Solving Clafer Models with Choco

Jia (Jimmy) Liang

University of Waterloo

December 17, 2012

Clafer with Alloy

- Translation from Clafer to Alloy is straight forward
- Semantically similar: sets, joins, constraints
- Clafer corresponds to sig with additional constraints to enforce structure
- Integers are handled by bit blasting

Choco

- Constraint programming library written in Java
- 4 types of variables
 - Integer variable Java integers
 - Set variable Sets over integers
 - Real variable Java double
 - Task variable
- AC3, AC3rm, AC2001, AC2008, etc.
- Single objective
- Custom constraints

Notation

Set

$$\begin{aligned} & \textit{set} \subseteq \{0,1,2,3,4\} \\ & \textit{set} = \{1,3,4\} \\ & |\textit{set}| = \mathsf{number of filled in slots} = 3 \end{aligned}$$

$$set \subseteq \{1, 2, 3, 4\}$$

 $set = \{1, 3, 4\}$

Notation

Integer

$$\begin{split} \textit{intarray} &\in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \\ \textit{intarray} &= [23, 43, 22, 0, 1] \\ \mathbb{Z}_n &= \{0, 1, ..., n\} \\ \mathbb{Z}_{m,n} &= \{m, m+1, ..., n\} \end{split}$$

Simple model

Clafer 1: Cats

1 Cat 2 2 Eye 2

$$scope(Cat) = 3, scope(Eye) = 6$$

Parent

$$\textit{Cat} \subseteq \{0,1,2\}$$

Clafer 2: Cats

- 1 Cat0
- 2 Cat1

Parent-child

$$\textit{Cat} \subseteq \{0,1,2\}$$

$$\textit{Cat}_0 \textit{Eyes}, \textit{Cat}_1 \textit{Eyes}, \textit{Cat}_2 \textit{Eyes}, \textit{UnusedEyes} \subseteq \{0,1,2,3,4,5\}$$

$$\textit{Eye} = \subseteq \{0,1,2,3,4,5\}$$

$$\bigwedge_{i=0}^{2} (\textit{if } i \in \textit{Cat then } |\textit{Cat}_i \textit{Eyes}| = 2 \textit{ else } \textit{Cat}_i \textit{Eyes} = \emptyset)$$

$$\textit{Eye} = \textit{Cat}_0 \textit{Eyes} \cup \textit{Cat}_1 \textit{Eyes} \cup \textit{Cat}_2 \textit{Eyes}$$

$$\text{Cat}_0 \text{Eyes} \cup \text{Cat}_2 \text{Eyes}$$

$$\text{Cat}_0 \text{Eyes} \cup \text{Cat}_2 \text{Eyes}$$

$$\text{Unused Eyes}$$

$$\text{Cat}_0 \text{Eyes} \cup \text{Cat}_2 \text{Eyes}$$

$$\text{Unused Eyes}$$

Parent pointers

$$\textit{EyeParents} \in \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

From official documentation: **inverseSet**($\langle x_1,..,x_n\rangle,\langle y_1,..,y_m\rangle$) states that x_i has value j if and only if y_j contains value i:

$$x_i = j \iff i \in y_j, \forall i = 0...n - 1, j = 0...m - 1$$

Isomorphism

• 270 solutions, all isomorphic

Isomorphism

- 270 solutions, all isomorphic
- Force EyeParents to be sorted, 1 solution

Isomorphism

- 270 solutions, all isomorphic
- Force EyeParents to be sorted, 1 solution
- Shrink the bounds of *Cat_iEyes*

$$Cat_0Eyes \subseteq \{0,1\}$$

$$Cat_1Eyes \subseteq \{2,3\}$$

$$Cat_2Eyes \subseteq \{4,5\}$$

Joining with children

How to implement the expression SomeSetOfCat.Eye? Suppose SomeSetOfCat is a subexpression that evaluates to $\{Cat_1, Cat_2\}$.

Joining with inherited children

Clafer 3: Animals

```
1 abstract Animal
2 Head
3
4 Cat : Animal
5 Dog : Animal 2
```

$$\mathit{scope}(\mathit{Cat}) = 1, \mathit{scope}(\mathit{Dog}) = 2, \mathit{scope}(\mathit{Animal}) = 3, \mathit{scope}(\mathit{Head}) = 3$$

How do we join SomeSetOfDog.Head?

Abstract clafers

Abstract clafers have the same representation as concrete clafers.

