Modelos Lineares I

Regressão Linear Simples (RLS):

Análise dos Resíduos

(13^a, 14^a e 15^a Aulas)

Professor: Dr. José Rodrigo de Moraes
Universidade Federal Fluminense (UFF)
Departamento de Estatística (GET)

Resíduos do Modelo de Regressão Linear Normal:

- □ A construção do modelo de RLS está fundamentada em várias hipóteses (ou suposições) que devem ser verificadas:
 - Os erros aleatórios ε_i`s são supostamente v.a`s não correlacionadas com média 0 e variância constante σ².
 - Os erros aleatórios ε_i`s são normalmente distribuídos.
- \square A verificação da hipótese distribucional dos erros é de fundamental importância para a realização de inferências sobre os parâmetros β_0 e β_1 do modelo de RLS. Para verificar tais hipóteses sobre os erros aleatórios $\varepsilon_i = Y_i E(Y_i)$, utiliza-se os resíduos do modelo: $e_i = Y_i \hat{Y}_i$, i = 1, 2, ..., n.
- □ Valores bem ajustados apresentam pequenos resíduos, enquanto que valores mal ajustados apresentam grandes resíduos.

Propriedades dos resíduos (e) do modelo:

☐ Média: A média dos resíduos é igual a zero:

$$\overline{e} = \frac{\sum_{i=1}^{n} e_i}{n} = \frac{e_1 + e_2 + \dots + e_n}{n} = 0$$

☐ Variância: A variância dos resíduos é dada por:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (e_i - \overline{e})^2}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{SQRes}{n-2} = QMRes$$

OBS: A variância dos resíduos é denominada "Quadrado Médio dos Resíduos (QMRes)".

Resíduos Padronizados (r^p) :

□ Os <u>resíduos padronizados</u> são úteis para avaliar a adequação do modelo ajustado, bem como para identificar a presença de valores discrepantes ou atípicos (*outliers*). Os <u>resíduos padronizados</u>, denotados por r^p, são definidos abaixo:

$$r_i^P = \frac{e_i - \overline{e}}{\sqrt{\hat{\sigma}^2}} = \frac{e_i}{\sqrt{QMRes}}$$

OBS: Também servem para avaliar a normalidade dos erros e homocedasticidade da variância.

Resíduos estudentizados (r^S):

□ Pacotes estatísticos calculam ainda os <u>resíduos</u> estudentizados, que são considerados como medidas mais adequadas para o exame de valores discrepantes ou atípicos (outliers), pois a variância dos resíduos e_i 's não é constante. Com efeito, e_i tem distribuição normal de média 0 e variância VAR(e_i)= σ^2 (1- h_{ii}). Os <u>resíduos estudentizados</u>, denotados por r^s , são definidos abaixo:

$$r_i^s = \frac{e_i}{\sqrt{\hat{\sigma}^2 \cdot \left(1 - h_{ii}\right)}}; \quad \forall i = 1, 2, ..., n$$

onde:

 h_{ii} é o i-ésimo elemento da diagonal da matriz $H=X(X^*X)^{-1}X^*$, denominada matriz de projeção (ou matriz hat).

Observações: Resíduos estudentizados (rS):

□ Os valores h_{ii} (medidas de alavancagem="leverage") da matriz H, tal que 1/n≤h_{ii}≤1, são usados para avaliar se as observações tem potencial para influenciar o ajuste do modelo.

☐ Em geral:

- h_i≅ 1/n → a obs. i tem <u>baixo potencial</u> para influenciar o ajuste do modelo.
- h_i≅ 1 → a obs. i tem <u>alto potencial</u> para influenciar o ajuste do modelo. OBS: h_{ii} > 0,5 → alta alavancagem.
- ☐ A vantagem dos resíduos estudentizados é que, se o modelo é satisfatório, eles devem apresentar distribuição aproximadamente normal com média zero e variância constante (e igual a 1).

Inadequação do modelo: Violações das Hipóteses Básicas

- □ A análise dos resíduos (ou dos resíduos padronizados) são de fundamental importância na avaliação de 5 tipos de violações no ajuste de modelo de regressão linear normal:
 - 1. Não linearidade: ausência de relação linear entre X e Y.
 - Não normalidade: os erros aleatórios não são normalmente distribuídos.
 - Heterocedasticidade: os erros aleatórios não tem variância constante.
 - 4. Não independência: os erros aleatórios não são independentes.
 - 5. Outliers: presença de um ou mais valores discrepantes ou atípicos (outliers).

