

ALGORITMO DE SUGIYAMA PARA CÓDIGOS REED-SOLOMON TORCIDOS

VÍCTOR ESTEBAN BOTA

Trabajo Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas

Tutores

Gabriel Navarro Garulo

FACULTAD DE CIE<mark>NC</mark>IAS E.T.S. INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, a 25 de marzo de 2023

ÍNDICE GENERAL

1.	INTE	RODUCC	CIÓN A LOS CÓDIGOS LINEALES	3
	1.1.	Código	os lineales	_
	1.2.	Código	os duales	4
	1.3.	Pesos y	y distancias	6
	1.4.	Código	os cíclicos	7
		1.4.1.	Factorización de $x^n - 1$	7
		1.4.2.	Teoría básica de los códigos cíclicos	10
		1.4.3.	Idempotentes y multiplicadores	13
		1.4.4.	Ceros de un código cíclico	18
Bib	liogra	ıfía		18

INTRODUCCIÓN A LOS CÓDIGOS LINEALES

Todo el desarrollo de este capítulo está basado en?.

1.1 CÓDIGOS LINEALES

Sea \mathbb{F}_q el cuerpo finito de q elementos, denotamos \mathbb{F}_q^n al espacio vectorial de las ntuplas sobre el cuerpo finito \mathbb{F}_q . A los vectores (a_1, a_2, \dots, a_n) de \mathbb{F}_q generalmente los escribiremos como $a_1 a_2 \cdots a_n$.

Definición 1. Un (n, M) *código* C sobre \mathbb{F}_q es un subconjunto de \mathbb{F}_q^n de tamaño M. Llamaremos *palabras código* a los elementos de C.

Ejemplo 1. \blacksquare En el cuerpo \mathbb{F}_2 , a los códigos se les conoce como *códigos binarios* y un ejemplo sería $\mathcal{C} = \{00, 01, 10, 11\}$.

■ En el cuerpo \mathbb{F}_3 , a los códigos se les conoce como *códigos ternarios* y un ejemplo sería $\mathcal{C} = \{01, 12, 02, 10, 20, 21, 22\}$.

Si \mathcal{C} es un espacio k-dimensional de \mathbb{F}_q^n , entonces decimos que \mathcal{C} es un [n,k] *código linear* sobre \mathbb{F}_q y tiene q^k palabras código. Las dos formas más comunes de representar un código lineal son con la *matriz generadora* o la *matriz de paridad*.

Definición 2. Una matriz generadora de un [n,k] código linear C es cualquier matriz $k \times n$ cuyas columnas forman una base de C.

Para cada conjunto de k columnas independientes de una matriz generadora G, se dice que el conjunto de coordenadas forman un *conjunto de información* de C. Las r = n - k coordenadas restantes forman el *conjunto de redundancia* y el número r es la *redundancia* de C.

En general no hay una única matriz generadora pero si las primeras k coordenadas forman un conjunto de información, entonces el código tiene una única matriz generado de la forma $[I_k|A]$, donde I_k es la matriz identidad $k \times k$. Esta matriz se dice que está en *forma estándar*.

Como un código linear es un subespacio de un espacio vectorial, es el núcleo de alguna transformación lineal.

Definición 3. Una matriz de paridad H de dimensión $(n - k) \times k$ de un [n, k] código linear C es una matriz que verifica :

$$C = \{x \in \mathbb{F}_q^n | Hx^T = 0\}$$

Como ocurría con la matriz generadora, la matriz de paridad no es única. Con el siguiente resultado podremos obtener una de ellas cuando $\mathcal C$ tiene una matriz generadora en forma estándar.

Teorema 1 (Matriz de paridad a partir de la generadora). Si $G = [I_k|A]$ es una matriz generadora del [n,k] código C en su forma estándar, entonces $H = [-A^T|I_{n-k}]$ es la matriz de paridad de C.

Demostración. Sabemos que $HG^T = -A^T + A^T = 0$, luego \mathcal{C} está contenido en el núcleo de la transformación lineal $x \mapsto Hx^T$. Como H tiene rango n - k, el núcleo de esta transformación es de dimensión k que coincide con la dimensión de \mathcal{C} .

Ejemplo 2. Sea la matriz $G = [I_4|A]$, donde

$$G = \left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

es la matriz generadora en forma estándar del [7,4] código binario que denotaremos por \mathcal{H}_3 . Por el teorema, la matriz de paridad de \mathcal{H}_3 es

$$H = \begin{bmatrix} A^T | I_3 \end{bmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Este código se le conoce como el [7,4] código de Hamming.

1.2 CÓDIGOS DUALES

La matriz generadora G de un [n,k] código \mathcal{C} es simplemente una matriz cuyas filas son independientes y que expanden el código. Las filas de la matriz de paridad H también son independientes, luego H es la matriz generadora del mismo código al que llamaremos *código dual u ortogonal* y lo denotaremos como \mathcal{C}^{\perp} . Notamos que \mathcal{C}^{\perp} es un [n, n-k] código. Otra forma de verlo es de la siguiente manera:

Definición 4. C es un subespacio de un espacio vectorial luego a su ortogonal es a lo que llamamos *espacio dual u ortogonal* de C y viene dado por

$$\mathcal{C}^{\perp} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\}$$

Vamos a obtener ahora la matriz generadora y de paridad de \mathcal{C}^\perp a partir de las de \mathcal{C}

Proposición 1. Si G y H son las matrices generadora y de paridad de C respectivamente, entonces H y G son las matrices generadora y de paridad de C^{\perp} .

Demostración. Sea $G = [I_k|A]$ la matriz generadora y $H = [-A^T|I_{n-k}]$ la matriz de paridad del [n,k] código C.

Sabemos que $HG^T = GH^T = 0$ luego

$$\mathcal{C}^{\perp} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot G^T = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : G \cdot \mathbf{x}^T = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\}$$

Luego \mathcal{C}^{\perp} está contenido en el núcleo de la transformación lineal $x \mapsto Gx^T$. Como G tiene rango k, el núcleo de esta transformación es de dimensión n-k que coincide con la dimensión de \mathcal{C}^{\perp} . Por tanto, G es la matriz de paridad de \mathcal{C}^{\perp} .

Por último, como $HG^T = 0$ entonces H es la matriz generadora de \mathcal{C}^{\perp} .

Tras este resultado se ve claramente que C^{\perp} es un [n, n-k] código.

