1 MEC for Crop Growth

$$\begin{split} A &= \begin{cases} A_{\text{max}} \left(\frac{t}{t_A}\right)^a \quad t < t_A \\ A_{\text{max}} \quad t \geq t_A \end{cases} \\ Y_Q &= \begin{cases} Y_{\text{Q,max}} \quad t \leq t_Q \\ Y_{\text{Q,max}} - (Y_{\text{Q,max}} - Y_{\text{Q,min}}) \frac{t-t_0}{t_M-t_0} \quad t_Q \leq t \leq t_M \end{cases} \\ Y_{\text{Q,max}} &= C_1 \frac{1}{\Phi_{\gamma} c_{\text{CO2}}} + C_2 \frac{1}{\Phi_{\gamma}} + C_3 \frac{c_{\text{CO2}}}{\Phi_{\gamma}} + C_4 \frac{c_{\text{CO2}}^2}{\Phi_{\gamma}} + C_5 \frac{c_{\text{CO2}}}{\Phi_{\gamma}^2} + C_6 \frac{1}{c_{\text{CO2}}} + C_7 + C_8 c_{\text{CO2}} + C_9 c_{\text{CO2}}^2 + C_{10} c_{\text{CO2}}^3 + C_{11} \frac{\Phi_{\gamma}}{c_{\text{CO2}}} + C_{12} \Phi_{\gamma} + C_{13} \Phi_{\gamma} c_{\text{CO2}} + C_{12} \Phi_{\gamma}^2 c_{\text{CO2}}^2 + C_{10} \Phi_{\gamma}^2 c_{\text{CO2}}^2 + C_{10} \Phi_{\gamma}^2 c_{\text{CO2}}^2 + C_{10} \Phi_{\gamma}^2 c_{\text{CO2}}^2 + C_{10} \Phi_{\gamma}^2 c_{\text{CO2}} + C_{11} \Phi_{\gamma}^2 c_{\text{CO2}}^2 + C_{12} \Phi_{\gamma}^3 c_{\text{CO2}} + C_{12} \Phi_{\gamma}^3 c_{\text{CO2}} + C_{21} \Phi_{\gamma}^3 c_{\text{CO2}} + C_{22} \Phi_{\gamma}^3 + C_{23} \Phi_{\gamma}^3 c_{\text{CO2}} + C_{24} \Phi_{\gamma}^3 c_{\text{CO2}}^2 + C_{25} \Phi_{\gamma}^3 c_{\text{CO2}}^2 + C_{25} \Phi_{\gamma}^3 c_{\text{CO2}} + C_{25$$

1.1 Variables

Variable	Description	Unit	Former Variable
A	Absorbtance, directional	-	A
a	Empirical exponent	-	n
C	Regression coefficient	=	C
$c_{\rm CO2}$	Concentration of CO ₂ , molar	$\mu \mathrm{mol}_{\mathrm{CO2}} \mathrm{mol}_{\mathrm{air}}^{-1}$	$[CO_2]$
$f_{ m E}$	Fraction of edible biomass after $t_{ m E}$	=	XFRT
H	Photoperiod	$\mathrm{h}\mathrm{d}^{-1}$	Н
$\hat{\dot{m}}_B$	Biomass, per time, areal	${ m gd^{-1}m^{-2}}$	CGR
$\hat{m}_{ extsf{E}}$	Biomass, areal, edible	$\mathrm{g}\mathrm{m}^{-2}$	TEB
$\hat{m}_{ extsf{T}}$	Biomass, areal, total	$\mathrm{g}\mathrm{m}^{-2}$	TCB
\check{m}	Mass, molar	$\mathrm{g}\mathrm{mol}^{-1}$	MW
$\hat{\dot{n}}$	Moles per time, areal	$\mathrm{mol}\mathrm{d}^{-1}\mathrm{m}^{-2}$	DCG, DOP
t	Time	d	t
t_A	Time of canopy closure	d_{AE}	t_{A}
$t_{ m M}$	Time of harvest/maturity	d_{AE}	t_{M}
$t_{ m E}$	Time of onset of organ formation	d_{AE}	$t_{\rm E}$
t_{Q}	Time of canopy senescence onset	d_{AE}	t_Q
$w_{\rm C}$	Biomass carbon fraction	-	BCF
$Y_{\rm O2}$	Oxygen production factor	$\mathrm{mol}_{\mathrm{O2}}\mathrm{mol}_{\mathrm{C}}^{-1}$	OPF
Y_{Q}	Canopy quantum yield	$\frac{\text{mol}_{C, \text{fixed}}}{\text{mol}_{\gamma, \text{absorbed}}}$	CQY
$\eta_{ m C}$	Carbon use efficiency, 24 hr	$\frac{\text{mol}_{C, \text{biomass}}}{\text{mol}_{C, \text{fixed}}}$	CUE ₂₄
σ	Density, areal	$\mathrm{kg}\mathrm{m}^{-2}$	-
σ_N	Density, areal, numeric	m^{-2}	-
Φ_{γ}	Photosynthetic photon flux	$\mu\mathrm{mol}_{\gamma}\mathrm{m}^{-2}\mathrm{s}^{-1}$	PPF

