

Introduction to Deep Learning

Neural Networks

Lecture Outline

- What is a Neural Network?
- Supervised Learning with Neural Networks
- Neural Networks Overview
- Neural Network Representation
- Computing a Neural Network Output
- Vectorizing across multiple examples
- Activation Functions

Recap: Logistic Regression

Introduction to Deep Learning

What is a Neural Network?

Introduction to Deep Learning

Supervised Learning with Neural Networks

Supervised Learning

Input(x)	Output (y)	Application	
Home features	Price	Real Estate	
Ad, user info	Click on ad? (0/1)	Online Advertising	
Image	Object (1,,1000)	Photo tagging	
Audio	Text transcript	Speech recognition	
English	Chinese	Machine translation	
Image, Radar info	Position of other cars	Autonomous driving	

Neural Network examples

Standard NN

Convolutional NN

Recurrent NN

Structured data

Size	#bedrooms	•••	Price (1000\$s)
2104	3		400
1600	3		330
2400	3		369
:	:		:
3000	4		540

User Age	Ad ID	•••	Click
41	93242		1
80	93287		0
18	87312		1
:	:		:
27	71244		1

Unstructured data

Audio Image

Four score and seven years ago

Text

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

input layer hidden layer

output layer

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

for i = 1 to m:
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

Vectorizing across multiple examples

$$X = \left| \begin{array}{c|ccc} & & & & & \\ & & & & \\ \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} \\ & & & & \end{array} \right|$$

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples

$$X = \begin{bmatrix} & & & & & & & & & & & & \\ & \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} & & & & & \\ & & & & & & & & & \end{bmatrix}$$

$$A^{[1]} = \begin{vmatrix} a^{1} & a^{[1](2)} & a^{[1](m)} \\ a^{1} & a^{[1](2)} & a^{[1](m)} \end{vmatrix}$$

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

One hidden layer Neural Network

Activation functions

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Pros and cons of activation functions

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$