# 5. Knowledge-Oriented Communication in Distributed Systems

# **Agent Communication**

**Ulises Cortés** 

**SID 2022** 





Knowledge Engineering and Machine Learning Group UNIVERSITAT POLITÈCNICA DE CATALUNYA

https://www.kemlg.upc.edu

#### Contents

- Motivation
- Levels in Agent Communication
- Message Semantics
  - Speech Acts
- Message Sintaxis
  - Agent Communication Languages
    - KQML
    - FIPA-ACL
  - Content Language
    - FIPA-SL
- Interaction Protocol
  - FIPA Protocols

#### The nature of communication

- Human communication
- Communication is the intentional exchange of information brought about by the production and perception of signs drawn from a shared system of conventional signs (AIMA, Russell & Norvig)

  Language
- Communication seen as an action (communicative act) and as an intentional stance
- The intentional stance is a term coined to describe the level of abstraction in which an individual view the behavior of an entity in terms of mental properties.

#### The nature of communication

Component steps of communication

**Speaker** Hearer

Intention Perception

Generation Analysis [Syntax / Semantics / Pragmatics]

Synthesis Disambiguation

Incorporation

#### **Artificial Communication**

- Low-level language vs High-level
- Languages direct communication vs. indirect communication
- Computer communication
  - shared memory /message passing

#### **Artificial Communication**

- Agent communication/ MAS communication
- Low-level communication: simple signals, traces, low-level languages
- High-level communication cognitive agents, mostly seen as intentional systems
- Communication in MAS = more than simple communication, implies interaction.
- The environment provides a computational infrastructure where interactions among agents take place. The infrastructure includes protocols for agents to communicate and protocols for agents to interact

# **Artificial Communication enables Agents**

- Communication protocols = enables agents to exchange and understand messages
- Interaction protocols = enable agents to have conversations, i.e., structured exchanges of messages
- Communication enables agents to:
  - coordinate their actions and behavior, a property of a MAS performing some activity in a shared environment
  - attempt to change state of the other agents
  - attempt to make the other agents perform some actions

#### Communication infrastructure

#### Communication infrastructure

- Directory services
- Backboard or message-based
- White pages
- connected or connection-less ()
- Yellow pages
- point-to-point, multicast, broadcast

#### Message protocol

- push or pull
- -KQML
- synchronous or asynchronous
- -HTTP or HTML
- -OLE, CORBA, DSOM

# Blackboard (Barbara Hayes-Roth, 1985)

- Blackboard = a common area (shared memory) in which agents can exchange information, data, knowledge.
- Agents initiates communication by writing info on the blackboard.
- Agents are looking for new info, they may filter it-
- Agents must register with a central site to receive an access authorization to the blackboard.
- Blackboard = a powerful distributed knowledge computation paradigm.
- Agents = Knowledge sources (i.e. Agents have an Ontology, different experience, and/or sensors to perceive).

## Communication and ACLs

- Communication
  - □ the basis for any interaction
  - Message sending = method invocation
  - □ effected through signals

#### **Indirect communication**

- information available for all
- no direct communication
- simple architecture

# Agent Agent Agent Agent Agent Agent ia@cs.upc.edu

#### Message passing

- direct exchange
- common language
- conversation sequences of messages

Agent A (Sender) Message Agent B (Receiver)

#### **Motivation**

#### Agents' interactions

- Interaction between agents is unavoidable
  - To achieve own goals,
  - To manage interdepencies
- It should occur at Knowledge-level
  - Which goals?, When?, Who executes what?
- Flexibility to start and to give answers.
  - Synchronic, programs, etc

This implies a radical change in the way programs usually interact

#### **Motivation**

# Knowledge sharing among agents requires communication

- The success of agent-based paradigm is based on the existence of heterogeneous and distributed software entities that communicate among themselves.
- The agents' diversity/heterogeneity implies the need for a common language.

