POSTUPCI NORMALIZACIJE

V predavanje

Dr.sc. Emir Mešković

Postupci normalizacije

- Uočena znanja o međusobnim zavisnostima atributa relacije koriste se u postupcima normalizacije
- Cilj normalizacije je:
 - Ukloniti redundanciju
 - Anomalije unosa, izmjene i brisanja
 - Neracionalno korištenje prostora za pohranu
 - Spriječiti pojavu lažnih n-torki
- Postupci normalizacije omogućavaju da se postepeno, tačno definisanom metodom, odredi dobra zamjena za loše koncipiranu shemu
- E.F. Codd
 - "Normalized database structure: A brief tutorial", Proc. ACM SIGFIDET Workshop on Data Description, Access and Control, 1971

Postupci normalizacije

"I called it normalization because then-President Nixon was talking a lot about normalizing relations with China. I figured that if he could normalize relations, so could I" - 'A "Freshside" Chat', DBMS, Dec. 1993)

Normalne forme

- Zasnovane na funkcijskim zavisnostima
 - ▶ Prva normalna forma I NF
 - ▶ Druga normalna forma 2 NF
 - ▶ Treća normalna forma 3 NF
 - ▶ Boyce-Coddova normalna forma BCNF
- Zasnovana na višeznačnim zavisnostima
 - Četvrta normalna forma 4 NF
- ▶ Zasnovana na spojnim zavisnostima
 - Projekcijsko-spojna normalna forma PJNF

Postupci normalizacije

Dekompozicija

 Početne relacije (relacijske sheme) se dekomponuju na osnovu uočenih funkcijskih zavisnosti

Sinteza

Zadan je skup atributa i nad njima skup funkcijskih zavisnosti iz kojih se sintetiziraju relacijske sheme koje zadovoljavaju 3 NF

Postupak normalizacije dekompozicijom

- ▶ Dekompozicija relacijska shema R zamjenjuje se shemama $R_1, R_2, ..., R_n$ pri čemu vrijedi $R = R_1 R_2 ... R_n$
- $P_i \subseteq R r_i(R_i) = \pi_{Ri}(R)$
- Dekompozicija relacijske sheme R na sheme $R_1, R_2, ..., R_n$ obaviće se bez gubitka informacija ako vrijedi:

Razlaganje relacija bez gubitka na dvije projekcije

OSOBA(matBr,	prezime,	ime,	postBr,	nazivGrad)
12345	Pirić	Damir	75000	Tuzla
23456	Đurić	Maja	71000	Sarajevo
34567	Pejić	Dino	72000	Zenica
45678	Pirić	Damir	71000	Sarajevo

- U kojim zadacima će se relacija osoba dekomponirati bez gubitka informacija? Zašto?
- Zadatak I
 - $r_1 = \pi_{matBr, prezime, ime}(osoba)$
 - $r_2 = \pi_{matBr, postBr, nazivGrad}(osoba)$
 - $r_3 = r_1 \triangleright \triangleleft r_2$
- Zadatak 2
 - $r_4 = \pi_{\text{prezime, ime, postBr, nazivGrad}}(\text{osoba})$
 - $r_5 = \pi_{matBr, prezime}(osoba)$
- Zadatak 3
 - $r_7 = \pi_{matBr, prezime, ime, postBr}(osoba)$
 - $r_8 = \pi_{postBr, nazivGrad}(osoba)$
 - $r_9 = r_7 \triangleright \triangleleft r_8$

Razlaganje relacija bez gubitka na dvije projekcije

U zadatku I

- $Arr R_1 = \{\text{matBr, prezime, ime}\} K_{R1} = \{\text{matBr}\}$
- $R_2 = \{\text{matBr}, \text{postBr}, \text{nazivGrad}\} K_{R2} = \{\text{matBr}\}$

U zadatku 2

- R_4 = {prezime, ime, postBr, nazivGrad} K_{R1} = {prezime, ime, postBr}
- Arr = {matBr, prezime} K_{R2} = {matBr}

