Multiple Comparison Correction

Typical Statistical Inference

- Hypothesis to be tested
 - E.g., H_0 : $\mu_1 = \mu_2$ vs. H_A : $\mu_1 > \mu_2$
- A test statistic is calculated from the observed data
 - If H₀ is true, then the test statistic should follow the null distribution

Typical Statistical Inference

- Hypothesis to be tested
 - E.g., H_0 : $\mu_1 = \mu_2$ vs. H_A : $\mu_1 > \mu_2$
- A test statistic is calculated from the observed data
 - If H_A is true, then the test statistic would be at the extreme tail of the distribution
 - The probability of such an occurrence is rare
 - Quantified by a small p-value

Null distribution of test statistic

Test statistic

p-value

Typical Statistical Inference

- A small p-value evidence for rejection of H₀
 - Often p<0.05 or, less than 1 in 20 by chance
- Critical threshold t_c
 - 95th percentile of the null distribution
 - If test statistic > t_c , then H₀ rejected

 $^{\circ}$ Critical threshold t_c

Critical region

Null distribution of test statistic

Multiple Comparisons

- A large number of statistical tests simultaneously
 - A large number of test statistics

Some of them likely fall inside the critical region by chance alone

Multiple Comparisons

- In fMRI data analysis,
 - Separate statistical test at each voxel
 - 20,000 voxels → 20,000 T-tests
 - Significant effect at p<0.05 level
 - 20,000 x 0.05 = 100 voxels show significant effect by chance alone
 - Even without any true effect

Multiple Comparison Correction

- Traditional multiple comparison correction Bonferroni
 - Shrink the critical region
 - Critical p-value divided by the number of tests
 - E.g., Critical p= 0.05, 20 tests \rightarrow Bonferroni critical p= 0.05/20 = 0.0025

Uncorrected critical region

Bonferroni-corrected critical region

Multiple Comparison Correction

- Bonferroni on fMRI data analysis
 - 20,000 voxels → 20,000 simultaneous T-tests
 - Bonferroni corrected p<0.05
 - $p<0.05 / 20,000 \rightarrow p<0.0000025$
 - Perhaps too stringent?

Multiple Comparison Correction

- A Bonferroni correction assumes statistical tests to be independent
- In fMRI analysis
 - Neighboring voxel values are often correlated
 - Multiple comparison methods specialized for neuroimaging data

Multiple Comparison Correction, Neuroimaging Style

Typical verbiage:

"The statistical analysis is corrected for multiple comparisons controlling the _____ at ____ level."

Multiple Comparison Correction, Neuroimaging Style

Typical verbiage:

"The statistical analysis is corrected for multiple comparisons controlling the _____ at ____ level."

(Correction method)

- FWE Family-wise error
- FDR False discovery rate

Multiple Comparison Correction, Neuroimaging Style

Typical verbiage:

"The statistical analysis is corrected for multiple comparisons

controlling the _____ at ____ level."

(Correction method)

- FWE Family-wise error
- FDR False discovery rate

(Significance level)

- p = 0.05 (FWE-correction)
- q = 0.05 (FDR-correction)

Noise + Signal

Thresholded, uncorrected at p=0.10

10% of noise voxels are false positives (erroneously identified as significant)

→ Needless to say, this is very bad!

- Family-wise error (FWE)
 - Occurrence of ANY false positive
- FWE-Correction:
 - Controlling the FWE-rate to a small proportion

Thresholded, FWE-corrected at p=0.10

FWE

On average, FWE occurs with 10% probability

- FWE-Correction:
 - False positives must be avoided at any cost!!
 - Even with diminished ability to detect true signal

Thresholded, FWE-corrected at p=0.10

FWE

On average, FWE occurs with 10% probability

- FWE-correction is too stringent
- If a large number of tests are performed...
 - Tolerating a small number of false positive more realistic
- False discovery rate (FDR)
 - Proportion of false positives among all positives (true & false)

- FDR-Correction:
 - A small proportion of false positives (among all positives) is tolerated
 - FDR is often denoted by q (as opposed to p)

Thresholded, FDR-corrected at q=0.10

On average, 10% of positives are false positives

- But wait?!!
 - Shouldn't we need to know which positives are true / false in order to control FDR?
 - We try to control the average FDR

Thresholded, FDR-corrected at q=0.10

On average, 10% of positives are false positives

Thresholded, uncorrected at p=0.10

Thresholded, FWE-corrected at p=0.10

Thresholded, FDR-corrected at q=0.10

FDR-Correction

- Implemented by Benjamini-Hochberg procedure
 Genovese et al., Neurolmage (2002)
 - Distribution of signal + noise from data
 - Spatial correlation can be implicitly corrected
 - Details are beyond the scope of this course
- Threshold controlling FDR at the desired q-level
 - Highly specific to data / contrast

FDR-Correction

- Extent of signal can be very large
 - May not be ideal if you are interested in localizing activation
- NOT part of FEAT in FSL
 - However, FDR correction available
 - Requires some programming

FWE-Correction

Typical verbiage:

"The statistical analysis is FWE (family-wise error)-corrected (p<0.05) at the _____ level based on ____."

FWE-Correction

Typical verbiage:

"The statistical analysis is FWE (family-wise error)-corrected (p<0.05) at the _____ level based on _____."

