REC'D 1 5 AUG 2003
WIPO PCT

PCT/JP 03/08066

26.06.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年10月29日

出 願 番 号 Application Number:

特願2002-314706

[ST. 10/C]:

[J P 2 0 0 2 - 3 1 4 7 0 6]

出願人 Applicant(s):

東洋紡績株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月 1日

【書類名】

特許願

【整理番号】

CN02-0859

【提出日】

平成14年10月29日

【あて先】

特許庁長官 殿

【発明者】

【住所又は居所】

大阪市北区堂島浜二丁目2番8号 東洋紡績株式会社

本社内

【氏名】

江口 弘則

【特許出願人】

【識別番号】

000003160

【氏名又は名称】

東洋紡績株式会社

【代表者】

津村 準二

【手数料の表示】

【予納台帳番号】

000619

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 ポリベンザゾール繊維からなる紡績糸

【特許請求の範囲】

【請求項1】 温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が70%以上のポリベンザゾール繊維を少なくとも一部に用いてなることを特徴とする紡績糸。

【請求項2】ポリベンザゾール繊維のキセノン光100時間暴露後の強度保持率が30%以上であることを特徴とする請求項1記載の紡績糸。

【請求項3】 ポリベンザゾール繊維中に、熱分解温度が200℃以上の高耐熱性であり鉱酸に溶解する有機顔料を含んでなることを特徴とする請求項1記載の紡績糸。

【請求項4】 有機顔料がその分子構造中に-N=及び/又はNH-基を有することを特徴とする請求項3記載の紡績糸。

【請求項5】 有機顔料がペリノン及び/又はペリレン類であることを特徴とする請求項3記載の紡績糸。

【請求項6】 有機顔料がフタロシアニン類であることを特徴とする請求項3記載の紡績糸。

【請求項7】 有機顔料がキナクリドン類であることを特徴とする請求項3記載の紡績糸。

【請求項8】 有機顔料がジオキサジン類であることを特徴とする請求項3記載の紡績糸。

【発明の詳細な説明】

 $\{0001\}$

【発明の属する技術分野】

本発明は高強度、高耐熱を必要とする消防服、耐熱服、作業服等に用いる防護 材料や防護衣料、および高強度、高耐熱を必要とする搬送材、クッション材、被 覆保護材等に用いる産業用資材を構成する繊維構造物に関するもので、さらに詳 しくは、高温高湿度下および光照射下に暴露されたときに優れた耐久性を有する ポリベンザゾール繊維からなる紡績糸に関するものである。

[0002]

【従来の技術】

高強度、高耐熱性を有する繊維として、ポリベンゾオキサゾールもしくはポリベンゾチアゾールまたはこれらのコポリマーから構成されるポリベンザゾール繊維が知られている。また、ポリベンザゾール繊維を用いた紡績糸も公知である。

[0003]

通常、ポリベンザゾール繊維は、上記ポリマーやコポリマーと酸溶媒を含むドープを紡糸口金より押し出した後、凝固性流体(水、または水と無機酸の混合液)中に浸漬して凝固させ、さらに水洗浴中で徹底的に洗浄し大部分の溶媒を除去した後、水酸化ナトリウム等の無機塩基の水溶液槽を通り、抽出されずに、糸中に残っている酸を中和した後、乾燥することによって得られる。

[0004]

この様にして製造されるポリベンザゾール繊維は上記に記載した通り、強度、 弾性率などの力学特性に優れるため、防護材料、防護衣料および産業用資材を構 成する繊維構造物としても使用されていることは前述した通りであるが、さらな る性能の向上が期待されており、特に、高温高湿度下および光照射下に長時間暴 露された場合に強度を充分に維持することができるポリベンザゾール繊維からな る紡績糸が強く望まれていた。

[0005]

【発明が解決しようとする課題】

そこで、本発明は上記事情に着目してなされたものであり、その目的は、高温 高湿度下および光照射下に長時間暴露されても強度低下の小さいポリベンザゾー ル繊維からなる紡績糸を提供することであり、特に防護材料、防護衣料および産 業用資材を構成する繊維構造物に用いる紡績糸を提供するものである。

