

Version	1.9
Total pages	27
Date	2009.01.20

Product Specification

Color TFT-LCD module

MODEL NAME: A080SN01 VO

(97.08A07.000)

(♠) Preliminary Specification(....) Final Specification

Note: The content of this specification is subject to change.

© 2009 AU Optronics All Rights Reserved, Do Not Copy.

Record of Revision

Version	Revise Date	Page	Content				
0.0	14/Mar/2007		First draft.				
0.1	16/Mar/2007	6	Revise min. operation and storage temperature				
		7	Add min and max LED lightbar voltage				
		16	Add brightness condition, V=12V				
0.2	28/Mar/2007	20~22	Add suggested application circuit				
		23~24	Revise outline drawing				
			- FPC length: from 30.3mm to 45mm				
			- Suggested FPC connector: XF2M-6015-1AH				
0.3	14/May/2007	6	Update min. & max. VCOM value				
		16	Update white chromaticity				
		23-24	Update outline drawing				
0.4	25/May/2007	6	Update AV_{DD} , V_{GH} , V_{GL} , VCOM value				
		12	Update register description				
		15	Update recommended power on register setting				
		21	Updata suggested application circuit				
		24	Revise outline drawing				
			- Update FPC connector: XF2M-6015-1AH				
0.5	1/Jun/2007	7	Update the figure of LED series/parallel connection				
0.6	13/Jul/2007	4	Modify pin#35 & #37 of FPC				
		6	Remove DC/DC converter section				
		6	Add power consumption				
		21~23	Update suggested application circuit				
0.7	24/Jul/2007	12	Modify serial register table(default value): R4/D8: 1				
0.8	21/Aug/2007	8	Modify DCLK frequency of Horizontal timing				
		12	Update serial register table(default value): R0/D3: 0				
		23	Modify application circuit: VCOM => VCOMin				
0.9	27/Aug/2007	25	Update outline drawing – Back side				
1.0	13/Dec/2007	16~17	Add VGH, VGL Power on/off sequence				
1.1	24/Jan/2008	25	Update outline drawing – Front side				

1.2	2008/04/15	27	Add Suggestion- System block
1.3	2008/05/06	3	Add Total Power Consumption
		6	Update Electrical characteristics
1.4	2008/07/08	7	Remove LED lightbar voltage min value
		15	Add note on Recommended Power On Register Setting
1.5	2008/07/29	15	Update note on Recommended Power On Register
1.6	2008/11/06	18	Update Viewing angle
		25	Update Drawing FPC connector
		26	Update bar code label size to 83*9mm
1.7	2008/11/12	18	Update Response time
1.8	2009/01/07	12	Update Serial register table
		13	Delete R1 setting
1.9	2009/01/20	5	Update Pin35,37
		12	Update Serial Register table
		15	Delete notes
		l	

Version :1.9 Page : 1 /27

Contents:

Α.	Physical specification	Р3
В.	Electrical specifications	P4
	1. Pin assignment	P4
	a. TFT-LCD panel driving section	P4
	b. Backlight driving section	P5
	2. Absolute maximum ratings	P6
	3. Electrical characteristics	P6
	a. Typical operating conditions	P6
	b. Backlight driving conditions	P7
	4. AC Timing	P7
	5. RGB parallel Input timing	Р8
	a. Horizontal timing	Р8
	b. Vertical timing	Р9
	6. Serial control interface	P10
	7. Register back	P11
	8. Serial register table	P12
	9. Register description	P12
	10. Power sequence	P16
C.	Optical specifications	P18
D.	Reliability test items	P20
Ε.	Packing form	P21
F.	Suggested application circuit	P22
G.	Suggestion- System block	P27

Version :1.9 Page : 2 /27

Appendix:

Fig.1-(a) Outline dimension of TFT-LCD module(Front side)	P25
Fig.1-(b) Outline dimension of TFT-LCD module(Back side)	P26

Version :1.9 Page : 3 /27

A. Physical specifications

NO.	Item	Specification	Remark
1	Display resolution (dot)	800RGB(W)x600(H)	
2	Active area (mm)	162(W)x121.5(H)	
3	Dot pitch (mm)	0.2025(W)x0.2025(H)	
4	Color configuration	R. G. B. stripe	Note 1
5	Overall dimension (mm)	183(W)x141(H)x6.3(D)	Note 2
6	Weight (g)	235 ±10	
7	Surface treatment	Anti-Glare	
8	Backlight unit	24 pcs of LED	
9	Total Power Consumption (Watt)	2.3 W Max (Include Logic and BLU power)	

Note 1: Below figure shows the dot stripe arrangement.

