编译原理 2. 词法分析

rainoftime.github.io 浙江大学 计算机科学与技术学院

课程内容

- 1. Introduction
- 2. Lexical Analysis
- 3. Parsing
- 4. Abstract Syntax
- 5. Semantic Analysis
- 6. Activation Record
- 7. Translating into Intermediate Code
- 8. Basic Blocks and Traces
- 9. Instruction Selection
- 10. Liveness Analysis
- 11. Register Allocation
- 13. Garbage Collection
- 14. Object-oriented Languages
- 18. Loop Optimizations

本讲内容

1	词法分析概述
2	正则表达式
3	有穷自动机
4	词法分析器自动生成
5	Lex工具

1. 词法分析概述

什么是词法分析?

词法分析 (Lexical Analysis)

程序是以字符串的形式传递给编译器的

 $tif (i == j)\n\t = 0;\n\t = 1;$

- ・ 词法分析: 将输入字符串识别为有意义的子串
 - 其他辅助任务: 过滤注释、空格, etc.

词法分析 (Lexical Analysis, Lexer, Scanner)

· 词法分析: 将输入字符串识别为有意义的子串

- Partition input string into substrings (lexeme)
- Classify them according to their role (tokens)

• Token (词法记号,单词)

- English: noun, verb, adjective, ...
- Programming language: keyword, identifier, ...

• Lexeme (词素)

- A member (string) of the set (token) such as "else", "if"
- An instance of the token

例: Token和Lexeme

· Token: 关键字、操作符、标识符、字符串等

Token	Lexeme	Token的非形式化定义
if	if	字符i, f
else	else	字符e, 1, s, e
relation	< , <= , = ,	<或<=或=或
id	sum, count, D5	由字母开头的字母数字串
number	3.1, 10, 2.8 E12	任何数值常数

例: 词法分析

・ 词法分析: 字符流 → Token流

```
float match0(char *s) /* find a zero */
{ if (!strncmp(s, "0.0", 3))
    return 0.;
}
```

FLOAT ID(match0) LPAREN CHAR STAR ID(s) LBRACE RPAREN IF LPAREN BANG ID(strncmp) ID(s) STRING(0.0)LPAREN COMMA NUM(3)**RETURN** COMMA RPAREN RPAREN REAL(0.0)SEMI RBRACE EOF

词法分析器的构造

Program = Specification + Implementation "What" "How" 声明式的规范 词法分析器

2. 正则表达式

如何形式化地描述词法?

字母表和串

- · 字母表 (alphabet):符号的有限集合
 - 字母、数字、标点符号、...
- · 串 (String, word):字母表中符号的有穷序列
 - 串s的长度,通常记作|s|,是指s中符号的个数
 - -空串是长度为0的串,用 ε (epsilon)表示

串上的运算

- 连接(concatenation): y附加到x后形成的串记作xy
 - 例如,如果x=dog且y=house,那么xy=doghouse
 - 空串是连接运算的单位元, 即对于任何串s都有 $\varepsilon s = s\varepsilon = s$

幂运算

$$\begin{cases} s^0 = \varepsilon, \\ s^n = s^{n-1}s, n \ge 1 \end{cases}$$

串s的n次幂:将n个s连接起来

- $S^1 = S^0 S = \varepsilon S = S$, $S^2 = SS$, $S^3 = SSS$, ...
- 例:如果 s=ba, 那么 $s^1=ba$, $s^2=baba$, $s^3=bababa$, ...

形式语言

· 语言:字母表∑上的一个串集

- 例: $\{ε, 0, 00, 000, ...\}$, $\{ε\}$,

- 句子:属于语言的串

・语言的运算

优先级:

幂>连接>并

运算	定义和表示	
L和M的并	$L \cup M = \{s \mid s$ 属于L或者s属于M}	
L和M的连接	$LM = \{ st \mid s $ 属于 L 且 t 属于 $M \}$	
L的幂	$ \begin{cases} L^0 = \{ \varepsilon \} \\ L^n = L^{n-1}L, n \geqslant 1 \end{cases} $	
L的Kleene闭包	$L^* = \cup_{i=0}^{\infty} L^i$	
L的正闭包	$\boldsymbol{L}^{\scriptscriptstyle{+}} = \cup_{i=1}^{\infty} \boldsymbol{L}^{i}$	

