EM Algorithm

David A. Levin

DA-IICT

January 2020

$$f_X(x) = \sum_{j=1}^k f_i(x; \mu_j, \Sigma_j) \pi_j.$$

- ► A random vector with the density above can be obtained by first sampling a **latent**, or hidden, variable $Z \in \{1, ..., K\}$ according to a distribution π on $\{1, ..., K\}$, so that $\mathbb{P}(Z = j) = \pi_j$.
- ► Given that Z = j, the vector X is generated according to the Normal density $f_j(x; \mu_j, \Sigma_j)$
- Estimation of $\mu = (\mu_1, ..., \mu_K)$ and $\Sigma = (\Sigma_1, ..., \Sigma_K)$ is no longer tractable.

$$f_X(x) = \sum_{j=1}^k f_i(x; \mu_j, \Sigma_j) \pi_j.$$

- ▶ A random vector with the density above can be obtained by first sampling a **latent**, or hidden, variable $Z \in \{1, ..., K\}$ according to a distribution π on $\{1, ..., K\}$, so that $\mathbb{P}(Z = j) = \pi_j$.
- ► Given that Z = j, the vector X is generated according to the Normal density $f_i(x; \mu_i, \Sigma_i)$
- Estimation of $\mu = (\mu_1, ..., \mu_K)$ and $\Sigma = (\Sigma_1, ..., \Sigma_K)$ is no longer tractable.

$$f_X(x) = \sum_{j=1}^k f_i(x; \mu_j, \Sigma_j) \pi_j.$$

- ► A random vector with the density above can be obtained by first sampling a **latent**, or hidden, variable $Z \in \{1, ..., K\}$ according to a distribution π on $\{1, ..., K\}$, so that $\mathbb{P}(Z = j) = \pi_j$.
- ► Given that Z = j, the vector X is generated according to the Normal density $f_j(x; \mu_j, \Sigma_j)$
- Estimation of $\mu = (\mu_1, ..., \mu_K)$ and $\Sigma = (\Sigma_1, ..., \Sigma_K)$ is no longer tractable.

$$f_X(x) = \sum_{j=1}^k f_i(x; \mu_j, \Sigma_j) \pi_j.$$

- ► A random vector with the density above can be obtained by first sampling a **latent**, or hidden, variable $Z \in \{1, ..., K\}$ according to a distribution π on $\{1, ..., K\}$, so that $\mathbb{P}(Z = j) = \pi_j$.
- Given that Z = j, the vector X is generated according to the Normal density $f_j(x; \mu_j, \Sigma_j)$
- Estimation of $\mu = (\mu_1, ..., \mu_K)$ and $\Sigma = (\Sigma_1, ..., \Sigma_K)$ is no longer tractable.

► The log-likelihood function is

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{K} f_j(x_i; \mu_j, \Sigma_j) \right)$$

If we could observe $(Z_i)_{i=1}^n$, then we could separate out each "class" (the data points X_i with $Z_i = j$), and separately estimate μ_j, Σ_j via the usual MLE procedure.

- Let us see what happens when we look for critical points.

$$\frac{d\ell}{d\mu_j} = \sum_{i=1}^n \frac{\pi_j f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)} \Sigma_j^{-1}(x_i - \mu_j)$$

$$\gamma^{(i)}(j) = \mathbb{P}(Z_i = j \mid x_i; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$N_j = \sum_{i=1}^n \gamma^{(i)}(j) = \mathbb{E}[\#X_i' \text{s in class } j \mid x_i].$$

- ► The $\gamma_i^{(i)}$ is the **responsibility** of class *j* for the *i*-th data point.
- ► The solution to $\frac{d\ell}{du_i} = 0$ satisfies

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(j) x_i.$$

$$\frac{d\ell}{d\mu_j} = \sum_{i=1}^n \frac{\pi_j f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)} \Sigma_j^{-1}(x_i - \mu_j)$$

$$\gamma^{(i)}(j) = \mathbb{P}(Z_i = j \mid x_i; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$N_j = \sum_{i=1}^n \gamma^{(i)}(j) = \mathbb{E}[\#X_i \text{'s in class } j \mid x_i].$$

- ► The $\gamma_i^{(i)}$ is the **responsibility** of class *j* for the *i*-th data point.
- The solution to $\frac{d\ell}{d\mu_i} = 0$ satisfies

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(j) x_i.$$

$$\frac{d\ell}{d\mu_j} = \sum_{i=1}^n \frac{\pi_j f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)} \Sigma_j^{-1}(x_i - \mu_j)$$

$$\gamma^{(i)}(j) = \mathbb{P}(Z_i = j \mid x_i; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$N_j = \sum_{i=1}^n \gamma^{(i)}(j) = \mathbb{E}[\#X_i\text{'s in class } j \mid x_i].$$

- ► The $\gamma_i^{(i)}$ is the **responsibility** of class *j* for the *i*-th data point.
- ► The solution to $\frac{d\ell}{d\mu_i} = 0$ satisfies

