Chapter 1 solutions

- 1.1. $A \subseteq B$ means that every element of A is in B, and $B \subseteq A$ that every element of B is in A. The combination of these two statements is just what is meant by A = B.
- 1.2. (a) In the expression |A| + |B|, we have counted every element of $A \cup B$, but elements of $A \cap B$ have been counted twoce; so we must subtract $|A \cap B|$ to get the right answer for $|A \cup B|$.
- (b) There are |A| choices for the first element of an ordered pair and (independently) B choices for the second, giving $|A| \cdot |B|$ pairs altogether.

1.3.

- None of the axioms: $\{(1,2)\}$.
- (E1) only: $\{(1,1),(2,2),(3,3),(1,2),(2,3)\}.$
- (E2) only: $\{(1,2),(2,1)\}.$
- (E3) only: $\{(1,2),(2,3),(1,3)\}.$
- (E1) and (E2): $\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)\}.$
- (E1) and (E3): $\{(1,1),(2,2),(3,3),(1,2)\}.$
- (E2) and (E3): The empty relation.
- All three: $\{(1,1),(2,2),(3,3)\}.$

Many other answers are possible. There are $2^9 = 512$ sets of ordered pairs, each of which must fit into one of these eight categories!

No relation on $\{1,2\}$ can be reflexive and symmetric but not transitive, for example.

- 1.4. (a) It is reflexive, symmetric and transitive, since it contains all possible ordered pairs. (The conclusion of each of the three laws is that a certain ordered pair is in R.) The corresponding partition has just a single part, namely the whole set A.
- (b) This relation R is trivially reflexive and symmetric. If $(a,b) \in R$ and $(b,c) \in R$, then a=b and b=c, so a=c and hence $(a,c) \in R$. Thus it is also transitive. The corresponding partition has the property that each of its parts consists of a single element.
- 1.5. Yes. There is one equivalence relation on the empty set, namely the empty set of ordered pairs; and one partition, the partition with the empty set of parts.
- 1.6. From $\{1,2,3\}$ to $\{1,2,3,4\}$: $4^3=64$ functions of which $4\cdot 3\cdot 2=24$ are one-to-one and none are onto.

From $\{1,2,3,4\}$ to $\{1,2,3\}$: $3^4 = 81$ functions, of which none are one-to-one and 36 are onto.

- 1.7. (a) Not a function because F(0) is not defined. We can fix it in either of two ways: either say that F is a function from $\mathbf{R} \setminus \{0\}$ to \mathbf{R} , or else *define* the value of F(0) to be anything at all, say 0.
- (b) Not a function because the two roots c and d of the quadratic can be written in either order, and we have not given a rule to specify which order we are using. (For example, the roots of the quadratic $x^2 3x + 2 = 0$ are 1 and 2, so F(-3,2) is either (1,2) or (2,1), but we haven't said which.) We could fix this by specifying an order. For example, we could take c to be the root with smaller real part; if they have the same real parts, take c to be the one with smaller imaginary part. (If both the real and the imaginary parts are equal, then c = d, and the problem doesn't arise.) Alternatively, we could define F(a,b) to be the $set \{c,d\}$, in which case F maps \mathbb{C}^2 to the set of subsets of \mathbb{C} containing at most two elements.
- 1.8 It is easier (and equivalent) to show that there are exactly five partitions of $\{1,2,3\}$. They are the partition with a single part, the partition with all parts containing a single element, and three others having a part of size 1 and one of size 2, namely $\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\},$ and $\{3\},\{1,2\}\}$.

On a set of four points there are 15 partitions: one with a single part, four with parts of sizes 1 and 3, three with parts of sizes 2 and 2, six with parts of sizes 1, 1 and 2, and one with all its parts of size 1.

