Классификация временных рядов в пространстве модели с подходом NeuralODE

Сёмкин Кирилл

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов Вадим Викторович 2024

Проблематика работы

Проблема

Необходим метод классификации временных рядов, порождаемых скрытыми динамическими системами. Классификация без учёта порождения данных может быть неустойчивой и некорректной.

Цель

Ввести вероятностную постановку порождения временных рядов в связке с моделью *ОДУ*. Решить проблему ненаблюдаемости порождающих динамических систем. Сформулировать формальную задачу классификации и предложить способы решения.

Решение

Использовать NeuralODE для аппроксимации динамических систем. Параметры системы могут быть фиксированными или порождаться априорным распределением. Классификацию осуществлять с помощью байесовского тестирования гипотез или строить классификатор в пространстве параметров дин. системы.

Постановка задачи

Задана обучающая и тестовая выборка временных рядов для каждого класса. Количество классов K.

Пусть для каждого класса существует динамическая система \mathbf{f}_i , порождающая траектории $\mathbf{z}(t)$ что

$$\begin{cases} \frac{d\mathbf{z}}{dt}(t) = \mathbf{f}_i(\mathbf{z}(t)), \\ \mathbf{z}(0) = 0. \end{cases}$$

Пусть существует функция наблюдений ϕ : $\phi(\mathbf{z}(t)) = x(t)$.

Восстановление и параметризация дин. системы

Наложив некоторые условия регулярности на \mathbf{f}_i и ϕ , с помощью теоремы Такенса можем получить *вложение* исходных дин. систем в \mathbb{R}^m . Фазовыми траекториями будут *вектора задержки* \mathbf{x}_t

$$\mathbf{z}(t) = \stackrel{\leftarrow}{\mathbf{x}}_t := egin{pmatrix} x(t-L+1) & dots \ x(t-1) & dots \ x(t) \end{pmatrix} \in \mathbb{R}^m.$$

Предположим, что векторные поля \mathbf{f}_i лежат в известном параметрическом классе, т.е. $\mathbf{f}_i = \mathbf{f}_{\Theta_i}$. Наконец наложим на тректории независимый шум с нулевым средним и ограниченной дисперсией

$$\mathbf{z}(t)
ightarrow \mathbf{z}(t) + \epsilon,$$
s.t. $\mathbb{E}[\epsilon] = 0,\, \mathbb{D}[\epsilon] < +\infty.$

Полная модель порождения данных

Предлагаются три типа связи параметров Θ_i с дин. системами \mathbf{f}_i в рамках класса:

- lacktriangle Дин. система класса имеет фиксированные параметры $\Theta_i = {\sf const.}$
- **②** Класс имеет *априорное* распределение на параметры $\Theta_i \sim p_i(\Theta)$ (генеративная модель).

Добавив априорное распределение на классы $C \sim \mathsf{Cat}(C)$, мы полностью определим вероятностную модель задачи.

② Каждый параметр Θ задаёт распределение на класс $C \sim p(C|\Theta)$ (дискриминативная модель).

$$C \xrightarrow{\text{Cortl.}} O_{c} \xrightarrow{\text{Pe}^{(c)}} f_{o_{c}} \xrightarrow{\text{2}(t)} C \xrightarrow{\text{P}^{(C10)}} 2. \xrightarrow{\text{E}^{\sim} M(o, I)}$$

Рис.: Графические модели для 2 и 3 типов связи

Алгоритмы классификации временных рядов

Для каждого типа связи:

• На обучающей выборке получить ML оценки параметров класса $\hat{\Theta}_i$. Для тестовой траектории воспользоваться *байесовским* решающим правилом:

$$C_{ ext{test}} = rg \max_{C_i} p(C_i) p(\mathbf{z}_{ ext{test}}(t) | \hat{\Theta}_i)$$

Байесовский вывод

$$p(C = C_i | \mathbf{z}_{\mathsf{test}}(t), \mathbf{z}_{\mathsf{train}}(t)) = \int p(C = C_i | \Theta, \mathbf{z}_{\mathsf{test}}(t)) p_i(\Theta | \mathbf{z}_{\mathsf{train}}(t)) d\Theta$$

① По каждой обучающей траектории получить ML оценку порождающей дин.системы $\hat{\Theta}$. Далее, на полученных оценках обучить классификатор в пространстве параметров $p(C|\Theta)$. Для тестовой траектории снова получаем оценку $\hat{\Theta}_{test}$, пользуемся классификатором:

$$C_{\text{test}} = \arg\max_{C_i} p(C_i | \hat{\Theta}_{\text{test}})$$

Постановка эксперимента

Цель эксперимента

Восстановить фазовые траектории и скрытые дин. системы по обучающей выборке, сравнить качество классификации тремя предложенными методами + с моделями RNN, CNN. Оценить применимость предложенных методов.

Данные

Акселерометрия движений человека для разных типов активностей (50 Гц, 6 классов), датасет MotionSense.

Рис.: Примеры временных рядов в MotionSense

Фазовые траектории

Временные ряды активности "upstairs" и восстановленные фазовые траектории.

Классификация в пространстве параметров

Классы активности "jog"и "stand". Для каждой траектории обучалась линейная модель. В пространстве параметров построен kNN-классификатор. Приведены метрики качества для каждого класса (тестовая выборка) и визуализация t-SNE обученных моделей.

Label	Accuracy
jog	0.4
std	0.7

Рис.: t-SNE на параметрах обученных моделей. Perplexity = 15.

Байесовское решающее правило

Классы активности "jog" и "upstairs" с равномерным априорным расределением. Траектории поделены на train/test. NN-модели обучены на train. Тестовая траектория классифицируется по наибольшему правдоподобию у обученной модели. Приведены метрики качества для каждого класса (тестовая выборка), примеры аппроксимации реальной траектории обученными моделями.

Label	Accuracy
jog	0.68
ups	0.32

Итоги

- Поставлена задача классификации временных рядов, порождённых скрытыми дин. системами
- Предложены три вероятностные модели порождения фазовых траекторий
- Для каждой модели предложен алгортим классификации новых траекторий
- Поставлены первые вычислительные эксперименты по восстановлению параметров дин. систем и классификации

В ближайшее время будет сделано больше вычислительных экспериметов, также будет развита теория по байесовскому типу связи параметров дин. системы со своим классом.