1.1 Приведите пример линейной формы в пространстве полиномов

$$f(p) = p(a) \quad a \in \mathbb{R}$$

1.2 Как найти матрицу билинейной формы в некотором базисе

 $\left\{e_i
ight\}_1^n$ - базис. Тогда матрица билин. формы имеет вид $\left.eta_{\mathrm{ij}}=b\!\left(e_i,e_j
ight)$

1.3 В чйм заключается смысл немого суммирования

Если в выражении встречается один и тот же индекс в верхнем и нижнем положении, то по нему подразумевается суммирование от 1 до n (где n — размерность пространства).

1.4 Как выглядит закон преобразования тензора типа (1, 1)

 T^i_j — компоненты тензора типа (1,1) в старом базисе,

 $\overline{T_j^i}$ — компоненты этого же тензора в новом базисе,

 $P = \left(P_k^i \right)$ — матрица перехода от старого базиса к новому,

 $Q = P^{-1}$ — матрица перехода от нового базиса к старому,

$$\overline{T_j^i} = P_k^i T_l^k Q_j^l$$

1.5 Напишите закон преобразования матрицы оператора при смене базиса

Пусть $\varphi \in \operatorname{Hom}_K(V,W)$, а в пространствах заданы базисы:

$$V: \{e_i\}_{i=1}^n \{e'_j\}_{j=1}^n$$

$$W: \quad \left\{g_k\right\}_{k=1}^m \left\{g_l'\right\}_{l=1}^m$$

Причем известно, что $T=\{t_{ij}\}$ — матрица перехода из базиса $\{e\}$ в базис $\{e'\}$, а матрица $S=\{s_{kl}\}$ — матрица перехода из базиса $\{g\}$ в базис $\{g'\}$.

Матрица оператора при замене базисов преобразуется как $A_{\varphi}' = S^{\text{-}1}A\mathrm{T}$

2.1 Как связаны размерности ядра и образа оператора

$$\dim_{\mathbb{K}} \ker \varphi + \dim_{\mathbb{K}} \operatorname{Im} \, \varphi = \dim_{\mathbb{K}} V$$

2.2 Найти собственные значения линейного оператора, матрица которого $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

$$\det\left(\begin{pmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{pmatrix}\right) = (1-\lambda)^2 - 2^2 = 0$$
$$(1-\lambda-2)(1-\lambda+2) = 0$$
$$(-\lambda-1)(3-\lambda) = 0$$

$$\lambda = -1$$
 $\lambda = 3$

2.3 Сформулируйте спектральную теорему для диаганолизируемого оператора

Если линейный оператор A на конечномерном векторном пространстве диагонализируем, то существует такой базис пространства, в котором матрица оператора A является диагональной, и её диагональные элементы — это собственные значения оператора.

2.4 Определите алегбраические и геометрические кратности собственных чисел оператора, если

в жордановом базисе его матрица имеет вид $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

собственное число 1, алгебраическая кратность 3, геометрическая 1

2.5 Запишите матрицу полинома p(x) от диагональной матрицы A

$$p\Big(A_{\varphi}^{D}\Big) = \begin{pmatrix} p(\lambda_{1}) & 0 & \dots & 0 \\ 0 & p(\lambda_{2}) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & p(\lambda_{i}) \end{pmatrix}$$

3.1 Каким образом из евклидова пространства можно получиль нормированное

Евклидово пространство — частный случай нормированного пространства. Чтобы получить нормированное пространство из евклидова, достаточно использовать норму $\|x\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$

3.2 Вычислите скалярное произведение векторов $x=(1,2)^T$ и $y=(0,3)^T$ в базисе, матрица Грама которого $G=\begin{pmatrix}1&1\\2&1\end{pmatrix}$

$$(1 \ 2) \begin{pmatrix} 1 \ 1 \\ 2 \ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = (5 \ 3) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 9$$

3.3 Как найти коэффициенты Фурье вектора в ортонормированном базисе

В ортонормированном базисе координаты вектора находятся с помощью скалярного произведения. Если базис $\{e_1,e_2...,e_n\}$ ортонормированный, то для любого вектора v коэффициенты высчитываются как:

$$c_i = < v, e_i >$$

3.4 Что такое сигнатура квадратичной формы

Сигнатура квадратичной формы - это набор из двух чисел (p, q), где p - число положительных собственных значений, q - число отрицательных собственных значений.

