Math 245A Fall 2023

Nakul Khambhati

Homework 3 (due: Fr, Oct. 20)

Problem 2*: a) By monotonicity we know that for each $n \in \mathbb{N}$, $\mu^*(T \cap U_n) \leq \mu^*(T \cap U)$ so the sequence $\{\mu^*(T \cap U_n)\}_{n \in \mathbb{N}}$ is bounded above. Further since $U_n \subset U_{n+1}$ this sequence is also non-decreasing, again by monotonicity. Since real-valued bounded monotone sequences convergence, the sequence convergences and its limit is bounded above by $\mu^*(U \cap T) < \infty$.

- b) Note that $(T \cap U_{n+2} \setminus (T \cap U_{n+1})) \subset T \cap U_{n+1}^c$ and we estbalished in Problem 1 that dist $(U_n, U_{n+1}^c) > 0$ so by the condition given to us (which we shall call separated additivity) we get $\mu^* ((T \cap U_n) \cup (T \cap U_{n+2} \setminus (T \cap U_{n+1}))) = \mu^* (T \cap U_n) + \mu^* (T \cap U_{n+2} \setminus (T \cap U_{n+1}))$. Observe also that $(T \cap U_n) \cup (T \cap U_{n+2} \setminus (T \cap U_{n+1})) \subset T \cap U_{n+2}$ so by monotonicity $\mu^* (T \cap U_n) + \mu^* (T \cap U_{n+2} \setminus (T \cap U_{n+1})) \leq \mu^* (T \cap U_{n+2})$ as required.
- c) First note that $\bigcup_{n\in\mathbb{N}} C_n = T\cap U$. We then rewrite $\sum_{n\in\mathbb{N}} \mu^*(C_n) = \sum_{k\in\mathbb{N}} \mu^*(C_{2k-1}) + \sum_{k\in\mathbb{N}} \mu^*(C_{2k})$. Note that $\operatorname{dist}(C_{n-1},C_{n+1})>0$ as $C_{n-1}\subset U_n$ and $C_{n+1}\subset U_{n+1}^c$. Then by monotonicity and separated additivity, for all $N\in\mathbb{N}$ we can write $\sum_{k=1}^N \mu^*(C_{2k-1}) + \sum_{k=1}^N \mu^*(C_{2k}) = \mu^*(\bigcup_{k=1}^N C_{2k-1}) \mu^*(\bigcup_{k=1}^N C_{2k}) \leqslant \mu^*(T\cup U) + \mu^*(T\cup U)$. Taking the limit $N\to\infty$ gives us that $\sum_{n\in\mathbb{N}} \mu^*(C_n) \leqslant 2\mu^*(T\cap U) < \infty$.
- d) By definition, for all $n \in \mathbb{N}$, $T \cap U = (T \cap U_n) \cup (\bigcup_{k \ge n} C_k)$. Then, by countable subadditivity of μ^* it follows that $\mu^*(T \cap U) \le \mu^*(T \cap U_n) + \sum_{k \ge n} \mu^*(C_k)$.
- e) One equality follows from parts c) and d). Since the sum of $\mu^*(C_k)$ converges, it must be that $\lim_{n\to\infty} \sum_{k=n}^{\infty} \mu^*(C_k) = 0$. Then taking the limit $n\to\infty$ in part d) gives us that $\mu^*(T\cap U) \leq \lim_{n\to\infty} \mu^*(T\cap U_n)$. The other inequality is seen in part a) which gives us the desired equality.
- f) For each $n \in \mathbb{N}$, construct U_n as in Problem 1. So clearly, $\operatorname{dist}(U_n, U^c) > 0$. Also, $(T \cap U_n) \cup (T \cap U^c) \subset T$. Then by monotonicity and separated additivity of μ^* , we get the inequality $\mu^*(T \cap U_n) + \mu^*(T \cap U^c) \leq \mu^*(T)$. Since $U_n \nearrow U$, by lower semicontinuity of the outer measure we get that $\lim_{n \to \infty} \mu^*(T \cap U_n) + \mu^*(T \cap U^c) \leq \mu^*(T)$ which by part e) is the same $\mu^*(T) \geq \mu^*(T \cap U) + \mu^*(T \cap U^c)$.
- g) Recall that for an outer measure μ^* , the set of μ^* -measurable sets \mathcal{M} is a σ -algebra. Therefore, to show $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{O}) \subset \mathcal{M}$ it suffices to show that $\mathcal{O} \subset \mathcal{M}$