Definición 5. Diremos que un código $\mathcal C$ es auto-ortogonal si $\mathcal C\subseteq \mathcal C^\perp$ y diremos que es autodual si $\mathcal C=\mathcal C^\perp$

Ejemplo 3. Tenemos una matriz generadora del código de Hamming [7,4] dada en el ejemplo 2. Ahora definimos \mathcal{H}_3' como el [8,4] código en donde hemos añadido una columna a la paridad de G. Sea

$$G' = \left(egin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{array}
ight)$$

donde G' es la matriz generadora de \mathcal{H}'_3 . Veamos que es autodual:

Sabemos que $G' = [I_4|A']$ y en este caso A' es la siguiente matriz:

$$A' = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

y $(A')^T$ es la misma matriz. Luego como $A'(A')^T = I_4$ entonces \mathcal{H}_3' es autodual.

1.3 PESOS Y DISTANCIAS

Definición 6. La *distancia de Hamming* d(x,y) entre dos vectores $x,y \in \mathbb{F}_q^n$ es el número de coordenadas en las que x e y difieren.

Ejemplo 4. Sea $\mathbf{x} = 20110$ y $\mathbf{y} = 10121$ entonces d(x, y) = 3.

Teorema 2. La función distancia d(x,y) satisface las siguientes cuatro propiedades:

- 1. No negatividad: $d(x,y) \ge 0 \quad \forall x,y \in \mathbb{F}_q^n$.
- 2. $d(x,y) = 0 \Leftrightarrow x = y$.
- 3. Simetría: $d(x,y) = d(y,x) \quad \forall x,y \in \mathbb{F}_q^n$.
- 4. Designaldad triangular: $d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in \mathbb{F}_q^n$

Demostración. Las tres primeras propiedades son evidentes por la definición de la distancia, comprobemos la última propiedad.

Distinguimos dos casos, si x=z tenemos que d(x,z)=0 y por tanto se verifica la desigualdad. Si $x \neq z$ entonces, no puede ocurrir que x=y=z, por tanto $d(x,y)\neq 0$ o $d(y,z)\neq 0$ y por la no negatividad se tendría la desigualdad, en el caso de que x=y o y=z tendríamos la igualdad.

Llamaremos distancia mínima de un código $\mathcal C$ a la menor distancia no-nula entre dos palabras cualquiera del código. Además, esta distancia es un invariante y es importante a la hora de determinar la capacidad de corrección de errores del código $\mathcal C$

Ejemplo 5. Sea $C = \{201310, 311210, 202210, 312100\}$ un código. Sus distancias son:

$$d(201310,311210) = 3$$
, $d(201310,202210) = 2$, $d(201310,312100) = 5$,

$$d(311210, 202210) = 3$$
, $d(311210, 312100) = 3$, $d(202210, 312100) = 4$

Luego, la distancia mínima es d(C) = 2.

Definición 7. El *peso de Hamming* o $\operatorname{wt}(x)$ de un vector $x \in \mathbb{F}_q^n$ es el número de coordenadas no-nulas en x. Llamaremos *peso de* \mathcal{C} a $\operatorname{wt}(\mathcal{C}) = \min(\operatorname{wt}(x))$ con $x \neq 0$.

Ejemplo 6. Sea $\mathbf{x} = 202210$ un vector en \mathbb{F}_3^6 entonces $\operatorname{wt}(x) = 4$.

Teorema 3. Si $x, y \in \mathbb{F}_q^n$, entonces d(x, y) = wt(x - y). Si \mathcal{C} es un código linear, la mínima distancia d es igual al mínimo peso de \mathcal{C} .

Demostración. Como \mathcal{C} es lineal, tenemos que $0 \in \mathcal{C}$ y además $\operatorname{wt}(x) = d(x,0) \quad \forall x \in \mathcal{C}$, luego $d(\mathcal{C}) \leq \operatorname{wt}(\mathcal{C})$.

Por otro lado, sea $x, y \in \mathcal{C}$ entonces $x - y \in \mathcal{C}$ $\forall x, y \in \mathcal{C}$ y sabemos que $d(x, y) = \text{wt}(x - y) \ge \text{wt}(\mathcal{C})$ para cualesquiera $x, y \in \mathcal{C}$. Se tiene que $d(\mathcal{C}) \ge \text{wt}(\mathcal{C})$.

Hemos conseguido así la igualdad,
$$d(C) = wt(C)$$
.

Como resultado de este teorema, para códigos lineales, la *mínima distancia* también se denomina el *peso mínimo* de un código. Si se conoce el peso mínimo de un código, entonces nos referiremos a él como el [n, k, d] código.

1.4 CÓDIGOS CÍCLICOS

Vamos a estudiar los códigos cíclicos de longitud n, por ello, denotaremos las coordenadas de sus posiciones como $0, \dots, n-1$ que son los enteros módulo n.

Definición 8. Un código lineal C de longitud n sobre \mathbb{F}_q es *cíclico* si para cada vector $c = c_0, \dots, c_{n-2}, c_{n-1}$ en C, el vector $c_{n-1}, c_0, \dots, c_{n-2}$ obtenido de \mathbf{c} por la permutación de las coordenadas $i \to i + 1 (modn)$, está también en C.

Así, un código cíclico contiene las n permutaciones de cada palabra código. Por tanto, es conveniente pensar que las coordenadas cuando alcanzan n-1, vuelven a la coordenada o.

Cuando hablemos de códigos cíclicos sobre \mathbb{F}_q , normalmente las palabras códigos las representaremos en su forma polinómica, ya que hay una correspondencia biyectiva entre los vectores $c=c_0,c_1,\cdots,c_{n-1}$ en \mathbb{F}_q^n y los polinomios $c(x)=c_0+c_1x+\cdots+c_{n-1}x^{n-1}$ en $\mathbb{F}_q[x]$ con grado como mucho n-1. Notemos que si \mathbf{c} es el polinomio dado, entonces $xc(x)=c_{n-1}x^n+c_0x+c_1x^2+\cdots+c_{n-2}x^{n-1}$ representa una permutación de \mathbf{c} si x^n es igual a 1. Más formalmente, el hecho de que el código cíclico $\mathcal C$ sea invariante por permutaciones, implica que c(x) está en $\mathcal C$, luego xc(x) también lo está multiplicando módulo x^n-1 .

Esto sugiere que para un mejor estudio de los códigos cíclicos, desarrollemos el anillo cociente

$$\mathcal{R}_n = \mathbb{F}_q[x]/(x^n - 1)$$

bajo la correspondencia vectores-polinomios dada anteriormente, los códigos cíclicos son ideales de \mathcal{R}_n y los ideales de \mathcal{R}_n son códigos cíclicos. Luego, el estudio de códigos cíclicos en \mathbb{F}_q^n es equivalente al estudio de los ideales de \mathcal{R}_n que se basa en factorizar el polinomio x^n-1

1.4.1 Factorización de $x^n - 1$

Queremos encontrar los factores irreducibles de $x^n - 1$. Encontramos dos posibilidades: que $x^n - 1$ tenga factores irreducibles repetidos o no los tenga. En el caso de los

códigos cíclicos, se centra más en el segundo caso, por ello, hacemos la asumpción de que $x^n - 1$ no tiene factores repetidos si y solo si q y n son primos relativos.

