Programmazione I

A.A. 2002-03

Architettura dei Calcolatori

(Lezione V)

Componenti hardware e loro schema funzionale

Prof. Giovanni Gallo Dr. Gianluca Cincotti

Dipartimento di Matematica e Informatica Università di Catania

e-mail: { gallo, cincotti}@dmi.unict.it

Precedenti lezioni Dati in ingresso Operazioni sui dati Oggi G.Gallo, G.Cincotti Programmazione I (A.A. 2002-03) Elementi di Informatica, pag. 2

Molti i "modelli" operativi di computer

- Macchine di Turing;
- Valutatori funzionali;
- Sistemi di Post-Markov;

Nel corso di "Fondamenti di Informatica" (III semestre)

- Macchina di von Neumann o macchina RAM.

È il modello astratto più vicino alla struttura dei computer che usiamo tutti i giorni: conoscere tale modello ci aiuta a "crearci" un modello mentale adeguato per programmare in maniera "imperativa"

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 3

Eccolo qui!

Grafica non essenziale – omessa negli stampati per ridurre la size del file

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

La macchina computer

- ➤In generale, un computer:
 - esegue operazioni logiche e aritmetiche,
 - ha una memoria per conservare i dati.
- ➤ Un *programma* contiene la descrizione di tutte le operazioni da eseguire.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 5

Architettura dei computers

- ➤ In un computer possiamo distinguere tre unità funzionali:
 - Processore
 - fornisce la capacità di elaborazione delle informazioni,
 - Memoria (centrale e di massa),
 - Dispositivi di input/output,

che comunicano attraverso un canale detto BUS

- costituito da un insieme di linee elettriche digitali.
- Macchina di von Neumann.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Schema a blocchi di un elaboratore

Hardware vs. Software

- ➤ L'hardware denota la struttura fisica del computer, costituita di norma da componenti elettronici che svolgono specifiche funzioni nel trattamento dell'informazione.
- ➤ Il *software* denota l'insieme delle istruzioni che consentono all'hardware di svolgere i propri compiti (programmi).

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Il linguaggio del processore

- ➤ Ogni modello di microprocessore ha un proprio *linguaggio macchina* diverso da quello di altri microprocessori.
 - Il linguaggio macchina specifica tutte e sole le *istruzioni macchina* che possono essere eseguite dal microprocessore.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 9

Le istruzioni macchina

- ➤ Un'istruzione macchina costituisce un'operazione primitiva che il processore è in grado di svolgere.
 - È composta da:

- Codice operazione (indica cosa fare),

- Uno o due operandi (su cosa operare),

- Destinazione del risultato (dove memorizzarlo).

10011010 01010101

01110010

10010111

➤ Un *programma* è costituito da una sequenza ordinata di *istruzioni macchina* espresse in codice binario.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Processore

- ➤ Composto da blocchi con funzionalità diverse:
 - CPU (Central Processing Unit),
 - FPU (Floating Point Unit),
 - Cache,
 - · Interfacce varie.
- ➤ Se integrato su un unico chip prende il nome di microprocessore.

Cache
Interf CPU FPU
Cache

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 11

Central Processing Unit (CPU)

- ➤ Svolge tutte le operazioni di:
 - elaborazione numerica,
 - controllo e coordinamento di tutte le attività.
- > Si suddivide in:
 - Unità logico-aritmetica (ALU).
 - Unità di controllo (CU).
 - Registri.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Componenti della CPU

Arithmetic Logic Unit (ALU)

- ➤ Svolge tutti i calcoli *logici* ed *aritmetici* (complementazione, somma intera, confronto, etc).
 - Opera direttamente sui registri generali.
- ➤ E' costituita da circuiti elettronici in grado di eseguire la *somma* di due numeri binari contenuti in due registri oppure di eseguire il *confronto* tra due numeri.