Note 2: Refer to Fig. 1

Version :1.9 Page : 4 /27

B. Electrical specifications

1.Pin assignment

a. TFT-LCD panel driving section

Pin no	Symbol	I/O	Description	Remark		
1	AGND	Р	Analog Ground			
2	AVDD	Р	Analog Power			
3	VCC	Р	Digital Power			
4	R0	I	Data input (LSB)			
5	R1	1	Data input			
6	R2	- 1	Data input			
7	R3	ı	Data input			
8	R4	1	Data input			
9	R5	1	Data input			
10	R6	1	Data input			
11	R7	1	Data input (MSB)			
12	G0	1	Data input (LSB)			
13	G1	1	Data input			
14	G2	1	Data input			
15	G3	- 1	Data input			
16	G4	- 1	Data input			
17	G5	- 1	Data input			
18	G6	- 1	Data input			
19	G7	- 1	Data input (MSB)			
20	B0	- 1	Data input (LSB)			
21	B1	- 1	Data input			
22	B2	- 1	Data input			
23	В3	- 1	Data input			
24	B4	- 1	Data input			
25	B5	I	Data input			
26	B6	- 1	Data input			
27	В7	- 1	Data input (MSB)			
28	DCLK	- 1	Clock input			
29	DE	I	Data enable signal			
30	HSYNC	I	Horizontal sync input. Negative polarity			
31	VSYNC	I	Vertical sync input. Negative polarity			
32	SCL	- 1	Serial communication clock input			
33	SDA	I	Serial communication data input			

Version :1.9 Page : 5 /27

			•	
34	CSB	I	Serial communication chip select	
35	NC	-	For test, do not connect (Please leave it open)	
36	VCC	Р	Digital Power	
37	NC	-	For test, do not connect (Please leave it open)	
38	GND	Р	Digital ground	
39	AGND	Р	Analog ground	
40	AVDD	Р	Analog Power	
41	VCOMin	I	For external VCOM DC input (Optional)	
42	DITH	I	Dithering setting DITH = "L" 6bit resolution(last 2 bits of input data turncated) DITH = "H" 8bit resolution(Default setting)	
43	NC	-	Not connect	
44	VCOM	0	connect a capacitor	
45	V10	Р	Gamma correction voltage reference	
46	V9	Р	Gamma correction voltage reference	
47	V8	Р	Gamma correction voltage reference	
48	V7	Р	Gamma correction voltage reference	
49	V6	Р	Gamma correction voltage reference	
50	V5	Р	Gamma correction voltage reference	
51	V4	Р	Gamma correction voltage reference	
52	V3	Р	Gamma correction voltage reference	
53	V2	Р	Gamma correction voltage reference	
54	V1	Р	Gamma correction voltage reference	
55	NC	-	Not connect	
56	VGH	Р	Positive power for TFT	
57	VCC	Р	Digital Power	
58	VGL	Р	Negative power for TFT	
59	GND	Р	Digital Ground	
60	CAP	С	Connected to a capacitor	

I: Input; P: Power; G: Ground; C: Capacitor

b. Backlight driving section (Refer to Figure 1)

No.	Symbol	1/0	Description	Remark
1	HI	1	Power supply for backlight unit (High voltage)	
2	GND	-	Ground for backlight unit	

Version :1.9 Page : 6 /27

2. Absolute maximum ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	V_{CC}	GND=0	-0.5	5	V	
	AV_DD	AGND=0	-0.5	15	V	
Power voltage	V_{GH}	0110 0	-0.3	42	V	
	V_{GL}	GND=0	-20	0.3	V	
	$V_{GH} - V_{GL}$		-	40	V	
	VI		-0.3	V _{CC} +0.3	V	Note 1
Input signal voltage	VCOM		0	6.5	V	
Operating temperature	Тора		-10	60	$^{\circ}\!\mathbb{C}$	
Storage temperature	Tstg		-20	70	$^{\circ}\!\mathbb{C}$	

