## **Tutorial 11 Solution.**

- 1. Modify Dijkstra's algorithm to compute the number of shortest paths from s to every vertex t.
  - a. Add a new variable nos(v)=0, for all v. nos(s)=1
  - b. Add the line under the following if d(v) < d(u) + I(u,v).

$$nos(v)=nos(u);$$

c. add the following code:

If 
$$d(v)==d(u)+I(u,v)$$
  
 $nos(v)=nos(v)+nos(u)$ ;

2. Compute the shortest path for all vertices starting from A. Do this in tabular form.



| А | В     | С     | D     | Е     | F     | G     | Н     | Queu<br>e   | u=del<br>min | d(u) |
|---|-------|-------|-------|-------|-------|-------|-------|-------------|--------------|------|
| 0 | infty | Α           | Α            | 0    |
|   | 1     | infty | infty | 4     | 8     | infty | infty | B,E,F       | В            | 1    |
|   |       | 3     | infty | 4     | 7     | 7     | infty | C,E,F,<br>G | С            | 3    |
|   |       |       | 4     | 4     | 7     | 5     | infty | D,E,F,      | D            | 4    |

|  |  |   |   |   |   | G           |   |   |
|--|--|---|---|---|---|-------------|---|---|
|  |  | 4 | 7 | 5 | 8 | E,F,G,<br>H | Е | 4 |
|  |  |   | 7 | 5 | 8 | F,G,H       | G | 5 |
|  |  |   | 6 |   | 6 | F,H         | F | 6 |
|  |  |   |   |   | 6 | Н           | Н | 6 |

3. Show an example of a graph with negative edge weights and show how Dijkstra's algorithm may fail. Suppose that the minimum negative edge weight is -d. Suppose that we create a new graph G' with weights w', where G' has the same edges and vertices as G, but w'(e)=w(e)+d. In other words, we have added d to every edge weight so that all edges in the new graph has edge weights non-negative. Let us run Dijkstra on this graph. Will it return the shortest paths for G?



The fact about Dijkstra is that once a vertex leaves the queue, its distance from s is never updated. Start Dijkstra from s and see that d(b)=3 is what Dijkstra will produce. The correct answer is 2. Also note that adding a constant will give wrong answers. The simple reason being that the cost of a path will change depending on the number of edges in the path. Adding 3 to the graph above does not identify the correct path.

- 4. Look at the following graph from Tutorial 9 with red edges and blue edges. Our task was to find the path from s to every vertex t, with the fewest red edges. Run any modified bfs of your choice and Dijkstra and compare the sequence of vertices visited by BFS and by Dijkstra.
- 5. You are given a time table for a city. The city consists of n stops V={v1,v2,...,vn}. It runs m services s1,s2,...,sm. Each service is a sequence of vertices and timings. For example, the schedule for service K7 is given below. Now, you are at stop A at 8:00am and you would like to reach stop B at the earliest possible time. Assume that buses may

be delayed by at most 45 seconds. Model the above problem as a shortest path problem. The answer should be a travel plan.

| Service : K7 |                  |             |      |  |  |  |  |
|--------------|------------------|-------------|------|--|--|--|--|
| H15          | Convocation Hall | Market Gate | H15  |  |  |  |  |
| 7:15am       | 7:20am           | 7:30        | 7:40 |  |  |  |  |



Figure 4.8 Dijkstra's shortest-path algorithm.

```
procedure dijkstra(G, l, s)
Input:
           Graph G = (V, E), directed or undirected;
           positive edge lengths \{l_e: e \in E\}; vertex s \in V
Output:
           For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = deletemin(H)
   for all edges (u,v) \in E:
      if dist(v) > dist(u) + l(u, v):
          dist(v) = dist(u) + l(u, v)
          prev(v) = u
          decreasekey(H, v)
```