Оглавление

ЛАБОРАТОРНЫЙ ПРАКТИКУМ (общие замечания)	2
1. Требования к разрабатываемому программному обеспечению	2
2. Требования к отчёту	2
ВАРИАНТЫ ЗАДАНИЙ	3
1. Лабораторная работа №1. Предварительная обработка данных и их графическое отображение.	3
2. Лабораторная работа №2. Кластеризация данных	5
3. Лабораторная работа №3. Логические алгоритмы классификации	7
3. Лабораторная работа №4. Метрические методы классификации	8
5. Лабораторная работа №5. Статистические методы классификации	10
СПИСОК ЛАБОРАТОРНЫХ РАБОТ	12

ЛАБОРАТОРНЫЙ ПРАКТИКУМ (общие замечания)

Целью данного лабораторного практикума является изучение основ нейросетевого моделирования и обработки данных.

1. Требования к разрабатываемому программному обеспечению

- 1.1. Поставленная задача должна быть решена согласно выданного задания. Решение не своего варианта недопустимо.
- 1.2. Исходные данные должны быть представлены в виде xls файлов
- 1.3. Не должно быть ни каких ограничений на размеры файла с исходными данными
- 1.4. Все полученные результаты должны быть обоснованы
- 1.5. В обязательном порядке должна быть оценена степень адекватности решения (погрешность)

2. Требования к отчёту

- 2.1. Каждая лабораторная работа должна быть снабжена отчётом. Без наличия отчёта, удовлетворяющего ниже изложенным требованиям, работа к защите не допускается.
- 2.2. Отчёт по лабораторной работе должен быть загружен на учебный портал
- 2.3. Отчёт в обязательном порядке должен содержать:
 - 2.3.1. Условие задания
 - 2.3.2. Ф.И.О. выполнившего задание студента
 - 2.3.3. Описание процесса валидации (верификации), показывающее, что поставленная задача решена в полном объёме и верно
 - 2.3.4. Описание процесса вычислительного эксперимента, по результатам которого необходимо сделать выводы
 - 2.3.5. В результате выполнения работы должны быть получены графики, отображающие решение задачи (не менее 7 по каждой работе)

ВАРИАНТЫ ЗАДАНИЙ

1. Лабораторная работа №1. Предварительная обработка данных и их графическое отображение.

Общая часть: разработать программное обеспечение для решения задачи предварительной обработки данных и построения уравнений регрессии.

Исходные данные: набор данных в формате csv.

Необходимо: провести предварительную обработку и анализ данных с целью выявления значимых признаков. На основе выявленных признаков необходимо подобрать уравнение регрессии, которое с минимальной ошибкой выполняет заданный прогноз.

Ход выполнения работы:

- 1. Загрузить исходные данные согласно варианта из csv-файлов
- 2. На основании считанных данных сформировать DataFrame
- 3. Провести анализ на полноту данных
- 4. Построить гистограммы и графики плотности распределения по каждому признаку в исходных данных, при этом уметь изменять цвета, тип графика и строить графики на одном поле.
- 5. Согласно заданию, выбрать несколько параметров и построить для них распределения на одном графике
- 6. Вычислить математическое ожидание и дисперсию
- 7. Основываясь на решаемой задаче, визуализировать совместное распределение отдельных признаков нескольких переменных
- 8. Выполнить агрегирование данных по каждому из признаков (или по значению поля, например, по месяцу или году при анализе акций) и визуализировать с использованием различных функций (barplot, countplot, boxplot, violinplot, stripplot, swarmplot и др.), при этом уметь пояснить, что изображено на графиках
- 9. Построить матрицу диаграмм рассеивания, тепловую карту и матрицу корреляции (scatterplotmatrix, heatmap, plotcorr)
- 10. Провести анализ на основе построенных графиков
- 11. Согласно индивидуального задания, построить уравнение регрессии (линейное, полиномиальное, логистическая, пробит-модель, «эластичная сеть»)
- 12. Решить задачу, согласно варианта задания

