УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Андрија Д. Урошевић

ИНТУИЦИОНИСТИЧКА ТЕОРИЈА ТИПОВА КАО УВОД У ХОМОТОПНУ ТЕОРИЈУ ТИПОВА

мастер рад

Ментор:

др Сана Стојановић-Ђурђевић, доцент Универзитет у Београду, Математички факултет

Чланови комисије:

проф. др Филип Марић, редовни професор Универзитет у Београду, Математички факултет

др Иван Чукић, доцент Универзитет у Београду, Математички факултет

Датум одбране: 29. фебруар 2024.

Наслов мастер рада: Интуиционистичка теорија типова као увод у хомотопну теорију типова

Резиме: Homotopy Type Theory/Univalent Foundations (HoTT/UF) is a revolutionary approach to the foundation of mathematics. Although it's revolutionary, HoTT/UF is very slowly gaining popularity among a broader circle of mathematicians and computer scientists. One of the reasons is that during formalization one requires both theoretical knowledge and proof-assistance skills. Acquiring those prerequisites is partially based on one's background. Mathematicians lack functional programming skills, on the other hand, computer scientists lack theoretical knowledge. A few materials tackle both areas, but they are lacking interactability. This thesis proposes a material that formalizes one theoretical area of HoTT/UF in Agda and is doing so while interacting with the user input.

Кључне речи: хомотопна теорија типова, интерактивно доказивање, агда

Садржај

1	Увс	од	2	
2	Интуиционистичка теорија типова			
	2.1	Правила закључивања	5	
	2.2	Зависни типови	6	
	2.3	Типови зависних функција	7	
	2.4	Индуктивни типови	8	
	2.5	Искази као типови	16	
	2.6	Хијерархија универзума и универзум типови	17	
	2.7	Типови идентитети	18	
	2.8	Ekvivalentnosti	25	
	2.9	Aksioma univalentnosti	25	
3	Агд	ga e e e e e e e e e e e e e e e e e e e	26	
4	Зак	льучак	27	

Глава 1

Увод

- Хомотопна теорија типова = интуиционистичка теорија типова + високи индуктивни типови + аксиома унивалентности.
- Пер Мартин-Луф теорија типова се заснива на интиуционистичком програму који је настао по Брауверу.
- Математичко резтоновање је људска активност и математика је језик у коме се математичке идеје преносе.
- Фундаментална људска активност.
- Конструктивна теорија је *доказно релеваншна*, тј. доказ је математички објекат као и сваки други.
- Тврђења можемо интерпретирати као типове, те ће доказ представљати $\bar{u}posepy~\bar{w}u\bar{u}a$, тј. конструисање терма одређеног типа. (Јако битна уврнута идеја)
- Запажање: Хомотопна тероја и теорија типова представљају исту ствар.
- Хомотопна теорија се бави непрекидним пресликавањима која су *хомо-шойна* између себе, тј. могу се "непрекидно деформисати" једна у друге.
- Тројство израчуњивости: Програмерска интерпретација, хомотопна интерпретација и логичка интерпретација.
- Типско расуђивање t: T читамо као t је терм типа T или терм t настањује T. У програмерској интерпретацији тип представља тип, док терм

неког типа представља израз тог типа. У хомотопној интерпретацији тип представља простор, док терм неког типа представља тачку у том простору.

- Пример јединичног типа 1: јединични (unit у програмерском смислу), јединствени (The у логичком смислу), и контрактибилни (у хомотопном смислу) тип.
- Интенционални и екстенционални типови? (нешто чуно, проучити)
- Раселов парадокс као мотивација за теорију типова.

Глава 2

Интуиционистичка теорија типова

Интуиционистичка теорија типова или Пер Мартин-Луф теорија типова је математичка теорија конструкција. Тип представља врсту конструкције. Елемент, терм или тачка представља резултат конструкције неког типа. Прецизније, елемент a типа A записујемо као a:A, и кажемо да елемент a настањује тип A. Битно је напоменути да терм не може да "живи самостално" тј. терм увек мора да настањује неки тип.

Конструкција типова се састоји из низа дедуктивних *фравила закључивања*. Правило закључивања записујемо као

$$\frac{\mathcal{H}_1 \qquad \mathcal{H}_2 \qquad \dots \qquad \mathcal{H}_n}{\mathcal{C}}$$

где расуђивања $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_n$ називамо \bar{u} ремисе или $xu\bar{u}o\bar{w}$ езе, а расуђивање \mathcal{C} називамо sakручак.

Дефиниција 2.0.1. Свако *расуђивање* је облика $\Gamma \vdash \mathcal{J}$, где је Γ *кон\overline{w}екс\overline{w} и \mathcal{J} \overline{w}еза расуђивања.*

Дефиниција 2.0.2. *Коншексш расуђивања* је коначна листа узајамно зависних променљивих декларисаних на следећи начин

$$x_1: A_1, x_2: A_2(x_1), \ldots, x_n: A_n(x_1, \ldots, x_{n-1}),$$

под условом да за свако $1 \leq k \leq n$ можемо да изведемо расуђивање

$$x_1: A_1, x_2: A_2(x_1), \dots, x_{k-1}: A_{k-1}(x_1, \dots, x_{k-2}) \vdash A_k(x_1, x_2, \dots, x_{k-1}).$$

Дефиниција 2.0.3. *Теза расуђивања* може имати четири врсте расуђивања и то су:

(i) A је $(go\delta po-\phi op \mu up a h)$ $\overline{u}u\overline{u}$ у контексту Γ

$$\Gamma \vdash A \text{ type}$$

(ii) A и B су расуђивачки једнаки \overline{w} и \overline{u} ови у контексту Γ

$$\Gamma \vdash A \equiv B \text{ type}$$

(iii) a је eлемен \overline{w} типа A у контексту Γ

$$\Gamma \vdash a : A$$

(iv) a и b су $pacy\hbar uвачки <math>jeghaku$ елемен $\overline{u}u$ типа A у контексту Γ

$$\Gamma \vdash a \equiv_A b : A$$

2.1 Правила закључивања

Интуиционистичка теорија типова, као и други математички формализми, захтева скуп правила закључивања на којима ће се формализам заснивати. Та правила називамо $c\overline{w}pyk\overline{w}ypha$ $\overline{w}paeuna$.

Пример структурних правила закључивања која описују да је расуђивачка једнакост релација еквиваленције:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \equiv A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash A' \equiv A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash A \equiv A'' \text{ type}} \quad \frac{\Gamma \vdash A \equiv A'' \text{ type}}{\Gamma \vdash A \equiv A'' \text{ type}}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv_A a : A} \quad \frac{\Gamma \vdash a \equiv_A a' : A}{\Gamma \vdash a' \equiv_A a : A} \quad \frac{\Gamma \vdash a \equiv_A a' : A}{\Gamma \vdash a \equiv_A a'' : A}$$

Исцрпна листа структурних правила закључивања у интуиционистичкој теорији типова се може наћи у [rijke2022intro]. Da li sada ovo raspisivati?