Note 1: HS, VS, DE, Digital Data

3. Electrical characteristics

a. Typical operating conditions (GND=AVss=0V, Note 2)

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
		V _{cc}	2.7	3.3	3.6	V	
			-	11	14	mA	Black Pattern@V _{CC} =3.3
Power	supply	AV_DD	11	11.68	12	V	
		I _{AVDD}	-	16	20	mA	Black Pattern
		V_{GH}	7	15	VEE+40	V	
		I _{VGH}	-	0.16	0.2	mA	Black Pattern
			-20	-6.75	-5	V	
		I _{VGL}	-	0.16	0.2	mA	Black Pattern
	wer mption	Р	-	230	260	mW	Black Pattern
VC	ОМ	$V_{\mathtt{CDC}}$	3.9	4.1	4.3	V	DC component
Input	H Level	V_{IH}	0.7 V _{CC}	-	V _{CC}	٧	Note 1
signal voltage	L Level	V_{IL}	0	-	0.3 V _{CC}	٧	Note 1
Input level of V1~V7		Vx	VCOMDC	-	AVDD-0.5		Positive gamma correction voltage
	evel of V14	Vx	0.5	-	VCOMDC		Negative gamma correction voltage

Note 1: HS , VS , DE, Digital Data

Version :1.9 Page : 7 /27

b. Backlight driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED lightbar voltage	V_L	-	12	12	V	Note 1, 2
LED Lightbar current	ΙL	-	160		mA	Note 1, 2
LED Lightbar life time		10,000	-	-	Hr	Note 1, 2, 3, 4

Note 1: LED backlight is LED lightbar type(24 pcs of LED).

Note 2: Definition of "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25°C and LED lightbar voltage = 12V

Note 3: The value is only for reference.

Note 4: If it operates with LED lightbar voltage more than 12V, it maybe decreases LED lifetime.

4. AC Timing

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Clock High time	T _{WCL}	8	-	-	ns	
Clock Low time	T _{wch}	8	-	-	ns	
Hsync setup time	T _{HSU}	5	-	-	ns	
Hsync hold time	T _{HHD}	10	_	_	ns	
Vsync setup time	T _{VSU}	0	-	_	ns	
Vsync hold time	T_{VHD}	2	-	-	ns	
Data setup time	T _{DSU}	5	-	-	ns	
Data hold time	T_{DHD}	10	-	-	ns	
Data enable set-up time	T _{ESU}	4	-	-	ns	
Data enable hold time	T _{EHD}	2	-	-	ns	

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version :1.9 Page : 8 /27

5. RGB Parallel Input Timing

a. Horizontal timing

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
DCLK frequency	F _{DCLK}	25	40	45	MHz	
DCLK period	T _{DCLK}	22	25	40	ns	
Hsync period (= T _{HD} + T _{HBL})	T _H	986	1056	1183	DCLK	
Active Area	T _{HD}	-	800	-	DCLK	
Horizontal blanking (= T _{HF} + T _{HE})	T _{HBL}	186	256	383	DCLK	
Hsync front porch	T_{HF}	-	40	-	DCLK	
Delay from Hsync to 1 st data input (= T _{HW} + T _{HB})	T _{HE}	88	216	343	DCLK	Function of HDL[70] settings
Hsync pulse width	T _{HW}	1	128	136	DCLK	
Hsync back porch	T _{HB}	10	88	342	DCLK	

Horizontal input timing (HV mode)

Horizontal input timing (DE mode)

Version :1.9 Page : 9 /27

b. Vertical timing

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Vsync period (= T _{VD} + T _{VBL})	T _V	620	628	635	Th	
Active lines	T _{VD}	-	600	-		
Vertical blanking (= T _{VF} + T _{VE})	T _{VBL}	20	28	35	Th	
Vsync front porch	T _{VF}	-	1	-	Th	
GD start pulse delay	T _{VE}	19	27	34	HS	Function of VDL[30] settings
Vsync pulse width	T _{VW}	1	3	16	Th	
Hsync/Vsync phase shift	T _{VPD}	2	320	_	DCLK	

Vertical timing (HV mode)

Vertical timing (DE mode)

