

History of Arm

Joint venture between Acorn Computers and Apple

1990

Designed into first mobile phones and then smartphones

1993 onwards

Now all electronic devices can use intelligent Arm technology

Arm: the Industry's Architecture of Choice

Extraordinary growth – from sensors to server

Why is ML Moving to the Edge?

Project Trillium: Arm ML for All Devices

Arm ML suite of IP: designed for unmatched versatility and scalability:

- ★ Machine Learning (ML) processor
- + Object Detection (OD) processor
- → Neural Network (NN) software libraries

Market growth in units (today to 2028):

- → Mobile 1.7Bn to 2.2Bn
 (source: Strategy Analytics and Arm forecast)
- → Smart IP Cameras 160M to 1.3Bn (source: Gartner and Arm forecast)
- → AI-enabled devices 300M to 3.2Bn
 (source: IDC WW Embedded and Intelligent Systems Forecast, 2017-2022 and Arm forecast)

Optimum ML Performance on Arm for Any Application

NN Frameworks

- Arm NN software translates existing NN frameworks:
 - TensorFlow, Caffe, Android NNAPI, MXNet etc.
 - Developers maintain existing workflow and tools
 - Reduces overall development time
 - Abstracts away the complexities of underlying hardware

CMSIS-NN 5x

better efficiency and performance for NN functions

Compute Library 15x

faster than other opensource software (OSS)

ML Use Case Examples

Big data ML

vs Small data ML

Vision

ImageNet

• 1000+ classes

CIFAR-10

< 10 classes

Audio

Large scale speech recognition

Key word spotting, simple commands

Health

Disease detection

Human activity monitor

Cortex-M Challenges for ML

Limited Lack of deployment compute flow resource Limited Limited system energy memory

CMSIS-NN – Efficient NN Kernels for Cortex-M CPUs

- Open Source: launched 23 Jan'18
- CMSIS-NN has the equivalent role for Cortex-M CPUs as Compute Library has for Cortex-A CPUs and Arm Mali GPUs (and ML processor in mid 2018)
- But flow is entirely offline, creating a binary targeting Cortex-M class platform
- SIMD instructions in Cortex-M7/M4 targeted
- Will run on Cortex-M0

CMSIS-NN – Efficient NN Kernels for Cortex-M CPUs

Convolution

- Boost compute density with GEMM based implementation
- Reduce data movement overhead with depth-first data layout
- Interleave data movement and compute to minimize memory footprint

Pooling

- Improve performance by splitting pooling into x-y directions
- Improve memory access and footprint with in-situ updates

Activation

- ReLU: Improve parallelism by branch-free implementation
- Sigmoid/Tanh: fast table-lookup instead of exponent computation

Image Classification - Convolutional Neural Network

- CIFAR-10 classification classify images into 10 different object classes
- 3 convolution layer, 3 pooling layer and 1 fullyconnected layer (~80% accuracy)

CNN on Cortex-M7

- CNN with 8-bit weights and 8-bit activations
- Total memory footprint: 87 kB weights + 40 kB activations + 10 kB buffers (I/O etc.)

NUCLEO-F746ZG - 216 MHz, 320 KB SRAM

Layer	Network Parameter	Output activation	Operation count	Runtime on M7
Conv1	5x5x3x32 (2.3 KB)	32x32x32 (32 KB)	4.9 M	31.4 ms
Pool1	3x3, stride of 2	16x16x32 (8 KB)	73.7 K	1.6 ms
Conv2	5x5x32x32 (25 KB)	16x16x32 (8 KB)	13.1 M	42.8 ms
Pool2	3x3, stride of 2	8x8x32 (2 KB)	18.4 K	0.4 ms
Conv3	5x5x32x64 (50 KB)	8x8x64 (4 KB)	6.6 M	22.6 ms
Pool3	3x3, stride of 2	4x4x64 (1 KB)	9.2 K	0.2 ms
ip1	4x4x64x10 (10 KB)	10	20 K	0.1 ms
Total	87 KB weights	Total: 55 KB Max. footprint: 40 KB	24.7 M Ops	99.1 ms

Demo with Multiple NNs

- Both image classification and keyword spotting are running at the same time
- Voice command controls the start/stop of the image classification
- Total memory footprint:
 - CNN: 87 KB weights + 40 KB activations + 10 KB buffers
 - DNN: 66 KB weights + 1 KB activations + 2 KB buffers

Platform Security Architecture

Platform Security Architecture

A recipe for building a secure system & a reference implementation

Arm Platform Security Architecture (PSA)

- A common framework for scaling connected device security
- Enables consistent level of security
- Broad ecosystem support from industry leaders
- Trusted Firmware-M Open source reference firmware

First PSA deliverables available

www.arm.com/psa-resources

Threat Models and Security
Analyses (TMSA)
documentation

- Step 1 of PSA: gather information about threats to a particular device and develop the right security specifications
- Three example TMSAs freely available now

Arm Trusted Firmware-M

- The **first open source reference implementation** firmware, which conforms to the PSA specification
- Available as a GitHub project in March

Summary

Major initiatives from Arm supporting Cortex-M microcontrollers

- Machine Learning on IoT-class devices
 - Enabling existing ML frameworks on Cortex-M through Arm NN
 - ML enabled everywhere: Cortex-M0 and upwards
 - CMSIS-NN library open source and available now (https://developer.arm.com/embedded/cmsis)

- Platform Security Architecture
 - Security from the ground up, at the core of every device
 - Trusted Firmware-M coming Q1'18
 - First deliverables available now (<u>www.arm.com/psa-resources</u>)

arm

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks