Intégrales impropres

Révisions d'intégration

Solution 1

1. Notons $F(x) = \int x \arctan^2(x) dx$ et intégrons par parties,

$$F(x) = \frac{x^2}{2} \arctan^2(x) - \int \frac{x^2}{x^2 + 1} \arctan(x) dx$$
$$= \frac{x^2}{2} \arctan(x) + \int \frac{\arctan(x)}{x^2 + 1} dx - \int \arctan(x) dx$$
$$= \frac{x^2}{2} \arctan^2(x) + \frac{1}{2} \arctan^2(x) - \int \arctan(x) dx$$

De même,

$$\int \arctan(x) dx = x \arctan(x) - \int \frac{x}{x^2 + 1} dx$$
$$= x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$$

D'où

$$\int x \arctan^2(x) \, dx = \frac{x^2 + 1}{2} \arctan^2(x) - x \arctan(x) + \frac{1}{2} \ln(x^2 + 1)$$

2. Puisque $\forall x \in \mathbb{R}$, $\sin^2(x) = \frac{1 - \cos(2x)}{2}$

$$\int e^x \sin^2(x) dx = \int \frac{e^x}{2} dx - \int \frac{e^x \cos(2x)}{2} dx$$

Puisque $e^x \cos(2x) = \text{Re}(e^{(1+2i)x})$, on calcule

$$\int e^{(1+2i)x} dx = \frac{e^x e^{2ix}}{1+2i} = \frac{1-2i}{5} e^x e^{2ix}$$

dont la partie réelle vaut

$$\int e^x \cos(2x) \, dx = \frac{e^x}{5} (\cos(2x) + 2\sin(2x))$$

On a donc

$$\int e^x \sin^2(x) dx = \frac{e^x}{2} - \frac{e^x}{10} (\cos(2x) + 2\sin(2x))$$

3. En posant $u = \ln x$,

$$\int \cos(\ln x) \, \mathrm{d}x = \int e^u \cos u \, \mathrm{d}u$$

Via un passage en complexes ou une intégration par parties

$$\int e^u \cos u \, du = \frac{1}{2} e^u (\cos u + \sin u)$$

On en déduit

$$\int \cos(\ln x) \, dx = \frac{1}{2}x(\cos(\ln x) + \sin(\ln x))$$

1

4. En posant $u = \sqrt{1+x}$,

$$\int \frac{x \, dx}{\sqrt{1+x}} = 2 \int (u^2 - 1) \, du = \frac{2}{3}u^3 - 2u = \frac{2}{3} \left(\sqrt{1+x}\right)^3 - 2\sqrt{1+x} = \frac{2}{3}\sqrt{1+x}(x-2)$$

5. En posant $u = e^x$, on a

$$\int \frac{\mathrm{d}x}{\mathrm{ch}\,x} = \int \frac{\mathrm{d}u}{u^2 + 1} = \arctan u = \arctan(e^x)$$

Solution 2

- 1. Il faut montrer que $t \mapsto \sin t + \cos t$ ne s'annule pas sur $\left[0, \frac{\pi}{2}\right]$. Pour $t \in \left]0, \frac{\pi}{2}\right]$, $\sin t > 0$ et $\cos t \ge 0$ donc $\sin t + \cos t > 0$. De plus, $\sin 0 + \cos 0 = 1 > 0$.

 Ainsi $t \mapsto \frac{\sin t}{\sin t + \cos t}$ et $t \mapsto \frac{\cos t}{\sin t + \cos t}$ sont continues sur $\left[0, \frac{\pi}{2}\right]$ et S et C sont bien définies.
- 2. Il suffit d'effectuer le changement de variable $u = \frac{\pi}{2} t$.
- 3. On a clairement $S + C = \frac{\pi}{2}$. On en déduit $S = C = \frac{\pi}{4}$.
- **4.** On effectue le changement de variable $t = \sin u$. On en déduit

$$I = \int_0^{\frac{\pi}{2}} \frac{\cos u}{\sin u + |\cos u|} \, \mathrm{d}u$$

Mais pour $u \in \left[0, \frac{\pi}{2}\right]$, $\cos u \ge 0$ donc

$$I = \int_{0}^{\frac{\pi}{2}} \frac{\cos u}{\sin u + \cos u} \, du = C = \frac{\pi}{4}$$

Solution 3

1. Notons I l'intégrale à calculer. Le changement de variable $u = \cos t$ donne

$$I = \int_{-1}^{1} \frac{du}{4 - u^{2}}$$

$$= \frac{1}{4} \int_{-1}^{1} \left(\frac{1}{2 + u} + \frac{1}{2 - u} \right) du$$

$$= \frac{1}{4} \left(\left[\ln(2 + u) \right]_{-1}^{1} - \left[\ln(2 - u) \right]_{-1}^{1} \right) = \frac{1}{2} \ln 3$$

2. Notons J l'intégrale à calculer. Remarquons que

$$J = \int_{\frac{\pi}{2}}^{x} \frac{\sin t \, dt}{1 - \cos^2 t}$$

Le changement de variable $u = \cos t$ donne

$$J = -\int_0^{\cos x} \frac{du}{1 - u^2}$$

$$= \frac{1}{2} \int_0^{\cos x} \left(\frac{1}{u - 1} - \frac{1}{u + 1} \right) du$$

$$= \frac{1}{2} \left([\ln(1 - u)]_0^{\cos x} - [\ln(u + 1)]_0^{\cos x} \right)$$

$$= \frac{1}{2} \left(\ln(1 - \cos x) - \ln(1 + \cos x) \right)$$

$$= \frac{1}{2} \ln\left(\tan^2 \frac{x}{2} \right) = \ln\left(\tan \frac{x}{2} \right)$$

car pour $x \in]0, \pi[, \tan \frac{x}{2} > 0.$

3. Notons K l'intégrale à calculer. Remarquons que

$$K = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos t \, dt}{(1 - \sin^2 t)^2}$$

Le changement de variable $u = \sin t$ fournit donc

$$K = \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{\mathrm{d}u}{(1 - u^2)^2}$$

Une décomposition en éléments simples donne ensuite

$$K = \frac{1}{4} \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \left(\frac{1}{(u-1)^2} - \frac{1}{u-1} + \frac{1}{(u+1)^2} + \frac{1}{u+1} \right) du$$

$$= \frac{1}{4} \left(\left[\frac{1}{u-1} \right]_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} - \left[\ln(1-u) \right]_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} + \left[\frac{1}{u+1} \right]_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} + \left[\ln(1+u) \right]_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \right)$$

$$= \ln(1+\sqrt{2}) + \sqrt{2}$$

4. Notons L l'intégrale à calculer. Le changement de variable $u = \tan \frac{t}{2}$ allié à la paramétrisation rationnelle du cercle donne

$$L = 2 \int_0^1 \frac{du}{1 - u^2 + 2u}$$

Une décomposition en éléments simples donne alors

$$\begin{split} \mathbf{K} &= \frac{\sqrt{2}}{2} \int_0^1 \left(\frac{1}{u + \sqrt{2} - 1} - \frac{1}{u - 1 - \sqrt{2}} \right) \\ &= \frac{\sqrt{2}}{2} \left(\left[\ln(u + \sqrt{2} - 1) \right]_0^1 - \left[\ln(1 + \sqrt{2} - u) \right]_0^1 \right) \\ &= \sqrt{2} \ln(1 + \sqrt{2}) \end{split}$$

Solution 4

1. Le calcul ne pose aucune difficulté, on trouve

$$I_0 = \frac{\pi}{2}$$
 et $I_1 = 1$.

2. Soit $n \in \mathbb{N}$, intégrons I_{n+2} par parties en posant $\forall t \in [0, \pi/2]$,

$$u(t) = -\cos(t)$$
 et $v(t) = \sin^{n+1}(t)$.

Les fonctions u et v sont de classe \mathcal{C}^1 sur $[0, \pi/2]$ et,

$$\forall t \in [0, \pi/2], \quad u'(t) = \sin(t)$$

et

$$v'(t) = (n+1)\cos(t)\sin^n(t).$$

La formule d'intégration par parties s'écrit donc,

$$\begin{split} \mathbf{I}_{n+2} &= [-\cos(t)\sin^{n+1}(t)]_0^{\pi/2} \\ &+ (n+1) \int_0^{\pi/2} \cos^2(t)\sin^n(t)dt \\ &= (n+1) \int_0^{\pi/2} (1-\sin^2(t))\sin^n(t)dt \\ &= (n+1) \int_0^{\pi/2} (\sin^n(t)-\sin^{n+2}(t))dt \\ &= (n+1)\mathbf{I}_n - (n+1)\mathbf{I}_{n+2} \end{split}$$

D'où la relation de récurrence,

$$\forall n \in \mathbb{N}, \quad (n+2)I_{n+2} = (n+1)I_n.$$

3. D'après la relation de récurrence établie précédemment :

$$\begin{split} \mathbf{I}_{2n} &= \frac{(2n-1)\times(2n-3)\times\cdots\times3\times1}{(2n)\times(2n-2)\times\cdots\times4\times2} \mathbf{I}_0 \\ &= \frac{(2n)\times(2n-1)\times(2n-2)\times(2n-3)\times\cdots\times4\times3\times2\times1}{\left[(2n)\times(2n-2)\times\cdots\times4\times2\right]^2} \mathbf{I}_0 \\ &= \frac{(2n)!}{\left[2^nn!\right]^2} \mathbf{I}_0 = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} \end{split}$$

De la même façon,

$$\begin{split} \mathbf{I}_{2n+1} &= \frac{(2n) \times (2n-2) \times \dots \times 4 \times 2}{(2n+1) \times (2n-1) \times \dots \times 5 \times 3} \mathbf{I}_{1} \\ &= \frac{\left[(2n) \times (2n-2) \times \dots \times 4 \times 2 \right]^{2}}{(2n+1) \times (2n) \times (2n-1) \times (2n-2) \times \dots \times 5 \times 4 \times 3 \times 2} \mathbf{I}_{1} \\ &= \frac{\left[2^{n} n! \right]^{2}}{(2n+1)!} \mathbf{I}_{1} = \frac{2^{2n} (n!)^{2}}{(2n+1)!} \end{split}$$

4. Puisque $\forall t \in [0, \pi/2], 0 \le \sin(t) \le 1$, on a

$$\forall n \in \mathbb{N}, \sin^{n+1}(t) < \sin^n(t),$$

ainsi après intégration sur le segment $[0, \pi/2]$,

$$I_{n+1} \leq I_n$$
.

La suite $(I_n)_{n\in\mathbb{N}}$ est donc décroissante. On a donc en particulier,

$$\forall n \in \mathbb{N}, \ I_{n+2} \leq I_{n+1} \leq I_n$$

soit encore, d'après la relation de récurrence obtenue ci-dessus

$$\forall n \in \mathbb{N}, \ \frac{n+1}{n+2} I_n \le I_{n+1} \le I_n.$$

Par une récurrence sans difficulté, on prouve à l'aide de l'inégalité précédente que pour tout n positif I_n > 0. D'après le résultat de la question 3.

$$\forall n \in \mathbb{N}, \ \frac{n+1}{n+2} \le \frac{I_{n+1}}{I_n} \le 1,$$

de plus

$$\lim_{n \to +\infty} \frac{n+1}{n+2} = 1$$

d'où, en appliquant le théorème d'encadrement,

$$\lim_{n \to +\infty} \frac{I_{n+1}}{I_n} = 1$$

et donc

$$I_{n+1} \sim I_n$$
.

6. Posons $v_n = (n+1)I_{n+1}I_n$. On remarque que $\forall n \in \mathbb{N}$,

$$v_{n+1} = (n+2)I_{n+2}I_{n+1} = (n+1)I_nI_{n+1} = v_n$$

La suite $(v_n)_{n\in\mathbb{N}}$ est donc constante égale à $\pi/2$ car $I_1=1$.

7. On a $(n+1)I_{n+1}I_n \sim nI_n^2$ d'après ce qui précède. Ainsi,

$$\lim_{n\to+\infty} n\mathrm{I}_n^2 = \frac{\pi}{2}$$

et puisque la fonction racine carrée est continue en $\pi/2$ et que I_n est positive,

$$\lim_{n\to+\infty}\sqrt{n}\mathrm{I}_n=\sqrt{\frac{\pi}{2}},$$

ainsi

$$I_n \sim \sqrt{\frac{\pi}{2n}}$$
.

Solution 5

1. On remarque que l'intégrande tend vers 1 lorsque n tend vers $+\infty$. Nous ne disposons pas en première année de théorème d'interversion limite/intégrale mais il y a cependant des chances que (u_n) converge vers 1. En effet,

$$1 - u_n = \int_0^1 dx - \int_0^1 \frac{dx}{1 + x^n} = \int_0^1 \frac{x^n dx}{1 + x^n}$$

Ainsi

$$0 \le 1 - u_n \le \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1}$$

On en déduit que (u_n) converge vers 1.

2. On a vu que $1 - u_n = \int_0^1 \frac{x^n dx}{1 + x^n}$. Soit $n \ge 1$: on écrit $\frac{x^n}{1 + x^n}$ sous la forme $\frac{x}{n} \frac{nx^{n-1}}{1 + x^n}$ et on effectue une intégration par parties :

$$1 - u_n = \left[\frac{x}{n}\ln(1+x^n)\right]_0^1 - \frac{1}{n}\int_0^1\ln(1+x^n) \, dx = \frac{\ln 2}{n} - \frac{1}{n}\int_0^1\ln(1+x^n) \, dx$$

En utilisant l'inégalité classique $ln(1 + u) \le u$, on a :

$$0 \le \int_0^1 \ln(1+x^n) \, \mathrm{d}x \le \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1}$$

Donc $\int_0^1 \ln(1+x^n) dx \xrightarrow[n \to +\infty]{} 0$. Par conséquent,

$$1 - u_n = \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$
 i.e. $u_n = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$

Solution 6

1. Pour $t \ge 0$, $\frac{1}{1+t} \le 1$ donc $0 \le I_n \le \int_0^1 t^n dt = \frac{1}{n+1}$. On en déduit que (I_n) converge vers 0.

2.
$$I_n + I_{n+1} = \int_0^1 \frac{t^n + t^{n+1}}{1+t} dt = \int_0^1 t^n dt = \frac{1}{n+1}.$$

- 3. En utilisant la question précédente, $S_n = \sum_{k=1}^n (-1)^{k+1} (I_k + I_{k-1}) = \sum_{k=1}^n (-1)^{k+1} I_k \sum_{k=1}^n (-1)^k I_{k-1}$. On reconnaît là une somme télescopique donc $S_n = (-1)^{n+1} I_n (-1)^1 I_0 = I_0 + (-1)^{n+1} I_n$. Le calcul de I_0 donne $I_0 = \ln 2$.
- **4.** Comme (I_n) converge vers 0, Q_n converge vers $\ln 2$.

Solution 7

Il s'agit d'intégrer par parties à chaque fois.

$$I = [-x \cos x]_0^{\pi} + \int_0^{\pi} \cos x \, dx$$
$$= \pi + [\sin x]_0^{\pi} = \pi$$

$$J = \left[\frac{x^3}{3} \ln x\right]_1^2 - \int_1^2 \frac{x^3}{3} \cdot \frac{1}{x} dx$$
$$= \frac{8}{3} \ln 2 - \frac{1}{3} \int_1^2 x^2 dx$$
$$= \frac{8}{3} \ln 2 - \frac{1}{9} \left[x^3\right]_1^2 = \frac{8}{3} \ln 2 - \frac{7}{9}$$

$$K = \left[-\frac{1}{3}e^{2x}\cos(3x) \right]_0^{\pi} + \frac{2}{3} \int_0^{\pi} e^{2x}\cos(3x) dx$$
$$= \frac{e^{2\pi} + 1}{3} + \frac{2}{3}K'$$

en posant $K' = \int_0^{\pi} e^{2x} \cos(3x) dx$. A nouveau, par intégration par parties

$$K' = \left[\frac{1}{3}e^{2x}\sin(3x)\right]_0^{\pi} - \frac{2}{3}\int_0^{\pi}e^{2x}\sin(3x) dx = -\frac{2}{3}K$$

Ainsi

$$K = \frac{e^{2\pi} + 1}{3} + \frac{2}{3}K' = \frac{e^{2\pi} + 1}{3} - \frac{4}{9}K$$

de sorte que

$$K = \frac{3}{13} \left(e^{2\pi} + 1 \right)$$

$$L = [x \arccos x]_0^{\frac{1}{2}} + \int_0^{\frac{1}{2}} \frac{x \, dx}{\sqrt{1 - x^2}}$$
$$= \frac{\pi}{6} - \left[\sqrt{1 - x^2}\right]_0^{\frac{1}{2}}$$
$$= \frac{\pi}{6} - \frac{\sqrt{3}}{2} + 1$$

Solution 8

1. On procède à deux intégrations par parties.

$$\int x^2 e^{3x} \, dx = \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \int x e^{3x} \, dx$$
$$= \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \left(\frac{1}{3} x e^{3x} - \frac{1}{3} \int e^{3x} \, dx \right)$$
$$= \frac{1}{3} x^2 e^{3x} - \frac{2}{9} x e^{3x} + \frac{2}{27} e^{3x}$$

2. On fait apparaître un facteur 1 et on intègre par parties.

$$\int \arctan(x) dx = x \arctan(x) - \int \frac{x dx}{1 + x^2}$$
$$= x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$$

3. On peut procéder à une double intégration par parties.

$$\int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2 \int e^{2x} \cos x \, dx$$

$$= -e^{2x} \cos x + 2 \left(e^{2x} \sin x - 2 \int e^{2x} \sin x \, dx \right)$$

$$= -e^{2x} \cos x + 2e^{2x} \sin x - 4 \int e^{2x} \sin x \, dx$$

Ainsi

$$\int e^{2x} \sin x \, dx) = \frac{1}{5} e^{2x} (2 \sin x - \cos x)$$

On peut également passer en complexes.

$$\int e^{2x} \sin x \, dx = \int e^{2x} \operatorname{Im}(e^{ix}) \, dx$$

$$= \int \operatorname{Im}(e^{2x}e^{ix}) \, dx$$

$$= \operatorname{Im}\left(\int e^{2x}e^{ix} \, dx\right)$$

$$= \operatorname{Im}\left(\int e^{(2+i)x} \, dx\right)$$

$$= \operatorname{Im}\left(\frac{e^{(2+i)x}}{2+i}\right)$$

$$= e^{2x} \operatorname{Im}\left(\frac{e^{ix}}{2+i}\right)$$

$$= \frac{1}{5}e^{2x} \operatorname{Im}\left((2-i)e^{ix}\right)$$

$$= \frac{1}{5}e^{2x}(2\sin x - \cos x)$$

4. Puisque arcsin est de classe \mathcal{C}^1 sur] -1,1[, on peut intégrer par parties «sur cet intervalle» :

$$\int \arcsin(x) dx = x \arcsin(x) - \int \frac{x}{\sqrt{1 - x^2}} dx = x \arcsin(x) + \sqrt{1 - x^2}$$

A priori, l'intégration par parties précédentes permet seulement d'affirmer que la fonction $\varphi \colon x \mapsto x \arcsin(x) + \sqrt{1-x^2}$ est une primitive de arcsin sur l'intervalle] -1,1[. Mais

- φ est continue sur [-1,1];
- φ est de classe \mathcal{C}^1 sur]-1,1[;
- $\varphi' = \arcsin \sup 1' \text{ intervalle }] 1, 1[$
- ϕ admet donc des limites finies en -1 et 1 car arcsin est continue en ces points.