[0006]

【課題を解決するための手段】

本発明者らは、上記課題を解決するため鋭意研究した結果、本発明を完成する に至った。熱分解温度が200℃以上の高耐熱性であり鉱酸に溶解する有機顔料 で、好ましくはその分子構造中に-N=及び/又はNH-基を有するもの、なか でもペリノン及び/又はペリレン類、フタロシアニン類、キナクリドン類、またはジオキサジン類を糸中に含有せしめることにより、高温高湿度下および光照射下に長時間暴露されても強度低下の小さいポリベンザゾールからなる紡績糸を得られることを見いだし本発明に至った。

即ち、本発明は下記の構成からなる。

- 1. 温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が70%以上のポリベンザゾール繊維を少なくとも一部に用いてなることを特徴とする紡績糸。
- 2. ポリベンザゾール繊維のキセノン光100時間暴露後の強度保持率が30% 以上であることを特徴とする上記第1記載の紡績糸。
- 3. ポリベンザゾール繊維中に、熱分解温度が200℃以上の高耐熱性であり鉱酸に溶解する有機顔料を含んでなることを特徴とする上記第1記載の紡績糸。
- 4. 有機顔料がその分子構造中に-N=及び/又はNH-基を有することを特徴とする上記第3記載の紡績糸。
- 5. 有機顔料がペリノン及び/又はペリレン類であることを特徴とする上記第3 記載の紡績糸。
- 6. 有機顔料がフタロシアニン類であることを特徴とする上記第3記載の紡績糸。
- 7. 有機顔料がキナクリドン類であることを特徴とする上記第3記載の紡績糸。
- 8. 有機顔料がジオキサジン類であることを特徴とする上記第3記載の紡績糸。 以下、本発明を詳述する。

[0007]

本発明における熱分解温度が200 C以上の高耐熱性を有し鉱酸に溶解する有機顔料として不溶性アゾ顔料、縮合アゾ顔料、染色レーキ、イソインドリノン類、イソインドリン類、ジオキサジン類、ペリノン及び/又はペリレン類、フタロシアニン類、キナクリドン類等が挙げられる。その中でも分子内に-N=及び/又はNH-基を有するものが好ましく、より好ましくはジオキサジン類、ペリノン及び/又はペリレン類、フタロシアニン類、キナクリドン類である。

[0008]

ペリノン及び/又はペリレン類としては、ビスベンズイミダゾ「2.1-b: 2'、1'-i]ベンゾ[lmn] [3, 8] フェナントロリンー8, 17-ジ オン、ビスベンズイミダゾ [2, 1-b:1', 2'-j] ベンゾ [1mn] [3, 8] フェナントロリンー6, 9ージオン、2, 9ービス(pーメトキシベン ジル) アントラ [2, 1, 9-def:6, 5, 10-d'e'f'] ジイソキ ノリンー1, 3, 8, 10(2H, 9H)ーテトロン、2, 9ービス (p-x)キシベンジル) アントラ [2, 1, 9-def:6, 5, 10-d'e'f'] ジイソキノリンー1, 3, 8, 10 (2H, 9H) ーテトロン、2, 9ービス (3, 5 - ジメチルベンジル) アントラ [2, 1, 9 - def: 6, 5, 10 - d 'e'f'] ジイソキノリンー1,3,8,10(2H,9H)-テトロン、2 , 9ービス (pーメトキシフェニル) アントラ [2, 1, 9-def:6, 5, 10-d'e'f'] ジイソキノリンー1, 3, 8, 10 (2H, 9H) ーテト ロン、2, 9-ビス(p-エトキシフェニル) アントラ [2, 1, 9-def: 6, 5, 10-d'e'f'] ジイソキノリン-1, 3, 8, 10 (2H, 9H) ーテトロン、2, 9ービス(3, 5ージメチルフェニル) アントラ[2, 1, 9-def:6, 5, 10-d'e'f'] ジイソキノリン-1, 3, 8, 10 - (2H, 9H) ーテトロン、2, 9ージメチルアントラ [2, 1, 9ーdef: 6, 5, 10-d'e'f'] ジイソキノリン-1, 3, 8, 10 (2H, 9H) ーテトロン、2, 9ービス(4ーフェニルアゾフェニル)アントラ「2, 1、 9-def:6, 5, 10-d'e'f'] ジイソキノリン-1, 3, 8, 10 (2H,9H)ーテトロン、8,16-ピランスレンジオン等があげられる。