№	Индивидуальное задание	Данные для анализа
1	Сравнить вероятность выживание женщин и мужчин, имеющих на бор-	
	ту родственников.	414 1
	По заданному человеку (возможно с неполной картой признаков) на ос-	titanic.csv
	нове уравнения регрессии спрогнозировать вероятность его выживания	
2	Найти месяц, в котором наблюдался наибольший рост курса акций на	
	конец месяца по сравнению с началом месяца. Восстановить значения в	apple.csv
	пропущенные дни за январь месяц 2017 года	
3	Сравнить вероятность сердечно сосудистого заболевания у женщин и	
	мужчин, в зависимости от уровня стенокардии.	
	По заданному человеку (возможно с неполной картой признаков) на ос-	heart.csv
	нове уравнения регрессии спрогнозировать вероятность наличия у него	
	сердечно сосудистого заболевания	
4	Сравнить вероятность выживание женщин и мужчин, разных возраст-	
	ных категорий: до 18 лет, от 19 до 29, от 30 до 45, от 46 до 60 и старше	
	60	titanic.csv
	По заданному человеку (возможно с неполной картой признаков) на ос-	
	нове уравнения регрессии спрогнозировать вероятность его выживания	
5	Найти месяц, в котором наблюдалась наименьшая средняя разница	
	между курсами акций на начало дня и на конец дня. Спрогнозировать	apple.csv
	курс акций на январь 2021 года.	
6	Сравнить вероятность развития сердечно сосудистого заболевания у	
	женщин и мужчин, разных возрастных категорий: до 18 лет, от 19 до 29,	
	от 30 до 45, от 46 до 60 и старше 60	In court park
	По заданному человеку (возможно с неполной картой признаков) на ос-	<u>heart.csv</u>
	нове уравнения регрессии спрогнозировать вероятность высокого уров-	
	ня холестерина (более 230)	
7	Сравнить вероятность выживание женщин и мужчин, в зависимости от	
	класса каюты.	titanic.csv
	По пассажирам заданного класса восстановить значение в поле возраст.	
8		apple.csv
9		<u>heart.csv</u>
10		titanic.csv
11		apple.csv
12		<u>heart.csv</u>
13		titanic.csv
14		apple.csv
15		heart.csv

2. Лабораторная работа №2. Кластеризация данных

Общая часть: разработать программное обеспечение для решения задачи кластеризации (обучение без учителя)

Исходные данные: файл в формате csv

Необходимо: используя методы обучения без учителя, выполнить кластеризацию данных. Оценить качество классификации различными методами.

- 1. Загрузить исходные данные согласно варианта из csv-файлов
- 2. На основании считанных данных сформировать DataFrame
- 3. Провести анализ на полноту данных
- 4. Построить матрицу диаграмм рассеивания, тепловую карту и матрицу корреляции (scatterplotmatrix, heatmap, plotcorr)
- 5. Провести анализ на основе построенных графиков
- 6. Согласно индивидуального задания, выполнить кластеризацию данных. Оценить качество классификации для каждого метода с помощью функционала качества
- 7. Построить дендрограммы
- 8. Выполнить отбор информативных признаков и уменьшить размерность пространства признаков
- 9. Построить матрицу диаграмм рассеивания, тепловую карту и матрицу корреляции (scatterplotmatrix, heatmap, plotcorr) для изменённого пространства признаков
- 10.Повторно выполнить кластеризацию данных. Оценить качество классификации для каждого метода с помощью функционала качества
- 11. Проверить, к какому классу принадлежит произвольный объект
- 12. Сделать выводы по результатам проделанной работы

