Gradient Domain Manipulation Techniques in Vision and Graphics

Amit Agrawal and Ramesh Raskar

Mitsubishi Electric Research Labs (MERL)
Cambridge, MA, USA

Course WebPage:

http://www.cfar.umd.edu/~aagrawal/ICCV2007Course/

Course: Gradient Domain Techniques

Course Web Page

Google "ICCV 2007 Gradient Course"

Schedule

Introduction (30 min, Agrawal)
Gradient Domain Manipulations (1 hr, Raskar)
Break (30 min)
Reconstruction Techniques (1 hr, Agrawal)
Advanced Topics (30 min, Raskar)
Discussion

Course Web Page: Google "ICCV 2007 Gradient Course"

Intensity Gradient Manipulation

A Common Pipeline

Overview: The Reconstruction problem

- Algorithms
 - Poisson solver: Least Squares
 - Other approaches?
 - Projection on basis, Robust reconstruction, Gradient Transformations
- Numerical Methods
 - Direct solutions, Multigrid, Preconditioned congujate gradients,
 Hierarchical basis, Approximate Solutions
 - Tradeoffs

Reconstruction from Gradients

- Intensity gradient manipulation
 - Reconstruction to obtain desired image
- Spatio-Temporal gradients
 - Reconstruction to obtain desired video
- Surface gradients
 - Photometric Stereo, Shape from Shading
 - Obtain shape

- Mesh manipulation
 - 3D

Intensity Gradient in 1D

Gradient at x,

$$G(x) = I(x+1)-I(x)$$

Forward Difference

Reconstruction from Gradients

For *n* intensity values, *n-1* gradients

Reconstruction from Gradients

1D Integration

$$I(x) = I(x-1) + G(x)$$

Cumulative sum

2D Integration is non-trivial

The Reconstruction Problem

Reconstruction from Gradients Sanity Check: Recovering Original Image

Reconstruction from Gradients

Given $G(x,y) = (G_x, G_y)$

How to compute I(x,y) for the image ?

For n^2 image pixels, $2n^2$ gradients!

Reconstruction from Gradient Field G

Look for image I with gradient closest to G
in the least squares sense.

• I minimizes the integral: $\iint F(\nabla I, G) dx dy$

$$F(\nabla I, G) = \|\nabla I - G\|^2 = \left(\frac{\partial I}{\partial x} - G_x\right)^2 + \left(\frac{\partial I}{\partial y} - G_y\right)^2$$

Euler-Lagrange Equation

• I must satisfy:
$$\frac{\partial F}{\partial I} - \frac{d}{dx} \frac{\partial F}{\partial I_x} - \frac{d}{dy} \frac{\partial F}{\partial I_y} = 0$$

Substituting F we get:

$$2\left(\frac{\partial^2 I}{\partial x^2} - \frac{\partial G_x}{\partial x}\right) + 2\left(\frac{\partial^2 I}{\partial y^2} - \frac{\partial G_y}{\partial y}\right) = 0$$

$$\nabla^2 I = \operatorname{div} G$$

Poisson Equation

$$\nabla^2 I = div(G_x, G_y) = \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial x}$$

Second order PDE

Boundary Conditions

• Dirichlet: Function values at boundary are known $I(x, y) = I_0(x, y) \forall (x, y) \in \partial \Omega$

Neumann: Derivative normal to boundary = 0

$$\nabla I(x, y) \bullet n(x, y) = 0, \forall (x, y) \in \partial \Omega$$

Numerical Solution

Discretize Laplacian

$$\nabla^2 \longrightarrow \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\nabla^2 I = div(G_x, G_y) = u(x, y)$$

