Projekt: Analiza Danych w ubezpieczeniach

Aleksander Mackiewicz-Kubiak - 273926

Cel Projektu 1

Celem projektu było wyznaczenie rezerwy składek netto dla podanego przykładu.

2 Użyte wzory i oznaczenia

Wzór na rezerwe składki netto: ${}_kV_{x:\overline{n}|}=\mathrm{K}*A_{x+k:\overline{n-k}|}$ - $P_{x:\overline{n}|}*\ddot{a}_{x+k:\overline{n-k}|}$

Gdzie: x - wiek osoby ubezpieczonej

n - ilość lat trwania ubezpieczenia

k - rok ubezpieczenia

K - kwota ubezpieczenia

 $v=\frac{1}{1+i}$ - czynnik dyskontujacy z oprocentowaniem o wartości i

 $\ddot{a}_{x:\overline{n}|}$ - wartość bieżaca świadczenia na życie i dożycie płatnego z góry

$$\ddot{a}_{x:\overline{n}|} = \sum_{k=0}^{n-1} v^k *_k p_x = \sum_{k=0}^{n-1} v^k *_{\ell_x}^{\ell_{x+k}}$$

 $\ddot{a}_{x:\overline{n}|} = \sum_{k=0}^{n-1} v^k *_k p_x = \sum_{k=0}^{n-1} v^k * \frac{\ell_{x+k}}{\ell_x}$ $A_{x:\overline{n}|}$ - wartość składki netto dyskretnego świadczenia na życie i dożycie

$$A_{x:\overline{n}|} = v^n *_n p_x + \sum_{k=0}^{n-1} v^{k-1} *_k p_x *_q q_{x+k} =$$

$$= v^n * \frac{\ell_{x+n}}{\ell_x} + \sum_{k=0}^{n-1} v^{k-1} * \frac{\ell_{x+k}}{\ell_x} * \frac{\ell_{x+k}-\ell_{x+k+1}}{\ell_{x+k}}$$

$$P_{x:\overline{n}|} \text{- stała oznaczajaca intensywność płacenia składek}$$

$$P_{x:\overline{n}|} = \frac{A_{x:\overline{n}|}}{\ddot{a}_{x:\overline{n}|}}$$

3 Wartości w przykładzie

W naszym przykładzie mamy wyliczyć rezerwe składek netto według tablicy życia kobiet z 2018r. (dane ze strony GUS) dla dyskretnego ubezpieczenia 30 latki na życie i dożycie na 20 lat na kwote 10000 zł przy oprocentowaniu 10%.

Czyli podstawiajac pod nasze zmienne obliczyć dla zmiennych x=30, n=20, i=0.1 i K=10000 wartości $_kV_{30:\overline{20}|}$ przy odpowiednich ℓ_x odczytanych z tabeli życia.

4 Obliczenia i wyniki

Do obliczeń wykorzystam pythona, gdzie wczytam wartości ℓ_x z tablic oraz napisze funkcje do wyliczania wartości $A_{x+k:\overline{n-k}|}$ i $\ddot{a}_{x+k:\overline{n-k}|}$. Nastepnie wyznacze stała $P_{x:\overline{n}|}$ oraz kolejne wartości ${}_kV_{x:\overline{n}|}$ by nastepnie wstawić wyniki do tabeli. Funkcje wygladaja nastepujaco:

```
def A(x,n,i,K):
    suma=0
    i=i/100
    v=1/(1+i)
    for k in range(n):
        kpx=df.lx[x+k]/df.lx[x]
        qxk=(df.lx[x+k]-df.lx[x+k+1])/df.lx[x+k]
        suma=suma+((v**(k-1))*kpx*qxk)
    suma=suma+(v**n*df.lx[x+n]/df.lx[x])
    return suma*K
def a(x,n,i):
    suma=0
    i=i/100
    v=1/(1+i)
    for k in range(n):
        kpx=df.lx[x+k]/df.lx[x]
        suma=suma+(v**k)*kpx
    return suma
```

Nasza stała wartość $P_{30:\overline{20}|}$ wynosi 163.95. Natomiast tabela prezentuje sie ten sposób:

	Α	a	V
0	1529.7	9.33	0.0
1	1679.2	9.17	175.73
2	1843.6	8.99	369.64
3	2024.09	8.79	582.93
4	2222.31	8.57	817.22
5	2440.15	8.33	1074.4
6	2679.4	8.07	1356.28
7	2942.25	7.78	1666.68
8	3231.0	7.46	2007.9
9	3548.21	7.12	2380.85
10	3896.96	6.73	2793.54
11	4280.24	6.31	3245.68
12	4701.65	5.85	3742.51
13	5164.84	5.34	4289.32
14	5674.08	4.78	4890.38
15	6234.08	4.16	5552.03
16	6850.0	3.48	6279.44
17	7527.67	2.73	7080.07
18	8273.63	1.91	7960.48
19	9095.08	1.0	8931.13

Oznaczenia: A = $A_{30+k:\overline{20-k}|}$, a = $\ddot{a}_{30+k:\overline{20-k}|}$ i V = $_kV_{30:\overline{20}|}$.