

# 串行总线智能舵机 SCS1.1 内存表

### 修订历史

| 日期         | 版本     | 更新内容 |
|------------|--------|------|
| 2017. 3. 7 | V1. 00 | 初次制定 |



# 1.1 ERROR 当前状态

返回的应答包包含舵机的当前状态 ERROR, 若舵机当前工作状态不正常, 会通过这个字节反映出来, 每一位的代表的信息如下:

|      | 13   4   5   1   1   1   1   1 |                   |
|------|--------------------------------|-------------------|
| BIT  | 名称                             | 详细                |
| BIT7 | 0                              |                   |
| BIT6 | 0                              |                   |
| BIT5 | 过载                             | 位置模式运行时输出扭矩小于负载置1 |
| BIT4 | 0                              |                   |
| BIT3 | 0                              |                   |
| BIT2 | 过热                             | 温度超过指定范围置1        |
| BIT1 | 0                              |                   |
| BIT0 | 过压欠压                           | 电压超过指定范围置1        |

若 ERROR 为 0,则舵机无报错信息。

## 1.2 内存控制表

机器人舵机本身的信息和控制参数形成了一张表,保存在其控制芯片的 RAM 和 EEPROM 区域。我们通过实时修改表里的内容,可以达到实时控制舵机的目的。这张表称为内存控制表,内容如下:

| 地址        | 命令项        | 读写  | 初始值        | 存储区域   |
|-----------|------------|-----|------------|--------|
| 0 (0x00)  |            |     |            | EEPROM |
| 1 (0x01)  |            |     |            |        |
| 2 (0x02)  |            |     |            |        |
| 3 (0x03)  | 软件版本 (H)   | 读   |            |        |
| 4 (0x02)  | 软件版本 (L)   | 读   |            |        |
| 5 (0x05)  | ID         | 读/写 | 00 (0x00)  |        |
| 6 (0x06)  | 波特率        | 读/写 | 00 (0x00)  |        |
| 7 (0x07)  | 返回延迟时间     | 读/写 | 00 (0x00)  |        |
| 8 (0x08)  | 应答状态级别     | 读/写 | 01 (0x01)  |        |
| 9 (0x09)  | 最小角度限制 (H) | 读/写 | 00 (0x00)  |        |
| 10 (0x0A) | 最小角度限制(L)  | 读/写 | 00 (0x00)  |        |
| 11 (0x0B) | 最大角度限制 (H) | 读/写 | 03 (0x03)  |        |
| 12 (0x0C) | 最大角度限制 (L) | 读/写 | 255 (0xFF) |        |
| 13 (0x0D) | 最高温度上限     | 读/写 | 80 (0x50)  |        |
| 14 (0x0E) | 最高输入电压     | 读/写 | 250 (0xFA) |        |
| 15 (0x0F) | 最低输入电压     | 读/写 | 50 (0x32)  |        |
| 16 (0x10) | 最大扭矩(H)    | 读/写 | 03 (0x03)  |        |
| 17 (0x11) | 最大扭矩(L)    | 读/写 | 255 (0xFF) |        |
| 18 (0x12) | 高压标志位      | 读/写 | 00 (0x00)  |        |
| 19 (0x13) | 卸载条件       | 读/写 | 37 (0x25)  |        |



|              |             |     | 171= 71     | 可以工力作。    |
|--------------|-------------|-----|-------------|-----------|
| 20 (0x14)    | LED报警条件     | 读/写 | 37 (0x25)   |           |
| 21 (0x15)    | Р           | 读/写 | 15 (0x0F)   |           |
| 22 (0x16)    | D           | 读/写 | 00 (0x00)   |           |
| 23 (0x17)    | Ι           | 读/写 | 00 (0x00)   |           |
| 24 (0x18)    | 最小PWM (H)   | 读/写 | 00 (0x00)   |           |
| 25 (0x19)    | 最小PWM(L)    | 读/写 | 00 (0x00)   |           |
| 26 (0x1A)    | 顺时针不灵敏区     | 读/写 | 02 (0x02)   |           |
| 27 (0x1B)    | 逆时针不灵敏区     | 读/写 | 02 (0x02)   |           |
| 28 (0x1C)    | 积分限制 (L)    | 读/写 | 00 (0x00)   |           |
| 29 (0x1D)    | 积分限制 (H)    | 读/写 | 00 (0x00)   |           |
| 30 (0x1E)    | 微分采样系数      | 读/写 | 00 (0x00)   |           |
| 3139         |             |     |             |           |
| 40 (0x28)    | 扭矩开关        | 读/写 | 00 (0x00)   | RAM       |
| 41 (0x29)    |             |     |             |           |
| 42 (0x2A)    | 目标位置(H)     | 读/写 |             |           |
| 43 (0x2B)    | 目标位置(L)     | 读/写 |             |           |
| 44 (0x2C)    | 运行时间(H)     | 读/写 | 00 (0x00)   |           |
| 45 (0x2D)    | 运行时间(L)     | 读/写 | 00 (0x00)   |           |
| 46 (0x2E)    | 运行速度(H)     | 读/写 | 00 (0x00)   |           |
| 47 (0x2F)    | 运行速度(L)     | 读/写 | 00 (0x00)   |           |
| 48 (0x30)    | 锁标志         | 读/写 | 00 (0x00)   |           |
| 4955         |             |     |             |           |
| 56 (0x38)    | 当前位置(H)     | 读   | ?           |           |
| 57 (0x39)    | 当前位置(L)     | 读   | ?           |           |
| 58 (0x3A)    | 当前速度 (H)    | 读   | ?           |           |
| 59 (0x3B)    | 当前速度 (L)    | 读   | ?           |           |
| 60 (0x3C)    | 当前负载 (H)    | 读   | ?           |           |
| 61 (0x3D)    | 当前负载(L)     | 读   | ?           |           |
| 62 (0x3E)    | 当前电压        | 读   | ?           |           |
| 63 (0x3F)    | 当前温度        | 读   | ?           |           |
| 64 (0x40)    | REG WRITE标志 | 读   | 00 (0x00)   |           |
| 2.1.1.2.1/4. |             | A   | U 0 00 6 0= | - 4 1 1 1 |