D'après le théorème de prolongement \mathcal{C}^1 , φ est en fait de classe \mathcal{C}^1 sur [-1,1] et que φ' = arcsin sur l'intervalle [-1,1]. Ainsi φ est bien une primitive de arcsin sur l'intervalle [-1,1].

Convergences

Solution 9

1. On effectue le changement de variable $t = x - n\pi$ et on remarque que

$$\sin^2(t + n\pi) = ((-1)^n \sin t)^2 = \sin^2 t$$

2. Soit $n \in \mathbb{N}$. Pour $0 \le x \le \pi$

$$(n\pi)^4 \le (x + n\pi)^4 \le ((n+1)\pi)^4$$

puis comme $\sin^2 x \ge 0$

$$(n\pi)^4 \sin^2 x \le (x + n\pi)^4 \sin^2 x \le ((n+1)\pi)^4 \sin^2 x$$

et enfin

$$\frac{1}{((n+1)\pi)^4 \sin^2 x} \le \frac{1}{(x+n\pi)^4 \sin^2 x} \le \frac{1}{(n\pi)^4 \sin^2 x}$$

On intégre les dernières inégalités entre 0 et π de sorte que $v_{n+1} \le u_n \le v_n$.

3. Soit $n \in \mathbb{N}$. La fonction $x \mapsto \frac{\mathrm{d}x}{1 + (n\pi)^4 \sin^2 x}$ étant π -périodique, on a

$$v_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}x}{1 + (n\pi)^4 \sin^2 x}$$

Les règles de Bioche nous conseillent d'effectuer le changement de variable $t = \tan x$. On trouve en effet

$$v_n = \int_{-\infty}^{+\infty} \frac{dt}{(1 + (n\pi)^4) t^2 + 1}$$

$$= \left[\frac{1}{\sqrt{1 + (n\pi)^4}} \arctan\left(\sqrt{1 + (n\pi)^4} t\right) \right]_{-\infty}^{+\infty} = \frac{\pi}{\sqrt{1 + (n\pi)^4}}$$

On en déduit que

$$\frac{\pi}{\sqrt{1 + ((n+1)\pi)^4}} \le u_n \le \frac{\pi}{\sqrt{1 + (n\pi)^4}}$$

puis que $u_n \sim \frac{1}{n^2\pi}$.

4. Puisque l'intégrande est positif, $F: x \mapsto \int_0^x \frac{dx}{1 + x^4 \sin^2 x}$ est croissante et admet donc une limite (éventuellement infinie) en $+\infty$. De plus, $F(N\pi) = \sum_{n=0}^N u_n$ pour $N \in \mathbb{N}$ et $\sum_{n \in \mathbb{N}} u_n$ converge d'après la question précédente. Ainsi $F(N\pi)$ tend vers une limite finie lorsque

N tend vers $+\infty$. Cette limite est également celle de F en $+\infty$, ce qui prouve que l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}x}{1 + x^4 \sin^2 x}$ converge.

Solution 10

- 1. Soit A un réel tel que P' ne s'annule pas sur $[A, +\infty[$. L'intégrale I est de même nature que l'intégrale $\int_A^{+\infty} \cos(P(x)) \, dx$. On réécrit cette intégrale sous la forme $\int_A^{+\infty} \frac{1}{P'(x)} P'(x) \cos(P(x)) \, dx$. Puisque $x \mapsto \frac{\sin(P(x))}{P'(x)}$ admet une limite nulle en $+\infty$ (deg $P' \ge 1$), l'intégration par parties montre que l'intégrale $\int_A^{+\infty} \cos(P(x)) \, dx$ est de même nature que l'intégrale $\int_A^{+\infty} \frac{P''(x)}{P'(x)^2} \sin(P(x)) \, dx$. Puisque deg $P \ge 2$, $\frac{P''(x)}{P'(x)^2} \sin(P(x)) = \mathcal{O}\left(\frac{1}{x^2}\right)$. L'intégrale $\int_A^{+\infty} \frac{P''(x)}{P'(x)^2} \sin(P(x)) \, dx$ est donc convergente de même que I.
- 2. Pour tout $x \in \mathbb{R}_+$, $|\cos(P(x))| \ge \cos^2(P(x)) = \frac{1 + \cos(2P(x))}{2}$. D'après la première question, $\int_0^{+\infty} \cos(2(P(x))) dx$ converge et $\int_0^{+\infty} dx$ diverge vers $+\infty$ donc $\int_0^{+\infty} |\cos(P(x))| dx$ diverge vers $+\infty$.
- 3. Par le changement de variable $t=x^2$, $I=\int_0^{+\infty}\frac{\cos t}{2\sqrt{t}}\,dt$ puis, par intégration par parties, $I=\int_0^{+\infty}\frac{\sin t}{t^{\frac{3}{2}}}\,dt$. En posant $u_n=\int_{n\pi}^{(n+1)\pi}\frac{\sin t}{t^{\frac{3}{2}}}\,dt$, on a $I=\sum_{n=0}^{+\infty}u_n$. On vérifie que la série $\sum_{n\in\mathbb{N}}u_n$ vérifie le critère spécial des séries alternées. On en déduit que I est du signe de u_0 , c'est-à-dire positif.

Solution 11

- 1. In est continue sur]0,1] et $\ln(x) = o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Comme $t \mapsto \frac{1}{\sqrt{t}}$ est intégrable au voisinage de 0^+ ($\frac{1}{2} < 1$), ln est intégrable sur]0,1]. Finalement, $\int_0^1 \ln t \ dt$ converge.
- 2. $t \mapsto e^{-t^2}$ est continue sur $[0, +\infty[$ et $e^{-t^2} = o\left(\frac{1}{t^2}\right)$ (puisque $e^{-u} = o\left(\frac{1}{u}\right)$). Comme $t \mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$ $(2 > 1), t \mapsto e^{-t^2}$ est intégrable sur $[0, +\infty[$. Finalement, $\int_0^{+\infty} e^{-t^2} dt$ converge.
- 3. Tout d'abord, $x \mapsto x \sin(x)e^{-x}$ est continue sur $[0, +\infty[$. Comme sin est bornée, $x \sin(x)e^{-x} = \mathcal{O}(xe^{-x})$. De plus, $xe^{-x} = \frac{1}{x^2}$ par croissances comparées. Ainsi $x \sin(x)e^{-x} = \frac{1}{x^2}$. Or $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty[$ donc $x \mapsto x \sin(x)e^{-x}$ est intégrable sur $[0, +\infty[$. Finalement, $\int_0^{+\infty} x \sin(x)e^{-x} dx$ converge.
- **4.** Tout d'abord, $t \mapsto \ln(t)e^{-t}$ est continue sur $]0, +\infty[$. De plus, $\ln(t)e^{-t} \underset{t \to +\infty}{\sim} \ln(t)$ et on a vu que ln était intégrable au voisinage de 0^+ donc $t \mapsto \ln(t)e^{-t}$ est également intégrable au voisinage de 0^+ . Par croissances comparées, $\ln(t)e^{-t} \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$ donc $t \mapsto \ln(t)e^{-t}$ est également intégrable au voisinage de $+\infty$. Finalement, $t \mapsto \ln(t)e^{-t}$ est intégrable sur $]0, +\infty[$. L'intégrale $\int_0^{+\infty} \ln(t)e^{-t}$ dt converge.
- 5. $\frac{1}{(1-t)\sqrt{t}} \sim \frac{1}{1-t}$ et $t \mapsto \frac{1}{1-t}$ n'est pas intégable au voisinage de 1⁻. L'intégrale $\int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$ diverge.

6. Tout d'abord, $t \mapsto \frac{\ln t}{t^2 + 1}$ est continue sur $]0, +\infty[$. De plus, $\frac{\ln t}{t^2 + 1} \sim \ln(t)$ et on a vu que ln était intégrable au voisinage de 0^+ donc $t \mapsto \ln(t)e^{-t}$ est également intégrable au voisinage de 0^+ . Par croissances comparées, $\frac{\ln t}{t^2 + 1} = o\left(\frac{1}{\frac{3}{2}}\right)$ donc $t \mapsto \frac{\ln t}{t^2 + 1}$ est également intégrable au voisinage de $+\infty$. Finalement, $t \mapsto \frac{\ln t}{t^2 + 1}$ est intégrable sur $]0, +\infty[$. L'intégrale $\int_0^{+\infty} \frac{\ln t}{t^2 + 1} \, dt$ converge.

7. $\ln x \underset{x \to 1^+}{\sim} x - 1$ donc $\frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} \underset{x \to 1^+}{\sim} \frac{1}{(x-1)^{\frac{1}{2}}}$. Ainsi $x \mapsto \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}}$ est intégrable au voisinage de 1⁺ par comparaison à une intégrale de Riemann.

Par croissances comparées, $\sqrt{\ln x} = \mathcal{O}\left(x^{\frac{1}{4}}\right)$ donc $\frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} = \mathcal{O}\left(\frac{1}{x^{\frac{5}{4}}}\right)$ donc $x \mapsto \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}}$ est intégrable au voisinage de $\frac{1}{x}$ par comparaison à une intégrale de Riemann.

Finalement, $\int_{1}^{+\infty} \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} dx$ converge.

Solution 12

1. Supposons $\alpha > 1$. Donnons-nous $\gamma \in]1, \alpha[$ (par exemple $\gamma = \frac{1+\alpha}{2})$). Comme $\gamma < \alpha, \frac{1}{t^{\alpha}(\ln t)^{\beta}} = \frac{1}{t^{\gamma}}$ par croissances comparées. Or $\gamma > 1$ donc $t \mapsto \frac{1}{t^{\gamma}}$ est intégrable sur $[e, +\infty[$. On en déduit que $\int_{e}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln t)^{\beta}}$ converge. Supposons $\alpha < 1$. Alors $\frac{1}{t} = o\left(\frac{1}{t^{\alpha}(\ln t)^{\beta}}\right)$ par croissances comparées. Or $\int_{e}^{+\infty} \frac{\mathrm{d}t}{t}$ diverge donc $\int_{e}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln t)^{\beta}}$ diverge également. Supposons enfin $\alpha = 1$. Si $\beta \neq 1$,

$$\int_{e}^{x} \frac{\mathrm{d}t}{t(\ln t)^{\beta}} = \frac{1}{1-\beta} \left[\ln(t)^{1-\beta} \right]_{e}^{x} = \frac{1}{1-\beta} \left(\ln(x)^{1-\beta} - 1 \right) \underset{x \to +\infty}{\longrightarrow} \begin{cases} +\infty & \text{si } \beta < 1 \\ \frac{1}{\beta - 1} & \text{si } \beta > 1 \end{cases}$$

Enfin, si $\beta = 1$,

$$\int_{e}^{x} \frac{\mathrm{d}t}{t \ln t} = [\ln(\ln t)]_{e}^{x} = \ln(\ln x) \xrightarrow[x \to +\infty]{} + \infty$$

Pour récapitutler, $\int_e^{+\infty} \frac{\mathrm{d}t}{t^{\alpha} (\ln t)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $\alpha = 1$ et $\beta > 1$.

2. Via le changement de variable $u = \frac{1}{t}$, l'intégrale $\int_0^{\frac{1}{e}} \frac{\mathrm{d}t}{t^{\alpha} |\ln t|^{\beta}}$ est de même nature que l'intégrale $\int_e^{+\infty} \frac{\mathrm{d}u}{u^{2-\alpha} (\ln u)^{\beta}}$. D'après la question précédente, cette intégrale converge si et seulement si $\alpha < 1$ ou $\alpha = 1$ et $\beta > 1$.

Solution 13

- 1. Posons $f: x \mapsto e^{-x} \ln x$. f est bien continue sur \mathbb{R}_+^* .

 De plus, $f(x) \underset{x \to 0^+}{\sim} \ln x$ et $\ln x = o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Ainsi $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$ et f est intégrable au voisinage de 0^+ . Enfin $f(x) = o\left(\frac{1}{x^2}\right)$ par croissances comparées de sorte que f est intégrable au voisinage de $+\infty$. L'intégrale I converge bien.
- 2. Par relation de Chasles,

$$I = \int_0^1 e^{-x} \ln x \, dx + \int_1^{+\infty} e^{-x} \ln x \, dx$$

En effectuant le changement de variable $x \mapsto 1/x$ dans la première intégrale,

$$I = -\int_{1}^{+\infty} \frac{e^{-\frac{1}{x}}}{x^{2}} \ln x \, dx + \int_{1}^{+\infty} e^{-x} \ln x \, dx = \int_{1}^{+\infty} \left(1 - \frac{e^{x - \frac{1}{x}}}{x^{2}}\right) e^{-x} \ln x \, dx = \int_{1}^{+\infty} (1 - e^{\phi}(x)) e^{-x} \ln x \, dx$$

en posant

$$\varphi: x \mapsto x - \frac{1}{x} - 2\ln x$$

 φ est dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ \varphi'(x) = 1 + \frac{1}{x^2} - \frac{2}{x} = \frac{(x-1)^2}{x^2} \ge 0$$

Ainsi φ est croissante sur \mathbb{R}_+^* et comme $\varphi(1)=1, \varphi$ est positive sur $[1,+\infty[$. On en déduit que

$$\forall x \in [1, +\infty[, (1 - e^{\varphi}(x))e^{-x} \ln x \le 0]$$

Par conséquent, I \leq 0. Bien entendu, $x \mapsto (1 - e^{\varphi}(x))e^{-x} \ln x$ est continue et non constamment nulle sur $[1, +\infty[$ donc I < 0.

Solution 14

- 1. On procède par intégration par parties : comme $x \mapsto \frac{\cos x}{\sqrt{x}}$ admet une limite finie (nulle) en $+\infty$, les intégrales $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ et $\int_{1}^{+\infty} \frac{\cos x}{x^{\frac{3}{2}}}$ sont de même nature. Puisque $\frac{\cos x}{x^{\frac{3}{2}}} = \mathcal{O}\left(\frac{1}{x^{\frac{3}{2}}}\right)$, la seconde intégrale converge (3/2 > 1) et donc la première également.
- 2. Remarquons que, comme $\lim_{x \to +\infty} \frac{\sin x}{\sqrt{x}}$

$$\frac{\sin x}{\sqrt{x} + \sin x} = \frac{\sin x}{\sqrt{x}} \cdot \frac{1}{1 + \frac{\sin x}{\sqrt{x}}} = \frac{\sin x}{\sqrt{x}} \left(1 - \frac{\sin x}{\sqrt{x}} + \mathcal{O}\left(\frac{\sin^2 x}{x}\right) \right) = \frac{\sin x}{\sqrt{x}} - \frac{\sin^2 x}{x} + \mathcal{O}\left(\frac{1}{\frac{3}{2}}\right)$$

On a vu que $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ converge et 3/2 > 1 donc $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} dx$ est de même nature que $\int_{1}^{+\infty} \frac{\sin^2 x}{x} dx$. Or

$$\frac{\sin^2 x}{x} = \frac{1 - \cos(2x)}{2x} = \frac{1}{2x} - \frac{\cos(2x)}{2x}$$

On montre à nouveau à l'aide d'une intégration par parties que $\int_1^{+\infty} \frac{\cos 2x}{2x} \, dx$ converge mais $\int_1^{+\infty} \frac{dx}{2x} \, diverge \, donc \, int_1^{+\infty} \frac{\sin^2 x}{x} \, dx$ diverge. Finalement, $\int_1^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} \, dx$ diverge.

Solution 15

Tout d'abord, $t\mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur \mathbb{R}_+^* quelle soit la valeur de α .

Etude en 0. $\frac{\sin t}{t^{\alpha}} \sim_{t \to 0^+} \frac{1}{t^{\alpha - 1}}$ donc $\int_0^{\pi} \frac{\sin t}{t^{\alpha}} dt$ converge si et seulement si $\alpha - 1 < 1$ i.e. $\alpha < 2$.

Etude en $+\infty$. Supposons d'abord $\alpha > 0$. Comme $\lim_{t \to +\infty} \frac{\cos t}{t^{\alpha}} = 0$, les intégrales $\int_{\pi}^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ et $\int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}}$ sont de même nature par intégration par parties. Or $\frac{\cos t}{t^{\alpha+1}} = \mathcal{O}\left(\frac{1}{t^{\alpha+1}}\right) \operatorname{donc} \int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt$ converge. Il en est donc de même de $\int_{p} t^{+\infty} \frac{\sin t}{t^{\alpha}} dt$. Supposons $\alpha \le 0$. Posons $F(x) = \int_{1}^{x} \frac{\sin t}{t^{\alpha}} dt$. Comme sin est positive sur $[2n\pi, (2n+1)\pi]$ et comme $t \mapsto \frac{1}{t^{\alpha}}$ est croissante sur \mathbb{R}_{+}^{*}

$$F((2n+1)\pi) - F(2n\pi) = \int_{2n\pi}^{(2n+1)\pi} \ge (2n\pi)^{-\alpha} \int_{2n\pi}^{(2n+1)\pi} \sin t \, dt = 2(2n\pi)^{-\alpha}$$

Ainsi $F((2n+1)\pi) - F(2n\pi)$ ne tend pas vers 0 lorsque n tend vers $+\infty$. Donc F n'admet pas de limite en $+\infty$ i.e. l'intégrale $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ diverge.

En conclusion, $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ converge si et seulement si $0 < \alpha < 2$.

