Business Analytics

Regression Analysis

Dr. Paul Karänke

Decision Sciences & Systems

Department of Informatics

Technische Universität München

Course Content

- Introduction
- Regression Analysis
- Regression Diagnostics
- Logistic and Poisson Regression
- Naive Bayes and Bayesian Networks
- Decision Tree Classifiers
- Data Preparation and Causal Inference
- Model Selection and Learning Theory
- Ensemble Methods and Clustering
- High-Dimensional Problems
- Association Rules and Recommenders
- Neural Networks

Recommended Literature

Introduction to Econometrics

- Stock, James H., and Mark W. Watson
- Chapter 2 7, 17, 18

The Elements of Statistical Learning

- Trevor Hastie, Robert Tibshirani, Jerome Friedman
- https://web.stanford.edu/~hastie/ElemStatLearn/
- Section 3.1-3.2: Linear Methods for Regression

Any Introduction to Statistics

(e.g.: Statistical Inference by George Casella, Roger L. Berger or online course http://onlinestatbook.com/)

Today we revisit three important elements of <u>statistical inference</u>:

- Estimation, testing, regression

Statistical Estimation

Weak Law of Large Numbers

Weak Law of Large Numbers:

$$\lim_{\{n\to\infty\}} \Pr(|\bar{X}_n - \mu| > \varepsilon) = 0$$

In other words: $n \to \infty$, $\bar{X}_n \to \mu$

Chebyshev's inequality:

No more than a certain fraction of values can be more than a certain distance from the mean.

$$\Pr(|X - \mu| > \varepsilon) \le \frac{Var(X)}{\varepsilon^2}$$

$$\Pr(|\bar{X}_n - \mu| > \varepsilon) \le \frac{Var(\bar{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \} \to 0 \text{ with } n \to \infty$$

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \ Var(\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Statistical Estimation

Point estimate is always within the interval estimate

Confidence Interval (CI)

Provide us with a range of values that we believe, with a given level of confidence, contains a population parameter CI for the population means:

$$Pr(\bar{X} - 1.96 SD < \mu < \bar{X} + 1.96 SD) = 0.95$$

There is a 95% chance that your interval contains μ .

Standard Normal Distribution

Example

Suppose sample of n = 100 persons mean = 215, standard deviation = 20 95% CI = $\bar{X} \pm 1.96 * s/\sqrt{n}$

Lower Limit: 215 - 1.96*20/10 = (211, 219)

Upper Limit: 215 + 1.96*20/10

"We are 95% confident that the interval 211-219 contains μ ."

Effect of Sample Size

Suppose we had only 10 observations What happens to the confidence interval?

$$\bar{X} \pm 1.96 * \frac{s}{\sqrt{n}}$$

For
$$n = 100$$
, $215 \pm 1.96 * (20)/\sqrt{100} \approx (211,219)$
For $n = 10$, $215 \pm 1.96 * (20)/\sqrt{10} \approx (203,227)$

Larger sample size = smaller interval

Effect of Confidence Level

Suppose we use a 90% confidence level What happens to the confidence interval?

$$\overline{X} \pm 1.645 * s / \sqrt{n}$$

90%:
$$215 \pm 1.645 * (20) / \sqrt{100} \approx (212,218)$$

Lower confidence level = smaller interval (A 99% interval would use 2.58 as multiplier and the interval would be larger)

Effect of Standard Deviation

Suppose we had a *s* of 40 (instead of 20) What happens to the confidence interval?

$$\overline{X} \pm 1.96 * s / \sqrt{n}$$

215 \pm 1.96 * (40) / $\sqrt{100} \approx$ (207,223)

More variation = larger interval

Estimation for Population Mean μ

Point estimate:

$$\bar{X} = \frac{\sum X}{n}$$

Estimate of variability in population

$$s = \sqrt{\frac{1}{n-1}\sum_{i}(X_i - \bar{X})^2}$$

(if σ is unknown, use s)

True standard deviation of sample mean Standard error of sample mean

$$SD = \sigma/\sqrt{n}$$
$$SE = s/\sqrt{n}$$

95% confidence Interval

$$\bar{X} \pm 1.96 SD$$

, or

$$\bar{X} \pm 1.96 SE$$

Statistical Tests

Random error (chance) can be controlled by statistical significance or by confidence interval

Hypothesis Testing

- State null and alternative hypothesis (H₀ and H₁)
 - H₀ usually a statement of no effect or no difference between groups
- Choose α level (related to confidence level)
 - -Probability of falsely rejecting H_0 (Type I error), typically 0.05 or 0.01
- Calculate test statistic, find p-value (p)
 - Measures how far data are from what you expect under null hypothesis
- State conclusion:

```
p \le \alpha, reject H<sub>0</sub>
p > \alpha, insufficient evidence to reject H<sub>0</sub>
```

Hypothesis Testing

<u>Hypothesis:</u> A statement about parameters of population or of a model ($\mu = 200$?)

