Page 2

AMENDMENTS TO THE CLAIMS/LISTING OF CLAIMS

Please enter the following amendments without prejudice or disclaimer. This listing of claims will replace all prior versions, and listings, of claims in the application.

In the claims:

- 1-23. (Canceled)
- 24. (Currently amended) A method of reducing or moderating a postprandial rise in plasma glucose in a mammal comprising administering to said mammal in need of reducing or moderating a postprandial rise in plasma glucose an amylin or an amylin agonist analogue in an amount effective to reduce or moderate a postprandial rise in plasma glucose, wherein the amylin agonist analogue is a peptide and binds to an amylin receptor having an amino acid sequence selected from the group consisting of
 - a) ¹A₁-X-Asn-Thr-⁵Ala-Thr-Y-Ala-Thr-¹⁰Gln-Arg-Leu-B₁-Asn-¹⁵Phe-Leu-C₁-D₁
 E₁-²⁰F₁-G₁-Asn-H₁-Gly-²⁵Pro-I₁-Leu-J₁-Pro-³⁰Thr-K₁-Val-Gly-Ser-³⁵Asn-Thr
 Tyr-Z (SEO ID NO:42)

wherein

A1 is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C1 is Val, Leu or Ile;

D1 is His or Arg;

E1 is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

H1 is Phe, Leu or Tyr;

I1 is Ile, Val, Ala or Leu;

J₁ is Ser, Pro, Leu, Ile or Thr;

K1 is Asn, Asp or Gln;

Page 3

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and

provided that when

- (i) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Pro and K₁ is Asn; or
- (ii) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is His, E₁ is Ser, F₁ is Asn, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Ser and K₁ is Asn;
- then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy;
- b) ¹A₁-X-Asn-Thr-⁵Ala-Thr-Y-Ala-Thr-¹⁰Gln-Arg-Leu-B₁-Asn-¹⁵Phe-Leu-C₁-D₁
 E₁-²⁰F₁-G₁-Asn-H₁-Gly-²⁵I₁-J₁-Leu-Pro-Pro-³⁰Thr-K₁-Val-Gly-Ser-³⁵Asn-Thr
 Tyr-Z (SEO ID NO:44)

wherein

A₁ is Lvs. Ala. Ser or hydrogen:

B1 is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg:

E1 is Ser or Thr:

F1 is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I1 is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

K1 is Asn, Asp or Gln;

Page 4

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and

provided that when

 A_1 is Lvs, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Pro, J_1 is Val and K_1 is Asn (SEQ ID NO:41),

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy;

c) ¹A₁-X-Asn-Thr-⁵Ala-¹lhr-Y-Ala-Thr-¹⁰Gln-Arg-Leu-B₁-Asn-¹⁵Phe-Leu-C₁-D₁
E₁-²⁰F₁-G₁-Asn-H₁-Gly-²⁵Pro-I₁-Leu-Pro-Pro-²⁰Thr-J₁-Val-Gly-Ser-²⁵Asn
Thr-Tyr-Z (SEO ID NO:45)

wherein

A1 is Lys, Ala, Ser or hydrogen;

B1 is Ala, Ser or Thr;

C1 is Val. Leu or Ile;

D₁ is His or Arg;

E1 is Ser or Thr;

F1 is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

H1 is Phe, Leu or Tyr;

I1 is Ile, Val, Ala or Leu

J₁ is Asn, Asp or Gln; and

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage wherein said intramolecular linkage comprises a disulfide bond, a

