Module 3-1: Linear Algebra I (Practice)

國立中山大學電機系 魏家博

Outline

- 1. Linear Equations
- 2. Least Squares Problem
 - Normal Equation
 - Gradient Descent
- 3. Point Set Registration
 - Matrix Calculus
 - Gradient Descent

Exercise 1: Solve Linear Equations

Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

a)
$$\mathbf{A} = \begin{bmatrix} 3 & 2 & -1 \\ 6 & -1 & 3 \\ 1 & 10 & -2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ -4 \\ 2 \end{bmatrix}$$

b)
$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 3 \\ 21 & -4 & 18 \\ -9 & 1 & -9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ 7 \\ -8 \end{bmatrix}$$

c)
$$\mathbf{A} = \begin{bmatrix} 7 & -4 & 1 \\ 3 & 2 & -1 \\ 5 & 12 & -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -15 \\ -5 \\ -5 \end{bmatrix}$$

判斷上面線性方程式是否有解,若有解,再進一步判斷是唯一解或無窮多解。

Useful Propositions

Proposition 1. The following three statements are equivalent.

- 1. The linear system Ax = b is consistent.
- 2. The vector **b** can be expressed as a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n .
- 3. $rank(\mathbf{A}) = rank([\mathbf{A} \ \mathbf{b}])$

Proposition 2. Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The following three statements are equivalent.

- 1. The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at most one solution for every $\mathbf{b} \in \mathbb{R}^m$.
- 2. The column vectors of **A** are linearly independent.
- 3. $\operatorname{rank}(\mathbf{A}) = n$

- Open exercise_1a_start.py
- 2. Use np.array() to create array A and array b.
- 3. Use np.linalg.matrix_rank() to calculate the rank of **A**.
- 4. Use np.hstack() to create array [A, b].
- 5. Use np.linalg.matrix_rank() to calculate the rank of [A, b].
- 6. Use **Proposition 1** to determine whether Ax = b is consistent.
- 7. If it is consistent, then use **Proposition 2** to determine whether $\mathbf{A}\mathbf{x} = \mathbf{b}$ has only one solution.
 - You can use A.shape[1] to get the column number of A
- 8. If it has only one solution, use np.linalg.solve() to obtain the solution of Ax = b.

- Open exercise_1b_function.py
- 10. Write a function solve_linear_equation() that achieves the following requirements
 - Input: Array **A** and array **b**
 - Output: 1 if Ax = b has only one solution
 - 0 if Ax = b has infinitely many solutions
 - -1 if Ax = b has no solutions
- 11. Test your function with
 - input_id = 'case1'
 - input_id = 'case2'
 - input_id = 'case3'

- 12. Open exercise_1c_draw.py
- 13. Draw the plane Ax = b in 3D space as shown in the following figure.

Exercise 2: Least Squares Problem

Consider

$$\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

where
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

1. Use the normal equation to find the optimal solution, i.e., solve

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{b} \implies \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}^{T} \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Find all x_1, x_2 that satisfy the above equation. In fact, there are infinitely many optimal solutions for this exercise.

- Open exercise_2b_gradient_descent.py
- 3. Implement the following pseudo code for the gradient descent method.

```
x = [-2,2]^T # initial condition
alpha = 0.02 #learning rate
max_iter = 1000
f = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}
for k in range(max_iter):
   print k, (x1,x2), f
             as shown in the right table
   x_prev = x
   x = x - alpha * \nabla f(x)
   \# \nabla f(x) = 2(\mathbf{A}^T \mathbf{A} \mathbf{x} - \mathbf{A}^T \mathbf{b})
   if ||x - x_{prev}|| \le 10^{-8} then break
   f = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}
```

k	(x_1, x_2)	$f(\mathbf{x})$
0	(-2, 2)	113.00
1	(-1.4, 0.8)	41.00
2	(-1.,04, 0.08)	15.08
3	(-0.69, -0.61)	2.39
4	(-0.62, -0.77)	1.18
5	(-0.57, -0.86)	0.74
:	:	:
37	(-0.5, -1.0)	0.5