3.5 Сформулируйте свойства унитарного оператора в комплексном евклидовом пространстве

- 1. изометрия: $\langle \psi_x, \psi_y \rangle = \langle x, y \rangle$
- 2. сохранение нормы: $\|\psi_x\| = \|x\|$
- 3. свойство сопряженного: $\psi^{\dagger} = \psi^{-1}$

Весна '25. Предварительная волна. Вариант 2

1.1 Напишите определение линейной формы

Линейной формой на пространстве V называется такая функция $f: \mathbb{V} \to \mathbb{K}$, что $\forall v_1, v_2 \in \mathbb{V}$, $\forall \lambda \in \mathbb{K}$ выполняется:

- 1. Аддитивность: $f(v_1 + v_2) = f(v_1) + f(v_2)$
- 2. Однородность: $f(\lambda v) = \lambda f(v)$
- 1.2 Пусть билинейная форма задана своей матрицей $\binom{1}{3} \binom{4}{2}$ в некотором базисе. Представьте её в виде суммы симметричной и антисимметричной компонент

$$\begin{split} b_S(x,y) &= \frac{1}{2} \bigg(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix} \bigg) \\ b_S(x,y) &= \frac{1}{2} \begin{pmatrix} 2 & 7 \\ 7 & 4 \end{pmatrix} \\ b_S(x,y) &= \begin{pmatrix} 1 & 3.5 \\ 3.5 & 2 \end{pmatrix} \\ b_{\mathrm{AS}}(x,y) &= \frac{1}{2} \bigg(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix} \bigg) \\ b_{\mathrm{AS}}(x,y) &= \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ b_{\mathrm{AS}}(x,y) &= \begin{pmatrix} 0 & 0.5 \\ -0.5 & 0 \end{pmatrix} \\ b(x,y) &= b_S + b_{\mathrm{AS}} = \begin{pmatrix} 1 & 3.5 \\ 3.5 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0.5 \\ -0.5 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} \end{split}$$

1.3 Что является тензором линейной формы

Линейная форма $\varphi \in \mathbb{V}^*$ является ПЛФ валентности (1, 0)

Тензором полилинейной валентности (1, 0) является $T_0^1(\mathbb{V})$

Таким образом тензором линейной формы является ковариантный тензор ранга 1 — элемент сопряжённого пространства \mathbb{V}^* .

1.4 Как может быть найден определитель квадратной матрицы с помощью символа Леви-Чевита

Пусть матрица А имеет размерность nxn, тогда

$$\det A = \varepsilon_{i_1,i_2,\dots i_n} a_1^{i_1} a_2^{i_2} \dots a_n^{i_n}$$

1.5 Матрица линейного оператора φ в базисе e_1,e_2 некоторого линейного пространства является матрица $\begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}$. Найдите матрицу линейного оператора базисе $e_1'=e_2,e_2'=e_1+e_2$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} -2 & 3 \\ 1 & -2 \end{pmatrix}$$

2.1 Что такое ядро линейного оператора?

Ядро линейного оператора $A: \mathbb{V} \to \mathbb{W}$ — это множество всех векторов из пространства \mathbb{V} , которые оператор A переводит в нулевой вектор пространства \mathbb{W}

$$\ker A = \{ v \in \mathbb{V} \mid Av = 0_{\mathbb{W}} \}$$

2.2 Сформулируйте определение собственного вектора и собственного значения оператора **A** Ненулевой вектор $x \in \mathbb{V}$ называется собственным вектором оператора φ , если $\varphi x = \lambda x$. Число $\lambda \in \mathbb{K}$ называется при этом собственным значением оператора φ , отвечающим собственному вектору x.