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(j) x_i$$

$$\frac{d\ell}{d\mu_j} = \sum_{i=1}^n \frac{\pi_j f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)} \Sigma_j^{-1}(x_i - \mu_j)$$

$$\gamma^{(i)}(j) = \mathbb{P}(Z_i = j \mid x_i; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$N_j = \sum_{i=1}^n \gamma^{(i)}(j) = \mathbb{E}[\#X_i\text{'s in class } j \mid x_i].$$

- ► The $\gamma_i^{(i)}$ is the **responsibility** of class *j* for the *i*-th data point.
- ► The solution to $\frac{d\ell}{d\mu_i} = 0$ satisfies

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(j) x_i$$

 $\frac{d\ell}{d\mu_{j}} = \sum_{i=1}^{n} \frac{\pi_{j} f_{j}(x_{i}; \mu_{j}, \Sigma_{j})}{\sum_{\ell=1}^{K} \pi_{\ell} f_{\ell}(x_{i}; \mu_{\ell}, \Sigma_{\ell})} \Sigma_{j}^{-1}(x_{i} - \mu_{j})$

$$\gamma^{(i)}(j) = \mathbb{P}(Z_i = j \mid x_i; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$N_j = \sum_{i=1}^n \gamma^{(i)}(j) = \mathbb{E}[\#X_i\text{'s in class } j \mid x_i].$$

- ► The $\gamma_i^{(i)}$ is the **responsibility** of class *j* for the *i*-th data point.
- ► The solution to $\frac{d\ell}{du}$ = 0 satisfies

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(j) x_i.$$

We can differentiate with respect to the (components of) Σ_j and solve for critical points. Doing so yields

$$\Sigma_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma^{(i)}(j) (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T}.$$

- Note similarity with a single Gaussian, but the sample covariances $(x_i \mu_j)(x_i \mu_j)^T$ are weighted by the $\gamma^{(i)}(j)$'s. These are called **responsibilities**.
- Exercise: Work out the details!

• We can differentiate with respect to the (components of) Σ_j and solve for critical points. Doing so yields

$$\Sigma_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma^{(i)}(j) (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T}.$$

- Note similarity with a single Gaussian, but the sample covariances $(x_i \mu_j)(x_i \mu_j)^T$ are weighted by the $\gamma^{(i)}(j)$'s. These are called **responsibilities**.
- Exercise: Work out the details!

We can differentiate with respect to the (components of) Σ_j and solve for critical points. Doing so yields

$$\Sigma_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma^{(i)}(j) (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T}.$$

- Note similarity with a single Gaussian, but the sample covariances $(x_i \mu_j)(x_i \mu_j)^T$ are weighted by the $\gamma^{(i)}(j)$'s. These are called **responsibilities**.
- Exercise: Work out the details!

▶ Differentiating with respect to π_i gives

$$\frac{d\ell}{d\pi_j} = \sum_{i=1}^n \frac{f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)}$$

But the π 's satisfy the constraint

$$g(\boldsymbol{\pi}) \stackrel{\text{def}}{=} \sum_{j} \pi_{j} = 1$$
.

so we need to use Lagrange multiplier to solve for constrained maxima:

$$\begin{aligned} 0 &= \frac{d\ell}{d\pi_k} - \lambda \frac{dg}{d\pi_k} \\ &= \sum_{i=1}^n \frac{f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)} - \lambda \\ &= \sum_{i=1}^n \gamma^{(i)}(j) - \lambda \pi_j & \text{multiplying by } \pi_j \\ &= N_j - \lambda \pi_j \end{aligned}$$

▶ Differentiating with respect to π_j gives

$$\frac{d\ell}{d\pi_j} = \sum_{i=1}^n \frac{f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)}$$

• But the π 's satisfy the constraint

$$g(\boldsymbol{\pi}) \stackrel{\text{def}}{=} \sum_{j} \pi_{j} = 1$$
.

so we need to use Lagrange multiplier to solve for constrained maxima:

$$\begin{aligned} 0 &= \frac{d\ell}{d\pi_k} - \lambda \frac{dg}{d\pi_k} \\ &= \sum_{i=1}^n \frac{f_j(x_i; \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i; \mu_\ell, \Sigma_\ell)} - \lambda \\ &= \sum_{i=1}^n \gamma^{(i)}(j) - \lambda \pi_j & \text{multiplying by } \pi_j \\ &= N_j - \lambda \pi_j \end{aligned}$$

Note that if $C_j = |\{i : Z_i = j\}|$, the number of X_i 's generated from class j, then

$$\sum_{j=1}^K N_j = \sum_j \mathbb{E}\left[C_j \mid \boldsymbol{x}\right] = \mathbb{E}\left[\sum_j C_j \middle| \boldsymbol{x}\right] = n.$$

Summing over j yields

$$0 = \sum_{j=1}^{K} N_j - \lambda \sum_{j} \pi_j = n - \lambda.$$

Thus $\lambda = n$ and substituting back we find

$$\pi_j = \frac{N_j}{n}$$

Note that if $C_j = |\{i : Z_i = j\}|$, the number of X_i 's generated from class j, then

$$\sum_{j=1}^{K} N_j = \sum_{j} \mathbb{E} \left[C_j \mid \boldsymbol{x} \right] = \mathbb{E} \left[\sum_{j} C_j \middle| \boldsymbol{x} \right] = n.$$