Como ayuda para factorizar x^n-1 sobre \mathbb{F}_q^n , es útil encontrar una extensión del cuerpo $\mathbb{F}_{q^t}^n$ sobre \mathbb{F}_q^n que contiene todas las raíces del polinomio. En otras palabras, $\mathbb{F}_{q^t}^n$ debe contener las raíces primitivas n-ésimas de la unidad, que ocurre cuando $n\mid (q^t-1)$. Definimos el orden, $ord_n(q)$ de q módulo n, como el entero positivo más pequeño a tal que $q^a\equiv 1\ (mod\ n)$. Notemos que si $t=ord_n(q)$, entonces $\mathbb{F}_{q^t}^n$ contiene la raíz primitiva n-ésima de la unidad α , pero ninguna extesión del cuerpo \mathbb{F}_q^n contiene esa raíz. Como los α^i son distintos para $0\le i< n$ y $(\alpha^i)^n=1$, entonces \mathbb{F}_q^n contiene todas las raíces de x^n-1 . Consecuentemente, llamaremos a $\mathbb{F}_{q^t}^n$ el cuerpo de descomposición de x^n-1 sobre \mathbb{F}_q^n . Así que los factores irreducibles de x^n-1 sobre \mathbb{F}_q^n deben de ser productos de los distintos polinomios mínimos de las raíces n-ésimas en $\mathbb{F}_{q^t}^n$. Supongamos que γ es un elemento primitivo, es decir, el elemento generador de $\mathbb{F}_{q^t}^n$, entonces $\alpha=\gamma^d$ es una raíz primitiva n-ésima de la unidad en donde $d=(q^t-1)/n$. Las raíces de $\mathcal{M}_{\alpha^s}(x)$ son $\{\gamma^{ds},\gamma^{dsq},\gamma^{dsq^2},\cdots,\gamma^{dsq^{r-1}}\}=\{\alpha^s,\alpha^{sq},\alpha^{sq^2},\cdots,\alpha^{sq^{r-1}}\}$ donde r es el entero positivo más pequeño que cumple que $dsq^r\equiv ds\ (mod\ q-1)$ pero esto solo se verifica si y solo si $sq^r\equiv s\ (mod\ n)$

Definición 9. Sea \mathbb{F}_q^n un cuerpo finito y $\mathbb{F}_{q^t}^n$ un cuerpo de extensión suyo, llamaremos *clase q-ciclotómica de s módulo n* al conjunto :

$$C_s = \{s, sq, \cdots, sq^{r-1}\} \pmod{n}$$

donde r es el menor entero positivo tal que $sq^r \equiv s \pmod{n}$.

 $1 \, (mod \, 13) \, luego \, r = 3$

Las distintas clases *q-ciclotómicas* modulo *n* forman una partición del conjunto de los enteros $\{0,1,2,\cdots,n-1\}$.

Ejemplo 7. Vamos a calcular las clases 2-ciclotómicas para n = 9 y q = 2:

La primera de todas es $C_0 = \{0 * 2^r \equiv 0 \pmod{9}\} = \{0\}$ y repetimos este proceso. Luego tenemos:

$$C_1 = \{1*2^r \equiv 1 \pmod{9}\} = \{1,1*2^1 = 2,1*2^2 = 4,1*2^3 = 8,1*2^4 = 7,1*2^5 = 5\} = \{1,2,4,8,7,5\}$$
 ya que $1*2^6 = 64 \equiv 1 \pmod{9}$ luego $r = 6$

$$C_3 = \{3 * 2^r \equiv 3 \pmod{9}\} = \{3, 3 * 2 = 6\} = \{3, 6\} \text{ ya que } 3 * 2^2 = 12 \equiv 3 \pmod{9}$$
 luego $r = 2$

Ejemplo 8. Vamos a calcular las clases 3-ciclotómicas para n=13 y q=3 que serán las siguientes :

$$\mathcal{C}_0 = \{0 * 3^r \equiv 0 \pmod{13}\} = \{0\}$$

$$\mathcal{C}_1 = \{1 * 3^r \equiv 1 \pmod{13}\} = \{1, 1 * 3^1 = 3, 1 * 3^2 = 9 = \{1, 3, 9\} \text{ ya que } 1 * 3^3 = 27 \equiv 1 \pmod{13}\}$$

 $C_2 = \{2*3^r \equiv 2 \pmod{13}\} = \{2,2*3^1 = 6,2*3^2 = 5\} = \{2,6,5\}$ ya que $2*3^3 = 54 \equiv 2 \pmod{13}$ luego r = 3

 $\mathcal{C}_4 = \{4*3^r \equiv 4 \pmod{13}\} = \{4,4*3^1 = 12,4*3^2 = 10\} = \{4,12,10\}$ ya que $4*3^3 = 108 \equiv 4 \pmod{13}$ luego r = 3

 $C_7 = \{7 * 3^r \equiv 7 \pmod{13}\} = \{7, 7 * 3^1 = 8, 7 * 3^2 = 11\} = \{7, 8, 11\}$ ya que $7 * 3^3 = 189 \equiv 7 \pmod{13}$ luego r = 3

Luego, ya tenemos todas las clases 3-ciclotómicas para n = 13 y q = 3.

Teorema 4. Sea n un entero positivo, primo relativo con q. Sea $t = ord_n(q)$ y sea α la raíz primitiva n-ésima de la unidad en \mathbb{F}_{a^t} .

1. Por cada entero s con $0 \le s < n$, el polinomio mínimo de α^s sobre \mathbb{F}_q es

$$\mathcal{M}_{\alpha^s}(x) = \prod_{i \in \mathcal{C}_s} (x - \alpha^i)$$

donde C_s es la clase q-ciclotómica de s módulo n

2. Los conjugados de α^s son los elementos α^i con $i \in \mathcal{C}_s$

3.

$$x^n - 1 = \prod_s \mathcal{M}_{\alpha^s}(x)$$

es la factorización de x^n-1 en factores irreducibles sobre \mathbb{F}_q donde s recorre un conjunto de los representantes de la clase q-ciclotómica modulo n.

Ejemplo 9. Vamos a factorizar x^9-1 para ello, cogemos las clases 2-ciclotómicas calculadas en el ejemplo 7 que son $\mathcal{C}_0=\{0\}$, $\mathcal{C}_1=\{1,2,4,8,7,5\}$ y $\mathcal{C}_3=\{3,6\}$. Luego el $ord_9(2)=6$ y la nueve-ésima raíz primitiva de la unidad reside en el cuerpo de extensión \mathbb{F}_{64} y no en ningún otro más pequeño cuerpo de extensión de \mathbb{F}_2 .

