Elmore Lecture 17

- Elmore Delay Approximation
- Rational:
- Delay Calculation.
- Static Timing Analysis.
- Logic Synthesis

- Output response:
- Network structure & state
 - Natural response (zero-input response)- (Homogenous,-Math-)
- Input waveform & zero states
 - Forced response (zero-state response) (Particular,-Math-)
- Linear circuits:

$$v_{Total}(t) = v_{Natural}(t) + v_{Forced}(t)$$

- **Basic Waveforms**
- Impulse input

$$\delta(t) = \begin{cases} 0 & t = 0 \\ 1 & otherwise \end{cases}$$
Step input

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

Pulse input

$$P_{T}(t) = \frac{1}{T} \left[u \left(t + \frac{T}{2} \right) - u \left(t - \frac{T}{2} \right) \right]$$

Sinusoidal input

$$x(t) = A\sin\left(\omega t + \theta\right)$$

Apply simple input waveforms to insight of the network design.

Analysis of Simple RC Circuit

Loop equation:

$$Ri(t) + v(t) = v_{in}(t)$$

$$i(t) = \frac{d(Cv(t))}{dt} = C\frac{dv(t)}{dt}$$

Analysis of Simple RC Circuit

$$RC\frac{dv(t)}{dt} + v(t) = v_{in}(t)$$

First order linear differential equation with constant coefficient $v_{in}(t) = \text{Input Signal}$

$$v(t)$$
 = State Variable

- Analysis of Simple RC Circuit:
- Zero input response:

$$RC\frac{dv(t)}{dt} + v(t) = 0$$

Natural response.

$$\frac{1}{v(t)} \frac{dv(t)}{dt} = -\frac{1}{RC}$$

$$v_{Natural}(t) = Ce^{-t/RC}$$

• Step input response:

$$RC\frac{dv(t)}{dt} + v(t) = v_0 u(t)$$
 $v_{Forced}(t) = v_0 u(t)$ \Rightarrow $v(t) = Ce^{-t/RC} + v_0 u(t)$

Match initial state:

$$v(t) = 0 \implies C + v_0 u(t) = 0$$

Output response for step input:

$$v(t) = v_0 (1 - e^{-t/RC})u(t)$$

$$v(t) = 0.9v_0 \Rightarrow t = 2.3RC \qquad v(t) = 0.5v_0 \Rightarrow t = 0.69RC$$

• The resulting voltage $v_{out}(t)$ across the capacitor over time shown for the normalized voltage of W.

Elmore Metric

Advanced Digital IC Design

• The Elmore delay:

$$\tau_D = RC$$

Sink Delay:

$$\tau_d = RC$$

- Driver resistance: R
- ullet Total interconnected capacitance+ loading capacitance:C
- 50% delay under step input :

$$\tau = 0.69 RC$$

• Find the Time constant at all nodes.

 $\tau_{V_{in}-V_{out1}} = R_1 \left(C_1 + C_2 + C_3 + C_4 + C_5 + C_6 \right)$

 $2 \tau_{V_{in}-V_{out}2} = R_1 (C_1 + C_2 + C_3 + C_4 + C_5 + C_6)$ $+R_2(C_2+C_4+C_5+C_6)$

$$\tau_{V_{in}-V_{out4}} = R_1 \left(C_1 + C_2 + C_3 + C_4 + C_5 + C_6 \right) + R_2 \left(C_2 + C_4 + C_5 + C_6 \right) + R_4 C_4$$

 $\tau_{V_{in}-V_{out5}} = R_1 \left(C_1 + C_2 + C_3 + C_4 + C_5 + C_6 \right)$ $+R_{2}(C_{2}+C_{4}+C_{5}+C_{6})+R_{5}C_{5}$

Elmore Approximation Advanced Digital IC Design

• Find the Time constant at all nodes.

