WS 17/18

Dr. W. Spann F. Hänle, M. Oelker

5. Tutorium zur Linearen Algebra für Informatiker und Statistiker

T17) Sei K ein Körper. Zeigen Sie:

(a)
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$$
 $(a \in K, b, c, d \in K \setminus \{0\})$

(b)
$$(\forall a, b \in K : (a+b)^2 = a^2 + b^2) \iff 1+1=0$$

T18) Betrachten Sie \mathbb{R}^2 mit den Verknüpfungen

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$
 (Addition)
 $(x_1, y_1) \cdot (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$ (Multiplikation)

Zeigen Sie:

(a) Für $(x_1,y_1),(x_2,y_2)\in\mathbb{R}^2$ gilt das Kommutativgesetz der Multiplikation:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_2, y_2) \cdot (x_1, y_1).$$

(b) Für $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$ gilt das Assoziativgesetz:

$$((x_1, y_1) \cdot ((x_2, y_2)) \cdot (x_3, y_3) = (x_1, y_1) \cdot ((x_2, y_2) \cdot (x_3, y_3)).$$

T19) Bestimmen Sie jeweils den Real- und Imaginärteil von

(a)
$$\frac{i}{3+i}$$
 (b) $\frac{1}{1+\sqrt{2}+\sqrt{3}i}$ (c) $(2i-1)^3$ (d) $i^n + \frac{1}{i^n}$ $(n \in \mathbb{N}_0)$

- T20) Sei $(R, +, \cdot)$ ein Ring mit Einselement. $a \in R$ heißt invertierbar, wenn es ein $b \in R$ gibt mit $a \cdot b = b \cdot a = 1$. Sei $R^* := \{a \in R : a \text{ invertierbar}\}$. Zeigen Sie:
 - (a) (R^*,\cdot) ist eine Gruppe ("Einheitengruppe" des Rings $(R,+,\cdot)$)
 - (b) Zeigen Sie, dass die Einheitengruppe von $(\mathbb{Z}, +, \cdot)$ isomorph zur Gruppe $(\mathbb{Z}_2, +)$ ist.