Fortgeschrittenenpraktikum der Fakultät Physik

Versuch 47: Temperaturabhängigkeit der Molwärme von Festkörpern

Lydia von der Weiden (lydia.weiden@tu-dortmund.de) Cihad Gözsüz (cihad.goezsuez@tu-dortmund.de)

Durchführung: 20.04.2022 Abgabe: 03.05.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3										
	1.1 Klassische Betrachtung	. 3										
	1.2 Quantenmechanische Betrachtung											
	1.2.1 Einstein-Näherung	. 5										
	1.2.2 Debye-Näherung	. 5										
2	Aufbau	7										
3	Durchführung	9										
4	Auswertung											
	4.1 Bestimmung von C_p und $C_V \dots \dots$											
	4.2 Experimentelle Bestimmung der Debye-Temperatur											
	4.3 Theoretische Bestimmung der Debye-Temperatur	. 17										
5	Diskussion	18										
Li	teratur	20										

1 Theorie

Die Wärmekapazität ist definiert als die Wärmemenge ΔQ , die benötigt wird, um einen Festkörper um einen Betrag ΔT zu erwärmen.

$$C = \frac{\Delta Q}{\Delta T}.$$
 (1)

Da dies abhängig von der betrachteten Stoffmenge ist, wird C meistens auf die Stoffmenge 1 mol bezogen. So lassen sich unterschiedliche Materialien miteinander vergleichen. Diese materialbezogenen Werte werden als spezifische Wärmekapazität bezeichnet und werden zur Unterscheidung mit einen kleinen c geschrieben.

$$c^m = \frac{\Delta Q}{\Delta T \cdot N} \tag{2}$$

Der Zusammenhang zwischen Wärmekapazität und innerer Energie U folgt aus dem 1. Hauptsatz der Thermodynamik:

$$dQ = dU - dW = dU - pdV. (3)$$

Dabei ist dQ die dem System zugeführte Wärmemenge, dU die Änderung der inneren Energie und dW = -pdV die am System geleistete Arbeit. Die erzielte Änderung der inneren Energie hängt somit davon ab, ob beim Erwärmungsvorgang der Druck p, oder das Volumen V konstant gehalten wird.

Bei konstantem Volumen ist die Wärmekapazität somit

$$C_V = \frac{\partial Q}{\partial T} \Big|_V = \frac{\partial U}{\partial T} \Big|_V. \tag{4}$$

Daraus ergibt sich sich eine direkte Verbindung zwischen der inneren Energie des Festkörpers und der Wärmekapazität bei konstantem Volumen. Da allerdings dieser Vorgang experimentell schwer umzusetzen ist wird häufig die Wärmekapazität bei konstantem Druck gemessen:

$$C_p = \frac{\partial Q}{\partial T} \Big|_p \,. \tag{5}$$

Die beiden Werte hängen über folgende Beziehung zusammen:

$$C_p - C_V = 9\alpha^2 \kappa V_0 T, \tag{6}$$

mit dem linearen Ausdehnungskoeffizienten α , dem Kompressionsmodul κ und den Molvolumem V_0 .

1.1 Klassische Betrachtung

Im klassischen Modell für kristalline Festkörper sind die Atome durch Gitterkräfte an ihren Standort gebunden, führen um diesen aber Schwingungen in allen drei Raumrichtungen

aus. Nach den Gleichverteilungssatz haben diese jeweils eine mittlere potentielle und kinetische Energie von

$$\langle u_i \rangle = \frac{1}{2} k_B T. \tag{7}$$

Mit N_A Atomen, wobei N_A die Avogadro-Konstante ist, ergibt sich so für den gesamten Festkörper eine mittlere innere Energie von

$$\langle U \rangle = +3N_A \cdot 2\frac{1}{2}k_BT = 3N_Ak_BT. \tag{8}$$

Damit berechnet sich die molare spezifische Wärmekapazität von

$$C_V = 3N_A k_B = 3R$$
. (9)

R ist hierbei die allgemeine Gaskonstante. Dieses Ergebnis wird als das Gesetz von Dulong-Petit bezeichnet. Es besteht weder eine Material- noch eine Temperaturabhängigkeit. Experimentelle Daten zeigen aber, dass die Wärmekapazität von Festkörpern sehr wohl eine Abhängigkeit von Temperatur und Material aufweist. Dieser nähert sich aber bei hohen Temperaturen an den Dulong-Petit Wert an.

1.2 Quantenmechanische Betrachtung

Der beobachte Verlauf der Temperaturabhängigkeit der Wärmekapazität kann klassisch nicht beschrieben werden. Bei der quantenmechanischen Betrachtung können die Gitterschwingungen nur noch diskrete Werte von ganzzahligen Vielfachen von $\hbar\omega$ annehmen. Hierbei ist ω die Dispersion der Phononenschwingung.