これらのペリノン類の1つまたは2つ以上の化合物の併用もあり得る。添加量はポリベンザゾールに対して $0.01\%\sim20\%$ 、好ましくは $0.1\%\sim10\%$ である。

[0009]

フタロシアニン類としては、フタロシアニン骨格を有していればその中心に配位する金属の有無および原子種は問わない。これらの化合物の具体例としては、29H,31H-フタロシアニネート(2-)-N29,N30,N31,N32銅、29H,31H-フタロシアニネート(2-)-N29,N30,N31

, N32鉄、29H, 31H-フタロシアニネート-N29, N30, N31, N32コバルト、29H, 31H-フタロシアニネート (2-) -N29, N30, N31, N32銅、オキソ (29H, 31H-フタロシアニネート (2-) -N29, N30, N31, N32), (SP-5-12) チタニウム等があげられる。また、これらのフタロシアニン骨格が1個以上のハロゲン原子、メチル基、メトキシ基等の置換基を有していてもよい。

これらのフタロシアニン類の1つまたは2つ以上の化合物の併用もあり得る。添加量はポリベンザゾールに対して $0.01\%\sim20\%$ 、好ましくは $0.1\%\sim10\%$ である。

[0010]

キナクリドン類としては、5, 12-ジヒドロ-2, 9-ジメチルキノ [2, 3-b] アクリジン-7, 14-ジオン、5, 12-ジヒドロキノ [2, 3-b] アクリジン-7, 14-ジオン、5, 12-ジヒドロ-2, 9-ジクロロキノ [2, 3-b] アクリジン-7, 14-ジオン、5, 12-ジヒドロ-2, 9-ジブロモキノ [2, 3-b] アクリジン-7, 14-ジオン等があげられる。

これらのキナクリドン類の1つまたは2つ以上の化合物の併用もあり得る。添加量はポリベンザゾールに対して $0.01\%\sim20\%$ 、好ましくは $0.1\%\sim10$ %である。

(0011)

(0012)

また、ペリレン類、ペリノン類、フタロシアニン類、キナクリドン類、およびジオキサジン類の2つまたは3つ以上の化合物の併用も可能である。

勿論本発明技術内容はこれらに限定されるものではない。

本発明に係るポリベンザゾール繊維とは、ポリベンザゾールポリマーよりなる繊維をいい、ポリベンザゾール(PBZ)とは、ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、またはポリベンズイミダゾール(PBI)から選ばれる1種以上のポリマーをいう。本発明においてPBOは芳香族基に結合されたオキサゾール環を含むポリマーをいい、その芳香族基は必ずしもベンゼン環である必要は無い。さらにPBOは、ポリ(pーフェニレンベンゾビスオキサゾール)や芳香族基に結合された複数のオキサゾール環の単位からなるポリマーが広く含まれる。同様の考え方は、PBTやPBIにも適用される。また、PBO、PBT及び、またはPBIの混合物、PBO、PBT及びPBIのブロックもしくはランダムコポリマー等のような二つまたはそれ以上のポリベンザゾールポリマーの混合物、コポリマー、ブロックポリマーも含まれる。好ましくは、ポリベンザゾールは、鉱酸中、特定濃度で液晶を形成するライオトロピック液晶ポリマーである。

[0014]

PBZポリマーに含まれる構造単位としては、好ましくはライオトロピック液晶ポリマーから選択される。当該ポリマーは構造式(a)~(f)に記載されているモノマー単位から成る。

【化1】

$$-\sqrt[N]{\sum_{i=1}^{N}}$$
 (a)

$$- \bigvee_{O} \bigvee_{N} \bigvee_{O} \bigvee_{(b)}$$

$$-\langle S \rangle = \langle S \rangle$$
(c)

$$-\sqrt[N]{S}$$

$$(d)$$

[0015]

