PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-040475

(43) Date of publication of application: 08.02.2000

(51)Int.CI.

H01J 27/18 H01J 37/08 H05H 1/46

(21)Application number: 10-205949

(71)Applicant: NISSIN ELECTRIC CO LTD

(22)Date of filing:

22.07.1998

(72)Inventor: FUJITA HIDEKI

(54) SELF-ELECTRON EMITTING ECR ION PLASMA SOURCE

(57) Abstract:

PROBLEM TO BE SOLVED: To form a high density plasma of a light element such as hydrogen and helium even in a narrow plasma chamber by using an antenna cover being composed of either one of alumina, MgO and titania and covering the periphery of an antenna, as a thermoelectron emitting source.

SOLUTION: The outside of an antenna 2 is covered with an antenna cover 22, and this antenna cover 22 and an inner wall cover 3 are made of either one of alumina, MgO, titania, steanite, forstenite and macol. Raw material gas is introduced from a raw material gas inlet 21, and when a microwave is introduced into a vacuum vessel 1 from the antenna 2, a resonance magnetic field is generated in the vicinity of the antenna by a permanent magnet 4, so that an electron vibrates by the microwave. Then, when microwave power is increased, electron motion becomes active to collide with the antenna cover 22 and the inner wall cover 3, but since these are ceramic, heat is generated, the heat exceeds 1000° C,

and when the heat exceeds 1500° C, a thermoelectron is emitted to become a new supply source of electrons.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-40475 (P2000-40475A)

(43)公開日 平成12年2月8日(2000.2.8)

(51) Int.Cl. ⁷	識別記号	FI H01J 27/18	テーマコード(参考) 5 C 0 3 0
HO1J 27/18 37/08		37/08	
HO5H 1/46		H05H 1/46	С

審査請求 未請求 請求項の数1 OL (全 7 頁)

(21)出願番号	特願平10-205949	(71) 出願人 000003942 日新電機株式会社
(22)出願日	平成10年7月22日(1998.7.22)	京都府京都市右京区梅津高畝町47番地 (72)発明者 藤田 秀樹 京都府京都市右京区梅津高畝町47番地日新 電機株式会社内 (74)代理人 100079887 弁理士 川瀬 茂樹 Fターム(参考) 50030 DD02 DE01 DE07

(54) 【発明の名称】 自己電子放射型ECRイオンプラズマ源

(57)【要約】

【目的】 小型マイクロ波 E C R プラズマ発生装置では ヘリウムや水素のような軽元素のプラズマを高密度に立 てるのが難しい。軽元素でも高密度プラズマを形成でき るような小型ECRプラズマ発生装置を与えること。 【構成】Mg〇、チタニア、ステアナイト、フォルステ **ライト、マコール、コージライト、ムライト、Y** 203, LaB6, SrO, BaO, CaO, Sr B₆、C_aB₆、S_{c2}O₃のいずれかよりなるアンテ ナカバーでアンテナを囲み、上記の何れかよりなる材料 の内壁カバーによって真空容器の内壁を被覆し、マイク 口波パワーを強くし、アンテナカバーからは熱電子を内 壁カバーからは二次電子や光電子を放出させるようにす る。

【特許請求の範囲】

【請求項1】 軸方向に長い真空に引く事のできる金属 製真空容器と、真空容器の内部に設けたマイクロ波を導 入するための髙融点金属よりなるアンテナと、アルミ ナ、MgO、チタニア、ステアナイト、フォルステライ ト、マコール、コージライト、ムライト、Y2O3,L aB6, SrO, BaO, CaO, SrB6, Ca B6、Sc2O3のいずれかよりなりアンテナの周りを 覆うアンテナカバーと、アルミナ、Mg〇、チタニア、 ステアナイト、フォルステライト、マコール、コージラ イト、ムライト、Y2O3、LaB6、SrO、Ba O、CaO、SrB6、CaB6、Sc2O3のいずれ かよりなり真空容器の内壁を被覆する内壁カバーと、真 空容器の周囲に設けられ電子がマイクロ波に共鳴する磁 場を生ずる永久磁石と、真空容器の周囲に設けられ冷却 媒体を流すための冷却管と、真空容器の内部に原料ガス を導く原料ガス入口とを含み、アンテナよりマイクロ波 を真空容器に導入し、アンテナ近傍で電子のサイクロト ロン運動がマイクロ波共鳴吸収を起こすようにし、アン テナカバー温度を上げてアンテナカバーを熱電子放射源 20 として利用する事を特徴とする自己電子放射型ECRイ オンプラズマ源。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アンテナによってマイクロ波をチャンバに導入し、ガスを励起しプラズマにする小型のECRイオン源、ラジカル源、プラズマ源などに関する。プラズマ源、イオン源の励起源はいくつもある。例えば負にバイアスしたフィラメントに電流を流し熱電子を放出しチャンバとの間にアーク放電を起こさせ原料ガスをプラズマ励起するものがある。これをフィラメント励起と呼ぶ。熱陰極から熱電子が放射されるのは、温度が高いので熱運動がさかんになり仕事関数を越えて電子が外部に出るしこれが電界によって引っ張られるからである。フィラメントはタングステンが使われる。これの欠点はフィラメントがスパッタリングされやすく寿命が短いということである。頻繁にフィラメントを交換しなければならない。

