3. (4 puntos) La pandemia Covid-19 ha puesto en tensión a todos los sistemas informáticos del Ministerio de Sanidad. Uno de los problemas ha consistido en asignar de forma óptima pacientes graves a hospitales. Se tienen n pacientes graves y m hospitales con capacidades c_1, \ldots, c_m para atenderlos y se sabe que $\sum_{k=1}^{m} c_k \geq n$. Se conocen las distancias d_{ij} de cada paciente i a cada hospital j. Se pide un algoritmo de vuelta atrás que asigne cada paciente a un hospital, de forma que la suma de distancias a recorrer por las ambulancias que han de transportarlos sea mínima (teniendo en cuenta que cada ambulancia sale del hospital, recoge al paciente en su domicilio y vuelve al hospital para ingresarlo). Implementa un algoritmo de vuelta atrás que resuelva el problema proporcionando todas las explicaciones necesarias. Se valorará la implementación de una poda de optimalidad.

Entrada

La entrada comienza con una línea que contiene el número de casos de prueba. La primera línea de cada caso de prueba contendrá el valor del número de pacientes n y de hospitales m. A continuación en una línea aparecerán las capacidades de los hospitales y finalmente la matriz de distancias: n lineas que contienen las distancias de cada paciente a los m hospitales

Salida

Por cada caso de prueba el programa escribirá una línea con el mínimo de la suma de las distancias de los pacientes a los hospitales a los que van a ser trasladados.

Entrada de ejemplo

1			
5 2			
2 5			
1 4			
3 1			
7 9			
6 6			
2 8			

Salida de ejemplo

38