2.3 Сформулируйте критерии диагонализируемости оператора A 1. Оператор А диагонализируем тогла и только тогла, когла для каждого

- 1. Оператор A диагонализируем тогда и только тогда, когда для каждого его собственного значения λ алгебраическая и геометрическая кратности равны
- Характеристический многочлен раскладывается на линейные сомножители, то есть все его корни лежат в поле К
- 2.4 Определите алегбраические и геометрические кратности собственных чисел оператора, если в жордановом базисе его матрица имеет вид $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

собственное число 0, алгебраическая кратность 2, геометрическая 1 собственное число 1, алгебраическая кратность 1, геометрическая 1

2.5 Запишите матрицу полинома p(x) от диагональной матрицы A

$$p\Big(A_{\varphi}^{D}\Big) = \begin{pmatrix} p(\lambda_{1}) & 0 & \dots & 0 \\ 0 & p(\lambda_{2}) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & p(\lambda_{i}) \end{pmatrix}$$

3.1 Какое пространство называется комплексным евклидовым пространством?

Линейное пространство X над \mathbb{C} называется комплексным евклидовым пространством, если на нем заданаметрическая форма $g(x,y) = \langle x,y \rangle$ со следующими свойствами:

- 1. $\langle x,\alpha y_1+\beta y_2\rangle=\alpha\langle x,y_1\rangle+\beta\langle x,y_2\rangle$ линейность по второму аргументу
- 2. $\langle x,y\rangle=\overline{\langle y,x\rangle}$ эрмитовость 3. $\langle x,x\rangle\geq 0, \langle x,x\rangle=0 \Leftrightarrow x=0$
- 3.2 Приведите пример скалярного произведения в пространстве квадратных матриц

$\langle A,B angle=\operatorname{tr}(A^TB)$

3.3 Как найти ортогональный проектор на подпространство, если задан ортонормированный базис

$$P_L(x) = \sum_{i=1}^k \langle x, e_i \rangle e_i$$

i=1

где e_i — ортонормированный базис подпространства L

3.4 Запишите нормальный вид квадратичной формы в
$$\mathbb{R}$$
, если её сигнатура $(r_+,r_-)=(2,3)$
$$Q(x)=x_1^2+x_2^2-x_3^2-x_4^2-x_5^2$$

3.5 Каким свойством обладает матрица эрмитова оператора в ортонормированном базисе

Если оператор Т является эрмитовым, то в любом ортонормированном базисе его матрица А удовлетворяет:

1.1 Приведите пример линейной формы в пространстве геометрических векторов

$$f(v) = \langle a, v \rangle$$
 a — фиксированный вектор

1.2 Как найти антисимметричную компоненту билинейной формы

$$b^{\mathrm{AS}}(x,y) = \frac{1}{2}(b(x,y) - b(y,x))$$

$$B^{\mathrm{AS}} = \frac{1}{2}(B - B^T)$$

1.3 Какой валентностью обладает полилинейная форма валентности (p,q) после операции свёртки

$$(p-1, q-1)$$

1.4 Дайте определение символа Леви-Чевита

$$\varepsilon_{ijk} = \begin{cases} +1 \text{ если } (\mathrm{i,j,k}) \text{ - чётная перестановка} \\ -1 \text{ если } (\mathrm{i,j,k}) \text{ - нечётная перестановка} \\ 0 \text{ иначе (есть повторяющиеся индексы)} \end{cases}$$

1.5 Напишите определение матрицы линейного оператора $\mathbb A$ в базисе $\{e_1, e_2, ..., e_n\}$

Матрицей линейного оператора \mathbb{A} в этом базисе называется квадратная матрица $\mathbf{A} = (a_{ij})$ размера $\mathbf{n} \times \mathbf{n}$, элементы которой определяются следующим образом:

$$Aig(e_jig) = \sum_{i=1}^n a_{ij} e_i$$
 для $j=1,2,...,n$

2.1 Что такое ядро линейного оператора

Ядро линейного оператора $A: \mathbb{V} \to \mathbb{W}$ — это множество всех векторов из пространства \mathbb{V} , которые оператор A переводит в нулевой вектор пространства \mathbb{W}

$$\ker A = \{ v \in \mathbb{V} \mid Av = 0_{\mathbb{W}} \}$$

2.2 Найти собственные значения линейного оператора, матрица которого $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

$$\det\left(\begin{pmatrix}1-\lambda & 2\\ 2 & 1-\lambda\end{pmatrix}\right) = (1-\lambda)^2 - 2^2 = 0$$
$$(1-\lambda-2)(1-\lambda+2) = 0$$
$$(-\lambda-1)(3-\lambda) = 0$$
$$\lambda = -1 \quad \lambda = 3$$

