机器学习 Machine learning

第九章 概率图模型 Probabilistic Graphical Model

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2020-12-10

-1- 中国科学院大学网络安全学院 2020 年研究生秋季课程

第九章 概率图模型

- 9.1 有向图模型: 贝叶斯网络
- 9.2 无向图模型:马尔可夫随机场
- 9.3 学习与推断
- 9.4 近似推断
- 9.5 实例模型

基本定义

推断:已知联合概率分布 $P(x_1,x_2,...,x_n)$,估计 $P(\mathbf{x}_Q|\mathbf{x}_E)$,其中 $\mathbf{x}_Q \cap \mathbf{x}_E = \emptyset$, $\mathbf{x}_Q \cup \mathbf{x}_E$ 是集合 $\{x_1,x_2,...,x_n\}$ 的子集。 \mathbf{x}_Q 是问题变量 , \mathbf{x}_E 是证据变量。

基本定义

学习:从观测数据 $x^{(1)}, x^{(2)},...,x^{(m)}$ 中学习联合概率分布 $P(x_1,x_2,...,x_n)$, 寻找最符合观测数

据的概率图模型。

推断

已知联合概率分布 P(x1,x2,...,xn), 估计

$$P(\mathbf{x}_{Q} \mid \mathbf{x}_{E}) = \frac{P(\mathbf{x}_{Q}, \mathbf{x}_{E})}{P(\mathbf{x}_{E})} = \frac{P(\mathbf{x}_{Q}, \mathbf{x}_{E})}{\sum_{\mathbf{x}_{Q}} P(\mathbf{x}_{Q}, \mathbf{x}_{E})}$$

其中 $\mathbf{x}_Q \cap \mathbf{x}_E = \emptyset$, $\mathbf{x}_Q \cup \mathbf{x}_E = \{x_1, x_2, ..., x_n\}$ 。

朴素贝叶斯 $\hat{y} = \operatorname{argmax} P(y|\mathbf{x})$

-5- 中国科学院大学网络安全学院 2020 年研究生秋季课程

推断

已知联合概率分布 P(x1,x2,...,xn), 估计

$$P(\mathbf{x}_{Q} \mid \mathbf{x}_{E}) = \frac{P(\mathbf{x}_{Q}, \mathbf{x}_{E})}{P(\mathbf{x}_{E})} = \frac{P(\mathbf{x}_{Q}, \mathbf{x}_{E})}{\sum_{\mathbf{x}_{Q}} P(\mathbf{x}_{Q}, \mathbf{x}_{E})}$$

其中 $\mathbf{x}_Q \cap \mathbf{x}_E = \emptyset$, $\mathbf{x}_Q \cup \mathbf{x}_E = \{x_1, x_2, ..., x_n\}$ 。

枚举:假设 \mathbf{x}_0 有 k 个变量,每个变量的取值个数的期望是 r,则时间复杂度为 r^k 。

推断的核心问题:如何高效地计算边际分布 $P(\mathbf{x}_E) = \sum_{x_Q} P(x_Q, x_E)$ 。

推断方法

精确推断:计算 P(xE)或 P(xQ|xE)的精确值。

- (1) 变量消去 (variable elimination)。
- (2) 信念传播 (belief propagation)。

近似推断: 在较低的时间复杂度下获得原问题的近似解。

- (1) 前向采样 (forward sampling)。
- (2) 吉布斯采样 (Gibbs sampling)。

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

变量消去

思路:利用图模型的紧凑概率分布形式来削减计算量。

Chapter 9 Probabilistic Graphical Model

-19- 中国科学院大学网络安全学院 2020 年研究生秋季课程

变量消去

变量消去

优点:简单直观,代数上的消去对应图中结点的消去。

缺点:针对不同证据变量会造成大量冗余计算。

信念传播

思路:将变量消去过程中产生的中间结果视为可复用的消息,避免重复计算。

信念传播

思路:将变量消去过程中产生的中间结果视为可复用的消息,避免重复计算。

 $m_{12}(x_2)$ 是从 x_1 向 x_2 传递的一条消息。

 $m_{12}(x_2)$ 对 x_1 进行了求和,是关于 x_2 的函数。

 $m_{12}(x_2)$ 仅与图的拓扑结构有关,与证据变量的选取无关(可复用)。

信念传播

思路:将变量消去过程中产生的中间结果视为可复用的消息,避免重复计算。

 $m_{12}(x_2)$, $m_{23}(x_3)$ 可重复使用。

 $m_{43}(x_3)$, $m_{35}(x_5)$, $m_{34}(x_4)$, $m_{53}(x_3)$ 需重新计算。

信念传播

思路:将变量消去过程中产生的中间结果视为可复用的消息,避免重复计算。

消息传递仅在邻接变量之间发生。

消息传递与边的方向性无关。

信念传播

树结构:有向树=无向树

信念传播

树结构:有向树=无向树

信念传播

树结构上的消息传递:

消息计算公式: (N(j)表示 j 的邻域节点)

$$m_{ji}(x_i) = \sum_{x_j} \psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j)$$

信念传播

边际分布:

信念传播

二次扫描算法:

- 指定一个根结点,从所有叶结点开始向根节点传递消息,直到根结点收到所有邻 接结点的消息。
- (2) 从根结点开始向叶结点传递消息,直到所有叶结点均收到消息。

第九章 概率图模型

- 9.1 有向图模型: 贝叶斯网络
- 9.2 无向图模型:马尔可夫随机场
- 9.3 学习与推断
- 9.4 近似推断
- 9.5 实例模型

推断方法

精确推断:

变量消去、信念传播。

计算复杂度随着极大团规模的增长呈指数级增长,适用范围有限。

近似推断:

前向采样、吉布斯采样。

通过采样一组服从特定分布的样本,来近似原始分布,适用范围更广,操作性更强。

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

$$P(B=1 | E=0, J=1) = ?$$

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

$$P(B=1 | E=0, J=1) = ?$$

$$P(B=1 | E=0, J=1)$$

$$= \frac{P(B=1, E=0, J=1)}{P(E=0, J=1)}$$

$$= \frac{\sum_{A,M} P(B=1, E=0, A, J=1, M)}{\sum_{B,A,M} P(B, E=0, A, J=1, M)}$$

$$= \cdots$$

采样后,进行需要的概率统计!

-34-

中国科学院大学网络安全学院 2020 年研究生秋季课程

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

- 采样 B~Ber(0.001)
 - 采样 r~U(0,1): 若r < 0.001, B = 1; 否则 B = 0

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

- 采样 B~Ber(0.001)
- 采样 E~Ber(0.002)

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

- 采样 B~Ber(0.001)
- 采样 E~Ber(0.002)
- 若 B = 1, E = 1, $\Re A \sim Ber(0.95)$

若
$$B = 1$$
, $E = 0$, \Re 样 $A \sim Ber(0.94)$

若
$$B=0$$
, $E=1$, 采样 $A \sim Ber(0.29)$

若
$$B = 0$$
, $E = 0$, \Re 样 $A \sim Ber(0.001)$

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

- 采样 B~Ber(0.001)
- 采样 E~Ber(0.002)
- 若 B = 1, E = 1, 采样 A~Ber(0.95)

若
$$B=1$$
, $E=0$, 采样 $A \sim Ber(0.94)$

若
$$B = 0, E = 1$$
, 采样 $A \sim Ber(0.29)$

若
$$B = 0$$
, $E = 0$, 采样 $A \sim \text{Ber}(0.001)$

• 若 A = 1, 采样 J~Ber(0.9); 否则采样 J~Ber(0.05)

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

- 采样 B~Ber(0.001)
- 采样 E~Ber(0.002)
- 若 B = 1, E = 1, 采样 $A \sim Ber(0.95)$

若
$$B=1$$
, $E=0$, 采样 $A \sim Ber(0.94)$

若
$$B=0$$
, $E=1$, 采样 $A\sim Ber(0.29)$

若
$$B = 0$$
, $E = 0$, \Re 样 $A \sim Ber(0.001)$

- 若 A = 1, 采样 J~Ber(0.9); 否则采样 J~Ber(0.05)
- 若 A = 1, 采样 M~Ber(0.7); 否则采样 M~Ber(0.01)

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

B	E	\boldsymbol{A}	J	M
0	0	0	0	0
1	0	1	1	0
0	0	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	0	1	1	1
0	0	0	0	0
0	0	1	1	0
0	0	0	0	0

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

B	E	A	J	M
0	0	0	0	0
1	0	1	1	0
0	0	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	0	1	1	1
0	0	0	0	0
0	0	1	1	0
0	0	0	0	0

$$P(B = 1|E = 0, J = 1) = \frac{2}{3}$$

-41- 中国科学院大学网络安全学院 2020 年研究生秋季课程

前向采样

思路:依据贝叶斯网络的(条件)概率直接采样。

缺点:I) 对于小概率事件采样困难,可能经过很多次采样也无法获得足够多的样本;

II) 仅适用于贝叶斯网络,不适用于马尔可夫随机场。

吉布斯采样

思路:直接依照条件概率 $P(x_0|x_E)$ 采样。

```
Procedure Gibbs Sampling
```

- Fix \mathbf{x}_E and randomly initialize other variables $\mathbf{x}_O := \{x_1, \dots, x_n\} \setminus \mathbf{x}_E$
- 2 repeat
- 3 foreach $x_i \in \mathbf{x}_O$ do
- 4 Sample $x \sim P(x_i | x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ /* x_i 在其他所有变量当前取值下的条件概率 */