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega\tag{10}$$

Bei genügend kleinen Temperaturen gilt $\hbar\omega\gg k_BT$. Damit können die Oszillatoren keine weitere Energie aus den Wärmebad aufnehmen und verbleiben in ihrer Grundschwingung. Die Schwingungsmoden werden so bei abnehmender Temperatur zunehmend eingefroren.

Mit diesen Überlegungen errechnet sich der quantenmechanische Erwartungswert der inneren Energie mit:

$$\langle U \rangle = 3N \frac{\sum_{n} E_{n} e^{-\beta E_{n}}}{\sum_{n} e^{-\beta E_{n}}} \tag{11}$$

$$=3N\hbar\omega\left(\frac{1}{2} + \frac{1}{\exp\left\{\frac{\hbar\omega}{k_B T}\right\} - 1}\right). \tag{12}$$

Letzteres ist dabei eine Form der Bose-Einstein-Verteilung.

1.2.1 Einstein-Näherung

In der Einstein-Näherung wird die Annahme getroffen, dass alle 3N Eigenschwingungen des Gitters die einheitliche Frequenz ω_E haben. Damit ist die mittlere innere Energie

$$\langle U \rangle = 3N\hbar\omega_E \left(\frac{1}{2} + \frac{1}{\exp\left\{\frac{\hbar\omega_E}{k_B T}\right\} - 1}\right).$$
 (13)

Mit Einführung der Einstein-Temperatur

$$\Theta_E = \frac{\hbar \omega_E}{k_B} \tag{14}$$

ist die Wärmekapazität nach Einstein somit:

$$C_V^E = 3Nk_B \left(\frac{\Theta_E}{T}\right)^2 \frac{\exp(\Theta_E/T)}{[\exp(\Theta_E/T) - 1]^2}.$$
 (15)

Für diese ergibt sich in der Näherung von hohen und tiefen Temperaturen:

$$C_V^E = \begin{cases} 3N_A k_B \left(\frac{\Theta_E}{T}\right)^2 e^{-\Theta_E/T} & T \ll \Theta_E \\ 3N_A k_B & T \gg \Theta_E \end{cases}$$
 (16)

Für hohe Temperaturen erhält man wieder das Dulong-Petit-Gesetz. Bei tiefen Temperaturen tritt zwar eine Abnahme der Wärmekapazität ein, allerdings unterscheidet diese sich immer noch von den experimentell erhaltenden Daten, da diese häufig mit T³ abfallen. Diese Abweichung lässt sich damit erklären, dass die gewählte konstante Dispersion eher den Verlauf der optischen Phononen entspricht, bei niedrigen Temperaturen allerdings die akustischen Phononen dominieren.

1.2.2 Debye-Näherung

Bei der Debye-Näherung werden alle Phononenzweige durch drei Zweige mit linearer Dispersion von $\omega_i = v_i q$ genähert. Diese Annahme passt gut zu den bei tiefen Temperaturen überwiegenden drei Zweigen der akustischen Phononen.

Zudem wird statt einer Summation über alle Wellenvektoren q
 eine Integration über eine Kugel mit Radius q_D durchgeführt. Dabei wird der Debey-Wellenvektor q_D so gewählt, dass genau N
 Wellenvektoren im Integral enthalten sind. Mit den Wissen, dass im q-Raum ein Zustand das Volumen $(2\pi/L)^2$ einnimmt kann somit q_D bestimmt werden auf

$$q_D = \left(6\pi \frac{N}{V}\right)^{1/3}.\tag{17}$$

Analog erhält man so eine Debey-Frequenz von

$$\omega_{D,i} = q_D v_i \tag{18}$$

Abbildung 1: Darstellung der Dispersionsrelation von Phononen in der ersten Brillouin-Zone. [4]

mit v_i als Schallgeschwindigkeit des i-ten Dispersionszweiges. Die Zustandsdichte eines Dispersionszweiges ist gegeben mit

$$D_i(\omega) = \frac{V}{2\pi^2} \frac{q^2}{v_i} = \frac{V}{2\pi^2} \frac{\omega^2}{v_i^3} \,. \tag{19}$$

Die Größe von ω_D ist zudem auch dadurch gegeben, dass

$$\int D(\omega) d\omega = 3N \tag{20}$$

ergeben muss. Mit der Einführung der Debey-Temperatur

$$\Theta_D = \frac{\hbar \omega_D}{k_B} \,, \tag{21}$$

sowie der Substitution

$$x = \frac{\hbar v_s q}{k_B T},\tag{22}$$

ergibt sich somit

$$C_V^D = 9Nk_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} \frac{x^4 e^x dx}{(e^x - 1)^2}.$$
 (23)

Die so erhaltene Wärmekapazität wird in der Näherung für hohe Temperaturen wieder das erwartete Dulong-Petit-Gesetz, zudem zeigt sie das gewünschte T^3 Verhalten bei tiefen Temperaturen.

