Smart Power Management Protocol

Draft Version 0.1

Author(s): Mark W., Andrew D., Thomas C. Clear Blue Technologies Inc,

Kashif A., and Vishal T.

Facebook Inc.

Scope

This document specifies version 0.1 of the Smart Power Management Protocol (SPMP). The SPMP V0.1 introduces following feature to the power management for rural infrastructure:

- Bootstrap service for the solar charge controller (device)
- Management, service enablement and information reporting using object model for the device
- Smart load power management
- Inter-object conversion to support smart load communication
- Integration with public and private cloud service provider
- Integration with network management service.

Scope	2
Introduction	4
SPMP Overview	6
Interfaces	6
Bootstrap	7
Device Management and Information Reporting	8
Smart Load	9
Example scenario	9
SPMP Data Model and Objects	11
Telemetry Object (LwM2M Voltage Object)	13
Telemetry Object (LwM2M Current Object)	14
SPMP Port Status Object	15
SPMP Alerts Object	15
Smart Load (BTS) Object	16
SPMP Rules Object	17
Calibration	17
Control	17
Authentication	18
Frame format, Transport layer and encoding	18
Security and Threat Model	18
Appendix	19

Introduction

Smart power management protocol (SPMP) is an application layer protocol between the smart charge controller, smart load and cloud infrastructure. SPMP enable bootstrapping of the smart controller and smart load, information reporting from controller, and ability to manage the devices using public/private cloud.

SPMP utilize client-server architecture and is composed of five major components:

- Smart charge controller
- Smart load
- Bootstrap server
- Device management and Information reporting server
- Public/Private cloud

Figure 1: The overall architecture of the SPMP enabled system.

Background

<u>Light-weight Machine to Machine:</u> LwM2M is a protocol from the Open Mobile Alliance for M2M and IoT device management. LwM2M is frequently utilized with CoAP (Constrained Application Protocol) specifically for resource constrained Internet devices, which solar controllers and related telemetry would certainly fit. CoAP provides throughput efficiency and utilizes UDP for transport. Further information on LwM2M can be found on the OMA Specworks website.

NETCONF: NETCONF is a standardized protocol adopted by the IETF in 2006. It provides mechanisms to manage configurations of network devices through a simple remote procedure call (RPC) layer. XML data is used to encode configuration data, which is then exchanged over a secure transport protocol. Further information on NETCONF can be found on the Cisco Tail-f website.

SNMP: Simple Network Management Protocol (SNMP) is an application-layer protocol used to manage and monitor network devices and their functions.

ModBUS: Modbus is a serial communications protocol for use with its programmable logic controllers (PLCs) with extensions to work over TCP/IP.

SPMP Overview

This is an early draft specification (v0.1) of the related LwM2M and NETCONF objects designed to integrate:

- Solar charge controllers
- Smart loads (e.g., OpenCellular devices)
- Public / private cloud (e.g., Clear Blue's Illuminance cloud offering, or third party solution)
- Telco Network management system (NMS)
- Network device bootstrap services

The SPMP is a client/server based protocol that exposes various resources on remote devices as resources. Through LwM2M, these resources are accessed through uniform resource identifiers (URI's). Related resources are further grouped together into objects. Rather than utilize HTTP, CoAP is integrated as the transfer agent in order to mitigate cost issues associated with data transfer overhead normally found with HTTP.

Various objects already have been adopted by the LwM2M working group, and when possible, we have utilized these objects as a part of our solar controller specification (example: voltage and current objects.) We have inherited these objects, and included them within a larger set of objects that are unique to solar controllers.

Interfaces

According to the SPMP architecture there are four interfaces: 1.) Bootstrap, 2.) Device Management and information reporting, 3.) Smart load, and 4.) Public/private cloud. SPMP is heavily derived from the Light-weight Machine to Machine (LwM2M) tailored to smart power management. Most to the material presented here are from SPMP and re-stated for completion only. The operation of each interface is defined in section.

