MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ARKUSZA EGZAMINACYJNEGO II - POZIOM ROZSZERZONY

Numer czynności	Opis wykonywanej czynności	Liczba punktów	Modelowy wynik etapu (czynności)
11.1	Sprawdzenie, że dla $m=0$ dane równanie ma rozwiązanie	1 p	
11.2	Podanie układu warunków (1) na to, by równanie kwadratowe nie miało rozwiązania	1 p	$ \begin{cases} m \neq 0 \\ \Delta < 0 \end{cases} $
11.3	Wyznaczenie wartości spełniających warunek $\Delta < 0$	1 p	$m \in \left(-3, -\frac{3}{5}\right)$
11.4	Podanie odpowiedzi.	1 p	$m \in \left(-3, -\frac{3}{5}\right)$
12.1	Wykorzystanie zależności $(A \cap B) \subset A$	1 p	$P(A \cap B) \le P(A)$
12.2	Zastosowanie definicji prawdopodobieństwa zdarzenia przeciwnego	1 p	$P(A \cap B) \leq 1 - P(A')$
12.3	Wykorzystanie definicji prawdopodobieństwa warunkowego	1 p	$P(A/B) \cdot P(B) \le 1 - P(A')$
12.4	Wykorzystanie zależności $P(B) > 0$ do wykazania tezy	1 p	
13.1	Powołanie się na definicję izometrii	1 p	
13.2	Wybór dwóch różnych punktów <i>A</i> i <i>B</i> i wyznaczenie współrzędnych ich obrazów <i>A</i> ' i <i>B</i> '	1 p	
13.3	Sprawdzenie, że odległości $\left AB\right $ i $\left A'B'\right $ są równe	1 p	
13.4	Wyznaczenie równania obrazu danego okręgu w przekształceniu <i>P</i>	2 p	$np. \ x^2 + y^2 - 4x + 3 = 0$
14.1	Wyznaczenie dziedziny nierówności logarytmicznej $\log_{\frac{1}{2}} (x -1) \ge -2$	1 p	$x \in (-\infty, -1) \cup (1, +\infty)$
14.2	Wykorzystanie monotoniczności funkcji logarytmicznej do rozwiązania nierówności	1 p	$ x -1 \le 4$
14.3	Rozwiązanie nierówności $ x -1 \le 4$ z uwzględnieniem jej dziedziny	1 p	$x \in \langle -5, -1 \rangle \cup (1, 5)$
14.4	Rozwiązanie nierówności $ y > 0$	1 p	$y \in R \setminus \{0\}$
14.5	Naszkicowanie figury F	1 p	
14.6	Napisanie równań osi symetrii figury F	1 p	x = 0, y = 0
15.1	Wyznaczenie długości h wysokości walca w zależności od długości r promienia podstawy	1 p	$h = \frac{250}{r^2}$ $P(r) = \frac{2\pi r^3 + 500\pi}{r}$ $r \in (0, +\infty)$ $P'(r) = \frac{4\pi r^3 - 500\pi}{r^2}$
15.2	Wyznaczenie pola powierzchni całkowitej walca jako funkcji zmiennej ^r	1 p	$P(r) = \frac{2\pi r^3 + 500\pi}{r}$
15.3	Określenie dziedziny funkcji $P(r)$	1 p	$r \in (0,+\infty)$
15.4	Wyznaczenie P'(r)	1 p	$P'(r) = \frac{4\pi r^3 - 500\pi}{r^2}$