-43-

- 5 $x_i \leftarrow x$
- 6 until Convergence
- 7 **return** The later samples

吉布斯采样

思路:直接依照条件概率 P(x_Q|x_E)采样。

马尔可夫毯的性质:

$$P(x_i \mid x_1,...x_{i-1},x_{i-1},...,x_n) = P(x_i \mid MB(x_i))$$

吉布斯采样

思路:直接依照条件概率 P(xQ|xE)采样。

$$P(B=1 | E=1, M=1) = ?$$

吉布斯采样

思路:直接依照条件概率 P(xQ|XE)采样。

Iteration	B	$\boldsymbol{\mathit{E}}$	A	J	M
t=0	0	1	0	0	1

吉布斯采样

思路:直接依照条件概率 P(x_Q|x_E)采样。

Iteration	В	E	Α	J	М
t = 0	0	1	0	0	1
t=1					

采样 B , 马尔可夫毯 {A, E}

$$P(B|\neg A, E) \propto P(B)P(\neg A|B, E) = 0.001 \times 0.05$$

 $P(\neg B|\neg A, E) \propto P(\neg B)P(\neg A|\neg B, E) = 0.999 \times 0.71$

吉布斯采样

思路:直接依照条件概率 P(x_Q|x_E)采样。

Iteration	В	E	Α	J	М
t=0	0	1	0	0	1
t=1	0				

- 采样 B , 马尔可夫毯 $\{A, E\}$ $P(B|\neg A, E) \propto P(B)P(\neg A|B, E) = 0.001 \times 0.05$ $P(\neg B|\neg A, E) \propto P(\neg B)P(\neg A|\neg B, E) = 0.999 \times 0.71$
- 采得 B = 0

吉布斯采样

思路:直接依照条件概率 P(xQ|xE)采样。

Iteration	В	E	A	J	М
t = 0	0	1	0	0	1
t=1	0	1			

吉布斯采样

思路:直接依照条件概率 P(x_Q|x_E)采样。

Iteration	В	Е	Α	J	М
t=0	0	1	0	0	1
t=1	0	1			

• 采样 A, 马尔可夫毯 {B, E, J, M}

$$P(A|\neg B, E, \neg J, M) \propto P(A|\neg B, E)P(\neg J|A)P(M|A)$$

= 0.29 × 0.1 × 0.7
 $P(\neg A|\neg B, E, \neg J, M) \propto P(\neg A|\neg B, E)P(\neg J|\neg A)P(M|\neg A)$
= 0.71 × 0.95 × 0.01

吉布斯采样

思路:直接依照条件概率 P(x_Q|x_E)采样。

Iteration	В	E	A	J	Μ
t = 0	0	1	0	0	1
t=1	0	1	1		

• 采样 A , 马尔可夫毯 $\{B, E, J, M\}$ $P(A|\neg B, E, \neg J, M) \propto P(A|\neg B, E)P(\neg J|A)P(M|A)$ $= 0.29 \times 0.1 \times 0.7$ $P(\neg A|\neg B, E, \neg J, M) \propto P(\neg A|\neg B, E)P(\neg J|\neg A)P(M|\neg A)$

 $= 0.71 \times 0.95 \times 0.01$

采得 A = 1

Chapter 9 Probabilistic Graphical Model

-51- 中国科学院大学网络安全学院 2020 年研究生秋季课程

吉布斯采样

思路:直接依照条件概率 P(xQ|XE)采样。

Iteration	В	$\boldsymbol{\mathit{E}}$	A	J	Μ
t=0	0	1	0	0	1
t=1	0	1	1		

• 采样 J , 马尔可夫毯 {A}

$$P(J|A) = 0.9$$

$$P(\neg J|A) = 0.1$$

吉布斯采样

思路:直接依照条件概率 P(xQ|XE)采样。

Iteration	В	E	Α	J	М
t = 0	0	1	0	0	1
t=1	0	1	1	1	

• 采样 *J* , 马尔可夫毯 {*A*}

$$P(J|A) = 0.9$$

$$P(\neg J|A) = 0.1$$

采得 / = 1

吉布斯采样

思路:直接依照条件概率 P(xQ|xE)采样。

Iteration	В	E	A	J	M
t = 0	0	1	0	0	1
t=1	0	1	1	1	1

吉布斯采样

思路:直接依照条件概率 P(xQ|xE)采样。

Iteration	В	E	Α	J	М
t = 0	0	1	0	0	1
t=1	0	1	1	1	1
t=2	0	1	0	1	1
t = 3	1	1	1	1	1

吉布斯采样

思路:直接依照条件概率 P(xQ|xE)采样。

优点:I) 直接从 $P(x_Q|x_E)$ 采样,解决小概率事件采样难的问题; (Fixed X_E)

- II)同时适用于贝叶斯网络和马尔可夫随机场;
- III)简单易推导,时间复杂度低。

本讲参考文献

1. 《统计机器学习--第九章: 概率图模型》课件, 王泉, 国科大网络安全学院, 2017。

致谢王泉副研究员!感谢王泉提供了《概率图模型》课件供本章教学参考!

-57-