U zadatku 3

- R_7 = {matBr, prezime, ime, postBr} K_{R1} = {matBr}
- $Arr R_8 = \{postBr, nazivGrad\} K_{R2} = \{postBr\}$
- Relacija se bez gubitaka razlaže na dvije projekcije ako:
 - projekcije imaju zajedničke atribute
 - zajednički atributi su ključ u barem jednoj od projekcija

Prva normalna forma – 1 NF

- Definicija prve normalne forme proizilazi iz same definicije relacije
- Relacijska shema je u 1 NF ako:
 - neključni atributi funkcijski ovise o ključu
 - domene sadrže samo jednostavne (nedjeljive) vrijednosti
 - vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa
- ▶ Shema baze podataka $R = \{R_1, R_2, ..., R_n\}$ je u prvoj normalnoj formi ako je svaka relacijska shema u I NF

Preduzeće evidentira podatke o zaposlenicima:

Z	ZAP <u>(matBr</u>	prezime,	ime,	datRod,	sifOdjel)
	12345	Pirić	Damir	23.10.63	HÍ
zaþ(ZAP)	23456	Đurić	Maja	16.07.61	22
	34567	Pejić	Dino	08.11.64	111

$$K_{ZAP} = \{ matBr \}$$

- Domene svih atributa sadrže jednostavne vrijednosti
- Vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa
- Postoje funkcijske zavisnosti:
 - ightharpoonup matBr ightarrow ime

▶ $matBr \rightarrow datRod$ $matBr \rightarrow sifOdjel$

Neključni atributi relacije funkcijski ovise o kluču relacije

▶ Relacijska shema ZAP je u I NF

Preduzeće evidentira podatke o zaposlenicima i njihovoj djeci – korsnicima zdravstvenog osiguranja (1. način):

ZAPI	(matBr	þrezime,	ime,	<u>imenaDjece)</u>
	12345	Pirić	Damir	Deni, Jasna
zaþl(ZAPI)	23456	Đurić	Maja	Goran
	34567	Pejić	Dino	Denis, Maja, Irma

$$K_{7API} = \{ matBr \}$$

- Domena atributa imenaDjece ne sadrže jednostavne vrijednosti
- ▶ Relacijska shema ZAPI nije u I NF

 Preduzeće evidentira podatke o zaposlenicima i njihovoj djeci – korsnicima zdravstvenog osiguranja (2. način):

ZAP2	(matBr	prezime,	ime,	imeDj,	<u>datRodDj)</u>
	12345	Pirić	Damir	Deni	16.05.90
				Jasna	02.09.93
zap2(ZAP2)	23456	Đurić	Maja	Goran	14.12.87
				Denis	22.04.85
	34567	Pejić	Dino	Maja	11.06.88
				Irma	06.10.90

 $K_{ZAP2} = \{ matBr \}$

- Domene sadrže jednostavne vrijednosti, ali vrijednost atributa imeDj nije uvijek samo jedna vrijednost iz domene tog atributa (isto vrijedi i za atribut datRodDj)
- ▶ Relacijska shema ZAP2 nije u I NF

 Preduzeće evidentira podatke o zaposlenicima i njihovoj djeci – korsnicima zdravstvenog osiguranja (3. način):

ZAP3	(matBr	prezime,	ime,	imeDj,	<u>datRodDj)</u>
	12345	Pirić	Damir	Deni	16.05.90
	12345	Pirić	Damir	Jasna	02.09.93
zap3(ZAP3)	23456	Đurić	Maja	Goran	14.12.87
	34567	Pejić	Dino	Denis	22.04.85
	34567	Pejić	Dino	Maja	11.06.88
	34567	Pejić	Dino	Irma	06.10.90

$$K_{ZAP3} = \{ matBr \}$$

- Domene sadrže jednostavne vrijednosti
- Vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa
- Postoje funkcijske zavisnosti:
 - ightharpoonup matBr ightharpoonup ime
- Ne postoje funkcijske zavisnosti
 - ▶ $matBr \rightarrow imeDj$ $matBr \rightarrow datRodDj$
- ▶ Relacijska shema ZAP3 nije u I NF

- lzdvajanjem atributa koji nisu funkcijski ovisni o ključu
 - U posebnu relaciju izdvaja se skup atributa koji se ponavlja sa jednakom kratnošću, zajedno sa ključem originalne relacije

