N65-30693

(ACCESSION NUMBER!)

(PAGES)

(CODE)

(CODE)

(CATEGORY)

(CATEGORY)

CSFTI PRICE(S) \$

Hard copy (HC)

Microfiche (MF)

2.00

ff 653 July 65

TABLE OF CONTENTS

SELECTION CRITERIA & MECHANICAL	wax
STUDIES FOR AC GENERATORS	VOL. I
BRIEF DESCRIPTIONS AND SCHEMATICS	SECTION A, VOL. I
Wound Pole, Salient Pole Generator	Page A-1
Wound-Rotor, Non-Salient-Pole Generator	Page A-8
Rotating Coil Lundell	Page A-15
Single, Inside, Stationary Coil Lundell Generator	Page A-25
Two, Inside, Stationary Coil Lundell Generator (Becky Robinson)	Page A-33
Two, Outside-Coil Lundell	Page A-41
Single, Outside-Coil Lundell	Page A-43
Axial Air Gap Lundell	Page A-52
Homopolar Inductor	Page A-59
Permanent-Magnet Generator	Page A-73
How to Start a Design	Page A-116
GENERATOR SELECTION CRITERIA	SECTION B, VOL.
Discussion	Page B-1
Family Tree Diagram of Generators	Page B-4
Comparison Chart for Brushless AC Generator Applications (Good- Better-Best Type Comparison)	Page B-5

Approximate Dimensions for Homopolar Inductor and Two, Outside Coil	
Lundell AC Generators	Page B-6
Weight vs. Output, Wound-Pole, Salient- Pole, Synchronous Generator	Page B-7
Volume vs. Output for Wound-Pole, Salient-Pole Synchronous Generator	Page B-8
Weight vs. Output, Two, Inside, Stationary Coil Lundell (Becky Robinson) with 4 Poles	Page B-9
Weight vs. Output, Two, Inside, Stationary Coil Lundell (Becky Robinson) with 6 Poles	Page B-10
Weight vs. Output, Two, Inside, Stationary Coil Lundell (Becky Robinson) with 8 Poles	Page B-11
Weight vs. Output, Two, Outside Coil or Single, Outside Coil Lundell (4 Poles)	Page B-12
Weight vs. Output, Two, Outside Coil or Single, Outside Coil Lundell (6 Poles)	Page B-13
Weight vs. Output, Two, Outside Coil or Single, Outside Coil Lundell (8 Poles)	Page B-13a
Weight vs. Output, Homopolar Inductor (4 Poles)	Page B-14
Weight vs. Output, Homopolar Inductor (6 Poles)	Page B-15
Weight vs. Output, Homopolar	Page R-15

Weight vs. Output for Wound, Laminated Stators of AC Electro- magnetic Generators	Page B-16
Weight vs. Output, Axial Air-Gap Lundell	Page B-17
Stator Diameter vs. Output for Disk-Type Lundell	Page B-18
Pole Face Losses at No-Load and Full-Load for Rotors of Various Diameters	Page B-19
Rotor Diameter vs. Rotor Speed for Solid Pole Face Alternators Limited to 20 Watts/in ² Pole Face Losses Based on Stator Bore Area	Page B-20
Comparison of No-Load and Full- Load Losses When the Slot Pitch is Changed	Page B-21
Pole-Face asses in a Solid Pole Face Rotor at No-Load as a Function of Speed	Page B-22
Surface Heat Dissipation from a Generator Rotor	Page B-23
Discussion of the Performance of Synchronous Generators When Used as Motors	Page B-24
MECHANICAL AND THERMAL STUDIES	VOL. I
GENERATOR THERMAL ANALYSIS	SECTION C, VOL. I
Table of Contents	Page C-0
Rotor Friction Analysis	Page C-A-1

GENERATOR ROTOR DYNAMICS	SECTION D, VOL. I
Table of Contents	Page D-0
DISCUSSION OF GAS BEARINGS	SECTION E, VOL. 1
Table of Contents	Page E-0
Rolling Contact Bearings	Page E-81
DESIGN FORMULAE FOR BRUSHLESS A-C GENERATORS	VOL. II
PESIGN CURVES & TABLES	SECTION F, VOL. II
Chord Factors, Table 1	Page F-1
Distribution Factors, Table 2	Page F-2
Wire Table, Round Copper Table 3	Page F-3
Wire Table, Round Half Size Table 4	Page F-4
End-Winding Constant, Curve 1	Page F-5
Pole Face Loss Constants, Curve 2	Page F-6
Pole Face Load Loss Factor, Curve 3	Page F-7
C ₁ and C _p , Salient Pole, Curve 1	Page F-8
C ₁ , C _m and C _p Non-Salient Pole, Curve 4a, 4b	Page F-7a, b
C _x , Curve 5	Page F-9
Damper Loss Constants, Curve 7	Page F-10

Page F-11

Damper Loss Constants, Curve 8

C_{m} and C_{q} , Curve 9	Page F	F-12
Magnetization Curva, Pure Iron, Curve 10	Page I	F-13
Magnetization Curve, M-43 Silicon Irons, Curvε 11Λ	Page I	F-14
Magnetization Curve, M36, Curve 11B	Page I	F-14
Magnetization Curve M-22, Curve 11C and 11E	Page I	F-14
Magnetization Curve M-15, Curve 11D	Page I	F-14
Magnetization Curve, 1% Max. Carbon, Curve 12	Page I	F-18
Magnetization Curve, Cobalt- Iron, Curve 13	Page I	F-19
Magnetization Curve For Cast and Forged Cobalt-Iron Alloy, Curve 13b	Page F	F-21
Magnetization Curve, 4620, 4130, 4140, 6302, Curve 14	Page I	F-2 2
Magnetization Curve, 6427, Hy-TUF 410 SS, VASCOJET, Curve 15	Page F	F-23
Magnatization Curve, 1095, P-6, Curve 16	Page F	F-24
Magnet Stabilization Point (A _T) Versus Out-of-Stator Leakage Permeance for Alnico V and Alnico VI, Curve 17	Page F	-25
Magnet Stabilization Point (A _T) Versus Out-of-Stator Leakage Permeance for Alnico VIII, Curve 18	Page F	F-26

Magnet Stabilization Point (A_T) Versus Out-of-Stator Leakage Permeance for Alnico V7,	
Curve 19	Page F-27
Demagnetization Curves for High Energy Product Cast Alnicos, Curve 20	Page F-28
Demagnetization Curve for Cast Alnico VIII, Curve 21	Page F-29
Demagnetization Curve for Cast Alnico VIII, Curve 22	Page F-30
Demagnetization Curve for Cast Alnico V7, Curve 23	Page F-31
Demagnetization Curve for Cast Alnico VI, Curve 24	Page F-32
Demagnetization Curve for Cast Alnico V. Communication	Page F-33
Iron Losses for Cobalt-Iron Alloy. Curve 13a	Page F-20
Iron Losses for Si-Fe Alloys at Various Frequencies, Curve 11 ²⁴	Page F .?
Iron Cosses for Silicone-Iron Alloys, at 400 cps, Curve 11 F	Page F-15
Iron Leases for Si-Fe Alloys at 60 Curve AG	Page F-16
Curve Points of Magnetic Met .	Page F-34
Magnetic Properties of Cv-N: Swels	Page F-36
MASTER DESIGN MANUAL (SALLENT-POLE, WOUND-POLE, SYNCHRONOUS AC GENERATOR	SECTION G, VOL. II
Input Sheet	Page G-01

Our put Sheet	Poge G-03
Design Procedure	Page G-1
DESIGN MANUAL FOR NON-SALJENT, WOUND-ROTOR, SYNCHRONOUS AC GENERATOR	SECTION H, VOL. II
Input Sheet	Page H-01
Output Sheet	Page H-02
Design Procedure	Page H-1
DESIGN MANUAL FOR ROTATING-COIL AC LUNDELL TYPE GENERATORS	SECTION J, VOL. II
Input Sheet	Page J-01
Output Shee'	Page J-03
1	_
Design Procedure	Page J-1
	Page J-1 SECTION K, VOL. II
Design Procedure DESIGN MANUAL FOR SINGLE, INSIDE, STATIONARY-COIL AC LUNDELL-TYPE	Ü
Design Procedure DESIGN MANUAL FOR SINGLE, INSIDE, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR	SECTION K, VOL. II
Design Procedure DESIGN MANUAL FOR SINGLE, INSIDE, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR Input Sheet	SECTION K, VOL. II Page K-01
Design Procedure DESIGN MANUAL FOR SINGLE, INSIDE, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR Input Sheet Output Sheet	SECTION K, VOL. II Page K-01 Page K-03
Design Procedure DESIGN MANUAL FOR SINGLE, INSIDE, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR Input Sheet Output Sheet Design Manual DESIGN MANUAL FOR TWO, INSIDE-COIL, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR (BECKY ROBINSON)	SECTION K, VOL. II Page K-01 Page K-03 Page K-1
Design Procedure DESIGN MANUAL FOR SINGLE, INSIDE, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR Input Sheet Output Sheet Design Manual DESIGN MANUAL FOR TWO, INSIDE-COIL, STATIONARY-COIL AC LUNDELL-TYPE GENERATOR (BECKY ROBINSON PATENT)	SECTION K, VOL. II Page K-01 Page K-03 Page K-1 SECTION L, VOL. II

DESIGN MANUAL FOR TWO COIL AND SINGLE-COIL, OUTSIDE COIL AC LUNDELL-TYPE GENERATORS

SECTION M, VOL. II

Input Sheet Page M-01

Cutput Sheet Page M-03

Design Manual For Two-Coil Lundell Page M-1

Design Manual For One-Coil Lundell Page M-41

DESIGN MANUAL FOR AXIAL AIR-GAP, STATIONARY-COIL, SALIENT-POLE, SYNCHRONOUS AC GENERATOR

SECTION N, VOL. III

Discussion Page N-1

Design Sheet Page N-4

Design Manual Page N-5

DESIGN MANUAL FOR HOMOPOLAR INDUCTOR, AC GENERATOR

SECTION P, VOL. III

Input Sheet Page P-01

Output Sheet Page P-03

Design Manual Page P-1

DESIGN MANUAL FOR PERMANENT MAGNET, SALIENT-POLE AC

GENERATORS SECTION R, VOL. III

Discussion Page R-1

Input Sheet Page R-01

Output Sheet Page R-03

Design Manual Page R-22

EQUIVALENT CIRCUITS SECTION S, VOL. III SYMBOL TABLES SECTION T, VOL. III GENERATOR THERMAL ANALYSIS COMPUTER PROGRAM (FORTRAN) SECTION CA, VOL. IV SALIENT-POLF WOUND-POLE SYNCHRONOUS GENERATOR COMPUTER PROGRAM AND TEST DATA SECTION GA, VOL. IV Computer Input 30 KVA Generator Page GA-1 Computer Output 30 KVA Generator Page GA-2 Test Data 30 KVA Generator Page GA-5 Computer Program (Fortran) Page GA-14 NON-SALIENT-POLE, WOUND-ROTOR SYNCHRONOUS GENERATOR COMPUTER PROGRAM AND TEST DATA SECTION HA, VOL. IV Computer Input 120 KVA Generator Page HA-1 Computer Output 120 KVA Generator Page HA-2 Test Data 120 KVA Generator Page HA-4 Computer Program (Fortran) Page HA-29 ROTATING-COIL LUNDELL, A-C GENERATOR COMPUTER PROGRAM AND TEST DATA SECTION JA, VOL. IV Computer Input 840 Watt Generator Page JA-1 Computer Output 840 Watt Generator Page JA-5

Page JA-7

Test Data 840 Watt Generator

Computer Program 840 Watt Generator Page JA-25 INSIDE, SINGLE-COIL, STATIONARY-COIL LUNDELL, A-C GENERATOR COMPUTER PROGRAM AND TEST DATA Page KA, VOL. IV Page KA-1 Computer Input Computer Output Page KA-3 Page KA-22 Computer Program INSIDE, TWO-COIL STATIONARY COIL LUNDELL A-C GENERATOR COMPUTER PROGRAM AND TEST DATA SECTION LA, VOL. IV Page LA-3 Computer Input 30 KVA Generator Page LA-1 Computer Output 30 KVA Generator Test Data 30 KVA Generator Page LA-6 Computer Program Page LA-37 TWO-COIL AND SINGLE-COIL OUTSIDE-COIL, LUNDELL, A-C GENERATOR COMPUTER PROGRAM AND TEST DATA SECTION MA, VOL. V Computer Input 840 Watt Generator Page MA-1 Computer Output 840 Watt Generator Page MA-3 Test Data 840 Watt Generator Page MA-7 Page MA-20 Computer Program HOMOPOLAR INDUCTOR A-C GENERATOR COMPUTER PROGRAM AND TEST DATA SECTION PA, VOL. V

Page PA-01

Computer Input

Computer Output	Page PA-03
Test Data	Page PA-05
Computer Program	Page PA-19
PERMANENT MAGNET A-C GENERATOR COMPUTER PROGRAM AND TEST DATA	SECTION RA, VOI. V
Computer Input	Page kA-1
Computer Output	Page RA-3
Test Data	Page RA-5
Computer Program	Page RA-22
DERIVATIONS	SECTION SA, VOI . V
Pole Face Losses in Solid-Pole Generators	Page SA-1
Graphical Flux Analysis	Page SA-29
The Maximum Ratio for Rotating Coil Lundell A-C Generators The Maximum Ratio for Two, Inside, Stationary- Coil Lundell A-C Generators	Page SA-38 Page SA-40
The Development of Equations Describing the Weights of Electromagnetic Parts for	-
Three Generator Types	Page SA-43
Generator Stator Ampere Load- ing - A Discussion	Page SA-50
Grouping of Fractional Slot Windings	Page SA-53
Distribution Factor	Page SA-58

	Fractional Slot L.stribution Factor	Page SA-60
	Skew Factor	Page SA-61
	Pitch Factor	Page SA-64
	Reactances, Per-Unit System	Page SA-67
	Synchronous Reactance	Page SA-69
	Reactance of Armature Reaction	Page SA-72
	Transient Reactance	Page SA-74
	Subtransient Reactance	Page SA-78
	Negative Sequence Reactance	Page SA-79
	Zero Sequence Reactance	Page SA-79
	Leakage Reactance	Page SA-80
	Potier Reactance	Page SA-86
	Time Constants	Page SA-89
	Resistance	Page SA-95
	Generator Voltage and Cutput Equations	Page SA-96
	C _m	Page SA-100
	$C_{\mathbf{q}}$	Page SA-103
	Permeance Calculations	Page SA-110
EF	FECT OF INCREASING THE AIR GAP	SECTION TA, VOL. V

FIGURES

	Figure No.	Page No.
Wound-Pole, Salient-Pole AC Generator	A-1	A-1
Wound-Pole, Salient-Pole AC Generator	A-2	A-4
Wound-Pole, Rotating-Rectifier AC Generator	A-3	A-5
Wound-Pole Synchronous AC Generator	A-4	A-6
Photograph of Wound-Pole Synchronous Generator	A-5	A-7
Field Form for Non-Salient Pole Wound-Pole AC Generator	A-6	A-9
Rotor Views - NSP AC Generator	A-7	A-10
Photograph of Rotor & Stator (NSP Generator)	A-8	A-11
Photograph of Rotor & Stator (NSP Generator)	A-9	A-12
Exploded View of Complete NSP AC Generator	A-10	A-13
Rotating-Coil Lundell AC Generator	A-11	A-14
Step 1 of Conversion to Outside- Coil Lundell	A-12	A-15
Step 2 of Convergion	Δ_13	Δ-16

	Figure No.	Page No.
Conversion of Rotating-Coil to Stationary-Coil Lundell	A-14	A-17
How to Make a Becky-Robinson Lundell	A-15	A-18
How to Make a Homopolar Inductor	A-16	A-19
Patent Drawing, Rotating Coil Lundell	A-17	A-20
Photo Rotating-Coil Lundell	A-18	A-21
Rotor, Rotating-Coil Lundell	A-19	A-22
Photo, Rotating Coil Lundell	A-20	A-23
Single-Inside, Stationary-Coil Lundell	A-21	A-24
Single-Inside, Stationary-Coil Lundell	A-22	A-26
Single-Inside, Stationary-Coil Lundell	A-23	A-27
Single-Inside, Stationary-Coil Lundell Patent Drawing	A-24	A-29
Photo of Single, Inside, Stationary- Coil Lundell	A-24a	A-30
Photo of Single, Inside, Stationary- Coil Lundell	A-24	A-31
MG Set	A-26	A-32
Two-Inside Stationary Coil Lundell	A-27	A-33
Two-Inside Stationary Coil Lundell Photo	A-28	A-36

•	Figure No.	Page No.
Two-Inside Stationary Coil Lundell Photo	A-29	A-37
Two-Inside Stationary Coil Lundell Photo	A-30	A-33
Two-Inside Stationary Coil Lundell Flux Circuit	A31	A-39
Two-Inside Stationary Coil Lundell Flux Circuit	A-32	A-40
Two-Outside Coil Lundell Flux Circuit Schematics	A-33	A-42
Two-Outside Coil Lundell Drawing	A-34	A- 43
Two-Outside Coil Lundell Patent Drawing	A-35	A-44
Photo Two-Outside Coil Lundell	A-36	A-45
Single-Coil Outside Coil Lundell	A-37	A-48
Pole Configuration	A-38	A-49
Single Coil Outside-Coil Lundell	A-39	A - 50
Pole Configuration	A-40	A-51
Axial Air-Gap Lundell	A-41	A-52
Axial Air-Gap Lundell Patent Drawing	A-42a	A-55
Axial Air-Gap Lundell Rotor Photo	A-42c	A-56
Axial Air-Gap Lundell Stator Photo	A-42 b	A-57
Double Axial-Gap Generator	A-42c	A-58

	Figure No.	Page No.
Homopolar Inductor	A-43	A- 59
Hemopolar Inductor	A-44	A-60
Homopolar Inductor Rotor	A-45	A-64
Homopolar Inductor Rotor	A-46	A-66
Patent Drawing for Homopolar Inductor	A-47a	A-68
Patent Drawing for Homopolar Inductor	A-47b	A-69
Permanent-Magnet AC Generator	A-48	A-73
PM Rotor Types	A-49	A-77
Earliest PM Generator	A-50	A-78
Patent Drawing for Axial Gap PM Generator	A-51	A-79
PM Hysteresis Loop	A-52	A-81
PM Hysteresis Loop	A-53	A-84
Volt Ampere Characteristic	A-54	A-86
Saturation Curve	A-55	A-88
Saturation Curve & B _r	A-56	A-89
Air Gap Shear Line	A-57	A-90
F _{dm}	A-58	A-91
Short Circuit Stabilization	A-59	A-92
Out of Stator Permeance Shear Line	A-60	A-93
In-Stator Permeance Shear Line	A-61	A- 96

	Figure No.	Page No.
Useful Flux	A-62	A-98
Construction of Load Points On The PM Generator Hysteresis Loop	A-63	A-99
Air Gap Energy Storage	A-64	A-100
Air Gap Energy Storage	A-65	A-101
Vector Diagram	A-66	A-105
Vector Diagrams for AC Generators Having High Stator Winding Resistance Vecto Diagrams for AC Generators Having Low Stator Winding	A-67	A-106
Resistance	A-68	A-107
Locus of Terminal Voltage	A-69	A-108
Locus of Terminal Voltage	A-70	A-109
Volt-Ampere Characteristic	A-71	A-110
Weight vs. Rating for Salient-Pole Wound-Pole, Rotating-Rectifier AC Generators Values vs. Pating for Salient Pole	B-1 B-1	B-7 B-7
Volume vs. Rating for Salient-Pole Wound-Pole, Rotating-Rectifier AC Generators	B-2	B-8
Weight Breakdown for Two, Inside- Coil Lundell Generators (Becky- Robinson)	B-3 B-4 B-5	B-9 B-10 B-11
Weight Breakdown for a Two-Coil Outside-Coil, Lundell Generator	B-6 B-7 B-8	B-12 B-13 B-14

	Figure No.	Page No.
Weight Breakdown for a Homopolar Leductor AC Generator	B-9 B-10 B-11	B-15 B-16 B-17
Weight vs. Rating for Wound Stators	B-12	B-18
Weight vs. Stator O.D. for Disk- Type Lundell Generators	B-13	B-19
KVA Output vs. Stator O. D. for Disk-Type Lundell Generators	B-14	B-20
Pole-Face Loss Curves	B-15 B-16 B-17 B-18	B-22 B-23 B-24 B-25
Heat Dissipation From a Generator Rotor	B-19	B-26
Induction Motor Speed Torque Curves	B-20	B-28
Lundell Motor Speed Torque Curves	B-21	B-30
Wound Pole Motor Speed-Torque Curves	B-22	B-31
Induced Field Voltage During Start of Salient, Wound Pole Motor	B-23	В-34
Alternator Configuration for Thermal Analysis	CA-1	C-60
Friction Design Charts	CA-2	C-61
Homopolar Inductor Rotor	D-1	D-8a

	Figure No.	Page No.
Outside Coil Lundell Rotor	D-2	D-8b
Becky Robinson Potor	D-3	D-8c
Rotor Model	D-4	D -8d
Bearing Stiffness Curves	D- 5	D -8e
Critical Speeds for Outside-Coil Lundell	D-6	D-61
Critical Speeds for Inside-Coil Lundell	D-7	D-8 g
Dynamic Fesponse for Homopolar Inductor	D-8	D-8h
Dynamic Response for Homopolar Inductor	D- 9	D-8i
Dynamic Response for Homopolar Inductor	D-10	D-8j
Absolute Viscosity of Various Gases	E-1	E-11a
Self Acting Gas Bearings	E-7	E-22a
Tilting-Pad Bearing Schematic	E-8	E-22b
Load Calculating Charts for Cylindrical Journal Bearings	E-9	E-22c
Curves for Tilting-Pad Bearings	E-10	E-22d
Self Acting Thrust Bearings	E-11	E-43a
Pressure Rise in Bearing Caps	E-12	E-43 b
Friction Vectors in Bearings	E-13	E-43c
Soiral-Groove Thrust Bearings	E-14	E-43d

	Figure No.	Page No.
Curvature Effects on Load and Bearing Stiffness	E-15	E-43e
End-Leakage in Spiral-Grooved Dearings	E-16	E-43f
Effects of Grooves on Pressure Profile	E-17	E-43g
Hydrostatic Bearing Stiffness vs. Restrictor Coefficient	E-21	E-54a
Hydrostatic Bearing Stiffness vs. Restrictor Coefficient	E-22	E-54b
Hydrostatic Bearing Flow vs. Restrictor Coefficient	E-23	E-54c
Hydrostatic Bearing Flow vs. Restrictor Coefficient	E-24	E-54d
Hybrid Journal Bearing Load vs. Compressibility Number	E-25	E-54e
P ₁ , Pole Head Leakage Permeance	J-4	J-9
P ₂ , Pole Head Side Leakage Permeance	J-5	J-11
P3 Pole Body End Leakage Permeance	J6	J-12
P4 Pole Body Side Leakage Permeance	J-8	J-15
P ₅ Coil Leakage Permeance	J- 9	J-16
P7 Stator Leakage Permeance	J-10	J-18
MMF Drops	J-11	J- 19
Diagram of Leakages	J-12	J-20

	Figure No.	Page No.
Pole Dimensions	K-2	K-7
Rotor & Stator Dimensions	K-3	K- 9
Permeance Path P2	K-4	K-11
Permeance Path P3, P5	K- 5	K-12
Permeance Path P ₁ , P ₂ , P ₄	K-6	K-13
MMF Drops and Leakage Fluxes	K-7	K-14
Becky Robinson Lundell Pole Types and Dimensions	L-2	L-8
Rotor Dimensions	L-3	L-10
Types of Auxiliary Gap and Gap Dimensions	L-4	L-11
Rotor Dimensions	L-5	L-13
Leakage Permeance P ₃	L-6	L-17
Leakage Permeance P ₄ and MMF Drops	L-7	L-18
Leakage Permeance P ₄	L-8	L-19
Leakage Permeance P ₄	L-9	L-20
Coil Leakage Permeance P5	L-10	L-22
Coil Leakage Permeance F ₆	L-11	L-23
Coil Leakage Permeances P_5 and P_6	L-12	L-24
Leakage Permeance P7 from Stator to Rotor	L-13	L-25

	Figure No.	Page No.
Outside-Coil Luncell Stator and Rotor Dimensions	M-3	M-9
Leakage Permeance P ₁	M-4	M-13
Leakage Permeance P2	M-5	M-14
Leakage Permeance P3	M-6	M-15
Leakage Permeance P ₄	M-7	M-16
MMF Drops and Leakage Paths in Outside-Coil Lundell	M-8	M-17
Three Possible Locations and Permeances P ₅ , P ₇	M -9	M-18
Leakage Flux Ø ₇ From Stator to Rotor	M-10	M-21
Leakage Permeances for 1-coil Outside-Coil Lundell	M-14	M-52
Stator Leakage Flux Ø7	M-15	M-53
MMF Drops in Outside-Coil Lundell and Leakage Flux Ø7	M - 16	M-54
Disk-Type Lundell Generator	N-1	N-2
Flux Circuit for Disk-Type Lundell	N-2	N-3
Design Sheet for Disk-Type Lundell	N-3	N-4
Pole Dimensions	N-4a	N-26
Pole Dimensions	N-4b	N-26
Rotor Leakage Permeances	N-5	N-27
Rotor Leakage Permeance P ₄	N-6	N-29

	Figure No.	Page No.
Homopolar Inductor Housing Type 1 Item (78)		P-8
Types 2 and 3		P-9
Homopolar Inductor Shaft Dimensions Item (78a)		P-10
PM Generator	R-1	R-2
Rotor Leakage Permeances	R-2	R-4
Rotor Leakage Permeance P ₁	R-3	R-5
Curve for P ₁	R-5	R-7
Rotor Leakage Permeance P _S	R-6	R-8
Rotor Leakage Permeance P_f	R-7	R-9
Curve for Leakage Permeance P2	R-8	R-10
Rotor Leakage Permeance P _{s1}	R-9	R-11
Rotor Pole Tip Leakage	R-10	R-13
Rotor Leakage Permeance P _{s2}	R-11	R-14
Rotor Leakage Permeance P3	R-12	R-15
Curve for P ₃	R-13	R-16
Magneti Comparisons	R-14	R-20
Magnet Comparisons	R-15	R-21
Equivalent-Circuit Representation for Synchronous AC Generator Carrying a Balanced Load		S-33

	Figure No.	Page No.
Equivalent-Circuit Representation for Synchronous AC Generator		
Carrying a Balanced Load		S-35
Equivalent Circuit for Synchronous AC Generator Carrying an Unbalanced Load		S-73
Equivalent Circuit for Synchronous AC Generator Carrying an Unbalanced Load		S-74

FABLES

List of Cobalt Steels	Page A-111
Table of PM Steel Characteristics	Page A-113
Table of PM Steel Characteristics	Page A-114
Table of PM Steel Composition	Page A-115
Family Tree of Brushless AC Generators	Page B-4
Comparison Chart for Brushless AC Generators	Page B-4
Approx. Dimensions for Homopolar Inductors and for Outside-Coil Lundell AC Generators	Page B-6
Gas Bearings	Page E-7
Operating Requirements of Gas Bearing Types	Page E-8
Gas Lubricated Journal Bearing Family Tree	Page E-9
Gas Lubricated Thrust Bearing Family Tree	Page E-10
Required Design Information	Page E-11
Bearing Parameter for Maximum Load Capacity	Page E-41
Bearing Tolerance Ranges	Page E-42
Effects of Grooves in Gas Bearings	Page E-43

Alloy Classes Useful as Base Materials for Shaft and/or Bearings	Page E-76
Material Combinations that Have Been Used for Large Bearings	Page E-77
Bearing Rolling Element) Life Dispersion Curve	Page E-82
Speed and Size of Light and Extra Light Superprecision Pall Bearings	Page E-84
Inner-Race RPM for Oil Jet or Oil-Mist Lubrication Extra Light Series Ball Bearings	Page E-85
Limiting Speeds for Grease Lubricated Ball Bearings	Page E-86
Temperature Limitation of Ball Pearings	Page E-87

TABLE - F-1

7	П			7/12		T	7	ě		П	\$	743	383	993	Ē.	875	8 4	598	2	Į.	\$	3	77	<u>چ</u>	356	495	ĬŽ,	910	F	2	\$	88	3	3	2	2	333	3	2	Ξ	iii	52	444	1
۲		-	-	Н	Н	H	\dashv	Н	1/2	Н	58.5	20	13.5	186	zs	33.	726	\$ 654		8	30	23		Š	0253	576	525	4		8	3	\$ 7	154 CB4	\$	273		267	2	1.0 77 187	407 849	*	3	899	
- 1	Н		_	┤┤	3/15	Н	\neg	H	3.	7	9	809 800	30.73	1.0	309 2	500	809	38		8	Š		Š			3	809	300 666	109	80	न्ध	8		_	ङ्ग	974 831 864 1.0	805	30	히	3094	909	8	30	ľ
4	Н	\vdash		Н	19		-	1	<u> </u>	F					59 3	5	9818	15/3	ž	5	15	88	150	. S	981309	14 4 8	8	**		끸	5	띘	쭓	퀽	<u>~</u>	<u>~</u>	읡	=	둤	3	9	\$	<u>8</u>	
4		-		\vdash	_	\vdash			5	-	630.625	339831	174 195	286 ALG	629 588 559	407 462	4	294 195	760 8311.0	18	E	5.	77 686 555	H.S.	5	12	3 631	<u>3</u>	4	825 884 981	읡	<u>~</u>	416 990 AB	739 523 1941.0	575 831	90 (203 194	200	979 853 555	141 555	186 596	461 529	8 831	
4	Ш	-	-	-	-		-	Н	12/11						95	3	444	124		30,	10	93	1.3	X	=======================================	569 412	167	<u>*</u>	6	8	2		8	3	가	딁	3	Š	8	김	36	3	468	ļ
_	3	3	4	12	-	96	Ξ		-	6	19	189	S	7967	799	33	4467	1125	185	168 848 B31	10	88	1.5	8	8	556	N.	99	52	8	ક્રી	555 497 010 798	<u>8</u>	<u>~</u>	215	\$	Š	낅		0.0 215	883	316	<u>,8</u>	
	12/	9/4	6/9	8/12	51/61	13/18	12/2	164	727	2/50 20/2	996	88	Ö	18	88	9	98	88	757 0.0 696	18	8	o	700	8	488 0.0 983 1.0	18	8	ž	8	79%	9	38	3, 866	9	8	3	45400	2	707 866	8	798	3	0	1
_		L	_							1	3	894 891 866 839	17+ 156 0.0 156	15	88	45	*₹	986	5	156	ő	168	55	8	35	45	15	8	2	3	8	\$	ŝ	2	88	3	3	8	٦	3	168	84	500 156 0.0 091	
			i L		l				12/61		709 705 700 667 634	8	, <u>z</u>	57 623 660 690 707 366	993	623 556 500 454 0.0 358	321 34: 454 866	383 550 569 818 901 947 973 988 366	707 782 924 981 10 966 907 831 760	8	473 473 752 835 891 866 07 (24) 194	36	18	727 500 087 227 442 597 707 1866 061 383 555 1.0	897 782 384 00 305 707 901 981 1.0	38 148 383 727 944 996 901 752 597 454 866	752 174 358 583 924 948 914 574 222 065 287 454 866 57 673	3	835	245 383 802 978 906 623 321 058 36 866	556 766 841 00 909 780 555 805	105 574 901 998 973 89	949 931 383 231 669 946 901 660 346	707 434 388 866 1.0 707 222 145 500 707 0.0	3	390454	17	₹	248 B44	500 454 782 924 342 309 966 901 556 174	319 222 321 698 891 864			
	Γ	Г						17		Γ	18	940 934 931 924 913 914 906 901 897	145	99	866	556	331	47	831	590	757	180	4447	77	186	75.2	0,65	831	127	321	556	948	99	3	847	143	195	99	£	556	3.	47	707 1 0 83.	
		T			_		Υ,				212	ē	ã	623	0	3	ZZ	9	6	22	3	9	1 %	3 3	30	301	3	523	0	623	S	ē	ē	3	23	0	3	2	ō	, Jo.	222	523	9	١
_		\vdash			-	80/61	_				72.7	3	259 222	×	3	101	8	818	3	13	2	992	2	180	20	96	ŧ	36	90	8	8	Ξ	9	2	13	2	3	2	2	79	9	780	5	+
_		1			ž		Н		-	3	4	E	\$	0	8	30	रू ४	3	1	69	18	3	8	8	So	#	#	8	8	18	3	2	3	0	5	3	8	2	8	99		914	8	
	-	 	-		=_				20%	13	K1 12	5	3	3	8	136 Post 707	3	18	100	3	1	3	, ×	27 5	10	27	82	53	5	5 20	828	25	=	3	8	=	2	8	8	12.	11.	5.8	37.	
		-	-	1/4	-	-		Ž.	~	+	3	1	33.3	13	8	18	2 5	83.5	Z	8	3	1 1 2	2	1/2	20	2	10	3	93 i	33.	2	2	33.2	8	6	2	즮	6	물	Œ,	35	33	326 366	
_		-	-	6			12/91	27	-	-	3	3	Scol454 434 383 342 309	29 29 38: 447 500	3	\$26 51.6 866	33.3	33	32.9	846	717 600 343 [16 105	2 6	3	5 10	2	18	162	159	100	35	Ŧ	5	-	<u> </u>	~	7	<u> </u>	<u> </u>	60	19.	12	680 383 958	8	
-		-	\vdash	 	-	-	36,			200	17	+	13	I A	188	9	25	7	17.	9	114	9	7 3	4,	عر.	1 2	80	8	8	5.79	9	4	4	2	77	8	₹ ∞	2	=	,,	4	168	9	
	-	-	-	-	-	. 80	-	-	. 5	12	97	6	3	22	8	19	19	90	12	8	1.		2	į	80		135	8	0 46	35	-	Ę	5	ह्	흸	79	8	8	52	5.	4	434	00 354 01	-
	_	_	1/4	L	_	14/18		- 1	2/2	-	792 779 767 762 750	3	55.9	12	×	2	12/2	E	18	8	10	\$		1/2	2	1/2	-	\$	2	761	Ň	直	75	2	2	=	Š	₹	1	۶	Ē	760	2	
			L					14/61		L	2	565 981 978 975 979 966 988 956 988 18P 18P 289	891 865 831 809 781 766 307 643 523 586 556	500 834 346 259 116 075 0.0 065 174	105 C.O 058 259 449 500 588 659 26 839 866 920 958 978 946 1 0 998 993 988 866	383 223 156 00 141 304 434 500 707 866 901 951 981 10	795 966 999 939 551 847 766 629 583 383 231 105 087	993 94 801 733 138 442 174	383 62 707 84 981 10 975 940 707 34 223 00 195 500	600 824 901 000 000 000 000 000 000 000 000 000	90c 831 649 424 20x 350 723 824 950 04 8 00.	980 841 54 300 0 178 707 98 11 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89 (4m) 195 (105 Jun 29) 446 (10 (276 588 375) 178 (46 688 974) 948 (178 (178 678) 1787 (156	342 195 500 782 894 966 550 345 0 0 321 76 16	707 0 0 223 558 831 1 0	791 365 156 342 831 978 975 894 259 550 733 95, 918 766	75.	766 337 223 444 866 .0.1 809 444 174 70) 285 90.1 588 145 500 891 975 924 65 30 259 621 831 946 888 20 942 944	846 587 131 500 707 198 183 1500 0.0 287 946 711 300 0 0 442 440 946 866 383, 116 500 906 1 0 447 835 707 866 204 009 194	946 231 075 588 897 940 545	901 983 866 195 309 782 940 707 342 623 95, 981 500 156 434 124 985 809 259 222	647 195 669 97 933 259 802 956 951 659 174 777 931 924	8	5	342 981 914 434 058 96 46 440075 588 947 126 052 295 974 958 669 067 623 897 993 988 866	481 669 0.0 346 966 116 500 95, 947 174 629 866 224 547 105 819 1 0 897	866 831 309 424 766 707 643 901 031336 300 988 975 383 342 804 966 6:3 195 174	454 985 356 405 782 973 259 989 289 066 940 839 583 383 913 918 423 222 660 894 989 866 285 818 4181	985, 195, 500 775 973 259 958 733 0.0 559 940 259 143 928 918 500 423 901	223 586 981	643 556 918 782 346 946 116 365 951 8471 174 934 997 383 397 914	449 826 951 442	586 195	
	L-		_		× × ×				_	2,8	8	18	585	0	8	9.	3.		8	28	Ö	4	15	0	558	95.	5	28	0	88	95,	\$	100	ဝိ	128	\$	5	3	0	538	95	451	8	
		ļ	L				17/21				905 906 1389 875 817 857 852 833 815 810 800	956	529	0.73	50	90,	939	1,20	223	3,5	,6	3 5	2,0	7	23	733	995 894109 075 1561643 781 978 782, 397 259 918 989 95	901	000	075	623	956	456	623	075	8	8	Š	733	223	365	826	0	
									24		815	28	3	16	3	866	803	100		23.	1	3	0	5	9	550	916	985	12	33,	347	2	448	3	3	3	643	458	958	643	1,6	449	748	(1)
		2,6	Г	7,6		3/8		ž		25/2	833	966	è	25.5	159	707	396	36	12	250	9		2	966	767	259	754	707	376	996	707	259	254	707	3	أفخ	707	5.7	552	707	976	996	101	1
		-							22/2		852	E	186	35	32	500	195	\$ 61	3	3	2	1	9	8	0	8	597	2	183	8	\$	133	345	3	28	Z .	्रो	7	E	99	94	998 999	530 707	
٠	_						:8/		-	1	2	3	18	2	Ö	*	782	E	Ý	9	5 3	5	2	6	624 454 0 0 556 809 97: 10	×	ZQ	Ť	0	743 396 131 793 891 985 556 105 434 686	20	2	3	78	*	0	3	28	3	12 396 278 809 975 766 701	28	*	9	
STEP STEP	-	İΤ	i-		51/2				-	100	ž	138	á	00	50	9	3	#54 643 Br 914 975	d	1 3	1	1 8	1 2	ŝ	8	180	18	8	8	2	ક	69	3	0	2	3	5	8	8	8	8	342 83 978 434	891 0.0 98, 804 0.0	;
_	-	┢	-	-	=-	-		42/2	-	12	7	30	2	3	11	- -	342 556 660	ŭ	ă	1 2	1	7	2 2	2 5	138	3	81.9	30	3	3	45.3	95 6	26.0	31	8	3	<u>=</u>	3	5	15.8	3	31	818	٠
	-	-	6/8		-	₹			ž.	+-	8	55	3 59	560	3	9	3	13.	2	10	1 0	1	9 3	F 3	15	82	15	3	88	85.5	3	14	3	8	긓	643 4	3	85 3	돐	3	5	12 8	60	į
	-	-	00		-	3			2	27/2	3	988	-88	15	500 454 342	100	19	13	18	11.0	9	ıα	1	707	3	· ~	120	3	10	11/9	8	8	<u>=</u>	읝	2	9	\$	*	707	8			5	-
	-	-	-	-		-		-	├-	23	36	10	401.9	2 2	12	15	5 156	13	1	19	Š	0	ě	2/2	3	15. S.	5 15	3	10	9.	16	4 98	8		2	응	*	5	~	4	10	6 938		
_		ļ	-	7	<u> </u>		ž,		_	 	8	1989	14	3.7	12	3,22	0.75	3%	362	18	203 966 600		18	8 76	19	3,	15	22	18	179	3 40	3. g	86.8	3	,E,	3	4	<u>3</u> 07	\$ 365	529	1826	198	0.1	_
_		L	<u>_</u>	11/12			_	11/2	_	<u> </u>	426 917	166 866	¥ 6	846 835 793 733 707	686 609	38		3.		1.5	3 8	VI 200 774	Sec. 901 955	ě	6	12	15	100	ž.	-13	38	9	13	2	4.5	407 (335, 991) 500 156	588 140 9 ch 225 156	943 743 075	3	38	13	5.	38	١
_		ļ • -	L						£22			8	\$	8	189	538 500	407 297	950	Ż	ķ	9	113	å	973	95, 10	995 972	å	7	56	100	1	955	23	3	3	8	<u>.</u> ž	=	343	186	63	787	·š	
		L_	L		5 //•				_	1	E	\$	45	3	T	8	.3	208	5	700	1	9	3	£, 3	95,	8	5	951	8	'₹	288	105	\$	8	<u>\$</u>	\$	28	ž	866	15%	\$	Š	Š	٠
						84/ _C					ř	ğ	3	906	879	10	, S	473	ž	8	į		3	3 5	Ş	100	3	3	3	Ž	46.	3	8	œ	Š	3	57	96	6	552	423	57.	70	į
		Γ					Ž				ž	8	3	Ē	778	25	93	3	3	¥]]	5	3 3	E	1	13	99	78	778	931	475	£	8	33	33	3	1	3	3	*	£	[≝	8	į
_				П		П	_	*	Г	Γ	\$	1	ĕ	3	3.	\$	×	5	5.			¥	1	1 3	ğ		詳	38	659	, g	831	£	E	È	影	, \$	8	ŧ	£	2	×	.3	×	,
	П	T		П		П			Į,	Г	\$	8	Ě	2	2	3	3	E	3	Ĭ		5		1 3	9	2	5	3	1	So	563	12)	3	3	9	3	E	E	\$	3.	2	E	3	
_	Н	一	Н	H		H	7	\vdash		Į,	267 - 164	\$	Ė	8 309 189 197 29 306 8	F	Ē	Ī	E	Ë	1	T	ξij		1 6	į	3	द्ध	ĬŽ	Š	58	\$	¥	Ŗ	2	Ē		\$	*	3	Ė	Ē	İ	1	į
_	单	30	,	3,42	2	7	1	Ţ	,2	1	ō.	5	9	76 01	9	ē	6	la	F	10	1,	, -	\$	1 25 PM 162 MILES STATE OF CO. CO.	10	9	8	ē	5 1.0 259 4mg 659 864 996 8	0	10 454 643 831 975 94. 588 177 383 901 989 866 195 309 782 940 707 342 623 95. 981 500	0 3	å	岢	9	딍	히	등	ö	6	59 1.0 979 956 756 245 423 445, 835 131 84	9	6	į
8		2	3 1	1	5 19	19	믯	8	H 6	5	Ţ		3	_	7	E	۳	۳	7	片	#	+		, v	#	=	٦	33	35	1	39.1	41			5	\$	딩	53	SS	F	85	H	63 h	j
_			۳,				<u>: 1</u>			كا	<u> </u>	1	<u>''''</u>	I.,	<u> </u>	۳	_	۳	ځ	غا	ĿĽ	<u>-10</u>	<u> </u>	4	<u>ثا</u> ر	12	1	Ľ	100	~	~	4	-	3	3	3	2	2	2	2	S	19	9	J

Values of κ_{dn} for integral-slot, 3 ϕ windings - table F-2

h	Kdn - HARMONIC DISTRIBUTION FACTORS									
q=	2	3	4	5	6	7	8	9	10	∞
1	.966	.960	. 958	.957	.957	.957	.956	.955	.955	.955
3	.707	.667	.654	.646	. 644	.642	641	. 640	. 63 i	. 636
5	. 259	. 217	. 205	. 200	. 197	. 195	. 194	. 194	.193	.191
7	259	17?	158	149	145	143	141	140	140	126
9	707	~ . 333	270	- , 247	- 236	- ,229	225	-,222	~ .220	212
11	966	177	126	110	/02	097	095	093	092	- ,087
13	966	.217	. 126	. 102	. 092	. 086	. 083	. 081	. 079	.073
15	707	. 667	. 270	. 200	. 172	. 158	. 150	. 145	. 141	.127
17	259	. 960	. 158	. 102	.084	. 075	. 070	.066	.064	.056
19	. 259	.960	205	110	084	072	066	062	060	059
21	.707	. 667	654	~ . 247	172	- , /43	127	/18	112	091
23	.966	. 217	958	149	092	072	063	057	054	041
25	.966	177	958	,200	./02	. 075	. 063	.056	. 052	.038
27	.707	- ,33 <i>3</i>	654	. 646	. 236	. 158	. 127	.///	.101	.07/
29	. 259	177	205	.957	.145	.086	. 066	. 056	. 050	. 033
31	259	. 217	. 158	.957	197	097	- 070	057	- ,050	03/

33	709	.667	. 270	.646	644	229	150	118	101	058
35	966	. 960	.126	, 200	957	143	083	062	052	027
37	966	.960	126	149	957	. 195	.095	. 066	. 054	. 026
39	- 707	.667	270	247	644	.642	.225	.145	.//2	. 049
41	259	. 217	158	~ .110	197	.957	.141	.081	060	. 623
43	. 259	177	. 205	, 102	. 145	.957	194	093	064	022
45	.707	333	.654	. 200	. 236	.642	641	222	141	042
47	.966	177	.958	. /02	. 1/12.	. 195	956	140	- , 0, .	020
49	.966	.217	.958	110	092	143	456	.194	.092	. 019
51	. 707	.667	.654	- , 247	172	229	- ,641	. 640	. 220	. 038
53	.259	.960	. 205	149	084	097	194	.955	. 146	.018
55	- , 259	.960	158	. 200	. 084	. 086	. 141	.955	193	017
57	707	. 667	- ,270	.646	. 172	. /58	. 225	. 640	639	033
59	966	. 217	- , 126	,957	.092	. 075	.095	,194	9\$5	016
61	966	177	.128	.957	102	- , 072	083	140	- ,955	. 016
63	- ,707	333	. 270	. 646	236	- , 143	150	~ , 222	639	.030
65	259	~ .177	. / 58	. 200	145	072	070	093	193	.015

ROUND COPPER WIRE TABLE F-3

SIZE AWG	BARE DIAMETER	AREA Q"	1./1000' @25°C	Single Formur	HEAV!	Single GLASS FORMVAR	BARE WT. #/1000'	SINGLE GLASS SILICOME	Double GLASS SILICOME
36	.0050	.0000196	424	. 0056	.0060		.0757		
35	.0056	.0000246	338	. 0062	.0066		.0949		
34	.0063	. 0000312	900	.0070	.0074		. 1201		
33	. 0071	.0000396	210	.0079	.0084		.1526		-
32	2080	.0000503	165	.0088	.0094	.0121	. 1937		
31	.0089	.0000622	134	. 0097	0104	.0130	.2398		
30	.0100	.0000785	106	0108	.0116	.0142	. 3025	.0:32	0,52
29	.0113	.000100	831	.0122	.0130	.0156	. 3866	.0145	0165
28	0126	.000125	66.4	.0135	.0144	.0169	. 4806	.0158	.0178
27	.0142	.000158	52 6	.0152	.0161	. 0186	.610i	.0174	. 0194
26	0159	.000199	417	.0169	.0179	.0203	.7650	.0191	.0211
25	.0179	.000252	33 o	.0190	.0200	. 0224	.970	.0211	9231
24	0201	.000317	26.2	.0213	0223	.0263	1.273	.0251	.0276
23	.0226	.000401	20.7	0238	.0249	.0289	1.546	0276	.0301
22	0254	. 000507	16.4	.0266	.0277	.0317	1.937	. 0303	, 0328
21	.0285	.000638	13 0	.0299	.0310	.0349	2.439	.0335	.0360
20	0320	.000804	د .10	.0334	.0346	. 0384	3.099	.0270	0345
19	0360	.00102	8.14	. 0374	. 0386	.0424	900.د	0404	0434
18	.0403	.00126	659	.0418	.0431	.0468	4.914	.0453	.0418
. 17	0453	.00159	5 22	.0439	0482	0519	6,213	0.503	2528
:6	J30g	.00204	407	.0524	.0539	0575	7.812	0;58	<u>0583</u>
!5	0571	.00255	3 26	.0588	,0602	. 5639	9.07	.062	0646
14	0641	.00322	2.58	.0659	.0673	.0710	12.44	.0691	07/6
13	.072	.00407	2.04	.0739	.0753	0789	15 69_	.0770	.0795
12	.0808	.00515	1.61	.0827	. 0842	.0877	19.76	0858	0883
11	.0907	.00650	1.28	.0927	.0942	. 0977	24.90	.0957	0982
10	.102	.00817	102	.1039	.1055	.1089	31,43	.1069	.1094
4	.114	.0102	.814	.1165	.1181	.1225	39 62	.1204	.1254
8	.124	.0131	.654	1276	.1323	.1366	49.98	.1345	.1395
7	.144	.0163	.510	.1465	.1482	. 1525	63.03	.1503	.1553
6	.162	.0206	.403	.1643	.1661	.1703	79.44	. 1680	.1730
5	.182	.0260	.319	.1842	.1861	.1902	100.2	.1879	.1929
4	.204	.032.7	.254	<u> </u>			126.3	.2103	. 2153
3	.229	.0412	.202	<u> </u>			159.3		<u> </u>
2	.258	.0523	.159		ļ		200.9	<u> </u>	
0	.325	.0830	.100					<u> </u>	
2/0	.365	.105	.0791		ļ		_	 	<u> </u>
4/0	.460	.156	.0500	<u> </u>	<u> </u>]		

r = 3

HALF-SIZE, ROUND, COPPER WIRE

TABLE F-4

SIZE	BARE	AREA	BARE WT	-r/1000'
AWG	DIAMETER	0"	* /1000'	@ 20°C
1/01/2	. 3071	.0741	285.5	. 1100
11/2	. 2734	. 0587	226.3	. 1387
21/2	. 2435	.0466	179.5	. 1749
31/2	. 2169	. 0370	142,4	. 2204
41/2	. 1931	.0293	112.9	.2781
51/2	.1720	. 0232	89.6	. 3506
61/2	. 1532	.0184	71.0	.4419
71/2	.1364	.0146	56.3	. 55 74
8:′2	.1215	.0116	44.7	.7025
91/2	.1082	.0092	35.4	.8859
101/2	. 0963	. 00728	28.1	1.118
11/2	. 0858	. 00578	22.3	1.409
1242	. 0764	. 00458	17.7	1.778
131/2	.0680	. 00363	14.0	2.243
141/2	.0606	. 0288	11.1	2.824
151/2	. 0540	. 00229	8.83	3.557
161/2	. 0481	.00182	7.00	4.482
171/2	.0428	.00144	5.54	5.661
181/2	. 0381	.00114	4.39	7.143
1942	. 0340	.000907	3.50	8.972
201/2	. 0302	.000716	2.76	11.37
211/2	. 0269	.000568	2.19	14.33
221/2	. 0240	. 000452	1.74	18.01
23 1/2	.0214	.000360	1.39	22.65
241/2	.0190	.000284	1.09	28.73
251/2	. 0169	.000224	. 864	36.31
261/2	. 0151	. 000179	. 690	45.49
271/2	. 0134	. 000141	. 544	57.75
281/2	.0120	.000113	.436	72.02
291/2	.0106	.000088	.340	92.27
30 1/2	. 0095	.000071	. 273	114.85

KIUFFEL & ESSER CO., N. Y. NO. 289-111 [ognethmic, $2^4 \times 2$ (yrlex wade in U.S.A.

From E.I. Pollard "Load Losses In Salient-Pole Synchronous Machines" AIEE Trans. Vol. 54 1935 . PP 1332-1340

SLOT REACTANCE FACTOR

F-11

									CURV	E F-	.9		
				-	,			; 					
	1 :			_		-							
-			\$4	LLIEN	т-РО	LE M	ACHIN	E CO	NSTAN	TS,	C _m &	$\mathbf{c_q}$	-
						-				1.			
	1			;		,					;		1
									,				
						'	ı						
1.				,		-	•			1.	1.	1.0	
					-(m					-	:	
i	8								-			- 8	-
-1 · .	11.1	1-1-	+-, , ,	-	- 1	-					:		
ပ	0					1.5	. ! .		- T			6	
e E	-	1			Cq			,	-				<u> </u>
	4.				-			,				j:4	
						-		; 1			,	,	VALITES OF
	4			- 4		 - -	,			1		, . 2	-
					1-								
- 0	5	0	-6		7		8		9	-	1(0	
	-			₽	ERC	ENT	POL	EE	4BR	CE	1-		L
				. :						-			

RAM SEMILOGARITMENC 859-71

CURVE F-11 h
CORE LOSS VERSUS FREQUENCY FOR THREE
GRADES OF SILICON STEEL AT 77.4 KL/IN²
FLUX DENSITY

FREGUENCY, CPS

MANY SCHILL A AUTHMIC 350 71

Ϋ́ W

SEMI-LOGARITHMIC 359 71
KEUFFEL & ESSER CO. MARCHAUSA
3 C.CLES X 70 DIVIS

SEMI-LOGARITHMIC 359.71
IFFEL R CO. MIN D. 35.0.11

Ž Ž

HAE SEMI-LOGARITHMIC 359.71

KEUFFEL 1 ESSER CO. MAREHUS A
3 CYCLES X 70 DIVISIONS

ر الله

P. M. GENERATOR DESIGN MANUAL

CURVE F-17

r .. "

P. M. GENERATOR DESIGN MANUAL

CURVE F-18

(A_T)
MAGNET STABILIZATION POINT VERSUS
OUT-OF-STATOR LEAKAGE PERMEANCE

P. M. GENERATOR DESIGN MANUAL

(A_T) CURVE F-19
MAGNET STABILIZATION POINT VERSUS
OUT-OF-STATOR LEAKAGE PERMEANCE

5

CURIE POINTS OF THE MAGNETIC MATERIALS

USED IN GENERATORS, MOTORS AND INDUCTORS

Material	Curie Point ^O C
Iron	770
Cobalt	1130
Nickel	358
50 Co 3 Mn 47 Fe (Permendur)	036
49 Co 2 V 49 Fe (2 V Permendur)	980
35 Co 5 Cr 6 Mn .7 Ni 63 Fe	960
27 Co 5 Cr 6 Mn .7 Ni 71 Fe	940
Silicon-Iron 2 Si	756
Silicon-Iron 8 Si	720
Silicon-Iron 11 Si	690
65 Permalloy 65 Ni - Iron	620
79 Ni Permalloy	580
7-70 Perminvar 70 Ni 7 Co - Fe	650
Perminvar 45 Ni 25 Co - Fe	720
Perminvar 45 Ni 25 Co 7.5 Mo - Fe	535
79 Ni 4 Mo - Fe (P-Alloy)	460
79 Ni 5 Mo - Fe (Supermalloy)	400
47 Ni 3 Mo - Fe (Nonimax)	510
43 Ni 3.25 Si - Fe (Sinimax)	510
76 Ni 1.5 Cr 4 Cu - Fe (Mu-Metal)	450

CUPIE POINTS OF THE MAGNETIC MATERIALS USED IN GENERATORS, MOTORS AND INDUCTORS

(Continued)

Material	Curie Point ^O C
36 Ni - Fe (Invar)	275
42 Ni - Fe	400
50 Ni - Fe (Deltamax)	510
15 AL 3.3 Mo - Fe (Thermenol)	400
Alnico 5 - 24 Co 14 Ni 8 AL 3 Cu	88C
Alnico 6 - 24 Co 15 Ni 8 AL 3 Cu 1.25 Ti	88 0
Chrome Steel .9 C .3 Mn 3.5 Cr	745
3% Cobalt Steel 1.0 C 3 Co 4 Cr .4 Mo	804
17% Cobalt Steel . 8 C 17 Co 25 Cr 8 W	840
36% Cobalt Steel .7 C 36 Co 4 Cr 5 W	890

MAGNETIC PROPERTIES OF Cr Ni STEELS

	- · · / · · ·			Magnetic P	ermeability	Tensile
AISI	%	%	% Cold	H = 50	H = 200	Strength
Type No.	Cr	Ni	Reduction	Oersteds	Oersteds	Lb/Sq. In
Special	19.2	8.4	e	1.0042	1.0048	89, 100
•			8.3	1.128	1.136	120, 400
			16.7	5.7 0	6.23	138, 200
			27.8	13.6	14.1	156, 000
			48.0	49.0	33.4	202, 000
301	17.6	7.8	0	1.0027	1.0028	95,000
			19.5	1.148	1.257	140,600
			55.0	14.8	19.0	222, 4 00
302	18.4	9.0	0	1.0025	1.0035	95, 300
			20.0	1.0076	1.011	130, 200
			44.0	1.050	1.120	171, 000
			68.0	1.59	2.70	214, 000
			84.0	2.15	6.65	236, 000
304	19.0	10.7	0	1.0037	1.0040	81, 000
			13.8	1.0048	1.0060	101, 100
			32.0	1.0371	1,062	145, 900
			65.0	1.540	2.12	180, 400
			84.5	2.20	4.75	202, 800
308	17.9	11.7	0	1.0032	1.0044	88, 200
			18.5	1.0040	1.0054	129, 100
			34.5	1.017	1.020	154, 70 0
			52. 5	1.049	1.063	175, 900
			84.U	1.093	1.142	197, 800
310	24 .3	20.7	0	1.0018	1.0035	107, 800
			14.7	1.0016	1.0041	128, 100
			26.8	1.0018	1.0043	155, 000
			64.2	1.0019	1.0041	192, 600
316	4	46.4	•	1 0005	4 00 45	00
2.4% MO.	17.5	13.4	0	1.0030	1.0040	83, 600
			20.8	1.0030	1.0043	117, 800
			45.0	1.0040	1.0065	159, 900
			60.8	1.0065	1.0072	178,000
			81	1.0070	1.0100	194, 100

MAGNETIC PROPERTIES OF Cr Ni STEELS (Cont)

AISI Type No.	% Cr	% N:	% Cold Reduction	Magnetic P H = 50 Oersteds	ermeability H = 200 Oersteds	Tensile Strengtn Lb/Sq. In.
321						
0.68% Ti	18.3	10.3	C	1.0033	1.0035	87, 800
			16.5	1.018	1.023	123, 200
			41.5	1.40	1.61	162, 200
			53.5	2.44	3.34	174, 400
			70.5	6.76	9.40	201 , 300
347						
0.95% Cb.	18.4	10.7	0	1.0037	1.0044	94, 800
			13.5	1.0074	1.0085	118, 200
			40.0	1.062	1.088	166, 100
			60.0	1.245	1.445	179, 300
			90,0	1.97	4.12	216, 500

Ref: Heat treatment and physical properties of the Austenitic Chromium - Ni Steels - International Nickel Co. Bulletin

NON-MAGNETIC STEELS

The Chrome-Nickel steels of the 300 series are used as non-magnetic spacers and support members in rotor weldments, braces and other structural locations where it is desirable to use a material with a permeability of one (1).

Some of the 300 series steels are non-magnetic in the "soft" condition but when they are work hardened part of the steel changes phase and becomes magnetic. The 18-3 steel (see 301 on chart) becomes useless for non-magnetic needs when cold reduced 25% to 50%.

INPUT AUXILIARY DATA SHEET

Auxiliary information taken from the design manuals to be used in conjunction with input sheets for convenience.

- A. All dimensions for lengths, widths, and diameters are to be given in inches.
- B. Resistivity inputs, Items (141) and (151) are to be given in micro-ohm-inches.

The following items along with an explanation of each are tabulated here for convenience. For complete explanation of each item number, refer to design manuals.

