Automata-based stream processing ICALP 2017

Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford

University of Pennsylvania

July 10, 2017

Streaming Input Stream Output ..., (clickid₂, x_2 , y_2 , data₂), (clickid₁, x_1 , y_1 , data₁) (IPaddr₂, request₂), (IPaddr₁, request₁)

- Compute *quantitative* property of input stream
- Output in real-time
- Efficient space
- Efficient time per element

 \ldots , BP₄, BP₃, BP₂, BP₁

"Maximum average during an episode"

"Maximum average during an episode"

Quantitative Regular Expressions (PLDI 2017):

iter(split(iter((
$$x < 140$$
) $\mapsto 0, 0, +$),
combine(iter(($x > 140$) $\mapsto x, 0, +$),
iter(($x > 140$) $\mapsto 1, 0, +$), /)), 0, max)

"Maximum average during an episode"

Quantitative Regular Expressions (PLDI 2017):

$$\begin{split} &\mathsf{iter}(\mathsf{split}(\;\mathsf{iter}((x<140)\mapsto 0,0,+),\\ &\mathsf{combine}(\;\mathsf{iter}((x>140)\mapsto x,0,+),\\ &\mathsf{iter}((x>140)\mapsto 1,0,+),/)\;),0,\mathsf{max}) \end{split}$$

Can automata do this?

Why automata?

Why automata?

- ullet Efficient space \checkmark
- Efficient time per element ✓

"Streamability"

• NFAs > DFAs

Why automata?

- Efficient space ✓
- Efficient time per element ✓

Streamability"

- NFAs > DFAs
- Expressiveness X
- Succinctness X

Our model

Unambiguous Nondet. + Nesting + Consistent Parallelism ✓ (Thm. 4)

Our model

```
Unambiguous Nondet. + Nesting + Consistent Parallelism ✓ (Thm. 4)
```

Nondeterminism + Nesting + Consistent Parallelism ✗ (Thm. 5) Unambiguous Nondeterminism + Nesting + Parallelism ✗ (Thm. 6)

Our model

```
Unambiguous Nondet. + Nesting + Consistent Parallelism ✓ (Thm. 4)
```

```
Nondeterminism + Nesting + Consistent Parallelism \times (Thm. 5)
Unambiguous Nondeterminism + Nesting + Parallelism \times (Thm. 6)
```

Outline:

- Features Nondeterminism, Nesting, Parallelism
- Nondeterminism + Nesting X
- Unambiguous Nondeterminism + Nesting ✓
- Future work

Nondeterministic (symbolic) weighted automata

	3	Т	U	3	U	2	3	
q_0	q_0	q_0	q_0	q_0	q_1	q_1	q_1	
0	0	0	0	0	0	2	5	\implies 5
q_0	q_0	q_0	q_1	q_1	q_2	q_2	q_2	
0	0	0	0	3	3	3	3	\implies 3
q_1	q_1	q_1	q_2	q_2	q_2	q_2	q_2	
0	3	4	4	4	4	4	4	\implies 4
						6		

Nesting

 \mathcal{M}_2 computing MAXBLOCKSUM

 $\underline{\mathcal{S}}$ computing Sum

Parallelism

\mathcal{M}_3 computing LastBlockAverage

$\underline{\mathcal{S}}$ computing $S\mathrm{UM}$

$\underline{\mathcal{C}}$ computing COUNT fold $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Nondeterminism + Nesting X

Unambiguous Nondeterminism + Nesting ✓

\mathcal{M}_5 computing LastBlockAverage fold $+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$

Future work

Expressiveness — equivalence of models

"Flat" model — more immediate evaluation algorithm

Optimization

Other models

Expressiveness

Decidability

Nested weighted automata

Register automata

Expressiveness

Output value \longrightarrow computed term

"MSO-definable string to tree transformations"

Capturing streamability