Applied Bayesian Data Analysis — Chapter 15

Kim Albertsson

CERN and Lulea University of Technology kim.albertsson@ltu.se

December 3, 2019

Chapter 15

Overview of the Generalised Linear Model

"Generalised Linear Model" (GLM)

Estimate parameters as first-order functions of input variables (as opposed to zeroth-order). For one input variable:

$$y \sim \mathcal{N}(\mu, \sigma)$$
 cmp. $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0$ $\mu = \beta_0 + \beta_1 x_1$

The linear model is the simplest model. The GLM in full:

$$\lim_{\beta}(\widehat{x}) = \beta_0 + \sum_{i}^{K} \beta_i x_i + \sum_{i}^{K} \sum_{j=i+1}^{K} \beta_i x_i x_j$$
$$\mu = f(\lim_{\beta}(\widehat{x}), \theta_A)$$
$$y \sim \operatorname{pdf}(\mu, \theta_B)$$

Note: Other models are possible e.g. non-linear function approximators (Restricted Boltzmann Machines/Deep Belief Networks). Analysis becomes more involved.

Types of variables

```
Input/Output
   Predictor
             x.
  Predicted
             y.
Scale types
      Metric
             Distances make sense. Ordinal. Often continuous. E.g. tone
             frequency.
     Ordinal
             Ordinal. E.g. "first", "second".
    Nominal
             Non-ordinal. Discrete. E.g. labels: "plane", "cat".
      Count
```

Discrete metric.

Linear combination of metric predictors (I)

Linear function: Additivity (f(x+a) = f(x) + f(a)) and Homogeneity $(f(ax) = a \cdot f(x))$

No interactions:

$$\lim_{\beta}(x) = \beta_0 + \sum_{k}^{K} \beta_k x_k$$

Linear combination of metric predictors (I)

Linear combination of metric predictors (II)

Bilinear function: \sim polynomial function with no self-interactions:

$$f(x + a, y) = f(x, y) + f(a, y)$$

$$f(x, y + a) = f(x, y) + f(x, a)$$

$$f(ax, y) = f(x, ay) = a \cdot f(x, y)$$

With interactions (conditionally linear):

$$\lim_{\beta}(x) = \beta_0 + \sum_{k=j+1}^{K} \beta_k x_k + \sum_{j=1}^{K} \sum_{k=j+1}^{K} \beta_{jk} x_j x_k$$

Linear combination of metric predictors (II)

Aside: Notation for linear combinations (I)

Common approach: write down the power series expansion

$$f(x_1) = \beta_0 + \beta_1 x_1 = \beta_0 x_1^0 + \beta_1 x_1^1$$

Works for two variables:

$$f(x_1, x_2) = \beta_{00} x_1^0 x_2^0 + \beta_{10} x_1^1 x_2^0 + \beta_{01} x_1^0 x_2^1 + \beta_{11} x_1^1 x_2^1 + \dots$$
$$= \sum_{i=0}^{P} \sum_{j=0}^{P} \beta_{ij} x_1^i x_2^j$$

Problem: Scaling to arbitrary dimensions, notation unwieldy:

$$f(\widehat{x}) = \sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} \dots \left(\beta_{ijk\dots} x_1^i x_2^j x_3^k \dots \right)$$

Aside: Notation for linear combinations (II)

(One) solution: Introduce bias in feature vector:

$$\widehat{x} = \langle x_1.x_2, \ldots \rangle \rightarrow \widehat{x} = \langle 1, x_1, x_2, \ldots \rangle$$
:

$$f(x_1) = \beta_0 + \beta_1 x_1 = \beta_0 x_0 + \beta_1 x_1 : x_0 = 1$$

$$f(x_1, x_2) = \beta_{00} x_0 x_0 + \beta_{01} x_0 x_1 + \beta_{02} x_0 x_2 + \beta_{12} x_1 x_2$$

$$= \beta_{00} + \beta_{01} x_1 + \beta_{02} x_2 + \beta_{12} x_1 x_2$$

$$f(\widehat{x}) = \sum_{i=0}^{K} \sum_{j=i+1}^{K} \beta_{ij} x_i x_j : x_0 = 1$$

Note: This is a more compact representation of

 $\lim_{\beta}(x) = \beta_0 + \sum_{i}^{K} \beta_i x_i + \sum_{i}^{K} \sum_{j=i+1}^{K} \beta_i x_i x_j$

Note: If j = i + 1 is changed to j = i, self-interactions are taken into consideration (but this violates conditional linearity).