例: 形式语言及其运算

给定语言 L={a,b}, M={cc,dd}

并	$L \cup M = \{s \mid s \in L \not \boxtimes s \in M\}$	$LUM = \{ a, b, cc, dd \}$
连接	$LM = \{st \mid s \in L \perp t \in M\}$	LM = { acc, add, bcc, bdd }
幂	$L^0 = \{ \varepsilon \}, L^i = L^{i-1}L$	$L^1=L$, $L^2=LL=\{aa,ab,ba,bb\}$
闭包	$L^* = L^0 \cup L^1 \cup L^2 \cup \dots$?
正闭包	$L^+ = L^1 \cup L^2 \cup \dots$?

正则表达式(Regular Expression, RE)

· 正则表达式 r定义正则语言,记为L(r)

- 1. ε 是一个RE , $L(\varepsilon) = \{\varepsilon\}$
- 2. 如果 $a \in \Sigma$,则a是一个RE , $L(a) = \{a\}$
- 3. 假设r和s都是RE,分别表示语言L(r)和L(s)
 - r|s 是一个RE , $L(r|s) = L(r) \cup L(s)$
 - rs 是一个RE , L(rs) = L(r) L(s)
 - r^* 是一个RE , $L(r^*)=(L(r))^*$ Kleene闭包
 - (r) 是一个RE , L((r)) = L(r)

((a) (b)*)| (c)可以写成ab*| c

优先级: 闭包*>连接>选择|

正则表达式的一些定律

定律	描述
$r \mid s = s \mid r$	是可以交换的
$r \mid (s \mid t) = (r \mid s) \mid t$	是可结合的
r(st)=(rs)t	连接是可结合的
r(s t) = r s rt; (s t) r = sr tr	连接对 是可分配的
$\varepsilon r = r\varepsilon = r$	ε 是连接的单位元
$r^* = (r \mid \varepsilon)^*$	闭包中一定包含 ε
r **= r*	*具有幂等性

例: 正则表达式及其定义的语言

・ $\diamondsuit \Sigma = \{a, b\}$, 以下RE定义了不同正则语言

- $L(a|b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$
- $L((a|b)(a|b)) = L(a|b) L(a|b) = \{a, b\} \{a, b\} = \{aa, ab, ba, bb\}$
- $L(a^*) = (L(a))^* = \{a\}^* = \{\varepsilon, a, aa, aaa, ...\}$ 任意长度的a

正则定义

・正则定义:

- 对于比较复杂的语言,为了构造简洁的正则式,可先构造简单的正则式,再将这些正则式组合起来,形成一个与该语言匹配的正则序列
- 正则定义是具有如下形式的定义序列:

$$d_1 \rightarrow r_1$$
 $d_2 \rightarrow r_2$
 \dots
 $d_n \rightarrow r_n$

给一些RE命名,并在之后的 RE中像使用字母表中的符号 一样使用这些名字

- 1. 各个d; 的名字都不同

例: 正则定义

• 整数的正则定义

digit
$$\rightarrow$$
 0 | 1 | ... | 9 可以简记为[0-9] number \rightarrow digit digit*

另一种写法

$$digit \rightarrow 0 \mid 1 \mid \dots \mid 9$$

number → digit⁺(正闭包)

例: 正则定义

· C语言的标识符的正则定义

- C语言的标识符是字母、数字和下划线组成的串

$$digit \rightarrow 0 \mid 1 \mid 2 \mid ... \mid 9$$

$$letter_ \rightarrow A \mid B \mid ... \mid Z \mid a \mid b \mid ... \mid z \mid _$$

$$id \rightarrow letter \quad (letter \mid digit)^*$$

- 可以简化为

正则表达式 → 词法分析的规约(Specification)

词法分析: 字符流到Token-lexeme对

- 1. Select a set of tokens
 - Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token

- Number = digit⁺
- **Keyword = 'if' | 'else' | ...**
- Identifier = letter (letter | digit)*
- LeftPar = (
- •

正则规则的二义性

· 给定if8, 它是单个标识符 还是两个token if 和 8?

