Verification of Contracts

- Given: Specification of imperative procedure by Precondition and Postcondition
- Goal: Formal proof for $\mathbf{Precondition}(State) \Rightarrow \mathbf{Postcondition}(\mathbf{procedure}(State))$
- Method: Hoare Logic, *i.e.*, a proof system for Hoare triples of the form

{Precondition} procedure {Postcondition}

- named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many other
- here: method bodies, no recursion, no pointers (extensions exist)

Syntax

$$\begin{array}{lll} E,F & ::= & c \mid x \mid E+F \mid \dots & \text{expressions} \\ B,P,Q & ::= & \neg B \mid P \land Q \mid P \lor Q & \text{boolean expressions} \\ & \mid & E=F \mid E \leq F \mid \dots & \\ C,D & ::= & \text{skip} & \text{statements} \\ & \mid & x=E & \text{assignment} \\ & \mid & C;D & \text{sequence} \\ & \mid & \text{if B then C else D} & \text{conditional} \\ & \mid & \text{while B do C} & \text{iteration} \\ \\ \mathcal{H} & ::= & \{P\} \ C \ \{Q\} & \text{Hoare triples} \end{array}$$

• (boolean) expressions are free of side effects

Semantics — **Domains** and **Types**

```
BValue = true \mid false
IValue = 0 \mid 1 \mid ...
```

$$\sigma \in State = Variable \rightarrow Value$$

$$\mathcal{E}$$
: $Expression \times State \rightarrow IValue$

$$\mathcal{B}[]]$$
: $BoolExpression \times State \rightarrow BValue$

$$S[]]$$
: $State_{\perp} \rightarrow State_{\perp}$

- $State_{\perp} := State \cup \{\perp\}$
- result ⊥ indicates non-termination

Semantics — **Expressions**

$$\mathcal{E}\llbracket c \rrbracket \sigma = c$$

$$\mathcal{E}\llbracket x \rrbracket \sigma = \sigma(x)$$

$$\mathcal{E}\llbracket E + F \rrbracket \sigma = \mathcal{E}\llbracket E \rrbracket \sigma + \mathcal{E}\llbracket F \rrbracket \sigma$$

$$\cdots$$

$$\mathcal{B}\llbracket E = F \rrbracket \sigma = \mathcal{E}\llbracket E \rrbracket \sigma = \mathcal{E}\llbracket F \rrbracket \sigma$$

$$\mathcal{B}\llbracket \neg B \rrbracket \sigma = \neg \mathcal{B}\llbracket B \rrbracket \sigma$$

Semantics — **Statements**

$$\begin{split} \mathcal{S}[\![C]\!] \bot &= \bot \\ \mathcal{S}[\![\operatorname{skip}]\!] \sigma &= \sigma \\ \mathcal{S}[\![x=E]\!] \sigma &= \sigma[x \mapsto \mathcal{E}[\![E]\!] \sigma] \\ \mathcal{S}[\![C;D]\!] \sigma &= \mathcal{S}[\![D]\!] (\mathcal{S}[\![C]\!] \sigma) \\ \mathcal{S}[\![\operatorname{if} B \text{ then } C \text{ else } D]\!] \sigma &= \mathcal{B}[\![B]\!] \sigma = \operatorname{true} \to \mathcal{S}[\![C]\!] \sigma \;, \; \mathcal{S}[\![D]\!] \sigma \\ \mathcal{S}[\![\operatorname{while} B \text{ do } C]\!] \sigma &= \mathcal{F}(\sigma) \\ &= \mathcal{B}[\![B]\!] \sigma = \operatorname{true} \to \mathcal{F}(\mathcal{S}[\![C]\!] \sigma) \;, \; \sigma \end{split}$$

Proving a Hoare triple

$$\{P\} \ C \ \{Q\}$$

- holds if $(\forall \sigma \in State) \ P(\sigma) \Rightarrow (Q(S[\![C]\!]\sigma) \lor S[\![C]\!]\sigma = \bot)$ (partial correctness)
- alternative reading: $P, Q \subseteq State$ $\{P\} \ C \ \{Q\} \equiv S \llbracket C \rrbracket P \subseteq Q \cup \bot$
- define
 - strongest postcondition: $post(P) = S[\![C]\!]P$
 - weakest precondition: $wp(Q) = \mathcal{S}[\![C]\!]^{-1}(Q)$
 - weakest liberal precondition: $wlp(Q) = \mathcal{S}[\![C]\!]^{-1}(Q \cup \{\bot\})$

