

Linear Algebra I

Chapter 3. General Vector Spaces

Boqing Xue

WELCOME! 2023 Fall

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Definition of Vector Space

Definition. Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let V be an arbitrary nonempty set of elements on which addition and scalar multiplication are defined, i.e.,

- \diamond for any $\mathbf{u}, \mathbf{v} \in V$, it satisfies that $\mathbf{u} + \mathbf{v} \in V$;
- \diamond for any $\mathbf{u} \in V$ and any scalar $k \in \mathbb{F}$, it satisfies that $k\mathbf{u} \in V$.

If the following axioms are satisfied, then V is a called an \mathbb{F} -vector space, and elements in V are called vectors.

- (A1) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ $(\forall \mathbf{u}, \mathbf{v} \in V)$.
- (A2) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \quad (\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V).$
- (A3) $\exists \mathbf{0} \in V$, s.t. $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u}$ $(\forall \mathbf{u} \in V)$.
- (A4) $\forall \mathbf{u} \in V, \exists \mathbf{v} \in V, \text{ s.t. } \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} = \mathbf{0}.$
- (A5) $1\mathbf{u} = \mathbf{u} \quad (\forall \mathbf{u} \in V).$
- (A6) $(kh)\mathbf{u} = k(h\mathbf{u})$ $(\forall \mathbf{u} \in V \text{ and } k, h \in \mathbb{F}).$
- (A7) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ $(\forall \mathbf{u}, \mathbf{v} \in V \text{ and } k \in \mathbb{F}).$
- (A8) $(k+h)\mathbf{u} = k\mathbf{u} + h\mathbf{u}$ $(\forall \mathbf{u} \in V \text{ and } k, h \in \mathbb{F}).$

Remark: The element $\mathbf{0}$ in (3) is called zero vector. The vector \mathbf{v} in (4) is called negative of \mathbf{u} and usually denoted by $-\mathbf{u}$.

Remark: When the scalars are real/complex, we call V a real/complex vector space.

Examples of Vector Spaces

Example. The following are all examples of real vector spaces.

- (1) $V = \{0\}; 0 + 0 = 0; k0 = 0.$
- (2) \mathbb{R}^n ; vector addition and scalar multiplication.
- (3) The set of all infinite sequence $\mathbb{R}^{\mathbb{N}} = \{(u_1, u_2, \dots, u_n, \dots)\};$ componentwise addition and scalar multiplication.
- (4) The set $\mathbb{R}^{(a,b)}$ of all real-valued functions on (a,b); function addition and scalar multiplication.
- (5) The set P_n of all polynomials with real coefficients and of degree $\leq n$. polynomial addition and scalar multiplication.
- (6) $M_{m \times n}$; matrix addition and scalar multiplication.
- (7) The set of all upper triangular square matrices of order n; matrix addition and scalar multiplication.

Example. (i) \mathbb{C}^n is a \mathbb{C} -vector space; (ii) \mathbb{C}^n is a \mathbb{R} -vector space.

An Unusual Example

Example. Let V be the set \mathbb{R}^+ of all positive real numbers. Define addition and scalar multiplication as

$$u \oplus v = uv, \qquad k \odot u = u^k.$$

Then V forms a real vector space with addition \oplus and scalar multiplication \odot .

Basic Properties of Vectors

Theorem. Let V be a \mathbb{F} -vector space. Let $\mathbf{u} \in V$ and $k \in \mathbb{F}$. Then the following statements hold.

- $\diamond 0\mathbf{u} = \mathbf{0}$;
- $\diamond (-1)\mathbf{u} = -\mathbf{u};$
- $\diamond k\mathbf{0} = \mathbf{0};$
- \diamond If $k\mathbf{u} = \mathbf{0}$, then either k = 0 or $\mathbf{u} = \mathbf{0}$.

Proof:

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Intuition of a Subspace

Example. In \mathbb{R}^3 , lines or planes through the origin are also "linear structures" containing $\{0\}$.

Definition. A non-empty subset W of a vector space V is called a subspace of V, if W is itself a vector space under the same addition and scalar multiplication defined on V.

Definition of Subspace

Question: What kind of properties of a vector space may a subset $\ensuremath{\mathcal{W}}$ not satisfy?

- \diamond for any $\mathbf{u}, \mathbf{v} \in W$, it satisfies that $\mathbf{u} + \mathbf{v} \in W$.
- \diamond for any $\mathbf{u} \in W$ and any scalar $k \in \mathbb{F}$, it satisfies that $k\mathbf{u} \in W$.
- (A1) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \quad (\forall \mathbf{u}, \mathbf{v} \in W).$
- (A2) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \quad (\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in W).$
- (A3) $\exists \mathbf{0} \in W$, s.t. $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} \quad (\forall \mathbf{u} \in W)$.
- (A4) $\forall \mathbf{u} \in W$, $\exists \mathbf{v} \in W$, s.t. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} = \mathbf{0}$.
- (A5) $1\mathbf{u} = \mathbf{u} \quad (\forall \mathbf{u} \in W).$
- (A6) $(kh)\mathbf{u} = k(h\mathbf{u}) \quad (\forall \mathbf{u} \in W \text{ and } k, h \in \mathbb{F}).$
- (A7) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ $(\forall \mathbf{u}, \mathbf{v} \in W \text{ and } k \in \mathbb{F}).$
- (A8) $(k+h)\mathbf{u} = k\mathbf{u} + h\mathbf{u}$ $(\forall \mathbf{u} \in W \text{ and } k, h \in \mathbb{F}).$

Definition of Subspace

Question: What kind of properties of a vector space may a subset not satisfy?