Análise Gráfica dos Resíduos do Modelo de RLS: Violações das Hipóteses Básicas

1) Não linearidade → ausência de relação linear entre X e Y

Gráfico 1.1: Gráfico de dispersão entre e vs X.

Gráfico 1.2: Gráfico de dispersão entre $e vs \hat{Y}$.

Gráfico 1.3: Gráfico de dispersão entre X e Y (juntamente com o modelo ajustado).

8

1) Não linearidade

Gráfico 1.1: Gráfico de dispersão $e \ vs \ X$ Gráfico 1.2: Gráfico de dispersão $e \ vs \ \hat{Y}$

Situações como essas indicam possíveis inadequações do modelo adotado, e as curvas sugerem que devemos procurar outras funções matemáticas (ex.: modelo quadrático) que melhor expliquem o fenômeno, pois a relação não é linear.

1) Não linearidade

Gráfico 1.3: Gráfico de dispersão X vs Y (incluindo modelo ajustado):

Situações como essas indicam possíveis inadequações do modelo adotado, indicando que a hipótese de linearidade não é satisfeita.

Situações adequadas (*Linearidade*): Modelo apropriado !!! Gráficos (1.1) ou (1.2): Gráfico (1.3) Relação linear Os resíduos estão aleatoriamente distribuídos em torno de zero.

Análise Gráfica dos Resíduos do Modelo de RLS: Violações das Hipóteses Básicas

 Não normalidade → os erros aleatórios não estão normalmente distribuídos.

Gráfico 2.1: Histograma dos resíduos.

Gráfico 2.2: QQ-Plot dos resíduos.

12

Análise Gráfica dos Resíduos do Modelo de RLS:

Violações das Hipóteses Básicas

3) Heterocedasticidade: os erros aleatórios não tem variância constante.

Gráfico 3.1: Gráfico de dispersão entre e vs X.

Gráfico 3.2: Gráfico de dispersão entre $e vs \hat{Y}$.

3) Heterocedasticidade (continuação):
3.1) Gráfico de dispersão e vs X
3.2) Gráfico de dispersão e vs Ŷ
Situações como essas (A, B ou C) indicam violação da hipótese de homocedasticidade (variância constante), isto é, os erros são heterocedásticos.

Observações - Violações das hipóteses básicas do modelo:

- Feita a análise gráfica dos resíduos e diagnosticada alguma violação das hipóteses básicas do modelo, medidas devem ser tomadas a fim de tornar o modelo mais adequado aos dados observados e as hipóteses feitas.
- Quando a hipótese de homocedasticidade (variância constante) não for satisfeita pode-se aplicar uma transformação nos valores de Y para estabilizar a variância e ajusta-se o modelo com base nos dados transformados. Entre as transformações comumente utilizadas para contornar tal violação estão:

estabilização da variância:
A transformação da variável resposta é um método apropriado para estabilizar a variância dos resíduos.
Em geral, transformações são usadas para:

Estabilizar a variância;
Tornar a distribuição aproximadamente normal;
Produzir um melhor ajuste do modelo.
Embora as transformações tenham sido desenvolvidas para estabilizar a variância, em muitos casos, também conduzem a normalização.

Observações importantes - Transformações para

Análise Gráfica dos Resíduos do Modelo de RLS: Violações das Hipóteses Básicas

5) Presença de outliers:

Observações:

- A presença de outlier (valor discrepante ou atípico) pode causar prejuízos para o ajuste de uma reta de regressão (modelo linear), pois a reta pode ser puxada desproporcionalmente para este valor.
- Um outlier pode no entanto conter significativas informações, de forma que a simples exclusão desse ponto poderia causar substancial perda para o ajuste do modelo.

Voltando ao exemplo dos n=30 bovinos: Dados sobre a concentração da substância X (mg/L) e ganho de peso Y (kg):

Resíduos (brutos) do modelo:

$$e_i = y_i - \hat{y}_i = y_i - (10,040 + 0,732 x_i); \quad \forall \quad i = 1,2,...,30$$

Resíduos padronizados do modelo:

$$r_i^P = \frac{e_i - \overline{e}}{\sqrt{\hat{\sigma}^2}} = \frac{e_i}{\sqrt{QMRes}} = \frac{e_i}{\sqrt{1,3368}}; \quad \forall \quad i = 1, 2, ..., 30$$

onde:

$$\hat{\sigma}^2 = QMRes = \sum_{i=1}^{n} e_i^2 = \frac{(-1,37)^2 + (-1,35)^2 + \dots + (0,87)^2}{30 - 2} = \frac{37,4294}{28} \approx 1,3368$$