ZAP	4 <u>(matBr</u>	þrezime,	<u>ime)</u>	
	12345	Pirić	Damir	
zap4(ZAP4)	23456	Đurić	Maja	$K_{ZAP4} = \{ matBr \}$
	34567	Pejić	Dino	ZAF4 C
D.U.E.	FF/ D	. 5.	1 .0 10 %	
DIJET	「E <u>(matBr</u>	<u>imeDj,</u>	<u>datRodDj)</u>	
	12345	Deni	16.05.90	
	12345	Jasna	02.09.93	
dijete(DIJETE)	23456	Goran	14.12.87	$K_{DIJETE} = \{ matBr, imeDj \}$
	34567	Denis	22.04.85	DIJETE C , J.J.
	34567	Maja	11.06.88	
	34567	Irma	06.10.90	

- Izdvajanjem atributa koji nisu funkcijski ovisni o ključu
- \blacktriangleright Neka su X, Y, Z i V atributi ili skupovi atributa
- ▶ Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{X \rightarrow Y, XZ \rightarrow V\}$
- Neka je pretpostavljeni ključ $K_R = \{X\}$
- R ne zadovoljava I NF
- Normalizacijom na 1 NF R se zamjenjuje shemama:

Relacija r(R) se normalizacijom na prvu normalnu formu zamjenjuje projekcijama:

$$r_1 = \pi_{XY}(R) \qquad r_2 = \pi_{XZV}(R)$$

- Operacija je izvedena bez gubitka informacija
 - Relacijske sheme imaju zajedničke atribute (X)
 - Zajednički atributi su ključ u R₁

Promjenom ključa

ZAI	P3 <u>(matBr</u>	prezime,	ime,	imeDj,	<u>datRodDj)</u>
	12345	Pirić	Damir	Deni	16.05.90
	12345	Pirić	Damir	Jasna	02.09.93
zap3(ZAP3)	23456	Đurić	Maja	Goran	14.12.87
	34567	Pejić	Dino	Denis	22.04.85
	34567	Pejić	Dino	Maja	11.06.88
	34567	Pejić	Dino	Irma	06.10.90

 $K_{ZAP3} = \{ matBr, imeDj \}$

- Promjenom ključa
- Neka su X, Y, Z i V atributi ili skupovi atributa
- ▶ Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{X \rightarrow Y, XZ \rightarrow V\}$
- Neka je pretpostavljani ključ K_R = { X }
- ▶ R ne zadovoljava I NF
- Normalizacijom na 1 NF u relacijskoj shemi R definiše se novi ključ:
 - $K_R = \{ XZ \}$

Druga normalna forma – 2 NF

- ▶ Relacijska shema R je u 2 NF ako je u 1 NF i ako je:
 - Svaki atribut iz zavisnog dijela <u>potpuno funkcijski ovisan o</u> <u>ključu</u>
- ▶ Zadana je relacijska shema R i skupovi atributa X i Y iz R (X, Y $\subseteq R$)
- Neka u R vrijedi funkcijska zavisnost $X \rightarrow Y$
- Funkcijska zavisnost $X \to Y$ je **nepotpuna** ako postoji atribut ili skup atributa Z koji je podskup od X, za koji vrijedi $Z \to Y$
- ▶ Ili
- FZ $X \rightarrow Y$ je **nepotpuna** ako
- $(\exists Z)(Z \subset X) : Z \to Y$

ZAP3	(matBr	prezime,	ime,	imeDj,	<u>datRodDj)</u>
	12345	Pirić	Damir	Deni	16.05.90
	12345	Pirić	Damir	Jasna	02.09.93
zap3(ZAP3)	23456	Đurić	Maja	Goran	14.12.87
	34567	Pejić	Dino	Denis	22.04.85
	34567	Pejić	Dino	Maja	11.06.88
	34567	Pejić	Dino	Irma	06.10.90

