1 Лекция 9 (30.10.2018)

1.1

Def. Ранг типа

R(x) — все типа ранга x.

- R(0) все типы без кванторов
- $R(x+1) = R(x) \mid R(x) \rightarrow R(x+1) \mid \forall \alpha . R(x+1)$

Enddef.

Например:

- $\alpha \in R(0)$
- $\forall \alpha. \alpha \in R(1)$
- $(\forall \alpha.\alpha) \to (\forall b.b) \in R(2)$
- $((\forall \alpha.\alpha) \to (\forall b.b)) \to b \in R(3)$

Тут видно, если если выражение слева от знака имликации имеет ранг n, то все выражение будет иметь ранг $\geq (n+1)$.

Утверждение: Пусть x — выражение только с поверхностными кванторами, тогда $x \in R(1)$.

1

Def. Типовая система

$$\sigma ::= \forall \alpha_1. \forall \alpha_2. \ldots \forall \alpha_n. \tau$$
, где $\tau \in R(0)$ и, следовательно, $\sigma \in R(1)$.

Enddef.

Def. Частный случай (спциализация) типовой схемы

 $\sigma_1 \sqsubseteq \sigma_2$ — типовая схема

 σ_2 — частный случай (специализация) σ_1 , если

1. $\sigma_1 = \forall \alpha_1. \forall \alpha_2.... \forall \alpha_n. \tau_1$

2. $\sigma_2 = \forall \beta_1. \forall \beta_2.... \forall \beta_n. \tau_1 [\alpha_i := S(\alpha_i)]$

3. $\forall i.\beta_i \in FV(\tau_1)$

Enddef.

 $M_1: \forall \alpha.\alpha \to \alpha$

 $M: \forall \beta_1. \forall \beta_2: (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$

Вполне возможно, что в ходе замены, все типы будут уточнены (α уточниться как $\beta_1 \to \beta_2$.

1.2 Хиндли-Милнер

- 1. Все типы только с поверхностными кванторами (R(1))
- 2. $\overline{HM} ::= p \mid \overline{HM} \ \overline{HM} \mid \lambda p. \overline{HM} \mid let = \overline{HM} \ in \ \overline{HM}$

Докажем:
$$\frac{\Gamma \vdash \phi[p := \Theta]}{\Gamma \vdash \exists p.\phi}$$

•
$$\exists p. \phi = \forall b. (\forall p. (\phi \to b)) \to b$$

•
$$\phi \to \bot \equiv \forall b.(\phi \to b)$$

$$\frac{\Gamma, \forall p.(\phi \to b) \vdash \forall p.(\phi \to b)}{\Gamma, \forall p.(\phi \to b) \vdash \phi[p := \Theta] \to b}$$

$$\bullet \frac{\Gamma, \forall p.(\phi \to b) \vdash \phi[p := \Theta] \to b}{\Gamma, \forall p.(\phi \to b) \vdash b}$$

$$\frac{\Gamma, \forall p. (\phi \to b) \vdash b}{\Gamma \vdash (\forall p. (\phi \to b)) \to b}$$
$$\frac{\Gamma \vdash (\forall p. (\phi \to b)) \to b}{\Gamma \vdash \forall b. (\forall p. (\phi \to b)) \to b}$$

Соглашение:

•
$$\sigma$$
 — типовая схема

•
$$\tau$$
 — простой тип

1.
$$\overline{\Gamma, x : \sigma \vdash x : \sigma}$$

2.
$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_1 : \tau}{\Gamma \vdash e_0 \ e_1 : \tau'}$$

3.
$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x.e : \tau \rightarrow \tau'}$$

4.
$$\frac{\Gamma \vdash e_0 : \sigma \qquad \Gamma, x : \sigma \vdash e_1 : \tau}{\Gamma \vdash let \ x = e_0 \ in \ e_1 : \tau} \ , \ let \ x = a \ in \ b \equiv (\lambda x.b) \ a$$

5.
$$\frac{\Gamma \vdash e : \sigma' \qquad \sigma' \sqsubseteq \sigma}{\Gamma \vdash e : \sigma}$$

6.
$$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha \sigma} \alpha \notin FV(\Gamma)$$

1.3 Алгоритм вывода типов в системе Хиндли-Милнера W

На вход подаются Γ , M, на выходе наиболее общая пара (S, τ)

1.
$$M=x: au, \ x \in \Gamma$$
 (иначе ошибка)

- \bullet Выбросить все кванторы из τ
- Переименовать все свободные переменные в свежие Например: $\forall \alpha_1.\phi \Rightarrow \phi[\alpha_1:=\beta_1]$, где β_1 свежая переменная

$$(\emptyset, \Gamma(x))$$

2.
$$M = \lambda n.e$$

- τ новая типовая переменная
- $\Gamma' = \Gamma \setminus \{n : \}$ (т.е. Γ без переменной n)

•
$$\Gamma'' = \Gamma' \cup n : \tau$$

$$3. M = P Q$$

- au новая типовая переменная
- $(S_1, \tau_1) = W(\Gamma, P)$
- $(S_2, \tau_2) = W(S_1(\Gamma), Q)$
- S_3 Унификация $(S_2(\tau_1), \tau_2 \to \tau)$ $(S_3 \circ S_2 \circ S_3, S_3(\tau))$
- 4. let x = P in Q
 - $(S, \tau) = W(\Gamma, P)$
 - $\Gamma' = \Gamma$ без x
 - $\Gamma'' = \Gamma' \cup \{x : \forall \alpha_1 \dots \alpha_k.\tau_1\}$, где $\alpha_1 \dots \alpha_k$ свободные переменные в τ_1
 - $(S_2, \tau_2) = W(S_1(\Gamma''), Q)$
 - $(S_1 \circ S_2), \tau_2)$

Надеемся, что логика второго порядка противоречива.

