Peking University Check it Out				Page 1
Contents		弦图相关	23	
积分表	1	综合	23	$\int \sqrt{x^3(ax+b)}dx = \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3}\right] \sqrt{x^3(ax+b)}$
Dynamic Hull	3	积分表 Integrals of Rational Functions		$+\frac{b^3}{8a^{5/2}}\ln\left a\sqrt{x} + \sqrt{a(ax+b)}\right $ (15)
lyndon	3	<u> </u>		883/2
SAM	3	$\int \frac{1}{1+x^2} dx = \tan^{-1} x$	(1)	$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left x + \sqrt{x^2 \pm a^2} \right \tag{16}$
exkmp	4	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$	(2)	$\int \frac{1}{\sqrt{2}} \left(\frac{1}{2} \right) \left$
Manacher	4	J w w w		$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}} $ (17)
Maximum Express	4	$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln a^2 + x^2 $	(3)	$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3} \left(x^2 \pm a^2\right)^{3/2} \tag{18}$
Suffix Array	4	$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a}$	(4)	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left x + \sqrt{x^2 \pm a^2} \right \tag{19}$
Ukk	5	$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2}x^2 - \frac{1}{2}a^2 \ln a^2 + x^2 $	(5)	$\int \frac{1}{\sqrt{x^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \tag{20}$
回文树	6	(1 2 2 2 2 2 m + h		$\int \sqrt{u^2 - x^2}$
KM	6	$\int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$	$\frac{1}{5^2}$ (6)	$\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} \tag{21}$
带花树	7	$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \ a \neq b$	(7)	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} \tag{22}$
2-sat	8	<i>y</i> (<i>a</i> + <i>a</i>)(<i>a</i> + <i>o</i>)	(0)	$\int \frac{x^2}{\sqrt{x^2 + x^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp \frac{1}{2} a^2 \ln \left x + \sqrt{x^2 \pm a^2} \right (23)$
Cactus	8	$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln a+x $	(8)	$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx - \frac{1}{2} x \sqrt{x^2 \pm a^2} + \frac{1}{2} a \ln x + \sqrt{x^2 \pm a^2} $ (23)
点双	9	$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln ax^2 + bx + c $		$\int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c}$
zkw	10	3 44 54 5	b (0)	$\int dz = 12$
最小树形图	10	$-\frac{b}{a\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}}$	$\frac{b}{b^2}$ (9)	$+ \frac{4ac - b}{8a^{3/2}} \ln \left 2ax + b + 2\sqrt{a(ax^2 + bx^+c)} \right \tag{24}$
Diameter Tree	11	Integrals with Roots		$\int x\sqrt{ax^2 + bx + c} = \frac{1}{48a^{5/2}} \left(2\sqrt{a}\sqrt{ax^2 + bx + c}\right)$
Dominator Tree	11	$\int \frac{x}{\sqrt{x+a}} dx = \frac{2}{3}(x \mp 2a)\sqrt{x \pm a}$	(10)	$ \begin{array}{c} $
SS-algorithm	12	$\int \sqrt{x \pm a}$ 3 (2 + 23) $\sqrt{x} = 1$	(-*)	$+3(b^3 - 4abc) \ln \left b + 2ax + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right $ (25)
洲阁筛	12	$\int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x(a-x)} - a \tan^{-1} \frac{\sqrt{x(a-x)}}{x}$	(11)	
fft	13	$J \bigvee a - x \qquad \qquad x - a$		$\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right $
ntt	14	$\int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} - a \ln \left[\sqrt{x} + \sqrt{x+a} \right]$	(12)	(26)
BM	14	, ,		$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c}$
Pollard Rho	15	$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(-2b^2 + abx + 3a^2x^2)\sqrt{ax+b}$	\overline{b} (13)	$-\frac{b}{2a^{3/2}} \ln \left 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right $ (27)
Simplex	15			
Int Simplex	16	$\int \sqrt{x(ax+b)}dx = \frac{1}{4a^{3/2}} \left[(2ax+b)\sqrt{ax(ax+b)} \right]$	$\overline{b)}$	$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}} \tag{28}$
Geometry2D	17	$-b^2 \ln \left a\sqrt{x} + \sqrt{a(ax+b)} \right $	(14)	Integrals with Logarithms

