What Is Claimed Is:

1	1. An antenna for use in a wireless environment, said antenna comprising:
2	a plurality of antenna elements generating a beam; and
3	a lens collimating said beam in a desired direction such that said antenna can be
4	used to send and receive signals from a desired direction.
1	2. The antenna of claim 1, wherein said desired direction comprises a direction in
2	which a high density of wireless users are expected to be present in said wireless
3	environment.
1	3. The antenna of claim 2, wherein said direction is along a road.
1	4. The antenna of claim 1, comprising a plurality of lens including said lens,
2	wherein each of said plurality of lens is provided in a corresponding direction.
1	5. The antenna of claim 1, wherein said lens covers all of said antenna elements
2	and forms a radome.
1	6. A base station comprising:
2	an antenna containing a plurality of antenna elements and a lens, wherein said
3	plurality of antenna elements generate a beam and said lens collimates said beam in a
4	desired direction such that said base station can be used to send signals in said desired
5	direction.

1	7. The base station of claim 6, wherein said desired direction comprises a
2	direction in which a high density of wireless users are expected to be present.
1	8. The base station of claim 7, wherein said direction is along a road.
1	9. The base station of claim 6, comprising a plurality of lens including said lens,
2	wherein each of said plurality of lens is provided in a corresponding direction.
1	10. The base station of claim 6, further comprising:
2	a transmitter receiving a baseband signal and generating a broadband signal in a
3	frequency range suitable for transmission by said antenna; and
4	a divider receiving said broadband signal and generating an input signal for each
5	of said plurality of antenna elements.
1	11. The base station of claim 10, further comprising:
2	an attenuator and a phase shifter connected in series between said divider and one
3	of said plurality of antenna elements, said attenuator attenuating said input signal and said
4	phase shifter shifting a phase of said input signal.
1	12. The base station of claim 6, further comprising:
2	a summing block receiving a plurality of electrical signals from said antenna
3	elements and generating a broadband signal; and
4	a receiver block generating a baseband signal from said broadband signal.
1	13. A method of designing a lens located on top of a plurality of array elements in
	Page 17 of 20 TL 37177

	•
2	an antenna, said antenna generating a desired collimation pattern for radiations generated
3	by said plurality of array elements, said method comprising:
4	determining a first radiation pattern of each of said plurality of array elements in
5	the absence of said lens;
6	determining a second radiation pattern of each of said plurality of array elements
7	based on said first radiation pattern, wherein said second radiation pattern is computed
8	with reference to a common origin for all of said plurality of array elements;
9	computing a composite radiation pattern (CRP) of said antenna based on said
10	second radiation pattern for each of said plurality of array elements;
11	characterizing said desired collimation pattern in the presence of said lens; and
12	determining a shape of said lens is determined from the characterized collimation
13	pattern and said CRP.
1	14. The method of claim 13, wherein said first radiation pattern and said second
2	radiation pattern are modeled according to a spherical modal approach, wherein said first
3	radiation pattern contains a first plurality of coefficients and said second radiation pattern
4	contains a second plurality of coefficients.
1	15. The method of claim 14, wherein said first plurality of coefficients are
2	determined by measuring a radiation at a radius R.

Patent Page 18 of 20 TI-37177

determined by performing translation and rotation operations on said first radiation

16. The method of claim 15, wherein said second plurality of coefficients are

1

2

3

pattern.

- 1 17. The method of claim 16, wherein said shape of said lens is determined by
- 2 performing an inverse scattering operation using said CRP and said desired collimation
- 3 pattern.
- 1 18. A lens generated according to the method of claim 13.