Bootstrap

Fig.2 shows the operation model for interface "Bootstrap", which also include device registration. For this interface, the operations are an uplink operation named "Bootstrap-Request", "Register", "Update" and "De-register" and downlink operations named "Discover", "Write", "Delete" and "Bootstrap-Finish". These operations are used to initialize the needed Object(s) for the LwM2M-based smart controller to register with one or more LwM2M-enabled servers. Two mode exists for bootstrapping 1.) client initiated and 2.) server initiated. In the mode where the Server is addressing the Bootstrap Information to the charge controller, the Server MUST inform the controller when this transfer is over by sending a "Bootstrap-Finish" command. Each charge controller MUST register with each server it will update about its resources.

SPMP will use a device initiated bootstrap as defined in the LWM2M protocol. The charger will be factory provisioned with an address and credentials from a bootstrap server. If a charger only has bootstrap credentials when it powers up, it will contact the bootstrap server. The bootstrap server will configure the charger with the URL and credentials to communicate with the device management server. See section 5.2 in the LWM2M specification for more details.

When a charger that has been bootstrapped goes online, it will send a registration request to the Device Management Server. This informs the Device Management server that the charger is ready to receive commands. Metadata such as the LwM2M version, and the transport binding mode are also exchanged at this time. See section 5.3 of the LwM2M specification for more details. During this process, the server will also perform a discover operation on the client to determine its current configuration and state.

Device Management and Information Reporting

Fig.3 shows the operation model for interface "Device Management and Information Reporting". For this interface, the operations are "Read", "Write", "Execute", "Create", "Delete", "Write Attributes", "Discover", "Observe", "Cancel Observation" and "Notify". Subset of this operation model also applies to Public/Private cloud which acts as Device management and information reporting server. For some use cases, the bootstrapping server might also be co-located with device management and reporting server on the cloud.

Once the charger has registered, it can be managed by the server. The server can manage the device by instantiating new objects such as a Smart Load configuration for a port, by writing values to existing objects to control loads or change how data is collected, or subscribe to events and telemetry.

A custom LwM2M object will be used to transmit telemetry data from the charger to the server. One Port Status object per port will be initialized. The resources in the object will include voltage and amperage averages, the length of time in seconds over which the averages were obtained, the timestamp of the last update, and a link to an alerts object. The charger will collect this data from the sensors, and will update the values in the Port Status object periodically according to the length setting. The server may receive telemetry updates by subscribing (LwM2M Observe operation, see section 5.5.1 of LwM2M specification) to either individual fields each port status object and the corresponding alerts object, or the entire object. The server may also change the length of time over which the voltage and amperage are averaged by writing to the "length" field. The alerts object consists of many optional boolean resources that will be instantiated by the firmware of the client according to its capabilities. Each resource will correspond to a type of alert that may occur on that port, such as short circuit, over-voltage, and over-current.

Smart Load

Fig 4. Shows the operation model for interface "Smart Load". For this interface, the operations are "Register", "Update", "De-register", "Read", "Write", "Execute", "Create", "Delete", "Write Attributes", "Discover", "Observe", "Cancel Observation" and "Notify". For this version, the charge controller converts the object resources into respective NetConf data models.

Example scenario

For the purposes of this example, the remote Telco location consists of a single backhaul, BTS and smart solar / hybrid charger (the "charger"). The backhaul communicates with the Telco over a private network, and on that private network is an outbound link to the Internet which provides access to a third party (or Clear Blue's Illumience) cloud platform (the "public cloud").

The SPMP protocol utilizes the IETF standardized LwM2M protocol stack, which uses the Constrained Application Protocol (CoAP) as the low level transfer protocol over UDP. Secure communications are implemented through Datagram Transport Layer Security (DTLS). DTLS utilizes public key technology to secure communications between client and server.

A bootstrap server on the Telco's private network provides the credentials necessary for the smart charger to communicate with the remote BTS, as well as credentials for a third party cloud platform.

Credentials for the BTS will be used to bootstrap the local configuration of NETCONF on the solar / hybrid charger.

