# RK818 开发指南

文件标识: RK-KF-YF-069

发布版本: V1.0.1

日期: 2022-05-30

文件密级: □绝密 □秘密 □内部资料 ■公开

### 免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

### 商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

#### 版权所有 © 2022 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: <u>fae@rock-chips.com</u>

## 前言

## 概述

本文档主要介绍 RK818 的各个子模块,介绍相关概念、功能、dts 配置和一些常见问题的分析定位。

## 产品版本

| 芯片名称  | 内核版本          |
|-------|---------------|
| RK818 | 3.10、4.4、4.19 |

## 读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

## 修订记录

| 版本     | 作者 | 日期         | 修改说明 |
|--------|----|------------|------|
| V1.0.0 | 张晴 | 2019-11-25 | 初始版本 |
| V1.0.1 | 黄莹 | 2022-05-30 | 修改格式 |

## 目录

## RK818 开发指南

- 1. 基础
  - 1.1 概述
  - 1.2 功能
  - 1.3 芯片引脚功能
  - 1.4 重要概念
  - 1.5 上电条件和时序
- 2. 配置
  - 2.1 驱动和 menuconfig
  - 2.2 DTS 配置
  - 2.3 函数接口
- 3. Debug
  - 3.1 3.10内核
  - 3.2 4.4内核
  - 3.3 4.19内核

# 1. 基础

## 1.1 概述

RK818 是一款高性能 PMIC,RK818 集成 4 个大电流 DCDC、1个大电流升压BOOST、9 个 LDO、1个 SWITCH、一个HDIM5V输出、一个OTG输出、1 个 RTC、可调上电时序,而且还集成了开关充电,智能 功率路径管理,库仑计等功能。

系统中各路电源总体分为两种: DCDC 和 LDO。两种电源的总体特性如下(详细资料请自行搜索):

- 1. DCDC: 输入输出压差大时,效率高,但是存在纹波比较大的问题,成本高,所以大压差,大电流负载时使用。一般有两种工作模式。PWM 模式:纹波瞬态响应好,效率低;PFM 模式:效率高,但是负载能力差。
- 2. LDO:输入输出压差大时,效率低,成本低,为了提高 LDO 的转换效率,系统上会进行相关优化如: LDO 输出电压为 1.1V,为了提高效率,其输入电压可以从 VCCIO\_3.3V 的 DCDC 给出。所以电路上如果允许尽量将 LDO 接到 DCDC 输出回路,但是要注意上电时序。

## 1.2 功能

从使用者的角度看, RK818 的功能概况起来可以分为 4 个部分:

- 1. regulator 功能:控制各路 DCDC、LDO 电源状态;
- 2. rtc 功能:提供时钟计时、定时等功能;
- 3. clk 功能:有两个32.768KHZ时钟输出,一个不可以控常开,一个是软件可控。
- 4. 充电功能和电量计功能,在本文中不做详细介绍,详细可以参考文档《Rockchip\_RK818\_RK816\_Developer\_Guide\_Fuel\_Gauge\_CN》

# QFN68 7mm x 7mm, pitch0.35mm



下面描述中,SLEEP 和 INT 引脚需要重点关注:

| 管脚序号 | 名称    | 描述                                                               |
|------|-------|------------------------------------------------------------------|
| 1    | INT   | Interrupt request pin. Active low.                               |
| 2    | SLEEP | Input pin for switching state between sleep and non-sleep state. |
| 3    | H_5V  | 5v supply output for HDMI                                        |
| 4    | GND5  | Power ground                                                     |

