

Interactive Systems (ISY)

Auditorium Exercise 07

Jan Feuchter jan.feuchter@hci.uni-hannover.de

Lectures

Session	Date	Topic	Details
1	2.4.	Introduction	human performance, empirical research, modeling
2	9.4.	Interaction elements	input devices, interaction elements, states, layouts
3	16.4.	Event handling	events, bindings, reactive programming, scene graph
4	23.4.	Scene graphs	event delivery, coordinate systems, nodes, animation, concurrency
5	30.4.	Interaction techniques	alignment and pointing techniques
6	7.5.	Interaction techniques	
7	14.5.	Web-based user interfaces	document object model, client-server issues
	21.5.	Pfingstwoche	
8	28.5.	Web-based user interfaces	reactive Programming for the Web
9	4.6.	Experiments and data analysis	designing experiments, hypothesis testing
10	11.6.	Modeling interaction	descriptive and predictive models, keystroke-level model, regression
11	18.6.	Visualization	visual encodings, perceptual accuracy, treemaps, dynamic queries
12	25.6.	Human-Centered AI	introduction to human-centered AI, human control and automation, examples
13	2.7.	Deep learning in HCI	guidelines for human-AI interaction, neural networks
14	9.7.	Deep learning in HCI	convolutional and recurrent NNs, face recognition, gesture recognition

Interactive Systems – Summer 2024 2

Web Technology

HTML: Content

CSS: Presentation

JavaScript: Behavior

http://alistapart.com/article/understandingprogressiveenhancement

World Wide Web: A Distributed System for Sharing Documents

Requirements

- Encoding documents
 - Content
 - Semantics
 - Presentation
- Identifying documents
 - Locating and accessing a particular document

- Storing and delivering
 - Storing documents
 - Transmitting documents

The WWW approach

- Document format
 - Hypertext Markup Language, HTML
 - Cascading Style Sheets, CSS
 - (JavaScript)
- Document identification
 - Uniform Resource Identifier, URI
 - String of characters to identify a resource on the internet
 - Uniform Resource Locator, URL
 - URI that specifies a location and a scheme
- Document storage and delivery
 - Web servers
 - Hypertext Transfer Protocol, HTTP

Andreas Butz: Mensch-Maschine-Interaktion 2, LMU München.

Server-Side Components

- Web server implements HTTP communication
- Application engines provide dynamic content
- Content is stored in databases or "flat" files or is computed dynamically

get HTML template from file system fill dynamic content from database

Traditional vs. Ajax Web Applications

- Traditional: Each user action leads to full page reload
- Ajax: Asynchronous JavaScript and XML
 - If possible, functionality is implemented locally (JavaScript)
 - Modify page without reload
 - Asynchronous communication (JavaScript XMLHttpRequest)
 - UI is still responsive during asynchronous communication

CSS Box Model

- All HTML elements are wrapped by a box
- CSS box model consists of margins, borders, padding, content
 - Margin clears area around border, transparent
 - Padding has background color of box
 - Each side of margin and padding can be set separately
- Width and height of an element are content dimensions

Fluid Design

- Wozu ist das sinnvoll?
- Warum gerade 12?

phone-tablet-desktop-flex.html

Assignment 07

Deadline in two weeks (27.05. 23:59)

Use the Dev Tools as shown in todays exercise

Interactive Systems – Summer 2024