TEST REPORT

Reference No.: WTS19S02008374-2W V1

FCC ID..... : ZLZ-EPM

Applicant: Shenzhen Mindray BIO-Medical electronics Co.,LTD.

Manufacturer The same as above

Address : The same as above

Product Name Patient Monitor

Model No. ePM 15M, ePM 12M, ePM 10M, ePM 15, ePM 12, ePM 10

Brand. Mindray

Standards.....: FCC CFR47 Part 15 E Section 15.407: 2018

Date of Receipt sample..... : 2019-02-20

Date of Test 2019-02-21 to 2019-04-27

Date of Issue : 2019-05-17

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

Approved by:

ong / Manager

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC (The Federal Communications Commission), CEC (California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek (ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Reference No.: WTS19S02008374-2W V1 Page 3 of 95

Test Facility:

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan	ISO/IEC 17025	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED CAB identifier: CN0013

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

			Page
1		/ER PAGE	
2	LAB	ORATORIES INTRODUCTION	2
3	CON	ITENTS	4
4	REV	ISION HISTORY	6
5	GEN	IERAL INFORMATION	7
	5.1	GENERAL DESCRIPTION OF E.U.T.	7
	5.2	DETAILS OF E.U.T.	
	5.3	CHANNEL LIST	
_	5.4	TEST MODE DESCRIPTION:	
6		JIPMENT USED DURING TEST	
	6.1 6.2	EQUIPMENTS LIST	
	6.3	MEASUREMENT UNCERTAINTY	
	6.4	TEST EQUIPMENT CALIBRATION	
7	TES	T SUMMARY	14
8	CON	IDUCTED EMISSION	15
	8.1	E.U.T. OPERATION	
	8.2	EUT SETUP	
	8.3	MEASUREMENT DESCRIPTION	
	8.4	CONDUCTED EMISSION TEST RESULT	
9	RAD	DIATED EMISSIONS	
	9.1	EUT OPERATION	
	9.2 9.3	TEST SETUP	
	9.3 9.4	TEST PROCEDURE	
	9.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	21
	9.6	SUMMARY OF TEST RESULTS	
10	DUT	Y CYCLE	31
	10.1	SUMMARY OF TEST RESULTS	31
11	BAN	ID EDGE	36
	11.1	TEST PRODUCE	36
	11.2	Test Result	37
12	6 DE	BANDWIDTH	45
	12.1	TEST PROCEDURE:	45
	12.2	Test Result:	
13	26 D	B BANDWIDTH AND 99% OCCUPIED BANDWIDTH	49
	13.1	Test Procedure:	
	13.2	TEST RESULT:	
14	CON	IDUCTED OUTPUT POWER	
	14.1	Test Procedure:	
	14.2	TEST RESULT:	
15	POV	VER SPECTRAL DENSITY	77
	15 1	Test Procedure:	77

Reference No.: WTS19S02008374-2W V1 Page 5 of 95

	15.2	TEST RESULT:	78
16	FREC	QUENCY STABILITY	91
	16.1	TEST PROCEDURE:	91
	16.2	TEST RESULT:	92
17	ANTE	ENNA REQUIREMENT	94
18	PHOT	TOGRAPHS OF TEST SETUP AND EUT	95

Reference No.: WTS19S02008374-2W V1 Page 6 of 95

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S02008 374-2W	2019-02-20	2019-02-21 to 2019-04- 27	2019-04-28	original	-	Replaced
WTS19S02008 374-2W V1	2019-02-20	2019-02-21 to 2019-04- 27	2019-05-17	Version 1	Updated	Valid

Reference No.: WTS19S02008374-2W V1 Page 7 of 95

5 General Information

5.1 General Description of E.U.T.

Product: Patient Monitor

Model(s): ePM 15M, ePM 12M, ePM 10M, ePM 15, ePM 12, ePM 10

Model Description: Only the model names and antenna connect line length are different.

