Proposed UACE guide mtc1 2022

SECTION A. (40 Marks)

NO.	ANSWERS	MARKS	COMMENT
1	From, $2log_{10}y = log_{10}2 + log_{10}x$		
	$log_{10}y^2 = log_{10}2x$		
	$y^2 = 2x$ (i)	M1	
	Also from, $2^y = 4^x$		
	$ 2^y = 2^{2x} y = 2x(ii) $	M1	
	Equating (i) and (ii)	1411	
	$y^2 = y$		
	$y^2 - y = 0$	M1	
	y(y-1)=0		
	Either, $y = 0$	3.61	
	Or, (y-1) = 0	M1	
	$\Rightarrow y = 1$		
	For, $y = 0, 0 = 2x, x = 0$		
	For, $y = 1$, $1 = 2x$, $x = \frac{1}{2}$	A1	5 Marks
2	$5tan^2A - 5tanA = 2(1 + tan^2A), sec^2A = 1 + tan^2A$		
	$3tan^2A - 5tanA - 2 = 0$	M1	
	Let, $tanA = x$		
	$3x^2 - 5x - 2 = 0$	M1	
	$x = \frac{-(-5)\pm\sqrt{(-5)^2-4(3)(-2)}}{2(3)}$	1711	
	$x = 2, x = -\frac{1}{2}$		
	For, $x = 2$,		
	tanA = 2,		
	$A = tan^{-1}(2) = 63.4^{\circ}$	M1	
	l î		
	X_{240}		
	63.40		
	61.40	M1	
	\checkmark \bot		
	$A = 63.4^{\circ}, 243.4^{\circ}$		
	For, $x = -\frac{1}{3}$, 18.4°		
	$tanA = -\frac{3}{3}$, 18.4°		
	$A = tan^{-1} \left(-\frac{1}{3} \right) = 161.6^{0}$		
	$A = 161.6^{\circ}, 341.6^{\circ}$	A1	5 Marks

3	2		
	P Ř		
	$\frac{PR}{2} = \frac{2}{2}$	M1	
	RQ = -3	IVII	
	-3PR = 2RQ		
	$ \begin{aligned} -3(0R - 0P) &= 2(0Q - 0R), \\ -30R + 30P &= 20Q - 20R, \end{aligned} $	M1	
	OR = 30P - 20Q		
		M1	
	$OQ = 3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ -4 \\ 6 \end{pmatrix}$	IVII	
	$OQ = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} - \begin{pmatrix} 6 \\ -8 \\ 12 \end{pmatrix}$	M1	
	$OQ = \begin{pmatrix} -3\\2\\2 \end{pmatrix}$		
	$\begin{vmatrix} 0 & - & 2 \\ 9 & \end{vmatrix}$		
	Therefore the coordinates of R are $(-3, 2, -9)$	A1	5 Marks
4	$\frac{d}{dx}[x^3 + 2y^3 + 3xy = 0]$	M1	
	$3x^{2} + 6y^{2} \frac{dy}{dx} + 3\left(y + x \frac{dy}{dx}\right) = 0$		
	$(6y^2 + 3x)\frac{dy}{dx} = -(3x^2 + 3y)$		
	$u\lambda$	M1	
	$\frac{dy}{dx} = \frac{-(3x^2 + 3y)}{(6y^2 + 3x)}$		
	At (2,-1)		
	$\frac{dy}{dx} = \frac{-(3(2)^2 + 3(-1))}{(6(-1)^2 + 3(2))} = -\frac{3}{4}$	B1	
	Therefore the gradient of the tangent at (2,-1) is; $-\frac{3}{4}$		
	From $y = mx + c$		
	$(-1) = \left(-\frac{3}{4}\right)(2) + c$	M1	
	4 17	M1	
	$c = \frac{1}{2}$		
	Therefore the equation of the tangent is, $y = \left(-\frac{3}{4}\right)x + \frac{1}{2}$	A1	5 Marks
5	$\left \frac{(5-4x)}{(1-x)} - 3 \right < 0$	3.61	
	$\frac{\frac{(1-x)}{(5-4x)-3(1-x)}}{(1-x)} < 0$	M1	
	(1-x) (5-4x-3+3x)		
	$\left \frac{(5-4x-3+3x)}{(1-x)} < 0 \right $		
	$\left \frac{(2-x)}{(1-x)} < 0 \right ,$	M1	
	The critical values of x ;		
	x-1=0,		
	x = 1	M1	
	x - 2 = 0		

