Higher Category Theory

Assignment 11

Exercise 1

Proof. We start by drawing the commutative cube in question.

Since monomorphisms are saturated, we know that all of the horizontal maps are monomorphisms.

Next we apply the functor Fun(-, W), where W is a Kan complex.

We know that a morphism is a weak homotopy equivalence if and only if its image under $\operatorname{Fun}(-,W)$ is a homotopy equivalence for any Kan complex W. Also, monomorphisms are mapped to Kan fibrations and, for any simplicial set X, the simplicial set $\operatorname{Fun}(X,W)$ is itself a Kan complex. Finally, $\operatorname{Fun}(-,W)$ preserves colimits by sending them to limits because

$$\mathbf{sSet}(X, \operatorname{Fun}(\operatorname{colim}_{\mathfrak{I}}D_{i}, W)) \cong \mathbf{sSet}(X \times \operatorname{colim}_{\mathfrak{I}}D_{i}, W)$$

$$\cong \mathbf{sSet}(\operatorname{colim}_{\mathfrak{I}}X \times D_{i}, W)$$

$$\cong \lim_{\mathfrak{I}^{\operatorname{op}}} \mathbf{sSet}(X \times D_{i}, W)$$

$$\cong \lim_{\mathfrak{I}^{\operatorname{op}}} \mathbf{sSet}(X, \operatorname{Fun}(D_{i}, W))$$

$$\cong \mathbf{sSet}(X, \lim_{\mathfrak{I}^{\operatorname{op}}} \operatorname{Fun}(D_{i}, W))$$

naturally in X, thus the top and bottom squares are pullbacks.

Let's summarize what we have so far with respect to our latest diagram: the top and bottom squares are pullbacks, the vertical morphisms (except for possibly the left one) are homotopy equivalences, the horizontal maps are Kan fibrations and every object is a Kan complex.

We can now apply a proposition from lecture 20 and conclude that Fun(k, W) is itself a homotopy equivalence for any W, hence k is a weak homotopy equivalence.

Exercise 2

Proof. Applying Fun(-, W) to the diagram with W an arbitrary Kan complex, we get

a commutative diagram

$$\cdots \longrightarrow \operatorname{Fun}(B_{n+1}, W) \xrightarrow{j_{n+1}^*} \operatorname{Fun}(B_n, W) \longrightarrow \cdots \longrightarrow \operatorname{Fun}(B_1, W) \xrightarrow{j_1^*} \operatorname{Fun}(B_0, W)$$

$$\downarrow^{f_{n+1}^*} \qquad \downarrow^{f_n^*} \qquad \downarrow^{f_1^*} \qquad \downarrow^{f_0^*}$$

$$\cdots \longrightarrow \operatorname{Fun}(A_{n+1}, W) \xrightarrow{i_{n+1}^*} \operatorname{Fun}(A_n, W) \longrightarrow \cdots \longrightarrow \operatorname{Fun}(A_1, W) \xrightarrow{i_1^*} \operatorname{Fun}(A_0, W)$$

where $\operatorname{Fun}(A_n, W)$, $\operatorname{Fun}(B_n, W)$ are Kan complexes and every i_n^* , j_n^* are Kan fibrations for all $n \geq 0$ (Lecture 9). Since f_n are weak homotopy equivalences $(n \geq 0)$, one has f_n^* being (weak) homotopy equivalences as well (Lecture 18). Hence by a proposition in Lecture 20, it follows that $\lim_{\mathbb{N}^{op}} \operatorname{Fun}(f_n, W)$ is a (weak) homotopy equivalence. From the proof of Exercise 1, we have $\lim_{\mathbb{N}^{op}} \operatorname{Fun}(f_n, W) \cong \operatorname{Fun}(\operatorname{colim}_{\mathbb{N}} f_n, W)$, since there is a commutative diagram

for morphisms $g_i \colon X_i \to Y_i$ in **sSet** indexed by a small category \mathcal{I} . Therefore $f_{\infty} = \operatorname{colim}_{\mathbb{N}} f_n \colon A_{\infty} \to B_{\infty}$ is a weak homotopy equivalence.

Exercise 3

Proof. We construct the following commutative diagram

$$C_0 \xleftarrow{a_0} A_1 \xleftarrow{i_1} B_1$$

$$\downarrow h' \qquad \downarrow \text{id} \qquad \downarrow \text{id}$$

$$C_1 \xleftarrow{a_1} A_1 \xleftarrow{i_1} B_1$$

$$\downarrow h \qquad \downarrow f \qquad \downarrow g$$

$$C_2 \xleftarrow{a_2} A_2 \xrightarrow{i_2} B_2$$

where the morphism $a_1: A_1 \to C_1$ is factorizes into $h'a_0$ with a_0 a monomorphism and h' a trivial fibration. Recall that a trivial fibration is an (absolute) weak equivalence. Denote by D_0 the pushout of C_0 along i_1 . We apply Exercise 1 to the first two rows and get $D_0 \to D_1$ a weak homotopy equivalence. Also, applying Exercise 1 to the outer diagram yields a weak homotopy equivalence $D_0 \to D_2$. Therefore $D_1 \to D_2$ is a weak homotopy equivalence.

Exercise 4

Proof. Consider a filtered diagram $D: \mathcal{I} \to \mathbf{sSet}$. Since Λ_k^n is a finite simplicial set, the functor $\mathbf{sSet}(\Lambda_k^n, -)$ preserves filtered colimits. It follows that, fixed a morphism $\alpha: \Lambda_k^n \to \operatorname{colim}_{\mathcal{I}} D_i$, we have an element $[\alpha_i] \in \operatorname{colim}_{\mathcal{I}} \mathbf{sSet}(\Lambda_k^n, D_i) \cong \mathbf{sSet}(\Lambda_k^n, \operatorname{colim}_{\mathcal{I}} D_i)$ corresponding to it. This means that there is a $i \in \mathcal{I}$ with a morphism $\alpha_i: \Lambda_k^n \to D_i$ such that

$$\Lambda_k^n \xrightarrow{\alpha_i} D_i$$

$$\downarrow^{\lambda_i}$$

$$\operatorname{colim}_{\mathfrak{I}} D_i$$

commutes, where λ_i is a leg of the cocone.

Now, if the simplicial set D_i is a Kan complex (or a ∞ -category), the horn admits a filling $t: \Delta^n \to D_i$ for $0 \le k \le n$ (respectively 0 < k < n), which gives us the commutative diagram

and in particular the *n*-simplex $t = \lambda_i \cdot t_i$ of colim_J D_i such that $t|_{\Lambda_k^n} = \lambda_i \cdot t_i|_{\Lambda_k^n} = \lambda_i \cdot \alpha_i = \alpha$.

Now, if for every $i \in \mathcal{I}$ the simplicial set D_i is a Kan complex, this filling is always possible and therefore the colimit is itself a Kan complex. Similarly, if the simplicial sets in the diagram are ∞ -categories the same goes for $\operatorname{colim}_{\mathcal{I}} D_i$.