ポリベンザゾール繊維は、ポリベンザゾールポリマーの溶液(PBZポリマードープ)より製造されるが、当該ドープを調製するための好適な溶媒としては、クレゾールやそのポリマーを溶解しうる非酸化性の鉱酸が挙げられる。好適な非酸化性鉱酸の例としては、ポリリン酸、メタンスルホン酸および高濃度の硫酸あるいはそれらの混合物が挙げられる。その中でもポリリン酸及びメタンスルホン

[0016]

ドープ中のポリマー濃度は、1~30%、好ましくは1~20%である。最大 濃度は、例えばポリマーの溶解性やドープ粘度といった実際上の取り扱い性によ り限定される。それらの限界要因のために、ポリマー濃度は通常では20重量% を越えることはない。

[0017]

本発明において、好適なポリマーまたはコポリマーとドープは公知の方法で合成される。例えばWolfeらの米国特許第4,533,693号明細書(1985.8.6)、Sybert らの米国特許第4,772,678号明細書(1988.9.22)、Harrisの米国特許第4,847,350号明細書(1989.7.11)またはGregoryらの米国特許第5,089,591号明細書(1992.2.18)に記載されている。要約すると、好適なモノマーは非酸化性で脱水性の酸溶液中、非酸化性雰囲気で高速撹拌及び高剪断条件のもと約60℃から230℃までの間で段階的または任意の昇温速度で温度を上げることで反応させられる。

[0018]

このようにして得られるドープを紡糸口金から押し出し、空間で引き伸ばしてフィラメントに形成される。好適な製造法は先に述べた参考文献や米国特許第5,034,250号明細書に記載されている。紡糸口金を出たドープは紡糸口金と洗浄バス間の空間に入る。この空間は一般にエアギャップと呼ばれているが、空気である必要はない。この空間は、溶媒を除去すること無く、かつ、ドープと反応しない溶媒で満たされている必要があり、例えば空気、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられる。

[0019]

紡糸後のフィラメントは、過度の延伸を避けるために洗浄され溶媒の一部が除去される。そして、更に洗浄され、適宜水酸化ナトリウム、水酸化カルシウム、水酸化カリウム等の無機塩基で中和され、ほとんどの溶媒は除去される。ここでいう洗浄とは、ポリベンザゾールポリマーを溶解している鉱酸に対し相溶性であり、ポリベンザゾールポリマーに対して溶媒とならない液体に繊維またはフィラ

[0020]

本発明に係わるポリベンザゾール繊維からなる紡績糸の第一の特徴は、有機顔料を含んでいることであり、これにより、温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が70%以上を達成できる。ここでいう有機顔料は前述のごとく熱分解温度が200℃以上であり、鉱酸に溶解するものであり、好ましくはその分子構造中に-N=及び/又はNH-を有する顔料である。より好ましくは、ペリノン及び/又はペリレン類、フタロシアニン類、キナクリドン類、またはジオキサジン類である。また、鉱酸とは、メタンスルフォン酸またはポリリン酸である。

[0021]

これらの有機顔料を糸中に含有させる方法としては、特に限定されず、ポリベンザゾールの重合のいずれの段階または重合終了時のポリマードープの段階で含有させることができる。例えば、有機顔料をポリベンザゾールの原料を仕込む際に同時に仕込む方法、段階的または任意の昇温速度で温度を上げて反応させている任意の時点で添加する方法、また、重合反応終了時に反応系中に添加し、撹拌混合する方法が好ましい。

[0022]

水洗後、50℃以上、通常300℃以下でフィラメントを乾燥することにより 有機顔料を固定する。乾燥処理後の引っ張り強度保持率は、有機顔料を含有して いないポリベンザゾール繊維に対して80%以上を有しており、乾燥処理による ポリマーへの悪影響は少ない。

[0023]

本発明に係わるポリベンザゾール繊維からなる紡績糸の第二の特徴は、糸中での有機顔料が欠点となって繊維の初期強度が低下することも無く、良好に保持さ

[0024]