Nominal predictors

One-hot coding: Each feature is vector (instead of scalar) $\hat{x}=<0,0,1>$ For metric predictors each sample has a number of features:

For nominal predictors each feature is a vector:

	feature 0	feature 1	feature 2	
category 0	x_{00}	x_{01}	x_{02}	
category 1	x_{10}	x_{11}	x_{12}	
category 2	x_{20}	x_{21}	x_{22}	

Linear combinations of Nominal predictors

Linear combination:

$$lin(\widehat{x}) = \beta_0 + \sum_{j} \widehat{\beta}_j \cdot \widehat{x}_j$$

where \cdot denotes the dot product.

Intuition: Think of β_0 as population "average", and β_j as "average" of group j.

Linear combinations of Nominal predictors

Summary Linear Combination

Form of linear function in GLM for different scale types (of predictor x):

Scale Type of Predictor x						
		Metric		Nominal		
Single Group	Two Groups	Single Predictor	Multiple Predictors	Single Factor	Multiple Factors	
eta_0	$\beta_{x=1}$ $\beta_{x=2}$	$\beta_0 + \beta_1 x$	$\beta_0 + \sum_k \beta_k x_k + \sum_{j,k} \beta_{j \times k} x_j x_k + \begin{bmatrix} \text{higher-order} \\ \text{interactions} \end{bmatrix}$	$\beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x}$	$\beta_0 + \sum_k \overrightarrow{\beta}_k \cdot \overrightarrow{x}_k + \sum_{j,k} \overrightarrow{\beta}_{j \times k} \cdot \overrightarrow{x}_{j \times k} + \begin{bmatrix} \text{higher-order} \\ \text{interactions} \end{bmatrix}$	

Linking from Combined Predictors to (noisy) predicted data

$$y = f(\ln(x)) \tag{15.11}$$

Here f is called the (inverse) link function and converts the combined predictors to an appropriate output scale.

Input Space
$$\stackrel{\text{lin}}{ o}$$
 Combined pre- $\stackrel{f}{ o}$ Output Space

Scale Type Task

Metric Regression

Nominal Classification

Logistic function

Link function common for classification: the *logistic* function. Unrestricted domain, range (0,1). logistic(x) = 1/(1 + exp(-x))

Note: Another reasonable choice: Φ , the cumulative normal distribution (convenient for e.g. ordinal data).

Noisy output

$$y \sim \text{pdf}(\mu, [\text{parameters}])$$

 $\mu = f(\ln(x))$

If f is indentity: Linear regression.

Noisy output (II)

$$y \sim \text{pdf}(\mu, [\text{parameters}])$$

 $\mu = f(\text{lin}(x))$

If f is logistic: Logistic regression. (Special case of binary classification).

Typical distributions and link functions

Scale Type of Predicted y	Typical Noise Distribution $y \sim pdf(\mu, [parameters])$	Typical Inverse-Link Function $\mu = f(lin(x), [parameters])$		
Metric	$y \sim \text{normal}(\mu, \sigma)$	$\mu = lin(x)$		
Dichotomous	$y \sim \text{bernoulli}(\mu)$	$\mu = \text{logistic} (\text{lin}(x))$		
Nominal	$y \sim \text{categorical}(\dots, \mu_k, \dots)$	$\mu_k = \frac{\exp(\lim_{k(x)})}{\sum_c \exp(\lim_{c(x)})}$		
Ordinal	$y \sim \text{categorical}(\dots, \mu_k, \dots)$	$\mu_k = \begin{array}{c} \Phi\left(\left(\theta_k - \ln(x)\right)/\sigma\right) \\ -\Phi\left(\left(\theta_{k-1} - \ln(x)\right)/\sigma\right) \end{array}$		
Count	$y \sim \text{poisson}(\mu)$	$\mu = \exp\left(\ln(x)\right)$		

Aside: Link function and loss function

Note: $p(y = A|\widehat{x}) = \eta = f^{-1}(v) = 1 - p(y = B|\widehat{x})$. I.e. binary classification given some input variable x.

 ${\tt en.wikipedia.org/wiki/Loss_functions_for_classification}$