Web**Assign** 

Hw 4 (12.4): Cross Product (Homework)

Yinglai Wang

MA 162 Spring 2012, section 321, Spring 2012

Instructor: Jonathan Montano

**Current Score :** 20 / 20 **Due :** Thursday, January 19 2012 11:55 PM EST

The due date for this assignment is past. Your work can be viewed below, but no changes can be made.

**Important!** Before you view the answer key, decide whether or not you plan to request an extension. Your Instructor may *not* grant you an extension if you have viewed the answer key. Automatic extensions are not granted if you have viewed the answer key.

View Key

1. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.001.

Find the cross product  $\mathbf{a} \times \mathbf{b}$ .

$$\mathbf{a} = \langle 8, 0, -2 \rangle, \quad \mathbf{b} = \langle 0, 7, 0 \rangle$$



Verify that it is orthogonal to both **a** and **b**.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \boxed{0}$$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \boxed{0}$$



Read It

Chat About It

2. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.004.

Find the cross product  $\mathbf{a} \times \mathbf{b}$ .

$$a = j + 9k$$
,  $b = 5i - j + 3k$ 



Verify that it is orthogonal to both **a** and **b**.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \boxed{0}$$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \boxed{0}$$

Need Help?

Read It

Chat About It

3. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.005.

Find the cross product  $\mathbf{a} \times \mathbf{b}$ .

$$a = i - j - k$$
,  $b = \frac{1}{3}i + j + \frac{1}{3}k$ 



Verify that it is orthogonal to both a and b.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \boxed{0}$$
 $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \boxed{0}$ 

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \boxed{0}$$

Chat About It

## 4. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.016.

The figure shows a vector **a** in the xy-plane and a vector **b** in the direction of **k**. Their lengths are  $|\mathbf{a}|$ = 3 and  $|\mathbf{b}| = 4$ .



(a) Find  $|\mathbf{a} \times \mathbf{b}|$ .



(b) Use the right-hand rule to decide whether the components of  $\mathbf{a} \times \mathbf{b}$  are positive, negative, or 0.

*x*-component



y-component z-component



Need Help?



Chat About It

## 5. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.017.

If  $\mathbf{a} = \langle 2, -1, 2 \rangle$  and  $\mathbf{b} = \langle 8, 2, 1 \rangle$ , find the following.

Need Help?



Chat About It

**6.** 2.22/2.22 points | Previous Answers

SCalcET7 12.4.019.

Find two unit vectors orthogonal to both (9, 7, 1) and (-1, 1, 0).

- (smaller i-value)
- (larger i-value)

Need Help? Chat About It Read It

7. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.027.

Find the area of the parallelogram with vertices A(-2, 2), B(0, 5), C(4, 3), and D(2, 0).



Need Help?



Watch It



8. 2.22/2.22 points | Previous Answers

SCalcET7 12.4.032.

Consider the points below.

$$P(-1, 3, 1), Q(0, 5, 2), R(3, 2, -1)$$

- (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R.
- (b) Find the area of the triangle PQR.



Need Help? Read It



Chat About It

9. 2.24/2.24 points | Previous Answers

SCalcET7 12.4.033.

Find the volume of the parallelepiped determined by the vectors **a**, **b**, and **c**.

$$\mathbf{a} = \langle 1, 2, 4 \rangle, \quad \mathbf{b} = \langle -1, 1, 5 \rangle, \quad \mathbf{c} = \langle 5, 1, 4 \rangle$$

cubic units

Need Help? Read It



Chat About It