正则规则的二义性

最长匹配 Longest match:

- The longest initial substring of the input that can match any regular expression is taken as the next token.

规则优先 Rule priority:

- For a *particular* longest initial substring, the first regular expression that can match determines its token-type.
- This means that the order of writing down the regularexpression rules has significance.

Thus,

- if8 matches as an identifier by the longest-match rule
- if matches as a reserved word by rule-priority.

3. 有穷自动机(Finite Automata)

如何判定一个串匹配某个正则表达式? 如何形式化地描述这个匹配过程?

有穷自动机 (Finite Automata, FA)

- 有穷自动机: $M = (S, \Sigma, move, s_0, F)$
 - 1. S:有穷状态集
 - 2. Σ:输入符号集合/字母表
 - 3. move(s, a): 转换函数,表示从状态s出发,读入输入a时 转化到的状态
 - 4. s_0 : 开始状态(或初始状态), $s_0 \in S$
 - 5. F:接收状态(或终止状态)集合, F⊆S

有穷自动机的表示: 转换图

- 转换图 (Transition Graph)
 - ・状态

• 初始状态/开始状态

· 终止状态/接收状态(可以有多个)

• 状态转换

如果对于输入a,存在一个从状态p到状态q的转换,就在p、q之间画一条有向边,并标记上a

有穷自动机的表示: 转换表

・转换表

、 输入 状态	а	b
0	{0,1 }	{ 0 }
1	Ø	{2 }
2	Ø	{3}
3 •	Ø	Ø

转换图

转换表

如果转换函数没有给出对应于某个状态-输入对的信息,就把Ø放入相应的表项中

有穷自动机接收的串

· 给定输入串x,如果存在一个对应于串x的从初始状态到某个终止状态的转换序列,则称串x被该FA接收

考虑输入: ababb

$$0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3 \quad \text{ACCEPT!}$$

$$0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{b} 0$$

$$0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} ?$$

有穷自动机接收(定义)的语言

- · 给定输入串x,如果存在一个对应于串x的从初始状态到某个终止状态的转换序列,则称串x被该FA接收
- ・ 由一个有穷自动机M接收的所有串构成的集合,称为该FA接收(或定义)的语言,记为L(M)

 $L(M) = 所有以abb结尾的字母表{a, b}上的串的集合$

例: FA定义/接收的语言

• A finite automaton that accepts only "1"

• A finite automaton accepting any number of 1's followed by a single 0

状态转换: Epsilon Moves

- ε-moves: 一种特殊的状态转换方式
 - 自动机可以不读入任何输入,而从状态A转移到状态B

· 例: 以下FA定义的语言是?

不接受任何条件就能进入状态B

有穷自动机的分类

• 根据状态转换方式的不同:

- 非确定有穷自动机(Nondeterministic finite automata, NFA)
- 确定性有穷自动机 (Deterministic finite automata, DFA)

非确定有穷自动机 NFA

$$M = (S, \Sigma, move, s_0, F)$$

- 1. S: 有穷状态集
- 2. Σ :输入符号集合,即输入字母表。假设 ε 不是 Σ 中的元素
- 3. move: $S \times (\Sigma \cup \{\varepsilon\}) \rightarrow P(S)$ 。 move(s, a)表示从状态s出发,沿着标记为a的边所能到达的状态集合
- 4. s_{θ} : 开始状态(或初始状态), s_{θ} ∈S
- 5. F:接收状态(或终止状态)集合,F⊆S
 - · 在状态s时读入a, 可能迁移到多个不同的状态
 - ・ 可能有 ε -moves (不读入任何输入而迁移到其他状态)

非确定有穷自动机 NFA

· 1976年图灵奖获得者:

- Michael O. Rabin --- PhD,
 Princeton; Prof, Harvard
- Dana S. Scott --- PhD,Princeton; Prof, CMU

Michael O. Rabin

Dana S. Scott

确定性有穷自动机 DFA

$$M = (S, \Sigma, move, s_0, F)$$

- 1. S: 有穷状态集
- 2. Σ :输入符号集合,即输入字母表。假设 ε 不是 Σ 中的元素
- 3. move: $S \times \Sigma \to S$ 。 $\delta(s,a)$ 表示从状态 *s*出发,沿着标记为 a的边所能到达的状态
- 4. s_{θ} : 开始状态(或初始状态), s_{θ} ∈S
- 5. F:接收状态(或终止状态)集合,F⊆S

