MEng (Engineering) Examination 2017 Year 1

AE1-109 Mechanics

Tuesday 6th June 2017: 14.00 to 16.00 [2 hours]

The paper is divided into Section A and Section B and contains *FOUR* questions.

All questions carry equal marks.

Candidates may obtain full marks for complete answers to *ALL* questions.

You must answer each section in a separate answer booklet.

A datasheet is provided

The use of lecture notes is NOT allowed.

© IMPERIAL COLLEGE LONDON 2017

Section A

1.

(a) A 4 m long horizontal bar AC of negligible mass supports a mass of 60 kg at one end and is pinned to a wall at the other end as shown in figure 1. The bar is also supported by a string BC. Find the forces applied by the pin and the string on the bar.

Figure 1

[30%]

(b) Four forces are applied to the machine component ABCD as shown in figure 2. The distance AB is 200 mm (in the *x*-direction), the distance BC is 160 mm (in the *z*-direction) and the distance CD is 100 mm (in the *y*-direction). Replace the four forces with an equivalent force-couple system at A. (Use a vector-based approach).

[70%]

Page 2 of 5

2.

- a. A beetle walks along the spiral path as shown in figure 3. The path of the beetle can be described by the equation $R=R_0e^{a\theta}$ where a = 0.182 and R_0 = 5 mm. The beetle's radial distance from the origin of the coordinate system increases at a constant rate of 2 mm/s.
 - i. Write down the acceleration of the beetle in polar coordinates.

[10%]

ii. Find the tangential and radial components of the acceleration of the bug at $\theta = \pi$.

[40%]

Figure 3

- b. The spinning wheel of a stationary exercise bike is brought to rest from 100 rpm by applying a constant braking force over a period of 5 seconds.
 - i. Find the average angular deceleration of the wheel.

[30%]

ii. Find the number of revolutions before coming to a complete stop.

[20%]

Section B

3. A car of mass m is driven on a long straight road with a constant horizontal velocity v. The undulations in the road may be approximated as sinusoidal with a distance between successive summits of L and a drop of 2h between the highest and lowest points as shown in Figure 4. The acceleration due to gravity acts vertically downwards and has value g.

The car's suspension may be approximated as a linear spring of stiffness k in parallel with a velocity-proportional damper with constant of proportionality c. You may assume that the distance between the wheels of the car is significantly less than L.

- (a) Define *resonance* for a single-degree-of-freedom damped system. [5%]
- (b) By drawing an appropriate free-body diagram determine the equation of motion representing the vertical deflection of the main body of the car with respect to the vertical deflection of the wheels.
 [15%]
- (c) By using a phasor representation determine an expression for the steady-state amplitude of the vertical deflection of the main body of the car. [55%]
- (d) As the car is driven along the damper fails, so that it no longer transmits a force. Determine the velocity v that will cause the transmitted displacement to be maximized. State the physical meaning of the corresponding frequency of oscillation. (You may ignore any transient response). [25%]

4. The planet Earth takes 365.256 days (1 sidereal year) to complete a full orbit around the Sun. The planet Mars takes 686.980 days to complete its orbit around the Sun. You may assume as a first approximation that the orbits of both planets are circular and coplanar. The universal gravitational constant $G = 6.674 \times 10^{-11}$ m³/kg/s².

An exploration mission to Mars is planned which will utilize a Hohmann transfer trajectory.

(a) Evaluate the radii and tangential velocities of the orbits of Earth and Mars around the Sun.

[30%]

(b) Determine the eccentricity and specific angular momentum of the required transfer trajectory. Also determine the velocity impulses which must be applied to the spacecraft at the beginning and end of the transfer. You may neglect the effects of any local orbital velocities.

[30%]

(c) Determine the transfer time of the spacecraft between Earth and Mars.

[30%]

(d) In reality Mars' orbit has an eccentricity of 0.0934. Without further calculation state how the transfer time can be reduced in practice. [10%]

Setter: Mirko Kovac

Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee.

Marks

la)

Freebody depun:

30

moment salane around point A.

$$\hat{l}\hat{l} \times T(-\cos\theta\hat{l} + \sin\theta\hat{j}) + \hat{l}\hat{l} \times (-\hat{l}\hat{j}) = \vec{\delta}$$

$$= \hat{l}T\sin\theta\hat{k} \qquad = -\hat{l}\hat{l}\hat{k}$$

force Salance ZF=0 gives

$$(Ax - T cos \theta) \hat{i} + (Ay + T sin \theta - P) \hat{j} = \vec{o}$$

Setter: Mirko Kovac

16)

$$M_{\Delta}^{\rho} = \begin{vmatrix} 1 & j & k \\ 0.2 & 0 & 0 \\ -300 & -50 & 0 \end{vmatrix} + \begin{vmatrix} 1 & j & k \\ 0.2 & 0 & 0.16 \\ 0 & 0 & -250 \end{vmatrix}$$

