Introduction to Algorithms Lecture 7 Amortized Analysis

Xue Chen
xuechen1989@ustc.edu.cn
2025 spring in

Outline

Introduction

- A powerful method to analyze the running time of algorithms and data structures.
- Various applications

(a) MERGESORT

(b) DATA STRUCTURE: STACK

(c) IMPROVING DYNAMIC PROGRAMMING

Introduction

- A powerful method to analyze the running time of algorithms and data structures.
- 2 Various applications

(d) MERGESORT

(e) DATA STRUCTURE: STACK

(f) IMPROVING DYNAMIC PROGRAMMING

Let us introduce it formally and discuss its extensions.

Overview

There are three major methods in amortized analysis:

Basic: Aggregate method

2 Advanced: Accounting method

3 Flexible: Potential method

Two examples: Dynamic Tables and Cartisian Trees

Outline

Problem Introduction

Goal: Make m (the size of hash table) as small as possible, but never get overload

Problem

What if we don't know the proper size in advance?

Dynamic Tables — Whenever the table overloads, "grow" it by creating a larger table and move all items from the old table into the new one

Dynamic Tables — Whenever the table overloads, "grow" it by creating a larger table and move all items from the old table into the new one

1. Insert

- 1

2. Insert

Dynamic Tables — Whenever the table overloads, "grow" it by creating a larger table and move all items from the old table into the new one

- 1. Insert
- 2. Insert
- 3. Insert

Dynamic Tables — Whenever the table overloads, "grow" it by creating a larger table and move all items from the old table into the new one

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

Running Time

Consider *n* insertions:

- **1** The worst-case time of one INSERT is $\Theta(n)$.
- ② The total time of all insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

Running Time

Consider *n* insertions:

- ① The worst-case time of one INSERT is $\Theta(n)$.
- ② The total time of all insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

Not Tight! The total time is $\Theta(n)$ instead of $\Theta(n^2)$.

Running Time

Consider *n* insertions:

- ① The worst-case time of one INSERT is $\Theta(n)$.
- 2 The total time of all insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

Not Tight! The total time is $\Theta(n)$ instead of $\Theta(n^2)$.

Analysis

 c_i denotes cost of the *i*th insertion, which is insertion + table change

Calculation

The total cost is $\Theta(n)$ and the average cost is O(1).

Cost of *n* insertions =
$$\sum_{i=1}^{n} c_i$$

 $\leq n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^j$
 $\leq 3n$
 $= \Theta(n)$.

Discussion

Amortized analyses: Proof strategies show that the average cost per operation is small, even though a single one could be expensive.

Aggregate Method

Last 2 slides give an aggregate analysis

— we have seen similar ones in MERGESORT and DYNAMIC PROGRAMMING.

Though simple, lacks the flexibility and precision of the accounting and potential methods

Intro: Assign different charges to different operations (could be more or less)

- Call the charged amount of an operation its amortized cost
- ② The difference between amortized cost and actual time is the credit
- Oredit of one operation could be positive and negative
 - most credits are positive s.t. they cover those expensive operations with negative credits

Intro: Assign different charges to different operations (could be more or less)

- Call the charged amount of an operation its amortized cost
- 2 The difference between amortized cost and actual time is the credit
- Credit of one operation could be positive and negative

 most credits are positive s.t. they cover those expensive operations with negative credits

Formal Definition

Let c_i be the actual cost of operation i and \hat{c}_i be its amortized cost:

- $\mathbf{0}$ \hat{c}_i is small for all i
- 2 $\sum_{i=1}^{n} \hat{c}_i \geqslant \sum_{i=1}^{n} c_i$ for any n

Back to Dynamic Table

Charge $\hat{c}_i = 3$ for every INSERT.

- 1 pays for the immediate insertion.
- 2 is stored for later table change 1 for a recent item and 1 for an old item

Back to Dynamic Table

Charge $\hat{c}_i = 3$ for every INSERT.

