Audit de la consommation énergétique du lycée Auguste Loubatières

3ème étape du projet : **Gestion de l'information**

2017-2018

DA SILVA Joachim Energies et environnement

Sommaire

1) Analyse des besoins

- Carte mentale,
- Planning prévisionnel,
- Analyse fonctionnelle.

p.2 à 3

2) Conception préliminaire

- Emplacement des capteurs,
- Caractéristiques Emplacements,
- Démarche Négawatt,
- Normes et réglementations,
- Fonctionnement du système,
- Pourquoi choisir EfficacEnergie?

p.4 à 8

3) Conception détaillée

Démarche Modélisation des résultats

p.9 à 10

4) Réalisation

- Modélisation logiciel,
- Diagnostic des résultats,
- Solutions à adopter.

p.11 à 18

I- Analyse des besoins

Nous avons établis plusieurs travaux pour pouvoir comprendre et avoir de bonnes bases avant de commencer le projet.

C'est pour cela que nous avons créés une carte mentale, un planning prévisionnel et une analyse fonctionnelle.

J'ai donc rajouté ma partie sur la carte mentale correspondant à la gestion de l'information le $\frac{12}{12}$:

Ensuite nous avons établis un planning prévisionnel le 18/12/2017 pour savoir d'avances le travail à réaliser tout au long de l'année :

Réalisé avec Ganttproject

Les tâches vertes correspondent à différentes interventions extérieures aux objectifs de bases. Soit l'entretien pour décider des emplacements des capteurs, et par la suite les dates d'installations des capteurs.

Pour l'analyse prévisionnelle j'ai fait un diagramme de cas d'utilisation pour synthétiser le système EfficacEnergie le 18/12/2017:

II- Conception préliminaire

Emplacement de départ des capteurs

Suite à l'entretien le 15/01/2018 avec l'intendant et le technicien du lycée, nous avions décidés de placer un capteur de température dans l'ALGECO et un autre dans le bâtiment de restauration. Ensuite un Luxmètre (Capteur d'éclairement) dans la salle de réunion, ensuite un compteur électrique dans l'ALGECO, un dans la cafétéria et dernier dans le bâtiment des BAC professionnels en cuisine.

Emplacement final des capteurs

Suite à différents problèmes de portée des capteurs nous avons été dans l'obligation de changer beaucoup d'emplacements.

Et aussi annuler l'installation du Luxmètre à cause du manque de matériel pour le faire fonctionner.

Nous avons donc établis un nouveau plan le 30/03/2018 pour placer toujours un capteur de température dans l'ALGECO et aussi un compteur électrique.

Ensuite on a mis un compteur électrique sur une rangée d'éclairage du LaboSTI2D et un autre sur la pompe à chaleur de la même salle.

Et un dernier capteur de température dans le LaboSTI2D.

Caractéristiques installations capteurs

	Désignation	Emplacement	Date d'installation
Capteur température 1	WTH1	LaboSTI2D	05/04/2018
Capteur température 2	WTH2	ALGECO	16/02/2018
Compteur électrique 1	WFL1	ALGECO	15/02/2018
Compteur électrique 2	WFL2	Eclairage (LaboSTI2D)	30/04/2018
Compteur électrique 3	WFL3	P.A.C. (LaboSTI2D)	07/05/2018

La démarche Négawatt

J'ai cherché à l'aide de documents sur internet et autres, les solutions qui permettent de réduire notre consommation énergétique.

J'ai donc étudié la démarche Négawatt fondée en 2001 qui nous sert d'exemple et d'appuie.

Cette démarche se base sur trois étapes afin de réduire notre consommation :

- Sobriété : Eviter le gaspillage un maximum

- Efficacité : Optimiser un maximum

- Renouvelables : Changer de type d'énergie

Normes et règlementations

J'ai ensuite recherché les différentes normes en relation avec notre étude de consommation énergétique :

RT 2012 : Application en 2011 pour les bâtiments d'enseignements. Exige une réduction des besoins en fixant des limites de consommations

ISO: Application le 5 juin 2011 Exige un diagnostic de sa consommation énergétique

Pourquoi choisir EfficacEnergie?

Nous travaillons avec le système EfficacEnergie, proposant un kit avec serveur NAS, collecteur de données, capteurs sans fils.

Et répéteurs si nécessaires permettant de faire relais aux signaux pour une installation des capteurs plus éloignées par rapport au collecteur de données.

C'est une solution proposée pour l'enseignement (lycées, etc...)

Cette solution est la meilleure pour l'audit énergétique à effectuer dans l'établissement. Le système EfficacEnergie a de nombreux avantages dont :

Avantages	Inconvénients
Facilité/faible coût installation	(Avec installation filaire)
Capteur sans fils	
Propriétaire de la solution	
Solution flexible et évolutive	(Avec hébergement des données sur serveur externe)

Fonctionnement du système

Avant l'étude approfondie de ma partie sur la gestion de l'information j'ai dû comprendre le fonctionnement du système j'ai donc mis en place un tableau :

Transmission de l'information	Traitement de l'information	Gestion de l'information
Capteurs sans fils, installations	Configuration collecteur, Serveur NAS	Modélisation logiciel, interprétation des résultats

Objectifs (Gestion de l'information) :

- Modéliser les résultats
- Interpréter les résultats
- Trouver des solutions afin de réduire la consommation

III- Conception détaillée

Démarche modélisation logiciel

Afin de modéliser le logiciel afin de visualiser les résultats des différents capteurs, il faut donc réaliser une démarche particulière afin d'afficher ces résultats.

