Optimization Model for SCRUM-Based Software Development

AI Assistant

September 4, 2025

Abstract

This document presents a formal mathematical optimization model for resource allocation and project planning within a software development company utilizing the SCRUM framework. The model is derived from a defined domain of entities (e.g., Teams, Workers, Tasks) and their relationships. It aims to maximize efficiency and output while minimizing delays and blockers through a set of goals, constraints, and decision variables.

Contents

1	Sets (Entities)	1
2	Indices	1
3	Goals	1
4	Conditions	2
5	Decision Variables	2

1 Sets (Entities)

- $P = \{p_1, p_2, ..., p_n\}$: Set of all Projects.
- T = $\{t_1, t_2, ..., t_n\}$: Set of all Teams.
- W = $\{w_1, w_2, ..., w_n\}$: Set of all Workers.
- $F = \{f_1, f_2, ..., f_n\}$: Set of all Features.
- $S = \{s_1, s_2, ..., s_n\}$: Set of all Skills.
- US = $\{us_1, us_2, ..., us_n\}$: Set of all User Stories.
- TSK = $\{tsk_1, tsk_2, ..., tsk_n\}$: Set of all Tasks.
- SP = $\{sp_1, sp_2, ..., sp_n\}$: Set of all Sprints.
- SBL = $\{sbl_1, sbl_2, ..., sbl_n\}$: Set of all Sprint Backlogs.
- BL = $\{bl_1, bl_2, ..., bl_n\}$: Set of all Blockers.
- PO = $\{po_1, po_2, ..., po_n\}$: Set of all Product Owners.
- SM = $\{sm_1, sm_2, ..., sm_n\}$: Set of all Scrum Masters.

2 Indices

- $-p, p' \in P$: Index over Projects.
- $-t \in T$: Index over Teams.
- $-w \in W$: Index over Workers.
- $-f \in F$: Index over Features.
- $-s \in S$: Index over Skills.
- $-us \in US$: Index over User Stories.
- tsk ∈ TSK: Index over Tasks.
- $-sp \in SP$: Index over Sprints.
- $sbl \in SBL$: Index over Sprint Backlogs.
- -bl ∈ BL: Index over Blockers.

3 Goals

- **G0** maximize_team_velocity: Maximize the average velocity of all teams. Mathematical: $\max \sum_{t \in T} \text{velocity}_t$
- **G1 minimize_project_duration**: Minimize the total duration of all projects. Mathematical: $\min \sum_{p \in P} (\text{project_end}_p \text{project_start}_p)$
- **G2 minimize_blocker_severity**: Minimize the total severity of all active blockers. Mathematical: $\min \sum_{bl \in BL} \text{severity}_{bl} \cdot \mathbb{I}(\text{status}_{bl} = \text{active})$

- **G3** maximize_feature_completion: Maximize the number of features with status 'done'. Mathematical: $\max \sum_{f \in F} \mathbb{I}(\text{status}_f = \text{done})$
- **G4** minimize task effort variance: Minimize the variance in estimated effort across all tasks in a sprint.

Mathematical: min $Var(\{effort_{tsk} \mid tsk \in TSK, sprint_{tsk} = sp\})$

- G5 maximize worker utilization: Maximize the average utilization of all workers. Mathematical: $\max \frac{1}{|\mathbf{W}|} \sum_{w \in W} \text{utilization_rate}_w$
- G6 minimize_sprint_goal_failure: Minimize the number of sprints where the goal was not achieved.

Mathematical: $\min \sum_{sp \in SP} (1 - \text{achievement_status}_{sp})$

4 Conditions

- C0 team_has_scrum_master: Every team must have exactly one Scrum Master assigned. Logical: $\forall t \in T, \exists ! sm \in SM : \text{is_supported_by}(t, sm)$
- C1 worker_availability_not_exceeded: The sum of effort from tasks assigned to a worker must not exceed their availability.

Mathematical: $\forall w \in W, \sum_{\substack{tsk \in TSK \\ \text{assigned}(tsk,w)}} \text{effort}_{tsk} \leq \text{availability}_w$

C2 sprint_backlog_effort_within_velocity: The total effort of tasks in a sprint backlog must not exceed the team's historical velocity.

Mathematical: $\forall sbl \in SBL, \sum_{tsk \in sbl} \text{effort}_{tsk} \leq \text{velocity}_{team(sbl)}$

C3 feature_requires_documentation: Every feature with status 'done' must have linked documentation.

Logical: $\forall f \in F$, status_f = done $\implies \exists doc \in FED : documents_feature(doc, f)$

C4 task_assigned_to_skilled_worker: A task can only be assigned to a worker who has a required skill.

Logical: $\forall tsk \in TSK, \forall w \in W, \text{assigned}(tsk, w) \implies \text{has_skill}(w, \text{required_skill}(tsk))$

C5 project_budget_not_exceeded: The total cost of all resources on a project must not exceed the project budget.

Mathematical: $\forall p \in P, \sum_{w \in \text{team}(p)} (\text{cost}_w \cdot \text{time}_w) \leq \text{budget}_p$

C6 user_story_has_acceptance_criteria: No user story can be added to a sprint backlog without defined acceptance criteria.

Logical: $\forall us \in US$, in _sprint _backlog(us) \Longrightarrow acceptance _criteria_{us} $\neq \emptyset$

- C7 minimize_context_switching: Prefer assigning a worker to fewer concurrent tasks. Mathematical: $\min \sum_{w \in W} \text{number_of_concurrent_tasks}_w$ (Soft Constraint)
- C8 prefer_high_priority_features: Assign resources to higher priority features first. Logical: $\forall f, f' \in F$, priority_f > priority_{f'} \Longrightarrow resources_assigned(f) \geq resources_assigned(f') (Soft Constraint)

5 Decision Variables

- $assign_{tsk,w} \in \{0,1\}$: (DV0) Binary assignment of Task tsk to Worker w.
- start_{sp} $\in \mathbb{Z}^+$: (DV1) Start date of Sprint sp.

- $\mathrm{prio}_f \in \{1,2,3,4,5\}$: (DV2) Numerical priority of Feature f.
- util $_w \in [0,1]$: (DV3) Utilization rate of Worker w.
- points $_{us} \in \{1, 2, 3, 5, 8, 13\}$: (DV4) Story points for User Story us.
- target_vel_{t,sp} \in [5, 50]: (DV5) Target velocity for Team t in Sprint sp.
- stat $p \in \{0, 1, 2\}$: (DV6) Status of Project p.
- goal $_{sp} \in \{0,1\}$: (DV7) Achievement of Sprint Goal for Sprint sp.
- resolve_{bl} \in [0, 30]: (DV8) Resolution time for Blocker bl.
- req_level $_{tsk,s} \in \{1,2,3,4,5\}$: (DV9) Required skill level for Task tsk.