Rem No. Explanation (9) Power factor to be given in per unit. For example for 90% P.F., insert .90. Adjustment Factor - For P.F. < .95 insert 1.0 (₽€) For P.F. > .95 insert 1.05 Optional Load Point -- Where load data output is required at a point other than those given (10)as standard on the input sheet. Example: For load data output at 155% load, insert 1.55. (14)Number of radial ducts in stator. (15)Width of radial ducts used in Item (14). (18)Magnetization curve of material used to be submitted as defined in Item (18). (19)Watts/Lb. to be taken from a core loss curve at the density given in Item (20) (Stator). Density in kilolines/in². This value must correspond to density used to pick litem (19) (20) usually use 77.4 KL/in². (21)Type of slot - For open slot Type A, insert 1.0. For partially open slot Type B with constant slot width, insert 2.0. For partially open slot Type C with constant tooth width, insert 3.0. For round slot Type D, insert 4.0. For additional information, refer to figure adjacent to input sheet which

(22) For stator slot dimension - for dimensions that do not apply to the slot insert <u>0.0.</u>

Use Table below as guide for input.

shows a picture of each slot.

			Slot 7	'vpe	
Symbol	Item	_1_	2	3_	4
b _o	(22)	0.0	*	*	*
b1		0.0	0.0	*	0.0
b 2		0.0	0.0	*	0.0
bз	}	0.0	0.0	*	0.0
bg	1	*	*	P	*
h _o		0.0	*	*	*
h ₁		*	*	*	0.0
h2		*	0.0	0.0	0.0
ng		*	*	0.0	0.0
h _s		*	*	*	*
ht		0.0	*	*	0.0
h _w	†	0.0	*	*	0.0
	411				

^{* =} insert actual value.

$$\mathcal{P} = b_{\mathbf{S}} = \frac{b_1 + b_3}{2}$$

Item No.	Explanation							
(28)	Type of winding - for wye connected winding insert 1.0.							
	for delta connected winding insert 0.0.							
(29)	Type of coil - for formed wound (rect. wire), insert 1.0.							
	for random wound (round wire) insert 0.0.							
(30)	Slots spanned - Example - for slot span of 1-10, insert 9.0.							
(33)	For round wire insert diameter. For rectangular wire insert wire width.							
(34)	Strands per conductor in depth only.							
(34a)	Total strands per conductor in depth and width.							
(35)	Diameter of coil head forming pin. Insert .25 for stator O.D. < 8 inches;							
	Insert .50 for stator O.D. >3 in. Coil Pin							
(37)	Use vertical height of strand for round wire, insert 0.0.							
(38)	Distance between centerline of strands in depth. Insulation h'st							
(39)	Stator strand thickness use narrowest dimension of the two dimensions given for a							
	rectangular wire. For round wire insert 0.0 .							
(40)	Stator slot skew in inches.							
(42a)	Phase belt angle - for 60° phase belt, insert 60°.							
	for 120° phase belt, insert 120°.							
(48)	See explanation o' items (71), (72), (73), (74) and (75). Same applies here.							
(87)	When no load saturation output data is required at various voltages, insert 1.0.							
	When no load saturation information is not required, insert 0.0 .							
(137)	Damper bar thickness use damper bar slot height for rectangular bar. For round							
	bar insert <u>0.0.</u>							
(138)	Number of damper bars per pole.							
(140)	Damper bar pitch in inches.							
(148)	For round wire insert diameter. For rectangular wire insert wire width.							
(149)	For rectangular wire insert wire thickness. For round wire insert 0.0.							
(187)	Pole face loss factor. For rotor lamination thickness .028 in. or less, insert [1.7]							
	For rotor lamination thickness .029 in. to .063 in. insert 1.75.							
	For rotor lamination thickness .064 in. to .125 insert 3.5.							
	For solid rotor insert 7.0.							
(71)	If the values of these constants are available, insert the actual number. If they are							
(72)	not available, insert 0.0 and the computer will calculate the values and record them on							
(73)	the output.							
(74)								

(75)

SALIENT POLE COMPUTER DESIGN (INPUT)

	(39.)	Ome x	MAXIMUM AIR GAP	DESIGNER		DATE			
•	(39,)	enn	MIMIMUM AIR GAP						,
	(51)	٧,	RES'TYY STA. COND. # 20° C			l			
		x, •c	STATOR TEMP • C			1			
		Yak	STATOR SLOT SKEW			Į			
	(620)		PHASE BELT/ANGLE			ļ			
	(90)	7,	DIST. BTWN. CL OF STD.						
•	(32)	h .,	UMMS, STRD. HT.		PER SLOT		MARKS		
3	(36)	16.2	COIL EXT. STR. PORT	STA	TOR SLOT	P	OL E		
3	(ms)	16	DIA. OF PIN		ı				
	(Disc)	["" -	STRANDS/CONDUCTOR STATOR STRAND TIKES						
	(100) (100)	Nat Nat	STRANDS/CONDUCTOR						
9	(68)	<u> </u>	STRAND DIA. OR WIDTH						
	(32)		PARALLEL CIRCUITS			[
	(EI)	<u>'</u>	SLOTS SPANNED		STATOR LAM. MTR'L	. (CURYE)	(18)	<u> </u>	
	(30)	n _e	CONDUCTORS/SLOT		ROTOR LAM. MTR'L		(18)	 	I
	(20)	 	TYPE OF COIL		FRICTION & WINDAG	<u> </u>	(183)	(F&W)	+
	(28)		TYPE OF WDG.		NO LOAD SAT.		(87)	ļ	1
	(38)	9	NO. OF SLOTS		RESISTIVITY OF FIE	LD COND + 20°	(151)	<u> </u>	ļ
	(\$5)	h w			FLD. TEMP IN ° C		(150)	X10C	1
	(22)	he			FLD. COND.THICKN	ESS	(149)		1
	(22)	hs	SLOT DEPTH		FLD. COND. DIA. OF	WIDTH	(148)		FEG
_	(22)	hg			MEAN LENGTH OF F	LD, TURN	(147)	2.	
<u> </u>	(22)	h2			NO. OF FIELD TURN	is	(1460)	Ne	Ţ
2	(22)	hı			DAMPER BAR TEMP	• c	(142)	x,• c	l
4	(82)	ho			RESISTIVITY OF DAI	MP. BAR • 200	(141)	B	1
ģ	(22)	b .	SLOT WIDTH		DAMPER BAR PITCH		(140)	76	
	(22)	3			DAMPER BAR LENGT	·H	(139)	1h]
	(22)	رام			NO. OF DAMPER BA	RS	(138)	nb	
	(22)	ы	SLOT WIDTH TOP		RECTANGULAR SLO		(135)	PM	
	(22)	þ	SLOT OPENING		RECTANGULAR BAR	THICKNESS	(137)	h N	
	(21)		TYPE OF SLOT		DAMPER BAR DIA. O	R WIDTH	(136)	()	
	(20)	В	DENSITY		HEIGHT OF SLOT OF	ENING	(135)	h bo	1
•	(19)	k	WATTS/LB.		WIDTH OF SLOT OP	MING	(135)	b bo	Γ
Ž	(16)	Kı	STACKING FACTOR (STATOR)		POLE PACE LOSS FA	CTOR	(197)	(K),	Ĺ
Ş	(15)	by	WIDTH OF DUCT		WEIGHT OF ROTOR I	RON	(157)	(-)]
7	(14)	n v	NO. OF DUCTS		STACKING FACTOR	(ROTOR)	(16)	Ki]
Ų	(13)	1	GROSS CORE LENGTH		ROTOR DIAMETER		(11a)	d,]
	(12)	D	STATOR O.D.		POLE EMBRACE		(77)	œ	
	(11)	d	STATOR LD.		POLE HEAD LENGT	1	(76)	20	
	(10)		OPTIONAL LOAD POINT		POLE BODY LENGTI	1	(76)	人	1
	(9e)	Ke	ADJ. FACTOR		POLE BODY HEIGHT	· · · · · · · · · · · · · · · · · · ·	(76)	hij	1
	(7)	PF	POWER FACTOR		POLE HEAD HEIGHT		(76)	hh	1
£	(8)	lph	PHASE CURRENT		POLE BODY WIDTH		(76)	ь,	1
Ž	n	RPM	RPM		POLE HEAD WIDTH	•	(76)	L	Γ
3	(6)	P	POLES		CROSS MAGNETIZING	NZING FACTOR		C _q	1
12	(5e)	f	FREQUENCY		DEMAGNETIZATION	FACTOR	(74)	Cm]
2	(5)	m	PHASES		END EXTENSION ON	E TURN	(48)	LE	
	(4)	Eph	PNASE VOLTS		POLE CONST.		(73)	Ср	
	(3)	E	LINE VOLTS		WINDING CONSTANT		(72)	C,	$]_i$
	(2)	KVA	GENERATOR KVA		FUND/MAX OF FIEL	PEGA	(71)	C	

REV. A

SUMMARY OF DESIGN CALCULATIONS - SALIENT POLE (OUTPUT)

	MOI	DEL		EWO		DESIGN NO.				
	(17)(L s)	SOLID CORE L	ENGTH				CARTE	R CGEFFICIENT	(67) (K a)	T
	(24) (h _c)	DEPTH BELOW	SLOT				AIR GA	PAREA	(68) (-)	ا ۵
	(26) (T.)	SLOT PITCH					AIR GA	P PERM	(70c)(Aa)]{
	(27) (T _s 1/3)	SLOT PITCH TO	/3 DIST. UP				EFFEC	TIVE AIR GAP	(69) (g ·)	1_
ļ	(42) (Ksk)	SKEW FACTOR					FUND/	MAX OF FLD. FLUX	(71) (C ₁)	T
	(43) (K _d)	DIST. FACTOR					MINDIN	G CONST.	(72) (C " ']£
	(44) (K _p)	PITCH FACTOR	R				FOLE	CHST.	(/3) (C _p)	Z
	(45) (%)	EFF. CONDUC	TORS				END. E	XT. ONE TURN	(48) (LE)	CONST
8	(46) (ac)	COND. AREA					DEMAG	NETITIMS FACTOR	(74) (C pr)]8
Į.	(47) (5±)	CURRENT DEN	ISITY (STA.)	·			CROSS	MAGNETIZING FACTOR	(75) (Cq)	
2	(49) (f ,)	1/2 MEAN TUR	N I ENGTH				AMP C:	PID/IN	(128)(A)	
	(53) (Rph)	COLD STA. RE	S 20 ° C				REACT	ANCE FACTOR	(129)(X)	
	(54) (Rph)	HGT STA. RES	~X°C				LEAKA	GE REACTANCE	(130)(Xg)]
	(55) (EF _{top})	EDDY FACTOR	TOP				FEACT	ANCE OI	(131) (X ad)]
	(56) (EFbot)	EDDY FACTOR	BOT				ARMAT	URE REACTION	(132) (X _{qq})]
į	(62) (Ài)	STATOR COND	eRM.				SYN RE	ACT DIRECT AXIS	(133)(X4)]
	(64) (A _p)	END PERM.		<u></u>			SYN RE	ACT QUAD AXIS	(134) (X _q)] =
Į	(65) ()	WI. OF STA CO	OPPER				FIELD	LEAKAGE REACT	(160)(X f)	_ ₹
	(66) ()	WT. OF STAIR	RON				FIELD	SELF INDUCTANCE	(161)(Lf)]5
	(41) (Yp)	POLE PITCH					DAMPE	R	(163)(XDd)	ַן עֱ [
	(79) (_{up})	POLE AREA					LEAKA	GE REACT	(165) (XDq.)]"
	(82b) (A e g)	OLE END LE	AK PERM.				UNSAT.	TRANS. REACT	(166) (X'du)]
	(816) (At g)	FOLE TIP LE	AK PERM.				SAT. TI	RANS. REACT	(167) (X'd)]
<u>ج</u>	(80b) (A=2)	POLE SIDE LE	AK PERM.				SUB. TR	APS.REACT DIRECT AX	(P,,X) (891)]
)TO	(153) (oCF)	FLD. COND. A	REA				SUB. TR	ANS.REACT QUAD AX.	(169) (X'' _q)]
č	(154) (RF)	TOLD FLD RE	S ≈ 20 ° C				NEG SE	QUENCE REACT	(170) (X2 }]
	(155) (RF)	HOT FLD RES	↔X C				ZEROS	EQUENCE REACT	(172) (X o)	
	(156) ()	WT OF FLD CO	DPPER			T		TOTAL FLUX]
	(157) ()	WT OF ROTOR	IRON				FLUX P	ER POLE	(92) (·/·p)],
~~	(145) (Y _r)	PERIPHERAL	SPEED				GAP DE	NSI TY	(95) (8 _g)	MAGNETIZATION
	(176; (Tdo)	OPEN CIR. TIM	IE CONST.				тоотн	DENSITY	(91) (B,)]3
ř	(177) (7.)	ARM TIME CON					CORED	ENSITY	(94) (B _C)]Ë
3 ⊢	(178) (T'd)	TRANS TIME C					HTOOTH	TOOTH AMPERE TURNS]ž
ES	(179) (T"d)	SUB TRANS TI	ME CONST.		1.		CORE A	MPERE TURNS	(98) (F _c)	ĬĬ
ິນ		SHORT CIR NI					GAP AM	PERE TURNS	(96) (F _G)	4
	•	SHORT GIR RA							 	
41.	PERCENT L		0		\rightarrow	100	150	200	OPTION	
) (100=) LEA			(1970				_	 -	
) (102a) POLE) (103a) POLE			(Pg.) (2136			 _			
				- / 2 			 	!	 -	-
) (1044) POL			(Fpl) (213c				}	 	
	() (127) TOT/ () (1270) FIEL			(FR) (25*			 -		 	
				(237			 		 	
) (127c) CUR.			(€µa ; (239			 		 	
	(17.,) PIEL.		ļ- -	(1° + ,) (24)			 	/ vs	 	
ب	W) (183) F&W			(F&F) (123			1		 	
<u> </u>	(1) (184) STA		ļ	(Wmp (Pe)					 	
				(Wc) (185)	- I			. }	╂	
<u> </u>	(We) (185) STA CORE LOSS (Went) (186) POLE FACE LOSS (Wdnt) (193) DAMPER LOSS (12 Rs) (194) STATOR CU LOSS (-) (195) EDDY LOSS					a remarkation and the same than some			 	
			-	(WpH) (243		C	 		+	
			ļ	(Waff) (244 (12 R _s) (245		CALL STREET, S	-		+	
			 	(12 R ₆) (245 (-) (246					 	
$\frac{(-)}{(-)}$				-) (247						
(-)			ļ	(-) (248			 	 -	+	
1-1		NG & LOSSES		(-) (249			 		 	
7.		MO @ LU33E3			, ,					
<u>(-)</u>					\neg				 	
(-) (-)	(-) PERC	ENT LOSSES		(-) (250 (-) (251					 	

REMARKS

NO LOAD SATURATION OUTPUT SHEET

ITEMS	(3) (E) VOLTS	(96) (F _g) AIR GAP A. ī.	(91) (B ,) TOOTH DENSITY	(97) (F ₊) TOOTH A.T.	(94) (8 g) CORE DENSITY	(98) (F _c)
VOLTS	(98a) (F _g) STATOR A.T.	(100a) (ϕ) Leakage flux	(102a) (∱p*) TOTAL FLUX/POLE	(103A) (8 _p) POLE DENSITY	(104a) (F p) POLE A.T.	(127) (F _{n1}) TOTAL A.T. (N.L.)
80%						
90%						
100%						
110%						
120%					<i>"</i>	
130%						
140%						·
150%						
160%						

SALIENT POLE COMPUTER DESIGN MANUAL

(1)		DESIGN NUMBER - To be used for filing purposes			
(2)	KVA	GENERATOR KVA			
(3)	E	LINE VOLTS			
(4)	E _{PH}	PHASE VOLTS - For 3 phase, wye connected generator			
		$E_{PH} = \frac{\text{(Line Volts)}}{\sqrt{3}} = \frac{(3)}{\sqrt{3}}$			
		For 3 phase, delta connected generator			
	\	$E_{PH} = (Line Volts) = (3)$			
(5)	χ n .	PFASES - Number of			
(5a)	f	FREQUENCY - In cycles per second			
(6)	P	POLES - Number of			
(7)	RPM	SPEED - In revolutions per minute			
(8)	I _{PH}	PHASE CURRENT - In amperes at rated load			
(8)	P.F.	POWER FACTOR - Given in per unit			
(9a)	K _©	ADJUSTMENT FACTOR - When P.F. = 0. to .95 set $K_c = 1$.; Wigh P.F. = .95 to 1. set $K_c = 1.05$			
(10)	usa dan	LOAD POINTS - The computer program has standard outputs for 0, 100%, 150%, 200% load points plus			
		one optional load point that can be any value			
		between 0 and 2 p.u. If no optional calculation			
		is desired, insert 0.0 for item (10) on the input			
		sheet.			

	1	1					
(11)	d	STATOR PUNCHING I.D The inside diameter of the stator punching in inches					
(11a)	d _r	ROTOR PUNCHING O.D The opening in inches	ROTOR PUNCHING O.D The outside diameter of the rotor punching in inches				
(12)	D	PUNCHING O.D The outside di in inches	iameter of the state	or punching			
(13)	l	GROSS CORE LENGTH - In inch	es				
(14)	n V	RADIAL DUCTS - Number of					
(15)	$\mathbf{b}_{\mathbf{v}}$	RADIAL DUCT WIDTH - In inche	RADIAL DUCT WIDTH - In inches				
(16)	K _i	STACKING FACTOR - This factor allows for the coating (core plating) on the punchings, the burrs due to slotting, and the deviations in flatness. Approximate values of K _i are given below.					
		THICKNESS OF LAMINATIONS (INCHES) . 014 . 018 . 025 . 328 . 363 . 125	29 26 24 23	K _i 0. 92 0. 93 0. 95 0. 97 0. 93 0. 99			
	}						

(17)	l _s	SOLID CORE LENGTH - The solid length is the gross length				
		times the stacking factor. If ventilating ducts are				
		used, their length must be subtracted from the gross				
	İ	lengtivalso.				
		$\ell_{s} = (K_{i}) [(\ell) - (n_{v}) (b_{v})] = (16) [(13) - (14) (15)]$				

(18)

LAMINATION MATERIAL - This input is used in selecting the proper magnetization curves for the stator and rotor material. Where curves are available on card decks, use the proper identifying code.

Where card decks are not available submit data in the following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in Section F on Curve F15. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

(19) k WATTS/LB - Core loss per lb of stator lamination material.

Must be given at the frequency specified. Curve F-11a provides losses at 400 cps and 77. 4 kilolines/in².

DENSITY - This value must correspond to the density used in Item (19) to pick the watts/lb. The density that is usually used is 77.4 kilolines/in².

В

(20)

TYPE OF STATOR SLOT - Designate the type of slot from the

following figure.

For (a) slot use 1. as an input

For (b) slot use 2. as an input

For (c) slot use 3. as an input

For (d) slot use 4. as an input

Type 5. is not a slot but instead a particular situation for an open slot where the winding has only one conductor per slot.

(b) Constant Slot Width

Note: For slot type C,

$$b_s = \frac{(b_1) + (b_3)}{2}$$

(C) Constant Tooth Width

(a) Open Slots

(d) Round Slots

being
being
being
being
being
being
ow the
never

(27)	Ts1/3	STATOR SLOT PITCH - 1/3 distance up from narrowest section For slot (a), (b), (c), and (e)(in inches) $\tau_{s1/3} = \frac{\pi(d) + .66(h_s)}{(Q)} \qquad \pi(11) + .66(22)$
		For slot (d)
		$= \frac{\pi \sqrt{(11) + 2(22) + 1.32(22)}}{(23)}$
(28)		TYPE OF WINDING - Record whether the connection is "wye" or "delta". For 'wye" conn use 1. for input. For "delta" use 0. for input
(29)		TYPE OF COIL - Record whether random wound or formed coils are used. For random wound coils use 0. for input. For formed coils use 1. for input.
(30)	n _s	CONDUCTORS PER SLOT - The actual number of conductors per slot. For random wound coils use a space tactor of 75% to 80%. Where space factor is the percent of
		the total slot area that is available for insulated conductors after all other insulation areas have been subtracted out.
(31)	У	THROW - Number of slots spanned. For example, with a coil side in slot 1 and the other coil side in slot 10, the throw is 9.

(3la)		PER UNIT OF POLE PITCH SPANNED - Ratio of the number
(314)		of slots spanned to the number of slots in a pole
		pitch. This value must be between 1.0 and 0.5 to
	i	satisfy the limits of this program.
		$= \frac{(Y)}{(m)(q)} = \frac{(31)}{(5)(25)}$
(32)	С	PARALLEL PATHS, No. of - Number of parallel circuits
		per phase.
(33)		STRAND DIA. OR WIDTH - In inches. For round wire, use
		strand diameter. For rectangular wire, use strand
		width. This must be the largest of the two dimen-
		sions given for a rectangular wire.
(34)	Nst	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH -
		Applies to rectangular wire. To reduce eddy
		current loss a stranded conductor is often used.
		For example, when the space available for one
		conductor is .250 width x .250 depth, the actual
		conductor can be made up of 2 or 3 strands in
		depth as shown. For round wire insert 1.0
		one strand {} one conductor

(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR - This number			
		applies to the strands in depth and/or width and			
		is used in calculating the conductor area. Item			
		(34) is different in that it deals with strands in			
		depth only and is used in calculating eddy factors.			
(35)	db	DIAMETER OF BENDER PIN - in inches - This pin is used			
	·	in forming coils. Use .25 inch for stator O.D. < 8 inches use .50 inches for stator O.D. > 8 inches.			
(36)	ℓ_{e2}	COIL EXTENSION BEYOND CORE in Inches - Straight por-			
		tion of coil that extends beyond stator core.			
(37)	hst	HEIGHT OF UNINSULATED STRAND in Inches - This			
		value is the vertical height of the strand and is			
		used in eddy factor calculations. Set this value =			
		0 for round wire.			
(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH			
	·	in inches.			
(39)		STATOR COIL STRAND THICKNESS in inches - For rec-			
(65)	,	tangular conductors only. For round wire insert			
		0. on input sheet. This must be the narrowest			
] 		dimension of the two dimensions given for a			
		·			
		rectangular wire.			
(40)	$ au_{ ext{SK}}$	SKEW - Stator slot skew in inches at stator I.D.			

(41)	1-	DOLE DIMON in inches			
(41)	P	POLE PITCH in inches.			
	Tp	$\sqrt{\rho} = \frac{\pi(d)}{(P)} = \frac{\pi(11)}{(6)}$			
(42)					
(42)	KSK				
		age induced in the coils to the voltage that would			
		be induced if there were no skew.			
		When $\Upsilon_{SK} = 0$, $K_{SK} = 1$			
		$K_{SK} = \frac{\sin\left[\frac{\pi(\tau_{SK})}{2(\tau_{P})}\right]}{\pi(\tau_{SK})} = \frac{\sin\left[\frac{\pi(40)}{2(41)}\right]}{\frac{\pi(40)}{2(40)}}$			
		$\frac{R_{SK} - \frac{\pi(\tau_{SK})}{2(\tau_{P})} - \frac{\pi(40)}{2(41)}}{2}$			
(42a)		PHASE BELT ANGLE - Input			
	}	For phase belt angle = 60° insert 60 on input			
		sheet.			
		For phase belt angle = 1200 insert 120 on input			
		sheet.			
(43)	K _d	DISTRIBUTION FACTOR - The distribution factor is the			
		ratio of the voltage induced in the coils to the			
		voltage that would be induced if the windings			
		were concentrated in a single slot. See Table F-2			
		for compilation of distribution factors for the			
		various harmonics.			

(44)		Кp
(45)	And the state of t	ⁿ e
 (46)		a_{c}

PITCH FACTOR - The ratio of the voltage induced in the coil to the voltage that would be induced in a full pitched coil. See Table F-1 for compilation of the pitch factors for the various harmonics.

$$K_{\mathbf{p}} = \sin \left[\frac{(Y)}{(m)(q)} \times 90^{\circ} \right] = \sin \left[\frac{(31)}{(5)(25)} \times 90^{\circ} \right]$$

TOTAL EFFECTIVE CONDUCTORS - The actual number of effective series conductors in the stator winding taking into account the pitch and skew factors but not allowing for the distribution factor.

$$n_e = \frac{\langle Q \rangle (n_s) (K_P) (K_{SK})}{\langle C \rangle} = \frac{(23)(30)(44)(42)}{\langle 32 \rangle}$$

CONDUCTOR AREA OF STATOR WINDING in (inches)2 -

The actual area of the conductor taking into account the corner radius on square and rectangular wire. See the following table for typical values of corner radii

If (39) = 0 then
$$a_c = 25\pi (Dia)^2 = .25\pi (33)^2$$

If (39) \neq 0 then $a_c = (N'_{ST}) \left[\text{(strand width) (strand depth)} - (.858 r_c^2) \right] = (34a) \left[(33) (39) - (.858 r_c^2) \right]$

where .858 r_c² is obtained from Table below.

(39)	(33) . 188	. 189 (33) . 75	(93) .751
. 050	. 000124	. 000124	. 000124
. 672	. 000210	. 000124	. 000124
. 125	. 000210	. 00084	. 000124
. 165	. 000840	. 00084	. 003350
. 225	.001890	. 00189	. 003350
. 438		. 00335	. 007540
. 688		. 007.54	. 01340
		. 03020	. 03020

For 60° phase belt angle and q = integer when (42a) = 60 and (25) = integer.

$$K_{cl} = \frac{\sin 30^{\circ}}{(q) \sin [30/(q)]} = \frac{\sin 30^{\circ}}{(25) \sin [30/(25)]}$$

For 60° phase belt angle and (q) # integer = N/B reduced to lowest terms.

When (43a) = 60 and (25) ≠ integer = N/B reduced to lowest terms

$$K_{d} = \frac{\sin 30^{\circ}}{(N) \sin[30/(N)]} = \frac{\sin 30^{\circ}}{(43) \sin[30/(43)]}$$

For 120° phase belt angle and (q) = integer

When (43a) = 120 and (25) = integer

$$K_d = \frac{\sin 60^{\circ}}{2(q) \sin [30/(q)]} = \frac{\sin 60^{\circ}}{2(25) \sin [30/(25)]}$$

For 120° phase belt angle and q \neq integer When (43a) = 120 and (25) \neq integer = N/B reduced to lowest terms

$$K_d = \frac{\sin 60^{\circ}}{2(N) \sin [30/(N)]} = \frac{\sin 60^{\circ}}{2(43) \sin [30/(43)]}$$

1	1	1
(47)	SS	CURRENT DENSITY - Amperes per square inch of stator conductor
		$S_{S} = \frac{(i_{PH})}{(C)(a_{C})} = \frac{(8)}{(32)(46)}$
(48)	$\mathbf{L}_{\mathbf{E}}$	END EXTENSION LENGTH in inches - Can be an input or output.
	E	For L _E to be output, insert 0. on input sheet.
		For L _E to be input, calculate per following:
		When (29) = 0 then:
		$L_{E} = \frac{.5 + K_{T} $
	•	When (29) = 1. then:
		$\mathbf{L}_{\mathbf{E}} = 2\left(\ell_{e2}\right) + \pi \left[\frac{\mathbf{h}_{1}}{2} + (\mathbf{d}_{b})\right] + y \left[\frac{\tau_{s}^{2}}{\sqrt{\tau_{s}^{2} - \mathbf{b}_{s}^{2}}}\right]$
		$= 2 \times (36) + \pi \left[\frac{(22)}{2} + (35) \right] + (31) \left[\frac{(26)^2}{\sqrt{(26)^2 - (22)^2}} \right]$
(49)	$\ell_{\rm t}$	1/2 MEAN TURN - The average length of one conductor in inches
		$\ell_{\rm t} = (\ell) + (L_{\rm E}) = (13) + (48)$
(50)	X _s °C	
		calculated. No load losses and cold resistance will be calculated at 20°C.
		be calculated at 20°C.
ĺ		

(54)	1 0	Í	_				
(51)	Ps	PESISTIVITY OF STATOR WINDING - In micro ohm-inches @ 20°C. If tables are available using units other than					
1		į					
			•	actors below for	conversion to		
		ohm-inc	nes.				
		ρ ohm-cir					
			ohm-cm ohm-in mil/ft				
		1 ohm-cm =	1.000	0.3937	6.015 x 10 ⁶		
		1 ohm-in =	2.540	1. 000	1.528 x 10 ⁷		
		1 ohm-cir mil/ft =	1.662 x 10 ⁻⁷	6.545×10^{-8}	1.000		
		Conversion	Factors for E	lectrical Resisti	vity		
(52)	$\rho_{_{\mathbf{S}}}$	RESISTIVITY OF ST	LAZOR WINDIN	IG - Hot at X OC	in micro ohm		
	(hot)	RESISTIVITY OF STATOR WINDING - Hot at X ₈ C in micro ohm- inches					
		Mores					
		$P_{S(hot)} = (P_S) \left[\frac{(X_S^{OC}) + 234.5}{254.5} \right] = (51) \left[\frac{(50) + 234.5}{254.5} \right]$					
(53)	Rsph	STATOR RESISTANCE/PHASE - Cold @ 20°C in ohms					
	(cold)	$R_{SPH(cold)} = \frac{(\mathcal{P}_{S})(n_{S})(Q)(\ell_{t})}{(n_{t})(a_{C})(C)^{2}} \times 10^{-6} = \frac{(51)(30)(23)(49)}{(5)(46)(32)^{2}} \times 10^{-6}$					
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE - Calculated @ XOC in ohms					
	(not)	$R_{SPH(hot)} = \frac{(\mathcal{S}_{s hot})(n_s)(Q)(\ell_t)}{(m)(a_c)(C)^2} \times 10^{-6} \frac{(52)(30)(23)(49)}{(5)(46)(32)^2} \times 10^{-6}$					
(55)	EF (top)	· EDDY FACTOR TO	OP - The eddy	factor of the to	op coil. Cal-		
	(top)	culate th	is value at the	expected opera	ting tem-		
		perature of the machine. For round wire					
		$\mathbf{EF_{top}} = 1$					

$$EF_{top} = 1 + \left\{ .584 + \frac{\left(N_{st}\right)^{2} - 1}{16} \left(h_{st}\right)^{2} \right\} 3.35 \times 10^{-3}$$

$$\left[\frac{(h_{st})(n_{s})(f)(a_{c})}{(b_{s})(P_{s})_{hot}} \right]^{2}$$

$$= 1 + \left\{ .584 + \frac{\left(34\right)^{2} - 1}{16} \left(38\right)(13)}{(37)(49)} \right\}^{2} 3.35 \times 10^{-3}$$

$$\left[\frac{(37)(30)(5a)(46)}{(22)(52)} \right]^{2}$$

(56) EF (bot)

EDDY FACTOR BOTTOM - The eddy factor of the bottom

coil at the expected operating temperature of the

machine. For round wire EF_(bot) = 1

$$EF_{\text{(bot)}} = (EF_{\text{(top)}}) - 1.677 \left[\frac{(h_{st})(n_s)(f)(a_c)}{(b_s)(P_{S \text{ hot}})} \right]^2 \times 10^{-3}$$

= (55) - 1.677
$$\frac{(37)(30)(5a)(46)}{(22)(52)}$$
 10⁻³

(57) b_{tm}

STATOR TOOTH WIDTH 1/2 way down tooth in inches For slots type (a), (b), (d) and (e), item (21).

$$b_{tm} = \frac{\pi(d) + (h_s)}{(Q)} - (b_s) = \frac{\pi(11) + (22)}{(23)} - (22)$$

			For slot type (c), item (21).
			$b_{tm} = \frac{\pi[(d) + 2(h_s)]}{(Q)} - (b_3) = \frac{\pi[(11) + 2(22)]}{(23)} - (22)$
(57a)	b _{t1/3}	STATOR TOOTH WIDTH 1/3 distance up from narrowest section For slots type (a), (b) and (e)
			$b_{t 1/3} = (7_{3 1/3}) - (b_{s}) = (27) - (22)$
			For slot type (c)
			$b_{t 1/3} = b_{tm} = (57)$
		,	For slot type (d)
		`	$b_{t 1/3} = (\gamma_{1/3}) - \frac{2\sqrt{2}}{3} (b_s) = (27)94(22)$
	(58)	b _t	TOOTH WIDTH AT STATOR I.D. in inches -
			For partially closed slot
			$b_t = \frac{\pi(d)}{(Q)} - (b_0) = \frac{\pi(11)}{(23)} - (22)$
			For open slot
			$b_t = \frac{\pi(d)}{(Q)} - (b_s) = \frac{\pi(11)}{(23)} - (22)$
	(59)	g _{min}	MINIMUM AIR GAP in inches - For concentric pole face
		MITI	$g_{\min} = g_{\max}$. For non concentric pole face
			$g_{\min} = gap$ at the center of the pole.
	(59g)	g _{max}	MAXIMUM AIR GAP in inches

(30)	l c	REACTANCE FACTOR - Used in calculating conductor permeance
(30)	CX	and is dependent on the pitch and distribution factor.
		This factor can be obtained from Curve F-5 with an
		assumed K_d of .955 or calculated as shown
		$(K_{\mathbf{X}})$ (61)
		$C_{X} = \frac{(K_{X})^{2}}{(K_{D})^{2}(K_{d})^{2}} = \frac{(61)}{(44)^{2}(43)^{2}}$
(61)	$\kappa_{\mathbf{X}}$	Factor to account for difference in phase current in coil
		sides in same slot.
		For 60° phase belt winding, ie when $(42a) = 60$
		3(7)
		$K_X = 1/4 \left[\frac{3(y)}{(m)(q)} + 1 \right]$ where $2/3 = (y)/(m)(q) = 1.0$
		$K_X = 1/4 \left[\frac{3(31)}{(5)(25)} + 1 \right]$ where $2/3 = (31a) = 1.0$
		or
		$K_X = 1/4 \left[\frac{6(y)}{(m)(q)} - 1 \right]$ where $1/2 = (31a) = 2/3$
		$K_{X} = 1/4 \left[\frac{6(31)}{(5)(25)} - 1 \right]$ where $1/2 \stackrel{<}{=} (31a) \stackrel{<}{=} 2/3$
		For 120° phase belt winding, ie when $(42a) = 120$
		$K_X = .75 \text{ when } 2/3 \le (y)/(m)(q)$
		$K_X = .75$ when $2/3 = (3la)$
		or
		$K_{X} = .05 \left[\frac{24(y)}{(m)(q)} - 1 \right] \text{ where } 1/2 \le \frac{(y)}{(m)(q)} \le 2/3$
		$K_X = .05 \frac{24(31)}{(3)(25)} - 1$ where $1/2 = (31a) \le 2/3$

DUCTOR PERMEANCE - The specific permeance for the portion of the stator current that is embedded in the This permeance depends upon the configuration of the slot. (flux lines per ampere turn, per inch of stator stack).

(a) For open slots

$$\lambda_i = (C_X) \frac{20}{(m)(q)} \left[\frac{(h_2)}{(b_s)^+} \frac{(h_1)}{3(b_s)} + \frac{(b_t)^2}{16(\tau_s)(g)} + \frac{.35(b_t)}{(\tau_s)} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

stat Motes (b) For partially closed slots with constant slot width

$$\lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{o})}{(b_{o})} + \frac{2(h_{t})}{(b_{o}) + (b_{s})} + \frac{(h_{w})}{(b_{s})} + \frac{(h_{1})}{3(b_{s})} + \frac{(b_{t})^{2}}{16(T_{s})(g)} + \frac{35(b_{t})}{(T_{s})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{2(22)}{(22) + (22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{35(58)}{(26)} \right]$$

$$\gamma_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{2(22)}{(22) + (22)} + \frac{(22)}{(22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

(c) For partially closed slots (tapered sides)

$$\frac{\frac{1}{h_{o}} \frac{1}{h_{o}}}{\frac{1}{h_{i}} \frac{1}{h_{i}}} \lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(I_{o})}{(b_{o})} + \frac{2(h_{t})}{(b_{o}) + (b_{1})} + \frac{2(h_{w})}{(b_{i}) + (b_{1})} + \frac{(h_{1})}{3(b_{2})} + \frac{(b_{t})^{2}}{16(\tau_{S})(g)} + \frac{35(b_{t})}{(\tau_{S})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{2(22)}{(22) + (22)} + \frac{2(22)}{(22) + (22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

(d) Round Slots

(d) For round slots

$$\lambda_i = (C_X) \frac{20}{(m)(q)} \left[.62 + \frac{(h_0)}{(b_0)} \right]$$

$$\lambda_i = (60) \frac{20}{(5)(25)} \left[.62 + \frac{(22)}{(22)} \right]$$

(e) For open slots with a winding of one conductor per slot

$$\lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{2})}{(b_{s})} + \frac{(h_{1})}{3(b_{s})} + .6 + \frac{(g)}{2(\tau_{s})} + \frac{(\tau_{s})}{4(g)} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{(22)}{3(22)} + .6 + \frac{(59)}{2(26)} + \frac{(26)}{4(59)} \right]$$

LEAKAGE REACTIVE FACTOR for end turn

 $K_E = \frac{\text{Calculated value } (L_E)}{\text{Value } (L_E) \text{ from Curve } F_{-1}(\text{For machines where (11)>8"})}$

where L_E = (48) and abscise of Graph 1 = (γ)(γ) = (31)(26)

 $K_{E} = \sqrt{\frac{\text{Calculated value of } (L_{E})}{\text{Value } (L_{E}) \text{ from Curve } F-1}}$ (For machines where (11)<8")

(64) 1入_E

END WINDING PERMEANCE - The specific permeance for the end extension portion of the stator winding*

$$\sum_{E} = \frac{6.28 \text{ (Kg)}}{(\ell) \text{ (Kg)}^{2}} \left[\frac{\emptyset_{E} L_{E}}{2n} \right] = \frac{6.28 \text{ (63)}}{(13) (43)^{2}} \left[\frac{Q_{E} L_{E}}{2n} \right]$$

The term $\left| \frac{\phi_{E} L_{E}}{2n} \right|$ is obtained from Curve F-1

The symbols used in this (term) do not apply to those of this design manual. Reference information for the symbol origin is included on Curve F-1.

See (62) for units

(€5)		WEIGHT OF COPPER - The weight of stator copper in 1 Cs. #'s copper = $.321(n_s)(Q)(a_c)(Q_t)$ = $.321(30)(23)(46)(49)$ NOTE: This answer is given in lbs. based on the density of copper. If any other material is used, the answer on output sheet can be converted by the designer by multiplying by the ratio of densities.
(66)		WEIGHT OF STATOR IRON - in lbs.
		#'s iron = .283 $\{(b_{tm})(Q)(\ell_s)(h_s) + \pi(D) - (h_c)(h_c)(\ell_s)\}$
		$.283 \left\{ (57)(23)(17)(22) + \widetilde{ii} \left[(12) - (24) \right] (24)(17) \right\}$
(67)	K _s	CARTER COEFFICIENT
		$\overline{K}_{g} = \frac{(\gamma_{g}) \left[5(g) + (b_{g}) \right]}{(\gamma_{g}) \left[5(g) + (b_{g}) \right] - (b_{g})^{2}} $ (For open slots)
		$K_s = \frac{(26)[5(59) + (22)]}{(26)[5(59) + (22)] - (22)^2}$
		$K_{s.} = \frac{\gamma_s \left[4.44(g) + .75(b_0) \right]}{\gamma_s \left[4.44(g) + .75(b_0) \right] - (b_0)^2}$ (For partially closed slots)
		$\mathbf{K_{S}} = \frac{(26) \left[4.44(59) + .75(22) \right]}{(26) \left[4.44(59) + .75(22) \right] - (22)^{2}}$

(68)	$\mathbf{A}_{\mathbf{g}}$	AIR GAP AREA - The area of the gap surface at the stator bore
		Gap Area = $\mathcal{T}(\mathbf{d})(\mathcal{L}) = \mathcal{T}(11)(13)$ (in square inches)
(69)	g _e	EFFECTIVE AIR GAP (in square inches)
		$g_e = (K_s)(g) = (67)(59)$
(.02)	$\lambda_{\mathbf{a}}$	AIR GAP PERMEANCE - The specific permeance of the air gap (See (62) for units.) $\lambda_{a} = \frac{6.38(d)}{(P)(g_{e})} = \frac{6.38(11)}{(6)(69)}$
(71)	c_1	THE RATIO OF MAXIMUM FUNDAMENTAL of the field form
		to the actual maximum of the field form - This term
		can be an input or cutput. For C_1 to be output insert
		0. on input sheet and the computer program will
		calculate it. For C_1 to be input, determine C_1 as follows:
		For pole heads with only one radius, C ₁ is obtained
	}	from curve F-4. The abscisa is "pole embrace" (∞)
	Ì	= (77). The graphical flux plotting method of deter-
		mining C ₁ is explained in the section titled "Deriva- tions" in the Appendix
(72)	cw	WINDING CONSTANT - The ratio of the RMS line voltage for a
		full pitched winding to that which would be induced
		in all the phase conductors in series if the density were uniform and equal to the maximum value. This value
		terrando ava terra del proper de dano anamenament delle del proper
		G-21

		can be an input or output. To have the program cal- culate C_W , insert 0. on input sheet. For C_W to be an input, calculate as follows: $C_W = \frac{(E)(C_1)(K_d)}{\sqrt{2} (E_{DH})(m)} = \frac{(3)(71)(43)}{\sqrt{2} (4)(5)}$
		Assuming $K_d = .955$, then $C_W = .225 C_1$ for three phase delta machines and $C_W = .390 C_1$ for three phase star machines.
(73)	С _Р	POLE CONSTANT - The ratio of the average to the maximum value of the field form. This ratio can be an input or output. To have the program calculate Cp, insert 0. on input sheet. For Cp to be an input, determine as follows:
		For pole heads with more than one radius $C_{\mathbf{p}}$ is calculated from the same field form that was used to determine $C_{\mathbf{l}}$, and this method is described in the section titled "Derivations" in the Appendix For pole heads with only one radius, $C_{\mathbf{p}}$ is obtained from curve F-4. Note the correction factor at the top of the curve.
(74)	C _M	DEMAGNETIZING FACTOR - direct axis - This factor can be an input or output. For $C_{\mathbf{M}}$ to be an output, insert 0. on input sheet. For $C_{\mathbf{M}}$ to be an input, determine as follows:

(75)	C _q	$C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(\mathbf{x})\pi]}{4\sin[(\mathbf{x})\pi]} = \frac{(77)\pi + \sin[(77)\pi]}{4\sin[(77)\pi]}$ $C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(\mathbf{x})\pi]}{4\sin[(77)\pi]} = \frac{4\sin[(77)\pi]}{4\sin[(77)\pi]}$ $C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(\mathbf{x})\pi]}{4\sin[(77)\pi]} = \frac{1}{4\sin[(77)\pi]}$ $C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(\mathbf{x})\pi]}{4\sin[(77)\pi]} = \frac{1}{4\sin[(77)\pi]}$ $C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(\mathbf{x})\pi]}{4\sin[(77)\pi]} = \frac{1}{4\sin[(77)\pi]}$ $C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(77)\pi]}{4\sin[(77)\pi]} = \frac{1}{4\sin[(77)\pi]}$
		$C_{\mathbf{q}} = \frac{1/2 \cos[(\mathbf{x}) \pi/2] + (\mathbf{x})\pi - \sin[(\mathbf{x})\pi]}{4 \sin[(\mathbf{x}) \pi/2]} $ valid for concentric poles
		$ \frac{4 \sin \left[(\infty) \frac{\pi}{2} \right]}{4 \sin \left[(77) \frac{\pi}{2} \right]} \qquad \text{poles} $ $ = \frac{1/2 \cos \left[(77) \frac{\pi}{2} \right] + (77)\pi - \sin \left[(77)\pi \right]}{4 \sin \left[(77) \frac{\pi}{2} \right]} $ $ C_{\mathbf{q}} \text{ can also be obtained from curve } F-9 $
(76)		POLE DIMENSIONS LOCATIONS Where: b _h = width of pole head b _p = width of pole hody h _f = height of pole head at center h _f = height of pole body
(77)	×	POLE EMBRACE

(79)	a _p	POLE AREA - The effective cross sectional area of the pole
	l	$a_p = (l_p)(l_p)(K_i) = (76)(76)(16)$ (square inches)
(80p)	$\lambda_{s\ell}$	POLE SIDE LEAKAGE PERMEANCE - See (62) for units
		$= \left\{ \frac{(76)}{\pi/(6)[(11a) - 2(76)5(76)] - (76)} \right\}$
(81b)	> il	POLE TIP LEAKAGE PERMEANCE - See (62) for units
		$\lambda_{t\ell} = \left\{ \frac{2\left[(h_h) + (g) - (\tau_p)/18 \right]}{(\tau_p) - (b_h)} \right\}$
		$= \left\{ \frac{2 \left[(76) + (59) - (41)/18 \right]}{(41) - (76)} \right\}$
(82b)	λ _e ℓ	POLE END LEAKAGE PERMEANCE - See (62) for units
		$ \lambda_{e\ell} = \left\{ \frac{2\left[(\ell_{h}) - (\ell) \right] + (h_{f}) + .25(b_{p})}{(\ell)} \right\} $
		$= \left\{ \frac{2[(76) - (13)] + (76) + .25(76)}{(13)} \right\}$
(87)		NO LOAD SATURATION CALCULATIONS - The equations,
		items (88) to (127) are used to calculate points for
		the no-load saturation curve. Insert 1. on input sheet for "No Load Sat." The computer will cal-

		culate the no load saturation points at 80, 90, 100, 110, 120, 130, 140, 150 and 160% of rated volts. If the complete saturation data is not necessary, insert 0. on input sheet and the computer will calculate only the 100% volt data.
(88)	$\phi_{\mathbf{T}}$	TOTAL FLUX IN KILO LINES $\phi_{T} = \frac{6(E)10^{6}}{(C_{W})(n_{0})(RPM)} = \frac{6(3)10^{6}}{(72)(45)(7)}$
		$^{\nu}_{T} = (C_{W})(n_{e})(RPM) = (72)(45)(7)$
(91)	B _t	TOOTH DENSITY in Kilo Lines/in ² - The flux density in the stator tooth at 1/3 of the distance from the minimum section.
		$B_{t} = \frac{\emptyset_{T}}{(Q)(\mathcal{L}_{S})(b_{t 1/3})} = \frac{(88)}{(23)(17)(57a)}$
(92)	ø _p	FLUX PER POLE in Kilo Lines
		$\wp_{\mathbf{P}} = \frac{(\wp_{\mathbf{T}})(C_{\mathbf{P}})}{(\mathbf{P})} = \frac{(88)(73)}{(6)}$
(94)	Вс	CORE DENSITY in Kilo Lines/in ² - The flux density in the stator core
		$B_c = \frac{(\emptyset_p)}{2(h_c)(\ell_s)} = \frac{(92)}{2(24)(17)}$
(95)	Bg	GAP DENSITY in Kilo Lines/in ² - The maximum flux density in the air gap
		$\mathbf{B}_{\mathbf{g}} = \frac{(\emptyset_{\mathbf{T}})}{\widetilde{\pi}(\mathbf{d})(\mathbf{\ell})} = \frac{(88)}{\widetilde{\pi}(11)(13)}$

(96)	Fg	AIR GAP AMPERE TURNS - The field ampere turns per pole
		required to force flux across the air gap when
		operating at no load with rated voltage.
		$\mathbf{F_g} = \frac{(B_g)(g_e) \times 10^3}{3.19} = \frac{(95)(69) \times 10^3}{3.19}$
(97)	FT	STATOR TOOTH AMPERE TURNS
	-	$F_T = h_s \left[NI/in \text{ at density } B_t \right]$
		= (22) Look-up on stator magnetization curve given in (18) @ density (91)
(98)	F _c	STATOR CORE AMPERE TURNS
		$\mathbf{F_c} = \boxed{\frac{\mathcal{I}[(D) - (h_c)]}{4(P)}} \left[\text{NI/in @ density of } (B_c) \right]$
		$= \underbrace{\frac{\pi[(12) - (24)]}{4(6)}}_{\text{given in (18) @ density (94)}} \underbrace{\text{Look-up on stator magnetization curve}}_{\text{given in (18) @ density (94)}}$
(98a)	Fs	STATOR AMPERE TURNS, total
		$\mathbf{F_s} = (\mathbf{F_T}) + (\mathbf{F_c}) = (97) + (98)$
(100a)	Øe	LEAKAGE FLUX - at no load
		$\phi_{\ell} = .00638 \left[(\lambda_{s\ell}) + (\lambda_{e\ell}) + (\lambda_{t\ell}) \right] \left[(F_g) + (F_s) \right] (\ell_p)$
		= $.00638[(80b) + (82b) + (81b)][(96) + (98a)](76)$

(102a)	$\phi_{\mathbf{PT}}$	TOTAL FLUX PER POLE - at no load
		$\boldsymbol{\phi}_{\mathbf{PT}} = \boldsymbol{\phi}_{\mathbf{P}} + \boldsymbol{\phi}_{\boldsymbol{\ell}} = (92) + (100a)$
(103a)	Вр	POLE DENSITY - The flux density at the base of the pole. Note that no provision is made in this manual for
		calculating the density in the spider section. It
		is, therefore, important to remember not to re-
		strict the flux area through this section.
		$B_{\mathbf{p}} = \frac{(\emptyset_{\mathbf{pT}})}{(a_{\mathbf{p}})} = \frac{(102a)}{(79)}$
(104a)	$\mathbf{F}_{\mathbf{p}}$	POLE AMPERE TURNS - at no load. The ampere turns per pole
	_	required to force the flux through the pole and spider
		at no load rated voltage. In general the spider density
		is kept fairly low and its ampere turns can be neg-
		lected. The no load pole ampere turns per pole are
		calculated as the product of $(h_f) + (h_h)$ times the NI
		per inch at the density (Bp). Use magnetization curve
		submitted per item (18) for rotor.
		$F_{p} = [(h_{f}) + (h_{h})][NI/in @ density (B_{p})]$
		= [(76) + (76)] Look-up on rotor magnetization curve given in (18) @ density(103a)
(127)	F	TOTAL AMPERE TURNS - at no load. The total ampere turns
	NL	per pole required to produce rated voltage at no load.
		$\mathbf{F_{NL}} = [(\mathbf{F_g}) + (\mathbf{F_S}) + (\mathbf{F_P})] = [(96) + (98a) + (104a)]$

	1	1
(127a)	IFNL	FIELD CURRENT - at no load
		$I_{FNL} = (F_{NL})/(N_P) = (127)/(146a)$
(127b)	EF	FIELD VOLTS - at no load. This calculation is made with cold field resistance at 20°C for no load condition.
		$E_{F} = (I_{FNL})(R_{f cold}) = (127a)(154)$
(127c)	$s_{f F}$	CURRENT DENSITY - at no load. Amperes per square inch of field conductor.
		$S_{F} = (I_{FNL})/(a_{cf}) = (127a)(153)$
(128)	Λ	AMPERE CONDUCTORS per inch - The effective ampere con-
		ductors per inch of stator periphery. This factor
		indicates the "specific loading" of the machine. Its value will increase with the rating and size of the
]	machine and also will increase with the number of
		poles. It will decrease with increases in voltage or
	İ	frequency. A is generally higher in single phase
		machines than in polyphase ones.
		$A = \frac{(I_{PH})(n_s)(K_P)}{(C)(\gamma_s)} = \frac{(8)(30)(44)}{(32)(26)}$
(129)	x	REACTANCE FACTOR - The reactance factor is the quantity by
		which the specific permeance must be multiplied to
		give percent reactance. Specific permeance is de-
		fined as the average flux per pole per inch of core
		length produced by unit ampere turns per pole.

