1 Question 1

1.1 Part a)

Let Ω be the sample space. Therefore $P(\{\Omega\}) = 1$. Adding all the joint pmf values must sum to 1:

$$\begin{split} \{\Omega\} &= \bigcup_x \bigcup_y \{\mathbf{X} = x\} \cap \{\mathbf{Y} = y\} \\ \mathbf{P}(\{\Omega\}) &= 1 \\ \implies 1 = \mathbf{P}((\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) \cup \ldots \cup (\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\})) \\ &= \mathbf{P}(\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) + \ldots + \mathbf{P}(\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\})) \\ &= (p - \frac{1}{16}) + (\frac{1}{4} - p) + (0) + (\frac{1}{8}) + (\frac{3}{16}) + (\frac{1}{8}) + (p + \frac{1}{16}) + (\frac{1}{16}) + (\frac{1}{4} - p) \\ 1 &= -\frac{1}{16} + \frac{4}{16} + \frac{7}{16} + \frac{1}{16} + \frac{1}{16} + \frac{4}{16} \\ 1 &= 1 \end{split}$$

Unfortunately, this tells us no information about p. From the definition of probability, $P(\{c\})$ for $c \in \Omega$ must be greater or equal to 0, $P(\{c \in \Omega\}) \ge 0$. This can be used to restrict the possible values of p:

$$P(A \subseteq \Omega) \ge 0$$

$$\Rightarrow P(\{X = -1\} \cap \{Y = -1\}) \ge 0$$

$$p - \frac{1}{16} \ge 0$$

$$p \ge \frac{1}{16}$$

$$\Rightarrow P(\{X = 0\} \cap \{Y = -1\}) \ge 0$$

$$\frac{1}{4} - p \ge 0$$

$$p \le \frac{1}{4}$$

$$\Rightarrow P(\{X = -1\} \cap \{Y = 1\}) \ge 0$$

$$p + \frac{1}{16} \ge 0$$

$$p \le \frac{1}{16}$$

$$\Rightarrow p \in \left[\frac{1}{16}, \frac{1}{4}\right]$$
(1)

Therefore, $\frac{1}{16} \le p \le \frac{1}{4}$, and can be any value within this range.

1.2 Part b)

Aim is to find $P({X = Y})$:

$$\begin{split} \mathbf{P}(\{\mathbf{X} = \mathbf{Y}\}) &= \sum_{a} \mathbf{P}(\{\mathbf{X} = a\} \cap \{\mathbf{Y} = a\}) \\ &= \mathbf{P}(\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) + \mathbf{P}(\{\mathbf{X} = 0\} \cap \{\mathbf{Y} = 0\}) + \mathbf{P}(\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\}) \\ &= (p - \frac{1}{16}) + (\frac{3}{16}) + (\frac{1}{4} - p) \\ &= \frac{6}{16} = \frac{3}{8} \end{split}$$

1.3 Part c)

The marginal pdf of X is $f_X(x)$, which is equal to P(X = x) and can be manually evaluated:

$$P(\{X = -1\}) = \sum_{y} P(\{X = -1\} \cap \{Y = y\})$$

$$= (p - \frac{1}{16}) + (\frac{1}{8}) + (p + \frac{1}{16})$$

$$= 2p + \frac{1}{8}$$

$$P(\{X = 0\}) = \sum_{y} P(\{X = 0\} \cap \{Y = y\})$$

$$= (\frac{1}{4} - p) + (\frac{3}{16}) + (\frac{1}{16})$$

$$= -p + \frac{1}{2}$$

$$P(\{X = 1\}) = \sum_{y} P(\{X = 1\} \cap \{Y = y\})$$

$$= (0) + (\frac{1}{8}) + (\frac{1}{4} - p)$$

$$= -p + \frac{3}{8}$$

$$\Rightarrow f_{X}(x) = P(\{X = x\}) = \begin{cases} 2p + \frac{1}{8} & x = -1 \\ -p + \frac{1}{2} & x = 0 \\ -p + \frac{3}{8} & x = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$P(\{Y = -1\}) = \sum_{x} P(\{X = x\} \cap \{Y = -1\})$$

$$= (p - \frac{1}{16}) + (\frac{1}{4} - p) + (0)$$

$$= \frac{3}{16}$$

$$P(\{Y = 0\}) = \sum_{x} P(\{X = x\} \cap \{Y = 0\})$$

$$= (\frac{1}{8}) + (\frac{3}{16}) + (\frac{1}{8})$$

$$= \frac{7}{16}$$

$$P(\{Y = 1\}) = \sum_{x} P(\{X = x\} \cap \{Y = 1\})$$

$$= (p + \frac{1}{16}) + (\frac{1}{16}) + (\frac{1}{4} - p)$$

$$= \frac{6}{18} = \frac{3}{8}$$

$$\Rightarrow f_{Y}(x) = P(\{Y = y\}) = \begin{cases} \frac{\frac{3}{16}}{\frac{3}{16}} & y = -1\\ \frac{7}{16} & y = 0\\ \frac{3}{8} & y = 1\\ 0 & \text{otherwise} \end{cases}$$

