$1^{\grave{e}re}\ ST_2S:\mathbf{DS}\ \mathbf{num\acute{e}ro}\ \mathbf{2}$

20 Décembre 2018

Exercice 1 Comparaison de deux suites (6 points)

Les parents de Paul et Carine ont hérité d'une somme de 5000 € qu'ils offrent en deux parts égales à leurs enfants : chacun reçoit 2500 €.

Paul place la totalité de sa part sur un livret d'épargne aux taux de 2~% par an à intérêts composés.

Carine place $1200 \in \text{sur}$ un livret d'épargne à 4 % à intérêts composés et garde le reste chez elle, dans sa tirelire.

On suppose que les deux enfants ne font plus désormais ni retrait ni versement.

Les résulats seront donnés à l'euro près

- 1. On note u_n le capital de Paul au bout de n années.
 - (a) (1 point) Calculer u_1, u_2, u_3 .

Solution:

$$-u_1 = u_0 \times 1,02 = 2550$$

$$-u_2 = 2601$$

$$-u_3 = 2653$$

(b) (1 point) (u_n) est une suite géométrique, exprimer u_n en fonction de n.

Solution:

$$u_n = 2500 \times 1,02^n$$

- 2. On note v_n , le capital total (livret et tirelire) de Carine au bout de n années.
 - (a) (1 point) Calculer v_1, v_2, v_3 .

Solution:

$$-v_1 = 1200 \times 1,04 + 1300 = 1248 + 1300 = 2548$$

$$v_2 = 1248 \times 1,04 + 1300 = 1298 + 1300 = 2598$$

$$-v_3 = 1298 \times 1,04 + 1300 = 1350 + 1300 = 2650$$

(b) (1 point) Exprimer v_n en fonction de n

Solution:

$$v_n = 1200 \times 1,04^n + 1300$$

3. (1 point) Compléter le tableau suivant :

n	1	2	3	4	5	6	7	8
u_n								
v_n								

Solution:

n	1	2	3	4	5	6	7	8	
u_n	2550	2601	2653	2706	2760	2815	2872	2929	
v_n	2548	2598	2650	2703	2759	2818	2879	2942	

4. (1 point) En déduire, selon le nombre d'années qu'ils attendront, qui de Paul ou de Carine, fait le meilleur placement.

Solution:

Jusqu'à 6 ans, Paul fait le meilleur placement, après 6 ans, c'est Carine.

Exercice 2 Chiffre d'affaires (6 points)

Le chiffre d'affaires d'un laboratoire pharmaceutique augmente tous les ans de $50\,000$ €. En 2007, le chiffre d'affaires était de $500\,000$ €. On note $C_0 = 500\,000$ et C_n le chiffre d'affaires au cours de l'année 2007 + n.

1. (1 point) Exprimer pour tout entier n, C_{n+1} en fonction de C_n .

Solution:

 $C_{n+1} = C_n + 50\,000$

2. (a) (1 point) En déduire que les nombres $C_0, C_1, C_2, ... C_n$ sont des termes successifs d'une suite arithmétique de premier terme C_0 dont on précisera la raison.

Solution:

Tous les ans, le chiffre d'affaires augmente de $50\,000$ €, donc pour passer d'un terme à l'autre an ajoute $50\,000$. J'en déduis qu'il s'agit d'une suite arithmétique de raison $r=50\,000$.

(b) (1 point) À quoi correspond C_5 ? Calculer C_5 .

Solution:

 C_5 représente le chiffre d'affaires du laboratoire en 2012 (2007 + 5 = 2012). On a $C_5=500\,000+5\times50\,000=750\,000$.

(c) (1 point) Calculer le chiffre d'affaires prévisible pour 2013.

Solution:

D'après la question (a), je sais que C_5 correspond au chiffre d'affaires de l'année 2012. Donc pour 2013, il faut calculer C_6 .

On a : $C_6 = C_5 + 50\,000 = 750\,000 + 50\,000 = 800\,000$

3. (2 points) Déterminer en quelle année on peut prévoir un chiffre d'affaire de 1 050 000 €.

Solution:

Je sais que $C_n = 500\,000 + n \times 50\,000$. Je cherche la valeur de n pour laquelle $C_n = 1\,050\,000$:

```
1050000 = 500000 + n \times 50000
1050000 - 500000 = n \times 50000
\frac{550000}{50000} = n
11 = n
```

Donc le chiffre d'affaires de $1\,050\,000$ est atteint la 11^e année, c'est à dire 2018.

Exercice 3 Scolarisation (8 points)

Un pays en voie de développement comptait, en l'an 2000, trois millions d'enfants d'age compris entre six et onze ans. Seuls 700 000 d'entre eux étaient scolarisés.

Dans tout cet exercice on comparera la «population d'âge scolaire», c'est-à-dire le nombre des enfants compris entre six et onze ans, et la «population scolarisée», c'est-à-dire le nombre des enfants d'âge scolaire qui sont inscrits à l'école.

La population d'âge scolaire de ce pays augmente de 2 % par an et la population scolarisée augmente de 150 000 par an.

1. (2 points) Compléter le tableau suivant :

Année	Population d'âge scolaire	Population scolarisée
2000	3 000 000	700 000
2001		
2002		
2003		

Solution:

Année	Population d'âge scolaire	Population scolarisée
2000	3 000 000	700 000
2001	3 060 000	850 000
2002	3 121 200	1 000 000
2003	3 183 624	1 150 000

- 2. n est un entier positif ou nul. On note u_n la population d'âge scolaire de ce pays en l'an 2000 + n et v_n la population scolarisée la même année.
 - (a) (1 point) Quelles sont les valeurs de u_0 et v_0 ?

Solution:

On a $u_0 = 3\,000\,000$ et $v_0 = 700\,000$.

(b) (2 points) Donner la nature de la suite (u_n) , et exprimer u_n en fonction de n.

Solution:

Chaque année, la population d'âge scolaire augmente de 2 %, elle est donc multipliée par 1,02 $(1+\frac{2}{100})$. J'en déduis que (v_n) est une suite géométrique de raison 1,02. On a donc :

$$u_n = u_0 \times q^n$$

$$u_n = 3000000 \times 1,02^n$$

(c) (2 points) Donner la nature de la suite (v_n) , et exprimer v_n en fonction de n.

Solution:

Chaque année, la population scolarisée augmente de 150 000. J'en déduis que (u_n) est une suite arithmétique de raison 150 000.

On a donc:

$$v_n = v_0 + n \times r$$

 $u_n = 700\,000 + n \times 150\,000$

3. (1 point) À l'aide de la calculatrice, déterminer en quelle année on peut espérer que pour la première fois, plus de la moitié de la population d'âge scolaire sera scolarisée.

Solution:

On a :
$$\frac{v_6}{u_6} = \frac{3378487}{1600000} \approx 0.473$$

$$\frac{\text{et:}}{\frac{v_7}{u_7}} = \frac{3\,446\,057}{1750000} \approx 0,507$$

C'est donc à partir de l'année 2007 que la moitié de la population d'âge scolaire sera scolarisée.