№	Метод 1	Метод 2	Функционал качества	Данные для анализа
1	Выделение связных компонент	ЕМ- алгоритм	$F_0 = \frac{\sum_{i < j} [y_i = y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} \to min$	winequality-red.csv
2	Минимальное оставное дерево	k- средних k = 5	$F_1 = \frac{\sum_{i < j} [y_i \neq y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i \neq y_j]} \rightarrow max$	responses.csv
3	Кратчайший неза- мкнутый путь	DBSCAN	$\Phi_0 = \sum_{y \in Y} \frac{1}{ K_y } \sum_{i: y_i = y} \rho^2 \left(x_i, \mu_y \right) \to min$	flavors of cacao.csv
4	Послойная кластеризация	k- средних k = 7	$\Phi_1 = \sum_{y \in Y} \rho^2 \left(\mu_y, \mu \right) \to max$	winequality-red.csv
5	ForEL	ЕМ- алгоритм	$\frac{F_0}{F_1} \rightarrow min$	<u>responses.csv</u>
6	ForEL-2 k=5	k- средних k = 5	$\frac{\Phi_0}{\Phi_1} \to min$	flavors_of_cacao.csv
7	SKAT	DBSCAN	$F_0 = \frac{\sum_{i < j} [y_i = y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} \to min$	winequality-red.csv
8	BigFor	DBSCAN	$F_1 = \frac{\sum_{i < j} [y_i \neq y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i \neq y_j]} \to max$	responses.csv
9	AGNES алго- ритм средней связи	k- средних k = 9	$\Phi_0 = \sum_{y \in Y} \frac{1}{ K_y } \sum_{i: y_i = y} \rho^2 \left(x_i, \mu_y \right) \to min$	flavors_of_cacao.csv
10	AGNES центроид- ный метод	DBSCAN	$\Phi_1 = \sum_{y \in Y} \rho^2 \left(\mu_y, \mu \right) \to max$	winequality-red.csv
11	AGNES алго- ритм одиночной связи	k- средних k = 7	$\frac{F_0}{F_1} \to min$	<u>responses.csv</u>
12	AGNES алго- ритм полной связи	ЕМ- алгоритм	$\frac{\Phi_0}{\Phi_1} \rightarrow min$	flavors of cacao.csv
13	AGNES метод ми- нимума диспер- сии Уорда	k- средних k = 3	$F_1 = \frac{\sum_{i < j} [y_i \neq y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i \neq y_j]} \rightarrow max$	winequality-red.csv
14	ForEL-2 k=5	ЕМ- алгоритм	$\Phi_0 = \sum_{y \in Y} \frac{1}{ K_y } \sum_{i: y_i = y} \rho^2 \left(x_i, \mu_y \right) \to min$	responses.csv
15	Кратчайший неза- мкнутый путь	DBSCAN	$\Phi_{1} = \sum_{y \in Y} \rho^{2} \left(\mu_{y}, \mu \right) \to max$	flavors_of_cacao.csv

3. Лабораторная работа №3. Логические алгоритмы классификации

Общая часть: разработать программное обеспечение для решения задачи классификации (обучение с учителем) на основе деревьев решений

Исходные данные: файл в формате csv

Необходимо: используя дерево решений и случайный лес решить задачу бинарной классификации, согласно варианта

- 1. Загрузить исходные данные согласно варианта из csv-файлов
- 2. На основании считанных данных сформировать DataFrame
- 3. Провести анализ на полноту данных
- 4. При необходимости выполнить нормировку, квантование и фильтрацию данных
- 5. При необходимости провести селекцию признаков и понижение размерности задачи
- 6. Согласно варианта построить дерево решений
- 7. Согласно варианта построить случайный лес
- 8. Оценить качество проведённой классификации с использованием кроссвалидации
- 9. Вычислить accuracy, precision, recall, f1-score
- 10. Провести варьирование параметрами классификатора с целью улучшения качества классификации
- 11. Провести анализ результатов работы классификатора на основе построенных графиков
- 12. Сделать выводы по результатам проделанной работы

№	Набор данных	Классы для классификации	
1	titanic.csv	Выжившие/погибшие	
2	bill authentication.csv	class 0 / class 1	
3	<u>heart.csv</u>	наличие/отсутствие заболевания	
4	student-mat.csv	Наличие/отсутствие пристрастия к	
		алкоголю	
5	student-por.csv	Пол студента	
6	titanic.csv	Пол пассажира	
7	titanic.csv	Пассажир первого класса или нет	
8	<u>heart.csv</u>	Пол пациента	
9	student-mat.csv	Пол студента	
10	student-por.csv	Наличие/отсутствие пристрастия к	
		алкоголю	
11			
12			

3. Лабораторная работа №4. Метрические методы классификации

Общая часть: разработать программное обеспечение для решения задачи классификации (обучение с учителем) на основе детерминированных методов классификации

Исходные данные: файл в формате csv

Необходимо: используя детерминированные методы классификации необходимо обучить модель для проведения классификации образов, оценить качество классификации.