Die eingeführte Debye-Temperatur Θ_D stellt ein Maß für die Größe der im Material vorkommenden Phononenfrequenzen da. Zudem gibt sie auch einen Grenzbereich zwischen klassischer und quantenmechanischer Betrachtung eines Festkörpers an. Für Temperaturen kleiner der Debye-Temperatur ist eine quantenmechanische Betrachtung notwendig, da einige Moden eingefroren sind. Für Temperaturen darüber kann klassisch gerechnet werden.

2 Aufbau

Die schematische Darstellung des Versuchsaufbau ist in Abbildung 2 zu sehen. An der Probe, ein Kupferblock mit einer Masse von 342 g, ist eine Heizwicklung sowie ein Pt-100 Messwiederstand zur Bestimmung der Temperatur angebracht. Mit der Funktion

$$T = 0,00134R^2 + 2,296R - 243,02 (24)$$

lässt sich aus dessen Widerstand die Temperatur in °C bestimmen. Sie befindet sich in einem Rezipienten, welcher ebenfalls geheizt werden, sowie evakuiert und mit Helium gefüllt werden kann. Der Rezipient befindet sich in einem Dewar-Gefäß, das zu Beginn des Versuches mit flüssigen Stickstoff befüllt wird. Für den Messvorgang sind die Messwiderstände mit einem Ohmmetern verbunden. Zur Bestimmung der zugeführten Wärmemenge sind die Heizwicklungen mit integrierten Volt- bzw. Ampermeter angeschlossen.

Abbildung 2: Schematische Darstellung des Versuchsaufbau.[2]

3 Durchführung

Zu Beginn des Versuches wird etwaige Luft, die sich in Rezipienten befinden könnte, abgepumpt. Danach wird der Rezipient mit Helium befüllt. Damit wird sichergestellt das sich kein in der Luft enthaltendes Wasser in Rezipienten befindet und der Wärmeaustausch mit den Wärmebad möglichst gleichmäßig stattfinden kann. Das Dewar-Gefäß wird dann mit flüssigen Stickstoff befüllt. Nachdem die Probe auf ungefähr 80 K abgekühlt ist wird der Rezipient wieder evakuiert um den Wärmeaustausch der Probe mit seiner Umgebung möglichst gering zu halten. Zum eigentlichen Messvorgang wird die Probe durch die sie umgebende Heißwickel erhitzt. Die Temperatur wird in gleichmäßigen Abständen von 1:30 Minuten gemessen. Zur Bestimmung der zugefügten Energie wird zudem die Spannung und Stromstärke, die an der Heizwicklung anliegt aufgenommen. Um einen Wärmeaustausch mit dem Rezipienten durch Wärmestrahlung zu vermeiden, wird dieser durch eine separate Heizwicklung gleichmäßig mit der Probe erhitzt.

4 Auswertung

4.1 Bestimmung von C_p und C_V

Zunächst wird die Molwärme bei konstantem Druck C_p bestimmt. C_p kann wie folgt bestimmt werden:

$$C_p = \frac{U \cdot I \cdot M \cdot \Delta t}{m \cdot \Delta T} \tag{25}$$

U und I sind hierbei die angelegte Heizspannung und Heizstrom der Probe für den jeweiligen Zeitraum zwischen 2 Messwerten, M ist die Molmasse des Materials der Probe, m ist die Masse der Probe, ΔT ist die Temperaturdifferenz, die zwischen 2 Messwerten auftritt und Δt ist die Zeitdifferenz zwischen 2 Messwerten. Die Molmasse M und die Masse m der Probe beträgt:

$$M = 0.06355 \frac{\text{kg}}{\text{mol}}$$
$$m = 0.342 \text{ kg}$$

Um die gemessenen Pt-100-Widerstände in die entsprechenden Temperaturen umzurechnen kann folgende Formel genutzt werden:

$$T = 0.00134 R^2 + 2.296R - 243.02 (26)$$

Für R wird der Widerstand in Ohm eingesetzt und die sich daraus ergebende Temperatur T besitzt die Einheit °C. Anschließend wird die Temperatur von der Probe T_P und dem Zylinder T_Z gemittelt und mit der gemittelten Temperatur T wird im Folgenden gerechnet.