AE is "after emergence". Areal (per area) should not be confused with aerial (above ground). Areal density is not used in the MEC formulae, but it is used in downstream calculations.

1.2 Values for lettuce

A_{max}	0.93
a	2.5
C_{uv}	See BVAD Table 4-108
$c_{\rm CO2}$	$[330, 1300] \mu \text{mol}_{\text{CO}2} \text{mol}_{\text{air}}^{-1}$
$f_{ m E}$	0.95
$t_{ m E}$	$1\mathrm{d_{AE}}$
$t_{ m M}$	$30\mathrm{d_{AE}}$
$t_{ m Q}$	n/a
$w_{\mathbf{C}}$	0.4
$Y_{\rm O2}$	1.08
$Y_{\mathrm{Q,min}}$	n/a
$\eta_{\mathrm{C,max}}$	0.625
$\eta_{\mathrm{C,min}}$	n/a
σ_N	$19.2\mathrm{m}^{-2}$
Φ_{γ}	$[200, 500] \mu \text{mol}_{\gamma} \text{m}^{-2} \text{s}^{-1}$

2 MEC for Crop Transpiration

$$\begin{split} p_{\mathrm{S}}^{\star} &= 0.611e^{\left(\frac{17.4T_{\mathrm{L}}}{T_{\mathrm{L}}+239}\right)} \\ \Delta p^{\star} &= p_{\mathrm{S}}^{\star}(1-H_{\mathrm{R}}) \\ \hat{n}_{\mathrm{ps,gross}} &= A \cdot Y_{\mathrm{Q}} \cdot \Phi_{\gamma} \\ \hat{n}_{\mathrm{ps,net}} &= \left(\frac{t_{\mathrm{sol}}-H}{t_{\mathrm{sol}}} + \frac{\eta_{\mathrm{C}}\cdot H}{t_{\mathrm{sol}}}\right) \hat{n}_{\mathrm{ps,gross}} \\ g_{\mathrm{sfc}} &= \frac{g_{\mathrm{atm}}g_{\mathrm{sto}}}{g_{\mathrm{atm}}+g_{\mathrm{sto}}} \\ g_{\mathrm{sto}} &= \begin{cases} (1.717T_{\mathrm{L}} - 19.96 - 10.54\Delta p^{\star}) \frac{\hat{n}_{\mathrm{ps,net}}}{c_{\mathrm{CO2}}} & \mathrm{planophile} \\ 0.1389 + 15.32H_{\mathrm{R}} \frac{\hat{n}_{\mathrm{ps,net}}}{c_{\mathrm{CO2}}} & \mathrm{erectophile} \end{cases} \\ g_{\mathrm{atm}} &= \begin{cases} 2.5 & \mathrm{planophile} \\ 5.5 & \mathrm{erectophile} \end{cases} \\ \hat{V}_{\mathrm{trs}} &= 3600H \frac{\hat{m}_{\mathrm{water}}}{\rho_{\mathrm{water}}} g_{\mathrm{sfc}} \frac{\Delta p^{\star}}{\rho_{\mathrm{atm}}} \end{split}$$