Version :1.9 Page : 10 /27

6. Serial control interface

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Serial data setup time	T _{IST}	120	-	-	ns	
Serial data hold time	T _{IHD}	120	-	-	ns	
CSB setup time	T _{CST}	120	-	ı	ns	
CSB hold time	T _{CHD}	120	-	-	ns	
Serial clock high/low	T _{SSW}	120	-	-	ns	
Serial clock	T _{SCK}	320	-	-	ns	
Delay from CSB to VSYNC	T _{CV}	1	-	-	us	
Chip select distinguish	T _{CD}	1	-	-	us	
Serial data output delay	T _{ID}	-	-	60	ns	CL=20pF

AC serial interface write mode timings

AC serial interface read mode timings

Version :1.9 Page : 11 /27

7. Register Bank

There is a total of 6 registers each containing several parameters. For a detailed description of the parameters refer to register table. The serial register has read/write function. D[15:12] are the register address, D[11] defines the read or write mode and D[10:0] are the data.

Serial Interface Write sequence

Serial Interface Read sequence

- 1. At power-on, the default values specified for each parameter are taken.
- 2. If less than 16-bit data are read during the CS low time period, the data is cancelled.
 - a. The write operation is cancelled.
 - b. The read operation is interrupt.
- 3. If more than 16-bit data are read during the CS low time period, the last 16 bits are kept.
 - a. Address & R/W are always defined form CSB falling edge.
 - b. The write operation load last 11 bit data before CSB rising edge.
 - c. The read operation is "D0" is output to SDA until CSB rising edge.
- 4. All items are set at the falling edge of the vertical sync, except R0[1:0].
- 5. When GRB is activated through the serial interface, all registers are cleared, except the GRB value.
- 6. Register R/W setting: D11 = "L" → write mode; D11 = "H" → read mode.
- 7. The register setting values are valid when VCC already goes to high and after VSYNC starts.
- 8. It is suggested that VSYNC, HSYNC, DCLK always exists in the same time. But if HSYNC, DCLK stops, only VSYNC operating, the register setting is still valid.

Version :1.9 Page : 12 /27

9. If the chip goes to standby mode, the register value will still keep. MCU can wake up the chip only by changing standby mode value from low to high.

10. The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

8. Serial Register table(Default Value)

Reg	1	ADDF	RESS	3	R/W		DATA									
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0		(01)	(0	1)	(1)	U/D (0)	SHL (1)	(1)	(0)	GRB (1)	STB (1)
R1	0	0	0	1	0	×	(0)	(1)	(01) (2Fh)							
R2	0	0	1	0	0	×	×	×		HDL (80h)						
R3	0	0	1	1	0	×	×	(0)	(0)	(0)	(0)	(0)	VDL (1000)			
R4	0	1	0	0	0	×	×	(0)	(0)	(0)	(0)	(1)	(1111)			
R6	0	1	1	0	0	×	(0)	EnGB12 (1)	EnGB11 (1)	EnGB10 (1)	(0)	(0)	EnGB5 (1)	EnGB4 (1)	EnGB3 (1)	(0)

X: Reserved. Please set to "0".

9. Register Description

a. R0 setting

Address	Bit	Description	Default	
0000	[100]	Bits 10-9	AUO Internal Use	01
		Bits7-8	AUO Internal Use	01
		Bit6 (DITH)	Dithering function.	1
		Bit5 (U/D)	Vertical shift direction selection.	0
		Bit4 (SHL)	Horizontal shift direction selection.	1
		Bit3 (SHDB1)	AVDD DC-DC converter shutdown setting.	1
		Bit2	AUO Internal Use	0
		Bit1 (GRB)	Global reset.	1
		Bit0 (STB)	Standby mode setting.	1

Bit6	DITH function
0	DITH off.
1	DITH on. (default)

Bit5	U/D function
0	Scan down; First line= Gn -> Gn-1 ->> G2 -> Last line=G0. (default)
1	Scan up; First line= G0 -> G2 ->> Gn-1 -> Last line=Gn

Bit4	SHL function
0	Shift left; First data= Y600 -> Y599 ->> Y2 -> Last data=Y1.
1	Shift right; First data= Y1 -> Y2 ->> Y599 -> Last data=Y600. (default)

Version :1.9 Page : 13 /27

Bit3	SHDB1 function
0	AVDD DC-DC converter is off.
1	AVDD DC-DC converter is on. (default)

Bit1	GRB function
0	The controller is reset. Reset all registers to default value.
1	Normal operation. (default)

