1. a)

| Download Alignment File || Show Colors || Send to ClustalW2_Phylogeny |

CLUSTAL 2.1 multiple sequence alignment

[Mus [Rattus [Homo [Pan	MAGSENTFQPLLLQKVDSILVLRSLVLGEHTGECNNPCTSLKAVFWFISTNQTQVIQSRL 60
[Mus [Rattus [Homo [Pan	SFLLDAGVCRSQSAAQKFQSTSQQKHNPHSCFSQSLGMRMLPPAYLLQLLAGTMVLTQTS 120MVDGTLLLLLSEALALTQTW 20 SFFLDTHDADSVLIPNGCRVSREANQLRTQEGLRTQEAGIMVDGTLLLLLSEALALTQTW 90 : . ** ** : . **:
[Mus [Rattus [Homo [Pan	PHSLRYFTTAVSRPGLGEPRFIIVGYVDDTQFVRFDSDAENPRMEPRARWIEQEGPEY 79 SHSLRYFYTALSRPGLGEPRFIVVGYVDDTQFVRYDSDVENPRMEPRARWMEQEEPAY 178 AGSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEY 80 AGSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEY 150 . ***:** *::**** ****** ***************
[Mus [Rattus [Homo [Pan	WERETWKARDMGRNFRVNLRTLLGYYNQSNDESHTLQWMYGCDVGPDGRLLRGYCQEAYD 139 WERETRKARDTGRNFKVNLRTLLRYYNQSDDESHTLQWMYGCDVGPDGHLLRGYCQEAYD 238 WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQFAYD 140 WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCDLGPDGRFLRGYEQFAYD 210 *:*** .*** .: *:****** *****: **********
[Mus [Rattus [Homo [Pan	GQDYISLNEDLRSWTANDIASQISKHKSEAVDEAHQQRAYLQGPCVEWLHRYLRLGNETL 199 GRDYISLNEDLRSWTATDMASQASKIKSEEVGEAHHQRAYLQGPCVEWLHTYLHLGKETL 298 GKDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETL 200 GKDYLTLNEDLRSWTAVDTAAQISERKSNDACEAEHQRAYLEDTCVEWLHKYLEKGKETL 270 *:**::********** * *: *: **: **::*******
[Mus [Rattus [Homo [Pan	QRSDPPKAHVTHHPRSEDEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDG 259 LRSDPPKAHVTLHPRPEGDVTLRCWALGFYPADITLTWQLNGEDLTQDMELVETRPAGDG 358 LHLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDG 260 LHLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVDTRPAGDG 330 : :***:*** ** ::::********************
[Mus [Rattus [Homo [Pan	TFQKWAAVVVPLGKEQYYTCHVYHEGLPEPLTLRWEPPPSTVSNMVIIAVLVVLGAV 316 TFQKWAAVVVPSGEELKYTCHVEHEGLPEPLALRWEPSPFTDSSMPVIVVLGAVAIIGAV 418 TFQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKPASQPTIPIVGIIAGLVLLGSV 318 TFQKWAAVVVPSGEEQRYTCHVQHEGLPEPLTLRWKPASQPTIPIVGIIAGLVLLGSV 388 ************ *: ***** *******::**: : . : : : :
[Mus [Rattus [Homo [Pan	IILGAVVAFVMKRRRHIGVKG-CYAHVLGSKSFQTSDWPQKA 357 AIIGAVAIIGAVVRRRKRNTGEKG-SYAHVLGSKAFQISDWPQKA 462 VS-GAVVAAVIWRKKSSGGKGGSYSKAEWSDSAQGSESHSL- 358 VS-GAVVAAVMWRKKSSGGKGRSYSKAEWSDSA 420 ***. * *:: * ** .*:: *:

PLEASE NOTE: Showing colors on large alignments is slow

b) Przykład sekwencji homologicznej:

[Mus	WERETWKARDMGRNFRVNLRTLLGYYNQSNDESHTLQWMYGCDVGPDGRLLRGYCQEAYD 139
[Rattus	WERETRKARDTGRNFKVNLRTLLRYYNQSDDESHTLQWMYGCDVGPDGHLLRGYCQEAYD 238
[Homo	WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCELGPDGRFLRGYEQFAYD 140
[Pan	WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCDLGPDGRFLRGYEQFAYD 210

