Criptografía

Profesor: Melvin Fernández Ch.

Video 9

fidÉlitas Virtual

Criptografía simétrica y asimétrica

Módulo: 3

Generalidades cifra asimétrica

Una clave se mantiene privada y la otra se hace pública.

 Dependiendo de la aplicación, el emisor usa su clave privada, la clave pública del receptor o ambas para realizar algún tipo de función criptográfica.

Confidencialidad en cifra asimétrica

$$C = E_B(M)$$

$$M = D_B(C) = D_B(E_B(M))$$

E_B y D_B son operaciones con inversos dentro del módulo de cifra del usuario B

fid**É**litas Virtual

Algoritmo Diffie - Hellman

- Primer algoritmo de clave pública que fue publicado:
 - "New Directions in Cryptography", IEEE Trans. Information Theory, 1976
- Su propósito es permitir a dos partes derivar una clave secreta de forma segura que pueda ser después usada para cifrar mensajes.
- El algoritmo se limita al intercambio de claves.
- Su seguridad depende de la dificultad de calcular logaritmos discretos.

Algoritmo Diffie - Hellman

fid**É**litas Virtual

Alice

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key Y_B in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime q and α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

Algoritmo RSA

- Uno de los primeros esquemas de clave pública desarrollado en 1977 por Ron Rivest, Adi Shamir y Len Adleman en el MIT.
 - "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems".
 - > Uno de los esquemas más aceptados e implementados.

• Cifrado de bloque en el que el texto plano y cifrado son enteros entre o y n - 1 para un n.

Algoritmo RSA

- La seguridad se basa en dos problemas matemáticos, para los que no existe un algoritmo eficiente:
 - Factorización de enteros (descomposición en factores primos)
 - > El problema RSA (revertir la operación de cifrado RSA)

• En general, se supone que RSA es seguro si n es suficientemente grande.

Comparación simétrico - asimétrico

TIPO DE CIFRA	VENTAJAS	DESVENTAJAS
SIMÉTRICA	 Alta velocidad o tasa de cifra MB/s Eficiente para su uso grupos reducidos (redes pequeñas) al necesitar una sola clave Posee una infraestructura sencilla Las claves pueden ser pequeñas, de tan solo unas centenas de bits 	 Es necesario compartir una clave por medios que pueden ser no seguros pues no permite un intercambio de clave Si se compromete la clave, se compromete toda la comunicación No permite autenticar a los usuarios pues una clave la pueden usar varios usuarios Elevado número de claves a recordar
ASIMÉTRICA	 Número de claves reducido, dos claves por usuario y sólo una secreta a recordar Seguridad computacional de la clave privada No es necesario transmitir la clave privada entre emisor y receptor Permite un intercambio de valor secreto de forma computacionalmente segura Permite autenticar a los usuarios 	 Baja velocidad o tasa de cifra KB/s La generación de claves requiere de un proceso diferente para cada algoritmo Las claves deben ser muy grandes Necesidad de una gran infraestructura de clave pública Necesidad de una tercera parte de confianza o Autoridad de Certificación

Gracias