【0002】平行平板電極の間に13.56MHzの高周波を掛けて原料ガスをプラズマにするものもある。高周波を掛けて原料ガスをプラズマにするものもある。高海波励起である。平行平板電極間に直流電圧を掛けてプラズマ励起するものもある。直流電圧励起である。2.45GHzのマイクロ波によるマイクロ波イオン源もある。マイクロ波イオン源にもいくつもの種類がある。マグネトロンからマイクロ波を同軸管に導きアンテナによってチャンパに導入する比較的小型のものがある。マイクロ波エネルギーが小さいと同軸管によってマイクロ波を搬送できアンテナから放射することができる。軸対称で小型にできるので有用である。或いはマグネトロンからマイクロ波を導波管に導き誘電体窓を通してチャンバ50

に導入する大型のものもある。マイクロ波エネルギーが 高い場合は、同軸管では搬送できない。アンテナも使え ない。導波管の中を空間伝送するしかない。

【0003】さらにマイクロ波イオン源といってもECR型とそうでないものがある。ECRはチャンパの外側に電磁石或いは永久磁石を設け縦磁場を発生させてチャンパ内に875ガウスの共鳴磁場を作り電子をサイクロトロン運動させマイクロ波を共鳴吸収させるものである。艇磁場を与えないものもある。それは非ECR型である。ECRは電磁石とその電源或いは永久磁石が必要であるが、マイクロ波を共鳴吸収でき励起密度が高いという利点がある。これらの多種類のプラズマ励起機構の中で、本発明はECR型マイクロ波励起のイオン源、ラジカル源、プラズマ源に関する。その中でも同軸管とアンテナを使う極めて寸法の小さい高密度のイオン源等に関する。

【0004】イオン源、ラジカル源、プラズマ源と言う言葉を定義しよう。チャンパの出口に有孔電極を設けこれに電圧を掛けておき、チャンパ内で原料ガスを励起しプラズマに変えてイオンビームとして取り出すものをイオン源という。出口に有孔電極をもたず、内部と外部の圧力の差を利用してプラズマから中性のラジカルを取り出すようにしたものがラジカル源である。窒素をラジカルとして供給する場合などに使われる。チャンパ内に処理すべきウエハを設けチャンパ内でプラズマ処理するようにしたのがプラズマ源である。いずれも原料ガスを何らかの手段によて励起しプラズマとするものである。本発明はこれら3つの装置のいずれにも適用できる。

[0005]

【従来の技術】同軸管等でマグネトロンからマイクロ波を導きチャンパ内でアンテナからマイクロ波放射しガスを励起しプラズマを発生させる E C R 装置は小型にできる。小型で円筒対称であるから薄膜生成装置、イオン注入装置、M B E 装置などの一部に組み込むのが容易である。それで本発明者は以前より小型アンテナ型マイクロ波プラズマ装置の検討を進めている。夥しい提案創作をしている。以下に紹介する。

①特開平8-31358「ECRイオンラジカル源」発明者藤田秀樹、禅野由明は一巻したアンテナをセラミックで内張りしたチャンバ内に設ける。アンテナ表面もセラミックで被覆する。アンテナをコイル状にするのは有効な放射面積を増やすためである。チャンバ壁面、アンテナ金属が露呈していると、スパッタリングが起こりやすい。加速された金属粒子が壁面、アンテナに高速で突し金属面を削り取る現象がスパッタリングである。スパッタリングが起こるとスパッタ粒子によってチャンバ壁、アンテナが汚染される。それにアンテナが痩せてくる。頻繁にアンテナ交換しなければならない。この発明は、スパッタリングを防ぐためにセラミックをコーテイングしている。セラミックは絶縁体であり高熱に耐え、