Find the Time constant at all nodes.

$$\tau_{V_{in}-V_{out1}} = RC + 2C(R+2R) + 2C(R+2R+R) + R(C+C+3C) = 20RC$$

Find the Time constant at all nodes.

$$\tau_{V_{in}-V_{out2}} = RC + C(R+R) + C(R+R+R) + C(R+R+R) + 3C(R+R+R+R) + R(2C+2C) = 22RC$$

Advanced Digital IC Design

nMOSFET

Operation Regions	Voltages	Current
Cut Off	$V_{GS} \leq V_{Tn}$	$I_{DS} = 0$
Saturation	$\begin{aligned} V_{GS} > V_{Tn} \\ V_{DS} > V_{GS} - V_{Tn} \end{aligned}$	$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{Tn})^2 (1 + \lambda V_{DS})$
Resistive	$\begin{aligned} V_{GS} > V_{Tn} \\ V_{DS} < V_{GS} - V_{Tn} \end{aligned}$	$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{Tn}) V_{DS} - \frac{V_{DS}^2}{2} \right]$

Advanced Digital IC Design

pMOSFET

Operation Regions	Voltages	Current	
Cut Off	$V_{SG} \leq \left V_{Tp}\right $	$I_{SD} = 0$	
Saturation	$egin{aligned} V_{SG} > & V_{Tp} \ V_{SD} > V_{SG} - & V_{Tp} \ \end{aligned}$	$I_{SD} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \left(V_{SG} - \left V_{Tp} \right \right)^2 \left(1 + \lambda V_{SD} \right)$	
Resistive	$V_{SG} > V_{Tp} $ $V_{SD} < V_{SG} - V_{Tp} $	$I_{SD} = \mu_p C_{ox} \frac{W}{L} \left[\left(V_{SG} - \left V_{Tp} \right \right) V_{SD} - \frac{V_{SD}^2}{2} \right]$	

Enhancement mode MOSFET transistor region of operation

	Cut-off	Resistive	Saturation
nMOS	$V_{GSn} < V_{Tn} \ V_{IN} < V_{Tn}$	$V_{GSn} > V_{Tn} \ V_{IN} > V_{Tn} \ V_{DSn} < V_{GSn} - V_{Tn} \ V_{OUT} < V_{IN} - V_{Tn}$	$V_{GSn} > V_{Tn}$ $V_{IN} > V_{Tn}$ $V_{DSn} > V_{GSn} - V_{Tn}$ $V_{OUT} > V_{IN} - V_{Tn}$
pMOS	$V_{GSp} > V_{Tp}$ $V_{IN} > V_{Tp} + V_{DD}$	$egin{aligned} V_{GSp} < V_{Tp} \ V_{IN} < V_{Tp} + V_{DD} \ V_{DSp} > V_{GSp} - V_{Tp} \ V_{OUT} > V_{IN} - V_{Tp} \end{aligned}$	$egin{aligned} V_{GSp} &= V_{Tp} \ V_{IN} &< V_{Tp} + V_{DD} \ V_{DSp} &< V_{GSp} - V_{Tp} \ V_{OUT} &< V_{IN} - V_{Tp} \end{aligned}$

• Parasitic capacitors in the cut-off $V_{GS} < V_{TN}$

Channel is not inverted

$$C_{gate} = C_{gate-body} = C_0 = C_{ox}WL = \frac{\mathcal{E}_{ox}}{t_{ox}}WL$$

• Parasitic capacitors in the non-saturation $V_{GS} > V_{TN} \ \& \ V_{DS} < V_{GS} - V_{TN}$

$$C_{\mathit{gate}} = C_{\mathit{gate-body}} + C_{\mathit{gate-source}} + C_{\mathit{gate-drain}}$$

$$C_{gate} = 0 + \frac{C_0}{2} + \frac{C_0}{2} = C_0$$

• Parasitic capacitors in the saturation $V_{GS} > V_{TN} \ \& \ V_{DS} > V_{GS} - V_{TN}$

$$C_{\mathit{gate}} = C_{\mathit{gate-body}} + C_{\mathit{gate-source}} + C_{\mathit{gate-drain}}$$

$$C_{gate} = 0 + \frac{2C_0}{3} + 0 = \frac{2C_0}{3}$$

Parasitic capacitors in the cut-off

