

UNIVERSITY OF JAFFNA FACULTY OF ENGINEERING

MID SEMESTER EXAMINATION- MAY 2023

MC 3010 - DIFFERENTIAL I	EQUATIONS .	AND I	NUMERICAL	METHOD	S
Date:22/05/2023			Duration:	ONE Hour	

Instructions

1.	This paper contains TWENTY (20) questions:	
2.	Each question in this paper is a multiple choice with four answer choices.	Read

- each question and answer carefully and choose the ONE best answer.
- This examination accounts for 30% of module assessment. Total maximum mark attainable is 100.
- 1. If f(x) is a real continuous function in [a,b], and f(a)f(b) < 0, then for f(x) = 0, there is (are) ... in the domain [a,b].
 - (a) one root

- (c) no root
- (b) an undeterminable number of roots (d) at least one root
- 2. Assuming an initial bracket of [1,5], the second (at the end of 2 iterations) iterative value of the root of $te^{-t} 0.3 = 0$ using the bisection method is
 - (a) 0
- (b) 1.5
- (c) 2
- (d) 3
- 3. The following data of the velocity of a body is given as a function of time.

					24
Velocity (m/s)	22	24	37	25	123

A quadratic Lagrange interpolant is found using three data points, t = 15. 18 and 22. From this information, at what of the times given in seconds is the velocity of the body 26m/s during the time interval of t = 15 to t = 22 seconds.

- (a) 20.173
- (b) 21.858
- (c) 21.667
- (d) 22.020
- 4. Given $3\frac{dy}{dx} + 5y = 2x$, y(0.3) = 5 and using a step size of h = 0.3, the value of y(0.6) using the Runge-Kutta 4th order method is most nearly
 - (a) 3.1067

(c) 4.2587

(b) 3.2067

(d) none of the above

- 5. The equation in Question 4 with the same step size, the value of y(0.9) using Eulers method is most nearly
 - (a) 1.3
- (b) 1.2
- (c) 1.5
- (d) 1.4

- 6. Truncation error is caused by approximating
 - (a) irrational numbers

(c) rational numbers

(b) fractions

(d) exact mathematical procedures

- 7. $\int_0^1 \frac{\sin t}{t} dt$ is exactly
 - (a) $\int_{-1}^{1} \frac{\sin(\frac{x+1}{2})}{x+1} dx$

(c) $\int_{-1}^{1} \frac{\sin(x+1)}{x+1} dx$

(b) $\int_0^1 \frac{\sin(\frac{x+1}{2})}{x+1} dx$

- (d) $\int_0^1 \frac{\sin(x+1)}{x+1} dx$
- 8. Consider the second-order initial value problem

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 5x = 0, x(0) = 3, \frac{dx(0)}{dt} = -5$$

write down the equivalent system of two first-order equations

(a)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x - 4y$, $x(0) = 3$, $y(0) = -3$

(b)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -5x - 4y$, $x(0) = 3$, $y(0) = -5$

(c)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x - 4y$, $x(0) = 2$, $y(0) = -5$

(d)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x - 4y$, $x(0) = 3$, $y(0) = -5$

9. In a circuit with an inductor of inductance L, a resistor with resistance R, and a variable voltage source E(t) = L(di/dt) + Ri. The current i, is measured at several values of time as

If L = 0.98 H and $R = 0.142 \Omega$, the most accurate expression for E(1.00) is

(a)
$$0.98 \left(\frac{3.24 - 3.10}{0.1} \right) + (0.142)(3.10)$$
 (c) $0.98 \left(\frac{3.12 - 3.10}{0.01} \right) + (0.142)(3.10)$

(d)
$$0.98 \left(\frac{3.12 - 3.10}{0.01} \right)$$

10. Using the forward divided difference approximation with a step size of 0.2, the derivative of the function at x = 2 is given as

