SRI INTERNATIONAL MENLO PARK CA USER GUIDE FOR THE AIR FORCE BASE AUTOMOTIVE TRANSPORTATION SIM--ETC(U) AD-A079 555 SEP 79 R SANDYS F08635-76-D-0132 UNCLASSIFIED AFESC/ESL-TR-79-16-VOL-2 NL OF 4 AD A 079555

MDA 079555

FILE COPY,

USER GUIDE FOR THE AIR FORCE
BASE AUTOMOTIVE TRANSPORTATION
SIMULATION MODEL-BATS
VOLUME II: DOCUMENTATION

RICHARD SANDYS PRIVATE CONSULTANT SRI INTERNATIONAL

333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025

DDC PROPINIED JAN 15 1980 LUSEUV LUSE

ESL-TR-79-16

SEPTEMBER 1979

FINAL REPORT
JUNE 1978-SEPTEMBER 1979

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

ENGINEERING AND SERVICES LABORATORY AIR FORCE ENGINEERING AND SERVICES CENTER TYNDALL AIR FORCE BASE, FLORIDA 32403

80 1-11 081

NOTICE

Please do not request copies of this report from HQ AFESC/RD (Engineering and Services Laboratory). Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER ESC/ESL TR-79-16-YOL-2 TITLE (and Subtitle) TYPE OF REPORT & PERIOD, COVERED Final Repet. USER GUIDE FOR THE AIR FORCE BASE AUTOMOTIVE TRANSPORTATION SIMULATION -- BATS Volume 2. Documentation AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(4) Richard Sandys (Consultant) FØ8635-76-D-Ø132 15 9. PERFORMING ORGANIZATION NAME AND ADDRESS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 12. REPORT DATE Air Force Engineering Service Center/RDVA Tyndall Air Force Base, Florida 32403 347 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Available in DDC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) BATS - Base Automotive Transportation Simulation computer model AQAM - Air Quality Assessment Model data base motor vehicle emissions data reduction motor vehicle transportation simulation 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The Base Automotive Transportation Simulation (BATS) Model is a transportation planning and traffic flow model designed to simulate traffic volumes and flows on an air base. The principal model inputs are a road network, land use zones, demographic variables, and gate counts. The land use zones and demographic variables are used to assign volumes to the road network, and these volumes

are calibrated using the gate counts. The flow characteristics on each road in the network are simulated using the volumes assigned. Average speed and

CURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

volumes are the results of the model and these may be directly input to the Air Quality Assessment Model (AQAM) to estimate pollutant emissions and dispersion from traffic sources. A volume flow plot of the network is an optional output of the model.

PREFACE

This report contains the Base Automotive Transportation Simulation (BATS) model computer program documentation developed during the period <u>June 1978</u> - September 1979 by SRI International, Menlo Park CA, under contract F08635-76-0132, with HQ Air Force Engineering and Services Center/RDVA, Tyndall AFB FL 32403. Lieutenant Harold A. Scott, AFESC, managed the project.

Ms Marilyn Duffey-Armstrong was the project leader responsible for developing BATS. Mr Eugene Shelar modified the motor vehicle emission routines used by the Air Quality Assessment Model (AOAM). Stanley Isaacs, Linda Jones, William Stock, Judith Monaco, Robert Cofer, Irving Yabroff, Hisao Shigieshi and Marilyn Sanfillippo were the programmers for the BATS model. Ms Susan Swope wrote and prepared a major portion of the report.

This report has been reviewed by the Office of Information (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This report is approved for publication.

HAROLD A. SCOTT, LLt, USAF Air Quality Research Engineer

EMIL C. FREIN, Maj, USAF Chief, Environics Division Yary Y Worley
GARY G. WORLEY, Maj, USAF
Chief, Assessment Technology
and Energy Branch

JOSEPH S. PIZZUTO, Col, USAF, BSC Director, Engineering and Services Laboratory

Accession For

MTIS GRA&I
DDC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Availabd/or
Dist special

TABLE OF CONTENTS

Sect	tion	Tit	tle																						Page
ABS	FRACT																								iii
LIST	OF	FIGURES		•			•																		vii
LIST	OF	TABLES .									•														vii
	FACE																•								ix
1	INTRO	DUCTION																							
	1.1	Backgrou												•									•	•	1
	1.2	Review o																					•	•	1
	1.3																								1
	1.4	Computer																							2
		Document							•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	3
II	BATS-	GENERAI	. DE	SCR	IPI	'IOI	N		•	•	•			•										•	4
	2.1	Introduc	tio	n						•															4
	2.2	Input .							•																4
	2.3	Initiali	lzat	ion																					6
	2.4	Transpor	tat	ion	P1	an	niı	ng																	6
	2.5	Traffic																							31
II	DOCUN	MENTATION	1																						41
	3.1	BATS .																							41
	3.2	INPT .																							44
	3.3																								
	3.4	MNPATH								•							•	•	•	•		•	•	•	45
	3.5	TRIPGEN													•		•	•	•	•	•	•	•	•	57
	3.6							•									•			•					59
				٠																•					61
	3.7	MODAL			• •									•					•	•	•	•	•	•	63
	3.8	SMOOTH		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	64
	3.9	ASSIGN		•		•		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•		•	65
	3.10	INSEC.						•	•	•	•	•		•	•	•	•	•	•	•		•	•		67
	3.11	INSECU				•	•	•	•	•	•				•	•		•							68
	3.12	PARKING																			24				69

111	DOCUM	ENTATION	(C	on	ti	nu	ed)															
	3.13	COORXY .												•							•		70
	3.14	PLOTI																					70
	3.15	PLOTA																					71
	3.16	PLOTP						•															71
	3.17	AQAMF																					72
	3.18	LETTER .																					73
	3.19	TOFC		•							•	•											74
	3.20	CHARAC .																					74
	3.21	GATFUN .														•							74
	3.22	SUMIT										•			•								74
	3.23	PRESCAN.					•																75
	3.24	PTRAF	•							•													75
	3.25	PPLOT																					76
	3.26	CLOSEST.																•					76
	3.27	PDIST																					77
	3.28	PLOTLK .							•			•											77
	3.29	PFNDVOL.						•				•											78
	3.30	PDISP																					78
	3.31	OVERCAP.																					79
	3.32	LABEL																					79
	3.33	ZLABEL .								•													80
	3.34	PLOTLN .																					80
	3.35	PLTSCL .																					81
	3.36	CHKBND .																					81
	3.37	PTMOVE .						•															82
REFI	ERENCES	3							•											•		•	83
APPE	ENDLCES	3																					
	A	PROGRAM	LIS	STI	NG	•							•										85
	В	UTILITY	ROI	JTI	NE	S	•			•													258
	C	SAMPLE R	UN		WT	I.I.	TA	MS	Δ	FR													262

LIST OF FIGURES

Figure	<u>Title</u>				Page
1	BATS Flow Diagram				5
2	Transportation Planning Flow				8
3	Flow Chart for Trip Generation Function				10
4	Flow Chart for Trip Distribution Function				16
5	Flow Chart for Mode Split Function				20
6	Flow Chart for Calibration Function				22
7	Assignment of Vehicles to Network				28
8	Traffic Flow Analyses				32
9	Sample Model of Intersection Delay				33
10	Signalized Intersection Model Flow Diagram			•	35
11	Unsignalized Intersection Model Flow Diagram				38
12	Parking Model Flow Diagram				39
13	BATS Flow Chart Showing Major Subroutines Called				42
C-1	Williams AFB Link Network				263
	LIST OF TABLES				
<u>Table</u>	<u>Title</u>				Page
1	BATS Basic Input Information - Cards O Through 16				46
B-1	Program Test Listing				259
C-1	Summary of Predictive and Descriptive Runs for Williams	5 A	FB		264

SECTION 1

INTRODUCTION

1.1 Background

The objective of this project was to develop an air base motor vehicle model that would simulate an air base traffic system by using available transportation and land use data. The model produces a graphical representation of the air base motor vehicle operation and also produces a file of traffic flows for input to the Air Quality Assessment Model (AQAM). Thus, AQAM will be made sensitive to air base land use and transportation activities, and will be able to predict motor vehicle-related air pollution effectively.

The Base Automotive Transportation Simulation (BATS) Model is useful for assessing the effectiveness of various planning strategies such as strategies to reduce and control air pollution, traffic engineering projects to reduce congestion and improve flow, energy conservation strategies, and land use strategies represented in Air Force comprehensive plans.

The model was tested and its performance evaluated at three typical air bases (Tinker, Williams, and Davis-Monthan). Data for inputs to the model were collected by the project team in two phases: The first phase included a survey and extraction of existing data from the TAB A-1 and Military Traffic Management/Transportation Engineering Agency data. The second phase involved field surveys at the three air bases. Information was collected on base operations necessary to operate the model (e.g., work schedules and the peak operational periods of such facilities as gas stations, hospitals, and base exchanges).

The data collection task is documented in a technical report that provides specific guidance to air base personnel who use the model (see ESL-TR-79-16, Volume I, Data Collection and Reduction). The data collection document demonstrates step by step how to extract required data from the existing sources and how to collect data by using field survey techniques, if required. The document also provides average or default values (which can be used as model inputs) that are based on the three air base studies undertaken by the project team.

1.2 Review of Regulations

On February 25, 1974 (Federal Register, Vol. 39, p. 7270), the Environmental Protection Agency administrator promulgated a regulation (40 CFR 52.22 b) for the review of indirect sources for inclusion in the Clean Air Act implementation plans. Subsequent changes and clarifications

were issued (Federal Register, Vol. 39, p. 25292, July 9, 1974) and the regulations were scheduled for implementation on January 1, 1975. As a result of congressional action in December 1974, the EPA was prohibited from using FY 1975 funds for the enforcement of indirect-source (and so-called parking management) regulations.

According to the regulations, indirect sources include, but are not limited to: highways and roads; parking facilities; retail, commercial, industrial, educational, recreational, amusement, sports, and entertainment facilities; office and government buildings; apartment, condominium, and housing projects; and airports. For those facilities that may be aggregated as parking or trip attraction facilities, the regulations require that an air quality impact assessment be made if the new or incremental parking capacity exceeds certain limits. Within Standard Metropolitan Statistical Areas (SMSA), this includes new facilities with parking capacity of 1000 cars or more or an increase of an existing facility by 500 cars or more. In the case of highways, the regulations apply if the expected average daily traffic (ADT) meets or exceeds 20,000 within ten years for a new roadway, or if there is an increase of 10,000 or more on a modified roadway. Outside the SMSAs, all the limits are exactly double.

To satisfy all technical requirements for the assessment of the anticipated air quality impact of all roadway and parking-related projects, the Air Force has developed the comprehensive AQAM and BATS models. These models provide a detailed air quality impact analysis by first performing a dynamic analysis of traffic flow within and adjacent to the base and then determining emissions and atmospheric dispersion of pollutants.

In addition to providing a comprehensive analysis tool for assessment of the local impact of roadways and parking facilities (in terms of ambient concentrations of carbon monoxide), BATS and AQAM can be used for a variety of similar analytical requirements. First, they can be used to meet the requirements for preparing environmental impact statements under the National Environmental Policy Act of 1970 (Public Law 91-190) and similar state laws. BATS and AQAM would, of course, also be directly applicable to satisfying the local impact-assessment requirements of the proposed (and now delayed) parking management regulations (Federal Register, Vol. 39, p. 30440, August 22, 1974).

1.3 Computer Requirements

BATS is written in FORTRAN IV. It has been debugged and tested on SRI's CDC 6400 computer and the CDC 6600 at Eglin AFB. It has been run successfully under the KRONOS and SCOPE operating systems using 60,000 words of core storage. The model should be readily transferable to any computer system with FORTRAN IV capability. Because of the large core storage requirements, however, the program would need modification before it could be run on medium or small scale computer systems. Such modifications could be undertaken without much difficulty so that the BATS program could be run using 32 kilobites of computer storage.

1.4 Document Organization

This document describes the BATS model and discusses each subroutine or program in the model. Section 2 provides the logical functioning of the model, the basic equations used in the model, and the reasons behind the unique features of the model. Therefore, the second section is useful to the person who wants to know the general features of the model.

Section 3 is useful to the person who wants to understand and perhaps change an operational result of the model. This section discusses the purpose of each subroutine or program, its inputs, and its outputs. A listing of each routine is provided in Appendix A. Appendix B describes the utility routines, Appendix C presents a sample run of BATS for Williams AFB, and Appendices D and E (Volume 3) contain the sample runs of Tinker AFB and Davis-Monthan AFB, respectively.

SECTION II

BATS--GENERAL DESCRIPTION

2.1 Introduction

BATS combines the features of transportation planning and traffic flow analysis by predicting volumes, speeds and delays on the network of streets and zones which comprise an air base. The model synthesizes the capabilities of the SRI Network Analysis Program (SNAP) (Haney and Thompson, 1971) and Indirect Source Model for Pollution (ISMAP) (Sandys et al., 1975).

Figure 1 presents a flow diagram of the BATS program at its most general level. The model is very straightforward, consisting of INPUT, INITIALIZATION, TRANSPORTATION PLANNING, TRAFFIC FLOW, and OUTPUT functions. Each iteration causes a loop through the entire program. Because this loop includes the input function, the user inputs new data for each hour to be run. In this way, the number of trips and other network characteristics may be changed for any time period simulated.

All tests and loops shown in the flowchart are required to perform multiple iterations through the model. Multiple iterations allow the user flexibility in the accuracy, amount of computer inputs, and computer time associated with each computer run of the model. For example, the user may select 1 hour as the length of time during which constant demand and flow will provide desired simulation accuracy. He may also choose to simulate 12 hours of the day as representing most traffic flow on the base. Then the program would input 12 sets of data and perform 12 iterations to predict traffic during 12 hours. Alternately, if a user requires less accuracy, he might choose to simulate 12 hours in one iteration; therefore, the time period simulated would be 12 hours and only one set of input data would be read.

The flow diagram also shows a special feature that allows for 15-minute iterations without looping through the input function. Typically, congestion will not occur during an entire hour on a street network; rather, it is confined to a shorter, perhaps 15-minute, time period. Therefore, the user should use the 15-minute iteration when he wishes to predict possible congestion occurring on the base. When less accuracy is required, a 1-, 2-, 12-, or 24-hour time period may suffice to predict travel on the network. The output of the model includes printed reports, plots of the traffic network, and a traffic data file for input to the AQAM program. The output is described in the BATS User Guide ESL-TR-79-16 Volume 1: Data Collection and Reduction and therefore is not included in this document.

2.2 Input

Data are input for each time period or iteration that is part of a computer run. The 17 types of input are identified by Card Types 0 through 16. Cards of type 0 and 1 are read for each iteration.

FIGURE 1. BATS FLOW DIAGRAM

They describe the heading, the options, and the number of Card Types 2 through 16 to be read for an iteration. Card Types 2, 3, 4, 5, and 10, which define the network, need to be read only on the first iteration of the program. The network definition includes link, intersection, zone, demographic variable, and truck route specifications. Card Types 6, 7, 8, 9, and 11 contain information that may vary from one time period to another, such as trip generation coefficients, gate counts, through traffic counts, load factors, and work-shift counts. Card Types 12, 13, 14, 15, and 16 are special purpose cards, which reset default values of plot scale factors, calibration coefficients, default trip generation arrays, demographic variable names, and daily-to-yearly traffic volume conversion factors.

The input routine is designed to minimize input cards by permanently storing values read on a previous iteration, and using these if no other values are read.

2.3 Initialization

The second function shown on the flowchart stores the initial values of parameters that are required by the simulation. Three parameters are initialized:

- The x-y coordinates of each link are read by INPUT and oriented by the direction of traffic flows.
- The area of each zone is used to compute the average length of each trip within the zone needed to find a parking spot. This length is the longest side of the zone, plus the area divided by the longest link.
- The time to travel each link is determined based on the speed limit and length of each link. On later iterations, the travel time is a function of the link and intersection capacity and flow.

2.4 Transportation Planning

The third function shown on the flowchart predicts the network vehicle counts using the transportation planning methodology. A great many different "transportation planning" methodologies could have been used to accomplish this function. A study for small urban areas (Grecco et al., 1976), undertaken as part of the National Cooperative Highway Research Program, is a useful reference defining several of the approaches.

An air base is quite similar to a small urban area in that it has housing, office, industry, recreation, shopping, and service facilities. However, an air base differs from many urban areas because a great deal of information has been collected about the various facilities. The TAB A-1 Environmental Narrative found at most air bases illustrates the availability of data that can be used in the TRANSPORTATION PLANNING process.

2.4.1 General Methodology

The purpose of the transportation planning methodology is to estimate, for selected time periods, the number of vehicles on each link of a network. The methodology proceeds through five sequential steps as shown in the flowchart, Figure 2. The first step, trip generation (TRIPGEN), is the most complex step in the methodology; it allows the user many optional ways of generating trips from or to each zone. Trip generation predicts how many persons wish to make a trip away from (productions) or to (attractions) a zone. The origin or the destination of a trip is predicted, but origin and destination pairs must be predicted by a subsequent function.

The trip distribution function (GRAVO) determines the number of person trips going between each origin-destination (0-D) pair. In this function, trips that go from an exterior to interior zone or interior to exterior zone are distributed from an origin zone to a gate and then from the gate to a destination zone. This function requires that routes between 0-D pairs be generated. The distribution function uses travel time between 0-D pairs as a parameter in the equation that predicts person trips.

The modal split function (MODAL), the next step in the transportation planning method, determines the mode of travel of each person, which, in the BATS model, is by civilian vehicle, military vehicle, bus, or bicycle. A load factor is determined for each type of vehicle operating from each zone. This factor can be specified as a function of O-D trip travel time for buses. Person trips are then converted to vehicle trips using the load factor for each type of vehicle, and the percentage of civilian vehicles, military vehicles, buses, or bicycles associated with each zone.

The trips are stored as the number of vehicles going from origin to gate, from gate to destination, and from internal origin to internal destination. At this point in the methodological sequence, the user may take advantage of the fact that most vehicles on an air base travel through base gates during peak hours. The smooth function (SMOOTH) uses the base gate counts to calibrate predicted vehicle gate counts to the measured values. Thus, through calibration the model can adjust the predicted number of vehicles arriving and departing the base during any time period to match gate counts. Furthermore, the smoothing function shifts trips between origin-gate and gate-destination pairs so that the predicted number of vehicles using each individual gate closely approximates the number actually counted as using the gate.

The final step (ASSIGN) in the methodology assigns vehicles to the street network of the base. The minimum time path between each origin-gate, gate-destination, and internal origin-internal destination pair is determined, and vehicle trips between each pair are assigned to the links (street segments) in the route. A second minimum time path between each zone pair may be determined and then the vehicle trips are split among the two alternate routes in indirect proportion to the route travel times.

FIGURE 2. TRANSPORTATION PLANNING FLOW DIAGRAM

The route travel times are initially based on the speed limit on each link in the network. After the first iteration of the BATS model the travel times depend on the traffic flow, which was predicted on a previous iteration. In this way, the model is sensitive to congestion occurring in the network, and routes vehicles away from areas of congestion found during a previous iteration.

BATS provides inputs through ASSIGN to an air quality assessment model. These inputs take the form of the number of vehicles of six types on each link and the number of hot transient, hot start, or cold start vehicles on each link.

Results of the five sequential steps of the transportation planning methodology are counts of the number of vehicles on each link, a count of the turning movements made from each link, a count of the type of vehicle for both civilian and military vehicles, and the number of hot transient, hot start, or cold start vehicles on each link. For the summations in the equations below, the limits are those that were used in the BATS computer program.

2.4.2 The Trip Generation Function

The trip generation function allows the user to generate trips from or to a zone in four different ways using four sequential steps. Figure 3 shows the necessary steps and the tests made before performing each step. The first step generates NTO, the trip productions, from a zone Z, using VAR, the demographic variables associated with zone Z and COEFO, the trip productions coefficients associated with trip purpose K and demographic variable J.

NTO(Z,K) =
$$\sum_{J=1}^{10} VAR(J,Z) \times COEFO(J,K)$$

The trip attractions, NTD, to each zone Z are similarly generated using VAR and COEFD, the trip attraction coefficients associated with trip purpose K and demographic variable J.

$$NTD(Z,K) = \sum_{J=1}^{10} VAR(J,Z) \times COEFD(J,K)$$

The second step in the trip generation function is to determine default productions or attractions, if they are called for. Default values are determined by using the land use designation of each zone and the PLUALU array to generate trips between the various land use types. Each element of the PLUALU array is the number of total trips, for other than Home-to-Work or Military-Vehicle trip purposes, which are generated between land use types. The rows of the array are Productions by Land Use and the columns are Attractions by Land Use. The PLUALU

FIGURE 3. FLOW CHART FOR TRIP GENERATION FUNCTION

array was generated from an origin-destination study, and time-of-day travel patterns studied at Williams AFB. An Array of Land Use Attractions for a particular time period, ALUA, is made up from the PLUALU array and the NTO and NTD arrays. The column elements, L1, of the ALUA array are filled in using the following equation

ALUA(L1,LU) =
$$\sum_{K=2}^{NTRIPC}$$
 NTD(Z,K) * PLUALU(L1,LU) $/\sum_{L2=1}^{7}$ PLUALU(L2,LU)

where LU is the land use associated with zone Z, Ll goes from l to 7, and NTRIPC is the number of civilian vehicle trip purposes. The ALUA array stores the land use trips specified by the input data through the VAR(J,Z), and COEF(J,K) variables, and those land use trips inferred from the values in the PLUALU array.

In this array the attractions to each land use are given precedence over the productions. Some columns of the ALUA array are not initialized if trips have not been specified for a particular land use on a Card Type 6. When this occurs, the NTO array is used to complete all rows with land use, Ll, associated with each Z. The remaining uninitialized elements are then filled in proportion to the corresponding PLUALU array elements. The ALUA in its final form is an array of trip productions and attractions associated with each land use type.

Default generation of trips takes place when a zero COEFO or COEFD is input by the user for some trip purpose. The NTD array can be filled for trip purpose K for each zone Z using its land use LU to define the total number of trips made for this trip purpose.

$$NTD(Z,K) = \sum_{L2=1}^{7} ALUA(L2,LU) \times f(VAR(J,Z))$$

As an example, if K is the shopping trip purpose, then all zones Z whose land use is shopping (LU=3) will have a value stored in NTD(Z,K). This value will be a proportion of the total trips attracted to all zones with land use = shopping. Because no particular demographic variable can be used to generate these attractions, a function of all demographic variables associated with all zones with LU=3 is used to generate the fraction of shopping trips going to a particular zone Z. If COEFD is not zero then:

$$f(VAR(J,Z)) = COEFD(J,K) \times VAR(J,Z) / \sum^{a11} VAR(J,Z)$$

The NTO array can be filled for trip purpose K, for each zone, Z, using the zones' land use, IZLU, to determine which zones produce trips. In this case land use LU and trip purpose K are synonymous; that is, the trip purpose must be for shopping, service or other land use, LU.

$$NTO(Z,K) = ALUA(IZLU,LU) \times f(VAR(J,Z))$$

The sum of NTO will therefore equal the sum of NTD for any trip purpose K, where K=2,3...NTRIPC.

The next step in trip generation is the inclusion of shift counts in the NTO, NTD arrays if these are specified by the input data. So far, the trip generation function has been dealing with hourly (or perhaps 8-hour or daily) trips. However, to model congestion during the peak periods it is necessary to consider 15-minute vehicle loadings of the network (of course, 10-, 5- or 1-minute loadings of the network would provide capability for even more accurate predictions of congestion, but such refinements would increase the complications of the modeling process enormously).

A simple means of predicting 15-minute loadings would be to make a 15-minute iteration of the BATS model (as done for hourly time periods). The problem with this method is best illustrated by an example as follows: if zone 1 employs 100 workers and zone 2 employs 100 workers, then a 15-minute iteration would predict an equal number of workers going to both zones during any 15-minute time period because both have equal demographic variables. However, 75 persons might go to zone 1 and 25 to zone 2 during a 15-minute time period. In order to represent this situation, 15-minute shift counts may be input to the computer and these will override the demographic variable × coefficient generation of trips to each zone. Thus, it is possible to input 75 employees for zone 1 and 25 employees for zone 2. The shift counts are input and stored in the array SHFPCT(Z,M,I) for each zone Z, for attractions or productions M, and for each 15-minute period of an hour I.

The final step is to use gate counts to predict peak 15-minute traffic for other than shift trips, which are defined as FLEX TIME (flexible arrival/departure time) trips. Persons who make flex time trips choose when they will arrive at work. A "flex time pool" is defined to include all non-shift time trips, and use 15-minute gate counts to allocate the flex time pool to those zones associated with gates that are most heavily used during each 15 minutes.

We compute GAFRO and GAFRD, the fraction of hourly trips to a zone Z produced or attracted during a 15-minute time period:

GAFRO =
$$\frac{\sum_{AG}^{AG} GCNT15(G,1,1)}{\sum_{GCOUNT(1,G)}^{AG}}$$

GAFRD =
$$\frac{\sum_{AG}^{AG} GCNT15(G,2,I)}{\sum_{GCOUNT(2,G)}^{AG}}$$

where:

AG = all gates G associated with zone Z

GGNT15(G,J,I) is the 15-minute gate count exiting

(J=1) through gate G, during time period I

GCOUNT(J,G) is the hourly gate count exiting

(J=1) through gate G, during time period I.

Note that when there is only one gate, GAFRO and GAFRD apply to all zones. When there are two gates, GAFRO could have three values, one for zones associated with gate 1, one for zones associated with gate 2 and one for zones associated with gates 1 and 2.

We next compute FRACO and FRACD, the fraction of the hourly flex-time pool productions or attractions coming from or going to a zone Z:

FRACO =
$$\frac{\left(\text{NTO}(Z,1) - \sum_{I=1}^{4} \text{SHFPCT}(Z,1,I)\right)}{\frac{\text{all IZ}}{\sum} \left(\text{NTO}(IZ,1) - \sum_{I=1}^{4} \text{SHFPCT}(IZ,1,I)\right)}$$

$$\text{FRACD} = \frac{\left(\text{NTD}(Z,1) - \sum_{I=1}^{4} \text{SHFPCT}(Z,2,I)\right)}{\frac{\text{all IZ}}{\sum} \left(\text{NTD}(IZ,1) - \sum_{I=1}^{4} \text{SHFPCT}(IZ,2,I)\right)}$$

FRACO × GAFRO × SFTO is the fraction of the hourly flex-time pool, SFTO, coming from zone Z during a 15-minute period.

where SFTO =
$$\sum_{i=1}^{A11} IZ \left(NTO(IZ,1) - \sum_{i=1}^{4} SHFPCT(IZ,1,1) \right)$$

$$SFTD = \sum_{i=1}^{A11} IZ \left(NTD(IZ,1) - \sum_{i=1}^{4} SHFPCT(IZ,2,1) \right)$$

The number of trips coming from any zone Z during a 15-minute time period I is then:

 $NTO(Z,1) = FRACO \times SFTO \times GAFRO + SHFPCT(Z,1,I)$

The number of trips going to any zone Z during a 15-minute time period I is:

 $NTD(Z,1) = FRACD \times SFTD \times GAFRD + SHFPCT(Z,2,1)$

2.4.3 Trip Distribution Function

Thus far, the NTO(Z,K) and NTD(Z,K) arrays have been developed. These arrays store the person-trips originating from or destined to a zone Z for the trip purpose K. The distribution function determines the proportion of the NTO(Z,K) trip origins going to every other zone in the network, and it determines the proportion of the NTD(Z,K) trip destinations coming from every other zone in the network.

One of the widely used methods of distributing trips is through the use of a "gravity" function, so named from Newton's second law of motion, which states that the attraction between two bodies is directly proportional to the product of their masses and indirectly proportional to the square of the distance between them. The trip distribution function assumes that the trip attraction between two zones is directly proportional to the product of the number of trip origins and trip destinations and indirectly proportional to a function of the travel time between them.

On an air base, another variable must be considered in the function—the number of vehicles traveling through each gate to the base. More than one trip travel time between zones is possible; each trip may go through one or more gates on the base. The problem faced in defining a distribution function for an air base was to use the gate counts to get a more accurate distribution of trips and to route the correct number of trips between each pair of zones.

Previous studies of traffic at the air bases (Nellis, 1971; Tinker, 1967) provided data that could be used to determine the function of gate counts and travel time on vehicle distribution. A study of trip travel patterns at Nellis AFB showed that trips made from gate to employment zones were indirectly proportional to travel time cubed.

The Nellis AFB study predicted the number of vehicles traveling from each of four gates to each of twelve work zones. The number of vehicles going from each gate to each destination zone was projected from interviews with approximately one-third of the vehicles using the gates during the morning rush hour and documented in the 1971 Traffic Engineering Study.

The studies at Tinker AFB, Nellis AFB, and other bases showed that employees tended to use a gate near to their zone of employment and employees tended not to double back in their route, i.e., drive beyond an employment zone while off base and back to the zone while on base. One modification to the distribution procedure was suggested by these studies. This would lower attraction to a zone from a gate when trips within the base retrace their trip while approaching the base; in other words, when vehicles must drive past their destination zone in order to use a certain entrance gate.

A trip distribution function that is inversely proportional to off-base travel time plus on-base travel time cubed, and directly proportional to gate counts appears to satisfy the constraints of the problem. The equations used in the GRAVO subroutine (which performs the trip distribution function) are described in the following paragraphs. A flowchart of the function is given in Figure 4.

The two ends of the trips are in exterior zones Z and interior zones Z1; that is, the equations handle trips that originate in Z and go to Z1 and that originate in Z1 and go to Z.

The number of trips between Z and Z1 is considered to be directly proportional to the fraction of the total destined for Z1. (This assumes that employees do not choose their housing location based on their zone of employment.)

$$ZGT = \sum_{K=1}^{a11} K \text{ NTO}(Z,K) \times \text{ NTD}(Z1,K) / \sum_{K=1}^{a11} Z1 \text{ NTD}(Z1,K)$$

$$ZAT = \sum_{K=1}^{a11} K \text{ NTD}(Z,K) \times \text{ NTO}(Z1,K) / \sum_{K=1}^{a11} Z1 \text{ NTO}(Z1,K)$$

Then ZGT is the total number of trips leaving from zone Z for zone Zl and ZAT is the total number of trips going to zone Z from zone Zl.

Let TT(Z,G) be the travel time from zone Z to gate G. Then the fraction of ZGT or ZAT that uses any gate is proportional to FSOD1 or FSOD2:

FSOD1(G) =
$$\frac{\text{GCNT15}(G,1,\text{ITM})}{\text{TT}(Z,G) + \text{TT}(Z1,G)^3}$$
FSOD2(G) =
$$\frac{\text{GCNT15}(G,2,\text{ITM})}{\text{TT}(Z,G) + \text{TT}(Z1,G)^3}$$

where GCNT15(G,1,ITM) is the 15-minute gate count exiting gate G during the ITM time period, and GCNT15(G,2,ITM) is the 15-minute gate count entering gate G. So $ZGT \times FSOD1(G)$ is the gravity function applied to any gate for a pair of zones Z and Z1.

FIGURE 4. FLOW CHART FOR TRIP DISTRIBUTION FUNCTION

FIGURE 4. FLOW CHART FOR TRIP DISTRIBUTION FUNCTION (Concluded)

The function still must be normalized so that the sum of the ZGT \times FSOD1(G) will equal ZGT. In performing the normalization the model computes the number going from zone Z to each gate G, OV(Z,G), the number going from zone Z1 to each gate G, OV(Z1,G), the number going to zone Z from gate G, VD(Z,G), and the number going to zone Z1 from gate G, VD(Z1,G).

$$OV(Z,G) = ZGT \times FSOD2(G) / \sum^{a11} G FSOD2(G)$$

$$OV(Z1,G) = ZAT \times FSOD1(G) / \sum^{a11} G FSOD1(G)$$

$$VD(Z,G) = ZAT \times FSOD1(G) / \sum^{a11} G FSOD1(G)$$

$$VD(Z1,G) = ZGT \times FSOD2(G) / \sum^{a11} G FSOD2(G).$$

The result of the distribution function GRAVO is then the OV and VD arrays which store an estimate of the number of person trips from any zone to any gate or from any gate to any zone. Because of dealing with person trips, the results are an estimate. Later in the MODAL and SMOOTH subroutines, the OV and VD arrays are further adjusted so that they more closely approximate the gate counts.

GCNT15(G,1,ITM) =
$$\sum_{i=1}^{A} \operatorname{OV}(Z,G)$$

and

GCNT15(G,2,ITM) =
$$\sum_{i=1}^{a11} Z_{i}^{21} VD(Z_{i},G)$$

The prediction of trips from internal zone to internal zone is stored in the OV(Z1,NG1) and VD(Z1,NG1) arrays, where NG1 is the number of gates plus 1. The internal trips are those originating from internal zones that are not attracted to external zones and those destined to internal zones that do not originate in external zones.

$$\sum_{k=1}^{a_{11}} \text{ VD}(\text{Z1,NG1}) = \sum_{k=1}^{a_{11}} \sum_{k=1}^{K} \left(\sum_{k=1}^{a_{11}} \text{ NTO}(\text{Z1,K}) - \sum_{k=1}^{a_{11}} \sum_{k=1}^{Z} \text{ NTD}(\text{Z,K})\right)$$

$$\sum_{k=1}^{a_{11}} \sum_{k=1}^{Z_{11}} \text{ VD}(\text{Z1,NG1}) = \sum_{k=1}^{a_{11}} \sum_{k=1}^{Z_{11}} \sum_{k=1}^{Z_{11}} \text{ NTD}(\text{Z1,K}) - \sum_{k=1}^{a_{11}} \sum_{k=1}^{Z_{11}} \text{ NTO}(\text{Z,K})$$

The internal trips will be assigned later by trip purpose by the assignment function. Thus, the NTO and NTD arrays are updated to represent internal trips by trip purpose. The equations that redefine NTO and NTD are:

$$NTO(Z1,K) = \frac{\sum_{k=1}^{21} NTO(Z1,K) - \sum_{k=1}^{21} NTD(Z,K) \times NTO(Z1,K)}{\sum_{k=1}^{21} NTO(Z1,K)} \times NTO(Z1,K)$$

$$NTD(Z1,K) = \frac{\sum_{k=1}^{21} NTD(Z1,K) - \sum_{k=1}^{21} NTO(Z,K) \times NTD(Z1,K)}{\sum_{k=1}^{21} NTO(Z1,K)}$$

2.4.4 Mode Split Function

The mode split function is the third major step in the transportation planning methodology, and converts person trips to vehicles. Vehicle load factors are used to determine the number of autos and trucks used to make trips. Bus and bicycle traffic is handled relatively easily; bicycles are considered to have a load factor of 1, and buses have a load factor that is specified by input data. Figure 5 is a flowchart of the mode split function.

The number of bus passengers is subtracted from the OV,VD demands as the first step in this subroutine. The bus load factor is given by VLFM(7) and the number of buses associated with any zone Z is VTYPM(7,Z). Thus, the number of persons using the bus when leaving any zone is:

$$F1 = VLFM(7) \times VTYPM(7,Z)$$

It is possible to let the computer determine the bus load factor based on the number of buses servicing the zone and the number of trips from the zone. If VLFM(7) is zero, then the number of bus passengers in an hour is:

$$F1 = VTYPM(7,Z) \times (OV(Z,NG1) + VD(Z,NG1))/36$$

The constant 36-person trips bus trip was derived to fit the general information available on bus loadings on air bases.

The load factor for each type of vehicle, I, is given by VLF(I) for civilian vehicle trips or VLFM(I) for military vehicle trips. VEHTYP(I,Z) gives the percent of vehicles of type I associated with zone Z and VHTYPM(I,Z) gives the percent of military vehicles of type I; all I

VEHTYP(I,Z) can be less than 100 and this difference represents the percentage of nonmotorized trips made from or to the zone.

To compute vehicle trips for zone Z, we first determine SPPH1 and SPPH2, the number of persons occupying 100 vehicles (bicycle riders are included).

FIGURE 5. FLOW CHART FOR MODE SPLIT FUNCTION

SPPH1 =
$$\sum_{i=1}^{a_{i}} I_{i}$$
 VLF(I) × VEHTYP(I,Z) + 100 - $\sum_{i=1}^{a_{i}} I_{i}$ VEHTYP(I,Z)
SPPH2 = $\sum_{i=1}^{a_{i}} I_{i}$ VLFM(I) × VHTYPM(I,Z) + 100 - $\sum_{i=1}^{a_{i}} I_{i}$ VHTYPM(I,Z)

Then person trips are converted to vehicle trips in the OV, VD, NTO and NTD arrays:

NTO(Z,K) = NTO(Z,K) ×
$$\sum_{i=1}^{a_{11}} I_{i}^{i}$$
 VEHTYP(I,Z)/SPPH1

NTD(Z,K) = NTD(Z,K) × $\sum_{i=1}^{a_{11}} I_{i}^{i}$ VEHTYP(I,Z)/SPPH1

OV(Z,G) = OV(Z,G) × $\left(\text{FRAMIL}(Z) \times \sum_{i=1}^{a_{11}} I_{i}^{i} \text{VHTYPM}(I,Z)/\text{SPPH2}\right)$

+ (1 - FRAMIL(Z)) × $\sum_{i=1}^{a_{11}} I_{i}^{i}$ VEHTYP(I,Z)/SPPH1

VD(Z,G) = VD(Z,G) × $\left(\text{FRAMIL}(Z) \times \sum_{i=1}^{a_{11}} I_{i}^{i} \text{VHTYPM}(I,Z)/\text{SPPH2}\right)$

+ (1-FRAMIL(Z)) × $\sum_{i=1}^{a_{11}} I_{i}^{i}$ VEHTYP(I,Z)/SPPH1

where FRAMIL(Z) is the fraction of military vehicles making trips through the gates from or to zone Z.

2.4.5 Calibration Using Gate Counts

The unique fact about an air base that can contribute to the accuracy of the model is that external traffic must travel through gates to get on-base. The gate counts for each base gate act the same as "cordon line" counts, which are typically used in a transportation planning process to calibrate a model. In calibration, modeled results are corrected to more closely approximate results obtained from field measurement. In BATS this function serves to account for those trips that were not modeled using the data inputs. A flowchart of the principal subroutine SMOOTH is shown in Figure 6.

From previous routines or functions, the OV(Z,G), VD(Z,G) arrays that store the vehicle trips going from zone Z to gate G and from gate G to zone Z, respectively, have been established. Defining all Z as exterior zones and Zl as interior zones, calibration coefficients are determined as follows:

FEXGEN(ITM) =
$$\sum_{\alpha} \sum_{\alpha} \left(\sum_{\beta} \left(\sum_{\alpha} \left(\sum_{\beta} \left(\sum_{\beta} \sum_{\alpha} \left(\sum_{\beta} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \left(\sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \left(\sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta} \sum_{\beta} \sum_{\alpha} \sum_{\beta} \sum_{\beta}$$

where FEXGEN is the fraction of external generations created by the model and traveling through the gates and GCNT15(G,2,ITM) are the 15-minute (or hourly) counts of the vehicles entering gate G during time period ITM (ITM=1 for hourly iterations).

FIGURE 6. FLOW CHART FOR CALIBRATION FUNCTION

FIGURE 6. FLOW CHART FOR CALIBRATION FUNCTION (Continued)

FIGURE 6. FLOW CHART FOR CALIBRATION FUNCTION (Concluded)

Similarly, FEXATT, the fraction of the total external attractions created by the model, FINGEN, the fraction of the total internal generations created by the model, and FINATT, the fraction of the total internal attractions created by the model are computed.

$$\begin{aligned} & \text{FEXATT}(\text{ITM}) = \sum_{i=1}^{a_{i}} \sum_{j=1}^{a_{i}} \sum_{j=1}^{G} \text{VD}(Z,G) / \sum_{j=1}^{a_{i}} \sum_{j=1}^{G} \text{GCNT15}(G,1,\text{ITM}) \\ & \text{FINGEN}(\text{ITM}) = \sum_{j=1}^{a_{i}} \sum_{j=1}^{G} \sum_{j=1}^{G} \text{OV}(Z1,G) / \sum_{j=1}^{a_{i}} \sum_{j=1}^{G} \sum_{j=1}^{G} \text{GCNT15}(G,2,\text{ITM}) \\ & \text{FINATT}(\text{ITM}) = \sum_{j=1}^{a_{i}} \sum_{j=1}^{G} \sum_{j=1}^{G} \text{VD}(Z1,G) / \sum_{j=1}^{G} \sum_{j=1}^{G} \text{GCNT15}(G,2,\text{ITM}) \end{aligned}$$

If the user chooses to calibrate the model to the gate counts, then the elements of the OV and VD arrays are updated by applying the FEXGEN, FEXATT, FINGEN, and FINATT factors as follows:

The user selects the option making external-to-internal and internal-to-external trip productions and attractions total to the gate counts. The user also has the option of making external productions total to internal attractions, or of making internal productions total to external attractions. The user may also input the FEXGEN, FEXATT, FINGEN, and FINATT values when gate counts are not available for a predictive run.

The GRAVO subroutine predicts the number of person trips through each gate, using the gate counts at each gate as a weighting factor. The total number of entering or exiting vehicles now sums to the gate counts if the calibration factors have been applied. Further calibration adjusts the OV and VD arrays to gate counts so that the sum of the OV going through any gate G more nearly equals the count at gate G. This step is accomplished using a matrix multiplication scheme. Travel time is not considered to be a factor any longer, and the number using each gate is most important.

The matrix multiplication is a two-step procedure: (1) factor all elements so that the column sums for external zone productions add up to the entering gate counts, the column sums for internal zone productions add up to the exiting gate counts, the column sums for external attractions add up to exiting gate counts, and the column sums for internal attractions add up to entering gate counts; (2) factor all elements so that row sums for each zone equal the initial row sums for each zone. Thus, the initial row sums of productions from each zone are saved:

$$ZGENR(Z) = \sum_{G}^{G} OV(Z,G)$$

The elements are factored so that the columns sum to the gate counts:

$$OV(Z,G) = OV(Z,G) \times GCNT15(G,2,ITM) / \sum_{i=1}^{a_{i}} OV(Z,G)$$

$$OV(Z1,G) = OV(Z1,G) \times GCNT15(G,1,ITM) / \sum_{i=1}^{a_{i}} OV(Z1,G)$$

where Z are external zones and Z1 are internal zones. The elements are factored so that row sums for each zone equal initial row sums.

$$OV(Z,G) = OV(Z,G) \times ZGENR(Z) / \sum_{i=1}^{G} OV(Z,G)$$

Similarly for zone attractions, the initial row sums to each zone are saved:

$$ZATTR(Z) = \sum_{i=1}^{a11} {}^{G} VD(Z,G)$$

The elements are factored so that the columns sum to the gate counts:

$$VD(Z,G) = VD(Z,G) \times GCNT15(G,1,ITM) / \sum_{i=1}^{a_{i}} Z_{i} VD(Z,G)$$

$$VD(Z1,G) = VD(Z1,G) \times GCNT15(G,2,ITM) / \sum_{i=1}^{a_{i}} VD(Z1,G).$$

$$VD(Z,G) = VD(Z,G) \times ZATTR(Z) / \sum_{i=1}^{a_{i}} Q_{i} VD(Z,G)$$

Four iterations of this procedure, using Nellis AFB data, produced OV and VD matrices in which the column sums were nearly equal to the gate counts. BATS is programmed to perform the matrix multiplication four times.

The final step in the calibration function is to reroute vehicles to alternative lots, away from parking lots that are filled to capacity. The ZGENR(Z1) array is made to store all trips produced from each internal zone Z1, and the ZATTR(Z1) array is made to store all attractions to each internal zone Z1 by adding the internal-to-internal zone trips to these arrays:

ZGENR(Z1) = ZGENR(Z1) +
$$\sum_{K=1}^{\infty} NTO(Z1,K)$$

ZATTR(Z1) = ZATTR(Z1) + $\sum_{K=1}^{\infty} NTD(Z1,K)$

where NTO and NTD store the number of internal origins going to internal destinations and the number of internal destinations coming from internal origins, respectively. The vehicles that use parking places are of type 1, 2 and 3, so we generate ZM(Z1) and VZ(Z1), the number of parked vehicles originating in zone Z1 and the number of vehicles wishing to park in zone Z1, respectively.

$$ZV(Z1) = ZGENR(Z1) \times \sum_{I=1}^{3} VEHTYP(I,Z1) / \sum_{I=1}^{a11} VEHTYP(I,Z1)$$

$$VZ(Z1) = ZATTR(Z1) \times \sum_{I=1}^{3} VEHTYP(I,Z1) / \sum^{all} VEHTYP(I,Z1)$$

If the capacity of the lot is exceeded, then excess vehicles are routed to a parking zone that has a link in common with the overcapacity zone, and the VZ and ZATTR trip attractions arrays are updated to reflect this rerouting. The rerouting is made to an adjacent zone, or if none exists to the zone with the greatest unused capacity.

2.4.6 Assignment Function

This part of the transportation planning methodology assigns vehicles to the links of the network. Vehicle trips are assigned to the minimum path routes between each origin and gate, each gate and destination, and each internal-internal zone pair. Vehicle type data, including civilian or military vehicles, are maintained for each link. Data on hot, cold, and stabilized vehicles are also accumulated for each link. When a truck route has been specified, the vehicles of the appropriate type are routed on the truck route instead of the minimum path route. The arrays that store the minimum path and the minimum path cost (or travel time) are the R(L), C(L), RG(G,L) and CG(G,L).

The R array stores the link previous to L in the route from the zone of origin to link L. Thus, if R(6) = 4, the route from the zone of origin to link 6 passes over link 4. When R(L) = 0, there are no other links in the route, so the link L accesses the origin zone. The RG(G,L) array is like the R(L) array, only it stores the link previous to L in the route from gate G to link L. The cost array C(L) stores the cost (or travel time) from the origin zone to link L, and CG(G,L) stores the cost (or travel time) from gate G to link L. Figure 7 is a flowchart of the assignment subroutine ASSIGN.

The assignment takes place in four steps:

- (1) For each zone Z the R(L) and C(L) arrays are determined.
- (2) For each gate G the OV(Z,G) vehicles are routed onto the links of the path from zone Z to gate G, and the VD(Z,G) vehicles are routed from the gate G onto the links of the two alternate paths to zone Z.

FIGURE 7. ASSIGNMENT OF VEHICLES TO NETWORK

FIGURE 7. ASSIGNMENT OF VEHICLES TO NETWORK (Concluded)

(3) For each trip purpose K the NTO(Z,K) vehicles are routed onto the two alternate paths to all internal zones Zl. The number routed from Z to Zl (OD) is proportional to the attractions to zone Zl for the Kth trip purpose.

OD = NTO(Z,K) × NTD(Z1,K)
$$/$$
 \sum NTD(Z1,K)

(4) The trips OD between zone Z and Zl are divided among the two alternate paths as follows:

Trips ending on link L2 = OD ×
$$C(L1)/[C(L1) + C(L2)]$$

Trips ending on link L1 = OD × $C(L2)/[C(L1) + C(L2)]$

Steps 1 through 4 are repeated for each zone Z at which point all vehicles have been assigned to the network.

The results are stored in the COUNT(M,L) array where L is a link number and M is the index for through (M=1), right (M=2), left (M=3), terminating (M=4), vehicle type 1-6 (M=5-10), military vehicle type 1-6 (M=11-16), number of cold starts (M=17), and number of hot starts (M=18).

The ASSIGN subroutine performs the assignment function, and it consumes far more computer time than any other subroutine in the BATS computer model. However, the user may minimize the computer run time using the IOPT(5) option. This option allows the subroutine to follow only one path from origin to destination zones and to route small numbers of vehicles traveling from Z to Z1 to alternative zones so that fewer paths are followed. Thus, from the dimensions of the arrays, there are:

- 50 origin zones \times 10 gates = 500 possible paths +
- 50 destination zones × 10 gates = 500 possible paths +
- 44 internal zones × 43 internal destinations = 1892 possible paths +
- 50 destination zones × 10 gates = 500 possible alternate paths +
- 44 internal zones × 43 internal destinations = 1892 possible alternate paths.

There can be approximately 4500 paths followed through the network during the trip assignment process, and if following each path takes 10 msec it would be possible to use 45 seconds of computer time just assigning vehicles to the network for one time period. A run of 12 hourly time periods with one morning and one evening rush hour simulated by four 15-minute time periods could use more than 13 minutes of computer run time.

2.5 Traffic Flow Analysis

2.5.1 General Methods

General traffic flow analysis covers such subjects as network theory, traffic assignment, queueing theory, interrupted and uninterrupted flow theory, surveillance, and control. The analysis of traffic in and about an indirect source such as an air base principally involves traffic assignment, queueing theory, and street and parking lot flow. Traffic analysis at an air base may be based on simplistic methods, which generally use hand calculations, or on sophisticated methods, which generally involve computer modeling. Hand calculations used in traffic flow analysis suffer from being cumbersome and insensitive to some major parameters of a typical traffic network.

