1. Code Debugging and Simulation (10pts)

A. (6pts) Identify syntax and semantic errors. Correct them and put annotations. Miss one error or mistake one error will minus 1 point until 0. module 2 value_multiplier () Spelial thatarre PA 3k, 中日 今村では walue_note:plin clk, // Clock rst_n, // Asynchronous reset active low valueA, valueB, valuesum, -0 45 - 113 1/3 1/2, -0

FRIT
17 - 110 ; -0 input clk; input rst_n; input [3:0] valueA; input [3:0] valueB; output [7:0] valueSum; reg [3:0] valueA_r, valueB_r; reg [7:0] valueSum_r; signed extrusion 1; {} -(5 reg [7:0] valueA_sgnExt, valueB_sgnExt; (reg)[7:0] multiply_result; 「他」表で成成wife[7:0] -9 assign valueA_sgnExt = {{4{valueA_r[3]}} / valueA_r}; assign valueB_sgnExt ={{4{valueB_r[3]}}, valueB_r}; assign multiply_result = valueA_sgnExt * valueB_sgnExt; assign valueSum = valueSum_r;

(4pts) Please show the waveform for the circuit in part A. Suppose that the signal valueSum is reset to zero in the beginning and all the syntax error and functionality are correct. Use "xx" to indicate values that cannot be determined given the provided information.

2. Finite State Machine and Simulation (8pts)

Given a Finite-State-Machine (FSM) as below. module FSM (clk, rst_n, in, out_r); parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11; input clk, rst_n, in; output [1:0] out_r; reg [1:0] out_r, out; reg [1:0] state_c, state_n; always @(*) begin case(state_c) S0: $state_n = (in == 1'b0)$? S2 : S0; S1: state_n = (in == 1'b0) ? S0 : S3; S2: state_n = (in == 1'b1) ? S1 : S3; S3: state_n = (in == 1'b1) ? S2 : S1; endcase end always @(posedge clk or negedge rst_n) begin if(~rst_n) begin state_c <= S0; out_r <= 2'b00; end else begin state_c <= state_n; out_r <= out; end end always @(*) begin out[1] = in ^ state_c[1]; out[0] = in & state_c[0]; end endmodule

(a) (3pts) Please draw a Mealy state transition graph below for this FSM.

(b) (5pts) The FSM is included as a design under test (DUT) in the testbench. After simulation, the terminal shows the outputs. Please design a DUT and input pattern to test all the possible paths (include self-loops) based on operations of the FSM within the given period.

(You should only change the value of in on negedge clk)

```
module testbench;
 reg clk, rst_n, in;
 wire [1:0] out_r;
 FSM DUT(.clk(clk), .rst_n (rst_n), .in(in), .out_r(out_r));
always @(*) begin
    $monitor("%t clk=%b rst_n=%b in=%b state_c=%d out_r=%b",
             $time, clk, rst_n, in, DUT.state_c, out_r);end
11 ...
endmodule
```

Monitor Output Response:

	Time	clk	rst_n	in	state_c	out_r	
pydye.	0	1	0	1	50	00	
7	1	0	1	1	SO SO	00	,
	2	1	1		SD	10) 5=(00)
	3	0	1	0	ζ0	00	1
	4	1	1	0	52.	10%	1) 27 (10)
	5	0	1	0	52	10X	
	6	1	1	0	53	10	1) 53 (11)
	7	0	1	1	53	011) /
	8	1	1	1	52.	00	1)52 (10)
	9	0	1		52.	00	
	10	1	1	1	51	11	1)5,001
	11	0	1		51	111	
	12	1	1		53	1011	1) (211)
1	-13	0	1	0	53	10	1,2
	14	1	1	0.	.51	00	1)51(0)
	15	0	1	. 0 .	51	00) S 1 (01) S 0 . (00
	16	1	1	0	SO	-00	1)50.100

3. Logic Synthesis + Blocking & Non-Blocking (12 pts)

Please draw the corresponding circuits (in the right column) according to the Verilog codes (in the left column). You can use AND, OR, NAND, NOR, XOR, XNOR, NOT, MUX, D Flip-Flop, Latch, Shifter, Adder, Multiplier in the circuit diagram.