26

Exemplo: Dados sobre a concentração da substância X (mg/L) e ganho de peso Y (kg) de n=30 bois: <u>Cálculo dos resíduos brutos e padronizados</u>

<u>Cálculo (</u>	dos resíd	uos brutos	e padronizac	<u>los</u>
boi i	X,	Yi	$\mathbf{e}_{i} = \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}$	$r_i^P = \mathbf{e_i} / \sqrt{\hat{\sigma}^2}$
1	1,00	9,40	-1,37	-1,19
2	3,70	11,40	-1,35	-1,17
3	1,00	12,00	1,23	1,06
4	9,00	16,00	-0,63	-0,54
5	2,00	11,00	-0,50	-0,44
6	2,25	12,50	0,81	0,70
7	2,91	10,40	-1,77	-1,53
8	2,75	11,50	-0,55	-0,48
9	3,00	12,50	0,26	0,23
10	3,50	14,00	1,40	1,21
11	3,75	14,50	1,72	1,48
12	9,45	17,00	0,04	0,04
13	4,25	13,25	0,10	0,09
14	7,00	14,80	-0,36	-Q ₇ 31
15	4,75	14,00	0,48	0,42

Continuaç	ãο - <u>Cálcι</u>	ılo dos resídu	os brutos e p	adronizados:
boi i	X,	y _i	$\mathbf{e}_{i} = \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}$	$r_i^P = \mathbf{e}_i / \sqrt{\hat{\sigma}^2}$
16	5,00	14,10	0,40	0,35
17	5,50	12,50	-1,57	-1,35
18	6,00	15,20	0,77	0,66
19	6,50	14,20	-0,60	-0,52
20	7,00	16,50	1,34	1,16
21	7,50	17,00	1,47	1,27
22	8,00	14,50	-1,40	-1,21
23	8,25	16,00	-0,08	-0,07
24	9,40	17,00	0,08	0,07
25	9,43	14,90	-2,04	-1,77
26	8,94	15,00	-1,58	-1,37
27	9,20	19,00	2,23	1,92
28	9,50	17,50	0,51	0,44
29	8,00	16,00	0,10	0,09
30	9,00	17,50	0,87	20,75
Total	177,53	431,15	0.00	0.00

Exemplo: Usando os dados dos n=30 bois, faça a análise gráfica dos resíduos (brutos, padronizados e estudentizados):

Gráfico de dispersão entre a concentração da substância (X) e os resíduos brutos (e) do modelo:

Gráfico dos resíduos *versus* variável explicativa (ou valores estimados) - *Lembrete*:

- ☐ Se o modelo é adequado e se não existem violações da hipótese de independência ou de variância constante dos erros, os resíduos não devem apresentar nenhum padrão, isto é, eles não devem estar correlacionados com a variável explicativa X, nem com os valores estimados.
- ☐ Construídos os gráficos dos resíduos *versus* variável explicativa X (ou valores estimados), é preciso analisá-los objetivando identificar a existência ou não de possíveis violações das hipóteses básicas do modelo.

Inadequação do modelo de regressão linear: Violações das hipóteses básicas

□ Exemplos práticos para ilustrar algumas das violações que podem ocorrer na análise de regressão linear:

Exemplo 1: Não linearidade da relação entre X e Y

Tipos de gráficos usados:

- Gráfico de dispersão com a reta (modelo) de regressão ajustada(o).
- Gráfico dos resíduos versus variável explicativa X
- Gráfico dos resíduos *versus* valores ajustados Ŷ

36

Inadequação do modelo: Violações das hipóteses básicas

Exemplo 1: Não linearidade da relação entre X e Y

A tabela abaixo fornece informações sobre a *nota dos alunos* e o *tempo de estudo* (em minutos), para n=8 alunos que ficaram em verificação suplementar (VS).

Tabela 1: Dados de 8 alunos

ubciu	i. Dados de o	alailoo
Aluno	Tempo de estudo	Nota
1	80	0,6
2	220	6,7
3	140	5,3
4	120	4,0
5	180	6,5
6	100	2,2
7	200	6,6
8	160	5.8

Violações das Hipóteses Inadequação do modelo: Básicas Exemplo 1: Não linearidade da relação entre X e Y (continuação) Tabela 1: Resíduos do modelo Aluno i Resíduos (e_i) Resíduos padronizados (r_i^P) -1,0833 -1,2497 -1.0417 -1,2017 1.0202 1.1769 0,5857 0,6757 0,4893 0,5644 -0,3488 -0,4024 -0,2762 -0,3186 0,6548 0,7553

Análise gráfica dos resíduos: O gráfico dos "tempos de estudo" versus os "resíduos padronizados" sugere a falta de linearidade, pois apresentam um comportamento sistemático, ou seja, os resíduos são negativos para pequenos valores de X, positivos para valores médios de X e também negativos para grandes valores de X. O que fazer neste caso?