Solution 16

Soit $x \in [1, +\infty[$. Par intégration par parties

$$\int_{1}^{x} g(t) dt = \int_{1}^{x} \frac{f(t)^{2}}{t^{2}} dt = -\left[\frac{f(t)^{2}}{t^{2}}\right]_{1}^{x} + 2 \int_{1}^{x} \frac{f(t)f'(t)}{t} dt = f(1)^{2} - \frac{f(x)^{2}}{x^{2}} + 2 \int_{1}^{x} \frac{f(t)f'(t)}{t} dt \le 2 \int_{1}^{x} \frac{f(t)f'(t)}{t} dt$$

D'après l'inégalité de Cauchy-Schwarz,

$$\int_{1}^{x} g(t) \ \mathrm{d}t \leq f(1)^{2} + 2\sqrt{\int_{1}^{x} f(t)^{2} \ \mathrm{d}t} \sqrt{\int_{1}^{x} f'(t)^{2} \ \mathrm{d}t} \leq f(1)^{2} + 2\sqrt{\int_{1}^{x} f(t)^{2} \ \mathrm{d}t} \sqrt{\int_{1}^{+\infty} f'(t)^{2} \ \mathrm{d}t}$$

Posons A =
$$f(1)^2$$
, B = $\sqrt{\int_1^{+\infty} f'(t)^2 dt}$ et $h(x) = \sqrt{\int_1^x f(t)^2 dt}$. Alors

$$h(x)^2 \le A + 2Bh(x)$$

ou encore

$$(h(x) - B)^2 \le A + B^2$$

puis

$$0 \le h(x) \le \mathrm{B} + \sqrt{\mathrm{A} + \mathrm{B}^2}$$

et enfin

$$\int_{1}^{x} g(t) dt = h(x)^{2} \le (B + \sqrt{A + B^{2}})^{2}$$

L'application $x \mapsto \int_1^x g(t) dt$ est donc croissante (intégrande positive) et majorée : elle admet donc une limite en $+\infty$. L'intégrale $\int_1^{+\infty} g(t) dt$ converge donc i.e. g est intégrable sur $[1, +\infty[$.

Solution 17

Soit $n \in \mathbb{N}$. Alors

$$\int_0^{n\pi} \frac{|\sin t|}{t} dt = \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{t} dt \ge \sum_{k=1}^n \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin t| dt$$

Or via le changement de variable $u = t - (k - 1)\pi$,

$$\int_{(k-1)\pi}^{k\pi} |\sin t| \, dt = \int_0^{\pi} |\sin(u + (k-1)\pi)| \, du = \int_0^{\pi} |(-1)^{k-1}| \sin u| \, du = \int_0^{\pi} \sin u \, du = 2$$

Finalement.

$$\int_0^{n\pi} \frac{|\sin t|}{t} \, \mathrm{d}t \ge \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k}$$

Or la série harmonique $\sum \frac{1}{n}$ diverge vers $+\infty$ donc

$$\lim_{n \to +\infty} \int_0^{n\pi} \frac{|\sin t|}{t} dt = +\infty$$

La fonction $t \mapsto \frac{\sin t}{t}$ n'est donc pas intégrable sur \mathbb{R}_+^* .

Solution 18

- 1. Supposons qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que $I(\lambda)$ et $I(\mu)$ convergent. Par différence, $\int_a^{+\infty} \left(\frac{\lambda f(t)}{t} \frac{\lambda f(t)}{t}\right) dt = \int_a^{+\infty} \frac{\lambda \mu}{t} dt$ converge. Comme $\int_a^{+\infty} \frac{dt}{t}$ diverge, ceci n'est possible que si $\lambda \mu = 0$ i.e. $\lambda = \mu$.
- 2. Supposons H_{λ} bornée sur \mathbb{R} . D'après le théorème fondamental de l'analyse, H_{λ} est de classe \mathcal{C}^1 sur $[a, +\infty[$ de dérivée $t\mapsto \lambda f(t)$. Par ailleurs, $t\mapsto \frac{1}{t}$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ de dérivée $t\mapsto -\frac{1}{t^2}$. Par intégration par parties, on obtient sous réserve de convergence :

$$I(\lambda) = \left[\frac{H_{\lambda}(t)}{t}\right]_{a}^{+\infty} + \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^{2}} dt$$

Comme H_{λ} est bornée,

$$\left[\frac{H_{\lambda}(t)}{t}\right]_{a}^{+\infty} = \lim_{t \to +\infty} \frac{H_{\lambda}(t)}{t} - \frac{H_{\lambda}(a)}{a} = 0$$

De plus, $H_{\lambda}(t) = \mathcal{O}(1/t^2)$ donc H_{λ} est intégrable sur $[a, +\infty[$. A fortiori, $\int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^2} dt$ converge.

On en déduit que $I(\lambda)$ converge et que

$$I(\lambda) = \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^2} dt$$

3. a. Posons $G_{\lambda}(x) = H_{\lambda}(x+T) - H_{\lambda}(x)$ pour $x \in \mathbb{R}$. On a déjà montré que H_{λ} était de classe \mathcal{C}^1 donc G_{λ} également et

$$\forall x \in \mathbb{R}, \ G'_{\lambda}(x) = H'_{\lambda}(x+T) - H'_{\lambda}(x) = (\lambda - f(x+T)) - (\lambda - f(x)) = f(x) - f(x+T) = 0$$

Ainsi G_{λ} est constante sur \mathbb{R} et

$$\begin{aligned} \forall x \in \mathbb{R}, \ & \mathrm{H}_{\lambda}(x+\mathrm{T}) - \mathrm{H}_{\lambda}(x) = \mathrm{G}_{\lambda}(0) = \mathrm{H}_{\lambda}(\mathrm{T}) - \mathrm{H}_{\lambda}(0) \\ &= \int_{a}^{\mathrm{T}} (\lambda - f(t)) \ \mathrm{d}t - \int_{a}^{0} (\lambda - f(t)) \ \mathrm{d}t \\ &= \int_{0}^{\mathrm{T}} (\lambda - f(t)) \ \mathrm{d}t \qquad \text{d'après la relation de Chasles} \\ &= \lambda \mathrm{T} - \int_{0}^{\mathrm{T}} f(t) \ \mathrm{d}t \end{aligned}$$

b. Par télescopage

$$\mathrm{H}_{\lambda}(a+n\mathrm{T}) = \mathrm{H}_{\lambda}(a+n\mathrm{T}) - \mathrm{H}_{\lambda}(a) = \sum_{k=0}^{n-1} \mathrm{H}_{\lambda}(a+(k+1)\mathrm{T}) - \mathrm{H}_{\lambda}(a+k\mathrm{T}) = \sum_{k=0}^{n-1} \lambda \mathrm{T} - \int_{0}^{\mathrm{T}} f(t) \; \mathrm{d}t = n \left(\lambda \mathrm{T} - \int_{0}^{\mathrm{T}} f(t) \; \mathrm{d}t \right)$$

Ainsi la suite $(H_{\lambda}(a+nT))$ est bornée si et seulement si $\lambda T - \int_0^T f(t) dt$ i.e. si et seulement si $\lambda = \lambda_0 = \frac{1}{T} \int_0^T f(t) dt$.

c. Dans ce cas.

$$\forall x \in \mathbb{R}, \ H_{\lambda_0}(x+T) - H_{\lambda_0}(x) = 0$$

Ainsi H_{λ_0} est T-périodique. Comme H_{λ_0} est continue, elle est bornée sur le segment [0,T]. Par T-périodicité, elle est bornée sur \mathbb{R} .

- **d.** Comme H_{λ_0} est bornée sur \mathbb{R} , $I(\lambda_0)$ converge d'après la question **2**. D'après la question **1**, λ_0 est l'unique valeur de λ pour laquelle $I(\lambda)$ converge.
- e. Soit $x \in [a, +\infty[$. Alors

$$\int_{a}^{x} \frac{f(t)}{t} dt = -\int_{a}^{x} \frac{\lambda_{0} - f(t)}{t} dt + \int_{a}^{x} \frac{\lambda_{0}}{t} dt = -\int_{a}^{x} \frac{\lambda_{0} - f(t)}{t} dt + \lambda_{0} (\ln x - \ln a)$$

 $\operatorname{Or} \lim_{x \to +\infty} \int_a^x \frac{\lambda_0 - f(t)}{t} \, \mathrm{d}t = \mathrm{I}(\lambda_0) \text{ et } \lim_{x \to +\infty} \lambda_0 \ln x = \pm \infty \text{ car } \lambda_0 \neq 0. \text{ On en déduit que}$

$$\int_{0}^{x} \frac{f(t)}{t} dt \underset{x \to +\infty}{\sim} \lambda_{0} \ln x$$

- **4.** Soit $n \in \mathbb{N}^*$. L'application $t \mapsto \frac{|\sin(nt)|}{\sin(t)}$ est continue sur $]0,\pi/2]$ et comme $\sin u \underset{u \to 0}{\sim} u$, $\lim_{t \to 0^+} \frac{|\sin(nt)|}{\sin(t)} = n$. Ainsi $t \mapsto \frac{|\sin(nt)|}{\sin(t)}$ se prolonge en une application continue sur le *segment* $[0,\pi/2]$. L'intégrale A_n est donc bien définie. Le même argument montre également que B_n est bien définie.
- **5.** On utilise le fait que $\sin(t) = t \frac{t^3}{6} + o(t^3)$:

$$\varphi(t) = \frac{\sin(t) - t}{t \sin(t)} \sim \frac{-t^3/6}{t^2} = -\frac{t}{6}$$

6. D'après la question précédente, φ est prolongeable par continuité sur le segment $[0, \pi/2]$. Elle y est donc intégrable. Par inégalité triangulaire,

$$\forall n \in \mathbb{N}, |A_n - B_n| \le \int_0^{\frac{\pi}{2}} |\sin(nt)| |\varphi(t)| dt \le \int_0^{\frac{\pi}{2}} |\varphi(t)| dt$$

La suite $(A_n - B_n)$ est donc bornée.

7. Via le changement de variable linéaire u = nt,

$$B_n = \int_0^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du = \int_0^{\frac{\pi}{2}} \frac{|\sin(u)|}{u} du + \int_{\frac{\pi}{2}}^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du = B_1 + \int_{\frac{\pi}{2}}^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du$$

Remarquons que $|\sin|$ est π -périodique donc, avec les notations de la question 3 et $a=\frac{\pi}{2}$, on a :

$$\lambda_0 = \frac{1}{\pi} \int_0^{\pi} |\sin(t)| dt = \frac{1}{\pi} \int_0^{\pi} \sin(t) dt = \frac{2}{\pi} \neq 0$$

On en déduit que

$$\int_{\frac{\pi}{2}}^{x} \frac{|\sin(u)|}{u} du \underset{x \to +\infty}{\sim} \lambda_0 \ln(x) = \frac{2}{\pi} \ln(x)$$

et donc

$$\int_{\underline{\pi}}^{\frac{n\pi}{2}} \frac{|\sin(u)|}{u} du \underset{n \to +\infty}{\sim} \frac{2}{\pi} \ln\left(\frac{n\pi}{2}\right) \underset{n \to +\infty}{\sim} \frac{2\ln(n)}{\pi}$$

Comme $\lim_{n \to +\infty} \frac{2 \ln(n)}{\pi} = +\infty$,

$$B_n \sim_{n \to +\infty} \frac{2 \ln(n)}{\pi}$$

Puisque $(A_n - B_n)$ est bornée et que $\lim_{n \to +\infty} B_n = +\infty$ d'après l'équivalent précédente,

$$A_n = B_n + (A_n - B_n) \underset{n \to +\infty}{\sim} B_n \underset{n \to +\infty}{\sim} \frac{2 \ln(n)}{\pi}$$

Solution 19

1. Soit f une fonction de classe \mathcal{C}^{n+1} sur [a,b] à valeurs dans un espace vectoriel normé de dimension finie. Alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

On raisonne par récurrence sur n. La propriété est vraie pour n = 0, car si f est de classe \mathcal{C}^1 ,

$$f(b) = f(a) + \int_{a}^{b} f'(t) dt$$

Supposons que la propriété soit vraie pour un certain $n \in \mathbb{N}$. Supposons que f soit de classe \mathcal{C}^{n+2} . A fortiori, f est de classe \mathcal{C}^{n+1} donc on peut écrire

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

En intégrant par parties,

$$\int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt = -\left[\frac{(b-t)^{n+1}}{(n+1)!} f^{(n+1)}(t)\right]_{a}^{b} + \int_{a}^{b} \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt = \frac{f^{(n+1)}(a)}{(n+1)!} (b-a)^{n+1} + \int_{a}^{b} \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

ce qui permet de conclure.

2. On peut déjà effectuer le changement de variable $t=u^2$ pour «simplifier» l'intégrale. L'intégrale de l'énoncé est alors de même nature que l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(u)}{u} du$. L'intégrale converge en 0 puisque $u\mapsto \frac{\sin u}{u}$ est prolongeable par continuité en 0. De plus, sous réserve de convergence, on obtient par intégration par parties

$$\int_{\pi}^{+\infty} \frac{\sin u}{u} du = -\left[\frac{\cos u}{u}\right]_{\pi}^{+\infty} - \int_{\pi}^{+\infty} \frac{\cos u}{u^2} du$$

Le crochet converge puisque, cos étant bornée, $\lim_{u\to +\infty} \frac{\cos u}{u} = 0$. La deuxième intégrale converge également puisque $\frac{\cos u}{u^2} = O\left(\frac{1}{u^2}\right)$. On peut alors en conclure que l'intégrale de Dirichlet converge et donc l'intégrale de l'énoncé également.

Remarque. Le changement de variable initiale n'était pas nécessaire. On aurait pu directement remarque que $\frac{\sin(\sqrt{t})}{t} \underset{t \to 0^+}{\sim} \frac{1}{\sqrt{t}}$, d'où l'intégrabilité en 0 et procéder à une intégration par parties en écrivant $\frac{\sin(\sqrt{t})}{t} = \frac{\sin(\sqrt{t})}{\sqrt{t}}c \cdot \frac{1}{\sqrt{t}}$.

3. Posons $f: t \mapsto \frac{\sin(\sqrt{t})}{t} dt$. Soit $n \in \mathbb{N}^*$. Remarquons que

$$\int_{n}^{n+1} f(t) dt - f(n) = \int_{n}^{n+1} (f(t) - f(n)) dt$$

D'après l'inégalité de Taylor-Lagrange, pour tout $t \in [n, n+1]$

$$|f(t) - f(n)| \le |t - n| \max_{[n,t]} |f'| \le \max_{[n,n+1]} |f'|$$

Or $f'(t) = \frac{\cos(\sqrt{t})}{2t^{3/2}} - \frac{\sin(\sqrt{t})}{t^2}$ donc, pour tout $t \in [n, n+1]$,

$$|f'(t)| \le \frac{1}{2t^{3/2}} + \frac{1}{t^2} \le \frac{3}{2t^{3/2}} \le \frac{3}{2n^{3/2}}$$

Ainsi, pour tout $t \in [n, n+1]$,

$$|f(t) - f(n)| \le \frac{3}{2n^{3/2}}$$

puis, par inégalité triangulaire,

$$\left| \int_{n}^{n+1} f(t) \, dt - f(n) \right| \le \int_{n}^{n+1} |f(t) - f(n)| \, dt \le \frac{3}{2n^{3/2}}$$

On en déduit que la série $\sum_{n\geq 1} \int_n^{n+1} f(t) \, dt - f(n)$ converge (absolument) par comparaison à une série de Riemann. Comme $\int_0^{+\infty} f(t) \, dt$ converge, la série $\sum_{n\geq 1} \int_n^{n+1} f(t) \, dt$ converge et donc la série $\sum_{n\geq 1} f(n)$ également.

Solution 20

- 1. Soit $\varphi: x \mapsto x^{\alpha} \sin x$. Pour x > 1, $x^{\alpha} > 1 \ge \sin x$ donc φ ne s'annule pas sur $]1, +\infty[$. Etudions alors φ sur [0,1]. φ est de classe \mathcal{C}^1 sur [0,1] et deux fois dérivable sur]0,1]. De plus, pour tout $x \in]0,1]$, $\varphi''(x) = \alpha(\alpha-1)x^{\alpha-2} + \sin x > 0$. Ainsi φ' est strictement croissante sur [0,1]. Comme $\varphi'(0) = -1$ et $\varphi'(1) = \alpha \cos(1) > 1 \cos(1) > 0$, φ' s'annule une unique fois en un réel $b \in]0,1[$. De plus, φ' est strictement négative sur]0,b[et strictement positive sur]b,1]. Ainsi, φ est strictement décroissante sur [0,b] et strictement décroissante sur [0,1]. Comme $\varphi(0) = 0$, φ est strictement négative sur]0,b[. Enfin, $\varphi(b) < 0$ et $\varphi(1) = 1 \sin(1) > 0$ donc φ s'annule une unique fois sur]b,1[. Finalement, φ s'annule bien une unique fois sur \mathbb{R}_+^* .
- **2.** Puisque φ est \mathcal{C}^1 sur \mathbb{R}_+^* , on peut écrire

$$\varphi(x) = \varphi(a) + \varphi'(a)(x-a) + o(x-a)$$

D'après la question précédente, $\varphi(a) = 0$ et $\varphi'(a) > 0$ donc $\varphi(x) \sim \varphi'(a)(x-a)$. Ainsi

$$\frac{\cos x}{\sqrt{\varphi(x)}} = \mathcal{O}\left(\frac{1}{(x-a)^{1/2}}\right)$$

Comme 1/2 < 1, $\frac{\cos}{\sqrt{\varphi}}$ est intégrable en a.

Soit alors $(A, B) \in \mathbb{R}^2$ tel que a < A < B. Par intégration par parties

$$\int_{A}^{B} \frac{\cos x \, dx}{\sqrt{\varphi(x)}} = \frac{\sin B}{\sqrt{\varphi(B)}} - \frac{\sin A}{\sqrt{\varphi(A)}} + \frac{1}{2} \int_{A}^{B} \frac{\varphi'(x) \sin x \, dx}{\varphi(x)^{3/2}}$$

D'une part, $\frac{\sin B}{\sqrt{\varphi(B)}} \xrightarrow[B \to +\infty]{} 0$. D'autre part, $\frac{\varphi'(x)}{\varphi(x)^{3/2}} \xrightarrow[x \to +\infty]{} \frac{\alpha}{x^{1+\alpha/2}}$. On en déduit que $\frac{\varphi'(x)\sin x}{\varphi(x)^{3/2}} = \frac{\sigma}{x^{1+\alpha/2}}$ puis que $\frac{\varphi'\sin x}{\varphi^{3/2}}$ est

intégrable en $+\infty$ car $1+\alpha/2>1$. A fortiori, $\int_{A}^{+\infty} \frac{\varphi'(x)\sin x \ dx}{\varphi(x)^{3/2}}$ converge. Il s'ensuit que $\int_{A}^{+\infty} \frac{\cos x \ dx}{\sqrt{\varphi(x)}}$ converge également.