Manual analytical procedures for vehicle behavior in and around indirect sources, such as an air base with most pollution generated by aircraft or motor vehicles (EPA Guidelines, 1978; Thayer and Axetell, 1973), recognize the need to model individual segments of a vehicle's journey, but the modeling of intersections, parking lot running time, and vehicle routing into and out of a parking lot are very simplified. The simplification is justifiable to keep hand computations to a minimum, but such simplification may lead to significant inaccuracies in modeling the unusual circumstances that are typical of worst-case conditions. For example, assume a fairly congested exit gate that leads to a signalized intersection operating at near capacity with a cycle length of 1.5 minutes and a red phase-to-cycle-length ratio of 0.5. A vehicle-actuated signal might operate at a 1.5-minute cycle length but could allocate more time to the green phase, thus effectively lowering the volume-to-capacity ratio and the travel time through the gate. The hand computation techniques, however, contain no provision for determining phase and cycle lengths of actuated signals.

From previous experience in modeling traffic networks using a large-scale, complex computerized model (Sandys, 1971; Sandys et al., 1975), the parameters that are the most important in prediction of flow on a network of streets have been isolated. Of major importance are intersection capacity, number of lanes, and number of left-turning vehicles; of less importance are street capacity and parking characteristics. On the basis of the major parameters, a simple street network flow model has been developed that automatically computes travel times based on trip demand, intersection capacities, optimum phase lengths for actuated signals, and parking lot travel times.

The traffic flow submodel is rerun for each time period that is specified (see Figure 8). A time period is specified as an input parameter and a situation is modeled during this time. Accumulations of vehicles in parking lots and queues on streets are retained and during subsequent time periods these act as initialization data for the subsequent iteration.

FIGURE 8. TRAFFIC FLOW ANALYSIS

2.5.2 Intersections

Traffic is assigned to the alternate routes on the basis of time delay and capacity; the resulting travel times and other measures of effectiveness, such as stops, delay, queue length, and flow, are then calculated. The delays at each intersection are calculated by a subroutine that models an intersection on the basis of traffic flow and physical characteristics. The intersection is modeled in a simple geometrical model (Figure 9) to permit many intersections and demand patterns to be simulated in a short time. The outputs of the subroutine are average vehicle delay and average queue length for each approach and turning movement at the intersection.

2.5.2.1 Signalized Interactions

The method of computing delay at a signalized intersection is based on an approximate method of computing delays and queues (Newell, 1965) in which the discrete nature of the cars is disregarded in favor of considering traffic as a continuous fluid, which arrives at a uniform rate (V), is dammed for a time (R), and is then released at a rate (S) until the dam is empty. Traffic thereafter moves out of the intersection at the arrival rate (V) provided the green time (G) is long enough.

FIGURE 9. SIMPLE MODEL OF INTERSECTION DELAY

In Figure 9, the initial form of the subroutine, VEH, is the vehicle arrivals. The total delays for all vehicles during any time interval are represented by the interval bounded by the arrival and departure flow rates. The average delay (W) per vehicle is:

$$W = S*R*R/(2*(R + G)*(S - V))$$

Actually, vehicles rarely arrive at a uniform rate but tend to arrive in random small groups. In the model, a Poisson distribution has been assigned to this characteristic, and, when such arrivals occur, queues of vehicles form waiting to be serviced by the intersection. A second element of delay (i.e., queueing delay) must be added to the basic delay (W) caused by the gating of vehicles. This delay is based on the average queue length (Q), which is given by the equation:

$$Q = V/(2*G*S/(R + G) - V)$$

Then the average delay per vehicle is the delay due to the gating effect of the signal plus the time spent waiting in the queue of length Q, which is being serviced at a rate (S * G)/(R + G). Combining the delay per queued vehicle (which is the reciprocal of the service rate) with the queue length and combining this result with the average delay, the average delay per vehicle including delay due to queueing (D) is:

$$D = S*R*R/(2*(R + G)*(S - V)) + V*(R + G)**2/(2*S*G*(S*G - V*(R + G)))$$

The computing of delay at an intersection requires predetermination of intersection approach capacity, signal phase lengths, and cycle times. The BATS intersection subroutine recomputes these variables for each simulated time period (usually 1 hour) as follows:

- Adjustments to intersection approach capacities are automatically made based on the number of left-turning vehicles at an intersection.
- Red and green phase lengths as well as cycle times are automatically computed at actuated signals [see Webster (1958)].
- Left-turn phases may be specified at a signalized intersection, and capacity for such phases may be input or automatically calculated based on the intersection approach capacity for the through and right-turning traffic.

Figure 10 is a flowchart of the signalized intersection model.

2.5.2.2 Unsignalized Intersections

The intersection submodel will also predict delay and queue length at unsignalized intersections. As with a signalized intersection, a queue may be formed because of random arrivals at the intersection.

FIGURE 10. SIGNALIZED INTERSECTION MODEL FLOW DIAGRAM

FIGURE 10. SIGNALIZED INTERSECTION MODEL FLOW DIAGRAM (Concluded)

If V is the arrival rate of vehicles at the intersection and C is capacity flow rate of vehicles departing the intersection, the average queue length is:

$$Q = V/(C - V)$$

The average delay experienced by vehicles at an unsignalized intersection is:

$$D = V/(C*(C - V))$$

Figure 11 is a flowchart of the unsignalized intersection model.

2.5.3 Parking Area

The EPA Guidelines (1978) recommend that a constant be added to the running times of each vehicle operating in a parking lot that is more than 80 percent filled. BATS is written to predict air pollution in a more realistic way. First, travel time is increased as a function of the percent of the parking lot that is filled. Second, when a zone is filled to capacity, vehicles that would have traveled to this zone are routed to the adjacent zone or to the zone with the next highest potential for attracting trips. In this way, parking areas are filled in the order of their potential and when filled operate under capacity-flow conditions.

The parking area subroutine predicts running time for the vehicles arriving or leaving each parking zone. Running time is divided into three parts:

- Time to travel to an open stall starting from the parking zone entrance or time to travel from a stall to the exit of the parking zone
- Queueing delay caused by one or more vehicles waiting for a vehicle to back out of a stall
- Delay to vehicles that drive around a parking zone looking for an empty stall either because of an unwillingness to park in a different zone or because there are no other alternative zones in which to park.

A flowchart of the parking lot subroutine is shown in Figure 12. Equations for each of the three elements of running time are as follows:

where

TT is travel time (sec) to vehicles either entering or leaving the parking zone

PL is the parking lot length (ft)

PLS is the average speed (ft/sec) of vehicles in the lot.

FIGURE 11. UNSIGNALIZED INTERSECTION MODEL FLOW DIAGRAM

FIGURE 12. PARKING MODEL FLOW DIAGRAM

where

- VZ is the number of arrivals during a time period
- DQ is the delay (sec) caused by vehicles backing out of stalls during near capacity conditions
- PLBO is the time (sec) required for a vehicle to back out of and move forward enough to clear a parking stall
 - TP is the length of a time period (sec)
- AWQ = (PV + (VZ ZV)/2 PC)*TP/ZV [if $PV \ge PC$ and $PV + (VZ ZV)/2 \ge PC$]
- AWQ = (PV + VZ ZV PC)**2/(2*(VZ ZV))*TP/ZV [if PV + (VZ ZV)/Z > PC and PV < PC]
- AWQ = (PV PC)**2/(2*(ZV VZ))*TP/ZV [if PV > PC and PV + VZ ZV < PC]

The travel time equation (TT = PL/PLS) uses PL (parking lot length) to represent the distance a vehicle will drive when it is traveling through the entire parking area. PL is computed by finding the longest side of the parking zone, assuming the parking zone is rectangular, finding the shorter side of the rectangle, and adding this to the longer side. For example, a 40,000-square foot parking zone with a longest side of 200 feet has an assumed shorter side of 200 feet and a PL of 400 feet, while a zone of the same area with a longest side of 400 feet would have a 100-foot shorter side and a PL of 500 feet.

Vehicles that are routed to each parking zone may be of six types: autos, light duty trucks (<6000 pounds), light duty trucks (6,000-8,500 pounds), heavy duty trucks, heavy duty diesel (include buses), and motorcycles. Autos and light duty trucks routed to a parking area or zone will enter that zone and incur the running time related to parking. Buses, trucks, and other vehicles routed to a parking zone will not look for parking places nor use parking stalls in the parking area.

SECTION III

DOCUMENTATION

This section documents each subroutine for the programmer or analyst who is using the BATS program. The documentation thus is useful to the computer professional who wishes to change a subroutine or to understand exactly what a subroutine does. The documentation of each subroutine includes a description of the purpose of the routine, a data description of the principal parameters used by each subroutine, the reports generated by the subroutine, and the subroutines called by this subroutine. The documentation of the main BATS program also includes a flow chart showing the major subroutine calls made by the BATS model.

3.1 BATS

3.1.1 Purpose

BATS calls the major functional subroutines and performs sequential iterations of the modeling process. The named and blank common areas are all defined in BATS and the default data are initialized. A flow-chart of the BATS program is given as Figure 13. When the model was debugged, many supplementary FORTRAN statements were included in the code to generate additional information, and these statements have been made into comments by placing an "*" in column 1 on the printout. The normal comments in the program are made with a C in column 1. A complete program listing is presented in Appendix A.

3.1.2 Data Description

Common Name	Description of Data
/COMM/	Stores the general information about the run; provides a means of passing parameters, and stores the itera- tion variables which may be referenced by several different subroutines.
/CHD/	Holds the data which are output as the first line of each report.
/LINK/	Stores the parameters describing each link of the network; data are generally read from Card Type 2.
/INTRST/	Stores the parameters describing each intersection of the network; data are read from Card Type 3.
/ZONES/	Stores the parameters describing each zone. Some data are read from Card Type 4; other values such as ZATTR, ZGENR, and FCS are generated by subroutines.

FIGURE 13. BATS FLOW CHART SHOWING MAJOR SUBROUTINES CALLED

FIGURE 13. BATS FLOW CHART SHOWING MAJOR SUBROUTINES CALLED (Concluded)

/DEMVAR/	Stores the parameters to be used to generate trip ends for each zone; data are read from Card Types 5 and 15.
/TRIP/	Stores the coefficients and parameters used to generate trips from demographic variables; data are read from Card Type 6. The data are used principally by subroutine TRIPGEN.
/GATE/	Stores the gate counts and other gate definition data read from Card Type 7.
/VOLUME/	Stores the through traffic counts read from Card Type 8.
/VEHLOD/	Stores the data on vehicle load factors for each type of vehicle as read from Card Type 9.
/TROUT/	Stores the truck route data as read from Card Type 10.
/SHIFT/	Stores the shift count numbers as read from Card Type 11.
/PARKZ/	Stores the data used to determine parking lot running times by subroutine PARKING; data are generated from elements of LINK, ZONE, and TRIP common blocks.
/RESLT/	Stores the results of the simulation; data are used to initialize the program on subsequent iterations.
/CAPMAX/	The links with volumes that exceed a capacity will be specially marked on the plot output.

3.1.3 Reports

I.1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD. This totals delay, vehicle miles and other parameters on all links of the network. This report gives a general measure of the effectiveness of the traffic network.

3.1.4 Subroutines Called

The following subroutines are called: INPT, ZAREA, MNPATH, TRIPGEN, GRAVO, MODAL, SMOOTH, ASSIGN, INSEC, INSECU, COORXY, PARKING, PLOTI, PLOTA, PLOTP, AQAMQ. Other subroutines (described in Sections 3.18-3.37) are called by these major subroutines.

3.2 INPT

3.2.1 Purpose

This routine reads all data on Card Types 0-16 that are used to run an iteration of the BATS model. Some manipulation of the input data is

undertaken in INPT; for instance, x,y coordinates of link end points are converted to UTM (Universal Transverse Mercator)* coordinates. All input cards are printed out after being read, to tell the user where an input error occurred and to permanently record the input data used to produce the resulting reports.

3.2.2 Data Description

Table 1 describes all input variables, by input card type, field, format, symbol, dimensional units, value limits, default values, and variable description. Instructions for assembling the input data are contained in the "BATS--Field Data Collection and Reduction Guide" (Swope, et al., 1979).

3.2.3 Reports

The input data are listed using the same format specifications as used to read input cards.

3.2.4 Subroutines Called

The following subroutines are called: AQAMI, COORXY, LETTER, PLOT, PLOTI.

3.3 ZAREA

3.3.1 Purpose

This routine will compute the area of a 3 to 12 sided zone. It uses the first side of the zone to construct a trapezoid using the X axis and two sides parallel to the Y axis. Then it uses the second side to construct another trapezoid, and so forth, adding or subtracting the areas of the trapezoids created. This routine was part of the software on a programmable calculator, and is explained here more completely:

- (1) The trapezoid rule states the area of a trapezoid is the total length of the parallel sides times the distance between them divided by 2.
- (2) If X_1, Y_1 , and X_2, Y_2 are the end points of a line segment used to define an area, then the area of the trapezoid with

^{*}See "AQAM--Field Data Collection Guide" (1975), page 10, for information on finding UTM coordinates of a point.

Table 1

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description		Date in Year, Month, Day Sequence	ication	umber	Number of cards of type 2 - Links		Number of cards of type 3 - Intersections	Number of cards of type 4 - Zones	Number of cards of type 5 - Demographic Variables		Number of cards of type b - Irip Purposes	Number of cards of type 7 - Gates	Number of cards of type 8 - Link Counts	Number of cards of type 9 - Vehicle Load Factor	Number of cards of type 10 - Truck Route				cards of type 13 - Calibration factors		Number of cards of type 16 - Namelist Cards	Hour of day Non = 2 Sat = 7)	duration	Total trips attracted to and generated by the base	during time period specified	Exponent of external and internal travel time	Exponent of internal travel time	rvice	ption	15-minute iterations flag	n time	flag	Print trip purpose tables	Print O-D tables Print O-G and Assignment tables
		Date in Yea	Base Name Run Identification	Card type number	Number of c		Number of C	Number of c	Number of c		Number of c	Number of c	Number of c	Number of c	Number of c		Number of c		Number of cards of	Number of cards of	Number of c	Hour of day	Time period duration	Total trips	during ti	Exponent of	Exponent of	Level of service	Smoothing option	15-minute i	Minimize run time	AQAM output flag	Print trip	Print 0-D tables Print 0-G and Ass
Typical Value	in parentheses)	741004	Williams AFB	1	154 (previously		stored value)	23 (previously	stored value) 1 (previously	stored value)	(previously	7 (previously	stored value)	26 (previously	stored value)	Stored value)	12	0	00	0	1	æ "	3600	124	14	1	m ·	4 0	1	0	0	2	1	
Value Limits		710101 to 851231	1	-	0* to 240	•	0' to /0	0* to 50	0* to 10	•	0* to 10	0* to 10	0 to 240	0* to 2	0* to 4		0 to 24	0 to 1	0 to 1	0 to 1	0 to 9	0 to 23	900 to 86400	0<	0^			0 to 6			6 03 0	0 to 2		0 to 7
Units		1	1.1		1		ı	1	1		1	1	1	1	1		1	1	1 1	!	1	hours	sec	vehicles	vehicles	1	1	1	1 1	1	1	1	1	1 1
LodmyS		NYEAR	LHEAD UHEAD	31	NI.INK		NINS	NZONES	NDV		NTRIP	NGATE	NCOUNT	NVLF	NTR		NS	NPLT	NCLB	NDEMVC	NNAME	Top	178	TOTATT	TOTCEN	XP	YP	10PT(1)	TOPT(3)	10PT(4)	10PT(5)	10PT(6)	IPFLG(1)	IPFLG(2) IPFLG(3)
Format		91	A10, A2 5A10	12	14		71	14	14		14	14	14	14	71		14	=	==		11	F4.0	F5.0	F5.0	F5.0	111	1	1:	-		=	11	11	==
Column		9-1	7-26	1-2	3-6		01-/	11-14	15-18		19-22	23-26	27-30	31-34	35-38		39-42	43	77	95	7.7	48-51	55-59	79-09	69-69	70	71	12	76	75	92	11	78	80
Card	2187	O Header		-																														

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number Link number Number of lanes X-coordinate of northernmost end point (easternmost il link runs F-W) y-coordinate of northernmost end point x-coordinate of southernmost end point y-coordinate of southernmost end point y-coordinate of southernmost end point y-coordinate of southernmost end point Capacity of link, veh/hr Speed Link to link connections. The link that L connects to going straight. The link L connects to going right The link L connects to going right Converts the x and y coordinates of the link end points from map units to meters Value will be multiplied by 1000 and added to x coordinate following application of scale factor Value to be multiplied by 1000 and added to y coordinate following application of scale factor
Typical Value (default value in parentheses)	2 1 1 2 2 2363 2247 2673 2673 -0 (1800) 58 3 144 144 141 0 0 0,30478(1)
Value Limits	240 21
Units	Map units Hap units Map units Map units web/br mph m m/map unit
Symbol	1C L NLAN X1(L) Y1(L) Y2(L) Y2(L) Y2(L) Y2(L) Y2(L) LCON(L, 1) LCON(L, 1) LCON(L, 1) LCON(L, 2) LCON(L, 2) LCON(L, 2) KEIGHT (L) SGALYX
Format	12 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Column	1-2 3-5 6-10 11-15 11-15 16-20 21-25 21-25 21-25 31-35 31-45 41-45 41-45 41-45 51-50 51-50 61-70 71-75
Card	~

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS 0 THROUGH 16
(Data Read In by Subroutine INPT)

Description	Card type number North link number North link number South link number West link number Type control; -1 = 2 way stop; -2 = 4 way stop; O = no control; 2,3 = V/A control; 1 = fixed time control; 4 = type 2 N-S, type 3 E-W; 5 = type 3 N-S, type 2 E-W	Type 2 Type 2 Actuated Actuated Phases Phases Phax cycle Max Min N-5 Min	Min E-W Min S T Min E-W LT Min W	Yellow time interval Capacity of one approach N (or S) for phase I per hr green Capacity of E (or N) phase 2 per hr green	Capacity of S or S-N phase 3 per hr green Capacity of W or W-E phase 4 per hr green
	Card ty Interse North 1 East 11 South 1 West 11 Type co 0 = n contr	Type 1 Fixed Phases Cycle N-S	E-W LT	Yellow time Capacity of hr green Capacity of	Capacity
Typical Value (default value in parentheses)	3 142 4 143 163	200	000	3600 (1200 veh/hr/ lane) 4000 (1200 veh/hr/	lane) 0 (1200 veh/hr/ lane) 0 (1200 veh/hr/ lane)
Value Limits	3 0 to 70 0 to 240 0 to 5 0	02 PH(1,1)	0,00	02 07	0, 0,
Units	1111111	Sec	sec	sec veh/hr veh/hr	veh/hr veh/hr
Symbol	1C 1 (1,1) LIN(1,1) LIN(1,1) LIN(1,1) LIN(1,1) TYPC(1)	CYCL(1) PH(1,J)	PH(1,J) PH(1,J)	CI(1) GCAP(1,1) GCAP(1,2)	GCAP(1,3) GCAP(1,4)
Format	12 13 15 15 15	15 F4.0	F4.0 F4.0 F4.0	F4.0 F5.0	F5.0
Column	1-2 3-5 6-10 11-15 16-20 21-25 26-30	31-35	40-43	52-55 56-60 61-64	65-69
Card	m .				

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number Zone identification (interior zones begin with a A,BZ.14; exterior with 5-9) Percent of vehicles of type 1 Percent of vehicles of type 2 Percent of vehicles of type 3 Percent of vehicles of type 4 Percent of vehicles of type 5 Percent of military vehicles of type 5 Percent of military vehicles of type 1 Percent of military vehicles of type 2 Percent of military vehicles of type 3 Percent of military vehicles of type 3 Percent of military vehicles of type 4 Percent of military vehicles of type 5 Percent of military vehicles of type 4 Percent of military vehicles of type 6 Number of buses (vehitype 7) Number of buses (vehitype 7) Number of sides (links) which define zone area) Bordering link number 1 (a negative link number indicates no access to the zone from this link) Bordering link number 2	T TAGENTY WITH BUTTANION
Typical Value (default value in parentheses)	⁴	,
Value Limits	AA-92 0 to 99 0 to 240 0 to 240	
Units	11 111111111111111111111111111111111111	
Symbol	IC IEXT VEHTYP (1, 2) VEHTYP (2, 2) VEHTYP (4, 2) VEHTYP (6, 2) VTYPH (1, 2) VTYPH (2, 2) VTYPH (2, 2) VTYPH (3, 2) VTYPH (4, 2) VTYPH (4, 2) VTYPH (5, 2) VTYPH (6, 2	Chima (12, 6)
Format	72 72 72 72 72 72 72 72 72 72	
Column	1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 15-20 15-20 21-22 21-22 21-22 21-22 21-26 27-26 27-26 27-26 27-26 31-30 31-40	20-11
Card	4	

Table 1 (Continued)
BATS BASIC INPUT INFORMATION CARDS 0 THROUGH 16
(Data Read In by Subroutine INPT)

Card Column Format Symbol Units Value Limits Typical Value Description 5 12-2 A2 18L —	Г		T	_		_		_		_	-	-		-		_	_		_	-	-
Column Format Symbol Units Value Limits 1-2 A2		Description	Card type number	Zone name that demographic variables apply to	Land use of zone	Parking lot capacity for interior zones/access time	to adjacent link for exterior zones	Parked vehicles initially in parking zone. Alter-	nate access time to adjacent link for exterior	zone.	value of 1st demographic variable for this zone		this	hie	hie	911		William of the demographic variable for this zone	value of Ath demographic variable for this zone	value of 9th demographic variable for this zone	Value of 10th demographic variable for this zone
1-2 A2 1BL 23 1BL 24 25 1BL 25 25 25 25 25 25 2	Typical Value	(default value in parentheses)	7	15		1		1				1	1	1 .	1	1	1			-	1
1-2 A2 1BL Symbol 1-2 A2 1BL LANDU(Z) 6-9 F4.0 PLC 10-13 F4.0 PVEH 14-20 F7.0 VAR(1,Z) 28-27 F7.0 VAR(2,Z) 35-41 F7.0 VAR(4,Z) 42-48 F7.0 VAR(4,Z) 56-62 F7.0 VAR(6,Z) 56-62 F7.0 VAR(6,Z) 56-62 F7.0 VAR(9,Z) 70-73 F4.0 VAR(9,Z) 74-80 F7.0 VAR(10,Z) 74-80 F7.0 F7.0 VAR(10,Z) 74-80 F7.0 F		Value Limits	7	Zone name	1 to 7	c		-		0 10 999999	0 10 00000	0 10 100000	0 to 999999.	0 to 999999.		0 to 999999.	0 to 999999.			0 11 000000	0 to 333339.
Column Format 1-2 A2 3-4 A2 111 5-111 10-13 F4.0 PUEH 14-20 F7.0 VAR(21-27 F7.0 VAR(21-27 F7.0 VAR(21-27 F7.0 VAR(35-41 F7.0 VAR(42-48 F7.0 VAR(56-62 F7.0 VAR(63-69 F7.0 VAR(74-48 F7.0 VAR(74-80 F7.0 VAR(74-80 F7.0 VAR(74-80 F7.0 VAR(UNITS	1	1	1	veh		ven		1			!	!	1	:	1	:	:		
10-13 10-13 10-13 14-20 11-27 14-20 21-27 28-34 35-41 42-48 49-55 63-69 63-69 70-73 74-80	C. C.	10dmyc		181	LANDU(Z)	FLC	nand	rven		VAR(1,Z)	VAR(2, 7)	VAB(3 3)	(3,6)	VAR(4.6)	VAR(5,2)	VAR(6, Z)	VAR(7,2)	VAR(8,2)	VAR(9.2)	VAP(10 7)	(2.01)mr.
1 200844066		_	A2	A2	0 74	14.0	0 74	0::		F7.0	F7.0	57.0	27.0	0.7.	0.7.1	F7.0	F7.0	F7.0	F4.0	F7.0	
Card	Column		1-2	3-4	6-9	6-0	10-13	-		14-20	21-27	28-34	35.41	11.00	07-77	44-55	56-62	69-69	70-73	74-80	
	Card		•																		

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS 0 THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number Trip purpose	Fraction of cold starts when traveling for purpose	K from external zones Fraction of cold starts when traveling for purpose	K from interior zones Land use associated with this trip purpose	Index of 1st variable in productions or attractions	equation	Coefficient for productions	Coefficient for attractions	Land use associated with this trip purpose or land	use associated with this demographic variable	index of 2nd variable in productions of attractions	equation	Coefficient for productions	Coefficient for attractions	Land use associated with this trip purpose or with	this demographic variable	Index of 3rd variable in productions or attractions	equation	Coefficient for productions	Coefficient for attractions	Land use associated with this trip purpose or with	the following indexed demographic variable	Index of 4th variable in prodductions or attractions	equation	Coefficient for productions	Coefficient for attractions
Typical Value (default value in parentheses)	6 HOME-WORK	20	20	c	1		.051	.1023	0		2		670.	,1211	0		3		.1301	.0401	0		7		.1001	.0521
Value Limits	9	00 to 99	00 to 99	0 to 7	0 to 10		.00001 to 99999.	.00001 to 99999.	0 to 7		0 to 10		.00001 to 99999.	.00001 to 99999.	0 to 7		0 to 10		.00001 to 99999.	.00001 to 99999.	0 to 7		0 to 10		.00001 to 99999.	.00001 to 99999.
Units	11	1	1	1	1		1	1	1		1		1	1	1		!		1	1	!		!		1	1
Symbol	IC PURP(K)	FCSP(K,1)	FCSP(K,2)	LANDO(1.K)	NVARO(1,K)		COEFO(1,K)	COEFD(1,K)	LANDO(2,K)		NVARO(2,K)		COEFO(2,K)	COFFD(2,K)	LANDO(3,K)		NVARO(3,K)		COEFO(3,K)	COFFD(3,K)	LANDO(4, K)		WARO(4,K)		COEFO(4.K)	COEFD(4,K)
Format	12 A10	F2.2	F2.2	F	175		F6.4	F6.4	11		12		F6.4	F6.4	11		12		F6.4	F6.4			12		F6.4	F6.4
Column	1-2	13-14	15-16	17	18-19		20-25	26-31	32		33-34		35-40	41-46	47		67-87		50-55	19-95	62		63-64		65-70	71-76
Card	9																									

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number (ate number of exit gate to hase Link number of exit gate to hase Link number of entrance gate to base Exit gate count during time period; -1 means it is a new gate Exit gate count lat 15 minutes Exit gate count lat 15 minutes Exit gate count 4th 15 minutes Exit gate count 3rd 15 minutes Exit gate count 3rd 15 minutes Exit gate count 2th 15 minutes Exit gate count 2th 15 minutes Exit gate count 2th 15 minutes Entrance gate count 2th 15 minutes Entrance gate count 2th 15 minutes Entrance gate count 4th 15 minutes	Card type number Link number on which count occurs (1 ≤ L ≤ NLINK) Count going straight from link L through the intersection during time period Count going right from link L Count going left from link L Link number on which count occurs Count going straight from link L2 Count going right from link L2 Link number on which count occurs Count going straight from link L2 Link number on which count occurs Count going straight from link L3 Link number on which count occurs Count going right from link L3 Count going right from link L3 Link number on which count occurs Count going right from link L4
Typical Value (default value in parentheses)	7 11 115 116 50 600 600 210 210 90 100	8 151 775. 88. 107. 152 1064. 0. 153 457. 147. 170. 134 429. 0.
Value Limits	1 to 10 1 to 240 1 to 240 -1 to 90900 -1 to 90900 0 to 90909 0 to 99999 0 to 99999 0 to 99999	1 to 240 1 to 240 1 to 240 1 to 240 2 t
Units	11111 11111111	
Symbol	1C 1GATE(1,1G) 1GATE(2,1G) GCOUNT(1,1G) GCOUNT(2,1G) GCNTT5(1G,1,1) GCNTT5(1G,1,2) GCNTT5(1G,1,3) GCNTT5(1G,1,3) GCNTT5(1G,1,3) GCNTT5(1G,2,3) GCNTT5(1G,2,2) GCNTT5(1G,2,2) GCNTT5(1G,2,2) GCNTT5(1G,2,2) GCNTT5(1G,2,2)	1C L COUNT(1,L) COUNT(3,L) COUNT(3,L) L2 COUNT(3,L) COUNT(3,L) COUNT(3,L2) COUNT(3,L2) COUNT(1,L3) COUNT(2,L3) COUNT(2,L3) COUNT(2,L3) COUNT(2,L3) COUNT(2,L3)
Format	12. 13. 15. 15. 15. 15.0 15.0 15.0 15.0	75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
Column	1-2 3-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 41-45 41-45 56-60 51-55	1-2 3-5 6-10 11-15 11-15 11-20 21-25 21-25 31-40 41-45 41-45 41-45 61-65 61-65 61-65
Card	4	oc.

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number Load factor for vehicle type 1 Load factor for vehicle type 2 Load factor for vehicle type 3 Load factor for vehicle type 3 Load factor for vehicle type 4 Load factor for vehicle type 5 Load factor for vehicle type 5 Load factor for military vehicle type 1 Load factor for military vehicle type 2 Load factor for military vehicle type 3 Load factor for military vehicle type 4 Load factor for military vehicle type 5 Load factor for military vehicle type 7	Card type number Origin or destination gate First type vehicle affected Through last type vehicle affected Last link in route from zone to IGT to zone 2nd to last link in route from zone to IGT or IGT to zone	FIRST LINK IN FOUCE FROM ZONE to Tel of to to tell
Typical Value (default value in parentheses)	9 1.2 1.2 1.0 1.0 1.1 1.1 1.0 30.0	10 1 2 2 2 0 2 1 1 8	>
Value Limits	1 10 000 1 10 000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 to 240
Units	persons/veh	111111	1
Symbol	1C VLF(1) VLF(2) VLF(3) VLF(3) VLF(4) VLF(6) VLFN(1) VLFN(1) VLFN(2) VLFN(3) VLFN(4) VLFN(5)	tc f67 1TYP2 1TYP1 1TR(1T.1) 1TR(1T.2)	1TR(1T,24)
Format	25 25 25 25 25 25 25 25 25 25 25 25 25 2	22 11 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	13
Column	1-2 3-7 8-12 13-17 18-27 23-27 28-42 33-37 38-42 48-47 48-47 58-62	1-2 3-4 5-6 7 8-10 11-13	77-70
Card	6	61	

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number Productions/attractions flag Time of day and card sequence Shift productions/attractions (1=1/2) to zone 1	Shift productions/attractions to zone 2, 20, or 38 in time period K Shift productions/attractions to zone 3, 21, or 39	Shift productions/attractions to zone 4, 22, or 40 in time period K Shift productions/attractions to zone 5, 23, or 41	Shift productions/attractions to zone 6, 24, or 42 in time period K Shift productions/attractions to zone 7, 25, or 43	in time period K Shift productions/attractions to zone 8, 26, or 44 in time period K Shift productions/attractions to zone 9, 27, or 45	in time period K Shift productions/attractions to zone 10, 28, or 46 in time period K Shift productions/attractions to zone 11, 29, or 47	in time period K Shift productions/attractions to zone 12, 30, or 48 in time period K Shift productions/attractions to zone 13, 31, or 49	Shift productions/attractions to zone 14, 32, or 50 in time period K Shift productions/attractions to zone 15 or 33 in	Shift productions/attractions to zone 16 or 34 in time period K Shift productions/attractions to zone 17 or 35 in	time period K Shift productions/attractions to zone 18 or 36 in time period K
Typical Value (default value in parentheses)	11 11 0601 20	18 18	18 18	818	81 83	81	18 18	81	81	81
Value Limits	11 1 to 2 0 to 9999	0 to 9999	0 to 9999	0 to 9999 0 to 9999	0 to 9999	0 to 9999	0 to 9999	0 to 9999	0 to 9999	0 to 9999
Units	 persons	persons	persons	persons	persons	persons	persons	persons	persons	persons
Symbol	IC I AT SHFPCT(1,1,K)	SHFPCT(2,1,K) SHFPCT(3,1,K)	SHFPCT(4,1,K) SHFPCT(5,1,K)	SHFPCT(6,1,K) SHFPCT(7,1,X)	SHFPCT(8,1,K)	SHFPCT(10,1,K)	SHFPCT(12,1,K) SHFPCT(13,1,K)	SHFPCT(14,1,K) SHFPCT(15,1,K)	SHFPCT(16,1,K) SHFPCT(17,1,K)	SHFPCT(18,1,K)
Format	12 11 A4 F4.0	F4.0	F4.0	F4.0	F4.0	F4.0	F4.0 F4.0	F4.0	F4.0 F4.0	F4.0
Column	1-2 3 4-7 8-11	12-15								
Card	п									

Table 1 (Continued)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	Card type number The lower left X coordinate if entire map is not to be plotted The lower left Y coordinate if entire map is not to be plotted The scale of the map, I inch x feet The acale of the map, I inch x feet The distance between traffic volume lines The distance between critical flow tick marks The height of letters used for traffic volumes The height of letters used for traffic volumes The upper right X coordinate of a window to be plotted The upper right Y coordinate of a window to be plotted The upper right Y coordinate of a window to be	Card type number Calibration factor for hour or 1st 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 3rd 15 minute period Calibration factor for hour or 4th 15 minute period Calibration factor for hour or 1st 15 minute period Calibration factor for hour or 1st 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 3rd 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 4th 15 minute period Calibration factor for hour or 1st 15 minute period Calibration factor for hour or 1st 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 2nd 15 minute period Calibration factor for hour or 2nd 15 minute period
Typical Value (default value in parentheses)	50 c %1::::::::0 c	
Value Limits	12 0 to 99999 0 to 99999 1 to 99999 1 to 99999 0 to 99 0 to 99 0 to 99 0 to 99 0 to 99 0 to 99 0 to 99	**************************************
Units	E E ÇÜÜÜÜ E E	
Symbol	IC XVA YVA SFAC DI HII PHII CHI CHI NLIN ILPLTF XVX YMX	IC FEXCEN(1) FEXCEN(2) FEXCEN(3) FEXCEN(4) FEXATT(1) FEXATT(1) FEXATT(1) FEXATT(4) FINGEN(1) FINGEN(1) FINGEN(1) FINGEN(2) FINGEN(3) FINGEN(3) FINGEN(3) FINGEN(4) FINGEN(4) FINGEN(3) FINGEN(4) FINGEN(3) FINGEN(3) FINGEN(4) FINGEN(3) FINGEN(4) FINGEN(3) FINGEN(3) FINGEN(3) FINGEN(3) FINGEN(3)
Format	75.0 75.0 75.0 75.0 75.0 75.0 75.0	24444444444444444444444444444444444444
Column	1-2 3-7 8-12 113-18 119-23 34-38 39-43 46-53 54-55	
Card	12	£1

Table 1 (Concluded)

BATS BASIC INPUT INFORMATION CARDS O THROUGH 16 (Data Read In by Subroutine INPT)

Description	PLVALV array values Tribs to land use 1	Trips to land use 2	Trips to land use 3	Trips to land use 4	Trips to land use 5	Trips to land use 6	Trips to land use ?	Card type number	Demographic variable #1 name or units	Demographic variable #2 name or units	Demographic variable #3 name or units	Demographic variable #4 name or units	Demographic variable #5 name or units	Demographic variable #6 name or units	Demographic variable #7 name or units	Demographic variable #8 name or units	Demographic variable #9 name or units	Demographic variable #10 name or units	Franction of military vobition mileson historically	generated in the 1th month	Fraction of weekly military vehicle miles occurring daily during the midweek [1=1], on the weekend	[1-2]	Fraction of daily military vehicle miles occurring	Fraction of civilian vehicle mileage historically	generated in the itm month	generated each day during the midweek [1 * 1], or	each day on the weekend [i = 2] Fraction of civilian vehicle mileage historically	generated in the ith hour of the day
Typical Value (default value in parentheses)	14.	0.	.817	324.	415.	0.	171.	15	MIL EMPL	CIV EMPL	HOUSES	DORM UNT	SHOP EMPL.	REC EMPL	HOSP EMPL	FOOD SRV	MIL VEH	MIL VMT	(08333)	(cccom.)	(.1429)		(.08333)	(.08333)	10071	(.1479)	(.08333)	
Value Limits	71 0	0 to 99999	0 to 99999	0 to 00000	0 to 99999	0 to 99999	0 to 66666	15	-	:	1	-	1	:		1	:	1			1		!	1		:	1	
Units	11	:	:	:	:	1	1	;	Alpha			1		1	1		!	;										
Symbol	TC PLEATEGL D	PLUALIT (1.2)	PLUALU(1,3)	PLUALU(1,4)	PLUALU (1,5)	PLUALU (1,6)	PLUALU(1,7)	10	DVNAME (1DV)	DVNAME(2)	DVNAME(3)	DVNAME(4)	DVNAME(5)	DVNAME (6)	DVNAME(7)	DVNAME(8)	DVNAME (9)	DVNAME(10)	VI DO TATO	(I)OTHE	VHMLDY (1)		VHMLHR(1)	CVABNO(1)		CVABDY(1)	CVABHR(1)	
Format	12	F6.0	F6.0	F6.0	F6.0	F6.0	P6.0	1.2	N8	A8	N8	8V	N8	A8	N8	A8	A8	94	100	NATELISI								
Column	1-2							1-2	3-10	11-18	19-26	27-34	35-42	43-50	51-58	29-66	67-74	75-80		duy								
Card	14							51												07								

 $(X_1,Y_1; X_2,Y_2), (X_1,Y_1; X_1,0), (X_2,Y_2; X_2,0),$ and $(X_1,0; X_2,0)$ as the four sides is:

$$(Y_1 + Y_2)(X_1 - X_2)/2$$
.

(3) The area of the zone is then:

$$A = \left((Y_1 + Y_2)(X_1 - X_2) + (Y_2 + Y_3)(X_2 - X_3) + \dots (Y_{n-1} + Y_n)(X_{n-1} - X_n) + (Y_n + Y_1)(X_n - X_1) \right) / 2$$

Note the $X_1, Y_1, X_2, Y_2, X_3, Y_3, \ldots X_n, Y_n$ must be sequential points that define the perimeter of the zone.

3.3.2 Data Description

Symbol Symbol	Meaning
$x_1(L), y_1(L), x_2(L), y_2(L)$	The x,y coordinates of link L
PNOS(Z)	The number of links defining zone Z.
ZLINKS(I,Z)	The link numbers ($I=1,12$) defining the area Z.
PX(NL), PY(NL)	The coordinates of the NLth point defining a zone.
NPT	The number of points defining a zone.
TRIARE(NL)	The area of the NLth trapezoid.

3.3.3 Reports

When the x,y coordinates of a link do not indicate connection to the previous link, the error message, "ZONE Z is disconnected between links L and Ll," is printed out. The area of this zone will be incorrectly computed based on the sides that were connected.

B.1. ZONE PARKING CAPACITIES AND TRIP LENGTHS is a table of the results of ZAREA.

3.4 MNPATH

3.4.1 Purpose

This subroutine is responsible for generating the minimum path between each origin and destination zone in the network. The method generates the minimum path from one origin AA to all links of the network.

(Recall that a link is one direction of flow on a street and has a load point halfway between each end.) Two arrays are initialized before calling MNPATH. The TT(L,J) array represents the travel time from link L to a connected link J. The C(L) array represents the cost of travel from the origin zone to any link L of the network. The C(L) array is initialized to zero for any link connected to the origin zone and to infinity for any unconnected link.

The algorithm described below is carried out using these two arrays. On completion, the C(L) array represents the minimum travel time (or cost) from the origin zone to each link L of the network. During this process, the R(L) array is generated, which contains the link number that immediately precedes link L in the route from the origin to L.

A Minimum Path Algorithm for Route Generation:

Step 1--Initialize TT(L,J) with the constant cost in traveling from link L to three possible adjacent links, $J = J_1$, J_2 , J_3 .

Step 2--For an origin zone initialize with a large number the cost, C(L), to travel from the origin to each link in the network $(C(L)z \infty \text{ for all } L)$.

Step 3--For the links adjacent to the origin zone store a travel time cost in C(L) ($L = L_1, L_2, \ldots, L_{12}$).

Step 4--Set the travel time costs of Step 3 negative, to flag that all links connected to these may have an improved travel time cost.

Step 5--Find a negative C(L) and the connected links J_1 , J_2 , J_3 to link L. If no negative C(L) exists then do Step 9. If no connected links exist then do Step 8.

Step 6--For each $J=J_1$, J_2 , J_3 test |C(L)|+TT(L,J)<|C(J)|. If the relationship does not hold true then do Step 7. Otherwise replace C(J) by |C(L)|+TT(L,J) and set C(J) negative. The route is saved by storing the previous link to J (i.e., R(J)=L).

Step 7--Repeat from Step 6 until all J's have been tested.

Step 8--Set C(L) to |C(L)| and repeat from Step 5.

Step 9--The C(L) array is the cost of travel from the origin to each link L. Repetition from Step 2 will generate new costs of travel from other origins.

3.4.2 Data Description

Symbol Symbol	Meaning
C(L)	Cost of time going from origin zone to link L
R(L)	Link previous to link L in route from origin zone to link L
TT(L,J)	Travel time going from link L straight (J=1), right (J=2), or left (J=3)
LINKS(I)	The links accessing the zone (or gate) of origin
NL	The number of links accessing the zone (or gate) of origin
C1	The cost to get from the center of the origin zone to LINKS(1)
C2	The cost to get from the center of the origin zone to LINKS(2), LINKS(3), etc.

3.5 TRIPGEN

3.5.1 Purpose

The trip generation routine generates trip-end productions and attractions as linear functions of up to 10 demographic variables for up to 15 trip purposes. The coefficients used to predict linear productions and attractions are specified by the user, or they may be generated by default using a resident array of trips related to land use.

3.5.2 Data Description

Symbol	Meaning
Initial (COMMON/TRIP/)	
VAR(J,Z)	The Jth demographic variable associated with zone Z.
COEFO(I,K)	The Ith coefficient for generating productions for trip purpose K .
COEFD(I,K)	The Ith coefficient for generating attractions for trip purpose K.
NVARO(I,K)	The demographic variable index associating the Ith production coefficient with a demo- graphic variable.
NVARD(I,K)	The demographic variable index associating the Ith attraction coefficient with a demographic variable.
LANDO(I,K)	The land uses associated with trip purpose

Initial (COMMON/TRIP/) (continued)

PLUALU(L, LU, I) The number of trips from land use L zones to

land use LU zones in the a.m. off-peak, noon rush, or p.m. off-peak hours (I=1,2, or

3, respectively).

NTRIP The number of trip purposes.

NTRIPC The number of trip purposes using civilian

vehicles.

LANDU(Z) The land use designated for zone Z.

FCSP(K,1) Fraction of cold start vehicles with external

origins for purpose K.

FCSP(K,2) Fraction of cold start vehicles with internal

origins for purpose K.

Intermediate

ALUA(L,LU) The number of trips going from land use L

zones to land use LU zones in the time period

being simulated.

CSPLU(LU) The column sum (attractions) of the PLUALU

array for zones with land use LU.

RSPLU(LU) The row sum (productions) of the PLUALU

array for zones with land use LU.

CSUM(LU) The column sum (attractions) of ALUA array

for zones with land use LU.

RSUM(LU) The row sum (productions) of the ALUA array

for zones with land use LU.

VARZDV The weighted average of all demographic

variables associated with a zone.

SFTO Sum of the flex time trips from all origins.

SFTD Sum of the flex time trips to all destinations.

TSHO Total shift trips from all origins.

TSHD Total shift trips to all destinations.

TGATEC Total gate count for four 15-minute periods.

GAFRO Fraction of trips arriving in 15 minutes

from all origins.

GAFRD Fraction of trips arriving in 15 minutes to

all destinations.

MATRIX(G,Z) Matrix associating gate G with zone Z

(1 = associated; 0 = not associated).

FRAC Fraction of all flex pool trips to be

routed to a zone.

Intermediate (Continued)

SHFPCT(Z,1,T) Shift employee origins from zone Z, time

period T.

SHFPCT(Z, 2, T) Shift employee destinations to zone Z,

time period T.

Resultant

NTO(Z,K) The number of person trips originating at

zone Z for trip purpose K.

NTD(Z,K) The number of person trips destined for

zone Z for trip purpose K.

FCS(Z) Fraction of cold starts for zone Z.

3.5.3 Reports

C.1. ARRAY OF LAND USE PRODUCTIONS AND ATTRACTIONS. This is the ALUA array for the current time period.

- C.2. TRIP PRODUCTIONS (PERSONS). This is the NTO array.
- C.3. TRIP ATTRACTIONS (PERSONS). This is the NTD array.
- C.4. MATRIX ASSOCIATING ZONES WITH GATES. This is the MATRIX array.
- C.5. TRIP PRODUCTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS). This is the NTO array for a 15-minute time period.
- C.6. TRIP ATTRACTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS). This is the NTD array for a 15-minute time period.

3.5.4 Subroutines Called

The following subroutines are called: GRAVO, GATFUN.

3.6 GRAVO

3.6.1 Purpose

The GRAVO subroutine distributes the person trips associated with each zone into person trips associated with each pair of zones and a gate. A gravity model is used to distribute trips among zone pairs based on zone-gate and gate-zone impedances (usually travel time) and zonal mass (number of trip ends). The general form of the model is as follows where Z is an external zone and Zl is an interal zone:

OV(Z,G) = VD(Z1,G) + GCNT15(G,2,1)/(CGO(G) + CGD(G)**3) $*NTO(Z,K)*NTD(Z1,K)/\sum NTD(Z1,K)$

The equation makes the number of persons going from zone Z to zone Zl through gate G proportional to the gate count at gate G and the number of person trips being made between zone Z and Zl indirectly proportional to the travel time to the gate, plus the cube of the travel time within the base.

3.6.2 Data Description

Symbol Symbol	Meaning
Initial	
NTO(Z,K)	The number of person trips originating at zone Z for trip purpose K
NTD(Z,K)	The number of person trips destinated to zone ${\bf Z}$ for trip purpose ${\bf K}$
GCNT15(G,1,1)	The number of vehicles exiting through gate G during time period I
GCNT15(G,2,1)	The number of vehicles entering through gate ${\rm G}$ during time period ${\rm I}$
CG(G,L)	The cost to travel from gate G to link L (also assumed to be the cost of travel from link L to gate G)
Intermediate	
SGC01	The sum of the existing gate counts for this time period
SGC02	The sum of the entering gate counts for this time period
TOSUM(K)	The total trips originating on base for purpose K
TDSUM(K)	The total trips destined on base for purpose K
ZGT	The trips originating at an internal zone Z for all trip purposes
ZAT	The trips destined for an internal zone Z for all trip purposes
Resultant	
OV (Z,G)	The number of person trips going from zone Z to gate G.
VD(Z,G)	The number of person trips going to zone Z from gate G.

Resultant (Continued)

NTO(Z,K) The number of person trips going from internal zone Z to another internal zone for purpose K.

NTD(Z,K) The number of person trips going to internal zone Z from another internal zone for purpose K.

3.6.3 Reports

- D.1. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS
- D.2. ORIGIN-DESTINATION ARRAY
- D.3. ORIGIN-DESTINATION ARRAY FOR CIVILIAN VEHICLE TRIPS
- D.4. ORIGIN-DESTINATION ARRAY FOR MILITARY VEHICLE TRIPS

3.7 MODAL

3.7.1 Purpose

This subroutine determines the mode of travel of all person trips going between all origin and destination zones. The OV(IZ,IG) and VD(IZ1,IG) arrays store the number of persons originating at zone IZ and going through gate IG, and the number of persons going through IG and destined for zone IZ1. All these person trips must be assigned to some mode of travel, which is one of six types of civilian vehicles and seven types of military vehicles. The percentage and the load factor for each type of vehicle for each zone are known. Thus, the number of vehicle trips between IZ and IG and between IG and IZ1 is typically easy to calculate.

The exception is military vehicle type 7--a bus. A bus may not have a load factor, in which case it must be computed in the MODAL subroutine.

3.7.2 Data Description

Symbo1	Meaning
OV(Z,G)	Origin zone Z to gate G, demand volume in persons.
VD(Z,G)	Gate G to destination zone Z, demand volume in persons.
VEHTYP(I,Z)	Percent of civilian vehicles of each type I, at each zone Z.
VTYPM(I,Z)	Percent of military vehicles of each type I, at each zone Z. For VTYPM(7,Z) this is the actual number of buses.

FRAMIL(Z, I)	Fraction of person trips that use military vehicles for each zone Z; FRAMIL(Z,1) is the fraction that originates at a zone Z, and FRAMIL(Z,2) is the fraction destined for a zone Z.
VLF(I)	Load factor in persons/vehicle for civilian vehicles of type I.
VLFM(I)	Load factor in persons/vehicle for military vehicles of type I.
OV(Z,NG1)	Internal origin zone Z productions of internal trips.
VD(Z,NG1)	Internal origin zone Z attractions of internal trips.
TP	Length of time of simulation.
VZ(Z)	Number of parking trips to each zone Z.
ZV(Z)	Number of parked vehicles leaving each zone Z.
NEXT	Number of exterior zones.
NZONES	Number of interior and exterior zones.
NGATE	Number of gates IG.