Inherited clafers

Dog and Cat "reserve" space in Animal.

$$Cat_0 = Animal_0, Dog_0 = Animal_1, Dog_1 = Animal_2$$

Upcasting

How do we join SomeSetOfDog.Head? Suppose $SomeSetOfDog = \{Dog_1\}$. First "upcast" SomeSetOfDog to SomeSetOfAnimal.

Therefore $SomeSetOfAnimal = \{Animal_2\}$. Then join SomeSetOfAnimal.Head like previously described.

Working with set variables

For example, how do we implement the offset operation from the previous slide?

Let X be an experssion.

$$X \subseteq \{m, m+1, ..., n\}$$

Suppose we want to offset X by z. Create a new set variable Y.

$$Y \subseteq \{m + z, m + z + 1, ..., n + z\}$$
 where $|Y| = |X|$

Working with set variables

For example, how do we implement the offset operation from the previous slide?

Let X be an experssion.

$$X \subseteq \{m, m+1, ..., n\}$$

Suppose we want to offset X by z. Create a new set variable Y.

$$Y \subseteq \{m + z, m + z + 1, ..., n + z\}$$
 where $|Y| = |X|$

If n - m is small

$$\bigwedge_{i=m}^{n} (i \in X \implies i + z \in Y)$$

Working with set variables

For example, how do we implement the offset operation from the previous slide?

Let X be an experssion.

$$X \subseteq \{m, m+1, ..., n\}$$

Suppose we want to offset X by z. Create a new set variable Y.

$$Y \subseteq \{m + z, m + z + 1, ..., n + z\}$$
 where $|Y| = |X|$

If n - m is small

$$\bigwedge_{i=m}^{n} (i \in X \implies i + z \in Y)$$

If b - a is small where $a \le |X| \le b$

Create new integer variables $y_0, y_1, ..., y_{b-a} \in \mathbb{Z}_{m,n}$.

$$\bigwedge_{i=a}^{b} (|X| = i \implies all Different(y_0, ..., y_{i-1}) \land (\bigwedge_{j=0}^{i} y_i \in X \land y_i + z \in Y)$$

References

Clafer 4: Age

- 1 Animal 4
- 2 Age \rightarrow integer

$$scope(Age) = 5$$

Clafer 5: Age solution

- 1 AnimalO
 - Age0 = 13
- 3 Animal1
 - Age1 = 45
- 5 Animal2
 - Age2 = 23
- 7 Animal3
- Age3 = 1

Optimize fixed size expressions

What if we knew the exact size of an expression at compile time? We can use an array of integer variables rather than a set variable.

$$SomeAgeSet = [x]$$

 $SomeAgeSet.Ref = [AgeRef[x]]$

In general, every Clafer expression has two implementations: one for variable size sets and the another for fixed size sets.

Reals/Strings?

- Choco only provides set variables for integers
- Fixed size expressions avoid sets
- Real and string support only viable for fixed size expressions (not yet implemented)
- Very restrictive

Clafer 6: Boat race starts after bike race

```
1 BikeRace 2
2          EndTime → Real
3 BoatRace 2
4          StartTime → Real
5
6 [BikeRace.EndTime = BoatRace.StartTime]
```

Implementation

Simple model test

Clafer 7: Animal kingdom

```
1 abstract Animal
      Head
           Eye 2
           Ear 2
           Mouth
    \texttt{Age} 	o 	ext{integer}
    Torso
   Leg 4
           Feet
10
  Cat: Animal 4
    Whiskers 6
  Rhino: Animal 3
   Horn
15 Elephant: Animal 2
      Trunk
16
```

Simple model test

- Alloy 4.2 with Minisat
- Default settings except extended heap to 2GB
- 6-year-old Dell laptop

Solver	Time to compute first solution		
Alloy	15 min		
Choco	2 sec		

Realistic model test

- Linked list SPL, 18 features
- Model by Rafael Olaechea adapted from Scalable Prediction of Non-functional Properties in Software Product Lines
- Measurements are scaled down by a factor of 10

Solver	Time to compute solution				
	first (down)	first	optimum (down)	optimum	
Alloy	11.5 sec	OOM (13 mins)	N/A	N/A	
Choco	1.3 sec	1.3 sec	5.2 sec	5.3 sec	

Future work

- Real and string support
- Custom constraints
 - Join with references
 - Offset
 - Sum of a set
 - Array of integer variables to set variable