

**並** EMSE 4575: Exploratory Data Analysis

John Paul Helveston

 **April** 07, 2021

- 1. Interactive charts
- 2. Interactive tables

Intermission

3. Interactive maps

- 1. Interactive charts
- 2. Interactive tables

Intermission

3. Interactive maps

# Plotly uses JavaScript to create interactive charts

But you don't have to know JavaScript to use it!

#### Turn any ggplot into an interactive chart with ggplotly()

```
plot <- gapminder %>%
  filter(year == 2007) %>%
  ggplot(aes(x = gdpPercap, y = lifeExp,
             size = pop, color = continent,
             label = country)) +
  geom_point(alpha = 0.7) +
  scale_color_brewer(palette = 'Set2') +
  scale_size_area(
    guide = FALSE, max size = 25) +
  scale_x_log10() +
  theme_bw(base_size = 16) +
  labs(x = 'GDP per capita',
       y = 'Life expectancy',
       color = 'Continent')
plot
```



#### Turn any ggplot into an interactive chart with ggplotly()

ggplotly(plot)



#### Modify the data shown with tooltip argument

```
ggplotly(
  plot,
  tooltip = c("country", "pop")
)
```



#### Modify other features by piping on plotly functions

```
ggplotly(
  plot,
  tooltip = c("country", "pop")
) %>%
  layout(legend = list(
    orientation = "h", x = 0, y = -0.3))
```



Reference guide: https://plotly.com/ggplot2/

# Make interactive charts with plot\_ly()

(More examples here: <a href="https://plotly.com/r/">https://plotly.com/r/</a>)

```
plot ly(
  data = gapminder %>% filter(year == 2007),
  type = 'scatter',
  x = \sim gdpPercap,
  y = \sim lifeExp,
  size = \simpop,
  color = \sim continent,
  text = \sim country,
  mode = "markers",
  sizes = c(10, 1000),
  marker = list(opacity = 0.5),
  hoverinfo = "text"
  ) %>%
  layout(xaxis = list(type = "log"))
```



# Animation is relatively easy with plot\_ly()

```
plot ly(
  data = gapminder,
  type = 'scatter',
  x = \sim gdpPercap,
  y = \sim lifeExp,
  size = \simpop,
  color = ~continent,
  text = \sim country,
  frame = \simyear,
  mode = "markers",
  sizes = c(10, 1000),
  marker = list(opacity = 0.5),
  hoverinfo = "text"
  ) %>%
  layout(xaxis = list(type = "log"))
```



#### Save as html page

```
htmlwidgets::saveWidget(
   ggplotly(plot),
   file = here::here('figs', 'gapminder.html')
)
```

#### Insert using iframe

# One more option: https://g2r.opifex.org/index.html



#### Your Turn: Interactive Charts

00:00

- 1. Open your reflection from this past week
- 2. Take turns sharing your interactive chart

- 1. Interactive charts
- 2. Interactive tables

Intermission

3. Interactive maps

# Make pretty static tables with kable()

library(knitr)

gapminder %>%
 kable()

| country     | continent | year | lifeExp  | рор      | gdpPercap |
|-------------|-----------|------|----------|----------|-----------|
| Afghanistan | Asia      | 1952 | 28.80100 | 8425333  | 779.4453  |
| Afghanistan | Asia      | 1957 | 30.33200 | 9240934  | 820.8530  |
| Afghanistan | Asia      | 1962 | 31.99700 | 10267083 | 853.1007  |
| Afghanistan | Asia      | 1967 | 34.02000 | 11537966 | 836.1971  |
| Afghanistan | Asia      | 1972 | 36.08800 | 13079460 | 739.9811  |
| Afghanistan | Asia      | 1977 | 38.43800 | 14880372 | 786.1134  |
| Afghanistan | Asia      | 1982 | 39.85400 | 12881816 | 978.0114  |
| Afghanistan | Asia      | 1987 | 40.82200 | 13867957 | 852.3959  |
| Afghanistan | Asia      | 1992 | 41.67400 | 16317921 | 649.3414  |
| Afghanistan | Asia      | 1997 | 41.76300 | 22227415 | 635.3414  |
| Afghanistan | Asia      | 2002 | 42.12900 | 25268405 | 726.7341  |