3.7.3 Reports

- E.1. MODAL SPLIT VEHICLE LOAD FACTORS
- E.2. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS

3.8 SMOOTH

3.8.1 Purpose

The gate counts can be used to calibrate the vehicle trips predicted between zones. The external-to-internal and internal-to-external trips should equal the gate counts. Thus, the sum of external trip productions can be made to equal the sum of the vehicles coming through all the gates, and the internal to external trip productions can be made to equal the sum of the outgoing gate counts. Another calibration function is performed to route vehicles through the appropriate gates. So far the model has weighted the trips predicted through each gate by the gate counts. A matrix multiplication is undertaken first to make the columns of the OV(Z,G) and VD(Z,G) arrays add up to the gate counts and second to make the rows of the OV and VD arrays add up to zone productions and attractions.

3.8.2 Data Description

Symbol Meaning

OV(Z,G) Number of vehicle trips going from zone Z to gate G.

VD(Z,G)	Number of vehicle trips going to zone Z from gate G.
GCSUM1	Sum of gate counts entering the base.
OVSUM1	Predicted count of entering vehicles.
FEXGEN	The factor for converting GCSUM1 to OVSUM1.
FEXATT	The factor for converting predicted exiting vehicles to exiting gate counts.
FINGEN	The factor for converting predicted exiting vehicles to gate counts.
FINATT	The factor for converting predicted entering vehicles to gate counts.
ZGENR(Z)	The total generations from zone Z that go through a gate.
ZATTR(Z)	The total attractions from zone Z that go through a gate.
SOVIZ	Sum of the OV array for all zones and one gate.
SVDIZ	Sum of the VD array for all zones and one gate.
SOVIG	Sum of the OV array for one zone and all gates.
SVDIG	Sum of the VD array for one zone and all gates.
ZV(Z)	The number of vehicles that park in zone Z.
VZ(Z)	The number of vehicles that leave from parking places in zone \mathbf{Z}_{\bullet}
PLA(Z)	The parking area of a zone.
PD	The parking density of a zone.
PV(Z)	The number of parked vehicles in a zone.

3.8.3 Reports

- F.1. CALIBRATION FACTORS
- F.2. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS.

3.9 ASSIGN

3.9.1 Purpose

This subroutine assigns vehicle trips as stored in the NTO, NTD, OV, and VD arrays to the links of the network, and maintains vehicle counts on each link for each through, right, left, and terminating movement, and for civilian types 1-6, military types 1-6, hot start, and cold start vehicles. The subroutine depends on the MNPATH subroutine to return the minimum time path between zones. Two paths between each gate-zone pair or internal zone-internal zone pair are found. Trips are allocated to the alternate routes based on travel time. Vehicle type data are maintained, as are hot/cold start data.

3.9.2 Data Description

Symbol Symbol	Meaning
Initial	
OV(Z,G)	Vehicles going from zone Z to gate G
VD(Z,G)	Vehicles going from gate G to zone Z
NTO(Z,K)	Vehicles going from zone Z to internal zones
NTD(Z,K)	Vehicles going to zone Z from internal zones
RG(G,L)	Route from gate G to each link L
CG(G, L)	Cost from gate G to each link L
LCON(L,J)	Link connecting to L going J direction
ZLINKS(I,Z)	Links bordering zone Z, (I=1 to 12)
Intermediate	
ZVEH(I)	Civilians vehicles type Iused by SUMIT
ZVEHM(I)	Military vehicles of type Iused by SUMIT
DIV	Divisor applied to trips in SUMIT
ZTRIP	Trips from zone Z
ZTRIP1	Trips to zone Zl
OD	Trips going from zone Z to zone Zl
Resultant	
COUNT (1,L)	Vehicle count going through on link L
COUNT(2,L)	Vehicle count going right on link L
COUNT(3,L)	Vehicle count going left on link L
COUNT(4,L)	Vehicle count terminating on link L
COUNT(5, L)	Civilian vehicles of type 1
COUNT (6, L)	Civilian vehicles of type 2
COUNT(7,L)	Civilian vehicles of type 3
COUNT(8,L)	Civilian vehicles of type 4
COUNT(9,L)	Civilian vehicles of type 5
COUNT (10, L)	Civilian vehicles of type 6
COUNT(11, L)	Military vehicles of type 1
COUNT(12, L)	Military vehicles of type 2
COUNT (13, L)	Military vehicles of type 3
COUNT(14, L)	Military vehicles of type 4
COUNT (15, L)	Military vehicles of type 5
0.0011 (1.7,11)	military venicles of type 3

Resultant (Continued)

COUNT(16,L) Military vehicles of type 6
COUNT(17,L) Number of cold start vehicles
COUNT(18,L) Number of hot start vehicles

3.9.3 Reports

- G.1. ASSIGNMENT COUNTS AND ASSOCIATED COMPUTER RUN TIME
- G.2. VEHICLE COUNT, TYPE, AND HOT/COLD STARTS

3.9.4 Subroutines Called

The following subroutines are called: MNPATH, SUMIT.

3.10 INSEC

3.10.1 Purpose

This subroutine computes delays and queue lengths at signalized intersections within the simulated network. Three types of signal controllers can be specified. The first type is a fixed-time controller in which the north-south, east-west, and left-turning phases are all of fixed time length. The other types of controllers are vehicle-actuated, for which types the INSEC routine must determine the length of each signal phase. Phase lengths are determined based on volume to green capacities of each approach to an intersection (Webster, 1958).

Delays and queue lengths are determined at an intersection on the basis of phase time, approach volume, and capacity (Newell, 1965). The referenced method of determining delay assumes a period of time during which traffic demand remains constant, and does not include a means of estimating queueing when volume exceeds capacity. For BATS, a method was devised to provide continuous functions for delay and queue length when volumes approach or exceed the intersection approach capacity. This method establishes a constant rate of increase in queue length beyond the point where average delay at the intersection equals one cycle length. The queue is assumed to increase at a constant rate beyond this point until volume exceeds capacity, at which point the queue increases at the rate that volume exceeds capacity. A queue is dissipated at the rate that capacity exceeds volume until the average queue length, based on the volume to capacity ratio of the intersection approach, is reached.

The results of the model, stored in the DELA and QUE arrays, are delay and queue length for each approach to an intersection.

3.10.2 Data Description

Symbol Symbol	Meaning
NI	Number of intersections
LIN(1,4)	Links approaching intersection I from the north, east, south, and west
ITYPC(I)	Type of control for intersection I
ICYCL(I)	Cycle time of intersection I
PH(I,4)	Phase time on the north-south, east-west, north-south left turn, or east-west left turn to intersection I
CI(I)	Clearance interval (i.e., yellow duration) at intersection I
GCAP(I,4)	Green capacity on the north, east, south and west approach to intersection $\boldsymbol{\mathrm{I}}$
QUE(1,4)	The average queue length at intersection I

3.10.3 Reports

H.2. INTERSECTION DELAYS AND QUEUEING

3.11 INSECU

3.11.1 Purpose

This subroutine predicts the delay and queue length at unsignalized intersections in the network. Three types of intersections can be handled: uncontrolled, two-way stop, and four-way stop. If not specified as an input parameter, the INSECU routine determines an intersection capacity based on the Highway Capacity Manual (HCM) (1965). For two-way stops and uncontrolled intersections, the HCM recommends that capacity be computed as if a signal were present and as if the signal split ratio equaled

$$\frac{\text{Volume}_1}{\text{Volume}_2} \times \frac{\text{Width}_2}{\text{Width}_1}$$

At four-way stops, capacity is a function of the number of lanes and the demand split among approaches, as shown in Tables 6.7 and 6.8 of the <u>Highway Capacity Manual</u>. Queue length at an intersection is computed from classical queueing theory, i.e., QO = 1/(CAP/VOL) - 1. Average delay is a function of queue length times the time to process each vehicle.

3.11.2 Data Description

Symbol	Meaning
NSTOPS(L)	Number of stops made on link L
PNS	Proportion of stops on a link
DELA(L,J)	Delay going through, right, and left on link L
QUE(I,J)	Queue length of vehicles at intersection I, turning movement J.

3.11.3 Reports

H.2. INTERSECTION DELAYS AND QUEUEING

3.12 PARKING

3.12.1 Purpose

This routine models parking zone flow and determines vehicle running time for a zone. The running time of an average vehicle is considered to consist of three elements: (1) the time to travel from the edge of the zone to a stall or the time to travel from a stall to the edge of a zone (symbolized by TTA and TTD, respectively); (2) the delay experienced by arriving vehicles while waiting for vehicles to back out of stalls (DQ); (3) the average wait in a queue until a parked vehicle leaves the zone (AWQ).

TTA is computed on the basis of the length and speed of an average trip into the parking zone. It would appear that the length and speed of an average trip vary in direct and indirect proportion, respectively, to the utilization of a zone, and preliminary analysis of available data tends to support this supposition. TTD is the same as TTA, but with a time added to back out of a parking stall (PLBO).

DQ is the queued delay, due to interrrupted flow lasting PLBO seconds, experienced by vehicles arriving in the parking zone. AWQ is a minimum value or is the time required to service each vehicle times an average queue length estimated from the utilization of the parking zone.

3.12.2 Data Description

Symbol	Meaning
PC	Parking lot capacity
PVZ	Parked vehicles at end of time period
PLS	Parking lot speed

AWQ	Average wait in queue
TTA	Travel time arriving
DQ .	Backing queue-waiting for vehicles to back out of stalls
ZV(Z)	Trip generations from parking zone Z
VZ(Z)	Parking arrivals at parking zone Z

3.12.3 Reports

H. 3. PARKING LOT TRAVEL TIMES AND DELAYS

3.13 COORXY

It is necessary to know the direction of flow on the link (i.e., which end point traffic moves toward). This subroutine reorganizes the x,y coordinates of any link, L, so that X1(L),Y1(L) represent the upstream end of the link and X2(L),Y2(L) represent the downstream end of the link.

3.14 PLOTI

3.14.1 Purpose

This subroutine initializes values used for plotting the volume flow maps. This subroutine also plots a link or link and zone map if called for.

3.14.2 Data Description

Symbol Symbol	Meaning
EPSLON1	Distance between volume lines in map units (inches)
SCALE	The factor for converting inches to feet (feet)
EPSLON2	Height of hairs used to mark congestion (inches)
EPSLON3	Distance between hairs (inches)
CHGHT	Character height of printer characters in map units (feet)
XMIN	X coordinate of lower left corner of area to be plotted
XMAX	X coordinate of upper right corner of area to be plotted
YMIN	Y coordinate of lower left corner of area to be plotted
YMAX	Y coordinate of upper right corner of area to be plotted

3.14.3 Reports

A.1. INPUT LISTING. (prints out the XMIN, XMAX, YMIN, YMAX coordinates)

3.14.4 Subroutines Called

The following subroutines are called: PLOT, PRESCAN, NUMBER, PLOTS, PTRAF, SYMBOL.

3.15 PLOTA

3.15.1 Purpose

This subroutine accumulates data that will later be used to make summary plots of volumes on the link network.

3.15.2 Data Description

Symbol Symbol	Meaning
HRVOL(I)	The sum for hourly volume plots for link I
DYVOL(I)	The sum for daily volume plots for link I
QUEUE(I)	The queue length on link I
CAPMAX	The queue length that represents congestion
IOVRCAP(1)	The overcapacity links are marked with a -1 for a.m. rush and 1 for the p.m. rush hour.

3.16 PLOTP

3.16.1 Purpose

This subroutine causes a plot to be written on the output device, writes a heading by calls to Calcomp routines, and calls PTRAF to do the network plot.

3.16.2 Data Description

Symbo1	Meaning
IUSE(L)	Tells whether this link L has been plotted
VOLMAX	The upper volume limit rounded off

3.16.3 Subroutines Called

The following subroutines are called: NUMBER, PLOT, PTRAF, SYMBOL.

3.17 AQAMF

3.17.1 Purpose

This subroutine accumulates the data results of the BATS program. The BATS model generates Data Set 20, 28, 29, 30, 31, and 32. The data include for each zone the average speed in the zone and the vehicle miles traveled, and for each link the average speed on the link and the number of vehicles driving the link. These data must be converted to yearly values from the BATS results.

3.17.2 Data Description

Symbol Symbol	Meaning
NUMVA	Number of internal zones
NP	Number of links which surround a zone
XCENT	Center of the zoneX coordinate
YCENT	Center of a zoneY coordinate
HT	Height
PL	Length of one side of a zone (zone will be assumed to be square by AQAM)
AVSPD(Z)	Average speed within the zone Z, miles per hour
VMILEM(I)	Yearly vehicle miles driven by vehicles of type I
SFCS(Z)	Fraction of cold start vehicles on link
SFHS(Z)	Fraction of hot start vehicles on link
NHSOAK	Number of hot soak vehicles parked in lot (recently parked vehicles)
VMILEC(I)	Yearly civilian vehicle miles driven by vehicles of type I
SFRAMI(Z,1)	Fraction of vehicles leaving zone Z that are military
SFRAMI(Z,2)	Fraction of vehicles arriving at zone Z that are military
NL	Number of line sources in network
X1(L)	X coordinate of line source L
Y1(L)	Y coordinate of line source L
HEIGHT(L)	Height above average terrain of line source L

WIDTH	Width of line source (meters)
X2(L)	X coordinate of other end of line source L
Y2(L)	Y coordinate of other end of line source L
AVSPD(L)	Average speed on link L
PCCO(L)	Percent cold start on link L
PCHO(L)	Percent hot start vehicles on link L
NCOLDM(K)	Number of cold military vehicles on link \boldsymbol{L} that are type \boldsymbol{K}
NHOTS	Number of hot soak vehicles on link
SPRT(Z)	Sum of the parking lot running times
SVZ(Z)	Sum of the parking lot arrivals, zone Z
SZV(Z)	Sum of the parking lot departures, zone Z
SCOUNT(I,L)	Sum of the counts on link L

3.17.3 Reports

The results of AQAMF are stored on Tape 7. These are in card format and could be printed or input to the AQAM program.

3.18 LETTER

3.18.1 Purpose

This subroutine prints an output page heading in large block letters.

3.18.2 Data Description

Symbol Symbol	Meaning
NYEAR	The date of the run
LHEAD(1)	The air base name, 12 characters
LHEAD(3)	The run identification, 12 characters

3.18.3 Reports

Blocked Run Title Page

3.18.4 Subroutines Called

The following subroutines are called: TOFC, CHARAC.

3.19 TOFC

This subroutine stores the characters comprising the table of contents, and writes the table of contents.

3.20 CHARAC

This subroutine stores the 26 letters of the alphabet and the 10 numbers as data for block heading printout.

3.21 GATFUN

3.21.1 Purpose

This subroutine creates an array associating zones with gates. The contribution that each zone makes to each gate count determines if a zone is associated with that gate, and the contributions from a gate to a zone determines if that zone is associated with the gate.

3.21.2 Data Description

Symbol	Meaning
LIZG(J,Z)	List of the gates which contribute to each zone, ordered with heavy contributors first.
LIGZ(I,G)	List of the zones which contribute to each gate, ordered with heavy contributors first.
NEXT1	Number of external zones plus 1.
VDOV(Z,G)	Gate G to zone Z and zone Z to gate G person trip counts.
MATRIX(G,Z)	Set =1 if a zone is associated with a gate.

3.22 SUMIT

3.22.1 Purpose

This subroutine stores the vehicle counts into the COUNT array.

3.22.2 Data Description

Symbol Symbol	Meaning		
ZVEH(I)	Civilian vehicles of type I trav	eling on L	
ZVEHM(I)	Military vehicles of type I tray	eling on L	

COUNT(I,L) Count of vehicles by turning movement, type, or

hot/cold status on link L

DIV The divisor, either 1 or 2, used to break down trips if they are following more than one route

3.23 PRESCAN

3.23.1 Purpose

This subroutine finds the maximum and minimum x,y coordinates for the air base.

3.23.2 Data Description

Symbol Symbol		Meani	ng			
X1(L), X2(L)	2	coordinate	of	link	L	
Y1(L),Y2(L)	,	coordinate	of	link	L	

3.24 PTRAF

3.24.1 Purpose

This subroutine plots the volumes associated with each plot by multiple lines and printed characters. If zone labels are called for on the plot, a call to ZLABEL is made. It also plots the left boundary and labels the corners with x,y coordinates. Then it calls PPLOT to plot the link. At the end it plots the right boundary and labels the corners.

3.24.2 Data Description

Symbol	Meaning
UPBNDY	Upper boundarythe Y coordinate. This limits the size of the plot when more than one plot is required for a base.
LPLTF	Flag indicating: 0 = zone labels are not to be included on any map; 1 = zone labels are to be included on volume plots; 2 = zone labels are to be included on link map.

3.24.3 Reports

"BOUNDS" indicates the lower left X, upper right X, lower left Y and upper right Y bounds for the current plot.

3.24.4 Subroutines Called

The following subroutines are called: PLOT, NUMBER, PPLOT, SYMBOL, ZLABEL.

3.25 PPLOT

3.25.1 Purpose

This subroutine plots the links by calling PLOTLK, starting with the first link and taking the closest next. The IUSE array is changed from "not used" = 0, "used" = 2 or "part used" = 1. Subroutine CLOSEST is used to determine the next closest link.

3.25.2 Data Description

Symbol Symbol	Meaning
NOTDRW	Link is not drawn at all = 0
IDRAWN	Link is completely drawn = 2
IPTDRW	Link is partly drawn = 1
IOFFSCL	Link is completely off scale = -1

3.25.3 Reports

If all the links are searched and no new links are found, then the IUSE array is printed out without a title.

3.25.4 Subroutines Called

The following subroutines are called: PLOTLK, CLOSEST.

3.26 CLOSEST

3.26.1 Purpose

This subroutine finds the closest undrawn link and puts its number in NEWLK to be passed back to the calling program. It returns NEWLK = 0 if no closest link is found.

3.26.2 Data Description

Symbol Symbol	Meaning
X1(I)	X_1 coordinate of link I
Y1(I)	Y ₁ coordinate of link I
X2(I)	X ₂ coordinate of link I
Y2(I)	Y ₂ coordinate of link I

3.26.3 Subroutine Called

PDIST is the only subroutine called.

3.27 PDIST

3.27.1 Purpose

This subroutine finds the distance between the current pen position (PENX, PENY) and point (A,B).

3.27.2 Data Description

Symbo1	Meaning
PENX	The last X position of the pen in map coordinates
PENY	The last Y position of the pen in map coordinates
A	X coordinate of point
В	Y coordinate of point

3.28 PLOTLK

3.28.1 Purpose

This subroutine finds volume of traffic by calling PFNDVOL, plots eac', half street with proper width lines by calling PLOTLN, marks each link as drawn or part drawn, marks overcapacity links, and labels links.

3.28.2 Data Description

Symbo1	Meaning	
LK	Link number	
LFLG	Flag indicating hourly (=1) or summary (=2) plot	
TOD	Time of day	

QUEUE(LK) Length of queue from which capacity measure made
CAPMAX Maximum length queue associates with congestion

3.28.3 Subroutines Called

The following subroutines are called: LABEL, OVERCAP, PDISP, PFNDVOL, PLOTLN.

3.29 PFNDVOL

3.29.1 Purpose

This subroutine finds the volume of traffic on a link, LK, and converts this to a number of lines, NL. The volume is saved in LABL.

3.29.2 Data Description

Symbol	Meaning
LK	Link number
NL	Number of lines to be plotted to show the volume
LFLG	Flag for hourly or summary plot, LFLG = 0-no volume lines, number links; LFLG = 1-hour volume lines, hour volume numbers; LFLG = 2-day volume lines, day volume numbers
LABL	Label value (i.e., volume)

3.30 PDISP

3.30.1 Purpose

This subroutine displaces a plot line an epsilon distance to the right of the direction of traffic flow (which is from X1,Y1 to X2,Y2).

3.30.2 Data Description

Symbol Symbol	Meaning
X1,Y1	Upstream end of link
X2,Y2	Downstream end of link
EPSLON1	Distance between lines

3.31 OVERCAP

3.31.1 Purpose

This subroutine draws overcapacity tic marks or hairs by calling PLOTLN and RETURN TO 2 when there is no line to plot because it is off the plot, i.e., beyond the lower left and upper right x,y coordinates specified for this plot.

3.31.2 Data Description

Symbol Symbol	Meaning	
DISTANC	Distance X1, Y1 to X2, Y2	
X1, Y1, X2, Y2	End points of a line to be plotted	
A,B	End point of a tic mark	
C,D	Other end of the tic marksame as X1,Y1	
T1,T2	End of the tic mark corresponding to C,D. This is offset for the afternoon period.	
EPSLON3	Distance between tic marks	

3.31.3 Subroutines Called

The following subroutines are called: PDISP2, PDISP3, PLOTLN.

3.32 LABEL

3.32.1 Purpose

This subroutine labels a line with the volume count. The distance between the line and the label is EPSLON2.

3.32.2 Data Description

Symbol	Meaning
X1,Y1,X2,Y2	Coordinates of the line to be labeled
THETA	Angle of the line
DIST2	Distance to the place where the character printing begins
NCHAR	Number of characters to be printed
IBCD	Characters to be printed
ITRKFG	Flag telling if link is completely plotted

HT Character height in inches

SCALE Converts from feet to inches

3.32.3 Subroutine Called

The following subroutines are called: CHKBND, PDISP2, SYMBO2.

3.33 ZLABEL

3.33.1 Purpose

This subroutine prints the names or number of the zones within each zone.

3.33.2 Data Description

Symbo1	Meaning												
CHGHT	Character height												
XSUM	Average of the X coordinates of the lines defining the zone												
YSUM	Average of the Y coordinates of the lines defining the zone												

3.33.3 Subroutines Called

SYMBOL is the only subroutine called.

3.34 PLOTLN

3.34.1 Purpose

This subroutine draws a line between point X1,Y1 and X2,Y2. If the line is off the plot page, then it truncates the line and sets a flag.

3.34.2 Data Description

Symbol Symbol	Meaning								
X1,Y1	Coordinates	of	1 ine						
X2, Y2	Coordinates	of	line						

3.34.3 Subroutine Called

The following subroutines are called: CHKBND, PDIST, PLTSCL.

3.35 PLTSCL

3.35.1 Purpose

This subroutine scales the plot and calls the CALCOMP plot routine PLOT (1969).

3.35.2 Data Description

Symbol	Meaning
A	The x-coordinate of a point to move the pen to
В	The y-coordinate of a point to move the pen to
I	Indicates if the pen is up or down during the move

3.36 CHKBND

3.36.1 Purpose

This subroutine checks the boundaries of the plot to see if the line extends beyond the boundary, and truncates the line if necessary by calling XPTMOV or YPTMOV.

3.36.2 Data Description

Symbol Symbol	Meaning
X1,Y1,X2,Y2	x,y coordinates of the line
ITRKFG	Flag indicating if line is on a plot window
DNBNDX	Lower left X boundary
DNBNDY	Lower left Y boundary
UPBNDX	Upper right X boundary
UPBNDY	Upper right Y boundary

3.36.3 Subroutines Called

The following subroutines are called: XPTMOV, YPTMOV.

3.37 PTMOVE

3.37.1 Purpose

This subroutine moves the end points of a line that is out of the plot window along the line to the edge of the plot so that the end points of the line are within the plot window.

3.37.2 Data Description

Symbol Symbol	Meaning											
XA,YA	Point which is out of bounds											
XB,YB	Point which may be in bounds											
BOUND	The X or Y bound											
IB	0 = test lower bound, 1 = test upper bound											
S	Slope of line											

REFERENCES

- Argonne National Laboratory, "Air Quality Assessment Model, Field Data Collection Guide," AFWL-TR-75-220, Air Force Weapons Laboratory, Air Force Systems Command, Kirtland AFB, NM (1975).
- California Computer Products, "Programming CALCOMP Pen Plotters," Anaheim, CA (1969).
- M. Duffey-Armstrong, S. Swope, and R. Sandys, "User Guide for the Base Automotive Transportation Simulation Model - BATS, Volume 1: Data Collection and Reduction," SRI International, Menlo Park, California (September 1979).
- W. L. Grecco, F. J. Wegmann, J. A. Spencer, and A. Chatterjee, "Transportation Planning for Small Urban Areas," NCHRP Report 167, Transportation Research Board, Washington, D.C. (1976).
- D. G. Haney, and G. Thompson, "Documentation Manual, SRI Network Analysis Programs (SNAP)," Stanford Research Institute, Menlo Park, CA (August 1971).
- Highway Research Board, "Highway Capacity Manual 1965," Special Report 87; NAS-NRC; Washington, D.C. (1965).
- G. F. Newell, "Approximate Methods for Queues with Application to the Fixed Cycle Traffic Light," S.I.A.M. Review, Vol. 7, No. 2 (1965).
- R. C. Sandys, "The Dynamic Highway Transportation Model (DHTM) Users Manual," SRI Technical Note, IR&D 830551-02-AHJ, Stanford Research Institute, Menlo Park, CA (1971).
- R. C. Sandys, P. B. Simmon, and W. F. Dabberdt, "ISMAP-A Traffic/Emission/ Dispersion Model for Mobile Pollution Sources, Users Manual," Stanford Research Institute, Menlo Park, California (1975).
- S. D. Thayer, and K. Axetell, Jr., "Vehicle Behavior in and Around Complex Sources and Related Complex Source Characteristics," Geomet Report, Number EF-263 (1973).
- U.S. Army Transportation Engineering Agency, "Traffic Engineering Study--Nellis AFB," Military Traffic Management and Terminal Service, Fort Eustis, VA (1971).
- U.S. Army Transportation Engineering Agency, "Traffic Engineering Study--Tinker AFB, Oklahoma," Military Traffic Management and Terminal Service, Fort Eustis, VA (1967).

- U.S. Environmental Protection Agency, "Guidelines for Air Quality Maintenance Planning and Analysis Volume (Revised): Evaluating Indirect Sources," Office of Air Quality and Planning and Standards, Research Triangle Park, NC (1978).
- W. Viezee, P. Simmon, E. Shelar, and M. Hackworth, "Source Emission Inventory for AQAM: Review of Field Data Collection Program," Stanford Research Institute, Menlo Park, CA (1977).
- F. V. Webster, "Traffic Signal Settings," Road Research Technical Paper No. 39, Road Research Laboratory, H. M. Stationary Office, London, England (1958).

Appendix A
PROGRAM LISTING

PROGRAM	BATS TRACE CDC 6700 FTN V3.0-355F GPT=0	79/08/17. 15.49.02. PAG
	PROGRAM BATS (IMPUT, GUTPUT, TAPES=GUTPUT, TAPES=IMPUT, I TAPE1, TAPE2, TAPE27=TAPE1) COMMON COMMON (1, Z, L, J, K, TOD, DOW, TP, TOTATT, TTP2, TOTGEN, ITM I, NYEAR, LHEAD(7), IMPER(0, Y, YP, 10PT(6), NPLT, NCLB, NPLU Z, NDEN'C, NNAME, FEXGEN(4), FEXAT(4), FINGEN(4), FINATT(4), TP15	
	INTEGER Z,XP,YP COMMON /CHD, TODE,10DS,BAT(3),NYR,NMO,NDAY COMMON /LINK/ NLINK, NLANE(240), X1(240), V1(240),X2(240),Y2(240) 1, LCAP(240), DIST(240), VEL(240), LCON (240,3),HEIGHT(240)	
9	2.NSTQPS(240) COMPON / INTRST/ NINS, LIN(70,4), ITYPC (70), CYCL(70), PH(70,4), 1 C1(70), GCAP(70,4), QUE(70,4) COMPON /ZONES/ NZONES, NZLINKS(80), ZLINKS(12,50), ZATTR(80),	
2	120ENR (60), NEXT, ZA(2), ZB1(2), VEHITTE, 50), ZNAME(50), FUSIOD) 2.VTPM(7,50), FRAMIL(50,2), NEXT1, LANDU(50) INTEGER ZLINKS, ZNAME COMMON / DENVAR / NDV, DVNAME(10), VAR(10,50) COMMON / TRIP, FCSP(15,2), 1FCS, Z(15), PURP(15), NVARG(4,15)	
8	1, CDEFOCA, 19, NVARDICA, 19, CDEFUCA, 19, NIKITIO 2, LANDOCCA, 19, LANDOCCA, 15, PLUALUC7, 7,3) COMMON / GATE/ NGATE, LGATE(2,10), VCR(10, 2,4), GCGUNT(2,10), 1GCNT15(10,2,4), NGATE1 COMMON/VGLUME/ COUNT(18,240)	
2	COMMON / VEHICD/ NVLF, VLF(7), VLFM(7), FVP! COMMON / TRGUT, 10T, 17YP1, 17YP2, 11OZ(50), 11DZ(50), 1TR(96) COMMON / SHIFT/ NS, SHFPCT160,2,4) COMMON / PARKZ/ PZ, PV(50), PLA(50), VZ(50), ZV(50), PD, PLS, PLBO 1, PNOS(50), PLL(50)	
8	INTEGER FNOS, FZ COMMON / RESLIT (1240, 3), DELA(240, 3), PRT(50), QUEUE(240) COMMON / CAPMAX/QUL COMMON R(240), C(240), RG(10, 240), CG(10, 240) INTEGER R, RG	
8	N NIC(50, 15), NID(50, 15) BION OATET(10,2,3) BION SCOUNT(240,3) (BAT(1), 1=1,3)/10H=#=	
9	1067. 0 418 324 413. 0 17. 2 42 18. 3 43. 43. 3 43. 43. 43. 43. 43. 43. 43	
9	7433. 0 .274 .220. 0 .112. 0 . DATA ((PLUALU(1, J, 2), J=1, 7), I=1, 7), 11174. 51 .671 ,1593 .836 . 87 .604 ,	
9	. :	
99	40.,253.,	

```
PAGE
    CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ROUTE VEHICLES SPECIFIED AS TOTALT (TOTAL TRIPS ATTRACTED AND GENERAT ED) ONTO THE LINKS OF THE NETWORK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GENERATE TRIP END ATTRACTIONS AND PRODUCTIONS AS LINEAR FUNCTIONS OF 4 DEMOGRAPHIC VARIABLES AND 15 TRIP PURPOSES
                                                                                                                                                                                                      ,102. 0. 0. 0. 0.
64. 0. 0.112.
27. 0.131. 0.
7,PL$/15.0/,PD/33.4/,FC$/50*0./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PRINT 111, RT1, RT2, RT3
111 FORMAT (4H T1= F8.3, 4X, 3H72=, F8.3, 4X, 6H72-T1=, F8.3)
** TEST FOR FIRST TIME THRU AND INITIALIZE IF TRUE
14 IF (1ST : 0E. 1) 60 TO 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    INITIALIZE LINK TO LINK TRAVEL TIMES

DG 22 L = 1, NLINK

YIMY2=X1(L) - X2(L)

YIMY2=X1(L) - Y2(L)

DIST(L) = SORT(XIMX2=XIMX2+YIMY2=YIMY2)

TIME = DIST(L)/(VEL(L)*0.447)/(.9+.1*NLANE(L))

DG 22 J = 1,3

DG 22 J = TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       INITIALIZE VOLUME TO CAPACITY RATIO INVERSES

DO 2 10 = 1, NOATE

DO 2 1 = 1, 4

2 VCR(19, K, J) = 2.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRINT 914, LHEAD
FORMAT(21H1 B. INITIALIZATION ,7A10)
CALL ZAREA
RT3=RT2-RT1
PRINT 111,RT1,RT2,RT3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2220NT(L, J) = CGUNT(J, L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NS1=1
IF(IOPT(4).0T.0) NS1=4
DG 70 ITM=1,NS1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALL SECOND (RT1)
                                                                            22 0.
3419. 5
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
3419. 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    110
PROGRAM
                                                                                                                                                                                                                                               9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                                                                                                                                                                 69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        93
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       110
```

```
CDC 6700 FTN V3.0-365F GPT=0 79/06/17. 15.49.02.
                                                  TP15 = TP/NS1

TD05 = TD05 + (ITM-1):TP15/60.

TD05 = TD05 + (ITM-1):TP15/60.

TPSAV=TP

TCAMOD(TD05, 100.) GE GO.)TD05=TD05+40.

TCAMOD(TD05, 100.) GE GO.)TD05=TD05+40.

TCAMOD(TD05, 100.) GE GO.)TD05=TD05+40.

DO 302 1-1:3

302 CGUNT(J,L)=SCGUNT(L,J)/NS1

303 CGUNT(J,L)=1.3

TT005 TD05

TD05 TD05 TD06

B999 FORMAT(JH1, Za10,A3, 7X, 12, 1H/, 12, 1K/, 12, 5X5A10,6X, 112-1K-FR10D FROM FS.0, 6H TD FRO. 6H HDURS)

GENERATE ROUTES AND TAXALE THEN BE EXTERIOR OR INTERIOR TO BASE.

C INITIALIZE ACCESS TIMES TO ALL GATES = 10000 SEC.

C SO THICLE TIMES AND TAXALE AND TAXAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (L, J) . EQ. L1) TT(L, J) - GATETT(10, 10RE, J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALL SECOND (RT2)

RT3-RT2-RT1

R FRINT 11, RT1, RT2, RT3

C REPLACE TRAVEL TIMES.

DO 316 10=1, WOATE

DO 316 10=1, WOATE

DO 316 10=1, 2

If (L.1.E.0) 00 TO 316

DO 315 1=1, MLINK

DO 315 1=1, MLINK

DO 315 1=1, 3

If (LOWICL, J) EQ.L1) TT

316 CONTINUE

316 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CALL SECOND (RT1)
CALL TRIPGEN
CALL SECOND (RT2)
RT3RT2-RT1
PRINT 111, RT1, RT2, RT3
   BATS
   PROGRAM
                                                                                                                                                                                            110
                                                                                                                                                                                                                                                                                                                                                           150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           136
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             163
```

PAGE

SRI INTERNATIONAL MENLO PARK CA USER GUIDE FOR THE AIR FORCE BASE AUTOMOTIVE TRANSPORTATION SIM--ETC(U) AD-A079 555 SEP 79 R SANDYS F08635-76-D-0132 AFESC/ESL-TR-79-16-VOL-2 UNCLASSIFIED NL 2 of 4 AD A 079555


```
CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PRINT 111, RT1, RT2, RT3

C MODAL SPLIT DETERMINES 0-D BY VEHICLE TYPE. PARKED

C VEHICLES GO INTO VZ AND 2V ARRAYS.

C DETERMINE THE TOTAL PARKING TRIPS ATTRACTED OR PRODECED BY EACH ZONE

CALL SECOND (RT1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FRINT 111, RT1, RT2, RT3
FRINT 111, RT1, RT2, RT3
FRINT 9899, (BATIL), 1=1, 3), NYR, NMG, NDAY, (LHEAD(!), [=1,5),
17003, 7006
17003, 7006
17003, 7006
17003, 7006
17003, 7006
17003, 7006
17003, 7006
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
1700, 1700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     395 TT(LK) = DELA(L,K) = V.O.
40 QUEUE(L) = 0.0
A QUEUE(L) = 0.0
A QUEUE(L) = 0.0
A QUEUE(L) = 0.0
A GALEST AND QUEUE LENGTHS AT INTERSECITONS
A CALL SECONO (RTI)
PRINT 9999, (BAT(I), I=1,3), NYR, NMG, NDAY, (LHEAD(I), I=1,9),
1700s, TODE
PRINT 943
PRINT 9
                                                                                                 C DISTRIBUTE PERSON TRIPS AMONG ORIGIN-DESTINATION ZONES
C THE REMAINING ROUTINES USE GCNT15 ARRAY VICE OCCUNT
IF (IGPT(4), GT, 0) GO TO 319
DO 318 IGPT(4), GT, 1)=GCOUNT(2, 10)
GCNT15(10, 1, 1)=GCOUNT(2, 10)
318 CONTINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SIGN THE VEHICLES ONTO LINKS AND ADD TO COUNT ARRAY CONTINUE CALL SECOND (RT!)
CALL ASSIGN
RT3=RT2-RT!
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CALL SECOND (RT1)
CALL MDDAL
CALL SECOND (RT2)
RT3-RT2-RT1
RT3-RT2-RT1
CALL SECOND (RT1)
CALL SECOND (RT1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CALL SMOOTH
CALL SECOND (RT2)
RT3=RT2-RT1
PRINT 111,RT1,RT2,RT3
                    BATS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           838
                    PROGRAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        215
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    210
                                                                                                                                                                                                                                                                                                                                                                                              170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           209
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                178
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              193
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           800
```

PAGE

```
CAPL = 100.

De 466 LI, MINA

De 766 LI, MINA

De 766 LI, MINA

QUEUE(L) = 20 CMLANE(L)

QUEUE(L) = 40 CMLANE(L)

QUEUE(L) = 40 CMLANE(L)

QUEUE(L) = 40 CMLANE(L)

QUEUE(L) = 40 CMLANE(L)

FOURE(L) = 40 CMLANE(L)

FOURE(L) = 40 CMLANE(L)

S = (COUNT(I, L) + COUNT(L) L) + 3600/TP

V = VEL(L) = 10 CMT 466

V = VEL(L) = 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HATCHHOSKEL.1. NETWORK SUPPARY PARAMETERS FOR TIME PERIODS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT(1H05X=H.4. LINK TO LINK TRAVEL TIMES(SECONDS)=)
WRITE (6, 961) (L, (TT(L,K),K=1,3),L=1,NLINK)
FORMAT (1H0, 6(20HLINK TRAVEL TIMES )/(1X,6(13,2X,3FB.0
SUMT = SVHT = SVELA = SNSTOP = SO1 = SRT = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FIND THE RUNWING TIMES IN THE PARKING ZONES

CALL SECOND (RTI)

FRINT 9899, (BAT(1), 1=1,3), NYF, NMO, NDAY, (LHEAD(1), 1=1,5),
17009, TODE

FRINT 967

967 FORMAT(1HOSX=H.3, PARKING LGT TRAVEL TIMES AND DELAYS=)

COURTY NOTE: ANAXI(PV(PZ)+VZ(PZ) - ZV(PZ), 0.0)

SY PRT(PZ) = TIPZ

CALL SECOND (RTZ)

** ATS=RTZ-RTI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE OUT RESULTS
PRINT 999, (BAT(I), I=1,3), NYR, NHO, NDAY, (LHEAD(I), I=1,5),
17005, TODE
PRINT 960
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   T(L,K)=CDUNT(K,L)/3900. + SUNTT
UNT(K,L)=D1ST(L)/5300.013.281 + SVNT
ELAL(K)=CDUNT(K,L)/3600.+SDELA
MSTOPS(L) + SNSTOP
UE(L) + SQI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRINT 111, RT1, RT2, RT3
                                                                                                                                                                                                                                              RTI, RT2, RT3
                                                                                                                                                          WD (RT2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9615
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3
PROGRAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         255
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       288
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         278
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          235
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 245
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           290
```

PAGE

CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.

CDC 6700 FTN V3.0-358F OPT=0 79/06/17, 15.49.02. PLOT TE VOLUES IF CALLED FOR INTERPORTED FOR ADAM FILE FORTICE FOR INTERPORTED EXP(FLOAT(10PT(1)))/15.#9.0 PRINT RESULTS
CALL SECOND (RT!)
PRINT 111,RT1,RT2,RT3 PROGRAM 300 295 280 308 285 290

PAGE

PAGE

																							CHO	7												,	
REAL	REAL	REAL	REAL	REAL	REAL PEAL	REAL	REAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGE	INTEGER	INTEGER	INTEGER	NTEGER	NTEGEN	INTEGER	NTEGER	INTEGER	INTEGER	INTEGER	INTEGEN	INTEGER	INTEGER	INTEGER	NTEGER	NIEGER	BEAL	PEAL	9641	1000
																							NDAY														
360	2200	361	•	1320		200	9	2742	1403	145	•	37	11716	11706	13	147	- :	11701	852	3107	3601		1	0	3106	-	•	97	11712	12240	433	2:	•	18174			5
RELOCATION ARRAY CHD		INTRST	4	- NTROT	THE STATE OF THE S	TRIP	COMM	COMM		GATE	¥ □		-	200	TROUT	TROUT	- NTROL	TROUT		TRIP	¥	GATE	COL	-	GATE	INTRST	LIN		¥.	11	TRIP	TRIP	VEHLOD	CHO	PARK 7	2 2000	JANA L
REAY		ARRAY	ARRAY	ARRAY	ARRAY	APPAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY		*****	ARRAY	ARRAY	ARRAY	ARRAY			ARRAY	ARRAY	ARRAY	-						ARRAY	ARRAY		ARRAY				>4004	- CHILL
TYPE												*	K 0		*	2	2	W 0		E	ER	E S	E S	E.	GER	DER	DER	DER	DER	DER	DER	DER	DER	N S S S S S S S S S S S S S S S S S S S	GER		
Z Z	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEG	NTEG	INTEG	INTEG	INTEG	INTEG	INTE	NTE	INTE	INTE	N TE	INTE	INTE	INTE	INTE	INTE	N TE	BEAL	1440	1						
LES SN TE																													-								

PAGE				
. 15.49.02.			7APE27	INACTIVE
CDC 6700 FTN V3.0-355F OPT=0 78/08/17, 15.49.02.	CAPHAX CAPHAX COPPE COPP	SONES CONFI		22 C 4 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-355F OPT=	ARRAY	ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY	W00-0000	80000
0 FTN V3.0	######################################	REAL REAL REAL INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER	TAPET TAPET REAL REAL	ÄÄ
CDC 670	OUE COUL RO RO SOELA SOELA SOUT TOOE TOTATT TP 15 TT 16 TO ATT	VGRY VLF VTVPH VTVPH X1HX2 YP YP ZATTR ZATTR ZATTR ZATTR	4044 6066 AAINI ASSINA ASSINA FLGAT INFT INFT INFT INFT HODAL PODAL PODA PECOND SORT	INACTIVE
	2033 0 1704 11704 11725 11726 11726 11727 11727 11727 11711	2504 2204 2204 11707 11710 11710 11813 2040	EE	4 7 9 8 7 4
	RELOCATION PARKZ RESLT RESLT CONN CONN CONN CONN CONN CONN CONN CON	DEMVAR LINK PARKZ PARKZ LINK LINK ZONES ZONES ZONES PARKZ	TAPES	10657
TRACE	ARRAY ARRAY ARRAY ARRAY ARRAY	ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY	2022 2022 2022 2020 2020 2020 2020 202	w w
BATS	TYPE INTEGER FINTEGER INTEGER REAL REAL REAL REAL REAL REAL REAL RE	REAL REAL REAL REAL REAL REAL REAL REAL	REAL TEAL	INACTIVE
PROGRAM	LES SN PZ OUEUE RT11 RT11 RT3 SCOUNT SHEPCT SUMTT TOD TOD TOD TOD TOD TOD TOD TOD TOD T	VAR VYLE VAZ VAZ VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR	EXTERNALS O TAPES O TAPES AMAXI AMADO AGAMP EXP GRAVO INSEC	STATEMENT LABELS 10122 1 0 31 0 38 10734 43 0 63
	2722 QUE 2722 QUE 11702 RT1 1702 RT1 1702 RT1 1702 RT1 1702 RT1 1702 SUM 11721 SUM 11721 SUM 11701 TTP 1701 TTP	16242 3221 3221 1221 1361 1701 1701 1705 1250 1250 1250 1250 1250 1250 1250 12	2	STATEM 10122 0 10734

PAGE

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

SUBROUTINE INPT

PACKEZ-MANI (PU(KZ): 1.0) 90 710 35 ANXI (PU(KZ): 1.0) 91 710 35 ANXI (PU(KZ): 1.0) 92 711 10 10 10 10 10 10 10 10 10 10 10 10 1	SUBSKILL	SUBRECULINE INFL	INACE INC.	
8 1) 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			PLA(KZ)=AMAX1(PLA(KZ), 1.0)	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			PV(KZ)=AMAX1(PV(KZ),1.0)	
8 10 40 80 80 80 80 80 80 80 80 80 80 80 80 80			00 TO 57	
10 4 10 10 10 10 10 10 10 10 10 10 10 10 10		96	CONTINUE	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_		IF (PLC. NE. O.) PLA(KZ) = PLC*PD	
υ φυυν φ			IF (PVEH. NE. O.) PV (KZ) = PVEH	
9888 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		22	CONTINUE	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			IF (IBL. NE. ZNAME(KZ)) STOPS6	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			PRINT 957, IC, IBC, LANDUCKZ), FLC , PVEH, (VAR. J. KZ), J=1, 10)	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		957	FORMAT(12, A2, 11, 2F5.0, 8F8.0, F5.0, F8.0)	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		90	CONTINUE	
0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		29	NDV=10	
8 88 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		9	IF(NT.EG.0) 60 TO 7	
99 89 99 99 99 99 99 99 99 99 99 99 99 9			Z = Z	
8 88 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			NTRIPCENTRIP-1	
8 88 7 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			DG 65 K=1,NTRIP	
8 89 7 9 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			READ 96, IC, PURP(K), (FCSP(K, I), I=1,2), (LANDG(I,K),	
8 89 6 89 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			1NVARG(1,K), COEFG(1,K), COEFD(1,K), 1=1,4)	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		96	FORMAT(12. A10. 2F2. 2. 4(11, 12. 2F6. 4))	
89 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			IFCIC NE 6) CALL ABORT	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			IFCAND PURPOK, MASK (6) NE AND THE MASK (6)) NTRIPOSK	
899			FC8.7(K)=0	
80			1-12-15-15-15-15-15-15-15-15-15-15-15-15-15-	
889			IF (FCSF(K, 1) LE. O. AND FCSF(K, Z) LE. O. JIPOSIZ (K)	
200 C C C C C C C C C C C C C C C C C C			PRINT 961, IC, PURP(K), (FCSP(K, I), I=1, 2), (LANDO(I, K),	
8.00			INVARG(1,K), COEFO(1,K), COEFD(1,K), 1=1,4)	
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		65	CONTINUE	
7 60 60 60 60 60 60 60 60 60 60 60 60 60		196	FORMAT (12, A10, 2F4. 2, 4(11, 12, 2F7. 4))	
9 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1	IF(19.EQ.0) 90 TO 9	
94 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		180	NGATE = [G	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			MARKET - MARKE + 1	
6.6 6.9 6.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0			TO 101 171 101 171 101 171 101 171 101 171 101 171 101 171 17	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			ARTON AND AND AND AND AND AND AND AND AND AN	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			(GCN 50 G, K 4 , E , 2) , G E , NGA E)	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			PRINT 978, (1C, 1G, (LOATE(J, 1G), J=1, Z), (GCDUNT(1, 1G), 1=1, Z),	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			-	
• 64 608 9 6 54 808 9 5		926		
6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		•	1F(KT.EQ. 0) GO TO 889	
6.4 5.9.9 9 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5			NCOUNT - KT	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			DO AS X=1 NCOUNT	
			PEAD 984 10 (INDINGIL) (TABAY(12 11) 12=1 3) 11=1 4)	
24 200 9 9 24 200 9 5			7 - 1 70	
6 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			24 CT CO	
6 4 8 9 9 9 9 6 6 4 8 9 9 9 9 6 6 6 6 6 6 6 6				
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				
4 500 9 6		93		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2	CONTINUE	
9 C			PRINT 900, IC, (INDIN(J1), (TARAY(J2,J1), J2=1,3), J1=1,4)	
9 9 9 9 9 0 0 0		69	CONTINUE	
0 0 0 0 0 0 0 0 0		996	FORMAT (12,13, 3(F5.0), 3(15, 3(F5.0)))	
9889		698	IF (NVLF. EQ. 0) 60 TO 8910	
9869			READ 9889, IC, (VLF(1), 1=1,6), (VLFM(1), 1=1,7), PVP1	
0100		9889		
0.60			_	
10 to		6910		
50 10 P. STATE				
			F(NTR LE D) 30 TO 6911	

```
993 JF(M.LE.1) 00 TO 892

894 | TDZ(Z)=1+(N-1)=24

695 | CONTINUE

896 | CONTINUE

891 | CONTI
READ 989, IC, IOT, ITYP2, ITYP1, ((ITR(I, J), I=1, 24), J=1,NTR)

PRINT 989; IC, IOT, ITYP2, ITYP1, (ITR(I, J)

PRINT 989; IC, IOT, ITYP2, ITYP1, (ITR(I, J)

PRINT 989; IC, IOT, ITYP2, ITYP1, (ITR(I, J)

DO 896 Z=1, NZONES

NZ=NZINKS(Z)

ITOZ(Z)=0

ITOZ(Z)=0

ITOZ(Z)=0

ITOZ(Z)=0

ITOZ(Z)=0

ITOZ(Z)=0

ITOZ(Z)=0

ITOZ(Z)=1, NZONES

IC, ITR(I, NZONES)

IC, ITR(I, N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF(T00.0E.1100.) IP=2
IF(T00.0E.1300.) IP=3
READ 91400 (IC,(PLUALU(I,J,IP),J=1,7),I=1,NPLU)
91400 FORMAT (12,7F6.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       91300
                                                                                                     696
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   178
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               195
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        205
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 215
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  220
```

CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.

