

Digital Logic and System Design

5. Combinational Logic

COL215, I Semester 2022-2023

Venue: LHC 111

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

Combinational Logic

- Output is function only of present values of inputs
- ...as opposed to Sequential Logic
 - where output could depend on previous values
- What netlists are NOT combinational?

Example combinational circuit

Representing Combinational Logic

- Representing multiple outputs in Truth Table?
- K-Map representation?

Tasks with Combinational Logic Circuits

- Analyse the behaviour of a logic circuit
- Synthesise a circuit for a given behaviour
 - Manually
 - Specify using Hardware Description Language (HDL)
- Study standard combinational circuits
 - Arithmetic operations (addition, multiplication,...)

Analysing a Combinational Circuit (Netlist)

- What Boolean function does a gate netlist implement?
- Follow the netlist from inputs to output
 - identify Boolean functions at intermediate stages

Synthesising a Combinational Circuit

- Capturing informal specification in precise language
- Identify input and output variables
- Represent the logic
 - Truth tables
 - Boolean expressions
- Simplify Boolean expressions
- Implement gate netlist
- Verify: simulation

Example Design: Gray Code Converter

Specification:
 Given a 3-bit Binary
 Code, convert to
 Gray Code

Binary Code Gray Code 0: 3: 4: 5: 6:

Example: Inputs and Outputs, Representation

Example: Boolean Simplification

Inputs	Outputs
a b c	хyz
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

Gate Implementation

Designing a 1-bit Adder

- Specification: single-bit binary addition
- Inputs: x, y
- Outputs: sum (s), carry (c)
- Truth Table
- Boolean simplification

Adder: Simplification and Implementation

- Boolean simplification
- Gate implementation

4-bit Adder

- Specification: 4-bit binary addition
- Inputs: X₃₋₀, Y₃₋₀
- Outputs: sum (s₃₋₀), carry (c)
- Truth Table?
- Composing larger designs out of smaller ones

Identify repeating pattern

At each bit position i:

Inputs: x_i, y_i, c_i

Outputs: S_i , C_{i+1}

x _i y _i c _i	$C_{i+1} S_i$
000	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

Boolean Function for Full Adder

At each bit position i:

Inputs: a, b, c

Outputs: c', s

abc	c′	S
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

Sum:

$$s = ab'c' + a'b'c + a'bc' + abc$$

$$= a (bc + b'c') + a'(b'c + bc')$$

$$= a \oplus b \oplus c$$

Half Adder vs. Full Adder

Half Adder

Full Adder

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Ripple Carry Adder (RCA)

At each bit position i:

Inputs: x_i, y_i, c_i

Outputs: S_i, C_{i+1}

$x_i y_i c_i$	C _{i+}	₁ S _i
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

Chain of Full Adders

Adder delay analysis

- How many gate levels for final output?
- Delay for n-bit RCA?
- What if Full Adder Sum and Carry delays were different?
 - e.g., Sum: 8 ns and Carry: 5 ns
- Can we make it faster?
 - Use **faster gates** on Carry propagation path
 - Partial computation ahead of time: Carry Lookahead

Carry In and Out in Full Adder

- Carry Generation: When do we generate a carry out irrespective of input carry?
 - carry_out = 1 irrespective of carry_in values
- Carry Propagation: When do we propagate an input carry to the output irrespective of input values?
 - carry = carry_in irrespective of x, y values

x _i y _i c _i	C _{i+}	1 S _i
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Full Adder

$$G_i = x_i y_i$$

 $P_i = x_i \oplus y_i$

Using Propagate and Generate Values

- Sum and Carry_out can be derived from P_i and G_i values
- 1 logic level to generate P_i and G_i
 - treating AND and XOR as 1 gate level
- 1 logic level to generate Sum

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i}$$

$$c_{i+1} = x_{i}y_{i} + x_{i}c_{i} + y_{i}c_{i}$$

$$G_{i} = x_{i}y_{i}$$

$$P_{i} = x_{i} \oplus y_{i}$$

$$s_{i} = P_{i} \oplus c_{i}$$

$$c_{i+1} = G_{i} + P_{i}c_{i}$$
 (verify)