- · 在状态s时读入a, 可能迁移到的状态是确定的
- · 没有ε-moves

NFA vs. DFA

· DFA和NFA主要差异在转换函数

- DFA的 move: $S \times \Sigma \rightarrow S$
- NFA的 move: $S \times (\Sigma \cup \{\epsilon\}) \rightarrow P(S)$
 - 在状态s时读入a, 可能迁移到多个不同的状态
 - 可能有 ε-moves (不读入任何输入而迁移到其他状态)

• DFA和NFA的等价性

- 对任何NFA N ,存在定义同一语言的DFA D
- 对任何DFA D ,存在定义同一语言的NFA N

NFA vs. DFA vs. RE

- ・ 正则表达式 ⇔ DFA ⇔ NFA
 - 对任何NFA, 存在定义同一(**正则**)语言的DFA
 - 对任何DFA, 存在定义同一(**正则**)语言的NFA

词法分析:如何构造FA,来识别用RE刻画的Token?

回顾: 构造NFA识别字符串?

· 给定输入字符串x,如果存在一个对应于串x的从初始状态 到某个终止状态的转换序列,则称串x被该FA接收

考虑输入: ababb

$$0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3$$

$$0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{b} 0$$

$$0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} ?$$
 Failure

构造DFA识别字符串

・輸入

以文件结束符eof结尾的字符串x。

DFA D: 开始状态 s_0 ,接收状态集 F,转换函数move

· 输出

如果 D接收 x ,则回答 "yes",否则回答 "no"

```
s \leftarrow s_{0}, c \leftarrow nextChar();

while c \neq eof do

s \leftarrow move (s,c);

c \leftarrow nextChar()

end;

if s is in F then return "yes"

else return "no"
```

- · 函数nextChar()返回x的下一个符号
- 函数move(s,c)表示从状态s出发, 沿着标记为c的边所能到达的状态

例: 识别语言(a|b)*abb 的DFA

例. Input: ababb

$$0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{b} 3$$

如何构造上面的DFA?

4. 词法分析器的自动生成

- □ 从正则表达式到自动机
 - \square RE \rightarrow NFA
 - □ NFA → DFA(子集构造法)
 - □ DFA简化

给定RE,如何自动构造其DFA?

词法分析器的自动生成: RE DFA

词法分析器的自动生成: RE → DFA

正则表达式到NFA

・ 输入: 正则表达式r; 输出: 定义它的NFA, 记为N(r)

- · Thompson算法: 基于对RE的结构做归纳
 - 对基本的RE直接构造: ε , a
 - 对复合的RE递归构造: st, s | t, s*
 - 重要特点: N(r)仅一个接受状态,且没有出边

正则表达式到NFA: 处理ε和a

- · 直接构造: 识别 ε 和字母表中一个符号a的NFA
 - · 重要特点: 仅一个接受状态,接受状态没有出边

识别正则表达式€的NFA

识别正则表达式a 的NFA

正则表达式到NFA: 处理s|t

- 递归构造: 选择 s | t
 - 重要特点: 仅一个接受状态,接受状态没有出边

识别正则表达式s | t的NFA

正则表达式到NFA: 处理st

- 递归构造: 连接 st
 - · 重要特点: 仅一个接受状态,接受状态没有出边

N(s)的接受状态和N(t)的开始状态合并

识别正则表达式st的NFA

正则表达式到NFA: 处理s*

- 递归构造: 闭包 s*
 - 重要特点: 仅一个接受状态,接受状态没有出边

1.	a, b, c	S_0 \xrightarrow{a} S_1 S_0 \xrightarrow{b} S_1 S_0 \xrightarrow{c} S_1
2.	b c	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

1.	a, b, c	S_0 \xrightarrow{a} S_1 S_0 \xrightarrow{b} S_1 S_0 \xrightarrow{c} S_1
2.	b c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3.	(b c)*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1.	a, b, c	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
2.	b c	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3.	(b c)*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4.	a (b c)* (S ₀)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

We could do a bit better (如果人工构造的话) ☺

4. 词法分析器的自动生成

- □ 从正则表达式到自动机
 - \square RE \rightarrow NFA
 - □ NFA → DFA(子集构造法)
 - □ DFA简化

给定RE,如何自动构造其DFA?