Введем явный Y-комбинатор

$$Yf =_{\beta} f(Y \ f)$$

 $Y : \forall \alpha.(\alpha \to \alpha) \to alpha$ — аксиома

type intList = Nil | Cons of int * intList;;

 $let my_list = Cons(1, Cons(2, Cons(3, Nil)));;$

 $print_int (length my_list);; \quad (* \ output: \ 3 \ *)$

$$Nil = inLeftO = \lambda a.\lambda b.a O$$

$$Cons = inRightp = \lambda a.\lambda b.b \ p$$

$$\lambda a.\lambda b.a~O: \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma$$

$$\lambda a.\lambda b.b \ O: \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma$$

$$\delta = \forall \gamma. (\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma$$

$$\lambda a.\lambda b.b\ (\lambda a.\lambda b.a\ O): \forall \alpha.(\alpha \to \gamma) \to (\delta \to \gamma) \to \gamma$$

Научимся задавать рекурсивные типы.

1. Эквирекурсивный

 $\alpha = f(\alpha)$ — уравнение с неподвижной точкой. Пусть $\nu \alpha. f(\alpha) = f(\nu \alpha. f(\alpha))$. Пояснение: Y — для выражений, а для типов — ν .

class Enum <extends Enum<E>>

2. Изорекурсивный

```
struct list {
    list x;
}
x.x.x.x
```

 $*: list* \rightarrow list$ — разыменовывание

 $Roll: Nil|Cons(a*list) \rightarrow list$

 $Unroll: list \rightarrow Nil|Cons(a*list)$

Общий тип (введение в типовую систему):

- $roll: f(\alpha) \to \alpha$
- $unroll : \alpha \to f(\alpha)$

Пример из Си:

- $\bullet *: T* \rightarrow T$
- $\&: T \to T*$
- $T = \alpha$
- $T* = f(\alpha)$

Зависимые типы и логика 1-ого порядка

 $sprint f: string \rightarrow smth \rightarrow string$

 $sprintf"\%d":int \rightarrow string$

 $sprintf"\%f": float \rightarrow string$

тип sprintf определяется первым аргументом.

2 Лекция 10 (06.11.2019)

2.1 Обобщенные типовые системы

- Copta: $\{*, \square\}$
 - Выражение "A:*"означает, что A тип. И тогда, если на метаязыке мы хотим сказать "Если A тип, то и $A \to A$ тоже тип то формально это выглядит как A:* \vdash $(A \to A):*$
 - $-\Box$ это абстракция над сортом для типов.
- $\bullet \ T ::= x \mid c \mid T \ T \mid \lambda x : T. \ T \mid \Pi x : T. \ T$
- Аксиома:

• Правила вывода:

1.
$$\frac{\Gamma \vdash A : S}{\Gamma, x : A \vdash x : A} \ x \not\in \Gamma$$

2.
$$\frac{\Gamma \vdash A : B}{\Gamma. \ x : C \vdash A : B} -$$
 правило ослабление (примерно как $\alpha \to \beta \to \alpha$ в И.В.)

3.
$$\frac{\Gamma \vdash A:B \qquad \Gamma \vdash B':S \qquad B =_{\beta} B'}{\Gamma \vdash A:B'} - \text{правило конверсии}$$

$$\Gamma \vdash A : B'$$
 4. $\frac{\Gamma \vdash F : (\Pi x : A.B) \qquad \Gamma \vdash a : A}{\Gamma \vdash (F \ a) : B[x := a]}$ — правило применения

• Семейства правила (generic-правила)

Пусть $(s_1, s_2) \in S \subseteq \{*, \square\}^2$.

1. П-правило:
$$\frac{\Gamma \vdash A:s_1 \qquad \Gamma, x:A \vdash B:s_2}{\Gamma \vdash (\Pi x:A.B):s_2}$$

2.
$$\lambda$$
-правило:
$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash b : B \qquad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\lambda x : A.b) : (\Pi x : A.B)}$$

Например:

•
$$5:int:*:\Box$$

$$\bullet$$
 $[]:* \rightarrow *: \Box$

•
$$\Lambda M.List < M >: * \rightarrow * \square$$

2.2 λ -куб

Th Обобщенная типовая система сильно нормализуема

Примеры:

• $\lambda \omega$:

$$\vdash (\lambda \alpha : *.\alpha \to \alpha)(* \to *) : \Box$$

1.
$$\vdash * : \Box$$
 $a : * \vdash * . \Box$ $\vdash \vdash (* \rightarrow *) : \Box$

$$2. \vdash * : \Box \qquad \frac{\alpha : * \vdash \alpha : * \qquad \alpha : *, x : * \vdash \alpha : *}{\alpha : * \vdash \alpha \rightarrow \alpha : x} \qquad \frac{\vdash * : \Box}{a : * \vdash * . \Box}}{\vdash (\lambda \alpha : * . \alpha \rightarrow \alpha) : * \rightarrow *}$$

Notes:

- $I_A = \lambda x : A.x$ explicit typing (Church style)