Mesh Current Method

- 1. Assign a mesh current (I₁, I₂, I₃.....V_N) to all loops in the circuit
- 2. Use KVL in the loop and express the voltages in the loop using the defined mesh currents ($(I_1, I_2, I_3, ..., I_N)$)
- 3. Solve the equations to find all the mesh currents
- 4. Determine all voltages and currents in the circuit from the now known mesh currents $(I_1, I_2, I_3, ..., I_N)$

$$R_1$$
=18 k Ω , R_2 =12 k Ω
 V_A =6 V, I_B =3 mA

Determine I₁ and I₂

$$\begin{aligned} \text{KVL fo, the left mesh (ia): } V_{A} - R_{7}i_{a} - R_{7}i_{a} + R_{2}i_{b} = 0 \\ i_{b} = -I_{B} \end{aligned} \qquad \qquad \begin{aligned} V_{A} - (R_{1} + R_{2})i_{a} - R_{2}I_{B} = 0 \\ i_{b} = -I_{B} \end{aligned}$$

$$=) i_{a} = \frac{V_{A} - R_{7}i_{B}}{R_{1} + R_{2}} \qquad \qquad I_{1} = i_{a} = \frac{V_{A}}{R_{1} + R_{2}} - \frac{R_{2}}{R_{1} + R_{2}}I_{B} = \frac{6}{18412} - \frac{12}{18 + 12}3 = \frac{6 - 36}{30} = -\frac{30}{30} = -1_{m}A$$

$$I_{1} = i_{a} - i_{b} = I_{1} + I_{B} = -1 + 3 = 2_{m}A$$