Podemos afirmar que los factores irreducibles de x^9-1 tienen grado 1,2 y 6. Estos polinomios son $\mathcal{M}_1(x)=x-1$, $\mathcal{M}_{\alpha}(x)$ y $\mathcal{M}_{\alpha^3}(x)$ donde α es la *nueve-ésima* raíz primitiva de la unidad en \mathbb{F}_{64} . Como el único polinomio irreducible de grado dos en \mathbb{F}_2 es x^2+x+1 no queda otra que sea $\mathcal{M}_{\alpha^3}(x)$. Por tanto, así tenemos la factorización que es $x^9-1=(x-1)(x^2+x+1)(x^6+x^3+1)$ y $\mathcal{M}_{\alpha}(x)=x^6+x^3+1$.

Ejemplo 10. Ahora vamos a factorizar x^13-1 para ello, cogemos las clases 3-ciclotómicas calculadas en el ejemplo 8 que son $\mathcal{C}_0=\{0\}$, $\mathcal{C}_1=\{1,3,9\}$, $\mathcal{C}_2=\{2,6,5\}$, $\mathcal{C}_4=\{4,12,10\}$ y $\mathcal{C}_7=\{7,8,11\}$. Luego el $ord_13(3)=3$ y la trece-ésima raíz primitiva de la unidad reside en el cuerpo de extensión \mathbb{F}_{27} y no en ningún otro más pequeño cuerpo de extensión de \mathbb{F}_3 .

Podemos afirmar que los factores irreducibles de x^13-1 tienen grado 1,3,3,3 y 3. Estos polinomios son $\mathcal{M}_1(x)=x-1$, $\mathcal{M}_{\alpha}(x)$ y $\mathcal{M}_{\alpha^2}(x)$, $\mathcal{M}_{\alpha^4}(x)$ y $\mathcal{M}_{\alpha^7}(x)$ donde α es la *trece-ésima* raíz primitiva de la unidad en \mathbb{F}_{27} .

Como el único polinomio irreducible de grado dos en \mathbb{F}_2 es $x^2 + x + 1$ no queda otra que sea $\mathcal{M}_{\alpha^3}(x)$. Por tanto, así tenemos la factorización que es $x^9 - 1 = (x - 1)(x^2 + x + 1)(x^6 + x^3 + 1)$ y $\mathcal{M}_{\alpha}(x) = x^6 + x^3 + 1$.

Viendo estos ejemplos podemos sacar que el tamaño de cada clase q-ciclotómica es un divisor del $ord_n(q)$.

Teorema 5. El tamaño de cada clase q-ciclotómica es un divisor del ord_n(q). Además, el tamaño de C_1 es justamente el ord_n(q).

Demostración. Sea $t = ord_n(q)$ y sea m el tamaño de C_s . Entonces $\mathcal{M}_{\alpha^s}(x)$ es un polinomio de grado m donde α es la n-ésima raíz primitiva de la unidad. Así que, $m \mid t$. Por definición de orden y clase q-ciclotómica sale que el tamaño de $C_1 = ord_n(q)$. \square

1.4.2 Teoría básica de los códigos cíclicos

Anteriormente, denotamos que los códigos cíclicos sobre \mathbb{F}_q son precisamente los ideales de

$$\mathcal{R}_n = F_q[x]/(x^n - 1)$$

Además cada ideal de $\mathbb{F}_q[x]$ es un ideal principal, luego los ideales de \mathcal{R}_n son también principales y por eso, los códigos cíclicos son ideales principales de \mathcal{R}_n .

Los elementos de \mathcal{R}_n son los polinomios de \mathbb{F}_q con grado menor que n y la multiplicación la realizamos módulo x^n-1 . Así, cuando trabajamos en \mathcal{R}_n , al multiplicar dos polinomios, los multiplicamos como lo hacemos en $\mathbb{F}_q[x]$ y reemplazamos los términos de la forma ax^{ni+j} , con $0 \le j < n$ por ax^j .

Para distinguir el ideal principal (g(x)) de $\mathbb{F}_q[x]$ del ideal principal de \mathcal{R}_n , denotamos $\langle g(x) \rangle$ como el ideal principal de \mathcal{R}_n generado por g(x). Vemos ahora con el siguiente teorema que hay una correspondencia biyectiva entre los códigos cíclicos en \mathcal{R}_n y los polinomios mónicos divisores de $x^n - 1$.

Teorema 6. Sea C un código cíclico no-nulo en \mathcal{R}_n . Existe un polinomio $(x) \in C$ que cumple las siguientes propiedades:

- 1. g(x) es el único polinomio mónico de menor grado en C.
- 2. $C = \langle g(x) \rangle$
- 3. $g(x)|(x^n-1)$

Sea k = n - deg(g(x)) y sea $g(x) = \sum_{i=0}^{n-k} g_i x^i$ donde $g_{n-k} = 1$. Entonces:

- 4. La dimensión de C es k y $\{g(x), xg(x), \cdots, x^{k-1}g(x)\}$ forman una base de C.
- 5. Cada elemento de $\mathcal C$ se puede expresar particularmente como el producto de g(x)f(x), donde f(x)=0 o deg(f(x))< k

$$6. \ \mathcal{G} = \begin{pmatrix} g_0 & g_1 & g_2 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & g_2 & \cdots & g_{n-k} & \cdots & \vdots \\ \vdots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & g_2 & \cdots & g_{n-k} \end{pmatrix} \Leftrightarrow \begin{pmatrix} g(x) & & & & \\ & xg(x) & & & \\ & & \ddots & & \\ & & & x^{k-1}g(x) \end{pmatrix}$$

7. Si α es la n-ésima raíz de la unidad en el cuerpo de extensión \mathbb{F}_q^n entonces

$$g(x) = \prod_{s} \mathcal{M}_{\alpha^{s}}(x)$$

donde el producto es en un subconjunto representativo de las clases q-ciclotómicas módulo n.

Demostración. Sea g(x) un polinomio mónico de menor grado en \mathcal{C} . Como \mathcal{C} es nonulo, ese polinomio existe. Si $c(x) \in \mathcal{C}$, entonces por el algoritmo de la división en $\mathbb{F}_q[x]$, c(x) = g(x)h(x) + r(x), donde $r(x) = \operatorname{o} \operatorname{deg}(r(x)) < \operatorname{deg}(g(x))$. Como \mathcal{C} es un ideal en \mathcal{R}_n , $r(x) \in \mathcal{C}$ y como el grado de g(x) es mínimo, implica que r(x) = 0. Esto prueba 1) y 2).

