Introdução Processos Estocásticos

today

Contents

1	Intr	Introdução Processos Estocásticos	
	1.1	Processos Estocásticos x Determinísticos	2
	1.2	Definição	4
		Classificação dos Processos Estocásticos	

1 Introdução Processos Estocásticos

Processos estocásticos são uma área da estatística que estuda a evolução de sistemas ou fenômenos cujo comportamento envolve incerteza. Eles são utilizados para modelar eventos que podem assumir dois ou mais estados ao longo do tempo. Exemplos comuns incluem:

- Previsão do tempo
- Cotação da bolsa de valores
- Rendimentos de ativos
- Probabilidade de falha ou funcionamento de uma máquina

1.1 Processos Estocásticos x Determinísticos

• Processos Determinísticos

Um processo determinístico pode ser descrito por uma função matemática f(x), na qual, para cada valor de entrada *x*, existe uma única saída *y = f(x)*. Ou seja, o resultado é previsível e não envolve incertezas.

Figure 1: Domínio e Imagem

Exemplo:

Considere a equação do Movimento Uniformemente Variado (MUV):

$$S(t) = S_0 + V_0 * t + \frac{a * t \check{s}}{2}$$

Dessa forma conseguimos determinar exatamente a posição (estado) do objeto sabendo os valores das variáveis acima.

• Processos Estocásticos

Já em um processo estocástico, a variável x pode assumir diferentes valores dentro de um espaço amostral, e cada valor possui uma probabilidade associada. Assim, f(x) não retorna um único valor, mas uma distribuição de probabilidades.

Por exemplo, considere uma variável binária que pode assumir os estados 0 ou 1. A transição entre os estados ocorre com certas probabilidades:

- Probabilidade α de passar do estado 0 para o estado 1
- Probabilidade β de passar do estado 1 para o estado 0
- Probabilidade 1β de permanecer no estádo 1
- Probabilidade $1-\alpha$ de permanecer no estádo 0

Figure 2: Cadeia de Markov

Outro exemplo simples é o lançamento de um dado honesto de seis faces. Cada face tem probabilidade igual de $\frac{1}{6}$. A previsão do resultado de um lançamento específico é incerta, mas podemos **analisar o comportamento probabilístico** dos resultados ao longo do tempo.

Figure 3: Simulação de um dado

1.1.1 Simulação em Python

Abaixo, temos um exemplo prático de simulação de lançamentos de um dado, com visualização gráfica dos resultados:

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

def rollDice(n):
    """
    Simula o langamento de um dado n vezes.

    Parâmetros:
    n (int): Número de langamentos do dado.

    Retorna:
    list: Lista com os resultados dos langamentos.
    """
    return np.random.randint(1, 7, size=n).tolist()

def plotDiceRolls(rolls):
    """
```

```
Plota os resultados dos lançamentos de um dado.
    Parâmetros:
    rolls (list): Lista com os resultados dos lançamentos.
   sns.set(style="whitegrid")
   plt.figure(figsize=(12, 6))
   palette = sns.color_palette("Blues", as_cmap=True)
    sns.scatterplot(
        x=range(len(rolls)),
        y=rolls,
        marker="o",
        color="royalblue",
        s=100,
   )
   plt.title("Resultados dos Lançamentos de um Dado", fontsize=16, weight="bold")
   plt.xlabel("Número do Lançamento", fontsize=12)
   plt.ylabel("Resultado do Lançamento", fontsize=12)
   plt.xticks(range(len(rolls)), rotation=45)
   plt.yticks(range(1, 7))
   plt.ylim(0.5, 6.5)
   plt.grid(True, linestyle="--", alpha=0.6)
   sns.despine()
   plt.tight_layout()
   plt.show()
dice = rollDice(5)
print("Resultados dos lançamentos do dado:", dice)
plotDiceRolls(dice)
```

1.2 Definição

Um processo estocástico é uma coleção de variáveis aleatórias X(t), indexadas por um conjunto de parâmetros T, geralmente associado ao tempo. Em termos matemáticos, podemos representá-lo como:

$$X = \{X(T) : t \in T\}$$

Onde:

- X(t) é uma variável aleatória definida em cada instante $t \in T$
- T é o índice temporalç, que pode ser um conjunto discreto ou contínuo

Exemplos de conjuntos T:

- $T = \mathbb{Z}_{+} = \{0, 1, 2, ...\} \to \text{tempo discreto}$
- $T = \mathbb{R}_+ \to \text{tempo contínuo}$

1.3 Classificação dos Processos Estocásticos

Processos estocásticos podem ser classificados com base em dois critérios

- 1. Tipo de índice tempora (Tempo):
 - 1. Tempo discreto: o processo é definido apenas em instantes específicos.
 - 2. Tempo contínuo: o processo é difinido em todo instante dentro de um intervalo contínuo
- 2. Tipo de valores assumidos (Estados):
 - 1. Valor discreto: o conjunto de possíveis valores de X(t) é finito ou enumerável.
 - 2. Valor contínuo: o conjunto de valores possíveis é um intervalo contínuo.

1.3.1 Combinações possíveis:

Tipo de Tempo	Tipo de Valor	Exemplo
Discreto	Discreto	100 lançamentos de uma moeda
Discreto	Contínuo	Retorno diario de uma empresa na
		bolsa de valores
Contínuo	Discreto	Lançamento de uma moeda
		durante o dia.
Contínuo	Contínuo	Cotação de uma empresa ao longo
		do dia

1.3.2 Processo de Valor Contínuo e Discreto

Um processo X(t) é dito de valor discreto se, para todo $t \in T$, o conjunto de valores possíveis de X(t) é enumerável (finito ou infinito contável). Caso contrário, de valores possíveis formam um intervalo contínuo, diz-se que o processo é de valor contínuo.

1.3.3 Proceso de Tempo Contínuo e Discreto

Dizemos que X(t) é um **processo de tempo discreto** quando está definido apenas para instantes de tempo da forma:

$$t \in \{0, T, 2T, 3T, ..., NT\}$$

onde T é uma constante positiva e $N \in \mathbb{Z}_+$. Nesse caso, o tempo avança em **passos fixos e contáveis**, ou seja, o processo é observado apenas em momentos específicos e espaçados uniformemente. Por outro lado, se t pode assumir **qualquer valor real dentro de um intervalo contínuo**, ou seja, $T \subseteq \mathbb{R}_+$, então dizemos que X(t) é um **processo de tempo contínuo**, pois o tempo varia de forma contínua e não em saltos.