## Behind the scenes:

gapminder %>%

kable() generates the code to make a pretty table

```
kable(format = "pipe")
-|---:|-----:|-----:|-----:|------:| Afghanistan | Asia | 1952 | 28.80100 | 8425333 |
779.4453 | Afghanistan | Asia | 1957 | 30.33200 | 9240934 | 820.8530 | Afghanistan
|Asia | 1962 | 31.99700 | 10267083 | 853.1007 | Afghanistan | Asia | 1967 | 34.02000 |
11537966 | 836.1971 | Afghanistan | Asia | 1972 | 36.08800 | 13079460 | 739.9811 |
|Afghanistan | Asia | 1977 | 38.43800 | 14880372 | 786.1134 | Afghanistan | Asia | 1982 |
39.85400 | 12881816 | 978.0114 | Afghanistan | Asia | 1987 | 40.82200 | 13867957 |
852.3959 | Afghanistan | Asia | 1992 | 41.67400 | 16317921 | 649.3414 | Afghanistan
|Asia | 1997 | 41.76300 | 22227415 | 635.3414 | Afghanistan | Asia | 2002 | 42.12900 |
25268405 | 726.7341 | Afghanistan | Asia | 2007 | 43.82800 | 31889923 | 974.5803 |
|Albania | Europe | 1952 | 55.23000 | 1282697 | 1601.0561 | Albania | Europe | 1957 | 17 / 54
```

### Behind the scenes:

kable() generates the code to make a pretty table

```
gapminder %>%
  kable(format = "html")
```

```
#> 
<thead>
#>
  country 
  continent 
  year 
#>
  lifeExp 
  pop 
  gdpPercap 
 </thead>
#> 
#>
  Afghanistan 
#>
  Asia 
#>
```

# Make interactive tables with:

DT::datatable()

## Make interactive tables with datatable()

```
library(DT)

gapminder %>%
  datatable()
```

| Show 2 | entries       |           |      |         | Search: united s |
|--------|---------------|-----------|------|---------|------------------|
|        | country       | continent | year | lifeExp | pop              |
| 1609   | United States | Americas  | 1952 | 68.44   | 157553000        |
| 1610   | United States | Americas  | 1957 | 69.49   | 171984000        |
| 1611   | United States | Americas  | 1962 | 70.21   | 186538000        |
| 1612   | United States | Americas  | 1967 | 70.76   | 198712000        |
| 1613   | United States | Americas  | 1972 | 71.34   | 209896000        |
| 1614   | United States | Americas  | 1977 | 73.38   | 220239000        |
| 1615   | United States | Americas  | 1982 | 74.65   | 232187835        |
| 1616   | United States | Americas  | 1987 | 75.02   | 242803533        |
| 1617   | United States | Americas  | 1992 | 76.09   | 256894189        |
| 1618   | United States | Americas  | 1997 | 76.81   | 272911760        |
| 1619   | United States | Americas  | 2002 | 77.31   | 287675526        |
| 1690   | TT:4. J C4.4  | ٨ عنذ     | 2007 | 79 242  | 2011200/20       |

## Make interactive tables with datatable()

```
gapminder %>%
  datatable(
    options = list(
        pageLength = 5,
        lengthMenu = c(5, 10, 15, 20
)
```

| now   | 10 <b>∨</b> entries |                  |      |         | Search:  |
|-------|---------------------|------------------|------|---------|----------|
|       | country             | continent        | year | lifeExp | pop      |
| 1     | Afghanistan         | Asia             | 1952 | 28.801  | 8425333  |
| 2     | Afghanistan         | Asia             | 1957 | 30.332  | 9240934  |
| 3     | Afghanistan         | Asia             | 1962 | 31.997  | 10267083 |
| 4     | Afghanistan         | Asia             | 1967 | 34.02   | 11537966 |
| 5     | Afghanistan         | Asia             | 1972 | 36.088  | 13079460 |
| 6     | Afghanistan         | Asia             | 1977 | 38.438  | 14880372 |
| 7     | Afghanistan         | Asia             | 1982 | 39.854  | 12881816 |
| 8     | Afghanistan         | Asia             | 1987 | 40.822  | 13867957 |
| 9     | Afghanistan         | Asia             | 1992 | 41.674  | 16317921 |
| 10    | Afghanistan         | Asia             | 1997 | 41.763  | 22227415 |
| howii | ng 1 to 10 of 1,704 | entries Previous | 1    | 2 3 4   | 5        |