<u>Test:</u> Does the data agree with the hypothesis? (sample mean 220) Simple random sample from a normal population (or n large enough for CLT)

$$H_o$$
: $\mu = \mu_o$
 H_1 : $\mu \neq \mu_o$, pick α

Z-Test

Problem of interest:

- Population mean μ of a normal distribution
- known σ

$$\bar{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Rejection region

$$\mu \neq \mu_0$$

$$|\mathbf{z}| \ge \mathbf{z}_{1-\alpha/2}$$

$$\mu > \mu_0$$

$$z \geq z_{1-\alpha}$$

$$\mu < \mu_0$$

$$z \le z_{\alpha} = -z_{1-\alpha}$$

Student t-Distribution: Test Statistic for a Normal Mean μ with unknown σ

$$t(df = n - 1) = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

When the population is normally distributed, the statistic t is *Student* t distributed.

The "degrees of freedom (df)", a function of the sample size, determines how spread the distribution is (compared to the normal distribution)

The *t* distribution is bell-shaped, and symmetric around zero.

$$df = n_2$$

$$df = n_1$$

$$n_2$$

CI and 2-Sided Tests

- A level α 2-sided test rejects H_0 : $\mu = \mu_0$ exactly when the value μ_0 falls outside a level 1α confidence interval for μ .
- Calculate 1α level confidence interval, then
 - -if μ_0 within the interval, do not reject the null hypothesis,

$$|t| < t_{1-\alpha/2}$$

-otherwise, $|t| \ge t_{1-\alpha/2} =$ reject the null hypothesis.

Student t-Distribution for α =0.05

Degrees of Freedom		t _{.9}	t _{.95}	(t _{.975}	t _{.99}	t _{.995}
П	1	3.078	6.314	12.706	31.821	63.657
ш	2	1.886	2.92	4.303	6.965	9.925
ш	-	•	•		•	•
	•	•	•	•	•	•
	24		1.711	2.064	2.492	•
	•				•	
	200	1.286	1.653	1.972	2.345	2.601
	∞	1.282	1.645	1.96	2.326	2.576

t-distribution critical values

Possible Results of Tests

Type I error - You reject the null hypothesis when the null hypothesis is actually true.

Type II error - You fail to reject the null hypothesis when the alternative hypothesis is true.

t-Tests

Formula is slightly different for each:

- Single sample:
 - tests whether a sample mean is significantly different from a preexisting value
- Paired samples:
 - -tests the relationship between 2 linked samples, e.g. means obtained in 2 conditions by a single group of participants
- Independent samples:
 - -tests the relationship between 2 independent populations

The Paired t -Test with 2 Paired Samples

Null hypothesis:
$$H_0: \mu_d = \mu_1 - \mu_2 = \Delta_0$$

Test statistic:
$$t = \frac{\bar{d} - \Delta_0}{s / \sqrt{n}}$$

$$\begin{array}{ll} H_1 & \underline{\text{Rejection region}} \\ \mu_d \neq \Delta_0 & |t| \geq t_{1\text{-}\alpha/2,\,n\text{-}1} \\ \mu_d > \Delta_0 & t \geq t_{1\text{-}\alpha,\,n\text{-}1} \\ \mu_d < \Delta_0 & t \leq t_{\alpha,\,n\text{-}1} = \text{-}t_{1\text{-}\alpha,\,n\text{-}1} \end{array}$$

Observations are dependent, e.g., pre and post test, left and right eyes, brother-sister pairs

The Paired t -Test with 2 Paired Samples

Subjects: random sample of 25 students from TUM Mean grades of the students on two subsequent exams A and B Is there a significant difference between the two exams?

Null Hypothesis: E(A) = E(B)Answer can be given based on significance testing

$\bar{d} = 0.093$					
s = 0.150					
n = 25					
$s/\sqrt{n} = 0.03$					
$t_{0.975;24} = 2.064$					

$$t = \frac{\bar{d}}{s/\sqrt{n}} = \frac{0.093}{0.03} = 3.1$$
$$p = \Pr\{|t| > 3.1 | DF = 24\} = 0.005$$

The p-Value

The p-value describes the probability of having t=3.1 (or larger), given the null hypothesis. The smaller the p-value, the more unlikely it is to observe the corresponding sample value (or more extreme) by chance under H_0 .