$$-4I(x, y) + I(x, y+1) + I(x, y-1) + I(x+1, y) + I(x-1, y) = h^{2}u(x, y)$$

h = grid size

Linear System

$$-4I(x, y) + I(x, y+1) + I(x, y-1) + I(x+1, y) + I(x-1, y) = u(x, y)$$

A

X

Sparse Linear system

A matrix

Toy case: image 4*4 pixels

- • •

-

Dirichlet Boundary Condition

- known pixel
- Unknown pixel

A matrix is 4 by 4

-4 1 1 0 1 -4 0 1 1 0 -4 1 0 1 1 -4

Toy case: image 4*4 pixels

- • •

A matrix is 16 by 16

Neumann Boundary Condition

known pixel

Unknown pixel

Toy case: image 4*4 pixels

Toy case: image 4*4 pixels

Toy case: image 4*4 pixels

Has 4 neighbors

Neumann Boundary Condition

known pixel

Unknown pixel

- Dirichlet
- Size of A = (N-2)*(N-2)
 - -4
 1
 1
 0

 1
 -4
 0
 1

 1
 0
 -4
 1

 0
 1
 1
 -4

- Neumann
- Size of A = N*N
- Unknown additive constant

Solving Linear System

- Image size N*N
- Size of A \sim N² by N²
- Impractical to form and store A

- Direct Solvers
- Basis Functions
- Multigrid
- Conjugate Gradients

Direct Solvers

- Extremely fast
- Single iteration
- No convergence issues
- No magic numbers
- Best approach for solving Poisson equation if
 - Rectangular boundary & no other constraints
- <3 sec, 1M image, Matlab</p>
- Basic Idea
 - Decompose $A = PDP^T$
 - For Dirichlet, sine functions diagonalize A
 - For Neumann, cosine functions diagonalize A

Direct Solvers

- \bullet A = PDP^T
- Eigen Values of A (Neumann)

$$\lambda(x, y) = 2\cos(\frac{\pi x}{W}) + 2\cos(\frac{\pi y}{H}) - 4$$

Eigen Values of A (Dirichlet)

$$\lambda(x, y) = 2\cos(\frac{\pi x}{W - 1}) + 2\cos(\frac{\pi y}{H - 1}) - 4$$

Eigen value only depends on image size!!

Solve
$$\nabla^2 I = div(G_x, G_y) = u(x, y)$$

- Dirichlet
- Compute 2D sine transform of u(x,y)
- Divide by eigen values
- Compute 2D inverse sine transform

$$I(x, y) = idst2(\frac{dst2(u(x, y))}{\lambda(x, y)}) \qquad I(x, y) = idct2(\frac{dct2(u(x, y))}{\lambda(x, y)})$$

- Neumann
- Compute cosine transform of u(x,y)
- Divide by eigen values (except DC)
- Compute inverse cosine transform

$$I(x, y) = idct2(\frac{dct2(u(x, y))}{\lambda(x, y)})$$

C and Matlab Code available at http://www.merl.com/people/agrawal

Extension to higher dimensions

- Simple
- For 3D, eigen values of A are

$$\lambda(x, y, t) = 2\cos(\frac{\pi x}{W}) + 2\cos(\frac{\pi y}{H}) + 2\cos(\frac{\pi t}{T}) - 6$$

Solve
$$\nabla^2 I = div(G_x, G_y, G_t) = u(x, y, t)$$

$$I(x, y, t) = idct3\left(\frac{dct3(u(x, y, t))}{\lambda(x, y, t)}\right)$$

Multigrid Methods

- Direct solvers
 - Special elliptic PDE's, O(Nlog(N))
- Multigrid O(N)
 - More general
 - Non-constant coefficients
 - Non-linear systems
- Fedorenko, 1961
- Brandt, 1963
- 1970's Hackbusch

Iterative Solvers: Smoothers

Solve Ax = b

$$x^{i+1} = x^i + M^{-1}(b - Ax^i)$$

- M = D (Jacobi)
- M = D + L (Gauss-Siedel)
- Slow convergence, low frequency error are reduced slowly

Multigrid: Key idea

- Faster Convergence
- Replace problem on fine grid by an approximation on a coarser grid
- Solve the coarse grid problem and use as initial solution
- Recursive
- Low freugency errors are reduced by coarse grid correction

Two grid solution

- Solve Ax = b, x_0 initial solution
- Compute error e = b Ax₀ at fine grid
- Restrict on coarse grid
- Solve for correction u_{coarse}
- Interpolate correction to fine grid
- $x_1 = x_0 + u$

Combine smoothing and Coarse grid correction

S: Smoothing

E: Exact Solution

R: Restrict

I: Interpolate

Multigrid

Use coarser grid recursively

Full Multigrid

- Multigrid
 - Start at finest grid, approximate solution
 - Needs b (Ax=b) only at finest level
- Full Multigrid
 - Find b at all levels
 - Start at coarsest level and move up
 - Faster convergence

Full Multigrid

Agrawal & Raskar

Algorithms for solving Poisson Equation

Algorithm 2D $(n = N^2)$

- Explicit Inv. n²
- Jacobi/GS n²
- Conj.Grad. n 3/2
- n*log n FFT
- Multigrid n
- Lower bound in

Multigrid is much more general than FFT approach (many elliptic PDE)

