МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.6.1

Спектральный анализ электрических сигналов

Выполнил:

Гисич Арсений

Б03-102

1 Аннотация

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью цифрового осциллографа и сравниваются с рассчитанными теоретически.

2 Теоретические сведения

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$

Здесь $\frac{a_0}{2}$ — среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

Назовем $шириной спектра \Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1$$

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: Последовательность цугов

Рис. 4: Спектр последовательности цугов

Амплитудно-модулированные колебания. Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t.$$

Коэффициент m называют **глубиной модуляции**. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно-модулированны колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t.$$

 $a_{\text{осн}}$ $a_{\text{бок}}$ $a_{$

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих: основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a_{ocn}=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулированного колебания: $a_{\textit{бок}}=\frac{A_0m}{2}$. Начальные фазы всех трех колебаний одинаковы.

3 Методика измерений

Экспериментальная установка состоит из цифрового генератора сигнала и цифрового осциллографа (рис. 7), соединённых между собой.

Рис. 7: Схема для исследования спектра сигналов

4 Используемое оборудование

- 1. генератор сигналов произвольной формы;
- 2. цифровой осциллограф;

5 Результаты измерений и обработка данных

5.1 Исследование спектра периодической последовательности прямоугольных импульсов

Спектры сигналов при различных ν_{noem} и τ представлены на рис. 11-18.

При фиксированных $\nu_{noem}=1~\kappa\Gamma u$ и $\tau=150~m\kappa c$ были измерены амплитуды a_n и частоты ν_n для первых 6 гармоник спектра. Рассчитанные и измеренные значения представлены в таб. 1. Для сравнения теоретически рассчитанной и измеренной амплитуд сделана нормировка по наименьшему значению.

n	$\nu_m, \kappa \Gamma u$	a_m	$норм(a_m)$	$ u_{uзм}, \kappa \Gamma u$	$\delta_{ u_{\scriptscriptstyle \mathcal{I}\mathcal{M}}}, \kappa \Gamma \mathcal{U}$	$a_{uзм}, MB$	$\delta_{a_{usm}}, MB$	$Hop_{\mathcal{M}}(a_{us_{\mathcal{M}}})$
1	1	144,51	8,81	1,00	0,02	820	2	8,54
2	2	128,76	7,85	2,00	0,02	736	2	7,67
3	3	104,80	6,39	3,00	0,02	600	2	6,25
4	4	75,68	4,62	4,00	0,02	432	2	4,50
5	5	45,02	2,75	5,00	0,02	264	2	2,75
6	6	16,39	1	6,00	0,02	96	2	1

Таблица 1: Результаты теоретического расчёта и измерений амплитуд и частот первых 6 гармоник спектра

Результаты измерений зависимости ширины спектра $\Delta \nu$ от времени импульса τ в диапазоне от 20 до 200 мкс при фиксированной $\nu_{nosm}=1~\kappa \Gamma u$ представлены в таб. 2.

τ , κc	$1/\tau, 1/c$	$\Delta \nu, \kappa \Gamma u$	$\delta_{\Delta \nu}$, κΓ μ
20	50000	50,20	0,02
70	14286	14,00	0,02
120	8333	8,00	0,02
170	5882	6,00	0,02
200	5000	5,00	0,02

Таблица 2: Результаты измерений зависимости ширины спектра $\Delta \nu$ от длительности импульса τ

График зависимости $\Delta \nu(1/\tau)$ представлен на рис. 8.

Рис. 8: График зависимости ширины спектра $\Delta \nu$ от обратной величины длительности импульса $1/\tau$

5.2 Исследование спектра периодической последовательности цугов

Спектры сигналов при различных ν_0 , T и N представлены на рис. 19-23.

При фиксированных параметрах $\nu_0=50~\kappa\Gamma u$ и N=5 была измерена зависимость расстояния $\delta\nu$ между соседними спектральными компонентами сигнала от периода T повторения импульсов в диапазоне $T=0,2-5~\kappa c$. Измеренные значения представлены в таб. 3.

