

Repescagem - 2.º Teste de Introdução à Arquitetura de Computadores

Duração: 60 minutos

IST – LEIC-T 16 janeiro 2015

NOME	NÚMERO	

1 .	(0 5 . 1 5	1 \	C '1	• .	
	/) +1)	valores	Considere o	seguinte	nrograma
	(2,5 1,5	varores,	Combiació	beganne	programa.

1.° Semestre 2014/2015

Periferico	EQU	5000H
PLACE	1000H	
X:	WORD	0
pilha:	TABLE	100H
fim_pilha:		
tab:	WORD	rotInt1
PLACE	0	
	MOV	SP, pilha
	MOV	BTE, tab
	MOV	R1, X
	EI	
ciclo:	MOV	R0, [R1]
	ADD	R0, 1
	MOV	[R1], R0
	JMP	ciclo
rotInt1:	MOV	R2, Periferico
	MOVB	R0, [R2]
	SHR	R0, 2
	MOVB	[R2], R0
	RET	

a) O objetivo do programa principal é incrementar a variável X, que deve passar sucessivamente por todos os valores de 0000H a FFFFH (dando depois a volta e repetindo). A rotina de interrupção processa e atualiza o valor lido de um periférico.
Este programa contém erros. Reescreva o programa na tabela do lado direito com os erros corrigidos, assinalando com uma cruz na coluna da direita as instruções que diferirem do original.

Use apenas as linhas que precisar.

_	
_	
-	
ļ	
ļ	
-	
-	
-	
_	
-	
_	
-	
-	
-	
-	
-	
ŀ	
ļ	
-	
-	
}	
ŀ	
}	
L	

D)	Imagine que, sem ocorrencia de interrupções, o programa principal demora 1 segundo a dar a volta ao valor
	da variável X (desde 0000H até 0000H novamente). Suponha agora que as interrupções são geradas
	periodicamente, que cada execução da rotina de interrupção demora 1 milissegundo e que o tempo de dar a
	volta ao valor da variável duplicou. Qual a frequência dos pedidos de interrupção neste caso?

١					
	pedidos	de	interrupção	por	segundo

2. (1 valor) Uma transmissão de dados por um barramento série assíncrono, com bit de paridade e 2 stop bits, efetua-se a um ritmo de transmissão de 1000 bits/seg. O recetor demora 10 milissegundos a processar cada byte recebido. Será que o recetor consegue processar de forma contínua os bytes enviados pelo emissor, se este o fizer ao ritmo máximo permitido pelo barramento? <u>Justifique</u>.

3. (2 valores) Suponha que duas pessoas com tipos de atividades diferentes vão a uma loja de informática comprar um portátil. Só há dois modelos. O modelo X tem um processador mais rápido (em *benchmark*) que o do Y, mas em compensação o Y tem um disco mais rápido (em *benchmark*) do que o do X. Uma das pessoas é administrativa e essencialmente usa editores de texto e e-mail. A outra trabalha com processamento de vídeo, conversores de formato AVI para MP4, etc. Que modelo deve cada uma destas pessoas escolher? Justifique.

4. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que quer o descodificador quer cada dispositivo deve ligar, bem como a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

de	Bits do scodificador

Dispositivo	Bits de endereço	Capacidade em bytes (decimal)	Início (hexadecimal)	Fim (hexadecimal)
RAM	A0-A9			
Periférico		64	1800H	
ROM1		512		
ROM2	A0-A9			

5. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

A	В	C	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

			C	D	
		00	01	11	10
	00				
AB	01				
AD	11				
	10				

6. (1+1 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 512 palavras (<u>blocos de 4 palavras</u>).

a) Quantas linhas tem a cache?	a)	Quantas	linhas	tem	a	cache?
--------------------------------	----	---------	--------	-----	---	--------

b) Indique qual a linha em que a palavra com o endereço 1044H deverá ficar localizada, quando carregada na cache.

7. (2+1 valores) Considere o circuito seguinte, que permite testar se um dado número N (maior que 1) é primo. Depois de carregar o valor N nos registos R1 e R2, o algoritmo vai dividindo sucessivamente N por N-1, N-2, etc, até chegar a 1 (R2_UM = 1), o que a acontecer indica que o número é primo. Pode também terminar quando o resto da divisão der zero (NÃO_DIV = 0), caso em que o número não é primo. Nessa altura, um dos sinais de saída (PRIMO ou NÃO_PRIMO) deve ser colocado a 1 e o programa fica em salto infinito nessa microinstrução.

a) Preencha a tabela seguinte com os sinais necessários para implementar o algoritmo. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_R1	LOAD_R2	DECR_R2	PRIMO	NAO_PRIMO	SEL_MICRO_ SALTO	MICRO_SAL TO
0	R1 ← N;							
	R2 ← N;							
1	R2 ← R2 - 1							
2	$(R2_UM = 1) : MPC \leftarrow 5$							
3	$(NAO_DIV = 1) : MPC \leftarrow 1$							
4	NAO_PRIMO ← 1;							
4	MPC ← 4							
5	PRIMO ← 1;							
5	MPC ← 5							

b)	Quantos bits de largura deve ter no mínimo a ROM de microprograma?	
-,	Commence of the Second of the	

- 8. (1,5+1,5 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 000000H até FFFFFH, enquanto o espaço de endereçamento físico vai de 00000H até FFFFFH. As páginas físicas têm uma dimensão de 1000H bytes.
 - a) Preencha a tabela seguinte com os valores que decorrem desta informação.

N.º bits do espaço virtual	
N.º bits do espaço físico	
N.º páginas virtuais	
N.º páginas físicas	

b) Suponha que a TLB é totalmente associativa de 8 entradas e que, a certa altura, o seu conteúdo é o indicado na tabela seguinte. Com este conteúdo (sem o alterar), indique, na tabela a seguir, os endereços físicos a que o processador acede quando realiza acessos aos endereços virtuais indicados, explicando sucintamente o que acontece na tradução de virtual para físico em cada um destes acessos.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	0C
1	0	207	31
2	1	0A2	3E
3	0	1EF	0F
4	1	4B8	25
5	0	0C3	1D
6	1	C31	1B
7	1	025	0C

Endereço virtual	Endereço físico	Justificação do que acontece
C314AFH		
0A2F04H		
2071D3H		
4B802EH		