Once configured, the charger will be able to submit telemetry data to the public cloud, as well as receive configuration parameters regarding smart load control. Smart load control will provide details for the charger to configure the load ports (provides power to the BTS). This same configuration will be used to adjust parameters on the BTS as power fluctuates within the local battery system. As available energy starts to decrease, the charger will be able to connect to the NETCONF server on the BTS to reconfigure sub-systems to lower power consumption. As the battery normalizes, the charger will connect to the NETCONF server to return to normal operations (increasing power consumption.)

The actual capabilities of each BTS will be defined by the BTS manufacturer through LwM2M object definitions. In the initial release, we envision the charger converting these objects to NETCONF for communication with the BTS. Ultimately, it will be possible to utilize a variety of RPC type integrations with the BTS (LwM2M, NETCONF, gRPC, etc.)

SPMP Data Model and Objects

SPMP uses the LwM2M data model. The state and configuration of each client can be accessed, monitored, and updated through this data model. There are three levels: Objects, Object Instances, and Resources. Each LwM2M object represents a set of data that can be accessed through the LwM2M client. For example, in SPMP there are objects for control, monitoring, and alert management for ports. Some LwM2M objects are single instance, for example there can only be one Firmware Update object. Others can have multiple instances. An SPMP charger will have objects for each port. Each object defines a set of Resources, which is a set of related properties that the server can read, write, execute or subscribe to. The SPMP charger object will contain resources such as voltage and amperage averages. For more information on the LwM2M data model, see section 7 of the LwM2M specification.

Note: additional ports will have similar objects defined

Telemetry Object (LwM2M Voltage Object)

Name	Object ID	Object Version	LWM2M Version					
Voltage	3316	1	1					
Object URN	·	Instances	Mandatory					
urn:oma:lwn	n2m:ext:3316	Multiple	Optional					
ID	Name	Operations	Instances	Mandatory	Туре	Range or Enumeration	Units	Description
5700	Sensor Value	Read	Single	Mandatory	Float			Last or Current Measured Value from the Sensor
5701	Sensor Units	Read	Single	Optional	String			Measurement Units Definition e.g. "Cel†for Temperature in Celsius
5601	Min Measured Value	Read	Single	Optional	Float			The minimum value measured by the sensor since power ON or reset
5602	Max Measured Value	Read	Single	Optional	Float			The maximum value measured by the sensor since power ON or reset
5603	Min Range Value	Read	Single	Optional	Float			The minimum value that can be measured by the sensor
5604	Max Range Value	Read	Single	Optional	Float			The maximum value that can be measured by the sensor
5605	Reset Min and Max Measured Values	Е	Single	Optional				Reset the Min and Max Measured Values to Current Value
5821	Current Calibration	Read/Write	Single	Optional	Float			Read or Write the current calibration coefficient
5750	Application Type	Read/Write	Single	Optional	String			The application type of the sensor or actuator as a string depending on the use case

Telemetry Object (LwM2M Current Object)

Name	Object ID	Object Version	LWM2M Version					
Current	3317	1	1					
Object U	RN	Instances	Mandatory					
urn:oma:	wm2m:ext:3317	Multiple	Optional					
ID	Name	Operations	Instances	Mandatory	Туре	Range or Enumeration	Units	Description
5700	Sensor Value	Read	Single	Mandatory	Float			Last or Current Measured Value from the Sensor
5701	Sensor Units	Read	Single	Optional	String			Measurement Units Definition e.g. degrees for Temperature in Celsius
5601	Min Measured Value	Read	Single	Optional	Float			The minimum value measured by the sensor since power ON or reset
5602	Max Measured Value	Read	Single	Optional	Float			The maximum value measured by the sensor since power ON or reset
5603	Min Range Value	Read	Single	Optional	Float			The minimum value that can be measured by the sensor
5604	Max Range Value	Read	Single	Optional	Float			The maximum value that can be measured by the sensor
5605	Reset Min and Max Measured Values	E	Single	Optional				Reset the Min and Max Measured Values to Current Value
5821	Current Calibration	Read/Write	Single	Optional	Float			Read or Write the current calibration coefficient
5750	Application Type	Read/Write	Single	Optional	String			The application type of the sensor or actuator as a string depending on the use case