	x - 2					
	x = 2	<i>x</i> < 1	1 < <i>x</i> < 2	<i>x</i> > 2		
				X > Z		
	2-x	+	+	_	B1	
	1-x	+	_	_		
	2-x	+	_	+		
	1-x					
		set is; $1 < x$	$\alpha \leq 2$		A1	5 Marks
6	$\frac{dv}{dt} = -2cm^2$	$^{3}S^{-1}$				
	But , $v = \frac{1}{3}n$	πx^3			M1	
	, ,				1411	
	$\frac{dv}{dx} = \frac{d}{dx} \left[\frac{1}{3} \pi x \right]$	$\begin{bmatrix} -nx \\ dx & dy \end{bmatrix}$			M1	
	But also, $\frac{dx}{dt}$					
	$\frac{dx}{dt} = \frac{1}{\pi x^2} \left(-\frac{1}{2} \right)$	$(2) = \frac{-2}{\pi x^2}$			B1	
		$\frac{1}{(5)^2} = \frac{nx^2}{25\pi} cms$	s ⁻¹		3.61 4.1	5 M 1
7	$dt \pi(5)$	$\frac{(5)^2}{(5)^2} = \frac{25\pi}{(5)^2}$		<i>(</i> :)	M1 A1	5 Marks
/	$\begin{vmatrix} x - 3y - 4 \\ 2x + y - 2 \end{vmatrix}$	= 0		(1) (ii)		
		_ 0 and (ii) simul		(11)	M1	
	3(ii) + (i)	ina (n) simar	tuneously,		1,11	
	10x = 10					
	x = 1					
		x = 1 into (ii)		B1	
	3(1) + y =	2,				
	y = -1		1)		M1	
		ersection is (1	.,-1)		IVII	
	4y + 3x = 0	U				
	$y = \frac{-3}{4}x$	1				
	From $m_1 m_2$					
	$m_2 = \frac{-1}{\frac{-3}{4}} =$	3			M1	
	From, $y = x$	mx + c				
	$\left(-1\right) = \left(\frac{4}{3}\right)$	(1) + c				
	$\begin{bmatrix} c - \frac{1}{3} \\ \frac{3}{4} \end{bmatrix}$					
	$c = \frac{-7}{3}$ $y = \frac{4}{3}x - \frac{7}{3}$				A1	5 Marks
8	Let, $v = vx$					
	$\frac{dy}{dx} = v + x \frac{dy}{dx}$	$\frac{dv}{dx}$			M1	
	$\int_{0}^{ax} x \left(v + x \frac{dv}{dx}\right)^{3}$		()			
	\ un/		•)			
	$\left(v + x \frac{dv}{dx}\right) =$				M1	
	$x \frac{dv}{dx} = v + 1$	1				
	ux					

$\int \frac{1}{v+x} dv = \int \frac{1}{x} dx$	M1	
$\ln(v+1) = \ln x = c$ But, $v = \frac{y}{x}$	B1	
$\ln\left(\frac{y}{x}+1\right)^{x} = \ln x + c$	A1	5 Marks

SECTION B. (60 Marks)

