

Time Series Forecasting-Sparkling

Pradeep Kumar Mishra PGP-DSBA Online

Jun_B_21

Date: 16:feb:2022

Content View

Problem Statement - 1	3
1.1 Read the data as an appropriate Time Series data and plot the data.	3
1.2 Perform appropriate Exploratory Data Analysis to understand the data and als perform decomposition.	5 5
1.3 Split the data into training and test. The test data should start in 1999.	11
1.4 Build all the exponential smoothing models on the training data and evaluate model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RM 13	0
1.5 Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical tests. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.	
Note: Stationarity should be checked at alpha = 0.05.	18
1.6 Build an automated version of the ARIMA/SARIMA model in which the parameter are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.	
1.7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.	e 24
1.8 Build a table with all the models built along with their corresponding parameter and the respective RMSE values on the test data.	ers 26
1.9 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.	
1.10 Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.	28

List of Figures :

Fig.1 Figure.	05
Fig.2 Decompose	06
Fig.3 Decompos	
Fig.4 Figure	
Fig.5 Distplot	
Fig.6 Boxplot	09
Fig.7 Boxplot	09
Fig.8 plot	10
Fig.9 Figure	13
Fig.10 Figure	13
Fig.11 Figure	14
Fig.12 Figure	15
Fig.13 Figure	15
Fig.14 Figure	16
Fig.15 Figure	17
Fig.16 Figure	17
Fig.17 Figure	18
Fig.18 Figure	19
Fig.19 Figure	20
Fig. 20 ACF	25
Fig.21 PACF	25
Fig. 22 Figure	29
Fig.23 Figure	29

List of Tables:

Table-1 Dataset Sample	03
Table-2 Dataset the data	
Table-3 Table	05
Table-4 Pivot Table	07
Table-5 Table	11
Table-6 Table	12
Table-7 Table	21
Table-08 Table	22
Table-09 Table	24
Table-10 Table	27

Problem Statement - 1

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

Data set for the Problem: Sparkling.csv and Rose.csv

1.1 Read the data as an appropriate Time Series data and plot the data.

Sample of the dataset:

Head datasets:

	YearMonth	Sparkling
0	1980-01	1686
1	1980-02	1591
2	1980-03	2304
3	1980-04	1712
4	1980-05	1471

Table-01

Tail Datasets:

	YearMonth	Sparkling
182	1995-03	1897
183	1995-04	1862
184	1995-05	1670
185	1995-06	1688
186	1995-07	2031

Types of variables and missing values in the dataset:

- From the above results we can see that there is no missing value present in the dataset.
- There are a total of 187 rows.

Note: We can see in the datasets. YearMonth variable does not format properly so first we use manual add date column.

```
DatetimeIndex(['1980-01-31', '1980-02-29', '1980-03-31', '1980-04-30', '1980-05-31', '1980-06-30', '1980-07-31', '1980-08-31', '1980-09-30', '1980-10-31', ...

'1994-10-31', '1994-11-30', '1994-12-31', '1995-01-31', '1995-02-28', '1995-03-31', '1995-04-30', '1995-05-31', '1995-06-30', '1995-07-31'],

dtype='datetime64[ns]', length=187, freq='M')
```

Final datasets:

Sparkling

Time Stamp

1980-01-31	1686
1980-02-29	1591
1980-03-31	2304
1980-04-30	1712
1980-05-31	1471

Table-03

Figure - 01

1.2 Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Decompose the datasets:

Model = additive :

Figure-02

Model= multiplicative :

Figure-03

Remarks:

- We can see that the trend is upward.
- For the seasonality, not sure if there is multiplicative or additive seasonality we will see in other graphs.