 $K_{ZAP3} = \{ matBr, imeDj \}$

- Relacijska shema ZAP3 zadovoljava I NF
- Postoje funkcijske zavisnosti:
 - ightharpoonup matBr, imeDj ightarrow ime
- Ali postoje i funkcijske zavisnosti
 - ightharpoonup matBr ightharpoonup ime
- ▶ matBr, imeDj \rightarrow prezime, ime je nepotpuna funkcijska zavisnost!
- Relacijska shema ZAP3 nije u 2 NF

Normalizacijom na 2 NF nastaju:

- relacijska shema koja sadrži skup atributa koji su bili nepotpuno funkcijski ovisni o ključu i dio ključa o kojem su potpuno funkcijski ovisni
- relacijska shema koja sadrži ključ originalne relacije i skup atributa koji su potpuno funkcijski ovisni o ključu

ZAP	4 <u>(matBr</u>	prezime,	<u>ime)</u>	
	12345	Pirić	Damir	
zap4(ZAP4)	23456	Đurić	Maja	$K_{ZAP4} = \{ matBr \}$
	34567	Pejić	Dino	
DIJET	E <u>(matBr</u>	imeDj,	datRodDj)	
	12345	Deni	16.05.90	
	12345	Jasna	02.09.93	
dijete(DIJETE)	23456	Goran	14.12.87	$K_{DIJETE} = \{ matBr, imeDj \}$
	34567	Denis	22.04.85	TONJETE (THREET, THEED)
	34567	Maja	11.06.88	
	34567	Irma	06.10.90	

- \blacktriangleright Neka su X, Y, Z i V atributi ili skupovi atributa
- ▶ Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{X \rightarrow Y, XZ \rightarrow V\}$
- Neka je pretpostavljeni ključ $K_R = \{XZ\}$
- R zadovoljava I NF
- Funkcijska zavisnost $XZ \rightarrow Y$ je nepotpuna $\Rightarrow R$ ne zadovoljava 2 NF
- ▶ Normalizacijom na 2 NF R se zamjenjuje shemama:
 - ▶ R₁ = XY
 ▶ R₂ = XZV
 K_{R1} = { X }
 K_{R2} = { XZ }
- ightharpoonup Relacija r(R) se normalizacijom na 2 NF zamjenjuje projekcijama:
 - $r_1 = \pi_{XY}(R) \qquad r_2 = \pi_{XZV}(R)$
- Operacija je izvedena bez gubitka informacija
 - Relacijske sheme imaju zajedničke atribute (X)
 - Zajednički atributi su ključ u R₁

Treća normalna forma

- Relacija (relacijska shema) je u 3 NF ako je u 1 NF i ako:
 - niti jedan atribut iz zavisnog dijela nije tranzitivno funkcijski ovisan o ključu
- Posredna funkcijska zavisnost
- Zadano je:
 - Relacijska shema R
 - Skupovi atributa $X, Y, Z \in R$
 - Skup funkcijskih zavisnosti F
- \blacktriangleright Atribut Z je tranzitivno ovisan o X ako vrijedi:
 - $X \to Y, Y \not\rightarrow X i Y \to Z$ (proizilazi iz F)
 - \rightarrow $Z \subset XY$

OSOB	A <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)
	12345	Pirić	Damir	75000	Tuzla
osoba(OSOBA)	23456	Đurić	Maja	71000	Sarajevo
	34567	Pejić	Dino	75000	Tuzla

$$K_{OSOBA} = \{ matBr \}$$

- Relacijska shema OSOBA zadovoljava I NF
- Postoji funkcijska zavisnost:
 - ightharpoonup matBr ightharpoonup prezime, ime, postBr, nazivGrad
- Ali postoje i funkcijska zavisnost
 - ightharpoonup postBr ightharpoonup nazivGrad (ne postoji postBr ightharpoonup matBr)
- ▶ matBr → nazivGrad je tranzitivna zavisnost!
- ▶ Relacijska shema OSOBA ne zadovoljava 3 NF

Normalizacijom na 3 NF nastaju:

- relacijska shema koja sadrži skup atributa relacijske sheme OSOBA koji su tranzitivno ovisni o ključu, te srednji skup atributa uočene tranzitivne zavisnosti
- relacijska shema koja sadrži ključ relacijske sheme OSOBA i neključne atribute relacijske sheme OSOBA koji nisu tranzitivno ovisni o ključu

$$GRAD(\underline{postBr}, \underline{nazivGrad})$$

$$75000 \quad Tuzla \quad K_{GRAD} = \{ postBr \}$$

$$grad(GRAD) \quad 71000 \quad Sarajevo$$

OSOBA I	<u>(matBr, </u>	prezime,	ime,	<u>postBr)</u>	
	12345	Pirić	Damir	75000 [°]	
osoba I (OSOBA I)	23456	Đurić	Maja	71000	$K_{OSOBAI} = \{ matBr \}$
	34567	Pejić	Dino	75000	

- \blacktriangleright Neka su X, Y, Z i V atributi ili skupovi atributa
- ▶ Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{X \rightarrow YZV, Z \rightarrow V\}$
- Neka je pretpostavljeni ključ $K_R = \{X\}$
- R zadovoljava I NF
- Funkcijska zavisnost $X \rightarrow V$ je tranzitivna $\Rightarrow R$ ne zadovoljava 3 NF
- Normalizacijom na 3 NF R se zamjenjuje shemama:

►
$$R_1 = XYZ$$
 $K_{R1} = \{X\}$
► $R_2 = ZV$ $K_{R2} = \{Z\}$

ightharpoonup Relacija r(R) se normalizacijom na 2 NF zamjenjuje projekcijama:

$$r_1 = \pi_{XYZ}(R) \qquad r_2 = \pi_{ZV}(R)$$

- Operacija je izvedena bez gubitka informacija
 - Relacijske sheme imaju zajedničke atribute (Z)
 - Zajednički atributi su ključ u R₂

Normalizacija na 3NF - komentar

- Normalizacija na 2 NF nije nužan preduslov za provođenje normalizacije na 3 NF jer se nepotpune FZ mogu posmatrati kao tranzitivne FZ
- ▶ **Primjer:** zadana je shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{XY \rightarrow ZV, X \rightarrow Z\}$. Ključ relacije $K_R = XY$. R je u I NF, ali nije u I NF jer postoji nepotpuna I FZ I NF deđutim, postoji i tranzitivna funkcijska zavisnost I XY I XY
- ▶ Normalizacijom na 3NF shema R se zamjenjuje shemama:

$$R_1 = XZ R_2 = XYV$$

$$K_{R1} = X K_{R2} = XY$$

- $ightharpoonup R_1 i R_2 su u 2NF i 3NF$
- Preporuka: normalizaciju ipak obavljati postepeno:
 - ► INF \Rightarrow 2NF \Rightarrow 3NF

OSOBA2	! <u>(matBr,</u>	prezime,	ime,	JMBG)
	12345	Pirić	Damir	1710977180025
osoba2(OSOBA2)	23456	Đurić	Maja	1812982185011
,	34567	Pejić	Dino	0209979180016

- Postoji funkcijska zavisnost:
 - ▶ $matBr \rightarrow prezime, ime, JMBG$
- Ali postoje i funkcijska zavisnost
 - ▶ $JMBG \rightarrow prezime$, $ime i <math>JMBG \rightarrow matBr$
- matBr i JMBG su mogući ključevi
- ▶ Relacijska shema OSOBA2 zadovoljava 3 NF
 - $KI_{OSOBA2} = \{ matBr \}$
 - $K2_{OSOBA2} = \{ JMBG \}$

Normalizacija na 3 NF – dodatna razmatranja

- ▶ Neka su X, Y, Z i V atributi ili skupovi atributa
- ▶ Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{X \rightarrow YZV, Z \rightarrow V, Z \rightarrow X\}$
- Neka je pretpostavljeni ključ K_R = { X }
- R zadovoljava I NF
- - Funkcijsku zavisnost $Z \rightarrow V$ nije potrebno ukloniti jer u tom slučaju nema redundancije
- Z je također ključ u R
 - $\vdash KI_R = \{X\}$
 - $K2_R = \{ Z \}$
- ightharpoonup X i Z su mogući ključevi \Rightarrow R zadovoljava 3 NF

