Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт компьютерных наук и кибербезопастности Высшая школа программной инженерии

Лабораторная работа №3 по дисциплине «Вычислительная математика»

Выполнил Студент группы 5130904/20004

Машкин А.А.

Преподаватель Устинов С.М.

Оглавление

Задание	2
Результаты	3
Вывод	6
Код программы	7
<dir>/computational_mathematics/lab_2/main.cpp</dir>	7
<pre><dir>/computational_mathematics/lab_2/solve.h</dir></pre>	Bookmark not defined.
<dir>/computational_mathematics/lab_2/solve.cpp</dir>	8
<dir>/computational_mathematics/lab_2/matrix_function.h</dir>	8
<pre><dir>/computational_mathematics/lab_2/matrix_function.cpp</dir></pre>	9

Задание

ВАРИАНТ N28

Решить систему дифференциальных уравнений:

$$\begin{split} \frac{d\,\chi_1}{dt} &= -130\,\chi_1 + 900\,\chi_2 + e^{-10t}\,; \qquad \frac{d\,\chi_2}{dt} = 30\,\chi_1 - 300\,\chi_2 + \ln(1+100\,t^2); \\ \chi_1(0) &= 3, \qquad \chi_2(0) = -1; \qquad t \in [0, \ 0.15] \end{split}$$

следующими способами с одним и тем же шагом печати h_{print} = 0.0075 :

- I) по программе RKF45 с EPS=0.0001;
- II) методом Рунге-Кутты 3-й степени точности

$$\begin{split} z_{n+1} &= z_n + (2k_1 + 3k_2 + 4k_3) / 9; \quad k_1 = hf(t_n, z_n); \\ k_2 &= hf(t_n + h / 2, z_n + k_1 / 2); \quad k_3 = hf(t_n + 3h / 4, z_n + 3k_2 / 4); \end{split}$$

- с двумя постоянными шагами интегрирования:
- a) $h_{int} = 0.0075$
- б) любой другой, позволяющий получить качественно верное решение.

Сравнить результаты.

Результаты

RKF45:				RungeKutta h	= 0.0075
0.0075	-0.027447	-0.069666	flag = 2	-6.6743	1.9243
0.015	-0.13819	-0.01886	flag = 2	12.824	-3.9075
0.0225	-0.13819	-0.01886	flag = 4	-26.053	7.7698
0.03	-0.084897	-0.0094653	flag = 2	51.797	-15.574
0.0375	-0.084897	-0.0094653	flag = 4	-103.83	31.122
0.045	-0.044712	-0.0047339	flag = 2	207.48	-62.263
0.0525	-0.044712	-0.0047339	flag = 4	-415.08	124.51
0.06	-0.017002	-0.0013309	flag = 2	830.09	-249.03
0.0675	-0.017002	-0.0013309	flag = 4	-1660.2	498.07
0.075	0.0034478	0.0013048	flag = 2	3320.4	-996.13
0.0825	0.0034478	0.0013048	flag = 4	-6640.9	1992.3
0.09	0.019719	0.0034965	flag = 2	13282	-3984.5
0.0975	0.019719	0.0034965	flag = 4	-26563	7969
0.105	0.033579	0.0054267	flag = 2	53127	-15938
0.1125	0.033579	0.0054267	flag = 4	-1.0625e+05	31876
0.12	0.046014	0.0071952	flag = 2	2.1251e+05	-63752
0.1275	0.046014	0.0071952	flag = 4	-4.2502e+05	1.275e+05
0.135	0.057555	0.0088551	flag = 2	8.5003e+05	-2.5501e+05
0.1425	0.057555	0.0088551	flag = 4	-1.7001e+06	5.1002e+05
0.15	0.068478	0.010434	flag = 2	3.4001e+06	-1.02e+06