Bit0	STB function
0	T-CON, source driver and DC-DCs converters are off. All outputs are set to GND.
1	Normal operation. (default)

b. R2 setting

Address	Bit	Description		Default
0010	[70]	Bit7-0(HDL)	Horizontal start pulse adjustment function	80H

Bit7-0	HDL function
00h	$T_{HE} = T_{HEtyp} - 128$ CLK period.
80h	T _{HE} = T _{HEtyp} . (default)
FFh	$T_{HE} = T_{HEtyp} + 127 CLK period.$

c. R3 setting

Address	Bit	Description		Default
0011	[80]	Bit8	AUO Internal Use	0
		Bit7	AUO Internal Use	0
		Bit6	AUO Internal Use	0
		Bit5	AUO Internal Use	0
		Bit4	AUO Internal Use	0
		Bit3-0(VDL)	Vertical start pulse adjustment function	1000

Bit3-0	VDL function
0000	$T_{VE} = T_{VEtyp} - 8$ Hs period.
0001	$T_{VE} = T_{VEtyp} - 7$ Hs period.
0010	$T_{VE} = T_{VEtyp} - 6$ Hs period.
0011	$T_{VE} = T_{VEtyp} - 5$ Hs period.
0100	$T_{VE} = T_{VEtyp} - 4$ Hs period.
0101	$T_{VE} = T_{VEtyp} - 3$ Hs period.
0110	$T_{VE} = T_{VEtyp} - 2$ Hs period.
0111	$T_{VE} = T_{VEtyp} - 1$ Hs period.
1000	$T_{VE} = T_{VEtyp.}$ (default)
1001	$T_{VE} = T_{VEtyp} - 1$ Hs period.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version :1.9 Page : 14 /27

1010	$T_{VE} = T_{VEtyp} - 2$ Hs period.
1011	$T_{VE} = T_{VEtyp} - 3$ Hs period.
1100	$T_{VE} = T_{VEtyp} - 4$ Hs period.
1101	$T_{VE} = T_{VEtyp} - 5$ Hs period.
1110	$T_{VE} = T_{VEtyp} - 6$ Hs period.
1111	$T_{VE} = T_{VEtyp} - 7$ Hs period.

d. R6 setting

Address	Bit	Description		Default
0110	[90]	Bits9	AUO Internal Use	0
		Bits8(EnGB12)	Gamma buffer Enable for V9	1
		Bits7(EnGB11)	Gamma buffer Enable for V8	1
		Bits6(EnGB10)	Gamma buffer Enable for V7	1
		Bits5	AUO Internal Use	0
		Bits4	AUO Internal Use	0
		Bits3(EnGB5)	Gamma buffer Enable for V4	1
		Bits2(EnGB4)	Gamma buffer Enable for V3	1
		Bits1(EnGB3)	Gamma buffer Enable for V2	1
		Bits0	AUO Internal Use	0

Bitx	EnGBx function
0	Gamma buffer for VX is disabled (High Z).
1	Gamma buffer is enabled. VX must be connected externally.

Version :1.9 Page : 15 /27

Recommended Power On Register Setting

Reg		ADDF	RESS		R/W						DATA					
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1	1
R1	0	0	0	1	0	0	0	1	0	1			2	Fh		
R2	0	0	1	0	0	0	0	0				80)h			
R3	0	0	1	1	0	0	0	0	0	0	0	0		10	00	
R4	0	1	0	0	0	0	0	1	1	0	0	1		11	11	
R6	0	1	1	0	0	0	0	1	1	1	0	0	1	1	1	0

Version :1.9 Page : 16 /27

10. Power Sequence

Sequence for power on/off and Signal on/off

a. Power on sequence

Version :1.9 Page : 17 /27

b. Power off sequence

Version :1.9 Page : 18 /27

C. Optical specification (Note 1, Note 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response time	Rise Fall	Tr Tf	<i>⊕</i> =0°	-	4 16	8 32	ms ms	Note 3,5
Contrast ra	tio	CR	At optimized Viewing angle	300	400	-		Note 4, 5
Viewing angle	Top Bottom Left Right		CR≧10	40 55 60 60	50 65 70 70	- - -	deg.	Note 5, 6
Brightnes	s	Y _L	V _L = 12V	150	200	-	cd/m ²	Note 7
White chroma	nticity	Х	θ=0°	0.26	0.31	0.36		Note 7
		Υ	$\theta = 0^{\circ}$	0.28	0.33	0.38		