Finalement, l'intégrale $\int_a^{+\infty} \frac{\cos x \, dx}{\sqrt{x^{\alpha} - \sin x}}$ converge.

Théorie

Solution 21

1. Supposons $\ell \neq 0$. Quitte à changer f en -f, on peut supposer $\ell > 0$. Puisque f admet ℓ pour limite en $+\infty$, il existe $A \in \mathbb{R}_+$ tel que $f(x) \geq \frac{\ell}{2}$ pour $x \geq A$. Mais alors, pour $x \geq A$:

$$\int_0^x f(t) \, dt = \int_0^A f(t) \, dt + \int_A^x f(t) \, dt \ge \int_0^A f(t) \, dt + \ell(x - A)$$

Par minoration $\int_0^x f(t) dt \xrightarrow[x \to +\infty]{} +\infty$ ce qui contredit l'énoncé.

2. Supposons que f n'admette pas 0 pour limite en $+\infty$. Il existe donc $\varepsilon > 0$ tel que pour tout $A \in \mathbb{R}_+$, il existe $x \ge A$ tel que $|f(x)| \ge \varepsilon$. Puisque f est uniformément continue, il existe $\alpha > 0$ tel que pour tout $x, y \in \mathbb{R}_+$, $|x - y| \le \alpha \implies |f(x) - f(y)| \le \frac{\varepsilon}{2}$.

Comme l'intégrale $\int_0^{+\infty} f(t) dt$ converge, on peut choisir $A \in \mathbb{R}_+$ tel que pour tout $x, y \ge A$:

$$\left| \int_{x}^{y} f(t) \, \mathrm{d}t \right| \leq \frac{\alpha \varepsilon}{3}$$

Soit alors $x \ge A$ tel que $|f(x)| \ge \varepsilon$. Quitte à changer f en -f, on peut supposer $f(x) \ge \varepsilon$. Pour tout $t \in [x, x + \alpha], |f(t) - f(x)| \le \frac{\varepsilon}{2}$, et en particulier $f(t) \ge f(x) - \frac{\varepsilon}{2} \ge \frac{\varepsilon}{2}$. On en déduit :

$$\int_{x}^{x+\alpha} f(t) \, \mathrm{d}t \ge \frac{\alpha \varepsilon}{2}$$

On aboutit donc à une contradiction.

Solution 22

Supposons que f soit M-lipschitzienne avec $M \in \mathbb{R}_+^*$. Soit $\varepsilon \in \mathbb{R}_+^*$. Puisque l'intégrale $\int_0^{+\infty} f(t) \, dt$ converge, il existe $A \in \mathbb{R}_+$ tel que pour tout $x \ge A$ et pour tout y > x, $\left| \int_x^y f(t) \, dt \right| \le \frac{\varepsilon^2}{2M}$. Soit donc (x, y) tel que $A \le x < y$. Puisque f est M-lipschitzienne,

$$\forall t \in [x, y], \ -M(t - x) \le f(t) - f(x) \le M(t - x)$$

En intégrant sur [x, y], on obtient

$$-M\frac{(y-x)^2}{2} \le \int_x^y f(t) \, dt - (y-x)f(x) \le M\frac{(y-x)^2}{2}$$

On en déduit que pour tout y > x,

$$|f(x)| \le \frac{\varepsilon^2}{2M(y-x)} + M\frac{y-x}{2}$$

Une étude rapide de la fonction $g: t\mapsto \frac{\varepsilon^2}{2Mt} + \frac{Mt}{2}$ sur \mathbb{R}_+^* montre que g admet un minimum en $\frac{\varepsilon}{M}$ valant ε . En posant $y=x+\frac{\varepsilon}{M}$ dans l'inégalité précédente, on obtient donc $|f(x)| \le \varepsilon$ pour tout $x \ge A$. Ceci prouve alors que $\lim_{t \to \infty} f = 0$.

Solution 23

1. Puisque $(ff')' = f'^2 + ff''$, le théorème fondamental de l'analyse permet d'affirmer que pour tout $x \in \mathbb{R}$,

$$f(x)f'(x) = f(0)f'(0) + \int_0^x f'^2(t) dt + \int_0^x f(t)f''(t) dt$$

Par ailleurs, ff'' est intégrable sur \mathbb{R} puisque $|ff''| \leq \frac{1}{2} \left(f^2 + f''^2 \right)$. En particulier, $x \mapsto \int_0^x f(t)f''(t) \, dt$ admet une limite finie en $+\infty$. Par ailleurs, puisque f'^2 étant positive $x \mapsto \int_0^x f'(t)^2 \, dt$ admet une limite finie ou égale à $+\infty$ en $+\infty$. Supposons que cette limite soit $+\infty$. Alors la relation précédente montre que $\lim_{t \to \infty} ff' = +\infty$. Mais comme $(f^2)' = 2ff'$, on peut affirmer que pour tout $x \in \mathbb{R}$,

 $f(x)^2 = f(0)^2 + 2 \int_0^x f(t)f'(t) dt$

Ainsi on peut classiquement montrer que $\lim_{t\to\infty} f^2 = +\infty$, ce qui contredit l'intégrabilité de f^2 sur \mathbb{R} . Finalement, $x\mapsto \int_0^x f'(t)^2\,\mathrm{d}t$ admet une limite finie en $+\infty$, ce qui signifie que f' est de carré intégrable sur \mathbb{R}_+ . On montre de manière similaire que f' est de carré intégrable sur \mathbb{R}_- de telle sorte que f' est de carré intégrable sur \mathbb{R} .

2. On exploite à nouveau le fait que pour tout $x \in \mathbb{R}$,

$$f(x)f'(x) = f(0)f'(0) + \int_0^x f'^2(t) dt + \int_0^x f(t)f''(t) dt$$

Puisque f'^2 et ff' sont intégrables, on peut affirmer que ff' admet une limite finie en $+\infty$. Mais on rappelle alors que pour tout $x \in \mathbb{R}_+$.

$$f(x)^2 = f(0)^2 + 2\int_0^x f(t)f'(t) dt$$

Ainsi ff' ne peut avoir une limite non nulle en $+\infty$ car alors $\lim_{t\to\infty} f^2 = +\infty$, ce qui contredirait l'intégrabilité de f^2 . Finalement, ff' admet une limite nulle en $+\infty$. On montre de la même manière que ff' admet une limite nulle en $-\infty$.

Par intégration par parties

$$\int_{-\infty}^{+\infty} f'(t)^2 = [ff']_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f(t)f''(t) dt = -\int_{-\infty}^{+\infty} f(t)f''(t) dt$$

Par inégalité de Cauchy-Schwarz,

$$\left(\int_{-\infty}^{+\infty} f(t)f''(t) dt\right)^{2} \le \left(\int_{-\infty}^{+\infty} f(t)^{2} dt\right) \left(\int_{-\infty}^{+\infty} f''(t)^{2} dt\right)$$

ce qui permet d'obtenir l'inégalité voulue.

Solution 24

1. Il est clair que si $\int_0^{+\infty} f(t) dt$ converge, alors la suite $n \mapsto \int_0^n f(t) dt$ converge.

Réciproquement, supposons que $n \mapsto \int_0^n f(t) dt$ converge. Notons ℓ sa limite. Soit $\epsilon > 0$. Il existe donc $N \in \mathbb{N}$ tel que

$$\forall n \geq N, \left| \int_0^n f(t) dt - \ell \right| \leq \frac{\varepsilon}{2}$$

Comme $\lim_{t\to\infty} f = 0$, il existe $A \in \mathbb{R}_+$ tel que

$$\forall x \ge A, |f(x)| \le \frac{\varepsilon}{2}$$

Posons B = $\max(A + 1, N + 1)$. Soit $x \ge B$. Posons M = |x|. Alors

$$\left| \int_0^x f(t) \, \mathrm{d}t - \ell \right| = \left| \int_0^M f(t) \, \mathrm{d}t - \ell + \int_M^x f(t) \, \mathrm{d}t \right| \le \left| \int_0^M f(t) \, \mathrm{d}t - \ell \right| + \left| \int_M^x f(t) \, \mathrm{d}t \right|$$

Comme $M \ge x - 1 \ge N$,

$$\left| \int_0^M f(t) \, \mathrm{d}t - \ell \right| \le \frac{\varepsilon}{2}$$

Par inégalité triangulaire et comme $A \le M \le x \le M + 1$,

$$\left| \int_{M}^{x} f(t) dt \right| \leq \int_{M}^{x} |f(t)| dt \leq \int_{M}^{M+1} \frac{\varepsilon}{2} dt = \frac{\varepsilon}{2}$$

On en déduit que

$$\forall x \ge B, \left| \int_0^x f(t) dt - \ell \right| \le \varepsilon$$

Par conséquent $\int_0^{+\infty} f(t) dt$ converge et

$$\int_0^{+\infty} f(t) dt = \ell = \lim_{n \to +\infty} \int_0^n f(t) dt$$

2. Une des implications reste évidemment vraie : si $\int_0^{+\infty} f(t) dt$ converge, alors la suite $n \mapsto \int_0^n f(t) dt$ converge. La réciproque est fausse en genéral. On peut par exemple considérer $f: t \mapsto \cos(\pi t)$. Pour tout $n \in \mathbb{N}$,

$$\int_0^n f(t) \, dt = \frac{1}{\pi} \left[\sin(\pi t) \right]_0^n = 0$$

Mais

$$\int_0^{2n+1/2} f(t) dt = \frac{1}{\pi} \left[\sin(\pi t) \right]_0^{2n+1/2} = \frac{1}{\pi}$$

donc l'intégrale $\int_0^{+\infty} f(t) dt$ diverge.

Solution 25

- 1. Comme f est décroissante, elle admet une limite ℓ dans $\mathbb{R} \cup \{-\infty\}$ en $+\infty$. Si $\ell \in \mathbb{R}^*$, $f \sim \ell$ et la constante ℓ n'est pas intégrable sur \mathbb{R}_+ donc f non plus, ce qui contredit l'énoncé. Si $\ell = -\infty$, alors 1 = o(f). De plus, f est intégrable sur \mathbb{R}_+ donc la constante 1 le serait également, ce qui n'est pas. Finalement $\ell = 0$.
- **2.** Soit $x \in \mathbb{R}_+$. Comme f est décroissante sur \mathbb{R}_+ , $f(t) \le f(x)$ pour tout $t \in [x, 2x]$. Alors

$$\int_{x}^{2x} f(t) dt \le \int_{x}^{2x} f(x) dt = x f(x)$$

De même, $f(t) \ge f(x)$ pour tout $t \in [x/2, x]$ de sorte que

$$\int_{x/2}^{x} f(t) dt \ge \int_{x/2}^{x} f(x) dt = \frac{1}{2} x f(x)$$

Finalement

$$\int_{x}^{2x} f(t) dt \le x f(x) \le 2 \int_{x/2}^{x} f(t) dt$$

Or f est intégrable sur \mathbb{R}_+ donc $\int_0^{+\infty} f(t) dt$ converge. Notamment

$$\lim_{x \to +\infty} \int_{x}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{2x}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{x/2}^{+\infty} f(t) dt = 0$$

On en déduit que

$$\int_{x}^{2x} f(t) dt = \int_{x}^{+\infty} f(t) dt - \int_{2x}^{+\infty} f(t) dt \xrightarrow[x \to +\infty]{} 0$$

et que

$$\int_{x/2}^{x} f(t) dt = \int_{x/2}^{+\infty} f(t) dt - \int_{x}^{+\infty} f(t) dt \xrightarrow[x \to +\infty]{} 0$$

D'après le théorème des gendarmes, $\lim_{x \to +\infty} x f(x) = 0$ i.e. $f(x) = o\left(\frac{1}{x}\right)$.

Solution 26

1. Remarquons que g est une primitive de -f. Sous réserve de convergence, on obtient par intégration par parties :

$$\int_0^{+\infty} g(t) dt = \left[tg(t) \right]_0^{+\infty} + \int_0^{+\infty} tf(t) dt$$

Or $\int_0^{+\infty} tf(t) dt$ converge par hypothèse et pour tout $t \in \mathbb{R}_+$,

$$0 \le xg(x) = x \int_0^{+\infty} f(t) dt \le \int_x^{+\infty} t f(t) dt$$

Or $\int_0^{+\infty} tf(t) dt$ converge donc $\int_x^{+\infty} tf(t) dt \xrightarrow[x \to +\infty]{} 0$ puis $xg(x) \xrightarrow[x \to +\infty]{} 0$. Donc le crochet dans l'intégration par parties converge (et vaut 0). On conclut que $\int_0^{+\infty} g(t)$ converge et que cette intégrale vaut $\int_0^{+\infty} tf(t) dt$.

2. L'application F: $x \mapsto \int_0^x f(t) dt$ est continue. De plus, F(0) = 0 et $\lim_{t \to \infty} F = 1$. D'après le théorème des valeurs intermédiaires, il existe $m \in \mathbb{R}_+$ tel que $F(m) = \frac{1}{2}$.

Supposons qu'il existe $m' \in \mathbb{R}_+$ tel que $m' \neq m$ et $F(m') = \frac{1}{2}$. Alors $\int_m^{m'} f(t) dt = 0$. Or f est continue et positive donc f est nulle sur [m, m']. Comme f est décroissante et positive, f est nulle sur $[m, +\infty]$. Alors $\int_0^{+\infty} f(t) dt = \int_0^m f(t) dt = \frac{1}{2}$, ce qui contredit l'énoncé.

3. Remarquons que g est de classe \mathcal{C}^1 et que g'=-f est croissante. On en déduit que g est convexe sur \mathbb{R}_+ . Ainsi

$$\forall t \in \mathbb{R}_+, \ g(t) \ge g(m) + g'(m)(t - m) = \frac{1}{2} + \alpha(t - m)$$

En posant $\alpha = g'(m)$. Par positivité de g,

$$\int_0^{+\infty} t f(t) dt = \int_0^{+\infty} g(t) dt \ge \int_0^{2m} g(t) dt$$

Par conséquent,

$$\int_0^{+\infty} t f(t) dt \ge \int_0^{2m} \left(\frac{1}{2} + \alpha(t - m)\right) dt = m$$

Calculs

Solution 27

Première méthode:

L'intégrale converge puisque $t\mapsto e^{-a^2t^2-\frac{b^2}{t^2}}$ est prolongeable par continuité en 0 et que $e^{-a^2t^2-\frac{b^2}{t^2}}$ $\sim e^{-a^2t^2}$ qui est intégrable sur $[0,+\infty[$. Posons $u = at - \frac{b}{t}$. Ceci définit un \mathcal{C}^1 -difféomorphisme de $]0, +\infty[$ sur \mathbb{R} . On a alors $t = \frac{u + \sqrt{u^2 + 4ab}}{2a}$ (on retient uniquement la solution positive de l'équation $u=at-\frac{b}{t}$). Remarquons que $u^2=a^2t^2+\frac{b^2}{t^2}-2ab$. On a alors

$$\int_{0}^{+\infty} e^{-a^{2}t^{2} - \frac{b^{2}}{t^{2}}} dt$$

$$= \int_{-\infty}^{+\infty} e^{-u^{2} - 2ab} \left(1 + \frac{u}{\sqrt{u^{2} + 4ab}} \right) \frac{du}{2a}$$

$$= \frac{e^{-2ab}}{2a} \left(\int_{-\infty}^{+\infty} e^{-u^{2}} du + \int_{-\infty}^{+\infty} \frac{ue^{-u^{2}}}{\sqrt{u^{2} + 4ab}} du \right)$$

Le passage a dernière ligne est valide puisque les deux dernières intégrales sont convergentes. De plus, on sait que $\int_{0}^{+\infty} e^{-u^2} du = \sqrt{2\pi}$ et

$$\int_{-\infty}^{+\infty} \frac{ue^{-u^2}}{\sqrt{u^2 + 4ab}} \, du = 0 \text{ car la fonction } u \mapsto \frac{ue^{-u^2}}{\sqrt{u^2 + 4ab}} \text{ est impaire. Par conséquent :}$$

$$\int_0^{+\infty} e^{-a^2t^2 - \frac{b^2}{t^2}} dt = \frac{e^{-2ab}\sqrt{2\pi}}{2a}$$

Posons $f(b,t) = e^{-a^2t^2 - \frac{b^2}{t^2}}$ et $I(b) = \int_0^{+\infty} f(b,t) dt$. La fonction $b \mapsto f(b,t)$ est dérivable sur \mathbb{R} et

$$\frac{\partial f}{\partial b}(b,t) = -\frac{2b}{t^2}f(b,t)$$

De plus $b \mapsto \frac{\partial f}{\partial b}(b,t)$ est continue sur \mathbb{R}_+^* pour tout $t \in]0, +\infty[$. Enfin, pour $b \in [b_1, b_2]$ avec $0 < b_1 < b_2$,

$$\left|\frac{\partial f}{\partial h}(b,t)\right| \le \frac{2b_2}{t^2} e^{-a^2t^2 - \frac{b_1^2}{t^2}}$$

cette dernière expression étant intégrable sur $]0, +\infty[$. Le théorème de dérivation sous l'intégrale nous donne donc $I'(b) = -\int_{-\infty}^{+\infty} \frac{2b}{t^2} f(b,t) dt$ pour tout b > 0. Posons alors $u = \frac{b}{at}$. On a alors :

$$\int_0^{+\infty} \frac{2b}{t^2} f(b, t) dt = 2a \int_0^{+\infty} e^{-\frac{b^2}{u^2} - a^2 u^2} du = 2a I(b)$$

La fonction $b \mapsto \mathrm{I}(b)$ est donc solution de l'équation différentielle y' = -2ay sur $]0; +\infty[$. Il existe donc $\mathrm{C} \in \mathbb{R}$ tel que $\mathrm{I}(b) = \mathrm{C}e^{-2ab}$ pour tout $b \in \mathbb{R}^*$. Enfin $b \mapsto f(b,t)$ est continue sur \mathbb{R} pour tout $t \in]0, +\infty[$ et $|f(b,t)| \le e^{-a^2t^2}$ pour tout $b \in \mathbb{R}$. Le théorème de continuité sous l'intégrale nous dit donc que $b \mapsto \mathrm{I}(b)$ est continue sur \mathbb{R} et notamment en $b \in \mathbb{R}$. Par continuité, $b \in \mathbb{R}$ pour tout $b \in \mathbb{R}$. En particulier C = I(0). Or I(0) = $\int_{0}^{+\infty} e^{-a^2} t^2 dt = \frac{\sqrt{2\pi}}{2a}$ en effectuant le changement de variable u = at. On obtient donc :

$$\int_{0}^{+\infty} e^{-a^{2}t^{2} - \frac{b^{2}}{t^{2}}} dt = \frac{e^{-2ab}\sqrt{2\pi}}{2a}$$

Solution 28

1. Posons $f_{n,\alpha}(x) = \frac{x^n}{\sqrt{(1-x)(1+\alpha x)}}$. $f_{n,\alpha}$ est continue sur [0,1[car le dénominateur ne s'y annule pas. De plus, $f_{n,\alpha}(x) \approx \frac{1}{\sqrt{1+\alpha}}(1-x)^{-\frac{1}{2}}$. Or $x \mapsto (1-x)^{-\frac{1}{2}}$ est intégrable sur un voisinage de 1. On en déduit que $f_{n,\alpha}$ est intégrable sur [0,1[.

