FACTORIAL EXPERIMENTS WITH 2 CROSSED FACTORS

Chapter 6

LEARNING OBJECTIVES

- Create and interpret interaction plots
- Derive main effect and interaction contrasts from set of simple effects
- Write main effects and interactions in terms of factorial parameters
- Explain how insignificant effects are pooled into error term
- Fit Model

EMISSIONS EXPERIMENT

- Hunter (1989) describes experiment investigating changes in CO emissions of burning fuel varying
 - E. Amount of Ethanol added (0.1, 0.2, 0.3)
 - F. Air/Fuel Ratio while burning (14, 15, 16)
- Replicate each combination 2 times
- Draw a picture of the design space and describe the randomization

BEGIN ANALYSIS WITH PLOTS!

- Every analysis should begin with a graphical exploration of the data
- Highlights unusual or missing values
- Identify trends in the data that can be incorporated into the model
- For factorial experiments, we are particularly interested in interaction plots

INTERACTION PLOTS

- Interaction plot based on the \overline{y}_{ij} .
- Here are \overline{y}_{ij} . for the fuel data

		Air/Fuel Ratio (F)			
		14	15	16	
Ethanol (E)	0.1	64	69.5	67	
	0.2	79.5	80.5	67.5	
	0.3	92	76.5	59	

Choose Ethanol as X-axis, plot 3 different lines for each level of Air/Fuel ratio

INTERACTION PLOTS

Hard to see any consistent behavior

Group: Interpret changes in E for each level of F

ANALYSIS: ONE-FACTOR EFFECTS MODEL

If we ignore the factorial structure of our treatments we could use the effects model

$$Y_{ijk} = \mu + au_{ij} + E_{ijk}$$
 $egin{array}{ll} i=1,...,a; & j=1,...,b; & k=1,...,r_{ij} \ E_{ijk} \sim^{iid} N(0,\sigma^2) \end{array}$

- \blacksquare H_0 : All τ_{ij} equal each other, H_A : at least one different
 - Not an interesting hypothesis for factorial experiments
- Like to investigate specific contrasts corresponding to main effects and interaction effects

FACTORIAL EFFECTS MODEL

lacktriangle Re-express au_{ij} that connect with the concept of main effects and interactions

$$\tau_{ij} = \alpha_i + \beta_j + \alpha \beta_{ij}$$

 α_i = main effect parameter applies every time level i is used

 β_i = main effect parameter applies every time level j is used

 $lphaeta_{ij}$ = interaction parameter that picks up what's left of $au_{ij}-lpha_i-eta_j$

Combining 2 one-way effects models + interaction

ESTIMABLE FUNCTIONS SIMPLE EFFECTS

- Estimable functions must be some form of a contrast
- Individual parameters are not estimable without additional contraints
- Simple effect contrast (say with j level fixed):

$$au_{ij} = lpha_i + eta_j + lphaeta_{ij}$$

$$\sum_i c_i au_{ij} = \sum_i c_i lpha_i + eta_j \sum_i c_i + \sum_i c_i lphaeta_{ij}$$

$$= \sum_i c_i (lpha_i + lphaeta_{ij})$$

FACTORIAL EFFECTS MODEL HYPOTHESIS TESTING

Ideally want to test following hypotheses

- $H_0: \alpha_1 = \cdots = \alpha_a$ $H_0: \beta_1 = \cdots = \beta_b$ $H_0: \alpha\beta_{11} = \ldots = \alpha_{ab}$ None of these are testable

Will automatically test:

- $\blacksquare H_0: \alpha_1^* = \cdots = \alpha_n^*$
- $\blacksquare H_0: \beta_1^* = \cdots = \beta_h^*$
- $\blacksquare H_0: \alpha \beta_{11}^* = ... = \alpha \beta_{ab}^*$

FACTORIAL EFFECTS MODEL HYPOTHESIS TESTING

Reduced models don't just drop parameters out

Easier to explain if you rewrite the model as

$$\mu^* + \alpha_i^* + \beta_i^* + \alpha \beta_{ij}^*$$
 where $\mu^* = \mu + \overline{\alpha \beta}$..

Reduced Model

■
$$H_0: \alpha_1^* = \dots = \alpha_a^*$$
 $\rightarrow (\mu^* + \alpha^*) + \beta_j^* + \alpha \beta_{ij}^*$
■ $H_0: \beta_1^* = \dots = \beta_b^*$ $\rightarrow (\mu^* + \beta^*) + \alpha_i^* + \alpha \beta_{ij}^*$
■ $H_0: \alpha \beta_{11}^* = \dots = \alpha_{ab}^*$ $\rightarrow (\mu^* + \alpha \beta^*) + \alpha_i^* + \beta_i^*$

Takeaway: interactions never leave the model

FACTORIAL EFFECTS MODEL HYPOTHESIS TESTING

- Each hypothesis is tested using F-statistic approach
 - 1) A main effects (ssA)
 - 2) B main effects (ssB)
 - 3) AB interaction effects (ssAB)

$$A df = a-1$$
 $B df = b-1$

contrasts we select for each group

AB df = (a-1)(b-1)

Test on a-1 linearly independent main effects involving factor A

These df tell us how many linearly independent

Formulas for the sum-of-squares easy for balanced data but we won't concern ourselves with that

FACTORIAL EFFECTS MODEL HYPOTHESIS TESTING

Gives following ANOVA table

Source	DF	SS	MS	F	p-value
A Main	a-1	ssA	ssA/(a-1)	msA/msE	p_{A}
B Main	<i>b</i> -1	ssB	ssB/(b-1)	msB/msE	$oldsymbol{ ho}_{ extsf{B}}$
AB Int	(a-1)(b-1)	ssAB	ssAB/ [(a-1)(b-1)]	msAB/msE	$oldsymbol{p}_{AB}$
Error	<i>N</i> -ab	ssE	ssE/[<i>N-ab</i>]		
Total	N-1	ssTot			

P-values from central F-distribution with numerator DF corresponding to their row's DF and denominator DF equal to N-ab

POOLING INTERACTIONS

If we conclude the interaction contrasts are insignificant then

$$E(msAB) = \sigma^2$$

 \blacksquare We can improve our estimate of σ^2 with

$$msE^* = \frac{ssE + ssAB}{N - ab + (a - 1)(b - 1)} = \frac{ssE + ssAB}{N - a - b + 1}$$

- Model-based error estimate
- Increases denominator DF which increases power when we test using msE^*
- Done using the main effect model

MAIN EFFECT MODEL

The main effect model, or the two-way ANOVA model without interactions, is

$$Y_{ijk} = \mu + \alpha_i + \beta_j + E_{ijk}$$

Testing for main effects same as before but with pooled error estimate

LEARNING OBJECTIVES

- Create and interpret interaction plots
- Derive main effect and interaction contrasts from set of simple effects
- Write main effects and interactions in terms of factorial parameters
- Explain how insignificant effects are pooled into error term
- Fit Model