

Structured Optimal Transport

David Alvarez-Melis, Tommi S. Jaakkola, Stefanie Jegelka | Massachusetts Institute of Technology

Summary

- A general framework for injecting structure into OT
- Submodularity offers flexibility + tractability (via convexity)
- Fast algorithms via saddle-point and convex optimization
- Applications to domain adaptation, sentence similarity

Motivation

- Can we inject structure into the cost definition of OT?
- Should remain tractable (~convex)

Background

Discrete Optimal Transport

- Discrete distributions: $\mu = \sum_{i=1}^n p_i^s \delta_{\mathbf{x}_i^s}, \quad \nu = \sum_{i=1}^m p_i^t \delta_{\mathbf{x}_i^t}$
- Ground cost matrix $C_{ij} = C(\mathbf{x}_i^s, \mathbf{x}_i^t)$.
- Transport polytope: $\mathcal{M}_{\mu,\nu} = \{ \gamma \in \mathbb{R}_+^{n \times m} \mid \gamma \mathbf{1} = \mu, \ \gamma^\mathsf{T} \mathbf{1} = \nu \}$ The Problem: $\min_{\gamma \in \mathcal{M}_{\mu,\nu}} \sum_{i} \gamma_{ij} C_{ij}.$
- Objective is separable in γ_{ij} : no interaction between assignments!!

Submodularity

• Set function $F: 2^V \to \mathbb{R}$ is **submodular** if:

$$F(S \cup \{v\}) - F(S) \ge F(T \cup \{v\}) - F(T) \quad \forall S \subseteq T, v \notin T$$

- Analogues to convexity/concavity
- Intuition: marginal utility of item decreases as set size increases

• Lovász Extension f: extends the domain of F from 2^V to \mathbb{R}^n_+

- f is convex iff F is submodular
- For F submodular, $f(w) = \max_{x \in \mathcal{B}_F} w^T x$
- Base polytope \mathcal{B}_F is "nice", leads to tractability $\stackrel{\smile}{\hookrightarrow}$

Approach

OT with submodular costs

- Discrete (matching) view of OT (~Monge formulation)
- Matching with submodular costs:

$$\mathsf{F}(\mathsf{M}) = \sum_{\ell} g_{\ell} \left(\sum_{(\mathsf{i},\mathsf{j}) \in \mathsf{M} \cap \mathsf{G}_{\ell}} c_{\mathsf{i}\mathsf{j}} \right), \qquad \mathsf{g} \; \mathsf{concav}$$

- E.g., $g_1(x) = \min\{x, \alpha\} + \sqrt{[x \alpha]_+}$
- Want continuous, fractional assignments
- Relax objective to Lovasz extension!

$$\min_{\gamma \in \mathcal{M}} f(\gamma) \equiv \min_{\gamma \in \mathcal{M}} \max_{\kappa \in \mathcal{B}_F} \langle \gamma, \kappa \rangle$$

Optimization

 $\min_{\mathbf{\gamma} \in \mathcal{M}} \mathsf{f}(\mathbf{\gamma})$ $\min_{\gamma \in \mathcal{M}} \max_{\kappa \in \mathcal{B}_F} \langle \gamma, \kappa \rangle.$

- Non-smooth, convex
- Smooth convex-concave
- Mirror Descent: $O(\frac{1}{\sqrt{t}})$
- Saddle-Point Mirror-Prox: $O(\frac{1}{t})$

Subroutines

Subgradients of f

- Subdifferential of f: $\partial f(\gamma) = \operatorname{argmax}_{\kappa \in \mathcal{B}_F} \langle \kappa, \gamma \rangle$.
- Linear optimization over base polytope
- Solved by Edmond's greedy algorithm (\sim sorting) in $O(N \log N)$

Projections on $\mathcal M$

• Entropic mirror map $\Phi_{\mathcal{M}}(\gamma) := \sum_{\mathfrak{i},\mathfrak{j}} \gamma_{\mathfrak{i}\mathfrak{j}} \ln(\gamma_{\mathfrak{i}\mathfrak{j}})$ yields:

$$\hat{\gamma} = \underset{\gamma \in \mathcal{M}}{\operatorname{argmin}} \mathsf{KL}(\gamma \parallel w).$$

Solved with Sinkhorn-Knopp [1].

Projections on \mathcal{B}_{F}

(minimizer)

• Euclidean mirror map $\Phi_{\mathcal{B}_F}(\kappa) = \frac{1}{2} ||\kappa||^2$ yields:

$$\hat{\kappa} = \underset{\kappa \in \mathcal{B}_{\tau}}{\operatorname{argmin}} \|\kappa - w\|_{2}^{2}$$

- Solved e.g. via the Fujishige-Wolfe minimum norm point algo
- For our *decomposable* functions, can do in $O(|E| \log |E|)$
- If F_i have disjoint supports, compute projections in parallel

(maximizer)

If not, randomized coordinate descent [2]

Game Theoretic Interpretation

- ∃ Nash equilibrium
- "Power of B" \approx
- submodularity strength
- Classic OT $\Leftrightarrow |\mathcal{B}_F| = 1$

Use in Generative Adversarial Nets

Experiments

Clustered Point Cloud Matching

Small α : aggressive cluster enforcement

Large α : recovers entropy-regularized solution

Domain Adaptation

- Objective: encourage points of the same class to be mapped together
- [3] use penalty-based methods
- Task: $USPS \leftrightarrow MNIST$ digit adaptation
- $N_s = N_t = 100$ examples.

$\textbf{MNIST} {\rightarrow} \textbf{USPS}$	USPS→MNIS ⁷
41.20	33.10
37.72	33.68
55.70	43.64
54.37	37.73
57.12	49.49
62.97	58.34
	41.20 37.72 55.70 54.37 57.12

Sentence Similarity

- Word mover's distance [4] measures sentence similarity
- Ground metric: distances between word embeddings
- WMD ignores positions of words in sentence
- SOT allows for a syntax-aware version of the WMD
- SICK dataset: sentence pairs with gold similarity score

Original WMD

MSE 0.67 (Spearman's $\rho = .71$)

Submodular WMD

MSE=0.59 (Spearman's $\rho = .75$)

Future Work

Other structures (trees, hierarchies)

- Beyond submodularity
- Speed-up by stochastic optimization

Key References

- M. Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport". In: NIPS. 2013.
- [2] A. Ene and H. L. Nguyen. "Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions". In: ICML. 2015.
- N. Courty et al. "Optimal Transport for Domain Adaptation". In: TPAMI (2017).
- [4] M. J. Kusner et al. "From Word Embeddings To Document Distances". In: ICML 37 (2015), pp. 957–966.