(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 November 2000 (30.11.2000)

PCT

(10) International Publication Number WO 00/71509 A1

- (51) International Patent Classification?: C07C 311/46, A61K 31/18, A61P 7/02
- (21) International Application Number: PCT/US00/14194
 - (22) International Filing Date: 24 May 2000 (24.05.2000)
 - (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/135,819

24 May 1999 (24.05.1999) US

- (71) Applicant: COR THERAPEUTICS, INC. [US/US]; 256 E. Grand Avenue, South San Francisco, CA 94080 (US).
- (72) Inventors: SONG, Yonghong; 1144 Nimitz Lane, Foster City, CA 94404 (US). CLIZBE, Lane; 392 Newcastle Drive, Redwood City, CA 94061 (US). MARLOWE, Charles; 636 California Way, Redwood City, CA 94080 (US). SCARBOROUGH, Robert, M.; 22 Greenbrier Court, Half Moon Bay, CA 94019 (US). SU, Ting; 3222 Upper Lock Avenue, Belmont, CA 94002 (US). ZHU, Bing-Yan; 3325 Adelaide Way, Belmont, CA 94002 (US).

- (74) Agent: MORGAN, LEWIS & BOCKIUS LLP; 1800 M Street, NW, Washington, DC 20036 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: INHIBITORS OF FACTOR Xa

(57) Abstract: The present application relates to compounds of the general formula A-Y-D-E-G-J-K-L, wherein A, Y, D, E, G, J, K and L have the meanings given in the description, having activity against mammalian factor Xa. The compounds are useful in vitro or in vivo for preventing or treating coagulation disorders.

WO 00/71509 PCT/US00/14194 ·

- 1 -

INHIBITORS OF FACTOR Xa

Related Applications

This application claims benefit of priority under 35 USC § 119(e) to U.S.

Provisional Application No. 60/135,819 filed on May 24, 1999, which is herein incorporated in its entirety by reference.

Field of the Invention

10

15

20

25

30

This invention relates to novel compounds which are potent and highly selective inhibitors of isolated factor Xa or when assembled in the prothrombinase complex. These compounds show selectivity for factor Xa versus other proteases of the coagulation (e.g. thrombin, fVIIa, fIXa) or the fibrinolytic cascades (e.g. plasminogen activators, plasmin). In another aspect, the present invention relates to novel monoamidino-containing compounds, their pharmaceutically acceptable salts, and pharmaceutically acceptable compositions thereof which are useful as potent and specific inhibitors of blood coagulation in mammals. In yet another aspect, the invention relates to methods for using these inhibitors as therapeutic agents for disease states in mammals characterized by coagulation disorders.

Background of the Invention

Hemostasis, the control of bleeding, occurs by surgical means, or by the physiological properties of vasoconstriction and coagulation. This invention is particularly concerned with blood coagulation and ways in which it assists in maintaining the integrity of mammalian circulation after injury, inflammation, disease, congenital defect, dysfunction or other disruption. Although platelets and blood coagulation are both involved in thrombus formation, certain components of the coagulation cascade are primarily responsible for the amplification or acceleration of the processes involved in platelet aggregation and fibrin deposition.

Thrombin is a key enzyme in the coagulation cascade as well as in hemostasis. Thrombin plays a central role in thrombosis through its ability to catalyze the conversion of fibrinogen into fibrin and through its potent platelet activation activity. Direct or indirect inhibition of thrombin activity has been the focus of a variety of recent anticoagulant strategies as reviewed by Claeson, G., "Synthetic Peptides and Peptidomimetics as Substrates and Inhibitors of Thrombin

5

10

15

20

25

- 2 -

and Other Proteases in the Blood Coagulation System", Blood Coag. Fibrinol. 5, 411-436 (1994). Several classes of anticoagulants currently used in the clinic directly or indirectly affect thrombin (i.e. heparins, low-molecular weight heparins, heparin-like compounds and coumarins).

A prothrombinase complex, including Factor Xa (a serine protease, the activated form of its Factor X precursor and a member of the calcium ion binding, gamma carboxyglutamyl (Gla)-containing, vitamin K dependent, blood coagulation glycoprotein family), converts the zymogen prothrombin into the active procoagulant thrombin. Unlike thrombin, which acts on a variety of protein substrates as well as at a specific receptor, factor Xa appears to have a single physiologic substrate, namely prothrombin. Since one molecule of factor Xa may be able to generate up to 138 molecules of thrombin (Elodi et al., *Thromb. Res.* 15, 617-619 (1979)), direct inhibition of factor Xa as a way of indirectly inhibiting the formation of thrombin may be an efficient anticoagulant strategy. Therefore, it has been suggested that compounds which selectively inhibit factor Xa may be useful as *in vitro* diagnostic agents, or for therapeutic administration in certain thrombotic disorders, see *e.g.*, WO 94/13693.

Polypeptides derived from hematophagous organisms have been reported which are highly potent and specific inhibitors of factor Xa. United States Patent 4,588,587 describes anticoagulant activity in the saliva of the Mexican leech, Haementeria officinalis. A principal component of this saliva was shown to be the polypeptide factor Xa inhibitor, antistasin (ATS), by Nutt, E. et al., "The Amino Acid Sequence of Antistasin, a Potent Inhibitor of Factor Xa Reveals a Repeated Internal Structure", J. Biol. Chem., 263, 10162-10167 (1988). Another potent and highly specific inhibitor of Factor Xa, called tick anticoagulant peptide (TAP), has been isolated from the whole body extract of the soft tick Ornithidoros moubata, as reported by Waxman, L., et al., "Tick Anticoagulant Peptide (TAP) is a Novel Inhibitor of Blood Coagulation Factor Xa" Science, 248, 593-596 (1990).

Factor Xa inhibitory compounds which are not large polypeptide-type

inhibitors have also been reported including: Tidwell, R.R. et al., "Strategies for
Anticoagulation With Synthetic Protease Inhibitors. Xa Inhibitors Versus Thrombin
Inhibitors", Thromb. Res., 19, 339-349 (1980); Turner, A.D. et al., "p-Amidino
Esters as Irreversible Inhibitors of Factor IXa and Xa and Thrombin", Biochemistry,
25, 4929-4935 (1986); Hitomi, Y. et al., "Inhibitory Effect of New Synthetic

Protease Inhibitor (FUT-175) on the Coagulation System", Haemostasis, 15, 164-168 (1985); Sturzebecher, J. et al., "Synthetic Inhibitors of Bovine Factor Xa and Thrombin. Comparison of Their Anticoagulant Efficiency", Thromb. Res., 54, 245-252 (1989); Kam, C.M. et al., "Mechanism Based Isocoumarin Inhibitors for Trypsin and Blood Coagulation Serine Proteases: New Anticoagulants", Biochemistry, 27, 2547-2557 (1988); Hauptmann, J. et al., "Comparison of the Anticoagulant and Antithrombotic Effects of Synthetic Thrombin and Factor Xa Inhibitors", Thromb. Haemost., 63, 220-223 (1990); and the like.

Others have reported Factor Xa inhibitors which are small molecule organic compounds, such as nitrogen containing heterocyclic compounds which have amidino substituent groups, wherein two functional groups of the compounds can bind to Factor Xa at two of its active sites. For example, WO 98/28269 describes pyrazole compounds having a terminal C(=NH)-NH₂ group; WO 97/21437 describes benzimidazole compounds substituted by a basic radical which are connected to a naththyl group via a straight or branched chain alkylene,-C(=O) or -S(=O)₂ bridging group; WO 99/10316 describes compounds having a 4-phenyl-N-alkylamidino-piperidine and 4-phenoxy-N-alkylamidino-piperidine group connected to a 3-amidinophenyl group via a carboxamidealkyleneamino bridge; and EP 798295 describes compounds having a 4-phenoxy-N-alkylamidino-piperidine group connected to an amidinonaphthyl group via a substituted or unsubstituted sulfonamide or carboxamide bridging group.

There exists a need for effective therapeutic agents for the regulation of hemostasis, and for the prevention and treatment of thrombus formation and other pathological processes in the vasculature induced by thrombin such as restenosis and inflammation. In particular, there continues to be a need for compounds which selectively inhibit factor Xa or its precursors. Compounds that have different combinations of bridging groups and functional groups than compounds previously discovered are needed, particularly compounds which selectively or preferentially bind to Factor Xa. Compounds with a higher degree of binding to Factor Xa than to thrombin are desired, especially those compounds having good bioavailability and/or solubility.

Summary of the Invention

5

10

15

20

25

30

The present invention relates to novel compounds which inhibit factor Xa,

-4-

their pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives, and pharmaceutically acceptable compositions thereof which have particular biological properties and are useful as potent and specific inhibitors of blood coagulation in mammals. In another aspect, the invention relates to methods of using these inhibitors as diagnostic reagents or as therapeutic agents for disease states in mammals which have coagulation disorders, such as in the treatment or prevention of any thrombotically mediated acute coronary or cerebrovascular syndrome, any thrombotic syndrome occurring in the venous system, any coagulopathy, and any thrombotic complications associated with extracorporeal circulation or instrumentation, and for the inhibition of coagulation in biological samples.

In certain embodiments, this invention relates to novel compounds which are potent and highly selective inhibitors of isolated factor Xa when assembled in the prothrombinase complex. These compounds show selectivity for factor Xa versus other proteases of the coagulation cascade (e.g. thrombin, etc.) or the fibrinolytic cascade, and are useful as diagnostic reagents as well as antithrombotic agents.

In a preferred embodiment, the present invention provides a compound of the formula I:

A-Y-D-E-G-J-Z-L

20 wherein:

5

10

15

30

A is selected from:

- C₁-C₆-alkyl; (a)
- C₃-C₈-cycloalkyl; (b)
- phenyl, which is independently substituted with 0-2 R¹ substituents; (c)
- 25 naphthyl, which is independently substituted with 0-2 R¹ (d) substituents; and
 - (e) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;

R¹ is selected from:

- 5 **-**

Halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.} acycloalkyl,-CN, -NO₂, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁-C₄-alkyl, -CN C₁₋₄alkyl, C₂₋₆alkenyl, C₂. 6alkynyl, C3-8cycloalkyl, C0-4alkylC3-8cycloalkyl and -NO2;

R² and R³ are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, 10 C_{0.4}alkylphenyl and C_{0.4}alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C14alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN, and -NO₂;

m is an integer of 0-2; 15

5

Y is a member selected from the group consisting of:

a direct link, -C(=O)-, $-N(R^4)$ -, -C(=O)- $N(R^4)$ -, $-N(R^4)$ -C(=O)-, $-SO_2$ -, -O-, $-SO_2-N(R^4)$ - and $-N(R^4)-SO_2$ -;

R⁴ is selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, 20 Co4alkylphenyl and Co4alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN, and -NO₂;. 25

D is a direct link or is a member selected from the group consisting of:

- phenyl, which is independently substituted with 0-2 R^{1a} substituents; (a)
- naphthyl, which is independently substituted with 0-2 R^{1a} (b) substituents: and

10

15

(c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

5 R^{1a} is selected from:

Halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN and -NO₂:

R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

20 E is a member selected from the group consisting of:

R⁵ and R⁶ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheteroaryl, C₁₋₄alkylCOOH and C₁₋₄alkylCOOC₁₋₄alkyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl, naphthyl and heteroaryl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

G is selected from:

WO 00/71509

5

10

25

- 7 -

-CR7R8- and -CR7R8a-CR7bR8b-

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, C_{0.4}alkylphenyl, C_{0.4}alkylnaphthyl, -OR⁹,-C_{0.4}alkylCOOR⁹, -C_{0.4}alkylC(=O)NR⁹R¹⁰, -C_{0.4}alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -C_{0.4}alkylC(=O)NR⁹(-CH₂-CH₂-O-R¹⁰-)₂, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and a naturally occurring or synthetic amino acid side chain, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, -CN and -NO₂;

R⁹ and R¹⁰ are independently selected from:

H, C₁₋₄alkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, -CN and -NO₂, and wherein R⁹ and R¹⁰ taken together can form a 5-8 membered heterocylic ring;

J is a member selected from the group consisting of:

a direct link, -CH(R¹¹)- and -CH(R¹¹)-CH₂-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkylphenyl, C_{0-4} alkylphenyl, C_{0-4} alkylphenyl, C_{0-4} alkylphenyl, C_{0-4} alkylphenyl, C_{0-4} alkylphenyl consisting of N, O and S, CH_2COOC_{1-4} alkyl, CH_2COOC_{1-4} alkylphenyl and CH_2COOC_{1-4} alkylphenyl;

Z is a member selected from the group consisting of:

(a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;

- 8 -

- (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
- (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R1b is selected from:

5

10

15

30

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-CH₂-COR^{2b}, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

R^{2b} and R^{3b} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

L is selected from:

25 H, -CN, C(=0)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³, and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C₁₋₄alkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, COOC₁₋₄alkyl, COO-C₀₋₄alkylphenyl and COO-C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the

-9-

group consisting of halo, C_{1-a} alkyl, C_{2-a} alkynyl, C_{3-a} cycloalkyl, C_{0-a} alkyl C_{3-a} cycloalkyl, -CN, and -NO₂;

R¹⁴ and R¹⁵ are independently selected from:

H, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, C_{0-4} alkylphenyl and C_{0-4} alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN, and -NO₂;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

In certain aspects of this invention, compounds are provided which are useful as diagnostic reagents. In another aspect, the present invention includes pharmaceutical compositions comprising a pharmaceutically effective amount of the compounds of this invention and a pharmaceutically acceptable carrier. In yet another aspect, the present invention includes methods comprising using the above compounds and pharmaceutical compositions for preventing or treating disease states characterized by undesired thrombosis or disorders of the blood coagulation process in mammals, or for preventing coagulation in biological samples such as, for example, stored blood products and samples. Optionally, the methods of this invention comprise administering the pharmaceutical composition in combination with an additional therapeutic agent such as an antithrombotic and/or a thrombolytic agent and/or an anticoagulant.

The preferred compounds also include their pharmaceutically acceptable isomers, hydrates, solvates, salts and prodrug derivatives.

Detailed Description of the Invention

Definitions

5

15

20

In accordance with the present invention and as used herein, the following terms are defined with the following meanings, unless explicitly stated otherwise.

5

10

15

20

25

30

- 10 -

The term "alkenyl" refers to a trivalent straight chain or branched chain unsaturated aliphatic radical. The term "alkinyl" (or "alkynyl") refers to a straight or branched chain aliphatic radical that includes at least two carbons joined by a triple bond. If no number of carbons is specified alkenyl and alkinyl each refer to radicals having from 2-12 carbon atoms.

The term "alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain and cyclic groups having the number of carbon atoms specified, or if no number is specified, having up to 12 carbon atoms. The term "cycloalkyl" as used herein refers to a mono-, bi-, or tricyclic aliphatic ring having 3 to 14 carbon atoms and preferably 3 to 7 carbon atoms.

As used herein, the terms "carbocyclic ring structure" and "C₃₋₁₆ carbocyclic mono, bicyclic or tricyclic ring structure" or the like are each intended to mean stable ring structures having only carbon atoms as ring atoms wherein the ring structure is a substituted or unsubstituted member selected from the group consisting of: a stable monocyclic ring which is aromatic ring ("aryl") having six ring atoms; a stable monocyclic non-aromatic ring having from 3 to 7 ring atoms in the ring; a stable bicyclic ring structure having a total of from 7 to 12 ring atoms in the two rings wherein the bicyclic ring structure is selected from the group consisting of ring structures in which both of the rings are aromatic, ring structures in which one of the rings is aromatic and ring structures in which both of the rings are non-aromatic; and a stable tricyclic ring structure having a total of from 10 to 16 atoms in the three rings wherein the tricyclic ring structure is selected from the group consisting of: ring structures in which three of the rings are aromatic, ring structures in which two of the rings are aromatic and ring structures in which three of the rings are nonaromatic. In each case, the non-aromatic rings when present in the monocyclic, bicyclic or tricyclic ring structure may independently be saturated, partially saturated or fully saturated. Examples of such carbocyclic ring structures include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), 2.2.2] bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin). Moreover, the ring structures described herein may be attached to one or more indicated pendant groups via any carbon atom which results in a stable structure. The term "substituted" as used in conjunction with carbocyclic ring structures means that hydrogen atoms attached to the ring carbon atoms of ring

structures described herein may be substituted by one or more of the substituents indicated for that structure if such substitution(s) would result in a stable compound.

- 11 -

The term "aryl" which is included with the term "carbocyclic ring structure" refers to an unsubstituted or substituted aromatic ring, substituted with one, two or three substituents selected from loweralkoxy, loweralkyl, loweralkylamino, hydroxy, halogen, cyano, hydroxyl, mercapto, nitro, thioalkoxy, carboxaldehyde, carboxyl, carboalkoxy and carboxamide, including but not limited to carbocyclic aryl, heterocyclic aryl, and biaryl groups and the like, all of which may be optionally substituted. Preferred aryl groups include phenyl, halophenyl, loweralkylphenyl, napthyl, biphenyl, phenanthrenyl and naphthacenyl.

5

10

15

20

25

30

The term "arylalkyl" which is included with the term "carbocyclic aryl" refers to one, two, or three aryl groups having the number of carbon atoms designated, appended to an alkyl group having the number of carbon atoms designated. Suitable arylalkyl groups include, but are not limited to, benzyl, picolyl, naphthylmethyl, phenethyl, benzyhydryl, trityl, and the like, all of which may be optionally substituted.

As used herein, the term "heterocyclic ring" or "heterocyclic ring system" is intended to mean a substituted or unsubstituted member selected from the group consisting of stable monocyclic ring having from 5-7 members in the ring itself and having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S; a stable bicyclic ring structure having a total of from 7 to 12 atoms in the two rings wherein at least one of the two rings has from 1 to 4 hetero atoms selected from N, O and S, including bicyclic ring structures wherein any of the described stable monocyclic heterocyclic rings is fused to a hexane or benzene ring; and a stable tricyclic heterocyclic ring structure having a total of from 10 to 16 atoms in the three rings wherein at least one of the three rings has from 1 to 4 hetero atoms selected from the group consisting of N, O and S. Any nitrogen and sulfur atoms present in a heterocyclic ring of such a heterocyclic ring structure may be oxidized. Unless indicated otherwise the terms "heterocyclic ring" or "heterocyclic ring system" include aromatic rings, as well as non-aromatic rings which can be saturated, partially saturated or fully saturated non-aromatic rings. Also, unless indicated otherwise the term "heterocyclic ring system" includes ring structures wherein all of the rings contain at least one hetero atom as well as structures having less than all of the rings in the ring structure containing at least one hetero atom, for

5

10

15

- 12 -

example bicyclic ring structures wherein one ring is a benzene ring and one of the rings has one or more hetero atoms are included within the term "heterocyclic ring systems" as well as bicyclic ring structures wherein each of the two rings has at least one hetero atom. Moreover, the ring structures described herein may be attached to one or more indicated pendant groups via any hetero atom or carbon atom which results in a stable structure. Further, the term "substituted" means that one or more of the hydrogen atoms on the ring carbon atom(s) or nitrogen atom(s) of the each of the rings in the ring structures described herein may be replaced by one or more of the indicated substituents if such replacement(s) would result in a stable compound. Nitrogen atoms in a ring structure may be quaternized, but such compounds are specifically indicated or are included within the term "a pharmaceutically acceptable salt" for a particular compound. When the total number of O and S atoms in a single heterocyclic ring is greater than 1, it is preferred that such atoms not be adjacent to one another. Preferably, there are no more that 1 O or S ring atoms in the same ring of a given heterocyclic ring structure.

Examples of monocylic and bicyclic heterocylic ring systems, in alphabetical order, are acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalinyl, carbazolyl, 4aH-carbazolyl, 20 carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, 25 octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyrazolyl, pyrazolyl, pyrazolidinyl, pyrazolyl, pyridazinyl, pryidooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, 30 pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoguinolinyl, tetrahydroguinolinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, 35

thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl. Preferred heterocyclic ring structures include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrrolidinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocylic ring structures.

As used herein the term "aromatic heterocyclic ring system" has essentially the same definition as for the monocyclic and bicyclic ring systems except that at least one ring of the ring system is an aromatic heterocyclic ring or the bicyclic ring has an aromatic or non-aromatic heterocyclic ring fused to an aromatic carbocyclic ring structure.

The terms "halo" or "halogen" as used herein refer to Cl, Br, F or I substituents. The term "haloalkyl", and the like, refer to an aliphatic carbon radicals having at least one hydrogen atom replaced by a Cl, Br, F or I atom, including mixtures of different halo atoms. Trihaloalkyl includes trifluoromethyl and the like as preferred radicals, for example.

The term "methylene" refers to -CH2-.

5

10

15

20

25

30

The term "pharmaceutically acceptable salts" includes salts of compounds derived from the combination of a compound and an organic or inorganic acid. These compounds are useful in both free base and salt form. In practice, the use of the salt form amounts to use of the base form; both acid and base addition salts are within the scope of the present invention.

"Pharmaceutically acceptable acid addition salt" refers to salts retaining the biological effectiveness and properties of the free bases and which are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicyclic acid and the like.

"Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly

- 14 -

preferred are the ammonium, potassium, sodium, calcium and magnesium salts. Salts derived from pharmaceutically acceptable organic nontoxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-diethylaminoethanol, trimethamine, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperizine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic nontoxic bases are isopropylamine, diethylamine, ethanolamine, trimethamine, dicyclohexylamine, choline, and caffeine.

"Biological property" for the purposes herein means an *in vivo* effector or antigenic function or activity that is directly or indirectly performed by a compound of this invention that are often shown by *in vitro* assays. Effector functions include receptor or ligand binding, any enzyme activity or enzyme modulatory activity, any carrier binding activity, any hormonal activity, any activity in promoting or inhibiting adhesion of cells to an extracellular matrix or cell surface molecules, or any structural role. Antigenic functions include possession of an epitope or antigenic site that is capable of reacting with antibodies raised against it.

In the compounds of this invention, carbon atoms bonded to four non-identical substituents are asymmetric. Accordingly, the compounds may exist as diastereoisomers, enantiomers or mixtures thereof. The syntheses described herein may employ racemates, enantiomers or diastereomers as starting materials or intermediates. Diastereomeric products resulting from such syntheses may be separated by chromatographic or crystallization methods, or by other methods known in the art. Likewise, enantiomeric product mixtures may be separated using the same techniques or by other methods known in the art. Each of the asymmetric carbon atoms, when present in the compounds of this invention, may be in one of two configurations (R or S) and both are within the scope of the present invention.

30

5

10

15

20

25

Preferred Embodiments

In a preferred embodiment, the present invention provides a compound according to the formula I:

- 15 -

A-Y-D-E-G-J-Z-L

wherein:

A is selected from:

- (a) C_1 - C_6 -alkyl;
- 5 (b) C_3 -C₈-cycloalkyl;
 - (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
 - (d) naphthyl, which is independently substituted with 0-2 R¹ substituents;
- (e) a monocyclic or fused bicyclic heterocyclic ring system having from
 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are
 selected from N, O and S, and wherein the ring system may be
 substituted with 0-2 R¹ substituents;

R1 is selected from:

halo, C₁₋₄alkyl, -CN, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S;

R² and R³ are independently selected from the group consisting of:

H, C_{1.4}alkyl and C_{0.4}alkylaryl,

m is an integer of 0-2;

20 Y is a member selected from the group consisting of:

a direct link,
$$-C(=O)$$
-, $-N(R^4)$ -, $-C(=O)$ - $N(R^4)$ -, $-N(R^4)$ - $C(=O)$ -, $-SO_2$ -, $-O$ -, $-SO_2$ - $N(R^4)$ - and $-N(R^4)$ - SO_2 -;

R4 is selected from:

25 H, C_{1-4} alkyl and C_{0-4} alkylaryl;

D is absent or is a member selected from the group consisting of:

(a) aryl, which is independently substituted with 0-2 R^{1a} substituents; and

- 16 -

a monocyclic or fused bicyclic heterocyclic ring system having from (b) 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

5 R^{1a} is selected from:

> Halo, C₁₋₄alkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic ring containing from 1-4 heteroatoms selected from N, O and S;

R^{2a} and R^{3a} are independently selected from the group consisting of:

10 H, C14alkyl and C04alkylaryl;

E is a member selected from the group consisting of:

$$-N(R^5)-C(=O)-$$
, $-C(=O)-N(R^5)-$, $-N(R^5)-C(=O)-N(R^6)-$, $-SO_2-N(R^5)-$, $-N(R^5)-SO_2-N(R^6)-$ and $-N(R^5)-SO_2-N(R^6)-$ C(=O)-;

R⁵ and R⁶ are independently selected from:

15 H, C_{1-4} alkyl, C_{0-4} alkylaryl, C_{0-4} alkylheteroaryl, C_{1-4} alkylCOOH C₁ alkylCOOC₁ alkyl;

G is selected from:

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from 20 the group consisting of:

> C_{14} alkyl, C_{04} alkyl- $C_{3.8}$ cycloalkyl, C₀₄alkylaryl, $-C_{0-4}$ alkylCOOR⁹, $-C_{0-4}$ alkylC(=O)NR⁹R¹⁰, $-N(R^9)COR^{10}$, $-N(R^9)C(=O)R^{10}$, -N(R⁹)SO₂R¹⁰, and common amino acid side chains;

R⁹ and R¹⁰ are independently selected from:

25 H, $C_{1,4}$ alkyl and $C_{0,4}$ alkylaryl;

J is a member selected from the group consisting of:

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylaryl, C₀₋₄alkylheterocyclics, CH₂COOC₁₋₄alkyl, CH₂COOC₁₋₄alkylaryl;

Z is a member selected from the group consisting of:

- (a) aryl, which is independently substituted with 0-2 R^{1b} substituents; and
- 5 (b) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R^{1b} is selected from:

halo, C₁₋₄alkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic ring containing from 1-4 heteroatoms selected from N, O and S;

R^{2b} and R^{3b} are independently selected from the group consisting of:

15 H, C₁₄alkyl and C₀₄alkylaryl;

L is selected from:

25

H, -CN, C(=O)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³ and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

20 hydrogen, $-OR^{14}$, $-NR^{14}R^{15}$, C_{14} alkyl, C_{04} alkylaryl $COOC_{14}$ alkyl, and $COO-C_{04}$ alkylaryl;

R¹⁴ and R¹⁵ are independently selected from:

H and C₁₋₄alkyl; and

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

In a further preferred embodiment, the present invention provides a compound according to the formula I:

- 18 -

A-Y-D-E-G-J-Z-L

wherein:

5

A is selected from:

- (a) phenyl, which is independently substituted with 0-2 R¹ substituents; and
- (b) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;
- 10 R¹ is selected from:

R² and R³ are independently selected from the group consisting of:

H and C₁₋₄alkyl;

Y is a member selected from the group consisting of:

15 a direct link, -C(=O)-, $-SO_2$ - and -O-;

D is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents; and
- (b) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

R^{1a} is selected from:

Halo and C₁₄alkyl;

25 R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₀₋₄alkylaryl;

E is a member selected from the group consisting of:

10

25

 $-N(R^5)-C(=O)-$ and $-C(=O)-N(R^5)-$;

R⁵ and R⁶ are independently selected from:

H, C₁₋₄alkyl, C₀₋₄alkylaryl and C₀₋₄alkylheteroaryl;

G is selected from:

5 $-CR^7R^8$ and $-CR^7R^{8a}$ $-CR^{7b}R^{8b}$

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, $C_{1.4}$ alkyl, $C_{0.4}$ alkyl- $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkylaryl, -OR⁹, - $C_{0.4}$ alkylCOOR⁹, - $C_{0.4}$ alkylC(=O) NR⁹R¹⁰, - $C_{0.4}$ alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, - $C_{0.4}$ alkylC(=O)NR⁹(-CH₂-CH₂-O-R¹⁰-)₂, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and common amino acid side chains;

R⁹ and R¹⁰ are independently selected from:

H and C₁₋₄alkyl, wherein the NR⁹R¹⁰ group of R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} is optionally cyclized to form a 5-8 membered heterocyclic group;

15 J is a member selected from the group consisting of:

a direct link, -CH(R¹¹)- and -CH(R¹¹)-CH₂-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C_{1-4} alkyl, C_{2-6} alkenyl, C_{0-4} alkylaryl and a C_{0-4} alkylheterocyclic ring;

- 20 Z is a member selected from the group consisting of:
 - (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
 - (b) an aromatic heterocyclic ring having from 5 to 10 ring atoms, wherein 1-4 ring atoms are selected from N, O and S, and wherein the ring may be substituted independently by from 0-2 R^{1b} substituents; and
 - (c) a fused aromatic bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected

- 20 -

from N, O and S, wherein the bicyclic ring system may be substituted with 0-2 R^{1b} substituents;

R^{1b} is selected from:

halo, C_{1-4} alkyl, OH, OBn, O- CH_2 - CH_2 -OH, O- CH_2 - CH_2 -OCH₃, O- CH_2 -COOH, O- CH_2 -C(=O)-O- CH_3 , NH₂, NH- CH_2 -CH₂-O- CH_3 , NH-C(=O)-O- CH_3 , and NH- SO_2 - CH_3 ;

L is selected from:

 $\label{eq:hamiltonian} H,\,C(=\!O)NR^{12}R^{13},\,(CH_2)_nNR^{12}R^{13} \text{ and } C(=\!NR^{12}\!)NR^{12}R^{13};$

R¹² and R¹³ are independently selected from:

10 hydrogen and C₁₋₄alkyl;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

In a further preferred embodiment, the present invention provides a compound according to formula I:

wherein

20

A is a member selected from the group consisting of:

D is a member selected from the group consisting of:

5 E is a member selected from the group consisting of::

G is selected from:

$$-CH_2-CH(C(=O)-OR^8)$$
-, and $-CH_2-CH(C(=O)-N(-R^8, -R^8))$ -;

R⁷ is a member selected from the group consisting of:

H, phenyl, Bn, -O-loweralkyl and cyclohexyl;

R⁸ is a member selected from the group consisting of:

J is a member selected from the group consisting of;

a direct link, -CH(R¹¹)- and -CH(R¹¹)-CH₂-;

R¹¹ is a member selected from the group consisting of:

H, methyl, phenyl and benzyl; and

Z and L taken together are a member selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

The following non-limiting tables illustrate representative compounds of the present invention:

5

Table 1

Formula II

R ⁷	R ^{1b'}	R ^{1b*}
н	н	н
Ме	н	ОН
	F · ·	Н
Он	-ОН	F
\Diamond	Br	он
CH ₂ -	-NH2	он
CH ₂ CH ₂	OCH2Ph	F
CH ₂ CH ₂ NHMe	OCH2CH2OMe	н
CH ₂ CH ₂ NMe ₂	н	н
CH ₂ CH ₂	н	H

Table 1a

R ⁷	R ^{1b} .	R¹b⁵
н	н	н
Ме	н	он
	F	н
CH ₂	-ОН	F
CH ₂	Br	ОН
CH ₂	-NH2	он
OCH ₂ CH ₂ OMe	OCH 2Ph	F
осн ₂ соон	OCH2CH2OMe	н
HN CH ₂	н .	н
BnN N	н	н

Table 2

Formula III

R ⁷	R ^{1b}
н	Н
Ме	H
	F
ОН	-ОН
	Br
CHr	-NH2
CH ₂ CH ₂	осн2Рһ
CH ₂ CH ₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	. н
CH ₂ CH ₂ N	н

Table 2a

Formula III

R ⁷	R ^{1b}
н	_ н
Me	н .
	F
CH ₂	-ОН
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
ОСН2СООН	OCH2CH2OMe
CH ₂	н
BniN CH ₂	н .

Table 3

Formula IV

	· · · · · · · · · · · · · · · · · · ·
R ⁷	R ^{1b}
н	н
Me	Н
	F
OH .	-ОН
	Br
CH ₂ -	-NH2
CH2CH2 O	ОСН 2Рh
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂	н ′

Table 3a

Formula IV

R ⁷	R ^{1b}
	<u> </u>
н	н
Me	н .
	F
CH ₂	ОН
OH CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
осн ₂ соон	OCH2CH2OMe
HN CH ₂	н
BnN N	н

Table 4

Formula V

	· · · · · · · · · · · · · · · · · · ·
R ⁷	R ^{1b}
Н	н
Me	н
	F
OH OH	-он
	Br
CH ₃ -	-NH2
CH2CH2 O	OCH 2Ph
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂	н

Table 4a

Formula V

R ⁷	R ^{1b}
н	н
Ме	Н
	F
CH ₂	-ОН
CH ₂	Br
CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
CH ₂	OCH2CH2OMe
HN N	н .
BnN .	н .

Formula VI

R ⁷	R ^{fb}
н	н
Me	н
	F
OH OH	-ОН
\Diamond	Br
CHr	-NH2
CH ₂ CH ₂	OCH 2Ph
CH ₂ CH ₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂	н

Table 5a

Formula VI

R ⁷	R ^{1b}
Н	н
Me	н
	, F
CH₂	-он
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
OCH ₂ COOH	OCH2CH2OMe
HN CH ₂	н
BnN CH ₂	н

Formula VII

R ⁷	R ^{1b}
н	н
Ме	н
	F
ОН	-ОН
	Br
CH _r	-NH2
CH ₂ CH ₂ CH ₂	OCH2Ph
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂	н

Table 6a

Formula VII

R ⁷	R ^{1b}
н	н
n	
Me	н
	F
CH₂	-он
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH 2Ph
ОСН2СООН	OCH2CH2OMe
HN CH ₂	н
BnN CH ₂	Н

Table 7

Formula VIII

A	D	Α	D
SO ₂ NH ₂	~	CH ₂ NMe ₂	CI F
\$O ₂ NHMe	——————————————————————————————————————		- <>
SO₂NHBu(t)	~~~~	_	
SO ₂ Me	F		
СН-ИН-		H ₂ N	— <u> </u>
CH ₂ NHMe	- 	H ₂ N	~__\

Table 8

Formula IX

A	D	A	D
SO ₂ NH ₂		CH ₂ NMe ₂	- F
\$O ₂ NHM _B	——————————————————————————————————————		←
SO ₂ NHBu(i)			→
SO ₂ Me			─
CH2NH2		H ₂ N	←
CH ₂ NHM9	-	H ₂ N	-

wherein R3 is a member selected from the group consisting of H, F, -OH,

Br, Cl, -NH₂, -O-CH₂-O-Ph and -O-CH₂-CH₂-O-CH₃,

Table 9

Formula X

Α	D	A	D
SO ₂ NH ₂	——————————————————————————————————————	CH ₂ NMe ₂	CI F
SO ₂ NHMe	——————————————————————————————————————		<u>-</u>
SO ₂ NHBu(t)	~~~~		-
ŞO ₂ Me			←
СН-ИН		H ₂ N————————————————————————————————————	
CH ₂ NHMe	- > -	H ₂ N	~ <u>`</u>

Table 10

Formula XI

Α .	D	Α .	D
SO ₂ NH ₂	—	CH ₂ NMe ₂	G F
\$O ₂ NHMa	——————————————————————————————————————		→
SO₂NHBu(t)	-C _c		←
SO ₂ Ma	- F		←>
СНИН		H ₂ N——	-<>
CH2NHMe	-	H ₂ N	

Table 11

Formula XII

A	D	A	D
SO ₂ NH ₂		CH₂NMe₂	CI F
SONHMe	——————————————————————————————————————		
SO₂NHBu(t)	CI	_	─
SO ₂ Me	——————————————————————————————————————		←
CH ₂ NH ₂		H ₂ N——	←>
CH ₂ NHMe	-	H ₂ N	~~~

Table 12

Formula XIII

Α	D		D
SO ₂ NH ₂	—	CH ₂ NMe ₂	c F
SO ₂ NHMe	——————————————————————————————————————		—
SO₂NHBu(t)			→
SO ₂ Me			
CH ₂ NH ₂		H ₂ N—————	
CH ₂ NHMe	-	H ₂ N	~

Table 13

Formula XIV

Α .	D	Α	D
SO ₂ NH ₂	→	CH ₂ NMe ₂	c F
\$O ₂ NHMə	——————————————————————————————————————		←
SO₂NHBu(t)	←	~	
SO ₂ Me	———F		——————————————————————————————————————
CH2NH2		Nh ₂ —N	
CH ₂ NHMe		H ₂ N	

Table 14

Formula XV

Α ·	D	Α .	D
SO ₂ NH ₂	-	CH ₂ NMe ₂	CI F
SO ₂ NHMe	——————————————————————————————————————		
SO₂NHBu(t)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-
SO ₂ Me			←
ÇH2NH2		Nh ₂ —	←>
CH ₂ NHMe	- > -	H ₂ N	~~~~

Table 15

Formula XVI

A	D	Α .	D
SO ₂ NH ₂	→	CH ₂ NMe ₂	c F
SONHMe	——————————————————————————————————————		
SO₂NHBu(t)			─
SO ₂ Me	F		←
CH ₂ NH ₂		Nh ₂ —N—	─
CH ₂ NHM ₀	→	H ₂ N	~~~~

Table 16

Formula XVII

Α	D	A	D
SO ₂ NH ₂		CH ₂ NMe ₂	cr F
\$O ₂ NHMe	——————————————————————————————————————		
SO₂NHBu(I)	→ c		—
SO ₂ Me			←>
CH2NH2		Nh ₂ —	
CH ₂ NHMe	-	H ₂ N	~~ <u>~</u>

Table 17

Formula XVIII

R ⁷	R ¹¹	R ^{1b'}	R ^{1b"}
Н	н	н	н
Ме	н	н	он
Image: Control of the		F	н
P P	CH ₂	-ОН	F
\Diamond	CH ₂	ОН	ОН
CH ₂	OMe CH ₂	-NH2	н

Table 18

Formula XX

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	, OH	Ç.,
Me ·	н		OH CH ₂
		E.	OMe CH ₂

Table 19

Formula XX

R ⁷	R ¹¹	R ⁷	R ¹¹
н	Н	¥	CH ₂
Ме	н	\downarrow	CH ₂
		ě.	OMe CH ₂

Formula XXII

R ⁷	R ¹¹	R ⁷	R ¹¹
н .	н		Č.
Ме	н		OH CH ₂
		Č.F.	OMe

Formula XXII

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	₹	ČĐ ₂
Me	н		OH OH
	0	3	OMe OH ₂

Table 22

Formula XXIV

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	-{}-5	Ç.
Ме	H	\rightarrow	OH CH ₂
		Ē,	OMe

Table 23

Formula XXIV

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н .	9-	Ç.
Me	н	<u> </u>	OH CH ₂
		Č.	OMe OH ₂

Formula XXV

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	9	CH ₂
Ме	Н		OH CH ₂
		Ĕ.	OMe

5

10

Table 25

Formula XXVI

R ⁷	R ¹¹	R ^{1b*}	R ^{1b*}
н	н	н	н
Ме	н	. н	он
		F	н
Ь	CH ₂	-ОН	F
\Diamond	CH ₂	ОН	он
CH ₂ ·	CH ₂	-NH2	н

Table 26

Formula XXVII

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
H	н		CH ₂
Me	н		OH CH ₂
		Č.	OMe OH ₂

Table 27

Formula XXVIII

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	<u>ş</u>	CH.
Ме	Н		OH CH,
		3	ОМе

Table 28

Formula XXX

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
H	н	-{}-₹	S.
Me	н		OH CH ₂
		Ş.,	OMe

Table 29

Formula XXX

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	<u>ş</u>	CH ₂
Ме	н	\rightarrow	OH CH ₂
		ž.	OMe OH ₂

Table 30

Formula XXXI

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	- Š	Ç.,
Ме	Н	\Diamond	CH ₂
		Ē	OMe OH ₂

Table 31

Formula XXXII

R ⁷⁸	R ^{7b}	R ^{7a}	R ^{7b}
н	н	₹	CH.
Ме	. н	\rightarrow	CH ₂
		£.	OMe OH ₂

Table 32

Formula XXXIII

R ^{7a}	R ^{7b}	· R ^{7a}	R ^{7b}
н .	н	-\5	€ ã
Ме	н .	\rightarrow	OH CH ₂
		£,	OMe OH ₂

Table 33

Formula XXXIV

R ^{7a}	R ^{7b}	R ^{1b'}	R ^{1b*}
н	н	н .	н
. Me	н	н ,	OH:
		F	н
OH OH	CH ₂	-ОН	F
\Diamond	CH ₂	он .	ОН
CHr C	CH ₂	-NH 2	н
-NH 2	Me	н	F
-NH Ac	Me	. н	н
NHSO2Me	Me	. н	н

Table 34

Formula XXXV

R ^{7b}
н
. н
CH ₂
CH ₂
OMe CH ₂
Me
Me
Me

Table 35

Formula XXXVI

R ^{7a}	R ^{7b}
н	н
Me	н
ОН	OH₂
	OH CH ₂
Ort.	OMe OH ₂
-NH 2	Ме
-NH Ac	Me
NHSO2Me	Me
	·

Table 36

Formula XXXVII

R ⁷⁸	R ^{7b}
Н	H,
Me	н
ОН	CH₂
\Diamond	CH ₂
	OMe OH ₂
-NH 2	Me
-NH Ac	Me
NHSO2Me	Me

Table 37

Formula XXXVIII

R ⁷⁸	R ^{7b}
н	н
Me	н
ОН	CH ₂
\Diamond	CH ₂
QHr C	OH ₂
-NH 2	Me
-NH Ac	Me
NHSO2Me	Me

Table 38

Formula XXIX

R ^{7a}	R ^{7b}
Н	н
Me	н
Он	CH ₂
	CH ₂
CH2-	OMe CH ₂
-NH 2	Me
-NH Ac	Me .
NHSO2Me	Me

Table 39

Formula XXXX

R ^{7a}	R ^{7b}
н	н
Me	н
J _o	CH₂
\rightarrow	CH ₂
CH ₂ -	CH ₂
-NH 2	Me
-NH Ac	Me
NHSO2Me	Me

Table 40

Formula XXXXI

R ^{7a}	R ^{7b}
н	н
Me	н
ОН	CH ₂
	CH ₂
ÇM2-	CH ₂
-NH 2	Me
-NH Ac	Me
NHSO2Me	Me

Table 41

Formula XXXXII

R ^{7b}	R ¹¹	R ^{1b'}	R ^{1b*}
н	Н	н	н
-C(= O)NCH 2CH 2OC H3	н	н	он
		F	н
ОН	CH₂	-ОН	F
\Diamond	CH ₂	ОН	ОН
ÖH2*	CH ₂	-NH 2	н
-соон	Me	н	F
-соос нз	Me	н	, н
-C(=O)N(CH3)2	Me	н	н

Table 42

R ^{7b}	R ¹¹
Н	н
-C(= 0)NCH 2CH 2OC H3	н
OH OH	F.
\Diamond	OH CH ₂
CH ₂ ·	OMe CH ₂
-соон	Me
-соос нз	Ме
-C(=O)N(CH3)2	Ме

Formula XXXXIV

R ^{7b}	R ¹¹
н	н
-C(= 0)NCH 2CH 2OC H3	н
J. J.	CH ₂
\Diamond	OH OH ₂
Č ^H r	CH ₂
-соон .	Me
-соос нз	Me
-C(=0)N(CH3)2	Me

Table 44

Formula XXXXV

R ^{7b}	R ¹¹	
Н	н	
-C(= 0)NCH 2CH 20C H3	н	
OH.	Ç,	
\Diamond	OH CH ₂	
CH ₂ -	CH ₂	
-соон	Me	
-соос нз	Me	
-C(=O)N(CH3)2	Me	

Table 45

Formula XXXXVI

R ¹¹	
Н	
н	
\Diamond	
F.	
OH OH	
CH ₂	
Me	
Me	
Me	

Table 46

Formula XXXXVII

R ^{7b}	R ¹¹	
н	Н	
-C(= 0)NCH 2CH 2OC H3	н	
	CH,	
	OH CH2	
CH ₂ ·	CH ₂	
-соон	Me	
-соос нз	Me	
-C(=O)N(CH3)2	Me	

Table 47

Formula XXXXVIII

R ⁷⁶	R ¹¹		
н	н		
-C(= 0)NCH 2CH 2OC H3	н		
OH OH	CH ₂		
\Diamond	OH OH		
GH ₂ -	OMe CH ₂		
-соон	Ме		
-соос нз	Ме		
-C(=0)N(CH3)2	Me		

Table 48

Formula XXXXIX

R ^{7b}	R ¹¹	
н	Н	
-C(= 0)NCH 2CH 2OC H3	н	
ОН	Сн ₂	
\Diamond	CH ₂	
Č,	CH ₂	
-соон	Me	
-соос нз	Ме	
-C(=O)N(CH3)2	Me	

Table 49

$$\begin{array}{c|c} \mathsf{SO_2NH_2} & \mathsf{R^5} & \mathsf{R^{1b}} \\ \hline \\ \mathsf{O} & \mathsf{R^{7a}} & \mathsf{NH_2} \\ \end{array}$$

Formula L

R ⁵	R ⁷⁸	R ^{7b}	R ^{1b}
н	н	н	н
Me	Ме	н	н
		Me	F
н,с	OH ₂	· Bn	он
<u></u>	CH ₂	H ₂ C-\(\sqrt{N}\)	ОМе
Ç#r	CH ₂	H ₂ C—	OBn
н ,	-сн200н	н ₂ с—Он	ОСН 2СО ОН
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂	OCH 2CH 2OM e
Bn	-CH2CH2CONMe2	н ₂ с—	ОН

Table 50

Formula LI

R ⁵	R ^{7a}	R ^{7b}
н	н	: н
Me	Me	н
		Ме
H ₂ C	CH ₂	Bn
\Diamond	CH ₂	H ₂ C — N
CH ₂ -	CH ₂	H ₂ C-\
н	-сн200н	Н ₂ С-ОН
Ме	-СН 2СН 2СООМ е	H ₂ C —NH ₂
Bn	-CH2CH2CONMe2	н₂с—

Table 51

Formula LII

R ⁵	R ^{7a}	R ^{7b}
Н	. н	н
Me	Me	н
		Me
H ₂ CN	CH ₂	Bn
\Diamond	CH ₂	H ₂ C_N
Ď.	OMe CH ₂	H ₂ C—
. н	-CH 200H	н₂с-СОН
Me	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н₂с—