2.3 Сформулируйте критерии диагонализируемости оператора А

- 1. Оператор А диагонализируем тогда и только тогда, когда для каждого его собственного значения λ алгебраическая и геометрическая кратности равны
- 2. Характеристический многочлен раскладывается на линейные сомножители, то есть все его корни лежат в

2.4 Сформулируйте основную теорему о структуре нильпотентного оператора

Пусть N — нильпотентный оператор на $\mathbb V$. Тогда существует разложениепространства $\mathbb V$ в прямую сумму циклических подпространств этого оператора $\mathbb V=\oplus \mathbb U_i$. Количество слагаемых в таком разложении равно $\dim \ker N$.

2.5 Запишите матрицу полинома p(x) от диагональной матрицы А

$$p\Big(A_{\varphi}^{D}\Big) = \begin{pmatrix} p(\lambda_{1}) & 0 & \dots & 0 \\ 0 & p(\lambda_{2}) & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & p(\lambda_{i}) \end{pmatrix}$$

3.1 Сформулируйте определение метрического тензора

Пусть g - метрическая форма. Тогда совокупность чисел $g_{ij} = g(e_i, e_j)$ называется метрическим тензором.

3.2 Пусть x_1 и x_2 - ортогональные векторы. При каких α и β выполняетсяравентво $\alpha x_1=\beta x_2$ При $\alpha=\beta=0$

3.3 Какое подпространство называют ортогональным дополнением

Ортогональным дополнением пространства L называется множество $M = \{x \in X : x \perp L\}$

3.4 Какому необходимому и достаточному условию должны удавоетворять главные миноры отрицательно определённой квадратичной формы

$$(-1)^k D_k > 0$$
 для всех $k = 1, 2, ..., n$

где D_k — определитель $k \times k$ -го верхнего левого блока (ведущего главного минора)

3.5 Сформулируйте определение унитарного оператора

Пусть ψ — опертор в евклидовом пространстве $X_{\mathbb{E}}(K)$ является унитарным, если сооблюдается хотя-бы одно (а как следствие и все остальные) из свойств:

- 1. изометрия: $\langle \psi_x, \psi_y \rangle = \langle x, y \rangle$
- 2. сохранение нормы: $\|\psi_x\| = \|x\|$
- 3. свойство сопряженного: $\psi^{\dagger} = \psi^{-1}$

Весна '25. Предварительная волна. Вариант 4

1.1 Напишите определение линейной формы

Линейной формой на пространстве V называется такая функция $f: \mathbb{V} \to \mathbb{K}$, что $\forall v_1, v_2 \in \mathbb{V}$, $\forall \lambda \in \mathbb{K}$ выполняется:

- 1. Аддитивность: $f(v_1 + v_2) = f(v_1) + f(v_2)$
- 2. Однородность: $f(\lambda v) = \lambda f(v)$

1.2 Пусть билинейная форма задана своей матрицей $\binom{2}{-1} \binom{-2}{1}$ в некотором базисе. Представьте её в виде суммы симметричной и антисимметричной формы

$$\begin{split} b_S &= \frac{1}{2} \bigg(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \bigg) \\ b_S &= \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -3 & 2 \end{pmatrix} \\ b_S &= \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} \\ b_{\mathrm{AS}} &= \frac{1}{2} \bigg(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \bigg) \\ b_{\mathrm{AS}} &= \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} b_{\mathrm{AS}} = \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} \\ b &= b_S + b_{\mathrm{AS}} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} \end{split}$$

1.3 В чйм заключается смысл немого суммирования

Если в выражении встречается один и тот же индекс в верхнем и нижнем положении, то по нему подразумевается суммирование от 1 до n (где n — размерность пространства).

