## Жадные алгоритмы: введение

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

#### Покрытие точек отрезками

Вход: множество n точек на прямой  $x_1, \ldots, x_n \in \mathbb{R}$ .

Выход: минимальное количество отрезков единичной

длины, которыми можно покрыть все точки.







#### Надёжный шаг

Существует оптимальное покрытие, в котором самая левая точка покрыта левым концом отрезка.



#### Надёжный шаг

Существует оптимальное покрытие, в котором самая левая точка покрыта левым концом отрезка.



Поэтому можно сразу добавить в решение отрезок, левый конец которого совпадает с самой левой точкой.

#### Алгоритм

#### Функция POINTSCOVER $(x_1, \ldots, x_n)$

```
S \leftarrow \{x_1, \dots, x_n\} пока S не пусто: x_m \leftarrow минимальная точка S добавить к решению отрезок [\ell, r] = [x_m, x_m + 1] выкинуть из S точки, покрытые отрезком [\ell, r] вернуть построенное решение
```

#### Алгоритм

```
Функция POINTSCOVER(x_1, \ldots, x_n)
```

```
S \leftarrow \{x_1, \dots, x_n\} пока S не пусто: x_m \leftarrow минимальная точка S добавить к решению отрезок [\ell, r] = [x_m, x_m + 1] выкинуть из S точки, покрытые отрезком [\ell, r] вернуть построенное решение
```

Время работы:  $O(n^2)$ .

## Улучшенный алгоритм

```
Функция POINTSCOVER(x_1, \ldots, x_n)
x_1, \ldots, x_n \leftarrow \text{SORT}(x_1, \ldots, x_n)
i \leftarrow 1
пока i < n:
   добавить к решению отрезок [\ell, r] = [x_i, x_i + 1]
  i \leftarrow i + 1
   пока i < n и x_i < r:
      i \leftarrow i + 1
вернуть построенное решение
```

### Улучшенный алгоритм

```
Функция POINTSCOVER(x_1, \ldots, x_n)
x_1, \ldots, x_n \leftarrow \text{SORT}(x_1, \ldots, x_n)
i \leftarrow 1
пока i < n:
   добавить к решению отрезок [\ell, r] = [x_i, x_i + 1]
   i \leftarrow i + 1
  пока i < n и x_i < r:
      i \leftarrow i + 1
вернуть построенное решение
```

Время работы:  $T(SORT) + O(n) = O(n \log n)$ .







#### Задача о выборе заявок

Bход: множество n отрезков на прямой.

Выход: максимальное количество попарно не

пересекающихся отрезков.





#### Замечание

Выбирая в первую очередь более короткие отрезки, можно получить неоптимальное решение.

### Надёжный шаг

Существует оптимальное решение, содержащее отрезок, правый конец которого минимален.



#### Надёжный шаг

Существует оптимальное решение, содержащее отрезок, правый конец которого минимален.



Можно сразу добавить в решение отрезок, правый конец которого минимален.

#### Алгоритм

```
Функция ACTSEL(\ell_1, r_1, \dots, \ell_n, r_n)
S \leftarrow \{[\ell_1, r_1], \dots, [\ell_n, r_n]\} пока S не пусто: [\ell_m, r_m] \leftarrow отрезок из S с мин. правым концом добавить [\ell_m, r_m] к решению выкинуть из S отрезки, пересекающиеся с [\ell_m, r_m] вернуть построенное решение
```

#### Алгоритм

```
Функция ACTSEL(\ell_1, r_1, \dots, \ell_n, r_n)
```

```
S \leftarrow \{[\ell_1, r_1], \dots, [\ell_n, r_n]\} пока S не пусто: [\ell_m, r_m] \leftarrow \text{отрезок из } S \text{ с мин. правым концом} добавить [\ell_m, r_m] к решению выкинуть из S отрезки, пересекающиеся с [\ell_m, r_m] вернуть построенное решение
```

Время работы:  $O(n^2)$ .

## Улучшенный алгоритм

```
Функция ACTSEL(\ell_1, r_1, \ldots, \ell_n, r_n)
```

отсортировать *п* отрезков по правым концам для всех отрезков в полученном порядке: если текущий отрезок не пересекает последний добавленный: взять его в решение вернуть построенное решение

## Улучшенный алгоритм

Функция ACTSEL
$$(\ell_1, r_1, \ldots, \ell_n, r_n)$$

отсортировать *п* отрезков по правым концам для всех отрезков в полученном порядке: если текущий отрезок не пересекает последний добавленный: взять его в решение вернуть построенное решение

Время работы:  $T(SORT) + O(n) = O(n \log n)$ .















#### Планирование вечеринки в компании

Вход: дерево.

Выход: независимое множество (множество не

соединённых друг с другом вершин)

максимального размера.







# Пример



# Надёжный шаг

Существует оптимальное решение, содержащее каждый лист дерева.



# Надёжный шаг

Существует оптимальное решение, содержащее каждый лист дерева.



Можно взять в решение все листья.

## Функция MAXINDEPENDENTSET(T)

пока T не пусто: взять в решение все листья выкинуть их и их родителей из T вернуть построенное решение

## $\Phi$ ункция MAXINDEPENDENTSET(T)

пока T не пусто: взять в решение все листья выкинуть их и их родителей из T вернуть построенное решение

Время работы: O(|T|).

#### Непрерывный рюкзак

Вход: веса  $w_1, \ldots, w_n$  и стоимости  $c_1, \ldots, c_n$  данных

n предметов; вместимость рюкзака W.

Выход: максимальная стоимость частей предметов

суммарного веса не более W.









# Надёжный шаг

Существует оптимальное решение, содержащее максимально возможную часть предмета, стоимость которого за килограмм максимальна.

|                | 18 |      | 20 |  |
|----------------|----|------|----|--|
| всего: 38 руб. | 3  |      | 4  |  |
|                | L  |      |    |  |
| _              | 18 | 20/2 | 14 |  |
| всего: 42 руб. | 3  | 2    | 2  |  |

# Функция KNAPSACK $(w_1, c_1, \ldots, w_n, c_n)$

отсортировать предметы по убыванию c/w для всех предметов в полученном порядке: взять по максимуму текущего предмета вернуть построенное решение

# Функция KNAPSACK $(w_1, c_1, \ldots, w_n, c_n)$

отсортировать предметы по убыванию c/w для всех предметов в полученном порядке: взять по максимуму текущего предмета вернуть построенное решение

Время работы:  $T(SORT) + O(n) = O(n \log n)$ .

# Основные идеи

Надёжный шаг. Существует оптимальное решение, согласованное с локальным жадным шагом.

Оптимальность подзадач. Задача, остающаяся после жадного шага, имеет тот же тип.