# Modify features by piping on functions

```
gapminder %>%
  datatable() %>%
  formatCurrency('gdpPercap') %>%
  formatStyle(
    'country',
    color = 'red',
    backgroundColor = 'black',
    fontWeight = 'bold')
```

| low [ | 10 v entries |           |      |         | Search:  |  |
|-------|--------------|-----------|------|---------|----------|--|
|       | country      | continent | year | lifeExp | pop      |  |
| 1     | Afghanistan  | Asia      | 2002 | 42.129  | 25268405 |  |
| 2     | Afghanistan  | Asia      | 2007 | 43.828  | 31889923 |  |
| 13    | Albania      | Europe    | 1952 | 55.23   | 1282697  |  |
| 4     | Albania      | Europe    | 1957 | 59.28   | 1476505  |  |
| 5     | Albania      | Europe    | 1962 | 64.82   | 1728137  |  |
| 6     | Albania      | Europe    | 1967 | 66.22   | 1984060  |  |
| 7     | Albania      | Europe    | 1972 | 67.69   | 2263554  |  |
| 8     | Albania      | Europe    | 1977 | 68.93   | 2509048  |  |
| 9     | Albania      | Europe    | 1982 | 70.42   | 2780097  |  |
| 20    | Albania      | Europe    | 1987 | 72      | 3075321  |  |

Showing 11 to 20 of 1,704 entries

## Modify features by piping on functions

```
inder %>%
tatable() %>%
rmatCurrency('gdpPercap') %>%
rmatStyle(
'country',
color = 'red',
backgroundColor = 'black',
fontWeight = 'bold') %>%
rmatStyle(
'lifeExp',
background = styleColorBar(
  gapminder$lifeExp, 'dodgerblue'),
backgroundSize = '100% 90%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'center')
```

| how [ | 10 v entries        |                  |      |         | Search:  |
|-------|---------------------|------------------|------|---------|----------|
|       | country             | continent        | year | lifeExp | pop      |
| 1     | Afghanistan         | Asia             | 1952 | 28.801  | 8425333  |
| 2     | Afghanistan         | Asia             | 1957 | 30.332  | 9240934  |
| 3     | Afghanistan         | Asia             | 1962 | 31.997  | 10267083 |
| 4     | Afghanistan         | Asia             | 1967 | 34.02   | 11537966 |
| 5     | Afghanistan         | Asia             | 1972 | 36.088  | 13079460 |
| 6     | Afghanistan         | Asia             | 1977 | 38.438  | 14880372 |
| 7     | Afghanistan         | Asia             | 1982 | 39.854  | 12881816 |
| 8     | Afghanistan         | Asia             | 1987 | 40.822  | 13867957 |
| 9     | Afghanistan         | Asia             | 1992 | 41.674  | 16317921 |
| 10    | Afghanistan         | Asia             | 1997 | 41.763  | 22227415 |
| howi  | ng 1 to 10 of 1,704 | entries Previous | 1 2  | 2 3 4   | 5        |

# Make interactive tables with:

reactable::reactable()

