Indian Institute of Space Science and Technology

Complex Analysis

TUTORIAL - III

- 1. Use the Cauchy-Riemann equations show that the function $f(z) = \exp \bar{z}$ is not analytic anywhere.
- 2. Show in two ways that the function $\exp(z^2)$ is entire. What is its derivative?
- 3. Let the function f(z) = u(x,y) + i v(x,y) be analytic in some domain D. State why the functions

$$U(x,y) = e^{u(x,y)} \cos v(x,y), \quad V(x,y) = e^{u(x,y)} \sin v(x,y)$$

are harmonic in D and why V(x,y) is, in fact, a harmonic conjugate of U(x,y).

- 4. Verify that when $n = 0, \pm 1, \pm 2, \cdots$,
 - (a) $\log e = 1 + 2n \pi i$;
 - (b) $\log i = \left(2n + \frac{1}{2}\right)\pi i;$
 - (c) $\log(-1 + \sqrt{3}i) = \ln 2 + 2\left(n + \frac{1}{3}\right)\pi i$.
- 5. Show that
 - (a) $Log(1+i)^2 = 2Log(1+i)$;
 - (b) $Log(-1+i)^2 \neq 2Log(-1+i)$.
- 6. Given that the branch $\log z = \ln r + i\theta(r > 0, \, \alpha < \theta < \alpha + 2\pi)$ of the logarithmic function is analytic at each point z in the stated domain, obtain its derivative by differentiating each side of the identity $\exp(\log z) = z$ and using the chain rule.
- 7. Suppose that the point z = x + iy lies in the horizontal strip $\alpha < y < \alpha + 2\pi$. Show that when the branch $\log z = \ln r + i\theta(r > 0, \alpha < \theta < \alpha + 2\pi)$ of the logarithmic function is used, $\log(e^z) = z$.
- 8. Use the Cauchy-Riemann equations show that neither $\sin \bar{z}$ nor $\cos \bar{z}$ is an analytic function of z anywhere.
- 9. Show that
 - (a) $\overline{\cos(iz)} = \cos(i\overline{z})$ for all z;
 - (b) $\overline{\sin(iz)} = \sin(i\overline{z})$ if and only if $z = n \pi i (n = 0, \pm 1, \pm 2, \cdots)$.
- 10. Show that
 - (a) $\sinh(z + \pi i) = -\sinh z;$
 - (b) $\cosh(z + \pi i) = -\cosh z;$
 - (c) $\tanh(z + \pi i) = \tanh z$.
- 11. Why is the function $\sinh(e^z)$ entire? Write its real part as a function of x and y, and state why that function must be harmonic everywhere.

1

- 12. f(z) = z 1 and C is the arc from z = 0 to z = 2 consisting of
 - (a) the semicircle $z = 1 + e^{i\theta} (\pi \le \theta \le 2\pi);$

- (b) the segment $0 \le x \le 2$ of the real axis.
- 13. f(z) is the branch

$$z^{-1+i} = \exp[(-1+i)\log z] \quad (|z| > 0, \ 0 < \arg z < 2\pi)$$

of the indicated power function, and C is the positively oriented unit circle |z|=1.

END