1.4 Part d)

X and Y are independent if

$$P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\}) \cdot P(\{Y = y\}) = f_X(x) \cdot f_Y(y)$$
(2)

for all possible values x and y. Therefore, this must be true for x = -1 and y = 1:

$$RHS = P(\{X = -1\})P(\{Y = 1\})$$

$$= P(\{X = -1\}) \cap \{Y = 1\})$$

$$= (2p + \frac{1}{8})(\frac{3}{8})$$

$$= p + \frac{1}{16}$$

$$= \frac{3}{4}p + \frac{3}{64}$$

As shown above, LHS and RHS are only equal for zero or one values of p. Letting LHS = RHS, we can find this exact value (or lack thereof):

$$p + \frac{1}{16} = \frac{3}{4}p + \frac{3}{64}$$
$$\frac{1}{4}p = \frac{3}{64} - \frac{1}{16}$$
$$p = -\frac{1}{64} \cdot 4 = -\frac{1}{16}$$

Therefore LHS = RHS only when $p = -\frac{1}{16}$, however from (1) this is not within the potential domain of p. Therefore LHS \neq RHS, showing one counterexample to (2), hence X and Y are not independent.

1.5 Part e)

$$\begin{split} \mathrm{E}(\mathrm{X}) &= \sum_{x} x \mathrm{P}(\{\mathrm{X} = x\}) \\ &= -1(2p + \frac{1}{8}) + 0(-p + \frac{1}{2}) + 1(-p + \frac{3}{8}) \\ &= -2p - \frac{1}{8} - p + \frac{3}{8} \\ \therefore \mathrm{E}(\mathrm{X}) &= -3p + \frac{1}{4} \\ \mathrm{E}(\mathrm{Y}) &= \sum_{y} y \mathrm{P}(\{\mathrm{Y} = y\}) \\ &= -1(\frac{3}{16}) + 0(\frac{7}{16}) + 1(\frac{3}{8}) \\ \therefore \mathrm{E}(\mathrm{Y}) &= -\frac{3}{16} + \frac{3}{8} = \frac{3}{16} \\ \mathrm{Cov}(\mathrm{X}, \mathrm{Y}) &= \mathrm{E}[(\mathrm{X} - \mathrm{E}(\mathrm{X})(\mathrm{Y} - \mathrm{E}(\mathrm{Y}))] \\ \mathrm{Cov}(\mathrm{X}, \mathrm{Y}) &= \sum_{c \in \Omega} (\mathrm{X}(c) - \mathrm{E}(\mathrm{X}))(\mathrm{Y}(c) - \mathrm{E}(\mathrm{Y})) \mathrm{P}(\{c\}) \\ &= \sum_{x,y} (x - (-3p + \frac{1}{4}))(y - (\frac{3}{16})) \mathrm{P}(\{\mathrm{X} = x\} \cap \{\mathrm{Y} = y\}) \end{split}$$

Expanding this sum is tedious and results in nine trinomials. The following sum for the Cov(X, Y) expansion significantly reduces the algebra necessary by computing E(XY) instead:

$$\begin{aligned} \operatorname{Cov}(\mathbf{X},\mathbf{Y}) &= \operatorname{E}(\mathbf{XY}) - \operatorname{E}(\mathbf{X}) \operatorname{E}(\mathbf{Y}) \\ &= \sum_{c \in \Omega} \operatorname{X}(c) \operatorname{Y}(c) \operatorname{P}(\{c\}) \\ &= \sum_{x,y} xy \operatorname{P}(\{\mathbf{X} = x\} \cap \{\mathbf{Y} = y\}) \\ &= (-1)(-1)(p - \frac{1}{16}) + (-1)(0)(\frac{1}{4} - p) + (-1)(1)(0) \\ &+ (0)(-1)(\frac{1}{8}) + (0)(0)(\frac{3}{16}) + (0)(1)(\frac{1}{8}) \\ &+ (1)(-1)(p + \frac{1}{16}) + (1)(0)(\frac{1}{16}) + (1)(1)(\frac{1}{4} - p) \\ &= (p - \frac{1}{16}) - (p + \frac{1}{16}) + (\frac{1}{4} - p) \\ &\therefore \operatorname{E}(\mathbf{XY}) = -p + \frac{1}{8} \end{aligned}$$

$$\implies \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) = (-p + \frac{1}{8}) - (-3p + \frac{1}{4})(\frac{3}{16}) \\ &= -p + \frac{1}{8} + \frac{9}{16}p - \frac{3}{64}$$

$$\therefore \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) = -\frac{7}{16}p - \frac{5}{64} \end{aligned}$$

2 Question 2

 Ω is continuous, which implies X is continuous and Y is continuous. Let D be the set of all $\langle x, y \rangle$ that is inside (or on the boundary) of the triangle given.