2

スパッタリングに強い。電界によって加速された粒子が 衝突しても容易に剥落しない。セラミックとして挙げら れているのは、アルミナ、BN、AIN、石英などであ

【0006】②特開平9-259780「フィードスル 一挿入型高周波導入プラズマ生成機構」発明者藤田秀樹 は超高真空の分子線エピタキシャル成長装置のラジカル 源を与える。MBE装置は超高真空にしなければならな いので、アンテナ保持部分に真空コネクタを設けて漏れ のないように工夫している。アンテナは直線になってい 10 る。MBEの窒素ラジカルなどを与えることができる。 壁面金属は露呈し、アンテナ金属も露呈している。マイ クロ波は利用するがECRでない。

③特開平9-245997「カバーで覆われた内壁とア ンテナを持つプラズマ室」発明者藤田秀樹、安立明は、 マイクロ波でプラズマを生成する装置において、アンテ ナを直線にし鞘型のカバーをかぶせ、壁面にも絶縁体カ バーを設けたものである。金属地肌がスパッタリングさ れるのを防ぐために絶縁体カバーで覆うのである。これ も超高真空が必要なMBE装置で窒素ラジカルを生成導 20 入するためのものである。プラズマによって壁面、アン テナがスパッタリングされると、分子線エピタキシャル 成長装置の超高真空を破るし、ウエハーを汚染する惧れ がある。スパッタリングによって誘電体窓が汚染されマ イクロ波が入り難くなる。アンテナが痩せて消耗が激し く短時間で交換しなければならない。そのような難点を ふせぐために絶縁体カバーで覆うのである。単にセラミ ック被覆するのでは薄すぎる。スパッタリングによって セラミック被覆がやがて破られる。そこで別部材のカバ ーをつくりカバーを差し入れるのである。自立できる別 30 部材のカバーで覆うから、長時間のスパッタリングにも 良く耐える。絶縁体としては、PBN、BN、AIN、 アルミナ、MgO、ジルコニア、SiO2、TiO2等 が挙げられている。厚みは2mmにも達する。カバーで あるから取り外しでき交換は容易である。

【0007】④特開平9-245658「永久磁石によ るECR共鳴を利用するプラズマ生成機構」発明者藤田 秀樹、安立明は永久磁石によって875ガウスの共鳴磁 場を作る。アンテナを直線状にしてECR条件がアンテ ナ上2箇所~3箇所程度で満足されるように工夫してい る。コイル状だと875ガウスになる部分にアンテナが つねに存在するとは限らず条件の調整が難しい。軸対称 の直線状アンテナの場合は、2箇所でECR条件(マイ クロ波周波数=サイクロトロン周波数(つまり875ガ ウス)を満たすようにできる。アンテナを長くすると3 箇所でもECR条件を満足できる。MBEの窒素ラジカ ル源である。小型の永久磁石磁場をつかうからチャンバ 直径を小さくしている。チャンバ壁、アンテナ表面は金 属が露呈している。

プラズマ発生装置」藤田秀樹、安立明は直線アンテナに よってマイクロ波をチャンパ内に導きガスをプラズマに する装置である。これまで説明したマイクロ波プラズマ 発生装置と同じ技術の延長上にある。これもMBEのラ ジカル源として開発したものである。ガス導入管とは別 に導光管を設けプラズマ発光の状態を分光観察できるよ うにしたものである。同軸管、ガス導入管、導光管、冷 却冷媒管、チャンバ、永久磁石などの全てがセットにな っており一つの円盤状のフランジに固定される。フラン ジによってMBE装置のひとつのポートに着脱される。 そのフランジであるが、70mm外径のフランジしか使 えない。フランジの外径は70mmであるが、分子線エ ピタキシャル成長装置のセルに嵌込んだりするからプラ ズマ装置部分は30mm径に纏めなければならない。そ のため、アンテナを偏心させ中心部30mmに全ての管 を纏めている。凝縮されたラジカル源である。これもチ ャンバ内壁金属は露呈し、アンテナ金属も露出してい る。スパッタリング対策は別段講じられていない。