2.2 Зависни типови

Из дефиниције контекста можемо видети да неки типови могу зависити од неких термова. На пример, тип $A_2(x_1)$ зависи од терма $x_1:A_1$, тј. за разне термове $x_1:A_1$ имамо разне типове $A_2(x_1)$. Ову идеју можемо уопштити помоћу следећих дефиниција:

Дефиниција 2.2.1. Нека је тип A у контексту Γ . Φ амилија типова над A у контексту Γ је тип B(x) у контексту $\Gamma, x : A$, тј.

$$\Gamma, x : A \vdash B(x)$$
 type.

Кажемо да је B фамилија типова над A у контексту Γ . Алтернативно, кажемо да је B(x) тип индексиран са x:A у контексту Γ .

Дефиниција 2.2.2. Нека је B фамилија типова над A у контексту Γ . Ceкција фамилије B над типом A у контексту Γ је елемент типа B(x) у контексту $\Gamma, x : A, \tau$ ј.

$$\Gamma, x : A \vdash b(x) : B(x).$$

Кажемо да је b секција фамилије B над A у контексту Γ . Алтернативно, кажемо да да је b(x) елемент типа B(x) индексиран са x:A у контексту $\Gamma, x:A$.

Дефиниција 2.2.3. Нека је B фамилија типова над A у контексту Γ , и нека је a:A. Кажемо да је B[a/x] влакно од B за параметар a, где B[a/x] представља замену свих појављивања x у B са a. Нит од B за параметар a крађе записујемо као B(a).

Дефиниција 2.2.4. Нека је b секција фамилије типова B над A у контексту Γ . Кажемо да је b[a/x] вреднос \overline{u} од b за параметар a, где b[a/x] представља замену свих појављивања x у b са a. Такође, вредност од b за параметар a крађе записујемо као b(a).

2.3 Типови зависних функција

У математици заснованој на теорији скупова функција $f:A\to B$ дефинисана је над одређеним доменом A и кодоменом B. У теорији типова то не мора да буде случај, тј. кодомен може зависити од елемента над којим се функција примељује. Прецизније, посматрајмо секцију b фамилије типова B над A у контексту Γ . Један начин је да b посматрамо као функцију mapstob(x). Тада b(x) настањује тип B(x) који зависи од x:A. Због тога за разне елементе x:A домена имамо разне кодомене, те има смисла говорити о типу abuchux byhkuja $\prod_{(x:A)} B(x)$.

Спецификација типа зависних функција $\prod_{(x:A)} B(x)$ је дата следећим правилима закључивања:

$$\begin{array}{c|c} & & & & \prod \text{-introl} \\ \hline \Gamma, x: A \vdash B(x) \text{ type} \\ \hline \Gamma \vdash \prod_{(x:A)} B(x) \text{ type} \end{array} \qquad \begin{array}{c} & & \prod \text{-introl} \\ \hline \Gamma, x: A \vdash b(x): B(x) \\ \hline \Gamma \vdash \lambda x. b(x): \prod_{(x:A)} B(x) \end{array} \qquad \begin{array}{c} & \prod \text{-elim} \\ \hline \Gamma \vdash f: \prod_{(x:A)} B(x) \\ \hline \Gamma, x: A \vdash f(x): B(x) \end{array}$$

$$\frac{[\prod\text{-comp}_1]}{\Gamma, x : A \vdash b(x) : B(x)} \qquad \frac{[\prod\text{-comp}_2]}{\Gamma \vdash f : \prod_{(x:A)} B(x)}$$
$$\frac{\Gamma \vdash (\lambda y. b(y))(x) \equiv b(x) : B(x)}{\Gamma \vdash \lambda x. f(x) \equiv f : \prod_{(x:A)} B(x)}$$

Специјалан случај типа зависних функција је тип (уобичајених) ϕy нкција $A \to B$. Уколико су типови A и B у контексту Γ , тј. тип B не зависи од елемената типа A, тада $\prod_{(x:A)} B$ представља тип (уобичајених) функција.

Дефиниција 2.3.1. Тип (уобичајених) *функција* $A \to B$ дефинишемо као:

$$A \to B := \prod_{(x:A)} B.$$

Ако је $f: A \to B$ функција, тада је A домен, а B кодомен функције f.

Дефиниција 2.3.2. За сваки тип A дефинишемо $\phi y + \kappa u u j y u g = \kappa u u u u e u a id_A : A \to A$ као id_A : $\Delta x = \lambda x \cdot x$.

Дефиниција 2.3.3. За свака три типа A, B, и C дефинишемо ком \bar{u} озицију сомр : $(B \to C) \to (A \to B) \to A \to C$ као сомр : $\equiv \lambda g.\lambda f.\lambda g(f(x))$.

Може се показати да је композиција асоцијативна, као и да је функција идентитета неутрал за композицију функција. Због сагласности типова имамо леви неутрал id_B и десни неутрал id_A .

2.4 Индуктивни типови

Поред типова зависних функција постоји и класа *индукшивних шийова*. Сваки индуктивни тип се дефинише помоћу следеће спецификације:

- (i) *Формирање* типа описује начин на који се дати тип формира.
- (ii) *Консшруисање* описује на који начин се уводе нови канонични термови датог типа.
- (iv) *Правила израчунавања* захтевају да се индуктивно дефинисана секција произвољне фамилије типова над датим типом слаже по конструкторима који уводе нове каноничне термове.

Обично се, поред ових спецификација, уводи и *фравило рекурзије* које је специјални случај правила индукције. Код правила рекурзије не конструишемо секцију произвољне фамилије типова над датим типом, већ само константну фамилију над датим типом.

У наставку су наведене спецификације за уобичајене индуктивне типове: тип природних бројева \mathbb{N} , празни тип \mathbb{O} , јединични тип $\mathbb{1}$, типови копроизвода A+B, тип зависних парова $\sum_{(x:A)} B(x)$, као и специјални случајеви ових типова. Поред њих, у засебном поглављу ће бити представљени типови идентитети $x=_A y$.

