5-stage Pipelined Processor Design Report

Team #4

Mohamed Shawky SEC:2, BN:16

Remonda Talaat SEC:1, BN:20

Evram Youssef SEC:1, BN:9

Mahmoud Adas SEC:2, BN:21

April 7, 2020

Contents

Ι	Int	troduction	1
	0.1	Abstract	 2
	0.2	Task Distribution	 2
II	0	verall System Design	3
	0.3	Overall System Design Schema	 4
	0.4	Memory Specs	 4
	0.5	PC Control Unit	 5
		0.5.1 Inputs	 5
		0.5.2 Outputs	 5
		0.5.3 Logic	 5
	0.6	Dynamic Branch Prediction	 5
		0.6.1 Inputs	 6
		0.6.2 Outputs	 6
		0.6.3 Logic	 6
	0.7	Stack Pointer (SP) Peak Unit	 6
		0.7.1 Inputs	 6
		0.7.2 Outputs	 6
		0.7.3 Logic	 8
	0.8	Branch Address Unit	 8
		0.8.1 Inputs	 8
		0.8.2 Outputs	 9
		0.8.3 Logic	 9
	0.9	Register File	 9
		0.9.1 Registers	 9
		0.9.2 Inputs	 9
		0.9.3 Outputs	 10

		0.9.4 Logic	
	0.10	ALU	
		1	10
		1	10
		1	11
		0.10.4 Logic	11
II	I I	nstruction Format 1	L 3
	0.11	One Operand Operations	14
		Special Operations	
			14
			15
			16
ΙV	7 (Control Unit (Signals)	∟7
1 1		Overview	
			10 19
	0.17	0.17.1 One Operand Instructions	
			$\frac{20}{21}$
			$\frac{21}{21}$
			$\frac{21}{22}$
	0.19		$\frac{22}{23}$
			$\frac{23}{24}$
		1	$\frac{24}{25}$
	0.20	Special Instructions	20
\mathbf{V}	\mathbf{P}^{i}	ipeline Stages 2	27
	0.21	Overview	28
		0.21.1 Fetch Stage	
		0.21.2 Decode Stage	28
			28
			29
		v e	29
	0.22		29
		·	29
			29

0.23	ID/EX Buffer	29
	0.23.1 Registers	
	0.23.2 Control Signals	
0.24	EX/M Buffer	
	0.24.1 Registers	
	0.24.2 Control Signals	
0.25	M/WB Buffer	
	0.25.1 Registers	
тт	Pipeline Hazarda and solutions	29
I I	Pineline Hazards and solutions	32
	Pipeline Hazards and solutions	_
	Structural Hazards	
		33
	Structural Hazards	33 33
0.26	Structural Hazards	33 33 33
0.26	Structural Hazards	 33 33 33
0.26	Structural Hazards 0.26.1 Detection 0.26.2 Handling Data Hazards 0.27.1 Detection	 33 33 33 33
0.26	Structural Hazards	 33 33 33 33 33
0.26	Structural Hazards	 33 33 33

List of Figures

1	Overall System Design	4
2	Branch Prediction Unit Diagram	7
3	Stack Pointer (SP) Peak Unit Diagram	7
4	Branch Address Unit Diagram	8
5	Register File Diagram	12
6	Hazard Detection Unit Diagram	36

List of Tables

1	Task Distribution	2
2	One Operand Instruction Mapping	14
3	Two Operand Instruction Mapping	15
4	Memory Instruction Mapping	16
5	One Operand Instruction Mapping	16
6	One Operand Instruction Control Signals Part I	20
7	One Operand Instruction Control Signals Part II	20
8	Two Operands Instruction Control Signals Part I	21
9	Two Operands Instruction Control Signals Part II	21
10	Immediate Operand Instruction Control Signals Part I	22
11	Immediate Operand Instruction Control Signals Part II	22
12	Data Instruction Control Signals Part I	23
13	Data Instruction Control Signals Part II	23
14	Stack Instruction Control Signals Part I	24
15	Stacks Instruction Control Signals Part II	24
16	Jumpers Instruction Control Signals Part I	25
17	Jumpers Instruction Control Signals Part II	25
18	Specials Instruction Control Signals Part I	25
19	Specials Instruction Control Signals Part II	25

Part I Introduction

0.1 Abstract

This report describes our design work of the 5-stage pipelined processor, that follows Harvard architecture.

