Regresja liniowa

Do wykonania regresji liniowej wykorzystałem język R (Rstudio) oraz własną bazę danych. W projekcie postanowiłem przedstawić regresję liniową ceny paliwa, która miała swoje wzloty jak i upadki w czasach pandemii. Ceny paliw zostały pobrane jako średnie miesięczne ze strony autocentrum.pl, ceny dolara z archiwum giełdy zaś liczbę zarejestrowanych pojazdów pobrałem z archiwum CEPiK.

4	Α	В	С	D	Е	F
1	Data	Pb95	Import	LPG	Car	USD
2	01.01.2019	4,74	1,72	2,22	145532	3,76
3	01.02.2019	4,69	1,64	2,14	150682	3,8
4	01.03.2019	4,8	1,83	2,13	180977	3,8
5	01.04.2019	5,12	1,77	2,16	185272	3,81
6	01.05.2019	5,23	1,65	2,2	177250	3,84
7	01.06.2019	5,19	1,61	2,12	161535	3,77
8	01.07.2019	5,06	1,54	2,04	183705	3,79
9	01.08.2019	5,02	1,57	1,98	165607	3,9
10	01.09.2019	4,9	1,65	1,94	146196	3,95
11	01.10.2019	4,92	1,73	1,95	171689	3,89
12	01.11.2019	4,92	1,83	2,08	145629	3,88
13	01.12.2019	4,96	1,94	2,34	154115	3,84
14	01.01.2020	4,92	2,02	2,33	147655	3,83
15	01.02.2020	4,84	2,1	2,19	149826	3,92
16	01.03.2020	4,45	1,78	1,96	106009	4,02
17	01.04.2020	3,96	1,65	1,72	67159	4,18
18	01.05.2020	3,9	1,88	1,6	111529	4,15
19	01.06.2020	4,12	1,73	1,87	149599	3,94
20	01.07.2020	4,27	1,8	1,94	173569	3,88
21	01.08.2020	4,39	1,83	1,92	144337	3,72
22	01.09.2020	4,42	1,88	1,95	160049	3,79
23	01.10.2020	4,37	1,74	1,99	152448	3,86
24	01.11.2020	3,37	1,69	2,07	133626	3,8
25	01.12.2020	4,45	1,72	2,08	160577	3,68

Data – data określająca miesiąc pobrania danych Pb95 cena benzyny – zmienna objaśniana - zmienna objaśniająca **Import** import ropy do polski w (mln ton) **LPG** - cena LPG - zmienna objaśniająca zmienna objaśniająca Car liczba nowo zarejestrowanych samochodów – kurs dolara w zł - zmienna objaśniająca **USD**

Arkusz kalkulacyjny z bazą potrzebnych nam danych zapisałem w formacie .xlsx oraz umieściłem w folderze zawierającym projekt regresji liniowej.

Na początku należy zainstalować bibliotekę pozwalającą nam na wczytanie naszej bazy.

```
R 4.1.0 · C:/Users/sdyli/Desk
> library(readx1)
```

Następnie wczytujemy naszą bibliotekę zaznaczając lokalizację danych tylko na arkuszu 1 oraz wyświetlamy załadowane dane.

```
> sprzedaz <- read_excel("sprzedaz.xlsx", sheet = "Arkusz1")
> View(sprzedaz)
```

Sprawdzam poprawność załadowanych tabel czy poprawnie widzę nazwy kolumn w programie.

Sprawdzam współzależność danych od sibie:

```
> names(sprzedaz)
[1] "Data" "Pb95" "Import" "LPG" "Car" "USD"
> |
```



```
> cor(sprzedaz$Pb95,sprzedaz$Import)
[1] -0.05694634
> cor(sprzedaz$Pb95,sprzedaz$LPG)
[1] 0.5845759
> cor(sprzedaz$Pb95,sprzedaz$Car)
[1] 0.5997178
> cor(sprzedaz$Pb95,sprzedaz$USD)
[1] -0.3419371
```

Możemy zauważyć że największą współzależność naszej zmiennej objaśnianej PB95 ma zmienna Car. Wykres względem tych zmiennych:


```
> plot(sprzedaz$Pb95,sprzedaz$Car,main = "Wykres",xlab = "Cena PB95",ylab = "Liczba zarejestrowanych au
t")
```

Kolejnym krokiem naszej regresji liniowej jest wyznaczenie parametrów naszej linii jak i określenie wielkości błędu, w języku r możemy to bardzo prosto otrzymać:

```
> model_reg<-lm(sprzedaz$Pb95~sprzedaz$Car)</pre>
> summary(model_reg)
lm(formula = sprzedaz$Pb95 ~ sprzedaz$Car)
Residuals:
                  Median
              10
                                30
                                        мах
-1.0735 -0.2716
                  0.1146 0.2971
                                    0.4547
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.046e+00 4.559e-01
                                        6.681 1.02e-06 ***
sprzedaz$Car 1.046e-05 2.975e-06
                                        3.515 0.00195 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.3802 on 22 degrees of freedom
Multiple R-squared: 0.3597, Adjusted R-squared: (F-statistic: 12.36 on 1 and 22 DF, p-value: 0.001951
                                   Adjusted R-squared: 0.3306
```

Przy wyznaczaniu parametrów naszej regresji wkradł się błąd w zapisie dotyczącym wyświetlenie nam parametrów, niestety zjadłem jedną literę.

Opis parametrów:

- 1) Median Mediana
- 2) Estimate Odchylenie standardowe
- 3) Std. Error Oszacowanie błędu

- 4) t value sprawdza czy współczynnik jest różny od 0
- 5) Pr(>|t|) badanie istotności modelu jako całości
- 6) Residual standard error resztkowy błąd standardowy
- 7) Multiple R-squared współczynnik
- 8)Adjusted R-squared uwzględnienie liczby zmiennych w modelu
- 9)F-statistic parametr mówiący nam czy regresja ma sens

Obliczamy przedział ufności:

```
> confint(model_reg)
             2.100556e+00 3.991646e+00
sprzedaz$Car 4.287864e-06 1.662693e-05
```

Teraz rysujemy naszą regresję liniową:

- > model_reg<-lm(sprzedaz\$Car~sprzedaz\$Pb95)
 > abline(model_reg,col = "blue")

Wykres

Analiza tabeli odchyleń:

```
> anova(model_reg)
Analysis of Variance Table
Response: sprzedaz$Car
                     Sum Sq
                               Mean Sq F value
              Df
                                                 Pr(>F)
sprzedaz$Pb95
             1 5.8744e+09 5874414167
                                        12.357 0.001951 **
Residuals
              22 1.0459e+10
                            475398255
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```