本発明に係るポリベンザゾール繊維からなる紡績糸の第三の特徴は、耐光性の 向上である。通常、ポリベンザゾール繊維は、太陽光に長時間暴露されるとその 強度が低下することが知られている。例えば、ポリ(pーフェニレンベンゾビス オキサゾール)繊維からなる紡績糸の場合、キセノン光100時間照射により、 その強度は初期強度に対して30%未満に低下する。これに対し、本発明の繊維 中に高耐熱性有機顔料を含有せしめた繊維からなる紡績糸では、キセノン光10 0時間照射後の強度は初期強度に対して30%以上、好ましくは40%以上保持 している。

[0025]

繊維内部における高耐熱性有機顔料の化学的な存在状態あるいはその作用につ いては明確には分かっていない。高耐熱性有機顔料分子がポリベンザゾール繊維 中のミクロボイド内に満たされているため、高温かつ高湿度下に長時間暴露され ても外からの水蒸気がポリベンザゾール分子に到達しにくくなり強度低下が起こ りにくくなるのか、あるいは、ポリベンザゾール繊維中に残留している鉱酸が水 分により解離して放出した水素イオンを有機顔料が捕捉して系内を中性化するこ とにより強度低下を抑制しているのか、あるいは、発達した共役系を有する高耐 熱性有機顔料が繊維中で何らかの理由で発生したラジカルを捕捉して系内を安定 化させているのか等が推定される。

$\{0026\}$

耐光性についても同様のことが言える。高耐熱性有機顔料の機能は、遮光効果 により光照射が緩和されるのか、または、光照射により励起したポリベンザゾー ル分子を直ちに基底状態に戻すのか、あるいは、酸素分子との相互作用等により 発生したラジカルを補足して系内を安定化させているのか等が推定されるが、本 発明はこの考察に拘束されるものではない。

このようにして得られたポリベンザゾール繊維からなる紡績糸は、温度80℃ 相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が70%以上 、好ましくは75%以上といった耐久性に優れたものとなる。さらに、得られた ポリベンザゾール繊維からなる紡績糸を用いることで、耐久性に優れる防護材料 、防護衣料、および産業用資材を構成する繊維構造物を得ることが可能となる。

[0028]

本発明の対象となる紡績糸は他の繊維とブレンドした複合紡績糸も本発明の範囲である。他の繊維とは、天然繊維、有機繊維、金属繊維、無機繊維、鉱物繊維等である。さらに、ブレンド方法について特に限定されるものではなく、一般的な混打綿混紡や、芯鞘構造を有するものでもよい。

[0029]

【実施例】

以下に実例を用いて本発明を具体的に説明するが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の主旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に含まれる。

[0030]

評価方法は以下の通りである。

高温かつ高湿度下における強度低下の評価は、サンプルを恒温恒湿器中で高温かつ高湿度保管処理した後、標準状態(温度:20±2℃、相対湿度65±2%)の試験室内に取り出し、30分以内に引張試験を実施し、処理前の強度に対する処理後の強度保持率で評価を行った。なお、高温高湿度下での保管試験にはヤマト科学社製Humidic Chamber 1G43Mを使用し、恒温恒湿器中に光が入らないよう完全に遮光して、80℃、相対湿度80%の条件下にて700時間処理を実施した。

(0031)

糸強度測定:強度保持率は、高温高湿度保管前後の引張強度を測定し、高温高湿保管し試験後の引張強度を高温高湿度保管試験機前の引張強度で除して求めた

。なお、引張強度の測定は、JIS-L1015に準じて引張試験機(島津製作所製、形式AG-50NKG)を用いて測定した。

[0032]

光暴露試験:水冷キセノンアーク式ウェザーメーター(アトラス社製、形式 C i 3 5 A)を使用し、金属フレームに糸をとりつけて装置にセットし、内側フィルターガラスに石英、外側フィルターガラスにボロシリケート、タイプ S を使用し、放射照度: $0.35\,\mathrm{W/m^2}$ (a t $340\,\mathrm{nm}$)、ブラックパネル温度: $0.35\,\mathrm{W/m^2}$ 度: $0.35\,\mathrm{W/m^2}$ 度: $0.35\,\mathrm{W/m^2}$ 方のの時間連続照射を行った

[0033]

