Họ và tên: Phùng Thị Linh Mã sinh viên: 22174600001

Lóp: DHKL16A1HN

BÀI TẬP CHƯƠNG 2 (P1)

A. CÂU HỎI LÝ THUYẾT

1. Mạng không dây (Wireless Network) là gì và có những ưu điểm gì so với mạng có dây?

- Mạng không dây là mạng sử dụng sóng vô tuyến, hồng ngoại hoặc tín hiệu vệ tinh để truyền dữ liệu mà không cần cáp vật lý.
- Ưu điểm so với mạng có dây:
 - + Linh hoạt & di động cao: Người dùng có thể kết nối ở bất kỳ đâu trong phạm vi phủ sóng.
 - + Dễ dàng triển khai: Không cần kéo dây, phù hợp với môi trường khó đi dây như tòa nhà cũ hoặc khu vực rộng lớn.
 - + Mở rộng dễ dàng: Chỉ cần thêm thiết bị phát sóng (Access Point) mà không phải đi dây mới.
 - + Hỗ trợ nhiều thiết bị: Phù hợp với các thiết bị di động như điện thoại, laptop, IoT.

2. Giải thích sự khác biệt giữa chuẩn IEEE 802.11 và IEEE 802.16.

- IEEE 802.11: Chuẩn Wi-Fi dùng cho mạng cục bộ không dây (WLAN), phạm vi ngắn (từ vài mét đến 100m).
- IEEE 802.16: Chuẩn WiMAX, dùng cho mạng không dây diện rộng (WMAN), có thể phủ sóng lên đến vài chục km.

Đặc điểm	IEEE 802.11 (Wi-Fi)	IEEE 802.16 (WiMAX)
Phạm vi	100m (Wi-Fi 6)	Lên đến 50km
Tốc độ	600 Mbps - vài Gbps	Vài Mbps - 1 Gbps
Ứng dụng	Văn phòng, nhà riêng	Mạng đô thị, phủ sóng khu vực rộng

3. Chuẩn IEEE 802.15 hỗ trợ các công nghệ nào và ưu, nhược điểm của chúng là gì?

- IEEE 802.15 hỗ trợ WPAN (Wireless Personal Area Network), bao gồm:
 - + Bluetooth (802.15.1): Kết nối tầm ngắn giữa thiết bị di động.
 - + Zigbee (802.15.4): Dùng trong IoT, cảm biến thông minh.
 - + UWB (Ultra-Wideband, 802.15.3): Truyền dữ liệu tốc độ cao trong phạm vi ngắn.
- Ưu điểm:
 - + Tiêu thụ năng lượng thấp (đặc biệt là Zigbee).
 - + Kết nối đơn giản, dễ triển khai.

- + Hoạt động hiệu quả trong phạm vi ngắn.
- Nhược điểm:
 - + Phạm vi hoạt động hẹp hơn Wi-Fi.
 - + Tốc độ thấp hơn so với các công nghệ mạng LAN/WAN.

4. WiMAX là gì và nó hoạt động trên băng tần nào?

- WiMAX (Worldwide Interoperability for Microwave Access) là công nghệ mạng không dây diện rộng (WMAN) dựa trên chuẩn IEEE 802.16.
- Băng tần hoạt động:
 - + Dải 2.3 GHz, 2.5 GHz, 3.5 GHz cho WiMAX cố định.
 - + Dải 10 66 GHz cho WiMAX di động.

5. Phân biệt giữa mạng WLAN và WPAN.

Đặc điểm	WLAN (Wireless LAN)	WPAN (Wireless PAN)
Chuẩn	IEEE 802.11 (Wi-Fi)	IEEE 802.15 (Bluetooth, Zigbee)
Phạm vi	100m - vài trăm mét	Dưới 10m
Ứng dụng	Văn phòng, nhà riêng, công ty	Tai nghe Bluetooth, smart home, IoT
Tốc độ	Lên đến vài Gbps	Vài Mbps đến vài trăm Mbps