Aus C_p lässt sich mit Formel (27) C_V bestimmen:

$$C_p - C_V = 9 \cdot \alpha^2 \cdot \kappa \cdot V_0 \cdot T \quad \Leftrightarrow \quad C_V = C_p - 9 \cdot \alpha^2 \cdot \kappa \cdot V_0 \cdot T \tag{27}$$

Hierbei bezeichnet C_P die molare Wärmekapazität bei konstantem Druck und C_V bei konstantem Volumen. Der Unterschied zwischen den Wärmekapazitäten ist, dass bei konstantem Druck ein Teil der Energie für die Volumenausdehnungsarbeit $p\,dV$ benötigt wird. Deshalb ist C_P größer als C_V . Aus der Thermodynamik lässt sich dann Formel (27) herleiten.

Dabei ist α der lineare Ausdehnungskoeffizient, κ [1] ist das Kompressionsmodul und V_0 [5] ist das Molvolumen. Für Kupfer können folgende Werte für κ und V_0 verwendet werden:

$$\kappa = 140 \,\text{GPa}$$

$$V_0 = 7.11 \cdot 10^{-6} \, \frac{\text{m}^3}{\text{mol}}$$

Die Werte von α sind nicht konstant sondern abhängig von der Temperatur der Probe, deswegen wird eine Ausgleichsrechnung mit einem Polyonom 4. Grades

$$\alpha(T) = a \cdot T^4 + b \cdot T^3 + c \cdot T^2 + d \cdot T + e \tag{28}$$

durch die Werte aus Abbildung 3 durchgeführt.

т [к]	70	80	90	100	110	120	130	140
α [10 ⁻⁶ grd ⁻¹]	7,00	8,50	9,75	10,70	11,50	12,10	12,65	13,15
т [к]	150	160	170	180	190	200	210	220
α [10 ⁻⁶ grd ⁻¹]	13,60	13,90	14,25	14,50	14,75	14,95	15,20	15,40
т [к]	230	240	250	260	270	280	290	300
α [10 ⁻⁶ grd ⁻¹]	15,60	15,75	15,90	16,10	16,25	16,35	16,50	16,65

Abbildung 3: α für verschiedene Temperaturen T. [2]

Diese Ausgleichsrechnung wird mit Python und scipy.optimize.curve_fit erstellt und die Unsicherheiten mit uncertainties.ufloat berechnet. Dies ergab folgende Werte für die Parameter

$$a = (-8.2 \pm 0.7) \cdot 10^{-9} \,\mathrm{K}^{-5}$$

$$b = (7.4 \pm 0.5) \cdot 10^{-6} \,\mathrm{K}^{-4}$$

$$c = (2.5 \pm 0.1) \cdot 10^{-3} \,\mathrm{K}^{-3}$$

$$d = (0.41 \pm 0.02) \,\mathrm{K}^{-2}$$

$$e = (11.3 \pm 0.6) \,\mathrm{K}^{-1}$$

und folgenden Plot:

Abbildung 4: α in Abhängigkeit von T mit Ausgleichsrechnung.

Mit Hilfe von dieser Ausgleichsfunktion in Abbildung 4 kann C_V in Abhängigkeit von der Temperatur T mit Formel (27) berechnet werden. Die Werte für C_p und C_V sind in den Tabellen 1, 2 und 3 zu sehen. Es ist zu bedenken, dass die Temperaturen jeweils einen Fehler von 0.2% der Skala besitzen. Die Fehler konnten wegen dem mangelnden Platz nicht in der Tabelle angegeben werden.

Diese Werte in einem Diagramm aufgetragen gegen die Temperatur T ergibt:

Tabelle 1: Teil 1/3 der Messdaten und Berechnungen für Bestimmung von C_p und C_V .