Theorem. Let V be a \mathbb{F} -vector space and $\emptyset \neq W \subseteq V$. Then W is a subspace if and only if the following conditions hold.

- (1) For all $\mathbf{u}, \mathbf{v} \in W$, $\mathbf{u} + \mathbf{v} \in W$.
- (2) For all $k \in \mathbb{F}$ and $\mathbf{u} \in W$, $k\mathbf{u} \in W$.

Remark: (1)+(2) \iff For all $\mathbf{u}, \mathbf{v} \in W$ and $k, \ell \in \mathbb{F}$, one has $k\mathbf{u} + \ell\mathbf{v} \in W$.

Corollary. Let W be a vector space. If V is a subspace of W, and U is a subspace of V, then U is also a subspace of W.

Examples of Subspaces

Example. (1) For any vector space V, the subset $W = \{0\}$ is a subspace of V, which is called zero subspace.

(2) For any vector space V, the subset V is also a subspace of V.

The above two are called the trivial subspaces of V.

Example. In \mathbb{R}^3 , lines or planes through the origin are also "linear structures" containing $\{\mathbf{0}\}$.

Remark: The line 3x + 4y = 1 does not form a subspace in \mathbb{R}^2 , since it does not contain the origin.

Examples of Subspaces

Example. The following are some examples of subspaces.

- (1) The set $C(-\infty, +\infty)$ of all continuous functions on $(-\infty, +\infty)$ is a subspace of the vector space $F(-\infty, +\infty)$ of all functions on $(-\infty, +\infty)$.
- (2) The set $C^1(-\infty,\infty)$ of all functions on $(-\infty,+\infty)$ with continuous derivative is a subspace of $C(-\infty,+\infty)$.
- (3) The set $C^{\infty}(-\infty, +\infty)$ of all functions on $(-\infty, +\infty)$ which have derivatives of all order is a subspace of $C^1(-\infty, +\infty)$.
- (4) The set P_{∞} of all polynomials if a subspace of $C(-\infty, +\infty)$.
- (5) The set P_n of all polynomials of degree $\leq n$ is a subspace of P_{∞} .

Question: Is the set of all polynomials of degree n a subspace of P_{∞} ?

Example. The following are some examples of subspaces.

- (6) The set U of all symmetric matrix of order n is a subspace of M_n .
- (7) The set V of all $n \times n$ upper triangular matrices is a subspace of M_n .
- (8) The set of all diagonal matrix of order n is a subspace of either U or V.

Building Subspaces

Theorem. If U and W are subspaces of V, then

- (1) $U \cap W$ is a subspace of V;
- (2) U + W is a subspace of V.

Here we define

$$U+W\stackrel{\triangle}{=} \{\mathbf{u}+\mathbf{w}: \mathbf{u}\in U, \mathbf{w}\in W\}.$$

Proof:

Remark: The set $U \cup W$ may not be a subspace!

Examples

Example. Let $V = \mathbb{R}^2$. Let U be the line y = x, and W be the line y = 2x. Find $U \cap W$, U + W and $U \cup W$.

Linear Combination

Definition. Let V be an \mathbb{F} -vector space and let $\mathbf{v} \in V$. A vector $\mathbf{v} \in V$ is said to be a linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r \in V$, if \mathbf{v} can be expressed as

$$\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots k_r \mathbf{v}_r,$$

where $k_i \in \mathbb{F}$ (called coefficients).

Example. In the complex vector space \mathbb{C}^3 , let

$$\mathbf{u} = (i, 2, -1), \quad \mathbf{v} = (0, -i, 2).$$

Are the following vectors a linear combination of \boldsymbol{u} and $\boldsymbol{v}?$

(1)
$$\mathbf{w} = (-1, i, 2 - i)$$
; (2) $\mathbf{w}' = (2, 2 + i, -3)$.

Proof:

Spanning a Subspace

Theorem. Let $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$ be a non-empty set of vectors in a vector space V. Then

- (1) The set W of all linear combinations of $\mathbf{w}_1, \ldots, \mathbf{w}_r$ is a subspace of V.
- (2) This set W is the "smallest" subspace of V that contains $\mathbf{w}_1, \dots, \mathbf{w}_r$, i.e., for any subspace U of V satisfying $\mathbf{w}_1, \dots, \mathbf{w}_r \in U$, one has $W \subseteq U$.

