EE2000 Logic Circuit Design

Chapter 3 – Combinational Logic Circuit Design

Outline

- 3.1 Design Procedure
- 3.2 Examples
 - Bi-switch lighting controller
 - Code converter
 - 7-segment display
- 3.3 Timing Hazard

3.1 Design Procedure

- State the problem / specification for the design.
- 2. Determine the number of input variables and output variables.
- 3. Formulate truth tables / Boolean functions between inputs and outputs.
- 4. Simplification / minimization for the logic functions.
- 5. Design and draw the logic circuit diagram.

3.2 Examples

Bi-switch lighting controller

State the case

Design a circuit to control the bulb

- The light turns on when both buttons are turned UP / DOWN.
- The light turns off when both buttons swap in different positions.
- ON / OFF light is a binary decision output.
- Button positions are the inputs (variables)

Formulation

Assume that two variables **A** and **B** are the button positions. And **F** is binary decision output of **A** and **B**.

0 is the button turns UP.

1 is the button turns DOWN.

Inp	Output		
Α	В	F	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

$$F(A, B)$$
 is 1 if (A = 0 AND B = 0) OR
(A = 1 AND B = 1)

i.e.
$$F(A, B) = A'B' + AB = \sum m(0, 3)$$

Optimization:

- From the truth table,
- $\blacksquare F(A, B) = AB + A'B' (= A \otimes B)$

logic circuit diagram

3.2 Examples

- Code converter
- Design a logic circuit that perform code conversion

- ■Input is BCD 8421 code
- Output is Excess-3 code

State the case

Design a circuit to convert the BCD to the Excess-3 code

- A, B, C, D are the input of BCD.
- W, X, Y, Z are the output of Excess-3 code.
- The output functions are:

Formulation

Decimal	Input (8421 code)				Output (Excess-3 code)			
digit	A	В	С	D	W	Х	Y	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0
Unused	X	Χ	X	X	Х	Χ	X	X
Unused	X	Χ	Х	X	Х	Χ	Х	Х
Unused	X	Χ	X	X	X	Χ	X	X
Unused	Χ	Χ	Χ	X	Χ	Χ	Х	Х
Unused	X	Χ	Х	X	X	Χ	Х	Х
Unused	X	Χ	Χ	X	X	Χ	Х	Х

Formulation

- There are four variables (A, B, C, D) in the functions
- Each output variable depends on 4 variables
- So we need 4 four-variable K-maps
 - $W(A, B, C, D) = \Sigma m(5, 6, 7, 8, 9) + \Sigma d(10, 11, 12, 13, 14, 15)$
 - $X(A, B, C, D) = \Sigma m(1, 2, 3, 4, 9) + \Sigma d(10, 11, 12, 13, 14, 15)$
 - Y(A, B, C, D) = Σm(0, 3, 4, 7, 8) + Σd(10, 11, 12, 13, 14, 15)
 - $Z(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8) + \Sigma d(10, 11, 12, 13, 14, 15)$

Minimization

• 1	D	K-map	for X	
CD	⁸ 00	01	11	10
00		1	x	
01	1		х	1
11	1		X	X
10	1		x	X

	K-map for Z:							
CDA	⁸ 00	01	11	10				
00	1	1	x	1				
01			х					
11			х	х				
10	1	1	х	х				

Minimization

Logic functions and circuit

- From the pervious K-maps,
 - $\blacksquare W = A + BC + BD$
 - $\blacksquare X = B'C + B'D + BC'D'$
 - $\mathbf{Y} = CD + C'D'$
 - $\blacksquare Z = D'$

$$\blacksquare W = A + BC + BD = A + B(C+D)$$

$$X = B'C + B'D + BC'D' = B'(C+D) + B(C+D)'$$

$$Y = CD + C'D' = CD + (C+D)'$$

DeMorgan's theorem

3.2 Examples

• 7-segment display

Formulation

Input BCD					Seve	n-Se	gmer	nt Dis	splay	
W	X	у	Z	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	Χ	Χ	Χ	Χ	Χ	Χ	X
1	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	X
1	1	0	0	X	Χ	Χ	Χ	X	Χ	X
1	1	0	1	X	Χ	Χ	Χ	X	X	X
1	1	1	0	X	Χ	Χ	Χ	Χ	Χ	X
1	1	1	1	X	Χ	Χ	Χ	Χ	Χ	X

Note: The corresponding outputs of those unused BCD code should be either 0 or don't care (depends on the specification)

Formulation

- Number of variables (input)?
- Number of functions (output)?
- Number of K-map?