6. Trình bày cơ chế bảo mật WPA2 và WPA3 trong mạng không dây.

- WPA2 (Wi-Fi Protected Access 2):
 - + Dùng AES (Advanced Encryption Standard) để mã hóa dữ liệu.
 - + Cung cấp CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol).
 - + Vẫn có thể bị tấn công brute-force hoặc KRACK (Key Reinstallation Attack).
- WPA3 (Wi-Fi Protected Access 3):
 - + Dùng SAE (Simultaneous Authentication of Equals) thay thế PSK để bảo vệ mật khẩu.
 - + Cung cấp mã hóa 192-bit cho mạng doanh nghiệp.
 - + Khó bị tấn công brute-force hơn WPA2.
- WPA3 an toàn hơn nhưng yêu cầu thiết bị mới hỗ trợ.

7. Đặc điểm chính của mạng di động 5G và các công nghệ hỗ trợ nó là gì?

- Đặc điểm chính của 5G:
 - + Tốc độ cực cao: Lên đến 10 Gbps.
 - + Độ trễ thấp: Chỉ khoảng 1ms, giúp IoT và tự động hóa hoạt động tốt hơn.
 - + Hỗ trợ nhiều thiết bị: Hàng triệu thiết bị/km².
 - + Hoạt động trên nhiều băng tần:
 - Dưới 1 GHz: Vùng phủ sóng rộng, tốc độ thấp.
 - 1 6 GHz: Cân bằng giữa tốc độ và vùng phủ.
 - Trên 24 GHz (mmWave): Tốc độ cao, phạm vi ngắn.
 - + Công nghệ hỗ trợ 5G:

- MIMO (Multiple Input Multiple Output): Tăng số anten để truyền dữ liệu nhanh hơn.
- Beamforming: Điều hướng tín hiệu trực tiếp đến thiết bị.
- Network Slicing: Chia mạng thành nhiều phần phục vụ nhu cầu khác nhau.

8. Giải thích sự khác biệt giữa CSMA/CD và CSMA/CA trong các mạng không dây.

- CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - + Dùng trong mạng có dây (Ethernet).
 - + Khi phát hiện va chạm, thiết bị sẽ dừng truyền và chờ một khoảng thời gian ngẫu nhiên trước khi thử lai.
- CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
 - + Dùng trong mạng không dây (Wi-Fi).
 - + Tránh va chạm thay vì phát hiện vì không thể nghe tín hiệu và truyền cùng lúc.
 - + Dùng cơ chế RTS/CTS (Request to Send / Clear to Send) để kiểm tra trước khi truyền dữ liệu.

9. Vì sao sóng ở băng tần 2.4 GHz có khả năng xuyên qua vật cản tốt hơn so với sóng ở băng tần 5 GHz?

- Sóng 2.4 GHz có bước sóng dài hơn → Ít bị suy hao khi đi qua tường hoặc vật cản.
- Sóng 5 GHz có bước sóng ngắn hơn → Hấp thụ nhiều hơn khi gặp vật cản, do đó suy hao nhanh hơn.
- Nhươc điểm của 2.4 GHz:
 - + Dễ bị nhiễu do dùng chung với nhiều thiết bị (Bluetooth, lò vi sóng...).
 - + Tốc độ thấp hơn so với 5 GHz.
- Kết luận:
 - + 2.4 GHz: Tốt cho phạm vi xa và khu vực có nhiều vật cản.
 - + 5 GHz: Tốt cho tốc độ cao, nhưng suy hao mạnh qua vật cản.

B. BÀI TẬP

Bài 1: Tính toán bước sóng của tín hiệu vô tuyến hoạt động ở băng tần 3 GHz

- Công thức tính bước sóng:

$$\lambda = \frac{c}{f}$$

Trong đó:

- + $c=3\times10^8$ m/s (tốc độ ánh sáng)
- $+ f=3\times10^9 \text{ Hz}$
- Thay số vào công thức ta được: $\lambda = 10$ cm

Vậy bước sóng của tín hiệu vô tuyến ở 3 GHz là 10 cm.

