4.Проста експонента

Розглянемо тенденцію виду: $y = ab^t$. Логарифмуемо це співвідношення:

$$ln y_t = ln a + t ln b$$

Отримали лінійну функцію відносно t. Параметри a і b розраховуємо так, як і у випадку лінійного тренду. Для спрощеного розрахунку інтервалу можна скористатися параметром k^* для лінійного тренду.

Тоді прогнозний інтервал матиме вигляд:

$$H.M.: ant ln(ln \hat{y}_{n+L} - S_y k^*),$$

$$B.M.: ant ln(ln \hat{y}_{n+L} + S_y k^*),$$

де
$$S_y = \sqrt{\frac{(\ln y_t - \ln \hat{y}_t)^2}{n-2}}$$

де $S_y = \sqrt{\frac{(\ln y_t - \ln \hat{y}_t)^2}{n-2}}$ 5. \mathcal{N} огарифмична парабола

Розглядається тенденція виду $y_t = a b^t c^{t^2}$. Логарифмуємо цей вираз: $ln y_t = ln a + t ln b + t^2 ln c$. Це квадратична функція відносно параметра t. Оцінку параметрів a,b,c і прогнозний інтервал знаходимо так, як для многочлена другого ступеня.

Прогнозний інтервал буде таким:

$$H.M.: ant ln(ln \hat{y}_{n+L} - S_{u}k^*),$$

$$B.M.: ant \ln(\ln \hat{y}_{n+L} - S_{\nu}k^*),$$

де k^* - табульовані значення для многочлена другого ступеня, а $S_y =$ $\sqrt{\frac{(\ln y_t - \ln \hat{y}_t)^2}{n - 3}}.$

6. Модифікована експонента

Тендиція має вигляд: $y_t = c - a b^t$. Вважаємо, ща параметр a > 0. Вираз зведемо до лінійного виду: $\ln\left(c-y_t\right) = \ln a + t \ln b$. Позначемо $z_t =$ $ln(c^* - y_t)$. Вважаємо, що $c = c^*$ - відоме, тобто, відома асимптота. Отримаємо такий вираз для прогнозного інтервалу:

$$H.M.: z_{n+L} - S_z k^*,$$

$$H.M.: z_{n+L} + S_z k^*,$$

де S_z - середньоквадратичне віжд
хилення від тренду $z_t = \ln a + t \ln b$. Тоді прогнозний інтервал для y_{n+L} має вигляд:

$$H.M.: c^* - ant \ln(z_{n+L} - S_z k^*),$$

$$B.M.: c^* - ant \ln(z_{n+L} + S_z k^*),$$

Якщо параметр c невідомий, то можна оцінити параметри модифікованної експоненти $y=c+a\,b^t$ методом трьох сум. Згідно з цим методом часовий ряд розбиваємо на три однакових відрізка і позначимо через $\sum_1 y_t, \sum_2 y_t, \sum_3 y_t$ суми рівнів кожного з відрізків, n-кількість рівнів у кожному з відрізків. Вікростовуючи алгоритм методу трьох сум отримаємо такі оцінки параметрів c, a i b:

$$b = \sqrt[n]{\frac{\sum_{3} y_{t} - \sum_{2} y_{t}}{\sum_{2} y_{t} - \sum_{1} y_{t}}}, \ a = (\sum_{2} y_{t} - \sum_{1} y_{t}) \frac{b - q}{(b^{n} - 1)^{2}},$$
$$c = \frac{1}{n} \left[\frac{\sum_{1} y_{t} \cdot \sum_{3} y_{t} - (\sum_{2} y_{t})^{2}}{\sum_{1} y_{t} + \sum_{3} y_{t} - 2 \sum_{2} y_{t}} \right].$$

Зауважимо, що метод трьох сум працює, якщо коливанняряду досить малі і результати не дуже чутливі до похибок. Тому перед оцінкою ряд необхідно згладити за допомогою ковзної середньої, якщо у ряді досить сильні коливання, або усунути досить великі викиди і замінити їх на усереднені.