#### LGF\_Boxplot\_DInt

### **Short description**

If you want to get an overview of existing data, you can use a Boxplot diagram. A Boxplot shows you in which area the data is located and how it is distributed over this area. A Boxplot consists of the following parameters:

- Minimum (smallest occurring value of the sample)
- Lower or first quartile (below this value are 25% of the sample values)
- Median or second quartile (below this value are 50% of the sample values)
- Upper or third quartile (below this value are 75% of the sample values)
- Maximum (largest occurring value of the sample)



#### WinCC-Control

To visualize the Boxplot, the Siemens Industry Online Support offers you a Net-Control, which you can use in conjunction with WinCC Runtime Professional. You can find the download under the entry ID: 81662739.



### **Block**



# Input parameters

| Parameters   | Data type | Description                                            |
|--------------|-----------|--------------------------------------------------------|
| execute      | BOOL      | Activation of the calculation with each positive edge. |
| rangeOutlier | LREAL     | Outlier detection:                                     |
|              |           | 0: Outlier detection is deactivated                    |
|              |           | 0-1: Invalid value                                     |
|              |           | >1: Outlier detection is activated.                    |

# Input/output parameters (InOut)

| Parameters | Data type        | Description                                |
|------------|------------------|--------------------------------------------|
| values     | ARRAY[*] of DINT | Array that should be used for calculation. |

# **Output parameters**

| Parameters        | Data type | Description                                                  |
|-------------------|-----------|--------------------------------------------------------------|
| outlierMax        | LREAL     | Upper outliers in %.                                         |
| max               | DINT      | Maximum Value, not an outlier.                               |
| q75               | LREAL     | 3rd quartile or Q75 of the data series.                      |
| median            | LREAL     | 2nd quartile or Median of the data series.                   |
| q25               | LREAL     | 1st quartile or Q25 of the data series.                      |
| min               | DINT      | Minimum Value, not an outlier.                               |
| outlierMin        | LREAL     | Lower outliers in %.                                         |
| skewness          | LREAL     | Skewness of the data series.                                 |
| error             | BOOL      | FALSE: No error                                              |
|                   |           | TRUE: An error occurred during the execution of the FB.      |
| status            | WORD      | 16#0000-16#7FFF: Status of the FB,                           |
|                   |           | 16#8000-16#FFFF: Error identification (see following Table). |
| subFunctionStatus | WORD      | Status or return value of the called FCs and system blocks.  |

### Status and error displays

| status   | Meaning                                      | Remedy / notes                                                                                                                 |
|----------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 16#0000  | No error                                     | -                                                                                                                              |
| 16 #7000 | Block is not being edited                    | -                                                                                                                              |
| 16#7001  | First FB call.                               | -                                                                                                                              |
| 16#8200  | Negative array boundary not allowed          | Check the array at the input.                                                                                                  |
| 16#8600  | Error in command "LGF_ShellSort_DInt".       | Check the error code in "subFunctionStatus". Information concerning this block is provided in the documentation of this block. |
| 16#9101  | The parameter "rangeOutlier" type is invalid | Enter a valid "rangeOutlier" value for the parameter:  O: Outlier detection is deactivated  >1 Valid value.                    |

### Principle of operation

The block sorts the data series and then calculates the so-called "five-point summary":

| Characteristic value of the five-point summary                            | Output parameter of the block |
|---------------------------------------------------------------------------|-------------------------------|
| Minimum (smallest occurring value of the sample)                          | min                           |
| Lower or first quartile (below this value are 25% of the sample values)   | q25                           |
| Median or second quartile (below this value are 50% of the sample values) | median                        |
| Upper or third quartile (below this value are 75% of the sample values)   | q75                           |
| Maximum (largest occurring value of the sample)                           | max                           |

If outlier detection is activated, the block first calculates the limits. From these limit values, the values are recognized as outliers:

$$Bound_{lower} = q25 - rangeOutlier * (q75 - q25)$$
  
 $Bound_{upper} = q75 + rangeOutlier * (q75 - q25)$ 

The block then calculates new values for the parameters "max" and "min", which lie within the outlier limits. The outliers are counted and output as a percentage.

To make it easier to judge how the data is distributed, the block also calculates the skew. The skewness lies between the values -1 and 1 with the following meaning:

- -1: extremely left skewed distribution
- 0: symmetrical distribution
- 1: extreme right-skew distribution

The elements of the passed array are sorted in ascending order by the block. The "LGF\_Shellsort\_DInt" block is used for sorting.

### The parameters are calculated as follows:

| Parameters                     | Formula                                                                                                                                                                                                                                                                                  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| q25 (1st quartile)             | $q_{25} = x_{(k)}$ with $k = \frac{\left\{\left[\frac{1}{2}(n+1)\right]+1\right\}}{2} = \frac{n+3}{4}$                                                                                                                                                                                   |
| median / q50<br>(2nd quartile) | $q_{50} = x_{([n+1]/2)}$                                                                                                                                                                                                                                                                 |
| q75 (3rd quartile)             | $q_{75}=x_{(n+1-k)}$ with $n+1-k=\frac{3n+1}{4}$ n:= number of samples (size of array)  If the result of the element to be determined (from which the quartiles can be derived) is not an integer, the quartile is calculated from the linear fraction between the two adjacent samples. |
| skewness                       | skewness = $\frac{(q_{25} + q_{75}) - 2 * q_{50}}{q_{75} - q_{25}}$ <b>Note:</b> This is just an approximation.                                                                                                                                                                          |

#### **Further information on libraries in TIA Portal:**

- Topic page libraries
   https://support.industry.siemens.com/cs/ww/en/view/109738702
- Guideline on Library Handling https://support.industry.siemens.com/cs/ww/en/view/109747503
- Programming Guideline for S7-1200/1500 in chapter "Libraries" https://support.industry.siemens.com/cs/ww/en/view/81318674
- Programming Styleguide
   https://support.industry.siemens.com/cs/ww/en/view/81318674