Proof:

Definition. The subspace W in above theorem is called the span of S, and denoted by $W \stackrel{\triangle}{=} \operatorname{span}(S) = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_r\}.$

We also say that the vectors in S span W.

Remark: If we are only interested in information involving $\mathbf{w}_1, \dots, \mathbf{w}_r \in V$, it is sufficient to consider span $\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_r\}$ instead of the whole V.

Examples

Example. The standard unit vectors

$$\begin{aligned} & \mathbf{e}_1 = \{1,0,\dots,0\}, \ \mathbf{e}_2 = \{0,1,\dots,0\}, \ \dots, \ \mathbf{e}_{\textit{n}} = \{0,\dots,0,1\} \\ & \text{span } \mathbb{R}^{\textit{n}}. \end{aligned}$$

Example. See span($\{v\}$) and span $\{v_1, v_2\}$ in the figure.

Examples

Example. Show that the matrices

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right], \quad \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right], \quad \left[\begin{array}{cc} 2 & 1 \\ 0 & 3 \end{array}\right]$$

span the real vector space \ensuremath{V} composed of all upper triangular square matrices of order 2.

Proof:

Relations between Subspaces

Theorem. Let
$$S_1 = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$$
 and $S_2 = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s\}$ be nonempty sets of vectors in V . Then

$$\mathsf{span}(S_1)\subseteq\mathsf{span}(S_2)$$

if and only if each vector in S_1 is a linear combination by vectors in S_2 .

Example.

$$\mathsf{span}\bigg(\big\{(1,0),(1,2),(-1,1)\big\}\bigg)\subseteq\mathsf{span}\bigg(\big\{(1,1),\,(1,-1)\big\}\bigg).$$

Relations between Subspaces

Theorem. Let
$$U = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r\}$$
 and $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s\}$ be subspaces of V . Then $U + W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r, \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s\}$.

Proof:

Question*: How to find $U \cap W$?

Example.

$$\begin{split} \mathsf{span}\big(\{(1,0,0),\,(0,1,0)\}\big) + \mathsf{span}\big((0,0,1),\,(1,1,0)\big) &= \mathbb{R}^3 \\ &= \mathsf{span}\big(\{(1,0,0),\,(0,1,0),\,(0,0,1),\,(1,1,0)\big). \end{split}$$

Solution Spaces of Homogeneous Systems

Theorem. Let $A \in M_{m \times n}(\mathbb{F})$. The solution set of a homogeneous linear system $A\mathbf{x} = \mathbf{0}$ in n unknowns is a subspace of \mathbb{F}^n .

Definition. For $A \in M_{m \times n}$, the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$ is called the **null space** of A. We denote it by Null(A).

Example. Try to investigate the solutions space of the following system.

$$\begin{cases} x & -2y & +3z = 0 \\ 2x & -4y & +6z = 0 \\ 3x & -6y & +9z = 0 \end{cases}$$

Solution:

Row and Column Spaces of a Matrix

Definition. Let $A \in M_{m \times n}(\mathbb{F})$. Suppose that

$$A = [a_{ij}]_{m \times n} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_m \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}.$$

The subspace span $\{\mathbf{r}_1, \dots, \mathbf{r}_m\}$ of \mathbb{F}^n is called the row space of A. The subspace span $\{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ of \mathbb{F}^m is called the column space of A.

Notations (only in this class):

$$Row(A) := span\{\mathbf{r}_1, \dots, \mathbf{r}_m\}, \quad Col(A) := span\{\mathbf{c}_1, \dots, \mathbf{c}_n\}.$$

Theorem. Let $A \in M_{m \times n}$. A system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $\mathbf{b} \in \text{Col}(A)$.

Remark: Let $T_A : \mathbb{F}^n \to \mathbb{F}^m$ be the matrix transformation with standard matrix $A \in M_{m \times n}(\mathbb{F})$. Then $\{T_A(\mathbf{x}) : \mathbf{x} \in \mathbb{F}^n\} = \mathsf{Col}(A)$.

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Definition of Linear Independence

Definition. Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ be a non-empty set in a vector space V.

♦ If the equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\cdots k_r\mathbf{v}_r=\mathbf{0}$$

has only the trivial solution $k_i = 0$ $(1 \le i \le r)$, then the set S (or these vectors) is said to be linearly independent.

 \diamond If the equation has non-trivial solutions, then S (or these vectors) is said to be linearly dependent.

Example. Determine whether the vectors

$$\mathbf{v}_1 = (1, -2, 3), \quad \mathbf{v}_2 = (5, 6, -1), \quad \mathbf{v}_3 = (3, 2, 1)$$

are linearly independent or linearly dependent in the real vector space \mathbb{R}^3 .

Solution:

Remark: $(\mathbf{v}_1 \times \mathbf{v}_2) \cdot \mathbf{v}_3 = 0$; they lie in one plane.

Investigation

Example. In P_{∞} , which of the following sets are linearly independent?