Тип природних бројева

Тип природних бројева $\mathbb N$ представља тип кога настањују природни бројеви $0_{\mathbb N}, 1_{\mathbb N}, 2_{\mathbb N}, \dots$ Прецизније, тип природних бројева $\mathbb N$ дефинишемо следећом спецификацијом:

$$\frac{\left[\mathbb{N}\text{-intr}\right]}{\mathbb{H} \ \text{N type}} \quad \frac{\left[\mathbb{N}\text{-intro}_{0_{\mathbb{N}}}\right]}{\mathbb{H} \ 0_{\mathbb{N}} : \mathbb{N}} \quad \frac{\left[\mathbb{N}\text{-intro}_{\text{succ}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}}$$

$$\frac{\left[\mathbb{N}\text{-indd}\right]}{\mathbb{H} \ \text{comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}}$$

$$\frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{0_{\mathbb{N}}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\left[\mathbb{N}\text{-comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}\right]}{\mathbb{H} \ \text{comp}_{\mathbb{N}}^{\text{ind}_{\mathbb{N}}}} \quad \frac{\mathbb{H} \ \mathbb{H} \ \mathbb{H$$

По правилу N-form, тип природних бројева N може да се формира из празног контекста. Другим речима, постојање типа природних бројева N не зависи од постојања других типова. Даље, имамо два конструктора помоћу којих конструишемо све каноничке термове типа N. Први конструктор је константа $\mathbf{0}_{\mathbb{N}}:\mathbb{N}$ и он говори да је $\mathbf{0}_{\mathbb{N}}$ канонични терм типа N. Други конструктор је функција $\mathrm{succ}_{\mathbb{N}}:\mathbb{N}\to\mathbb{N}$ и она говори да ће $\mathrm{succ}_{\mathbb{N}}(n)$ бити канонични терм

типа $\mathbb N$ ако је $n:\mathbb N$ канонични терм. Због тога су $0_{\mathbb N}$, $\operatorname{succ}_{\mathbb N}(0_{\mathbb N})$, $\operatorname{succ}_{\mathbb N}(\operatorname{succ}_{\mathbb N}(0_{\mathbb N}))$, . . . канонични термови који настањују тип $\mathbb N$.

Правила формирања и конструкције нам говоре о томе под којим условима се може формирати тип, и како конструисати каноничне термове тог типа. Потребно је још дефинисати и начин на који се тип и елементи тог типа користе. Због тога се уводи индуктивно правило и правила израчунавања. Да би конструисали елемент $\mathrm{ind}_{\mathbb{N}}(p_{0_{\mathbb{N}}},p_{\mathsf{succ}_{\mathbb{N}}}):\prod_{(n:\mathbb{N})}P(n)$ потребно је конструисати елемент $p_{0_{\mathbb{N}}}:P(0_{\mathbb{N}})$ (база индукције) і $p_{\mathsf{succ}_{\mathbb{N}}}:\prod_{n:\mathbb{N}}P(n)\to P(\mathsf{succ}_{\mathbb{N}}(n))$ (индукшивни корак). Даље, за сваки од конструктора треба увести правило израчунавања у складу са зависном функцијом $\mathrm{ind}_{\mathbb{N}}(p_{0_{\mathbb{N}}},p_{\mathsf{succ}_{\mathbb{N}}}):\prod_{(n:\mathbb{N})}P(n)$. Због тога имамо два правила израчунавања \mathbb{N} -сотр $_{\mathbb{N}}$ і \mathbb{N} -сотр $_{\mathsf{succ}_{\mathbb{N}}}$.

Специјални случај индукције типа природних бројева је рекурзија типа природних бројева, у којој тип P не зависи од \mathbb{N} . Тада добијамо функцију $\operatorname{rec}_{\mathbb{N}}(a_{0_{\mathbb{N}}},a_{\operatorname{succ}_{\mathbb{N}}}):\mathbb{N}\to A$, под условом да имамо елементе $a_{0_{\mathbb{N}}}:A$ и $a_{\operatorname{succ}_{\mathbb{N}}}:\mathbb{N}\to A\to A$.

Правило индукције, заједно са правилом рекурзије, омогућава дефинисање разних функција над природним бројевима. Да би дефинисали операцију сабирања природних бројева $+_{\mathbb{N}}: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ можемо искористити правило рекурзије, тј. функцију $\operatorname{rec}_{\mathbb{N}}: A \to (\mathbb{N} \to A \to A) \to \mathbb{N} \to A$. За тип A узећемо \mathbb{N} . Због тога, сабирање природних бројева дефинишемо као:

$$m +_{\mathbb{N}} n :\equiv \operatorname{rec}_{\mathbb{N}}(m, \lambda n. \lambda r. \operatorname{succ}_{\mathbb{N}}(r), n).$$

Заиста, за овако дефинисану операцију сабирања важи:

$$\begin{split} m +_{\mathbb{N}} \mathbf{0}_{\mathbb{N}} &\equiv m; \\ m +_{\mathbb{N}} \operatorname{succ}_{\mathbb{N}}(n) &\equiv \operatorname{succ}_{\mathbb{N}}(m +_{\mathbb{N}} n). \end{split}$$

Слично, множење природних бројева $\times_{\mathbb{N}}:\mathbb{N}\to\mathbb{N}\to\mathbb{N}$ можемо дефинисати као

$$m \times_{\mathbb{N}} n :\equiv \operatorname{rec}_{\mathbb{N}}(0_{\mathbb{N}}, \lambda n. \lambda r. m +_{\mathbb{N}} r, n).$$

Такође, за овако дефинисану операцију множења важи:

$$\begin{split} m \times_{\mathbb{N}} \mathbf{0}_{\mathbb{N}} &\equiv \mathbf{0}_{\mathbb{N}}; \\ m \times_{\mathbb{N}} \operatorname{succ}_{\mathbb{N}}(n) &\equiv (m +_{\mathbb{N}} (m \times_{N} n)). \end{split}$$

Можемо приметити шаблон између дефинисања операција преко рекурзивног правила и правила која захтевамо да важе по конструкторима. Наиме, уколико желимо да дефинишемо функцију $f: \mathbb{N} \to A$ за коју важи:

$$f(0_{\mathbb{N}}) \equiv \Phi_{0_{\mathbb{N}}};$$

$$f(\operatorname{succ}_{\mathbb{N}}(n)) \equiv \Phi_{\operatorname{succ}_{\mathbb{N}}},$$

где је $\Phi_{0\mathbb{N}}$ израз типа A, и $\Phi_{\mathsf{succ}_{\mathbb{N}}}$ израз типа A који може садржати n и f(n). Тада функцију $f: \mathbb{N} \to A$ дефинишемо као:

$$f :\equiv \operatorname{rec}_{\mathbb{N}}(\Phi_{0_{\mathbb{N}}}, \lambda n. \lambda r. \Phi'_{\operatorname{succ}_{\mathbb{N}}}),$$

где $\Phi'_{\mathsf{succ}_{\mathbb{N}}}$ добијемо из $\Phi_{\mathsf{succ}_{\mathbb{N}}}$ тако што сва појављивања f(n) заменимо са r. Овај поступак дефинисања можемо уопштити и на индуктивно правило, и тада се он назива $y\bar{u}$ аривање шаблона (енгл. $pattern\ matching$).