н - -

4 4

		100(A)(K _d) 100 (128)(43)
		$X = \frac{100(A)(K_d)}{\sqrt{2} (C_1)(B_g) \times 10^3} = \frac{100 (128)(43)}{\sqrt{2} (71) (95) \times 10^3}$
(130)	$\mathbf{x}_{\boldsymbol{\ell}}$	LEAKAGE REACTANCE - The leakage reactance of the stator
		for steady state conditions. When $(5) = 3$, calculate
		as follows:
		$\mathbf{X}_{\ell} = \mathbf{X}[(\lambda_i) + (\lambda_E)] = (129)[(62) + (64)]$ percent
		In the case of two phase machines a component due
		to belt leakage must be included in the stator leakage.
		reactance. This component is due to the harmonics
		caused by the concentration of the MMF into a small
		number of phase belts per pole and is negligible for
	,	three phase machines. When $(5) = 2$, calculate as
		follows:
		$\lambda_{B} = \frac{0.1(d)}{(P)(g_{e})} \left[\frac{\sin\left[\frac{3(y)}{(m)(q)}\right]90^{\circ}}{(K_{P})} \right] = \frac{0.1(11)}{(6)(69)} \left[\frac{\sin\left[\frac{3(31)}{(5)(25)}\right]90^{\circ}}{(44)} \right]$
		$X_{\ell} = X[(\lambda_i) + (\lambda_E) + (\lambda_B)]$ where $\lambda_B = 0$ for 3 phase machines.
		$\mathbf{X}_{\ell} = (79) \left[(62) + (64) + (130) \right] \text{ percent}$
(131)	x _{ad}	REACTANCE - direct axis - This is the fictitious reactance due
		to armature reaction in the direct axis. (in percent)
		$X_{ad} = (X)(\lambda_a)(C_1)(C_M) = (129)(70c)(71)(74)$
(132)	X _{aq}	REACTANCE - quadrature axis - This is the fictitious reactance
	ay	due to armature reaction in the quad axis. (percent)
		$\mathbf{X}_{aq} = (\mathbf{X})(\mathbf{C}_{q})(\lambda_{a}) = (129)(75)(70c)$
		G-29

(133)	x _d	SYNCHRONOUS REACTANCE - direct axis - The steady state
		short circuit reactance in the direct axis. (percent)
		$X_d = (X_\ell) + (X_{ad}) = (130)_+ (131)$
(134)	$\mathbf{x}_{\mathbf{q}}$	SYNCHRONOUS REACTANCE - quadrature axis - The steady
	ч	state short circuit reactance in the quadrature axis.
		$X_q = (X_l) + (X_{aq}) = (130) + (132) \text{ (percent)}$
(135)		DAMPER SLOT DIMENSIONS boo boo
		b _{bo} - width of slot opening
		h _{bo} - height of slot opening
		h _b - diameter of round slot
		h _{b1} - height of bar section of slot
		b _{b1} - width of rectaugular slot
		All di sions in inc es
(136)		DAMPER BAR DIA OR WIDTE Tehes
(137)	h _{b1}	DAMPER BAR THICKNESS in inches - Damper bar thickness
	17.1	considered equal to damper bar slot height per
		item (135). Set this item = 0 for round bar.
(138)	ⁿ b	NUMBER OF DAMPER BARS PER POLE
(139)	$\ell_{\rm b}$	DAMPER BAR LENGTH in inches
(140)	$\gamma_{\mathbf{b}}$	DAMPER BAR PITCH in inches
(141)	$\mathcal{P}_{\mathbf{D}}$	RESISTIVITY of damper bar @20°C in micro ohm-inches -
		Refer to table given in item (51) for conversion
		factors.
1		0.70

1 1		ı
(142)	$x^{D}_{o}c$	DAMPER BAR TEMP OC - Input temp at which damper losses
		are to be calculated.
(143)	P _D (liot)	$\frac{\text{DAMPER BAR TEMP }^{O}\text{C}}{\text{are to be calculated.}} - \text{Input temp at which damper losses}$ $\text{RESISTIVITY of damper bar @ X}_{D}^{O}\text{C}$
	(1105)	$P_{\text{D(hot)}} = (P_{\text{D}}) \left[\frac{(X_{\text{D}}^{\text{O}}C) + 234.5}{254.5} \right] = (141) \left[\frac{(142) + 234.5}{254.5} \right]$
(144)	a _{cd}	CONDUCTOR AREA OF DAMPER BAR - Calculate same as stator conductor area
		If (137)= 0
		$a_{cd} = .25 \pi (damper bar dia)^2 = .25 \pi (136)^2$
		If (137) ≠ 0
		$a_{cd} = (h_{b1}) (damper bar width) = (137)(136)$
(1 45)	v _r	PERIPHERAL SPEED - The velocity of the rotor surface in feet per minute
		$V_r = \frac{\pi^{(d_r)(RPM)}}{12} = \frac{\pi^{(11a)(7)}}{12}$
(143a)	N _P	NUMBER OF FIELD TURNS PER POLE
(147)	$\ell_{ m tr}$	MEAN LENGTH OF FIELD TURN, inches
(148)	z. 	FIELD CONDUCTOR DIA OR WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches - Set this item = 0. for round conductor

	(150)	ж _f °С	FIELD TEMP IN OC - Input temp at which full load field loss is to be calculated.
	(151)	$ ho_{ m f}$	RESISTIVITY of rotor field conductor @ 20°C in micro ohminches. Refer to table given in item (51) for conversion factors.
	(152)	ρ f (hot)	RESISTIVITY of rotor field conductor at X_f^{OC} $P_{f \text{ (hot)}} = P_f \left[\frac{(X_f^{OC}) + 234.5}{254.5} \right] = (151) \left[\frac{(150) + 234.5}{254.5} \right]$
	(153)	a _{cf}	CONDUCTOR AREA OF ROTOR FIELD WDG - Calculate same as stator conductor area (46) except substitute $ \int (149) \text{ for (39)} $ (148) for (33)
	(154)	R _f (cold)	COLD FIELD RESISTANCE @ 20°C $R_{f \text{ (cold)}} = (P_{f}) \frac{(N_{\mathbf{P}})(P)(\ell_{tr}) \times 10^{-6}}{(a_{cf})} = (151) \frac{(146)(6)(147) \times 10^{-6}}{(150)}$
	(155)	R _f (hot)	HOT FIELD RESISTANCE - Calculated at X_f^{OC} (103) $R_{f \text{ (hot)}} = (P_{f \text{ hot}}) \frac{(N_p)(P)(\ell_{tr}) \times 10^{-6}}{(a_{cf})} = (152) \frac{(146a)(6)(147) \times 10^{-6}}{(153)}$
	(156)		WEIGHT OF ROTOR FIELD COPPER in lbs
			The answer is given in lbs. based on the density of
		:	copper. If any other material is used, the answer
			on the output sheet can be converted by the designer
			by multiplying by the ratio of densities.
1	i		0.72

		#'s of copper = $.321(N_P)(P)(\ell_{tr})(a_{cf})$
		= .321(146)(6)(147)(153)
(157)		WEIGHT OF ROTOR IRON - Because of the ge number of
		different pole shapes, one standard formula cannot
	İ	be used for calculating rotor iron weight. Therefore
		the computer will not calculate rotor iron weight.
	<u> </u>	The space is allowed on the input sheet for record
		purposes only. By inserting 0. in the space allowed
		for rotor iron weight, the computer will show "0."
		on the output sheet. If the rotor iron weight is avail-
		able and inserted on input sheet, then the output sheet
		will show this same weight on the output sheet.
(158)	$\lambda_{\mathbf{b}}$	PERMEANCE OF DAMPER BAR - The permeance of that portion
	g' 'G	of the damper bar that is embedded in pole iron.
		(See (62) for units) For round slot
		For round slot
		$\gamma_{b} = 6.38 \left[\frac{(h_{bo})}{(b_{bo})} + .62 + .5 \right] = 6.38 \left[\frac{(135)}{(135)} + .62 + .5 \right]$
	Ì	For rectangular slot
		[(h,) (h,)] [(a) (a)]
		$\lambda_{\mathbf{b}} = 6.38 \left[\frac{(h_{\mathbf{bo}})}{(b_{\mathbf{bo}})} + \frac{(h_{\mathbf{b1}})}{3(b_{\mathbf{b1}})} + .5 \right] = 6.38 \left[\frac{(135)}{(135)} + \frac{(135)}{3(125)} + .5 \right]$
(159)	$\lambda_{ m pt}$	PERMEANCE OF END PORTION OF DAMPER BARS
		$\gamma_{\text{pt}} = 6.38 \left\{ \frac{(b_{\text{h}}) - (T_{\text{b}}) \left[(n_{\text{b}}) - 1 \right]}{3(g_{\text{e}})} \right\}$
		(76) = (140)[(138) = 1]
		$= 6.38 \left\{ \frac{(76) - (140) [(138) - 1]}{3(69)} \right\}$
i	ļ	

	(160)	x _F	FIELD LEAKAGE REACTANCE in percent
			$\mathbf{X}_{\vec{\mathbf{F}}} = (\mathbf{X}_{ad}) \left[1 - \frac{\left[(\mathbf{C}_1) / (\mathbf{C}_m) \right]}{2(\mathbf{C}_p) + \frac{4(\tilde{\lambda}_p)}{\tilde{\pi}(\tilde{\lambda}_a)}} \right]$
			$= (131) \left[1 - \frac{\left[\frac{(71)}{(74)} \right]}{2(73) + \frac{4(161f)}{\pi (70c)}} \right]$
İ	(161)	L _f	FIELD SELF INDUCTANCE, henries
			$L_f = (N_p)^2(P)(\ell_{\overline{P}}) \left[(C_p)(\lambda_a) \frac{\pi}{2} + (\lambda_f) \right] \times 10^{-8}$
			$= (146a)^2(6)(76) (73)(70c) \frac{1}{2} - (161f) x \cdot 10^{-8}$
:	(161f)	$\lambda_{\mathbf{F}}$	ROTOR LEAKAGE PERMEANCE (See (52) for units)
			$\lambda_{\mathbf{F}} = 4.25 \left[(\lambda_{\mathbf{S}\ell}) + 1.5(\lambda_{\mathbf{t}\ell}) \right] + 6.38 \left(\lambda_{\mathbf{e}\ell} \right)$
			= 4.25 $(80b) + 1.5(81b) + 6.38(82b)$
	(162)	Dd	PERMEANCE OF DAMPER BAR - in direct axis
			$= \left\{ \cos \left[\frac{\{(1:8)-1\}(140)}{2(41)} \right] \right\} \left\{ \frac{\{(158)+(159)\}(161f)}{(158)+(159)+(161f)} \right\}$
			G-34

. --

(163)	x _{Dd}	DAMPER LEAKAGE REACTANCE - in direct axis (percent)
		$X_{Dd} = X(\lambda_{Dd}) = (129)(162)$
(164)	⟩ _{Dq}	PERMEANCE IN QUADRATURE AXIS See (62) for units
		For round slot
		$\sum_{\mathbf{p}} \mathbf{p}_{\mathbf{q}} = \frac{20(\widehat{\mathbf{T}}_{\mathbf{b}})}{(\widehat{\mathbf{T}}_{\mathbf{p}})} \left[\frac{(\mathbf{h}_{\mathbf{bo}})}{(\widehat{\mathbf{b}}_{\mathbf{bo}})} + .62 + .5 + \frac{(\mathbf{g})}{(\widehat{\mathbf{T}}_{\mathbf{b}})} \right]$
		$= \frac{20(140)}{(41)} \left[\frac{(135)}{(135)} + .62 + .5 + \frac{(59)}{(140)} \right]$
		For rectangular slot
		$= \frac{20(140)}{(41)} \left[\frac{(135)}{(135)} + \frac{(135)}{3(135)} + .5 + \frac{(59)}{(140)} \right]$
(165)	X _{Dq}	DAMPER LEAKAGE REACTANCE - in quadrature axis (percent)
		$\mathbf{X}_{\mathbf{Dq}} = \mathbf{X}(\lambda_{\mathbf{Dq}}) = (129)(164)$
(166)	x' _{du}	UNSATURATED TRANSIENT REACTANCE (percent)
		$X'_{du} = (X_{\ell}) + (X_{f}) = (130) + (160)$
(167)	x' _d	SATURATED TRANSIENT REACTANCE (percent)
		$\mathbf{Y}_{d}' = .88(\mathbf{X}_{du}') = .88(166)$
ĺ	į	

(168)	$\mathbf{x}_{\mathbf{d}}^{"}$	SUBTRANSIENT REACTANCE in direct axis (percent)
		When damper bars exist, i.e. when(138)≠ 0
		$X_{d}^{"} = (X_{\ell}) + (X_{Dd}) = (130) + (163)$
		When no damper bars exist, i.e. when(138) = 0
		$X_{d}^{''} = (X_{d}^{'}) = (167)$
(169)	$\mathbf{x}_{\mathbf{q}}^{"}$	SUBTRANSIENT REACTANCE in quadrature axis (percent)
	1	When damper bar exists, i.e. when(138)≠0
		$\mathbf{X}_{\mathbf{q}}^{"} = (\mathbf{X}_{\ell}) + (\mathbf{X}_{\mathbf{Dq}}) = (130) + (165)$
		When no damper bars exist, i.e. when(138) = 0
		$\mathbf{X}_{\mathbf{q}}^{"} = \mathbf{X}_{\mathbf{q}} = (134)$
(170)	$\mathbf{x_2}$	NEGATIVE SEQUENCE REACTANCE - The reactance due to the
		field which rotates at synchronous speed in a direction
		opposite to that of the rotor. (percent)
		$\mathbf{x_2} = .5 \left[\mathbf{x_d''} + \mathbf{x_q''} \right] = .5 \left[(168) + (169) \right]$
(172)	x ⁰	ZERO SEQUENCE REACTANCE - The reactance drop across
		any one phase (star connected) for unit current in each
		of the phases. The machine must be star connected
		for otherwise no zero sequence current can flow and
		the term then has no significance. (in percent)
<u> </u>		
1		

If
$$(28) = 0$$
 Then $X_0 = 0$

If $(28) \neq 0$ Then

$$X_0 = X \left\{ \frac{(K_{XO})}{(K_{XI})} \left[(\lambda_1) + (\lambda_{BO}) \right] + \frac{1.667}{(m)(q)(K_P)^2 (K_q)^2 (b_S)} + .2(\lambda_E) \right\}$$

$$= (129) \left\{ \frac{(173)}{(174)} \left[(62) + (175) \right] + \frac{1.667}{(5)(25)(44)^2 (43)^2 (22)} + .2(64) \right\}$$

$$= (130) \neq 1 \quad \text{Then } K_{XO} = 1$$
If $(30) \neq 1$ Then $K_{XO} = \frac{3(y)}{(m)(q)} - 2$

$$= \frac{3(31)}{(5)(25)} - 2$$

$$= (174)$$

$$K_{XI} \quad \text{If } (30) = 1 \quad \text{Then } K_{XI} = 1$$
If $(30) \neq 1$ Then:
$$K_{XI} = \left[\frac{3(y)}{4(m)(q)} + \frac{1}{4} \right] = \left[\frac{3(31)}{4(5)(25)} + \frac{1}{4} \right] \quad \text{If } (31a) \geq .667$$

$$K_{XI} = \left[\frac{3(y)}{4(m)(q)} \cdot \frac{1}{4} \right] = \left[\frac{3(31)}{4(5)(25)} - \frac{1}{4} \right] \quad \text{If } (31a) \leq .667$$

$$K_{XI} = \left[\frac{3(y)}{4(m)(q)} \cdot \frac{1}{4} \right] = \left[\frac{3(31)}{4(5)(25)} - \frac{1}{4} \right] \quad \text{If } (31a) \leq .667$$

$$(175) \lambda_{BO} \quad \text{If } (92) = 0 \quad \text{Then:}$$

$$\lambda_{BO} = \frac{(K_{XO})}{(K_P)^2} \left[07(\lambda_R) \right] = \frac{(K_{XO})}{(K_XI)} \left(\lambda_{Dq} \right) + \frac{(K_{XO})}{(K_P)^2} \left[07(\lambda_R) \right]$$
If $(138) \neq 0$ Then
$$\lambda_{BO} = \begin{cases} \frac{(K_{XO})}{(K_{XI})} \left(\lambda_{Dq} \right) + \frac{(K_{XO})}{(K_{D})^2} \left[07(\lambda_R) \right] \\ \frac{(K_{XO})}{(K_{XI})} \left(\lambda_{Dq} \right) + \frac{(K_{XO})}{(K_{D})^2} \left[07(\lambda_R) \right] \end{cases}$$

		$= \frac{(173)}{(174)} (164) + \frac{(173)}{(44)^2} \left[.07(70c) \right]$ $\left\{ \frac{(173)}{(174)} (164) \right\} \left\{ \frac{(173)}{(44)^2} \left[.07(70c) \right] \right\}$ If $(K_{XO}) = 0$, $(\lambda_{DO}) = 0$ $(173) = 0$, $(175) = 0$
(176)	T do	OPEN CIRCUIT TIME CONSTANT - The time constant of the field winding with the stator open circuited and with
	•	negligible external resistance and inductance in the field circuit. Field resistance at room temperature
		(20°C) is used in this calculation. (seconds)

$$T'_{do} = \frac{L_F}{R_F} = \frac{(161}{(154)}$$

See appendix for explanation of time constants

nce at
<u>?)</u> 3
ie
ing

(179)	T'd	SUBTRANSIENT TIME CONSTANT - The time constant of the subtransient component of the alternating wave. This value has been determined empirically from
		tests on large machines. Use following values.
		T'' = .035 second at 60 cycle
		$T_d'' = .005$ second at 400 cycle
(180)	F _{SC}	SHORT CIRCUIT AMPERE TURNS - The field ampere turns
		required to circulate rated stator current when the
		stator is short circuited.
		$\mathbf{F_{SC}} = (X_d) (\mathbf{F_g}) = (133)(33)$
(181)	SCR	SHORT CIRCUIT RATIO - The ratio of the field current to pro-
		cuce rated voltage on open circuit to the field current
		required to produce rated current on short circuit.
		Since the voltage regulation depends on the leakage
		reactance and the armature reaction, it is closely
		related to the current which the machine produces
1		under short circuit conditions, and therefore is
		directly related to the SCR.
		$\mathbf{SCR} = \frac{\mathbf{F_{NL}}}{\mathbf{F_{SC}}} = \frac{(127)}{(180)}.$

(182)	ı ² R _R	ROTOR I^2R - at no load. The copper loss in the field winding is calculated with cold field resistance at $20^{\circ}C$ for no load condition. (watts) Rotor $I^2R = (I_{FNL})^2 (R_{f cold}) = (127a)^2 (154)$
(183)	F&W	FRICTION & WINDAGE LOSS (Watts) - Note: Write 0 on input sheet when computer is to calculate F & W. Insert actual value when known.
		To ratio from test data, assume that F & W loss varies as the $5/2$ ρ , ver of the rotor diameter and as the $3/2$ power of the RPM. The formula below gives an approximate answer when test data is not available. For a more rigorous treatment use the information given in the rotor friction analysis appended to the thermal analysis section (Section C, Vol. 1). F & W = 2.52×10^{-6} (d _r) ^{2.5} (ℓ _h) (RPM) ^{1.5} = 2.52×10^{-6} (11a) ^{2.5} (76) (7) ^{1.5} For gases or fluids other than standard air, the fluid density and viscosity must be considered.
		The formula given in the manual can be modified by the factors $\left(\frac{\varphi}{.0765}\right)^{.8} \left(\frac{u}{.0435}\right)^{.2}$

		whome
		where $oldsymbol{arphi}$ – density – Lbs FT $^{-3}$
		- viscosity LBS FT ⁻¹ HR ⁻¹
		.0765 - density std. air
		.0435 - viscosity std. air
(184)	W _{TNL}	STATOR TEETH LOSS - at no load. The no load loss (W _{TNL})
		consists of eddy current and hysteresis losses in the
		iron. For a given frequency the no load tooth loss
		will vary as the square of the flux density. (watts)
	'	
		$W_{TNL} = .453(b_{t 1/3})(Q)(\ell_s)(h_s)(K_Q)$
		= .453(57a)(23)(17)(22)(184)
		Where $K_Q = (k) \left[\frac{(B_t)}{(B)} \right]^2 = (19) \left[\frac{(91)}{(20)} \right]^2$
(185)	$\mathbf{w}_{\mathbf{c}}$	STATOR CORE LOSS - The stator core losses are due to eddy
	C	currents and hysteresis and do not change under load
1		conditions. For a given frequency the core loss will
		vary as the square of the flux density (B _c). (watts)
		tary as one square or one state of the contract of the contrac
		$W_c = 1.42 [(D) - (h_c)] (h_c) (k_S) (K_Q)$
		$= 1.42 \left[(12) - (24) \right] (24)(17)(185)$
		Where $K_Q = (k) \left[\frac{(B_c)}{(B)} \right]^2 = (19) \left[\frac{(94)}{(20)} \right]^2$

(186)	WNPL	POLE FACE LOSS - at no load. The pole surface losses are
		due to slot ripple caused by the stator slots. They
		depend upon the width of the stator slot opening, the
		air gap, and the stator slot ripple frequency. The no
		load pole face loss (W _{PNL}) can be obtained from
		Curve F-2. Curve F-2 is plotted on the bases of open
I	ļ	slots. In order to apply this curve to partially open
		slots, substitute b for b. For a better understand-
		ing of Curve F-2, use the following sample.
		K ₁ as given on Curve F-2 is derived empirically and
ŀ		depends on lamination material and thickness. These

 K_1 as given on Curve F-2 is derived empirically and depends on lamination material and thickness. Those values given on Curve F-2 have been used with success K_1 is an input and must be specified. See item (187) for values of K_1 .

 K_2 is shown as being plotted as a function of $(B_G)^{2.5}$. Also note that upper scale is to be used. Another note in the lower right hand corner of graph indicates that for a solid line (____), the factor is read from the left scale, and for a broken or dashed line (_____), the right scale should be read. For example, find K_2 when $B_g = 30$ kilo lines. First locate 30 on upper scale. Read down to the intersection of solid line plot of $K_2 = \text{fn}(B_G)^{2.5}$. At this intersection tion read the left scale for K. $K_2 = .28$. Also refer to item (188) for K_2 calculations.

 K_3 is shown as a solid line plot as a function of $(F_{SLT})^{1.65}$. The note on this plot indicates that the upper scale X 10 should be used. Note F_{SLT} = slot

frequency. For an example, find K_3 when Γ_{SLT} = 1000. Use upper scale X 10 to locate 1000. Read down to intersection of solid line plot of K_3 = $f(F_{SLT})^{1.65}$. At this intersection read the left scale for K_3 . K_3 = 1.35. Also refer to item (189) for K_3 calculations.

For K_4 use same procedure as outlined above except use lower scale. Do not confuse the dashed line in this plot with the note to use the right scale. The note does not apply in this case. Read left scale. Also refer to item (190) for K_4 calculations.

For K_5 use bottom scale and substitute b_0 for b_8 when using partially closed slot. Read left scale when using solid plot. Use right scale when using dashed plot. Also refer to item (191) for K_5 calculations.

For K_6 use the scale attached for C_1 and read K_6 from left scale. Also refer to item (192) for K_6 calculations.

The above factors (K_2) , (K_3) , (K_4) , (K_5) , (K_6) can also be calculated as shown in (188), (189), (190), (191), (192), respectively.

$$W_{PNL} = \mathcal{T}(d)(\ell)(K_1)(K_2)(K_3)(K_4)(K_5)(K_6)$$
$$= \mathcal{T}(11)(13)(187)(188)(189)(190)(19')(192)$$

}	}	<u> </u>
(187)	k ₁	K ₁ is derived empirically and depends on lamination material
		and thickness. The values used successfully for K_1
		are shown on Curve F-2. They are:
		K ₁ = 1.17 for .028 lam thickness, low carbon steel
		= 1.75 for .063 lam thickness, low carbon steel
		= 3.5 for .125 lam thickness, low carbon steel
		= 7.0 for solid core
		K ₁ is an input and must be specified on input sheet.
(188)	К2	K ₂ can be obtained from Curve F-2 (see item (186) for explanation)
		or it can be calculated as follows:
		$K_2 = (B_G) = 6.1 \times 10^{-5} (B_G)^{2.5}$
		$= 6.1 \times 10^{-5} (95)^{2.5}$
(189)	к ₃	K ₃ can be obtained from Curve F-2 (see item (186) for explanation)
	Ĭ	or it can be calculated as follows:
		$K_3 = (F_{SLT}) = 1.5147 \times 10^{-5} (F_{SLT})^{1.65}$
		$= 1.5147 \times 10^{-5} (189)^{1.65}$
		Where $F_{SLT} = \frac{(RPM)}{60}$ (Q)
		$=\frac{(7)}{60}$ (23)
(190)	K _A	K ₄ can be obtained from Curve F-2 (see item (186) for explanation)
	. 12	or it can be calculated as follows:
		For 7 ₈ ≤ .9
		$\mathbf{K_4} = \mathbf{fin}(\mathbf{S}, 81(7_{\mathbf{S}})^{1.285})$
	l	× .81(26) ^{1.285}
		•

For
$$.9 \le \gamma_s \le 2.0$$

 $K_4 = in(s) = .79(\gamma_s)^{1.145}$
 $= .79(26)^{1.145}$

For τ_s , 2.0

$$K_4 - \text{fn}(_S) = .92(_{7S})^{.79}$$

= .92(26)^{.79}

(191) K₅ K₅ can be obtained from Curve F-2 (see item (186 for

explanation) or it can be calculated as follows:

For $(b_s)/(g) \le 1.7$

$$K_5 = n(b_s/g) = .3[(b_s)/(g)]^{2.31}$$

= .3[(22)/(59)]^2.31

NOTE: For partially open slots substitute b_0 for b_s in equations shown.

For $1.7 < (b_s) / (g) \le 3$

$$K_5 = \Re(b_s)/(g) = .35[(b_s)/(g)]^2$$

= .35[(22)/(59)]^2

For
$$3 < (b_s) / (g) \le 5$$

$$K_5 = n(b_s) / (g) \qquad .625 [(b_s) / (g)]^{1.4}$$

$$= .625 [(22) / (59)]^{1.4}$$

		For $(b_s)/(g)>5$
		$K_5 = \left[\left(b_s \right) \right] / \left(g \right) = 1.38 \left[\left(b_s \right) / \left(g \right) \right] \cdot 965$
		$= 1.38 [(22) / (59)] \cdot 965$
(192)	к ₆	K ₆ can be obtained from Curve F-2 (see item (186) for explanation) or it can be calculated as follows:
i		
	ļ	$K_6 = 10^{\circ} (C_1) = 10^{\circ} .9323(C_1) - 1.60596$
	i	$= 10 \left[.9323(71) - 1.60596 \right]$
(193)	$\mathbf{w}_{ exttt{DNL}}$	DAMPER LOSS - at no load at 20°C. This loss is produced by
		slot ripple in the damper winding. At no load this
		loss is calculated from curves F-7 and F-8.
		$W_{DNL} = \frac{1.246(P)(n_b)(l_b)(l_b)(l_D)}{(a_{cd}) \times 10^3} \left[(T_s)(B_g)(K_{P1})(K_g) \right]^2$
		$\left\{ (K_{f1}) \left[\frac{K_{W1}}{2(\mathcal{F}_{s})} + \left[(\mathcal{F}_{g})/(K_{Oi}) \right] \right]^{2} \right\}$
		$+ (K_{f2}) \left[\frac{(K_{W2})}{2(\lambda_s) + \left[(\lambda_g)/(K_{\emptyset 2}) \right]} \right]$
		$\mathbf{W_{DNL}} = \frac{1.246(6)(138)(139)(141)}{(144) \times 10^3} \left[(26)(95)(193)(193) \right]^2$
		$\left\{ (193) \boxed{\frac{(193)}{2(193) + [(193)/(193)]}^2 + (193)} 2 + (193) \boxed{\frac{2(193) + [(193)/(193)]}{2(193) + [(193)/(193)]}^2} \right\}$
	i	1

Where
$$K_{P1} = 1 - \frac{1}{\sqrt{1 + [(b_s)/2(g)]}^2}$$

= $1 - \frac{1}{\sqrt{1 + [(22)/2(59)]^2}}$

NOTE: Substitute o_0 for b_s when partially opened stator slot is used.

 K_{p_1} can also be obtained from curve F-7 where abscissa is $(b_s)/(g)$ or $(b_o)/(g) = (22)/(59)$

Where
$$\overline{\mathbf{K}}_{g} = (\mathbf{K}_{g}) = (67)$$

Where
$$g' = (K_g)(g) = (193)(59)$$

Where K_{f1} & K_{f2} are obtained from curve F-7

Where the abscissa is S_1 or S_2

$$s_1 = .32 \sqrt{\frac{(f_{S1})}{(P_D)}} (h_b) = .32 \sqrt{\frac{(193)}{(141)}} (136)$$

$$\mathbf{S_2} = .32 \sqrt{\frac{(\mathbf{f_{S2}})}{(2_D)}} (\mathbf{h_b}) = .32 \sqrt{\frac{(193)}{(141)}}$$
 (136)

Where
$$f_{S1} = 2qmf = 2(25)(5)(5a)$$

$$f_{S2} = 2(f_{S1})$$

Where $K_{\overline{W1}}$ and $K_{\overline{W2}}$ are obtained from curve F-8 where the abscissa is (b)/(\mathcal{T}_{S}) for open slots or (b_c)/(\mathcal{T}_{S}) for semi-enclosed slots (b_s)/(\mathcal{T}_{S}) = (22)/(26)

	}	
(193)	(Cont.)	Where >t is obtained from curve F-?
		Where the abscissa is $(b_{50})/(g') = \frac{(135)}{(193)}$
		When $(91) = 0$ or when $(90) = (91)$
		$\lambda_{C} = \frac{.75}{(K_{f1})} = \frac{.75}{(193)}$ For round or square slots
		When $(137) = 0$ and when $(136) \neq (137)$
		$\lambda_{C} = \frac{(h_{b1})}{3(h_{b1})(K_{f1})} = \frac{(137)}{3(135)(193)}$
		Where $\lambda_{S} = \frac{(h_{bo})}{(b_{bo})} + (\lambda_{t}) + (\lambda_{C})$
		$=\frac{(135)}{(135)} + (193) + (193)$
		Where $\lambda_g = \frac{(\gamma_b)}{(g')} = \frac{(140)}{(193)}$
		Where $K_{\coloredge 01}$ and $K_{\coloredge 02}$ are obtained from curve F-8
<u>.</u>		Where the abscissa is $(\mathcal{T}_b)/(\mathcal{T}_s) = (140)/(26)$
(194)	ı ² R	STATOR I^2R - at no load. This item = 0. Refer to item (245) for 100% load stator I^2R . (in watts)
(195)		EDDY LOSS - at no load. This item = 0. Refer to item (246) for 100% load eddy loss. (in watts)
(196)		TOTAL LOSSES - at no load. Sum of all losses. (in watts)
		Total losses = $(Rotor I^2R) + (F \& W) + (Stator Teeth Loss)$
		+ (Stator Core Loss) + (Pole Face Loss)
		+ (Damper Loss)
		= (182) + (183) + (184) + (185) + (186) + (193)
		G-48

		NOTE: The output sheet shows the next items to be:
		(Rating), (Rating + Losses), (% Losses), (% ficiency).
		These items do not apply to the no load calculation
		since the rating is zero. Refer to items (248), (249)
		(177), (178) for these calculations under load.
		Item (100) through (127c)have been calculated for 0%
		load or no load. They should all be repeated now for
		100% load.
(1972)	Ø4.c	LEAKAGE FLUX PER POLE at 100% load
(197a)	Pll	Edition 1 Dox 1 Dit 1 One at 100% load
		$(e_{a})(\mathbf{F}_{a}) + [1 + \cos(\theta)](\mathbf{F}_{a}) + (\mathbf{F}_{a})$
		$\emptyset \ell \ell = \emptyset \ell \left\{ \frac{\left(e_{d}\right)\left(F_{g}\right) + \left[1 + \cos\left(\theta\right)\right]\left(F_{T}\right) + \left(F_{C}\right)}{\left(F_{T}\right) + \left(F_{C}\right) + \left(F_{C}\right)} \right\}$
		g i C
		$= (100a) \frac{(198) (96) + [1 + \cos(198a)] (97) + (98)}{(96) + (97) + (98)}$
		(96) + (97) + (98)
(198)		Where $e_d = \cos \epsilon + \frac{(X_d)}{100} \sin \psi$
(190)	e _d	where ed = cos e + 100 shr /
		$= \cos (198a) + \frac{(133)}{100} \sin (193a)$
		10
(198a)	θ	Where $\theta = \cos^{-1} \left[(Power Factor) \right]$
		$= \cos^{-1} \left[(9) \right]$
		Where $\psi = \tan^{-1} \left[\frac{\sin (\theta) + (X_q)/(100)}{\cos (\theta)} \right]$
		<u></u>
		$= \tan^{-1} \frac{\sin (160b) + (134) / (100)}{\cos (198a)}$
		Where $\epsilon = \psi - \theta = (198a) - (198a)$

(213)	$\phi_{_{\mathbf{PL}}}$	FLUX PER POLE at 100% load, Kilolines
		FOR P.F.O TO .95
		FLUX PER POLE at 100% load, Kilolines FOR P.F.O TO .95 $\phi_{PL} = (\phi_{P}) \left[(e_{d}) - \frac{.93(X_{ad})}{100} \sin(\psi) \right]$
		$= (92) \left[(198) - \frac{.93(131)}{100} \sin (198a) \right]$
		FOR P.F95 TO 1.0 &PL = (PP)(Ke) = (92)(9a)
(213a)	Ø _{PTL}	TOTAL FLUX PER POLE at 100% load, Kilolines
		$\phi_{\text{PTL}} = \phi_{\text{PL}} + \phi_{\ell\ell} = (212) + (197a)$
(213b)	B _{PL}	FLUX DENSITY AT BASE OF POLE at 100% load, Kl/in ²
		Ø POTE (212)
		$B_{\mathbf{PL}} = \frac{\mathbf{\mathcal{O}}_{\mathbf{PTL}}}{\mathbf{a}_{\mathbf{P}}} = \frac{(213a)}{(79)}$
(213c)	F _{PL}	AMPERE TURNS PER POLE at 100% load
		$F_{PL} = [(h_f) + (h_h)] [NI/in @ density (B_{PL})]$
		= [(76) + (76)] Look-up ampere turns/inch on rotor magnetization curve given in (18) at density (213b)
(236)	F _{FL}	TOTAL AMPERE TURNS PER POLE at 100% load - The total
		ampere turns per pole required to produce rated load.
		$\mathbf{F}_{\mathbf{FL}} = (\mathbf{e}_{\mathbf{d}})(\mathbf{F}_{\mathbf{g}}) + \left[1 + \cos(\theta)\right](\mathbf{F}_{\mathbf{T}}) + (\mathbf{F}_{\mathbf{C}}) + (\mathbf{F}_{\mathbf{PL}})$
		= $(198)(96) + [1 + \cos(198a)](27) + (98) + (213c)$
(237)	IFFL	FIELD CURRENT at 100% load, amperes
		$I_{FFL} = (F_{FL})/(N_p) = (236)/(146a)$
	1	

(233)	· · · · · ·	11210 The second of the specific temperature at 100% load.
	1	Field Volt. $ (x + L)^{-1} $ (237) (155)
(239)	$s_{ m FL}$	CURPENT DENS(1) at 1007 top 1 amperes per square inch
		Current Density = $(I_{FFL})/(a_{CI}) = (237)/(153)$
(241)	1^2R_R	ROTOR 12R at 100% load - The copper loss in the field wilding
1		is calculated with hot field resistance at expected temperature for 100% load condition. (watts)
	:	Rotor $1^2 R - (I_{FFL})^2 (R_{f,hot}) = (237)^2 (155)$
(242)	W _{TFL}	STATOR TEETH LOSS at 100% load - the stator tooth loss under load increases over that of no load because of the parasitic fluxes caused by the ripple due to the
		rotor damper bar slot openings. (watts)
		$W_{TFL} = \begin{cases} 2 & \left[.27 \frac{(X_d)}{100} & \frac{(\% \text{ Load})}{100} \right] + 1 \\ 2 & \left[.27 \frac{(133)}{100} & \frac{(\% \text{ Load})}{100} \right] + 1 \end{cases} (W_{TNL})$
(243)	$W_{ extbf{PFL}}$	POLE FACE LOSS at 100% load (watts)
		$W_{PFL} = \left(\frac{(K_{sc})(t_{PH}) \frac{(\% Load)}{100}(n_{s})}{(C)(F_{g})}^{2} + 1 \right) (W_{PNL})$ $= \left(\frac{(243)(8) 1 (30)}{(32)(96)}^{2} + 1 \right) (186)$ $(K_{sc}) \text{ is obtained from Curve F-3}$

(244)	WDFL	DAMPER LOSS at 100% load (watts)
		$W_{DFL} = \left\{ \frac{(K_{sc})(I_{pH}) \frac{(\% Load)}{100}}{(C)(F_g)} (I_{s})^{2} - I_{s}(W_{NL}) \right\}$ $= \left\{ \frac{(244)(8) 1 (30)}{(32)(96)}^{2} - I_{s}(193) (I_{sc})^{2} + I_{sc}(193) (I_{sc})^{$
(245)	I ² RL	STATOR I ² R at 100% load - The copper loss based on the resistance of the winding. Calculate at the configuration expected operating temperature. (watts)
		$I^2R_{L}= (m)(I_{PH})^2 (R_{SPH hot}) \frac{(c_0 Load)}{100}$
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$= (5)(8)^2 (54) 1.$
(246)		EDDY LOSS - Stator I ² R loss due to skin effect (watts)
		Eddy Loss = $\frac{(EF_{top}) + (EF_{bot})}{2} - 1$ (Stator (27) = $\frac{(55) + (56)}{2} - 1$ (245)
(247)		TOTAL LOSSES at 100% load - sum of all losses at 100% load
		Total Losses = $(Rotor I^2R) + (F & W) + (Stator Teeth Loss)$
		+ (Stator Core Loss) + (Pole Face Loss) + (Damper Loss) + (Stator I ² R) + (Eddy Loss)
		= (241) + (183) + (242) + (185) + (243) + (244) + (245) + (246)
		= watts

1	
(240)	 RATING IN KILOWATTS at 100% load
	Rating = $3(E_{PH})(I_{PH})$ (P.F.) $\frac{(\% \text{ Load})}{100}$
	= 3(4)(8) (9)(1.)
(249)	 RATING & Σ LOSSES = (248) + (247) x 10 ⁻³
(250)	 % LOSSES = Σ Losses/(Rating + Σ Losses) 100
	$= \left[(247) \times 10^{-3} / (249) \right] 100$
(251)	 <u>% EFFICIENCY</u> = 100% - % Losses
	= 100% - (250)
	Item(197a) through (251) are 100% load calculations.
	These items can be recalculated for any load condition
	by simply inserting the values that correspond to the
	% load being calculated. The factor $\frac{(\% \text{ Load})}{100}$ takes care
	of (I _{PH}) as it changes with load.
	Note that values for F & W (183) and W _C (Stator Core
	Loss) (185) do not change with load, therefore they
	can be calculated only once.

INPUT AUXILIARY DATA SHEET

Auxiliary information taken from the design manuals to be used in conjunction with input sheets for convenience.

- A. All dimensions for lengths, widths, and diameters are to be given in inches.
- B. Resistivity inputs, Items (141) and (151) are to be given in micro-ohm-inches.

The following items along with an explanation of each are tabulated here for convenience. For complete explanation of each item number, refer to design manuals.

Rem No. Explanation (9) Power factor to be given in per unit. For example for 90% P.F., insert .90. Adjustment Factor - For P. F. < .95 insert 1.0 (9a) For P.F. > .95 insert 1.05 (10)Optional Load Point -- Where load data output is required at a point other than those given as standard on the input sheet. Example: For load data output at 155% load, insert 1.55. (14)Number of radial ducts in stator. (15)Width of radial ducts used in Item (14). (18)Magnetication curve of material used to be submitted as defined in Rem (18). (19)Watts/Lb. to be taken from a core loss curve at the density given in Rem (20) (Stator). (20)Density in kilolines/in². This value must correspond to density used to pick Item (19) usually use 77.4 KL/tn². (21) Type of slot - For open slot Type A, insert 1.0. For partially open slot Type B with constant slot width, insert 2.0.

For partially open slot Type C with constant tooth vidth, insert 3.0.

For round slot Type D, insert 4.0.

For additional information, refer to figure adjacent to input sheet which shows a picture of each slot.

(22) For stator slot dimension - for dimensions that do not apply to the slot insert <u>0.0.</u>

Use Table below as guide for input.

			Slot Ty	/ре	
8ymbol	Item	_1		_3_	4
b _o	(22)	0.0	*	*	*
b1	}	0.0	0.0	*	0.0
b2		0.0	0.0	*	0.0
b3		0.0	0.0	*	0.0
bg		*	•	£	*
h _o		0.0	•	•	*
h ₁		•	•	*	0.0
h ₂		•	0.0	0.0	0.0
hs		*	•	0. v	0.0
h _Ø		•	•	•	•
hţ	ļ	0.0	•	•	0.0
h _w	*	0.0	•	•	0.0

^{* =} insert actual value.

 $[\]mathcal{P} = b_{\mathbf{S}} = \frac{b_1 + b_3}{2}$

Item No.	Explanation
(28)	Type of winding - for wye connected winding insert 1.0.
	for delta connected winding insert 0.0 .
(29)	Type of coil - for formed wound (rect. wire), insert 1.0.
	for random wound (round wire) insert 0.0.
(30)	Slots spanned - Example - for slot span of 1-10, insert 9.0.
(33)	For round wire insert diameter. For rectangular wire insert wire width.
(34)	Strands per conductor in depth only.
(34a)	Total strands per conductor in depth and width.
(35)	Diameter of coil head forming pin. Insert .25 for stator O.D. < 8 inches;
	Insert .50 for stator O.D. >8 in.
(37)	Use vertical height of strand for round wire, insert 0.0.
(38)	Distance between centerline of strands in depth. Insulation h'st
(39)	Stator strand thickness use narrowest dimension of the two dimensions given for a
	rectangular wire. For round wire insert 0.0.
(40)	Stator slot skew in inches.
(42a)	Phase belt angle - for 60° phase belt, insert 60°.
	for 120° phase belt, insert 120°.
(48)	See explanation of items (71), (72), (73), (74) and (75). Same applies here.
(87)	When no load saturation output data is required at various voltages, insert 1.0 .
	When no load saturation inform a is not required, insert 0.0 .
(137)	Damper bar thickness use damper bar suot height for rectangular bar. For round
	bar insert 0.0.
(138)	Number of damper bars per pole.
(140)	Damper bar pitch in inches.
(148)	For round wire insert diameter. For rectangular wire insert wire width.
(149)	For rectangular wire insert wire thickness. For round wire insert 0.0.
(187)	Pole face loss factor. For rotor lamination thickness .028 in. or less, insert 1.17 .
	For rotor lamination thickness .029 in. to .063 in. insert 1.75.
	For rotor lamination thickness .064 in. to .125 insert 3.5.
	For solid rotor insert 7.0.
(71)	If the values of these constants are available, insert the actual number. If they are
(72)	not available, insert 0.0 and the computer will calculate the values and record them on
(73)	the output.
(74)	

NON-SALIENT-POLE DESIGN (INPUT)

		WODE	Ļ	EWO		DESIGN NO.	(1)	ВҮ			
		(2)	KVA	GENERATOR KVA			FUND/MAX OF FIE	LD FLUX	(71)	Cl	1
		(3)	E	LINE VOLTS			WINDING CONSTAN	iT .	(72)	C.	ોટ
		(4)	Eph	PHASE VOLTS			POLE CONST.		(73)	Ср	CONSTAN
	ERS	(5)	м	PHASES			END EXTENSION O	NE TURN	(48)	LE]ĝ
	Ä	(Sa)	f	FREQUENCY			DEMAGNETIZATIO	N FACTOR	(74)	Cm	1
	[≨	(6)	Р	POLES			TYPE ROTOR 1, 2		,		
	ď	(7)	RPM	RPM			SLOTS PUNCHED		(300)	Q',	1
		(8)	lph	PHASE CURRENT			SLOTS WOUND		(301)	J',]
		(9)	Pf	POWER FACTOR			SLOTS IN POLE CI	NTER	(302a)]
·		(10)		OPTIONAL LOAD POINT			WIDTH OF SLOT O	PENING	(303)		
,		(11)	d	STATOR I.D.			HEIGHT OF STOTE		(303)	h _r 2	
	×	(12)	D	STATOR O.D.			SLOT DEPTH LEL	OW WEDGE	(303)	h _r ;	l ₹
1	Ϋ́	(13)	K	GROSS CORE LENGTH			SLOT WIDTH			Ь,	ő
İ	F ST	(14)	n v	NO. OF DUCTS			SLOT DEPTH		(303)	h	ROTO
	ATOR	(15)	ь	WIDTH OF DUCT			SLOT PITCH		(304)		ļ —
;	ΣŢ	(16)	K,	STACKING FACTOR (STATOR)			ROTOR STACK LE		(305)	<u> </u>	
		(19)	k	WATTS/LB.			ROTOR STACKING		(16)	K.	İ
	-	(20)	В	DENSITY			ROTOR DIAMETER			d,	-
i		(21)		TYPE OF SLOT			ROTOR I.D. (PCH)		(314a)		†
!		(22)	b _o	SLOT WIDTH TOP			WEIGHT OF ROTO		(3145) (157)		1
			h 2	3201 410111 101			POLE FACE LOSS		(187)	 	1
		(22)	63				NO. OF FIELD TU		(146a)		
	10			SLOT WIDTH					(147)	Q I	1
	S.	(22)	h _o	3201 #10111			FLD. COND. DIA. ((148)	A.U.	۵
	č	(22)	h j				FLD. COND. THICK		(149)		12
	4	(22)	h ₂				FLD. TEMP IN C		(150)	X, o C	1 4
	S	(22)	h3				RESISTIVITY OF F	ELD COND - 20°		P,	1
•		(22)	h	SLOT DEPTH			NO LOAD SAT.	····	(87)		
		(22)	١,				FRIC' ION & WIND	AGE	(183)	(F&W)	1
	ļ	(22)	h _w				ROTOR LAM MTR	L	(18)		2
·		(23)	Q	NO. OF SLOTS			STATOR LAM. MTR	'L (CURVE)	(18)		X + X
		(28)		TYPE OF WDG.							
		(29)		TYPE OF COIL							
į		(30)	n <u>s</u>	CONDUCTORS/SLOT							ŀ
		(31)	у	SLOTS SPANNED							
		(32)	c	PARALLEL CIRCUITS							į.
1		(33)		STRAND DIA. OR WIDTH							Ì
	ž	(34)	Nat	STRANDS/CONDUCTOR		STAT	OR SLOT	ROTO	SLOT		
	Ž	(340)	N'81	STRANDS/CONDUCTOR							
f +	œ	(39)	ļ	STATOR STRAND T'KNS		-	LOTTED POLE-CEN	_			
1	STATOR WINDING	(35)	d b	DIA. OF PIN			OLID POLE-CENTE	R 1			
	2	(36)	Ø • 2	COIL EXT. STR. PORT		REMARKS:					
j		(37)	hat	UNINS. STRD. HT.							
!			h'at	DIST. BTWN. CL OF STD.							
		(420)	-	PHASE BELT/ANGLE				•			
I		(40)		STATOR SLOT SKEW STATOR TEMP °C							
ł		(50)	7	RES'TYY STA. COND. # 20° C							
				MINIMUM AIR GAP							REV. A
ì		(59)	9 min	WILLIMAN VIV. AVI	L	H-01				•	· · · · ·

SUMMARY OF DESIGN CALCULATIONS - NON-SALIENT - POLE (OUTPUT)

	MODEL _		EW			DESIGN NO.				
		SOLID CORE LENG					CARTER CO	FFICIENT	(67) (K	.)
	(24) (hc)	DEPTH BELOW SL	ОТ				AIR GAP ARE	Α	(68) (-	و (
,	(26) (7.)	(26) (7 e) SLOT PITCH					AIR GAP PER	IM	(70c) ()	و (،
	(27) (7.1/3	SLOT PITCH 1/3 D	IST. UP				EFFECTIVE	AIR GAP	(69) (g.	
	(42) (Ksk)	SKEW FACTOR					FUND/MAX O	F FLD. FLUX	(71) (C ₁	
1	(43) (Kd)	DIST. FACTOR				 	WINDING CO	157.	(72) (C	
	(44) (K p)	PITCH FACTOR					POLE CONST	<u> </u>	(73) (C	
	(45) (71 e)	EFF. CONDUCTOR	<u> </u>				END. EXT. O	<u> </u>	(48) (LE	712
Q	(46) (a c)	COND. AREA						ING FACTOR	(74) (C)	111
	(47) (S .)	CURRENT DENSIT	V (STA)				AMP COND/I		(128) (A)	
	<u> </u>					ļ			(129) (X)	
-	(49) (2+)	1/2 MEAN TURN L				 	REACTANCE LEAKAGE RE		(130) (X ₀	
	(53) (Rph)	COLD STA. RES. 9				ļ				
	(54) (R _{ph})	HOT STALRES. # X					REACTANCE		(131) (X ₀	<u>id)</u>
	(55) (EF top	EDDY FACTOR TO	Р				ARMATURE	REACTION	<u> </u>	5
		EDDY FACTOR BO					SYN REACT	DIRECT AXIS	(133) (X	
	(ώ2) (λ ;)	STATOR COND. PE	RM.				FIELD LEAK	AGE REACT	(160) (4	يال ا
	(64) (Ne)	END PERM.					FIELD SELF	INDUCTANCE	(161) (L	<u> </u>
	(65)	WT. OF STA COPP	ER				UNSAT. TRA	NS. REACT	(166) (X'	du) 2
	(66) ()	WT. OF STA IRON					SAT. TRANS.	REACT	(167) (X*	<u>a)</u>
	(3126)()	ROTOR SLOT LEA	Y PER				SUB. TRANS	REACT	(166) (X	"a)
		FLD. COND. ARFA				1	NEG SEGUEN		(170) (X	2)
Q		COLD FILD RES# 2				1	ZERO SEQUE		(172) (X	
5		HOT FLD RES. # X				-	TOTAL FLUX		(88) (\$	
	(156) ()	WT OF FLD COPPI	ER				FLUX PER P	OLE	(92) (d.	.)
		WT OF ROTOR IRO					GAP DENSIT		(95) (B	-
		PERIPHERAL SPE				 	TOOTH DENS		(91) (B,	
	·	OPEN CIR. TIME C		-	P-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,		CORE DENSI	TY	(94) (B _c	7 3
						 	TOOTH AMP		(97) (F,	7 F
101 A	(177) (T _o) ARM TIME CONST. (178) (T'd) TRANS TIME CONST.		-			 	CORE AMPE		(98) (F _c) 芸	u
3	(170) (1 4)	TRANS TIME CONS	ONST							
}~. ,	(179) (19	SUB TRANS TIME	CONST.			 	GAP AMPERI	: IUKAS	(96) (F _G	<u>/</u> → ₹
Î		SHORT CIR NI								
٠,٠		SHORT CIR RATIO				<u> </u>				
		ENT LOAD	0		-	100	150	200		PTIONAL
Ž	05) (312/L		L		(\$\psi_1\square\) (312a)					
	_{7c}) (313) F		<u></u>		(Ørel) (318)					
		OLE DENSITY			(B _{pel}) (9)					
		OTOR CORE DENS'TY			(B _{pel}) (J21)					
	ni) (127) T				(Ff) (236)					
								L		
	ni) (127a)F				(1 ffl) (237)					
(S	F) (127c)(UR.DENS.(FLD)			(Sfl) (239)					
(<u>§</u>	F) (127c)(UR.DENS.(FLD)			(Sfl) (239)					
(Š	F) (127c)(F) (127b)(UR.DENS.(FLD)								
(S)	F) (127c)(CUR.DENS.(FLD) FIELD VOLTS ROTOR LOSS			(Sfl) (239) (Effl) (238)					
(S)	F) (127c)(F) (127b)(² R _F) (182) F &W) (183) (CUR.DENS.(FLD) FIELD VOLTS ROTOR LOSS			(S _{fl}) (239) (E _{ffl}) (238) (L ² R _r) (241)					
(S)	F) (127c) (F) (127b) (F) (182) F 2 R _F) (182) F 4 W) (183) ((ml) (184) 5	CUR.DENS.(FLD) FIELD VOLTS ROTOR LOSS F&W LOSS			(Sfl) (239) (Effl) (238) (I ² R _r)(241) (F&W) (183)					
AKIABLE LUAU	F) (127c)(F) (127b)(P) (127b)(P) (127b)(P) (182)(P) (183)(P) (184)(P) (184)(P) (185)	CUR.DENS.(FLD) FIELD VOLTS ROTOR LOSS F&W LOSS TA TOOTH LOSS TA CORE LOSS			(SfI) (239) (EffI) (238) (I ² R _r) (241) (F&W (183) (Wm1) (242) (W c) (185)					
VAKIABLE LUAD	F) (127c) (F) (127b) (F) (127b) (F) (182) (F) (183) (F) (184) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	CUR.DENS.(FLD) FIELD VOLTS FOTOR LOSS F&W LOSS TA TOOTH LOSS TA CORE LOSS POLE FACE LOSS			(Sf) (239) (Eff) (238) (1 ² R _r) (241) (F&W) (183) (Wmi) (242) (W _c) (185) (V _{pf}) (243)					
VAKIABLE LUAD	F) (127c) (F) (127b)((P) (182) F (EW) (183) I (in1) (184) S (in1) (186) I (inn) (186) I (inn) (186) I (inn) (186) I	CUR.DENS.(FLD) FIELD VOLTS FOTOR LOSS FAW LOSS TA TOOTH LOSS FA CORE LOSS FOLE FACE LOSS FATOR CU LOSS			(Sf) (239) (Eff) (238) (1 ² R _p) (241) (F&W) (183) (Wmi) (242) (W _c) (185) (¹ / ₂ pf) (243) (1 ² / ₂ R _p) (245)					
VAKIABLE LUAD	F) (127c) (127c) (127c) (127b) (127b) (127b) (182) F &W) (183) I (181) (184) S c) (185) S (2 R _m) (186) I (195) (195)	CUR.DENS.(FLD) FIELD VOLTS FOTOR LOSS FAW LOSS TA TOOTH LOSS TA CORE LOSS POLE FACE LOSS FATOR CU LOSS EDDY LOSS			(Sf) (239) (Eff) (238) (I 2 R _c) (241) (F&W) (183) (Wmi) (242) (W _c) (185) ('/pf) (243) (I ² R _s) (245) (-) (246)					
VAKIABLE LUAD	F) (127c) (F) (127b)((F) (182) F &W) (183) I (in1) (184) S c) (185) S (in5) (186) I (in6) I (in7) (186) I (in8) (196) I (in9) (196) I	CUR.DENS.(FLD) FIELD VOLTS FOTOR LOSS FAW LOSS TA TOOTH LOSS FOLE FACE LOSS FOLE FACE LOSS FOLE FACE LOSS FOTATOR CU LOSS TOTAL LOSSES			(Sf) (239) (Eff) (238) (I 2R _c) (241) (F&W) (183) (Wmi) (242) (W _c) (185) (¹ / ₂ ff) (243) (I ² / ₂ R _s) (245) (-) (247)					
VARIABLE LOAD	F) (127c) (F) (127b)((F) (127b)((P) (182) F (W) (183) I (m1) (184) S (B) (185) S (mn) (186) I (P) (195) (196) (196) (196) (-)	CUR.DENS.(FLD) FIELD VOLTS FOTOR LOSS FAW LOSS TA TOOTH LOSS FACE LOSS FOLE FACE LOSS FATOR CU LOSS EDDY LOSS TOTAL LOSSES RATING (KW)			(S _{FI}) (239) (E _{FI}) (238) (I ² R _r) (241) (F&W) (183) (W _{m1}) (242) (W _c) (185) ('A _P FI) (243) (II ² R _g) (245) (-) (246) (-) (247) (-) (248)					
VARIABLE LOAD	F) (127c) (F) (127b) (P) (127b) (2 R _f) (182) F (4m1) (184) S (5) (185) S (4m1) (186) F (4m2) (186) F (4m3) (186) F (4m3) (186) F (4m3) (196) F	FIELD VOLTS FIELD VOLTS FOTOR LOSS FAW LOSS FAW LOSS FAW CORE LOSS FOLE FACE LOSS FATOR CU LOSS FOTAL LOSS FOTAL LOSSES FRATING (KW) RATING&LOSSES			$\begin{array}{ll} (S_{\rm fl}) & (239) \\ (E_{\rm ffl}) & (238) \\ (I_{\rm R_f}) & (241) \\ (F&W) & (I83) \\ (W_{\rm m1}) & (242) \\ (W_{\rm c}) & (185) \\ (^{\prime}J_{\rm pfl}) & (243) \\ (I_{\rm R_g}) & (245) \\ (-) & (246) \\ (-) & (247) \\ (-) & (249) \\ \end{array}$					
VARIABLE LOAD	F) (127c) (F) (127b)((F) (127b)(2 R _f) (182) F &W) (183) I (m1) (184) S (mn1) (186) I 2 R _m) (186) I 2 R _m) (194) (-) (195) (-) (-) (-) (-)	CUR.DENS.(FLD) FIELD VOLTS FOTOR LOSS FAW LOSS TA TOOTH LOSS FACE LOSS FOLE FACE LOSS FATOR CU LOSS EDDY LOSS TOTAL LOSSES RATING (KW)			(S _{FI}) (239) (E _{FI}) (238) (I ² R _r) (241) (F&W) (183) (W _{m1}) (242) (W _c) (185) ('A _P FI) (243) (II ² R _g) (245) (-) (246) (-) (247) (-) (248)					

TE ______

NON-SALIENT POLE, WOUND-POLE

ζ			124	·		1
ITEMS	(3) (E) Volts	· (%) (Fg) AIR GAP A.T.	(91) (8 ,) TOOTH DENSITY	(97) (F ₊) TOOTH A.T.	(94) (B) CORE DENSITY	(98) (F _c)
	(98e) (F __)	(312) (\$/2)	(313) Orc	(314) Bpc	(315) (F.)	(127) (F _{ni})
VOLTS	STATOR A.T.	LEAKAGE FLUX	TOTAL FLUX/POLE	POLE DENSITY	(3!5) (F p) POLE A.T.	TOTAL A.T. OLL
80%						·
90%						
100%						
110%						
120%		-				
130%						
140%						
150%						
160%						

NON-SALIENT POLE, WOUND-POLE A. C. GENERATOR DESIGN COMPUTER MANUAL

			•
	(1)		DESIGN NUMBER
	(2)	KVA.	GENERATOR KVA
	(3)	E	LINE VOLTS
	(4)	$\mathbf{E}_{\mathbf{PH}}$	PHASE VOLTS
	(5)	m	PHASES
	(5a)	f	FREQUENCY
ĺ	(6)	P	POLES
	(7)	RPM	SPEED
	(8)	I_{PH}	PHASE CURRENT
	(9)	P. F.	POWER FACTOR
	(9a)	К _с	ADJUSTMENT FACTOR
	(10)		LOAD POINTS
	(11)	d	STATOR PUNCHING I.D.
	(11a)	$\mathtt{d}_{\mathbf{r}}$	ROTOR O.D.
	(12)	D	PUNCHING O.D.
	(13)	L	GROSS STATOR CORE LENGTH
	(14)	n _V	RADIAL DUCTS
	(15)	$\mathbf{b_{v}}$	RADIAL DUCT WIDTH
	(16)	K _i	STACKING FACTOR
	(17)	L ₈	SOLID CORE LENGTK
	(18)	:	MATERIAL

(19)	k	WATTS'LB
(20)	В	DENSITY
(21)		TYPE OF STATOR SLOT
(22)		ALL SLOT DIMENSIONS
(23)	Q	STATOR SLOTS
(24)	h _C	DEPTH BELOW SLOTS
(2 5)	q	SLOTS PER POLE PER PHASE
(26)	Ts	STATOR SLOT PITCH
(27)	$\gamma_{\rm s}^{1/3}$	STATOR SLOT PITCH
(28)		TYPE OF WINDING
(2 9)	-~	TYPE OF COIL
(30)	n _S	CONDUCTORS PER SLOT
(31)	Y	THROW
(31a)		PER UNIT OF POLE PITCH SPANNED
(32)	С	PARALLEL PATHS
(33)		STRAND DIA, OR WIDTH
(34)	N_{ST}	NUMBER OF STRANDS PER CONDUCTOR CONTRACT
(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR
(35)	d _b	DIAMETER OF BENDER PIN
(36)	ℓ _{e2}	COIL EXTENSION BEYOND CORE
(37)	h _{ST}	HEIGHT OF UNINSULATED STRAND
(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH
1	•	·

-39)		STATOR COIL STRAND THICKNESS
(40)	$\gamma_{\rm sk}$	SKEW
(41)	$r_{\rm p}$	POLE PITCH
(42)	K _{SK}	SKEW FACTOR
(42a)		PHASE BELT ANGLE
(43)	K _d	DISTRIBUTION FACTOR
(44)	К _р	PITCH FACTOR
(45)	n _e	TOTAL EFFECTIVE CONDUCTORS
(46)	a_c	CONDUCTOR AREA OF STATOR WINDING
(47)	${f s_S}$	CURRENT DENSITY
(48)	${ m L_{ m E}}$	END EXTENSION LENGTH
(49)	$\ell_{\rm t}$	1/2 MEAN TURN
(50)	x _s °c	STATOR TE LP °C
(51)	\mathcal{S}_{s}	RESISTIVITY OF STATOR WINDING
(52)	S _(hot)	RESISTIVITY OF STATOR WINDING
(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE
(55)	EF (top)	EDDY FACTOR TOP
(56)	EF (bot)	EDDY FACTOR BOTTOM
1	,	

(57)	b _{tm}	STATOR TOOTH WIDTH
(57a)	^b t 1/3	STATOR TOOTH WIDTH
(58)	ъ _t	TOOTH WIDTH AT STATOR I.D. IN INCHES
(59)	g	MAIN AIR GAP IN INCHES
(60)	$C_{\mathbf{X}}$	REDUCTION FACTOR used in calculating (62)
(61)	K _X	Factor used in calculating (60)
(62)	$\lambda_{ ext{i}}$	SLOT LEAKAGE PERMEANCE
(63)	$K_{\mathbf{E}}$	LEAKAGE REACTIVE FACTOR
(34)	$\lambda_{\scriptscriptstyle {f E}}$	END WINDING FLUX LEAKAGE PERMEANCE
(65)		WEIGHT OF COPPER
(66)		WEIGHT OF STATOR IRON
(67)	K _s	CARTER COEFFICIENT
(68)	$A_{\mathbf{g}}$	MAIN AIR GAP AREA
(69)	g _e	EFFECTIVE GAP - The effective single air gap.
		$g_e = K_s K_r g$ (for rotors with slotted pole centers) = (67)(308)(
		$g_e = K_s g$ (for rotors with solid pole centers) = (67)(59)
	(62) (63) (54) (65) (66) (67) (68)	(62) λ_{i} (63) K_{E} (54) λ_{E} (65) (66) (67) K_{S} (68) A_{g}

(70c)	λ_{a}
	7 19

AIR GAP PERMEANCE

(71)

THE RATIO OF MAXIMUM FUNDAMENTAL of the field form to the actual maximum of the field form.

