Chapter 6. Optimality Conditions & Duality

- Introduction
- Local first-order optimality conditions
- Duality

Why optimality conditions?

- Check whether a solution is an optimal solution or a KKT point of an optimization problem.
 - The satisfaction of the optimality conditions can be used as stopping criteria in optimization algorithms.
- Extremely useful in proving the convergence or convergence rate of an optimization algorithm.

Another way of checking the optimality of a solution is by the dual gap: $f(\mathbf{x}_k) - g(\boldsymbol{\lambda}_k, \boldsymbol{\nu}_k)$, where $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is the objective function of the dual problem.

 Necessary and sufficient optimality conditions for unconstrained problems

We consider a real-valued function $f: D \to \mathbb{R}$ with domain $D \subset \mathbb{R}^n$ and define for a point $\mathbf{x}_0 \in D$:

- 1. f has a local minimum in $\mathbf{x}_0 \iff \exists U \in \mathcal{U}_{\mathbf{x}_0}, \ \forall \mathbf{x} \in U \cap D, \ f(\mathbf{x}) \geq f(\mathbf{x}_0)$.
- 2. f has a strict local minimum in $\mathbf{x}_0 \iff \exists U \in \mathcal{U}_{\mathbf{x}_0}, \ \forall \mathbf{x} \in U \cap D \setminus \{\mathbf{x}_0\}, \ f(\mathbf{x}) > f(\mathbf{x}_0).$
- 3. f has a global minimum in $\mathbf{x}_0 \iff \forall \mathbf{x} \in D, f(\mathbf{x}) \geq f(\mathbf{x}_0)$.
- 4. f has a strict global minimum in $\mathbf{x}_0 \iff \forall \mathbf{x} \in D \setminus \{\mathbf{x}_0\}, \ f(\mathbf{x}) > f(\mathbf{x}_0)$.

Here, $\mathcal{U}_{\mathbf{x}_0}$ denotes the neighborhood system of \mathbf{x}_0 .

We often say " \mathbf{x}_0 is a local minimizer of f" or " \mathbf{x}_0 is a local minimum point of f" instead of "f has a local minimum in \mathbf{x}_0 " and so on. The minimizer is a point $\mathbf{x}_0 \in D$, the minimum is the corresponding value $f(\mathbf{x}_0)$.

Necessary optimality conditions for unconstrained problems

Suppose that the function f has a local minimum in $\mathbf{x}_0 \in D^{\circ}$, that is, in an interior point of D. Then:

- a) If f is differentiable in \mathbf{x}_0 , then $\nabla f(\mathbf{x}_0) = \mathbf{0}$ holds.
- **b)** If f is twice continuously differentiable in a neighborhood of \mathbf{x}_0 , then the Hessian $H_f(\mathbf{x}_0) = \nabla^2 f(\mathbf{x}_0) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0)\right)$ is positive semidefinite.

We will use the notation $f'(\mathbf{x}_0)$ (to denote the derivative of f at \mathbf{x}_0 ; as we know, this is a linear map from \mathbb{R}^n to \mathbb{R} , read as a row vector) as well as the corresponding transposed vector $\nabla f(\mathbf{x}_0)$ (gradient, column vector).

Points $\mathbf{x} \in D^{\circ}$ with $\nabla f(\mathbf{x}) = \mathbf{0}$ are called *stationary points*. At a stationary point there can be a local minimum, a local maximum or a *saddle point*.

Sufficient optimality conditions for unconstrained problems

Suppose that the function f is twice continuously differentiable in a neighborhood of $\mathbf{x}_0 \in D$; also suppose that the necessary optimality condition $\nabla f(\mathbf{x}_0) = \mathbf{0}$ holds and that the Hessian $\nabla^2 f(\mathbf{x}_0)$ is positive definite. Then f has a strict local minimum in \mathbf{x}_0 .

