overset{c}{\vec{B}}) = \overset{b}{d\vec{r}} \overset{a}{(\vec{r} \cdot \vec{B})} - \overset{c}{\vec{B}} \overset{a}{(\vec{r} \cdot d\vec{r})}, \ \oint\limits_{L} d\vec{r} (\vec{r} \cdot \vec{B}) - \vec{B} \oint\limits_{L} d\left(\frac{r^{2}}{2}\right)^{\bullet} ^{0}$$

$$\begin{split} d\vec{r}(\vec{r}\cdot\vec{B}) &= \frac{1}{2} \left[d\vec{r}(\vec{r}\cdot\vec{B}) + \vec{r}(d\vec{r}\cdot\vec{B}) \right] + \frac{1}{2} \left[d\vec{r}(\vec{r}\cdot\vec{B}) - \vec{r}(d\vec{r}\cdot\vec{B}) \right] = \frac{1}{2} \left[d\vec{r}(\vec{B}\cdot\vec{r}) + \vec{r}(\vec{B}\cdot d\vec{r}) \right] - \frac{1}{2} \vec{B} \times (\vec{r}\times d\vec{r}). \\ d\vec{r}(\vec{B}\cdot\vec{r}) + \vec{r}(\vec{B}\cdot d\vec{r}) &= d(\vec{r}(\vec{B}\cdot\vec{r})), \quad \oint\limits_{I} d(\vec{r}(\vec{B}\cdot\vec{r})) = 0. \end{split}$$

$$\vec{M} = \left(\frac{I}{c} \oint_{I} (\vec{r} \times d\vec{r})\right) \times \vec{B} = \vec{p}_{m} \times \vec{B}$$

26

Потенціальна енергія диполя в магнітному полі

Розглянемо виток площею S, у якому циркулює постійний струм I. Магнітний момент цього витка $\vec{p}_m = \frac{1}{c} I S \ \vec{n}$.

Якщо виток перебуває в однорідному магнітному полі, то виникає момент сил, які прагнуть орієнтувати його магнітний момент за напрямком поля:

$$\vec{M} = \left[\vec{p}_m \times \vec{B} \right]$$

З визначення потенціальної енергії знаходимо

$$U = -\vec{p}_m \cdot \vec{B}$$

Той факт, що потенціальна енергія досягає мінімуму $\vec{p}_m \uparrow \uparrow \vec{B}$, означає, що момент прагне орієнтуватися за напрямом поля.

Якщо магнітний диполь представляє собою виток, через який тече постійний струм, і магнітне поле орієнтує його, то потенційна енергія витка змінюється. Однак, оскільки магнітне поле не є потенційним і не може виконувати роботу, постає питання: за рахунок чого відбувається зміна енергії витка? Відповідь

Принцип роботи електричного двигуна

На основі дії магнітного поля на рамку, через яку проходить електричний струм, ґрунтується принцип роботи електродвигуна.

Робота по обертанню рамки виконується не магнітним полем, а за рахунок енергії джерела. Роль магнітного полягає у тому, щоб перенаправити цю енергію у механічну, а саме у обертання рамки.

- 1. Ротор (провідник), через який тече струм, поміщений у зовнішнє магнітне поле між полюсами магнітів (N i S).
- 2. Відповідно до правила лівої руки, на провідник діє сила з боку магнітного поля (сила Ампера), що створює обертальний момент.
- Магнітний момент системи намагається вирівнятися з напрямом зовнішнього поля.
- 4. Комутатор змінює напрям струму в обмотці після кожного півоберта, забезпечуючи постійне обертання у одному напрямку.

Сила, що діє на диполь в магнітному полі

У зовнішньому магнітному полі потенціальна енергія магнітного моменту дорівнює $U=-\vec{p}_m\cdot\vec{B}$, а сила, що діє на момент:

$$\vec{F} = -\vec{\nabla}U = \vec{\nabla}(\vec{p}_m \cdot \vec{B}).$$

У зовнішньому магнітному полі потенціальна енергія магнітного моменту дорівнює $U=-\vec{p}_m\cdot\vec{B}$, а сила, що діє на момент:

$$\vec{F} = -\vec{\nabla}U = \vec{\nabla}(\vec{p}_m \cdot \vec{B}).$$

$$\vec{\nabla} \left(\vec{A} \cdot \vec{B} \right) = \left[\vec{B} \times \operatorname{rot} \vec{A} \right] + \left[\vec{A} \times \operatorname{rot} \vec{B} \right] + \left(\vec{B} \cdot \vec{\nabla} \right) \vec{A} + \left(\vec{A} \cdot \vec{\nabla} \right) \vec{B}.$$

Якщо в середовищі, в якому перебуває момент, відсутні струми провідності, то rot $\vec{B}=0$. Тоді має місце тотожність:

$$\vec{F} = \left(\vec{p}_m \cdot \vec{\nabla} \right) \vec{B}.$$