Independent Samples

2 independent samples (possibly different size and variance):

Does the amount of credit card debt differ between households in rural areas compared to households in urban areas?

Population 1 All Rural Households m_1

Population 2 All Urban Households m_2

Null Hypothesis:

 $H_0: m_1 = m_2$

Alternate Hypothesis:

 $H_1: m_1 \neq m_2$

Independent Two-Sample t -Test

Two-sample unpaired t-test with (un)equal sample sizes, assuming unequal variance

Under H_0 t follows a t-distribution with $\frac{(s_1^2/n_1+s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1-1)+(s_2^2/n_2)^2/(n_2-1)}$ degrees of freedom (df)

Independent Two-Sample t –Test: Example

Group 1	Group 2
21	22
19	25
18	27
18	24
23	26
17	24
19	28
16	26
21	30
18	28
$\bar{x} = 19$	$\bar{x} = 26$
$s = \sqrt{40}$	$s = \sqrt{50}$

df = 18 (rounded to integer)

$$t = \frac{\bar{x}_1 - \bar{x}_2}{S_{\bar{x}_1 - \bar{x}_2}} = \frac{19 - 26}{3} = -2.333$$

$$S_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{40}{10} + \frac{50}{10}}$$

$$t_{(0.975,18)} = 2.101$$

$$|t| \ge t_{(0.975,18)}$$

$$\rightarrow$$
 Reject H₀ ($\mu_1 - \mu_2 = 0$)

Selected Statistical Tests

Parametric Tests

- The family of t-tests
 - Compares two sample means or tests a single sample mean
- F-test
 - Compares the equivalence of variances of two samples

Non-parametric Tests

- Wilcoxon signed-rank test
 - Independence of two means for 2 paired i.i.d samples, when normality is not assumed.
- Mann-Whitney-U test is used for 2 independent samples
- Kruskal-Wallis-Test
 - Equivalence of multiple means in case of several i.i.d non-normally distributed samples

Tests of the Probability Distribution

- Kolmogorov-Smirnov and Chi-square test
 - used to determine whether two underlying probability distributions differ, or whether an underlying probability distribution differs from a hypothesized distribution

Linear Regression

- Regressions identify relationships between dependent and independent variables
 - Is there an association between the two variables
 - -Estimation of impact of an independent variable
 - Formulation of the relation in a functional form
 - -Used for numerical prediction and time series forecasting
- Regression as an established statistical technique:
 - Sir Francis Galton (1822-1911) studied the relationship between a father's height and the son's height

Terminology

- Data streams X and Y, forming the measurement tuples $(x_1, y_1), \dots, (x_n, y_n)$
- x_i is the predictor (regressor, covariate, feature, independent variable)
- y_i is the response (dependent variable, outcome)
- Denote the *regression function* by: $\eta(x) = E(Y|x)$
- The linear regression model assumes a specific linear form

The Simple Linear Regression Model

- Linear regression is a statistical tool for numerical predictions
- The first order linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Y =respond variable

X = predictor variable

 β_0 = y-axis intercept

 β_1 = slope of the line

 ε = random error term (residual)

 β_0 and β_1 are unknown, therefore, are estimated from the data

Estimating the Coefficients

- Coefficients are random variables
- (Ordinary Least Squares) estimates are determined by
 - drawing a sample from the population of interest
 - -calculating sample statistics
 - -producing a straight line that cuts into the data

The question is: Which straight line fits best?

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

OLS Estimators

- Ordinary Least Squares (OLS) approach:
 - -Minimize the sum of squared residuals (aka. loss function)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\min \sum_{i} e_i^2 = \min \sum_{i} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} = \frac{Cov(x, y)}{Var(x)}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Example

- A car dealer wants to find the relationship between the odometer reading and the selling price of used cars.
- A random sample of 100 cars is selected, and the data recorded.
- Find the regression line.