最佳解 最小值 印出小數點後4位 印出小數點後8位

- 4. Hints for the pseudo code:
 - You can use np.dot(A, b) or A.dot(b) to perform matrix multiplication Ab
 - You can use A.T to obtain A^T
 - You can use np.linalg.norm(v) to calculate $\|\mathbf{v}\|_2$
 - You can use x**2 to calculate x²
 - Learn how to set the decimal precision for print(). There are two styles.
 - Old style (Python 2.7): http://interactivepython.org/runestone/static/pip/StringFormatting/interpolation.html
 - New style (Python 3.7): https://pyformat.info/

- 5. Answer the following questions.
 - a) How many iterations are required to reach the optimal solution? 需要跑幾次 迴圈才能找到最佳解?
 - b) Try different learning rates of alpha. How to adjust the learning rate for faster speed of convergence? 如何調整 alpha 使得所需迴圈次數愈少愈好(即較快達到收斂)?
 - c) Try different initial points of x. Do different initial points give rise to different to optimal solutions? 不同初始點 x 會使演算法找到不同最佳解嗎?
 - d) Does the minimum vary with the values of the initial point? 不同初始點 x 會 使演算法找到不同最小值嗎?
 - e) Is the minimum a local minimum or a global minimum?

- 6. Open exercise_2c_draw.py
- 7. Let ax = plt.gca(). Use ax.scatter() to plot the point x of each iteration in the 3D space as shown in Figure 1 (draw the red points)
- Draw all optimal solutions calculated in Step 1 of Exercise 2 as shown in Figure 2 (draw the blue line).

Figure 1

Exercise 3: Point Set Registration

Exercise 3: Point Set Registration

Let **P** and **Q** be two given matrices in $\mathbb{R}^{3\times49}$. Each column of **P** (or **Q**) represents a point in \mathbb{R}^3 . Thus, column vectors of **P** (or **Q**) represent 49 points in \mathbb{R}^3 .

In Figure 1, the blue points are column vectors of \mathbf{P} , while the red points are column vectors of \mathbf{Q} . Our goal is to search for a scaling factor $s \in \mathbb{R}$ such that points represented by $s\mathbf{Q}$ are as close as possible to points represented by \mathbf{P} , as shown in Figure 2. To be precise, we aim to solve the following minimization problem

$$\min_{s} \sum_{i=1}^{49} ||\mathbf{p}_{i} - s\mathbf{q}_{i}||_{2}^{2} = \min_{s} \sum_{i=1}^{49} (\mathbf{p}_{i} - s\mathbf{q}_{i})^{T} (\mathbf{p}_{i} - s\mathbf{q}_{i}) = \min_{s} f(s)$$

where $\mathbf{p}_i \in \mathbb{R}^3$ is the ith column of \mathbf{P} , and $\mathbf{q}_i \in \mathbb{R}^3$ is the ith column of \mathbf{Q} .

$$f(s) = \sum_{i=1}^{49} (\mathbf{p}_i - s\mathbf{q}_i)^T (\mathbf{p}_i - s\mathbf{q}_i)$$

- 1. Calculate $\partial f/\partial s$. Set $\partial f/\partial s=0$ to compute the optimal solution \hat{s} . (變數 s 是純量,僅需用到高中微積分)
- 2. Open exercise_3a_point_set_registration.py
- 3. Compute $\hat{s} = (\sum_{i=1}^{49} \mathbf{p}_i^T \mathbf{q}_i) (\sum_{i=1}^{49} \mathbf{q}_i^T \mathbf{q}_i)^{-1}$ After computing \hat{s} , you can use draw_landmarks(\mathbf{P} , $\hat{s}\mathbf{Q}$) to visualize the result.

