Package 'JUMPsem'

January 9, 2024

Type Package
Title JUMPsem: Enzyme Activity Inference with Structural Equation Modeling
Version 1.0
Date 2023-09-13
Author Dehui Kong
Maintainer Dehui Kong <dkong3@uthsc.edu></dkong3@uthsc.edu>
Imports lavaan(>= 0.6-11), tidyr(>= 1.2.0), stringr(>= 1.4.0), dplyr(>= 1.0.9), psych(>= 2.2.5), devtools(>= 2.4.5), EFAtools(>= 0.4.1)
Description JUMPsem is used to infer enzyme activity.
Depends R (>= $3.5.0$)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
aceAdjacency
catchActRaw
getFa
inputTransformPSP
mastInput
motifEx
pspAdjacency
pspMotifAdjacency
singleEnzymeAff
singleKinaseAct
singleLigaseAct
ubiAdjacency

2 getFa

aceAdjacency aceAdjacency

Description

This script is used to build HUMAN HAT-substrate adjacency matrix.

Usage

```
aceAdjacency(databaseACE)
```

Arguments

databaseACE Default database or customized database input.

catchActRaw catchResults

Description

Catch Activity and Affinity. Activity contains Raw-Activity, Mean-Center, Z-scaled.

Usage

```
catchActRaw(x)
```

Arguments

x The results from modeling fitting.rawData Input raw data (quantitative phospho-proteomics / ubiqutin-proteomics data)

getFa Build MEME input

Description

script to extract MEME input .fa file

Usage

```
getFa(ss = NULL, es = NULL, filePath)
```

Arguments

ss Vector; Substrate species; ("mouse", "rat", "human")
es Vector; Kinase species; ("mouse", "rat", "human")

The path is used to save .fa files. Recommend to create a new folder to save all

.fa.files.

inputTransformPSP 3

Examples

```
getFa(ss = "human", es = c("human", "mouse", "rat"), filePath = getwd())
```

inputTransformPSP

inputTransform

Description

This script is used to log2 transform AND/OR whole proteome normalize input data.

Usage

```
inputTransformPSP(
  input_raw,
 input_log2_trans = FALSE,
 whole_log2_trans = FALSE,
 whole_proteome = NULL
)
```

Arguments

Input raw data (quantitative phospho-proteomics/ubiquitin-proteomics data) input_raw input_log2_trans

> FALSE or TRUE. Need program to do log2 transforming of the input file or not. Default is FALSE.

whole_log2_trans

Need program to do log2 transforming of the whole proteome or not. Ignore if -whole.proteome is missing. Default is FALSE.

whole_proteome Set up whole proteome used to normalize phospho-proteomics/ubiquitin-proteomics data by whole proteome. Default is NULL.

JUMPsem

JUMPsem

Description

Infer enzyme activity from phosphoralation, ubiquitination, acetylation

4 JUMPsem

Usage

```
JUMPsem(
   input = NULL,
   datatype = NULL,
   organism = NULL,
   enzyme.organism = NULL,
   database = NULL,
   cor.off = 0.95,
   kmo.off = 0,
   enzyList = NULL,
   input.log2.norm = FALSE,
   whole.log2.trans = FALSE,
   whole.proteome = NULL,
   motif = NULL,
   output.folder = getwd()
)
```

Arguments

input	Dataframe. Your quantitative ubiquiti-proteomics, phospho-proteomic and acetyr-
	proteomics data.

Deteform Von mentitetin olimiti metamin alamba metamin ada estal

datatype Factor. Data type: ubiquitination or phosphoralation or acetylation; ("ubi",

"psp", "ace")

organism Vector. Substrate species; ("human", "mouse", "rat")

enzyme.organism

Vector. Enzyme species; ("human", "mouse", "rat")

database Dataframe. Customized database input. Default is NULL using internal database.

cor.off Numeric. Set up correlation cutoff value 0-1 to remove high collinear variables.

Default is 0.95.

kmo.off Numeric. Set up KMO cutoff value 0-1. Default is 0.

enzyList Vector. Program only calculate the enzyme in the enzyList. Default is to output

ALL enzyme activities and affinities.

input.log2.norm

Logical. FALSE or TRUE. Need program to do log2 transforming of the input

file or not. Default is FALSE.

whole.log2.trans

Logical. FALSE or TRUE. Need program to do log2 transforming of the whole proteome or not. (Ignore if -whole.proteome is missing). Default is FALSE.