QN	ANSWER	MARKS	COMMENT
09 (a)			
	$r = \frac{6}{2} = 3$		
	n = 10	M1	
		M1B1	
	$S_n = a \frac{(r^{n}-1)}{r-1} = 2 \frac{(3^{10}-1)}{3-1}$	A 1	
	$S_n = 3^{10} - 1 = 59048$	A1	
(b)			
(b)	(a+4d) + (a+15d) = 44	M1B1	
	2a + 19d = 44(i)	WIIDI	
	$\left(\frac{18}{2}\right)(2a+12d) = 3x\frac{10}{2}(2a+9d)$		
	3(2a + 12d) = 5(2a + 9d)	M1	
	3d - 2a = 0(ii)		
	Solving (i) and (ii) simultaneously;	M1	
	22d = 44	A1	
	$\Rightarrow d = 2$		
	The common difference is 2		
	3(2) - 2a = 0		
	$\Rightarrow a = 3$ The first term is 2		
	The first term is 3	A1	
	$S_{30} = \frac{30}{2} (2(3) + 29(2))$		
	$S_{30} = 15(6+58)$	N/1 A 1	
	$S_{30} = 960$	M1A1	
	TOTAL		12 MARKS
10	Let; $\frac{11x-1}{(1-x)^2(2+3x)} \equiv \frac{A}{(1-x)} + \frac{B}{(1-x)^2} + \frac{C}{(2+3x)}$	M1	
	$11 - x \equiv A(1 - x)(2 + 3x) + B(2 + 3x) +$		
	$C(1-x)^{2}$		
	For $x = 1$;	N/1	
	11 - 1 = 5B	M1	
	=>B=2		
	For $x = -\frac{2}{3}$	M1	
	3	1411	

	2	1	
	$ \left(-\frac{22}{3} \right) - 1 = C \left(\frac{5}{3} \right)^2 $ $ C = -3 $		
	C = -3 For $x = 0$	M1	
	-1 = A(1)(2) + B(2) + C	IVII	
	$ \begin{aligned} -1 &= 2A + (2)(2) - 3 \\ 2 &= 2A + 4 \end{aligned} $	3.61	
	A = -1	M1	
	Therefore; $\frac{11x-1}{(1-x)^2(2+3x)} \equiv \frac{-1}{(1-x)} + \frac{2}{(1-x)^2} + \frac{-3}{(2+3x)}$	B1	
	$\int_0^{\frac{1}{2}} \frac{11x-1}{(1-x)^2(2+3x)} dx = \int_0^{\frac{1}{2}} \frac{-1}{(1-x)} dx + \int_0^{\frac{1}{2}} \frac{2}{(1-x)^2} dx + \int_0^{\frac{1}{2}} \frac{-3}{(2+3x)} dx$	M1	
	$= \left[\ln(1-x)\right]_{0}^{\frac{1}{2}} + \left[2\left(\frac{1}{1-x}\right)\right]_{0}^{\frac{1}{2}} - \frac{3}{3}\left[\ln(2+3x)\right]_{0}^{\frac{1}{2}}$	M1	
	$= \left[\left[\ln(1 - \frac{1}{2}) \right] + \left[2\left(\frac{1}{1 - \frac{1}{2}}\right) \right] - \frac{3}{3} \left[\ln(2 + 3\frac{1}{2}) \right] \right] -$	M1B1	
	$\left[\left[\ln(1-0) \right] + \left[2\left(\frac{1}{1-0}\right) \right] - \frac{3}{3} \left[\ln(2+3(0)) \right] \right]$		
	$=2+\ln\left(\frac{2}{7}\right)$	A1	
	TOTAL		12 MARKS
11 (a)	$\overrightarrow{b_1} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\overrightarrow{b_2} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$		
	$\vec{n} = \vec{b}_1 \times \vec{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$	M1	
	$\vec{n} = \begin{vmatrix} i & j & k \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}$	M1	
	$ \vec{n} = i \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} - j \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} + k \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} $	M1B1	
	$\vec{n} = -5i + 3j - 4k = \begin{pmatrix} -5\\3\\1 \end{pmatrix}$	WIIDI	
	$\vec{a} = \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix}$		
	From, $\vec{r} \cdot \vec{n} = \vec{n} \cdot \vec{a}$	M1	
	$=> \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} -5 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix}$	M1B1	