Szczególne podobieństwo (prawie identyczność!) - sekwencji jak i kolorów - zachodzi pomiędzy sekwencją u człowieka i szympansa oraz pomiędzy sekwencją u myszy i szczura. Kolorystycznie większość się zgadza w porównaniu tych czterech sekwencji (np. w podanej powyżej linijce).

```
[Mus
[Rattus
               MAGSENTFQPLLLQKVDSILVLRSLVLGEHTGECNNPCTSLKAVFWFISTNQTQVIQSRL 60
ГНото
               -----EGSSKNTETPGHV 30
[Pan
                                          -----MLLFAHLLQLLVSATVPTQSS 21
ΓMus
        SFLLDAGVCRSQSAAQKFQSTSQQKHNPHSCFSQSLGMRMLPPAYLLQLLAGTMVLTQTS 120
[Rattus
         P--HSLRYFTTAVSRPGLGEPRFIIVGYVDDTQFVRFDSDAENPRMEPRARWIEQEGPEY 79
S--HSLRYFYTALSRPGLGEPRFIVVGYVDDTQFVRYDSDVENPRMEPRARWMEQEEPAY 178
AGSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDAGAGGGGT
ΓMus
[Rattus
[Homo
              AGSHSLKYFHTSVSRPGRGEPRFISVGYVDDTQFVRFDNDAASPRMVPRAPWMEQEGSEY 150
[Pan
[Mus
               WERETWKARDMGRNFRVNLRTLLGYYNQSNDESHTLQMMYGCDVGPDGRLLRGYCQEAYD 139
               WERETRKARDTGRNFKVNLRTLLRYYNQSDDESHTLQMMYGCDVGPDGHLLRGYCQEAYD 238
[Rattus
               WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQMMHGCELGPDGRFLRGYEQFAYD 140
[Pan
               WDRETRSARDTAQIFRVNLRTLRGYYNQSEAGSHTLQWMHGCDLGPDGRFLRGYEQFAYD 210
              GQDYISLNEDLRSWTANDIASQISKHKSEAVDEAHQQRAYLQGPCVEWLHRYLRLGNETL 199
[Mus
               GRDYISLNEDLRSWTATDMASQASKIKSEEVGEAHHQRAYLQGPCVEWLHTYLHLGKETL 298
[Rattus
               GKDYLTLNEDLRSWTAVDTAAQISEQKSNDASEAEHQRAYLEDTCVEWLHKYLEKGKETL 200
ГНото
[Pan
               GKDYLTLNEDLRSWTAVDTAAQISERKSNDACEAEHQRAYLEDTCVEWLHKYLEKGKETL 270
                                      *: **: . ** . *****
[Mus
               QRSDPPKAHVTHHPRSEDEVTLRCWALGFYPADITLTWQLNGEELTQDMELVETRPAGDG 259
               LRSDPPKAHVTLHPRPEGDVTLRCWALGFYPADITLTWQLNGEDLTQDMELVETRPAGDG 358
               LHLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVETRPAGDG 260
[Pan
               LHLEPPKTHVTHHPISDHEATLRCWALGFYPAEITLTWQQDGEGHTQDTELVDTRPAGDG 330
               TFOKWAAVVVPLGKEOYYTCHVYHEGLPEPLTLRWEPPPSTVSNMVIIAVL---VVLGAV 316
ΓMus
               TFOKWAAVVVPSGEELKYTCHVEHEGLPEPLALRWEPSPFTDSSMPVIVVLGAVAIIGAV 418
[Rattus
               TFQKWAAVVVPSGEEQRYTCHVQHEGLPEPVTLRWKP--ASQPTIPIVGIIAGLVLLGSV 318
ГНото
ΓPan
               TFQKWAAVVVPSGEEQRYTCHVQHEGLPEPLTLRWKP--ASQPTIPIVGIIAGLVLLGSV 388
               IILGAVVAF---VMKRRRHIGVKG-CYAHVLGSKSFQTSDWPQKA 357
               AIIGAVAIIGAVVRRRKRNTGEKG-SYAHVLGSKAFQISDWPQKA 462
[Homo
               VS-GAVVAA---VIWRKKSSGGKGGSYSKAEWSDSAQGSESHSL- 358
[Pan
               VS-GAVVAA---VMWRKKSSGGKGRSYSKAEWSDSA----- 420
                          * *:: * ** .*::. *.:
```

c)

SeqA ♦	Name ¢	Length ♦	SeqB ♦	Name ¢	Length ♦	Score \$
1	[Homo	358	2	[Pan	420	95.81
1	[Homo	358	3	[Mus	357	62.18
1	[Homo	358	4	[Rattus	462	61.45
2	[Pan	420	3	[Mus	357	62.75
2	[Pan	420	4	[Rattus	462	53.81
3	[Mus	357	4	[Rattus	462	79.27

Jak można było zgadywać, największe podobieństwo występuje pomiędzy sekwencjami człowieka i szympansa (~96%) oraz pomiędzy sekwencjami myszy i szczura (~79%).