(Topology)

- Voxel
- Cluster

FWE-Correction

Typical verbiage:

"The statistical analysis is FWE (family-wise error)-corrected

(p<0.05) at the _____ level based on _____."

(Topólogy)

- Voxel
- Cluster

(Distribution modeling)

- Random field theory (RFT)
- Permutations

Voxel vs. Cluster-Level

Voxel-level

Activation: high-intensity voxels

Statistic image intensity Trinersity To a series of the series of the

Cluster-level

Activation: signals with large spatial extent

Voxel-Level FWE-Correction

- Threshold is determined from the max distribution
 - Distribution of the global maximum of a statistic image
 - 95th percentile of the max distribution
 - → FWE-corrected threshold at p=0.05 level
- Controls multiple comparison among all voxels in a statistic image

Voxel-Level FWE-Correction

- The max distributions can be determined
 - Theoretically by RFT (random field theory)
 - Empirically by permutations

RFT, Voxel-Level

- A random field random image
 - Intensity at each point known distribution
 - Smooth known spatial correlation

RFT, Voxel-Level

- Distribution of the brightest point (max distribution)
 - Theoretically approximated Worsley et al., Hum Brain Map (1996)
 - Depending on the volume and smoothness
 - FWE-corrected threshold, p-values can be determined

RFT, Voxel-Level

- Distribution of the brightest point (max distribution)
 - Theoretically approximated Worsley et al., Hum Brain Map (1996)
 - Depending on the volume and smoothness
 - FWE-corrected threshold, p-values can be determined

Notes: RFT, Voxel-Level

- Statistic image has to be smooth (FWHM>3 voxels)
- SPM can handle T-statistic images
- FSL converts T-statistic image to Z-statistic image
- Unnecessarily conservative
 - Developed for PET data analyses c. 1992
 - Much smoother than fMRI data
 - The actual FWE rate is much less than p=0.05 Nichols & Hayasaka, Stat Meth in Med Res (2003)

Permutations, Voxel-Level

- The max distribution can be determined empirically from the data
 - Assuming that H₀ is true
 - Zero activation (one-sample) or zero difference (two-sample)
- How? Random shuffling of data labels (a.k.a., permutations)

Permutations, Voxel-Level

Permutations, Voxel-Level

- From all permutations, max distribution can be generated
 - FWE-corrected threshold and p-values can be determined

Notes: Permutations, Voxel-Level

- Permutation schemes
 - Unpaired two-sample: shuffle group labels
 - Paired two-sample: flip 1st and 2nd images
 - One-sample: flip the sign (+/-) of stat images

Notes: Permutations, Voxel-Level

Pros

- More sensitive than RFT-based test
 - FWE rate is very close to 0.05
 - Especially useful when sample size is small
- Statistic image does not have to be smooth
- Can be used for "unusual" test statistic

Notes: Permutations, Voxel-Level

Cons

- Simple study designs only
 - One-sample, paired / unpaired two-sample
 - Cannot be used in the 1st level analysis
 - Temporal correlation cannot be preserved when permuted
- Permutations can be time consuming
 - Repeating the 2nd level analysis many times
 - Recommended # of permutations: at least 1,000

Notes: Permutations, Voxel-Level

- Permutation test optional feature
 - FSL Randomise
 - SPM SnPM

Cluster-Level FWE-Correction

- Cluster formation
 - Statistic image is thresholded with an uncorrected threshold
 - Cluster-forming threshold
 - Contiguous above-threshold voxels → clusters

Cluster-Level FWE-Correction

- Large cluster → likely true signal
- Multiple comparison correction among clusters
 - A few dozen clusters at most
 - As opposed to 20,000 multiple comparisons at voxel-level

Cluster-Level FWE-Correction

- Max cluster size distribution
 - Way to control multiple comparisons among clusters
- Max distribution can be determined
 - Theoretically by RFT
 - Empirically by permutations

RFT, Cluster-Level

Friston et al., Hum Brain Map (1994)

- Distribution of the largest cluster size (max distribution)
 - Theoretically approximated
 Friston et al., Hum Brain Map (1994)
 Worsley et al., Hum Brain Map (1996)
 - Depending on the volume, smoothness, and cluster-forming threshold
 - FWE-corrected threshold, p-values can be determined

Permutations, Cluster-Level

- The max distribution can be determined empirically from the data
 - Assuming that H₀ is true
 - Zero activation (one-sample) or zero difference (two-sample)
- Random shuffling of data labels as in voxel-level permutations

Permutations, Cluster-Level

Notes: Cluster-Level FWE-Correction

- Good for spatially extended signals
 Friston et al., Neurolmage (1996) Poline et al., Neurolmage (1997)
- Better sensitivity compared to voxel-level FWE
 - Smaller number of multiple comparisons
 - Use of lower threshold
- Limited spatial localization power
 - Cannot localize within a cluster

Notes: Cluster-Level FWE-Correction

 Permutation-based — more sensitive than RFTbased
 Hayasaka & Nichols, Neurolmage (2003)

Notes: Cluster-Level FWE-Correction

The validity of cluster-level correction is disputed

Eklund et al., PNAS (2016)

- Validated with real data
- Inflated false positives, up to 70%
- Commonly used packages (FSL, SPM, AFNI)
- Significance of significant clusters may be challenged