NFA到DFA的转换

· 子集构造法(subset construction)原则

- DFA的每个状态是NFA的状态集合的一个子集
- 读了输入 a_i 后NFA能到达的所有状态: $s_1, s_2, ..., s_k$,则DFA 到达一个状态,对应于NFA的 $\{s_1, s_2, ..., s_k\}$

· 定义NFA状态(集)上的一些操作

操作	描述
ε-closure (s)	NFA状态s的&-闭包: s经&转换所能到达的状态集合
ε-closure (T)	T 中所有状态的 ε -闭包的并集, 即 $U_{s\in T}$ ε -closure (s)

NFA到DFA的转换

- · 子集构造法(subset construction)过程
 - 1. NFA的初始状态的 ε -闭包对应于DFA的初始状态
 - 2. 针对每个DFA状态(对应NFA状态子集A), 求输入每个 a_i 后 能到达的NFA状态的 ε -闭包并集

 $S = \varepsilon$ -closure(move(A, a_i))

NFA从状态集A出发,读入a_i 后能到达的状态集合

该集合S

- · 要么对应于DFA中的一个已有状态
- · 要么是一个要新加的DFA状态

逐步构造DFA的状态转换表,直到不动点

例: NFA到DFA的变换

· (a|b)*ab 对应的NFA如下,把它变换为DFA

例: NFA到DFA的变换

DFA的状态转换表

11. - Y-	输入符号		
状态	a	b	

例: 计算ε-closure(0)

$$A = \{0, 1, 2, 4, 7\}$$

识别DFA初始状态

/LI> -k-	输入符号		
状态	a	b	
\boldsymbol{A}			

例: 计算ε-closure(move(A,a))

$$A = \{0, 1, 2, 4, 7\}$$

 $B = \{1, 2, 3, 4, 6, 7, 8\}$

 ϵ -closure (move ({0,1,2,4,7},a))

- $= \varepsilon$ -closure($\{3,8\}$)
- $= \{1, 2, 3, 4, 6, 7, 8\}$

针对每个DFA状态, 求输入每个 a_i 后能到达的NFA状态的 ε -闭包并集 ε -closure(move(A, a_i))

3

例: 更新状态转换表

$$A = \{0, 1, 2, 4, 7\}$$

 $B = \{1, 2, 3, 4, 6, 7, 8\}$

√ I^ - L -	输入符号		
状态	a	b	
A	В		
В			

例: 计算ε-closure(move(A,b))

$$A = \{0, 1, 2, 4, 7\}$$

 $B = \{1, 2, 3, 4, 6, 7, 8\}$
 $C = \{1, 2, 4, 5, 6, 7\}$

 ϵ -closure (move ({0,1,2,4,7},b))

 $=\varepsilon$ -closure($\{5\}$)

 $=\{1, 2, 4, 5, 6, 7\}$

3

针对每个DFA状态,求输入每个 a_i 后能到达的NFA状态的 ϵ -闭包并集 ϵ -closure(move(A, a_i))

例: 计算ε-closure(move(B,a))

$$A = \{0, 1, 2, 4, 7\}$$

 $B = \{1, 2, 3, 4, 6, 7, 8\}$

 ϵ -closure (move ({1,2,3,4,6,7,8},a))

 $=\varepsilon$ -closure($\{3,8\}$)

 $=\{1, 2, 3, 4, 6, 7, 8\}$

√1_1; - - 	输入符号		
状态	а	b	
\boldsymbol{A}	В	<i>C</i>	
В			
C			

针对每个DFA状态,求输入每个 a_i 后能到达的NFA状态的 ϵ -闭包并集 ϵ -closure(move(A, a_i))

例: 更新状态转换表

A =	{0 ,	1,	2,	4,	7 }		
B =	{1,	2,	3,	4,	6,	7,	8 }
C =	{1,	2,	4,	5,	6,	7 }	

/I I^= 	输入符号		
状态	a	b	
A	В	C	
В	B		
C			

例: 计算ε-closure(move(B,b))