2. Tout d'abord

$$I_0(0) = \int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x}} = -2\left[\sqrt{1-x}\right]_0^1 = 2$$

Ensuite,

$$t^2 = \frac{1 + \alpha x}{1 - x} = \frac{\alpha + 1}{1 - x} - \alpha$$

On en déduit que

$$2t dt = \frac{\alpha + 1}{(1 - x)^2} dx$$

Or

$$t(1-x) = \sqrt{(1-x)(1+\alpha x)}$$

d'où

$$\frac{\mathrm{d}x}{\sqrt{(1-x)(1+\alpha x)}} = \frac{2(1-x)}{\alpha+1} \, \mathrm{d}t = \frac{2 \, \mathrm{d}t}{t^2+\alpha}$$

Ainsi

$$I_0(\alpha) = \int_1^{+\infty} \frac{2 dt}{t^2 + \alpha}$$

- Si $\alpha = 0$, on a déjà vu que $I_0(0) = 0$.
- Si $\alpha > 0$, alors

$$I_0(\alpha) = \left[\frac{2}{\sqrt{\alpha}}\arctan\frac{t}{\sqrt{\alpha}}\right]_1^{+\infty} = \frac{\pi}{\sqrt{\alpha}} - \frac{2}{\sqrt{\alpha}}\arctan\frac{1}{\sqrt{\alpha}} = \frac{2}{\sqrt{\alpha}}\arctan\sqrt{\alpha}$$

• Si α < 0, alors on effectue le changement de variable $u = \frac{1}{t}$ et

$$I_0(\alpha) = \int_0^1 \frac{2 du}{1 + \alpha u^2} = \frac{2}{\sqrt{-\alpha}} \operatorname{argth} \sqrt{-\alpha}$$

On voit facilement qu'avec les expressions obtenues, les limites à droite et à gauche de I_0 en 0 sont égales à 2. Or $I_0(0) = 2$ donc I_0 est continue en 0.

3. Soit $n \in \mathbb{N}^*$. Posons $u(x) = \sqrt{(1-x)(1+\alpha x)}$ et $g(x) = x^n u(x)$. On a

$$\begin{split} g'(x) &= nx^{n-1}u(x) + \frac{1}{2}x^n\frac{\alpha - 1 - 2\alpha x}{u(x)} \\ &= n\frac{x^{n-1}(1-x)(1+\alpha x)}{u(x)} + \frac{\alpha - 1}{2}\frac{x^n}{u(x)} - \alpha\frac{x^{n+1}}{u(x)} \\ &= n\frac{x^{n-1}}{u(x)} + \left(n + \frac{1}{2}\right)(\alpha - 1)\frac{x^n}{u(x)} - (n+1)\alpha\frac{x^{n+1}}{u(x)} \end{split}$$

En intégrant cette dernière égalité sur [0, 1], on obtient :

$$nI_{n-1}(\alpha) + \left(n + \frac{1}{2}\right)(\alpha - 1)I_n(\alpha) - (n+1)\alpha I_{n+1}(\alpha) = g(1) - g(0) = 0$$

• Pour $\alpha = 0$, la relation devient :

$$nI_{n-1}(0) - \left(n + \frac{1}{2}\right)I_n(0) = 0$$

Par récurrence, on a donc

$$I_n(0) = \frac{(2n+1) \times (2n-1) \times \dots \times 5 \times 3}{(2n) \times (2n-2) \times \dots \times 4 \times 2} I_0$$

On a $I_0(0) = 2$ et on multiplie au numérateur et au dénominateur par $(2n) \times (2n-2) \times \cdots \times 4 \times 2$ de sorte que :

$$I_n(0) = \frac{(2n+1)!}{2^{2n-1}(n!)^2} = \frac{2n+1}{2^{2n-1}} \binom{2n}{n}$$

• Pour $\alpha = 1$, la relation devient :

$$n{\rm I}_{n-1}(1)-(n+1){\rm I}_{n+1}(1)=0$$

Par récurrence, on obtient :

$$\mathbf{I}_{2p}(1) = \frac{(2p-1)\times(2p-3)\times\cdots\times3\times1}{(2p)\times(2p-2)\times\cdots\times4\times2}\mathbf{I}_{0}(1) = \frac{(2p)!}{2^{2p}(p!)^{2}}\mathbf{I}_{0}(1) = \frac{\pi}{2^{2p+1}}\binom{2p}{p}$$

car $I_0(1) = \arcsin(1) = \frac{\pi}{2}$. On obtient également par récurrence :

$$I_{2p+1}(1) = \frac{(2p) \times (2p-2) \times \dots \times 4 \times 2}{(2p+1) \times (2p-1) \times \dots \times 5 \times 3} I_1(1) = \frac{2^{2p} (p!)^2}{(2p+1)!} = \frac{2^{2p}}{(2p+1)\binom{2p}{p}}$$

car $I_1(1) = 1$.

Solution 29

Notons f la fonction intégrée. Cette fonction est continue sur $]0, +\infty[$. De plus,

$$f(t) \sim -2 \ln(t)$$

donc

$$f(t) = o(1/\sqrt{t})$$

Ainsi f est intégrable sur]0,1]. De plus,

$$f(t) \underset{t \to +\infty}{\sim} \frac{1}{t^2}$$

donc f est également intégrable sur $[1, +\infty[$. L'intégrale définissant I converge donc.

On écrit alors

$$I = \int_0^{+\infty} 1 \cdot \ln\left(1 + \frac{1}{t^2}\right) dt$$

et on intègre par parties. D'après les équivalents précédents,

$$tf(t) \underset{t \to 0^+}{\sim} -2t \ln(t)$$

et

$$tf(t) \sim_{t \to +\infty} \frac{1}{t}$$

donc

$$\lim_{t \to 0^+} t f(t) = \lim_{t \to +\infty} t f(t) = 0$$

On en déduit que

$$I = [tf(t)]_0^{+\infty} - \int_0^{+\infty} tf'(t) dt$$

$$= -\int_0^{+\infty} t \cdot \frac{-2/t^3}{1 + 1/t^2} dt$$

$$= 2\int_0^{+\infty} \frac{dt}{1 + t^2}$$

$$= 2 \left[\arctan(t) \right]_0^{+\infty} = \pi$$

Solution 30

Posons

$$J(x) = \int_0^{+\infty} \frac{\ln t}{x^2 + t^2} dt$$

pour x > 0. En effectuant le changement de variable $u = \frac{t}{x}$, on trouve

$$J(x) = \frac{\ln x}{x} \int_0^{+\infty} \frac{du}{1 + u^2} + \frac{1}{x} \int_0^{+\infty} \frac{\ln u}{1 + u^2} du$$

D'une part

$$\int_0^{+\infty} \frac{\mathrm{d}u}{1+u^2} = \lim_{+\infty} \arctan - \arctan(0) = \frac{\pi}{2}$$

D'autre part en effectuant le changement de variable $v = \frac{1}{u}$ dans $I = \int_0^{+\infty} \frac{\ln u}{1 + u^2} du$, on obtient I = -I d'où I = 0. Ainsi pour tout x > 0,

$$J(x) = \frac{\pi}{2} \cdot \frac{\ln x}{x}$$

On a

$$J'(x) = \frac{\pi}{2} \cdot \frac{1 - \ln x}{x^2}$$

d'où J'(x) > 0 pour x < e et J'(x) < 0 pour x > e. Ainsi J admet un maximum en e et celui-ci vaut J(e) = $\frac{\pi}{2e}$

Solution 31

1. Posons $f_a(t) = \frac{1}{(1+t^2)(1+t^a)}$ pour $t \in \mathbb{R}_+^*$. Tout d'abord, f_a est clairement continue sur \mathbb{R}_+^* .

Lorsque a > 0, $f_a(t) \underset{t \to 0}{\sim} 1$ et $f_a(t) \underset{t \to 0}{\sim} \frac{1}{t^{a+2}}$ donc f_a est intégrable sur \mathbb{R}_+^* (a+2>1). Lorsque a=0, $f_a(t) \underset{t \to 0}{\sim} \frac{1}{2}$ et $f_a(t) \underset{t \to 0}{\sim} \frac{1}{2t^2}$ donc f_a est intégrable sur \mathbb{R}_+^* .

Lorsque a < 0, $f_a(t) \sim \frac{1}{t^a}$ et $f_a(t) \sim \frac{1}{t^2}$ donc f_a est intégrable sur \mathbb{R}_+^* (a < 1). Finalement, I est définie sur \mathbb{R} .

2. Par la relation de Chasles,

$$J(a) = \int_0^1 f_a(t) dt + \int_1^{+\infty} f_a(t) dt$$

Par le changement de variable $t \mapsto \frac{1}{t}$,

$$\int_{1}^{+\infty} f_a(t) dt = \int_{0}^{1} f_{-a}(t) dt$$

On en déduit la formule demandée.

3.

$$\begin{split} &\mathrm{I}(a) = \mathrm{J}(a) + \mathrm{J}(-a) \\ &= \int_0^1 (f_a(t) + f_{-a}(t)) \, \mathrm{d}t \\ &= \int_0^1 \frac{(1+t^{-a}) + (1+t^a)}{(1+t^2)(1+t^a)(1+t^{-a})} \, \mathrm{d}t \\ &= \int_0^1 \frac{2+t^a+t^{-a}}{(1+t^2)(2+t^a+t^{-a})} \, \mathrm{d}t \\ &= \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{4} \end{split}$$

Solution 32

1. Posons $f(x,t) = \frac{\ln t}{x^2 + t^2}$ pour $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$. Si $x \neq 0$, $f(x,t) = o\left(\frac{1}{\frac{1}{t^2}}\right)$ et $f(x,t) = o\left(\frac{1}{\frac{3}{t^2}}\right)$ par croissance comparées donc $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+^* . Enfin, $\frac{1}{t} = o\left(\frac{\ln t}{t^2}\right)$ donc $t \mapsto f(0,t)$ n'est pas intégrable au voisinage de 0^+ . Le domaine de définition de F est donc \mathbb{R}^* .

2. Effectuons le changement de variable u = 1/t:

$$F(1) = \int_0^{+\infty} \frac{\ln t}{1 + t^2} dt = -\int_{+\infty}^0 \frac{\ln(1/u)}{1 + (1/u)^2} \cdot \frac{du}{u^2} = -\int_0^{+\infty} \frac{\ln u}{u^2 + 1} du = -F(1)$$

Ainsi F(1) = 0.

3. Soit $x \in \mathbb{R}_+^*$. Effections le changement de variable t = ux.

$$F(x) = \int_0^{+\infty} \frac{\ln(ux)}{x^2 + (ux)^2} \cdot x \, du$$

$$= \frac{1}{x} \int_0^{+\infty} \frac{\ln(x) + \ln(u)}{1 + u^2} \, du$$

$$= \frac{1}{x} \left(\ln(x) \int_0^{+\infty} \frac{du}{1 + u^2} + \int_0^{+\infty} \frac{\ln u}{1 + u^2} \, du \right)$$

$$= \frac{1}{x} \left(\frac{\pi \ln x}{2} + F(1) \right)$$

$$= \frac{\pi \ln x}{2x}$$

Comme F est clairement paire, $F(x) = \frac{\pi \ln |x|}{2|x|}$ pour $x \in \mathbb{R}^*$.

Solution 33

1. Tout d'abord, $t\mapsto \frac{\sin t}{t}$ est prolongeable en une fonction continue sur $[0,\pi]$ puisque $\sin t \underset{t\to 0}{\sim} t$ donc l'intégrale $\int_0^\pi \frac{\sin t}{t} \, dt$ converge. Ensuite, une primitive de $\sin \sup [\pi, +\infty[$ est $-\cos$ et la dérivée de $t\mapsto \frac{1}{t}$ est $t\mapsto \frac{1}{t^2}$. De plus, le crochet $\left[-\frac{\cos t}{t}\right]_{\pi}^{+\infty}$ converge car cos est bornée. Par intégrations par parties, $\int_{\pi}^{+\infty} \frac{\sin t}{t} \, dt$ et $\int_{\pi}^{+\infty} \frac{\cos t}{t^2} \, dt$ sont de même nature. Comme $\frac{\cos t}{t^2} = \mathcal{O}\left(\frac{1}{t^2}\right)$, $\int_{\pi}^{+\infty} \frac{\cos t}{t^2} \, dt$ converge donc $\int_{\pi}^{+\infty} \frac{\sin t}{t} \, dt$ converge également. Finalement, $I = \int_0^{+\infty} \frac{\sin t}{t} \, dt$ converge.

Remarque. On peut régler les «problèmes» en 0 et en $+\infty$ par une seule intégration par parties en choisissant $t\mapsto 1-\cos t$ comme primitive de sin. Le crochet $\left[\frac{1-\cos t}{t}\right]_0^{+\infty}$ converge car $1-\cos(t)=o(t)$.

2. Puisque

$$\lim_{t \to 0} \frac{\sin((2n+1)t)}{t} = \lim_{t \to 0} \frac{\sin((2n+1)t)}{t} = 2n+1$$

les fonctions $t\mapsto \frac{\sin((2n+1)t)}{t}$ et $t\mapsto \frac{\sin((2n+1)t)}{t}$ sont prolongeables en des fonctions continues sur $\left[0,\frac{\pi}{2}\right]$. u_n et v_n sont donc bien définies.

3. Remarquons que

$$u_{n+1} - u_n = \int_0^{\frac{\pi}{2}} \frac{(\sin((2n+3)t) - \sin((2n+1)t))}{\sin(t)} dt$$

Or $\sin(a) - \sin(b) = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$ donc

$$u_{n+1} - u_n = 2 \int_0^{\frac{\pi}{2}} \cos((2n+2)t) dt = \frac{1}{n+1} \left[\sin((2n+2)t) \right]_0^{\frac{\pi}{2}} = 0$$

La suite (u_n) est donc constante égale à $u_0 = \frac{\pi}{2}$.

4. Il s'agit du lemme de Riemann-Lebesgue (hors programme). Soit $\lambda \in \mathbb{R}_+^*$. Comme φ est de classe \mathcal{C}^1 , on peut intégrer par parties :

$$\int_{a}^{b} \varphi(t) \sin(\lambda t) dt = -\frac{1}{\lambda} \left[\varphi(t) \cos(\lambda t) \right]_{a}^{b} + \frac{1}{\lambda} \int_{a}^{b} \varphi'(t) \cos(\lambda t) dt = \frac{\varphi(a) \cos(\lambda a)}{\lambda} - \frac{\varphi(b) \cos(\lambda b)}{\lambda} + \frac{1}{\lambda} \int_{a}^{b} \varphi'(t) \cos(\lambda t) dt$$

Comme cos est bornée,

$$\lim_{\lambda \to +\infty} \frac{\varphi(a)\cos(\lambda a)}{\lambda} = \lim_{\lambda \to +\infty} \frac{\varphi(b)\cos(\lambda b)}{\lambda} = 0$$

Enfin, par inégalité triangulaire,

$$\left| \int_a^b \varphi'(t) \cos(\lambda t) \ \mathrm{d}t \right| \leq \int_a^b |\varphi'(t)| |\cos(\lambda t)| \ \mathrm{d}t \leq \int_a^b |\varphi'(t)| \ \mathrm{d}t$$

donc

$$\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_{a}^{b} \varphi'(t) \cos(\lambda t) dt = 0$$

Par conséquent

$$\lim_{\lambda \to +\infty} \int_{a}^{b} h(t) \sin(\lambda t) dt = 0$$

5. h est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$. De plus,

$$h(t) = \frac{\sin t - t}{t \sin t}$$

et $t \sin(t) \sim_{t\to 0} t^2$ et $\sin t - t =_{t\to 0} o(t^2)$ donc $h(t) =_{t\to 0} o(1)$ i.e. $\lim_{t\to 0} h(t) = 0$.

$$h'(t) = -\frac{1}{t^2} + \frac{\cos t}{\sin^2 t} = \frac{t^2 \cos t - \sin^2(t)}{t^2 \sin^2(t)}$$

Or $t^2 \sin^2(t) \sim t^4$,

$$\sin^2(t) \underset{t \to 0}{=} t^2 \left(1 - \frac{t^2}{6} + o(t^2) \right)^2 = t^2 - \frac{t^4}{3} + o(t^4)$$

et

$$t^2\cos^2(t) = t^2 - \frac{t^4}{2} + o(t^4)$$

donc $t^2 \cos t - \sin^2(t) \underset{t \to 0}{\sim} -\frac{1}{6}t^4$. Par conséquent, $\lim_{t \to 0} h'(t) = -\frac{1}{6}$.

D'après le théorème de prolongement \mathcal{C}^1 , h se prolonge en une fonction de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ que l'on notera encore h dans la suite.

6. Remarquons que

$$u_n - v_n = \int_0^{\frac{\pi}{2}} h(t) \sin((2n+1)t) dt$$

Comme h est \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$, $\lim_{\substack{n\to+\infty\\n\to+\infty}}u_n-v_n=0$ d'après le lemme de Riemman-Lebesgue. Or (u_n) est constante égale à $\frac{\pi}{2}$ donc $\lim_{\substack{n\to+\infty\\n\to+\infty}}v_n=\frac{\pi}{2}$.

