DISTRIBUTIONAL REINFORCEMENT LEARNING

SPRING 2024

Hyunin Lee

Ph.D. student UC Berkeley hyunin@berkeley.edu

Contents

1	Cha	apter 2	3
	1.1	Random Variables and Their Probability Distributions	3
	1.2	Markov Decision Processes	3
	1.3	The Pinball Model	3
	1.4	The Return	3
	1.5	Properties of the Random Trajectory	4
	1.6	The Random-Variable Bellman Equation	4
	1.7	From Random Variables to Probability Distributions	4
		1.7.1 Mixing	4
		1.7.2 Scaling and translation	5
2	Cha	apter 3	6
	2.1	The Monte Carlo Backup	6
	2.2	Incremental Learning	6
	2.3	Temporal-Difference Learning	7
	2.4	From Values to Probabilities	7
	2.5	The Projection Step	8

1 Chapter 2

1.1 Random Variables and Their Probability Distributions

1.2 Markov Decision Processes

Definition 1.1 (Transition dynamics). We define transition dynamics $P: \mathcal{X} \times \mathcal{A} \to \mathscr{P}(\mathbb{R} \times \mathcal{X})$ that provides the joint probabiltiy distirbuiotn of R_t and X_{t+1} in erths of state X_t and action A_t .

$$R_t, X_{t+1} \sim \boldsymbol{P}(\cdot, \cdot | X_t, A_t)$$

Definition 1.2 (Reward distribution). $R_t \sim P_{\mathcal{R}}(\cdot \mid X_t, A_t)$

Definition 1.3 (Transition kernel). $X_{t+1} \sim P_{\mathcal{X}}(\cdot \mid X_t, A_t)$

Definition 1.4 (Markov Decision Process (MDP)). MDP is a tuple $(\mathcal{X}, \mathcal{A}, \xi_0, \mathbf{P}_{\mathcal{X}}, \mathbf{P}_{\mathcal{R}})$

Definition 1.5 (Policy). A policy is a mapping $\pi : \mathcal{X} \to \mathscr{P}(\mathcal{A})$ rom state to probabilty distributions over actions.

$$A_t \sim \pi(\cdot|X_t)$$

1.3 The Pinball Model

1.4 The Return

Definition 1.6 (Return G). $G = \sum_{t=0}^{\infty} \gamma^t R_t$

The return is a sum of scaled, real-valued random variables and is therefore itself a random variable.

Assumption 1.7. For each state $x \in \mathcal{X}$ and action $a \in \mathcal{A}$, the reward distribution $P_{\mathcal{R}}(\cdot \mid x, a)$ has finite first moment. This is if $R \sim P_{\mathcal{R}}(\cdot \mid x, a)$, then

$$\mathbb{E}[|R|] < \infty.$$

Proposition 1.8. Under Assumption 1.7, the random return G exists and is finite with proabbility 1, in the sense that

$$\mathbb{P}_{\pi}\left(G\in(-\infty,\infty)\right)=1.$$

1.5 Properties of the Random Trajectory

Definition 1.9 (Probablity distribution of random variable Z). We denote $\mathcal{D}(Z)$ as the probability distribution of random variable Z. When Z is real-valued, then for $S \in \mathbb{R}$, we have

$$\mathcal{D}(Z)(S) = \mathbb{P}(Z \in S)$$

Also, we denote $\mathcal{D}_{\pi}(Z)$ as

$$\mathcal{D}_{\pi}(Z)(S) = \mathbb{P}_{\pi}(Z \in S)$$

1.6 The Random-Variable Bellman Equation

Definition 1.10 (Return-variable function).
$$G^{\pi} = \sum_{t=0}^{\infty} \gamma^{t} R_{t}, X_{0} = x.$$

Formally, G^{π} is a collection of random variables indexed by an initial state x, each generated by a random trajectory $(X_t, A_t, R_t)_{t\geq 0}$ under the distribution $\mathbf{P}(\cdot|X_0=x)$.