Празни тип

Празни тип 0 је дегенерисани пример индуктивног типа кога не настањује ни један елемент. Прецизније, празни тип 0 дефинишемо следећом спецификацијом.

$$[\mathbb{0}\text{-form}] \ \ \overline{\vdash \mathbb{0} \ \text{type}} \quad [\mathbb{0}\text{-ind}] \ \ \underline{\frac{\Gamma, 0 \vdash P(x) \ \text{type}}{\Gamma \vdash \text{ind}_{\mathbb{0}} : \prod_{(x:\mathbb{0})} P(x)}} \quad [\mathbb{0}\text{-rec}] \ \ \underline{\frac{\Gamma \vdash A \ \text{type}}{\Gamma \vdash \text{rec}_{\mathbb{0}} : \mathbb{0} \to A}}$$

Како празан тип $\mathbb O$ не настањује ни један елемент, за њега не постоји ни један конструктор, и самим тим нема ни једно правило израчунавања. Може да се формира из празног контекста, а његово правило индукције тврди да за било коју фамилију типова P над $\mathbb O$ постоји елемент $\mathrm{ind}_{\mathbb O}:\prod_{(x:\mathbb O)}P(x)$. Чешће се користи правило рекурзије које тврди да уколико конструишемо елемент $x:\mathbb O$, онда можемо да конструишемо елемент $\mathrm{rec}_{\mathbb O}(x):A$ било ког типа A. Правило рекурзије за празни тип $\mathbb O$ се обично назива и $\bar u$ равило кон $\bar u$ равило $\bar u$ ро $\bar u$ ивречнос $\bar u$ и.

Дефиниција 2.4.1. За сваки тип A дефинишемо тип $ne\bar{\imath}auuje$ od A као $\neg A := A \to \mathbb{O}$. Поред тога, кажемо да је тип A $\bar{\imath}pasan$ ако његову негацију настањује неки елемент, тј. $empty(A) := A \to \mathbb{O}$.

Приметимо да је $gy\bar{u}$ ла не $\bar{\imath}$ ација од A дефинисана као $\neg\neg A:=(A\to \mathbb{O})\to \mathbb{O}$. Због тога, не мора да важи $\neg\neg A\to A$, те није могуће изводити доказе контрадикцијом.

Јединични тип

Јединични тип 1 је индуктивни тип кога настањује само елемент ★. Прецизније, јединични тип 1 дефинишемо следећом спецификацијом.

Јединични тип $\mathbb{1}$ може да се формира из празног контекста, а његово правило индукције тврди да за било коју фамилију типова P над $\mathbb{1}$ постоји елемент $\operatorname{ind}_{\mathbb{1}}(p_{\star}):\prod_{(x:\mathbb{1})}P(x)$ уколико постоји елемент $p_{\star}:P(\star)$. Како постоји само један конструктор $\star:\mathbb{1}$, имамо једно правило израчунавања које треба да се сложи са индуктивним правилом. Због тога, $\operatorname{ind}_{\mathbb{1}}(p_{\star},\star)\equiv p_{\star}:P(\star)$.

Специјални случај правила индукције типа 1 је правило рекурзије типа 1, које добијамо када фамилија типова P над 1 не зависи од x:1. Тада за сваки елемент a:A имамо функцију $\operatorname{rec}_1(a):1\to A$.

Дефиниција 2.4.2. За сваки тип A дефинишемо тип jeguhc швене функције од A као !1 $(A) := A \to 1$. Специјално, јединствена функција од 0, тј. $0 \to 1$, се назива вакумска функција.

У хомотопној теоријити типова за вакумску функцију важи да је јединствена.

Типови копроизвода

За типове A и B из контекста Γ можемо дефинисати тип копроизвода A+B кога ће настањивати елементи или из типа A (ако a:A, онда $\mathsf{inl}(a):A+B$) или из типа B (ако b:B, онда $\mathsf{inr}(b):A+B$).

Тип копроизвода A+B због своје природе има два конструктора inl : $A\to A+B$ і inr : $B\to A+B$. Правило индукције тврди да за било коју фамилију типова P над A+B постоји елемент $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}}):\prod_{(z:A+B)}P(z)$ уколико постоје елементи $p_{\operatorname{inl}}:\prod_{(a:A)}P(\operatorname{inl}(a))$ и $p_{\operatorname{inr}}:\prod_{(b:B)}P(\operatorname{inr}(b))$. Како постоје два конструктора, имамо два правила израчунавања која треба да се сложе са правилом индукције. Због тога $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}},\operatorname{inl}(a))\equiv p_{\operatorname{inl}}(a):P(\operatorname{inl}(a))$ и $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}},\operatorname{inr}(b))\equiv p_{\operatorname{inr}}(b):P(\operatorname{inr}(b))$.

Специјални случај правила индукције типа A+B је правило рекурзије типа A+B, које добијамо када фамилија типова P над A+B не зависи од z:A+B. Тада за сваку функцију $f:A\to X$ и за сваку функцију $g:B\to X$ имамо функцију $\operatorname{rec}_+(f,g):A+B\to X$. Из правила индукције, за свако $f:A\to X$ и за свако $g:B\to Y$, имамо функцију $f+g:A+B\to X+Y$.

Специјални случај типа копроизвода је δy ловски $\bar{u}u\bar{u}$ 2:=1+1, чије једине елементе дефинишемо као true $:\equiv \operatorname{inl}(\star)$ и false $:\equiv \operatorname{inr}(\star)$. Из спецификације типа копроизвода можемо извући правило индукције и правило израчунавања, за буловски тип 2. Правило индукције 2-ind се назива и *if-then-else*.

$$\begin{array}{l} \Gamma, x: 2 \vdash P(x) \; \mathrm{type} \\ \Gamma \vdash p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline \Gamma \vdash p_{\mathsf{false}} : P(\mathsf{false}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}) : \prod_{(x:2)} P(x) \\ \hline \\ \Gamma, x: 2 \vdash P(x) \; \mathrm{type} \\ \hline \Gamma \vdash p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline [2\text{-comp}] \quad \hline \Gamma \vdash p_{\mathsf{false}} : P(\mathsf{false}) \\ \hline \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}, \mathsf{true}) \equiv p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}, \mathsf{false}) \equiv p_{\mathsf{false}} : P(\mathsf{true}) \\ \hline \end{array}$$

Типови зависних парова

Ако је B фамилија типова над A из контекста Γ , онда можемо формирати тип зависних парова $\sum_{(x:A)} B(x)$ кога ће настањивати $\bar{u}aposu\ (x,y(x))$, где је x:A и y(x):B(x). Прецизније, тип зависних парова $\sum_{(x:A)} B(x)$ дефинишемо следећом спецификацијом.

