

> PROJECT 1: NAIVE BAYES CLASSIFIER

Praktikum maschinelles Lernen

Friedrich Carrle Prof. Alexander Windberger Wintersemester 2023/24

PROJECT 1: NAIVE BAYES CLASSIFIER

- (5 Points) Implement a Python class NaiveBayes.
 - > The class contains an __init__, fit, predict_probability, and evaluate_on_data method
 - > The implementation should be able to deal with, both, discrete and continuous features. A template file with correspondant signatures and documentation will be handed out.
 - > Feel free to implement as many other methodes as you need.
 - > The only package you're allowed to import for this task is Pandas

PROJECT 1: NAIVE BAYES CLASSIFIER

- (2 Points) Evaluate your Naive Bayes implementation using the "inflammation_diagnosis.csv" data set.
 - Combine the columns "inflammation" and "nephritis" to a new column "deasease" which is "False" if "inflammation" and "nephritis" is "False" and "True" otherwise. Use this column as target for the classifer
 - > Split the data into a train and a test set using 20% of the data for the test set. Show that no train data samples are contained in the test set.
 - > Fit the Naive Bayes classifier using the train set and evaluate it in the test set.
 - Calculate and plot the confusion matrix.
 - You're only allowed to import your NaiveBayes class, Pandas, and Matplotlib (or Seaborn) for this task

PROJECT 1: NAIVE BAYES CLASSIFIER

- The submission consists of two files:
 - A file "naiver_bayes_klassifizierer.py" containing the NaiveBayes class implementation (task 1)
 - 2. A Jupyter Notebook containing the preprocessing, the training, and the evaluation of the Naive Bayes classifier (task 2)
- Due Date is October 27th
- Remember: There are 3 Points for presentation, style, and creativity

WHAT'S TO BE LEARNED THE MACHINE LEARNING PROCESS

THE TOOLS

WHAT'S TO BE LEARNED

- Learn how to extract information from data
 - Deal with different data types (structured and unstructured)
 - ML algorithms
 - Explore
 - Statistics
 - Linear algebra (why live in 3 dimensions, when you can master 1000s?)
 - Use analysis to find the sweet spots

WHAT'S TO BE LEARNED

- Learn how to interpret your findings
 - What are the methods and metrics?
 - What correlations can be found?
 - What's significant and what's not?

WHAT'S TO BE LEARNED

- Communicate and present your results
 - Make pretty graphs
 - Your data contains a story. Tell it!
 - Make mistaces, harness criticism, defend your theses
 - Convince your peers, boss, customer, client, referee ...