## Make interactive tables with reactable()

```
library(reactable)

gapminder %>%
  reactable()
```

| country      | continent | year       | lifeExp | pop      | gdpPe    |
|--------------|-----------|------------|---------|----------|----------|
| Afghanistan  | Asia      | 1952       | 28.801  | 8425333  | 779.4453 |
| Afghanistan  | Asia      | 1957       | 30.332  | 9240934  | 820.8530 |
| Afghanistan  | Asia      | 1962       | 31.997  | 10267083 | 853.10   |
| Afghanistan  | Asia      | 1967       | 34.02   | 11537966 | 836.1971 |
| Afghanistan  | Asia      | 1972       | 36.088  | 13079460 | 739.9811 |
| Afghanistan  | Asia      | 1977       | 38.438  | 14880372 | 786.11   |
| Afghanistan  | Asia      | 1982       | 39.854  | 12881816 | 978.0114 |
| Afghanistan  | Asia      | 1987       | 40.822  | 13867957 | 852.3959 |
| Afghanistan  | Asia      | 1992       | 41.674  | 16317921 | 649.3413 |
| Afghanistan  | Asia      | 1997       | 41.763  | 22227415 | 635.341  |
| 1–10 of 1704 | rows      | Previous 1 | 2 3 4   | 5 171    | Next     |

## reactable() has some nice options!

```
library(reactable)

gapminder %>%
  reactable(
    searchable = TRUE,
    highlight = TRUE,
    filterable = TRUE,
    defaultPageSize = 5,
    showPageSizeOptions = TRUE,
    pageSizeOptions = c(5, 10, 15)
)
```



## Add more features with reactablefmtr library

```
library(reactable)
library(reactablefmtr)
gapminder %>%
  reactable(
    searchable = TRUE,
    highlight = TRUE,
    filterable = TRUE,
    defaultPageSize = 5,
    showPageSizeOptions = TRUE,
    pageSizeOptions = c(5, 10, 15)
    columns = list(
      lifeExp = colDef(cell = data
        gapminder,
        colors = c("#d7191c", "#ff
      align = "center")) ## align
```



# Add more features with sparkline library (example)

```
library(reactable)
library(sparkline)
gapminder summary <- gapminder %>%
  group by(country) %>%
  summarise(lifeExp = list(lifeExp)) %>%
 mutate(leftExpTrend = NA)
gapminder reactable sparkline <- gapminder</pre>
  reactable(
    searchable = TRUE.
   highlight = TRUE,
   filterable = TRUE.
   defaultPageSize = 5,
    showPageSizeOptions = TRUE,
    columns = list(
      lifeExp = colDef(
        cell = function(values) {
          sparkline(
            values, type = "bar", chartRang
            chartRangeMax = max(gapminder$l
        }),
      leftExpTrend = colDef(
        cell = function(value, index) {
          sparkline(gapminder summary$lifeE
```



## References:

- https://rstudio.github.io/DT/
- https://glin.github.io/reactable/
- https://kcuilla.github.io/reactablefmtr/

#### Your Turn: Interactive Tables

20:00

Use reactable() to make the following interactive table

Read <u>this example</u> and use the gapminder\_flags data frame



# Intermission



- 1. Interactive charts
- 2. Interactive tables

Intermission

3. Interactive maps

# Make interactive maps with leaflet

```
library(leaflet)

# Default tiles: OpenStreetMap
leaflet() %>%
   addTiles()
```



#### Use setView() to set a start location

```
leaflet() %>%
  addTiles() %>%
  setView(
    lat = 38.900671142379586,
    lng = -77.05094820047492,
    zoom = 16)
```

Coordinates from Google Maps



### Use addMarkers() to add markers

```
leaflet() %>%
  addTiles() %>%
  setView(
    lat = 38.900671142379586,
    lng = -77.05094820047492,
    zoom = 16) %>%
  addMarkers(
    lat = 38.900671142379586,
    lng = -77.05094820047492,
    popup = "GWU!!!")
```



## Change the tiles with addProviderTiles()

```
leaflet() %>%
    # addTiles() %>%
    addProviderTiles(providers$0penTopoMap) %
    setView(
        lat = 38.900671142379586,
        lng = -77.05094820047492,
        zoom = 16) %>%
    addMarkers(
        lat = 38.900671142379586,
        lng = -77.05094820047492,
        popup = "GWU!!!")
```

Go here to get other tiles



Leaflet | Map data: © OpenStreetMap contributors, SRTM | Map style: © OpenTopoMap (CC-BY-SA)