| 5     | SW5      | Switch output                                                                         |
|-------|----------|---------------------------------------------------------------------------------------|
| 6,7   | BOOST    | BOOST output                                                                          |
| 8,9   | USB      | Power input from USB                                                                  |
| 10    | MIDU     | Middle point of USB power supply                                                      |
| 11,12 | SW6      | Switch output                                                                         |
| 13    | GND6     | Power ground                                                                          |
| 14    | VLDO1    | LDO1 output                                                                           |
| 15    | VCC6     | Power supply for LDO                                                                  |
| 16    | VLDO2    | LDO2 output                                                                           |
| 17    | XIN      | 32.768KHz crystal oscillator input                                                    |
| 18    | XOUT     | 32.768KHz crystal oscillator output                                                   |
| 19    | воото    | Boot sequence selection, low bit                                                      |
| 20    | BOOT1    | Boot sequence selection, high bit                                                     |
| 21    | PWRON    | Power on or power off enable pin, active low, internal 100K pull high to power supply |
| 22    | VCC3     | Power supply for DCDC3                                                                |
| 23    | SW3      | Switch output of DCDC3                                                                |
| 24    | GND3     | Power ground for DCDC3                                                                |
| 25    | VFB3     | feedback voltage for DCDC3                                                            |
| 26    | VFB2     | DCDC2 output voltage feedback input                                                   |
| 27    | GND2     | Power ground for DCDC2                                                                |
| 28,29 | SW2      | Switch output of DCDC2                                                                |
| 30    | VCC2     | Power supply for DCDC2                                                                |
|       |          |                                                                                       |
| 31    | CLK32K1  | 32.768K clock1 output, open drain,                                                    |
| 32    | CLK32K2  | 32.768K clock2 output, open drain,                                                    |
| 33    | VDDIO    | Power supply for IO                                                                   |
| 34    | NRESPWON | Reset pin after power on, active low                                                  |
| 35    | SCL      | Clock input of I2C                                                                    |
| 36    | SDA      | Data input/output of I2C                                                              |
| 37    | VPP      | Power supply for testing, floating in the application                                 |
| 38    | VFB1     | DCDC1 output voltage feedback input                                                   |
| 39    | VCC1     | Power supply for DCDC1                                                                |
| 40,41 | SW1      | Switch output of DCDC1                                                                |
| 42,43 | GND1     | Power ground for DCDC1                                                                |
| 44    | VLDO7    | LDO7 output                                                                           |
| 45    | VCC7     | Power supply for LDO                                                                  |
| 46    | VLDO5    | LDO5 output                                                                           |

| 47      | VLDO3          | LDO3 output                                                                         |
|---------|----------------|-------------------------------------------------------------------------------------|
| 48      | VLDO4          | LDO4 output                                                                         |
| 49      | VLDO6          | LDO6 output                                                                         |
| 50      | VCC8           | Power supply for switch                                                             |
| 51      | VLDO8          | LDO8 output                                                                         |
| 52      | VLDO9          | LDO9 output                                                                         |
| 53      | VCC9           | Power supply for LDO                                                                |
| 54      | VSWOUT         | Switch output                                                                       |
| 55      | VREF           | Internal reference voltage                                                          |
| 56      | REFGND         | Reference ground                                                                    |
| 57      | SNSN           | Bat charging and discharging sense current negative pin                             |
| 58      | SNSP           | Bat charging and discharging sense current positive pin                             |
| 59,60   | BAT            | Positive battery terminal                                                           |
| 61,62   | SYS            | DC-DC regulator output to power the system load and charge the battery              |
| 63      | VCC4           | Power supply for DCDC4                                                              |
| 64      | SW4            | Switch output of DCDC4                                                              |
| 65      | VFB4           | DCDC4 output voltage feedback input                                                 |
| 66      | GND4           | Power ground for DCDC4                                                              |
| 67      | TS1            | Thermistor1 input. Connect a thermistor from this pin to ground. The thermistor is  |
|         |                | usually inside the battery pack.                                                    |
| 68      | TS2            | Thermistor2 input. Connect a thermistor from this pin to ground. Or it can be       |
|         |                | used as analog input pin of internal ADC if the control bit is set to ADC function. |
| Exposed | Exposed ground | It must be connected to ground for thermal and electrical enhancement.              |
| pad     |                |                                                                                     |