t / \min	R_P/Ω	R_Z/Ω	T_P/K	T_Z/K	$\langle T \rangle / \mathrm{K}$	U/V	I/mA	C_P	C_V
0.0	24.3	23.4	86.714	84.59	85.652	12.68	121.0	21.728	21.653
1.5	24.8	23.4	87.895	84.59	86.243	12.74	121.6	15.66	15.582
3.0	25.5	23.5	89.549	84.826	87.188	12.77	121.9	15.723	15.641
4.5	26.2	23.8	91.205	85.534	88.369	12.78	122.0	18.36	18.274
6.0	26.8	24.2	92.625	86.478	89.552	12.78	122.0	15.725	15.636
7.5	27.5	24.7	94.283	87.659	90.971	12.82	122.3	15.801	15.706
9.0	28.2	25.5	95.943	89.549	92.746	12.84	122.4	13.847	13.746
10.5	29.0	26.2	97.841	91.205	94.523	12.85	122.6	18.493	18.387
12.0	29.6	27.2	99.266	93.573	96.419	12.87	122.6	18.509	18.398
13.5	30.2	28.1	100.691	95.706	98.199	12.88	122.7	18.526	18.409
15.0	30.8	29.0	102.118	97.841	99.979	12.88	122.7	18.513	18.392
16.5	31.4	29.9	103.546	99.978	101.762	12.89	122.8	15.882	15.755
18.0	32.1	30.8	105.212	102.118	103.665	12.9	122.8	18.53	18.396
19.5	32.7	32.0	106.642	104.974	105.808	12.91	122.9	18.547	18.408
21.0	33.3	33.0	108.073	107.357	107.715	12.92	122.9	18.549	18.402
22.5	33.9	34.5	109.504	110.937	110.221	12.92	123.0	15.9	15.747
24.0	34.6	35.6	111.176	113.566	112.371	12.93	123.0	15.9	15.74
25.5	35.3	36.7	112.849	116.198	114.523	12.94	123.0	18.551	18.386
27.0	35.9	37.6	114.283	118.354	116.319	12.94	123.1	15.902	15.731
28.5	36.6	38.2	115.959	119.793	117.876	12.95	123.1	13.913	13.737
30.0	37.4	38.3	117.875	120.032	118.954	12.95	123.1	22.245	22.066
31.5	37.9	38.4	119.073	120.272	119.673	12.96	123.2	18.556	18.373
33.0	38.5	38.5	120.512	120.512	120.512	12.96	123.2	15.893	15.706
34.5	39.2	38.7	122.192	120.992	121.592	12.97	123.2	22.253	22.061
36.0	39.7	39.0	123.393	121.712	122.553	12.97	123.2	18.533	18.337
37.5	40.3	39.3	124.835	122.432	123.634	12.97	123.2	22.226	22.026
39.0	40.8	39.6	126.037	123.153	124.595	12.98	123.2	18.524	18.32
40.5	41.4	40.0	127.481	124.114	125.798	12.98	123.2	18.512	18.302
42.0	42.0	40.6	128.926	125.556	127.241	12.98	123.3	22.219	22.004
43.5	42.5	41.3	130.13	127.24	128.685	12.99	123.3	22.224	22.003
45.0	43.0	42.2	131.336	129.408	130.372	12.99	123.3	18.508	18.282

Tabelle 2: Teil 2/3 der Messdaten und Berechnungen für Bestimmung von C_p und C_V .

t / \min	R_P/Ω	R_Z/Ω	T_P/K	T_Z/K	$\langle T \rangle / \mathrm{K}$	U/V	I/mA	C_P	C_V
46.5	43.6	43.1	132.783	131.577	132.18	12.99	123.3	18.496	18.263
48.0	44.2	44.0	134.231	133.748	133.99	12.99	123.3	13.861	13.621
49.5	45.0	44.9	136.163	135.922	136.043	16.54	157.0	17.961	17.711
51.0	46.0	46.0	138.581	138.581	138.581	16.56	157.1	19.972	19.713
52.5	46.9	47.3	140.76	141.729	141.244	16.57	157.2	19.977	19.709
54.0	47.8	48.5	142.94	144.638	143.789	16.58	157.2	22.467	22.19
55.5	48.6	49.9	144.881	148.037	146.459	16.58	157.2	14.961	14.673
57.0	49.8	51.2	147.794	151.198	149.496	19.02	180.3	19.659	19.359
58.5	51.0	52.6	150.711	154.607	152.659	19.05	180.5	19.686	19.374
60.0	52.2	54.0	153.632	158.021	155.827	19.06	180.6	21.471	21.149
61.5	53.3	55.2	156.314	160.952	158.633	19.07	180.7	21.468	21.136
63.0	54.4	56.2	158.998	163.398	161.198	19.08	180.8	19.676	19.332
64.5	55.6	57.1	161.93	165.601	163.765	19.09	180.8	21.449	21.095
66.0	56.7	57.9	164.621	167.561	166.091	19.1	180.9	21.446	21.082
67.5	57.8	58.6	167.316	169.277	168.296	19.1	180.9	19.634	19.259
69.0	59.0	59.2	170.259	170.749	170.504	21.0	187.3	22.322	21.936
70.5	60.2	59.8	173.205	172.223	172.714	21.0	198.2	20.218	19.819
72.0	61.6	60.4	176.648	173.697	175.173	21.0	198.3	23.566	23.157
73.5	62.8	61.0	179.604	175.172	177.388	21.0	198.4	23.547	23.126
75.0	64.0	61.6	182.563	176.648	179.605	21.0	198.5	23.528	23.096
76.5	65.2	62.4	185.526	178.618	182.072	21.0	198.5	23.497	23.053
78.0	66.4	63.5	188.492	181.329	184.911	21.0	198.5	25.602	25.144
79.5	67.5	64.8	191.215	184.538	187.876	21.0	198.6	25.584	25.113
81.0	68.6	66.6	193.942	188.987	191.464	21.0	198.6	23.423	22.936
82.5	69.8	68.6	196.919	193.942	195.43	21.0	198.6	23.393	22.89
84.0	71.0	70.4	199.901	198.41	199.155	21.0	198.6	23.362	22.844
85.5	72.2	72.2	202.886	202.886	202.886	21.0	198.6	21.536	21.001
87.0	73.5	74.0	206.125	207.372	206.748	21.0	198.7	23.311	22.761
88.5	74.7	75.5	209.119	211.116	210.117	21.0	198.7	25.399	24.835
90.0	75.8	76.9	211.866	214.617	213.241	21.0	198.8	21.475	20.894
91.5	77.1	78.1	215.117	217.621	216.369	21.0	198.8	21.445	20.848

