LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A1 2013-04-08 kl 8-13

LÖSNINGSFÖRSLAG

- **1. a)** Då $\sin(\frac{3\pi}{4}) = \frac{1}{\sqrt{2}}$ och $\cos(\frac{3\pi}{4}) = -\frac{1}{\sqrt{2}}$ ger hjälpvinkelmetoden att ekvationen kan skrivas som $\sin(x+\frac{3\pi}{4})=1$. För lösningarna till vår ekvation gäller således $x+\frac{3\pi}{4}=\frac{\pi}{2}+2\pi n$, $n\in\mathbb{Z}$, dvs. $x=-\frac{\pi}{4}+2\pi n$, $n\in\mathbb{Z}$. **Svar:** $x=-\frac{\pi}{4}+2\pi n$, $x=-\frac{\pi$
 - **b)** Sätt $t=2^x$ och betrakta ekvationen $t=\sqrt{t+12}$. Om t är en lösning, då gäller även $t^2=t+12$, dvs. $t^2-t-12=0$. pq-formeln ger $t=-\frac{-1}{2}\pm\sqrt{(\frac{-1}{2})^2-(-12)}=\frac{1}{2}\pm\sqrt{\frac{1}{4}+12}=\frac{1}{2}\pm\sqrt{\frac{49}{4}}=\frac{1}{2}\pm\frac{7}{2}$. Potentiella lösningar är alltså $t_1=4$ och $t_2=-3$. Då $2^x=t$ ser vi att t_2 ej är en lösning, ty -3<0. Däremot ger t_1 en x-lösning: $2^x=4 \Leftrightarrow x=2$. **Svar:** x=2
 - c) $x^5 > x^3 \Leftrightarrow x^5 x^3 > 0 \Leftrightarrow x^3(x^2 1) > 0 \Leftrightarrow x^3(x + 1)(x 1) > 0$. Vi gör en teckentabell:

x		-1		0		1	
x^3	-	-	-	0	+	+	+
x+1	-	0	+	+	+	+	+
$\overline{x-1}$	-	-	-	-	-	0	+
$x^{3}(x-1)(x+1)$	-	0	+	0	-	0	+

Svar: -1 < x < 0 eller x > 1.

- **2.** a) $\sum_{k=3}^{10} \frac{4}{9^k} = 4 \cdot \sum_{k=3}^{10} \frac{1}{9^k} = \frac{4}{9^3} \cdot \sum_{k=3}^{10} \frac{1}{9^{k-3}} = \frac{4}{9^3} \cdot \sum_{k=0}^{7} \frac{1}{9^k} = \frac{4}{9^3} \cdot \frac{1 (\frac{1}{9})^8}{1 \frac{1}{9}} = \frac{4}{9^3} \cdot \frac{1 (\frac{1}{9})^8}{\frac{8}{9}} = \frac{1}{2 \cdot 9^2} \cdot (1 (\frac{1}{9})^8).$ **Svar:** $\frac{1}{2 \cdot 9^2} \cdot (1 (\frac{1}{9})^8).$
 - **b)** $(3x^2 1/x)^{13} = (3x^2 + (-1/x))^{13} = \sum_{k=0}^{13} {13 \choose k} (3x^2)^k (-1/x)^{13-k} = \sum_{k=0}^{13} {13 \choose k} 3^k x^{2k} (-1)^{13-k} x^{k-13} = \sum_{k=0}^{13} {13 \choose k} 3^k x^{3k-13} (-1)^{13-k}$ $x^5 \text{-termen ges av } 3k 13 = 5 \iff k = 6, \text{ dvs.: } {13 \choose 6} 3^6 x^{3\cdot6-13} (-1)^{13-6} = -\frac{13\cdot12\cdot11\cdot10\cdot9\cdot8}{6\cdot5\cdot4\cdot3\cdot2\cdot1} \cdot 3^6 \cdot x^5 = -\frac{13\cdot12\cdot11\cdot8}{4\cdot2\cdot1} \cdot 3^6 \cdot x^5 = -13\cdot12\cdot11\cdot3^6 \cdot x^5 = -13\cdot4\cdot11\cdot3^7 \cdot x^5 = -572\cdot3^7 \cdot x^5$ $\mathbf{Svar: } -572\cdot3^7 \cdot x^5$
- 3. a) Se läroboken.
 - **b)** Enligt uppgiftstexten gäller $0 = p(1) = 1^4 + a \cdot 1^3 + 5 \cdot 1^2 5 \cdot 1 + b$ som är ekvivalent med 0 = a+b+1, samt $0 = p(-2) = (-2)^4 + a \cdot (-2)^3 + 5 \cdot (-2)^2 5 \cdot (-2) + b$ som är ekvivalent med 0 = -8a+b+46. Vi löser ekvationssystemet och får a = 5 samt b = -6. Enligt faktorsatsen är x-1 och x+2 faktorer i p(x). Polynomdivision av p(x) med $(x-1)(x+2) = x^2 + x 2$ går jämnt ut och ger $x^2 + 4x + 3$, dvs. $p(x) = (x-1)(x+2)(x^2 + 4x + 3)$. Vi ser att x = -1 är ett nollställe till $x^2 + 4x + 3$. Polynomdivision med x+1 ger x+3. Därmed har vi visat att p(x) = (x-1)(x+2)(x+1)(x+3).