$\int \frac{\ln ax}{x} dx = \frac{1}{2} (\ln ax)^2 \tag{29}$

$$\int \ln(ax+b)dx = \left(x+\frac{b}{a}\right)\ln(ax+b) - x, a \neq 0 \qquad (30)$$

$$\int \ln(x^2 + a^2) \, dx = x \ln(x^2 + a^2) + 2a \tan^{-1} \frac{x}{a} - 2x \tag{31}$$

$$\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x$$
 (32)

$$\int \ln (ax^2 + bx + c) dx = \frac{1}{a} \sqrt{4ac - b^2} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
$$-2x + \left(\frac{b}{2a} + x\right) \ln (ax^2 + bx + c)$$
(33)

$$\int x \ln(ax+b) dx = \frac{bx}{2a} - \frac{1}{4}x^2 + \frac{1}{2}\left(x^2 - \frac{b^2}{a^2}\right) \ln(ax+b)$$
 (34)

$$\int x \ln (a^2 - b^2 x^2) dx = -\frac{1}{2} x^2 + \frac{1}{2} \left(x^2 - \frac{a^2}{b^2} \right) \ln (a^2 - b^2 x^2)$$
(35)

Integrals with Exponentials

$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$
 (36)

$$\int xe^{-ax^2} dx = -\frac{1}{2a}e^{-ax^2}$$
 (37)

Integrals with Trigonometric Functions

$$\int \sin^3 ax dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a} \tag{38}$$

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a} \tag{39}$$

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a} \tag{40}$$

$$\int \cos ax \sin bx dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, a \neq b \quad (41)$$

$$\int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$
(42)

$$\int \sin^2 x \cos x dx = \frac{1}{3} \sin^3 x \tag{43}$$

$$\int \cos^2 ax \sin bx dx = \frac{\cos[(2a - b)x]}{4(2a - b)} - \frac{\cos bx}{2b}$$
$$-\frac{\cos[(2a + b)x]}{4(2a + b)}$$
(44)

$$\int \cos^2 ax \sin ax dx = -\frac{1}{3a} \cos^3 ax \tag{45}$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$
(46)

$$\int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a} \tag{47}$$

$$\int \tan ax dx = -\frac{1}{a} \ln \cos ax \tag{48}$$

$$\int \tan^2 ax dx = -x + \frac{1}{a} \tan ax \tag{49}$$

$$\int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a} \sec^2 ax \tag{50}$$

$$\int \sec x dx = \ln|\sec x + \tan x| = 2 \tanh^{-1} \left(\tan \frac{x}{2} \right)$$
 (51)

$$\int \sec^2 ax dx = -\frac{1}{a} \tan ax \tag{52}$$

$$\int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x| \qquad (53)$$

$$\int \sec x \tan x dx = \sec x \tag{54}$$

$$\int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x \tag{55}$$

$$\int \sec^n x \tan x dx = \frac{1}{n} \sec^n x, n \neq 0$$
 (56)

$$\int \csc x dx = \ln\left|\tan\frac{x}{2}\right| = \ln\left|\csc x - \cot x\right| + C \tag{57}$$

$$\int \csc^2 ax dx = -\frac{1}{a} \cot ax \tag{58}$$

$$\int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln|\csc x - \cot x|$$
 (59)

$$\int \csc^n x \cot x dx = -\frac{1}{n} \csc^n x, n \neq 0$$
 (60)

$$\int \sec x \csc x dx = \ln|\tan x| \tag{61}$$

Products of Trigonometric Functions and Monomials

$$\int x \cos x dx = \cos x + x \sin x \tag{62}$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \tag{63}$$

$$\int x^2 \cos x dx = 2x \cos x + \left(x^2 - 2\right) \sin x \tag{64}$$

$$\int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$
 (65)

$$\int x \sin x dx = -x \cos x + \sin x \tag{66}$$

$$\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2} \tag{67}$$

$$\int x^2 \sin x dx = \left(2 - x^2\right) \cos x + 2x \sin x \tag{68}$$

$$\int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$
 (69)