Table 52

Formula LIII

	•		
R ⁵	R ⁷⁸	R ^{7b}	
н	н	н	
Me	Me	н	
		Ме	
H ₂ C — N	CH ₂	Bn	
<u></u>	OH CH ₂	H ₂ C-__\	
CH ₂ -	OMe CH ₂	H ₂ C	
н	-СН 200Н	н₂с-С	
Me	-CH 2CH 2COOM e	H ₂ C NH ₂	
Bn	-CH2CH2CONMe2	н ₂ с—	

Table 53

Formula LIV

R ⁵	R ^{7a}	R ^{7b}
. н	н	н
Me	Me	н
		Ме
н _а с—	CH ₂	Bn
\	OH CH ₂	H ₂ CN
Ç ^{q+} r-	CH ₂	H ₂ C—
н	-СН 200Н	н₂с-С
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	H ₂ C

Table 54

Formula LV

		•
R ⁵	R ⁷⁸	R ^{7b}
н	н	н
Me	Me	н
		Me
н _э с	CH ₂	Bn
\downarrow	CH ₂	н ₂ с
G T ₂ -	CH ₂	н ₂ с
н	-СН 200Н	н₂с-С
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn .	-CH2CH2CONMe2	н₂с— С

Table 55

Formula LVI

. R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н
		Ме
н _г с	CH ₂	Bn
	OH OH ₂	н _е с
GH ₂ .	CH ₂	H ₂ C—
н	-сн200н	н₂с-СОН
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
· Bn	-CH2CH2CONMe2	н ₂ с—

Table 56

Formula LVII

R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н
		Me
H ₂ C — N	CH ₂	B n
\Diamond	CH ₂	H ₂ C
ČH ₂ -	CH ₂	H ₂ C—
н	-СН 200Н	н₂с-Он
Ме	-CH 2CH 2COOM e	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	H ₂ C—

Table 57

$$\begin{array}{c|c} \mathsf{SO_2NH_2} & \mathsf{R^5} & \mathsf{R^{7b}} \\ \hline \\ \mathsf{O} & \mathsf{R^{7a}} & \mathsf{CH_3} & \mathsf{NH} \end{array}$$

Formula LVIII

R ⁵	R ^{7a}	R ^{7b}	R ^{1b}
н	н	н	Н
Me	Me	н	н
		Me	F
H ₂ C — N	OH ₂	Bn	ОН
<u></u>	CH ₂	н ₂ с	ОМе
CH ₂ ·	CH ₂	H ₂ C—	OBn
н	-СН 200Н	н ₂ сОн	ОСН 2СО ОН
Ме	-CH 2CH 2COOM e	H ₂ C—NH ₂	OCH 2CH 2OM e
Bn	-CH2CH2CONMe2	M ₂ C—	ОН

Table 58

Formula LIX

R ⁵	R ^{7a}	R ^{7b}
н	н	· н
Me	Me	н .
		Ме
H ₂ C	CH ₂	Bn
\Diamond	CH ₂	H ₂ C — N
CH ₂ -	CH ₂	H ₂ C—
н	-СН 200Н	н₂с-С
Ме	-СН 2СН 2СООМ в	H ₂ C —NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 59

Formula LX

R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н .
		Me
н _г с	CH ₂	Bn
\Diamond	OH CH ₂	H ₂ C-_\N
CH ₁ .	OMe CH ₂	н ₂ с—
н	-CH 200H	н₂с—Он
Me .	-CH 2CH 2COOM 6	H ₂ C —NH ₂
Bn	-CH2CH2CONMe2	H ₂ C—

Table 60

Formula LXI

R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н
		Me
H ₂ C————————————————————————————————————	CH ₂	Bn
	OH CH ₂	H ₂ C\(\sigma\)N
ÇH ₂ -	OM6 CH ₂	H ₂ C-\
н	-СН 200Н	н₂сОн
Ме	-CH 2CH 2COOM 8	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н₂с—

Table 61

Formula LXII

R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н
		Me .
н ₂ с—	CH ₂	Bn
\Box	CH ₂	н ₂ с
GH₂-	OMe CH ₂	H ₂ C—
н	-СН 200Н	н₂с-СОН
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	H ₂ C—

Table 62

Formula LXIII

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Me	Ме	н
		Me
H ₂ C	CH ₂	Bn
	CH ₂	H ₂ CN
ÇH ₂ -	CH ₂	H ₂ C—
н	-сн 200н	н₂с-С
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н₂с—

Table 63

Formula LXIV

R ⁵	R ^{7a}	R ^{7b}
н	. н	н
Me	Me	н
		Me
H ₂ C — N	CH ₂	Bn
	CH ₂	H ₂ C
CH ₂ -	OMe CH ₂	H ₂ C—
н	-сн 200н	н₂сОн
Me	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	H ₂ C

Table 64

Formula LXV

R ⁵	R ^{7a}	R ^{7b}		
н	н	н		
Me	Me	н		
		Me		
н,с-	OH ₂	· Bn		
<u>\</u>	OH OH ₂	H ₂ C-__\		
CH2-	OMe CH ₂	H ₂ C—		
н	-СН2ООН	н₂с-Ср-он		
Me	-CH 2CH 2COOM e	H ₂ C NH ₂		
Bn	-CH2CH2CONMe2	н₂с—		

Table 65

Formula LXVI

R ⁵	R ^{7b} R ¹¹		R ^{1b}
Н	н	н	н
Me	Ме	н	н .
		Me ·	F
H ₂ C	Q₁,	Bn	он
	CH ₂	H ₂ C-__\N	OMe
Ď.	CH ₂	H ₂ C-\	OBn
н	-СН 200Н	н₂сОн	осн 200 он
Ме	-CH 2CH 2COOM e	H ₂ C — NH ₂	OCH 2CH 2OM e
Bn	-CH2CH2CONMe2	н ₂ с—	ОН

Table 66

R ⁵	R ⁷⁶	R ¹¹
н	н	· н
Me	Me	н
		Ме
H ₂ C	CH ₂	Bn
	CH ₂	н ₂ с
ÇH ₂ -	CH ₂	H ₂ C—
н	-СН 200Н	н₂сОн
Me	-СН 2СН 2СООМ ө	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 67

Formula LXVIII

R ⁵	R ^{7b} R ¹¹			
н	н	н		
Me	Me	н		
		Me		
H ₂ C	CH ₂	Bn		
\Diamond	OH ₂	H ₂ C—		
ÇH ₂ .	OMe CH ₂	H ₂ C—		
н	-СН 200Н	н₂с-Он		
Ме	-CH 2CH 2COOM e	H ₂ C —NH ₂		
Bn	-CH2CH2CONMe2	н ₂ с—		

Table 68

Formula LXVIX

R ⁵	R ^{7b}	R ¹¹		
н	Н	н		
Me	Me	н		
		Me		
H ₂ C — N	CH ₂	Bn		
<u></u>	CH ₂	н ₂ с		
ÇH ₂ -	OMe CH ₂	H ₂ C		
н	-СН 200Н	н ₂ с—Сон		
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂		
Bn	-CH2CH2CONMe2	н,с		

Table 69

Formula LXX

R ⁵	R ^{7b}	R ¹¹		
	Н	н		
Me	Me	н :		
		Me		
н ₂ с—	CH ₂	Bn		
	CH ₂	H ₂ C-__\N		
نام ا	OMe CH ₂	H ₂ C—		
н	-СН 200Н	н₂сОн		
Ме	-CH 2CH 2COOM e	H ₂ C —NH ₂		
Bn	-CH2CH2CONMe2	H ₂ C		

Table 70

Formula LXXI

		·
R ⁵	R ^{7b}	R ¹¹
н	н	Н
Me	Me	н
		Me
H ₂ C — N	CH ₂	Bn
\	CH ₂	н ₂ с
GH ₂ -	OMe CH ₂	H ₂ C—
н	-СН2ООН	н₂с—Он
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 71

Formula LXXII

R ⁵	R ^{7b}	R ¹¹
н	н	н
Me	Me .	н
		Me
н _а с	CH ₂	Bn
	OH ₂	H ₂ C-__\
ÇH ₂ .	CH ₂	H ₂ C—
н	-СН 200Н	Н₂С-ОН
Ме	-СН 2СН 2СООМ е	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н₂с

Table 72

Formula LXXIII

R ⁵	R ^{7b}	R ¹¹		
н	н	н		
Me	Me	н		
Image: Control of the		Me		
H ₂ C	CH ₂	en en		
\Diamond	CH ₂	н ₂ с		
GH ₂ .	OM ₆	H ₂ C—		
н	-CH 200H	н₂с-Он		
Ме	-CH 2CH 2COOM 6	H ₂ C—NH ₂		
Вп	-CH2CH2CONMe2	н ₂ с—		

Table 73

Table 74

Other preferred compounds of formula I, having the sub-formula Ia, are set forth in Table 75, below.

Table 75

Formula Ia

R ¹	TR'	E-J	Z	
o-SO ₂ -NH ₂	H	CH ₂	Phenyl	m-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH,	CI-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=NH)NH ₂
	H	CH ₂		
o-SO ₂ -NH ₂	H		CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH,	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н	CH ₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂

R'	R ⁵	E-J	Z	L
	 		acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH,	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH,	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH,	F-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH,	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	†H	CH,	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH,	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	 H	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
	H	CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H			m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy- ethanol	$m-C(=O)NH_2$ $m-C(=O)NH_3$
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy- ethanol	
o-SO ₂ -NH ₂	H	CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH,	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	R	CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂

R'	R³	E-J	Z	L
o-SO ₂ -NH ₂	н	CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	- C/-OVNIU
o-SO ₂ -NH ₂	н	CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
A PAY NILL	- Н	- CD	ether Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	l n	CH,	ether	III-C(-O)NI ₂
o-SO ₂ -NH ₂	H	CH,	Methyl CH ₃ -	m-C(=O)NH ₂
0-502-14112	1 **	C112	phenoxyethyl ether	m-c(c)/til
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
0 002 1112	.	0.22	phenoxyethyl ether	1
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
2		•	phenoxyethyl ether	` ´ •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	— H	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
			acid	
o-SO ₂ -NH ₂	H .	CH ₂ -CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	- CV-CVNIII
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
- 80 - 100	1,,		acid Cl-phenyl-amino	m C/=CVAID
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂		m-C(=O)NH ₂
- 607 - 607		- CH CH	carboxylic acid	I CONTRIB
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
- PO BU		- CU CU	carboxylic acid	m C/=CVNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
~ 644 ×111		CU CO	carboxylic acid	m C/=CNNIH
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
- CA KIII		CH CH	carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl-amino	III-C(-O)NII2
- CA - KIII		CH CU	carboxylic acid Methyl phenoxy-acetic	m-C/=NIUNNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Membi buenoxà-acene	m-C(=NH)NH ₂

R ¹	R ³	E-J	Z	L
			acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl CI-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H .	CH ₂ -CH ₂	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		1. [.]	acid Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bit-O-phenoxy acetic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂

R'	R ²	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
- 50 300		CHI CHI	ether	
o-SO ₂ -NH ₂	н -	CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
A SOL NIE	H	CH ₂ -CH ₂	phenoxyethyl ether	- C/-ONIU
o-SO ₂ -NH ₂	n	CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	— н	CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
0 002 1112		0.1.2	phenoxyethyl ether	111-0(0)/11/2
o-SO ₂ -NH ₂	- H	CH,-CH,-CH,	phenyl	m-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	 	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	 ii - 	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	- ii	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	 	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	- ii	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	- ii	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	- H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
O-SO 31,	- ii	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	- ii	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	- ii	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0 002-1112	111		acid	111-0(1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CI-Phenyl-amino	m-C(=NH)NH ₂
		3112 3112	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
2 2			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH,
	1		carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	i	' ' '	carboxylic acid	` '
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
* -			carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	` , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	1 ' '
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
- -			carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
• -			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
<u>.</u>			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂

R ¹	I R³	E-J	TZ	L
			acid ester	·
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CI-phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	A	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH₂-CH₂-CH₂	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH2-CH2-CH2	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂

Rt	TR*	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
0 0022			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
	1	1	ether	- ` / -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
1 2 2 2 2 2 2			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
0.007.1.102	1		phenoxyethyl ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
		1	phenoxyethyl ether	` ′ ′
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
		1	phenoxyethyl ether	` ′ -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₁)-	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH;-CH(-CH;)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH,-CH(-CH,)-	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH,-CH(-CH,)-	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	 H 	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	Aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=O)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	† ਜ	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-202-1112	1 **	011, 011(0113)	acid	1 0(1)
o-SO ₂ -NH ₂	H .	CH ₂ -CH(-CH ₃)-	Cl-Phenyl-amino	m-C(=NH)NH ₂
0 002 1.112	1	011, 011(0113)	carboxylic acid	111 0(1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl-amino	m-C(=NH)NH ₂
0 002 1112	1	011, 011, 011,	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0 507 1.117	"	011, 011(0113)	carboxylic acid	
o-SO ₂ -NH ₂	TH TH	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0 202 2 1-2		311, 311, 311,	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
0 2011.112		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenyl-amino carboxylic	m-C(=O)NH ₂
0 002 1 112			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CI-phenyl-amino	m-C(=O)NH,
		2 (3)	carboxylic acid	` '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl-amino	m-C(=O)NH ₂
2 2		,	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		,,	carboxylic acid	** *******
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl-amino	m-C(=O)NH ₂
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			carboxylic acid	
o-SO ₂ -NH ₂	тн —	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		1 3554 556 556	,	1

R	LK,	E-J	7	T L
Λ		17-3	Z	12
a SV NP	-	CO COCCO	acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic acid ester	` _
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxyacetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxyacetic acid	m-C(=O)NH ₂ m-C(=O)NH,
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)- CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid CH ₃ -O-phenoxy acetic	m-C(=0)NH ₂
			acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂ m-C(=NH)NH ₂
o-SO ₂ -NH ₂ o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy ethanol	$m-C(=NH)NH_2$ $m-C(=O)NH_2$
	H	CH ₂ -CH(-CH ₃)- CH ₂ -CH(-CH ₃)-	Phenoxyethanol Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)- CH ₃ -CH(-CH ₃)-	F-phenoxy-ethanol	$m-C(=O)NH_2$
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)- CH ₃ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
	Н	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂

IR ¹	R ³	E-J	Z	Π.
0-SO ₂ -NH ₂	 H 	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	l '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-	m-C(=O)NH ₂
- 50 - 510		CH CH NH	phenoxyethyl ether	- C/-NUNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	_ H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=O)NH,
0-SO ₂ -NH ₂	H ·	CH;-CH(-NH;)-	CI-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	 H	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=O)NH ₂
				m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=NH)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=NH)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
	4			
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CI-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	- H	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl-amino	m-C(=NH)NH ₂
	,		carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-NH₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH2-CH(-NH2)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н -	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-002-14112		C112-C11(-14112)*	111culy i phonoxy-accide	1 111-0(1411)14112

R ^t	TR ⁵	E-J	Z	I L
	17	12-3	1 1 1	
	 		acid ester	CVNUINIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
	L		acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		- ` -	acetic acid ester	l ' ·
o-SO ₂ -NH ₂	H.	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	m-C(=NH)NH,
		' ` "	acetic acid ester	· ` ´ •
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
5 5 5 2 5 5 5 5		2	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0 502 1112	1 **	011, 011(11112)	acid ester	(0)
o-SO ₂ -NH ₂	н	CH2-CH(-NH2)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-3O ₂ -NH ₂	111	C112-C11(-14112)-	acid ester	111-0(-0)1112
- 50 NIII		CU CU(NU V		
o-SO ₂ -NH ₂	H	CH₂-CH(-NH₂)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
			acetic acid ester	C'-O\NU
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	l		acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	$m-C(=O)NH_2$
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH,
] 2 2			acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=O)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxyacetic acid	m-C(=O)NH ₂
	H	CH ₂ -CH(-NH ₂)-		m-C(=O)NH ₂
o-SO ₂ -NH ₂			CH ₃ -phenoxy-acetic acid	` ' "
o-SO ₂ -NH ₂	H	CH₂-CH(-NH₂)-	CH ₃ -O-phenoxy acetic	$m-C(=O)NH_2$
		CIT CITCALITY	acid	C/=(V)NIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	Н	CH₂-CH(-NH₂)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy- ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₁ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-002-1112	**		ether	(
o-SO ₂ -NH ₂	н	CH,-CH(-NH,)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0-302-1112	**	C112-C11(-14112)-	ether	1111/1112
2 SO NO	H	CU CU/ NU Y	Methyl F-phenoxy-ethyl	m-C(=NH)NH,
o-SO ₂ -NH ₂	n	CH ₂ -CH(-NH ₂)-		111-C(-1411)1AU ⁵
		CIT CITY THE	ether	CV
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	L		ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			ethyl ether	

R'	R⁵	E-J	Z	IL
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₃)-	Methyl Phenoxyethyl	m-C(=O)NH ₂
1 2 2		322 324 1122	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		-	ether	` ' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-	m-C(=O)NH ₂
- 50 301			phenoxyethyl ether	C(-(0))
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-	m-C(=O)NH ₂
	İ	Į.	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	.H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H .	CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CI-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl-amino	m-C(=NH)NH ₂
- 60 20			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
- SO XIII		(T) (T) (D=1	carboxylic acid	- CY-NILINAID
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0 SV MII		CH CHCD=)	carboxylic acid	m C/=NIUNXID
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
0 80 80	- 6	CB CB/ BEY	carboxylic acid	m C/=(\\N\H
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl-amino	m-C(=O)NH ₂
0-3O2-14II2	111	C112-CH(-BH)-	carboxylic acid	III-O(-O)INII2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl-amino	m-C(=O)NH ₂
0-502-14112	111	C112-C11(*B11)-	carboxylic acid	111-0(-0)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0-3O ₂ -1112	11	C112-C11(-D11)-	carboxylic acid	111-0(-0)/112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl-amino	m-C(=O)NH,
0-502-14112	1 **	C112-C11(*D11)*	carboxylic acid	111-0(-0)11112
o-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	Bn-O-phenyl-amino	m-C(=O)NH ₂
0 002 1112	1		carboxylic acid	1.11-0(0)1112
o-SO ₂ -NH ₂	н	CH₂-CH(-Bn)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 1 **	V112 V11(-D11)-	Phonoxy-accide	111-0(1111)1112

WO 00/71509 PCT/US00/14194

R ¹	T R ³	E-J	Z	I L
	 	 	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
	1		acid ester	` ´ •
o-SO ₂ -NH ₂	H	CH2-CH(-Bn)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
• •	1	1	acid ester	` ´ -
o-SO ₂ -NH ₂	H	CH2-CH(-Bn)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
_			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			acetic acid ester	l
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl Phenoxyacetic	$m-C(\equiv O)NH_2$
	<u> </u>		acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
	ļ.,,		acid ester	
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
- 80 80	 	CH CH D-	acetic acid ester	C/-(XXXII)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
- WA MILL	ļ.,,	CH CH CH	acetic acid ester Methyl Bn-O-phenoxy	C/=(V)ND
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=NH)NH ₂
	H -	CH ₂ -CH(-Bn)-	Cl-phenoxy-acetic acid	
o-SO ₂ -NH ₂ o-SO ₂ -NH ₂	 n	CH ₂ -CH(-Bn)-		m-C(=NH)NH ₂ m-C(=NH)NH ₂
0-SO ₂ -NH ₂	 ਜ਼	CH ₂ -CH(-Bn)-	F-phenoxy- acetic acid CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-302-14112	11	C112-C11(-D11)-	acid	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	 ii 	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H H	CH ₂ -CH(-Bn)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH(-Bn)-	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
1 2 2 2 2 2 2			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
			ether	L
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
	I		ether	
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
- 170	<u> </u>		ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
- FO NII	ļ. 	CIT CITY TILL	ethyl ether	- C/-NUIVNIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
<u> </u>	1		ethyl ether	<u> </u>

R ¹ o-SO ₂ -NH ₂	R ³	E-J	Z	1 L
o-SO ₂ -NH ₂			1	1 -
	n	CH₂-CH(-Bn)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₁)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl	m-C(=NH)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	phenyl	m-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-phenyl	m-C(=O)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl	m-C(=O)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-aniline	p-C(=NH)NH ₂
	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	p-C(=NH)NH ₂
	Н	CH₂-CH(-CH₂- COOCH₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-aniline	·p-C(=NH)NH ₂
1	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
• •	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=O)NH ₂
' '	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-aniline	p-C(=O)NH ₂
	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	p-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂

R'	TR'	E-J	IZ	IL
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Cl-Phenyl-amino	m-C(=NH)NH ₂
		COOCH)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
• •	1	COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	.]	COOCH ₃)-	carboxylic acid	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
	ļ.,	COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
0 S(V NID	H	CH CH CH	Cl-phenyl-amino	m C(=O)NIH
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - COOCH ₁)-	carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	+н	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0-302-1112	**	COOCH ₁)-	carboxylic acid	111-0(-0)14112
o-SO ₂ -NH ₂	 n 	CH,-CH(-CH,-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0 002 1112	**	COOCH ₃)-	carboxylic acid	0(0)
o-SO ₂ -NH ₂	Н ——	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH,
,,]	COOCH ₁)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Bn-O-phenyl-amino	m-C(=O)NH ₂
1 2 2 2 1 2 2	1	COOCH)-	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		COOCH ₃)-	acid ester	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		COOCH ₃)-	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		COOCH ₃)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0 SO NH	H	COOCH ₃)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n	COOCH ₃)-	acid ester	III-C(-O)NII ₂
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-302-14112	**	COOCH ₃)-	acid ester	III-C(* O)14113
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH,
0.00,1.1.2		COOCH,)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
,		COOCH;)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
- •		COOCH,)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		COOCH;)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		COOCH3)-		C Name of the last
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
- CO NII	 	COOCH ₃)-	L'abanani casta said	m C/=NUVNU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₁)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-002-14112	1 **	COOCH ₁)-	2113-phonoxy-acetic acid	(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
5 502 11112	1	COOCH ₁)-	acid	>()
o-SO ₂ -NH ₂	Тн — — — — — — — — — — — — — — — — — — —	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		COOCH,)-	o planelly access dollar	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
44		COOCH,)-	,	. = \ = /2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
- •		COOCH ₃)-	• •	`
			·	

R [†]	TR ⁵	E-J	Z	I L
	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂		COOCH ₃)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₁)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₁)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl	m-C(=NH)NH ₂

No SO ₂ -NH ₂	□R ¹	R	E-J	Z	TL
CH2-OH)	II.		1	I -	1 —
CH2-OH2-			CH₂-OH)-		
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -D) BR-O-phenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) CL-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) CH ₃ -Dhenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) CH ₃ -O-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) CH ₃ -O-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) Ch ₃ -O-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) Aniline p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) C-So ₂ -NH ₂ p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) C-So ₂ -NII p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) CH ₃ -O-aniline p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D) C-So ₂ -NH ₂ -D) p-C(=O)NH ₂ G-SO ₂ -NH ₂ H </td <td>o-SO₂-NH₂</td> <td>H</td> <td>CH₂-CH(-CH₂- CH₂-OH)-</td> <td>CH₃-O-phenyl</td> <td>m-C(=NH)NH₂</td>	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -OH) G-SO ₂ -NH ₁ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -OH) G-SO ₂ -NH ₁ H CH ₂ -CH ₁ -CH ₂ -CH ₃ -CH ₄ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -CH ₂ -CH ₄ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -CH ₂ -CH ₄ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -CH ₂ -CH ₄ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -CH ₂ -CH ₄ -OH) G-SO ₂ -NH ₂ H CH ₂ -CH ₄ -	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -OH ₃ CC-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -OH ₃ CH ₃ -phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -OH ₃ CH ₃ -phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₃ -CH ₃ -OH ₃ CH ₃ -O-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₂ -CH ₃ -CH ₄ -OH ₄ -CH ₄	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
6-SO2-NH2 H CH2-CHCCH2-CH2-CH2-CH2-CH3-OH3-CH3-CH3-OH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OP)henyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OP)henyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
CH ₂ -OH)-	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=O)NH ₂
6-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂	1	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂		1 .	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -NH ₂ P-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -Dh ₁ -Dh ₁ P-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -Dh ₁ -Dh ₁ P-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -Dh ₁ -Dh ₁ P-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₃ -Dh ₁ -Dh ₁ -Dh ₂ -Dh ₂ -Dh ₂ -Dh ₂ -Dh ₃ -Dh ₄ -Dh ₃ -Dh ₄ -Dh ₃ -Dh ₄ -Dh ₃ -Dh ₄ -Dh ₄ -Dh ₄ -Dh ₃ -Dh ₄	•		CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH)-CH ₂ -CH)-CH ₂ -OH)-CH			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH) CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)-CH ₂ -CH ₂ -OH)-CH ₂ -CH		ł	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH)-CH ₂ -CH(-CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH CI-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH)-CH ₂ -CH ₂ -CH CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH)-CH CH ₃ -O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH)-CH Description of the color of the			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	·	
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH ₃ -CH ₁ -OH ₂ CI-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH ₃ -OH ₃ -CH ₂ -OH ₃ -OH ₃ -CH ₂ -OH ₃ -OH ₃ -CH ₂ -OH ₃ -O-SO ₂ -NH ₂ CH ₃ -CH ₁ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -OH ₃ -CH ₂ -CH ₃ -CH ₄ -OH ₃ -CH ₂ -CH ₃ -CH ₄ -OH ₃ -CH ₃ -CH ₃ -CH ₄ -OH ₃ -CH ₃ -CH ₄ -OH ₃ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -Dhenyl-amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -Dhenyl-amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CI-phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl-amino m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl-amino m-C(=O)NH ₂			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	·	
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂		L	CH ₂ -OH)-		
CH2-OH)- O-SO2-NH2			CH₂-OH)-	1	
CH2-OH)- acid			CH ₂ -OH)-		
CH2-OH)- Carboxylic acid CH2-CH(-CH2-CH2-OH)- CH2-CH(-CH2-CH3-OH)- CH3-OH)- CATSOXYSIC acid CH3-OH)- CH3-OH)- CATSOXYSIC acid CH3-OH)-		<u> </u>	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	acid	_ `_ `
CH2-OH)- Carboxylic acid CH2-CH(-CH2-CH3-OH)- CH3-OH)- CARDOXYLIC acid CH3-OH)- CH3-OH)- CARDOXYLIC acid CARDOXYLIC acid CH3-OH)- CH3-OH)- CARDOXYLIC acid CA			CH₂-OH)-	carboxylic acid	` ' '
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -Denyl-amino carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH		l	CH ₂ -OH)-	F-phenyl-amino carboxylic acid	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -OH)- CH ₂ -OH)- CH ₃ -O-phenyl amino carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -OH)- Phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -OH)- Cl-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -OH)- carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -OH)- carboxylic acid m-C(=O)NH ₂			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂ -OH)-	CH ₃ -O-phenyl amino carboxylic acid	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH₂-OH)-	carboxylic acid	
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenyl-amino m-C(=O)NH ₂ CH ₂ -OH)- carboxylic acid O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenyl-amino m-C(=O)NH ₂			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	acid	l `
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH₂-OH)-	carboxylic acid	
o-SO ₂ -NH ₂ H CH_2 -CH(-CH ₂ - CH_3 -phenyl-amino CH_2 -CH ₂ -OH)- CH_2 -CH ₂ -CH(-CH ₂ -CH)- CH_2 -CH(-CH ₂ -CH)- CH_2 -CH(-CH ₂ -CH)- CH_2 -CH(-CH)- CH_2 -CH(-CH			CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	` ′ ′
	o-SO ₂ -NH ₂	Н			m-C(=O)NH ₂

R ¹	TR ³	TE-J	TZ	TL T
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		CH ₂ -OH)-	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-002-1112	11	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-002-14112	**	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	acid ester	III-O(-1411)(411 ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH ₂ -OH)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		CH₂-OH)-	acid ester	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		CH ₂ -OH)-	acid ester	`
o-SO ₂ -NH ₂	H	CH_OH)	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy	m-C(=O)NH,
		CH ₂ -OH)-	acetic acid ester	l `
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		CH₂-OH)-	_	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		CH ₂ -OH)-		` ′ -
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
-, -	<u> </u>	CH ₂ -OH)-	acid	TO C/SNIPANIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH,
0-30 ₂ -1417 ₂	".	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Ci-phenoxyacene aciu	III-C(-0)IVI12
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		CH ₂ -OH)-		1
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		CH ₂ -OH)-	-	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0.002-14112	**	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	C113-phonoxy-cutation	111111111111111111111111111111111111111
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
	<u> </u>	CH₂-OH)-		L

□R¹	TR ⁵	E-J	TZ	П.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH₃-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl	m-C(=O)NH ₂

R ¹	⊤R⁵	E-J	Z	π.
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-502-14112		C(=O)-N- morpholino)-	- phony:	in-O(10)IVII2
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
- 502-14112	**	C(=O)-N-	CII3-piletty)	III-Q-0)!\III
0.80	H	morpholino)-	CH O pheny	m C/=CVNID
o-SO ₂ -NH ₂	, n	CH ₂ -CH(-CH ₂ - C(=O)-N-	CH ₃ -O-phenyl	m-C(=O)NH ₂
- 877-807	H	morpholino)-	Pa O share!	- (-())
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	 H 	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
0.002-14112	**	C(=O)-N- morpholino)-	,	h-0.1411/14115
o-SO ₂ -NH ₂	l H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
0.002-1112	"	C(=O)-N- morpholino)-		p-of mining
o-SO ₂ -NH ₂	 н 	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0021112	"	C(=O)-N- morpholino)-		P-O(1411)IAII2
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0.002-11112	**	C(=O)-N- morpholino)-	C113-annine	p-o(-1411)1411 ₂
o-SO ₂ -NH ₂	 н −−−	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	D-CY=NILINXIII
0-502*INF12	"	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	O113-O-amime	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	 н	morpholino)- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
0-3U ₂ -14 I 1 ₂	, n	C(=O)-N- morpholino)-	Du-O-amme	p-C(-14H)14H ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0-002-11112	. **	C(=O)-N- morpholino)-	Annue	p-0(-0)/4112
0-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0 002-1412	•	C(=O)-N- morpholino)-	· ·	p=0(0)11112
o-SO ₂ -NH ₂	 н 	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
2 20, 1.1.2		C(=O)-N- morpholino)-		F 5(5)1122
o-SO ₂ -NH ₂	H -	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		C(=O)-N- morpholino)-		F 3(3)2
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
		C(=O)-N- morpholino)-	,	F -(-)2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
2 202 11112		C(=O)-N- morpholino)-	2. V minimo	p 0(0)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0 002 11112	•	C(=O)-N- morpholino)-	acid	0(1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
4 2		C(=O)-N- morpholino)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
J JU2-14112		C(=O)-N- morpholino)-	carboxylic acid	111-0(1111)11112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₁ -phenyl-amino	m-C(=NH)NH ₂
0-0\02-1411 ²	.	C(=O)-N- morpholino)-	carboxylic acid	m-o(Tall)lan2
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0.002-1412	**	C(=0)-N-	carboxylic acid	

R'	⊤R⁵	E-J	Z	TL
<u> </u>	+	morpholino)-	-	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂

R'	R	E-J	Z	L
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=0)-N-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		morpholino)-	,	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
	i	C(=0)-N-		
0 80 MH	H	morpholino)-	CH O shanayy sastis	- CZ-NIUNNIU
o-SO ₂ -NH ₂	**	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0 002 1112	"	C(=O)-N-		(0)
		morpholino)-	·	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
	*	C(=0)-N-	· ·	` ′ •
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		C(=O)-N-	acid	
0-SO ₂ -NH ₂	-Н	morpholino)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-302-1112	**	C(=0)-N-	Bil-O-phenoxy acetic acid	III-C(-O)N112
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	- H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N-	F-phenoxy- ethanol	m-C(=NH)NH ₂
		morpholino)-		,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
	ŀ	C(=O)-N-	1	
o-SO ₂ -NH ₂	H	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0 002 1.112		C(=0)-N-	on, o phonony chance	0(1.1.1)1.1.12
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
-		C(=0)-N-		
o-SO ₂ -NH ₂	Н	morpholino)- CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
0-302-14112	1 **	C(=0)-N-	Ci-phenoxyethanoi	m-c(-c)1411 ₂
	1	morpholino)-	1 .	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	F-phenoxy-ethanol	m-C(=O)NH ₂
	_	C(=O)-N-		
o-SO ₂ -NH ₂	H	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
		C(=O)-N-	, and the same of	(),,
		morpholino)-		

R'	TR'	TE-J	TZ	11.
		1		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
i	į.	C(=0)-N-		
L		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
	1	C(=O)-N-	•	Į.
	<u> </u>	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
		C(=O)-N-	ether	i
<u> </u>	1	morpholino)-	1	Ì
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
	1	C(=O)-N-	ether	
	1	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		C(=O)-N-	ether	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	1	C(=O)-N-	ethyl ether	
		morpholino)-	i ·	•
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		C(=O)-N-	ethyl ether	` ' •
		morpholino)-	-	
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl Bn-O-phenoxy	m-C(=NH)NH,
1 .		C(=O)-N-	ethyl ether	` ′ ′
		morpholino)-		
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl Phenoxyethyl	m-C(=O)NH ₂
1 -		C(=O)-N-	ether	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
1		C(=O)-N-	ether] `.′ *
		morpholino)-		
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
1	,	C(=O)-N-	ether	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl CH ₃ -	m-C(=O)NH ₂
]]	C(=O)-N-	phenoxyethyl ether	1 ` ′ ′ ′ ′
		morpholino)-	' ' '	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
	1	C(=O)-N-	phenoxyethyl ether	1 ` ′ •
	Ì	morpholino)-	' ' '	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
	1	C(=O)-N-	phenoxyethyl ether	1 ` ′ •
l		morpholino)-	• • • • • • • • • • • • • • • • • • •	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
!		CH ₂ -S(O) ₂ -CH ₃	• • • • • • • • • • • • • • • • • • •	` ' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
• •	1	CH_2 -S(O) ₂ -CH ₃	• •	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₁ -CH ₂ -	F-phenyl	m-C(=NH)NH,
	1	CH ₂ -S(O) ₂ -CH ₃	• •	`
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
•		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		` ′ ′
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
• •		CH,-S(O),-CH,	1	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	1	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	- F	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
2 2		CH ₂ -S(O) ₂ -CH ₃		0(0)2
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH₃-phenyl	m-C(=O)NH ₂
5 552 1.112	**	CH ₂ -S(O) ₂ -CH ₃	, phon/:	
L	L	U112 U(U/2 U113	l	

R ¹	∏R³	E-J	Z	П.
o-SO ₂ -NH ₂	H			, -
		CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃	1	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H ·	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₃ -	carboxylic acid CH ₃ -phenyl-amino	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	` ' -
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acetic acid ester	li

□R ¹	⊺R⁵	TE-J	Z	l L
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-1112	1 **	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	111-0(-1111)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH,
0-502-14112	**	CH ₂ -S(O) ₂ -CH ₃	acid ester	111-0(-0)14112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH,
0-302-1112	**	CH ₂ -S(O) ₂ -CH ₃	acid ester	111-0(-0)14112
o-SO ₂ -NH ₂	† H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-302-14112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	acid ester	111-0(-0)14112
- SO NH	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	
o-SO ₂ -NH ₂	n		acetic acid ester	m-C(=O)NH ₂
SO NH	H	CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₁ -O-phenoxy	C/(V)NIU
o-SO ₂ -NH ₂	l n	CH ₂ -CH(-CH ₂ -	acetic acid ester	m-C(=O)NH ₂
- 80 NH	Н	CH ₂ -S(O) ₂ -CH ₃	Methyl Bn-O-phenoxy	m-C(=O)NH,
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	III-C(-O)NI
200 000	H	CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -CH ₂ -CH ₂ -CH ₃	Phenoxyacetic acid	C/XIUXIU
o-SO ₂ -NH ₂	111		Filehoxyacetic acid	m-C(=NH)NH ₂
SO NH	H	CH ₂ -S(O) ₂ -CH ₃	Cl-phenoxy-acetic acid	m-C(=NH)NH,
o-SO ₂ -NH ₂	I T	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Ci-phenoxy-acetic acid	III-C(-NII)NII ₂
- SO SIII	Н		E phonovy, cootic coid	- C/-NIU/NIU
o-SO ₂ -NH ₂	1 17	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
a SO NIH	H	CH ₂ -S(O) ₂ -CH ₃	CH phonory coats agid	m (Y=NIU)NIU
o-SO ₂ -NH ₂	I Th	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
- SO NIII	ļ.,	CH ₂ -S(O) ₂ -CH ₃	CU O phonouni postio	C/=NIDINID
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
- 8/2 - 2011	ļ.,,	CH ₂ -S(O) ₂ -CH ₃	acid	C/NIONIO
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	ļ.,,	CH ₂ -S(O) ₂ -CH ₃	We are the second	C/-CVNIII.
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
- 00 - 001		CH ₂ -S(O) ₂ -CH ₃		(V=CVNIII
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
- SO NIII	ļ ,,,	CH ₂ -S(O) ₂ -CH ₃	F - b	C/C/NIU
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=0)NH ₂
SO NIL	н	CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	п	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	III-C(-O)NII ₂
SO NIII	H	CH ₂ -S(O) ₂ -CH ₃	CH ₁ -O-phenoxy acetic	C/=C\\N\U
o-SO ₂ -NH ₂	11	CH ₂ -CH(-CH ₂ -	acid	m-C(=O)NH ₂
- 80 NH	н	CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n .	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bil-O-phenoxy acetic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
0-302-14112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	1 helioxyedianoi	111-0(-1411)14112
SO NH	H		Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Ci-pilenoxy-edianoi	111-0(1411)14112
0-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-002-1112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	1 -phonoxy- culanoi	(1411)14112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH,
0-002-14112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	213-phenoxy-culanoi	111-0(1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-002-14112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	C113-O-phonoxy-culanot	111-0(1411)14113
o-SO ₂ -NH ₂	 н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0.002-1112	**	CH ₂ -CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃	Di-O-phonoxy emailor	
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH,
0.002-1112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
0 002-1112	**	CH ₂ -CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃	or phonoxyculanol	
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH,
0 002-1112	**	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	- phenony culation	< >/
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0 002-1112	1 **	CH ₂ -CH(-CH ₂ -CH ₃	21.3-phonony-cumoi	= (=),
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
0-002-14112	1 **	CH ₂ -CH ₂ -CH ₃ -CH ₃	bilg-o-phonoxy-culanor	·············
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0 002-1112	1 **	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	2 phonoxy culanot	
L	1		l	

R ¹	R ⁵	E-J	1 Z	IL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-302-14112	1 **	CH ₂ -S(O) ₂ -CH ₃	ether	111-0(1111)11112
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0-302-1112		CH ₂ -S(O) ₂ -CH ₃	ether	111-0(1111)1112
o-SO ₂ -NH ₂	H -	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-502-11112	1 **	CH ₂ -S(O) ₂ -CH ₃	ether	111-0(1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₁ -phenoxy-	m-C(=NH)NH ₂
0-502-14112	ļ * *	CH ₂ -S(O) ₂ -CH ₃	ethyl ether	1 0
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₁ -O-phenoxy-	m-C(=NH)NH ₂
0-302-14112	**	CH ₂ -S(O) ₂ -CH ₃	ethyl ether	111-0(-111).1112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-14112] **	CH ₂ -S(O) ₂ -CH ₃	ethyl ether	111-0(-1111)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-302-14112	1 **	CH ₂ -S(O) ₂ -CH ₃	ether	111-0(0)11112
- SO NIB	Н —	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	I 41 .	CH ₂ -Ch(-Ch ₂ - CH ₂ -S(O) ₂ -CH ₃	ether	111-0(-0)14112
a SO NIH	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n		ether	11120(-0)1112
- 80 NIII		CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl CH ₁ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	phenoxyethyl ether	111-0(-0)/11/2
2 SO NH	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	I n	CH ₂ -CH(-CH ₂ -CH ₃ -CH	phenoxyethyl ether	111-0(-0):1112
2 SO NH	H H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	111	CH ₂ -CH(-CH ₂ -CH ₃ -CH	phenoxyethyl ether	111-0(10)1112
a SO NIP	н	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	п	hexane)-	phenyi	111-0(-1111)11112
- SO NH	н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	11	hexane)-	Ci-phenyi	111-0(1111)11112
- SO NH	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	111	hexane)-	1 -phenyr	
SO NIII	H		CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - hexane)-	C113-phenyi	111-0(-1411)14112
0 800 8119	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	hexane)-	C113-O-phenyi	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
0-302-14112	**	hexane)-	Di-O-phenyi	0(1411)1422
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
0-302-14112	1 **	hexane)-	Pheny:	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
0-302-14112		hexane)-	Cr-phenyr	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-302-1112	**	hexane)-	lphony:	(0)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0-502-1112	**	hexane)-	· · · · · · · · · · · · · · · · · · ·	0(0)
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
55022		hexane)-	,,-	== = (=) == 1
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
550, 1112	1	hexane)-	P, .	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		hexane)-		• • •
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Cl-aniline	p-C(=NH)NH ₂
	[hexane)-		` ` ′ •
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
	1	hexane)-		· · · · ·
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
	1	hexane)-	1	· `
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		hexane)-		` ` '
o-SO ₂ -NH ₂	Н	CH2-CH(-CH2-	Bn-O-aniline	p-C(=NH)NH ₂
	ŀ	hexane)-	1	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Aniline	p-C(=O)NH ₂
2		hexane)-		' '

R ¹	⊤R'	I E-J	TZ	TT
	$\frac{1}{H}$	CH ₂ -CH(-CH ₂ -	Cl-aniline	D C(=O)NIU
o-SO ₂ -NH ₂		hexane)-		p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂

R ¹	TR'	E-J	Z	T.L.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	I÷.	CH ₂ -CH(-CH ₂ - hexane)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂

OSO_NH_1	R	R ⁵	TE-J	TZ	TL T
hexane - phenoxyethyl ether m-C(=O)NH ₂ hexane - phenoxyethyl ether m-C(=NH)NH ₂ hexane - hexane			I — -		i —
G-SO ₂ -NH ₁	0-001-1111	**		nhenoxyethyl ether	III-C(-C)/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
hexane)- phenoxyethyl ether m-C(=O)NH ₂ hexane)- phenoxyethyl ether m-C(=O)NH ₃ hexane)- phenoxyethyl ether phenoxy	o-SO ₂ -NH ₂	 H 		Methyl CHO-	m-C(=O)NH
O-SO ₂ -NH ₂					1 0(0)
hexane - hexane - hemoxyethylether hemocyethylether hemocyet	o-SO ₂ -NH ₂	H		Methyl Bn-O-	m-C(=O)NH.
O-SO ₂ -NH ₂		1			1 0(0)
(HO-phenyl) - (HO-	o-SO ₂ -NH ₂	H			m-C(=NH)NH
G-SO ₂ -NH ₂	' '			1.	` ' '
CHO-phenyl) - CHO-phenyl) - CHO-phenyl -	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=NH)NH,
G-SO ₂ -NH ₁					
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mo-phenyl) CH ₃ -O-aniline p-C(=O)NH ₂ <t< td=""><td>o-SO₂-NH₂</td><td>H</td><td></td><td>F-phenyl</td><td>m-C(=NH)NH₂</td></t<>	o-SO ₂ -NH ₂	H		F-phenyl	m-C(=NH)NH ₂
CHO-phenyl) CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=NH)NH ₂ m-C(=O)NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ d-O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) CH ₂ -CH ₂ -CH ₂ -(HO-phenyl) o-SO ₂ -NH ₂ H	0-SO ₂ -NH ₂	H		CH ₃ -phenyl	$m-C(=NH)NH_2$
Co-SO ₂ -NH ₂	00 200				
o-SO ₂ -NH ₂ H (CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)) Bn-O-phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)) phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)) CI-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)) r-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)) CH ₃ -O-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CH ₃ -CH ₁ -CH ₂ -(HO-phenyl) p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CH ₃ -O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(0-5U ₂ -NH ₂	l H		CH ₃ -O-pnenyl	$m-C(=NH)NH_2$
(HÓ-phenyl) -	a SO NH			Pn () mhonyl	m CY=NIU\NIU
o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) r-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) p-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) CH ₃ -O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) CH ₃ -CH ₁ -CH ₃ - (HO-phenyl) p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) CH ₃ -CH ₁ -CH ₃ -	0-30 ₂ -NH ₂	"		Bn-O-phenyi	III-C(-NH)NH ₂
O-SO ₂ -NH ₂	0-SONH.	 		nhenyl	m-C/=O\NH
0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) Cl-phenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (H ₂ -Phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (HO-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (CH ₂ - (CH ₂ - (HO-phenyl)) p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (CH ₂ - (CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (CH ₂ - (CH ₃ - O-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (CH ₃ - (CH ₃ - aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (CH ₃ - (CH ₃ - aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - (CH ₃ - (CH ₃ - aniline p-C(=O)NH ₂	0-002-1112	1 **		Prichy!	m-0(0)1112
CHO-phenyI) CHy-CH(-CHy- (HO-phenyI)	o-SO ₂ -NH ₂	 H		Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) F-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) CH ₃ -Denyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) CH ₃ -O-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) Annline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) CI-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) CH ₃ -aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) CH ₃ -aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) CH ₃ -O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl)) Aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ -(HO-phenyl)) CI-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ -(HO-phenyl)) CI-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ -(HO-phenyl)) CH ₃ -Cani			(HO-phenyl))-		
CHO-phenyl)- CH ₂ -Phenyl	o-SO ₂ -NH ₂	H		F-phenyl	m-C(=O)NH ₂
(HO-phenyl) CH ₂ -CH(-CH ₂ HO-phenyl) CH ₃ -O-phenyl m-C(=O)NH ₂ m-C(=NH)NH ₂	• •	ŀ	(HO-phenyl))-		
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) n-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CI-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) P-C(=NH)NH ₂ p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(CH ₂ -(HO-phenyl)) P-C(=NH)NH ₂ p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) P-C(=NH)NH ₂ p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) P-C(=NH)NH ₂ p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) CI-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) CI-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) CI-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(CH ₂ -(HO-phenyl)) CH ₃ -O-aniline	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
(HO-phenyl)-			(HO-phenyl))-		
0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) Aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) Cl-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) F-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CH ₃ -aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CH ₃ -aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) Aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) Cl-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) Cl-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CH ₃ -aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl) Bn-O-aniline <	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	$m-C(=O)NH_2$
O-SO ₂ -NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO	0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	$m-C(=O)NH_2$
O-SO ₂ -NH ₂	0 80 80			Anilina	- C/=NIP)NIP
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phe	0-3O ₂ -NH ₂	n		Annue	p-C(-Nn)Nn ₂
(HO-phenyl))- CH2-CH(-CH2- F-aniline p-C(=NH)NH2 (HO-phenyl))- (HO-phenyl))-	o-SO-NH	- P		Cl-aniline	p-C(=NH)NH _a
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-ph		1			
(HO-phenyl))-	o-SO ₂ -NH ₂	H		F-aniline	p-C(=NH)NH ₂
(HO-phenyl))-	• •		(HO-phenyl))-	İ	' '
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phe	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
(HO-phenyl))-			(HO-phenyl))-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl)- (HO-phenyl))- (HO-phenyl)- (HO-pheny	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
O-SO ₂ -NH ₂					
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-phen	0-SU ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
(HÔ-phenyl))-	0 SO NH			Anilina	5 C/=ONIH
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (CI-Phenyl-amino (arrboxylic acid (HO-phenyl))- (CI ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl))- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl))- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl)- (HO-phenyl)- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl)- (HO-phenyl)- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl)- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl)- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl)- (HO-phenyl)- (CI-Phenyl-amino (m-C(=NH)NH ₂ - (HO-phenyl)- (HO-phen	0-30 ₂ -1411 ₂	1.1			p-0(-0)1112
(HÖ-phenyl))-	o-SO ₂ -NH ₂	H		Cl-aniline	p-C(=O)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Phenyl-amino-carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CI-Phenyl-amino carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- F-phenyl-amino carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -phenyl-amino carboxylic acid m-C(=NH)NH ₂			(HO-phenvl))-		
(HO-phenyl))- O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ -	F-aniline	p-C(=O)NH,
(HO-phenyl) - o-SO ₂ -NH ₂			(HO-phenyl))-	1	
(HO-phenyl) - o-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
(HO-phenyl))- O-SO ₂ -NH ₂			(HO-phenyl))-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- o-SO ₂ -NH ₂ Phenyl-amino-carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl)-amino m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н		CH ₃ -O-aniline	p-C(=O)NH ₂
(HO-phenyl))- O-SO ₂ -NH ₂					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U ₂ -NH ₂	H		Bn-O-aniline	p-C(=U)NH ₂
(HO-phenyl))- acid	0.80. NH	- 		Dhenyl aming carboys lie	m C(=N/U\NIU
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-2O2-14U2	n		1	III-C(-IAU)IAU ⁵
(HO-phenyl))- carboxylic acid	0-SONH	 H			m-C/=NHNH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 002 1112	1 **			()
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenyl-amino m-C(=NH)NH ₂	o-SO ₂ -NH ₃	- H			m-C(=NH)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenyl-amino m-C(=NH)NH ₂					
	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
			(HO-phenyl))-		<u> </u>