Primjer normalizacije

▶ Zadana je relacijska shema STUD i trenutna vrijednost relacije stud

<u>(matBr, </u>	prezime,	ime,	sifPred,	nazPred,	datlspit,	ocj,	sifNas,	prezNas)
12345	Pirić	Damir	1111	Baze pod.	23.01.12	5	1001	Mešković
12345	Pirić	Damir	1111	Baze pod.	14.02.12	5	1002	Pjanić
12345	Pirić	Damir	1111	Baze pod.	26.06.12	7	1001	Mešković
12345	Pirić	Damir	2222	Razvoj softv.	05.02.12	8	1003	Hasanović
12345	Pirić	Damir	3333	Oper. sist.	03.07.12	9	1002	Pjanić
23456	Đurić	Maja	1111	Baze pod.	23.01.12	8	1001	Mešković

- Pretpostavljeni ključ je K_{STUD} = { matBr }
- Na osnovu značenja podataka odrediti funkcijske zavisnosti
- Normalizirati relacijsku shemu STUD na 1 NF, 2 NF, 3 NF

- Da li ključ funkcijski određuje zavisni dio?
- Postoji FZ:
 - ightharpoonup matBr ightharpoonup prezime, ime
- ▶ Ne postoje FZ:
 - ▶ $matBr \rightarrow sifPred$ $matBr \rightarrow nazPred$
 - ▶ $matBr \rightarrow datIspit$ $matBr \rightarrow ocj$
 - ▶ $matBr \rightarrow sifNas$ $matBr \rightarrow prezNas$
- student = $\pi_{matBr, prezime, ime}$ (stud)
- ispit = $\pi_{matBr, sifPred, nazPred, datIspit, ocj, sifNas, prezNas}(stud)$

student <u>(matBr,</u>	prezime,	ime))
12345	Pirić	Damir	
23456	Đurić	Maja	

2 NF? student ima jednostavan ključ ispit ne zadovoljava 2 NF

 $K_{STUDENT} = \{ matBr \}$

ispit <u>(matBr,</u>	sifPred,	datlspit,	nazPred	ocj,	sifNas,	prezNas)
12345	5 1111	23.01.12	Baze pod.	5	1001	Mešković
12345	5 1111	14.02.12	Baze pod.	5	1002	Pjanić
12345	5 1111	26.06.12	Baze pod.	7	1001	Mešković
12345	2222	05.02.12	Razvoj softv.	8	1003	Hasanović
12345	3333	03.07.12	Oper. sist.	9	1002	Pjanić
23456	5 1111	23.01.12	Baze pod.	8	1001	Mešković

K_{ISPIT} = { matBr, sifPred, datIspit }

- ispit $I = \pi_{matBr, sifPred, datIspit, ocj, sifNas, prezNas}(ispit)$
- $predmet = \pi_{sifPred, nazPred}(ispit)$

predmet <u>(sifPred,</u>	nazPred)
1111	Baze pod.
2222	Razvoj softv.
3333	Oper. sist.

K_{PREDMET} = { sifPred }

3 NF?

student zadovoljava 3 NF predmet zadovoljava 3 NF ispit l ne zadovoljava 3 NF

prezNas)	sifNas,	ocj,	<u>datlspit,</u>	sifPred,	ispit I <u>(matBr,</u>
Mešković	1001	5	23.01.12	Ш	12345
Pjanić	1002	5	14.02.12	Ш	12345
Mešković	1001	7	26.06.12	Ш	12345
Hasanović	1003	8	05.02.12	2222	12345
Pjanić	1002	9	03.07.12	3333	12345
Mešković	1001	8	23.01.12	Ш	23456

