

a bioinformatic framework to analyse Hi-C experiments

François Serra, Marco Di Stefano & Marc A. Marti-Renom Structural Genomics Group (CNAG-CRG)

Zooming in on genome organization. Zhou, X. J., & Alber, F. Nature Methods (2012)

Imakaev et al. Nature Methods (2012)

Imakaev et al. Nature Methods (2012)

cnag 🛠 🚉

Many alternatives

Tool	Short-read aligner(s)	Mapping improvement	Read filtering	Read-pair filtering	Normalization	Visualization	Confidence estimation	Implementation language(s)
HICUP [46]	Bowtie/Bowtie2	Pre-truncation	✓	✓	_	_	_	Perl, R
Hiclib [47]	Bowtie2	Iterative	√a	✓	Matrix balancing	✓	_	Python
HiC-inspector [131]	Bowtie	_	✓	✓	_	✓	_	Perl, R
HIPPIE [132]	STAR	√b	✓	✓	_	_	_	Python, Perl, R
HIC-Box [133]	Bowtie2	_	✓	✓	Matrix balancing	✓	_	Python
HiCdat [122]	Subread	_c	✓	✓	Three options ^d	✓	_	C++, R
HiC-Pro [134]	Bowtie2	Trimming	✓	✓	Matrix balancing	_	_	Python, R
TADbit [120]	GEM	Iterative	✓	✓	Matrix balancing	✓	_	Python
HOMER [62]	_	_	✓	✓	Two options ^e	✓	✓	Perl, R, Java
Hicpipe [54]	_	_	_	_	Explicit-factor	_	_	Perl, R, C++
HiBrowse [69]	_	_	_	_	_	✓	✓	Web-based
Hi-Corrector [57]	_	_	_	_	Matrix balancing	_	_	ANSI C
GOTHIC [135]	_	_	✓	✓	_	_	✓	R
HITC [121]	_	_	_	_	Two options ^f	✓	✓	R
chromoR [59]	_	_	_	_	Variance stabilization	_	_	R
HiFive [136]	_	_	✓	✓	Three options ⁹	✓	_	Python
Fit-Hi-C [20]	_	_	_	_	_	✓	✓	Python

Many alternatives

Tool	Short-read aligner(s)	Mapping improvement	Read filtering	Read-pair filtering	Normalization	Visualization	Confidence estimation	Implementation language(s)	
HICUP [46]	Bowtie/Bowtie2	Pre-truncation	✓	✓	_	_	_	Perl, R	
Hiclib [47]	Bowtie2	Iterative	√a	✓	Matrix balancing	✓	_	Python	
HIC-inspector [131]	Bowtie	_	✓	✓	_	✓	_	Perl, R	
HIPPIE [132]	STAR	√b	✓	✓	_	_	_	Python, Perl, R	
HIC-Box [133]	Bowtie2	_	✓	✓	Matrix balancing	✓	_	Python	
HiCdat [122]	Subread	_c	✓	✓	Three options ^d	✓	_	C++, R	
HIC-Pro [134]	Bowtie2	Trimming	✓	✓	Matrix balancing	_	_	Python, R	
TADbit [120]	GEM	Iterative	✓	✓	Matrix balancing	✓	_	Python	
HOMER [62]	_	_	✓	✓	Two options ^e	✓	✓	Perl, R, Java	
Hicpipe [54]	_	_	_	_	Explicit-factor	_	_	Perl, R, C++	
HiBrowse [69]	_	_	_	_	_	✓	✓	Web-based	
Hi-Corrector [57]	_	_	_	_	Matrix balancing	_	_	ANSI C	
GOTHIC [135]	_	_	✓	✓	_	_	✓	R	
HITC [121]	_	_	_	_	Two options ^f	✓	✓	R	
chromoR [59]	_	_	_	_	Variance stabilization	_	_	R	
HiFive [136]	_	_	✓	✓	Three options ⁹	✓	_	Python	
Fit-Hi-C [20]	_	_	_	_	_	✓	✓	Python	

