Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 3: Tasa de Interés Compuesta o Nominal

Solución de Ejercicio Nº32

e-financebook

- 32. El **esposo de Mónica** se emocionó al ver hoy 12 de setiembre de 2011, la escena del nacimiento de su primogénito, por lo que en cuanto culmina la emergencia sale raudo de la clínica y acude a SuBanco a solicitar que le abran una cuenta que remunera con una tasa nominal anual de 8% con capitalización diaria, en la que depositará el monto de dinero que permita a su hijo disponer de US\$ 70,000.00 (ni un centavo menos) que calcula es el monto necesario para solventar los gastos universitarios y que los dispondrá exactamente el día que cumpla 16 años.
 - a) ¿Cuál deberá ser este monto a depositar para lograr su objetivo?
 - b) ¿Cuántos días deberá esperar el hijo para iniciar su estudio universitario, si llegado su cumpleaños Nº16 y estando en 4º de secundaria, se entera que puede cancelar su carrera por adelantado en la Universidad de Londres y el costo se reducirá a US\$ 80,000.00 y el Banco le puede seguir ofreciendo la misma tasa de interés?

Respuesta: a) US\$ 19,105.44, b) 601 días

DATOS		
Nombre	Descripcion	Valor
S	Valor futuro o Ahorro deseado	70,000.00
TN	Tasa de Interés Nominal Anual (TNA)	8%
c.d.	Periodo de capitalización	diaria
Fecha inicial	Fecha de depósito inicial	12/09/2011
Fecha final	Fecha planeada para el retiro	12/09/2027

FÓRMULAS		
Número	Fórmula	
10	$C = S * \left(1 + \frac{TN}{m}\right)^{-n} \qquad C = \frac{S}{\left(1 + \frac{TN}{m}\right)^{n}}$	
13	$n = \frac{LN\left(\frac{S}{C}\right)}{LN\left(1 + \frac{TN}{m}\right)}$	

SOLUCIÓN

Calendario ordinario:

a)

$$t_{dias} = 365 * 16 + 4 = 5,844 dias$$

TNA 8%
$$\leftarrow$$
 m = 360 c.d. $-$ c.d. $t = 16$ años calendario

$$C = \frac{S}{(1 + \frac{TNA}{m})^n}$$

$$C = \frac{70,000.00}{(1 + \frac{8\%}{360})^{5,844}}$$

$$C = 19,105.44$$

b)

TNA 8%
$$\leftarrow$$
 m = 360 c.d. \rightarrow t = n días

$$n = \frac{LN\left(\frac{S}{C}\right)}{LN\left(1 + \frac{TNA}{m}\right)}$$

$$n = \frac{LN\!\!\left(\!\frac{80,\!000.00}{70,\!000.00}\right)}{LN\!\!\left(1\!+\!\frac{8\%}{360}\right)}$$

$$n = 600.95803$$