Inadequação do modelo:

Violações das Hipóteses Básicas

Exemplo 2: Outliers e Não linearidade

Um pesquisador levantou para uma amostra de 30 famílias de um condomínio de classe média, em Niterói, informações sobre a "renda mensal familiar" e a "despesa mensal com alimentação", ambas as variáveis foram medidas em reais (R\$). O objetivo é relacionar a renda das famílias (X) e a despesa com alimentação (Y).

Os dados são fornecidos na tabela a seguir:

43

Inadequação do modelo: Violações das Hipóteses Básicas									
Exemplo 2: Outliers e Não linearidade									
Tabela 1:	Tabela 1: Rendas (X) e despesas com alimentação (Y) de								
n=30 famí	lias de	classe média	de um cor	ndomín	io, em Niterói.				
Família	Renda	Despesa com alimentação	Família	Renda	Despesa com alimentação				
1	2.500	380	16	5.500	435				
2	2.700	410	17	5.700	415				
3	2.900	580	18	5.900	485				
4	3.100	480	19	6.100	620				
5	3.300	570	20	6.300	380				
6	3.500	440	21	6.500	700				
7	3.700	480	22	6.700	540				
8	3.900	360	23	6.900	610				
9	4.100	550	24	7.100	650				
10	4.300	415	25	7.300	610				
11	4.500	580	26	7.500	475				

120 950

950 ₄₄ 900

2.700

475 390

4.900

5.100

Análise gráfica dos resíduos:

- Os gráficos sugerem que os 4 pontos indicados nas figuras
 2 e 3 são valores discrepantes, e parece comprometer a hipótese de linearidade do modelo.
- Parecem ser pontos que influenciam a inclinação da reta, ou seja, se eliminados podem fazer com que a reta fique paralela ao eixo X (β₁→0), levando a não verificação da hipótese de linearidade entre X e Y.
- Checando: Ajustar o modelo após a exclusão dos referidos 4 valores discrepantes ...

50

Inadequação do modelo: Violações das Hipóteses Básicas Exemplo 2: *Outliers e Não linearidade*Tabela 1: Rendas mensais (X) e despesas com alimentação

Família	Renda mensal	Despesa com alimentação	Família	Salário mensal	Despesa com alimentação
1	2.500	380	16	5.500	435
2	2.700	410	17	5.700	415
3	2.900	580	18	5.900	485
4	3.100	480	19	6.100	620
5	3.300	570	20	6.300	380
6	3.500	440	21	6.500	700
7	3.700	480	22	6.700	540
8	3.900	360	23	6.900	610
9	4.100	550	24	7.100	650
10	4.300	415	25	7.300	610
11	4.500	580	26	7.500	475
12	4.700	380	-	-	-
13	4.900	475	-	-	-
14	5.100	390	-	-	- :
15	5.300	620	-	-	-

		ajuste 5	bela 1: Resíduos do modelo (ajuste sem os outliers)							
Família	Resíduos padronizados	Família	Resíduos padronizados							
1	-0,6080	16	-0,8555							
2	-0,3398	17	-1,1278							
3	1,4418	18	-0,4273							
4	0,3046	19	0,9760							
5	1,2214	20	-1,6746							
6	-0,2400	21	1,7285							
7	0,1362	22	-0,0573							
8	-1,2171	23	0,6433							
9	0,7807	24	1,0196							
10	-0,7349	25	0,5311							
11	0,9927	26	-0,9845							
12	-1,2255	27	-							
13	-0,2547	28	-							
14	-1,2297	29	- 54							
15	1,2005	30	- 54							

Inadequação do modelo: Violações das Hipóteses Básicas

Figura 4: Gráfico de Dispersão entre as rendas mensais (X) das famílias e os resíduos padronizados do modelo.

Os resíduos se encontram aleatoriamente distribuídos em torno de zero.

Análise gráfica dos resíduos:

- Caso haja evidências que os quatro valores não pertencem ao conjunto de dados, decorrente de erros de mensuração ou digitação, eles podem ser simplesmente descartados, e a análise baseada no conjunto de dados restantes.
- No caso de dúvidas quanto a este fato, recomenda-se fazer uma análise com e sem os outliers para avaliar a influência desses pontos nos resultados do ajuste do modelo.