2.1 Variables

Variable	Description	Unit	Former Variable
g_{atm}	Atmospheric aerodynamic conductance	$\mathrm{mol_{water}s^{-1}m^{-2}}$	g_{A}
$g_{ m sfc}$	Canopy surface conductance	$\mathrm{mol_{water}s^{-1}m^{-2}}$	$g_{\rm C}$
$g_{ m sto}$	Canopy stomatal conductance	$\mathrm{mol_{water}s^{-1}m^{-2}}$	gs
$H_{ m R}$	Relative humidity	-	RH
$\hat{n}_{ m ps,gross}$	Gross canopy photosynthesis	$ \mu \text{mol}_{\text{C}} \text{s}^{-1} \text{m}^{-2} $ $ \mu \text{mol}_{\text{C}} \text{s}^{-1} \text{m}^{-2} $	P_{GROSS}
$\hat{\dot{n}}_{ps,net}$	Net canopy photosynthesis	$\mu\mathrm{mol}_\mathrm{C}\mathrm{s}^{-1}\mathrm{m}^{-2}$	P_{NET}
P_{atm}	Total atmospheric pressure	kPa	P_{ATM}
p_{S}^{\star}	Saturated vapour pressure	kPa	VP_{SAT}
$T_{ m D}$	Temperature, dark cycle	$^{\circ}\mathrm{C}$	T_{DARK}
$T_{ m L}$	Temperature, light cycle	$^{\circ}\mathrm{C}$	T_{LIGHT}
$t_{ m sol}$	Length of local sol	$\mathrm{h}\mathrm{d}^{-1}$	D_{PG}
$\dot{\hat{V}}_{ ext{trs}}$	Daily transpiration rate	${ m L}{ m d}^{-1}{ m m}^{-2}$	DTR
Δp^{\star}	Vapour pressure deficit	kPa	VPD
ρ	Density	$\mathrm{g}\mathrm{L}^{-1}$	ho

2.2 Values for Lettuce

$$\begin{array}{ll} g_{\rm atm} & 2.5\,{\rm mol_{water}\,m^{-2}\,s^{-1}} \\ T_{\rm D} & 23\,^{\circ}{\rm C} \\ T_{\rm L} & 23\,^{\circ}{\rm C} \\ t_{\rm sol} & 24\,{\rm h\,d^{-1}} \end{array}$$

3 MEC for Nominal Temperature Regimes and Photoperiods

$$\begin{split} &\Phi_{\gamma}' = \Phi_{\gamma} \frac{H}{H_{0}} \\ &t_{A} = D_{1} \frac{1}{\Phi_{\gamma}' c_{\text{CO2}}} + D_{2} \frac{1}{\Phi_{\gamma}} + D_{3} \frac{c_{\text{CO2}}}{\Phi_{\gamma}'} + D_{4} \frac{c_{\text{CO2}}^{2}}{\Phi_{\gamma}'} + D_{5} \frac{c_{\text{CO2}}^{3}}{\Phi_{\gamma}'} + D_{6} \frac{1}{c_{\text{CO2}}} + D_{7} + D_{8} c_{\text{CO2}} + D_{9} c_{\text{CO2}}^{2} + D_{10} c_{\text{CO2}}^{3} + D_{11} \frac{\Phi_{\gamma}'}{c_{\text{CO2}}} + D_{12} \Phi_{\gamma}' + D_{13} \Phi_{\gamma}' c_{\text{CO2}} + D_{14} \Phi_{\gamma}' c_{\text{CO2}}^{2} + D_{15} \Phi_{\gamma}' c_{\text{CO2}}^{3} + D_{16} \frac{\Phi_{\gamma}'^{2}}{c_{\text{CO2}}} + D_{17} \Phi_{\gamma}'^{2} + D_{18} \Phi_{\gamma}'^{2} c_{\text{CO2}} + D_{19} \Phi_{\gamma}'^{2} c_{\text{CO2}}^{2} + D_{20} \Phi_{\gamma}'^{2} c_{\text{CO2}}^{3} + D_{21} \frac{\Phi_{\gamma}'^{3}}{c_{\text{CO2}}} + D_{22} \Phi_{\gamma}'^{3} + D_{23} \Phi_{\gamma}'^{3} c_{\text{CO2}} + D_{24} \Phi_{\gamma}'^{3} c_{\text{CO2}}^{2} + D_{25} \Phi_{\gamma}'^{3} c_{\text{CO2}}^{3} + D_{25} \Phi_{\gamma$$

$$\Longrightarrow t_A = \sum_{u \in [-1,3]} \sum_{v \in [-1,3]} D_{uv} \cdot \Phi_{\gamma}^{\prime \ v} \cdot c_{\text{CO2}}^u$$

3.1 Variables

Variable	Description	Unit	Former Variable
D_{uv}	Regression coefficient	-	C
H_0	Photoperiod, nominal	$h d^{-1}$	H_0
Φ'_{γ}	Photosynthetic photon flux, effective	$\mu\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$	PPF_{E}

