Linear Algebra: Charles's Law

According to Charles's law for an ideal gas, at constant volume, a linear relationship exists between the pressure, p, and temperature, T. In the experiment shown in the figure, a fixed volume of gas in a sealed container is submerged in ice water (T = 0 °C). The temperature of the gas is then increased in ten increments up to T = 100 °C by heating the water, and the pressure of the gas is measured at each temperature.

(Gilat 2013)

The data from the experiment is:

T (°C)	0	10	20	30	40	50	60	70	80	90	100
p (atm)	0.94	0.96	1.0	1.05	1.07	1.09	1.14	1.17	1.21	1.24	1.28

The data is contained in the ME2004 CharlesLawData.mat file for convenience.

- a) Load and plot the data.
- b) Compute the linear regression coefficients a_0 and a_1 (intercept and slope, respectively) without using any built-in MATLAB curve fitting or regression functions. This involves solving a linear system of equations. Append the best-fit line to the plot.
- c) Compute the R^2 without using any built-in MATLAB curve fitting or regression functions. This involves calculating S_r and S_t .
- d) Using the results of the regression, predict p for T = 55 °C. Append this point to your plot to visually confirm the numerical prediction.