University of California San Diego

ECE 271 Notes

Instructor: Prof. Nuno Vasconcelos

Organized by Ray Tsai

Bayes Decision Rule

$$\begin{split} g^*(x) &= \underset{g(x)}{\operatorname{arg\,min}} \sum_i P_{Y|X}(i|x) L[g(x),i] \\ &= \underset{i}{\operatorname{arg\,max}} P_{Y|X}(i|x) & \text{(for 0-1 loss function)} \\ &= \underset{i}{\operatorname{arg\,max}} P_{X|Y}(x|i) P_Y(i) & \text{(for 0-1 loss function)} \\ &= \underset{i}{\operatorname{arg\,max}} \log P_{X|Y}(x|i) + \log P_Y(i). & \text{(for 0-1 loss function)} \end{split}$$

For binary classification, the likelihood ratio form is: pick 0 if $\frac{P_{X|Y}(x|0)}{P_{X|Y}(x|1)} > T^* = \frac{P_Y(1)}{P_X(0)}$.

Associated Risk

$$R^* = \int P_X(x) \sum_{i \neq g^*(x)} P_{Y|X}(i|x) dx = \int P_{Y,X}(y \neq g^*(x), x) dx \quad \text{(For 0-1 loss function)}$$

Gaussian Classifier

For single variable, we assume $\sigma_i = \sigma$ and pick 0 if

$$x < \frac{\mu_1 + \mu_0}{2} + \frac{1}{\frac{\mu_1 - \mu_0}{\sigma^2}} \log \frac{P_Y(0)}{P_Y(1)}.$$

Generalizing it to multiple variables, we assume $\Sigma_i = \Sigma$, then the BDR becomes

$$i^*(x) = \arg\min_{i} [d(x, \mu_i) + \alpha_i],$$

where $d(x,y) = (x-y)^T \Sigma^{-1} (x-y)$ and $\alpha_i = \log \left[(2\pi)^d |\Sigma| \right] - 2 \log P_Y(i)$.

Alternatively,

$$i^*(x) = \arg\max_{i} g_i(x),$$

where $g_i(x) = w_i^T x + w_{i0}$, $w_i = \Sigma^{-1} \mu_i$, and $w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P_Y(i)$.

Geometric Interpretation

Thus, the hyperplane between class 0 and 1 is

$$g_0(x) - g_1(x) = w^T x + b = 0$$

where
$$w = \Sigma^{-1}(\mu_0 - \mu_1)$$
 and $b = -\frac{(\mu_0 + \mu_1)^T \Sigma^{-1}(\mu_0 - \mu_1)}{2} + \log \frac{P_Y(0)}{P_Y(1)}$.

It could also be rewritten as

$$w^{T}(x - x_{0}) = 0,$$
where $w = \Sigma^{-1}(\mu_{0} - \mu_{1})$ and $x_{0} = \frac{\mu_{0} + \mu_{1}}{2} - \frac{1}{(\mu_{0} - \mu_{1})^{T} \Sigma^{-1}(\mu_{0} - \mu_{1})} \log \frac{P_{Y}(0)}{P_{Y}(1)}(\mu_{0} - \mu_{1})$

Gaussian Distribution Transformation

Let $x \sim N(\mu, \Sigma)$, and let $y = A^T x$, for some matrix A. Then, $y \sim N(A^T \mu, A^t \Sigma A)$. A special case of this is the whitening transform $A_w = \Phi \Lambda^{-1/2}$, where Φ is the matrix of orthonormal eigenvectors of Σ , and Λ is the diagonal matrix of eigenvalues of Σ .

Sigmoid

Suppose that $g_1(x) = 1 - g_0(x)$. Then, we can rewrite

$$g_0(x) = \frac{1}{1 + \frac{P_{X|Y}(x|1)P_Y(1)}{P_{X|Y}(x|0)P_Y(0)}} = \frac{1}{1 + \exp\{d_0(x, \mu_0) - d_1(x, \mu_1) + \alpha_0 - \alpha_1\}},$$

where, $d(x,y) = (x-y)^T \Sigma^{-1} (x-y)$ and $\alpha_i = \log \left[(2\pi)^d |\Sigma_i| \right] - 2 \log P_Y(i)$.

Maximum Likelihood Estimation

Solve for

$$\Theta^* = \underset{\Theta}{\operatorname{arg\,max}} P_X(D; \Theta) = \underset{\Theta}{\operatorname{arg\,max}} \log P_X(D; \Theta).$$

Consider the Gaussian example:

Given a sample $\mathcal{D} = \{x_1, \dots, x_n\}$ of independent points, where $P_X(x_i) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} e^{-\frac{1}{2}(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)}$.

Then, the likelihood $L(x_1, \ldots, x_n | \mu, \sigma) = \prod_{i=1}^n P_X(x_i)$. We take the gradient of the natrual log of L with respect to μ and get

$$\nabla_{\mu}(\log L) = \nabla_{\mu} \left(-\frac{1}{2} \log[(2\pi)^{d} |\Sigma|] - \frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu)^{T} \Sigma^{-1} (x_{i} - \mu) \right)$$
$$= \sum_{i=1}^{n} \Sigma^{-1} (x_{i} - \mu) = \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} \mu = 0.$$

Thus, we get $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$. By taking the Hessian, we get $\nabla_{\mu}^2(\log L) = -\sum_{i=1}^{n} \Sigma^{-1} = -n\Sigma^{-1}$. Since the covariance matrix Σ is positive definite, $-n\Sigma^{-1}$ is negative definite. Thus $\hat{\mu}$ is the maximum point.

In addition, the MLE of the covariance matrix is

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T.$$

Bias and Variance

$$\begin{split} Bias(\hat{\theta}) &= E[\hat{\theta} - \theta], \quad Var(\hat{\theta}) = E\left\{(\hat{\theta} - E[\hat{\theta}])^2\right\}, \\ MSE(\hat{\theta}) &= E\left[(\hat{\theta} - \theta)^2\right] = Var(\hat{\theta}) + Bias^2(\hat{\theta}). \end{split}$$

Least Squares

Consider a overdetermined system $\Phi\theta = z$, where we attempt to minimize $||z - \Phi\theta||$, the least square solution is

$$\theta^* = (\Phi^T \Phi)^{-1} \Phi^T z$$

For a overdetermined system $W\Phi\theta = Wz$, where we attempt to minimize $(z - \Phi\theta)^T W^T W(z - \Phi\theta)$, the least square solution is

$$\theta^* = (\Phi^T W^T W \Phi)^{-1} \Phi^T W^T W z.$$