Technical Appendix

Option 1 – Mozambique Poverty Profile Aneliese Palmer, Ori Pleban, Nahea Rashid, Anushka Siddiqui, Hannah Walker

Hypothesis Tests: The How

In order to get a clearer answer to the question "Who Are the Poor in Mozambique?," we applied rigorous hypothesis tests to the 2014-2015 Mozambique Household Budget Survey (Inquérito Sobre Orçamento Familiar). All hypothesis tests used a standard significance level (α) of 0.05.

A large majority of the variables provided could be ranked on a binary "Yes/No" scale. With these variables, we tested the difference in proportions between the poor and not poor. For some non-binary variables, such as "Sanitation Type," we judged a "Good" or "Bad" Sanitation facility with a relative, value-based judgement based in preliminary research. We utilized Household-level data for household based qualifiers. For example, all members with the same household ID have the same "Flooring Type". For individual variables, such as Disability and Age, we used individual data.

Hypothesis: Difference in Proportions; Rural/Urban Poor

Geography	Number of Poor Households	Proportion of Poor Households in Mozambique	SE	T-Score	P- Value
Rural	696	0.62254	0.0142	9.169	0.000
Urban	422	0.37746			
Total	1118	1			

Hypothesis: Chi-Squared Test for Observed Consump. Per Quintile

Consumption Quintile	Total Households	Observed Consumption by Quintile	Expected Consumption by Quintile ¹	Chi- Squared
1 st Quintile (Lowest)	427	26,689.21	139,158.00	90,897.99
2 nd Quintile	455	46,549.88	151,542.00	72,741.00
3 rd Quintile	409	60,749.83	133,292.00	39,480.00
4 th Quintile	447	93,705.48	145,676.00	18,540.00
5 th Quintile	778	595,519.30	253,547.00	461,235.00
Total	2526	823213.70	823213.70	682,894

Chi Square: 682,894 Degrees of Freedom: 4 P-Value: p < 0.01

¹ Assuming equal consumption across each household. This value is weighted appropriately for the count of households in each quintile.

Hypothesis: Chi-Squared Test for Type of Education in Poor Households

	Observed		
	Counts of Poor Expected		
Education Category	Heads of	Counts in	Chi-
Education Category	Household	Education	Squared
	In Education	Category ²	
	Category		
No Education	411	299.810	41.237
LowerPrimary	445	387.495	8.534
Upper Primary	121	154.998	7.457
Lower Secondary	73	125.770	22.141
Upper Secondary	30	65.985	19.624
Adult Education	22	19.043	0.459
University /Technical School	10	58.899	40.597
Total	1112	1112	140.049

Chi Square: 140.049 P-Value: p < 0.0001 Degrees of freedom: 6

² Standardized to the distribution of overall level of education in the sample.

Hypothesis: Gini Coefficient of Inequality, Using Consumption Quintiles³

Gini Coefficient =
$$1 - \sum_{l=1}^{all} (PP + 2HC) * CP$$

PP ⁴	Observed Consumption Total Households
HC ⁵	1 — Cumulative PP
CP ⁶	Obsvered Consumption by Quintile Total Consumption

Consumption Quintile	Total Households	Observed Consumption by Quintile	Proportion of Population (PP)	Proportion of Total Consumption by Quintile (CP)	Proportion of Population with Higher Consumption (HC)	Summation Score ⁷
1 st Quintile (Lowest)	427	26,689.21	0.17	0.03	0.83	0.06
2 nd Quintile	455	46,549.88	0.18	0.06	0.65	0.08
3 rd Quintile	409	60,749.83	0.16	0.07	0.49	0.08
4 th Quintile	447	93,705.48	0.18	0.11	0.31	0.09
5 th Quintile (Highest)	778	595,519.30	0.31	0.72	0	0.22
Total	2526	823213.70	1	1	1	0.54

Gini Coefficient = 1 - 0.54Gini Coefficient = 0.46

³ The equation for calculating the Gini coefficient comes from a public presentation from Notre Dame economics professor, Wyatt Brooks. Access at: https://www3.nd.edu/~wbrooks/GiniNotes.pdf

⁴ Proportion of Population by Quintile

⁵ Proportion of Population with Higher Consumption

⁶ Proportion of Total Consumption by Quintile

 $^{^{7}\}Sigma^{all}(PP+2HC)*CP$

Subject	Household or Individual	Variable Considered	Type of Hypothesis Test	Null Hypothesis	Standard Error	Z/T- Score	P-Value	Conclusion
Access to Transportation ⁸	Individual	motorcycles, car_used, car_new, bicycle, time_facitlity_c	Difference in Proportions	No difference in proportions between Poor (P) and Not Poor (NP)	0.079	3.053	0.0022	Reject Ho
Education - Adult Literacy ⁹	Individual - Ages <16	Can read and write	Difference in Proportion	P and NP adults are equally likely to have the ability to read and write	0.01864	24.99	<0.0001	Reject Ho
Internet Access ¹⁰	Household	used_interne~12	Difference in Proportion	P and NP people are equally likely to lack functional access to the internet	0.006	43.25	<0.0001	Reject Ho
Location (Urban/Rural)	Household	location	Difference in Proportion	Rural and Urban HH are equally likely to be poor.	0.0191	13.122	<0.0001	Reject Ho
Number of Children (>14)	Household	number_of_children_under_14	Difference in Means	P and NP HH have the same average number of children >age 14	0.073	17.057	<0.0001	Reject Ho
Quality of Residence (Roof ¹¹)	Household	roof_type	Difference in Proportion	P and NP HH are equally likely to have a good roof.	0.112	-3.702	0.0002	Reject Ho
Sanitation ¹²	Household	sanitation_type	Difference in Proportion	P and NP people are equally likely to have no access to sanitation/ poor	0.0075	33.54	<0.0001	Reject Ho

⁸ "Access" defined by access to used or new car, a bicycle or being less than 60 minutes away from a bus stop

⁹ Classifying adults as older than 16; Children as younger than 16.

¹⁰ "Access" as functional access for at least one household member

¹¹ Good roof is NOT is grass/stem/wood

¹² "Sanitation" as any sanitation system. Compared with No Sanitation Facility