

Monitorização Wireless de Pessoas em Ambiente Doméstico

Márcio Luís Mendonça de Vasconcelos de Nóbrega

Dissertação para obtenção do Grau de Mestre em **Engenharia Electrotécnica e de Computadores**

	Júri
Presidente:	
Orientador:	Doutor Renato Jorge Caldeira Nunes
Co-Orientador: Vogais:	Doutor António Manuel Raminhos Cordeiro Grilo
· ·	

"Uma citação engraçada ou algo do género, se queres incluir uma. Caso não, comenta esta parte"

Agradecimentos

Obrigado ao Pedro Tomás, o autor original do template para LATEX (versão inglesa).

Resumo

O resumo.

Palavras Chave

Até seis, palavras, chave.

Abstract

Your abstract goes here.

Keywords

Up to, six, keywords.

1	Intro	odução	1
	1.1	Motivação	2
	1.2	Objectivos	3
	1.3	Principais Contribuições	3
	1.4	Organização da Dissertação	3
2	Trab	palho Relacionado	5
	2.1	Estado da Arte	6
		2.1.1 Monitorização com Vídeo e Áudio	6
		2.1.2 Wearable Sensors	8
	2.2	Monitorização de Idosos	8
	2.3	IEEE 802.15.4 e ZigBee	8
	2.4	Algoritmos de Localização	8
3	Plat	aforma de Simulação	9
	3.1	Escolha da Framework	10
	3.2	Sensores Wireless	10
	3.3	Propagação e Decisão	10
	3.4	Obstáculos	10
4	Arq	uitectura do Sistema	11
	4.1	Pressupostos e Estrutura	12
	4.2	Ficheiros XML de Configuração	12
	4.3	Network Layer	12
	4.4	Application Layer	12
5	Res	ultados	13
	5.1	Potência Recebida	14
	5.2	Criação dos RadioMaps e RadioMapClusters	14
	5.3	Localização	14
	5.4	Throuput	14

Α	Apêndice 1	19
	6.1 Trabalho Futuro	16
6	Conclusões	15
	5.5 Escalabilidade	14

Lista de Figuras

1.1	Pirâmides demográficas em Portugal entre 1950 e 2050 (estimativa) [1]	2
2.1	Arquitectura do sistema proposto em [2].	(
2.2	Arquitectura de fusão de decisão referida em [3]	-
2.3	Processo de detecção de quedas e alertas descrito no trabalho [4]	8

Lista de Tabelas

Lista de Acrónimos

Introdução

1.1	Motivação
1.2	Objectivos
1.3	Principais Contribuições
1.4	Organização da Dissertação

Resumo do capítulo.

1.1 Motivação

O aumento da esperança de vida provoca actualmente um envelhecimento generalizado da população mundial o que coloca diversos desafios ao desenvolvimento nacional, à sustentabilidade das famílias e à capacidade dos sistemas de saúde. Durante anos recentes o número de pessoas no mundo acima dos 60 anos aumentou de 200 milhões em 1950 para 670 milhões, sector etário que representa já cerca de 20% da população total nos países desenvolvidos. [1]. Com a deslocalização dos jovens para a periferia dos grandes centros e a baixa natalidade, aumenta cada vez mais o número de idosos que vivem sozinhos em suas casas. Esta situação cria ansiedade em todos os envolvidos, resultando muitas vezes em internamentos precoces em lares, com um custo elevado e vagas limitadas.

Figura 1.1: Pirâmides demográficas em Portugal entre 1950 e 2050 (estimativa) [1].

Pessoas com deficiências físicas ou mentais apresentam também uma idêntica necessidade de acompanhamento. Por exemplo, pessoas com deficiência mental média, normalmente têm capacidades sociais e funcionais para serem minimamente independentes, ainda que necessitem de alguma supervisão e assistência. Normalmente têm problemas tão básicos como, por exemplo, decidir quando se levantar ou deitar na cama, ou tomar medicamentos à hora certa.

A monitorização de ambos os casos descritos permitiria libertar mão-de-obra especializada para situações de maior dependência, reduzindo custos e aumentando a eficiência, notificando médicos ou hospitais da mudança de sinais vitais e comportamentos, que precedam situações de risco ou interagindo com ambientes inteligentes.