- (a) $S = \{0\}$.
- (b) $S = \{1 + x\}.$
- (c) $S = \{x, x^2\}.$
- (d) $S = \{2 x, 4 2x\}.$
- (e) $S = \{0, x, 2 x^2, 4 + x^3, 5 + x^4\}.$

Linear Dependence and Linear Combination

Proposition. (1) $S = \{0, v_2, \dots, v_r\}$ is linearly dependent.

- (2) $S = \{ \mathbf{v} \}$ is linearly independent if and only if $\mathbf{v} \neq \mathbf{0}$.
- (3) $S = \{\mathbf{u}, \mathbf{v}\}$ is linearly independent if and only if neither vector is a scalar multiple of the other.

Example.

- (1) For $\mathbb{F} = \mathbb{C}$ and $V = \mathbb{C}$, the vectors 1 and i are linearly dependent.
- (2) For $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{C}$, the vectors 1 and i are linearly independent.

Theorem. Let S be a set that contains more than 2 vectors. Then S is linearly dependent if and only if at least one vector in S is expressible as a linear combination of other vectors in S.

Proof:

Examples

Example. Try to express one of the following vectors as the linear combination of the other two.

$$\mathbf{v}_1 = (1, -2, 3), \quad \mathbf{v}_2 = (5, 6, -1), \quad \mathbf{v}_3 = (3, 2, 1).$$

Solution:

Examples

Example. Let

$$p_0(x) = 4$$
, $p_1(x) = 1 + x$, $p_2(x) = 5 + 3x - 2x^2$, $p_3(x) = 1 + 3x - x^2$. be polynomials in P_2 .

- (1) Are p_1, p_2, p_3 linearly independent or not?
- (2) Are p_0, p_1, p_2, p_3 linearly independent or not?

Solution:

More Examples

Example. Suppose that the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Prove that the vectors

$$\mathbf{x} = \mathbf{u}, \quad \mathbf{y} = \mathbf{u} + \mathbf{v}, \quad \mathbf{z} = \mathbf{u} + \mathbf{v} + \mathbf{w}$$

are also linearly independent.

Proof:

More Examples

Example. Let $r \in \mathbb{N}$. Prove that the functions $\sin x, \sin 2x, \ldots, \sin rx$ are linearly independent functions in $F(-\infty, +\infty)$. Proof:

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Basis for a Vector Space

Definition. Let V be a vector space and S be a finite set of vectors in V. We call S a basis for V if the following two conditions hold.

- (1) S spans V.
- (2) *S* is linearly independent.

Example. The standard basis for \mathbb{R}^n is $\{e_1, e_2, \dots, e_n\}$.

The standard basis for \mathbb{R}^3 is $\{i, j, k\}$.

The following vectors also form bases for \mathbb{R}^2 or \mathbb{R}^3 , respectively.

For example, the vectors (1,1,2), (1,0,2), and (2,1,3) form a basis for \mathbb{R}^3 .

Basis of a Vector Space

Example. Show that the following vectors form two bases for P_n , the real vector space of polynomials with real coefficients and of degree $\leq n$.

(A)
$$p_0(x) = 1$$
, $p_1(x) = x$, $p_2(x) = x^2$, ..., $p_n(x) = x^n$, it is called standard basis for P_n .

(B)
$$q_0(x) = 1$$
, $q_1(x) = x + c$, $q_2(x) = (x + c)^2$, ..., $q_n(x) = (x + c)^n$, where c is a given non-zero scalar.

Proof:

Example. The standard basis for $M_{m \times n}$ are the mn different matrices whose entries are zero except for a single entry of 1.

Row Operations and Spaces of a Matrix

Theorem.

- (1) Elementary row operations do not change the null space of a matrix.
- (2) Elementary row operations do not change the row space of a matrix.
- (3) Elementary row operations do not change the dependence relationships among the column vectors.

Explanation:

- Recall: $span(S_1) \subseteq span(S_2)$ if and only if each vector in S_1 is a linear combination by vectors in S_2 .
- Remark: Suppose that c_1, \ldots, c_n becomes c'_1, \ldots, c'_n by row operation.

```
"Do not change dependence relationships" means:

if k_1\mathbf{c}_1 + \dots + k_n\mathbf{c}_n = 0 for some certain scalars k_1.
```

```
if k_1\mathbf{c}_1 + \ldots + k_n\mathbf{c}_n = 0 for some certain scalars k_1, \ldots, k_n, then we also have k_1\mathbf{c}_1' + \ldots + k_n\mathbf{c}_n' = 0.
```

Dependency equations does not change!

Find These Spaces

• Key to find theses spaces of a matrix: Echelon Form.

Example. Finding a basis for the null/row/column space of the matrix

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}.$$

Solution:

Problem*: To conclude the main steps of finding a basis for the column space.

Theorem. Suppose that a matrix A has row echelon form R.

- \diamond The row vectors with the leading 1's in R form a basis for Row(A) = Row(R).
- \diamond The column vectors with the leading 1's in R form a basis for Col(R); the corresponding column vectors of A form a basis for Col(A).

