6.1100 Spring 2024 Miniquiz #6

Please submit your answers on Gradescope by April 11th, 2024, 11:59pm.

Name:

Email:

Note: This miniquiz covers loop optimizations and parallelization. We will cover register allocation in a later miniquiz.

1. Loop Optimizations

(For part a. and b.)

In the following control flow graph, **A** is the entry node and **I** is the exit node.

a. D	raw the dom i	inator tree of this control flow graph.
ЬТ	hara ara two	loops in this control flow graph. Fill in the information about each loop
	ne table belov	
Loop he	ader	Nodes in loop

(For part c.-f.)

Consider the following program.

- c. Which line of code is **loop-invariant**? (Give the line number)
- d. Which variable is the base induction variable?
- e. Which variable is a derived induction variable?
- f. Rewrite the program after **loop invariant code motion** and **induction variable optimizations** mentioned in class.

2. Parallelization

Consider the following loops, where A[i, j] refers to the element in the i-th row and j-th column in a two-dimensional array.

```
for (i = 0; i < n; i += 1) {
    for (j = 0; j < i; j += 1) {
        A[i, j] = A[i, j - 2] + 3;
    }
}</pre>
```

a. Assume n = 4. In the grid below, circle the **iteration space** for the loops and draw the **distance vectors**. You may ignore out-of-range cases.

- b. What is the **distance vector** for these loops?
- c. Which of the loops (inner and/or outer) can be parallelized into a for-all loop?