Preconditioning

- Solve Ax = b
- Improve efficiency and robustness
- Multiply by some 'pre-conditioner' M
 - $-M^{-1}Ax = M^{-1}b$
 - Might be easier to solve
 - Better condition number than original linear system
 - Good choice depends on the problem

- Recap
 - For Direct solvers, M is sine (cosine) functions
 - Exactly diagonalize A. Perfect Preconditioner

Hierarchical Basis Preconditioning

- Use hierarchical basis as preconditioners
 - Surface Interpolation
 - Szeliski PAMI'90, Triangular functions
 - Yaou and Chang PAMI'94, Wavelets
 - Pentland 94, Wavelets
 - Geometric Modeling
 - Gortler and Cohen 95
 - Shape from Shading
 - Szeliski, CVGIP'91
- Key idea
 - Larger support of basis functions
 - Updates can be propagated fast

Hierarchical Basis Preconditioning

- Solve Ax = b
- Substitute x = Sy
 - Columns of S are basis functions
 - Solve $S^TAS y = S^Tb$

Better condition number

Finest level

Approximate Solution for Large Scale Problems

- Resolution is increasing in digital cameras
- Stitching, Alignment requires solving large linear system

Scalability problem

Scalability problem

50 million element vectors!

Approximate Solution

- Reduce size of linear system
- Handle high resolution images
- Part of Photoshop CS3

The key insight

Desired solution x

Initial Solution x_0

Difference x_{δ}

$$Ax = b$$

$$A(x_0 + x_\delta) = b$$

$$Ax_{\delta} = b - Ax_{0}$$

$$A^{\mathsf{T}}Ax_{\delta} = A^{\mathsf{T}}(b - Ax_{0})$$

Away from seams, $A^TAX_{\delta} = 0$

Quadtree decomposition

Reduced space

X
n variables

y m variables

m << n

Reduced space

X
n variables

y m variables

$$x = Sy$$

$$x = Sy$$

$$x = Sy$$

$$x = Sy$$

$$x = Sy$$

Performance

- Quadtree [Agarwala 07]
 - Hierarchical basis preconditioning [Szeliski 90]
- Locally-adapted hierarchical basis preconditioning [Szeliski 06]

Cut-and-paste

Cut-and-paste

GPU implementations

- J. Bolz, I. Farmer, E. Grinspun, P. Schroder, "Sparse matrix solvers on the GPU: Conjugate gradients and Multigrid". TOG 22 (2003), 917-924
- N. Goodnight, C. Woolley, G. Lewin, D. Luebke, G. Humphreys, "A multigrid solver for boundary value problems using programmable graphics hardware". In Graphics Hardware (2003), 102–111.

Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and Greg Humphreys, A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware, Graphics Hardware 2003

CPU

GPU

Summary

- Poisson solver requires solving large sparse linear system
- Direct Solvers
 - Specific, rectangular domain, fast, single iteration O(Nlog(N))
- Multigrid
 - O(N), general purpose, may need fine tuning
- Conjugate Gradients
 - General, (A should be positive definite)
 - Preconditioning can improve performance
- Preconditioning
 - Incomplete LU factorization etc., general but slow
 - Hierarchical Basis, Wavelets, works well for vision problems
 - Locally adaptive hierarchical basis, general, improves
- Approximate Solution
 - Quadtree, O(sqrt(n)), but only for special cases (image stitching)

Understanding Poisson Solver

- We only talked about solving as a least square problem
 - Minimizing L2 norm

• Are there other solutions?

How do we get other meaningful solutions?

Agrawal & Raskar

Example Application: Photometric Stereo

- Multiple images, varying illumination
- Obtain surface gradient field from images
 - Lambertian reflectance model

Motivation

Reconstruction

- Feature preserving rather than smooth solution
- Handle outliers

MSE=2339.2 Least Square approach

MSE=373.72 Our approach

A Range of Reconstructions

By linear transformation of gradients

Space of Solutions

Mitsubishi Electric Research Labs (MERL)

Common approaches

- Least Squares
 - Horn et al. (IJCV'90), Simchony et al. (PAMI'90)
 - Minimize least square error between
 - Estimated gradients (p,q) and
 - gradients of Z
- Solution: Poisson equation

$$\nabla^2 Z = \operatorname{div}(p,q)$$

$$abla^2 = rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2}$$

Laplacian

$$\operatorname{div}(p,q) = \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y}$$