	-5x + 3y + z = 5 + 6 - 4 This gives the equation of the	Λ 1	
	-5x + 3y + z = 7, This gives the equation of the	A1	
	plane.	М1М1	
(b)		M1M1	
(b)	Distance = $\frac{-5x+3y+z-7}{\sqrt{(-5)^2+(3)^2+(1)^2}}$		
	At origin, $(0,0,0)$	B1A1	
		DIAI	
	Distance = $\left \frac{-5(0)+3(0)+(0)-7}{\sqrt{(-5)^2+(3)^2+(1)^2}} \right = \frac{1}{5}\sqrt{35}units$		
	TOTAL		12 MARKS
12	$\frac{1}{(1+2n)^{\frac{1}{2}}}$ 1 1	M1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$\left(\frac{1+3x}{1-x}\right)^{\frac{1}{2}} = (1+3x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$		
	From, $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 +$		
	Z:		
	$\frac{n(n-1)(n-2)}{3!}\chi^3$		
	For,		
	$(1+3x)^{\frac{1}{2}} = 1 + (\frac{1}{2})(3x) + \frac{(\frac{1}{2})(\frac{1}{2}-1)}{2!}(3x)^2 +$		
	$(1+3x)^2 = 1 + (-\frac{1}{2})(3x) + \frac{1}{2!}(3x)^2 + \frac{1}{2$	M1M1	
	$\frac{(\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-2)}{3}(3x)^3$		
	3!	M1	
	$\Rightarrow (1+3x)^{\frac{1}{2}} = 1 + \frac{3}{2}x - \frac{9}{8}x^2 + \frac{27}{16}x^3$	M1	
	For,		
	$(1-x)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)(-x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2!}(-x)^2 +$	M1M1	
	$(1-x)^{-2} = 1 + \left(-\frac{1}{2}\right)(-x) + \frac{(-x)^2}{2!}(-x)^2 +$	IVITIVIT	
	$\frac{(-\frac{1}{2})(-\frac{1}{2}-1)(\frac{1}{2}-2)}{(-x)^3}$		
	31 , ,	M1	
	$\Rightarrow (1-x)^{-\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3$		
	$(1+3x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}} = \left(1+\frac{3}{2}x-\frac{9}{9}x^2+\frac{27}{16}x^3-\frac{1}{16}x^3-\frac{1}{16}x^3+\frac{1}{16}x^3-\frac{1}{16}x^3+\frac{1}$		
	\ 2 8 16	M1B1	
	$\left(\right)\left(1+\frac{1}{2}x+\frac{3}{8}x^2+\frac{5}{16}x^3\right)$		
) (<u>2</u> 0 10)		
	$\Rightarrow \left(\frac{1+3x}{1-x}\right)^{\frac{1}{2}} = 1 + 2x + 2x^3$	A1	
	· = _ · · ·		
	For, $x = \frac{1}{5}$		
	$\left(\frac{1+3(\frac{1}{5})}{1-(\frac{1}{5})}\right)^{\frac{1}{2}} = 1 + 2(\frac{1}{5}) + 2(\frac{1}{5})^3$	M1	
	$\left(\frac{1}{1-(\frac{1}{5})}\right) = 1 + 2(\frac{1}{5}) + 2(\frac{1}{5})^3$		
	$\sqrt{8} = \frac{177}{125} = 2.83 \ (2 \ dps)$	A 1	
	123	A1	40.354.5720
	TOTAL		12 MARKS
13	$y^2 = 4ax$		
	$2y\frac{dy}{dx} = 4a$	M1	
	<u>ux</u>		