De nuevo, por el algoritmo de la división, $x^n - 1 = g(x)h(x) + r(x)$, donde de nuevo r(x) = 0 o deg(r(x)) < deg(g(x)) en $\mathbb{F}_q[x]$. Como $x^n - 1$ correponde con la palbra código o en \mathcal{C} y \mathcal{C} es un ideal en \mathcal{R}_n , entonces $r(x) \in \mathcal{C}$ que es una contradicción, a menos que r(x) = 0, lo que prueba 3).

Supongamos que deg(g(x)) = n - k. Por 2) y 3), si $c(x) \in \mathcal{C}$ con c(x) = 0 o deg(c(x)) < n, entonces c(x) = g(x)f(x) en $\mathbb{F}_q[x]$. Si c(x) = 0, entonces f(x) = 0. Si $c(x) \neq 0$, deg(c(x)) < n y el grado del producto de dos polinomio es la suma de los grados de los polinomios y sabemos que deg(g(x)) = n - k lo que implica que deg(f(x)) < k. Por tanto,

$$C = \{g(x)f(x)|f(x) = 0 \text{ o } deg(f(x)) < k\}$$

Así que \mathcal{C} tiene como mucho dimensión k y $\{g(x), xg(x), \cdots, x^{k-1}g(x)\}$ expande a \mathcal{C} . Como estos k polinomios son de distinto grado, son independientes en $\mathbb{F}_q[x]$. Como su grado es como mucho n-1, son también independientes en \mathcal{R}_n , por lo que queda demostrado 4) y 5). Para 6), basta colocar por filas los elementos de la base y así obtenemos \mathcal{G} . El último punto se obtiene del teorema 4.

A partir de este teorema podemos extraer el siguiente corolario.

Corolario 1. Sea C un código cíclico no-nulo en R_n . Son equivalentes:

- 1. g(x) es el único polinomio mónico de menor grado en C.
- 2. $C = \langle g(x) \rangle$, g(x) es mónico y $g(x)|(x^n 1)$.

Demostración. 1) implica 2) se ha demostrado en ??. Asumiendo 2), sea $g_1(x)$ un polinomio mónico de menor grado en \mathcal{C} . Por la demostración del teorema ?? apartados 1) y 2), $g_1(x)|g(x)$ en $\mathbb{F}_q[x]$ y $\mathcal{C}=< g_1(x)>$. Como $g_1(x)\in \mathcal{C}=< g(x)>$, entonces $g_1(x)=g(x)a(x)+(x^n-1)b(x)$ en $\mathbb{F}_q[x]$. Como $g(x)|(x^n-1),g(x)|g(x)a(x)+(x^n-1)b(x)$ y por tanto $g(x)|g_1(x)$. Como $g_1(x)$ y g(x) son mónicos y se dividen entre ellos en $\mathbb{F}_q[x]$, luego son iguales.

Del teorema, sacamos que g(x) es un polinomio mónico que divide a $x^n - 1$ y genera a C. Del corolario, sacamos que además g(x) es único. Luego, a este polinomio lo llamaremos el *polinomio generador* del código cíclico C.

Así que hay una correspondencia uno a uno de los códigos cíclicos no-nulos y los divisores de $x^n - 1$ no iguales a $x^n - 1$. Con el fin de tener una correspondencia biyectiva entre todos los códigos cíclicos de \mathcal{R}_n y todos los divisores mónicos de $x^n - 1$, definimos que el *polinomio generador* del código cíclico cero 0 sea $x^n - 1$. Esto da lugar al siguiente corolario.

Corolario 2. El número de códigos cíclicos en \mathcal{R}_n es igual a 2^m donde m es el número de clases q-ciclotómicas módulo n. Además, las dimensiones de los códigos cíclicos son todas las posibles sumas de los tamaños de las clases q-ciclotómicas módulo n.

Ejemplo 11. Para el polinomio x^9-1 en \mathbb{F}_2 , calculamos sus clases 2-ciclotómicas en el ejemplo 7 que eran $\mathcal{C}_0=\{0\}$, $\mathcal{C}_1=\{1,2,4,8,7,5\}$ y $\mathcal{C}_3=\{3,6\}$. Luego, sus tamaños son 1,2 y 6, por tanto, por el corolario anterior sabemos que hay $2^3=8$ códigos cíclicos y sus dimensiones son : 0,1,2,3,6,7,8,9 . Veamos los polinomios generadores de cada uno en la siguiente tabla.

	1	
i	dimensión	$g_i(x)$
O	0	$x^{9} + 1$
1	1	$(x^2 + x + 1)(x^6 + x^3 + 1) = x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
2	2	$(x+1)(x^6+x^3+1) = x^7+x^6+x^4+x^3+x+1$
3	3	$x^6 + x^3 + 1$
4	6	$(x+1)(x^2+x+1) = x^3+1$
5	7	$x^2 + x + 1$
6	8	x+1
7	9	1

Veamos ahora un resultado con respecto a los códigos duales.

Teorema 7. El código dual de un código cíclico es también cíclico.

Demostración. Damos primero la definición de código dual $\mathcal{C}^{\perp} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\}$. Lo que tenemos que probar es que dado un $c \in \mathcal{C}$ entonces $xc \in \mathcal{C}^{\perp}$. Tomamos $c' \in \mathcal{C}^{\perp}$

$$c' \cdot y = 0 \,\forall y \in \mathcal{C} \Rightarrow x \cdot c' \cdot y = 0 \Longrightarrow x \cdot c' \in \mathcal{C}^{\perp}$$

Y por tanto, hemos probado que C^{\perp} es cíclico.

Podemos dar la matriz generado de un código cíclico dual que, en efecto, es también la matriz de paridad de un código cíclico.

Teorema 8. Sea C [n,k] código cíclico con polinomio generador g(x). Sea $h(x) = (x^n - 1)/g(x) = \sum_{i=0}^k h_i x^i$. Entonces el polinomio generador de C^{\perp} es $g(x)^{\perp} = x^k h(x^{-1})/h(0)$. Además, la matriz generadora de C^{\perp} y por tanto, la matriz de paridad de C es

$$\mathcal{H} = \begin{pmatrix} h_k & h_{k-1} & h_{k-2} & \cdots & h_0 & 0 & \cdots & 0 \\ 0 & h_k & h_{k-1} & h_{k-2} & \cdots & h_0 & 0 & \vdots \\ \vdots & \vdots \\ 0 & \cdots & h_k & h_{k-1} & h_{k-2} & \cdots & \cdots & h_0 \end{pmatrix}$$

Demostración. Como sabemos cual es el polinomio generador de C^{\perp} , podemos calcular su matriz generadora.

$$\begin{pmatrix} g(x)^{\perp} & & & & \\ & xg(x)^{\perp} & & & \\ & & \ddots & & \\ & & x^{k-1}g(x)^{\perp} \end{pmatrix} = \begin{pmatrix} x^k h(x^{-1})/h(0) & & & \\ & & xx^k h(x^{-1})/h(0) & & \\ & & & \ddots & \\ & & & & x^{k-1}x^k h(x^{-1})/h(0) \end{pmatrix}$$

Haciendo cuentas en \mathcal{R}_n obtenemos la matriz \mathcal{H} .

