Summary

This presentation was presented at the Fundamental Aeronautics Program Annual Review Meeting held March 15-17 in Cleveland Ohio. This presentation is the second part of a 30 min. presentation entitled "ASE/APSE Overview" by Walter Silva & George Kopasakis, presented at 10:30 AM Wed. March 16 in the Supersonics session. This portion of the presentation covers the propulsion work done under Supersonics Project ASE/APSE task, since the last annual meeting.

Introduction: What is APSE?

Aero-Propulso-Servo-Elasticity

(collaboration with GRC)

Prior Progress

 Developed unsteady turbojet & turbofan engine models (J85-13) – Gas volume dynamics

rooch Taking actuators bardware

Developed new feedback controls design approach – Taking actuators hardware

into account to maximize performance

 Developed shock position controls design for internal compression inlets

- Developed fuel controls, scaled generic maps
 & manipulate geometries to develop engine simulation
- Developed stage-by-stage compressor & turbine models & Methodology

Recent Accomplishments

Finished developing Atmospheric Turbulence Model

- Finished developing Parallel Compressor Model for Flow Distortion and Stall
- Developed preliminary Integrated APSE model
- Developed Quasi 1D CFD model of Internal Compression Inlets
- Developed approach for 1D CFD modeling of External Compression Inlets
- In the process of finishing developing Exit Nozzle Area Schedule and approach
- Started developing N+3 engine model

Quasi 1D CFD Modeling of Mixed Compression Inlets

- 1) Modeled external compression using compressible flow relations
- 2) Modeled internal compression using 1D CFD w/ central difference, w/ artificial

External Compression with Multiple Oblique Shocks

Length, m

Single Oblique Shock & Mach Number Distribution

Length, m

Normalized Inlet Steady-State Pressure & Area

Length(m)

Exit Nozzle Schedule

- Started developing exit nozzle area schedule approach to fully expand the flow
 - -- Approach based on PR vs Cd (discharge coefficient) schedule w/ area limit vs speed
 - -- Creates Feedback w/ instabilities Designed Notch filters to resolve

Starting from 100%

Integrated APSE Modeling

Preliminary Linear Integrated APSE model developed

N+3 Engine Modeling

- N+3 dynamic engine model is being developed & validated based on steady-state data provided by NPSS model developers
 - -- Engine has multiple flow paths So far completed 4 out of 10 major components besides ducts and mixers

Variable Cycle N+3 Engine Diagram

% error between dynamic model & NPSS

Design Point	P _T	T _T	W
Fan	0.1%	0.14%	0.2%
Fan VCE	0.2%	0.06%	3.7%
Compressor	4.8%	0.4%	0.07%
Combustor	2.01%	0.6%	2.97%

Future Plans

- Continue developing models (inlets, N+3 engine, parallel flow paths/distortion)
- Integrate Propulsion and AeroServoElastic models and control design
- Support Advanced Flight Simulator (AFS) Development