► Summing over *j* yields

$$0 = \sum_{j=1}^{K} N_j - \lambda \sum_{j} \pi_j = n - \lambda.$$

Thus $\lambda = n$ and substituting back we find

$$\pi_j = \frac{N_j}{n}$$

Note that if $C_j = |\{i : Z_i = j\}|$, the number of X_i 's generated from class j, then

$$\sum_{j=1}^{K} N_j = \sum_{j} \mathbb{E} \left[C_j \mid \boldsymbol{x} \right] = \mathbb{E} \left[\sum_{j} C_j \middle| \boldsymbol{x} \right] = n.$$

Summing over j yields

$$0 = \sum_{j=1}^{K} N_j - \lambda \sum_j \pi_j = n - \lambda.$$

Thus $\lambda = n$ and substituting back we find

$$\pi_j = \frac{N_j}{n} \, .$$

Recalling that

$$\gamma^{(i)}(j) = \mathbb{P}(Z_i = j \mid x_i; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \frac{\pi_j f_j(x_i \mid \mu_j, \Sigma_j)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x_i \mid \mu_\ell, \Sigma_\ell)}$$
$$N_j = \sum_{i=1}^n \gamma^{(j)}(i) = \mathbb{E}[C_j \mid \boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}]$$

any critical point (μ, Σ, π) of of the log-likelihood function should obey the system of equations

$$\mu_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(j) x_i \stackrel{\text{def}}{=} \bar{x}_j$$

$$\Sigma_j = \frac{1}{N_j} \sum_{i=1}^n \gamma^{(i)}(x_i - \mu_j) (x_i - \mu_j)^T$$

$$\pi_j = \frac{N_j}{n}.$$

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- They do lend themselves to an iterative scheme.
- The following is a special case of the EM-algorithm:
 - Initialize with any μ_0, Σ_0, π_0 .
 - ightharpoonup E-step. Use current μ , Σ and π to calculate the responsibilities γ 's.
 - ▶ *M*-step. Solve for μ_{u} , Σ_{u} and π_{u} using these γ 's.
 - Iterate.

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- They do lend themselves to an iterative scheme.
- ► The following is a special case of the EM-algorithm
 - Initialize with any μ_0, Σ_0, π_0 .
 - ightharpoonup E-step. Use current μ , Σ and π to calculate the responsibilities γ 's.
 - ightharpoonup M-step. Solve for μ_n, Σ_n and π_n using these γ 's.
 - lterate.

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- ► They do lend themselves to an iterative scheme.
- ► The following is a special case of the EM-algorithm:
 - lnitialize with any μ_0 , Σ_0 , π_0 .
 - **E**-step. Use current μ , **Σ** and π to calculate the responsibilities γ 's.
 - ► *M*-step. Solve for μ_u , Σ_u and π_u using these γ's.
 - Iterate.

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- They do lend themselves to an iterative scheme.
- ► The following is a special case of the EM-algorithm:
 - lnitialize with any μ_0 , Σ_0 , π_0 .
 - E-step. Use current μ , Σ and π to calculate the responsibilities γ 's.
 - ► *M*-step. Solve for μ_u , Σ_u and π_u using these γ's.
 - Iterate.

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- They do lend themselves to an iterative scheme.
- ► The following is a special case of the EM-algorithm:
 - lnitialize with any μ_0 , Σ_0 , π_0 .
 - **E**-step. Use current μ , **Σ** and π to calculate the responsibilities γ 's.
 - ► *M*-step. Solve for μ_u , Σ_u and π_u using these γ's.
 - Iterate.

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- ▶ They do lend themselves to an iterative scheme.
- ► The following is a special case of the EM-algorithm:
 - lnitialize with any μ_0 , Σ_0 , π_0 .
 - **E**-step. Use current μ , **Σ** and π to calculate the responsibilities γ 's.
 - ► *M*-step. Solve for μ_u , Σ_u and π_u using these γ's.
 - ► Iterate.

- Note that these equations which any critical point must obey are not a closed-form solution, since the γ 's depend on μ and Σ .
- ► They do lend themselves to an iterative scheme.
- ► The following is a special case of the EM-algorithm:
 - lnitialize with any μ_0 , Σ_0 , π_0 .
 - **E**-step. Use current μ , **Σ** and π to calculate the responsibilities γ 's.
 - ► *M*-step. Solve for μ_u , Σ_u and π_u using these γ's.
 - Iterate.

