Optimization and Computational Linear Algebra for Data Science Hints for the review exercises

1 Last year's review exercises

- 1. Show that for all $x \in \mathbb{R}^n$, ABx = BAx. (You can decompose such x in the given basis)
- 2. (a) See homework 10. (b) Use (a).
- 3. Use the definition of eigenvectors/eigenvalues.
- 4. Using the spectral Theorem there exists an orthonormal basis (v_1, \ldots, v_n) of \mathbb{R}^n consisting of eigenvectors of A. Decompose x in such a basis and compute Ax.
- 5. If $f: \mathbb{R}^2 \to \mathbb{R}$ is convex, and if (α^*, β^*) is a minimizer of f then $\nabla f(\alpha^*, \beta^*) = 0$.
- 6. Use the definition of $||x||_{\infty}$ and ||x||.
- 7. By the spectral theorem, you can decompose x in an orthonormal basis of \mathbb{R}^n made of eigenvectors of A.
- 8. Many possible ways to do this. (a) Show that $Ker(A^{\mathsf{T}}) = Ker(AA^{\mathsf{T}})$, and then use the rank-nullity theorem and the fact that $rank(A) = rank(A^{\mathsf{T}})$. (b) Compute AA^{T} using the SVD of A: $A = U\Sigma V^{\mathsf{T}}$.
- 9. (a) Use Lagrange multipliers. (b) The set of solution of Ax = b is $A^+b + \text{Ker}(A)$. The result follow from the same arguments than problem 1 of homework 10.
- 10. False.
- 11. Show that $||x+y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$.
- 12. Show that $\sum_{i=1}^{n} \langle x, u_i \rangle^2 = ||x||^2$.
- 13. Compute AA^{T} .
- 14. Show that if λ is an eigenvalue of A associated with the eigenvector u if and only if Qu is an eigenvector of B with eigenvalue λ .
- 15. Justify that $x = \sum_{i=1}^{m} \langle x, v_i \rangle v_i$. Then expand $\|\sum \langle x, v_i \rangle v_i\|^2$ and make simplifications.
- 16. Use the SVD of A.
- 17. (a) See Homework 3. (b) Let $V \in \mathbb{R}^{n \times n}$ be the matrix whose columns are v_1, \ldots, v_n . Show that $\text{Tr}(V^T A v) = \sum_{i=1}^n v_i^\mathsf{T} A v_i$. Then use (a). (c) Use the spectral theorem and (a).
- 18. Use Problem 1.b from homework 7.
- 19. Expand the right-hand side.
- 20. (a). $A^2 = 0$. (b) Take for instance

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- 21. (a) convex, (b) not convex (c) not convex (d) convex. One can verify these points by computing the Hessian.
- 22. (a) ... (b) There is a unique global minima.
- 23. V is of dimension 2, hence $\dim(V^{\perp}) = 4 2 = 2$. $v_1 = (1, -1, 0, 0)$ and $v_2 = (0, 0, 1, -1)$ work.
- 24. (a) Yes. (b) The derivative of a sum is equal to the sum of the derivatives, and the derivatives of λp (for some $\in \mathbb{R}$) is equal to $\lambda p'$. (c) $\operatorname{Ker}(\mathcal{D})$ is the set of polynomials p that are constant (i.e. there exists $a \in \mathbb{R}$ such that p(x) = a for all $x \in \mathbb{R}$). (d) $\operatorname{Im}(\mathcal{D}) = \mathcal{P}_{d-1}$. (e) (i) check the usual conditions (ii) For polynomial of degree $\leq d$, Taylor formula of order d is exact:

$$T_s(p)(x) = p(x+s) = \sum_{k=0}^d \frac{p^{(k)}(x)}{k!} s^k = \sum_{k=0}^d \frac{\mathcal{D}^k(p)(x)}{k!} s^k.$$

- (iii) The matrix has 0 below the diagonal and for $j \geq i$, $M_{i,j} = \binom{j-1}{i-1}$.
- 25. (a) Let B be a rank 1 matrix. One can therefore write $B = uv^T$ for some $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$.

