**LECTURER: TAI LE QUY** 

# INTRODUCTION TO DATA SCIENCE

| Introduction to Data Science | 1 |
|------------------------------|---|
| Data                         | 2 |
| Data Science in Business     | 3 |
| Statistics                   | 4 |
| Machine Learning             | 5 |
| Summary Session              | 6 |

# DATA SCIENCE IN BUSINESS



# On completion of this unit, you will have learned ...

- ... what a data science use case is.
- ... about the machine learning canvas.
- ... about the model-centric performance evaluation.
- ... about the role played by KPIs in operational decisions.
- ... to identify the influence of the cognitive biases.

### **EXPLAIN SIMPLY**



- What is a DSUC?
- What is a Machine Learning Canvas?
- How can the performance of models be evaluated?
- What are the characteristics of KPIs in operational decisions?
- What is cognitive bias? And how can we solve this problem?

#### **IDENTIFICATION OF USE CASES**

Important questions have to be answered to identify the suitable data science use cases (**DSUC**) for the business objectives:

What is the value of the **knowledge** gained by applying data science tools to this dataset?

What will be **discovered** about the input dataset and its hypothesis?

What **value** will be added to the organization through applying data science techniques?

What will be the organization's **decision** based on the data science results?

# IDENTIFICATION OF USE CASES EXAMPLES OF DSUC

### Achieved Value by Data Science in "Customer"-Related Use Cases



### Achieved Value by Data Science in "Operational"-Related Use Cases



### Achieved Value by Data Science in "Financial Fraud"-Related Use Cases

Is someone accessing unauthorized data?

Where do the hack attempts originate?



What customer behavior
signals potential fraud?

### **DSUC Portfolio:**



### **DSUC**

- Define important questions for the business objectives
- Identify the suitable DSUC

### **Dataset**

- Collect data
- Generate data if necessary
- Label data
- Add comments
- Observe anomalies

# Pre-processing techniques

- Correct errors/noises
- Scan redundant or missing data
- Select relevant features

# Machine learning methods

- Establish mathematical functions
- Create training & testing set
- Train & test the model

# **Model Implementation**

- Predict unseen data
- Update the model

### **MACHINE LEARNING CANVAS**

| 5. Decision  How are predictions used to make decisions that provide the proposed value to the end-user(s)?                         | 2. ML Task Input, output to predict, type of problem                                                                          | 1. Value Propositions What are we trying to do for the end- user(s) of the predictive system? What objectives are we serving? | 3. Data Sources Which raw data sources can we use (internal and external)? | 4. Collecting Data How do we get new data to learn from (inputs and outputs)?                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Making Prediction When do we make predictions on new inputs? How long do we have to featurize a new input and make a prediction? | 9. Offline Evaluation Methods and metrics to evaluate the system before deployment                                            |                                                                                                                               | 8. Features Input representations extracted from raw data sources          | 7. Building Models When do we create/update models with new training data? How long do we have to featurize training inputs and create a model? |
|                                                                                                                                     | 10. Live Evaluation and Monitoring Methods and metrics to evaluate the system after deployment and to quantify value creation |                                                                                                                               |                                                                            |                                                                                                                                                 |

### Evaluation metrics for a classification model

- Potential outcomes of classification: True positive, true negative, false positive, and false negative.
- Evaluation metrics to measure the quality: Precision, accuracy, recall, and F-Score.

| Con    | fusion   | Prediction        |                   |
|--------|----------|-------------------|-------------------|
| matrix |          | Positive          | Negative          |
| Ground | Positive | True<br>positive  | False<br>negative |
| truth  | Negative | False<br>positive | True<br>negative  |



