

Introduction to RT-TDFT

Project objectives

- 1. An efficient implementation of AES approach by integrating autoregressive Fourier neural operators to develop GKS-based RT-TDDFT dynamics.
- 2. An efficient accommodation of the Lindblad operators to encounter the electronic dephasing and plasmonic relaxation effects in conjunction with (1).
- 3. Development of a trajectory based nonadiabatic dynamics using the Ehrenfest approach in conjunction with (1) and (2).

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{KS}(t) \ \phi_k(r,t)$$

Key Components:

- preparation of the initial density and orbitals
- selection of the density functional approximations (DFAs)
- formulation of the time-dependent KS potential
- choice of the time dependent propagation scheme

Time-dependent propagator

$$\mathbf{U}(t,0) = \mathcal{T}\exp\{-i\int_{0}^{t}dt'\hat{h}_{r}^{\mathrm{KS}}[n](t')\}$$

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{KS}(t) \ \phi_k(r,t)$$

Key Components:

- preparation of the initial density and orbitals
- selection of the density functional approximations (DFAs)
- formulation of the time-dependent KS potential
- choice of the time dependent propagation scheme

Time-dependent propagator

$$\mathbf{U}(t,0) = \mathcal{T}\exp\{-i\int_0^t dt' \hat{h}_r^{KS}[n](t')\}$$

Time-dependent propagator

$$\mathbf{U}(t,0) = \mathcal{T}\exp\{-i\int_{0}^{t}dt'\hat{h}_{r}^{\mathrm{KS}}[n](t')\}$$

Short-time propagator

$$\mathbf{U}(t,0) = \prod_{i=0}^{N-1} \mathbf{U}(t_i + \Delta t, t_i)$$

Accuracy and efficiency of RT-TDFT

- Level of approximate time-dependent propagator (ATDP)
- Spectral characteristic of TD-KS Hamiltonian

Time-dependent propagator

$$\mathbf{U}(t,0) = \mathcal{T}\exp\left\{-i\int_{0}^{t}dt'\hat{h}_{r}^{\mathrm{KS}}[n](t')\right\}$$

Short-time propagator

$$\mathbf{U}(t,0) = \prod_{i=0}^{N-1} \mathbf{U}(t_i + \Delta t, t_i)$$

Accuracy and efficiency of RT-TDFT

- Level of approximate time-dependent propagator (ATDP)
- Spectral characteristic of TD-KS Hamiltonian

This is limited to local or seminal density functional approximations (DFAs)

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$

$$\hat{h}_r^{GKS}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^S(t)] + \hat{v}(r, t)$$

Time-dependent density matrix

$$\rho^{S}(r, r', t) = \sum_{k=1}^{N} \phi_{k}(r, t) \phi_{k}^{\star}(r', t)$$

Time-dependent density

$$n^{S}(r,t) = \rho^{S}(r,r,t) = \sum_{k=1}^{N} |\phi_{k}(r,t)|^{2}$$

Time-dependent GKS Hamiltonian

$$\hat{h}_r^{GKS}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^S(t)] + \hat{v}(r,t)$$

Exchange operator:

$$\hat{g}[\rho^{S}(t)]\phi_{k}(r,t) = \int \frac{\rho^{S}(r,r',t)}{|r-r'|} dr'\phi_{k}(r',t)$$

Time-dependent one-body potential:

$$v(r,t) = v_{\text{ext}}(t) + v_{\text{R}}[n^{\text{S}}(t)](r)$$

TD-GKS: generalised Runge-Gross theorem if $\text{Im}[\hat{g}_r[\rho^S(t)]\rho^S(r,r',t)]_{r\equiv r'}=0$.

Time-dependent GKS Hamiltonian

$$\hat{h}_r^{GKS}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^S(t)] + \hat{v}(r,t)$$

Exchange operator:

$$\hat{g}[\rho^{S}(t)]\phi_{k}(r,t) = \int \frac{\rho^{S}(r,r',t)}{|r-r'|} dr'\phi_{k}(r',t)$$

Time-dependent one-body potential:

$$v(r,t) = v_{\text{ext}}(t) + v_{\text{R}}[n^{\text{S}}(t)](r)$$

TD-GKS : generalised Runge-Gross theorem if $\text{Im}[\hat{g}_r[\rho^S(t)]\rho^S(r,r',t)]_{r\equiv r'}=0$.

In general Hybrid and Range-separated hybrid functionals satisfy this conditions.