FOR A ROTOR WITH SOLID CENTER SECTION

$$C_{1} - \frac{4}{11} \cos \left(\frac{\pi \alpha}{2}\right) \left[\frac{K_{r} - 1}{K_{r}}\right] + \frac{8}{12 \text{ Kr } \alpha} \sin \left(\frac{\pi \alpha}{2}\right)$$

$$C_{1} = \frac{4}{11} \cos \frac{\pi (302)}{2} \left[\frac{(308) - 1}{(308)}\right] + \frac{8}{12(308)(302)} \sin \frac{\pi (302)}{2}$$

$$C_1 = \frac{4}{11} \cos \frac{11}{2} \left(\frac{302}{2} \right) \left[\frac{(308) - 1}{(308)} + \frac{8}{12} \frac{2(308)(302)}{(308)} \right] \sin \frac{(302)}{2}$$

FOR A ROTOR WITH SLOTTED CENTER SECTION - When

the center is slotted instead of solid the \mathbf{K}_{Γ} applies to the complete rotor. Therefore, by making $K_{\mathbf{r}}$ equal to unity in the above equation we will get an answer that is independent of the effect of rotor slots and

$$C_1 = \frac{8}{7 \cdot 2 \cdot \infty} \sin\left(\frac{\pi \cdot \infty}{2}\right) = \frac{8}{7 \cdot 2 \cdot (302)} \sin\left(\frac{\pi \cdot (302)}{2}\right)$$

When using this value of C₁, it is necessary to include K_r in g_e and

$$g_e = K_r K_g g = (69) = (67)(308)(59)$$

(73)	Сp	PCLE CONSTANT - The ratio of the average to the maximum			
		value of the field form.			
		BASED ON A ROTOR WITH A SOLID CENTER SECTION			
		$C_p = 1 - \infty + \frac{\infty}{2K_r} = 1 - (302) + \frac{(302)}{2(308)}$			
		BASED ON A ROTOR WITH SLOTTED CENTER SECTION			
		When the center is slotted instead of solid $K_{\mathbf{r}}$ is			
		included in the effective gap and K_r becomes			
		unity in the C_p equation.			
		$C_p = 1 - \infty + \frac{\infty}{2} = 1 - \frac{\infty}{2} = 1 - \frac{(302)}{2}$			
(74)	С _М	DEMAGNETIZING FACTOR			
		$C_{\mathbf{M}} = \frac{\overline{\iota_{i}}^{2}}{8} \frac{\alpha}{\sin \overline{\iota_{i}} \alpha} = \frac{\overline{\iota_{i}}^{2}}{8} \frac{(302)}{\sin \overline{\iota_{i}}(302)}$			
		kef: Quarterly report page 80 (Appendix).			
(87)		NO LOAD SATURATION NOTE			
(88)	$\phi_{\mathbf{T}}$	TOTAL FLUX IN KILOLINES			
(91)	Вt	TOOTH DENSITY IN KILOTARES/in ²			
(92)	$\phi_{\mathbf{P}}$	FLUX PER POLE IN KILOIJNES			
(94)	B _c	CORE DENSITY IN KILOLINES/in ²			
(95)	Bg	GAP DENSITY IN KILOLINES/in ²			

_		1			
(96)	$\mathbf{F_g}$	AIR-GAP AMPERE-TURNS			
(97)	$\mathbf{F_{T}}$	STATOR TOOTH AMPERE TURNS			
(98)	$\mathbf{F}_{\mathbf{c}}$	STATOR CORE AMPERE-TURNS			
(98a)	-T _S	STATOR AMPERE TURNS			
(104a)	FR	ROTOR AMPRE TURNS OR POLE AMPERE TURNS			
		at no-load. The ampere turns per pole required to force the flux through the pole center and rotor core at no-load, rated voltage. The core density should be low enough at no-load to ignore. $F_{R} = F_{PC} + F_{rc} = (316) + (317)$			
(127)	F _{NL}	THE TOTAL NO- LOAD AMPEPE TURNS PER POLE RE- QUIRED TO PRODUCE RATED VOLTAGE AT NO- LOAD			
		$F_{NL} = F_g + F_s + F_R = (93) + (98a) + (104a)$			
(127a)	IFNL	FIELD CURRENT AT NO-LOAD			
(127b)	EF	FIELD VOLTS AT NO- LOAD			
(127c)	$\mathbf{s_{f}}$	CURRENT DENSITY AT NO-LOAD AMPS/IN ² IN FIELD CONDUCTOR			
(128)	A	AMPERE CONDUCTORS PER INCH			
(129)	x	REACTANCE FACTOR			
(130)	$\mathbf{x}_{\mathcal{L}}$	LEAKAGE REACTANCE			
(? a 1)	X _{ad}	REACTANCE DIRECT AXIS REACTANCE OF ARMATURE REACTION			
(133)	x _d	SYNCHRONOUS REACTANCE			
		$X_d = X_{\mathcal{L}} + X_{ad} = (130) + '131)$			
(145)	v_r	PERIPHERAL SPEED OF ROTOR			

(146a)	N _P	TURNS PER POLE - The total number of field turns per
		pole.
		$N_{\mathbf{P}} = \frac{n_{\mathbf{r}}Q_{\mathbf{r}}}{2p} = \frac{(306)(301)}{2(6)}$
(147)	$\ell_{ m tr}$	MEAN TURN - The mean length of rotor turn. This value
		must be calculated from a layout of the rotor
		winding.
(148)		FIELD CONDUCTOR DIAMETER OR WIDTH (INCHES)
(149)		FIELD CONDUCTOR THICKNESS (INCHES)
		Set = 0 for round
(150)	Х _f °С Р	FIELD TEMP. IN °C
(151)	$ ho_{ m f}$	RESISTIVITY OF ROTOR WINDING AT 20°C OHM INCHES x 10 ⁻⁶
		Refer to item (51) for conversion factors.
1	1	

(152)	P _f	RESISTIVITY OF ROTOR WINDING AT XfOC			
(153)	a_{cf}	AREA OF CONDUCTOR - The actual area of the conductor			
		taking into account the corner radius.			
(154)	R _f (cold)	COLD FIELD RESISTANCE AT 20°C			
(155)	R _f (hot)	HOT FIELD RESISTANCE AT XOC			
(156)		WEIGHT OF COPPER - The weight in lbs. of the field			
		winding.			
		Lbs. = .321 N _p P \mathcal{L}_{t_r} a _{cr} = .321 (146a)(6)(147)(153)			
(157)		WEIGHT OF IRON - The weight in lbs. of the rotor iron.			
		# = .283 $\left[\widetilde{\mathbf{q}}(\mathbf{d_r} - \mathbf{h_r}) - \mathbf{Q_r} \mathbf{b_r}\right] \mathcal{L}_{rs} \mathbf{h_r} +$			
		+ $.283 \widehat{n} (d_s + h_{rc}) h_{rc} \ell_{rs}$			
		= .283 $\left\{ (11a) - (303) \right\} - (301)(303) \left\} (305a)(303) + (305a)(303) \right\}$			
		. 283 $11(314a) + (330)(305a)$			
		For slotted pole centers $Q_r = Q'_r$			
		(300) = (301)			

(160)	$x_{\mathbf{F}}$	FIELD LEAKAGE REACTANCE - The leakage reactance
		of the field winding.
		$X_F = X \frac{4}{\sqrt{y}} C_M^2 \lambda F$, = (129) $\frac{4}{\sqrt{y}}$ (74) ² (332)
(161)	$\mathtt{L}_{\mathbf{F}}$	FIELD SELF INDUCTANCE - The total self inductance of
		the field winding.
		$L_{F} = \frac{N_{P}^{2} p \mathcal{L}_{r}}{10^{8}} \left[C_{F} \left(3.19 \frac{\tau_{p}}{g_{e}} \right) + \lambda_{F} \right] (Henries)$
		$= \frac{(146a)(6)(305)}{10^8} \left[(331)3.19 \frac{(41)}{(69)} + (332) \right]$
(163)	x_{Dd}	DAMPER LEAKAGE REACTANCE - The leakage reactance
		of the effective damper and eddy current circuits.
		$x_{Dd} = x \lambda_{Dd}$
		$\lambda_{Dd} = \frac{3.19p}{d} (g + \mathcal{J}_d + h_{r2})$
		where $\frac{1}{2}$ depth of penetration factor
		$Y_{\rm d} = 0.47 \sqrt{\frac{400}{\rm f}}$
		$\lambda_{\text{Dd}} = \frac{3.19(6)}{(11)} \left\{ (59) + (163) \div (303) \right\}$

(166)	x' _{du}	UNSATURATED TRANSIENT REACTANCE - The transient
		reactance due to the field winding, assuming un-
		saturated conditions.
		$X'_{du} = X_r + X_F \left(\frac{X_{ad}}{X_F + X_{ad}} \right) =$
		$= (130) + (160) \left(\frac{(131)}{(160) + (131)} \right)$
(167)	x' _d	SATURATED TRANSIENT REACTANCE - The transient
		reactance due to the field winding assuming
		normally saturated conditions.
		$x'_{d} = 0.88 \ x'_{du} = 0.88 \ (166)$
(168)	x'' _d	SUBTRANSIENT REACTANCE - The subtransient reactance
		due to the eddy current circuits.
4		$X''_{d} = X_{\ell} + X_{D\ell'} = (130) + (163)$
(170)	x ₂	NEGATIVE SEQUENCE REACTANCE - The reactance due
(170)		to the field which rotates at synchronous speed
		in a direction opposite to that of the rotor.
		$x_2 = x''_d = (168)$

(172)	x _o	ZERO SEQUENCE REACTANCE - The reactance drop across					
		any one phase (star connected) for unit zero sequence					
		current in each of the phases. The machine must					
		be star connected for otherwise no zero sequence					
		current can flow and the term has no significance.					
		$X_0 = X \left[\frac{K_{XO}}{K_{XJ}} \left(\lambda_i + \lambda_{Dd} \right) + \frac{20(h_1 + 2h_3)}{12 \text{mq} K_p^2 K_d^2 b_s} + 0.2 \lambda_E \right]$					
		$= (129) \left\{ \frac{(173)}{(174)} \left[(62) + (163) \right] + \frac{1.667 \left[(22) + 2(22) \right]}{(5)(25)(44)^2 (43)^2 (22)} + .2(64) \right\}$					
(173)	K _{xo}	If $(30) = 1$ Then $K_{y0} = 1$					
		If (30) = 1 Then $K_{XO} = 1$ If (30) $\neq 1$ Then $K_{XO} = \frac{3(\gamma)}{(m)(q)} - 2$					
		$=\frac{3(31)}{(5)(25)}-2$					
(174)	K _{xl}	If (30) = 1 Then $K_{x1} = 1$					
		If (30) ≠ 1 Then:					
		$K_{x1} = \left[\frac{3(\gamma)}{4(m)(q)} + \frac{1}{4}\right] = \left[\frac{3(31)}{4(5)(25)} + \frac{1}{4}\right]$ If $(31a) \ge .667$					
		$K_{x1} = \left[\frac{3(\gamma)}{4(m)(q)} - \frac{1}{4}\right] = \left[\frac{3(31)}{4(5)(25)} - \frac{1}{4}\right]$ If $(31a) < .667$					

(176)	T'do	OPEN CIRCUIT TIME CONSTANT
(177)	та	ARMATURE TIME CONSTANT
(178)	T'd	TRANSIENT TIME CONSTANT
(179)	T''d	SUBTRANSIENT TIME CONSTANT
(180)	F_{sc}	SHORT CIRCUIT AMPERE TURNS
(181)	$s_{ m CR}$	SHORT CIRCUIT RATIO
(182)	I^2R_R	ROTOR I ² R AT NO LOAD
(183)	F&W	FRICTION & WINDAGE LOSS
	(177) (178) (179) (180) (181) (182)	(177) T _a

(184)	WTNL	STATOR TEETH LOSS AT NO LOAD			
(185)	w_c	STATOR CORE LOSS			
(186)	$\mathbf{w}_{\mathrm{NPL}}$	POLE FACE LOSS AT NO LOAD			
(196)		TOTAL LOSSES AT NO LOAD			
		Rotor I2R + F & W+ Stator Teeth Losses +			
		Stator Core Loss + Pole Face Loss			
	1	= (182) + (133) + (184) + (185) + (186)			
(198)	$\mathbf{e}_{\mathbf{d}}$	The voltage that would be generated at no load and no satura-			
		tion the air gap voltage behind the synchronous			
		reactance.			
		$e_d = cos(\varepsilon) + \frac{(X_d)}{100} sin(\psi)$			
		$= \cos(198) + \frac{(133)}{100} \sin(198)$			
		Where $\psi = \tan^{-1} \left[\frac{\sin(\Theta) + X_0}{\cos \Theta} \right]$			
		$= \tan^{-1} \left[\frac{\frac{(133)}{\sin(198) + 100}}{\cos(198a)} \right]$			
(198a)	0	POWER FACTOR ANGLE			
		$= \cos^{-1} \left[(PF) \right]$			
	·	$= \cos^{-1} \left[(9) \right]$			
		Where $\mathcal{E} = (\psi) - (\Theta) = (198) - (198a)$			

(236)	FFL	TOTAL AMPERE TURNS PER POLE REQUIRED @100% LOAD
		$F_{FL} = e_d F_g + (1 + \cos \theta) F_T + F_c + F_{PCL} + F_{rcL}$
		$= (198)(96) + (97) \left[1 + \cos(198a) \right] + (98) + (320) + (322)$
(237)	I _{FFL}	FIELD CURRENT @100% LOAD
		$I_{FFL} = \frac{F_{FL}}{N_{P}} = \frac{(236)}{(146a)}$
(238)	EFFL	FIELD VOLTS @100% LOAD

(239)		CURRENT DENSITY IN FIELD CONDUCTORS AT 100% LOAD
(241)	r^2R_R	ROTOR I ² R AT 100% LOAD
(242)	$\mathbf{w_{TFL}}$	STATOR TEETH LOSS AT 100% LOAD
(243)	w_{PFL}	POLE FACE LOSS AT 100% LOAD
(244)	$w_{ extsf{DFL}}$	DAMPER LOSS AT 100% LOAD
(245)	I ² R	STATOR I ² R AT 100% LOAD
(246)		EDDY LOSS AT 100% LOAD
(247)		TOTAL LOSSES AT 100% LOAD
(248)		RATING IN WATTS AT 100% LOAD
(249)		KW RATING PLUS LOSSES
(250)		% LOSSES
(251)		EFFICIENCY

(300)	Q'r	SLOTS PUNCHED - The total number of slots punched		
		in the rotor. If the rotor is built with a solid		
		pole center section $\mathbf{Q'}_{\mathbf{r}}$ is the number of slot		
		pitches on the rotor circumference.		
(301)	${f Q_r}$	SLOTS WOUND - The total number of slots that are wound.		
(302)	æ(RATIO OF SLOTS WOUND TO SLOTS PUNCHED		
		$\mathcal{L} = \frac{Q_r}{Q_r'} = \frac{(3c_1)}{(3c_r)}$		
(302a)	N _{re}	NO. OF SLOTS IN POLE CENTER		
(303)	-	SIZE SLOTS - The width of the rotor slot (b_r) and the depth of the rotor slot (h_r) .		
(304)	$\gamma_{\rm rs}$	TCOTH PITCH - The rotor slot pitch at the rotor diameter.		
		$\tau_{rs} = \frac{\tilde{\eta} d_r}{Q'_r} = \frac{\tilde{\eta} (11 \Delta)}{(3cc)}$		
(305)	$\ell_{ m r}$	CORE LENGTH - The overall length of the rotor core.		
(305a)	lr Lps	SOLID LENGTH OF ROTOR CORE		
	-	$\ell_{rs} = K_i \ell_r = (16)(305)$		
(306)	$\mathbf{n_r}$	CONDUCTORS PER SLOT - The number of rotor conductors		
		per slot.		

(307) X₁

POTIER REACTANCE - The reactance determined by the Potier triange.

$$x_p = x_p + \frac{F_R}{F_S + F_R} \quad x_{F_S} = (130) + \frac{(104a)(307)}{(98a) + (104a)}$$

$$x_{Fs} = \begin{bmatrix} \frac{\lambda_{rs}}{\frac{2d}{p g_e} + \lambda_{rs}} \end{bmatrix} (x_d)$$

$$= \begin{bmatrix} \frac{(312a)}{\frac{2(11)}{(6)(69)}} & (312b) \\ & \end{bmatrix} (133)$$

(308) K

CARTER'S COEFFICIENT ROTOR - The Carter coefficient for the rotor slots.

For open slots -

$$K_{r} = \frac{t_{rs} (5g + b_{r})}{t_{rs} (5g + b_{r}) - b_{r}^{2}} - = \frac{(304) \left[5(59) + (303) \right]}{304 \left[5(59) + (303) \right] - (303)^{2}}$$

For partially closed slots -

$$K_{r} - \frac{t_{rs} (4.44g + 0.75 b_{ro})}{t_{rs} (4.44g + 0.75 b_{ro}) - b_{ro}^{2}} = \frac{(304) \left[4.44 (59) + 0.75 (303) \right]}{(304) \left[4.44 (59) + 0.75 (303) \right] - (303)^{2}}$$

(311)	Øgp	FLUX IN POLE CENTER - The portion of the total flux in			
		each pole center.			
		$ \varphi_{\rm gp} = \left[\frac{Q_{\rm r} - Q_{\rm r} + p}{Q_{\rm r}'} \right] \frac{\varphi_{\rm T}}{p} =$			
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
(312)	Øls	LEAKAGE FLUX - The rotor slot leakage flux in Kilolines			
		in each pole center.			
		$\emptyset \mathcal{L}_{S} = \frac{(F_{g} + F_{s}) / r \lambda_{rS}}{1000} =$			
		$(96) + (98a) (305) (312b) 10^{-3}$			
		•			
(312a	ØL, s	SLOT LEAKAGE I LUX IN EACH POLE CENTER AT 100% LOAD			
		$ \varphi_{\mathcal{U}_{S}} = \varphi_{\mathcal{E}_{S}} \left\{ \frac{(e_{d})(F_{g}) + [1 + \cos(\theta)](F_{T}) + (F_{C})}{(F_{g}) + (F_{T}) + (F_{C})} \right\} $			
		$= (212) \left\{ \frac{(198)(96) + [1 + \cos(198a)](97) + (98)}{(96) + (97) - (98)} \right\}$			

The rotor slot leakage permeance per inch of stator length.

For either open or semi-closed slots

$$\lambda_{rs} = \frac{12.76P}{Q_{r}} \left[\frac{h_{r2}}{b_{ro}} + \frac{2h_{t}}{b_{ro} + v_{r}} + \frac{.35 \left(c_{rs} - b_{ro} \right)}{\tau_{rs}} + \frac{g}{2\tau_{rs}} \right]$$

$$\lambda_{rs} = \frac{12.76(3)}{(301)} \left[\frac{(303)}{(303)} + \frac{2(393)}{(303) + (393)} + \frac{.35 \left((304) - (303) \right)}{(304)} + \frac{(59)}{2(304)} \right]$$

 $(313) \quad \phi_{rc}$

TOTAL FLUX IN THE POLE CENTER
$$\phi_{rc} = \phi_{gp} + \phi_{\ell s}$$

$$\phi_{rc} = \phi_{gp} + \phi_{\ell s}$$

$$\phi_{rc} = (311) + (312)$$

(314b) (315)	^b rh B _{rc}	HEIGHT OF VENTILATING HOLES IN ROTOR CORE AREA CORE DENSITY - The flux density in the rotor core @ No Load
		$B_{rc} = \frac{\phi_{rc}}{2h_{rc}\chi_{rs}} = \frac{(313)}{2(315)(305a)}$ where $2h_{rc} = d_r - 2h_r - d_s - 2b_{rh}$
		= (11a) - 2(303) - (314a) - 2(314b)
(316)	F _{PC}	AMPERE TURN DROP IN THE POLE CENTER AT NO LOAD $F_{PC} = h_r \left[\frac{\text{NI/in. } @ B_{PC}}{\text{Look up rotor magnetization curve}} \right]$ $= (303) \left[\frac{\text{Look up rotor magnetization curve}}{\text{given in (18) at density (314).}} \right]$

		i				
(317)	Frc	AMPERE TURN DROP IN THE ROTOR CORE				
		$F_{rc} = \frac{10^{(d_s + h_r)}}{4 p} $ NI/in. @ density B_{rc} $= \frac{10^{(314a) + (315)}}{4 (6)} $ Look up rotor punching magnetization curve given in (18) at density (315).				
(318)	$\phi_{ ext{PCL}}$	FLUX IN THE POLE CENTER AT FULL LOAD $\Phi_{PCL} = \Phi_{gp} + \Phi_{gp} = (311) + (312a)$				
(319)	B _{PCL}	DENSITY IN THE POLE CENTER AT FULL LOAD				
		$B_{PCL} = \frac{\phi_{PCL}}{b_{p} \mathcal{L}_{rs}} = \frac{(318)}{(314)(305a)}$				
(320)	FPCL	AMPERE TURN DROP IN POLE CENTER AT FULL LOAD				
		$F_{PCL} = h_r NI/in. @ B_{PCL}$				
		= (303) Look up rotor punching magnetization curve given in (18) at c nsity (319).				

(321)	BrcL	THE FLUX DENSITY IN THE ROTOR CORE AT 100% LOAD
		$B_{rcL} = \frac{\phi_{PCL}}{2h_{rc} \mathcal{L}_{rs}} = \frac{(318)}{2(315)(305a)}$
(322)	FrcL	AMPERE TURNS DROP PER POLE IN THE ROTOR CORE AT 100% LOAD
		$F_{rcL} = \frac{\sqrt{(d_s - h_{rc})}}{4P}$ NI @ B_{rcL}
		$F_{rcL} = \frac{11}{4 \text{ (a)} + (315)}$ Look up rotor magnetization curve given in (18) at density (321).
	`\$\.	
(330)	h _{rc}	$(330) = h'_{rc} = \frac{d_{r} - 2h_{r} - d_{s}}{2} = \frac{(11a) - 2(303) - (314a)}{2}$
(331)	$\mathtt{c}_{\mathbf{F}}$	RATE OF FIELD INTERLINKAGE WITH ITS OWN FLUX TO THE MAXIMUM INTERLINKAGE OF A CONCENTRATED FIELD WINDING
		BASED ON A ROTOR WITH SOLID CENTER SECTION
		$C_{\mathbf{F}} = 1 - \alpha + \frac{\alpha}{3K_{\mathbf{r}}} = 1 - (302) + \frac{(302)}{3(308)}$
		BASED ON A ROTOR WITH SLOTTED CENTER SECTION
		When the center is slotted instead of solid K_r is
		included in the effective gap and $\mathbf{K_r}$ becomes unity
		in the C_1 equation.
		$C_{\mathbf{F}} = 1 - \infty - \frac{\infty}{3} = 1 - \frac{2 \infty}{3} = 1 - \frac{2(302)}{3}$

(332)	$\lambda_{\rm F}$	LEAKAGE PERMEANCE OF THE FIELD WINDING
	$\lambda_{ extbf{F}}$	$\lambda_{\rm F} = \lambda_{\rm rs} + \lambda_{\rm FE}$
		= (312b) + (333)
(333)	$\lambda_{\scriptscriptstyle extsf{FE}}$	LEAKAGE PERMEANCE OF THE ROTOR WINDING END EXTENSION
		$\lambda_{\rm FE} = \frac{6.28}{\ell r} \left[\frac{\emptyset_{\rm E} L_{\rm E}}{2n} \right] \qquad \frac{6.28}{(305)} \left[\frac{Q_{\rm E} L_{\rm E}}{2n} \right]$
		$\frac{\phi_{\rm E} {\rm L_{\rm E}}}{2 { m n}}$ is taken from the 50% pitch curve of Graph #1

INPUT AUXILIARY DATA SHEET

Auxiliary information taken from the design manuals to be used in conjunction with input sheets for convenience.

- A. All dimensions for lengths, widths, and diameters are to be given in inches.
- B. Resistivity inputs, Items (141) and (151) are to be given in micro-ohm-inches.

The following items along with an explanation of each are tabulated here for convenience. For complete explanation of each item number, refer to design manuals.

Rem No.	Explanation		
(9)	Power factor to be given in per unit. For example for 90% P.F., insert .90.		
(9a)	Adjustment Factor - For P.F. < .95 insert 1.0		
(Ba)	For P.F. > .95 insert 1.05		
(10)	Optional Load Point Where load data output is required at a point other than those given		
	as standard on the input sheet. Example: For load data output at 155% load, insert 1.55.		
(14)	Number of radial ducts in stator.		
(15)	Width of radial ducts used in Item (14).		
(18)	Magnetization curve of material used to be submitted as defined in item (18).		
(19)	Watts/Lb. to be taken from a core loss curve at the density given in Ecm (20) (Stator).		
(20)	Density in kilolines/in ² . This value must correspond to density used to pick Rem (19)		
	usually use 77.4 KL/in ² .		
(21)	Type of slot - For open slot Type A, insert 1.0.		
	For partially open slot Type B with constant slot width, insert 2.0 .		
	For partially open slot Type C with constant tooth width, insert 3.0 .		
	For round slot Type D, insert 4.0.		
	For additional information, refer to figure adjacent to input sheet which		
	shows a picture of each slot.		

(22) For stator slot dimension - for dimensions that do not apply to the slot insert <u>0.0.</u>

Use Table below as guide for input,

		Slot T	уре	
<u>Item</u>	_1_	_2	3_	4_
(22)	0.0	*	*	*
	0.0	0.0	*	0.6
	0.0	0.0	*	0.0
	0.0	0.0	*	0.0
	*	*	£	*
	0.0	*	•	*
	*	•	•	0.0
	•	0.0	0.0	0.0
	*	*	0.0	0.0
	•	*	*	
	0.0	*	*	0.0
†	0.0	*	*	0.0
		(22) 0.0 0.0 0.0 0.0 * 0.0 *	Rem 1 2	(22) 0.0 * * 0.0 0.0 * 0.0 0.0 * 0.0 0.0 * * * * 0.0 0.0 * * * * 0.0 0.0 * * * 0.0 0.0 * * * 0.0 *

^{* -} insert actual value.

 $[\]varphi = b_8 = \frac{51 + 53}{2}$

Item No.	Explanation
(28)	Type of winding - for wye connected winding insert 1.0.
	for delta connected winding insert 0.0 .
(29)	Type of coil - for formed wound (rect. wire), insert 1.0.
	for random wound (round wire) insert 0.0.
(30)	Slots spanned - Example - for slot span of 1-10, insert 9.0.
(33)	For round wire insert diameter. For rectangular wire insert wire width.
(34)	Strands per conductor in depth only.
(34a)	Total strands per conductor in depth and width.
(35)	Diameter of coil head forming pin. Insert .25 for stator O.D. < 8 inches:
	Insert . 50 for stator O.D. > 8 in.
(37)	Use vertical height of strand for round wire, insert 0.0.
(38)	Distance between centerline of strands in depth. Insulation h'st
(39)	Stator strand thickness use narrowest dimension of the two dimensions given for a
	rectangular wire. For round wire insert 0.0.
(40)	Stator slot skew in inches.
(42a)	Phase telt angle - for 60° phase belt, insert $\underline{60^{\circ}}$.
	for 120° phase belt, insert $\underline{120^{\circ}}$.
(48)	See explanation of items (71), (72), (73), (74) and (75). Same applies here.
(87)	When no load saturation output data is required at various voltages, insert 1.0 .
	When no local saturation information is not required, insert 0.0 .
(137)	Damper bar thickness use damper bar slot height for rectangular bar. For round
	bar insert <u>0.û.</u>
(138)	Number of damper bars per pole.
(140)	Damper bar pitch in inches.
(148)	Fox round wire insert diameter. For rectangular wire insert wire width.
(149)	For rectangular wire insert wire thickness. For round wire insert .0.
(187)	Pole face loss factor. For rotor lamination thickness .028 in. or less, insert 1.17.
	For rotor lamination thickness .029 in. to .063 in. insert 1.75.
	For retor lamination thickness .064 in. to .125 insert 3.5.
	For solid rotor insert 7.0.
(71)	If the values of these constants are available, insert the actual number. If they are
(72)	not available, insert 0.0 and the computer will calculate the values and record them on
(73)	the output.
(74)	
(75)	

ROTATING COIL LUNDELL

COMPUTER DESIGN - - - - - (INPUT)

	MU	DEL			DESIGN NO(1)						
	(2)	KVA	GENERATOR KVA			FUND/MAX OF FLD FI	.ux	(71)	C1	Τ-	
	(3)	E	LINE YULTS			WINDING CONSTANT		(72)	C _w]	
	(1)	Eph	PHASE VOLTS			POLE CONSTANT		(73)	C _p]¥	
21	(5)	3	PHASES			END EXTENSION ONE	TURM	(48)	L <u>e</u>] <u>F</u>	
1	(5e)	f	FREQUENCY	1		DEMAGNETIZATION F	ACTOR	(74)	Cm] g	
3	(6)	þ	POLES			CROSS MAGNETIZING	FACTOR	(75)	Cq] 0	
3	(7)	RPM	RPM			POLE EMBRACE		(77)	α	1	
•	(8)	lph	PHASE CURRENT			WIDTH OF POLE (NAR	ROW END)	(76)	bp }	i	
	(9)	PF	POWER FACTOR			WIDTH OF POLE (WIDE	END)	(76)	bp2]	
	(9a)	Ke	ADJ. FACTOR			POLE THICKNESS (NA	RROW END)	(76)	1P 1	lg	
	(10)		OPTIONAL LOAD POINT			POLE THICKNESS (WID	E END)	(76)	¹P2	Ę	
	(11)	đ	STATOR I.D.			POLE LENGTH		(76)	g p	وًا	
_	(12)	D	STATOR O.D.			ROTOR DIAMETER		(1 la)	4] *	
Ŭ	(13)	L	GRUSS CORE LENGTH			WEIGHT OF ROTOR IR	DN	(157)	(-)	12	
, 5	(14)	ny	NO. OF DUCTS			PC'LE FACE LOSS FAC	TOR	(187)	(K ₁)] =	
ğ	(15)	by	WID IN OF DUCT			FLUX PLATE THICKN	ESS	(78)	(tp)	Į	
¥	(16)	Kı	STACKING FACTOR (STATOR)	<u> </u>		FLUX PLATE DIAMET	ER	(78)	(dfp)		
•	(19)	k	WATTS/LB.	<u> </u>		SHAFT O.D.(FLUX CAR	RYING PORT.)	(78)			
	(20)	В	CENSITY			SHAFT LENGTH(FLUX	CARRYING PORT)	(78)	(PSH)	Là_	
	(21)		TYPE OF SLOT			PERM OF LEAKAGE P	ATH 1	(80)	P1]	
	(22)	bo	SLOT OPENING			PERM OF LEAKAGE P	ATH 2	(81)	P ₂	ŭ	
İ	(22)	bl	SLOT WIDTH TOF			PERM OF LEAKAGE P	ATH 3	(82)	P ₃	13	
	(22)	b 2		ļ		PERM OF LEAKAGE P	ATH 4	(83)	P4	12	
	(22)	<u> 13</u>				PERM OF LEAKAGE P.	ATH 5	(84)	P ₅	12	
5	(22)	b,	SLOT WIDTH			PERM OF LEAKAG. P	ATH 7	(86)	77	Ļ	
g	(22)	h _o				OUTSIDE DIAMETER O	FFLD COIL	(78)		1	
,	(22)	hj				LENGTH OF FIELD CO	NL	(76)	X.c	1	
Đ	(22)	h2				NO. OF FIELD TURNS/COIL		(146)		_	
	(22)	h3				MEAN LENGTH OF FL	D. TURN	(147)	<u> </u>	2	
	(22)	hg	SLOT DEPTH	 _		FLD. COND. DIA. OR		(139)	 -	∤ ≝	
	(22)	h ₄			ļ	FLD. COND. THICKNE	55	(199)		1	
	(22)	h w		\ - 		FLD. TEMP IN °C			X/°C	4	
	(23)	9	NO. OF SLOTS			RESISTIVITY OF FIEL	D COND • 20°	(151)	<i>y</i> ² ,	—	
·	(28)	<u> </u>	TYPE OF WDG.			HO LOAD SAT.		(87)		4	
	(29)	<u></u>	TYPE OF COIL			FRICTION & WINDAGE	· · · · · · · · · · · · · · · · · · ·		(FAW)	Ļ.,	
	(30)	n s	CONDUCTORS/SLOT			SPECIAL PERMEANCE		644	12	 	
	(31)	y	SLOTS SPANNED			STATOR LAM MATER	AL	(18)	Ļ.	ERIAL	
	(32)	e	PARALLEL CIRCUITS			POLE MATERIAL		(18)	<u> </u>		
í	(33)	<u> </u>	STRAND DIA, OR WIDTH		L	SHAFT MATERIAL		(10)] }	
1	(34)	Nat	STRANDS/CONDUCTOR IN DEPTH						L	1	
9	(340)	N'st	STRANDS/CONDUCTOR		ļ	·					
	(39)		STATOR STRAND T'KHS.		ł						
	(35)	46	DIA. OF PIN		ļ					Į	ı
ì	(36)	X =2	COIL EXT. STR. PORT		i						i I
	(37)	hat	UNINS. STRD. HT.	<u> </u>	ST/	ATOR SLOT		LE			
	(38)	h" st	DIST. BTWN. CL OF STD.		DAI	MPER SLOT	R EM	ARKS			ı
	(420)		PHASE BELT ANGLE		į.					Į	ı
	(40)	7 st	STATOR SLOT SKEW	1	Į	,					ı
	(50)		STATOR TEMP *C	1	Į					Į	ı
	(51)	9.	RES'TYY STA. COND. # 20°C								
	(59)		MAIN GAP				1				

ROTATING COIL LUNDELL

SUMMARY OF DESIGN CALCULATIONS _ _ _ _ _ (OUTPUT)

	MODEL	. NO		EWO			_ DESI	GN NO						
	(17) (, ,)	SOLID CORE LENGTH				-				CARTER COEFF	ICIENT	(67)	(K _s)	
	(24) (hg)	DEPTH BELOW SLOT								EFFECTIVE AIR	GAP	(69)	(g .)	1
	(26) (70)	SLOT PITCH								FUND/MAX OF	LD FLUX	(71)	(C1)	Т
	(27) (761/3)	SLOT PITCH 1/3 DIST.	UP							WINDING CONST		(72)	(Cw)	7≥
	(42) (Ksk)	SKEW FACTOR								POLE CONST.		(73)	(C _p)	×
	(43) (Kd)	DIST. FACTOR								END. EXT. ONE	TURN	(48)	(LE)	ON ST
	(44) (K p.)	PITCH FACTOR				-				DEMAGNETIZIN	G FACTOR	(74)	(C M)	ð
	(45) (m e)	EFF. CONDUCTORS								CROSS MAGNETI			(C g)	–
*	(46) (e e)	COND. AREA								AMP COND/IN		(128)		_
-	(47) (5 .)	CURRENT CENSITY (ST	(A.)							REACTANCE FA	CTOR	(129)	(X)	1
, s	(49) (()	1/2 MEAK TURN LENG	TH							LEAKAGE REAC	TANCE	(130)	(Xg)	
	(\$3) (R _{ph})	COLD SEA. RES. # 29º	С							REACTANCES O	f ((131)	(X _{od})	7
	(54) (R _{ph})	HOT STA. RES X °C								ARMATURE REA	CTION [(132)	(Xaq)	
	(55) (EFton)	EDDY FACTOR TOP								SYN REACT DIR	ECT AXIS		(X _d)	Z Z
		EDDY FACTOR BOT					<u> </u>			SYN REACT QUA	D AXIS		(X _q)	CTANCE
	(62) (A ()	STATOR COND. PERM.					<u> </u>			FIELD LEAKAGE	E REACT		(X'()	EAC
	(64) (Aa)	END PERM.								FIELD SELF INC	UCTANCE		(L;)	72
	(65) (-)	WT. OF STA COPPER					<u> </u>			LISAT. TRANS.			(X,qn)	7
	(66) (-)	WT. OF STA. IRON			~		 			SAT. TRANS. RE	ACT		(Y'4)	1
	(41) (Tp)	POLE PITCH								NEG SEQUENCE	REACT	(170)	(X ₂)	7
	(157) (-)	WT. OF ROTOR IRON								ZERO SEQUENC	E REACT		(X ₀)	_
	(145) (Y,)	PERIPHERAL SPEED								OPEN CIR. TIME	CONST.		(PPL)	
	(153) (a cf)	FLD COND. AREA								ARK TIME CONS	т.		(T _a)	u.t
9	(154) (R _f)	COLD FLD RES. # 20°	c				1			TRANS. TOME C	ONST.	(178)	(L,L)	_
<u> </u>	(155) (R _f)	HOT FLD RES. XOC								SUB TRAN TIME	CONST.	(179)	(T"d)	٦,
	(154) (-)	WT. OF FLD COPPER								TOTAL FLUX		_	(ϕ_{τ})	_
	(PO) (P1)	PERM OF LEAKAGE P	ATH 1							FLUX PER POLI		(92)	(ϕ_{p})	
ű	(81) (P2)	PERM OF LEAKAGE PA	ATH 2							GAP DENSITY (N	AIN)	(95)	(Bg)	_ ₹
E	(82) (P3)	P3) PERM OF LEAKAGE PATH 3								TOOTH DENSITY		(91)	(B ₇)	ETIZATION
4	(83) (P4)	PERM OF LEAKAGE PATH 4								CORE DENSITY		(94)	(B _c)	T12
F.	(84) (P5) PERM OF LEAKAGE PATH 5									TOOTH AMPERE	TURNS	(97)	(F ₁)	- ¥
	(85) (P7)	PERM OF LEAKAGE P	TH 7				<u> </u>			CORE AMPERE	TURNS	(98)	(F _c)	MAGN
		SHORT CIR NI					<u> </u>			GAP AMPERE TO	IRNS (MAIN)	(96)	(F _q)	վ*
	(181) (5 CK)	SHORT AIR RATIO										Ц		
	PERCE	MT LOAD	0					100	_	150	200		OPT	AMOI
ψ	(1000) LEA	KAGF FLUX		(ϕ_{qq}	(197a)								
6/4	T) (102a) TOT	AL FLUX/POLE		(PPH)	(213a)								
(30) (103e) POL				B _{pl})									
	(B) (113) SHAFT DENSITY				B _{shi})									
	(F _{ni}) (127) TOTAL NI				,	(236)								
	(Igg) (1274) FIELD AMPERES				len)									
(5) (127e) CUR. DEN. FLD.				SFJ										
نسنهه	(Efni) (1276) PIELD VOLTS				Eff)									
	(Wg.) (188) STA CORE LOSS				W _c)									
	(West) (184) STA TOOTH LOES				W _{eff})				+-					
	(PR.) (IN) STATOR CU LOSS				12 R.)				-					
	(-) (1%) EDDY LOSS				-)									
(Mant) (184) POLE FACE LOSS (12 Rt) (182) FIELD COLL LOSS					MPH)				-					
(12 1	7) (163) LIE	LD COIL LOSS			12 R _{fl})				-				•	
_	W) (183) F&V				FEW)				+-			∤		
_) (194) TOT				-)				-					
(_) (-) PERCENT EFF. (-						(251)			_1_			L		

ROTATING COIL LUNDELL NO LOAD SATURATION OUTPUT SHEET

ITEMS	(3) (E) VOLTS	(91) B ₁ STA. TOOTH DENSITY (1020) \$\psi\$ pt	(97) F ₁ STATOR TOOTH N. I. (103a) B _p	(94) B c STA. CORE DENSITY (104a) Fp	(98) F _c STA. CORE N.I. (113) B _{sh}	(96) F _g GAP N.I. (127) F _n I
VOLTS	(100a) ⊅g LEAKAGE FLUX	TOTAL FLUX/POLE	POLE DENSITY	POLE H.I.	SHAFT DENSITY	TOTAL N.I.
80%						
90%						
100%						
117%						
120%						
130%						
140%						
150%						
160%						

(d) Open Stots

(b) Constant Slot Width

INSIDE-COIL ROTATING-COIL LUNDELL GENERATOR

<u> </u>	ì	
(i)		DESIGN NUMBER
(2)	KVA	GENERATOR KVA
(3)	E	LINE VOLTS
(4)	EPH	PHASE VOLTS
(5)	m	PHASES
(5a)	f ·	FREQUENCY
(6)	P	POLES
(7)	RPM	SPEED
(8)	$I_{ m PH}$	PHASE CURRENT
(9)	P. F.	POWER FACTOR
(9a)	К _с	ADJUSTMENT FACTOR
(10)	·. 	LOAD POINTS
(11)	d	STATOR PUNCHING I.D.
(11a)	$\mathtt{d}_{\mathbf{r}}$	ROTOR O.D.
(12)	D	PUNCHING O.D.
(13)	L	GROSS STATOR CORE LENGTH
(14)	$n_{\mathbf{V}}$	RADIAL DUCTS
(15)	$b_{\mathbf{v}}$	RADIAL DUCT WIDTH
(16)	K _i	STACKING FACTOR
(17)	$\mathcal{L}_{\mathtt{s}}$	SOLID CORE LENGTH

(18)

MATERIAL - This input is used in selecting the proper magnetization curves for stator,

yoke, pole, and shaft; when different materials are used. Separate spaces are provided on the input sheet for each section mentioned above. Where curves are available on card decks, used the proper identifying code. Where card decks are not available submit data in the following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in this manual on Curves F-15 & 16. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

ŀ	(19)	k	WATTS IB
; 	(20)	В	DENSE/Y
}	(21)		TYPE OF STATOR SLOT
ŧ	(22)		ALL SLOT DIMENSIONS
}	(23)	Q	STATOR SLOTS
	(24)	h _c	DEPTH BELOW SLOTS
	(25)	q	SLOTS PER POLE PER PHASE
	(26)	Ts	STATOR SLOT PITCH
1	(27)	7s1/3	STATOR SLOT PITCH
1	(28)		TYPE OF WINDING
-	(2 9)		TYPE OF COIL
	(30)	n_S	CONDUCTORS PER SLOT
	(31)	Y	THROW
	(31a)		PER UNIT OF POLE PITCH SPANNED
į	(32)	С	PARALLEL PATHS
	(33)		STRAND DIA. OR WIDTH
	(34)	N_{ST}	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH
	(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR
	(35)	$d_{\mathbf{b}}$	DIAMETER OF BENDER PIN
	(36)	$\ell_{\rm e2}$	COIL EXTENSION BEYOND CORE
	(37)	h _{ST}	HEIGHT OF UNINSULATED STRAND
	(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH

i .	i ı	
(39)		STATOR COIL STRAND THICKNESS
(41):	Tsk	SKEW
(41)	Tp	POLE PITCH
(42)	K _{SK}	SKEW FACTOR
(42a)		PHASE BELT ANGLE
(43)	K _d	DISTRIBUTION FACTOR
(44)	К _р	PITCH FACTOR
(45)	n _e	TOTAL EFFECTIVE CONFJCTORS
(46)	a _c	CONDUCTOR TREA OF STATOR WINDING
(47)	s_S	CURRENT FINSITY
(48)	$\mathtt{L}_{\mathbf{E}}$	END EXTE ION LENGTH
(49)	$\ell_{\rm t}$	1/2 MEAN TURN
(50)	X _s O C	STATOR TEMP OC
(51)	$arphi_{ m s}$	RESISTIVITY OF STATOR WINDING
(52)	S _(hot)	RESISTIVITY OF STATOR WINDING
(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE
(55)	EF (top)	EDDY FACTOR TOP
(56)	EF (bot)	EDDY FACTOR BOTTOM

 (57a) b₁ 1/3 STATOR TOOTH WIDTH (58) b_t TOOTH WIDTH AT STATOR I.D. IN INCHES (59) g MAIN AIR GAP IN INCHES (60) C_X REDUCTION FACTOR (61) K_X FACTOR TO ACCOUNT FOR DIFFERENCE in phase current in coal sides in same slot. (62) λ_i CONDUCTOR PERMEANCE
(60) CX REDUCTION FACTOR (61) KX FACTOR TO ACCOUNT FOR DIFFERENCE in phase current in coal sides in same slot.
(60) CX REDUCTION FACTOR (61) KX FACTOR TO ACCOUNT FOR DIFFERENCE in phase current in coal sides in same slot.
(61) K _X FACTOR TO ACCOUNT FOR DIFFERENCE in phase current in coal sides in same slot.
in coal sides in same slot.
(62) λ_i CONDUCTOR PERMEANCE
(63) K _E LEAKAGE REACTIVE FACTOR
(64) $\lambda_{\rm E}$ END WINDING PERMEANCE
(64a) Z SPECIAL LEAKAGE PERMEANCE - For machines having a
section of the pole that is approximately a full pole
pitch wide, an additional leakage permeance must
be added to the slot and end-turn leakage permeances.
This permeance is that of the leakage path from one
pole into a tooth top and from tooth top back into the
adjacent pole. The leakage is similar to Zig Zag
leakage and by increasing the stator leakage re-
actance, can reduce the output of the generator
significantly. This same leakage can be used to

purposely limit the output of the generator and make it current limited. The presence of this additional leakage can be good or bad depending upon what is wanted from the generator. The important thing is for the designer to be aware that it is there.

$$\lambda_{\mathbf{z}} = (C_{\mathbf{X}}) \frac{20}{(m)(q)} \frac{\text{area of pole over tooth when tooth is encent cline}}{2 \mathcal{L} \cdot s_{e}}$$

$$\sum_{\mathbf{z}} = (\mathbf{C_X}) \frac{20}{(\mathbf{m})(\mathbf{q})} \xrightarrow{\mathbf{b_t} (\mathcal{T}_{\mathbf{p}} - \mathbf{b_{pj}})} \frac{(\ell+2 t_{\mathbf{EP}})}{2 \ell \cdot \mathbf{ge}} \frac{(\mathcal{T}_{\mathbf{p}} - \mathbf{b_{pj}})}{\mathcal{T}_{\mathbf{p}}}$$

This calculation is not programmed and the value λ_z must be given as an input on the input sheet. If the pole embrace at the base of the pole is appreciably less than one, the input for λ_z is zero. If the pole embrace is near unity, the designer may be forced to estimate the value λ_z instead of using the calculation given above.

(65)	~~	WEIGHT OF COPPER
(66)		WEIGHT OF STATOR IRON
(67)	Ks	CARTER COEFFICIENT
(68)		MAIN AIR GAP AREA
(69)	$g_{\mathbf{e}}$	EFFECTIVE AIR GAP
(70c)	入a	AIR GAP PERMEANCE
(71)	c_1	THE RATIO OF MAXIMUM FUNDAMENTAL of the field form
		to the actual maximum of the field form

(72)	Cw	WINLING CONSTANT
(73)	CP	POLE CONSTANT
(74)	C _M	DEMAGNETIZING FACTOR
(75)	Cq	CROSS MAGNETIZING FACTOR
(76)		POLE DIMENSIONS -
		b_{p2} = width of pole at edge of stator stack b_{p1} = width of pole at end t_{p2} = thickness of pole at edge of stator stack t_{p1} = thickness of pole at end ℓ_{co} = length of coil ℓ_{p} = length of pole
		bp, STATOR STACK
		tp2

į

J

POLE EMBRACE -

$$= \frac{(b_{p1}) + (b_{p2})}{2 \gamma_p} = \frac{(76) + (76)}{2(41)}$$

(77a)

Items immediately following deal with the calculation of rotor and stator leakage permeances.

Illustrations are included to help identify the permeance areas and to locate the flux leakage paths. The computer program will handle the calculation of permeances P_1 , P_2 , P_3 and P_4 either of two ways:

- 1. P_1 through P_4 can be calculated by the computer. For this case, insert 0.0 on the input sheet for P_1 through P_4 .
- 2. P_1 through P_4 can be calculated by the designer. For this case, insert the actual calculated value on the input sheet for P_1 through P_4 .

Permeance P_5 and P_7 must be calculated by the designer and the calculated value must be inserted on the input sheet. The computer will not calculate these two permeance values because of the various possible field coil locations.

P₁ POLE HEAD LEAKAGE

$$r_2 = \frac{d_r - d_{fp}}{2}$$

$$r_1 = r_2 + t_{p1}$$

$$P_1 = 2\frac{(3.19) b_{01}}{\pi} k_n \frac{r_1}{r_2}$$

Fig. J-4

(80a)
$$r_2$$
 $r_2 = \frac{(d_r) - (d_{\overline{q}p})}{2} = \frac{(11a) - (78)}{2}$

(80b) r_1 $r_1 = (r_2) + (t_{p1}) = (80a) + (76)$

(81) P_2 POLE HEAD SIDE LEAKAGE - This input can be either 0.0 or the actual value if available. Refer to Item (77a) for explanation. See Figure J-5 for location.

$$P_2 = \frac{3.19}{4} \frac{(f_p) \frac{(t_{p2}) + (t_{p1})}{2}}{4} = \frac{3.19 \frac{(76) \frac{(76) + (76)}{2}}{4}}{(81a)}$$

(81a) f_2 LENGTH OF PERMEANCE PATH 2

$$f_2 = \gamma_p - \frac{(b_{p1}) + (b_{p2})}{2} = (41) - \frac{(76) + (76)}{2}$$

(82) f_3 OLE BODY END LEAKAGE - This input can be either 0.0 or the actual value if available. Refer to Item (77a) for explanation. See Figure J-6 for location.

$$P_3 = \frac{6.28 \frac{3(b_{p1}) + (b_{p2})}{4}}{77} f_1 \frac{(r_3)}{(r_4)} = \frac{6.28 \frac{3(76) + (76)}{4}}{77} f_1 \frac{(82a)}{(82b)}$$

(82a) -- f_3 f_4 f_5 f_6 f_7 f_7 f_8 f_7 f_8

P2 POLE HEAD SIDE LEAKAGE

Fig. J-5

Fig. J-6

	ļ	
(83)	P ₄	POLE BODY SIDE LEAKAGE - This input can be either 0.0
		or the actual value if available. Refer to Item (77a)
		for explanation. See Figure J-7, J-8 for location.
		When (6) > 4
		$P_4 = \frac{3.19(l_p)}{77} l_n \left[1 + \frac{(b_{pl}) + (b_{p2})}{2 (Z)} \right]$
		$= \frac{3.19(76)}{77} $
		Where $(\mathbf{Z}) = \gamma_p - \left[\frac{(b_{pl}) + (b_{p2})}{2}\right] = (41) - \left[\frac{(76) + (76)}{2}\right]$
		When (6) < 4
		$P_4 = \frac{3.19(p)}{\pi} \frac{3}{2} p_n \left[1 + \frac{(b_{pl}) + (b_{p2})}{2(\Xi)} \right]$
		$= \frac{3.19(76)}{\pi} \frac{3}{2} \ln \left[1 + \frac{(76) + (76)}{2(83)} \right]$
		•
4		
(84)	P ₅	FIELD COIL LEAKAGE PERMEANCE, ROTOR - This input
		can be either 0.0 or the actual value if available.
		Refer to Item (77a) for explanation. See Figure J-9 for location.
		2-2 2-3-3-3-3-1-1
		J-13

P4 IN A FOUR-POLE MACHINE

Fig. J=7

Fig. J-8

Fig. J-9

$$P_{5} = \frac{3.19 \, \pi}{\sqrt{(c_{0})}} \left[\frac{(d_{00})^{2}}{4} - \frac{(d_{s})^{2}}{4} \right] \frac{2}{3}$$
$$= \frac{3.19 \, \pi}{(76)} \left[\frac{(78)^{2}}{4} - \frac{(78)^{2}}{4} \right] \frac{2}{3}$$

(86) P

STATOR TO COIL YOKE LEAKAGE - This input can be eithe 0.0 or the actual value if available. Refer to Item (77a) for expanation. See Figure J-10 for location.

$$F_7 = \frac{2.5(D + d_{fp})(D-d)}{D-d_{fp}}$$
$$= \frac{2.5 [(12) + (78)] [(12)-(11)]}{(12)-(78)}$$

(87)

Equations immediately following, deal with the saturation at no-load. When no-load saturation data is desired for different voltages, insert 1. on the input sheet for "no-load saturation". The computer will then calculate no-load saturation points at 80, 90, 100, 110, 120, 130, 140, 150, and 70% of rated volts. If only the saturation data at 100% load is needed, insert 0. on the input sheet.

(88)	Øı	TOTAL FLUX in Kilolines
(91)	3 _t	TCOTH DENSITY in Kilolines/in2
(92)	ØP	FLUX PER POLE in Kilolines
(94)	B_c	CORE DENSITY in Kilolines/in ²
(95)	$\mathbf{E}_{\mathfrak{F}}$	GAP DENSITY in Kilolines/in ²
(96)	$\mathbf{f}_{\mathbf{g}}$	AIR GAP AMPERE TURNS
(97)	FŢ	STATOR TOOTH AMPERE TURNS
(98)	$\mathbf{F_c}$	STATOR CORE AMPERE TURNS
(98a)	$\mathbf{r_s}$	STATOR AMPERE TURNS, total
(99)	Ø ₇	LEAKAGE FLUX FROM THE STATOR TO THE FLUX PLATE
		AT THE END OF THE ROTOR - The same flux leaks from
		the rotor to the stator on one side & leaks out from
		the stator to the rotor on the other side. This flux
		does not pass through the air gap but does pass
		through the rotor shaft and flux plates.
		$Q_7 = (P_7)[(F_P) + (F_g) + (F_T) + (F_c)] \times 10^{-3}$
		$= (86) (104a) + (96) + (97) + (98) \times 10^{-3}$

(100a) LEAKAGE FLUX - at no load $\phi_{\ell} = (P_e) \left[2(F_g) + 2F_T + F_c \right] \times 10^{-3}$ = $(160a) \left[2(96) + 2(97) + (98) \right] \times 10^{-3}$ (102a)TOTAL FLUX PER POLE - at no load **Ø**PT (103a)Bo POLE DENSITY - The apparent flux density at the base of the pole. $B_{\mathbf{p}} = \frac{(\phi_{\mathbf{p_T}})}{(a_{\mathbf{p_l}})} = \frac{(102a)}{(79)}$ (104a) $\mathbf{F}_{\mathbf{D}}$ POLE AMPERE TURNS - at no load. The ampere turns per pole required to force the flux through the pole and flux plate at no load rated voltage. In general the flux plate density is kept fairly low and its ampere turns can be neglected. The no load pole ampere turns per pole are calculated as the product of (\mathcal{L}_p) times the NI per inch at the density (Bp). Use magnetization curve submitted per Item (18) for rotor. $F_p = (l_p) \left[NI/in @ density (B_p) \right]$ = (76) Look up on rotor magnetization curve given in (18) @ density (103a)

(111)	Ø _{SH}	FLUX IN SHAFT AND END PLATES - at no load.
		$= (102a) \frac{(6)}{2} + (99) + (118)$
		NOTE: No provision is made for calculating the
		density in the end flux plates. Make the
		plates thick enough that the periphery of the
		pole at its base times the thickness of the
		plate is equal to the cross-sectional area
		of the pole at its junction with the plate.
(113)	B _{SH}	FLUX DENSITY OF SHAFT - at no load.
		$B_{SH} = \frac{(Q_{SH})}{(a_S)} = \frac{(111)}{(113)}$
		Where $a_s = \frac{7r(d_s)^2}{4} = \frac{7r(78)^2}{4}$
(114)	FSH	AMPERE TURNS DROP IN SHAFT AT BS
		FSH = SH NI/in @ density (BSH)
		= (78) Look up on shaft magnetization curve given in (18) at density (113)
(118)	Ø ₅	LEAKAGE FLUX ACROSS COIL AT NO LOAD (Kilolines)
		LEAKAGE FLUX ACROSS COIL AT NO LOAD (Kilolines) $ \varphi_5 = P_5 \left[2(F_g) + 2(F_T) + (F_c) + 2(F_p) \right] \times 10^{-3} $
		$= (84) \left[2(96) + 2(97) + (98) + 2(104a) \right] \times 10^{-3}$

(127)	F _{NL}	TOTAL AMPERE TURNS - at no load. The total ampere turns
		per pole required to produce rated voltage at no load.
		$F_{NL} = 2(F_g) + 2(F_S) + 2(F_P) + (F_{SH}) = (96) + (98a) + (104a) + (114a)$
(127a)	I _{FNL}	NO LOAD FIELD CURRENT
		$I_{FNL} = \frac{F_{NL}}{N_F} = \frac{(127)}{(146)}$
(127b)	EFNL	NO LOAD FIELD VOLTS PER COIL
		$E_{FNL} = (I_{FNL}) (R_{F(cold)})$
		= (127a)(154)
(127c)	S _F	CURRENT DENSITY IN FIELD CONDUCTOR - At no load
(128)	A	AMPERE CONDUCTORS per inch
(129)	х	REACTANCE FACTOR
(130)	x/	LEAKAGE REACTANCE of the stator

$$X_{f} = (X) \left[(\lambda_i) + (\lambda_e) + (\lambda_z) \right]$$

= (129) \[(62) + (64) + (64a) \]

 $\lambda_{\rm z}$ is explained under item (64a) and should be zero in most designs.

1		. !	<i>t</i> .
	(131)	^X ad	REACTANCE - direct axis
	(132)	X _{aq}	REACTANCE - quadrature axis
	(133)	\mathbf{x}_{d}	SYNCHRONOUS REACTANCE
	(134)	$\mathbf{x_q}$	SYNCHRONOUS REACTANCE - quadrature axis
	(145)	$\mathbf{v_r}$	PERIPHERAL SPEED
	(146)	$N_{\mathbf{F}}$	NUMBER OF FIELD TURNS
	(147)	L tF	MEAN LENGTH OF FIELD TURN

Versennen

(148)		FIELD CONDUCTOR DIA OR WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches - Set this item = 0.
	ı	for rouna conductor.
(150)	x _f °C	FIELD TEMP IN OC RESISTIVITY of field conductor @ 20°C in micro ohm-inches.
(151)	$ ho_{ m f}$	RESISTIVITY of field conductor @ 20°C in micro ohm-inches.
(152)	ρ _f (hot)	RESISTIVITY of field conductor at XfOC
(153)	a _{cf}	CONDUCTOR AREA OF FIELD WINDING
(154)	R _f (cold)	COLD FIELD RESISTANCE @ 20°C
		$R_{f \text{ (cold)}} = (P_{f}) \frac{(N_{f}) \mathcal{I}_{tf}}{(a_{cf})} = (151) \frac{(148)(147) \times 10^{-6}}{(153)}$
(155)	R _f (hot)	HOT FIELD RESISTANCE - Calculated at XfOC (103)
		Rf (hot) = $(\int_{f \text{ hot}}) \frac{(N_f) (\int_{tf}) \times 10^{-6}}{(a_{cf})} = (152) \frac{(146)(147) \times 10^{-6}}{(153)}$
(156)		WEIGHT OF FIELD COIL in 1bs.
		#'s of copper = $.321(N_f)((t_f)(a_{cf}))$
		= .321(146) (147)(153)
		Also refer to note given in item (65).
(157)		WEIGHT OF ROTOR IRON
(160)	X _F	FIELD LEAKAGE REACTANCE

ń

i	1	1
(160a) Pe	ROTOR LEAKAGE PERMEANCE
		$P_e = P \left[P_1 + P_2 + P_3 + P_4 \right]$
		$= (6) \overline{(80) + (81) + (82) + (83)}$
	<u>.</u>	
(161)	$\mathbf{L_f}$	FIELD SELF INDUCTANCE
		$L_f = (N_f)^2 (\ell) (p) \left[(C_p) (\lambda_a) \frac{\pi}{2} + (\lambda_f) \right] \times 10^{-8}$
		$= (99)^{2}(!3) (6)(73)(70c) + (161f) \times 10^{-8}$
(161f)	λF	ROTOR LEAKAGE PERMEANCE per inch of stator stack
		$\lambda_{\mathbf{F}} = \frac{\mathbf{P_e}}{(\mathcal{L})(P)} = \frac{(160a)}{(13)(6)}$
(166)	x' du	UNSATURATED TRANSIENT REACTANCE
(167)	x' _d	SATURATED TRANSIENT REACTANCE
(168)	x" _d	SUBTRANSIENT REACTANCE in direct axis
		$X''_{d} = (X'_{d}) = (167)$
(169)	x" _q	SUBTRANSIENT REACTANCE in quadrature axis
		$X''_{q} = (X_{q}) = (134)$
(170)	X ₂	NEGATIVE SEQUENCE REACTANCE
(172)	x ₀	ZERO SEQUENCE REACTANCE
(173)	Kxo	
(175)	Bo	$\lambda_{\rm Bo} = \frac{(K_{\rm xo})^2}{(K_{\rm p})^2} \left[07(\lambda_{\rm a}) \right] = \frac{(173)}{(44)^2} \left[07(70c) \right]$

1	1	
(176)	T do	OPEN CIRCUIT TIME CONSTANT
(177)	Ta	ARMATURE TIME CONSTANT
(178)	7.' d	TRANSIENT TIME CONSTANT
(179)	T"d	SUBTRANSIENT TIME CONSTANT
(180)	FSC	SHORT CIRCUIT AMPERE TURNS = (x_d) $2(F_g)$ = (133) 2 (96)
(181)	SCR	SHORT CIRCUIT RATIO
(182)	I^2R_F	FIELD I ² R
(183)	F&W	FRICTION & WINDAGE LOSS
(184)	WTNL	STATOR TEETH LOSS
(185)	$\mathbf{w_c}$	STATOR CORE LOSS
(186)	W _{NPL}	POLE FACE LOSS
(187)	Kl	
(183)	K2	
(189)	К3	
(190)	K4	
(191)	К5	·
(192)	K ₆	

		•
(194)	_J 2 _R	STATOR I ² R - at no load.
(195)		EDDY LOSS - at no load.
(196)		TOTAL LOSSES - at no load. Sum of all 10 3ses. Total losses = (Field I ² R) + (F&W) + (Stator Teeth Loss) + (Stator Core Loss) + (Pole Face Loss) = (182) + (183) + (184) + (185) + (186)
(196a)	Øgg.	LEAKAGE FLUX PER POLE at 100% load
4	e _d	
(193a)	9	
(207)	Ø _{7L}	STATOR TO ROTOR FLUX LEAKAGE at full load.
		$(\mathbf{F_T}) \left[1 + (\cos \theta) \right] + (\mathbf{F_c}) \times 10^{-3}$
		= (86) (198)(96) + (213c) +
		(97) $\left[1 + (9)\right] + (98) \times 10^{-3}$
(213)		FLUX PER POLE at 100% load TOTAL FLUX PER POLE at 100% load
(213a)	PTL	TOTAL FLUX PER POLE at 100% load
(213b)	B_{PL}	FLUX DENSITY AT BASE OF POLE at 100% load

]		
(213c)	$\mathbf{F}_{\mathbf{PL}}$	AMPERE TURNS PER POLE at 100% load
		$F_{PL} = p$ $\left[NI/in @ density (B_{PL}) \right]$
		= (76) Look up ampere turns/inch on rotor
		magnetization curve given in (18) at
		density (213b)
(226)	Ø _{5L}	LEAKAGE FLUX ACROSS COIL AT FULL LOAD (Kilolines)
		$_{\mathrm{F_c}}$] 10 ⁻³
		$= (84) \left[2(198)(96) + 2(213c) + 2(97) \left(1 + (9) \right) + \right.$
		(98)] x 10 ⁻³
(23la)	ØSHL	$= \emptyset_{PTL} \frac{(P)}{2} + (\emptyset_{7L}) + (\emptyset_{5L}) = (213a) \frac{(6)}{2} + (207) \div (226)$
(232)	BSHL	SHAFT FLUX DENSITY at full load.
		$B_{SL} = \frac{(Q_{SHL})}{(a_S)} = \frac{(231a)}{(113)}$
(233)	FSHL	AMPERE TURN DROP IN SHAFT at full load
		FSHL = ISH NI/in on shaft magnetization curve at
		density (B _{SHL})
		= (78) Look up on shaft magnetization curve
		given in (18) at density (232)

(236)	F _{FL}	TOTAL AMPERE TURNS PER POLE at 100% load - The tot
		ampere turns per pole required to produce rated lo
		$\mathbf{F_{FL}} = 2 \left[(\mathbf{e_d})(\mathbf{F_g}) + \left[1 + (\cos \theta)(\mathbf{F_T}) + (\mathbf{F_c}) + (\mathbf{F_{PL}}) \right] + (\mathbf{F_{SHL}}) \right]$
		$= 2 \left[(198)(96) + \left[1 + (9) \right] (97) + (98) + (213c) \right] + (233)$
(237)	IFFL	FIELD CURRENT at 100% load
		$I_{FFL} = (F_{FL})/(N_F) = (236)/(146)$
(238)	EFFL	FIELD VOLTS at 100% load
(239)	$s_{ extbf{FL}}$	CURRENT DENSITY at 100% load
(241)	I ² RFL	FIELD 1 ² R at 100% load
(242)	W _{TFL}	STATOR TEETH LOSS at 100% load
(243)	W _{PFI}	POLE FACE LOSS at 100% load
(245)	I ² R _L	STATOR I ² R at 100% load
(246)		EDDY LOSS
(247)		TOTAL LOSSES at 100% load - sum of all losses at 100% lo
		Total Losses = (Field I ² R) + (F&W) + (Stator Teeth Loss)
		+ (Stator Core Loss) + (Pole Face Loss)
		+ (Stator I ² R) + (Eddy Loss)
		= (241) + (183) + (242) + (185) + (243) + (245) + (246)
(248)	:	RATING IN KILOWATTS at 100% load

(249)	 RATING AND LOSSES
(250)	 % LOSSES
(251)	 % EFFICIENCY
	These items can be recalculated for any load condition
	by simply inserting the values that correspond to the $\%$
	load being calculated.
	Values for F&W (183) and W _C (Stator Core Loss) (185)
	do not change with load.