2.4G-802.11b/g/n HT20

Wi-Fi Specification: 5G-802.11a/ n HT20

Hardware Version: 2.0

Software Version: 01.06.00.01

5.2 Details of E.U.T.

Operation Frequency: 802.11a/n (HT20):

U-NII-1: 5150-5250MHz, U-NII-2A: 5250-5350MHz(DFS), U-NII-2C: 5470-5725MHz(DFS), U-NII-3:5725-5850MHz

Max. RF output power: 19.78dBm

Type of Modulation: DSSS, OFDM

Antenna installation: internal permanent antenna

Antenna Gain: 3.38dBi

Ratings: Input: AC 100~240V~ 50/60Hz, 2.0~0.9A

5.3 Channel List

U-NII-1 (5.15-5.25GHz)					
channel	Frequency(MHz)	channel	Frequency(MHz)		
36	5180	40	5200		
44	5220	48	5240		

U-NII-2A (5.25-5.35GHz)					
channel	Frequency(MHz)	channel	Frequency(MHz)		
52	5260	56	5280		
60	5300	64	5320		

U-NII-2C (5.47-5.725GHz)					
channel	Frequency(MHz)	channel	Frequency(MHz)		
100	5500	104	5520		
108	5540	112	5560		
116	5580	120	5600		
124	5620	128	5640		
132	5660	136	5680		
140	5700				

U-NII-3 (5.725-5.85GHz)					
channel	Frequency(MHz)	channel	Frequency(MHz)		
149	5745	153	5765		
157	5785	161	5805		
165	5825	1	1		

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n (HT20):

channel	Frequency(MHz)	channel	Frequency(MHz)
36	5180	40	5200
48	5240		

channel	Frequency(MHz)	channel	Frequency(MHz)
52	5260	56	5280
64	5320		

channel	Frequency(MHz)	channel	Frequency(MHz)
100	5500	120	5600
140	5700		

channel	Frequency(MHz)	channel	Frequency(MHz)
149	5745	157	5785
165	5825		

5.4 Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

The software is installed in operation system, named "RFTestTool.apk", Version 1,date 20160518.

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	ТХ
Radiated Emissions	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Duty Cyclo	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Duty Cycle	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
David Educ	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Band Edge	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
6dD Dondwidth	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
6dB Bandwidth	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
26dB Bandwidth and 99% Occupied Bandwidth	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX

	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Conducted Output Dower	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Conducted Output Power	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Power Spectral Density	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	TX
Frequency Stability	Un-modulation	1	U-NII-1 36/40/48 U-NII-2A 52/56/64 U-NII-2C 100/120/140 U-NII-3 149/157/165	тх

6 Equipment Used during Test

6.1 Equipments List

Condu	cted Emissions Test S	Site 1#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMI Test Receiver	R&S	ESCI	100947	2018-09-14	2019-09-13				
2.	LISN	R&S	ENV216	101215	2018-09-14	2019-09-13				
3.	Cable	Тор	TYPE16(3.5M)	-	2018-09-14	2019-09-13				
Conducted Emissions Test Site 2#										
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMI Test Receiver	R&S	ESCI	101155	2018-09-14	2019-09-13				
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2018-09-14	2019-09-13				
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2018-09-14	2019-09-13				
4.	Cable	LARGE	RF300	-	2018-09-14	2019-09-13				
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1	EMC Analyzer	Agilent	E7405A	MY45114943	2018-09-14	2019-09-13				
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2018-09-14	2019-09-13				
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2018-09-14	2019-09-13				
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2018-09-14	2019-09-13				
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018-09-14	2019-09-13				
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2018-09-14	2019-09-13				
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-09-14	2019-09-13				
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2018-09-14	2019-09-13				
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#						
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date				
1	Test Receiver	R&S	ESCI	101296	2018-09-14	2019-09-13				
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-09-14	2019-09-13				
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2018-09-14	2019-09-13				

4	Cable	HUBER+SUHNER	CBL2	525178	2018-09-14	2019-09-13				
RF Conducted Testing										
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2018-09-14	2019-09-13				
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2018-09-14	2019-09-13				
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2018-09-14	2019-09-13				

6.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.	
1	1	1	1	

6.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS19S02008374-2W V1 Page 14 of 95

7 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
Radiated Emissions	15.407(a) 15.205(a)	PASS
	15.209(a)	
Duty Cycle	KDB 789033	PASS
6dB Bandwidth	15.407(a)	PASS
26 dB Emission Bandwidth & 99% Occupied Bandwidth	15.407(a)	PASS
Maximum Conducted Output Power	15.407(a)	PASS
Power Spectral Density	15.407(a)	PASS
Restricted bands around fundamental frequency	15.407(a)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

Reference No.: WTS19S02008374-2W V1 Page 15 of 95

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS19S02008374-2W V1 Page 18 of 95

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.407

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

Frequency	Field Stre	ngth	Field Strength Limit at 3m Measurement Distance			
(MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS19S02008374-2W V1 Page

Page 20 of 95

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS19S02008374-2W V1 Page 21 of 95

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.
- 8. A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

9.6 Summary of Test Results

Remark: only the worst data (Long antenna prototype) were recorded.

