§2. Предел и непрерывность функции

Пусть $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$. Если $x \in E$ и y = f(x), то $y = (y_1, \dots, y_m)$ и, значит, для каждого $i = 1, \dots, m$ определена функция $f_i: E \to \mathbb{R}$ по правилу $f_i(x) = y_i$. Эта функция называется i-й координатной функцией f. Пишут $f = (f_1, \dots, f_m)$.

Определение (по Коши). Точка $b\in\mathbb{R}^m$ называется npedenom функции $f\colon E\to\mathbb{R}^m$ в точке a, если a- предельная точка E и

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in U'_{\delta}(a) \cap E \colon f(x) \in U_{\varepsilon}(b)$$

или, что эквивалентно,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \colon (0 < |x - a| < \delta \Rightarrow |f(x) - y| < \varepsilon).$$

Пишут $\lim_{x\to a} f(x) = b$ или $f(x)\to b$ при $x\to a$.

Определение (по Гейне). Точка $b\in\mathbb{R}^m$ называется npedenom функции $f\colon E\to\mathbb{R}^m$ в точке a, если a- предельная точка E и

$$\forall \{x^{(k)}\}, \ x^{(k)} \in E \setminus \{a\}: \ (x^{(k)} \to a \Rightarrow f(x^{(k)}) \to b).$$

Пишут $\lim_{x\to a} f(x) = b$ или $f(x)\to b$ при $x\to a$.

Также как и при n=m=1 доказывается эквивалентность определений предела по Коши и по Гейне.

Теорема 1. Пусть $f \colon E \to \mathbb{R}^m$. Тогда $\lim_{x \to a} f(x) = b \iff \lim_{x \to a} f_i(x) = b_i$ для $i = 1, \dots, n$.

▲ Рассмотрим последовательность точек $x^{(k)} \in E \setminus \{a\}$, сходящуюся к a. По определению предела по Гейне левая часть означает, что $f(x^{(k)}) \to b$, а правая — что $f_i(x^{(k)}) \to b_i$ для $i = 1, \ldots, m$. Поэтому их равносильность вытекает из леммы о покоординатной сходимости.

Следствие. Пусть $f,g\colon E\to\mathbb{R}^m$ и $\alpha\colon E\to\mathbb{R}$. Если существуют $\lim_{x\to a}f(x)=b, \lim_{x\to a}g(x)=c$ и $\lim_{x\to a}\alpha(x)=\beta,$ то существуют

$$\lim_{x \to a} (f \pm g)(x) = b \pm c, \qquad \lim_{x \to a} (\alpha f)(x) = \beta b, \qquad \lim_{x \to a} \left(\frac{1}{\alpha} f\right)(x) = \frac{1}{\beta} b$$

(в последнем случае предполагается, что $\alpha(x) \neq 0$ на E и $\beta \neq 0$).

▲ Пусть $\{x^{(k)}\}$ — последовательность точек $E\setminus\{a\}$, сходящаяся к a, и пусть $i\in\{1,\ldots,m\}$. По Т1 и определению предела по Гейне имеем $f_i(x^{(k)})\to b_i, \ g_i(x^{(k)})\to c_i$ и $\alpha(x^{(k)})\to \beta$ при $k\to\infty$. Но тогда по свойствам сходящихся последовательностей $(f+g)_i(x^{(k)})=f_i(x^{(k)})\pm g_i(x^{(k)})\to b_i\pm c_i,$ $(\alpha f)_i(x^{(k)})=\alpha(x^{(k)})f_i(x^{(k)})\to\beta b_i$ и $(\frac{1}{\alpha}f)_i(x^{(k)})=\frac{f_i(x^{(k)})}{\alpha(x^{(k)})}\to\frac{1}{\beta}b_i$ при $k\to\infty$. Поэтому по определению предела по Гейне $\lim_{x\to a}(f\pm g)_i(x)=b_i\pm c_i, \lim_{x\to a}(\alpha f)_i(x)=\beta b_i$ и $\lim_{x\to a}(\frac{1}{\alpha}f)_i(x)=\frac{1}{\beta}b_i$. Осталось снова воспользоваться Т1. ■