Necessary optimality conditions for equality constrained problems

Now let f be a real-valued function with domain $D \subset \mathbb{R}^n$ which we want to minimize subject to the equality constraints

$$h_j(\mathbf{x}) = 0, \quad j = 1, ..., p,$$

for p < n; here, let $h_1, ..., h_p$ also be defined on D. We are looking for local minimizers of f, that is, points $\mathbf{x}_0 \in D$ which belong to the feasible region

$$\mathcal{F} := \{ \mathbf{x} \in D | h_j(\mathbf{x}) = 0, j = 1, ..., p \}$$

and to which a neighborhood U exists with $f(\mathbf{x}) \geq f(\mathbf{x}_0)$ for all $\mathbf{x} \in U \cap \mathcal{F}$.

Necessary optimality conditions for equality constrained problems

Theorem 1 (Lagrange Multiplier Rule). Let $D \subset \mathbb{R}^n$ be open and $f, h_1, ..., h_p$ continuously differentiable in D. Suppose that f has a local minimum in $\mathbf{x}_0 \in \mathcal{F}$ subject to the constraints

$$h_j(\mathbf{x}) = 0, \quad j = 1, ..., p.$$

Let also the Jacobian $\left(\frac{\partial h_j}{\partial \mathbf{x}_k}(\mathbf{x}_0)\right)_{p,n}$ have rank p. Then there exist real numbers $\mu_1, ..., \mu_p$ – the so-called Lagrange multipliers – such that

$$\nabla f(\mathbf{x}_0) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}_0) = \mathbf{0}.$$

Necessary optimality conditions for equality constrained problems

Example: With $f(\mathbf{x}) := x_1 x_2^2$ and $h(\mathbf{x}) := h_1(\mathbf{x}) := x_1^2 + x_2^2 - 2$ for $\mathbf{x} = (x_1, x_2)^\top \in D := \mathbb{R}^2$ we consider the problem:

$$\min_{\mathbf{x}} f(\mathbf{x}), \quad s.t. \quad h(\mathbf{x}) = 0.$$

Minimization problems with inequality constraints

(P)
$$\begin{cases} \min_{\mathbf{x}} f(\mathbf{x}), \\ s.t. \ g_i(\mathbf{x}) \le 0, \ \text{for } i \in \mathcal{I} := \{1, ..., m\}, \\ h_j(\mathbf{x}) = 0, \ \text{for } j \in \mathcal{E} := \{1, ..., p\}. \end{cases}$$
 (1)

With $m, p \in \mathbb{N}_0$ (hence, $\mathcal{E} = \emptyset$ or $\mathcal{I} = \emptyset$ are allowed), the functions $f, g_1, ..., g_m, h_1, ..., h_p$ are supposed to be continuously differentiable on an open subset D in \mathbb{R}^n and $p \leq n$. The set

$$\mathcal{F} := \{ \mathbf{x} \in D | g_i(\mathbf{x}) \le 0 \text{ for } i \in \mathcal{I}, h_j(\mathbf{x}) = 0 \text{ for } j \in \mathcal{E} \}$$

is called the feasible region or set of feasible points of (P). The optimal value v(P) to problem (P) is defined as

$$v(P) := \inf\{f(\mathbf{x}) | \mathbf{x} \in \mathcal{F}\}.$$

Concepts

For $\mathbf{x}_0 \in \mathcal{F}$, the index set

$$\mathcal{A}(\mathbf{x}_0) := \{ i \in \mathcal{I} | g_i(\mathbf{x}_0) = 0 \}$$

describes the inequality restrictions which are active at \mathbf{x}_0 .

Definition 1. Let $\mathbf{d} \in \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathcal{F}$. Then \mathbf{d} is called the feasible direction of \mathcal{F} at $\mathbf{x}_0 :\Leftrightarrow \exists \delta > 0, \ \forall \tau \in [0, \delta], \ \mathbf{x}_0 + \tau \mathbf{d} \in \mathcal{F}$.