- Note 1 : To be measured in the dark room. Ambient temperature =25 $^{\circ}$ C, and LED lightbar voltage V_L = 12V.
- Note 2 :To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-5A, after 15 minutes operation.
- Note 3. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= Photo detector output when LCD is at "White" state

Photo detector output when LCD is at "Black" state

Note 5. White $Vi=V_{i50} + 1.5V$

Black Vi= $V_{i50} \pm 2.0V$

"±" means that the analog input signal swings in phase with V_{COM} signal.

" $\overline{+}$ " means that the analog input signal swings out of phase with V_{COM} signal.

 V_{i50} : The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Model

Page

Version

: A080SN01 V0

:1.9

: 19 /27

Note 6. Definition of viewing angle, Refer to figure as below.

Note 7. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Version :1.9 Page : 20 /27

D. Reliability test conditions (Note 2):

No.	Test items	Conditions		Remark
1	High temperature storage	Ta= 70°C 2	240Hrs	
2	Low temperature storage	Ta= -20°C 2	240Hrs	
3	High temperature operation	Tp= 60°C 2	240Hrs	
4	Low temperature operation	Ta= -10°C 2	240Hrs	
5	High temperature and high humidity	Tp= 50℃, 80% RH	240Hrs	Operation
6	Heat shock	-10°C~60°C / 100 cycles 1	Hrs/cycle	Non-operation
7	Electrostatic discharge	\pm 200V,200pF(0 Ω), once	for each terminal	Non-operation
8	Vibration		5mm ~ 55 ~ 10Hz	JIS C7021, A-10 Condition A
9	Mechanical shock	100G, 6ms, ±X,±Y,±Z 3 times for each direction		JIS C7021, A-7 Condition C
10	Vibration (with carton)	Random vibration: 0.015G ² /Hz from 5~200H –6dB/octave from 200~50		IEC 68-34
11	Drop (with carton)	Height: 60cm 1 corner, 3 edges, 6 surfa	aces	JIS Z0202

Note1: Ta: Ambient Temperature.

Note2: Tp: Panel Surface Temperature

Note3: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

E. Packing form

Model : A080SN01 V0

Version :1.9 Page : 21 /27

1 A/S BAG A080FW01 79.08A02.0C 2 S291 TAPE 84.01A04.0C 3 TAPE 18MM(W) L133x1 80.13B01.01 4 CUSHION PACKAGING 83.08A07.0C 5 CARTON AB ORG 520*340*250 81.01A09.0C 6 CARTON BLANK LABEL 82.17B02.0G	No.	Part Name	Part No.
0) L133x1 PACKAGING RG 520*340*250 LANK LABEL	-	A/S BAG A080FW01	79.08A02.001
NG .0*250 .BEL	2	S291 TAPE	84.01A04.001
CUSHION PACKAGING CARTON AB ORG 520*340*250 CARTON BLANK LABEL	3	TAPE 18MM(W) L133×1	80.13B01.011
CARTON AB ORG 520*340*250 CARTON BLANK LABEL	4	CUSHION PACKAGING	83.08A07.001
CARTON BLANK LABEL	5	CARTON AB ORG 520*340*250	81.01A09.003
	9		82.17B02.001

Version :1.9 Page : 22 /27

F. Suggested application circuit

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version :1.9 Page : 23 /27

Version :1.9 Page : 24 /27

Version :1.9 Page : 25 /27

NOTES: 1.6ENERAL TOLERANCE:±0.3mm 2.LED LICHTBAR CONNECTOR: MOLEX 51021-0200 3.FPC CONNECTOR:XT2M-6015-14H BY omz 4.THE BENDING RADIUS OF FPC SHOULD BE LARGER THAN 0.6mm.

Fig.1-(a) Outline dimension of TFT-LCD module (Front side)

Version :1.9 Page : 26 /27

Fig.1-(b) Outline dimension of TFT-LCD module (Back side)

Version :1.9 Page : 27 /27

G. Suggestion-System block

According to there are some risks of EMI issue.

Please refer to this function block before design.

If add SSC (Spread Spectrum Clocking) IC on the clock of system may cause USB abnormal work. Please add USB controller to control USB data.