NoSQL 数据库

pwlin1992@gmail.com

2017年11月6日

Contents

1	NoSQL 简介	1
2	NoSQL 兴起的原因	2
	2.1 RDBMS 无法满足 Web 2.0 的需求	2
	2.2 NoSQL 与 RDBMS 的对比	2
3	NoSQL 的类型	2
	3.1 键值数据库	2

1 NoSQL 简介

灵活的可扩展性

RDBMS 很难实现"横向扩展",在面对数据库负载大规模增加时,往往需要通过<mark>升级硬件</mark>来实现"纵向扩展"。

横向扩展:一个 DBMS 不够用,则用两个,三个。

纵向扩展:一个 DBMS 不够用,则升级硬件,使其更快。

NoSQL 在设计之初就是为了满足"横向扩展"的需求,因此天生具备良好的水平扩展能力。

灵活的数据模型

摆脱 RDBMS 的各种束缚条件,采用键/值、列族等非关系模型,允许在一个数据元素里存储不同类型的数据。

与云计算紧密融合

云计算具有很好的水平扩展能力,可以根据资源使用情况进行自由伸缩,各种资源可以动态加入或退出。NoSQL数据库可以凭借自身良好的横向扩展能力,充分自由利用云计算基础设施,很好地融入到云计算环境中,构建基于 NoSQL 的云数据库服务。

2 NoSQL 兴起的原因

2.1 RDBMS 无法满足 Web 2.0 的需求

无法满足海量数据的管理需求

对于 RDBMS 来说,在一张 10 亿条记录的表里进行 SQL 查询,效率极其低下。

无法满足数据高并发的需求

在 Web 1.0 时代,通常采用动态页面静态化技术,事先访问数据库生成静态页面供浏览者访问,从而保证在大规模用户访问时,也能够获得较好的实时响应性能。但是在 Web 2.0 时代,各种用户都在不断地发生更新,如:购物记录、搜索记录等信息都需要实时更新,动态页面静态化技术基本无用武之地,所有信息都需要动态实时生成,这就会导致高并发的数据库访问,可能产生每秒上万次的读写请求,对于很多 RDBMS 而言都是难以承受的。

无法满足高可扩展性和高可用性的需求

在 Web 2.0 时代,不知名的网站可能一夜爆红,知名网站也有可能因为发布了热门信息而引来 大量用户围观,这些都会导致对数据库读写负荷的急剧增加,需要数据库能够在短时间内迅速 提升性能应对突发需求。而 RDBMS 难以水平扩展,无法像网页服务器和应用服务器那样简单 通过添加更多硬件和服务节点来扩展性能和负载能力。

2.2 NoSQL 与 RDBMS 的对比

NoSQL 与 RDBMS 各有优劣, NoSQL 缺乏数学理论基础,复杂查询性能不高,不能实现事务强一致性,很难实现数据完整性。在实际应用中,公司一般会采用两者混合使用的方式,如:对于购物车这种临时性数据,采用键值存储会更加高效,而当前产品和订单信息则适合存放在关系数据库中,大量的历史订单信息则适合保存在类似 MongoDB 的文档数据库中。

3 NoSQL 的类型

3.1 键值数据库

键值数据库使用哈希表,表中的 key 可以用来定位 value,即存储和检索具体的 value。 value 对数据库而言是不可见的,不能对 value 进行索引和查询,只能通过 key 进行查询,value 可以存储任意类型的数据。

在存在大量写操作的情况下,键值数据库可以比关系数据库取得明显更好的性能。因为 RDBMS 需要建立索引来加速查询,当存在大量写操作时,索引会发生频繁更新,由此会产生 高昂的索引维护代价。

