机器学习引论

彭玺

pengxi@scu.edu.cn

www.pengxi.me

提纲

- . Review
- \sqsubseteq . Classification Like Human KNN classifier
- . Performance Metric
- 四. Model Selection and Significant Test
- 五. Normalization

提纲

- . Review
- \sqsubseteq . Classification Like Human KNN classifier
- . Performance Metric
- 四. Model Selection and Significant Test
- 五. Normalization

— Review

Vector Space

A vector space is any set V for which two operations are defined:

- Vector addition: any vector x_1 and x_2 in set V can be added to another vector $x = x_1 + x_2$ and their sum x is also in set V.
- Scalar Multiplication: Any vector x in V can be multiplied ("scaled") by a real number c, to produce a second vector cx which is also in V.

<u>Examples:</u> coordinate space, infinite coordinate space, Cartesian product of vector spaces, polynomial vector spaces, functional space...

线性空间 (vector space):

- A vector space over a field F is a set V together with **two operations** that satisfy the **eight axioms** listed below.
- The first operation, called **vector addition** or simply addition: $V + V \rightarrow V$, takes any two vectors v and w and assigns to them a third vector which is commonly written as v + w, and called the sum of these two vectors. (Note that the resultant vector is also an element of the set V).
- The second operation, called **scalar multiplication**: $F \times V \to V$, takes any scalar a and any vector v and gives another vector v. (Similarly, the vector v is an element of the set v).
- Consists of null space (0).

Vector Norm

Norm provides a fundamental definition of "distance" in a vector space

- 1-norm: Manhattan distance
- 2-norm: Euclidean distance (most popular, e.g., MSE, Least Squares...)
- Any other alternative?

- Obvious answer: the distance between two vectors x and y is ||x y||, where $|| \cdot ||$ is some vector norm.
- Alternative: use the angle between two vectors x and y to measure the distance between them.
- How to calculate the angle between two vectors?

Linear Independence

- Given a set of vectors $\{v_1, v_2, \dots, n_n\} \in \mathbb{R}^m$, with $m \geq n$, consider the set of linear combinations $y = \sum_{j=1}^n \alpha_j v_j$ for arbitrary coefficients α_j 's.
- The vectors $\{v_1, v_2, \dots, n_n\}$ are linearly independent, if $\sum_{j=1}^n \alpha_j v_j = 0$, if and only if $\alpha_j = 0$ for all $j = 1, \dots, n$.
- A set of m linearly independent vectors of \mathbb{R}^m is called a basis in \mathbb{R}^m : any vector in \mathbb{R}^m can be expressed as a linear combination of the basis vectors.

Linear independence could be an effective metric to measure the similarity/distance between two data points lying on different/same **subspaces**.

Matrix Rank

- The rank of a matrix is the maximum number of linearly independent column vectors.
- A square matrix $A \in \mathbb{R}^{n \times n}$ with rank n is called nonsingular.
- A nonsingular matrix A has an inverse A^{-1} satisfying

$$AA^{-1} = A^{-1}A = I_n.$$

- What is the rank of an out-product matrix $xy^T \in \mathbb{R}^{m \times n}$ with $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$?
- Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, and let $B = A + uv^T$ with $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$. Then, $B^{-1} = A^{-1} \frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}$.

Q: what can be used by the matrix rank?

Eigenvalues and eigenvectors

• Let A be a $n \times n$ matrix. The vector $v \neq 0$ that satisfies

$$Av = \lambda v$$

for some scalar λ is called the eigenvector of A and λ is the eigenvalue corresponding to the eigenvector v.

• An example: $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$

$$Av = \lambda v \to (A - \lambda I_n)v = 0 \to |A - \lambda I_n| = 0 \to \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = 0$$

Two eigenvalues $\lambda_1 = 3.62$ and $\lambda_2 = 1.38$. and two eigenvectors:

$$v_1 = \begin{pmatrix} 0.52 \\ 0.85 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0.85 \\ -0.52 \end{pmatrix}$$

Matrix norms

- $||A||_2 = \left(\max_i \lambda_i(A^T A)\right)^{1/2}$: square root of the largest eigenvalue of $A^T A$.
- $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$: maximum over columns.
- $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$: maximum over rows.
- Frobenius norm: does not correspond to any vector norm.

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

- Define trace(B) = $\sum_{i=1}^{n} b_{ii}$ for any matrix $B = (b_{ij}) \in \mathbb{R}^{n \times n}$.
- Show that $||A||_F^2 = \operatorname{trace}(AA^T)$.