$$\begin{array}{ll} & \begin{array}{ll} [\sum\text{-form}] & [\sum\text{-intro}] \\ \hline \Gamma,x:A \vdash B(x) \text{ type} & \overline{\Gamma,x:A \vdash y(x):B(x)} \\ \hline \Gamma \vdash \sum_{(x:A)} B(x) \text{ type} & \overline{\Gamma,x:A \vdash y(x):B(x)} \\ \hline \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \Gamma \vdash f:\prod_{(x:A)}\prod_{(y:B(x))} P((x,y)) \\ \hline \Gamma \vdash \text{ind}_{\sum}(f):\prod_{(p:\sum_{(x:A)} B(x))} P(p) \end{array} \\ \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \end{array} \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} B(x) \vdash P((x,y)) \text{ type} \\ \hline \Gamma,(x,y):\sum_{(x:A)} D(x) \vdash \text{ind}_{\sum}(f,(x,y)) \equiv f(x,y):P((x,y)) \end{array} \\ \end{array} \\ \\ & \begin{array}{ll} \Gamma,(x,y):\sum_{(x:A)} D(x) \vdash \text{ind}_{\sum}(f,(x,y)) \equiv f(x,y):P((x,y)) \end{array} \\ \end{array}$$

Тип зависних парова $\sum_{(x:A)} B(x)$ има један конструктор помоћу кога се могу формирати елементи који га настањују, и то једноставним упаривањем елемената x:A и y(x):B(x). Правило индукције тврди да за било коју фамилију типова P над $\sum_{(x:A)} B(x)$ постоји елемент $\operatorname{ind}_{\sum}(f):\prod_{p:\sum_{(x:A)} B(x)} P(p)$

уколико постоји елемент $f:\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$. Како постоји само један конструктор, имамо само једно правило израчунавања које треба да се сложи са правилом индукције. Због тога важи $\operatorname{ind}_{\Sigma}(f,(x,y)) \equiv f(x,y):P((x,y))$.

Правило индукције нам омогућава да дефинишемо функције у нставку.

Дефиниција 2.4.3. Нека је B фамилија типова над A. Тада елемент $\operatorname{pr}_1: \sum_{(x:A)} B(x) \to A \ \bar{u}$ ројекције на \bar{u} рви елемен \bar{u} дефинишемо као:

$$\mathsf{pr}_1((a,b)) :\equiv a, \tag{2.1}$$

а елемент $\operatorname{pr}_2:\prod_{p:\sum_{(x:A)}B(x)}B(\operatorname{pr}_1(p))$ \bar{u} ројекције на $gpy\bar{v}$ и елемен \bar{u} дефинишемо као:

$$\operatorname{pr}_2((a,b)) :\equiv b. \tag{2.2}$$

Ако претпоставимо да имамо елемент $f:\prod_{((x,y):\sum_{(x:A)}B(x))}P((x,y))$ тада конструишемо елемент типа $\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$ као $\lambda x.\lambda y.f((x,y))$. Ова конструкција се назива *каријевање*, и како је супротна правилу Σ -ind, правило Σ -ind често наивамо *одкаријевање* (енгл. *uncarry*).

Слика 2.1: Геометријска репрезентација типа зависних парова.

Специјални случај типа зависних парова је тип (независних) \bar{u} арова или (Декар \bar{w} ов) \bar{u} роизвод $A \times B$. Уколико су типови A и B у контексту Γ , тј. тип B не зависи од елемената типа A, тада $\sum_{(x:A)} B$ представља тип (независних) парова.

Дефиниција 2.4.4. Тип (независних) \bar{u} арова $A \times B$ дефинишемо као:

$$A \times B := \sum_{(x:A)} B.$$

Такође, \bar{u} ројекцију на \bar{u} рви елемен \bar{u} fst : $A \times B \to A$ и \bar{u} ројекцију на $gpy\bar{u}$ елемен \bar{u} snd : $A \times B \to B$ дефинишемо као:

$$\mathsf{fst}((a,b)) :\equiv a, \quad \mathsf{snd}((a,b)) :\equiv b.$$

Правило индукције и израчунавања за тип (независних) парова $A \times B$ директно добијамо из правила индукције и израчунавања за тип зависних парова $\sum_{(x:A)} B(x)$.

$$\begin{array}{c} \Gamma, (x,y) : A \times B \vdash P((x,y)) \text{ type} \\ [\times\text{-ind}] \quad \frac{\Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B)} P((x,y))}{\Gamma \vdash \mathsf{ind}_{\times}(f) : \prod_{(p:A \times B)} P(p)} \end{array}$$

$$\begin{array}{l} \Gamma, (x,y) : A \times B \vdash P((x,y)) \text{ type} \\ [\times\text{-comp}] \quad \overline{\Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B)} P((x,y))} \\ \hline \overline{\Gamma, (x,y) : A \times B \vdash \mathsf{ind}_{\times}(f,(x,y)) \equiv f(x,y) : P((x,y))} \end{array}$$

Слика 2.2: Геометријска репрезентација типа независних парова.

Тип независних парова можемо уопштити на тип k- \overline{w} орки $A_1 \times A_2 \times \cdots \times A_k$.

2.5 Искази као типови

Кари-Хавардова интерпретација неформално посматра исказе као типове, доказе као елементе типова, и предикате као фамилије типова. Да би по-казали да је исказ тачан у теорији типова треба конструисати елемент који настањује одговарајући тип. Прецизније, за дати исказ A (добро-формирани тип) уколико конструишемо елемент x:A (кога често називамо и $ceego\kappa$ за A) тада сматрамо да је исказ A тачан. Приметимо да исказ није тачан или

Искази	Типови
	0
Т	1
$A \vee B$	A + B
$A \wedge B$	$A \times B$
$A \implies B$	$A \to B$
$A \iff B$	$(A \to B) \times (B \to A)$
$\neg A$	$A \to \mathbb{O}$
$\forall x.P(x)$	$\prod_{(x:A)} P(x)$
$\exists x. P(x)$	$\sum_{(x:A)}^{\prime} P(x)$

Табела 2.1: Кари-Хавардова интерпретација

нетачан, већ да представља колекцију својих сведока који могу да потрврде његову истинитост. Због тога су и сами докази математички објекти. У табели 2.1 приказани су искази заједно са њиховом одговарајућом интерпретацијом у теорији типова.

Прокоментаришимо неке интерпретације из табеле 2.1. Да би показали да важи $A \implies B$ треба претпоставити да важи A и доказати да важи B. У теорији типова треба конструисати елемент типа $A \to B$, тј. треба конструисати елемент типа B који користи претпоставку дату постојањем елемент типа A. Слично, да би показали $\exists x.P(x)$ у теорији типова треба конструисати елемент типа $\sum_{(x:A)} P(x)$. У овом случају теорија типова нам даје и више од тога. Наиме, P је фамилија типова, што значи да P(x) не мора да буде типа 2, тј. P не мора да буде предикат. Поред тога, тип $\sum_{(x:A)} P(x)$ можемо схватити као тип свих елемената x:A za koje P(x).