# Motivation: Communicating Agents...

- Mutual understanding:
  - Translation between representation languages
  - Share the language's semantic content
- Components in communication to be agreed:
  - Interaction protocol
    - How are conversations/dialogues structured?
  - Communication Language
    - What does each message means?
  - Transport protocol
    - How messages are actually sent and received by agents?
    - This is hidden from developers in Agent Platforms
  - Communication architecture/middleware
    - This has been fixed by FIPA Standards.

# Communication and Knowledge Level

- Agents can be considered as (virtual) Knowledge Bases
- 3 representation layers
  - A language/formalism to represent domain knowledge
    - Ontology
  - A language to express propositions (to exchange knowledge)
    - Content language (for messages)
  - A language to express attitudes for those propositions
    - Agent Communication Language (for languages)

# **Agent Communication**

- Ability to exchange information requires:
  - 1. ability to *physically* exchange information
  - 2. common understanding
    - exchanging knowledge requires mutual understanding
       → 2 keys
      - translation between languages
      - sharing semantic content
        - each agent has implicit assumptions on its own semantics
          - translation must preserve semantics!
    - to share knowledge, we must have a common semantics
    - can be shared via common ontologies
  - 3. common language
  - 4. interaction strategies / protocols

ia@cs.upc.edu

# **Agent Communication**

- Ability to exchange information requires
  - 1. ability to *physically* exchange information
  - 2. common understanding
  - 3. common language

incorporates two types of languages

- content language
- communication language



# **Agent Communication Language**

4. interaction strategies / protocols

# Levels in Agent Communication

- Four levels in communication:
  - Message Semantics
    - What does each message means?
    - 3 components
      - Message type: gives intensionality
      - Message content: contains the information
      - Ontology (the message refers to)

#### Message Sintaxis

- How each message is expressed?
- 2 components
  - Message structure: Agent Communication Language
  - Content codification: Content Language

#### Interaction protocol

- How are conversations/dialogues structured?
  - Agent Protocols

#### Transport protocol

How messages are actually sent and received by agents?

## Message Semantics: Speech Acts

- The majority of attempts to model agent communication are inspired in **speech act theory**.
- Speech act theories are pragmatic theories of language, i.e., theories of language use
  - they attempt to account for how language is used by people every day to achieve their goals and intentions
- The origin of Speech Act Theories is in the book How to Do Things with Words (1962) by Austin.

# Message Semantics: Speech Acts (2)

- Idea: There are some utterances are rather like physical actions that appear to change the state of the world
  - declaring war
  - 'I now pronounce you man and wife'
  - Goal!
- In general, everything we utter is uttered with the intention of satisfying some goal or intention
- A theory explaining how declarations are used to reach a goal is a Speech Act Theory

# Message Semantics: Speech Acts (3)

- "This is the Google site"
- This is an statement (TRUE or FALSE)
  - I suggest that you use the Google site.
  - I command that you use the Google site.
  - I request that you use the Google site.
  - I ask that you tell me if you are using the Google site.
  - I inform you that I am using the Google site.
- These are not TRUE/FALSE statements, these suggest actions

# Message Semantics: Speech Acts (4)

- 3 aspects in a Speech Act
  - Locutionary act or locution: what it is said or written (the sentence, the sounds
    - Use the Expedia Site
  - Illocutionary act or illocution: what it is not said or written explicitly, but it is meant.
    - suggest? request? commit?
    - Note: ilocutionary force is applied to a content
  - Perlocutionary act or perlocution: the effect provoked on those who hear a meaningful utterance
    - e..g. People ordering flights and hotels through the Expedia site
    - The perlocutonary force is always related to the intentions
      - e.g. To earn money from people's orders.

# Message Semantics: Speech Acts (5)

#### Illocutionary speech acts (Searle, 1975)

- assertive = speech acts that commit a speaker to the truth of the expressed proposition
- directives = speech acts that are to cause the hearer to take a particular action, e.g. requests, commands and advice.
- commissives = speech acts that commit a speaker to some future action, e.g. promises and oaths.
- expressive = speech acts that express on the speaker's attitudes and emotions towards the proposition, e.g. congratulations, excuses and thanks
- **declarations** = speech acts that change the reality in accord with the proposition of the declaration, *e.g.* pronouncing someone guilty or pronouncing someone husband and wife.