T, м c	$\delta u, \Gamma u$	$\delta_{\delta u}, \Gamma u$
0,2	10000	10
1,2	800	10
2,2	440	10
3,2	300	10
4,2	240	10
5	200	10

Таблица 3: Результаты измерений зависимости $\delta \nu(T)$

Значение $\delta \nu$ при T=0,2 мс существенно отличается от общей зависимости и является ошибкой. Полученный график зависимости $\delta \nu (1/T)$ представлен на рис. 9.

Рис. 9: График зависимости расстояния между соседними спектральными компонентами сигнала $\delta \nu$ от обратной величины периода повторения 1/T

5.3 Исследование спектра амплитудно-модулированного сигнала

Картина сигнала представлена на рис. 24. Измеренные значения: $A_{max}=1,62~B,$ $A_{min}=0,56~B,$ $m=\frac{A_{max}-A_{min}}{A_{max}+A_{min}}=0,49\approx0,5,$ а значит равенство справедливо. Спектры сигналов при различных ν_0 и $\nu_{{\scriptscriptstyle Mod}}$ представлены на рис. 25-27.

При фиксированных параметрах $\nu_0 = 60 \ \kappa \Gamma u$ и $\nu_{Mod} = 5 \ \kappa \Gamma u$ была измерена зависимость отношения $a_{fo\kappa}/a_{och}$ амплитуд боковой и основной спектральных линий от глубины модуляции m в диапазоне от 10% до 100%. Измеренные значения представлены в таб. 4.

\overline{m}	$a_{\mathit{бok}}, \mathit{м}B$	$\delta_{a_{60\kappa}}, MB$	a_{och} , м B	$\delta_{a_{ocn}}, MB$	$a_{\textit{бok}}/a_{\textit{och}}$	$\delta_{a_{6o\kappa}/a_{och}}$
0,1	32	2	728	2	0,044	0,003
0,3	104	2	728	2	0,143	0,003
0,5	176	2	728	2	0,242	0,003
0,7	256	2	728	2	0,352	0,003
0,9	328	2	728	2	0,451	0,003
1	364	2	728	2	0,500	0,003

Таблица 4: Результаты измерений зависимости $a_{\textit{бок}}/a_{\textit{осн}}$ от m

Полученный график зависимости $a_{60\kappa}/a_{och}$ от m представлен на рис. 10.

Рис. 10: График зависимости отношения $a_{\it for}/a_{\it och}$ амплитуд боковой и основной спектральных линий от глубины модуляции m

5.4 Исследование спектра сигнала, модулированного по фазе

Спектры сигналов представлены на рис. 28-29.

6 Обсуждение результатов и выводы

В данной работе был исследован спектральный состав периодических электрических сигналов.

При исследовании спектра периодической последовательности прямоугольных импульсов при фиксированных параметрах ν_{noem} и τ были измерены амплитуды и частоты первых 6 гармоник (таб. 1). Измеренные значения соответствуют рассчитанным теоретически. Также была измерена зависимость ширины спектра $\Delta\nu$ от времени импульса τ . Из полученной зависимости (рис. 8) следует:

$$\Delta \nu \cdot \tau \simeq 1,01 \pm 0,01,$$

что соответствует соотношению неопределённостей в рамках погрешности. Основной вклад в погрешность вносит определение коэффициента зависимости, так как благодаря использованию цифровых приборов другие источники погрешности отсутствуют или их влияние несущественно.

При исследовании спектра периодической последовательности цугов была измерена зависимость расстояния $\delta\nu$ между соседними спектральными компонентами сигнала от периода T повторения импульсов. Из полученной зависимости (рис. 9) следует:

$$\delta\nu \cdot \tau \simeq 0,95 \pm 0,01,$$

что близко к соотношению неопределённостей. Здесь основной вклад в погрешность также вносит определение коэффициента зависимости.