		1	
15.5	Rozwiązanie równania $P'(r) = 0$	1 p	r = 5
15.6	Uzasadnienie, że dla $r = 5$ funkcja przyjmuje wartość najmniejszą	1 p	
16.1	Naszkicowanie wykresu funkcji $y = 2^x$	1 p	
16.2	Naszkicowanie wykresu funkcji $y = 2^{x+1}$	1 p	
16.3	Przekształcenie wyrażenia $\frac{x+1}{x}$ do postaci $1+\frac{1}{x}$	1 p	
16.4	Naszkicowanie wykresu funkcji $y = \frac{1}{x}$	1 p	
16.5	Naszkicowanie wykresu funkcji $y = \frac{1}{x} + 1$	1 p	
16.6	Naszkicowanie wykresu funkcji $y = \left \frac{1}{x} + 1 \right $	1 p	
16.7	Podanie liczby ujemnych rozwiązań równania $f(x) = g(x)$	1 p	2 rozwiązania
17.1	Wyznaczenie dziedziny danego równania	1 p	$x \in (0, 2\pi) \setminus \{\pi\}$
17.2	Przekształcenie danego równania do postaci (1)	1p	$(1) 4\sin x \cos x + \frac{\cos x}{\sin x} = 4\cos x$
17.3	Przekształcenie równania z postaci (1) do postaci (2)	1 p	(2) $\cos x \left(4\sin^2 x + 1 - 4\sin x \right) = 0$
17.4	Rozwiązanie równania cos <i>x</i> = 0 w wyznaczonej dziedzinie	1 p	$x = \frac{\pi}{2} \lor x = \frac{3}{2}\pi$
17.5	Rozwiązanie równania $4 \sin^2 x - 4 \sin x + 1 = 0$ w wyznaczonej dziedzinie	1 p	$x = \frac{\pi}{6} \lor x = \frac{5}{6}\pi$
17.6	Obliczenie mocy zbioru zdarzeń elementarnych	1p	$\frac{=}{\Omega} = 6$
17.7	Obliczenie mocy zdarzenia A polegającego na tym, że co najmniej jedno z wylosowanych rozwiązań jest wielokrotnością liczby $\frac{\pi}{2}$	1 p	$\overline{\overline{A}} = 5$
17.8	Obliczenie prawdopodobieństwa zdarzenia A	1 p	$P(A) = \frac{5}{6}$
18.1	Zauważenie, że w ciągu, który jest lewą stroną danej nierówności $a_1=q=\frac{1}{2^x}$	1 p	
18.2	Podanie warunku zbieżności i wyznaczenie tych wartości ^X , dla których ciąg, który jest lewą stroną danej nierówności jest zbieżny	1 p	x > 0

	,		
18.3	Wyznaczenie sumy S ciągu, który jest lewą stroną danej nierówności	1 p	$S = \frac{\left(\frac{1}{2}\right)^x}{1 - \left(\frac{1}{2}\right)^x}$
18.4	Zamiana ułamka okresowego 0,(9) na zwykły	1 p	0,(9)=1
	Wykonanie podstawienia pomocniczej		
18.5	niewiadomej $t = \left(\frac{1}{2}\right)^x$ i zapisanie danej	1 p	$(1) \frac{t}{1-t} > \frac{1}{t} - 1$
	nierówności za pomocą zmiennej t (1)		
18.6	Przekształcenie nierówności (1) do postaci (2)	1 p	$(2) -2t\left(t-\frac{1}{2}\right)(t-1) > 0$
18.7	Rozwiązanie nierówności (2)		$t \in (-\infty,0) \cup \left(\frac{1}{2},1\right)$
18.8	Zapisanie warunku (3)	1 p	$(3) \left(\frac{1}{2}\right)^x < 0 \lor \left(\left(\frac{1}{2}\right)^x > \frac{1}{2} \land \left(\frac{1}{2}\right)^x < 1\right)$
18.9	Wyznaczenie x z warunku (3)	1 p	$x \in (0,1)$
18.10	Sprawdzenie czy otrzymane wartości <i>x</i> należą do dziedziny nierówności i odpowiedź.	1 p	
19.1	Wyrażenie długości boków b, c trójkąta za pomocą a i r , gdzie a to długość najkrótszego boku i $r > 0$	1 p	$b = a + r, \ c = a + 2r$
19.2	Wykorzystanie informacji, że suma długości boków trójkąta wynosi 30 do wyznaczenia związku pomiędzy <i>a</i> i <i>r</i>	1 p	a+r=10
19.3	Zastosowanie twierdzenia cosinusów do wyznaczenia drugiego związku pomiędzy <i>a</i> i <i>r</i>	1 p	$(a+2r)^2 = a^2 + (a+r)^2 - 2a(a+r) \cdot \left(-\frac{1}{2}\right)$
19.4	Zapisanie układu równań (1) z niewiadomymi <i>a</i> i <i>r</i>	1 p	(1) $\begin{cases} a+r=10\\ 2a^2-ar-3r^2=0 \end{cases}$
19.5	Rozwiązanie układu równań(1)	1 p	r = 4, a = 6
19.6	Podanie długości boków trójkąta	1 p	a = 6, b = 10, c = 14
19.7	Obliczenie pola trójkąta	1 p	$P_{\Delta} = 15\sqrt{3}$
19.8	Obliczenie długości R promienia okręgu opisanego na trójkącie	1 p	$R = \frac{14}{3}\sqrt{3}$
19.9	Obliczenie długości S promienia okręgu wpisanego w trójkąt	1 p	$s = \sqrt{3}$
19.10	Wyznaczenie stosunku $\frac{R}{s}$	1 p	$\frac{R}{s} = \frac{14}{3}$