DS-GA 3001.001 Special Topics in Data Science: Probabilistic Time Series Analysis Homework 3

Due date: Oct 25, by 6pm

YG390

Problem 1. (15p)

Consider the HMM with K=3 latent states and discrete observations $\{1, 2, 3\}$, with parameters specified by:

initial distribution
$$\pi = [1, 0, 0]$$
, transition matrix $\mathbf{A} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, where $A_{ij} = P(z_{t+1} = j | z_t = i)$ and

likelihood $P(x_t|z_t)$ described by matrix entries B_{xz} : $\mathbf{B} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix}$

Write down all possible state sequences consistent with observations a) 1, 2, 3 and b) 1, 3, 1.

Let the three latent states be $\{S_1, S_2, S_3\}$. Given the HMM with parameters $\{A, B, \pi\}$, the model can be described as:

When observing the observations 1,2, and 3 with initial distribution π which implies we start in state S_1 then observing 2 means we have 0.5 probability of being in state S_1 or S_3 . However staying in state S_1 is not possible so the only state after seeing the sequence 1,2 is state S_3 . Then the last observation 3 means we are in state S_2 or S_3 . but from state S_3 , the only existing transition is from S_3 to S_2 . So the sequence of observations 1,2,3 corresponds to the state sequence $\{S_1, S_3, S_2\}$.

When observing 1,2,1 with initial distribution π , seeing 2 after 1 implies we can be in state S_2 50% of the time or S_3 the rest of the time. The last observation 1 implies that the latent space is either S_1 or S_2 . Based on the transition matrix A then the only possible state sequences for the sequence of observations $\{1,2,1\}$ are $\{S_1,S_2,S_1\}$ or $\{S_1,S_3,S_2\}$.

Problem 2. (15p)

Construct an HMM that generates the observation sequence $A^{k_1}C^{k_2}A^{k_3}C^{k_4}$ where A^{k_1} denotes k_1 repeats of symbol A and the number of repeats k_i are drawn from the set $\{1, 2, 3\}$ with equal probability.

The HMM model is defined by three class of parameters $\{A, B, \pi\}$, and is described in the graph below. Note that there is a direct connection between the states STOP_k2 and S_7 which I broke down into two for convenience of representation. The latent states are $\{S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_{10}, S_{11}, S_{12}\}$. Sequences based on k_i have equal probability $\frac{1}{3}$, meaning, that for example for k_1 : A, AA, AAA have the same probability $\frac{1}{3}$. The transition matrix has for elements the probabilities indicated on the graph and $\sum_j A_{ij} = 1$.

$$B_{ih} = \frac{num\ of\ times\ state\ i\ emits\ h}{num\ state\ i}$$

The emission probabilities B, is the identity matrix since there are as many observations repeated for A, then the number of state S_i , and the same for C and S_j .

$$\pi_i = \frac{num \ of \ chains \ start \ with \ i}{total \ num \ of \ chains}$$

All the chains start with a sequence of A in S_1 , the initial distribution is $\pi = [1000000000000]^T$.

Problem 3. (20p)

Implement EM for an HMM model with K states and gaussian observations (full derivations in handout). Use this code to fit the weekly S&P 500 returns data (data/sp500w.csv) for K = 2 vs. K = 3 and compare the two results.

Hint: Use Example 6.17 from tsa4 textbook as guideline for plots and interpretation.