Car	Odomet	er Price
1	37388	5318
2	44758	5061
3	45833	5008
4	30862	5795
5	31705	5784
6	34010	5359
		-

Independent/predictor variable x

Dependent/respond variable y

Solving by Hand

• To calculate β_0 and β_1 we can calculate several statistics first:

$$\overline{x} = 36009.45;$$
 $s_x^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1} = 43,528,688$ $\overline{y} = 5411.41;$ $cov(X, Y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n - 1} = -1,356,256$

where n = 100:

$$\hat{\beta}_1 = \frac{\text{cov}(X, Y)}{s_x^2} = \frac{-1,356,256}{43,528,688} = -.0312$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 5411.41 - (-.0312)(36,009.45) = 6,533$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 6,533 - 0.0312x$$

Residual Sum of Squares (RSS)

- This is the sum of squared differences between the points and the regression line
- It can serve as a measure of how well the line fits the data (fits well, if statistic is small)
- An unbiased estimator of the RSS of the population is given by

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Total Deviation

 The Total Sum of Squares (TSS) is the sum of the Explained Sum of Squares (ESS) and the RSS.

$$\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$$

TSS = ESS + RSS

Total deviation = explained deviation + unexplained deviation

Coefficient of Determination

 R² measures the proportion of the variation in y that is explained by the variation in x

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
, $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = ESS + RSS$

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$$

- R² takes on any value between zero and one
 - $-R^2 = 1$: Perfect match between the line and data points
 - $-R^2 = 0$: There is no linear relationship between x and y

Testing the Coefficients

Test the significance of the linear relationship

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

$$H_1: \beta_1 \neq 0$$

H₀.
$$\beta_1 = 0$$

H₁: $\beta_1 \neq 0$
• The test statistic is
$$t = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{\sqrt{\frac{RSS}{\sum_{i=1}^n (x_i - \bar{x})^2} \cdot \frac{1}{n-2}}}$$
Variance of $\hat{\beta}_1$

- If $SE(\hat{\beta}_1)$ is large, then $\hat{\beta}_1$ must be large to reject H_0
- $SE(\hat{\beta}_1)$ is smaller, if the x_i are more spread out
- If the error variable is normally distributed, the statistic is a Student t distribution with n-2 degrees of freedom (if n is large, draw on the CLT)
- Reject H_0 , if: $t < t_{\alpha/2}$ or $t > t_{1-\alpha/2}$

The Multiple Linear Regression Model

- A p-variable regression model can be expressed as a series of equations
- Equations condensed into a matrix form, give the general linear model
- β coefficients are known as partial regression coefficients
- X_1, X_2 , for example,
 - $-X_1$ ='years of experience'
 - $-X_2$ ='age'
 - -Y='salary'
- Estimated equation:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 = \mathbf{X} \hat{\beta}$$

Matrix Notation

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1^{x_{11}} x_{12} \dots x_{1p} \\ 1^{x_{21}} x_{22} \dots x_{2p} \\ \vdots & \vdots & \vdots \\ 1^{x_{n1}} x_{n2} \dots x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

<i>y</i> =	X	β	+ ε
$(n \times 1)$	$(n \times (p+1))$	$((p+1) \times 1)$	(n × 1)

OLS Estimation

Sample-based counter part to population regression model:

$$y = \mathbf{X}\boldsymbol{\beta} + \varepsilon$$
$$y = \mathbf{X}\hat{\boldsymbol{\beta}} + e$$

 OLS requires choosing values of the estimated coefficients, such that Residual Sum of Squares (RSS) is as small as possible for the sample

$$RSS = e^{T}e = (y - \mathbf{X}\hat{\beta})^{T}(y - \mathbf{X}\hat{\beta})$$

• Need to differentiate with respect to the unknown coefficients

Finding the Least Squares

X is $n \times (p + 1)$, y is the N-vector of outputs RSS(β) = $(y - \mathbf{X}\beta)^T (y - \mathbf{X}\beta)$

If X is full rank, then X^TX is positive definite

$$\frac{\partial RSS}{\partial \beta} = -2X^{T}(y - X\beta), \qquad \frac{\partial^{2}RSS}{\partial \beta \partial \beta^{T}} = 2X^{T}X$$

$$\frac{\partial RSS}{\partial \beta} = 0 \quad \Rightarrow X^{T}(y - X\beta) = 0$$

$$\Rightarrow \hat{\beta} = (X^{T}X)^{-1}X^{T}y \Rightarrow \hat{y} = X\hat{\beta} = X(X^{T}X)^{-1}X^{T}y$$

"Hat" or projection matrix H

Geometrical Representation

- Least square estimates in R^N
- Minimize RSS(β)= $||y X\beta||^2$, s.t. residual vector $y \hat{y}$ is orthogonal to this subspace