Proof Rules for Hoare Triples

- ullet Proving that $\{P\}$ C $\{Q\}$ holds directly from the definition is tedious
- Instead: define axioms and inferences rules
- Construct a derivation to prove the triple
- ullet Choice of axioms and rules guided by structure of C

Skip Axiom

$$\{P\}$$
 skip $\{P\}$

Correctness:

- $(\forall \sigma \in P) \ \mathcal{S}[\![\mathtt{skip}]\!](\sigma) = \sigma \in P$
- ullet P is wp and P is strongest postcondition
- terminates

Assignment Axiom

$${P[x \mapsto E]} \ x = E \ {P}$$

Examples:

- $\{1 == 1\}$ x = 1 $\{x == 1\}$
- $\{odd(1)\}\ x = 1\ \{odd(x)\}\$
- $\{x == 2 * y + 1\}$ y = 2 * y $\{x == y + 1\}$

Correctness:

- Let $\sigma' = \mathcal{S}[x = E]\sigma = \sigma[x \mapsto \mathcal{E}[E]\sigma] \in P$
- $\Leftrightarrow \mathtt{true} = \mathcal{B}[\![P]\!]\sigma' = \mathcal{B}[\![P]\!](\sigma[x \mapsto \mathcal{E}[\![E]\!]\sigma]) = \mathcal{B}[\![P[x \mapsto E]\!]](\sigma)$
- $\Leftrightarrow \sigma \in P[x \mapsto E]$
 - terminates

Sequence Rule

$$\{P\}\ C\ \{R\}\ \ \{R\}\ D\ \{Q\}$$

Examples:

. . .

$$\{0 == 0 \land 1 == 1 \land 1 == 1\} \ i = 0; \ k = 1; \ sum = 1 \ \{i == 0 \land k == 1 \land sum == 1\}$$

Correctness:

• If $\mathcal{S}[\![C]\!](P) \subseteq R$ and $\mathcal{S}[\![D]\!](R) \subseteq Q$, then $\mathcal{S}[\![D]\!](\mathcal{S}[\![C]\!](P)) \subseteq Q$.

Conditional Rule

$$\{P \wedge B\} \ C \ \{Q\} \qquad \{P \wedge \neg B\} \ D \ \{Q\}$$
 $\{P\} \ \text{if} \ B \ \text{then} \ C \ \text{else} \ D \ \{Q\}$

Correctness:

- Let $\sigma \in P$
- $\bullet \ \mathcal{S}[\![\text{if } B \text{ then } C \text{ else } D]\!](\sigma) = \mathcal{B}[\![B]\!] \sigma = \mathtt{true} \to \mathcal{S}[\![C]\!] \sigma \ , \ \mathcal{S}[\![D]\!] \sigma$
- $\mathcal{B}[\![B]\!]\sigma = \mathtt{true} \equiv \sigma \in P \wedge B$ Antecedent yields: $\mathcal{S}[\![C]\!]\sigma \in Q$
- $\mathcal{B}[\![B]\!]\sigma = \mathtt{false} \equiv \sigma \in P \land \neg B$ Antecedent yields: $\mathcal{S}[\![D]\!]\sigma \in Q$
- Hence, $\mathcal{B}[\![B]\!]\sigma = \mathsf{true} \to \mathcal{S}[\![C]\!]\sigma$, $\mathcal{S}[\![D]\!]\sigma \in Q$.

Conditional Rule — Issues

Examples:

- incomplete!
- precondition for z=-x should be $(z==|x|)[z\mapsto -x]\equiv -x==|x|$

⇒ need logical rules

Logical Rules

strengthen precondition

$$\begin{array}{c|c} P' \Rightarrow P & \{P\} \ C \ \{Q\} \\ \hline \\ \{P'\} \ C \ \{Q\} \end{array}$$

weaken postcondition

$$\frac{\{P\}\ C\ \{Q\}\qquad Q\Rightarrow Q'}{\{P\}\ C\ \{Q'\}}$$

Correctness obvious

- Example needs strengthening: $P \land x < 0 \Rightarrow -x == \mid x \mid$
- holds if $P \equiv \mathbf{true}!$
- similarly: $P \wedge x \ge 0 \Rightarrow x == |x|$