Setter: Mirko Kovac

0

2a)

i)
$$\vec{a} = (\vec{p} - \vec{p} \cdot \vec{p}^2) e_{\vec{p}} + (2\vec{p} \cdot \vec{p} \cdot \vec{p}) e_{\vec{p}}$$

Merefore

$$\vec{a} = (\vec{p} - \vec{p} \cdot \vec{p}) en + (2\vec{p} \cdot \vec{p} \cdot \vec{p}) e_0$$

40

Setter: Mirko Kovac

30

26)

ü)

$$\theta(t) = \theta_0 + \theta_0 + \frac{1}{2}(-\alpha)t^2 = \theta_0 + -\frac{1}{2}\alpha t^2$$

$$\sim \epsilon \theta = \frac{100 \text{ rev}}{605} \cdot 55 - \frac{1}{2} \cdot 0.33 \frac{\text{rev}}{5^2} \cdot 255$$

$$\sim 80 = \frac{100 \text{ rev}}{605} \cdot 55 - \frac{1}{2} \cdot 0.33 = \frac{\text{rev}}{5^2} \cdot 255^2$$

20

Course Code and Title (Required): AEI-109 Mechanics	(\hat{S})
Setter (Required): M5	D -
Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee.	Marks
Jan 19	
Mesonance is when the magnitude of steady-state vibration of a forced system is musimized	5
b) $\int \int \int$	5
c) $T = \frac{1}{\sqrt{2}} = \frac{2\pi}{100}$ $\omega'' = \frac{2\pi}{10}$ $y = he^{i\omega't}$ $\dot{y} = hi\omega''e^{i\omega't}$	5
Steady-state solution: Try $sc = Ae^{i(\omega \cdot t - \beta)} + C$ $si = Ai\omega \cdot e^{i(\omega \cdot t - \beta)}$ $si = -A\omega^{2}e^{i(\omega \cdot t - \beta)}$	5

Matthew Souter 26/1/2017

Course Code and Title (Required): AEI-109 Mechanics	(G)
Setter (Required): MS	(D
Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee.	Marks
3 cont) $C = -\frac{mg}{h}$ (time invariant static deflection due to g)	5
-Awa meilwt-y) + caiwreilwt-y) + haeilwd-y) = chiweeiwt + kheiwt	10
Phasor representation:	гудалд финандрамарданиями жене и предоставления и предо
-Aw"m (-p + cAw (?-p + kA (-p) = chw (? + kh < 0	10
hh chot Awar	10
(hA-Aw12m)2 + C2A2w12 = h2h2 + C2h2w12	
$A^{2}((h-w^{2}m)^{2}+c^{2}\omega^{22})=h^{2}(h^{2}+c^{2}\omega^{22})$	
$\frac{A}{h} = \sqrt{\frac{(h^2 + C^2 W^2)}{(k - \omega^2 m)^2 + C^2 W^2}}$	10
	and.

Matthew Sunter 26/1/2017

Course Code and Title (Required): AEI-104 Methanics	(F)
Setter (Required): MS	(3) -
Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee.	Marks
If $c \approx 0$ $\frac{A}{h} = \sqrt{\frac{h^2}{(k - w^2 m)^2}}$	
transmitted displacement is maximized then	
$(h-\omega^{2}m)=0 \qquad \omega^{*}=\sqrt{\frac{h}{m}}=\frac{2rcv}{L}$	10
V= (元)/元	10
The is the natural frequency of the system which is identical to the versonant frequency when	5
there is no dumping	
Mul (1 771.12	
Maddles Sunter 27/1/2017	