- ► Each iteration is guaranteed to increase the likelihood function.
- ► In general, there could be local max.
- Also note that the likelihood has singularities in this problem If you set one of the parameter values μ_j to x_{i_0} for a single i_0 , then the likelihood at a such a parameter combination is

$$\begin{split} L(\boldsymbol{\mu}, \boldsymbol{\sigma}) &= \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} + \sum_{k \neq j} \pi_k f_k(x_{i_0}; \mu_k, \sigma_k) \right] \\ &\times \prod_{i \neq i_0} \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2}(x_i - \mu_j)^2} + \sum_{k \neq j} \pi_k f_k(x_i; \mu_k, \sigma_k) \right] \end{split}$$

- ► The likelihood tends to ∞ as $\sigma_i \rightarrow 0$
- Note this does not occur in the K = 1 case
- In practice it may be assumed that σ_j is not (near) zero for any j, so a local max away from such singularities is desired.

- ► Each iteration is guaranteed to increase the likelihood function.
- In general, there could be local max.
- Also note that the likelihood has singularities in this problem If you set one of the parameter values μ_j to x_{i_0} for a single i_0 , then the likelihood at a such a parameter combination is

$$\begin{split} L(\boldsymbol{\mu}, \boldsymbol{\sigma}) &= \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} + \sum_{k \neq j} \pi_k f_k(x_{i_0}; \mu_k, \sigma_k) \right] \\ &\times \prod_{i \neq i_0} \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2} (x_i - \mu_j)^2} + \sum_{k \neq j} \pi_k f_k(x_i; \mu_k, \sigma_k) \right] \end{split}$$

- ► The likelihood tends to ∞ as $\sigma_i \rightarrow 0$!
- Note this does not occur in the K = 1 case.
- In practice it may be assumed that σ_j is not (near) zero for any j, so a local max away from such singularities is desired.

- ► Each iteration is guaranteed to increase the likelihood function.
- In general, there could be local max.
- Also note that the likelihood has singularities in this problem: If you set one of the parameter values μ_j to x_{i_0} for a single i_0 , then the likelihood at a such a parameter combination is

$$L(\boldsymbol{\mu}, \boldsymbol{\sigma}) = \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} + \sum_{k \neq j} \pi_k f_k(x_{i_0}; \mu_k, \sigma_k) \right]$$

$$\times \prod_{i \neq i_0} \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2}(x_i - \mu_j)^2} + \sum_{k \neq j} \pi_k f_k(x_i; \mu_k, \sigma_k) \right]$$

- ► The likelihood tends to ∞ as $\sigma_i \rightarrow 0$!
- Note this does not occur in the K = 1 case.
- In practice it may be assumed that σ_j is not (near) zero for any i, so a local max away from such singularities is desired.

- ► Each iteration is guaranteed to increase the likelihood function.
- In general, there could be local max.
- Also note that the likelihood has singularities in this problem: If you set one of the parameter values μ_j to x_{i_0} for a single i_0 , then the likelihood at a such a parameter combination is

$$L(\boldsymbol{\mu}, \boldsymbol{\sigma}) = \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} + \sum_{k \neq j} \pi_k f_k(x_{i_0}; \mu_k, \sigma_k) \right]$$

$$\times \prod_{i \neq i_0} \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2}(x_i - \mu_j)^2} + \sum_{k \neq j} \pi_k f_k(x_i; \mu_k, \sigma_k) \right]$$

- ► The likelihood tends to ∞ as $\sigma_i \rightarrow 0$!
- Note this does not occur in the K = 1 case.
- In practice it may be assumed that σ_j is not (near) zero for any i, so a local max away from such singularities is desired.

- ► Each iteration is guaranteed to increase the likelihood function.
- In general, there could be local max.
- Also note that the likelihood has singularities in this problem: If you set one of the parameter values μ_j to x_{i_0} for a single i_0 , then the likelihood at a such a parameter combination is

$$L(\boldsymbol{\mu}, \boldsymbol{\sigma}) = \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} + \sum_{k \neq j} \pi_k f_k(x_{i_0}; \mu_k, \sigma_k) \right]$$

$$\times \prod_{i \neq i_0} \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2}(x_i - \mu_j)^2} + \sum_{k \neq j} \pi_k f_k(x_i; \mu_k, \sigma_k) \right]$$

- ► The likelihood tends to ∞ as $\sigma_i \rightarrow 0$!
- Note this does not occur in the K = 1 case.
- In practice it may be assumed that σ_j is not (near) zero for any j, so a local max away from such singularities is desired.

- Each iteration is guaranteed to increase the likelihood function.
- In general, there could be local max.
- Also note that the likelihood has singularities in this problem: If you set one of the parameter values μ_i to x_{i_0} for a single i_0 , then the likelihood at a such a parameter combination is

$$L(\boldsymbol{\mu}, \boldsymbol{\sigma}) = \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} + \sum_{k \neq j} \pi_k f_k(x_{i_0}; \mu_k, \sigma_k) \right]$$

$$\times \prod_{i \neq i_0} \left[\frac{\pi_j}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2\sigma_j^2}(x_i - \mu_j)^2} + \sum_{k \neq j} \pi_k f_k(x_i; \mu_k, \sigma_k) \right]$$

- The likelihood tends to ∞ as $\sigma_i \rightarrow 0$!
- Note this does not occur in the K = 1 case.
- In practice it may be assumed that σ_i is not (near) zero for any j, so a local max away from such singularities is desired.