SPMP Port Status Object

Port Status/Monitor Object				
Name	Туре	Mandatory	Instances	Operations
Name	String	Mandatory	Single	Read/Write
Voltage Average	Float	Optional	Single	Read
Amperage Average	Float	Optional	Single	Read
Length	Integer	Mandatory	Single	Read/Write
Timestamp	Timestamp	Mandatory	Single	Read
Alerts	Object Link	Optional	Single	Read

SPMP Alerts Object

Alerts Object				
Name	Туре	Mandatory	Instances	Operations
Short circuit	Boolean	Optional	Single	Read
Over-voltage	Boolean	Optional	Single	Read
Over-current	Boolean	Optional	Single	Read
Low Voltage Disconnect	Boolean	Optional	Single	Read
Low Voltage Reconnect	Boolean	Optional	Single	Read
(others TBD / Custom)	Boolean	Optional	Single	Read

Smart Load (BTS) Object

BTS Object					
Name	Туре	Mandatory	Instances	Operations	Description
Logging enabled	Boolean		Single	RW	Enable or disable logging
Transceiver chain enabled	Boolean		Single	RW	Enable or disable transceiver chain
Channel Bandwidth	Float		Single	RW	Channel bandwidth (might be a per antenna/LTE/3G setting)
User limit	Integer		Single	RW	Number of serviceable users
Backhaul enabled	Boolean		Single	RW	Switch-off backhaul - local switching only.
LTE data enabled	Boolean		Single	RW	Switch off data (LTE)
Edge data enabled	Boolean		Single	RW	Switch off data (Edge)
GPRS data enabled	Boolean		Single	RW	Switch off data (GPRS)
Software updates enabled	Boolean		Single	RW	Ability to disable software updates
Emergency calls only	Boolean		Single	RW	State where only emergency calls are allowed
Duty cycle	Integer		Single	RW	0-100, duty cycle of BTS. Is the period of the duty cycle configurable, or fixed for a given BTS?
Sleep	Boolean		Single	RW	Puts the BTS to sleep, allowing manual wakeup at a later time
RF power output	Integer or Float?		Single	RW	Reduce service area. Reduce RF power output as stepping function.

SPMP Rules Object

Smart Load Rules Object				
Name	Туре	Mandatory	Instances	Operations
Voltage Threshold	Float	Yes	Single	RW
Object ID	Integer	Yes	Single	RW
Object Instance ID	Integer	Yes	Single	RW
Resource ID	Integer	Yes	Single	RW
Value	Opaque	Yes	Single	RW
Туре	String	Yes	Single	RW

Calibration

Voltage and Current Sensors require calibration due to inherent errors in analog-to-digital converters (ADC). This calibration can be stored in the respective calibration resource in the voltage and current sensor objects. If the unit it calibrated at the factory and the calibration values are stored on the unit, it can be backed up on the SPMP server.

Control

The charger will instantiate a control object for each port present. The object will be an LwM2M Digital Output. Ports may be enabled or disabled by the server by performing a write operation on the "Digital Output State" resource of the object.

Port Object				

Name	Tyme	Mandator	Instances	Operation			
Name	Туре	У	instances	s			
Name	String	Yes	Single	R			
Control	Object Link	Yes	Single	R	Link to Control Object		
Status	Object Link	Yes	Single	R	Link to Status Object		
Smart Load Configuration	Object Link	No	Single	RW	Link to smart load object		
Smart Load		No					
Status	Object Link		Single	RW	Link to lwm2m object mapping		
Voltage	Object Link	No	Single	R	Link to raw voltage object		

Authentication

Communications between the Device Management Server and the SPMP Device are secured using Datagram Transport Layer Security (DTLS). DTLS is a protocol that modified TLS to run over UDP. LWM2M supports using PreShared Keys, raw Public/Private keypairs, or X.509 Certificates.

Frame format, Transport layer and encoding

SPMP utilizes the Constrained Application Protocol (CoAP). CoAP is a specialized web transfer protocol that was designed specifically for M2M applications such as smart energy.

Additional details about this protocol can be found on the CoAP website.

Security and Threat Model

Details forthcoming in a future release

Appendix

Sequence diagram for smart charge controller telemetry data to the public/private cloud

Sequence diagram between smart controller and smart load