This report contains:

- the overall system blocks and connections.
- the functionalities of the different blocks.
- the hazard solutions.

0.2 Task Distribution

Table 1 contains the task distribution.

Table 1: Task Distribution

Team Member	Tasks
Mohamed Shawky	– Overall system design.
	– Hazard detection and handling.
	– Document typing and formatting.
Remonda Talaat	- Instruction format.
	– Interrupt Handling.
	– Overall system design.
Evram Youssef	- Control unit and its signals.
	– Low level block design.
	– Pipeline buffers.
Mahmoud Adas	– Low level block design.
	– Pipeline buffers.
	– Document typing and formatting.

Part II Overall System Design

0.3 Overall System Design Schema

Figure 1 shows the overall system design in detail. Each unit is described in details in its section.

Figure 1: Overall System Design

0.4 Memory Specs

Because the design follows Harvard architecture, it uses 2 separate memory units, one for instructions and another one for both the data and stack.

- Instructions Memory:
 - $-2^{32} \times 16 \text{ bits}$
 - 16-bit bus
- Data Memory:

- $-2^{32} \times 16 \text{ bits}$
- -32-bit bus
- SP starts at 2^{32} -1

0.5 PC Control Unit

0.5.1 Inputs

- IF Flush (1 bit)
- Stall Signal (1 bit)
- RESET Signal (1 bit)
- Interrupt Signal (1 bit)
- Current OPCode (7 bits)

0.5.2 Outputs

• PC Mux Selectors (3 bits)

0.5.3 Logic

- If IF Flush == 1, Output = 001
- If RESET == 1, Output = 010
- If Stall == 1, Output = 011
- If Interrupt == 1 || OPCode == RET/RTI, Output = 100
- Else, Output = 000

0.6 Dynamic Branch Prediction

Figure 2 shows the branch prediction unit.

0.6.1 Inputs

- Hashed Address (4 bits)
- Update Bit (1 bit): Taken or Not to update FSM
- OPcode (4 bits)

0.6.2 Outputs

• Taken (1 bit): predict whether the branch taken or not

0.6.3 Logic

- Updates the FSM corresponding to the hashed address.
- Checks whether the OPCode is of a conditional branch instruction.
- Outputs the prediction bit (Taken or Not) accordingly.

0.7 Stack Pointer (SP) Peak Unit

Figure 3 shows the stack pointer unit.

0.7.1 Inputs

- Current SP (32 bits)
- Prev OPCodes (3X7 bits)

0.7.2 Outputs

• Expected SP (32 bits): stack pointer to read from after eliminating hazards

Figure 2: Branch Prediction Unit Diagram

Figure 3: Stack Pointer (SP) Peak Unit Diagram

0.7.3 Logic

This unit peaks the value of the stack pointer on returning from a subroutine or an interrupt, in order to calculate the correct value of the address from which the original program counter read from memory. It checks for POP/PUSH instructions and use the count to update the address.

NOTE: In case we didn't use this unit, we will stall the pipe for three consecutive cycles to eliminate possible hazards.

0.8 Branch Address Unit

Figure 4 shows the branch address unit.

Figure 4: Branch Address Unit Diagram

0.8.1 Inputs

- Next PC Address (32 bits)
- Instruction Address (32 bits)
- Incremented PC Address (32 bits)
- Hashed Address (4 bits)

• OpCode (4 bits)

0.8.2 Outputs

- IF Flush (1 bit)
- Branch Address (32 bits)
- Hashed Address (4 bits)

0.8.3 Logic

- Check if OpCode is of a conditional branch instruction, if true:
 - Check whether PC Next Address is equal to Instruction Address
 - If true:
 - * IF Flush = 0, Branch Address = Instruction Address
 - If false:
 - * IF Flush = 1, Branch Address = Instruction Address

0.9 Register File

Figure 5 shows the register file.

