Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

February 18, 2015

Today:

- Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference
 - Simple learning

Readings:

• Bishop chapter 8, through 8.2

Graphical Models

• Key Idea:

Conditional independence assumptions useful

- but Naïve Bayes is extreme! 假设所有都独立污候设过强

 Graphical models express sets of conditional independence assumptions via graph structure

Y. Z.不是为为之的(Y) 若没观测 Y M X. Z. 对文色的海外域 10-601

• Two types of graphical models:

- Directed graphs (aka Bayesian Networks)
- Undirected graphs (aka Markov Random Fields)

Graphical Models – Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- X=02= 001 0-1 Principled and ~general methods for Probabilistic inference

 - Learning

XLLY 12:在结束之的情况下XX地型。XLLY或XLLY 10;边缘独立。

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

Which we often write P(X|Y,Z) = P(X|Z) . Nortive Bayes' Assumption: $P_m = P(X_1,X_2,\dots,X_m|Y) = \prod_{i=1}^m P(X_i|Y) \implies \emptyset$

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Represent Joint Probability Distribution over Variables 肿结核相知

Describe network of dependencies

Eric Xing

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

dependencies 加泉是全连通图则估多过级、故海过上述线验证条单。 Algorithms for inference and learning 一 成代计算

Bayesian Networks Definition

Parents	P(W Pa)	P(¬W Pa
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

A Bayes network represents the joint probability distribution over a collection of random variables

DAG; 有同无识离

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines P(X_i / Pa(X_i))
- The joint distribution over all variables is defined to be

$$P(X_1 \ldots X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables:

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Network

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

immediate parents.
Pa(Xi) 产证意还是有例外的。
VXi, Xi 与主体(XT)和战场点认为的mode都条件物的。

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

$$P_{\alpha}(WS) = L, R. \Rightarrow WSILL, R | \Omega, R? on object on of independent $P_{\alpha}(T) = L \Rightarrow TLWS, k, SC | L.$ 注意, L: $\pi(L) = SC \Rightarrow L \parallel R, WS | SC 没有T: 3分节点.$$$

Some helpful terminology

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children Ch(X)

Descendents = children, children of children, ...

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

W

Bayesian Networks

• CPD for each node X_i describes $P(X_i \mid Pa(X_i))$

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, X)P(T|X, L, R)P(W|X, L, R, Y)$$

But in a Bayes net:
$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

How Many Parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf Dayes Net
fully-connected BN: 柱式式器

全连接:每个和点与前面的点都相连

To define joint distribution in general? 2¹ー: 2⁵ー=引作数. 一指数

To define joint distribution for this Bayes Net?

11个参数.一)美线性(参数数量分.

考数: |Pa(Xi)|=| => 2n f

$$|P_{\alpha}(x_i)| \le 2 = 7 \ge n^{n} = 4n$$
 $|P_{\alpha}(x_i)| \le k = 7 \ge n^{n}$
StormClouds
Inference in Bayes Nets

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

与第叶曼曼则有了" 次计算或和,计算中做 m: 次求 (A) 2 次) 次 分算 传说 (StormClouds) Learning a Bayes Net

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } What is the MLE solution? MAP?

以了为何是这个以然。虽数。 $CPD(T): \frac{|T=1|}{|T=1|} T=0 \qquad P(T|L) = \theta_1^T (H\theta_1)^{(HT)} L + \theta_0^{(HT)} (H\theta_1)^{(HT)$

就 max l(Q, Po); 用水子.

假设 Y1, ..., Yi-1 已建立某种网络. 四) 3度, P(X; [B(Xi)) 与 P(X; | X1,..., Xi-1) 判断哪些是独立的.

Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., $X_1, X_2, ... X_n$
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 \dots X_{i-1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,\ldots,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$
 (by chain rule)
= $\prod_i P(X_i | Pa(X_i))$ (by construction)

先图 DAG(绕验,根据经验)

Example 再第(版计) CPD.

- Bird flu and Allegles both cause Nasal problems
- Nasal problems cause Sneezes and Headaches

$$P(H=1,A=1) = \frac{P(H=1,A=1)}{P(A=1)}$$

$$= \frac{\sum_{b \leq n} P(H=1,A=1)}{\sum_{b \leq n} P(A=1,A=1,B=1,S=s,N=n,H=h)}$$

$$= P(A=1,B=1,S=s,N=n,H=h)$$

What is the Bayes Network for X1,...X4 with NO assumed conditional independencies?

What is the Bayes Network for Naïve Bayes?

$$P(Y=y|X=0) = \frac{P(X=x|Y=y)P(Y=y)}{P(X=0)}$$

Starter

FuelPump

EngineCranks

SparkPlugs

Starts