Rasterization

- Rasterizer produces a set of fragments for each object
 - ➤ Fragments are "potential pixels"➤ Have a location in frame bufffer

 - ➤ Color and depth attributes

Scan conversion(扫描转换)/Rasterization(光栅化算法)

- 点的扫描转换
- 直线的扫描转换算法
 - 直接计算
 - DDA
 - 中点Bresenham(中点算法)
 - 改进Bresenham(Bresenham算法)
- 圆等规则二次曲线的中点扫描转换算法

一、点的光栅化

```
OpenGL point functions
glBegin(GL_POINTS);
glVertex3f(-78.05, 909.72, 14.60)
glEnd();
```

因为屏幕坐标只能为整数,实际屏幕窗口中位置为(-78, 910, 15)。

Scan conversion(扫描转换)/Rasterization(光栅化算法)

- 点的扫描转换
- 直线的扫描转换算法
 - 直接计算
 - DDA
 - 中点Bresenham(中点算法)
 - 改进Bresenham(Bresenham算法)
- 圆等规则二次曲线的中点扫描转换算法

二、画线~线段光栅化

• 线图元生成

在光栅显示器等数字设备上确定一个最佳逼近于图元象素集的过程。


```
OpenGL Line Functions
glBegin(GL_LINES)
glVertext2iv(p1);
glVertext2iv(p2);
glEnd();
```

思考: 如何实现画线算法?

演示过程

1、线段光栅化-直接公式法

数学模型: y=mx+b

给定直线的两个端点 (x_a, y_a) 和 (x_b, y_b) ,

 $m = (y_b - y_a)/(x_b - x_a) \not = (y_a x_b - y_b x_a)/(x_b - x_a)$

算法思想:循环, x每次递增1, 计算y

 $X_{i+1}=X_i+1$;

 $\mathbf{Y}_{i+1} = \mathbf{int}(\mathbf{m} \times \mathbf{X}_{i+1} + \mathbf{b})$

```
/**直接带公式法--程序*、
x=xa;
m=(yb-ya)/(xb-xa);
b=ya-m*xa=(y_ax_b-y_bx_a)/(x_b-x_a)
While (x < xb)
 x=x+1; 单位递增
 y=mx+b; 计算y
 Setpixel(int(x), int(y), color);
End
```

优点:增量迭代计算X

缺点: 计算量大 (循环中有乘法操作)

2.线段光栅化-DDA算法(<u>Digital Differential Analyzer</u>)

数学模型: △y=m△x

即: $(Y_{i+1}-Y_i)=((yb-ya)/(xb-xa))(X_{i+1}-X_i)$

即: $(Y_{i+1}-Y_i)=m(X_{i+1}-X_i)=m\triangle x$

 $Y_{i+1}=Y_i+m \triangle x$

- *算法思想:* 当△x=1时, △y=y+m;
 - $X_{i+1} = X_i + 1$;
 - $Y_{i+1} = int(Y_i + m)$; Y

优点: X,Y都是增量迭代计算。

缺点: 浮点加法 (requires one floating point addition per step)

?选择x还是y单位步进1

|m|<1时,|Dx|>|Dy|, X单位增长采样点更多

● Y采样

|m|>1时, |Dy|>|Dx|, Y单位增长采样点更多

斜率(4种情况),坐标(2种情况),共8种情况讨论。

编程时,可合并简化<u>斜率</u>因素,分成四种情况 若|m|≤1,

$$x_a < x_b$$
 $x_{k+1} = x_k + 1, y_{k+1} = y_k + m$
 $x_a > x_b$
 $x_{k+1} = x_k - 1, y_{k+1} = y_k - m$
若 $|m| > 1$,
 $y_a < y_b$
 $y_{k+1} = y_k + 1, x_{k+1} = x_k + 1/m$
 $y_a > y_b$
 $y_{k+1} = y_k - 1, y_{k+1} = y_k - 1/m$

?是否还可以继续合并?

Scan conversion(扫描转换)/Rasterization(光栅化算法)

- 点的扫描转换
- 直线的扫描转换算法
 - 直接计算
 - DDA
 - 中点Bresenham(中点算法)
 - 改进Bresenham(Bresenham算法)
- 圆等规则二次曲线的中点扫描转换算法

3、线段光栅化-中点算法

判定函数: F(x,y)=y-(mx+b)

$M(x_{k+1},y_k+0.5)$ 是A和B像素的中点

考虑直线斜率0≤m≤1,且x_a<x_b 判别式: F(M)= *y_k+0.5*-(mx_{k+1}+b)

if (F(M)>0)
then 取点B(x_{k+1},y_k)
else 取A (x_{k+1},y_k+1).