 $\label{thm:continuous} \mbox{ whole proteome used to normalize phosphor-proteome or } \mbox{ } \mbox{ or } \mbox{ } \m$

ubiquitin-proteome whole proteome. Default is NULL.

motif Matrix. Added kinase-subatrate relationships from motif discovery.

output.folder Character. Character vector of location to save files if desired. Default is current

directory.

Details

You can use JUMPsem package to get enzyme activity.

mastInput 5

Value

List

Examples

```
result <- JUMPsem(input = input_ubi_example,</pre>
                   datatype = "ubi",
                   organism = "human",
                   input.log2.norm = T)
result <- JUMPsem(input = input_psp_example,</pre>
                   datatype = "psp",
                   organism = "mouse",
                   enzyme.organism = c("human", "mouse", "rat"),
                   cor.off = 0.8,
                   input.log2.norm = TRUE,
                   whole.log2.trans = TRUE,
                   motif = motif_example,
                   whole.proteome = wholeProteome_example)
result <- JUMPsem(input = input_ace_example,</pre>
                  datatype = "ace",
                   organism = "human",
                   input.log2.norm = FALSE)
```

 ${\tt mastInput}$

Build MAST input

Description

Script to extract MAST input FASTA file.

Usage

```
mastInput(input, savePath = getwd())
```

Arguments

input The same quantitative phosphoproteomics data as eSEM() input file. savePath The path to save built MAST input file. Default is the current directory.

Examples

```
mastInput(input = input_psp_example)
```

6 pspAdjacency

Description

This script is used to extract kinase-substrate relationships from motif scanning and build motif_input file for KSEM().

Usage

```
motifEx(mastFile, savePath = getwd())
```

Arguments

mastFile	The output file "extract_result.txt" from Step: 03step_ExtractMASTresult.sh.
savePath	Path to save motif_input.txt file. Default is current directory.

|--|--|

Description

This script is used to build kinase-substrate adjacency matrix with only PSP database.

Usage

```
pspAdjacency(sp, ep, databasePSP)
```

Arguments

sp	Substrate species; ("mouse", "rat", "human").
ер	Enzyme species; ("mouse", "rat", "human").
databasePSP	Default database or customized database input.

pspMotifAdjacency 7

pMotifAdjacency pspMotifAdjacency

Description

This script is used to build enzyme-substrate adjacency matrix with PSP database + Motif.

Usage

```
pspMotifAdjacency(sp, ep, databasePSP, motif.ref)
```

Arguments

sp	Substrate species; ("mouse", "rat", "human").
ер	Enzyme species; ("mouse", "rat", "human").
databasePSP	Default database or customized database input.
motif.ref	Added enzyme-subatrate relationships from motif discovery. Same as KSEM -motif parameter.

neAff

Description

Get single enzyme affinity.

Usage

```
\verb|singleEnzymeAff(enzyme, input, adj, cor.off, kmo.off)|\\
```

Arguments

enzyme	Single enzyme name.
input	Normalized and transformed phospho-proteomics / ubiqutin-proteomics data.
adj	Adjacency matrix.
cor.off	Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.
kmo.off	Set up KMO cutoff value 0-1. Default is 0.

8 singleKinaseAct

Description

Get single HAT activity.

Usage

```
singleHatAct(HAT, input, adj, cor.off, kmo.off)
```

Arguments

HAT Single HAT name.

input Normalized and transformed acetyl-proteomics data.

adj Adjacency matrix.

cor.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default i

r.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.

).93.

kmo.off Set up KMO cutoff value 0-1. Default is 0.

singleKinaseAct singleKinaseAct

Description

Get single kinase activity.

Usage

```
singleKinaseAct(kinase, input, adj, cor.off, kmo.off)
```

Arguments

kinase Single kinase name.

input Normalized and transformed phosphoproteomics data.

adj Adjacency matrix.

cor.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default is

0.95.

kmo.off Set up KMO cutoff value 0-1. Default is 0.

singleLigaseAct 9

Description

Get single ligase activity.

Usage

```
singleLigaseAct(ligase, input, adj, cor.off, kmo.off)
```

Arguments

ligase	Single ligase name.
input	Normalized and transformed ubiquiti-proteomics data.
adj	Adjacency matrix.
cor.off	Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.
kmo.off	Set up KMO cutoff value 0-1. Default is 0.

Description

ubiAdjacency

This script is used to build ligase-substrate adjacency matrix with only PSP database.

Usage

```
ubiAdjacency(sp, databaseUBI)
```

Arguments

sp Substrate species; ("mouse", "rat", "human").
databaseUBI Default database or customized database input.

ubiAdjacency