Page 5

lactam or a thioether linkage; and Z is amino, alkylamino,
dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy,
aryloxy or aralkyloxy;

provided that when

 A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val and J_1 is Asn (SEQ ID NO:41),

then one or more of A₁ to J₁ is a D-amino acid and Z is selected from the

group consisting of alkylamino, dialkylamino, cycloalkylamino,
arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and

d) \(^{1}A_{1}\text{-X-Asn-Thr-}^{5}Ala-Thr-X-Ala-Thr-\(^{10}\)Gln-Arg-Leu-B₁-Asn-\(^{15}\)Phe-Leu-C₁-D₁\(\frac{E_{1}^{-20}}{F_{1}-G_{1}}\)Asn-H₁-Gly-\(^{25}I_{1}\)-J₁-Leu-K₁-L₁-\(^{30}\)Thr-M₁-Val-Gly-Ser-\(^{35}\)Asn-Thr\(\text{Tyr-Z}\) (SEQ ID NO:31)

wherein

A1 is Lys, Ala, Ser, Hydrogen or acetylated Lys;

Bt is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg:

E1 is Ser or Thr:

F1 is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

H1 is Phe, Leu or Tyr,

I1 is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

K1 is Ser, Pro, Leu, Ile or Thr:

L₁ is Ser, Pro or Thr;

M₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a

Page 6

lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy;

provided that

(a) when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is His, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Phe, I₁ is Ala, J₁ is Ile, K₁ is Ser, L₁ is Ser, and M₁ is Asn (SEO ID NO:46);

(b) when A₁ is Lys, B₁ is Ala, C₁ is Ile, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₂ is Asn, H₁ is Leu, I₁ is Ala, J₁ is Ile, K₁ is Ser, L₁ is Pro, and M₁ is Asn (SEQ ID NO:47);

(c) when A₁ is Lvs, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Thr, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Ala, J₁ is Ile, K₁ is Ser, L₁ is Pro, and M₁ is Asn (SEQ ID NO:48);

(d) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Pro, J_1 is Val, K_1 is Pro, L_1 is Pro, and M_1 is Asn (SEO ID NO:41);

(e) when A_1 is Lvs, B_L is Ala, C_L is Val, D_L is His, E_L is Ser, F_L is Asn, G_L is Asn, H_L is Leu, I_L is Pro, J_L is Val, K_L is Ser, L_L is Pro and M_L is Asn (SEQ ID NO:43); or

(f) when A_1 is Lys, B_1 is Thr, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is His, H_1 is Leu, I_1 is Ala, J_1 is Ala, K_1 is Leu, L_1 is Pro and M_1 is Asp (SEQ ID NO:49);

then one or more of any of A_1 to M_1 is not an L-amino acid and Z is not amino.

25. (Previously presented) The method of claim 24 wherein the amylin agonist analogue has the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asr-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-G_{1}y-^{25}Pro-I_{1}-Leu-Pro-J_{1}-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z (SEQ ID NO:40) wherein$

A1 is Lys, Ala, Ser or Hydrogen;

B₁ is Ala, Ser or Thr,

C1 is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr.

F₁ is Ser, Thr, Gln or Asn.

G1 is Asn, Gln or His:

H₁ is Phe, Leu or Tyr;

I1 is Ile, Val, Ala or Leu;

J₁ is Ser, Pro or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Arg, H_1 is Leu, H_2 is H_3 is H_4 in H_4 is H_4 is

26. (Previously presented) The method of claim 24 wherein the amylin agonist analogue has the following amino acid sequence:

 $^1A_1\text{-X-Asn-Thr-}^5\text{Ala-Thr-Y-Ala-Thr-}^1\text{Gln-Arg-Leu-B}_1\text{-Asn-}^{15}\text{Phe-Leu-C}_1\text{-D}_1\text{-E}_1^{-20}\text{F}_1\text{-G}_1\text{-}\\ \text{Asn-H}_1\text{-Gly-}^{25}\text{Pro-I}_1\text{-Leu-J}_1\text{-Pro-}^{30}\text{Thr-K}_1\text{-Val-Gly-Ser-}^{35}\text{Asn-Thr-Tyr-Z} (SEQ ID NO:42) \\ \text{wherein}$

A1 is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr.