1.4.3 *Idempotentes y multiplicadores*

Además del polinomio generador, podemos encontrar otros polinomios que también se pueden usar para generar un código cíclico. Otro polinomio muy común es el que llamaremos *generador idempotente*.

Definición 10. Un elemento e de un anillo lo llamaremos *idempotente* si satisface que $e^2 = e$.

Teorema 9. Sea C un código cíclico en R_n . Entonces :

1. Existe un único elemento idempotente $e(x) \in \mathcal{C}$ tal que $\mathcal{C} = \langle e(x) \rangle$,

2. $si\ e(x)$ es un elemento idempotente no-nulo en C, entonces $C=< e(x)> si\ y$ solo $si\ es$ una unidad de C.

Demostración. Sea C un código cero, entonces el idempotente es el polinomio cero y se verifica 1) y 2) no se puede aplicar.

Asumimos que \mathcal{C} es no-nulo. Probaremos 2) primero, supongamos que e(x) es una unidad en \mathcal{C} . Luego $< e(x) > \in \mathcal{C}$ viendo a \mathcal{C} como un ideal. Si $c(x) \in \mathcal{C}$, entonces c(x)e(x) = c(x) en \mathcal{C} , lo que implica que $< e(x) > = \mathcal{C}$. Por el contrario, supongamos que e(x) es el idempotente no-nulo tal que $\mathcal{C} = < e(x) >$. Luego, cada elemento $c(x) \in \mathcal{C}$ se puede escribir de la forma c(x) = f(x)e(x), pero $c(x)e(x) = f(x)e(x)^2 = f(x)e(x) = c(x)$ lo que implica que e(x) es una unidad en \mathcal{C} .

Como \mathcal{C} es no-nulo, por 2) si $e_1(x)$ y $e_2(x)$ son generadores idempotentes, entonces ambos son unidades y $e_1(x) = e_2(x)e_1(x) = e_2(x)$. Solo nos falta probar la existencia. Si g(x) es el polinomio generador de \mathcal{C} , entonces $g(x)|x^n-1$. Sea $h(x)=(x^n-1)/g(x)$, entonces el mcd(g(x),h(x))=1 en $\mathbb{F}_q[x]$ ya que x^n-1 tiene distintas raíces. Por el Algoritmo de Euclídes, sabemos que existen $a(x),b(x)\in\mathbb{F}_q[x]$ tal que a(x)g(x)+b(x)h(x)=1. Sea $e(x)\equiv a(x)g(x)$ ($mod\ x^n-1$), donde e(x) es el representante de $a(x)g(x)+(x^n-1)$ en \mathcal{R}_n . Luego en \mathcal{R}_n , $e(x)^2\equiv (a(x)g(x))(1-b(x)h(x))\equiv a(x)g(x)\equiv e(x)$ ($mod\ x^n-1$) ya que $g(x)h(x)=x^n-1$. Además si $c(x)\in\mathcal{C}$, c(x)=f(x)g(x) implica que $c(x)e(x)\equiv f(x)g(x)(1-b(x)h(x))\equiv f(x)g(x)\equiv c(x)$ ($mod\ x^n-1$), por tanto, e(x) es una unidad de \mathcal{C} y 1) se prueba a partir de 2).

Gracias a la demostración, hemos encontrado una forma de calcular el polinomio e(x) a partir del polinomio generador g(x). Basta con resolver 1 = a(x)g(x) + b(x)h(x) donde $h(x) = (x^n - 1)/g(x)$. Luego, reduciendo a(x)g(x) módulo $x^n - 1$ se tiene e(x). Veamos ahora una forma de obtener g(x) a partir de e(x).

Teorema 10. Sea C un código cíclico sobre \mathbb{F}_q con generador idempotente e(x). Entonces, el polinomio generador de C es $g(x) = mcd(e(x), x^n - 1)$ en $\mathbb{F}_q[x]$.

Demostración. Sea $d(x) = mcd(e(x), x^n - 1)$ en $\mathbb{F}_q[x]$ y sea g(x) el polinomio generador de \mathcal{C} . Como d(x)|e(x), e(x) = d(x)k(x) implica que cada elemento de $\mathcal{C} = e(x)$ > es también un múltiplo de d(x), así que $\mathcal{C} \subseteq d(x)$ <. Por el teorema ??, sabemos que $g(x)|(x^n - 1)$ y por tanto, g(x)|e(x) porque $e(x) \in \mathcal{C}$. Luego g(x)|d(x) y por tanto, $d(x) \in \mathcal{C}$. Como d(x) es un divisor mónico de $x^n - 1$ que genera a \mathcal{C} , entonces por el corolario 1, d(x) = g(x). □

Ejemplo 12. Vamos a calcular las clases 2-*ciclotómicas* para n=7 y ver cuáles son sus códigos cíclicos, dando su polinomio generador e idempotente.

Las clases 2-ciclotómicas son : $C_0 = \{0\}$, $C_1 = \{1*2^r \equiv 1 \pmod{7}\} = \{1,2,4\}$, $C_3 = \{3*2^r \equiv 3 \pmod{7}\} = \{3,6,5\}$.

Por tanto, tenemos tres clases 2-ciclotómicas de tamaños, 1,3 y 3 y la factorización de $x^7 - 1 = (x+1)(x^3 + x^2 + 1)(x^3 + x + 1)$ Sabemos que hay 8 códigos cíclicos

cuyas dimensiones son 0,1,3,3,4,4,6,7. En la siguiente tabla veremos los polinomios generadores e idempotentes.

i	dimensión	$g_i(x)$
О	0	$x^7 + 1$
1	1	$(x^3 + x + 1)(x^3 + x^3 + 1) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
2	3	$(x+1)(x^3 + x^2 + 1) = x^4 + x^2 + x + 1$
3	3	$(x+1)(x^3+x+1) = x^4 + x^3 + x^2 + 1$
4	4	$x^3 + x^2 + 1$
5	4	$x^3 + x + 1$
6	6	x + 1
7	7	1

i	dimensión	$e_i(x)$
O	0	o
1	1	$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
2	3	$x^6 + x^5 + x^3 + 1$
3	3	$x^4 + x^3 + x^2 + 1$
4	4	$x^4 + x^2 + x$
5	4	$x^6 + x^5 + x^3$
6	6	$x^6 + x^5 + x^4 + x^3 + x^2 + x$
7	7	1

Los polinomios idempotentes los hemos calculado como indicamos anteriormente. Además, los dos códigos de dimensión cuatro son los [7, 4, 3] códigos Hamming.