Computational challenges

Classical propagation scheme

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Time-dependent propagation

$$n^{\rm S}(t) \rightarrow n^{\rm S}(t + \Delta t)$$

Computationally demanding step

$$\hat{g}[\rho^{S}(t)]\phi_{k}(r)$$

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Time-dependent propagation

Computationally demanding step

$$n^{S}(t)
ightarrow n^{S}(t+\Delta t)$$
 ML based FNOs $\hat{g}[
ho^{S}(t)]\phi_{k}(r)$

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Time-dependent propagation

Computationally demanding step

$$n^{S}(t) \rightarrow n^{S}(t + \Delta t)$$

$$\hat{g}[\rho^{S}(t)]\phi_{k}(r)$$

$$[\rho^{S}(t)] \uparrow p_{k}(r)$$

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

ML based FNOs approach

$$\rho^{S}(t) \rightarrow \rho^{S}(t + \Delta t)$$

$$\frac{\partial}{\partial t}\rho(r,r',t) = i(\hat{h}_r^{\text{GKS}}(t) - \hat{h}_{r'}^{\text{GKS}}(t))\rho(r,r',t)$$

Computationally Challenging

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

ML based FNOs approach

$$\rho^{\rm S}(t) \to \rho^{\rm S}(t + \Delta t)$$

$$\frac{\partial}{\partial t}\rho(r,r',t) = i(\hat{h}_r^{\text{GKS}}(t) - \hat{h}_{r'}^{\text{GKS}}(t))\rho(r,r',t)$$

Alternative way ??

FNOs based ML approach in adiabatic Eigen subspace

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Adiabatic Eigen subspace

$$\phi_k(r,t) = \sum_l a_{kl}(t)\phi_l(r); \qquad a_{kl}(t) = \delta_{kl} \quad \text{at } t = 0$$

$$\hat{H}_r^{\text{GKS}}(t) = \hat{H}_r^{\text{GKS,st}}(t) + \hat{H}_r^{\text{GKS,dy}}(t)$$

Stationary GKS Hamiltonian

$$\hat{H}_r^{\text{GKS,st}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(0)] + v(r,0)$$

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Adiabatic eigen subspace

$$\phi_k(r,t) = \sum_l a_{kl}(t)\phi_l(r); \qquad a_{kl}(t) = \delta_{kl} \quad \text{at } t = 0$$

$$\hat{H}_r^{\text{GKS}}(t) = \hat{H}_r^{\text{GKS,st}}(t) + \hat{H}_r^{\text{GKS,dy}}(t)$$

Stationary GKS Hamiltonian

$$\hat{H}_r^{\text{GKS,st}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(0)] + v(r,0)$$

Removes the high frequency oscillation $\exp(-i\frac{\epsilon}{2}\Delta t)$

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Adiabatic eigen subspace

$$\phi_k(r,t) = \sum_l a_{kl}(t)\phi_l(r); \qquad a_{kl}(t) = \delta_{kl} \quad \text{at } t = 0$$

$$\hat{H}_r^{\text{GKS}}(t) = \hat{H}_r^{\text{GKS,st}}(t) + \hat{H}_r^{\text{GKS,dy}}(t)$$

Dynamic GKS Hamiltonian

$$\hat{H}_r^{\text{GKS,dy}}(t) = \left(\hat{g}[\rho^{\text{S}}(t)] - \hat{g}[\rho^{\text{S}}(0)]\right) + \left[v(r,t) - v(r,0)\right]$$

Time-dependent fluctuations which is very small compare to stationary part

Time-dependent GKS equation

$$i\dot{\phi}_k(r,t) = \hat{h}_r^{\text{GKS}}(t) \ \phi_k(r,t)$$
$$\hat{h}_r^{\text{GKS}}(t) = -\frac{\nabla^2}{2} + \hat{g}[\rho^{\text{S}}(t)] + \hat{v}(r,t)$$

Adiabatic eigen subspace

$$\phi_k(r,t) = \sum_l a_{kl}(t)\phi_l(r); \qquad a_{kl}(t) = \delta_{kl} \quad \text{at } t = 0$$

$$\hat{H}_r^{\text{GKS}}(t) = \hat{H}_r^{\text{GKS,st}}(t) + \hat{H}_r^{\text{GKS,dy}}(t)$$