Определение. Функция $f \colon E \to \mathbb{R}^m$ непрерывна в точке $a \in E$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in U_{\delta}(a) \cap E \colon f(x) \in U_{\varepsilon}(f(a))$$

или, что эквивалентно,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E : \ (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon).$$

Также как и при n=m=1 доказывается, что если a — изолированная точка E, то f непрерывна в точке a; если a — предельная точка E, то f непрерывна в точке $a \iff \lim_{x \to a} f(x) = f(a)$. Тогда по Т1 получаем, что непрерывность функции f в точке a эквивалентна непрерывности в этой точке всех ее координатных функций.

Замечание. Если функции f, g и α (обозначения следствия T1) непрерывны в точке a, то $f\pm g, \, \alpha f$ и $\frac{1}{\alpha}f$ также непрерывны в точке a. Действительно, если a — изолированная точка E, то это верно всегда, если a — предельная точка E, то это вытекает из следствия T1.

Теорема 2 (о непрерывности композиции). Пусть $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$ и $g: Y \subset \mathbb{R}^m \to \mathbb{R}^p$, где $f(X) \subset Y$. Если функция f непрерывна в точке a, функция g непрерывна в точке b = f(a), то композиция $g \circ f: X \subset \mathbb{R}^n \to \mathbb{R}^p$ непрерывна в точке a.

▲ Пусть $\varepsilon > 0$. Тогда в силу непрерывности функции g в точке b, $\exists \sigma > 0 \ \forall y \in U_{\sigma}(b) \cap Y$: $g(y) \in U_{\varepsilon}(g(b))$. Далее, в силу непрерывности f в точке a, $\exists \delta > 0 \ \forall x \in U_{\delta}(a) \cap X$: $f(x) \in U_{\sigma}(b)$. Так что $\forall x \in U_{\delta}(a) \cap X$: $g(f(x)) \in U_{\varepsilon}(g(f(a)))$. Следовательно, функция $g \circ f$ непрерывна в точке a. ■

Определение. Функция $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ непрерывна на E, если f непрерывна в каждой точке E. Класс непрерывных на множестве E функций обозначают C(E).

Примеры. 1) Для каждого $i \in \{1, ..., n\}$ рассмотрим функцию $p_i : \mathbb{R}^n \to \mathbb{R}$, $p_i(x) = x_i$, которая называется *проектированием* на i-ю координатную ось. Функция p_i непрерывна на \mathbb{R}^n : определение непрерывности выполняется для $\delta = \varepsilon$ ввиду $|p_i(x) - p_i(a)| = |x_i - a_i| \leqslant |x - a|$.

- 2) Функция $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \sum_{(k_1, \dots, k_n)} a_{k_1 \dots k_n} x_1^{k_1} \dots x_n^{k_n}$, где суммирование ведется по конечному числу наборов (k_1, \dots, k_n) неотрицательных целых чисел, называется *многочленом* (n переменных). Функция f непрерывна как линейная комбинация непрерывных функций $p_1^{i_1} \dots p_n^{i_n}$.
- 3) Отождествляя $\mathbb{R}^n \times \mathbb{R}^n$ с \mathbb{R}^{2n} получим, что скалярное произведение $(.,.) \colon \mathbb{R}^{2n} \to \mathbb{R}$ является всюду непрерывной функцией, т.к. $(x,y) = \sum_{i=1}^n x_i y_i$ есть многочлен 2n переменных.

Определение. Пусть $E \subset \mathbb{R}^n$. Множество $W \subset E$ называется *открытым в* E, если найдется открытое в \mathbb{R}^n множество U, что $W = E \cap U$.