Another algorithm: *k*-means

- ▶ Problem: How to partition data $x_1,...,x_n$ in \mathbb{R}^d into K distinct classes?
- ightharpoonup The goal will be to pick classes and centers μ to minimize

$$J = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{i,k} \|x_i - \mu_k\|^2$$

where

$$r_{i,k} = \begin{cases} 1 & \text{if } x_i \text{ is assigned to class } k \\ 0 & \text{otherwise} \end{cases}$$

Note that no assumption about a distribution for the data is made here; the goal is simply to minimize the **distortion** measure *J*.

Another algorithm: *k*-means

- ▶ Problem: How to partition data $x_1, ..., x_n$ in \mathbb{R}^d into K distinct classes?
- ightharpoonup The goal will be to pick classes and centers μ to minimize

$$J = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{i,k} \|x_i - \mu_k\|^2$$

where

$$r_{i,k} = \begin{cases} 1 & \text{if } x_i \text{ is assigned to class } k \\ 0 & \text{otherwise} \end{cases}$$

Note that no assumption about a distribution for the data is made here; the goal is simply to minimize the **distortion** measure *J*.

Another algorithm: *k*-means

- ▶ Problem: How to partition data $x_1,...,x_n$ in \mathbb{R}^d into K distinct classes?
- ightharpoonup The goal will be to pick classes and centers μ to minimize

$$J = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{i,k} \|x_i - \mu_k\|^2$$

where

$$r_{i,k} = \begin{cases} 1 & \text{if } x_i \text{ is assigned to class } k \\ 0 & \text{otherwise} \end{cases}$$

▶ Note that no assumption about a distribution for the data is made here; the goal is simply to minimize the **distortion** measure *J*.

- ► E-step: pick r_i 's to minimize J, holding the μ_k 's constant.
- ▶ M-step: Minimize J holding r_i 's constant.
- ▶ Note the distortion separates into *K* separate optimization problems in the *M*-step,

$$J = \sum_{k=1}^{K} \sum_{x_i \in \mathcal{C}_j} \|x_i - \mu_j\|^2$$

► The solution to each is

$$\mu_j = \frac{1}{|\mathscr{C}_j|} \sum_{x_i \in \mathscr{C}_j} x_i$$

which is the mean of the points in class j.

- ► E-step: pick r_i 's to minimize J, holding the μ_k 's constant.
- ▶ M-step: Minimize J holding r_i 's constant.
- ▶ Note the distortion separates into *K* separate optimization problems in the *M*-step,

$$J = \sum_{k=1}^{K} \sum_{x_i \in \mathcal{C}_j} \|x_i - \mu_j\|^2$$

► The solution to each is

$$\mu_j = \frac{1}{|\mathscr{C}_j|} \sum_{x_i \in \mathscr{C}_j} x_i$$

which is the mean of the points in class j.

- ► E-step: pick r_i 's to minimize J, holding the μ_k 's constant.
- ▶ M-step: Minimize J holding r_i 's constant.
- ▶ Note the distortion separates into *K* separate optimization problems in the *M*-step,

$$J = \sum_{k=1}^{K} \sum_{x_i \in \mathcal{C}_j} \|x_i - \mu_j\|^2$$

► The solution to each is

$$\mu_j = \frac{1}{|\mathcal{C}_j|} \sum_{x_i \in \mathcal{C}_j} x_i$$

which is the mean of the points in class *j*.

- ► E-step: pick r_i 's to minimize J, holding the μ_k 's constant.
- ▶ M-step: Minimize J holding r_i 's constant.
- ▶ Note the distortion separates into *K* separate optimization problems in the *M*-step,

$$J = \sum_{k=1}^K \sum_{x_i \in \mathcal{C}_j} \|x_i - \mu_j\|^2$$

► The solution to each is

$$\mu_j = \frac{1}{|\mathscr{C}_j|} \sum_{x_i \in \mathscr{C}_j} x_i$$

which is the mean of the points in class *j*.

- ► E-step: pick r_i 's to minimize J, holding the μ_k 's constant.
- ▶ M-step: Minimize J holding r_i 's constant.
- ▶ Note the distortion separates into *K* separate optimization problems in the *M*-step,

$$J = \sum_{k=1}^K \sum_{x_i \in \mathcal{C}_j} \|x_i - \mu_j\|^2$$

► The solution to each is

$$\mu_j = \frac{1}{|\mathscr{C}_j|} \sum_{x_i \in \mathscr{C}_j} x_i$$

which is the mean of the points in class *j*.

- For estimation on the Gaussian mixture model, $\gamma^{(i)}(j)$ gives the posterior probability that the *i*-th variable belongs to the *j*-th component. This is a probabilistic assignment to classes.
- For *k*-means, a hard assignment is made. Each data point is assigned to one and only one class.
- ▶ Note that *k*-means does not make any model assumption.