Test Frequency: 32.768kHz~30MHz

Frequency (MHz)	Measurement results	Detector	Correct factor	Extrapolation factor	Measurement results (calculated)	Limits	Margin
(IVIHZ)	dBµV @3m	PK/QP	dB/m	dB	dBμV/m @30m	dBµV/m @30m	dB
25.685	24.02	QP	20.55	40.00	4.57	29.54	-24.97

Test Frequency : 30MHz ~ 18GHz

	Tost requerity : commiz = roomz									
Frequency	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC I 15.407/2		
riequency	Reading	Detector	Angle	Height	Polar	Factor	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	802.11a U-NII-1 Low Channel 5180MHz									
223.45 39.99 QP 242 1.2 H -11.62 28.37 46.00 -17.63										
223.45	35.21	QP	57	1.3	V	-11.62	23.59	46.00	-22.41	
4500.37	49.00	PK	109	1.8	Н	-2.03	46.97	74.00	-27.03	
4500.37	45.66	Ave	109	1.8	Н	-2.03	43.63	54.00	-10.37	
5116.05	51.75	PK	231	1.8	Н	-1.02	50.73	74.00	-23.27	
5116.05	49.12	Ave	231	1.8	Н	-1.02	48.10	54.00	-5.90	
10360.00	41.87	PK	359	1.3	Н	5.33	47.20	74.00	-26.80	
10360.00	36.00	Ave	359	1.3	Н	5.33	41.33	54.00	-12.67	
		802.	11a U-NII	-1 middle	channe	el 5200MHz				
223.45	40.79	QP	286	1.2	Н	-11.62	29.17	46.00	-16.83	
223.45	34.59	QP	164	1.2	V	-11.62	22.97	46.00	-23.03	
4531.52	50.05	PK	246	1.8	Н	-1.94	48.11	74.00	-25.89	
4531.52	44.98	Ave	246	1.8	Н	-1.94	43.04	54.00	-10.96	
5120.05	53.58	PK	3	1.1	Н	-1.06	52.52	74.00	-21.48	
5120.05	50.80	Ave	3	1.1	Н	-1.06	49.74	54.00	-4.26	
10400.00	42.05	PK	110	1.6	Н	5.21	47.26	74.00	-26.74	
10400.00	36.17	Ave	110	1.6	Н	5.21	41.38	54.00	-12.62	

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	802.11a U-NII-1 High channel 5240MHz								
223.45	39.33	QP	308	1.5	Н	-11.62	27.71	46.00	-18.29
223.45	35.16	QP	48	1.8	V	-11.62	23.54	46.00	-22.46
4502.74	49.98	PK	298	1.7	Н	-2.24	47.74	74.00	-26.26
4502.74	43.84	Ave	298	1.7	Н	-2.24	41.60	54.00	-12.40
5148.25	54.67	PK	138	1.0	Н	-1.09	53.58	74.00	-20.42
5148.25	50.36	Ave	138	1.0	Н	-1.09	49.27	54.00	-4.73
10480.00	42.03	PK	118	1.4	Н	5.14	47.17	74.00	-26.83
10480.00	35.42	Ave	118	1.4	Н	5.14	40.56	54.00	-13.44
		802.	11a U-NII	a U-NII-2A Low Channel 5260MHz					T
223.45	41.05	QP	250	1.5	Н	-11.62	29.43	46.00	-16.57
223.45	36.26	QP	161	1.6	V	-11.62	24.64	46.00	-21.36
4529.48	50.44	PK	354	1.6	Н	-2.03	48.41	74.00	-25.59
4529.48	46.32	Ave	354	1.6	Н	-2.03	44.29	54.00	-9.71
5121.96	52.53	PK	283	1.9	Н	-1.02	51.51	74.00	-22.49
5121.96	48.18	Ave	283	1.9	Н	-1.02	47.16	54.00	-6.84
10520.00	41.08	PK	20	1.9	Н	5.33	46.41	74.00	-27.59
10520.00	36.85	Ave	20	1.9	Н	5.33	42.18	54.00	-11.82
	T	802.1	1a U-NII-2	2A middle	Chann	el 5280MHz	<u> </u>	<u> </u>	
223.45	41.07	QP	159	1.3	Н	-11.62	29.45	46.00	-16.55
223.45	34.81	QP	85	1.2	V	-11.62	23.19	46.00	-22.81
4507.83	51.23	PK	53	1.3	Н	-1.94	49.29	74.00	-24.71
4507.83	46.40	Ave	53	1.3	Н	-1.94	44.46	54.00	-9.54
5130.80	54.33	PK	135	1.9	Н	-1.06	53.27	74.00	-20.73
5130.80	49.84	Ave	135	1.9	Н	-1.06	48.78	54.00	-5.22
10560.00	40.62	PK	321	1.9	Н	5.21	45.83	74.00	-28.17
10560.00	37.32	Ave	321	1.9	Н	5.21	42.53	54.00	-11.47