$A = \{0,$	1, 2, 4, 7}	
$B = \{1,$	2, 3, 4, 6, 7	' , 8 }
$C = \{1,$	2, 4, 5, 6, 7	' }
$D = \{1,$	2, 4, 5, 6, 7	7 , 9 }

/I I^ -k-	输入符号		
状态	a	b	
A	В	C	
В	В	D	
C			

例: 更新状态转换表

$$A = \{0, 1, 2, 4, 7\}$$
 $B = \{1, 2, 3, 4, 6, 7, 8\}$
 $C = \{1, 2, 4, 5, 6, 7\}$
 $D = \{1, 2, 4, 5, 6, 7, 9\}$

/I I^ -k-	输入符号	
状态	a	b
\boldsymbol{A}	В	C
В	\boldsymbol{B}	D
\boldsymbol{C}		
D		

例: 计算C的状态转换

$$A = \{0, 1, 2, 4, 7\}$$

 $B = \{1, 2, 3, 4, 6, 7, 8\}$
 $C = \{1, 2, 4, 5, 6, 7\}$
 $D = \{1, 2, 4, 5, 6, 7, 9\}$

/I I> -K-	输入符号	
状态	а	b
\boldsymbol{A}	В	C
В	В	D
\boldsymbol{C}	B	C
D		

例: 计算D的状态转换

$A = \{0,$	1, 2, 4,	7 }
$B = \{1,$	2, 3, 4,	6, 7, 8 }
$C = \{1,$	2, 4, 5,	6 , 7 }
$D = \{1,$, 2, 4, 5,	6, 7, 9 }

算法到达了"不动点"

/I I> -k-	输入符号	
状态	a	b
\boldsymbol{A}	В	\boldsymbol{C}
В	В	D
\boldsymbol{C}	В	C
D	В	C

例: 确定DFA的终止状态

$$A = \{0, 1, 2, 4, 7\}$$
 $B = \{1, 2, 3, 4, 6, 7, 8\}$
 $C = \{1, 2, 4, 5, 6, 7\}$
 $D = \{1, 2, 4, 5, 6, 7, 9\}$

The DFA's final states are the sets of states that contain at least one final state from the NFA

状态	输入符号	
	а	b
\boldsymbol{A}	В	C
В	В	D
\boldsymbol{C}	В	<i>C</i>
D	B	C

例: DFA转换表 → DFA转换图

/1 I^- k-	输入符号	
状态	a	b
A	В	<i>C</i>
В	В	D
\boldsymbol{C}	В	<i>C</i>
D	В	<i>C</i>

课后练习: NFA→ DFA转换

· 将以下NFA转成DFA

4. 词法分析器的自动生成

- □ 从正则表达式到自动机
 - \square RE \rightarrow NFA
 - □ NFA → DFA(子集构造法)
 - □ DFA简化

给定RE,如何自动构造其DFA?

DFA状态数量的最小化

- · 一个正则语言可对应于多个识别此语言的DFA
- · 通过DFA的最小化可得到状态数量最少的DFA (不 计同构,这样的DFA是唯一的)

可区分的状态(Distinguishable States)

• 可区分的状态

如果存在串x,使得从s、t出发,一个到达接受状态,一个到达非接受状态,那么x就区分了s和t

例: 考虑下图的DFA

- · ε区分任何接受状态和非接受状态
- A和B是可区分的状态:
 - · 从A出发,读入串1后到达非接受状态C;
 - 从B出发,读过 串1 后到达接受状态D

不可区分的两个状态就是等价的,可以合并

例: 可区分状态

(a|b)*abb对应的DFA

bb区分状态A和状态B

DFA最小化算法

· (推论)DFA状态等价的条件:

- 一致性条件: s、t同为终态或非终态
- **蔓延性条件**:对**所有**输入符号,s、t必须转换到**等价**的 状态集中,同时具有传递性

・ DFA简化算法

- 划分部分: 根据以上条件迭代式划分等价类,
- 构造部分: 从划分得到的等价类中选取代表, 并重建DFA

DFA最小化算法 (划分部分)