More Examples

Example. (1) Find a subset of vectors

$$\textbf{v}_1 = (1,2,0,2), \ \textbf{v}_2 = (3,6,0,6), \ \textbf{v}_3 = (-2,-5,5,0),$$

$$\mathbf{v}_4 = (0, -2, 10, 8), \ \mathbf{v}_5 = (2, 4, 0, 4), \ \mathbf{v}_6 = (0, -3, 15, 18)$$
 that forms a basis for the space $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_6\}$.

(2) Express each vector as a linear combination of these basis vectors.

Solution:

Problem*: To summary the main steps of solving the above example.

Unique Expression

Theorem. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for the \mathbb{F} -vector space V. Then every $\mathbf{v} \in V$ can be expressed uniquely in the form

$$\mathbf{v}=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n,$$

where $c_1, c_2, \ldots, c_n \in \mathbb{F}$.

Proof:

Coordinates Relative to a Basis

Definition. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for V and

$$\mathbf{v}=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n.$$

is the expression of $\mathbf{v} \in V$. Then the coordinate vector of \mathbf{v} relative to S, and the coordinate matrix of \mathbf{v} relative to S, are defined and denoted by

$$(\mathbf{v})_S = (c_1, c_2, \dots, c_n), \qquad [\mathbf{v}]_S = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix},$$

respectively.

$$[k\mathbf{v} + \ell\mathbf{w}]_S = k[\mathbf{v}]_S + \ell[\mathbf{w}]_S.$$

$$\{\mathbf{v}_1, \dots, \mathbf{v}_r\} \text{ is independent } \iff \{[\mathbf{v}_1]_S, \dots, [\mathbf{v}_r]_S\} \text{ is independent.}$$

Examples

Example. Find the coordinate vector of $\mathbf{v} = (x, y, z)$ in \mathbb{R}^3 relative to the standard basis $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$. Solution:

Example. A basis for \mathbb{R}^3 is $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, where

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = (1, 1, 0), \quad \mathbf{v}_3 = (1, 0, 0).$$

- (1) Find the coordinate vector of $\mathbf{v} = (5, -1, 9)$ relative to S.
- (2) Find the vector $\mathbf{w} \in \mathbb{R}^3$ whose coordinates relative to S is $(\mathbf{w})_S = (-1,3,2)$.

Examples

Example. (1) Find the coordinate vector of

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

relative to the standard basis in P_n .

(2) Find the coordinate vector of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ relative to the standard basis in $M_{2\times 2}$.

More Examples

Example. Suppose that the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent. Prove that the vectors

$$\mathbf{x} = \mathbf{u}, \quad \mathbf{y} = \mathbf{u} + \mathbf{v}, \quad \mathbf{z} = \mathbf{u} + \mathbf{v} + \mathbf{w}$$

are also linearly independent.

Proof:

More Examples

Example. (1) Find a subset of vectors

$$p_1(x) = 1 + 2x + 2x^3, \ p_2(x) = 3 + 6x + 6x^3,$$

$$p_3(x) = -2 - 5x + 5x^2, \ p_4(x) = -2x + 10x^2 + 8x^3,$$

$$p_5(x) = 2 + 4x + 4x^3, \ p_6(x) = -3x + 15x^2 + 18x^3$$

that forms a basis for the subspace $\operatorname{\mathsf{Span}}\{p_1,\ldots,p_6\}$ in P_3 .

(2) Express each vector as a linear combination of these basis vectors.

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Definition of Dimension

- A vector space that cannot be spanned by finitely many vectors is said to be infinite-dimensional, whereas those that can are said to be finite-dimensional.
- \circ Example: The space P_{∞} of all polynomials is infinite-dimensional. Why?

Definition. The dimension of a finite-dimensional vector space V, denoted by $\dim(V)$, is defined to be the number of vectors in a basis for V. In particular, we define $\dim(\{0\}) = 0$.

Theorem. All bases for a finite-dimensional vector space have the same number of vectors.

Proof:

Examples

Example. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is a linearly independent set in a vector space V, then $\dim(\text{span}(S)) = r$.

Example. (i) $\mathbb C$ is a complex vector space of dimension 1. (ii) $\mathbb C$ is a real vector space of dimension 2.

Example. For the following real vector spaces, we have $\dim(\mathbb{R}^n) = n$, $\dim(P_n) = n+1$, $\dim(M_{m \times n}) = mn$.

Example. Find the dimension of the space of all $n \times n$ real (1) symmetric matrices; (2)skew-symmetric matrices. Solution:

Examples

Example. Find a basis for and the dimension of the solution space of the linear system (recalling: (-3r - 4s - 2t, r, -2s, s, t, 0))

$$\begin{cases} x_1 + 3x_2 - 2x_3 + 2x_5 = 0 \\ 2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 0 \\ 5x_3 + 10x_4 + 15x_6 = 0 \\ 2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 0 \end{cases}$$

Plus/Minus Theorem

Theorem. (1) Let S be a linearly independent set in V. If $\mathbf{v} \in V$ but $\mathbf{v} \notin \text{span}(S)$, then the set $S \cup \{\mathbf{v}\}$ is still linearly independent. (2) Suppose that \mathbf{v} is a vector in S that is expressible as a linear combination of other vectors in S. Then $\text{span}(S) = \text{span}(S \setminus \{v\})$.