- 1.9. (a) Reflexive and transitive, not symmetric.
- (b) Assuming that every capital city in Europe has a railway station, this is an equivalence relation. The equivalence classes change over time, since both the set of capital cities and the rail connections vary.
 - (c) Reflexive and transitive, not symmetric.
- (d) An equivalence relation. There are four equivalence classes, the congruence classes modulo 4.
- 1.10. Recall that x and y are in the same equivalence class of KER(f) if and only if f(x) = f(y). So, defining a function F from the set of equivalence classes to Im(f) by the rule that F(C) = f(x) for some $x \in C$, we see that F is well-defined. It is clearly onto Im(f). If $F(C_1) = F(C_2)$, then elements of C_1 and C_2 are equivalent, and so $C_1 = C_2$; so F is one-to-one.
- 1.11. (a) We check that the appropriate laws hold.
 - For any x, we have $x \sim x$ and $x \sim x$ (as we're given that \sim is reflexive), so $x \equiv x$.
 - Suppose that $x \equiv y$. Then $x \sim y$ and $y \sim x$; so $y \equiv x$.
 - Suppose that $x \equiv y$ and $y \equiv z$. Thus $x \sim y$, $y \sim x$, $y \sim z$ and $z \sim y$. From $x \sim y$ and $y \sim z$ and the transitivity of \sim we infer that $x \sim z$. Similarly $z \sim x$. So $x \equiv z$.
- (b) We have $x \sim y$, $x \sim x_1$, $x_1 \sim x$, $y \sim y_1$ and $y_1 \sim y$. Applying the transitive law twice to the third, first and fourth of these relations shows that $x_1 \sim y_1$.
- 1.12. The truth table is as follows:

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \lor (q \Rightarrow p)$
Τ	Т	Т	Т	Т
Т	F	F	Т	T
F	Т	Т	F	Т
F	F	Т	Т	Т

The fact that every entry in the last column is T shows that the formula is logically valid

1.13. $x \in A \triangle B$ if and only if either p is true and q is false, or p is false and q is true. These are just the cases where the truth table for $\neg(p \Leftrightarrow q)$ has entries T.

The entries T in the truth table for $p \Rightarrow q$ occur in all rows except that where p is true and q false. So the set represented is $(A \setminus B)'$, the complement of $A \setminus B$.

- 1.14. The corresponding expressions are $\neg(p \lor q)$ and $(\neg p) \land (\neg q)$. Construct a truth table to show that these expressions are logically equivalent.
- 1.15. (a) Follow the argument in the text for $\sqrt{2}$, replacing 2 by p. Wee need to know that, if p divides x^2 , then p divides x. This follows from the Fundamental Theorem of Arithmetic. For, if p doesn't divide x, then it doesn't occur in the prime factorisation of x, and hence not in the prime factorisation of x^2 either.
- (b) Suppose that $\sqrt[3]{2} = x/y$, where x and y are positive integers, and the fraction is in its lowest terms. Then we have $x^3 = 2y^3$. Thus, x^3 is even, and so also x is even. [Why?] Say x = 2u. Then $8u^3 = 2y^3$, and so $4u^3 = y^3$. So y^3 , and hence also y, is even, contrary to the assumption that the fraction is in its lowest terms.
- 1.16. All that requires clarification is the notion that a rational number x has a unique fractional part. Suppose that x = a/b, with b > 0. The Division Algorithm gives a = bq + r, with $0 \le r < b$. Thus x = q + (r/b), with $0 \le (r/b) < 1$. Hence q is the integer part, and (r/b) the fractional part. If there were two different expressions for x, then the integer parts would differ by an integer, while the fractional parts would differ by less than one; this is impossible.
- 1.17. (a) This is true for n = 1. Assume that it holds for a value n. Adding on n + 1, we find that the sum of the first n + 1 integers is n(n + 1)/2 + (n + 1) = (n + 1)(n + 2)/2; so the result holds also for n + 1.
- (b) Use the result of (a): what we are asked to show is that the sum of the cubes of the first n positive integers is $n^2(n+1)^2/4$. Now prove this by induction as in the earlier examples.
- 1.18. For n = 1, we interpret A^1 as being just A, and so the induction starts correctly. Suppose that $|A^n| = |A|^n$. Then $A^{n+1} = A^n \times A$, and so

$$|A^{n+1}| = |A^n| \cdot |A| = |A|^n \cdot |A| = |A|^{n+1}.$$

This verifies the result for n + 1, the inductive step. So it is true for all n by induction.

