

CRYPTOGRAPHY

МАТЕМАТИЧНІ МЕТОДИ КРИПТОГРАФІЇ

Башков Євген Олександрович, д.т.н., проф., кафедра прикладної математики

mail: eabashkov@i.ua

- 1. Написати листа. Вказати ПІБ та групу. В темі завжди писати 2022CRYPT20
- 2. Ha Github https://github.com
 підключитися до репозитарію eabshkvprof/2022 Math_Crypt

Можна зайти

https://github.com/eabshkvprof/2022_Math_Crypt

Komaнда MS Teams 2022-2023. КIБ-20.Math_Crypt

ОБЪЕМ УЧЕБНОЙ РАБОТЫ

- Всего 6 кредитов, 180 часов
- Аудиторные
 - Лекции
 - Практические

- 32 часа 16 лекций
- 32 часа 16 практик
- Расчетная Работа
- Экзамен

Тема 1. Вступ.

Методи захисту інформації. Криптографія. Класифікація криптографічних методів захисту інформації.

Тема 2. Модульні обчислення.

Арифметика цілих чисел. Бінарні операції. Теорія подільності. НСД і алгоритм Евкліда. Рішення лінійного діафантова рівняння. Модульна арифметика. Відрахування і система відрахувань. Операції в множині відрахувань. Матриці відрахувань. Шифри, засновані на відрахуваннях. Шифри підстановок (моноалфавітний, багатоалфавітний, роторні). Шифри перестановок. Шифри потоку. Блокові шифри.

Тема 3. Алгебраїчні структури.

Групи, підгрупи. Кільця. Алгебраїчні структури. Поля. Поля Галуа (GF (pn)). Операції в полі GF(2n): модуль, додавання, множення. Поліноми в GF(2), GF (2n).

Основи блокових шифрів із симетричними ключами. Операції циклічного зсуву, заміни, розбиття, об'єднання, розсіювання, перемішування. Раунди. Шифр Файстеля, шифр не-Файстеля.

Стандарти DES, AES, «Каліна». Режими роботи. Сучасні підходи до шифрів потоку. Потокові шифри RC4, «Струмок».

Тема 4. Прости числа.

Взаємно прості числа. Пошук простих

чисел. Решето Ератосфена. Генерація простих чисел. Випробування простоти числа.

Побудова мультиплікативної групи кільця по модулю N = PQ, визначення порядку мультиплікативної групи кільця и максимального порядку елементів мультиплікативної групи. Структура мультиплікативної групи кільця. Phiфункція Ейлера. Теорема Ейлера. Знаходження зворотних елементів мультиплікативної групи.

Тема 5. Множники.

Методи розкладання на множники (Ферма, Полларда). Китайська теорема про залишки. Квадратичне порівняння. Піднесення до степеня і логарифми. Дискретний логарифм. Асиметричні криптосистеми на базі кілець. Функції шифрування-дешифрування RSA. Секретні и відкриті ключі. Визначення ключової пари RSA.

Тема 6. Еліптичні криві.

Абелєва група і додавання точок на еліптичній кривій. Еліптичні криві в GF(p). Еліптичні криві в GF(2n). Використання еліптичних кривих в криптографії.

Розрахункова Робота. Хешування.

Розробити програмний засіб обчислення хеш дайджесту відкритого повідомлення. Реалізація індивідуального завдання передбачає залучення можливостей стандартної Python бібліотеці HashLib та написання власного програмного скрипту.

ОЦЕНКА

Практические занятия.

2 практики = \rightarrow 1 опрос \rightarrow мах 5 балл.

в сумме до 40 баллов

Экзамен 60 баллов

ИТОГО: 100 баллов

Бонус !!! каждое посещение пары → 0, 5 балла, мах 10 балл.

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

ПЕРОД	
3 тыс. лет до НЭ	Моноалфавитные шифры
ІХ ВЕК НЭ	Полиафавитные шифры
1910 → 1940	Полиафавитные шифры + Механика / Электромеханика
1940 → 1970	Использование математики (К. Шенон), секретный ключ
1970 →	Криптография с открытым ключом

СКИТАЛА Спарта, 5 век до НЭ

ШИФР ЦЕЗАРЯ Рим, 1 век до НЭ

Шифры монахов (XIII - XIV века)

Цистерианская система счисления

Фрэнсис Бэкон (1580)! двоичный способ кодирования латинского алфавита

Блез де Виженер 1585 - !!! Ключ

Кодированная телеграмма министра иностранных дел Германии (1916)