Many alternatives

Method "available Repres online	Representation	Scoring		Sampling	Models		
		U _{3C}			U _{Phys}		
		$F_{ij} \rightarrow D_{ij}$ conversion	Functional form				
ChromSDE* [37]	Points	$D_{ij} = \begin{cases} \left(\frac{1}{F_{ij}}\right)^{\alpha} \text{ if } F_{ij} > 0 \\ \infty \text{ if } F_{ij} = 0 \end{cases} \alpha \text{ is optimized}$	$\sum_{(ij)D_{ij}<\infty)} \frac{\langle r_0^2 - D_{ij}^2 \rangle}{D_{ij}} - \lambda \sum_{(i,j)} r_{ij}^2$ where λ is set to 0.01	N/A	N/A	Deterministic semidefinite programming to find the coordinates	Consensu
ShRec3D* [38]	Points	$D_{ij} = \begin{cases} \left(\frac{1}{F_{ij}'}\right)^{\alpha} & \text{if } F_{ij}' > 0 \\ \frac{N^2}{\sum_{j \in F_{ij}'}} & \text{if } F_{ij}' = 0 \end{cases}$ $F_{ij}' \text{ is the original } F_{ij}' \text{ corrected to}$ $\text{satisfy all triangular inequalities with the shortest path reconstruction}$	N/A	N/A	N/A	Deterministic transformations of D _{ij} into coordinates	Consensu
TADbit* [43]	Spheres	$D_{ij} \propto \begin{cases} \alpha F_{ij} + \beta & \text{if } F_{ij} < \gamma' \text{ or } F_{ij} > \gamma \\ \frac{S_i + S_j}{2} & \text{if } i - j = 1 \end{cases}$ α and β are estimated from the max and the min F_{ij} , from the optimized max distance and from the resolution. $\gamma' < \gamma$ are optimized too. s_i is the radius of particle i	$\sum_{(i,j)} k_{ij} (r_{ij} - D_{ij})^2$ where $k_{ij} = 5$ if $ i - j = 1$ or proportional to F_{ij} otherwise	Yes	U _{excl} and U _{bond} have harmonic forms	Monte Carlo (MC) sampling with Simulated annealing and Metropolis scheme	Resamplii
BACH* [45]	Points	$D_{ij} \propto rac{B_i B_j}{F_{ij}^2}$. The biases B_i and B_j and α are optimized	$b_{ij}D_{ij}^{1/2} + c_{ij} \log(D_{ij})$ where b_{ij} and c_{ij} are optimized parameters	No	No	Sequential importance and Gibbs sampling with hybrid MC and adaptive rejection	Populatio
Giorgetti et al. [40]	Spheres	Particles interact with pair-wise well potentials of depths B_{ij} and contact radius a , which is larger than a hard-core radius and smaller than a maximum contact radius. The parameters are optimized over all the population of models			N/A	MC sampling with metropolis scheme	Populatio
Duan et al. [41]	Spheres	$\overline{F_{[i-j]}} = \frac{\sum_{k=0}^{N-j-1} F_{[i,k+j-j]}}{N-[i-j]}$ is the average of F_{ij} at genomic distance $ i-j $ expressed in kb. $D_{ij} = \overline{F_{[i-j]}} \times 7.7 \times i-j $ assuming that α 1 kb maps onto 7.7 nm	$\sum_{(i,j)} (r_{ij} - D_{ij})^2$	Yes	U _{excl} and U _{bond} have harmonic forms	Interior-point gradient- based method	Resampli
MCMC5C° [49]	Points	$D_{ij} \propto \frac{1}{F_{ij}^2}$ where is optimized	$\sum_{(i,j)} (F_{ij} - r_{ij}^{-1/\alpha})^2$	N/A	N/A	MC sampling with Markov chain based algorithm	Resampli
PASTIS* [47]	Points	$D_{ij} \propto \frac{1}{F_{ij}^2}$ where α is optimized	$b_{ij}D_{ij}^{1/2}+c_{ij}\log(D_{ij})$ where b_{ij} and c_{ij} are optimized parameters	No	No	Interior point and isotonic regression algorithms	Resampli
Meluzzi and Arya [48]	Spheres	$\sum_{(i,j)} k_{ij} r_{ij}^2$ where k_{ij} are adjusted such that the contact probabilities computed on the models match the F_{ij}			U _{excl} is a pure repulsive LJ potential. U _{bond} and U _{bend} have harmonic forms	Brownian dynamics	Resampli
AutoChrom3D* [44]	Points	$D_{ij} \propto \begin{cases} \alpha F_{ij} + \beta & \text{if } F_{\min} < F_{ij} < F_{\gamma} \\ \alpha' F_{ij} + \beta' & \text{if } F_{\gamma} < F_{ij} < F_{\max} \end{cases}$ where $F_{\min} (F_{\max})$ are the min(max) of F_{ij} . The parameters (α, β) , (α', β') and F_{γ} are found using the nuclear size, the resolution and the decay of F_{ij} with $ i-j $	$\sum_{\{l,j\}} \frac{(r_{ij} - D_{ij})^2}{D_{ij}^2}$	Yes	N/A	Non-linear constrained	Consensu
Kalhor et al. [14]	Spheres	$D_{ij} = R_{contact}$ to enforce the pair contact, if the normalized contact frequency F_{ij} is higher than 0.25. Otherwise the contact is not enforced	$\sum_{\text{models}} \sum_{(i,j)} k_{ij} (r_{ij} - D_{ij})^2$ where k_{ij} is different for pairs of particles, on different chromosomes, on the same chromosome, or connected	Yes	U _{excl} and U _{bond} have harmonic forms	Conjugate gradients sampling with Simulated annealing scheme	Populatio

^{*} These methods are publicly available.