i.e. every open set is μ^* -measurable. But this is exactly what part f) shows as the other inequality is always true by finite subadditivity.

Problem 3*: a) We will show (i) \Rightarrow (ii), (ii) \Rightarrow (iii), (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) is obvious as cubes are rectangles.

- (1) Let M ⊂ ℝⁿ and let ε > 0. Assume that we can cover M with a countable collection of rectangles {R_k}_{k∈ℕ} such that the sum of their content is less than ε/2. Furthermore, by density of rationals and continuity of the finite product, we can expand the end points of each interval of each rectangle R_k by some amount less than ε/(n2^{k+1}) so we get a new rectangle R'_k with rational endpoints, with R_k ⊂ R'_k and |R'_k| < |R_k| + ε/2^{k+1}. Each such rectangle R'_k can be covered exactly with finitely many cubes Q_{k1}, Q_{k2},..., Q_{km_k} so the sum of their contents equals |R'_k|. Then M ⊂ ⋃_{k∈ℕ} ⋃_{i∈[m_k]} Q_{ki} and ∑_{k∈ℕ} ∑_{i∈[m_k]} |Q_{ki}| = ∑_{k∈ℕ} |R'_k| ≤ ∑_{k∈ℕ} |R_k| + ε/2 < ε.
 (2) For each cube Q_k, we can cover it with a ball at the center of the cube and
- (2) For each cube Q_k, we can cover it with a ball at the center of the cube and radius √n(b₁-a₁). Its "volume" is (n^{1/2})ⁿ(b₁-a₁)ⁿ which is a factor of n^{n/2} greater than the cube. Let ε > 0 and M ⊂ ℝⁿ arbitrary that can be covered with cubes whose sum of content is less than ε/n^{n/2}. Cover each cube Q_k with a ball with center at the center of the cube and radius r_k = b₁^(k) a₁^(k). Clearly the balls also cover M and ∑_{k∈ℕ} r_kⁿ < n^{n/2} ∑_{k∈ℕ} |Q_k| < ε.
 (3) We can repeat a similar argument but instead, here we cover balls with
- (3) We can repeat a similar argument but instead, here we cover balls with cubes. We use a side length of 2r so that the "volume" scales up by a factor of 2^n but we can repeat the same trick by first getting (by assumption) a cover with balls of total volume less than $\epsilon/2^n$. Then we can expand the balls to cubes with total volume still less than ϵ .
- b) \Rightarrow Let $\epsilon > 0$ and assume that M is a set of measure zero so it has a cover of open balls $M \subset \bigcup_{k \in \mathbb{N}} B_k$ such that $\sum_{k \in \mathbb{N}} r_k^n < \epsilon$. Set $B = \bigcup_{k \in \mathbb{N}} B_k$ itself, which is a Borel set as it is a countable union of open sets. This set has measure zero as it is covered by itself. \Leftarrow Now assume that M is such that there exists a borel set B of measure zero such that $M \subset B$. For each $\epsilon > 0$, we simply use the cover by balls of B for M which shows that M is also of measure zero.
- c) Let $\epsilon > 0$ so for each M_k there exists a collection of open balls $\{B_{kj}\}_{j\in\mathbb{N}}$ such that $\sum_{j=1}^{\infty} r_{kj}^n < \epsilon/2^k$. Then $\bigcup_{k\in\mathbb{N}} \bigcup_{j\in\mathbb{N}} B_{kj}$ is a countable cover (countable union of countable sets is countable) of M and $\sum_{k\in\mathbb{N}} \sum_{j\in\mathbb{N}} r_{jk}^n < \sum_{k\in\mathbb{N}} \epsilon/2^k = \epsilon$. Therefore, M is a set of measure zero.
- **Problem 4*:** a) First we assume that N is bounded so that f is Lipschitz continuous on V with constant L. Let $\epsilon > 0$. Since N is of measure zero, there exists a countable cover of cubes $\{Q_k\}_{k\in\mathbb{N}}$ of N such that $\sum_{k\in\mathbb{N}}|Q_k|<\epsilon/L^n$. Denote $Q_k = [a_1^{(k)}, b_1^{(k)}] \times \cdots \times [a_n^{(k)}, b_n^{(k)}]$. By Lipschitz continuity, for each $j \in [n]$,