F₁ is Ser, Thr, Gln or Asn,

G1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr,

I1 is Ile, Val, Ala or Leu;

J1 is Ser, Pro, Leu, Ile or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and provided that when

- (a) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Pro and K₁ is Asn; or
- (b) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is His, E₁ is Ser, F₁ is Asn, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Ser and K₁ is Asn;

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

27. (Previously presented) The method of claim 24 wherein the amylin agonist analogue has the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr^{-5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}I_{1}-J_{1}-Leu-Pro-Pro-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z (SEQ ID NO:44) wherein$

A1 is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn,

G1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr,

l₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, E_1 is Ser, E_1 is Ser, E_1 is Leu, E_1 is Pro, E_1 is Val and E_1 is Asn (SEQ ID NO:41); then one or more of E_1 to E_1 is a D-amino acid and E_1 is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

28. (Previously presented) The method of claim 24 wherein the amylin agonist analogue has the following amino acid sequence:

 $^1A_1\text{-}X\text{-}Asn\text{-}Thr\text{-}^5Ala\text{-}Ihr\text{-}Y\text{-}Ala\text{-}Thr\text{-}^{10}Gln\text{-}Arg\text{-}Leu\text{-}B_1\text{-}Asn\text{-}^{15}Phe\text{-}Leu\text{-}C_1\text{-}D_1\text{-}E_1\text{-}^{20}F_1\text{-}G_1\text{-}Asn\text{-}H_1\text{-}Gly\text{-}^{25}Pro\text{-}I_1\text{-}Leu\text{-}Pro\text{-}Pro\text{-}^{30}Thr\text{-}J_1\text{-}Val\text{-}Gly\text{-}Ser\text{-}^{35}Asn\text{-}Thr\text{-}Tyr\text{-}Z} (SEQ ID NO:45)$ wherein

A1 is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr.

C1 is Val. Leu or Ile:

D1 is His or Arg;

E₁ is Ser or Thr,

F₁ is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I1 is Ile, Val, Ala or Leu

J1 is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to

Page 10

each other to form an intramolecular linkage wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, E_1 is Asn, E_1 is Ser, E_1 is S

- 29. (Previously presented) The method of claim 24 wherein said amylin agonist analogue is any one of ¹⁸Arg^{25,28}Pro-h-amylin (SEQ ID NO:3), des-¹Lys¹⁸Arg^{25,28}Pro-h-amylin (SEQ ID NO:1), des-¹Lys^{25,28,29}Pro-h-amylin (SEQ ID NO:10), ¹⁸Arg^{25,28,29}Pro-h-amylin (SEQ ID NO:8), des-¹Lys¹⁸Arg^{25,28,29}Pro-h-amylin (SEQ ID NO:9), ²⁵Pro²⁶Val^{28,29}Pro-h-amylin (SEQ ID NO:7), or des-¹Lys²⁵Pro²⁶Val^{28,29}Pro-h-amylin (SEQ ID NO:7), or des-¹Lys²⁵Pro²⁶Val^{28,29}Pro-h-amylin (SEQ ID NO:38).
- (Previously presented) The method of claim 24 wherein the amylin agonist analogue is ^{25,28,29} Pro-h-amylin (SEQ ID NO:1).
- 31-37. (Canceled)
- 38. (Previously presented) The method of claim 24 wherein the mammal has diabetes.
- 39. (Previously presented) The method of claim 38 wherein the diabetes is type 1.
- 40. (Previously presented) The method of claim 38 wherein the diabetes is type 2.
- 41. (Previously presented) The method of claim 25 wherein the mammal has diabetes.
- 42. (Previously presented) The method of claim 41 wherein the diabetes is type 1.
- 43. (Previously presented) The method of claim 41 wherein the diabetes is type 2.
- 44. (Previously presented) The method of claim 26 wherein the mammal has diabetes.

45. (Previously presented) The method of claim 44 wherein the diabetes is type 1.

