1. Problem Description

The port has $|\mathcal{J}|$ berths and $|\mathcal{K}|$ tugboats. During the scheduling period $\mathcal{T}=1,2,\ldots,T$, there are $|\mathcal{I}|$ ships applying for berthing. Each ship needs to be allocated a berth, berthing time, and inbound/outbound tugboat services to minimize total scheduling costs. Some ships may be allowed to remain unassigned.

2. Symbol Definitions

2.1 Sets and Indices

• $\mathcal{I}=1,\ldots,m$: Ship set, index i• $\mathcal{J}=1,\ldots,n$: Berth set, index j• $\mathcal{K}=1,\ldots,K$: Tugboat set, index k• $\mathcal{T}=1,\ldots,T$: Time set, index t

2.2 Parameters

Ship-berth matching related:

- S_i : Size class of ship i
- C_j : Capacity class of berth j

Time related:

- ETA_i: Expected arrival time period of ship i
- D_i : Berthing operation duration of ship i (number of consecutive time periods)
- au_i^{in} : Inbound tugboat service duration for ship i
- ullet au_i^{out} : Outbound tugboat service duration for ship i
- ρ^{in} : Preparation time after tugboat completes inbound service
- ho^{out} : Preparation time after tugboat completes outbound service
- Δ_i^{early} : Maximum number of early time periods allowed for ship i
- Δ_i^{late} : Maximum number of late time periods allowed for ship i

Cost related:

- α_i : Priority weight of ship i
- β_i: Unit waiting cost of ship i
- γ_i: Unit cost of JIT deviation for ship i
- c_k: Unit time period usage cost of tugboat k

Horsepower related:

- P_k: Horsepower of tugboat k
- ullet P_i^{req} : Minimum tugboat horsepower required by ship i

System parameters:

- H_{max} : Maximum number of tugboats allowed for a single service
- ullet ϵ_{time} : Maximum time deviation allowed for timing constraints
- M: Big number parameter (used for penalty or logical relaxation)
- $\lambda_1, \lambda_2, \lambda_3, \lambda_4$: Weighting coefficients in the objective function

2.3 Decision Variables

- $x_{ijt} \in \{0,1\}$: Takes 1 if ship i starts berthing at berth j in time period t and $C_j \geq S_i$
- $y_{ikt}^{in} \in \{0,1\}$: Takes 1 if tugboat k starts inbound service for ship i in time period t

- $y_{ikt}^{out} \in \{0,1\}$: Takes 1 if tugboat k starts outbound service for ship i in time period t
- $z_{it}^{in} \in \{0,1\}$: Takes 1 if ship i starts inbound tugboat service in time period t (auxiliary variable)
- $z_{it}^{out} \in \{0,1\}$: Takes 1 if ship i starts outbound tugboat service in time period t (auxiliary variable)
- $u_i^{early} \geq 0$: Early time of ship i relative to ETA
- $u_i^{late} \geq 0$: Late time of ship i relative to ETA

3. Mathematical Model

3.1 Objective Function

$$\min Z = \lambda_1 Z_1 + \lambda_2 Z_2 + \lambda_3 Z_3 + \lambda_4 Z_4$$

Unserved penalty:

$$Z_1 = \sum_{i \in \mathcal{I}} M \cdot lpha_i \left(1 - \sum_{i \in \mathcal{J}} \sum_{t \in \mathcal{T}} x_{ijt}
ight)$$

Total time in port cost:

$$Z_2 = \sum_{i \in \mathcal{I}} lpha_i eta_i \left[\sum_{t \in \mathcal{T}} (t + au_i^{out}) z_{it}^{out} - \sum_{t \in \mathcal{T}} t \cdot z_{it}^{in}
ight]$$

ETA deviation cost:

$$Z_3 = \sum_{i \in \mathcal{I}} lpha_i \gamma_i \left(u_i^{early} + u_i^{late}
ight)$$

Where u_i^{early} and u_i^{late} are linearization auxiliary variables for ETA deviation.