- 1 pays for the immediate insertion.
- 2 is stored for later table change 1 for a recent item and 1 for an old item

Accounting Analysis

Bank balance is always non-negative

i	1	2	3	4	5	6	7	8	9	10
size _i	1	2	4	4	8	8	8	8	16	16
c_i										1
\hat{c}_i	3	3	3	3	3	3	3	3	3	3
bank _i	2	3	3	5	3	5	7	9	3 3	5

Potential Method

Basic Idea: View the bank account as the potential energy (a la physics) of the table

- ① Start with an initial table (data structure/status) D_0
- ② Operation i changes D_{i-1} to D_i while its cost is c_i
- **3** Define a potential function $\Phi: D \to \mathbb{R}$ s.t. $\Phi(D_0) = 0$ and $\Phi(D_i) \geqslant 0$ for all $i \geqslant 1$

4 Goal: Minimize the amortized time $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

More Notation

Let $\Delta(\Phi_i) = \Phi(D_i) - \Phi(D_{i-1})$ be the potential difference.

- ① $\Delta(\Phi_i) > 0$ indicates $\hat{c}_i > c_i$ s.t. it stores energy for later use
- ② $\Delta(\Phi_i) < 0$ indicates $\hat{c}_i < c_i$ s.t. it consumes energy

More Notation

Let $\Delta(\Phi_i) = \Phi(D_i) - \Phi(D_{i-1})$ be the potential difference.

- ① $\Delta(\Phi_i) > 0$ indicates $\hat{c}_i > c_i$ s.t. it stores energy for later use
- ② $\Delta(\Phi_i) < 0$ indicates $\hat{c}_i < c_i$ s.t. it consumes energy

Cost

Amortize time $\sum_i \hat{c}_i = \sum_i (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \sum_i c_i + \Phi(D_n) - \Phi(D_0)$ \geqslant actual time $\sum_i c_i$.

Back to Dynamic Table

One potential function for the current table *T* is

$$\Phi(T) = 2T.num - T.size$$
 equivalent to $\Phi(D_i) = 2i - 2^{\lceil \log_2 i \rceil}$

Example:

$$\Phi = 2 \cdot 6 - 2^3 = 4$$

accounting method)

$$\begin{aligned} \hat{c}_{i} &= c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \\ &= 1 + i \cdot \mathbb{I}\{i = 2^{k} + 1\} + (2i - 2^{\lceil \log_{2} i \rceil}) - (2(i-1) - 2^{\lceil \log_{2} i - 1 \rceil}) \\ &= 1 + i \cdot \mathbb{I}\{i = 2^{k} + 1\} + 2 - 2^{\lceil \log_{2} i \rceil} + 2^{\lceil \log_{2} i - 1 \rceil} \\ &= O(1) \end{aligned}$$

Discussion

- Tor many data structures (stack, binary search trees like Splay and Treap), amortized cost provide a clean statement
- ② 3 methods: Aggregate method, accounting method, and Potential method.
- **3** Each method has some situation where it is arguably the simplest or most precise Potential method is the most flexible one b.c. of $\Phi(D_i)$

Outline

Introduction

A Cartesian tree is a binary tree derived from an array:

- 1 Root stores the index of the minimum value
- Its left and right children are Cartesian trees for the subarrays to the left and right

Construction

- Naive algorithm: O(n²)
- 2 BST or Heap: $O(n \log n)$
- Greedy Algorithm: O(n)

Construction

- ① Naive algorithm: $O(n^2)$
- ② BST or Heap: $O(n \log n)$
- Greedy Algorithm: O(n)

Greedy Algorithm

Process a_1, \ldots, a_n from left to right and maintain the tree for a_1, \ldots, a_i

① If $a_i < a_{i+1}$, insert v_{i+1} as the right child of v_i

Construction

- 1 Naive algorithm: $O(n^2)$
- ② BST or Heap: $O(n \log n)$
- Greedy Algorithm: O(n)

Greedy Algorithm

Process a_1, \ldots, a_n from left to right and maintain the tree for a_1, \ldots, a_i

- ① If $a_i < a_{i+1}$, insert v_{i+1} as the right child of v_i
- ② Otherwise consider v_i 's ancestors: Find the nearest ancestor j with $a_j < a_{i+1}$ and insert v_{i+1} as v_j 's right child (put v_j 's right child as v_{i+1} 's left child)
- 3 If no ancestor satisfies $a_j < a_{i+1}$, make v_{i+1} as the root whose left child is the old root

Example

Analysis

Correctness follows by Induction: It always maintains the Cartesian tree of a_1, \ldots, a_i

Running Time

O(n) — short answer is like a stack, each node gets at most one push and one pop

Let us try accounting method

Define the credit as number of nodes from current node v_i to root

Similarly, define the potential function $\Phi(D)$ as the length.

Questions?