Time-dependent GKS equation in AES

$$i \frac{\partial A_k}{\partial t} = (\epsilon + H^{GKS,dy}) A_k$$

It always follows slowest possible physical oscillations

Mapping 1:1
$$n^{S}(r, t)$$
 and $\hat{H}_{r}^{GKS,dy}(t)$

$$i \frac{\partial A_k}{\partial t} = (\epsilon + H^{GKS,dy})A_k$$

$$\hat{H}_r^{GKS,dy}(t) \to \hat{H}_r^{GKS,dy}(t + \Delta t)$$

Extending the domain of FNOs in AES through dynamical GKS Hamiltonian

 $[\rho^{S}(t)] ??$

$$[\rho^{S}(t)]: \qquad A_k(t + \Delta t) = U(t + \Delta t)A_k(t)$$

$$A_{k}(t + \Delta t) = U(t + \Delta t)A_{k}(t)$$

$$U(t + \Delta t) = \left[\exp(-i\frac{\epsilon}{2}\Delta t)\exp(-iH^{GKS,dy}\Delta t)\exp(-i\frac{\epsilon}{2}\Delta t)\right]$$

Split-operator method in the energy representation Unconditionally stable

Construction of $H_{ij}^{GKS,dy} = \langle \phi_i(r) | H_r^{GKS,dy}(t) | \phi_j(r) \rangle$

$$\hat{H}_r^{\text{GKS,dy}}(t) = \left(\hat{g}[\rho^{\text{S}}(t)] - \hat{g}[\rho^{\text{S}}(0)]\right) + \left[v(r,t) - v(r,0)\right]$$

$$\downarrow \qquad \qquad \downarrow$$
Non-local part local part

Non-local part

$$\hat{g}[\rho^{S}(0)] | \phi_{j}(r) \rangle = \int dr' \frac{\rho(r, r')}{|r - r'|} \phi_{j}(r')$$

$$\hat{g}[\rho^{S}(t)] | \phi_{j}(r) \rangle = \int dr' \frac{\rho(r, r', t)}{|r - r'|} \phi_{j}(r')$$

local part

$$[v(r,t) - v(r,0)] = v_h(r,t) + v_{xc}(r,t) - (v_h(r,0) + v_{xc}(r,0)) - z \cdot E(t)$$

Explicit time-dependent
Z-direction field
Interaction within
dipole approximation

Classical Coulomb interaction

$$v_h(r,t) = \int dr' \frac{\rho(r',t)}{|r-r'|}$$
 $v_h(r,0) = \int dr' \frac{\rho(r',0)}{|r-r'|}$

Construction of $H_{ij}^{GKS,dy} = \langle \phi_i(r) | H_r^{GKS,dy}(t) | \phi_j(r) \rangle$

$$\hat{H}_r^{\text{GKS,dy}}(t) = \left(\hat{g}[\rho^{\text{S}}(t)] - \hat{g}[\rho^{\text{S}}(0)]\right) + \left[v(r,t) - v(r,0)\right]$$
Non-local part local part

Non-local part

$$\hat{g}[\rho^{S}(0)] | \phi_{j}(r) \rangle = \int dr' \frac{\rho(r, r')}{|r - r'|} \phi_{j}(r')$$

$$\hat{g}[\rho^{S}(t)] | \phi_{j}(r) \rangle = \int dr' \frac{\rho(r, r', t)}{|r - r'|} \phi_{j}(r')$$

local part

$$[v(r,t) - v(r,0)] = v_h(r,t) + v_{xc}(r,t) - (v_h(r,0) + v_{xc}(r,0)) - z \cdot E(t)$$

Adiabatic approximation

$$v_{xc}(r,t) = \frac{\partial E^{XC}[\rho(r,t)]}{\partial \rho(r,t)} \qquad v_{xc}(r,0) = \frac{\partial E^{XC}[\rho(r,0)]}{\partial \rho(r,0)}$$

Explicit time-dependent
Z-direction field
Interaction within
dipole approximation

Construction of non-local H^{GKS,dy}_{ij}

$$\mathbf{H}_{ij}^{\text{GKS,dy}} = \langle \phi_i(r) | \mathbf{H}_r^{\text{GKS,dy}}(t) | \phi_j(r) \rangle = \langle \phi_i(r) | \left(\hat{g}[\rho^{\text{S}}(t)] - \hat{g}[\rho^{\text{S}}(0)] \right) | \phi_j(r) \rangle$$

$$\langle \phi_{i}(r) | \hat{g}[\rho^{S}(t)] | \phi_{j}(r) \rangle = \int dr \int dr' \phi_{i}(r) \frac{\rho(r, r', t)}{|r - r'|} \phi_{j}(r') = \sum_{k} \int dr \int dr' \phi_{i}(r) \frac{\phi_{k}(r, t) \phi_{k}(r', t)}{|r - r'|} \phi_{j}(r')$$
Cartesian coordinate grid (CCG)

$$= \sum_{k} \int dr \phi_{ik}(r,t) v_{kj}(r,t) = \sum_{k} \sum_{n_g} \phi_{ik}(n_g,t) v_{kj}(n_g,t) dg$$