A 'small' movement from \mathbf{x}_0 along such a direction gives feasible points. The set of all feasible directions of \mathcal{F} at \mathbf{x}_0 is a *cone*, denoted by

$$C_{fd}(\mathbf{x}_0)$$
.

Concepts

Let **d** be a feasible direction of \mathcal{F} at \mathbf{x}_0 . If we choose a δ according to the definition, then we have

$$\underbrace{g_i(\mathbf{x}_0 + \tau \mathbf{d})}_{\leq 0} = \underbrace{g_i(\mathbf{x}_0)}_{=0} + \tau g_i'(\mathbf{x}_0) \mathbf{d} + o(\tau)$$

for $i \in \mathcal{A}(\mathbf{x}_0)$ and $0 < \tau \le \delta$. Dividing by τ and passing to the limit as $\tau \to 0$ gives $g'_i(\mathbf{x}_0)\mathbf{d} \le 0$. In the same way we get $h'_j(\mathbf{x}_0)\mathbf{d} = 0$ for all $j \in \mathcal{E}$.

Concepts

Definition 2. For any $\mathbf{x}_0 \in \mathcal{F}$,

$$C_l(P, \mathbf{x}_0) := \left\{ \mathbf{d} \in \mathbb{R}^n | \forall i \in \mathcal{A}(\mathbf{x}_0), \ g_i'(\mathbf{x}_0) \mathbf{d} \le 0, \ \forall j \in \mathcal{E}, \ h_j'(\mathbf{x}_0) \mathbf{d} = 0 \right\}$$

is called the linearizing cone of (P) at \mathbf{x}_0 .

Hence, $C_l(\mathbf{x}_0) := C_l(P, \mathbf{x}_0)$ contains at least all feasible directions of \mathcal{F} at \mathbf{x}_0 :

$$\mathcal{C}_{fd}(\mathbf{x}_0) \subset \mathcal{C}_l(\mathbf{x}_0).$$

The linearizing cone is not only dependent on the set of feasible points \mathcal{F} but also on the representation of \mathcal{F} . We therefore write more precisely $\mathcal{C}_l(P, \mathbf{x}_0)$.

Concepts

Definition 3. For any $\mathbf{x}_0 \in D$

$$\mathcal{C}_{dd}(\mathbf{x}_0) := \{ \mathbf{d} \in \mathbb{R}^n | f'(\mathbf{x}_0) \mathbf{d} < 0 \}$$

is called the cone of descent directions of f at \mathbf{x}_0 .

Note that **0** is not in $C_{dd}(\mathbf{x}_0)$; also, for all $\mathbf{d} \in C_{dd}(\mathbf{x}_0)$

$$f(\mathbf{x}_0 + \tau \mathbf{d}) = f(\mathbf{x}_0) + \tau \underbrace{f'(\mathbf{x}_0)\mathbf{d}}_{<0} + o(\tau)$$

holds and therefore, $f(\mathbf{x}_0 + \tau \mathbf{d}) < f(\mathbf{x}_0)$ for sufficiently small $\tau > 0$.

Thus, $\mathbf{d} \in \mathcal{C}_{dd}(\mathbf{x}_0)$ guarantees that the objective function f can be reduced along this direction. Hence, for a local minimizer \mathbf{x}_0 of (P) it necessarily holds that $\mathcal{C}_{dd}(\mathbf{x}_0) \cap \mathcal{C}_{fd}(\mathbf{x}_0) = \emptyset$.