7. Par le changement de variable u = (2n + 1)t,

$$v_n = \int_0^{(2n+1)\pi/2} \frac{\sin t}{t} \, \mathrm{d}t$$

Comme l'intégrale I converge

$$I = \int_0^{+\infty} \frac{\sin t}{t} dt = \lim_{n \to +\infty} \int_0^{(2n+1)\pi/2} \frac{\sin t}{t} dt = \lim_{n \to +\infty} v_n = \frac{\pi}{2}$$

Solution 34

1. Soit $x \in [1, +\infty[$.

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{1}^{x} \frac{f(at)}{t} dt - \int_{1}^{x} \frac{f(t)}{t} dt$$

En effectuant le changement de variable u = at dans la première intégrale

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{a}^{ax} \frac{f(t)}{t} dt - \int_{1}^{x} \frac{f(t)}{t} dt$$

Enfin, d'après la relation de Chasles,

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{x}^{ax} \frac{f(t)}{t} dt - \int_{1}^{a} \frac{f(t)}{t} dt$$

2. Soit $x \in [1, +\infty[$. Comme f est continue, elle admet un minimum m_x et un maximum M_x sur le segment [x, ax]. Alors

$$m_x \int_{x}^{ax} \frac{\mathrm{d}t}{t} \le \int_{x}^{ax} \frac{f(t)}{t} \, \mathrm{d}t \le \mathrm{M}_x \int_{x}^{ax} \frac{\mathrm{d}t}{t}$$

ou encore

$$m_x \ln(a) \le \int_x^{ax} \frac{f(t)}{t} dt \le M_x \ln(a)$$

Si a > 1,

$$m_x \le \frac{1}{\ln(a)} \int_x^{ax} \frac{f(t)}{t} dt \le M_x$$

D'après le théorème des valeurs intermédiaires, il existe donc $c_x \in [x, a_x]$ tel que

$$f(c_x) = \frac{1}{\ln(a)} \int_{x}^{ax} \frac{f(t)}{t} dt$$

ou encore

$$\int_{x}^{ax} \frac{f(t)}{t} dt = f(c_x) \ln(a)$$

Ceci est encore valable si a=1 (prendre $c_x=x$ par exemple). Comme $c_x\geq x$, $\lim_{x\to +\infty}f(c_x)=\ell$ de sorte que

$$\lim_{x \to +\infty} \int_{x}^{ax} \frac{f(t)}{t} dt = \ell \ln(a)$$

On en déduit que $\int_{1}^{+\infty} \frac{f(at) - f(t)}{t} dt$ converge et que

$$\int_{1}^{+\infty} \frac{f(at) - f(t)}{t} dt = \ell \ln(a) - \int_{1}^{a} \frac{f(t)}{t} dt$$

Solution 35

1. Tout d'abord, $t \mapsto \ln(\sin t)$ est bien continue sur $\left]0, \frac{\pi}{2}\right]$. Par ailleurs,

$$\sin t = t + o(t)$$

donc

$$\ln(\sin t) = \lim_{t \to 0^+} \ln(t) + \ln(1 + o(1)) = \lim_{t \to +\infty} \ln(t) + o(1)$$

A fortiori, comme $\lim_{t\to 0^+} \ln(t) = -\infty$

$$\ln(\sin t) \sim \ln(t)$$

Par croissances comparées, on a donc

$$\ln(\sin t) = o(1/\sqrt{t})$$

Par conséquent, $t \mapsto \ln(\sin t)$ est intégrable sur [0,1]. L'intégrale définissant I converge.

- **2.** Il suffit d'effectuer le changement de variable $u = \pi/2 t$.
- 3. Via le changement de variable $u = \pi t$,

$$I = \int_{\frac{\pi}{2}}^{\pi} \ln(\sin u) \, du$$

Via la relation de Chasles

$$2I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt + \int_{\frac{\pi}{2}}^{\pi} \ln(\sin t) dt = \int_0^{\pi} \ln(\sin t) dt$$

4.

$$2I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt + \int_0^{\frac{\pi}{2}} \ln(\cos t) dt$$

$$= \int_0^{\frac{\pi}{2}} \ln(\sin(t)\cos(t)) dt$$

$$= \int_0^{\frac{\pi}{2}} \ln(\sin(2t)/2) dt$$

$$= \int_0^{\frac{\pi}{2}} \ln(\sin(2t)) dt - \frac{\pi \ln 2}{2}$$

$$= \frac{1}{2} \int_0^{\pi} \ln(\sin u) du - \frac{\pi \ln 2}{2} \quad \text{via le changement de variable } u = 2t$$

$$= I - \frac{\pi \ln 2}{2}$$

Finalement, $I = -\frac{\pi \ln 2}{2}$.

Solution 36

Tout d'abord, l'intégrande est continu sur \mathbb{R}_+^* . Par croissances comparées,

$$\frac{e^{-at} - e^{-bt}}{t} = o(1/t^2)$$

et par DL usuel

$$\frac{e^{-at}-e^{-bt}}{t} \underset{t \to 0}{=} b-a+o(1)$$

On en déduit que $t\mapsto \frac{e^{-at}-e^{-bt}}{t}$ est intégrable sur \mathbb{R}_+^* . Ensuite, pour $\epsilon>0$,

$$\int_{\varepsilon}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{\varepsilon}^{+\infty} \frac{e^{-at}}{t} dt - \int_{\varepsilon}^{+\infty} \frac{e^{-bt}}{t} dt$$

Les deux intégrales convergent encore par croissances comparées. Via les changements de variables u = at et u = bt,

$$\int_{\varepsilon}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{a\varepsilon}^{+\infty} \frac{e^{-u}}{u} du - \int_{b\varepsilon}^{+\infty} \frac{e^{-u}}{u} dt = \int_{a\varepsilon}^{b\varepsilon} \frac{e^{-u}}{u} du$$

Comme $\frac{e^{-u}}{u} = \frac{1}{u} + \varphi(u)$ avec $\varphi(u) = 0$

$$\int_{\varepsilon}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{a\varepsilon}^{b\varepsilon} \frac{dt}{t} + \int_{a\varepsilon}^{b\varepsilon} \varphi(u) du = \ln\left(\frac{b}{a}\right) + \int_{a\varepsilon}^{b\varepsilon} \varphi(u) du$$

et

$$\lim_{\varepsilon \to 0^+} \int_{a\varepsilon}^{b\varepsilon} \varphi(u) \, \mathrm{d}u = 0$$

Finalement,

$$I = \ln\left(\frac{b}{a}\right)$$

Solution 37

• Notons, pour tout x positif

$$f(x) = \frac{1}{1+x^3}$$

La fonction f est continue sur \mathbb{R}_+ et

$$f(x) \sim \frac{1}{x^3}$$

On déduit donc du théorème de comparaison aux intégrales de Riemann que I converge.

• Après une décomposition en éléments simples élémentaires, on aboutit à :

$$\forall x \in \mathbb{R}_+, \ f(x) = \frac{1}{3} \left(\frac{1}{x+1} + \frac{-x+2}{x^2 - x + 1} \right)$$

d'où, pour tout $x \in \mathbb{R}$

$$f(x) = \frac{1}{3} \left(\frac{1}{x+1} - \frac{1}{2} \cdot \frac{2x-1}{x^2 - x + 1} + \frac{3}{2} \cdot \frac{1}{x^2 - x + 1} \right)$$
$$= \frac{1}{3} \left(\frac{1}{x+1} - \frac{1}{2} \cdot \frac{2x-1}{x^2 - x + 1} + \frac{3}{2} \cdot \frac{1}{(x-1/2)^2 + (\sqrt{3}/2)^2} \right)$$

ainsi, pour tout u positif

$$I(u) = \frac{1}{3} \left(\ln(u+1) - \ln\left(\sqrt{u^2 - u + 1}\right) \right) + \frac{1}{\sqrt{3}} \left(\arctan(2(u - 1/2)/\sqrt{3}) + \arctan(1/\sqrt{3}) \right)$$

puis

$$I = \lim_{u \to +\infty} I(u) = \frac{2\pi}{3\sqrt{3}}$$

Solution 38

Pour tout $t \in \mathbb{R}$,

$$|\cos(t)e^{-at}| \le e^{-at}$$
 et $|\sin(t)e^{-at}| \le e^{-at}$

et $t \mapsto e^{-at}$ est intégrable sur \mathbb{R}_+ (par exemple, $e^{-at} = o(1/t^2)$). Ainsi $t \mapsto \cos(t)e^{-at}$ et $t \mapsto \sin(t)e^{-at}$ sont intégrables sur \mathbb{R}_+ . Remarquons que

$$I + iJ = \int_0^{+\infty} e^{it} e^{-at} dt = \int_0^{+\infty} e^{(i-a)t} dt = \left[\frac{e^{(i-a)t}}{i-a} \right]_0^{+\infty} = \frac{1}{a-i} = \frac{a+i}{a^2+1}$$

En effet,

$$\left| \frac{e^{(i-a)t}}{i-a} \right| = \frac{e^{-at}}{|i-a|}$$

donc $\lim_{t \to +\infty} \frac{e^{(i-a)t}}{i-a} = 0$. Comme I et J sont réelles.

$$I = \operatorname{Re}\left(\frac{a+i}{a^2+1}\right) = \frac{a}{a^2+1}$$
$$J = \operatorname{Im}\left(\frac{a+i}{a^2+1}\right) = \frac{1}{a^2+1}$$

Solution 39

1.

$$I = \frac{1}{2} \left[\arctan(t/2) \right]_0^{+\infty} = \frac{\pi}{4}$$

2. Par décomposition en éléments simples :

$$\frac{1}{4-t^2} = \frac{1}{4} \left(\frac{1}{2-t} + \frac{1}{2+t} \right)$$

Une primitive de $t\mapsto \frac{1}{4-t^2}$ est donc $t\mapsto \frac{1}{4}(-\ln(2-t)+\ln(2+t))$. Puisque $\lim_{t\to 2^-}\frac{1}{4}(-\ln(2-t)+\ln(2+t))=+\infty$, l'intégrale J diverge.

3. Une primitive de sin est $-\cos$, qui n'admet pas de limite en $+\infty$ donc l'intégrale K diverge.

4.

$$L = [t \ln t - t]_0^1 = -1$$

5.

$$M = -\frac{1}{a} \left[e^{-at} \right]_0^{+\infty} = \frac{1}{a}$$

6.

$$N = \frac{1}{3} \left[\arcsin(3t) \right]_0^{\frac{1}{3}} = \frac{\pi}{6}$$

7. Par une décomposition en éléments simples :

$$\frac{1}{t^2 - 3t + 2} = \frac{1}{t - 2} - \frac{1}{t - 1}$$

Ainsi

$$O = \left[\ln \left(\frac{t-2}{t-1} \right) \right]_3^{+\infty} = -\ln \left(\frac{1}{2} \right) = \ln 2$$

8. Une primitive de $t \mapsto \frac{1}{t \ln t} \sup [2, +\infty[$ est $t \mapsto \ln(\ln t)$, qui admet une limite infinie en $+\infty$. L'intégrale P diverge.

Solution 40

1. L'application $x \mapsto \frac{\sin x}{x}$ est continue sur \mathbb{R}_+^* . De plus, elle est prolongeable par continuité en 0 puisque $\lim_{x \to 0} \frac{\sin x}{x} = 1$. On peut d'ores et déjà affirmer que $x \mapsto \frac{\sin x}{x}$ est intégrable sur $]0,\pi]$. A fotiori, $\int_0^\pi \frac{\sin x}{x} \, dx$ converge. Par ailleurs, sous réserve de convergence, on obtient par intégration par parties

$$\int_{\pi}^{+\infty} \frac{\sin x}{x} dx = -\left[\frac{\cos x}{x}\right]_{x=\pi}^{x\to +\infty} - \int_{\pi}^{+\infty} \frac{\cos x}{x^2} dx$$

Or $\lim_{x \to +\infty} \frac{\cos x}{x} = 0$ et $\frac{\cos x}{x^2} = \mathcal{O}\left(\frac{1}{x^2}\right)$ de sorte que $\int_{\pi}^{+\infty} \frac{\cos x}{x^2} dx$ converge. Par conséquent $\int_{\pi}^{+\infty} \frac{\sin x}{x} dx$ converge également. On en conclut que $\int_{0}^{+\infty} \frac{\sin x}{x} dx$ converge.

- **2. a.** On sait que $1 \cos u \approx \frac{u^2}{u \to 0} \frac{u^2}{2}$ donc $\lim_{t \to 0} \frac{1 \cos(\alpha t)}{t^2} e^{-itx} = \frac{\alpha^2}{2}$. La fonction $t \mapsto \frac{1 \cos(\alpha t)}{t^2} e^{-itx}$ est donc prolongeable par continuité en 0.
 - **b.** Remarquons que cos est borneé de même que $t\mapsto e^{-itx}$ puisqu'elle est à valeurs dans \mathbb{U} . Ainsi $\frac{1-\cos(\alpha t)}{t^2}e^{-itx}=\mathcal{O}\left(\frac{1}{t^2}\right)$. On en déduit que $t\mapsto \frac{1-\cos(\alpha t)}{t^2}e^{-itx}$ est intégrale sur \mathbb{R} .
- **3. a.** Tout d'abord,

$$\bar{I} = \int_{-\infty}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{itx} dt$$

En effectuant le changement de variable linéaire $t \mapsto -t$, on obtient alors

$$\bar{I} = -\int_{+\infty}^{-\infty} \frac{1 - \cos(-\alpha t)}{(-t)^2} e^{-itx} dt = \int_{-\infty}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt = I$$

Ainsi $I \in \mathbb{R}$.

b. Par intégration par parties,

$$\int_{\Delta}^{+\infty} \frac{\cos(Bx)}{x^2} dx = -\left[\frac{\cos(Bx)}{x}\right]_{x=A}^{x\to +\infty} - B \int_{\Delta}^{+\infty} \frac{\sin(Bx)}{x} dx$$

Cette intégration par partie est légitime car la première intégrale converge d'après le résultat admis dans l'énoncé et $\lim_{x \to +\infty} \frac{\cos(Bx)}{x} = 0$. Ainsi

$$\int_{\Delta}^{+\infty} \frac{\cos(Bx)}{x^2} dx = \frac{\cos(AB)}{A} - B \int_{\Delta}^{+\infty} \frac{\sin(Bx)}{x} dx$$

On effectue alors le changement de variable linéaire t = Bx dans la seconde intégrale pour obtenir

$$\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx = \frac{\cos(AB)}{A} - B \int_{AB}^{+\infty} \frac{\sin(t)}{t} dt$$

c. D'après la question précédente,

$$\int_{A}^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = \int_{A}^{+\infty} \frac{dx}{x^2} - \frac{\cos(AB)}{A} + B \int_{AB}^{+\infty} \frac{\sin(t)}{t} dt = \frac{1 - \cos(AB)}{A} + B \int_{AB}^{+\infty} \frac{\sin(t)}{t} dt$$

En utilisant à nouveau l'équivalent $1 - \cos u \sim \frac{u^2}{2}$ et comme $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge, on ontient en faisant tendre A vers 0 :

$$\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = B \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{B\pi}{2}$$

De plus, si B = 0, il est clair que $\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = 0$ et si B < 0, on obtient $\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = -\frac{B\pi}{2}$ par parité de cos. On peut simplifier en affirmant que $\int_0^{+\infty} \frac{1 - \cos(Bx)}{x^2} dx = \frac{|B|\pi}{2}$ de manière générale.

d. Par relation de Chasles :

$$I = \int_{-\infty}^{0} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt + \int_{0}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt$$

En effectuant le changement de variable $t\mapsto -t$ dans la première intégrale, on obtient :

$$I = \int_0^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{itx} dt + \int_0^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt = 2 \int_0^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} \cos(tx) dt$$

Avec des relations de trigonométrie élémentaire

$$I = \int_0^{+\infty} \frac{2\cos(tx) - \cos((x+\alpha)t) - \cos((x-\alpha)t)}{t^2} dt$$

$$= \int_0^{+\infty} \frac{1 - \cos((x+\alpha)t)}{t^2} dt + \int_0^{+\infty} \frac{1 - \cos((x-\alpha)t)}{t^2} dt - 2\int_0^{+\infty} \frac{1 - \cos(tx)}{t^2} dt$$

D'après la question précédente,

$$I = \frac{|x + \alpha|\pi}{2} + \frac{|x - \alpha|\pi}{2} - \pi|x| = \pi \cdot \frac{|x + \alpha| + |x - \alpha| - 2|x|}{2}$$

Comportements asymptotiques

Solution 41

Notons F l'unique primitive de f sur \mathbb{R}_+ s'annulant en 0. On a donc $F' + F = \varphi$. Par variation de la constante, il existe $\lambda \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}_+, \ F(x) = e^{-x} \int_0^x e^t \varphi(t) \ dt + \lambda e^{-x}$$

Notons ℓ la limite de φ en $+\infty$. On a donc

$$\forall x \in \mathbb{R}_+, \ \int_0^x \varphi(t)e^t \ \mathrm{d}t = \int_0^x \ell e^t \ \mathrm{d}t + \int_0^x (\varphi(t) - \ell)e^t \ \mathrm{d}t = \ell(e^x - 1) + \int_0^x (\varphi(t) - \ell)e^t \ \mathrm{d}t$$

Puisque $(\varphi(t)-\ell)e^t = o(e^t)$, que $t\mapsto e^t$ est positive et que l'intégrale $\int_0^{+\infty} e^t \, dt$ diverge, on a par intégration des relations de comparaison

$$\int_0^x (\varphi(t) - \ell)e^t dt = o\left(\int_0^x e^t dt\right)$$

ou encore

$$\int_0^x (\varphi(t) - \ell)e^t dt = o(e^x)$$

Ainsi

$$\int_0^x \varphi(t)e^t dt = \ell e^x + o(e^x)$$

puis

$$F(x) = \ell + o(1)$$

Ainsi F admet également pour limite ℓ en $+\infty$. Puisque $f = \varphi - F$, f admet pour limite θ en $+\infty$.

Solution 42

1. Posons g = f' + af de sorte que f est solution de l'équation différentielle y' + ay = g. Par variation de la constante, il existe $\lambda \in \mathbb{C}$ tel que $f(x) = e^{-ax} \int_0^x e^{at} g(t) dt + \lambda e^{-ax}$ pour $x \in \mathbb{R}_+$. Puisque g = o(1),

$$\int_0^x e^{at} g(t) dt = o\left(\int_0^x |e^{at}| dt\right)$$

Or pour $x \in \mathbb{R}_+$,

$$\int_{0}^{x} |e^{at}| dt = \int_{0}^{x} e^{\operatorname{Re}(a)t} dt = \frac{1}{\operatorname{Re}(a)} (e^{\operatorname{Re}(a)x} - 1)$$

On en déduit que

$$\int_0^x e^{at} g(t) dt = o(e^{Re(a)x})$$

puis finalement que

$$\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at} g(t) dt = 0$$

Par ailleurs, il est clair que $\lim_{x \to +\infty} e^{-ax} = 0$ puisque Re(a) < 0. Finalement, on a bien $\lim_{t \to \infty} f = 0$.