Pivot Table:

Time_Stamp	1	2	3	4	5	6	7	8	9	10	11	12
Time_Stamp												
1980	1686.0	1591.0	2304.0	1712.0	1471.0	1377.0	1966.0	2453.0	1984.0	2596.0	4087.0	5179.0
1981	1530.0	1523.0	1633.0	1976.0	1170.0	1480.0	1781.0	2472.0	1981.0	2273.0	3857.0	4551.0
1982	1510.0	1329.0	1518.0	1790.0	1537.0	1449.0	1954.0	1897.0	1706.0	2514.0	3593.0	4524.0
1983	1609.0	1638.0	2030.0	1375.0	1320.0	1245.0	1600.0	2298.0	2191.0	2511.0	3440.0	4923.0
1984	1609.0	1435.0	2061.0	1789.0	1567.0	1404.0	1597.0	3159.0	1759.0	2504.0	4273.0	5274.0
1985	1771.0	1682.0	1846.0	1589.0	1896.0	1379.0	1645.0	2512.0	1771.0	3727.0	4388.0	5434.0
1986	1606.0	1523.0	1577.0	1605.0	1765.0	1403.0	2584.0	3318.0	1562.0	2349.0	3987.0	5891.0
1987	1389.0	1442.0	1548.0	1935.0	1518.0	1250.0	1847.0	1930.0	2638.0	3114.0	4405.0	7242.0
1988	1853.0	1779.0	2108.0	2336.0	1728.0	1661.0	2230.0	1645.0	2421.0	3740.0	4988.0	6757.0
1989	1757.0	1394.0	1982.0	1650.0	1654.0	1406.0	1971.0	1968.0	2608.0	3845.0	4514.0	6694.0
1990	1720.0	1321.0	1859.0	1628.0	1615.0	1457.0	1899.0	1605.0	2424.0	3116.0	4286.0	6047.0
1991	1902.0	2049.0	1874.0	1279.0	1432.0	1540.0	2214.0	1857.0	2408.0	3252.0	3627.0	6153.0
1992	1577.0	1667.0	1993.0	1997.0	1783.0	1625.0	2076.0	1773.0	2377.0	3088.0	4096.0	6119.0
1993	1494.0	1564.0	1898.0	2121.0	1831.0	1515.0	2048.0	2795.0	1749.0	3339.0	4227.0	6410.0
1994	1197.0	1968.0	1720.0	1725.0	1674.0	1693.0	2031.0	1495.0	2968.0	3385.0	3729.0	5999.0
1995	1070.0	1402.0	1897.0	1862.0	1670.0	1688.0	2031.0	NaN	NaN	NaN	NaN	NaN

Table- 4

Figure-04

Note: By seeing the above graph we can see that some lines are crossing each other so we can say there is no additive seasonality.

Check the residual and normality:

For the multiplicative :

Residual = 0.9997456359115033

Remarks: for the multiplicative seasonality error mean = 1 and data should be normally distributed.

Note:

- P value is greater than 0.05 so null hypothesis is not rejected. Residual normally distributed.
- Residual mean =1 both conditions are valid so we can say that seasonality is multiplicative.

Boxplot for yearly : To check trends :

Figure-06

Note:

looks upwards trends.

Boxplot for Month: To check seasonality

Figure- 07

Note: jan to jun looks constant sales, from july to december sales increasing and in the december sales is highest. So we can say that datasets have seasonality.

Month plot:

Figure-08

Note: Some month patterns look similar and some of the patterns look different. So by this pattern we can not justify that data have seasonality.

1.3 Split the data into training and test. The test data should start in 1999.

First few rows of Training Data

Sparkling

Time_Stamp	
1980-01-31	1686
1980-02-29	1591
1980-03-31	2304
1980-04-30	1712
1980-05-31	1471

Last few rows of Training Data

Sparkling

1605
2424
3116
4286
6047

Table - 05

First few rows of Test Data

Sparkling

Time_Stamp	
1991-01-31	1902
1991-02-28	2049
1991-03-31	1874
1991-04-30	1279
1991-05-31	1432

Last few rows of Test Data

Sparkling

Time_Stamp	
1995-03-31	1897
1995-04-30	1862
1995-05-31	1670
1995-06-30	1688
1995-07-31	2031

