

Plea	ase write clearly ir	n block capitals.
Cer	itre number	Candidate number
Sur	name	
For	ename(s)	
Car	ndidate signature	I declare this is my own work.

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Thursday 13 January 2022 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

		Answer all questions in the spaces provided.
1	(a)	Use Simpson's rule with 5 ordinates (4 strips) to find an estimate for $\int_0^3 e^{-x^2} dx$
		Give your answer to three decimal places. [4 marks]
		Answer

1	(b)	A curve is defined by the equation $y=e^{-x^2}$ for $x \ge 0$
		The curve intersects the line $y = \frac{1}{2}(x+1)$ at a single point where $x = \alpha$

1	(b) (i)	Show that	α	lies between	0.5	and	0.6
---	---------	-----------	----------	--------------	-----	-----	-----

[2 marks]

1 **(b) (ii)** Show that the equation
$$e^{-x^2} = \frac{1}{2}(x+1)$$
 can be rearranged to $x = \sqrt{\ln\left(\frac{2}{(x+1)}\right)}$

[2 marks]

1 (b) (iii) Use the iterative formula

$$x_{n+1} = \sqrt{\ln\left(\frac{2}{(x_n+1)}\right)}$$

with $x_1 = 0.5$ to find the values of x_2 and x_3 Give your answers to three decimal places.

[2 marks]

$$x_2 =$$
 $x_3 =$

10

2	(a)	It is given that $y = (2x+1)^8 \cos 3x$	
		Find $\frac{dy}{dx}$	[2 marks]
		$\frac{\mathrm{d}y}{\mathrm{d}x} = $	
2	(b)	It is given that $y = \frac{3x^3 - 1}{2x^3 + 5}$	
		Show that $\frac{dy}{dx} = \frac{px^2}{(2x^3 + 5)^2}$ where p is a constant.	[2 marks]

	-		
	-		
2 (c)	It is given that $2xy^2 - 1 = 3x^2y$	v + v	
	3		
	Find dy		
	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$		
			[3 marks]
	-		
	_		
		1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
		dx	

Do not write outside the box

3	The polynomial $f(x)$ is defined by $f(x) = 8x^3 + ax^2 + bx + 6$ where a and b are constants.
	When $f(x)$ is divided by $(2x-1)$ the remainder is 6
	When $f(x)$ is divided by $(2x+1)$ the remainder is 9
3 (a)	Find the value of a and the value of b [4 marks]
	[+ manoj
	a = b =
3 (b)	Use the Factor Theorem to prove that $(2x+3)$ is a factor of $f(x)$
	[1 mark]

3	(c)	Simplify $\frac{f(x)}{4x^2+4x-3}$ giving your answer in the form	
		$2x+p+\frac{q}{2(2x-1)}$	
		·	
		where p and q are constants.	[4 marks]
		Answer	

Do not write outside the box

4		The curve C_1 satisfies the differential equation $y^2 \frac{dy}{dx} = 2x$	
		The curve C_2 satisfies the differential equation $2y \frac{dy}{dx} = x^2$	
		Both curves pass through the point (2, 3)	
4	(a)	Find an equation for C_1	[2 marks]
		Answer_	
4	(b)	Find an equation for C_2	
			[2 marks]

	Do not write outside the box
ve1	
(S]	

	Answer			
The acute angle between	n the tangents to	C_1 and C_2	at the point (2	θ , 3) is θ
Find the exact value of	an heta			[3

5	(a) (i)	Express $12\cos\theta - 5\sin\theta$ in the form $R\cos(\theta + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$
		Give your value of $ \alpha $ in radians to three significant figures. [3 marks]
		Answer
5	(a) (ii)	Hence solve the equation
		$12\cos(x+0.4) - 5\sin(x+0.4) = 6.5$ for $-\pi < x < \pi$
		giving all values of x to two decimal places. [3 marks]
		Answer

Solve the equation	
$8\cot^2 y = 2\csc y + 7$ for $-180^\circ < y < 180^\circ$	
giving all solutions to the nearest degree.	[5 marks]
	[5 marks]
Answer	
	$8\cot^2 y = 2\csc y + 7$ for $-180^\circ < y < 180^\circ$

6	(a)	Describe the single geometrical transformation that maps the graph of $y = \ln x$ onto the graph of $y = \ln(x+2)+1$
		[2 marks]
6	(b)	The function $\ f$ is defined by
		$f(x) = \ln(x+2)+1$ for $x > -2$
_		4
6	(b) (i)	Find an expression for $f^{-1}(x)$ [3 marks]
		[o marks]
		Answer
6	(b) (ii)	Describe the single geometrical transformation that maps the graph of $y = f(x)$ onto the graph of $y = f^{-1}(x)$
		onto the graph of $y=1$ (x) [1 mark]
6	(b) (iii)	State the range of $f^{-1}(x)$
	(, (,	[1 mark]
		Answer

6 (c) A curve has equation

$$y = \ln(x+2)+1$$
 for $x > -2$

6 (c) (i) Sketch the graph of the curve.