# Message Semantics: Speech Acts (6)

#### As a summary:

- An agent performs an ilocutionary act
  - An act which carries an intention
- To achieve a perlocutionary effect
  - To get some action made or a change in the world state
- But perlocutionary effects are out of control from this agent
  - The actual effect may be different than intended.

# Message Semantics: Speech Acts (7)

- A speech act is composed by the performative verb and the propositional content
- E.g.:
  - performative = request content = "the door is closed" speech act = "please close the door"
  - performative = inform content = "the door is closed" speech act = "the door is closed!"
  - performative = inquire content = "the door is closed" speech act = "is the door closed?"

# Message Semantics: Speech Acts (8)

- Formal semantics for all performatives has been defined.
- The only task left is to define when an interaction is successful (as this is domain-dependent).
- e.g. given a set of illocutions
  - (request agent1 agent2)
  - (inform agent1 agent2)
  - (ask agent1 agent2)
- Specify the success conditions for each illocution
  - What are the necessary and sufficient conditions that should hold so agent<sub>1</sub> can consider its request to agent<sub>2</sub> to be successful?

# Plan Based Semantics: Speech Acts (9)

- How does one define the semantics of speech acts? When can one say someone has uttered, e.g., a request or an inform?
- Cohen & Perrault (1979) defined semantics of speech acts using the precondition-delete-add list formalism of planning research
- Note that a speaker cannot (generally) force a hearer to accept some desired mental state
- In other words, there is a separation between the illocutionary act and the perlocutionary act

# Plan Based Semantics: (10)

• Here is their semantics for *request*:

```
request(s, h, \phi)
```

#### pre:

- s believe h can do  $\phi$  (you don't ask someone to do something unless you think they can do it)
- s believe h believe h can do φ
   (you don't ask someone unless they believe they can do it)
- s believe s want φ
   (you don't ask someone unless you want it!)

#### post:

h believe s believe s want φ
 (the effect is to make them aware of your desire)

# Message Sintaxis: Communication Languages

- Procedural Approach
  - Exchange of procedural information
  - These are simple and efficient languages
- Declarative Approach
  - Exchange of declarative information
  - Problem of expresiveness

# Message Sintaxis: Agent Communication Languages

- Agent communication is based in Speech Act Theory
- Agents use a set of pre-defined performatives in order to communicate their intentions
- The performative semantics allow the agent receiving a message to interpret its content in a proper way
- There are two pre-defined performative sets used in Multiagent Systems:
  - KQML Knowledge Query and Manipulation Language
  - FIPA-ACL Agent Communication Language

# **Agent Communication Language (ACL)**



ACLs allow agents to effectively communicate and exchange knowledge with other agents.



# **Agent Communication Language (ACL)**

- ACLs handle propositions, rules, and actions instead of objects with no associated semantics.
- An ACL message describes a desired state in a declarative language, rather than a procedure or method invocation.
- ACLs are mainly based on BDI theories:
  - BDI agents attempt to communicate their BDI states or
  - Attempt to alter interlocutor's BDI state.
- ACLs are based on Speech Act Theory.
- Agent behavior and strategy drive communication and lead to conversations.

# **Three Important Aspects**

**Syntax** 

1. How the symbols of communication are structured.

**Semantics** 

2. What the symbols denote.

**Pragmatics** 

3. How the symbols are interpreted.

(Meaning is a combination of semantics and pragmatics.)

# **Communication Levels**

**Semantics** 

Meaning of the information

Format of information being transferred

Communication

Method of interconnection

# Requirements for an ACL

**Syntactic** 

Semantic

Communication

- Syntactic translation between languages
- Semantic content preservation among applications
  - The concept must have a uniform meaning across applications.
- Ability to communicate complex attitudes about their information and knowledge.
  - Agents need to question, request, etc.
  - Not about transporting bits and bytes.