Tugboat usage cost:

$$Z_4 = \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{T}} \sum_{t \in \mathcal{T}} c_k (au_i^{in} y_{ikt}^{in} + au_i^{out} y_{ikt}^{out})$$

3.2 Constraints

Each ship assigned at most once:

$$\sum_{i \in \mathcal{I}} \sum_{t \in \mathcal{T}} x_{ijt} \le 1, \quad \forall i \in \mathcal{I}$$
 (1)

Ship-berth matching constraint:

$$x_{ijt} = 0, \quad orall i \in \mathcal{I}, j \in \mathcal{J}, t \in \mathcal{T}: C_j < S_i$$

Inbound tugboat and berth coupling:

$$\sum_{t \in \mathcal{T}} z_{it}^{in} = \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} x_{ijt}, \quad orall i \in \mathcal{I}$$
 (3)

Outbound tugboat and berth coupling:

$$\sum_{t \in \mathcal{T}} z_{it}^{out} = \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} x_{ijt}, \quad orall i \in \mathcal{I}$$

Tugboat horsepower constraint:

$$\sum_{k \in \mathcal{K}} P_k y_{ikt}^{in} \geq P_i^{req} z_{it}^{in}, \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$
 (5)

$$\sum_{k \in \mathcal{K}} P_k y_{ikt}^{out} \geq P_i^{req} z_{it}^{out}, \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$

Tugboat quantity limit:

$$\sum_{k \in \mathcal{K}} y_{ikt}^{in} \leq H_{max} \cdot z_{it}^{in}, \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$

$$\sum_{k \in \mathcal{K}} y_{ikt}^{out} \leq H_{max} \cdot z_{it}^{out}, \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$
 (8)

Auxiliary variable definition:

$$z_{it}^{in} \leq \sum_{k \in \mathcal{K}} y_{ikt}^{in}, \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$

$$z_{it}^{out} \leq \sum_{k \in \mathcal{K}} y_{ikt}^{out}, \quad orall i \in \mathcal{I}, t \in \mathcal{T}$$
 (10)

Berth capacity constraint:

$$\sum_{j \in \mathcal{J}} \sum_{ au = \max(1, t - D_i + 1)}^t x_{ij au} \leq 1, \quad orall j \in \mathcal{J}, t \in \mathcal{T}$$

Tugboat capacity constraint (considering preparation time):

$$\sum_{i \in \mathcal{I}} \left(\sum_{ au = \max(1, t - au_i^{in} -
ho^{in} + 1)}^{t} y_{ik au}^{in} + \sum_{ au = \max(1, t - au_i^{out} -
ho^{out} + 1)}^{t} y_{ik au}^{out}
ight) \leq 1, \quad orall k \in \mathcal{K}, t \in \mathcal{T}$$

Tugboat service boundary constraint:

$$y_{ikt}^{in} = 0, \quad orall i \in \mathcal{I}, k \in \mathcal{K}, t < ETA_i - \Delta_i^{early} ext{ or } t > ETA_i + \Delta_i^{late}$$

Inbound timing constraint:

$$0 \leq \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} t \cdot x_{ijt} - \sum_{t \in \mathcal{T}} (t + au_i^{in}) \cdot z_{it}^{in} \leq \epsilon_{time} \cdot \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} x_{ijt}, \quad orall i \in \mathcal{I}$$

Outbound timing constraint:

$$0 \leq \sum_{t \in \mathcal{T}} t \cdot z_{it}^{out} - \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} (t + D_i) \cdot x_{ijt} \leq \epsilon_{time} \cdot \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} x_{ijt}, \quad \forall i \in \mathcal{I}$$

ETA deviation linearization constraint:

$$\sum_{t \in \mathcal{T}} t \cdot z_{it}^{in} = ETA_i + u_i^{late} - u_i^{early}, \quad orall i \in \mathcal{I}$$
 (16)

Variable domain constraints:

$$egin{aligned} x_{ijt}, y_{ikt}^{in}, y_{ikt}^{out}, z_{it}^{in}, z_{it}^{out} \in 0, 1, & orall i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K}, t \in \mathcal{T} \ & u_i^{early}, u_i^{late} \geq 0, & orall i \in \mathcal{I} \end{aligned}$$
 (17)