An Epidemic Spread Model Replicates Atrophy Patterns in Parkinson's Disease

Ying-Qiu Zheng 1 , Yu Zhang 1,2 , Yashar Zeighami 1 , Yvonne Yau 1 , Bratislav Mišić 1 , Alain Dagher $^{1, \square}$

Email correspondence: yingqiu.zheng@mail.mcgill.ca, \omegalain.dagher@mcgill.ca

Introduction

- ▶ Parkinson's Disease (PD) has been widely suggested to be a prion-like disease, resulting from the pathogenic spread of misfolded α -synuclein (α -syn), an infectious protein that may spread through neuronal connections, inducing further misfolding of endogenous α -syn and neuronal death.
- \blacktriangleright However, it remains unclear whether the actual spread of α -syn occurs in humans and how it leads to the neuronal loss identified in PD patients.
- ▶ Here, using multimodal neuroimaging and genetic data, we present an agent-based Susceptible-Infectious-Removed (S-I-R) spread model that integrates α -syn spreading and selective vulnerability to simulate the spread of misfolded α -syn and the spatial patterning of brain atrophy.

Materials

- ► GBA and SNCA transcription profiles were obtained from Allen Human Brain Atlas as measures of regional **clearance** and **synthesis** of α -syn respectively.
- ► Structural connectivity (SC) and functional connectivity (FC) were constructed from Human Connectome Project diffusion MRI and resting-state fMRI data.
- ▶ PD atrophy map was derived from Deformation-Based Morphometry (DBM) values estimated from T1 MRI scans of 237 PD patients and 118 age-matched controls provided by Parkinson's Progression Markers Initiative (Zeighami et al., 2015).
- ▶ 42 regions, left hemisphere, were adapted from an atlas-based segmentation (Cammoun et al., 2012). Substantia nigra was filled into the mask based on the ATAG atlas (https://www.nitrc.org/projects/atag).

Identifying the epicenter

- ► Substantia nigra has the lowest *spread thresh-old* and highest expression level of normal α -syn.
- ► Basal Ganglia is rich in normal α -syn at equilibrium of module I (before disease onset)

Robustness and comparison

- ► This simulated pattern is preserved across network densities ranging from 24% to 45%.
- ▶ Incorporating the gene expression data improves the predictive power of the S-I-R model over and above the network measures *per se*, including node degree, node strength, eigenvector centrality.

Acknowledgements

THE MICHAEL J. FOUNDATION FOR PARKINSON'S RESEARCH Canadian Institutes Institutes Institutes of Health Research en santé du Canada

THE W. GARFIELD WESTON alzheimer's Now F O U N D A T I O N Cassociation

Methods

- ► Three modules were generated to simulate PD progression:
 - I. The growth of normal α -syn: one stable point, acting as the initial condition of II.
 - II. The spread of misfolded α -syn: two stable points, disease extinction or outbreak.
- III. The accrual of neuronal loss.

Strategies:

- ightharpoonup Individual normal α -syn may
 - get synthesized (per voxel) or cleared
 - exit a region and enter a path
 - exit a path and enter a region
 - ullet get misfolded via contact with misfolded lpha-syn
- ightharpoonup Individual misfolded α -syn may
 - get generated from normal α -syn (through misfolding process) or cleared
 - exit a region and enter a path
- exit a path and enter a region

Model fit

▶ The simulated neuronal loss resembles the spatial patterning of atrophy identified in PD patients without any free parameters.

Role of SC

▶ Disruptions of the structural connectivity's wiring or spatial embedding remarkably degrade model fit.

Contribution of FC

► Integration of functional connectivity improves model fit.

Excessive influence of functional connectivity on α -syn spreading degrades model fit, suggesting that balanced influence of functional connectivity and structural connectivity is required in driving PD pathology.

Role of gene expressions

ightharpoonup Shuffled GBA or SNCA expressions remarkably degrade model fit.

Conclusions

- ▶ PD atrophy pattern results from the interplay between the routes of pathogenic spread and regional vulnerability to misfolded α -syn.
- ightharpoonup Connectome structure dictates the mobility pattern of α -syn, while gene expressions modulates regional susceptibility to the infection on top of the network features.
- ► FC-biased spreading also improves fit, suggesting that neuronal activity may also drive disease spread.