

Modeling spatial continuity

Modeling Uncertainty in the Earth Sciences

Jef Caers
Stanford University

Motivation

Motivation

Build models

Get responses

Motivation

- Earth phenomena are not randomly distributed in space and time: this makes them predictable!
- Surface and subsurface modeling: a medium exists that has been created by processes (geological, morphological etc...)
- A form of "continuity" exists
 - "discontinuity" (e.g. faults) is a specific form of such continuity

What are mathematical or computer-based models that describe the spatial distribution of properties observed in these (complete or incomplete) datasets

 A model allows "filtering" and "exporting" the spatial variation seen in the dataset

- Allows building "Earth models" with similar spatial variation, but possibly constrained to data
- Allows randomizing the spatial variation and represent "spatial uncertainty"

Most common type models

- Variogram-based models
 - Simple, few parameters
 - Limited modeling capabilities
- Boolean (or object-based) models
 - More realistic
 - Difficult to constrain
- Training image-based models
 - Realistic
 - Easy to constrain

Limitations of these methods

Not applicable to modeling "structures"

The variogram

Modeling spatial continuity

Autocorrelation

Autocorrelation

Autocorrelation in 2D

Properties of the correlogram

Examples

Examples

Other representations

Typical experimental (semi)-variogram

Summarizing variograms

- What is the range and how does it vary with direction
- What is the nugget effect
- What is the behavior at the origin
- What is the sill value

These four elements constitute a model, i.e. you summarized a complex spatial variation with a limited set of parameters

Limitations of variograms

<u>Variograms</u>: modeling "homogeneous heterogeneity" for modeling properties within major layers or facies

Limitations of the variogram

What does the Earth really look like?

Tidal sand bars

Meandering rivers

Deltas

Craters

Carbonate Reefs (today)

Carbonate Mounds (paleo)

Atol (today)

Atol (paleo)

Spatial distribution of Atols

Inner architecture of an Atol

satellite image

How to create Earth models that represent this observation?

"Simulate" the physical processes of deposition on a computer

Observed

Simulated

Physical-process models

AdGIF UNREGISTERED - www.gif-animator.com

Physical process models

- Take weeks to run on a computer
- Results are deterministic: one computer run = one model => NO UNCERTAINTY

Idea: mimic the physical process with a "statistical process"

Boolean or object model

Seconds

(Quantifying uncertainty is possible)

The object-based or Boolean model

Modeling spatial continuity

Object (Boolean) model

Define spatial variation as a set of objects, each type of object defined using a limited set of parameters

Define spatial placement of an object and interaction between objects

We can raster the objects on a grid

Building a Boolean model

Carbonate Geology

Hierarchy

Depo-Time: era of deposition

Depo-system: deepwater, fluvial, deltaic...

Depo-zones: regions with similar depo-shapes

Depo-shapes: basic geometries, geobodies

Depo-elements: internal architectures

Depo-facies: lithologies, associations

Constructing a Boolean model

- Define a hierarchy of objects
- Define object geometry
- Define internal "architecture" of the object
- Define placement of object spatially
- Define interaction between objects

Geometries/dimensions

Example

Internal parameters of the object

those parameters defining geometries (e.g. width, length, orientation)

External variables controlling the shape

spatial properties such as topography, water depth that control shape

Architectural elements

Example

Spatial distribution

Most basic statistical process
= Poisson Process

Extensions of Poisson

Poisson process with spatially varying intensity (density of points)

Cluster Process

Marked Poisson process

Each poisson point gets a "mark" which could be an object with varying size

Rules

- Spatial distribution of depo-shapes: default = Poisson process
- Interaction between depo-shapes (overlap and erosion)
- Rules are parameterized with internal parameters(e.g. Poisson intensity) that may be controlled by external variables (e.g. topography)

Parameterization of the object

Every parameter can be defined as constant or a distribution

Parameter values can be either constant or following an intensity function (locally varying property)

Carbonate mounds on a anticline

Increased shearing
Decreasing outer envelope
Rapidly decreasing core size

Mound

Inner part function of the slope

Positioning

Stacking

Interaction between objects

- Hierarchy by the order of definition
 - First defined object erodes the second one etc...
- Overlap rules
 - No overlap
 - Full overlap
 - Attach