Лабораторная работа 4.2.3

Исследование показателей преломления с помощью интерферометра Релея

Шерхалов Денис Б02-204и

9 апреля 2024 г.

Цель работы: Знакомство с техникой интерференционных измерений показателей преломления газов с помощью интерферометра Релея.

В работе используются: интерферометр Релея, газовая кювета, осветитель, зрительная труда, сильфон, баллон с углекислым газом, манометр, краны, светофильтр

1. Введение

В одну из камер вводится исследуемый газ, а вторая заполнена воздухом при атмосферном давлении. При этом разность хода Δ , вызванная разностью показателей преломления газов δn , приводит к сдвигу интерференционных полос:

$$\Delta = \delta n \cdot l \quad \Rightarrow \quad \delta n = m \frac{\lambda}{l},$$

так как сдвиг на одну полосу соответствует дополнительной разности хода $\Delta = \lambda$.

Показатель преломления исследуемого газа определяется путем сравнения с воздухом при атмосферном давлении:

 $n = n_{air} + \frac{\Delta}{l}$

Зависимость показателя преломления газа от давления и температуры

Молекулярная оптика устанавливает следующее простое соотношение между показалелем преломления газа и его плотностью:

$$n=\sqrt{\varepsilon}=\sqrt{1+4\pi N\alpha}\approx 1+2\pi N\alpha$$

где N – число молекул в единице объёма, α – поляризуемость молекулы ($\mathbf{p}=\alpha\mathbf{E}$), \mathbf{p} – дипольный момент молекулы. Принимая во внимание соотношение $P=Nk_BT$, получим

$$n-1 = 2\pi\alpha \frac{P}{k_B T} \quad \Rightarrow \quad \delta n = \frac{2\pi\alpha}{k_B T} \Delta P$$

Величина δn измеряется с помощью интерферометра Жамена, ΔP – с помощью манометра. Одновременное измерение этих величин (и температуры) позволяет определить поляризуемость

молекул воздуха и, следовательно, рассчитать по формуле показатель преломления воздуха для любых значений P и T. Следует отметить, что воздух является смесью нескольких газов, поэтому под поляризуемостью молекул воздуха, нужно понимать некоторую среднюю величину, определяемую соотношением

$$\alpha = \frac{1}{N} \sum_{i} \alpha_i N_i$$

где α_i и N_i – поляризуемость и концентрация молекул различных газов, входящих в состав воздуха, N – общее число молекул в единице объёма.

Формула позволяет установить связь показателя преломления газа n при температуре и давлении с показателем преломления n_0 при нормальных условиях ($T_0 = 273$ K, $P_0 = 1$ атм):

$$\frac{n_0 - 1}{n - 1} = \frac{T}{T_0} \frac{P_0}{P}$$

Экспериментальная установка

Интерферометр Релея — прибор для измерения разности показателей преломления — основан на яв- лении дифракции света на двух параллельных щелях. Схема прибора представлена на рис. 1 в вертикальной и горизонтальной проекциях. Лампа накаливания Π с помощью конденсора K ярко освещает узкую входную щель S, расположенную в фокусе объектива O_1 (фокусное расстояние f). Коллиматор, состоящий из щели S и объектива O_1 , по- сылает параллельный пучок на диафрагму D с двумя вертикальными щелями (расстояние между щелями d). Свет после двойной щели проходит кювету L, состоящую из двух одинаковых стеклянных камер, в которые вводятся исследуемые газы (в нашей установке — CO_2 или воздух). Кювета занимает только верхнюю часть пространства между объективами O_1 и O_2 , длина кюветы l. За кюветой расположены две стеклянные пластинки J (компенсатор Жамена, см. ниже) и пластин- ка Π . Интерференционная картина (картина дифракции на двух щелях), наблюдаемая в фокальной плоскости F объектива O_2 , представляет со- бой две системы равноотстоящих полос, параллельных щелям: верхняя

На пути луча расположен компенсатор Жамена, состоящий из двух одинаковых плоскопараллельных стеклянных пластинок. Если обе пластинки установлены под одинаковым углом к лучам, то и оптическая длина пути в них для обоих лучей оказывается одинаковой. Поворот одной из пластинок вокруг горизонтальной оси вызывает увеличение или уменьшение оптической длины пути соответствующего луча. Это позволяет скомпенсировать разность хода, возникающую в камерах. Для точного отсчёта угла поворота одна из пластинок снабжена рычагом, конец которого смещается при помощи микрометрического винта B. Плас тинки компенсатора ставятся под углом 45° к горизонтали, что иоз- воляет использовать линейную экстраполяцию при измерениях. Смещение полос можно наблюдать через зрительную трубу T.

Рис. 1. Устройство интерферометра Релея: а) вид сверху; б) вид сбоку

2. Ход работы

1. Ознакомимся с принципом работы установки. Проведём юстировку и калибровку прибора. Для калибровки наденем на окуляр красный светофильтр и снимем зависимость показаний микрометрической шкалы компенсатора Жамена от порядкового номера интерференционного максимума. Результаты измерений занесём в таблицу 1 и графически представим на рис. 2

Таблица 1: Калибровка компенсатора.

N полосы	0	1	2	3	4	5	6	7	8	9	10
z_m	324	356	388	420	452	484	516	548	580	612	644

При этом длина кюветы l=10 см, а длина волны, пропускаемая светофильтром $\lambda=620\div720$ нм – в среднем $\lambda\approx670$ нм. Тогда 32 деления компенсатора соответствуют 670 нм.