The riop, Later, Silin	
(a) Verilog Code (3 pts)	Circuit Diagram
always @(*) begin	Q
$X = A + B \ll 2;$	- XXX AUSEN X
Z = C D; A	Acest
Y = (~Z) ? X : Q;	
end	
	Circuit Diagram
(b) Verilog Code (3 pts)	Circuit Diagram
always @(posedge clk) begin	XNOR
A <= D;	TO TO THE WORK
B <= A ~^ D;	DEPEDDE
C <= ~B;	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
D <= C ^ D;	
end	
CIK	Circuit Diagram
(c) Verilog Code (3pts)	Circuit Diagram
always @(A or B or C) begin	THE TANK THE PARTY OF THE PARTY
if (~C)	A-FILD
D = A & B;	D- Latch
end	0 1
	1.6
	A
	Circuit Diagram
(d) Verilog Code (3pts)	Circuit Diagram
always @(posedge clk) begin	
: ((()	DO HOLDER
D <= A ~B;	Jaly Val
	A
end	1000 100 100 100 100 100 100 100 100 10
	Ci clk.

4. Verilog Design (6pts) ナ さび

A deign with an ALU unit and its description of functions are shown below.

Signal	Description			
clk	Input clock			
rst_n	Input asynchronous negative reset			
data_in [7:0]	Result from ALU Output unsigned data (positive clock edge triggered)			
accum [7:0]				
data_out [7:0]				
opcode [1:0]	Input operation control signals			

opcode	ALU operation
2'b00	A+B
2'b01	A-B
2'b10	A XOR B
2'b11	A NOR B

(6pts) Please complete the Verilog code of this counter (you don't have to consider overflow in this design).

module alu_design (clk, rst_n, opcode, data_in, data_out);

I/O & Reg/Wire Declaration (1pt)

input clk, rst_n;

input [1:0] opcode;

input [7:0] data_in;

output [7:0] data_out;

// You can declare new signals here if you need

1-eg [7:0] accum=h; accum; assign data-but = accum;

Formal Verification (9pts)

Consider 3 assertions and 4 patterns below. Please identify the patterns which are violated for each assertion.

- (a) assert_0: assert property (@(posedge c1k) !(GntB && !Busy))
- (b) assert_1: assert property (@(posedge clk) GntA && !GntB |-> ##[0:2] Busy)
- (c) assert_2: assert property (@(posedge clk) GntA || GntB |=> Busy)

(9 pts) Fill in Pass/Fail in each block.

	Pattern1	Pattern2	Pattern3	Pattern4
(2)	Pass	Fail	PASS.	Fail
(a)	TEXT.	Pass.	Fai	PX:
((b))	Det	FAI	Fall	Fait
(c)	1955			10,

6. Timing path & Setup/hold time (22pts)

Consider the circuit and the delay information below. Answer the following questions.

A. (5pts) List all timing paths. How many timing paths in total? (e.g. A -> S1/D)

B. Setup/Hold time constraint

Following the circuit in 6.A. The registers' timing diagrams are shown above. $T_{co} = 0.5$ ns, and $T_{clk} = 0.3$ ns are the same for every register. Assuming that T_{setup} (Setup Time) = 0.4ns, T_{hold} (Hold Time) = 0.1ns, and $D_A = D_B = D_C = 1.5$ ns. The circuit operates at the clock frequency of 125MHz.

B1. (5pts) Check that whether there are setup time violations or not by showing if the related inequalities for all timing paths are satisfied. If setup time violation(s) occur, identify the violated path(s).

7. Slack graph (8pts)

The figure below shows a combinational circuit with primary inputs. The delay of each input is 2 and combinational circuit with primary inputs. of each input is 0.3ns and the delay of every gate is given on the gate (unit: ns). Assume the wire is ideal (no delay).

C1. (5pts) Given the required time for all outputs are 5.0ns, fill the blanks on the form with corresponding arrival time, required time, and slack of every node.

Node	Time, RT = Required Tin		(3)	(4)	(5)
AT (ns)	0,3	0,3	0,3	013.	0, 6.
RT (ns)	114	0,4	019	2/8.	01.7
Slack (ns)	111	011	014	3/12	011
Node	(6)	(7)	(8)	(9)	(10)
AT (ns)	117	2,4	2,7	4,9	4,2
RT (ns)	215	2,5.	315	2	5
lack (ns)	1218	011	018	1011	01

C2. (3pts) Please indicate the critical path and show its slack values.

