Machine Learning大作业报告

2018013398 软件82 段凡

环境依赖

- scikit-learn==0.24.0
- pandas==1.1.5
- numpy==1.19.4
- matplotlib==3.3.3
- seaborn==0.11.1
- sklearn==0.0.0

代码环境

代码在src/LogisticRegression文件夹下,在这里可以运行代码。

• 安装依赖:

```
1 pip install -r requirements.txt
```

• 运行特征选择(热力图):

```
1 python data_process.py
```

• 运行grid_search:

```
python test.py
```

算法选择

该相亲问题是一个二分类问题,这里选用相对基础简单的逻辑回归模型进行问题的处理。

特征分析与选择

• 数据分析

首先根据训练数据,注意到其中大部分列的特征数据均有数据缺失,因此我们首先通过筛选,将缺失率较高(>0.7)的特征筛选剔除,其缺失情况如下图:

	column_name	percent_missing		
shar2_3	shar2_3	0.759816		
intel5_3	intel5_3	0.759816		
attr5_3	attr5_3	0.759816		
amb7_3	amb7_3	0.759816		
fun7_3	fun7_3	0.759816		
intel7_3	intel7_3	0.759816		
sinc7_3	sinc7_3	0.759816		
attr7_3	attr7_3	0.759816		
sinc5_3	sinc5_3	0.759816		
fun5_3	fun5_3	0.759816		
shar7_3	shar7_3	0.759816		
amb5_3	amb5_3	0.759816		
attr7_2	attr7_2	0.763078		
fun7_2	fun7_2	0.763078		
intel7_2	intel7_2	0.763078		
shar7_2	shar7_2	0.764287		
amb7_2	amb7_2	0.766582		
sinc7_2	sinc7_2	0.766582		
expnum	expnum	0.784825		
numdat_3	numdat_3	0.821675		
num_in_3	num_in_3	0.920140		

根据语义相关性,将语义无关列以及可以直接与运算得到结果的'dec'与'dec_o'特征剔除。

• 协相关系数计算

对精简过后的特征我们计算所有特征与结果的相关性,并对其中缺省值用众数进行填充,同时我们将相关性绝对值较大(>0.1)的结果保留在热力图中,其可视化图像如下所示:

• 语义以及相关性辅助分组

根据语义我们将特征进行分组,其中attr/attr_o/sinc/sinc_o等特征是第一次约会后双方之间的评价,语义上与结果相关度较高,因此我们将其作为基础组1,同时我们将约会后一天、约会后3-4周填写问卷的相关数据分组为组2、组3,将基础'match'函数与这些组进行组合来选择效果更优的不同分组,参数未进行调整时的运行结果如下:

	1	2	3	1+2	1+3	2+3	1+2+3
train_accuracy	85.6591	83.6293	83.6293	86.1061	86.1665	83.6293	86.2027
test_accuracy	85.1485	75.2475	75.2475	87.1287	88.1188	75.2475	88.1188

超参数调优

通过 grid_search 网格调优,最终我们得到的最佳逻辑回归模型参数如下:

最终我们的最优测试准确率达到89.11%。

总结

逻辑回归在这个二分类问题上表现较为一般,这也与我们选择使用线性模型来进行数据拟合有一定的相关性,尽管最终正确率并不够高,排除排行榜上通过dec&dec_o直接获取结果的成绩中这个正确率只能算一般,这也与模型的限制相关。在这次解决实际问题的实验中,我对实际问题解决也有了更多的经验和认知,算法本身并不是解决这类分类的实际问题最重要的,特征选择、数据分析以及模型选择才是我们最应该关注的问题。