INDEX

No	Experiment	Page
01	Explain and Explanation of Huffman Coding.	
02	Explain and Implementation of Convolution Coding.	
03	Explain and Implementation of Lempel-Ziv Code.	
04	Explain and Implementation of Hamming Code.	
05	A binary symmetric channel has the following noise matrix with probability, $P(Y/X) = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$ Now Find the Channel Capacity C.	
06	Check optimality of Huffman code.	
07	Numerical based on Conditional Entropy and Joint Entropy	
08	Explain entropy rate of a random walk on a weighted graph,	