【発明が解決しようとする課題】小型のプラズマ発生装 置を作製したい。フィラメントによるものはフィラメン トの曲げ部分が必要でなかなか小さくできない。平行平 板電極のものは電極面積がある程度必要であるから小型 に向かない。やはりマイクロ波によるものが小型化に向 いている。アンテナによってマイクロ波を導入するので 狭い空間にマイクロ波が入りやすい。また永久磁石によ ってECR共鳴させると高密度のプラズマを発生させや すい。小型のプラズマ発生装置としてマイクロ波励起 E CR装置が最適であると考える。しかし大型のプラズマ 発生装置では問題にならないことが、超小型のプラズマ 発生装置では新たな問題となる。そのようなことが幾つ もある。MBE装置のセルの場合、本体寸法が30mm 程度に限定される。プラズマ室には10mm程度しかあ てられない。このような超小型のイオン源ではアルゴン や窒素のように分子量がそこそこあるものであればプラ ズマに励起できる。しかし水素やヘリウムのような軽元 素の場合、ガス圧やマイクロ波強度を増やしてもなかな かプラズマにできない。だからイオン源としてイオンビ ームを取りだそうとすると極極微小の電流しか取り出せ ない。とても実用的な水準には達しない。

【0010】マイクロ波として、2.45GHzのもの を使う。他の周波数を使う事も原理的には可能である が、装置として成熟しているのは2.45GHzであ る。それでこれを例にして説明する。真空中のマイクロ 波波長は12cm程度である。すると直径10mm程度 の導波管を伝搬できない。アンテナを使い強制的にマイ クロ波をプラズマ室に導入する。入る事は入るが、狭す ぎて定在波はできない。マイクロ波パワーの多くは金属 の壁面に渦電流を発生させ熱となってしまう。一部が電 **【0008】⑤特開平9-270233「同軸型ECR 50 子励起に使われる。それを助長するためECRを使って**

5

いる。875ガウスの磁場で共鳴させるため、アンテナは長くする。少なくとも2点で875ガウスになり共鳴するように工夫する。ECR共鳴しても、ヘリウム、水素を励起するにはマイクロ波エネルギーが不足する。マグネトロンのマイクロ波パワーを増やせばいいだろうと思われる。ところがパワーを増やすとアンテナが強熱され溶けてしまう。いかにタングステンWだとしても溶けて蒸発しなくなってしまう。だからマイクロ波パワーを上げるのは限界がある。

[0011]

【課題を解決するための手段】超小型マイクロ波 E C R プラズマ発生装置においてアンテナを、仕事関数の低い 絶縁物アルミナ、MgO、チタニア、ステアタイト、フ ォルステライト、マコール、コージライト、ムライト、 Y2O3, LaB6, SrO, BaO, CaO, SrB 6、CaB6、Sc2O3の何れかよりなるアンテナカ バーによって覆う。さらに真空容器内壁もアルミナ、M gO、チタニア、ステアタイト、フォルステライト、マ コール、コージライト、ムライト、Y2O3、La Be, SrO, BaO, CaO, SrBe, CaBe, Sc2 〇3 の何れかよりなる内壁カバーで覆う。マイク 口波パワーを高くし、アンテナカバーの温度を上げてア ンテナカバーから熱電子放射がおこるようにする。また 内壁からの二次電子放出や光電子放出も起こるようにす る。マイクロ波だけでは電子密度がたりないがカバー加 熱による熱電子によって電子密度が高くなり、また壁か らは二次電子放出や光電効果によって電子が供給される のでマイクロ波共鳴吸収が激しく起こる。狭いプラズマ 室であるのに水素やヘリウムのような軽元素の髙密度プ ラズマを作ることができる。水素、ヘリウムのイオンビ 30 ーム電流を大幅に増強できる。

[0012]

【発明の実施の形態】図1は本発明の実施例にかかるイ オンプラズマ源の断面図である。円筒形の真空容器1は 内部でガスをプラズマにする空間を与える。 真空容器 1 の中心軸線上にアンテナ2が設けられる。アンテナ2は 高熱に耐える金属である。例えばタングステンW、タン タルTa、モリブデンMoなどである。真空容器1の内 壁には絶縁体よりなる内壁カバー3が挿入される。金属 壁がスパッタリングされないように保護するカバーであ る。それ以上の機能もあるが後に説明する。真空容器 1 の外周には軸方向の磁場を形成するための永久磁石 4 が 設けられる。永久磁石4はアンテナ2の存在する部分に 設ける。真空容器1の永久磁石4より前方には冷却管5 が巻き付けてある。冷却媒体をこれに通し真空容器1を 冷却するためのものである。 真空容器 1 の前端の前フラ ンジは円盤状の出口円板7を有する。出口円板7には出 口8が穿孔されここからイオンやラジカルが出るように なっている。真空容器1の前フランジ6はネジ9によっ てプラズマ処理装置10の開口部フランジに固定され