При исследовании спектра амплитудно-модулированного сигнала была измерена зависимость отношения $a_{60\kappa}/a_{och}$ амплитуд боковой и основной спектральных линий от глубины модуляции m. Из полученной зависимости (рис. 10) следует:

$$\frac{a_{\text{for}}}{a_{\text{gen}}} = 0,510 \pm 0,004 \cdot m,$$

что соответствует теоретической зависимости $\frac{a_{\textit{бor}}}{a_{\textit{ocn}}} = \frac{m}{2}$. Аналогично здесь основной вклад в погрешность вносит определение коэффициента зависимости.

Также в данной работе был изучен спектр сигнала, модулированного по фазе. Спектры сигналов при различном максимальном отклонении φ_m приведены на рис. 28-29.

7 Приложение

Рис. 11: Спектр периодической последовательности прямоугольных импульсов при $\nu_{noem}=1~\kappa\Gamma u,~\tau=50~\kappa\kappa c$

Рис. 12: Спектр периодической последовательности прямоугольных импульсов при $\nu_{noem}=2~\kappa\Gamma u,~\tau=50~\kappa\kappa c$

Рис. 13: Спектр периодической последовательности прямоугольных импульсов при $\nu_{noem}=3~\kappa\Gamma u,~\tau=50~\kappa\kappa c$

Рис. 14: Спектр периодической последовательности прямоугольных импульсов при $\nu_{noem}=1,5~\kappa\Gamma u,~\tau=50~\kappa\kappa c$

Рис. 15: Спектр периодической последовательности прямоугольных импульсов при $\nu_{nosm}=1~\kappa \Gamma u,~\tau=60~\kappa\kappa c$

Рис. 16: Спектр периодической последовательности прямоугольных импульсов при $\nu_{noem}=1~\kappa\Gamma u,~\tau=40~\kappa \kappa c$

Рис. 17: Спектр периодической последовательности прямоугольных импульсов при $\nu_{nosm}=1~\kappa \Gamma u,~\tau=100~\kappa\kappa c$

Рис. 18: Спектр периодической последовательности прямоугольных импульсов при $\nu_{nosm}=1~\kappa\Gamma u,~\tau=150~\kappa\kappa c$

Рис. 19: Спектр периодической последовательности цугов при $\nu_0=50~\kappa \Gamma$ ц, $T=1~\kappa c$, N=5

Рис. 20: Спектр периодической последовательности цугов при $\nu_0=100~\kappa\Gamma u,~T=1~mc,~N=5$

Рис. 21: Спектр периодической последовательности цугов при $\nu_0=100~\kappa\Gamma u,~T=20~\kappa c,~N=5$

Рис. 22: Спектр периодической последовательности цугов при $\nu_0=100~\kappa\Gamma u,~T=1~mc,~N=10$

Рис. 23: Спектр периодической последовательности цугов при $\nu_0=100~\kappa \Gamma u,~T=1~mc,~N=3$

Рис. 24: Амплитудно-модулированный сигнал при $\nu_0=50~\kappa \Gamma u$, $\nu_{{\scriptscriptstyle Mod}}=2~\kappa \Gamma u$, и m=0,5

Рис. 25: Спектр амплитудно-модулированного сигнала при $\nu_0=50~\kappa\Gamma u$, $\nu_{mod}=2~\kappa\Gamma u$ и m=0,5

Рис. 26: Спектр амплитудно-модулированного сигнала при $\nu_0=50~\kappa\Gamma u,~\nu_{{\scriptscriptstyle Mod}}=5~\kappa\Gamma u$ и m=0,5

Рис. 27: Спектр амплитудно-модулированного сигнала при $\nu_0=60~\kappa \Gamma u,~\nu_{{\scriptscriptstyle Mod}}=5~\kappa \Gamma u$ и m=0,5

Рис. 28: Спектр модулированного по фазе сигнала при $\nu_0=50~\kappa\Gamma u$, $\nu_{{\scriptscriptstyle Mod}}=2~\kappa\Gamma u$ и $\varphi_m=10^\circ$

Рис. 29: Спектр модулированного по фазе сигнала при $\nu_0=50~\kappa\Gamma$ и, $\nu_{{\scriptscriptstyle Mod}}=2~\kappa\Gamma$ и и $\varphi_m=90^\circ$