0.9.1 Registers

- 8 general purpose registers
- Stack pointer (SP) register
- Program counter (PC) register

0.9.2 Inputs

- Dest Regs: 2X4 bits (for destination selection)
- SRC Regs: 2X4 bits (for source selection)

- Fetch Reg: 4 bits (for fetch branch register selection)
- WB values: 2X32 bits (for write back values)
- RESET: 1 bit (for registers clear).
- Branch/IO: 2 bits (to determine whether the operation is IO or branch)
- IN Port: 32 bits (IO input port)

0.9.3 Outputs

- OP1: 32 bits (value of first operand)
- OP2: 32 bits (value of second operand)
- Fetch Value: 32 bits (value of branch address required by fetch)
- Instruction Address: 32 bits (value of branch address)
- OUT Port: 32 bits (IO output port)

0.9.4 Logic

The register selector acts like a decoder to select the required operation and the register on which the operation performed.

0.10 ALU

0.10.1 Inputs

- ALUop: 4 bits (refer to ALU Operations below)
- Operands: 2X32 bits (2 input operands)

0.10.2 Outputs

• ALUout: 32 bits (operation result)

0.10.3 ALU Operations

- 0000 NOP -(no operation)
- 0001 INC (first operand + 1)
- 0010 DEC (first operand 1)
- 0011 ADD (first operand + second operand)
- 0100 SUB (first operand second operand)
- 0101 AND (first operand && second operand)
- 0110 OR (first operand || second operand)
- 0111 NOT (!first operand)
- 1000 SHL (shift first operand to the left)
- 1001 SHR (shift first operand to the right)
- 1010 INC2 (first operand + 2)
- 1011 DEC2 (first operand 2)
- 1100 INC4 (first operand + 4)
- 1101 DEC4 (first operand 4)

0.10.4 Logic

- ALU performs the operation and changes the CCR accordingly.
- The input operands of the ALU are multiplexed between forwarded data and register data, with selectors from data forwarding unit.

Figure 5: Register File Diagram

Part III Instruction Format

0.11 One Operand Operations

- 4 bits (1111) for one operand instructions.
- 3 bits to define instruction.
- 3 bits for destination register.
- 1 bit to define the memory slots occupied by the instruction.
- Total of 11 bits, padded with 5 0's to fit 16 bits.

Table 2. One Operand Institution Mapping								
Operation	OpCode	Destination	16 32	Conditions				
IN	1111000	000:111	0					
NOT	1111001	000:111	0	if !Rdst=0,Z=1				
				if !Rdst<0,N=1				
INC	1111010	000:111	0	if Rdst+1=0,Z=1				
				if Rdst+1<0,N=1				
DEC	1111011	000:111	0	if Rdst-1=0,Z=1				
				if Rdst-1<0,N=1				
OUT	1111100	000:111	0					

Table 2: One Operand Instruction Mapping

0.12 Special Operations

• 16 0's to represent NOP (0000000000000000).

0.13 Two Operand Operations

- 4 bits to define instruction.
- 3 bits for each of Rsrc1, Rsrc2 and Rdst.
- 1 bit to define the memory slots occupied by the instruction.
- 16 bits for immediate values.
- Total of 14 bits in most cases with some exceptions mentioned below.

Operation	OpCode	Rsrc1	Rsrc2	Rdst	imm	16 32	Conditions
SWAP	0001	000:111		000:111	_	0	
							_
ADD	0010	000:111	000:111	000:111		0	if Result=0,Z=1
							if Result<0,N=1
SUB	0011	000:111	000:111	000:111	_	0	if Result=0,Z=1
							if Result<0,N=1
AND	0100	000:111	000:111	000:111	_	0	if Result=0,Z=1
							if Result<0,N=1
OR	0101	000:111	000:111	000:111	_	0	if Result=0,Z=1
							if Result<0,N=1
SHL	0110	000:111		_	16 bits	1	update carry
							flag
SHR	0111	000:111		_	16 bits	1	update carry
							flag
IADD	1000	000:111	_	000:111	16 bits	1	if Result=0,Z=1
							if Result<0,N=1

Table 3: Two Operand Instruction Mapping

0.14 Memory Operations

- 4 bits to define instruction.
- 3 bits for destination register.
- 1 bit to define the memory slots occupied by the instruction.
- 16 bits for immediate values.
- 20 bits for effective addresses.
- Total of 8 bits with no immediate values or effective addresses.
- Total of 24 bits with immediate values.
- Total of 28 bits with effective addresses.