LK,	TR ³	TE-J	12	T <u>L</u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	,
0-3O2-14H2	1"	(HO-phenyl))-	carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH,
0.002=1112		(HO-phenyl))-	carboxylic acid	111-0(-1411)14112
o-SO ₂ -NH ₂	†H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH,
0 00,1112	1	(HO-phenyl))-	acid	111-0(0)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
1 -	i	(HO-phenyl))-	carboxylic acid	,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
	1	(HO-phenyl))-	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	$m-C(=O)NH_2$
- 60 - 101	<u> </u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0 80 80	H	(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 002 1112		(HO-phenyl))-	acid ester	111-0(1111)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	1 ` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	$m-C(=O)NH_2$
- 8/2 - 5/1		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-302-14112	**	(HO-phenyl))-	acid ester	III-C(-0)IVII ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH,
0 0022		(HO-phenyl))-	acetic acid ester	111 0(0)1 1112
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
- , -		(HO-phenyl))-	acetic acid ester	` /
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
	<u> </u>	(HO-phenyl))-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
0 80 MH	+	(HO-phenyl))-	k nhanayu sastia asid	- C/-NIIINIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	+н —	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-002-14112	**	(HO-phenyl))-	2113-phonoxy-acenic acid	111-0(-1411)14112
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
2 2	1	(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	1	(HO-phenyl))-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
. 80 00	 	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o SOL NIP	 u	(HO-phenyl))-	CH phonoxy coops accid	m C/=(NNIH
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
U UU2=11112	1	(HO-phenyl))-	acid	(),,,,,,,
	1	_ \ P	_ 	l

R	FR ³	TE-J	IZ	T.
	H	1		1 -
o-SO ₂ -NH ₂	1	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H.	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH,
0-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
	H	(HO-phenyl))-	ether Methyl F-phenoxy-ethyl	
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₂ - (HO-phenyl))-	ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl CH ₃ phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н —	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
L	<u> </u>	(Cl-phenyl))-	<u> </u>	L

R ¹	TR ³	E-J	TZ	Π.
o-SO ₂ -NH ₂	 	CH ₂ -CH(-CH ₂ -	1	m-C(=O)NH ₂
· -		(Cl-phenyl))-	phenyl	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н .	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=O)NH₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂

TR ¹	⊺R'	I E-J	TZ	TT.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-1112	1	(Cl-phenyl))-	acid ester	111-0(1111)1112
o-SO ₂ -NH ₂	 H 	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		(Cl-phenyl))-	acid ester	111-0(1111)1112
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH,
		(Cl-phenyl))-	acetic acid ester	(,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	l ` ´ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	` '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
A SOL NILL	H	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	77	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₁ -O-phenoxy	m-C(=O)NH ₂
0-502-1112	1 **	(Cl-phenyl))-	acetic acid ester	m-c(0)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
1	-	(Cl-phenyl))-		` ´ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
- SO NO	H	(Cl-phenyl))-	CH ₁ -O-phenoxy-acetic	
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH,
0 00, 111,	1 **	(Cl-phenyl))-	Bit o phonony decide dela	0(1.11)1.112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
1 2 2		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
	·	(Cl-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$
- 60 200	ļ , , 	(Cl-phenyl))-	CU	C/-(VVIII
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0.002-1112	**	(Cl-phenyl))-	Da O-phenoxy acetic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
2 2		(Cl-phenyl))-		(
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₂-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
	L	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
CON NIT	 	(Cl-phenyl))-	CH O shones	- C/-NUINUIT
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0.50. NH	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	1.44	(Cl-phenyl))-	Dil-O-phenoxy edianol	111-C(-1411)14113
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
0002 1.112		(Cl-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
1		(Cl-phenyl))-	•	` '" '
	·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