紡糸:フィラメント径が11.5 μ m、1.5デニールになるような条件で紡糸を行った。紡糸温度175 $\mathbb C$ で孔径180 μ m、孔数166のノズルからフィラメントを適当な位置で収束させてマルチフィラメントにするように配置された第1洗浄浴中に押し出した。紡糸ノズルと第1洗浄浴の間のエアギャップには、より均一な温度でフィラメントが引き伸ばされるようにクエンチチャンバーを設置した。エアギャップ長は30cmとした。60 $\mathbb C$ の空気中にフィラメントを紡出した。テークアップ速度を200 $\mathbb C$ 0 $\mathbb C$ 00 \mathbb

[0034]

(実施例1)

窒素気流下、4, 6-ジアミノレゾルシノール二塩酸塩334.5g, テレフタル酸260.8g, 122%ポリリン酸2078.2gを60℃で30分間撹拌した後、ゆっくりと昇温して135℃で20時間、150℃で5時間、170℃で20時間反応せしめた。得られた30℃のメタンスルホン酸溶液で測定した固有粘度が30dL/gのポリ(p-フェニレンベンゾビスオキサゾール)ドープ2.0kgに29H, 31H-フタロシアニネート(2-) -N29, N30, N31, N32銅15.2gを添加して撹拌混合した。その後、前述の方法に

[0035]

(比較例1)

窒素気流下、4,6ージアミノレゾルシノール二塩酸塩334.5g,テレフタル酸260.8g,122%ポリリン酸2078.2gを60℃で30分間撹拌した後、ゆっくりと昇温して135℃で20時間、150℃で5時間、170℃で20時間反応せしめた。得られた30℃のメタンスルホン酸溶液で測定した固有粘度が30dL/gのポリ(p-7ェニレンベンゾビスオキサゾール)ドープ2.0kgを用いて、前述の方法により紡糸した。得られたポリベンザソール繊維より、カット長51mmのステープルファイバーを製作し、撚り係数3.5に設定し、綿番手で20Neの紡績糸を製作した。得られた紡績糸の引張強度は9.3cN/dtexであった。続いて、得られた紡績糸の高温高湿保管試験(80℃、80RH%)を行った結果、強度保持率は63%であった。さらに、光暴露試験を行った結果、強度保持率は63%であった。

[0036]

以上の結果から、比較例と比べ、実施例のポリベンザゾール繊維からなる紡績 糸は高温高湿度下に暴露した後の強度保持率および光暴露した後の強度保持率が 非常に高いことがわかる。

[0037]

【発明の効果】

本発明によると、高温高湿度下および光照射下に長時間暴露された場合であっても強度を充分に維持することができる防護材料、防護衣料および産業用資材等の繊維構造物に好適なポリベンザゾール繊維からなる紡績糸が提供できる。

【書類名】 要約書

【要約】①

【課題】高温高湿度下および光照射下に長時間暴露されても強度低下の小さい防護材料、防護衣料および産業用資材を構成する繊維構造物を提供することであり、特に耐久性に優れるポリベンザゾール繊維からなる紡績糸を提供するものである。

【解決手段】熱分解温度が200℃以上の高耐熱性であり鉱酸に溶解する有機顔料で、好ましくはその分子構造中に一N=及び/又はNH-基を有するもの、なかでもペリノン及び/又はペリレン類、フタロシアニン類、キナクリドン類、またはジオキサジン類を糸中に含有せしめることにより、高温高湿度下および光照射下に長時間暴露されても強度低下の小さい防護材料、防護衣料および産業用資材を構成する繊維構造物、特に耐久性に優れるポリベンザゾール繊維からなる紡績糸が得られることを見出した。

【選択図】なし

特願2002-314706

出願人履歴情報

識別番号

[000003160]

1. 変更年月日

[変更理由]

1990年 8月10日 新規登録

住 所 名

大阪府大阪市北区堂島浜2丁目2番8号

東洋紡績株式会社

2. 変更年月日 [変更理由]

2003年 4月 9日

名称変更 住所変更

住 所

大阪府大阪市北区堂島浜2丁目2番8号

氏 名 東洋紡績株式会社