## Overlaying data with leaflet

- Points
- Choropleth maps

## Points example: coffee data

```
coffee_shops <- read_csv(here::here("data", "us_coffee_shops.csv"))

# Let's just look at MD
dc_coffee_shops <- coffee_shops %>%
   filter(state == "District of Columbia")
head(dc_coffee_shops)
```

```
# A tibble: 6 \times 8
                     lat long unique_id city state_abb zip
                                                                  state
#>
    name
                 <dbl> <dbl>
                                  <dbl> <chr>
                                                  <chr>
    <chr>
                                                            <chr> <chr>
                                                            20008 District of Columbia
\#>1 Baskin Robbins 38.9 -77.1 3303629 Washington DC
                                3303741 Washington DC
#> 2 Baskin Robbins
                   38.9 -76.9
                                                            20019 District of Columbia
#> 3 Baskin Robbins 38.9 -77.0
                                3303173 Washington DC
                                                            20002 District of Columbia
                                3303939 Washington DC
#> 4 Baskin Robbins 38.9 -77.0
                                                            20003 District of Columbia
                                3302548 Washington DC
#> 5 Baskin Robbins
                   38.9 -77.0
                                                            20009 District of Columbia
#> 6 Dunkin' Donuts 38.9 -77.0 13589373 Washington DC
                                                            20024 District of Columbia
```

## Overlay points with addCircleMarkers()

```
leaflet(data = dc_coffee_shops) %>%
  addTiles() %>%
  addCircleMarkers(
    lng = ~long,
    lat = ~lat,
    popup = ~name,
    radius = 2)
```



Leaflet | © OpenStreetMap contributors, CC-BY-SA

## Make a color pallete with colorFactor()

#### Make the palette

```
pal <- colorFactor(
  palette = "Set2",
  levels = c(
    "Starbucks",
    "Dunkin' Donuts",
    "Peet's Coffee & Tea",
    "Baskin Robbins",
    "The Coffee Bean & Tea Leaf"))</pre>
```

#### pal() links the shop *name* to a *color*.

```
pal("Starbucks")

#> [1] "#66C2A5"

pal("Dunkin' Donuts")

#> [1] "#FC8D62"

pal("Baskin Robbins")

#> [1] "#E78AC3"
```

## Use pal() to color the points

```
leaflet(data = dc_coffee_shops) %>%
  addTiles() %>%
  addCircleMarkers(
    lng = ~long,
    lat = ~lat,
    popup = ~name,
    color = ~pal(name),
    radius = 2)
```



Leaflet | © OpenStreetMap contributors, CC-BY-SA

## Use a dark tile scheme to make colors pop

```
leaflet(data = dc_coffee_shops) %>%
  # addTiles() %>%
  addProviderTiles(providers$CartoDB.DarkMatter) %>%
  addCircleMarkers(
    lng = ~long,
    lat = ~lat,
    popup = ~name,
    color = ~pal(name),
    radius = 2)
```



Leaflet | © OpenStreetMap contributors © CARTO

## Add a legend with addLegend()

```
leaflet(data = dc_coffee_shops) %>%
  addProviderTiles(providers$CartoDB.DarkMatter) %>%
  addCircleMarkers(
    lng = ~long,
    lat = ~lat,
    popup = ~name,
    color = ~pal(name),
    radius = 2) %>%
  addLegend(
    position = "bottomright",
    pal = pal,
    values = ~name,
    title = "Coffee Shop",
    opacity = 1)
```



## Overlaying data with leaflet

- Points
- Choropleth maps

## How to make a choropleth leaflet map

#### Get the "fill" data

```
milk_production <- read_csv(here::here(
   'data', 'milk_production.csv'))

milk_2017 <- milk_production %>%
   filter(year == 2017) %>%
   select(name = state, milk_produced) %>%
   mutate(milk_produced = milk_produced / 10^9)
```