OpCode 16|32 Rdst EΑ Conditions Operation immPUSH 0 1001 000:111 POP 1010 000:111 0 LDM 1011 000:11116 bits 1 LDD 1100 000:111 20 bits 1 STD 1101 20 bits 1 000:111

Table 4: Memory Instruction Mapping

0.15 Branch and Change Control Operations

- 4 bits (0000) for branching instructions.
- 3 bits to define instruction.
- 3 bits for destination register.
- 1 bit to define the memory slots occupied by the instruction.
- Total of 11 bits, padded with 5 0's to fit 16 bits.

Table 5: One Operand Instruction Mapping

		-		
Operation	OpCode	Destination	16 32	Conditions
JZ	0000001	000:111	0	
JMP	0000010	000:111	0	
CALL	0000011	000:111	0	
RET	0000100	_	0	
RTI	0000101	_	0	

Part IV Control Unit (Signals)

0.16 Overview

Control unit is responsible for generating the control signals that are used to activate several operations throughout the pipeline. Also, it's responsible for the extraction of specific information from instruction bits.

- It communicates with:
 - IF/ID buffer: for reading the instruction bits.
 - ID/EX buffer: for writing the appropriate registers, ALUop and signals.
 - Register file: for selecting the registers needed to be read (Rsrc1 and Rsrc2).
 - Hazards units (HDU and Branch Address Unit): for sending enables and needed signals.
- Unit Interface:
 - Inputs:
 - * Instruction Bits (32 bits)
 - * Interrupt bit (1 bit)
 - Outputs:
 - * Rsrc2_val (32 bits) for immediate values or effective addresses
 - * Rsrc1_sel (4 bits)
 - * Rsrc2_sel (4 bits)
 - * Rdst1_sel (4 bits)
 - * Rdst2_sel (4 bits) used only in case of swap
 - * Branch/IO Enable (2 bits)
 - * OP2_sel (1 bit)
 - * SP Enable (1 bit)
 - * OpCode (7 bits)
 - * Branch Enable (1 bit)
 - * ALUop (4 bits)
 - * R/W Control Signal (2 bits)
- Interpretation:

- Rsrc2_val (32 bits): occupies a single place in the ID/EX buffer. However, it's used in many different ways. It can be used as a register value extracted form register file. it can be used as an immediate value extracted from IF/ID buffer. Also, it can hold the stack pointer address, as well as the effective address (EA) sent to the memory for reading or writing.
- Rdst2 (4 bits): only used when dealing with a SWAP instruction, thus we need Op1 and Op2 and their new selectors.
- OP2_sel (1 bit): determines the value of Rsrc2 register in ID/EX buffer, whether it's immediate or register value.
- Branch/IO Enable (2 bits): informs the register file what operation of these are we executing (No/In/Out/Branch), however Branch Enable (1 bit) interacts with the Branch Address Unit, informing it what type of OpCode are we dealing with (branching or not).

0.17 Control Signals

In this section, instructions are divided into seven types based on the signals produced:

- One Operand (not,inc,dec,out,in).
- Two Operands (add,sub,and,or).
- Immediate Operand (iadd,shl,shr,ldm).
- Data (ldd,std).
- \bullet Stack (push,pop,call,ret,rti).
- Jump (jz, jmp).
- Special (nop,swap,reset,int).

0.17.1 One Operand Instructions

- IB[31:0] are the instruction bits.
- Inserting (1111) to Rsrc/Rdst selectors informs the register file not to output any register values.
- 'x' indicates don't care.
- 0000 at the ALUop indicates no operation.
- Rsrc1_sel is the same as Rdst1_sel.