Remarque. On peut aussi introduire la fonction $\varphi: x \mapsto e^{ax} f(x)$. On a alors $\varphi'(x) = o(e^{ax})$. Ainsi

$$\varphi(x) - \varphi(0) = o\left(\int_0^x |e^{at}| dt\right)$$

On en déduit sans peine que $\varphi(x) = e^{\operatorname{Re}(a)x}$ i.e. $\varphi(x) = e^{ax}$ puis $\lim_{t \to +\infty} f = 0$.

- 2. Posons $j = e^{\frac{2i\pi}{3}}$ et g = f' jf. Alors $g' \bar{j}g = f'' + f' + f$ admet une limite nulle en $+\infty$. Puisque $\text{Re}(\bar{j}) < 0$, la première question montre que g admet une limite nulle en $+\infty$. Puisque g = f' jf et Re(j) < 0, la première question montre à nouveau que f admet une limite nulle en $+\infty$.
- 3. Soient $P \in \mathbb{C}[X]$ dont les racines sont toutes de parties réelles strictement négatives et D l'opérateur de dérivation. Si f est une fonction de classe \mathcal{C}^n (avec $n = \deg P$) telle que $\lim_{t \to \infty} P(D)(f) = 0$, alors $\lim_{t \to \infty} f = 0$. Il suffit de raisonner par récurrence sur le degré n de P. Si n = 0, il n'y a rien à démontrer. Supposons le résultat vrai pour un certain $n \in \mathbb{N}$. Soit alors $P \in \mathbb{C}[X]$ de degré n + 1 dont les racines sont de parties réelles strictement négatives et f une fonction de classe C^{n+1} sur \mathbb{R}_+ telle que $\lim_{t \to \infty} P(D)(f) = 0$. Soit a une racine de P. On peut donc écrire P = (X a)Q avec $\deg Q = n$. Posons g = Q(a)(f). Alors g' ag = P(D)(f) admet une limite nulle en $+\infty$. Puisque Re(a) < 0, la première question montre que $\lim_{t \to \infty} g = 0$. Or g = Q(D)(f) et $\deg Q = n$ donc, par hypothèse de récurrence, $\lim_{t \to \infty} f = 0$. Par récurrence, le résultat est vrai pour tout $n \in \mathbb{N}$.

Solution 43

1. D'après la théorème fondamental de l'analyse, F: $x \mapsto \int_0^x f(t) dt$ est une primitive de f sur \mathbb{R}_+ . De plus,

$$\forall x \in \mathbb{R}_+^*, \ \frac{F(x) - F(0)}{x - 0} = g(x)$$

donc $\lim_{x \to 0} g(x) = F'(0) = f(0)$.

2. D'après l'inégalité de Cauchy-Schwarz,

$$\forall x \in \mathbb{R}_+, \ |\mathrm{F}(x)| = \left| \int_0^x 1 \cdot f(t) \ \mathrm{d}t \right| \le \sqrt{\int_0^x \mathrm{d}t} \sqrt{\int_0^x f(t)^2} \ \mathrm{d}t \le \sqrt{x} \sqrt{\int_0^{+\infty} f(t)^2 \ \mathrm{d}t}$$

En posant C =
$$\sqrt{\int_0^{+\infty} f(t)^2 dt}$$
,

$$\forall x \in \mathbb{R}_+^*, \ |g(x)| \le \frac{C}{\sqrt{x}}$$

donc $\lim_{x \to +\infty} g(x) = 0$.

3. Soit $x \in \mathbb{R}_+^*$. Par intégration par parties,

$$\int_0^x g(t)^2 dt = \int_0^x \frac{1}{t^2} F(t)^2 dt = -\left[\frac{F(t)^2}{t}\right]_0^x + 2 \int_0^x \frac{F(t)F'(t)}{t} dt$$

L'intégration par parties est légitime car, par continuité de F en 0,

$$\lim_{t \to 0} \frac{F(t)^2}{t} = \lim_{t \to 0} g(t)F(t) = g(0)F(0) = 0$$

Ainsi

$$\int_0^x g(t)^2 dt = -\frac{F(x)^2}{x} + 2 \int_0^x g(t) f(t) dt \le 2 \int_0^x g(t) f(t) dt$$

Par inégalité de Cauchy-Schwarz,

$$\int_0^x g(t)^2 \; \mathrm{d}t \le 2 \sqrt{\int_0^x g(t)^2 \; \mathrm{d}t} \sqrt{\int_0^x f(t)^2 \; \mathrm{d}t} \le 2 \mathrm{C} \sqrt{\int_0^x g(t)^2 \; \mathrm{d}t}$$

puis

$$\int_0^x g(t)^2 dt \le 4C^2$$

La fonction $x \mapsto \int_0^x g(t)^2 dt$ est croissante (intégrande positive) et majorée donc admet une limite en $+\infty$. L'intégrale $\int_0^{+\infty} g(t)^2 dt$ converge donc i.e. g est de carré intégrable sur \mathbb{R}_+ .

Solution 44

En remarquant que $e^{t^2} \ge 1$, il est clair que $\lim_{t \to \infty} F = +\infty$. Par commodité, on posera dans la suite G = F - F(1). Par intégration par parties,

$$G(x) = \int_{1}^{x} e^{t^{2}} dt = \int_{1}^{x} \frac{2te^{t^{2}}}{2t} dt = \left[\frac{e^{t^{2}}}{2t} \right]_{1}^{x} + \int_{1}^{x} \frac{e^{t^{2}}}{2t^{2}} dt = \frac{e^{x^{2}}}{2x} - \frac{e}{2} + \int_{1}^{x} \frac{e^{t^{2}}}{2t^{2}} dt$$

Il est clair que $\frac{e}{2} = o(G(x))$. De plus, $\frac{e^{t^2}}{2t^2} = o(e^{t^2})$. Or $t \mapsto e^{t^2}$ est positive et $\int_{1}^{+\infty} e^{t^2} dt$ diverge donc

$$\int_{1}^{x} \frac{e^{t^2}}{2t^2} dt = o(G(x))$$

Ainsi

$$G(x) = \frac{e^{x^2}}{2x} + o(G(x))$$

ou encore

$$G(x) \sim \frac{e^{x^2}}{2x}$$

Comme $\lim_{+\infty} F = +\infty$, $G = F - F(1) \sim F$. Ainsi $F(x) \sim \frac{e^{x^2}}{2x}$.

Solution 45

- 1. Il suffit par exemple de remarquer que $e^{-t^2} = o\left(\frac{1}{t^2}\right)$.
- **2.** Soit $x \in \mathbb{R}_+^*$. Par intégration par parties

$$g(x) = \int_{x}^{+\infty} e^{-t^{2}} dt = \int_{x}^{+\infty} \frac{-2te^{-t^{2}}}{-2t} dt = \left[-\frac{e^{-t^{2}}}{2t} \right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{e^{-t^{2}}}{2t^{2}} dt = \frac{e^{-x^{2}}}{2x} - \int_{x}^{+\infty} \frac{e^{-t^{2}}}{2t^{2}} dt$$

L'intégration par parties est légitimée car $t\mapsto -\frac{e^{-t^2}}{2t}$ admet une limite (nulle) en $+\infty$. De plus, $\frac{e^{-t^2}}{2t^2}=0$ et $t\mapsto e^{-t^2}$ est positive et intégrable au voisinage de $+\infty$. Ainsi

$$\int_{x}^{+\infty} \frac{e^{-t^2}}{2t^2} dt = o(g(x))$$

On en déduit donc que $g(x) \underset{x \to +\infty}{\sim} \frac{e^{-x^2}}{2x}$.

Solution 46

Remarquons que f est solution de l'équation différentielle y'+y=g avec g=f+f'. Les solutions de l'équation différentielle homogène sont les fonctions $x\mapsto \lambda e^{-x}$ avec $\lambda\in\mathbb{R}$. On applique alors la méthode de variation de la constante. La fonction $x\mapsto \varphi(x)e^{-x}$ où φ est une fonction dérivable sur \mathbb{R} est solution de y'+y=g si et seulement si $\varphi'(x)e^{-x}=g(x)$ pour tout $x\in\mathbb{R}$. On peut donc choisir $\varphi(x)=\int_0^x e^tg(t)\,dt$ pour tout $x\in\mathbb{R}$. Une solution particulière de y'+y=g est donc la fonction $x\mapsto e^{-x}\int_0^x e^tg(t)\,dt$. Les solutions de y'+y=g sont donc les fonctions

$$x \mapsto \lambda e^{-x} + e^{-x} \int_0^x e^t g(t) dt$$

Puisque f est solution de cette équation différentielle, il existe $\lambda \in \mathbb{R}$ telle que

$$\forall x \in \mathbb{R}, \ f(x) = \lambda e^{-x} + e^{-x} \int_0^x e^t g(t) \ dt$$

Puisque g(t) = o(1), $e^t g(t) = o(e^t)$. Or $t \mapsto e^t$ est positive et l'intégrale $\int_0^{+\infty} e^t dt$ diverge donc

$$\int_0^x e^t g(t) dt = o\left(\int_0^x e^t dt\right)$$

ou encore

$$\int_0^x e^t g(t) dt = o(e^x)$$

Ainsi

$$e^{-x} \int_0^x e^t g(t) dt = o(1)$$

On en déduit donc que $\lim_{+\infty} f = 0$.

REMARQUE. On peut aussi raisonner de la manière suivante. Posons $\varphi(x) = e^x f(x)$ pour $x \in \mathbb{R}$. φ est de classe \mathcal{C}^1 et $\varphi'(x) = e^x (f(x) + f'(x))$ pour tout $x \in \mathbb{R}$. On en déduit que $\varphi'(x) = o(e^x)$. Or $x \mapsto e^x$ est positive et $\int_0^{+\infty} e^t dt$ diverge donc

$$\varphi(x) - \varphi(0) = \int_0^x \varphi'(t) dt = o\left(\int_0^x e^t dt\right)$$

On en déduit sans peine que $\varphi(x) = o(e^x)$ i.e. f(x) = o(1).

Solution 47

1. Soit $x \in I$. $t \mapsto \frac{e^{-t}}{t}$ est continue sur $[x, +\infty[$ et $\frac{e^{-t}}{t} = o\left(\frac{1}{t^2}\right)$ par croissances comparées. L'intégrale $\int_x^{+\infty} \frac{e^{-t}}{t} dt$ converge donc et f est définie sur I.

2. On peut remarquer que

$$\forall x \in I, \ f(x) = f(1) - \int_1^x \frac{e^{-t}}{t} dt$$

donc f est dérivable sur I d'après le théorème fondamental de l'analyse et

$$\forall x \in I, \ f'(x) = -\frac{e^{-x}}{x}$$

3. On sait que $\frac{e^{-t}}{t} \underset{t\to 0^+}{\sim} \frac{1}{t}$ et l'intégrale $\int_0^1 \frac{dt}{t}$ diverge donc

$$f(x) - f(1) = \int_{x}^{1} \frac{e^{-t}}{t} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{dt}{t} = -\ln(x)$$

Comme $\lim_{x \to 0^+} -\ln(x) = +\infty$,

$$f(x) \sim -\ln(x)$$

Par intégration par parties

$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = -\left[\frac{e^{-t}}{t}\right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt$$

Comme $\frac{e^{-t}}{t^2} = o\left(\frac{e^{-t}}{t}\right)$ et que $\int_1^{+\infty} \frac{e^{-t}}{t} dt$ diverge,

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = o\left(\int_{x}^{+\infty} \frac{e^{-t}}{t} dt\right)$$

Ainsi

$$f(x) \sim \frac{e^{-x}}{x \to +\infty}$$

4. Tout d'abord, f est continue sur I. De plus, $f(x) \underset{x \to 0^+}{\sim} - \ln(x)$ donc $f(x) \underset{x \to 0^+}{=} o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Enfin, $f(x) \underset{x \to +\infty}{\sim} \frac{e^{-x}}{x}$ donc $f(x) \underset{x \to +\infty}{=} o\left(\frac{1}{x^2}\right)$ par croissances comparées. Ainsi f est intégrable sur I et $\int_0^{+\infty} f(t) \, dt$ converge. Par intégration par parties,

$$\int_0^{+\infty} f(t) \, dt = [tf(t)]_0^{+\infty} - \int_0^{+\infty} tf'(t) \, dt$$

Cette intégration par parties est légitime car

$$tf(t) \underset{t \to 0^+}{\sim} -t \ln t$$
 et $tf(t) \underset{t \to +\infty}{\sim} e^{-t}$

de sorte que

$$\lim_{t \to 0^+} tf(t) = \lim_{t \to +\infty} tf(t) = 0$$

Ainsi

$$\int_0^{+\infty} f(t) dt = -\int_0^{+\infty} t f'(t) = \int_0^{+\infty} e^{-t} dt = 1$$

Solution 48

L'intégrale $\int_{1}^{+\infty} \frac{1-e^{-t}}{t^2} dt$ converge puisque $\frac{1-e^{-t}}{t^2} \underset{t \to +\infty}{\sim} \frac{1}{t^2}$. Alors, en posant

$$G(x) = \int_{x}^{+\infty} \frac{1 - e^{-t}}{t^2} dt$$

on a donc $\lim_{x \to +\infty} G(x) = 0$. Par conséquent,

$$F(x) = G(x) - G(7x) \xrightarrow[x \to +\infty]{} 0$$

Remarquons que

$$\frac{1 - e^{-t}}{t^2} = \frac{1}{t \to 0^+} \frac{1}{t} + \mathcal{O}(1)$$

On en déduit que l'intégrale $\int_0^1 \left(\frac{1-e^{-t}}{t^2} - \frac{1}{t}\right) dt$ converge. Notons C sa valeur. Alors en posant pour x > 0

$$H(x) = \int_{x}^{1} \left(\frac{1 - e^{-t}}{t^2} - \frac{1}{t} \right) dt$$

on a $\lim_{x\to 0^+} H(x) = C$. Par conséquent,

$$F(x) = H(7x) - H(x) + \int_{x}^{7x} \frac{dt}{t} = H(7x) - H(x) + \ln(7) \underset{x \to 0^{+}}{\longrightarrow} C - C + \ln(7) = \ln(7)$$

Solution 49

1. Remarquons que $\frac{\arctan t}{t} \sim \frac{\pi}{2t}$ et $\int_{1}^{+\infty} \frac{dt}{t}$ diverge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_{1}^{x} \frac{\arctan t}{t} dt \sim \int_{1}^{x} \frac{\pi dt}{2t} = \frac{\pi \ln x}{2}$$

2. Remarquons que $\frac{\text{th }t}{t^2} \sim \frac{1}{t^2}$ et $\int_{1}^{+\infty} \frac{\text{d}t}{t^2}$ converge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_{x}^{+\infty} \frac{\operatorname{th} t}{t^{2}} \, \mathrm{d}t \underset{x \to +\infty}{\sim} \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^{2}} = \frac{1}{x}$$

3. Remarquons que $\frac{e^t}{t^3} \sim_{t\to 0^+} \frac{1}{t^3}$ et $\int_0^1 \frac{dt}{t^3}$ diverge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_{x}^{1} \frac{e^{t}}{t^{3}} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{dt}{t^{3}} = -\frac{1}{2} + \frac{1}{2x^{2}} \underset{x \to 0^{+}}{\sim} \frac{1}{2x^{2}}$$

4. Remarquons que $\frac{\sin t}{t^{\frac{3}{2}}} \sim \frac{1}{t^{\frac{1}{2}}}$ et $\int_0^1 \frac{dt}{t^{\frac{1}{2}}}$ converge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_0^x \frac{\sin t}{t^{\frac{3}{2}}} dt \underset{x \to 0^+}{\sim} \int_0^x \frac{dt}{t^{\frac{1}{2}}} = 2\sqrt{x}$$

Solution 50

1. Pour $x \in \mathbb{R}_+^*$, $[x, 2x] \subset \mathbb{R}_+^*$ donc $t \mapsto \frac{\operatorname{ch} t}{t}$ est continue sur [x, 2x]. Pour $x \in \mathbb{R}_-^*$, $[2x, x] \subset \mathbb{R}_-^*$ donc $t \mapsto \frac{\operatorname{ch} t}{t}$ est continue sur [2x, x]. Dans tous les cas, f(x) est bien défini.

- 2. Tout d'abord, φ est évidemment continue sur \mathbb{R}^* . On sait par ailleurs que $\mathrm{ch}(t) = 1 + o(t)$ donc $\varphi(t) = o(1)$. Notamment, $\lim_{t \to 0} \varphi = 0$ donc φ est prolongeable par continuité en 0. Dans la suite, on notera encore φ ce prolongement.
- 3. Plus précisément, $\operatorname{ch}(t) = 1 + \frac{1}{2}t^2 + o(t^2)$. Par conséquent, $\varphi(t) = \frac{1}{2}t + o(t)$. Comme φ est continue sur \mathbb{R} , elle y admet une unique primitive Φ s'annulant en 0. De plus, $\Phi(x) = \frac{1}{x + o(t)} \frac{1}{2}x^2 + o(x^2)$. Enfin, pour tout $x \in \mathbb{R}^*$,

$$f(x) = \int_{x}^{2x} \frac{dt}{t} + \int_{x}^{2x} \varphi(t) dt$$
$$= \ln(2) + \Phi(2x) - \Phi(x)$$
$$= \ln 2 + \frac{3}{4}x^{2} + o(x^{2})$$

4. Soit $x \in \mathbb{R}_+^*$. Par une intégration par parties,

$$\int_{1}^{x} \frac{e^{t}}{t} dt = \left[\frac{e^{t}}{t}\right]_{1}^{x} + \int_{1}^{x} \frac{e^{t}}{t^{2}} dt = \frac{e^{x}}{x} - e + \int_{1}^{x} \frac{e^{t}}{t^{2}} dt$$

On sait que

- $t \mapsto \frac{e^t}{t}$ est positive sur $[1, +\infty[$;
- $\frac{e^t}{t^2} = o\left(\frac{e^t}{t}\right);$
- $\int_{1}^{+\infty} \frac{e^{t}}{t} dt$ diverge (par exemple $e^{t}/t \ge 1/t \ge 0$).