## 1.4 重要概念

• I2C 地址

7 位从机地址: 0x1c

- PMIC有3种工作模式
  - 1. PMIC normal 模式

系统正常运行时 PMIC 处于 normal 模式,此时 pmic\_sleep 为低电平。

### 2. PMIC sleep 模式

系统休眠时需要待机功耗尽量低,PMIC 会切到 sleep 模式减低自身功耗,这时候一般会降低某些路的输出电压,或者直接关闭输出,这可以根据实际产品需求进行配置。系统待机时 AP 通过 I2C 指令把 pmic\_sleep 配置成 sleep 模式,然后拉高 pmic\_sleep 即可让 PMIC 进入 sleep 状态;当 SoC 唤醒时 pmic\_sleep 恢复为低电平,PMIC 退出休眠模式。

### 3. PMIC shutdown 模式

当系统进入关机流程的时候,PMIC 需要完成整个系统的电源下电操作。AP 通过 I2C 指令把 pmic\_sleep 配置成 shutdown 模式,然后拉高 pmic\_sleep 即可让 PMIC 进入 shutdown 状态。

• pmic\_sleep 引脚

常态为低电平,PMIC 处于 normal 模式。当引脚拉高的时候会切换到 sleep 或者 shutdown 的模式。

• pmic\_int 引脚

常态为高电平,当有中断产生的时候变为低电平。如果中断没有被处理,则会一直维持低电平。

• pmic\_pwron 引脚

pwrkey 的功能需要硬件上将 power 按键接到这个引脚,驱动通过这个引脚来判断按下/释放。

• 各路 DCDC 的工作模式

DCDC 有 PWM(也叫 force PWM)、PFM 模式,但是 PMIC 有一种模式会动态切换 PWM、PFM,这就是我们通常所说的 AUTO 模式。PMIC 支持 PWM、AUTO PWM/PFM 两种模式,AUTO 模式效率高但是纹波瞬态响应会差。出于系统稳定性考虑,运行时都是设置为 PWM 模式,系统进入休眠时会选择切换到 AUTO PWM/PFM。

• DCDC3 电压调节

DCDC3 这路电源比较特殊,不能通过寄存器修改电压,只能通过外部电路的分压电阻进行调节,所以如果需要修改电压请修改外围硬件,在 Rockchip 的方案上一般作为 VCC\_DDR 使用。

- DCDC 和 LDO 的运行时电压调节范围
- 1. DCDC 电压范围连续:
  - 1. DCDC 电压范围连续:

| 电压范围(V)       | 步进值(mV) | 具体档位值(V)                   |  |  |  |  |
|---------------|---------|----------------------------|--|--|--|--|
| 0.7125 ~ 1.45 | 12.5    | 0.7125、0.725、0.737.5、、1.45 |  |  |  |  |
| 1.8 ~ 3.3     | 100     | 1.8、1.9、2.0、2.2、3.3        |  |  |  |  |

### 2. LDO 电压连续:

| 电压范围(V)   | 步进值(mV) | 具体档位值(V)                |
|-----------|---------|-------------------------|
| 0.8 ~ 3.4 | 100     | 0.8、0.9、1.0、1.1、1.2、3.4 |

# 1.5 上电条件和时序

1. 上电条件

只要满足下面任意一个条件即可以实现 PMIC 上电:

- EN 信号从低电平变高电平触发
- EN 信号保持高电平,且 RTC 闹钟中断触发
- EN 信号保持高电平,按 PWRON 键触发
- 2. 上电时序

每款 SOC 平台对各路电源上电时序要求可能不一样,目前上电时序有如下情况,具体请参考最新的 datasheet:

### 13 上电启动时序(POWER SEQUENCE)

|       | RK3188/R<br>RK3188M/R |        | 部<br>otp/BUCK1~4 |      |        |      |               |      |           |      |
|-------|-----------------------|--------|------------------|------|--------|------|---------------|------|-----------|------|
|       | RK3028A/              | RK3028 | /                |      |        |      |               |      |           |      |
| AP    | /RK2928               |        | LD05/LD07        |      | RK3066 |      | RK3288/RK3368 |      | S-Product |      |
|       |                       |        |                  |      |        |      | 00            |      |           |      |
| BOOT  | 11                    |        | 1                | 0    | 01     |      | RK818         | 8-1  | RK818-2   |      |
|       | 电压默认值                 | 上电时序   | 电压默认值            | 上电时序 | 电压默认值  | 上电时序 | 电压默认值         | 上电时序 | 电压默认值     | 上电时序 |
| BUCK1 | 1.1V                  | 3      | ОТР              | ОТР  | 1.2V   | 3    | 1. 1V         | 3    | 1. 0V     | 12   |
| BUCK2 | 1.1V                  | 1      | ОТР              | ОТР  | 1.2V   | 1    | 1. 1V         | 1    | 1. OV     | 12   |
| BUCK3 | х                     | 4      | х                | ОТР  | х      | 4    | Х             | 3    | X         | 13   |
| BUCK4 | 3.0V                  | 1      | ОТР              | ОТР  | 3.0V   | 1    | 3. 3V         | 4    | 3. 3V     | 14   |
| LDO1  | 3.3V                  | x      | 3.3V             | x    | 3.3V   | x    | 3.3V          | X    | 1. 8V     | 11   |
| LDO2  | 3. 0V                 | Х      | 3V               | Х    | 3.0V   | х    | 3.0V          | х    | X         | X    |

|         |       |   |      |     |      |   |       | _, | ····  |    |
|---------|-------|---|------|-----|------|---|-------|----|-------|----|
| LDO3    | 1.1V  | 1 | ОТР  | ОТР | 1.1V | 1 | 1.1V  | х  | 1.8V  | 15 |
| LDO4    | 2.5V  | 2 | ОТР  | ОТР | 2.5V | 2 | 2.5V  | x  | 1.8V  | 1  |
| LDO5    | 3V    | 1 | ОТР  | ОТР | 3.0V | 2 | 1.8V  | 4  | 1. 8V | 11 |
| LDO6    | 1.2V  | x | 1.2V | х   | 1.1V | x | 1.1V  | x  | X     | X  |
| LDO7    | 1.8V  | 2 | ОТР  | ОТР | 1.8V | 2 | 1.8V  | 3  | 1. 1V | 15 |
| LDO8    | 1.8V  | x | 1.8V | x   | 1.8V | x | 1.8V  | x  | 3. 0V | 14 |
| LDO9    | 3. 0V | 4 | 3.0V | 5   | 3.0V | 4 | 3. 3V | 10 | 1. 8V | 15 |
| SWITCH  | х     | x | х    | x   | x    | x | х     | 10 | x     | х  |
| OTG     | 5V    | х | 5V   | х   | 5V   | х | 5V    | x  | 5V    | х  |
| HDMI_5V | 5V    | х | 5V   | х   | 5V   | х | 5V    | x  | 5V    | х  |

# 2. 配置

# 2.1 驱动和 menuconfig

## 3.10 内核配置

RK818 驱动文件:

drivers/mfd/rk818.c
drivers/mfd/rk818-irq.c
drivers/rtc/rtc-rk818.c
drivers/power/rk818-battery.c

## RK818 dts文件可参考:

arch/arm/boot/dts/rk818.dtsi
arch/arm64/boot/dts/rk3368-p9\_818.dts

menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK818
CONFIG_BATTERY_RK818
```

### 4.4 内核配置

RK818 驱动文件:

```
drivers/mfd/rk808.c
drivers/rtc-rk808.c
drivers/regulator/rk808-regulator.c
drivers/clk/clk-rk808.c
drivers/power/rk818_charger.c
drivers/power/rk818_battery.c
```

### menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808

CONFIG_RTC_RK808

CONFIG_REGULATOR_RK808

CONFIG_BATTERY_RK818

CONFIG_CHARGER_RK818

CONFIG_COMMON_CLK_RK808
```

### 4.19 内核配置

RK818 驱动文件:

```
drivers/mfd/rk808.c
drivers/rtc/rtc-rk808.c
drivers/regulator/rk808-regulator.c // 跟4.4内核不同
drivers/clk/clk-rk808.c
drivers/power/supply/rk818_battery.c
drivers/power/supply/rk818_charger.c
```

### menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808

CONFIG_RTC_RK808

CONFIG_REGULATOR_RK808

CONFIG_BATTERY_RK818

CONFIG_CHARGER_RK818

CONFIG_COMMON_CLK_RK808
```

## 2.2 DTS 配置

## 3.10 内核 DTS 配置

DTS 的配置包括: I2C 挂载、主体、regulator、rtc、poweroff 等部分。

