#### Stochastic Processes

#### Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

©Liming Feng. Do not distribute without permission of the author

Readings: Shreve Chapter 2

### Stochastic processes

- A stochastic process  $X = \{X_t, t \in \mathbb{T}\}$  in  $(\Omega, \mathcal{F}, \mathbb{P})$  is a family of r.v.s on  $\Omega$  indexed by time  $t \in \mathbb{T}$ 
  - ullet Continuous time:  $\mathbb{T}=[0,\infty)$ , discrete time  $\mathbb{T}=\{t_0,t_1,\cdots\}$
  - ullet The process starts at a constant  $X_0$  at time 0
  - For any  $\omega \in \Omega$ , the mapping  $t \mapsto X_t(\omega)$  is a sample path or realization of the process X
- A continuous time stochastic process is
  - continuous if sample paths are continuous a.s.
  - cadlag if sample paths are right continuous with left limits a.s.

### Discrete time example

#### Example (Example 3)

In a 3-day period, stock price either doubles (with probability  $p=\frac{1}{2}$ ) or halves (with probability  $1-p=\frac{1}{2}$ ) in one day. Current stock price is 8.

Flipping a fair coin for three times, sample space

$$\Omega = \{\mathit{HHH}, \mathit{HHT}, \mathit{HTH}, \mathit{HTT}, \mathit{THH}, \mathit{THT}, \mathit{TTH}, \mathit{TTT}\}$$

- $\sigma$ -algebra  $\mathcal{F}=2^{\Omega}$ : collection of all possible events (subsets of  $\Omega$ )
- Probability measure

$$\mathbb{P}(HHT) = \cdots = \mathbb{P}(TTT) = \frac{1}{8}$$



#### **Filtration**

- Stock price process  $\{S_t, t = 0, 1, 2, 3\}$ 
  - Discrete time stochastic process
  - Sample path corresponding to  $\omega = \{HTT\}$

$$S_0(\omega) = 8$$
,  $S_1(\omega) = 16$ ,  $S_2(\omega) = 8$ ,  $S_3(\omega) = 4$ 

• Filtration: a sequence of increasing  $\sigma$ -algebras indexed by time  $\mathbb{F} = \{\mathcal{F}_t\}$ ,  $\mathcal{F}_t \subset \mathcal{F}$  contains information learned by observing the system up to time t

### Filtration example

 In Example 3: by time 1, we know whether the outcome of the first flipping is H (stock price goes up) or T (stock price goes down)

$$A_{H} = \{HHH, HHT, HTH, HTT\}, \ A_{T} = \{THH, THT, TTH, TTT\}$$

• Define  $\sigma$ -algebra  $\mathcal{F}_1$  such that it contains

$$A_H$$
,  $A_T = A_H^c$ ,  $A_H \cup A_T = \Omega$ ,  $A_H \cap A_T = \emptyset$ 

- $\mathcal{F}_1 = \{A_H, A_T, \emptyset, \Omega\}$  contains information learned by observing the outcome of the first coin flipping
- By time 1, we know whether  $\omega \in A_H$  (hence  $S_1(\omega) = 16$ ) or  $\omega \in A_T$  (hence  $S_1(\omega) = 4$ ); doesn't allow you to determine  $S_2(\omega), S_3(\omega)$
- $A_H$  and  $A_T$  are **atoms** of  $\mathcal{F}_1$
- Events like  $\{HHH, HHT\}$ ,  $\{HHH, HTH, THH, TTH\}$  are not in  $\mathcal{F}_1$

•  $\mathcal{F}_2 = \sigma(\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\})$  contains information learned by observing the first two coin flippings

$$A_{HH} = \{HHH, HHT\}, A_{HT} = \{HTH, HTT\},$$
  
 $A_{TH} = \{THH, THT\}, A_{TT} = \{TTH, TTT\}$ 

• It contains events like  $A_H = A_{HH} \cup A_{HT}$ ,  $A_T = A_{TH} \cup A_{TT}$ ,

$$A_{HH} \cup A_{TH}, A_{HH} \cup A_{TT}, A_{H} \cup A_{TH}, etc.$$

but not

$$\{HHH\}, \{HHH, HTH, THH, TTH\}, etc.$$

- By time 2, we know whether  $\omega \in A_{HH}$  or  $\omega \in A_{HT}$  or  $\omega \in A_{TH}$  or  $\omega \in A_{TT}$  and the corresponding  $S_1(\omega), S_2(\omega)$ , but not  $S_3(\omega)$
- $A_{HH}, A_{HT}, A_{TH}, A_{TT}$  are atoms of  $\mathcal{F}_2$
- $\mathcal{F}_0 = \{\emptyset, \Omega\}$
- $\mathcal{F}_3 = 2^{\Omega}$ : the eight atoms are  $\{HHH\}, \{HHT\}, \cdots, \{TTT\}$
- Filtration  $\mathbb{F} = \{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3\}$ :  $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \mathcal{F}$
- Filtered probability space  $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$