Tabelle 3: Teil 3/3 der Messdaten und Berechnungen für Bestimmung von C_p und $C_{V^{\cdot}}$

t / \min	R_P/Ω	R_Z/Ω	T_P / K	T_Z / K	$\langle T \rangle / \mathrm{K}$	U/V	I/mA	C_P	C_V
93.0	78.4	79.2	218.373	220.379	219.376	21.0	198.8	23.201	22.59
94.5	79.6	80.1	221.382	222.637	222.01	21.0	198.8	27.809	27.184
96.0	80.6	81.0	223.893	224.898	224.395	21.0	198.8	21.365	20.725
97.5	81.9	81.9	227.161	227.161	227.161	21.0	198.8	25.217	24.564
99.0	83.0	82.5	229.929	228.67	229.3	21.0	198.8	25.188	24.521
100.5	84.1	83.1	232.701	230.181	231.441	21.0	198.9	23.072	22.39
102.0	85.3	83.9	235.729	232.197	233.963	21.0	198.9	27.654	26.959
103.5	86.3	84.5	238.255	233.71	235.982	21.0	198.9	25.112	24.401
105.0	87.4	85.5	241.036	236.234	238.635	21.0	198.9	25.083	24.354
106.5	88.5	87.1	243.821	240.277	242.049	21.0	198.9	27.561	26.814
108.0	89.5	88.9	246.356	244.835	245.595	21.0	198.9	27.532	26.768
109.5	90.5	90.5	248.893	248.893	248.893	21.0	199.0	22.928	22.143
111.0	91.7	92.6	251.941	254.23	253.085	21.0	199.0	22.899	22.094
112.5	92.9	94.0	254.993	257.794	256.394	21.0	199.0	22.87	22.047
114.0	94.1	95.0	258.049	260.343	259.196	21.0	199.0	22.841	22.001
115.5	95.3	95.9	261.109	262.64	261.874	21.0	199.1	22.824	21.966
117.0	96.5	96.6	264.172	264.428	264.3	21.0	199.1	22.795	21.92
118.5	97.7	97.4	267.24	266.473	266.856	21.0	199.1	27.323	26.433
120.0	98.7	98.0	269.799	268.007	268.903	21.0	199.1	24.811	23.904
121.5	99.8	98.9	272.617	270.311	271.464	21.0	199.1	24.783	23.858
123.0	100.9	99.9	275.439	272.874	274.156	21.0	199.2	27.245	26.304
124.5	101.9	100.7	278.006	274.925	276.466	21.0	199.2	27.217	26.26
126.0	102.9	101.6	280.577	277.236	278.906	21.0	199.2	24.715	23.741
127.5	104.0	102.6	283.407	279.805	281.606	21.0	199.2	27.157	26.165
129.0	105.0	103.8	285.984	282.893	284.438	21.1	199.3	27.272	26.261
130.5	106.0	105.5	288.562	287.273	287.917	21.1	199.3	27.244	26.215
132.0	107.0	106.9	291.144	290.885	291.015	21.1	199.4	27.229	26.183
133.5	108.0	108.2	293.728	294.245	293.986	21.1	199.4	22.665	21.6
135.0	109.2	109.5	296.832	297.609	297.221	21.1	199.5	24.708	23.628
136.5	110.3	109.8	299.681	298.386	299.034	21.1	199.6	24.693	23.6

Abbildung 5: C_V in Abhängigkeit von T mit Fehlerbalken.

4.2 Experimentelle Bestimmung der Debye-Temperatur θ_D

Zur Bestimmung der Debye Temperatur θ_D werden nur die Molwärmen C_V für eine Temperatur von unter 170 K betrachtet. Mit Hilfe der Debye-Funktion aus Quelle [2] können die Werte für $\frac{\theta_D}{T}$ für die entsprechenden C_V bestimmt werden. $\frac{\theta_D}{T}$ multipliziert mit der entsprechenden Temperatur T ergibt dann die Debye Temperatur θ_D . Die Werte für T, C_V , $\frac{\theta_D}{T}$ und θ_D sind in Tabelle 4 aufgetragen. Zudem wurden die Werte T und θ_D in Abbildung 6 aufgetragen. In den Messwerten lassen sich zwei Geraden erkennen, deren Verlauf mit einer Ausgleichsrechnung der Form a*T+b angenähert wurde.

$$a_1 = 5, 4 \pm 0.5$$
 $b_1 = -254 \pm 70$ (29)

$$a_2 = 2, 2 \pm 0, 1$$
 $b_2 = -91, 9 \pm 26$ (30)

Wahrscheinlich sind dies zwei akustische Zweige der Dispersion, von denen in unseren Ansatz ausgegangen wird und die wir in folgenden Abschnitt auch als Schallgeschwindigkeit des Kristalls auch heranziehen.