Francisco	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11a U-NII-2A High Channel 5320MHz									
223.45	41.74	QP	117	1.4	Н	-11.62	30.12	46.00	-15.88
223.45	33.43	QP	35	2.0	V	-11.62	21.81	46.00	-24.19
4511.60	50.49	PK	212	1.7	Н	-2.24	48.25	74.00	-25.75
4511.60	45.27	Ave	212	1.7	Н	-2.24	43.03	54.00	-10.97
5116.76	55.66	PK	77	1.1	Н	-1.09	54.57	74.00	-19.43
5116.76	50.38	Ave	77	1.1	Н	-1.09	49.29	54.00	-4.71
10640.00	40.12	PK	31	1.4	Н	5.14	45.26	68.20	-22.94
10640.00	36.59	Ave	31	1.4	Н	5.14	41.73	54.00	-12.27
		802.	11a U-NII	-2C Low	Channe	l 5500MHz			
223.45	41.02	QP	196	1.3	Н	-11.62	29.40	46.00	-16.60
223.45	39.63	QP	43	1.7	V	-11.62	28.01	46.00	-17.99
4508.86	48.95	PK	30	1.7	Н	-2.03	46.92	74.00	-27.08
4508.86	50.04	Ave	30	1.7	Н	-2.03	48.01	54.00	-5.99
5112.36	52.53	PK	332	1.1	Н	-1.02	51.51	74.00	-22.49
5112.36	48.18	Ave	332	1.1	Н	-1.02	47.16	54.00	-6.84
11000.00	41.08	PK	308	1.6	Н	5.33	46.41	68.20	-21.79
11000.00	36.85	Ave	308	1.6	Н	5.33	42.18	54.00	-11.82
		802.1	1a U-NII-2	2C Middle	Chann	el 5600MHz			
223.45	42.15	QP	116	1.9	Н	-11.62	30.53	46.00	-15.47
223.45	39.89	QP	2	1.7	V	-11.62	28.27	46.00	-17.73
4516.57	49.59	PK	32	1.7	Н	-1.94	47.65	74.00	-26.35
4516.57	49.56	Ave	32	1.7	Н	-1.94	47.62	54.00	-6.38
5115.36	52.84	PK	78	1.4	Н	-1.06	51.78	74.00	-22.22
5115.36	50.02	Ave	78	1.4	Н	-1.06	48.96	54.00	-5.04
11200.00	41.08	PK	142	1.1	Н	5.21	46.29	68.20	-21.91
11200.00	37.95	Ave	142	1.1	Н	5.21	43.16	54.00	-10.84

