Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Case1: △>0 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the x-intercepts of multiplicity 1.

Given a quadratic $k(x) = a x^2 + b x + c$ compute its discriminant \triangle :

 $k(x) = x^2 - 64$ compute its discriminant \triangle :

$$\triangle = 256 > 0$$
 $X_{1,2} = -8,8$
 $k(0) = 64$ k intercent

$$k(0) = -64$$
 k-intercept.

$k(x) = 2x^2 + 36x + 162$ compute its discriminant \triangle :

∆=0

Example 2.

 $\sqrt{\,\mathsf{b}^2\,}$ –4ac has no value in Real Numbers. Therefore there are

$k(x) = -4x^2 + 64x - 320$ compute its discriminant \triangle : $\triangle = -1024 < 0$

However there is a k-intercept.

no x-intercepts.

k(0) = -320 k-intercept.

Example 3.