Products of Trigonometric Functions and Exponentials

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) \tag{70}$$

$$\int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax)$$
 (71)

$$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) \tag{72}$$

$$\int e^{bx}\cos axdx = \frac{1}{a^2 + b^2}e^{bx}(a\sin ax + b\cos ax)$$
 (73)

$$\int xe^x \sin x dx = \frac{1}{2}e^x (\cos x - x \cos x + x \sin x)$$
 (74)

$$\int xe^x \cos x dx = \frac{1}{2}e^x (x\cos x - \sin x + x\sin x) \tag{75}$$

```
485
                     e.insert({a,b}); e.insert({b,c}); e.insert({c,a});
486
                     wrap(c,b); wrap(a,c);
487
                }
488
            }
489
        VVP ConvexHull3D(VP p){
490
            p=q=_p; n=p.size();
491
492
            ret.clear(); e.clear();
493
            for (auto &i:q) i=i+(P3){rand_db()*1e-4,rand_db()*1e-4,rand_db()*1e-4};
            for (int i=1;i<n;i++) if (q[i].x<q[0].x) swap(p[0],p[i]), swap(q[0],q[i]);
494
            for (int i=2;i<n;i++) if</pre>
495
       \leftrightarrow ((q[i].x-q[0].x)*(q[1].y-q[0].y)>(q[i].y-q[0].y)*(q[1].x-q[0].x))
       \hookrightarrow swap(q[1],q[i]),swap(p[1],p[i]);
496
            wrap(0,1);
            return ret;
497
498
        }
499 | }
500 VVP reduceCH(VVP A){
        VVP ret; map<P3,VP> M;
501
502
        for (VP nowF:A){
            P3 dir=cross(nowF[1]-nowF[0],nowF[2]-nowF[0]).unit();
503
            for (P3 k1:nowF) M[dir].pb(k1);
504
505
         for (pair<P3,VP> nowF:M) ret.pb(convexHull2D(nowF.se,nowF.fi));
506
507
        return ret;
508 | }
509 // 把一个面变成 (点,法向量)的形式
510 pair<P3,P3> getF(VP F){
         return mp(F[0],cross(F[1]-F[0],F[2]-F[0]).unit());
511
512 | }
513 // 3D Cut 保留 dot(dir,x-p)>=0 的部分
    VVP ConvexCut3D(VVP A,P3 p,P3 dir){
514
        VVP ret; VP sec;
515
516
         for (VP nowF: A){
            int n=nowF.size(); VP ans; int dif=0;
517
518
            for (int i=0;i<n;i++){
                 int d1=sign(dot(dir,nowF[i]-p));
519
                 int d2=sign(dot(dir,nowF[(i+1)%n]-p));
520
                 if (d1>=0) ans.pb(nowF[i]);
521
                 if (d1*d2<0){
522
523
                     P3 q=getFL(p,dir,nowF[i],nowF[(i+1)%n])[0];
                     ans.push_back(q); sec.push_back(q);
524
525
526
                 if (d1==0) sec.push back(nowF[i]); else dif=1;
527
       \rightarrow dif|=(sign(dot(dir,cross(nowF[(i+1)%n]-nowF[i],nowF[(i+1)%n]-nowF[i])))==-1);
```

```
528
            }
529
             if (ans.size()>0&&dif) ret.push back(ans);
530
531
        if (sec.size()>0) ret.push back(convexHull2D(sec,dir));
        return ret;
532
533 }
    db vol(VVP A){
534
        if (A.size()==0) return 0; P3 p=A[0][0]; db ans=0;
535
536
        for (VP nowF:A)
537
             for (int i=2;i<nowF.size();i++)</pre>
                 ans+=abs(getV(p,nowF[0],nowF[i-1],nowF[i]));
538
        return ans/6;
539
540
541
    VVP init(db INF) {
        VVP pss(6, VP(4));
542
        pss[0][0] = pss[1][0] = pss[2][0] = {-INF, -INF, -INF};
543
        pss[0][3] = pss[1][1] = pss[5][2] = {-INF, -INF, INF};
544
        pss[0][1] = pss[2][3] = pss[4][2] = {-INF, INF, -INF};
545
        pss[0][2] = pss[5][3] = pss[4][1] = {-INF, INF, INF};
546
547
        pss[1][3] = pss[2][1] = pss[3][2] = {INF, -INF, -INF};
548
        pss[1][2] = pss[5][1] = pss[3][3] = {INF, -INF, INF};
        pss[2][2] = pss[4][3] = pss[3][1] = {INF, INF, -INF};
549
        pss[5][0] = pss[4][0] = pss[3][0] = {INF, INF, INF};
550
551
        return pss;
552 }
```