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Fraguenay	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.	11a U-NII-	2C High	Channe	l 5700MHz			
223.45	41.41	QP	297	2.0	Η	-11.62	29.79	46.00	-16.21
223.45	39.62	QP	334	1.9	V	-11.62	28.00	46.00	-18.00
4513.11	50.53	PK	125	2.0	Н	-2.24	48.29	74.00	-25.71
4513.11	50.18	Ave	125	2.0	Н	-2.24	47.94	54.00	-6.06
5148.29	51.96	PK	67	1.2	Н	-1.09	50.87	74.00	-23.13
5148.29	49.08	Ave	67	1.2	Н	-1.09	47.99	54.00	-6.01
11400.00	40.40	PK	190	1.5	Н	5.14	45.54	68.20	-22.66
11400.00	37.31	Ave	190	1.5	Н	5.14	42.45	54.00	-11.55
802.11a U-NII-3 low Channel 5745MHz									
223.45	39.11	QP	339	1.4	Н	-11.62	27.49	46.00	-18.51
223.45	33.84	QP	97	2.0	V	-11.62	22.22	46.00	-23.78
4504.10	49.22	PK	114	1.3	Н	-2.06	47.16	74.00	-26.84
4504.10	44.02	Ave	114	1.3	Н	-2.06	41.96	54.00	-12.04
11490.00	43.05	PK	327	1.5	Н	5.93	48.98	74.00	-25.02
11490.00	37.22	Ave	327	1.5	Н	5.93	43.15	54.00	-10.85
5352.43	46.70	PK	116	1.1	Н	-1.25	45.45	74.00	-28.55
5352.43	37.57	Ave	116	1.1	Н	-1.25	36.32	54.00	-17.68
		802.	11a U-NII-	-3 middle	channe	l 5785MHz			
223.45	37.86	QP	197	1.2	Н	-11.62	26.24	46.00	-19.76
223.45	33.33	QP	359	1.1	V	-11.62	21.71	46.00	-24.29
4505.68	49.64	PK	301	1.1	Н	-2.03	47.61	74.00	-26.39
4505.68	44.19	Ave	301	1.1	Н	-2.03	42.16	54.00	-11.84
11570.00	42.39	PK	67	1.2	Н	5.81	48.20	74.00	-25.80
11570.00	37.03	Ave	67	1.2	Н	5.81	42.84	54.00	-11.16

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802	.11a U-NI	I-3 High	channe	l 5825MHz			
223.45	36.43	QP	134	1.3	Н	-11.62	24.81	46.00	-21.19
223.45	33.58	QP	238	1.1	V	-11.62	21.96	46.00	-24.04
4506.47	49.90	PK	27	1.2	Н	-1.84	48.06	74.00	-25.94
4506.47	45.26	Ave	27	1.2	Н	-1.84	43.42	54.00	-10.58
11650.00	40.65	PK	188	1.5	Н	5.84	46.49	74.00	-27.51
11650.00	36.39	Ave	188	1.5	Н	5.84	42.23	54.00	-11.77
5355.40	46.85	PK	4	1.3	Н	-1.30	45.55	74.00	-28.45
5355.40	38.75	Ave	4	1.3	Н	-1.30	37.45	54.00	-16.55
		802.11n(HT20) U-NII-1 low Channel 5180MHz							
223.45	37.91	QP	161	1.6	Н	-11.62	26.29	46.00	-19.71
223.45	34.78	QP	354	1.5	V	-11.62	23.16	46.00	-22.84
4501.82	48.54	PK	162	1.4	Н	-2.14	46.40	74.00	-27.60
4501.82	45.07	Ave	162	1.4	Н	-2.14	42.93	54.00	-11.07
5112.78	46.91	PK	258	1.3	Н	-1.06	45.85	74.00	-28.15
5112.78	38.62	Ave	258	1.3	Н	-1.06	37.56	54.00	-16.44
10360.00	42.12	PK	37	1.6	Н	5.33	47.45	74.00	-26.55
10360.00	34.80	Ave	37	1.6	Н	5.33	40.13	54.00	-13.87
		802.11r	(HT20) U	-NII-1 mi	ddle cha	nnel 5200M	Hz		
223.45	39.01	QP	173	1.6	Н	-11.62	27.39	46.00	-18.61
223.45	33.92	QP	233	1.9	V	-11.62	22.30	46.00	-23.70
4536.90	49.22	PK	143	1.5	Н	-2.12	47.10	74.00	-26.90
4536.90	46.16	Ave	143	1.5	Н	-2.12	44.04	54.00	-9.96
5140.65	46.27	PK	228	1.6	Н	-1.06	45.21	74.00	-28.79
5140.65	38.03	Ave	228	1.6	Н	-1.06	36.97	54.00	-17.03
10400.00	42.80	PK	21	1.9	Н	5.21	48.01	74.00	-25.99
10400.00	36.07	Ave	21	1.9	Н	5.21	41.28	54.00	-12.72