 $1.4~{
m Kak}$ выглядит закон преобразования тензора типа $(2,\,0)$

 T^{ij} — компоненты тензора ${\mathcal T}$ в старом базисе,

 $\overline{T^{pq}}$ — компоненты этого же тензора в новом базисе,

 $P = \left(P_k^i \right)$ — матрица перехода от старого базиса к новому,

$$\overline{T^{pq}} = P_p^i P_p^j Q^{ij}$$

1.5 Матрицей линейного оператора φ в базисе e_1,e_2 некоторого линейного пространства является матрица $\begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix}$. Найдите матрицу линейного оператора базисе $e_1'=2e_1,e_2'=e_2$

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0.5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ -6 & 0 \end{pmatrix}$$

${\bf 2.1}$ Какую размерность имеет образ оператора $\varphi,$ определённого в $\mathbb{R}^4,$ если размерность ядра равна ${\bf 2}$

2.2 Сформулируйте определение собственного вектора и собственного значения оператора **A** Ненулевой вектор $x \in \mathbb{V}$ называется собственным вектором оператора φ , если $\varphi x = \lambda x$. Число $\lambda \in \mathbb{K}$ называется при этом собственным значением оператора φ , отвечающим собственному вектору x.

2.3 Сформулируйте спектральную теорему для диаганолизируемого оператора

Если линейный оператор A на конечномерном векторном пространстве диагонализируем, то существует такой базис пространства, в котором матрица оператора A является диагональной, и её диагональные элементы — это собственные значения оператора.

2.4 Определите алгебраические и геометрические кратности собственных чисел оператора если в жордановом базисе его матрица имеет вид $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

собственное число 0, алгебраическая кратность 2, геометрическая 1 собственное число 1, алгебраическая кратность 1, геометрическая 1

$$2.5$$
 Найдите e^A если $A = egin{pmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{pmatrix}$

$$e^A = \begin{pmatrix} e & e & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & e & e \\ 0 & 0 & 0 & e \end{pmatrix}$$

3.1 Сформулируйте определение метрического тензора

Пусть g - метрическая форма. Тогда совокупность чисел $g_{ij} = g(e_i, e_j)$ называется метрическим тензором.

3.2 Приведите пример скалярного произведения в пространстве квадратных матриц

$$\langle A, B \rangle = \operatorname{tr}(A^T B)$$

3.3 Какое подпространство называют ортогональным дополнением

Ортогональным дополнением пространства L называется множество $M = \{x \in X : x \perp L\}$

3.4 Запишите квадратичную форму по её матрице
$$\begin{pmatrix} 6 & 0 & -1 \\ 0 & 1 & -4 \\ -1 & -4 & 0 \end{pmatrix}$$

$$q(x) = 6x_1x_1 - 2x_1x_3 + x_2x_2 - 8x_2x_3 = 6x_1^2 + x_2^2 - 2x_1x_3 - 8x_2x_3$$

- 3.5 Сформулируйте свойства спектра ортогонального оператора в вещественном евклидовом
- пространстве
 1. Модуль всех собственных значений равен 1
- 2. Ортогональный оператор диагонализируем над \mathbb{R}

Весна '25. Предварительная волна. Вариант 5

1.1 Что из себя представляют элементы сопряжённого пространства

Элементы сопряжённого пространства V^* — это линейные формы (или ковекторы), то есть все линейные отображения вида $\varphi: V \to \mathbb{F}$ где V — ваше исходное векторное пространство над полем \mathbb{F}

1.2 Дайте определение квадратичной формы на линейном пространстве V

Квадратичной формой на линейном пространстве V называется отображение q(v), построенное из билинейной формы b(x, y) следующим образом:

$$q: \mathbb{V} \to \mathbb{K}, q(v) = b(v, v), \forall v \in \mathbb{V}$$

1.3 Сколько различных тензоров можно образовать с помощью свёртки тензора типа (2,2)

1.4 Какими свойствами обладает символ Кронакера

- 1. Симметричность
- 2. В случае ДПСК справедливо свойство: $\delta_{ij}a^j=a_i$

1.5 Матрицей линейного оператора φ в базисе e_1,e_2 некоторого линейного пространства является матрица $\begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix}$. Найдите матрицу линейного оператора базисе $e_1'=2e_1,e_2'=e_2$

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0.5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ -6 & 0 \end{pmatrix}$$

