Identificando o melhor algoritmo para prever Churn:

Com os dados Originais:

```
Nearest Neighbors: 0.7426540284360189 | tempo gasto: 0.2680177688598633 RBF SVM: 0.7360189573459716 | tempo gasto: 5.0303733348846436 Decision Tree: 0.7938388625592417 | tempo gasto: 0.0169985294342041 Random Forest: 0.7753554502369668 | tempo gasto: 0.0390019416809082 Neural Net: 0.7872037914691943 | tempo gasto: 0.3850281238555908 AdaBoost: 0.8023696682464455 | tempo gasto: 0.30602478981018066 Naive Bayes: 0.7085308056872038 | tempo gasto: 0.006999492645263672 QDA: 0.7545023696682465 | tempo gasto: 0.013000249862670898
```

Com os dados do OverSampling:

```
Nearest Neighbors: 0.8511848341232228 | tempo gasto: 0.5260424613952637 RBF SVM: 0.9872037914691943 | tempo gasto: 29.65669322013855 Decision Tree: 0.7625592417061612 | tempo gasto: 0.027001619338989258 Random Forest: 0.7355450236966825 | tempo gasto: 0.048003435134887695 Neural Net: 0.6758293838862559 | tempo gasto: 1.701129674911499 AdaBoost: 0.7587677725118483 | tempo gasto: 0.49303245544433594 Naive Bayes: 0.6853080568720379 | tempo gasto: 0.010002374649047852 QDA: 0.7293838862559242 | tempo gasto: 0.011999130249023438
```

Com os dados do **UnderSampling**:

```
Nearest Neighbors: 0.762085308056872 | tempo gasto: 0.28002238273620605 RBF SVM: 0.9796208530805687 | tempo gasto: 3.3032426834106445 Decision Tree: 0.7706161137440758 | tempo gasto: 0.014001131057739258 Random Forest: 0.7388625592417062 | tempo gasto: 0.028002023696899414 Neural Net: 0.7900473933649289 | tempo gasto: 0.8896124362945557 AdaBoost: 0.7606635071090048 | tempo gasto: 0.23801827430725098 Naive Bayes: 0.6843601895734597 | tempo gasto: 0.0060007572174072266 QDA: 0.7260663507109004 | tempo gasto: 0.007999897003173828
```

Médias dos tempos e scores de cada algoritmo:

	Score	Tempo	ScoreTrain
Nome			
RBF SVM	90.333333	20.663333	99.000000
Nearest Neighbors	78.333333	1.466667	86.666667
Neural Net	77.666667	0.873333	76.000000
AdaBoost	77.333333	0.386667	79.000000
Decision Tree	76.000000	0.023333	78.333333
Random Forest	74.666667	0.056667	76.666667
QDA	73.333333	0.013333	76.666667
Naive Bayes	69.666667	0.013333	72.666667

Sabendo disto, estarei utilizando o RBF SVM para este estudo, porém para dados maiores seria necessário fazer um segundo teste, pois ele poderia atrasar muito a entrega. Mas como os dados são pequenos, estarei utilizando-o.