弦图相关

- 1. 团数 < 色数,弦图团数 = 色数
- 2. 设 next(v) 表示 N(v) 中最前的点 . 令 w* 表示所有满足 $A\in B$ 的 w 中最后的一个点,判断 $v\cup N(v)$ 是否为极大团,只需判断是否存在一个 w,满足 Next(w)=v 且 $|N(v)|+1\leq |N(w)|$ 即可 .
 - 3. 最小染色: 完美消除序列从后往前依次给每个点染色 ,给每个点染上可以染的最小的颜色
 - 4. 最大独立集: 完美消除序列从前往后能选就选
- 5. 弦图最大独立集数 = 最小团覆盖数 ,最小团覆盖 : 设最大独立集为 $\{p_1,p_2,\dots,p_t\}$,则 $\{p_1\cup N(p_1),\dots,p_t\cup N(p_t)\}$ 为最小团覆盖

综合

二分图 定理 1: 最小覆盖数 = 最大匹配数

定理 2: 最大独立集 S 与 最小覆盖集 T 互补

算法:

- 1. 做最大匹配 . 没有匹配的空闲点 $\in S$
- 2. 如果 $u \in S$ 那么 u 的临点必然属于 T
- 3. 如果一对匹配的点中有一个属于 T 那么另外一个属于 S
- 4. 还不能确定的 , 把左子图的放入 S, 右子图放入 T

算法结束

上下界流 上下界无源汇可行流 : 不用添 T->S. 判断是否流量平衡

上下界有源汇可行流 : 添 $T \to S$ (下界 0. 上界 ∞). 判断是否流量平衡

上下界最小流 : 不添 $T \to S$ 先流一遍 , 再添 $T \to S$ (下界 0 , 上界 ∞) 在残图上流一遍 , 答案为 $S \to T$ 的流量值

上下界最大流: 添 $T\to S$ (下界 0, 上界 ∞) 流一遍,再在残图上流一遍S到T的最大流,答案为前者的 $S\to T$ 的值 + 残图中 $S\to T$ 的最大流 (不删那条边的话,最后的最大流就是答案)

最大流对偶 考虑最大费用循环流的标准线性规划建模:

Maximize: $\sum_{i \in F} cost_i \cdot f_i$

- □ 对每条弧i有 $0 < f_i < cap_i$, cap_i 表示这条弧的容量, $f_i > 0$ 。
- \square 对于每个点x有流量平衡: $\sum_{u_i=x} f_i \sum_{v_i=x} f_i = 0$

共有|V|+|E|个限制,对偶后,设前|V|个限制对应的变量为 a_i ,后|E|个限制对应的变量为 d_i :Minimize: $\sum_{i\in E} cap_i\cdot d_i$

- 对每条弧i有 $a_{v_i} a_{u_i} + d_i \ge cost_i$ 。
- $-a_x$ 无限制, $d_i \geq 0$ 。
 - * min > > max <