State, in an exact form, the coordinates of the points of intersection of the curve with the axes.

[3 marks]

6 (c) (ii) Find the equation of the tangent to the curve at the point where x = -1

[2 marks]

Answer

7	(a)	Use the substitution $u = e^{4x} + 1$ to find the exact value of $\frac{\ln 2}{2}$	
•	(ω)	Use the substitution $u = e^{4x} + 1$ to find the exact value of $\int_0^{\ln 2} \frac{1}{e^{4x} + 1} dx$	
		Give your answer in the form $a \ln b$ where a and b are constants.	
			[8 marks]

				Do not write outside the
				_ box
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_
		Answer		_
	$\int e^{4x}$			
7 (b)	Find $\int \frac{e^{4x}}{1+2e^{4x}} dx$		TO 1	_
			[2 marks	5]
				_
				_
				_
				_
				_
				_
		Answer		10

8		A curve is defined by the parametric equations	
		$x = a \sec \theta$ and $y = b \tan \theta$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$	
		where $\it a$ and $\it b$ are non-zero constants.	
8	(a)	Find a Cartesian equation of the curve.	[2 marks]
		Answer	
8	(b)	Find the equation of the normal to the curve at the point P where $\theta = \frac{\pi}{4}$	[5 marks]
			[0

		Do not write
		outside the
	Answer	
8 (c)	The normal to the curve at P intersects the coordinate axes at the points A and B	
	Find, in terms of a and b , the exact value of the area of the triangle $$ OAB	
	where O is the origin.	
	[3 marks]	
	Answer	10
	**= ** = * <u></u> _	

 $\mathbf{9}$ The function f is defined by

$$f(x) = |4 - x^2| - 3$$
 for $-1 \le x \le 3$

9 (a) (i) Sketch the graph of y = f(x)

[3 marks]

9 (a) (ii) Write down the range of $\, f \,$

[1 mark]

Answer

(a) (II	i) Solve $f(x) = -2$	[2 marks
	Answer	
(b)	The function g is defined by	
	$g(x) = \frac{1}{x - 1} \text{for} x \neq 1$	
	Solve $fg(x) = -2$ giving your answers in an exact form.	
		[3 marks
	Answer	

	(a)	By writing $\cos 3\theta$ as $\cos (2\theta + \theta)$ show that	
		$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$	
			[3 marks]
10	(b)	Use the result from part (a) and integration by parts to find	
		(30 1	
		$\int x \cos^3 2x \ dx$	
			TOl 1
			[6 marks]

	Do not write outside the
	box
Avanuan	9
Answer	

11 (a)	Express $\frac{12}{(2-x)(1-2x)^2}$ in the form $\frac{A}{2-x} + \frac{B}{1-2x} + \frac{C}{(1-2x)^2}$	[4 marks]
		[4 marks]
	Answer	
11 (b)	Find the binomial expansion of $(2-x)^{-1}$ up to and including the term in x^{-1}	2
		[1 mark]
	Answer	

11 (c)	Using your answers to parts (a) and (b) sh	now that	
	$\frac{12}{(2-x)(1-2x)^2} = L$	$O + Ex + Fx^2$	
	for small values of x stating the values of	f the constants D,E and F	[5 marks]
	Answer		

Do not write
outside the
hov

12	The point A has coordinates $(-2, -2, 3)$
	The line l has equation $\mathbf{r} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$
	Find the shortest distance from A to the line l [6 marks]

13	Bacteria is grown in a laboratory.	
	The mass of bacteria $\ M$, in milligrams, after $\ t$ days, satisfies the equation	
	$M = \frac{A}{1 + 2e^{kt}}$	
	where $\it A$ and $\it k$ are non-zero constants.	
	When $t = 0$, $M = 10$	
	When $t=1$, $M=15$	
13 (a)	Find the value of $\ A$ and the exact value of $\ k$	[3 marks]
	$A = \underline{\hspace{1cm}} k = \underline{\hspace{1cm}}$	
13 (b)	Find the mass of bacteria after 5 days.	
	Give your answer to the nearest milligram.	[2 marks]
	Answer	

(LIVE VALIT SheWar in an avact form	
Give your answer in an exact form.	[2 marks
Answer	
Find the rate of change of the mass of bacteria when $t = 4$	
a_1	
Give your answer in the form $\frac{a}{b} \ln c$ where a , b and c are integers.	[3 marks
	[5 marks
	[3 marks
	[3 marks
	[3 IIIai ks

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	3
	······································
	3

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the