## Conditional expectation

- Given  $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ . Conditional expectation  $\mathbb{E}[X|\mathcal{F}_t]$ : expectation of X conditional on information at time t
- In **Example 3**, consider expectation of  $S_3$  conditional on information available by observing the first two coin flipping

$$\mathbb{E}[S_3|\mathcal{F}_2]$$

Recall the filtration

$$\mathcal{F}_{0} = \{\emptyset, \Omega\} 
\mathcal{F}_{1} = \sigma(\{A_{H}, A_{T}\}) 
\mathcal{F}_{2} = \sigma(\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\}) 
\mathcal{F}_{3} = 2^{\Omega}$$

• For  $\omega = HH* \in A_{HH}$ ,

$$\mathbb{E}[S_3|\mathcal{F}_2](\omega) = pS_3(HHH) + (1-p)S_3(HHT) = \frac{1}{2}(64+16) = 40$$
For  $\omega = HT * \in A_{HT}$ .

$$\mathbb{E}[S_3|\mathcal{F}_2](\omega) = pS_3(HTH) + (1-p)S_3(HTT) = \frac{1}{2}(16+4) = 10$$

Similarly,

$$\omega = TH* \in A_{TH}, \quad \mathbb{E}[S_3|\mathcal{F}_2](\omega) = 10$$

$$\omega = TT* \in A_{TT}, \quad \mathbb{E}[S_3|\mathcal{F}_2](\omega) = 5/2$$

- $\mathbb{E}[S_3|\mathcal{F}_2]$  can be considered as an **estimate of**  $S_3$  **based on information available** up to time 2 (similar to unconditional expectation)
- Seen at time 0,  $\mathbb{E}[S_3|\mathcal{F}_2]$  is a random variable (in contrast to unconditional expectation); its value will be revealed by time 2
- Recall that  $\mathcal{F}_2 = \sigma(\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\})$ .  $A_{HH}, A_{HT}, A_{TH}, A_{TT}$  are **atoms** of  $\mathcal{F}_2$
- $\mathbb{E}[S_3|\mathcal{F}_2](\omega)$  is constant on each atom
- $\mathbb{E}[S_3|\mathcal{F}_2]$  is  $\mathcal{F}_2$ —measurable (knowing info up to time 2, one knows  $\mathbb{E}[S_3|\mathcal{F}_2]$ )

$$\{\mathbb{E}[S_3|\mathcal{F}_2] \in B\} \in \mathcal{F}_2, \quad \forall B \in \mathcal{B}(\mathbb{R})$$



 Expectation of S<sub>3</sub> conditional on information available by observing the first coin flipping

$$\mathbb{E}[S_3|\mathcal{F}_1](\omega) = \rho^2 S_3(HHH) + \rho(1-\rho)S_3(HHT) + (1-\rho)\rho S_3(HTH)$$

$$+ (1-\rho)^2 S_3(HTT) = 25, \quad \omega = H ** \in A_H$$

$$\mathbb{E}[S_3|\mathcal{F}_1](\omega) = \rho^2 S_3(THH) + \rho(1-\rho)S_3(THT) + (1-\rho)\rho S_3(TTH)$$

$$+ (1-\rho)^2 S_3(TTT) = \frac{25}{4}, \quad \omega = T ** \in A_T$$

- $\mathbb{E}[S_3|\mathcal{F}_1]$  is a  $\mathcal{F}_1$ -measurable r.v.
- It is constant on atoms  $A_H, A_T$  of  $\mathcal{F}_1 = \sigma(\{A_H, A_T\})$

