Vorname:
Familienname:
Matrikelnummer:
Studienkennzahl(en):

1	
2	
3	
4	
5	
G	

Note:

Prüfung zu Partielle Differentialgleichungen Sommersemester 2010, Roland Steinbauer 2. Termin, 30.9.2010

1. Laplacegleichung.

- (a) Mittelwertformeln.

 Formuliere und beweise die Mittelwertformeln für harmonische Funktionen.
 - (4 Punkte)
- (b) Eigenschaften harmonischer Funktionen. Gib drei wichtige Eigenschaften harmonischer Funktionen an. (genaue/exakte Formulierung) (3 Punkte)
- (c) Energiemethoden.
 Formuliere und beweise das Eindeutigkeitsresultat für die Poissongleichung mit Energiemethoden. (3 Punkte)

2. Wellengleichung

- (a) Huygensprinzip.
 - Diskutiere die unterschiedlichen Eigenschaften der Lösungen der Wellengleichung in geraden und ungeraden Raumdimensionen. Was ist die mathematische Ursache für dieses Phänomen, was die physikalische Interpretation? (3 Punkte)
- (b) Kirchhoff-Formel.
 - Leite die Kirchhoff-Formel mit der Methode der sphärischen Mittel her. Die Euler-Poisson-Darboux Gleichung und die Reflexionsmethode nimm dabei als gegeben an. (4 Punkte)
- (c) Wellengleichung vs. Wärmeleitungsgleichung.
 Diskutiere die unterschiedliche Ausbreitungsgeschwindigkeiten für Lösungen der Wellen- bzw. Wärmeleitungsgleichung (3 Punkte)

- 3. Methode der Charakteristiken.
 - (a) Der lineare Fall.
 Formuliere und beweise das Resultat, das die Lösungen linearer PDG 1. Ordnung über ihre Konstanz längs der projizierten Charakteristiken charakterisiert.
 (4 Punkte)
 - (b) Der allgemeine Fall.

 Wie sieht im Fall einer allgemeinen PDG erster Ordnung

$$F(Du, u, x) = 0$$
 $(x \in U \subseteq \mathbb{R}^n)$

das Charakteristikensystem aus. (3 Punkte)

4. Erhaltungssätze.

Was versteht man unter einem skalaren Erhaltungssatz in einer Raumdimension? Wie lauten die Rankine-Hugoniot Bedingungen? (3 Punkte)

5. Richtig oder falsch?
Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung.
(Je 2 Punkte)

- (a) Eine harmonische Funktion, die beschränkt ist, ist schon konstant.
- (b) Die d'Alembert-Formel für die eindimensionale Wellengleichung

$$u_{tt} - u_{xx} = 0$$
 auf $\mathbb{R} \times (0, \infty)$ $u = g, u_t = h$ auf $\mathbb{R} \times \{0\}$

lautet

$$u(x,t) = \frac{1}{2} \left(g(x+t) + g(x-t) \right) + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy.$$

- (c) Die Methode der Charakteristiken liefert (auch) im allgemeinen Fall globale Lösungen für PDG erster Ordnung.
- (d) Eine lineare PDG zweiter Ordnung ist hyperbolisch in x falls die Koeffizientenmatrix A(x) mindestens einen verschwindenden Eigenwert besitzt.
- (e) Die Fundamentallösung der Wärmeleitungsgleichung ist (global) \mathcal{C}^{∞} .