

REAL-TIME DIGITAL SYSTEMS DESIGN AND VERIFICATION WITH FPGAS ECE 387 – LECTURE 8

PROF. DAVID ZARETSKY

DAVID.ZARETSKY@NORTHWESTERN.EDU

AGENDA

- Computer Vision
- HW4: Edge Detection

COMPUTER VISION

- Introduction to acceleration techniques for computer vision
- Implement a variation of the Canny edge detector, which is a widely-used edge-detection scheme in computer vision applications
- Applications:
 - Autonomous Vehicles
 - Machine Learning
 - Image Analysis
 - Object Detection
 - Motion Detection
 - Tracking
 - Security
 - Maps / Routing

EDGE DETECTION

- What is Edge Detection?
 - The ability to measure gray-level transitions in a meaningful way.

DETECTING THE EDGE

12/25/23

THE MEANING OF THE GRADIENT

The direction of the strongest variation in intensity

Edge Strength:

Edge Direction:

$$\|\overline{\nabla I}\| = G_x$$

$$\left\| \overline{\nabla I} \right\| = G_x$$

$$\theta(x, y) = 0$$

Horizontal

Generic

The direction of the edge at location (x,y) is perpendicular to the gradient vector at that point

CALCULATING THE GRADIENT

 For each pixel the gradient is calculated, based on a 3x3 neighborhood around this pixel.

THE SOBEL EDGE DETECTOR

-1	-2	-1
0	0	0
1	2	1

HORIZONTAL

$$G_x \approx (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

-1	0	1
-2	0	2
-1	0	1

VERTICAL

$$G_y \approx (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

THE CANNY METHOD

- The Canny edge-detection algorithm involves five stages which are applied to the input image in succession
- Key Difference: The image is convolved with a Gaussian filter before gradient evaluation

$$h(r) = -e^{-\frac{r^2}{2\sigma^2}}$$

$$r = \sqrt{x^2 + y^2}$$

THE EDGE DETECTION ALGORITHM

- The gradient is calculated for each pixel in the picture.
- If the absolute value exceeds a threshold, the pixel belongs to an edge.
- The Canny method uses two thresholds, and enables the detection of two edge types: strong and weak edge.
 - If a pixel's magnitude in the gradient image, exceeds the high threshold, then the pixel corresponds to a strong edge.
 - Any pixel connected to a strong edge and having a magnitude greater than the low threshold corresponds to a weak edge.

EECS-395 - NORTHWESTERN UNIVERSITY 12/25/23 10

EXAMPLE CANNY EDGE DETECTION

Images are converted to grayscale

STAGE I: GRAYSCALE CONVERSION

- This stage converts the input 24-bit bitmap color image (8 bits each for red, green, and blue) into an 8-bit grayscale image.
- The grayscale value at each pixel is calculated as the average of the three 8-bit color values of the original image.

EECS-395 - NORTHWESTERN UNIVERSITY 12/25/23 12

STAGE 2: GAUSSIAN SMOOTHING

- Gaussian filter is used to smooth out the image, by modifying noisy pixels (pixels that are unlike their neighboring pixels)
- The effect of this operation is that each pixel gets assigned the weighted average value of the 5×5 grid of pixels surrounding each pixel.

$$B = 1/159 \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix} * A$$

STAGE 3: SOBEL OPERATOR

- Sobel calculates each pixel from the overall intensity gradient
- Gradient is calculated in horizontal (Cx) and vertical (Cy) directions across the pixel, using the matrices to the right.
- The magnitudes of the two gradients are added to calculate the overall gradient intensity value for each pixel,
- In the resulting image, the edges of the original image are highlighted as brighter pixels. Non-edges, which are areas with low intensity gradients, appear as darker pixels.

$$C_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * B$$

$$C_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * B$$

$$C = 0.5|C_x| + 0.5|C_y|$$

12/25/23

14

STAGE 4: NON-MAXIMUM SUPPRESSION

- This stage aims to thin the thick and/or blurry edges that may have resulted from the sobel operator stage.
- Thick edges are problematic as many applications of edge detection benefit from the edges being as thin as possible
- Non-maximum suppression stage thins the edges by removing the weaker (non-maximum)
 pixels of each edge, and keeping only the maxima.

0	41	134	45	0
0	43	135	46	0
0	35	136	41	0
0	41	132	35	0
0	44	131	41	0

0	0	134	0	0
0	0	135	0	0
0	0	136	0	0
0	0	132	0	0
0	0	131	0	0

STAGE 5: HYSTERESIS

- The goal of the hysteresis stage is to remove pixels that do not belong to an edge and weak edges altogether.
- Hysteresis preserves each pixel if:
 - the pixel exceeds a high threshold, or
 - the pixel exceeds a low threshold value and there exists at least one adjacent pixel (horizontally, vertically, or diagonally) that exceeds the high threshold.
- If neither criteria are met, the pixel is removed by turning it black.

EECS-395 - NORTHWESTERN UNIVERSITY

12/25/23

16

SOBEL ALGORITHM

Note that the Gaussian smoothing, Sobel operator, non-max suppression, and hysteresis stages of the detector
are all types of box operations, as they work on a box (or frame) of pixels to determine each output pixel.

BOX OPERATION

- To take advantage of the overlap in successive frames of box operations, we will use the FPGA's local memory resources to construct a 3x3 shift register design
- Once a sufficient number of pixels have been loaded, the shift register provides a new 3x3 frame for the box operation at every cycle
- Simply shift in a new pixel and shift out the oldest pixel which is no longer be used.

QUESTIONS FOR THOUGHT

- How many shift registers will you require for your canny edge detector?
- How large should each of these shift registers be, given that your circuit works on images that are 720 pixels wide?
- How many pixels must be loaded into each shift register before the corresponding box operation can start?
- Using such a shift register design requires you to zero pad the input image before shifting in its pixels, to properly
 operate on the boundaries of the image.
- Why is zero padding necessary, and what is the necessary padding size for a given box size?

PROGRAMMING ASSIGNMENT #3: SOBEL EDGE DETECTION

- Streaming Sobel
 - Implement a variation of the Canny edge detector
 - Only implement grayscale & sobel operations.
 - Implement the UVM model for verification
 - Read BMP image in from FIFO
 - Determine how to stream data for the sobel convolutional filter operation

- Simulate & Synthesize
 - Use given C program to generate image data
 - Simulate to get cycle count and verify correctness
 - Synthesize to get resource utilization
 - Compare results with other implementations

NEXT...

HW #4: Edge Detection

NORTHWESTERN UNIVERSITY – ECE DEPARTMENT 12/25/23 21