Inadequação do modelo: Violações das Hipóteses Básicas Exemplo 3: *Outliers e Resíduos não normais*

Tabela 1: Nota de cálculo (X) e nota de estatística (Y) de n=22 alunos de uma mesma turma.

Aluno	Nota em cálculo	Nota em estatística	Aluno	Nota em cálculo	Nota em estatística
1	1,5	3,0	12	4,2	4,1
2	1,7	2,5	13	4,3	4,8
3	2,0	3,5	14	4,3	8,0
4	2,2	3,0	15	4,6	4,2
5	2,5	3,1	16	4,9	5,1
6	2,5	3,6	17	5,0	5,1
7	2,7	3,2	18	5,1	5,1
8	2,9	3,9	19	5,2	4,8
9	3,0	4,0	20	5,5	5,3
10	3,5	4,0	21	9,5	8,0
11	3,8	4,2	22	9,5	2,5 58

Inadequação do modelo: Violações das Hipóteses Básicas

Exemplo 3: Influência de outliers e resíduos não normais

Tabela 1: Resíduos do modelo - brutos e padronizados

Aluno	Resíduos brutos	Resíduos padronizados	Aluno	Resíduos brutos	Resíduos padronizados
1	-0,4232	-0,3263	12	-0,2494	-0,1922
2	-0,9918	-0,7646	13	0,4163	0,3210
3	-0,0947	-0,0730	14	3,6163	2,7878
4	-0,6633	-0,5114	15	-0,2866	-0,2209
5	-0,6662	-0,5136	16	0,5105	0,3936
6	-0,1662	-0,1281	17	0,4762	0,3671
7	-0,6348	-0,4894	18	0,4419	0,3407
8	-0,0034	-0,0027	19	0,1076	0,0830
9	0,0623	0,0480	20	0,5047	0,3891
10	-0,1093	-0,0842	21	1,8326	1,4128
11	-0,0122	-0,0094	22	-3,6674	-2,8271 ⁶¹

Figura 3: Gráfico de dispersão entre as notas de cálculo (X) e os resíduos padronizados do modelo.

Análise gráfica dos resíduos:

- Verifica-se violações da hipótese de normalidade dos erros e existência de outliers.
- Próximo passo: Excluir os 3 valores discrepantes (marcados com o #) e reajustar o modelo.

alunos de uma mesma turma (sem outliers marcados com #).

Inadequação do modelo: Violações das hipóteses básicas

Tabela 1: Nota de cálculo (X) e nota de estatística (Y) de n=19

Exemplo 3: Influência de Outliers e Resíduos não normais

Aluno	Nota em cálculo	Nota em estatística	Aluno	Nota em cálculo	Nota em estatística
1	1,5	3,0	12	4,2	4,1
2	1,7	2,5	13	4,3	4,8
3	2,0	3,5	14	4,3	8,0#
4	2,2	3,0	15	4,6	4,2
5	2,5	3,1	16	4,9	5,1
6	2,5	3,6	17	5,0	5,1
7	2,7	3,2	18	5,1	5,1
8	2,9	3,9	19	5,2	4,8
9	3,0	4,0	20	5,5	5,3
10	3,5	4,0	21	9,5	8,0#
11	3,8	4,2	22	9,5	2,5#

Inadequação do modelo: Violações das hipóteses básicas

Exemplo 2: Influência de outliers e resíduos não normais

Tabela 1: Resíduos do modelo – brutos e padronizados

Aluno Resíduos padronizados Aluno Resíduos padronizados

Aluno	Resíduos brutos	Resíduos padronizados	Aluno	Resíduos brutos	Resíduos padronizados
1	0,2149	0,7454	12	-0,3347	-1,1611
2	-0,4073	-1,4131	13	0,3042	1,0554
3	0,4094	1,4202	14	#	#
4	-0,2128	-0,7383	15	-0,4791	-1,6619
5	-0,2961	-1,0272	16	0,2377	0,8245
6	0,2039	0,7074	17	0,1766	0,6126
7	-0,3183	-1,1042	18	0,1155	0,4006
8	0,2595	0,9004	19	-0,2456	-0,8521
9	0,2985	1,0354	20	0,0711	0,2467
10	-0,0070	-0,0244	21	#	#
11	0,0097	0,0336	22	#	# 69

Análise gráfica dos resíduos:

- ☐ Pergunta 1: Quais a conclusões extraídas por você a partir dos gráficos construídos ?
- □ Pergunta 2: Aplicando alguma transformação na variável resposta Y, a distribuição dos resíduos se aproximaria mais da normal ?

73