Klausurabschrieb Mathe I, Kebekus WS14/15

Auf gabe 1

Zeigen Sie mittels vollständiger Induktion, dass für alle natürlichen Zahlen n ≥ 1 die folgende Formel gilt:

$$\sum_{k=1}^{2n} (-1)^{k-1} = \sum_{k=n+1}^{2n} \frac{1}{k}$$

Auf gabe 2

Seien
$$v = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$
 und $w = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

a) Berechnen Sie den Winkel ρ , welcher durch diese beiden Vektoren aufgespannt wird.

Hinweis: Lösen sie die auftretende Gleichung $cos(\rho) = \cdots durch$ geometrische Überlegungen

b) Berechen Sie den Flächeninhalt des von v und w aufgespannten Dreiecks.

Aufgabe 3

Berechnen Sie die komplexen Nullstellen des Polynoms.

$$X^3 + 4X + 5$$

Aufgabe 4

Berechnen Sie das Taylorpolynom T₄(x, 0) vierten Grades mit Entwicklungspunkt $\alpha = 0$ der Funktion e^{-x^2}

Aufgabe 5

- a) Sei f: $\mathbb{R} \to \mathbb{R}$ eine Funktion und x_0
- $\in \mathbb{R}$. Definieren Siepräzise, wwas es bedeutet, dass f im Punkt x_0 stetig ist.
- b) Begründen Sie, dass ϵ - δ -Stetigkeit Folgenstetigkeit impliziert.

Begründen Sie dass die folgende Integrale existieren und berechnen Sie sie:

a)
$$\int_0^1 x \ln(x^2 + 1) dx,$$

b)
$$\int_2^3 \frac{x^2 + 3z}{x^3 + x^2 - x - 1} dx$$

b)
$$\int_{2}^{3} \frac{x^2 + 3z}{x^3 + x^2 - x - 1} dx$$

a) Lösen Sie das folgende Anfangswertproblem: Gesucht ist eine Funktion f: $I \to \mathbb{R}$, die

$$f'(x) = f(x) + 1$$

$$mit f(0) = 0 erfüllt.$$

b) Welches ist die maximale Definitionsmenge I der Lösung?