MA 411 : Modélisation et analyse des processus stochastiques

Chaînes de Markov à temps continu (CMTC)

Séance de TD du 13 mai 2020

Vous trouverez ci-après l'énoncé et le corrigé de l'exercice 27 de la séance de TD consacrée aux chaînes de Markov à temps continu. La correction a été rédigée dans le but de vous aider si vous êtes bloqué ou pour vérifier votre propre travail. Il se peut qu'elle contienne elle-même des erreurs. Si tel est le cas, elles seront corrigées au fur et à mesure qu'elles sont détectées. La version en ligne sur https://chamilo.grenoble-inp.fr/courses/MA332 sera mise à jour de manière à intégrer ces corrections. Dans de nombreux exercices, il existe plusieurs méthodes pour aboutir au résultat. Si vous avez des doutes sur la méthode que vous avez vous-même employée, n'hésitez pas à m'en faire part (laurent.lefevre@lcis.qrenoble-inp.fr).

Exercice 27

On considère le réseau de transmission par paquets, représenté à la figure 1, constitué d'un émetteur E, de deux noeuds relais en série notés respectivement 1, 2 et d'un récepteur E. Les noeuds 1 et 2 ont une capacité limitée

$$\underbrace{\left(E\right)}^{\lambda} \xrightarrow{\left(T_{1}^{\mu}\right)} \xrightarrow{\left(T_{2}^{\mu}\right)} \underbrace{\left(R\right)}$$

Figure 1: réseau de transmission avec deux noeuds relais en série

à un seul paquet (pas de buffer). Les paquets sont émis par E selon un processus de Poisson de paramètre λ . Lorsqu'un paquet arrive au noeud 1 alors que ce dernier est déjà occupé, le paquet est perdu. Un paquet ne peut être émis du noeud 1 vers le noeud 2 que lorsque le noeud 2 est vide. Le temps d'émission des noeuds 1 et 2 sont distribués selon des variables exponentielles de paramètre μ . Tant qu'un paquet est en cours d'émission, on considère qu'il occupe une place sur le noeud de départ. Le noeud 1 est informé instantanément de l'état du noeud 2 (pour décider de l'émission éventuelle d'un paquet). Lorsque R reçoit un paquet, il le traite instantanément et peut immédiatement recevoir un autre paquet éventuellement

envoyé par le noeud 2 (le noeud R représente la sortie du réseau). Le temps de propagation sur les liaisons est négligeable devant le temps d'émission.

- 1. Modéliser l'état du réseau de transmission par une chaîne de Markov à temps continu à quatre états (définir précisément la signification de chacun des quatre états). Donner le graphe et le générateur infinitésimal (matrice A des taux de transition).
- 2. En utilisant les relations d'équilibre en chaque noeud, déterminer le profil stationnaire de probabilités. S'agit-il d'une distribution limite? Pourquoi?
- 3. Donner la probabilité de rejet des paquets
- 4. Représenter le graphe de la CMTC associée au réseau de la figure 2 et indiquer les taux associés à chacune des transitions. Si les noeuds 2 et 3 sont vides, un noeud qui quitte le noeud 1 est routé de manière équiprobable vers les noeuds 2 ou 3. Si un seul des deux noeuds 2 ou 3 est vide, alors un paquet quittant le noeud 1 est routé vers le paquet libre. Si les deux noeuds 2 et 3 sont occupés, les paquets sont bloqués en amont au noeud 1.

Figure 2: réseau de transmission avec un noeud relais en série avec deux autres noeuds relais en parallèle

Correction de l'Exercice 27

1. L'état du système est déterminé par les états des noeuds 1 et 2 (pouvant être chacun vide ou occupé) qui conditionnent la transmission ou non des paquets à travers le réseau. On pose

$$X(t) \in E := \{00, 01, 10, 11\}$$

L'état 00 correspond à l'état du système où les noeuds 1 et 2 sont vides. L'état 01 correspond au cas où le noeud 1 est vide et le noeud 2 occupé. L'état 10 correspond au cas où le noeud 1 est occupé et le noeud

Figure 3: La chaîne de Markov à temps continu qui modélise le système de transmission par paquets avec deux relais (quatre états)