Carry Lookahead Logic

$$c_{i+1} = G_i + P_i c_i$$

$$\begin{aligned} & \mathbf{c}_1 = \mathbf{G}_0 + \mathbf{P}_0 \, \mathbf{c}_0 \\ & \mathbf{c}_2 = \mathbf{G}_1 + \, \mathbf{P}_1 \mathbf{c}_1 = \mathbf{G}_1 + \, \mathbf{P}_1 (\mathbf{G}_0 + \mathbf{P}_0 \, \mathbf{c}_0) = \mathbf{G}_1 + \, \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0 \\ & \mathbf{c}_3 = \mathbf{G}_2 + \, \mathbf{P}_2 \mathbf{c}_2 = \mathbf{G}_2 + \, \mathbf{P}_2 (\mathbf{G}_1 + \, \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0) = \mathbf{G}_2 + \, \mathbf{P}_2 \mathbf{G}_1 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0 \\ & \mathbf{c}_4 = \mathbf{G}_3 + \, \mathbf{P}_3 \mathbf{c}_3 = \mathbf{G}_3 + \, \mathbf{P}_3 (\mathbf{G}_2 + \, \mathbf{P}_2 \mathbf{G}_1 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_2 \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0) \\ & = \mathbf{G}_3 + \, \mathbf{P}_3 \mathbf{G}_2 + \, \mathbf{P}_3 \mathbf{P}_2 \mathbf{G}_1 + \, \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{G}_0 + \, \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{P}_0 \, \mathbf{c}_0 \end{aligned}$$

- 2 logic levels to generate c₄ from c₀
- Approx: 5 i/p gate has same delay as 2 i/p gate

4-bit Carry Lookahead Adder (CLA)

$$G_{i} = x_{i} y_{i} \qquad s_{i} = P_{i} \oplus c_{i}$$

$$P_{i} = x_{i} \oplus y_{i} \qquad c_{i+1} = G_{i} + P_{i} c_{i}$$

$$c_{1} = G_{0} + P_{0} c_{0}$$

$$c_{2} = G_{1} + P_{1}G_{0} + P_{1}P_{0} c_{0}$$

$$c_{3} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0} c_{0}$$

- 2 logic levels to generate c₄ from c₀
- Approx: 5 i/p gate has same delay as 2 i/p gate
- 1 logic level to generate all P_i and G_i

 $c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$

- 1 logic level to generate all sums s_i
- 4-bit Adder delay: 1+2+1 = 4 levels

4-bit CLA: Simplified Diagram

16-bit Adder from 4-bit CLA

How do we extend the structure?

CL block-level carry propagate/generate

$$g_{i} = x_{i} y_{i}$$

$$p_{i} = x_{i} \oplus y_{i}$$

$$s_{i} = p_{i} \oplus c_{i}$$

$$c_{i+1} = g_{i} + p_{i} c_{i}$$

16-bit Adder from 4-bit CLA

16-bit Adder from 4-bit CLA

16-bit Adder from 4-bit CLA: Delay Analysis

64-bit Adder from 4-bit CLAs

n-bit Subtraction

- $\cdot d = x y$
- $\bullet d = x + (-y)$
- -y: 2's complement of y
- -y: **y' + 1**
- y': inverter
- How do we add 1?

Programmable Adder/Subtractor

Adder

Subtractor

Very similar!

Can we combine into one structure?

Programmable Adder/Subtractor

M = 0: Add M = 1: Subtract

Programmable Adder/Subtractor

M = 0: Add M = 1: Subtract

$$M = 0$$
: $z = y$
 $M = 1$: $z = y'$
What function is $z (y, M)$?

у М	Z	
00	0	
0 1	1	$z = M \oplus y$
10	1	
11	0	

Binary Multiplier

1x1 Multiplier

Multiplication Algorithm

Multiplier Logic

Multiplication Algorithm

Multiplier Logic

Multiplication Algorithm

4x3 Multiplier

Magnitude Comparator Logic

$$A = B$$

$$X_3X_2X_1X_0$$

$$\mathbf{A} = \mathbf{A}_3 \mathbf{A}_2 \mathbf{A}_1 \mathbf{A}_0$$

$$B = B_3 B_2 B_1 B_0$$

$$x_i = A_i'B_i' + A_iB_i$$

$$x_i = A_i'B_i' + A_iB_i$$
 $A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$

$$A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Similarity in expressions for the 3 comparisons

Magnitude Comparator Implementation