 $K_{ISPITI} = \{ matBr, sifPred, datIspit \}$

- $ispit2 = \pi_{matBr, sifPred, datIspit, oci, sifNas}(ispit1)$
- nastavnik = $\pi_{sifNas, prezNas}(ispit1)$

nastavnik <u>(sifNas,</u>	<u>prezNas)</u>	ispit2 <u>(matBr,</u>	sifPred,	datlspit,	ocj,	sifNas)
1001	Mešković	12345	Ш	23.01.12	5	1001
1002	Pjanić	12345	Ш	14.02.12	5	1002
1003	Hasanović	12345	Ш	26.06.12	7	1001
		12345	2222	05.02.12	8	1003
$K_{NASTAVNIK} = \{ si$	ifNas }	12345	3333	03.07.12	9	1002
INDIANIN C	, ,	23456	1111	23.01.12	8	1002

$$K_{ISPIT2} = \{ matBr, sifPred, datIspit \}$$

- Shema baze podataka STUSLU sastoji se od relacijskih shema:
 - STUSLU = { STUDENT, PREDMET, NASTAVNIK, ISPIT2 }
 - Shema baze podataka STUSLU zadovoljava 3 NF

Primjer normalizacije – opšti atributi

- Zadana je relacijska shema R = ABCDEFGH i na njoj skup funkcijskih zavisnosti F = { AB → E, C → F, ABCD → GH, G → H }.
- Domene atributa sadrže samo jednostavne vrijednosti, vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa.
- Odrediti primarni ključ relacije (tako da bude zadovoljen uslov INF kojem neključni atributi funkcijski zavise od ključa) te shemu postepeno normalizirati na 2NF i 3NF.

Primjer normalizacije – 1NF

- R = ABCDEFGH
- ▶ $F = \{AB \rightarrow E, C \rightarrow F, ABCD \rightarrow GH, G \rightarrow H\}$
- Odrediti primarni ključ relacije:
 - ▶ $AB \rightarrow E \Rightarrow ABCD \rightarrow E$ (iz A2 uvećanje)
 - ► C \rightarrow F \Rightarrow ABCD \rightarrow F (iz A2 uvećanje) \Rightarrow ABCD \rightarrow EFGH

- ▶ ABCD \rightarrow GH (iz F)
- ▶ Postoji li skup $X \subset ABCD$ za kojeg vrijedi $X \to R$
 - NE
- ⇒ ABCD je mogući ključ i može se odabrati kao primarni ključ sheme R
 - R = ABCDEFGH

$$K_R = ABCD$$

R je u INF

Primjer normalizacije – 2NF

- $ightharpoonup R = ABCDEFGH K_R = ABCD$
- ▶ $F = \{AB \rightarrow E, C \rightarrow F, ABCD \rightarrow GH, G \rightarrow H\}$
- Normalizacija na 2 NF
 - Svi atributi iz zavisnog dijela moraju biti potpuno funkcijski ovisni o ključu

- ▶ ABCD → E je nepotpuna FZ jer vrijedi AB → E
 ⇒ R nije u 2NF
- Normalizacijom na 2 NF R se zamjenjuje shemama:
 - $R_1 = ABE$ $K_{R1} = AB$ R_1 je u 2NF
 - $Arr R_2 = ABCDFGH K_{R2} = ABCD R_2$ nije u 2NF

Primjer normalizacije – 2NF (nastavak)

$$ightharpoonup R_1 = ABE$$

$$K_{RI} = AB$$

$$K_{RI} = AB$$
 R_{I} je u $2NF$

$$ightharpoonup R_2 = ABCDFGH$$

$$Arr R_2 = ABCDFGH$$
 $K_{R2} = ABCD$ R_2 nije u 2NF

►
$$F = \{AB \rightarrow E, C \rightarrow F, ABCD \rightarrow GH, G \rightarrow H\}$$

- Normalizacija na 2 NF
 - Svi atributi iz zavisnog dijela moraju biti potpuno funkcijski ovisni o ključu

- ▶ ABCD \rightarrow F je nepotpuna FZ jer vrijedi C \rightarrow F \Rightarrow R₂ nije u 2NF
- ▶ Normalizacijom na 2 NF R₂ se zamjenjuje shemama:

$$R_{21} = CF$$
 $K_{R21} = C$

$$K_{R2I} = C$$

$$R_{22} = ABCDGH$$
 $R_{R22} = ABCD$

$$K_{R22} = ABCD$$

$$R_{22}$$
 je u 2NF

Primjer normalizacije – 3NF

 $Arr R_1 = ABE$ $R_1 = AB$ $R_1 = B$ $R_2 = B$

• $R_{21} = CF$ $K_{R21} = C$ R_{21} je u 3NF

 $Arr R_{22} = ABCDGH$ $K_{R22} = ABCD$ R_{22} nije u 3NF

▶ $F = \{AB \rightarrow E, C \rightarrow F, ABCD \rightarrow GH, G \rightarrow H\}$