- ullet In general, would like to define  $\mathbb{E}[X|\mathcal{G}]$  for a  $\sigma-$ algebra  $\mathcal{G}\subset\mathcal{F}$
- Recall  $\mathbb{E}[S_3|\mathcal{F}_2]$ , for  $\omega = HH* \in A_{HH}$ ,

$$\mathbb{E}[S_3|\mathcal{F}_2](\omega) = pS_3(HHH) + (1-p)S_3(HHT)$$

$$= S_3(HHH) \frac{\mathbb{P}(\{HHH\})}{\mathbb{P}(A_{HH})} + S_3(HHT) \frac{\mathbb{P}(\{HHT\})}{\mathbb{P}(A_{HH})}$$

That is,

$$\mathbb{E}[S_3|\mathcal{F}_2](\omega)\mathbb{P}(A_{HH}) = \sum_{\omega' \in A_{HH}} S_3(\omega')\mathbb{P}(\{\omega'\})$$

$$\int_{A_{HH}} \mathbb{E}[S_3|\mathcal{F}_2](\omega) d\mathbb{P}(\omega) = \int_{A_{HH}} S_3(\omega) d\mathbb{P}(\omega)$$

• The above holds for all atoms of  $\mathcal{F}_2$ :  $A_{HH}, A_{HT}, A_{TH}, A_{TT}$ , and hence holds for any  $A \in \mathcal{F}_2$ :

$$\int_A \mathbb{E}[S_3|\mathcal{F}_2](\omega)d\mathbb{P}(\omega) = \int_A S_3(\omega)d\mathbb{P}(\omega), \quad A \in \mathcal{F}_2$$

- Definition: for σ−algebra G ⊂ F, the conditional expectation E[X|G] is such that
  - $\mathbb{E}[X|\mathcal{G}]$  is  $\mathcal{G}-$ measurable
  - For any  $A \in \mathcal{G}$ ,

$$\int_{A} \mathbb{E}[X|\mathcal{G}](\omega) d\mathbb{P}(\omega) = \int_{A} X(\omega) d\mathbb{P}(\omega)$$

ullet When  $\mathcal{G}=\{\emptyset,\Omega\},~\mathbb{E}[X|\mathcal{G}]=\mathbb{E}[X]$ 



## Conditional expectation properties

- Linearity:  $\mathbb{E}[aX + bY|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}], \quad a, b \in \mathbb{R}$
- Take out what is known: if X is  $\mathcal{G}$ -measurable,  $\mathbb{E}[XY|\mathcal{G}] = X\mathbb{E}[Y|\mathcal{G}]$ . Take Y = 1

$$\mathbb{E}[X|\mathcal{G}] = X$$

- **Independence**: if X is independent of  $\mathcal{G}$ , then  $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$
- Iterated conditioning: if  $\mathcal{G} \subset \mathcal{H}$ ,

$$\mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}]$$

- Verify that  $\mathbb{E}\left[\mathbb{E}[S_3|\mathcal{F}_2]|\mathcal{F}_1\right] = \mathbb{E}[S_3|\mathcal{F}_1]$
- Take  $\mathcal{G} = \{\emptyset, \Omega\}$ . It follows that for any  $\sigma$ -algebra  $\mathcal{H}$

$$\mathbb{E}[\mathbb{E}[X|\mathcal{H}]] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$$



## Martingales

- Consider a stochastic process  $\{X_t\}$  in a filtered probability space  $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$
- $X = \{X_t\}$  is **adapted** if  $\forall t$ ,  $X_t$  is  $\mathcal{F}_t$ -measurable
- $X = \{X_t\}$  is a martingale if  $\forall s \leq t$ ,  $\mathbb{E}[|X_t|] < \infty$ , and

$$\mathbb{E}[X_t|\mathcal{F}_s]=X_s$$

- Properties of martingales
  - Constant expectations

$$\mathbb{E}[X_t] = \mathbb{E}[X_0], \quad \forall t > 0$$

ullet Given an integrable r.v. Y,  $X_t = \mathbb{E}[Y|\mathcal{F}_t]$  is a martingale

$$\mathbb{E}[X_t|\mathcal{F}_s] = \mathbb{E}[\mathbb{E}[Y|\mathcal{F}_t]|\mathcal{F}_s] = \mathbb{E}[Y|\mathcal{F}_s] = X_s, \quad \forall s \leq t$$