Die verschiedenen Werte für die Debye-Temperatur θ_D ergeben gemittelt:

$$\theta_D = (323.43 \pm 24, 25) \,\mathrm{K}$$

Der Mittelwertsfehler wurde mit Formel (31) bestimmt.

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n^2 - n} \cdot \sum_{i=1}^{n} (\overline{x} - x_i)^2}$$
(31)

Dabei ist $\sigma_{\overline{x}}$ der Mittelwertsfehler, n ist die Anzahl der Werte über die gemittelt wird und \overline{x} ist der Mittelwert.

Tabelle 4: Messdaten zur Berechnungen von $\theta_D.$

$C_V/\mathrm{J/(Kmol)}$	T/K	$\frac{\theta_D}{T}$	θ / K
21.653	85.652	7.1	304.065
15.582	86.243	2.3	99.179
15.641	87.188	2.3	100.266
18.274	88.369	6.2	273.944
15.636	89.552	2.3	102.985
15.706	90.971	2.3	104.617
13.746	92.746	7.3	338.523
18.387	94.523	6.2	293.021
18.398	96.419	5.2	250.689
18.409	98.199	5.2	255.317
18.392	99.979	6.2	309.935
15.755	101.762	2.3	117.026
18.396	103.665	6.2	321.362
18.408	105.808	5.2	275.101
18.402	107.715	5.2	280.059
15.747	110.221	2.3	126.754
15.74	112.371	2.3	129.227
18.386	114.523	6.2	355.021
15.731	116.319	2.3	133.767
13.737	117.876	7.3	430.247
22.066	118.954	6.1	362.81
18.373	119.673	6.2	370.986
15.706	120.512	2.3	138.589
22.061	121.592	6.1	370.856
18.337	122.553	6.2	379.914
22.026	123.634	6.1	377.084
18.32	124.595	6.2	386.244
18.302	125.798	6.2	389.974
22.004	127.241	6.1	388.085
22.003	128.685	6.1	392.489
18.282	130.372	6.2	404.153
18.263	132.18	6.2	409.758
13.621	133.99	7.3	489.064
17.711	136.043	7.2	489.755
19.713	138.581	2.2	152.439
19.709	141.244	2.2	155.368
22.19	143.789	5.1	366.662
14.673	146.459	5.3	388.116
19.359	149.496	3.2	239.194
19.374	152.659	3.2	244.254
21.149	155.827	8.1	631.099
21.136	158.633	9.1	721.78
19.332	161.198	3.2	257.917
21.095	$163_{6}765$	9.1	745.131
21.082	166.091	9.1	755.714
19.259	168.296	3.2	269.274

Abbildung 6: θ_D in Abhängigkeit von T mit eingezeichnete Annäherung der zwei erkennbaren Graden.

4.3 Theoretische Bestimmung der Debye-Temperatur θ_D

Die Debye Temperatur kann auch theoretisch bestimmt werden. Dazu wird Formel (23) aus Abschnitt 1.2.2 verwendet. Für die Geschwindigkeiten v_l und v_{tr} werden die Werte aus Quelle [2] genutzt, diese lauten:

$$v_l = 4.7 \, \frac{\text{km}}{\text{s}}$$
$$v_{tr} = 2.26 \, \frac{\text{km}}{\text{s}}$$

Mit Hilfe von Formel (19) ergibt sich dann mit den Geschwindigkeiten v_l und v_{tr} für die Debye-Frequenz ω_D folgende Formel:

$$\omega_D = \sqrt[3]{\frac{18\pi^2 N_A}{V_0} \cdot \left(\frac{1}{v_l^3} + \frac{2}{v_{tr}^3}\right)^{-1}}$$
 (32)

 $N_A=6{,}022\cdot 10^{23}\,\mathrm{mol^{-1}}$ ist dabei die Avogadro-Konstante. Die Werte eingesetzt ergibt dann für die Debye-Frequenz folgenden Wert:

$$\omega_D=4{,}349\cdot10^{13}\,\mathrm{Hz}$$

Die Debye-Temperatur θ_D lässt sich nun mit Formel (33) bestimmen.