Normalizacija na 3 NF

Niti jedan atribut iz zavisnog dijela ne smije biti tranzitivno ovisan o ključu

 R_{22} ABCD GH $\Rightarrow ABCD \rightarrow H$ je tranzitivna FZ

Normalizacijom na 3 NF R₂₂ se zamjenjuje shemama:

 $R_{221} = GH$ $R_{221} = G$ R_{221} je u 3NF

 $Arr R_{222} = ABCDG$ $K_{R222} = ABCD$ R_{222} je u 3NF

> Shema baze podataka u 3NF se sastoji od relacijskih shema:

 $R_1, R_2, R_{21} = R_{222}$

Boyce-Coddova normalna forma - BCNF

- Relacijska shema je u BCNF ako je u 1 NF i ako:
 - \triangleright niti jedan atribut iz R nije tranzitivno ovisan o bilo kojem ključu od R, ili
 - sve funkcijske zavisnosti u R proizlaze iz ključeva od R

DZ <u>(s</u>	ifPacijent,	ambulanta,	sifLjekar)	
`	12345	ORL	123	
	12345	KARD	234	$K_{DZ} = \{ \text{ sifPacijent, ambulanta } \}$
dz(DZ)	23456	ORL	345	t v _{DZ} (o.p. a o.j. a r a ranta j
	23456	KARD	234	

- ▶ Relacija dz, odnosno relacijska shema DZ zadovoljava I NF
- ▶ Postoji FZ sifLjekar \rightarrow ambulanta
- ▶ Relacija dz, odnosno relacijska shema DZ zadovoljava 3 NF
 - Atribut ambulanta je tranzitivno ovisan o ključu
- ▶ Relacija dz, odnosno relacijska shema DZ ne zadovoljava BCNF

Nastaju relacijske sheme

DZI <u>(sifLJekar,</u>	<u>ambulanta)</u>	LIJEC	l <u>(sifPacijent,</u>	sifLjekar)
123	ORL	-	12345	123
dz1(DZ1) 234	KARD		12345	234
345	ORL	lijeci(LIJECI)	23456	345
			23456	234

$$K_{DZI} = \{ sifLjekar \}$$
 $K_{LIJECI} = \{ sifPacijent, sifLjekar \}$

- Problemi sa BCNF
 - Izvođenjem transformacija gubi se početni skup funkcijskih zavisnosti
 - Ne smanjuje se redundancija u svakom slučaju
- Zaključak: normalizaciju na BCNF nije obavezno provoditi

- \blacktriangleright Neka su X, Y, Z i V atributi ili skupovi atributa
- ▶ Zadana je relacijska shema R = XYZV i na njoj skup funkcijskih zavisnosti $F = \{XY \rightarrow ZV, Z \rightarrow X\}$
- Neka je pretpostavljeni ključ K_R = { XY }
- R zadovoljava 3 NF
- ightharpoonup Zbog funkcijske zavisnosi $Z \rightarrow X$
 - ightharpoonup R ne zadovoljava BCNF
- Normalizacijom na BCNF R se zamjenjuje shemama:

►
$$R_1 = ZYV$$
 $K_{R1} = \{ ZY \}$
► $R_2 = ZX$ $K_{R2} = \{ Z \}$

- ightharpoonup Relacija r(R) se normalizacijom na BCNF zamjenjuje projekcijama:
 - $r_1 = \pi_{ZYV}(R) r_2 = \pi_{ZX}(R)$
- Operacija je izvedena bez gubitka informacija
 - Relacijske sheme imaju zajedničke atribute (Z)
 - Zajednički atributi su ključ u R₂

Normalizacija - zaključak

- Shema baze podataka ima dobra svojstva ako zadovoljava 3 NF
- Shema baze podataka zadovoljava 3 NF ako svaka njezina relacijska shema zadovoljava 3 NF