Divergence

Curl-Divergence Space

Correction gradient field

 Gradient field added to estimated non-integrable gradient field to make it integrable

$$\{Z_x, Z_y\} = \{p, q\} + \{\epsilon_x, \epsilon_y\}$$

Correction gradient field

$$J(Z) = \int \int \left((Z_x - p)^2 + (Z_y - q)^2 \right) dx dy = \int \int (\epsilon_x^2 + \epsilon_y^2) dx dy \ .$$

Curl-Divergence Space

Reconstruction using basis functions

- Frankot-Chellappa algorithm
 - PAMI'88
 - Project the non-integrable gradients on to Fourier basis functions

- Other basis functions
 - Cosine: Georghiades (PAMI'01)

Redundant basis: Shapelets Kovesi (ICCV'05)

Frankot-Chellappa Algorithm

Fourier Basis Functions

$$\phi = \exp(j(x\omega_x + y\omega_y))$$

$$Z = F^{-1}\left(-j\frac{\omega_x F(p) + \omega_y F(q)}{\omega_x^2 + \omega_y^2}\right)$$

F denote Fourier Transform

Shapelets

- Non-orthogonal redundant basis functions
- Gaussian functions
- Formulation in terms of slant and tilt

A Range of Reconstructions

By linear transformation of gradients

Key Ideas

- All gradients are not required for integration
- Replace gradients by functions of gradients

Approach

- Transforming input and output gradients
- Poisson equation

$$\nabla^2 Z = div(Z_x, Z_y) = div(p, q)$$

Change to Generalized Equation

$$div(f_1(Z_x, Z_y), f_2(Z_x, Z_y)) = div(f_3(p,q), f_4(p,q))$$

Using functions f₁,f₂,f₃,f₄

A Range of Solutions by Transforming Gradients

Alpha-Surface
Binary weights

M-estimator, Regularization
Continuous weights
Scaling

Diffusion
Affine
Transformation

	$f_1(z_x,z_y)$	$f_2(z_x,z_y)$	f ₃ (p,q)	f ₄ (p,q)
Poisson solver	Z _x	Z _y	р	q
$1.\alpha$ -surface	b _x Z _x	$b_y Z_y$	b _× p	b _y q
2.M-estimators	$w_x Z_x$	$w_y Z_y$	w _x p	w _y q
3.Regularization	$w_x Z_x$	$w_y Z_y$	р	q
4.Diffusion	$d_{11}Z_x+d_{12}Z_y$	$d_{12}Z_x+d_{22}Z_y$	d ₁₁ p+d ₁₂ q	d ₁₂ p+d ₂₂ q

- Poisson solution = simplest case
 - $f_1(Z_x, Z_y) = Z_x$
 - $f_2(Z_x, Z_y) = Z_y$
 - $f_3(p,q) = p$
 - $f_4(p,q) = q$

$$div(f_1(Z_x, Z_y), f_2(Z_x, Z_y)) = div(f_3(p, q), f_4(p, q))$$

$$\operatorname{div}(Z_{\mathfrak{X}},Z_{\mathfrak{Y}})=\operatorname{div}(p,q)$$

A Range of Solutions

1. Robust Estimation by ignoring outliers in gradients

C-Surface: Binary Weights

- Classifying gradients as inliers/outliers
 - Based on tolerance lpha

- Graph Analogy
 - 2D grid as a planar graph
 - Nodes correspond to height values
 - Edges correspond to gradient values

All Gradients are not required

- Minimal set is the spanning tree of the graph
- All nodes can be reached via spanning tree

- Dimensionality of gradient field ~= 2N²
- N² -1 edges in spanning tree for N² nodes
- Dimensionality of solution space = N^2 1

Q -Surface

- Start with spanning tree
 - Minimal set of (N²-1) edges
- Integrate
- Iterate
 - ullet Find inliers using given tolerance lpha
 - Reconstruct using new set of inliers

Visualization

Choice of α

 $\alpha = 0$ $\alpha >>$

Minimum Spanning Tree Unique Solution Robust to outliers

Overconstrained: All Gradients Least Squares Solution Smooth

Toy Example

Face

Input Images

Estimated Heights with α -tolerance

A Range of Solutions

2. Robust Estimation by weighting gradients

Continuous weights solution

M-estimators

Continuous weights solution

$$J = \int \int w(\epsilon_x^{k-1})(Z_x - p)^2 + w(\epsilon_y^{k-1})(Z_y - q)^2 dx dy$$

