CPD Practical Work - Performance Evaluation of Single-Core and Multi-Core Matrix Multiplication Algorithm Implementations

Joaquim Cunha - up202108779@up.pt José Sousa - up202006141@up.pt Miguel Garrido - up202108889@up.pt

Introduction

The goal of this project was to implement matrix multiplication algorithms, compare them, document them and analysing the performance results of the code for each implementation - 3 single-core and 2 multi-core. This allowed us to study the toll the access/usage of large amounts of data in memory took on the CPU's performance.

We decided to compare the different algorithms' performance in C++ and Rust.

Problem Description

The problem consisted in analysing the performance of matrix multiplication algorithms - particularly the effect on processor performance in the memory hierarchy when accessing large amounts of data (and not necessarily the algorithm's result itself).

Three different algorithms were used in this project - the goal being to evaluate their respective performances in a single-core implementation. These algorithms were developed in both C++ and Rust; we gathered data from multiple attempts with different square matrix sizes.

Since we were required to utilize C++, we decided to use Rust as the secondary programming language - its similarities to C++, alongside its superior memory safety and concurrency features, made it a rather interesting choice from our point of view.

Algorithms Explanation

Simple Matrix Multiplication

A simple matrix multiplication algorithm implementation was provided to us in C++ - we later decided to implement the second version of it in Rust. The algorithm itself consists in obtaining the result in the *i-th* row and *j-th* column of matrix C via the product of the elements in the *i-th* row of matrix A and the *j-th* column of matrix B.

If we consider a square matrix with n lines and columns, the time complexity of this algorithm should be $O(n^3)$.

```
for(i = 0; i < m_ar; i++) {
    for(j = 0; j < m_br; j++) {
        temp = 0;
        for(k = 0; k < m_ar; k++) {
            temp += pha[i*m_ar+k] * phb[k*m_br+j];
        }
        phc[i*m_ar+j]=temp;
    }
}</pre>
```

Line Matrix Multiplication

This algorithm, having been implemented in both C++ and Rust, uses the one mentioned earlier as a basis, although with a key difference: the order of the second and third for loops is switched. This results in overall better performance (less execution time and cache misses).

This algorithm obtains the result in the *i-th* row and *j-th* column of matrix C by calculating the product of the elements in the *i-th* row of matrix A and the *j-th* column of matrix B; however, the line-by-line version differs from the the simple version because it directly accumulates the result in the specified matrix C position.

If we consider a square matrix with n lines and columns, the time complexity of this algorithm should be similar to the time complexity of the simple algorithm - $O(n^3)$.

```
for (i = 0; i < m_ar; i++)
    for (k = 0; k < m_ar; k++)
        for (j = 0; j < m_br; j++)
            phc[i*m_ar+j] += pha[i*m_ar+k] * phb[k*m_br+j];</pre>
```

Block Matrix Multiplication

Unlike the previous algorithms, the block matrix multiplication algorithm starts by dividing both of the matrices that are meant to be multiplied into blocks of size bkSize. The blocks themselves are treated as elements of each matrix - they are calculated individually. This allows for an increase in the overall algorithm performance.

Just like the previous two algorithms, considering square matrices with n lines and columns, the time complexity of this algorithm should be $O(n^3)$.

Performance Metrics

We utilized PAPI (Performance API) as a means of collecting performance data on the C++ algorithms we implemented, as well as information on the utilized hardware to measure the said performance. In order to calculate an algorithm's efficiency, we decided to gather, for each one's C++ version, its execution time, L1 and L2 cache misses and subsequently calculated the number of floating point operations per second (FLOPS); for the Rust versions, we only collected the execution time so that we could compare it to the C++ version.

When compiling the C++ program, we utilized the -02 flag, which tells the compiler to optimize the code for performance. Due to the use of the OpenMP API in the second part of the project, which supports multi-platform shared-memory parallel programming in C/C++, we also utilized the fopenmp flag to enable compilation for OpenMP - specifically for the multi-core (parallel) versions of the simple and line matrix multiplication algorithms.

To ensure the correctness and accuracy of the data collected, we used the same computer for all measurements - a laptop with an Intel Core i7-10750H CPU @ $2.60\mathrm{GHz}$, $12~\mathrm{cores}$. Additionally, we also repeated the process $3~\mathrm{times}$ for each scenario.

Results and Analysis

Basic Multiplication

We will start by analysing the time disparities between the runtime of each programming language used. In the graph visible below, we present the different times each language took to run the basic algorithm <code>OnMult</code>, plotted with the different matrix dimensions.

By looking at this graph, it is evident that the difference between the runtime of each language is almost non-existant. Both of them produced very similar results for all matrix sizes, which leads us to conclude that performance wise, for this algorithm, they behaved very alike.

Looking at the efficiency graph, we can see that the efficiency of the algorithm decreases as the matrix size increases. This is to be expected, as the number of operations increases with the matrix size and efficiency is calculated as the number of operations per second.