Examples

$$\mathcal{F} := \left\{ \mathbf{x} = (x_1, x_2)^{\top} \in \mathbb{R}^2 | x_1^2 + x_2^2 - 1 \le 0, -x_1 \le 0, -x_2 \le 0 \right\},\,$$

and $f(\mathbf{x}) := x_1 + x_2$.

$$x_0 := (1,0)^T$$

• Karush-Kuhn-Tucker (KKT) conditions

Proposition 1. For $\mathbf{x}_0 \in \mathcal{F}$ it holds that $C_l(\mathbf{x}_0) \cap C_{dd}(\mathbf{x}_0) = \emptyset$ if and only if there exist $\lambda \in \mathbb{R}^m_+$ and $\mu \in \mathbb{R}^p$ such that

Lagrange multipliers

$$\nabla f(\mathbf{x}_0) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}_0) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}_0) = \mathbf{0}$$
 (1)

and

$$\lambda_i g_i(\mathbf{x}_0) = 0 \text{ for all } i \in \mathcal{I}.$$

$$\mathbf{x}_0 \in \mathcal{F} \tag{3}$$

$$\lambda \in \mathbb{R}_+^m \tag{4}$$

KKT point: $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ satisfying (1)-(4).

• Karush-Kuhn-Tucker (KKT) conditions

$$\nabla f(\mathbf{x}_0) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}_0) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}_0) = \mathbf{0}$$

$$\updownarrow$$

$$\nabla f(\mathbf{x}_0) + \sum_{i \in \mathcal{A}(\mathbf{x}_0)} \lambda_i \nabla g_i(\mathbf{x}_0) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}_0) = \mathbf{0}$$

Proof. By definition of $C_l(\mathbf{x}_0)$ and $C_{dd}(\mathbf{x}_0)$ it holds that:

$$\mathbf{d} \in \mathcal{C}_{l}(\mathbf{x}_{0}) \cap \mathcal{C}_{dd}(\mathbf{x}_{0}) \Leftrightarrow \begin{cases} f'(\mathbf{x}_{0})\mathbf{d} < 0 \\ \forall i \in \mathcal{A}(\mathbf{x}_{0}), \ g'_{i}(\mathbf{x}_{0})\mathbf{d} \leq 0 \\ \forall j \in \mathcal{E}, \ h'_{j}(\mathbf{x}_{0})\mathbf{d} = 0. \end{cases}$$
Strong alternatives:
$$1. \ \exists \mathbf{x} \in \mathbb{R}^{n}_{+}, \ \mathbf{A}\mathbf{x} = \mathbf{b},$$

$$2. \ \exists \mathbf{y} \in \mathbb{R}^{m}, \ \mathbf{A}^{T}\mathbf{y} \geq \mathbf{0} \& \mathbf{b}^{T}\mathbf{y} < 0.$$

$$\forall i \in \mathcal{A}(\mathbf{x}_{0}), \ -g'_{i}(\mathbf{x}_{0})\mathbf{d} \geq 0$$

$$\forall j \in \mathcal{E}, \ -h'_{j}(\mathbf{x}_{0})\mathbf{d} \geq 0; \ \forall j \in \mathcal{E}, \ h'_{j}(\mathbf{x}_{0})\mathbf{d} \geq 0.$$

Karush-Kuhn-Tucker (KKT) conditions

With that the Theorem of the Alternative directly provides the following equivalence:

 $C_l(\mathbf{x}_0) \cap C_{dd}(\mathbf{x}_0) = \emptyset$ iff there exist $\lambda_i \geq 0$ for $i \in \mathcal{A}(\mathbf{x}_0)$ and $\mu'_j \geq 0, \mu''_j \geq 0$ for $j \in \mathcal{E}$ such that

$$\nabla f(\mathbf{x}_0) = \sum_{i \in \mathcal{A}(\mathbf{x}_0)} \lambda_i(-\nabla g_i(\mathbf{x}_0)) + \sum_{j=1}^p \mu_j'(-\nabla h_j(\mathbf{x}_0)) + \sum_{j=1}^p \mu_j''\nabla h_j(\mathbf{x}_0).$$

