To prove the set M_i forms a group, we need to prove that it satisfies the four properties of a group. The processes are as follows.

closure

Let M_a , M_b are two elements of $\{M_i\}$

$$egin{align} M_a*M_b &= egin{bmatrix} R_a & t_a \ 0 & 1 \end{bmatrix} egin{bmatrix} R_b & t_b \ 0 & 1 \end{bmatrix} \ &= egin{bmatrix} R_aR_b & R_at_b + t_a \ 0 & 1 \end{bmatrix} \end{split}$$

Because of the feature of orthonormal matrix, R_aR_B is also a orthonormal matrix. And it is easy to know that $R_at_b+t_a$ is still a 3*1 vector. So it satisfy closure.

associativity

Let M_a, M_b, M_c are three elements of $\{M_i\}$

Because of the feature of matrix multiplication,

$$M_a M_b M_c = M_a (M_b M_c).$$

So it satisfy associativity.

• identify element

When R_0 is a 3*3 identity matrix, and t_0 =[0 0 0],

 M_0 is an identify element, because $M_0M_i=M_iM_0$.

• Inverse element

For
$$M_i=egin{bmatrix} R_a & t_a \ 0 & 1 \end{bmatrix}$$
 , the inverse is $egin{bmatrix} R_a^T & -R_a^T t_a \ 0 & 1 \end{bmatrix}$.

This is because

$$egin{bmatrix} R_a & t_a \ 0 & 1 \end{bmatrix} egin{bmatrix} R_a^T & -R_a^T t_a \ 0 & 1 \end{bmatrix} = M_0$$

Based on all above, $\{M_i\}$ forms a group.

Q2

$$egin{aligned} rac{\partial G}{\partial \delta} &= \lim_{igtriangledown \delta} rac{G(x,y,\delta+igtriangledown \delta) - G(x,y,\delta)}{(\delta+igtriangledown \delta) - \delta} \ &pprox rac{G(x,y,k\delta) - G(x,y,\delta)}{k\delta - \delta} \ &= rac{DoG}{(k-1)\delta} \end{aligned}$$

Or

$$egin{aligned} rac{\partial G}{\partial \delta} &= rac{-2\delta^2 + x^2 + y^2}{2\pi\delta^5} e^{rac{-2(x^2+y^2)}{2\delta^2}} \ &= rac{LoG}{\delta} \end{aligned}$$

So

$$rac{DoG}{(k-1)\delta}pproxrac{LoG}{\delta} \ DoGpprox(k-1)LoG$$

So DoG can approximate LoG.

Q3

 A^TA is a n*n matrix, so we need to prove $Rank(A^TA)=n$, then A^TA is non-singlar.

That is to say, we need to prove $Rank(A^TA) = Rank(A)$.

Then we need to prove $A^TAx = 0$ and Ax = 0 have the same solutions.

- 1. For Ax = 0, we have $A^T(Ax) = 0$, then $A^TAx = 0$. So the solution of Ax = 0 is also the solution of $A^TAx = 0$.
- 2. For $A^TAx=0$, we have $x^TA^TAx=0$, Then $(Ax)^TAx=0$, so Ax=0. Therefore, the solution of $A^TAx=0$ is also the solution of Ax=0.

So $A^TAx=0$ and Ax=0 have the same solutions.

Then $Rank(A^TA) = Rank(A) = n$, plus A^TA is n * n, so A^TA is non-singlar.