Registri

- Memoria locale usata per memorizzare:
 - dati acquisiti dalla memoria centrale o dalla unità di input,
 - risultati delle operazioni eseguite dall' ALU.
- ➤ Numero limitato: tipicamente da 8 a 256.
- Unità di memoria estremamente veloci.
- ➤ Le dimensioni di un registro sono una caratteristica fondamentale del processore: 16, 32, 64 bit.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 15

Registri (cont.)

- ➤ I registri contengono dati ed informazioni che vengono immediatamente elaborate.
- Esistono due tipi di registri:
 - i registri speciali utilizzati dalla CU per scopi particolari,
 - i registri di uso generale (registri aritmetici).

Registri speciali

- ➤ II Program Counter (PC) contiene l'indirizzo di memoria che contiene la prossima istruzione da eseguire.
- L' Instruction Register (IR) contiene l'istruzione attualmente in esecuzione.
- ➤ Il registro di stato (PSW) contiene delle informazioni sullo stato di esecuzione del processore.
 - In particolare esso può segnalare eventuali errori che possono avvenire durante l'esecuzione di un programma.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 17

Control Unit (CU)

- ➤ E' la parte più importante del processore:
 - In base:
 - al programma in esecuzione ed
 - allo stato di tutte le unità,

decide l'operazione da eseguire ed emette gli ordini relativi.

• In pratica, esegue le istruzioni macchina.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

L'unità di controllo al lavoro ...

Grafica non essenziale – omessa negli stampati per ridurre la size del file

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 19

Floating Point Unit (FPU)

- ➤ In molti elaboratori si può avere una FPU specializzata in operazioni matematiche complesse (numeri reali).
- > Svolge tutte le operazioni che la ALU della CPU non è in grado di svolgere:
 - Somma/sottrazione reale,
 - Moltiplicazione intera/reale,
 - · Divisione,
 - Funzioni matematiche complesse.
- ➤ Nei calcolatori di generazioni precedenti era esterna alla CPU (Coprocessore matematico).

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Il clock

- ➤ Ogni elaboratore contiene un circuito di temporizzazione (*clock*) che genera un riferimento temporale comune per tutti gli elementi del sistema.
 - T = periodo di clock
 - f = frequenza di clock (= 1/T)

> Frequenze tipiche delle ultime generazioni:

f > 1000 MHz, $T < 10^{-9} \text{ secondi.}$

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 21

Tempistica delle istruzioni

- ➤ Un'istruzione macchina viene eseguita dal microprocessore svolgendo una sequenza di operazioni elementari.
 - Un *ciclo-macchina* è il tempo richiesto per svolgere un'*operazione elementare*.
 - È un multiplo del periodo del clock.
 - Il numero di operazioni elementari necessario a portare a compimento un'istruzione macchina è dell'ordine di 7-10, dipendentemente dal tipo di istruzione.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Velocità del microprocessore

- La velocità di elaborazione di un processore dipende dalla frequenza del clock.
 - I processori attuali hanno valori di frequenza di clock che varia tra gli 8 MHz ed i 1800 MHz.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 23

Memoria

- ➤ Viene utilizzata per conservare dati e programmi.
- ➤ Si suddivide in:
 - Memoria di lavoro (memoria principale).
 - Memoria in grado di conservare dinamicamente dati e programmi che il processore sta utilizzando.
 - * Ram (Random Access Memory)
 - * Rom (Read Only Memory)
 - Memoria magazzino (memoria di massa).

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Organizzazione della memoria principale

- La memoria è organizzata funzionalmente in *locazioni* indipendenti.
- Ad ogni locazione è associato un *indirizzo*
 - cioè, un numero progressivo a partire da 0.

00101101	0
10011001	1
10010110	2
	3
10010101	4
	5
	6
_	7
	8

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 25

Organizzazione della memoria principale (cont.)

- ➤ Ogni locazione ha la stessa dimensione: 8, 16, 32, o 64 bit.
 - Ogni locazione viene anche detta parola (word) e costituisce un blocco unico.
- Le uniche operazioni che si effettuano sulla memoria sono **lettura** e **scrittura**.
 - Una locazione di memoria può contenere un dato o un'istruzione.

