(Number System) 7 (Dn-1, Dn-2 --- D2D1D0) - radix (base) Decimal when rx10 9=10 Hexa-decimal N= (3n-10n-1+ 31n-20n-2+---1 9= 16 Octal 9=8 Nibble (245) = (245) = + 27 D, + 700) = 17=4 Binary 19=2 $(352)_{7} = ()_{10}$ = 72.3 + 7.5 + 2 = (184) (Dn-1 , Dn-2 --- Di Do , Di D2' ----) = 7n-1 Dn-1 + 3n-2 Dn-2 +--- + 3D1 + D0 + 3-1 D1 + 3-2 D2

convert decimal to radix:-

$$(73)_{10} = ()_{r} \qquad |r| \qquad |r| \qquad |R_1 \wedge |R_2 \rangle$$

$$= (Q_{lst} R_{lst} R_{ls$$

4	73	
4	18	1
4	4	2
		0

so,
$$(73)_{10} = (1021)_4$$

$$\frac{5}{5} \frac{73}{14} \frac{1}{3} \frac{$$

$$0.16 \times \gamma = I_1 - \frac{\text{fraction}(f_1)}{f_1 \times \gamma} \qquad f_1 \neq 0$$

$$f_1 \times \gamma = I_2 \cdot \frac{f_2}{f_2} \qquad f_1 \neq 0$$

fnx+ = + In . - 000.

1 0.16x4 = 0,64 (0.16) 10 = (.)4 0.64 × 4 = 2 56 (1111-12 0.56 ×4 = 2.24 0.24 × 4 = 0 96 0.96 × 4 = 3.84 18F2.FE25 convert it into ~= 16,8,4,2,5 for n=16 0.16×16 = 2.56 0.56×16=8.96 1 (1) 10.96×16 = 15.36. (3.16) = (49.28F) 16 12(0) 21 (A) 01 0.16 x 8 = 1.28 8 9 1 1 1 (111. 121) 8 0.28 X8 = 12.24 0.24×8 = 1.92) (FAC. DAI) (WILL) (1021.023)4, (1001001.00101)2 (243.04) -

$$\frac{01001001 \cdot 00101000}{2} = (49.28)_{16}$$

$$\frac{0212221 \cdot 2012220}{2012220}_{3} = (2587.6786)_{9}$$

$$\frac{16}{6845} \cdot 854)_{10} = (2587.874)_{10}$$

$$\frac{16}{16} \cdot \frac{1}{428} \cdot \frac{1}{6} = 13.664$$

$$\frac{16}{16} \cdot \frac{1}{428} \cdot \frac{1}{6} = 10.624$$

$$\frac{1}{16} \cdot \frac{1}{10} \cdot \frac{$$

In any number system there are (9-1)'s compliment, and sis compliment. Compliments are required in any simplify the substraction opn. number system to 9. Find 2's compliment of the given binary number. (0 1701 .01) (4,230) OTTOTOT N 1/2 N +1 N'1 10010.10 10010.11 25 to mixt a 1220 6 Alterate way:to my somewhat out to rous et anot 0 1101.01 0 1101 . 0 1 perfor bitwise compliment after 1st one.) F 1 100 10.11 compliment m-191

10. 10:1 0)

$$= (DB64)_{16} + SEAB = -16$$

9+A = 19 1977

9+B=20

2077

$$80, R_1 = +11$$

$$R_2 = 00100 (1's)$$

$$= -4$$

$$R_3 = 00010 \quad (1's)$$

$$= -2$$

$$20010 \quad (1's)$$

(c)
$$R_1 = +11$$
 , $R_2 = -5$, $R_3 = -3$

i) Sign magnitude
$$(2^{n-1}-1)$$
 to $(2^{n-1}-1)$

(ii) Sign 1's
$$-(2^{n-1}-1)$$
 to $(2^{n-1}-1)$

(iii) sign 2's
$$-2^{n-1}$$
 to $(2^{n-1}-1)$

				~ 1°-10	sign	Sign
				sign	S +1's tree.	I commade 2/2 warriva
R3	R2	RI	Ro	Mag		
0	0	0	0	+0	+ 0	+0
0	0	0	70	1,9 + 1 - Enty	1-08+1 20 0	+18 res
0	0	1	0	+ 2	+2	+2
0	0	1	1	+ 3	+3	+3
Ф	1	0	0	-4+4.00.	15-+4 mula	+4
	, 3	00+	10.	+5	72 +	72+
P	1	,	•	+ 6	+6	+6
0	1	1	0	(%		-1
0	1	1	1	** + 7	10101	(N)
P	_	0	0	[-0]	-7	-8
l	O	O			-6	-1
1	0	0	1	2.1	F1.2 + 1.2	- 3,01(M)
1	0	1	0	- 2	-5	-6
1	0	1	1 6	- 3	2+34+58.	-5
1	J	0	0	- 4	-3	-4
1	1	0	1	-5	-2	-3
i	T,	1	0	oted may me	prixare ut	10-2 nco .?
1	I	1	1	-7 Was	-0 print	o story

Binary o is having unique representation in sign 2's compliment notation, due to which we have larger range.

Decimal equivalent of 2's form:

Let 2's form be
$$a_{n-1} a_{n-2} - \cdots - a_1 a_0$$

Medimal value = $-2^{n-1} \cdot a_{n-1} + 2^{n-2} a_{n-2} + \cdots - a_1 a_0$

$$(N)_{10} = -2^{5} \cdot 1 + 2^{3} \cdot 1 + 2 \cdot 1$$

what are the maximum number of tunction created using in variables.

compliment notwhen , due to estrick and horse kanger

0 1 1 0

9 / 0]

0011

1 1 0 1

Total number of minterm = 2

Now each term minterm has two choices whether it is present in function on not.

so, for 2" terms, total possible cases are

indicating a transmission was (iii) being (ii) (ii) que
$$(2 \times 2 \times 2 \times --- \cdot 2)$$
 $(2n)$ $(2n)$