# **Origins of ACLs**

- Knowledge Sharing Effort (KSE), funded by ARPA
  - Central concept: knowledge sharing requires communication, which in turn requires a common language. KSE focused on defining that common language.
- KQML: Knowledge Query and Manipulation Language
  - Language for both message formatting and message handling protocols.
- KIF: Knowledge Interchange Format
  - Langauge for expressing message content.

# Message Sintaxis: KQML

- The first widely-spread ACL was KQML, developed by the ARPA knowledge sharing initiative.
- KQML is comprised of two parts:
  - the knowledge query and manipulation language (KQML)
  - the content language (usually KIF).
- KQML is an 'outer' language, that defines a quite large set of acceptable 'communicative verbs', or performatives for :
  - Basic requests (evaluate, ask-one, perform ...)
  - Multiagent requests (stream-in, ...)
  - Responses (reply, sorry, ...)
  - Information (tell, achieve, cancel, ...)
  - Coordination (stand-by, ready, next, ...)
  - Definition of capabilities (advertise, subscribe, ...)
  - Networking (register, forward, broadcast, ...)

### KIF 1

Motivation: creation of a common language

for expressing properties of a domain.

- Intended to express contents of a message; not the message itself.
- Based on First-Order Logic (FOL).

### KIF 2

- Using KIF, it is possible to express:
  - Properties of things in a domain
    - e.g. Michael is a vegetarian Michael has the property of being a vegetarian
  - Relationships between things in a domain
    - e.g. Michael and Janine are married the relationship of marriage exists between Michael and Janine.
  - General properties of a domain
    - e.g. Everybody has a mother.

### KIF 3 - Example

- Relation between 2 objects:
  - The temperature of m1 is 83 Celsius:

```
(= (temperature m1) (scalar 83 Celsius))
```

- Definition of new concept:
  - An object is a bachelor if this object is a man and not married:

- Relationship between individuals in the domain:
  - A person with the property of being a person also has the property of being a mammal:

```
(defrelation (person ?x) :=> (mammal ?X))
```

### Message Sintaxis: KQML Example



### Message Sintaxis: KQML Example

#### Message Sintaxis: Message layers

**Content Layer**: formatting information

It communicates the *content* expressed in a *language* according to an *ontology* 

Typical languages include KIF, LISP, Prolog, FIPA-SL

Message Layer: communication scenario

It *tells* the message recipient what to do with the message, which actions are implied

**Transport**: extra information

It contains information about the data transport. It includes the message **sender** and **receiver**, and references to other messages in the dialogue (**reply-with** and **in-reply-to**).

#### Message Sintaxis: FIPA-ACL

- More recently, the Foundation for Intelligent Physical Agents (FIPA) started work on a program of agent standards — the centrepiece is an ACL
- Basic structure is quite similar to KQML:
  - Type of communicative act: performative
     22 performatives in FIPA (reduction from KQML)
  - communication actors
     e.g., sender, receiver.
  - content
     the actual content of the message
  - Content description
     e.g., language, encoding, ontology
  - Conversation control
     e.g., protocol, conversation-id, reply-with, in-reply-to, reply-by

#### Message Sintaxis: FIPA-ACL

• Example:

```
(inform
    :sender          agent1
    :receiver          agent5
    :content          (price good200 150)
    :language          sl
    :ontology          hpl-auction
)
```

## Message Sintaxis: FIPA-ACL performatives

| performative     | passing | requesting | negotiation | performing | error    |
|------------------|---------|------------|-------------|------------|----------|
|                  | info    | info       |             | actions    | handling |
| accept-proposal  |         |            | х           |            |          |
| agree            |         |            |             | x          |          |
| cancel           |         | x          |             | x          |          |
| cfp              |         |            | x           |            |          |
| confirm          | х       |            |             |            |          |
| disconfirm       | х       |            |             |            |          |
| failure          |         |            |             |            | Х        |
| inform           | х       |            |             |            |          |
| inform-if        | х       |            |             |            |          |
| inform-ref       | х       |            |             |            |          |
| not-understood   |         |            |             |            | Х        |
| propose          |         |            | x           |            |          |
| query-if         |         | x          |             |            |          |
| query-ref        |         | x          |             |            |          |
| refuse           |         |            |             | x          |          |
| reject-proposal  |         |            | х           |            |          |
| request          |         |            |             | x          |          |
| request-when     |         |            |             | x          |          |
| request-whenever |         |            |             | x          |          |
| subscribe        |         | x          |             |            |          |

