第七周作业

1.设T: $V \longrightarrow V$ 是一个有限维复空间上幂零变换、设 $\overline{v} + \overline{o} \in V$, $C_{\overline{v}}$ 是由 \overline{v} , $T(\overline{v})$, ..., $T'(\overline{v})$, ... 生成的循环子空间,证明:

Cī是极大循环子空间⇔ T ≠ ImT

(提示: 若 $C_{\vec{v}} \in C_{\vec{w}}$, 设 $\vec{v} = c_0 \vec{w} + c_1 T(\vec{w}) + \cdots + c_{\ell-1} T(\vec{w})$ (*) $T^{\ell}(\vec{w}) = 0$. 应用 $T^{\ell-1}$ 作用在(*), 得 $C_0 = 0$. $\Rightarrow \vec{v} \in I_m T$.)

- 2. $ix A \in M_n(\mathbb{C}),$
 - (1) 证明A与AT相似.
 - (2) 设 $J = \begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}_{n \times n}$ 求可逐阵P, 使得 $P^T J P = J^T$.

(提示: A与AT有相同的Jordan标准形⇒A与AT相似)

- 4. 设 $A \in M_n(C)$, r(A) = 1. 证明。 $A^2 = (trA) \cdot A$.

 (提示: 由第六周作业, $A \sim \begin{pmatrix} trA & 0 \\ 0 & 1 \end{pmatrix}$.
- 5. 设了是5阶 Tordan 块且主对角线上元素等于0, 求了的 Tordan 标准形。

6. 求下列A自了Jordan标准形了,并求可选阵P,使PAP=J.

(1)
$$A = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}$$
 (2) $A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$.

- 7. $i \frac{1}{2} A \in M_6(\mathbb{C})$, $|\lambda I_n A| = (\lambda + 2)^4 (\lambda 2)^2$, 则 $A \in \mathcal{A}$ f $\lambda \in \mathcal{A}$ f
- 8.设A∈M₃(C),且A的任意特征值入满足1入1<1.

IIIA: lim Am = O3x3.

(提示: 只需证明一个 Jovdan 块精形, $J = \begin{pmatrix} \lambda_0 & 1 & 0 \\ 0 & \lambda_0 & 1 \end{pmatrix} = \lambda_0 I_3 + N$ $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $N^3 = 0$, $J^m = (\lambda_0 I_3 + N)^m$, 按二项式定理展开)