 $C(x_{k+1}, mx_{k+1} + b)$ 是直线与 $x = x_{k+1}$ 的交点。

1、构造判别式

$F(M_k)=F(M)=y_k+0.5-(mx_{k+1}+b)$ 去掉小数0.5和负数,构造新判别式 $d_k = -2*F(M_k)$ $=-2*F(x_{k+1},y_k+0.5)$ $=-2*(y_k+0.5-(m*(x_k+1)+b))$ $=2m(x_k+1) + 2b - 2y_k - 1$ $=2m(x_{k}+1)-2y_{k}+2b-1$ 用d_k判定: $d_k > 0$, 取上面的点A, $(y_{k+1} = y_k + 1)$ $d_k \le 0$,取下面的点B, $(y_{k+1} = y_k)$

2) 判别式优化

 $d_k = -2F(M_k) = 2m(x_k + 1) - 2y_k + 2b - 1$ 去掉m浮点计算采用新的判别式: $p_k = \triangle x d_k = 2\triangle yx_k - 2\triangle xy_k + c$ $(c = 2\triangle y + \triangle x(2b - 1))$ 为常数, $\triangle y = yb - ya)$ $\triangle x = x_b - x_a > 0$,

用p_k判定:

 $p_k > 0$, 取上面的点A $(y_{k+1} = y_k + 1)$

 $p_k \le 0$,取下面的点B $(y_{k+1} = y_k)$

3) 判别式的增量式推导

找出 p_{k+1} 与 p_k 的关系:

根据:
$$p_k = 2 \triangle yx_k - 2 \triangle xy_k + c$$

所以:
$$p_{k+1} = 2 \triangle yx_{k+1} - 2 \triangle xy_{k+1} + c$$

$$=2\triangle yx_k+2\triangle y-2\triangle xy_{k+1}+c$$

则:
$$p_{k+1}$$
- $p_k = 2 \triangle y - 2 \triangle x(y_{k+1} - y_k)$

根据 y_{k+1} - y_k 在 p_k 下得取值得到:

$$p_{k+1} = p_k + 2 \triangle y - 2 \triangle x \qquad (p_k > 0)$$

$$p_{k+1} = p_k + 2 \triangle y \qquad (p_k < 0)$$

4) 求出判别式初始值

$$p_k = 2 \triangle yx_k - 2 \triangle xy_k + c$$

$$x_0=x_a$$
, $y_0=y_a-(\triangle y/\triangle x)*x_a$

$$p_0 = 2 \triangle yx_a - 2 \triangle xy_a + 2 \triangle y + \triangle x(2b-1)$$

计算得到

$$p_0 = 2 \triangle y - \triangle x$$

中点算法主要公式

适用于0≤m≤1且x_a<x_b情况:

初始:

```
\triangle y=y_b-y_a; \triangle x=x_b-x_a; p_0=2\triangle y-\triangle x; x_0=x_a,y_0=y_b
```

循环体中:

```
x_{k+1}=x_k+1;

当p_k \ge 0: y_{k+1}=y_k+1, p_{k+1}=p_k+2(\triangle y-\triangle x);

当p_k < 0: y_{k+1}=y_k, p_{k+1}=p_k+2\triangle y;
```

优点:

- 精确而有效的光栅线段生成算法,判定代替计算,增量迭代整数计算,效率高。
- 不仅可用于直线、还可以用在圆和其它曲线的生成

Scan conversion(扫描转换)/Rasterization(光栅化算法)

- 点的扫描转换
- 直线的扫描转换算法
 - 直接计算
 - DDA
 - 中点Bresenham(中点算法)
 - 改进的Bresenham(Bresenham算法)
- 圆等规则二次曲线的中点扫描转换算法

更直观的想法

误差项d的变换规律

• 判别式d,斜率k,判别式计算:d_{i+1}=d_i+k

完备的Bresenham算法,但需要改进-浮点

算法改进: 去掉浮点数计算

- e=d-0.5; $e_0=-0.5$
 - 因 d=e+0.5; 判别式增量式: e_{i+1}+0.5=e_i+0.5+k; 即 e_{i+1}=e_i+k.
- $e' = e \times 2\Delta x$; $e_0' = -\Delta x$;
 - 因 e=e'/2Δx; so 判别式增量式: e_{i+1}'/2Δx= e_i'/2Δx +k; 即e_{i+1}' = e_i' +2Δy

改进的bresenham算法

在0≤k≤1情况下改进的Bresenham算法:

- (1)输入直线的两端点 $P_0(x_0,y_0)$ 和 $P_1(x_1,y_1)$ 。
- (2)计算初始值△x、△y、e=-△x、x=x_o、y=y_o。
- (3)绘制点(x,y)。
- (4) e更新为e+2△y 判断e的符号

若e>0,则(x,y)更新为(x+1,y+1),同时将e更新为e-2△x; 否则(x,y)更新为(x+1,y)。

(5) 当直线没有画完时,重复步骤3和4。否则结束。

Bresenham算法实例

х	у	е	e+2△y
0	0	-8	2
1	1	-14	-4
2	1	-4	6
3	2	-10	0
4	2	0	10
5	3	-6	4
6	4	-12	-2
7	4	-2	8
8	5	-8	2

完整的直线扫描转换算法编写

- 1) 可先处理特殊情况
 - 水平线 (y2-y1=0), 直接转换
 - 垂直线 (x2-x1=0), 直接转换
 - 对角线(y2-y1=x2-x1),直接转换
- 2)再写出其它一般情况的计算方法
 - 算法一般采用中点法或Bresenham算法进行推导
 - 同时还需要考虑斜率和线段方向,推导各种情况下的计算公式

Scan conversion(扫描转换)/Rasterization(光栅化算法)

- 点的扫描转换
- 直线的扫描转换算法
 - 直接计算
 - DDA
 - 中点Bresenham(中点算法)
 - 改进Bresenham(Bresenham算法)
- •圆(规则二次曲线)的中点算法

5、圆的扫描转换算法 圆的扫描转换演示

圆心在任意点(a,b),

半径为整数R的圆

$$(x-a)^2+(y-b)^2=R^2$$

简化计算:

- 圆心在原点,半径为整数R的圆讨论: $x^2+y^2=R^2$
- 利用圆的对称性,只推导八分之一圆的转换算法

问题:选择哪一个1/8圆进行讨论?

选择原因: Dx>Dy, x采样递减1, 判定y的取值

中点画圆法

构造判别函数

$$F(x,y)=x^2 + y^2 - R^2$$

- 对于圆上的点, F(x,y)=0;
- 对于圆外的点, F(x,y)>0;
- 而对于圆内的点, F(x,y)<0。

1.决策参数

$$di = F(x_M, y_M) = F(x_i+1, y_i-0.5) = (x_i+1)^2 + (y_i-0.5)^2 - R^2$$

M的坐标为: $M(x_i+1,y_i-0.5)$

• 当 $F(x_M, y_M) < 0$ 时,

取 $P_{ij}(x_i+1,y_i)$, 中点在圆内

取 $P_d(x_i+1,y_i-1)$, 中点在圆外

2、决策参数的增量计算

$$d_{i+\bar{I}} = F(x_i + 2, y_i - 0.5)$$

$$= (x_i + 2)^2 + (y_i - 0.5)^2 - R^2$$

$$= (x_i + 1)^2 + (y_i - 0.5)^2 - R^2 + 2x_i + 3$$

$$= di + 2x_i + 3$$

y_{i+1}=y_i-1; //即取下面的点Pd

$$d_{i+1} = F(x_i + 2, y_i - 1.5)$$

$$= (x_i + 2)^2 + (y_i - 1.5)^2 - R^2$$

$$= (x_i + 1)^2 + (y_i - 0.5)^2 - R^2 + (2x_i + 3) + (-2y_i + 2)$$

$$= di + 2(x_i - y_i) + 5$$

3、判别式的初始值

$$d_0 = F(1, R - 0.5)$$

$$= 1 + (R - 0.5)^2 - R^2$$

$$= 1.25 - R$$

圆的扫描转换算法

算法步骤:

- 1.输入圆的半径R。
- 2.计算初始值d=1.25-R、x=0、y=R。
- 3.绘制点(x,y)及其在八分圆中的另外七个对称点。
- 4.判断d的符号? 若d≤0,则先将d更新为d+2x+3,再将(x,y)更新为(x+1,y); 否则,先将d更新为d+2(x-y)+5,再将(x,y)更新为(x+1,y-1)。
- 5.当x<y时,重复步骤3和4。否则结束。

//程序(略)

改进: 用d-0.25代替d

算法步骤:

- 1.输入圆的半径R。
- 2.计算初始值**d=1-R**、x=0、y=R。
- 3.绘制点(x,y)及其在八分圆中的另外七个对称点。
- 4.判断d的符号。若**d≤0**,则先将d更新为d+2x+3,再将(x,y)更新为(x+1,y); 否则先将d更新为d+2(x-y)+5,再将(x,y)更新为(x+1,y-1)。
- 5.当x<y时,重复步骤3和4。否则结束。

//程序(略)