Consensus - w każdej kolumnie jest wypisany znak najczęściej się powtarzający (i >=50%), a gdy dwa mają tą samą największą wartość (np. sequence position 162 - 50% E i 50% A) lub żaden nie wystąpił w >=50% wtedy widnieje '+'.

Sequence position: 376, szczór - L (czerw), reszta - Q (nieb)

Sequence position: 340, szczór i mysz - L (czerw), człowiek i szympans - Q (nieb) Sequence position: 194, szczór i mysz - N (nieb), człowiek i szympans - I (czerw)

f)

2. Analogicznie. Co ciekawsze wyniki:

SeqA ♦	Name ¢	Length ♦	SeqB ♦	Name ♦	Length ♦	Score •
1	[Homo	348	2	[Pan	348	100.0
5	[Mus	348	6	[Rattus	348	97.13
3	[Canis	358	5	[Mus	348	95.69
1	[Homo	348	3	[Canis	358	95.4
2	[Pan	348	3	[Canis	358	95.4
3	[Canis	358	6	[Rattus	348	95.4
1	[Homo	348	6	[Rattus	348	95.11
2	[Pan	348	6	[Rattus	348	95.11
1	[Homo	348	5	[Mus	348	94.83
2	[Pan	348	5	[Mus	348	94.83
3	[Canis	358	4	[Bos	348	94.25
4	[Bos	348	6	[Rattus	348	93.68
1	[Homo	348	4	[Bos	348	93.39
2	[Pan	348	4	[Bos	348	93.39
4	[Bos	348	5	[Mus	348	93.39
4	[Bos	348	8	[Danio	354	79.31
6	[Rattus	348	8	[Danio	354	78.74
5	[Mus	348	8	[Danio	354	77.3
1	[Homo	348	8	[Danio	354	77.01
2	[Pan	348	8	[Danio	354	77.01
3	[Canis	358	8	[Danio	354	76.55
4	[Bos	348	7	[Gallus	355	70.11
3	[Canis	358	7	[Gallus	355	69.58
1	[Homo	348	7	[Gallus	355	69.54

Jak widać, sekwencje człowieka i szympansa pokrywają się całkowicie. Myszy i szczóra pokrywają się niemal całkowicie. Ogólnie tylko ryba i kurczak odbiegają od reszty ssaków (co w sumie zgadza się z intuicją).

Wydaje mi się, że gen rodopsyny jest bardziej homologiczny, szczególnie patrząc na "scores tables". Jeżeli się nad tym zastanowić, to możemy zauważyć parę przyczyn takich a nie innych wyników:

3.

- a. "Geny MHC kodują białka lokalizowane na powierzchni komórek, które są odpowiedzialne za wykrywanie niebezpieczeństw grożących naszemu organizmowi (np. wirusów)" => różne gatunki mogą z różnych powdów mogły być bardziej narażone na jedne typy wirusów czy innych "wrogów" niż inne, stąd też może wynikać ich troszkę podwyższone zróżnicowanie w budowie ich MHC. (np. szympans i szczór, ~54%)
- b. "rodopsyna światłoczuły barwnik występujący w siatkówce oka" => u ssaków zmysł wzroku działa mniej więcej tak samo, szczególnie jeżeli gatunki są blisko odległościowo w drzewie ewolucyjnym przez to sekwencje rodopsyny u człowieka i szympansa pokrywają się w 100%, ale np. sekwencje rodopsyny w człowieka i ptaka kurczaka już się różnią bardziej, pokrywają się w ~70%. Wciąż daje to jednak lepsze dopasowanie rodopsyny sekwencyjne niż dla MHC (szczególnie, jeżeli byśmy zapuścili porównywanie sekwencji rodopsyny tylko dla człowieka, szympansa, myszy i szczóra wtedy scores dla każdego z nich wciąż >94%)