INP

SUBROUTINE

1,77, 1a1, MPLU)						
01, (1C, (PLUALU(1, J, IP), J= K, 12, 7F6.0) .EG.0) 90 T0 1600	NDEAT 62 91500, 1C, (DVNAME(1DV), 1DV=1, 10) FGRMAT(12, 9A6, A6) DO 1503 J=1, 10 DO 1503 J=1, 10 CONTINUE CONTINUE	NOVEMBER OF THE STATE OF THE ST	CALL ADAMI FORMAT (12, 2F5.0, F6.0, 4F5.0, 215, 2F5.0) RETURN FFIGORI(2). NE.0) CALL PLOT(0.0, 0.999)	END		
91401	28 150 0081 2 150 0081	0091	99 99 8			

	몽	K-N-	TRIP	PLOT	COMP	PLOT	TRIP	000	COMP	NTR	DATE	PLOT		E L		48.0	1800	1		500	000	'	TROC	# Z	1800						4	¥	BATE	- N				DEM		ZONE	GATE	LIN	PLOT	CHO		00	¥
	ARRAY	ARRAY	ARRAY				ARRAY	ARRAY	ARRAY	ARRAY	ARRAY			ARRAY		ARRAY		ARRAY		ARRAY	ARRAY	ARRAY	ARRAY	ARRAY							ARRAY	ARRAY	ARRAY	ARRAY								ARRAY					ARRAY
	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	NTEGER	NTEGER	NTEDER	INTEGER	NTEGER	NTEGER	INTEGER	NTEGER	NIEGER	NTEGER	NTEGER	INTEGER								
	DAT	5	COEFO	Ē	8	10	FCSP	FEXOEN	FINGEN	OCAP	OCCUNT	ī	18F	ICYCL	20	1FCS12	101	NON	L I	100	IPFLO	1717LE	1102	TYPC	TYPS	=	5	23	×-	_	LANDO	LCAP	LOATE	z	5:		NOFM	NO.	NDS	NEXT1	NGATE	NLANE	NLIN	D#2	d.	NPLU	NADLON
	~	1275	171	•	•	•	-	1	3	1403	146	•	2565	537	2604	37	•	7	2322	5	24	50	•	433	~	2560	2872	2574	2552	2	456	2261	-	-	2024	2076	2080	0	2546	3106	311	-	1	•	2600	4	2801
RELOCATION		707	TRIP	VOLUME	¥	DEMVAR	ZONES	COMM	COMM	ZONES	GATE	¥ I	COMP									TROUT	100	TROUT	TROUT		-		100		TRIP	ZONES	¥	COME	PLOT					ZONES	BATE	LNTRGT		LINE	COM	COMM	SHIFT
28			ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY										ARRAY		ARRAY							ARRAY	ARRAY	ARRAY	ARRAY													
SN TYPE	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	NTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NIEGER	I MATERIAL	INTEGER									
ES	74	CHI	COEFD	COUNT	DIST	DVNAME	FCS	FEXATT	FINATT	FRAMIL	OCNT15	HE I GHT	-	20	101	IEXT		101	4 - Z	I	<u>.</u>	1 102	E	- TR	TYPI	12	7	75	¥ !	KZ	LANDO	LANDU	LCON	LHEAD	ייייי		NOAV	NOEMVC	ND1	NEXT	NOATE	SKIZ	N-IN	NLIN	NNAME	NPLT	NO.
VARIAB	2602 AT	9	361	0	2641	-	2122	90	00	2742	171	5121	0	2547	2577	2564	2551	2570	2351	2320	2601	63	- 3	147	-	2962	0	2573	*	2563	252	3107	3601	5	2	1967	? "	42	2545	1357	0	0	2347	0	43	37	0

2853 NTR
####
75 NVARG INTEGER ARRAY 14 NYR1 INTEGER ARRAY 15 NYR1 INTEGER ARRAY 15 PUD REAL ARRAY 16 PUC REAL ARRAY 17 PVP I REAL ARRAY 17 PVP I REAL ARRAY 18 SAC REAL ARRAY 18 SAC REAL ARRAY 19 PVP I REAL ARRAY 10 TDDE REAL ARRAY 10 TDDE REAL ARRAY 11 TTPZ REAL ARRAY 11 TTPZ REAL ARRAY 11 TTPZ REAL ARRAY 12 VEL REAL ARRAY 13 VEL REAL ARRAY 14 VEL REAL ARRAY 15 VEL REAL ARRAY 16 VEL REAL ARRAY 17 TP REAL ARRAY 18 VEL REAL ARRAY 19 VE REAL ARRAY 11 VE REAL ARRAY 11 VE REAL ARRAY 11 VE REAL ARRAY 12 VIX REAL ARRAY 13 VIX REAL ARRAY 14 VE REAL ARRAY 15 VIX REAL ARRAY 16 ZAT REAL ARRAY 17 REAL ARRAY 18 VIX REAL ARRAY 18 VIX REAL ARRAY 19 VE REAL ARRAY 10 VE REAL ARRAY 10 VE REAL ARRAY 11 VE REAL ARRAY 11 VE REAL ARRAY 12 VIX REAL ARRAY 13 VIX REAL ARRAY 14 VIX REAL ARRAY 15 VIX REAL ARRAY 16 ZAT REAL ARRAY 17 VIX REAL ARRAY 18 VIX REAL ARRAY 19 VIX REAL ARRAY 10 VIX REAL ARRAY 10 VIX REAL ARRAY 10 VIX REAL ARRAY 11 VIX REAL ARRAY 11 VIX REAL ARRAY 11 VIX REAL ARRAY 12 VIX REAL ARRAY 13 VIX REAL ARRAY 14 VIX REAL ARRAY 15 VIX REAL ARRAY 16 VIX REAL ARRAY 16 VIX REAL ARRAY 17 VIX REAL ARRAY 18
MYR1
1 NZLIMKS INTEGER ARRAY 31 PD REAL ARRAY 56 PLC REAL ARRAY 51 PW REAL ARRAY 52 SFAC REAL ARRAY 52 SFAC REAL ARRAY 53 SFAC REAL ARRAY 54 PWS REAL ARRAY 55 SFAC REAL ARRAY 56 TODE REAL ARRAY 57 TO TOTATT REAL ARRAY 58 VEL REAL ARRAY 58 VEL REAL ARRAY 59 VEL REAL ARRAY 51 TYPZ REAL ARRAY 51 TYPZ REAL ARRAY 52 VEL REAL ARRAY 53 VEL REAL ARRAY 54 VKK REAL ARRAY 55 SCAN REAL ARRAY 56 ZAT REAL ARRAY 57 TWK REAL ARRAY 58 SZINKS REAL ARRAY 58 SZINKS REAL ARRAY 58 ZAT REAL ARRAY 58 ZAT ARRAY 78 ZAT ARR
31 PU REAL ARRAY 312 PW REAL ARRAY 313 PW REAL ARRAY 314 PWS INTEGER ARRAY 315 PW REAL ARRAY 316 PW REAL ARRAY 317 PW REAL ARRAY 317 PW REAL ARRAY 317 TYPZ REAL ARRAY 317 TYPZ REAL ARRAY 317 TYPZ REAL ARRAY 321 VEL REAL ARRAY 322 VEL REAL ARRAY 323 TYPY REAL ARRAY 324 TYPY REAL ARRAY 327 TYPY REAL ARRAY 327 TYPY REAL ARRAY 327 TYPY REAL ARRAY 328 TYPY REAL ARRAY 329 TYPY REAL ARRAY 321 TYPY REAL ARRAY 321 TYPY REAL ARRAY 322 TYPY REAL ARRAY 323 TYPY REAL ARRAY 324 TYPY REAL ARRAY 325 TYPY REAL ARRAY 326 TYPY REAL ARRAY 327 TYPY REAL ARRAY 328 TYPY REAL ARRAY 329 TYPY REAL ARRAY 329 TYPY REAL ARRAY 321 TYPY REAL ARRAY 321 TYPY REAL ARRAY 321 TYPY REAL ARRAY 321 TYPY REAL ARRAY 322 TYPY REAL ARRAY 323 TYPY REAL ARRAY 324 TYPY TYPY TYPY TYPY TYPY TYPY TYPY TYP
See PLC REAL See PLC REAL 1
11 PV REAL ARRAY 12 SFAC REAL ARRAY 13 SPAC REAL ARRAY 14 PV REAL ARRAY 15 SFAC REAL ARRAY 16 TOTATT REAL ARRAY 17 TO TOTATT REAL ARRAY 16 VE REAL ARRAY 16 VE REAL ARRAY 17 TO
PV REAL ARRAY 1 PV REAL ARRAY 2 SFAC REAL ARRAY 1 PV 1 REAL ARRAY 1 PV 1
17 PVP REAL ARRAY 2 SFAC REAL ARRAY 2 SFAC REAL ARRAY 2 SFAC REAL ARRAY 2 SFAC 2 SFA
2 SFAC REAL ARRAY O TODE REAL ARRAY REAL ARR
0 TARAY REAL ARRAY 10 TOTATT REAL 11 TIPZ REAL 22 VCR REAL 23 VCR REAL 24 VCR REAL 25 VCR REAL 26 VCR REAL 27 VCR REAL 32 VCR REAL 33 VC REAL 34 VCR REAL 35 VCR REAL 36 VCR REAL 37 VCR REAL 38 VCR R
0 70DE REAL 7 TP REAL 7 TP REAL 81 TTP REAL 821 VEL REAL 822 VEL REAL 10 VLFH REAL 11 XHX REAL 11 XHX REAL 12 YHX REAL 12 YHX REAL 13 YHX REAL 14 YHX REAL 15 YHX REAL 16 YHX REAL 17 YR REAL 18 YHX REAL 18 YHX REAL 19 YR REAL 10 YR REAL 11 YR REAL 12 YHX REAL 13 YR REAL 14 ARRAY 15 ZU REAL 16 ADAM! 16 REAL 17 ARRAY 18 TEAL 18 ANAX! 18 REAL 18 ANAX 18 TEAL
1 17P2 REAL ARRAY 221 VCR REAL ARRAY 10 VLFH REAL ARRAY 11 XMX REAL ARRAY 11 XMX REAL ARRAY 11 XMX REAL ARRAY 12 YMX REAL ARRAY 14 YM REAL ARRAY 15 ZOLMR REAL ARRAY 16 ZOLMR REAL ARRAY 17 YM REAL ARRAY 18 ZOLMR REAL ARRAY 19 ZOLMR REAL ARRAY 10 ZOL
11 TTPZ REAL ARRAY 22 VCR REAL ARRAY 145 VZ REAL ARRAY 145 VZ REAL ARRAY 120 VLFM REAL ARRAY 121 VHX REAL ARRAY 122 VHX REAL ARRAY 123 VHX REAL ARRAY 124 VHX REAL ARRAY 125 VHX REAL ARRAY 127 VHX REAL ARRAY 126 VHX REAL ARRAY 127 VHX REAL ARRAY 128 VHX REAL ARRAY 129 ZULMKS INFOGE ARRAY 127 ZV REAL ARRAY 128 FEAL ARRAY 128 FEAL ARRAY 129 ZULMKS INFOGE ARRAY 129 FEAL ARRAY 129 ZULMKS INFOGE ARRAY 129 FEAL ARRAY 129 ZULMKS INFOGE ARRAY 129 ZULMKS INFOGE INFOGE INFOGE 100 ZULMKS INFOGE INFOGE 100 ZULMKS INFOGE INFOGE 100 ZULMKS INFOGE INFOGE 100 ZULMKS INFOGE 100 ZUL
25 VCR REAL ARRAY 221 VEL REAL ARRAY 145 V2 REAL ARRAY 145 V2 REAL ARRAY 15 XY REAL ARRAY 17 YW REAL ARRAY 18 YE REAL ARRAY 18 YE REAL ARRAY 18 YE REAL ARRAY 19 YE REAL ARRAY 275 ZOENR REAL ARRAY 275 ZOENR REAL ARRAY 275 ZO ANAMI REAL ARRAY 277 ZV REAL ARRAY 278 ZV REAL ARRAY 277 ZV REAL ARRAY 278 ZV ARRAY 277 ZV ARRAY 278 ZV
221 VEL REAL ARRAY 145 VZ REAL ARRAY 11 XMX REAL ARRAY 12 XM REAL ARRAY 12 YMX REAL ARRAY 1321 XZ REAL ARRAY 1322 ZU REAL ARRAY 1323 ZU REAL ARRAY 1323 ZU REAL ARRAY 1323 ZU REAL ARRAY 1324 ZU REAL ARRAY
10 VLFF REAL ARRAY 11 XHX REAL ARRAY 11 XHX REAL ARRAY 12 YHX REAL ARRAY 12 YHX REAL ARRAY 12 YHX REAL ARRAY 13 YN REAL ARRAY 14 YN REAL ARRAY 15 ZOENR REAL ARRAY 16 ZAINKS INTEGER ARRAY 16 ZAINKS INTEGER ARRAY 17 X REAL ARRAY 18 ZOONNI REA
19 V. REAL ARRAY 12 VHX REAL ARRAY 12 VHX REAL ARRAY 12 VHX REAL ARRAY 13 V REAL ARRAY 14 V REAL ARRAY 15 VHX REAL ARRAY 16 ZAT REAL ARRAY 16 ZAT REAL ARRAY 17 REAL ARRAY 18 SALIMS INTEGER ARRAY 18 REAL ARRAY 18 SALIMS INTEGER 18 SALI
227 ZV REAL ARRAY 321 X2 REAL ARRAY 321 X2 REAL ARRAY 330 ZAT REAL ARRAY 350 ZAT REAL ARRAY 275 ZOENR REAL ARRAY 275 ZULIMKS INTEGER ARRAY 227 ZV REAL ARRAY
221 X2 REAL ARRAY 12 YMX REAL ARRAY 731 Y2 REAL ARRAY 235 ZOENR REAL ARRAY 235 ZOENR REAL ARRAY 237 ZV REAL ARRAY 227 ZV REAL ARRAY 227 ZV REAL ARRAY 227 ZV REAL 2 AMAX! REAL 3 AMAX! REAL
12 YMX REAL ARRAY 701 Y2 REAL ARRAY 702 ZAT REAL ARRAY 703 ZALIMKS INTEGER ARRAY 6.3 ZLIMKS INTEGER ARRAY 227 ZV REAL ARRAY 727 ZV REAL ARRAY 727 ZV REAL 2 727 ZV REAL 2 728 AANAXI REAL 2 738 ANAXI REAL 2 748 ANAXI REAL 2 758 ANAXI REAL 3 758 A
701 Y2 REAL ARRAY 350 ZAT REAL ARRAY 63 ZLIMKS INTEGER ARRAY 227 ZV REAL ARRAY AMAXI REAL 2 AGAMI REAL 2 AGAMI REAL 2 AGAMI REAL 2 AGAMI REAL 1 PLOTI 1
SSO ZAT REAL ARRAY 273 ZOENR REAL ARRAY 227 ZV REAL 2 ADAM! REAL 2 ADAM! REAL 1 PLOT! 1
225 ZUNKS REAL ARRAY 227 ZV REAL ARRAY AMAXI REAL 2 AGAMI REAL 0 EOF REAL 1 PLOTI
AMAXI REAL ARRAY AGAMI REAL 2 AGAMI REAL 2 AGAMI REAL 2 PLOTI
AMAXI AQAMI EGOF MASK PLGTI
ANAX1 AGAM1 EOF MASK PLGT1
442 3 0 0 0 0 23 1074 88 167 89

**SUBROUTINE INSECTION.

***SUBROUTINE INSECTION HOUSE.**

***SUBROUTINE INSECTION HOUSE.**

***SUBROUTINE INSECTION HOUSE.**

***SUBROUTINE INSECTION HOUSE.**

***SUBROUTINE OF SUBROUTINE STATE STATUSTED WITH LEFT THURN BHASES 30 ACTIOATED WITH SEPACE STATES SOLD THE THURN BHASES ADACTIVATED WITH SERVINGS.**

***SUBROUTINE OF SUBROUTINE STATES SOLD THE THE THURN OF SUBROUTINE STATES SOLD TO BE SUBROUTINE STATES SOLD THE SUBROUTINE STATES SOLD THE SUBROUTINE STATES SOLD THE SUBROUTINE STATES SOLD THE SUBROUTINE SUBROUTINE

0

0

50

30

33

9

L = Lin(1, J) IF(L .GT. 0) VOL(J, 1) = (COUNT(3, L) + COUNT(2, L) + COUNT(1, L)) #3600./TP VOL(J, 2) = VOL(J, 3) = 0.0 CAP(J, 2) = CAP(J, 3) = DELAI(1, J+4) = QG(J, 2) = QG(J, 3) = 0. INITIALIZE VOLUMES ON EACH APPROACH
DG 15 Ja1,4
VOL(J,1) = 0.0

5

FIRST DETERMINE THE VOLUME AND CAPACITY OF EACH APPROACH

20

2 J1 = 1

1 J IS INDEX OF APPROACH DIRECTION

2 J IS INDEX OF PHASE CONTROLLING THIS APPROACH

DO 25 J = 1,4

50

23

```
CAP (J, I) = GCAP(I, J2)

IF (CAP(J, I) = CO. O. O. O. CAP(J, I) = NLANE (L):1200.

IF (CAP(J, I) - EG. O. O. O. TO. Z4

IF (VOL(J, I) - EG. O. O. O. TO. Z4

IF (PH(I, J2+2) - NE. O. O. O. TO. Z2

IF (PH(I, J2+2) - EG. O. O. O. O. TO. Z2

# MODIFY THE CAPACITIES DUE TO LEFT TURNING VENICLES (SEE TABLEG. B HCH)

ZOO PCNTURN = AMINI(COUNT(3,L)/VOL(J,I):3600./TP, O.3)

BASEPNT = O.1
L = LIN(1, J)
IF(L . EQ. 0) 80 TO 24
SET JI, AN INDEX TO TEST WHETHER THERE IS MORE THAN ONE PHASE (OR SUB-PHASE CONTROLING THE N-S OR E-W APPROACHES
JZ = JI SET JI DENTIFY OPPOSING TRAFFIC
IE OPPOSING APPROACH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    208 FACL = DIF=(BASEPNT-PCNTURN)-BFVAL
GO TO 23
GO TO 23
CAPACITY IS IDENTICAL FOR ALL THREE TURNING MOVEMENTS OF APPROACH
21 J2 = J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  * ASSUME A LEFT TURN CHANNEL THAT STORES ALL THE LEFT TURNING
* VEHICLES UNTIL THE LEFT TURN PHASE BEGINS.
CAP(J,1) * CAP(J,1) *(1.0 +0.3/ NLANE (L))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          J2 = J
CAP(J,1) = GCAP(1,J2)
CAP(J,1) .E0. 0.0) CAP(J,1) = NLANE(L):1200.
IF(VGU(J,1) .LE. 0.) GO TO 24
GO TO 225
VGL (J) = COUNT(2,L) + COUNT(1,L) ) =3600./TP
                                                                                                                                                                                                    | Frinlane(L) . 6T. 2) 6G TG 208
| Frinlane(L) . EG. 2) 6G TG 208
| Frinlane(L) . EG. 2) 6G TG 201
| BASEPNT = 0.2
| BYAL = 0.15
| GG TG 208
| Frinlane(L) . GG TG 203
| BASEPNT = 0.15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF (PCHTURN .LT. 0.1) DIF = 3.0
00 TO 208
IF (PCHTURN .LT. 0.2) 60 TO 207
BPVAL = 0.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -10
                                                                                                                                                                                                                                                                                                                                                                                                               13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0
                                                                                                                                     8
                                                                                                                                                                                                                               65
                                                                                                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  60
```

CDC 6700 FTN V3.0-356F OFT=0 79/08/17, 15.49.02.

SUBROUTINE INSEC

```
** COMPUTE DELAY , QUEUE LENGTH, NSTOPS

** SET J1, A PHASE INSEX, J1 = 1,2,1,2 WHEN J= 1,2,3,4 AND ITYPC = 1,2

** AO J1 = 1

** DO 63 J=1,4

** NS = 0

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(SFT + SPH . LE. COT) GO TO 40
| COT = SPT + SPH . LE. COT) GO TO 40
| COT = SPT + SPH . LE. 1) GO TO 353
| F(COT . LE. 1) GO TO 353
| F(COT . LE. 1) GO TO 353
| F(COT . LE. 1) COT = 1 CYCL(1) GO TO 40
| COT = 1 CYCL(1) GO TO 40
| COT = 1 CYCL(1) GO COT = 1 CYCL(1) GO TO 39
| F(TOT) | LE. PH(1,J) GO TO 39
| F(TOT) | F(TOT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PHASE TIMES FOR THIS CYCLE LENGTH
                                                                                     00 T0 37
SPT = PT(J,1) + SPT
CONTINUE
SUBROUTINE INSEC
                                                                                                                                                                                                                                                                                                                                                                                            328
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   210
                                                                                                                                                                                                                                                                                                                                                     170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               178
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1 90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          193
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             215
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              220
```

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

```
#Z = QG#1600.)

#Z = QG#1600.

IF(CAP(J,K) .NE. 0.) #Z = QG#3600./CAP(J,K)

# CGMPUTE INVERTED YOLUME TO CAPACITY RATIOS AT EACH GATE

DG 56 10 = 1,NGATE

K1 = 1

IF ( L .EQ. LGATE(1,10))60 TA --

IF ( L .EQ. LGATE(1,10))60 TA --

IF ( L .EQ. LGATE(1,10))60 TA --

IF ( L .EQ. LGATE(1,10))60 TA --
                                                                                                                                                                                                                                                                                                                                                                                    IF ( LCON (L, K) .EG. LGATE(2,10)) GO TG 57
CONTINUE
AG TG 60
IF(VOL(J,1) .NE. 0.0) VCR(10,K1,K) = CAP(J,1)/VOL(J,1)
IF (VOL(J, K) .NE. 0.0) VCR(10,K1,K) = CAP(J,1)/VOL(J,1)
ODELAL(F) = W1 + W2 + W3
OG(J,K) = QO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF (K.OT. 1) GO TO 61
COMPUTE THE AVERAGE QUEUE LENGTH FOR A SIGNAL CYCLE.
QUEUE AT END OF GREEN + AVERAGE QUEUE DURING RED PHASE
QUEUE(L) = QO + WI*VOL(J,1)/3600.
1 CONTINUE
IF(ITYPC(1) .EQ. B .AND. J1 .EQ. 2) 60 T0 43
IF(K .EQ. 3) 60 TO 60
J2 = J
                                                                                                                                                                               E #3
                                                                                                                                                                                                                     8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                    2 5
                                                                                                                                                                                         240
                                          228
                                                                                        230
                                                                                                                                        235
                                                                                                                                                                                                                                       245
                                                                                                                                                                                                                                                                                       250
                                                                                                                                                                                                                                                                                                                                      255
                                                                                                                                                                                                                                                                                                                                                                                      280
                                                                                                                                                                                                                                                                                                                                                                                                                                     265
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    275
```

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE INSEC

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE INSEC

TRACE	
	AAP
INSEC	REFERENCE
I NE	-
SUBROUTINE	SYMBOLIC

		LNTRST		VOLUME	,,	¥	DEMVAR		COMP	CONT	ZONES	GATE		COM		COME	INTRGT								ZONES	Z.	COMP		COM	ZONES	GATE	INTRST	¥ C		COMM		COL	ZONES	INTRST	RESLT		PARKZ	11	RESLT			E CO	COMM
		ARRAY		ARRAY	ARRAY	ARRAY	ARRAY		ARRAY	ARRAY	ARRAY	ARRAY				ARRAY	ARRAY								ARRAY	ARRAY	ARRAY							ARRAY					ARRAY	ARRAY			ARRAY	ARRAY				
	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	INTEGER	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL																						
	BPVAL	5	100	COUNT	DELAI	DIST	DVNAME	FACR	FEXAT	FINATT	FRAMIL	OCNT18	GREENO	_	0	IPFLO	ITYPC	12	5	17	6-	5	13	2	LANDU	LCON	LHEAD	MINR.	NDEMVC	NEXT	NGATE	ī	N-IN	NPHASE	NPLT	NS	NYEAR	NZONES	Ŧ	PRT	273	P2	8	QUEUE	RDIS	SPT	100	TOTOEN
	2455	1275	2460	•	2	2641	-	2457	20	9	2742	171	2473	0	2476	24	431	2500	2502	2504	2506	2447	2451	2477	3107	3601	- 13	2444	42	1357	0	•	0	2510	37	2466	7-	0	643	2640	2465	•	1144	2722	2464	2462	n	12
RELOCATION		11			RESLT		COMM		ZONES	CONTR	COMM	INTRST	DATE	¥	INTRST	COMM	COMM					COMM		CONT	COMM	¥	DATE	INTRST	COMM	DEMVAR	ZONES	GATE	LINE		COMM	COMM	¥	ZONES		PARKZ	//	PARKZ		INTRST				COMM
3		ARRAY			ARRAY				ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY										ARRAY	ARRAY	ARRAY					ARRAY				ARRAY	ARRAY		ARRAY	ARRAY	ARRAY		ARRAY				
TYPE	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	NTEGER	NTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL																				
ES SE	BASEPNT	CAP	9	COTMPT	DELA																					LCAP																					w	-
VARIABL	2453	44	2461	2474	1320	2454	9	2456	2122	7	2	1403	145	5121	537	31	13	2507	2501	2503	2505	9	2450			2261	-	-	40	•	3106	311		2445	43	7	5501	-	2452	63	0	-	2475	2033	2472	2463	2446	10

SUBROUTINE INSEC	TRACE			CDC 6 70	COC 6700 FTN V3.0-355F OPT=0 79/08/17. 15.49.02	355F OFT=0	78/08/1	7. 16.49.02.	949
SN TYPE REAL	3	RELOCATION	•	9141	REAL		-		
	ARRAY	DEMVAR	- ~		REAL	ARRAY	DATE		
	ARRAY	ZONES	322		REAL		LINK		
VOL REAL	ARRAY		220		REAL		COMES		
	TANK	Tunn	247		REAL				
		-	8		REAL	ARRAY	¥.		
	ARRAY	LIN			REAL	A884	,,		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	120		REAL	ARRAY	¥		
	THUNK		136		REAL	ARRAY	ZONES		
	ARRAY	ZONES	127		REAL	ARRAY	ZONES		
ZOT REAL	ARRAY	ZONES	227		REAL	ARRAY	PARKZ		
FILE NAMES MODE OUTPUT FMT									
EXTERNALS TYPE AMAX? REAL	AROS 2			AMINI	REAL	N			
LABELS				PACTIVE	7	•	9		
			222			218	222		
		1014	22			1017	36		
			99			1200	52 3		
						1570	2		
SVITOW!	47.		200	INACTIVE	IVE	234	201		
			205			262	207		
			8331			2036	6332		
			6335			2355	9631	F	
9632 FMT 9635 FMT		2366	9633 9633 96335	EEE		2376	9634	FE	
SLOCKS LENGTH									
RESLT 1730									

TRACE	1361	624
INSEC	25218	11608
SUBROUTINE	LENOTH	None
978	PROGRAM COMMON	-

```
CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02.
```

```
COMPON / CORN / I.Z.L.J. K. TOD. DOW, TP. TOTATT, TTPZ, TOTGEN, ITH

1. NYEAR, LHEGOT7, IPFLGO3, XP, VP, 10PT(8), NPLT, NCLB, NPLU

2. NDEMY, CANAN, I.Z.L.J. K. TOD. DOW, TP. TOLATT(4), TP18

INTEGER Z. XP, VP

1. LCAFCEAO, VECCEAO, X1(240), X1(240), X2(240), X2(240)

2. NSTOPS(240)

2. NSTOPS(240)

2. NSTOPS(240)

3. NSTOPS(240)

4. OGEN (70.4)

5. NSTOPS(240)

5. NSTOPS(240)

6. OFFRON / NTRATY, LINK (70.4), ITYPC(70), ICYCL(70), PH(70.4), C1(70)

1. OGEN (70.4), QUECTO, 4)

1. OGEN (70.4), NOTEL (20.2), NEXT1, LANDU(50)

2. VTYPH(7.50), FRAMIL(50.2), NEXT1, LANDU(50)

2. VTYPH(7.50), FRAMIL(50.2), NEXT1, LANDU(50)

COMPON / DETVAR NOTE, LOATE(2, 10), VCR(10, 2.4), GCOUNT(2, 10),

COMPON / DETVAR NOTE, LOATE(2, 10), VCR(10, 2.4), GCOUNT(2, 10),

COMPON / DETVAR NOTE,

COMPON / PARKZ/ PZ,

COMPON / PARKZ/ PZ,

COMPON / RESLT/ T(240,3), DELA(240,3), PRT(50), QUEUE(240)

COMPON / RESLT/ T(240,3), VCR(4,3), Y(4,3), CAP(4,3), YT(4)

DIMENSION W(2), V(2)

INTEGER W
                                                                                                                                                                                                                                                                                                                              9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                23
```

UNSIGNALIZED INTERSECTIONS ARE HANDLED IN THIS SECTION
NOTE THAT THE HCH RECOMMENDS. IN THE ABSENSE OF A BETTER ALTERNATIVE,
TREATING AN UNCONTROLLED INTERSECTION AS A TYPE 2 SIGNALIZED INTERSECTION. ACTUALLY INSECU IS MUST ACCURATE IN TREATING A 4 WAY STOP
BUT CAN USUALLY BE USED FOR ANY UNSIGNALIZED INTERSECTION.
SLANE = 0.0
SVOAL = ABSV = 0.0
SCAP = 0.0 W(1) = W(2) = 0 V(1) = V(2) = 0.0 JZ = 1 DG 73 J = 1,4 SUM THE VOLUME AND VOLUME DIFFERENCE FOR VEHICLES ON N-S AND E-W APPR L = LIN (1,J) VOL(J,1) = 0.0 IF (L .LE. 0) 90 T0 73 DELA(L,1) = 0.0 Val(J,1) = (COUNT(1,L) + COUNT(2,L) + COUNT(3,L)) = 3600./TP |F(Val(J,1) = 0T. Val(J,1) J1 = J |F(TYPC(CI) = 0E. -1) 60 TO 715 |SVGL = SVGL + Val(J,1) |ABSV = VGL(J,1) - ABSV |F(GCAP(1,J) = ABSV |F(NANE(L) - 1) 71, 723, 725 |STOP | VAL(J,1) V(J2))

```
| F(L .LE. 0) 60 TG 767
| NSTGPS(L) = 0
| IF($SYDL = LE. 0) 60 TG 76
| IF($SYDL = LE. 0) 60 TG 76
| CAP(J, I) = VOL(J, I) = SNCAP/SVOL
| TEST IF GVER CAPACITY DEMAND
| F(VOL(J, I) = LT. CAP(J, I) > CAP(J, I)) = TP/3600 + GUE(I, J) + 5.0)
| F(VOL(J, I) = LT. CAP(J, I) > QO = AMINI(5.0, I = O/SNCAP/SVOL - 1.0))
| F(VOL(J, I) = LT. CAP(J, I) > QO = AMINI(5.0, I = O/SNCAP/SVOL - 1.0))
| F(IG. OT = O) GO TG 742
| F(IG. OT = O) GO TG 742
| F(IG. OT = O) GO TG 743
| F(VOL(J, I) = CO. O) GO TG 746
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
| F(VOL(J, I) = CO. O) GO TG 749
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        723 GCAP( 1, J) = 475.

60 TO 724

60 TO 725

60 TO 725

60 TO 725

729 GCAP( 1, J) = 450 = NLANE(L)

729 SLAP = SCAP + GCAP(L, J)

729 SLAP = SCAP + HANE(L)

73 JZ = 3-JZ

73 JZ = 3-JZ

73 JZ = 3-JZ

74 BASTA = ABSTABAT

75 COMPUTE A MODIFIED INTERSECTION CAPACITY BASED ON VOLUME SPLIT

8 FROM HOM TABLE 6.0 )

15 (SCAP) = 1 FROM HOM TABLE 6.0 )

16 (SCAP) = 1 FROM HOM TABLE 6.0 )

17 (SCAP) = 1 FROM HOM TABLE 6.0 )

18 (14 LT 4) SNCAP = SCAP

735 IF(U. 1.)

60 TO 736
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
00 T0 749
10 741,3
1F(LCON(L,K) .NE. LOATE(2,10)) 00 T0 747
1F(VOL(J,1) .NE. 0.0)VCR(10,2,K) = CAP(J,1)/VOL(J,1)
00 T0 749
CONTINUE
W(J2) = MAXO(NLANE(L),W(J2))
[F(GGAP(I,J) , LE. 0.0) GCAP(I,J) = 1800.*NLANE(L)
GGAP( I,J) * 475.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                161 = 0
DG 77 J = 1,4
DELAI(1,J)
DELAI(1,J) = 0.0
GG = 0.0
IF(L .LE. 0) 66 76
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               744
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     746
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  747
                                                                                                                                                                                                       9
                                                                                                                                                                                                                                                                                                                                                                                  63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  78
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          105
```

CDC 6700 FTN V3.0-355F OPT=0 79/08/17. 15.49.02.

TRACE

SUBROUTINE INSECU

```
CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.
                                                                  748 IF(101 : EQ. 0) 00 TG 741
749 101 = 10

* DELAY ON EACH APPROACH
75 CONTINUE
75 CONTINUE
* PAS = 1.0

IF(10F(1,1) : LE. 0.0) 00 TG 76

* COMPUTE THE PERCENTAGE STGPS
* COMPUTE THE PERCENTAGE STGPS
* COMPUTE DELAY BASED ON INVERSE OF CAPACITY. MAKE THEORETICAL MAXIMUM
* OF CAPACITY 2=0CAP(1,1) = NLAND. WOD(J,2) . NE. J1) PNS = 1.0

* COMPUTE DELAY BASED ON INVERSE OF CAPACITY. MAKE THEORETICAL MAXIMUM
* OF CAPACITY 2=0CAP(1,1) = NLAND. WOD(J,2) . NE. J1) PNS = 1.0

* OF CAPACITY 2=0CAP(1,1) = NLAND. WOD(J,2) . SCAP(1,1) = SCAPACITY CAPACITY. MAKE THEORETICAL MAXIMUM
* OF CAPACITY 2=0CAP(1,1) = NLAND. WOD(J,2) . SCAPACITY CAPACITY CAPACITY.

* OF CAPACITY 2=0CAPACITY CAPACITY.
* OUT (1,2) = DELA(L,1) + 5.0)/2.0

* OF CAPACITY 2=0CAPACITY CAPACITY.
* OUT (1,2) = DELA(L,1) = DELA(L,1)
* OUT (1,2) = DELA(L,1) = OO OT TP
* OUT (1,2) = OO OT TP
* OUT (1,3) = OO OT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TRACE
                       SUBROUTINE INSECU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          9
                                                                                                                                                                                                                                                                                                   13
```

ABIAB	NS SS		AF	PEI DCATION					
720	>	REAL			44		REAL	ARRAY	11
1275	-	PFAI	ABBAY	INTRST	•		REAL	ARRAY	VOLUM
1320	DEI A	REAL	ARRAY	RESLT	64		REAL	ARRAY	//
2641	DIST	REAL	ARRAY	×			REAL		COMM
-	DVNAME	REAL	ARRAY	DEMVAR	2122		REAL	ARRAY	ZONES
30	FEXAT	REAL	ARRAY	COMM	44		REAL	ARRAY	COMM
9	FINATT	REAL	ARRAY	COMM	20		REAL	ARRAY	COMM
2742	FRAMIL	REAL	ARRAY	ZONES	1403	GCAP	REAL	ARRAY	INTRS
171	OCNT15	REAL	ARRAY	GATE	145		REAL	ARRAY	BATE
5121	HE I GHT	REAL	ARRAY	LINK	•		INTEGER		COMM
537	ICYCL	INTEGER	ARRAY	INTRST	727	0	INTEGER		
730	101	INTEGER			31		INTEGER	ARRAY	COMM
24	IPFLO	INTEGER	ARRAY	COMM	733		INTEGER		
-	E	INTEGER		COMM	431	ITYPC	INTEGER	ARRAY	INTRS
722	14	INTEGER	2		6	7	INTEGER		COMM
723	5	INTEGER			724	75	INTEGER		
4	¥	INTEGER		COMM	8	ر	INTEGER		COMM
3107	LANDU	INTEGER	ARRAY	ZONES	2261	LCAP	INTEGER	ARRAY	LINK
3601	LCON	INTEGER	ARRAY	L X	-	LOATE	INTEGER	ARRAY	GATE
-	LHEAD	INTEGER	ARRAY	COMM	-	LIN	INTEGER	ARRAY	INTRS
4	NCLB	INTEGER		COMM	42	NDEMVC	INTEGER		COMM
0	NDV	INTEGER		DEMVAR	1357	NEXT	INTEGER		ZONES
3106	NEXTI	INTEGER		ZONES	0	NGATE	INTEGER		GATE
311	NOATET	INTEGER		GATE	•	ī	INTEGER		INTRS
-	NLANE	INTEGER	ARRAY	LINK	0	NLIN	INTEGER		LINE
43	NNAME	INTEGER		COMM	37	NPLT	INTEGER		COMM
4	NPLU	INTEGER		COMM	5501	NSTOPS	INTEGER	ARRAY	LINK
4	NYEAR	INTEGER		COMM	-	NZLINKS	INTEGER	ARRAY	ZONES
0	NZONES	INTEGER		ZONES	645	H	REAL	ARRAY	INTRS
63	PLA	REAL	ARRAY	PARKZ	732	PNS	REAL		
2640	PRT	REAL	ARRAY	RESLT	•	14	REAL	ARRAY	' '
-	2	REAL	ARRAY	PARKZ	0	PZ	INTEGER		PARKZ
731	8	REAL			2033	OUE	REAL	ARRAY	INTRS
2722	OUEUE	REAL	ARRAY	RESLT	726	œ	REAL		
721	SCAP	REAL			716	SLANE	REAL		
725	SNCAP	REAL		-	717	SVOL	REAL		-
0	100	REAL			2 1	10.4	REAL		
2	TOTOEN	KEAL			•	<u>+</u> ;	REAL DIA	2000	1000
	614	KEAL			200	- ;	REAL	>	KESLI
- :	741	ACAL.			200		7.50	2000	1
-	VAR	REAL	ARRAY	DEMVAR	62	X	REAL	AKKAY	GATE
364	VEHIYP	KEAL	AKKA	ZONES	355	VEL	KEAL	ARRA	2
4	VOL	REAL	ARRAY	,,,	2204	E ALLA	REAL	ANNA	CONES
43	24	REAL	ARRAY	PARKZ	734	3	INTEGER	ARRAY	
27	A.	INTEGER		COMM	361	. x	REAL	ARRAY	Z¥ Z
1351	×S	REAL	ARRAY	¥ I	30		REAL	ARRAY	1
30 YP	YP.	INTEGER		E COMM	09	1	REAL	ARRAY	
741	۲.	REAL	ARRAY	LINK	10/1	72	REAL	AKKAT	¥

SUBROUTI	SUBROUTINE INSECU	TRACE				CDC 6700	FTN V3.0-	355F OPT=0	CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	15.49.02.	PAGE
VARIABLES S 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SN TYPE INTEGER REAL REAL INTEGER	REL ARRAY ARRAY ARRAY	RELOCATION CONT ZONES ZONES ZONES		360 275 63 227	ZAT ZGENR ZLINKS	REAL REAL INTEGER REAL	ARRAY ARRAY ARRAY ARRAY	ZONES ZONES ZONES PARKZ		
FILE NAMES OUTPUT	FINE										
EXTERNALS ABS ANINI HOD	TYPE REAL REAL INTEGER	ARGS - 2 2				AMAXI	REAL	~ ~			
51ATEMENT LABELS 640 71 656 97 147 723 173 729 357 741 412 746	S INACTIVE		0 674 156 236 236 441	57. 57. 58. 58. 54. 74. 76. 76.	E	FF.			76 90 721 736 744 748	INACTIVE INACTIVE	
COPPORT OF THE STATE OF THE STA	LENGTH 03121 1331 1331 1637 202 4020 201 1730 332										
PROGRAM LENGTH COMMON LENGTH BLANK COMMON	315068	13126									

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

SUBROUTINE PARKNO

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE PARKNO

TRACE	MAP	
PARKNO	REFERENCE	
SUBROUTINE PARKNO	SYMBOLIC REFERENCE MAP	Y POINTS
		ENTRY

NAME STATE NAME STATE			YK.	9									9				0,1	,,		2		2	2					,,	¥ _	9	9	0	2				£	
NEAL			DEM	ZONE		SON	500	COME	COLLE	SON	200	200	ZONE	000	000		NO7	DABK		PARK	PARK	PARK	PARK	COM	000		8	20NE		ZONE	ZONE	ZONE	PARK				68	
NEAL		7	AKKAY	ARRAY	ARRAY	ARRAY		ARRAY			ARRAY							A004	- Carre		ARRAY	ARRAY						-	ANNA	ARRAY	ARRAY	ARRAY	ARRAY				164	
NEAL		REAL	KEAL	REAL	REAL	REAL	INTEGER	INTEGER Office	DEAL	REAL	REAL	INTEGER	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	INTEREDED	REAL	REAL	INTEGER	REAL														
N		100	DVNAME	FCS	FEXGEN	FINDEN	-	IPFLO	7	_	LHEAD	NDEMVC	NEXT	NPLOT	MPLU	NYEAR	NZONES	2 6	200	- N	PNOS	2	P2	TOTATT	2	TTA	TTPZ	VEHTYP	70	ZAT	ZOENR	ZLINKS	2				ŧ	
NEAL ARRAY COPPE T REAL ARRAY COPPE T INTEGER ARRAY COPPE T INTEGER ARRAY COPPE INTEGER A	•	•	-	2122	7	3	0	24	•	~	-	42	1357	43	=	=	0	- 6	3 6	200	314	-	0	0	^	342	= ;	364	9 6	1360	1275	63	227				ī	
SN TYPE RELOCATION THEAL ARRAY COPH ATT REAL ARRAY COPH INTEGER COPH INTEGER ARRAY																																					9.6	
SN TYPE THEAL ARRAY ATT REAL ARRAY THEAL ARRAY THEAL ARRAY THEOGR INTEGER THEAL ARRAY THEAL THEAL ARRAY THEAL ARR	LOCATION				COM	COMM	ZONES	COMM	COM	COM	ZONES	COM	DEMVAR	SONES	COMP		ZONES		DABY 7	DABK 7	Tunu			COMM	COMM	COLL		DEMVAR	ZONES	NHO.	ZONES	ZONES	ZONES				137	
S TAR THE SA	2				ARRAY	ARRAY	ARRAY	ARRAY			ARRAY						ARRAY			VA004	-							ARRAY	ARRAY		ARRAY	ARRAY	ARRAY		AROS	N		
CASE LABER A SA CASE LABER A S		REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	INTEGER	REAL	MEAL	NEAL DEFE	BEAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	NTEGER	REAL	REAL	INTEGER	FMT	TYPE	REAL		LENGTH							
STATEMEN STA		AND	8	FACT	FEXAT	FINATT	FRAMIL	TOP		*	LANDU	NCLB	NON	NEXTI	MPLT	M	NZLINKS	2		200			PVZ	100	TOTOEN	1915	110	VAR	HALL	**	ZATTR	ZOT	ZNAME	OUTPUT	11.5	AMAX1	SA LABELS	BLOCKS
	VARIABL	343	344	346	80	9	2742	31		•	3107	40	0	3106	37	333	-	700	955	313	370	340	337	•	12	3	343		2204	2	1213	1362	2040	FILE N	EXTERNA		STATEM 72 202	COMMON

```
CDC 6700 FTN V3.0-365F GPT=0 79/06/17. 15.49.02.
                              SUBROUTINE COORXY
PURPOSE IS TO GROANIZE THE X,Y COORDINATES OF EACH LINK SO THAT
X1, Y1 ARE UPSTREAM AND X2, Y2 ARE THE DOUNSTREAM COORDINATES.
ALSO CONVERT COORDINATES FROM METERS IN THIS WRITING
OF THE SUBROUTINE, NLANE(240), X1(240), Y1(240), X2(240), Y2(240)
DATA FOTHET / 0.3048 /
                                                                                                                                                                                                                                                                                                                                              XIMX = XI(L) - XI(LC)

XIMX2=XI(L) - XI(LC)

XZMX = XZE(L) - XI(LC)

XZMX = XZE(L) - XI(LC)

XZMX = XZE(L) - XZE(LC)

YIMY = YI(L) - YI(LC)

YZMY = YZE(L) - YI(LC)

YZMY = YZE(L) - YI(LC)

YZMY = YZE(L) - YI(LC)

YZMY = XZE(L) - YI(LC)

DIST = XZE(XZE(XE(L) + YZE(Y) = YZE(Y)

DIST = XZE(XZE(XE(L) + YZE(Y) = XZE(Y)
                                                                                                                                                                                           DG 900 L = 1,NLINK
DG 100 J = 1,3
DG 100 J = 1,3
IFILCON(L,J) . EG. 0) GG TG 100
LC = LCON(L,J)
GG TG 200
GG TG 200
GG TG 900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
| F(D1ST1 - D1ST4)700,700,500
| F(D1ST3 - D1ST4)850,850,750
| CONTINUE
| XTEMP = X1(L)
| XTEMP = X2(L)
| XZ(L) = XTEMP
| YTEMP = Y1(L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
1F(DIST2 - DIST3)280, 300, 300
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |F(D|ST| - D|ST2)400,250,250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LF(DIST3 - DIST4)850,850,750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1511 - DIST31450,450,500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF (DIST2 - DIST4) 290, 300, 300
CONTINUE
                                                                                                                                                                                                                                                                                                                       COMPUTE DISTANCES
   SUBROUTINE COORXY
                                                                                                                                                                                                                                                                                                                                       200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           200
                                                                                                                                                                                                                                                                            9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         700
                                                                                                                                                                              9
                                                                                                                                                                                                                                                             5
                                                                                                                                                                                                                                                                                                                                           50
                                                                                                                                                                                                                                                                                                                                                                                                                        52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25
```


SYMBOLIC R POINTS COORXY DIST DIST DIST DIST J KANTOPS XTEMP	SYMBOLIC REFERENCE MAP	ARRAY LINK 235 DIST: 255 DIST: 257 FOTHET	INTEGER 1 NEGER 220 L INTEGER INTEGER ARRAY LINK 237 LC1 INTEGER INTEGER ARRAY LINK O MINK INTEGER	INTEGER ARRAY LINK 3251 VEL REAL ARRAY ARR	REAL ARRAY LINK 227 YIMYI REAL 1701 Y2 REAL 232 Y2MY2	STATEMENT LABELS 22 200 INACTIVE 0 250 INACTIVE 128 300 INACTIVE 137 500 INACTIVE 137 500 INACTIVE 137 500 IS7 750 IS7 750 IS7 750 IS7 750 IS7 750 INACTIVE 213 850	2001 2001	
	REFERENCE		INTEGER INTEGER INTEGER	INTEGER REAL REAL REAL	REAL REAL		LENGTH 2661	

CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.

CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.

SUBROUTINE MNPATH

PRINT 96, (R(L), C(L), L=1, NC)
RETURN
FORMAT (# MPATH#/5(15, F10,0))
END

. 96

20

--C(T)

9

1								-				
360	0	2	REAL	ARRAY	1			2000	3 8	REAL Province	AKKAT	
0	5	2	EAL						200	REAL	2000	
1320	DELA	~	EAL	ARRAY	RESLT			2641	DIST	REAL	ARRAY	3
9	100	æ	EAL		000			20	FEXAT	REAL	ARRAY	5
7	FEXBEN	æ	REAL	ARRAY	CONTRACTOR			8	FINATT	REAL	ARRAY	8
40	FINGEN	æ	REAL	ARRAY	200			5121	HEIGHT	REAL	ARRAY	5
0	-	=	NTEGER		COMM			6	TADI	INTEGER	ARRAY	ខ
22	IPFLG	=	NTEGER	ARRAY	COME			- 3	T.	INTEGER		200
•	,	=	NTEGER		COMM			4	×	INTEGER		8
~	_	=	NTEGER		COME			174	2	INTEGER		
2261	LCAP	=	NTEGER	ARRAY	¥			3601	LCON	INTEGER	ARRAY	Ž
173	4	=	NTEGER					2	LHEAD	INTEGER	ARRAY	8
0	LINKS	=	NTEGER	ARRAY	٠ ١			172	r _s	INTEGER		1
171	NC.	=	NTEGER					9	NCLB	INTEGER		200
45	NDEMVC	=	NTEGER		1000 1000			0	ź	INTEGER		-
-	NLANE	=	NTEGER	ARRAY	¥			0	¥ Z	INTEGER		3
43	NPLOT	=	NTEGER		COME			37	NPLT	INTEGER		8
7	NPLU	=	INTEGER		COMM			5501	NSTOPS	INTEGER	ARRAY	_
14	NYEAR	=	NTEGER		COMM			2640	PRT	REAL	ARRAY	ž
2722	OUFUE	2	REAL	ARRAY	RESLT			0	œ	INTEGER	ARRAY	1
740	80	=	NTEGER	ARRAY	11			•	100	REAL		ၓ
10	TOTATT	2	REAL		COMM			12	TOTGEN	REAL		COM
-	10	~	REAL		COMM			64	TP15	REAL		COM
0	11	æ	REAL	ARRAY	RESLT			=	TTPZ	REAL		000
3221	VEL	æ	REAL	ARRAY	LINK			27	ΥP	INTEGER		S
361	×	æ	REAL	ARRAY	¥			1321	X2	REAL	ARRAY	Ž
30	4	=	INTEGER		COM			741		REAL	ARRAY	_
1701	72	æ	EAL	ARRAY	¥			-	2	INTEGER		ទ
EXTERNALS	ALS		TYPE	ARGS								
	ABS	æ	EAL	-								
STATEMENT	ENT LABELS	ST										
11						142	•				163	0
	, .					1						-
62	202					0	53		INACTIVE	VE		
NUMBER	DI OCKO	-	FNOTU									
			53									
	¥	•	3121									
	RESLT		1730									
	11		2280									
STATISTICS	1108				-							
PROG	PROGRAM LENGTH	H	2068	134								
COM	COMMON LENGTH	TH	114508	4904								
-												

```
EACH ZONE IS DEFINED BY ADJACENT LIMKS FROM WHICH VEHICLES ACCESS
THAT ZONE. IN ADDITION PARKING ZONE LIMKS MUST ENCLOSE AN AREA
AND THAT AREA IS ASSIGNED A CEFTAIN NUMBER OF VEHICLE PARKING SPACES.
OF COURSE ALL LIMKS SURROUNDING THE AREA MUST BE CONNECTED, OTHERWISE
THE AREA WILL NECESSARILY BE INFINITE. ONE EXCPTION---THE LAST LIMK
NEED NOT CONNECT TO THE FIRST LIMK WHEN LESS THAN 6 LIMKS DEFINE THE
                     .
                                                   0
                                                                                  9
                                                                                                                 50
                                                                                                                                                23
                                                                                                                                                                              9
                                                                                                                                                                                                            35
                                                                                                                                                                                                                                           9
```

CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.