Table 6: One Operand Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1 selector	Rsrc2 selector	Rdst1 selector	Rsrc2 value
NOT	IB[31:25]	0111	0 and	1111	0 and	X
INC	IB[31:25]	0001	1B[24:22] 0 and	1111	1B[24:22] 0 and	X
DEC	IB[31:25]	0010	$\begin{array}{c c} IB[24:22] \\ \hline 0 & and \end{array}$	1111	IB[24:22] 0 and	X
OUT	IB[31:25]	0000	IB[24:22] 0 and	1111	IB[24:22] 0 and	X
IN	IB[31:25]	0000	IB[24:22] 0 and	1111	IB[24:22] 0 and	X
111	1D[31.23]	0000	IB[24:22]	1111	IB[24:22]	X

Table 7: One Operand Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable			Signal
NOT	X	1111	00	0	0	00
INC	X	1111	00	0	0	00
DEC	X	1111	00	0	0	00
OUT	X	1111	01	0	0	00
IN	X	1111	10	0	0	00

0.17.2 Two Operand Instructions

• OP2_sel: 0 the register value and 1 the imm/ea value.

Table 8: Two Operands Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1	Rsrc2	Rdst1	Rsrc2
			selector	selector	selector	value
ADD	IB[31:25]	0011	0 and	0 and	0 and	X
			IB[27:25]	IB[24:22]	IB[21:19]	
SUB	IB[31:25]	0100	0 and	0 and	0 and	X
			IB[27:25]	IB[24:22]	IB[21:19]	
AND	IB[31:25]	0101	0 and	0 and	0 and	X
			IB[27:25]	IB[24:22]	IB[21:19]	
OR	IB[31:25]	0110	0 and	0 and	0 and	X
			IB[27:25]	IB[24:22]	IB[21:19]	

Table 9: Two Operands Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable			Signal
ADD	0	1111	00	0	0	00
SUB	0	1111	00	0	0	00
AND	0	1111	00	0	0	00
OR	0	1111	00	0	0	00

0.17.3 Immediate Operand Instructions

- Rsrc1_sel is the same as Rdst1_sel, in SHL and SHR cases. However, in IADD case, it's a different register and in LDM case, there's no need for Rsrc, it's just a destination.
- In IADD case, Rsrc != Rdst.
- In LDM case, there's no Rsrc, it's Rdst.
- Rsrc2_val is the immediate value extracted from the IF/ID buffer.

- R/W memory (11) is write and (10) is read.
- Sign extend unit is used to adjust the (16 bits) immediate value to (32 bits).
- SE: sign extend enable (0/1).

Table 10: Immediate Operand Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1 selector	Rsrc2 selector	Rdst1 selector	Rsrc2 value
IADD	IB[31:25]	0011	0 and IB[27:25]	1111	0 and IB[24:22]	0XSE and IB[15:0]
SHL	IB[31:25]	1000	0 and IB[27:25]	1111	0 and IB[27:25]	0XSE and IB[15:0]
SHR	IB[31:25]	1001	0 and IB[27:25]	1111	0 and IB[27:25]	0XSE and IB[15:0]
LDM	IB[31:25]	0000	1111	1111	0 and IB[27:25]	0XSE and IB[15:0]

Table 11: Immediate Operand Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable			Signal
IADD	1	1111	00	0	0	00
SHL	1	1111	00	0	0	00
SHR	1	1111	00	0	0	00
LDM	1	1111	00	0	0	11

0.17.4 Data Instructions

Note that:

- Effective address does not need a sign extend, that's why it's always zero extended with only 12 bits.
- OP2_sel is 1 to pass the EA.
- R/W memory (11) is write and (10) is read.