- ・ 初始划分:接受状态组和非接受状态组 $\Pi = \{S F, F\}$
- 迭代,不断划分

```
for (\Pi中的每个元素/集合G) { 细分G,使得G中的s、t仍然在同一组中 iff 对任意输入a,s、t都到达\Pi中的同一组; \Pi_{new} = 将\Pi中的G替换为细分得到的小组 }
```

・ 如果 $\Pi_{new} == \Pi$,令 $\Pi_{final} = \Pi$,算法完成;否则 $\Pi = \Pi_{new}$,转步骤2

集合G的每个状态读入同一字符后,都落入相同的某个集合,那么就不用细分S

DFA最小化算法 (构造部分)

- · 在II_{final}的每个组中选择一个状态作代表,作为最 小化DFA中的状态
 - 开始状态就是包含原开始状态的组的代表
 - 接受状态就是包含了原接受状态的组的代表(这个组一定只包含接受状态)
 - 转换关系构造如下
 - 如果s是G的代表,而原DFA中s在a上的转换到达t,且t所在组的代表为r,那么最小化DFA中有从s到r的在a上的转换

按是否可区分识别等价类

• 1. 等价类: {A, B, C}, {D}

術入 状态	0	1
A	В	C
В	В	D
<i>C</i>	В	C
D	В	C

集合G的每个状态读入同一字符后,都落入相同的某个集合,那么不用细分G

按是否可区分识别等价类

- 1. $\{A, B, C\}, \{D\}$
- 2. 测试A, B, C是否可区分

$$move({A, B, C}, \theta) = {B}$$

$$move({A, B, C}, 1) = {C, D}$$

等价类: {A, C}, {B}, {D}

LA \		
状态	0	1
\boldsymbol{A}	B	C
В	B	D
C	В	C
D	В	C

集合G的每个状态读入同一字符后,都落入相同的某个集合,那么不用细分G

按是否可区分识别等价类

- 1. $\{A, B, C\}, \{D\}$
- 2. $\{A, C\}, \{B\}, \{D\}$
- 3. 测试A, C是否可区分

$$move({A, C}, \theta) = {B}$$

$$move({A, C}, 1) = {C}$$

无法再区分A和C

等价类 {A, C}, {B}, {D}

状态	0	1
A	В	C
В	В	D
C	В	C
D	В	C

按是否是接受状态来区分

- 1. $\{A, B, C\}, \{D\}$
- 2. $\{A, C\}, \{B\}, \{D\}$
- 3. $\{A, C\}, \{B\}, \{D\}$

每个组中选择一个状态作代表, 作为最小化DFA中的状态

- A代表{A, C}
- B代表{B}
- D代表{D}

练习: DFA的化简

5. Lex 词法分析工具

词法分析和语法分析器的自动生成

- Lex, Yacc
- Flex, Bison
- ANTLR

•

用Lex生成词法分析器

- · Lex/Flex是一个有用的词法分析器生成工具
- · 通常和Yacc一起使用,生成编译器的前端

用Lex创建一个词法分析器

Lex程序的结构

・声明部分

- 常量:表示常数的标识符
- 正则定义

・转换规则

- 模式 { 动作 }
- 模式是正则表达式
- 动作表示识别到相应模式时应采取的处理方式
- 处理方式通常用是C语言代码表示

・辅助函数

- 各个动作中使用的函数

声明部分 %% 转换规则 %% 辅助函数

Lex程序的形式

例: Lex文件—声明部分

```
%{和}%之间的内容一般被直接拷贝
                        到lex.yy.c中; 这里的内容就是一段
                            LT、LE等的值在Yacc源程 序
%{
                        中定义
/* 常量LT, LE, EQ, NE, GT, GE,
   WHILE, DO, ID, NUMBER, RELOP的定义*/
%}
/* 正则定义 */
delim
         [ t n ]
                {delim}+
WS
letter
         [A - Za - z]
digit
         [0-9]
id
         {letter}({letter}|{digit})*
         {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
number
```