Regarding the difference between Rust and C++, we can see that C++ is slightly more efficient than Rust for all matrix sizes, but the difference is not significant.

Line Multiplication

Moving on, we will now evaluate the performance of a different algorithm using these exact same languages - the <code>OnLineMult</code>. As mentioned previously, what makes this multiplication differ from the basic one is the switch of the order of the second and third <code>for</code> loops.

Here we can clearly see very different results; it is possible to notice that both languages presented a better performace, by taking less time to execute. The difference between the time taken for the two languages is negligible for matrices of smaller size (up to 3000×3000), starting to become more noticeable as the matrix size increases, with Rust having a clear advantage.

When comparing the efficiency of the two versions, we can clearly verify that Rust is more efficient than C++ for all matrix sizes; the sizeable leap in terms of GFLOPS from the simple algorithm is also noticeable.

Block Multiplication

Lastly we move onto the third and final algorithm. The problem presented required the implementation of an algorithm capable of performing a block oriented multiplication OnMultBlock. Its performance was measured using three different block sizes (128, 256 and 512) and larger matrices only.

Starting with the difference in runtime between the two languages, we can see that Rust once again presents a better performance than C++ for all block sizes (since the difference between language versions is not mandatory for this algorithm, we will only present the results for the 256 block size, but the same behaviour is observed for other block sizes).

Analysing the different block sizes in C++, we can notice that, with the block size of 512, the time taken to run the algorithm is slightly lower.

When analysing the efficiency of the different block sizes, we get to the same conclusion as when analysing the runtime: the block size of 512 is the most efficient, despite the difference being negligible.

Cache Performance Between Algorithms

From this section onwards, we will only be analysing the C++ version of the algorithms, as the Rust version does not provide the necessary metrics to perform the required analysis.

We can see a clear difference between cache misses in the basic and line multiplication algorithms. The line multiplication algorithm has a much lower number of cache misses than

the basic algorithm - making it more memory efficient. This most likely stems from the fact that the line multiplication algorithm not only accesses the matrix one line at a time, but also directly utilizes the result matrix itself as an accumulator (rather than a temporary variable).

When comparing the line and block multiplication algorithms, we can see that the block multiplication algorithm has a lower number of L1 cache misses, with the trade-off of having a higher number of L2 cache misses.

Multi-core Implementation

We implemented multi-core versions of the basic and line multiplication algorithms, utilizing the same approach regarding parallelization for both.

The first approach (P1) was to parallelize the outer loop. The #pragma omp parallel for private(i, j, k) statement instructs the compiler to create a parallel region (region where code can be executed on multiple threads concurrently) in the following for loop, with i, j and k are private for each thread (helps avoid race conditions when there is concurrent access to these).

```
#pragma omp parallel for private(i, j, k)
for(i=0; i<m_ar; i++) {
    for( j=0; j<m_br; j++) {
        temp = 0;
        for( k=0; k<m_ar; k++) {
            temp += pha[i*m_ar+k] * phb[k*m_br+j];
        }
        phc[i*m_ar+j]=temp;
    }
}</pre>
```

The second approach (P2) was to parallelize the inner loop. Similarly to the previous approach, the #pragma omp parallel private(i, j) statement tells the compiler to create a parallel region where i and j are private for each thread; however, this time the loop to be parallelized is the innermost for loop.

```
#pragma omp parallel private(i, j)
for(i=0; i<m_ar; i++) {
    for( j=0; j<m_br; j++) {
        temp = 0;
        #pragma omp for
        for( k=0; k<m_ar; k++) {
            temp += pha[i*m_ar+k] * phb[k*m_br+j];
        }
        phc[i*m_ar+j]=temp;
    }
}</pre>
```


When comparing the two parallelization approaches for the basic algorithm, we can see that parallelization has a positive impact on runtime, with the first approach having a lower runtime than the second one.

When comparing the number of cache misses of the two parallelization approaches, we can verify that the first approach has a higher number of L1 and L2 cache misses than the second one.

When comparing the efficiency of the two parallelization approaches, we can notice that the first approach is more efficient than the second approach, despite a trend of decreasing efficiency as the matrix size increases.

When comparing the two parallelization approaches for the line algorithm, the positive impact parallelization had on runtime was noticeable, with the first approach having a lower runtime than the second approach.

When comparing the number of cache misses of the two parallelization approaches, we can verify that the first approach has a higher number of L1 and L2 cache misses than the second approach.

When comparing the efficiency of the two parallelization approaches, we can see that the first approach is more efficient than the second approach, despite a trend of decreasing efficiency as the matrix size increases.

Overall, the positive impact of parallelization is noticeable on runtime, cache misses and efficiency, with the first approach being more efficient than the second approach in all cases evaluated.