SUBROUTINE ZAREA

SUBROUTINE ZAREA	ZAREA	TRACE	CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.	OPT=0	79/06/17.	15.49.02.
	-	1F (Z. 9T. NEXT) 90 TO 54				
	PC	PCAP=-0.0				
	TA	PTT-PLA(2)				
	TA	TTA=PV(Z)				
113	8	30 10 57				
	S4 PTI	PTT=PLL(2)/6.4				
	ITA	TA=PTT				
	PCA	IP - PLA(Z)/PD				
	57 PR	INT 957, ZNAME(Z), PCAP, PLL(Z), P	TT, PTTA			
120	957 FOR	THAT (33X, A2, F10.0, F9.0, F11.0,	F24.0)			
	RE	RETURN				

CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.

ENTRY POINTS

	¥	DENVAR	ZONES		100	-	E 000	¥	COM	COMM	DEMVAR	ZONES	¥		H00		COM	ZONES		PARKZ	PARKZ	PARKZ			PARKZ	COMM	OHO OHO	COM		DEMVAR	¥	PARKZ			COMP		100	ZONES	ZONES	ZONES						
	ARRAY	AKKAY	ARKAY		ARRAY			ARRAY	ARRAY				ARRAY					ARRAY		ARRAY	ARRAY	ARRAY		ARRAY					ARRAY	ARRAY	ARRAY	ARRAY						ARRAY	ARRAY	ARRAY				,	v -	
	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	NIEDER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	NTEGER	NTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	INTEGER	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	INTEGER					REAL	KEAL
	DI 31	DVNAME	FRAMIL	< -	IPFLO	•	_	LCAP	LHEAD	NCLB	NOV	NEXT	N ANE	NLT	MPLT	TAN	NYEAR	NZLINKS	PCAP	PLA	רר	PNGS	PTTA	×	PZ	100	1008	TOTOEN	TRIARE	VAR	VEL	77	XYMAX	XIMXS	46	YIMYZ	7	ZATTR	Z9T	ZNAME					AMAXI	מפצי
	2641	- !	2742	264	24	0	~	2261	- 2	40	•	3106	-	926	37	663	*	-	699	63	376	314	267	970	0	m	-	- 12	622	13	3221	- 148	222	260	90	261	-	1213	1362	2040						
LOCATION	CHO	COM	ZONES	COMM	COM	COM	COMM	ZONES	¥		CHO	ZONES	-	LINK	2	COMM	¥	CHO	ZONES	PARKZ	PARKZ	PARKZ		PARKZ			CHO	COM	COMM	COMM	SONES	SONES	COMM	LINK	¥	LINK	¥	SONES	SONES	ZONES	ARRAY PARKZ					
RE	ARRAY		ARRAY		ARRAY			ARRAY	ARRAY								ARRAY							ARRAY	ARRAY						ARRAY	ARRAY		ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY			AROS		_
N TYPE	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	INTEGER	INTEGER	INTEGER	NTEGER	NATE OF BE	INTEGER	NTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	3000	FMT	TYPE	REAL	NTEGER
IABLES	2 BAT	70A 9	22 FCS	- 0	31 10PT	13 LTM	*	O7 LANDU	TOO TOO	182 LT	7 NDAY	NEXT	10 M	NI IN		A1 NPLL	21 NSTOPS	SWR	ONZONES	04 III	113 PLBG	112 PLS	166 PTT	2	105 PY	54 SAVPLA	O TODE	10 TOTATT	7 TP	11 TTPZ	64 VEHTYP	O4 VTYPM	27 XP	161 X1	121 X2	17 17.	101 Y2	160 ZAT	73 ZGENR	63 ZLINKS	22.7 20	NAMES	DUTPUT	ERNALS	ABS	ABS
X X			2					31	36		,	-		0			2			69	6		100		9	'n					13	22		6	13	1	17	13	12		0			EXT		

INACTIVE

CDC 6700 FTN V3.0-355F OPT=0 79/06/17. 15.49.02.

SUBROUTINE TRIPOEN TRACE

CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE TRIPOEN

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE TRIPGEN TRACE

CDC 6700 FTN V3.0-355F OFT=0 79/06/17, 15.49.02.

SUBROUTINE TRIPOEN TRACE

SUBROUTINE TRIPOEN TRACE	TRIPOE	L	RACE	8	CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	. OPT.0	79/06/17.	15.49.02.	PAGE
	T	E THI	612,	PRINT 9512, (ICAT(K), Kal, NTRIP), ICATS					
	500	CIPPL	PRACT O(1)	IF (IPFLG(1), LT.4) GO TO 600	INDICATED				
200	4	PRINT 9120	1208,	PRINT 91208, (BAT(1), 1=1,3), NYR, NMC, NDAY, (LHEAD(1), 1=1,5),	DAY, (LHEAD(1), 1=1,5)				
3		ENT.	530						
	8	53 1	1 = 2	DO 53 12 - 1, NZONES					
	53	CONTINUE	531, Z	ME(12), FCS(12)					
202	9500 FG	O FORMATCIHOS	THOSK,	9500 FORMATCHOSX, 4A10/1HO, A4, 8X, *PURPOSE*/* ZONE USE*	" ZONE USE				
	9510 FG	RMATC	2X, A2,	9510 FORMAT(2X, A2, 1X, A4, 1617)					
	9512 FO	RMAT	1X	9512 FORMAT(1X, # TOTAL #, 1617)					
510	9513 FG	3 FORMATCHOS	1 HOSX,	9513 FORMAT(1H05X, 8A10/1H0, A4, 8X, *PURPGSE*/* ZGNE USE* 116(1X, A6))	" ZONE USER				
	9530 FG	18X 3HFCS//	1H0//6	9530 FORMATCHOZAK, 19HCOLD START FRACTIONZZIOX, 4HZONE,	//10X, 4HZONE,				
	9531 FO	FORMATO	12X, A2	9931 FORMAT(12X, A2, 6X, F7.2)					
515									

9

=

ENTRY POINTS

ARIABI	ES SN	TYPE	REI	RELOCATION					
10402	ALUA	REAL	ARRAY	11	3306	ASUM	REAL		
8	BAT	REAL	ARRAY	CHO	360	v	REAL	ARRAY	11
2500	93	REAL	ARRAY	11	361	COEFD	REAL	ARRAY	TRIP
171	COEFO	REAL	ARRAY	TRIP	20510	CSPLU	REAL	ARRAY	11
20472	CSUM	REAL	ARRAY	11	1320	DELA	REAL	ARRAY	RESL
9	M00	REAL		COM	-	DVNAME	REAL	ARRAY	DEMV
2122	FCS	REAL	ARRAY	ZONES	-	FCSP	REAL	ARRAY	TRIP
20	FEXATT	REAL	ARRAY	COMM	4	FEXGEN	REAL	ARRAY	COMM
9	FINATT	REAL	ARRAY	COMM	20	FINGEN	REAL	ARRAY	COMM
3324	FNS1	REAL			3345	FRAC	REAL		
2742	FRAMIL	REAL	ARRAY	ZONES	3151	FROM	REAL		
3334	GAFRD	REAL			3333	GAFRO	REAL		
3300	GATCHT	LOGICAL			3344	GCHRD	REAL		
3343	OCHRO	REAL			171	OCNT15	REAL	ARRAY	GATE
145	OCCUNT	REAL	ARRAY	GATE	3342	90130	REAL		
3341	90150	REAL			3347	HEADI	REAL	ARRAY	
3353	HEAD2	REAL	ARRAY		3357	HEAD3	REAL	ARRAY	
3367	HEAD4	REAL	ARRAY		•	-	NTEGER		COMIN
3377	ICAT	INTEGER	ARRAY		3317	ICATS	INTEGER		
3416	ICPT	INTEGER	ARRAY		3316	1 CPTS	INTEGER		
3311	100	INTEGER			37	1 FCS1Z	INTEGER	ARRAY	TRIP
3331	10	INTEGER			9	IOPT	INTEGER	ARRAY	E COM
3303	I PA	INTEGER			24	IPFLO	INTEGER	ARRAY	COMM
3321	ISNTO	INTEGER			3320	SNTO	INTEGER		
13	T.	INTEGER		COMM	3305	12	INTEGER		
3312	וצרח	INTEGER			0	2	INTEGER		E 00
•	×	INTEGER		COM	3313	KNZ	INTEGER		
~	_	INTEGER		COMM	552	LANDO	INTEGER	ARRAY	78.5
456	LANDO	INTEGER	ARRAY	TRIP	3107	LANDU	INTEGER	ARRAY	ZONE
-	LGATE	INTEGER	ARRAY	GATE	10	LHEAD	INTEGER	ARRAY	COME
3310		INTEGER			3304	2	INTEGER		
3435	LUA	INTEGER	ARRAY		20274	LUDV	INTEGER	ARRAY	'
3305	5	INTEGER			17310	MATRIX	INTEGER	ARRAY	'
40	NCLB	INTEGER		COMM	1	NDAY	INTEGER		2
42	NDEMVC	INTEGER		COME	•	NON	INTEGER		DEMV
1357	NEXT	INTEGER		ZONES	3106	NEXT	INTEGER		ZONE
0	NOATE	INTEGER		GATE	311	NGATET	INTEGER		GATE
3301	NLU	INTEGER			•	2	INTEGER		SHO
43	NNAME	INTEGER		COMM	37	NPLT	INTEGER		
7	NPLU	INTEGER		COMM	•	NS	INTEGER		SHIF
3616	NTO	INTEGER	ARRAY	11	12240	NTO	INTEGER	ARRAY	1
0	NTRIP	INTEGER		TRIP	455	NTRIPO	INTEGER		TRIP
265	NVARD	INTEGER	ARRAY	TRIP	75	NVARO	INTEGER	ARRAY	TRIP
-	NYEAR	INTEGER		COMM	•	NYR	INTEGER		문
-	NZLINKS	INTEGER	ARRAY	ZONES	•	NZONES	INTEGER		ZONE
5174	6	REAL	ARRAY	11	646	PLUALU	REAL	ARRAY	78.
2640	PRT	REAL	ARRAY	RESLT	3307	PSUM	REAL		
26	PURP	PEAL	ARRAY	TRIP	2722	OUEUE	REAL	ARRAY	RESL.

-		
PAGE		
5.49.02.		
CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	CONES COMM COMM COMM COMM COMM COMM COMM COM	111 92 93 93 121 122 123 133 133 133 133 133 133 13
355F OPT=0	ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY	2402 2402 2402 2402 2502 2502 2502 2502
FTN V3.0-	INTEGER REAL REAL REAL REAL REAL REAL REAL RE	
CDC 6700	R8 SSTUP SSTUP SSTUP SSTUP SSTUP TFCSQ TFCS TFCS TFCS TFCS TFCS TFCS TFCS TFCS	GATFUN I NACTI VE
	740 20462 3328 3328 3328 3336 3336 3337 10 10 10 10 10 10 10 10 10 10 10 10 10	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
	RELOCATION W SHIFT COPPL W ZONES W ZONES W ZONES	21.28. 21.28. 21.28. 21.28. 21.28. 21.28.
TRACE	ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY	
SUBROUTINE TRIPOEN	TYPE INTEGER REAL REAL REAL REAL REAL REAL REAL RE	> > >
SUBROUTINE	20001 R3PLU 3323 SFTD 1 SHFPCT 1273 SNTD 3335 SNTD 3335 SNTD 3335 SNTD 3327 TGDS 1 TGDS 3147 TGTBL 12 TGTGEN 64 TP15 334 VARZOV 12 TSPD 3327 TSPD	MES OUTFUT LLS AMAXI GRAVE INT LABELS 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	VARIABLES 2000 RR 3320 SFI 1270 SM 3320 SM 3320 TQ 3147 TQ 314	EXTERNALS OUTPUT EXTERNALS AMAXI ORAVE STATEMENT LABB 0 12 0 12 0 12 0 12 0 12 1 123 1 123 1 124 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126

```
.
PAGE
                                                                             FMT NG REFS
CDC 6700 FTN V3.0-355F 0PT=0 79/06/17, 15.49.02.
                                                              3333
9500
9513
12031
                                                                                    3152
3233
3247
0
                                                                                               NG REFS
                                                                                                              FFFFF
                                                                                                              9140
9512
9512
9531
91208
                                                                                                              3226
3226
3244
3264
3156
       SUBROUTINE TRIPOEN TRACE

STATEMENT LABELS

315.4 22.2 FMT

320.4 9135 FMT

320.4 9135 FMT

320.9 9130 FMT

0 120.4 1

320.9 91210 FMT

COMMON BLOCKS LENGTH

COMMON BLOCKS LENGTH

SG

COMMON SG

COMMON BLOCKS LENGTH

SG

COMMON SG

COMMON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1830
5131
8527
```

IF (SOCOT, LE. 0.) SOCOT=1.0 IF (SOCOZ, LE. 0.) SOCOZ=1.0 SUM ALL TRIPS ATTRACTED TO DESTINATION ZONES BY TRIP PURPOSE ING - IPFLG(2) GO TO 1 ENTRY GRAVE ING=-1 110 = 00000 33 9 4 20

ပပ

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

```
FIND AN ALTERNATE ROUTE 12 TO 121 THAT DOES NOT GO THRU GATE 10, USED WHEN GATES DO NOT PROVIDE A COMPLETE COUNT OF IN-OUT MOVEMENTS. CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                    DO 485 K=),NTRIP
SNTG=0.
SNTG=0.
DO 48 1Z=1,NEXT
SNTG =SNTG+NTG(1Z,K)
48 SNTG=SNTG+NTG(1Z,K)
DO 403 1Z = TETAL TRIPS GRIGINATING ON THE BASE FOR TRIP PURPOSE K.
IF (TGSUM(K)-SNTD-LE.O.) NTG(1Z1,K)=0
                  DO 19 K-2, NTRIP
IF(TDSUMIK).NE.O.) ZOT(2)=ZOT(2)+NTG(12,K)=NTD(121,K)/TDSUMIK)
IE(TDSUMIK).NE.O.) ZAT(1)=ZAT(1)+NTD(12,K)=NTG(121,K)/TOSUMIK)
CONTINUE
                                                                                                     DISTRIBUTE TRIPS USING THE OD DEMAND VOLUME, GATE VOLUME, AND AN INVERSE FUNCTION OF TRAVEL TIME SFSOOL ... 0.0 SFSOOL ...
                                                                                                                                                                                                                                                                                                                                                                                                        475 CONTINUE CONTINUE C COMULATE INTERNAL TRIPS AT END OF OV AND VD ARRAYS C C
1 /SUMXD)
                                                         000,000
                                      ..
                                                                                       150
                                                                                                                                                                                                                                    38
                                                                                                                                      52
                                                                                                                                                                                       30
                                                                                                                                                                                                                                                                                      9
                                                                                                                                                                                                                                                                                                                                      143
                                                                                                                                                                                                                                                                                                                                                                                      130
                                                                                                                                                                                                                                                                                                                                                                                                                                     32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    165
```

CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.

TRACE

SUBROUTINE GRAVE

CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 16.49.02.

SUBROUTINE GRAVE

```
CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              70 CONTINUE
71 CONTINUE
C C IV. PLACE ZERGES IN THE LOWER-RIGHT (EXTERNAL) OF ARRAY FOR PRINTING.
C C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          67 CONTINUE
68 CONTINUE
C C C TIL. RETAIN THE UPPER-RIGHT (INTERNAL) OF ARRAY FOR PRINTING.
C C
                                                               F3GD2(10)=F3GD2(10)+GV(1Z,10)/2.
654 F3GD1(10)=F3GD1(10)+VD(1Z,10)/2.
D0 656 [Z=NEXTI NZGNES
D0 656 [0=1, NGATE
F3GD1(10)=F3GD2(10)+GV(1Z,10)/2.
656 F3GD2(10)=F3GD2(10)+VD(1Z,10)/2.
C II. RETAIN THE LOWER-LEFT (EXTERNAL) OF ARRAY FOR PRINTING.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZR=0
| LAST=| ZC
| DG 71 | IZ=NEXT1, NZONES
| IZC=| ZR=1
| IZR=| ZR=1 | IZR=1 | IZR=| ZR=1 | Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DG 66 1Z=1,NEXT
1ZC=0
1ZC=0
1ZC=0
1ZZ=1ZR+1
00 67 1ZI=NEXT1,NZONES
00 67 1ZI=NEXT1,NZONES
00 67 1ZI=NEXT1,NZONES
00 67 1ZI=NEXT1,NZONES
1F (FSODZ(10).NE.0.0)
1PRTS=PRTS+VD(1Z,10).eV(1Z,10)/FSODZ(10).eFP(1Z)
1PRTS=PRTS+VD(1Z1,10).eV(1Z,10)/FSODZ(10).eFP(1Z)
1ZC=1ZC+1
1ZC=1ZC-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ARRAY IS NOW READY FOR PRINTING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DG 73 12=1,NEXT
12CLAST
12CLAST
12R=12R+1
2NAM(12R)=ZNAME(12)
DG 72 121=1,NEXT
12C=12C+1
ARRXV(12R,12C)=0.0
CONTINUE
       SUBROUTINE GRAVO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     315
                                                                                                                                                                                                                                                                                                                                                                                     280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           580
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          295
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               308
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   328
```

			INACE	CDC 6/00 FIN 43.0-333F OF 1=0 /5/06/17. 15.49.02.		100E-0	0-1-0	13/100/11	 PAGE
	4	N43=NZONES	HOSENZONES F (NZONES OT 43) NASEAS						
		RINT 74.	PRINT 74, (ZNAM(L), L=1, N43)						
335		0 76 12-1, NZONES	DO 76 IZ=1, NZONES	((X, AZ))					
	-	RINT 75, ZI	PRINT 75, ZNAM(12), (ARRAY(12,121), 121=1, N43)	1 . 1 . N43)					
	25	FORMAT (1X, A2, 4313)	, A2, 4313)						
		CONTINUE							
		F (NZONES	F (NZONES. LE. 43) 00 TO 80	-					
340	•	N44=N43+1							
	• ;	PRINT 9999	PRINT 9999, (BAT(11), 11=1,3), NYR, NMG, NDAY, (LHEAD(11), 11=1,5),	D, NDAY, CLH	EADELL	,111.	9),		
	•	RINT 962							
	962 F	ORMAT (38H	FORMAT(38H ORIGIN-DESTINATION ARRAY (CONTINUED))	Y CONTINU	ED))				
345	-	RINT 74, (2	PRINT 74, (ZNAM(L), L=N44, NZONES)						
		1 -21 77 0	NZONES						
		RINT 75, ZI	RINT 75, ZNAM(12), (ARRAY(12,121), 121=N44, NZONES)	1=N44, NZON	ES)				
	77 0	CONTINUE							
		CONTINUE							
320		RETURN							

	-	1	SUBMOUTINE GRAVE	TRACE			200	- 0.65 MIL	Soot or a	CDC 6700 FIN V3.0-355F OFIEU /8/06/17. 15.48	
	SYMBOL	IC RE	SYMBOLIC REFERENCE MAP	*							
ENTRY	ENTRY POINTS 6 GRAVE		•	BRAVO							
VARIAL	VARIABLES	3	TYPE	RE	RELOCATION						
2447	ARRAY		INTEGER	ARRAY		0 0	PAT 02	REAL	ARRAY		
000			EAL	ABBA		17310	3 8	REAL	ARRAY		
2431	Tes		EAL			361	COEFO	REAL	ARRAY	TRIP	
171	COEFO		EAL	ARRAY	TRIP	1320	DELA	REAL	ARRAY	RESLT	
•	30		EAL		CONT	-	DVNAME	REAL	ARRAY	DEMVAR	
3024	44		EAL	ARRAY	ZONES	2122	FCS	REAL	ARRAY	SONES	
-	FCSP		EAL	ARRAY	TRIP	20	FEXATT	REAL	ARRAY	COL	
7:	FEXOEN		EAL	ARRAY	COL	9277	LI WALL	MEAL	ARRAY	ZUNES	
32.50	FOAME		145	YAGGA	ZUNES	17334	FSGD1	REAL	ARRAY		
17404	50003		EAL	ARRAY		121	OCNT15	REAL	ARRAY	BATE	
145	BCOUNT		EAL	ARRAY	GATE	•	-	INTEGER		COMM	
37	I FCS 1 Z		NTEGER	ARRAY	TRIP	2421	0	INTEGER			
2434	=		NTEGER			2413	2	INTEGER			
	TOPI		NTEGER	ARRAY	CONT	2414	JORE	INTEGER			
24	IPFLO		NTEGER	ARRAY	CONT	2436	_	INTEGER			
-13	Ŧ		NTEGER		CONT	2420	2	NTEGER			
2442	120		NTEGER			2441	IZR	INTEGER		-	
2422	121		NTEGER			e (٠.	INTEGER			
•			NIEGER		COL	N -	. 0476	MITTER	VA004	T AG	
2444			MIEGER	****	-	- 6	NC P	NTEGER	LUNN	COMM	
2 -			MIEGER	LANA		5.4	NOFWC	NTEGER		COM	
•			NTEGER		DEMVAR	1357	NEXT	NTEGER		ZONES	
3106			NTEGER		ZONES	•	NGATE	INTEGER		GATE	
31			NTEGER		GATE	•	2	INTEGER		95	
43			NTEGER		COMM	37	NPLT	INTEGER		E 00	
7			NTEGER		COMM	2437	¥	INTEGER			
2435			NTEGER			13616	MTD	INTEGER	ARRAY		
12240			NTEGER	ARRAY	//	0	N-RIP	INTEGER		INIT	
435			NTEGER	2000	7 2	2440	2000	N TEGER	~****	20107	
200			NTEGER	TANA	- WALCO	2 15	NYR	INTEGER	-	CHO.	
2425			NTEGER				NZLINKS	INTEGER	ARRAY	ZONES	
0			NTEGER		ZONES	2415	NZI	INTEGER			
2445			NTEGER			2446	777	INTEGER			
15174			EAL	ARRAY	11	311	2	REAL		PARKZ	
63			EAL	ARRAY	PARKZ	376	77	REAL	ARRAY	PARKZ	
312		Œ	EAL		PARKZ	313	PLV6	REAL		PARKZ	
314		æ	EAL	ARRAY	PARKZ	2640	PRT	INTEGER	ARRAY	RESLT	
2443		2	EAL			36	PURP	REAL	ARRAY	TRIP	
-		Z.	EAL	ARRAY	PARKZ	•	24	REAL		PAKKE	
2722	OUEUE	æ :	EAL	ARRAY	RESLT	0	2	INTEGER	ARRAY	,,	
740			NIEGER	AKKAY	, ,	1242	Sr Sour	REAL BEAL			
2430	SPSOUZ		EAL			2416	2000	REAL			
2433			201			2433	SIMXD	PEAL			
2000			CAL			-747	20150	ACA!			

PAGE					
15.49.02.					
.717.				E E	
78/0	CHO CONT CONT CONT CONT CONT CONT CONT CON		• n n = 442	70 70 70 70 70 70 70 70 70 70 70 70 70 7	
-355F OPT=0	ARRAY		4858 00000000000000000000000000000000000	22 22 24 24 24 24 24 24 24 24 24 24 24 2	
CDC 8700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.	REAL REAL REAL REAL REAL REAL REAL REAL		y y		
CDC 870	1000 1000 1000 1000 1000 1000 1000 100		IMACTIVE	i ii	
	17346 12867 12864 1364 1366 1366 1275 63 2040 2275				
			" un 6 4 8 8	20 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	COPPI COPPI		000000	2260 2260 2260 1 151 2336 2336 2336 2336 2363	
TRACE	ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY	ARGS			
INE GRAVE	SW TYPE REAL REAL REAL REAL REAL REAL REAL INTGER INTGER REAL REAL INTGER REAL REAL REAL REAL REAL REAL REAL RE	MODE TYPE REAL	3	E EE	LENGTH 53 1607 1607 351 202 1730 304 7955
SUBROUTINE	2423 SUNTO R 5 100 TOTATT R 10 1005 R 10 1005 R 11 1005 R 12 12 12 12 12 12 13 20 T 13622 VD R 12 2 200 VTVPH R 12 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FILE NAMES OUTPUT EXTERNALS AMAX1	STATEMENT LABELS 12 1 0 11 314 14 0 47 0 66	2371 74 0 77 0 77 110 140 611 140 614 2276 914 2320 9496 2360 9615	COPPED BLOCKS COPPED CO
	2	= 8	£ "	2 , 1 2 22	8

01	
PAGE	
15.49.02.	
79/06/17.	
0PT=0	
FTN V3.0-355F	
-	
c 6700	
000	

TRACE	3869	708
GRAVE	74356	
SUBROUTINE	S LENGTH LENGTH	
36	STATISTICS PROGRAM LEY COMMON LEY	7

```
PAGE
       CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       * BUILD MATRIX INDICATING GATE-TO-ZONE AND ZONE-TO-GATE ASSOCIATIONS -

* FIRST DO GATE-TO-ZONE PART
DO 34 10 = 1, NOATE
SUMYOL = 0.
DO 31 1 = 1, NZONES
MATRIX(10,1) = 0
1Z = L102(10,1) = 0
1Z = L102(10,1) = 0
32 CONTINUE
SUMYOL = SUMYOL / 2.
DO 33 1 = 1, NZONES
1Z = L102(10,1) = 1, NZONES
1Z = L102(10,1) = 0.
DO 33 1 = 1, NZONES
1Z = L102(10,1) = 1, NZONES
1Z = L102(10,1) = 0.
HATRIX(10,1) = 0.
HATRIX(10,1) = 0.
HATRIX(10,1) = 0.
SUMYOL = SUMYOL - VDOV(1Z,10+10FF)
33 CONTINUE
34 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                 ## BUILD LIST OF GATES IN ORDER OF ATTRACTION OR CONTRIBUTION TO
## ZONE TOTAL
## CONTRIBUTION TO
## CONTRIB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ** NOW FILL IN ZONE-TG-GATE PART OF MATRIX
DG 38 IZ ** NEXTI, NZONES
SUMPOL ** O.
DG 35 J ** I, NGATE
IG ** LIZG(IZ, J)
IF (IG . LE. O) GG TG 36
35 SUMPOL ** SUMPOL *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SUMVOL = SUMVOL / 2.

DO 37 J = 1, NGATE

10 = L120(12, J)

MATRIX(10, 12) = 1
                                                                                                                             J1 = J1 + 1
J = J1
12 CONTINUE
SUBROUTINE GATFUN TRACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            22 CONTINUE
23 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                        9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    110
```

| F (VDOV(12,10+10FF) .0T. SUMVOL) 00 TO 30 SUMVOL = SUMVOL - VDOV(12,10+10FF) | CONTINUE | SUMVOL - VDOV(12,10+10FF) | CONTINUE | SOCIETINUE | PRINT 91,((VDOV(12,10),10=1,10),1Z=1,NZONES) | SOCIETINUE | SOCIETINUE | PRINT 939,((L120(12,10),10=1,10),1Z=1,NZONES) | RETURN | SOCIETION | CONTINUE | . 63 -120

PAGE

CDC 6700 FTN V3.0-355F 8PT=0 79/06/17, 15.49.02.

SUBROUTINE GATFUN TRACE

ARRAY ARRAY ARRAY ARRAY ARRAY

ARRAY

85050

THIS SERVICE USES THE VEHICLE TYPE AND LOAD FACTOR TO DETERMINE THE WHICLAR THIS BETWEEN ZONE-GATE PAIRS AND ZONE-ZONE PAIRS. ALSO, THE DAYS LADO FACTOR IS DETERMINED FROM THE EXPECTED COST OF TRAVEL BY DUG OR ALTERNATE HEARS.

CORPUTE ACTION 1, 2, L. J.K., TUD, LODA, TP, TUTAIT, TITZ, TUTBER, ITH

1. NYEAR, LUEDG(7), IFFLE(3), MP, 10FT(4), NYL), NYLD, NYLL, NYLD, NYLL, NYLD, NYLL, NYLD, NYLL, NYLD, NYLL, NYLD, NYLL, NYLL, NYLD, NYLL, NYLL,

2

CONTUITE AN ATTRACTION FACTOR TO OTHER ZONES FOR BUBES ONLY FOR EACH ZONE, 12.

CONNERT ON AND VO ARRAYS TO VEHICLE TRIPS.

000

-

SUBROUTINE MODAL	HODAL	TRACE CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02	15.49.02.
		IF (SPPHZ.LE.G.O) 00 TO 166 DD 140 [0=], WOATE] VTRIPZ=VTRIPZ=QV(IZ,10)=FRAMIL(IZ,1)/SPPHZ VTRIPZ=VTRIPZ=VO(IZ,10)=FRAMIL(IZ,2)/SPPHZ	
91	9	CONTINUE	
	-20	NTRIPHENTRIC+1	
00		NTG(IZ,K)=NTG(IZ,K)/SPPHZ=SMVTH NTG(IZ,K)=NTG(IZ,K)/SPPHZ=SMVTH CGNVERT ALL GZ AND VD TG VEHICLE TRIPS.	
92	20000	ZOENR(IZ)=0.0 ZOENR(IZ)=0.0 SHOVESHVD=0.0 DG 170 10=1,NGATE1 SHVUSSHVD+VOVI(IZ,10)	
9	071 0 01 0 01 0 01 0 01 0 01	TO CONTINUE UPDATE FRAMIL FROM PERSON TRIPS TO VEHICLE TRIPS STORE VEHICLE TRIPS IN THE OF ARRAY IF (SHOV.LE, 0. 0) GO TO 185 ZOENR(1, 2) = VTRIP1 = SHVT+VTRIP2 = SHVTM	
98	0.50	AMAILL(I.) 19 VTR P2=SMVTM/ZGENR(I.Z) DG 180 10=1, MGATE 2 SMOTE 2 SMOV OV(I.Z, 10) = ZGENR(I.Z) = OV(I.Z, 10) / SMOV OV(I.Z, 10) = ZGENR(I.Z) = OV(I.Z, 10) / SMOV If (SMVD, LE. 0.0) GG TG 195	
9		ZATTR(IZ)=VTRIP3=SNVT+VTRIP4=SNVTH FRAHIL(IZ,2)=VTRIP4=SNVTH/ZATTR(IZ) DD 19D 10=1,NDATE1 CONTINI(IZ,10)=ZATTR(IZ)=VD(IZ,10)/SNVD	
9		CONTINUE IF(IPFLG(3). NE. 1. AND. IPFLG(3). NE. 3. AND. IPFLG(3). NE. 5. AND. IPFLG(3). NE. 7) GG TG 200 IPFLG(3). NE. 7) GG TG 200 IPFLG(1). NE. 7. SPPHI, SPPHI, VTRIPI, VTRIP3, VTRIP2, VTRIP4, SHVT, SHVT, SHQV, SHVD	
9	08	FORMAT(2H , A2, -2P, 2F10.5, 2P, 4F10.2, OP, 2X, 4F10.3) CONTINUE IF(IPFLG(3), NE.1, AND, IPFLG(3), NE.3, AND, IPFLG(3), NE.5, AND, IPFLG(3), NE.7) GO TO 90 IPFLG(3), NE.7) GO TO 90 PRINT 9999 (BAT(11), 1111, 3) NYR, NNO, NDAY, (LHEAD(11), 1111, 5),	
88	920	1760S, 76DE PRINT 920, (10, 10, 10=1, NGATE1) FORMAT(77HOE, 2. ORIGIN TO GATE (00) AND GATE TO DESTINATION (0D) T IRIPS (MOTOR VEHICLES) 2/77H ZONE 96(4H 00, 11,4H 00, 11), 2(3H 00, 12,3H 00, 12))	
9	8008	DG 205 J=1,NZONES PRINT 20, ZNAME(J), (OV(J,11),VD(J,11),II*1,NGATE1) FORMAT(3X,A2,2X,22F5.0) RETURN FETURN END	

TRACE	
	MA
HODAL	REFERENCE
¥	-
Ē	2
Š	3
SUBROUTINE	SYMPOL 10
•,	

SUBROUTINE MODAL	TRACE				CDC 6700	FTN V3.0-	355F OPT=0	79/08/	CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15,49.02.	PAGE	•
TYPE INTEGER REAL REAL INTEGER REAL	ARRAY ARRAY ARRAY ARRAY	RELOCATION CONFI ZONES 7 ZONES 7 ZONES 7 PARKZ		1213	Z ZATTR ZGT ZNAME	INTEGER REAL REAL INTEGER	ARRAY	COFFI ZONES ZONES ZONES			
FHT											
TYPE	ARGS 2										
, E		7.22 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ē	L		5	000475	Ŧ.		
FMT LENGTH 7880 1607 1607 1607 1607 1607 1607 1607 160		735	0 0 0 0 0	F	L		•	g N			
10678 52408 173108	567 2720 7860										

CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02.

TRACE

SUBRECUTINE SMOOTH

E DO 505 NTENTE, NTRIP

C FRACTION OF MILITARY PRODUCTIONS

I FEABLILLIZ, 1)=FRAMILLIZ, 1)+NTO(1Z, NT)/ZOENR(1Z)

C FRACTION OF MILITARY ATTRACTIONS

IF CATTR(1Z) NE. O. O.)

S FRAMILLIZ, 2)=FRAMILLIZ, 2)+NTD(1Z, NT)/ZATTR(1Z)

S OCHINUE

C ONTINUE

C OFFICE CONTINUE

C OFFICE C 0VSUM1=0.0 DO 11 [G=1, NGATE DOSU=0. GCSUM1=GCSUM1+GCNT15(10,2,1TM)

DØ 10 12=1, MEXT ØVSU=ØVSU+ØVIIZ, 10) IF (GCNT15(10, Z, ITM).LT.0.) GCNT15(10, Z, ITM)=ØVSU ØVSUHI=ØVSUMI+ØVSU CONTINUE	ZLUU	8888	GO TO 15 DO 14 10=1, NOATE DON'115(10,2,1TM)=GCNT15(10,2,1TM)=FEXGEN(1TM) CONTINUE EXTERNAL ZONE DESTINATION CASE.				88588	DG ZO [G=1,NGATE GCNT151(G, 1,1TM)=GCNT15(1G, 1,1TM)=FEXATT(1TM) CGNT1NUE GCSUMZ=GCSUMZ=FEXATT(1TM) GCSUMZ=GCSUMZ=FEXATT(1TM) GCSUMZ=GCSUMZ=GCSUMZ=FEXATT(1TM) GCSUMZ=GCSUMZ=GCNPUTATIONS FOR INITIAL SMOOTHING.		8898
5 :		12	5 7	01	9 :		•	2 8 9	8	23
2		2	8	2	8	2	8	8	<u>5</u> <u>5</u>	9

CDC 6700 FTN V3.0-365F GPT=0 79/08/17. 15.49.02.

SUBROUTINE SMOOTH

CDC 6700 FTN V3.0-356F OPT=0 79/06/17. 15.49.02.

TRACE

SUBROUTINE SMOOTH

SUBRO	SUBROUTINE SMOOTH	JTH TRACE CDC 6700 FTN V3.0-385F 0PT=0 79/08/17, 15.49.02.	PAGE
	10	61 SVDIZ = SVDIZ + VD(12,19)	
		DO 62 12 = NEXTI, NZONES	
170		F(SOVIZ.NE.U.U) GV(IZ. 10) = GCNT15(10,1,1TM) / SOVIZ = GV(IZ, 10)	
		IF(SVDIZ.NE.O.O)	
	68	CONTINUES GCNITOLIG'S, LITTLY SVOIZ - VOLIZ, LG)	
	:	30/12 = 0.0	
176			
		DO 65 12* , NEXT	
		30012 = 30012 + 00(12 10)	
	3	OCTION TO THE STATE OF THE STAT	
180		FELSON IZ. ME. 0.0)	
	•	10V(12, 10) = 9CNT15(16,2,17M)/SOV12 = 0V(12, 10)	
		IF(SVD1Z. NE. 0. 0)	
	-	IVD(12,10) = GCNT16(10,1,1TM)/ SVD1Z = VD(12,10)	
	2	CONTINUE	
185		CONTINUE	
	O E	FACING EACH ELEMENT OF EACH ROW A EACHED ON THAT THE SUM OF FACH ROW IS	
		A MARIE ACHINA IL. DELEMBINE A TACION SO INA INE SOI OF EACH NOT IN	
	•	LOOP STORY	
		DE SA 17 = 1 NZONES	
		0.0 = 0.0	
		SYDIO = 0.0	
		DO 56 10 = 1. NOATE	
		= SOV 10	
	99		
		10 = 1, NOA	
		IF(SGVIB.NE.O.O)	
		10V(12, 10) = 0V(12,10) = 20ENR(12) / SOVIG	
		IF(SVDIG.NE.O.O)	
		1VD(1Z, 10) = VD(1Z, 10) = ZATTR(1Z) SVD10	
	22	CONTINUE	
	80	CONTINUE	
	8	CONTINUE	
		THE INTERNAL-EXTERNAL TRIPS HAVE BEEN SHOOTHED.	
	C	IS IS WHERE INT-INT TRIPS COULD BE SHOOTHED.	
		30404-0.0	
		OVSURE OVSURE TO THE PROPERTY OF THE PROPERTY	
		VOSCHERONICATION	
		JOING TOTAL CONTRACT TO THE CO	
017			
		TOTAL MATTER IN THE PROPERTY OF THE PROPERTY O	
		3.0H2V=0.0	
		0.090	
215		DO GO (Z=NEXT) NZONES	
		SUMOV-SUMOV+OV(12.NGATE1)	
		SUHVD=SUHVD+VD(12, NGATE1)	
	*60	CONTINUE	
		FGV=(TGTING-SUMGV)/OVSUM	
220		FVD=(1011NA-SURVD)/VDSUR	

SMOOTH

SUBROUTINE

```
VZ([Z)=0.0
AND VZ STORE THE NUMBER OF VEHICLES WHICH PARK AT EACH INT ZONE DO 31 | 1=1,9
ZV([Z)=2V([Z)+Z0ENR([Z)=(VTVPM([, [Z)+VEHTVP([, [Z))/200.
VZ([Z)+VZ([Z)+ZATTR([Z)=(VTVPM([, [Z)+VEHTVP([, [Z))/200.
CONTINUE
DO 352_31, NZONES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             * SEARCH FOR A COMMON LINK BETWEEN 12 AND Z.
331 DO 333 123 * 1,12
1 [7(21)MK5(123,12) .EQ. 0) 00 TO 333
DO 332 124 * 1,12
1 [7(21)MK5(124,2) .EQ. 0) 00 TO 332
1 [7(1ABS(2L)MK5(123,12)).EQ. 1ABS(2L)MK5(124,2))) 00 TO 335
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF( ZMAX .GT. PLA(12)/PD-PV(12)-(VZ(12)-ZV(12)))60 TG 34
ZMAX = ( PLA(12) / PD - PV(12) - (VZ(12) - ZV(12) ))
                                 ### SHOVEO.0

#### SHOW-BOO.0

#### SHOW-BOVIZ,10)

#### SHOW-BOVIZ,10)

#### SHOW-BOVIZ,10)

### SHOW-BOVIZ,10)

### SHOW-BOVIZ,10)

### SHOW-BOVIZ,10,10,12*1,NZONES),10*1,NGATE1)

### PRINT $70,((OV(1Z,10),1Z*1,NZONES),10*1,NGATE1)

### SHOW BOO.0((OV(1Z,10),1Z*1,NZONES),10*1,NGATE1)

### SHOW BOO.0((OV(1Z,10),1Z*1,NGATE1)

### SHOW BOO.0((OV(1Z,10),1Z*1,NGATE1)

### SHOW BOO.0((OV(1Z,10),1Z*1,NGATE1)

### SHOW BOO.0((OV(1Z,10),1Z*1,NGATE1)
70 IZ=NEXTI, NZONES
                                                                                                                                                                                                                                                                                                                                            200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             332
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  338
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              8
                                                                                                                                                                                                                                                                                                                                                                                                                     5
                                                                                                                                                                     230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            275
                                                                            228
                                                                                                                                                                                                                                                                235
                                                                                                                                                                                                                                                                                                                                                           240
                                                                                                                                                                                                                                                                                                                                                                                                                                                         248
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               255
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     265
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              270
```

290 580 580 580 580 580 580 580 580 580 58	C TEST FOR ANY ZONE WITH PARKING CAPACITY. IF (IZMAX. EQ. 0.0) GO TG 353 C TEST FOR AN ADJACENT ZONE WITH PARKING CAPACITY. IF (ZMAX. EQ. 0.0) 121 * 122 C VZC IS REMINING CAPACITY. VZC STEMINING CAPACITY. VZC STEMINING CAPACITY. C VZC STEMINING THERE ARE MORE POSSIBLE OVERCAPACITY ZONES. C VZC GO TG Z TG DRING THERE ARE MORE POSSIBLE OVERCAPACITY ZONES. C SET IZFLG=1 INDICATING THERE ARE MORE POSSIBLE OVERCAPACITY ZONES. C ST IZFLG=1 INDICATING THERE ARE MORE POSSIBLE OVERCAPACITY ZONES. C MODIFY THE VD ARRAY TO REFLECT CHANGE IN DESTINATIONS. VOLIZE INDICATING THE VD ARRAY TO REFLECT CHANGE IN DESTINATIONS.
	VD[121 10]=VD[121 10]+V2X*VD[7 10]/8V7
	35 CONTINUE
295	_
	353 IF (IPFLG(3).NE. 2. AND. IPFLG(3).NE. 3. AND. IPFLG(3).NE. 6
	1. AND. IPFLG(3). NE. 7) GO TO 354
	PRINT 9999, (BAT(II), II=1,3), NYR, NMG, NDAY, (LHEAD(II), II=1,5),
	1100S, TBDE
300	DATE FORM STATE OF THE STATE OF
	-
	2/12X, 52HAFTER APPLICATION OF CALIBRATION FACTORS AND PARKING
	327H REROUTING (MOTOR VEHICLES)
308	4/77H ZONE, 9(4H GO,11,4H GD,11),2(3H GG,12,3H GD,12))
	67 DOUNT GAY SAMESTED CANALLY TO VOCITY TO TO-1 MOATEST
	_
	-
310	END

TRACE	
	MAN
SMOOTH	IC DESCRIPTION
¥	G
Ē	5
SUBROUTINE	CVINDA

REAL ARRAY CHD 360 C
ARRAY TRIP 6
ASDAY TRIB
ARRAY COMM 60
ARRAY COMM 2742
ARRAY ZONES 171
ARRAY GATE 1714
O CT A STATE OF THE PARTY OF TH
31
ARRAY COMM 1727
COMM 1720
1735 IZMAX
271 04/1
28/ 78/ F
COMM
ARRAY COMM 40 NCLB
CHD 42 NDEMVC
ZONES 3106 NEXT1
GATE 311 NOATE1
CHD 43 NNAME
ARRAY // 12240 NTG
TRIP 455 NTRIPC
ARRAY TRIP 75 NVARO
ARRAY ZONFA
ARRAY //
1725 GVSUM2
PARKZ 63 PLA
PARKZ 376 PLL
PARKZ 314 PNGS
ARRAY TRIP 1 PV
PARKZ O R
ARRAY / / 1732 SOVIG
1733 SVD10
1736 SVZ
CONT. 0 TODE
CHD 10 TOTATT
COMM 7 TP
COMM 11 TTPZ
ARRAY GATE 16242 VD
1722 VDSUM1
1364 VEHTYP
AKKAY CONES 145 VZ

15.49.02																					
3/17.																			FMT		
79/0		ZONES	ZONES	COMES				2	0 0	21	22	52	22	90	254	325	380	208	970		
CDC 6700 FTN V3.0-355F OPT=0 79/08/17. 15.49.02.		ARRAY							040					00					1707		
FTN V3.0-	REAL	INTEGER REAL REAL	INTEGER	INICOEN										le le							
8700		œ	S											INACTIVE							
CDC	VZX	ZAT	ZLIN	CNAM										ž					FMT		
	1745	1360	63	2040																	
								= :	4 1	50	53	5 5	7	20	253	259	255	354	925		
	RELOCATION	CONT	ZONES	PARKZ				0	00	0	00	•	0	00	455	563	1346	1616	1633		
TRACE	REL	24004	ARRAY	ARRAY		ARGS 1															998 2476 7880
SUBROUTINE SMOOTH	TYPE	INTEGER	FAL	REAL	MODE	TYPE														LENGTH 53 304 1607 302 202 7880 8	17468 46548 173108
JTINE	20			- "	_		SELS												FMT		MOTH HOTH
SUBRO	ES	XP XP	Z01	ZV	MES GUTPU	IABS	NT LA	10	9 9	. 6	22	32	23	90	231	255	331	353	971	BLOCKS COMM PARKZ ZONES TRIP GATE	SA LES
	VAR! ABL	27 XP	1362		FILE NAMES OUTPUT	EXTERNALS I AE	STATEME	0 10	91	254	00			0 0				1515	1661	NOMMON	STATISTICS PROGRAM LENGTH COMMON LENGTH BLANK COMMON

.02. PAGE						
79/06/17, 15.49.	SCRINV3 SCRINV3 SCRINV3	SCRINV3 SCRINV3 SCRINV3	SCR I NV3		SCRINV3	0787.000
CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	,LHEAD) TITLE(1),1=1,10)) (ITITLE(1),1=1,12)	ENCODE(10,910),ITLE) NYEAR FORMAT(19) DECODE(10,9100,ITLE) ITITLE(1),ITITLE(2),ITITLE(9), ITITLE(10),ITITLE(6),ITITLE(7),ITITLE(3),ITITLE(4),ITITLE(11),		
LETTER TRACE	SUBROUTINE LETTER(NYEAR, LHEAD) DIMENSION LHEAD(7) DIMENSION 1711LE(12) WRITE(6,6001) 6001 FORMAT(1H1) 171E=10H BATS MODE DECODE(10,9100,171E) (1717LE(11),1=1,10) 1711LE(11)=1HL	CAL CHARAC(ITITE) DECODE(IZ,9100,LHEAD) (ITITLE(I),1=1,12) WRITE(6,6002) GOOZ FORMAT(IH-)	WRITE(6,6002) DECODE(12,9100,LMEAD(3)) (ITITLE(1),1=1,12) CALL CHARAC(1717LE) 9100 FORNAT(12A:) WRITE(6,6002)	ENCODE(10, 9101, 1TLE) NYEAR 9101 FORMAT(18) DECODE(10, 9100, 1TLE(5) 1T1TLE 1 1T1TLE(10), 1T1TLE(6), 1T1TL	ITITE(S)=IH ITITE(8)=IH CALL CHRRAC(ITITE) WRITE(6, 6001) CALL TOFC	PETIEN
SUBROUTINE LETTER	u D	9	8	50	8	

CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02.