Proposition 1.11 (The random-variable Bellman equation). Let G^{π} be the return-variable function of policy π . For a sample transition (X = x, A, R, X'), it holds that for any state $x \in \mathcal{X}$,

$$G^{\pi}(x) \stackrel{\mathcal{D}}{=} R + \gamma G^{\pi}(X')$$

1.7 From Random Variables to Probability Distributions

Recall the notation that for a real-valued cariable Z with probability distribution $\nu \in \mathscr{P}(\mathbb{R})$, we define

$$\nu(S) = \mathbb{P}(Z \in S), \ S \subseteq \mathbb{R}.$$

In a same way, for each state $x \in \mathcal{X}$, let us denote the distribution of the random variable $G^{\pi}(x)$ by $\eta^{\pi}(x)$. Using this notation ,we have

$$\eta^{\pi}(x)(S) = \mathbb{P}(G^{\pi}(x) \in S), S \subseteq \mathbb{R}.$$

We call the collection of these per-state distribution the return-distirbution function. Note that $\eta^{\pi}(x) \in \mathscr{P}(\mathbb{R})^{\mathcal{X}}$.

1.7.1 Mixing

Recall that for return-variable G^{π} and return-distribution function η^{π} , we have defined

$$\mathcal{D}_{\pi}(G^{\pi}(X')|X=x)(S) \stackrel{\text{def}}{=} \mathbb{P}_{\pi}(G^{\pi}(X') \in S|X=x).$$

Now, let's take a look at \mathbb{P}_{π} term.

$$\mathcal{D}_{\pi}(G^{\pi}(X')|X=x)(S) \stackrel{\text{def}}{=} \mathbb{P}_{\pi}(G^{\pi}(X') \in S|X=x)$$

$$= \sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x)\mathbb{P}_{\pi}(G^{\pi}(X') \in S|X'=x', X=x)$$

$$= \sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x)\mathbb{P}_{\pi}(G^{\pi}(x') \in S)$$

$$= \left(\sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x)\eta^{\pi}(x')\right)(S)$$

Therefore, we can conclude that

$$\mathcal{D}_{\pi}(G^{\pi}(X')|X=x)(S) = \sum_{x'\in\mathcal{X}} \mathbb{P}_{\pi}(X'=x'|X=x)\eta^{\pi}(x')$$
$$= \mathbb{E}_{\pi} [\eta^{\pi}(X') \mid X=x]$$

The indexing step (S) also has a simple expression in terms of cumulative distribution functions as follows. Let $X = (\infty, z]$. Then we have

$$\mathbb{P}_{\pi}(G^{\pi}(X') \in S \mid X = x) = P_{\pi}(G^{\pi}(X') \leq z \mid X = x)$$

$$= \sum_{x' \in \mathcal{X}} P_{\pi}(X' = x' \mid X = x) P_{\pi}(G^{\pi}(x') \leq z \mid X = x)$$

$$= \sum_{x' \in \mathcal{X}} P_{\pi}(X' = x' \mid X = x) P_{\pi}(G^{\pi}(x') \leq z)$$

Then if we let $F_{G^{\pi}(X')}(z)$ to be the c.d.f of random variable $G^{\pi}(X')$ up to z, we have

$$F_{G^{\pi}(X')}(z) = \sum_{x' \in \mathcal{X}} P_{\pi}(X' = x' \mid X = x) F_{G^{\pi}(x')}(z)$$