WO 00/71509 PCT/US00/14194

IR ^t	I R'	TE-J	IZ	11,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
	1	(Cl-phenyl))-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0 00,,		(Cl-phenyl))-	ether	(1.11)1.112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-302-14112	1"	(Cl-phenyl))-	ethyl ether	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
• •	1	(Cl-phenyl))-	ethyl ether	!
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(Cl-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
0-502-14112	1 **	(Cl-phenyl))-	phenoxyethyl ether	111-0(0)1112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
' '		(Cl-phenyl))-	phenoxyethyl ether	·
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
		(Cl-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	phenyl :	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=NH)NH ₂
0-502-14112	1 **	NH ₂)-	Ci-phenyi	111-0(1111)1112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
* *	l	NH ₂)-		`
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
~~~		NH ₂ )-		- C/- NHVNNH
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
		NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		NH ₂ )-	*	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
	L	NH ₂ )-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH,
_		NH ₂ )-	-	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=NH)NH ₂
	<u> </u>	·	<del> </del>	<del> </del>

R'	T R⁵	E-J	Z	
o-SO ₂ -NH ₂	<del>H</del>	CH3-CH(-CH3-	CH ₃ -aniline	p-C(=NH)NH ₂
		NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H .	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO₂-NH₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂

O-SO ₂ -NH ₂	R	R	TRI	17	<del>, ,                                    </del>
NH ₃  -   acetic acid ester   m-C(=O)NH ₂   n-SO ₂ -NH ₃   H   CH ₂ -CH ₂ -CH ₃	1		E-J	Z .	L
O-SO ₂ -NH ₂		H	NH ₂ )-	acetic acid ester	m-C(=O)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	·
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	1
C-SO ₂ -NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂		н	CH ₂ -CH(-CH ₂ - NH ₂ )-		l `
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	Н	NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	NH ₂ )-	Phenoxyacetic acid	`
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ ) NH ₂ )- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -NH ₂ ) NH ₂ )- O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -NH ₂ ) NH ₂ )- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -NH ₂ ) NH ₂ )- O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -NH ₂ ) NH ₂ )- O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -NH ₂ ) NH ₂ )- O-SO ₂ -NH ₂ Phenoxy acetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ m-C(=O)NH ₂ m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ m-C(=O)NH			NH ₂ )-		
NH ₂  -    CH ₂ -CH(-CH ₂ -  CH ₃ -O-phenoxy acetic m-C(=O)NH ₂   o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Bn-O-phenoxy acetic acid m-C(=O)NH ₂   NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy-ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  F-phenoxy-ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy-ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy-ethanol m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy-ethanol m-C(=O)NH ₂  -  NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy-ethanol m-C(=O)NH ₂  -  NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Phenoxy-ethanol m-C(=O)NH ₂  -  NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  P-phenoxy-ethanol m-C(=O)NH ₂  -  NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  P-phenoxy-ethanol m-C(=O)NH ₂  -  NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂  -  NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -  Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂  -  o-SO ₂ -NH ₂   H   CH ₂	Ī	İ	NH ₂ )-	•	
NH ₂  -   acid   m-C(=O)NH ₂   NH ₂  -   Bn-O-phenoxy acetic acid   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxyethanol   m-C(=NH)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxy-ethanol   m-C(=NH)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   F-phenoxy-ethanol   m-C(=NH)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   CH ₃ -phenoxy-ethanol   m-C(=NH)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Bn-O-phenoxy-ethanol   m-C(=NH)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxyethanol   m-C(=NH)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxyethanol   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxyethanol   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxyethanol   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Phenoxyethanol   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   CH ₃ -phenoxy-ethanol   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   CH ₃ -O-phenoxy-ethanol   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl phenoxy-ethyl   m-C(=O)NH ₂   NH ₂  -   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CI-phenoxyethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl F-phenoxy-ethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl F-phenoxy-ethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -phenoxy-ethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -phenoxy-ethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -phenoxy-ethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -phenoxy-ethyl   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -O-phenoxy-  m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -O-phenoxy-  m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -   Methyl CH ₃ -O-phenoxy-  m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ -			NH ₂ )-		
NH ₂ )-  O-SO ₂ -NH ₂			NH ₂ )-	acid	` ´ *
NH ₂  -   Cl-phenoxy-ethanol   m-C(=NH)NH ₂			NH ₂ )-	1	_ ` <i>` .</i> _
NH ₂  -  O-SO ₂ -NH ₂			NH ₂ )-		` _
NH ₂  -			NH ₂ )-		
NH ₂  -		İ	NH ₂ )-		
NH ₂  -  O-SO ₂ -NH ₂	l		NH ₂ )-	'''	`
NH ₂  -  O-SO ₂ -NH ₂		H .	NH ₂ )-	CH ₃ -O-phenoxy-ethanol	` ' <u>-</u>
O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )-         CI-phenoxyethanol NH ₂ - O-SO ₂ -NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- NH ₂ - O-SO ₂ -NH ₂ CH ₃ -phenoxy-ethanol NH ₂ - O-SO ₂ -NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- NH ₂ - O-SO ₂ -NH ₂ Bn-O-phenoxy- ethanol NH ₂ - ether         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- ether         Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- ether         Methyl CI-phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- ether         Methyl CH ₃ -phenoxy- ethyl ether         m-C(=NH)NH ₂ ethyl ether           0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- ethyl ether         Methyl CH ₃ -O-phenoxy- ethyl ether         m-C(=NH)NH ₂			NH ₂ )-		`
NH ₂  -			NH ₂ )-		l
NH2)-         NH2)-         CH3-CH(-CH2-         CH3-phenoxy-ethanol         m-C(=O)NH2           0-SO2-NH2         H         CH2-CH(-CH2-         CH3-O-phenoxy- ethanol         m-C(=O)NH2           0-SO2-NH2         H         CH3-CH(-CH2-         Bn-O-phenoxy- ethanol         m-C(=O)NH2           0-SO2-NH2         H         CH2-CH(-CH2-         Methyl phenoxy-ethyl ether         m-C(=NH)NH2           0-SO2-NH2         H         CH3-CH(-CH2-         Methyl CI-phenoxyethyl ether         m-C(=NH)NH2           0-SO2-NH2         H         CH3-CH(-CH2-         Methyl F-phenoxy-ethyl ether         m-C(=NH)NH2           0-SO2-NH2         H         CH3-CH(-CH2-         Methyl CH3-phenoxy- ethyl ether         m-C(=NH)NH2           0-SO2-NH2         H         CH3-CH(-CH2-         Methyl CH3-O-phenoxy- ethyl ether         m-C(=NH)NH2			NH ₂ )-		
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )-         CH ₃ -O-phenoxy- ethanol NH ₂ )-         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- NH ₂ )- cher         Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- cher         Methyl CI-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- cher         Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- ethyl ether         Methyl CH ₃ -phenoxy- ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- ethyl ether         Methyl CH ₃ -O-phenoxy- ethyl ether         m-C(=NH)NH ₂			NH ₂ )-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -		NH ₂ )-		, , -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			NH ₂ )-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			NH ₂ )-		
NH ₂  - ether		H	NH ₂ )-	ether	·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	o-SO ₂ -NH ₂	Н		Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂

R ¹	□R³	E-J	TZ	<del></del>
				L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -NH ₂ )-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -NH ₂ )-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	<del> </del> H	CH,-CH(-CH,-	Methyl CH ₃ -O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	NH ₂ )- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl Bn-O-	m-C(=O)NH ₂
- 80 200		NH ₂ )-	phenoxyethyl ether	- CY-NUINNIII
o-SO ₂ -NH ₂	CH,	CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenyl .	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-3O ₂ -NH ₂			CH ₃ -O-phenyi	
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH.	CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH,	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₁	CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-502-1112	CH,		CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂	Bn-O-aniline	p-C(-O)NII ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂		p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-phenyl-amino CH ₃ carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Сн,	CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
0 002-1112	1 0113	_ ~1.17	1 2 V Priving 1-diffinity	1 0( 0)11112

(R ¹	⊺R⁵	TE-J	Z	I L
	<del>  ``</del>	10-5	carboxylic acid	<del></del>
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-502-1112	\ \tag{C113}	C112	acid ester	111-0(-1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-1112	Ciri	C112	acid ester	111-0( 1111)11113
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-1112	C113	C112	acid ester	111-0( 1111)11113
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-302-1112	C113	C112	acetic acid ester	111-0(-1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-302-1112	C113	C112	acetic acid ester	111-0( 1111)1112
0-SO ₂ -NH ₂	CH,	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH,
0-302-14112	C113	CII2	acetic acid ester	111-0( 1411)14112
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-302-1112	Cili	C112	acid ester	111-0(-0)14112
a so NH	- CD	- CU	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	acid ester	III-C(-O)IVII2
- 80 NIII	(1)	711		C/-(VNI)
o-SO ₂ -NH ₂	СН,	CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
- NO NIII			acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
			acetic acid ester	C(-O)NIII
o-SO ₂ -NH ₂	CH ₃	CH,	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxy- acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		•	acid	·
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH,	Cl-phenoxyethanol	m-C(=O)NH,
0-SO ₂ -NH ₂	CH,	CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
1 302 1.112	,	2	ether	
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0 002-1112	J3	-1.12	ether	0( 141)1412
0-SO ₂ -NH ₂	CH ₃	CH,	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0 002 1112	~~,	\ \frac{112}{112}	ether	
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-002-1112	~,	~~~2	ethyl ether	111.0( 1411)1412
o-SO ₂ -NH ₂	CH,	CH,	Methyl CH ₁ -O-phenoxy-	m-C(=NH)NH ₂
0 002-1112	~,	~1.12	ethyl ether	0(/
L	L	L	1 2 7 1 0 1	

R ¹	R ⁵	E-J	Z	<del></del>
	CH ₃		I =	L
o-SO ₂ -NH ₂		CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH,-CH,	phenyl	m-C(=NH)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	phenyl .	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₁	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
	CH ₁		Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂		p-C(-NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-aniline	$p-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH ₂	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
				<del></del>

R ¹	R ³	E-J	Z	L
			carboxylic acid	<del> </del>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH,
			ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂

I R ¹	TR ³	TE-J	1 <b>Z</b>	TL
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	1		ethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₃ -CH ₃	CH ₃ -O-phenyl	m-C(=NH)NH ₂
	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₃ -CH ₃ -CH ₃	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂				
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₁	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂

C=SO ₂ -NH ₂	R ⁱ	□R ⁵	E-J	12	L
CH3	<del></del>	<del>- </del>			
Second   CH3	o-SO ₂ -NH ₂	CH	CH-CH-CH-		m-C/=NH)NH
CH3	1	,	3112 3112 3112		0(,
CH3	o-SO ₂ -NH ₂	CH,	CH,-CH,-CH,		m-C(=NH)NH
o-SO ₂ ·NH ₂ CH ₃ CH ₂ ·CH ₂ ·CH ₃ Methyl F-phenoxy- acetic acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid		,	2		(
CH3	o-SO ₂ -NH ₂	CH,	CH,-CH,-CH,		m-C(=NH)NH ₂
CH3			1		` ′ •
CH3	o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ Methyl Bn-O-phenoxy acetic acid ester m-C(=Nh)NH ₂ acetic acid ester m-C(=O)NH ₂ C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ acetic acid ester acid ester acid ester acid ester m-C(=O)NH ₂ acetic acid ester m-C(=O)NH ₂ acetic acid ester acid ester acid ester acid ester acid ester acid ester acetic acid ester acid ester acetic acid ester acid ester acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acid ester acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic acetic	1				` '
6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ actite acid ester acid ester         m-C(=NH)NH ₂ actite acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxyacetic acid ester         m-C(=O)NH ₂ acetic acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₂ -phenoxyacetic acid ester         m-C(=O)NH ₂ acetic acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxy method acid acid ester         m-C(=O)NH ₂ acetic acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ acid acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ acid acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ acid acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ acid acid ester           o-SO ₂ -NH ₂ CH ₃ </td <td>o-SO₂-NH₂</td> <td>CH₃</td> <td>CH₂-CH₂-CH₂</td> <td>Methyl CH₃-O-phenoxy-</td> <td>m-C(=NH)NH₂</td>	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl C-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₃ Methyl C-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ Methyl Bn-O-phenoxy m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₄ CH ₅ CH ₂ -CH ₂ -CH ₃ Methyl Bn-O-phenoxy m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₄ CH ₅ CH ₂ -CH ₂ -CH ₃ Methyl Bn-O-phenoxy m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₄ CH ₅ CH ₂ -CH ₂ -CH ₃ Cl-phenoxyacetic acid m-C(=NH)NH ₄ o-SO ₂ -NH ₃ CH ₄ CH ₅ CH ₂ -CH ₂ -CH ₃ Cl-phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₃ CH ₄ CH ₂ -CH ₂ -CH ₃ CH ₂ -Phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₄ CH ₅ CH ₂ -CH ₂ -CH ₄ CH ₃ -phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₄ CH ₅ CH ₅ -CH ₂ -CH ₄ CH ₄ -Phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₄ CH ₅ CH ₅ CH ₅ -CH ₅ Bn-O-phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₄ CH ₅ CH ₅ CH ₅ -CH ₅ Phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₅ CH ₅ CH ₅ CH ₅ -CH ₅ CH ₇ -Ch ₉ Phenoxyacetic acid m-C(=O)NH ₃ o-SO ₂ -NH ₅ CH ₅ CH ₇ -CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₅ CH ₅ CH ₇ -CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₅ CH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₅ CH ₇ CH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₅ CH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₇ CH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₇ CH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH ₉ o-SO ₂ -NH ₇ CH ₇ CH ₇ CH ₇ CH ₇ CP ₈ Phenoxyacetic acid m-C(=O)NH					
6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ acid ester acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyacetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyacetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₂ -phenoxyacetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₂ -phenoxyacetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxyacetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid ester         m-C(=NH)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid ester         m-C(=NH)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid ester         m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid ester         m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₃ Phenoxyacetic acid ester         m-C(=NH)NH ₃ 6-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₃ Phenoxyacetic acid ester         m-C(=NH)NH ₃ 6-SO ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=O)NH ₃ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid					
6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ acid ester acid ester         m-C(=O)NH ₂ acid ester           6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxyacetic acid ester         m-C(=O)NH ₂ acetic acid ester           6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester         m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₃ m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₃ m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₃ m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₃ m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₃ m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₃ m-C(=NH)NH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ <	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		$m-C(=O)NH_2$
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester					
0-SO2-NH2         CH3         CH2-CH2-CH2 acid ester         m-C(=O)NH2 acid ester         m-C(=O)NH2 acid ester           0-SO2-NH2         CH3         CH2-CH2-CH2 Methyl CH3-phenoxy acetic acid ester         m-C(=O)NH2 acetic acid ester           0-SO2-NH2         CH3         CH2-CH2-CH2 Methyl CH3-O-phenoxy acetic acid ester         m-C(=O)NH2 acetic acid ester           0-SO2-NH2         CH3         CH2-CH2-CH2 Phenoxy-acetic acid m-C(=NH)NH2 acetic acid ester         m-C(=O)NH2 acetic acid ester           0-SO2-NH2         CH3         CH2-CH2-CH2 Phenoxy-acetic acid m-C(=NH)NH2 acetic acid ester         m-C(=NH)NH2 acetic acid ester           0-SO2-NH2         CH3         CH2-CH2-CH2 Phenoxy-acetic acid m-C(=NH)NH2 acetic acid ester         m-C(=NH)NH2 acetic acid m-C(=NH)NH2 acetic acid m-C(=NH)NH2 acid           0-SO2-NH2         CH3         CH3-CH2-CH4 CH3-phenoxy-acetic acid m-C(=NH)NH3 acid         m-C(=NH1)NH2 acid           0-SO2-NH2         CH3         CH3-CH2-CH2 CH3-phenoxy-acetic acid m-C(=O)NH3 acid         m-C(=O)NH3 acid           0-SO2-NH2         CH3         CH3-CH3-CH4 Phenoxy-acetic acid m-C(=O)NH3 acid         m-C(=O)NH3 acid           0-SO2-NH2         CH3         CH3-CH3-CH4 CH3 Phenoxy-acetic acid m-C(=O)NH4 acid         m-C(=O)NH3 acid           0-SO2-NH2         CH3         CH3-CH3-CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		$m-C(=O)NH_2$
acid ester					
O-SO2-NH2         CH3         CH2-CH2-CH2         Methyl CH3-phenoxy-acetic acid ester         m-C(=O)NH2           o-SO2-NH2         CH3         CH2-CH2-CH2         Methyl CH3-O-phenoxy acetic acid ester         m-C(=O)NH2           o-SO2-NH2         CH3         CH2-CH2-CH2         Methyl Bn-O-phenoxy acetic acid m-C(=O)NH2 acetic acid ester           o-SO2-NH2         CH3         CH2-CH2-CH2         Phenoxyacetic acid m-C(=NH)NH2 acetic acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=O)NH2 acid m-C	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		$m-C(=O)NH_2$
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Dephenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Dephenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Dephenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -Dephenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Dephenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Dephenoxy-acetic acid m-C(=O)NH ₃ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Dephenoxy-acetic acid m-C(=O)NH ₃ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -Dephenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -Dephenoxy-acetic acid m-C(=O)NH ₂ o-SO			·		
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₄ P-phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₄ P-phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₄ P-phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ P-phenoxy-acetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ P-phenoxy-acetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic aci	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		$m-C(=O)NH_2$
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxy acctic acid dester acctic acid dester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acctic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-acctic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-acctic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acctic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-acctic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-acctic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacctic acid m-C(=O)NH ₃ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acctic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acctic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acctic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acctic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃					
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl ₂ Phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl ₂ CH ₃ Phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ Phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid <td>o-SO₂-NH₂</td> <td>CH₃</td> <td>CH₂-CH₂-CH₂</td> <td></td> <td>m-C(=O)NH₂</td>	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		m-C(=O)NH ₂
CH3		-			
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ P-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH	0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		m-C(=O)NH₂
0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -D-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ DR-O-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxyacetic acid         m-C(=O)NH ₂ 0-SC ₂ -NH ₂ CH ₃ CH	- 00				· · · · · · · · · · · · · · · · · · ·
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃					
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ <td></td> <td></td> <td></td> <td></td> <td></td>					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ acid acid acid         m-C(=NH)NH ₂ acid           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-acetic acid m-C(=O)NH ₂ <t< td=""><td></td><td></td><td></td><td>1</td><td></td></t<>				1	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy acetic         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -Denoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ </td <td>0-3O₂-Nn₂</td> <td>Cn₃</td> <td>CH₂-CH₂-CH₂</td> <td></td> <td></td>	0-3O ₂ -Nn ₂	Cn ₃	CH ₂ -CH ₂ -CH ₂		
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂	o SO NH	<del></del>	CH CH-CH		m-C/ENHINH
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -D-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -D-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂	0-50 ₂ -111 ₂	1			
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ acid acid acid acid acid acid acid acid	0-502-NH				
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxyethyl m-C(=NH)NH ₂ ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl m-C(=NH)NH ₂ ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl m-C(=NH)NH ₂ ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ether					
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy acetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxy-ethanol         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ <td< td=""><td>0-002-1112</td><td>C113</td><td>C112-C112-C112</td><td></td><td> 0( 0). 12.2</td></td<>	0-002-1112	C113	C112-C112-C112		0( 0). 12.2
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -D-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ M	o-SO-NH.	CH.	CH ₂ -CH ₂ -CH ₃		m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ CI-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ D-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ Phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ P-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ Phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ Phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl e					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy- ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Me	0-SO ₂ -NH ₂				
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂	0-SO ₂ -NH ₂				
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Cl-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -D-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -D-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl         m-C(=NH)NH ₂ ether         characteristic mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical mathematical ma					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		, ,	CH;-CH;-CH;		
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ Dhenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂			CH ₂ -CH ₂ -CH ₃		1
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ CH ₃ -O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂		CH,		+	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenoxy- ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Cl-phenoxyethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy-ethyl ethyl CH ₃ -O-phenoxy-ethyl ethyl ether	o-SO ₂ -NH ₂	CH,			m-C(=O)NH ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CH,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂ -CH ₂ -CH ₃	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy- ethyl ether         m-C(=NH)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂	•	1			l • • • • • •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
ether	l				L ·
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂				1	<u></u>
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		m-C(=NH)NH ₂
ethyl ether	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂		$m-C(=NH)NH_2$
				ethyl ether	<u> </u>

R¹         R²         E-J         Z         L           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂         Methyl Bn-O-phenoxy ethyl ether         m-C(=NH) ethyl ether           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂         Methyl Phenoxyethyl ether         m-C(=O)N ether           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂         Methyl CI-phenoxyethyl ether         m-C(=O)N ether           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂         Methyl CH₃-phenoxyethyl ether         m-C(=O)N ether           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂         Methyl CH₃-O-phenoxyethyl ether         m-C(=O)N ether           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂-CH₂         Methyl Bn-O-phenoxyethyl ether         m-C(=O)N ether           o-SO₂-NH₂         CH₃         CH₂-CH₂-CH₂-CH₂-Dhenoxyethyl ether         m-C(=O)N ether           o-SO₂-NH₂         CH₃         CH₂-CH(-CH₃)-Dhenyl ether         m-C(=NH)           o-SO₂-NH₂	H ₂ H ₂ H ₂ H ₂ H ₂ H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
ethyl ether	H ₂ H ₂ H ₂ H ₂ H ₂ H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
CH3	H ₂ H ₂ H ₂ H ₂ H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
c-SO ₂ -NH ₂	H ₂ H ₂ H ₂ H ₂ H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl F-phenoxyethyl ether         m-C(=O)N ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ - phenoxyethyl ether         m-C(=O)N phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O- phenoxyethyl ether         m-C(=O)N phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O- phenoxyethyl ether         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Dhenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         <	H ₂ H ₂ H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ - phenoxyethyl ether         m-C(=O)N phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O- phenoxyethyl ether         m-C(=O)N phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ phenyl phenoxyethyl ether         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl phenyl phenyl m-C(=NH)         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl m-C(=NH)         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl m-C(=NH)         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -O-phenyl m-C(=NH)         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl m-C(=NH)         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl m-C(=O)N         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl m-C(=O)N         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl m-C(=O)N         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl m-C(=O)N         m-C(=O)N	H ₂ H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ H ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxyethyl ether         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxyethyl ether         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- D-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- D-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- D-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- D-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=O)N	H ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Bn-O-phenoxyethyl ether         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Cl-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-CH ₃ -O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Phenyl         m-C(=O)N	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- D-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=O)N	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CI-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CI-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=O)N	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=O)N	NH ₂ NH ₂ NH ₂ NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         Bn-O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=O)N	NH ₂ NH ₂ NH ₂ H ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         Bn-O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=O)N	NH ₂ NH ₂ H ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Bn-O-phenyl         m-C(=NH)           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=O)N	NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=O)N	H ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl         m-C(=O)N	H ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         Cl-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=O)N	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         F-phenyl         m-C(=O)N           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-         CH ₃ -phenyl         m-C(=O)N	H.
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl m-C(=O)N	
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Aniline p-C(=NH)l	
$O-SO_2-NH_2$ $CH_3$ $CH_2-CH(-CH_3) Cl$ -aniline $p-C(=NH)$	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-amiline p-C(=NH)I	
$O-SO_2-NH_2$ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -aniline p-C(=NH)!	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -O-aniline p-C(=NH)l	√H2
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Bn-O-aniline p-C(=NH)I	VH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Aniline p-C(=O)NI	1,
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-aniline p-C(=O)NI	₹,
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-aniline p-C(=O)NI	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -aniline p-C(=O)NI	
$O-SO_2-NH_2$ $CH_3$ $CH_2-CH(-CH_3) CH_3-O-aniline$ $p-C(=O)NI$	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )-Bn-O-aniline p-C(=O)NI	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Phenyl-amino-carboxylic m-C(=NH) acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-Phenyl-amino carboxylic acid m-C(=NH)	NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl-amino m-C(=NH)	NH ₂
carboxylic acid  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl-amino m-C(=NH)	NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -O-phenyl amino m-C(=NH)	NH ₂
carboxylic acid  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Bn-O-phenyl amino m-C(=NH)	NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Phenyl-amino carboxylic m-C(=O)N	H ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Cl-phenyl-amino m-C(=O)N	_ ]
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- F-phenyl-amino m-C(=O)N	_ ]
carboxylic acid	J
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -phenyl-amino m-C(=O)N carboxylic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- CH ₃ -O-phenyl-amino m-C(=O)N carboxylic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ )- Bn-O-phenyl-amino m-C(=O)N	

R [†]	TR ⁵	E-J	IZ	L
	+	<del>                                     </del>	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl Phenoxyacetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₃)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,)-	F-phenoxyacetic acid	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₃ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂

R ¹	TR ³	I E-J	Z	TT
				L
0-SO ₂ -NH ₂	CH ₃	СН2-СН(-СН3)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₃ )-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₃ )-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	phenyl	m-C(=NH)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-phenyl	
			CU mbonul	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	Bn-O-phenyl	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Aniline	p-C(=NH)NH,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₁ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Aniline	p-C(=O)NH ₂
	CH,	CH ₂ -CH(-NH ₂ )-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-aniline	p-C(=0)NH ₂
	CH ₃		CH ₃ -aniline	
o-SO ₂ -NH ₂		CH ₂ -CH(-NH ₂ )-		p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-NH₂)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl-amino	m-C(=O)NH ₂

R ¹	R⁵	E-J	Z	T L
	1	12-3	·	<u> </u>
O SOL NIP	CH	CH ₂ -CH(-NH ₂ )-	carboxylic acid	m C/=NILINNILI
o-SO ₂ -NH ₂	CH,	1	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₁	CH ₂ -CH(-NH ₂ )-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂

r <del>ot</del>	TR⁵.		7	Y T
R'	1	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-Bn)-	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₁	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=NH)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
0-50 ₂ -NH ₂				
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH ₂
	CH ₃		Cl-aniline	
o-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-		p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl-amino	m-C(=O)NH ₂

R'	R ³	E-J	ız ·	TL
	<del>                                     </del>	12-3	carboxylic acid	<del></del>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		1	acid ester	
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH(-Bn)-	acid ester Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH,
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH,
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
- •		CH ₂ -CH(-Bn)-	ether	, , <u>-</u>
o-SO ₂ -NH ₂	СН,	• ` ` ′	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂

R'	TR ³	E-J	1 Z	IL
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-aniline	p-C(=O)NH ₂

IR ¹	⊺R⁵	I E-J	TZ	П.
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenoxyacetic acid	m-C(=O)NH ₂

No	R	I R ³		17	TT
COCCH ₃	1		E-J	Z	l r
o-SO ₂ -NH ₂ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -COCH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₃ -COCH ₃ -CH ₄ -CH	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ -CN ₂ -CNH ₂ )         CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CN ₂ -CNH ₂ )         m-C(=0)NH ₂ -CH(-CH ₃ -CN ₂ -CNH ₂ -CN ₃ -CNH ₂ -CN ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CN ₂ -CN ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CH ₄ -CH ₄ -CH ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -CN ₄ -C	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ CH ₇ -CH ₇ acid acid acid acid COCH ₃ )-COCH ₃ m-C(=O)NH ₂ acid acid m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ CH ₇ -CH ₇ -COCH ₃	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ -COOCH ₃	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH/CH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -C	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₂ -CH ₂ -COOCH ₃	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ -COOCH ₃ -COOCH	o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₂ COOCH ₃ -COOCH	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO2-NH2         CH3         CH3-CH7-CH2-CH2-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO2-NH2         CH3         CH2-CH7-CH2-CH2-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ -COOCH ₃ )         Phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         CI-phenoxyethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         CH ₃ -phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Methyl CH ₃ -phenoxy-ethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃	o-SO ₂ -NH ₂		CH2-CH(-CH2-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
COOCH ₃ )-         CH ₂ -CH(-CH ₂ -COCH ₃ )-         F-phenoxy-ethanol         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃	o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-		m-C(=O)NH ₂
COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  o-SO ₂ -NH ₂ CH ₃ CH ₃	o-SO ₂ -NH ₂	СН,	COOCH ₃ )-		m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COCH ₃ )-COOCH ₃ )-COOCH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Methyl phenoxy-ethanol m-C(=O)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ Methyl Cl-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ Methyl Cl-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ Methyl CH ₃ -O-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH	o-SO ₂ -NH ₂	СН,			m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -COOCH ₃ )- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH(	-	СН,	CH2-CH(-CH2-	CH ₃ -phenoxy-ethanol	` ´ •
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Methyl CI-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Methyl CI-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Methyl CH ₃ -phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ Methyl CH ₃ -phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -COOCH ₃ )-Dhenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxyethyl ether	o-SO ₂ -NH ₂	CH ₃		CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ethyl ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ ether m-C(=NH)NH ₂ e	o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ether         Methyl Cl-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ether         Methyl F-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dehooxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dehooxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dehooxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Deho	o-SO ₂ -NH ₂	CH ₃			m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- phenoxyethyl ether  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
COOCH ₃  - ethyl ether   CH ₂ -CH(-CH ₂ - COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ethyl ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether   COOCH ₃  - ether	o-SO ₂ -NH ₂	CH ₃			m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ -COOCH ₃	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ -COOCH ₃	·		CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ Methyl Phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ -COOCH	o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₂ - COOCH ₁ )-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Methyl F-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Deth)-COOCH ₃ Methyl CH ₃ -OPHON Syethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Deth)-COOCH ₃ Methyl Bn-OPHON Syethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Deth)-CH ₂ -Dethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Deth)-CH ₂ -Dethyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Deth)-CH ₂ -Dethyl         m-C(=NH)NH ₂			COOCH ₃ )-	Methyl Phenoxyethyl ether	` ' -
COOCH ₃ )- ether  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ - m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O- m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O- m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O- m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - phenoxyethyl ether  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-phenyl m-C(=NH)NH ₂		CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	ether	
COOCH ₃ )- phenoxyethyl ether  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O- phenoxyethyl ether  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O- phenoxyethyl ether  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - phenoxyethyl ether  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-phenyl m-C(=NH)NH ₂		1	COOCH ₃ )-	ether	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			COOCH ₃ )-	phenoxyethyl ether	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			COOCH ₃ )-	phenoxyethyl ether	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	СН,		Methyl Bn-O-	
	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
	o-SO ₂ -NH ₂	CH _{3.}		Cl-phenyl	m-C(=NH)NH ₂

R'	R'	E-J	Z	L
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
	-	CH ₂ -OH)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
	1	CH ₂ -OH)-		' ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		CH₂-OH)-		C/O\\\
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH phenyl	m-C(=O)NH ₂
0-302-14112		CH ₂ -OH)-	CH ₃ -phenyl	In-O(-O)(\(\frac{1}{2}\)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CI-aniline	p-C(=NH)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₁ -aniline	p-C(=NH)NH ₂
		CH ₂ -OH)-		
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Bn-O-aniline	p-C(=NH)NH ₂
- CO NIII	CU	CH ₂ -OH)-	Anilino	- C/-C/NH
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=O)NH₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0.80 NB	СН	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CII,	CH ₂ -CH(-CH ₂ -	r-amime	p-C(-0)/411 ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH,-CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
0-502-1112	1	CH ₂ -OH)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		CH ₂ -OH)-	acid	` ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=NH)NH ₂
		CH₂-OH)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		CH₂-OH)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	СН ₂ -СН(-СИ ₂ - СН ₂ -ОН)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
		CH₂-OH)-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
	<u> </u>	CH₂-OH)-	carboxylic acid	

R ¹	∏R ³	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
	1	CH ₂ -OH)-	carboxylic acid	` '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Сн,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Сн,	CH ₂ -CH(-CH ₂ - CH ₃ -OH)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₃ -OH)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂

R¹	R³	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂

R ¹	R ³	E-J	Z	TL .
		C(=0)-N-		
o-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH,
0-302-14112	Cn ₃	C(=O)-N-	r-phenyi	m-C(-O)NH ₂
		morpholino)-	, i	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		C(=0)-N-		
- 80 10		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -O-phenyl	m-C(=O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
		C(=O)-N-		-
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	Aniline	p-C(=NH)NH ₂
	İ	morpholino)-		
o-SO ₂ -NH ₂	сн,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
• • •	1	C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N-	F-aniline	p-C(=NH)NH ₂
	ļ	morpholino)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH,
		C(=O)-N-		' ' ' '
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -O-aniline	p-C(=NH)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		C(=O)-N-	•	' ' '
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N-	Aniline	p-C(=O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
• •		C(=O)-N-		` ` ′ .
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N-	F-aniline	p-C(=O)NH ₂
	i	morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		C(=O)-N-	,	F 5( 5)-12-2
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N-	CH ₃ -O-aniline	p-C(=O)NH ₂
		morpholino)-		•
o-SO ₂ -NH ₂	CH,	CH ₃ -CH(-CH ₃ -	Bn-O-aniline	p-C(=O)NH ₂
		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=0)-N-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
		morpholino)-	aciu	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
- •	3	C(=O)-N-	carboxylic acid	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-	carboxylic acid	<u> </u>
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		C(=O)-N-	carboxylic acid	
		morpholino)-	<u> </u>	1

R'	TR ³	E-J	17	T T
			Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		C(=O)-N-	carboxylic acid	1
ì		morpholino)-	1	ł
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Pa () phonyl amino	m-C(=NH)NH ₂
0-3O ₂ -NH ₂	CI13		Bn-O-phenyl amino	III-C(-NII)NII2
1	1	C(=0)-N-	carboxylic acid	
1	ŀ	morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
1	"	C(=O)-N-	acid	1 ' '
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
0-3O ₂ -NH ₂	C11 ₃			III-C(-C)NH ₂
1		C(=O)-N-	carboxylic acid	
		morpholino)-		<b>!</b>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
1		C(=O)-N-	carboxylic acid	
1		morpholino)-	1 1	1
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0-302-1112	C113	C(=C) N	C113-phenyl-animo	III-C(-O)IVI12
		C(=O)-N-	carboxylic acid	
L		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	$m-C(=O)NH_2$
	· -	C(=O)-N-	carboxylic acid	l ` ´ •
		morpholino)-		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
0-3O ₂ -NH ₂	Cn ₃	Ch ₂ -Ch(-Ch ₂ -	Bil-O-phenyi-animo	m-c(-O)Nn ₂
		C(=0)-N-	carboxylic acid	1
	i	morpholino)-	İ	!
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
	1 -	C(=O)-N-	acid ester	' '
Į.		morpholino)-		ł l
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-1112	C113	C(=0)-N-	acid ester	111-0(-1411)14112
	}		acid ester	l
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		C(=O)-N-	acid ester	
		morpholino)-	İ	[
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 2 2 2 2 2 2 2 2	03	C(=O)-N-	acetic acid ester	0(
	j	morpholino)-	accite acid ester	
- 8/0 - 8/0				- C/ NWW-11
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		C(=O)-N-	acetic acid ester	<b>i</b> I
		morpholino)-		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
1	,	C(=O)-N-	acetic acid ester	] (
		morpholino)-		f
- SO NH	CU		Mother Dhomanne	= C(=C)NIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
1		C(=O)-N-	acid ester	
	_ ·	morpholino)-		<u> </u>
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
l	-	C(=O)-N-	acid ester	` ´ '*
1	l	morpholino)-	·	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-302-14112	C113			111-0(-0)1112
		C(=O)-N-	acid ester	i
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₂-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
Ī		C(=O)-N-	acetic acid ester	
		morpholino)-		i l
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0 002-1112	~~3	C(=O)-N-	acetic acid ester	
			acciic aciu estei	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		C(=O)-N-	acetic acid ester	
1		morpholino)-	•	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0 002 1112	~···3	C(=O)-N-	· ·	=
L		C(-C)-14-		i

R'	R ³	E-J	Z	L
		morpholino)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂

R ^t	∏R³	E-J	IZ	L
	<del>                                     </del>	C(=0)-N-		
		morpholino)-		<u>]</u>
O-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0 50, 111,	0,	C(=0)-N-	Dir o phonony cumuro	0( 0)1.112
•		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
ŀ	,	C(=O)-N- morpholino)-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0 002 1112	~,	C(=O)-N-	ether	0( 1.1.1)1.1.2
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		C(=O)-N-	ether	
o-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH,
0-502-1112	C113	C(=O)-N-	ethyl ether	111-0( 1111)1112
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		C(=O)-N-	ethyl ether	
o-SO ₂ -NH ₂	CH,	morpholino)- CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH,
0-002-14112	C113	C(=0)-N-	ethyl ether	111 0( 1111)1112
		morpholino)-	]	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
		C(=O)-N-	ether	
o-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-502-1112	C113	C(=O)-N-	ether	111-0( 0)1111
	ľ	morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
		C(=O)-N- morpholino)-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
0 002 1112	0,	C(=O)-N-	phenoxyethyl ether	
		morpholino)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		C(=O)-N- morpholino)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH.	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
	,	C(=0)-N-	phenoxyethyl ether	
		morpholino)-	<u> </u>	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH,
0 002 1112	] 5223	CH ₂ -S(O) ₂ -CH,	p	` ′ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
2 2	,	CH ₂ -S(O) ₂ -CH,	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
- 80 - 20	1	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=O)NH,
, ,		CH ₂ -S(O) ₂ -CH ₃	•	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
	<u> </u>	$CH_2$ -S(O) ₂ -CH,	<u> </u>	

R'	TR	E-J	Z	TL.
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0-002-1112	3	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	C113-PHOLY:	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
	,	CH ₂ -S(O) ₂ -CH ₃	, -  ,	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
1 2 2 2 2 2 2 2 2	,	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	Aniline	p-C(=NH)NH ₂
1 2 2	1,	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₃ -CH ₍ -CH ₃ -	Cl-aniline	p-C(=NH)NH ₂
	-	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
	l	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
	l	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline .	p-C(=O)NH ₂
	Lari	CH ₂ -S(O) ₂ -CH ₃		CCONNU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
- C/C NID		CH ₂ -S(O) ₂ -CH ₃	K sailias	- C/-(VNI)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
0-3O ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	C113-annine	p-C(-C)/VII ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
0-002-1112	C113	CH ₂ -S(O) ₂ -CH ₃		p 5( 5)1.122
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0 002 1 112	,	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
1	1	$CH_2$ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
- CO NIII	CIT	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	C/NUVNIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o SO NIP	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	113	CH ₂ -Ch(-Ch ₂ - CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	111-0( 1111)11113
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
0 002 1112	~,	CH ₂ -S(O) ₂ -CH ₃	acid	= ( = ),,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
	,	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	` ' -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
[		$CH_2$ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		$CH_2$ -S(O) ₂ -CH ₃	carboxylic acid	1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
- 80-601	CIT	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	- CY-NGOVOU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0 SO -NP	CH	CH ₂ -S(O) ₂ -CH ₃	acid ester Methyl Cl-phenoxyacetic	m-C/=NHINH
o-SO ₂ -NH ₂	CH ₃	$CH_2$ - $CH(-CH_2$ - $CH_2$ - $S(O)_2$ - $CH_3$	acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 002-1112	~~~3	CH ₂ -S(O) ₂ -CH ₃	acid ester	(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	,	$CH_2$ -S(O) ₂ -CH ₃	acetic acid ester	== =( = /=/-/- /=-2
	1			

R ^t	R'	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
-, -	•	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	`
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	<u> </u>	$CH_2$ - $S(O)_2$ - $CH_3$	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0 SO NH	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acid ester  Methyl F-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CI13	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	acid ester	111-0(-0)14112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₁ -phenoxy-	m-C(=O)NH ₂
	,	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	<u> </u>	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		$CH_2$ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
a SO NIH	CB	CH ₂ -S(O) ₂ -CH ₃	F-phenoxy- acetic acid	m-C/=NH/NH
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	r-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₁ -phenoxy-acetic acid	m-C(=NH)NH,
0-002-11112	C113	CH ₂ -S(O) ₂ -CH ₃	erry phenoxy accus acid	0( 1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenoxy-acetic	m-C(=NH)NH ₂
	, <b>,</b>	CH ₂ -S(O) ₂ -CH ₃	acid	( 2
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
- CV XIII	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Cn ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	r-phenoxyacetic acid	111-0(-0)1112
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0 007 1 112	,	CH ₂ -S(O) ₂ -CH ₃	, ,	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		$CH_2$ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		C/=>UO>U
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH,
0-30 ₂ -1411 ₂	C113	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Ci-phenoxy-edianoi	111-0(-1411)14112
o-SO ₂ -NH ₂	Сн,	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
J J J J J J J J J J J J J J J J J J J	,,	CH ₂ -S(O) ₂ -CH ₃		333 5( 3355)2 322
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃		, , , -
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₂-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
- C/V NIII	<del> </del>	CH ₂ -S(O) ₂ -CH ₃	Dhonovy others!	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
5 502=11112	J,	CH ₂ -S(O) ₂ -CH,	o. phonoxyoumnor	🔾 🗸 , , , , , , , , , , , , , , , , , ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃	<b>.</b>	`´ <b>˙</b>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
	L	CH ₂ -S(O) ₂ -CH ₃		
0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		$CH_2$ -S(O) ₂ -CH ₃		

R	TR ⁵	E-J	Z	TL
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₃ -	ethyl ether : Methyl Bn-O-phenoxy	m-C(=NH)NH,
0-SO ₂ -NH ₂	1	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	ethyl ether	m-C(=O)NH,
L	CH ₃	$CH_2$ -S(O) ₂ -CH ₃	Methyl Phenoxyethyl ether	` ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
0022	,	CH ₂ -S(O) ₂ -CH ₃	phenoxyethyl ether	0( 0)1 112
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH,
		CH ₂ -S(O) ₂ -CH ₃	phenoxyethyl ether	` ' "
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -hexane)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -hexane)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-aniline	p-C(=NH)NH ₂
L			<u> </u>	

=0)NH ₂ =0)NH ₂
_
_
-CVAIR-
O)NH ₂
-MND
=O)NH ₂
O)NH ₂
-(VXIII)
=O)NH ₂
=NH)NH ₂
=KILIVKILI
=NH)NH ₂
=NH)NH₂
_NIII)NIII
=NH)NH ₂
=NH)NH₂
=NH)NH ₂
-MUJINU2
=O)NH ₂
=O)NH,
≡O)NH₂
=O)NH,
-OjNn ₂
=O)NH ₂
=O)NH ₂
-O)1112
=NH)NH ₂
=NH)NH ₂
1111/1112
=NH)NH ₂
=NH)NH ₂
· -
=NH)NH ₂
=NH)NH ₂
=O)NH ₂
=O)NH ₂
=O)NH ₂
=O)NH ₂
,
≡O)NH ₂
=O)NH ₂ =O)NH ₂

WO 00/71509 PCT/US00/14194

- 158 -

ſŖ¹	T R³	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
3 302 3 1112	,	hexane)-	or prioriorly acoust acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
	1	hexane)-	•	` ´
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
1		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		hexane)-	acid	
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	<u></u>	hexane)-	N	C(C)\\
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0 80 NU	CH,	hexane)-	CI-phenoxyacetic acid	m-C(=O)NH,
o-SO ₂ -NH ₂	Cn,	CH ₂ -CH(-CH ₂ - hexane)-	Ci-phenoxyaceue acid	m-Q-O)Nn ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0-002-1112	~~~	hexane)-	phonoxyacene acid	0( 0). 11.2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
500,1,	,	hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		hexane)-	acid	` ′ *
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	$m-C(=NH)NH_2$
		hexane)-	Nahanan akama	('/ <b>k</b> !!!!\ <b>k</b> !!
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
O SO NIP	СН,	hexane)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	CH ₂ -CH(-CH ₂ - hexane)-	C113-buenoxà-entanoi	111-0(-1411)14112
0-SO ₂ -NH ₂	сн,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0.002-1112	~···,	hexane)-	phonony cumor	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
**	1	hexane)-		` ´ *
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
		hexane)-		6/6/202
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(≡O)NH ₂
- SO NII		hexane)-	CH shonows others!	- C(-()\X\II
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO-NH	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Cn ₃	$\frac{CH_2-CH(-CH_2-)}{\text{hexane}}$	C113-O-phenoxy-emailor	111-0(-0)14112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
5502 1112	J,	hexane)-	o promony common	0( 0), 1,2,2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	,	hexane)-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		hexane)-	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		hexane)-	ether	
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₂-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		hexane)-	ethyl ether	C/KIIIXIII
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
a SO NIII		hexane)-	ethyl ether	m C/NIUNKIU
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-302-14H2	113	hexane)-	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
	,	hexane)-	ether	
L	L			

IR ¹	TR ³	E-J	Z	TL .
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	CH ₃	hexane)-	ether	III-C(-O)Nn ₂
SO NIII	-	CH ₂ -CH(-CH ₂ -		- C/=CVNIU
o-SO ₂ -NH ₂	CH,		Methyl CH ₃ -	m-C(=O)NH ₂
80		hexane)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Methyl CH ₃ -O-	m-C(=O)NH ₂
		hexane)-	phenoxyethyl ether	<u> </u>
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₂-	Methyl Bn-O-	m-C(=O)NH ₂
		hexane)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
		(HO-phenyl))-		<b>,</b>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
1		(HO-phenyl))-		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
1 -	1 -	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₂-	CH ₃ -phenyl	m-C(=NH)NH ₂
	,	(HO-phenyl))-	3, },-	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0 002 1112	02.3	(HO-phenyl))-	on, o phony.	( 1,11,111,2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
0-302-11112	CII3	(HO-phenyl))-	Bit-O-phonyi	111-0(-111)11112
- S() NIH	CD			m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	III-C(-O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		(HO-phenyl))-		J
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenyl	$m-C(=O)NH_2$
		(HO-phenyl))-	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		(HO-phenyl))-	ļ	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
	1	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
1	1	(HO-phenyl))-		` ′ •
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₂-	Aniline	p-C(=NH)NH ₂
1		(HO-phenyl))-		' ' '
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
1	,	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0 202 1 112	,	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	CH ₃ -aniline	p-C(=NH)NH ₂
0 002 1112	\ \tag{1.13}	(HO-phenyl))-	O113 dillimite	p o( 1.11)1.112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-002-11112	C113	(HO-phenyl))-	C113-O-amime	p=0( 1111)1112
L-SO NH	CH,	CH ₂ -CH(-CH ₂ -	Bn-Q-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CI13		Bii-O-aiiiiiie	p-C(-1411)1411 ₂
- SO NH	100	(HO-phenyl))-	Aniling	2 C/=(DXD
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
- 000 500	1-00	(HO-phenyl))-		- C/-(VERY
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
	<u> </u>	(HO-phenyl))-		1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
<u> </u>	1	(HO-phenyl))-		i
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
_	1	(HO-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
	1	(HO-phenyl))-	1	` ` ( *
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
	,	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0 002 1112	~,	(HO-phenyl))-	acid	5()
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
0-3O2-14II2	113			111-C(-1411)1411 ₂
O SYL NIII	170-	(HO-phenyl))-	carboxylic acid	C/-X/17/X/D
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
L <u></u>	<u> </u>	(HO-phenyl))-	carboxylic acid	<u> </u>

R'	∏R ³	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	1	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
- SV NIII	170	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid	m C/=NIPINIU
o-SO ₂ -NH ₂	CH,	(HO-phenyl))-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
	,	(HO-phenyl))-	acid	( -)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -phenyl-amino	m-C(=O)NH ₂
0-302-14112	CII,	(HO-phenyl))-	carboxylic acid	111-0(-0)14112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	ļ <u></u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
- 80 KH	-	(HO-phenyl))-	carboxylic acid	- C/=N/UNIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
V 2 - 1 - 1 - 2	,	(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
NO MI		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-002-1112	C113	(HO-phenyl))-	acetic acid ester	111 0( 1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH,-CH(-CH,-	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-30 ₂ -1411 ₂	CII,	(HO-phenyl))-	acid ester	III-C(-O)IVII2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
~ S() NIH	Cu	(HO-phenyl))-	acetic acid ester Methyl CH ₃ -O-phenoxy	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	` ′ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
- 60-011		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
	,	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
NA 1111		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
- ~~ 1	,	(HO-phenyl))-	o promony accuració	()2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
	L	(HO-phenyl))-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0-502-14112	113	(HO-phenyl))-	i -phenoxyacene acid	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
	<u> </u>	(HO-phenyl))-		' ' -

No. Sol.	I R ¹	⊺R⁵	TE-J	Z	
(HO-phenyl)   acid   m-C(=O)NH ₂			1		_
C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₃ Phenoxyethanol m-C(=NH)NH ₂ C-SO ₃ -NH ₄ CH ₃ CH ₃ CH ₄ -CH(-CH ₃ CH ₄			(HO-phenyl))-	acid	
GSO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ Phenoxy-ethanol (H-Ophenyl))  GSO ₃ -NH ₄ CH ₃ CH ₃ -CH ₄	o-SO ₂ -NH ₂	CH,		Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ (Ho-phenyl)) G-SO ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
CSO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₃ CH ₄ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₄ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₇ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₇ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₅ CH ₇ -CH ₄ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₄ CH ₇ CH ₇ -CH ₇ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₇ CH ₇ -CH ₇ -CH ₇ -CH ₇ (HO-phenyl)  o-SO ₂ -NH ₂ CH ₇ CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
CH3, CH7, CH3, CH3, CH3, CH3, CH3, CH3, CH3, CH3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
CH3, CH7, CH3, CH3, CH3, CH3, CH3, CH3, CH3, CH3	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₇ -CH ₇ -(H ₇ -H ₇ -CH ₇ -(H ₇ -H ₇ -CH ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -H ₇ -CH ₇ -CH ₇ -(H ₇ -Dhenyl))         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₇ -CH ₇ -(H ₇ -H ₇ -(H ₇ -H ₇ -CH ₇ -(H ₇ -H ₇ -CH ₇ -(H ₇ -CH ₇ -H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -CH ₇ -(H ₇ -	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₇ -CH ₇ -(H ₇ -H ₇ -CH ₇ -H ₇ -CH ₇ -H ₇ -H ₇ -CH ₇ -CH ₇ -H ₇ -(HO-phenyl))         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₇ -CH ₇ -(H ₇ -H ₇ -H ₇ -H ₇ -H ₇ -H ₇ -H ₇ -H ₇ -	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO2-NH2         CH3         CH-CH-CH2- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
o-SO2-NH2         CH3         CH4-CH7-CH3- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
O-SO2-NH2         CH3         CH2-CH(-CH2- (H3-phenoxy-ethanol (H0-phenyl))- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-phenyl)- (H0-	o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₂-	F-phenoxy-ethanol	m-C(=O)NH ₂
