— Plano de Ensino 2025.2 —

Código	DCC638
Disciplina	Introdução à Lógica Computacional
Professor	Haniel Barbosa
Horário	2a/4a 14:55-16:35
Sala	Sala 212, CAD 3

Programa.

Aula	Data	Conteúdo		
_	$11/08 \; (Seg)$	Sem aula		
1	13/08 (Qua)	Introdução ao curso & Lógica Proposicional (Parte 1)		
2	$18/08 \; (Seg)$	Lógica Proposicional (Parte 2)		
_	$20/08 \; (Qua)$	Sem aula: DCC Week		
3	$25/08 \; (Seg)$	Lógica Proposicional (Parte 3)		
4	$27/08 \; (Qua)$	Resolução de problemas via SAT		
5	$01/09 \; (Seg)$	Lógica de Predicados (Parte 1)		
6	$03/09 \; (Qua)$	Lógica de Predicados (Parte 2)		
7	08/09 (Seg)	Lógica de Predicados (Parte 3)		
8	$10/09 \; (Qua)$	Demonstrações e Regras de Inferência (Parte 1)		
9	$15/09 \; (Seg)$	Demonstrações e Regras de Inferência (Parte 2)		
10	$17/09 \; (Qua)$	Demonstrações: Dedução Natural		
_	$22/09 \; (Seg)$	Sem aula		
11	$24/09 \; (Qua)$	Reserva/Revisão		
12	27/09 (Sab)	Prova 1		
_	$29/09 \; (Seg)$	Sem aula		
_	$01/10 \; (Qua)$	Sem aula		
13	$06/10 \; (Seg)$	Métodos de Demonstração (Parte 1)		
14	$08/10 \; (Qua)$	Métodos de Demonstração (Parte 2)		
15	$13/10 \; (Seg)$	Teoria dos Conjuntos		
16	$15/10 \; (Qua)$	Funções e Sequências		
17	$20/10 \; (Seg)$	Cardinalidade de Conjuntos		
18	$22/10 \; (Qua)$	Indução matemática		
_	$27/10 \; (Seg)$	Sem aula: Feriado do Dia do servidor público		
19	$29/10 \; (Qua)$	Reserva/Revisão		
20	01/11 (Sab)	Prova 2		
21	03/11 (Seg)	Indução forte e boa ordenação		
22	05/11 (Qua)	Definições recursivas		
23	$10/11 \; (Seg)$	Indução Estrutural		
24	$12/11 \; (Qua)$	Álgebra Booleana (Parte 1)		
25	17/11 (Seg)	Álgebra Booleana (Parte 2)		
26	19/11 (Qua)	Circuitos Lógicos (Parte 1)		
27	$24/11 \; (Seg)$	Circuitos Lógicos (Parte 2)		
28	$26/11 \; (Qua)$	Reserva/Revisão		
29	29/11 (Sab)	Prova 3		
_	01/12 (Seg)	Sem aula		
_	$03/12 \; (Qua)$	Sem aula		
30	06/12 (Sab)	Prova substitutiva		
_	08/12 (Seg)	Sem aula: Feriado da Imaculada Conceição		
_	10/12 (Qua)	Exame Especial		

Bibliografia.

- Matemática Discreta e Suas Aplicações (6a Edição). Kenneth H. Rosen McGraw Hill (2009)
- How to Prove It: A Structured Approach. Daniel J. Velleman. 2nd Edition. Cambridge. University Press.

Material de apoio. https://hanielb.github.io/2025.2-ilc/

Avaliações.

Prova 1	30	27/09
Prova 2	30	01/11
Prova 3	30	29/11
Listas de exercício	10	