00101101	0
10011001] 1
10010110	2
	3
10010101	4
	5
	6
	7
	8
	•

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Indirizzi di memoria

- L'indirizzo di una locazione di memoria è un numero intero codificato in binario.
 - Ogni computer utilizza un numero di bit costante per rappresentare gli indirizzi.
- ➤ Maggiore è il numero di bit utilizzati, maggiore sarà il numero di locazioni indirizzabili: *Spazio di indirizzamento*.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 27

Indirizzi di memoria (cont.)

- > Se l'elaboratore utilizza:
 - 16 bit per l'indirizzo, la memoria conterrà fino a 65.536 locazioni (cioè 64 KB di memoria).
 - 32 bit per l'indirizzo, la memoria potrà contenere fino a 4.294.967.296 locazioni (cioè 4 GB di memoria).

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Schema funzionale

Programma e dati sono caricati in memoria.

- 1) La CU preleva un'istruzione dalla memoria.
- 2) L'istruzione viene decodificata.
- 3) L'istruzione viene eseguita.
- 4) La CU passa all'istruzione successiva e cioè al punto 1).

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 29

Schema funzionale (cont.)

- ➤ Il processore esegue in continuazione il ciclo
 - preleva interpreta esegui.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Schema funzionale (dettagliato)

- 1. La CU *preleva* l'istruzione che si trova all'indirizzo di memoria contenuto nel PC e la trasferisce nell'IR (fase di *fetch*).
- 2. L'istruzione in IR viene decodificata ed eseguita.
 - L'esecuzione consiste nell'invio da parte della CU di opportuni comandi all'unità interessata:
 - Calcoli → ALU,
 - Acquisizione/Stampa → Unità di I/O,
 - Trasferimento dati → Memoria.
- 3. La CU *incrementa* opportunamente il PC ed il processo si ripete passando all'istruzione successiva in memoria (si torna quindi al passo 1).

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 31

Schema della CPU

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

L'operazione di somma tra due numeri in memoria non è elementare!

- ➤ La sequenza di operazioni da fare è:
 - Copia il contenuto della word 50 dalla RAM al registro ACC (accumulatore);
 - Prendi il contenuto della word 24 ed incrementa ACC di tale valore;
 - Scrivi il contenuto del registro ACC nella parola 34 della RAM.

Un linguaggio macchina "fittizio"

Solo a scopo didattico ipotizziamo che alcune istruzioni siano "codificate" nel nostro microprocessore come segue:

Copia dalla RAM al registro ACC: 0 0 0 0 0 0 1 0

Copia il valore in ACC nella RAM : 00000100

Somma in ACC un valore nella RAM: 00001000

G.Gallo, G.Cincotti Programmazione I

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 35

Ecco il nostro programma...

 $\begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{vmatrix}$

Facile?

Forse ... ma poco comprensibile per un povero umano!

Le cose diventano più chiare se commentiamo il codice. SCRIVERE <u>COMMENTI</u> AI PROPRI PROGRAMMI E' PARTE ESSENZIALE DELL'ATTIVITA' DI PROGRAMMAZIONE.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Codice commentato

Il programma viene inizialmente caricato in RAM; il PC viene inizializzato all'indirizzo della prima istruzione.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Tipi di processore

- ➤ Ogni processore possiede un "set" di istruzioni macchina che costituiscono i programmi.
- ➤ Una distinzione fondamentale fra i processori è quella che li differenzia in:
 - CISC: Complex Instructions Set Computer.
 - RISC: Reduced Instructions Set Computer.

Tipi di processore (cont.)

- La differenza è nel set di istruzioni.
 - I CISC hanno un *linguaggio macchina* formato da un numero elevato di istruzioni, anche complesse.
 - Es.: Intel x86, Motorola 68000.
 - I RISC sono dotati di istruzioni più semplici e in numero minore.
 - Es.: PowerPC, Sparc.

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)

Elementi di Informatica, pag. 43

Fine

G.Gallo, G.Cincotti

Programmazione I (A.A. 2002-03)