The potential for repowering US wind turbines

Peter Regner¹, Katharina Gruber¹, Johannes Schmidt¹, Claude Klöckl¹

¹Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Vienna

2019-04-12 Vienna EGU 2019

repowering = replacing power plants with newer ones, which have a higher rated capacity or more efficiency

- repowering = replacing power plants with newer ones, which have a higher rated capacity or more efficiency
- ► How much power generation gain can be expected in the US with newer wind turbine models?

- repowering = replacing power plants with newer ones, which have a higher rated capacity or more efficiency
- ► How much power generation gain can be expected in the US with newer wind turbine models?
- How many wind turbines will be installed?

- repowering = replacing power plants with newer ones, which have a higher rated capacity or more efficiency
- ► How much power generation gain can be expected in the US with newer wind turbine models?
- How many wind turbines will be installed?

► **ERA5**: wind speed data, hourly (2001 - 2018), 0.25° spatial resolution

- ► ERA5: wind speed data, hourly (2001 2018), 0.25° spatial resolution
- ▶ United States Wind Turbine Database (USWTDB): 58,184 turbines including location, model name, rated capacity, rotor diameter. ...

- ► ERA5: wind speed data, hourly (2001 2018), 0.25° spatial resolution
- ▶ United States Wind Turbine Database (USWTDB): 58,184 turbines including location, model name, rated capacity, rotor diameter. ...
- ► Time series of **wind power net generation** provided by the U.S. Energy Information Administration (EIA) via the Electricity data browser: time series, monthly total power generation (2001 2018)

- ► ERA5: wind speed data, hourly (2001 2018), 0.25° spatial resolution
- ▶ United States Wind Turbine Database (USWTDB): 58,184 turbines including location, model name, rated capacity, rotor diameter. ...
- ► Time series of **wind power net generation** provided by the U.S. Energy Information Administration (EIA) via the Electricity data browser: time series, monthly total power generation (2001 2018)
- Data sheets for turbine models: rotor diameter, power curve

Historical development of wind turbine characteristics

Maximum power generation with different turbines

Optimization problem:

Existing turbines are replaced by newer ones at the location of the old turbines, such that:

- objective function: total power generation is maximized
- constraints: distance between turbines is not below a threshold

Minimum distances between turbine locations

Turbine models

Model name	Rated capacity	Rotor diameter
GE-1.5 77	1.5 MW	77 m
Enercon E-138 EP3	3.5 MW	138 m
Senvion 4.2M140	4.2 MW	140 m
Enercon E-126	7.58MW	127 m

GE-1.5 77 is the most frequent model in the U.S. (14.7% of all turbines).

Power curves

Simulation of power generation

Optimal locations for new wind turbines

Repowering potential: power generation

Repowering potential: number of turbines

Conclusions:

► repowering half of the existing turbines, roughly doubles the power generation output

Conclusions:

- repowering half of the existing turbines, roughly doubles the power generation output
- ► repowering leads to a significant drop of total number of turbines installed

Conclusions:

- repowering half of the existing turbines, roughly doubles the power generation output
- repowering leads to a significant drop of total number of turbines installed
- capacity and number of turbines are not always the most relevant parameters for high power output

Conclusions:

- repowering half of the existing turbines, roughly doubles the power generation output
- repowering leads to a significant drop of total number of turbines installed
- capacity and number of turbines are not always the most relevant parameters for high power output
- distance factors are not hard boundaries

Conclusions:

- repowering half of the existing turbines, roughly doubles the power generation output
- repowering leads to a significant drop of total number of turbines installed
- capacity and number of turbines are not always the most relevant parameters for high power output
- distance factors are not hard boundaries

Future work:

► address economical questions

Conclusions:

- repowering half of the existing turbines, roughly doubles the power generation output
- repowering leads to a significant drop of total number of turbines installed
- capacity and number of turbines are not always the most relevant parameters for high power output
- distance factors are not hard boundaries

Future work:

- address economical questions
- ► assess complexer models, e.g. allowing different turbine types

Conclusions:

- repowering half of the existing turbines, roughly doubles the power generation output
- repowering leads to a significant drop of total number of turbines installed
- capacity and number of turbines are not always the most relevant parameters for high power output
- distance factors are not hard boundaries

Future work:

- address economical questions
- ► assess complexer models, e.g. allowing different turbine types
- take land use or different locations into account

Thank you!

peter.regner@boku.ac.at http://bit.ly/wind-repower-us https://refuel.world/

We gratefully acknowledge support from the European Research Council ("reFUEL" ERC-2017-STG 758149).

