Transitive closure of graphs and allpairs shortest paths

Transitive closure (accessibility)

Problem:

G = (V, E) (unweighted) directed graph Compute H = (V, B) where B is the reflexive and transitive closure of E.

Remark: $(s,t) \in B$ iff there exists a path from s to t in G

Matrix representation

Matrix $n \times n$ where n = |V|

A adjacency matrix of G (= matrix of paths of length 1)

B adjacency matrix of H (= matrix of paths of H)

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$1 \xrightarrow{2} 2 \xrightarrow{3} 4$$

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Closure by matrix multiplication

Notation

 A_k = matrix of paths of length k in G

 $A_0 = I$ (identity matrix)

 $A_1 = A$ (matrix of paths of length 1)

Lemma

For all $k \ge 0$, $A_k = A^k$ (boolean matrix multiplication)

Proof:

 $A_k[i,j] = 1$ iff there exists $s \in V$: $A_{k-1}[i,s] = 1$ and A[s,j] = 1 let $A_k[i,j] = \bigvee_s A_{k-1}[i,s] \cdot A[s,j]$ where \bigvee boolean sum (OR). that is, $A_k = A_{k-1} \cdot A$ and $A_0 = I$ then $A_k = A^k$

Closure by matrix multiplication

there exists path from i to j in $G \Leftrightarrow$ there exists a path from i to j without cycle (simple path) \Leftrightarrow there exists a path from i to j of length $\leq n$ -1

$$B[i,j] = 1$$
 iff $\exists k, 0 \le k \le n-1$ $A^{k}[i,j] = 1$

therefore
$$B = I + A + A^2 + ... + A^{n-1}$$

Computation of *B* using Horner's rule:

$$B_0 = I$$
,
 $B_i = I + B_{i-1}A$ for $i=1..n-1$. Then $B = B_{n-1}$

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$B_{1} = I + A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B_{3} = I + A + A^{2} + A^{3} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B_{4} = I + A + A^{2} + A^{3} + A^{4}$$

$$B_4 = I + A + A^2 + A^3 + A^4$$

= $I + B_3 \cdot A = B$

Exercise

▶ Compute the transitive closure for the following graph

Time complexity

```
n-1 additions and n-1 products of boolean matrices n \times n => O(n \cdot M(n))
```

each product is done in $O(n^3)$ operations => $O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2.8})$ (now improved to $O(n^{2.37})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/log^2(n))$ (now improved to $O(n^3/log^4(n))$)

Time complexity

```
n-1 additions and n-1 products of boolean matrices n \times n => O(n \cdot M(n))
```

each product is done in $O(n^3)$ operations => $O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2.8})$ (now improved to $O(n^{2.37})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/log^2(n))$ (now improved to $O(n^3/log^4(n))$)

$O(n^4)$ is too much! can be done better with BFS:

For each node i, run BFS with source node i B[i,j]=1 iff j is reachable from i Running time $O(n \cdot (n+m))=O(n^3)$

Speeding up

Notation

```
B_k = matrix of paths of length \leq k in G
```

```
B_0 = I (identity matrix)
```

$$B_1$$
 = matrix of paths of length ≤ 1 = $I + A$

$$B_{n-1}$$
 = matrix of simple paths = B

Lemma: $B_k = B_{k-1} \cdot (I + A)$

 \Rightarrow For all $k \ge 1$, $B_k = (I + A)^k$ and then $B_{2k} = B_k$. B_k

Compute B as an n-1 power in time $O(\log(n) \cdot M(n)) = O(\log(n) \cdot n^3)$

2 matrix products

Warshall's (Roy-Warshall) algorithm (~1962)

$$G = (V, E)$$
 with $V = \{1, 2, ..., n\}$

Paths in $G: i \rightarrow s_1 \rightarrow s_2 \dots \rightarrow s_l \rightarrow j$

Intermediate nodes : s_1 , s_2 , ..., s_l

Notation:

 C_k = matrix of paths in G with intermediate nodes $\leq k$

$$C_0 = I + A$$

 C_n = matrix of paths in G = B

Recurrence

Simple path

Lemma For all $k \ge 1$,

$$C_k[i,j] = 1$$
 iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1)$ and $C_{k-1}[k,j] = 1$

Computation

of C_k from C_{k-1} in time $O(n^2)$ of $B = C_n$ in time $O(n^3)$

Computing C_k from C_{k-1}

$$C_{k} = i \left(\begin{array}{c} i \\ \\ \\ \end{array} \right) \qquad C_{k-1} = i \left(\begin{array}{c} k \\ \\ \\ \end{array} \right)$$

$$C_k[i,j] \leftarrow C_{k-1}[i,j] \vee (C_{k-1}[i,k] \& C_{k-1}[k,j])$$

 $C_0 = I + A$, $C_k[i,j] = 1$ iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1)$ and $C_{k-1}[k,j] = 1$

~1 matrix product

```
function closure (graph G = (V, E)) : matrix ;
 begin
     n \leftarrow |V|;
     for i \leftarrow 1 to n do
        for j \leftarrow 1 to n do
            if i = j or A[i,j] = 1 then
                    C_0[i,j] \leftarrow 1;
            else
                    C_0[i,j] \leftarrow 0;
     for k \leftarrow 1 to n do
        for i \leftarrow 1 to n do
            for j \leftarrow 1 to n do
                    C_{k}[i,j] \leftarrow C_{k-1}[i,j] + C_{k-1}[i,k] \cdot C_{k-1}[k,j];
 return C_n;
end
        + is the boolean sum; running time O(n^3)
```

What we have so far

Three algorithms to compute the transitive closure:

- matrix polynomial: $O(n \cdot M(n)) = O(n^4)$
- matrix power: $O(\log n \cdot M(n)) = O(\log n \cdot n^3)$
- Roy-Warshall algorithm : $O(n^3)$

We now generalize these ideas to compute all-pairs shortest paths in a weighted graph