Section 12.6

12.6

TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Section 12.7

12.7

TRIPLE INTEGRALS IN SPHERICAL COORDINATES

CYLINDRICAL COORDINATES

$$(7, 0, 7)$$
 $(5, \frac{R}{3}, 10)$

CYLINDRICAL COORDINATES

dx dy dz = 8 drdodz

$$J_{c(0)bion} = \frac{\partial(x,y,z)}{\partial(x,d,z)}$$

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is z = r.

EXAMPLE 3 A solid *E* lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. (See Figure 8.) The density at any point is proportional to its distance from the axis of the cylinder. Find the mass of *E*.

Sketch the domain

EXAMPLE 4 Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} (x^{2}+y^{2}) dz dy dx. = \int_{-2}^{2\pi} \int_{-\sqrt{4-x^{2}}}^{2\pi} \int_{-\sqrt{4-x^{2}}}^{2\pi} \int_{-\sqrt{4-x^{2}}}^{2\pi} (x^{2}+y^{2}) dz dy dx. = \int_{-2}^{2\pi} \int_{-2}^{2\pi} \int_{-2\pi}^{2\pi} dx dx$ Identify the region of integration and resulthing the cylindrical coordinates.

Z = 1/2+42

SPHERICAL COORDINATES

next time

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \alpha$$

EXAMPLE 3 Evaluate $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$, where B is the unit ball:

$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$. (See Figure 9.)