# Evaluation metrics for a regression model

| Absolute error                 | $\varepsilon =  d - y $                                                              |
|--------------------------------|--------------------------------------------------------------------------------------|
| Relative error                 | $\varepsilon^* = \left  \frac{d - y}{d} \right  \cdot 100\%$                         |
| Mean absolute percentage error | $MAPE = \frac{1}{n} \sum_{i=1}^{n} \left  \frac{d_i - y_i}{d_i} \right  \cdot 100\%$ |
| Square error                   | $\varepsilon^2 = (d - y)^2$                                                          |
| Mean square error              | $MSE = \frac{1}{n} \sum_{i=1}^{n} (d_i - y_i)^2$                                     |
| Mean absolute error            | $MAE = \frac{1}{n} \sum_{i=1}^{n}  d_i - y_i $                                       |
| Root mean square error         | $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - y_i)^2}$                             |

### DATA-DRIVEN OPERATIONAL DECISIONS BUSINESS-CENTRIC EVALUATION: THE ROLE OF KPI

### **KPIs – Key Performance Indicators**

- measure the achievement of specific objectives,
- to enhance efficiency, decrease costs, increase profits, increase customer statisfaction, and support company's success.

### Some **examples** of KPIs:

- number of complaints
- proportion of tasks executed
- measured time to complete a task
- annual growth



#### **COGNITIVE BIASES**

There are several factors that impact judgments and decisions, and **biases** are an essential influence that might lead to inaccuracy.

The following table represents common cognitive biases and their proposed de-biasing techniques

| <b>Cognitive Bias</b> | Description                                                                                                                                             | De-Biasing Technique                                                                                                                                                         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anchoring             | Occurs when the estimation of a numerical value is based on an <b>initial value</b> (anchor), which is then <b>insufficiently adjusted</b> .            | <b>Remove</b> anchors, have <b>numerous</b> and counter anchors, use <b>various experts</b> using specific anchors.                                                          |
| Confirmation          | Occurs when there is a desire to <b>confirm</b> one's <b>belief</b> , leading to <b>unconscious selectivity</b> in the acquisition and use of evidence. | Use <b>multiple experts</b> for assumptions, counterfactual challenging probability assessments, use <b>sample evidence</b> for alternative assumptions.                     |
| Desirability          | Favoring alternative options due to a bias that leads to <b>underestimating</b> or <b>overestimating</b> consequences.                                  | Use <b>multi-stakeholder studies</b> of different perspectives, use <b>multiple experts</b> with different views, use appropriate <b>transparency</b> rates.                 |
| Insensitivity         | Sample sizes are <b>ignored</b> and extremes are considered <b>equally</b> in small and large samples.                                                  | Use <b>statistics</b> to determine the likelihood of extreme results in different samples, use the <b>sample data</b> to prove the logical reason behind extreme statistics. |

Source of the text: Zöller, 2022.



# On completion of this unit, you will have learned ...

- ... what a data science use case is.
- ... about the machine learning canvas.
- ... about the model-centric performance evaluation.
- ... about the role played by KPIs in operational decisions.
- ... to identify the influence of the cognitive biases.

### SESSION 3

# TRANSFER TASK

# TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.



#### **TRANSFER TASK**

Create a ML Canvas in the domain of real estate to investigate risky investments and compare the real estate price predictions with the actual prices to determine the best deals.



# 1. Which of the following is incorrect?

Machine Learning Canvas is ...

- a) a single page user interface
- b) used to identify DSUC
- c) applied to firm's problems
- d) none of the above



# 2. Data science use cases (DSUC) are identified by:

- a) effort and risk
- b) effort, risk and achieved value
- c) effort and achieved value
- d) risk

### **LEARNING CONTROL QUESTIONS**

- 3. Which of the following is not one of the common cognitive biases?
  - a) anchoring
  - b) confirmation
  - c) desirability
  - d) sensitivity

### **LIST OF SOURCES**

Dorard, L. (2017). *The machine learning canvas*. <a href="https://www.louisdorard.com/machine-learning-canvas">https://www.louisdorard.com/machine-learning-canvas</a> Zöller, T. (2022). *Course Book – Introduction to Data Science*. IU International University of Applied Science.

© 2022 IU Internationale Hochschule GmbH
This content is protected by copyright. All rights reserved.
This content may not be reproduced and/or electronically edited, duplicated, or distributed in any kind of form without written permission by the IU Internationale Hochschule GmbH.