Example. Show that

$$p_1(x) = 1 - x^2$$
, $p_2(x) = 2 - x^2$, $p_3(x) = x^3$

are linearly independent by applying the above theorem.

Proof:

Some Fundamental Theorems

Theorem. Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly independent.

Theorem. Let S be a finite set of vectors in a finite-dimensional space V. \diamond If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.

 \diamond If S is a linearly independently set that is not already a basis for V, then S can be enlarged to a basis for V by inserting appropriate vectors into S.

Theorem. If W is a subspace of a finite-dimensional vector space V, then $\phi \dim(W) \leq \dim(V)$.

 $\diamond W = V$ if and only if $\dim(W) = \dim(V)$.

An Inclusion-exclusion Type Equality

Inclusion-exclusion principle for two finite sets S and T:

$$|S \cup T| = |S| + |T| - |S \cap T|.$$

Theorem. Let W be a finite-dimensional vector space with U,V two subspaces. Then

$$\dim(U+V)=\dim(U)+\dim(V)-\dim(U\cap V).$$

Idea:

Recalling

Definition. For

$$A = [a_{ij}]_{m \times n} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_m \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix},$$

define

$$\begin{aligned} & \text{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\} \subseteq \mathbb{R}^n, \\ & \text{Row}(A) = \text{span}\{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m\} \subseteq \mathbb{R}^n, \\ & \text{Col}(A) = \text{span}\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\} \subseteq \mathbb{R}^m. \end{aligned}$$

Theorem.

- (1) Elementary row operations do not change the null space of a matrix.
- (2) Elementary row operations do not change the row space of a matrix.
- (3) Elementary row operations do not change the dependence relationships among the column vectors.

Recalling

Definition. Suppose that an echelon form of a matrix A has r non-zero rows. Then we say that A has rank r, and denote $\operatorname{rank}(A) = r$.

Theorem. For any matrix $A \in M_{m \times n}$, there is an integer $r \leq \min\{m,n\}$, an invertible matrix $P \in M_m$ and an invertible matrix $Q \in M_n$ such that

$$PAQ = \left[\begin{array}{cc} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right]$$

Rank of a Matrix

Theorem. For any matrix A, we have

$$rank(A) = dim(Row(A)) = dim(Col(A)).$$

Remark: (1) For $A \in M_{m \times n}$, it satisfies that $rank(A) \leq min\{m, n\}$.

- (2) For any matrix A, one has $rank(A^T) = rank(A)$.
- (3) Elementary row or column operations do not change the rank of a matrix.

Corollary. Let $A \in M_{m \times n}$. Let $P \in M_m$ and $Q \in M_n$ be invertible matrices. Then $\operatorname{rank}(PA) = \operatorname{rank}(A) = \operatorname{rank}(AQ)$.

Corollary. Partitioned elementary row or column operations do not change the rank of a matrix.

Rank and Minor*

• A minor of A is the determinant of a square submatrix of A.

Theorem. Let $A \in M_{m \times n}$. Then rank(A) = r if and only if:

- \circ some $r \times r$ minor of A does not vanish;
- \circ and every $(r+1) \times (r+1)$ minor of A does vanish.

Some Properties of Rank*

Property. For matrices A, B, C with suitable sizes, we have

$$\diamond \max\{ \operatorname{rank}(A), \operatorname{rank}(B) \} \leq \operatorname{rank} \left(\left[\begin{array}{cc} A & B \end{array} \right] \right) \leq \operatorname{rank}(A) + \operatorname{rank}(B);$$

$$\diamond \operatorname{rank} \left(\left[\begin{array}{cc} A & C \\ 0 & B \end{array} \right] \right) \geq \operatorname{rank} \left(\left[\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right] \right) = \operatorname{rank}(A) + \operatorname{rank}(B);$$

Explanation:

Remark: Col([A B]) = Col(A) + Col(B).

Dimension Theorem for Matrices

Definition. The dimension of the null space of A is called the nullity of A denoted by nullity(A).

Theorem. For $A \in M_{m \times n}$, it satisfies that $\operatorname{rank}(A) + \operatorname{nullity}(A) = n$.

Explanation:

Rank = number of leading variables; Nullity = number of free variables.

Corollary. For $A \in M_n$, it is invertible if and only if rank(A) = n, if and only if nullity(A) = 0.

Some Properties of Rank*

Theorem. Let A,B be matrix with suitable sizes. Let λ,μ be scalars. The following inequalities hold.

