Section 7.6 Graphs of the Sine and Cosine Functions

$$y = f(x) = \sin x$$
 $y = f(x) = \cos x$ $y = f(x) = \tan x$
 $y = f(x) = \csc x$ $y = f(x) = \cot x$

The Graph of the Sine Function $y = \sin x$

X	$y = \sin x$	(x, y)
0	0	(0, 0)
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(\frac{\pi}{6},\frac{1}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2},1\right)$
$\frac{5\pi}{6}$	$\frac{1}{2}$	$\left(\frac{5\pi}{6},\frac{1}{2}\right)$
π	0	$(\pi,0)$
$\frac{7\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7\pi}{6}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	-1	$\left(\frac{3\pi}{2},-1\right)$
$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11\pi}{6}, -\frac{1}{2}\right)$
2π	0	$(2\pi, 0)$

$$y = \sin x$$
, $0 \le x \le 2\pi$

$$y = \sin x, -\infty < x < \infty$$

Properties of the Sine Function

- 1. The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- **4.** The sine function is periodic, with period 2π .
- **5.** The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π ,...; the y-intercept is 0.
- **6.** The maximum value is 1 and occurs at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots;$

the minimum value is -1 and occurs at $x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$

1 Graph Functions of the Form $y = A \sin(\omega x)$ Using Transformations

Graphing Functions of the Form $y = A \sin(\omega x)$ Using Transformations

Graph $y = 3 \sin x$ using transformations.

Graphing Functions of the Form $y = A \sin(\omega x)$ Using Transformations

Graph $y = -\sin(2x)$ using transformations.

–Period π –––

The Graph of the Cosine Function

х	$y = \cos x$	(x, y)
0	1	(0, 1)
$\frac{\pi}{3}$	$\frac{1}{2}$	$\left(\frac{\pi}{3},\frac{1}{2}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2},0\right)$
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2\pi}{3}, -\frac{1}{2}\right)$
π	-1	$(\pi,-1)$
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4\pi}{3}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	0	$\left(\frac{3\pi}{2},0\right)$
$\frac{5\pi}{3}$	$\frac{1}{2}$	$\left(\frac{5\pi}{3},\frac{1}{2}\right)$
2π	1	(2π, 1)

$$y = \cos x$$
, $0 \le x \le 2\pi$

$$y = \cos x, -\infty < x < \infty$$

Properties of the Cosine Function

- **1.** The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The cosine function is an even function, as the symmetry of the graph with respect to the *y*-axis indicates.
- **4.** The cosine function is periodic, with period 2π .
- 5. The x-intercepts are ..., $-\frac{3\pi}{2}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$,...; the y-intercept is 1.
- **6.** The maximum value is 1 and occurs at $x = \ldots, -2\pi, 0, 2\pi, 4\pi, 6\pi, \ldots$; the minimum value is -1 and occurs at $x = \ldots, -\pi, \pi, 3\pi, 5\pi, \ldots$

2 Graph Functions of the Form $y = A \cos(\omega x)$ Using Transformations

Graphing Functions of the Form $y = A \cos(\omega x)$ Using Transformations

Graph $y = 2\cos(3x)$ using transformations.

(a) $y = \cos x$

Multiply by 2; Vertical stretch by a factor of 2

Replace x by 3x; Horizontal compression by a factor of $\frac{1}{3}$

Sinusoidal Graphs

(a)
$$y = \cos x$$
 $y = \cos (x - \frac{\pi}{2})$

(b)
$$y = \sin x$$

$$\sin x = \cos \left(x - \frac{\pi}{2} \right)$$

— Seeing the Concept —

Graph
$$Y_1 = \sin x$$
 and $Y_2 = \cos\left(x - \frac{\pi}{2}\right)$.

How many graphs do you see?

Copyright © 2012 r earson Eudeadon, me. r dollsming as r remide mail.

$$y = \cos x$$

Multiply by 2; Vertical stretch by a factor of 2

$$y = 2 \cos x$$

Amplitude

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

THEOREM

If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are

Amplitude =
$$|A|$$
 Period = $T = \frac{2\pi}{\omega}$

Finding the Amplitude and Period of a Sinusoidal Function

Determine the amplitude and period of $y = -4 \cos(3x)$

$$Amplitude = |-4| = 4$$

Period =
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{3}$$

If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are

Amplitude =
$$|A|$$
 Period = $T = \frac{2\pi}{\omega}$

$$\left[0,\frac{\pi}{2}\right], \quad \left[\frac{\pi}{2},\pi\right], \quad \left[\pi,\frac{3\pi}{2}\right], \quad \left[\frac{3\pi}{2},2\pi\right]$$

