FRAME RELAY

Conmutación por paquetes

- La conmutación por paquetes es un método de conmutación WAN en el que los dispositivos de red comparten un circuito virtual permanente (**PVC**), que es similar al enlace punto a punto para transportar paquetes desde un origen hasta un destino a través de una red portadora.
- Frame Relay, SMDS y X.25 son ejemplos de las tecnologías WAN conmutadas por paquetes. Las redes conmutadas pueden transportar tramas (paquetes) de tamaños variables o celdas de tamaño fijo. El tipo de red conmutada por paquetes más común es Frame Relay.

X.25

- Primer servicio estándar de red pública de datos. Especificado en 1976.
- Especifica los tres niveles inferiores (físico, enlace y red)
- Sistema jerárquico de direccionamiento X.121. Interconexión a nivel mundial.
- Diseñado para medios físicos poco fiables. Comprobación de datos a nivel de enlace (protocolo de ventana deslizante).
- No apto para tráfico en tiempo real
- Paquetes de hasta 128 bytes normalmente.
- Servicio orientado a conexión. Orden garantizado.
- Costo proporcional al tiempo (normalmente SVC) y al tráfico (número de paquetes).
- Velocidades típicas de 9,6 a 64 Kbps.
- Servicio poco interesante en la actualidad

Frame Relay

- Versión aligerada del X.25.
- Pensada para combinar con otros protocolos como TCP/IP, y para interconexión multiprotocolo de LANs
- Servicio no fiable; si llega una trama errónea se descarta y el nivel superior (normalmente transporte) ya se enterará y pedirá retransmisión
- Tamaño máximo de paquete (trama) de 1 a 8 KB
- Velocidades de acceso hasta 44.736 Mb/s, típicas de 64 a 1.984 Kb/s
- QoS definida por CIR (Committed Information Rate) y por EIR (Excess Information Rate). Esto forma parte del SLA (Service Level Agreement): acuerdo de nivel de servicio
- Eficiencia mucho mejor que X.25, especialmente a altas velocidades
- Habitualmente utiliza PVCs. SVCs no soportados por muchos operadores.
- Costo proporcional a capacidad de línea física y al CIR

Comparación X.25 y FR

X.25		Frame Relay
Establecimiento de circuito Control de circuito Control de flujo de circuito Direccionamiento	Red	
Control de enlace Creación de tramas Control de errores Control de flujo de enlaces Fiabilidad	Enlace	Direccionamiento Creación de tramas Control de errores Gestión de interfaces
Conexión Física	Físico	Conexión Física

Niveles utilizados por Frame Relay y X.25

En la figura de la derecha se proporciona una lista de las funciones suministradas por cada uno de los niveles OSI para X.25 y Frame Relay. Gran parte de las funciones de X.25 se eliminan en Frame Relay. La función de direccionamiento se desplaza desde la capa 3 en X.25 a la capa 2 en Frame Relay. Todas las demás funciones del nivel 3 de X.25 no están incorporadas en el protocolo de Frame Relay.

Comparación X.25 y Frame Relay

Nodo Intermedio 14 3 4 13 16 11 9 8 7 10 Destino

(a) Red de conmutación de paquetes

Nodo Intermedio 3 4 Origen Destino

(b) Red de retransmisión de tramas

FIGURA 10.1 Conmutación de paquetes frente a retransmisión de tramas: envío del emisor, respuesta del destino.

X.25

Control en cada Enlace. Intercambio de tramas de datos y confirmaciones entre nodos

Frame Relay

Control entre hosts finales. No existe intercambio de información entre nodos. Sólo se envía un reconocimiento desde el sistema final.