1.7.2 Scaling and translation

Suppose we konw the distribution of $G^{\pi}(X')$. Then what is the distribution of $R+\gamma G^{\pi}(X')$? This is an instance of a more general question: given a random variable $Z \sim \nu$ and a transformation $f: \mathbb{R} \mathcal{B} \mathbb{R}$, how should we express the distribution of f(Z) in terms of f and ν ? Within this sense, we define pushforward distribution as $f_{\#}\nu := \mathcal{D}(f(Z))$. Now, for $r \in \mathbb{R}$ and $\gamma \in [0,1)$, we define bootstarp function $b_{r,\gamma}z \mapsto r + \gamma z$. Then we have

$$(b_{r,\gamma})_{\#}\nu = \mathcal{D}(r + \gamma Z)$$

where $Z \sim \nu$. Now, let's regard that $\nu = \eta^{\pi}(x')$ as a return distribution of state x' and we have correspoding random variable $G^{\pi}(x')$, i.e. $Z = G^{\pi}(x')$. Then, we have

$$(b_{r,\gamma})_{\#}\eta^{\pi}(x') = \mathcal{D}(r + \gamma G^{\pi}(x')).$$

Proposition 1.12 (The distributional Bellman equation). Let η^{π} be the returndistribution function of policy π . Then, for any state $x \in \mathcal{X}$, we have

$$\eta^{\pi}(x) = \mathbb{E}_{\pi} \left[(b_{r,\gamma})_{\#} \eta^{\pi}(X') \mid X = x \right] \tag{1}$$

Just want to leave remark that $\mathbb{E}_{\pi}[g(X') \mid X = x] = \sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(X' = x' \mid X = x)g(x')$ for any real-value function $g: \mathcal{X} \to \mathbb{R}$.

It is also possible to omit these random variables and write Equation (1) purely in terms of probability distributions, by making the expectation explicit:

$$\eta^{\pi}(x) = \sum_{a \in \mathcal{A}} \pi(a \mid x) \sum_{x' \in \mathcal{X}} \mathbf{P}(x' \mid x, a) \int_{\mathbb{R}} \mathbf{P}_{\mathbb{R}}(dr \mid x, a) (b_{r, \gamma})_{\#} \eta^{\pi}(x')$$

2 Chapter 3

2.1 The Monte Carlo Backup

Suppose we have K sample trajectories for state x and action a and reward r where each trajectory have total T_k steps as follows.

$$\{(x_{k,t}, a_{k,t}, x_{k,t})_{t=0}^{T_k-1}\}_{k=1}^K$$
(2)

For now, assume that $T_k = T$ and $x_{k,0} = x_0$ for all k. We are interested in estimating the expected return

$$\mathbb{E}_{\pi} \left[\sum_{t=0}^{T-1} \gamma^t R_t \right] = V^{\pi}(x_0).$$

Monte Carlo methods estimate the expected return by averaging the outcomes of observed trajecoteries. Let us denote the sample reutnr for kth trajecotry as g_k which is defined as

$$g_k = \sum_{t=0}^{T-1} \gamma^t r_{k,t}$$
 (3)

Then the sample-mean Monte Carlo estimate is the average of these K sample returns

$$\hat{V}^{\pi}(x_0) = \frac{1}{K} \sum_{k=1}^{K} g_k \tag{4}$$

2.2 Incremental Learning

Rather than after sample K samples, then compute all at once, it is much more useful to consider a learning model under which sample trajectories are processed sequentially. We call this algorithm as $incremental \ algorithms$. Consdier an infinite sequence of sample trajectories

$$\{(x_{k,t}, a_{k,t}, x_{k,t})_{t=0}^{T_k-1}\}_{k\geq 0}$$
(5)

suppose that initial states $\{(x_{k,0})_{k\geq 0}\}$ may be different. At kth stage, the agent is given a kth trajectory, and the algorithm computes the sample return g_k (Equation (4)) which we called as *Monte Carlo target*. It then adjusts the value function of initial state $x_{k,0}$ toward this target (g_k) by the following update rule,

$$V(x_{k,0}) \leftarrow (1 - \alpha_k)V(x_{k,0}) + \alpha_k g_k$$

where α_k is a time-varying step size.