The state of the s

INPUT AUXILIARY DATA SHEET

Auxiliary information taken from the design manuals to be used in conjunction with input sheets for convenience.

- A. All dimensions for lengths, widths, and diameters are to be given in inches.
- B. Resistivity inputs, Items (141) and (151) are to be given in micro-ohm-inches.

The following items along with an explanation of each are tabulated here for convenience. For complete explanation of each item number, refer to design manuals.

Rem No.	Explanation
(9)	Power factor to be given in per unit. For example for 90% P.F., insert .90.
(0-)	Adjustment Factor - For P.F. < .95 insert 1.0
(9 a)	For P.F. > .95 insert 1.05
(16)	Optional Load Point Where load data output is required at a point other than those given
	as standard on the input sheet. Example: For load data output at 155% load, insert 1.55.
(14)	Number of radial ducts in stator.
(15)	Width of radial ducts used in Rem (14).
(18)	Magnetization curve of material used to be submitted as defined in Rem (18).
(19)	Watts/Lb. to be taken from a core loss curve at the density given in Rem (20) (Stator).
(20)	Density in kilolines/in-2. This value must correspond to density used to pick item (19)
	usually use 77.4 $\mathrm{K}_{\mathrm{L}}/\mathrm{tn}^2$.
(21)	Type of slot - For open slot Type A, insert 1.0.
	For partially open slot Type B with constant slot width, insert 2.0 .
	For partially open slot Type C with constant tooth width, insert 3.0.
	For round slot Type D, insert 4.0.
	For additional information, refer to figure adjacent to input sheet which
	shows a ricture of each slot.

(22) For stator slot dimension - for dimensions that do not apply to the slot insert <u>0.0.</u>

Use Table below as guide for input,

			Slot Ty	/ре	
Symbol	Rem	_1_	2_	_3_	4
b _o	(22)	0.0	*	*	~
b1		0.0	0.0	*	`,
b2		0.0	0.0	*	0.
bg		0.0	0.0	*	0. v
b _B	1	•	*	p	*
h _o		0.0	*	*	*
h <u>1</u>		•	•	•	0.0
h ₂		*	0.0	0.0	0.0
hs		•	•	0.0	0.0
h _B		*	•	*	•
hţ		0.0	•	*	0.0
h _W	†	0.0	•	•	0.0

[·] meert actual value.

Item No.	Explanation					
(28)	Type of winding - for wye connected winding insert 1.0.					
	for delta connected winding insert 0.0.					
(29)	Type of coil - for formed wound (rect. wire), insert 1.0.					
	for random wound (round wire) insert 0.0.					
(30)	Slots spanned - Example - for slot span of 1-10, insert 9.0.					
(33)	For round wire insert diameter. For rectangular wire insert wire width.					
(34)	trands per conductor in depth only.					
(34a)	Total strands per conductor in depth and width.					
(35)	Diameter of coil head forming pin. Insert .25 for stator O.D. < 8 inches;					
	Insert .50 for stator O.D. >8 in.					
(37)	Use vertical height of strand for round wire, insert 0.0.					
(38)	Distance between centerline of strands in depth. Insulation					
(39)	Stator strand thickness use narrowest dimension of the two dimensions given for a					
	rectargular wire. For round wire insert 0.0 .					
(40)	Stator slot skew in inches.					
(42a)	Phase belt angle - for 60° phase belt, insert 60°.					
	for 120° phase belt, insert 120°.					
(48)	See explanation of items (71), (72), (73), (74) and (75). Same applies here.					
(87)	When no load saturation output data is required at various voltages, insert 1.0 .					
	When no load saturation information is not required, insert 0.0.					
(137)	Damper bar thickness use damper bar slot height for rectangular bar. For round					
	bar insert 0.0.					
(138)	Number of damper bars per pole.					
(146)	Damper bar pitch in inches.					
(148)	For round wire insert diameter. For rectangular wire insert wire width.					
(149)	For rectangular wire insert wire thickness. For round wire insert 0.0.					
(187)	Pole face loss factor. For rotor lamination thickness .028 in. or less, insert 1.17.					
	For rotor lamination thickness .029 in. to .063 in. insert 1.75.					
	For rotor lamination thickness .084 in, to .125 insert 3.5.					
	For solid rotor insert 7.0.					
(71)	W the values of these constants are available, insert the actual number. If they are					
(72)	not available, insert 0.0 and the computer will calculate the values and record them on					
(73)	the cutput.					
(74)						

Pin

INSIDE-COIL, STATIONARY-COIL LUNDELL GENERATOR

COMPUTER DESIGN - - - - - (INPUT)

	ODEL		EWO	DESIGN NO (1)			نسخ الكالا		
	(2)	FVA	GENERATOR KVA		RATIO MAX TO M	IN OF FUND	(71)	Cl	1	
	(3)	E	LINE VOLTS		WINDING CONSTA	NT	(72)	Cw_	٦٧	
	(4)	[ph	PHASE VOLTS		POLE CONSTANT	•	(73)	Cp	E	
~	(5)	m	PHASES		END EXTENSION	ONE TURN	(48)	LE	ONSTANT	
(ERS	(5a)	f	TREQUENCY		DEMAGNETIZATI	ON FACTOR	(74)	Cm	7ž	
Ē	(6)	l _p	POLES		CROSS MAGNETI	ZING FACTOR	(75)	ļ_,	7ŏ	
PARAMET	(7)	RPM	RPM		POLE EMBRACE		(77)	o _c	1	
¥.	(8)	lph	PHASE CURRENT		WIDTH OF POLE	(NARROW END)	(76)	b p1	+	
	(9)	PF	POWER FACTOR		WIDTH OF POLE	·	(76)	bp2	┪~	
	(90)	Kc	ADJ. FACTOR		POLE THICKNES		(76)	1 P1	OTOR	
	(10)	 	OPTIONAL LOAD POINT		POLE THICKNES		(76)	1 P2	4 ₽	
	(11)	a	STATOR I.D.		<u> </u>		(76)	l.	- 6	
u	(12)	D	STATOR O.D.		POLE LENGTH	D	(11a)	d _r	42	
ACK	(13)	-	GROSS CORE LENGTH				(157)	(-)	٩.	
ST	(14)	 	NO. OF DUCTS		POLE FACE LOS		(187)	K _I	┨	
80		n v							 	
ATOR	(15)	b _y	WIDTH OF DUCT		SHAFT O.D.(FLUX		(78) (78)	 2	붌	
S	(16)	K	STACKING FACTOR(STATOR)		PERM OF LEAKA		(80)	PI	 '	
	(20)	В	DENSITY		PERM OF LEAKA		(91)	P ₂	1	
	(21)		TYPE OF SLOT		PERM OF LEAKA	A	(82)	P3	1	
	(22)	ь。	SLOT OPENING		PERM OF LEAKA	GE PA H 4	(83)	P4	12	
	(22)	b 1	SLOT WIDTH TOP		TERM OF LEAKA	GE PATH 5	(84)	PS	ĮŽ	
	(22)	b2			PERM OF LEAKA		(86)	P7	E R	
- -	(22)	ь3			LENGTH OF PER	M PATH 1	(80a)	21	٦	
101	(22)	b.	SLOT WIDTH		LENGTH OF PER	M PATH 2	(81a)			
<u>uz</u>	(22)	١,			LENGTH OF PER	M PATH 3	(82a)	L 3]	
STATOR	(22)	hţ			OUTSIDE DIA. OF	FIELD COIL	(78)	dco	1	
ST.	(22)	h 2			LENGTH OF FIEL		(76)	l co	Į	
	(22)	h3			NO. OF FIELD TU		(146)	NF 7	ļ.,	
	(22)	h.	SLOT DEPTH		MEAN LENGTH OF		(147)	XII	12	
	(22)	ht			FLD. COND. DIA.		(148)	 	ĮŒ	
	(22)	l hour						V-0.5		
	(23)	Q	NO. OF SLOTS		FLD. TEMP IN OC		(150)	X40C	┨	
	(28)	 			RESISTIVITY OF	FED. COND # 20°	(151) (87)	/	-	
	(30)	 	TYPE OF COIL COMDUCTORS/SLOT		FRICTION & WINI	AGE	(183)	(F&W)	┥	
	(31)	n.	SLOTS SPANNED		SPECIAL PERMEA	بعداد المرازي والمستجوب	644	AZ	+	
	(32)	[c	PARALLEL CIRCUITS		STATOR LAW MAT		(10)			
U	(33)	1	STRAND DIA. OR WIDTH		POLE MATERIAL		(18)		Σ Σ	
Ž,	(34)	N at	STRANDS/CONDUCTOR IN DEPTH		SHAFT MATERIAL		(18)		ž	
STATOR WIND	(34a)	N'st	STRANDS/CONDUCTOR							
Ğ.	(39)	<u> </u>	STATOR STRAND T'KHS.							
1	(35)	ф	DIA. OF PIN						1	
STA	(36)	1 .2	COIL EXT. STR. PORT UNINS, STRD, HT.						1	
	(38)	h _{at}	DIST. BTWN. CL OF STD.	 	1		_		1	
	(42e)	 " ^!	PHASE BELT ANGLE		OR SLOT	POL			ł	
	(40)	Tak	STATOR SLOT SKEW	DAMP	ER SLOT	REMA	RK5		1	
	(50)	X • C	STATOR TEMP *C	 †		1				
		p.	RES'TYYSTA, COND 200 C						İ	
	(51)	4	AXIAL LENGTH OF GAP (g3)							
		I as	IAAIAL LENGIN OF VAF (E+)	I .						
	(51) (78) (78)	del	DIAMETER AT GAP (g3)		,				j	
	(78)				, `	li .				
G A P	(78) (78)	4.3	DIAMETER AT GAP (g3)							

(Type 5 is an open slot with 1 conductor per slot)

(d) Open Slots

(b) Constant Slot Width

TYPE 2

INSIDE-COIL, STATIONARY-COIL LUNDELL GENERATOR SUMMARY OF DESIGN CALCULATIONS - - - - - (OUTPIJT)

	MODEL	NO		_ EWO		DESIGN NO.		~				
	(17) (()	SOLID CORE LENG	TH					CARTER COEF	FICIENT	(67)	(X.)	
	(24) hg)	DEPTH BELOW SL	OT					EFFECTIVE ALL	RGAP	(69)	(ge)	1
	(26) (T _s)	SLOT PITCH						FUND/MAX OF	FLD. FLUX	(71)	(C1)	
	(27) (T 1/3)	SLOT PITCH 1/3 D	IST. UP					WINDING CONST		(72)	(C _w)	₽
,	(42) (Kak)	SKEW FACTOR						POLE CONST.		(73)	(Cp)	Z
:	(43) (K d)	DIST. FACTOR						END. EXT. ONE	TURN	(48)	(LE)	5
	(44) (Kp)	PITCH FACTOR			· · · · · · · · · · · · · · · · · · ·			DEMAGNETIZIN	G FACTOR	(74)	(CM)	[8
	(45) (n e)	EFF. CONDUCTOR	\$					CROSS MAGNET	IZING FACTOR	(75)	(C .)	
اِ	(45) (ac)	COND. AREA						AMP COND IN		(128)	(A)	
Ī	(4.) (Sa)	CURRENT DENSIT	Y (STA.)					REACTANCE F	ACTOR	(129)	(X)	1
F.	(49) (¥+)	1/2 MEAN TURN L	ENGTH					LEAKAGE REA	CTANCE	(120)	(X g)	1
	(53) (R _{ph})	COLD STA. RES.	20° C					REACTANCE OF	F	(131)	(Xed)]
-	(54) (Rph)	HOT STA. RES X	. • C					ARMATURE REA	ACTION		(X _{eq})	1
7	(55) (EFtop)	EDDY FACTOR TO	P					SYNREACT DIR	ECT AXIS		(x 4)	jų.
į	(56) (EF _{bot})	EDDY FACTOR BO	T					SYNREACT QUA	DAXIS	(134)	(X _q)	Įž
:	(62) (入」)	STATOR COND. PE	RM.					FIELD LEAKAG	E REACT	(160)	(E4)	5
	(63) (入。)	END PERM.						PIELD SELF IN	DUCTANCE	(161)	(Lf)	4
	(65) ()	WT. OF STA COPP	ER					UNSAT. TRANS.	REACT	(166)	(X'du)	ļ~
	(66) ()	WT. OF STA. IRON				<u> </u>		SAT. TRANS.RE	ACT	(167)	(7, ⁴)	
	(41) (T _P)	POLE PITCH						SUB.TRANS. RE	ACT DIRECT AR.	(168)	(X"d)	
	(157) (-)	WT. OF ROTOR IR						SUB. TRANS REA	ACT QUAD AX.	(169)	(X" _e)	l
	(145) (V,)	PERIPHERAL SPE						NEG SEQUENCE			(X2)	ļ
ć	(153) (aCF)	FLD. COND. AREA		-				ZERO SEQUENC	distance of the last of the la		(X.)	
ū	(154) (R p) (155) (R p)	HOT FLD. RES.		ļ				OPEN CIR. TIME		((Tde)	نا ا
	(156) (-)							ARM THE CONS			(Ta)	
	(80) (P1)	WT OF FLD. COPP PERM OF LEAKAG				 -		TRANS TIME CO		(178)		-8
¥	(81) (P2)	PERM OF LEAKAG		 		 		TOTAL FLUX	CUNS 1.		(F"d)	
•	(62) (P3)	PERM OF LEAKAG		 				FLUX PER POL		(93)	(ϕ_T)	ł
	(83) (P4)	PERM OF LEAKAG		 		 		GAP DENSITY ((95)	$(B_{\mathfrak{g}})$	8
ã	(84) (Ps)	PERM OF LEAKAG		<u> </u>				TOOTH DENSIT	·	(91)	(B _r)	E ·
۵	(86) (P7)	PERM OF LEAKAG						CORE DENSITY		(94)	(B _c)	7
	(160) (FSC)	SHORT CIR NI		-		 		TOOTH AMPERI		(97)	(F ₁)	#
	(181) (SCR)	SHORT CIR RATIO	· · · · · · · · · · · · · · · · · · ·					CORE AMPERE		(98)	(Fe)	MAG
			·········					GAP AMPERE T	URNS (MAIN)	(96)	(Pg)	3
	PERCENT	LOAD	0	~		700		50	200		OF TH	ONAL
•	(¢g) (100a) LE				(\$\phi_{\phi_{\text{2}}}\) (197a)							
	(ϕ_{pt}) (102a) TO	TAL FLUX/POLE			(\$\phi_{\text{pti}}\) (213a)							
	(B _p) (103a) PO				(B _{pl}) (213b)				<u></u>			
		X GAP(92) DENSITY			(B ₉ 2(1) (224)							
4		K GAP(3) DENSITY		···	(B _{93fl}) (230)							
•	Beh) (113) SHA				(Bahl) (253)		┷-					
	F _n) (127) TO				(F _{f1}) (236)				<u> </u>			
3.	(H _{nl}) (127a) FI [*] (Sf) (127c) CU				(Iffl) (237) () (239)							
⊸ ,	(3,) (1276) E11				(E#1)(238)				 			
	(W c) (185) ST				(W c) (185)	·			 			
	Wto!) (184) 517			- 	(WHI) (242)				<u></u>	-+		
	(1 ² R _m)(194) ST.				(1 2 R x (245)		-+-		 	-+-		
"	(-) (195) ED				(-) (246)	·	+-					
!	(Weel)(186) PO				(W _{pfl}) (249)		+-					
•	(12R4) (182) FIE	LE COIL LOSS			(241)		1					
	F&W) (183) F&				(F&W) (183)		\Box			$\overline{\cdot}$		
	-) (196) TO	TAL LOSSES			(-) (247)					I		
7	(-) (-) PE	اد سوسولان نامسنف			(-) (251)							
;										$\Box \mathbf{I}$		
									L	$\bot \Gamma$		
	,				DI	SIGNER			DATE			

REV. A

INSIDE-COIL, STATIONARY-COIL LUNDELL NO LOAD SATURATION OUTPUT SHEET

S VOLTS	(3) (E) VOLTS (100m) (√) LEAKAGE FLUX	(95) (B) MAIN GAF DENSITY £102) (\$\overline{\phi}_{\phi}\$) TOTAL FLUX/POLE	(122) (B _g 2) DENSITY (g2) (103e) (B _p) POLE DENSITY	(119) (B _{g3}) DENSITY (g3) (113) (B _{gh}) SHAFT DENSITY	(94) (B _c) STA CORE DENSITY (127) (F _{nl}) TOTAL N. I.	(91) (B ₂ STA TOOTK DI
90%						
10%						
109%						
110%						
120%						
130%						
140%						
150%						
140%		·				

			•
	(1)		DESIGN NUMBER
	(2)	KVA	GENERATOR KVA
	(3)	E	LINE VOLTS
	(4)	E _{PH}	PHASE VOLTS
	(5)	m	PHASES
	(5a)	f	FREQUENCY
	(6)	P	POLES
	(7)	RPM	SPEED
	(8)	I _{PH}	PHASE CURRENT
İ	(9)	P. F.	POWER FACTOR
	(9a)	K _c	ADJUSTMENT FACTOR
	(10)		LOAD POINTS
	(11)	đ	STATOR PUNCHING I.D.
	(11a)	$ extbf{d}_{ extbf{r}}$	ROTOR O.D.
	(12)	D	PUNCHING O.D.
	(13)	L	GROSS STATOR CORE LENGTH
	(14)	n _V	RADIAL DUCTS
	(15)	b _v	RADIAL DUCT WIDTH
	(16)	K _i	STACKING FACTOR
	(17)	L s	SOLID CORE LENGTH

MATERIAL - This input is used in selecting the proper magnetization curves for stator, pole; shaft; when different materials are used. Separate spaces are provided on the input sheet for each section mentioned above. Where curves are available on card decks, used the proper identifying code. Where card decks are not available submit data in the following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in this manual on Curves 15 and 16. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

, i		
(19)	k	WATTS/LB
(20)	В	DENSITY
(21)		TYPE OF STATOR SLOT
(22)		ALL SLOT DIMENSIONS
(23)	Q	STATOR SLOTS
(24)	$\mathbf{h}_{\mathcal{C}}$	DEPTH BELOW SLOTS
(25)	q	SLOTS PER POLE PER PHASE
(26)	Ts	STATOR SLOT PITCH
(27)	$\gamma_{\rm s}^{1/3}$	STATOR SLOT PITCH
(28)		TYPE OF WINDING
(29)		TYPE OF COIL
(30)	n _s	CONDUCTORS PER SLOT
(31)	Y	THROW
(31a)		PER UNIT OF POLE PITCH SPANNED
(32)	С	PARALLEL PATHS
(33)		STRAND DIA. OR WIDTH
(34)	NST	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH
(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR
(35)	d _b	DIAMETER OF BENDER PIN
(36)	ℓ_{e2}	COIL EXTENSION BEYOND CORE
(37)	h _{ST}	HEIGHT OF UNINSULATED STRAND
(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH

The second secon

	1	
(39)		STATOR COIL STRAND THICKNESS
(40)	$\gamma_{\rm sk}$	SKEW
(41)	$ au_{ exttt{P}}$	POLE PITCH
·(42)	K _{SK}	SKEW FACTOR
(42a)		PHASE BELT ANGLE
(43)	K _d	DISTRIBUTION FACTOR
(44)	Кp	PITCH FACTOR
(45)	n _e	TOTAL EFFECTIVE CONDUCTORS
(46)	a _c	CONDUCTOR AREA OF STATOR WINDING
(47)	s_{S}	CURRENT DENSITY
(48)	L _E	END EXTENSION LENGTH
(49)	ℓ t	1/2 MEAN TURN
(50)	X _s °C	STATOR TEMP °C
(51)	\mathcal{S}_{s}	RESISTIVITY OF STATOR WINDING
(52)) S (hot)	RESISTIVITY OF STATOR WINDING
(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE
(55)	EF (top)	EDDY FACTOR TOP
(56)	EF (bot)	EDDY FACTOR BOTTOM

" I have some a material and

(57)	b _{tm}	STATOR TOOTH WIDTH
(57a)	b _{t 1/3}	STATOR TOOTH WIDTH
(58)	^b t	TOOTH WIDTH AT STATOR I.D.
(59)	g	MAIN AIR GAP in inches
(59 a)	g ₂ ·	AUXILIARY GAP, INNER - in inches
(59b)	g ₃	AUXILIARY GAP, OUTER - in inches
(60)	c _X	REDUCTION FACTOR
(61)	KX	FACTOR TO ACCOUNT FOR DIFFERENCE in phase current
		in coil sides in same slot.
(62)	$\lambda_{\mathbf{i}}$	CONDUCTOR PERMEANCE
(63)	K _E	LEAKAGE REACTIVE FACTOR for end turn
(64)	$\lambda_{\rm E}$	END WINDING PERMEANCE
(64a)	$\lambda_{\mathbf{z}}$	SPECIAL LEAKAGE PERMEANCE - For machines
		having a section of the pole that is approxi-
		mately a full pole-pitch wide, an additional
		leakage permeance must be added to the
		slot and end-turn leakage permeances.
		This permeance is that of the leakage path
		from one pole into a tooth top and from tooth
		top back into the adjacent pole. The leakage

(64a) Cont'd.

is similar to Zig Zag leakage and by increasing the stator leakage reactance, can reduce the output of the generator significantly.

This same leakage can be used to purposely limit the output of the generator and make it current limited. The presence of this additional leakage can be good or bad depending upon what is wanted from the generator. The important thing is for the designer to be aware that it is there.

In many cases, the designer should estimate the specific permeances λ_z since the pole base will be more or less than a full pole pitch wide and the following formula will not suffice.

(65)		WEIGHT OF COPPER
(66)		WEIGHT OF STATOR IRON - in lbs.
(67)	K _s	CARTER COEFFICIENT
(68)	$A_{\mathbf{g}}$	MAIN AIR GAP AREA
≀69)	$g_{\mathbf{e}}$	EFFECTIVE AIR GAP

(70)	Ag2	AREA OF AUXILIARY AIR GAP
		$A_{g2} = \frac{\pi}{4} (d_{g2})^2 = \frac{\pi}{4} (87)^2$
(70a)	A _{g3}	AREA OF OUTER AUXILIARY AIR GAP
		$A_{g3} = \pi(d_{g3}) (f_{g3}) = (87) (87)$
(71)	c ₁	THE RATIO OF MAXIMUM FUNDAMENTAL of the field
		form to the actual maximum of the field form -
(72)	c _w	WINDING CONSTANT
(73)	Сp	POLE CONSTANT
(74)	C _M	DEMAGNETIZING FACTOR - direct axis
(75)	Cq .	CROSS MAGNETIZING FACTOR - quadrature axis
(76)		POLE DIMENSION LOCATIONS
		b _{p2} - width of pole at edge of stator stack (wide end).
		b_{p1} - width of pole at end (narrow end).
		tp2 - thickness of pole at edge of stator stack.
	1	t_{p1} - thickness of pole at end.
		Q _{co} - length of coil.
		Q_p - length of pole.

Fig. K-2

(77a)

Items immediately following, deal with the calculation of rotor and stator leakage permeances. Illustrations are included to help identify the permeance areas and paths of the leakage fluxes. The computer program will handle the permeance calculations either of two ways:

- 1) P₁ through P₇ can be calculated by the computer. For this case, insert 0.0 on the input sheet.
- 2) P₁ through P₇ can be calculated by the designer. For this case, insert the actual calculated value on the input sheet.

Permeance calculations P₁ through P₇ are all based on the equations

$$P = \frac{u \text{ (area)}}{\ell}$$

Where u = 3.19

Area = cross-sectional area perpendicular to $\mathcal L$ \mathcal{L} = length of permeance leakage path

Many of the equations used in this section are taken from Roter's "Electromagnetic Devices". Refer to the appendix for an explanation of each condition.

(78)

ROTOR AND STATOR DIMENSIONS

 $\phi_{\rm g3}$ - axial length of air gap (g3)

 d_{g3} - diameter at air gap (g3)

 $\mbox{d}_{g2}\,$ - diameter of the circle containing flux in gap (g2)

dg - diameter of shaft (equal to coil inside diameter)

 $m 1_{SH} - length of shaft (flux carrying portion)$

 t_{fp} - thickness of flux plate

 d_{OC} - outside diameter of coil

 \mathbf{I}_{co} - length of coil (axial length)

Fig. K-3

!	1	
j I		
(79)	a _D	POLE AREA - The effective cross sectional area of the pole.
		$a_p = (b_{p2}) (t_{p2}) = (76) (76)$
(80)	$\mathbf{P_1}$	POLE HEAD END LEAKAGE - This input can be either 0.0
		or the actual value if available. Refer to item 86
	-	for explanation. See Figure K4 for location.
		$P_1 = 3.19 (b_{p1}) (t_{p1}) = 3.19 (76) (76)$
		R ₁ (80a)
(80a)	1,	LENGTH OF PERMEANCE PATH P ₁ - l ₁ is the length of
		permeance path P_1 and must be obtained from design
		layout. Note this value (ℓ_1) must appear as a
		input when P ₁ = 0.0
(81)	P ₂	POLE HEAD SIDE LEAKAGE - This input can be either 0.0
		or the actual value if available. Refer to item 86
		for explanation. See Figure k4for location.
		$P_2 = 3.19 \left[\frac{(t_{p1}) + (t_{p2})}{2} \right] \frac{(\ell_p)}{(\ell_2)}$
		$= 3.19 \left[\frac{(76) + (76)}{2} \right] \frac{(76)}{(81a)}$
(8 la)	12	LENGTH OF PERMEANCE PATH P2 - Q2 is the length of
!		permeance path P_2 and must be obtained from design
		layout. Note: This value (ℓ_2) must appear as an
		input when $P_2 = 0.0$
i		K-10

--

Martin - 19,3 cm

Fig. K-4

Fig. K-5

Fig. K-6

Fig. K-7

,		
(82)	P ₃	POLE UNDERSIDE TO FLUX PLATE LEAKAGE PERMEANCE -
		This input can be either 0.0 or the actual value if
		available. Refer to item <u>86</u> for explanation. See
		Figure K5 for location.
		$P_3 = 3.19 \left[\frac{3 (b_{p1}) + (b_{p2})}{8} \right] \frac{(I_p)}{(I_3)}$
		$-3.19 \left[\frac{3(76) + (76)}{8} \right] \frac{(76)}{(82a)}$
(82a)	9 3	LENGTH OF PERMEANCE PATH P3 - 13 is the length of
		permeance path P3 and must be obtained from design
		layout. Note: This value (P_3) must appear as an
		input when $P_2 = 0.0$
(83)	P4	POLE UNDERSIDE TO POLE UNDERSIDE LEAKAGE PERMEANCE
		This input can be either 0.0 or the actual value if
		available. Refer to item 77a for explanation. See
		Figure K6 for location.
		For 6 poles or more i.e. when (6) \geq 6 calculate
		as follows:
		*P ₄ = $\frac{3.19 \ (\mathbf{l}_p)}{\pi} \ln \left[1 + \frac{(b_{p1}) + (b_{p2})}{(\mathbf{z})} \right]$
		$-\frac{3.19 (76)}{\pi} \ln \left[1 + \frac{(76) + (76)}{(83)}\right]$
]		

- -	7		
where $z = \gamma_p - \left[\frac{b_{p1}}{2}\right]$	+ (b _{n2})	= (41) -	(76) + (76)
P \ PI		` '	\ <u>```</u> `
_	ر 2	ļ	2

For 4 poles i.e. when (6) = 4 calculate as follows:

*P4 =
$$\frac{3.19 (\ell_p)}{2} \frac{3}{2} \ln \left[1 + \frac{(b_{p1} + (b_{p2}))}{2} \right]$$

= $\frac{3.19 (76)}{\pi} \frac{3}{2} \ln \left[1 + \frac{(76) + (76)}{83} \right]$

(84) P₅ FIELD COIL LEAKAGE PERMEANCE - This input can be either 0.0 or the actual value if available. Refer to item 77a for explanation. See Figure F-7 for location.

$$P_{5} = \frac{3.19}{(I_{co})} \frac{\pi}{4} \left[(d_{oc})^{2} - (d_{s})^{2} \right] \frac{2}{3}$$
$$= \frac{3.19}{(78)} \frac{\pi}{4} \left[(78)^{2} - (78)^{2} \right] \frac{2}{3}$$

STATOR TO ROTOR LEAKAGE PERMEANCE - This input can be either <u>0.0</u> or the actual value if available.

Refer to item 86 for explanation. See Figure F-7 for location.

$$P_7 = 2.5 (D + d_r)$$

$$= 2.5 (12) + (11a)$$

(86)

(87)

The next set of calculations deals with the no load saturation. When the no load saturation data is required at various voltages, insert

1. on the input sheet for "No Load Sat.".

The computer will then calculate the complete no load saturation curve at 80, 90, 100, 110, 120, 130, 140, '50, and 160% of rated volts. When complete saturation data is not necessary, insert 0. on the input sheet and the computer will calculate 100% volt data.

(88)	$\phi_{\mathbf{T}}$	TOTAL FLUX IN KILO LINES
(91)	Bt	TOOTH DENSITY in Kilo Lines/in ²
(92)	Ø _P	FLUX PER POLE in Kilo Lines
(94)	Вс	CORE DENSITY in Kilo Lines/in ²
(95)	B _g	GAP DENSITY in Kilo Lines/in ²
(96)	Fg	AIR GAP AMPERE TURNS
(97)	FT	STATOR TOOTH AMPERE TURNS
(98)	Fc	STATOR CORE AMPERE TURNS
(98a)	Fs	STATOR AMPERE TURNS, total
(99)	Ø ₇	STATOR TO SHAFT AND FLUX PLATE LEAKAGE FLUX
İ		The leakage flux from the stator to the yoke

air gaps (g_2) and (g_3)

The items to follow are to be calculated for variable loads. The first set

and rotor, all of which crosses the auxiliary

of calculations are at no load. These calculations will then be repeated for 100% load.

Any variation in load would be a repeat of the 100% load calculations with the proper percent load inserted.

(100a)	Q _k	ROTOR LEAKAGE FLUX - at no load
		$\phi_{\ell} = (p) \left[2(F_g) + 2(F_T) + (F_c) \right]$
		$[(P_1) + (P_2) + (P_3) + (P_4)] \times 10^{-3}$
		$[(80) + (81) + (82) + (83)] \times 10$
(102a)	ϕ_{PT}	TOTAL FLUX PER POLE - at no load
		$Q_{\text{PT}} = Q_{\text{P}} + \frac{2(Q_{\underline{q}})}{P} = (92) + \frac{2(100a)}{(6)}$
(103a)	Вр	POLE DENSITY in Kilolines per square inch.

(10 4 a)	Fp	POLE AMPERE TURNS - at no load. The ampere turns
		per pole required to force the flux through
		the pole at no-load rated voltage. The no
		load pole ampere turns per pole are calculated
		as the product of (\mathbf{Q}_p) times the NI per inch
	!	at the density (Bp). Use magnetization curve
		submitted per Item (18) for rotor.
		$F_{P} = (Q_p) \left[NI/in @ density (B_p) \right]$
		= (76) Look up on rotor magnetization curve
		= (76) Look up on rotor magnetization curve given in (18) @ density (1034)
(108)	$\phi_{\mathrm{g}2}$	FLUX CROSSING THE AUXILIARY AIR GAP - Kitolines
		$Q_{g2} = (Q_{PT}) \frac{(P)}{2} + (Q_7)$
		$= (102a)\frac{(6)}{2} + (99)$
(111)	Ø _{SH}	FLUX IN SHAFT
		$Q_{SH} = (Q_{g2}) + (Q_5) = (108) + (118)$
(112)	As	AREA OF SHAFT in inches ² - cross-sectional to flux
		Where $A_g = \frac{\pi}{4} (d_g)^2 = \frac{\pi}{4} (78)^2$
		•
!		
	•	

(113)	B _{sh}	FIN'N DENSITY IN SHAFT
		$B_{s} = \frac{(O_{sh})}{(A_{s})} = \frac{(111)}{(112)}$
(114)	F _{sn}	AMPERS TURN DROP IN SHAFT
		$\mathbf{F}_{sh} = (\mathbf{\tilde{l}_{sh}}) \left[\text{NL/inch at density } (\mathbf{B_{sh}}) \right]$
		E (78) Look up on shaft magnetization curve given in (18) at density (113)
(118)	Ø ₅	COIL LEAKAGE FLUX
	†	$O_{5} = P_{5} \sum_{\mathbf{g}} (\mathbf{F}_{\mathbf{g}2}) + 2(\mathbf{F}_{\mathbf{g}}) + 2(\mathbf{F}_{\mathbf{p}}) + 2(\mathbf{F}_{\mathbf{T}}) + (\mathbf{F}_{\mathbf{c}}) + (\mathbf{F}_{\mathbf{g}3}) $ x 10 ⁻³
	,	$= (34) \left[(123) + 2(96) + 2(104a) + 2(97) + (98) + (120) \right] \times 10^{-3}$
(*19)	, B ₂ 3	AUXILIARY AIR GAP (g3) DENSITY - Note the flux
	ļ	crossing air gap (g_2) is equal the flux cross-
		ing air gap (g ₃)
		$B_{g3} = \frac{Q_{g2}}{A_{g3}} = \frac{(108)}{(70a)}$
(120)	$\mathbf{F_{g3}}$	AUXILIARY AIR GAP (g3) AMPERE TURNS
		$F_{g3} = \frac{(P_{g3})}{3.19} (g_3)(g_3) - \frac{(119)}{3.19} (59b) \times 10^3$

K-21

į

.

, \$

·**/**

3

	· -	
(120a)		YOKE - No provision is made in this manual for calculat-
	!	ing the flux densities in the section designated
		y ₁ and y ₂ in Fig. K-7, page K-14 Make
		sure that the underside periphery of the pole
		base times the thickness of the flux plate y ₁
		is equal to the cross-section of the pole base;
		or that the flux plate is equal to the pole
		thickness. The pole areas are assumed to be
		equal.
(122)	B_{g2}	AUXILIARY GAP (g2) DENSITY
		$B_{g2} = \frac{Q_{g2}}{A_{g2}} = \frac{(108)}{(70)}$
(123)	$\mathbf{F_{g2}}$	AUXILIARY AIR GAP (g2) AMPERE TURNS
		$F_{g2} = \frac{(B_{g2})}{3.19} (g_2) \times 10^3 = \frac{(122)}{3.19} (59a) \times 10^3$
(127)	F_{NL}	TOTAL AMPERE TURNS - at no load. The total ampere
	1144	turns per pole required to produce rated
		voltage at no load.
:		
,		$F_{NL} = 2(F_g) + 2(F_T) + (F_c) + (F_{sh}) +$
‡ ‡		$(F_{g3}) + (F_{g2}) + 2(F_p)$
		= 2(96) + 2(97) + (98) + (114) +
		(120) + (123) +Z(104a)
		K-22

12

. . 54

(127a)	I _{FNL}	FIELD CURRENT - at no load.
		$I_{FNL} = (F_{NL})/(N_F) = (127)/(146)$
(127b)	EF	FIELD VOLTS - at no load.
(127c)	S _F	CURRENT DENSITY - at no load.
(128)	A	AMPERE CONDUCTORS per inch
(129)	x	REACTANCE FACTOR
(130)	\mathbf{x}_{ℓ}	LEAKAGE REACTANCE
(131)	Xad	$X_{\mathcal{L}} = X \left[\lambda_{i} + \lambda_{e} + \lambda_{z} \right]$ $= (129) \left[(62) + (64) + (64a) \right]$ $\lambda_{z} \text{ is explained under item (64a) and}$ $\text{should be zero in most cases.}$ $\frac{\text{REACTANCE}}{\text{reactance due to armature reaction in the}}$ direct axis. $X_{ad} = \frac{.9(N_{e})(I_{PH})(C_{M})(K_{d}) \times 100}{(P) \left[(2F_{g}) + (F_{g2}) + (F_{g3}) \right]} = \frac{.9(45)(8)(74)(43) \times 100}{(6) \left[(296) + (123) + (120) \right]}$

(132)	X _{aq}	REACTANCE - quadrature axis - This is the fictitious reactance due to armature reaction in the quadrature axis. $X_{aq} = \frac{(C_q)(X_{ad})}{(C_m)(C_1)} = \frac{(71)(131)}{(74)(75)}$
(133)	x _d	SYNCHRONOUS REACTANCE - direct axis
(134)	x _q	SYNCHRONOUS REACTANCE
(145)	v _r	PERIPHERAL SPEED

(146)	$N_{\mathbf{F}}$	NUMBER OF FIELD TURNS TOTAL
(147)	l _{tf}	MEAN LENGTH OF FIELD TURN
(148)		FIELD CONDUCTOR DIA OR WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches - Set this item = 0 for round conductor
(150)	x _f °c	FIELD TEMP IN OC - Input temp at which full load field
	_	loss is to be calculated.
(151)	P_{f}	RESISTIVITY of field conductor @ 20°C in micro ohm-
		inches. Refer to table given in Item (51)
		for conversion factors.
(152)		RESISTIVITY of field conductor at $X_f^{O}C$
(153)	a _{cf}	CONDUCTOR AREA OF FIELD WINDING
(154)	R _f	COLD FIELD RESISTANCE @ 20°C
	(cold)	$R_{f \text{ (cold)}} = (f) \frac{(N_{f})(\ell_{tf}) \times 10^{-6}}{(a_{cf})} = (151) \frac{(146)(147) \times 10^{-6}}{(153)}$
(155)	R _f (hot)	$R_{f \text{ (cold)}} = (f_{f}) \frac{(N_{f})(\ell_{tf}) \times 10^{-6}}{(a_{cf})} = (151) \frac{(146)(147) \times 10^{-6}}{(153)}$ $\frac{\text{HOT FIELD RESISTANCE}}{(hot)} = \text{Calculated at } X_{f}^{O}C \text{ (103)}$ $R_{f \text{ (hot)}} = (f_{f \text{ hot}}) \frac{(N_{f})(\ell_{tf}) \times 10^{-6}}{(a_{cf})} = (152) \frac{(146)(147) \times 10^{-6}}{(153)}$
•	()	$R_{f \text{ (hot)}} = (P_{f \text{ hot}}) \frac{(N_{f})(Q_{tf}) \times 10^{-6}}{(a_{cf})} = (152) \frac{(146)(147) \times 10^{-6}}{(153)}$

(156)		WEIGHT OF FIELD COPPER in lbs
		#'s of copper = $.321(N_f)(//t_f)(a_{cf})$
		= .321(146)(147)(153)
		NOTE: Also refer to note given in item (65).
(157)		WEIGHT OF ROTOR IRON
(160)	$\mathbf{x_F}$	THE EFFECTIVE FIELD LEAKAGE REACTANCE (XF)
		The reactance which added to the stator leak-
		age reactance gives the transient reactance
		x' _{du} .
		and the second s
		$X_{F} = X_{ad} \left[1 - \frac{\frac{C_{1}}{C_{m}}}{2C_{p} + \frac{4}{\pi} \frac{\lambda F}{\lambda a}} \right]$
		$X_F = (131) \left[1 - \frac{\frac{(71)}{(74)}}{2(73) + \frac{4}{\sqrt{160}}} \right]$
		$\lambda_{a} = \frac{6.38d}{P_{ge'}} = \frac{6.38(11)}{(6)(160)}$
		$\lambda_{F} = \frac{P_{e}}{\ell} = \frac{(160a)}{(13)}$

		- -
		Where $g'_e = (g_e) \left(\frac{2(F_g) + (F_{g2}) + (F_{g3})}{2(F_g)} \right) = (69) \left(\frac{2(96) + (123) + (120)}{2(96)} \right)$
(160a)	P _e	FIELD LEAKAGE PERMEANCE
		$P_e = (p)[P_1 + P_2 + P_3 + P_4] + P_5$
		$= (6) \left[(80) + (81) + (82) + (83) \right] + (84)$
(160b)	Pr	ROTOR LEAKAGE PERMEANCE
		$P_r = p \left[P_1 + P_2 + P_3 + P_4 \right]$
		$= (6) \left[(80) + (81) + (82) + (83) \right]$
(161)	L _f	FIELD SELF-INDUCTANCE
		$L_f = (N_F)^2 \times P_e \times 10^{-8} = (146)^2 (160a) \times 10^{-8}$
(166)	x' _{du}	UNSATURATED TRANSIENT REACTANCE
(167)	x' _d	SATURATED TRANSIENT REACTANCE
(168)	x" _d	SUBTRANSIENT REACTANCE in direct axis
		$X''_{d} = (X'_{d}) = (167)$
(169)	x"q	SUBTRANSIENT REACTANCE in quadrature axis

$$X''_{q} = X_{q} = (134)$$

(170)	X ₂	NEGATIVE SEQUENCE REACTANCE
(172)	$\mathbf{x_0}$	ZERO SEQUENCE REACTANCE
(173)	K _{xo}	
(174)	K _{x1}	_
(175)	λ _{Bo}	$\lambda_{\text{Bo}} = \frac{(K_{\text{xo}})}{(K_{\text{p}})^2} \left[.07(\lambda_{\text{a}}) \right] = \frac{(173)}{(44)^2} \left[.07(175) \right]$
		Where $\lambda_{a} = \frac{6.38(d)}{(P)(g_{e})} = \frac{6.38(11)}{6(69)}$
(176)	T'do	OPEN CIP TIME CONSTANT
(177)	Ta	ARMATU TIM' CONSTANT
(178)	T'd	TRANSIENT TIME CONSTANT
(179)	T"do	SUBTRANSIENT TIME CONSTANT
(180)	FSC	SHORT CIRCUIT AMPERE TURNS - The field ampere turns
		required to circulate rated stator current when the
1		stator is short circuited.
		$F_{SC} = \frac{(x_d)}{100} \left[2(F_g) + (F_{g2}) + (F_{g3}) \right]$
		$=\frac{(133)}{100}\left[2(96)+(123)+(120)\right]$

(181)	SCR	SHORT CIRCUIT RATIO FIELD ¹² R - at no load. The copper loss in the field
(182)	$^{12}R_{ m F}$	FIELD ² R - at no load. The copper loss in the field
		winding is calculated with cold field resistance
		at 20°C for no load condition.
		Field $I^2R = (I_{FNL})^2 (R_{f cold}) = (127a)^2 (154)$
	1	·

r ~

- -

(183)	F & W	FRICTION & WINDAGE LOSS (KW) - Note: Write 0 on input						
		. sheet when computer is to calculate F & W. In-						
		sert actual value when known.						

To ratio from test data, assume that F & W loss varies as the 5/2 power of the rotor diameter and as the 3/2 power of the RPM.

The formula below gives an approximate answer when test data is not available. For a more rigorous treatment use the information given in the rotor friction analysis appended to the thermal analysis section (Section C, Vol. 1).

F&W = 2.52 x
$$10^{-6}$$
 (d_r)^{2.5} (RPM)^{1.5} (ℓ_{ρ})
= 2.52 x 10^{-6} (11a)^{2.5} (7)^{1.5} (76)

For gases or fluids other than standard air, the fluid density and viscosity must be considered.

The formula given in the manual can be modified by the factors

$$\left(\frac{Q}{.0765}\right)^{.8}\left(\frac{u}{.0435}\right)^{.2}$$

	ļ	
		where e density - The FT-3
		= viscosity LBS FT ⁻¹ Hk ⁻¹
		.0765 = density std. air
		.0435 = viscosity std. air
(184)	$\mathbf{w_{TNL}}$	STATOR TEETH LOSS - at no load.
(185)	$\mathbf{w_c}$	STATOR CORE LOSS
(18 6)	W _{NPL}	POLE FACE LOSS - at no load.
(187)	к ₁	·
(188)	K ₂	
(189)	К3	
(190)	К4	
(191)	K ₅	
(192)	к6	
(194)	I ² R	STATOR I ² R - at no load. EDDY LOSS - at no load.
(195)		EDDY LOSS - at no load.

1'

(196)		TOTAL LOSSES - at no load. Sum of all losses.
		Total Losses = (Field I ² R) + (F&W) + (Stator Teeth Loss) + (Stator Core Loss) + (Pole Face Loss) = (182) + (183) + (184) + (185) + (186) NOTE: The output sheet shows the next items to be: (Rating), (Rating + Losses), (% Losses), (% Efficiency). These items do not apply to the nole dealculation since the rating is zero.
(196a)	QU	LEAKAGE FLUX PER POLE at 100% load $ \emptyset_{QQ} = \emptyset_{Q} \left\{ \frac{(e_{d})(F_{g}) + [1 + \cos(\theta)] (F_{T}) + (F_{C})}{(F_{g}) + (F_{T}) + (F_{C})} \right\} $ $ = (100a) \left\{ \frac{(198)(96) + [1 + \cos(198a)] (97) + (98)}{(96) + (97) + (98)} \right\} $ Where $e_{d} = \cos \in + \frac{(X_{d})}{100} \sin \Psi$ $ = \cos(198a) + \frac{(133)}{100} \sin (198b) $
(120)	ed .	where $e_d = \cos C + \frac{100}{100} \sin V$ $= \cos(198a) + \frac{(133)}{100} \sin (198b)$

(207) Where
$$\theta = \cos^{-1} \left[(\text{Power Factor}) \right]$$

$$= \cos^{-1} \left[(9) \right]$$
Where $\Psi = \tan^{-1} \left[\frac{\sin (\theta) + (X_Q)/(100)}{\cos (\theta)} \right]$

$$= \tan^{-1} \left[\frac{\sin(198a) + (124)/(100)}{\cos(198a)} \right]$$
Where $\xi = \Psi - \theta = (198a) - (198a)$

$$(207) \quad \mathcal{O}_{7L} \quad \underbrace{\text{FLUX LEAKAGE FROM STATOR TO ROTOR}}_{\mathcal{O}_{7L} = (P_7)} \left[(e_d)(F_g) + (F_{PL}) + (F_T) \left[1 + \cos(\theta) \right] + (F_c) \right] \times 10^{-3}$$

$$= (86) \left[(198) (96) + (213c) + (97) \left[1 + \cos(198a) \right] + (98) \right] \times 10^{-3}$$

$$= (86) \left[(198) (96) + (213c) + (97) \left[1 + \cos(198a) \right] + (98) \right] \times 10^{-3}$$

$$= (213) \quad \mathcal{O}_{PL} \quad \underbrace{\text{TOTAL FLUX PER POLE}}_{\mathcal{O}_{PL}} \text{ at } 100\% \text{ load}$$

$$\mathcal{O}_{PTL} = \mathcal{O}_{PL} + \frac{2(\mathcal{O}_{Ag})}{(P)} = (213) + \frac{2(196a)}{(8)}$$

$$= (213b) \quad \text{BpL} \quad \underbrace{\text{FLUX DENSITY AT BASE OF POLE}}_{\mathcal{O}_{PL}} \text{ at } 100\% \text{ load}$$

$$= (213c) \quad \text{FpL} \quad \underbrace{\text{AMPERE TURNS PER POLE}}_{\mathcal{O}_{PL}} \text{ at } 100\% \text{ load}$$

$$= (76) \quad \underbrace{\text{I sok up ampere turns/inch on rotor}}_{\text{magnetization curve given in (18) at }}$$

$$= (76) \quad \underbrace{\text{I sok up ampere turns/inch on rotor}}_{\text{magnetization curve given in (18) at }}$$

(221)	Ø _{g2L}	TOTAL FLUX IN AUXILIARY AIR GAP under load $ \varphi_{g2L} = (\varphi_{PTL}) \frac{(P)}{2} + (\varphi_{7L}) $
		$= \frac{(213a) \cdot (6)}{2} + \frac{(207)}{}$
(224)	B _{g2L}	FLUX DENSITY IN AUXILIARY AIR GAP under load $B_{g2L} = \frac{\emptyset_{g2L}}{(A_{g2})} = \frac{(221)}{(70)}$
(225)	F _{g2L}	AUXILIARY AIR GAP AMPERE TURN DROP under load
		$F_{g2L} = (B_{g2L}) \frac{(g_2)}{3.19} \times 10^3 = (224) \frac{(59a)}{3.19} \times 10^3$
(226)	Ø _{5L}	COIL LEAKAGE FLUX UNDER LOAD
		$\phi_{5L} = (P_5) \left[2(e_d)(F_g) + 2(F_{PL}) + (F_{g2L}) + (F_c) + (F_{g3L}) + (F_{g3L}) \right]$
		$2(\mathbf{F_T}) \left[1 + \cos(\theta)\right] \times 10^{-3}$
(230)	B _{g3L}	$= (84) \left[2(198)(96) + 2(213c) + (225) + (98) + (231) + 2(97) \left[1 + \cos(198a) \right] \right] \times 10^{-3}$ $= \frac{\text{AUXILIARY GAP (g_3) FLUX DENSITY - note the flux in air gap (g_2) is equal to flux in gap (g_3)}}{\text{Auxiliary GAP (g_3)}} = \frac{(\mathcal{O}_{g2L})}{(\mathcal{A}_{g3})} = \frac{(221)}{(\mathcal{O}_{g3})}$

	!	
(231)	Fg3L	AUXILIARY GAP (g3) AMPERE TURN DROP under load
		$F_{g3L} = \frac{(B_{g3L})(g_3)}{3.19} \times 10^3 = \frac{(230)(59b)}{3.19} \times 10^3$
(231a)	ϕ_{SHL}	SHAFT FLUX
(235)	BSHL	SHAFT DENSITY
		$B_{SHL} = \frac{(Q_{SHL})}{(A_S)} = \frac{(231a)}{(112)}$
(233)	FSHL	SHAFT AMPERE TURN DROP
		F _{SHL} = ((S _H) [NI/inch @ (B _{SHL})]
		= (78) Look upon shaft magnetization curve @ density (232)
(236)	${f F_{FL}}$	TOTAL AMPERE TURNS under load
		$F_{FL} = (F_{SHL}) + 2(F_{PL}) + (F_{g2L}) + (F_{g3L}) + (F_c) +$
		$2(F_g)(e_d) + 2(F_T) \left[1 + \cos(\theta)\right]$
		= (233) + 2(213c) + (225) + (231) + (98) +
		$2(96)(198) + 2(97) \left[1 + \cos(198a)\right]$
(237)	IFFL	FIELD AMPERES under load
		$I_{FFL} = \frac{(F_{FL})}{(N_{F})} = \frac{(236)}{(146)}$
(239)		CURRENT DENSITY at 100% load

(238)	E _{FFL}	FIELD VOLTS at 100% load
(241)	$^{12}\!\mathrm{R_{FL}}$	FIELD I ² R at 100% load
(242)	w_{TFL}	STATOR TEETH LOSS at 100% load
(243)	$\mathtt{w_{PFL}}$	POLE FACE LOSS at 100% load
(245)	$^{12}\!\mathrm{R}_\mathrm{L}$	STATOR I ² R at 100% load
(246)		EDDY LOSS
(247)		TOTAL LOSSES at 100% load - sum of all losses at 100%
		load.
		Total Losses = (FIELD I2R) + (F&W) + (Stator Teeth Loss)
		†(Stator Core Loss) + (Pole Face Loss)
		+(Stator I ² R) + (Eddy Loss)
		= (241) + (183) + (242) + (185) + (243) + (245) + (246)
(248)		RATING IN KW
(249)		RATING & LOSSES
(250)		% LOSSES
Ì		

(251) -- % EFFICIENCY

Item (196a) through (251) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor $\frac{(\% \text{ Load})}{100}$ takes care of (I_{PH}) as it changes with load.

Note that values for F&W (183) and $W_{\rm C}$ (Stator Core Loss) (185) do not change with load, therefore, they can be calculated only once.

INPUT AUXILIARY DATA SHEET

Auxiliary information taken from the design manuals to be used in conjunction with input sheets for convenience.

- A. All dimensions for lengths, widths, and diameters are to be given in inches.
- B. Resistivity inputs, Items (141) and (151) are to be given in micro-ohm-inches.

The following items along with an explanation of each are tabulated here for convenience. For complete explanation of each item number, refer to design manuals.

Rem No. **Explanation** (9) Power factor to be given in per unit. For example for 90% P.F., insert .90. Adjustment Factor - For P.F. < .95 insert 1.0 (9a)For P.F. > .95 insert 1.05 (10)Optional Load Point -- Where load data output is required at a point other than those given as standard on the input sheet. Example: For load data output at 155% load, insert 1.55. (14)Number of radial ducts in stator. (15)Width of radial ducts used in Item (14). (18)Magnetization curve of material used to be submitted as defined in Item (18), (19)Watts/Lb. to be taken from a core loss curve at the density given in Item (20) (Stator). (20)Density in kilolines/in². This value must correspord to density used to pick Item (19) usually use 77.4 KL/in². (21)Type of slot - For open slot Type A, insert 1.0. For partially open slot Type B with constant slot width, insert 2.0. For partially open slot Type C with constant tooth width, insert 3.0. For round slot Type D, insert 4.0. For additional information, refer to figure adjacent to input sheet which

(22) For stator slot dimension - for dimensions that do not apply to the slot insert 0.0.

Use Table below as guide for input.

shows a picture of each slot.

			Slot Ty	ре	
Symbol	Item	_1_	2	3_	4
b _o	(22)	0.0	*	*	*
b 1		0.0	0.0	*	0.0
b 2	ĺ	0.0	0.0	*	0.0
b3		0.0	0.0	*	0.0
b _s		*	*	£	*
h _o		0.0	*	*	*
h ₁		*	*	*	0.0
h ₂		*	0.0	0.0	0.0
h3		*	*	0.0	0.0
hg		*	*	*	*
ht		0.0	*	*	0.0
$\mathbf{h}_{\mathbf{W}}$	*	0.0	*	*	0.0

^{* -} insert actual value.