2.1 Part a)

We are told that the joint pdf of X and Y is uniform over D, and assume it is 0 everywhere else. The area of the triangle D on a cartisian plane is $A = \frac{1}{2}bh = 1$, and we know

$$\int_{d \in D} f_{X,Y}(d) dd = 1$$

Since $f_{X,Y}$ is uniform, this integral can be interpreted as the geometric volume of a triangular prism, extruded from D by $f_{X,Y}$

$$A \cdot f_{X,Y} = 1$$
$$f_{X,Y} = 1$$

Therefore the joint pdf of (X, Y) is $f_{X,Y} = 1$.

2.2 Part b)

The set of vectors D_2 containing all vectors $\langle x, y \rangle$ satisfying $x \rangle y$ in D forms a triangle on a cartisian plane with vertices at (0,0) (0.5,0.5) and (1,0). The area of this triangle is exactly $\frac{1}{4}$ the total area of D, since $A = \frac{1}{2}bh = \frac{1}{2} \cdot 1 \cdot 0.5 = \frac{1}{4}$. Therefore:

$$P(\{X \ge Y\}) = \int_{d \in D_2} f_{X,Y}(d) dd$$
$$= f_{X,Y} \cdot A$$
$$= \frac{1}{4}$$
$$\therefore P(\{X \ge Y\}) = \frac{1}{4}$$

2.3 Part c)

Since

$$F_{X} = \int_{-\infty}^{x} f_{X}(x) dx$$
$$f_{X}(x) = \frac{d}{dx} F_{X}(x)$$

Figure 1 illustrates the geometric cases involved with evaluating f_X :

We know

$$F_{X}(-1) = 0$$
 $F_{X}(x < -1) = 0$ $F_{X}(x > 1) = 1$

Figure 1: Geometric rendering of D showing the cases of $F_{\rm X}$

Case 1: $-1 \le x \le 0$. This implies F_X is the area of $\triangle AX_1'X_1$. Let $AX_1 = x_1 = X_1X_1'$, which implies $x_1 = x + 1$:

$$Area(AX'_1X_1) = \frac{1}{2}bh$$
$$= \frac{1}{2}x_1^2$$

Therefore

$$F_{\rm X}(-1 \le x \le 0) = \frac{1}{2}(x+1)^2$$

Case 2: 0 < $x \le 1$. This implies $F_X(x)$ is the area of $ABX_2'X_2$. Note $x = MX_2$, and that $X_2X_2' = X_2C$

$$\operatorname{Area}(\operatorname{ABX}_2'X_2) = \operatorname{Area}(\triangle \operatorname{ABM}) + \operatorname{Area}(\operatorname{MBX}_2'X_2)$$

$$\operatorname{Area}(\triangle ABM) = \frac{1}{2}$$

$$\operatorname{Area}(MBX_2'X_2) = \operatorname{Area}(MBC) - \operatorname{Area}(X_2X_2'C)$$

$$\operatorname{Area}(MBC) = \operatorname{Area}(ABM) = \frac{1}{2}$$

$$\operatorname{Area}(X_2X_2'C) = \frac{1}{2}bh$$

$$= \frac{1}{2} \cdot (1-x) \cdot (1-x)$$

$$= \frac{1}{2}(1-x)^2$$

This is enough information to express F_X :

$$\implies F_{X}(0 < x \le 1) = (\frac{1}{2}) + (\frac{1}{2} - \frac{1}{2}(1 - x)^{2})$$

$$= 1 - \frac{1}{2}(1 - 2x + x^{2})$$

$$= 1 - \frac{1}{2} + x - \frac{1}{2}x^{2}$$

$$= -\frac{1}{2}x^{2} + x + \frac{1}{2}$$

Combining cases:

$$\Rightarrow F_{X} = \begin{cases} 0 & : x < -1 \\ \frac{1}{2}(1+x)^{2} & : -1 \le x \le 0 \\ -\frac{1}{2}x^{2} + x + \frac{1}{2} & : 0 < x \le 1 \\ 1 & : x > 1 \end{cases}$$

$$\therefore f_{X}(x) = \begin{cases} x+1 & : -1 \le x \le 0 \\ -x+1 & : 0 < x \le 1 \\ 0 & : \text{otherwise} \end{cases}$$