 $n_g = n_x \cdot n_y \cdot n_z$ $dg = dx \cdot dy \cdot dz$

$$v_{kj}(r,t) = \int dr' \frac{\phi_k(r',t)\phi_j(r')}{|r-r'|} = \int dr' \frac{\phi_{kj}(r',t)}{|r-r'|} = \mathcal{F}^{-1}[\phi_{kj}(K,t) \star v_{ck}(K)]$$

Fourier convolution theorem in momentum space (K)
Coulomb Kernel in real space

$$v_{ck}(r) = \frac{1}{r}$$

• It is straight forward to construct the time-independent part as I did in the code.

Construction of local H^{GKS,dy}_{ij}

$$\mathbf{H}_{ij}^{\text{GKS,dy}} = \langle \phi_i(r) | \mathbf{H}_r^{\text{GKS,dy}}(t) | \phi_j(r) \rangle = \langle \phi_i(r) | (v(r,t) - v(r,0)) | \phi_j(r) \rangle$$

Classical Coulomb interaction

$$\langle \phi_i(r) \, | \, v_h(r,t) \, | \, \phi_j(r) \rangle = \int \mathrm{d}r \int \mathrm{d}r' \phi_i(r) \frac{\rho(r',t)}{|\, r-r'|} \phi_j(r)$$
 Cartesian coordinate grid (CCG)
$$= \int \mathrm{d}r \phi_{ij}(r) v_h(r,t) = \sum_{n_g} \phi_{ij}(n_g) v_h(n_g,t) \mathrm{d}g$$
 Cartesian coordinate grid (CCG)
$$n_g = n_x \cdot n_y \cdot n_z$$

$$\mathrm{d}g = \mathrm{d}x \cdot \mathrm{d}y \cdot \mathrm{d}z$$
 Fourier convolution theorem in momentum space (K) Coulomb Kernel in real space
$$v_{ck}(r) = \frac{1}{r}$$

• It is straight forward to construct the time-independent part as I did in the code.

Construction of local H_{ij}^{GKS,dy}

$$\mathbf{H}_{ij}^{\text{GKS,dy}} = \langle \phi_i(r) | \mathbf{H}_r^{\text{GKS,dy}}(t) | \phi_j(r) \rangle = \langle \phi_i(r) | (v(r,t) - v(r,0)) | \phi_j(r) \rangle$$

Exchangecorrelation

$$\langle \phi_i(r) | v_{xc}(r,t) | \phi_j(r) \rangle = \int dr \phi_i(r) \frac{\partial E_{xc}[\rho(r,t)]}{\partial \rho(r,t)} \phi_j(r)$$

$$E^{XC} = \int dr \, f(\rho_{\alpha}, \rho_{\beta}, \gamma_{\alpha\alpha}, \gamma_{\alpha\beta}, \gamma_{\beta\beta}) \qquad \qquad \gamma_{\alpha,\alpha} = |\nabla \rho_{\alpha}|^2, \gamma_{\beta,\beta} = |\nabla \rho_{\beta}|^2, \gamma_{\alpha,\beta} = \nabla \rho_{\alpha}. \nabla \rho_{\beta}$$

 $= \int dr \phi_{ij}(r) \frac{\partial f[\rho_{\alpha}(r,t)]}{\partial \rho_{\alpha}(r,t)} = \sum_{n_{\alpha}} \phi_{ij}(n_g) \frac{\partial f[\rho_{\alpha}(n_g,t)]}{\partial \rho_{\alpha}(n_g,t)} dg$

LDA:

$$\langle \phi_i(r) | v_{xc}^{\alpha}(r,t) | \phi_j(r) \rangle = \int dr \phi_i(r) \frac{\partial f[\rho_{\alpha}(r,t)]}{\partial \rho_{\alpha}(r,t)} \phi_j(r)$$

- It is straight forward to construct β component which is independent to each other.
- It is straight forward to construct the time-independent part as I did in the code.