Conclusion

In conclusion, this project emphasises how important parallelization techniques, programming language selection, and algorithmic design are to maximising computational efficiency. It allowed us to deepply understand how important memory management is to improve program efficiency.

Through the performance evaluation of matrix multiplication algorithms, both single-core and multi-core, insights into scalability and efficiency across various programming languages and issue sizes were revealed. Parallelization strategies played a crucial role, shedding light on the workload distribution among CPU cores.

Annexes

These tables contain the average values of the 3 code executions for each scenario.

A1. C++ Simple Matrix Multiplication

Matrix Dimension	Time	L1 Misses	L2 Misses
600	0.328	312613350	75449586
1000	1.618	1129675766	168125294
1400	4.968	3096109605	419079564
1800	11.995	6579900575	906951403
2200	23.497	12002688938	1936243626
2600	40.337	19807053716	5856619363
3000	60.327	30424640468	15995363861

A2. Rust Simple Matrix Multiplication

Matrix Dimension	Time
600	0.341
1000	1.753
1400	5.227
1800	12.103
2200	23.788
2600	40.682
3000	61.185

A3. C++ Line Matrix Multiplication

Matrix Dimension	Time	L1 Misses	L2 Misses
600	0.173	27172532	58055068
1000	0.81	125563241	266504724
1400	2.596	344883151	727051775
1800	5.65	737279058	1538298840
2200	10.448	2072769000	2801149669
2600	17.373	4414861665	4624084609
3000	26.529	6778590305	7021324083
4096	67.157	17690630310	18033744019
6144	223.682	59626602635	61327226256
8192	534.435	141237668769	150480108620
10240	1044.108	275714586123	300590227244

A4. Rust Line Matrix Multiplication

Matrix Dimension	Time
600	0.1
1000	0.491
1400	1.631
1800	3.604
2200	6.946
2600	11.592
3000	18.155
4096	45.215
6144	152.85
8192	364.617
10240	714.437

A5. C++ Block Matrix Multiplication

Matrix Dimension	Block Dimension	Time	L1 Misses	L2 Misses
4096	128	54.712	9894262681	32152630666
4096	256	54.475	9224194575	22558416249
4096	512	57.564	8907263120	20066869753
6144	128	185.663	33284458348	109835296393
6144	256	162.302	31100811771	75853975333
6144	512	165.759	30034084774	68299304963
8192	128	542.485	79272558223	256934376125
8192	256	564.775	74040364729	171460757906
8192	512	501.901	71418110011	159491022894
10240	128	854.309	154538291811	509320147291
10240	256	747.869	143989688443	349604770144
10240	512	763.977	138999749010	314584673439

A6. Rust Block Matrix Multiplication

Matrix Dimension	Block Dimension	Time
4096	128	44.483
4096	256	42.524
4096	512	43.24
6144	128	147.158
6144	256	119.213
6144	512	118.859
8192	128	462.312
8192	256	451.872
8192	512	387.501
10240	128	683.972
10240	256	551.07
10240	512	541.482

A7. C++ Multi-Core Simple Matrix Multiplication (First Approach)

Matrix Dimension	Time	L1 Misses	L2 Misses
600	0.042	18565397	2878890
1000	0.172	63682673	8503272
1400	0.592	232236836	47556510
1800	1.516	467909765	129759526
2200	3.296	900577438	377804411
2600	6.179	1316467113	686871564
3000	11.315	2309707038	1660357582

A8. C++ Multi-Core Simple Matrix Multiplication (Second Approach)

Matrix Dimension	Time	L1 Misses	L2 Misses
600	0.281	5397565	5447147
1000	0.869	14712879	18907646
1400	2.402	37570068	45488900
1800	5.51	83895824	89439677
2200	10.86	177572102	154929712
2600	17.344	486763076	256408044
3000	26.821	1736195515	391698117

A9. C++ Multi-Core Line Matrix Multiplication (First Approach)

Matrix Dimension	Time	L1 Misses	L2 Misses
600	0.039	2301044	3981257
1000	0.143	8073936	16831198
1400	0.41	28940991	34331480
1800	0.876	104463956	96928173
2200	1.59	172010582	132857297
2600	2.675	284661115	219721942
3000	4.167	488789481	455536114
4096	11.106	1245436513	1119171569
6144	39.121	4472383079	5045961303
8192	93.669	10383502952	13628973161
10240	197.672	20835676128	32814791583

A10. C++ Multi-Core Line Matrix Multiplication (Second Approach)

Matrix Dimension	Time	L1 Misses	L2 Misses
600	0.296	5378506	15284245
1000	0.843	19594150	59886214
1400	2.426	47429145	139149072
1800	5.022	85069775	231916581
2200	8.637	158775580	402195584
2600	12.085	250747939	563188863
3000	17.086	370592261	791711347
4096	37.01	852576131	1899053309
6144	112.394	2757710033	5354368189
8192	244.482	6891308518	11065735945
10240	469.031	13779784066	23658407930