- Formulated as iterative re-weighted least squares
- w_x, w_v are weights applied to gradients

$$\operatorname{div}(w_x Z_x, w_y Z_y) = \operatorname{div}(w_x p, w_y q)$$

Regularization

Add edge-preserving smoothness term using function Φ

$$J(Z) = \int \int ((Z_x - p)^2 + (Z_y - q)^2) + \lambda(\phi(Z_x) + \phi(Z_y)) dx dy$$

- Solved iteratively
 - Estimate weights w_x, w_y using Z
 - Update Z using weights
 - $-Z^0 \equiv 0. k \leftarrow 1.$ Repeat until convergence
 - $w_x^k = \phi'(Z_x^{k-1})/(2Z_x^{k-1}), w_y^k = \phi'(Z_y^{k-1})/(2Z_y^{k-1})$
 - Solve for Z^k : $\nabla^2 Z^k + \lambda \operatorname{div}(w_x^k Z_x^k, w_y^k Z_y^k) = \operatorname{div}(p,q)$

$$\phi(s) = \sqrt{1 + s^2}$$

A Range of Solutions

3. Robust Estimation by affine transformation of gradients

Affine transformation of Gradient Field

Transform gradients using matrix D_{2x2}

$$\operatorname{div}(D\left[\begin{array}{c}Z_x\\Z_y\end{array}\right])=\operatorname{div}(D\left[\begin{array}{c}p\\q\end{array}\right])$$

$$D = \left[\begin{array}{cc} d_{11} & d_{12} \\ d_{12} & d_{22} \end{array} \right]$$

- D is a field of tensors
 - Estimated using the given gradient field (p,q)
 - Similar to edge-preserving diffusion tensor
 - Image Restoration: Weickert'96

Affine transformation of Gradient Field

Image restoration

Heat Equation:

$$I_t = \mathtt{div}(\nabla I)$$

$$D = \left[\begin{array}{cc} 1 & 0 \\ \\ 0 & 1 \end{array} \right]$$

Perona-Malik
$$I_t = \operatorname{div}(c(\nabla I)\nabla I)$$

$$D = \begin{bmatrix} c(\nabla I) & 0 \\ 0 & c(\nabla I) \end{bmatrix}$$

Weickert

$$I_t = \operatorname{div}(D\nabla I),$$

$$D(y,x) = \begin{vmatrix} d_{11}(y,x) & d_{12}(y,x) \\ d_{21}(y,x) & d_{22}(y,x) \end{vmatrix}$$

Affine transformation of Gradient Field

$$\operatorname{div}(D \left[\begin{array}{c} Z_x \\ Z_y \end{array} \right]) = \operatorname{div}(D \left[\begin{array}{c} p \\ q \end{array} \right]) \qquad \qquad D = \left[\begin{array}{c} d_{11} & d_{12} \\ d_{12} & d_{22} \end{array} \right]$$

$$D = \left[\begin{array}{cc} d_{11} & d_{12} \\ d_{12} & d_{22} \end{array} \right]$$

Minimize error functional

$$J(Z) = \int \int d_{11}(Z_x - p)^2 + (d_{12} + d_{21})(Z_x - p)(Z_y - q) + d_{22}(Z_y - q)^2 dx dy$$

- More importance to low gradients
- Less importance to high gradients

Mozart

MSE=2339.2

MSE=1316.6

MSE=219.72

Regularization

MSE=359.12

MSE=806.85

MSE=373.72

Alpha-Surface

Vase

MSE=294.5

MSE=239.6

MSE=22.2

MSE=15.14

MSE=164.98

MSE=2.78

Summary

- Numerical Methods
 - Direct Solvers, Multigrid, Preconditioning
- Poisson Solver == Least Squares
 - Favor smoothness
 - Fails in presence of outliers
- Other approaches
 - Projection on basis functions
- Feature preserving reconstructions
 - Gradient Transformations
 - Robust to outliers

Acknowledgements

- Slides Credits
 - Rick Szeliski, Microsoft
 - Aseem Agarwala, Adobe

Next Section

- Video Manipulations
 - Space-time gradients
- Mesh Deformations
 - 3D gradients

- Color2Gray
 - Large Neighborhood differences
- Gradient Camera
 - High dynamic range imaging
 - Gradient operations at sensor level

Schedule

Introduction (30 min, Agrawal)
Gradient Domain Manipulations (1 hr, Raskar)
Break (30 min)
Reconstruction Techniques (1 hr, Agrawal)
Advanced Topics (30 min, Raskar)
Discussion

Course WebPage: http://www.cfar.umd.edu/~aagrawal/ICCV2007Course