MAT-266: Análisis de Regresión

Certamen 1. Mayo 5, 2021

Tiempo: 70 minutos Profesor: Felipe Osorio

1. (20 pts) Considere Y_1, Y_2, \dots, Y_n vectores aleatorios independientes cada uno con distribución $N_k(\mu_i, \Sigma_i)$, para $i = 1, \dots, N$. Muestre que

$$\sum_{i=1}^{N} \alpha_i \boldsymbol{Y}_i \sim \mathsf{N}_k \Big(\sum_{i=1}^{N} \alpha_i \boldsymbol{\mu}_i, \sum_{i=1}^{N} \alpha_i^2 \boldsymbol{\Sigma}_i \Big),$$

Nombre:

para $\alpha_1, \ldots, \alpha_N$ constantes conocidas, y de ahí que para Y_1, \ldots, Y_n muestra aleatoria desde $\mathsf{N}_k(\pmb{\mu}, \pmb{\Sigma})$

$$\sqrt{N}(\overline{\boldsymbol{Y}}-\boldsymbol{\mu}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (\boldsymbol{Y}_i - \boldsymbol{\mu}) \sim \mathsf{N}_k(\boldsymbol{0}, \boldsymbol{\Sigma}).$$

2. (25 pts) Suponga $\boldsymbol{X} \sim \mathsf{N}_4(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con $\boldsymbol{\mu} = (1, -1, 1, -1)^\top$ y $\boldsymbol{\Sigma} = \boldsymbol{I}_4 + \boldsymbol{1}_4 \boldsymbol{1}_4^\top$, y sea

$$Q_1 = \frac{1}{2}(X_1 - X_2)^2 + \frac{1}{2}(X_3 - X_4)^2, \qquad Q_2 = \frac{1}{2}(X_1 + X_2)^2 + \frac{1}{2}(X_3 + X_4)^2.$$

- a) Determine la distribución de cada una de las formas cuadráticas, Q_1 y Q_2 .
- **b)** Q_1 y Q_2 son independientes?
- 3. (30 pts) Considere el modelo lineal

$$Y = X\beta + \epsilon$$
,

con $\mathsf{E}(\boldsymbol{\epsilon}) = \mathbf{0} \ \mathrm{v} \ \mathsf{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}.$

a) Muestre que

$$\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 = \|\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}}\|^2 + (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}),$$

y deduzca que $Q(\beta) = \|Y - X\beta\|^2$ es minimizado para $\beta = \widehat{\beta}$ con $\widehat{\beta} = (X^\top X)^{-1} X^\top Y$.

- b) Verifique que $e^{\top} \hat{Y} = 0$ donde $e = Y \hat{Y}$ con $\hat{Y} = X \hat{\beta}$.
- c) Suponga que $\epsilon \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, determine la distribución de $\mathbf{Z} = \mathbf{A}^\top \mathbf{Y}$ con $\mathbf{A} \in \mathbb{R}^{n \times (n-p)}$, tal que

$$\boldsymbol{A}^{\top} \boldsymbol{X} = \boldsymbol{0}, \qquad \boldsymbol{A} (\boldsymbol{A}^{\top} \boldsymbol{A})^{-1} \boldsymbol{A}^{\top} = \boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top},$$

obtenga el estimador ML de σ^2 basado en la distribución de \boldsymbol{Z} . ¿Este estimador es insesgado?

4. (25 pts) Sean Y_1, \ldots, Y_n variables aleatorias independientes con $Y_i \sim \mathsf{N}(\alpha + \theta z_i, \sigma^2)$, $i = 1, \ldots, n$, donde $\{z_i\}$ son constantes conocidas, tales que $\sum_{i=1}^n z_i = 0$. Obtenga el estimador ML de $\boldsymbol{\beta} = (\alpha, \theta)^{\top}$ y determine su matriz de covarianza. ¿Son $\widehat{\alpha}$ y $\widehat{\theta}$ independientes?