DATA ANALYSIS PYTHON PROJECT - BLINKIT ANALYSIS

Import Libraries

In [3]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

Import Raw Data

In [5]: df = pd.read_csv("C:/Users/HP/OneDrive/Desktop/blinkit_data.csv")

Sample Data

In [7]: df.head(10)

OII:	+Г	7	٦	0
Оu	۲L	/	J	0

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermarke Type
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermarke Type2
2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Small	Supermarke Type
3	Regular	FDL50	Canned	2000	OUT013	Tier 3	High	Supermarke Type
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermarke Type
5	low fat	FDS52	Frozen Foods	2020	OUT017	Tier 2	Small	Supermarke Type
6	Low Fat	NCU05	Health and Hygiene	2011	OUT010	Tier 3	Small	Grocery Store
7	Low Fat	NCD30	Household	2015	OUT045	Tier 2	Small	Supermarke Type
8	Low Fat	FDW20	Fruits and Vegetables	2000	OUT013	Tier 3	High	Supermarke Type
9	Low Fat	FDX25	Canned	1998	OUT027	Tier 3	Medium	Supermarke Type:
•								Þ

In [8]: df.tail(10)

[8]:		Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet 1
	8513	Regular	DRY23	Soft Drinks	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
	8514	low fat	FDA11	Baking Goods	1998	OUT027	Tier 3	Medium	Superma T <u>ı</u>
	8515	low fat	FDK38	Canned	1998	OUT027	Tier 3	Medium	Superma T <u>·</u>
	8516	low fat	FDO38	Canned	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
	8517	low fat	FDG32	Fruits and Vegetables	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
	8518	low fat	NCT53	Health and Hygiene	1998	OUT027	Tier 3	Medium	Superma T <u>i</u>
	8519	low fat	FDN09	Snack Foods	1998	OUT027	Tier 3	Medium	Superma T <u>ı</u>
	8520	low fat	DRE13	Soft Drinks	1998	OUT027	Tier 3	Medium	Superma T <u>ı</u>
	8521	reg	FDT50	Dairy	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
	8522	reg	FDM58	Snack Foods	1998	OUT027	Tier 3	Medium	Superma T <u>ı</u>
	4 4	_	_	_	_				

Size of Data

```
In [10]: print("Size of Data: ", df.shape)
```

Size of Data: (8523, 12)

Field Information

Data Types

```
In [14]: df.dtypes
Out[14]: Item Fat Content
                                        object
          Item Identifier
                                        object
          Item Type
                                        object
          Outlet Establishment Year
                                         int64
          Outlet Identifier
                                        object
          Outlet Location Type
                                        object
          Outlet Size
                                        object
          Outlet Type
                                        object
          Item Visibility
                                       float64
                                       float64
          Item Weight
         Sales
                                       float64
         Rating
                                       float64
          dtype: object
```

Data Cleaning

BUSINESS REQUIREMENTS

KPI's Requirements

```
In [21]: #Total sales
    total_sales = df['Sales'].sum()

#Average of sales
    avg_sales= df['Sales'].mean()

#Number of items
    num_of_sales= df['Sales'].count()

#Average rating
    avg_rating= df['Rating'].mean()

#Display
    print(f"Total Sales: ${total_sales: ,.1f}")
    print(f"Average of Sales: ${avg_sales: ,.1f}")
    print(f"Number of items: {num_of_sales: ,.0f}")
    print(f"Average rating: {avg_rating: ,.1f}")
```

Total Sales: \$ 1,201,681.5 Average of Sales: \$ 141.0 Number of items: 8,523 Average rating: 4.0

CHART'S REQUIREMENTS

Total Sales by Fat Content

Sales by Fat Content

Total Sales by Item Type

```
In [62]: Sales_by_Item_Type = df.groupby('Item Type')['Sales'].sum().sort_values(ascending=F
plt.figure(figsize=(10,6))
bars= plt.bar(Sales_by_Item_Type.index, Sales_by_Item_Type.values)

plt.xticks(rotation = -90)
plt.xlabel('Item Type')
plt.ylabel('Total Sales')
```


Fat Content by Outlet for Total Sales

```
In [71]: grouped = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].sum().u
grouped = grouped[['Regular', 'Low Fat']]

ax = grouped.plot( kind= 'bar', figsize = (8,5), title = 'Outlet Tier by Item Fat C
plt.xlabel('Outlet Location Type')
plt.ylabel('Total Sales')
plt.legend(title='Item Fat Content')
plt.tight_layout()
plt.show()
```


Outlet Location Type

Total Sales by Outlet Establishment

```
In [78]: sales_by_year= df.groupby(['Outlet Establishment Year'])['Sales'].sum().sort_index(
    plt.figure(figsize=(9, 6))
    plt.plot(sales_by_year.index, sales_by_year.values, marker = 'o', linestyle = '-')
    plt.xlabel('Outlet Establishment Year')
    plt.ylabel('Total Sales')

for x,y in zip(sales_by_year.index, sales_by_year.values):
        plt.text(x, y, f'{y:,.0f}', ha='center', va= 'bottom', fontsize = 8)

plt.tight_layout()
    plt.show()
```


Total Sales by Outlet Size

Sales by Outlet Size

Total Sales by Outlet Location

```
In [90]: sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_index()
    sales_by_location = sales_by_location.sort_values('Sales' , ascending=False)

plt.figure(figsize=(8, 3))
    ax = sns.barplot(x ='Sales', y='Outlet Location Type', data=sales_by_location)

plt.title('Sales by Outlet Location')
    plt.xlabel('Total Sales')
    plt.ylabel('Outlet Location Type')
    plt.tight_layout()
    plt.show()
```



```
In [ ]:
```