-	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11r	n(HT20) U	I-NII-1 Hi	igh char	nnel 5240MH	lz		
223.45	39.96	QP	68	1.7	Н	-11.62	28.34	46.00	-17.66
223.45	33.13	QP	22	1.1	V	-11.62	21.51	46.00	-24.49
4512.97	48.22	PK	257	1.6	Н	-1.96	46.26	74.00	-27.74
4512.97	45.88	Ave	257	1.6	Н	-1.96	43.92	54.00	-10.08
5117.00	46.13	PK	30	1.8	Н	-1.06	45.07	74.00	-28.93
5117.00	37.05	Ave	30	1.8	Н	-1.06	35.99	54.00	-18.01
10480.00	41.17	PK	162	1.4	Н	5.14	46.31	74.00	-27.69
10480.00	36.78	Ave	162	1.4	Н	5.14	41.92	54.00	-12.08
		802.11n	(HT20) U	-NII-2A L	ow cha	nnel 5260Ml	l z		
223.45	41.09	QP	187	1.5	Н	-11.62	29.47	46.00	-16.53
223.45	40.34	QP	309	1.8	V	-11.62	28.72	46.00	-17.28
4536.17	35.22	PK	158	1.1	Н	-2.03	33.19	74.00	-40.81
4536.17	45.39	Ave	158	1.1	Н	-2.03	43.36	54.00	-10.64
5119.20	38.28	PK	23	1.6	Н	-1.02	37.26	74.00	-36.74
5119.20	1.40	Ave	23	1.6	Н	-1.02	0.38	54.00	-53.62
10520.00	40.66	PK	335	1.7	Н	5.33	45.99	74.00	-28.01
10520.00	36.58	Ave	335	1.7	Н	5.33	41.91	54.00	-12.09
		802.11n(HT20) U-N	NII-2A Mi	iddle ch	annel 5280M	1Hz		
223.45	42.22	QP	95	1.4	Н	-11.62	30.60	46.00	-15.40
223.45	41.42	QP	279	1.1	V	-11.62	29.80	46.00	-16.20
4531.21	36.33	PK	144	1.5	Н	-1.94	34.39	74.00	-39.61
4531.21	45.29	Ave	144	1.5	Н	-1.94	43.35	54.00	-10.65
5132.42	37.57	PK	64	1.5	Н	-1.06	36.51	74.00	-37.49
5132.42	0.70	Ave	64	1.5	Н	-1.06	-0.36	54.00	-54.36
10560.00	40.91	PK	353	1.7	Н	5.21	46.12	74.00	-27.88
10560.00	35.28	Ave	353	1.7	Н	5.21	40.49	54.00	-13.51

	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	802.11n(HT20) U-NII-2A High channel 5320MHz								
223.45	43.43	QP	39	1.8	Н	-11.62	31.81	46.00	-14.19
223.45	42.28	QP	349	1.5	V	-11.62	30.66	46.00	-15.34
4526.82	36.43	PK	122	1.8	Н	-2.24	34.19	74.00	-39.81
4526.82	45.97	Ave	122	1.8	Н	-2.24	43.73	54.00	-10.27
5134.59	36.82	PK	73	1.1	Н	-1.09	35.73	74.00	-38.27
5134.59	1.05	Ave	73	1.1	Н	-1.09	-0.04	54.00	-54.04
10640.00	40.70	PK	279	1.7	Н	5.14	45.84	68.20	-22.36
10640.00	35.43	Ave	279	1.7	Н	5.14	40.57	54.00	-13.43
		802.11n	(HT20) U-	-NII-2C L	ow cha	nnel 5500Ml	Hz		
223.45	42.27	QP	273	1.2	Н	-11.62	30.65	46.00	-15.35
223.45	0.05	QP	12	1.0	V	-11.62	-11.57	46.00	-57.57
4522.60	42.49	PK	216	1.2	Н	-2.03	40.46	74.00	-33.54
4522.60	35.72	Ave	216	1.2	Н	-2.03	33.69	54.00	-20.31
5149.20	45.83	PK	95	1.9	Н	-1.02	44.81	74.00	-29.19
5149.20	39.45	Ave	95	1.9	Н	-1.02	38.43	54.00	-15.57
11000.00	0.99	PK	201	1.2	Н	5.33	6.32	68.20	-61.88
11000.00	35.21	Ave	201	1.2	Н	5.33	40.54	54.00	-13.46
		802.11n(HT20) U-N	NII-2C M	iddle ch	annel 5600M	1Hz		
223.45	41.15	QP	208	1.4	Н	-11.62	29.53	46.00	-16.47
223.45	1.25	QP	96	1.3	V	-11.62	-10.37	46.00	-56.37
4529.36	42.81	PK	11	1.9	Н	-1.94	40.87	74.00	-33.13
4529.36	34.50	Ave	11	1.9	Н	-1.94	32.56	54.00	-21.44
5127.77	45.15	PK	62	1.6	Н	-1.06	44.09	74.00	-29.91
5127.77	39.56	Ave	62	1.6	Η	-1.06	38.50	54.00	-15.50
11200.00	0.52	PK	118	2.0	Н	5.21	5.73	68.20	-62.47
11200.00	34.38	Ave	118	2.0	Н	5.21	39.59	54.00	-14.41