From the README file for the PMTK MATLAB code, available at https://github.com/probml/pmtk3

PMTK is a collection of Matlab/Octave functions, written by Matt Dunham, Kevin Murphy and various other people. The toolkit is Machine learning: a probabilistic perspective, but can also be used independently of this book. The goal is to provide a unified conceptual and software framework encompassing machine learning, graphical models, and Bayesian statistics (hence the logo).

Initialization

Initialization

Initialization

- Goal: Maximize $p_X(x;\theta)$ over θ .
- ▶ We have **latent** variables **Z** which are unobserved.
- ► The **complete** likelihood

$$p_{X,Z}(x,z;\theta)$$

is often easier to optimize.

E-step: calculate

$$Q(\theta, \theta_{\text{old}}) := \mathbb{E}_{\boldsymbol{Z} \sim p_{\boldsymbol{Z}|\boldsymbol{X}}(\cdot|\boldsymbol{x}; \theta_{\text{old}})} \left[\ln p_{\boldsymbol{X}, \boldsymbol{Z}}(\boldsymbol{x}, \boldsymbol{Z}; \theta) \right]$$

- Goal: Maximize $p_X(x;\theta)$ over θ .
- ▶ We have **latent** variables **Z** which are unobserved.
- ► The **complete** likelihood

$$p_{X,Z}(x,z;\theta)$$

is often easier to optimize.

E-step: calculate

$$Q(\theta, \theta_{\text{old}}) := \mathbb{E}_{\boldsymbol{Z} \sim p_{\boldsymbol{Z}|\boldsymbol{X}}(\cdot|\boldsymbol{x};\theta_{\text{old}})} \left[\ln p_{\boldsymbol{X},\boldsymbol{Z}}(\boldsymbol{x},\boldsymbol{Z};\theta) \right]$$

- Goal: Maximize $p_X(x;\theta)$ over θ .
- ▶ We have **latent** variables **Z** which are unobserved.
- ► The **complete** likelihood

$$p_{X,Z}(\boldsymbol{x},\boldsymbol{z};\theta)$$

is often easier to optimize.

E-step: calculate

$$Q(\theta, \theta_{\text{old}}) := \mathbb{E}_{\boldsymbol{Z} \sim p_{\boldsymbol{Z}|\boldsymbol{X}}(\cdot|\boldsymbol{x}; \theta_{\text{old}})} \left[\ln p_{\boldsymbol{X}, \boldsymbol{Z}}(\boldsymbol{x}, \boldsymbol{Z}; \theta) \right]$$

- Goal: Maximize $p_X(x;\theta)$ over θ .
- ▶ We have **latent** variables **Z** which are unobserved.
- ► The **complete** likelihood

$$p_{X,Z}(\boldsymbol{x},\boldsymbol{z};\theta)$$

is often easier to optimize.

E-step: calculate

$$Q(\theta, \theta_{\text{old}}) := \mathbb{E}_{\boldsymbol{Z} \sim p_{Z|X}(\cdot \mid \boldsymbol{x}; \theta_{\text{old}})} \left[\ln p_{X,Z}(\boldsymbol{x}, \boldsymbol{Z}; \theta) \right]$$

- Goal: Maximize $p_X(x;\theta)$ over θ .
- ▶ We have **latent** variables **Z** which are unobserved.
- ► The **complete** likelihood

$$p_{X,Z}(\boldsymbol{x},\boldsymbol{z};\theta)$$

is often easier to optimize.

E-step: calculate

$$Q(\theta, \theta_{\text{old}}) := \mathbb{E}_{\boldsymbol{Z} \sim p_{\boldsymbol{Z}|\boldsymbol{X}}(\cdot|\boldsymbol{x}; \theta_{\text{old}})} \left[\ln p_{\boldsymbol{X}, \boldsymbol{Z}}(\boldsymbol{x}, \boldsymbol{Z}; \theta) \right]$$

- ▶ In the case of Gaussian mixtures, it is convenient to use $Z_i = (Z_{i1}, ..., Z_{iK})$, where $Z_{ij} = 1$ if and only if X_i comes from the j-th component Normal, and $Z_{ij} = 0$ otherwise.
- ► In that case, the joint density for both *X* and *Z* is

$$\begin{split} \log f_{X,Z}(\pmb{x}, \pmb{z}; \pmb{\mu}, \pmb{\Sigma}, \pi)) &= \sum_{i=1}^{n} \log \prod_{j=1}^{K} [\pi_{j} f_{j}(x_{i} \mid \mu_{j}, \Sigma_{j})]^{z_{i,j}} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \log \pi_{j} + \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \log f_{j}(x_{i} \mid \mu_{j}, \Sigma_{j}) \end{split}$$

- ▶ In the case of Gaussian mixtures, it is convenient to use $Z_i = (Z_{i1}, ..., Z_{iK})$, where $Z_{ij} = 1$ if and only if X_i comes from the j-th component Normal, and $Z_{ij} = 0$ otherwise.
- ▶ In that case, the joint density for both **X** and **Z** is

$$\log f_{X,Z}(\mathbf{x}, \mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})) = \sum_{i=1}^{n} \log \prod_{j=1}^{K} [\pi_{j} f_{j}(x_{i} \mid \mu_{j}, \Sigma_{j})]^{z_{i,j}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \log \pi_{j} + \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \log f_{j}(x_{i} \mid \mu_{j}, \Sigma_{j})$$