例: Lex文件—翻译规则部分

没有返回,表示 继续识别其它的 词法单元

```
{/* 没有动作,也不返回 */}
{ws}
while
                   {return (WHILE);}
                                                   把识别到的标识符 加入
                                                         标识符表
do
                   {return (DO);}
            {vylval = install id(); return (ID);}
{id}
                   {yylval = install_num();
{number}
                                                    识别到数字常量,
                                                                    加入
                           return (NUMBER);}
                                                           常量表
<sup>66</sup> < <sup>99</sup>
                   {yylval = LT; return (RELOP);}
<sup>66</sup> <= <sup>99</sup>
                   {yylval = LE; return (RELOP);}
66 — "
                   {yylval = EQ; return (RELOP);}
<sup>66</sup> <> <sup>99</sup>
                   {yylval = NE; return (RELOP);}
66 > "
                   {yylval = GT; return (RELOP);}
" >= "
                   {yylval = GE; return (RELOP);}
```

例: Lex文件—辅助函数

- · Lex处理源程序时,辅助函数被拷贝到lex.yy.c中
- · 辅助函数可在规则中直接调用

```
installId(){
  /* 把词法单元装入符号表并返回指针。
  yytext指向该词法单元的第一个字符,
  yyleng给出的它的长度
                        */
installNum() {
  /* 类似上面的过程,但词法单元不是标识符而是数 */
```

词法分析器的工作方式

- · Lex生成的词法分析器作为一个函数被调用
- · 在每次调用过程中,不断读入余下的输入符号
- ・发现最长的、与某个模式匹配的输入前缀时
 - 调用相应的动作,该动作进行相关处理
 - 之后词法分析器继续寻找其它词素

Lex中的冲突解决方法

冲突:多个输入前缀与某个模式相匹配,或者一个前缀与多个模式相匹配

- · Lex解决冲突的方法
 - Longest match: 多个前缀可能匹配时,选择最长的前缀
 - 比如,词法分析器把<=当作一个词法单元识别
 - Rule Priority: 最长前缀与多个模式匹配时,选择列在前面的模式
 - 如果保留字的规则在标识符的规则之前,词法分析器将识别出保留字

例: Rule Priority

R = Whitespace | 'new' | Integer | Identifier 分析"new foo"

- → "new" 匹配 R, 更精确地说是 'new'
- → 但是它可能也匹配 Identifier, 此时该选哪个?
- 一般地, 如果 $x_1...x_i \square L(R_j)$ 和 $x_1...x_i \square L(R_k)$

规则: 选择先列出的正则定义(j 如果 j < k)

→ 例如: 须将 'new' 列在 Identifier 的前面

词法分析总结

- 词法分析器的作用和接口
- 重要概念及其转换技巧/方法
 - 非形式描述的Token,正则表达式
 - 正则表达式 → NFA
 - NFA → DFA: 子集构造法
 - DFA → 最简DFA
- Lex工具的使用

Thank you all for your attention

计算 ε -closure (T)

实际上是一个图搜索过程 (只考虑ε标号边)

```
将T的所有状态压入stack中;
将ε-closure (T) 初始化为 T;
while ( stack 丰空 ) {
     将栈顶元素 t 给弹出栈中;
      for (每个满足如下条件的u:从t出发有一个标号为\varepsilon的转换到达状态u)
           if (u不在\varepsilon-closure (T)中){
                 将u加入到\varepsilon-closure(T)中;
                 将u压入栈中;
```

NFA到DFA的转换: 子集构造法

整个算法实际是一个搜索过程

- Dstates中的一个状态未加标记表示还没有搜索过它的 各个后继

```
》输入: NFAN, 输出:接收同样语言的DFAD
》方法: \varepsilon-closure (s_0)是Dstates 中的唯一状态,且它未加标记;while (EDstates中有一个未标记状态E) { EDstates中有一个未标记状态E (EDstates中的作为,是E的。 E0 (E1 (E2 (E3 ) E3 (E4 ) E5 (E4 ) E5 (E5 ) E6 (E6 ) E7 (E7 ) E8 (E7 ) E9 (E7 ) E9 (E9 ) E9 )
```

操作	描述
ε-closure (s)	从 NFA 的状态 s 开始,只通过 $arepsilon$ 转换到达的状态集合
ε-closure (T)	从 T 中的某个 NFA 状态 s 开始,只通过 $arepsilon$ 转换到达的状态集合,即 $U_{s\in T}$ $arepsilon$ -closure (s)
move(T, a)	从 T 中的某个状态 s 出发,通过标号为 a 的转换到达的状态集合