SUBROUTINE LETTER

SUBROUTINE	CHARAC TRACE CDC 8700 FTN V3.0-355F OPT=0	79/06/17. 15.49.02.
	SUBROUTINE CHARAC(ITITLE) DIMENSION ICHAR(37,12), IALPHA(37), ID(12), ITITLE(12), MASK(11), LINEI(135)	SCRI NV3 SCRI NV3 SCRI NV3
•	INTEGER OFFSET DATA(ICHAR(01,K), K=1,12)/ .01608,03708,06148,14068,14068,17068,17768,17768,14068,14068, .14068,14068,	SCRINVS SCRINVS SCRINVS SCRINVS
ō	DATA([CHAR(2,K),K=1,12)/ .17708,17748,14058,14058,14058,17748,17748,14058,14058,14068, .17748,17708, DATA([CHAR(03,K),K=1,12)/ .03758,07758,15008,14008,14008,14008,14008,14008,16008,	SCRINVS SCRINVS SCRINVS SCRINVS
•	DATA(ICHARCO4,K),K=1,12)/ .17706,17748,14168,14068,14068,14068,14068,14168, .17748,17708/ DATA(ICHARCO5,K),K=1,12)/ 2=17768,3=44008,2=17748,3=414008,2=177788/	SCRINVS SCRINVS SCRINVS SCRINVS
0	DATA(ICHAR(06,K),K=1,12)/ .2=1776B,3=1400B,2=1774B,3=1400B/ DATA(ICHAR(07,K),K=1,12)/ .0376B,0776B,3=1400B,1434B,1476B,3=1406B,0776B,0374B/ DATA(ICHAR(08,K),K=1,12)/	SCRINVS SCRINVS SCRINVS SCRINVS SCRINVS
52	14068,14068,14068,14068,14068,17768,17768,14068,14068,14068, 14068,14068, 0ATA(CHAR(09,K),K=1,12)/ 17768,1758,01608,01608,01608,01608,01608,01608,01608,01608,01608,	
9	. 17765, 7065, 7065, 7067, 7067, 706, 70606, 706	SCRINGS SCRINGS SCRINGS SCRINGS SCRINGS SCRINGS
8	DATA(ICHAR(12,K),K=1,12)/ . 10=1400B,z=1776B/ . DATA(ICHAR(13,K),K=1,12)/ . 1406B,1610B,1736B,z=1568,1446B,6=1400B/ DATA(ICHAR(14,K),K=1,12)/	SCRINVS SCRINVS SCRINVS SCRINVS
\$. 14069, 14069, 14069, 14069, 2115469, 2114669, 14369, 14169, 140	SCRINV3 SCRINV3 SCRINV3 SCRINV3
\$	0.3709,0748,9814006,14806,14806,03708/ DATA(ICHARTIS,K,K,R,12)/ 17709,17748,2814068,17748,17709,15408,14608,14308,14148,2814068/ 0.43768,07768,3814008,07708,03748,3800068,17748,17708/ DATA(ICHARTSO,K),K=1,12)/ 2817768,1080168,07708,03748,3800068,17748,17708/ DATA(ICHARTSO,K),K=1,12)/	SCR INVS SCR INVS SCR INVS SCR INVS SCR INVS SCR INVS SCR INVS SCR INVS
8	.10=14059,07748,03709, DATA(ICHAR(22,K),K=1,12)/ .7=14088,2=05148,03308,01608,00408/	SCRI NV3 SCRI NV3 SCRI NV3

SUBROUTINE	CHARAC	TRACE CDC 6700 FTN V3.0-355F GPT+0	79/06/17, 15.49.02	5.49.02. FA
9	8484848		SCRINV3	
8	9-9-	, 00608, 01408, 03006, 06008, 14008, 2*17768/	SCRINV3 SCRINV3 SCRINV3 SCRINV3 SCRINV3	
8	98949	768/	S S C R I N V 3	
R	8888	8,5*00068/	SCRINV3 SCRINV3 SCRINV3 SCRINV3 SCRINV3	
9	* \$ * * *		SCRINV3 SCRINV3 SCRINV3 SCRINV3	
8	848	DATA(ICHAR(37 K), K=1,12) BATA IALPHA, HA, 1145, 1145, 1145, 1145, 1146, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1141, 1142, 1142, 1142, 1143, 1145		
8		EI/1351H / K/2000B, 1000B, 400B, 200B, 100B, 40B, 20B, 10B, 4B, 2B, 1B/ Ja1, 12 E(J). NE. IALPHA(27)) 00 T0 70	SCRINV3 SCRINV3 SCRINV3 SCRINV3	
8	86 88 88 88 88 88 88 88 88	CONTINUE CONTINUE NUMBLET= OFFSET=(12-NUMLET)=6 1-15=1.72	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
9 5	85.58	JK=1,37 ECLJ).EG.(ALPHA(JK)) (TEST=1) ECLJ). GG TG 251 JK	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3 -		27 LNCNT=1,12 POS=1,12 =(LPGS-1))+ OFFSET	SCRINV3 SCRINV3 SCRINV3 SCRINV3 SCRINV3	

מסטים וואר כעשעים ועשה	בושעט	במל פניסי בייני פניסי בייני פניסי בייני פניסי בייני פניסי פניסי בייני בייני פניסי בייני בייני בייני בייני בייני	20.00		DE.
	8	DO 1200 MAKEUP=1.11		SCRINVS	
	17	LTEST=ICHAR(ID(LPOS), LNCNT). AND. MASK (MAKEUP)		SCRINVS	
	IFC	F(LTEST. EQ. 0) 00 TO 1200		SCRINVS	
	Ē	LINEI(IPOS+MAKEUP)=1HO		SCRINVS	
13	1200 CONTINUE	NTINUE		SCRINVS	
	1000 CONTINUE	MTINUE		SCRINVS	
	KRI	WRITE(6, 200) (LINE1(JQ), JQ=1, 135)		SCRINVS	
	8	D6 600 IK*1,135		SCRINVS	
	600 IF	600 IF(LINE1(IK).EQ.1HD) LINE1(IK)=1HX		SCRINVS	
20	I RA	JRITE(6, 201) (LINE1(JQ), JQ=1, 135)		SCRINVS	
	8	00 601 IK=1,135		SCRINVS	
	601 IF	IF(LINET(IK), EQ. 1HX) LINET(IK)=1HA		SCRINV3	
	ER	IRI TE(6, 201) (LINE1(JQ), JQ=1, 135)		SCRINVS	
	8	DØ 602 1K=1,135		SCRINV3	
25	802 IF	IF(LINET(IK). EQ. 1HA)LINET(IK)=1HV		SCRINVS	
	ERI	WRITE(6,201) (LINE1(30), 30=1,135)		SCRINVS	
	201 FOR	201 FORMAT(1H+, 135A1)		SCRINV3	
	200 FOR	200 FORMAT(1H ,135A1)		SCRINVS	
	8	00 106 1=1,135		SCRINVS	
30	בֿ	LINEI(1)=1H		SCRINVS	
	106 CONTINUE	NTINUE		SCRINVS	
	2000 CONTINUE	NTINUE		SCRINVS	
	RET	RETURN		SCRINVS	

	SUBROU	TINE	SUBROUTINE CHARAC	TRACE				CDC 6700	FTN V3.0-	355F OPT=0	CDC 6700 FTN V3.0-356F GPT=0 79/06/17, 15.49.02.	15.49.02.	PAGE
*	SYMBOL	0	SYMBOLIC REFERENCE MAP	MAP									
ENTRY	ENTRY POINTS												
251 1 252 1Cl 234 1J	I CHAR	26	TYPE INTEGER INTEGER	REL	RELOCATION		250		INTEGER INTEGER INTEGER	ARRAY			
22.22			INTEGER INTEGER INTEGER	ARRAY	į		233	- 93 <u>8</u>	INTEGER INTEGER INTEGER INTEGER				
227			INTEGER INTEGER	ARRAY			245		INTEGER				
FILE NAMES	TAPES		MODE										
STATEM 30 224 55	STATEMENT LABELS 30 70 224 200 FI 55 551 0 602 0 2000	FMT			222	106 201 600 1000		F#T		630	150 250 601 1200		
STATISTICS	STICS	1											

CDC 6700 FTN V3.0-356F GPT=0 79/08/17. 15.49.02.

CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02

SUBROUTINE SUMIT

	05	
	15.49	
	-	
	17.	
	71/00/67	
	OPT=0	
	1-355F	
	V3.0-	
100000000000000000000000000000000000000	Z	
The contract of the contract of	6700	
5	ö	

	-	-						
SYMBOLL	SYMBOLIC REFERENCE MAP	MAP						
ENTRY POINTS								
) Sales	SN TYPE	RE	RELOCATION					
360 C	REAL	ARRAY	,,	2200	8	REAL	ARRAY	11
	REAL	ARRAY	VOLUME	17333	cı	REAL		11
2641 0131	REAL	ARRAY	¥	17314	20	REAL		//
5 (MEAL		-	2122	25	KEAL	ARRAY	ZONES
Z74Z FRAMIL	REAL	ARRAY	ZONES	5121	HEIGHT	REAL	ARRAY	¥
-	INTEGER			9	-	INTEGER		-
20 1776	NIEGER		E COL	2	E .	INTEGER		COMM
7312	INTEGER		,,	17313	2 :	INTEGER		,,
2.	NIEGER I		-	0,	4 ,	IN EGEN		
	MIEGER			****	2.0	INTEGER		-
Jen 1 1000	NATE OF STREET	24004		222	L .	N FOEK	AKKAY	¥.
18 1 1540	MATERIAL	>4004		2000	3:	NA PER		, ,
•	INTEGER	L	ZUNE	3100	NEXT:	INTEGER		TAMES
_	INTEGER	ABBAY	- 18	5	N. INK	NTEDER		LINES
	INTEGER	ARRAY	×	13816	NTD	NTEDER	ABBAV	*
2240 NTO	INTEGER	ARRAY	//	4	NYEAR	INTEGER		
_	INTEGER	ARRAY	ZONES	0	NZONES	INTEGER		ZONES
24 NZR	INTEGER		COMM	15174	8	REAL	ARRAY	//
	REAL	ARRAY	11	740	80	REAL	ARRAY	11
5 100	REAL		CONT	10	TOTATT	REAL		COMM
12 TOTGEN	REAL		COMM	7	TP	REAL		COMM
-	REAL		¥ 8	16242	2	REAL	ARRAY	11
>	REAL	ARRAY	ZONES	3221	VEL	REAL	ARRAY	¥
204 VTYPM	REAL	ARRAY	ZONES	56	e X	REAL		COMM
361 71	KEAL	AKKAY	¥ i	1321	XZ	REAL	ARRAY	¥
20	KEAL	-	MADO:	741		REAL	AKKAY	¥
	KEAL	AKKAY	*		7	INTEGER		200
1350 ZAI	REAL	ARRAY	ZONES	1213	ZATTR	REAL	ARRAY	ZONES
•	MEAL	TANK .	CONES	1362	197	KEAL	AKKAY	ZONES
7315 ZVEH	REAL	ARRAY	CONES	17324	ZVEHM	REAL	ARRAY	ZONES / /
FILE NAMES	MODE							
TUATUO	FMT							
STATEMENT ARF! S	•							
20 3	3		***					
145 6			163 7		FMT		162	
COMMON BLOCKS VOLUME COMM LINK ZONES	4320 4320 25 3121 1607							
//	2900							

STATISTICS
PROGRAM LENGTH 1768 126
CONTROL LENGTH 215618 9073
BLANK COMMON 173348 7900

```
SUBGROTINE ASSIGN

SUBGROTINE ASSIGN

INTERAL HEAD(7), IPFLG(3), XP, YP, 10PT(6), NPLT, NCLB, NPLU, NDEMYC

2, NNEAR, LHEAD(7), IPFLG(3), XP, YP, 10PT(6), NPLT, NCLB, NPLU, NDEMYC

2, NNEAR, LHEAD(7), IPFLG(3), XP, YP, 10PT(6), NPLT, NCLB, NPLU, NDEMYC

COMMON / LICAP (240), VELYALO, LCON(240, 3), HE10HY (240), NSTOPS(240), OCHHON / ZONES, NZLINKS(240), LCON(240), NSTOPS(240), OCHHON / ZONES, NZLINKS(240), ZATR(30), ZGENR(30), ZFRAHLL(30, 2), NEXTT, LAND(30, 2), NEXTT, LAND(30, 2), NEXTT, LAND(30, 3), HE10HY (240), NSTOPS(240), NSTO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IFTIPELGT3).0E.4) PRINT 91
FORMATTIHO5X*0.1. ASSIGNMENT COUNTS AND ASSCIATED COMPUTER RUN*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    11 TT(L, J)=TT(L, J)+80.

LOOP OVER ALL GRIGIN ZONES (12)

PRINT 91, (12,FRAHIL(12,1),FRAHIL(12,2),12=1,NZONES)

91 FORMAT(28H ZONE MIL PROD HIL-ATTR, (14,2F9.5)).

1F(IPFLG(3):0E.4) PRINT 9999,BAT,NYR,NMG,NDAY,(LHEAD(1),1=1,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              10 COUNT(J,L)=0.0
ADD A GATE TRAVEL TIME SO VEHICLES DO NOT DRIVE OFF BASE AND BACK ON TO SAVE A MINUTE DO 11 10=1,NGATE
DO 11 10=1,NGATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             JF(IPFLG(3).GE.4) PRINT 9999, BAT, NYR, NMO, NDAY, (LHEAD(1), I
1, TODS, TODE
1, TELPFLG(3).GE.4)
1PRINT 9999, (BAT(1), i=1,3), NYR, NMO, NDAY, (LHEAD(1), 1×1,5),
1TODS, TODE
ASSIGN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1810
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         6
SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     25
```

CDC 6700 FTN V3.0-355F 3PT=0 79/08/17, 15.49.02

TRACE

SUBROUTINE ASSIGN

```
PAGE
   CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.
                                                NZ=NZLINKS(1Z)
DG 2Z1 LZ=1,NZ
LZ=ZLINKS(LZ | 1Z)
1F (LZZ.LE, 0) 00 TO 221
DG 2Z J=1,3
DG 2Z J=1,3
IF (LCON(LZZ, J) NE.L.OR.LZZ.EQ.LO) GG TO 22
CTGT=C(LO)
D1V=Z.O
CTGT=C(LO)
CALL SUMIT
CG=LZ
CTGT=C(LO)
CALL SUMIT
CG=LZ
CGTT=C(LO)
CALL SUMIT
CG=LZ
CGTT=C(LO)
CALL SUMIT
CG=LZ
CGTT=C(LO)
CGLZ
CGTT=C(LO)
CGLZ
CGTT=C(LO)
CG
SUBROUTINE ASSIGN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     231
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                150
                                                                                                                                                                     113
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  155
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    160
                                                                                                                                                                                                                                                                                                       120
                                                                                                                                                                                                                                                                                                                                                                                                                                     125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     165
```

CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02.

SUBROUTINE ASSIGN TRACE

SRI INTERNATIONAL MENLO PARK CA USER GUIDE FOR THE AIR FORCE BASE AUTOMOTIVE TRANSPORTATION SIM--ETC(U) AD-A079 555 SEP 79 R SANDYS F08635-76-D-0132 AFESC/ESL-TR-79-16-VOL-2 UNCLASSIFIED NL 3 OF 4 AD A 079555

CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.

SUBROUTINE ASSIGN

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

TRACE

SUBROUTINE ASSIGN

```
SVIPM=0.

SVIPM=0.

DO 64 1=1,6

SVTPM=0.

DO 65 1=1,6

ZVERMZ(1)=0.0

IF(SVIP NE.0.0)

IF(SVIP NE.0.0)

IF(SVIP NE.0.0)

IF(SVIP NE.0.0)

IF(CT1.LT.1.E10) COUNT(4,L)=COUNT(4,L)+(ZVEHZ(1))+ZVEHMZ(1))

IF(CT1.LT.1.E10) COUNT(4,L)=COUNT(4,L)+(ZVEHZ(1))+ZVEHMZ(1))

IF(CT1.LT.1.E10) COUNT(4,L)=COUNT(4,L)+(ZVEHZ(1))+ZVEHMZ(1))

IF(CT1.LT.1.E10) COUNT(4,L)=COUNT(4,L)+(ZVEHZ(1))+ZVEHMZ(1))

IF(CT1.LT.1.E10) COUNT(4,L)=COUNT(4,L)+(ZVEHZ(1))+ZVEHMZ(1))

SOUNT(4,L)=COUNT(4,L)+(VYPM(7,1Z)=VYPM(7,1Z1))/TOTBUS

ZVEHMZ(5)=ZVEHMZ(5)+VYPM(7,1Z)=VYPM(7,1Z1)/TOTBUS
00=0.0
D0 99 121=NEXT1, NZONES
D0 99 121=NEXT1, NZONES
D0 913 K=1, NTRIP
IF (SMT0(IX, FQ.0.0) OF TOTOV.EO.0.0) G0 TO 613
D1 613 K=1, NTRIP
D1 913 K=1, NTRIP
D2 913 K=1, NTRIP
D3 00 + 00 + 00 T
                                                                                                                                                                                                       L=0

C1 = 1.E10

C0 62 3-1, NZ

LTEMP=ZLIMKS(J, IZ1)

IF (LTEMP.LE.0) G0 TG 62

IF (CCLTEMP) .0T. C7) G0 TG 615

L1 = C.

C1 = CT

C1 = CT
                                                                                                                                                                                                                                                                                                                                                                                                                              62 CONTINUE
63 CONTINUE
***ELIMINATE COMPUTING SECOND ROUTE***
IF(IDPT(5).9T.0) CTI = 1.0E10
                                                                                                                              IF(00.LT.0.1=10PT(5)) GO TO 69
NZL=NZLINKS(1Z1)
CT=1.0E10
                                                                                                                                                                                                                                                                                                                                                                                  613
                                                                                                                              613
                                                                                                                                           340
                                                                                                                                                                                                                        345
                                                                                                                                                                                                                                                                                                                                                                                                                                                             360
                                                               338
                                                                                                                                                                                                                                                                                                                                                                                322
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     370
                                                                                                                                                                                                                                                                                                    320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         365
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 375
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        389
```

1 8 1

PAGE

CDC 6700 FTN V3.0-355F OPT=0 79/08/17. 15.49.02.

SUBROUTINE ASSIGN

SUBROUTINE ASSIGN	E AS	310N	TRACE	CDC 6700 FTN	V3.0-355F	CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49,02.	7. 15.49.02.	PAGE
		PRI	VT 972					
	78		SUM = 0.0					
		8	76 Je1,4					
		50	* COUNT(J, 1) + SUM					
445	26		CONTINUE					
		TSU	1 = TSUM + SUM					
		PR	NT 973, 1, SUM, (COUNT(J, 1), J=	1,10)				
		8	91,116					
		SCT	SCT(J) - COUNT(J, 1) + SCT(J)					
450	11	NOS	CONTINUE					
		IFC	F(1, EQ. NLINK) 30 TO 79					
	7.0	U	CONTINUE					
	79		TT 974, TSUM, (SCT((1), [+1, 18)					
	970	FOR	FORMATI 46H 9.2. VEHICLE COUNT, TYPE, AND HOT/COLD STATUS)	E. AND HOT/COL	LD STATUS)			
455	971	FOR	FORMAT(1H+, 45X, 12H (CONTINUED))					
	972	FOR	MATCASH LINK SUM THRU RT	LEFT TERM	LDV LDT1			
		160HL	.DT2 HOT HOD MOT LOVM LL	DTIM LDT2M HD	TH HOOM MY	MTR		
		21140	211HCOLDS HOTS)					
	973	FOR	FORMAT(1X, 14, 19F6.0)					
460	974	FOR	FORMAT(1H , 4X, 19(6H)/					
		15X.	IF6.0, 15F6.0)					
	0		RETURN					
		CNA						

•

VARIA	VARIABLES	TYPE	RE	RELOCATION					
~	4	REAL	ARRAY	25	380	o	REAL	ARRAY	11
9800	8	REAL	ARRAY	//	361	COEFO	REAL	ARRAY	TRIP
171	COEFO	REAL	ARRAY	TRIP	•	COUNT	REAL	ARRAY	VOLUE
2465	CT	REAL			17333	CTOT	REAL		1
2480	CT1	REAL			1320	DELA	REAL	ARRAY	BES! T
26.41	TRIC	REAL	ABBAY	-	17314	210	BEAL		1
•	3	REAL			2122	200	REAL	ABBAY	ZUNE
	200	REAL	ABBAY	1816	2	FEXATT	PFAI	ABBAV	
*	FFERREN	BEAL	ABBAY		2	FINATT	PEAL	APPAY	
2	FINDEN	BEAL	×884		2742	FRAMI	BEAL	ADDAY	ZONE
			2000	2000		1	1	2000	2000
-	200		-	1		-	NEAL .	ANNA	200
1710	1	MEAL	ANNA	-			IN EGEN		
37	FCSIZ	NTEGER	ARRAY	TRIP	2430	0	INTEGER		
•	101	INTEGER		TROUT	2502	=	LNTEDER		
-	TAGI	INTEGER	ARRAY	I CO	2442	IORE	INTEGER		
24	IPFLO	INTEGER	ARRAY	COM	89	1 102	INTEGER	ARRAY	TROCT
13	TH	INTEGER		L COM	•	1102	INTEGER	ARRAY	TROUT
147	- 18	INTEGER	ARRAY	TROUT	-	ITYPI	INTEGER		TROUT
~	ITYPZ	INTEGER		TROUT	2432	12	INTEGER		
2456	IZEND	INTEGER			2455	1287	INTEGER		
2457	121	INTEGER			17312	=	INTEGER		11
17313	2	INTEGER		,,	2447	-3	INTEGER		
2450	-	NTEGER			2451		INTEGER		
		NTEGER			•		INTEGER		-
		MTEGER			280	COMA	MTEGER	~	401
78.5	- NAME	MIFOER	ABBAY	101	2107	- ANDI-	NA PROPER	VA864	ZAMES
2261	2	NTEGER	ABBAY	-	2001	NEG	NTEGER	× 400 ×	
17311		NTEGER	-			LAATE	INTEGER	ARRAY	BATE
2444	108	NTEGER			2482	101	INTEGER		
-	LHEAD	NTEGER	ARRAY	COMP	17310	13	INTEGER		,,
2466	LTEMP	INTEGER			2453	77	NTEGER		
2454	755	INTEGER			2463	5	INTEGER		
•	NCLB	INTEGER		1400	1	NDAY	INTEGER		OHO OHO
42	NDEMVC	INTEGER		COMM	1357	NEXT	INTEGER		ZONES
3106	NEXT!	INTEGER		ZONES	0	MOATE	INTEGER		BATE
116	MOATET	INTEGER		GATE	-	NLANE	INTEGER	ARRAY	Z¥
•	¥-1	INTEGER		¥	•	2	INTEGER		OHO CHO
43	NAME	INTEGER			2436		INTEGER		
37	#PLT	INTEGER		1	7	2	INTEGER		100
5501	NSTOPS	INTEGER	ARRAY	¥	13616	OTA	INTEGER	ARRAY	' '
12240	NTO	INTEGER	ARRAY	11	•	MIRIP	INTEGER		TRIP
455	NTRIPC	INTEGER		TRIP	266	MARD	INTEGER	ARRAY	TRIP
2	MVARO	INTEGER	ARRAY	TRIP	2	NYEAR	INTEGER		COL
•	MYR	INTEGER		250	2452	NZ	INTEGER		
2464	NZL	INTEGER			-	NZLINKS	INTEGER	ARRAY	ZONES
0	NZONES	INTEGER		ZONES	2467	NZTRIP	INTEGER		
2435	NZTRIPI	INTEGER			2475	8	REAL		
2474		REAL			2476	100	REAL		

PAGE		
15.49.02.		
CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	PARKZ PARKZ PARKZ PARKZ PARKZ COMM CHD COMM CLINK COMM CLINK COMM CLINK COMM CLINK COMM CLINK COMM CLINK COMM CLINK COMM COMM COMM COMM COMM COMM COMM COM	14 223 223 233 335 44 70 70
355F OPT=0	ARRAY	157 927 962 1157 1262 1760 1760
FTN V3.0-	REAL REAL REAL REAL REAL REAL REAL REAL	u
CDC 6700	PD PLBD PLBD PLBD PLS	INACTIVE
	1166 1216 1216 1216 1216 1216 1216 1216	
	RELOCATION PARKZ COPP COPP COPP COPP COPP COPP COPP COP	1224 1224 1728 1728 2027
TRACE	ARRAY	
E ASSIGN	TYPE REAL REAL REAL REAL REAL REAL REAL REA	
SUBROUTINE	19174 OV 646 PLUALU 2640 PRT 2641 PRT 2641 PRT 2641 PRT 2641 PRT 2641 PRT 2642 SCHOOL CONTRACT CONTRAC	STATEMENT LABELS 173 15 401 21 500 24 1060 31 1212 36 1222 36 1525 62 201 68
	2440 PTLL 2440 PTLL 2441 P	STATEME 173 401 950 1265 1272 1523 1525 1525

\$ 49.02

71 08 17

CDC 6700 FTN V3.0-358F DPT:

SUBROUTINE AGAMF

```
CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.
                                                                                                                                                                                                                CCCONLATE CONVERSION FACTORS FOR BOTH MILITARY AND CIVILIAN VARIABLES IDOW = 1 to 0. 1.0.0R. DOW .EQ.7.0) IDOW = 2 ITOD = TOD/100.

NY = NYEAR / 100
MON = NY / 100
CCCONVE CONVERTS FROM VEH-MILES TO THOUSANDS VEH-MI PER YEAR CONVERTS FROM VEH-MILES FROM VEH-MILES FROM VEH-MI PER YEAR CONVERTS FROM VEH-MILES FROM VEH-MI PER YEAR CONVERTS FROM VEH-MILES FROM VEH-MI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DATA SET 26 - MILITARY MOTOR VEHICLE AREA SOURCES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HT=0
PL=PL(12)/2
1Z1D=1Z-NEXT+3300
WRITE(7,1011) 1Z1D,XCENT,YCENT,HT,PL
11 CONTINUE
11011 FORMAT(14,4X-3P,ZF6.2,0P,ZF6.2)
100 CONTINUE
                                                                        WRITE(6, 1092) (CVABHR(1), 1=13, 24)
00 TO 70
ENTRY AGAMP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C CARD NUMBER 1
C CARD NUMBER 1
NUMVA = NZONES-NEXT
WRITE (7,1001) NUMVA
IF(NUMVA.EQ.0) 00 TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CARD NUMBER 1
WRITE(7,1001) NUMVA
1001 FORMAT(14,68X)
1F (NUMYA .EG. 0) 60 TO 200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        XCENT=0.
YCENT=0.
YCENT=0.
DG 10 N=1.
DG 10 N=1.
YCENT=XCENT+X!(L!)+X2(L!)
YCENT=YCENT+X!(L!)+Y2(L!)
YCENT=XCENT+X(L!)+Y2(L!)
YCENT=YCENTY(2.=NP)
YCENT=YCENTY(2.=NP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CARD NUMBER 2
NVEF = 3
ND 190 12 = NEXT1, NZGNES
NZID(12) = 3300 + 1Z - NEXT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CARD NUMBER 2
DO 11 IZ-NEXT1, NZONES
NP = PNOS(IZ)
        TRACE
    SUBROUTINE AGAMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0
                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                                                                                                                                                     8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0
```

AVSPD(12)=15. IF(SPRT(12): AC.0.0) AVSPD(12)=(PLL(12)=(SVZ(12)+SZV(12)) 1 /SPRT(12): 66/FOTHET DØ 110 1 = 1, 6 110 VMILEM(1) = VTYPM(1,12) * PLL(12)/5280. * MCONVF 1 *(SZV(12)=SFRAM(12,1)+SVZ(12)*SFRAM(12,2))/100. WRITE(7,1002) NZIO(12), NVEF, AVSPD(12), (VMILEM(1), 1 = 1,6)	* IF VEHICLE EMISSION FACTOR IS NOT 3, SKIP CARDS 3 AND 4 IF (NVEF .NE. 3) 90 TO 190	* CARD NUMBER 3 SFHS(12) = 1 SFCS(12) WRITE(7,1003) NZID(12), SFCS(12), SFHS(12) 1003 FORMAT(14, 24X, 2F4.0)	* CARD NUMBER 4 NISGAK = SFRAHI(12,2) * SVZ(12) * MCDNVF + .5 WRITE(7,1004) NZ10(12), NHSGAK 1004 FORMAT(214)	190 CONTINUE	*DATA SET 29 - CIVILIAN MOTOR VEHICLE AREA SOURCES	* CARD NUMBER 1 200 WRITE(7,1001) NUMVA IF (NUMVA .EG. 0) GG TG 300 DG 290 IZ = NEXT), NZONES	# CARD NUMBER 2 DO 210 I = 1, 6 210 VMILEC(I) = VEHTYP(I,IZ) # PLL(IZ)/5280. # CCONVF 1 #(52V(IZ)#(I.O-SFRAMI(IZ,I))+\$VZ(IZ)#(I.O-SFRAMI(IZ,Z))) 2/100.	WRITE(7,1002) NZID(1Z), NVEF, AVSPD(1Z), (VMILEC(1), 1 = 1,6) # IF THE VEHICLE EMISSION FACTOR IS NOT 3, SKIP CARDS 3 AND 4 IF (NVEF .NE. 3) 90 TO 290	* CARD NUMBER 3 WRITE(7,1003) NZID(1Z), SFCS(1Z), SFHS(1Z)	* CARD NUMBER 4 NHSGAK = (1 SFRAMI(12,2)) * SVZ(12) * CCONVF + .5 WRITE(7,1004) NZID(12), NHSGAK	290 CONTINUE	DATA SET 30 - AIRBASE LINE SOURCE GEOMETRIES	# CARD NUMBER 1 300 NL = NLIMK/2 DG 320 L=1, NLIMK, 2
•	120	128	130		33	140	148	150		155		20	69

CDC 6700 FTN V3.0-355F OPT=0 79/08/17, 15,49.02.

TRACE

SUBROUTINE AGAMF

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

TRACE

SUBROUTINE AGAMF

DO 66 1=1,3 SCOUNT(1,L)=SCOUNT(1,L)+COUNT(1,L) CONTINUE

89

330

,L)+COUNT(2,L)+COUNT(3,L))

PAGE

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

TRACE

AGAME

SUBROUTINE

PAGE CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02. TPER=TPER+TP
TEURN
INITIALIZE SAVE ARRAYS
70 DG 73 IZ=1,NZONES
SPRTI(12)=80X(12)=82X(12)=85X0
73 SFS(12)=85H8(12)=0.0
73 SFCS(12)=85H8(12)=0.0
77 SCOUNT(1,1)=0.0
77 SCOUNT(1,1)=0.0
999 RETURN
END SUBROUTINE AGAMF 340 332

		11	VOLUME		RESLT	COME	COM	11	COM	ZONES			COM		COL	COMM	LIN	COMM			COMM	11	ZONES			¥	-	200	,	, ,	ZONES	11	PARKZ	PARKZ	PARKZ	PARKZ	PARKZ	RESLT					200	COL	COL		¥	
		ARRAY	ARRAY	ARRAY	ARRAY		ARRAY	ARRAY	ARRAY	ARRAY							ARRAY	ARRAY				ARRAY								ADDAV	- CANAL	ARRAY		ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY				2000	ABBAY	
ADAMP		REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	NTEGER	INTEGER	INTEGER	S T T T T T T T T T T T T T T T T T T T	INTEGER	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	KEAL STA	REAL	1000														
6		AVSPD	COUNT	CVABHR	DELA	700	FEXATT	FHS	FINGEN	FRAMIL	#	HOOL	T.	21	7	_	LCAP	LHEAD	5	NON	NCLB	NCOLDM	NEXT	NHOTS	¥	Z Z	A .	MPLU	NOTA Y	27.7	NZONES	PCCO	20	7	71	PNGS	2	OUEUE	SCOUNT	SFHS	SPRT	. AZS	TOTATT	16	1915	2411	VEL VE	
AGAMI		3	•	13370	1320	9	20	460	20	2742	2174	2157	13	2166	6	8	2261	5	2173	2162	40	2443	1357	2202	2177	•	2167	4	0 :0:0	0 0	0	1503	116	63	376	314	-	2722	2742	2660	2204	2350	10		3		3221	
-																																													3			
	RELOCATION					¥	SONES	COM	CONT		¥	CONT	COME			COMP	SONES	¥	11			11	COM	ZONES	1	¥	COL	200	¥.	1	ZONES	COMM	11		PARKZ	PARKZ	RESLT	PARKZ					100	- LOC		KESE	CONES	
AGAMF	R			ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY		ARRAY		ARRAY				ARRAY	ARRAY	ARRAY			ARRAY				ARRAY			ARKAY		ARRAY	ARRAY	ARRAY				ARRAY			ARRAY	ARRAY	ARRAY				AKKAY	ARRAY	
-	TYPE	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	NTEGER	NTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	KEAL	REAL	THE PARTY																
	Z																																															
ADAMA	LES	AVGTT	CCONVE	CVABDY	CVABMO	DIST	FCS	FEXGEN	FINATT	FOTMET	HE I GHT	-	PFLO	1 100	1210	×	LANDU	LCON	1310	MCGNVF	z	NCOLDC	NDEMVC	NEXTI	NHSGAK	NLANE	NNAME	NPLT	NSTOPS	NYFAB	NZLINKS	TAO	PCHO	4	PL.86	PLS	PRT	24	800	SFCS	SFRAMI	2/2	100	TOTOEN	TPER	2	VEN	
1503	VARIABLES	2201	2165	13366	13321	2641	2122	4	9	2106	5121	•	24	2160	2176	4	3107	3601	543	2163	2172	2451	42	3106	245	-	43	37	2201	- :	! -	9	2063	2175	313	315	2640	•	2203	2576	2435	2266	•	2	2164		13317	

MAINTENER MAIN											•
TABLE TABL	NS S	TVPE	REL	OCATION.							
FEAT		REAL	ARRAY	,,	402	VAILED	REAL	ARRAY			
NACTIVE AREA 1184 217 70 70 70 70 70 70 70		REAL	ABBA	ZMMES	24.	VONEY VA	REAL	AKKAY	-		
INTEGER AFRAY COMPA 36 X1 AFRAY LINK		REAL	- Curry	-	9170	TUBUX	PEAL	ANNA	PARKE		
HACTIVE		INTEGER		Creek	361	XI	DEAL	7000	***		
REAL		REAL	ARRAY	***	2171	VCFNT	DEAL	ANNAT	1		
REAL ARRAY COMES 1213 ZATR REAL ARRAY COMES		INTEGER		COM	741	٧١.	REAL	ARRAY	LINK		
INS REAL ARRAY ZONES 1213 ZATR REAL ARRAY ZONES 1812 ZATR REAL ARRAY ZONES 1822 ZOT REAL ARRAY ZONES 2040 ZNAME INTEGER ARRAY ZONES 2040 ZNAME Z		REAL	ARRAY	LI N	-	2	INTEGER		COMM		
NATION 11920 1982 1982 2040 ZNAME INTEGER ARRAY ZONES 1982 2040 ZNAME INTEGER ARRAY ZONES 2040 ZNAME INTEGER 2040 ZNAME 2040		REAL	ARRAY	ZONES	1213	ZATTR	REAL	ARRAY	ZONES		
HODE		KEAL	ARRAY	ZONES	1362	201	REAL	ARRAY	ZONES		
FHT TAPE FHT TAPE FHT TAPE? FHT TAPE? FHT TAPE? FHT TAPE FHT TAPE? FHT TAPE FHT TAPE? FHT TAPE FHT TAP		REAL	ARRAY	PARKZ	2040	CNAME	INTEGER	AKKAY	ZONES		
TYPE AR05 INTEGER 1 LABELS INACTIVE AR05 INACTIVE AR06 INACTI	83	MODE									
Integer 1 1 1 1 1 1 1 1 1	NPES .	FMT		TAPES	FMT		TAPE7	FMT			
NER LABELS LABELS INACTIVE O 11 O 65 INACTIVE O 65 O 11 A11 00 A12 00 O 10 O 1		TYPE	ARGS								
LABELS LABELS INACTIVE 0 11 0 66 2013 70 2013 70 2013 70 2013 70 2013 70 2013 70 2010 66 2010 67 2010 67 2010 67 2010 68 2010 69 2010 69 2010 69 2010 69 2010 69 2010 100 2010 69 2010 100 2010 69 2010 100 2010 69 2010 100 2010 69 2010 100		INTEGER	-								
LABELS LABELS INACTIVE 2013 70 66 2013 70 241 100 324 100 326 0 210 415 200 327 241 100 328 300 329 0 405 1062 415 1062 415 1062 415 1062 415 1062 415 1062 415 1062 415 1062 415 1062 415 1074 465 1277 480 1278 480 1288 480 1288 48											
LABELS LABELS LABELS INACTIVE 0 65 2013 70 241 100 418 200 418 200 418 200 418 200 602 320 602 320 603 320 604 200 602 320 604 200 605 320 605 320 606 320 607 33 607 33 607 33 607 34	ONVER										
INACTIVE	IT LABELS										
INACTIVE	0								2	INACTIVE	
2013 70 2013 70 418 25661B 1110 418 25661B 1110 418 25661B 1110 418 12561B 1110 418 12561B 1110 418 12561B 1110 418 1200 410 1200		INACTIV	Æ		65				88	3411741	
### THE FIRST CONTRINES FOR TH	1				20				73		
418 200 602 320 0 210 210 210 210 210 210 210 210 210	1				100				110		
PMT	06				200				210		
THE THILD SECTION TO SECTION TO SECTION THE SECTION TH	000				300				320		
THAT THE THAT THE THAT THAT THE THAT THAT	200				380				405		
1207 480 1207 480 0 486 1267 480 1364 1364 1364 1364 1364 1364 1364 1364	20				413				420		
1267 500 0 605 1421 300 1	0				480				486	INACTIVE	
1364 550 1478 500 147	0				200				202	3411701	
FMT 182 189 147 189 147 189 147 189 147 189	0				950				260		
1 FMT 2123 1002 FMT 2126 1003 4 FMT 2125 1001 FMT 2126 1003 2 FMT 2107 1090 FMT 2131 1091 CKS LENGTH 3320 LENGTH 13420B 5904 ENGTH 13420B 5904 ENGTH 25661B 11185	20				280				280		
# FHT 215 1012 FHT 213 1022 2 FMT 2107 1090 FMT 2111 1091 CKS LENGTH M 312 CK 313 CK 312 CK 313 CK 313 CK 312 CK 313 CK 312 CK 313											
CKS LENGTH CKS LENGTH CKS LENGTH CKS 1657 CKS 3121 CKS 1657 CKS 3121 CKS 1657 CKS 3121 CKS 1657		-				: 5					
CKS LEMOTH SS 35 H 352 ES 1657 UNE 4320 CZ 304 LT 1730 LEMOTH 134208 5904 ENGTH 25661B 11185		-				==					
CKS LENGTH 93 4 3121 53 1657 CKZ 304 LT 1327 1327 1327 134208 ENGTH 134208 ENGTH 256618		_									
# 93 ES 3121 ES 4320 UME 4320 LT 1730 LT 1327 ENOTH 134206 ENOTH 256619		ENOTH									
E		23									
UNE 4320 (2 304 (1 1730 (1 1327 (1 1320 (1 1320) (1 1320) (1 1320)		3121									
1327 1327 1327 1327 1327 1327 1328 1500 1500 1500 1500 1500 1500 1500 150		1997									
1327 1327 1327 134208 15N0TH 134208 15N0TH 256618		304									
1327 LENGTH 134208 LENGTH 256618		1730									
LENGTH 13420B		1327									
ENGTH 134208											
256618	ENGTH	134208	2004								
		256618	111.65								

¥0E
2
-
-
05
0
4
4
D
0
-
-
>
0
71/00/67
0
-
_
ō
SPT=C
=
U
355F
*
m
ò
-
×3.
S
Z
TI
4
0
0
6700
0
O
Spc
O

-		1327
		2457B
		COMMON
	STATISTICS	BLANK

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

SUBROUTINE PLOT!

PAGE CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02. 1F (1FLG .EG. 1 .AND. 1CAL .EG. 0) CALL PLOT(0.0,0.0,999) CALL PLGT (0.0,0.0,-3)
CALL SYMBOL (1,5.0,-30,LHEAD,0.0,20)
CALL SYMBOL (1,3.0,30,LHEAD,0.0,20)
CALL SYMBOL (1,3.0,30,LHEAD(3),0.0,20)
CALL SYMBOL (1,3.0,30,LHEAD(3),0.0,20)
CALL SYMBOL (1,2.0,35,50A,E=CHETES,0.0,-1)
CALL SYMBOL (3.05,2.0,35,54FT/1N,0.0,5)
CALL SYMBOL (3.05,2.0,35,54FT/1N,0.0,5)
CALL SYMBOL (1,3.0,35,9HL)NK PLGT,0.0,9)
CALL SYMBOL (1,3.0,35,9HL)NK PLGT,0.0,9) SUBROUTINE PLOTI **ບຶບບ** ບ∗ບ 113 150 125 130

Z Z	
	¥
PLOTI	REFERENCE
N I	-
SUBROUT	SYMBOLIC

~	2 PLOTI								
ARIAL		SN TYPE	35	RELOCATION					
525 BU		E	ARRAY		-	CHOHI	REAL		DRAW
•	CHI	REAL		PLOT	16	CMETERS	REAL		DRAW
•	- HO	REAL		PLOT	0	ONBNOX	REAL		DRAW
N	DNBNDY	REAL		DRAW	9	700	REAL		COMM
360	DYVOL	REAL	ARRAY	LKARYS	0	5	REAL		PLOT
=	EPSLONI	REAL		DRAW	12	EPSLONZ	REAL		DRAW
13	EPSLON3	REAL		DRAW	20	FEXAT	REAL	ARRAY	COMM
4	FEXBEN	REAL	ARRAY	COMM	9	FINATT	REAL	ARRAY	COMM
3	FINGEN	REAL	ARRAY	COM	•	HRVOL	REAL	ARRAY	LKARYS
•	=	REAL		PLOT	0	-	INTEGER		COM
1	ICAL	INTEGER		DRAW	0	IDRAWN	INTEGER		EQUATES
0	IFLO	INTEGER		F. P.	•	IOFFSCL	INTEGER		EQUATES
5	100	INTEGER	ARRAY	COME	740	IOVRCAP	INTEGER	ARRAY	LKARYS
24	IPFLO	INTEGER	ARRAY	COMM	~	I P TORW	INTEGER		EQUATES
	1512	INTEGER		DRAW	13	E	INTEGER		COM
0	ITRKFO	INTEGER		TRUNCAT	•	IUSE	INTEGER	ARRAY	11
0	MINDE	INTEGER		DRAW	•	7	INTEGER		COMP
•	*	INTEGER		COMM	N	_	INTEGER		COMM
-	LHEAD	INTEGER	ARRAY	COMM	00	LPLTF	INTEGER		PLOT
9	NCLB	INTEGER		COMM	42	NDEMVC	INTEGER		COMP
1	N-IN	INTEGER		PLOT	-	NLINES	INTEGER		VOLS
43	NNAME	INTEGER		COM	-	NOTORY	INTEGER		EGUATES
37	NPL1	INTEGER		COMP	4	MPLU	INTEGER		200
7	NYEAR	INTEGER		COMP	•	PENX	REAL		DRAW
0	PENY	REAL		DRAW	-	•	REAL		TRUNCAT
•	SCALE	REAL		DRAW	~	SFAC	REAL		PLOT
0	100	REAL		COLL	9	TOTATT	REAL		
-	TOTOEN	REAL		200	1380	TOTVOL	REAL		LKARYS
1	2	REAL		1	2	1915	REAL		100
=	TTPZ	REAL		L COL	-	CFBNDX	REAL		DRAW
0	CPBNDY	REAL		DRAW	1320	70	REAL	ARRAY	LKARYS
0	VOLMAX	REAL		VOLS	-	XMAX	REAL		MINAX
0	ZIX	REAL		HIMMAX	=	XWX	REAL		PLOT
27	e ×	INTEGER		COME	•	×	REAL		PLOT
0	YMAX	REAL		MINMAX	~	MIN	REAL		MINAX
~	YMX	REAL		PLOT	90	4	INTEGER		- T
-	2	REAL		PLOT	-	2	INTEGER		CONT
11.6	FILE NAMES	MODE							
	DUTPUT	FMT							
EXTERNALS FL	MLS FLOAT	TYPE	AROS			NUMBER			
	PLOT					PLOTS		0	
	PRESCAN					T XX			

SUBROUTINE	PLOTI	TRACE		CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	PAGE	n
STATEMENT LABELS			210 2	247 3		
•			2			
COMMON BLOCKS LENGTH	HT0					
LKARYS	745					
''	240					
TRUNCAT	N					
EQUATES	4					
COMM	53					
DRAW	2					
VOLS	8					
MINMAX	4					
STATISTICS						
PROGRAM LENGTH	25418	1377				
	15048	836				
	3608	240				

MACE	
Q V	-
PEFFERENCE	יני ביוריים
SYMBOLIC)

CDC 6700 FTN V3.0-355F OPT=0 79/08/17, 15.49.02.