For
$$y = \sin x$$
: $(0,0), \left(\frac{\pi}{2},1\right), (\pi,0), \left(\frac{3\pi}{2},-1\right), (2\pi,0)$

For
$$y = \cos x$$
: $(0,1), \left(\frac{\pi}{2}, 0\right), (\pi, -1), \left(\frac{3\pi}{2}, 0\right), (2\pi, 1)$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

How to Graph a Sinusoidal Function Using Key Points

Graph $y = 4\cos(2x)$ using key points.

Step 1: Determine the amplitude and period of the sinusoidal function.

$$Amplitude = |4| = 4$$

Amplitude =
$$|4| = 4$$
 Period = $T = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$

Step 2: Divide the interval
$$\left[0, \frac{2\pi}{\omega}\right]$$
 $\pi \div 4 = \frac{\pi}{4}$

into four subintervals of the same length.

$$\left[0,\frac{\pi}{4}\right], \left[\frac{\pi}{4},\frac{\pi}{2}\right], \left[\frac{\pi}{2},\frac{3\pi}{4}\right], \left[\frac{3\pi}{4},\pi\right]$$

Step 3: Use the endpoints of these subintervals to obtain five key points on the graph.

$$(0,4), (\frac{\pi}{4},0), (\frac{\pi}{2},-4), (\frac{3\pi}{4},0), (\pi,4)$$

How to Graph a Sinusoidal Function Using Key Points

Graph $y = 4\cos(2x)$ using key points.

Step 4: Plot the five key points and draw a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.

$$(0,4), \left(\frac{\pi}{4},0\right), \left(\frac{\pi}{2},-4\right), \left(\frac{3\pi}{4},0\right), (\pi,4)$$

SUMMARY Steps for Graphing a Sinusoidal Function of the Form $y = A \sin(\omega x)$ or $y = A \cos(\omega x)$ Using Key Points

STEP 1: Determine the amplitude and period of the sinusoidal function.

STEP 2: Divide the interval $\left[0, \frac{2\pi}{\omega}\right]$ into four subintervals of the same length.

STEP 3: Use the endpoints of these subintervals to obtain five key points on the graph.

STEP 4: Plot the five key points and draw a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.

Graphing a Sinusoidal Function Using Key Points

Graph
$$y = -3\cos\left(\frac{\pi}{4}x\right)$$
 using key po

$$Amplitude = |-3| = 3$$

Graphing a Sinusoidal Function Using Key Points.

Graph
$$y = -3\cos\left(\frac{\pi}{4}x\right)$$
 using key points.

Period = $T = \frac{2\pi}{\omega} = \frac{2\pi}{\pi} = 8$ $8 \div 4 = 2$

Amplitude = $|-3| = 3$

$$[0,2],[2,4],[4,6],[6,8]$$
 $(0,-3),(2,0),(4,3),(6,0),(8,-3)$

EXAMPLE Graphing a Sinusoidal Function Using Key Points

Graph $y = 5\sin(3x)$ using key points.

Amplitude =
$$|5| = 5$$
 Period = $T = \frac{2\pi}{\omega} = \frac{2\pi}{3}$ $\frac{2\pi}{3} \div 4 = \frac{\pi}{6}$
$$\left[0, \frac{\pi}{6}\right], \left[\frac{\pi}{6}, \frac{\pi}{3}\right], \left[\frac{\pi}{3}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$$
 $(0,0), \left(\frac{\pi}{6}, 5\right), \left(\frac{\pi}{3}, 0\right), \left(\frac{\pi}{2}, -5\right), \left(\frac{2\pi}{3}, 0\right)$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

5 Find an Equation for a Sinusoidal Graph

Find an equation for the graph shown

$$y = A\cos(\omega x) = 3\cos(2\pi x)$$

Finding an Equation for a Sinusoidal Graph

Find an equation for the graph shown

Note that this is a reflection over the x-axis of the sine function so while the amplitude is 2, A = -2.

$$y = A\sin(\omega x)$$

while the amplitude is
$$2$$
, $A = -2$

while the amplitude is 2 , $A = -2$

Period

$$T = \frac{2\pi}{\omega} = 4$$

$$\omega = \frac{\pi}{2}$$

$$y = A\sin(\omega x) = -2\sin\left(\frac{\pi}{2}x\right)$$