$$\theta_D = \frac{\hbar}{k_B} \cdot \omega_D \tag{33}$$

Dabei ist $\hbar=1{,}055\cdot 10^{-34}\,\mathrm{Js}$ [6] das reduzierte planksche Wirkungsquantum und $k_B=1{,}381\cdot 10^{-23}\,\frac{\mathrm{J}}{\mathrm{K}}$ [3] ist die Boltzmann-Konstante. Damit ergibt sich für die Debye-Temperatur θ_D ein theoretischer Wert von:

$$\theta_D = 332,102 \, \text{K}$$

5 Diskussion

Zunächst wird durch die Abbildungen 5 sofort ersichtlich, dass dieses Experiment von großen Fehlern besetzt ist. Es gibt nur wenige Zusammenhang zwischen den Messwerten und der theoretischen Vorhersage. Des Weiteren sind auch große Diskrepanzen zwischen den Messwerten zu erkennen, was auf einen hohen statistischen Fehler hinweist.

Die Messung zu der Molwärme zeigt trotzdem klar, wie im Schnitt bei hohen Temperaturen die klassisch erwartete Molwärme von 3R angenähert wird. Es ist auch ein Absinken der Molwärme bei kleinen Temperaturen zu erkennen.

In der Abbildung 6 lässt sich erkennen, dass θ_D mit der Temperatur steigt. Dies lässt sich mit der Volumenabhängigkeit von V erklären. Die zwei unterschiedlichen Steigungen hängen demnach mit der longitudinalen und transversalen Schallgeschwindigkeit zusammen.

Die gemessene Debye-Temperatur nah an der Theorieerwartung:

$$\begin{split} \theta_{D, \text{gemessen}} &= (323.43 \pm 24.25) \text{K} \\ \theta_{D, \text{theoretisch}} &= 332.102 \text{K} \end{split}$$

Die prozentuale Abweichung des gemessen Wertes von der theoretischen Berechnung beträgt also

$$\varDelta\theta_D = \frac{\theta_{D, \text{theoretisch}}}{\theta_{D, \text{gemessen, min}}} - 1 = 2,7\,\%$$

Man sollte jedoch hierbei anmerken, dass der gemessene Wert stark fehlerbehaftet ist und diese geringe Abweichung somit großenteils aus Glück entstanden ist.

Der Großteil der Fehler entstehen aufgrund der ungenauen Messpräzision per Hand in diesem Experiment. Da die Temperatur im Dewar-Gefäß mit flüssigem Stickstoff gering gehalten wird und dieses per Hand ständig nachgekippt werden musste, konnte keine kontinuierlich steigende Temperatur erzielt werden. Das hat dazu geführt, dass die Temperaturunterschiede zwischen dem Gefäß und der Probe zum Teil sehr unterschiedlich waren. Bei der Durchführung gab es auch Probleme mit der Stoppuhr, wodurch große Fehler in der Zeitmessung in den ersten Werten entstanden sind. Des Weiteren wurde spät bemerkt, dass der Generator eine sehr ungenaue Spannung angegeben hat. Die Messung der Spannung wurde an späteren Datenpunkten genauer, da ein weiteres Spannungsmessgerät angeschlossen wurde. Außerdem ist der Aufbau nicht gut abgeschirmt.

Das Dewar-Gefäß war oben offen und somit anfällig gegen äußere Einflüsse auf die Temperatur.

Literatur

- [1] Janusz Chrzanowski und Bohdan Bieg. "Bulk Modulus of Copper Alloys in Context of Modern Metal Theory". In: *New Trends in Production Engineering* 1 (Okt. 2018), S. 681–686. DOI: 10.2478/ntpe-2018-0086.
- [2] TU Dortmund. Versuchsanleitung zu Versuch V47: Temperaturabhängigkeit der Molwärme von Festkörpern.
- [3] B Fellmuth, Ch Gaiser und J Fischer. "Determination of the Boltzmann constant—status and prospects". In: *Measurement Science and Technology* 17.10 (Aug. 2006), R145–R159. DOI: 10.1088/0957-0233/17/10/r01. URL: https://doi.org/10.1088/0957-0233/17/10/r01.
- [4] Rudolf Gross und Achim Marx. Festkörperphysik. De Gruyter, 2018. ISBN: 9783110559187. DOI: doi:10.1515/9783110559187. URL: https://doi.org/10.1515/9783110559187.
- [5] Richard A. Robie und Philip M. Bethke. "Molar Volumes and Densities of Minerals". In: *United States department of the interior geological survey* 1 (Okt. 1983), S. 4. URL: https://pubs.usgs.gov/tei/822/report.pdf (besucht am 09.07.2022).
- [6] Units The NIST Reference on Constants und Uncertainty. 2018 CODATA Value: reduced Planck constant. URL: https://physics.nist.gov/cgi-bin/cuu/Value? hbar (besucht am 09.07.2022).