る。

【0013】内壁カバー3は前方で折れ曲がり部があり 出口円板7の内壁をも被覆保護している。出口円板カバ ー11である。アンテナ2の背後には、マイクロ波導入 端子12がある。端面に孔13があり、アンテナ2のピ ン14が差し込まれる。直線状のマイクロ波導入端子1 2は背後で同軸ケーブル (図示しない) につながり、同 軸ケーブルはマグネトロン(図示しない)に続く。同軸 ケーブル収容管15のフランジ16は、ネジ17によっ て真空容器1の後ろフランジ18に固着される。シール 部材19がマイクロ波導入端子15を、同軸ケーブル収 容管15の中央に保持する。同軸ケーブル側は大気圧に あり、アンテナ側は真空側にある。シール部材19が真 空を保持している。シール部材19とフランジ16の内 壁部を端壁カバー20によって保護している。真空容器 1の内部は全て絶縁体のカバー3、11、20によって 被覆されている。真空容器1にはガス導入管21があっ てここから原料ガスが内部に導入される。アンテナ2は タングステン、タンタル、モリブデンなどの高融点金属 で作るが、その外側にスッポリとアンテナカバー22が かぶせられる。アンテナカバーをかぶせるという事自体 は既に述べたように本発明者の先願にあるし新しい事で はない。しかしながらカバーの材質も違うしなによりそ の作用が異なる。これは熱電子放出の効率を高めるため のものである。

【0014】アンテナカバーと内壁カバーは、アルミ ナ、MgO、チタニア、ステアタイト、フォルステライ ト、マコール、コージライト、ムライト、Y2O3、L aB6, SrO, BaO, CaO, SrB6, Ca B 6 、 S c 2 O 3 の何れかによって作る。以上の構成に おいてその作用を説明する。原料ガス入口21から原料 ガスを導入する。マイクロ波をアンテナから真空容器 1 に導入する。永久磁石4によってアンテナ近傍に875 ガウスの共鳴磁場が発生している。マイクロ波によって 電子が振動する。永久磁石4が共鳴磁場を生ずるので電 子振動と同調すればマイクロ波パワーを強く吸収でき る。電子はガス分子に衝突しこれを電離させる或いは中 性ラジカルにする。壁に当たった電子は二次電子や光電 子を発生させ、これらによっても新たに電子ができるの で、これらがマイクロ波で振動し、分子を電離させる。 こうして電子が増殖してゆく。

【0015】マイクロ波パワーを増やすと電子運動が盛んになって、アンテナカバーと内壁カバーに衝突する。これらはセラミックであるからスパッタリングされにくい。損傷をあまり受けないが、衝突によって熱が発生し加熱される。温度が1000℃をこえ、さらに1500℃を超えるとアンテナカバーから熱電子が放射される。熱電子放射によってあらたな電子の供給源ができたことになる。先ほどの分子の電離によるのではなく、カバーからの電子の供給がなされる。電子の密度が高くなるか

らマイクロ波吸収媒体が増え、プラズマ密度も高くなる。これまで熱電子放射というのは熱陰極(フィラメント)だけからでるものと思われていたが、本発明は、カバーから熱電子を出すようにする。そのためには、従来技術として説明したものよりもマイクロ波パワーを上げる必要がある。金属のアンテナが輝星しているとスパッタリングによってアンテナが消耗するが本発明ではカバーで覆っているからそれはない。だから従来よりもマイクロ波パワーを上げることができる。

【0016】マイクロ波イオン源の限界以上にマイクロ 10 波パワーをアンテナに与えたことによって新天地が開けたということができる。アンテナカバーによって金属のアンテナを覆っているから、外部からの高速粒子(電子、イオン)がアンテナに当たらない。全てカバーのセラミックに当たる。セラミックは抉られて損傷を受ける。しかしセラミックは金属に比べて格段にスパッタリングに強い。伝導電子の凝縮による金属結合よりもセラミックの共有結合がずっと強いからである。だからアンテナ自体はスパッタリングによる損傷から完全に免れる。アンテナがスパッタリングによって痩せるというこ 20 とがない。