2.6 Хијерархија универзума и универзум типови

Универзум $\overline{w}u\overline{u}oвu$ се могу посматрати као типови које настањују други типови. Универзум тип $\mathcal U$ омогућава да се исказ "A type" запише формално као $A:\mathcal U$. Поред тога, омогућава да се фамилија типова B над типом A дефинише као функција $B:A\to\mathcal U$.

Желимо да типови који могу да се формирају из празног контекста настањују универзум \mathcal{U} (то су, на пример, \mathbb{O} , $\mathbb{1}$, и \mathbb{N}). Штавише, како универзум

 \mathcal{U} настањују и други типови, желимо да универзум \mathcal{U} буде затворен по свим конструкторима који користе типове универзума \mathcal{U} . На пример, ако $A:\mathcal{U}$ и $B:A\to\mathcal{U}$, онда $\prod_{(x:A)}B(x):\mathcal{U}$. Међутим, не сме дођи то тога да универзум настањује сам себе, тј. не сме да важи $\mathcal{U}:\mathcal{U}$. Другим речима, не смемо обезбедити услове настанка раселовог парадокса.

У многим случајевима довољно је постојање једног универзума \mathcal{U} , међутим, некада желимо да универзум настањује неки други универзум. Како би избегли Раселов парадокс захтевамо постојање xujepapxuje универзума

$$\mathcal{U}_0, \quad \mathcal{U}_1, \quad \mathcal{U}_2, \quad \dots$$
 (2.3)

за коју важе следећа правила:

$$[\mathcal{U}\text{-intro}] \quad \overline{\Gamma \vdash \mathcal{U}_i : \mathcal{U}_{i+1}} \qquad \qquad [\mathcal{U}\text{-cumul}] \quad \overline{\Gamma \vdash A : \mathcal{U}_i}$$

Универзум \mathcal{U}_0 називамо базни универзум. Базни универзум настањују типови који могу да се формирају из празног контекста, као и сви типови чији конструктори користе типове који се већ налазе у базном универзуму. За универзум \mathcal{U}_i има смисла посматрати и \mathcal{U}_{i+1} кога називамо и универзум следбеник. Често није битно знати редни број универзума у хијерархији, те се следбеник универзума \mathcal{U} обележава са \mathcal{U}^+ . За два универзума \mathcal{U} и \mathcal{V} можемо дефинисати њихову најмању горњу границу $\mathcal{U} \sqcup \mathcal{V}$. На пример, за \mathcal{U}_0 і \mathcal{U}_1 , најмања горња граница $\mathcal{U}_0 \sqcup \mathcal{U}_1$ је \mathcal{U}_1 .

2.7 Типови идентитети

Подсетимо се да из дефиниције операције $+_{\mathbb{N}}$ важи $m +_{\mathbb{N}} 0_{\mathbb{N}} \equiv m$. Природно се намеће питање: Да ли важи $0_{\mathbb{N}} +_{\mathbb{N}} m \equiv m$? Јасно је да одговор на ово питање треба да буде позитиван, али то није случај у интуиционистичкој теорији типова. Тиме долазимо до фундаменталног проблема интуиционистичке теорије типова: Шта значи да су елементи неког типа једнаки?

$$\frac{\Gamma \vdash A \text{ type} \quad \begin{array}{c} [\text{=-form}] \\ \Gamma \vdash x : A \end{array} \quad \Gamma \vdash y : A}{\Gamma \vdash x =_A y \text{ type}} \quad [\text{=-intro}] \quad \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash x : A}{\Gamma \vdash \text{refl}_x : x =_A x}$$

Индукција путање

$$\begin{array}{l} \Gamma, x: A, y: A, p: x =_A y \vdash P(x,y,p) \text{ type} \\ [=-\mathrm{ind}] \quad \frac{\Gamma \vdash f: \prod_{(x:A)} P(x,x,\mathsf{refl}_x)}{\Gamma \vdash \mathsf{ind}_{=}: \prod_{(x:y:A)} \prod_{(p:x=_Ay)} P(x,y,p)} \\ [=-\mathrm{comp}] \quad \frac{\Gamma, x: A, y: A, p: x =_A y \vdash P(x,y,p) \text{ type}}{\Gamma \vdash f: \prod_{(x:A)} P(x,x,\mathsf{refl}_x)} \\ \hline \Gamma, x: A \vdash \mathsf{ind}_{=}(x,x,\mathsf{refl}_x) \equiv f(x): P(x,x,\mathsf{refl}_x) \end{array}$$

Особине типова идентитета

Лема 1. Нека је A $\overline{u}u\overline{u}$ y кон \overline{u} екс \overline{u} y Γ . Taga можемо конс \overline{u} руиса \overline{u} u функцију

$$\mathsf{inv}_A: \prod_{(x,y:A)} (x =_A y) \to (y =_A x)$$

индукцијом $\bar{u}y\bar{u}$ ање $p: x=_A y$ као $\operatorname{inv}_A(x,x,\operatorname{refl}_x):\equiv \operatorname{refl}_x$. Функцију inv_A називамо инверз путањи. Чес \bar{u} о, за да \bar{u} у \bar{u} у \bar{u} ању $p: x=_A y$, њен инверз означавамо са $p^{-1}:\equiv \operatorname{inv}_A(x,y,p)$.

Доказ. Да би констурисали елемент типа $\prod_{(x,y:A)}(x=_Ay) \to (y=_Ax)$, конструишемо функцију

$$f(x): \prod_{(y:A)} (x =_A y) \to (y =_A x)$$

за било који елемент x:A. По индукцији путање $p:x=_Ay$ довољно је конструисати путању

$$f(x, x, \mathsf{refl}_x) : x =_A x$$

за било који елемент x:A. Конструкција ове путање је тривијална и због тога узимамо да је $f(x,x,\mathsf{refl}_x) :\equiv \mathsf{refl}_x$. Коначно, имамо да је

$$\operatorname{inv}_A(x, x, \operatorname{refl}_x) :\equiv \operatorname{refl}_x$$

.

Лема 2. Нека је A $\overline{u}u\overline{u}$ y кон \overline{u} екс \overline{u} у Γ . Тада можемо конс \overline{u} руиса \overline{u} и функцију

$$\mathsf{conc}_A : \prod_{(x,y,z:A)} (x =_A y) \to (y =_A z) \to (x =_A z)$$

индукцијом $\bar{u}y\bar{u}$ ање $p: x =_A y$ као $\mathsf{conc}_A(x,x,z,\mathsf{refl}_x,q) :\equiv q$. Функцију conc_A називамо надовезивање путања. Чес \bar{u} о, за да \bar{u} е $\bar{u}y\bar{u}$ ање $p: x =_A y$ и $q: y =_A z$, надовезану $\bar{u}y\bar{u}$ ању о \bar{u} начавамо са $p\cdot q: \equiv \mathsf{conc}_A(x,y,z,p,q)$.