On en déduit par intégration d'une relation de comparaison que

$$\int_{1}^{x} \frac{e^{t}}{t^{2}} dt = o\left(\int_{1}^{x} \frac{e^{t}}{t} dt\right)$$

puis que

$$\int_{1}^{x} \frac{e^{t}}{t} dt \underset{x \to +\infty}{\sim} \frac{e^{x}}{x} - e \underset{x \to +\infty}{\sim} \frac{e^{x}}{x}$$

5. Remarquons que

$$f(x) = \int_{1}^{2x} \frac{\operatorname{ch} t}{t} \, \mathrm{d}t - \int_{1}^{x} \frac{\operatorname{ch} t}{t} \, \mathrm{d}t$$

On sait que

- $t \mapsto \frac{e^t}{t}$ est positive sur $[1, +\infty[$;
- $\frac{\operatorname{ch} t}{t} \underset{t \to +\infty}{\sim} \frac{e^t}{2t}$;
- $\int_{1}^{+\infty} \frac{e^{t}}{t} dt$ diverge (par exemple $e^{t}/t \ge 1/t \ge 0$).

On en déduit que

$$\int_1^x \frac{\operatorname{ch} t}{t} \, \mathrm{d}t \underset{x \to +\infty}{\sim} \frac{1}{2} \int_1^{+\infty} \frac{e^t}{t} \, \mathrm{d}t \underset{x \to +\infty}{\sim} \frac{e^x}{2x}$$

Par conséquent, on a également

$$\int_{1}^{2x} \frac{\operatorname{ch} t}{t} \, \mathrm{d}t \underset{x \to +\infty}{\sim} \frac{e^{2x}}{4x}$$

Mais
$$\frac{e^x}{2x} = o\left(\frac{e^{2x}}{4x}\right)$$
 donc

$$f(x) \underset{x \to +\infty}{\sim} \frac{e^{2x}}{4x}$$

Solution 51

1. La fonction $f: x \mapsto \int_x^1 \frac{e^t}{t} dt$ est strictement décroissante sur]0,1] (elle est dérivable et sa dérivée est $x \mapsto -\frac{e^x}{x}$). Comme $\frac{e^t}{t} \approx \frac{1}{t}$, $\int_0^1 \frac{e^t}{t}$ diverge. Puisque $t \mapsto \frac{e^t}{t}$ est positive, $\lim_{0^+} f = +\infty$. Par ailleurs, f(1) = 0. Enfin, f est continue sur [0,1] donc, d'après le théorème des valeurs intermédiaires, pour tout $n \in \mathbb{N}^*$, il existe un unique $u_n \in]0,1]$ tel que $f(u_n) = n$.

- 2. D'après la question précédente, f induit une bijection strictement décroissante de]0,1] sur $[0,+\infty[$. Sa bijection réciproque est donc également strictement décroissante. Comme $u_n = f^{-1}(n)$, (u_n) est strictement décroissante. de plus, $\lim_{0^+} f = +\infty$ donc $\lim_{+\infty} f^{-1} = 0$. Par conséquent, (u_n) converge vers 0.
- 3. Remarquons que

$$v_n = \int_{u_n}^1 \frac{e^t}{t} dt - \int_{u_n}^1 \frac{dt}{t} = \int_{u_n}^1 \frac{e^t - 1}{t} dt$$

Comme $\lim_{t\to 0} \frac{e^t - 1}{t} = 1$, l'intégrale $\int_0^1 \frac{e^t - 1}{t} dt$ converge. Comme (u_n) converge vers 0,

$$\lim_{n \to +\infty} v_n = \int_0^1 \frac{e^t - 1}{t} \, \mathrm{d}t$$

4. Posons $I = \int_0^1 \frac{e^t - 1}{t} dt$. Ainsi $\ln(u_n) = -n + I + o(1)$ puis $u_n \sim e^{I} e^{-n}$. Comme $0 < e^{-1} < 1$, $\sum u_n$ diverge.

Suites d'intégrales

Solution 52

- 1. Soit $n \in \mathbb{N}^*$. L'application $t \mapsto f(t)e^{-t/n}$ est continue sur le segment $[0, \pi]$ donc u_n est défini. Cette application est également continue sur \mathbb{R}_+ et $f(t)e^{-t/n} = o(1/t^2)$ de sorte que v_n est défini.
- 2. Soit $n \in \mathbb{N}^*$. Puisque l'intégrale définissant v_n converge, on peut écrire que

$$v_n = \sum_{k=0}^{+\infty} \int_{k\pi}^{(k+1)\pi} f(t)e^{-t/n} dt$$

Mais en effectuant un changement de variable dans chaque intégrale, on obtient

$$v_n = \sum_{k=0}^{+\infty} \int_0^{\pi} f(t + k\pi) e^{-(t + k\pi)/n} dt$$

Par π -périodicité de f, on en déduit que

$$v_n = \sum_{k=0}^{+\infty} e^{-k\pi/n} \int_0^{\pi} f(t)e^{-t/n} dt = u_n \sum_{k=0}^{+\infty} e^{-k\pi/n} = u_n a_n$$

avec

$$a_n = \sum_{k=0}^{+\infty} e^{-k\pi/n} = \frac{1}{1 - e^{-\pi/n}}$$

3. Il s'agit jute d'un équivalent classique, à savoir e^u-1 $\underset{u\to 0}{\sim} u$. On en déduit immédiatement que a_n $\underset{n\to +\infty}{\sim} \frac{n}{\pi}$

4. Remarquons tout d'abord que comme $\int_0^{\pi} f(t) dt = 0$,

$$u_n = \int_0^{\pi} f(t)(e^{-t/n} - 1) dt$$

On remarque que $e^{-t/n}-1$ $\underset{n\to+\infty}{\sim}-\frac{t}{n}$, ce qui permet de conjecturer que u_n $\underset{n\to+\infty}{\sim}-\frac{1}{n}\int_0^\pi tf(t)\,\mathrm{d}t$ (ce qui précède n'est en aucun cas une preuve). On en déduirait alors la limite de (v_n) . On propose alors deux méthodes.

Avec le théorème de convergence dominée. Posons $f_n: t \mapsto (e^{-t/n} - 1)f(t)$. La suite de fonctions (f_n) converge simplement vers la fonction nulle. De plus, pour tout $n \in \mathbb{N}^*$, $|f_n| \le |f| \sup [0, \pi]$ et |f| est évidemment intégrable sur $[0, \pi]$. D'après le théorème de convergence dominée, (u_n) converge vers 0.

On remarque ensuite que la suite de fonctions (nf_n) converge simplement vers la fonction $t \mapsto -f(t)$. De plus,

$$\forall n \in \mathbb{N}^*, \ \forall t \in [0, \pi], \ |nf_n(t)| = n(1 - e^{-t/n})|f(t)| \le t|f(t)|$$

en utilisant la convexité de exp. La fonction $t \mapsto t|f(t)|$ est à nouveau intégrable sur le segment $[0,\pi]$ donc, par convergence dominée,

 (nu_n) converge vers $-\int_0^{\pi} t f(t) dt$. Puisque $v_n = a_n u_n$ et $a_n \sim \frac{n}{\pi}$, $\lim_{n \to +\infty} v_n = -\frac{1}{\pi} \int_0^{\pi} t f(t) dt$. Sans le théorème de convergence dominée. Remarquons que f est continue donc bornée sur le segment $[0, \pi]$ (elle est même bornée

sur \mathbb{R}_+ puisqu'elle est π -périodique). En notant M un majorant de |f| sur $[0,\pi]$,

$$|u_n| \le K \int_0^{\pi} (1 - e^{-t/n}) dt = K (\pi + n(e^{-\pi/n} - 1))$$

Or via le même équivalent usuel que précédemment,

$$\lim_{n \to +\infty} n(e^{-\pi/n} - 1) = -\pi$$

de sorte que (u_n) converge bien vers 0.

On constate que

$$u_n + \frac{1}{n} \int_0^{\pi} t f(t) dt = \int_0^{\pi} f(t) \left(e^{-\frac{t}{n}} - 1 + \frac{t}{n} \right) dt$$

L'inégalité de Taylor-Lagrange donne pour $t \in \mathbb{R}_+$

$$\left| e^{-\frac{t}{n}} - 1 + \frac{t}{n} \right| \le \frac{t^2}{2n^2}$$

Par inégalité triangulaire, on obtient donc

$$\left| u_n + \frac{1}{n} \int_0^{\pi} t f(t) \, dt \right| \le \frac{K}{2n^2} \int_0^{\pi} t^2 \, dt = \frac{K\pi^3}{6n^2}$$

En particulier,

$$u_n + \frac{1}{n} \int_0^{\pi} t f(t) dt = \mathcal{O}\left(\frac{1}{n^2}\right)$$

A fortiori

$$u_n \underset{n \to +\infty}{\sim} -\frac{1}{n} \int_0^{\pi} t f(t) dt$$

Via l'équivalent de (a_n) précédemment trouvé, on en déduit que

$$\lim_{n \to +\infty} v_n = -\frac{1}{\pi} \int_0^{\pi} t f(t) \, dt$$

Solution 53

1. Tout d'abord, $\cos(2nt) \sim 1$. De plus,

$$\ln(\sin t) = \ln(t + o(t))$$

$$= \ln(t(1 + o(1)))$$

$$= \ln t + \ln(1 + o(1))$$

$$= \ln t + o(1)$$

$$= \ln t + o(\ln t)$$

$$\underset{t \to 0}{\sim} \ln t$$

Finalement, $f_n(t) \sim \ln t$. Par croissances comparées, $f_n(t) = o\left(1/\sqrt{t}\right)$. Puisque f_n est également continue sur $\left]0, \frac{\pi}{2}\right]$, elle est intégrable sur cet intervalle par comparaison à une fonction de Riemann intégrable.

2. On intègre par parties. La fonction $t \mapsto \ln(\sin t)$ est de classe \mathcal{C}^1 sur $\left]0, \frac{\pi}{2}\right]$ et sa dérivée est $t \mapsto \frac{\cos t}{\sin t}$. De même, la fonction $t \mapsto \sin(2nt)$ est de classe \mathcal{C}^1 sur $\left]0, \frac{\pi}{2}\right]$ et sa dérivée est $t \mapsto 2n\cos(2nt)$. Enfin, $\sin(2nt)\ln(\sin t) \underset{t\to 0}{\sim} 2nt \ln t$ donc $\lim_{t\to 0} \sin(2nt)\ln(\sin t) = 0$ par croissances comparées. Cela légitime l'intégration par parties.

$$J_n = 2nI_n = \int_0^{\frac{\pi}{2}} 2n\cos(2nt)\ln(\sin t) dt = \left[\sin(2nt)\ln(\sin t)\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2nt) dt = -\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2nt) dt$$

3.

$$J_{n+1} - J_n = -\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot (\sin((2n+2)t) - \sin(2nt)) dt$$

$$= -2\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(t) \cos((2n+1)t) dt$$

$$= -2\int_0^{\frac{\pi}{2}} \cos t \cos((2n+1)t) dt$$

$$= -\int_0^{\frac{\pi}{2}} (\cos((2n+2)t) + \cos(2nt)) dt = 0$$

Ainsi la suite (J_n) est constante. De plus,

$$J_1 = -2 \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2t) dt = -4 \int_0^{\frac{\pi}{2}} \cos^2(t) dt = -2 \int_0^{\frac{\pi}{2}} (\cos(2t) + 1) dt = -\pi$$

Finalement, pour tout $n \in \mathbb{N}^*$, $J_n = -\pi$ et $I_n = -\frac{\pi}{2n}$.

Solution 54

De manière plus générale, posons $J_{n,p} = \int_0^1 t^n \ln(t)^p \, dt$ pour $(n,p) \in \mathbb{N}^2$. $J_{n,0}$ est clairement définie et, pour p > 0, $t^n \ln(t)^p = o\left(\frac{1}{\sqrt{t}}\right)^p$ par croissances comparées donc $t \mapsto t^n \ln(t)^p$ est intégrable sur]0,1]. $J_{n,p}$ est donc également définie pour p > 0. Par intégration par parties, lorsque p > 0,

$$\int_0^1 t^n \ln(t)^p dt = \left[\frac{t^{n+1}}{n+1} \ln(t)^p \right]_0^1 - \frac{p}{n+1} \int_0^1 t^n \ln(t)^{p-1} dt$$

Cette intégration par parties est légitime car la seconde intégrale, à savoir $J_{n,p-1}$ converge. De plus, le crochet est nul par croissances comparées. Ainsi

$$J_{n,p} = -\frac{p}{n+1}J_{n,p-1}$$

Par une récurrence facile

$$J_{n,p} = \frac{(-1)^p p!}{(n+1)^p} J_{n,0} = \frac{(-1)^p p!}{(n+1)^{p+1}}$$

En particulier,

$$I_n = J_{n,n} = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

Solution 55

- 1. Par croissances comparées, $\ln^n(x) = 0(1/\sqrt{1})$ donc I_n converge.
- **2.** Soit $n \in \mathbb{N}^*$. On écrit

$$I_n = \int_0^1 1 \cdot \ln^n(x) \, \mathrm{d}x$$

et on intégre par parties. Par croissances comparées, $\lim_{x\to 0^+} x \ln^n(x) = 0$ donc

$$I_n = \left[x \ln^n(x) \right]_0^1 - \int_0^1 x \cdot \frac{1}{x} \cdot n \cdot \ln^{n-1}(x) \, dx = -nI_{n-1}$$

3. Comme $I_0 = 1$. Une récurrence évidente montre que $I_n = (-1)^n n!$.

Fonctions définies par des intégrales

Solution 56

- 1. Tout d'abord, la fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur \mathbb{R}_+^* .
 - De plus, $t^{x-1}e^{-t} \sim_{t \to 0^+} t^{x-1}$ et la fonction positive $t \mapsto t^{x-1}$ est intégrable au voisinage de 0^+ si et seulement si x > 0.
 - Enfin, $t^{x-1}e^{-t} = o(1/t^2)$ et la fonction positive $t \mapsto 1/t^2$ est intégrable au voisinage de $+\infty$.

Ainsi $t \mapsto t^{x-1}e^{-t}$ est intégrable sur \mathbb{R}_+^* si et seulement si x > 0. Comme cette fonction est positive, l'intégrale $\int_0^{+\infty} t^{x-1}e^{-t} dt$ converge si et seulement si x > 0. Le domaine de définition de Γ est donc \mathbb{R}_+^* .

2. Soit $x \in \mathbb{R}_+^*$. La fonction $t \mapsto t^x$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivée $t \mapsto xt^{x-1}$. La fonction $t \mapsto -e^{-t}$ est également de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivée $t \mapsto e^{-t}$. Par intégration par parties,

$$\int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt$$

L'égalité est assurée par la convergence des deux intégrales. De plus, comme x > 0

$$\lim_{t \to 0^+} t^x e^{-t} = 0$$

et, par croissances comparées,

$$\lim_{t \to +\infty} t^x e^{-t} = 0$$

On en déduit que

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = x \int_0^{+\infty} t^{x-1} e^{-t} dt = x \Gamma(x)$$

3. On a donc $\Gamma(n+1) = n\Gamma(n)$ pour tout $n \in \mathbb{N}^*$. Comme $\Gamma(1) = 1$, une récurrence évidente montre que $\Gamma(n) = (n-1)!$ pour tout $n \in \mathbb{N}^*$.

On peut vérifier avec Python.

```
>>> from scipy.integrate import quad
>>> from math import factorial
>>> from numpy import exp,inf
>>> def gamma(x):
... return quad(lambda t:t**(x-1)*exp(-t),0,inf)[0]
...
>>> for n in range(1,10):
... gamma(n),factorial(n-1)
```

Solution 57

- 1. Tout d'abord, la fonction $t \mapsto t^{x-1}(1-t)^{y-1}$ est continue sur [0,1[.
 - De plus, $t^{x-1}(1-t)^{y-1} \sim t^{x-1}$ et la fonction positive $t \mapsto t^{x-1}$ est intégrable au voisinage de 0^+ si et seulement si x > 0.
 - Enfin, $t^{x-1}(1-t)^{y-1} \sim (1-t)^{y-1}$ et la fonction positive $t \mapsto (1-t)^{y-1}$ est intégrable au voisinage de 1- si et seulement si y > 0.

Ainsi $t \mapsto t^{x-1}(1-t)^{y-1}$ est intégrable sur]0, 1[si et seulement si x > 0 et y > 0. Comme cette fonction est positive, l'intégrale $\int_0^1 t^{x-1}(1-t)^{y-1}$ converge si et seulement si x > 0 et y > 0.

- **2.** Il suffit d'effectuer le changement de variable u = 1 t.
- 3. Les fonctions $t \mapsto t^x$ et $t \mapsto (1-t)^y$ sont de classe \mathcal{C}^1 sur]0,1[de dérivées respectives $t \mapsto xt^{x-1}$ et $t \mapsto -y(1-t)^{y-1}$. Par intégrations par parties,

$$\int_0^1 y t^x (1-t)^{y-1} dt = -\left[t^x (1-t)^y\right]_0^1 + \int_0^1 x t^{x-1} (1-t)^y dt$$

L'égalité est assurée par la convergence des deux intégrales. Puisque x > 0 et y > 0,

$$\lim_{t \to 0^+} t^x (1 - t)^y = \lim_{t \to 1^-} t^x (1 - t)^y = 0$$

Ainsi

$$yB(x+1,y) = \int_0^1 xt^{x-1}(1-t)^y dt$$

$$= x \int_0^1 t^{x-1}(1-t)^{y-1}(1-t) dt$$

$$= x \int_0^1 t^{x-1}(1-t)^{y-1} dt - x \int_0^1 t^x(1-t)^{y-1} dt \quad \text{car ces deux intégrales convergent}$$

$$= xB(x,y) - xB(x+1,y)$$

ou encore

$$B(x+1,y) = \frac{x}{x+y}B(x,y)$$

4. D'après la question précédente

$$B(n+1, p+1) = \frac{n}{n+p+1}B(n, p+1)$$

Par une récurrence facile

$$B(n+1, p+1) = \frac{n!(p+1)!}{(n+p+1)!}B(1, p+1) = \frac{n!p!}{(n+p+1)!}$$

On peut vérifier avec Python.

```
>>> from scipy.integrate import quad
>>> from math import factorial
>>> def beta(x,y):
... return quad(lambda t:t**(x-1)*(1-t)**(y-1),0,1)[0]
...
>>> for n in range(1,10):
... for p in range(1,10):
... beta(n+1,p+1), factorial(n)*factorial(p)/factorial(n+p+1)
```