Eigenproblems I

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Setup

Given: Collection of data points \vec{x}_i

Age

Statistical Motivation

•00000

- Weight
- Blood pressure
- Heart rate

Setup

Spectral Embedding

Given: Collection of data points \vec{x}_i

Age

Statistical Motivation

000000

- Weight
- Blood pressure
- Heart rate

Find: Correlations between different dimensions

Simplest Model

One-dimensional subspace

$$\vec{x}_i \approx c_i \vec{v}$$

Statistical Motivation

Simplest Model

One-dimensional subspace $\vec{x}_i \approx c_i \vec{v}$

Equivalently:

$$\vec{x}_i \approx c_i \hat{v}$$

Statistical Motivation

0.0000

Statistical Motivation

000000

Review

What is c_i ?

Review

What is c_i ?

$$c_i = \vec{x}_i \cdot \hat{v}$$

Statistical Motivation

Statistical Motivation

000000

Variational Idea

minimize
$$\sum_{i} \|\vec{x}_i - \operatorname{proj}_{\hat{v}} \vec{x}_i\|^2$$

such that $\|\hat{v}\| = 1$

Equivalent Optimization

maximize
$$||X^{\top}\hat{v}||^2$$

such that $||\hat{v}||^2 = 1$

Statistical Motivation

End Goal

Eigenvector of XX^{\top} with largest eigenvalue.

Statistical Motivation

End Goal

Eigenvector of XX^{\top} with largest eigenvalue.

"First principal component"

Statistical Motivation

Physics (in one slide)

Newton:

$$\vec{F} = m \frac{d^2 \vec{x}}{dt^2}$$

Physics (in one slide)

Newton:

$$\vec{F} = m \frac{d^2 \vec{x}}{dt^2}$$

Hooke:

$$\vec{F}_s = k(\vec{x} - \vec{y})$$

First-Order System

$$\frac{d}{dt} \begin{pmatrix} \vec{X} \\ \vec{V} \end{pmatrix} = \begin{pmatrix} 0 & I \\ M^{-1}K & 0 \end{pmatrix} \begin{pmatrix} \vec{X} \\ \vec{V} \end{pmatrix}$$

General ODE

Eigenvector Solution

$$\vec{x}' = A\vec{x}$$

$$A\vec{x}_i = \lambda_i \vec{x}_i$$

$$\vec{x}(0) = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$

Eigenvector Solution

$$\vec{x}' = A\vec{x}$$

$$A\vec{x}_i = \lambda_i \vec{x}_i$$

$$\vec{x}(0) = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$

$$\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{x}_1 + \dots + c_k e^{\lambda_k t} \vec{x}_k$$

Aside: Matrix Inverse

$$\vec{b} = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$
$$A\vec{x} = \vec{b}$$

Aside: Matrix Inverse

$$\vec{b} = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$
$$A\vec{x} = \vec{b}$$

$$\implies \vec{x} = \frac{c_1}{\lambda_1} \vec{x}_1 + \dots + \frac{c_n}{\lambda_n} \vec{x}_n$$

Setup

Have: n items in a dataset

 $w_{ij} \geq 0$ similarity of items i and j

$$w_{ij} = w_{ji}$$

Want: x_i embedding on \mathbb{R}

Quadratic Energy

$$E(\vec{x}) = \sum_{ij} w_{ij} (x_i - x_j)^2$$

Optimization

minimize $E(\vec{x})$

Optimization

minimize
$$E(\vec{x})$$

such that $||\vec{x}||^2 = 1$

Optimization

minimize
$$E(\vec{x})$$

such that $||\vec{x}||^2 = 1$
 $\vec{1} \cdot \vec{x} = 0$

Statistical Motivation

Simplification

$$E(\vec{x}) = \vec{x}^{\top} (2A - 2W)\vec{x}$$

Desired

Second smallest eigenvector of 2A-2W.

Definitions

Eigenvalue and eigenvector

An eigenvector $\vec{x} \neq \vec{0}$ of a matrix $A \in \mathbb{R}^{n \times n}$ is any vector satisfying $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$; the corresponding λ is known as an eigenvalue. Complex eigenvalues and eigenvectors satisfy the same relationships with $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{C}^n$.

Definitions

Eigenvalue and eigenvector

An eigenvector $\vec{x} \neq \vec{0}$ of a matrix $A \in \mathbb{R}^{n \times n}$ is any vector satisfying $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$; the corresponding λ is known as an eigenvalue. Complex eigenvalues and eigenvectors satisfy the same relationships with $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{C}^n$.

Scale doesn't matter!

$$\longrightarrow \|\vec{x}\| \equiv 1$$

Definitions

Spectrum and spectral radius

The *spectrum* of A is the set of eigenvalues of A. The spectral radius $\rho(A)$ is the eigenvalue λ maximizing $|\lambda|$.

Eigenproblems in the Wild

- ODE/PDE problems
- ▶ Minimize/maximize $||A\vec{x}||$ such that $||\vec{x}|| = 1$
- Rayleigh quotient:

$$\frac{\vec{x}^{\top} A \vec{x}}{\|\vec{x}\|^2}$$

Two Basic Properties

Proved in notes

Lemma

Statistical Motivation

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Two Basic Properties

Proved in notes

Lemma

Statistical Motivation

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Lemma

Eigenvectors corresponding to distinct eigenvalues must be linearly independent.

Two Basic Properties

Proved in notes

Lemma

Statistical Motivation

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Lemma

Eigenvectors corresponding to distinct eigenvalues must be linearly independent.

 \longrightarrow at most n eigenvalues

Diagonalizability

Nondefective

Statistical Motivation

 $A \in \mathbb{R}^{n \times n}$ is nondefective or diagonalizable if its eigenvectors span \mathbb{R}^n .

Diagonalizability

Nondefective

Statistical Motivation

 $A \in \mathbb{R}^{n \times n}$ is nondefective or diagonalizable if its eigenvectors span \mathbb{R}^n .

$$D = X^{-1}AX$$

Extending to $\mathbb{C}^{n \times n}$

Complex conjugate

Statistical Motivation

The complex conjugate of a number

$$z = a + bi \in \mathbb{C}$$
 is $\bar{z} \equiv a - bi$.

Extending to $\mathbb{C}^{n\times n}$

Complex conjugate

The *complex conjugate* of a number

$$z = a + bi \in \mathbb{C}$$
 is $\bar{z} \equiv a - bi$.

Conjugate transpose

The *conjugate transpose* of $A \in \mathbb{C}^{m \times n}$ is

$$A^H \equiv \bar{A}^{\top}$$
.

Hermitian Matrix

 $A = A^H$

Properties

Lemma

Statistical Motivation

All eigenvalues of Hermitian matrices are real.

Lemma

Statistical Motivation

All eigenvalues of Hermitian matrices are real.

Lemma

Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.

Spectral Theorem

Spectral Theorem

Statistical Motivation

Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\vec{x}_1, \dots, \vec{x}_n$ with (possibly repeated) eigenvalues $\lambda_1, \dots, \lambda_n$.

Spectral Theorem

Spectral Theorem

Statistical Motivation

Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\vec{x}_1, \dots, \vec{x}_n$ with (possibly repeated) eigenvalues $\lambda_1, \dots, \lambda_n$.

Full set:
$$D = X^{\top}AX$$