Completed example:

$$\mathcal{D}_1 = \frac{x < 0 \Rightarrow -x == |x| \quad \{-x == |x|\} \ z = -x \ \{z == |x|\}}{\{x < 0\} \ z = -x \ \{z == |x|\}}$$

$$\mathcal{D}_2 = \frac{x \ge 0 \Rightarrow x == |x| \quad \{x == |x|\} \ z = x \ \{z == |x|\}}{\{x \ge 0\} \ z = x \ \{z == |x|\}}$$

While Rule

$$\frac{\{P \wedge B\} \ C \ \{P\}}{\{P\} \ \text{while} \ B \ \text{do} \ C \ \{P \wedge \neg B\}}$$

• *P* is loop invariant

Example: try to prove

```
{ a>=0 /\ i==0 /\ k==1 /\ sum==1 }
while sum <= a do
    k = k+2;
    i = i+1;
    sum = sum+k
{ i*i <= a /\ a < (i+1)*(i+1) }</pre>
```

⇒ while rule not directly applicable . . .

Step 1: Find the loop invariant

- $P\equiv a\geq 0 \land i\geq 0 \land k==2*i+1 \land sum==(i+1)*(i+1)$ holds on entry to the loop
- To prove that P is an invariant, requires to prove that $\{P \wedge sum \leq a\}$ k = k+1; i = i+1; sum = sum + k $\{P\}$

355

• It follows by the sequence rule and weakening:

Proof of loop invariance

```
\{ i*i<=a / \ i>=0 / \ k==2*i+1 / \ sum==(i+1)*(i+1) / \ sum<=a \}
           i \ge 0 /\ k+2==2+2*i+1 /\ sum==(i+1)*(i+1) /\ sum \le a }
k = k+2
           i \ge 0 /\ k = 2 + 2 * i + 1 /\ sum = (i + 1) * (i + 1) /\ sum < a }
           i+1>=1 / k==2*(i+1)+1 / sum==(i+1)*(i+1) / sum<=a }
i = i+1
           i \ge 1 /\ k = 2 * i + 1 /\ sum = i * i
                                                 /\ sum<=a }
\{ i*i<=a / \ i>=1 / \ k==2*i+1 / \ sum+k==i*i+k \}
                                                   /\ sum+k<=a+k }
sum = sum + k
\{ i*i<=a / i>=1 / k==2*i+1 \}
                                \{ i*i<=a / \ i>=1 / \ k==2*i+1 \}
                                /\ sum==i*i+2*i+1 /\ sum<=a+k }
\{ i*i<=a / \ i>=1 / \ k==2*i+1 / \ sum==(i+1)*(i+1) / \ sum<=a+k \}
\{ i*i<=a / \ i>=0 / \ k==2*i+1 \}
```

Step 2: Apply the while rule

Correctness of the while rule

$$\frac{\{P \wedge B\} \ C \ \{P\}}{\{P\} \text{ while } B \text{ do } C \ \{P \wedge \neg B\}}$$

- Suppose that $\sigma \in P$ and let $\sigma' = \mathcal{S}[while B \text{ do } C](\sigma) = F(\sigma)$
- where $F(\sigma) = \mathcal{B}[\![B]\!]\sigma = \mathtt{true} \to F(\mathcal{S}[\![C]\!]\sigma)$, σ
- If $F(\sigma) = \bot$, then the conclusion holds.
- Otherwise, prove by induction on the number n of recursive calls of F that $F(P) \subseteq P \land \neg B$
- n=0: it must be that $\mathcal{B}[\![B]\!]\sigma=\mathtt{false}$ so that $\sigma\in P\wedge \neg B$.
- n > 0: it must be that $\mathcal{B}[\![B]\!]\sigma = \text{true}$ so that $\sigma \in P \wedge B$. In this case, $F(\sigma) = F(\mathcal{S}[\![C]\!]\sigma)$ and by assumption $\mathcal{S}[\![C]\!]\sigma \in P$.
- Now, the inductive hypothesis applied to $\sigma' = F(\mathcal{S}[\![C]\!]\sigma)$ yields $\sigma' \in P \land \neg B$

Termination

A loop while B do C terminates if there is a well-founded ordering (A,\succ) and a termination value $t\in A$ such that for all values $t_{\mbox{before C}}$ it holds that $t_{\mbox{before C}} \succ t_{\mbox{after C}}.$

In a well-founded ordering, all decreasing chains $t_1 \succ t_2 \succ \dots$ are finite.