A evolução tecnológica dos sensores wireless tem vindo a introduzir no mercado sensores, rádios e processadores de baixa potência e baixo custo. Estes dispositivos, com o seu reduzido tamanho, têm um enorme potencial para o desenvolvimento de aplicações centradas no utilizador. Com um vasto tipo de sensores, as aplicações ubíquas¹ podem por isso surgir como

¹Aplicação que tem como objectivo tornar a interacção entre pessoa e máquina invisível, integrando a informática com acções e comportamentos naturais das pessoas.

alternativa de baixo custo e enorme valor acrescentado para monitorização de pessoas num ambiente doméstico, criando uma simbiose entre pessoa e máquina que permita usufruir do direito de viver de forma independente, com privacidade, dignidade e total controlo da própria vida.

1.2 Objectivos

Nesta dissertação é proposto o desenvolvimento de uma solução onde uma ou mais pessoas, portadoras de um nó wireless, se movimentam num ambiente onde existem outros nós wireless. Deverá ser possível localizar cada pessoa e estabelecer uma comunicação bidireccional entre esta e um servidor central.

Assim definem-se os seguintes objectivos:

- Reunir através de pesquisa informação sobre o trabalho relacionado;
- Identificar necessidades num ambiente doméstico e propor para estas, soluções de hardware existentes no mercado;
- Definir a arquitectura do sistema e os papeis de cada interveniente;
- Identificar uma plataforma de simulação existente que permita, de uma forma realista, simular o comportamento do sistema;
- Implementar a simulação de um algoritmo de encaminhamento;
- Implementar a simulação de um algoritmo de localização;
- Analisar a simulação com métricas que permitam conhecer o erro de localização, bem como os limites e valores óptimos do sistema.

1.3 Principais Contribuições

(a escrever no fim)

1.4 Organização da Dissertação

(a escrever no fim)

Trabalho Relacionado

2.1	Estado da Arte	
	2.1.1 Monitorização com Vídeo e Áudio 6	
	2.1.2 Wearable Sensors	
2.2	Monitorização de Idosos	
2.3	IEEE 802.15.4 e ZigBee	
2.4	Algoritmos de Localização	

Pequena introdução.

2.1 Estado da Arte

A geração actual de casas inteligentes tem tido uma maior evolução na inteligência artificial em sistema centralizado, em detrimento dos sistemas de monitorização e controlo. A casa inteligente actual consiste em vários electrodomésticos e outros dispositivos, com sensores, actuadores e/ou monitores biomédicos, usados pelos residentes numa base diária. Em alguns casos a casa é inteiramente monitorizada recorrendo a tecnologias áudio e vídeo. Estes sistemas apresentam uma excelente forma de monitorização mas têm algumas desvantagens:

- Custos elevados devido ao uso de sensores sofisticados e equipamentos áudio-visuais;
- Custos elevados de instalação devido à instalação individualizada;
- Elevada largura de banda necessária;
- Demasiada intrusão no quotidiano da pessoa criando um sentimento de falta de privacidade ou desconforto.

2.1.1 Monitorização com Vídeo e Áudio

Em [2] através de um sensor wireless equipado com um acelerómetro e transportado pela pessoa, são detectadas possíveis quedas. Por forma a minimizar o número de falsos alarmes, são usadas câmaras que cobrem o espaço, que analisam a posição da pessoa e são activadas de acordo com uma localização obtida através de triangulação baseada nas posições conhecidas dos nós fixos e a potência recebida pelo nó móvel. É também apresentada a possibilidade de efectuar transmissão de voz utilizando o rádio IEEE 802.15.4, uma vez que já existem rádios com largura de banda necessária para efectuar transmissão de voz.

Figura 2.1: Arquitectura do sistema proposto em [2].

Em [3] e [5] é feita a combinação da informação fornecida por redes de sensores e sistemas de vídeo-vigilância. Através de uma inferência lógica que considera sequências de eventos são tomadas decisões tal como é possível observar em 2.2. O ocupante da casa usa um sensor não intrusivo para determinação da posição e comunicação por voz, mas não é necessária qualquer interacção com a tecnologia. À semelhança do trabalho anterior a privacidade é um tema fulcral e todo o tratamento de imagem é feito localmente usando *Smart Cameras* ¹.