Note that this *incremental Monte Carlo Update rule* only depends on the stating state and the sampel return pairs:

$$(x_k, g_k)_{k \ge 0} \tag{6}$$

We assume that the sample return g_k is assumed drawn from the return distribution $\eta^{\pi}(x_k)$. Then we have the following update rule

$$V(x_k) \leftarrow (1 - \alpha_k)V(x_k) + \alpha_k g_k \tag{7}$$

This could be more expressed by

$$V_{k+1}(x_k) = (1 - \alpha_k)V_k(x_k) + \alpha_k g_k$$

$$V_{k+1}(x) = V_k(x) \text{ for } x \neq x_k$$
(8)

2.3 Temporal-Difference Learning

Incremental learning algorithms are useful since they update for eveyr episode. Tempoarl-different learning (TD learning) is more fine-grained update version. It learn from sample transitions, rather than entire trajectories.

Let us consdier a seugen of smpale ransitions drwn independently as follows

$$(x_k, a_k, r_k, x_k')_{k>0}$$
 (9)

As with the incremental Monte Carlo algoithm, the update rule of temporal difference learning is

$$V(x_k) \leftarrow (1 - \alpha_k)V(x_k) + \alpha_k(r_k + \gamma V(x_k')) \tag{10}$$

We call the term $r_k + \gamma V(x_k')$ as the temporal-difference target, and by arrangin the term, we call the term $r_k + \gamma V(x_k') - V(x_k)$ as the temporal-difference error as

$$V(x_k) \leftarrow V(x_k)\alpha_k(r_k + \gamma V(x_k') - V(x_k')).$$

Incremental Monte Carlo algorithm updates its value function estimate toward a fixed target g_k , but in TD learning we don't have such fixed target. Temporal-difference learning instead depends on the value function at the next state $V(x_k')$ being approximately correct. As such, it is said to bootstrap from its own value function estimate.

2.4 From Values to Probabilities

We are highly interested in how we can learn the return-distribution function η^{π} . Let's first take a scenario for binary reward, i.e. $R_t \in \{0,1\}$ and we are interested in distribution of

undiscounted finite-horizon return function

$$G^{\pi}(x) = \sum_{t=0}^{H-1} R_t, \ X_0 = x. \tag{11}$$

Since the $G^{\pi}(x)$ takes an integer value between 0 to H, these form the support of the probability distribution $\eta^{\pi}(x)$. To learn $\eta^{\pi}(x)$, we assigns a probability $p_i(x) \geq 0$ where $\sum_{i=0}^{H} p_i(x) = 1$ as

$$\eta(x) = \sum_{i=0}^{H} p_i(x)\delta_i \tag{12}$$

We call this equation categortical representation. It's kind of classification problem for given state x. Now, let us consider the problem that we have a state-return pairs $(x_k, g_k)_{k\geq 0}$ where each g_k is drawn from the distribution $\eta^{\pi}(x_k)$. Now, we have categorical update rule as

$$p_{g_k}(x_k) \leftarrow (1 - \alpha_k) p_{g_k}(x_k) + \alpha_k$$

$$p_i(x_k) \leftarrow (1 - \alpha_k) p_i(x_k) \text{ for } i \neq g_k$$
(13)

Combining equations (12) and (13) provide the following equation

$$\eta(x_k) \leftarrow (1 - \alpha_k)\eta(x_k) + \alpha_k \delta_{a_k}$$
 (14)

We call Equation (14) as undiscounted finite-horizon categorical Monte Carlo algorithm.

2.5 The Projection Step

For H steps binary rewards $(N_{\mathcal{R}} = 2)$, the number of possible returns is $N_G = H + 1$. However, what if $N_{\mathcal{R}} > 2$ or if we have discounted factor γ ? Noe that when γ is introduced, then N_G grows exponentially on H.

To handle this large set of possible returns, we inset a projection step prior to the mixture update on Equation (14). We will consider return distributions that assign probability mass to $m \geq 2$ evenly spaced values or locations $\theta_1 \leq \theta_2 \leq \cdots \leq \theta_m$ where the gap $\zeta_m := \theta_{i+1} = \theta_i$ is identical. A common design is take $\theta_1 = V_{\min}$, $\theta_m = V_{\max}$ and set

$$\zeta_m = \frac{V_{\text{max}} - V_{\text{min}}}{m - 1}$$