Examples for well-founded orderings:

- \bullet $(\mathbb{N}, >)$
- ullet $(\mathbb{N} \times \mathbb{N}, >)$ where (a, b) > (c, d) if a > c or a = c and b > d
- lexicographic ordering on fixed-length tuples of well-founded orderings

Counterexamples: orderings that are not well-founded

- $(\mathbb{Z}, >)$ $0, -1, -2, -3, \dots$
- $(\mathbb{Q}^+, >)$ $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
- lexicographic ordering on $\{a, b\}^*$ b, ab, aab, aaab, aaaab, ...

Termination of the root example

- Choose t = a i * i in $(\mathbb{N}, >)$.
- Recall the loop invariant

$$i*i <= a /\ i>= 0 /\ k==2*i+1 /\ sum==(i+1)*(i+1)$$

- Hence $a i * i \ge 0$, i.e., $\in \mathbb{N}$
- If $t_{before\ C}=a-i*i$, then $t_{after\ C}=a-(i+1)*(i+1)=a-i*i-2i-1$
- $\Rightarrow t_{before C} > t_{after C}$ (since $i \ge 0$ is also an invariant)

Another example: Greatest common divisor

```
{ x1 > 0 /\ x2 > 0 }
y1 = x1; y2 = x2;
{ x1 > 0 /\ x2 > 0 /\ x1 == y1 /\ x2 == y2 }
while y1 <> y2 do
  if y1 < y2 then
    y2 = y2 % y1
  else
    y1 = y1 % y2
{ y1 == gcd(x1, x2) }</pre>
```

• Invariant?

Invariant of GCD loop

$$P \equiv \gcd(x1, x2) == \gcd(y1, y2)$$

- Holds on entry since x1 == y1 and x2 == y2
- $\{y1 < y2 \land gcd(x1,x2) == gcd(y1,y2)\}$ y2 = y2 % y1 $\{gcd(x1,x2) == gcd(y1,y2)\}$ holds because the precondition of the assignment is $\{gcd(x1,x2) == gcd(y1,y2\%y1)\}$ and gcd(y1,y2) == gcd(y1,y2%y1) For the latter: suppose that $d \mid y1$ and $d \mid y2$ and r = y2%y1, that is $y2 = m \cdot y1 + r$ with m > 0 (since y1 < y2). Now $d \mid m \cdot y1 + r$ if and only if $d \mid r$.
- analogously for the else branch of the conditional

363

Greatest common divisor with invariant

```
\{ x1 > 0 \land x2 > 0 \}
y1 = x1; y2 = x2;
\{ x1 > 0 \land x2 > 0 \land x1 == y1 \land x2 == y2 \}
\{ \gcd(x1, x2) == \gcd(y1, y2) \}
while y1 <> y2 do
  \{ \gcd (x1, x2) == \gcd (y1, y2) \land y1 \iff y2 \}
  if y1 < y2 then
     y2 = y2 \% y1
  else
     y1 = y1 \% y2
  \{ \gcd (x1, x2) == \gcd (y1, y2) \}
\{ \gcd (x1, x2) == \gcd (y1, y2) \land y1 == y2 \}
{ y1 == gcd(x1, x2) }
```

Termination of gcd

```
while y1 <> y2 do
  if y1 < y2 then
    y2 = y2 % y1
  else
    y1 = y1 % y2</pre>
```

- let $t = (y1, y2) \in (\mathbb{N} \times \mathbb{N}, >)$ (lexicographic ordering)
- if y1 < y2, then y2%y1 < y2
- if y1 > y2, then y1%y2 < y1
- \Rightarrow in both cases, t decreases
- \Rightarrow loop terminates
- ⇒ code is totally correct

Properties of Formal Verification

- requires more restrictions on assertions (e.g., use a certain logic)
 than monitoring
- full compliance of code with specification can be guaranteed
- scalability is a challenging research topic:
 - full automatization
 - manageable for small/medium examples
 - large examples require manual interaction
 - general problem is undecidable