Let $\theta = (\mu, \Sigma, \pi)$. Taking an expectation with respect to Z under the distribution $p_{Z|X}(\cdot \mid x; \theta_{\text{old}})$ yields

$$\mathbb{E}[\log p_{X,Z}(\boldsymbol{x},\boldsymbol{Z};\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi})] = \sum_{j=1}^{K} \log \pi_{j} \sum_{i=1}^{n} \mathbb{P}(Z_{i,j} = 1 \mid \boldsymbol{x};\boldsymbol{\theta}_{\text{old}})$$

$$+ \sum_{j=1}^{K} \sum_{i=1}^{n} \mathbb{P}(Z_{i,j} = 1 \mid \boldsymbol{x};\boldsymbol{\theta}_{\text{old}}) \log f_{j}(x_{i} \mid \mu_{j}, \Sigma_{j})$$

$$= \sum_{j} N_{j} \log \pi_{j} + \sum_{j} \sum_{i} \gamma^{(i)}(j) f_{j}(x_{i} \mid \mu_{j}, \Sigma_{j})$$

 \triangleright The γ 's are computed just as before, using Bayes Theorem:

$$\gamma_j^{(i)} = \frac{\pi_j f_j(x_i; \theta_{\text{old}})}{\sum_k \pi_k f_k(x_i; \theta_{\text{old}})}$$

Mixtures of Bernoullis

Consider a vector of *D* binary variables X_i , where i = 1, ..., D.

$$p(x_1,...,x_d;\boldsymbol{\mu}) = \prod_{i=1}^D \mu_i^{x_i} (1-\mu_i)^{1-x_i}.$$

Now consider a mixture of these distributions:

$$p(x_1,...,x_d;\mu,\pi) = \sum_{j=1}^k \pi_j p(x_1,...,x_d;\mu_j)$$

The modeling advantage is that there can now be non-zero correlation between the bits.

Mixtures of Bernoullis

Consider a vector of *D* binary variables X_i , where i = 1, ..., D.

$$p(x_1,...,x_d;\boldsymbol{\mu}) = \prod_{i=1}^D \mu_i^{x_i} (1-\mu_i)^{1-x_i}.$$

Now consider a mixture of these distributions:

$$p(x_1,...,x_d;\mu,\pi) = \sum_{j=1}^k \pi_j p(x_1,...,x_d;\mu_j).$$

The modeling advantage is that there can now be non-zero correlation between the bits.

Mixtures of Bernoullis

Consider a vector of *D* binary variables X_i , where i = 1, ..., D.

$$p(x_1,...,x_d;\boldsymbol{\mu}) = \prod_{i=1}^D \mu_i^{x_i} (1-\mu_i)^{1-x_i}.$$

Now consider a mixture of these distributions:

$$p(x_1,...,x_d;\mu,\pi) = \sum_{j=1}^k \pi_j p(x_1,...,x_d;\mu_j).$$

► The modeling advantage is that there can now be non-zero correlation between the bits.

Now sample $(x_1,...,x_n)$ independently from the above mixture distribution. Note each $x_i = (x_{i,1},...,x_{i,d})$ has d-components.

$$\begin{aligned} p_{X,Z}(x, \mathbf{z}) &= \prod_{i=1}^{n} \prod_{j=1}^{K} \left[\prod_{\ell=1}^{D} \mu_{j,\ell}^{x_{i,\ell}} (1 - \mu_{j,\ell})^{1 - x_{i,\ell}} \pi_{j} \right]^{z_{i,j}} \\ \log p_{X,Z}(x, \mathbf{z}) &= \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \left[\log \pi_{j} + \sum_{\ell=1}^{D} [x_{i,\ell} \log \mu_{j,\ell} + (1 - x_{i,\ell}) \log (1 - \mu_{j,\ell})] \right]. \end{aligned}$$

Let $\theta = (\mu, \pi)$. As before,

$$\gamma_j^{(i)} = \mathbb{P}(Z_{i,j} = 1 \mid x_i; \theta_{\text{old}}) = \frac{\pi_j p(x_i; \mu_j)}{\sum_k \pi_k p(x_i; \mu_k)}$$

► Recall

$$O(\theta, \theta_0) = \mathbb{E}[n_{Y,Z}(\mathbf{r}, \mathbf{Z})]$$

where the expectation is with respect to Z with law

Now sample $(x_1,...,x_n)$ independently from the above mixture distribution. Note each $x_i = (x_{i,1},...,x_{i,d})$ has d-components.

$$\begin{aligned} p_{X,Z}(\mathbf{x}, \mathbf{z}) &= \prod_{i=1}^{n} \prod_{j=1}^{K} \left[\prod_{\ell=1}^{D} \mu_{j,\ell}^{x_{i,\ell}} (1 - \mu_{j,\ell})^{1 - x_{i,\ell}} \pi_{j} \right]^{z_{i,j}} \\ \log p_{X,Z}(\mathbf{x}, \mathbf{z}) &= \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \left[\log \pi_{j} + \sum_{\ell=1}^{D} [x_{i,\ell} \log \mu_{j,\ell} + (1 - x_{i,\ell}) \log (1 - \mu_{j,\ell})] \right]. \end{aligned}$$