	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	802.11n(HT20) U-NII-2C High channel 5700MHz								
223.45	40.48	QP	358	2.0	Н	-11.62	28.86	46.00	-17.14
223.45	1.96	QP	274	1.8	V	-11.62	-9.66	46.00	-55.66
4520.35	41.80	PK	43	1.7	Н	-2.24	39.56	74.00	-34.44
4520.35	33.06	Ave	43	1.7	Н	-2.24	30.82	54.00	-23.18
5117.49	46.81	PK	144	1.6	Н	-1.09	45.72	74.00	-28.28
5117.49	38.65	Ave	144	1.6	Н	-1.09	37.56	54.00	-16.44
11400.00	-0.42	PK	338	1.4	Н	5.14	4.72	68.20	-63.48
11400.00	36.00	Ave	338	1.4	Н	5.14	41.14	54.00	-12.86
		802.11	n(HT20) l	J-NII-3 lo	w Chan	nel 5745MH	Z		
223.45	37.78	QP	100	1.1	Н	-11.62	26.16	46.00	-19.84
223.45	53.66	QP	273	1.1	V	-11.62	42.04	46.00	-3.96
4521.54	42.93	PK	77	1.3	Н	-2.06	40.87	74.00	-33.13
4521.54	49.05	Ave	77	1.3	Н	-2.06	46.99	54.00	-7.01
11490.00	38.35	PK	36	1.1	Н	5.93	44.28	68.20	-23.92
11490.00	43.33	Ave	36	1.1	Н	5.93	49.26	54.00	-4.74
5368.86	46.38	PK	310	1.4	Н	-1.25	45.13	74.00	-28.87
5368.86	39.95	Ave	310	1.4	Н	-1.25	38.70	54.00	-15.30
		802.11n	(HT20) U-	-NII-3 mic	ldle cha	nnel 5785MI	Hz		
223.45	38.19	QP	295	1.9	Н	-11.62	26.57	46.00	-19.43
223.45	33.03	QP	303	1.2	V	-11.62	21.41	46.00	-24.59
4507.05	46.06	PK	219	1.9	Н	-1.89	44.17	74.00	-29.83
4507.05	44.49	Ave	219	1.9	Н	-1.89	42.60	54.00	-11.40
11570.00	42.16	PK	90	2.0	Н	5.81	47.97	74.00	-26.03
11570.00	35.03	Ave	90	2.0	Н	5.81	40.84	54.00	-13.16
5378.03	46.83	PK	189	1.6	Н	-1.04	45.79	74.00	-28.21
5378.03	39.99	Ave	189	1.6	Н	-1.04	38.95	54.00	-15.05

Fraguanay	Receiver Detector		Turn table	RX Antenna		Corrected	Corrected	FCC Part 15.407/209/205	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	n(HT20) U	I-NII-3 Hi	igh char	nnel 5825MH	z		
223.45	37.19	QP	266	1.2	Н	-11.62	25.57	46.00	-20.43
223.45	32.94	QP	238	1.6	V	-11.62	21.32	46.00	-24.68
4505.36	45.70	PK	182	1.4	Н	-1.97	43.73	74.00	-30.27
4505.36	43.93	Ave	182	1.4	Н	-1.97	41.96	54.00	-12.04
11650.00	42.30	PK	89	1.9	Н	5.84	48.14	74.00	-25.86
11650.00	35.48	Ave	89	1.9	Н	5.84	41.32	54.00	-12.68
5352.16	46.88	PK	109	1.3	Н	-1.12	45.76	74.00	-28.24
5352.16	39.77	Ave	109	1.3	Н	-1.12	38.65	54.00	-15.35

Test Frequency: 18GHz~40GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S02008374-2W V1 Page 31 of 95

10 Duty cycle

47 CFR Part 15C 15.407 and 789033 D02 General UNII Test

Test Requirement: Procedures New Rules v02r01(December 14, 2017), Section (B)

Test Method: ANSI C63.10: 2013

N/A Test Limit:

Test Result: **PASS**

Through Pre-scan, at lowest channel is the worst case. Only the Remark:

worst case is recorded in the report.