$$||A - B||_F^2 = ||A||_F^2 - 2u^T Av + ||u||^2 ||v||^2.$$

Now, $u^T A v \leq ||u|| ||v|| \sigma_1$. Hence, writing r = ||u|| ||v||

$$||A - B||_F^2 \ge \sum_{i=1}^{\min(n,m)} \sigma_i^2 - 2\sigma_1 r + r^2 = \sum_{i=2}^{\min(n,m)} \sigma_i^2 + (\sigma_1 - r)^2 = ||A - A'||_F^2 + (\sigma_1 - r)^2$$

(b) Let $B = uv^T$ be a rank 1 matrix. Let v_1, v_2 be the first two right-singular vectors of A. $Span(v)^{\perp}$ has dimension n-1, hence one can find a vector of unit norm z in $Span(v)^{\perp} \cap Span(v_1, v_2)$. We write $z = \alpha_1 v_1 + \alpha_2 v_2$. Since ||z|| = 1 and v_1, v_2 orthogonal, we have $\alpha_1^2 + \alpha_2^2 = 1$. By definition of the spectral norm

$$||A - B||_{Sp} \ge ||(A - B)z|| = ||Az|| = \sqrt{\alpha_1^2 \sigma_1^2 + \alpha_2^2 \sigma_2^2} \ge \sigma_2 = ||A - A'||_{Sp}.$$

- 26. xx^T is rank 1 and has two distinct eigenvalues 0 and 1. Hence H has two distinct eigenvalues -1 and 1.
- 27. The vector (1, 1, ..., 1) is an eigenvector associated with the eigenvalue d. By contradiction let x be an eigenvector associated with the eigenvalue $\lambda > d$. Let i such that $|x_i| = ||x||_{\infty} > 0$. Then

$$|x_i|\lambda = |\sum_{i=1}^n G_{i,j}x_j| \le \sum_{i=1}^n G_{i,j}|x_j| \le |x_i|\sum_{i=1}^n G_{i,j} = d|x_i|.$$

We get a contradiction.

- 28. Use the matrix product formula.
- 29. (a) convex but not subspace (b) not convex (c) subspace (hence convex)
- 30. (a) convex but not strictly convex (b) convex but not strictly convex (c) convex but not strictly convex (d) not convex (e) not convex
- 31. Cauchy-Schwarz.
- 32. Apply the spectral theorem to A.

2 Last year's review exercises

- 1. (a) Show that $w \stackrel{\text{def}}{=} u v \neq 0$ belongs to Ker(A) and then that x = u + tw is a solution to Ax = b for all $t \in \mathbb{R}$. (b) Use the w defined in (a).
- 2. (a). Prove that $\operatorname{rank}(A^TA) = n$. Then use the fact that $\operatorname{rank}(A^TA) \leq \operatorname{rank}(A) \leq \min(n, m)$. (b) Show that $\operatorname{rank}(A) = n$, then use the rank-nullity theorem to get $\operatorname{dimKer}(A) = 0$. (c) Use the fact that for any $v \in \mathbb{R}^n$, $||Av||^2 = v^{\mathsf{T}}A^TAv$.
- 3. (a) $\operatorname{rank}(U) = n$. This comes from the fact that $\operatorname{rank}(U) \leq n$ (because U is $n \times m$) and $\operatorname{rank}(U) \geq \operatorname{rank}(U^T U) \leq \operatorname{rank}(\operatorname{Id}_n) = n$. (b) Use the rank-nullity theorem. (c) Expand and simplify $\|y Ux\|^2$. (d) Write $f(x) = \|y Ux\|^2$ and solve $\nabla f(x) = 0$.
- 4. (a) Convex set (Ker(A)) (b) Convex set (c) Not always convex (take for instance for A = Id) (d) Not convex. (e) Convex.
- 5. (a)(e)(d)(f)
- 6. (a) f is convex (compute its Hessian). (b) h is not convex (compute the Hessian) (c) Solve the equations -> Global minimum (d) Solve the equations -> Saddle point
- 7. (a) By contradiction if for all j we have $|v_i^T u_1| < \frac{1}{\sqrt{n}}$ then we get (since v_1, \ldots, v_n orthonormal basis)

$$||u_1||^2 = \sum_{i=1}^n (v_i^T u_1)^2 < 1,$$

which is a contradiction. (b) Take $u_1=(1,0),\ u_2=(0,1),\ v_1=(1/\sqrt{2},1/\sqrt{2}),\ v_2=(1/\sqrt{2},-1/\sqrt{2}).$