$$n_g = n_x \cdot n_y \cdot n_z$$
$$dg = dx \cdot dy \cdot dz$$

Construction of local H_{ij}^{GKS,dy}

$$\mathbf{H}_{ij}^{\text{GKS,dy}} = \langle \phi_i(r) | \mathbf{H}_r^{\text{GKS,dy}}(t) | \phi_j(r) \rangle = \langle \phi_i(r) | (v(r,t) - v(r,0)) | \phi_j(r) \rangle$$

Exchangecorrelation

$$\langle \phi_i(r) | v_{xc}(r,t) | \phi_j(r) \rangle = \int dr \phi_i(r) \frac{\partial E_{xc}[\rho(r,t)]}{\partial \rho(r,t)} \phi_j(r)$$

$$E^{XC} = \int dr \, f(\rho_{\alpha}, \rho_{\beta}, \gamma_{\alpha\alpha}, \gamma_{\alpha\beta}, \gamma_{\beta\beta}) \qquad \qquad \gamma_{\alpha,\alpha} = |\nabla \rho_{\alpha}|^2, \gamma_{\beta,\beta} = |\nabla \rho_{\beta}|^2, \gamma_{\alpha,\beta} = \nabla \rho_{\alpha}. \nabla \rho_{\beta}$$

GGA:

$$\langle \phi_i(r) | v_{xc}^{\alpha}(r,t) | \phi_j(r) \rangle = \int dr \left[\left(2 \frac{\partial f[\rho(r,t)]}{\partial \gamma_{\alpha\alpha}(r,t)} \nabla \rho_{\alpha}(r,t) + \frac{\partial f[\rho(r,t)]}{\partial \gamma_{\alpha\beta}(r,t)} \nabla \rho_{\beta}(r,t) \right) \cdot \nabla \left(\phi_i(r) \phi_j(r) \right) \right]$$

• It is straight forward to construct β component, however it is dependent on α spin.

$$=\sum_{n_g}\left[\left(2\frac{\partial f[\rho(n_g,t)]}{\partial \gamma_{\alpha\alpha}(n_g,t)}\nabla\rho_{\alpha}(n_g,t)+\frac{\partial f[\rho(n_g,t)]}{\partial \gamma_{\alpha\beta}(n_g,t)}\nabla\rho_{\beta}(n_g,t)\right).\nabla\left(\phi_i(n_g)\phi_j(n_g)\right)\right]$$

• It is straight forward to construct the time-independent part but it is opt out in the code for the time-being.

Cartesian coordinate grid (CCG) $n_g = n_x . n_y . n_z$, dg = dx . dy . dz

Construction of local H^{GKS,dy}_{ij}

$$\mathbf{H}_{ij}^{\text{GKS,dy}} = \langle \phi_i(r) | \mathbf{H}_r^{\text{GKS,dy}}(t) | \phi_j(r) \rangle = \langle \phi_i(r) | (v(r,t) - v(r,0)) | \phi_j(r) \rangle$$

Z-component of dipole integral

$$\langle \phi_i(r) | zE(t) | \phi_j(r) \rangle = E(t) \int dr \phi_i(r) z \phi_j(r)$$

Analytical: $\langle \phi_i(r) | zE(t) | \phi_j(r) \rangle = E(t) \sum_{rs} \sum_{ab} C_i^r C_j^s P_r^a P_s^b \int dr \chi_i^{ra}(r) z \chi_j^{sb}(r)$

Four-index integral over primitive Gaussian functions

• Analytical one consist of six nested loop and it will be costly for larger basis set. Here also we do need OpenMP for parallelisation.

Numerical:
$$\langle \phi_i(r) | zE(t) | \phi_j(r) \rangle = E(t) \int dr \phi_i(r) z \phi_j(r) = E(t) \sum_{n_g} \phi_i(n_g) z(n_g) \phi_j(n_g) dg$$

• It is straight forward to include numerical one in our code and it becomes faster if we use OpenMP.

Cartesian coordinate grid (CCG) $n_g = n_x . n_y . n_z$, dg = dx . dy . dz

Application towards plasmonic photocatalysis

The schematic presentation of HC generation for plasmonic photocatalysis

The absorption spectrum of Ag and Au nanoparticles

The current scenario for the first phase of Ob. (1)

- 1.Ensuring size extensivity or data transferability, enabling models trained on small systems to generalise effectively to larger systems.
- 2. Training on short-time data and predicting longer time-scale developments.
- 3. Optimising the pulse properties for photocatalysis using a Gaussian process-based Bayesian optimisation technique.

THANK YOU