RKF45 with	h = 0.00375:		- 1	RungeKutta h	= 0.00375	ı
0.00375	0.50933	-0.24111	flag = 2	-0.011598	-0.084862	1
0.0075	-0.027444	-0.069667	flag = 2	-0.17635	-0.025036	I
0.01125	-0.027444	-0.069667	flag = 4	-0.1657	-0.018942	I
0.015	-0.13819	-0.01886	flag = 2	-0.14633	-0.01645	I
0.01875	-0.13819	-0.01886	flag = 4	-0.12839	-0.014396	T
0.0225	-0.11181	-0.012715	flag = 2	-0.11229	-0.012557	T
0.02625	-0.11181	-0.012715	flag = 4	-0.097834	-0.010899	T
0.03	-0.084897	-0.0094653	flag = 2	-0.08484	-0.0093963	1
0.03375	-0.084897	-0.0094653	flag = 4	-0.073128	-0.0080317	1
0.0375	-0.062808	-0.0068847	flag = 2	-0.062545	-0.0067877	1
0.04125	-0.062808	-0.0068847	flag = 4	-0.052952	-0.0056496	I
0.045	-0.044712	-0.0047337	flag = 2	-0.044227	-0.004604	1
0.04875	-0.044712	-0.0047337	flag = 4	-0.036264	-0.0036396	T
0.0525	-0.029685	-0.0029084	flag = 2	-0.028968	-0.0027461	1
0.05625	-0.029685	-0.0029084	flag = 4	-0.022255	-0.0019146	1
0.06	-0.017002	-0.0013308	flag = 2	-0.016052	-0.0011374	1
0.06375	-0.017002	-0.0013308	flag = 4	-0.010295	-0.00040762	1
0.0675	-0.006101	5.8515e-05	flag = 2	-0.0049277	0.00028067	1
0.07125	-0.006101	5.8515e-05	flag = 4	9.911e-05	0.00093264	I
0.075	0.0034476	0.0013048	flag = 2	0.0048285	0.0015528	1
0.07875	0.0034476	0.0013048	flag = 4	0.009298	0.0021451	1
0.0825	0.011972	0.0024423	flag = 2	0.01354	0.002713	1
0.08625	0.011972	0.0024423	flag = 4	0.017584	0.0032593	1
0.09	0.019719	0.0034965	flag = 2	0.021454	0.0037866	1
0.09375	0.019719	0.0034965	flag = 4	0.025171	0.0042972	1
0.0975	0.026875	0.0044866	flag = 2	0.028753	0.004793	1
0.10125	0.026875	0.0044866	flag = 4	0.032218	0.0052755	1
0.105	0.033579	0.0054267	flag = 2	0.035579	0.0057462	1
0.10875	0.033579	0.0054267	flag = 4	0.038847	0.0062063	1
0.1125	0.039934	0.006327	flag = 2	0.042033	0.0066569	1
0.11625	0.039934	0.006327	flag = 4	0.045146	0.0070988	1
0.12	0.046014	0.0071952	flag = 2	0.048194	0.0075328	1
0.12375	0.046014	0.0071952	flag = 4	0.051182	0.0079596	1
0.1275	0.051875	0.0080366	flag = 2	0.054116	0.0083798	1
0.13125	0.051875	0.0080366	flag = 4	0.057001	0.0087937	1
0.135	0.057555	0.0088551	flag = 2	0.059842	0.0092018	1
0.13875	0.057555	0.0088551	flag = 4	0.062641	0.0096045	1
0.1425	0.063083	0.0096535	flag = 2	0.065401	0.010002	1
0.14625	0.063083	0.0096535	flag = 4	0.068126	0.010395	1
0.15	0.068478	0.010434	flag = 2	0.070816	0.010783	1

Вывод

Расчитал собственные значения матрицы и нашел ограничения на шаг устойчивости. Вышло h < 0,0062825, хотя в самой программе у меня получались неверные результаты для метода Рунге-Кутты третьей степени с шагом равным 0,0075, но для шага 0,0037 результаты получились очень близкими. Их можно увидеть визуально на графике, там видно что хоть и не очень близко, но графики ведут себя одинаково для шага 0.0037, но для шага 0.0075 графики сильно отличаются.