Пример. Пусть $E = \{(x,0): -\infty < x \leq 1\} \subset \mathbb{R}^2$. Тогда множество $W = \{(x,0): -1 < x \leq 1\}$ открыто в E, поскольку $W = E \cap U_2(1,0)$. Отметим, что W не является открытым в \mathbb{R}^2 .

Покажем, что непрерывность f на E эквивалентна тому, что прообраз любого открытого множества открыт в E.

Теорема 3 (критерий непрерывности). Функция $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ непрерывна на $E \iff$ для каждого открытого множества V из \mathbb{R}^m множество $f^{-1}(V)$ открыто в E.

- ▲ (⇒) Пусть множество V открыто в \mathbb{R}^m . Если $x \in f^{-1}(V)$, то $f(x) \in V$ и в силу открытости V существует $U_{\varepsilon_x}(f(x)) \subset V$. Функция f непрерывна в точке x, поэтому найдется $\delta_x > 0$, для которого $f(U_{\delta_x}(x) \cap E) \subset U_{\varepsilon_x}(f(x))$. Положим $U = \bigcup_{x \in f^{-1}(V)} U_{\delta_x}(x)$. Тогда множество U открыто и $f^{-1}(V) = E \cap U$. Действительно, включение $E \cap U \subset f^{-1}(V)$ следует из того, что $U_{\delta_x}(x) \cap E \subset f^{-1}(V)$; обратное включение очевидно.
- (\Leftarrow) Пусть $x \in E$ и $\varepsilon > 0$. Шар $U_{\varepsilon}(f(x))$ открыт в \mathbb{R}^m , поэтому множество $f^{-1}(B_{\varepsilon}(f(x))) = E \cap U$ для некоторого множества U, открытого в \mathbb{R}^n . Поскольку $x \in U$ и U открыто, то существует $U_{\delta}(x) \subset U$. Но тогда $U_{\delta}(x) \cap E \subset f^{-1}(U_{\varepsilon}(f(x)))$, т.е. $f(U_{\delta}(x) \cap E) \subset U_{\varepsilon}(f(x))$. Отсюда вытекает непрерывность функции f в точке x.

Непрерывные функции на компактных множествах

Теорема 4. Если $f: K \to \mathbb{R}^m$ непрерывна на компакте $K \subset \mathbb{R}^n$, то $f(K) - \kappa$ омпакт в \mathbb{R}^m .

▲ Рассмотрим произвольное открытое покрытие $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ множества f(K). По критерию непрерывности $f^{-1}(G_{\lambda}) = K \cap U_{\lambda}$ для некоторого открытого в \mathbb{R}^n множества U_{λ} . Если $x \in K$, то $\exists \lambda_0 \in \Lambda$, что $f(x) \in G_{\lambda_0}$ и, значит, $x \in f^{-1}(G_{\lambda_0}) \subset U_{\lambda_0}$. Поэтому семейство $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ образует открытое покрытие K. Так как K — компакт, из этого покрытия можно выделить конечное покрытие $U_{\lambda_1} \cup \ldots \cup U_{\lambda_N} \supset K$. Откуда $(U_{\lambda_1} \cup \ldots \cup U_{\lambda_N}) \cap K \supset K$, т.е. $f^{-1}(G_{\lambda_1}) \cup \ldots \cup f^{-1}(G_{\lambda_N}) \supset K$ и, значит, $G_{\lambda_1} \cup \ldots \cup G_{\lambda_N} \supset f(K)$. По определению f(K) — компакт. \blacksquare

Cледствие (Tеорема Bейерштрасса). Если $f: K \to \mathbb{R}$ непрерывна на компакте K, то существуют точки $x_i, x_s \in K$, что $f(x_s) = \sup_{x \in K} f(x)$ и $f(x_i) = \inf_{x \in K} f(x)$.