#### Message Sintaxis: FIPA-ACL

#### **Content Language**

- Almost any content language can be used with FIPA-ACL. Most used are KIF (ANSI-KIF, ISO-KIF), RDF, DAML, OWL and FIPA-SL
- Others can be used such as PROLOG, SQL, ...
- FIPA-SL (Semantic Language)
  - Allows representation of asserts in modal
  - It is designed for agents with BDI architecture (Beliefs, Desires, Intentions)
  - Defines 3 types of content:
    - Statements: expressions which can be associated with a truth value
    - Actions: expressions defining an action that can be performed
    - Reference expressions: quantified formulae referring to domain objects which comply with that formulae

### Message Sintaxis: FIPA-SL

**Elements** 

- Expressions in FIPA-SL are in prefix notation (such as in KIF)
- It includes connectives from First Order Logic
  - not, and, or, implies, <=>, forall exist
- BDI Operators
  - (B <agent> <exp>) Agent believes the expression
  - (U <agent> <exp>) Agent has some uncertainty about the expression
  - (I <agent> <exp>) Agent has as an intention the one in the expression
  - (PG <agent> <exp>) Agent has as an objective the one in the expression

#### Message Sintaxis: FIPA-SL

#### **Elements**

- Temporal Logic operators
  - (feasible <action> <exp>): Action can be performed when expression holds
  - (done <action> <exp>): Action was performed before the expression held.
- Relational and list operators
  - (=, >, <, member, contains)</pre>
- Reference expressions (evaluated through a Knowledge Base)
  - (iota <terms> <exp>): refers to the unique object which, instantiating the terms, makes the expressions true
  - (any <terms> <exp>): refers to a/some objects which,
     instantiating the terms, make the expressions true
  - (all <terms> <exp>): refers to all objects which, instantiating the terms, make the expressions true

### Message Sintaxis: FIPA-SL Elements

Functional Terms (predicates): expressions which refer to an object through its functional relation with other objects (e.g., 3 = (+ 2 1)). There are two alternative expressions:

```
• (\langle predicate \rangle \langle value_1 \rangle \dots \langle value_n \rangle),
e.g. (person "Juan" 23)
```

- (<predicate <prop<sub>1</sub>> <value<sub>1</sub>> ... <prop<sub>n</sub>> <value<sub>n</sub>>) • e.g., (person :name "Juan" :age 23)
- FIPASL has some pre-defined functional terms (arithmetic operators, set operators, list operators...)
- Predicates over actions and results
  - (action <agent> <exp>): we request the agent to perform
     the action expressed in the expression
  - (result <action> <exp>): informs about the result of a
    given action

### Message Sintaxis: FIPA-SL 3 subsets

- FIPA-SL defines 3 subsets of the language with different expressiveness, for computational reasons
  - FIPA-SL0: Allows predicates action, result, done, simple propositions, sets and sequences
  - FIPA-SL1: Adds boolean connectives in expressions
  - FIPA-SL2: Adds referential expressions and the modal/temporal operators, but with some restrictions to ensure that the demonstrations are decidable

Types of dialogues between agents

- Mínimal
  - An agent sends and receives information
    - Pasive
  - Apart from sending and receiving information, is capable of requesting information
    - In an active way
    - In an delliberative way
- General
  - Resource management/allocation, information exchange, plan generation, cooperation and negotiation

Communication and cooperation



Task sharing

Communication and cooperation



When to communicate?