【0017】だからマイクロ波パワーをさらに増強できる。マイクロ波パワーを上げると電子運動が盛んになりますます電子、イオンのアンテナカバー、内壁カバーへの衝突が盛んになる。衝突によって運動エネルギーが、化学エネルギーと熱になる。化学エネルギーは物質の原子分子を解離させる。しかし金属面は全てカバーで保護されている。カバーはスパッタリングによって一部が損傷を受けるが金属に比べればずっと軽微である。すると衝突エネルギーのほとんどが熱になる。熱になるからカバー自体が加熱される。もちろん熱伝導があるからアンテナも加熱される。がカバーより、アンテナの方が低温に保たれる。つまりカバーは物理的にも熱的にもアンテナを保護する作用があるといえる。カバー温度が2000℃を越えるということも可能である。

【0018】すると、カバー自体から熱電子が大量に発生する。カバーがフィラメントと同じような作用をするようになるのである。絶縁体が熱電子を発生するというようなことは従来思いもよらないことであったが、高熱にすれば絶縁体でも熱電子を発生できるはずである。本発明はそのような絶縁体による熱電子の発生という新規な機構を発見しこれを有効利用する。そもそも熱電子放射は金属熱陰極からの電子放射として研究され、有名なリチャアードソンの式がある。これは金属、半導体の熱陰極からの電流を $1=AT^nexp(-ep/kT)$ によって与えるものである。金属の場合n=2、半導体の場合n=1. 2である。 $A=120Acm^{-2}K^{-2}$ であるが実際にはこの式に乗らない事が多い。一つには仕事関数pが現象量だからである。温度を上げるとp0、p0、p0 できくなるし、p1 で表さるし、p2 をするの中も大きくなる。それで熱電子

が発生するのである。タングステンの場合、2400℃程度で十分な熟電子電流が流れるようになる。だからタングステンフィラメントはすべてこれ以上の温度になるように加熱される。半導体の場合はφが低く十分な熟電子電流を得る事のできる温度はより低く750℃程度でよい。

【0019】従来熱陰極に使われるものは金属か半導体 であった。そうでないと熱電子が放射されないと思われ ていたからである。それは金属の場合フェルミ面に高密 度の電子があり、フェルミ面と大気電圧の相違が仕事関 数φであるからフェルミ面の電子が熱励起されφだけ跳 躍すると外部に出ると考えられるからである。半導体の 場合はフェルミ面がバンドギャップ中にあってフェルミ 面には電子が存在しない。しかし高温であるから伝導帯 に大量の電子が励起されこれが外部に放射される。仕事 関数はその場合伝導帯と大気電圧の差である。それが絶 縁体の場合はどうか?絶縁体はフェルミ面がバンドギャ ップにある。それは同じであるが、バンドギャップが広 くて伝導帯に電子がない。それで絶縁体は熱電子放射し ないものと漠然と考えられていたのであろう。しかし絶 縁体の伝導帯に電子が存在しないのは常温での話しであ る。髙熱になると、絶縁体の広いバンドギャップを越え て電子が伝導帯にたたきあげられる。伝導帯に十分な密 度の電子が存在する。そのような状態であれば熱電子放 射するのは当然である。だから絶縁体からも熱電子放射 がおこり本発明はその現象を発見し利用したものという ことができる。

【0020】であるから、本発明はマイクロ液による振動励起とフィラメントによる熱電子励起の両方を兼ね備えた装置となる。プラズマ発生効率は高い。熱フィラメントと比較して不利な点は、フィラメントのように負電圧にバイアスされてないということであろう。フィラメントは負電圧なので電子によってスパッタリングされない。アンテナ電位は直流的には壁電位と同じであるから電子がアンテナに衝突する。ところが実はカバーがありカバーがスパッタリングされるだけである。これはセラミックであるから損傷は少ない。衝突によって加熱され温度が上がるから熱電子放射がより盛んになって好都合なぐらいである。

[0021]

【実施例】超小型のECRイオン源として内径8mmゅの真空容器を作成しBNによって内張りした。アンテナはタングステンWである。初めは金属面の露呈したアンテナによって実験した。原料ガスを、アルゴン、窒素、ヘリウムガス、水素にしてこれらをプラズマにする実験である。アルゴンや窒素のように質量数の大きいものはこれでも満足できる密度のプラズマにすることができた。ところが水素ガスやヘリウムガスのように軽い元素については殆どプラズマにすることができなかった。これは真空容器が極めて狭いからである。アンテナを使っ