O-SO2-NH2         CH3         CH3-CH(-CH2-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl))-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phenyl)-(H0-phen	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phe	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (HO-phenyl))- ether ether (HO-phenyl))- ether         m-C(=NH)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl Cl-phenoxyethyl (HO-phenyl))- ether         m-C(=NH)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl CH ₃ -phenoxy-ethyl (HO-phenyl))- ether         m-C(=NH)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl CH ₃ -phenoxy-ethyl ether (HO-phenyl))- ethyl ether         m-C(=NH)NH ₂ ethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl Bn-O-phenoxy-ethyl ethyl ether         m-C(=NH)NH ₂ ethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl Bn-O-phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl CH ₃ - phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ - (Methyl CH ₃ -O- phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - (C ₁ - phenyl)         m-C(=NH)NH ₂ (C ₁	0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl)-ether         Methyl CI-phenoxyethyl ether         m-C(=NH)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl)-ether         Methyl CH ₃ -phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl)-ethyl ether         Methyl CH ₃ -O-phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl Bn-O-phenoxy-ethyl ether         m-C(=NH)NH ₂ ethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl Bn-O-phenoxy-ethyl ether         m-C(=NH)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl Phenoxyethyl ether         m-C(=O)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl CI-phenoxyethyl ether         m-C(=O)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl CH ₃ -Phenoxyethyl ether         m-C(=O)NH ₂ ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl CH ₃ -Phenoxyethyl ether         m-C(=O)NH ₂ Phenoxyethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Mothyl CH ₃ -Phenoxyethyl ether         m-C(=O)NH ₂ Phenoxyethyl ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenyl)         CI-phenyl)         m-C(=NH)NH ₂ Phenoxyethyl	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-		m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -(HO-phenyl))-(ether         m-C(=NH)NH ₂ (ether           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(ethyl ether)         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH(-CH ₂ -(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl))-(HO ₂ -phenyl)-(HO ₂ -phenyl))-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-(HO ₂ -phenyl)-	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ethyl ether         Methyl CH ₃ -O-phenoxy-ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ethyl ether         m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ether         Methyl Phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ether         Methyl F-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(CI-phenyl))-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(CI-phenyl))-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ <td>o-SO₂-NH₂</td> <td>CH₃</td> <td>CH2-CH(-CH2-</td> <td>Methyl CH₃-phenoxy-</td> <td>m-C(=NH)NH₂</td>	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- ethyl ether         Methyl Bn-O-phenoxy ethyl ethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether         Methyl Phenoxyethyl ethyl CI-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether         Methyl CI-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ - O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl)- phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl)- (Cl-phenyl)- (Cl-phenyl)- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl))- (Cl-phenyl)- (Cl-phenyl))- (Cl-phenyl)- (Cl-phenyl)- (Cl-phenyl)- (Cl-phenyl)- (Cl-phenyl)- (Cl-phenyl)- (Cl-phe	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ether         Methyl Phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ether         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-ether         Methyl F-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(Phenyl))-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(Phenyl))-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(Phenyl))-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phenyl)-(Phen	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- ether         Methyl F-phenoxyethyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ - phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - phenyl) menoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl) menoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl) menoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl) menoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl) menoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl) menoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenyl) menoxyethyl ether	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Methyl Phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl)-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl)-(Cl-phenyl))-(CH ₃ -CH(-CH ₂ -(Cl-phenyl))-(CH ₃ -CH(-CH ₂ -(Cl-phenyl))-(Cl-phenyl))-(Cl-phenyl)-(Cl-phenyl))-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-(Cl-phenyl)-	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Methyl CH ₃ - phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Methyl CH ₃ -O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (Cl-phenyl))-         Methyl Bn-O- phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (Cl-phenyl))-         phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (Cl-phenyl))-         Cl-phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (Cl-phenyl))-         CH ₃ -phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (Cl-phenyl))-         CH ₃ -phenyl         m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	CH ₃ -phenyl	m-C(=NH)NH ₂
	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂

R ¹	∏R ⁵	E-J	IZ	TL.
I == .			Bn-O-phenyl	, —
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	. •	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CI-aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-	F-aniline	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-		p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	acid Cl-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	, , ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
		1 (CI-phenyi))-	L currony iic acid	I

R ^t	I R'	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-302-14112	C113	(Cl-phenyl))-	acid ester	111-0(-1111)11112
- FO NH-	CH		Methyl Cl-phenoxyacetic	C/XIU/XIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
	<del> </del>	(Cl-phenyl))-	acid ester	- CV-NUNUI
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₂-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
L		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
	į.	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
1 -		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
	1	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
1		(Cl-phenyl))-	acetic acid ester	` ' -
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Methyl Bn-O-phenoxy	m-C(=O)NH,
1 2 2		(Cl-phenyl))-	acetic acid ester	` ′ -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH,
2 2	,,	(Cl-phenyl))-		` ′ †
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
2 2	1	(Cl-phenyl))-	•	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH,
000,1111	,	(Cl-phenyl))-	- • • • • • • • • • • • • • • • • • •	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH,
0 507 1112	0.1.,	(Cl-phenyl))-	, p,	0(
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0 207 1112	0,	(Cl-phenyl))-	acid	2 0( 1.1.2)2
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0 502 1112	0113	(Cl-phenyl))-	bir o pilonony accuration	0( 1.1.1)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0 002 1112	0113	(Cl-phenyl))-	1	5( 5)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
0 502 1112	0223	(Cl-phenyl))-	p	22 5( 5)12
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0 502 1112	0113	(Cl-phenyl))-	-	0( 0)2 2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₁ -phenoxy-acetic acid	m-C(=O)NH ₂
0 002 11112	0113	(Cl-phenyl))-	City phonony accure acid	0( 0)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenoxy acetic	m-C(=O)NH ₂
0 002=11312	~,	(Cl-phenyl))-	acid	( ), ,,,,,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH,
5 552 1112	3	(Cl-phenyl))-	o phonony accine acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
0 002-11112	J	(Cl-phenyl))-		( 1.11)12
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
5502 1112	J,	(Cl-phenyl))-	or promotify dumor	
o-SO ₂ -NH,	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
0 002 1112	J3	(Cl-phenyl))-	- phonony odianoi	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0 002-1112	J.1.3	(Cl-phenyl))-	- C113 Phonony Culumon	(
0-SO ₂ -NH ₂	CH;	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-502-11112	V113	(Cl-phenyl))-	Larg-O-phonoxy-culanol	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-302-11H2	C113	(Cl-phenyl))-	biro-phonoxy edianoi	TI-O(-1411)14115
OSO NP	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃		i nenoxyemanor	114-0(-0)14112
1		(Cl-phenyl))-		I

R¹	⊢R³	TE-J	IZ	TL T
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyi))-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=NH)NH ₂
		<del></del>	· — · · · · · · · · · · · · · · · · · ·	

IR'	TR'	TE-J	Z	L
0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -NH ₂ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxy- acetic acid ester	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂

R	TR'	TE-J	Z	TT.
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		NH ₂ )-	acetic acid ester	1
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂

R	R'	E-J	Z	TL
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -NH ₂ )-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂

Other preferred compounds of formula I, having the sub-formula Ib, are set forth in Table 76, below.

Table 76

Formula III

				· · · · · · · · · · · · · · · · · · ·
R	R'	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂	Phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CI-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CI-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
			acid	l
o-SO ₂ -NH ₂	H	CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂

TR ¹	-FR ⁹	TE-J	IZ	TL
· · · · · · · · · · · · · · · · · · ·	<del></del>	+	carboxylic acid	<del> </del>
o-SO ₂ -NH ₂	<del>  H                                   </del>	CH,	F-phenyl-amino	m-C(=NH)NH ₂
		0,	carboxylic acid	0( 111)1111
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		2	carboxylic acid	0( 1.11)1.112
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	` · ′ •
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
		<u> </u>	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl-amino	m-C(≡O)NH ₂
~ W NU		CU	carboxylic acid	C(=C)>(II
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH,
0-302-14112	111	C11 ₂	carboxylic acid	III-C(-O)NI ₂
o-SO ₂ -NH ₂	- н	CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH,
	**		carboxylic acid	1.1.0( 0),11.12
o-SO ₂ -NH ₂		CH,	Bn-O-phenyl-amino	m-C(=O)NH,
0 002 1 112		1 32	carboxylic acid	12 0( 0)1122
o-SO ₂ -NH ₂	н	CH,	Methyl phenoxy-acetic	m-C(=NH)NH,
2 2 2 2 2			acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
•		1 -	acid ester	' '
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
	_i	<u>                                     </u>	acid ester	
o-SO ₂ -NH ₂	н	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
80 80	<b></b>		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH,
0-302-14112	**	C112	acid ester	111-0(-0)14112
o-SO ₂ -NH ₂	Н —	CH ₂	Methyl Cl-phenoxyacetic .	m-C(=O)NH ₂
0 002 1112	1	J	acid ester	( ),,,,,,,
o-SO ₂ -NH ₂	H	CH,	Methyl F-phenoxyacetic	m-C(=O)NH,
= = 22		.==.	acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
	_1	-	acetic acid ester	' '
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		CVV	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H H	CH ₂	acid Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	<del>                                      </del>	CH ₂	Phenoxyacetic acid	$m-C(=NH)NH_2$ $m-C(=O)NH_2$
0-SO ₂ -NH ₂	$\frac{1}{H}$	CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂ m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$ $m-C(=O)NH_2$
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-acetic	m-C(=O)NH ₂
0 002-1112	**		acid	( ),,,,,,,
o-SO ₂ -NH ₂	<del>  н                                   </del>	CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

R'	I R ⁵	E-J	TZ	TL-
				I —
o-SO ₂ -NH ₂	н	CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyethanol	m-C(=O)NH,
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	F-phenoxy-ethanol	m-C(=O)NH,
o-SO ₂ -NH ₂	<del>H</del>	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	<del>  H</del>	CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
	H			
o-SO ₂ -NH ₂	J.	CH ₂	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	<u> </u>		ether	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		i .	ether	1
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
1			ether	1 1
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
1 2 2		1 *	ethyl ether	`
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-802-1112	**		ethyl ether	0( 1.1.)
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-3O ₂ -NH ₂	11	CH ₂	ethyl ether	111-0(-1411)14112
	ļ.,	-		
o-SO ₂ -NH ₂	H	CH₂	Methyl Phenoxyethyl	$m-C(=O)NH_2$
		<u> </u>	ether	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
	f		ether	
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
1	1	1 -	phenoxyethyl ether	l ` ´ -
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
		2	phenoxyethyl ether	
o-SO ₂ -NH ₂	Н —	CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
0-002-1112	**	1 01.2	phenoxyethyl ether	5( 5)
o-SO ₂ -NH ₂	<del>H</del>	CH ₂ -CH ₂	phenyl	m-C(=NH)NH,
	<del>l ii</del>	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂				
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
	H	CH ₂ -CH ₂ CH ₃ -CH ₃	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂				
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H_	CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
		<u> </u>		
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
	<u> </u>	- CIT - CIT	acid	(Y-KIII)KIII
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-Phenyl-amino	$m-C(=NH)NH_2$

R	I R'	E-J	Z	TE TO
	<del>                                     </del>		carboxylic acid	~
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Bn-O-phenyl-amino carboxylic acid Methyl phenoxy-acetic	m-C(=O)NH ₂ m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ CH ₂ -CH ₃	acid ester  Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	acid ester  Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	acid ester  Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-SO ₂ -IVII ₂	H	CH ₂ -CH ₂	acetic acid ester  Methyl CH ₁ -O-phenoxy-	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н —	CH ₂ -CH ₂	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н —	CH ₂ -CH ₂	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	acid ester Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	acetic acid ester Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	acetic acid ester Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	acetic acid ester Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂

R ¹	∏R ⁵	E-J	Z	TL
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	<del>H</del>	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-30 ₂ -111 ₂	<del>  ii</del>	CH CH		
o-SO ₂ -NH ₂	l	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	<del>  H</del>	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-302-1112		CH CH		m-C(-O)NI2
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
		1	ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		į.	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
1	ĺ		ether	_
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 002 1.112	1	011, 011,	ethyl ether	122 0( 1.12)1.122
O SO KILL	H	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	**	C112-C112		
	<b></b>	<u> </u>	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
ł			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	1
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0 002 1 1122			ether	
o-SO ₂ -NH ₂	<del>H</del>	CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	1 **	C112-C112	ether	m-c( 0)/11/2
	<del>                                     </del>			- C/= 09m
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
		İ	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
			phenoxyethyl ether	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
0-502-1112	H		F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂		
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
	H			
o-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH,-CH,-CH,	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	<del>  ii                                  </del>	CH ₂ -CH ₂ -CH ₂	CH ₁ -O-aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	<del>  H</del>	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₃	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	<del>  H                                   </del>	CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-502-14112	**	0112-0112-0112	acid	( 1111):1112
o-SO ₂ -NH ₂	ļ.,	LOW CO. CO.		- C/-N/1/N/III-
	H	CH ₂ -CH ₂ -CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂

R'	R ⁵	E-J	Z ·	L
			carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH₂-CH₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH₂-CH₂	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	181	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂

		···		
R'	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
	<del>  H</del>		CH ₃ -O-phenoxy-ethanol	
o-SO ₂ -NH ₂	_	CH ₂ -CH ₂ -CH ₂		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
	H		Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂		
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
	ł		ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
			ether	l ` ´ *
o-SO ₂ -NH ₂	Н	CH2-CH2-CH2	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0.502,1112	1 **	011, 011, 011,	ethyl ether	111 0( 1111)1112
2 SO NIG	н	CU CU CU	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n n	CH ₂ -CH ₂ -CH ₂		III-C(-INII)INII ₂
			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
·		·	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
1	l		ether	· ·
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
1	1		ether	` ´ -
o-SO ₂ -NH ₂	H	CH2-CH2-CH2	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-502-1112	**		ether	1.1. 0( 0). 1.1.2
- PO XIII	<u> </u>	<del>Ca Ca Ca</del>		- COND
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-	$m-C(=O)NH_2$
1			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
	H			
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Cl-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Bn-O-phenyl	m-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₃ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂				
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH,-CH(-CH,)-	Aniline	p-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	CH ₃ -aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	Bn-O-aniline	$p-C(=O)NH_2$
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		- ` - '	acid	· ·
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Cl-Phenyl-amino	m-C(=NH)NH ₂
<u> </u>			<u> </u>	

## - 174 -

R'	TR'	E-J	Z	TL T
	<del> </del>	-	carboxylic acid	<del></del>
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	F-phenyl-amino	m-C(=NH)NH ₂
5 5 5 2 5 5 5 2		,	carboxylic acid	1
o-SO ₂ -NH ₂	Н ——	CH2-CH(-CH3)-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		* ` "	carboxylic acid	` ´ *
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		` '"	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Cl-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃ )-	F-phenyl-amino	m-C(=O)NH ₂
- FO 101	<del></del>	CH CH CO	carboxylic acid	0/-00011
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
- 8/2 - 8/10	<del>                              </del>	CH CH CH	carboxylic acid	C/CVNII/
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
a SO NIH	н	CU CU/CU	carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	I T	CH ₂ -CH(-CH ₃ )-	carboxylic acid	111-0(-0)(1112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃ )-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-302-1112	**	C112-C11(-Ç113)-	acid ester	m-c( 1111)11112
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	Methyl Cl-phenoxyacetic	m-C(=NH)NH,
0 007 1 1122		0102 011( 0113)	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
1 -	]	] - ` "	acid ester	
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	l		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	<u> </u>		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
SCO NIII	н	CH ₂ -CH(-CH ₃ )-	Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	**	CH2-CH(-CH3)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0 00, 1112	**	0117 011( 0113)	acid ester	
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
1		2	acid ester	` ′ *
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
260 819	н	CH,-CH(-CH ₃ )-	acetic acid ester Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-502-14112	**		acid	111-5( 1411)14112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH,-CH(-CH,)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	L		acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH,-CH(-CH,)-	Phenoxyethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂

□R¹	IR ⁵	TE-J	IZ	I L
0-SO ₂ -NH ₂	H -	CH ₂ -CH(-CH ₃ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	<del>  H                                   </del>	CH ₂ -CH(-CH ₃ )-	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CI-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	<del>H</del>	CH ₂ -CH(-CH ₃ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	<del>H</del> —	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-302-14112	**	C112-C11(-C113)-	ether	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н .	CH ₂ -CH(-CH ₃ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃ )-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Cl-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CI-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CI-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₁ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Cl-Phenyl-amino	m-C(=NH)NH ₂
·				

□ R ¹	l R ⁵	E-J	Z	I L
	-		carboxylic acid	
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH₂-CH(-NH₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH₂-CH(-NH₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-NH₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH_CH(-NH ₂ )-	CH ₃ -O-phenyl-amino carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂ m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )- CH ₂ -CH(-NH ₂ )-	carboxylic acid  Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	acid ester  Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂ )-	acid ester  Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂ )-	acid ester  Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂ )-	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂ )-	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	acid ester Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	acetic acid ester Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
0-SO ₂ -NH ₂	н	CH,-CH(-NH,)-	Phenoxyacetic acid	m-C(=NH)NH,
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH(-NH ₂ )-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CI-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
			parentally valued.	

IR'	R ³	E-J	IZ	TE .
0-SO ₂ -NH ₂	<del>  ii</del>	CH ₂ -CH(-NH ₂ )-	<u> </u>	
0-SO ₂ -NH ₂	H		F-phenoxy- ethanol	m-C(=NH)NH ₂
	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Cl-phenoxyethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH₃-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
L	1	1	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
	İ		ether	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxy-ethyl	m-C(=NH)NH,
			ether	` ´ *
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
1 -		• • •	ethyl ether	1
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH,
1	Ĭ		ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-phenoxy	m-C(=NH)NH,
1		1112	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl Phenoxyethyl	m-C(=O)NH,
1		,	ether	1 5( 5)
o-SO ₂ -NH ₂	† H	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyethyl	m-C(=O)NH,
			ether	111-0( 0):1112
o-SO ₂ -NH ₂	н	CH2-CH(-NH2)-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0 002 1122	1		ether	111-0( 0):1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -	m-C(=O)NH ₂
0 002 1112	**	0112 011(-1.112)	phenoxyethyl ether	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-	m-C(=O)NH ₂
0 00 2 1 122		0112 011( 11112)	phenoxyethyl ether	1110(0)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-	m-C(=O)NH ₂
0 002 1.112		0112 011( 1.112)	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH₂-CH(-Bn)-	Cl-phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	<del>lii</del>	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	<del>H</del>	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	. , ,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-		p-C(=O)NH ₂
0-SO ₂ -NH ₂	H		CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
0-302-14172	HC	CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
	<u> </u>	L	acid	

R ¹	I R ³	E-J	Z	L
III	<del>  Î                                   </del>	CH ₂ -CH(-Bn)-	Cl-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	**	CH2-CH(-Bh)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	·H	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH₂-CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenoxyacetic acid	m-C(=O)NH,
0-SO ₂ -NH ₂	H	CH,-CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₃ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=NH)NH ₂
		2(/		2

R'	R ⁵	E-J	Z	TL T
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
	H			m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH₂-CH(-Bn)-	F-phenoxy- ethanol	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy- ethanol	m-C(=O)NH,
0-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
] • • • • • • • • • • • • • • • • • • •		,	ether	` ′ •
o-SO ₂ -NH ₂	H	CH2-CH(-Bn)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0.502.1112	1		ether	0
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-30 ₂ -NH ₂	<del>**</del>	C112-C11(-D11)-	ether	111-0(-1411)14112
- 8/0 - 8/0		CH CHCDS		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy-	III-C(-NII)NII ₂
		CO COC D	ethyl ether	- C/-NIONIO
o-SO ₂ -NH ₂	H .	CH₂-CH(-Bn)-	Methyl CH,-O-phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	_		ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	1 ·1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
1		] - , .	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
1 - 2		• ` ` ′	ether	` '
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₁ -	m-C(=O)NH,
		2 - ( )	phenoxyethyl ether	` '
0-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-	m-C(=O)NH ₂
0 002 1112		0222 033( 022)	phenoxyethyl ether	\
0-SO ₂ -NH ₂	H	CH2-CH(-Bn)-	Methyl Bn-O-	m-C(=O)NH ₂
0.002.1112	**	0112 011( 211)	phenoxyethyl ether	
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
0-802-1112	1	COOCH,)-		(,
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
0-502-14112	1 **	COOCH ₁ )-	C. pheny.	0( 1112)1112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
0-502-14112	1 **	COOCH ₃ )-	l Phony.	1 0( 11.1)11.12
S SO NII	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	111	COOCH ₃ )-	C113-prichy1	III-O(-1411)14112
250 810	-		CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	C113-O-phonyi	\(-1411)14112
- 572 - NIU			Pa () shonyl	m C(=NH)NH
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
- 80 NU	ļ <del>, , </del>	COOCH ₃ )-	a board	m C/=())NIU
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
	ļ	COOCH ₃ )-	<u> </u>	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
	<u> </u>	COOCH,)-		
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₂-	F-phenyl	m-C(=O)NH ₂
		COOCH ₃ )-		L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	$m-C(=O)NH_2$
	<u> </u>	COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -O-phenyl	m-C(=O)NH ₂
	Ì	COOCH ₃ )-		[
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Bn-O-phenyl	$m-C(=O)NH_2$
1 -		COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
1 - •		COOCH;)-		1

IR ¹	⊣ R³	TE-J	TZ	ТТ.
1 -	H	CH ₂ -CH ₄ -CH ₇ -	Cl-aniline	p-C(=NH)NH ₂
o-SO₂-NH₂	1	COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
		COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃ )-	CH ₁ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	<del>'</del>	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃ )-	carboxylic acid	` ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH2-CH(-CH2-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃ )-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Phenoxyacetic	m-C(=0)NH ₂
0-SO ₂ -NH ₂	H	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
2 201	<u> </u>	COOCH ₃ )-	acid ester	( )/

R ¹	TR ³	E-J	TZ	I L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	. —
0-302-14112	**	COOCH ₃ )-	acid ester	m-C(=O)NH ₂
o SO NIU	<del></del>	COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
- 00 NII	<del> </del>	COOCH ₃ )-	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		COOCH,)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	İ	COOCH ₃ )-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
	1	COOCH,)-	-	_
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
		COOCH)-		
o-SO ₂ -NH ₂	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH,
1		COOCH ₃ )-	- pronon, noone nois	0( 1.11)1.1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH,
0 502 1112	**	COOCH ₃ )-	C113-phonoxy-accure acid	111-0(-1411)14112
o-SO ₂ -NH ₂	н			
0-30 ₂ -NH ₂	l u	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		COOCH ₃ )-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	<u> </u>	COOCH ₃ )-	<u> </u>	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	$m-C(=O)NH_2$
	l	COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
	Ì	COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH,
1		COOCH ₃ )-		`
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH,
		COOCH ₃ )-	'' '	` ´ -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH,
1		COOCH3)-	acid	2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
, · ·		COOCH')-		( - )2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
1		COOCH)-		
o-SO ₂ -NH ₂	н	CH,-CH(-CH,-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		COOCH ₃ )-	or phonony chamber	0( 1.11)1.112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH,
1		COOCH ₃ )-	- phonony caranor	0( 1111).1112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0.002-1112	**	COOCH ₃ )-	C113-pilchoxy-culation	111-0(-1411)14112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH O phenovy othernal	(Y=NID)NID
0-502-14112	l **	COOCH ₃ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
- SO NO	н		Dr. O alternational	
o-SO ₂ -NH ₂	п	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
- 80 -80		COOCH ₃ )-		CV CV-
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
		COOCH,)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	$m-C(=O)NH_2$
<u> </u>	<u> </u>	COOCH,)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
		COOCH,)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	$m-C(=O)NH_2$
		COOCH ₃ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH₃-O-phenoxy- ethanol	m-C(=O)NH ₂
		COOCH ₃ )-		
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
		COOCH ₃ )-	· ·	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
- <b>-</b>		COOCH)-	ether	` ′ ′
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
• •		COOCH ₃ )-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
	]	COOCH,)-	ether	
	·			

R	⊤R³	E-J	Z	TL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 002-1112		COOCH ₁ )-	ethyl ether	111-0(-1411)14112
0-SO ₂ -NH ₂	<del>  H                                   </del>	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-302-14112	111	COOCH ₃ )-	ethyl ether	III-C(-NIT)INII ₂
- 80 NII	<del>  H                                   </del>	CH ₂ -CH(-CH ₂ -		
o-SO ₂ -NH ₂	n		Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	+	COOCH ₃ )-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
		COOCH ₃ )-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
<b>!</b>		COOCH ₃ )-	ether	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
		COOCH ₃ )-	ether	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=0)NH,
		COOCH)-	phenoxyethyl ether	` ′ ′
o-SO ₂ -NH ₂	TH TH	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
	1	COOCH,)-	phenoxyethyl ether	0( 0): 122
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH,
0 002 1112	**	COOCH ₁ )-	phenoxyethyl ether	111-0( 0)/11/2
200 800	H			- C/-NILINNIII
o-SO ₂ -NH ₂	11	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
- 60-	<del> </del>	CH₂-OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=NH)NH ₂
	·	CH₂-OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		CH ₂ -OH)-		,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
		CH ₂ -OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		CH ₂ -OH)-	1.	' '
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Bn-O-phenyl	m-C(=NH)NH,
]		CH ₂ -OH)-	' '	1 ' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
1 2		CH ₂ -OH)-	F===	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Cl-phenyl	m-C(=O)NH,
1 * *		CH ₂ -OH)-	,-	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		CH ₂ -OH)-	· Facesy'	5( 5)22
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0 002 1112		CH ₂ -OH)-	City piletry.	1 0( 0)
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-502-1112	<b>**</b> .	CH ₂ -OH)-	C113-O-phonyi	III-C(-0)IVII2
o-SO ₂ -NH ₂	<del>  H                                   </del>	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
0-002-1112		CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Dir-O-phenyi	III-O(-O)INII2
0-SO -NH	H		Apilina	n C/=NIU\NIU
o-SO ₂ -NH ₂	A	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
- SO NU	<del>  10</del> -	CH₂-OH)-	Cl and the	 
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
	<del>                                     </del>	CH ₂ -OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
	<u> </u>	CH₂-OH)-		<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		CH₂-OH)-	<u>L</u>	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
L	I	CH ₂ -OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
Ī	1	CH₂-OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
l	i	CH ₂ -OH)-		` ` /
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-aniline	p-C(=O)NH ₂
	1 '	CH ₂ -OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
	1	CH ₂ -OH)-		5 0 0 7 1122
o-SO ₂ -NH ₂	H -	CH,-CH(-CH,-	CH ₃ -aniline	p-C(=O)NH ₂
	1	CH ₂ -CH(-CH ₂ -CH)-		F O( O)1112
L	<del></del>	1 2 1	l	<u>.                                    </u>

R ^t	⊤R⁵	TE-J	TZ	TL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
		CH ₂ -OH)-	1	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	r-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Methyl phenoxy-acetic	m-C(=NH)NH ₂
		CH ₂ -OH)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	_L_	CH ₂ -OH)-	acid	L

R	R ³	TE-J	TZ	TL .
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		CH ₂ -OH)-		(/=O)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
		CH ₂ -OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
2 2 2 2 2		CH ₂ -OH)-	, p,	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H :	CH ₂ -OH)-   CH ₃ -CH(-CH ₃ -	Bn-O-phenoxy acetic acid	m-C(=O)NH,
0-502-1112	**	CH ₂ -CH(-CH ₂ -CH)-	Bit-O-phenoxy acetic acid	III-C(-O)Nn ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
- C/A - N/O		CH₂-OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
L		CH ₂ -OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH,
		CH ₂ -OH)-	' '	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
0 502 1112	1 **	CH ₂ -OH)-	. Helioxyellianor	1 0( 0). 1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
a SO NIP	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	E phonory otherol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	III-C(-O)NII ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
- 80 NO	<u> </u>	CH₂-OH)-	CIL O abanana athanal	C/-O\NU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
		CH ₂ -OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	+н	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH,
		CH ₂ -OH)-	ether	` _
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		CH ₂ -OH)-	ethyl ether	0( 1.124)1.1422
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-80 -NH	H	CH ₂ -OH)-	ethyl ether	m-C(=NHINH
o-SO ₂ -NH ₂	**	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH₂
O-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
a SO NO	ļ. <u>u</u>	CH₂-OH)-	ether	m C/=O\NIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
		CH ₂ -OH)-	ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
	_	CH ₂ -OH)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
	_L	CH ₂ -OH)-	phenoxyethyl ether	L

R [†]	⊢R,	E-J	Z	TL T
0-SO ₂ -NH ₂	$\frac{1}{H}$	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
0 00, 112,		C(=O)-N-	parent.	0( 1.1.5): 1.52
	- 1	morpholino)-		1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
		C(=O)-N-		
		morpholino)		
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
	ł	C(=O)-N-		
	<del></del>	morpholino)-		- CENUNII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N-	CH ₃ -phenyl	m-C(=NH)NH ₂
	ŀ	morpholino)-		
o-SO ₂ -NH ₂	<del>  H</del>	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0 00, 111,		C(=O)-N-	City o phony:	6( 1)22
		morpholino)-		1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
	1	C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		C(=O)-N-		
		morpholino)-		
0-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		C(=O)-N- morpholino)-	· ·	
o-SO ₂ -NH ₂	<del>  H</del>	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-302-14112	**	C(=0)-N-	1-phenyi	m-c(-c)/til2
	İ	morpholino)-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		C(=O)-N-	1	` ' '
	I	morpholino)-	_	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
		C(=O)-N-	1	
- DO NII		morpholino)-	Da O abassi	- CC-ONNU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N-	Bn-O-phenyl	m-C(=O)NH ₂
	1	morpholino)-		ŀ
0-SO ₂ -NH ₂	H .	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
0 00, 1112	^^	C(=O)-N-		p 0( 1.11)1.112
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
		C(=O)-N-	ł	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
		C(=O)-N-		
0 80 80	<del></del>	morpholino)-	CH opilies	D C/END/NIU
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N-	CH ₃ -aniline	p-C(=NH)NH ₂
	1	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
550, 111,	• 1 **	C(=O)-N-	,	P 5( 112): 122
		morpholino)-		1
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
-	- 1	C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
	- 1	C(=O)-N-		į l
0 SO NO	<del></del>	morpholino)- CH ₂ -CH(-CH ₂ -	Cl-aniline	n CEONIA
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N-	C1-amine	p-C(=O)NH ₂
}		morpholino)-		j l
o-SO ₂ -NH ₂	<del>  н</del>	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
	1	C(=O)-N-		
L			<u> </u>	

R [†]	R ³	E-J	Z	L
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂

R'	R'	E-J	Z	L
		C(=0)-N-	acetic acid ester	· · · · · · · · · · · · · · · · · · ·
1		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
İ	}	C(=0)-N-	acid ester	}
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
		C(=0)-N-	acid ester	
- CO NIII-	H	morpholino)-		
o-SO ₂ -NH ₂	l u	CH ₂ -CH(-CH ₂ - C(=0)-N-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
	ŀ	morpholino)-	acid ester	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-502-14112	**	C(=0)-N-	acetic acid ester	111-0(-0)14112
		morpholino)-	1 10000 1000	
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		C(=0)-N-	acetic acid ester	
		morpholino)-		· ·
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	}	C(=0)-N-	acetic acid ester	
	<u> </u>	morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
,		C(=0)-N-		
- 80 800	H	morpholino)-	Clabara and and	- C/-XIVIXIII
o-SO ₂ -NH ₂	п	CH ₂ -CH(-CH ₂ - C(=O)-N-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0 002 1112	**	C(=0)-N-	phonony usens usia	1 0( 1.1.1)1.1.12
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		C(=0)-N-	, ,	` . ´ <b>*</b>
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		C(=0)-N-	acid	İ
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	]	C(=0)-N-		
- CA NH	Н	morpholino)-	Uhan anna akin a aki	- C(-CVXIII
o-SO ₂ -NH ₂	п	CH ₂ -CH(-CH ₂ - C(=O)-N-	Phenoxyacetic acid	m-C(=O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0 001 1.111		C(=O)-N-		1 0( 0). 1
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		C(=0)-N-		` ´ -
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		C(=O)-N-		
- 00 NII	ļ.,,	morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	j i	morpholino)-	acid	
o-SO ₂ -NH ₂	н	CH ₃ -CH(-CH ₃ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0 002 1112	<del>''</del>	C(=0)-N-	Dir O phonoxy access acid	
		morpholino)-		
o-SO ₂ -NH ₂	н —	CH,-CH(-CH,-	Phenoxyethanol	m-C(=NH)NH ₂
• •		C(=O)-N-		,2
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
_ <del>-</del>		C(=O)-N-		
	1	morpholino)-		

R ¹	TR ³	TE-J	12	TL T
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
0 002 1112		C(=O)-N-	- phonoxy cumio:	0( 1.11)1.111
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH₃-phenoxy-ethanol	m-C(=NH)NH ₂
		C(=O)-N-		
	_i	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		C(=O)-N-	1	
		morpholino)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
	į	C(=0)-N-		
- 80 NU	Н —	morpholino)-	Phenoxyethanol	- 77-70NIII
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - C(=0)-N-	Filenoxyethanoi	m-C(=O)NH ₂
		morpholino)-	-	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
0-302-14112	111	C(=O)-N-	Ci-phenoxyemanor	III-C(-C)/11/2
		morpholino)-		
0-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
0-502-1112	1 **	C(=O)-N-	1 -phenoxy-culanor	111-0( 0)1112
		morpholino)-	i	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
5 5 5 2 1 11 12		C(=O)-N-	, }	( ),,
		morpholino)-	•	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		C(=O)-N-		` ' -
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
		C(=O)-N-	1	
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
		C(=O)-N-	ether	
- CO NII	<del>                                     </del>	morpholino)-	Mathel Clahamannathul	- CV-NIDINIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
		morpholino)-	enici	į i
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-502-1112	1 **	C(=0)-N-	ether	
		morpholino)-	euic.	
o-SO ₂ -NH ₂	† <del>H</del>	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 007 1.117	1	C(=O)-N-	ethyl ether	0(
	1	morpholino)-	,	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	1	C(=O)-N-	ethyl ether	' '
ĺ		morpholino)-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	1	C(=0)-N-	ethyl ether	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
		C(=0)-N-	ether	
- SO NII	<del>                                     </del>	morpholino)-	Mathed Claphanasadad	- C/-(VXIII)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
	1	morpholino)-	[ CILE	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0.002-1112	**	C(=0)-N-	ether	( ),, 41.12
	1	morpholino)-		
o-SO ₂ -NH ₂	<del>  н                                   </del>	CH,-CH(-CH,-	Methyl CH ₁ -	m-C(=O)NH ₂
	1	C(=O)-N-	phenoxyethyl ether	
	1	morpholino)-	1.	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
	1 .	C(=O)-N-	phenoxyethyl ether	

morpholino)-	R ¹	R	E-J	Z	L
C(=O)-Ni			morpholino)-		
C(=O)-N.   phenyl   phenyl   m-C(=NH)NH2	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
G-SO ₂ -NH ₁ G-SO ₂ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₂ G-SO ₄ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-			C(=O)-N-	phenoxyethyl ether	
G-SO ₂ -NH ₁ G-SO ₂ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₂ G-SO ₄ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-SO ₅ -NH ₂ G-		1	morpholino)-		1
CH, S(O), Cft, Cl-phenyl	o-SO ₂ -NH ₂	H		phenyl	m-C(=NH)NH ₂
G-SO ₂ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₁ G-SO ₃ -NH ₂ G-SO ₃ -NH ₂ G-SO ₃ -NH ₃ G-SO ₃ -NH ₃ G-SO ₃ -NH ₄ G-SO ₃ -NH ₄ G-SO ₃ -NH ₄ G-SO ₃ -NH ₅ G-SO ₃ -NH ₅ G-SO ₃ -NH ₅ G-SO ₃ -NH ₆ G-SO ₃ -NH ₇ G-SO ₃ -NH ₇ G-SO ₃ -NH ₇ G-SO ₃ -NH ₈ G-SO ₃ -NH ₈ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-SO ₃ -NH ₉ G-			CH ₂ -S(O) ₂ -CH ₃	1	` ´ -
GT,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,S(O),CH, CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,C	0-SO-NH	H		Cl-phenyl	m-C(=NH)NH,
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₃ -CN ₁ -CH ₃ -CN ₁ -CH ₄ -CH ₄ -CH ₄ -CH ₅ -CH ₄ -CH ₅ -CH ₄ -CH ₅ -CH ₄ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH ₅ -CH	0 502 1112		CH-S(O)-CH	C. p	
CH_S(O)_CH_1	o-SO-NH	H		F-nhenyl	m-C/=NH)NH
6-SO ₂ -NH ₂ H         CH ₂ -S(O ₂ -CH ₃ CH ₃ CH ₄ -S(O ₂ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₄ -S(O ₂ -CH ₃ CH ₄ -S(O ₂ -CH ₃ CH ₄ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O ₃ -CH ₃ CH ₃ -S(O	0-502-1112			1 -phony:	1 0()
GH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, G-SO ₂ -NH ₂ H CH, CH, CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, G-CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, G-CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, S(O), CH, G-SO ₂ -NH ₂ H CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	a SO NIH	<del>-   u</del>		CH nhenyl	m-C/ENHINH
6-SO ₂ -NH ₂ H         CH ₂ -S(O ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	0-3O ₂ -NH ₂	l n		Cri3-pilenyi	III-C(-1411)1411 ₂
CH2-S(O)-CH3	- 80 - 100			CH O shaped	- C/=NIB\NIB
6-SO ₂ -NH ₂ H         CH ₂ -CH ₂ -CH ₂ -CH ₃ (h ₂ -S(O ₂ -CH ₃ ) (h ₂ -S(O ₂ -CH ₃ ) (h ₂ -S(O ₂ -CH ₃ ) (h ₂ -CH ₃ -S(O ₂ -CH ₃ ) (h ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ (h ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH	0-30 ₂ -Nn ₂	п		CH ₃ -O-phenyi	III-C(-IVII)IVII2
CH_5(O)_CH_3				D-0-1	
6-SO ₂ -NH ₂ H         CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ CI-phenyl         m-C(=0)NH ₂ 6-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	0-SO ₂ -NH ₂	l H		Bn-O-pnenyi	m-C(=NH)NH ₂
CH_5(O)_CH_3					
0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄	o-SO ₂ -NH ₂	H		phenyl	$  m-C(=O)NH_2  $
CH ₂ -S(O) ₂ -CH ₃ F-phenyl         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -S(O) ₂ -CH ₃ r-phenyl         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH					
CH ₂ -S(O ₂ -CH ₃   F-phenyl   m-C(=O)NH ₂     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -S(O ₂ -CH ₃     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂   CH ₃ -O-aniline     O-SO ₂ -NH ₂   H   C	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃		1			
CH_S(O)_CCH_3	o-SO ₂ -NH ₂	H		F-phenyl	m-C(=O)NH,
O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -C) ₂ -CH ₃ (CH ₃ -Ophenyl m-C(=O)NH ₂ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -S(O) ₂ -CH ₃ (CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄				• •	` ′ -
CH_S(O)_CH_3   CH_3-O-phenyl   m-C(=O)NH_2	0-SONH	H	CH-CH-CH-	CH ₂ -phenyl	m-C(=O)NH ₃
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ) CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH(-CH ₂ -CH ₄ -CH ₂ -CH(-CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -	0 002 1112		CHS(O)CH-	01.3, p	
CH2-S(O)2-CH3	A-SO-NH	<del>-       -   -   -   -   -   -   -   -  </del>	CH -CH/-CH-	CH -O-phenyl	m-C(=O)NH.
o-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	0-302-14112	111		C113-O-phony1	111-0( 0)11112
CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂	- SO NH	<del>-   u</del>	CH CH CH	Rn () phenyl	m-C/=ONH
0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂	0-3O ₂ -NH ₂	n	CH S(O) CH	Bit-O-phenyi	111-0(-0)14112
CH ₂ -S(O) ₂ -CH ₃	- 80 - 80	— TT	CH CH/ CH	Aniling	- CY-NIDINID
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C	0-5U ₂ -NH ₂	l H		Aminte	p-C(-NH)NH ₂
CH2-S(O)2-CH3  o-SO2-NH2  H CH2-CH(-CH2- CH2-S(O)2-CH3  o-SO2-NH2  H CH2-CH(-CH2- CH2-S(O)2-CH3  o-SO2-NH2  H CH2-CH(-CH2- CH3-S(O)2-CH3  o-SO2-NH2  H CH3-CH1-CH2- CH3-S(O)2-CH3  o-SO2-NH2  H CH3-CH1-CH2- CH3-S(O)2-CH3  o-SO2-NH2  H CH3-CH1-CH3- CH3-S(O)2-CH3  o-SO2-NH2  H CH3-CH1-CH3- CH3-S(O)2-CH3  o-SO2-NH2  H CH3-CH1-CH3- CH3-S(O)2-CH3  o-SO2-NH2  H CH3-CH1-CH3- CH3-S(O)3-CH3  o-SO3-NH2  H CH3-CH1-CH3- CH3-S(O)3-CH3  o-SO3-NH2  H CH3-CH1-CH3- CH3-S(O)3-CH3  o-SO3-NH2  H CH3-CH1-CH3- CH3-S(O)3-CH3  o-SO3-NH2  H CH3-CH1-CH3- CH3-S(O)3-CH3  o-SO3-NH2  H CH3-CH1-CH3- CH3-O-aniline  p-C(=O)NH2  cH3-CH1-CH3- CH3-O-aniline  p-C(=O)NH2  cH3-CH1-CH3- CH3-O-aniline  p-C(=O)NH2  cH3-CH1-CH3- CH3-O-aniline  p-C(=O)NH3-  cH3-CH1-CH3- CH3-CH1-CH3- CH3-CANILINE  p-C(=O)NH3-  cH3-CH1-CH3- CH3-CANILINE  p-C(=O)NH3-  cH3-CH1-CH3- CH3-CANILINE  p-C(=O)NH3-  cH3-CH1-CH3- CH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=O)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILINE  p-C(=NH)NH3- cH3-CANILI					- C/C-NIO NIO
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ CH ₃ -O-aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Ci-aniline	p-C(=NH)NH ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$CH_2$ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	r-aniline	$p-C(=NH)NH_2$
CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH ₂ -CH ₃ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -Ch ₂ -Depenyl amino carboxylic acid  o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -Ch ₂ -Depenyl amino m-C(=NH)NH ₂ o-SO ₂ -NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -Ch ₂ -Depenyl amino carboxylic acid  o-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -Ch ₂ -Depenyl amino carboxylic acid  o-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ - CH ₂ -Ch ₂ -Depenyl amino carboxylic acid  o-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂					
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CO-aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ CI-aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ F-aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -N					
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ F-aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -	o-SO ₂ -NH ₂	H		CH ₃ -O-aniline	$p-C(=NH)NH_2$
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-Phenyl-amino  CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃			CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	o-SO ₂ -NH ₂	H		Bn-O-aniline	p-C(=NH)NH ₂
CH2-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH2-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH2-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3  O-SO3-NH2  H CH3-CH(-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3			$CH_2-S(O)_2-CH_3$	·	
CH2-S(O)2-CH3   Cl-aniline   p-C(=O)NH2     O-SO2-NH2	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ Cl-aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ CH ₃ -aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃		i	$CH_2$ -S(O) ₂ -CH ₃		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	H		Cl-aniline	p-C(=O)NH ₂
O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ F-aniline         p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH	1				
CH2-S(O)2-CH3  O-SO2-NH2  H  CH2-CH(-CH2- CH2-S(O)2-CH3  O-SO2-NH2  H  CH2-CH(-CH2- CH2-S(O)2-CH3  O-SO2-NH2  H  CH2-CH(-CH2- CH2-S(O)2-CH3  O-SO2-NH2  H  CH2-CH(-CH2- CH2-S(O)2-CH3  O-SO2-NH2  H  CH2-CH(-CH2- CH2-S(O)2-CH3  O-SO2-NH2  H  CH2-CH(-CH3- CH2-S(O)2-CH3  CH3-S(O)2-CH3  acid  O-SO2-NH2  H  CH2-CH(-CH2- CH2-S(O)2-CH3  CH3-S(O)2-CH3  CH3-S(O)2-CH3  CH3-S(O)2-CH3  CH3-S(O)2-CH3  CH3-S(O)2-CH3  CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3	o-SO ₂ -NH ₃	H		F-aniline	p-C(=O)NH,
0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -aniline         p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C-Phenyl amino         p-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CPhenyl amino         m-C(=NH)NH ₂ -CH ₂ -CH ₃ -CH ₃ -CPhenyl amino				1	· · ·
CH2-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH2-CH3-CH3-O-aniline)  O-SO2-NH2  H CH2-CH(-CH2-CH3-CH3-O-aniline)  O-SO2-NH2  H CH2-CH(-CH2-CH3-CH3-CH3-O-aniline)  O-SO2-NH2  H CH2-CH(-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	o-SO ₂ -NH.	H .		CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-aniline CH ₂ -S(O) ₂ -CH ₃ p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ Bn-O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -	,,	1		,	* * * *
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Bn-O-aniline  p-C(=O)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ acid  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -Denyl-amino m-C(=NH)NH ₂ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -Denyl-amino m-C(=NH)NH ₂ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -Denyl-amino m-C(=NH)NH ₂ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -Denyl-amino m-C(=NH)NH ₂	o-SO-NH	<del>H</del>	CH-CHCCH-	CHO-aniline	p-C/=O)NH ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ )	J-50-2-14112	1 **	CHS(O)-CH	,	[ [ ] [ ]
CH2-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH2- CH2-S(O)2-CH3  acid  O-SO2-NH2  H CH2-CH(-CH2- CH2-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH3- CH2-S(O)2-CH3  O-SO2-NH2  H CH2-CH(-CH3- CH2-S(O)2-CH3  CH3-CH(-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3-	0-80-804			Rn-O-aniline	n-C(=O)NH.
O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ acid         Phenyl-amino-carboxylic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ carboxylic acid         CI-Phenyl-amino carboxylic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ F-phenyl-amino carboxylic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denyl-amino carboxylic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CP)-phenyl-amino carboxylic acid         m-C(=NH)NH ₂	0-002-14112	1 **			
CH ₂ -S(O) ₂ -CH ₃ acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CI-Phenyl-amino carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenyl-amino CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl amino m-C(=NH)NH ₂	- SO NO			Phenylamina carbovylia	m-C/=NHINH
O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CP ₃ Cl-Phenyl-amino carboxylic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CP ₃ CH ₃ Carboxylic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenyl-amino CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenyl-amino CH ₂ -S(O) ₂ -CH ₃ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CP)-phenyl amino         m-C(=NH)NH ₂	0-3O2-NU	.   "			m-C(-1411)14112
CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₃ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl-amino CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenyl-amino CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl amino  m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl amino  m-C(=NH)NH ₂	- 00 200	<del></del>			- C/=NUINIU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-SO2-NH2	H			m-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -phenyl-amino carboxylic acid  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl amino m-C(=NH)NH ₂					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	Н			m-C(=NH)NH ₂
$ \begin{array}{c cccc} & CH_2\text{-S}(O)_2\text{-CH}_3 & \text{carboxylic acid} \\ \hline \text{o-SO}_2\text{-NH}_2 & H & CH_2\text{-CH}(\text{-CH}_2\text{-} & \text{CH}_3\text{-O-phenyl amino} & \text{m-C}(=\text{NH})\text{NH}_2 \\ \end{array} $					
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl amino m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н			$m-C(=NH)NH_2$
		L			<u> </u>
CH ₂ -S(O) ₂ -CH ₃   carboxylic acid	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
			CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	<u> </u>

R ¹	⊤R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
0002 11112	1	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH,	acid	, , , , ,
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Cl-phenyl-amino	m-C(=O)NH ₂
		$CH_2-S(O)_2-CH_3$	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		$CH_2$ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0 80 NO	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	17	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	m-c(-c)ivii ₂
o-SO ₂ -NH ₂	<del>  H                                   </del>	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH,
0 007 1112	1	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid ester	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
- 20	<del>                                     </del>	CH ₂ -S(O) ₂ -CH ₃	acid ester	- C/=NIP)NIP
o-SO₂-NH₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	<del>  н</del>	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0.002-14112	**	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	(,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0 00 2 1 1 1 1 2		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	` ′ ′
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
	l	$CH_2$ - $S(O)_2$ - $CH_3$	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
	ļ.,	CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=0)NH ₂
2 SV NIH	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acid ester Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	111-0(-0)1112
o-SO ₂ -NH ₂	<del>  н                                   </del>	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0 002 1.112		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		$CH_2$ - $S(O)_2$ - $CH_3$	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		C/mkIIIVKIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-30 ₂ -11 ₁₂	1 **	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	- Phonoxy- accide acid	\(
0-SO ₂ -NH ₂	+н	CH ₂ -5(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
	]	CH ₂ -S(O) ₂ -CH ₃		`
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	<u> </u>	CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	1,,	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0.50-NP	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	''	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Ci-phenoxyacene acid	m-0( 0)/11/2
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=0)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
,	1	$CH_2$ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		$CH_2$ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
	.l	$CH_2$ - $S(O)_2$ - $CH_3$	L	<u> </u>

R ¹	то-
CH ₂ -S(O) ₂ -CH ₃	1111
CH ₂ -S(O) ₂ -CH ₃	1112
O-SO ₂ -NH ₂	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -phenoxy-ethanol         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-phenoxy-ethanol         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ bn-O-phenoxy-ethanol         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-phenoxy-ethanol         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ CI-phenoxyethanol         m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C	2
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH	2
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -Dephenoxy-ethanol CH ₂ -S(O) ₂ -CH ₃ m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -O-phenoxy- ethanol CH ₂ -S(O) ₂ -CH ₃ m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	2
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -O-phenoxy- ethanol CH ₂ -S(O) ₂ -CH ₃ m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenoxy- ethanol m-C(=O)NH         m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether cher         Methyl phenoxy-ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether cher         Methyl CI-phenoxyethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether         Methyl F-phenoxy-ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         Methyl CH ₃ -phenoxy-chyl ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         Methyl CH ₃ -O-phenoxy-chyl ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         Methyl Bn-O-phenoxy chyl ethyl ethyl ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         Methyl Phenoxyethyl m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether         Methyl Cl-phenoxyethyl m-C(=O)NH	
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenoxy- ethanol m-C(=O)NH         m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ ether         Methyl phenoxy-ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ ether         Methyl Cl-phenoxyethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether         Methyl F-phenoxy-ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H	2
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ ether         Methyl phenoxy-ethyl ether         m-C(=NH)N ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ ether         Methyl CI-phenoxyethyl ether         m-C(=NH)N ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ ether         Methyl F-phenoxy-ethyl ether         m-C(=NH)N ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ ethyl ether         m-C(=NH)N ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ethyl ether         m-C(=NH)N ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether         m-C(=NH)N ethyl Phenoxyethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₃ ether         m-C(=O)NH	2
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Methyl CI-phenoxyethyl ether         m-C(=NH)N ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl F-phenoxy-ethyl ether         m-C(=NH)N ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl CH ₃ -phenoxy- ethyl ether         m-C(=NH)N ethyl CH ₃ -O-phenoxy- ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Bn-O-phenoxy- ethyl ether         m-C(=NH)N ethyl Bn-O-phenoxy- ethyl ether           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Phenoxyethyl ether         m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl CI-phenoxyethyl ether         m-C(=O)NH	H ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Methyl CH ₃ -phenoxy- ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl CH ₃ -O-phenoxy- ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Bn-O-phenoxy- ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Phenoxyethyl         m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl         m-C(=O)NH	H ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl CH ₃ -O-phenoxy- ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Bn-O-phenoxy- ethyl ether         m-C(=NH)N           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Phenoxyethyl ether         m-C(=O)NH           o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl         m-C(=O)NH	H ₂
O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Bn-O-phenoxy ethyl ether         m-C(=NH)N ethyl ether           O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Methyl Phenoxyethyl ether         m-C(=O)NH           O-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl         m-C(=O)NH	H ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Phenoxyethyl m-C(=O)NH CH ₂ -S(O) ₂ -CH ₃ ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl CI-phenoxyethyl m-C(=O)NH	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=O)NH	2
$CH_2$ -S(O) ₂ -CH ₃   ether	2
o-SO ₂ -NH ₂ H $\frac{\text{CH}_2\text{-C}(\text{O})_2\text{-CH}_3}{\text{CH}_2\text{-C}(\text{-CH}_2\text{-} \text{Methyl F-phenoxyethyl} \text{m-C(=O)NH}}{\text{cH}_2\text{-S(O)}_2\text{-CH}_3}$ ether	2
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl CH ₃ - m-C(=O)NH CH ₂ -S(O) ₂ -CH ₃ phenoxyethyl ether	2
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O- m-C(=O)NH CH ₂ -S(O) ₂ -CH ₃ phenoxyethyl ether	2
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Bn-O- CH ₂ -S(O) ₂ -CH ₃ phenoxyethyl ether	2
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl m-C(=NH)N hexane)-	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CI-phenyl m-C(=NH)N hexane)-	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenyl m-C(=NH)N hexane)-	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenyl m-C(=NH)N hexane)-	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl m-C(=NH)N hexane)-	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Bn-O-phenyl m-C(=NH)N hexane)-	H ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl m-C(=O)NH hexane)-	2

R'	I R ⁵	E-J	I Z	
o-SO ₂ -NH ₂	H	СН ₂ -СН(-СН ₂ -	Cl-phenyl	m-C(=O)NH ₂
	.,	hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH2-CH(-CH2-	CH ₃ -phenyl	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
-		hexane)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		hexane)-	CH ₃ -O-aniline	p-C(=O)NH,
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH3-O-ammie	p-c(0)N11 ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₂-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-302-14112	**	hexane)-	acid	m-c( 1111)1112
o-SO ₂ -NH ₂	Н	CH2-CH(-CH2-	Cl-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=NH)NH ₂
0-502-14112	**	hexane)-	carboxylic acid	0( 1.11). 1112
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	**	hexane)-	carboxylic acid	11. 0( 1.1.1)1.1.12
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
_		hexane)-	acid	'
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=O)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH,-CH(-CH,-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		hexane)-	carboxylic acid	_
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		hexane)-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
	L	noranej-	40.4 03101	L

R'	· R³	E-J	Z	L
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH₃-O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy-ethanol	m-C(=O)NH ₂

R'	TR ⁵	TE-J	IZ	L
o-SO ₂ -NH ₂	<del>  n                                   </del>	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
		hexane)-		
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ether Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
L	н —	hexane)-	ethyl ether	
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH,- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH,-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH,
	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂		(HO-phenyl))-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂

R ¹	TR'	I E-J	I Z	T L
0-SO ₂ -NH ₂	<del>  H</del>	CH,-CH(-CH,-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-302-1112	**	(HO-phenyl))-	C113-O-anninc	p o( 1411)14112
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
0-502-1112	**	(HO-phenyl))-	Din-O-aimaic	p o(,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0-502-1112	**	(HO-phenyl))-	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-302-14112	**	(HO-phenyl))-	Ci-amine	p-c(-c)/til
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=0)NH ₂
0-3O ₂ -NH ₂	**	(HO-phenyl))-	1-annaic	p-C(-O)(112
S SO NIII	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	n	(HO-phenyl))-	Cri3-allillite	P-C(-O)NII ₂
- SO NIII	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	111		Cri3-O-ammie	
o-SO ₂ -NH ₂	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	277-71VNID
0-3O ₂ -NH ₂	n		Bii-O-aminie	p-C(=O)NH ₂
- 80 NIII	ļ.,,	(HO-phenyl))-	Dhanul amina amhanulia	- CENTRAL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
- 80-801		(HO-phenyl))-		C/=NUINNU
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
	<del></del>	(HO-phenyl))-	carboxylic acid	C/=NUONIO
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	<u> </u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