1.19. Suppose that such a sequence exists. By the Well-ordering Principle, it has a least element, say a_k . But then the facts that $a_k \le a_{k+1}$ (since a_k is the least element) and $a_k > a_{k+1}$ (given) conflict.

1.20. P(1) is indeed true, but P(2) is clearly false (two horses don't necessarily have the same ccolour). So the inductive step must fail for n = 1. Indeed, given a set $\{H_1, H_2\}$ of two horses, it is indeed true that all the horses in $\{H_1\}$ ave the same colour, and all the horses in $\{H_2\}$ have the same colour; but these sets don't overlap, so no conclusion can be drawn.

1.21. Let us just consider the term of degree 2 in the product of the polynomials $f(x) = a_0 + a_1x + a_2x^2 + \dots$ and $g(x) = b_0 + b_1x + b_2x^2 + \dots$ In the product fg, this coefficient is $(a_0b_2 + a_1b_1) + a_2b_0$, while in gf it is $(b_0a_2 + b_1a_1) + b_2a_0$. To show that these two expressions are equal, we need that $a_0b_2 = b_2a_0$, $a_1b_1 = b_1a_1$, and $a_2b_0 = b_0a_2$ (commutativity of multiplication), and that (u + v) + w = (w + v) + u (which requires associativity and commutativity of addition to do in three steps):

$$(u+v)+w=u+(v+w)=(v+w)+u=(w+v)+u.$$

1.22 (a) True; (b) False (should be (fg)(t) = f(t)g(t)). Proof of (a): if $f(x) = \sum a_n x^n$ and $g(x) = \sum b_n x^n$, then

$$(f+g)(t) = \sum (a_n + b_n)x^n = \sum a_n x^n + \sum b_n x^n,$$

using the commutative and associative properties of the coefficients to rearrange the equationds. The proof of (b) is similar.

1.23 If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$, and $C = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$, then calculation shows that
$$(A+B)C = \begin{pmatrix} (a+e)i + (b+f)k & (a+e)j + (b+f)l \\ (c+g)i + (d+h)k & (c+g)j + (d+h)l \end{pmatrix},$$

$$AC+BC = \begin{pmatrix} (ai+bk) + (ei+fk) & (aj+bl) + (ej+fl) \\ (ci+dk) + (gi+hk) & (cj+dl) + (gj+hl) \end{pmatrix}$$

So the equality requires four calculations of which the first is typical:

$$(a+e)i + (b+f)k = (ai+ei) + (bk+fk) = (ai+bk) + (ei+fk),$$

where the first equality uses the distriutive law, and the second the commutative and associative laws for addition.

1.24. No coincidence. The sum of the diagonal elements of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ is ae + bg + cf + dh; for $\begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the sum is ea + fc + gb + hd, which is the same

1.25 Let $A = (a_{ij})$ and $B = (b_{ij})$, where $a_{ij} = b_{ij} = 0$ for i > j. Then $A + B = C = (c_{ij})$ where $c_{ij} = a_{ij} + b_{ij}$; clearly $c_{ij} = 0$ for i > j. Also $AB = D = (d_{ij})$, where

$$d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

If i > j then, for any value of k, necessarily either i > k or k > j. (Otherwise $i \le k$ and $k \le j$, whence $i \le j$, contrary to assumption.) So each term in the sum has either $a_{ik} = 0$ or $b_{kj} = 0$, and hence $d_{ij} = 0$. Thus both A + B and AB are upper triangular.

1.26. If a = c and b = d, then $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$. The converse is more difficult. So suppose that $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$. Since two sets are equal if and only if they have the same members, this implies that *either*

- $\{a\} = \{c\}, \{a,b\} = \{c,d\}, or$
- $\{a\} = \{c,d\}, \{a,b\} = \{c\}.$

In the first case, we have a=c, and then either a=c and b=d, or a=d and b=c. The first subcase is exactly what we want. In the second subcase, we have c=a=d=b, so all four elements are equal. In the second itemized case, we have c=a=d amd a=c=b, so again all four are equal.