

执方杏村进一家 KeywordMap² Attention-based Visual Exploration for Keyword **Analysis**

Yamei Tu, Jiayi Xu, Han-Wei Shen

GRAphics & VIsualization sTudY Research Group, The Ohio State University

Introduction

Document Categorization

Summarization

Indexing

Topic Modeling

Challenges

IB95 IF J. TE

Utilizing Word Context Information

"He cashed a check at the **bank.**"

"The hotel is located on the **bank** of the river."

- Identifying the correlated keywords
- Determining the number of topics

Method

Challenge1: Utilize word context

Challenge2: Identify Keywords

Challenge3: Identify Topics

Attention-based Word Influence Algorithm

KeywordMap: Interactive Visual System

Method

Challenge1: Utilize word context

Challenge2: Identify Keywords

Challenge3: Identify Topics

Attention-based Word Influence Algorithm

KeywordMap: Interactive Visual System

Building Attention-based Word Network

Transformer

IEEE

Constructing Word Network

Encoder

Constructing Word Network

Self-Attention

IEEE

Domain-Driven Attention Tuning

N-tokens

Constructing **ASNetwork**

Method

Challenge1: Utilize word context

Challenge2: Identify Keywords

Challenge3: Identify Topics

Building Attention- based Word Network

Attention-based Word Influence Algorithm

KeywordMap: Interactive Visua System

Attention-based Word Influence Algorithm

Attention-based Word Influence Algorithm

Algorithm 2: Attention-based Word Influence

Input: ASNetwork

Output: Influence I_i for each word $v_i \in V$.

1 $e_{k\rightarrow i}$: the edge weight, denoting how much attention is transitioned from $word_k$ to $word_i$.

2 repeat

for
$$v_i \in V$$
 do
$$|I_i = \sum_{(k \to i \in G)} e_{k \to i} \times I_k$$

$$| softmax(I_i) = \frac{e^{I_i}}{\sum_{j=1}^N e^{I_j}}$$
end
until I_i converges;

Method

Challenge1: Utilize word context

Challenge2: Identify Keywords

Challenge3: Identify Topics

Building Attention- based Word Network

Attention-based Word Influence Algorithm

KeywordMap: Interactive Visual System

KeywordMap

Evaluation

KeywordMap System

TextRank

Tuning Details

- 3 Datasets
 - VisPubdata
 - The News (pre-select 6 fields)
 - Arxiv (pre-select 3 sub-categories under CS)
- 2 Models (BERT + XLNET)
- Hyper-parameters:
 - Learning rate = 2e 5,
 - Batch-size = 32

Table 1: Epochs and performance of models trained in this paper.

Dataset	Model	Epochs	Valid. Acc.
VIS	BERT	4	0.78
VIS	XLNet	4	0.74
NEWS	BERT	2	0.88
NEWS	XLNet	1	0.84
ARXIV	BERT	2	0.91
ARXIV	XLNet	2	0.90

Clusters of Word Embeddings-Qualitative

Clusters of Word Embeddings-Quantitative

• 6 topics, where each topic has 80(4×20) word vectors.

$$R_j = \frac{\sum_{v_i \in C_j} cos(v_i, In_j)}{\sum_{v_i \in C_j} cos(v_i, Out_j)} (j = 1, 2...6)$$

Pattern Change of Attention Maps

Pattern Change of Attention Maps

- Reason: Validate the pattern of the consolidated ASNetwork
- Step:
 - Convert to the matrix;
 - normalize the sum of outgoing attention to 1 in each row. [cell c_{ij} is considered as the probability of wordi attends to word j , defined as P(

j|i)] $H(i) = -\sum_{j=1}^{|V|} P(j|i)logP(j|i)$

Evaluating the ASNetwork

• co-occurrence matrix is constructed by computing how many times the two words are co-occurring in a sliding window.

Table 2: Top10 Keywords with Different Methods

Method	Rank#1	Rank#2	Rank#3	Rank#4	Rank#5	Rank#6	Rank#7	Rank#8	Rank#9	Rank#10
Co-occurrence(window=2) Co-occurrence(window=5) ASNetwork(XLNet+last layer) ASNetwork(BERT+last layer)	visual	data	techniqu	interact	user	present	method	system	analysi	approach
	visual	data	techniqu	interact	user	method	present	system	analysi	model
	visual	data	system	inform	network	graph	cluster	analysi	user	tree
	data	visual	analyt	model	render	surfac	graph	system	comput	volum

Evaluating the AWI Algorithm

- TextRank is a popular method based on Google's PageRank algorithm.
- Normalized Discounted Cumulative Gain:

$$DCG_K = \sum_{i=1}^{K} \frac{2^{rel_i} - 1}{log_2(i+1)} \qquad NCDG_K = \frac{DCG_K}{IDCG_K}$$

Evaluating Hyper Parameters

- Hyper-parameters
 - Model type: BERT + XLNet
 - Constructing ASNetwork:
 - last encoder
 - averaging over all encoders

Table 2: Top10 Keywords with Different Methods

Method	Rank#1	Rank#2	Rank#3	Rank#4	Rank#5	Rank#6	Rank#7	Rank#8	Rank#9	Rank#10
ASNetwork(XLNet+last layer) ASNetwork(BERT+last layer) ASNetwork(XLNet+all layers) ASNetwork(BERT+all layers)	visual	data	system	inform	network	graph	cluster	analysi	user	tree
	data	visual	analyt	model	render	surfac	graph	system	comput	volum
	data	method	model	techniqu	system	algorithm	inform	analysi	approach	structur
	data	model	surfac	system	method	user	algorithm	volum	techniqu	visual

Case Study

Computation and language

Figure 5: Brushing each clustering to see the local keyword structure in the *network* view.

Case Study

in this work, we are interested in understanding the roles of these different tasks in improved scene understanding, in particular semantic segment tion, object detection and scene recognition

we introduce a purely feed-forward architecture for semantic segmentation

the topic of semantic segmentation has witnessed considerable progress due to the powerful features learned by convolutional neural networks (cn ns)

Conclusion

- Domain-driven attention tuning
- Attention-based word influence algorithm
- Quantitative and qualitative evaluations
- Interactive system: KeywordMap

Q&A

Thanks

? Any Question