Figura 2.2: Arquitectura de fusão de decisão referida em [3].

No trabalho [6] é feita a aplicação de um sistema de monitorização num lar de idosos através de vídeo e áudio sem recurso a sensores portáteis. O trabalho referencia a insuficiência de profissionais em contraste com o rápido crescimento da população idosa e o pouco tempo que estes têm disponível para cada idoso. Emerge assim a necessidade de obter um conjunto de dados de forma autónoma e usado para detectar situações de perigo de atempadamente, como por exemplo a instabilidade do andar ou registos comportamentais que favorecem a prescrição de medicamentos psicotrópicos. Os grandes desafios indicados são a localização por vídeo, a correcta identificação e marcação das pessoas no campo de visão e a análise das suas actividades individuais.

Com fundamento no conceito *aging in place*, onde idosos vivem de forma independente e segura nas suas próprias casas, o trabalho [4] apresenta, a monitorização de quedas mas também funcionalidades utilitárias como a detecção de objectos, calendário, vídeo-conferência e livro de endereços. Recorrendo a câmaras e a técnicas de *machine learning* o sistema não necessita que o utilizador use um sensor. O sistema tem uma abordagem centralizada devido à forte exigência de processamento em tempo real e memória necessárias. A detecção de objectos é feita verificando mudanças na imagem ou procurando objectos de acordo com as suas características.

¹câmaras que para além de captar imagem também podem tratar a imagem e obter resultados a partir desta

Figura 2.3: Processo de detecção de quedas e alertas descrito no trabalho [4].

Em [7] é utilizado o sinal áudio em conjunto com o vídeo para inferir acerca de uma possível queda. O sinal áudio torna-se essencial para distinguir entre uma pessoa que se sentou ou que caiu. Consideram-se processos de textitMarkov² que permitem perceber se o comportamento do indivíduo está de acordo com o previsto ou não e assim tomar as medidas necessárias.

Embora cada aplicação tenha as suas mais-valias e a precisão dos sistemas onde o sinal vídeo é utilizado seja bastante elevada, existe a questão da privacidade que resulta numa baixa aceitação deste tipo de sistemas por parte de pessoas idosas.

A grande preocupação nos trabalhos identificados permanece na detecção de quedas e na fiabilidade dessa detecção.

2.1.2 Wearable Sensors

Com a evolução dos sensores wireless estão a aparecer cada vez mais soluções que permitem fazer uma monitorização contínua do estado de saúde de uma pessoa, independentemente da sua localização ou actividade. A redução do tamanho dos sensores permite idealizar a criação de vestuário com sensores embutidos, suficiente leve e confortável para poder ser usado diariamente. Para além da monitorização afigura-se também a administração de medicamentos automaticamente através de actuadores.

2.2 Monitorização de Idosos

2.3 IEEE 802.15.4 e ZigBee

Tecnologia ZigBee 802.15.4 e protocolo de encaminhamento AODV;

²Processo sem memória onde podem ser feitas previsões do futuro com base somente no estado presente, sendo o futuro e passado do processo considerados independentes

2.4 Algoritmos de Localização

Diversas opções disponíveis. Vantagens e desvantagens; Tabela comparativa; Descrição matemática do HORUS; O esquema que eu vou usar difere na medida em que o cálculo é feito na base station e não no mobile node

3

Plataforma de Simulação

3.1	Escolha da Framework
3.2	Sensores Wireless
3.3	Propagação e Decisão
3.4	Obstáculos

3. Plataforma de Simulação

Pequena introdução.

3.1 Escolha da Framework

Diversas opções disponíveis; Vantagens e desvantagens de cada; Fundamentação da escolha

3.2 Sensores Wireless

Explicação das soluções existentes na simulação e a forma como se aplicam à realidade;

3.3 Propagação e Decisão

Explicação dos diversos modelos existentes e do escolhido

3.4 Obstáculos

Explicação da solução implementada e valores a utilizar

4

Arquitectura do Sistema

4.1	Pressupostos e Estrutura	
4.2	Ficheiros XML de Configuração	
4.3	Network Layer	
4.4	Application Layer	

Pequena introdução.