Table-06

Figure-09

1.4 Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

Linear Regression

Figure-10

Test RMSE

RegressionOnTime 1389.135175

naïve forecast models:

Figure-11

For Naive forecast on the Test Data, RMSE is 3864.279.

simple average models:

Figure-12

For Simple Average forecast on the Test Data, RMSE is 1275.082

Moving Average:

Figure-13

```
For 2 point Moving Average Model forecast on the Training Data, RMSE is 813.401
For 4 point Moving Average Model forecast on the Training Data, RMSE is 1156.590
For 6 point Moving Average Model forecast on the Training Data, RMSE is 1283.927
For 9 point Moving Average Model forecast on the Training Data, RMSE is 1346.278
For 12 point Moving Average Model forecast on the Training Data, RMSE is 1267.925
```

Simple exponential smoothing:

Figure-14

For Alpha =0.05 Simple Exponential Smoothing Model forecast on the Test Data, RMSE is 1316.035

Figure-15

Alpha=0.1,SimpleExponentialSmoothing 1375.393398

Double exponential smoothing:

Figure - 16

Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing 1778.564670

Triple exponential smoothing:

Figure - 17

Alpha=0.4,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing 336.715250

1.5 Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

Figure - 18

Results	of	Dickey	y-Fuller	Test:
---------	----	--------	----------	-------

Test Statistic	-1.360497
p-value	0.601061
#Lags Used	11.000000
Number of Observations Used	175.000000
Critical Value (1%)	-3.468280
Critical Value (5%)	-2.878202
Critical Value (10%)	-2.575653
dtype: float64	

Note:

We see that at a 5% significant level the Time Series is non-stationary.

Let us take a difference of order 1 and check whether the Time Series is stationary or not.

Figure - 19

Results of Dickey-Fuller Test:	
Test Statistic	-45.050301
p-value	0.000000
#Lags Used	10.000000
Number of Observations Used	175.000000
Critical Value (1%)	-3.468280
Critical Value (5%)	-2.878202
Critical Value (10%)	-2.575653
dtype: float64	

Note:

After differencing We see that at $\alpha = 0.05$ the Time Series is indeed stationary.

1.6 Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

ARIMA:

AIC Values: In Ascending order

	param	AIC
10	(2, 1, 2)	2210.618562
15	(3, 1, 3)	2225.661559
14	(3, 1, 2)	2228.928204
11	(2, 1, 3)	2229.358094
9	(2, 1, 1)	2232.360490
2	(0, 1, 2)	2232.783098
3	(0, 1, 3)	2233.016605
6	(1, 1, 2)	2233.597647

Table-07

ARIMA Model Results

============		=======	=========	:========		
Dep. Variable:	D.Sp	arkling	No. Observa	tions:	131	
Model:	ARIMA(2	ARIMA(2, 1, 2)		ood	-1099.309	
Method:		css-mle	S.D. of inn	ovations	1012.730	
Date:	Sat, 12 F	eb 2022	AIC		2210.619	
Time:	2	3:16:11	BIC		2227.870	
Sample:	02-	29-1980	HQIC		2217.628	
	- 12-	31-1990				
=======================================						
	coet		Z 		[0.025	0.975]
const	5.5843				4.570	6.599
ar.L1.D.Sparkling	1.2700	0.074	17.048	0.000	1.124	1.416
ar.L2.D.Sparkling	-0.5604	0.074	-7.620	0.000	-0.704	-0.416
ma.L1.D.Sparkling	-1.9978	0.042	-47.093	0.000	-2.081	-1.915
ma.L2.D.Sparkling	0.9978	0.042	23.501	0.000	0.915	1.081
		Root	ts			
	Real	Imaginar	-====== `y 	Modulus	Frequency	
AR.1 1.	1333	-0.7073	3j	1.3359	-0.0888	
AR.2 1.	1333	+0.707	3j	1.3359	0.0888	
MA.1 1.	0004	+0.0000	0j	1.0004	0.0000	
MA.2 1.	0019	+0.0000	Ðj	1.0019	0.0000	

Note: All lags are significant. We can expect the result to be good.

