

The role of labiolingual gestural coordination in spatiotemporal facilitation of Turkish, Turkmen and Hindi

Ganesh Gupta, Indranil Dutta gane.eflu@gmail.com, indranil@efluniversity.ac.in

Motor facilitation and gestural economy

- * Lingual harmonic patterns due to economized speech gestures yield motor facilitation by increasing speech rate or accuracy[1].
- * Harmonic patterns articulated with lip protrusion gesture require more articulatory effort and so they do not yield motor facilitation.
- * Back harmonic languages do not participate in height harmony[2], consequently, only back harmonic patterns yield motor facilitation.
- * We present results from a study with two back harmonic languages Turkish and Turkmen and one non-harmonic language Hindi.
- * Turkish front rounded vowels articulated with lip protrusion make larger gestures than back rounded vowels[3].
- * We show that Turkish & Turkmen front round vowels formed with lip protrusion do not yield motor facilitation in back harmony. As also Hindi.

Turkish rounded vowels

Figure 1: MRI Images of Turkish front & back rounded vowels

- Front rounded vowels have larger vertical opening than the back rounded vowels.
- Front rounded vowels are protruded transversely more than the back rounded vowels.

Research questions and variables

- Do back harmony patterns increase speech or error rates? & Do intervocalic consonants exert any influence on speech or error rates?
- Do back harmony patterns formed from front unrounded vowels increase speech/error rates compared to back harmony patterns formed from front rounded vowels?

Variables

Harmony Type (HT): Back harmony (BH), Disharmony (DH), Height harmony (HH); Con $sonantal\ Type\ (CT): /p/, /t/, /k/;\ Random\ Variable:$ Speaker; $Condition\ types:$ Front unrounded (FU), front rounded (FR); Fixed effects: Speech & error rates

Experimental procedure and analysis

- ◆ 10 each, native Turkish and Turkmen, and 7 native Hindi speakers.
- We presented each token of the experimental stimuli for 5 seconds on a computer screen & instructed speakers to utter each phrase as many times as possible, as quickly as possible, as accurately as possible.
- ◆ Measurement: number of syllables uttered; **speech rates** were measured as number of syllables/5 sec & **Error** rates were measured as - (number of syllables/number of tokens)*100.
- Speech rates and error rates were converted into logarithmic form for reducing the skew.
- Statistical model: Linear Mixed Effects (LME) model is used for verifying random effects of speaker and fixed effects of harmony & consonantal type.

Stimuli

Type	FU condition	FR condition
\mathbf{BH}	i-e,e-i,u-o,o-u 36	y-ø,ø- y,u-o,o-u 36
	pipe la pupo 36	pypø la popu 36
$_{ m HH}$	i-u,u-i,e-o,o-e 36	y-u,u- y,ø-o,o-ø36
	pope la pupi 36	pypu la pøpo 36
DH	i-o,o-i,u-e,e-u 36	y-0,0-y,u-ø,ø-u 36
	pipo la popi 36	pøpu la pypø36

Hypotheses

H1: Speech rate: DH < BH >HH

H1: error rate: DH \geq BH <HH

H2: speech rate: FU>FR; error rate: FU <FR

H3: speech rate: p/>/k/</t/**H3:** error rate: /p/ </k/ >/t/

Speech rates - HT & CT - LME test

LME test conducted to verify speech rates $DH \leq$ BH>HH

Speech rates	Turkish	Turkmen	Hindi				
$\overline{\mathrm{FU}}$	p < 0.05	p < 0.05	p > 0.05				
FR	p < 0.05	p < 0.05	NONE				
Verifying speech rates $/\mathbf{t}/>/\mathbf{k}/$							
	T1-1-1-1-		TT4 14				
Speech rates	Turkish	Turkmen	Hindi				
FU	p>0.05	p>0.05	Hindi p>0.05				

Figure 3: Speech rates of select languages

FU yields higher speech rates than FR (p-value<0.05)& BH yields higher speech rates than DH and HH in FU & FR conditions, in both Turkish and Turkmen. No significant results obtained in Hindi.

Error rates - HT & CT - LME test

LME test conducted to verify error rates $\mathbf{DH} \geq$ BH < HH

Error rates	Turkish	Turkmen	Hindi			
$\overline{\mathrm{FU}}$	p > 0.05	p > 0.05	p > 0.05			
FR	p < 0.05	p < 0.05	NONE			
Verifying error rates $/\mathbf{t}//\mathbf{p}/$						
Error rates	Turkish	Turkmen	Hindi			
Error rates FU	Turkish p>0.05	Turkmen p>0.05	$\frac{\textbf{Hindi}}{p > 0.05}$			

Figure 4: Error rates of select languages

FU yields lesser error rates than FR (p-value<0.05)in both Turkish and Turkmen. No significant results occurred for error rates of Turkish, Turkmen & Hindi in FU condition. BH error rates of FR condition are increased in Turkish and decreased in Turkmen.

Speaker variance -LME test

Variance & residual deviance for speakers are less than 1; data is normally distributed.

Figure 2: Speaker variance of speech & error rates

References

- [1] Jennifer Cole. Emergent feature structures: Harmony systems in exemplar models of phonology. Language Sciences, 31(2):144-160, 2009.
- [2] G.D. Linebaugh. Phonetic Grounding and Phonology: Vowel Backness Harmony and Vowel Height Harmony. PhD thesis, University of Illinois at Urbana-Champaign, 2007.
- [3] Mehmet Akif Kiliç and I Giriç. Türkiye tiirkçesi'ndeki ünlülerin sesbilgisel özellikleri. Dilbilimi Journal of Linguistics, 2003.
- [4] M. Lindau. Vowel features. Journal of the Linguistic Society of America Baltimore, Md, 54(3):541-563, 1978.

Discussion, Conclusion and Further research

- * Back harmonic patterns yield temporal facilitation in Turkish and Turkmen; labial protrusion of front rounded vowels prevents motor facilitation in back harmony. However, lip spreading and lip compression gestures yield temporal facilitation. Hindi, a non-harmonic language, does not yield any facilitation. Consonants /p/ and /t/ aid the harmonic patterns in temporal motor facilitation in Turkish and Turkmen respectively.
- * Spatioteompral facilitation in labial and lingual gestural coordination will be examined with EMMA, MRI and acoustic modelling.