x	1.8	2.0	2.2	2.4	2.6
f(x)	6.0496	7.3890	9.0250	11.023	13.464

	(a) 6.697	(b) 7.389	(c) 7.438	(d) 8.1	.80				
11.	Find the number 27	n(No.of.sub-i	ntervals) so that the	error $E_s(f,h)$	for the Simpson				
	rule is less than 4	\times 10 ⁻⁹ for t	he approximation	$\int_{2}^{\infty} \overline{x^2}$. The max	f la for				
	I f(4)(t) taken over	12.51 occurs a	the end home a -	A. (
	Simpson rule is give	en by $E_s = -$	$\frac{(b-a)^5}{180(2m)^4}f^{(4)}(\hat{t}) = -$	$-\frac{b-a}{180}h^4f^{(4)}(\hat{t})$					
	(a) 448	(b) 449	(c) 224	(d)	225				
12.	Using Newton-Raph $x \log_{10} x - 1.2 = 0$,	nson method ϵ (Assume x_0 =	evaluate to decimal f = 3 as first approxim	igures, the root action point).	of the equation				
	(a) 2.76	(b) 2.75	(c) 2.74	(d) 2.7	3				
13.	Find the value of \int_0^{∞}	$\sin \sqrt{x} dx$ by	using trapezoidal r	ule with $h=0.5$	is most nearly				
	(a) 2.140745	(b) 1.0700	(c) 0.535	186 (d)	0.537818.				
14.	14. Find the absolute error, use question (13) and assume true value as 0.602337								
	(a) 0.067151	(b) 0.0645	19 (c) 0.467	700 (d)	0.004677				
15.	Find $\frac{\partial^2 f}{\partial x \partial x}$ of $f(x, y)$	$y)=e^{x+5y}$							
	Find $\frac{\partial^2 f}{\partial y \partial x}$ of $f(x, y)$	(b) $6e^{x+5y}$	(c) $6e^{2x+}$	^{5y} (d)	$3e^{2x+y}$.				
16.	Consider the function dinates (r, θ) where	on $w(x, y) = x$ $x = r \cos \theta$, y	$4x^2 + 3y^2$ and find $\theta = r \sin \theta$.	the value of $\frac{du}{dr}$	in polar coor-				
	(a) 5r	(b) 50r	(c) $25r^2$	(d) 50					
17.	If $Z = f(x, y)$ and Z	$Z=4-x^3+y$	y^2 , write the total d	ifferential, dz					
	$(a) -2x^2dx + 4ydy$		(c) $-3x^2$	dx + 2ydy					
	(b) $-2x^3dx + 2ydy$		(d) none	of the above.					
18.	Find the work done the shortest path be	by the force tween point ($\mathbb{F}(x, y, z) = (y^2, xy, 1, 1, 0)$ and point (2,	, 0) in moving a , 2, 0) at consta	an object along nt speed in unit				

time.

19. The temperature T at the point (x, y) is T(x, y) and it is measured using the Celsius scale. A fly crawls so that its position after t seconds is given by $x = t^2$ and $y = 2 + \frac{1}{3}t$ where x and y are measured in centimeters. The temperature function satisfies $\frac{\partial T}{\partial x}(2,3) = 4$ and $\frac{\partial T}{\partial y}(2,3) = 3$. How fast is the temperature increasing on the flys path after 3s

(a) 2 (b) 8 (c) 9 (d) 2.5

20. The motion of a point is described by $r(t) = (cost, sint, t^2)$ Find the speed of the motion.

(a) $\sqrt{t^2+1}$ (b) $\sqrt{4t^4+1}$ (c) $\sqrt{4t^2+\cos^2 t}$ (d) \cos^{2t}

Formula sheet

- 1. Newton's iteration formula: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- 2. Trapezoidal rule: $\int_a^b f(x)dx \approx h\left[\frac{1}{2}f_0 + f_1 + \ldots + f_{n-1} + \frac{1}{2}f_n\right]$, where $h = \frac{(b-a)}{n}$. The x_j 's and a and b are called notes.
- 3. Eulers method: $y_{k+1} = y_k + hf(t_k, y_k), t_{k+1} = t_k + h \text{ for } k = 0, 1, \dots, M-1$
- 4. Runge-Kutta method of order N=4: $y_{k+1}=y_k+\frac{h(f_1+2f_2+2f_3+f_4)}{6}$, where $f_1=f(t_k,y_k), f_2=f\left(t_k+\frac{h}{2},y_k+\frac{h}{2}f_1\right), f_3=f\left(t_k+\frac{h}{2},y_k+\frac{h}{2}f_2\right), f_4=f\left(t_k+h,y_k+hf_3\right).$
- 5. Quadratic Lagrange Polynomial $P_2(x) = l_0 f_0 + l_1 f_1 + l_2 f_2$ where, $l_0 = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$, $l_1 = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$, $l_2 = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$
- 6. 2-point forward difference- $f'(x_i) = \frac{f(x_{i+1}) f(x_i)}{h}$, 2-point backward- $f'(x_i) = \frac{f(x_i) f(x_{i-1})}{h}$

---- End of Examination ----