Figure 3.2: The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

Source: Hastie et al. 2016, p. 46

Example

$$y = \mathbf{X}\hat{\beta} + e$$

$$\begin{pmatrix} 2.6 \\ 1.6 \\ 4.0 \\ 3.0 \\ 4.9 \end{pmatrix} = \begin{pmatrix} 1 & 1.2 \\ 1 & 3.0 \\ 1 & 4.5 \\ 1 & 5.8 \\ 1 & 7.2 \end{pmatrix} \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{pmatrix}$$

$$\hat{\beta} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1.2 & 3.0 & 4.5 & 5.8 & 7.2
\end{pmatrix}
\begin{pmatrix}
1 & 1.2 \\
1 & 3.0 \\
1 & 4.5 \\
1 & 5.8 \\
1 & 7.2
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1.2 & 3.0 & 4.5 & 5.8 & 7.2
\end{pmatrix}
\begin{pmatrix}
2.6 \\
1.6 \\
4.0 \\
3.0 \\
4.9
\end{pmatrix} =$$

$$\begin{pmatrix}
5 & 21.7
\end{pmatrix}^{-1} \begin{pmatrix}
16.1
\end{pmatrix} = \begin{pmatrix}
1.0565 & -0.1973
\end{pmatrix} \begin{pmatrix}
16.1
\end{pmatrix} = \begin{pmatrix}
1.498
\end{pmatrix}$$

Check Results in R

```
> y < -c(2.6, 1.6, 4.0, 3.0, 4.9)
> x < -c(1.2, 3.0, 4.5, 5.8, 7.2)
> mod <- lm(y \sim x)
> summary (mod)
Call:
lm(formula = y \sim x)
Residuals:
                                                               1. check coefficients
 0.6259 -1.0883 0.7165 -0.7993 0.5452
                                                               2. check significance
                                                               3. check coefficient of
Coefficients:
                                                                 determination
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4980
                         1.0322
                                   1.451
                                            0.243
              0.3968
                         0.2142 1.853
                                            0.161
X
Residual standard error: 1.004 on 3 degrees of freedom
Multiple R-Squared: 0.5336, Adjusted R-squared: 0.3782
F-statistic: 3.433 on 1 and 3 DF, p-value: 0.1610
```

Selected Statistics

Adjusted R²

It represents the proportion of variability of y explained by X
 R² is adjusted so that models with a different number of variables can be compared

$$\bar{R}^2 = 1 - \frac{RSS/(n-p-1)}{TSS/(n-1)}$$

The F-test

• Significant F indicates a linear relationship between y and at least one of the xs: H_0 : $\beta_1 = \beta_2 \dots \beta_p = 0$

The t-test of each partial regression coefficient

 Significant t indicates that the variable in question influences the response variable while controlling for other explanatory variables

Model Specification

In regression analysis the <u>specification</u> is the process of developing a regression model.

- This process consists of selecting an <u>appropriate functional form</u> for the model and choosing <u>which variables to include</u>.
- The model might include irrelevant variables or omit relevant variables

Non-linear models are challenging, but some nonlinear regression problems can be <u>linearized</u>.

- Dummy variables for discrete variables (e.g. 0/1 for gender)
- Quadratic models: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + \epsilon \text{ use } z_2 = x_2^2$
- Models with interaction terms $y = \beta_0 + \beta_1 x_1 x_2$ use $z_1 = x_1 x_2$
- Exponential terms $y = \alpha x^{\beta} \varepsilon$ can be transformed using the logarithm to $\ln(y) = \ln(\alpha) + \beta \ln(x) + \ln(\varepsilon)$

Subset Selection

- Setting: Possibly a large set of predictor variables, some irrelevant
- Goal: Fit a parsimonious model that explains variation in Y with a small set of predictors
 - Aka. subset selection or feature selection problem
- Automated procedures:
 - Best subset (among all exponentially many, computationally expensive)
 - Backward elimination (top down approach)
 - Forward selection (bottom up approach)
 - Stepwise regression (combines forward/backward)
- More in the context of the class on dimensionality reduction
 - Subset selection vs. shrinkage methods

Example: Backward Elimination

- Select a significance level to stay in the model (generally 0.05 is too low, causing too many variables to be removed)
- Fit the full model with all possible predictors
- Consider the predictor with lowest t-statistic (highest p-value).
 - -If p > sign. level, remove the predictor and fit model without this variable (must re-fit model here because partial regression coefficients change)
 - -If $p \le$ sign. level, stop and keep current model
- Continue until all predictors have p-values below sign. level
- Forward selection is similar: predictors with lowest p-value are added until none is left with p > sign. level.