$\frac{dy}{dx} = \frac{4a}{2y} = \frac{2a}{y}$	
At $P(at^2, 2at)$	
$\frac{dy}{dx} = \frac{2a}{(2at)} = \frac{1}{t}$	M1
	IVII
Therefore the gradient of the tangent at P is $\frac{1}{t}$	
From, $y = mx + c$	
$(2at) = \left(\frac{1}{t}\right)(at^2) + c$	N/1
c = at	M1
$ty = x + at^2 - (i)$	
This gives the equation of the tangent at P.	
Since the chord and the tangent are parallel, they	
have the same gradient, $\frac{1}{t}$	
From, $y = mx + c$	
$(0) = \left(\frac{1}{t}\right)(0) + c$	N/1
c = 0	M1
$y = \left(\frac{1}{t}\right)x$, which gives the equation of the chord.	
For points of intersection of the chord with the	
parabola,	
From, $y^2 = 4ax$	· •
But $x = yt$,	M1
$y^2 = 4a(yt)$	B1 =>
y(y-4at)=0	=>
y = 0 or y = 4at	DI
For, $y = 0$, $x = ((0)t)$, $x = 0$	
For, $y = 4at$,	M1
$x = (4at)t, x = 4at^2$	
The coordinates of O; $(4at^2, 4at)$	
From, $\frac{dy}{dx} = \frac{2a}{y}$	M1
At $Q(4at^2, 4at)$	
$\frac{dy}{dx} = \frac{2a}{(4at)} = \frac{1}{2t}$	
Therefore the gradient of the tangent at Q is $\frac{1}{2t}$	M1
From, $y = mx + c$	
$(4at) = \left(\frac{1}{2t}\right)(4at^2) + c$	
c = 2at	B1
$2ty = x + 2at^2 - (ii)$	
This which gives the equation of the tangent at Q.	

	Solving the equations (i) and (ii) simultaneously, $ty = x + at^{2}$ $-1 2ty = x + 4at^{2}$ $y = 3at$	M1	
	$\Rightarrow x = t(3at) - at^2, \ x = 2at^2$ Therefore $R(2at^2, 3at)$	A1	
	TOTAL		12 MARKS
14 (a)	$\frac{d}{dx} \left[\frac{(x^2+1)}{(x+1)^3} \right] = \frac{(x+1)^3 (2x) - (x^2+1)(3(x+1)^2)}{[(x+1)^3]^2}$	M1	
	$=\frac{(x+1)^2[(x+1)(2x)-3(x^2+1)]}{(x+1)^6}$	M1	
	$=\frac{(x+1)^2[2x-x^2-3]}{(x+1)^6}$	M1	
	$= \frac{(x+1)^2[2x-x^2-3]}{(x+1)^6}$ $\frac{d}{dx} \left[\frac{(x^2+1)}{(x+1)^3} \right] = \frac{-x^2+2x-3}{(x+1)^4}$	A1	
(b)	From, $x = \frac{3t}{t+3}$ $\frac{dx}{dt} = \frac{(t+3)(3)-3t(1)}{(t+3)^2}$ $\frac{dx}{dt} = \frac{9}{(t+3)^2}$ (i)	M1	
	$ \frac{dt}{Also}, \frac{dy}{dt} = \frac{(t-2)(4)-(4t+1)(1)}{(t-2)^2} \\ \frac{dy}{dt} = -\frac{9}{(t-2)^2} - \dots (ii) $	M1	
	But, $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \left(-\frac{9}{(t-2)^2}\right) \left(\frac{(t+3)^2}{9}\right)$ $\frac{dy}{dx} = -\left[\frac{(t+3)^2}{(t-2)^2}\right]$ (iii)	M1 B1	
	$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right)\frac{dt}{dx}$ $\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left[-\left[\frac{(t+3)^2}{(t-2)^2}\right]\right]$	M1	
	$\left \frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{(t-2)^2 (2(t+3) - (t+3)^2 (2(t-2))}{(t-2)^4} = \frac{10(t-2)(t+3)}{(t-2)^4}$	M1	
	$\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{d^2y}{dx^2}} = \frac{(t-2)^2(2(t+3)-(t+3)^2(2(t-2))}{(t-2)^4} = \frac{10(t-2)(t+3)}{(t-2)^4}$ $\frac{\frac{d^2y}{dx^2}}{\frac{d^2y}{dx^2}} = \left(\frac{10(t-2)(t+3)}{(t-2)^4}\right)\left(\frac{(t+3)^2}{9}\right) = \frac{10}{9}\left(\frac{t+3}{t-2}\right)^3$	M1 A1	
	TOTAL		12 MARKS
15 (a)	A C B	B1	