RIAB	NES S	NS.	TYPE	Ä	RELOCATION
131	131 1		REAL	ARRAY	LINK
3601	LCON NC NK		INTEGER	ARRAY	C C
3221	VEL		REAL	ARRAY	LINK F.P.
1321	XX		REAL	ARRAY	Z W
1701	72		REAL	ARRAY	LINK

ARRAY ARRAY ARRAY ARRAY ARRAY

REAL INTEGER INTEGER INTEGER REAL REAL REAL

HEIGHT LCAP NLANE NSTOPS XMAX X1 Y1

264 DIST REAL ARRAY LINK 5121 3601 LCON INTEGER ARRAY LINK 5501 3601 LCON INTEGER ARRAY LINK 5501 3601 LCON INTEGER ARRAY LINK 5501 3601 LCON REAL ARRAY LINK 501 301 302 ARRAY LINK 501 301 302 ARRAY LINK 501 301 ARRAY ARRAY CINK 501 301 ARRAY ARRAY	VARIA	SLES	20	TAPE		LOCALION			
INTEGER ARRY LINK REAL ARRAY LINK RIAL ARRAY LINK REAL ARRAY REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY REAL ARRAY LINK REAL ARRAY REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY REAL ARRAY LINK REAL ARRAY REAL AR	2641	DIST		REAL	ARRAY	LINK	5121		
INTEGER ARRAY LINK REAL ARRAY LINK 3121 3121 3121 3121 3121	131	-		INTEGER			2261	_	
INTEGER ARRAY LINK REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY LINK LENGTH 3121 3121 314 1568 110	3601	CCON		INTEGER		LINK	-		
REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY LINK ELS LENGTH 3121 3121 3121 3121 3121	0	NEN		INTEGER		LINK	5501	_	
REAL ARRAY LINK REAL ARRAY LINK REAL ARRAY LINK ELS LENGTH 3121 3121 3121 3121 3121 3121	3221	VEL		REAL	_	LINK	0	_	
REAL ARRAY LINK REAL ARRAY LINK ELS ELS LENGTH 3121 3121 317 1568 110	0	XIMX		REAL		F. P.	361		
REAL ARRAY LINK ELS LENGTH 3121 3121 3121 3121 3121	1321	X2		REAL	ARRAY	LINK	0	-	
REAL ARRAY LINK ELS LENOTH 3121 314 1568 110 317 60618 3121	•	NIWA		REAL		F.P.	741		
3121 3121 1568 60618	1701	72		REAL	ARRAY	LINK			
3121 3121 1568 6061B	STATEM	TENT LAB	ELS						
3121 3121 314 1568 314 60618	0	-							
LENGTH 1568 LENGTH 60618	COMMON	BLOCKS LINK		3121					
6061B	PROG	RAM LEN	HTE	1568	01.				
	200	MON LEN	ЭТН	60618	3121				

```
PAGE
CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.
                                                                                                                                                                                                                        COMMON /LINK/ NLINK, NLANE(240), X1(240), Y1(240), X2(240), Y2(240) 1, LCAF(240), DIST(240), VEL(240), LCON (240,3), HEIGHT(240) 2, NSTDFS(240) 2, NSTDFS(24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TGT = 0.0

DG 1 = 1, MLINK

SUM = COUNT(1,1) + COUNT(2,1) + COUNT(3,1) + COUNT(4,1)

HRVOL(1) = HRVOL(1) + SUM

HRVOL(1) = DYVOL(1) + SUM

TOT = TOT + SUM

IF (QUEUE(1) . LT. CAPMAX) GG TG 1

IF (TGO . LT. 1200.) IGVRCAP(1) = 1

CONTINUE
                                                                                                                                SUBROUTINE PLOTA(LFLG)
                           TRACE
                           SUBROUTINE PLOTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ۰,
                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    30
```

,		
É		
	:	
•	-	į
רכוו	-	į
į	-	
-	1	
	1	
N		
=		
2		
Ę	1	
SUBRECL	-	
ก	1	

ENTRY POINTS
2 PLOTA

O CAPMAX O CGUNT O DOH O DOH O P FEXOEN O HRVOL	REAL		CADMAX	8	CHJ	REAL	
			30.00				
	REAL	ARRAY	VOLUME	1320	DELA	REAL	ARRAY
	REAL		PLOT	2641	DIST	REAL	ARRAY
	REAL		COMM	360	DYVGL	REAL	ARRAY
	REAL		PLOT	20	FEXAT	REAL	ARRAY
	REAL	ARRAY	COMM	9	FINATT	REAL	ARRAY
	REAL	ARRAY	COMM	5121	HE I GHT	REAL.	ARRAY
	REAL	ARRAY	LKARYS	4	ī	REAL	
	INTEGER		COMM	104	HE	INTEGER	
	INTEGER	ARRAY	COMM	740	IOVRCAP	INTEGER	ARRAY
	INTEGER	ARRAY	COMM	13	T.	INTEGER	
	INTEGER	ARRAY	11	6	,	INTEGER	
	INTEGER		COMM	8	_	INTEGER	
	INTEGER	ARRAY	LINK	3601	CON	INTEGER	ARRAY
	INTEGER	*UNUSED	F. P.		LHEAD	INTEGER	ARRAY
	INTEGER		PLOT	4	NCLB	INTEGER	
	INTEGER		COMM	-	NLANE	INTEGER	ARRAY
	INTEGER		PLOT	0	NLINK	INTEGER	
	INTEGER		COMM	37	NPLT	INTEGER	
	INTEGER		COMM	5501	NSTOPS	INTEGER	ARRAY
	INTEGER		COMM	2640	PRT	REAL	ARRAY
	REAL	ARRAY	RESLT	8	SFAC	REAL	
	REAL			n	100	REAL	
	REAL			10	TOTATT	REAL	
	REAL		COMM	1350	TOTVOL	REAL	
	REAL		COMM	64	TP15	REAL	
	REAL	ARRAY	RESLT		TTPZ	REAL	
	REAL	ARRAY	LINK	1320	VOL	REAL	ARRAY
	REAL		PLOT	27	A.	REAL	
	REAL		PLOT	361	×	REAL	ARRAY
	REAL	ARRAY	LINK	12	XMX	REAL	
	REAL		COMM	-	A.	REAL	
	REAL	ARRAY	LINK	1701	72	REAL	ARRAY
	REAL		COMM				

211

BLOCKS LINK PLOT COMM COMM COMM CALUME RESLT CAPMAX LKARYS

-
Š
377
-
~
05
0
_
-
•
•
15.49
-
2)
_
-
-
79/08/17
_
•
•
=
0
_
-
_
•
-
-
0
OPT=0
_
-
•
•
-
-
355F
10
75
•
-
-
1
6
V3.0-
×3.
FTN V3.
FTN
FTN
6700 FTN
6700 FTN
6700 FTN
6700 FTN
6700 FTN
FTN

	69	1966	240
	1058	233758	SECR
	LENGTH	LENGTH	NUMBER
STATISTICS	PROGRAM	COMMON	DI ANK
	STATISTICS	STATISTICS PROGRAM LENGTH 1058 69	STATISTICS PROGRAM LENGTH 1058 69 COMMON LENGTH 233758 9981

```
PAGE
CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.
                                                                                                                   COMMON /LINK/ NLINK, NLANE(240), X1(240), Y1(240), X2(240)

1. LCAP(240), DIST(240), VEL(240), LCON (240,3), HEIGHT(240)

2. NSTOFS(240)

COMMON /VOLS/ VOLMAX, NLINES

COMMON /VOLS/ VOLMAX, NLINES

COMMON /VOLS/ VOLMAX, NLINES

COMMON / COMMON / COMMON / CANDON / 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1BCD = 6HHOURLY
DG 1 1=1, NLINK
IF (HRVOL(1) .GT. VOLMAX) VOLMAX = HRVOL(1)
GCONTINUE
GG 1G 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DAILY HEAD
18CD = 6H DAILY
DG 3 !=1,MLINK
IF (DYVOL(!) .GT. VOLMAX) VOLMAX = DYVOL(!)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          HEADINGS

CONTINUE
ROUND VOLUME SCALE
| # VOCHAX / ML/NES
| F (1 .0E. 1000) | = ((1+500) / 1000) # 1000
| F (1 .0E. 100) | = ((1+50) / 1000) # 100
| F (1 .0E. 10 ) | = ((1+50) / 100) # 100
| F (1 .0E. 10 ) | = ((1+50) / 10 ) # 10
| VOCHAX = | # MLINES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF FOR WHOLE DAY, PRINT KEYS, ETC.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FIND MAXIMUM VOLUME OF TRAFFIC VOLMAX = 0.0
IF (LFLG :EQ. 2) 00 TG 2
IF (LFLG :EAD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF (ICAL .NE, 0) 80 TO 5
CALCOMP
POS = 27
CH1 = .56
CH2 = .49
CH3 = .21
POSDEC = 1.
                                                                   SUBROUTINE PLOTP(LFLO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DG 015 1=1,240
1USE(1) = 0
CONTINUE
       TRACE
       SUBROUTINE PLOTP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    u
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           O
                                                                                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       43
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9
```

```
IF THIS IS A DAY PLOT, WRITE VOLUME BY HOUR BARGRAPH.
                                                                                                                                                                                                                                                                   CALL SYMBOL (1, POS, CH1, 1BCD, 0.0, 6)
CALL SYMBOL (6 * CH1, POS, CH1, 6HVGLUME, 0.0, 6)
POS * POS * POSDEC
CALL SYMBOL (4 * CH3, POS, CH3, 6HVTIME *, 0.0, 6)
CALL SYMBOL (4 * CH3, POS, CH3, 6HVTIME *, 0.0, 6)
CALL SYMBOL (2 * CH3, POS, CH2, 12HVGLUME SCALE, 0.0, 12)
POS * POS * POSDEC
CALL SYMBOL (1, * CH3, POS, CH2, 12HVGLUME SCALE, 0.0, 12)
CALL SYMBOL (1, * CH3, POS, CH3, 5HMC OF, 0.0, 5)
CALL SYMBOL (1, * CH3, POS, CH3, 5HMC OF, 0.0, 5)
CALL SYMBOL (1, * CH3, POS, CH3, 5HMC OF, 0.0, 5)
CALL SYMBOL (1, * CH3, POS, CH3, 5HMC OF, 0.0, 5)
CALL SYMBOL (1, * CH3, POS, CH3, 5HVCHICLES, 0.0, 6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DG 7 LN = 1,NLINES
PGS = PGS - CHZ
VEH = LN = VGLMAX / NLINES
CALL NUMBER (12.*CH3,PGS,CH3,VEH,0.0,-1)
PGS = PGS - CH2
CALL NUMBER (3.*CH3,PGS,CH3,FLGAT(LN),0.0,-1)
CGALL SYMBOL (13.*CH3,PGS,CH4,ZHTG,0.0,2)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         XX = YPGS1 - 16.0=PGSINC
CALL SYMBOL (0.3, XX, .26,11HTIME OF DAY, 90.0,11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF (ICAL 20. 1) CALL PLOT (0.,0.,999)
                                   IF (ICAL . NE. 1) 00 TO 6
TEKTRONIX
POS = 8.5
CH1 = .42
CH2 = .26
CH3 = .21
CH4 = .14
POSDEC = .4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           URS (IN INCHES)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NE. 21 00 TO 79
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -051NC - HRS12 / 24.
90 TO 6
                                                                                                                                                                                                               000
                                                                                       8
                                                                                                                                                                                               63
                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -
```

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

TRACE

SUBROUTINE PLOTP

```
CALL SYMBOL (XBASE+. 5, YPOS2-. 44, . 18, 16HFRACTIONAL USAGE, 0.0, 16)
                                                                                                                                                                                                                                                                                                                                       DRAW BASE LINE

XPOS = XBASE

XINC = FRSIZ / 10

DO 70 | 11,0 / 10.0

VAL = (1-1.0) / 10.0

VAL = (1-1.0) / 10.0

CALL MUMBER (XPOS.05, YPOS2. 25, 11, VAL, 0.0, 1)

CALL PLOT (XPOS YPOS2. 2)

CALL PLOT (XPOS YPOS2. 2)

CALL PLOT (XPOS YPOS2. 2)

XPOS = XPOS + XINC

CONTINUE
DG 72 IHR = 6,24,6
HR = IHR
YPGS1 = YPGS1 - 6.0=PGSINC
CALL NUMBER (0.4,YPGS1,.14,HR,0.0,-1)
CONTINUE
                                                                            CALL PLOT (XBASE, YPGS2, 3)
DG 76 IHR = 1,24
YPGS1 = YPGS2
YPGS2 = YPGS2
YPGS2 = YPGS2
YPGS2 = YPGS1 = YPGS1, 2)
CALL PLOT (XBASE, YPGS1, 2)
CALL PLOT (XBASE, YPGS1, 2)
GALL PLOT (XBASE, YPGS1, 2)
                                                                                                                                                                                                                                                CALL PLOT (XFRACT+XBASE, YPOS1, 2)
CALL PLOT (XFRACT+XBASE, YPOS2, 2)
CALL PLOT (XBASE, YPOS1, 2)
CALL PLOT (XBASE, YPOS1, 2)
CALL PLOT (XBASE, YPOS1, 2)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF (ICAL .EQ. 1) CALL PLOT (0.,0.,999)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CLEAR ARRAYS
DG 8 1=1, NLIMK
HRVG(1) = 0.0
IF (LELG EG 2) DYVGL(1) = 0.0
IF (LELG EG 2) IOVRCAP(1)=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
IF (LFLG .NE. 2) RETURN
CLEAR HOUR ARRAY
DO 9 11,24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CALL PTRAFILFLB)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          VOL(1) = 0.0
TOTVOL = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                   27 0
                                                                                                                                                                                                                                                                                                                    9,00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0,0
                                                                                                                                                                                                                                    0 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          o
                                                            1.3
                                                                                                                                   150
                                                                                                                                                                                                                                                                                                                                                                                                                            140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  143
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      130
                                                                                                                                                                                                         125
                                                                                                                                                                                                                                                                                130
                                                                                                                                                                                                                                                                                                                                                      135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               155
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           165
```

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE PLOTP TRACE

PAGE CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02. IF (ICAL .EG. 0) CALL PLOT(0.0,0.0,999) RETURN END SUBROUTINE PLOTP TRACE

216

PLOTP TRACE	REFERENCE MAP
SUBROUTINE	SYMBOLIC RE

		DRAW	DRAW	COMM	DRAW	DRAW	COMM	COMM	LINK		COMM	DRAW	COMM	COMM	COMM	DRAW	COMM	LI M	F. P.		COMM	VOLS	COMM	COMM	COMM	DRAW		DRAW	COMM	LKARYS	LLOS	DRAW	INK	VOLS		COMM		LINK	COMM		LINK				
							ARRAY	ARRAY	ARRAY				ARRAY	ARRAY				ARRAY															ABBAV					ARRAY			ARRAY			9	-
REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	BEAL	REAL	REAL	INTEGER	REAL	REAL	INTEGER	REAL	REAL																		
H	СНЗ	CMETERS	DNBNDX	MOG	EPSLONI	EPSLON3	FEXGEN	FINGEN	HEIGHT	HRSIZ	-	ICAL	IOPT	IPFLG	EL.	MINDE	×	LCAP	LFLO	Z	NDEMVC	NLINES	NNAME	NPLU	NYEAR	PENY	POSDEC	SCALE	TOTATT	TOTVOL	6	UPBNDX	VEL	VOLMAX	XFRACT	A.	XTIC	rx.	46	YP0S2	72			NUMBER	PTRAF
1032	1034	16	0	9		13	44	54	5121	1044	0	7	31	24	13	10	4	2261	0	1037	42	-	43	4	74	n	1036	9	10	1350	99	- 000	3221	0	1053	27	1042	361	30	1045	1201				
RELOCATION			LINK	DRAW	LKARYS	DRAW	COMM	COMM			LKARYS			LKARYS	DRAW	//	COMM	COMM	LINK	COMM	COMM	LIR	LIN	COMM	LINK	DRAW			COM	COMM	COMIN	COMM		LKARYS					Z¥		LINK	COMM			
œ			ARRAY		ARRAY		ARRAY	ARRAY			ARRAY			ARRAY		ARRAY			ARRAY	ARRAY		ARRAY			ARRAY									ARRAY					ARRAY		ARRAY		ARGS	-	
	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DEAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	TYPE	REAL														
CHGHT SN	CH2	CHA	DIST	DNBNDY	DYVOL	EPSLON2	FEXAT	FINATT	FRSIZ	E E	HRVOL	1800	HR	IOVRCAP	1812	IUSE	,	_	CCON	LHEAD	NCLB	NLANE	NLINK	NPLT	NSTOPS	PENX	POS	POSINC	190	TOTOEN	4	ZHL	NEH N	VOL.	XBASE	XINC	XPOS	xx	×2	YPOSI	7.1	2	ILS.	FLOAT	PLOT
VARIABLES	1033	1035	2641	8	360	12	20	9	1043	1052	0	1030	1051	740	13	0	0	8	3601	-	40	-	0	37	5501	4	1031	1047	60	21		- "	2000	1320	1041	1055	1054		1321			-	EXTERNALS		

CDC 6700 FTN V3.0-355F OPT=0 79/06/17. 15.49.02. PAGE

SUBROUTINE PLOTP TRACE

STATEMENT LABELS

63 4

0 15

402 76

COMMON BLOCKS LENGTH

VOLS

LKARYS 745

LKARYS 745

COMMON BLOCKS LENGTH

STATISTICS

STATISTICS

FROGRAM LENGTH

1111B 5885

COMPON LENGTH

1111B 5885

BLANK COMPON LENGTH

3608 240

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02

TRACE

SUBROUTINE PTRAF

```
PAGE
CDC 6700 FTN V3.0-355F GPT=0 79/06/17. 15.49.02.
                                                                                                                                                                                                                                                                                                               LABEL ZONES
IF (LPLTF .EQ. 2 .OR. (LPLTF .EQ. 1 .AND. LFLG .NE. 0))60 TO 35
CALL ZLABEL
                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
IF ((PENX NE. 0.0 .OR. PENY NE. 0.0) AND. 1CAL .ED.
F CALL PLOT (0.,0.,999)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL SYMBOL (USC+.2,17., 28,2HX=,-90.0,2)
CALL NUMBER (USC+.2,16.40,.26,UPBNDX,-90.0,-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (ICAL .NE. 0) 00 TO 37
CALCOMP END-PIECE OF OUTLINE
USC = (UPBNDX-DNBXX) / SCALE + 3.0
CALL PLOT (USC-2.3Z,3)
CALL PLOT (USC+1.3Z,2)
CALL SYMBOL (USC+2.3Z-0.5,28,2HY=,0.0,2)
CALL NUMBER (USC+0,5Z-0.5,28,UPBNDY,0.0,-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL PLOT (USC-2.,0.,3)
CALL PLOT (USC+1.,0.,2)
CALL SYMBOL (USC+2.,2.,28,2HY=,0.0,2)
CALL NUMBER (USC+.8,.2,.28,DNBNDY,0.0,-1)
                                   CALL PLGT (10.,0.,2)
CALL SYMBGL (6.4,.2,.26,2HY=,0.0,2)
CALL NUMBER (7.0,.2,.26,DNBNDY,0.0,-1)
                                                                                                                                                                                                                                             CALL PPLOT(LFLG)
PRINT 999, DNBNDX, UPBNDX, DNBNDY, UPBNDY
999 FORMAT (* BOUNDS *, 4F11.2)
                                                                                                                                                                        DG 3 1=1, NLINK
IF (LUSE(1) .NE. 2) IUSE(1) = 0
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF (UPBNDY .01. YMAX) GO TO 4
DNBNDY = UPBNDY
UPBNDY = DNBNDY + ISIZ * SCALE
GO TO 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (ICAL NE. 1) RETURN
IF (UPBNDX GE. XMAX) RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALL PLOT (USC+2.5,0.0,-3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINUE
IF (IWINDF .EQ. 1) RETURN
                                                                                                     CALL PLOT (9.0,0.0,-3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CALL PLOT (USC, SZ, 3)
CALL PLOT (USC, 0., 2)
   TRACE
                                                                                                                                         CONTINUE
SUBROUTINE PTRAF
                                                                                                                                                                                                                                                                                                                                                                  38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               37
                                                                                                                                                                                                               0
                                                                                                       8
                                                                                                                                                                                                                                                                                  20
                                                                                                                                                                                              65
                                                                                                                                                                                                                                                                                                                                                                      73
                                                                                                                                                                                                                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  105
```

CDC 6700 FTN V3.0-355F OPT=0 79/08/17, 15.49.02, PAGE

SUBROUTINE PTRAF TRACE

DNBNDX = UPBNDX

GO TO 1

C RETURN

115

SUBROUTINE PTRAF TRACE

PAGE

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

DIAGNOSTIC

CARD NO. SEVERITY

THERE IS NO PATH TO THIS STATEMENT

200	
	MAP
E LIKAL	SYMBOLIC REFERENCE
SUBROUTINE	SYMBOLIC

ENTRY POINTS
2 PTRAF

																																						¥.					
1	PLOT	PLOT	DRAW	LKARYS	DRAW	DRAW	LKARYS		EQUATES	LKARYS	DRAW	DRAW	LINK	PLOT	PLOT	EGUATES	DRAW	DRAW		DRAM		LKARYS	MINMAX	PLOT	L N	MINMAX	PLOT	LINK								0	27	666					
				ARRAY			ARRAY			ARRAY			ARRAY									ARRAY			ARRAY			ARRAY				9	-	0		0	130	663					
	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL																							
	CHI	DH1	DNBNDX	DYVOL	EPSLON1	EPSLON3	HRVOL		IDRAWN	IOVRCAP	1512	ININDE	LCON	LPLTF	Z	NOTORM	PENX	SCALE	28	UPBNDX	USC	VOL	ZIEX	x	X2	N-W-	3	72				NUMBER	PPLOT	ZLABEL									
	9	107	0	360	11	13	0	724	0	740	13	10	3601	10	7	-	4	9	723	-	725	1320	0	0	1321	8	-	1701															
																																				2	25	37					
RELOCATION	DRAW	DRAW	LINK	DRAW	PLOIP	DRAW	LINK	PLOT	DRAW	EQUATES	EGUATES	11	LINK	F. P.	LINK	LINK	LINK	DRAW	PLOT	LKARYS	DRAW	LINK	MINMAX	PLOT	LINK	MINMAX	PLOT	LINK								30	63	304					
REL			ARRAY				ARRAY					ARRAY	ARRAY		ARRAY		ARRAY					ARRAY			ARRAY			ARRAY			ARGS	-	6	9									
TYPE	REAL	REAL	REAL	BEAL	10 SEAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	MODE	FMT	TYPE	REAL							LENGTH	3121	745	240									
LES SN	CHOHI	CMETERS	DIST	VONBNO	1000	EPSI OND	HEIGHT	ī	CAL	IOFFSCL	IPTDRW	IUSE	LCAP	LFLG	NLANE	NLINK	NSTOPS	PENY	SFAC	TOTVOL	UPBNDY	VEL	XMAX	XWX	ıx.	YMAX	XWX	7.	AMES	DUTPUT	ALS	FLOAT	PLOT	SYMBOL	STATEMENT LABELS	-	4	35	_	LNK	LKARYS	//	
VARIABLES	14	18	2641	0		, 0	5121	4	7	0	2	0	2261	0		0	5501	n	2	1350	9	3221			361	0	12	741	FILE NAMES		EXTERNALS				STATEM	9	322	173	COMMON				

TRACE		3900 240
PTRAF	LENGTH 11 15	7528 74748 3608
SUBROUTINE PTRAF		PROGRAM LENGTH COMMON LENGTH BLANK COMMON
	COMMON BLOCKS PLOT DRAW	STATISTICS PROGRAM COMMON BLANK

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15,49.02. SUBROUTINE PPLOT(LFLG)
PLOT ALL LINKS, STARTING FROM NUMBER 1, AND TAKING THE "CLOSEST" NEXTONCE PLOTTED, THE IUSE ARRAY IS CHANGED FROM "NOTUSED" TO "DRAWN" OR "PTUSED". LINKNG = 1

LINKNG = 1

LINKNG = 1

LINKNG = 1

F(LCON(LINKNG, 2)

F(RCLINK, EG. 0)

FINTNG = NEWLINK

CONTINUE

FRINT 999, (IUSE(1), 1=1, NLINK)

999 FORMAT (1215)

FRINT

FRIN COMPUDN /EQUATES/ IDRAWN, NOTDRW, IPTDRW, IGFFSCL COMPON /LINK/ NLINK, NLANE(240), X1(240), Y1(240), X2(240), Y2(240) 1, LCAP(240), DIST(240), VEL(240), LCON (240,3), HEIGHT(240) CONMON /LKFYS/ HRVGL(240), DYVGL(240), IGVRCAP(240), VGL(24), TGTVGL COMMON /LKFYS/ HRVGL(240), DYVGL(240), IGVRCAP(240), VGL(24), TGTVGL TRACE PPLOT 0000 SUBROUTINE m 10 2 50 25 30

SUBROUTINE PPLOT	E PPLOT	TRACE			CDC 670	D FTN V3.0-	355F GPT=0	CDC 6700 FTN V3.0-355F OPT=0 79/06/17, 15.49.02.	95.
SYMBOLIC	SYMBOLIC REFERENCE MAP	MAP							
ENTRY POINTS 2 PPLOT									
VARIABLES SN 2641 DIST 5121 HEIGHT		RE ARRAY ARRAY	RELOCATION LINK LINK	360	0.1	REAL	ARRAY	LKARYS	
3 10FFSCL 2 1PTDRW	INTEGER INTEGER		EQUATES	740	I OVRCAP I USE	INTEGER	ARRAY	EQUATES LKARYS / /	
3601 LCON	INTEGER	ARRAY	Z I	140	10000	INTEGER	T T T T T T T T T T T T T T T T T T T	, a.	
	INTEGER	ARRAY	LINK	5501		INTEGER	ARRAY	L.C.	
1350 TOTVOL 1320 VOL 1321 X2 1701 Y2	REAL REAL REAL REAL	ARRAY ARRAY ARRAY	LKARYS LKARYS LINK	361		REAL REAL REAL	ARRAY ARRAY ARRAY	¥¥¥ CCC	
FILE NAMES OUTPUT	FRT								
EXTERNALS CLOSEST	TYPE	ARGS			PLOTLK		~		
STATEMENT LABELS			132	986	Ŧ		134	999 FMT	
COMPON BLOCKS I	3121 745 240								
PROGRAM LENGTH COMMON LENGTH BLANK COMMON	1448 74368 3608	100 3870 240							

CDC 6700 FIN V3.0-355F OPT=0 79/08/17, 15.49.02. COMMON /LINK, NLINK, NLANE(240), Y1(240), Y2(240), Y2(240)

1, LCAP(240), D151(240), VEL(240), LCON (240,3), HE1GHT(240)

2, NSTOPS(240)

COMMON /LKARYS / HRVOL(240), DYVOL(240), IOVRCAP (240), VOL(24), TOTVOL

COMMON /LKARYS / HRVOL(240), DYVOL(240), IOVRCAP (240), VOL(24), TOTVOL

COMMON /LARRYS / HRVOL(240), DYVOL(240), IOVRCAP (240), VOL(24), TOTVOL

COMMON /LARRYS / HRVOL(240), DYVOL(240), IOVRCAP (240), VOL(24), TOTVOL

COMMON /LEQUES / IORAWN, NOTDRW, IPTORW, IOFFSCL

D1 1 1 1 N. INT

TEMPE = PD151(X1(1), Y1(1))

TEMPE = PD151(X1(1), Y1(1)) SUBROUTINE CLOSESTINEWLK)
FIND CLOSEST UNDRAWN LINK AND PUT ITS NUMBER IN NEWLK.
IF NONE, RETURN WITH NEWLK=0. SUBROUTINE CLOSEST TRACE 000 10 . 20

SUBROUTINE CLOSEST TRACE

SYMBOLIC REFERENCE MAP

ENTRY POINTS 2 CLOSEST

	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL			REAL											
	DISTANC	HEIGHT	-	IOFFSCL	PTORM	LCAP	NEWLK	N N	NSTOPS	TEMP2	VEL	×	7			POIST					
	7	5121	72	6	~	2261	•	•	5501	74	3221	361	741								
LOCATION	¥	LKARYS	LKARYS	EQUATES	LKARYS	11	¥	Z.	EQUATES		LKARYS	LKARYS	LIN	Y LINK							
35	ARRAY	ARRAY	ARRAY		ARRAY	ARRAY	ARRAY	ARRAY				ARRAY	ARRAY	ARRAY	ARGS	N					
TYPE	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	TYPE			LENGTH	745	240	•
ES SN	DIST	DYVOL	HRVOL	IDRAWN	LOVRCAP	LUSE	LCON	NEANE	NOTORY	TEMP	TOTVOL	VOL	X2	1701 Y2	EXTERNALS	AMINI	TATEMENT LABELS	BLOCKS	LKARYS	11	EQUATES
VARIABL	2641	360	0	0	740	0	3601	-	-	73	1350	1320	1321	1701	EXTERNA		STATEM	COMMON			

ARRAY ARRAY ARRAY ARRAY

```
PAGE
 CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.
                          FUNCTION POIST(A,B) FINDS DISTANCE BETWEEN CURRENT PEN POSITION (PENX,PENY) AND POINT (A,B).
                                                                 COMMON /DRAW/ DNEMDX, UPBNDX, DNBNDY, UPBNDY, PENY, SCALE,
ICAL, ININDF, EPSLONI, EPSLON2, EPSLON3, CHGHT
, 1812, CMETERS
                                                                                                                                                               CALCOMP DISTANCE FUNCTION PDIST = 1.41421356237 = AMINI(DELX, DELY) + ABS(DELX-DELY)
                                                                                                                       DELX = ABS( PENX-A )
 TRACE
                                                                                                                                                                                                         RETURN
 PDIST
                                           00
                                                                                                                                                    00
                                                                                                                                                                                         O
 FUNCTION
                                                                                  •
                                                                                                                                                    10
                                                                                                                                                                                                                        .
```

FUNCT I ON		PDIST	TRACE	30		CDC 670	0 FTN V3.0-2	355F OPT=	CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	15.49.02.	PAGE
SYMBOL	SYMBOLIC REFERENCE MAP	RENCE	MAP								
ENTRY POINTS											
3	SN TY	# J		RELOCATION	•		i		1		
14 CHBHT 45 DELX	REAL			DRAW		CMETERS	REAL		DRAW.		
	REAL	٠.		DRAW	2 0	DNBNDY	REAL		DRAW		
	3 REAL			DRAN	2 1	EPSLONZ	REAL		DRAW		
	TNI	EGER		DRAW	2	WINDE	INTEGER		DRAW		
	REAL	_			4	PENX	REAL		DRAW		
1 UPBNDX	REAL			DRAW	• 0	SCALE	REAL		DRAW		
EXTERNALS ABS	TYPE		AROS -			N N	REAL	•			
COPPON BLOCKS	LENGTH	Į.									
STATISTICS PROGRAM LENGTH COMMON LENGTH	H	66	85								

FUNCTION PDIST TRACE

```
SUBROUTINE PLOTLK (LK, LFLB)
FINDS VOLUME OF TRAFFIC, PLOTS EACH HALF STREET WITH PROPER WIDTH,
MARKS LINK DRAWN OR PARTDRAWN, MARKS IF OVER-CAPACITY, LABELS STREETS
                                                                               CCMMGN /LIMK/ NLIMK, NLANE(240), X1(240), Y1(240), X2(240), Y2(240)

1, LCA(240), DIST(240), VEL(240), LCON (240,3), HEIGHT(240)

2,NSTGPS(240)

COMMON /RESLY TT(240,3), DELA(240,3), PRT(50), QUEUE(240)

COMMON /LKARYS HRVGL(240), DVVGL(240), IGVRCAP(240), VGL(24), TGTVGL

COMMON /LKARYS HRVGL(240), DVVGL(240), IGVRCAP(240), VGL(24), TGTVGL

COMMON /LRAYS HRVGL(240), DVVGL(240), IGVRCAP(240), VGL(24), TGTVGL

COMMON /LRAYS HRVGL(240), DVVGL(240), IGVRCAP(240), VGL(24), TGTVGL

1, NYEAR, LHCAD(7), IPF(36,3), XP, YP, IGPT(6), NPLT, NCLB, NPLU

2, NOENC, NAME, FEXGEN(4), FEXAT(4), FINGEN(4), FINATT(4), TP16

INTEGER Z, XP, XP

COMMON /CAPMAX/CAPMAX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HANDLE GVER-CAPACITY

IF (LECLEG.) **AND GUEUE(LK).LT. CAPMAX.AND.!GPT(4).EQ.0) GO TO 3

IF (LECLEG.) **AND GUEUE(LK).LT. CAPMAX.AND.!GPT(4).EQ.0) GO TO 3

IF (LECLEG.) **AND.**AND.**CARS

IF (LECLEG.) **AND.**TOD.**AND.**CARS

IF (LECLEG.) **AND.**TOD.**GE.1200.) MORNEG = 1

IONRCAPLK) **MORNEG = 1

CALL GVERCAP (A, B, C, D, MORNEG)
                                                                                                                                                                                                                                                                                                                                            SINCE LINES MAY BE TRUNCATED, MOVE INTO TEMPORARY STORAGE 999 FORMAT 992 LK*(13)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL PDISP (A,B,C,D)
CALL PLOTLN (A,B,C,D,111) , RETURNS (8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CALL PLOTLN (A,B,C,D,111) , RETURNS (8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CALL PENDVOL(LK, NL, LFLG, LABL)
PRINT 998, LK, NL
FORMAT (* LINK*, 14, * - *, 14)
IF (NL, EQ. 0) 90 TG 3
DG 2 I=1, NL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                    CXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XX
                              000
                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             43
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       22
```

CDC 6700 FTN V3.0-355F 6PT=0 79/08/17, 15.49.02.

TRACE

SUBROUTINE PLUTLK

PAGE CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02. C (LAB. GE. 10000) STOP 6686
ENCODE (10,6004,1BCD) LABL
NCHAR = 4
NCHAR (12)
6001 FORMAT (11)
6002 FORMAT (12)
6003 FORMAT (13)
6004 FORMAT (14)
C
RETURN
END 6) IF (LABL .GE. 100) 00 TG 62 ENCODE (10,6002,18CD) LABL NCHAR = 2 00 TG 65 SUBROUTINE PLOTLK TRACE 2 9 2

SUBROUTINE PLOTLK TRACE SYMBOLIC REFERENCE MAP

																																							INACTIVE	-	FMI NO REPO	
			CAPMAX	BES! T	COMM	COMM	COMM	LINK	COMM		LKARYS	COMM	//	COMM		×	COMM	-	COMM	711	N N N	NK-	RESLT	TRUNCAT	COMM	LKARYS	COMM	COMM	LKARYS	LINK	COMM	LINK							9		866	
				ARBAV		ARRAY	ARRAY	ARRAY			ARRAY		ARRAY			ARRAY	ARRAY					VARRAV	ARRAY						ARRAY	ARRAY		ARRAY			•	4			0	4	241	043
		BFA	1479	DEAL	PEAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	NTEGER	INTEGER	INTEGER	INTEGER	NEGER	N-EGER	N FOREX	NTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL										
		ď	CAPMAX	חבו ש	2000	FEXAT	FINATT	HEIGHT	-	==	IOVRCAP	T.	InsE	×	LABL	LCON	LHEAD	MORNEG	NCLB	2	NE IN	Santon	200		TOTATT	TOTVOL	TP15	TTPZ	VOL	×	4	72			OVERCAP	PFNDVOL					;	-EL
		286		1330	200	200	909	5121	0	261	740	13	0	4	263	3601	9	264	40	292	3.0	200	2640	2007	10	1350	64	=	1320	361	30	1701							9	61	;	1009
	DEI ACATION	101 400			1 1 1 100	KABYA	COMM.	COMM	LKARYS		COMM	COMM	TRUNCAT	COMM	COMM	LINK	٠.	F. P.		COMM	N CO	THE CO	COMM	PESI T	MMOO	COMM	COMM	RESLT	LINK	COMM	LINK	L X	COMM						113	126	170	244
	iud	אבר			>4004	>4004	7984	ARRAY	ARRAY		ARRAY	ARRAY				ARRAY					ARRAY			VAGGA				ARRAY	ARRAY		ARRAY	ARRAY		ARGS	9	4	n					2
	1400		74.40	7.4.0	1400	1410	1000	PEAL	REAL	INTEGER	NTEGER	NTEGER	200	N F F G F R	DEAL	PEAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	INTEGER	TYPE								STATE CA									
PLOTLK		- C2		,	10.0		FEXOEN	NACKIE	HRVOI	1800	IOPT	IPFLG	ITRKFG	•	,	LCAP	LFLO	K	NCHAR	NDEMVC	NLANE	NAME	NA LO	21210	1000	TOTOEN	TP	11	VEL	AX.	XZ	۲۱	2	ILS	LABEL	PDISP	PLOTLN	STATEMENT LABELS	2	•		0000
ENTRY POINTS		VARIABLES	000	100	2000	1000	200	× ×	, 0	265	31	24	0	0	8	2261	0	0	566	42	- (5.	7	2722	2010	200	1	0	3221	27	1321	741	-	EXTERNALS				STATEME	0	172	154	236

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15,49.02. SUBROUTINE PFNDVOL (LK,NL,LFLG,LABL)
FIND THE VOLUME OF TRAFFIC ON THIS LINK, AND CONVERT TO NUMBER OF LINES.
COMMON VOLS/ VOLMAX,NLINES
COMMON /LKARYS/ HRVOL(240),DYVOL(240),IOVRCAP(240),VOL(24),TOTVOL
COMMON IUSE(240) IF (LFLG .NE. 2) STOP 5555 NL * (DYVOL(LK)-.001) * NLINES / VOLMAX LABL = DYVOL(LK) RETURN END IF (LFLG .NE. 1) GO TO 3

NL = (HRVGL(LK) - .QOI) # NLINES / VOLMAX

LABL = HRVGL(LK)

RETURN IF (LFLG .NE. 0) 90 TO 2
NL = 0
LABL = LK
RETURN SUBROUTINE PENDVOL TRACE ON 50 10 2

PAGE

SYMBOLIC REFERENCE MAP	REFERENCE	MAP							
ENTRY POINTS 2 PFNDVOL									
VARIABLES SN 360 DYVOL	TYPE	ARRAY	RELOCATION Y LKARYS	•	HRVOL	REAL	ARRAY	LKARYS	
740 IOVRCAP	INTEGER	ARRAY	LKARYS	00	LFLG	INTEGER	ARRAY	4.	
3	INTEGER		a .	0	N.	INTEGER		F . P .	
1320 VOL	REAL	ARRAY	LKARYS	0	VOLMAX	REAL		VOLS	
STATEMENT LABELS			96						
COPPION BLOCKS L	LENGTH 2 745 240								
STATISTICS PROGRAM LENGTH COMMON LENGTH BLANK COMMON	618 13538 3608	247							

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.

SUBROUTINE PENDVOL TRACE

```
PAGE
CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02
              SUBROUTINE PDISP (X1,Y1,X2,Y2)
DISPLACE LINE "EPSILON" DISTANCE TO THE RIGHT (FOR THICKNESS)
COMMON 'DRAW, DNBNDX, UPBNDY, UPBNDY, PENX, PENY, SCALE,

+ ICAL, ININDE, EPSLON1, EPSLON2, EPSLON3, CHOHT

, 1S12, CMETERS
                                                                                                                                                                                                                                                                                                                                                               ENTRY FOR OVER-CAPACITY LINES (LENGTH OF EACH LINE)
ENTRY POISP2
EPSILON = EPSILON2
00 TO 1
                                                                                                    ENTRY FOR DISTANCE BETWEEN GVER-CAPACITY LINES ENTRY POISPS
ENTRY POISPS
EP SICON = EPSLON3
G7 TO 1
                                                              ENTRY FOR THICKNESS DISPLACEMENT (EPSLON1)
EPSILON = EPSLON1
                                                                                                                                                                                                                                                                                                                                                                                                                                            ENTRY FOR DISTANCE OF LABEL FROM LINK ENTRY PDISP4
                                                                                                                                                                                                 RETURN
                                                                                       CONTINUE
 SUBROUTINE POISP
                                                                                                                                                                                           0 10
                                                                                                                                                                      0
                                                                                                                                      N
                                                        00
                                                                             0-0
                                                                                                                                                                                                                                                                                                                                                        00
                                                                                                                                                                                                                                                                                                                                                                                                00
                                                                                                                                                                                                                                                                                                                                                                                                                                        00
                                                                                       10
                                                                                                                               0
                                                                                                                                                                      50
                                                                                                                                                                                                            53
                                                                                                                                                                                                                                                  30
                                                                                                                                                                                                                                                                                          35
                                                                                                                                                                                                                                                                                                                                 40
                                                                                                                                                                                                                                                                                                                                                                                                                20
                                                                                                                                                                                                                                                                                                                                                                                                                                                      22
                                                                                                                                                                                                                                                                                                                                                                         45
```

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02. PAGE

SUBROUTINE PDISP TRACE

EPSILON = EPSLON2 + CHOHT

GO TO 1

C END

SUBNOUL	SUBROUTINE PUISP	INACE	3		כחר פיותר	CDC 6/00 FIN V3.0-5037 GT -0 /8/06/17. 10.49.06.	2	18/00/11	4.00	300
SYMBOLIC	SYMBOLIC REFERENCE MAP	MAP								
ENTRY POINTS	122	PDISP2	134	4 PDISP3	146	PD13P4				
VARIABLES S	SN TYPE		RELOCATION	170	a	RFAL				
	REAL		DRAW	9-		REAL		DRAW		
O DNBNDX	REAL		DRAW	N	DNBNDY	REAL		DRAW		
				1.1		REAL		DRAW		
12 EPSLONZ			DRAW	13		REAL		DRAW		
			DRAW	13		INTEGER		DRAW		
	INTEGER		DRAW	4		REAL		DRAW		
S PENY	REAL		DRAW	171		REAL				
	REAL		DRAW	-	VONBAD	REAL		DRAW		
3 UPBNDY	REAL		DRAW	0	XI	REAL		F. P.		
0 X2	REAL		9.4	0	۲۱	REAL		F. P.		
0 72	REAL		ď.							
EXTERNALS	TYPE	ARGS								
ABS	REAL				SORT	REAL 1				
STATEMENT LABELS	9		22	2 9			78	43		
9 111			11							
COMMON BLOCKS	LENGTH 15									
STATISTICS PROGRAM LENGTH COMMON LENGTH	1728 178	122								

PAGE CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02. SUBROUTINE PLOTLN (X1,Y1,X2,Y2,1TYP), RETURNS (A)

ORAW LINE BETWEEN POINT (X1,Y1) AND (X2,Y2). IF THE LINE IS OFF

THE PLOT PAGE, TRUNCATE AND SET FLAG.

COMMON / DRANDX, UPBNDX, UPBNDY, PENX, PENY, SCALE,

+ (1.0AL, IN DIF, EFSLON1, EPSLON2, EPSLON3, CNOHT

+ (1.51Z, CMETERS) FIND DISTANCES FROM PEN TO LINE ENDS D1 = PDIST(X1,Y1) D2 = PDIST(X2,Y2) DATA 10NE/1/, 1TW0/2/, 1THREE/3/, 1FOUR/4/ CHECK IF LINE IS GUTSIDE BOUNDRY CALL CHKBND(X1,Y1,X2,Y2), RETURNS (9) IS PEN ALREADY AT STARTING POINT IF (D1 .LT. .0001) 60 TO 4 IF (D2 .LT. .0001) 60 TO 2 MOVE PEN TO (X1,Y1)
CALL PLTSCL (X1,Y1,3)
PRINT 999, ITHREE,X1,Y1
DRAW LINE TO (X2,Y2)
CALL PLTSCL (X2,Y2,2)
PRINT 999, IFOUR,X2,Y2
PENX = Y2
GO TO 0 SUBROUTINE PLOTLN TRACE RETURN A RETURN END ບືບືບ o oo 000000 00 00 • 0 . 50 30 25 33 9 4

PAGE																	
9.02.															NACTIVE NO REFS		
15.49															-		
17.															F		
180/			3	2	3:	x	3	2	3	3	0	ď.					
7.9			DRAW	DRAW	DRAW	2420	DRAW	DRAW	DRAW	DRAW	0	ı.			4 999		
3PTa															122		
355F														N			
COC 6700 FTN V3.0-355F OPT=0 79/08/17, 15.49.02.			REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL		Real			
6700				×	7	22		Įı.									
coc			СНОНТ	ONBNOX	EPSCONI	FOUR	2181	MINDE	PENY	UPBNDX	-	-		PDIST			
			14				20		80	-	0	0					
															20 0		
			RELOCATION	DRAW		DRAW		4	DRAW	DRAW	DRAW	a a			D N		
ICE			REL					SED .									
TRACE	4							*UNUSED					ARGS	40			
Z	CE M		ø			0	œ								INACTIVE		
SUBROUTINE PLOTEN	SYMBOLIC REFERENCE MAP		TYPE	REAL	REAL	REAL	NTEGE	NTEGER	REAL	REAL	REAL	REAL	TYPE		INAC	LENGTH	
TINE	0		S							_	-				ELS		
BROU	MBOL	PLOTEN		CMETERS	02	EPSLON2	ONE	TYP	PENX	SCALE	UPBNDY			CHKBND	LAB	BLOCKS	S
S	SY	ENTRY POINTS 2 PLOTLE	_1	16				-	-	5 SC		0 ×2	EXTERNALS	52	STATEMENT LABELS 0 2 67 8	COMMON BLOCKS	STATISTICS
		ENTR	VARI	-	130	-	116	0	•	-			EXTER		STATEM 0 67	COMM	STAT

SUBROUTINE PLTSCL(A,B,I)

SCALES PLOT AND CALLS CALCOMP ROUTINE
SCALES PLOT AND CALLS CALCOMP ROUTINE
COMMON 'DRAW, DIBNOX, UPBNDX, UPBNDY, UPBNDY, PENY, PENY, SCALE,
+ ICAL, IWINDF, EPSLON1, EPSLON3, CHGHT
C = (A-DWBNDX) / SCALE
D = (B-DWBNDX) / SCALE
CALL PLOT (C,D,I)
ETURN
END .

PAGE

CDC 6700 FTN V3.0-355F GPT=0 79/08/17. 15.49.02.

SUBROUTINE PLTSCL

0

	DRAK.	DRAW DRAW DRAW DRAW		
	REAL REAL REAL REAL REAL	REAL INTEGER INTEGER REAL REAL REAL		
	CHGHT D D DNBNDY	EPSCONZ 1 S.1.Z PENX SCALE UPBNDY		
	0480	100 E 4 a c		
	RELOCATION F.P. DRAW	ORAW ORAW ORAW ORAW		
			ARGS	23
	TYPE REAL REAL REAL REAL	REAL REAL INTEGER REAL REAL	TYPE LENGTH	278
PULTSCL	TER.	EPSLON EPSLON ICAL IVINDE PENY UPBNDX	ø	PROGRAM LENGTH
ENTRY	VARIABLES 0 A 25 C 16 CME	- E v O D -	EXTERNALS PLOT COMMON BLOCK DRAW	PROG

CDC 6700 FTN V3.0-355F GPT*0 79/08/17. 15.49.02.

SUBROUTINE PLTSCL TRACE

CDC 6700 FTN V3.0-355F ØPT=0 79/08/17, 15.49.02.

TRACE

SUBROUTINE CHKBND

SYMBOLIC REFERENCE MAP	FERENCE	MAP						
STAILE VETAG								
2 CHKBND								
VARIABLES	TYPE		RELOCATION			į		
<	RETURNS			14	CHOHI	REAL	DRAW	
CMETERS	REAL		DRAW	0	DNBNDX	KEAL	DYAK.	
	REAL		DRAW	11		REAL	DRAW	
EPSLON2	REAL		DRAW	13		REAL	DRAW	
ICAL	NTEGER		DRAW	0	IDRAWN	INTEGER	EQUATES	
IOFFSCL	NTEGER		EQUATES	N		INTEGER	EQUATES	
	NTEGER		DRAW	0		INTEGER	TRUNCAT	
FONIA	NTEGER		DRAW	-		INTEGER	EQUATES	
	REAL		DRAW	0		REAL.	DRAW	
	REAL		TRUNCAT	9		REAL	DRAW	
1 UPBNDX R	REAL		DRAW	0		REAL	DRAW	
X.	REAL		9.77	0		REAL	9.1	
	REAL		٠. ٣ ٩. ٣	0	7.5	REAL	. P.	
EXTERNALS	TYPE	ARGS						
•	REAL	-			XPTMOV	9		
2		9						
STATEMENT LABELS 202 8								
COMMON BLOCKS LE DRAW TRUNCAT EQUATES	LENGTH 15 2							
PROGRAM LENGTH	2648	160						
COMMON LENGTH	962	v						

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02. SUBROUTINE PTMOVE(XA,YA,XB,YB,BOUND,1B), RETURNS (A) MOVE POINT (XA,YA) WITHIN ONE OF THE BGUNDS COMMON /TRUNCAT/ ITRKFG,S ENTRY XPTMOV

999 FORMAT (* TRUNCATE, 5F10.2)

CXX FRINT 999, XA, YA, XB, YB, BGUND

CXX FRINT 999, XA, YA, XB, YB, BGUND

CX FRINT 999, XA, YA, XB, YB, BGUND

CX FRINT 999, XA, YA, XB, YB, BGUND

CXX FRINT 999, XA, YA, XB, YB, BGUND

RETURN ENTRY YPTMOV

PRINT 989,XA,XB,YB,BOUND

MOVE Y TO BOUND; CALCULATE CORRESPONDING X.

HE (S. NE. O) 60 TO 5

IF (S. NE. A) AS - XA

IF (ABS. O) F. LT. .00001) 69 TO 6

DIF2 = YB - YA

IF (ABS. O) F. LT. .00001) RETURN A SUBROUTINE PTHOVE TRACE c cx X 30 0 9 50 28 80

PAGE

SUBRO	SUBROUTINE PTMOVE	E TRACE	CE		CDC 87	CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.	0P1=0	79/08/17.	15.49.02.	PAGE	N
SYMBOL	SYMBOLIC REFERENCE MAP	E MAP									
ENTRY POINTS 2 PTHOVE		2 XPTMGV		53 YPTMGV							
ES A	SN TYPE		RELOCATION		BOUND			ă. L			
141 DIF	REAL		a.	14	142 DIFZ 0 ITRKF9	REAL		TRUNCAT			
9	REAL		TRUNCAT		XX			9.0			
	REAL		à à.			REAL		i.			
EXTERNALS ABS	TYPE	ARGS 1									
STATEMENT LABELS 33 1 116 6	BELS		133	999	FMT NO REFS	R S	0 1	D			
COMMON BLOCKS LENGTH	S LENGTH										
PROGRAM LENGTH	40TH 143B	8									

```
PAGE
   CDC 6700 FTN V3.0-355F ØPT=0 79/06/17, 15.49.02.
                                                 COPPON /LKARYS/ HRVOL(240), DVVOL(240), IOVRCAP(240), VOL(24), TOTVOL COMPON /DRAN/ DWBNDX, UPBNDY, UPBNDY, PENY, PENY, SCALE, IOAL, IN INDF, EPSLON2, EPSLON3, CHOHT , ISIZ, CHETERS
                                                                                                                                                                                                                                     , RETURNS(2)
                                                                                                  DISTANC = SORT( (X1-X2)==2 + (Y1-Y2)==2 )
C = X1
D = Y1
                    SUBROUTINE OVERCAP(X1, Y1, X2, Y2, MORNFG)
DRAWS OVER-CAPACITY LINES
                                                                                                                               SUBROUTINE OVERCAP TRACE
                               00
                                                                                                            0
                                                                                                                                                              9
                                                                                                                                                                                                               50
                                                                                                                                                                                                                                                                 52
```

SYMBOLIC REFERENCE MAP	EFERENCE	MAP							
ENTRY POINTS 2 OVERCAP									
VARIABLES	TYPE	RE	RELOCATION						
	REAL			145	0	REAL			
0	REAL			14	CHOHI	REAL		DRAW	
CMETERS	REAL		DRAW	141	0	REAL			
	REAL			0	DNBNDX	REAL		DRAW	
	REAL		DRAW	360	DYVOL	REAL	ARRAY	LKARYS	
EPSLONI	REAL		DRAW	-2	EPSLONZ	REAL		DRAW	
EPSLON3	REAL		DRAW	0	HRVOL	REAL	ARRAY	LKARYS	
1	INTEGER			1	ICAL	INTEGER		DRAW	
150 111	INTEGER			740	IOVRCAP	INTEGER	ARRAY	LKARYS	
-	INTEGER		DRAW	146	ITIMES	INTEGER			
	INTEGER		DRAW	0	MORNEG	INTEGER		۵.	
u	REAL		DRAW	60	PENY	REAL		DRAW	
6 SCALE	REAL		DRAW	1350	TOTVOL	REAL		LKARYS	
11	REAL			143	12	REAL			
UPBNDX	REAL		DRAW	0	UPBNDY	REAL		DRAW	
320 VOL	REAL	ARRAY	LKARYS	0	X1	REAL		۳. ۳	
	REAL		D. F.	0	۲۱	REAL		۳. ۵	
0 Y2	REAL		о. и.						
EXTERNALS PDISP2 PLOTLN	TYPE	ARGS 4			PD1SP3	REAL	4-		
STATEMENT LABELS									
COMMON BLOCKS L LKARYS DRAW	LENGTH 745								
STATISTICS PROGRAM LENGTH COMMON LENGTH	1668	118							

PAGE

```
PAGE
 CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02.
                           SUBROUTINE LABEL (X1,Y1,X2,Y2,1BCD,NCHAR)
COMMON /ORAW/ DNBNDX,UPBNDX,UPBNDY,PENX,PENY,SCALE,
+ ICAL,1WINDF,EPSLON1,EPSLON2,EPSLON3,CHGHT
+ 1312,CMETERS
COMMON /TRUNCAT/ 1TRKF0,3
                                                                                                                                                                                                                                                                                                                                                                                                                 CALL CHKBND(XPAGE, YPAGE, XXX, YYY) , RETURNS (8) IF (ITRKFG .NE. 2) GO TO 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                HT = CHOHT / SCALE
CALL SYMBOL (XPAGE, YPAGE, HT, IBCD, THETA, NCHAR)
                                                                                                                                                                                                                                                            DIST1 * SORT(DELX**2 + DELY**2)
01ST2 * 01ST1 / 2.0 - (NCHAR*CHOHT) / 2.0
                                                                                                                                                                                                                                                                                                                                                                 XXX = XPAGE + 2. = DIST2 = COS(THETA)
YYY = YPAGE + 2. = DIST2 = SIN(THETA)
                                                                                                                                                                         FIND ANGLE OF LINE
DELY = Y2-Y1
DELX = X2-X1
THETA = ATAN2 (DELY, DELX) + 3.14159
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONVERT TO DEGREES
THETA = THETA = 180.0 / 3.14159
                                                                                                                                                                                                                                                                                                                XPAGE = X2 + DIST2 = COS(THETA)
YPAGE = Y2 + DIST2 = SIN(THETA)
                                                                                                                                DISPLACE CO-ORDINATES FOR LABEL CALL PDISP2(X1, Y1, X2, Y2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 XPAGE = (XPAGE-DNBNDX) / SCALE
YPAGE = (YPAGE-DNBNDY) / SCALE
 TRACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PENX . XXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RETURN
SUBROUTINE LABEL
                                                                                                                                                                                                                                                                                                                                                     v
                                                                                                                                                                                                                                                                                                                                                                                                    v
                                                                                                                                                                                                                                                                                                                                                                                                                                                    v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     v
                                                                                                                                                                                0
                                                                                                                                                                                                                                                                5
                                                                                                                                                                                                                                                                                                                                                  50
                                                                                                                                                                                                                                                                                                                                                                                                                                  53
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9
```

SUBROUT	SUBROUTINE LABEL	TRACE			CDC 670	CDC 6700 FTN V3.0-355F 0PT=0 79/08/17. 15.49.02.	T=0 79/08/17.	15.49.02.	PAGE
SYMBOLIC	SYMBOLIC REFERENCE MAP	MAP							
ENTRY POINTS 2 LABEL									
VARIABLES	SN TYPE		RELOCATION						
+	REAL		DRAW	16	CMETERS	REAL	DRAW		
	REAL			160	DELY	REAL			
DISTI	REAL			164	DISTZ	REAL			
CONBNO	REAL		DRAW	C	DMBNDY	REAL	DRAW		
11 EPSLONI	REAL		DRAW	12	EPSLONZ	REAL	DRAW		
EPSLON	REAL		DRAW	171	HT	REAL			
0 1800	INTEGER		F. P.	^	CAL	INTEGER	DRAW		
15 1512	INTEGER		DRAW	0	ITRKFG	INTEGER	TRUNCAT		
10 ININDE	INTEGER		DRAW	0	NCHAR	INTEGER	F. P.		
4 PENX	REAL		DRAW	0	PENY	REAL	DRAW		
2 -	REAL		TRUNCAT	9	SCALE	REAL	DRAW		
THETA	REAL			-	UPBNDX	REAL	DRAW		
3 UPBNDY	REAL		DRAW	165	XPAGE	REAL			
XXX	REAL			0	XI	REAL	F. P.		
×2	REAL		F. P.	166	YPAGE	REAL			
AAA	REAL			0	٧1	REAL.	F. P.		
72	REAL		F. P.						
EXTERNAL S	TYPE	ARGS							
CHANG.	DC4.				CHKRND	•			
20018	DE AL	٠.			DU SPO				
3:	ACAL.				COLD	DEA!			
SYMBOL	MEAL	- 9			-				
STATEMENT LABEL	u?								
115 8									
CONTROL BLOCKS	LENGTH								
DRAW	2								
TRUNCAT	2								
STATISTICS									
PROGRAM LENGTH	H 1728	122							

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02.

