двойной триод DOUBLE TRIODE

6H23N

ОБЩИЕ СВЕДЕНИЯ

Двойной триод 6Н23П предназначен для работы в качестве широкополосного усилителя и смесителя высокой частоты с низким уровнем шумов в схемах маломощных усилителей и генераторов импульсов в радиотехнических устройствах.

Катод — оксидный косвенного накала.

Масса не более 16 г.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Вибрационные нагрузки в диапазоне частот от 1 до 80 Гц с ускорением до 5 g. Многократные ударные нагрузки с ускорением до 15 g. Температура окружающей среды от -45 до +70 °C. Относительная влажность воздуха до 98% при температуре до 25 °C.

GENERAL

The $6H23\Pi$ double triode has been designed to function as a wide-band amplifier and a low-noise high-frequency mixer in low-power amplifier and pulse oscillator circuits of electronic devices.

Cathode: indirectly heated, oxide-coated.

Mass: at most 16 g.

SERVICE CONDITIONS

Vibration: at frequencies from 1 to 80 Hz with acceleration up to 5 g. Multiple impacts: with acceleration up to 15 g. Ambient temperature: from -45 to +70 °C. Relative humidity: up to 98% at up to 25 °C.

Схема соединения электродов с выводами:

1 — анод второго триода; 2 — сетка второго триода; 3 — катод второго триода; 4 — подогреватель; 5 — подогреватель; 6 — анод первого триода; 7 — сетка первого триода; 8 — катод первого триода; 9 — экран

Diagram of electrodes-to-pins connection:

1 — triode 2 anode; 2 — triode 2 grid; 3 — triode 2 cathode; 4 — heater; 5 — heater; 6 — triode 1 anode; 7 — triode 1 grid; 8 — triode 1 cathode; 9 — screen

ОСНОВНЫЕ ДАННЫЕ

Электрические параметры

Напряжение, В:	
накала	6,3
анода	100
сетки	9
Ток, мА:	
накала	310 ± 25
анода каждого триода	15 ± 5
Сопротивление в цепи каждого катода, Ом	
Входное сопротивление на частоте 200 Гц, Ом	400^{+300}_{-200}
Эквивалентное сопротивление шумов, Ом	200+150
Крутизна характеристики каждого триода, мА/В	$12,7_{-2,7}$
Обратный ток сетки при сопротивлении в ее цепи	
0,5 МОм, мкА	≤0,2
Коэффициент усиления каждого триода	34 ± 9
Емкость, пФ:	
входная каждого триода	
выходная первого триода	$2,1_{-0.3}^{+0.35}$
выходная второго триода	-,-
проходная каждого триода	
анод – катод каждого триода	
между анодами	≤0,09
Электрические параметры в течение 5000 ч эксплу-	*
атации:	
крутизна характеристики, мА/В	≥7,5
обратный ток сетки, мкА	-

Предельные значения допустимых режимов эксплуатации

	Максимум	Минимум
Напряжение, В:		
накала	7,0	5,7
анода	300	
анода (при запертой лампе)	470	
анода (при запертой лампе		
в импульсе)	1000	
сетки (в импульсе)	-200	
между катодом и подогревате-		
лем	200	
Ток катода (среднее значение), мА	20	
Мошность, Вт:		
рассеиваемая анодом	1,8	
рассеиваемая сеткой	0,03	
Сопротивление в цепи сетки, МОм	1	
Температура баллона (в наиболее		
нагретой части), °С	150	

SPECIFICATION

Electrical Parameters

Voltage, V: heater anode grid	100
Current, mA: heater	_
Resistance in each cathode circuit, Ohm Input resistance at 200 Hz, Ohm Equivalent noise resistance, Ohm Transconductance of each triode, mA/V Inverse grid current, at resistance 0.5 MOhm in grid circuit, µA Amplification factor of each triode	400_{-200}^{+300} 200^{+150} $12.7_{-2.7}$ ≤ 0.2
Capacitance, pF: each triode input first triode output second triode output each triode transfer anode-to-cathode of each triode between anodes	$3.6_{-0.85}^{+0.9}$ $2.1_{-0.3}^{+0.35}$ 1.95 ± 0.3 1.55 ± 0.3 0.18 ± 0.06
Electrical parameters over 5000 operating hours: transconductance, mA/V	

Limit Values of Operating Conditions

	Maximum	Minimum
Voltage, V:		
heater	300 470 1000 - 200	5.7
Cathode current (average value), mA	20	
Power dissipation, W:		
at anode		
Resistance in grid circuit, MOhm	1	:
Bulb temperature in hottest portion, °C	150	

I — наибольшая допустимая мощность, рассеиваемая анодом $U_{\rm h}\!=\!6.3~{
m V}$

Averaged anode characteristics:

I — maximum permissible anode dissipation $U_h = 6.3 \text{ V}$

Усредненные анодно-сеточные характеристики

 $U_{h} = 6.3 \text{ V}$

Averaged anode-grid characteristics

 $U_h = 6.3 \text{ V}$

Усредненные характеристики:

I — крутизны; 2 — коэффициента усиления; 3 — внутреннего сопротивления $U_h = 6,3 \, \text{V}, \, U_a = 90 \, \text{V}$

Averaged characteristics:

I — transconductance; 2 — amplification factor; 3 — internal resistance $\rm U_h\!=\!6.3~V,~U_a\!=\!90~V$

Усредненные импульсные характеристики:

I — анодные; 2 — сеточно-анодные $U_b = 6.3 \text{ V}$

Averaged pulse characteristics:

l — anode; 2 — grid-anode $U_h = 6.3 \text{ V}$

Averaged characteristics (cascode connection): I — anode; 2 — grid-anode (for triode 2 grid) U_h = 6.3 V, U_{gT2} = 60 V

Усредненные характеристики (каскодное включение): I — анодные; 2 — сеточно-анодные (по сетке второго триода) U_h = 6,3 V, U_{gT2} = 75 V

Averaged characteristics (cascode connection): I — anode; 2 — grid-anode (for triode 2 grid) $U_h = 6.3 \text{ V}$, $U_{gT2} = 75 \text{ V}$

Усредненные характеристики: l — ток анода; 2 — крутизна

Averaged characteristics:

 $U_{h} = 6.3 \text{ V}$

I — anode current; 2 — transconductance $U_h = 6.3 \text{ V}$

-1.5 V

1.75V

-2V

160

200 Ua, Y

Усредненные характеристики (каскодное включение): I — анодные; 2 — сеточно-анодные (по сетке второго триода) U_h = 6,3 V, U_{gT2} = 90 V

Averaged characteristics (cascode connection): I — anode; 2 — grid-anode (for triode 2 grid) $U_h = 6.3 \text{ V}, U_{gT2} = 90 \text{ V}$

40

12

8

Усредненные характеристики в зависимости от напряжения первой гармоники гетеродина:

l — ток анода; 2 — крутизна преобразования по первой гармонике; 3 — крутизна преобразования по второй гармонике; 4 — ток сетки

 $U_h = 6.3 \text{ V}, U_a = 90 \text{ V}, R_g = 10 \text{ k}\Omega$

Averaged characteristics depending on heterodyne oscillator first harmonic voltage:

I — anode current; 2 — transconductance with regard to first harmonic; 3 — transconductance with regard to second harmonic; 4 — grid current

 $U_h = 6.3 \text{ V}, U_a = 90 \text{ V}, R_g = 10 \text{ k}\Omega$