- $\diamond \operatorname{rank}(\lambda A + \mu B) \leq \operatorname{rank}(A) + \operatorname{rank}(B).$
- $\Rightarrow \operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}.$ $\Rightarrow \operatorname{rank}(AB) \ge \operatorname{rank}(A) + \operatorname{rank}(B) k \text{ for any } A \in M_{-N}$
- $\diamond \operatorname{rank}(AB) \ge \operatorname{rank}(A) + \operatorname{rank}(B) k$ for any $A \in M_{m \times k}$, $B \in M_{k \times n}$. Proof:

Lemma: $Null(AB) \supseteq Null(B)$, $Col(AB) \subseteq Col(A)$.

Methods: (1) Use null, row and column spaces. (2) Use (partitioned) elementary operations.

Remark: $AB = 0 \iff Col(B) \subseteq Null(A)$.

Problem*: Try to prove the following inequalities.

- $(1)\; {\sf rank}(AB-CD) \leq {\sf rank}(A-C) + {\sf rank}(B-D).$
- (2) $rank(ABC) \ge rank(AB) + rank(BC) rank(B)$.

Orthogonal Complement in \mathbb{R}^n

Definition. Let W be a subspace of \mathbb{R}^n . The orthogonal complement of W is defined to be

$$W^{\perp} = \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} \cdot \mathbf{w} = 0 \, (\forall \mathbf{w} \in W) \}.$$

Theorem. Let W be any subspace of \mathbb{R}^n , then

- $\diamond W^{\perp}$ is a subspace of \mathbb{R}^n ;
- $\diamond W \cap W^{\perp} = \{\mathbf{0}\};$
- $\diamond V = W + W^{\perp};$
- $\diamond (W^{\perp})^{\perp} = W.$

Proof:

Theorem. Let $A \in M_{m \times n}(\mathbb{R})$. Then we have:

- $\diamond \operatorname{Null}(A)^{\perp} = \operatorname{Row}(A).$
- $\diamond \text{Null}(A^T)^{\perp} = Col(A).$

Remark: Here we view both Null(A) and Row(A) as subspaces of \mathbb{R}^n .

Equivalence Theorem (Continued)

Theorem. If $A \in M_n(\mathbb{R})$, then the following statements are equivalent.

- (a) A is invertible.
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A can be expressed as a product of elementary matrices.
- (e) Ax = b is consistent for every $n \times 1$ matrix **b**.
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (I) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) rank(A) = n.
- (o) $\operatorname{nullity}(A) = 0$.
- (p) Null(A) $^{\perp} = \mathbb{R}^n$.
- (q) $Row(A)^{\perp} = \{0\}.$

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Recalling

Definition. Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for V and

$$\mathbf{v} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_n\mathbf{u}_n.$$

is the expression of $\mathbf{v} \in V$. Then the coordinate vector of \mathbf{v} relative to S, and the coordinate matrix of \mathbf{v} relative to S, are defined and denoted by

$$(\mathbf{v})_S = (c_1, c_2, \dots, c_n), \qquad [\mathbf{v}]_S = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix},$$

respectively.

$$[k\mathbf{v} + \ell\mathbf{w}]_S = k[\mathbf{v}]_S + \ell[\mathbf{w}]_S.$$

 $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is independent $\iff \{[\mathbf{v}_1]_S, \dots, [\mathbf{v}_r]_S\}$ is independent.

Transition Matrix

Physics: Same motion, two different observers. *Motion is relative*. Mathematics: Same vector, two different bases.

Question: Let
$$B=\{\mathbf{v}_1,\mathbf{v}_2\}$$
 and $B'=\{\mathbf{v}_1',\mathbf{v}_2'\}$ be two bases of \mathbb{R}^2 . Suppose that
$$\begin{aligned} \mathbf{v}_1'&=a\mathbf{v}_1+b\mathbf{v}_2,\\ \mathbf{v}_2'&=c\mathbf{v}_1+d\mathbf{v}_2. \end{aligned}$$

What is the relationship between $[\mathbf{u}]_B$ and $[\mathbf{u}]_{B'}$?

Definition. Let $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$ be two bases of V. The transition matrix from B' to B is defined as

$$P_{B \leftarrow B'} = \left[\begin{array}{c|ccc} [\mathbf{v}_1']_B & [\mathbf{v}_2']_B & \dots & [\mathbf{v}_n']_B \end{array} \right]$$

Remark: Our textbook uses the notation $P_{B'\to B}$.

Proposition. Let $B=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ and $B'=\{\mathbf{v}_1',\ldots,\mathbf{v}_n'\}$ be two bases of V. Then for any vector $\mathbf{x}\in V$, it satisfies that

$$[\mathbf{x}]_B = P_{B \leftarrow B'} [\mathbf{x}]_{B'}.$$

Examples of Transition Matrices

Example. Consider bases $B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$ and $B'' = \{\mathbf{u}_1'', \mathbf{u}_2''\}$ of \mathbb{R}^2 , where

$$\mathbf{u}_1' = (1,0), \mathbf{u}_2' = (1,1), \quad \mathbf{u}_1'' = (1,1), \mathbf{u}_2'' = (2,1).$$

- (1) Find the transition matrix $P_{B' \leftarrow B''}$ from B'' to B'.
- (2) Find the transition matrix $P_{B'' \leftarrow B'}$ from B' to B''.
- (3) If $(x)_{B'} = (3,2)$, find $(x)_{B''}$.

