Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники
Кафедра электронных вычислительных машин
Отчет по лабораторной работе №4 дисциплины «Организация памяти ЭВМ»
Изучение принципов организации кэш-памяти
Вариант 13
Выполнил студент группы ИВТ-31/Крючков И. С./
Проверил/Мельцов В. Ю./

1. Задание

В соответствие с вариантом задания необходимо исследовать алгоритмы работы четырех типов кэш-памяти и используя полученную информацию в контекстно-зависимой помощи, сопровождающей демонстрацию алгоритма работы контроллера кэш-памяти, ответить на четыре вопроса для каждого задания (типа кэш-памяти):

- тип распределения кэш-памяти (прямое, полностью ассоциативное, частично-ассоциативное или секторное);
- организация блоков памяти процессора (ОП, СОЗУ данных кэшпамяти с расслоение обращений либо без), а также интерфейса связи ОП с процессором;
- стратегия обновления ОП, используемая в данной кэш-памяти;
- стратегия замещения кэш-памяти.

2. Ход работы

2.1. Задание 1

Экранная форма первого задания представлена на рисунке 1.

Рисунок 1 – Экранная форма первого задания

- 1) Распределение: ассоциативное
- 2) Расслоение: с расслоением ОЗУ
- 3) Стратегия обновления: флаговая обратная запись
- 4) Стратегия замещения: по счетчику

Оценка времени обращения к памяти представлена в таблице 1.

Таблица 1 – Оценка времени обращения к памяти

	A in Tag	A not in Tag
Чтение	$T_{T9\Gamma} + T_{co3y}$	$2*T_{T3\Gamma} + 2*T_{O3y} + 4*T_{CO3y}$
Запись	$T_{T9\Gamma} + T_{co3y}$	$2*T_{T3\Gamma} + 2*T_{03y} + 5*T_{c03y}$

Граф-схема алгоритма работы контроллера кэш-памяти представлена на рисунках 2-3.

Рисунок 2 – ГСА работы контроллера кэш-памяти при чтении

Рисунок 3 – ГСА работы контроллера кэш-памяти при записи

2.2. Задание 2

Экранная форма второго задания представлена на рисунке 4.

Рисунок 4 – Экранная форма второго задания

1) Распределение: прямое

2) Расслоение: без расслоения

3) Стратегия обновления: обратная флаговая-регистровая запись

Оценка времени обращения к памяти представлена в таблице 2.

Таблица 2 – Оценка времени обращения к памяти

	A in Tag	A not in Tag
Чтение	$T_{T9\Gamma} + T_{co3y}$	$2*T_{T3F} + 2*T_{O3y} + 5*T_{CO3y}$
Запись	$T_{T9\Gamma} + T_{co3y}$	$2*T_{T9T} + 2*T_{O3y} + 5*T_{CO3y}$

Граф-схема алгоритма работы контроллера кэш-памяти представлена на рисунках 5-6.

Рисунок 5 – ГСА работы контроллера кэш-памяти при чтении

Рисунок 6 – ГСА работы контроллера кэш-памяти при записи

2.3. Задание 3

Экранная форма третьего задания представлена на рисунке 7.

Рисунок 7 – Экранная форма третьего задания

- 1) Распределение: частично-ассоциативное
- 2) Расслоение: с расслоением ОЗУ
- 3) Стратегия обновления: простая обратная запись
- 4) Стратегия замещения: PLRU-стек

Оценка времени обращения к памяти представлена в таблице 3.

Таблица 3 – Оценка времени обращения к памяти

	A in Tag	A not in Tag
Чтение	$T_{T9\Gamma} + T_{co3y}$	$2*T_{T3\Gamma} + 2*T_{03y} + 4*T_{c03y}$
Запись	$T_{T9\Gamma} + T_{co3y}$	$2*T_{T9F} + 2*T_{03y} + 5*T_{c03y}$

Граф-схема алгоритма работы контроллера кэш-памяти представлена на рисунках 8-9.

Рисунок 8 – ГСА работы контроллера кэш-памяти при чтении

Рисунок 9 – ГСА работы контроллера кэш-памяти при записи

2.4. Задание 4

Экранная форма четвертого задания представлена на рисунке 10.

Рисунок 10 – Экранная форма четвертого задания

- 1) Распределение: ассоциативное
- 2) Расслоение: с расслоением ОЗУ и КЭШ
- 3) Стратегия обновления: простая обратная запись
- 4) Стратегия замещения: PLRU-стек

Оценка времени обращения к памяти представлена в таблице 4.

Таблица 4 – Оценка времени обращения к памяти

	A in Tag	A not in Tag
Чтение	$T_{T_{2}\Gamma} + T_{cosy}$	$2*T_{T3\Gamma} + T_{O3y} + 2*T_{CO3y}$
Запись	$T_{T3\Gamma} + T_{co3y}$	$2*T_{\text{тэг}} + T_{\text{озу}} + 2*T_{\text{созу}}$

Граф-схема алгоритма работы контроллера кэш-памяти представлена на рисунках 11-12.

Рисунок 11 – ГСА работы контроллера кэш-памяти при чтении

Рисунок 11 – ГСА работы контроллера кэш-памяти при записи

3. Вывод

В ходе лабораторной работы были изучен принцип работы кэш-памяти.

Были рассмотрены следующие виды распределений: ассоциативное, частично-ассоциативное и прямое. Изучены такие стратегии обновления, как флаговая-обратная запись, обратная флаговая -регистровая запись, простая обратная запись, сквозная с распределением. Рассмотрены стратегии замещения: по счетчику, PLRU-стек, по признаку неиспользования