Figure 1: NoSQL 与 RDBMS 的对比 比较标准 RDBMS NoSQL

世紀 大 超大	比较标准	RDBMS	NoSQL	备注
##	数据库原理	完全支持	部分支持	
#	数据规模	大	超大	NoSQL可以很容易通过添加更多设备来支持更大规
在	数据库模式	固定	灵活	NoSQL不存在数据库模式,可以自由灵活定义并有
□致性	查询效率	快	简单查询,但是 不具备高度结构 化查询等特性, 复杂查询的性能	RDBMS信助于紧引机制可以实现快速查询(包括证录查询和范围查询) 很多NoSQL数据库没有面向复杂查询的索引,虽然 NoSQL可以使用MapReduce来加速查询,但是,在
一致性	比较标准	RDBMS	NoSQL	备注
世界 と	一致性	强一致性	弱一致性	RDBMS严格遵守事务ACID模型,可以保证事务强一致性 很多NoSQL数据库放松了对事务ACID四性的要求,而是遵守BASE模型,只能保证最终一致性
扩展性 一般 好 比较有限 NoSQL在设计之初就充分考虑了横向扩展的需求,可以很容易通过添加廉价设备实现扩展 RDBMS在任何时候都以保证数据一致性为优先目标,其次才是优化系统性能。随着数据规模的增大,RDBMS为了保证严格的一致性,只能提供相对较弱的可用性 大多数NoSQL都能提供较高的可用性 大多数NoSQL都能提供较高的可用性 大多数NoSQL都能提供较高的可用性 大多数NoSQL和能提供较高的可用性 大多数NoSQL还没有行业标准,不同的NoSQL数据库都有自己的查询语言,很难规范应用程序接口 StoneBraker认为:NoSQL缺乏统一查询语言,将会拖慢NoSQL发展 RDBMS经过几十年的发展,已经非常成熟,Oracle等大型厂商都可以提供很好的技术支持 NoSQL在技术支持方面仍然处于起步阶段,还不成熟,缺乏有力的技术支持	数据完整性	容易实现	很难实现	
回用性 好 很好 目标,其次才是优化系统性能,随着数据规模的增大,RDBMS为了保证严格的一致性,只能提供相对较弱的可用性大多数NoSQL都能提供较高的可用性大多数NoSQL都能提供较高的可用性大多数NoSQL都能提供较高的可用性大多数NoSQL都能提供较高的可用性大多数NoSQL还没有行业标准,不同的NoSQL数据库都有自己的查询语言,很难规范应用程序接口StoneBraker认为:NoSQL缺乏统一查询语言,将会拖慢NoSQL发展 ***********************************	扩展性	一般	好	NoSQL在设计之初就充分考虑了横向扩展的需
RDBMS已经标准化(SQL) NoSQL还没有行业标准,不同的NoSQL数据库都有自己的查询语言,很难规范应用程序接口StoneBraker认为: NoSQL缺乏统一查询语言,将会拖慢NoSQL发展 RDBMS经过几十年的发展,已经非常成熟,Oracle等大型厂商都可以提供很好的技术支持NoSQL在技术支持方面仍然处于起步阶段,还不成熟,缺乏有力的技术支持	可用性	好	很好	
RDBMS已经标准化(SQL) NoSQL还没有行业标准,不同的NoSQL数据库都有自己的查询语言,很难规范应用程序接口StoneBraker认为: NoSQL缺乏统一查询语言,将会拖慢NoSQL发展 RDBMS经过几十年的发展,已经非常成熟,Oracle等大型厂商都可以提供很好的技术支持NoSQL在技术支持方面仍然处于起步阶段,还不成熟,缺乏有力的技术支持	比较标准	RDBMS	NoSQL	冬注
技术支持 高 低 Oracle等大型厂商都可以提供很好的技术支持 NoSQL在技术支持方面仍然处于起步阶段,还 不成熟,缺乏有力的技术支持				RDBMS已经标准化(SQL) NoSQL还没有行业标准,不同的NoSQL数据库 都有自己的查询语言,很难规范应用程序接口 StoneBraker认为: NoSQL缺乏统一查询语言,
	技术支持	高	低	Oracle等大型厂商都可以提供很好的技术支持 NoSQL在技术支持方面仍然处于起步阶段,还
	可维护性	复杂	复杂	

Key_1	Value_1
Key_2	Value_2
Key_3	Value_1
Key_4	Value_3
Key_5	Value_2
Key_6	Value_1
Key_7	Value_4
Key_8	Value_3

Figure 2: 键值数据库

相关产品	Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached
数据模型	键/值对 键是一个字符串对象 值可以是任意类型的数据,比如整型、字符型、数组、列表、集合等
典型应用	涉及频繁读写、拥有简单数据模型的应用 内容缓存,比如会话、配置文件、参数、购物车等 存储配置和用户数据信息的移动应用
优点	扩展性好,灵活性好,大量写操作时性能高
缺点	无法存储结构化信息,条件查询效率较低
不适用情形	不是通过键而是通过值来查:键值数据库根本没有通过值查询的途径 需要存储数据之间的关系:在键值数据库中,不能通过两个或两个以上 的键来关联数据 需要事务的支持:在一些键值数据库中,产生故障时,不可以回滚
使用者	百度云数据库(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter (Redis和Memcached)、StackOverFlow(Redis)、Instagram (Redis)、Youtube(Memcached)、Wikipedia(Memcached)

Figure 3: 键值数据库