Код программы

```
<DIR>/computational mathematics/lab 3/main.cpp
#include <iostream>
#include <iomanip>
#include <fstream>
#include "RKF45.h"
#include "Function_for_laboratory.h"
#include "RungeKutta.h"
int main(int argc, char** argv)
{
  if (argc != 2)
    std::cout << "Not enough argument\n";</pre>
    return 1;
  }
  std::ofstream outFile;
  outFile.exceptions(std::ofstream::badbit | std::ofstream::failbit);
  try
    outFile.open(argv[1]);
  catch (const std::exception& ex)
    std::cerr << ex.what() << "\n";
    return 1;
  double x_first[2]{3.0, -1.0};
  double x_to_csv[2]{3.0, -1.0};
  double t(0);
  double tOutFirst(0);
  double relerr(0.0001);
  double abserr(0.0001);
  double work_first[3+6*2];
  int flag = 1;
  std::vector< double > x_vect_first{3.0, -1.0};
  outFile << "t,rkf1,rkf2,rk1,rk2\n";</pre>
  std::cout << "RKF45:</pre>
                                                             | RungeKutta h =
0.0075
          |\n";
  for (double i = 0.0075; i <= 0.1501; i += 0.0075)
    tOutFirst = i;
    RKF45(mashkin::func< double*, double* >, 2, x_first, t, tOutFirst,
relerr, abserr, work_first, flag);
    std::cout << std::setw(6) << tOutFirst << " ";</pre>
    outFile << tOutFirst << "," << x_first[0] << "," << x_first[1] << ",";
    std::cout << std::setprecision(5) << std::setw(11) << x_first[0] << " ";</pre>
    std::cout << std::setw(12) << x_first[1] << " flag = " << flag << " |"
<< std::setw(12);
```

```
std::cout << mashkin::rungeKutta3degree(tOutFirst, x_vect_first, 0.0075)</pre>
<< " |" << std::setw(10) << "\n";
   outFile << x_vect_first[0] << "," << x_vect_first[1] << "\n";</pre>
  }
  double x_second[2]{3.0, -1.0};
  double tOutSecond(0);
  relerr = 0.0001;
  abserr = 0.0001;
  double work_second[3+6*2];
  flag = 1;
  std::vector< double > x_vect_second{3.0, -1.0};
  std::cout << "\nRKF45 with h = 0.00375:
                                                                   RungeKutta
h = 0.00375
              \n";
 t = 0.0;
  for (double i = 0.00375; i \le 0.1501; i += 0.00375)
    tOutSecond = i;
    RKF45(mashkin::func, 2, x_second, t, tOutSecond, relerr, abserr,
work second, flag);
    std::cout << std::setw(8) << tOutSecond << " ";</pre>
    outFile << tOutSecond << "," << x_second[0] << "," << x_second[1] << ",";
    std::cout << std::setprecision(5) << std::setw(13) << x_second[0] << " ";</pre>
    std::cout << std::setw(13) << x_second[1] << " flag = " << flag << "|"
<< std::setw(12);
    std::cout << mashkin::rungeKutta3degree(tOutSecond, x vect second,</pre>
0.00375) << " |\n";
    outFile << x_vect_second[0] << "," << x_vect_second[1] << "\n";</pre>
  }
 return 0;
}
<DIR>/computational_mathematics/lab_3/Function_for_laboratory.h
#ifndef LAB3 FUNCTION FOR LABORATORY H
#define LAB3_FUNCTION_FOR_LABORATORY_H
#include <cmath>
namespace mashkin
{
template< class X, class DX >
  void func(double t, X x, DX dx)
  {
    dx[0] = -130 * x[0] + 900 * x[1] + std::exp(-10 * t);
    dx[1] = 30 * x[0] - 300 * x[1] + std::log(1 + 100 * t * t);
  }
}
#endif
<DIR>/computational mathematics/lab 3/outputStructs.cpp
#include "outputStructs.h"
                                 Санкт-Петербург
```

```
namespace mashkin
{
  iofmtguard::iofmtguard(std::basic ios<char> &s):
    s_{s}(s),
    fill_(s.fill()),
    precision_(s.precision()),
    fmt_(s.flags())
  {
  }
  iofmtguard::~iofmtguard()
    s_.fill(fill_);
    s_.precision(precision_);
    s_.flags(fmt_);
  }
}
