\* Summary of Mosfet parasitic capacitors:

|                        | Cgse=Cgde   | Cgb         | Cgsi        | Cgdi           | Csbi                                | Cdbi           |
|------------------------|-------------|-------------|-------------|----------------|-------------------------------------|----------------|
| cutoff                 | Cox.W.lou   | Cox.W. Left | 0           | 0              | 0                                   | Ø              |
| triode                 | Cox, W. Lou | Ø           | 2 CoxW Leff | 1/2 Cox W Leff | 2 Cjleff.W                          | 1/2 cj Lepp. W |
| saturation<br>(active) | Cox. W. Lou | Ø           | 2 CoxW Left | 1 Coxwleff     | <sup>2</sup> / <sub>3</sub> CjleffW | 13 Cileff W    |

|                        | Csbe             | Cdbe              |
|------------------------|------------------|-------------------|
| cutoff                 | As Cj + Ps Cjsw  | Ad. Cj + Pd. Cjsw |
| triode                 | As.cj+PsCjsw     | AdCj+Ps.Cjsw      |
| saturation<br>(active) | As. Cj + Ps Cjsw | Ad.Cj+Pd.Cjsw     |



ctive)  $C = \frac{Cj\omega}{(1+\frac{Ur}{\sigma_0})^n}$   $A = \Delta \cdot W$ ,  $P = 2(\Delta + W)$ ,  $P = 2\Delta + W$   $C = \frac{Cj\omega}{(1+\frac{Ur}{\sigma_0})^n}$   $A = \Delta \cdot W$ ,  $P = 2(\Delta + W)$ ,  $P = 2\Delta + W$   $C = \frac{Cj\omega}{(1+\frac{Ur}{\sigma_0})^n}$   $C = \frac{Cj\omega}{(1+\frac{Ur}{\sigma_0})^n}$ 

$$Cj = \frac{Cjo}{\left(1 + \frac{Vr}{Q_0}\right)^{N}},$$

$$Cjsw = \frac{Cjswo}{\left(1 + \frac{yr}{n}\right)^{n}}$$



Tolerance of on-chip resistors is 20% (ideally R=10ks)

\* interdigitated layout minimizes mismatch





\* Bulk rule; the minimum distance between bulk to





$$A_{s} = 3 \frac{w_{1}}{2} \Delta$$

$$A_{d_{1}} = \frac{w_{1}}{2} \Delta = A_{d_{2}}$$

$$P_{s} = 2 \left[ 2\Delta + \frac{w_{1}}{2} \right] + 2\Delta$$

$$P_{d_{1}} = 2\Delta = P_{d_{2}}$$

Waffle Layout:



$$A_{D} = A_{S} = 2 \times \frac{25 \mu m}{2} \times 400 \mu m$$

$$P_{D} = P_{S} = 2 \left[ 400 \mu + \frac{25 \mu m}{2} \right]$$