8. Synthesis (33pts)

1. Please explain why synthesis is <u>constraint-driven</u> and what is the meaning of the <u>tradeoff between area and speed</u> according to the following image (2) to the following image (2) to the following image (3) to the following image (4) to the following image (4) to the following image (5) to the following image (6) to the following image (6)

2. Why we preferred the architecture on the right hand side instead of left hand side design in clock gating? (2pt)

3. Please explain why should we consider <u>PVT condition</u> when synthesis (1pt) and what does PVT stand for? (1pt)

4. What is the problem we may encounter when performing logic synthesis for the following circuit? (1pt) and how to avoid this situation? (1pt)

5. In synthesis stage for low power circuit design, we will use the following command to include both HVT (high-threshold voltage) and RVT (regularthreshold voltage) cells, please explain the advantage for this process. (2pts)

set_target_library "rvt.db hvt.db"

6. In a hierarchical design, submodules are sometimes referenced by more than one cell instance. What method is required to solve this situation? (1pt)

And what is the effect after applying this method? (1pt)

伊用 don touch method, 及言成 submidule, 再言教整個 designole submidule 要在なり下 don't_touch-commando
(ompile 建度かり供, nemory 用呈给少,维持 design

7. Please explain the difference between <u>RTL Level Netlist</u> and <u>Gate Level</u> <u>Netlist</u>. (1pt)

RTL 3分有 timing 爱用.

10 Gate level 有。

4 看程》

8. Please explain why we should add the following code into the testbench when performing gate level simulation. (1pt)

\$sdf_annotate ("SDF_FILE_NAME", top_module_instance_name);

SDF和金有 timing 愛聞, 芸沒有からDF tile, 即 gate level sim 结果 多結及,作方去 tsmc13, V to Jetanht i timing 多結及,作方去 tsmc13, V to Jetanht i timing 3年成 sim 紹果爱生 timing Violation,

NTU GIEE Computer-Aided VLSt System Design, Fall 2020

Why the synthesis report shows register with <u>latch</u> type when loading design?
 (1pt) and please also explain how to avoid this situation. (1pt)

Register Name	Туре	Width	Bus	MB	AR	=====		!====	ST
reg_B_reg reg_ins_reg alu_out_reg reg_A_reg	Latch Flip-flop Flip-flop Flip-flop	8 4 8 8	Y Y Y Y Y Y Y Y Y Y	N N N N	Y Y Y	N N N	N N N	N N N	N N N
(), max (a)	L tole is a 15 g		1	- /	(4)	. 0	ut =	= 10	05

- 10.Synopsys Design Constraints File (.sdc) specifies the timing constraints for synthesis. Please write the <u>commands</u> might be included in the <u>.sdc</u> file to meet the following specification. (10pts, 1pt for each)
 - A. This design is an ALU with clock port i_clk with 200 MHz operating frequency (1%)
 - B. All flip-flops should meet the hold-time constraints (1%)
 - C. Clock tree synthesis will be built in the place and route stage, so the clock network cannot be re-buffered (1%)
 - D. Clock tree synthesis will be built in the place and route stage, so the clock network is considered with no delay (1%)
 - E. The input delay is considered as 0.1*clock_cycle (1%)
 - F. The output delay is considered as 0.1*clock_cycle (1%)
 - G. The operating condition for synthesis should include both slow and fast library for max and min condition (1%)
 - H. The clock latency is considered as 0.05*clock_cycle (1%)
 - The clock transition is considered as 0.01*clock_cycle (1%)
 - J. The clock skew and jitter are considered as 0.1 ns and 0.2ns, respectively (1%)

These are <u>only example commands</u> you may use, please <u>choose the correct</u> <u>ones and modify them</u> to meet the abovementioned specification.

(you do not have to consider the commands for including library)

- 1. set period 10.0
- set_operating_conditions -max_library slow -max slow
- create_clock -name clk -period 10.0

```
    set_dont_touch_network [get_clocks clk]

                  set_ideal_network [get_clocks clk]
                  set_fix_hold [get_clocks clk]
                  7. set_clock_latency 0.5 [get_clocks clk]
                  8. set_clock_transition 0.1 [get_clocks clk]
                  9. set_max_transition 0.1
                  10. set_input_delay 0.5 -clock clk [all_inputs]
                  11. set_output_delay 0.5 -clock clk [all_outputs]
                                                                  -0.5
                 12. set_clock_uncertainty 0.1 [get_ports clk]
                 13. set_load 1 [all_outputs]
                 14. set_drive 1 [all_inputs]
                 15. set_false_path -from {A} -through {C} -to {OUT}
                 16. set_max_delay 1 from [all_inputs] -to [all_outputs]
Clock
                 A, see period 5, create-clock
specification
                 B, Set_fix_hold [ yet clocks (Ik)
                  D Set_ited_wermank [ get clocks (14))
                  C. Set_ dont_touch_nounike get clicks (clk)
                  E Set - input delay 015 - clock (11) call impars)
                  F Set-output_delay 015 - clock (I) [allow pers]
                  G Set-operating-conditions - max library slow - max slaw
                   Set - operating - conditions - min-library tast - unin tast.
                   H set - 1101k-latency 0125 [ Get- clocks ( )x)
                   I set-clock - francition. DIOS [ get-clocks (I))
                   J. Set - Hock-uncertainty 1012 Eget ports (18)
          11. Two situations are considered for clock uncertainty: clock skew and clock
             jitter. Please explain the definition of clock skew (1pt) and clock jitter (1pt).
```