Φ = b = - 1 + b 3

Item No.	Explanation
(28)	Type of winding - for wye connected winding insert 1.0.
	for delta connected winding insert 0.0 .
(29)	Type of coil - for formed wound (rect. wire), insert 1.0.
	for random wound (round wire) insert 0.0
(30)	Slots spanned - Example - for slot span of 1-10, insert 9.0.
(33)	For round wire insert diameter. For rectangular wire insert wire width.
(34)	Strands per conductor in depth only.
(34a)	Total strands per conductor in depth and width.
(35)	Diameter of coil head forming pin. Insert .25 for stator O.D. < 8 inches;
	Insert . 50 for stator O. D. >8 in.
(37)	Use vertical height of strand for round wire, insert 0.0.
(38)	Distance between centerline of strands in depth. Insulation h'st
(39)	Stator strand thickness use narrowest dimension of the two dimensions given for a
	rectangular wire. For round wire insert 0.0.
(40)	Stator slot skew in inches,
(42a)	Phase belt angle - for 60° phase belt, insert 60°.
	for 120° phase belt, insert $\underline{120^{\circ}}$.
(4 8)	See explanation of items (71), (72), (73), (74) and (75). Same applies here.
(87)	When no load saturation output data is required at various voltages, insert 1.0 .
	When no load saturation information is not required, insert 0.0 .
(137)	Damper bar thickness use damper bar slot height for rectangular bar. For round
	bar insert 0.0.
(138)	Number of damper bars per pole.
(140)	Damper bar pitch in inches.
(148)	For round wire insert diameter. For rectangular wire insert wire width.
(149)	For rectangular wire insert wire thickness. For round wire insert 0.0.
(187)	Pole face loss factor. For rotor lamination thickness .028 in. or less, insert 1.17.
	For rotor lamination thickness .029 in. to .063 in. insert 1.75.
	For rotor lamination thickness .064 in. to .125 insert 3.5.
	For solid rotor insert 7.0.
(71)	If the values of these constants are available, insert the actual number. If they are
(72)	not available, insert 0.0 and the computer will calculate the values and record them on
(73)	the output.
(7.4)	

ŕ

(75)

TWO-COIL LUNDELL (BECKY-ROBINSON TYPE)

COMPUTER DESIGN - - - - - (INPUT) ____ EWO ______ DESIGN NO(1) _____

MODEL __

5	(5%)	94	AUX GAP EPPECTIVE #3	l	i					
3	(59)		MAIN AIR GAP		_					
	(5%)		TYPE OF GAP 93		DESIGNER _		DATE			
	(51)	٠,	RESISTIVITY STA. COND. #20 °C							لـــا
	(50)	X °C								ı
	(40)	Tok	STATOR SLOT SKEW							j
	(420)		PHASE BELT ANGLE							I
	(38)	h'e1	DIST. BYWN.CL OF STD.							-
N	(37)	h pp	UNINS. STRD. HT.		DAMI	PER SLOT	REA	AAR KS		
STATOR	(36)	2.2	COIL EXT. STR. PORT			TOR SLOT		OLE		-
5	(35)	de	DIA, OF PIN		e7 1.	TOP (1 OT	_	01 F		
	(34e) (39)	N' st	STRANDS/CONDUCTOR STATOR STRAND T'KNS.							
2		N st	STRANDS/CONDUCTOR IN DEPTH							
=	(33)	M	STRAND DIA. OR WIDTH							
	<u> </u>	-								Ī
	(32)	c c	PARALLEL CIRCUITS							T
	(30) (31)	n <u>s</u>	SLOTS SPANNED			FRICTION & WIND	WE .	(183)	(F&W)	<u>L</u>
	(30)	<u> </u>	COMPLICATORS (SLOT			NO LOAD SAT.		(87)	/50 35	1
	(28) (29)		TYPE OF WDG.			RESISTIVITY OF FI	ELD COND# 20 °	(151)	، عو	-
	(23)	9	NO. OF SLOTS			FLD. TEMP IN C	FI D COVED-00-	(150	X, °C	1
	(32)	h w	NO OF SLOTE			FLD. COND. THICK	W E22	(149)	L ==	E
	(22)	ht				FLD. COND. DIA. C		(148)	ļ	<u> </u>
	(22)	h g	SLOT DEPTH			MEAN LENGTH OF		(147)	R+F	۵
	(22)	h 3	CLOT DECTH			NO. OF FIELD TU		(146)	NF	l
'n	(22)	h 2				DAMPER BAR END		(170)	Odr No	
STAT		h 1				DAMPER BAR END I		(170)	d dr	1
OR SLOT	(22)	h _o				DAMPER BAR TEM		(142)	X°C	ł
	(22)	b _s	SLOT WIDTH			RESISTIVITY OF D		(141)	PD	ļ
	<u> </u>	b 3	SI OT WINTH			DAMPER BAR PITO		(140)	76	ã
	(22)					DAMPER BAR LEN		(139)	26	¥
	(22)	b 2	JEST WISTER TOP			NO. OF DAMPER B		(138)	nb	E E
	(22)	b i	SLOT WIDTH TOP			RECTANGULAR SL		(135)	ЬЫ	ă
	(22)	b _o	SLOT OPENING			RECTANGULAR BA		(137)	ЬЫ	4
-	(21)	-	TYPE OF SLOT			PECTANGULAR DIA		(136)	1	ł
	(20)	8	DENSITY			HEIGHT OF SLOT		(135)	hbo	ł
ST.	(19)	k	WATTS/LB.			WIDTH OF SLOT OF		(135)	- bbo	1
¥	(16)	Kı	STACKING FACTOR (STATOR)			POLE FACE LOSS		(187)	(K1)	-
S.	(15)	n y	NO. OF DUCTS WIDTH OF DUCT			HEIGHT OF NOR TH		(78)	hno	·
STA	(14)	<u> </u>	GROSS CORE LENGTH			ROTOR DIAMETER		(110)	dr	
ž	(12)	D	STATOR O.D.			LENGTH OF SOUTI		(76)	J _{op}	
	(11)	٩	STATOR I.D.			LENGTH OF NORT		(76)	g _{np}	፬
			OPTIONAL LOAD POINT			WIDTH OF SOUTH		(76)	releid	
	(9a) (10)	K c	ADJ. FACTOR			WIDTH OF NORTH		(76)	Spinid	4
	(9)	PF	POWER FACTOR			WIDTH OF SOUTH	POLE (END)	(76)	sp(en d)	1
-	(8)	lph	PHASE CURRENT			WIDTH OF NORTH	POLE (END)	(76)	np(end)	1
PAR	(7)	RPM	RPM			POLE EMBRACE	-	(77)	S	_
Y W	(6)	P	POLES			CROSS MAGNETIZI	NG FACTOR	(75)	C _a	ļ _
E	(5e)		FREQUENCY			DEMAGNETIZATIO	N FACTOR	(74)	Cm	ð
ERS	(5)	m	PHASES			END EXTENSION O		(48)	LE	STANT
·	(4)	Eph	PHASE VOLTS			POLE CONSTANT		(73)	C _p	1
	(3)	E	LINE VOLTS			WINDING CONSTAN)T	(72)	C _w	2
1	(2)		GENERATUR KVA				LD FLUX	(71)	Cl	4

TWO-COIL LUNDILL (BECKY-ROBINSON TYPE)

COMPUTER DESIGN - - - - - (INPUT)

	MODE	EL	EWO		DESIGN NO(1)
	(80)	Pi	PERM OF LEAKAGE PATH 1		
	(81)	P ₂	PERM OF LEAKAGE PATH 2		
	(82)	P 3	PERM OF LEAKAGE PATH 3		i
	(83)	P 4	PERM OF LEAKAGE PATH 4		
	(84)	P 5	PERM OF LEAKAGE PATH 5		
ERMEAHC	(85)	P 6	PERM OF LEAK/GE PATH 6		
ERN	(86)	P 7	PERM OF LEAKAGE PATH 7		
۰	(80a)	Q 1	LENGTH OF LEAKAGE PATH 1		
	(81a)	Q ₂	LENGTH OF LEAKAGE PATH 2		
	(85)	86	LENGTH OF LEAKAGE PATH 6		
	(84)	Q.	LENGTH OF LEAKAGE ACROSS COP.		
	(73)	dir	INSIDE DIA OF ROTOR TUBE		
	(78,	d Q	INSIDE DIA OF HOLLOW SHAFT		
8	(78)	hy	HEIGHT OF COIL YOKE		
Z.	(78)	Q,	LENGTH OF COIL YOKE		
DIMENSIONS	(78)	Q ak	LENGTH OF ROTOR SKIRT		
	(78)	Qy4	EFFECTIVE LENGTH OF SHAFT		
ROTOR	(78)	g , 2	HORIZONTAL LENGTH OF GAP 92		
_	(78)	Tsp	THICKNESS OF SOUTH POLE		
	(78)	Tak	THICKNESS OF ROTOR SKIRT		
	(78)	dto	TAPERED GAP DIMENSIONS		
	(78)	4,1			
	(78)	dsl			
2	(78)	d ₈₂			
Š	(78)	d _s 3	STEPPED GAP DIMENSIONS		
PIMENSION	(78)	ds4			
	(78)	0 -	 		
ت ع	(78)	2.1	 		
GA P	(78)	ℓ _{s2}	ATTENDED G. B. HODELTON TALL. I. FUGTUS		
	(78)	1 ≥4	STEPPED GAP HORIZON TALLENGTHS		
	(78)	Ŷ.5			j
			SEERCTIVE CUAST OR		
-	(78)	Wasse	POLE FACE HARMONIC LOSS		1
	(243) (244)	WPHR WDHR			İ
	(157)	Link	WEIGHT OF ROTOR IRON		1
	(16)		STATOR LAM. MTH'L		1
¥	1		SOUTH POLE, TUBE & SKIRT		
	(10)		NORTH POLE, SPIDER & SHAFT		
4			COIL YOKE		
•					
]
					ļ
					ļ
					-
	 		 		ł .
		 			1
	<u></u>		1	L	J

TWO-COIL LUNDELL (BECKY-ROBINSON TYPE) SUMMARY OF DESIGN CALCULATIONS - - - - - (OUTPUT)

	МО	DEL		. EWO	DESIGN NO.						
	(17) (🛵)	SOLID CORE I	LENGTH				CALTER C	DEFFICIENT	(67)	(Ka)	Γ
	(24) (he)	DEPTH BELO	W SLOT				EFFECTIV	E AIR GAP	(69)	(ge)	L
	(26) (T _s)	SLOT PITCH					FUND/MAX	OF FIELD FLUX	(71)	(C1)	
	(27) (7 ₀ 1/3)	SLOT PITCH T	/3 DIST. UP				MINDING C	DNST.	(72)	(Cw)	ן ו
	(42) (Ksk)	SKEW FACTOR	·				POLE CONST.		(73)	(C _p)	
	(43) (K _d)	DIST. FACTOR	· ·				END. EXT.	ONE TURN	(48)	(LF)	! `
ļ	(44) (Kp)	PITCH FACTO	R				DEMAGNET	IZING FACTOR	(74)	(CM)	Ι.
	(45) (n e)	EFF. CONDUCTORS					CROSS MAG	METIZING FACTOR	(75)	(Cq)	
ě	(46) (a _e)	COND. AREA		· · · · · · · · · · · · · · · · · · ·			AMP COND	/IN	(128)	(A)	1
Y	(47) (5 _m)	CURRENT DE	MSTY (STA.)				REACTANCE FACTOR		(129)	(X)]
in [(49) (L ₁)	1/2 MEAN TUI				· · · · · · · · · · · · · · · · · · ·		REACTANCE		(Xg)	l
	(53) (R _{ph})	COLD STA. RI					REACTANO	E OF		(X aq)	
	(54) (R _{ph})	HOT STA. RES				 		REACTION ((132)	(X og)	
	(55) (EF _{top})	EDDY FACTO	R TOF				SYN REACT	DIRECT AXIS		(X d)	1
	(56) (EFbo)	EDDY FACTO					SYN REACT QUAD AXIS			(X _q)	۱: ا
	(62) (入」)	TATOR CON	D. PERM.				FIELD LEAKAGE REACT			(X, ¹)	734
	(64) (Ae)	END PERM.					FIELD SELF INDUCTANCE			(Lf)	1
	(65) ()	WT. OF STA.					DAMPER			(X D4)	li l
	(66) ()	WT. OF STA. I	RON				LEAKA GE REACTANCES			(X Dq)	1
	(41) (Tp)	POLE PITCH						UNSAT. TRANS. REACT		(X,9n)	ì
	(157) (-)	WT. OF ROTO				SAT. TE		S. REACT		(X, ^q)	
	(145) (V _F)	PERIPHERAL						SREACT DIRECT AX.		(X,4)	1
Q	(153) (act)	FLD COND. A						REACT QUAD AX.		(x" _e)	ł
FIEL	(154) (R _f) (155) (R _f)	COLD FLD RE						ENCE REACT		(X2)	ł
	(156) (-)	WT. OF FLD.						ZERO SEQUENCE REACT		(X ₀)	+
	(176) (Táa)	OPEN CIR. TI					TOTAL FLUX		(90)	$\frac{(\phi'_{\tau})}{(\phi'_{p})}$	{
	(177) (Ta)	ARM TIME CO					GAP DENSITY (MAIN)		(95)		1
4 2.	(178) (174)	TRANS TIME					TOOTH DE		(91)	(B'g)	۱, ا
٠ ن	(179) (T "a)	SUB TRANS T					CORE DEN		(94)	(B'c)	Ę
	(80) (P))	PERM OF LEA	KAGE PATH 1		<u> </u>			PERE TURNS	(97)	(F' ₁)	1:
w	(81) (P2)	PERM OF LEA	KAGE PATH 2				<u> </u>	ERE TURNS	(98)	(F'c)	Ē
¥	(82) (P3)	PERM OF LEA	KAGE PATH 3				GAP AMPE	RE TURNS (MAIN)	(96)	(F'a)	6
Į.	(83) (P4)	PERM OF LEA	KAGE PATH 4		1		SHORT CIR		(180)	(FSC)	۱.
ER	(84) (P5)	PERM OF LEA	KAGE PATH 5				SHORT AR	RATIO	(181)	(SCR)]
•	(85) (P ₆)		KAGE PATH 6						\Box		
	(86) (P ₇)		KAGE PATH 7				<u>L</u>	,	<u> </u>		L
-(O)	PERCENT I		0	/B(/65.3)	100		150	200	0	PTIONAL	-
	(116) N.P. DE			(B _{npfl}) (234)					<u> </u>		
	(105) S.P. DE			(B _{spff}) (215)				<u> </u>	 _		
	(123) COIL TO	KE DENSITY		(By2ft)(228) (By4ft)(232)		+		 			
				(B ₉ 3fl)(230)		-			├		_
			(B _{92ff})(224)		1		 			-	
(Fn!) (127) TOTAL NI (Ff!) (236)							_				
G.	(127e)FIELD	AMPERES		(Iff) (237)							_
	(127e)CUR. DI		Y-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(SA) (239)							_
((()	(1276)FIELD	VOLTS		(E _{ff)} (238)		1			,.		_
(We) (185) STA CORE LOSS				(W _e) (185)						w	
	≤ (W _{mi}) (184) STA TOOTH LOSS (N _M) (242)										
				(W _{dfl}) (244)							_
(12R _a) (194) STATOR CU LOSS (12 R _a) (245)								_			
(-) (195) EDDY LOSS			(-) (244)								
(Wan) (184) POLE FACE LOSS			(W _{pfl}) (243)					_			
(12R ₂)(192) FIELD COIL LOSS			() 2 R _f) (241)		 			_			
(FAW) (183) FAW LOSS			(FAW) (183)		+						
			(-) (247) (-) (251)		+		<u> </u>	 		_	
`=/	, - / FERCE	N. EFF.		(-, (23))		+-					
			L-04	<u></u>	L			L	<u></u>		_
			T-04	DESIG	NER		D/	\TE	-	REV	•

TWO-COIL LUNDELL (BECKY-ROBINSON TYPE) NO LOAD SATURATION OUTPUT SHEET

	(3) (E) VOLTS	(95) B'g DENSITY	(122) B _{g2} DENSITY g2	(119) B _{g 3} DENSITY _g 3	(94) B _E DENSITY STATOR CORE	(91) B' _T DENSITY STATOR TOOTH
VOL TS	(125) B _{y 2} CAL YOKE	(105) B _{SP} DENSITY S. P.	(116) B _{NP} DENSITY N. P.	(113) B _{y4} SHAFT DENSITY	(93) $\psi_{ m p}^{\prime}$ FLUX PER POLE	(127) F _{NL} Total NI
80%						
90%		·				
100%						
110%						
120%						
130%						
140%						
150%						
160%						

L-05

TWO-COIL LUNDELL (BECKEY-ROBINSON TYPE) COMPUTER DESIGN MANUAL

	(1)		DESIGN NUMBER
	(2)	KVA	GENERATOR KVA
	(3)	E	LINE VOLTS
	(4)	E _{PH}	PHASE VOLTS
	(5)	m	PHASES
	(5a)	f	FREQUENCY
	(6)	P	POLES
	(7)	RPM	SPEED
	(8)	$I_{ m PH}$	PHASE CURRENT
	(9)	P. F.	POWER FACTOR
	(9a)	к _с	ADJUSTMENT FACTOR
	(1 0)		LOAD POINTS
	(11)	đ	STATOR PUNCHING I.D.
	(11a)	$\mathtt{d}_{\mathbf{r}}$	ROTOR O.D.
	(12)	D	PUNCHING O.D.
	(13)	义	GROSS STATOR CORE LENGTH
	(14)	n _V	RADIAL DUCTS
	(15)	b _v	RADIAL DUCT WIDTH
	(16)	K _i	STACKING FACTOR
	(17)	L s	SOLID CORE LENGTH
	1		

(18)

MATERIAL - This input is used in selecting the proper magnetization curves for stator; tube, south pole and skirt; yoke; north pole, spider and shaft; when different materials are used. Separate spaces are provided on the input sheet for each section mentioned above. Where curves are available on card decks, used the proper identifying code. Where card decks are not available submit data in the following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in this manual on Curvesf15 andf16. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

1		
(19)	k	WATTS/LB
(20)	В	DENSITY
(21)		TYPE OF STATOR SLOT
(22)		ALL SLOT DIMENSIONS
(23)	Q	STATOR SLOTS
(24)	$h_{\mathbf{c}}$	DEPTH BELOW SLOTS
(25)	q	SLOTS PER POLE PER PHASE
(26)	$\tau_{\rm s}$	STATOR SLOT PITCH
(27)	$\gamma_{\rm s}^{1/3}$	STATOR SLOT PITCH
(28)		TYPE OF WINDING
(29)		TYPE OF COIL
(30)	n _s	CONDUCTORS PER SLOT
(31)	Y	THROW
(31a)		PER UNIT OF POLE PITCH SPANNED
(32)	С	PARALLEL PATHS
(33)		STRAND DIA, OR WIDTH
(34)	NST	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH
(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR
(35)	ф	DIAMETER OF BENDER PIN
(36)	$\ell_{\rm e2}$	COIL EXTENSION BEYOND CORE
(37)	h _{ST}	HEIGHT OF UNINSULATED STRAND
(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH
•		

ı			
	(39)		STATOR COIL STRAND THICKNESS
	(40)	$\gamma_{ m sk}$	SKEW
	(41)	$ au_{ exttt{P}}$	POLE PITCH
	(42)	K _{SK}	SKEW FACTOR
	(42a)		PHASE BELT ANGLE
į	(43)	к _d	DISTRIBUTION FACTOR
	(44)	К _р	PITCH FACTOR
i	(45)	n _e	TOTAL EFFECTIVE CONDUCTORS
i	(46)	a_c	CONDUCTOR AREA OF STATOR WINDING
	(47)	s_{s}	CURRENT DENSITY
	(48)	$\mathbf{L}_{\mathbf{E}}$	END EXTENSION LENGTH
	(49)	$\ell_{\rm t}$	1/2 MEAN TURN
	(50)	X _s o C	STATOR TEMP OC
	(51)	$arphi_{ m s}$	RESISTIVITY OF STATOR WINDING
	(52)	S _(hot)	RESISTIVITY OF STATOR WINDING
	(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE
	(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE
	(55)	EF (top)	EDDY FACTOR TOP
	(56)	EF (bot)	EDDY FACTOR BOTTOM
	· 		
	Ī.	7	

ž.

and second

İ	1	•
(57)	b _{tm}	STATOR TOOTH WIDTH
(57a)	b _{t1/3}	STATOR TOOTH WIDTH
(58)	bţ	TOOTH WIDTH AT STATOR I.D. IN INCHES
(59)	g	MAIN AIR GAP IN INCHES
(59a	g ₂	AUXILIARY AIR GAP in inches. Refer to Figure 3
(59b)		TYPE OF GAP g ₃ . Refer to Figure 4
		For stepped gap use 1. on input sheet.
		For tapered gap use 2. on input sheet.
(59c)	g ₃	AIR GAP (g ₃) in inches. Refer to Figure 4
		When (59b) = $\underline{2}$. then(g_3) = (g_3e)
		(59c) = (59f)
		When (59b) = <u>1.</u> go on to (59d)
(59d)	g ₃₋₁	AIR GAP g ₃₋₁ in inches. Refer to Figure 4
(59e)	g ₃₋₂	AIR GAP g ₃₋₂ in inches. Refer to Figure 4
(59f)	g _{3e}	EFFECTIVE AIR GAP LENGTH TO BE SPECIFIED ON INPUT SHEET
		When $(59b) = 2$. then $g_{3e} = g_3$ or $(59f) = (59c)$
		When (59d) = (59e), then $g_{3E} = (59d)$
		When (59d) \neq (59e), then $g_{3E} = \frac{(59d) + (59e)}{2}$
(60)	c ^X	REDUCTION FACTOR
(61)	K _X	FACTOR TO ACCOUNT FOR DIFFERENCE in phase current
		in coil sides in same slot.
(62)	Ŋi	CONDUCTOR PERMEANCE
(63)	K _E	LEAKAGE REACTIVE FACTOR
(64)	$\lambda_{\mathbf{E}}$	END WINDING PERMEANCE

	(65)		WEIGHT OF COPPER
	(66)		WEIGHT OF STATOR IRON
	(67)	K _s	CARTER COEFFICIENT
	(68)	Ag	MAIN AIR GAP AREA
	(69)	g _e	EFFECTIVE AIR GAP
	(70)	A _{g2}	AUXILIARY AIR GAP (g ₂) AREA
			$= \eta \left[\left(d_{ir} \right) + \left(g_2 \right) \right] \left(\left(l_{g2} \right) \right)$
			$= \pi \left((78) + (59a) \right)$
	(70a)	A _{g3}	AUXILIARY AIR GAP (g ₃) AREA
		8-	When $(59b) = 1.0$ calculate as follows:
			$A_{g3} = \pi \left\{ (d_{s1}) (l_{s1}) + (d_{s2}) (l_{s2}) + (d_{s3}) (l_{s3}) + (d_{s4}) (l_{s4}) + (d_{s5}) (l_{s5}) \right\} + C_{s5}$
			$\pi\left\{\frac{\left(\mathrm{d_{os}}\right)^2-\left(\mathrm{u_{s1}}\right)^2}{4}\right\}$
i			= All dimensions located at item (78)
			NOTE: Number of steps limited to 5 in this program.
			When $(59b) = 2.0$ calculate as follows:
			$A_{g3} = \frac{\gamma}{2} \left[(d_{to}) + (d_{t1}) \right] \sqrt{4(\ell_{y4})^2 + \left[(d_{to}) - (d_{t1}) \right]^2}$
			$A_{g3} = \frac{7}{2} \left[(78) + (78) \right] \sqrt{4(78)^2 + \left[(78) - (78) \right]^2}$

(71)	C ₁	THE RATIO OF MAXIMUM FUNDAMENTAL of the field form to the actual maximum of the field form.
(72)	c _w	WINDING CONSTANT
(73)	C _p	POLE CONSTANT
(74)	C _M	DEMAGNETIZING FACTOR
(75)	C _q	CROSS MAGNETIZING FACTOR
(75a)		TYPE OF POLE - This computer program is presently set up to handle two types of pole shapes: 1) A rectangular or square type of pole. 2) A hexagonal type.
		Refer to Figure L-2

Type I (Rectangular or Square Pole)

Type 2 (Hexagonal Pole)

DIRECTION OF RUTATION

The above sections represent a view into the north and south pole from main air gap. This program is presently set up to handle only two types of pole shapes:

1) Rectangular or square, 2) Hexagonal.

Figure L-2

(76)	
(77)	

(77a)

×

POLE DIMENSION LOCATIONS per Figure L2

All dimensions given in inches.

bsp(end) - Width of south pole at end of stator stack.

 $b_{sp}(mi\alpha)$ - Width of south pole at middle of south pole.

bnp(end) - Width of north pole at end of north pole.

b_{np}(mid) - Width of north pole at middle of north pole.

 ℓ_{sp} - Length of south pole.

 $\ell_{\rm np}$ - Length of north pole.

POLE EMBRACE - This value must be recorded on the input sheet.

When $b_{np}(end) = b_{np}(mid)$

$$\propto = \left[\frac{b_{np}(end)}{(T_p)} \right] = (76)$$

When $b_{np}(end) \neq b_{np}(mid)$

$$\propto = \frac{(\propto_e) + (\sim_m)}{2} = \frac{(77) + (77)}{2}$$

Where
$$\alpha_e = \frac{b_{np}(end)}{(\gamma_p)} = \frac{(76)}{(41)}$$

The next eleven (11) items deal with the calculation of rotor and stator leakage permeance. A number of illustrations are included to help identify and locate the

actual path. This computer program is set up to handle the permeance calculations two ways:

- 1) P_1 through P_7 can be calculated by computer. For this program insert 0. on input sheet.
- 2) P₁ through P₇ can be calculated by designer. this case insert actual calculated value on input sheet.

Permeance calculations P1 through P7 are all based on the equation

$$P = \underbrace{\mathcal{M}(area)}_{\mathcal{L}}$$

Where $\mathcal{M} = 3.19$

Area ℓ = cross sectional area perpendicular to = length of path

(78)

ROTOR DIMENSION LOCATIONS per l'igure & w

Figure L-3

Figure L-4

(4	(78) :ont	p)
	(79)	

dir = inside diameter of tube.

do = inside diameter of hollow shaft.

dto For tapered gap only. Insert 0.0 on input sheet

dtl when stepped gap is used.

hnp = Height of north pole.

hy = Height of yoke.

 \mathcal{L}_{y} = Length of yoke.

 ℓ_{y4} = Effective length of shaft - the portion carrying flux.

 ℓ_{g2} = Horizontal length of g_2 .

 $\ell_{
m sk}$ - Length of rotor skirt.

T_{sp} = Thickness of south pole.

Tsk = Thickness of rotor skirt.

All dimensions given in inches.

All dimensions listed above that apply should be filled out on input sheet. Where the dimensions do not apply, insert 0.0 on input sheet.

9) $|\mathbf{a}_{np}|$

NORTH POLE AREA - The effective cross-sectional area of the north pole.

When
$$b_{np}(end) = b_{np}(mid)$$

 $a_{np} = (\ell_{np}) [(b_{np}(end))]$
 $= (76) (76)$

When $b_{np}(end) \neq b_{np}(mid)$

$$a_{np} = \frac{(\ell_{np})}{2} \left[(b_{np}(end) + (b_{np}(mid)) \right]$$

$$= \frac{(76)}{2} \left[(76) + (76) \right]$$

When radially tapered poles are used, use the dimensions at the base of the pole to calculate the area.

(79a) a_{sp} SOUTH POLE AREA - The effective cross-sectional area of south pole. Cross-sectional to the path of flux at the point in line with edge of stator stack. $a_{sp} = (b_{sp}(end))(T_{sp})$ = (76) (78)AREA OF SKIRT - At entry edge of auxiliary air gap g_2 in inches². $a_{sk} = \pi \left[(d_r) - (T_{sk}) \right] (T_{sk})$ $= \pi \left[(lla) - (78) \right] (78)$

Figure L-5

(80)	Pl	POLE HEAD END LEAKAGE PERMEANCE - This input
		can be either 0.0 or the actual value if available.
		Refer to Item (77a) for explanation. See Figure L 2
	İ	for location.
		$P_1 = 3.19 \frac{[b_{np}(end)) + (I_2)][(T_{sp}) (p)]}{(I_1)}$
		$= 3.19 \frac{(76) + (81a)(78)(6)}{(80a)}$
(80a)	ℓ_1	Where ℓ_1 = length of leakage path P_1 and must be specified
		on input sheet. Refer to Figure L2 for location.
(01)	D -	DOLE HEAD OVDE LEAVAGE DEDMEANOE Defenda
(81)	P ₂	POLE HEAD SIDE LEAKAGE PERMEANCE - Refer to
		Figure L2
		This input can be either 0.0 or the actual value if
		available. Refer to Item (77a) for explanation.
	:	When $b_{np}(end) = b_{np}(mid)$
		$\mathbf{P_2} = 3.19 \underbrace{\left(\underbrace{\ell_{\mathrm{np}}}_{\mathrm{np}} + (\underbrace{\ell_{\mathrm{1}}}_{\mathrm{1}}) \right) (\mathbf{T_{\mathrm{sp}}})(\mathbf{P})}_{(\underbrace{\ell_{\mathrm{2}}})}$
		$P_2 = 3.19 \frac{(76) + (80a)(78)(6)}{(81a)}$
	,	When $b_{np}(end) \neq b_{np}(mid)$
		$P_2 = 6.28 \frac{1}{2} \underbrace{\left[b_{np}(mid) - (b_{np}(end))^2 + (k_{np})^2 + \frac{k_1}{2} \right]}_{(k_2)} (T_{sp})(P)$
		6. 28 $\left[\frac{1}{2}\sqrt{(76)-(76)}\right]^2+(76)^2+\frac{(80a)}{2}$ (78)(6)
		(8la)

	Ì	1
(8la)	12	LENGTH OF LEAKAGE PATH P2 and must be specified on
		input sheet. Refer to Figure L2 for location.
(82)	P ₃	POLE BODY END LEAKAGE PERMEANCE - Refer to
		Figure 5
		This input can be either 0.0 or the actual value if
		available. Refer to Item (77a) for explanation.
		$P_3 = 3.19 \frac{\left[(b_{np}(end)) \right] \left[(h_{np}) - (T_{sp}) \right] (P)}{\ell_3}$
		$= 3.19 \frac{(76)(78) - (78)(6)}{(82a)}$
(82a)	l_3	LENGTH OF PERMEANCE PATH P3
		$= \left[(d_{\mathbf{r}}) - (d_{\mathbf{OS}}) \right] \frac{\mathcal{H}}{8} - (T_{\mathbf{Sp}})$
		$= \left[(11a) - (78) \right] \frac{77}{8} - (78)$
(83)	P ₄	POLE BODY SIDE LEAKAGE PERMEANCE - This input
	_	can be either 0.0 or the actual value if available.
		Refer to Item (77a) for explanation. This calcula-
		tion varies with the number of poles. The four-
		pole calculation differs from the second calcula-
		tion but the 6, 8, 10 and 12 pole coin lations are
		the same. Refer to Figures L7, L1 9

When (6) = 4 and
$$b_{np}(end) = b_{np}(mid)$$

$$P_{4} = 3.19 \frac{(d_{r})}{2} - (T_{sp}) (f_{np}) + (f_{np}) + (f_{np}) (f_{np}) + (f_{np}) (f_{np}) + (f_{np}) (f_{np}) + (f_{np}) (f_{np}) (f_{np}) + (f_{np}) (f_{n$$

When (6) = 4 and
$$b_{np}(end) \neq b_{np}(mid)$$

$$P_{4} = 3.19 \underbrace{\frac{(d_{r})}{2} - (T_{sp}) \underbrace{\frac{1}{4} \underbrace{(b_{np}(mid) - (b_{np}(end))^{2} + (l_{np})^{2} + \frac{(l_{1})}{2}}_{(l_{4})} 2(P)}_{(l_{4})}$$

$$= 3.19 \underbrace{\frac{(11a)}{2} - (78) \underbrace{\frac{1}{4} \underbrace{(76)} - (76)}_{(83)}^{2} + \frac{(80a)}{2}}_{(83)} 2(6)$$

When (6) $\stackrel{>}{=}$ 6 and $b_{np}(end) = b_{np}(mid)$

$$P_{4} = 3.19 \underbrace{\frac{(\alpha_{r}) - d_{0s})}{2} - (T_{sp}) \underbrace{(\ell_{np}) + (\ell_{1})}_{(\ell_{4a})} (P)$$

$$= 3.19 \underbrace{\frac{(11a) - (78)}{2} - (78)}_{(83)} (76) + (80a) (6)$$

Where
$$\ell_{4a} = \frac{\left(\frac{d_r}{2}\right) - (T_{sp})}{2} \sin \frac{2\pi}{(P)} \left[1 - \frac{(\alpha)}{4}\right] - \frac{(b_{np}(end))}{2}$$
$$= \frac{\left(\frac{(11a)}{2}\right) - (78)}{2} \sin \frac{2\pi}{(6)} \left[1 - \frac{(77)}{4}\right] - \frac{(76)}{2}$$

Figure L-6

L-18

EIGHT (8) POLE ALTERNATOR

L-19

Figure L-8

TWELVE (12) POLE ALTERNATOR

$$\ell_4 = \left(\frac{d_r}{2} - t_{gp}\right) \sin \frac{2\pi}{p} \left[1 - \frac{d}{4}\right] - \frac{b_{NP(p,q)}}{2}$$

Figure L-9

(84)	P ₅	When (6) $\stackrel{?}{=}$ 6 and $b_{np}(end) \neq b_{np}(mid)$ $P_4 = 6.28 \underbrace{\frac{(d_r)}{2} - (T_{sp})} \underbrace{\frac{1}{4} \sqrt{(b_{np}(mid) - (b_{np}(end))^2 + (\ell_{np})^2 + \frac{(\ell_1)}{2}}}_{(\ell_1)}(P)$ $= 6.28 \underbrace{\frac{(11a)}{2} - (78)}_{(83)} \underbrace{\frac{1}{4} \sqrt{(76) - (76)}^2 + (76)^2 + \frac{(80a)}{2}}_{(83)}(6)$ COIL LEAKAGE PERMEANCE TO A NORTH POLE - This
		input can be either 0.0 or the actual value if available. Refer to Item (77a) for explanation.
		See Figure 19 for location.
		$P_5 = 3.19 \frac{(b_{np} \text{ end})(\ell_6)}{(\ell_c)} \frac{2}{3} (P)$
		$= 3.19 \frac{(76)(85) \frac{2}{3} (6)}{(84)}$
		Where ℓ_c = length of leakage path P ₅ and must be
		specified on the input sheet. Refer to Figure LIO
		for location.
		NOTE: This covers the leakage for both ends of rotor.
(85)	P6	COIL LEAKAGE PERMEANCE TO SOUTH POLE - This input
		can be either 0.0 or the actual value if available.
		Refer to Item (77a) for explanation. See Figure L 11
		for location.

Figure L-10

FLUX LEAKAGE ACROSS FIELD COILS

Leakage Fluxes \emptyset_5 and \emptyset_6 (Leakage across the field coil \emptyset_6 , and through the field coil \emptyset_5)

d_{os} = diameter of outer shaft

 A_{y2} = area of yoke at smallest section

$$A_{y2} = (d_{os})(\lambda y) \eta r$$

The leakage flux ϕ_5 and ϕ_6 add to the flux in the yoke member y_2 but of the two leakage fluxes, only ϕ_5 adds to the flux crossing air gap g_3 .

Figure L-12

LEAKAGE FLUX FROM STATOR BACK-IRON TO ROTOR SKIRT - PATH 7

Figure L-13

$$P_{6} = \frac{3.19(\ell_{c})(\propto)\left[(d_{r})-2(T_{sp})\right]\frac{\mathcal{T}}{(P)}}{(\ell_{6})}$$

$$= \frac{3.19(84)(77)\left[(11a)-2(78)\right]77}{(85)}$$

Where ℓ_6 = Length of leakage path P₆ and must be specified on the input sheet. Refer to Figure 1. If for location.

NGTE: This covers the leakage for both ends of the rotor.

(86) P7

STATOR CORE TO ROTOR SKIRT FLUX LEAKAGE -

Permeance path. This input can be either 0.0 or the actual value if available. Refer to Item (77a) for explanation. See Figure Li3 for location.

$$P_7 = 3.19 \frac{\frac{\pi}{4} \left[(d_r) + (h_c) + (h_s) \right] \left[(h_c) + (h_s) + (\ell_{sk}) \right]}{(\ell_7)}$$

P7 = 3.19
$$\frac{\pi}{4}$$
 [(11a)+(24)+(22)] [(24)+(22)+(78)] (86)

Where
$$\ell_7 = n \frac{(h_c) + (h_g)}{2} = n \frac{(24) + (22)}{2}$$

The leakage is from 1/2 the stator end surface calculated on each side of the stator, making the total leakage surface calculated as follows:

Area =
$$\pi \left[(d_r) + (h_c) + (h_s) \right] \left[\frac{(h_c) + (\ell_{sk})}{2} \right]$$

However, 1/2 of the leakage is useful and generates voltage in the stator conductors. So for tooth density, pole density and air-gap flux calculations, the leakage flux area is:

Area =
$$\frac{1}{2} \mathcal{T} \left[(d_{\mathbf{r}}) + (h_{\mathbf{c}}) + (h_{\mathbf{s}}) \right] \left[\frac{(h_{\mathbf{c}}) + (\ell_{\mathbf{sk}})}{2} \right]$$

= $\frac{\mathcal{T}}{4} \left[(d_{\mathbf{r}}) + (h_{\mathbf{c}}) + (h_{\mathbf{s}}) \right] \left[(h_{\mathbf{c}}) + (h_{\mathbf{s}}) + (\ell_{\mathbf{sk}}) \right]$
= $\frac{\mathcal{T}}{4} \left[(11a) + (24) + (22) \right] \left[(24) + (22) + (78) \right]$

NO LOAD SATURATION CALCULATIONS - The next set of calculations deals with the no load saturation.

When the no load saturation data is required at various voltages, insert 1. on input sheet for "No Load Sat." The computer will then calculate no load saturation @ 80, 90, 100, 110, 120, 130, 140, 150 and 160% of rated volts. When the complete saturation data is not necessary, insert 0. on input sheet and the computer will calculate the 100% volt data.

(87)

(88) $\phi_{\rm T}$ TOTAL FLUX IN KILOLINES $\phi_{\rm T} = \frac{6(E)10^6}{(C_{\rm W})(N_{\rm e})({\rm RPM})} = \frac{6(3)10^6}{(72)(45)(7)}$	
$\phi_{\mathbf{I}} = \frac{6(E)10^6}{(C_W)(N_e)(RPM)} \frac{6(3)10^6}{(72)(45)(7)}$	
(89) \emptyset' 7 ESTIMATED VALUE OF LEAKAGE FLUX \emptyset_7 \emptyset' 7 = .01 (\emptyset_T)	
= .01 (88)	
Complete the next set of calculations Item (90) the Item (99) using \emptyset_7^i , the estimated value. If the value (\emptyset_7^i) Item (99) agrees within $\pm 10\%$ of the estimate (\emptyset_7^i), Item (89), use all of the items, (90) (99) as final and proceed on with calculations. If culated value \emptyset_7^i , Item (99), does not agree within estimated value (\emptyset_7^i) then recalculate items (89) (99) using \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) as the estimated value for \emptyset_7^i item (99) item (99	calculated stimated through f the cal- ±10% of the through r Ø'7.
= (88) + (89)	
(91) B'_{T} ESTIMATED STATOR TOOTH DENSITY $B'_{T} = \frac{Q'_{T}}{(Q)(\ell_{S})(b_{t} 1/3)} = \frac{(90)}{(23)(17)(57a)}$	
(92) ϕ_{P} FLUX PER POLE $\phi_{P} = \frac{(\phi_{T})(C_{P})}{(P)} \frac{(88)(73)}{(6)}$	

1		,
(93)	ø'p	ESTIMATED FLUX PER POLE including leakage flux Ø7
		$Q'_{\mathbf{P}} = \frac{(Q'_{\mathbf{T}})(C_{\mathbf{P}})}{(\mathbf{P})} = \frac{(90)(73)}{(6)}$
(94)	B'c	ESTIMATED STATOR CORE DENSITY
		$B_{C} = \frac{(Q_{P})}{2(h_{C})(\ell_{S})} = \frac{(93)}{2(24)(17)}$
(95)	B'g	ESTIMATED MAIN GAP DENSITY
		$B'g = \frac{Q'T}{\pi(d)(\ell)} = \frac{(90)}{\pi(11)(13)}$
(96)	F'g	ESTIMATED MAIN GAP AMPERE TURNS
		$F'_g = \frac{(B'_g)(g_e)}{3.19} \times 10^3 = \frac{(95)(69)}{3.19} \times 10^3$
(97)	F'T	ESTIMATED STATOR TOOTH AMPERE TURNS
		$F'_T = (h_s)[NI/inch at density (B'_T)]$
		= (22) look up on stator magnetization curve given in (18) at density (91)
(98)	F'c	ESTIMATED STATOR CORE AMPERE TURNS
		$\mathbf{F'_{C}} = \left\{ \frac{\pi[(D) - (h_{C})]}{4(P)} \right\} \left[\mathbf{NI/inch at density} (\mathbf{B'_{C}}) \right]$
		$\mathbf{F'_{C}} = \left\{ \frac{\pi[(12)-(24)]}{4(6)} \right\} \begin{bmatrix} \text{Look up on stator magnetization} \\ \text{curve at density (94)} \end{bmatrix}$

(99)	Ø ₇	CALCULATED VALUE OF LEAKAGE FLUX through path 47.
		See Figure L13. Leakage from stator back iron to
		rotor skirt. (In kilolines).
		$= (86) \left[(96) + (97) + (98) \right] \times 10^{-3}$
,		Next compare the estimated value of $\emptyset'_{.7}$, Item (89)
		with the calculated value of \$\omega_7\$, Item (99).
		If 1.10 $(\emptyset \ 7) \stackrel{?}{=} (\emptyset' \ 7) \stackrel{?}{=} .90 \ (\emptyset \ 7)$ then use $\emptyset \ 7$ and
		continue with calculations. If \emptyset 7 does not fall
		within the limits given above, then recalculate Item
		(89) through (99) using \emptyset 7, Item (99) as estimated
		value of Q' 7.
(100)	Ø ₁	POLE HEAD END LEAKAGE FLUX. (In kilolines)
		$\emptyset_1 = (P_1)[2(F'_g) + 2(F'_T) + 2(F'_c)] \times 10^{-3}$
		= $(80)[2(96) + 2(97) + 2(98)] \times 10^{-3}$
(101)	Ø ₂	POLE HEAD SIDE LEAKAGE. (In kilolines)
		$\emptyset_2 = (P_2)[2(F'_g) + 2(F'_T) + 2(F'_c)] \times 10^{-3}$
		= (81) $\left[2(96) + 2(97) + 2(98)\right] \times 10^{-3}$
(102)	Ø ₃	POLE BODY END LEAKAGE. (In kilolines)
		$\emptyset_3 = (P_3)[2(F_g') + 2(F_T') + 2(F_c')] \times 10^{-3}$
		$= (82)[2(96) + 2(97) + 2(98)] \times 10^{-3}$

	1	1
(103)	Ø 4	POLE BODY SIDE LEAKACE. (In kilolines) $\emptyset_{4} = (P_{4}) \left[2(F'_{g}) + 2(F'_{T}) + 2(F'_{c}) \right] \times 10^{-3}$
		$= (83) [2(96) + 2(97) + 2(98)] \times 10^{-3}$
(104)	B _{np}	NORTH POLE FLUX DENSITY - First calculation. This item will be recalculated in Step (116) including flux \emptyset 5.
		$B'_{np} = \frac{\emptyset_{p} + \frac{(\emptyset_{1}) + (\emptyset_{2}) + (\emptyset_{3}) + (\emptyset_{4}) + (\emptyset_{7})}{(a_{np})}}{(a_{np})}$
		$= \frac{(92) + \frac{(100) + (101) + (102) + (103) + (99)}{(6)}}{(79)}$
(105)	$\mathrm{B_{sp}}$	SOUTH POLE FLUX DENSITY
		$B_{sp} = \frac{(\not o_p) + \frac{(\not o_{.1}) + (\not o_{.2}) + (\not o_{.3}) + (\not o_{.4}) + (\not o_{.7})}{(p)}}{2(a_{sp})}$
		=\ -sp /
		$= \frac{(92) + \frac{(100) + (101) + (102) + (103) + (99)}{(6)}}{2(79a)}$
(106)	F' _{np}	$= (92) + \frac{(100) + (101) + (102) + (103) + (99)}{(6)}$
(106)	F' _{np}	$= \underbrace{(92) + \frac{(100) + (101) + (102) + (103) + (99)}{(6)}}_{2 (79a)}$ NORTH POLE AMPERE TURN DROP - First calculation. This item will be recalculated in Item (117) including

(107)	F_{sp}	SOUTH POLE AMPERE TURN DROP
	•	When $b_{np}(end) = b_{np}(mid)$
		$F_{sp} = \frac{(Q_{sp})}{3} \left[NI/inch \text{ at density } (B_{sp}) \right]$
		$F_{sp} = \frac{(76)}{3} \left[\text{Look up on south pole or tube magneti-zation curve given in (18, at density (105))} \right]$
		When $b_{np}(end) \neq b_{np}(mid)$
		$F_{sp} = \frac{(l_{sp})}{2} \left[NI/inch \text{ at density } (B_{sp}) \right]$
		$= \frac{(76)}{2}$ Look up on south pole or tube magnetization curve given in (18) at density (105)
(108)	$\phi_{\mathrm{g}2}$	$\frac{\text{AUXILIARY AIR GAP g2 FLUX}}{\phi_{g2} = \frac{[(\phi_p)(P)] + (\phi_1) + (\phi_2) + (\phi_3) + (\phi_4) + (\phi_7)}{4}}$
		$= \overline{(92)(6)} + (100) + (101) + (102) + (103) + (99)$
(109)	B'g2	FLUX DENSITY IN AUXILIARY GAP - First calculation. $B'_{g2} = \frac{(\emptyset_{g2})}{(A_{g2})} = \frac{(108)}{(70)}$
(110)	F ['] g2	AMPERE TURN DROP ACROSS AUXILIARY AIR GAP - First calculation. $F'_{g2} = \frac{(B'_{g2})(g_2)}{3.19} \times 10^3 = \frac{(109)(40a)}{3.19} \times 10^3$

(112)	Ay4	AREA OF SHAFT - in inches ² - cross-sectional to flux
		in shaft.
		$A_{y4} = \left[\frac{\pi(dos)^2}{4}\right] - \left[\frac{\pi(dQ)^2}{4}\right]$
		$= \frac{\pi (78)^2}{4} - \frac{\pi (78)^2}{4}$
		NOTE: When a solid shaft is used, the second
		term will drop out because $d_{\mathbf{Q}} = 0$.
(113)	By4	FLUX DENSITY OF SHAFT
		$B_{y4} = \frac{(\emptyset_p)(P) + (\emptyset_1) + (\emptyset_2) + (\emptyset_3) + (\emptyset_4) + (\emptyset_7)}{4(A_{y4})}$
		$4 (A_{y4})$
		(92)(6) + (100) + (101) + (102) + (103) + (99)
		$= \frac{(92)(6) + (100) + (101) + (102) + (103) + (99)}{4 (112)}$
(114)	F _{y4}	SHAFT AMPERE TURN DROP
(114)	F _{y4}	
(114)	F _{y4}	SHAFT AMPERE TURN DROP
(114)	Fy4	SHAFT AMPERE TURN DROP $F_{y4} = (\ell_{y4}) \left[\text{NI/inch at density } (B_{y4}) \right]$
(114)	Fy4	SHAFT AMPERE TURN DROP $F_{y4} = (l_{y4}) \left[\text{NI/inch at density } (B_{y4}) \right]$ $= (78) \left[\text{Look up on shaft magnetization curve} \right]$
(114)	Fy4	SHAFT AMPERE TURN DROP $F_{y4} = (l_{y4}) \left[\text{NI/inch at density } (B_{y4}) \right]$ $= (78) \left[\text{Look up on shaft magnetization curve} \right]$ given in (18) at density (113)
(114)	Fy4	SHAFT AMPERE TURN DROP $F_{y4} = (l_{y4}) \left[\text{NI/inch at density } (B_{y4}) \right]$ $= (78) \left[\text{Look up on shaft magnetization curve} \right]$ given in (18) at density (113) NOTE: This magnetization curve for shaft and spider
(114)	F _{y4}	SHAFT AMPERE TURN DROP $F_{y4} = (l_{y4}) \left[\text{NI/inch at density (B}_{y4}) \right]$ $= (78) \left[\text{Look up on shaft magnetization curve} \right]$ given in (18) at density (113) NOTE: This magnetization curve for shaft and spider can be synthesized into one curve when the
(114)	Fy4	SHAFT AMPERE TURN DROP $F_{y4} = (\ell_{y4}) \left[\text{NI/inch at density (B}_{y4}) \right]$ $= (78) \left[\text{Look up on shaft magnetization curve} \right]$ given in (18) at density (113) NOTE: This magnetization curve for shaft and spider can be synthesized into one curve when the effective cross-sectional area of the shaft
(114)	F _{y4}	SHAFT AMPERE TURN DROP $F_{y4} = (\ell_{y4}) \left[\text{NI/inch at density (B}_{y4}) \right]$ $= (78) \left[\text{Look up on shaft magnetization curve} \right]$ given in (18) at density (113) NOTE: This magnetization curve for shaft and spider can be synthesized into one curve when the effective cross-sectional area of the shaft is made up of two separate materials. This

j		
(115)	ø' 5	LEAKAGE FLUX FROM NOTH POLE (SPIDER POLE)
		THROUGH THE FIELD COIL - First calculation.
		Items (116) through (118) will be calculated using this value
		of \emptyset' 5. A new value for \emptyset 5 will then be calculated in
		Item (118). This new value must be within +10% of Item (115)
	<u> </u>	or calculation (115) through (118) must be repeated using the
		new value of (\mathbf{F}_{np}) Item (117) in (115).
		$\phi'_{5} = P_{5}[(F'_{g2})+(F_{sp})+2(F'_{g})+2(F'_{T})+2(F'_{c})+(F'_{np})] \times 10^{-3}$
		= (84) $(107)+2(96)+2(97)+2(98)+(106)$ x 10^{-3}
(116)	B _{np}	NORTH POLE FLUX DENSITY - This value will supersede
	_	the value calculated in (104).
		$B_{np} = \frac{\emptyset_{p} + \frac{(\emptyset_{1}) + (\emptyset_{2}) + (\emptyset_{3}) + (\emptyset_{4}) + (\emptyset_{7}) + (\emptyset_{5})}{(P)}}{(P)}$
		(anp)
		$= (92) + \frac{(100)+(101)+(102)+(103)+(99)+(115)}{(6)}$
		$\frac{(62)}{(79)}$
(117)	F _{np}	NORTH POLE AMPERE TURN DROP - This value will
		supersede the value calculated in (106).
		$F_{np} = h_{np} \left[NI/inch \text{ at density } (B_{np}) \right]$
		= (78) Look up on north pole magnetization
		curve given in (18) at density (116).

(118)	Ø ₅	LEAKAGE FLUX FROM NORTH POLE (spider pole)
		through the field coil. Second Calculation.
		$\emptyset_{5} = P_{5} \left[(\mathbf{F}'_{g2}) + (\mathbf{F}_{sp}) + 2(\mathbf{F}'_{g}) + 2(\mathbf{F}'_{T}) + 2(\mathbf{F}'_{c}) + (\mathbf{F}_{np}) \right] \times 10^{-3}$
į		= (84) $\left[(110)+(107)+2(96)+2(97)+2(98)+(117) \right] \times 10^{-3}$
		This item, Ø 5, must be within +10% of the first calcula-
		tior Ø 5, Item (115), or must recalculate Items (115) through
		(118) using (F_{np}) , Item (117), in the second calculation of (115)
(li9)	Bg3	FLUX DENSITY IN AIR GAP g ₃
		$B_{g3} = \frac{(\emptyset_p)(P) + (\emptyset_1) + (\emptyset_2) + (\emptyset_3) + (\emptyset_4) + (\emptyset_7) + (\emptyset_5)}{4(A_{g3})}$
		$= \frac{(92)(6)+(100)+(101)+(102)+(103)+(99)+(118)}{4(70a)}$
(120)	Fg3	AMPERE TURN DROP ACROSS GAP g3
		When (59b) = 2.0 calculate as follows:
		$\mathbf{F}_{g3} = \frac{\mathbf{B}_{g3}}{3.19} (\mathbf{g}_3) \times 10^3 = \frac{(119)}{3.19} (59c) \times 10^3$
ļ		When (59b) = 1.0, calculate as follows:
		$F_{g3} = \frac{B_{g3}}{3.19} (g_{3e}) \times 10^3 = \frac{(119)}{3.19} (.) f) \times 10^3$
(121)	Ø6	LEAKAGE FLUX ACROSS FIELD COIL FROM INNER YOKE
		TO SOUTH POLE TUBE in kilolines.

(122)	B _{g2}	
		$= \frac{(92)(3)+(100)+(101)+(102)+(103)+(99)+(121)}{4(69a)}$
(123)	Fg2	FINAL $F_{g2} = \frac{(B_{g2})(g_2)}{3.19} \times 10^3 = \frac{(122)(59a)}{3.19} \times 10^3$
(124)	A _{y2}	CROSS-SECTIONAL AREA OF YOKE location per Figure L12
		$A_{y2} = \mathcal{T}(d_{OS})(\mathcal{U}_{y})$ $= \mathcal{T}(78)(78)$
(125)	B _{y2}	
		$B_{y2} = \frac{(\emptyset_{p})(P) + (\emptyset_{1}) + (\emptyset_{2}) + (\emptyset_{3}) + (\emptyset_{4}) + (\emptyset_{7}) + (\emptyset_{5})}{4(A_{y2})}$ $= \frac{(92)(6) + (100) + (101) + (102) + (103) + (99) + (118)}{4(124)}$
(126)	F _{y2}	AMPERE TURN DROP IN COIL YOKE $F_{y2} = \frac{(h_y)}{3} \left[NI/inch \text{ at density } (B_{y2}) \right]$
		= $\frac{(78)}{3}$ Look up on yoke magnetization curve given in (18) at a density (125)

		,
(127)	F _{NL}	TOTAL AMPERE TUPNS AT NO LOAD PER CIRCUIT
		$F_{NL} = 2(F'_g)+2(F'_T)+2(F'_c)+(F_{np})+(F_{sp})+(F_{g2})+(F_{y2})+(F_{g3})+(F_{y4})$
·		= 2(96)+(97)+(98)+(117)+(107)+(123)+(126)+(120)+(114)
(127a)	IFNL	NO LOAD FIELD CURRENT PER COIL
		$I_{FNL} = \frac{F_{NL}}{N_F} = \frac{(127)}{(146)}$
(127b)	EFNL	NO LOAD FIELD VOLTS PER COIL
	ı	$E_{FNL} = (I_{FNL})(R_{F(cold)})$
		= (127a)(154)
(127c)	SF	CURRENT DENSITY IN FIELD CONDUCTOR - At no load
(128)	A	AMPERE CONDUCTORS per inch
(129)	x	REACTANCE FACTOR -
(130)	x	LEAKAGE REACTANCE -
(131)	X _{ad}	REACTANCE - direct axis - This is the fictitious reactance due to armature reaction in the direct axis.
		$X_{ad} = \frac{.9(n_e)(I_{ph})(C_m)(K_d)}{P[2(F'_g)+(F_{g2})+(F_{g3})]} \times 100$
		$X_{ad} = \frac{.9(45)(8)(74)(43)}{6[2(96)+(123)+(120)]} \times 100$
		·

(132)	x _{aq}	REACTANCE - Quadrature axis - This is the fictitious reactance due to armature reaction in the quadrature
		axıs.
		$X_{aq} = \frac{(C_q)(X_{ad})}{(C_m)(C_l)}$
		$X_{aq} = \frac{(75)(131)}{(74)(71)}$
(133)	x _d	SYNCHRONOUS REACTANCE - direct axis -
(134)	x _q	SYNCHRONOUS REACTANCE - quadrature axis - The steady
(135)		DAMPER SLOT DIMENSIONS
(136)		DAMPER BAR DIA OR WIDTH in inches
(137)	h _{bl}	DAMPER BAR THICKNESS in inches -
(138)	n _b	NUMBER OF DAMPER BARS PER POLE
(139)	∕ b	DAMPER BAR LENGTH in inches
(140)	7 ♭	DAMPER BAR PITCH in inches
(141)	$\mathcal{P}_{ extsf{D}}$	RESISTIVITY of damper bar @ 20°C in micro ohm-inches -
(142)	x _D oc	DAMPER BAR TEMP OC -
(143)	P _D (hot)	RESISTIVITY of damper bar @ X _D OC

(144)	acd	CONDUCTOR AREA OF DAMPER BAR -
(145)	v _r	PERIPHERAL SPEED -
(146)	NF	NUMBER OF FIELD TURNS PER COIL
(147)	LtF	MEAN LENGTH OF FIELD TURN
(148)		FIELD CONDUCTOR DIA OP WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches -
(150)	x _f °C	FIELD TEMP IN OC -
(151)	$ ho_{\!_{ m f}}$	RESISTIVITY of field conductor @ 20°C in micro ohm-inches.
(152)	P f (hot)	RESISTIVITY of field conductor at X_f^OC
(153)	a _{cf}	CONDUCTOR AREA OF FIELD WINDING -
(154)	R _f (cold)	COLD FIELD RESISTANCE @ 20°C per coil
		$(old) = (P_f) \frac{(N_f)(l_{tf})^{y/o^{-6}}}{(a_{cf})} = (151) \frac{(146)(147)}{(153)} \times 10^{-6}$

(155)	R _f (hot)	HOT FIELD RESISTANCE - Calculated at $X_f^{O}C$ (103) - (Per coil) $(N_f)(\ell_{ff}) \times 10^{-6}$
<i>t</i> :=0\		$R_{f(hot)} = \mathcal{Q}_{f hot} \frac{(N_{f})(\mathcal{Q}_{tf}) \times 10^{-6}}{(a_{cf})} = (152) \frac{(146)(147) \times 10^{-6}}{(153)}$
(156)		WEIGHT OF FIELD COIL in lbs per coil
		The answer is given in lbs. based on the density of
		copper. If any other material is used, the answer
		on the output sheet can be converted by the designer
		by multiplying by the ratio of densities.
		#'s of copper = $.321 (N_F)(P_{tf})(a_{cf})$
		= .321 (146)(147)(153)
(157)	89 C#	WEIGHT OF ROTOR IRON -
(158)	λ_{b}	PERMEANCE OF DAMPER BAR -
(159)	トpt	PERMEANCE OF END PORTION OF DAMPER BARS
		$\gamma_{pt} = 6.38 \left\{ \frac{(b_{np(end)} - (\gamma_b) \left[(n_b) - 1 \right]}{3(g_e)} \right\}$
		$= 6.38 \left\{ \frac{(76) - (140) \left[(138) - 1 \right]}{3(69)} \right\}$

(160) X

THE EFFECTIVE FIELD LEAKAGE REACTANCE - The reactance which added to the stator leakage reactance gives the transient reactance X' du.