若控制参数有"L"、"H"之分的命令,其范围为0x00-0x3FF;参数只占一个字节的命令,其范围为0x00-0xFE。

保存在 RAM 里的参数掉电后不会保存,保存在 EEPROM 里的参数,掉电后可以保存。" — "表示不可修改参数。

详细描述如下:

#### 0x06:

地址 0x06 默认为 0,表示的波特率为 1M,可按下表把波特率修改为用户需要的其他波特率,其他的波特率会被恢复为 1M。波特率和相应的计算参数的对照如下表:

| Address6 | Hex  | 实际波特率     | 目标波特率     | 误差     |
|----------|------|-----------|-----------|--------|
| 0        | 0x00 | 1000000.0 | 1000000.0 | 0.000% |



| 1 | 0x01 | 500000.0 | 500000.0 | 0.000%   |
|---|------|----------|----------|----------|
| 2 | 0x02 | 250000.0 | 250000.0 | 0.000%   |
| 3 | 0x03 | 128000.0 | 128000.0 | 0.000%   |
| 4 | 0x04 | 115107.9 | 115200   | 0. 079%  |
| 5 | 0x05 | 76923. 0 | 76800    | -0. 160% |
| 6 | 0x06 | 57553. 9 | 57600    | 0.008%   |
| 7 | 0x07 | 38461.5  | 38400    | -0.160%  |

#### 0x07:

设置返回延迟时间,即当舵机收到一条需要应答的指令后,延迟多长时间应答可由您设置。时间范围:参数( $0^2254$ )\*2US,若参数 250,即 500us 后应答;但参数为 0,表示以最短的时间应答。

#### 0x08:

应答级别,设置舵机接收到数据后是否返回数据。

| 地址16 | 返回应答包                  |
|------|------------------------|
| 0    | 除读指令与PING指令外其它指令不返回应答包 |
| 1    | 对所有指令返回应答包             |

#### $0x09 \sim 0x0C$ :

设置舵机可运行的角度范围,最小角度限制≤目标角度值≤最大角度限制值。



#### 注意,最小角度限制值必须小于最大角度限制值。若目标角度值超过范围,则等

#### 于限制值。

#### 0x0D

最高工作温度,如设置为80则最高温度为80度,设置精度为1度0x0E

最高工作电压,如高置为85则最高工作电压为8.5V,设置精度为0.1V 0x0F

最低工作电压,如高置为 45 则最低工作电压为 4.5V,设置精度为 0.1V 0x10~0x11

设置舵机的最大输出力矩。0X03FF对应SCS的最大输出扭力。

#### 0x13:

设置卸载条件/LED 报警条件。

| 131117 222 | 11 1 2 1 1 2                |
|------------|-----------------------------|
| BIT        | 功能                          |
| BIT7       |                             |
| BIT6       |                             |
| BIT5       | 如果设置为1,则发生过载时减少力输出/LED报警    |
| BIT4       |                             |
| BIT3       |                             |
| BIT2       | 如果设置为1,则发生过热时卸载扭力/LED报警     |
| BIT1       |                             |
| BIT0       | 如果设置为1,则发生超过电压范围时卸载扭力/LED报警 |

以上若同时发生,遵行逻辑或的原则。LED 报警条件(0X14)设置为0关闭LED,否则打开LED。



#### $0x1A\sim0x1B$ :

位置闭环的死区大小,顺时针与逆时针都设置为1则死区大少约为0.38度

#### 0x28:

力矩输出开关: "1" 开, "0" 关。

#### $0x2A\sim0x2B$ :

目标位置,范围 0x0000—0x03FF, 0x0000 对应 0 度, 0x03FF 对应 200 度,偏差±2%。 0x2C~0x31:

设置舵机运行至目标位置的时间与速度(速度参数比时间参数优先,同时写入时间与速度参数,速度参数被选择为控制参数),时间参数单位为(毫秒),速度参数单位为(0.19度/秒)如1000则速度为(1000\*0.19)度/秒。设置为0时,对应与SCS的最大速度62RPM。

#### 0x30:

锁功能位。若该位设置为 0 关闭锁保护,则对 EEPROM 区参数修改可以掉电保存。



注意,锁功能位设置为 0,SCS 写速度会变慢,频繁对 EEPROM 区参数进行写入操

#### 作会影响 SCS 寿命。

#### 0x40:

若有 REG WRITE 指令等待执行,则显示为 1,当 REG WRITE 指令执行完毕后显示为 0。

## 1.3 电机调速模式

SCS 系列机器人舵机可以切换为电机调速模式,可用于轮子、履带等周转的执行机构上。 把最小角度限制和最大角度限制(0x09~0x0C)都设置为 0,再给一个速度(0x2C~0x2D), 舵机就以电机调速模式转动起来。速度有大小和方向的控制方式,如下表所示:

| BIT   | 11 <sup>~</sup> 15 | 10  | 9           | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|--------------------|-----|-------------|---|---|---|---|---|---|---|---|---|
| VALUE | 0                  | 0/1 | SPEED VALUE |   |   |   |   |   |   |   |   |   |

地址  $0x2C\sim0x2D$ : BIT10 是方向位,为 0 正方向转动,为 1 反方向转动。BIT0~BIT9 为大小。