所以,比如有很多变量然后给定一些差分后的不等式然后可以花费代价让一个不等式"放宽",目标总代价最小的模型,都是最大费用流的对偶。

类欧几里得

*
$$f(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor$$

*
$$m = \lfloor \frac{an+b}{c} \rfloor, f(a,b,c,n) = nm - f(c,c-b-1,a,m-1)$$

拟阵 1、求最小权基, 贪心;

2、求两个拟阵 (M_1,I_1) 和 (M_2,I_2) 的最小权拟阵交,从空集开始每次增加一个元素,假设当前集合为A. 建图:

如果x不属于A, $A + \{x\} \in I_1$, 连边S->x, 边权为x的权值;

如果x不属于A, $A + \{x\} \in I_2$, 连边x->T, 边权为0;

如果x不属于A, y属于A, $A-\{y\}+\{x\}\in I_2$, 连边x->y, 边权为y的权值的相反数;

如果x不属于A, y属于A, $A-\{y\}+\{x\}\in I_1$, 连边y->x, 边权为x的权值;

找出S->T的最短路,把路径上每个点的是否在集合里取反。

3、把S分解为最少的拟阵的并:

最小值为 $\max \left[\frac{|S|}{r(|S|)} \right]$

每次增加一个元素x,每个当前的等价类 A_i 连边 $S->A_i$ 。

如果y不属于 A_i , $A_i + \{y\} \in I$, 连边 $A_i - > y$.

如果y不属于 A_i , z属于 A_i , $A_i - \{z\} + \{y\} \in I$, 连边y - > z.

染色多项式

number of acyclic orientations of G is $(-1)^{|V(G)|}P(G,-1)$

Cycle
$$P(C_n,t) = (t-1)^n + (-1)^n(t-1)$$

Petersen graph $P(P_5,t)=t(t-1)(t-2)(t^7-12t^6+67t^5-230t^4+529t^3-814t^2+775t^2-120t^4+529t^3-814t^2+775t^2+120t$

伯努利数

$$\sum_{k=0}^{m-1} k^n = \frac{1}{n+1} \sum_{k=0}^{n} {n+1 \choose k} B_k m^{n+1-k}$$

$$\sum_{j=0}^{m} {m+1 \choose j} B_j = 0 \qquad \frac{B_{m+p-1}}{m+p-1} \equiv \frac{B_m}{m} (\mod p)$$

高维单位球

$$A(d) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}, V(d) = \frac{1}{d}A(d)$$

基本形

椭圆 标准形 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. 离心率 $e=\frac{c}{a},c=\sqrt{a^2-b^2}$. 焦点参数 $p=\frac{b^2}{a}$ 椭圆上(x,y)处曲率半径 $R=a^2b^2(\frac{x^2}{a^4}+\frac{y^2}{b^4})^{\frac{3}{2}}=\frac{(r_1r_2)^{\frac{3}{2}}}{ab}$. 其中 r_i 为到焦点 F_i 距离点A(a,0) , M(x,y) 则扇形面积 $S_{OAM}=\frac{1}{2}ab\arccos\frac{x}{a}$ 弧长

$$L_{AM} = a \int_0^{\arccos\frac{x}{a}} \sqrt{1 - e^2 \cos^2 t} dt = a \int_{\arccos\frac{x}{a}}^{\frac{\pi}{2}} \sqrt{1 - e^2 \sin^2 t} dt$$

周长
$$L=2a\pi[1-(\frac{1}{2})^2e^2-(\frac{1\times 3}{2\times 4})^2\frac{e^4}{3}-\dots]$$
 极坐标方程 $r^2=\frac{b^2a^2}{b^2\cos^2\theta+a^2\sin^2\theta}$

