Analisi e progettazione di algoritmi

(III anno Laurea Triennale - a.a. 2018/19)

Soluzioni prova scritta 27 giugno 2019

Esercizio 1 - Ordinamenti

1. Pseudocodice dei passi 1 e 2:

```
p = 1.dequeue()
11 = make_empty()
12 = make_empty()
while (1.size()>0)
    x = 1.dequeue()
    if (x <= p) 11.enqueue(x) else 12.enqueue(x)</pre>
```

2. Sia n = |l|. Le istruzioni eseguite prima del ciclo hanno complessità temporale costante. Il ciclo è eseguito esattamente n-1 volte (tante volte quanti gli elementi di l, tranne p che è già stato tolto) e le istruzioni eseguite hanno costo costante. La complessità temporale è perciò in $\Theta(n)$.

La complessità spaziale è O(1) perché durante il ciclo il numero totale di nodi nelle tre liste l, l_1, l_2 è in ogni momento pari a n-1 (un elemento viene tolto da l ed aggiunto a l_1 oppure a l_2); le variabili aggiuntive sono solo $p \in x$.

3. Esempio che non è stabile: $l=10_A, 10_B, 20, 30$. Abbiamo $p=10_A$. Si formano $l_1=10_B, l_2=20, 30$, che vengono ordinate ricorsivamente (e restano uguali perché già ordinate). Il risultato finale è $l=l_1 \cdot p \cdot l_2=10_B, 10_A, 20, 30$ in cui l'ordine reciproco dei due elementi di chiave 10 è stato invertito.

Esercizio 2 - Strutture dati

1. Fattori di bilanciamento dei nodi interni:

2. Una sequenza di inserimento: ad esempio 40,20,70,10,50,90,80. Non è unica (per es. posso scambiare 50 e 90).

Attenzione: se fosse un BST andrebbero bene anche sequenze del tipo 40,20,10... ma questo è un AVL: in tal caso l'inserimento di 10 provoca sbilanciamento e rotazione!

3. Inserimenti:

Inserisco 30 come in un albero binario di ricerca, creando un nuovo nodo figlio destro di 10. Risalendo dal nuovo nodo verso la radice, ricalcolo i fattori di bilanciamento. I nuovi fattori sono tutti nell'intervallo accettabile (tra -1 e 1) per cui non occorrono rotazioni:

 $|40|_{-1}$

Inserisco 75 come in un albero binario di ricerca, creando un nuovo nodo figlio sinistro di 80. Risalendo, ricalcolo i fattori di bilanciamento. Il nodo contenente 90 risulta sbilanciato (fattore 2). Faccio una rotazione semplice verso destra (che coinvolge i nodi 80,90):

Inserisco 100 come in un albero binario di ricerca, creando un nuovo nodo figlio destro di 90. Risalendo ricalcolo i fattori di bilanciamento. Il nodo contenente 70 risulta sbilanciato (fattore -2). Faccio una rotazione doppia verso sinistra (che coinvolge i nodi 70,80,90):

 $|40|_{-1}$

100

Esercizio 3 - Grafi

Nella prima colonna indichiamo il nodo estratto.

	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}
	0	∞	∞	∞	∞	∞	∞
A	-	7	∞	5	∞	∞	∞
\overline{D}	-	7	∞	-	20	11	∞
В	-	-	15	-	14	11	∞
F	-	-	15	-	14	-	22
\overline{E}	-	-	15	-	-	-	22
\overline{C}	-	-	-	-	-	-	22
G	-	-	-	-	-	-	-

Esercizio 4 - Tecniche algoritmiche

1. Definizione induttiva di $\exists CS[i,j,k]$ per ogni $0 \le i,j,k \le n$:

Base

$$\exists CS[i,j,0] = T$$
 per ogni $0 \le i,j \le n$ (la sequenza vuota è sempre una sottosequenza comune) $\exists CS[0,j,k] = F$ per ogni $k>0$ se $i=0$ oppure $j=0$ (se una delle due stringhe è vuota non ci sono sottostringhe comuni di lunghezza >0)

 $\begin{aligned} \textbf{Passo induttivo} & \text{ per ogni } 0 < i, j, k \leq n \\ \exists CS[i,j,k] = \begin{cases} \exists CS[i-1,j-1,k-1] & \text{ se } X[i] = Y[j] \\ \exists CS[i-1,j,k] \lor \exists CS[i,j-1,k] & \text{ se } X[i] \neq Y[j] \end{cases} \\ \text{to visto per LCS} \end{aligned}$

Analogamente a quanto visto per LCS la correttezza è basata sul principio di induzione forte.

2. Un corrispondente algoritmo di programmazione dinamica è il seguente.

```
for (i = 0; i <= n; i++)
  for (j = 0; i <= n; i++) Exists[i,j,0] = true

for (k = 1; k <= n; k++)
  for (j = 1; j <= n; j++) Exists[0,j,k] = false
  for (i = 1; i <= n; j++) Exists[i,0,k] = false

for (k = 1; k <= n; k++)
  for (i = 1; i <= n; i++)
    for (j = 1; j <= n; j++)
      if (X[i] = Y[j]) Exists [i,j,k] = Exists[i-1,j-1,k-1]
      else Exists[i-1,j,k] || Exists[i,j-1,k]</pre>
```

3. Per ottenere anche una delle sottosequenze di di X[1..i] e Y[1..j] di lunghezza (almeno) k, se ne esistono, si può utilizzare una tecnica analoga a quella vista per LCS, ossia memorizzare anche un puntatore alla casella adiacente in diagonale (se X[i] = Y[j]) oppure a sinistra o in alto (se $X[i] \neq Y[j]$, se il valore della casella è true.

Esercizio 5 - Analisi di complessità

- 1. Possiamo dire che il problema $\mathcal{P} \in O(n^2)$. Non possiamo dire nulla sul limite inferiore.
- 2. Dal teorema master sappiamo che:

$$\begin{split} & a < 8 \ T(n) = \Theta(n^2) \\ & a = 8 \ T(n) = \Theta(n^2 \log_4 n) \\ & a > 8 \ T(n) = \Theta(n^{\log_4 a}) \ (\text{con } \log_4 a > 2) \end{split}$$

Quindi, l'algoritmo iterativo è preferibile (asintoticamente) per $a \ge 8$.