2 vide. Enfin, l'état 11 correspond au cas où les noeuds 1 et 2 sont occupés tous les 2. La chaîne de Markov qui correspond au problème est représentée à la figure 3. En rangeant les états dans l'ordre "naturel" (00, 01, 10, 11), le générateur infinitésimal correspondant s'écrit :

$$\mathbf{A} = \begin{pmatrix} -\lambda & 0 & \lambda & 0 \\ \mu & -(\mu + \lambda) & 0 & \lambda \\ 0 & \mu & -\mu & 0 \\ 0 & \mu & 0 & -\mu \end{pmatrix}$$

2. Il s'agit d'une CMTC finie et irréductible. Tous les états sont récurrents non nuls. La distribution limite existe donc nécessairement. Elle est égale à la distribution stationnaire π . En écrivant les équations d'équilibre en chaque noeud, on obtient :

$$\lambda \pi_{00} = \mu \pi_{01}
(\lambda + \mu) \pi_{01} = \mu \pi_{10}
\lambda \pi_{00} + \mu \pi_{11} = \mu \pi_{10}
\lambda \pi_{01} = \mu \pi_{11}$$
(1)

avec la condition de normalisation :

$$\boldsymbol{\pi}_{00} + \boldsymbol{\pi}_{01} + \boldsymbol{\pi}_{10} + \boldsymbol{\pi}_{11} = 1$$

La résolution de trois équations indépendantes² parmi les quatre équations (1) donne :

$$egin{array}{lcl} m{\pi}_{01} & = & rac{\lambda}{\mu} m{\pi}_{00} \ m{\pi}_{10} & = & rac{\lambda(\lambda + \mu)}{\mu^2} m{\pi}_{00} \ m{\pi}_{11} & = & rac{\lambda^2}{\mu^2} m{\pi}_{00} \end{array}$$

¹associé à l'ordre des nombres naturels dont l'écriture en base 2 est l'état

 $^{^2\}mathrm{Les}$ quatre équations (1) ne peuvent pas être linéairement indépendantes car 0 est nécessairement valeur propre de la matrice $\mathbf A$

et la condition de normalisation permet d'obtenir

$$\pi_{00} = \frac{\mu^2}{\lambda^2 + (\lambda + \mu)^2} = \frac{1}{\rho^2 + (1 + \rho)^2}$$

avec

$$\rho := \frac{\lambda}{\mu}$$

3. La probabilité de rejet d'un paquet (ou le taux de paquets perdus) est :

$$\pi_{10} + \pi_{11} = \frac{2\rho^2 + \rho}{\rho^2 + (1+\rho)^2} = \frac{1}{1 + \frac{1+\rho}{\rho(1+2\rho)}}$$

4. Dans ce cas, l'état du réseau est déterminé par l'état, vide ou occupé, des trois relais 1, 2 et 3. Il y a donc 8 états possibles. Nous les numérotons $d_1d_2d_3$ où $d_i \in \{0,1\}$ $(i \in \{1,2,3\})$ désigne l'état du noeud i (0 pour vide et 1 pour occupé). En rangeant les états dans l'ordre "naturel" (000,001,010,011,100,101,110,111), la chaîne de Markov qui correspond au problème est représentée à la figure 4. Le

Figure 4: La chaîne de Markov à temps continu qui modélise le système de transmission par paquets avec trois relais (huit états), dont deux en parallèle

³associé à l'ordre des nombres naturels dont l'écriture en base 2 est l'état

 $g\'{e}n\'{e}rateur infinit\'{e}simal$ correspondant s'écrit :

$$\mathbf{A} = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\ \mu & -(\mu + \lambda) & 0 & 0 & 0 & \lambda & 0 & 0 \\ 0 & \mu & -(\mu + \lambda) & 0 & 0 & 0 & \lambda & 0 \\ 0 & \mu & \mu & -(2\mu + \lambda) & 0 & 0 & 0 & \lambda \\ 0 & \mu/2 & \mu/2 & 0 & -\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & \mu & -2\mu & 0 & 0 \\ 0 & 0 & 0 & \mu & \mu & 0 & -2\mu & 0 \\ 0 & 0 & 0 & 0 & \mu & \mu & -2\mu & 0 \end{pmatrix}$$