RMSE of Test data: ARIMA(2,1,2) 1374.546024

SARIMA:

AIC Values : In Ascending order

	param	seasonal	AIC
287	(2, 1, 1)	(2, 0, 2, 6)	2004.405208
62	(0, 1, 2)	(2, 0, 2, 6)	2004.527202
187	(1, 1, 2)	(2, 0, 2, 6)	2006.914723
37	(0, 1, 1)	(2, 0, 2, 6)	2007.195159
87	(0, 1, 3)	(2, 0, 2, 6)	2007.742155

Table-08

SARIMAX Results

			=======			
Dep. Variable:			У	No. Observat		132
Model: SAR	IIMAX(2, 1,	1)x(2, 0, [1, 2], 6)	Log Likeliho	ood	-864.020
Date:		Sat, 12	Feb 2022	AIC		1744.041
Time:			20:40:29	BIC		1766.138
Sample:			0	HQIC		1753.012
·			- 132			
Covariance Type:			opg			
coef	std err	Z	P> z	[0.025	0.975]	
ar.L1 0.0502	0.122	0.411	0.681	-0.189	0.290	
ar.L2 -0.1086	0.121	-0.897	0.370	-0.346	0.129	
ma.L1 -0.8593	0.079	-10.936	0.000	-1.013	-0.705	
ar.S.L6 0.0019	0.025	0.079	0.937	-0.046	0.050	
ar.S.L12 1.0421	0.016	66.124	0.000	1.011	1.073	
ma.S.L6 0.0130	0.137	0.095	0.924	-0.255	0.281	
ma.S.L12 -0.6389	0.089	-7.187	0.000	-0.813	-0.465	
sigma2 1.468e+05	1.44e+04	10.184	0.000	1.19e+05	1.75e+05	
======================================		0.02	Jarque-Ber	:======== :a (JB):	38.11	=
Prob(Q):		0.90	Prob(JB):	. (55).	0.00	_
Heteroskedasticity (H)	•	2.79	Skew:		0.51	
Prob(H) (two-sided):	•	0.00	Kurtosis:		5.61	
=======================================	.========		========	:========		=

RMSE of test data:

SARIMA(2,1,1)(2,0,2,6) 636.214759642355

	param	seasonal	AIC
50	(1, 1, 2)	(1, 0, 2, 12)	1555.584248
53	(1, 1, 2)	(2, 0, 2, 12)	1556.076790
26	(0, 1, 2)	(2, 0, 2, 12)	1557.121579
23	(0, 1, 2)	(1, 0, 2, 12)	1557.160507
77	(2, 1, 2)	(1, 0, 2, 12)	1557.340402

Table-09

SARIMAX Results

Dep. Varia Model: Date: Time: Sample:	SAR.	IMAX(1, 1,	Tue, 15 Feb 13:	, 12) Lo	С	-7 15 15	132 70.792 55.584 74.095 63.083
Covariance	Type:			opg			
========	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.6283	0.255	-2.464	0.014	-1.128	-0.128	
ma.L1	-0.1040	0.225	-0.463	0.644	-0.545	0.337	
ma.L2	-0.7277	0.154	-4.736	0.000	-1.029	-0.427	
ar.S.L12	1.0439	0.014	72.834	0.000	1.016	1.072	
ma.S.L12	-0.5550	0.098	-5.663	0.000	-0.747	-0.363	
ma.S.L24	-0.1354	0.120	-1.133	0.257	-0.370	0.099	
sigma2	1.506e+05	2.03e+04	7.401	0.000	1.11e+05	1.9e+05	
======== Ljung-Box Prob(0):	(L1) (Q):	=======	0.04 0.04	Jarque-Be	ra (JB):	11.72 0.00	
(0 /	asticity (H)		1.47	` '		0.36	
Prob(H) (to		•	0.26			4.48	
========							

RMSE of test data:

SARIMA(1,1,2)(1,0,2,12) 528.611364

1.7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Figure - 20

Figure-21

ARIMA Model Results

=============	=========				
Dep. Variable:	D.Spar	kling No.	Observation	ıs:	131
Model:	ARIMA(0,	1, 0) Log	Likelihood		-1132.791
Method:		css S.D.	of innovat	ions	1377.911
Date:	Tue, 15 Feb	2022 AIC			2269.583
Time:	17:	45:36 BIC			2275.333
Sample:	02-29	-1980 HQIC			2271.919
	- 12-31	-1990			
=======================================	=========	========	========	========	========
	coef std err	Z	P> z	[0.025	0.975]
const 33.	2901 120.389	0.277	0.782	-202.667	269.248
============					

RMSE of test data:

ARIMA(0,1,0) 4779.154299

SARIMAX Results

=======	========							.=======
Dep. Varia	ble:			У	No. O	bservations:		132
Model:	SARI	MAX(0, 1, 0)	x(0, 1, 0,	, 6)	Log L	ikelihood		-1130.492
Date:		Tue	, 15 Feb 2	2022	AIC			2262.984
Time:			17:45	5:36	BIC			2265.804
Sample:				0	HQIC			2264.129
•			_	132				
Covariance	Type:			opg				
========	=========				=====	========		
	coef	std err	Z	P	> z	[0.025	0.975]	
sigma2	4.842e+06	5.1e+05	9.495	0	.000	3.84e+06	5.84e+06	
Ljung-Box	======================================	========	1.89	===== Jarqu	e-Bera	=====================================	=======	4.17
Prob(Q):	, , , , ,		0.17	Prob(JB):	, ,		0.12
Heterosked	asticity (H):		1.96	Skew:	•		-	-0.05
Prob(H) (t	wo-sided):		0.03	Kurto	sis:			3.89
========								====

RMSE of test data:

SARIMA(0,1,0)(0,1,0,6) 27078.593877

1.8 Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE
Alpha=0.4,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing	336.715250
a=0.0.111,Beta=0.0617,Gamma=0.395,TripleExponentialSmoothing	469.767970
SARIMA(1,1,2)(1,0,2,12)	528.611364
SARIMA(2,1,1)(2,0,2,6)	636.214760
2pointTrailingMovingAverage	813.400684
4pointTrailingMovingAverage	1156.589694
12pointTrailingMovingAverage	1267.925330
SimpleAverageModel	1275.081804
6pointTrailingMovingAverage	1283.927428
Alpha=0.05,SimpleExponentialSmoothing	1316.035487
9pointTrailingMovingAverage	1346.278315
ARIMA(2,1,2)	1374.546024
Alpha=0.1,SimpleExponentialSmoothing	1375.393398
RegressionOnTime	1389.135175
Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing	1778.564670
SARIMA(0,1,1)(3,0,1,6)	1999.383783
SARIMA(0,1,1)(3,0,1,6)	1999.383783
ARIMA(7,1,0)	2308.994154
NaiveModel	3864.279352

Table - 10

Note: We can say that the triple exponential(alpha=0.4, Beta=0.1, gamma=0.395) gives least RMSE.

1.9 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Figure- 22

RMSE of the Full Model 377.29032542281715

	lower_CI	prediction	upper_ci
1995-08-31	1321.896024	2063.370030	2804.844037
1995-09-30	1838.303763	2579.777769	3321.251776
1995-10-31	2676.612337	3418.086343	4159.560350
1995-11-30	3567.115379	4308.589385	5050.063392
1995-12-31	5874.310141	6615.784148	7357.258154

Table-10

Figure - 23

1.10 Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

- As Seen in the yearly plot, the upward trend is very slight. I suggest that we try to increase the sales.
- need to run promotional marketing campaigns or evaluate if we need to tie up with an alternate agency. It will increase sales.
- From Jan to June sales are low so we should try to increase the sales.
- From July to dec sales are increasing so we can try to increase the sales more.