Premièrement il faut se connecter au logiciel EfficacEnergie sur un naviguateur web. (Google Chrome, Mozilla Firefox, Internet Explorer)

Et se connecter à l'adresse où le logiciel a était configuré sur le réseau du lycée soit ici : 10.134.1.252 :10000

Audit de la consommation énergétique du lycée Auguste Loubatières - Gestion de l'information

En zoomant sur ma partie du logiciel on peut apercevoir 5 onglets :

Compteurs: On peut rajouter des variables afin de calculer par exemple des capteurs ensemble. (VAR1+VAR2) Pour additionner des compteurs.

Image: Permet de rajouter des images sur les tableaux de bords là où pourra voir les résultats afin de rendre un diaporama plus compréhensible.

Diaporama: Permet de rajouter des diaporamas afin de naviguer sur des tableaux de bords automatiquement.

Tâche planifiée: Envoyer un fichier des résultats pour un capteur par mail automatiquement sous un intervalle défini (1jour, 1 semaine, ect...)

Unité de mesure: Rajouter une unité de mesure qui n'est pas stockée sur le logiciel de base.

Ensuite dans l'onglet Tableau de bord du logiciel on a accès à toute la modélisation, on peut rajouter trois types de fichiers :

- Dossier
- Plan
- Tableau de bord (Courbes, Tableaux de données, diagrammes, ect ...)

IV- Réalisation

Modélisation logiciel

Disposition des dossiers, tableaux de bords et différents plans.

Je vais présenter à l'aide d'image le fonctionnement du logiciel pour pouvoir visualiser les résultats.

Page d'accueil:

Plan du lycée Auguste Loubatières :

Possibilité de cliquer sur les zones avec des capteurs afin d'être redirigée sur la page suivante :

Dossier des capteurs :

On peut là aussi interagir avec le fond en cliquant sur le petit symbole pour être redirigé vers le tableau de bord du capteur choisi.

Tableaux de bords (Courbe et Tableau de données) :

Diagnostic des résultats

Après avoir modélisé les résultats on peut enfin analyser ces derniers pour pouvoir émettre des solutions.

J'ai donc d'abord étudié les résultats du capteur de température présent dans l'ALGECO (WTH2) La sonde de température est placée à la sortie d'un climatiseur réversible dans la salle.

J'ai pris trois formes de résultats, soit pour :

- 1 jour
- 1 semaine
- 1 week-end

Afin de vraiment étudier la consommation à cet emplacement car la salle est très énergivore.

Température moyenne	31,9 °C
Température maximale	42,5 °C
Température minimale	22,1 °C
Valeurs > 40°C	13,5 %

On constate que les pics de consommations à plus de 40 °C (voir +35 °C) interviennent entre 4h00 et 7h30. Il n'y a pas d'autres consommations aussi élevées dans la journée. Cette élévation de température semble correspondre à la programmation du climatiseur, pour chauffer la salle avant que le premier cours commence à 8h00.

1 week-end : 07/04/18 au 09/04/18

Température moyenne	28,4 °C
Température maximale	37,9 °C
Température minimale	20,9 °C
Valeurs > 35°C	8,3 %

On constate qu'il y a quelques pics de consommation à +35°C qui arrivent en pleine journée, samedi. Il n'y a pas d'autres consommations aussi élevées le week-end. Cette élévation de température semble correspondre à la programmation du climatiseur, où un défaut de l'appareil mais cela n'a pas lieu d'être le week-end.

1 semaine : 02/04/18 au 09/04/18

Température moyenne	29,8 °C
Température maximale	43,5 °C
Température minimale	22,6 °C
Valeurs > 40°C	2,2 %

On constate qu'il y a quelques pics de consommation à +40°C qui arrivent entre 4h00 et 7h00 le jeudi. Il n'y a pas d'autres consommations aussi élevées dans la semaine. Cette élévation de température semble correspondre à la programmation du climatiseur, pour chauffer la salle avant que le premier cours commence à 8h00.

J'ai ensuite étudié le capteur de température présent dans le LaboSTI2D seulement pour une

journée car il ne présente pas vraiment d'anomalie.

Il est placé dans la salle pour mesurer la température.

> 1 jour : 03/05/18

Température moyenne	20,5 °C
Température maximale	23 °C
Température minimale	18,5 °C
Valeurs > 23°C	1 %

On ne constate aucune anomalie mise à part cette valeur à 23°C survenant à 18h mais cela n'est pas vraiment une haute température. Néanmoins la température en aprem-midi est plus élevé que le matin.

Et pour finir j'ai analysé les résultats du compteur électrique présent dans le LaboSTI2D branché au niveau d'une rangée d'éclairage.

Comme pour le précédent capteur je n'ai pris qu'un seul jour car la consommation n'est pas importante dans cette salle.

Consommation totale	653 Wh
Coût totale	0,098 €
Ecart de consommation	626 Wh

On constate simplement une hausse de consommation lorsque l'éclairage est en marche entre 8h et 17h.

Pour finir j'ai donc apporté des solutions à envisagées à l'aide de ces analyses :

Solutions à adopter

Date	12/04	07/04 au 09/04	02/04 au 09/04	
alies	Valeurs > 40 °C	Valeurs> 35 °C	Valeurs > 40 °C	
Anomalies	4h00 – 7h00 matin	12h00 – 18h00 samedi	4h00 – 7h00 jeudi	
Conclusion	-Vérifier si le climatiseur n'a pas de défauts - Changer la programmation du climatiseur			
ပိ	ALG			GEC
				Ť

Date		03/05			
Anomalies		Température max: 23°C Température min: 18,5°C			
Conclusion	-Sensibiliser les e	élèves à ne pas allumer la p	oompe à chaleur	Labo	STI2D

Date		03/05			
Anomalies		Ecart de consommation: 626 Wh			
Conclusion	-Utiliser la lui	mière du soleil lorsque cela	est possible	Ecla	irage