METHOD OF MOMENT FOR THIN WIRE

DOUADI Khaled ALHARISS Nivine

Picture token from the course slides

Summary

Presentation title 2

Introduction

The *Method of Moments (MoM)* is a numerical technique used to solve integral equations in electromagnetics, particularly for antenna analysis. It transforms continuous equations into solvable linear systems, ideal for modeling thin-wire antennas. MoM calculates important parameters like current distribution and input impedance, essential for antenna design. It is especially valuable for complex structures where analytical solutions are not possible.

Context and Objectives

CONTEXT:

- APPLICATION OF THE METHOD OF MOMENTS TO SOLVE INTEGRAL EQUATIONS
- ANTENNA MODELING AND NUMERICAL SIMULATIONS

OBJECTIVES:

- USE THE METHOD OF MOMENTS TO ANALYZE THE CURRENT DISTRIBUTION ON A THIN-WIRE ANTENNA
- SOLVE THE INTEGRAL EQUATION USING TWO CONFIGURATION AND COMPARE THE RESULTS WITH THOSE OBTAINED FROM NEC

Key Principles Of the Method of Moments

Discretization

Impedance Matrix Z{mn}

Rows: Observation points (testing functions).

Columns: Current contributions (basis functions).

Divide the structure into small segments and Approximate the current distribution with basis functions

$$\begin{array}{l} \text{N = [7, 17, 27];} \\ \text{nb_of_segments = N(m);} \\ \text{Zmn = zeros(nb_of_segments, nb_of_segments);} \\ \text{delta = 1 / nb of segments;} \end{array} \left(\begin{array}{cccc} Z_{11} & \cdots & Z_{1N} \\ \vdots & \ddots & \vdots \\ Z_{N1} & \cdots & Z_{NN} \end{array} \right)$$

Integral Equation

Formulate the integral equation using Green's function.

$$Z_{mn} = \frac{j}{\omega \varepsilon} \int_{(n-1)\Delta}^{n\Delta} \left(k^2 + \frac{\partial^2}{\partial z^2} \right) G(R) \, dz'$$

$$\frac{j}{\omega\varepsilon_0} \frac{k}{\sin(k\Delta)} \int_{z_m-\Delta/2}^{z_m+\Delta/2} [G(R_{n+1}) + G(R_{n-1}) - 2G(R_n)\cos(k\Delta)] dz$$

Testing Functions

Apply **test functions** to convert the integral equation into a set of linear algebraic equations

$$\delta(z-z_a)$$

$$g_n(z) = u \left[z - \left(z_n - \frac{\Delta}{2} \right) \right] - u \left[z - \left(z_n + \frac{\Delta}{2} \right) \right]$$

Solution

$$I = Z^{-1} \times V$$

$$I \quad n = Zmn \setminus V \quad m;$$

First using piecewise continuous basis functions and pointmatching testing

```
figure:
hold on;
for m = 1:3
   nb of segments = N(m);
                                                    % Select number of basis functions (segments)
    Zmn = zeros(nb_of_segments, nb_of_segments);
                                                             % Initialize impedance matrix
   delta = 1 / nb_of_segments;
                                                    % Length of each segment
   legend_labels{m} = ['Segments: ', num2str(nb_of_segments)];
   % Fill impedance matrix Zmn
   for j = 1:nb of segments
       for i = 1:nb of segments
           zm = (i - 0.5) * delta;
                                                       % Midpoint of the segment
           R = sqrt(a^2 + (zm - z).^2);
                                                       % Distance between observation and source points
           % Define integrand for impedance calculation using point-matching
           func = inline((1i / (2 * pi * frq * e0)) * ...
                (exp(-1i * k * R) / (4 * pi * R^5) * (-R^2 * (1 + 1i * k * R) - ...
               (1i * k * R * (zm - z).^2 - (1 + 1i * k * R) * (3 + 1i * k * R) * (zm - z).^2)) + ...
               k^2 * exp(-1i * k * R) / (4 * pi * R));
           Zmn(j, i) = quad(func, (j-1) * delta, j * delta);
                                                                 % Numerical integration over segment
       end
    end
   % Define excitation voltage vector and solve for current distribution I n
   V m = zeros(nb of segments, 1);
                                                                % Initialize voltage vector
   V m((nb of segments + 1) / 2) = 1 / delta;
                                                                % Excitation at the center segment
                                                       % Solve for current distribution I_n
   I n = Zmn \setminus V m;
   z_N = linspace(delta / 2, 1 - delta / 2, nb_of_segments); % Segment midpoints for plotting
   % Store total impedance by taking the reciprocal of center segment current
   impedance_values(m) = 1 / I_n((nb_of_segments + 1) / 2);
```


Second using piecewise sinusoidal basis functions and piecewise continuous test functions

```
figure:
hold on;
for m = 1:3
    nb of segments = N(m);
                                                    % Number of segments
                                                             % Initialize impedance matrix
    Zmn2 = zeros(nb_of_segments, nb_of_segments);
                                                   % Segment length with sinusoidal basis
    delta = 1 / (nb_of_segments + 1);
    legend labels(m) = ['Segments: ', num2str(nb of segments)];
    % Fill impedance matrix Zmn2
    for j = 1:nb of segments
        for i = 1:nb_of_segments
           zm = i * delta;
                                           % Center of each segment
            zm 1 = zm - delta;
            zm 2 = zm + delta;
            % Calculate distances for sinusoidal basis function points
            R = sqrt(a^2 + (zm - z).^2);
            R 1 = sart(a^2 + (zm 1 - z).^2);
            R 2 = sqrt(a^2 + (zm 2 - z).^2);
           % Define integrand for sinusoidal basis function configuration
            func2 = inline((1i / (2 * pi * frg * e0)) * (k / sin(delta * k)) * (...
                (exp(-1j * k * R_2) / (4 * pi * R_2)) + ...
                (exp(-1i * k * R 1) / (4 * pi * R 1)) - ...
                (2 * (exp(-1j * k * R) / (4 * pi * R)) * cos(k * delta))));
            Zmn2(j, i) = quad(func2, (j - 0.5) * delta, (j + 0.5) * delta); % Numerical integration over segment
        end
    end
    % Define excitation vector and solve for current distribution I n2
    V m2 = zeros(nb of segments, 1);
                                                        % Center excitation
   V_m2((nb_of_segments + 1) / 2) = 1;
    I n2 = Zmn2 \ V m2;
                                               % Solve for current distribution
    z N = linspace(delta, 1 - delta, nb of segments); % Segment midpoints for plotting
```


Output results

First Method

Second Method

Comparison using nec software

Presentation title 9