If we now set $\lambda_i := 0$ for $i \in \mathcal{I} \setminus \mathcal{A}(\mathbf{x}_0)$ and $\mu_j := \mu'_j - \mu''_j$ for $j \in \mathcal{E}$, the above is equivalent to: There exist $\lambda_i \geq 0$ for $i \in \mathcal{I}$ and $\mu_j \in \mathbb{R}$ for $j \in \mathcal{E}$ with

$$\nabla f(\mathbf{x}_0) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}_0) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}_0) = \mathbf{0}$$

and

$$\lambda_i g_i(\mathbf{x}_0) = 0 \text{ for all } i \in \mathcal{I}.$$

Karush-Kuhn-Tucker (KKT) conditions

The Lagrange function or Lagrangian of (P):

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\top} g(\mathbf{x}) + \boldsymbol{\mu}^{\top} h(\mathbf{x})$$

with $\mathbf{x} \in D, \boldsymbol{\lambda} \in \mathbb{R}_+^m$ and $\boldsymbol{\mu} \in \mathbb{R}^p$.

• Karush-Kuhn-Tucker (KKT) conditions

Question: What is the relationship between local minimum and $C_l(\mathbf{x}_0) \cap C_{dd}(\mathbf{x}_0) = \emptyset$?

Lemma 1.

For $\mathbf{x}_0 \in \mathcal{F}$ it holds that: $C_l(\mathbf{x}_0) \cap C_{dd}(\mathbf{x}_0) = \emptyset \Leftrightarrow \nabla f(\mathbf{x}_0) \in C_l(\mathbf{x}_0)^*$.

Proof.

$$C_l(\mathbf{x}_0) \cap C_{dd}(\mathbf{x}_0) = \emptyset \Leftrightarrow \forall \mathbf{d} \in C_l(\mathbf{x}_0), \ \langle \nabla f(\mathbf{x}_0), \mathbf{d} \rangle = f'(\mathbf{x}_0) \mathbf{d} \ge 0$$
$$\Leftrightarrow \nabla f(\mathbf{x}_0) \in C_l(\mathbf{x}_0)^*.$$

The cone $C_{fd}(\mathbf{x}_0)$ of all feasible directions is too small to ensure general optimality conditions. Difficulties may occur when the boundary of \mathcal{F} is curved. Therefore, we have to consider a set which is less intuitive but bigger and with more suitable properties, called *tangent cone*.

• Karush-Kuhn-Tucker (KKT) conditions

Definition 4. A sequence (\mathbf{x}_k) converges in direction \mathbf{d} to \mathbf{x}_0

$$:\Leftrightarrow \mathbf{x}_k = \mathbf{x}_0 + \alpha_k(\mathbf{d} + \mathbf{r}_k) \text{ with } \alpha_k \downarrow 0 \text{ and } \mathbf{r}_k \to \mathbf{0}.$$

We will use the following notation: $\mathbf{x}_k \stackrel{\mathbf{d}}{\to} \mathbf{x}_0$. It simply means: There exists a sequence of positive numbers (α_k) such that $\alpha_k \downarrow 0$ and

$$\frac{1}{\alpha_k}(\mathbf{x}_k - \mathbf{x}_0) \longrightarrow \mathbf{d} \text{ for } k \longrightarrow \infty.$$

Definition 5. Let M be a nonempty subset of \mathbb{R}^n and $\mathbf{x}_0 \in M$. Then

$$\mathcal{C}_t(M, \mathbf{x}_0) := \left\{ \mathbf{d} \in \mathbb{R}^n | \exists \{ \mathbf{x}_k \} \in M^{\mathbb{N}}, \ \mathbf{x}_k \stackrel{\mathbf{d}}{\to} \mathbf{x}_0 \right\}$$

is called the tangent cone of M at \mathbf{x}_0 . The vectors of $C_t(M, \mathbf{x}_0)$ are called tangents or tangent directions of M at \mathbf{x}_0 .