```
&i2c1 {
```

```
rk818: rk818@1c {
        reg = <0x1c>;
        status = "okay";
    };
};
/include/ "../../arm/boot/dts/rk818.dtsi"
&rk818 {
    gpios =<&gpio0 GPIO_A1 GPIO_ACTIVE_HIGH>,<&gpio0 GPIO_A0 GPIO_ACTIVE_LOW>;
    rk818,system-power-controller;
    pinctrl-names = "default";
    pinctrl-0 = <&gpio0_c1>;
    regulators {
        rk818_dcdc1_reg: regulator@0{
            regulator-name= "vdd_arm";/*vcc arm*/
            regulator-min-microvolt = <700000>;/*<725000>;*/
            regulator-max-microvolt = <1500000>;
            regulator-initial-mode = <0x2>;
            regulator-initial-state = <3>;
            regulator-state-mem {
                regulator-state-mode = <0x2>;
                regulator-state-disabled;
                regulator-state-uv =<900000>;
            };
        };
        rk818_dcdc2_reg: regulator@1 {
            regulator-name= "vdd_logic";/*vcc gpu*/
            regulator-min-microvolt = <700000>;
            regulator-max-microvolt = <1200000>;
            regulator-initial-mode = <0x2>;
            regulator-initial-state = <3>;
            regulator-state-mem {
                regulator-state-mode = <0x2>;
                regulator-state-enabled;
                regulator-state-uv = <1200000>;
            };
        };
        rk818_dcdc3_reg: regulator@2 {
                    . . . . . . . . . . . . .
        };
    };
};
```

1. I2C 挂载

整个完整的 rk818 节点挂在对应的 i2c 节点下面,并且配置 status = "okay";

- 2. 主体部分
- 不可修改部分

可修改部分

gpios:指定 pmic\_int(第一个)和 pmic\_sleep(第二个)引脚;

- 3. regulator 部分
- regulator-name: 电源名字,建议和硬件图上保持一致,使用 regulator\_get 接口时需要匹配这个名字;
- regulator-min-microvolt:运行时可调节的最小电压;
- regulator-max-microvolt:运行时可调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 工作模式,一般配置为 1。 1: force pwm, 2: auto pwm/pfm;
- regulator-state-mode: 休眠时 DCDC 工作模式,一般配置为 2。1: force pwm,2: auto pwm/pfm;
- regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-boot-on:存在这个属性时,在注册 regulator 的时候就会使能这路电源;
- regulator-always-on:存在这个属性时,运行时不允许关闭这路电源且会在注册的时候使能这路电源;
- regulator-state-enabled: 休眠时保持上电状态,想要关闭该路电源,则改成"regulator-state-disabled";
- regulator-state-uv:休眠不断电情况下的待机电压。

### 说明:

如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等,则在注册这个 regulator 的时候系统框架默认会把这个电压设置下去并使能这路电源,不需要使用者干预。

如果 regulator-boot-on 或者 regulator-always-on 存在,则系统框架在注册这路 regulator 的时候默认会进行 enable,此时的这路 regulator 的电压有 2 种情况:如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压相等,则系统框架会把这路电压设置为当前这个电压值;如果 regulator-min-microvolt 和 regulator-max-microvolt 的电压不相等,则此时的电压是PMIC 的本身的硬件默认上电电压。

#### 4. rtc 部分

如果不想使能 RTC 的功能(如 box 产品上),则需要像上面那样增加节点,显式指明为 status = "disabled"。如果需要使能的的话则可以把整个 RTC 节点去掉或者设置状态为 status = "okay"即可。

5. poweroff 部分

因为 RK808 驱动自动拦截关机命令,执行写I2C关闭PMIC输出。

rk818\_shutdown是注册syscore shutdown,用于一些准备工作,如关闭RTC中断等特殊操作。

