Machine Learning

Dr.Hajialiasgari

Tehran University Of Medical Science

January 19, 2025

- 1 Introduction
- 2 Logistic Regression
- **3** Evaluation

- 1 Introduction
- 2 Logistic Regression
- 3 Evaluation

What is Classification?

Classification is a supervised learning task where the goal is to predict the category or class label of a given input based on its features. It involves learning a decision boundary that separates different classes in the data.

Binary Classification Examples

- **Medical Diagnosis:** Predicting whether a tumor is *benign* or *malignant*.
- **Spam Detection:** Classifying emails as *spam* or *not spam*.
- **Loan Approval:** Predicting whether a loan application is *approved* or *rejected*.
- **Weather Prediction:** Classifying if it will *rain* or *not rain* tomorrow.

Classification Problem

Can we solve this problem by Linear Regression?

We could fit a straight line and define a threshold at 0.5:

- If $h_{\theta}(x) \ge 0.5$, predict y = 1
- If $h_{\theta}(x) < 0.5$, predict y = 0

Classification Problem

• What about now? (By adding a new data point)

- Classification: y = 0 or y = 1
- $h_{\theta}(x)$ can be > 1 or < 0
- Another drawback of using linear regression for this problem

- Introduction
- 2 Logistic Regression
- 3 Evaluation

Introduction

Problem: Distinguish if a person is *overweight* or *not overweight* based on features like age, gender, height, weight, and BMI.

Age	Gender	Height (cm)	Weight (kg)	BMI	Overweight
25	Male	175	80	25.3	0
30	Female	160	60	22.5	0
35	Male	180	90	27.3	1

Notation:

- Features of a sample: **vector** x
- Label: *y*

Logistic Regression: We try to find a function $\sigma(w^Tx)$ that predicts the posterior probabilities $P(y=1 \mid x)$.

Introduction (cont.)

• $\sigma(w^T x)$: probability that y = 1 given x (parameterized by w)

$$P(y = 1 | x, \mathbf{w}) = \sigma(\mathbf{w}^T x)$$

$$P(y = 0 | x, \mathbf{w}) = 1 - \sigma(\mathbf{w}^T x)$$

- We need to look for a function which gives us an output in the range [0, 1]. (like a probability).
- Let's denote this function with $\sigma(.)$ and call it the **activation function**.

Introduction (cont.)

• Sigmoid (logistic) function.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- A good candidate for activation function.
- It gives us a number between 0 and 1 smoothly.
- It is also differentiable

Sigmoid function & its derivative

Introduction (cont.)

• The sigmoid function takes a number as input but we have:

$$x = [x_0 = 1, x_1, ..., x_d]$$

 $w = [w_0, w_1, ..., w_d]$

- So we can use the **dot product** of x and w.
- We have $0 \le \sigma(\mathbf{w}^T x) \le 1$. which is the estimated probability of y = 1 on input x.
- An Example : A basketball game (Win, Lose)
 - $\sigma(\mathbf{w}^T x) = 0.7$
 - In other terms 70 percent chance of winning the game.

Decision surface

- Decision surface or decision boundary is the region of a problem space in which the output label of a classifier is ambiguous. (could be linear or non-linear)
- In binary classification it is where the probability of a sample belonging to each y = 0 and y = 1 is equal.

Decision boundary hyperplane always has **one less dimension** than the feature space.

Decision surface (cont.)

• An example of linear decision boundaries:

linear decision boundaries

ideal decision boundary

Decision surface (cont.)

- Back to our logistic regression problem.
- Decision surface $\sigma(\mathbf{w}^T x) = \mathbf{constant}$.

$$\sigma(\mathbf{w}^T x) = \frac{1}{1 + e^{-(\mathbf{w}^T x)}} = 0.5$$

- Decision surfaces are linear functions of x
 - if $\sigma(\mathbf{w}^T x) \ge 0.5$ then $\hat{v} = 1$, else $\hat{v} = 0$
 - Equivalently, if $\mathbf{w}^T x + w_0 \ge 0.5$ then decide $\hat{y} = 1$, else $\hat{y} = 0$

 \hat{y} is the predicted label

Non-Linear Boundary Example

Predict
$$y = 1$$
 if $-1 + x_1 + x_2 = 0$

- 1 Introduction
- 2 Logistic Regression
- **3** Evaluation

Quote of the Day

It doesn't matter how beautiful your theory is ... If it doesn't agree with experiment, it's wrong.

Richard Feynman

19 / 30

Confusion Matrix and Accuracy

Confusion Matrix:

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Accuracy:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Example: Cancer Detection

- **Scenario:** Predicting whether a tumor is malignant (1) or benign (0).
- Confusion Matrix:

	Predicted Malignant	Predicted Benign
Actual Malignant	50 (TP)	10 (FN)
Actual Benign	5 (FP)	85 (TN)

Calculations:

• Accuracy: $\frac{50+85}{50+85+10+5} = 0.935 (93.5\%)$.

• **Precision:** $\frac{50}{50+5} = 0.909 (90.9\%).$

• **Recall:** $\frac{50}{50+10} = 0.833 (83.3\%).$

Precision and Recall

Precision:

$$Precision = \frac{TP}{TP + FP}$$

Focus: How many positive predictions are actually correct.

Recall (Sensitivity):

$$Recall = \frac{TP}{TP + FN}$$

Focus: How many actual positives are correctly identified.

F1 Score

F1 Score:

$$F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Use: Balances Precision and Recall, especially in imbalanced datasets.

ROC Curve and AUC

ROC Curve:

- Plots True Positive Rate (TPR) vs. False Positive Rate (FPR).
- Evaluates classifier performance at various thresholds.

AUC:

- Measures the overall ability of the model to distinguish between classes.
- Range: 0.5 (No discrimination) to 1.0 (Perfect discrimination).

ROC-AUC

Log-Loss (Logarithmic Loss)

Formula:

Log-Loss =
$$-\frac{1}{n} \sum_{i=1}^{n} \left[y^{(i)} \log(p^{(i)}) + (1 - y^{(i)}) \log(1 - p^{(i)}) \right]$$

Use: Penalizes incorrect predictions with confidence.

Specificity (True Negative Rate)

Formula:

Specificity =
$$\frac{TN}{TN + FP}$$

Focus: How many negatives are correctly identified.

Summary of Evaluation Metrics

Metric Formula		Use Case	
Accuracy	$\frac{TP+TN}{TP+TN+FP+FN}$	Overall correctness	
Precision	$\frac{TP}{TP+FP}$	Positive prediction quality	
Recall	$\frac{TP}{TP+FN}$	Positive detection rate	
F1 Score	$\frac{\overline{TP+FN}}{2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}}$	Balancing Precision and Recall	
Specificity	$\frac{TN}{TN+FP}$	Negative detection rate	
Log-Loss	$-\frac{1}{n}\sum \log$	Probabilistic predictions	

For more information and code check the related notebook

End of Classification