- 12.Please read the area synthesis report below and answer the questions:

 - a. How to fix the <u>undefined interconnect area?</u> (1pt) b. If Macro/Black Box area is not zero, what might be indicated? (1pt)
 - c. In cell-based IC design flow, we will mainly focus on total cell area instead of total area, please explain why. (1pt)

```
3 Report : area
  4 Design : ALU
  5 Version: N-2017.09-5P2
  6 Date : Fri Nov 13 12:55:25 2020
       typical (File: /home/raid7_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db/typical.db)
  9 Library(s) Used:
 10
 13 Number of ports:
                                              204
 14 Number of nets:
                                              106
 15 Number of cells:
 16 Number of combinational cells:
                                               74
                                               30
 17 Number of sequential cells:
                                                n
 18 Number of macros/black boxes:
                                               10
19 Number of buf/inv:
                                               16
20 Number of references:
                                      977.702419
22 Combinational area:
                                        37.342799
23 Buf/Inv area:
24 Noncombinational area:
                                       903.016769
                                        0.000000
25 Macro/Black Box area:
25 Macro/Black Box area:
26 Net Interconnect area: undefined
                                      1880.719188
28 Total cell area:
                               undefined
29 Total area:
```

Total area:	undefined
41	set wire load model
b,	使用排 standard cell 主 IP, (を1) もの: HW3 中的 SRAM cell
C ₁	因素在 DC 样, (hip 星形红 在电影中的5 仁置 不成意, 的外 by A wire load model
1 9 8 8 8	in the off to wire land model TRR3\$ 78).
	10 10 0 1 0 10 0 10 0 10 0 10 0 10 0 1
	T II 2020

NTU GIEE Computer-Aided VLSI System Design, Fall 2020

才智是比较正確的任计。

13. When performing timing analysis with the following command, if there are only two paths in the timing report *Design.timing* shown as the following table, please indicate which path is the critical path (1pt) and explain why.

report_timing -path full -delay max > Design.timing

	Startmoles William				Path2≠				
Startpoint: Y[0] (input port clocked by clk) Endpoint: FB_A[11] (output port clocked by clk) Path Group: clk Path Type: max			Startpoint: Y[1] (input port clocked by clk) Endpoint: FB_A[18] (output port clocked by clk) Path Group: clk Path Type: max						
Point	Incr	Path	Point	Incr	Path				
clock clk (rise edge) clock network delay (ideal) input external delay Y[0] (in) U622/Y (CLKINUXI) U622/Y (MXIZXI) U621/Y (MXIZXI) U233/CO (ADDFXL) U294/CO (ADDFXL) U294/CO (ADDFXL) U428/Y (ANDZXI) U428/Y (ANDZXI) U428/Y (ANDZXI) U701/Y (MXIZXI) U701/Y (MXIZXI) U701/Y (MXIZXI) I701/Y (5.00 6.00 6.00 6.00 6.00 6.30 6.30 6.30 6	5.84 f 6.19 f 6.58 f 6.79 f 6.97 f 7.12 f 7.66 r 8.41 f 8.41 f 8.41 f 8.41 s 9.90 9.90	clock clk (rise edge) clock network delay (ideal) input external delay Y[1] (in) U620/Y (CLKINVXI) U619/Y (MCIZXI) U293/CO (ADDFXL) U294/CO (ADDFXL) U430/Y (ANDZXI) U429/Y (XORZXI) U792/Y (MCIZXI) U792/Y (MCIZXI) U792/Y (MCIZXI) U792/Y (MCIZXI) U6363/Y (INVXI2) FB_A[10] (out) data arrival time clock clk (rise edge) clock network delay (ideal) clock uncertainty output external delay data required time data required time data required time data arrival time	0.00 0.50 5.90 0.00 0.04 0.12 0.61 0.33 0.19 0.16 0.50 0.75 0.00 10.00 0.50 -0.10 -0.50	0.00 0.50 5.50 r 5.50 r 5.55 f 5.66 r 6.27 r 6.60 r 6.79 r				
ta arrival time		-8.41	slack (MET)		1.64				
ack (MET)		1.49							

日、日本技 slack 較小、代表 +1ming bt Path 1 写作的 (= required - artival time)