Nom:			
Prénom:			

Interro 2 le 19/09/2021.

Question 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Donner la définition de $(u_n)_{n\in\mathbb{N}}$ est négligeable devant $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ ».

Question 2. Soient $a \in \mathbb{R}^*$ et $(u_n)_{n \in \mathbb{N}}$ une suite qui tend vers 0. Donner un équivalent au voisinage de $+\infty$ de $(1 + u_n)^a - 1$.

Exercice 1. Soit f la fonction définie sur $[-2, +\infty[$ par

$$\forall x \in [-2, +\infty[, f(x) = (x+2)^2 - 2.$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

Montrer par récurrence que pour tout $n \in \mathbb{N}$, u_n est bien défini et positif.

Réponses.

Nom : Prénom :

Interro 2 le 19/09/2021.

Question 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Donner la définition de $(u_n)_{n\in\mathbb{N}}$ est équivalente à $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ ».

Question 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui tend vers 0. Donner un équivalent au voisinage de $+\infty$ de $e^{u_n}-1$.

Exercice 1. Soit f la fonction définie sur $[-2, +\infty[$ par

$$\forall x \in [-2, +\infty[, f(x) = (x+2)^2 - 2.$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

On admet que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et à termes positifs. Montrer par récurrence qu'elle est croissante.

Réponses.