

DATA SCIENCE

UNIDAD 1 MÓDULO 2

Limpieza de datos con Pandas

Agosto 2017

Limpieza de datos con Pandas

- Conocer las operaciones que abarca la limpieza de datos
- Presentar el problema de los valores faltantes
- Conocer e implementar las técnicas del "tidy data"
- Herramientas para la limpieza de datos: "apply()", "value_counts()" y expresiones lambda

Limpieza de datos

La limpieza es un paso necesario en todo proyecto de datos. Podemos resumir el proceso de limpieza de datos refiriéndonos a las siguientes <u>seis tareas</u>:

1. **Resolver problemas de formato**: Por ejemplo cuando al pasar de CSV a Pandas una fecha no se importa correctamente. Ej: 20090609231247 en lugar de 2009-06-09 23:12:47

2. **Corregir valores erróneos**: Por ejemplo un valor numérico o inválido para describir el género. O una edad representada por un número negativo o mucho mayor que 100.

Limpieza de datos

3. Estandarizar categorías: Cuando los datos se recolectaron con un sistema que no tiene los valores tipificados, valores que representan las mismas categorías pueden estar expresados de forma distinta, por ejemplo Arg, AR y Argentina.

4. Completar datos faltantes: Los datasets del mundo real suelen venir con datos faltantes que responden a información que se perdió o nunca se recolectó. Existen varias técnicas para completar datos faltantes. Al proceso de completar datos faltantes se lo llama "imputación".

Limpieza de datos

- 5. Asignar los tipos correctos de datos: El formato en que se encuentran los datos va a afectar nuestro análisis por varias razones. Por ejemplo, las operaciones que se pueden realizar dependen del tipo de datos. Además algunos tipos ocupan menos espacio en memoria que otros.
- **6. Organizar correctamente el dataset:** Es importante estructurar las filas y columnas de la forma más conveniente. Para hacerlo se pueden aplicar las reglas del "tidy data".

Valores faltantes

- En general todo conjunto de datos suele tener datos faltantes (ya sea porque esos datos no fueron recolectado o nunca existieron)
 - Debemos poder detectar, rellenar y eliminar datos faltantes
 - Hay que utilizar conocimiento del dominio para definir cuáles datos faltantes se completarán y cómo.
 - Pandas ofrece varias formas de hacer esto...

Representación de datos faltantes

- Los datasets del mundo real siempre tienen datos faltantes
- Cada lenguaje/framework tiene su forma de lidiar con estos
- Pandas utiliza los valores None, NaN o NaT debido a que se basa en Numpy
 - None: objeto de Python que representa ausencia de dato
 - NaN: definición de valor faltante de floats
 - NaT: se utiliza para valores faltantes del tipo Timestamp

None VS np.nan


```
In [1]: import numpy as np
import pandas as pd
In [5]: vals2 = np.array([1, np.nan, 3, 4])
vals2.dtype

Out[5]: dtype('float64')

Out[2]: array([1, None, 3, 4], dtype=object)
```

Cuando tenemos un objeto None incluído en una serie, el "upcasting" de Numpy se resuelve a "object". Cuando tenemos un np.nan, conservamos una columna de tipo float y podemos seguir operando de manera eficiente.

```
In [3]: for dtype in ['object', 'int']:
    print("dtype =", dtype)
    %timeit np.arange(1E6, dtype=dtype).sum()
    print()

dtype = object
    10 loops, best of 3: 78.2 ms per loop

dtype = int
    100 loops, best of 3: 3.06 ms per loop
```

www.digitalhouse.com

Procesos de generación de datos perdidos

- Missing Completely at Random (MCAR)
 - La probabilidad de que registro tenga un valor perdido en la variable
 Y no está relacionada ni con los valores de Y , ni con otros valores de la matriz de datos (X)
 - Los valores perdidos son una submuestra al azar de los valores totales
 - Este supuesto se viola si
 - algún grupo o subgrupo tiene mayor probabilidad de presentar datos perdidos en la variable Y y/o
 - si alguno de los valores de Y tiene mayor probabilidad de presentar datos perdidos.