Table 12: Data Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1	Rsrc2	Rdst1	Rsrc2
			selector	selector	selector	val
LDD	IB[31:25]	0000	0 and	1111	1111	0x000
			IB[27:25]			and
						IB[19:0]
STD	IB[31:25]	0000	1111	1111	0 and	0x000
					IB[27:25]	and
						IB[19:0]

Table 13: Data Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable			Signal
LDD	1	1111	00	0	0	10
STD	1	1111	00	0	0	11

0.18 Stack Instructions

- Rsrc2_val is the stack pointer, as it's the address of the operation.
- ALUop's Inc2 and Dec2 are used to manipulate the stack pointer, thus the output of the ALU will be the new stack pointer.
- In case of Call, Rsrc1_sel is none, as no register is used. It is the PC pushed at the memory.
- In case of Call, Rdst1_sel, is the register holding the new address.

- In case of Ret and Rti, no registers are affected, as the PC is updated at the fetch stage.
- R/W memory (11) is write and (10) is read.

Table 14: Stack Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1	Rsrc2	Rdst1	Rsrc2
			selector	selector	selector	val
PUSH	IB[31:25]	1011	0 and	1111	1111	SP(32
			IB[27:25]			bits)
POP	IB[31:25]	1010	1111	1111	0 and	SP(32
					IB[27:25]	bits)
CALL	IB[31:25]	1011	1111	1111	0 and	SP(32
					IB[27:25]	bits)
RET	IB[31:25]	1010	1111	1111	1111	SP(32
						bits)
RTI	IB[31:25]	1100	1111	1111	1111	SP(32
						bits)

Table 15: Stacks Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable		(JZ)	Signal
PUSH	1	1111	00	1	0	11
POP	1	1111	00	0	0	10
CALL	1	1111	00	0	0	11
RET	1	1111	00	0	0	10
RTI	1	1111	00	0	0	10

0.19 Jump Instructions

- Rsrc1_sel is the address we are jumping to, that's why we need to verify that our prediction at the JZ case is correct.
- Branch/IO Enable is (11) as it is a branching instruction.

• Branch enable (1) to detect if the JZ operated correctly.

Table 16: Jumpers Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1	Rsrc2	Rdst1	Rsrc2
			selector	selector	selector	val
JMP	IB[31:25]	0000	1111	1111	1111	X
JZ	IB[31:25]	0000	0 and	1111	1111	X
			IB[27:25]			

Table 17: Jumpers Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable		(JZ)	Signal
JMP	X	1111	11	0	0	00
JZ	X	1111	11	0	1	00

0.20 Special Instructions

There's no interrupt instruction, but there's a bit called Interrupt, sent to the Control Unit as an input to indicate an interrupt signal was triggered.

Table 18: Specials Instruction Control Signals Part I

Instruction	OPCode	ALUop	Rsrc1	Rsrc2	Rdst1	Rsrc2
			selector	selector	selector	val
NOP	IB[31:25]	0000	1111	1111	1111	X
SWAP	IB[31:25]	0000	0 and	0 and	0 and	X
			IB[27:25]	IB[24:22]	IB[24:22]	
Reset	IB[31:25]	0000	1111	1111	1111	X
Int	IB[31:25]	0000	1111	1111	1111	X

Table 19: Specials Instruction Control Signals Part II

Instruction	OP2 se-	Rdst2	Branch	SP En-	Branch	R/W
	lector	(swap)	/IO	able	Enable	Control
			Enable		(JZ)	Signals
NOP	X	1111	00	0	0	00
SWAP	0	0 and	00	0	0	11
		IB[27:25]				
Reset	X	1111	00	0	0	00
Int	X	1111	00	0	0	00

Part V Pipeline Stages

0.21 Overview

This section discusses the 5 stages of our system and their functionalities.

0.21.1 Fetch Stage

- Responsible for fetching the next instruction.
- Can take two cycles in case of 32-bit instructions.
- Contains a branch prediction unit to determine the next address to be fetched in case of branching.
- Outputs the instruction bits into IF/ID Buffer.
- The current instruction is fetched at the first half of cycle, then the next PC value calculations are done in the second half.

0.21.2 Decode Stage

- Responsible for decoding the instruction bits into control signals.
- Outputs the corresponding signals to ID/EX Buffer.
- Contains register file to output operand values and register-related operations.
- Determines the correct branch address in case of branching instructions by using Branch Address Unit.
- The control unit deduces the corresponding signals in the first half of cycle, then the register operations and branch address calculation are done in the second half of cycle.