▲ По предыдущей теореме f(K) — компакт в \mathbb{R} , то есть f(K) замкнуто и ограничено. Так как f(K) ограничено, то $M = \sup_{x \in K} f(x) \in \mathbb{R}$. Точка M не может быть внешней точкой f(K) (иначе M не является точной гранью f(K)). Так как f(K) замкнуто, то M принадлежит f(K), то есть $\exists x_s \in K \colon f(x_s) = M$. Для $\inf_{x \in K} f(x)$ доказательство аналогично. \blacksquare

Определение. Функция $f \colon E \to \mathbb{R}^m$ называется равномерно непрерывной на E, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in E \colon (|x' - x| < \delta \Rightarrow |f(x') - f(x)| < \varepsilon).$$

Теорема 5 (Кантор). Если функция $f: K \to \mathbb{R}^m$ непрерывна на компакте $K \subset \mathbb{R}^n$, то f равномерно непрерывна на K.

 \blacktriangle Пусть $\varepsilon > 0$. Так как f непрерывна на K, то

$$\forall x \in K \,\exists \delta_x > 0 \,\forall y \in K \colon |y - x| < \delta_x \Rightarrow |f(y) - f(x)| < \frac{1}{2}\varepsilon. \tag{1}$$

Семейство окрестностей $\{B_{\delta_x/2}(x)\}_{x\in K}$ образует открытое покрытие K. В силу компактности K из него можно выделить конечное покрытие $U_{\delta_{x_1}/2}(x_1),\ldots,U_{\delta_{x_N}/2}(x_N)$. Положим $\delta=\min_{1\leqslant k\leqslant N}\frac{1}{2}\delta_{x_k}$, тогда $\delta>0$. Покажем, что δ искомое (в определении равномерной непрерывности). Действительно, пусть $x,x'\in K,\ |x'-x|<\delta$. Найдется $k\in\{1,\ldots,N\}$, что $x\in U_{\delta_{x_k}/2}(x_k)$, тогда и $|x'-x|<\frac{1}{2}\delta_{x_k}$. Тогда

$$|x' - x_k| \le |x' - x| + |x - x_k| < \frac{1}{2} \delta_{x_k} + \frac{1}{2} \delta_{x_k} = \delta_{x_k},$$

откуда в силу (1)

$$|f(x') - f(x)| \le |f(x') - f(x_k)| + |f(x_k) - f(x)| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \blacksquare$$

Связные множества

Определение. Множество $E \subset \mathbb{R}^n$ называется *несвязным*, если существуют непустые открытые в E множества E_1 , E_2 , что $E_1 \cap E_2 = \varnothing$ и $E_1 \cup E_2 = E$, т.е. E представимо в виде объединения двух непустых непересекающихся открытых множеств.

Множество $E \subset \mathbb{R}^n$ называется *связным*, если оно не является несвязным.

Замечание. Множество S несвязно \iff найдутся два непересекающихся открытых в \mathbb{R}^n множества U и V, что $S = (S \cap U) \cup (S \cap V)$ и $S \cap U \neq \emptyset$, $S \cap V \neq \emptyset$.

Пример. \varnothing , $\{a\}$ — связные множества.

Напомним, что *промежсутком* называется любое подмножество \mathbb{R} , содержащее вместе с каждой парой точек и все точки, лежащие между ними.

Теорема 6. Множество $I \subset \mathbb{R}$ связно $\iff I$ — промежуток.