Доказ. Прво конструишемо функцију

$$f(x): \prod_{(y:A)} (x =_A y) \to \prod_{(z:A)} (y =_A z) \to (x =_A z)$$

за било који елемент x:A. По индукцији путање $p:(x=_A y)$ довољно је конструисати функцију

$$f(x, x, \mathsf{refl}_x) : \prod_{(z:A)} (x =_A z) \to (x =_A z)$$

за било који елемент x:A. Даље, довољно је конструисати функцију

$$f(x, x, \operatorname{refl}_x, z) : (x =_A z) \to (x =_A z)$$

за било које елементе x, z: A. Конструисање ове функције је тривијална и због тога имамо да је $f(x, x, \text{refl}_x, z, q) :\equiv q$. Коначно, имамо да је

$$\mathsf{conc}_A(x,x,z,\mathsf{refl}_x,q) :\equiv f(x,x,\mathsf{refl}_x,z,q) :\equiv q.$$

Лема 3. Нека је A $\overline{u}u\overline{u}$, нека су елемен $\overline{u}u$ x, y, z, w : A u нека су $\overline{u}y\overline{u}$ ање $p: x =_A y, q: y =_A z \ u \ r: z =_A w \ y$ кон \overline{u} екс \overline{u} у Γ . Тада важи:

- (i) $\operatorname{refl}_x \cdot p = p \ u \ p \cdot \operatorname{refl}_y = p$
- (ii) $p^{-1} \cdot p = \operatorname{refl}_{u} u p \cdot p^{-1} = \operatorname{refl}_{x}$
- (iii) $(p^{-1})^{-1} = p$
- (iv) $(p \cdot q) \cdot r = p \cdot (q \cdot r)$
- (i) Доказ. Желимо да конструишемо путању

$$\mathsf{unit}_{\mathsf{I}}(p) : \mathsf{refl}_r \cdot p = p,$$

$$\mathsf{unit}_{\mathsf{r}}(p) : p \cdot \mathsf{refl}_{u} = p.$$

Индукцијом по путањи $p: x =_A y$ довољно је конструисати

$$\operatorname{unit}_{\mathsf{I}}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x = \operatorname{refl}_x,$$

 $\operatorname{unit}_{\mathsf{r}}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x = \operatorname{refl}_x.$

Обе путање је тривијално конструисати као refl_r .

(ii) Доказ. Желимо да конструишемо путању

$$\operatorname{inv}_{\mathsf{I}}(p) : p^{-1} \cdot p = \operatorname{refl}_{y},$$

 $\operatorname{inv}_{\mathsf{r}}(p) : p \cdot p^{-1} = \operatorname{refl}_{x}.$

Индукцијом по путањи $p: x =_A y$ довољно је конструисати путању

$$\operatorname{inv}_{\mathsf{I}}(\operatorname{refl}_x) : \operatorname{refl}_x^{-1} \cdot \operatorname{refl}_x = \operatorname{refl}_x,$$

 $\operatorname{inv}_{\mathsf{r}}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x^{-1} = \operatorname{refl}_x.$

Али како је $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ претходне путање се своде на оне као и у претходном доказу. Због тога обе путање тривијално конструишемо као $\operatorname{refl}_{\operatorname{refl}_x}$.

(iii) *Доказ*. Желимо да конструишемо путању

doubleInv
$$(p) : (p^{-1})^{-1} = p$$
.

Индукцијом по путањи $p: x =_A y$ довољно је конструисати путању

$$\mathsf{doubleInv}(\mathsf{refl}_x) : (\mathsf{refl}_x^{-1})^{-1} = \mathsf{refl}_x.$$

Али како је $(\mathsf{refl}_x^{-1})^{-1} \equiv \mathsf{refl}_x^{-1} \equiv \mathsf{refl}_x$ претходна путања се своди на $\mathsf{refl}_x = \mathsf{refl}_x$. Због тога путању тривијално конструишемо као $\mathsf{refl}_{\mathsf{refl}_x}$.

(iv) Доказ. Желимо да конструишемо путању

$$\mathsf{assoc}_A(p,q,r):(p\cdot q)\cdot r=p\cdot (q\cdot r).$$

Индукцијом по путањи $p: x =_A y$ довољно је конструисати путању

$$\mathsf{assoc}_A(\mathsf{refl}_x,q,r):(\mathsf{refl}_x\cdot q)\cdot r=\mathsf{refl}_x\cdot (q\cdot r)$$

Али како је $\mathsf{refl}_x \cdot q \equiv q$ и $\mathsf{refl}_x \cdot (q \cdot r) \equiv q \cdot r$ претходна путања се своди на

$$\mathsf{assoc}_A(\mathsf{refl}_x, q, r) : q \cdot r = q \cdot r.$$

Због тога путању тривијално конструишемо као $\mathsf{assoc}_A(\mathsf{refl}_x,q,r) :\equiv \mathsf{refl}_{q\cdot r}.$

21

Једнакости	Хомотопија	∞ -Групоид
рефлексивност	константна путања	идентички морфизам
симетричност	обртање путања	инверз морфизма
транзитивност	надовезивање путања	компоизиција морфизама

Табела 2.2: Разне интерпретације особина типова идентитета

Слика 2.3: Групоидална структура типова.

Акције над путањама

Лема 4. Нека су A и B $\overline{w}u\overline{u}oвu$, и нека је $f:A\to B$ функција у кон \overline{w} екс \overline{w} у Γ . Тада можемо конс \overline{w} руиса \overline{w} и функцију

$$\mathsf{ap}_f: \prod_{(x,y:A)} (x =_A y) \to (f(x) =_B f(y))$$

индукцијом $\bar{u}y\bar{u}$ ање $p: x=_A y$ као $\mathsf{ap}_f(\mathsf{refl}_x)=\mathsf{refl}_{f(x)}$. Функцију ap_f називамо акција над путањама функције $f: A \to B$.

 \mathcal{A} оказ. Индукцијом по путањи $p: x =_A y$ треба конструисати путању

$$\mathsf{ap}_f(x,x,\mathsf{refl}_x): f(x) =_B f(x).$$

Тривијално конструишемо ову путању као $\mathsf{ap}_f(x,x,\mathsf{refl}_x) :\equiv \mathsf{refl}_{f(x)}.$

Лема 5. Нека су A, B и C $\overline{w}u\overline{u}oвu$, нека су елемен $\overline{w}u$ x, y, z : A и нека су $\overline{u}y\overline{w}a$ ве $p: x =_A y$ и $q: y =_A z$ у кон $\overline{w}e$ кс $\overline{w}y$ Γ . Тада важи:

ГЛАВА 2. ИНТУИЦИОНИСТИЧКА ТЕОРИЈА ТИПОВА

$$(i) \ \operatorname{ap}_f(p \cdot q) = \operatorname{ap}_f(p) \cdot \operatorname{ap}_f(q)$$

$$(ii) \ {\rm ap}_f(p^{-1}) = {\rm ap}_f(p)^{-1}$$

$$(iii) \ \operatorname{ap}_q(\operatorname{ap}_f(p)) = \operatorname{ap}_{q \circ f}(p)$$

$$(iv) \operatorname{\mathsf{ap}}_{\mathsf{id}_A}(p) = p$$

Доказ. Доказ изостављамо како је сличан претходним.