When unit fundamental armature ampere turns are suddenly applied on the direct axis, an initial field current (I_f) will be induced. The value of this initial field current will be just enough to make the net flux interlinking the field because of the field current and the armature current zero. The field ampere turns will equal the armature ampere turns.

$$X_F = X_{ad} \left[1 - \frac{\frac{C_1}{C_m}}{\frac{2C_p + \frac{4}{\sqrt{14}} + \frac{\lambda F}{\lambda a}}{\frac{\lambda F}{\sqrt{14}}}} \right]$$

$$\lambda_{a} = \frac{6.38d}{P_{ge'}} = \frac{6.38(11)}{(6)(160)}$$

Where:

$$g'_{e} = (g_{e}) \left[\frac{2(F'_{g}) + (F_{g2}) + (F_{g3})}{2(F'_{g})} \right]$$

$$= (69) \left[\frac{2(96) + (123) + (120)}{2(96)} \right]$$

	4	ı	
(16	60a)	Pe	$P_{e} = \frac{\phi_{g2} @ NL}{(I_{fNL})(N_{F}) @ NL}$
			$P_{\epsilon} = \frac{(108)}{(127a)(146)}$
(10	61)	LF	FIELD INDUCTANCE
			$L_{\rm F} = 2(N_{\rm F})^2 P_{\rm e} 10^{-8}$
			$= 2(146)^2 (160a) \times 10^{-8}$
(1	6la)	λ r	SPECIFIC PERMEANCE OF FIELD
			$\frac{= (80) + (31) + (82) + (83) + (84) + (85)}{(13)}$
(1	(62)	カDd	PERMEANCE OF DAMPER BAR - in direct axis
			$\lambda_{\text{Dd}} = \left\{ \cos \left[\frac{\left\{ (\mathbf{n}_{b}) - 1 \right\} (\boldsymbol{\gamma}_{b})_{\pi}}{2(\boldsymbol{\gamma}_{p})} \right] \right\} \left\{ \frac{\left\{ (\lambda_{b}) + (\lambda_{pt}) \right\} (\lambda_{p})}{\lambda_{b} + \lambda_{pt} + \lambda_{p}} \right\}$
			$= \left\{ \cos \left[\frac{\{(138)-1\} (140)\eta}{2(41)} \right] \right\} \left\{ \frac{\{(158)+(159)\}(16la)}{(158)+(159)+(16la)} \right\}$
(163)	XDd	DAMPER LEAKAGE REACTANCE - in direct axis
			$X_{Dd} = X(\lambda_{Dd}) = (129)(162)$

1	(164)	≻Dq	PERMEANCE IN QUADRATURE AXIS
	(165)	x _{Dq}	DAMPER LEAKAGE REACTANCE - in quadrature axis
	(166)	x' _{du}	UNSATURATED TRANSIENT REACTANCE
	(167)	x' _d	SATURATED TRANSIENT REACTANCE
	(168)	x" _d	SUBTRANSIENT REACTANCE in direct axis
	(169)	х"q	SUBTRANSIENT REACTANCE in quadrature axis
	(170)	X2	to the field which rotates at synchronous speed
			in a direction opposite to that of the rotor $X_2 = \frac{X_m \left[4(\xi) + 4(\xi)^2 + (n)^2\right]}{n^2 + 4 \left[1 + (\xi)\right]^2} + X_{\ell}$
			$= \frac{(170)\left[4(170) + 4(170)^2 + (170)^2\right]}{(170)^2 + 4\left[1 + (170)\right]^2} + (130)$
			Where $\leq = \frac{(X_D)}{(X_m)} = \frac{(170)}{(170)}$
			Where $X_m = \frac{X_{ad}}{(C_1)(C_m)} \left[\frac{2(F'_g) + (F_{g2}) + (F_{g3})}{(F_{NL})} \right]$

$$=\frac{(131)}{(71)(74)}\left[\begin{array}{c} 2(96) + (123) + (126) \\ \hline (127) \end{array}\right]$$

For Round Slots:

$$X_{D} = \frac{20(X)}{(n_{b})} \left[.62 + \frac{(h_{bo})}{(b_{bo})} \right] + \frac{5(X_{m})}{6(n_{b})^{2}}$$
$$= \frac{20(129)}{(138)} \left[.62 + \frac{(135)}{(135)} \right] + \frac{5(170)}{6(138)^{2}}$$

For Rectangular Slots:

$$\begin{split} \mathbf{X_{D}} &= \frac{20(\mathbf{X})}{\mathbf{N_{b}}} \left[\frac{(\mathbf{h_{bl}})}{3(\mathbf{b_{bl}})} + \frac{(\mathbf{h_{bo}})}{(\mathbf{b_{bo}})} \right] + \frac{5(\mathbf{X_{m}})}{6(\mathbf{N_{b}})^2} \\ &= \frac{20(129)}{(138)} \left[\frac{(135)}{3(135)} + \frac{(135)}{(135)} \right] + \frac{5(170)}{6(138)^2} \end{split}$$

Where
$$n = \frac{R_D}{X_m} = \frac{(170)}{(170)}$$

1 1

Where RD = Damper bar resistance

$$= \frac{100(X)(P)(\bigcap_{hot})}{(f)(f_s)} \underbrace{\begin{bmatrix} f_b \\ (n_h)(a_{cd})(P) \end{bmatrix}}_{+.637(d_{ar})} + \frac{637(d_{ar})}{(a_{dr})(P)^2}$$

$$= \frac{100(129)(6)(143)}{(5a)(17)} \underbrace{\begin{bmatrix} (139) \\ (138)(144)(6) \end{bmatrix}}_{+.637(170)} + \frac{637(170)}{(170)(6)^2}$$

Where d_{dr} = mean diameter of damper end ring. Must be given on input sheet.

Where $a_{dr} = cross-sectional$ area of damper end ring. Must be given on input sheet.

(171)	⊠2	NEGATIVE SEQUENCE IMPEDANCE - approximate calcula-
		tion.
		$\mathbf{Z}_2 = \mathbf{R}_2 + \mathbf{j} \ \mathbf{X}_2 = \sqrt{\mathbf{R}^2 + \mathbf{X}^2}$
		$\mathbf{z}_2 = (171) + \mathbf{j}(170) = \sqrt{(171)^2 + (170)^2}$
		Where: $R_2 = \frac{2(R_D)}{(n)^2 + 4[1 + (\xi)]^2} + R_S$ (hot)
	,	$= \frac{2(170)}{(170)^2 + 4 \left[1 + (170)\right]} + (54)$
(172)	x ₀	ZERO SEQUENCE REACTANCE -
(173)	K _{xo}	
(174)	K _{xl}	
(175)	λ _{Bo}	
(176)	T'do	OPEN CIRCUIT TIME CONSTANT - The time constant of the
		field winding with the stator open circuited and with
		negligible external resistance and inductance in the
		field circuit. Field resistance at room temperature
		(20°C) is used in this calculation.
•		$T_{dO} = \frac{L_F}{2(R_F)} = \frac{(161)}{2(154)}$

(11.7)	Ta	TRANSIENT TIME CONSTANT -
(178)	T'd	TRANSIENT TIME CONSTANT -
(179)	T"d	SUBTRANSIENT TIME CONSTANT -
(180)	FSC	SHORT CIRCUIT AMPERE TURNS - The field ampere turns required to circulate rated stator current when the stator is short circuited.
		$\mathbf{F_{SC}} = \frac{(\mathbf{X_d})}{100} \left[2(\mathbf{F'_g}) + (\mathbf{F_{g2}}) + (\mathbf{F_{g3}}) \right]$ $= \frac{(133)}{100} \left[2(96) + (123) + (120) \right]$
(181)	SCR	SHORT CIRCUIT RATIO -
(182)	i ² R _R	FIELD COIL I^2R - at no load. The copper loss in the field winding is calculated with cold field resistance at $20^{\circ}C$ for no load condition. (Loss for 2 coils.) Rotor $I^2R = 2(I_{FNL})^2$ ($R_{f\ cold}$) = $2(127a)^2$ (154)

FRICTION & WINDAGE LOSS - Note: Write 0 on input sheet when computer is to calculate F & W. Insert actual value when known.

> To ratio from test data, assume that F & W loss varies as the 5/2 power of the rotor diameter and as the 3/2 power of the RPM.

The formula below gives an approximate answer when test data is not available. For a more rigorous treatment use the information given in the rotor friction analysis appended to the thermal analysis section (Section C, Vol. 1).

$$F\&W = 2.52 \times 10^{-6} (d_r)^2 \cdot 5 (f_{NP} + f_1 + f_{g2}) (RPM)^{1.5}$$

=
$$2.52 \times 10^{-6} (11a)^2 \cdot 5 \left[(76) + (80a) + (78) \right] (7)^{1.5}$$

For gases or fluids other than standard air, the fluid density and viscosity must be considered. The formula given in the manual can be modified by the factors.

$$\left(\frac{\binom{p}{0.0765}}{0.0765}\right)^{.8} \left(\frac{u}{0.0435}\right)^{.2}$$

where

density - Lbs FT⁻³
 viscosity LBS FT⁻¹ HR⁻¹

.0765 - density std. air

. 0435 - viscosity std. air

. 241	WTHL	STATOR TEETH LOSS
(185)	w _c	STATOR CORE LOSS -
(186)	W _{NPL}	POLE FACE LOSS -
(187)	Kl	
(188)	К2	
(189)	К3	
(190)	К4	
(191)	К ₅	
(192)	к ₆	
(193)	$w_{ m DNL}$	DAMPER LOSS -
(194)	$^{12}\mathrm{R}$	STATOR I ² R -

* (8)

(135)		EDDY LOSS -
(196)		TOTAL LOSSES - at no load.
		NOTE: The output sheet shows the next items to be: (Rating), (Rating + Losses), (% Losses), (% Efficiency). These items do not apply to the no load calculation since the rating is zero. Refer to Items (248), (249), (250), (251) for these calculations under load.
(197)	E _{NL}	LOAD CALCULATIONS - Run through sample at 100% load.
		$E_{NL} = (E_{PH}) + (I_{PH})(R_{PH})$
		= (4) + (8)(54)
(198)	ed	
(198a)	Θ	POWER FACTOR ANGLE

,15 PH

, -

ı f	1	
(199)	${f F_{gLl}}$	AIR GAP AMPERE TURNS UNDER LOAD - If there were no change in stator leakage flux from stator core
		to rotor skirt from the no load condition calculated in Item (96).
		$F_{gL_1} = (e_d)(F'_g) = (198)(96)$
(200)	FTLI	STATOR TEETH AMPERE TURN DROP AT FULL LOAD
		First approximation.
		$\mathbf{F_{TLl}} = (\mathbf{F'_T})[1 + (\mathbf{P.F.})]$
		= (97)[1 + (9)]
(201)	F _{CL}	STATOR CORE AMPERE TURN DROP -
		The first approximation for the stator core density at
		no-load is used for the full-load calculation. The
		change in core density due to the change in $oldsymbol{\phi_7}$ is not
		regarded as signifigant.
		F _{CL} = F' _C = (98)
(202)	ϕ_{7Ll}	LEAKAGE FLUX FROM STATOR BACK-IRON TO ROTOR
		SKIRT - First approximation - in kilolines.
		$= (86) \left[(199) + (200) + (201) \right] \times 10^{-3}$
	<u> </u>	

	1	
(203)	F'gL	TOTAL AIR GAP AMPERE TURNS AT FULL LOAD
		$\mathbf{F'_{gL}} = \mathbf{F_{gL1}} + \frac{(\emptyset_{7L1})(g_e) \times 10^3}{(A_g) \ 3.19} = (199) + \frac{(202)(69) \times 10^3}{(68) \ 3.19}$
(204)	ϕ_{TLl}	THEORETICAL FLUX AT FULL LOAD - first approximation.
		$= (204) + \frac{(202)}{(73)}$
		Where $\phi_{NL} = (\phi_T) \left[\frac{(E_{NL})}{(E_{PH})} \right]$
		$= (88) \left(\frac{(197)}{(4)}\right)$
(205)	B_{TL}	STATOR TOOTH : ENSIT: AT FULL LOAD ABOVE NORTH POLE
		$B_{TL} = \frac{(\emptyset_{TL1})}{(Q)(\mathcal{V}_s)(b_{t-1/3})} = \frac{(204)}{(23)(17)(57a)}$
(206)	F_{TL}	STATOR TOOTH AMPERE TURNS AT FULL LOAD
		$F_{TL} = (h_s) [NI/inch at density (B_{TL})] [1 + (P.F.)]$
		= (22) Look up on stator magnetization curve given in (18) at density (205)

(207)	Ø _{7L}	LEAKAGE FLUX FROM STATOR BACK-IRON TO ROTOR
		SKIRT - second application.
		$= (86) [(203) + (206) + (201)] \times 10^{-3}$
(208)	ØTL	THEORETICAL FLUX AT F.L second approximation.
		$Q_{TL} = (Q_{NL}) + \frac{(Q_{7L})}{(C_p)}$
		$= (204) + \frac{(207)}{(73)}$
(208a)	${ m F_{gL}}$	$F_{gL} = F'_{gL} + \frac{(\emptyset_{7L})(g_e) \ 10^3}{3.19 \ (A_g)}$
		$= (203) + \frac{(207)(69) \cdot 10^3}{3.19 \cdot (68)}$
		The next four items cover the flux leakages from pole to
		pole in the rotor. (In kilolines)
(209)	ϕ_{lL}	$Q_{\rm lL} = (P_{\rm l}) \left[2(F_{\rm gL}) + 2(F_{\rm TL}) + 2(F_{\rm CL}) \right] \times 10^{-3}$
		= (80) $\left[2(208a) + 2(206) + 2(201)\right] \times 10^{-3}$
(210)	ϕ_{2L}	$\varphi_{2L} = (P_2) \left[2(F_{gL}) + 2(F_{TL}) + 2(F_{CL}) \right] \times 10^{-3}$
		= (81) $2(208a) + 2(206) + 2(201) \times 10^{-3}$
(211)	Ø _{3L}	$\emptyset_{3L} = (P_3) \left[2(F_{gL}) + 2(F_{TL}) + 2(F_{CL}) \right] \times 10^{-3}$
		= (82) $2(208a) + 2(206) + 2(201)$ x 10^{-3}

1

-1

(212)
$$\emptyset_{4L}$$
 $\emptyset_{4L} = (P_4) \left[2(F_{gL}) + 2(F_{TL}) + 2(F_{CL}) \right] \times 10^{-3}$
 $= (83) \left[2(208a) + 2(206) + 2(201) \right] \times 10^{-3}$

(213) \emptyset_{PL} FLUX PER POLE AT FULL LOAD

FOR P.F. = 0.0 to .95
 $\emptyset_{PL} = \emptyset_{PNL} \left[(e_d) - \frac{.93(X_{3d})}{100} \sin (\psi) \right]$
 $= (213) \left[(198) - \frac{.93(131)}{100} \sin (198) \right]$

Where $\emptyset_{PNL} = \frac{(\emptyset_{TL})(C_P)}{(P)}$
 $= \frac{(208)(73)}{(8)}$

FOR P.F. .95 to 1.0
 $\emptyset_{PL} = (K_C)(\emptyset_{PNL})$
 $= (9a)(213)$

(214) \emptyset_{SPFL} SOUTH POLE FLUX AT FULL LOAD

 $\emptyset_{SPFL} = \frac{(\emptyset_{PL}) + (\emptyset_{1L}) + (\emptyset_{2L}) + (\emptyset_{3L}) + (\emptyset_{4L})}{2(P)}$
 $= \frac{(213)}{2} + \frac{(209) + (210) + (211) + (212)}{2(8)}$

(215) $P_{SPFL} = \frac{(C_{3PFL})}{(a_{SP})} = \frac{(214)}{(219)}$

		,
(216)	FSPFL	SOUTH POLE AMPERE TURNS
		When $b_{np}(end) = b_{np}(mid)$
		$F_{SP-FL} = \frac{(l_{SP})}{3} \left[NI/inch \text{ at density } (B_{SPFL}) \right]$
		$\frac{(76)}{3}$ Look up on tube magnetization curve given in (18) at density (215)
		When $b_{np}(end) \neq b_{np}(mid)$
		$\frac{\sqrt{\text{SP}}}{2}$ NI/inch at density B_{SPFI}
		Look up on tube magnetization curve given in (18) at density (215)
(217)	Ø _{NPFL}	NORTH POLE FLUX - First approximation without leakage
		$\phi_{5 ext{L}}.$
		$ \phi_{\text{NPFL}} = (\phi_{\text{PL}}) + \frac{(\phi_{1\text{L}}) + (\phi_{2\text{L}}) + (\phi_{3\text{L}})}{(P)} + (\phi_{4\text{L}}) $
		$(213) + \frac{(209) + (210) + (211) + (212)}{(6)}$
(218)	BNPFL	NORTH POLE DENSITY AT FULL LOAD - first approximation.
		$B'_{NPFL} = \frac{(\emptyset_{NPFL})}{(a_{NP})} = \frac{(217)}{(79)}$
(219)	F'NPFL	NORTH POLE AMPERE TURN DROP - first approximation.
		F' _{NPFL} = (h _{NP}) NI/inch at density (B' _{NPFL})
		(78) Look up on N/P magnetization curve given in (18) at density (218)
		given in (18) at density (218)

1	1	1
(220)	Ø _{6L}	LEAKAGE ACROSS FIELD COIL - from rotor shaft outer
		diameter to the inner surface of the rotor skirt.
		$= (85) \left[(216) + (219) + 2(208a) + 2(206) + 2(201) \right] \times 10^{-3}$
(221)	ØSKFL	FLUX AT THE SKIRT ENTRY EDGE OF AUXILIARY AIR
		GAP (g2) - at full load.
		$= (214) \frac{(6)}{2} + \frac{(220)}{2}$
(222)	BSKFL	DENSITY AT THE SKIRT ENTRY EDGE OF AUXILIARY AIR
		GAP (g2) - at full load.
		$B_{SKFL} = \frac{Q_{SKFL}}{a_{SK}} = \frac{(221)}{(79b)}$
(223)	FSKFL	ROTOR SKIRT AMPERE TURN DROP -
		FSKFL = (ISK) NI/inch at density BSKFL
		= (78) Look up on skirt magnetization curve
	 	given in (18) at density (222)
		This value of ampere turns should be insignificant.
		The calculation of FSKFL is in this program only for
		a check on a possible bottleneck.

(224)	B _{g2FL}	FLUX DENSITY IN AUXILIARY AIR GAP - at full load.
		$B_{g2FL} = \frac{(\emptyset_{SKFL})}{(A_{g2})} = \frac{(221)}{(70)}$
(225)	F _{g2FL}	AMPERE TURN DROP IN AUXILIARY GAP
		$F_{g2FL} = \frac{(B_{g2FL})}{3.19} (g_2) \times 10^3$
		$= \frac{(224)}{3.19} (59a) \times 10^3$
(226)	ϕ_{L5}	LEAKAGE FLUX THROUGH FIELD COIL FROM NORTH POLE TO YOKE (y2)
		$\phi_{L5} = (P_5)[(F'_{NPFL})+2(F_{gL})+2(F_{TL})+2(F_{c})+(F_{SPFL})+(F_{g2FL})] \times 10^{-3}$
		= (84) $(219)+2(208a)+2(206)+2(201)+(216)+(225)$ x 10^{-3}
(227)	Ø _{y2F} L	FLUX IN COIL YOKE - At y2 the smallest cross-section of yoke.
		$= (221) + \frac{(226)}{2}$
(228)	B _{y2FL}	FLUX DENSITY IN COIL YOKE - At y2 the smallest cross-section of yoke.
		$B_{y2}FL = \frac{(Q_{y2FL})}{(A_{y2})} = \frac{(227)}{(124)}$

(229)	F _{y2F} L	AMPERE TURN DROP IN THE YOKE SECTION y2. This
		value should be insignificant and the calculation is
		here to call attention to a possible saturation point.
		If the yoke section is made straight, of wifeorm
		thickness, all of the ampere turn drop will be in
		the lower half of the yoke.
		$F_{y2FL} = \frac{1}{3} (h_y) [NI/inch at density (B_{y2FL})]$
		= $\frac{1}{3}$ (78) NI/inch at density (228)
(230)	${ t B_{g3FL}}$	DENSITY OF AIR GAP g ₃ - at full load.
		$B_{g3FL} = \frac{(\emptyset_{y2FL})}{(A_{g3})} = \frac{(227)}{(70a)}$
(231)	F_{g3FL}	AMPERE TURN DROP ACROSS AIR GAP (g3) - at full load.
		For stepped air gap i.e. when (59b) = 1.0 calculate
		as follows:
		$F_{g3FL} = \frac{B_{g3FL} (g_{3e})}{3.19} \times 10^3$
		$= \frac{(230)(59f)}{3.19} \times 10^3$
		For tapered air gap i.e. when (59b) = 2 calculate
		as follows:
		$F_{g3FL} = \frac{B_{g3FL} (g_3)}{3.19} \times 10^3 = \frac{(230)(59c)}{3.19} \times 10^3$

ı	1		
	(232)	B _{y4FL}	FLUX DENSITY IN SHAFT AT ENTRY TO NORTH POLE
			$B_{y4FL} = \frac{(Ø_{y2FL})}{(A_{y4})} = \frac{(227)}{(112)}$
	(233)	Fy4FL	AMPERE TURN DROP IN SHAFT
			$F_{y4FL} = \frac{(\ell_{y4})}{2} \left[NI/inch \text{ at density } (B_{y4FL}) \right]$
			= $\frac{(78)}{2}$ Look up on shaft magnetization curve
			= $\frac{(78)}{2}$ Look up on shaft magnetization curve given in (i8) at density (232)
	(234)	B _{NPFL}	FLUX DENSITY IN NORTH POLE AT BASE
			$B_{NPFL} = \frac{2(Q_{y2FL})}{4(a_{NP})} = \frac{2(227)}{4(79)}$
	(235)	F _{NPFL}	NORTH POLE AMPERE TURN DROP
			$F_{NPFL} = (h_{NP}) \left[NI/inch \text{ at density } (B_{NPFL}) \right]$
			= (78) Look up on north pole magnetization
			curve given in (18) at density (234)
	(236)	$F_{\mathbf{FL}}$	FULL LOAD AMPERE TURNS
			$F_{FL} = 2(F_g)+2(F_T)+2(F_c)+(F_{SP})+(F_{NP})+(F_{SK})+(F_{g2})+(F_{y2})+(F_{g3FL})$
			+(F _{y4})
			2(208)+2(206)+2(201)+(216)+(235)+(223)+(225)+(229)+(231)+(233)
	(237)	I_{FFL}	FIELD CURRENT - at 100% load per coil
			$I_{FFL} = \frac{(F_{FL})}{(N_{F})} = \frac{(236)}{(146)}$
ı			T 1.0

(238)	EFFL	FIELD VOLTS - at 100% load per coil. This calculation is made with hot field resistance at the expected temperature at 100% load.
		$E_{FFL} = (I_{FFL})(R_{F hot})$
		= (237)(155)
(239)	5 _{F£}	CURRENT DENSITY OF FIELD CONDUCTOR - at 100% load.
		Current Density = $\frac{(I_{FFL})}{(a_{cf})} = \frac{(237)}{(153)}$
(240)		Items (197) through (239) cover full load saturation calcula-
		tions at 100% load. In order to calculate for any
		load other than 100% load, use the following procedure:
		Recalculate Item (197) as follows:
		$E_{NL} = E_{PH} + I_{PH}$ (Per Unit Load) R_{PH}
		= (4) + (8) (Per Unit Load) (54)
		Recalculate Item (198) as follows:
		$= \tan^{-1} \left[\frac{\sin \Theta + (X_q)(\text{Per Unit Load})}{\cos \Theta} \right]$
		= $\tan^{-1} \frac{\sin(161) + (134)(Per Unit Load)}{\cos(198)}$
		$e_d = cos(\mathcal{E}) + (X_d)(Per Unit Load) sin (\psi)$
		= cos(E) + (133)(Per Unit Load) sin (240)
	İ	L-59

Recalculate Item (213)

For P.F. = 0.0 to .95

With the changes made as shown in Item (240), recalculate Items (197) through (239) at the % load required using per unit load = $\frac{\%}{100}$ load being used .

(241) $I^{2}R_{R}$

FIELD COIL I^2R at 100% load - The copper loss in the field windings calculated with hot field resistance at expected temperature for 100% load condition. (for two coils).

Rotor
$$I^2R = 2(I_{FFL})^2(R_{FhO^{\dagger}}) = 2(237)^2$$
 (155)

(242) | W_{TFL}

STATOR TEETH LOSS at 100% load - The stator tooth loss under load increases over that of 1... load because of the parasitic fluxes caused by the ripple due to the rotor damper bar slot openings.

$$W_{TFL} = \left\{ 2 \left[.4(X_{d}) \right]^{(ex)} + 1 \right\} W_{TNL}$$
$$= \left\{ 2 \left[.4(133) \right]^{(207)} + 1 \right\} (184)$$

Where
$$(e_X) = 1.8$$
 if $\left[4 \frac{(X_d)}{100} \right] < 1.0$

$$(e_x) = 2.0 \text{ if } \left[.4 \frac{(133)}{100} \right] > 1.0$$

(243) V

WPFL POLE FACE LOSS at 100% load

$$W_{PFL} = \left[\frac{(K_{SC})(I_{PH}) \frac{(\% Load)(n_S)}{100}}{(C) (F_{gL})} \right]^{2} + 1 \left\{ (W_{PNL}) + (W_{PHR}) \right\}$$

$$= \left\{ \frac{(243) (8) 1 (30)}{(32) (208a)} \right]^{2} + 1 \left\{ (186) + (243) \right\}$$

(K_{SC}) is obtained from Graph 3

Where WPHR = pole face har onic loss

The pole face harmonic loss calculation is not included in this design manual; however, a space has been provided on the input sheet for the pole face harmonic loss if the designer calculates it by some other means. This calculated loss will be added to the normal pole face harmonic loss and the output will include both. When the calculated value of pole face harmonic loss is not available insert 0.0 on the input sheet. When the calculated value of pole face harmonic loss is available, insert the actual value on the input sheet in watts.

(244) | W_{DFL}

DAMPER LOSS at 100% load

$$W_{DFL} = \left\{ \frac{(K_{SC})(I_{PH}) \frac{(\% \text{ Load})}{I00} (n_S)}{(C)(F_{gL})}^{2} + I \right\} (W_{DNL}) \times \frac{(P_{D \text{ hot}})}{(P_{D \text{ cold}})} W_{DK}$$

$$= \left\{ \frac{(244) (8) 1 (30)}{(32)(166)}^{2} + I \right\} (193) \frac{(143)}{(141)} + (244)$$

$$(K_{SC}) \text{ is obtained from Graph 3}$$

Where W_{DHR} = Damper bar harmonic loss

The damper bar harmonic loss calculation is not included in this design manual; however, a space has been provided on the input sheet for the damper bar harmonic loss if the designer calculates it by some other means. This calculated loss will be added to the normal damper harmonic loss and the output will include both. When the calculated value of the damper bar harmonic loss is not available, insert <u>0.0</u> on the input sheet. When the calculated value of damper harmonic loss is available, insert the actual value on the input sheet in watts.

(245)	I ² R	STATOR I ² R at 100% load -
(246)		EDDY LOSS -
(247)		TOTAL LOSSES at 100% load - sum of all losses at 100% load.
		Total Losses = $(F_{1ELD} I^2R) + (F&W) + (Stator Teeth Loss)$ + $(Stator Core Loss) + (Pole Face Loss)$ + $(Damper Loss) + (Stator I^2R) + (Eddy Loss)$ = $(241)+(183)+(242)+(185)+(243)+(244)+(245)+(246)$
(248)		RATING IN KILOWATTS at 100% load
(249)		RATING & E LOSSES
(250)		% LOSSES
(251)		% EFFICIENCY

INPUT AUXILIARY DATA SHEET

Auxiliary information taken from the design manuals to be used in conjunction with input sheets for convenience.

- A. All dimensions for lengths, widths, and diameters are to be given in inches.
- B. Resistivity inputs, Items (141) and (151) are to be given in micro-ohm-inches.

The following items along with an explanation of each are tabulated here for convenience. For complete explanation of each item number, refer to design manuals.

Item No.	Explanation						
(9)	Power factor to be given in per unit. For example for 90% P.F., insert .90.						
(O.)	Adjustment Factor - For P.F. < .95 insert 1.0						
(9a)	For P.F. > .95 insert 1.05						
(10)	Optional Load Point Where load data output is required at a point other than those give:						
	as standard on the input sheet. Example: For load data output at 155% load, insert 1.55.						
(14)	Number of radial ducts in stator.						
(15)	Width of radial ducts used in Item (14).						
(18)	Magnetization curve of material used to be submitted as defined in Item (18).						
(19)	Watts/Lb. to be taken from a core loss curve at the density given in Rem (20) (Stator).						
(20)	Density in kilolines/in ² . This value must correspond to density used to pick I'em (19)						
	usually use 77.4 KL/in ² .						
(21)	Type of slot - For open slot Type A, insert 1.0.						
	For partially open slot Type B with constant slot width, insert 2.0 .						
	For partially open slot Type C with constant tooth width, insert 3.0 .						
	For round slot Type D, insert 4.0 .						
	For additional information, refer to figure adjacent to input sheet which						
	shows a picture of each slot.						

(22) For stator slot dimension - for dimensions that do not apply to the slot insert 0.0.

Use Table below as guide for input.

			Slot T	уре	
Symbol	<u>Item</u>	_1	2	3	4
b _o	(22)	0.0	*	*	*
b ₁		0.0	0.0	*	0.0
b ₂		0.0	0.0	*	0.0
bg		0.0	0.,0	*	0.0
b ₈		*	*	#	*
h _o	1	0.0	*	*	*
h ₁	j	*	*	*	0.0
h ₂		*	0.0	0.0	0.0
h3		*	*	0.0	0.0
h _B		*	*	*	*
h _t		0.0	*	*	0.0
h _w	*	0.0	*	•	0.0

^{*} m insert actual value.

$$\mathcal{P} = b_s = \frac{b_1 + b_3}{2}$$

Item No.	Explanation
(28)	Type of winding - for wye connected winding insert 1.0.
	for del'a connected winding insert 0.0.
(29)	Type of coil - for formed wound (rect. wire), insert 1.0.
	for random wound (round wire) insert 0.0.
(30)	Slots spanned - Example - for slot span of 1-10, insert 9.0.
(33)	For round wire insert diameter. For rectangular wire insert wire width.
(34)	Strands per conductor in depth only.
(34a)	Total strands per conductor in depth and width.
(35)	Diameter of coil head forming pin. Insert .25 for stator O.D. < 8 inches;
	Insert . 50 for stator O.D. > 8 in.
(37)	Use vertical height of strand for round wire, insert 0.0.
(38)	Distance between centerline of strands in depth. Insulation h'st
(39)	Stator strand thickness use narrowest dimension of the two dimensions given for a
	rectangular wire. For round wire insert 0.0 .
(40)	Stator slot skew in inches.
(42a)	Phase belt angle - for 60° phase belt, insert 60°.
	for 120° phase belt, insert $\underline{120^{\circ}}$.
(48)	See explanation of items (71), (72), (73), (74) and (75). Sar e applies here.
(87)	When no load saturation output data is required at various voltages, insert 1.0 .
	When no load saturation information is not required, insert 0.0 .
(137)	Damper bar thickness use damper bar slot height for rectangular bar. For round
	bar insert 0.0.
(138)	Number of damper bars per pole.
(140)	Damper bar pitch in inches.
(148)	For round wire insert diameter. For rectangular wire insert wire width.
(149)	For rectangular wire insert wire thi mess. For round wire insert 0.0.
(187)	Pole face loss factor. For rotor lamination thickness .028 in. or less, insert 1.17.
	For rotor lamination thickness .029 in. to .063 in. insert 1.75.
	For rotor lamination thickness .064 in. to .125 insert 3.5.
	For solid rotor insert 7.0.
(71)	If the values of these constants are available, insert the actual number. If they are
(72)	not available, insert 0.0 and the computer will calculate the values and record them on
(73)	the output.
(74)	
(75)	

Pin

TWO OR SINGLE COIL OUTSIDE COIL LUNDELL

		MODEL	SINGLE	EWO	DESIGN	HO(1)					
	(2)	KVA	GENERATOR KVA			FUID/MAX OF FLD	FLUX	(ייק)	C,		
	(3)	Ε	LINE VOLTS	 		WINDING CONSTANT		(72)	C.	i	
	4)	Eph	PHASE VOLTS			POLE CONSTANT		(72)	C.	TANT	
	(5)	m	PHASES			END EXTENSION ON	E TURN	(48)	LE		
i i	(50)	1	FREQUENCY	1		DEMAGNETIZATION	FACTOR	(74)	<u> </u>	ŝ	
Ä	(6)	P	POLES .			CROSS MAGNETIZIN	G FACTOR	(75)	Ce	10	
¥	(7)	RPM	RPM			POLE EMBRACE		(77)	°C	1	
2	(8)	1 _{ph}	PHASE CURRENT	T		WIDTH OF POLEDIA	RROW END)	(74)	bel		
	(9)	PF	POWER FACTOR			WIDTH OF POLE(WI	TH END)	(76)	bp2	1	
	(9a)	K c	ADJ. FACTOR			POLE THICKNESS O	ARROW END)	(76)	' P1	1	
	(10)		OPTIONAL LOAD POINT			POLE THICKNESS (MDE END)	(74)	1P2	בו	
	(11)	d	STATOR I.D.	· · · · · ·		POLE LENGTH		(76)	1	절	
	(12)	D	STATOR O.D.	1		ROTOR DIAMETER	, , , , , , , , , , , , , , , , , , , ,	(11e)	d,	1	
ACK	(13)		GROSS CORE LENGTH			WEIGHT OF ROTOR	IRON	(157)	(-)	1	
ST	(14)	 " y	NO. OF DUCTS			POLE FACE LOSS	ACTOR	(187)	(K ₁)	1	
5	(15)	Ъ	WIDTH OF DUST			PERM OF LEAKAGE	PATH 1	(80)	P ₁		
TA	(16)	Kı	STACKING FACTOR STATOR			PERM OF LEAKAGE	E PATH 2	(81)	P2]אֵי	
•	(19)	k	WATTS/LB.			PERM OF LEAKAGE	PATH3	(82)	P ₃	MEANC	
	(20)	3	DENSITY PERM OF LEAKAGE PATH 4		(83)	P:					
	(21)		TYPE OF SLOT			PERM OF LEAKAGE	(84)	P.	E		
	(22)	ь,	SLOT OPENING			PERM OF LEAKAGE	PATH 7	(86)	P7]	
	(22)	61	SLOT WIDTH TOP			PERM OF LEAKAGE	PATH	(86a) P8			
	(22)	b 2				DIA OF END BELLAT SMALLEST SECT		(78)	dy2		
. '	(22)	b 3				THICKNESS OF END BELLE " "		(78)	1y2]	
Č	(22)	6.	SLOT WIDTH			THICKNESS OF HOUSING SECTION		(78)	٧.]	
∞	(22)	h o				LENGTH OF HOUSE	GTH OF HOUSING SECTION		1,	↓	
5	(22) h 1					LENGTH OF PERM	PATH I	(80a)	Rı		
31	(22)	h 2				NO. OF FIELD COILS		(1465)	Kce		
	(22)	h g				NO, OF FIELD TURNS/COIL		(146)	NF]	
	(22)	h g	SLOT DEPTH			MEAN LENGTH OF FLD. TURN		(147)	X HF	ا ب	
	(22)	h,				FLD. COND. DIA. OR WID TH		(148)		필	
	(22)	hw				FLD, COND. THICKHESS		(149)	ļ	↓ "	
	(23)	Q	NO. OF SLOTS	<u> </u>		FLD. YEAP IN °C		(150)	X, uc	1	
	(28)	ļ	TYPE OF WDG.	ļ		RESISTIVITY OF FLD. COND. #20 0		(151)	8.	<u> </u>	
	(29)	<u> </u>	TYPE OF COIL	<u> </u>		NO LOAD SAT.		(87)		-	
	(30)	n _e	CONDUCTORS/SLOT	<u> </u>		FRICTION & WINDAGE		(183)	(F&W)	 	
	(31)	у	LOTS SPANNED			SPECIAL PERMITAN		(340)	<u> </u>	-	
	(32)	c	PARALLEL CIRCUITS	ļ		STATOR LANGATE	RIAL	(18)	 	<u></u>	
	(33)	 	STRAND DIA. OR WIDTH	<u> </u>		POLE MATERIAL		(18)		MATR'L	
S K		Nat	STRANDS/CONDUCTORIN DEPTH	 		YOKE MATERIAL (CUX PLATE	(18)	<u> </u>	 	
I ON	(34a)	N'81	STRANDS/CONDUCTOR	 	ł					Ì	
8	(39)	 	STATOR STRAND T'KNS.	ļ	ł						
¥	(35) (36)	R e2	COIL EXT. STR. PORT		ł						
2			UNINS, STRD. HT.			OR SLOT	PO	F		1	
	(37) (38)	h st	DIST. BTWP. C. OF STD.	 		ER SLOT	REMA			1	
	(42e)	1" #1	PHASE BELT ANGLE	 						1	
	(40)	7.4	STATOR SLOT SKEW	 	ļ					ĺ	
	(50)	X O C	STATOR TEMP °C	 -	l					1	
	-	7 .			ì]	
	(51)		RES'TYY STA. COND. • 20 °C)) 1	
۵,	(78)	202	LENGTH OF GAP (g2) DIAMETER AT GAP (g2)	ļ]	
3	(78) (59)	9 92	MAIN AIR GAP	 	DESIGNED		DATE			•	
	<u> </u>	12	AUXILIARY AIR GAP	 	DESIGNER		VAIE		REV. B	-	
		1 4 2		<u></u>	M-01						

TWO OR COIL OUTSIDE COIL LUNDELL SINGLE SUMMARY OF DESIGN CALCULATIONS - - - - - (OUTPUT)

MODEL	NO	EW	ro	DESIGN NO.					
	SOLID CORE LENGT	ГН			CARTER COEFF	CIENT	(67)	(K ,)	
(24) (h _e)	DEPTH BELOW SLO	T			EFFECTIVE AIR	GAP	(69)	(0.)	<u> </u>
(26) (7 ° _s)	SLOT PITCH				FUND/MAX OF F	LC. FLUX	(71)	(C i)	I^-
(27) (T _s 1/3)	SLOT PITCH 1/3 DI	ST. UP			WINDING CONST.		(72)	(C w)	5
(42) (Kgk)	SKEW FACTOR				POLE CONST.		(73)	(C _p)] *
(43) (K d)	DIST. FACTOR				END. EXT. OME	TURN	(48)	(LE)	<u> </u>
(44) (K _P)	PITC . FACTOR				DEMAGNETIZING	FACTOR	(74)	(C M)	3
(45) (ne)	EFF. CONDUCTORS				CROSS MAGNETI	ZING FACTOR	(75)	(Cq)	1
(46) (ac)	COND. ARFA				AMP COND/IN		(128)	(A)	
(47) (5 _a)	CURRENT DENSITY	(STA.)			REACTANCE FA	CTOR	(129)		1
5 (49) (P1)	1/2 MEAN TURN LEI	NGTH			LEAKAGE REAC	TANCE	+	(Xg.)	1
(53) (Rph)	COLD STA, RES. 42	00 C			REACTANCE DIE	ECT AXIS		(X _{ad})	†
(54) (Rph)	HOT STA. RES. # Xº	С			REACTANCE QU	AD. AXIS		(X _{eq})	1
(55) (EFtop)	EDDY FACTOR TOP			· · · · · · · · · · · · · · · · · · ·	SYN REACT DIR	CT AXIS		(x d)	
(56) (EFbot)	EDDY FACTOR BOT				SYN REACT QUA	D AXIS	+		NA NA
(62) (A i)	STATOR COND. PER	172.			FIELD LEAKAGE	REACT		(X)	i i
(63) (A.)	END PERM.				FIELD SELF IND			(Lf)	l≾
(65) ()	WT. OF STA COPPE	R			UNSAT. TRANS.	PEACT		(X , 94)	2
(66) ()	WT. OF STA IRON				SAT. TRANS. RE			(X,9)	1
	POLE PITCH			· · · · · · · · · · · · · · · · · · ·	SUB. TRANS REA		1	(x "d)	1
	WT. OF ROTOR IRON	 			SUB. TRANS REA		 	(X "a)	1
(145) (V _r)	PERIPHERAL SPEE	D			NEG SEQUENCE			(X2)	1
(153) (a _{cf})	F'_D COND. AREA				ZERO SEQUENCI		-	(X o)	1
3 (154) (R f)	COLD FLD RES # 20) o C			OPEN CIR. TIME		_	(T'do)	
(155) (R _f)	HOT FLD RES . Xº	c			ARM TIME CONST			(Ta)	u :
(156) (~)	WT OF FLD COPPE	2			TRANS TIME CO			(F, L)	ES
(80) (P1)	PERM OF LEAKAGE			SUB. TRANS TIME CONST. TOTAL FLUX FLUX PER POLE			(179)	(T"d)	
யு (81) (P2)	PERM OF LEAKAGE	PATH 2						(Ø _₹)	
<u>U</u>	PERM OF LEAKAGE						+	(Cp)	
및 (83) (P4)	PERM OF LEAKAGE				GAP DENSITY (M			(B _p)	2
¥ (84) (P5)	PERM OF LEAKAGE	PATH 5			TOOTH DENSITY		_	(B,)	ž
1 (86) (P7)	PERM OF LEAKAGE				CORE DENSITY			(B _c)	E
(86a) (Pg)	PERM OF LEAKAGE		**		TOOTH AMPERE	TURNS		(F,)	3
(190) (FSC)	SHORY CIR NI				CORE AMPERE	TURNS	+	(F _c)	¥
(181) (SCR)	SHORT CIR. RATIO				GAP AMPERE TI	IRNS (MAIN)	<u></u>	(F _g)	1
PERCENT	1 OAD	1 0		100	150	200		OPTIO	DNAL
() (160a) LEA			(φ ₍₁₎ (197 _a)					<u> </u>	
p?) (102a) TOTA			(/pti) (213a)						
(B _p) (103e) POL		i	(B _{p1}) (213b)			 			
(B _g 2) (122) AUX.			(B _{g2L}) (224)						
y2) (125) END			(B _y 2L) (228)						
(126a) HOU		 	(Byl) (22%)			 			
(F _{nl}) (127) TOT		 	(FfI) (236)			 			
ini) (127a) FIE			(1 ff) (237)			 			
	DENSITY FIELD	<u> </u>	(S _{fl}) (239)			 			
						 			
(E _{fn}) (127b) F(E)		<u> </u>	(E _{ffl}) (238)			 			
(W _C) (185) STA			(W _c) (185)						
(184) STA			(W ₁ f ₁) (242)			<u> </u>			
(194) STA		 	(12 R ₁) (245)						
(-) (195) EDD			(-) (246)						
(pni) (186) POL		{ 	(W _D fj) (243)		· · · · · · · · · · · · · · · · · · ·	 	\longrightarrow		
?R () (182) FIE			(12 R ₍₁) (241)						
(F&W) (183) Fai	·		(F&W) (183)			 		····	
·	TAL LOSSES	ļ	(~) (247)						
;-) (-) PER	RCENT EFF.	<u> </u>	(-) (251)						
						<u> </u>			
i			DESIGI	NER		DATE			

M-03

TWOOR COIL OUTSIDE COIL LUNDELL

NO LOAD SATURATION OUTPUT SHEET

K		,				
ITEMS	(3) (E)	(91) B,	(97) F,	(94) B _c	(96) F _e	(96) F _g
		STA. ICOTH DENSITY	STA. TOOTH NI	STA, CORE DENSITY	5"A. CORE HI	MAIN GAP DEN
* VOLTS	(100a) φ _£	(102m) ∲ PT	(103m) B _p	(125) B _{y2}	(126a) B _y	(127) F _{ni}
+ VOLTS	LEAKAGE FLUX	TOTAL FLUX/POLE	POLE DENSITY	END BELL DENSITY	HOUSING DENSITY	TOTAL NI
	i	ļ	, —··· ···	`		
5	† 					
<u> </u>						
						
90%	1	[]	· !			
100%	1		! 			
			1 			
			!			
110%	1		1	1		
120%	,		ļ		1	,
			·			
130%			1		1	
140%]	1			
150%		Į l			Ì	
160%						
					1	
	<u> </u>	1 1	\	1	<u> </u>	3

The second secon

TWO-COIL OUTSIDE-COIL LUNDELL DESIGN COMPUTER MANUAL

	(1)		DESIGN NUMBER
	(2)	KVA	GENERATOR KVA
	(3)	E	LINE VOLTS
	(4)	E_{PH}	PHASE VOLTS
	(5)	m	PHASES
	(5a)	f	FREQUENCY
	(6)	P	POLES
	(7)	RPM	SPEED
	(8)	I_{PH}	PHASE CURRENT
	(9)	P. F.	POWER FACTOR
	(9a)	к _с	ADJUSTMENT FACTOR
ĺ	(1 0)		LOAD POINTS
	(11)	đ	STATOR PUNCHING I.D.
	(11a)	$\mathbf{d_r}$	ROTOR O.D.
	(12)	D	PUNCHING O.D.
	(13)	L	GROSS STATOR CORE LENGTH
	(14)	n _V	RADIAL DUCTS
	(15)	b _V	RADIAL DUCT WIDTH
	(16)	K _i	STACKING FACTOR
	(17)	L s	SOLID CORE LENGTH

(18)

MATERIAL - This input is used in selecting the proper magnetization curves for stator, yoke pole, when different materials are used. Separate spaces are
provided on the input sheet for each section mentioned above. Where curves are available on card
decks, used the proper identifying code. Where
card decks are not available submit data in the
following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in this manual on Curves F15 & F16. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

1			
	(19)	k	WATTS/LB
	(20)	В	DENSITY
	(21)		TYPE OF STATOR SLOT
	(22)		ALL SLOT DIMENSIONS
	(23)	Q	STATOR SLOTS
	(24)	$h_{\mathbf{c}}$	DEPTH BELOW SLOTS
	(25)	q	SLOTS PER POLE PER PHASE
	(26)	Ts	STATOR SLOT PITCH
	(27)	$T_s^{1/3}$	STATOR SLOT PITCH
	(28)		TYPE OF WINDING
	(29)		TYPE OF COIL
	(30)	n _s	CONDUCTORS PER SLOT
	(31)	Y	THROW
	(31a)		PER UNIT OF POLE PITCH SPANNED
	(32)	С	PA: ALLEL PATHS
	(33)		STRAND DIA. OR WIDTH
	(34)	N _{ST}	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH
	(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR
	(35)	d _b	DIAMETER OF BENDER PIN
	(36)	ℓ _{e2}	COIL EXTENSION BEYOND CORE
	(37)	h _{ST}	HEIGHT OF UNINSULATED STRAND
	(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH

(39)		STATOR COIL STRAND THICKNESS
(40)	$\gamma_{\rm sk}$	skew
(41)	$ au_{ exttt{p}}$	POLE PITCH
· (42)	K _{SK}	SKEW FACTOR
(42a)	•	PHASE BELT ANGLE
(43)	Kd	DISTRIBUTION FACTOR
(44)	Кp	PITCH FACTOR
(45)	n _e	TOTAL EFFECTIVE CONDUCTORS
(46)	a _c	CONDUCTOR AREA OF STATOR WINDIN
(47)	SS	CURRENT DENSITY
(48)	L _E	END EXTENSION LENGTH
(49)	L t	1/2 MEAN TURN
(50)	X ₈ °C	STATOR TEMP °C
(51)	$\mathcal{S}_{\mathbf{s}}$	RESISTIVITY OF STATOR WINDING
(52)	J's (HCC)	RESISTIVITY OF STATOR WINDING
(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE
(55)	EF (top)	EDDY FACTOR TOP
(56)	EF (bot)	EDDY FACTOR BOTTOM

上巻 かんは アンテストン・コート これない 上橋 いきなつ

(57)	$b_{\mathbf{m}}$	STATOR TOOTH WIDTH
(57a)	^b t 1/3	STATOR TOOTH WIDTH
(58)	b _t	TOOTH WIDTH AT STATOR I.D. IN INCHES
(59)	g	MAIN AIR GAP IN INCHES
(59a)	g ₂	AUXILIARY AIR GAP in inches
(60)	C _X	REDUCTION FACTOR
(61)	K _X	FACTOR TO ACCOUNT FOR DIFFERENCE in phase
		current in coil sides in same slot.
(62)	λ_{i}	CONDUCTOR PERMEANCE
(83)	K _E	LEAKAGE REACTIVE FACTOR
(64)	λε	END WINDING PERMEANCE
(64a)	λ_z	SPECIAL LEAKAGE PERMEANCE - For machines
		having a section of the pole that is approxi-
		mately a full pole-pitch wide, an additional
		leakage permeance must be added to the
-		slot and end-turn leakage permeances.
		This permeance is that of the leakage path
		from one pole into a tooth top and from tooth
		top back into the adjacent pole. The leakage
l		

(64a) Cont'd.

is similar to Zig Zag leakage and by increasing the stator leakage reactance, can reduce the output of the generator significantly.

This same leakage can be used to purposely limit the output of the generator and make it current limited. The presence of this additional leakage can be good or bad depending upon what is wanted from the generator. The important thing is for the designer to be aware that it is there.

In many cases, the designer should estimate the specific permeance λ_z since the pole base will be more or less than a full pole pitch wide and the following formula will not suffice.

(77a)

Items immediately following deal with the calculation of rotor and stator leakage permeances.

Illustrations are included to help identify the permeance areas and to locate the flux leakage paths. The computer program will handle the calculation of permeances P_1 , P_2 , P_3 and P_4 either of two ways:

- 1. P_1 through P_4 can be calcu ated by the computer. For this case, insert 0.0 on the input sheet for P_1 through P_4 .
- 2. P_1 through P_4 can be calculated by the designer. For this case, insert the actual calculated value on the input sheet for P_1 through P_4 .

Permeance P_5 and P_7 must be calculated by the designer and the calculated value must be inserted on the input sheet. The computer will not calculate these two permeance values because of the various possible field coil locations.

Permeance calculations P_1 through P_7 are all based on the equation $P = \mathcal{U}(area)$

Where # 3.19

Area • cross-sectional area perpendicular to the leakage flux.

length of flux leakage path

Many of the equations used in this section are taken from Roter's "Electromagnetic Devices".

Refer to the Appendix for the Roter's formulae.

 ℓ_{g2} = axial length of gap (g2)

dy2 = diameter of yoke (end bell section) at narrowest section

 d_{g2} = rotor diameter at auxiliary air gap

 $\hat{\lambda}_y$ = half of the effective length of yoke

 t_{72} = thickness of end bell section of yoke

 t_{y} = thickness of housing section of yoke

dr = rotor diameter at main air gap

,		
		,
(79)	$\mathbf{a_p}$	POLE AREA - The effective cross-sectional area of the
	<i>,</i>	pole.
		$a_p = (b_{p2})(t_{p2}) = (76)(76)$
(80)	P ₁	POLE HEAD END LEAKAGE - This can be either 0.0
	}	or the actual value if available. Refer to
	·	Item (776) for explanation. See Figure M-4
		for location.
		$P_1 = \frac{3.19 \ (b_{p1})(t_{p1})}{(21)} = \frac{3.19 \ (76)(76)}{(80a)}$
(80a)	1,	l_1 = length of permeance path P_1 and must be obtained
		from design layout. Must be given on input
		sheet when $P_1 = 0.0$.
(81)	P ₂	POLE HEAD SIDE LEAKAGE - This input can be either
		0.0 or the actual value if available. Refer
		to Item (7%) for explanation. See Figure M-5
		for location.
		$P_{2} = \frac{3.19 \left\{ (\ell_{p}) \left[\frac{(t_{p2}) + (t_{p1})}{2} \right] \right\}}{(\ell_{2})} = \frac{3.19 \left\{ (76) \left[\frac{(76) + (76)}{2} \right] \right\}}{(81a)}$
(81a)	12	LENGTH OF PERMEANCE PATH P2 IN INCHES
		$Q_2 = (T_p) - \left[\frac{(b_{p1}) + (b_{p2})}{2}\right] = (41) - \left[\frac{(76) + (76)}{2}\right]$

İ	i	1
(82)	P ₃	POLE BODY END LEAKAGE - This input can be either
		0.0 or the actual value if available. Refer to
		Item (86) for explanation. See Figure M6 for
		location.
		$P_3 = \frac{6.28}{\pi} \left[\frac{3}{4} \frac{(b_{p1}) + (b_{p2})}{4} \right] \ln \frac{(r_3)}{(r_4)}$
		$= \frac{6.28}{\pi} \left[\frac{3(76) + (76)}{4} \right] \chi_{n} \frac{(82b)}{(82c)}$
(82b)	r ₄	$r_4 = l_1 = (80a) = length of permeance path P_1$
(82c)	r ₃	$r_3 = (\ell_1) + \frac{(\ell_1)}{2} = (80a) + \frac{(13)}{2}$
(83)	P ₄	POLE BODY SIDE LEAKAGE - This input can be either 0.0
		or the actual value if available. Refer to Item
		(77a) for explanation. See Figure M7 for
		location.
		When (6) > 4
		$P_{4} = \frac{3.19 \ (l_{0})}{77} \ l_{n} \left[1 + \frac{(b_{p1}) + (b_{p2})}{2 \ (2)} \right]$
		$= \frac{3.19(76)}{77} \ \text{ln} \left[1 + \frac{(76) + (76)}{2(83)}\right]$
		Where $Z = (T_p) - \left[\frac{(b_{p1}) + (b_{p2})}{2} \right] = (41) - \left[\frac{(76) + (76)}{2} \right]$

$$P_4 = \frac{3.19 \ (\ell_p)}{\pi} \frac{3}{2} \ell_n \left[1 + \frac{(b_{p1}) + (b_{p2})}{2 \ z} \right]$$

$$= \frac{3.19 (76)}{77} \frac{3}{2} \ell_n \left[1 + \frac{(76) + (76)}{2(83)} \right]$$

(84) P₅

COIL LEAKAGE PERMEANCE PER COIL - This permeance

must be calculated by the designer and the calculated value must be inserted on the input sheet. Refer to Fig. M-8 & M-9, which show the location of the coil. This value is to be given on a per coil basis. Refer to the appendix for permeance formulae.

(86) P

STATOR TO FRAME AND ROTOR LEAKAGE PERMEANCE -

Refer to Fig. M-8 & M-9 for location. This permeance is actually broken down three parts:

P71 leakage to yoke; P72 leakage shaft; P73 leakage to rotor pole. In this design manual, the three permeances are added and treated as a single leakage. The same condition applies to P7 and P5. The designer must calculate P7 and insert the calculated value on the input sheet. Refer to the appendix for formulae.

(86a)

P₈

FLUX PLATE TO FLUX PLATE LEAKAGE PERMEANCE

This permeance must be calculated by the designer and the value must be inserted on the input sheet. Location per Figure M-8.

LEAKAGE PERMEANCE P₁

Figure M-4

P₂ POLE HEAD SIDE LEAKAGE

Figure M-5

P₃ POLE BODY END LEAKAGE

Figure M-6

Figure M-7

FLUX CIRCUIT FOR THE TWO-COIL, OUTSIDE-COIL LUNDELL

P5 = Coil Leakage Permeance P7 = Stator Leakage Permeances

Figure M-9

		1
(87)		The next set of calculations deals with the no load satura-
		tion. The equations in this section can be used
		to calculate the no load saturation for any volt-
		age. When the no load saturation data is re-
		quired at various voltages insert 1. on the
		input sheet for "No Load Sat.". The computer
i i		will then calculate the no load saturation curve
		at 80, 90, 100, 110, 120, 130, 140, 150, and
		160% of rated volts. When the complete
 		saturation data is not necessary, insert 0.
		on the input sheet and the computer will
		calculate the 100% volt data.
(88)	$oldsymbol{eta_{T}}$	TOTAL FLUX IN KILOLINES
(91)	B _t	TOOTH DENSITY
(92)	Øp	FLUX PER POLE
(94)	Вс	CORE DENSITY
(95)	$\mathbf{B}_{\mathbf{g}}$	GAP DENSITY
(96)	Fg	AIR GAP AMPERE TURNS
(97)	$\mathbf{F_{T}}$	STATOR TOOTH AMPERE TURNS
(98)	F _C	STATOR CORE AMPERE TURNS
ł	l	

(98a)	Fs	STATOR AMPERE TURNS
(99)	Ø7	STATOR TO YOKE LEAKAGE FLUX - The
		leakage flux from the stator to the yoke.
		,
		$G_7 = \left[(F_c) + (F_T) + (F_g) + (F_p) \right] \left(\frac{10^{-3}}{2} \right]$
		$= [(98) + (97) + (96) + (104)](86) 10^{-3}$

The items to follow are to be calculated for variable loads. These calculations will then be repeated for 100% load.

(100a)
$$\phi_{\chi}$$
 ROTOR LEAKAGE FLUX - at no load $\phi_{\chi} = (P) \left[2(F_g) + 2(F_T) + (F_c) \right]$

$$\left[(P_1) + (P_2) + (P_3) + (P_4) \right] \times 10^{-3}$$

$$= (6) \left[2(96) + 2(97) + (98) \right]$$

$$\left[(80) + (81) + (82) + (83) \right] \times 10^{-3}$$
(102a) G_{PT} TOTAL FLUX PER POLE - at no load $G_{PT} = (G_{P}) + \frac{2(G_{Q})}{(P)} = (92) + \frac{2(100a)}{(6)}$

Figure M-10

The sketch above shows the leakage flux ϕ_7 leaking from the stator to the rotor. In a 2-pole generator of this configuration, the leakage flux, ϕ_7 can cause a rotating couple on the rotor.

Schematic representation of the flux circuit of a two, outside-coil Lundell, a-c generator. The mmf drops in the circuit are shown by solid lines. The flux leakage paths are shown by dashed lines.