<DIR>/computational_mathematics/lab_3/outputStructs.h
#ifndef LAB3 OUTPUTSTRUCTS H
#define LAB3_OUTPUTSTRUCTS_H
#include <ios>
namespace mashkin
{
  class iofmtguard
  public:
    iofmtguard(std::basic_ios< char >& s);
    ~iofmtguard();
  private:
    std::basic_ios< char >& s_;
    char fill;
    std::streamsize precision_;
    std::basic_ios< char >::fmtflags fmt_;
  };
}
#endif
<DIR>/computational mathematics/lab 3/RungeKutta.cpp
#include "RungeKutta.h"
#include <iostream>
#include <iomanip>
#include <cstddef>
#include <utility>
#include "Function_for_laboratory.h"
#include "outputStructs.h"
namespace mashkin
                                 Санкт-Петербург
```

```
{
  MyArr::MyArr(std::vector< double >& vect):
    x(vect)
  {
  }
 MyArr MyArr::operator=(MyArr&& rhs)
    x = rhs.x;
    return *this;
  }
  MyArr MyArr::operator=(MyArr& rhs)
    *this = std::move(rhs);
    return *this;
  double& MyArr::operator[](size_t ind)
    return this->x[ind];
  }
 MyArr MyArr::operator/(double num)
    MyArr result = *this;
    for (size_t i = 0; i < result.x.size(); i++)</pre>
      result[i] /= num;
    return result;
  }
  MyArr MyArr::operator+(MyArr&& rhs)
    MyArr result = *this;
    for (size_t i = 0; i < result.x.size(); i++)</pre>
      result[i] += rhs[i];
    return result;
  }
 MyArr MyArr::operator+(double num)
    MyArr result = *this;
    for (size_t i = 0; i < result.x.size(); i++)</pre>
      result[i] += num;
    return result;
  }
                                  Санкт-Петербург
```

```
MyArr MyArr::operator*(double num)
  MyArr result = *this;
  for (size_t i = 0; i < result.x.size(); i++)</pre>
    result[i] *= num;
  return result;
}
size_t MyArr::size()
  return x.size();
MyArr rungeKutta3degree(double t, std::vector< double >& x, double h)
  std::vector< double > zero_vect{0, 0};
  MyArr k1(zero_vect);
  MyArr k2(zero_vect);
  MyArr k3(zero_vect);
  MyArr zn(x);
  func< MyArr, MyArr& >(t, zn, k1);
  k1 = k1 * h;
  func< MyArr&&, MyArr& >(t + h/2, zn + k1 / 2, k2);
  k2 = k2 * h;
  func< MyArr&&, MyArr& >(t + (3 * h) / 4, zn + (k2 * 3) / 4, k3);
  k3 = k3 * h;
  zn = zn + (k1 * 2 + k2 * 3 + k3 * 4) / 9;
  for (size_t i = 0; i < x.size(); i++)
    x[i] = zn[i];
  return zn;
std::ostream& operator<<(std::ostream& out, MyArr&& dest)</pre>
  std::ostream::sentry sentry(out);
  if (!sentry)
    return out;
  iofmtguard fmtguard(out);
  for (int i = 0; i < dest.size(); i++)</pre>
  {
    out << dest[i];</pre>
    if (i + 1 != dest.size())
      out << std::setw(13);
    }
                                Санкт-Петербург
```

```
}
    return out;
  }
}
<DIR>/computational_mathematics/lab_3/RungeKutta.h
#ifndef LAB3_RUNGEKUTTA_H
#define LAB3_RUNGEKUTTA_H
#include "Function_for_laboratory.h"
#include <cstddef>
#include <iostream>
#include <vector>
namespace mashkin
{
  class MyArr
  {
  public:
   MyArr() = default;
    ~MyArr() = default;
   MyArr(std::vector< double >& vect);
    MyArr(MyArr& rhs) = default;
   MyArr(MyArr&& rhs);
   MyArr operator/(double num);
    MyArr operator=(MyArr& rhs);
   MyArr operator=(MyArr&& rhs);
   MyArr operator*(double num);
   MyArr operator+(MyArr&& rhs);
   MyArr operator+(double num);
    double& operator[](size_t ind);
    size_t size();
  private:
    std::vector< double > x;
  };
  std::ostream& operator<<(std::ostream& out, MyArr&& dest);</pre>
  MyArr rungeKutta3degree(double t, std::vector< double >& x, double h);
#endif
```