Veamos ahora que al igual que los polinomios generadores podíamos sacar la matriz generadora, también podemos hacerlo con los idempotentes.

Teorema 11. Sea C un [n,k] código cíclico con polinomio idempotente $e(x) = \sum_{i=0}^{n-1} e_i x^i$, la matriz $k \times n$

$$\begin{pmatrix} e_0 & e_1 & e_2 & \cdots & e_{n-2} & e_{n-1} \\ e_{n-1} & e_0 & e_1 & \cdots & e_{n-3} & e_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ e_{n-k+1} & e_{n-k+2} & e_{n-k+3} & \cdots & e_{n-k-1} & e_{n-k} \end{pmatrix}$$

es la matriz generadora de C.

Demostración. Esto es equivalente a decir que $\{e(x), xe(x), \cdots, x^{k-1}e(x)\}$ es una base de \mathcal{C} . Por tanto, es suficiente ver que si $a(x) \in \mathbb{F}_q[x]$ tiene menor grado que k tal que a(x)e(x) = 0, entonces a(x) = 0. Sea g(x) el polinomio generador de \mathcal{C} . Si

a(x)e(x) = 0, entonces 0 = a(x)e(x)g(x) = a(x)g(x) ya que e(x) es una unidad de C, contradiciendo así el teorema 6 5) a menos que a(x) = 0.

Definición 11. Sea C_1 y C_2 códigos de tamaño n en \mathbb{F}_q , definimos la suma de C_1 y C_2 como

$$C_1 + C_2 = \{c_1 + c_2 \mid c_1 \in C_1 \ y \ c_2 \in C_2\}$$

Teorema 12. Sea C_i un código cíclico de longitud n en \mathbb{F}_q con polinomio generador $g_i(x)$ y generador idempotente $e_i(x)$ con i = 1, 2. Entonces:

- 1. $C_1 \cap C_2$ tiene como polinomio generador el $mcm(g_1(x), g_2(x))$ y generador idempotente $e_1(x)e_2(x)$
- 2. $C_1 + C_2$ tiene como polinomio generador el $mcd(g_1(x), g_2(x))$ y generador idempotente $e_1(x) + e_2(x) e_1(x)e_2(x)$

Describiremos ahora un tipo especial de idempotentes que son los *idempotentes primitivos*, los cuales, una vez conocidos, podemos obtener todos los idempotentes de \mathcal{R}_n y por tanto, todos los códigos cíclicos.

Definición 12. Sea $x^n - 1 = f_1(x) \cdots f_s(x)$, donde $f_i(x)$ es irreducible en \mathbb{F}_q para $1 \le i \le s$. Sea $\widehat{f}_i(x) = (x^n - 1)/f_i(x)$, llamaremos idempotentes primitivos a $\widehat{e}_i(x) = \langle \widehat{f}_i(x) \rangle$

Teorema 13. Lo siguiente es cierto en \mathcal{R}_n :

- 1. Los ideales $<\widehat{f}_i(x)>$ para $1\leq i\leq s$ son todos minimales en \mathcal{R}_n
- 2. \mathcal{R}_n es la suma directa de $<\widehat{f}_i(x)>$ para $1\leq i\leq s$
- 3. Si $i \neq j$, entonces $\widehat{e_i}(x)\widehat{e_j}(x) = 0$ en \mathcal{R}_n
- 4. $\sum_{i=1}^{s} \widehat{e_i}(x) = 1$ en \mathcal{R}_n
- 5. Los únicos elementos idempotentes en $<\widehat{f}_i(x)>$ son o $y\ \widehat{e}_i(x)$
- 6. Si e(x) es un idempotente no-nulo en \mathcal{R}_n , entonces hay un subconjunto T de $\{1, 2, \dots, s\}$ tal que $e(x) = \sum_{i \in T} \widehat{e_i}(x)$ $y < e(x) > = \sum_{i \in T} \langle \widehat{f_i}(x) \rangle$.

Demostración. Supongamos que los $<\widehat{f}_i(x)>$ no son ideales minimales en \mathcal{R}_n . Luego, tiene que haber un polinomio generador g(x) de un ideal no-nulo contenido en $<\widehat{f}_i(x)>$ tal que $f_i(x)|g(x)$ con $g(x)\neq f_i(x)$. Como $f_i(x)$ es irreducible y $g(x)|(x^n-1)$, esto es imposible. Así que $<\widehat{f}_i(x)>$ es el ideal minimal de \mathcal{R}_n , con esto ya tenemos parte de 1).

Como $\{\widehat{f}_i(x)|1\leq i\leq s\}$ no tiene factores irreducibles comunes de x^n-1 y cada polinomio en el conjunto divide a x^n-1 , $mcd(\widehat{f}_1(x),\cdots,\widehat{f}_s(x))=1$. Aplicando el Algoritmo de Euclides, tenemos que

$$1 = \sum_{i=1}^{s} a_i(x)\widehat{f}_i(x) \tag{1}$$

para algunos $a_i(x) \in \mathbb{F}_q[x]$. Así que 1 es la suma de todos los ideales $<\widehat{f}_i(x)>$ que es también un ideal de \mathcal{R}_n . En cualquier anillo, el único ideal que contiene a la identidad

del anillo es el propio anillo, luego esto prueba que \mathcal{R}_n es la suma de los ideales $<\widehat{f}_i(x)>$. Para ver que es directa, debemos probar que $<\widehat{f}_i(x)>\cap\sum_{j\neq i}<\widehat{f}_j(x)>=0$ para $1\leq i\leq s$. Como $f_i(x)|\widehat{f}_j$ para $j\neq i$, $f_i(x)\nmid\widehat{f}_j$ y los factores irreducibles de x^n-1 on distintos, luego $f_i(x)=mcd\{\widehat{f}_j(x)|1\leq i\leq s$, $j\neq i\}$. Aplicando inducción llegamos a que $<\widehat{f}_i(x)>=\sum_{j\neq i}<\widehat{f}_j(x)>$. Así que $<\widehat{f}_i(x)>\cap\sum_{j\neq i}<\widehat{f}_j(x)>=<\widehat{f}_i(x)>\cap(f_i(x))>=< x^n-1>=0$ probando así 2).

Sea $\mathcal{M}=< m(x)>$ un ideal minimal cualquiera de \mathcal{R}_n . Tenemos que

$$0 \neq m(x) = m(x) \cdot 1 = \sum_{i=1}^{s} m(x)a_i(x)\widehat{f}_i(x)$$

luego, hay un i tal que $m(x)a_i(x)\widehat{f}_i(x) \neq 0$. Por tanto, $\mathcal{M} \cap <\widehat{f}_i(x) > \neq 0$ ya que $m(x)a_i(x)\widehat{f}_i(x) \in \mathcal{M} \cap <\widehat{f}_i(x) >$ y además $\mathcal{M} = <\widehat{f}_i(x) >$ por ser \mathcal{M} y $<\widehat{f}_i(x) >$ minimales. Esto completa la prueba de 1).

