Lecture 25 Algorithms 2

Note by Samion Suwito on 4/22/25

Last Time

Constrained Problem:

$$\min_{x} f_0(x)
\text{s.t. } f_i(x) \le 0 \quad i = 1 \dots m$$
(P)

Assume: Strictly feasible convex optimisation problem (i.e. Slater)

Phase I-II approach:

Phase I: Find strictly feasible x_0

Phase II: Solve (P) starting from x_0

Interior Point Method:

For t>0,

$$\phi(t) = egin{cases} \log rac{1}{t} & t > 0 \ +\infty & t \leq 0 \end{cases}$$

Solve:

$$\min_x f_0(x) + t \sum \phi(-f_i(x))$$

starting at x_0 . This is an unconstrained problem.

Solution x_t^\star satsfies, for $\lambda_i(t) = rac{t}{-f_i(x_t^\star)}$

The interior point method is essentialy tryying to satisfy KKT Conditions

- ullet x_t^\star primal feasible and $\lambda_i(t)$ dual feasible (as $-f_i(x_t^\star)>0$)
- $abla f_0(x_t^\star) + \sum_{i=1}^m \lambda_i(t)
 abla f_i(x_t^\star) = 0$
- $f_i(x_t^\star)\lambda_i(t) = -t$ $i = 1 \dots m$

Also: $f_0(x_t^\star) \leq p^\star + mt$ sub-optimality is directly proportional to t and the number of constraints.

General Approach to solving (P) within ε-sub-optimality

- 1. Find strictly feasible point x_0
- 2. Interior Point Method: For $t=t_0$, solve unconstrained problem $\min_x f_0(x) + t \sum \phi(-f_i(x))$ starting from x_0
- 3. $x_0 \leftarrow x_t^\star, t \leftarrow \alpha t$, where e.g. $\alpha = \frac{1}{10}$ is a parameter repeat step 2. Quit when $tm < \epsilon$ SUMT Sequential Unconstrained Minimisation Technique

How to execute Phase I?

Consider:

$$egin{aligned} \min_{s \in \mathbb{R}, x \in \mathbb{R}^n} s \ & ext{s.t.} \ f_i(x) \leq s \quad i = 1 \dots m \end{aligned}$$

Easy to find a strictly feasible point, given $x_0 \in \bigcap_{i=0}^m \mathrm{dom} f_i$ Just consider point (x_0,s_0) , where $s_0=1+\max_{i=1\ldots m} f_i(x_0)$.

If we optimise the problem above (using SUMT?), we can get $s^\star < 0$ because of the given strict feasibility of (P) that we assumed and therefore we can get a strictly feasible point.

Solution: $(\tilde{x}^\star, s^\star)$ to this problem has property that \tilde{x}^\star is strictly feasible for (P).

Essentially Phase I and Phase II both involve optimising a constrained optimisation problem making it of similar difficulty but Phase I's optimisation problem is easier to solve.

Remark: Generally much easer to find a point $x_0 \in \bigcap_{i=0}^m \mathrm{dom} f_i$, (a defined point) then it is to find a strictly feasible point.

- Ex. LP constraints: $Ax \leq b$, $x_0 = 0$
- ullet Ex. SOCP Constraints $\|A_ix-b_i\|+C_ix+d_i=f_i(x)$ then $x_0=0$ works

Unconstrained 1D Minimisation

We've reduced constrained minimisation problems to unconstrained minimisation problems

We still need to understand how to solve a given unconstrained convex minimisation problem. Start with functions of a single variable:

Let $f:\mathbb{R} o \mathbb{R} + \cup \{+\infty\}$ be a convex differentiable function:

Assume we have an interval $\left[l,u\right]$ that contains an optimal point. (i.e.

 $f'(l) \leq 0, f'(u) \geq 0$ looks like a bowl)

Bisection to find x^* :

1. Set
$$x=rac{1}{2}(l+u)$$

2. Check direction f'(x),

1. If
$$f'(x) > 0, u \leftarrow x$$

2. If
$$f'(x) < 0, l \leftarrow x$$

3. If
$$f'(x) = 0, x^\star \leftarrow x$$

3. Repeat until $|f'(x)||u-l| \leq \epsilon$

By first-order characterisation of convexity:

$$f(x^\star) \geq f(x) + f'(x)(x^\star - x) \geq f(x) - \epsilon$$

Since $(x^\star - x) = |u - l|$ at its maximum $\implies f(x) < f(x^\star) + \epsilon$

Remark: Some optimisation problems can be reduced to 1-dimensional problems (e.g. by duality)

Example of Remark

$$\min_{x} \sum_{i=1}^{n} f_i(x)$$
 s.t. $a^{ op} x = b$

Assume f_i 's convex and Slater's condition holds therefore strong duality holds.

$$egin{aligned} p^\star &= \max_{\mu \in \mathbb{R}} g(\mu) \ g(\mu) &= \inf_x \sum f_i(x_i) - \mu(a^ op x - b) \ &= \mu b - \sum_{i=1}^n \max_{x_i} (\mu a_i x_i - f_i(x_i)) \ &= \mu b - \sum_{i=1}^n f_i^*(\mu a_i) \end{aligned}$$

We can distribute the computing of the $f_i^{\,*}$ (convex conjugates).

In general, 1D optimisation is a useful tool/subroutine for unconstrained convex optimisation.

In the picture above e only search in the one direction leading to:

$$\min_{t\in\mathbb{R}}f(x_0+tv_0)$$

Similar to gradient descent in gradient descent but v_0 points towards negative gradient.