ALGORITHME & PROGRAMMATION

MBLOCK

Cycle 4

5/4/3

première mise en route / premiers programmes

MBlock est un logiciel qui permet de programmer les cartes Arduino avec 2 types de fonctionnement:

- Le fonctionnement piloté directement par l'ordinateur,
- Le fonctionnement autonome (un programme est implanté dans l'arduino et fonctionne automatiquement dès que la carte arduino est alimentée).

Son architecture de programmation est basée sur Scratch.

LA CONNEXION ET LES PARAMETRAGES POUR LIER SA CARTE ARDUINO

- Connecter votre carte Arduino sur un port USB
- Aller dans l'onglet « CONNECTER » puis « PAR PORT SERIE », valider ensuite le port COM correspondant à la connexion avec votre carte Arduino.

Si vous avez validé le bon port de communication, « Mettre à jour le microprogramme » ne doit plus être gris mais noir.

Aller dans l'onglet « CHOIX DE LA CARTE » puis sélectionner votre modèle de carte Arduino

Vous voilà prêt à écrire votre programme et le téléverser...

MBLOCK

première mise en route / premiers programmes

Cycle 4

5/4/3

FONCTIONNEMENT DEPUIS L'ORDINATEUR

Dans ce mode là, la carte Arduino est « pilotée » depuis l'ordinateur. Les touches du clavier peuvent donc intervenir dans le programme.

1ère étape

On construit son programme exactement comme sur le logiciel SCRATCH; avec l'évènement de départ « drapeau vert »

2ème étape

Téléverser le microprogramme, pour celà, aller dans l'onglet « CONNECTER » puis cliquer sur « METTRE A JOUR LE MICROPROGRAMME », le transfert doit s'effectuer... Une fenêtre d'avancement du téléversement s'ouvre et indique l'avancement de celui-ci.

Si une erreur se produit ou qu'il est impossible de mettre à jour le microprogramme, revenir aux paramétrages pour lier sa carte Arduino.

3ème étape

Les tests; Vous pouvez maintenant tester votre programme après avoir cliqué sur le drapeau vert.

ALGORITHME & PROGRAMMATION

MBLOCK

première mise en route / premiers programmes

Cycle 4

5/4/3

FONCTIONNEMENT AUTONOME

1ère étape

On construit son programme exactement comme sur le logiciel SCRATCH; puis on remplace l'évènement « drapeau vert » par un évènement « Arduino-générer le code »

2ème étape

Il faut préparer le téléversement dans l'Arduino, pour cela, click droit sur l'évènement de départ « Arduino-générer le code », puis sélectionner « téléverser dans l'Arduino », Il va apparaitre sur l'écran une fenêtre avec le code en langage C.

3ème étape

Téléverser; cliquer sur l'onglet « téléverser dans l'Arduino », une petite fenêtre annonçant le téléversement doit apparaitre et l'IDE Arduino démarrer (il tourne en tâche de fond). Lorsque le téléversement est terminé, il doit s'afficher « téléversement fini » dans cette fenêtre.

Il ne reste plus qu'à débrancher de l'ordinateur et alimenter votre carte Arduino.

```
Arduino - générer le code
        lire la valeur sur la broche Analogique 0 < 15 alors
    orienter le servo-moteur de la broche 4 à un angle de 07
    mettre l'état logique de la broche 2 à bas*
    mettre l'état logique de la broche 8 à haut
    orienter le servo-moteur de la broche 4 à un angle de 90*
    mettre l'état logique de la broche 2 à haut
    mettre l'état logique de la broche 8 à bas?
Arduino - c
             téléverser dans l'Arduino
répéter ind
             dupliquer
             supprimer
                                         ique 0 < 15 alors
            ajouter un commentaire
                                         4) à un angle de 💽
    mettre l'état logique de la broche 2 à bas*
    mettre l'état logique de la broche 8 à haut
    orienter le servo-moteur de la broche 4 à un angle de 90*
    mettre l'état logique de la broche 2 à haut
    mettre l'état logique de la broche 8 à bas*
```

```
téléverser dans l'Arduino
  retour
                                           ouvrir dans l'IDE Arduino
1 #include <Arduino.h>
 2 #include <Wire.h>
 3 #include <SoftwareSerial.h>
 5 #include <Servo.h>
 7 double angle_rad = PI/180.0;
 8 double angle_deg = 180.0/PI;
 9 Servo servo_4;
10
11 void setup(){
      pinMode(A0+0,INPUT);
12
13
       servo_4.attach(4);
      pinMode(2,OUTPUT);
15
      pinMode(8,OUTPUT);
16 }
17
18 void loop(){
19
       if((analogRead(A0+0)) < (15)){
           servo_4.write(0);
21
           digitalWrite(2,0);
22
           digitalWrite(8,1);
23
           servo_4.write(90);
```