10.1 Summary of Test Results

802.11a(HT20) mode(U-NII-1)								
channel	channel On time(ms) Period(ms) Duty Cycle(%)							
36	36 100 100 100							
	802.11n(HT20)	mode(U-NII-1)						
channel	channel On time(ms) Period(ms) Duty Cycle(%)							
36	36 100 100 100							

802.11a(HT20) mode(U-NII-2A)								
channel	channel On time(ms) Period(ms) Duty Cycle(%)							
52	52 100 100 100							
	802.11n(HT20)	mode(U-NII-2A)						
channel On time(ms) Period(ms) Duty Cycle(%)								
52	100	100	100					

802.11a(HT20) mode(U-NII-2C)								
channel	channel On time(ms) Period(ms) Duty Cycle(%)							
100	100 100 100 100							
	802.11n(HT20)	mode(U-NII-2C)						
channel	channel On time(ms) Period(ms) Duty Cycle(%)							
100	100	100	100					

802.11a(HT20) mode(U-NII-3)								
channel	channel On time(ms) Period(ms) Duty Cycle(%)							
149	149 100 100 100							
	802.11n(HT20)	mode(U-NII-3)						
channel On time(ms) Period(ms) Duty Cycle(%)								
149	100	100	100					

Test result plots shown as follows:

802.11n(HT20) U-NII-1 Low channel

Reference No.: WTS19S02008374-2W V1 Page 36 of 95

11 Band Edge

Test Requirement: FCC CFR47 Part 15 Section 15.407

Test Method: ANSI C63.10 2013

(1) For transmitters operating in the 5.15-5.25 GHz band: All Test Limit: emissions outside of the 5.15-5.35 GHz band shall not exceed an

e.i.r.p. of -27dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an

e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an

e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the

band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

Test Result: **PASS**

11.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.2 Test Result

Test result plots shown as follows:

Reference No.: WTS19S02008374-2W V1 Page 45 of 95

12 6 dB Bandwidth

Test Requirement: FCC CFR47 Part 15 Section 15.407(e)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01

(December 14, 2017) Section C

Test Limit: ≥ 500 kHz

Test Result: PASS

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

12.2 Test Result:

_	Operation	6 dB Bandwidth (MHz)				
Band	mode	Low	Middle	High		
	802.11a	16.40	16.43	16.43		
U-NII-3	802.11n(HT20)	17.28	17.31	16.99		

Test result plots shown as follows:

802.11a U-NII-3 Middle channel

Reference No.: WTS19S02008374-2W V1 Page 49 of 95

13 26 dB Bandwidth and 99% Occupied Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.407 (a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01

(December 14, 2017)Section D

Test Limit: No restriction limits

Test Result: PASS

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

Reference No.: WTS19S02008374-2W V1 Page 50 of 95

13.2 Test Result:

Band	Operation	eration 26 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
	mode	Low	Middle	High	Low	Middle	High
U-NII-1	802.11a	21.70	21.99	20.37	16.470	16.445	14.463
	802.11n(HT20)	21.39	21.12	21.15	17.631	17.614	17.631
U-NII-2A	802.11a	22.29	21.76	21.25	16.481	16.488	16.462
	802.11n(HT20)	21.21	20.87	21.36	17.619	17.617	17.575
U-NII-2C	802.11a	21.28	21.21	21.61	16.470	16.489	16.457
	802.11n(HT20)	22.16	23.72	22.11	17.674	17.682	17.675
U-NII-3	802.11a	20.87	21.24	21.43	16.463	16.486	16.474
	802.11n(HT20)	21.57	21.56	20.86	17.615	17.623	17.627

Test result plots shown as follows:

802.11a U-NII-1 Middle channel

802.11a U-NII-2C Middle channel