- ▲ (⇒) Если I не является промежутком, то для некоторых точек $x, y \in I$ (x < y) отрезок [x,y] не содержится в I. Тогда между x и y найдется точка $z \notin I$. Рассмотрим $(-\infty,z) \cap I$ и $(z,+\infty) \cap I$. Это непустые (содержат соответственно точки x и y), открытые в I множества, объединение которых совпадает с I. Значит, множество I несвязно.
- (\Leftarrow) Предположим, что промежуток I не является связным множеством. Тогда найдутся непустые непересекающиеся открытые в \mathbb{R} множества U и V, что $I=(I\cap U)\cup (I\cap V)$ и $I\cap U\neq\varnothing$, $I\cap V\neq\varnothing$. Пусть $x\in I\cap U$ и $y\in I\cap V$. Без ограничения общности можно считать, что x< y. Так как I промежуток, то $[x,y]\subset I$. Разделим отрезок [x,y] пополам и через $[x_1,y_1]$ обозначим ту половину, левый конец которой лежит в U, а правый в V. Снова разделим $[x_1,y_1]$ пополам и т.д. По индукции построим последовательность стягивающихся отрезков $\{[x_k,y_k]\}$, такую что $x_k\in U$ и $y_k\in V$ для всех $k\in\mathbb{N}$. Пусть z общая точка отрезков $[x_k,y_k]$. Поскольку $\lim_{k\to\infty}x_k=z=\lim_{k\to\infty}y_k$, то z является граничной точкой как для U, так и для V, а т.к. U и V открыты, то $z\not\in U$ и $z\not\in V$, что противоречит условию $z\in I\subset U\cup V$. \blacksquare

Теорема 7. Если функция $f: S \to \mathbb{R}^m$ непрерывна на связном множестве $S \subset \mathbb{R}^n$, то множество f(S) связно в \mathbb{R}^m .

▲ Если множество f(S) несвязно, то существуют открытые в \mathbb{R}^m множества U и V, что $f(S) = (f(S) \cap U) \cup (f(S) \cap V)$ и $f(S) \cap U \neq \emptyset$, $f(S) \cap V \neq \emptyset$. Тогда множества $f^{-1}(U)$ и $f^{-1}(V)$ открыты в S (по критерию непрерывности), непусты и не пересекаются (т.к. U, V непусты и не пересекаются) и $S = f^{-1}(U) \cup f^{-1}(V)$, что невозможно, т.к. S связно. \blacksquare

Следствие (Теорема о промежуточных значениях). Если $f: S \to \mathbb{R}$ непрерывна на связном множестве $S \subset \mathbb{R}^n$, то f принимает все промежуточные значения (т.е. если $u, v \in f(S), u < v$, то $[u, v] \subset f(S)$).

▲ По Т7 f(S) — связное подмножество прямой. По Т6 f(S) — промежуток, который вместе с каждой парой своих точек содержит все точки, лежащие между ними. ■

Определение. Открытое связное множество называется областью.

Имеется класс множеств, для которых проверка связности оказывается несколько проще.

Определение. Множество E в \mathbb{R}^n называется *линейно связным*, если для любых точек x, $y \in E$ существует непрерывная функция $\gamma \colon [a,b] \to E$ из некоторого отрезка [a,b] в E такая, что $\gamma(a) = x$ и $\gamma(b) = y$.

Пример. Покажем, что шар $U_r(a)$ — линейно связное множество.

Пусть $x, y \in U_r(a)$. Для $t \in (0,1)$ рассмотрим точку tx + (1-t)y. Поскольку

$$|tx + (1-t)y - a| = |t(x-a) + (1-t)(y-a)| \le t|x-a| + (1-t)|y-a| \le tr + (1-t)r = r,$$

то эта точка лежит в $U_r(a)$. Осталось положить $\gamma \colon [0,1] \to U_r(a), \, \gamma(t) = tx + (1-t)y$, и воспользоваться определением линейной связности.

Лемма. Линейно связное множество связно.

▲ Предположим, что линейно связное множество E несвязно. Тогда существуют открытые в \mathbb{R}^n множества U и V, что $E = (E \cap U) \cup (E \cap V)$ и $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$. Пусть $x \in U$ и $y \in V$. Так как множество E линейно связно, то существует непрерывная функция $\gamma \colon [a,b] \to E$, что $\gamma(a) = x$ и $\gamma(b) = y$. Тогда $\gamma^{-1}(U)$ и $\gamma^{-1}(V)$ — непустые непересекающиеся открытые в [a,b] множества такие, что $[a,b] = \gamma^{-1}(U) \cup \gamma^{-1}(V)$, но это противоречит связности отрезка [a,b]. ■