3.2 Values for Lettuce

See BVAD Table 4-121

 $H_0 = 16 \,\mathrm{h}\,\mathrm{d}^{-1}$

4 Nitrogen Modelling

Agren: $\frac{\mathrm{d}m_B}{\mathrm{d}t} = \dot{Y}_\mathrm{N}(m_B, m_\mathrm{N})m_\mathrm{N}$ Agren: $\dot{Y}_\mathrm{N} = \alpha - \beta \frac{m_B}{m_\mathrm{N}}$ Agren: $\frac{1}{m_B} \frac{\mathrm{d}m_B}{\mathrm{d}t} = \alpha \frac{m_\mathrm{N}}{m_B} - \beta$ VW: $\alpha = k_B \cdot k_f \qquad \beta = k_d$

 $\begin{aligned} & \text{VW: } \alpha = k_B \cdot k_f & \beta = k_d \\ & \text{KY: } \frac{\mathrm{d} m_B}{\mathrm{d} t} = \dot{Y}_\mathrm{N} \cdot m_\mathrm{N} & \dot{Y}_\mathrm{N} = \eta_\mathrm{u} \cdot \mu_\mathrm{N} \cdot \eta_\mathrm{N} & \eta_\mathrm{u} = \frac{\mathrm{N} \text{ uptake rate}}{\mathrm{max} \ \mathrm{N} \text{ uptake rate}} & \mu_\mathrm{N} = \frac{\ln m_\mathrm{N2} - \ln m_\mathrm{N1}}{t_2 - t_1} & \eta_\mathrm{N} = \frac{\Delta m_B(t_2, t_1)}{\langle m_\mathrm{N} \rangle(t_2, t_1)} \end{aligned}$

4.1 Variables

Variable	Description	Unit
m_B	Biomass	g_{DW}
$m_{ m N}$	Mass of total nitrogen in plant	g
t	Time	d
$\dot{Y}_{ m N}$	Nitrogen productivity	$g_{DW} g_N^{-1} d^{-1}$ $g_{DW} g_N^{-1} d^{-1}$
α	Leading term in nitrogen productivity	$g_{\rm DW} g_{\rm N}^{-1} d^{-1}$
β	Corrective term in nitrogen productivity	d^{-1}
k_B	Efficiency of biomass formation from PhN	$g_{\rm DW} g_{\rm N}^{-1} d^{-1}$
k_d	Degradation rate of PhN	d^{-1}
k_e	Proportionality of PhN to LfN	-
k_f	Efficiency of formation of PhN from PtN	-
$\eta_{ m N}$	Nitrogen use efficiency	$g_{\rm DW}g_{\rm N}^{-1}$
$\eta_{ m u}$	Nitrogen uptake efficiency	-
$\mu_{ extsf{N}}$	Relative uptake rate	d^{-1}

$$ESM = \sum_{i=1}^{n} \left[(m_{0,i} \cdot f_{m_0,i}) + (V_{0,i} \cdot f_{V_0,i}) + (P_i \cdot f_{P,i}) + (Q_i \cdot f_{Q,i}) + (t_i \cdot f_{t,i} \cdot \chi) + (m_i \cdot f_{m,i} \cdot \chi) + (V_i \cdot f_{V_0,i} \cdot \chi) \right]$$

5.1 Variables

Variable	Description	Unit
ESM	Equivalent system mass	kg
$m_{0,i}$	Initial mass of subsystem i	kg
$f_{m_0,i}$	Initial mass stowage factor for subsystem i	$\frac{\text{kg kg}^{-1}}{\text{m}^3}$
$V_{0,i}$	Initial volume of subsystem i	m^3
$f_{V_0,i}$	Mass equivalency factor for the pressurized volume support infrastructure of subsystem i	$ m kgm^{-3}$
P_i	Power requirement of subsystem i	$\mathrm{kW_{e}}$
$f_{P,i}$	Mass equivalency factor for the power generation support infrastructure of subsystem i	$\mathrm{kW_ekg^{-1}}$
Q_i	Cooling requirement of subsystem i	$\mathrm{kW_{th}}$
$f_{Q,i}$	Mass equivalency factor for the cooling infrastructure of subsystem i	$\mathrm{kW_{th}kg^{-1}}$
t_i	Crewtime requirement of subsystem i	${ m CM}{ m h}{ m yr}^{-1}$
$f_{t,i}$	Mass equivalency factor for the crewtime of subsystem i	$kg CM^{-1} h^{-1}$
χ	Duration of the mission segment of interest	yr
m_i	Time- or event-dependent mass of subsystem i	$\mathrm{kg}\mathrm{yr}^{-1}$
$f_{m,i}$	Time- or event-dependent mass stowage factor for subsystem i	$kg yr^{-1}$ $kg kg^{-1}$ m^3
V_i	Time- or event-dependent volume of subsystem i	m^3