2.1 Что такое ядро линейного оператора

Ядро линейного оператора $A: \mathbb{V} \to \mathbb{W}$ — это множество всех векторов из пространства \mathbb{V} , которые оператор A переводит в нулевой вектор пространства \mathbb{W}

$$\ker A = \{v \in \mathbb{V} \mid Av = 0_{\mathbb{W}}\}$$

2.2 Найти собственные значения линейного оператора, матрица которого $\binom{1}{2}$

$$\begin{split} \det\!\left(\begin{pmatrix}1-\lambda & 2\\ 2 & 1-\lambda\end{pmatrix}\right) &= (1-\lambda)^2 - 2^2 = 0\\ (1-\lambda-2)(1-\lambda+2) &= 0\\ (-\lambda-1)(3-\lambda) &= 0\\ \lambda &= -1 \quad \lambda = 3 \end{split}$$

2.3 Линейный оператор f линейного пространства L^2 в базисе e_1, e_2 задан матрицей $\binom{4-2}{1-1}$. Выясниите, является ли он диагонализируем

$$\begin{split} \det(A-\lambda I) &= \det\left(\binom{4-\lambda}{1} \frac{-2}{1-\lambda}\right) = 0 \\ \det(A-\lambda I) &= (4-\lambda)(1-\lambda) + 2 = 0 \\ 4-\lambda-4\lambda+\lambda^2+2 &= 0 \\ 6-5\lambda+\lambda^2 &= 0 \\ \lambda_1 &= 2 \text{ (алг. крат. 1)} \quad \lambda_2 &= 3 \text{ (алг. крат. 1)} \end{split}$$

$$A-2I=inom{2-2}{1-1}\Rightarrow$$
 одна строка линейно зависима \Rightarrow dim ker $=2-1\Rightarrow$ геом. крат. 1 $A-3I=inom{1-2}{1-2}\Rightarrow$ одна строка линейно зависима \Rightarrow dim ker $=2-1\Rightarrow$ геом. крат. 1

Да, является

2.4? Опишите 2 подхода к формированию жорданова базиса

Подход через цепочки обобщённых собственных векторов

- 1. Находим собственные значения λ из характеристического уравнения.
- 2. Для каждого λ строим последовательность ядер: $\ker(A-\lambda I), \ker(A-\lambda I)^2, \dots$
- 3. Выбираем векторы из разности ядер: $\ker(A-\lambda I)^k/\ker(A-\lambda I)^{k-1}$
- 4. Для каждого такого вектора строим цепочку: $v, (A \lambda I)v, ..., (A \lambda I)^{k-1}v$
- 5. Объединяя все цепочки, получаем Жорданов базис

Подход через разложение на инвариантные подпространства

- 1. Разбиваем пространство в сумму обобщённых собственных подпространств $V=\bigoplus V_{\lambda}$
- 2. В каждом V_{λ} находим циклические векторы такие, чьи образы под действием А порождают инвариантное подпространство
- 3. Строим базисы: $\{v, Av, A^2v, ...\}$
- 4. Полученные базисы соответствуют Жордановым блокам

2.5 Что такое операторный полином?

Операторный полином — это полином, в котором переменная заменена на линейный оператор.

3.1 Приведите произвольный пример нормы в пространстве квадратных матриц ______

$$||A|| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2}$$

 $3.2~\Pi$ риведите пример скалярного произведения в пространстве полиномов степени не выше 3

$$(f,g) = \int_0^1 f(x)g(x)dx$$

3.3 Как найти ортогональный проектор на подпространство, если задан ортонормированный базис

$$P_L(x) = \sum_{i=1}^k \langle x, e_i \rangle e_i$$

 $\sum_{i=1}^{\infty} (i)^{i}$

где e_i — ортонормированный базис подпространства L

3.4 Какому необходимому и достаточному условию должны удавоетворять главные миноры отрицательно определённой квадратичной формы

$$(-1)^k D_k > 0$$
 для всех $k = 1, 2, ..., n$

где D_k — определитель $k \times k$ -го верхнего левого блока (ведущего главного минора)

- 3.5 Сформулируйте свойства унитарного оператора в комплексном евклидовом пространстве
- 1. изометрия: $\langle \psi_x, \psi_y \rangle = \langle x, y \rangle$
- 1. изометрия: $\langle \psi_x, \psi_y \rangle = \langle x, y \rangle$ 2. сохранение нормы: $\|\psi_x\| = \|x\|$
- 3. свойство сопряженного: $\psi^{\dagger} = \psi^{-1}$