#### Markov processes

• An adapted stochastic process  $\{X_t\}$  is a Markov process if for any measurable function f and  $s \le t$ 

$$\mathbb{E}[f(X_t)|\mathcal{F}_s] = g(X_s)$$

for some measurable function g

- The future of the process only depends on the current value of the process, but not its past
- In Example 3, stock price process is Markov

$$\mathbb{E}[f(S_{n+1})|\mathcal{F}_n] = pf(2S_n) + (1-p)f(S_n/2), \quad n = 0, 1, 2$$



### Lévy processes

- An adapted stochastic process X has independent increments if for any 0 ≤ s ≤ t, X<sub>t</sub> − X<sub>s</sub> is independent of F<sub>s</sub>
- It has stationary increments if  $X_t X_s$  and  $X_{t-s} X_0$  have the same distribution
- An adapted process X with  $X_0 = 0$  is a **Lévy process** if it has stationary and independent increments and its sample paths are cadlag a.s.
- Two important Lévy processes: Poisson process, Brownian motion

### Poisson processes

- Poisson process  $\{N_t, t \ge 0\}$ : counts the number of events that have occurred up to time t
  - Let  $\lambda$  be the arrival rate (or intensity)
  - Let  $\{\tau_n, n \geq 1\}$  be i.i.d. with  $\tau_n \sim \mathsf{Exponential}(\lambda)$
  - Let  $T_0 = 0$ ,  $T_n = \sum_{i=1}^n \tau_i$ . Define

$$N_t = \sum_{n \geq 1} \mathbf{1}_{\{T_n \leq t\}}$$

- Sample paths of a Poisson process are cadlag
- For any t,  $N_t \sim \text{Poisson}(\lambda t)$ :  $\mathbb{E}[N_t] = \text{var}(N_t) = \lambda t$

$$\mathbb{P}(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, k = 0, 1, \cdots$$



### Compound poisson processes

• Compound Poisson process: let  $\{N_t\}$  be a Poisson process with arrival rate  $\lambda$ ,  $\{X_n, n \ge 1\}$  a sequence of i.i.d. r.v.s.

$$Y_0 = 0, \quad Y_t = \sum_{n=1}^{N_t} X_n, \ t > 0$$

Then  $\{Y_t, t \geq 0\}$  is a compound Poisson process

• Example 5: Claims to a car insurance company arrive according to a Poisson process with intensity  $\lambda$ .  $X_n$  is the dollar amount payment of the nth claim (assume i.i.d.). Then the total amount paid by time t is a compound Poisson process.

#### Finite market model

#### • Finite market model:

- N time periods:  $0 = t_0, t_1, \dots, t_N = T$
- d (d = 2 for illustration) risky assets in addition to risk free investment with rate r:

*i*th asset price process: 
$$(S_0^i, S_1^i, \cdots, S_N^i)$$

Risk free lending modeled as buying a risk free bond with initial price  $\boldsymbol{1}$ 

bond price process: 
$$(B_0, B_1, \cdots, B_N)$$

- Denote  $S_n = (B_n, S_n^1, S_n^2)$  the price vector at time  $t_n$
- Filtered probability space  $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ ,  $\Omega$  contains finite possible outcomes (each with positive probability)



### Equivalent martingale measure

• Two probability measures  $\mathbb P$  and  $\mathbb Q$  on  $(\Omega,\mathcal F)$  are **equivalent** if

$$\mathbb{P}(A) > 0 \Leftrightarrow \mathbb{Q}(A) > 0, \quad \forall A \in \mathcal{F}$$

They agree on what occurs with positive probability, disagree on the magnitude of the probability

- Q is an equivalent martingale measure (risk neutral measure) in the finite market model if
  - ullet  $\mathbb Q$  and  $\mathbb P$  are equivalent
  - Discounted asset price process  $(S_n^{*i} = S_n^i/B_n)$ ,  $n = 0, 1, \dots, N$ , is a martingale

$$\mathbb{E}^{\mathbb{Q}}[S_{n+1}^{*i}|\mathcal{F}_n] = S_n^{*i}, \quad n = 0, 1, \dots, N-1$$



#### Binomial model

- In the binomial model, with  $0 < d < e^{r\delta} < u$ , the risk neutral measure  $\mathbb{Q}$  is defined via the risk neutral probability  $p^* = (e^{r\delta} d)/(u d)$
- Discounted asset price process  $\{e^{-rn\delta}S_n, 0 \le n \le N\}$  is a martingale under  $\mathbb Q$  in the above binomial model

$$e^{-rn\delta}S_n = \mathbb{E}^{\mathbb{Q}}[e^{-r(n+1)\delta}S_{n+1}|\mathcal{F}_n]$$

