Контрольная № 1 (дискретная математика для программистов) (февраль-март-2024) Вариант 71

- 1. Сколькими способами из 28 костей домино можно выбрать две кости так, чтобы их можно было приложить друг к другу?
- 2. Найдите решение рекуррентного соотношения:
- $a_{n+2} 5a_{n+1} + 6a_n = 0$, $a_1 = 1$, $a_2 = -7$ и постройте порождающую функцию.
- 3. Символы 7-ми буквенного алфавита имеют частоты:
- (A 1), (B 8), (C 9), (D 16), (E 17), (F 22), (G 27)

Сколько в среднем бит информации несет один символ такого сообщения?

- 4. Для условий предыдущего задания сконструировать коды Шеннона-Фано и для них вычислить среднюю информационную емкость одного символа сообщения.
- 5. Две кодовые строки построены по методу Хемминга. Известно, что в каждой из них не более одной оппибки. Восстановить исходные кодовые строки.

000001100101111

- 6. Дать определение (или описание) и привести три примера. Тривиальные, полные графы.
- 7. Дать определение (или описание) и привести три примера. Сжатие информации алгоритмом Хаффмана.

Задание 1

Подставив, получим:

$$I = (1/100) * 6.6439 + (8/100) * 3.3219 + (9/100) * 3.1699 + (16/100) * 2.6439 + (17/100) * 2.5849 + (22/100) * 2.4426 + (27/100) * 2.3700 ≈ 2.6090 бит$$

018		+ X	√ fx												
	Α	В	С	D	Е	F	G	Н	1	ı	K	L	М	N	0
1	1	2	3	4	5	. 6	7	8	9	10					
2	1	0	0	0	0	0	1	0	0	1	0	0	0	0	1
3	0	0	0	0	0	1	1	0	0	1	0	1	1	1	1
Λ															
(Q	R	S		Т										
Пози	ция 1:	Позиция 2	: Позиция	я 4: По	зиция 8	:									
	3 3 2 2					1) Ошибка в позиции 1+2=3									
	3	5 6		6	5	2) O	2) Ошибка в позиции 1+2+8=11								
7															
8															
9					-		Испра	вленные с	гроки						
10	1	0	1	0	0	0	1	0	0	1	0	0	0	0	1

Тривиальный граф — это структура данных графа, в которой присутствует только одна вершина или узел без рёбер.

Полный граф - это простой неориентированный граф, в котором каждая пара вершин соединена ребром. Другими словами, в полном графе каждая вершина связана с каждой другой вершиной.

Примеры:

1)

a

2)

3)

Описание алгоритма Хаффмана:

Сжатие информации алгоритмом Хаффмана - это алгоритм сжатия данных, используется для сокращения размера файла или передаваемых данных путем присвоения более коротких кодов часто встречающимся символам и более длинных кодов реже встречающимся символам. Алгоритм Хаффмана основан на построении оптимального префиксного кода, где код каждого символа не является префиксом кодов других символов.

Шаги алгоритма Хаффмана обычно включают:

- 1) Анализ частоты символов: Определение частоты встречаемости каждого символа в исходных данных или файле, который необходимо сжать.
- 2) Построение дерева Хаффмана: Создание дерева Хаффмана, где каждый символ представлен в виде листа дерева, а более часто встречающиеся символы находятся ближе к корню дерева.
- 3) Присвоение кодов: Присвоение двоичных кодов каждому символу, где путь от корня к каждому символу представляет код символа. Часто встречаемым символам присваиваются более короткие коды, а реже встречаемым символам присваиваются более длинные коды.
- 4) Создание сжатого файла: Замена каждого символа в исходных данных его соответствующим кодом Хаффмана. Это позволяет сжать данные, заменяя более длинные последовательности символов более короткими кодами.

Примеры:

- 1) Сжатие текстового файла: Замена часто встречающихся символов более короткими кодами и реже встречающихся символов более длинными кодами.
- 2) Сжатие изображения: Кодирование символов, представляющих пиксели изображения. Часто встречающиеся цвета или пиксели могут быть закодированы более короткими кодами, что позволяет сжать изображение без значительной потери качества.

3) Сжатие аудиофайла: Часто встречающиеся звуковые сэмплы могут быть закодированы более короткими кодами, позволяя уменьшить размер файла без значительной потери качества звука.