0.21.3 Execute Stage

- Responsible for ALU operations.
- Determines the correct ALU output and pass it with other signals to EX/M Buffer.
- The ALU operations and CCR update are done in the first half of cycle.

0.21.4 Memory Stage

- Responsible for Data Memory IO.
- Memory read/write is done in the first half of cycle.

0.21.5 Write-Back Stage

- Responsible for passing correct output values to the destination registers.
- Write back is done in the first half of cycle.

0.22 IF/ID Buffer

0.22.1 Registers

- Instruction Register (32 bits)
- Next Address Register (32 bits)
- Incremented PC Register (32 bits)
- Hashed Address Register (4 bits)
- Interrupt Register (1 bit)

0.22.2 Control Signals

- Flush: clear buffer (1 bit)
- Stall: freeze buffer (1 bit)

0.23 ID/EX Buffer

0.23.1 Registers

- Operand Registers (2X32 bits)
- Destination Register (4 bits)

- OpCode Register (7 bits)
- R/W Register (2 bits)

0.23.2 Control Signals

- Stall (IN): freeze buffer (1 bit)
- Destination Register (OUT) (4 bits)
- Output Values (OUT) (32 bits)

0.24 EX/M Buffer

0.24.1 Registers

- ALUout Register (32 bits)
- MEM IN Register (32 bits)
- Opcode Register (7 bits)
- Destination Register (4 bits)
- R/W Register (2 bits)

0.24.2 Control Signals

- Destination Register (OUT) (4 bits)
- Output Values (OUT) (32 bits)

0.25 M/WB Buffer

0.25.1 Registers

- ALUout Register (32 bits)
- MEM OUT (32 bits)

- OpCode (7 bits)
- Destination Register (4 bits)

Part VI Pipeline Hazards and solutions

0.26 Structural Hazards

0.26.1 Detection

The structural hazard occurs in data memory and register file.

0.26.2 Handling

The structural hazard in data memory is solved by using 2 memory units, one for instructions and one for data. Both have the same specs (previously mentioned).

However structural hazard in register file is handled by forcing the write back to happen in the first half of the clock cycle and the decode to happen in the second half.

0.27 Data Hazards

0.27.1 Detection

Hazard Detection Unit (HDU)

Figure 6 shows the hazard detection unit.

HDU consists of 3 parts:

- **OPCode Checker:** checks the opcode of the current instruction to check whether it will cause data hazard or not, then activates the Register Comparator accordingly. Also, it checks for *load-use case*, in order to activate the stall signal.
- Register Comparator: compares the decode source registers with the destination registers of the execute and memory stages.
- Output Unit: outputs stall signal in case of load and pop instructions and data forward unit enable in case of other data hazards.

0.27.2 Handling

Stall

Occurs only at Fetch and Decode stage, due to load(pop) use case.

- Fetch same instruction (don't increment the program counter).
- Latch IF/ID buffer with the same values.
- Freeze Decode stage.
- Clear ID/EX buffer.

Data Forwarding

- EX/MEM buffer > Execute / Decode.
- ID/EX buffer > Decode.

0.28 Control Hazards

0.28.1 Detection

The branch address calculation occurs in the Decode stage. So, the hazard might affect only the Fetch stage, which will be flushed in case of wrong address prediction.

0.28.2 Handling

- At Fetch stage, always check the branch predictor and calculate the next address accordingly.
- At Decode stage, we have a *Branch Address Unit* that checks whether the OPCode is of a branch operation. If so, it passes the address to the program counter and compares the correct address with the address of the counter to decide whether to flush the Fetch stage or not.

Flush

Occurs only at Fetch Stage, due to wrong branch prediction at Decode stage.

- Load new address in the program counter.
- Remove fetched instructions from IF/ID buffer.

Dynamic Branch Prediction

We use 2-bit branch predictor, which is a hash table of *Finite State Machines* (FSMs) to predict whether the branch will be taken (1) or not (0) at each individual branch address.

Figure 6: Hazard Detection Unit Diagram