Si $i \neq j$, $\widehat{e_i}(x)\widehat{e_j}(x) \in <\widehat{f_i}(x)> \cap <\widehat{f_j}(x)> = 0$ por 2), lo que prueba 3). Usando 3) e inducción en el apartado 2) del teorema 12, $\sum_{i=1}^s \widehat{e_i}(x)$ es el generador idempotente de $\sum_{i=1}^s \widehat{f_i}(x) = \mathcal{R}_n$ por 2) y el generador idempotente de \mathcal{R}_n es 1, luego hemos probado 4).

Si e(x) es un idempotente no-nulo en $<\widehat{f}_i(x)>$, entonces < e(x)> es un ideal contenido en $<\widehat{f}_i(x)>$. Por ser minimal y e(x) no nulo, tenemos que $<\widehat{f}_i(x)>=< e(x)>$, implicando que $e(x)=\widehat{e}_i(x)$ ya que ambos son las únicas unidades de $\widehat{f}_i(x)$. Así tenemos 5).

Para 6), notamos que $e(x)\widehat{e_i}(x)$ es idempotente en $\widehat{f_i}(x)$, luego $e(x)\widehat{e_i}(x)$ es o o es $\widehat{e_i}(x)$ por 5). Sea $T=\{i|\,e(x)\widehat{e_i}(x)\neq 0\}$. Entonces, por 4), $e(x)=e(x)\cdot 1=e(x)\sum_{i=1}^s\widehat{e_i}(x)=\sum_{i=1}^s\widehat{e_i}(x)=\sum_{i\in T}\widehat{e_i}(x)$. Además, $< e(x)>=<\sum_{i\in T}\widehat{e_i}(x)>=\sum_{i\in T}<\widehat{e_i}(x)>$ por el teorema 12 2) e inducción, probándose así 6).

Teorema 14. Sea \mathcal{M} un ideal minimal de \mathcal{R}_n . Entonces \mathcal{M} es un cuerpo de extensión de \mathbb{F}_q .

Demostración. Solo hay que probar que cada elemento no-nulo en \mathcal{M} tiene un inverso multiplicativo en \mathcal{M} . Sea $a(x) \in \mathcal{M}$ no-nulo. Entonces < a(x) > es un ideal no-nulo de \mathcal{R}_n contenido en \mathcal{M} , y por tanto, $< a(x) >= \mathcal{M}$. Así que, si e(x) es la unidad en \mathcal{M} , hay un elemento b(x) en \mathcal{R}_n tal que a(x)b(x) = e(x). Ahora si $c(x) = b(x)e(x) \in \mathcal{M}$ con $e(x) \in \mathcal{M}$. Por tanto, $a(x)c(x) = e(x)^2 = e(x)$

Veremos ahora una permutación particular que nos permite mapear idempotentes de \mathcal{R}_n en idempotentes de \mathcal{R}_n .

Definición 13. Sea a un entero tal que mcd(a,n)=1. La función μ_a definida en $\{0,1,\cdots,n-1\}$ por $i\mu_a\equiv ia\ (mod\ n)$ es una permutación de las coordenadas $\{0,1,\cdots,n-1\}$ de un código cíclico de tamaño n y la llamaremos multiplicador.

Otra forma de ver a los multiplicadores es con la ecuación

$$f(x)\mu_a \equiv f(x^a) \pmod{x^n - 1} \tag{2}$$

es consistente con la otra definición ya que $x^i \mu_a = x^{ia} = x^{ia+jn}$ en \mathcal{R}_n para un entero j tal que $0 \le ia + jn < n$ ya que $x^n = 1$ en \mathcal{R}_n . En otras palabras, $x^i \mu_a = x^{ia \mod n}$.

Teorema 15. Sean f(x) y g(x) elementos de \mathcal{R}_n . Supongamos que e(x) es idempotente en \mathcal{R}_n y sea a primo relativo con n. Entonces :

- 1. Si $b \equiv a \pmod{n}$ entonces $\mu_b = \mu_a$
- 2. $(f(x) + g(x))\mu_a = f(x)\mu_a + g(x)\mu_a$
- 3. $(f(x)g(x))\mu_a = (f(x)\mu_a)(g(x)\mu_a)$
- 4. μ_a es un automorfismo de \mathcal{R}_n
- 5. $e(x)\mu_a$ es idempotente en \mathcal{R}_n
- 6. μ_q deja invariante cada clase q-ciclotómica módulo n y tiene orden igual al ord $_n(q)$

Teorema 16. Sea C un código cíclico de longitud n sobre \mathbb{F}_q con generador idempotente e(x). Sea a un entero con mcd(a, n) = 1. Entonces :

- 1. $C\mu_a = \langle e(x)\mu_a \rangle y \ e(x)\mu_a$ es el generador idempotente de $C\mu_a$
- 2. $e(x)\mu_q = e(x) \ y \ \mu_q \in PAut(\mathcal{C})$

Demostración. Usando el teorema 15 3), $\mathcal{C}\mu_a = \{(e(x)f(x))\mu_a \mid f(x) \in \mathcal{R}_n\} = \{e(x)\mu_a \times f(x)\mu_a \mid f(x)\mu_a \in \mathcal{R}_n\} = \{e(x)\mu_a h(x) \mid h(x) \in \mathcal{R}_n\} = \{e(x)\mu_a > ya \text{ que } \mu_a \text{ es un automofirsmo por el teorema 15 4). Por tanto, <math>\mathcal{C}\mu_a$ es cíclico y tiene de generador idempotente $e(x)\mu_a$ por el teorema 15 5), probando así 1).

Si probamos que $e(x)\mu_q = e(x)$, luego por 1), $\mathcal{C}\mu_q = \mathcal{C}$ y por tanto $\mu_q \in PAut(\mathcal{C})$. Por el teorema 13 6), $e(x) = \sum_{i \in T} \widehat{e_i}(x)$ para algún conjunto T. Por el teorema 15 2), $e(x)\mu_q = e(x)$ si $\widehat{e_i}(x)\mu_q = \widehat{e_i}(x)$ para todo i. Pero $\widehat{e_i}(x)\mu_q = \widehat{e_i}(x^q) = (\widehat{e_i}(x))^q$ siendo un elemento no-nulo de $<\widehat{e_i}(x)>$ luego por el teorema 13 5) $\widehat{e_i}(x)\mu_q = \widehat{e_i}(x)$.

1.4.4 Ceros de un código cíclico