2024 / 25

School of Science and Computing

+353 (0)51 302037

☑ Eleanor.Reade@setu.ie

www.wit.ie/schools/science_computing

Module Descriptor

Data Structures and Algorithms 2 (Computing and Mathematics)

Data Structures and Algorithms 2 (A13490)

Short Title: Data Structures & Algorithms 2

Department: Computing and Mathematics

Credits: 5 Level: Introductory

Description of Module / Aims

Implement, from first principles, advanced general purpose and custom data structures and algorithms that employ appropriate strategies for demonstrable efficiency.

Programmes

	m stage/s	semester/status
COMP-0639	BSc (Hons) in Applied Computing (International) (WD KACCM BI)	2 / 4 / M
	BSc (Hons) in Applied Computing (WD KACCM B)	2 / 4 / M
COMP-0639	BSc (Hons) in Applied Computing (WD KCOMP B)	2/4/M
COMP-0639	BSc (Hons) in Computer Forensics and Security (WD KCOFO B)	2/4/M
COMP-0639	BSc (Hons) in Computer Science (WD KCMSC B)	$2/4/\mathrm{M}$
COMP-0639	BSc (Hons) in Software Engineering (WD KDEVP BI)	3/5/M
COMP-0639	BSc (Hons) in the Internet of Things (International) (WD KINTT BI)	2/4/M
		, ,

Indicative Content

- Implementing Advanced Data Structures: Trees; Graphs; Rings; Other
- Implementing Algorithms for Advanced Data Structures: Traversals; Shortest Path; Union Find; Other
- Algorithmic Strategies: Brute Force; Greedy; Divide and Conquer; Heuristic; Other
- Algorithmic Analysis: Static Analysis; Dynamic Analysis; Profiling Tools
- Test-Driven Development for Advanced Data Structures and Algorithms

Learning Outcomes

On successful completion of this module, a student will be able to:

- 1. Construct, from first principles, advanced general purpose and custom data structures.
- 2. Construct suitable and efficient algorithms for utilising advanced data structures.
- 3. Determine and implement suitable algorithmic strategies for utilising advanced data structures and large data sets.
- 4. Employ static and dynamic algorithmic analysis.
- 5. Construct robust advanced data structures and efficient algorithms in a systematic, test-driven fashion.

Learning and Teaching Methods

- This module will be presented by a combination of lectures and practicals whilst capitalising on a webenhanced learning environment.
- Students will work on building a portfolio of practical project work.
- Cooperative and peer learning (e.g. pair-programming, teamwork).
- Self-directed learning.

Learning Modes

Learning Type	\mathbf{F}/\mathbf{T} Hours	P/T Hours
Lecture	24	
Practical	36	
Independent Learning	75	

Assessment Methods

Weighting	Outcomes Assessed
100%	
30%	1,2,3,4
70%	1,2,4,5
	100%

Assessment Criteria

<40%: Unable to describe or implement advanced general purpose data structures and algorithms.

40%–49%: Able to describe and implement advanced general purpose data structures and algorithms.

50%-59%: Able to choose and implement advanced general purpose data structures and algorithms to solve a problem.

60%-69%: Able to critically choose and implement advanced data structures and algorithms to solve a complex problem.

70%–100%: Able to critically choose, analyse and implement custom advanced data structures and efficient algorithms to solve complex and unseen problems.

Supplementary Material(s)

• Sedgewick, R. and K. Wayne. Algorithms. 4th ed.. NY: Addison-Wesley, 2011.

Requested Resources

• Room Type: Computer Lab