	0 0	1 = = :	
	Area of sector, $AB = \frac{\theta}{360}\pi r^2 = \frac{\theta}{2\pi}\pi r^2 = \frac{\theta}{2}r^2$	M1	
	Area of triangle, $OAB = \frac{1}{2}r.rsin\theta = \frac{r^2sin\theta}{2}$	M1	
	Area of the minor segment $AB = \frac{\theta}{2}r^2 - \frac{r^2\sin\theta}{2}$		
	$=\frac{r^2}{2}(\theta-\sin\theta)$	M1	
	But area of the circle = πr^2		
	But the area of the circle is three times the area of the		
	minor segment.		
	Therefore, $\pi r^2 = 3x \frac{r^2}{2} (\theta - \sin \theta)$		
	$2\pi = 3\theta - 3\sin\theta$		
	$3\theta = 3\sin\theta + 2\pi$ as required	A1	
(b) (i)	From, $tan\alpha = sec\alpha - \frac{1}{3}$ (i)		
(-)()	Squaring both sides of (i),		
	$tan^{2}\alpha = \left(sec\alpha - \frac{1}{3}\right)^{2}$	M1	
	But $tan^2\alpha = (sec^2\alpha - \frac{1}{3})$		
	Therefore, $(\sec^2 \alpha - 1) = \left(\sec^2 \alpha - \frac{2}{3}\sec \alpha + \frac{1}{9}\right)$	M1	
	\ 3 //	D1	
	$-1 = -\frac{2}{3}sec\alpha + \frac{1}{9}$	B1	
	$-\frac{10}{9} = -\frac{2}{3}sec\alpha$	M1	
	$sec\alpha = \frac{5}{3}$	A1	
	$\Rightarrow \cos\alpha = \frac{3}{5} = 0.6$	AI	
(ii)			
	4 5		
		B1	
	$\frac{\square}{3}$		
	From the figure, $tan\alpha = \frac{4}{3} = 1.3333$	A1	
	TOTAL	AI	12 MARKS
16 (a)	From, $y = 5x(2-x)$		
	Intercept,	M1	
	When $x = 0$, $y = 0 => (0,0)$ When $y = 0$, $0 = 5x(2 - x)$		
	x = 0, = 0,0 $x = 0, = 0,0$	B1	
	and $x = 2 = (2,0)$		
	Turning points,		

	day	<u> </u>	
ļ	At turning points, $\frac{dy}{dx} = 0$	M1	
	$\left \frac{d}{dx} [5x(2-x)] = 0 \right $	1411	
	$\frac{d}{dx}[10x - 5x^2] = 0$	M1	
	$\begin{vmatrix} ax \\ (10 - 10x) = 0 \end{vmatrix}$		
	x = 1, y = 5	B1	
	Therefore the turning point is (1,5)	DI	
ļ	y ↑		
	y = 5x(2-x) 0 1	B1B1	
(b)	From,	M1	
	$volume = \pi \int_{a}^{b} y^{2} dx$	M1	
	$= \pi \int_0^2 (10x - 5x^2)^2 dx$ = $\pi \int_0^2 (100x^2 - 100x^3 + 25x^4) dx$	M1	
	$= 25\pi \left[\frac{4}{3}x^3 - x^4 + \frac{1}{5}x^5 \right] \frac{5}{0}$ $\left[\left[\frac{4}{3}(5)^3 - (5)^4 + \frac{1}{5}(5)^5 \right] - \right]$	M1	
	$= 25\pi \left[\frac{\left[\frac{4}{3}(5)^3 - (5)^4 + \frac{1}{5}(5)^5\right] - \left[\frac{4}{3}(0)^3 - (0)^4 + \frac{1}{5}(0)^5\right]}{\left[\frac{4}{3}(0)^3 - (0)^4 + \frac{1}{5}(0)^5\right]} \right]$ Volume = $25\pi x \frac{16}{15} = \frac{80}{3}\pi \text{ units}$	A1	
	TOTAL		12 MARKS