This so happens to be the geometric shape of D on a cartesian plane, ABC.

$$F_{Y}(y \le 0) = 0$$
$$F_{Y}(y \ge 1) = 1$$

Case 0 < y < 1

Figure 2: Geometric rendering of D showing the cases of F_Y

$$F_{Y}(y) = \operatorname{Area}(AX'XC)$$

$$= \operatorname{Area}(\triangle ABC) - \operatorname{Area}(\triangle XBX')$$

$$= 1 - 2 \cdot \operatorname{Area}(\triangle XIB)$$
Note IB = 1 - y = IX
$$\operatorname{Area}(\triangle XIB) = \frac{1}{2}bh$$

$$= \frac{1}{2}(1 - y)^{2}$$

$$= \frac{1}{2}(y^{2} - 2y + 1) \implies F_{Y} \qquad = 1 - (y^{2} - 2y + 1)$$

$$= -y^{2} + 2y$$

Combining cases

$$F_{Y}(y) = \begin{cases} 1 & : y \ge 1 \\ -y^{2} + 2y & : 0 < y < 1 \\ 0 & : y < 0 \end{cases}$$

$$f_{Y}(y) = \begin{cases} -2y + 2 & : 0 < y < 1 \\ 0 & : \text{otherwise} \end{cases}$$

The geometric interpretation of this is not as intuitive ro realise. Morph A to (0, 2), B to (0, 1) and C to (0, 0), and the initial value of $f_X(0) = AC$ is now placed on the y-axis.

2.4 Part d)

The continuous independance rule can be stated like so:

$$f_{X,Y}(\langle x, y \rangle) = f_X(x) \cdot f_Y(y) \quad \forall x, y \in \mathbb{R}$$

Suppose $\langle x, y \rangle \in D$.

LHS =
$$f_{X,Y}(\langle x, y \rangle)$$

= 1RHS = $f_Y(y) \cdot f_X(x)$
= $(-2y + 2) \cdot \begin{cases} x + 1 & : -1 \le x \le 0 \\ -x + 1 & ; 0 < x \le 1 \end{cases}$

Suppose further $\langle x, y \rangle = \langle 0, 0 \rangle$

RHS =
$$(-2 \cdot 0 + 2)(0 + 1)$$

= 2

Therefore there exists an $\langle x, y \rangle \in D$ such that the independence rule fails, LHS \neq RHS. Therefore X dn Y are not independent.

2.5 Part e)

It can be immediately noted that, due to the symmetry across the x=0 "line" and the fact that $Cov(X,Y) = \int x, yxy P(\{X=x\} \cap \{Y=y\})$ is negative (or zero) for x < 0 and positive (or zero) for x > 0 demonstrates intuitively that Cov(X,Y) = 0.

Somehow this seems dissatisfying to me. Cov(X, Y) = E(XY) - E(X)E(Y) is another way to evaluate Cov(X, Y). This method requires evaluating a double integral or equivalent.

$$\begin{split} \mathrm{E}(\mathrm{X}) &= \int_{-\infty}^{+\infty} x f_{\mathrm{X}}(x) \, \mathrm{d}x \\ &= \int_{-1}^{0} x (x+1) \, \mathrm{d}x + \int_{0}^{1} x (-x+1) \, \mathrm{d}x \\ &= \int_{-1}^{0} x^{2} + x \, \mathrm{d}x + \int_{0}^{1} -x^{2} + x \, \mathrm{d}x \\ &= \frac{1}{3} x^{3} + \frac{1}{2} x^{2} \Big|_{x=-1}^{x=0} + -\frac{1}{3} x^{3} + \frac{1}{2} x^{2} \Big|_{x=0}^{x=1} = (0+0) - (\frac{1}{3} (-1)^{3} + \frac{1}{2} (-1)^{2}) + (-\frac{1}{3} (1)^{3} + \frac{1}{2} (1)^{2}) - (0+0) \\ &= +\frac{1}{3} + \frac{1}{2} - \frac{1}{3} + \frac{1}{2} \\ &= 1 \end{split}$$

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$$

$$= \int_0^1 -2y + 2 dy$$

$$= -y^2 + 2y \Big|_{y=0}^{y=1}$$

$$= (-(1)^2 + 2(1)) - (0+0)$$

$$= -1 + 2$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{X}(x) f_{Y}(y) dx dy$$

$$= \int_{-\infty}^{+\infty} x \left(\int_{0}^{1} y f_{Y}(y) dy \right) f_{X}(x) dx$$

$$= E(Y) \int_{-1}^{+1} x f_{X}(x) dx$$

$$= E(Y) \cdot E(X)$$

$$= 1$$

Therefore $Cov(X, Y) = 1 - 1 \cdot 1 = 0$