Транспорт

Лема 6. Нека је A $\bar{u}u\bar{u}$ u B фамилија $\bar{u}u\bar{u}$ ова над A y кон \bar{u} екс \bar{u} у Γ . Тада можемо конс \bar{u} руиса \bar{u} и функцију

$$\mathsf{tr}_B:\prod_{(x,y:A)}(x=_Ay) o B(x) o B(y)$$

индукцијом $\bar{u}y\bar{u}$ ање $p: x =_A y$ као $\operatorname{tr}_B(\operatorname{refl}_x) :\equiv \operatorname{id}_{B(x)}$. Функцију tr_B називамо транспорт над B.

$$oxed{arDeta}$$
оказ.

Друге врсте једнакости

Дефиниција 2.7.1. Простиор кодова над природним бројевима \mathbb{N} се може дефинисати као бинарна релација $\mathsf{code}_{\mathbb{N}}: \mathbb{N} \to \mathbb{N} \to \mathcal{U}_0$ тако да задовољава следеће расуђивачке једнакости:

$$\begin{aligned} \operatorname{code}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}},\mathbf{0}_{\mathbb{N}}) &\equiv \mathbb{1} \\ \operatorname{code}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}},\operatorname{succ}_{\mathbb{N}}(m)) &\equiv \mathbb{0} \\ \operatorname{code}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n),\mathbf{0}_{\mathbb{N}}) &\equiv \mathbb{0} \\ \operatorname{code}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n),\operatorname{succ}_{\mathbb{N}}(m)) &\equiv \operatorname{code}_{\mathbb{N}}(n,m) \end{aligned}$$

Лема 7. Прос \overline{w} ор кодова је рефлексивна релација, \overline{w} ј. можемо конс \overline{w} руиса \overline{w} и функцију

$$\mathsf{reflcode}_{\mathbb{N}}: \prod_{(n:\mathbb{N})} \mathsf{code}_{\mathbb{N}}(n,n).$$

$$\begin{split} \operatorname{reflcode}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}}) :& \equiv \star \\ \operatorname{reflcode}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n)) :& \equiv \operatorname{reflcode}_{\mathbb{N}}(n). \end{split}$$

Лема 8. За било које \bar{u} риродне бројеве $n,m:\mathbb{N}$ важи $m=_{\mathbb{N}} n \to \mathsf{code}_{\mathbb{N}}(m,n)$ $u \; \mathsf{code}_{\mathbb{N}}(m,n) \to m=_{\mathbb{N}} n.$

Доказ. Прво конструишемо

$$\mathsf{encode}_{\mathbb{N}}: \prod_{(m,n:\mathbb{N})} m =_{\mathbb{N}} n \to \mathsf{code}_{\mathbb{N}}(m,n).$$

Индукцијом по путањи $p: m =_{\mathbb{N}} n$ треба конструисати

$$\mathsf{encode}_{\mathbb{N}}(m, m, \mathsf{refl}_m) : \mathsf{code}_{\mathbb{N}}(m, m).$$

Што смо констуисали у претходној леми, тако да $\mathsf{encode}_{\mathbb{N}}(m,m,\mathsf{refl}_m) :\equiv \mathsf{reflcode}_{\mathbb{N}}(m)$. Даље конструишемо

$$\mathsf{decode}_{\mathbb{N}}: \prod_{(m,n:\mathbb{N})} \mathsf{code}_{\mathbb{N}}(m,n) \to m =_{\mathbb{N}} n$$

индукцијом по $m:\mathbb{N}$ и $n:\mathbb{N}$. У случају када су оба природна броја нуле, онда $\operatorname{decode}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}},c):0_{\mathbb{N}}=_{\mathbb{N}}0_{\mathbb{N}}$ конструишемо као $\operatorname{decode}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}},c):\equiv\operatorname{refl}_{0_{\mathbb{N}}}$. У случају када је тачно један од њих нула, тада конструишемо елемент типа $0\to m=_{\mathbb{N}}n$. Овај елемент је тривијално конструисати правилом индукције празног типа. На крају, у случају када су оба различита од нуле, треба конструисати

$$\mathsf{code}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m),\mathsf{succ}_{\mathbb{N}}(n)) \to \mathsf{succ}_{\mathbb{N}}(m) =_{\mathbb{N}} \mathsf{succ}_{\mathbb{N}}(n).$$

Ову конструкцију изводимо на следећи начин:

$$\begin{aligned} \operatorname{code}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(m),\operatorname{succ}_{\mathbb{N}}(n)) &\equiv \operatorname{code}_{\mathbb{N}}(m,n) \\ &\to m =_{\mathbb{N}} n \\ &\to \operatorname{succ}_{\mathbb{N}}(m) =_{\mathbb{N}} \operatorname{succ}_{\mathbb{N}}(n). \end{aligned} \tag{by $2.7.1$}$$

Коначно, завршавамо конструкцију са

$$\mathsf{decode}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m),\mathsf{succ}_{\mathbb{N}}(n),c) :\equiv \mathsf{ap}_{\mathsf{succ}_{\mathbb{N}}}(\mathsf{decode}_{\mathbb{N}}(m,n,c)).$$

2.8 Ekvivalentnosti

Functional extentionality

Ekvivalentnosti i univerzalna osobina

2.9 Aksioma univalentnosti

 ${\bf Neke\ posledice\ univalent nosti}$

Глава 3

Агда

Глава 4

Закључак

Биографија аутора

Вук Стефановић Караџић (*Тршић*, 26. окшобар/6. новембар 1787. — Беч, 7. фебруар 1864.) био је српски филолог, реформатор српског језика, сакупљач народних умотворина и писац првог речника српског језика. Вук је најзначајнија личност српске књижевности прве половине XIX века. Стекао је и неколико почасних доктората. Учествовао је у Првом српском устанку као писар и чиновник у Неготинској крајини, а након слома устанка преселио се у Беч, 1813. године. Ту је упознао Јернеја Копитара, цензора словенских књига, на чији је подстицај кренуо у прикупљање српских народних песама, реформу ћирилице и борбу за увођење народног језика у српску књижевност. Вуковим реформама у српски језик је уведен фонетски правопис, а српски језик је потиснуо славеносрпски језик који је у то време био језик образованих људи. Тако се као најважније године Вукове реформе истичу 1818., 1836., 1839., 1847. и 1852.