	<u> </u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	$m-C(=O)NH_2$
		(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CI-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
	<u> </u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	$m-C(=O)NH_2$
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	$m-C(=O)NH_2$
	<u> </u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
<u> </u>		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH,-phenoxy-	m-C(=NH)NH ₂
	1	(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CI-phenoxyacetic	m-C(=O)NH ₂
	1	(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
	1	(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	$m-C(=O)NH_2$
	<u> </u>	(HO-phenyl))-	acetic acid ester	

R	TR ³	TE-J	TZ	I L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0-502-1112	1	(HO-phenyl))-	acetic acid ester	111-0(-0)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0-302-1112	1 **	(HO-phenyl))-	Filehoxyacetic acid	III-C(-NII)NII ₂
a SCA NIB	H	CH ₂ -CH(-CH ₂ -	Claborovy postic soid	m (V=XIU)XIU
o-SO ₂ -NH ₂	n		CI-phenoxy-acetic acid	m-C(=NH)NH ₂
- 80 - 2011		(HO-phenyl))-	<u> </u>	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
L		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
L		(HO-phenyl))-		
o-SO ₂ -NH ₂	)Al	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$
1		(HO-phenyl))-	,	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
1 -	İ	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH₂-CH(-CH́₂-	Phenoxyethanol	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Cl-phenoxy-ethanol	m-C(=NH)NH,
		(HO-phenyl))-	or promony current	0( 1.11)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH,
]		(HO-phenyl))-	- p	0( 1.11)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH,
1 2 2 2 2 2 2 2 2		(HO-phenyl))-	Cara, process, curation	0( 1.11)12
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0 002 1112		(HO-phenyl))-	oris o phenoxy culanor	
0-SO ₂ -NH,	<del>  н</del>	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0 502 1112	1	(HO-phenyl))-	bu o phonoxy culanor	111 0( 1411)14112
o-SO ₂ -NH ₂	H:	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH,
0 502	1 **	(HO-phenyl))-	1 henoxyeumnor	
o-SO ₂ -NH ₂	†H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
0 002 1112	1 **	(HO-phenyl))-	Ci-phenoxyedianoi	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
0-502-1112	**	(HO-phenyl))-	r-phenoxy-emanor	111-0(-0)1112
o-SO ₂ -NH ₂	+н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-002-1112	**	(HO-phenyl))-	C113-PHOHOXY-CHIBHOL	111-C(-C)1411 ₂
OSO NIP	H		CH ₃ -O-phenoxy- ethanol	
o-SO ₂ -NH ₂	11	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	C113-O-phelioxy- eulanoi	m-C(=O)NH ₂
SO NH	<del>  10</del>		Dis O mbassassassassassassassassassassassassass	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
- 80 - NIII	<del> </del>	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
- 50 - 507	<del> </del>	(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
	<u> </u>	(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
	<del></del>	(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	<u></u>	(HO-phenyl))-	ethyl ether	
_ · · <del></del>				

R'	⊤R'	E-J	Z	L
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
1	1	(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
		(HO-phenyl))-	ether	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
		(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
		(HO-phenyl))-	phenoxyethyl ether	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=NH)NH ₂
	ļ.,	(Cl-phenyl))-		C/=KIIIVKIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
a SO NH	н	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	CHERPORY	- C(=NIUNNIU
o-SO ₂ -NH ₂	1 "	(Cl-phenyl))-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-302-14112	**	(Cl-phenyl))-	Cri3-O-phenyi	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
0-502-11112	**	(Cl-phenyl))-	Di-O-phenyr	111-0( 1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
0 002 1112	1	(Cl-phenyl))-	phony:	111 0( 0)11112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
1 2		(Cl-phenyl))-		= ( = )= .==2
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	F-phenyl	m-C(=O)NH ₂
1	ľ	(Cl-phenyl))-		` ´ •
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -phenyl	$m-C(=O)NH_2$
	1	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=0)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
		(Cl-phenyl))-	<u> </u>	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
- 100 100	1	(Cl-phenyl))-		- C/=>100>10
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
- SO NH	l H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	F-aniline	TO CY-NIEDNIE
o-SO ₂ -NH ₂	n	(Cl-phenyl))-	r-amme	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	<del>  H</del>	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0.802.1112	**	(Cl-phenyl))-	City unimo	p-0( 1111)1111
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-	,	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
• • •		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Aniline	p-C(=O)NH ₂
		(Cl-phenyl))-	·	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
		(Cl-phenyl))-		·
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
- 1/2	ļ.,. <u> </u>	(Cl-phenyl))-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
- PO NIT	<u> </u>	(Cl-phenyl))-	Diametric Control	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
L	l	(Cl-phenyl))-	aciu	<u> </u>

R	TR ⁵	TE-J	TZ .	П.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
0-002-1112	1 **	(Cl-phenyl))-	carboxylic acid	0( 1111)1111
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
3 3 3 2 2 2 2 2		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
1		(Cl-phenyl))-	carboxylic acid	, ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	$m-C(=O)NH_2$
	<u> </u>	(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
a SO NIH	Н	(Cl-phenyl))-	carboxylic acid F-phenyl-amino	- C/-ONH
o-SO ₂ -NH ₂	l II	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0 502 1112	1 **	(Cl-phenyl))-	carboxylic acid	m-c( o)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH,
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Bn-O-phenyl-amino	m-C(=O)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н —	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-502-1112	111	(Cl-phenyl))-	acid ester	111-0(-1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	1	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	l _H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH,
0-302-14112	**	(Cl-phenyl))-	acid ester	111-C(-O)11112
o-SO ₂ -NH ₂	<del>  н</del>	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0 002		(Cl-phenyl))-	acid ester	( 0)
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(Cl-phenyl))-	acetic acid ester	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	<u> </u>	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0 80 80	<del>   </del>	(Cl-phenyl))-	acetic acid ester Phenoxyacetic acid	m C/=NIU\NIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	I helioxyaceuc acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-502-1112	''	(Cl-phenyl))-	Ci-phenoxy-acetic acid	111-0( 1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
	<b></b>	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
O SO NE	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	acid	m C/=NIU\NIU
o-SO ₂ -NH ₂	**	(Cl-phenyl))-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0022	1	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
<b>.</b>		(Cl-phenyl))-	, ,	
				·

R'	⊤R⁵	E-J	IZ	L
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0-302-14112	**	(Cl-phenyl))-	1-phenoxyacetic acid	111-0( 0)11112
- 80 80	H		CD -benevu seetis said	m-C(=O)NH ₂
0-SO ₂ -NH ₂	l u	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	III-C(-O)Nn ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	L	(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
<u>'</u>	į.	(Cl-phenyl))-	<u></u>	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
1	I	(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
1		(Cl-phenyl))-	1 ' '	`
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
0 20, 1 112		(Cl-phenyl))-	- P	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-302-14112	**	(Cl-phenyl))-	Cris-prichoxy-culation	111-0( 1111)11112
- 50 80	<del></del>		CH O phonovy othonol	- C/=NIPVNIP
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
	L	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
	ŀ	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=0)NH ₂
	ŀ	(Cl-phenyl))-		1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₂-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0 202 1 1122		(Cl-phenyl))-	,	
o-SO ₂ -NH ₂	H -	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0 002 1112	**	(Cl-phenyl))-		( - ) 2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-502-14112	· • •	(Cl-phenyl))-	Dir o phonoxy cumano.	1 5( 5),
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-302-14112	**	(Cl-phenyl))-	ether	111 0( 1111)11111
S SO NH	Н	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	**		ether	
- CO - NIII		(Cl-phenyl))-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	III-C(-NII)NII ₂
		(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	<u> </u>	(Cl-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	·	(Cl-phenyl))-	ethyl ether	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(Cl-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
- <u>-</u>	1	(Cl-phenyl))-	ether	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=0)NH ₂
	1	(Cl-phenyl))-	ether	` ´ '
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
	1.7	(Cl-phenyl))-	ether	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
0-002-1112	1 **	(Cl-phenyl))-	phenoxyethyl ether	< >/, < /, < / >
A SOL NIP	<del>  u                                   </del>			m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O- phenoxyethyl ether	
- 50 800	1-0	(Cl-phenyl))-		m C/=CVXIII
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
	<u> </u>	(Cl-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
		NH ₂ )-	L	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
	·	NH ₂ )-	<u></u>	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl .	m-C(=NH)NH ₂
_		NH ₂ )-	1	

R	TR ³	TE-J	TZ ·	TL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
		NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -NH ₂ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н .	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
L	l	1 27		<u> </u>

OSO_NH_1	R	T.R ⁵	E-J	Z	T.L.
O-SO ₂ -NH ₂					m-C(=())NIU
G-SO ₂ -NH ₂	0-002-14H2	**	NH L	carboxylic acid	111-0(0)14112
O-SO ₂ -NH ₂	OSO NH	<del>   </del>	CHCCHCC	Pn () phony omino	m-C(=ONU
C-SO ₂ -NH ₂	0-3U2-NH2	I T	NH )	Bu-U-phenyi-anulo	III-C(-C)NT2
NH ₁  -   Acid ester   McHyl Cl-phenoxyacetic   McL(=NH)NH ₂   Acid ester   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-acetic   McHyl P-phenoxy-a	6 SO NU	-	CH CH CH	Mothyl phonographic	- CY-NULVEU
C-SO ₂ -NH ₂	0-3U2-INII2	ⁿ	NIII		III-C(-INH)INH ₂
NH ₂	- SVY NIII	<del> </del>	11/12/-		- C(-NUINTU
O-SO ₂ -NH ₂	0-5U2-NH2	l u		ivietnyi Ci-pnenoxyacetic	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH ₈ -CH		L.,		acid ester	
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₃ ) acetic acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid ester acid es	0-5U2-NH2	n	CH2-CH(-CH2-	ivietnyi r-pnenoxy- acetic	m-C(=NH)NH ₂
NH ₁   acetic acid ester   m-C(=NH)NH ₂   O-SO ₂ -NH ₂   H   CH ₂ -CH(-CH ₂ - Methyl CH ₂ -O-phenoxy-acetic acid ester   m-C(=NH)NH ₂   NH ₃     NH ₃     Methyl Bn-O-phenoxy   m-C(=NH)NH ₂   NH ₃     NH ₃     Methyl Bn-O-phenoxy   m-C(=NH)NH ₂   acid ester   m-C(=O)NH ₂   NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     NH ₃     N	- SO MY	<del> </del>	INIT ₂ )-		- CV-NULLER
O-SO ₂ -NH ₂	0-5U2-NH2	l u	CH2-CH(-CH2-	ivietnyi CH ₃ -phenoxy-	m-C(=NH)NH ₂
NR1 ₂  -   acetic acid ester   m-C(=NH)NH ₂	- 500 - 000	<del> </del>	INH ₂ )-	acetic acid ester	
0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-N-phenoxy acetic acid ester         m-C(=NH)NH ₂ acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-N-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-N-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-N-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-Phenoxy acetic acid ester         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-Phenoxy acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₃ D-Phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₂ D-Phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₂ D-Phenoxy-acetic acid m-C(=O)NH ₂ </td <td>0-5U2-NH2</td> <td>  n</td> <td>CH₂-CH(-CH₂-</td> <td>Methyl CH₃-O-phenoxy-</td> <td>m-C(=NH)NH₂</td>	0-5U2-NH2	n	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
NH ₃  -   acetic acid ester   m-C(=O)NH ₂	- 800 - 1111	<del> </del>	INH ₂ J-	acetic acid ester	
0-SO2-NH2         H         CH3-CH1-CH2-NH3-20-acid ester Methyl Phenoxyacetic acid ester Methyl F-phenoxyacetic acid ester NH3-2-NH2-NH3-20-SO2-NH2         METHYL CH1-CH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO2-NH2-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO3-NH3-NH3-20-SO	0-SU ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
NH ₃  -   acid ester	- FO NO	1	INH ₂ J-	acenc acid ester	
o-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₂ and cid ester m-C(=O)NH ₂ acid ester m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH ₁ -CH ₂ -NH ₂ methyl F-phenoxyacetic acid ester nh ₁ -C(=O)NH ₂ acetic acid ester m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ acetic acid ester m-C(=O)NH ₂ acetic acid ester m-C(=O)NH ₂ acetic acid ester nh ₂ -CH ₁ -CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂	0-SU ₂ -NH ₂	μ	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
NH ₁	- 82 - 82	<del>                                     </del>	INH ₂ )-	acid ester	
0-SO2-NH2         H         CH2-CH1-CH2- NH3- NH3- (ester suit ester NH3)- (ester NH3)- (ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester Suit ester NH3)- (ester S	0-5U2-NH2	H	CH ₂ -CH(-CH ₂ -	Metnyl CI-pnenoxyacetic	m-C(=O)NH ₂
NH ₂  -   acid ester   m-C(=O)NH ₂	- 80 80	<u> </u>	INM ₂ )-	acid ester	- C/-C
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-acetic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic acid ester octic octic acid ester octic acid ester octic octic acid ester octic octic octic acid ester octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octic octi	0-5U2-NH2	<del>11</del>	CH ₂ -CH(-CH ₂ -	wetnyi r-pnenoxyacetic	
NN-h-   acetic acid ester   m-C(=O)NH2	- 90 00	ļ.,	INH ₂ )-		
o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -NH ₂ ) acetic acid ester         m-C(=O)NH ₂ acetic acid ester           o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -NH ₂ ) Methyl Bn-O-phenoxy acetic acid ester         m-C(=O)NH ₂ acetic acid ester           o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₃ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₃ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ ).         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ ).         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₇ -CH(-CH ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic acid Mh ₂ -Phenoxy-acetic	0-SU ₂ -NH ₂	l H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=U)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂			NH ₂ )-	acetic acid ester	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	0-SU ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	00 111	ļ.,	NH ₂ )-	acetic acid ester	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	0-SU ₂ -NH ₂	l H		Methyl Bn-O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ ) NH ₂ )-Cl-phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid         m-C(=O)NH ₂				acetic acid ester	
0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )         CI-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )         F-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )         CH ₃ -O-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )         Bn-O-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )         Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )         CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H	0-SU ₂ -NH ₂	l H	CH ₂ -CH(-CH ₂ -	rnenoxyacetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -N	- 80	<u> </u>			
0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ F-phenoxy- acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CH ₃ -phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CH ₃ -O-phenoxy-acetic acid         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CI-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CH ₃ -O-phenoxy acetic acid         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Phenoxyethanol         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Phenoxy-ethanol         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CH ₃ -phenoxy-ethanol         m-C(=NH)NH ₂	0-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₃ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	- 50 300				
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ CH ₃ -Dephenoxy-acetic acid NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Bn-O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ )-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -N	0-8U ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	r-phenoxy- acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Acid acid acid m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-phenoxyacetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxyacetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyethanol m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ NH ₂ )-	- 800 200	ļ.,			
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-acid         CH ₃ -O-phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Bn-O-phenoxy acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -CH ₂ -NH ₂ )-NH ₂ CH ₃ -O-phenoxy-acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-O-phenoxy acetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-NH ₂ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ -NH ₂ )-O-phenoxy-ethanol         m-C(=NH)NH ₂	0-SU ₂ -NH ₂	l H		CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ NH ₂ )-  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy acetic m-C(=O)NH ₂ NH ₂ )-  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=O)NH ₂ NH ₂ )-  O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂					
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- NH ₂ )- Phenoxy acetic acid NH ₂ )- Phenoxyacetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CI-phenoxyacetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- F-phenoxyacetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy acetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂	0-SU ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		$m-C(=NH)NH_2$
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂ ) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy acetic m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=O)NH ₂ NH ₂ )- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C1-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂		ļ	NH ₂ )-		
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- NH ₂ )- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ F-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ m-C(=NH)NH ₂	0-SU ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	$m-C(=NH)NH_2$
O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  O-SO ₂ -NH ₂ H  CH ₂ -CH(-CH ₂ - NH ₂ )-  CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - NH ₂ )-  CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - NH ₂ )-  CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -O-Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -O-Phenoxy-ethanol  m-C(=NH)NH ₂ m-C(=NH)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -O-Phenoxy-ethanol  m-C(=NH)NH ₂	- SON NICE			Di-	
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )-         Cl-phenoxyacetic acid NH ₂ )- F-phenoxyacetic acid NH ₂ )-         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- Acid         CH ₃ -O-phenoxy-acetic acid acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- D-SO ₂ -NH ₂ Bn-O-phenoxy acetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- D-SO ₂ -NH ₂ Phenoxyethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₃ -O-phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂	0-SU ₂ -NH ₂	l H	CH ₂ -CH(-CH ₂ -	rnenoxyacetic acid	m-U(=U)NH ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- c-SO ₂ -NH ₂ F-phenoxyacetic acid NH ₂ )- c-SO ₂ -NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- c-SO ₂ -NH ₂ CH ₃ -O-phenoxy acetic acid NH ₂ )- c-SO ₂ -NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- c-SO ₂ -NH ₂ Phenoxyethanol NH ₂ )- c-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- c-SO ₂ -NH ₂ CI-phenoxy-ethanol NH ₂ )- c-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- c-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- c-SO ₂ -NH ₂ m-C(=NH)NH ₂	- 80-311	<u> </u>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-SU ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )-         CH ₃ -phenoxy-acetic acid acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- O-SO ₂ -NH ₂ Bn-O-phenoxy acetic acid NH ₂ )- D-SO ₂ -NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- D-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- D-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - NH ₂ )- CH ₃ -O-phenoxy-ethanol         m-C(=NH)NH ₂	- SO NII	1	INIT ₂ )-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U2-NH2	n	CH ₂ -CH(-CH ₂ -	r-pnenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Acid acid acid acid acid nh ₂ )         CH ₃ -O-phenoxy acetic acid acid acid nh ₂ -C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Nh ₂ )         Bn-O-phenoxy acetic acid nh ₂ -C(=O)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Phenoxyethanol nh ₂ )         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Cl-phenoxy-ethanol nh ₂ )         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - Phenoxy-ethanol nh ₂ )         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol nh ₂ )         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H         CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol nh ₂ m-C(=NH)NH ₂		ļ.,		731	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U2-NH2	n		Cn ₃ -pnenoxy-acetic acid	m-C(=U)NH₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 8/2 6/11		NH ₂ )-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U2-NH2	п	CH ₂ -CH(-CH ₂ -	Cn ₃ -O-pnenoxy acetic	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 80 10	<b></b>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U ₂ -NH ₂	н		Bn-O-pnenoxy acetic acid	m-U(=U)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- CO NIII	ļ.,		Dhanasan	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U2-NH2	н		rnenoxyemanol	m-U(=NH)NH2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- CO KILL				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-5U ₂ -NH ₂	н		CI-phenoxy-ethanol	m-C(=NH)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 00-00				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-SU ₂ -NH ₂	H		r-phenoxy- ethanol	m-C(=NH)NH ₂
$NH_2$ )- $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_2-NH_2$ $O-SO_$	. 00 110				
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	0-SU ₂ -NH ₂	H		CH₃-phenoxy-ethanol	$m-C(=NH)NH_2$
NH ₂ )-	0-SU ₂ -NH ₂	н		CH ₃ -O-phenoxy-ethanol	$m-C(=NH)NH_2$
	L		NH ₂ )-		

R	R ³	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		NH ₂ )-	1 ' '	1 ' '
o-SO ₂ -NH ₂	<del>- H</del>	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
		NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
		NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
	1 .	NH ₂ )-	1 -	` , , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
• •	-	NH ₂ )-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
• •		NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
	1	NH ₂ )-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
		NH ₂ )-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		NH ₂ )-	ether	l
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
-		NH ₂ )-	ether	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		NH ₂ )-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		NH ₂ )-	ethyl ether	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		NH ₂ )-	ethyl ether	CC-CONTIN
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
		NH₂)-	ether	- C/-OND
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		NH₂)-	ether	- C/=ONNIH
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
- PO NIU	H	NH₂)-	Methyl CH ₃ -	m-C(=O)NH,
o-SO ₂ -NH ₂	ļ n	CH ₂ -CH(-CH ₂ - NH ₂ )-	phenoxyethyl ether	111-0(-0)14112
~ SO NIH	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	"	NH ₂ )-	phenoxyethyl ether	111-0(-0)1112
o-SO ₂ -NH ₂	<del></del>	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
0-302-14112	**	NH ₂ )-	phenoxyethyl ether	111 0( 0)11112
o-SO ₂ -NH ₂	СН,	CH ₂	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH,	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH,	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₁ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	F-aniline	p-C(=O)NH,
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -aniline	p-C(=O)NH,
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
	15	12	,,	1 4

R'	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH,	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH,
• •		1 -	acid	` ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂	CI-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
- PA NO			carboxylic acid Phenyl-amino carboxylic	- CV-OVNU
o-SO ₂ -NH ₂	CH,	CH ₂	acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CI-phenyl-amino	m-C(=O)NH ₂
0-302-14112	C113	C112	CH ₃ carboxylic acid	111-0(-0)/1112
o-SO ₂ -NH ₂	CH,	CH ₂	F-phenyl-amino	m-C(=O)NH ₂
0-002 1112	0113	C112	carboxylic acid	111-0( 0)/11/2
o-SO ₂ -NH ₂	СН,	CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0 001 1112	,		carboxylic acid	5( 5)
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₁ -O-phenyl-amino	m-C(=O)NH ₂
	'		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl-amino	m-C(=O)NH,
• •		1 -	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	СН,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
- C/A NUT		CU	acetic acid ester	- C/C-NIUNNIU
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-14112	C113	·   C112	acetic acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH,	Methyl Phenoxyacetic	m-C(=O)NH,
0 001 1111	0.13	01.2	acid ester	5( 5)2
o-SO ₂ -NH ₂	CH.	CH,	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
	,		acid ester	
o-SO ₂ -NH ₂	CH,	CH,	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		_	acid ester	` ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH₃-O-phenoxy-acetic	m-C(=NH)NH ₂
~ CO NIII	- <del>  С</del> В	<del>  Cu</del>	acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Phenoxyacetic acid Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₁ -O-phenoxy acetic	m-C(=O)NH ₂
O-002-14115		1 -12	City o phonoxy accide	1 ··· · · · · · · · · · · · · · · · · ·

R ¹	I R ⁵	E-J	Z	L
	<del>  ``                                  </del>		acid	
o-SO ₂ -NH ₂	CH ₃	CH,	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	F-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0 503 1112	J 0223		ether	0( 1)
o-SO ₂ -NH ₂	СН,	CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0 507 1.122	01,	J	ether	(,,
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0 0022	011,	<u></u>	ether	( 1,1
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
000211112	,		ethyl ether	(
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	,	2	ethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
2 2	,	•	ethyl ether	\ ' ' '
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
1 * *	1	•	ether	` ′ -
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
1		•	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl F-phenoxyethyl	$m-C(=O)NH_2$
		- •	ether	•
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
<u> </u>			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂

IR ¹	⊤R ⁵	E-J	Z	TL -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0 50, 111,	0.2.3	011, 011,	acid	1 0( 1)1.112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CI-Phenyl-amino	m-C(=NH)NH,
	1 -		carboxylic acid	` ′ ′
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
- 500 - 1111	<del> </del>		carboxylic acid	C/(V)NII
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
SO NO	CU	COCO	carboxylic acid CH ₃ -phenyl-amino	- C/-CVNID
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	СН,-СН,	CH ₃ -O-phenyl-amino	m-C(=O)NH,
0-3O ₂ -Nn ₂	CH ₃	CH ₂ -CH ₂	carboxylic acid	111-C(-O)(VII2
o-SO ₂ -NH ₂	CH,	СН,-СН,	Bn-O-phenyl-amino	m-C(=O)NH,
0-302-14112	C113	C112-C112	carboxylic acid	111-0(-0)14112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-302-14112	C113	C112-C112	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	CH,	CH,-CH,	Methyl Cl-phenoxyacetic	m-C(=NH)NH,
0-502-14112	C113	0112-0112	acid ester	111-0(1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH,
0.002.1.112	0.23		acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	(,,-
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
1 2 2			acetic acid ester	` ′ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	·   •		acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
			acid ester	·
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
			acid ester	<u> </u>
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
	<del>                                     </del>	- CH CH	acetic acid ester	- C/=CVXIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0 SO NH		CH -CH	acetic acid ester Methyl Bn-O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	acetic acid ester	111-C(-C)NT2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₁ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-002-11112	5113	C112-C112	acid	= ( 1411)14112
o-SO ₂ -NH ₂	СН,	CH,-CH,	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₁ -O-phenoxy acetic	m-C(=O)NH ₂
	1 ~3	1 02 02	1 21-3 2 Promony acces	1 <u></u>

R'	R'	E-J	Z	L
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH,-CH,	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-302-1112	C113	C112-C112	ether	0( 1.11)1.112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CI-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-aniline	$p-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	$p-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH2-CH2	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	CI-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
	·	<u></u>	* · · · · · · · · · · · · · · · · · · ·	

TR'	I R ³	E-J	Z	T.
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
	CH ₁	CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	C113	C112-C112-C112	acid	111-0( 1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CI-Phenyl-amino	m-C(=NH)NH ₂
0-50 ₂ -111 ₂	CII	C112-C112-C112	carboxylic acid	0( 1112).112
o-SO ₂ -NH ₂	CH ₁	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
0-302-14112	C113	C112-C112-C112	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0-002-1112	0113	0112 0112 0112	carboxylic acid	0( 1)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0 00,1	,		carboxylic acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
	,	2	carboxylic acid	` ´ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
	,	* * *	acid	`
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
	,		carboxylic acid	` ´ •
o-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	F-phenyl-amino	m-C(=O)NH ₂
	1	• • •	carboxylic acid	, , -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
1 -	1		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
1 -	1		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl-amino	$m-C(=O)NH_2$
- "			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
1			acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
	•		acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
	L		acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	CV
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
- NO NIII		CO CO CO	acetic acid ester  Methyl Bn-O-phenoxy	m-C(=NH)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	acetic acid ester	
- 80 - 111	C11 "	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyacetic	m-C(=O)NH,
o-SO ₂ -NH ₂	CH _{3.}	Ch ₂ -Ch ₂ -Ch ₂	acid ester	111-0(-0)1112
a SO NIB	CHi	CH,-CH,-CH,	Methyl Cl-phenoxyacetic	m-C(=O)NH,
o-SO ₂ -NH ₂	Cn ₃	C112-C112-C112	acid ester	111-0( 0).11.2
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-302-1112	C113	C112-C112-C112	acid ester	11. 0( 0). 11.2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-502-1112	<b>C11</b> 3		acetic acid ester	· · · · · · · · · · · · · · · · · · ·
o-SO ₂ -NH ₂	CH	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	,		acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	,		acetic acid ester	` ´ `
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	1 -		acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂

R ¹	R³	E-J	Z	TL .
<u> </u>	<del>  ^`</del>			
O-SO-NP	CH,	CH CP CP	acid	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃	Bn-O-phenoxy acetic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₃	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₃	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
a SVA NIII	7.U	CO CO CO	ether	C/-XID/XID
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o SO NIP	70	CO CO CO	Methyl F phenoxy ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	
0 SO NH	CH,	CU CU CU		- C/-XIUXIU
o-SO ₂ -NH ₂	СП	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
A SVA NIH	CB	CU CU CU	ethyl ether	- CY-NILINIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
A SO NIH	70	CU CU CU		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-30 ₂ -111 ₂	CII3	C112-C112-C112	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	CII3	C112-C112-C112	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0 002 1112	0113		ether	0( 0)2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
0 00,1112	0.1.,	011, 011, 011,	phenoxyethyl ether	5( 5):2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
	<b></b> 3		phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
•			phenoxyethyl ether	` '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CHi	CH ₂ -CH(-CH ₃ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-aniline	p-C(=O)NH ₂

TR ¹	TR*	TE-J	IZ	TL
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Bn-O-aniline	p-C(=O)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Phenyl-amino-carboxylic	m-C(=NH)NH,
			acid	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	F-phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	<u> </u>	1	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
- 8/2 2/11	-	CH CHCCCC	carboxylic acid	- CYENIDANO
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenyl-amino carboxylic	m-C(=O)NH ₃
0-502-1112	J,	0112-011(-0113)-	acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-phenyl-amino	m-C(=O)NH,
0 002 1.1.12	,	011/2 011( 011/3)	carboxylic acid	5( 5)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-phenyl-amino	m-C(=O)NH ₂
	1		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH3)-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	<u> </u>		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Bn-O-phenyl-amino	$m-C(=O)NH_2$
- 00 00	7717	CH CH CH	carboxylic acid	C/=NIU\NIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
0 SO NH	CH,	CH ₂ -CH(-CH ₃ )-	Methyl CI-phenoxyacetic	m-C(=NH)NH,
o-SO ₂ -NH ₂	CI13	CH2-CH(-CH3)-	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-502-1112	0113		acid ester	0(),
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	,	31.2	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	1		acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl Phenoxyacetic	$m-C(=O)NH_2$
			acid ester	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
- CO NU	CU	CO COCCO	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	acid ester	111-0(-0)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -phenoxy-	m-C(=0)NH,
0-002-1112	[ C119	0117 011( 0113)	acetic acid ester	0( 0)2
o-SO ₂ -NH ₂	CH ₁	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	-		acetic acid ester	` ,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
-	-		acetic acid ester	` ` .
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CI-phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	L		acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-phenoxyacetic acid	m-C(=0)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )- CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂ m-C(=O)NH ₂
o-SO ₂ -NH ₂	LII3	CH2-CH(-CH3)-	CH ₃ -O-phenoxy acetic	111-4-0)14112

I R	R ⁵	E-J	Z	IL.
K	1	1:-1		<u> </u>
20 10	<del> </del>	CH CHANGE	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	Phenoxyethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃ )-	CH ₃ -O-phenoxy- ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₃)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃ )-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	phenyl	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-NH2)-	CH ₃ -phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-aniline	p-C(=O)NH ₂

R ¹	LK,	E-J	Z	IL.
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-802-1112	0113	0112 011(-11112)	acid	( 5.55,5.55,2
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	Cl-Phenyl-amino	m-C(=NH)NH ₂
0 502-1112	) ····,	01.2 01.1 1.1.2)	carboxylic acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenyl-amino	m-C(=NH)NH ₂
0-802-1112	0.1.3	011, 011(1112)	carboxylic acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0 002 1112	,	011, 011(1112)	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	,	2002	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl amino	m-C(=NH)NH ₂
	_	• ` ~	carboxylic acid	,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenyl-amino carboxylic	m-C(=O)NH ₂
	l .	• ` •	acid	
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	Cl-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
	_		carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	1		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenyl-amino	$m-C(=O)NH_2$
	•		carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH₂-CH(-NH₂)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyacetic	$m-C(=NH)NH_2$
		-	acid ester	CY-NICONIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
- 80 - 80		CII CII/XIII X	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	acetic acid ester	111-0(-1411)14112
- 50 - 50	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₁ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CII,	C112-C11(-14112)-	acetic acid ester	111-0( 1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-14112	C113		acetic acid ester	0( 1.12)1.122
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-NH ₂ )-	Methyl Phenoxyacetic	m-C(=O)NH,
0 002 1112	0113	02.2 01.( 1.1.2)	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
	,	2	acid ester	` ´ -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxyacetic	$m-C(=O)NH_2$
1	1	• •	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
	1		acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
L	<u></u>		acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	C/ 1/1/2
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	<del> </del>	CIL CIL SIL	acid	m C/=NUNKIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Phenoxyacetic acid	m-C(=O)NH ₂ m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Cl-phenoxyacetic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-phenoxyacetic acid	m-C(=O)NH ₂ m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy acetic	I III-C(-C)INII ₂

R'	R ³	E-J	Z .	L
	· · · · · · · · · · · · · · · · · · ·		acid	· · · · · · · · · · · · · · · · · · ·
o-SO ₂ -NH ₂	CH,	CH,-CH(-NH,)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenoxyethanol	m-C(=NH)NH,
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	F-phenoxy- ethanol	m-C(=NH)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH,
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	CH ₁ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	,		ether	`
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH,-CH(-NH,)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-1112	C113	C112-C11(-14112)-	ethyl ether	111-0( 1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-302-1112	CII	C112-C11(-14112)-	ether	III O( 0)1.1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl Cl-phenoxyethyl	m-C(=O)NH,
0.502 1.112	J.1.3	011, 011( 1111)	ether	( -)2
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0 0 0 2 1 1 2 2	,		ether	` ′ ′ ′
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -	m-C(=O)NH ₂
	,		phenoxyethyl ether	` ' •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂ )-	Methyl CH ₃ -O-	m-C(=O)NH ₂
	1	• ` •	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂ )-	Methyl Bn-O-	$m-C(=O)NH_2$
1	-	• • • •	phenoxyethyl ether	
- PO NIII	CH,	CH CHCPm\	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH_CH(-Bn)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
	CH ₃	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bh)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂		CH ₂ -CH(-Bh)-	Aniline	p-C(=NH)NH ₂
	CH ₃	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bh)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -amilie	p-C(=NH)NH ₂
0-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bh)-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bh)-	CH ₃ -aniline	p-C(=O)NH ₂
0-002-14112	1 V113	1 2113 211(-111)-	1 3	F -( -)2

I R ¹	⊤R³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	сн,	CH₂-CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH _{3.}	CH₂-CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂

WO 00/71509 PCT/US00/14194

- 214 - .

	Τ <b>R</b> ³			<del></del>
R [†]	1	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-Bn)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bŋ)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН	CH₂-CH(-Bn)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂

GSO_NH_1	TR ^t	⊺R⁵	I E-J	IZ	TL T
COCH ₃				l —	m-C(=O)NH ₃
COOCH ₃  - CH ₃		L	COOCH,)-	<u> </u>	
O-SO ₂ -NH ₂ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₄ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₄ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₄ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₄ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₄ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₄ CH ₃ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₅ CH ₅ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₆ CH ₅ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₆ CH ₅ CH ₅ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₆ CH ₅ CH ₆ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₆ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₇ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₈ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CO-CH ₃ )  O-SO ₂ -NH ₉ CH ₇ CH ₇ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH		CH,	COOCH,)-		
6-SO2-NH2         CH3         CH2-CH4-CH2-CH2-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COC	o-SO ₂ -NH ₂	CH,		Cl-aniline	p-C(=NH)NH ₂
6-SO2-NH1         CH3         CH3-CH1-CH2-CH3-CC0CH3-CH3-CC0CH3-CH3-CC0CH3-CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-CC0CH3-C	o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	F-aniline	p-C(=NH)NH ₂
6-SO2-NH2         CH3         CH3-CH-CH-CH2-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3-COCH3	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=NH)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Aniline         P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH-3-CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Bn-O-aniline         P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ Ch ₂ -Denyl amino carboxylic acid         m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH	o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-	CH ₃ -O-aniline	p-C(=NH)NH ₂
6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₇ -COOCH ₃ )-COOCH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Phenyl-amiline         P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Phenyl-amiline         P-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ m-C(=NH)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ m-C(=NH)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ m-C(=NH)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ m-C(=O)NH ₂ 6-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-CoOCH ₃ <	o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO2-NH2         CH3         CH3-CHI-CH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COO	o-SO ₂ -NH ₂	СН3	CH2-CH(-CH2-	Aniline	p-C(=0)NH ₂
0-SO2-NH2         CH3         CH3-CH[-CH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COO	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-SO2-NH2         CH3         CH3-CH[-CH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COOCH3-COO	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ )         CH ₃ -CH ₁ -CH ₂ -COOCH ₃ )         DF-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ -COOCH ₃ )         DF-C(=O)NH ₂ CH ₂ -CH ₁ -CH ₂ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ Bn-O-aniline         p-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH-Phenyl-amino carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -coOCH ₃ )-acid         m-C(=NH)NH ₂ acid           o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -CDOCH ₃ )-carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -CDOCH ₃ )-carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CDOCH ₃ )-carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CDOCH ₃ )-carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CDOCH ₃ )-carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ phenyl-amino carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-CH ₂ -CH(-CH ₂ -COOCH ₃ )-CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=NH)NH ₂ <td>o-SO₂-NH₂</td> <td>СН,</td> <td>CH₂-CH(-CH₂-</td> <td>F-phenyl-amino</td> <td>m-C(=NH)NH₂</td>	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃	0-SO ₂ -NH ₂	1	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-Carboxylic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	ļ. ` · · ·
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ Phenyl-amino carboxylic acid acid acid carboxylic acid carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ -COOCH ₃ )-COOCH ₃ )-COOCH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino carboxylic acid	
COOCH3)-   Carboxylic acid	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	1	l `
COOCH3   Carboxylic acid   CH2-CH(-CH2-COOCH3)   CH3-Phenyl-amino   Carboxylic acid   CH2-CH(-CH2-COOCH3)   CH3-Phenyl-amino   CAP2-CH(-CH2-COOCH3)   CH3-Phenyl-amino   CAP3-Phenyl-amino	o-SO ₂ -NH ₂	1	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
COOCH ₃  -   Carboxylic acid   CH ₂ -CH(-CH ₂ -   CH ₃ -O-phenyl-amino   Carboxylic acid   CH ₂ -CH(-CH ₂ -   CH ₃ -O-phenyl-amino   Carboxylic acid   CH ₂ -CH(-CH ₂ -   COOCH ₃  -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   COOCH ₃  -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-CH ₂ -   CH ₃ -CH(-C	o-SO ₂ -NH ₂	СН,	COOCH;)-	carboxylic acid	
COOCH ₃ )- carboxylic acid  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- carboxylic acid  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- carboxylic acid  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -CH(-	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	carboxylic acid	`
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )- COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- CH ₂ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- COOCH ₃ )- CH ₂ -CH(-CH ₂ - COOCH ₃ )- COOCH ₃ )- COOCH ₃ - COOCH ₃ - COOCH ₃ - COOCH ₃ - COOCH ₃ - COOCH ₃ - COOCH ₃ - COOCH ₃ - COOCH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ -	o-SO ₂ -NH ₂	-	CH ₂ -CH(-CH ₂ - COOCH ₃ )-		m-C(=0)NH ₂
O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ - CH ₃ -CH(-CH ₂ - COOCH ₃ )-  O-SO ₂ -NH ₂ CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃ - CH ₃	o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-	Bn-O-phenyl-amino carboxylic acid	
COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	1	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -COOCH ₃ )- m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Methyl CH ₃ -O-phenoxy-m-C(=NH)NH ₂ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ COOCH ₃ )- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -		
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	o-SO ₂ -NH ₂	CH ₃		Methyl Bn-O-phenoxy	m-C(=NH)NH ₂

R'	TR ³	E-J	Z	L
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₁ )-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - COOCH ₁ )-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₁ )-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂

R'	R ⁵	TE-J	1 Z	TL
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		COOCH ₃ )-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₁ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	COOCH ₃ )- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
L_ T_L		COOCH ₃ )-	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₄ )-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
		COOCH ₃ )-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃ )-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	СН	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
		CH ₂ -OH)-		` ´ †
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₂- CH₂-OH)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
a SO NO	CU	CH ₂ -OH)-	CH phonyl	m C/=()\\\
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
- SO NII		CH ₂ -OH)-	CH eniline	- C/=NIUNNU
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	100	CH ₂ -CH(-CH ₂ -	Cl-aniline	2 C/=C/NIU
0-3O ₂ -14H ₂	СН3	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Ci-dillinic	p-C(=O)NH ₂

CH3	R'	I R ³	E-I	I Z	ΓĽ
CH2-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH			CHICHICHI		p-C(=O)NH ₂
CH2-OH3.  CH3-OH4.  CH4-OH3.  CH5-OH6-CH4.  CH4-OH3.  CH5-OH6-CH4.  CH5-OH4.  CH5-OH6-CH4.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-OH7.  CH5-		1	CH ₂ -OH)-		
CH2-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH3 CH3-OH	o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)-	CH ₃ -aniline	
GeSO ₂ -NH ₁ CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -OH ₃ CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -OH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄	o-SO ₂ -NH ₂	CH ₃		CH ₃ -O-aniline	p-C(=O)NH ₂
6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0-SO2-NH2         CH3         CH3-CH4 (CH2-CH2-OH3)         CH9-OH3-carboxylic acid         m-C(=NH)NH2-carboxylic acid           0-SO2-NH2         CH3         CH2-CHC-CH2-CH2-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)         F-phenyl-amino         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)         CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -OH)         CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         ch ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         ch ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         ch ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         ch ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂	0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
GH3-OH3- G-SO2-NH2- CH3- CH4-CH4- CH4-CH4- CH4-CH4- CH4-OH3- G-SO2-NH2- CH3- CH4-CH4- CH4-OH3- G-SO2-NH2- CH3- CH4-CH4- CH4-OH3- G-SO2-NH2- CH3- CH4-CH4- G-SO2-NH2- CH3- CH4-CH4- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH2- G-SO2-NH	o-SO ₂ -NH ₂	CH,			m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄			CH₂-OH)-	carboxylic acid	` ′ -
CH ₃ -OH)-   CH ₃   CH ₇ -CH -CH ₂ -   CH ₂ -OH)-   Carboxylic acid   CH ₂ -OH)-   Carboxylic acid   CH ₂ -OH)-   Carboxylic acid   CH ₂ -OH)-   Carboxylic acid   CH ₂ -OH)-   CH ₂ -OH)-   Carboxylic acid   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CArboxylic acid   CH ₂ -CH -CH ₂ -   CH ₂ -OH)-   CArboxylic acid   CH ₂ -CH -CH ₂ -   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CH ₂ -OH)-   CArboxylic acid   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -OH)-   CH ₂ -			CH ₂ -OH)-	carboxylic acid	` ′ ′
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₃ CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	o-SO ₂ -NH ₂	CH ₃			
0-SO2-NH2         CH3         CH2-CH1-CH2-CH2-CH2-CH2-CH2-CH3-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	o-SO ₂ -NH ₂	CH ₃		Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
O-SO2-NH2         CH3         CH5-CH1-CH2-CH2-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-OH3-CH3-CH3-OH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Phenyl-amino carboxylic	m-C(=O)NH ₂
O-SO2-NH2         CH3         CH3-CH1-CH2-CH3-CH4-CH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3-CH4-OH3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -OH)-	o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	F-phenyl-amino	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -	o-SO ₂ -NH ₂	CH,			m-C(=O)NH,
CH ₂ -OH)-         carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₂ -OH)-         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)-         methyl phenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)-         methyl CI-phenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -Dhenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -Dhenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃			CH₂-OH)-	carboxylic acid	
CH2-OH)- carboxylic acid  O-SO ₂ -NH ₂ CH3  CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acid ester  O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH3  CH2-CH(-CH2- CH2-OH)- acid ester  O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH3  CH3-CH(-CH2- CH2-OH)- acid ester  O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH3  CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-OH)- acid ester  O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH3  CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3-		1	CH ₂ -OH)-	carboxylic acid	\ ` ' -
CH2-OH)-   acid ester	o-SO ₂ -NH ₂	CH ₃	CH₂-OH)-	carboxylic acid	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -OH)-acid ester         m-C(=NH)NH ₂ acid ester           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)-Acid ester         m-C(=NH)NH ₂ mr-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)-Acid ester         m-C(=NH)NH ₂ mr-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)-Acid ester         m-C(=NH)NH ₂ mr-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH)-Acid ester         m-C(=NH)NH ₂ mr-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)-Acid ester         m-C(=NH)NH ₂ mr-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -DH)-Acid ester         m-C(=O)NH ₂ mr-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH)-Acid ester         m-C(=O)NH ₂ mr-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH)-Acid ester         m-C(=O)NH ₂ mr-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH)-Acid ester         m-C(=O)NH ₂ mr-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH)-Acid ester         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH)-Acid ester         m-C(=O)NH ₂	o-SO ₂ -NH ₂	CH ₃			m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -OH)- acid ester         Methyl F-phenoxy- acetic acid ester         m-C(=NH)NH ₂ acid ester           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -OH)- acetic acid ester         Methyl CH ₃ -phenoxy- acetic acid ester         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)- acetic acid ester         Methyl CH ₃ -O-phenoxy- acetic acid ester         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
O-SO2-NH2         CH3         CH2-CH(-CH2-CH2-CH2-OH)-CH2-OH)-Acetic acid ester         Methyl CH3-phenoxy-Acetic acid ester         m-C(=NH)NH2-CH2-NH2-OH)-Acetic acid ester           0-SO2-NH2         CH3         CH2-CH(-CH2-CH2-CH2-OH)-Acetic acid ester         Methyl Bn-O-phenoxy-Acetic acid ester         m-C(=NH)NH2-CH2-NH2-OH)-Acetic acid ester           0-SO2-NH2         CH3         CH2-CH(-CH2-CH2-CH2-CH2-OH)-Acctic acid ester         Methyl Phenoxyacetic acid ester         m-C(=O)NH2-CH2-OH)-Acctic acid ester           0-SO2-NH2         CH3         CH2-CH(-CH2-CH2-CH2-CH2-CH2-CH2-OH)-Acctic acid ester         Methyl CI-phenoxyacetic acid ester         m-C(=O)NH2-CH2-OH)-Acctic acid ester           0-SO2-NH2         CH3         CH2-CH(-CH2-CH2-CH2-CH2-CH2-CH2-OH)-Acctic acid ester         Methyl CH3-Phenoxy-Acetic acid ester         m-C(=O)NH2-CH2-OH)-Acctic acid ester           0-SO2-NH2         CH3         CH2-CH(-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-OH)-Acctic acid ester         Methyl CH3-O-Phenoxy-Acetic acid ester         m-C(=O)NH2-CH2-OH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ -Methyl CH ₃ -O-phenoxy- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ -Methyl Bn-O-phenoxy CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
CH2-OH)-   acetic acid ester		CH,			m-C(=NH)NH ₂
CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH)- CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -DH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ - CH ₂ - CH ₂ - CH ₂ - CH ₂ - CH ₂			CH ₂ -OH)-	acetic acid ester	m-C(=NH)NH.
CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -OH)-  o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -			CH ₂ -OH)-	acetic acid ester	l `
CH2-OH)-  o-SO2-NH2  CH3  CH3-CH(-CH2- CH2-OH)-  o-SO2-NH2  CH3  CH3-CH(-CH2- CH2-OH)-  o-SO2-NH2  CH3  CH3-CH(-CH2- CH2-OH)-  o-SO2-NH2  CH3  CH3-CH(-CH2- CH3-CH(-CH2- CH3-CH(-CH2- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH3- CH3-CH(-CH			CH ₂ -OH)-	acid ester	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -DH)-         Methyl F-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -DH)-         Methyl CH ₃ -phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -DH)-         Methyl CH ₃ -O-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -DH)-         Methyl CH ₃ -O-phenoxyacetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH)-         Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -DH)-DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CH ₂ -DHO CHO CH ₂ -DHO CHO CH ₂ -DHO CHO CH ₂ -DHO CHO CH ₂ -DHO CHO CH ₂ -DH	o-SO ₂ -NH ₂	CH ₃			m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acetic acid ester         Methyl CH ₃ -phenoxy- acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -OH)- CH ₂ -OH)-         CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	1	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acetic acid ester         Methyl CH ₃ -O-phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -CH(-CH ₂ - CH ₂ -OH)-         CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)-         F-phenoxy-acetic acid m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- acetic acid ester         Methyl Bn-O-phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -CH(-CH ₂ - CH ₂ -OH)-         CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -OH)-         F-phenoxy- acetic acid m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
CH ₂ -OH)- acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)NH ₂ CH ₂ -OH)-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-phenoxy-acetic acid m-C(=NH)NH ₂ CH ₂ -OH)-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxy-acetic acid m-C(=NH)NH ₂	0-SO ₂ -NH,	CH,			m-C(=O)NH ₂
CH ₂ -OH)-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-phenoxy-acetic acid m-C(=NH)NH ₂ CH ₂ -OH)-  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxy-acetic acid m-C(=NH)NH ₂			CH₂-OH)-	acetic acid ester	, ' ' '
CH ₂ -OH)- 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxy- acetic acid m-C(=NH)NH ₂			CH₂-OH)-	1	
			CH ₂ -OH)-	• • • • • • • • • • • • • • • • • • •	
	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂

R	TR ³	E-J	TZ	Π.
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
	Li	CH₂-OH)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
	_	CH ₂ -OH)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	ether Methyl CI-phenoxyethyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	ether Methyl F-phenoxyethyl	m-C(=O)NH ₂
		CH₂-OH)-	ether	, , ,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂

R'	R³	E-J	TZ	T L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
0-502-14112	V113	CH ₂ -OH)-	phenoxyethyl ether	111 0( 0)1 122
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
0 002 1112	, J	CH ₂ -OH)-	phenoxyethyl ether	1 0( 0)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
0-002-1112	01.,	C(=O)-N-	Pilony:	6( 1.22)1.22
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
0 002 1 1112	"	C(=O)-N-	l as karanda	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		C(=O)-N-	1 1	` ' -
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
	_	C(=O)-N-	1	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
		C(=O)-N-	İ	<u>'</u>
	· ·	morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		C(=O)-N-		
- 500 600	CH,	morpholino)- CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	. Cn,	C(=0)-N-	Ci-phenyi	111-0(-0)14112
		morpholino)-	1	•
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-302-1112	CIII3	C(=O)-N-	1 -phenyi	m-e( 0)
		morpholino)-	<u>'</u>	,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0 00, 1.1.2	0,	C(=O)-N-	, F,-	
		morpholino)-	ŧ	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
• •		C(=O)-N-		1
		morpholino)-	· ·	
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₂-	Bn-O-phenyl	m-C(=O)NH ₂
	-	C(=O)-N-	•	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		C(=O)-N-		
		morpholino)-	Cl-aniline	- C/=NIDVNIB
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	CI-animie	p-C(=NH)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0-502-1112	C113	C(=O)-N-	1 -unime	p 5( 1.11)1.112
		morpholino)-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
2 2	,	C(=O)-N-	-	' ' ' '
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
- <del>-</del>		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		C(=O)-N-		
		morpholino)-	<u> </u>	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
		C(=O)-N-		
- E/A E/I		morpholino)-	Claniling	- C/-CVVIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂

R'	R ³	E-J	Z	L
		C(=0)-N-		
	1	morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
0-302-1112	C113	C(=O)-N-	City-aminic	p-C(-0)/411 ₂
	-	morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	CH ₃ -O-aniline	p-C(=O)NH ₂
0.002.002	,	C(=O)-N-		F -( -)2
Į		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
	1	C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		C(=0)-N-	acid	
2.50. XIII.	CU	morpholino)-	Cl Phanulamina	- CY-NILDNIL
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
	·	morpholino)-	Carboxyric acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
0-502-14112	C113	C(=0)-N-	carboxylic acid	111-0( 1111)1112
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	,	C(=0)-N-	carboxylic acid	
		morpholino)-	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		C(=0)-N-	carboxylic acid	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		C(=O)-N-	carboxylic acid	<u> </u>
o-SO ₂ -NH ₂	CH,	morpholino)- CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
0-302-14112	C11 ₃	C(=0)-N-	acid	111-0(-0)1112
		morpholino)-	2014	
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	Cl-phenyl-amino	m-C(=O)NH ₂
		C(=O)-N-	carboxylic acid	` ′ •
		morpholino)-	_	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		C(=0)-N-	carboxylic acid	}
	CU	morpholino)-		- (/-0)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
1		C(=O)-N- morpholino)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
0-002=1112	~~~,	C(=0)-N-	carboxylic acid	0( 0), 11.2
· ·		morpholino)-		1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
	1	C(=0)-N-	carboxylic acid	' '
	<u> </u>	morpholino)-	<u> </u>	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		C(=0)-N-	acid ester	<u> </u>
- 80 - 800	<del> </del>	morpholino)-	Mathewale	- C/- KIII VIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		morpholino)-	acid ester	
0-SO ₂ -NH,	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-502-11112	~113	C(=0)-N-	acid ester	\( \)
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	"	C(=O)-N-	acetic acid ester	` ' '
1	1	morpholino)-		

R'	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	ĺ	C(=O)-N-	acetic acid ester	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		C(=0)-N-	acetic acid ester	
		morpholino)-	Mother Phonographs	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N-	Methyl Phenoxyacetic acid ester	III-C(-O)NII2
		morpholino)-	acid ester	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-30 ₂ -111 ₂	CII	C(=0)-N-	acid ester	
		morpholino)-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₁ -CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0 2021.02		C(=O)-N-	acid ester	
		morpholino)-		l
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
• •		C(=O)-N-	acetic acid ester	
	·	morpholino)-	<u> </u>	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
-		C(=O)-N-	acetic acid ester	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		C(=0)-N-	acetic acid ester	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
•		C(=O)-N-	,	·
		morpholino)-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=0)-N-	Ci-phenoxy-acetic acid	111-0(-1411)14112
		morpholino)-		1
O SOL NID	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CII3	C(=0)-N-	1 -phenoxy- acetic acid	0( 1.11)1.111
	1	morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0.002.1112	0.2,	C(=O)-N-		·
		morpholino)-	İ	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	_	C(=0)-N-	acid	ļ
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	III-C(C)IVII ₂
		C(=O)-N- morpholino)-		
- CO NII		CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	C(=0)-N-	Ci-phenoxyacetic acid	In-C( O)///12
		morpholino)-	•	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0-30 ₂ -14112	C113	C(=0)-N-	- phonony assure assure	( - ) / 2
1		morpholino)-	1 .	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
5502.11.2	,	C(=O)-N-	', ', ', ', ', ', ', ', ', ', ', ', ',	` ´ • •
		morpholino)-		_
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	1	C(=O)-N-	acid	
,		morpholino)-		<u> </u>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
	1	C(=O)-N-		