4. Compute the mean distance error d(s) for s=1 and $s=\hat{s}$, where the mean distance error d(s) is defined as

$$d(s) = \frac{1}{49} \left(\sum_{i=1}^{49} \sqrt{(\mathbf{p}_i - s\mathbf{q}_i)^T (\mathbf{p}_i - s\mathbf{q}_i)} \right)$$

- a) Using the for loop
- b) Without using the for loop (this method is called vectorization)

Calculate
$$\mathbf{E} = \mathbf{P} - s\mathbf{Q}$$

You only need np.sum(), np.sqrt(), element-wise multiply * to complete this task.

$$\begin{bmatrix} | & | & | & | \\ e_1 & e_2 & \cdots & e_{49} \\ | & | & | & | \end{bmatrix} \begin{bmatrix} | & | & | & | \\ e_1 & e_2 & \cdots & e_{49} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ h_1 & h_2 & \cdots & h_{49} \\ | & | & | & | \end{bmatrix} \xrightarrow{} [s_1 \quad s_2 \quad \cdots \quad s_{49}] \xrightarrow{} d(s)$$

$$\mathbf{E} * \mathbf{E}$$

$$np.sum(, axis=0) \quad np.sum(np.sqrt()) / 49$$

Exercise 4: Point Set Registration

Exercise 4: Point Set Registration

Let **P** and **Q** be two given matrices in $\mathbb{R}^{3\times49}$. Each column of **P** (or **Q**) represents a point in \mathbb{R}^3 . Thus, column vectors of **P** (or **Q**) represent 49 points in \mathbb{R}^3 .

In Figure 3, the blue points are column vectors of \mathbf{P} , while the red points are column vectors of \mathbf{Q} . Our goal is to search for a scaling factor $s \in \mathbb{R}$ and a translation vector $\mathbf{t} \in \mathbb{R}^3$ such that $s\mathbf{q}_i + \mathbf{t}$ is as close as possible to \mathbf{p}_i for i = 1, 2, ..., 49, as shown in Figure 4. To be precise, we aim to solve the following minimization problem

$$\min_{s,\mathbf{t}} \sum_{i=1}^{49} \|\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t}\|_2^2 = \min_{s,\mathbf{t}} \sum_{i=1}^{49} (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t})^T (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t}) = \min_{s,\mathbf{t}} f(s)$$

where $\mathbf{p}_i \in \mathbb{R}^3$ is the ith column of \mathbf{P} , and $\mathbf{q}_i \in \mathbb{R}^3$ is the ith column of \mathbf{Q} .

$$f(s, \mathbf{t}) = \sum_{i=1}^{49} (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t})^T (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t})$$

- 1. Define $\mathbf{u} = [s, \mathbf{t}^T]^T$. Calculate $\partial f / \partial \mathbf{u}$. Set $\partial f / \partial \mathbf{u} = 0$ to compute the optimal solution $\hat{\mathbf{u}}$.
- 2. Open exercise_4a_point_set_registration.py
- 3. Compute $\hat{\mathbf{u}} = \left(\sum_{i=1}^{49} \mathbf{r}_i^T \mathbf{r}_i\right)^{-1} \sum_{i=1}^{49} \mathbf{r}_i^T \mathbf{p}_i$ where $\mathbf{r}_i = [\mathbf{q}_i, \mathbf{I}_3]$ Note that $\mathbf{I}_3 = \text{np.eye}(3)$

You might need np.column_stack() to create $[\mathbf{q}_i, \mathbf{I}_3]$

You can use np.inv() to compute the inverse of the matrix $\sum_{i=1}^{49} \mathbf{r}_i^T \mathbf{r}_i$.

- 4. Suppose $\hat{\mathbf{u}} = [s, \mathbf{t}^T]^T$, you can use draw_landmarks(\mathbf{P} , \mathbf{R}) to visualize the result, where $\mathbf{R} = s\mathbf{Q}$ + np.tile(\mathbf{t} , 49)
- 5. Compute the mean distance error $d(s, \mathbf{t})$ for

a)
$$s = 1$$
, $\mathbf{t} = [0,0,0]^T$

b)
$$s = \widehat{\mathbf{u}}[0], \ \mathbf{t} = \widehat{\mathbf{u}}[1:]$$

The mean distance error $d(s, \mathbf{t})$ is defined as

$$d(s, \mathbf{t}) = \frac{1}{49} \left(\sum_{i=1}^{49} \sqrt{(\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t})^T (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t})} \right)$$