«Энигма», патент от 1917 (Хьюго Кох, Голландия)

Машина Лоренца Lorenz SZ 40, "Fish" (Германия, 1940)

Машина M-209 (США, 1940)

Клод Шенон, «Теория связи в секретных системах» (США, 1945) : Математизация

Уитфилд Диффи, Мартин Хеллман «Новые направления в криптографии», (США, 1976): *Открытый ключ*

Криптография в литературе

Эдгар Аллан По, «Золотой жук» (США, 1843)

53+++305))6*;4826)4+.) 4+);806*;48+8¶60))85;1 **‡(;:****8†83(88)5*†;46(;8 8*96*?;8)*+(;485);5*†2: *+(;4956*2(5*-4)8¶8*; 4069285);)6†8)4##;1(#9 ;48081;8:8‡1;48†85;4)48 5+528806*81(**+9**;48;(88;

Артур Конан Дойль

Резюме 1. Артур Конан Дойль

Резюме 2. Э.А. По

Информационная безопасность — состояние сохранности информационных ресурсов и защищенности законных прав личности и общества в информационной сфере.

Информационная безопасность

Конфиденциальность

Целостность

Доступность

Информационная безопасность — это процесс обеспечения конфиденциальности, целостности и доступности информации. 24

Конфиденциальность

Конфиденциальность — обеспечение доступа только авторизованным (правильным) пользователям.

!!! Важно обеспечение конфиденциальности информации как при ее хранении, так и при ее передаче

Целостность

Целостность — обеспечение достоверности и **полноты** информации и методов ее обработки.

```
!!! Изменение информации возможно только 
«правильными» объектами (пользователями, 
программами, ....).
```

Доступность

Доступность — обеспечение доступа к информации и связанным с ней активам исключительно авторизованным пользователям и только по мере необходимости.

!!! Информация бесполезна, если она не доступна.

Угрозы: Атаки

Угрозы конфиденциальности

Вмешательство Анализ трафика

Вмешательство –

неправомерный доступ и / или перехват данных.

Анализ трафика

извлечение информации из трафика (адреса, активность,).

Угрозы: Атаки

Угрозы целостности

Модификация

Имитация

Отказ

Повтор

Модификация – атакующий изменяет передаваемую информацию.

Имитация — атакующий имитирует «правильный» источник/приемник.

Отказ – отрицание факта приема/передачи информации.

Повтор – повторная передач от атакующего.

Угрозы: Атаки

Угрозы доступности Отказ обслуживания

Отказ в обслуживании (Denial of Service — DoS) –

постоянное или временное прерывание обслуживания в запросах на информацию.

Пассивные атаки — цель атакующего только в получении информации (атаки на конфиденциальность)

Активные атаки — цель атакующего в изменении данных и / или повреждение системы (атаки на целостность, доступность) ₃₀

Угрозы злоумышленника (Eve)

Злоумышленник (противник, перехватчик, взломщик, intruder) — субъект, который пытается нарушить безопасность системы (атакует систему).

- 1. Ознакомление с содержанием переданного сообщения.
- 2. Навязывание получателю ложного сообщения полная фабрикация и/или внесение искажений
- 3. Изъятие переданного сообщения, дабы получатель и не знал о факте передачи
- 4. Нарушение работоспособности канала связи

Угрозы законного отправителя (Alice)

- 1. Разглашение переданного сообщения
- 2. Отказ от авторства в действительности переданного им сообщения
- 3. Утверждение, что некоторое сообщение было отправлено получателю, когда в действительности отправка не производилась.

Угрозы законного получателя (Bob)

- 1. Разглашение переданного сообщения
- 2. Отказ от факта получения некоторого сообщения, когда в действительности оно им было получено.
- 3. Утверждение, что некоторое сообщение получено от отправителя, когда в действительности предъявленное сообщение сфабриковано самим получателем.

Криптография

Наука Криптография от др. греческого κρυπτός «скрытый» + γράφω «пишу» —

наука о методах обеспечения конфиденциальности (невозможности прочтения информаций посторонним), целостности данных (невозможности незаметного изменения информации), **аутентификации** (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Основной метод криптографии

ШИФРОВАНИЕ — обратимое преобразование информации в целях сокрытия от неавторизованных лиц, с предоставлением, в это же время, авторизованным пользователям доступа к ней.

Шифрование обеспечивает:

- Конфиденциальность сокрытие информации от неавторизованных пользователей;
- *Целостность* предотвращение изменения информации при передаче и хранении;
- Идентифицируемость предотвращение отказов.

