Problème I : Alimentation de différents appareils en régime stationnaire

1. On peut appliquer par exemple le théorème de Millman en A, avec la masse en B:

$$u = V_A = \frac{e/R + 0 - \eta}{1/R + 1/R}$$
 soit $u = \frac{e - R\eta}{2}$. An $u = 10 \text{ V}$.

- **2.** u = e Ri donc $i = \frac{e u}{R}$ soit $i = \frac{e}{2R} + \frac{\eta}{2}$. AN i = 14A.
- **3.** Puissance fournie par le générateur (en convention g én érateur) : $P_g = ui$. Puissance re que par le moteur (en convention récepteur) : $P_m = u\eta$. Puissance re que par le radiateur (en convention récepteur également) : $P_r = u(i-\eta) = R(i-\eta)^2$.

AN $P_g = 140 \text{ W}$; $P_m = 40 \text{ W}$; $P_r = 100 \text{ W}$. Elles v érifient le bilan énerg étique du circuit : $P_g = P_m + P_r$

4.

Loi d'Ohm, en convention g én érateur : $u = -\frac{3R}{5}\eta$. AN u = -2,4V

5.

Pont diviseur de tension : $u = \frac{3e}{4} \frac{R}{R + 3R/2}$ soit $u = \frac{3e}{10}$. AN u = 7,2 V.

6. D'après le théorème de superposition: $u = \frac{3e}{10} - \frac{3R}{5}\eta$. AN u = 4.8V.

7.

On place la masse au nœud du bas : alors $u = V_B$.

Th éor ème de Millman en $B: V_B\left(\frac{1}{R} + \frac{1}{R} + \frac{1}{R}\right) = \frac{V_A}{R} + \frac{V_A - e/2}{R} + \frac{0}{R} - \eta$ soit

$$3V_B = 2V_A - \frac{e}{2} - R\eta$$

En A:
$$V_A \left(\frac{1}{R} + \frac{1}{R} + \frac{1}{R} \right) = \frac{V_B}{R} + \frac{V_B + e/2}{R} + \frac{0+e}{R}$$
 soit $3V_A = 2V_B + \frac{3e}{2}$. Alors

$$3V_B = \frac{4}{3}V_B + e - \frac{e}{2} - R\eta$$
 d'où $\frac{5}{3}V_B = \frac{e}{2} - R\eta$ et finalement $V_B = u = \frac{3e}{10} - \frac{3R\eta}{5}$.

Problème II: Utilisation d'une lampe à l'incandescence

1.b) Le g én érateur de Th évenin est en convention g én érateur :

$$u=e_1-R_1i.$$

1.c) AN $u = 4,6-2,0 \times i$ avec i en A, u en V. La droite correspondante est trac é ci-dessous.

Le point de fonctionnement est donné par l'intersection des deux caractéristiques : on trouve $[u_1 = 4,1 \text{ V}]$ et $[i_1 = 0,24 \text{ A}]$.

La puissance re que est $P_1 = u_1 \times i_1$ en convention r écepteur. An $P_1 = 0.98$ W.

Par équivalences Thévenin-Norton et associations, on trouve donc $E = \frac{R_1 e_2 + R_2 e_1}{R_1 + R_2}$ et $R = \frac{R_1 R_2}{R_1 + R_2}$

AN E = 6.4 V et $R = 1.2 \Omega$.

2.b) La nouvelle caract éristique a donc pour équation $u = 6,4-1,2\times i$ avec i en A, u en V.

Le point de fonctionnement est maintenant : $u_2 = 6,0 \text{ V}$ et $i_2 = 0,295 \text{ A}$ La puissance re que est $P_2 = u_2 \times i_2$. AN $P_2 = 1,8 \text{ W}$.