• Karush-Kuhn-Tucker (KKT) conditions Examples. a) The tangent cones of

$$\mathcal{F} := \left\{ \mathbf{x} = (x_1, x_2)^{\top} \in \mathbb{R}^2 | x_1 \ge 0, x_1^2 \ge x_2 \ge x_1^2 (x_1 - 1) \right\}$$

and the points $\mathbf{x}_0 \in \{(0,0)^\top, (2,4)^\top, (1,0)^\top\}.$

$$x_0 = (0,0)^T$$
 and $x_0 = (2,4)^T$

- Karush-Kuhn-Tucker (KKT) conditions
- b) $\mathcal{F} := \{ \mathbf{x} \in \mathbb{R}^n | \|\mathbf{x}\|_2 = 1 \} : \mathcal{C}_t(\mathbf{x}_0) = \{ \mathbf{d} \in \mathbb{R}^n | \langle \mathbf{d}, \mathbf{x}_0 \rangle = 0 \}.$
- c) $\mathcal{F} := \{ \mathbf{x} \in \mathbb{R}^n | \|\mathbf{x}\|_2 \le 1 \}$: Then $\mathcal{C}_t(\mathbf{x}_0) = \mathbb{R}^n$ if $\|\mathbf{x}_0\|_2 < 1$ holds, and $\mathcal{C}_t(\mathbf{x}_0) = \{ \mathbf{d} \in \mathbb{R}^n | \langle \mathbf{d}, \mathbf{x}_0 \rangle \le 0 \}$ if $\|\mathbf{x}_0\|_2 = 1$.

Lemma 1. 1) $C_t(\mathbf{x}_0)$ is a closed cone, $\mathbf{0} \in C_t(\mathbf{x}_0)$.

2) $\overline{\mathcal{C}_{fd}(\mathbf{x}_0)} \subset \mathcal{C}_t(\mathbf{x}_0) \subset \mathcal{C}_l(\mathbf{x}_0)$.

• Karush-Kuhn-Tucker (KKT) conditions

Question: whether $C_t(\mathbf{x}_0) = C_l(\mathbf{x}_0)$ always holds? No!

Example 1. a) Consider $\mathcal{F} := \{ \mathbf{x} \in \mathbb{R}^2 | -x_1^3 + x_2 \leq 0, -x_2 \leq 0 \}$ and $\mathbf{x}_0 := (0,0)^{\top}$. In this case $\mathcal{A}(\mathbf{x}_0) = \{1,2\}$. This gives $\mathcal{C}_l(\mathbf{x}_0) = \{\mathbf{d} \in \mathbb{R}^2 | d_2 = 0 \}$ and $\mathcal{C}_t(\mathbf{x}_0) = \{\mathbf{d} \in \mathbb{R}^2 | d_1 \geq 0, d_2 = 0 \}$.

b) Now let $\mathcal{F} := \{ \mathbf{x} \in \mathbb{R}^2 | -x_1^3 + x_2 \le 0, -x_1 \le 0, -x_2 \le 0 \}$ and $\mathbf{x}_0 := (0, 0)^{\top}$. Then $\mathcal{A}(\mathbf{x}_0) = \{1, 2, 3\}$ and therefore $\mathcal{C}_l(\mathbf{x}_0) = \{ \mathbf{d} \in \mathbb{R}^2 | d_1 \ge 0, d_2 = 0 \} = \mathcal{C}_t(\mathbf{x}_0)$.

the linearizing cone is dependent on the representation of the set of feasible points!

• Karush-Kuhn-Tucker (KKT) conditions

$$\nabla f(\mathbf{x}_0) \in \mathcal{C}_l(\mathbf{x}_0)^* \iff \mathcal{C}_{dd}(\mathbf{x}_0) \cap \mathcal{C}_l(\mathbf{x}_0) = \emptyset$$

Lemma 2. For a local minimizer \mathbf{x}_0 of (P) it holds that $\nabla f(\mathbf{x}_0) \in \mathcal{C}_t(\mathbf{x}_0)^*$, hence $\mathcal{C}_{dd}(\mathbf{x}_0) \cap \mathcal{C}_t(\mathbf{x}_0) = \emptyset$.