- Example of functions:
- $a(w, x, y, z) = \sum m(0,2,3,5,6,7,8,9) + \sum d(10,11,12,13,14,15)$

K-maps of segment-a

Exercise: find the simplified expression of b, c, d, e, f and g

3.3 Timing Hazard

- Logic devices (gates or other more complex circuits) are essentially made from semiconductor
- IC input impedance and PCB copper track inductance cause charging and discharging effect (similar to RC circuit response)
- The "real" input and output voltages are not a perfect step function
- Practical logic input and output waveforms exhibit "delay" nature

I/P and O/P waveform

Timing Diagram

- The horizontal axis represents time
- The vertical axis shows a signal between 2 possible voltage levels

- ■When time is between t_0 to t_1 , a is 1
- ■At time t_1 , a is changing from 1 to 0
- ■When time is after t_1 , a becomes 0

Timing Hazards

- The circuit output may produce a short pulse (which should not be happened) at the transient time caused by delay in propagation of signals
- Two kinds of hazards: static and dynamic

Dynamic hazard: The output changes three or more times when it should change from 1 to 0 or from 0 to 1 *only once*

Timing Hazard

Gate Delay

- \blacksquare Output waveform is shifted t_G time units
- The length of time for an input change, to result in the corresponding output change

The propagation delay could cause undesirable events: timing hazards

Assuming that the delay of the gates are different as shown above.

With the initial input condition:

$$xyz = 111$$

Now, change z from "1" to "0".

Then the associated gate outputs will be change after their corresponding delays.

An unwanted glitch will appear at the output – **static-1 hazard !!!**

Consider a different case

With the initial input condition:

$$xyz = 110$$

Now, change z from "0" to "1".

NO glitch !!!

Hazard only occurs when input of xzy change from 111 to 110, NOT for the case of from 110 to 111.

Example

Now z changes from 1 to $\underline{0}$ at time t_0 But p changes one t_{PD} time under the second state $\underline{0}$ at time t_0 Initial conditions: X (x, y, z) = (1, 1, 1) z yCorresponding output: (p, q, r, f) = (0, 0, 1, 1) t_0 $t_0 + t_{PD}$ $t_0 + 2t_{PD}$ $t_0 + 2t_{PD}$

(1)y

But p changes from 0 to 1 after one t_{PD} time unit (r changes too)

Since p & r has changed, q & f change accordingly after another t_{PD} time unit

As *q* has changed, *f* changes again after another t_{PD} time unit. A <u>static-1</u> <u>hazard</u> has formed

Timing hazard elimination

- The occurrence of the hazard can be detected by inspecting the K-map of the particular circuit.
- Eliminating a hazard is to enclose the two minterms in question with another product term that overlaps both groupings.
- The removal of hazards requires the addition of redundant gates to the circuit.

K-map for eliminating timing hazard

$$\blacksquare f(x, y, z) = xz' + yz$$

The optimal grouping

Static-1 hazard occurs when change from 111 to 110

Include an redundant product term

$$f = \chi Z' + \gamma Z + \chi Y$$

Now the hazard is removed!

Use K-map to Eliminate Hazards

- To eliminating the hazard, group the two minterms that cause the hazards
- An additional redundant product term (gate) is introduced

Hazard-free realization

- General idea: to include all PIs
- Work for both K-map and QM-method

Please try to develop a hazard-free circuit for the function

$$f(a, b, c) = \sum m(0,2,4,5)$$

Steps:

- a) Minimize the function *f*
- b) Realize f to a hazard-free circuit