Лабораторная работа № 2 Исследование характеристик коллекторного двигателя постоянного тока

Цель лабораторной работы: изучение статических характеристик и характера переходных процессов в двигателе постоянного тока с независимым возбуждением от постоянных магнитов при изменении управляющего напряжения, внешнего силового воздействия, а также в зависимости от соотношения значений основных параметров двигателя.

Задачи лабораторной работы

- приобретение навыков формирования математических моделей исполнительных двигателей электромеханических систем как динамических объектов с помощью средств системы визуального моделирования *Simulink* на примере модели коллекторного двигателя постоянного тока (ДПТ) с возбуждением от постоянного магнитного поля;
- изучение характера переходных процессов в ДПТ и определение электромагнитной и электромеханической постоянных времени двигателя путем проведения вычислительных экспериментов;
- исследование свойств ДПТ в установившихся режимах работы;
- определение регулировочной характеристики ДПТ при непрерывном регулировании напряжения, подаваемого на якорную цепь двигателя;
- определение механической характеристики ДПТ при изменении назрузочного момента;
- исследование зависимости динамических свойств ДПТ от момента инерции ротора и приведенного момента инерции объекта управления.

Порядок выполнения лабораторной работы

1. Запустите *Matlab* и откройте окно для создания модели *Simulink*. С помощью мыши «перетащите» нужные модули из библиотеки *Simulink* на рабочее поле модели и соедините их линиями связи в соответствии со структурной схемой модели двигателя постоянного тока. Присвойте имя программной модели и сохраните ее в каталоге, указанном преподавателем.

Числовые значения параметров модели ДПТ для своего варианта задайте как переменные в окне *Command Window* в соответствии с в таблицей.

clear % Очистка Workspase

Ra=4.0; % Активное сопротивление обмотки якоря

La=0.004; % Индуктивность обмотки якоря

Ја=0.00002; % Момент инерции ротора

Кт=0.043; % Коментный коэффициент двигателя

Ке=0.043; % Коэффициент противоЭДС

Unom=24; % Номинальное напряжение двигателя Umax=40; % Напряжение источника энергии Mnom=0.2; % Номинальный момент двигателя

Двигатель	$U_{{\scriptscriptstyle HOM}}$	п ном	I_{HOM}	$R_{\scriptscriptstyle R}$,	$T_{\mathfrak{I}}$	$J_{\partial \theta}$,	k_e ,
	В	об/мин	A	Ом	мс	кгм ²	Вс/рад
ДПР62Н1-02	27	6000	0,72	4	1	3,60*10 ⁻⁶	0,043
ДПР72Н1-07	12	4500	2,20	0,56	0,65	7,80*10 ⁻⁶	0,025
ПЯ250Ф	36	3000	9,50	1	1	2,92*10 ⁻⁴	0,115
ДПУ200	92	3000	7,40	1,53	1,1	7,80*10 ⁻⁴	0,293
ДП40-50-4-24-Р10-Д41	24	4000	2,30	1,6	1	1,25*10 ⁻⁵	0,043
ДП50-60-4-24-Р10-Д41	24	4000	5,30	0,28	1,5	6,08*10 ⁻⁵	0,043

2. Снимите переходной процесс изменения угловой скорости вала двигателя ω и тока якоря $I_{\rm s}$ при ступенчатом изменении напряжения $U_{\rm s}$. Для этого введите номинальное значение $U_{\rm s}$, указанное в табл.1, и задайте нулевое значение возмущающего момента $M_{\rm b}$ от внешних сил. Установите необходимые значения параметров процесса моделирования, раскрыв поочередно разделы *Simulation* и *Parameters*. Общее время моделирования рекомендуется принимать приблизительно равным $4T_{\rm m}$. Предварительно необходимо вычислить значения электромагнитной и электромеханической постоянных времени рассматриваемого ДПТ.

3. Получите и зарисуйте переходные процессы скорости и тока при номинальном значении напряжения якоря и внешнем моменте, равном нулю.

4. Определите по полученным графикам время переходного процесса $T_{\rm пп}$ скорости двигателя ω и перерегулирование σ . Сопоставьте установившееся значение скорости вала двигателя со значением, которое ожидается на основании теоретических положений. Дайте объяснение характеру изменения тока якоря.

Примечание: Для апериодического процесса справедливо соотношение $T_{\rm nn} \approx 3\tau$.

- 5. Определите значение электромеханической постоянной времени двигателя $T_{\rm M}$ по переходному процессу угловой скорости вращения вала двигателя. Сопоставьте полученное значение с ожидаемым значением, вычисленным теоретически. Если эти значения отличаются, объясните, чем это может быть вызвано.
- 6. Приложите к валу внешний момент $M_{\rm BH}$ =-0.5 $M_{\rm II}$ и $M_{\rm BH}$ =0.5 $M_{\rm II}$, где $M_{\rm II}$ расчетное значение пускового момента двигателя. Получите переходные процессы скорости и тока якоря. Приведите графики в отчете.

Как изменяется характер переходных процессов при действии внешнего возмущающего момента? Как влияет $M_{\rm B}$ на установившиеся значения скорости и тока?

7. Изучите влияние момента инерции подвижных частей, приведенных к валу двигателя, на динамические свойства ДПТ ($M_{\text{вн}}$ =0).

Для этого рассмотрите переходные процессы при ступенчатом изменении напряжения на якоре, при значении момента инерции на валу ротора: $J=J_a$, $J=2J_a$ u $J=4J_a$.