Geometric meaning: for a local minimizer \mathbf{x}_0 of (P) the angle between the gradient and any tangent direction, especially any feasible direction, does not exceed 90° .

Proof. Let $\mathbf{d} \in \mathcal{C}_t(\mathbf{x}_0)$. Then there exists a sequence $\{\mathbf{x}_k\} \in \mathcal{F}^{\mathbb{N}}$ such that $\mathbf{x}_k = \mathbf{x}_0 + \alpha_k(\mathbf{d} + \mathbf{r}_k), \ \alpha_k \downarrow 0 \ \text{and} \ \mathbf{r}_k \to \mathbf{0}$.

$$0 \le f(\mathbf{x}_k) - f(\mathbf{x}_0) = \alpha_k f'(\mathbf{x}_0)(\mathbf{d} + \mathbf{r}_k) + o(\alpha_k)$$

gives the result $f'(\mathbf{x}_0)\mathbf{d} \geq 0$.

• Karush-Kuhn-Tucker (KKT) conditions

Theorem 2 (Karush-Kuhn-Tucker). Suppose that \mathbf{x}_0 is a local minimizer of (P), and the constraint qualification $C_l(\mathbf{x}_0)^* = C_t(\mathbf{x}_0)^*$ is fulfilled. Then there exist vectors $\lambda \in \mathbb{R}^m_+$ and $\mu \in \mathbb{R}^p$ such that

$$\nabla f(\mathbf{x}_0) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}_0) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}_0) = \mathbf{0} \text{ and }$$

$$\lambda_i g_i(\mathbf{x}_0) = 0 \text{ for } i = 1, ..., m.$$

Proof. If \mathbf{x}_0 is a local minimizer of (P), it follows from Lemma 1 with the help of the presupposed constraint qualification that

$$\nabla f(\mathbf{x}_0) \in \mathcal{C}_t(\mathbf{x}_0)^* = \mathcal{C}_l(\mathbf{x}_0)^*;$$

Lemma 2 yields $C_l(\mathbf{x}_0) \cap C_{dd}(\mathbf{x}_0) = \emptyset$ and the latter together with Proposition 1 gives the result.

• Karush-Kuhn-Tucker (KKT) conditions

For $\mathbf{x} = (x_1, x_2)^{\top} \in \mathbb{R}^2$ whether the feasible points $\mathbf{x}_0 := (-1, 0)^{\top}$ and $\tilde{\mathbf{x}}_0 := (0, 1)^{\top}$ are local minimizers of consider the problem

$$\min_{\mathbf{x}} f(\mathbf{x}) := x_1 + x_2,$$

$$s.t. - x_1^3 + x_2 \le 1,$$

$$x_1 \le 1, -x_2 \le 0.$$

Constraint Qualifications

The condition $C_l(\mathbf{x}_0)^* = C_t(\mathbf{x}_0)^*$ is very abstract, extremely general, but not easily verifiable. Therefore, for practical problems, we will try to find regularity assumptions called *constraint qualifications* (CQ) which are more specific, easily verifiable, but also somewhat restrictive.

Assuming that we only have inequality constraints.

- (GCQ) Guignard Constraint Qualification: $C_l(\mathbf{x}_0)^* = C_t(\mathbf{x}_0)^*$.
- (ACQ) Abadie Constraint Qualification: $C_l(\mathbf{x}_0) = C_t(\mathbf{x}_0)$.
- (SCQ) Slater Constraint Qualification: The functions g_i are convex for all $i \in \mathcal{I}$ and

$$\exists \tilde{\mathbf{x}} \in \mathcal{F}, \ g_i(\tilde{\mathbf{x}}) < 0 \ \text{for} \ i \in \mathcal{I}_1$$

 \mathcal{I}_1 is the index set of nonlinear constraints.

$$(SCQ) \Longrightarrow (ACQ) \Longrightarrow (GCQ).$$