

Ride Quality Index – A New Approach to Quantifying the Comparison of Acceleration Responses of High Speed Craft

Multi-Agency Craft Conference Virginia Beach, Virginia 14 – 16 June 2011

Michael Riley, Dr. Tim Coats Kelly Haupt, Don Jacobson

Combatant Craft Division

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JUN 2011		2. REPORT TYPE		3. DATES COVE 00-00-2011	red to 00-00-2011
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
- •	k-A New Approach		Comparison Of	5b. GRANT NUM	1BER
Acceleration Respo	onses Of High Speed	i Crait		5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AE Centers, Carderocl	` '	D,20817	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
_	otes he Multi-Agency Cr ittle Creek, Virginia		ACC) 2011, June	14-16, 2011,J	oint Expeditionary
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 23	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

Carderock

- Background
- Objective
- Repeatable A_{1/n} Calculations
- Ride Quality Index
- Wave Slam Damage Potential
- Example Comparisons
- Summary

Dr. Paul Rispin **ONR 331**

Background

- Historical perspective (1950's early 1970's)
 - Passenger comfort studies for airplanes, cars, trains
 - Ride quality linked to vibrations, temperature, noise
 - RMS acceleration values used to quantify vibration amplitudes
 - Applied to displacement hulls, surface effect ships, hydrofoils
- NSWCCD mid-1970's: RMS values reported not applicable when craft motions include shocks or impulsive velocity changes
 - Dissatisfaction with general lack of ride quality data
 - Lack of fully satisfactory criteria for judging ride quality in rough seas
 - No standard process for acquiring and processing data

Objective

Carderock

To present a simplified approach to quantifying ride quality when comparing wave impacts for different craft, different sea states, different speeds, or different gage locations.

A_{1/n} Calculation Process Unambiguous statistical calculations

Carderock

Step 1 Compute spectrum of unfiltered record

Use spectrum to confirm 10 Hz filter criteria and ½ second time criteria

Step 4 Compute statistical values

Step 3 Extract peaks with PKT algorithm using RMS vertical threshold and ½-second time threshold

Average A_{1/n} Accelerations

Filtered vs Unfiltered Wave Encounters

Single Impa

<u>Time</u>	Response
A to B	Close to gravity free-fall (-Estimate of drop height primpact
В	Maximum downward velocTime of initial water impac
B to C	Craft moving down in wateMaximum loading phaseWave slam period
С	 Time of maximum downwa Instantaneous velocity = 0 Loading reduced to ambie
C to D	 Upward hydro-dynamic fo Upward buoyant force Upward thrust vector Force upward stops at D

Peak Acceleration Comparison

Carderock

Test Condition Variables: different craft, speeds, wave heights, gage locations

Different Comparison Format

Carderock

The least squares linear fit has a zero intercept

Ride Quality Index

Ride Quality Index
$$(RQI) = 1 - \frac{\Delta A_{ConditionII}}{\Delta A_{ConditionI}}$$

Why "Acceleration Ratio"?

Carderock

Damage Categories

Structural Damage
Equipment malfunction or failure
Crew discomfort or injury

(Damage Potential)_{Shock} \propto (Δ Rigid Body Velocity)

$$\frac{A_{RBII}}{A_{RBI}} \approx \frac{\Delta V_{RBII}}{\Delta t_{RBII}} / \frac{\Delta V_{RBI}}{\Delta t_{RBI}}$$

If Δt_i is relatively constant...

then
$$\frac{A_{II}}{A_{I}} \approx \frac{\Delta V_{RBII}}{\Delta V_{RBI}}$$

$$RQI = 1 - \frac{A_{II}}{A_{I}} = 1 - \frac{\Delta V_{II}}{\Delta V_{I}} \propto \frac{1}{Damage\ Potential}$$

Ride Quality Index = f (Damage potential)-1

$$\frac{A_{II}}{A_{I}} \uparrow \rightarrow Damage \ Potential \uparrow \rightarrow RQI \downarrow \qquad \frac{A_{II}}{A_{I}} \downarrow \rightarrow Damage \ Potential \downarrow \rightarrow RQI \uparrow$$

RQI vs Acceleration Ratio

Ride Quality Index Using A_{1/n} Ratios

	\		
Test	Condition I	Condition II	Ride Quality Index
A 1/100	5.31 g	3.50 g	0.34
A 1/10	3.48 g	2.82 g	0.19
A 1/3	2.41 g	1.87 g	0.24
RMS	0.62g	0.54g	0.13
1-Slope	na	na	0.29

Simple Damage Mechanisms

Carderock

Test	Condition I	Condition II	Ride Quality Index
A 1/100	5.31 g	3.50 g	0.34
A 1/10	3.48 g	2.82 g	0.19
A 1/3	2.41 g	1.87 g	0.24
RMS	0.62g	0.54g	0.13
1-Slope	na	na	0.29

Failures due to cyclic lower amplitude wave slams (shock) could be caused by electrical disconnects of plugs, sockets, or circuit cards

Failures due to severe (large amplitude) wave slams (shocks) could be caused by material over stresses or disconnects

Example: Same Craft Different Headings

Example: Same Craft Different Gage Locations

Example: Two Craft - Ride Control Comparison

Observations

- Use of RQI requires consistent data processing
 - Generalized A_{1/n} process
- New approach
 - Use of all peak accelerations
 - Or, use of all statistics (RMS, $A_{1/3}$, $A_{1/10}$, $A_{1/100}$), not one level
- Also applicable to pitch, roll, pitch or roll rates
- Useful to quantify a skilled operators perception
- Compare craft responses regardless of the source of the data, when generalized $A_{1/n}$ process used

Summary

- Applied a 4-step computational process for repeatable A_{1/n} calculations
- Introduced a simple Ride Quality Index
 - New combined use of all peaks, RMS, $A_{1/3}$, $A_{1/10}$, $A_{1/100}$
 - Proportional to wave slam (shock) damage potential
 - Cumulative damage or single-severe slam affects
 - Useful tool for better/worse ride quality comparisons
- Use of standardized A_{1/n} calculation and RQI may foster future comparisons of ride quality of different craft or different test conditions regardless of the source of the data

Questions

Test	Condition I	Condition II	Ride Quality Index
A 1/100	5.31 g	3.50 g	0.34
A 1/10	3.48 g	2.82 g	0.19
A 1/3	2.41 g	1.87 g	0.24
RMS	0.62g	0.54g	0.13
1-Slope	na	na	0.29