Последний два варианта означают, что вал двигателя связан с объектом, обладающим приведенным к валу ДПТ моментом инерции, равным моменту инерции ротора и превышающим его в 3 раза, соответственно.

Как изменяются $T_{\rm mn}$, σ , $\omega(\infty)$ и тока якоря ?

Зафиксируйте в отчете и объясните результаты.

- 8. Путем вычислительного эксперимента определите значение электромагнитной постоянной времени двигателя T_3 . Для этого необходимо рассмотреть переходные процессы при заторможенном вале двигателя. Поэтому измените структуру программы моделирования таким образом, чтобы внешний момент был равен электромагнитному моменту двигателя. Значение T_3 определите непосредственно по графику переходного процесса тока якоря и сопоставьте со значением, полученным на основании теоретического расчета. Объясните результаты.
- 9. Повторить предыдущий опыт при значениях напряжения управления, равных 50% и 25% от номинального напряжения. Зафиксируйте результаты и сделайте вывод о влиянии напряжения управления $U_{\rm s}$ на скорость и ток двигателя. Изменяются ли значения $T_{\rm пп}$ и σ ?
- 10. Постройте по 5 точкам ($U_{\rm я}$ =- $U_{\rm ном}$ ÷ $U_{\rm ном}$) регулировочную характеристику двигателя при $M_{\rm вh}$ =0.

	- $U_{ m HOM}$	-0,5 $U_{ m HOM}$	0	$0.5U_{ m HOM}$	$U_{ m HOM}$
$\omega(\infty)$					

11. Постройте по 5 точкам ($M_{\rm BH} = -M_{\rm II} \div M_{\rm II}$) механическую характеристику двигателя при $U_{\rm S} = 0.5 \, U_{\rm Hom}$.

	<i>-M</i> _π	-0,5M _π	0	$0.5M_{ m II}$	M_{Π}
$\omega(\infty)$					

12. Постройте семейства механической и регулировочной характеристик ДПТ. Для этого проведите автоматизированную серию вычислительных экспериментов при значениях напряжения якоря и значениях внешнего момента приведенных в таблице:

	-1,5 $U_{ m HOM}$	- $U_{ m HOM}$	-0,5 $U_{ m hom}$	0	$0,5U_{ ext{hom}}$	$U_{ m HOM}$	$1,5U_{ ext{hom}}$
-1,5M _π							
<i>-M</i> _π							
$-0.5M_{\Pi}$							
0							
$0.5M_{\rm II}$							
M_{Π}							
$1,5M_n$							

Для этого воспользуйтесь программой:

clear % Очистка Workspase
Ra=4.0; % Активное сопротивление обмотки якоря
La=0.004; % Индуктивность обмотки якоря
Ja=0.00002; % Момент инерции ротора
Кm=0.057; % Коментный коэффициент двигателя
Кe=0.057; % Коэффициент противоЭДС
Unom=24; % Номинальное напряжение двигателя
Umax=40; % Напряжение источника энергии
Mnom=0.35; % Номинальный момент двигателя
Nu=7; % Число точек Идв, нечетное
Nm=7; % Число точек Мвн, нечетное

```
for j=1:Nu,
                        % Цикл изменения Ия
   j1=j-(Nu+1)/2;
      U=Unom*2*j1/(Nu-1); U1(j)=U;
        for i=1:Nm,
                        % Цикл изменения Мвн
        i1=i-(Nm+1)/2;
        M=Mnom*2*i1/(Nm-1); M1(i)=M;
        sim('lab2.mdl',0.20),
        n=size(V); % Размерность вектора
        Au(j,i)=V(n(1)), % Заполнение массива Am(i,j)=V(n(1)), % Заполнение массива
    end
end
% Вывод графика "Семейство регулировочных характеристик"
figure(1); set(1,'Name','Семейство регулировочных характеристик');
plot (U1, Au); GRID;
title ('Семейство регулировочных характеристик')
Xlabel('Напряжение на якоре двигателя, V')
Ylabel('Установившаяся скорость вращения, 1/s')
legend('Mext=','Mext=','Mext=','Mext=','Mext=','Mext=','Mext=')
% Вывод графика "Семейство нагрузочных характеристик"
fiqure(2); set(2,'Name','Семейство нагрузочных характеристик');
plot (M1,Am); GRID;
title ('Семейство нагрузочных характеристик')
Xlabel('Внешний момент, Nm')
Ylabel('Установившаяся скорость вращения, 1/s')
legend('Ua=','Ua=','Ua=','Ua=0','Ua=','Ua=','Ua=')
```

Изучите приведенную программу. Обработайте полученные графики. Если надписи не читаемы, примените к ним шрифт GOST type A.

Сделайте выводы по результатам построения механической и регулировочной характеристик ДПТ.

13. Оформите отчет, в который включите схемы моделирования, исходные данные, все полученные числовые оценки, графики процессов и выводы по результатам проведенной лабораторной работы.

Параметры можно задавать непосредственно в соответствующем блоке моделирования. Для того, чтобы изменить эти значения, надо открыть окно настройки соответствующего блока дважды «щелкнув» левой кнопкой мыши по изображению этого блока. В окне настройки следует изменить значения параметров. Например, в блоке W(s), изображение которого имеет вид передаточной функции апериодического звена, необходимо изменить значения параметров, стоящих в []. В полях *Numerator* (числитель) и *Denominator* (знаменатель).

Экспериментально время переходного процесса можно оценить, как время, за которое процесс входит в 5% трубку относительно установившегося значения.

Перегулирование о определяется как % превышения максимального значения процесса относительно его установившегося значения.