拋物线 标准形 $y^2=2px$,曲率半径 $R=((p+2x)^{3/2})/\sqrt{p}$,其中 r_i 为到焦点 F_i 距离点A(a,0) , M(x,y) 则扇形面积 $S_{OAM}=\frac{1}{2}ab\arccos\frac{x}{a}$ 弧长

$$L_{OM} = \frac{p}{2} \left[\sqrt{\frac{2x}{p} (1 + \frac{2x}{p})} + \ln(\frac{2x}{p} + \sqrt{1 + \frac{2x}{p}}) \right]$$

重心 半径r圆心角 θ 的扇形重心与圆心距离 $\frac{4r}{3\theta}\sin\frac{\theta}{2}$

半径r圆心角 θ 的圆弧重心与圆心距离 $\frac{4r}{3\theta-3\sin\theta}\sin^3\frac{\theta}{2}$

椭圆上半部分重心与圆心距离 $\frac{4}{3\pi}b$

树的计数 若n+1个点的有根树总数为 a_{n+1} , 无根树总数为 b_{n+1} , $a_i=\{1,1,2,4,9,20,286,1842\dots\}$

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$
 $a_{n+1} = \frac{1}{n} \sum_{i=1}^{n} j a_i S_{n,j}$

$$b_{2k+1} = a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$$
 $b_{2k} = a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{n/2} (a_{n/2} + 1)$

组合公式

$$\sum_{k=1}^{n} k^5 = \frac{1}{12} n^2 (n+1)^2 (2N^2 + 2n - 1) \qquad \sum_{k=1}^{n} k^4 = \frac{1}{30} n(n+1)(2n+1)(3n^2 + 3n - 1)$$

限位排列
$$Ans = \sum_{i=0}^{n} (-1)^k * r_k * (n-i)!$$

其中 r_k 表示把k个物品放在不能放的位置上使得每行每列至多一个的方案数

三角公式

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \qquad \tan(\alpha) \pm \tan(\beta) = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$$

$$\sin(n\alpha) = n\cos^{n-1}\alpha\sin\alpha - \binom{n}{3}\cos^{n-3}\alpha\sin^3\alpha + \binom{n}{5}\cos^{n-5}\alpha\sin^5\alpha - \dots$$

$$\cos(n\alpha) = \cos^n \alpha \sin \alpha - \binom{n}{2} \cos^{n-2} \alpha \sin^2 \alpha + \binom{n}{4} \cos^{n-4} \alpha \sin^4 \alpha - \dots$$

反演

$$a_n = \sum_{k=0}^n C_n^k b_k, \quad b_n = \sum_{k=0}^n (-1)^{k+n} C_n^k a_k$$

$$a_n = \sum_{k=n}^{\inf} C_k^n b_k, \quad b_n = \sum_{k=n}^{\inf} (-1)^{k+n} C_k^n a_k$$

$$a_n = \sum_{k=0}^{n} C_{n+p}^{k+p} b_k, \quad b_n = \sum_{k=0}^{\inf} (-1)^{k+n} C_{n+p}^{k+p} a_k$$

$$a_n = \sum_{k=n}^{\inf} C_{k+p}^{n+p} b_k, \quad b_n = \sum_{k=n}^{\inf} (-1)^{k+n} C_{k+p}^{n+p} a_k$$

$$f(n) = \sum_{d|n} g(d), \qquad g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$$

杜教筛 $S(n) = \sum_{i=1}^{n} f(i)$

$$g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} g(i)S(\lfloor \frac{n}{i} \rfloor)$$

 $S(n) = \sum_{i=1}^{n} (f \cdot g)(i)$, g(x) 为完全积性函数。有:

$$S(n) = \sum_{i=1}^{n} [(f * 1) \cdot g](i) - \sum_{i=2}^{n} S(\lfloor \frac{n}{i} \rfloor) g(i)$$

$$S(n) = \sum_{i=1}^{n} (f * g)(i)$$
。有:

$$S(n) = \sum_{i=1}^{n} g(i) \sum_{i,j \le n} (f * 1)(j) - \sum_{i=2}^{n} S(\lfloor \frac{n}{i} \rfloor)$$