Figure M-11

1	[I
(103a)	Bp	POLE DENSITY - The apparent flux density at the base
		of the pole. Note that no provision is made
	į	in this manual for calculating the density in
		the flux plate. It is, therefore, important
	•	to remember not to restrict the flux area
		through this section.
		$B_{\mathbf{P}} = \frac{(\mathcal{O}_{\mathbf{PT}})}{(a_{\mathbf{P}})} = \frac{(102a)}{(79)} \text{ Kilolines/in}^2$
(103b)	ø ₈	FLUX PLATE TO FLUX PLATE LEAKAGE FLUX (KILOLINES)
		$\phi_8 = (P_8) \left[2(F_g) + 2(F_T) + (F_c) \right] \times 10^{-3}$
		= $(86a)$ $\left[2(96) + 2(97) + (98) \right] \times 10^{-3}$
(104a)	$\mathbf{F}_{\mathbf{P}}$	POLE AMPERE TURNS - at no load. The ampere turns
		per pole required to force the flux through the
		pole and spider at no load rated voltage. The
		no load pole ampere turns per pole are cal-
		culated as the product of (P) times the NI per
		inch at the density (Bp). Use magnetization
		curve submitted per item (18) for rotor.
		$\mathbf{F_{P}} = (l_{\mathbf{p}}) \left[\text{NI/in } @ \text{ density } (\mathbf{B_{P}}) \right]$
		= (76) Look up on rotor magnetization
		= (76) Look up on rotor magnetization curve given in (18) @ density (103a)
(108)	$\varphi_{\mathbf{g}2}$	AUXILIARY GAP (g2) flux in kilolines.
		$Q_{g2} = Q_{PT} \frac{(P)}{2} + (Q_7) + (Q_8)$
		$= (102a) \frac{(6)}{2} + (99) + (103b)$

i	1	
(118)	Ø ₅	COIL LEAKAGE FLUX PER COIL (Kilolines)
		$Q_5 = (84) \left[(123) + (126b) + (104a) + (96) + (97) + (98) \right] \times 10^{-3}$
(122)	$B_{\mathrm{g}2}$	AUXILIARY GAP (g2) FLUX DENSITY
		$B_{g2} = \frac{(Q_{g2})}{(A_{g2})} = \frac{(108)}{(70)}$
(123)	Fg2	AUXILIARY AIR GAP AMPERE TURNS
		$F_{g2} = \frac{(B_{g2})}{3.19} (g_2) \times 10^3 = \frac{(122)}{3.19} (59a) \times 10^3$
(124)	A _{y2}	AREA OF END BELL SECTION OF YOKE AT SMALLEST
		SECTION
		$A_{y2} = \eta (d_{y2})(t_{y2}) = \eta (78)(78)$
(124a)	Ay	AREA OF HOUSING PORTION OF YOKE
		$A_y = \pi \left[(D) + (t_y) \right] (t_y)$
		$= \eta [(12) + (78)](78)$
(125)	B _{y2}	FLUX DENSITY IN END BELL SECTION OF YOKE @ N. L.
		at narrowest part
		$B_{y2} = \frac{(\emptyset_{g2} + \emptyset_5)}{(A_{y2})} = \frac{(108) + (118)}{(124)}$

	1	
(126)	Fy2	AMPERE TURN DROP IN END PELL SECTION OF YOKE
		@ N. L.
		$F_{y2} = \left[\frac{(D)-(d_{y2})}{6}\right] \left[NI/inch @ (B_{y2}) \right]$
		$= \frac{(12)-(78)}{6}$ Look up on yoke magnetization curve @ density (125)
(126a)	Ву	DENSITY IN HOUSING SECTION OF YOKE @ N. L.
		$B_y = \frac{(Q_{g2})}{A_y} = \frac{(108)}{(124a)}$
(126b)	Fy	AMPERE TURN DROP IN HOUSING SECTION OF YOKE
		using 1/2 total length of housing
		$F_y = (\ell_y) \left[NI/inch \text{ at density } (B_y) \right]$
		= (78) Look up on yoke magnetization curve @ density (126a)
(127)	F _{NL}	TOTAL AMPERE TURN DROP @ N. L.
		$F_{NL} = 2[(F_y) + (F_{y2}) + (F_{g2}) + (F_{p}) + (F_{g}) + (F_{T}) + (F_{c})]$
		$= 2\left[(126b)+(126)+(123)+(104a)+(96)+(97)+(98)\right]$
(127a)	IFNL	FIELD CURRENT - at no load
·		$I_{FNL} = \frac{(F_{NL})}{(N_F)(N_{CO})} = \frac{(127)}{(146)(146a)}$
;		
	1	M-24

3		
(127b)	EF	FIELD VOLTS - at no load. This calculation is made
		with cold field resistance at 200 C for no load
		condition.
		$E_F = (I_{FNL})/(R_{f \text{ cold}})(N_{CO}) = 127a/(154)(146a)$
(127c)	$s_{\mathbf{F}}$	CURRENT DENSITY - at no load.
(128)	A	AMPERE CONDUCTORS per inch
(129)	x	REACTANCE FACTOR
(130)	x _ℓ	LEAKAGE REACTANCE - in per cent,
		$X_{\ell} = X \left[\lambda_i + \lambda_E + \lambda_z \right]$
		$= (129) \left[(62) + (64) + (64a) \right]$
		λ_{z} is explained under item (64a) and
	,	should be zero in most cases.
(131)	x _{ad}	REACTANCE - direct axis - This is the fictitious
:		reactance due to armature reaction in the
		direct axis (in per cent).
		0/m \/T \/G \/TX\ 160
		$X_{ad} = \frac{.9(n_e)(I_{PH})(C_m)(K_d) \times 100}{2(P) (F_g + F_{g2})} = \frac{.9(45)(8)(74)(43) \times 100}{2(6) (96) + (123)}$
		2(F) (Fg T Fg2) 2(0) [(30) + (123)]
	ł	

(132	X_{2Q}	REACTANCE - quadrature axis - This is the fictitious reactance due to armature reaction in the quadrature axis (in per cent).
(133)	x _d	$X_{aq} = \frac{(C_q)(X_{ad})}{(C_m)(C_1)} = \frac{(75)(131)}{(74)(71)}$ SYNCHRONOUS REACTANCE - direct axis - (%)

1	1	1
(134)	Xq	SYNCHRONOUS REACTANCE - quadrature axis (%)
(145)	v_r	PERIPHERAL SPEED
(146)	$N_{\mathbf{F}}$	NUMBER OF FIELD TURNS per coil
(146a)	N_{CO}	NUMBER OF FIELD COILS - One basic computer program
		is used for the single-coil and two-coil Lundell
		generators. This item is used in the computer
		program as a code for distinguishing one from
		the other. Coils are connected in series.
(147)	f tf	MEAN LENGTH OF FIELD TURN - inches
(148)		FIELD CONDUCTOR DIA OR WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches - Set this
		item = 0. for round conductor.
(150)	x _f °c	FIELD TEMP IN OC
(151)	$ \mathcal{P}_{\mathbf{f}} $	RESISTIVITY of field conductor
(152)	f (hot)	RESISTIVITY of field conductor
(153)	acf	CONDUCTOR AREA OF FIELD WDG
(154)	R _f (cold)	CCLD FIELD RESISTANCE @ 20°C per coil
	(3344)	$R_{f \text{ (cold)}} = (\mathcal{P}_{f}) \frac{(N_{f}) (\mathcal{A}_{tf}) \times 10^{-6}}{(a_{cf})} = (151) \frac{(146) (147) \times 10^{-6}}{(153)}$
ľ		

(155)	$R_{\mathbf{f}}$	HOT FIELD RESISTANCE - Calculated at X _f °C (103)
	(hot)	per coil.
		$R_{f \text{ (hot)}} = (P_{f \text{ hot}}) \frac{(N_{f}) (\ell_{tf}) \times 10^{-6}}{(a_{cf})} = (152) \frac{(146) (147) \times 10^{-6}}{(153)}$
(156)		WEIGHT OF FIELD COIL in lbs - per coil
		#'s of copper = $.321(N_f)(\ell_{tf})(a_{cf})$
		= .321(14^)(147)(153)
		NOTE: This answer is given in lbs. based on
		density of copper. If an, other material
		is used, the answer on output sheet can
		be converted by the designer by multi-
		plying by the ratio of densities.
(157)		WEIGHT OF ROTOR IRON - Because of the large number
		of different pole shapes, one standard formula
		cannot be used for calculating rotor iron weight.
	:	Therefore the computer will not calculate rotor
Ì		iron weight. The space is allowed on the input
		sheet for record purposes only. By inserting
		0. in the space allowed for rotor iron weight,
		the computer will show "0" on the output
		sheet. If the rotor iron weight is available
		and inserted on input sheet, then the output
		sheet will show this same weight on the output
		sheet.

.60) X

THE EFFECTIVE FIELD LEAKAGE REACTANCE - The

reactance which added to the stator leakage reactance gives the transient reactance X'_{du}.

When unit fundamental armature ampere turns are suddenly applied on the direct axis, an initial field current (I_f) will be induced. The value of this initial field current will be just enough to make the net flux interlinking the field because of the field current and the armature current zero. The field ampere turns

$$x_F = x_{ad} \left[1 - \frac{\frac{C_1}{C_m}}{\frac{2C_p + \frac{4}{\pi} \cdot \lambda F}{\lambda a}} \right]$$

$$X_F = (131)$$

$$1 - \frac{\frac{(71)}{(74)}}{2(73) + \frac{4}{6}} \frac{\frac{(160)}{(160)}}{(160)}$$

$$\lambda_a = \frac{6.38(a)}{(P)_{Re}} = \frac{6.38(11)}{(6)(160)}$$

$$g'_{e} = g_{e} \left[\frac{F_{g} - F_{g2}}{F_{g}} \right] = (69) \left[\frac{(96) - (123)}{(96)} \right]$$

$$\lambda_{F} = \frac{P_{e}}{I} = \frac{(160a)}{(13)}$$

(160a)	Pe	FIELD LEAKAGE PERMEANCE
		$P_e = P[P_1 + P_2 + P_3 + P_4] + P_5 + P_8$
		$= (\hat{c}) \left[(80) + (81) + (82) + (83) \right] + (84) + (86a)$
(161)	L _f	FIELD SELF-INDUCTANCE
		$L_f = (N_F)^2 (P_e) (N_{CG}) \times 10^{-8}$
		$= (146)^2 (160a) (146a) \times 10^{-8}$
(166)	x' _{du}	UNSATURATED TRANSIENT REACTANCE
(167)	x'd	SATURATED TRANSIENT REACTANCE
(168)	x" _d	SUBTRANSIENT REACTANCE in direct axis
(169)	x"q	SUBTRANSIENT REACTANCE in quadrature axis
(170)	x ₂	NEGATIVE SEQUENCE REACTANCE
(172)	x ₀	ZERO SEQUENCE REACTANCE
(173)	K _{xo}	
(174)	K _{x1}	
(175)	λ_{Bo}	
Ĭ		

	i	· ·
(176)	T' _{do}	OPEN CIRCUIT TIME CONSTANT - The time constant of the field winding with the stator open circuited and with negligible external resistance and inductance in the field circuit. Field resistance at room temperature (20°C) is used in this calculation. $T'_{do} = \frac{(L_F)}{(R_F)(N_{CO})} = \frac{(161)}{(154)(146a)}$
(188	75	1,700
(177)	Ta	ARMATURE TIME CONSTANT
(178)	T'd	TRANSIENT TIME CONSTANT
(180)	F _{SC}	SHORT-CIRCUIT AMPERE-TURNSThe field ampere-turns required to circulate rated line amperes in a three-phase short circuit at the machine terminals. $F_{SC} = (X_d) 2 \left[F_g + F_{g2} \right]$ $= (133) 2 \left[(96) + (123) \right]$
(181)	SCR	SHORT CIRCUIT RATIO

.	<u> </u>	!
(182)	I ² R _F	$\underline{FIELD\ I^2R}$ - at no load. The copper loss in the field winding is calculated with cold field resistance
		winding is calculated with cold field resistance
! !		at 20°C for no load condition.
		Field $I^2R = (I_{FNL})^2 (R_{f cold})(N_{CO})$
		$= (127a)^2 (154)(146a)$

(183)

F&W

FRICTION & WINDAGE LOSS - The best results are ob-

tained by using existing data. For ratioing purposes, the loss can be assumed to vary approximately as the 5/2 power of the rotor diameter and as the 3/2 power of the RPM.

When no existing data is available, the following calculation can be used for an approximate answer. Insert 0, when computer is to calculate F&W. Insert actual F&W when available. Use same value for all load conditions.

F&W = 2.52 x
$$10^{-6}$$
 (d_r)^{2.5} (\mathcal{Q}_{P}) (RPM)^{1.5}
= 2.52 x 10^{-6} (11a)^{2.5} (76) (7)^{1.5}

For gases or fluids other than standard air, the fluid density and viscosity must be considered.

The formula given in the manual can be modified by the factors

(184)	WTNL	STATOR TEETH LOSS - at no load.
(185)	w _c	STATOR CORE LOSS
(186)	W _{NPL}	POLE FACE LOSS - at no load.
(187)	K ₁	
(188)	K ₂	
(189)	К3	
(190)	K ₄	
(191)	к ₅	·
(192)	K ₆	
(194)	I ² R	STATOR I ² R - at no load.
(195)		EDDY LOSS - at no load.
(196)		TOTAL LOSSES - at no load. Sum of all losses
		Total losses = (Field I^2R) + (F&W) + (Stator Teeth Loss)
		+ (Stator Core Loss) + (Pole Face Loss)
		= (182) + (183) + (184) + (185) + (186)
		The N. L. calculations should all be repeated now for
•		100% load.
	1	

(197a)
$$\emptyset \notin \mathcal{L}$$
 LEAKAGE FLUX PER POLE at 100% load $\emptyset \notin \mathcal{L} = \emptyset \notin \left\{ \frac{(e_d)(F_g) + \left[1 + \cos(9)\right](F_T) + (F_C)}{(F_g) + (F_T) + (F_C)} \right\}$

$$= (100a) \left\{ \frac{(198)(96) + \left[1 + \cos(198a)\right](97) + (98)}{(96) + (97) + (98)} \right\}$$
(198) e_d Where $e_d = \cos \in \left\{ + \frac{(X_d)}{100} \sin \Psi \right\}$

$$= \cos(198a) + \frac{(133)}{100} \sin(198a)$$
(198a) θ Where $\theta = \cos^{-1} \left[\text{Power Factor} \right]$

$$= \cos^{-1} \left[(9) \right]$$
Where $\Psi = \tan^{-1} \left[\frac{\sin(\theta) + (X_q) / (100)}{\cos(\theta)} \right]$

$$= \tan^{-1} \left[\frac{\sin(198a) + (134) / (100)}{\cos(198a)} \right]$$
Where $\mathcal{L} = \Psi - \theta = (198a) - (198a)$
(198b) \emptyset_{8L} LEAKAGE FLUX BETWEEN FLUX PLATES @ F.L. (Kilolines) $\emptyset_{8L} = (\emptyset_8) - \frac{(\emptyset_{gg})}{(\emptyset_g)} = (103b) \left[\frac{(196a)}{(100a)} \right]$

Ì	[į	
	(207)	Ø _{7L}	FLUX LEAKAGE FROM STATOR TO YOKE UNDER LOAD
	Ì		(one side of stator only)
			$ \varphi_{7L} = (P_7) \left[(F_{PL}) + (e_d)(F_g) + (F_T) \left[1 + \cos(\theta) \right] + (F_c) \right] \times e^{-3} $
			$= (86) \qquad \left\{ (213c) + (198)(96) + (97) \left[1 + \cos(198a) \right] + (98) \right\} \times 10^{-3}$
	(213)	ϕ_{PL}	FLUX PER POLE at 100% load
			For P.F0 to .95
			$ \emptyset_{PL} = (\emptyset_P) \left[(e_d) - \frac{.93(X_{ad})}{100} \sin (\Psi) \right] $
			= $(92) \left[(198) - \frac{.93(131)}{100} \sin (198a) \right]$
			For P. F 95 to 1.0
			$Q_{PL} = (Q_P)(K_c) = (92)(9a)$
	(213a)	Ø _{PTL}	TOTAL FLUX PER POLE at 100% load
	(213b)	BpL	FLUX DENSITY AT BASE OF POLE at 100% load
			$B_{PL} = \frac{Q_{PTL}}{a_P} = \frac{(213a)}{(79)}$
			·

1		
(213c)	F_{PL}	AMPERE TURNS PER POLE at 100% load FpL = (lp) [NL/in @ density (BpL)]
		= (76) Look up ampere turns/inch on rotor mag- netization curve given in (18) at density (213
(221)	ϕ_{g2L}	FLUX CROSSING THE AUXILIARY AIR GAP under load
		$\varphi_{g2L} = (\varphi_{PTL})_{2}^{(P)} + (\varphi_{7L}) + (\varphi_{8L})$
		= $(213a)(6)$ + (207) + $(198b)$
(224)	B _{g2L}	FLUX DENSITY IN AUY'LIARY GAP (g2) under load
		$B_{g2L} = \frac{(Q_{g2L})}{(A_{g2})} = \frac{(221)}{(70)}$
(225)	F _{g2L}	AUXILIARY AIR GAP AMPERE TURN DROP under load
		$F_{g2L} = \frac{(B_{g2L})}{3.19} (g_2) \times 10^3 = \frac{(224)}{3.19} (59a) \times 10^3$
(226)	Ø _{5L}	COIL LEAKAGE FLUX under load
*		$ \phi_{5L} = (P_5) \left[(F_{yL}) + (F_{PL}) + (F_{g2L}) + (e_d)(F_g) + \right] $
		$F_{T} \left[1 + \cos(\theta) \right] + F_{C} x 10^{-3}$ = (84) $\left[(229c) + (213c) + (225) + (198) (96) + (225) \right]$
		$(97) \left[1 + \cos(198a) \right] + (98) \times 10^{-3}$
i	1	

	1	
(227)	Ø _{y2L}	FLUX IN END-BELL SECTION OF THE YOKE under load
		$\varphi_{y2L} = (\varphi_{g2L}) + \varphi_{5L}$
		= (221) + (226)
(228)	B _{y2} r	DEWSITY IN END-BELL SECTION OF YOKE AT THE
		SMALLEST AREA SECTION under load
		$B_{y2L} = \frac{Q_{y2L}}{A_{y2}} = \frac{(227)}{(124)}$
(229)	F _{y2L}	AMPERE TURN DROP IN END-BLLL SECTION OF YOKE
		under load. $F_{y2L} = \left[\frac{(D)-(d_{y2})}{6}\right] \left[NI/inch @ density (B_{y2L}) \right]$
		$= \boxed{\frac{(12)-(78)}{6}} \boxed{\text{Look up on yoke magnetization curve}}$ given in (18) at density (228)
(229b)	${f B_{yL}}$	FLUX DENSITY IN THE HOUSING SECTION OF THE YOKE under load.
		$B_{yL} = \frac{(\phi_{g2L})}{(A_y)} = \frac{(221)}{(124a)}$

(229c)	F _{yL}	AMPERE TURN DROP THROUGH THE HOUSING SECTION
	·	OF THE YOKE under load, using 1/2 total length of housing.
		$F_y = (l_y)$ [NI/inch @ density (B_{yL})]
		= (78) Look up on yoke magnetization curve given in (18) @ density (229b)
		in (18) @ density (229b)
(236)	F _{FL}	TOTAL AMPERE TURN DROP at full load
		$= 2 \left[(F_{g2L}) + (F_{yL}) + (F_{y2L}) + (F_{pL}) + (e_d)(F_g) + (F_T) \left[1 + \cos(\theta) \right] + \frac{F_C}{2} \right] \times 10^{-3}$ $= 2 \left[(225) + (229c) + (229) + (213c) + (198)(96) + (97) \left[1 + \cos(1.3a) \right] + \frac{(98)}{2} \right] \times 10^{-3}$
		$= 2\left[(225)+(229c)+(229)+(213c)+(198)(96)+(97)\left[1+\cos(1.9a)\right]+\frac{(98)}{2}\right]\times10^{-1}$
(237)	^I FFL	FIELD CURRENT under load
		$I_{FFL} = (F_{FL})/(N_F) (N_{CO}) = (236) / (146)(146a)$
(239)	S _{FL}	CURRENT DENSITY at 100% load
		Current Density = $(I_{FFL})/(a_{cf}) = (237)/(153)$
(238)	EFFL	FIELD VOLTS at 160% load - This calculation is made with
		hot field resistance at expected temperature at
		100% load.
		Field Volts = (I _{FFL})(R _{f hot}) (N _{CO}) = (237)(155)(146a)
1		·

	1	
(241)	I ² R _{FL}	FIELD 12R at 100% load - The copper loss in the field
		winding is calculated with hot field resistance
		at expected temperature for 100% load condition.
		Field $I^2R = (I_{L'FL})^2(R_{F \text{ hot}})(N_{CO}) - (237)^2(155)(146a)$
(242)	W _{TFL}	STATOR TEETH LOSS at 100% load - The stator tocch
		loss under load increases over that of no
		load because of the parasitic fluxes caused by
	! ! !	the ripple due to the rotor damper bar slot
	:	openings.
		$W_{TFL} = \left\{ 2 \left[.27 \frac{(X_d)}{100} \frac{(\% \text{ Load})}{100} \right]^{1.8} + 1 \right\} W_{TNL}$
		$= \left\{2\left[.27\frac{(133)}{100}1\right]^{1.8}+1\right\} (184)$
(243)	$\mathbf{w_{PFL}}$	POLE FACE LOS3 at 100% load
;		$\mathbf{W_{PFL}} = \underbrace{\left[\frac{\mathbf{K_{sc}}(\mathbf{I_{pH}})\frac{(\% \text{ Load})}{100} (\mathbf{n_{s}})}{(\mathbf{C})(\mathbf{F_{g}})}\right]^{2} + 1}_{(\mathbf{W_{PNL}})} $
		$= \left\{ \frac{(243)(8) \ 1}{(32)(96)} {}^{\prime} \frac{30)}{3} \right]^{2} + 1 $
		(K _{sc}) is obtained from Curve F-3

		1
(245)	i ² RL	STATOR 12R at 100% load - The copper loss based on the
		D. C. resistance of the winding. Calculate at
		the maximum expected operating temperature.
		$I^2R = (m)(I_{PH})^2 (R_{SPH hot})$
,		= (5)(8) ² (54)
(246)		EDDY LOSS - Stator I ² R loss due to skin effect
		Eddy Loss = $\left[\frac{(EF_{top}) + (EF_{bot})}{2} - 1\right]$ (Stator I ² R)
		$= \left[\frac{(55) + (56)}{2} - 1 \right] (245)$
(247)		TOTAL LOSSES at 100% load - sum of all losses at
		100% load
		Total Losses = (Field I2R) + (F&W) + (Stator Teeth Loss) +
		(Stator Core Loss) + (Pole Face Loss) +
		(Stater I ² R) + (Eddy Loss)
		= (241) + (183) + (242) + (185) + (243) + (245) + (246)
(248)		RATING IN KILOWATTS at 100% load
		Rating = $3(E_{PH})(I_{PH})$ (P. F.) x 10 ⁻³
·	•	= 3(4)(8) (9) x 10 ⁻³
		.1

	(249)		RATING PLUS LOSSES = $(248) + (247) \times 10^{-3}$
	(250)		$\frac{\% \text{ LOSSES}}{\text{Rating Plus Losses}} = \frac{\text{Losses x (100)}}{\text{Rating Plus Losses}}$
			$= \frac{(247) \times 10^{-3} \times 10^2}{(249)}$
	(251)		<u>% EFFICIENCY</u> = 100% - % Losses
			= 100% - (250)
			These items can be recalculated for any load condition
			by simply inserting the values that correspond to the %
			load being calculated.
			Values for F&W (183) and W _C (Stator Core Loss) (185)
•		·	do not change with load.

SINGLE-COIL, OUTSIDE-COIL LUNDELL DESIGN, COMPUTER MANUAL

_			
	(1)		DESIGN NUMBER
	(2)	KVA	GENERATOR KVA
	(3)	E	LINE VOLTS
	(4)	E _{PH}	PHASE VOLTS
	(5)	m	PHASES
	(5 a)	f	FREQUENCY
	(6)	P	POLES
	(7)	RPM	SPEED
i	(8)	I _{PH}	PHASE CURRENT
	(9)	P. F.	POWER FACTOR
	(9a)	K _c	ADJUSTMENT FACTOR
	(10)		LOAD POINTS
	(11)	d	STATOR PUNCHING I.D.
	(11a)	$\mathtt{d}_{\mathbf{r}}$	ROTOR O.D.
	(12)	α	PUNCHING O.D.
	(13)	L	GROSS STATOR CORE LENGTH
	(14)	n_V	RADIAL DUCTS
	(15)	$\mathbf{b_{v}}$	RADIAL DUCT WIDTH
	(16)	K _i	STACKING FACTOR
	(17)	ℓ s	SOLID CORE LENGTH
	!	•	

MATERIAL - This input is used in selecting the proper magnetization curves for stator, yoke \$ pole.

Separate spaces are

provided on the input sheet for each section mentioned above. Where curves are available on card decke, used the proper identifying code. Where card decks are not available submit data in the following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in this manual on Curves F15 & F16. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

	(19)	k	WATTS LB
	(20)	В	DENSITY
	(21)		TYPE OF STATOR SLOT
	(22)		ALL SLOT DIMENSIONS
	(23)	Q	STATOR SLOTS
	(24)	h _C	DEPTH BELOW SLOTS
	(25)	q	SLOTS PER POLE PER PHASE
!	(26)	Ts .	STATOR SLOT PITCH
	(27)	$\tau_{\rm s}^{1/3}$	STATOR SLOT PITCH
	(28)		TYPE OF WINDING
	(29)		TYPE OF COIL
	(30)	n _s	CONDUCTORS PER SLOT
	(31)	Y	THROW
	(31a)	:	PER UNIT OF POLE PITCH SPANNED
	(32)	c ;	PARALLEL PATHS
	(33)		STRAND DIA, OR WIDTH
	(34)	NST	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH
	(34a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR
	(35)	ď _b .	DIAMETER OF BENDER PIN
	(36)	ℓ_{e2}	COIL EXTENSION BEYOND CORE
	(37)	h _{ST}	HEIGHT OF UNINSULATED STRAND
	(38)	h'ST	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH

(39)		STATOR COIL STRAND THICKNESS
(40)	$ au_{ extsf{sk}}$	SKEW
(41)	$ au_{ exttt{P}}$	POLE PITCH
(42)	K _{SK}	SKEW FACTOR
(42a)		PHASE BELT ANGLE
(43)	K _d	DISTRIBUTION FACTOR
(44)	Кp	PITCH FACTOR
(45)	ⁿ e	TOTAL EFFECTIVE CONDUCTORS
(46)	a _c	CONDUCTOR AREA OF STATOR WINDING
(47)	$s_{\mathbf{S}}$	CURRENT DENSITY
(48)	L _E	END EXTENSION LENGTH
(49)	l t	1/2 MEAN TURN
(50)	X _s O C	STATOR TEMP °C
(51)	\mathcal{S}_{s}	RESISTIVITY OF STATOR WINDING
(52)	S _(hot)	RESISTIVITY OF STATOR WINDING
(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE
(55)	EF (top)	EDDY FACTOR TOP
(56)	EF (bot)	EDDY FACTOR BOTTOM

(57)	btm	STATOR TOOTH WIDTH
(57a)	bt 1/3	STATOR TOOTH WIDTH
(58)	b _į :	TOOTH WIDTH AT STATOR I.D. in inches
(59)	; g ,	MAIN AIR GAP in inches
(59a)	g ₂	AUXILIARY AIR GAP in inches
(60)	C _X	REDUCTION FACTOR
(61)	. к _Х	FACTOR TO ACCOUNT FOR DIFFERENCE in phase current in coil sides in same slot
(62)	$\lambda_{ m i}$	CONDUCTOR PERM MICE
(63)	K _E	LEAKAGE REACTIVE FACTOR
(64)	λΕ	END WINDING PERMEANCE
(64a)	$ \lambda_z $	SPECIAL LEAKAGE PERMEANCE - For machines
		having a section of the pole that is approxi-
		mately a full pole-pitch wide, an additional
		leakage permeance must be added to the
		slot and end-turn leakage permeances.
		This permeance is that of the leakage path
		from one pole into a tooth top and from tooth

(64a) | Cont'd.

top back into the adjacent pole. The leakage is similar to Zig Zag leakage and by increasing the stator leakage reactance, can reduce the output of the generator significantly.

This same leakage can be used to purposely limit the output of the generator and make it current limited. The presence of this additional leakage can be good or bad depending upon what is wanted from the generator. The important thing is for the designer to be aware that it is there.

In many cases, the designer should estimate the specific permeance $\dot{\lambda}_z$ since the pole base will be more or less than a full pole pitch wide and the following formula will not suffice.

(65)		WEIGHT OF COPPER
(66)		WEIGHT OF STATOR IRON
(67)	Ks	CARTER COEFFICIENT
(68)		MAIN AIR GAP AREA
(69)	g _e	EFFECTIVE AIR GAP

(70)	Ag2	AREA OF AUXILIARY AIR GAP	
		$A_{g2} = \eta'(d_{g2})(l_{g2}) = \eta'(78)(78)$	
(71)	$\mathbf{c_l}$	THE RATIO OF MAXIMUM FUNDAMENTAL of the field form to the actual maximum of the field form	
(72)	CW	WINDING CONSTANT-	
(73)	C _P	POLE CONSTANT	
(74)	C _M	DEMAGNETIZING FACTOR	
(75)	C _q	CROSS MAGNETIZING FACTOR	
(76)		POLE DIMENSION LOCATIONS	
		bp2 = width of pole at edge of stator stack bp1 = pole width at terminus tp2 = thickness of pole at edge of stator	
		tp1 = thickness of pole at terminus kp = length of pole	
· .	İ	lp -	

1-

(77)

2

POLE EMBRACE

(77a)

Items immediately following deal with the calculation of rotor and stator leakage permeances.

Illustrations are included to help identify the permeance areas and to locate the flux leakage paths. The computer program will handle the calculation of permeances P_1 , P_2 , P_3 and P_4 either of two ways:

- 1. P_1 through P_4 can be calculated by the computer. For this case, insert 0.0 on the input sheet for P_1 through P_4 .
- 2. P_1 through P_4 can be calculated by the designer. For this case, insert the actual calculated value on the input sheet for P_1 through P_4 .

Permeance P_5 and P_7 must be calculated by the designer and the calculated value must be inserted on the input sheet. The computer will not calculate these two permeance values because of the various possible field coil locations.

Permeance calculations P_1 through P_7 are all based on the equation $P = \frac{U(area)}{I}$

Where # 3.19

Area = cross-sectional area perpendicular to the leakage flux.

length of flux leakage path

Many of the equations used in this section are taken from Roter's "Electromagnetic Devices".

Refer to the Appendix for the Roter's formulae.

(78)

ROTOR AND STATOR DIMENSIONS

 ℓ_{g2} = axial length of gap (g2)

dy2 = diameter of yoke (end bell section) at narrowest
 section

dg2 = rotor diameter at auxiliary air gap

ky = effective length of yoke - 2

 t_{y2} = thickness of end bell section of yoke

 t_y = thickness of housing section of yoke

dr = rotor diameter at main air gap

P₂ POLE HEAD SIDE LEAKAGE

Page M-49 a

 $\mathbf{P_4}$ in a 12 pole generator

 $\mathbf{P_4}$ IN A 4 POLE GENERATOR

Figure M-13

(79)	a _p	POLE AREA - The effective cross sectional area of the pole $a_{p} = (b_{p2})(t_{p2}) = (76)(76)$
(80)	P ₁	POLE HEAD END LEAKAGE - This can be either 0.0 or the actual value if available. Refer to Item (77a) for explanation. See Figure M-4.
		$P_1 = \frac{3.19 \ (b_{p1})(t_{pl})}{\chi_1} = \frac{3.19 \ (76)(76)}{(80a)}$
(80a)	ℓ_1	l ₁ = length of permeance path P ₁ and must be obtained
		from design layout. Must be given on input
		sheet when $P_1 = 0$.
(81)	P ₂	POLE HEAD SIDE LEAKAGE - This input can be either 0.0
		or the actual value if available. Refer to Item
		(86) for explanation. See Figure M-12.
		$P_{2} = \frac{3.19 \left\{ (\ell_{p}) \left[\frac{(t_{p2}) + (t_{p1})}{2} \right] \right\}}{(\ell_{2})} = \frac{3.19 \left\{ (76) \left[\frac{(76) + (76)}{2} \right] \right\}}{(81a)}$
(8la)	Q 2	LENGTH OF PERMEANCE PATH P2 in inches
		LENGTH OF PERMEANCE PATH P ₂ in inches $l_2 = \mathcal{T}_p - \left[\frac{(b_{p1}) + (b_{p2})}{2} \right] = (41) - \left[\frac{(75) - (76)}{2} \right]$

1		7
(82)	P ₃	POLE BODY END LEAKAGE - This input can be either
		. 0.0 or the actual value if available. Refer to
		Item (86) for explanation. See Figure M-12
		location.
		$P_3 = \frac{6.28}{i7} \left[\frac{3}{3} \frac{(b_{p1}) + (b_{p2})}{4} \right] l_n \frac{(r_3)}{(r_4)}$
		$= \frac{6.28}{77} \left[\frac{3(76) + (76)}{4} \right] \chi_{n} \frac{(82b)}{(82c)}$
		·
(82b)	r ₃	$r_3 = l_1 = (80a) = length of permeance path P_1$
(82c)	r4	$r_3 = \ell_1$: (80a) = length of permeance path P ₁ $r_4 = (\ell_1) + \frac{(\ell)}{2} = (80a) + \frac{(13)}{2}$
(83)	P ₄	POLE BODY SIDE LEAKAGE - This input can be either 0.0
		or the actual value if available. Refer to Item
		(77a) for explanation. See Figure M−13 for
	ļ	location.
		When (6) > 4
		$P_4 = \frac{3.19 \ (l_p)}{\pi} \ l_n \left[1 + \frac{(b_{p1}) + (b_{p2})}{2(Z)} \right]$
		$= \frac{3.19(76)}{77} \ \text{ln} \left[1 + \frac{(76) + (76)}{2(83)}\right]$
		Where $Z = T_p - \left[\frac{(b_{p1}) + (b_{p2})}{2} \right] = 41 - \left[\frac{(76) + (76)}{2} \right]$

Figure M-14

Figure M-15

When
$$(6) \leq 4$$

of the coil.

$$P_4 = \frac{3.19 \ (\ell_p)}{\pi} \frac{3}{2} \ell_n \left[1 + \frac{(b_{p1}) + (b_{p2})}{2(\Xi)} \right]$$

$$=\frac{3.19\ (76)}{\pi}\,\frac{3}{2}\,\ell_n\,\left[1+\frac{(76)+(76)}{2\,(83)}\right]$$

 $(84) | P_5$

COIL LEAKAGE PERMEANCE - This permeance must be calculated by the designer and the calculated value must be inserted on the input sheet.

Refer to Figure M-14 which shows the location

(86) P

STATOR TO FRAME AND ROTOR LEAKAGE PERMEANCE

Refer to Figure M-14 for location. This permeance is actually broken down into three parts:

P71 leakage to yoke; P72 leakage to shaft; P73 leakage to rotor pole. In this design manual, the three permeances are added and treated as a single leakage. The same condition applies to P7 and P5. The designer must calcula P7 and insert the calculated value on the input sheet.

	(86a)	P8	FLUX PLATE TO FLUX PLATE LEAKAGE PERMEANCE
			This permeance must be calculated by the designer
			and the value must be inserted on the input sheet.
			Location per Figure M-5
	(87)		The next set of calculations deals with the no load satura-
			tion. When the no load saturation data is
			required at various voltages, insert 1. on
			the input sheet for "no load sat". The
	;		computer will then calculate the complete
			no load saturation curve at 80, 90, 100, 110,
			120, 130, 140, 150 and 160% of rated volts.
			When the complete saturation data is not
			necessary, insert 0. on the input sheet and
			the computer will calculate the 100% volts
			data.
	(81')	ϕ_{T}	TOTAL FLUX IN KILOLINES
	(91)	B _t	TOOTH DENSITY
	(92)	Øp	FLUX PER POLE
	(94)	Вс	CORE DENSITY

1			
(95)	$B_{\mathbf{g}}$	GAP DENSITY	
(96)	$\mathbf{F_g}$	AJR GAP AMPERE TURNS	
(97)	$\mathbf{F_{T}}$	STATOR TOOTH AMPERE TURNS	
(98)	F _c	STATOR CORE AMPERE TURNS	
(98a)	Fs	STATOR AMPERE TUENS	
(99)	Ø ₇	STATOR TO YOKE LEAKAGE FLUX - Te	
	}	leakage flux from the stator to the yoke.	
		,	
		$Q_7 = [(F_c) + (F_T) + (F_g) + (F_p)]$ $(P_7) \times 10^{-3}$	
		$= [(98) + (97) + (96) + (104a)] $ (86) x 10^{-3}	
		The items that follow will be calculated	
		for variable loads. The first set of	
		calculations are at no load. The calculations	
		will the be repeated for 100% load.	
		For other values of load, the same	
		calculations are repeated with the	
		proper percent load inserted.	

The state of the state of stat

(100a)	Øg	ROTOR LEAKAGE FLUX - at no load $ \phi_{\ell} = (P) \left[2(F_g) + 2(F_T) + (F_c) \right] \times \left[(P_1) + (P_2) + (P_3) + (P_4) \right] \times 10^{-3} $ $ = (6) \left[2(96 + 2(97) \div (98) \right] \times \left[(80) + (81) + (82) + (83) \right] \times 10^{-3} $
(102a)	ØPT	TOTAL FLUX PER POLE - at no load
(103a)	Вp	POLE DENSITY - The apparent flux density at the base
		of the pole. Note that no provision is made
		in this manual for calculating the density in
		the flux plate. It is, therefore, important
		to remember not to restrict the flux area
		through this section.
		$B_{\mathbf{P}} = \frac{(\mathcal{O}_{\mathbf{PT}})}{(a_{\mathbf{P}})} = \frac{(102a)}{(79)}$
(103b)	Ø ₈	FLUX PLATE TO FLUX PLATE
		FLUX PLATE TO FLUX PLATE $\phi_8 = P_8 \left[2(F_g) + 2(F_T) + F_c \right] \times 10^{-3}$
		= $(86a)$ $\left[2(95) + 2(97) + (98)\right] \times 10^{-3}$

(104a)	$\mathbf{F}_{\mathbf{P}}$	POLE AMPERE TURNS - at no load. The ampere turns
		per pole required to force the flux through the
		pole and spider at no load rated voltage. The
		no load pole ampere turns per pole are cal-
		culated as the product of ($\ell_{ m p}$) times the NI per
		inch at the density $(B_{\mathbf{P}})$. Use magnetization
		curve submitted per item (18) for rotor.
		$\mathbf{F_{P}} = (\mathbf{l_{p}}) \left[\text{NI/in @ density } (\mathbf{B_{p}}) \right]$
		= (76) Look up on rotor magnetization
		= (76) Look up on rotor magnetization curve given in (18) @ density (103a)
(108)	$arphi_{\mathrm{g2}}$	AUXILIARY GAP (g2) flux in kilolines.
		$\phi_{g2} = \phi_{PT} \frac{(P)}{2} + \phi_7 + \phi_8 = (102) \frac{(6)}{2} + (99) + (103b)$
(118)	Ø ₅	COIL LEAKAGE FLUX
		$\phi_5 = 2(P_5) \left[(F_{g2}) + (F_{y2}) + (F_{p}) + (F_{g}) + (F_{T}) + (F_{c}) \right] \times \tilde{O}^3$
		$Q_5 = 2(84) \left[(123) + (126) + (104a) + (96) + (97) + (98) \right] \times 10^{-3}$
(122)	Bg2	AUXILIARY GAP (g2) FLUX DENSITY
		$B_{g2} = \frac{(Q_{g2})}{(A_{g2})} = \frac{(108)}{(70)}$

(123)	F _{g2}	AUXILIARY AIR GAP AMPERE TURNS
		$F_{g2} = \frac{(B_{g2})}{3.19} (g_2) \times 10^3 = \frac{(122)}{3.19} (59a) \times 10^3$
(124)	A _{y2}	AREA OF END BELL SECTION OF YOKE AT SMALLEST
		SECTION
	·	$A_{y2} = \pi (d_{y2})(t_{y2}) = \pi (78)(78)$
(124a)	Ay	AREA OF HOUSING PORTION OF YOKE
		$A_y = \pi[(D) + (t_y)](t_y)$
		$= \eta [(12) + (78)](78)$
(125)	By2	FLUX DENSITY IN END BELL SECTION OF YOKE @ N. L.
		NOTE: The flux in the yoke is equal to the flux crossing
		the auxiliary gap (g).
		$B_{y2} = \frac{(\phi_{g2})}{(A_{y2})} = \frac{(108)}{(124)}$
(136)	F _{y2}	AMPERE TURN DROP IN END BELL SECTION OF YOKE
		@ N. L.
	F _{y2}	$\mathbf{F_{y2}} = \left[\frac{(\mathbf{D}) - (\mathbf{d_{y2}})}{6}\right] \left[\mathbf{NI/inch} \ @ \ (\mathbf{B_{y2}}) \right]$
		$F_{y2} = \left[\frac{(D)-(dy2)}{6}\right] \left[\text{NI/inch } @ (B_{y2}) \right]$ $= \left[\frac{(12)-(78)}{6}\right] \left[\text{Look up on yoke magnetization curve } @ \right]$ density (125)

(126a)	By	DENSITY IN HOUSING SECTION OF YOKE @ N. L.
		$B_y = \frac{(Q_{g2}) + (Q_5)}{A_y} = \frac{(108) + (108)}{(124a)}$
(126b)	F'y	AMPERE TURN DROP IN HOUSING SECTION OF YOKE
		using 1/2 total length of housing
		$F_y = (\ell_y) \left[NI/inch at density (B_y) \right]$
		= (18) Look up on yoke magnetization curve @ density (126a)
(127)	F _{NL}	TOTAL AMPERE TURN DROP AROUND CIRCUIT @ N. L.
		$F_{NL} = 2\left[(F_y) + (F_{y2}) + (F_{g2}) + (F_{p}) + (F_{g}) + (F_{T}) + (F_{c})\right]$
		$= 2 \left[(126b) + (126) + (123) + (104) + (96) + (97) + (98) \right]$
(127a)	IFNL	FIELD CURRENT - at no load
	\ -	$I_{FNL} = (F_{NL})/(N_F) = (127)/(146)$
(127b)	E _F	FIELD VOLTS - at no load. This calculation is made
		with cold field resistance at 20°C for no load
		condition.
		$E_{\mathbf{F}} = (I_{\mathbf{FNL}})(R_{\mathbf{f}} \text{ cold}) = (127a)(154)$
(127c)	$s_{\mathbf{F}}$	CURRENT DENSITY

(128)	A	AMPERE CONDUCTORS per inch
(129)	x	REACTANCE FACTOR
(130)	*l	LEAKAGE REACTANCE in per cent $X_{\ell} = X \left[\lambda_{i} + \lambda_{e} + \lambda_{z} \right]$ $= (129) \left[(62) + (64) + (64a) \right]$ $\lambda_{z} \text{ is explained under item (64a) and}$ should be zero in most designs.
(131)	X _{ad}	REACTANCE - direct axis - This is the fictitious reactance due to armature reaction in the direct axis. (in per cent)
(132)	X _{aq}	$X_{ad} = \frac{.9 \text{ (N}_e)(I_{PH})(C_m)(K_d) \times 100}{2P\left[(F_g) + (F_{g2})\right]} = \frac{.9(45)(8)(74)(43) \times 100}{2(6)\left[(96) + (123)\right]}$ $\frac{\text{REACTANCE}}{\text{quadrature axis}} - \text{This is the fictitious}$ $\text{reactance due to armature reaction in the}$ $\text{quadrature axis (in per cent).}$ $X_{aq} = \frac{(C_q)(X_{ad})}{(C_m)(C_l)} = \frac{(75)(131)}{(74)(71)}$
(133)	\mathbf{x}_{d}	SYNCHRONOUS REACTANCE - %
(134)	$\mathbf{x}_{\mathbf{q}}$	SYNCHRONOUS REACTANCE - quadrature axis - %

(145)	$v_{\mathbf{r}}$	PERIPHERAL SPEED
(146)	NF	NUMBER OF FIELD TURNS
(146a)	N _{co}	NUMBER OF FIELD COILS - One basic computer
		program is used for the single-coil and
	}	two-coil Lundell generators. This item
		is used in the computer program as a code

for distinguishing one from the other.

	/x	MEAN LENGTH OF FIELD TURN INCHES
(148)		FIELD CONDUCTOR DIA OR WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches - Set this item = 0. for round conductor
(150)	x _f ^c c	FIELD TEMP IN °C
(151)	$\mathcal{P}_{\mathbf{f}}$	FIELD TEMP IN OC RESISTIVITY of field conductor
(152)	f (hot)	RESISTIVITY of field conductor
(153)	acf	CONDUCTOR AREA OF FIELD WDG
(154)	R _f (cold)	COLD FIELD RESISTANCE @ 20°C
		$R_{f} \text{ (cold)} = (P_{f}) \frac{(N_{F})(l_{tf})}{(a_{cf})} \times 10^{-6} = (151) \frac{(146)(147)}{(153)} \times 10^{-6}$
(155)	R _f (hot)	HOT FIELD RESISTANCE - Calculated at X _f ^O C(103)
		$R_{f \text{ (hot)}} = (P_{f \text{ hot}}) \frac{(N_{f})(\ell_{tf})}{(a_{cf})} \times 10^{-6} = (152) \frac{(146)(147)}{(153)} \times 10^{-6}$
(156)		WEIGHT OF FIELD COIL in lbs.
		#'s of copper = $.321 (N_F)(l_{tf})(a_{cf})$
		= .321(146)(6)(147)(153)
		Also refer to note in item (65)

•		
(157)		WEIGHT OF ROTOR IRON - Because of the large number
		of different pole shapes, one standard formula
		cannot be used for calculating rotor iron weight.
		Therefore, the computer will not calculate retor
		iron weight. The space is allowed on the input
		sheet for record purposes only. By inserting
		0. in the space allowed for rotor iron weight,
		the computer will show '0." on the output
		sheet. If the rotor iron weight is available
		and inserted on input sheet, then the output
		sheet will show this same weight on the output
		sheet.
(160)	$\mathbf{x_F}$	THE EFFECTIVE FIELD LEAKAGE REACTANCE - The
		reactance which added to the stator leakage
		reactance gives the transient reactance X du.
		When unit fundamental armature ampere turns
		are suddenly applied on the direct axis, an
		initial field current (I_f) will be induced. The
į		value of this initial field current will be just
		enough to make the net flux interlinking the
1	1	field because of the field current and the arma-

equal the armature ampere turns.

$$X_{F} = X_{ad} \begin{bmatrix} 1 - \frac{C_{1}}{C_{m}} \\ 2C_{p} + \frac{4}{71} - \frac{\lambda_{F}}{\lambda_{a}} \end{bmatrix}$$

$$X_{F} = (131) \begin{bmatrix} 1 - \frac{(71)}{(74)} \\ 2(73) + \frac{4}{71} - \frac{(160)}{(160)} \end{bmatrix}$$

$$\lambda_{A} = \frac{6.38d}{P_{ge}} = \frac{6.38(11)}{(6)(160)}$$

$$Y_{B} = \frac{P_{e}}{P_{ge}} = \frac{(160a)}{F_{ge}} = (69) \begin{bmatrix} \frac{(96) - (123)}{(96)} \end{bmatrix}$$

$$\lambda_{F} = \frac{P_{e}}{\ell} = \frac{(160a)}{(13)}$$

$$P_{e} = P \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + \frac{1}{2} + P_{5} \\ = (6) \begin{bmatrix} \frac{1}{2} + P_{2} + P_{3} + P_{4} \end{bmatrix} + (84) \end{bmatrix}$$

$$L_{f} = N_{F}^{2} (P_{e}) \times IO^{-g}$$

$$= (146)^{2} (160a) \times IO^{-g}$$

(163)	x' _{du}	UNSATURATED TRANSIENT REACTANCE
(167)	x' _d	SATURATED TRANSIENT REACTANCE
(168)	x'' _d	SUBTRANSIENT REACTANCE in direct axis
(169)	x" _q	SUBTRANSIENT REACTANCE in quadrature axis
(170)	x ₂	NEGATIVE SEQUENCE REACTANCE
(172)	\mathbf{x}_0	ZERO SEQUENCE REACTANCE
(173)	K _{xo}	
(174)	K _{x1}	·
(175)	λ _{Bo}	
(176)	T do	OPEN CIRCUIT TIME CONSTANT - The time constant of the field winding with the stator open circuited and with negligible external resistance and inductance in the field circuit. Field resistance at room temperature (20°C) is used in this calculation. $T'_{do} = \frac{L_F}{R_F} = \frac{(161)}{(154)}$
(177)	r_a	ARMATURE TIME CONSTANT
(178)	T'd	TRANSIENT TIME CONSTANT

(180)	F_{SC}	SHORT CIRCUIT	AMPERE TURNS

SHORT-CIRCUIT AMPERE-TURNS--The field ampere-turns required to circulate rated line amperes in a three-phase short circuit at the machine terminals.

$$F_{SC} = \frac{(X_d)^2}{100} \left[F_g + F_{g2} \right]$$
$$= \frac{(133)}{100} 2 \left[(96) + (123) \right]$$

(181)	SCR	SHORT CIRCUIT RATIO
(182)	$^{12}R_{\mathrm{F}}$	FIELD 12k - at no load. The copper loss in the field
		winding is calculated with cold field resistance
,		at 20°C for no load condition.
		Field $I^2R = (I_{FNL})^2(R_{f cold}) = (127a)^2$ (154)
(183)	F&W	FRICTION & WINDAGE LOSS - The best results are ob-
		tained by using existing data. For ratioing
		purposes, the loss can be assumed to vary
		approximately as the 5/2 power of the rotor
		diameter and as the 3/2 power of the RPM.
		When no existing data is available, the follow-
		ing calculation can be used for an approximate
		answer. Insert 0. when computer is to cal-
		culate F&W. Insert actual F&W when available.
		Use same value for all load conditions.
		F&W = 2.52 x $10^{-6} (d_r)^{2.5} (RPM)^{1.5} (\ell_{\rho})$
i		= $2.52 \times 10^{-6} (11a)^{2.5} (7)^{1.5} (76)$

tankain solid

For gases or fluids other than standard air, the fluid density and viscosity must be considered.

The formula given in the manual can be modified by the factors

$$\left(\frac{\mathcal{C}}{.0765}\right).8\left(\frac{u}{.0435}\right).2$$

where

C = density - Lbs FT⁻³

.0765 = density std. air

.0435 = viscosity Std air

(184)	W _{TNL}	STATOR TEETH LOSS
(185)	w _c	STATOR CORE LOSS
(186)	W _{NPL}	POLE FACE LOSS - at no load.
(187)	к ₁	
(188)	K ₂	
(189)	К3	
(190)	K ₄	

(192)	к ₆	
(194)	$I^{2}R$	STATOR I ² R - at no load.
(195)		EDDY LOSS - at no load.
(196)		TOTAL LOSSES - at no load.
		The N. L. calculations should all be repeated now for 100% load.
(196a)	ØLL	LEAKAGE FLUX PER POLE at 100% load
		$\mathcal{O}_{\mathcal{L}} = \mathcal{O}_{\mathcal{L}} \left\{ \frac{(e_d)(F_g) + \left[1 + \cos(\theta)\right](F_T) + (F_C)}{(F_g) + (F_T) + (F_C)} \right\}$
		$= (100) \left\{ \frac{(198)(96) + [1 + \cos(198a)](97) + (98)}{(96) + (97) + (98)} \right\}$
(198)	e _d	Where $e_d = \cos \left(+ \frac{(X_d)}{100} \sin \Psi \right)$
		$= \cos (198a) + \frac{(133)}{100} \sin (198b)$
(198a)	9	Where $\theta = \cos^{-1} \left[(Power Factor) \right]$
		= cos ⁻¹ [(9)]
		Where $\Upsilon = \tan^{-1} \left[\frac{\sin (\theta) + (X_q) / (100)}{\cos (\theta)} \right]$
		$= \tan^{-1} \left[\frac{\sin (198a) + (134) / (100)}{\cos (198a)} \right]$
ı		Where $\xi = \Psi - \theta = (198a) - (198a)$

(198b)	Ø _{8L}	LEAKAGE FLUX BETWEEN FLUX PLATES AT F.L. (Kilolines)
		$\phi_{8L} = \frac{(\phi_{\ell\ell})}{(\phi_{\ell})} (\phi_8) = (103b) \frac{(196a)}{(100a)}$
(207)	Ø _{7L}	FLUX LEAKAGE FROM STATOR TO YOKE UNDER LOAD (one side of stator only)
		$\emptyset_{7L} = (P_7) \left[(F_{PL}) + (e_d)(F_g) + (F_T) \left[1 + \cos(\theta) \right] + (F_c) \right] \times 10^{-3}$
		$= (86) \left[(213c) + (198)(96) + (97) \left[1 + \cos(198a) \right] + (98) \right] \times 10^{-3}$
(213)	ϕ_{PL}	FLUX PER POLE at 100% load
		For P. F 0 to . 95
		$ \varphi_{PL} = (\varphi_P) \left[(e_d) - \frac{.93(X_{ad})}{100} \sin(\Psi) \right] $
		$= (92) \left[(198) - \frac{.93(131)}{100} \sin (198a) \right]$
		For P. F 95 to 1.0
		$Q_{PL} = (Q_P)(K_C) = (92)(9a)$
(213a)	Ø _{PTL}	TOTAL FLUX PER POLE at 100% load
		$ \varphi_{\text{PTL}} = \varphi_{\text{PL}} + \frac{2(\varphi_{\mathbf{Q}})}{P} = (213) + \frac{2(196a)}{(6)} $
(213b)	B _{PL}	FLUX DENSITY AT BASE OF POLE at 100% load
		$B_{PL} = \frac{Q_{PTL}}{a_{P}} = \frac{(213a)}{(79)}$

(213c)	F_{PL}	AMPERE TURNS PER POLE at 100% load
		$F_{PL} = (\ell_p) \left[N_a / in @ density (B_{PL}) \right]$
		= (76) Look up ampere turns/inch on rotor mag-
		= (76) Look up ampere turns/inch on rotor mag- netization curve given in (18) at density (213)
(221)	$ec{arphi}_{ m g2L}$	FLUX CROSSING THE AUXILIARY AIR GAP under load
		$\phi_{g2L} = (\phi_{PTL}) \frac{(P)}{2} + \phi_{7L} + (\phi_{8L})$
		= $(213a)\frac{(6)}{2} + (207) + (198b)$
(224)	B _{g2L}	FLUX DENSITY IN AUXILIARY GAP (g2) under load
		$B_{g2L} = \frac{(Q_{g2L})}{(A_{g2})} = \frac{(221)}{(70)}$
(225)	$F_{ m g2L}$	AUXILIARY AIR GAP AMPERE TURN DROP under load
		$F_{g2L} = \frac{(B_{g2L})}{3.19} (g_2) \times 10^3 = \frac{(224)}{3.19} (59a) \times 10^3$
(226)	Ø _{5L}	COIL LEAKAGE FLUX under load
		$\emptyset_{5L} = 2(P_5) \left\{ (F_{y2L}) + (F_{g2L}) + (F_{pL}) + (e_d)(F_g) + \right\}$
		$(\mathbf{F_T})\left[1+\cos(\mathbf{\theta})\right]+(\mathbf{F_C})$ x 10-3
		= 2(97)\{(229)+(225)+(164)+(198)(96) +
		$(97) \left[1 + \cos(198a)\right] + (98)$ x 10 ⁻³
i	'	

(227)	$arphi_{ m y2L}$	FLUX IN END-BELL SECTION OF THE YOKE under load $\varphi_{y2L} = (\varphi_{g2L})$
		= (221)
(228)	B _{y2L}	DENSITY IN END-BELL SECTION OF YOKE AT THE SMALLEST AREA SECTION under load
		$B_{y2L} = \frac{Q_{y2L}}{A_{y2}} = \frac{(227)}{(124)}$
(229)	F _{y2L}	AMPERE TURN DROP IN END-BELL SECTION OF YOKE
	·	under load. $F_{y2L} = \left[\frac{(D)-(d_{y2})}{6}\right] \left[\frac{NI/inch @ density (B_{y2L})}{6}\right]$
		$= \frac{\left[\frac{(12)-(78)}{6}\right]}{\left[\begin{array}{c} \text{Look up on yoke magnetization curve} \\ \text{given in (18) at density (228)} \end{array}\right]}$
(229b)	$B_{ m yL}$	FLUX DENSITY IN THE HOUSING SECTION OF THE YOKE under load. $B_{yL} = \frac{(\phi_{g2L}) + (\phi_{5L})}{A_v} = \frac{(221) + (226)}{(124a)}$
		y (123a)

(229c)	FyL	AMPERE TURN DROP THROUGH THE HOUSING SECTION
		OF THE YOKE under load using 1/2 total length of housing.
		$F_y = (l_y)$ [NI/inch @ density (B _{yL})] = (78) [Look up on yoke magnetization curve given in (18) @ density (229b)
		in (18) @ density (229b)
(236)	F _{FL}	TOTAL AMPERE TURN DROP at full load
		$=2\left(\left(\mathbf{F_{g2L}}\right)+\left(\mathbf{F_{yL}}\right)+\left(\mathbf{F_{pL}}\right)+\left(\mathbf{e_{d}}\right)\left(\mathbf{F_{g}}\right)+\mathbf{e_{d}}\right)$
		$\langle \mathbf{F_T} \rangle \left[1 + \cos(0) \right] + \mathbf{F_c} \propto 10^{-3}$
		= 2[(225)+(229c)+(229)+(213c)+(198)(96) +
		(97) $\left[1+\cos(198a)\right]+(98)$ x 10^{-3}
(237)	IFFL	FIELD CURRENT under load
		$I_{FFL} = (F_{FL})/(N_F) = (236)/(146)$
(239)		CURRENT DENSITY at 100% load
		Current Density = $(I_{FFL})/(a_{cf}) = (237)/(153)$
(238)	EFFL	FIELD VOLTS at 100% load - This calculation is made with
		hot field resistance at expected temperature at
		100% load.
		Field Volts = (I _{FFL})(R _{f hot}) = (237)(155)

(241)	I^2R_{FL}	FIELD I ² R at 100% load - The copper loss in the field
		winding is calculated with hot field resistance
		at expected temperature for 100% load condition.
		Field $I^2R = (I_{FFL})^2(R_{F \text{ hot}}) = (237)^2(155)$
(242)	w_{TFL}	STATOR TEETH LOSS at 100% load - The stator tooth
		loss under load increases over that of no
		load because of the parasitic fluxes caused by
		the ripple due to the rotor damper bar slot
		openings.
		$W_{TFL} = \left\{ 2 \left[.27 \frac{(X_d)}{100} \frac{(\% \text{ Load})}{100} \right]^{1.8} + 1 \right\} (W_{TNL})$
		$= \left\{2\left[.27\frac{(133)}{100}\ 1\right]^{1.8} + 1\right\} (184)$
(243)	W _{PFL}	POLE FACE LOSS at 100% load
		$W_{PFL} = \underbrace{\left[\frac{(K_{SC})(I_{PH})\frac{(\% \text{ Load})}{100}}{(C)(F_g)}\right]^2 + 1}_{= \underbrace{\left[\frac{(243)(8) \ 1}{(32)(96)}\right]^2} + 1}_{(186)}$
		(K _{sc}) is obtained from Curve F-3

	į	
(245)	$^{12}R_{ m L}$	STATOR 12R at 100% load - The copper loss based on the
		D. C. resistance of the winding. Calculate at
		the maximum expected operating temperature.
		$I^2R = (m)(I_{PH})^2 (R_{SPH hot})$
		$= (5)(8)^2 (54)$
(246)		EDDY LOSS - Stator I ² R loss due to skin effect
		Eddy Loss = $\left[\frac{(EF_{top}) + (EF_{bot})}{2} - 1\right]$ (Stator I^2R)
		$= \left[\frac{(55) + (56)}{2} - 1 \right] (245)$
(247)		TOTAL LOSSES at 100% load - sum of all losses at
		100% load
		Total Losses = (Field I2R) + (F&W) + (Stator Teeth Loss)+
,		(Stator Core Loss) + (Pole Face Loss) +
		(Stator I ² R) + (Eddy Loss)
		= (241) + (183) + (242) + (185) + (243) + (245) + (246)
(248)		RATING IN KILOWATTS at 100% load
		Rating = $3(E_{PH})(I_{PH})$ (P. F.) $\times 10^{-3}$
		= 3(4)(8) (9) x 10 ⁻³

Ploment.

(249)	 RATING PLUS LOSSES = $(248) + (247) \times 10^{-3}$
(250)	 $\frac{\% \text{ LOSSES}}{\text{Rating Plus Losses}} = \frac{\text{Losses x (100)}}{\text{Rating Plus Losses}}$
(251)	 $= \frac{(247) \times 10^{-3} \times 10^{2}}{(249)}$ $\frac{\% \text{ EFFICIENCY}}{} = 100\% - \% \text{ Losses}$ $= 100\% - (250)$
	These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated.

do not change with load.

 $\rm Va^{\rm tr}es$ for F&W (183) and $\rm W_{\mbox{\scriptsize C}}$ (Stator Core Loss) (185)