4.1 Pressupostos e Estrutura

Limitações da framework que vão diferir da realidade; Explicação de todos os intervenientes no sistema: nós móveis, estáticos e de base; A forma como estão interligados; A forma como é feita a escalabilidade e distinção entre redes de andares diferentes; O tipo de nós presentes no sistema.

4.2 Ficheiros XML de Configuração

RadioMap; RadioMapClusters; Normal standard; Esquema com os diversos ficheiros;

4.3 Network Layer

Tipos de mensagens da camada Netw e fluxogramas como a forma como essas mensagens são tratadas por cada tipo de nó; Estruturas que fazem parte da camada Netw utilizadas; Exemplo com imagens do AODV a funcionar; NetwToApplicationInfo para transportar informação acerca da potência do sinal;

4.4 Application Layer

Explicação da mensagem HoHuT e a forma como é usada para transportar informação; Explicação do comportamento, por fluxograma, de cada um dos app layers da camada App;

5

Resultados

5.1	Potência Recebida
5.2	Criação dos RadioMaps e RadioMapClusters
5.3	Localização
5.4	Throuput
5.5	Escalabilidade

Pequena introdução.

5.1 Potência Recebida

Histogramas das potências recebidas para situacao parada, em movimento e com obstaculos; Correlação entre amostras

5.2 Criação dos RadioMaps e RadioMapClusters

Demonstração do caminho escolhido para construir os radiomaps e mobilidade utilizada

5.3 Localização

Analise dos erros de posicao; Analise do boost de performance por causa do uso de clusters; Análise do efeito do centro de massa e do time avg;

5.4 Throuput

Analise do throuput nos diversos casos de estudo Analise de pacotes perdidos

5.5 Escalabilidade

Analise do ponto em que e necessario adicionar mais uma baseStation Analise do sistema com mais que uma base station

Conclusões

onteúc				

Pequena intrudução

6.1 Trabalho Futuro

Aquilo que se deveria ter feito mas não se fez por alguma razão. Eventuais evoluções ou melhorias ao trabalho feito. Possibilidade do sistema auto-construir o radioMap com base em nos estaticos que conhecem a sua posicao.

Bibliografia

- [1] D. of Economic and S. A. P. Division, <u>World Population Aging 1950-2050</u>, United Nations Std., 2001. [Online]. Available: http://www.un.org/esa/population/publications/worldageing19502050/
- [2] A. M. Tabar, A. Keshavarz, and H. Aghajan, "Smart home care network using sensor fusion and distributed vision-based reasoning," in <u>In Proc. of VSSN 2006</u>. ACM Press, 2006, pp. 145–154.
- [3] H. Aghajan, J. C. Augusto, C. Wu, P. Mccullagh, and J. ann Walkden, "Distributed vision-based accident management for assisted living," in <u>In Int. Conf. on Smart homes and health</u> Telematics ICOST 2007. Springer-Verlag, 2007, pp. 196–205.
- [4] A. Williams, D. Xie, S. Ou, R. Grupen, A. Hanson, and E. Riseman, "Distributed smart cameras for aging in place," in In ACM SenSys Workshop on Distributed Smart Cameras, 2006.
- [5] A. Keshavarz, A. M. Tabar, and Ham, "Distributed vision-based reasoning for smart home care," in ACM SenSys Workshop on Distributed Smart Cameras DSC 06, 2006.
- [6] A. G. Hauptmann, J. Gao, R. Yan, Y. Qi, J. Yang, and H. D. Wactlar, "Automated analysis of nursing home observations," in <u>Pervasive Computing</u>, <u>IEEE</u>, vol. 3. Carnegie Mellon Univ., Pittsburgh, PA, USA, April-June 2004, pp. 15–21.
- [7] B. U. Toreyin, Y. Dedeoglu, and A. E. Çetin, "Hmm based falling person detection using both audio and video," in <u>IEEE International Workshop on Human-Computer Interaction</u>. Springer-Verlag GmbH, 2005, pp. 211–220.

Apêndice 1