Svar: p(x) = (x-1)(x+2)(x+1)(x+3)

- 4. a) Se läroboken.
 - b) Funktionen f kan ej vara inverterbar, ty f(-1)=f(1). Däremot är funktionen g inverterbar; vi ser att $g=h_1\circ h_2$ är en sammansatt funktion, där $h_2(x)=x^2$ är en injektiv funktion som avbildar intervallet [0,1] på [0,1]. Dessutom är $h_1(y)=\arcsin(y)$ injektiv och avbildar intervallet [0,1] på $[0,\frac{\pi}{2}]$. Varje $x\in D_g$ paras således ihop med ett unikt $s\in V_g=[0,\frac{\pi}{2}]$, som satisfierar: $s=\arcsin(x^2)\Leftrightarrow\sin(s)=x^2\Leftrightarrow x=\sqrt{\sin(s)}$. Vi ser nu att $g^{-1}(s)=\sqrt{\sin(s)}$, där $D_{g^{-1}}=[0,\frac{\pi}{2}]$. Svar: $g^{-1}(s)=\sqrt{\sin(s)}$, där $g^{-1}=[0,\frac{\pi}{2}]$.
- **5. a)** En funktion kallas udda om f(x) = -f(-x) gäller för alla $x \in D_f$. Om vi antar att f är udda och definierad på intervallet [-1,1], då gäller i synnerhet att $f(0) = -f(0) \Leftrightarrow 2 \cdot f(0) = 0 \Leftrightarrow f(0) = 0$.
 - **b)** Vi noterar att A är ekvivalent med $\sin(x) = \sqrt{\sin^2(x)}$, dvs. $\sin(x) = |\sin(x)|$, som är ekvivalent med att $\sin(x)$ är icke-negativ, dvs. $x \in [0, \pi]$. Vi konstaterar alltså att $A \Leftrightarrow B$. B (och A) medför ej C, ty $0 \in [0, \pi]$ men $\sin(0) \neq 1$. Däremot gäller $C \Rightarrow B$, ty $\sin(x) = 1$ ger $x = \frac{\pi}{2} \in [0, \pi]$.

Svar: A \ddot{a} r ekvivalent med B. C implicerar B (och A). B (eller A) implicerar ej C.

6. a) Låt x beteckna avståndet från femhörnings centrum till ett hörn. Betrakta en triangeln med sidorna x, x och 1. I denna triangeln är den trubbiga vinkeln lika med $2 \cdot \frac{360^{\circ}}{5} = 144^{\circ}$. Cosinussatsen ger $1^2 = x^2 + x^2 - 2x^2 \cdot \cos(144^{\circ})$, dvs. $x^2 = \frac{1}{2 \cdot (1 - \cos(144^{\circ}))} = \frac{1}{2 \cdot (1 - (1 - 2 \cdot \sin^2(72)))} = \frac{1}{4 \cdot \sin^2(72)}$. Femhörningens area ges, enligt areasatsen, av $T = 5 \cdot \frac{x^2 \cdot \sin(\frac{360^{\circ}}{5})}{2} = 5 \cdot \frac{x^2 \cdot \sin(72^{\circ})}{2} = 5 \cdot \frac{x^2 \cdot \sin(72^{\circ})}{2} = 5 \cdot \frac{\sin(72^{\circ})}{2} \cdot \frac{1}{4 \cdot \sin^2(72^{\circ})} = \frac{5}{8} \cdot \frac{1}{\sin(72^{\circ})}$ areaenheter.

b) Observera att den inskrivna cirkelns centrum sammanfaller med femhörningens centrum. Cirkelns radie är $r = x \cdot \cos(36^\circ)$. Svaret ges av $\frac{\pi \cdot r^2}{T} = \frac{\pi \cdot x^2 \cdot \cos^2(36^\circ)}{5 \cdot \frac{x^2 \cdot \sin(72^\circ)}{2}} = \frac{\pi \cdot \cos^2(36^\circ)}{5 \cdot \frac{\sin(72^\circ)}{2}} = \frac{\pi \cdot \cos^2(36^\circ)}{5 \cdot \frac{\sin(236^\circ)}{2}} = \frac{\pi \cdot$

$$\frac{\pi \cdot \cos^2(36^\circ)}{5 \cdot \frac{2 \cdot \sin(36^\circ) \cdot \cos(36^\circ)}{2}} = \frac{\pi}{5} \cdot \frac{\cos(36^\circ)}{\sin(36^\circ)}.$$

Svar: Andelen är $\frac{\pi}{5} \cdot \frac{\cos(36^\circ)}{\sin(36^\circ)}$