Let $\theta = (\mu, \pi)$. As before,

$$\gamma_j^{(i)} = \mathbb{P}(Z_{i,j} = 1 \mid \mathbf{x}_i; \theta_{\text{old}}) = \frac{\pi_j p(\mathbf{x}_i; \mu_j)}{\sum_k \pi_k p(\mathbf{x}_i; \mu_k)}$$

► Recall

$$O(\theta, \theta_0) = \mathbb{E}[n_{Y,Z}(x, Z)].$$

where the expectation is with respect to Z with law

Now sample $(x_1,...,x_n)$ independently from the above mixture distribution. Note each $x_i = (x_{i,1},...,x_{i,d})$ has d-components.

$$p_{X,Z}(\mathbf{x}, \mathbf{z}) = \prod_{i=1}^{n} \prod_{j=1}^{K} \left[\prod_{\ell=1}^{D} \mu_{j,\ell}^{x_{i,\ell}} (1 - \mu_{j,\ell})^{1 - x_{i,\ell}} \pi_{j} \right]^{z_{i,j}}$$

$$\log p_{X,Z}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \left[\log \pi_{j} + \sum_{\ell=1}^{D} [x_{i,\ell} \log \mu_{j,\ell} + (1 - x_{i,\ell}) \log (1 - \mu_{j,\ell})] \right].$$

Let $\theta = (\mu, \pi)$. As before,

$$\gamma_j^{(i)} = \mathbb{P}(Z_{i,j} = 1 \mid \boldsymbol{x}_i; \boldsymbol{\theta}_{\text{old}}) = \frac{\pi_j p(\boldsymbol{x}_i; \mu_j)}{\sum_k \pi_k p(\boldsymbol{x}_i; \mu_k)}$$

Recall

$$O(\theta, \theta_0) = \mathbb{E}[p_{X|Z}(x, Z)],$$

where the expectation is with respect to Z with law

Now sample $(x_1, ..., x_n)$ independently from the above mixture distribution. Note each $x_i = (x_{i,1}, ..., x_{i,d})$ has d-components.

$$p_{X,Z}(\mathbf{x}, \mathbf{z}) = \prod_{i=1}^{n} \prod_{j=1}^{K} \left[\prod_{\ell=1}^{D} \mu_{j,\ell}^{x_{i,\ell}} (1 - \mu_{j,\ell})^{1 - x_{i,\ell}} \pi_{j} \right]^{z_{i,j}}$$

$$\log p_{X,Z}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \sum_{j=1}^{K} z_{i,j} \left[\log \pi_{j} + \sum_{\ell=1}^{D} [x_{i,\ell} \log \mu_{j,\ell} + (1 - x_{i,\ell}) \log (1 - \mu_{j,\ell})] \right].$$

Let $\theta = (\mu, \pi)$. As before,

$$\gamma_j^{(i)} = \mathbb{P}(Z_{i,j} = 1 \mid \boldsymbol{x}_i; \theta_{\text{old}}) = \frac{\pi_j p(\boldsymbol{x}_i; \mu_j)}{\sum_k \pi_k p(\boldsymbol{x}_i; \mu_k)}$$

Recall

$$O(\theta, \theta_0) = \mathbb{E}[p_{X|Z}(x, Z)],$$

where the expectation is with respect to Z with law $p_{Z|X}(z \mid x; \theta_0)$

$$Q(\theta, \theta_0) = \sum_{j=1}^{K} \gamma^{(i)}(j) \log \pi_j$$

$$+ \underbrace{\sum_{j} \sum_{\ell} \left[\log \mu_{j,\ell} \sum_{i} \gamma^{(i)}(j) x_{i,\ell} + \log(1 - \mu_{j,\ell}) \sum_{i} \gamma^{(i)}(j) (1 - x_{i,\ell}) \right]}_{L_{2}}$$

- ► The maximization given the γ 's can be carried out separately for L_1 and L_2 .
- ► L_1 we have seen before and it has maximum at $\pi_j = N_j/N$, where $N_j = \sum_i \gamma_i^{(i)}$.

▶ For L_2 , fix j, ℓ .

$$\frac{dL_{2,j,\ell}}{d\mu_{j,\ell}} = \frac{1}{\mu_{j,\ell}} \sum_{i} \gamma^{(i)}(j) x_{i,\ell} - \frac{1}{(1-\mu_{j,\ell})} (N_j - \sum_{i} \gamma^{(i)}(j) x_{i,\ell})$$

Setting the above equal to 0 and solving yields, coordinatewise,

$$\boldsymbol{\mu}_j = \frac{1}{N_i} \sum_i \gamma_j^{(i)} \boldsymbol{x}_i,$$

Mixture of Bernoullis