- $|f(b_j^{(k)}) f(a_j^{(k)})| \leq L|b_j^{(k)} a_j^{(k)}|$ and so $f(Q_k) \subset Q_k'$ where Q_k' is some cube with $|Q_k'| \leq L^n |Q_k|$. Then, $f(N) \subset \bigcup_{k \in \mathbb{N}} Q_k'$ and $\sum_{k \in \mathbb{N}} |Q_k'| \leq L^n \sum_{k \in \mathbb{N}} |Q_k| < \epsilon$ so f(N) is of measure zero. If N is not bounded, we can cover it by a countable union of bounded sets N_i for $i \in \mathbb{N}$, each of measure zero and then $f(N) \subset \bigcup_{i \in \mathbb{N}} f(N_i)$ where each $f(N_i)$ has measure zero and therefore by part c) of the previous problem f(N) has measure zero.
- b) Let $\epsilon > 0$. By the previous part, it suffices to show that the set A of points with n-th coordinate equal to 0 is of measure zero as this is homeomorphic to the affine hyperplane being considered. Furthermore, it suffices to show that $B = A \cap [0,1]^n$ is of measure zero because A is a countable unions of translated copies of B and we can then use Problem 3 part c). But now this is easy as we can just cover A with the rectangle $R = [0,1]^{n-1} \times [-\epsilon/3,\epsilon/3]$ which has $|R| = 2\epsilon/3 < \epsilon$ and so we are done.

Problem 5*: Let \mathcal{R}_k denote the family of k-dimensional open rectangles. Recall that $\mathcal{B}_k = \sigma(\mathcal{R}_k)$. It suffices to show that $\mathcal{R}_k \otimes \mathcal{R}_n = \mathcal{R}_{k+n}$. We will show this by two inclusions. Let $R_1 \in \mathcal{R}_k$, $R_2 \in \mathcal{R}_n$ so we can write $R_1 = (a_1, b_1) \times \cdots \times (a_k, b_k)$ and $R_2 = (a_{k+1}, b_{k+1}) \times \cdots \times (a_{k+n}, b_{k+n})$ so then $R_1 \times R_2 \in \mathcal{R}_k \otimes \mathcal{R}_n$ equals $(a_1, b_1) \times \cdots \times (a_{k+n}, b_{k+n}) \in \mathcal{R}_{k+n}$. Therefore, $\mathcal{R}_k \otimes \mathcal{R}_n \subset \mathcal{R}_{k+n}$. The other inclusion follows identically as we can write an arbitrary element $(a_1, b_1) \times \cdots \times (a_{k+n}, b_{k+n}) \in \mathcal{R}_{k+n}$ as a product of the two elements $(a_1, b_1) \times \cdots \times (a_k, b_k) \in \mathcal{R}_k$ and $(a_{k+1}, b_{k+1}) \times \cdots \times (a_{k+n}, b_{k+n}) \in \mathcal{R}_n$.