Examples of Transition Matrices

Example. Consider bases $B=\{p_0,p_1,p_2\}$ and $B'=\{q_0,q_1,q_2\}$ for P_2 , where

$$p_0(x) = 1, p_1(x) = x, p_2(x) = x^2,$$

 $q_0(x) = 1, q_1(x) = x + c, q_2(x) = (x + c)^2.$

Find the transition matrix $P_{B'\leftarrow B}$.

Another Method for Computing Transition Matrices

Theorem. Let B, B', B'' are three bases for V. Then

$$P_{B \leftarrow B''} = P_{B \leftarrow B'} P_{B' \leftarrow B''}$$

Proof:

Corollary. Let B, B' be bases for V. Then $P_{B' \to B}$ is invertible, and

$$P_{B \leftarrow B'}^{-1} = P_{B' \leftarrow B}.$$

Another Method for Computing Transition Matrices

Remark: It follows from

$$P_{B \leftarrow B''} = P_{B \leftarrow B'} P_{B' \leftarrow B''}$$

that

$$P_{B'\leftarrow B''}=P_{B\leftarrow B'}^{-1}P_{B\leftarrow B''}$$

When B is the standard basis, one can try

$$\left[\begin{array}{c|c}P_{B\leftarrow B'}&P_{B\leftarrow B''}\end{array}\right]\xrightarrow{\text{row}}\left[\begin{array}{c|c}I&P_{B\leftarrow B'}^{-1}P_{B\leftarrow B''}\end{array}\right]$$

Example. Consider bases $B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$ and $B'' = \{\mathbf{u}_1'', \mathbf{u}_2''\}$ of \mathbb{R}^2 , where $\mathbf{u}_1' = (1, 0), \mathbf{u}_2' = (1, 1), \quad \mathbf{u}_1'' = (1, 1), \mathbf{u}_2'' = (2, 1).$

- (1) Find the transition matrix $P_{B' \leftarrow B''}$ from B'' to B'.
- (2) Find the transition matrix $P_{B'' \leftarrow B'}$ from B' to B''.
- (3) If $(x)_{B'} = (3,2)$, find $(x)_{B''}$.

Chapter 3. General Vector Spaces

- §3.1 Real Vector Spaces
- §3.2 Subspaces
- §3.3 Linear Independence
- §3.4 Basis and Coordinates
- §3.5 Dimension and Rank
- §3.6 Change of Basis
- §3.7 Direct Sum*

Definition of Direct Sum*

Definition. Let V_1 and V_2 be subspaces of V. Then V is said to be the direct sum of V_1 and V_2 , if $V = V_1 + V_2$ and $V_1 \cap V_2 = \{\mathbf{0}\}$. We denote $V = V_1 \oplus V_2$.

Remark: When $V_1 \cap V_2 = \{0\}$, we say that $V_1 + V_2$ is a direct sum, and denote $V_1 + V_2 = V_1 \oplus V_2$.

Example. The space \mathbb{R}^3 is the direct sum of the xOy-plane and the z-axis. More generally, let Π be a plane in \mathbb{R}^3 and $\mathbf{w} \in \mathbb{R}^3$ be a vector not in Π . Then \mathbb{R}^3 is the direct sum of Π and span $\{\mathbf{w}\}$.

Equivalent Definitions of Direct Sum*

Theorem. Let V be a finite-dimensional space and V_1 , V_2 be its subspaces. Suppose that $V_1+V_2=V$. Then the following four statements are equivalent.

- \diamond Any $\mathbf{v} \in V$ can be expressed uniquely in the form $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$, where $\mathbf{v}_1 \in V_1$ and $\mathbf{v}_2 \in V_2$.
- \diamond The element ${f 0}$ can be expressed uniquely in the form ${f 0}={f v}_1+{f v}_2$, where ${f v}_1\in V_1$ and ${f v}_2\in V_2$.
- $\diamond V_1 \cap V_2 = \{\mathbf{0}\}.$
- $\diamond \dim(V) = \dim(V_1) + \dim(V_2).$

Proof:

Remark: The first three statements are equivalent even when V is infinite-dimensional.

Examples*

Example. Let $C_e(+\infty, -\infty)/C_o(+\infty, -\infty)$ be the space of all even/odd continuous real-valued functions on $(-\infty, +\infty)$. Show that $C(-\infty, +\infty) = C_e(+\infty, -\infty) \oplus C_o(+\infty, -\infty)$.

Example. Show that $M_n(\mathbb{R})$ is the direct sum of the space of all symmetric matrices and the space of all skew-symmetric spaces.

