Machine learning skills useful for climate applications

Organizers:

Salva Rühling Cachay (UC San Diego, sruhlingcachay@ucsd.edu) Lingwei Meng (Princeton University, lingweim@princeton.edu)

We will

understand the basics of machine learning and some key use cases for climate problems.

We will

predict daily SST pattern based on PyTorch, become familiar with general idea and process of coding.

We will

know how Neural Networks can be combined with Physics.

Agenda

•	Intro	5 min
---	-------	-------

- What is / why / when to use Machine learning?
 15 min
- Coding: Daily SST prediction with PyTorch.
 30 min
- Intro to Physical Informed Neural Network (PINN).

What is Machine learning?

Artificial Intelligence

NN: An analytical model of output y as a function of input x, containing some fitting parameters.

$$y = \sigma(w_4\sigma(w_1x_1 + w_2x_2 + w_3x_3 + b_1) + b_2)$$
, where $\sigma(z)$ is a nonlinear activation function

Why Machine learning?

What ML is good for:

Problems with poorly understood mechanisms — when the traditional approach fails.

Discovering insights within large amounts of data

What ML is **NOT** good at:

When you need explainability — the patterns learned by ML are typically uninterpretable by a human.

When the input data are bad or overly limited — important for data to be clean and ensure it represents what you want

Generalization to out-of-distribution data — (e.g. trained on present-day data to predict on data heavily affected by climate change)

Overview - Some ML applications

Magnetic control of tokamak plasmas through deep reinforcement learning

Received: 14 July 2021

Jonas Degrave¹³, Federico Felici^{2,330}, Jonas Buchli^{1,330}, Michael Neunert^{1,3}, Brenda

Coding: Daily SST prediction with PyTorch

- → Github: github.com/salvaRC/GCC2022-climate-machine-learning-workshop
- → Run it yourself on google colab

Intro to Physical Informed Neural Network (PINN)

governing equations

Option 2: Find u(x,t) with a NN empirically

GOAL: Find NN that minimizes the difference between groud truth and prediction (the loss function)

Loss function:

Data loss:

minimize
$$\frac{1}{N} \sum_{i=1}^{N} |u_i - u_{pred}(t_i, x_i)|^2$$

Problems of empirical learning

- NN will need lots of u training data to well approximate u(x,t).
- The learnt u(x,t) cannot be generalized to new t and x domains!

Can we use physical constraints to solve these problems?

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$$

Option 3: NN + (1) ICs + (2) BCs + (3) physics equation

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} \qquad f = \left[\frac{\partial u}{\partial t} - a \frac{\partial^2 u}{\partial x^2} \right] = \mathbf{0}$$

Equation loss:

minimize
$$\frac{1}{N_f} \sum_{k}^{N_f} \left| \frac{\partial u_{pred}^k}{\partial t} - a \frac{\partial^2 u_{pred}^k}{\partial x^2} \right|^2$$
 (3) Eqn

Cost function: (MSE: mean squared error)

$$MSE = MSE_u + MSE_f,$$

$$\frac{1}{N_u} \sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2,$$

$$\frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$$
Collocation points

Some Climate+Al communities, groups, institutes...

- <u>Climate Change Al</u> great community, social hours, conference workshops, summer school & more
- NOAA Center for Al
- NSF AI Institute on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES)
- Berkeley Al Climate Initiative & seminar
- <u>LEAP</u> (NSF Center at Columbia)
- Some groups at MIT: https://github.com/blutjens/awesome-MIT-ai-for-climate-change
- Community at the European AI research network ELLIS:
 https://ellis.eu/programs/machine-learning-for-earth-and-climate-sciences
- Ongoing <u>AI for Global Climate Cooperation</u> competition by Salesforce & Mila
- Strong AI focus at the digital twin initiatives at ECMWF and NVIDIA
- Weather/Climate teams also at Google, Microsoft, IBM ... & many start-ups in the area!
- Climate modeling team at the <u>Allen Institute for AI (AI2)</u> in Seattle!

Some Pointers – Papers

- <u>Tackling Climate Change with Machine Learning</u>, in ACM Computing Surveys
- <u>Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies</u>,
 in Nature Climate Change, 2021
- Shipping regulations lead to large reduction in cloud perturbations, in PNAS 2022
- Skilful precipitation nowcasting using deep generative models of radar, in Nature, 2021
- <u>Deep learning for multi-year ENSO forecasts</u>, in Nature, 2019
- <u>Deep learning and process understanding for data-driven Earth system science</u>, in Nature perspectives, 2019