Setter (Required): MS Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee. 4) a) $M_S = 1.989 \times 10^{30} \text{ hg}$ (dashashash) $G = 6.674 \times 10^{-11} \text{ m}^3/\text{hg/s}^2$ (given) $GM = 1.327 \times 10^{20} \text{ m}^2/\text{s}^2$ $T_E = 365.256 \times 24 \times 60 \times 60 \text{ s}$ $W_E = 2\pi f_E = 1.991 \times 10^{-2} \text{ rad/s}$ $T_m = 686.980 \times 24 \times 60 \times 60 \text{ s}$ $W_m = 2\pi f_m = 1.059 \times 10^{-2} \text{ rad/s}$ If orbids are circular $e = 0$ $V = \left(\frac{h^2}{GM}\right) \left(\frac{1}{1 + e\cos \phi}\right)$ $T = \frac{h^2}{GM} = (VV)^2$	<u>&)</u>
please. Solutions must be signed and dated by both exam setter and referee. 4) a) $M_s = 1.989 \times 10^{30} \text{ kg} (dutasheet})$ $G = 6.674 \times 10^{-11} \text{ m}^3/\text{kg/s}^2 (given)$ $GH = 1.327 \times 10^{20} \text{ m}^3/\text{s}^2$ $T_E = 365.256 \times 29 \times 60 \times 60 \text{ s}$ $W_E = 2\pi T_E = 1.991 \times 10^{-2} \text{ rad/s}$ $T_n = 686.980 \times 29 \times 60 \times 60 \text{ s}$ $W_n = 2\pi T_n = 1.059 \times 10^{-2} \text{ rad/s}$ If orbits are circular $e = 0$ $V = \left(\frac{h^2}{GM}\right)\left(\frac{1}{1+e\cos\phi}\right)$ $V = \frac{h^2}{GM} = \frac{(vv)^2}{GM}$	<u></u>
$G = 6.674 \times 10^{-11} \text{m}^{3}/\text{hg/s}^{2} (\text{given})$ $GM = 1.327 \times 10^{20} \text{m}^{3}/\text{s}^{2}$ $T_{E} = 365.256 \times 24 \times 60 \times 60 \text{s}$ $W_{E} = \frac{2\pi r_{e}}{T_{E}} = 1.991 \times 10^{-7} \text{rad/s}$ $T_{m} = 686.980 \times 24 \times 60 \times 60 \text{s}$ $W_{m} = \frac{2\pi r_{e}}{T_{m}} = 1.059 \times 10^{-7} \text{rad/s}$ If orbids are circular $e = 0$ $r = \left(\frac{h^{2}}{GM}\right) \left(\frac{1}{1 + e\cos\phi}\right)$ $r = \frac{h^{2}}{GM} = \frac{(rv)^{2}}{GM}$	Marks
$G = 6.674 \times 10^{-11} \text{ m}^{3}/\text{hg/s}^{2} \text{ (given)}$ $GM = 1.327 \times 10^{20} \text{ m}^{3}/\text{s}^{2}$ $T_{E} = 365.256 \times 24 \times 60 \times 60 \text{ s}$ $W_{E} = 2\pi r_{f_{E}} = 1.991 \times 10^{-7} \text{ rad/s}$ $T_{m} = 686.980 \times 24 \times 60 \times 60 \text{ s}$ $W_{m} = 2\pi r_{f_{m}} = 1.059 \times 10^{-7} \text{ rad/s}$ If orbits are circular $e = 0$ $r = \left(\frac{h^{2}}{6m}\right) \left(\frac{1}{1 + e\cos \theta}\right)$ $r = \frac{h^{2}}{6M} = \frac{(rv)^{2}}{6M}$	
$GM = 1.327 \times 10^{20} \text{ m}^{3}/s^{2}$ $T_{E} = 365.256 \times 24 \times 60 \times 60 \text{ s}$ $W_{E} = 2\pi r/T_{E} = 1.991 \times 10^{-7} \text{ rad/s}$ $T_{M} = 686.980 \times 24 \times 60 \times 60 \text{ s}$ $W_{M} = 2\pi r/T_{M} = 1.059 \times 10^{-7} \text{ rad/s}$ If orbits are circular $e = 0$ $V = \left(\frac{h^{2}}{GM}\right) \left(\frac{1}{1 + e \cos \phi}\right)$ $T = \frac{h^{2}}{GM} = \frac{(VV)^{2}}{GM}$	
$W_{e} = 2\pi f_{e} = 1.991 \times 10^{-2} \text{ rand/s}$ $T_{m} = 686.980 \times 24 \times 60 \times 60 \text{ s}$ $W_{m} = 2\pi f_{m} = 1.059 \times 10^{-2} \text{ rand/s}$ If orbits are circular $e = 0$ $V = \left(\frac{h^{2}}{GM}\right)\left(\frac{1}{1 + e\cos\phi}\right)$ $f = \frac{h^{2}}{GM} = (VV)^{2}$ $GM = GM$	5
$T_{m} = 686.980 \times 24 \times 60 \times 6$	
$ \begin{aligned} & \omega_{m} = 2\pi y_{f_{m}}^{2} = 1.059 \times 10^{-7} \text{ rand/s} \\ & \text{If orbits are circular } e = 0 \\ & v = \left(\frac{h^{2}}{GM}\right) \left(\frac{1}{1 + e\cos\phi}\right) \\ & r = \frac{h^{2}}{GM} = \left(\frac{vv}{v}\right)^{2} \\ & \frac{GM}{GM} = \frac{1}{GM} \end{aligned} $	
$ \begin{aligned} & \omega_{m} = 2\pi y_{f_{m}}^{2} = 1.059 \times 10^{-7} \text{ rand/s} \\ & \text{If orbits are circular } e = 0 \\ & v = \left(\frac{h^{2}}{GM}\right) \left(\frac{1}{1 + e\cos\phi}\right) \\ & r = \frac{h^{2}}{GM} = \left(\frac{vv}{v}\right)^{2} \\ & \frac{GM}{GM} = \frac{1}{GM} \end{aligned} $	
$r = \left(\frac{h^2}{GM}\right) \left(\frac{1}{1 + e \cos \phi}\right)$ $r = \frac{h^2}{GM} = \frac{(rv)^2}{GM}$	
$r = \frac{h^2}{6M} = \frac{(rv)^2}{6M}$	
$r = \frac{h^2}{GM} = \frac{(rv)^2}{GM}$	
V= Jem = rw	gara.
VEM = 13/2 W	
F 1 6.6 - 1-11	5
Ve = 29,765 m/s	5
Matthew Sunter 27/1/2017	<u> </u>