l '		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		C(=O)-N-		1

R ¹	R ⁵	E-J	Z	L
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH₃-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂

C=O_NN-	R ¹	- R ⁵	E-J	IZ	TL
morpholino   CH_0CH(-CH_1 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(=0)-N)   CH_0CH(-CH_2 C(			C(=O)-N-	phenoxyethyl ether	
C(=O)-N- morpholino)- c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(-O)-N- morpholino)- c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(-O)-N- morpholino)- c-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -			morpholino)-		
morpholino -	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
CSO ₂ -NH ₁ CH ₃ CH ₂ -CH(-CH ₂ -CO ₂ -N-Morpholino)- CSO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄				phenoxyethyl ether	
C(=O)N-1 morpholino)- no-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ c-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	Ĺ				
o-SO2_NH2         CH3         CH_CHI_CHI_CH2_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH3_CH4_S(O)_CH4_CH4_CH4_CH4_CH4_CH4_CH4_CH4_CH4_CH4	o-SO ₂ -NH ₂	CH,			m-C(=O)NH ₂
c-SO ₂ -NH ₂ CH ₃ CH ₁ -CH ₁ -CH ₂ -CH ₂ CH ₃ -S(O ₃ -CH ₃ )         m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -S(O ₃ -CH ₃ )         Cl-phenyl         m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C				phenoxyethyl ether	Ì
CSO2-NH2         CH3         CH5-CHC-CH3-CH3-CH4-CH3-CH4-CH3-CH4-S(O)-CH3-CH4-S(O)-CH3-CH2-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-S(O)-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-CH3-CH3-S(O)-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3			morpholino)-		<u> </u>
G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -	o-SO ₂ -NH ₂	CH ₃		phenyl	m-C(=NH)NH ₂
CH_2S(O)_CH_3					
6-SO ₂ -NH ₂ CH ₃ -CH ₁ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -	0-SO ₂ -NH ₂	CH ₃		Cl-phenyl .	$m-C(=NH)NH_2$
CH2-S(O)-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CHC-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-CH3-CH3- CH3-	- 100 300				C/NUUNUU
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ -CH ₄ CH ₃ -Phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CI-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄	0-5U ₂ -NH ₂	CH ₃		r-pnenyi	m-C(=NH)NH ₂
CH ₂ -S(O ₂ -CH ₃ CH ₃ -CH ₁ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇ -CH ₇	A SOL NIH			CH shanul	- C/-NIUNIU
c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ phenyl         m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	0-3U ₂ -NH ₂	Cn,		Cri3-phenyl	III-C(-NII)NII2
CH,-S(O),-CH, CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-	0 SO NIH	<del>-   co</del>		CH O phenyl	m-C/=NH\NH
C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ -B ₁ Bn-O-phenyl m-C(=NH)NH ₂ CH ₃ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ C	0-3O ₂ -1411 ₂	CII3		C113-O-phenyi	111-0(-1111)11112
CH ₃ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -	0-SO -NB	<del>-   CH</del>		Bn-O-nhenyl	m-C/=NH)NH
CSO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ - Phenyl m-C(=O)NH ₂ CSO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ - CI-phenyl m-C(=O)NH ₂ CSO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ - CI-phenyl m-C(=O)NH ₂ CSO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ - CH ₃ -S(O) ₂ -CH ₃ CSO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ - CH ₃ -S(O) ₂ -CH ₃ CSO ₂ -NH ₂ CH ₃ CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₂ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH ₃ -CH ₁ -CH ₃ - CH	0-302-1112	C113		Bil-O-phenyi	111-0( 1111)1112
CH ₂ -S(O ₂ -CH ₃   CI-phenyl   m-C(=O)NH ₂	O-SO-NH-	CH.	CH-CH(-CH-	phenyl	m-C(=O)NH _a
G-SO ₂ -NH ₂ CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ m-C(=O)NH ₂ m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₂ -CH ₃ CH ₃ -O-phenyl         m-C(=O)NH ₂ m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₂ -CH ₃ CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	0-002-11112	C113		pinemy?	1 0( 0)2
CH_S(O)_2CH_3	o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
G-SO ₂ -NH ₂ CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ F-phenyl         m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	0 00, 111,	, ,		l or known	
CH ₂ -S(O ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂	o-SO ₂ -NH ₂	CH ₂		F-phenyl	m-C(=O)NH,
0-SO2-NH2         CH3         CH2-CH(-CH2-CH3-CH4-CH3-CH4-CH3-CH4-CH3-CH4-CH3-CH4-CH3-CH3-CH3-CH4-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3		,			. ` ´ <b>*</b>
CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -O-phenyl  o-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -O-phenyl  o-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	o-SO ₂ -NH ₂	CH,		CH ₃ -phenyl	m-C(=O)NH ₂
6-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH			CH ₂ -S(O) ₂ -CH ₃		
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O ₂ -CH ₃ ) CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ ) CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ ) CH ₃ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₂ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -S(O ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C	o-SO ₂ -NH ₂	CH,		CH ₃ -O-phenyl	m-C(=O)NH ₂
CH ₂ -S(O) ₂ -CH ₃					, , ,
G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ P-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ P-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	o-SO ₂ -NH ₂	CH ₃		Bn-O-phenyl	m-C(=O)NH ₂
CH2-S(O)2-CH3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃		Aniline	p-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃					
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Aniline         p-C(=NH)NH ₂ p-C(=NH)NH ₂ p-C(=NH)NH ₂ p-C(=NH)NH ₂ p-C(=O)NH ₂ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)NH ₂ p-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=O)P-C(=	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -aniline  O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -O-aniline  O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -O-aniline  O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃		F-anime	$p-C(=NH)NH_2$
CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -O-aniline CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(	//				CV-KILINIII
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -O-aniline         p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ Bn-O-aniline         p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ Aniline         p-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ F-aniline         p-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C	0-SO ₂ -NH ₂	CH ₃		CH ₃ -aniline	p-C(=NH)NH ₂
CH2-S(O)2-CH3         CH2-S(O)2-CH3         Bn-O-aniline         p-C(=NH)NH2           o-SO2-NH2         CH3         CH2-CH(-CH2-CH3-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3-CH3-CH3-S(O)2-CH3-CH3-S(O)2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-S(O)2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	- CO NU			CH O antino	- C/=NIH/NIH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-3U ₂ -NH ₂	Cn ₃		CH ₃ -O-annine	p-C(-1411)1411 ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 SO NH	<del></del>		Rn-O-aniline	D-C/=NH/NH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-302-1112	C113		Bii-O-aiiiiik	p-C( 1411)14112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-SO -NH	CH.		Aniline	p-C(=O)NH _a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-502-1112	C113			P 0( 0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH.		Cl-aniline	p-C(=O)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 00, 1.11,	012,			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₁		F-aniline	p-C(=O)NH ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					` ` ' -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-SO ₂ -NH ₂	CH,		CH ₃ -aniline	p-C(=O)NH ₂
CH ₂ -S(O) ₂ -CH ₃		1 -	CH ₂ -S(O) ₂ -CH ₃	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH ₃		Bn-O-aniline	p-C(=O)NH ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	CH,		1	m-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃ carboxylic acid  o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenyl-amino m-C(=NH)NH ₂	<u> </u>				ļ
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenyl-amino m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃			$m-C(=NH)NH_2$
CH ₂ -5(O) ₂ -CH ₃   carboxylic acid	o-SO ₂ -NH ₂	CH ₃		r-phenyl-amino	$m-C(=NH)NH_2$
			CH ₂ -5(U) ₂ -CH ₃	Carboxylic acid	<u> </u>

CH_CHI_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_	R ¹	TR'	E-J	Z	L
CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S(O)_CH_S   CH_S			, — -		m-C/=NH\NH.
CH ₂ S(O) ₂ CH ₃   CH ₃   CH ₂ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃	0-302-14112		$CH_2$ -S(O) ₂ -CH ₃		
CH ₂ S(O) ₂ CH ₃   CH ₃   CH ₂ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃   CH ₃ S(O) ₂ CH ₃	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S(O)_CH_A   CH_S			CH ₂ -S(O) ₂ -CH ₃		
G-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃		Bn-O-phenyl amino	m-C(=NH)NH ₂
CH, S(0), CH, CH, CH, CH, CH, CH, CH, CH, CH, CH	1	•		carboxylic acid	
CH, S(D), CH,   CH, CH, CH, CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, S(D), CH,   CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
CH_S(O)_CH_1   CH_S(O)_CH_2   CH_S(O)_CH_3     CH_S(O)_CH_4   CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_		,	$CH_2$ -S(O) ₂ -CH ₃	acid	
CH_S(O)_CH_1   CH_S(O)_CH_2   CH_S(O)_CH_3     CH_S(O)_CH_4   CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_S(O)_CH_4   CH_S(O)_CH_4     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_4   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_5   CH_5   CH_5   CH_5   CH_5   CH_5     CH_S(O)_CH_5   CH_5   CH_	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
CH ₂ -S(O ₂ -CH ₃   Carboxylic acid   CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	1		$CH_2$ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂ CH ₃ -S(O ₃ -CH ₃ )         CH ₂ -S(O ₃ -CH ₃ )         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -S(O ₃ -CH ₃ )         carboxylic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -Ch ₂ -Dphenyl-amino         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -		m-C(=0)NH ₂
CH ₂ -S(O ₂ -CH ₃   Carboxylic acid   CH ₂ -CH ₄ -CH ₂ -CH ₂ -Ch ₂ -Openyl-amino   Carboxylic acid   CH ₂ -S(O ₂ -CH ₃   Carboxylic acid   CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C					
0-SO2-NH2         CH3         CH7-CH7-CH3- CH2-S(O)2-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CH3- CH3-CN02-CN3-CN3- CM2-CN12-CN3-CN3- CM3-CN12-CN3-CN3- CM3-CN12-CN3-CN3- CM3-CN12-CN3-CN3- CM3-CN12-	o-SO ₂ -NH ₂	CH ₃		CH ₃ -phenyl-amino	m-C(=O)NH ₂
CH ₂ S(O ₂ -CH ₃   Carboxylic acid   CH ₂ -CH-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃			$CH_2$ - $S(O)_2$ - $CH_3$	carboxylic acid	
CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₁ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   CH ₂ -S	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
CH ₃ -S(O ₃ -CH ₃   Carboxylic acid   CH ₂ -S(O ₃ -CH ₃   CH ₂ -S(O ₃ -CH ₃   Methyl phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl P-phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl P-phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=NH)NH ₂   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   C=O NH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -CH ₃   Methyl CH ₂ -phenoxy-acetic   CH ₂ -S(O ₃ -C			$CH_2$ -S(O) ₂ -CH ₃		
CH ₂ -S(O ₂ -CH ₃   CH ₂ -CHC-CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
CH ₂ -S(O ₂ -CH ₃   acid ester   m-C(=NH)NH ₂		1	$CH_2$ -S(O) ₂ -CH ₃	carboxylic acid	
CH ₂ -S(O ₂ -CH ₃   acid ester   m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃ acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -		1	$CH_2$ -S(O) ₂ -CH ₃	acid ester	
CH ₂ -S(O) ₂ -CH ₃   acid ester   m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
CH ₂ -S(O ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH		1	CH ₂ -S(O) ₂ -CH ₃	acid ester	
CH ₂ -S(O) ₂ -CH ₃   acid ester   m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH,		Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
CH ₂ -S(O ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₂ -S(O ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₄ -CH ₂ -S(O ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₄ -Methyl Bn-O-phenoxy acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₂ -Methyl Phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₂ -Methyl Phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₂ -Methyl Phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH ₄ -CH ₄ -Methyl Phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl CH ₃ -phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl CH ₃ -phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl CH ₃ -phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl CH ₃ -phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl CH ₃ -Phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl CH ₃ -Phenoxyacetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Methyl Bn-O-phenoxy acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Phenoxyacetic acid m-C(=NH)NH ₂ CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -			$CH_2$ - $S(O)_2$ - $CH_3$		
CH ₂ -S(O ₂ -CH ₃   Acetic acid ester   CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₂ -S(O ₂ -CH ₃   Acetic acid ester   CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃   CH ₂ -CH(-CH ₂ -CH ₃   CH ₂ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃   CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH	o-SO ₂ -NH ₂	CH,		Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ Acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -C		_	$CH_2$ -S(O) ₂ -CH ₃		
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ actic acid ester         m-C(=NH)NH ₂ actic acid ester           0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ acid ester         m-C(=O)NH ₂ acid ester           0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH	o-SO ₂ -NH ₂	CH ₃		Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	_	1 .			
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ acid ester         m-C(=O)NH ₂ acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ acid ester         m-C(=O)NH ₂ acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ acid ester         m-C(=O)NH ₂ acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -CH ₄ -C	o-SO ₂ -NH ₂	CH ₃			m-C(=NH)NH ₂
CH2-S(O)2-CH3 acid ester  O-SO2-NH2 CH3 CH3-CH(-CH2-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	o-SO ₂ -NH ₂	CH ₃			$m-C(=O)NH_2$
CH2-S(O)2-CH3 acid ester  O-SO2-NH2 CH3 CH2-CH(-CH2-CH2-CH2-S(O)2-CH3 acid ester  O-SO2-NH2 CH3 CH3-CH3-CH3-CH3-Phenoxyacetic acid ester  O-SO2-NH2 CH3 CH3-CH3-CH3-CH3-Phenoxy-acetic acid ester  O-SO2-NH2 CH3 CH3-CH3-CH3-CH3-Phenoxy-acetic acid ester  O-SO2-NH2 CH3 CH3-CH3-CH3-CH3-Phenoxy-acetic acid ester  O-SO2-NH2 CH3 CH3-CH3-CH3-CH3-Phenoxy-acetic acid ester  O-SO2-NH2 CH3 CH3-CH3-CH3-Phenoxy-acetic acid m-C(=NH)NH2-CH3-S(O)2-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-CH3-S(O)3-CH3-CH3-CH3-S(O)3-CH3-CH3-CH3-S(O)3-CH3-CH3-CH3-S(O)3-CH3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-S(O)3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=O)NH ₂ acetic acid ester           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH	o-SO ₂ -NH ₂	CH ₃			$m-C(=O)NH_2$
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -DH) acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -DH) Acetic acid ester         m-C(	0-SO ₂ -NH ₂	CH ₃			m-C(=0)NH ₂
CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -C					C/-/WNU
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CP)-Phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CP)-Phenoxy acetic acid ester         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CP)-CH ₃ Phenoxyacetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CP)-CH ₃ -CH ₂ -CP)-CH ₃ -CH ₂ -S(O) ₂ -CH ₃ CI-phenoxy-acetic acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CP)-CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₃ -CP)-Phenoxy-acetic acid         m-C(=NH)NH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid         m-C(=NH)NH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH	0-SU ₂ -NH ₂	CH ₃			III-C(-O)Nn ₂
CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	- SO NIII	CU			m (/=())NH
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CI-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ F-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	0-50 ₂ -NH ₂	Cn ₃		nactic acid ester	111-0(-0)14112
CH ₂ -S(O) ₂ -CH ₃ acetic acid ester  O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH	A SOL NIH	CB		Methyl Rn O phenovy	m-C/=ONNH
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ P-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ P-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃	0-30 ₂ -Nn ₂	CH ₃			111-0(-0)/11/2
CH2-S(O)2-CH3  O-SO2-NH2  CH3  CH3-CH(-CH2-CP-CP-CP-CP-CP-CP-CP-CP-CP-CP-CP-CP-CP-	A SOL NH	CH			m-C/=NH\NH.
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CI-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -S(O) ₂ -CH ₃ F-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Dhenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -Dhenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -Dhenoxy-acetic acid m-C(=O)NH ₂	0-002-14112	~1.3		i nonoxyucone ucia	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -Dhenoxy-acetic acid m-C(=O)NH ₂ T-C(=O)NH ₂ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -Dhenoxy-acetic acid m-C(=O)NH ₂ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Dhenoxy-acetic acid m-C(=O)NH ₂	0-SONH	t <del>ca.</del>		Cl-phenoxy-acetic acid	m-C(=NH)NH.
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ CH ₃ -S(O) ₂ -CH ₃ F-phenoxy- acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ CH ₃ -D-phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -D-phenoxy-acetic acid         m-C(=O)NH ₂ -CH ₃ -CH ₃ -D-phenoxy-acetic acid           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -D-phenoxy-acetic acid         m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -D-phenoxy-acetic acid           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -D-phenoxy-acetic acid         m-C(=O)NH ₂ -CH ₃ -CH ₃ -D-phenoxy-acetic acid	0-002-14112			o. phonoxy accide acid	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -	0-SONH	CH.		F-phenoxy- acetic acid	m-C(=NH)NH.
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -S(O) ₂ -CH ₃ CH ₃ -O-phenoxy-acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid         m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₂ -S(O) ₂ -CH ₃ CI-phenoxyacetic acid         m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Phenoxyacetic acid           O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -Phenoxyacetic acid         m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxyacetic acid	0 002-1112	~,		phonony accine acin	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₄ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ C	o-SO ₂ -NH ₂	CH ₂		CH,-phenoxy-acetic acid	m-C(=NH)NH-
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-phenoxy-acetic acid acid         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃		,		, passes,	
CH ₂ -S(O) ₂ -CH ₃ acid  O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CI-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxyacetic acid m-C(=O)NH ₂	o-SO ₂ -NH ₂	CH.		CH ₃ -O-phenoxy-acetic	m-C(=NH)NH
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenoxy acetic acid         m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -Phenoxy-acetic acid         m-C(=O)NH ₂ -CH ₃ -CH ₃ -Phenoxy-acetic acid	2 2	,			`,-
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂	0-SO ₂ -NH ₂	CH,			m-C(=NH)NH,
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CI-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂		'			` ′ ′
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ CH ₃ -phenoxyacetic acid m-C(=O)NH ₂ CH ₃ -Phenoxyacetic acid m-C(=O)NH ₂	o-SO ₂ -NH ₃	СН,		Phenoxyacetic acid	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CI-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenoxyacetic acid         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid         m-C(=O)NH ₂	1	1		1	` ´ •
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₂ -S(O) ₂ -CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂	o-SO ₂ -NH ₂	CH,		Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂	• •	1		•	·
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -  CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂	o-SO ₂ -NH ₂	CH,		F-phenoxyacetic acid	m-C(=O)NH ₂
	l	-	CH ₂ -S(O) ₂ -CH ₃		
CH ₂ -S(O) ₂ -CH ₃	o-SO ₂ -NH ₂	CH,		CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
	L		$CH_2$ -S(O) ₂ -CH ₃	·	

R'	R	TE-J	Z	L
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
l	1	$CH_2$ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	phenyl	m-C(=NH)NH ₂
o-SO₂-NH₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂

I.R.	R ³	E-J	TZ	TL
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
	1	hexane)-	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
	1	hexane)-		5( 5)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0.00.00	100	hexane)-	CHabani	- CV
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
	1	hexane)-		_
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline .	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
		hexane)-	!	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	hexane)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-002-14112	J.1.3	hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
0-50 -814	CH	hexane)- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	hexane)-	Annuc	P->(>)14H ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-aniline	p-C(=O)NH ₂
- 50 500		hexane)-		- C/-C/NIII
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
1 -	_	hexane)-	-	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
		hexane)-	-	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
•	_	hexane)-	carboxylic acid	` ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid   Bn-O-phenyl amino	m-C(=NH)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
0 502-1112	J.1.3	hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
O S/V NID		hexane)-	carboxylic acid	m-C/=CNRIG
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
]	_	hexane)-	carboxylic acid	` ' •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
L	L	Hevane)-	Carooxyne acid	<u> </u>

R ¹	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH,-CH(-CH,-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
2 2		hexane)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		hexane)-	acid ester	m C/-NEUNIU
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
- SO NIII	CH,	hexane)- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cris	hexane)-	acetic acid ester	O( 1.11)1.111 ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	Methyl Bn-O-pheпоху	m-C(=NH)NH ₂
		hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
2 SO NH	CH,	hexane)- CH,-CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH,
o-SO ₂ -NH ₂	CII3	hexane)-	acid ester	m o( o)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0 002 1112	,	hexane)-	acid ester	` ′ -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
	•	hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		hexane)-	acetic acid ester Methyl Bn-O-phenoxy	m-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	acetic acid ester	111-0( 0)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0-502 1112	0113	hexane)-		
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₂-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
- 00 NIII		hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0 002 1112	J.,	hexane)-	acid	`
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
00 3111		hexane)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Ci-phenoxyacene acid	111-0(-0)1112
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0-002 1112	J11,	hexane)-	- F,	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(≡O)NH ₂
- CO NIII	CII	hexane)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH,
o-SO ₂ -NH ₂	CH ₃	hexane)-	Bh-O-phenoxy accide acid	III-O( O)/11/2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
	,	hexane)-	1	
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
SO NO	CH	hexane)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	C113-phonoxy-culanoi	
0-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
3.502 1.112		hexane)-	1 3 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	`
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
	<u> </u>	hexane)-	<u></u>	

CSO_rNH_1	R'	TR'	E-J	IZ	11.
hexane -  c-SO ₂ -NH ₁		1	1.7 2	, <del>-</del>	TO COUNTY
hexane			hexane)-		
Nexane -	o-SO ₂ -NH ₂	1		F-phenoxy-ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃		CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ (-CH ₂ -hexane)-hexane)-hexane)-hexane         Methyl ether         m-C(=NH)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane)-hexane         Methyl Bn-O-phenoxy ethyl ether         m-C(=O)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane)-hexane         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         Methyl F-phenoxyethyl ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         m-C(=O)NH ₂ ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         m-C(=O)NH ₂ ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         m-C(=O)NH ₂ ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         m-C(=O)NH ₂ ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -hexane         CH ₂ -C	o-SO ₂ -NH ₂	СН,	CH ₂ -CĤ(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Mexane)-Nexane)-Nexane         Methyl Bn-O-phenoxy ethyl ether         m-C(=NH)NH ₂ ethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Nexane)-Nexane         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Nexane         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Nexane         Methyl CH ₃ -Nexane         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Nexane         Methyl CH ₃ -O-Phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Nexane         Methyl CH ₃ -O-Phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Nexane         Phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₁ -CH ₂ -Phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₁ -CH ₂ -Phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -Phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₁ -CH ₁ -Phenyl         m-C(=O)NH ₂ o-SO ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CĤ(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether         Methyl Cl-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether         Methyl CH ₃ -hexane)-ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether         Methyl CH ₃ -O-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether         Methyl CH ₃ -O-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether ether         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether ether         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether ether         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether ether         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether ether         m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether ether	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane         Methyl CI-phenoxyethyl ether         m-C(=O)NH ₂ ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane         Methyl CH ₃ -phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenyl)         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -phenyl)         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-ether         Methyl F-phenoxyethyl ether ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         Methyl CH ₃ -O-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-phenoxyethyl ether         m-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-hexane)-h	o-SO ₂ -NH ₂	сн,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane)-hexane         Methyl CH ₃ -O-phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether phenoxyethylethylliphenoxyethylethylliphenoxyethylethylliphenoxyethylethylliphenoxyethylethylliphenoxyethylliphenoxyethylliphenoxyethylethylliphenoxyethylliphenoxyethylliphenoxyethylliphenoxyethylliphenoxyethylliphenox	o-SO ₂ -NH ₂	СН,	CH₂-CĤ(-CH₂-	Methyl CH ₃ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane-hexane-hexane-hexane         Methyl Bn-O-phenoxyethyl ether         m-C(=O)NH ₂ phenoxyethyl ether           o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         CI-phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         CI-phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         CH ₃ -phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         CH ₃ -O-phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-henyl         m-C	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(H	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyI))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII))-(HO-phenyII)-(HO-phenyII)-(HO-phenyII))-(HO-phenyII)-(HO-phenyII)-(HO-phenyII))-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-phenyII)-(HO-ph	0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (CH ₃ CH ₃ -CH(-CH ₂ - (H ₃ -O-phenyl) (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (CH ₃ CH ₂ -CH(-CH ₂ - (CI-phenyl))- (HO-phenyl))- (HO-phenyl))- (CH ₃ CH ₂ -CH(-CH ₂ - (CI-phenyl))- (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl)))- (CH ₃ -CH(-CH ₂ - (HO-phenyl)))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (CI-aniline) (HO-phenyl))- (CH ₃ -CH(-CH ₂ - (CI-aniline) (CI-phenyl))- (CI-phenyl)- (CI-phenyl))- (CH ₃ -CH(-CH ₂ - (CI-aniline) (CI-phenyl))- (CI-phenyl))- (CI-phenyl)- (CI-phenyl)- (CI-phenyl))- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-phenyl)- (CI-p	0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Bn-O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Cl-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         F-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Bn-O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Cl-aniline         p-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Bn-O-phenyl         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         phenyl         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         F-phenyl         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))-         m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Cl-aniline         p-C(=NH)NH ₂	0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl)- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO-phenyl)- (HO	o-SO ₂ -NH ₂	СН3	CH2-CH(-CH2-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Cl-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Bn-O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Cl-aniline         p-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         F-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Bn-O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Cl-aniline         p-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenŷl))- (HO-phenŷl))-         CH ₃ -phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Cl-aniline         p-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         CH ₃ -O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Bn-O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH ₂ - CH(-CH(-CH ₂ - CH(-CH(-CH ₂ - CH(-CH(	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Bn-O-phenyl         m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Aniline         p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - (HO-phenyl))-         Cl-aniline         p-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=NH)NH ₂ (HO-phenyl))- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=NH)NH ₂	0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
	o-SO ₂ -NH ₂	СН,	CH₂-CH(-CH₂-	Cl-aniline	p-C(=NH)NH ₂

R	R ³	E-J	1Z	
o-SO ₂ -NH ₂	CH,		F-aniline	- C/=NID/NID
		CH ₂ -CH(-CH ₂ - (HO-phenyl))-		p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HÓ-phenyl))- CH ₂ -CH(-CH ₂ -	acid CI-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=NH)NH ₂
· -		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester   Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
		(HO-phenyl))-	acid ester	0( 0): 122

R'	R⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH,
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0 002 1 1112	,	(HO-phenyl))-	acetic acid ester	( 0)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0 002 1112	J,	(HO-phenyl))-	Thenexy accine acid	111 0( 1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
0-502-1112	C113	(HO-phenyl))-	Ci-phenoxy-acetic acid	111-0(-1411)14112
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	F-phenoxy- acetic acid	C/=NIO\NIU
0-302-14112	C113	(HO-phenyl))-	r-phenoxy- acetic acid	m-C(=NH)NH ₂
o 800 NIH	CH,		CH Domoviu costio coid	- CV-NIUNIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
- 60 101		(HO-phenyl))-	COLORE	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-	<u> </u>	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	$m-C(=O)NH_2$
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
	1	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	ļ	(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
	1 -	(HO-phenyl))-	• •	` ´ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH,
	1	(HO-phenyl))-		` ′ -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH,
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH₂-CH(-CH₂-	F-phenoxy- ethanol	m-C(=NH)NH ₂
		(HO-phenyl))-		(,2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0 001 1121	0.1.,	(HO-phenyl))-	, cri, priorient, cumulor	0( 1.11)1.112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0 502 1122	<b>V113</b>	(HO-phenyl))-	origo phonoxy culanor	111 0( 1111)11112
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0 001 11112	\ \tag{\current}	(HO-phenyl))-	Di-O phenoxy emanor	III-O( 1411)14112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH,
0-002-11112	Ç113	(HO-phenyl))-	1 henoxyedianor	111-0( 0)1112
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH,
0 002-14112	1 0113	(HO-phenyl))-	Cisphenoxyemanor	111-0(-0)1VII2
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
0-3O2-14H2	CII3	(HO-phenyl))-	1 -phenoxy-emanor	m-C(-O)NH2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-3O ₂ -14H ₂	CH ₃		CH ₃ -phenoxy-edianor	111-C(-O)NH ₂
- CO NO		(HO-phenyl))-	CII O shares others.	- C/-CVNIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
- CO KILL		(HO-phenyl))-	De O abanasa atland	- CI-CVEVII
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	$m-C(=O)NH_2$
- 00 100		(HO-phenyl))-		(/c)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
- <b>-</b>		(HO-phenyl))-	ethyl ether	' '

R ¹	R ³	TE-J	IZ	TL
	CH,	CH ₂ -CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))-		m-C(-NT)NT ₂
- 80 XIII	+~-		ethyl ether	- CY-NIDINIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
- 80 800	-	(HO-phenyl))-		m C/mOVNU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		(HO-phenyl))-	ether	<u> </u>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	$m-C(=O)NH_2$
		(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	$m-C(=O)NH_2$
		(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	$m-C(=O)NH_2$
		(HO-phenyl))-	phenoxyethyl ether	<u> </u>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
· ·		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
ł	1	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-		1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
	'	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
	1 -	(Cl-phenyl))-	1	1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
	-	(Cl-phenyl))-	1-	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
	-	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
	-	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
	1 -	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
	· -	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
	1	(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
	1	(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
• •	1	(Cl-phenyl))-	1 -	1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-	1	' '
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
}		(Cl-phenyl))-	1	1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
	,	(Cl-phenyl))-	1	. , , ,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
	1 '	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	CH ₃ -aniline	p-C(=O)NH ₂
	,	(Cl-phenyl))-	,	*
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
<u>.</u> <u>.</u>		(Cl-phenyl))-		
		\ F	<u> </u>	

R	TR ⁵	TE-J	TZ	I L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0-302-1112	CII,	(Cl-phenyl))-	Dn-O-anime	p-C(-O)Nn ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0 002 1112	l City	(Cl-phenyl))-	acid	111-0( 1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
1 2 2 2 1 1222	J,	(Cl-phenyl))-	carboxylic acid	111-0( 1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
1	ļ <b>,</b>	(Cl-phenyl))-	carboxylic acid	0( 1.11)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
1		(Cl-phenyl))-	carboxylic acid	(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	_	(Cl-phenyl))-	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
	1	(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
- SO NII	<del> </del>	(Cl-phenyl))-	carboxylic acid	C C C C C C C C C C C C C C C C C C C
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	$m-C(=O)NH_2$
- SO NA	CH ₃	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	Cn ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-1112	C113	(Cl-phenyl))-	acid ester	III-C(-IVII)IVII ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH,
0 002 1112	J 2223	(Cl-phenyl))-	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
2	,,	(Cl-phenyl))-	acetic acid ester	5()
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
i		(Cl-phenyl))-	acetic acid ester	` ´ -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
Į.		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	$m-C(=O)NH_2$
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	$m-C(=O)NH_2$
- SO - NH	CII	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy	m C/=O\NIU
0-002-14112	~113	(Cl-phenyl))-	acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
5 552 11112	~,	(Cl-phenyl))-	acetic acid ester	111-O(-O)1411 ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
	,	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
	,	(Cl-phenyl))-	k anomo mora	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
• •	1	(Cl-phenyl))-	• • • • • • • • • • • • • • • • • • •	= \ = =-/- \2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
_		(Cl-phenyl))-		` ′ ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		(Cl-phenyl))-	acid	, , , ,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	$m-C(=NH)NH_2$
L	<u> </u>	(Cl-phenyl))-		

R ¹	R ³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
	-	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CI-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		(Cl-phenyl))-	•	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenoxy acetic	m-C(=O)NH ₂
U-UU2-14112		(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
- 80 NO	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH,
o-SO ₂ -NH ₂	Ch ₃	(Cl-phenyl))-	Thenoxyethanor	111-0( 1111)1111
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-	V - homovy othonol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenoxy- ethanol	111-0(-1411)14112
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-	_	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-502-14112	C113	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
- 80 MI	<u></u>	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(Cl-phenyl))-	Ci-phenoxyculanoi	111-0( 0)1112
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	F-phenoxy-ethanol	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0.0021.002	3	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-302-1112		(Cl-phenyl))-	ether	` ' ]
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
- 80 NH	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	(Cl-phenyl))-	ether	111 0( 1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	<u> </u>	(Cl-phenyl))-	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	ethyl ether	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		(Cl-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
	i -	(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
- SO NB	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂	113	(Cl-phenyl))-	phenoxyethyl ether	0( 0)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		(Cl-phenyl))-	phenoxyethyl ether	m C/=CNXIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	phenoxycury cure	m-C(=NH)NH ₂
		NH ₂ )-	L	

R	TR ⁵	TE-J	TZ	TY
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
		NH ₂ )-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂

R	R ⁵	E-J	Z	L
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		NH ₂ )-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	сн,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxy- ethanol	m-C(=NH)NH ₂

R'	R³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂ )-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂

This invention also encompasses all pharmaceutically acceptable isomers, salts, hydrates and solvates of the compounds of formulas I, II and III. In addition, the compounds of formulas I, II and III can exist in various isomeric and tautomeric forms, and all such forms are meant to be included in the invention, along with pharmaceutically acceptable salts, hydrates and solvates of such isomers and tautomers.

5

The compounds of this invention may be isolated as the free acid or base or converted to salts of various inorganic and organic acids and bases. Such salts are

within the scope of this invention. Non-toxic and physiologically compatible salts are particularly useful although other less desirable salts may have use in the processes of isolation and purification.

A number of methods are useful for the preparation of the salts described above and are known to those skilled in the art. For example, the free acid or free base form of a compound of one of the formulas above can be reacted with one or more molar equivalents of the desired acid or base in a solvent or solvent mixture in which the salt is insoluble, or in a solvent like water after which the solvent is removed by evaporation, distillation or freeze drying. Alternatively, the free acid or base form of the product may be passed over an ion exchange resin to form the desired salt or one salt form of the product may be converted to another using the same general process.

#### **Prodrug Derivatives of Compounds**

5

10

15

20

25

30

This invention also encompasses prodrug derivatives of the compounds contained herein. The term "prodrug" refers to a pharmacologically inactive derivative of a parent drug molecule that requires biotransformation, either spontaneous or enzymatic, within the organism to release the active drug. Prodrugs are variations or derivatives of the compounds of this invention which have groups cleavable under metabolic conditions. Prodrugs become the compounds of the invention which are pharmaceutically active in vivo, when they undergo solvolysis under physiological conditions or undergo enzymatic degradation. Prodrug compounds of this invention may be called single, double, triple etc., depending on the number of biotransformation steps required to release the active drug within the organism, and indicating the number of functionalities present in a precursor-type form. Prodrug forms often offer advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985 and Silverman, The Organic Chemistry of Drug Design and Drug Action, pp. 352-401, Academic Press, San Diego, CA, 1992). Prodrugs commonly known in the art include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, or amides prepared by reaction of the parent acid compound with an amine, or basic groups reacted to form an acylated base derivative. Moreover, the prodrug derivatives of this invention may be combined with other features herein taught to enhance bioavailability.

- 239 -

As mentioned above, the compounds of this invention find utility as therapeutic agents for disease states in mammals which have disorders of coagulation such as in the treatment or prevention of unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, thrombotic stroke, embolic stroke, disseminated intravascular coagulation including the treatment of septic shock, deep venous thrombosis in the prevention of pulmonary embolism or the treatment of reocclusion or restenosis of reperfused coronary arteries. Further, these compounds are useful for the treatment or prophylaxis of those diseases which involve the production and/or action of factor Xa/prothrombinase complex. This includes a number of thrombotic and prothrombotic states in which the coagulation cascade is activated which include but are not limited to, deep venous thrombosis, pulmonary embolism, myocardial infarction, stroke, thromboembolic complications of surgery and peripheral arterial occlusion.

5

10

15

20

25

30

Accordingly, a method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprises administering to the mammal a therapeutically effective amount of a compound of this invention. In addition to the disease states noted above, other diseases treatable or preventable by the administration of compounds of this invention include, without limitation, occlusive coronary thrombus formation resulting from either thrombolytic therapy or percutaneous transluminal coronary angioplasty, thrombus formation in the venous vasculature, disseminated intravascular coagulopathy, a condition wherein there is rapid consumption of coagulation factors and systemic coagulation which results in the formation of life-threatening thrombi occurring throughout the microvasculature leading to widespread organ failure, hemorrhagic stroke, renal dialysis, blood oxygenation, and cardiac catheterization.

The compounds of the invention also find utility in a method for inhibiting the coagulation biological samples, which comprises the administration of a compound of the invention.

The compounds of the present invention may also be used in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this invention may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase,

- 240 -

prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of the present invention may act in a synergistic fashion to prevent reocclusion following a successful thrombolytic therapy and/or reduce the time to reperfusion. These compounds may also allow for reduced doses of the thrombolytic agents to be used and therefore minimize potential hemorrhagic side-effects. The compounds of this invention can be utilized *in vivo*, ordinarily in mammals such as primates, (e.g. humans), sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

5

10

15

20

25

30

The biological properties of the compounds of the present invention can be readily characterized by methods that are well known in the art, for example by the *in vitro* protease activity assays and *in vivo* studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters, such as are illustrated in the examples.

Diagnostic applications of the compounds of this invention will typically utilize formulations in the form of solutions or suspensions. In the management of thrombotic disorders the compounds of this invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of this invention can be administered dosages that will provide optimal efficacy. The dose and method of administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

Formulations of the compounds of this invention are prepared for storage or administration by mixing the compound having a desired degree of purity with physiologically acceptable carriers, excipients, stabilizers etc., and may be provided in sustained release or timed release formulations. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical field, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co., (A.R. Gennaro edit. 1985). Such materials are nontoxic to the recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate and other organic acid salts, antioxidants such as ascorbic acid, low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as

serum albumin, gelatin, or immunoglobulins, hydrophilic polymers such as polyvinylpyrrolidinone, amino acids such as glycine, glutamic acid, aspartic acid, or arginine, monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose or dextrins, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, counterions such as sodium and/or nonionic surfactants such as Tween, Pluronics or polyethyleneglycol.

5

10

15

20

25

30

- 241 -

Dosage formulations of the compounds of this invention to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile membranes such as 0.2 micron membranes, or by other conventional methods. Formulations typically will be stored in lyophilized form or as an aqueous solution. The pH of the preparations of this invention typically will be 3-11, more preferably 5-9 and most preferably 7-8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of cyclic polypeptide salts. While the preferred route of administration is by injection, other methods of administration are also anticipated such as orally, intravenously (bolus and/or infusion), subcutaneously, intramuscularly, colonically, rectally, nasally, transdermally or intraperitoneally, employing a variety of dosage forms such as suppositories, implanted pellets or small cylinders, aerosols, oral dosage formulations and topical formulations such as ointments, drops and dermal patches. The compounds of this invention are desirably incorporated into shaped articles such as implants which may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers commercially available.

The compounds of the invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of lipids, such as cholesterol, stearylamine or phosphatidylcholines.

The compounds of this invention may also be delivered by the use of antibodies, antibody fragments, growth factors, hormones, or other targeting moieties, to which the compound molecules are coupled. The compounds of this invention may also be coupled with suitable polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidinone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore,

- 242 -

compounds of the invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. Polymers and semipermeable polymer matrices may be formed into shaped articles, such as valves, stents, tubing, prostheses and the like.

Therapeutic compound liquid formulations generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by hypodermic injection needle.

10

15

20

25

30

35

Therapeutically effective dosages may be determined by either in vitro or in vivo methods. For each particular compound of the present invention, individual determinations may be made to determine the optimal dosage required. The range of therapeutically effective dosages will be influenced by the route of administration, the therapeutic objectives and the condition of the patient. For injection by hypodermic needle, it may be assumed the dosage is delivered into the body's fluids. For other routes of administration, the absorption efficiency must be individually determined for each compound by methods well known in pharmacology. Accordingly, it may be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. The determination of effective dosage levels, that is, the dosage levels necessary to achieve the desired result, will be readily determined by one skilled in the art. Typically, applications of compound are commenced at lower dosage levels, with dosage levels being increased until the desired effect is achieved.

The compounds of the invention can be administered orally or parenterally in an effective amount within the dosage range of about 0.1 to 100 mg/kg, preferably about 0.5 to 50 mg/kg and more preferably about 1 to 20 mg/kg on a regimen in a single or 2 to 4 divided daily doses and/or continuous infusion.

Typically, about 5 to 500 mg of a compound or mixture of compounds of this invention, as the free acid or base form or as a pharmaceutically acceptable salt, is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, dye, flavor etc., as called for by accepted pharmaceutical

20

25

30

35

practice. The amount of active ingredient in these compositions is such that a suitable dosage in the range indicated is obtained.

Typical adjuvants which may be incorporated into tablets, capsules and the like are binders such as acacia, corn starch or gelatin, and excipients such as 5 microcrystalline cellulose, disintegrating agents like corn starch or alginic acid, lubricants such as magnesium stearate, sweetening agents such as sucrose or lactose, or flavoring agents. When a dosage form is a capsule, in addition to the above materials it may also contain liquid carriers such as water, saline, or a fatty oil. Other materials of various types may be used as coatings or as modifiers of the 10 physical form of the dosage unit. Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as an oil or a synthetic fatty vehicle like ethyl oleate, or into a liposome may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted 15 pharmaceutical practice.

### Preparation of Compounds

The compounds of the present invention may be synthesized by either solid or liquid phase methods described and referenced in standard textbooks, or by a combination of both methods. These methods are well known in the art. See, Bodanszky, "The Principles of Peptide Synthesis", Hafner, et al., Eds., Springer-Verlag, Berlin, 1984.

Starting materials used in any of these methods are commercially available from chemical vendors such as Aldrich, Sigma, Nova Biochemicals, Bachem Biosciences, and the like, or may be readily synthesized by known procedures.

Reactions are carried out in standard laboratory glassware and reaction vessels under reaction conditions of standard temperature and pressure, except where otherwise indicated.

During the synthesis of these compounds, the functional groups of the amino acid derivatives used in these methods are protected by blocking groups to prevent cross reaction during the coupling procedure. Examples of suitable blocking groups

5

10

and their use are described in "The Peptides: Analysis, Synthesis, Biology", Academic Press, Vol. 3 (Gross, et al., Eds., 1981) and Vol. 9 (1987), the disclosures of which are incorporated herein by reference.

Non-limiting exemplary synthesis schemes are outlined directly below, and specific steps are described in the Examples. The reaction products are isolated and purified by conventional methods, typically by solvent extraction into a compatible solvent. The products may be further purified by column chromatography or other appropriate methods.

- 246 -

### Scheme 3

5

### Compositions and Formulations

The compounds of this invention may be isolated as the free acid or base or converted to salts of various inorganic and organic acids and bases. Such salts are within the scope of this invention. Non-toxic and physiologically compatible salts are particularly useful although other less desirable salts may have use in the processes of isolation and purification.

A number of methods are useful for the preparation of the salts described above and are known to those skilled in the art. For example, reaction of the free acid or free base form of a compound of the structures recited above with one or more molar equivalents of the desired acid or base in a solvent or solvent mixture in which the salt is insoluble, or in a solvent like water after which the solvent is removed by evaporation, distillation or freeze drying. Alternatively, the free acid or base form of the product may be passed over an ion exchange resin to form the desired salt or one salt form of the product may be converted to another using the same general process.

5

10

15

20

25

Diagnostic applications of the compounds of this invention will typically utilize formulations such as solution or suspension. In the management of thrombotic disorders the compounds of this invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of this invention can be administrated dosages that will provide optimal efficacy. The dose and method of administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

Formulations of the compounds of this invention are prepared for storage or administration by mixing the compound having a desired degree of purity with physiologically acceptable carriers, excipients, stabilizers etc., and may be provided in sustained release or timed release formulations. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical field, and are described, for

example, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., (A.R. Gennaro edit. 1985). Such materials are nontoxic to the recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate and other organic acid salts, antioxidants such as ascorbic acid, low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins, hydrophilic polymers such as polyvinalpyrrolidinone, amino acids such as glycine, glutamic acid, aspartic acid, or arginine, monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose or dextrins, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, counterions such as sodium and/or nonionic surfactants such as Tween, Pluronics or polyethyleneglycol.

5

10

15

20

25

Dosage formulations of the compounds of this invention to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile membranes such as 0.2 micron membranes, or by other conventional methods. Formulations typically will be stored in lyophilized form or as an aqueous solution. The pH of the preparations of this invention typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of cyclic polypeptide salts. While the preferred route of administration is by injection, other methods of administration are also anticipated such as intravenously (bolus and/or infusion), subcutaneously, intramuscularly, colonically, rectally, nasally or intraperitoneally, employing a variety of dosage forms such as suppositories, implanted pellets or small cylinders, aerosols, oral dosage formulations and topical formulations such as ointments, drops and dermal patches. The compounds of this invention are desirably incorporated into shaped articles such as implants which may employ inert materials such as

WO 00/71509 PCT/US00/14194

- 253 -

biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers commercially available.

The compounds of this invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of lipids, such as cholesterol, stearylamine or phosphatidylcholines.

5

10

15

20

25

The compounds of this invention may also be delivered by the use of antibodies, antibody fragments, growth factors, hormones, or other targeting moieties, to which the compound molecules are coupled. The compounds of this invention may also be coupled with suitable polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the factor Xa inhibitors of this invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. Polymers and semipermeable polymer matrices may be formed into shaped articles, such as valves, stents, tubing, prostheses and the like.

Therapeutic compound liquid formulations generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by hypodermic injection needle.

Therapeutically effective dosages may be determined by either in vitro or in vivo methods. For each particular compound of the present invention, individual

WO 00/71509 PCT/US00/14194

- 254 -

determinations may be made to determine the optimal dosage required. The range of therapeutically effective dosages will naturally be influenced by the route of administration, the therapeutic objectives, and the condition of the patient. For injection by hypodermic needle, it may be assumed the dosage is delivered into the body's fluids. For other routes of administration, the absorption efficiency must be individually determined for each inhibitor by methods well known in pharmacology. Accordingly, it may be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. The determination of effective dosage levels, that is, the dosage levels necessary to achieve the desired result, will be within the ambit of one skilled in the art.

Typically, applications of compound are commenced at lower dosage levels, with dosage levels being increased until the desired effect is achieved.

5

10

15

20

25

A typical dosage might range from about 0.001 mg/kg to about 1000 mg/kg, preferably from about 0.01 mg/kg to about 100 mg/kg, and more preferably from about 0.10 mg/kg to about 20 mg/kg. Advantageously, the compounds of this invention may be administered several times daily, and other dosage regimens may also be useful.

Typically, about 0.5 to 500 mg of a compound or mixture of compounds of this invention, as the free acid or base form or as a pharmaceutically acceptable salt, is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, dye, flavor etc., as called for by accepted pharmaceutical practice. The amount of active ingredient in these compositions is such that a suitable dosage in the range indicated is obtained.

Typical adjuvants which may be incorporated into tablets, capsules and the like are a binder such as acacia, corn starch or gelatin, and excipient such as

microcrystalline cellulose, a disintegrating agent like corn starch or alginic acid, a lubricant such as magnesium stearate, a sweetening agent such as sucrose or lactose, or a flavoring agent. When a dosage form is a capsule, in addition to the above materials it may also contain a liquid carrier such as water, saline, a fatty oil. Other materials of various types may be used as coatings or as modifiers of the physical form of the dosage unit. Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as an oil or a synthetic fatty vehicle like ethyl oleate, or into a liposome may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.

5

10

15

20

25

In practicing the methods of this invention, the compounds of this invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this inventions may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice, such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase, prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of this invention can be utilized in vivo, ordinarily in mammals such as primates, such as humans, sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

The preferred compounds of the present invention are characterized by their ability to inhibit thrombus formation with acceptable effects on classical measures of coagulation parameters, platelets and platelet function, and acceptable levels of bleeding complications associated with their use. Conditions characterized by

WO 00/71509 PCT/US00/14194

- 256 -

undesired thrombosis would include those involving the arterial and venous vasculature.

With respect to the coronary arterial vasculature, abnormal thrombus formation characterizes the rupture of an established atherosclerotic plaque which is the major cause of acute myocardial infarction and unstable angina, as well as also characterizing the occlusive coronary thrombus formation resulting from either thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA).

5

10

20

25

With respect to the venous vasculature, abnormal thrombus formation characterizes the condition observed in patients undergoing major surgery in the lower extremities or the abdominal area who often suffer from thrombus formation in the venous vasculature resulting in reduced blood flow to the affected extremity and a predisposition to pulmonary embolism. Abnormal thrombus formation further characterizes disseminated intravascular coagulopathy commonly occurs within both vascular systems during septic shock, certain viral infections and cancer, a condition wherein there is rapid consumption of coagulation factors and systemic coagulation which results in the formation of life-threatening thrombi occurring throughout the microvasculature leading to widespread organ failure.

The compounds of this present invention, selected and used as disclosed herein, are believed to be useful for preventing or treating a condition characterized by undesired thrombosis, such as (a) the treatment or prevention of any thrombotically mediated acute coronary syndrome including myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, (b) the treatment or prevention of any thrombotically mediated cerebrovascular syndrome including embolic stroke, thrombotic stroke or transient ischemic attacks, (c) the treatment or prevention of

WO 00/71509 PCT/US00/14194

- 257 -

any thrombotic syndrome occurring in the venous system including deep venous thrombosis or pulmonary embolus occurring either spontaneously or in the setting of malignancy, surgery or trauma, (d) the treatment or prevention of any coagulopathy including disseminated intravascular coagulation (including the setting of septic shock or other infection, surgery, pregnancy, trauma or malignancy and whether associated with multi-organ failure or not), thrombotic thrombocytopenic purpura, thromboangiitis obliterans, or thrombotic disease associated with heparin induced thrombocytopenia, (e) the treatment or prevention of thrombotic complications associated with extracorporeal circulation (e.g. renal dialysis, cardiopulmonary bypass or other oxygenation procedure, plasmapheresis), (f) the treatment or prevention of thrombotic complications associated with instrumentation (e.g. cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve), and (g) those involved with the fitting of prosthetic devices.

5

10

15

20

25

Anticoagulant therapy is also useful to prevent coagulation of stored whole blood and to prevent coagulation in other biological samples for testing or storage. Thus the compounds of this invention can be added to or contacted with any medium containing or suspected to contain factor Xa and in which it is desired that blood coagulation be inhibited, e.g., when contacting the mammal's blood with material such as vascular grafts, stents, orthopedic prostheses, cardiac stents, valves and prostheses, extra corporeal circulation systems and the like.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples therefore, specifically point out preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