- If exists a new task t to be done and an instance of t is still running and the conditions for execution are the same then do not start a new task.
- If an *Agent<sub>i</sub>* has a task t to be done and it cannot do it locally then search for help from another *Agent<sub>i</sub>*
- If an Agent<sub>k</sub> has generated a piece of information and it believes k might be useful for *Agent<sub>n</sub>* then send k to *Agent<sub>n</sub>*

# Interaction protocol What are (agent) communication protocols?

- Performatives cannot work alone, but they appear as part of a protocol specification
- A protocol is a conversation between agents which follows some rules defining which performatives to use and when in order to achieve a given goal
- Each protocol defines the sequencing of messages in a given dialogue as a finite-state diagram
- Advantage: agents can easily keep the current state of a dialogue and know which utterances follow in order to comply with the protocol
- Each protocol is designed for a specific type of dialogue → One should carefully choose which protocol to use for each situation.

# Interaction protocol Protocols defined by FIPA

- They have two sides: initiator and responder.
- FIPA protocols: Request, Query, Contract Net, Iterated Contract Net, Brokering, Recruiting, Subscribe, Propose
- The most used are::
  - Request: dialogue to ask an agent for an action to be performed.
     The responder agent gives back the result, if possible
  - Request-When: dialogue to ask an agent for an action to be performed whenever some conditions hold
  - Query: dialogue to ask an agent if a given expression is true.
     The responder agent answers, if possible
  - Propose: dialogue to propose another agent to perform a given action under given conditions. The responder agent accepts or rejects the proposal
  - Contract Net: dialogue to request a group of agents to send back proposals for actions to solve a given task. The initiator agent selects the best proposals

#### FIPA protocols

Request-Response Protocols

• E.g. FIPA specification for *FIPA-Query* and *FIPA-Request* 



### FIPA protocols FIPA-Request



### FIPA protocols FIPA-Request-When



## FIPA protocols FIPA-Query



#### FIPA protocols

FIPA-Contract-Net (I)

• E.g. FIPA specification for *Contract Net* 



#### FIPA protocols FIPA-Contract-Net (II)

Initiator, Participant, deadline. cfp, refuse\*, not-understood\*, propose, reject-proposal\*, accept-proposal', failure\*, inform-done: inform\* inform-ref: inform\* Initiator Participant



## FIPA protocols FIPA-Propose



#### Levels in Agent Communication (summary)

- Four levels in communication:
  - Message Semantics
    - What does each message means?
    - 3 components
      - Message type: gives intensionality
      - Message content: contains the information
      - Ontology (the message refers to)
  - Message Sintaxis
    - How each message is expressed?
    - 2 components
      - Message structure: Agent Communication Language
      - Content codification: Content Language
  - Interaction protocol
    - How are conversations/dialogues structured?
      - Agent Protocols
  - Transport protocol
    - How messages are actually sent and received by agents?

#### References

- Luck, M., McBurney, P., Shehory, Onn, Willmott, S. "Agent Technology: Computing as interaction. A Roadmap to Agent Based Computing". Agentlink, 2005. ISBN 085432 845 9
- [2] Wooldridge, M. "Introduction to Multiagent Systems". John Wiley and Sons, 2002.
- [3] FIPA Agent Communication specifications. <a href="http://www.fipa.org/repository/aclspecs.html">http://www.fipa.org/repository/aclspecs.html</a>
- [4] Haddadi, A. "Communication and Cooperation in Agent Systems: A Pragmatic Theory" Lecture Notes in Artificial Intelligence #1056. Springer-Verlag. 1996. ISBN 3-540-61044-8
- [5] Weiss, G. "Multiagent Systems: A modern Approach to Distributed Artificial Intelligence". MIT Press. 1999. ISBN 0262-23203
- Rosenschein, J. & Zlotkin, G. "Rules of Encounter. Designing Conventions for Automated Negotiation among Computers". MIT Press. 1994 ISBN 0-262-18159-2

These slides are based mainly in material from [2], [3] and from J. Béjar, with some additions from material by A. Moreno