Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Case2: △=0

no n-intercepts.

y(0) = -640 y-intercept.

 $\triangle = -2304 < 0$

Casel: $\Delta>0$ $n_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a} \quad \text{computes the } n-\text{intercepts of multiplicity 1.}$ $y(0)=c \quad \text{computes the single } y-\text{intercept.}$

Given a quadratic $y(n) = a n^2 + b n + c$ compute its discriminant \triangle :

$$y(0) = c$$
 computes the single y-intercept.
Example 1.

 $\triangle=400>0$ $n_{1,2}=2,-8$ y(0)=32 y-intercept.

 $y(n) = -2 n^2 - 12 n + 32$ compute its discriminant \triangle :

Example 2. $y(n) = -3 n^2 - 36 n - 108 \text{ compute its discriminant } \triangle:$

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single n-intercept of multiplicity 2.

-200

-300

$$n_{1,2}=-6,-6$$

 $y(0)=-108$ y-intercept.

However there is a y-intercept.
Example 3. $y(n) = -9 n^2 - 144 n - 640$ compute its discriminant \triangle :

-2000

-3000