Singular Value Decomposition (SVD)

Compute the norm of the matrix A:

$$||A||_2 = \sigma_1, \quad ||A||_F = \sqrt{\sum_{i=1}^n \sigma_i^2}.$$

The trace norm (or nuclear norm) of the matrix A is defined as:

$$||A||_* = \sum_{i=1}^n \sigma_i.$$

The trace norm has become very popular in recent years for matrix completion.

- * E. J. Candés and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inform. Theory, 56(5), 2053-2080.
- * E. J. Candés and B. Recht. Exact matrix completion via convex optimization. Found. of Comput. Math., 9 717-772.

Tips: A Machine Learning Method

Mathematical notation: objects in the physical world. Linear Algebra.

Objective function: relation among the objects.

Optimization: Solving the objective.

Performance metric: to evaluate the performance of the machine learning method.

提纲

- . Review
- 二. Classification Like Human KNN classifier
- . Performance Metric
- 四. Model Selection and Significant Test
- 五. Normalization

Test Questions

- Q1: What is the classification? How to perform classification by human? And what is the simplest way?
- Q2: What problem of 1NN is addressed by kNN?
- Q3: How to (why) incorporate the distance into classical kNN? And what will be benefited from it?
- Q4: How to solve the scaling issue faced by KNN?
- Q5: How to evaluate the performance of a classifier?
- Q6: What is model selection? How to solve this issue?

The definition of the classification?

 For a given set of two-tuple (X, Y), namely training data, one could use it to classify an unknown sample x (testing data point) based on the similarity with (X, Y), where X denotes the data point and Y is the corresponding label.

 $Y_1 = 1$

An image

A matrix/vector denoted by X_1

Label/annotation

How to recognize a new object our brain?

New Observation

Observation

How to recognize a new object our brain?

How to recognize a new object our brain?

If it walks like a duck, quacks like a duck, then it's probably a duck!

Step 1: represent the testing data point (x) in the vector space whose elements denote the ``features".

属性	样本1	样本2
叫声	27	2
毛发	1	2
walk	0	1/2
		4

Step 1: represent the testing data point (x) in the vector space whose elements denote the ``features".

Step 2: compute the distance between the testing data point and training data points.

Step 1: represent the testing data point (x) in the vector space whose elements denote the ``features''.

Step 2: compute the distance between the testing data point and training data points.

Step 3: assign the sample to the nearest subject.

Step 1: represent the testing data point (x) in the vector space whose elements denote the ``features''.

Step 2: compute the distance between the testing data point and training data points.

Step 3: assign the sample to the nearest subject.

The nearest neighbor classifier (1NN)

Problems? Limitation?

Step 1: represent the testing data point (x) in the vector space whose elements denote the ``features''.

Step 2: compute the distance between the testing data point and training data points.

Step 3: assign the sample to the nearest subject.

The nearest neighbor classifier (1NN)

Problems:

The training data are sufficiently distinct with each other. Insufficient robustness to noises.

. . .

$$d_{1?}^2 = 1$$

$$d_{2?}^2 = 1$$

Prob1: The training data are sufficiently distinct with each other. Insufficient robustness to noises.

Sol: using k-nearest neighbor + max voting.

k-nearest neighbor classifier!

Requires three things

- The set of stored patterns
- Distance Metric to compute distance between patterns
- The value of k, the number of nearest neighbors to retrieve
- To classify an unknown pattern:
 - Compute distance to other training patterns
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown pattern (e.g., by taking majority vote)

The KNN classifier:

- Prob: does not take the distance into the consideration of voting.
- Sol: ?

The KNN classifier:

- Prob: does not take the distance into the consideration of voting.
- Sol: Weighting by the distance!

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from the nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors. $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
 - Weight the vote according to distance
 - weight factor, $w = 1/d^2$

同时考虑领域内类内样本数量和距离!

提纲

- . Review
- \equiv . Classification Like Human KNN classifier
- 三 . Performance Metric
- 四. Model Selection and Significant Test
- 五. Normalization

怎么评价分类器的性能好坏?

怎么评价分类器的性能好坏?

Accuracy or misclassification error (most popular)

- Error = classifying a record as belonging to one class when it belongs to another class.
- Error rate = percent of misclassified records out of the total records in the validation data

$$g = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, p = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$accuracy = \frac{|g| = p|}{|g|} = 33.33\%$$

怎么评价分类器的性能好坏?

