

厦门大学《微积分 1-2》课程期末试卷

白建程星章

$$I=\iiint_{\Omega}zdv$$

一、(5分) 计算 ,其中 Ω 是由曲面 $z=\sqrt{2-x^2-y^2}$ 及 $z=x^2+y^2$ 所围成的闭区域.

二、(5分) 已知空间立体
$$\Omega$$
 是由曲面 $z = x^2 + y^2$, $z = 0$, $x = \sqrt{1 - y^2}$, $x = 0$ 所围成, 其体密度 $\rho(x, y, z) = x$, 求立体 Ω 的质量.

三、
$$(6 分)$$
 计算曲线积分 $\int_{L} \frac{dx + dy}{|x| + |y|}$ 其中 L 为从 $A(1,0)$ 到 $C(0,1)$ 再从 $C(0,1)$ 到 $B(-1,0)$ 的有向折线,如图所示。

四、(6分) 设 $\int_{L} (x^3 - \varphi(y)) dx + (y^3 - 6xy) dy$ 与路径无关,其中 φ 具有连续的导数,且 $\varphi(0) = 0$. 求 一 个 二 元 函 数 u(x,y) 使 得 $du(x,y) = (x^3 - \varphi(y)) dx + (y^3 - 6xy) dy$,并 计 算 $\int_{(0,0)}^{(1,1)} (x^3 - \varphi(y)) dx + (y^3 - 6xy) dy$

七、(10 分) 设 F(x,y,z) 二阶连续可导,且满足 $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2} = 0$, 求证:

$$\iiint_{\Omega} \left[\left(\frac{\partial F}{\partial x} \right)^2 + \left(\frac{\partial F}{\partial y} \right)^2 + \left(\frac{\partial F}{\partial z} \right)^2 \right] dv = \iint_{\Sigma} F \frac{\partial F}{\partial \mathbf{n}} dS$$

 $\frac{\partial F}{\partial n}$ 其中 Ω 是光滑封闭曲面 Σ 所围的区域, $\frac{\partial F}{\partial n}$ 是 F 沿曲面 Σ 的单位外法线方向 n 的方向导数.

八、(共8分,每小题4分)判断下列级数的敛散性.如果收敛,请指出是绝对收敛还是条件收敛.

(1)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{2^n \arctan^n n}$$
 (2)
$$\sum_{n=1}^{\infty} \sqrt{n+1} \left(1 - \cos \frac{\pi}{n} \right)$$

九、(10分)设 $f(x) = \frac{5x}{x^2 + x - 6}$, 试求:

(1) 将f(x)展开成麦克劳林级数; (2) 将f(x)展开成x-1的幂级数.

十、(10 分)证明级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln(1+n)}{1+n}$ 条件收敛.

十一、(10 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n}}{2n-1}$ 的和函数及常数项级数 $\sum_{n=1}^{\infty} \frac{1}{2^n(2n-1)}$ 的和.

十二、 $(10 \, \text{分})$ 设f(x) 是周期为 2π 的周期函数,且当 $-\pi \leq x < \pi$ 时, $f(x) = x^2 + x$. 将f(x) 展开成傅立叶级数.

十三、 (5 分) 已知数列 $\{u_n\}$ 为单调增加且有界的正数数列,试证明: 级数 $^{n=1}$ $\left[1-\left(\frac{u_n}{u_{n+1}}\right)^2\right]$ 是收敛的.