- 258 -

#### **EXAMPLES**

#### Example 1

5

10

15

H H OMe

To a solution of bis(2,2,2-trifluoroethyl)(methoxylcarbonylmethyl)phosphate (0.665ml, 3.14mmol) and 18-crown-6 (4.14g, 15.7mmol) in tetrahydrofuran (50ml) at -78 °C was added potassium bis(trimethylsilyl)amide (6.3ml, 3.15mmol) dropwise. After the addition was complete, 3-cyanobenzaldehyde (0.412g, 3.14mmol) in tetrahydrofuran (10ml) was added at -78 °C. The mixture was stirred at -78 °C for additional 1 hr. Saturated ammonia chloride solution was added to quench the reaction. Ether and water were added. The organic layer was separated, and the aqueous layer was extracted with ether once more. The combined organic extracts were dried over magnesium sulfate and concentrated *in vacuo*. The crude residue was purified by silica gel column chromatography using solvent system 5-10% ethyl acetate in hexane as eluent to give the title compound as a white solid (1.12g, 100%).

ES-MS (M+H)+=188.

#### Example 2

SO₂NHtBu

20

30

To a solution of tert-butylamine (5.73g, 78.4mmol) and triethylamine (16.6ml, 119mmol) in dichloromethane (200ml) in an ice bath was added benzenesulfonyl chloride (13.85g, 78.4mmol) dropwise. The mixture was stirred at room temperature overnight. It was washed with saturated sodium carbonate (60ml) and brine (60ml). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (2x50ml). The combined organic extracts were dried over magnesium sulfate. The solvent was evaporated *in vacuo* to give the title compound as a light yellowish solid (15.92g, 95%). ES-MS (M+H)+ = 214.

To a solution of the compound of example 2 (15.92g, 74.7mmol) in tetrahydrofuran (200ml) in an ice bath was added 1.6M n-butyllithium in hexane (100ml, 164mmol) dropwise over 30 minutes. The mixture remained a clear solution. In an ice bath it was added triisopropylborate (24.1ml, 104mmol) dropwise. The mixture was stirred at room temperature for 3.5hrs, solution becoming cloudy. After it was cooled in an ice bath, 1N hydrochloride (200ml) was added. The mixture was stirred at room temperature overnight. It was extracted with ether (2x50ml). The organic extract was washed with 1N sodium hydroxide (2x60ml). The aqueous solution was acidified to pH=1 with 6N hydrochloride, and then extracted with ether (2x100ml). The ether extract was dried over magnesium sulfate, and concentrated *in vacuo* to give the title compound as a while solid (11.5g, 60%). ES-MS (M+H)+ = 258.

# Example 4

To a solution of the compound of example 3 (2.06g, 8mmol) in toluene (60ml) was added water (4ml), 8N sodium hydroxide (8ml), isopropanol (16ml), 2-fluoro-4-iodoaniline (3.8g, 16mmol) and tetrakis(triphenylphosphine)palladium(0) (464mg, 0.4mmol). The mixture was refluxed for 3-4 hrs, cooled to room temperature, and diluted with ethyl acetate. The organic layer was washed with water (25ml), and dried over magnesium sulfate. After the evaporation of the solvent *in vacuo*, the crude reside was purified by silica gel column chromatography using solvent system 20-30% ethyl acetate in hexane as eluent to give the title compound as a white solid (1.49g, 58%). ES-MS (M+H)+ = 323.

To a solution of compound of example 4 (161mg, 0.5mmol) in dichloromethane (5ml) was added 2.0M trimethylaluminum in hexane (0.75ml, 1.5mmol). The mixture was stirred at room temperature for 30 minutes, methane gas evolved. A solution of the compound of example 1 (94mg, 0.5mmol) in dichloromethane (1ml) was added. The mixture was stirred at room temperature overnight. 1N hydrochloride was added to acidify the solution to pH=2. After the addition of water and dichloromethane, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic extracts were dried over

magnesium sulfate, and concentrated in vacuo to give the title compound as a yellow

oil (260mg, 100%). ES-MS (M+H)+=478.

#### Example 6

15

30

- To a solution of the compound of example 5 (100mg, 0.21mmol) in absolute methanol (3ml) in an ice bath was saturated with hydrochloride gas for 10 minutes. The mixture was stirred at room temperature for 3 hrs. After the evaporation of solvent *in vacuo*, the residue was dissolved in absolute methanol (3ml), and ammonia acetate (97mg, 1.26mmol) was added. The mixture was refluxed for 3 hrs.
- The solvent was evaporated *in vacuo*. The crude residue was purified by RP-HPLC to give the title compound as a white powder (53mg, 58%). ES-MS (M+H)+=439.

To a solution of the compound of example 6 (30mg, 0.07mmol) in absolute methanol (2ml) was added 10% Pd/C (catalytic amount). The mixture was hydrogenated under balloon for 1hr. After the filtration through Celite, the solvent was evaporated *in vacuo*. The residue was purified by RP-HPLC to give the compound as a white powder (25mg, 81%). ES-MS (M+H)+ = 441.

10

#### Example 8

To a solution of the compound of example 3 (2.06g, 8mmol) in toluene (60ml) was added water (4ml), 8N sodium hydroxide (8ml), isopropanol (16ml), 2-chloro-4-iodoaniline (4.06g, 16mmol) and tetrakis(triphenylphosphine)palladium(0) (464mg, 0.4mmol). The mixture was refluxed for 3-4 hrs, cooled to room temperature, and diluted with ethyl acetate. The organic layer was washed with water (25ml), and dried over magnesium sulfate. After the evaporation of the solvent *in vacuo*, the crude reside was purified by silica gel column chromatography using solvent system 20-30% ethyl acetate in hexane as eluent to give the title compound as a white solid (1.43g, 53%). ES-MS (M+H)+ = 339.

25

# Example 9

To a solution of the compound of example 8 (100mg, 0.3mmol) in dichloromethane (5ml) was added 2.0M trimethylaluminum in hexane (0.45ml, 0.9mmol). The mixture was stirred at room temperature for 30 minutes, methane gas evolved. A

solution of the compound of example 1 (55mg, 0.3mmol) in dichlodomethane (1ml) was added. The mixture was stirred at room temperature overnight. 1N hydrochloride was added to acidify the solution to pH=2. After the addition of water and dichloromethane, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic extracts were dried over magnesium sulfate, and concentrated *in vacuo* to give the title compound as a greenish solid (110mg, 70%). ES-MS (M+H)+ = 494.

# Example 10

10

5

To a solution of the compound of example 9 (100mg, 0.2mmol) in absolute methanol (3ml) in an ice bath was saturated with hydrochloride gas for 10 minutes. The mixture was stirred at room temperature for 3 hrs. After the evaporation of the solvent in vacuo, the residue was dissolved in absolute methanol (3ml), and ammonia acetate (92mg, 1.2mmol) was added. The mixture was refluxed for 3 hrs. The solvent was evaporated *in vacuo*. The crude residue was purified by RP-HPLC to give the title compound as a white powder (46mg, 51%). ES-MS (M+H)+ = 456.

20

15

#### Example 11

Production of 3-[(2-2-furyl)-5-oxo-1,3-oxazolin-4-ylidene)methyl] benzenecarbonitrile.

25

30

A mixture of 3-cyanobenzaldehyde (2.102g, 15.320mmol), N-2-furoylglycine (1.846g, 10.914mmol), and sodium acetate (0.636g, 7.753mmol) in 15ml acetic anhydride was refluxed for 7 hours. The mixture was then cooled to room temperature before cooling in the freezer over night. The solid was washed with ice cold water then filtered (0.472g, 1.788mmol, 16%). ES-MS(M+H)+=265.

Production of (2E)-N-[4(2-{[(tert-butyl)amino]sulfonyl}phenyl]-3-(3-cyanophenyl)-2-(2-furylcarbonylamino)prop-2-enamide

5

To a solution of {[2-(4-aminophenyl)phenyl]sulfonyl}(tert-butyl)amine (0.152g, 0.500mmol) in 9ml DCM was added trimethylaluminum (1ml, 2M solution in hexanes, 2mmol) which was allowed to stir for ½ hour. Then 3-[(2-(2-furyl)-5-oxo-1,3-oxazolin-4-ylidene)methyl]benzenecarbonitrile (0.11g, 0.417mmol) was added drop wise as a solution in 3ml DCM. Three hours later 6M HCl was added drop wise to pH=0. 10ml portions of water and DCM were also added and the aqueous layer was extracted twice with 10ml portions of DCM. The organic layers were dried over MgSO4, filtered and concentrated in vaccu to yield the desired product (0.259, 0.456, 109%). ES-MS(M+H)+=569.

15

10

## Example 13

Production of 3-(2-{N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]carbamoyl}-2-(2-furylcarbonylamino)ethyl)benzenecarboxamidine

20

25

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-2-(2-furylcarbonylamino)prop-2-enamide (0.259g, 0.456mmol) in 7ml ethanol was added hydroxyamine (0.192g, 2.763mmol) and triethyl amine (0.762ml, 5.407mmol). This mixture was refluxed for 2 hours before it was concentrated in

5

vaccu. The residue was dissolved in AcOH (5ml), then acetic anhydride (0.30ml, 3.182mmol) was added and the mixture was allowed to stir for 1.5 hours. The mixture was concentrated in vaccu. The residue was dissolved in dry MeOH (3ml), 5%Pd/C (22.7mg) was added. A balloon filled with hydrogen gas was fitted to the flask with an adapter. The flask was evacuated and backfilled with hydrogen gas three times before being run for 0.75 hour. The mixture was then filtered over a bed of celite and concentrated in vaccu. The residue was purified via Preparative HPLC to yield the desired product (0.075g, 0.128mmol, 28%). ES-MS(M+H)+=588.

### Example 14

Production of 3-(2-(2-furylcarbonylamino)-2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl}ethyl)benzenecarboxamidine

3-(2-{N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]carbamoyl}-2-(2-furyl-carbonylamino)ethyl)benzenecarboxamidine (0.075g, 0.128mmol) was dissolved with TFA (6ml) for 2hours. The mixture was concentrated in vaccu and the residue was purified via Preparative HPLC, (0.040g, 0.075mmol, 58%). ES-MS(M+H)+=532.

## 20 <u>Example 15</u>

Production of (tert-butyl)(phenylsulfonyl)amine

To a solution of benzenesulfonyl chloride (30.00g, 169.86mmol) in 100ml DCM, in an ice bath, was added butyl amine (18ml, 171.28mmol), then triethylamine(35ml,

251.11mmol), drop wise via addition funnel. This was allowed to warm to room temperature over 3hr. The mixture was then filtered and the filtrate was concentrated in vaccu. The pale yellow solid (35.03g, 164.46mmol, 97%) was then rinsed with minimal amounts of DCM. ES-MS (M+Na)+=236.

5

25

# Example 16

Production of (tert-butyl)(phenylsulfonyl)amine

To (tert-butyl)(phenylsulfonyl)amine (17.43g, 81.83mmol) in 180ml dry THF in an ice bath was added nBuLi (66ml, 2.5M in hexanes) via addition funnel. Then 10 triisopropyl borate (33ml, 143.06mmol) was added via addition funnel. The mixture was warmed to room temperature and allowed to stir for 4hr. The reaction mixture was then cooled in an ice bath before HCL (82ml, 3M) was added drop wise. This was allowed to stir at room temperature for 3hr. The mixture was then put in the freezer over the weekend. The reaction was then warmed to room temperature and 15 extracted with ether. The aqueous layers were washed twice more with ether. The combined organic layers were washed three times with 5M NaOH aqueous solution. The combined basic layers were acidified to pH=1 with 6M HCL solution. These acidified layers were then extracted three times with ether. These ether layers were then dried over MgSO4, filtered, then concentrated in vaccu to about 50ml solution. 20 To this solution was added hexanes and a minimal amount of ethyl acetate. A white precipitate is observed and the mixture in stored in the freezer to allow for crystallization. The white solid is then filtered and collected (14.65g, 57mml, 70%) ES-MS(M+H)+=258.

Production of {[2-(4-aminophenyl)phenyl]sulfonyl}(tert-butyl)amine

To a solution of 2-[(tert-butyl amino)sulfonyl] phenyl boronic acid (6.00g, 23.35mmol) in 120ml toluene was added water (16ml), isopropanol (60ml), and NaOH (40ml, 5M aqueous solution). To this were added 4-bromoaniline and Pd(Ph3P)4. This heterogeneous mixture is then refluxed for 6hr, then stirred at room temperature over night before refluxing for another 1.5hr. The reaction mixture is then extracted with water and ethyl acetate. The aqueous layer is extracted twice with ethyl acetate. The organic layers are then dried over MgSO4, filtered and concentrated in vaccu. The crude residue is purified by silica gel flash chromatography. The desired product can be eluded with 30% ethyl acetate in hexanes and concentrated to an orange solid (5.06g, 16.65, 71%). ES-MS(M+H)+=305.

# Example 18

Step (a):

To a 0°C solution of 4-((2-N-t-butylamonisulfonyl)phenyl) aniline (74.1 mg, 0.3 mmol, 1.0 equiv) in 5 mL of CH₂Cl₂ was added a solution of AlMe₃ (2M in hexanes, 0.7 mL, 5 equiv). After 15min, methyl 2-(3-cyanophenyl)acrylate (56.1 mg, 1.0 equiv) was added. The resulting solution was stirred overnight, carefully quenched with water, diluted with ethyl acetate. The organic layer was dried, evaporated and

chromatographied on silica gel to give the product in 55% yield. LRMS found for  $C_{23}H_{19}N_2O_3S$  (M+H)⁺: 403.1.

## Step (b):

5

10

The compound obtained in step (a) (25 mg) was dissolved in 5 mL of methanol. The reaction mixture was cooled to 0°C and HCl gas was bubbled in until saturation. The mixture was stirred at rt overnight. The solvent was evaporated and the resulting residue was treated with ammonium acetate and 10 ml methanol at reflux temperature for 2 h. The solvent was removed at reduced pressure and the crude benzamidine was purified by HPLC (C18 reversed phase) eluting with 0.5% TFA in H₂O/CH₃CN to give the desired salt in 77% yield. LRMS found for C₂₃H₂₂N₃O₃S (M+H)⁺: 420.1.

#### Step (c):

The compound obtained in step (b) (8 mg) and 5 mg of 10% Pd/C was suspended in 1 mL of methanol. The reaction mixture was stirred under 1atm hydrogen balloon for 2h and filtered. The solvent was removed at reduced pressure and the crude benzamidine was purified by HPLC (C18 reversed phase) eluting with 0.5% TFA in H₂O/CH₃CN to give the desired salt in 63% yield. LRMS found for C₂₃H₂₄N₃O₃S (M+H)⁺: 422.1.

# 20 Example 19

2-Fluoro-5-methyl benzonitrile (1.26g, 9.32 mmol) was mixed with NBS (1.66 g, 9.32 mmol), benzoyl peroxide (79 mg, 0.33 mmol) in CCl₄ (45mL). The mixture was refluxed for 2.5 hrs. It was cooled to room temperature, filtered and concentrated *in vacuo* to give the title compound. ES-MS (M+H)+ = 213.1.

To a solution of compound of example 19 (9.32 mmol) in CHCl₃ (50 mL), was added trimethylamino N-oxide (1.7 g, 23.3 mmol). The mixture was refluxed for 3 hrs. Water was added. The organic layer was dried over MgSO₄, filtered and filtrate was concentrated *in vacuo*. The residue was purified by silica gel column chromatography using solvent system 20% EtOAc in hexane as eluant to give the title compound. ES-MS (M+H)+ = 150.1.

#### 10 Example 21

5

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl) phosphonate (0.12 mL, 0.58 mmol) and 18-crown-6 (770 mg, 2.92 mmol) in THF (5 mL) at – 78°C, was added potassium bis(trimethylsilyl)amide (1.17 mL, 0.57 mmol) dropwise. After the addition was complete, compound of example 2 (87 mg, 0.58 mmol) in THF (2 mL) was added. The mixture was stirred at –78°C for 1 hour. Aqueous NH₄Cl solution was added to quench the reaction. Water and EtOAc was added to the mixture. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. This was purified by silica gel column chromatography using solvent system 20% EtOAc in hexane as eluant to give the title compound (85 mg, 71%). ES-MS (M+H)+ = 206.1.

To a solution of compound of example 3 (6.4 g, 25 mmol) in toluene (120 mL) was added water (15 mL), 5N NaOH solution (38.5 mL), isopropanol (60 mL) 4
5 bromoaniline and tetrakis(triphenylphosphine)palladium(0). The mixture was refluxed for six hours, cooled to room temperature, diluted with EtOAc. The organic layer was washed with water, dried with MgSO₄, filtered and concentrated. This was purified by silica gel column chromatography using solvent system 30% EtOAc in hexane as eluant to give the title compound (5g, 66%). ES-MS (M+H)+=

10 305.1.

#### Example 23

To a solution of compound of example 22 (121.6 mg, 0.4 mmol) in DCM (3 mL) was added trimethylaluminum (0.6 mL, 2M in hexane) dropwise. The reaction mixture was stirred at room temperature for 30 min. Compound of example 21 (82 mg, 0.4 mmol) in DCM (2 mL) was added dropwise. The mixture was stirred at room temperature overnight. 2N HCl was added to pH 2. Water and DCM were added. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. It was purified by silica gel column chromatography using solvent system 50% EtOAc in hexane as eluant to give the title compound. ES-MS (M+Na)+ = 500.1.

# Example 24

25

A solution of the compound of example 23 (99 mg, 0.208 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (80 mg, 1.04 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated *in vacuo*. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 439.1.

# Example 25

10

5

The compound of example 24 (10 mg, 0.022 mmol) was dissolved in MeOH (5 mL) and 10% Pd/C (catalytic amount) was added. The mixture was hydrogenated under balloon overnight, filtered through Celite to remove the catalyst and the filtrate was evaporated. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+=441.1.

# Example 26

20

25

15

To a solution of LDA (2.6 mL, 2N solution in hexane, 5.2 mmol) in THF (10 mL) at -78°C, was added 4-fluorobenzonitrile in THF (10 mL) dropwise. The mixture was stirred at -78°C for 1 hour. To this was added DMF (0.4 mL, 0.55 mmol). The mixture was stirred at -78°C for another 15 min., quenched rapidly with AcOH (2 mL) and water (10 mL), extracted with ether (50 mL). The ether extracts were washed with 1N HCl (10 mL), brine (10 mL), dried over MgSO₄, filtered and concentrated *in vacuo* to give the title compound. (M+H)+ = 150.

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl)phosphonate

(0.875 mL, 4.14 mmol) and 18-crown-6 (5.46 g, 20.7 mmol) in THF (20 mL) at –

78°C, was added potassium bis(trimethylsilyl)amide (8.3 mL, 4.15 mmol) dropwise.

After the addition was complete, compound of example 26 (616 mg, 4.14 mmol) in

THF (10 mL) was added. The mixture was stirred at –78°C for 1 hour. Aqueous

NH₄Cl solution was added to quench the reaction. Water and EtOAc was added to

the mixture. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. This was purified by silica gel column chromatography using solvent system

20% EtOAc in hexane as eluant to give the title compound (375 mg, 44%). ES-MS

(M+H)+ = 206.1.

#### 15 Example 28

To a solution of compound of example 22 (553 mg, 1.82 mmol) in DCM (9 mL) was added trimethylaluminum (2.73 mL, 2M in hexane, 5.46 mmol) dropwise. The reaction mixture was stirred at room temperature for 1 hour. Compound of example 27 (373 mg, 1.82 mmol) in DCM (5 mL) was added dropwise. The mixture was stirred at room temperature overnight. 2N HCl was added to pH 2. Water and DCM were added. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. It was purified by silica gel column chromatography using solvent system 50% EtOAc in hexane as eluant to give the title compound (283 mg). ES-MS (M+Na)+ = 500.1.

5

10

15

20

# Example 29

A solution of the compound of example 28 (283 mg, 0.593 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (228 mg, 2.97 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated *in vacuo*. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 439.1.

# Example 30

Compound of example 29 (12 mg, 0.027 mmol) was dissolved in MeOH (5 mL) and 10% Pd/C (catalytic amount) was added. The mixture was hydrogenated under balloon overnight, filtered through Celite to remove the catalyst and the filtrate was evaporated. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+=441.1.

#### Example 31

To a solution of methyl-3-cyano-4-methoxybenzoate (5g, 26.2 mmol) in THF (50 mL) was added lithium borohydride (53 mL, 2.00M solution in THF, 105 mmol) at room temperature. The mixture was stirred at room temperature overnight. IN HCl was slowly added until bubbling stopped. THF was removed *in vacuo* and EtOAc and water were added. The organic layer was washed with water, saturated NaHCO₃ solution, brine, dried with Na₂SO₄ and solvent evaporated *in vacuo* to give the title compound (3.7 g, 86.7%).

# Example 32

10

5

To a solution of compound of example 31 (2g, 12.3 mmol) in DMSO (50 mL) was added IBX (4.673g, 17.7 mmol) slowly. The mixture was stirred at room temperature overnight. EtOAc and water were added. The formed precipitate was removed. The organic layer was washed with 1N HCl, water, saturated NaHCO₃, brine, dried over Na₂SO₄ and concentrated *in vacuo*. The obtained residue was purified by silica gel column chromatography using DCM as eluant to give the title compound (1.1g, 56%). ES-MS (M+H)+ = 162.1.

# 20 Example 33

25

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl) phosphonate (1.39 mL, 6.57 mmol) in THF (130 mL) at -78°C was added 18-crown-6 (8.6, 33.9 mmol), potassium bis(trimethylsilyl)amide (14.4 mL, 7.22 mmol) dropwise. The mixture was stirred at at -78°C for 30 min. Compound of example 32 (1.06 g, 6.57 mmol) was then added. The mixture was warmed to room temperature and stirred for 1 hour. Aqueous NH₄Cl solution was added to quench the reaction. Water and EtOAc was added to the mixture. The organic layer was dried over

5

10

15

MgSO₄, filtered and concentrated *in vacuo* to give the title compound (1.175g, 87%). ES-MS (M+H)+=218.1.

# Example 34

SO₂NHtBu CN

To a solution of compound of example 22 (457 mg, 1.5 mmol) in DCM (4 mL) was added trimethylaluminum (0.9 mL, 2M in hexane, 1.8 mmol) dropwise. The reaction mixture was stirred at room temperature for 1 hour. Compound of example 33 (326 mg, 1.5 mmol) in DCM (5 mL) was added dropwise. The mixture was heated to reflux briefly. 1N HCl was added to pH 2. Water and DCM were added. The organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. It was purified by silica gel column chromatography using solvent system 30-50% EtOAc in hexane as eluant to give the title compound (450 mg, 61.3%). ES-MS (M+H)+ = 490.1.

#### Example 35

A solution of the compound of example 34 (200 mg, 0.408 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated in vacuo. The residue was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (650 mg, 8.16 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated in vacuo. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 451.1.

WO 00/71509 PCT/US00/14194

- 275 -

# Example 36

Compound of example 35 (6 mg, 0.027 mmol) was dissolved in MeOH (2 mL) and 10% Pd/C (catalytic amount) was added. The mixture was hydrogenated under balloon overnight, filtered through Celite to remove the catalyst and the filtrate was evaporated to give the title compound as a white powder. ES-MS (M+H)+ = 443.1.

#### Example37

10

15

Boc-m-CN-Phenylalanine -OH (200 mg, 0.69 mmol) and compound of example 22 (210 mg, 0.69 mmol) were dissolved in DMF (3 mL). DIEA (0.24 mL, 1.4 mmol) was added followed by the addition of the coupling reagent PyBOP (572 mg, 1.1 mmol). The solution was stirred at room temperature for 12 hours. The reaction mixture was diluted in a mixture of EtOAc/H₂O. The organic layer was washed with water, saturated Na₂CO₃, water, 1M KHSO₄, brine, dried over MgSO₄, filtered and solvent evaporated to give the title compound. ES-MS (M+H)+ = 521.1.

# 20 Example 38

A solution of the compound of example 37 (132 mg, 0.23 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue

was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (540 mg, 7 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated *in* vacuo. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 438.1.

5

10

15

25

#### Example 39:

To a solution of ethyl 2-oxocyclopentane carboxylate (1.56g, 10mmol) in 20ml anhydrous dichloromethane was added triethylamine (1.06g, 10.5mmol). Reaction was cooled under argon to -78°C to which trifluoro-methanesulfonic anhydride (2.96g, 10.5mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated to give ethyl 2-{[(trifluoromethyl)sulfonyl]oxy}-1-cyclopentene-1-carboxylate (2.8g, 97%) as a light brown oil after drying. H¹NMR (CDCl₃) : 1.27 – 1.56 (t, 3H); 1.97-2.01 (m, 2H); 2.6-2.74 (m, 4H); 4.21-4.26 (m, 2H).

#### 20 Example 40:

To a solution of ethyl 2-{[(trifluoromethyl)sulfonyl]oxy}-1-cyclopentene-1-carboxylate (1.2g, 4.16mmol) in 10ml anhydrous dioxane was added potassium phosphate (1.32g, 6.2mmol), 3-cyanophenyl boronic acid (0.612g, 4.16mmol), and tetrakis (triphenylphosphine)palladium(0) (0.12g, 0.10mmol). Reaction mixture was

heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. Residue was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl 2-(3-cyanophenyl)-1-cyclopentene-1-carboxylate (0.7g, 71%) as a light yellow oil after drying. ES-MS (M+H⁺): 242.15. H¹NMR (CDCl₃): 1.09-1.13 (t, 3H); 1.96-2.01 (m, 2H); 2.80-2.84 (m, 4H); 7.39-7.59 (m, 4H).

# Example 41:

10

15

20

25

5

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (60mg, 0.197mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.3ml, 0.59mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl 2-(3-cyanophenyl)-1-cyclopentene-1-carboxylate (48mg, 0.197mmol) in 1ml anhydrous dichloromethane. Reaction was stirred at room temperature overnight. Reaction was quenched with 15ml 1N HCl after which an additional 10ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl][2-(3-cyanophenyl)cyclopent-1-enyl]carboxamide (80mg, 80%) as a white powder which was sufficiently pure to be used without further purification.

To a solution of N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl][2-(3-cyanophenyl)cyclopent-1-enyl]carboxamide (70mg, 0.137mmol) in 5ml anhydrous methanol cooled in an ice bath was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The

reaction was concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-(2-{N-[4-(2-sulfamoylphenyl]carbamoyl}cyclopent-1-enyl)benzenecarboxamidine (40mg, 63%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 461.15

Example 42:

5

10

15

20

To a solution of the 3-(2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl} cyclopent-1-enyl)benzenecarboxamidine (7mg, 0.015mmol) in 4ml methanol was added 10% Pd on carbon (1.5mg). Mixture was treated with 50psi hydrogen on the PARR apparatus for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give the 3-(2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl} cyclopentyl)benzenecarboxamidine (5mg, 71%) as a fluffy white powder. ES-MS (M+H⁺): 463.15

Example 43:

To a solution of ethylacetoacetate (1.3g, 10mmol) in 10ml anhydrous dichloromethane was added triethylamine (1.46ml, 10.5mmol). The reaction was cooled to -78°C under argon to which trifluoromethanesulfonic anhydride (2.96g, 10.5mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room teperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml

1N HCl, dried over magnesium sulfate, filtered and concentrated. Crude oil was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give 1) ethyl (E)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (800mg, 60%) as a clear oil: H¹NMR (CDCl₃): 1.247-1.282 (t, 3H); 2.471 (s, H); 4.155-4.209 (m, 2H); 5.912 (s, H); and 2) ethyl (Z)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (450mg, 30%) as a clear oil: H¹NMR (CDCl₃): 1.247-1.283 (t, 3H); 2.131 (s, 3H); 4.18-4.233 (m, 2H); 5.736 (s, H).

#### Example 44:

10

15

20

5

To a solution of ethyl (E)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (390mg, 1.49mmol) in 5ml anhydrous dioxane was added potassium phosphate (474mg, 2.24mmol), 3-cyanophenyl boronic acid (217mg, 1.49mmol), and tetrakis (triphenylphosphine)palladium(0) (43mg, 0.038mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. Residue was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl (E) 3-(3-cyanophenyl)-2-propenoate (240mg, 71%) as a clear yellow oil after drying. H¹NMR (CDCl₃): 1.2-1.32 (t, 3H); 2.547 (s, 3H); 4.18-4.24 (m, 2H); 6.113 (s, H); 7.47-7.725 (m, 4H). NOE confirmed stereo orientation.

#### Example 45:

To a solution of ethyl (Z)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (330mg, 1.25mmol) in 5ml anhydrous dioxane was added potassium phosphate (398mg, 1.88mmol), 3-cyanophenyl boronic acid (185mg, 1.25mmol), and tetrakis (triphenylphosphine)palladium(0) (36mg, 0.031mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. Residue was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl (Z) 3-(3-cyanophenyl)-2-propenoate (240mg, 71%) as a clear oil after drying. ES-MS (M+H⁺): 216.05

Example 46:

15

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (79mg, 0.26mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.39ml, 0.78mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (E) 3-(3-cyanophenyl)-2-

propenoate (56mg, 0.26mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 10ml dichloromethane was added. Organic layer was washed with 2x20ml water, dried over magnesium sulfate, filtered and concentrated to give the (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl]-3-(3-cyanophenyl)but-2-enamide (90mg, 72%) as an off-white powder which was sufficiently pure to be used without further purification.

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl]-3-(3-10 cyanophenyl)but-2-enamide (90mg, 0.19mmol) in 5ml anhydrous methanol cooled in an ice bath was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)benzene-carboxamidine (15mg, 20%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 435.1

#### 20 Example 47:

5

15

25

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (198mg, 0.65mmol) in 5ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.98ml, 1.95mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (Z) 3-(3-cyanophenyl)-2propenoate (140mg, 0.65mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5

10

15

5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x25ml water, dried over magnesium sulfate and concentrated to give (2Z)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (200mg, 65%) as a light brown residue which was sufficiently pure to be used without further purification.

To a solution of (2Z)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl]phenyl]-3-(3-cyanophenyl)but-2-enamide (90mg, 0.19mmol) in 5ml anhydrous methanol cooled in an ice bath was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (144mg, 2mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1Z)-1-methyl-2-{N-[4-(2-sulfamoylphenyl]carbamoyl}vinyl)-benzenecarboxamidine (35mg, 20%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 435.1

#### Example 48:

To a solution of the 3-((1Z)-1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (5mg, 0.0115mmol) in 4ml methanol was added 10% Pd on carbon (2mg). Mixture was treated with 50psi hydrogen on the PARR apparatus for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-ethyl)benzenecarboxamidine (3mg, 60%) as a fluffy white powder. ES-MS (M+H⁺): 437.1

Example 49:

To a solution of ethyl trifluoroacetoacetate (5g, 27.2mmol) in 20ml anhydrous dichloromethane was added triethylamine (5.7ml, 40.7mmol). Reaction was cooled under argon to -78°C to which trifluoro-methanesulfonic anhydride (11.5g, 10.5mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude oil was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl (Z)-4,4,4-trifluoro-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (7.7g, 90%) as a clear light yellow oil after drying. H¹NMR (CDCl₃) : 1.31-1.35 (t, 3H); 4.33-4.35 (m, 2H); 6.535 (s, H).

15

20

10

5

Example 50:

To a solution of ethyl (Z)-4,4,4-trifluoro-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (250mg, 0.79mmol) in 5ml anhydrous dioxane was added potassium phosphate (251mg, 1.19mmol), 3-cyanophenyl boronic acid (116mg, 0.79mmol), and tetrakis (triphenylphosphine)palladium(0) (23mg, 0.02mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo.

25 Residue was chromatographed on silica gel using 20% EtOAc in hexane as the

eluent to give ethyl (2E)-3-(3-cyanophenyl)-4,4,4-trifluorobut-2-enoate (150mg, 79%) as a yellow residue after drying. H¹NMR (CDCl₃): 1.107-1.142 (t, 3H); 4.05-4.107 (m, 2H); 6.684 (s, H); 7.38-7.72 (m, 4H).

# 5 Example 51:

20

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (79mg, 0.26mmol) in 5ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.39ml, 0.78mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (Z) 3-(3-cyanophenyl)-4,4,4-trifluoro-2-butenoate (70mg, 0.26mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x25ml water, dried over magnesium sulfate, filtered and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4,4,4-trifluorobut-2-enamide (120mg, 88%) as a yellow foam which was sufficiently pure to be used without further purification.

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4,4,4-trifluorobut-2-enamide (90mg, 0.19mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was placed in the refrigerator at 0°C over the weekend.

25 The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (144mg, 2mmol) was added and the reaction heated to reflux for

5

2 hours. The reaction was concentrated then treated with 10ml trifluoroacetic acid for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-1-(trifluoromethyl)vinyl)benzenecarboxamidine (57mg, 47%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 489.15

# Example 52:

- To a solution of 3-((1E)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-1(trifluoromethyl)vinyl)-benzenecarboxamidine (10mg, 0.02mmol) in 4ml methanol
  was added 10% Pd on carbon (2mg). Mixture was treated with hydrogen at 1
  atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite,
  concentrated and lyophilized to give 3-[2,2,2-trifluoro-1-({N-[4-(2-
- sulfamoylphenyl)phenyl]carbamoyl}-methyl)ethyl]benzenecarboxamidine (8mg, 82%) as a fluffy white powder. ES-MS (M+H⁺): 491.1

#### Example 53:

To a solution of ethyl (Z) 3-(3-cyanophenyl)-2-propenoate (2g, 9.3mmol) in 50ml carbon tetrachloride was added N-bromosuccinimide (1.74g, 9.77mmol) and benzoyl peroxide (40mg, 0.165mmol). Reaction mixture was heated to reflux and stirred over night. Reaction was allowed to cool to room temperature to which 50ml dichloromethane was added. Organic was washed with 2x50ml water, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude residue was chromatographed on silica gel using 2.5% EtOAc in hexane as the eluent to give ethyl (Z) 3-(3-cyanophenyl)-4-bromo-2-butenoate (0.77g, 29%) as a clear oil (note: NOE experiment showed compound isomerized during bromination). H¹NMR (CDCl₃): 1.311-1.347 (t, 3H); 4.239-4.292 (m, 2H); 4.92 (s, 2H); 6.18 (s, H); 7.514-7.801 (m, 4H). ES-MS (M+H²): 293.95 and 296.0

# 15 Example 54:

To a solution of ethyl (Z) 3-(3-cyanophenyl)-4-bromo-2-butenoate (103mg, 0.35mmol) in 5ml anhydrous di-methylformamide was added pyrazole (24mg, 0.35mmol) and cesium carbonate (228mg, 0.7mmol). Reaction mixture was stirred for 1.5 hours at room temperature after which 25ml ethyl acetate was added.

Organic was washed with 3x25ml water, 3x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated to give ethyl (Z)-3-(3-cyanophenyl)-4-(1H-1-pyrazolyl)-2-butenoate (70mg, 71%) as a brown residue which was sufficiently pure to be used without further purification. ES-MS (M+H⁺): 282.1

#### 10 Example 55:

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (76mg, 0.25mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.38ml, 0.75mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (Z)-3-(3-cyanophenyl)-4-(1H-1-pyrazolyl)-2-butenoate (70mg, 0.25mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give the tButyl nitrile of the title compound (120mg, 89%) as a brown foam which was sufficiently pure to use in the next step.

WO 00/71509 PCT/US00/14194

- 288 -

To a solution of the above nitrile compound (120mg, 0.22mmol) in 10ml 1:1 ethyl acetate: anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum.

The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, then treated with trifluoroacetic acid (10ml) for 2 hours, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1Z)-1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl} vinyl)benzenecarboxamidine (10mg, 9%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 501.1

# Example 56:

15

20

25

5

10

To a solution of 3-acetobenzonitrile (5g, 0.0344mol) in 45ml glacial acetic acid was added pyridinium tribromide (11.3g, 0.0355mol). Reaction was stirred at room temperature under argon overnight. Reaction was then quenched with a saturated sodium sulfite solution (20ml) and extracted with 3x25ml dichloromethane. Combined organic phases were washed with 2x25ml water, dried over magnesium

sulfate, filtered and concentrated in vacuo. Crude oil was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give 3-(2-bromoacetyl) benzonitrile (4.5g, 58%) as a white solid. H¹NMR (CDCl₃): 4.371-4.403 (s, 2H); 7.613-7.664 (m, H); 7.838-7.888 (m, H); 8.192-8.261 (m, 2H).

To a solution of 3-(2-bromaceto)benzonitrile (500mg, 2.23mmol) in 5ml dichloromethane was added pyrazole (304mg, 4.46mmol) and triethylamine (0.31ml, 2.23mmol). Reaction was stirred at room temperature over night. Reaction was then diluted with 20ml dichloromethane, washed with 2x25ml water, 2x25ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude residue was chromatographed on silica gel using 2.5% EtOAc in hexane to give 3-[2-(1H-1-pyrazolyl)acetyl]benzonitrile (330mg, 70%) as a clear oil after drying. ES-MS (M+H⁺): 212.05

## 10 Example 57:

15

20

25

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl)phosphonate (0.39ml, 1.87mmol) in 5ml anhydrous tetrahydrofuran was added a solution of 18-crown-6 (2g, 7.8mmol) in 5ml anhydrous tetrahydrofuran. Reaction was cooled to – 78° C to which a 0.5M solution of potassium bis(trimethylsilyl)amide in toluene (0.93ml, 1.87mmol) was added all at once. The reaction mixture was stirred at –78° C for 20 minutes after which a solution of 3-[2-(1H-1-pyrazolyl)acetyl]- benzonitrile (330mg, 1.56mmol) in 5ml anhydrous tetrahydrofuran was added dropwise over several minutes. Reaction was gradually allowed to warm to room temperature and stirred for 5 hours. Reaction was then quenched with a saturated ammonium chloride solution (10ml) and extracted with 2x25ml diethyl ether. Combined organic layers were washed with 2x25ml water, 2x25ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated to a brown residue. Crude residue was chromatographed on silica gel using a gradient of 5% EtOAc in hexane containing 0.1% triethylamine to 20% EtOAc in hexane containing 0.1%

10

15

20

25

triethylamine to give methyl (E)-3-(3-cyanophenyl)-4-(1H-1-pyrazolyl)-2-butenoate (135mg, 32%) as a clear oil after drying. H¹NMR (CDCl₃): 3.521 (s, #H); 4.98 (s, 2H); 5.694 (s, H); 6.237-6.247 (t, H); 7.296-7.593 (m, 6H). NOE experiment confirmed stereoconfiguration.

Example 58:

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (105mg, 0.34mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.5ml, 1.02mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of methyl (E)-3-(3-cyanophenyl)-4-(1*H*-1-pyrazolyl)-2-butenoate (90mg, 0.34mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate, filtered and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (155mg, 85%) as an off-white foam which was sufficiently pure to be used without further purification.

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl]-3-(3-cyanophenyl)but-2-enamide (155mg, 0.287mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred

WO 00/71509

- 291 -

PCT/US00/14194

overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, treated with trifluoroacetic acid (10ml) for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)benzenecarboxamidine (40mg, 28%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 501.1

## 10 Example 59:

To a solution of 3-((1E)-1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (5mg, 0.01mmol) in 4ml methanol was added 10% Pd on carbon (1mg). Mixture was treated with hydrogen at 1 atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl}ethyl)benzenecarboxamidine (5mg, 100%) as a fluffy white powder. ES-MS (M+H⁺): 503.1

Example 60:

To a solution of ethyl *B*-oxo-3-furanpropionate (1g, 5.49mmol) in 5ml anhydrous dichloromethane was added triethylamine (0.847ml, 6.04mmol). Reaction was cooled under argon to -78°C to which trifluoromethanesulfonic anhydride (1.02ml, 6.04mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude oil was chromatographed on silica gel using 20% EtOAc in hexane as the eluent to give ethyl (Z)-3-(2-furyl)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (1.6g, 93%) as a light brown solid after drying. H¹NMR (CDCl₃): 1.31-1.35 (t, 3H); 4.26-4.314 (m, 2H); 6.065 (s, H); 6.522 (s, H); 7.47 (s, H); 7.76 (s, H).

### Example 61:

To a solution of ethyl (Z)-3-(2-furyl)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2propenoate (500mg, 1.59mmol) in 7ml anhydrous dioxane was added potassium phosphate (506mg, 2.4mmol), 3-cyanophenyl boronic acid (234mg, 1.59mmol), and tetrakis (triphenylphosphine)palladium(0) (46mg, 0.04mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude residue was chromatographed on silica gel using a gradient from 5% EtOAc in hexane to 10% EtOAc in hexane as the eluent to give ethyl (E) 3-(3-cyanophenyl)-3-(2-furyl)-2-propenoate (100mg, 24%) as a clear yellow oil after drying. H¹NMR (CDCl₃): 1.1-1.14 (t, 3H); 4,016-4.035 (m, 2H); 5.293 (s, H); 7.45-7.549 (m, 3H); 7.669 (m, H). ES-MS (M+H¹): 268.05

10

5

#### Example 62:

$$\begin{array}{c|c}
& H_2N \\
O & O = S
\end{array}$$

$$\begin{array}{c|c}
H_2N & O \\
O & N
\end{array}$$

To a solution of 2'-tButylaminosulfonyl-4-amino-[1,1']-biphenyl (102mg, 0.336mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.5ml, 1.0mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (E) 3-(3-cyanophenyl)-3-(2-furyl)-2-propenoate (90mg, 0.336mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-3-(2-furyl)prop-2-enamide (200mg, 112%) as a brown foam which was sufficiently pure to be used without further purification.

WO 00/71509 PCT/US00/14194

- 294 -

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-3-(2-furyl)prop-2-enamide (176mg, 0.336mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (144mg, 2mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, treated with trifluoroacetic acid (10ml) for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-1-(2-furyl)-2-{N-[4-(2-sulfamoyl)phenyl]carbamoyl}vinyl)benzenecarboxamidine (60mg, (37%) as a fluffy off-white powder after lyophilization. ES-MS (M+H⁺): 487.15

Example 63:

15

25

10

5

To a solution of 3-((1E)-1-(2-furyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl} vinyl)benzenecarboxamidine (10mg, 0.02mmol) in 4ml methanol was added 10% Pd on carbon (2mg). Mixture was treated with hydrogen at 1 atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-(2-furyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl} ethyl)benzenecarboxamidine (9mg, 90%) as a fluffy white powder. ES-MS (M+H⁺): 489.15

Example 64:

5 To a solution of methyl 4-methoxy-3-oxobutanoate (5g, 34.2mmol) in 20ml anhydrous dichloromethane was added triethylamine (5.24ml, 37.6mmol). Reaction was cooled under argon to -78°C to which trifluoromethane-sulfonic anhydride (10.6gml, 37.6mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the 10 reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude oil was chromatographed on silica gel using a gradient of 5% EtOAc in hexane to 10% EtOAc in hexane as the eluent to give methyl (Z)-4methoxy-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (5.1g, 54%) as a clear colorless oil after drying. H¹NMR (CDCl₃): 3.342 (s, 3H); 3.711 (s, 3H); 3.99 (s, 15

H); 6.02 (s, H).

Example 65:

5 To a solution of methyl (Z)-4-methoxy-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (246mg, 1.0mmol) in 5ml anhydrous dioxane was added potassium phosphate (318mg, 1.5mmol), 3-cyanophenyl boronic acid (162mg, 1.0mmol), and tetrakis (triphenylphosphine)palladium(0) (29mg, 0.0251mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 20ml ethyl acetate. Organic was washed with 2x20ml water, 2x20ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo to give methyl (E)-3-(3-cyanophenyl)-4-methoxy-2-butenoate (220mg, 75%) as a clear brown oil which was sufficiently pure to be used without further purification. ES-MS (M+H⁺): 232.1

Example 66:

5

10

15

20

25

To a solution of 2'-tButylaminosulfonyl-4-amino-[1,1']-biphenyl (105mg, 0.35mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.53ml, 1.05mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of methyl (E) 3-(3-cyanophenyl)-4-methoxy-2-butenoate (80mg, 0.35mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4-methoxybut-2-enamide (150mg, 85%) as a white foam after drying which was sufficiently pure to be used without further purification.

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4-methoxybut-2-enamide (150mg, 0.298mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to --78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, treated with trifluoroacetic acid (10ml) for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to

WO 00/71509

- 298 -

PCT/US00/14194

give 3-((1E)-1-(methoxymethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)benzenecarboxamidine (34mg, (25%) as a fluffy off-white powder after lyophilization. ES-MS (M+H⁺): 465.15

# 5 Example 67:

20

To a solution of 3-((1E)-1-(methoxymethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (5mg, 0.01mmol) in 4ml methanol was added 10% Pd on carbon (1mg). Mixture was treated with hydrogen at 1 atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-(methoxymethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-ethyl)benzenecarboxamidine (5mg, 100%) as a fluffy white powder. ES-MS (M+H⁺): 467.15

# BIOLOGICAL ACTIVITY EXAMPLES

Evaluation of the compounds of this invention is guided by in vitro protease activity assays (see below) and in vivo studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters.

WO 00/71509 PCT/US00/14194

- 299 -

The compounds of the present invention are dissolved in buffer to give solutions containing concentrations such that assay concentrations range from 0 to 100 μM. In the assays for thrombin, prothrombinase and factor Xa, a synthetic chromogenic substrate is added to a solution containing test compound and the enzyme of interest and the residual catalytic activity of that enzyme is determined spectrophotometrically. The IC₅₀ of a compound is determined from the substrate turnover. The IC₅₀ is the concentration of test compound giving 50% inhibition of the substrate turnover. The compounds of the present invention desirably have an IC₅₀ of less than 500 nM in the factor Xa assay, preferably less than 200 nM, and more preferred compounds have an IC50 of about 100 nM or less in the factor Xa assay. The compounds of the present invention desirably have an IC50 of less than 4.0 uM in the prothrombinase assay, preferably less than 200 nM, and more preferred compounds have an IC50 of about 10 nM or less in the prothrombinase assay. The compounds of the present invention desirably have an IC50 of greater than 1.0 µM in the thrombin assay, preferably greater than 10.0 µM, and more preferred compounds have an IC₅₀ of greater than 100.0 µM in the thrombin assay.

# 20 Amidolytic Assays for determining protease inhibition activity

5

10

15

25

The factor Xa and thrombin assays are performed at room temperature, in 0.02 M Tris·HCl buffer, pH 7.5, containing 0.15 M NaCl. The rates of hydrolysis of the para-nitroanilide substrate S-2765 (Chromogenix) for factor Xa, and the substrate Chromozym TH (Boehringer Mannheim) for thrombin following preincubation of the enzyme with inhibitor for 5 minutes at room temperature, and

were determined using the Softmax 96-well plate reader (Molecular Devices), monitored at 405 nm to measure the time dependent appearance of p-nitroaniline.

The prothrombinase inhibition assay is performed in a plasma free system with modifications to the method described by Sinha, U. et al., Thromb. Res., 75, 427-436 (1994). Specifically, the activity of the prothrombinase complex is determined by measuring the time course of thrombin generation using the pnitroanilide substrate Chromozym TH. The assay consists of preincubation (5 minutes) of selected compounds to be tested as inhibitors with the complex formed from factor Xa (0.5 nM), factor Va (2 nM), phosphatidyl serine:phosphatidyl choline (25:75, 20 µM) in 20 mM Tris·HCl buffer, pH 7.5, containing 0.15 M NaCl, 5 mM CaCl2 and 0.1% bovine serum albumin. Aliquots from the complex-inhibitor mixture are added to prothrombin (1 nM) and Chromozym TH (0.1 mM). The rate of substrate cleavage is monitored at 405 nm for two minutes. Eight different concentrations of inhibitor are assayed in duplicate. A standard curve of thrombin generation by an equivalent amount of untreated complex are used for determination of percent inhibition.

#### Antithrombotic Efficacy in a Rabbit Model of Venous Thrombosis

10

15

20

25

A rabbit deep vein thrombosis model as described by Hollenbach, S. et al., Thromb. Haemost. 71, 357-362 (1994), is used to determine the in-vivo antithrombotic activity of the test compounds. Rabbits are anesthetized with I.M. injections of Ketamine, Xylazine, and Acepromazine cocktail. A standardized protocol consists of insertion of a thrombogenic cotton thread and copper wire apparatus into the abdominal vena cava of the anesthetized rabbit. A non-occlusive thrombus is allowed to develop in the central venous circulation and inhibition of thrombus growth is used as a measure of the antithrombotic activity of the studied compounds. Test agents or control saline are administered through a marginal ear vein catheter. A femoral vein catheter is used for

blood sampling prior to and during steady state infusion of test compound. Initiation of thrombus formation begins immediately after advancement of the cotton thread apparatus into the central venous circulation. Test compounds are administered from time = 30 min to time = 150 min at which the experiment is terminated. The rabbits are euthanized and the thrombus excised by surgical dissection and characterized by weight and histology. Blood samples are analyzed for changes in hematological and coagulation parameters.

### Effects of Compounds in Rabbit Venous Thrombosis model

5

10

15

Administration of compounds in the rabbit venous thrombosis model demonstrates antithrombotic efficacy at the higher doses evaluated. There are no significant effects of the compound on the aPTT and PT prolongation with the highest dose (100  $\mu$ g/kg + 2.57  $\mu$ g/kg/min). Compounds have no significant effects on hematological parameters as compared to saline controls. All measurements are an average of all samples after steady state administration of vehicle or (D)-Arg-Gly-Arg-thiazole. Values are expressed as mean  $\pm$  SD.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods.

- 302 -

### WHAT IS CLAIMED IS:

1. A compound according to the formula:

#### A-Y-D-E-G-J-K-L

wherein:

- 5 A is selected from:
  - (a)  $C_1$ - $C_6$ -alkyl;
  - (b) C₃-C₈-cycloalkyl;
  - (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
- (d) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
  - (e) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;
- 15 R¹ is selected from:

20

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl,-CN, -NO₂, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁-C₄-alkyl, -CN C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl and -NO₂;

R² and R³ are independently selected from the group consisting of:

- H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;
- 30 m is an integer of 0-2;

Y is a member selected from the group consisting of:

a direct link, -C(=O)-,  $-N(R^4)$ -, -C(=O)- $N(R^4)$ -,  $-N(R^4)$ -C(=O)-,  $-SO_2$ -, -O-,  $-SO_2$ -,  $-N(R^4)$ - and  $-N(R^4)$ - $SO_2$ -;

### R4 is selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;.

D is a direct link or is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and
- 15 (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

## R^{1a} is selected from:

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on

the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo,  $C_{1-4}$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_{3-8}$  cycloalkyl,  $C_{0-4}$  alkyl $C_{3-8}$  cycloalkyl, -CN and -NO₂;

5 E is a member selected from the group consisting of:

$$-N(R^5)-C(=O)-$$
,  $-C(=O)-N(R^5)-$ ,  $-N(R^5)-C(=O)-N(R^6)-$ ,  $-SO_2-N(R^5)-$ ,  $-N(R^5)-SO_2-N(R^6)-$  and  $-N(R^5)-SO_2-N(R^6)-$ C(=O)-;

R⁵ and R⁶ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheteroaryl, C₁₋₄alkylCOOH and C₁₋₄alkylCOOC₁₋₄alkyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl, naphthyl and heteroaryl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

G is selected from:

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, -OR⁹, -C₀₋₄alkylCOOR⁹, -C₀₋₄alkylC(=O)NR⁹R¹⁰, -C₀₋₄alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -C₀₋₄alkylC(=O)NR⁹(-CH₂-CH₂-O-R¹⁰-)₂, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and a naturally occurring or synthetic amino acid side chain, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, -CN and -NO₂;

30 R⁹ and R¹⁰ are independently selected from:

20

H,  $C_{1-4}$ alkyl,  $C_{0-4}$ alkylphenyl and  $C_{0-4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl- $C_{3-8}$ cycloalkyl, -CN and -NO₂, and wherein R⁹ and R¹⁰ taken together can form a 5-8 membered heterocylic ring;

J is a member selected from the group consisting of:

a direct link, -CH(R11)- and -CH(R11)-CH2-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheterocyclic ring having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S, CH₂COOC₁₋₄alkyl, CH₂COOC₁₋₄alkylphenyl and CH₂COOC₁₋₄alkylnaphthyl;

- 15 K is a member selected from the group consisting of:
  - (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
  - (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
  - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R^{1b} is selected from:

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of

25

halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl, -CN and -NO₂;

R^{2b} and R^{3b} are independently selected from the group consisting of:

H,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkylphenyl and  $C_{0-4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl, -CN and -NO₂;

### 10 L is selected from:

H, -CN, C(=0)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³, and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C₁₋₄alkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, COO-C₁₋₄alkyl, COO-C₀₋₄alkylphenyl and COO-C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

# 20 R¹⁴ and R¹⁵ are independently selected from:

H,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkylphenyl and  $C_{0-4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl, -CN, and -NO₂;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

#### 30 2. A compound of claim 1, wherein:

#### A is selected from:

- (a)  $C_1$ - $C_6$ -alkyl;
- (b) C₃-C₈-cycloalkyl;
- (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
- 5 (d) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
  - (e) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;

### 10 R¹ is selected from:

15

Halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl,-CN, -NO₂,  $(CH_2)_mNR^2R^3$ , SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo,  $C_1$ - $C_4$ -alkyl, -CN  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl and -NO₂;

R² and R³ are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

# 25 m is an integer of 0-2;

Y is a member selected from the group consisting of:

a direct link, -C(=O)-,  $-N(R^4)$ -, -C(=O)- $N(R^4)$ -,  $-N(R^4)$ -C(=O)-,  $-SO_2$ -, -O-,  $-SO_2$ - $N(R^4)$ - and  $-N(R^4)$ - $SO_2$ -;

R⁴ is selected from:

10

20

H,  $C_{1.4}$ alkyl,  $C_{2.6}$ alkenyl,  $C_{2.6}$ alkynyl,  $C_{3.8}$ cycloalkyl,  $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl,  $C_{0.4}$ alkylphenyl and  $C_{0.4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo,  $C_{1.4}$ alkyl,  $C_{2.6}$ alkenyl,  $C_{2.6}$ alkynyl,  $C_{3.8}$ cycloalkyl,  $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN, and -NO₂;

D is a direct link or is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R¹⁸ substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and
- (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

### 15 R^{1a} is selected from:

Halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl, -CN, -NO₂,  $(CH_2)_m$ NR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl, -CN and -NO₂;

R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;.

30 E is a member selected from the group consisting of:

10

 $-N(R^5)-C(=O)-$ ,  $-C(=O)-N(R^5)-$ ,  $-N(R^5)-C(=O)-N(R^6)-$ ,  $-SO_2-N(R^5)-$ ,  $-N(R^5)-SO_2-N(R^6)-$  and  $-N(R^5)-SO_2-N(R^6)-$ C(=O)-;

R⁵ and R⁶ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheteroaryl, C₁₋₄alkylCOOH and C₁₋₄alkylCOOC₁₋₄alkyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl, naphthyl and heteroaryl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

G is selected from:

-CR7R8- and -CR7R8a-CR7bR8b-

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, C_{0.4}alkylphenyl, C_{0.4}alkylnaphthyl, -OR⁹,-C_{0.4}alkylCOOR⁹, -C_{0.4}alkylC(=O)NR⁹R¹⁰, -C_{0.4}alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -C_{0.4}alkylC(=O)NR⁹(-CH₂-CH₂-O-R¹⁰-)₂, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and a naturally occurring or synthetic amino acid side chain, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, -CN and -NO₂;

R⁹ and R¹⁰ are independently selected from:

H, C₁₋₄alkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, -CN and -NO₂, and wherein R⁹ and R¹⁰ taken together can form a 5-8 membered heterocylic ring;

J is a member selected from the group consisting of:

WO 00/71509

5

15

20

25

30

a direct link, -CH(R¹¹)- and -CH(R¹¹)-CH₂-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheterocyclic ring having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S, CH₂COOC₁₋₄alkyl, CH₂COOC₁₋₄alkylphenyl and CH₂COOC₁₋₄alkylnaphthyl;

Z is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
- 10 (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
  - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

### R^{1b} is selected from:

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

R^{2b} and R^{3b} are independently selected from the group consisting of:

H,  $C_{1-4}$ alkyl,  $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkylphenyl and  $C_{0-4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo,  $C_{1-4}$ alkyl,

 $C_{2-6}$ alkenyl,  $C_{2-6}$ alkynyl,  $C_{3-8}$ cycloalkyl,  $C_{0-4}$ alkyl $C_{3-8}$ cycloalkyl, -CN and -NO₂;

L is selected from:

H, -CN, C(=0)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³, and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C₁₋₄alkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, COOC₁₋₄alkyl, COO-C₀₋₄alkylphenyl and COO-C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₁₋₈cycloalkyl, -CN, and -NO₂;

R¹⁴ and R¹⁵ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

3. A compound of claim 1, wherein:

A is selected from:

- (a) phenyl, which is independently substituted with 0-2 R¹ substituents;
- 25 (b) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
  - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected

WO 00/71509 PCT/US00/14194

- 312 -

from N, O and S, and wherein the ring system may be substituted with 0-2 R' substituents;

Y is a direct link;

5

10

D is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents;
  - (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and
  - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

E is a member selected from the group consisting of:

$$-NH-C(=O)-$$
, and  $-C(=O)-NH-$ ;

G is -CHR^{7a}-CHR^{7b}-;

15 J is a direct link;

Z is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
- (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R1b is selected from:

N(R^{2b})-C(=O)R^{3b} and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl,

WO 00/71509 PCT/US00/14194

- 313 -

 $C_{2.6}$ alkenyl,  $C_{2.6}$ alkynyl,  $C_{3.8}$ cycloalkyl,  $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN and -NO₂; and

L is H.

- 4. A pharmaceutical composition for preventing or treating a condition in a
   5 mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a compound of claim 1.
  - 5. A pharmaceutical composition for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a compound of claim 2.
- 10 6. A pharmaceutical composition for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a compound of claim 3.
- 7. A method for preventing or treating a condition in a mammal characterized
   15 by undesired thrombosis comprising the step of administering to said mammal a
   therapeutically effective amount of a compound of claim 1.
- 8. The method of claim 7, wherein the condition is selected from the group consisting of: acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia,

WO 00/71509 - 314 -

thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation such as cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve, and conditions requiring the fitting of prosthetic devices.

PCT/US00/14194

5

25

- 9. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising the step of administering to said mammal a therapeutically effective amount of a compound of claim 2.
- The method of claim 9, wherein the condition is selected from the group 10 10. consisting of: acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated 15 intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation such as cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve, and 20 conditions requiring the fitting of prosthetic devices.
  - 11. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising the step of administering to said mammal a therapeutically effective amount of a compound of claim 3.

WO 00/71509 PCT/US00/14194

- 315 -

- The method of claim 11, wherein the condition is selected from the group consisting of: acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome,
   embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic
   complications associated with instrumentation such as cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve, and conditions requiring the fitting of prosthetic devices.
- 13. A method for inhibiting the coagulation of biological samples, comprising15 the step of administering a compound of claim 1.
  - 14. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 2.
- 20 15. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 3.

## INTERNATIONAL SEARCH REPORT

Internation No PCT/US 00/14194

A. CLASS IPC 7	ification of subject matter C07C311/46 A61K31/18 A61P7/02	2	,							
According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS	SEARCHED									
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C A61K										
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched										
	tata base consulted during the international search (name of data ba	•	J)							
EPO-Internal, CHEM ABS Data, WPI Data, PAJ										
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT									
Category °	Citation of document, with indication, where appropriate, of the rel	Relevant to claim No.								
X	US 5 886 191 A (DUFFY DANIEL EMME AL) 23 March 1999 (1999-03-23) claim 6	1-15								
Χ .	WO 98 01428 A (DU PONT MERCK PHAR 15 January 1998 (1998-01-15) claims 6,10,12	1-15								
<u> </u>	ner documents are listed in the continuation of box C.	X Patent family members are listed	in annex.							
*Special categories of cited documents:  *A* document defining the general state of the art which is not considered to be of particular relevance  *E* earlier document but published on or after the international filing date  *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another cliation or other special reason (as specified)  *O* document referring to an oral disclosure, use, exhibition or other means  *P* document published prior to the international filing date but later than the priority date claimed  *Date of the actual completion of the international search  *Special categories of cited documents:  *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents; such combination being obvious to a person skilled in the art.  **Step document member of the same patent family**  *Date of mailing of the international search report**  **Date of mailing of the international search report**										
Name and n	nailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk  Tel. (+31–70) 340–2040, Tx. 31 651 epo nl,  Fax: (+31–70) 340–3016	Janus, S								

International application No. PCT/US 00/14194

# INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. χ	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
	Although claims 7-15 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.					
2. X	Claims Nos.: 1-15 (in part) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:					
	see FURTHER INFORMATION sheet PCT/ISA/210					
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This Inte	emational Searching Authority found multiple inventions in this international application, as follows:					
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.					
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:					
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
	,					
Remark	on Protest The additional search fees were accompanied by the applicant's protest.					
	No protest accompanied the payment of additional search fees.					

### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-15 (in part)

Present claims 1-3 relate to an extremely large number of possible compounds. The formula of claim 1 even includes simple compounds such as N-methyl-2-phenylacetamide. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed in the examples, namely those parts relating to the compounds of the formula given in claim 1 wherein A-Y-D-E- is 4-(2-aminosulfonylphenyl)phenylaminocarbonyl.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

# INTERNATIONAL SEARCH REPORT

Information on patent family members

Interaction No
PCT/US 00/14194

Patent document cited in search report	rt	Publication date		atent family member(s)	Publication date
US 5886191	Α	23-03-1999	US	6043257 A	28-03-2000
WO 9801428	Α	15-01-1998	 AU	3645697 A	02-02-1998
			CA	2259573 A	15-01-1998
			EP	0960102 A	01-12-1999