**Proof**. 
$$\mathbb{E}^{\mathbb{Q}}[S_{n+1}|\mathcal{F}_n] = p^*uS_n + (1-p^*)dS_n = S_ne^{r\delta}$$
.

# Self financing

#### Self financing trading strategy

$$\phi = (\phi_n, n = 0, 1, \cdots, N-1)$$

$$\phi_n = (\phi_n^0, \phi_n^1, \phi_n^2)$$

 $\phi_n^0,\,\phi_n^1,\,\phi_n^2$ : number of bonds, asset 1, asset 2 held from  $t_n$  to  $t_{n+1}$ 

$$\phi_n^0 B_{n+1} + \phi_n^1 S_{n+1}^1 + \phi_n^2 S_{n+1}^2 = \phi_{n+1}^0 B_{n+1} + \phi_{n+1}^1 S_{n+1}^1 + \phi_{n+1}^2 S_{n+1}^2$$

denoted using dot product by

$$\phi_n \cdot S_{n+1} = \phi_{n+1} \cdot S_{n+1}$$



### First fundamental theorem of asset pricing

ullet An arbitrage opportunity in the finite market model is a self financing trading strategy  $\phi$  such that

$$V_0(\phi) = 0, \quad V_N(\phi) \ge 0, \quad \mathbb{P}(V_N(\phi) > 0) > 0$$

• Theorem (first fundamental theorem of asset pricing): The finite market model is arbitrage free if and only if there exists an equivalent martingale measure  $\mathbb{Q}$  **Proof.**  $\Leftarrow$ : suppose  $\phi$  is self financing,  $V_0(\phi) = 0$ ,  $V_N(\phi) \geq 0$ , want to show that  $V_N(\phi) = 0$ . First, discounted value process  $V_n^*(\phi) = V_n(\phi)/B_n$  is a martingale under measure  $\mathbb{Q}$ 

#### Proof continued:

$$\mathbb{E}^{\mathbb{Q}}[V_{n+1}^*(\phi)|\mathcal{F}_n] = \mathbb{E}^{\mathbb{Q}}\left[\frac{\phi_{n+1} \cdot S_{n+1}}{B_{n+1}}|\mathcal{F}_n\right]$$

$$= \mathbb{E}^{\mathbb{Q}}\left[\frac{\phi_n \cdot S_{n+1}}{B_{n+1}}|\mathcal{F}_n\right]$$

$$= \phi_n \cdot \mathbb{E}^{\mathbb{Q}}\left[\frac{S_{n+1}}{B_{n+1}}|\mathcal{F}_n\right]$$

$$= \frac{\phi_n \cdot S_n}{B_n} = V_n^*(\phi)$$

So  $\mathbb{E}^{\mathbb{Q}}[V_N^*(\phi)] = V_0(\phi) = 0$  and hence  $V_N(\phi) = 0$   $\Rightarrow$ : Williams, 2006, Introduction to the Mathematics of Finance

# Martingale approach for deriving risk neutral pricing

- Suppose the finite market model is arbitrage free, then there exists a risk neutral measure  $\mathbb Q$
- Suppose self financing strategy  $\phi$  replicates the payoff of a European style derivative  $f_N = V_N(\phi)$ , then derivative value  $f_n$  at time  $t_n$  = the value of the replicating strategy at  $t_n$ :  $V_n(\phi)$

$$f_n = V_n(\phi) = B_n V_n^*(\phi)$$
  
=  $B_n \mathbb{E}^{\mathbb{Q}}[V_N^*(\phi)|\mathcal{F}_n] = B_n \mathbb{E}^{\mathbb{Q}}[B_N^{-1} f_N | \mathcal{F}_n]$ 

In particular,

$$f_0 = \mathbb{E}^{\mathbb{Q}}[e^{-rT}f_N]$$



# Second fundamental theorem of asset pricing

- The market is complete if all European style derivative payoffs can be replicated
- Theorem (the second fundamental theorem of asset pricing): An arbitrage free finite market model is complete if and only if it admits a unique equivalent martingale measure Proof. Williams 2006.
- With  $0 < d < e^{r\delta} < u$ , the binomial model
  - admits an equivalent martingale measure, no arbitrage
  - is complete, unique equivalent martingale measure
  - ⇒ unique price for any European style derivative (obtained through risk neutral pricing formula)