Solution Sheet	s 2016-17
Course Code and Title (Required): AEI-109 Mechanis Setter (Required): M (9
	(2)
Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee.	Marks
(4 cmt) $r_{M} = 2.278 \times 10^{\prime\prime} \text{ m} = 228 \text{ million him}$	5
(Wn= 1-059×10-7 ml/s)	
Vm = 24,114 m/s	5
$r_n = r_e = \frac{h^2}{GM} \left(\frac{1}{1+e} \right)$ $ \left(\frac{1}{1+e} \right)$ $- r_k = r_M = \frac{h^2}{GM} \left(\frac{1}{1-e} \right)$	
$\frac{r_n}{r_n} = \frac{1-e}{1+e}$	Agent of the control
Churrye there. $e = \frac{r_{u} - r_{n}}{r_{u} + r_{n}} = \frac{r_{m} - r_{e}}{r_{n} + r_{e}}$	
e = 0.206	10
h= TeGM (I+e)	
4.8914 × 1015 h= 3.969 × 1015 m2/5	5
Velocity Impulses: $V_R = \frac{h_T}{V_R} = \frac{32718}{26,548} \text{ m/s}$ $V_R = \frac{h_T}{V_R} = \frac{17,423}{423} \text{ m/s}$	5
Matthew Counter 27/1/2017 21,972	
1 450min muter 17/1/2017	

Matthew Somber 27/1/2017

Course Code and Title (Required): AEI-109 Mechanics LAST PAGE Setter (Required): MS	(10)
Write on this side only (in ink) between the margins, not more than one solution per sheet please. Solutions must be signed and dated by both exam setter and referee.	Marks
AVr = VR- VE = = 7217 m/s 2953	5
DV2 = Vn - V2 = + 669+ m/s 2642.	5
c) A_ = trab a = rn+ra = 189 × 10° hm	
6 = Jrnrd = 185 × 106 km	10
A7 = 5.49 × 1022 m2 2.2448 × 107 5	10
AA = A = h T = 27.7×106 s	
= 320 days hamit	10
d) As Mars has e = 0.0934 its orbit is shiphtly eliphical. If va of the transit is set to va of the transit is set to va of the transit is set to va of the transit fine will be reduced.	10
Earthis whit is who executive so smiller arguments on he used to reduce the bound time even further.	
Also arrest hyperlulis trigertory.	
Matthew Sunter 27/1/2017	

AE1-109 – Mechanics Data Sheet

Imperial College of Science, Technology & Medicine

Department of Aeronautics

Kepler's Laws of Planetary Motion

Kepler's 1st Law:

$$r = \frac{h^2}{GM(1 + e\cos\phi)}$$

Kepler's 2nd Law:

$$\frac{dA}{dt} = \frac{h}{2}$$

Kepler's 3rd Law:

$$GM = \left(\frac{2\pi}{T}\right)^2 a^3$$

In the above, h is specific angular momentum, G is the universal gravitational constant, M is the mass of the object at the focus, e is trajectory eccentricity, r is radial distance from the focus, and ϕ is the angle from the position at periapsis.

Conservation of Specific Energy

Specific energy is conserved in any given trajectory.

$$\frac{1}{2}v^2 - \frac{GM}{r} = E$$

In the above, v is the speed of the particle, and E is the specific energy. All other variables are as defined above.

Constants

Radius of Earth $R_E = 6371 \text{ km}$ Radius of Mars $R_M = 3396 \text{ km}$ Radius of Venus $R_V = 6052 \text{ km}$

Distance between the Earth and the Sun $R_{E-S} = 149.6 \times 10^6 \text{ km}$

Mass of Earth $M_E = 5.972 \times 10^{24} \text{ kg}$ Mass of Sun $M_S = 1.989 \times 10^{30} \text{ kg}$