#### Join to my "map" data

```
library(rnaturalearth)

state_milk <- ne_states(
   country = 'united states of america',
   returnclass = 'sf') %>%
   left_join(milk_2017, by = 'name')
```

```
state_milk %>%
  select(name, milk_produced) %>%
  head()
```

```
#> Simple feature collection with
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -124.7346
#> CRS:
              +proj=longlat +da
          name milk_produced
#>
#> 1 Minnesota
                     9.864 MUL
    Washington
                     6.526 MUL
    Idaho
                    14.627 MUL
    Montana
                     0.288 MUL
#> 5 North Dakota
                    0.345 MUI
                    11.231 MUL
#> 6
       Michigan
```

## Add state shapes with addPolygons()

Notice that I didn't include addTiles()

```
leaflet(data = state_milk) %>%
  setView(-96, 37.8, 4) %>%
  addPolygons()
```



## Make a color pallete with colorBin()

#### Make the palette

```
pal <- colorBin(
  palette = "YlOrRd",
  domain = state_milk$milk_produced)</pre>
```

pal() links the milk produced color:

```
pal(1)
#> [1] "#FFFFCC"
pal(10)
#> [1] "#FED976"
pal(20)
#> [1] "#FD8D3C"
```

## Use pal() to fill the polygons

```
pal <- colorBin(
  palette = "YlOrRd",
  domain = state_milk$milk_produced)

leaflet(data = state_milk) %>%
  setView(-96, 37.8, 4) %>%
  addPolygons(
    fillColor = ~pal(milk_produced),
    weight = 2,
    opacity = 1,
    color = "white",
    dashArray = "3",
    fillOpacity = 0.7)
```

+

## Manually set bins in pal()

```
pal <- colorBin(</pre>
  palette = "YlOrRd",
  bins = round(seq(0, sqrt(40), length.out
 domain = state milk$milk produced)
leaflet(data = state_milk) %>%
  setView(-96, 37.8, 4) %>%
  addPolygons(
    fillColor = ~pal(milk_produced),
    weight = 2,
    opacity = 1,
    color = "white",
    dashArray = "3",
    fillOpacity = 0.7)
```

+

\_

## Make it interactive with highlight argument

```
leaflet(data = state milk) %>%
 setView(-96, 37.8, 4) %>%
 addPolygons(
   fillColor = ~pal(milk produced),
   weight = 2,
   opacity = 1,
   color = "white",
   dashArray = "3",
    fillOpacity = 0.7,
   highlight = highlightOptions(
     weight = 5,
     color = "#666",
     dashArray = "",
      fillOpacity = 0.7,
      bringToFront = TRUE))
```

+

#### Add labels

```
state_milk <- state_milk %>%
 mutate(label = paste(name, ": ",
    round(milk produced, 2), " B lbs", sep = ""))
leaflet(data = state_milk) %>%
 setView(-96, 37.8, 4) %>%
 addPolygons(
   fillColor = ~pal(milk_produced),
   weight = 2,
   opacity = 1,
   color = "white",
   dashArray = "3",
   fillOpacity = 0.7,
   highlight = highlightOptions(
     weight = 5,
     color = "#666",
     dashArray = ""
     fillOpacity = 0.7,
     bringToFront = TRUE),
   label = state milk$label)
```



## Add a legend with addLegend()

```
leaflet(data = state milk) %>%
 setView(-96, 37.8, 4) %>%
 addPolygons(
   fillColor = ~pal(milk produced),
   weight = 2,
   opacity = 1,
   color = "white",
   dashArray = "3",
   fillOpacity = 0.7,
   highlight = highlightOptions(
     weight = 5,
     color = "#666",
     dashArray = "",
     fillOpacity = 0.7,
     bringToFront = TRUE),
   label = state milk$label) %>%
 addLegend(
   pal = pal, values = ~milk_produced, opacity = 0.7,
   title = "Billions lbs milk",
    position = "bottomright")
```



# Reference guide: https://rstudio.github.io/leaflet/

### Your Turn: Interactive Maps

20:00

Use the world\_internet\_2015 data frame to create this interactive leaflet map of internet access by country in 2015.

Note: I've already created the world\_internet\_2015 data frame by joining the internet\_users data frame to the world data frame from the rnaturalearth library.

