Home work 5. PSI, $f(x) = {3 \choose x} {1 \over 4}^{2} {3 \choose 4}^{3-x} \quad x = 0, 1, 2, 3$ The mean of X is. $E(x) = \sum_{\text{all } x} x_{\text{j}}(x) = \sum_{n=0}^{\infty} x \cdot \left(\frac{3}{x}\right)^{\frac{n}{4}} \left(\frac{3}{4}\right)^{\frac{n}{4}} \left(\frac{3}{4}\right)^{\frac{n}{4}}$ $= 0 + 1 \cdot {3 \choose 1} \left(\frac{1}{4} \right)^{1} \left(\frac{3}{4} \right)^{2} + 2 \cdot {3 \choose 2} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} + 3 \cdot {3 \choose 3} \left(\frac{1}{4} \right)^{2} \left(\frac{3}{4} \right)^{2} \left(\frac{3$ $f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$

By definition, the average is $E(x) = \int_{-\infty}^{\infty} x \int_{-\infty}$

 $= \int_{0}^{2} x \cdot (2-2x) dx = \int_{0}^{1} (2x-2x^{2}) dx = x^{2}-2x^{3}$ = $1-\frac{2}{2}=\frac{1}{2}$.

Since the units are in \$5000, the the overage proget is

Average projet = \$5000

u=x2 >cly= 2x dx PS2, E(x) = \(\sqrt{x} \frac{4}{\pi (1+\pi 2)} \) dx

> $= \frac{2 \cdot \ln (1 + 4)}{\pi} = \frac{2 \ln 2}{\pi}$ $-\int_{a}^{2} \frac{2 du}{\Gamma(1 t u)}$

PS4, From PS3 we have

$$E(x) = 2 \int_{0}^{1} x (1-x) dx = 2 \left(\frac{x^{2}}{2} - \frac{x^{3}}{3} \right) \Big|_{0}^{1} = \frac{1}{3}.$$

$$E(x^{2}) = 2 \int_{0}^{1} x^{2} (1-x) dx = 2 \left(\frac{x^{3}}{3} - \frac{x^{4}}{4} \right) \Big|_{0}^{1} = \frac{1}{6}.$$

Hence.

Vor
$$(X) = E(X^2) - [E(X)]^2 = \frac{1}{6} - (\frac{1}{3})^2$$

de (x) de de Mil

Macanas . (n) · (V)

+(e)12 (8-12)1 - e)

THE COURT MATERIAL AND TO THE

$$85$$
, $1/18$ = 0,2357.
PSS, $1/18$ = 0,2357.

 $J(x,y) = \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \frac{1}{x^{2}y^{2}} dy$ Defermine the correlation between X and Y $J(x) = \int_{0}^{\infty} \int_{x,y}^{\infty} (x,y) dy = 2.$

$$f(x) = \int_{-\infty}^{+\infty} \int_{-2/4}^{+\infty} (x_1 y) dy = 2.$$

ĘN	IT IÅH				· · · ·			
PS 6,	J(1)	-2	3	5	SUBJECT	4	11 10.50	(82)
1	J(1)	0.5	0.2	10.3			<u> </u>	
X:	diacte vari	ables >	1. J (x)	= (-2).	(0,3) +	3.0.2	+ 5.0,5	= 2,J = E0X
	$E(X^2) =$	(-2)2.	0,3	32.0	.2 +	5 2 0,5	= 15.	F
38 4	So 62=	E(x	2) -	[E(x)] =	15,5	$-(2,5)^2$	4-
	-> The sk	ndard o	lenation	n of X	6=	V82	$= \sqrt{\frac{37}{4}}$	2
PS7,	(0	4	0.3	2.0.2	3	yallay	V.X	134
14	$(x) - \overline{2}$	x ((x)	= 0.	0,4 +	(1.U)	3)+(2.	(0,2) +	(3.0,1)=1
Ī	$(X^2) = \sum_{\alpha \in A} (X^2) = \sum_$	x2 jc	u) = (u)	0.0,4).	t(1-0,3	2)+(2 ² .	0,2/4 (3	0,1)=2
Var(x)	=6 = F	(X ²) -	Eu (x	- ال	2 -	1 = :	1	
PS8, Theo	prem 45.	, J a, b	are co	muland	s, then	L		
	E (rx +b)	= a	ECX)	t b.			-
Thio	rem 4.6.	Elgax	± 80	x)] =	Elgi	x)] <u>+</u>	F [k	(x)]
mps, u(x)	= E(x) .=	Z y j	=(x)=	1				
	ps7, ECS	-		(x)+3	= 5.1	+3=	8.	
<u>F(22)</u> <u>F</u>	$[(5 \times +3)^2]$	- 25	E(X.2)) +	30 Ec;	x).+.	9 = 25	(2) +30.1 t
		Je. j	*	K F			= 89	ON

PS 10, Is an integer between I and 100 a chosen at random
expected value?

-The probability for an integer chosen is always atwe qual to 1
100

E(x) = \frac{2}{x=1} \tau \frac{1}{x} \frac{1}{2} = \frac{101}{2} - \frac{505}{2}

PS13, $E(x^2-x) = [E(x)]^2 - E(x) + [V(x)] Varx$ $E(x^2) - E(x) = [E(x)]^2 - E(x) + Varx$ $E(x^2) - [E(x)] = Var x (otpun).$

Service (Beech adoption that monday of x 12)

The state of the s

habita and produce days of the second state of