ШИФР

ШИФР — от фр. chiffre «цифра» + араб. عِفْر , sifr «ноль») —

система обратимых преобразований (функций), зависящая от некоторого секретного параметра (ключа) и предназначенная для обеспечения секретности передаваемой информации.

Шифрование

M – message, planetext - открытый текст

 \mathbf{C} – ciphertext – шифротекст

 $E: M \xrightarrow{k_1} C$ – encoder, encipher – функция шифрования

 $D: C \xrightarrow{k2} M - decoder, decipher - функция$

дешифрования

k1, k2 – key – ключи шифрования и дешифрования

Алгоритм шифрования

Cipher (сайфер) – криптографический алгоритм шифрования (шифр) – **математическая функция**, которая используется для шифрования / дешифрования.

ФУНКЦИЯ

Функция, отображение, трансформация

Есть некоторые множества:

$$X = \{x1, x2, x3, ...\}$$

 $Y = \{y1, y2, y3, y4, ...\}$
 $x1, x2, x3, ..., y1, y2, y3, y4, ...$ суть

Обозначение функции

элементы множеств.

Функция

 $F: X \to Y$ y = F(x) $X \xrightarrow{f} Y$

ставит в соответствие

некоторому элементу из множества X некоторый элемент из множества Y .

39

ФУНКЦИЯ

Функция, отображение, трансформация

? НАЙТИ $x = D(y, k) = D(E(x, k), k)_{40}$

Классификация

АЛГОРИТМЫ ШИФРОВАНИЯ

СИММЕТРИЧНЫЕ (ОДНОКЛЮЧЕВЫЕ) АСИММЕТРИЧНЫЕ (ДВУХКЛЮЧЕВЫЕ)

K2 = K1 = K

 $K2 \neq K1$

Симметричные - ключ шифрования (!!секретный) может быть рассчитан по ключу дешифрования (и наоборот). В большинстве случаев — это один и тот же ключ.

Асимметричные (с открытым ключом) –

- ключ шифрования (открытый) может быть опубликован;
- ключ дешифрования (закрытый) не может быть рассчитан в «разумное» время.

Классификация

АЛГОРИТМЫ ШИФРОВАНИЯ

БЛОЧНЫЕ

ПОТОЧНЫЕ

Блочные (block cipher) - шифрует сразу целый блок текста, выдавая шифротекст после получения всей информации.

Поточные (stream cipher) - шифрует информацию и выдает шифротекст по мере поступления. Обеспечивает обработку текста неограниченного размера, используя фиксированный объем памяти

Криптоанализ

Наука Криптоанализ от др. греческого криптос «скрытый» + «анализ» — наука о методах дешифровки зашифрованной информации без предназначенного для этого ключа, а также сам процесс такой дешифровки.

Криптоанализ включает также методы выявления уязвимости криптографических алгоритмов или протоколов.

Попытка раскрытия шифра с применением методов криптоанализа > криптографическая атака на этот шифр

Криптографическая Атака

Криптология

Наука Криптология от др. греческого криптоς «скрытый» + λόγος «слово» —

наука, занимающаяся методами <u>шифрования</u> и <u>расшифровывания</u>

Криптология состоит из двух частей — **криптографии** и **криптоанализа.**

Криптография занимается разработкой методов шифрования данных, в то время как **криптоанализ** занимается оценкой сильных и слабых сторон методов шифрования, а также разработкой методов, позволяющих взламывать **криптосистемьн**

Вопросы:

- 1. Надайте основні етапи розвитку криптографії
- 2. Охарактеризуйте учасників обміну зашифрованими повідомленнями та їх ролі.

Література: Гайоронський М.В., Новіков О.М. Безпека інформаційно-комунікаційних систем — Київ: Видавнича група ВНV, 2009. — 610 с.

Вопросы:

- Определить ТРИ цели информационной безопасности.
- Укажите виды атак на секретную информацию.
- Дайте определение понятий: КРИПТОГРАФИЯ, КРИПТОАНАЛИЗ, КРИТОЛОГИЯ.
- Опишите механизм ШИФРОВАНИЯ.
- Какие классы алгоритмов шифрования вы знаете?
- Определите ШИФР с симметричным ключом.
- Определите ШИФР с асимметричным ключом.
- Поясните разницу между блочным и потоковым шифрами.
- Какие виды атак на шифр Вы можете описать?

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END # 1