Simply-typed λ -calculus

Renato Neves

Table of Contents

The Basics

A Simple Denotational Semantics

Renato Neves The Basics 2 / 18

Deductive Reasoning

The idea

Knowledge obtained via assumptions and logical rules

Example

If
$$P \rightarrow Q$$
 and $Q \rightarrow R$ then $P \rightarrow R$

The Basics 3 / 18

Deductive Reasoning

The idea

Knowledge obtained via assumptions and logical rules

Example

If
$$P \rightarrow Q$$
 and $Q \rightarrow R$ then $P \rightarrow R$

Deductive reasoning has been studied since Aristotle

... long before the age of artificial computers

So what does it have to do with programming?

Renato Neves The Basics 3 / 18

A Basic Deductive System

 $\mathbb{A}, \mathbb{B} \dots$ will denote propositions and 1 a proposition that always holds

If \mathbb{A} and \mathbb{B} are propositions then

- $\mathbb{A} \times \mathbb{B}$ is a proposition it denotes the conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \to \mathbb{B}$ is a proposition it tells that \mathbb{A} implies \mathbb{B}

Renato Neves The Basics 4 / 18

A Basic Deductive System

 Γ will denote a list of propositions

 $\Gamma \vdash \mathbb{A}$ reads "if the propositions in Γ hold then \mathbb{A} also holds"

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (π_1)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (π_2)}$$

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \quad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \quad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

Renato Neves The Basics 5 / 18

Building New Knowledge From Old

The following rules are derivable from the previous system

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}}$$

$$\frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}}$$

Proof again by an appeal to your friend ... induction :-)

Exercise

Derive the following judgements

- \blacksquare $\mathbb{A} \to \mathbb{B}, \mathbb{B} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{C}$
- \blacksquare $\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$

The Basics 6 / 18

The Bare Essentials of Programming

We should think of what are the basic features of programming . . .

- variables
- function application and creation
- pairing . . .

and base our study on the simplest language with such features . . .

Simply-typed λ -calculus

The basis of Haskell, ML, Eff, F#, Agda, Elm and many other programming languages

Renato Neves The Basics 8 / 18

Simply-typed λ -Calculus

Types are defined by $\mathbb{A} ::= 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$

 Γ now a non-repetitive list of typed variables $(x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n)$

Programs built according to the following deduction rules

$$\frac{x:\mathbb{A}\in\Gamma}{\Gamma\vdash x:\mathbb{A}} \text{ (ass)} \qquad \qquad \frac{\Gamma\vdash t:\mathbb{A}\times\mathbb{B}}{\Gamma\vdash \pi_1\,t:\mathbb{A}} \text{ (π_1)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \qquad \Gamma \vdash s : \mathbb{B}}{\Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash t : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$

$$\frac{\Gamma \vdash t : \mathbb{A} \to \mathbb{B} \quad \Gamma \vdash s : \mathbb{A}}{\Gamma \vdash t s : \mathbb{B}} \text{ (app)}$$

Renato Neves The Basics 9 / 18

$$x : \mathbb{A} \vdash x : \mathbb{A} \text{ (identity)}$$

$$x : \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A}$$
 (duplication)

$$x : \mathbb{A} \times \mathbb{B} \vdash \langle \pi_2 \ x, \pi_1 \ x \rangle : \mathbb{B} \times \mathbb{A} \text{ (swap)}$$

$$f: \mathbb{A} \to \mathbb{B}, g: \mathbb{B} \to \mathbb{C} \vdash \lambda x: \mathbb{A}. g(f x): \mathbb{A} \to \mathbb{C}$$
 (composition)

The Basics 10 / 18

Exercises

Recall the derivations that lead to the judgement

$$\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$$

Build the corresponding program

Derive as well the judgement

$$\mathbb{A} \to \mathbb{B} \vdash \mathbb{A} \times \mathbb{C} \to \mathbb{B} \times \mathbb{C}$$

and subsequently build the corresponding program

The Basics 11 / 18

Table of Contents

The Basics

A Simple Denotational Semantics

A Semantics for Simply-typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

A Semantics for Simply-typed λ -calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-terms $\longrightarrow \dots$

so that we can reason about them rigorously, and take advantage of known mathematical theories

This is the goal of the next slides. But first ...

Functions: Basic Facts

For every set X there exists a 'trivial' function

$$!: X \longrightarrow \{\star\} = 1$$
 $!(x) = \star$

We can always pair two functions into $f: X \to A$, $g: X \to B$

$$\langle f, g \rangle : X \to A \times B$$
 $\langle f, g \rangle (x) = (f x, g x)$

There exist projection functions

$$\pi_1: X \times Y \to X$$
 $\pi_1(x, y) = x$
 $\pi_2: X \times Y \to Y$ $\pi_2(x, y) = y$

Functions: Basic Facts

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$\lambda f: X \to Z^Y$$
 $\lambda f(x) = (y \mapsto f(x, y))$

Consider sets X, Y, Z. There exists an application function

$$app: Z^Y \times Y \to Z$$
 $app(f, y) = f y$

Denotational Semantics

Types \mathbb{A} interpreted as <u>sets</u> $[\![\mathbb{A}]\!]$

$$\begin{bmatrix} 1 \end{bmatrix} = \{ \star \} \\
 \begin{bmatrix} \mathbb{A} \times \mathbb{B} \end{bmatrix} = \begin{bmatrix} \mathbb{A} \end{bmatrix} \times \begin{bmatrix} \mathbb{B} \end{bmatrix} \\
 \begin{bmatrix} \mathbb{A} \to \mathbb{B} \end{bmatrix} = \begin{bmatrix} \mathbb{B} \end{bmatrix} \begin{bmatrix} \mathbb{A} \end{bmatrix}$$

Typing contexts Γ interpreted as Cartesian products

$$\llbracket \Gamma \rrbracket = \llbracket x_1 : \mathbb{A}_1, \dots, x_n : \mathbb{A}_n \rrbracket = \llbracket \mathbb{A}_1 \rrbracket \times \dots \times \llbracket \mathbb{A}_n \rrbracket$$

 λ -terms $\Gamma \vdash t : \mathbb{A}$ interpreted as functions

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

Denotational Semantics

 λ -term $\Gamma \vdash t : \mathbb{A}$ interpreted as a function

$$\llbracket \Gamma \vdash t : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

$$\underbrace{x_i : \mathbb{A} \in \Gamma }_{\llbracket \Gamma \vdash x_i : \mathbb{A} \rrbracket = \pi_i } \qquad \underbrace{\llbracket \Gamma \vdash t : \mathbb{A} \times \mathbb{B} \rrbracket = f}_{\llbracket \Gamma \vdash \pi_1 t : \mathbb{A} \rrbracket = \pi_1 \cdot f}$$

$$\frac{ \llbracket \Gamma \vdash t : \mathbb{A} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{B} \rrbracket = g }{ \llbracket \Gamma \vdash \langle t, s \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle } \quad \frac{ \llbracket \Gamma, x : \mathbb{A} \vdash t : \mathbb{B} \rrbracket = f }{ \llbracket \Gamma \vdash \lambda x : \mathbb{A} \cdot t : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f }$$

$$\frac{\llbracket \Gamma \vdash t : \mathbb{A} \to \mathbb{B} \rrbracket = f \quad \llbracket \Gamma \vdash s : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash t s : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

Exercises

Show that the following equations hold