Procesos de generación de datos perdidos

- Missing at Random (MAR)
 - La probabilidad de no respuesta en Y es independiente de los valores de Y, luego de condicionar sobre otras variables.
- Missing Not at Random (MNAR)
 - La probabilidad de no respuesta depende tanto de variables X
 externas, como de los valores de la variable con datos perdidos (Y)

Procesos de generación de datos perdidos

MCAR		MAR		MNAR	
X	Y	X	Υ	X	Υ
0	366,44	0	28,00	0	13,69
0	181,67	0	13,69	0	28,00
0	NR	0	181,67	0	181,67
1	682,61	1	219,45	1	209,86
1	542,28	1	209,86	1	219,45
2	NR	2	366,44	2	330,52
2	577,22	2	372,89	2	366,44
	219,45	2	330,52		372,89
3	209,86	2 3 3 3	NR	3	387,01
3	NR	3	534,75	3	416,11
3	372,89	3	387,01	3	534,75
3	330,52	3 4	NR	3	542,28
4	NR	4	629,45	4	NR
4	534,75	4	757,86	4	629,45
4	691,69	4	NR	4	NR
4	NR	4	691,69	4	NR
4	629,45	4	NR	4	NR

Métodos de imputación

Se puede completar los valores faltantes reemplazandolos **por la media** de la serie o **por la media condicionada** a determinada categoría. Por ejemplo, dado un valor de estatura faltante para una mujer, reemplazarlo por la media de las mujeres.

Este enfoque tiene ventajas y desventajas:

- Ventaja: Es muy probable acercarme al verdadero valor del dato faltante
- Desventajas:
 - Reduzco artificialmente la variabilidad y la aleatoriedad de los datos, lo cual me puede llevar a conclusiones equivocadas.
 - Si existía correlación entre esta variable y otras, ese valor puede verse afectado.

Para resolver estos problemas surgen los métodos de **Imputación Múltiple** que tratan de conservar las relaciones observadas entre las variables del dataset sin descuidar que existe aleatoriedad en esas relaciones.

Métodos de imputación

El método *fillna()* de Pandas, permite varios tipos de imputación que puede especificarse en el parámetro "method":

- Completar los datos con un valor escalar (method = None)
- Completar los datos faltantes con el valor anterior o el siguiente (ideal para series de tiempo)
 (method = bfill) o (method = ffill)

fillna() también permite recibir un dataframe donde los índices de los datos faltantes están asociados a algún valor:

Completar por la media, moda o la mediana. dff.fillna(dff.mean())

Otra posibilidad para lidiar con los datos faltantes es eliminar los casos que contienen alguno (complete case deletion). Este método es ideal cuando los datos faltantes son pocos y faltan completamente al azar. *df.dropna()*

Las reglas del "tidy data"

- Decimos que un dataset está ordenado cuando:
 - Cada variable es una columna
 - Cada observación es una fila
 - Cada unidad observacional es una tabla
 - Cada valor pertenece a una fila y una columna
- Algunas definiciones:
 - Variable: Es la medición de un atributo, por ejemplo, peso, altura, etc
 - Valor: Es la medida que toma una variable para una observación
 - Observación: Todas las observaciones toman el mismo tipo de valores para cada variable.

Tidy data: ejemplos

Messy data

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta	_	16	3
treatmentb	2	11	1

Tidy data

name	trt	result
John Smith	a	_
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

- Cada unidad observacional debería ser un tratamiento sobre una persona
- En los formatos "messy data", si quisiera agregar tratamientos que no aplican a todas las personas se llenaría el dataset de valores nulos.

Herramientas para la limpieza de datos

Expresiones lambda

- Recordemos brevemente cómo construir una función usando def:
 - Este forma de declarar funciones sirve, entre otras cosas, para reducir código duplicado y para modularizar el código.

```
>>> def square(x): return x**2
>>> square(10)
100
```

- ¿Tendría sentido definir una función de este modo si vamos a invocar dicha función una única vez?
 - Las funciones lambda pueden ser directamente definidas en el código que las va a utilizar y sin necesidad de otorgarles un nombre (son funciones anónimas).
 - Toman una única expresión y no contienen la expresión return.
 - Se definen en una única línea

```
>>> square = lambda x: x**2
>>> square(10)
100
```

La función apply() en Pandas

- El método apply() permite aplicar cualquier función a los elementos de un Dataframe. Se puede utilizar:
 - Por columna: df.apply(mi_funcion)
 - Por fila df.apply(mi_funcion, axis = 1)
 - Elemento por elemento df.applymap(mi_funcion)
- apply() también se puede utilizar sobre una Serie, elemento por elemento.
- Una buena propiedad de apply() es que permite aplicar las operaciones vectorizadas de numpy.

Práctica Guiada Parte I

Práctica Guiada Parte II

Práctica Guiada Parte III

Práctica Independiente