2. По формуле перейдём от делений компенсатора к величине δn :

$$\delta n = m \frac{\lambda}{l},$$

при этом из графика 1: $\Delta m = \frac{\Delta z}{\operatorname{tg} \varphi_1}$, где $\operatorname{tg} \varphi_1 = 32$ – угол наклона калибровочного графика. Тогда окончательно

$$\delta n = \frac{\Delta z}{\operatorname{tg} \varphi_1} \frac{\lambda}{l} = 2.1 \cdot 10^{-7} \,\Delta z$$

Рис. 1: График калибровки компенсатора

Таблица 2: Зависимость показаний микрометра от давления

P , к Π а	0	-1	-2	-3	-4	-5	-6	-7
z	319	332	346	360	369	388	400	412
P , к Π а	1	2	3	4	5	6	7	8
\overline{z}	304	296	273	259	246	231	218	203

3. Изменяя давление с помощью сильфона, снимем зависимость показаний компенсатора z от перепада давлений ΔP . Результаты занесём в таблицу 2.

Угол наклона графика $\operatorname{tg} \varphi_2 = 14.0 \, \frac{\operatorname{дел}}{\operatorname{к\Pi a}}$

4. Определим среднюю поляризуемость молекулы воздуха:

$$\delta n = \frac{2\pi\alpha}{k_B T} \Delta P$$

$$\alpha = \frac{\delta n k_B T}{2\pi \Delta P} = \frac{\Delta z \lambda}{\text{tg}(\varphi_1)} \frac{k_B T}{2\pi \Delta P} = \frac{\text{tg}(\varphi_2)}{\text{tg}(\varphi_1)} \frac{\lambda k_B T}{2\pi I} = 176 \cdot 10^{-32}$$

Табличное значение составляет $\alpha = 172 \cdot 10^{-32}$

Погрешность измерения определим по стандартной формуле (умножение величин), погрешность измерения углов наклона определим методом наименьших квадратов.

$$\varepsilon_{\alpha} = \sqrt{\left(\frac{\sigma_{\lg \varphi_2}}{\lg \varphi_2}\right)^2 + \left(\frac{\sigma_{\lg \varphi_1}}{\lg \varphi_1}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2} = 3.1\%$$

5. Определим показатель преломления воздуха по формуле

$$n_0 = 1 + 2\pi\alpha \frac{P_0}{kT_0} = 1.000293$$

Рис. 2: Зависимость показаний микрометра от давления

Для $T=295~\mathrm{K}$ и $P=101.6~\mathrm{к}\Pi\mathrm{a}$

$$n = 1 + \frac{(n_0 - 1)T_0P}{TP_0} = 1.000276$$

Аналогично п. 4, погрешность определения показателя преломления составляет

$$\sigma_n = 0.000005$$
 $\varepsilon = 4\%$

В пределах погрешность теоретический и экспериментальный результаты совпадают.

6. По результатам измерений оценим радиус молекулы азота (из которых в основном состоит воздух), приняв молекулу за металлический шарик в однородном электрическом поле. Из задачи о проводниковом шаре в электрическом шаре, дипольный момент его будет равен $p=3VE_0$, но в то же время $p=\alpha E$ из определения Получили, что

$$\alpha = 3V \quad \Rightarrow \quad r \sim \alpha^{1/3} \sim 10^{-10} \text{M}$$

Реальный радиус молекулы азота также составляет порядка 10^{-10} м, наша оценка верна.

7. Во вторую кювету запустим углекислый газ. Сразу после этого набежит разность хода, которая компенсируется поднятием компенсатора на 190 мкм.

Так как $n_2-n_1=\delta n$, а δn была определена по формуле через калибровочный график, $\delta n=\Delta z \frac{\lambda}{l \lg \varphi_1}=0.995\Delta z$

Поэтому

$$n_{CO2} = n + 0.995\Delta z = 1.000303 + 0.000179 = 1.000482 \pm 0.000032$$

Погрешности определены аналогично предыдущим пунктам, и в их пределах результаты практически совпадают: при данных T и Р $n_{CO_2} = 1.000420$

Из зависимости показаний компенсатора от времени видно, что система подтекает, а время установления равновесия порядка 14 минут.

Таблица 3: Зависимость показаний компенсатора от времени

t, N	МИН	ин 0		1		2		3		4		5		6		7		8	
z 10		16	862		73	786 7		21	6	92	667		628		594		56	66	
	t, мин		9 10		10	11			12		13		14		15		16		
	z		54	48 523		3	500		48	6 46		8 45		1 4		9	45	0	

3. Вывод

В ходе работы был изучен принцип работы интерферометра Релея, а также экспериментально определены следующие различные величины:

• поляризуемость молекулы воздуха:

$$\alpha_{exp} = (176 \pm 5) \cdot 10^{-32}$$
 $\alpha_{th} = 172 \cdot 10^{-32}$

• показатель преломления воздуха при $T=295~{
m K}$ и $P=101.6~{
m k\Pi a}$:

$$n_{exp} = 1.000293 \pm 0.000011$$
 $n_{th} = 1.000283$

• оценен радиус молекулы азота:

$$r \sim 10^{-10} m$$

• показатель преломления углекислого газа при $T=295~{
m K}$ и $P=101.6~{
m k\Pia}$:

$$n_{exp} = 1.000482 \pm 0.000032$$
 $n_{th} = 1.000420$

Хотя и существуют более точные интерферометры, интерферометр Релея хорошо подходит для определения этих параметров.