- 13. Загрузить исходные данные согласно варианта из csv-файлов
- 14. На основании считанных данных сформировать DataFrame
- 15. Провести анализ на полноту данных
- 16. При необходимости выполнить нормировку, квантование и фильтрацию данных
- 17. При необходимости провести селекцию признаков и понижение размерности задачи
- 18.Согласно варианта построить классификатор
- 19. Оценить качество проведённой классификации с использованием кроссвалидации
- 20.Построить матрицу ошибок
- 21. Вычислить аккуратность, точность и полноту
- 22. Оценить площадь под кривой ошибок
- 23. Построить логистическую функцию потерь
- 24. Провести варьирование параметрами классификатора с целью улучшения качества классификации
- 25. Провести анализ результатов работы классификатора на основе построенных графиков
- 26. Сделать выводы по результатам проделанной работы

№	Классификатор 1	Метрика	Набор данных	Предмет клас- сификации
1	Метод дробящихся эталонов	евклидова	winequality-red.csv	Качество вина
2			flavors_of_cacao.csv	Качество батон- чика

3	Метод k-ближайших соседей	манхэттенская	winemag- data first150k.csv	Качество вина
4	Метод парзерновского окна		winequality-red.csv	Качество вина
5	Метод потенциальных функци		flavors_of_cacao.csv	Процент какао
6	Полный метрический классификатор с классифицирующей функцией по МНК Тут существует больше 10 способа определения классификатора и плюс минимум 3 метрики, т.е. можно вариантов 30 дать	Чебышёва	flavors_of_cacao.csv	
7	СТОЛП	Минковского	winequality-red.csv	
8	FRiS-СТОЛП		flavors of cacao.csv	
9			winemag- data first150k.csv	
10			flavors of cacao.csv	
11			flavors of cacao.csv	
12			winemag- data_first150k.csv	По стоимости продукта

5. Лабораторная работа №5. Статистические методы классификации.

Общая часть: разработать программное обеспечение для решения задачи классификации (обучение с учителем) на основе статистических методов классификации

Исходные данные: файл в формате csv или txt

Необходимо: используя статистические методы классификации необходимо обучить модель для проведения классификации образов, оценить качество классификации.

- 1. Загрузить исходные данные согласно варианта из файла
- 2. На основании считанных данных сформировать DataFrame
- 3. Провести анализ на полноту данных
- 4. При необходимости выполнить нормировку, квантование и фильтрацию данных
- 5. Вычислить статистические характеристики данных (мат. Ожидание, дисперсию)
- 6. Построить графики распределения случайной величины
- 7. Графическим способом подобрать законы распределения случайных величин
- 8. С помощью заданного критерия, проверить гипотезу о законе распределения
- 9. При необходимости провести селекцию признаков и понижение размерности задачи
- 10. Согласно варианта построить классификатор
- 11. Оценить качество проведённой классификации с использованием указанного метода валидации
- 12. Построить матрицу ошибок
- 13. Вычислить аккуратность, точность и полноту
- 14. Оценить площадь под кривой ошибок
- 15. Построить логистическую функцию потерь
- 16.Выполнить робастную оценку среднего
- 17. Провести варьирование параметрами классификатора с целью улучшения качества классификации
- 18.Провести анализ результатов работы классификатора на основе построенных графиков
- 19. Сделать выводы по результатам проделанной работы

№	Классификатор	Набор данных	Предмет клас- сификации	Критерий	Валидация
1	Наивный Байес	<u>SMSSpamCollection.txt</u>	Спам/не спам	Критерий Пирсона	Кросс-валидация
2	ЕМ-алгоритм	flavors_of_cacao.csv	Качество батон- чика	Критерий Стьюдента	Последовательное случайное сэм- плирование
3	Логистическая регрессия (МНК*)	winemag- data_first150k.csv	Качество вина	Критерий Фишера	Кросс-валидация по k-блокам
4	Логистическая регрессия (ММП**)	winequality-red.csv	Качество вина		Поэлементная кросс-валидация
5	Логистическая регрессия (BVD***)	bill_authentication.csv	Класс счёта		
6	Логистическая регрессия (L ₂ -регяляризация)				
7	Линейный дис- криминантный анализ				
8			_		
9					
10					
11					
12					

^{*}Метод наименьших квадратов
**Метод максимального правдоподобия

^{***}Bias-variance decomposition

L2-регуляризация логистической функции потерь

СПИСОК ЛАБОРАТОРНЫХ РАБОТ

Номер лаб. работы	Название темы	
1	Предварительная обработка данных и их графическое отображение	8
2	Кластеризация данных	
3	Логические алгоритмы классификации	
4	Метрические методы классификации	
5	Статистические методы классификации	6
Ита	020:	34