```
static void rk818_shutdown(void)
{
   int ret;
   struct rk818 *rk818 = g_rk818;

   pr_info("%s\n", __func__);
   ret = rk818_set_bits(rk818, RK818_INT_STS_MSK_REG1,(0x3<<5),(0x3<<5));
//close rtc int when power off</pre>
```

```
ret = rk818_clear_bits(rk818, RK818_RTC_INT_REG,(0x3<<2)); //close rtc int
when power off
   /*disable otg_en*/
   ret = rk818_clear_bits(rk818, RK818_DCDC_EN_REG, (0x1<<7));

   mutex_lock(&rk818->io_lock);
   mdelay(100);
}

static struct syscore_ops rk818_syscore_ops = {
    .shutdown = rk818_shutdown,
};
```

rk818\_device\_shutdown是真正写I2C关闭PMIC输出。

```
void rk818_device_shutdown(void)
   int ret, i;
    u8 reg = 0;
    struct rk818 *rk818 = g_rk818;
    for (i = 0; i < 10; i++) {
        pr_info("%s\n", __func__);
        ret = rk818_i2c_read(rk818, RK818_DEVCTRL_REG, 1, &reg);
        if (ret < 0)
            continue;
        ret = rk818_i2c_write(rk818, RK818_DEVCTRL_REG, 1,
                     (reg \mid (0x1 << 0)));
        if (ret < 0) {
            pr_err("rk818 power off error!\n");
            continue;
        }
    }
    while(1) wfi();
EXPORT_SYMBOL_GPL(rk818_device_shutdown);
```

## 4.4 内核 DTS 配置

DTS 的配置包括:i2c 挂载、主体、rtc、clk、regulator、 charger、 battery 等部分。

```
&i2c1 {
    status = "okay";
    rk818: pmic@1c {
        compatible = "rockchip,rk818";
        reg = <0x1c>;
        status = "okay";

        clock-output-names = "rk818-clkout1", "wifibt_32kin";
        interrupt-parent = <&gpio0>;
        interrupts = <1 IRQ_TYPE_LEVEL_LOW>;
        pinctrl-names = "default";
        pinctrl-0 = <&pmic_int_l>;
        rockchip,system-power-controller;
```

```
wakeup-source;
        #clock-cells = <1>;
        vcc1-supply = <&vcc_sys>;
        vcc2-supply = <&vcc_sys>;
        vcc3-supply = <&vcc_sys>;
        vcc4-supply = <&vcc_sys>;
        vcc6-supply = <&vcc_sys>;
        vcc7-supply = <&vcc_sys>;
        vcc8-supply = <&vcc_sys>;
        vcc9-supply = <&vcc_io>;
        regulators {
            vdd_logic: DCDC_REG1 {
                regulator-name = "vdd_logic";
                regulator-always-on;
                regulator-boot-on;
                regulator-min-microvolt = <750000>;
                regulator-max-microvolt = <1450000>;
                regulator-ramp-delay = <6001>;
                regulator-state-mem {
                    regulator-on-in-suspend;
                    regulator-suspend-microvolt = <1000000>;
                };
            };
            vdd_gpu: DCDC_REG2 {
                regulator-name = "vdd_gpu";
                regulator-always-on;
                regulator-boot-on;
                regulator-min-microvolt = <800000>;
                regulator-max-microvolt = <1250000>;
                regulator-ramp-delay = <6001>;
                regulator-state-mem {
                    regulator-on-in-suspend;
                    regulator-suspend-microvolt = <1000000>;
                };
            };
            vcc_ddr: RK818_DCDC3@2 {
            };
        };
    };
};
```

1. i2c 挂载

整个完整的 rk818 节点挂在对应的 i2c 节点下面,并且配置 status = "okay";

- 2. 主体部分
- 不可修改:

```
compatible = "rockchip,rk818";
reg = <0x1c>;
rockchip,system-power-controller;
wakeup-source;
#clock-cells = <1>;
```

• 可修改(按照 pinctrl 规则)

interrupt-parent: pmic\_int 隶属于哪个 gpio;

interrupts: pmic\_int 在 interrupt-parent 的 gpio 上的引脚索引编号和极性;

pinctrl-names:不修改,固定为 "default";

pinctrl-0: 引用 pinctrl 里定义好的 pmic\_int 引脚;

3. rtc

如果 menuconfig 选中了这个模块,但是实际又不需要使能这几个驱动,那么可以在 dts 里增加 rtc节点,并且显式指明状态为 status = "disabled",这样就不会使能驱动,但是开机信息会有错误 log 报出,可以忽略;如果要使能驱动,则可以去掉相应的节点,或者设置状态为 status = "okay"。

### 4. regulator

- regulator-compatible:驱动注册时需要匹配的名字,不能改动,否则会加载失败;
- regulator-name: 电源的名字,建议和硬件图上保持一致,使用 regulator\_get 接口时需要匹配 这个名字;
- regulator-init-microvolt: u-boot阶段的初始化电压,kernel阶段无效;
- regulator-min-microvolt:运行时可以调节的最小电压;
- regulator-max-microvolt:运行时可以调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 的工作模式,一般配置为 1。 1: force pwm, 2: auto pwm/pfm;
- regulator-mode: 休眠时 DCDC 的工作模式,一般配置为 2。1: force pwm,2: auto pwm/pfm;
- regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-boot-on: 存在这个属性时,在注册 regulator 的时候就会使能这路电源;
- regulator-always-on:存在这个属性时,表示运行时不允许关闭这路电源且会在注册的时候使能这路电源;
- regulator-ramp-delay: DCDC 的电压上升时间,固定配置为 12500;
- regulator-on-in-suspend: 休眠时保持上电状态,想要关闭该路电源,则改成"regulator-off-in-suspend";
- regulator-suspend-microvolt: 休眠不断电情况下的待机电压。
- 5. poweroff 部分

4.4上使用pm\_power\_off\_prepare,实现PMIC关机前的准备工作,如关闭RTC中断,配置一些特殊寄存器等。

注册syscore shutdown, 真正用于PMIC关机。

6. clk 部分

如果某个节个需要引用 RK808 的 clk 进行使用,引用格式如下:

```
clocks = <&rk818 1>;
 第一个参数: &rk818 固定,不可改动;
 第二个参数: 引用 rk818 的哪个 clk, 只能是 0 或者 1, 其中 0: rk818-clkout1, 1: rk818-
clkout2;
4.19 内核 DTS 配置
请参考4.4内核DTS配置。差异点:4.19内核的DTS配置不再需要gpio子节点,但其他模块依然使用
gpios = <&rk818 0 GPIO_ACTIVE_LOW>; 的方式引用和使用rk818的pin脚。
2.3 函数接口
如下几个接口基本可以满足日常使用,包括 regulator 开、关、电压设置、电压获取等:
  1. 获取 regulator:
    struct regulator *regulator_get(struct device *dev, const char *id)
   dev 默认填写 NULL 即可,id 对应 dts 里的 regulator-name 属性。
  2. 释放 regulator
    void regulator_put(struct regulator *regulator)
  3. 打开 regulator
    int regulator_enable(struct regulator *regulator)
  4. 关闭 regulator
    int regulator_disable(struct regulator *regulator)
  5. 获取 regulator 电压
 int regulator_get_voltage(struct regulator *regulator)
  6. 设置 regulator 电压
 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
 传入的参数时保证 min_uV = max_uV,由调用者保证。
```

7. 范例

说明: 4.4或者4.19内核还提供了 devm\_ 开头的regulator接口帮开发者管理要申请的资源。

# 3. Debug

# 3.1 3.10内核

因为 PMIC 涉及的驱动在使用逻辑上都不复杂,重点都体现在最后的寄存器设置上。所以目前常用的 debug 方式就是直接查看 rk818 的寄存器,通过如下节点:

/sys/rk818/rk818\_test

读寄存器:

echo r [addr] > /sys/rk818/rk818\_test

写寄存器:

echo w [addr] [value] > /sys/rk818/rk818\_test

# 3.2 4.4内核

命令格式同 3.10 内核一样,只是节点路径不同,4.4 内核上的 debug 节点路径是:

/sys/rk8xx/rk8xx\_dbg

# 3.3 4.19内核

请参考4.4内核命令。