Confusion matrix (混淆矩阵), 考虑二分类问题:

Classification Confusion Matrix				
	Predicted Class			
Actual Class	1	0		
1	201	85		
0	25	2689		

201 1's correctly classified as "1'

85 1' s incorrectly classified as "0"

25 0' s incorrectly classified as "1"

2689 0' s correctly classified as "0'

怎么评价分类器的性能好坏?

Classification Confusion Matrix				
Predicted Class				
Actual Class	1	0		
1	201	85		
0	25	2689		

Overall error rate =
$$(25+85)/3000 = 3.67\%$$

Accuracy = 1 - err = $(201+2689) = 96.33\%$

How about multiple-class problem?

True condition						
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\text{E Condition positive}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positive	y (ACC) = + Σ True negative population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio F ₁ score =	•
		False negative rate (FNR), $Miss\ rate = \frac{\Sigma\ False\ negative}{\Sigma\ Condition\ positive}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	2 1 1 Tecall + Precision

FN(II)

怎么评价分类器的性能好坏?

True condition						
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{Total population}}$	Σ True positive	y (ACC) = + Σ True negative population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), $\text{Miss rate} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR–) $= \frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$	1 1 1 Recall + Precision

Q: 什么情况下, 假阳性/假阴性比更重要?

提纲

- . Review
- \equiv . Classification Like Human KNN classifier
- . Performance Metric
- 四. Model Selection and Significant Test
- 五. Normalization

- Prob: choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

Prob: choosing the value of k, i.e., model selection.

Sol: tuning parameters using validation subset.

How to prove the method is good in statistics.

- Holdout method
 - Partition: Training-and-testing
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Unbiased, efficient. But require a large number of samples
 - used for data set with large number of samples
 - Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained

How to prove the method is good in statistics.

- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = # of tuples, for small sized data
 - Stratified cross-validation: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

提纲

- . Review
- \equiv . Classification Like Human KNN classifier
- . Performance Metric
- 四. Model Selection and Significant Test
- 五. Normalization

五、Normalization

- Prob: Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

五、Normalization

- Prob: Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M
- Sol: Normalization

五、Normalization

Name	Formula	Use
Standard score	$\frac{X-\mu}{\sigma}$	Normalizing errors when population parameters are known. Works well for populations that are normally distributed
Student's t- statistic	$\frac{X-\overline{X}}{s}$	Normalizing residuals when population parameters are unknown (estimated).
Studentized residual	$rac{\hat{\epsilon}_i}{\hat{\sigma}_i} = rac{X_i - \hat{\mu}_i}{\hat{\sigma}_i}$	Normalizing residuals when parameters are estimated, particularly across different data points in regression analysis.
Standardized moment	$rac{\mu_k}{\sigma^k}$	Normalizing moments, using the standard deviation σ as a measure of scale.
Coefficient of variation	$\frac{\sigma}{\mu}$	Normalizing dispersion, using the mean μ as a measure of scale, particularly for positive distribution such as the exponential distribution and Poisson distribution.
Feature scaling	$X' = rac{X - X_{ m min}}{X_{ m max} - X_{ m min}}$	Feature scaling is used to bring all values into the range [0,1]. This is also called unity-based normalization. This can be generalized to restrict the range of values in the dataset between any arbitrary points a and b using $X'=a+\frac{\left(X-X_{\min}\right)\left(b-a\right)}{X_{\max}-X_{\min}}$.

Take home

The NN classifier:

- Prob: The training data are sufficiently distinct with each other. Insufficient robustness to noises.
- Sol: using k-nearest neighbor + max voting.

The KNN classifier:

- Prob: does not take the distance into the consideration of voting
- Sol: Weighting by the distance!
- Prob: Choosing the value of k, i.e., model selection
- Sol: split the labeled data into training set and validation set.
- Prob: How to prove the method is good in statistics.
- Sol: Holdout method/Cross-validation
- Prob: Scaling issues
- Sol: Normalization

Test Questions

- Q1: What is the classification? How to perform classification by human? And what is the simplest way?
- Q2: What problem of 1NN is addressed by kNN?
- Q3: How to (why) incorporate the distance into classical kNN? And what will be benefited from it?
- Q4: How to solve the scaling issue faced by KNN?
- Q5: How to evaluate the performance of a classifier?
- Q6: What is model selection? How to solve this issue?

Any other demerits?

Next Course

Q&A THANKS!