ても十分にマイクロ波が真空容器の内部に入らないし十 分な密度の定在波を形成できない。

【0022】マグネトロンのマイクロ波パワーを上げれば良いように思えるがそうでない。マイクロ波パワーを上げるとアンテナの電流が増えるしイオンや電子のアンテナへの衝突確率も増える。衝突による損傷(スパッタリング)も増える。ためにタングステンであってもスパッタリングと高熱のため短時間で痩せ細りなくなってしまう。アンテナがなくなってしまってはもはやイオン源としてつかえない。だからタングステンが融けない程度 10にマイクロ波パワーは制限される。

【0023】そこで本発明の思想に従って、アンテナをアルミナのカバーによって覆い、水素ガス、ヘリウムガスの励起を試みた。マイクロ波パワーをさらに上げる事が可能になり、軽元素であるヘリウム、水素を高密度のプラズマにすることができた。イオンビーム電流でいえば、先ほどの露出Wアンテナに比較し、十倍〜数十倍の電流量になった。狭い真空容器の内部に十分な密度のマイクロ波を導入できたからである。分解して調べるとカバーのアルミナ(融点2050℃)がすこし溶けており、アルミナとアンテナの温度が2000℃近くになったものと思われる。内部のタングステン(融点3400℃)は異常なくスパッタリングによる損傷は見られなかった。

[0024]

【発明の効果】超小型の E C R プラズマ源を作ろうとす るとき放電領域が狭くマイクロ波パワーが弱いので軽元 素を十分に励起できない。ところが本発明はアンテナに 熱電子放射率の高いセラミックのカバーをつけマイクロ 波パワーを上げるのでアンテナとアンテナカバーの温度 30 が上がりアンテナカバー自体から熱質子が放射される。 つまりアンテナがフィラメントとしての役割を持つよう になる。熱電子放射とそれによって壁からの二次電子放 出や光電効果による電子増幅などのために自由電子の密 度が飛躍的に増える。自由電子はサイクロトロン運動し てマイクロ波を共鳴吸収できる。ためにマイクロ波吸収 が増える。高速で走行する電子密度が高く水素やヘリウ ム原子に衝突する確率も増える。衝突によって電子とイ オン、あるいはラジカルになる。だからプラズマ密度が 高揚する。仕事関数の低い材質をアンテナカバーや内壁 40 に用いる事で、アンテナカバーからは熱電子放出が内壁 からは二次電子、光電子放出が盛んになりこれを有効に 利用する。

【0025】フィラメント型のイオン源は負電圧にバイ

アスした細いフィラメントを加熱し熱電子を放射してガ スを励起するものであった。マイクロ波イオン源はマイ クロ波によって電子を運動させるもので熱電子を作るも のでない。両者は判然と区別される。ところが本発明は アンテナカバーを髙熱に加熱し、フィラメントと同じよ うにここから熱電子を放射するようにしている。つまり 本発明のプラズマ発生機構は、フィラメント+マイクロ 波の二重の作用を有効に利用する。本発明の装置は、フ ィラメント型イオン源とマイクロ波イオン源を合体させ たのと同じ効果を奏するものである。フィラメントはま ったく使わないのに、フィラメント型イオン源と同じ反 応機構が生起する。不思議な事といえる。二重の作用に よっているからプラズマ生成効率が高くなる。だから8 mm~10mmの超小型のプラズマ室であっても水素、 ヘリウムを高密度励起できる。水素、ヘリウムのイオン ビーム電流を十分に高めることができる。

【図面の簡単な説明】

【図1】本発明の実施例にかかるECRイオンプラズマ源の断面図。

【符号の説明】

- 1 真空容器
- 2 アンテナ
- 3 内壁カバー
- 4 永久磁石
- 5 冷却管
- 6 前フランジ
- 7 出口円板
- 8 出口
- 9 ネジ
- 10プラズマ処理装置
 - 11出口円板カバー
 - 12マイクロ波導入端子
 - 13穴
 - 14ピン
 - 15同軸ケーブル収容管
 - 16フランジ17ネジ
 - 18後フランジ
 - 19シール部材
 - 20端壁カバー
- 21原料ガス入口
 - 22アンテナカバー
 - 2 3 熱電子放出領域
 - 2 4 熱電子

10

[図1]