Bài 2: So sánh Wi-Fi 5 (802.11ac) và Wi-Fi 6 (802.11ax)

Tiêu chí	Wi-Fi 5 (802.11ac)	Wi-Fi 6 (802.11ax)
Tốc độ tối đa	3.5 Gbps	9.6 Gbps
Bảo mật	WPA2	WPA3 (an toàn hơn)
Phạm vi phủ sóng	Trung bình	Rộng hơn nhờ OFDMA và MU-MIMO
Hiệu suất trong môi trường đông thiết bị	Giảm hiệu suất	Cải thiện nhờ OFDMA
Hiệu quả năng lượng	Tiêu hao điện năng cao	Tốt hơn nhờ TWT (Target Wake Time)

Kết luận: Wi-Fi 6 có tốc độ nhanh hơn, bảo mật cao hơn, và tối ưu tốt hơn khi có nhiều thiết bị kết nối.

Bài 3: Vẽ sơ đồ mô tả truyền dữ liệu trong mạng WLAN (chuẩn 802.11)

Các bước truyền dữ liệu trong WLAN:

- 1. Thiết bị gửi tín hiệu đến Access Point (AP).
 - 2. AP xác nhận và chuyển tiếp dữ liệu đến router/mạng Internet.
 - 3. Router xử lý và gửi phản hồi ngược về AP.
 - 4. AP truyền dữ liệu lại đến thiết bị nhận.

Chú thích:

- Access Point (AP): Cầu nối giữa thiết bị không dây và mạng có dây.
- Giao thức bảo mật: WPA2/WPA3 bảo vệ dữ liệu khỏi bị đánh cắp.

Bài 4: Chọn chuẩn mạng không dây phù hợp cho khu vực 5 km với tốc độ 50 Mbps Lựa chọn: WiMAX (802.16) hoặc 5G Fixed Wireless Access

- WiMAX (802.16)
 - + Phạm vi: lên đến 50 km
 - + Tốc độ: 50 Mbps 1 Gbps
 - + Úng dụng: Kết nối Internet cố định tại vùng xa
- 5G Fixed Wireless Access (FWA)
 - + Phạm vi: vài km (tùy tần số)
 - + Tốc độ: vài trăm Mbps đến vài Gbps
 - + Úng dụng: Cung cấp mạng không dây tốc độ cao thay thế cáp quang

Kết luân:

- Nếu chi phí là vấn đề \rightarrow Dùng WiMAX (rẻ hơn, nhưng tốc độ hạn chế).
- Nếu muốn tốc độ cao hơn, ít trễ hơn → Chọn 5G FWA.

Bài 5: Phân tích yếu tố ảnh hưởng đến hiệu suất WPAN khi kết nối thiết bị IoT Các yếu tố ảnh hưởng:

- 1. Phạm vi giới hạn
 - Bluetooth/Zigbee chỉ hoạt động trong 10-100m.
 - Giải pháp: Dùng mesh network (Zigbee Mesh, Bluetooth Mesh) để mở rộng phạm vi.
- 2. Nhiễu sóng từ thiết bị khác
 - Nhiều thiết bị IoT dùng chung băng tần 2.4 GHz với Wi-Fi, lò vi sóng.
 - Giải pháp:
 - + Chuyển sang băng tần 5 GHz nếu thiết bị hỗ trợ.
 - + Sử dụng công nghệ tránh nhiễu (adaptive frequency hopping).
- 3. Tiêu thụ điện năng
 - IoT cần hoạt động lâu dài nhưng pin có dung lượng nhỏ.
 - Giải pháp:
 - + Dùng giao thức tiết kiệm năng lượng (Zigbee, BLE).
 - + Dùng cơ chế TWT (Target Wake Time) của Wi-Fi 6.

Kết luận, để tối ưu mạng WPAN cho IoT:

- + Dùng mesh network để mở rộng phạm vi.
- + Chuyển băng tần hoặc dùng công nghệ chống nhiễu.
- + Áp dụng giao thức tiết kiệm năng lượng.