- 46. (Previously presented) The method of claim 44 wherein the diabetes is type 2.
- 47. (Previously presented) The method of claim 27 wherein the mammal has diabetes.
- 48. (Previously presented) The method of claim 47 wherein the diabetes is type 1.
- 49. (Previously presented) The method of claim 47 wherein the diabetes is type 2.
- 50. (Previously presented) The method of claim 28 wherein the mammal has diabetes.
- 51. (Previously presented) The method of claim 50 wherein the diabetes is type 1.
- 52. (Previously presented) The method of claim 50 wherein the diabetes is type 2.
- 53. (Previously presented) The method of claim 30 wherein the mammal has diabetes.
- 54. (Previously presented) The method of claim 53 wherein the diabetes is type 1.
- 55. (Previously presented) The method of claim 53 wherein the diabetes is type 2.
- 56. (Previously presented) The method of claim 24 wherein the amylin agonist analogue has the following amino acid sequence:

 $^1A_1\text{-X-Asn-Thr-}^5Ala\text{-Thr-X-Ala-Thr-}^{10}Gln\text{-}Arg\text{-}Leu\text{-}B_1\text{-}Asn-}^{15}Phe\text{-}Leu\text{-}C_1\text{-}D_1\text{-}E_1\text{-}^{20}F_1\text{-}G_1\text{-}Asn\text{-}H_1\text{-}Gly\text{-}}^{25}I_1\text{-}J_1\text{-}Leu\text{-}K_1\text{-}L_1\text{-}^{30}Thr\text{-}M_1\text{-}Val\text{-}Gly\text{-}Ser\text{-}}^{35}Asn\text{-}Thr\text{-}Tyr\text{-}Z\ (SEQ\ ID\ NO:31)$ wherein

A₁ is Lys, Ala, Ser, Hydrogen or acetylated Lys;

B₁ is Ala, Ser or Thr;

C₁ is Val. Leu or He:

D₁ is His or Arg;

E₁ is Ser or Thr;

F1 is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

Page 12

H₁ is Phe, Leu or Tyr,

I1 is Ala or Pro;

J₁ is Ile, Val, Ala or Leu,

K1 is Ser, Pro, Leu, Ile or Thr;

L₁ is Ser, Pro or Thr,

M₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that

- (a) when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is His, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Phe, I₁ is Ala, J₁ is Ile, K₁ is Ser, L₁ is Ser, and M₁ is Asn (SEQ ID NO:46);
- (b) when A₁ is Lys, B₁ is Ala, C₁ is Ile, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Ala, J₁ is Ile, K₁ is Ser, L₁ is Pro, and M₁ is Asn (SEQ ID NO:47);
- (c) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Thr, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn (SEQ ID NO:48);
- $(d) \ when \ A_1 \ is \ Lys, \ B_1 \ is \ Ala, \ C_1 \ is \ Val, \ D_1 \ is \ Arg, \ E_1 \ is \ Ser, \ F_1 \ is \ Ser, \ G_1 \ is \ Asn, \ H_1 \ is \ Leu, \ I_1 \ is \ Pro, \ J_1 \ is \ Pro, \ And \ M_1 \ is \ Asn \ (SEQ \ ID \ NO:41);$
- (e) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Pro, J_1 is Val, K_1 is Ser, L_1 is Pro and M_1 is Asn (SEQ ID NO:43); or
- (f) when A₁ is Lys, B₁ is Thr, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is His, H₁ is Leu, I₁ is Ala, J₁ is Ala, K₁ is Leu, L₁ is Pro and M₁ is Asp (SEQ ID NO:49); then one or more of any of A₁ to M₁ is not an L-amino acid and Z is not amino.
- 57. (Previously presented) The method of claim 56 wherein the mammal has diabetes.
- 58. (Previously presented) The method of claim 57 wherein the diabetes is type 1.
- (Previously presented) The method of claim 57 wherein the diabetes is type 2.
- 60-69. (Canceled)