SUBROUTINE ZLABEL

ENTRY POINTS

	DRAW	DRAW	RESLT	DRAW	COMM	DRAW	ZONES	COMM	COMM	¥	DRAW	COMM	COMM		COMM	ZONES	Z Z		COM	ZONES	Z L	COMM	COMM	Z¥ Z	ZONES	PARK	DRAW	PARKZ	PARKZ	RESLT	PARKZ	DRAW	COMM	COMM	RESLT	DRAW	ZONES	ZONES	COMM		L X		L X	COMM	ZONES	ZONES	ZONES	
			ARRAY				ARRAY	ARRAY	ARRAY	ARRAY		ARRAY				ARRAY	ARRAY							ARRAY	ARRAY					ARRAY					ARRAY		AKKAY	ARRAY			ARRAY		ARRAY		ARRAY	ARRAY	ARRAY	
	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	NEGER	INTEGER	NIEGER	NTEGER	NIEGER	NYEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	MEAL	KEAL	REAL	INTEGER	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	INTEGER	
													E .		-															_	_								-		-			-	-		-	
	4	16	1320	0	9	12	2122	44	40	5121	1	24	5	133	4	3107	360	40	42	3106	0	43	37	5501	-	311	•	313	312	2640	0	9	0	1	0	-	1364	2204	27	134	1351	142	741	-	1213	1362	2040	
RELOCATION			VOLUME	LINK	DRAW	DRAW	DRAW	COMM	COMM	ZONES	COMM	COMM	DRAW	DRAM	COMM	COMM	¥	COMM	COMM	ZONES	LINK			COMM	COMM	ZONES	DRAW	PARKZ	PARKZ	PARKZ	PARKZ	RESLT	COMM	COMM	COMM	COMM	DRAM	LINE	PARKZ		LIK	COMM		L. N.	ZONES	ZONES	ZONES	PARKZ
RE			ARRAY	ARRAY				ARRAY	ARRAY	ARRAY		ARRAY					ARRAY	ARRAY			ARRAY							ARRAY	ARRAY	ARRAY	ARRAY	ARRAY						ARRAY	ARRAY		ARRAY			ARRAY	ARRAY	ARRAY	ARRAY	ARRAY
N TYPE	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	INTEGER	REAL															
ES SI	H	CHSC	COUNT	DIST	DNBNDY	EPSLON1	EPSLON3	FEXAT	FINATT	FRAMIL	_	TOPT	1812	MINDE	7	_	LCAP	LHEAD	NCLB	NEXT	NLANE	NLK	ZZZ	NPLU	NYEAR	NZONES	PENX	PLA	PLL	PNOS	2	GUEUE	100	TOTOEN	1915	TTPZ	UPBNDY	VEL	77	XPAGE	×.	46	YSUM	72	ZAT	ZGENR	ZLINKS	72
VARIABL	131	132	0	2641	N	=	13	90	9	2742	0	31	15 151	0	0	8	2261	-	40	1357	-	136	137	-4	-	0	4	63	376	314	-	2722	0	12	64	-		3221	143	141	361	30	135	1701	1360	1275	63	227

CDC 6700 FTN V3.0-355F GPT=0 79/08/17, 15.49.02. PAGE

SYMBOL

111 55

SUBROUTINE ZLABEL TRACE
EXTERNALS TYPE ARGS
I ABS INTEGER I
STATEMENT LABELS
0 I

COMPON BLOCKS LENOTH

COMPI 53

LINK 3121

ZONES 1657

VOLUME 4320

PARKZ 304

RESLT 1730

ORAW 15

254

PROGRAM LENGTH 1438 99 COMMON LENGTH 257008 11200

	IS = 1) SHIFT SHIFT	7. 17. 19.8 17. 17. 19.8	A 11 M		ERIOD.)
OF CONTENTS, ING N O CAPACITIES AND TRIP LENGTHS	ARRAY OF LAND USE PRODUCTIONS AND ATTRACTIONS (IPFG(1)=1) TRIP PRODUCTIONS (PERSONS) (IPFLG(1)=1) TRIP ATTRACTIONS (PERSONS) (IPFLG(1)=1) MATRIX ASSOCIATING ZONES WITH GATES(IPFLG(1)=1) TRIP PRODUCTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS) TRIP ATTRACTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS)	HD. TRIP DISTRIBUTION, ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPPLG(2)>=1) ORIGIN-DESTINATION ARRAY (IPPLG(2)=1) ORIGIN-DESTINATION ARRAY FOR CIVILIAN VEHICLE (IPPLG(2)=2) ORIGIN-DESTINATION ARRAY FOR MILITARY VEHICLE ORIGIN-DESTINATION ARRAY FOR MILITARY VEHICLE (IRPLG(2)=4) AL SPLICE	ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(3)=1)) CALIBRATION FACTORS CALIBRATION FACTORS (IPFLG(3)=2) (IOPFLG(3)=2) (IOPFLG(3)=2)	VEHICLE COUNT, TYPE AND HOT/COLD STARTS (IPPLICATION) (IPPLICATION) (IPPLICATION) (INTERSECTION DELAYS AND DUEUEING ARRIVED LOT TRAVEL TIMES) HIS SUMMARY.	//35%,57H 1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD.) //25%,56HPGSSIBLE REPETITION OF A THROUGH I FOR EACH TIME PERIOD.) WRITE(6,999) FORMAT(H-,759%,12HINTRODUCTION,) FORMAT(H-,759%,12HINTRODUCTION,) FORMAT(H-,750%,12HINTRODUCTION,) FO
6,000 6,000 6,000 1111// 1371A.	227 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	05.2. 9.6. 4. F.	A/35X, 57H C. ORIGIN TO GATE AND (B/35X, 57H C. ORIGIN TO GATE AND (B/35X, 18HF. CALIBRATION, 1/35X, 57H C. CALIBRATION, 1/35X, 57H C. ORIGIN TO GATE AND (B/35X, 57H C. ORIGIN	57H 2	1//35X, 57H 1. NETWORK SU 2//35X, 56HPGSS IBLE REPETIT WAITE(6, 999) FORMAT(1H.,//59X, 12HINTRO 1//35X, 37H THE U.S. AIR
SUBROU CALL L WRITE 8888 FORMAT 17.35X, 27.35X, 37.35X, 47.35X,	6 (/09 kg/) 1 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9	4 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7/35% 9/35% 9/35% 8/35% 8/35% 0/35% 0/35% 0/35%	-0 -0

CDC 6700 FTN V3.0-355F GPT=0 79/06/17, 15.49.02. 4/ 35X,57HEMPLOYMENT, AND ENGINEERING DATA. THE MODEL WILL GRAPHIC 6/ 35X,57HEMPRESENT AIR BASE MOTOR VEHICLE OPERATION ON VOLUME/FLOW 7/ 35X,57HMAPS, AND WILL GUTPUT A FILE OF TRAFFIC FLOWS FOR INPUT 6/ 35X,43HTO THE ADAM (AIR QUALITY ASSESSMENT) MODEL.1H1) TRACE SUBROUTINE TOFC

0

PAGE

256

Appendix B

UTILITY ROUTINES

B.1 PROGRAM NETINT

The NETINT program (Table B.1) uses the BATS-LCON array, which indicates interconnection between links, to determine the intersections in the network. Two to four links leading into each intersection are specified. These link numbers are then arranged in the order of north, east, south, and west approaches. The x,y coordinates of each link are used to determine the direction from which each link approaches an intersection.

As input, the program reads a header card and a card indicating the number of links in the network, followed by a deck of Type 2 cards in the BATS format. The program prints an intersection number of each intersection followed by the link numbers of the north, east, south, and west approaches. The program also prints the coordinates and intersection number associated with each link.

Table B-1

PROGRAM NETINT LISTING

PRODRAM	NETINT TRACE CDC 6700 FTN V3.0-355F GPT=0 79/06/20. 11.43.54. PAG	9
	PROGRAM NETINT(INPUT, OUTPUT) C THIS PROGRAM READS A BATS INPUT DECK AND IDENTIFIES ALL INTERSECTIONS C INPLIED BY THE LINK CONNECTIONS1.E. LCON ARRAY. A POSSIBLE EXTENSION TO THIS PROGRAM WOULD BE TO CHECK X-Y COORDINATES. YOU COULD PRINT A PESSAGE WHEN THE LINK X-Y DID NOT	
ē		
2	CS ARRAYS OPENSION OUT(4), IC(20), IFL(240), MNSE(4), DIR(4), INL(4) CONTON / LINK / NLINK, NLANE(240), DIREC(240,4), LCAP(240) 1 , DIST(240), VEL(240), LCON(240,3) INTEGER OUT	
	90 FORMAT(7X, 7A10) FRINT 91 . 1A.18 91 FORMAT(1H1, 6X, 7A10)	
2	FORMAT (2X, 4)	
R	00 3 1=1, MLINK F(DIST(1).E0.0) DIST(1)=1.0 00 3 1=1,3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
R	3 DIREC(1,J)=DIREC(1,J)=DIST(1)+NLANE(1)=1000. CALL COURTY OUT 1000 1 = 1, MLINK IFL(1) = 0 1000 CONTINUE	
R	£6¥5	
ę	F 5	
·	2000 CONTINE 2050 CONTINE C	
8	OUT(1) = LCON(1,2) OUT(2) = LCON(1,1) OUT(4) = LCON(1,3)	
8		

Table B-1 (Continued)

PROGRAM	NETINT	NT TRACE	CDC 6700 FTN V3.0-355F GPT=0 79/06/20. 11.43.54.	79/06/20.	11.43.54
	3000	0 = (11)			
			LING, LCON(1)		
		DO 5000 11 = 1, NLINK			
90	v	CHECK FOR SAM LINK			
		1F(1. Eq. 11) 60 10 5000 DO 4000 11 = 1, 3	2007		
		DO 3500 K=1.4	2000		
65		IF (LCON(11, 31) . NE.	DUT(K)) GO TO 3500		
		KOUNT = KOUNT + 1			
	o	ž	EOM. LOCATION		
		IX = K+1			
		IF(J1.EQ.1) IK=K+2			
20		IF(J1.EQ.2) IK=K+3			
		F(IK.GT.4) IK=IK-4			
	CHE	CHECK CONSISTANT ORIENTATION OF INTERSECTION	ERSECTION		
		200 10-2 13-2 4			
78		IK = 12			
,		IF (INL (32), EQ. 0) GO TO 3105			
	3103	CONTINUE			
		GO TO 3106			
		INL(IK)=11			
00	3106	IC(KOUNT) =11			
		1F(0UT(1) .NE.0) GO TO 3300			
		EC. CONC. 1 121 EO O1 OF TA 2200			
		F(LCON(11.12) NF OUT(2) AND LC	IFFICON(1) 22 NE OUT (2) AND LODN(1) 22) NF OUT (3) AND LODN(1) 22)	12)	
69	-	2) . NE. BUT(4)) BUT(1) = LCGN(11, J2)			
	3200	3200 CONTINUE			
	3300				
		IPL(II) = INUM + I			
06	3500	CONTINUE			
	4000	CONTINUE			
		CONTINUE			
		IF (KOUNT . EQ. 1) 80 TO 9000			
		FL(1) = INUM + 1			
92	0009	CONTINUE			
		PERSONAL LE. 4) GO TO 61			
	960	FORMATCION TO MANY APPROACHES 2015)			
100	19	CONTINUE			
		DO 3600 K = 1, KOUNT			
		11 * 16(K)			
		YOIR = DIREC(11,2) - DIREC(11,4)	The same was a second of the same of the s		
		XDIR = DIREC(11,1) - DIREC(11,3)			
60		PERSON STORY SOUTH STORY	3600		
	3600	CONTINUE			
	0				
	SOR	C SORT THE DIR LARGEST TO SMALLEST			
	٠				

Table B-1 (Continued)

Appendix C

SAMPLE RUN: WILLIAMS AFB

I. Introduction

The Williams data base has been run through several different sequences using the BATS model, including runs for one 12-hour time period, for 12 one-hour time periods, for the morning peak rush hour (15 minute time periods from 7:00 A.M. to 8:00 A.M.), for the hourly period from 11:00 A.M. to 12:00 P.M., in both descriptive and predictive modes. In this section the 11:00 A.M. to 12:00 P.M. runs are discussed and briefly analyzed. A discussion of the remaining runs is not within the scope of this document.

II. Descriptive Runs

The descriptive run is entitled, "WILLIAMS AFB, 11 1300 CAL, 29 09 79," on the blocked heading. This heading is somewhat difficult to read because the PPS (Peripheral Printing System) does not overprint lines as a line printer does.

The descriptive run simulates the Williams AFB traffic network during the peak noon hour from 11:00 A.M. to 12:00 P.M. The vehicle volumes on each link look quite reasonable when compared to field data collected by the research team. Thus, the run is accepted as describing the existing situation at the base during a typical Friday noon rush period.

III. Predictive Run

A second run was made to predict what would happen if the main thoroughfares (D and E Streets) were changed from two-way to one-way streets. A plot of the link and zone network is included for reference as Figure C-1. This required changing the input data so that no links connected to any link going west on D Street or east on E Street. Thus, the change to the input data was simple and no changes were made to the intersection or zone definitions.

The predictive run simulates the Williams AFB network during the peak noon hour from 11:00 A.M. to 12:00 P.M. The implementation of one-way streets was tested to see if improved traffic flow resulted from relieving congestion or by shortening turning movement time.

IV. Results

The most general report of network effectivenss is on the last page of the computer printout:

I.1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD.

The results of the descriptive and predictive runs can be summarized by the following table:

Table C-1
SUMMARY OF PREDICTIVE AND DESCRIPTIVE RUNS
FOR WILLIAMS AFB

Measured Factor	Descriptive	Predictive
Total travel time on network (vehicle-hour)	71	75
Total running time in parking zones (vehicle-hour)	73	73
Total vehicle miles traveled on network (vehicle-mile)	1,603	1,676
Total intersection delay (vehicle-hour)	5	6
Total stops at intersection (vehicle)	4,818	5,470
Total intersection average queue/lengths (meters)	249	255

An analysis shows that one-way streets increase the distance traveled by 73 vehicle miles. Travel time increases (it takes longer to travel more miles) and intersection delay increases (vehicles go through more intersections). Therefore, there is not enough congestion during the noon rush hour to offset the increase in trip length caused by one-way streets. However, the increase is not drastic and the small amount of congestion that was observed to occur during the noon rush hour could be alleviated by one-way streets and an improved overall network could result. A further run of the model could be made by the Williams AFB traffic engineer to test the hypothesis for the A.M. and P.M. rush hours.

TABLE OF CONTENTS

- A. INPUT DATA
 - 1. INPUT LISTING
- B. INITIALIZATION
 - 1. ZONE PARKING CAPACITIES AND TRIP LENGTHS
- C. TRIP GENERATION
 - ARRAY OF LAND USE PRODUCTIONS AND ATTRACTIONS (IPFLG(1)=1)
 - 2. TRIP PRODUCTIONS (PERSONS) (IPFLG(1)=1)
 - 3. TRIP ATTRACTIONS (PERSONS) (IPFLG(1)=1)
 - 4. MATRIX ASSOCIATING ZONES WITH GATES(IPFLG(1)=1)
 - 5. TRIP PRODUCTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS)
 - 6. TRIP ATTRACTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS)

D. TRIP DISTRIBUTION

- 1. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(2)>=1)
- 2. ORIGIN-DESTINATION ARRAY (IPFLG(2)=1)
- 3. ORIGIN-DESTINATION ARRAY FOR CIVILIAN VEHICLE TRIPS (1PFLG(2)=2)
- 4. ORIGIN-DESTINATION ARRAY FOR MILITARY VEHICLE TRIPS (1PFLG(2)=4)

E. MODAL SPLIT

- 1. MODAL SPLIT VEHICLE LOAD FACTORS (IPFLG(3)=1)
- ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(3)=1)

F. CALIBRATION

- 1. CALIBRATION FACTORS
- 2. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(3)=2)

G. ASSIGNMENT

1. ASSIGNMENT COUNTS AND ASSOCIATED COMPUTER RUN TIME

(IPFLG(3)>=4)

- 2. VEHICLE COUNT, TYPE AND HOT/COLD STARTS (IPFLG(3)>0)
- H. TRAFFIC FLOW ANALYSIS
 - 1. LINK COUNTS (IPFLG(3)=0)
 - 2. INTERSECTION DELAYS AND QUEUEING
 - 3. PARKING LOT TRAVEL TIMES AND DELAYS
 - 4. LINK TO LINK TRAVEL TIMES
- 1. SUMMARY
- 1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD
 POSSIBLE REPETITION OF A THROUGH ! FOR EACH TIME PERIOD.

INTRODUCTION

THE U.S. AIR FORCE THROUGH A CONTRACTURAL ARRANGEMENT HAS DEVELOPED AN AIR BASE MOTOR VEHICLE MODEL THAT WILL SIMULATE A BASE TRAFFIC NETWORK USING AVAILABLE LAND USE, EMPLOYMENT, AND ENGINEERING DATA. THE MODEL WILL GRAPHICALLY REPRESENT AIR BASE MOTOR VEHICLE OPERATION ON VOLUME/FLOW MAPS, AND WILL GUTPUT A FILE OF TRAFFIC FLOWS FOR INPUT TO THE AGAM (AIR QUALITY ASSESSMENT) MODEL.1

A.1. INPUT LISTING: OF EACH DATA CARD - WITH MODIFICATIONS MADE BY SUBROUTINE INPT.

78/ 9/	29 WILLIAMS AFB	11	-1300	CAL	IBRAT			
1 240	62 50 50 9 1 -0	1	2	0****	**00.	6.36	00.	-00.133*1*91377
2 1	1*644.*358.*778.*358.	-0	25.	55	7	10	-0.	3.04785323.2*29.5
2 2	1*644.*358.*778.*358.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 3	1*641.*245.*778.*245.	-0	25.	79	9	12	-0.	3.04785323.2*29.5
2 4	1*641.*245.*778.*245.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 5	1*638.*023.*775.*023.	-0	25.	101	11	173	-0.	3.04785323.2*29.5
2 6	1*638.*023.*775.*023.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 7	1*644.*358.*647.*602.	-0	25.	73	-0	-0	-0.	3.04785323.2*29.5
2 8	1*644.*358.*647.*602.	-0	25.	10	55	2	-0.	3.04785323.2*29.5
2 9	1*641.*245.*644.*358.	-0	25.	7	2	55	-0.	3.04785323.2*29.5
2 10	1*641.*245.*644.*358.	-0	25.	12	79	4	-0.	3.04785323.2*29.5
2 11	1*641.*245.*641.*026.	-0	25.	9	4	79	-0.	3.04785323.2*29.5
2 12	1*641.*245.*641.*026.	-0	25.	173	101	6	-0.	3.04785323.2*29.5
2 13	1*564.*687.*564.*580.	-0	25.	29	74	31	-0.	3.04785323.2*29.5
2 14	1*564.*687.*554.*580.	-0	25.	176	33	-0	-0.	3.04785323.2*29.5
2 15	1*568. *358. *568. *465.	-0	25.	175	-0	35	-0.	3.04785323.2*29.5
2 16	1*568. *358. *568. *465.	-0	25.	18	185	56	-0.	3.04785323.2*29.5
2 17	1*568. *245. *568. *358.	-0	25.	15	56	185	-0.	3.04785323.2*29.5
2 18	1*568.*245.*568.*358.	-0	25.	20	177	80	-0.	3.04785323.2*29.5
2 19	1*568.*245.*564.*023.	-0	25.	17	80	177	-0.	3.04785323.2*29.5
2 20	1*568.*245.*564.*023.	-0	25.	180	181	102	-0.	3.04785323.2*29.5
2 21	1*568.*916.*464.*828.	-0	25.	47	183	-0	-0.	3.04785323.2*29.5
2 22	1*568.*916.*464.*828.	-0	25.		174	44	-0.	
2 23	1*464.*358.*458.*245.	-0	25.	179	186	37	375010	3.04785323.2*29.5
2 24							-0.	3.04785323.2*29.5
2 25	1*464.*358.*458.*245.	-0	25.	26	39	178	-0.	3.04785323.2*29.5
	1*455. *245. *455. *026.	-0	25.	23	178	39	-0.	3.04785323.2*29.5
2 26	1*455. *245. *455. *026.	-0	25.	-0	41	182	-0.	3.04785323.2*29.5
2 27	1*479. *964. *388. *870.	-0	25.	187	-0	30	-0.	3.04785323.2*29.5
2 28	1*479. *964. *383. *870.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 29	1*564.*667.*388.*870.	-0	25.	-0	28	187	-0.	3.04785323.2*29.5
2 30	1*564.*687.*388.*870.	-0	25.	14	31	74	-0.	3.04785323.2*29.5
2 31	1*564.*687.*336.*690.	-0	25.	189	191	54	-0.	3.04785323.2*29.5
2 32	1*564.*687.*336.*690.	-0	25.	74	14	29	-0.	3.04785323.2*29.5
2 33	1*564.*580.*336.*583.	-0	25.	193	53	196	-0.	3.04785323.2*29.5
2 34	1*564.*580.*336.*583.	-0	25.	-0	176	13	-0.	3.04785323.2*29.5
2 35	1*568.*471.*333.*471.	-0	25.	-0	195	198	-0.	3.04785323.2*29.5
2 36	1*568.*471.*333.*471.	-0	25.	-0	16	175	-0.	3.04785323.2*29.5
2 37	1*464.*358.*336.*358.	-0	25.	103	197	-0	-0.	3.04785323.2*29.5
2 38	1*464.*358.*336.*358.	-0	25.	186	24	-0	-0.	3.04785323.2*29.5
2 39	1*458.*245.*235.*245.	-0	25.	201	57	60	-0.	3.04785323.2*29.5
2 40	1*458. *245. *235. *245.	-0	25.	178	26	23	-0.	3.04785323.2*29.5
2 41	1*452.*023.*235.*026.	-0	25.	205	59	208	-0.	3.04785323.2*29.5
2 42	1*452.*023.*235.*026.	-0	25.	182	-0	25	-0.	3.04785323.2*29.5
2 43	1*955.*586.*955.*361.	-0	25.	-0	78	199	-0.	3.04785323.2*29.5
2 44	1*568.*916.*327.*916.	-0	25.	209	-0	212	-0.	3.04785323.2*29.5
2 45	1*327. *828. *138. *797.	-0	25.	-0	217	68	-0.	3.04785323.2*29.5
2 46	1*327. *828. *138. *797.	-0	25.	184	-0	211	-0.	3.04785323.2*29.5
2 47	1*464. *828. *318. *672.	-0	25.	-0	-0	50	-0.	3.04785323.2*29.5
2 48	1*464.*828.*318.*672.	-0	25.	22	-0	183	-0.	3.04785323.2*29.5
2 49	1*318.*672.*543.*325.	-0	25.	-0	48	-0	-0.	3.04785323.2*29.5
2 50	1*318.*672.*543.*325.	-0	25.	-0	-0	240	-0.	3.04785323.2*29.5
2 51	1*769. *364. *815. *364.	-0	25.	85	-0	122	-0.	3.04785323.2*29.5
2 52	1*769. *364. *815. *364.	-0	25.	110	-0	119	-0.	3.04785323.2*29.5
2 53	1*336. *690. *336. *583.	-0	25.	191	32	189	-0.	3.04785323.2*29.5
2 54	1*336. *690. *336. *583.	-0	25.	196	193	34	-0.	3.04785323.2*29.5
2 55	1*644.*358.*568.*338.	-0	25.	185	15	18	-0.	3.04785323.2*29.5
2 56	1*644.*358.*568.*358.	-0	25.	2	10	7	-0.	3.04785323.2*29.5
2 57	1*238.*358.*235.*245.	-0	25.	-0	104	71	-0.	3.04785323.2*29.5

```
2 58
         1*238. *358. *235. *245.
                                      -0
                                          25.
                                                 60
                                                      201
                                                             40
                                                                  -0.
                                                                         3.04785323.2*29.5
2 59
                                      -0
                                          25.
                                                 57
         1*235. *245. *235. *026.
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                       40
                                                            201
                                           25
  60
         1*235. *245. *235. *026.
                                      -0
                                                208
                                                      205
                                                             42
                                                                  -0.
                                                                         3 04785323.2*29.5
  61
         1*147.*913.*147.*690.
                                      -0
                                           25.
                                                 -0
                                                        -0
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                            190
77
72
         1*147. *913. *147. *690.
                                           25.
                                                        75
                                                                         3.04785323.2 29.5
                                                222
                                                                   -0.
         1 * 144, * 586, * 141, * 361.
                                                      194
  63
                                      -0
                                           25.
                                                221
                                                                  -0.
                                                                         3.04785323.2*29.5
                                           25.
  64
         1*144.*586.*141.*361.
                                      -0
                                                       81
                                                 -0
                                                                  -0.
                                                                         3.04785323.2*29.5
  65
                                           25.
         1*141.*245.*141.*026.
                                      -0
                                                 -0
                                                      202
                                                             87
                                                                  -0.
                                                                         3.04785323.2*29.5
  66
         1 * 141 . * 245 . * 141 . * 026 .
                                      -0
                                           25.
                                                216
                                                      219
                                                            206
                                                                   -0.
                                                                         3.04785323.2*29.5
         1*138. *797. *138. *587.
  67
                                      -0
                                          25.
                                                217
                                                       46
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                 70
  68
         1*138. *797. *138. *587.
                                      -0
                                           25.
                                                        99
                                                              -0
                                                                  -0.
                                                                         3.04785323.2*29.5
                                          25.
  69
         1*138. *587. *138. *203.
                                      -0
                                                  67
                                                             99
                                                        -0
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                                         3.04785323.2*29.5
  70
         1*138. *587. *138. *203.
                                      -0
                                           25.
                                                  -0
                                                        -0
                                                              -0
                                                                  -0.
  71
         1*244. *358. *141. *261.
                                      -0
                                           25.
                                                  81
                                                        63
                                                              -0
                                                                  -0.
                                                                         3.04785323.2*29.5
  72
         1*244. *358. *141. *361.
                                      -0
                                           25.
                                                 104
                                                        58
                                                              -0
                                                                  -0.
                                                                         3.04785323.2*29.5
  73
74
         1*564.*687.*647.*602.
                                           25.
                                      -0
                                                  31
                                                        29
                                                              14
                                                                         3.04785323.2*29.5
                                                                  -0.
         1 * 564 . * 687 . * 647 . * 602 .
                                      -0
                                           25.
                                                   8
                                                        -0
                                                              -0
                                                                  -0.
                                                                         3.04785323.2*29.5
  75
                                                                         3.04785323.2*29.5
         1*147.*690.*812.*693.
                                      -0
                                           25.
                                                  -0
                                                       117
                                                            136
                                                                  -0.
                                                             61
  76
         1*147. *690. *812. *693.
                                      -0
                                           25.
                                                 190
                                                       222
                                                                   -0.
                                                                         3.04785323.2*29.5
         1*955.*586.*144.*586.
                                      -0
                                           25.
                                                 199
                                                        -0
                                                                   -0.
                                                                         3.04785323.2*29.5
  78
         1*955, *586, *144, *586.
                                           25.
                                                 194
                                                        64
                                      -0
                                                            221
                                                                         3.04785323.2*29.5
                                                                  -0.
  79
         1*641.*245.*568.*245.
                                      -0
                                           25.
                                                 177
                                                        17
                                                             20
                                                                  -0.
                                                                         3.04785323.2*29.5
  80
         1*641.*245.*568.*245.
                                      -0
                                           25.
                                                  4
                                                        12
                                                               9
                                                                  -0.
                                                                         3.04785323.2*29.5
  81
         1*141.*358.*028.*361.
                                      -0
                                           25.
                                                  83
                                                        -0
                                                            106
                                                                   -0.
                                                                         3.04785323.2*29.5
  82
         1*141.*361.*028.*361.
                                      -0
                                           25.
                                                  72
                                                        -0
                                                             63
                                                                  -0.
                                                                         3.04785323.2*29.5
                                          25.
                                                        43
         1*028. *361. *955. *364.
  83
                                      -0
                                                 133
                                                            112
                                                                  -0.
                                                                         3.04785323.2*29.5
  84
         1*028. *361. *955. *364.
                                      -0
                                           25.
                                                  82
                                                       106
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2
  85
         1*769. *364. *510. *361.
                                      -0
                                           25.
                                                 147
                                                       145
                                                              -0
                                                                  -0.
                                                                         3.04785323.2*29.5
  86
         1*769. *364. *510. *361.
                                      -0
                                           25.
                                                 52
                                                                         3.04785323.2*29.5
                                                       122
                                                              -0
                                                                  -0.
  87
         1*049. *245. *141. *245.
                                      -0
                                           25.
                                                 223
                                                        -0
                                                             108
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                        66
  88
         1*049. *245. *141. *245.
                                      -0
                                           25.
                                                202
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
         1*860. *251. *769. *251.
  89
                                      -0
                                           25.
                                                227
                                                       121
                                                              -0
                                                                   -0.
                                                                         3.04785323.2*29.5
                                                            115
  90
         1*860. *251. *769. *251.
                                      -0
                                           25.
                                                 226
                                                        -0
                                                                   -0.
                                                                         3.04785323.2*29.5
  91
         1*671.*251.*577.*251.
                                           25.
                                                        -0
                                      -0
                                                 149
                                                            152
                                                                   -0.
                                                                         3.04785323.2*29.5
  92
         1*671.*251.*577.*251.
                                      -0
                                           25.
                                                       124
                                                228
                                                                         3.04785323.2*29.5
                                                             -0
                                                                   -0.
         1 * 952. * 026. * 665. * 032.
  93
                                      -0
                                           25.
                                                229
                                                       123
                                                            160
                                                                  -0.
                                                                         3.04785323.2*29.5
  94
                                                                         3.04735323.2*29
         1*952.*026.*665.*032.
                                      -0
                                           25.
                                                 232
                                                       -0
                                                             113
                                                                  -0.
  95
         1*138.*919.*668.*919.
                                      -0
                                           25.
                                                 155
                                                       159
                                                            126
                                                                   -0.
                                                                         3.04785323.2*29.5
         1*138.*919.*668.*919.
                                      -0
                                           25.
                                                       218
                                                            215
                                                                         3.04785323.2*29.5
                                                 214
                                                                   -0.
  97
         1*138. *797. *662. *800.
                                      -0
                                           25.
                                                       125
                                                 -0
                                                            234
                                                                   -0.
                                                                         3.04785323.2*29.5
                                          25.
  98
         1*138. *797. *662. *800.
                                                  46
                                      -0
                                                        68
                                                            217
                                                                  -0.
                                                                         3.04785323.2*29.5
2 99
         1*662.*590.*138.*587.
                                      -0
                                           25.
                                                 236
                                                       233
                                                             128
                                                                   -0.
                                                                          3.04785323.2*29.5
         1*662. *590. *138. *587.
2100
                                      -0
                                           25.
                                                  -0
                                                       70
                                                             67
                                                                   -0.
                                                                         3.04785323.2*29.5
2101
         1*638.*023.*564.*023.
                                      -0
                                           25.
                                                 181
                                                        19
                                                                         3.04785323.2*29.5
                                                             180
                                                                  -0.
         1*638.*023.*564.*023.
2102
                                      -0
                                           25.
                                                   6
                                                       173
                                                             11
                                                                   -0.
                                                                         3.04785323.2*29.5
2103
         1 * 244 . * 358 . * 336 . * 358 .
                                                  71
                                      -0
                                           25.
                                                       -0
                                                             58
                                                                  -0.
                                                                         3.04785323.2*29.5
2104
         1 * 244 . * 358 . * 336 . * 358 .
                                      -0
                                           25.
                                                  38
                                                        -0
                                                             197
                                                                   -0.
                                                                          3.04785323.2*29.5
                                           25.
2105
          1*028. *361. *028. *245.
                                      -0
                                                        82
                                                             83
                                                                          3.04785323.2*29.5
                                                  -0
                                                                   -0.
2106
         1*028. *361. *028. *245.
                                      -0
                                           25.
                                                  -0
                                                       203
                                                            224
                                                                   -0.
                                                                         3.04785323.2*29.5
2107
         1*049. *245. *043. *026.
                                      -0
                                           25.
                                                  -0
                                                        88
                                                            223
                                                                  -0.
                                                                         3.04785323.2*29.5
2108
         1 * 049. * 245. * 043. * 026.
                                      -0
                                           25.
                                                  -0
                                                       231
                                                            220
                                                                  -0.
                                                                          3.04785323.2*29.5
2109
         1*815. *364. *860. *364.
                                      -0
                                           25.
                                                  51
                                                       119
                                                              -0
                                                                   -0.
                                                                          3.04785323.2*29.5
2110
          1 * 815. * 364. * 860. * 364.
                                      -0
                                                              -0
                                           25.
                                                 134
                                                       116
                                                                   -0.
                                                                          3.04785323.2*29.5
2111
         1 * 955. * 364. * 955. * 248.
                                      -0
                                           25.
                                                  43
                                                        84
                                                            133
                                                                  -0.
                                                                          3.04785323.2*29.5
2112
          1 * 955, * 364, * 955, * 248.
                                      -0
                                                       225
                                           25.
                                                 114
                                                            204
                                                                   -0.
                                                                          3.04785323.2*29.5
         1*955. *248. *952. *026.
2113
                                      -0
                                           25.
                                                 111
                                                       204
                                                            225
                                                                  -0.
                                                                          3.04785323.2*29.5
2114
          1*955. *248. *952. *026.
                                      -0
                                           25.
                                                        93
                                                            232
                                                                   -0.
                                                                          3.04785323.2*29.5
2115
          1*860. 251. *860. *364.
                                      -0
                                           25.
                                                  -0
                                                       134
                                                             109
                                                                   -0.
                                                                          3.04785323.2*29.5
         1*860, *251, *860, *364.
                                      -0
2116
                                           25.
                                                  -0
                                                        89
                                                                          3.04785323.2*29.5
                                                            226
                                                                  -0.
         1*812.*693.*818.*867.
                                      -0
                                                  -0
2117
                                           25.
                                                       164
                                                              -0
                                                                   -0.
                                                                          3.04785323.2*29.5
2118
         1*812.*693.*818.*867.
                                      -0
                                                 136
                                                        -0
                                                              76
                                                                   -0.
                                                                          3.04785323.2*29.5
```

```
2119
         1*815. *590. *815. *364.
                                     -0
                                         25.
                                                135
                                                      200
                                                            141
                                                                         3.04785323.2*29.5
2120
                                          25.
                                                       51
                                                            110
         1*815. *590. *815. *364.
                                                 -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2121
         1*769. *361. *769. *251.
                                     -0
                                          25.
                                                 -0
                                                       52
                                                             85
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                             90
91
2122
                                          25.
                                                      227
                                                                  -0.
         1*769. *361. *769. *251.
                                     -0
                                                 -0
                                                                         3.04785323.2*29.5
                                                                         3.04785323.2*29.5
2123
         1*665.*032.*671.*251.
                                     -0
                                          25.
                                                 -0
                                                      228
                                                                  -0.
2124
         1*665, *032, *671, *251.
                                          25.
                                                160
                                                      229
                                                             94
                                                                  -0.
                                                                         3.04785323.2*29.5
2125
         1*668. *922. *662. *800.
                                     -0
                                          25.
                                                159
                                                       96
                                                            155
                                                                  -0.
                                                                         3.04785323.2*29.5
                                          25.
                                                       -0
                                                             98
                                                                  -0.
2126
         1*668. *922. *662. *800.
                                     -0
                                                234
                                                                         3,04785323.2*29.5
                                                      100
                                          25.
                                                233
                                                            236
2127
         1*662.*590.*668.*422.
                                     -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2128
         1*662.*590.*668.*422.
                                     -0
                                          25.
                                                 -0
                                                      129
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2129
         1 * 668 . * 422 . * 559 . * 361 .
                                          25.
                                                130
                                                       -0
                                                             -0
                                     -0
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                       -0
2130
         1*559. *361. *565. *187.
                                     -0
                                          25.
                                                 -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
         1 * 769. * 364. * 668. * 422.
                                          25.
                                                129
                                                      127
2131
                                                                         3.04785323.2*29.5
                                     -0
                                                             -0
                                                                  -0.
2132
         1 * 769. * 364. * 769. * 178.
                                     -0
                                          25.
                                                 -0
                                                       -0
                                                            131
                                                                  -0.
                                                                         3.04785323.2*29.5
2133
         1*955. *364. *860. *361.
                                     -0
                                          25.
                                                109
                                                      -0
                                                            116
                                                                  -0.
                                                                         3.04785323.2*29.5
2134
         1*955. *364. *860. *361.
                                          25.
                                                 84
                                     -0
                                                      112
                                                             43
                                                                  -0.
                                                                         3.04785323.2*29.5
2135
         1*812.*693.*815.*590.
                                     -0
                                          25.
                                                117
                                                       76
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
                                          25.
2136
         1*812.*693.*815.*590.
                                     -0
                                                120
                                                      141
                                                            200
                                                                  -0.
                                                                         3.04785323.2*29.5
2137
         1*574.*925.*577.*032.
                                     -0
                                          25.
                                                151
                                                      230
                                                            153
                                                                  -0.
                                                                         3.04785323.2*29.5
2138
         1*574. *925. *577. *032.
                                     -0
                                          25.
                                                 -0
                                                      157
                                                            156
                                                                  -0.
                                                                         3.04785323.2*29.5
2139
         1*519. *593. *550. *123.
                                     -0
                                          25.
                                                 -0
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2140
         1*519.*593.*550.*123.
                                     -0
                                          25.
                                                144
                                                       -0
                                                            142
                                                                  -0.
                                                                         3.04785323.2*29.5
                                          25.
                                                 -0
                                                      139
2141
         1*815. *590. *519. *593.
                                                            144
                                     -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2142
         1*815. *590. *519. *593.
                                     -0
                                          25.
                                                200
                                                      120
                                                            135
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                                  -0.
2143
         1*443. *413. *519. *593.
                                          25.
                                                139
                                                      142
                                     -0
                                                             -0
                                                                         3.04785323.2*29.5
2144
         1*443. *413. *519. *593.
                                     -0
                                          25.
                                                 -0
                                                       -0
                                                            146
                                                                  -0.
                                                                         3.04785323.2*29.5
2145
         1*510. *364. *443. *413.
                                          25.
                                                 -0
                                                      143
                                                                  -0.
                                     -0
                                                             -0
                                                                         3.04765323.2*29.5
                                                                 -0.
2146
         1*510. *364. *443. *413.
                                     -0
                                          25.
                                                 -0
                                                      147
                                                             86
                                                                         3.04785323.2*29.5
                                                                         3.04785323.2*29.5
2147
         1*412.*315.*510.*364.
                                     -0
                                          25.
                                                171
                                                       -0
                                                            150
                                                                  -0.
2148
         1*412. *315. *510. *364.
                                     -0
                                          25.
                                                 86
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2149
         1*577. *251. *412. *315.
                                     -0
                                          25.
                                                171
                                                      148
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2150
         1*577. *251. *412. *315.
                                                                  -0.
                                          25.
                                                 92
                                     -0
                                                      152
                                                             -0
                                                                         3.04785323.2*29.5
2151
         1*577.*032.*577.*251.
                                     -0
                                          25.
                                                 -0
                                                       92
                                                            149
                                                                  -0.
                                                                         3.04785323.2*29.5
2152
         1*577. *032. *577. *251.
                                          25.
                                                138
                                                      153
                                                            230
                                                                  -0.
                                     -0
                                                                         3.04785323.2*29.5
2153
         1*577. *032. *257. *035.
                                      -0
                                          25.
                                                 -0
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2154
         1*577.*032.*257.*035.
                                          25.
                                                230
                                                      138
                                                            151
                                                                  -0.
                                     -0
                                                                         3.04785323.2*29.5
2155
         1*668.*922.*574.*925.
                                     -0
                                          25.
                                                157
                                                      137
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2156
         1*668.*922.*574.*925.
                                     -0
                                          25.
                                                 96
                                                      126
                                                            159
                                                                  -0.
                                                                         3.04785323.2*29.5
2157
         1*574.*925.*269.*361.
                                      -0
                                          25.
                                                 -0
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2158
                                                            137
                                                                  -0.
         1*574. *925. *269. *361.
                                          25.
                                                156
                                                       -0
                                      -0
                                                                         3.04785323.2*29.5
2159
         1*668. *922. *665. *032.
                                          25.
                                                123
                                                       94
                                                            229
                                                                  -0.
                                     -0
                                                                         3.04785323.2*29.5
2160
                                                      155
         1*668. *922. *665. *032.
                                     -0
                                          25.
                                                126
                                                             96
                                                                  -0.
                                                                         3.04785323.2*29.5
2161
         1*470. *593. *361. *151.
                                     -0
                                          25.
                                                 -0
                                                      235
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2162
         1*470. *593. *361. *151.
                                      -0
                                          25.
                                                 -0
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2163
         1 * 818. * 867. * 186. * 867.
                                          25.
                                                 -0
                                                       -0
                                                            118
                                                                  -0.
                                      -0
                                                                         3.04785323.2*29.5
                                                166
2164
         1*818. *867. *186. *867.
                                                                  -0.
                                     -0
                                          25.
                                                       -0
                                                             -0
                                                                         3.04785323.2*29.5
2165
         1*186. *867. *557. *519.
                                     -0
                                          25.
                                                163
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2166
         1*186. *867. *557. *519.
                                      -0
                                          25.
                                                 -0
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2167
         2*916. *315. *696. *312.
                                      -0
                                          25.
                                                 -0
                                                       -0
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2168
                                                172
                                                      237
                                                            170
         2*916.*315.*696.*312.
                                      -0
                                          25.
                                                                  -0.
                                                                         3.04785323.2*29.5
2169
         2*916. *315. *105. *906.
                                     -0
                                          25.
                                                237
                                                      167
                                                            172
                                                                  -0.
                                                                         3.04785323.2*29.5
2170
         2*916. *315. *105. *906.
                                     -0
                                          25.
                                                 -0
                                                       -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2171
                                                167
                                                      170
                                                            237
                                                                         3.04785323.2*29.5
         2*916. *315. *412. *315.
                                      -0
                                          25.
                                                                  -0.
2172
         2*916. *315. *412. *315.
                                      -0
                                                150
                                                       -0
                                          25.
                                                            148
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                      179
2173
         1*638.*023.*568.*916.
                                      -0
                                          25.
                                                 44
                                                             21
                                                                  -0.
                                                                         3.04785323.2*29.5
2174
         1*638.*023.*568.*916.
                                     -0
                                          25 .
                                                 11
                                                       6
                                                            101
                                                                  -0.
                                                                         3.04785323.2*29.5
2175
         1 *564 . *580 . *564 . *468 .
                                                       -0
                                                             33
                                      -0
                                          25.
                                                 13
                                                                  -0.
                                                                         3.04785323.2*29.5
2176
         1*564. *580. *564. *468.
                                      -0
                                          25.
                                                 16
                                                       35
                                                             -0
                                                                  -0.
                                                                         3.04785323.2*29.5
2177
         1*568. *245. *455. *245.
                                          25.
                                                       23
                                                             26
                                     -0
                                                 39
                                                                  -0.
                                                                         3.04785323.2*29.5
2178
         1*568. *245. *455. *245.
                                      -0
                                          25.
                                                 80
                                                       20
                                                             17
                                                                  -0.
                                                                         3.04785323.2*29.5
                                                                         3.04785323.2*29.5
2179
         1*558. *916. *564. *023.
                                                            181
                                                                  -0.
```

```
1 * 568. * 916. * 564. * 023.
2180
                                            25
                                                    21
                                                          44
                                                                -0
                                                                     -0.
                                                                             3.04785323.2*29.5
2181
          1 * 564. * 023. * 452. * 023.
                                        -0
                                            25.
                                                    41
                                                          25
                                                                 -0
                                                                     -0.
                                                                             3.04785323.2*29.5
2182
          1 * 564 . * 023 . * 452 . * 023 .
                                            25.
                                                   102
                                                         180
                                                                     -0.
                                                                             3.04785323.2*29.5
2183
          1 * 464 . * 828 . * 327 . * 828 .
                                        -0
                                             5.
                                                    45
                                                         211
                                                                 -0
                                                                     -0.
                                                                             3.04785323.2*29.5
                                              5.
2184
          1 * 464 . * 828 . * 327 . * 828 .
                                        -0
                                                    -0
                                                          47
                                                                22
                                                                             3.04785323.2*29.5
                                                                     -0.
2185
          1 * 568 . * 358 . * 464 . * 358 .
                                                    37
                                        -0
                                            25.
                                                          -0
                                                                24
                                                                     -0.
                                                                             3.04785323.2*29.5
                                                          18
2186
          1 * 568 . * 358 . * 464 . * 358 .
                                        -0
                                            25.
                                                    56
                                                                15
                                                                     -0.
                                                                             3.04785323.2*29.5
2187
          1*388. *870. *336. *818.
                                            25.
                                                    -0
                                                          -0
                                                               192
                                                                     -0.
                                                                             3.04785323.2*29.5
2188
          1*388. *870. *336. *818.
                                        -0
                                            25.
                                                    28
                                                          30
                                                                -0
                                                                     -0.
                                                                             3.04785323.2*29.5
2189
          1*336. *690. *147. *690.
                                        -0
                                            25.
                                                    75
                                                          61
                                                               222
                                                                     -0.
                                                                             3.04785323.2*29.5
                                                          54
2190
          1*336. *690. *147. *690.
                                        -0
                                            25.
                                                    32
                                                                             3.04785323.2*29.5
                                                               191
                                                                     -0.
2191
                                                         188
          1*336. *818. *336. *690.
                                        -0
                                            25.
                                                    -0
                                                                -0
                                                                     -0.
                                                                             3.04785323.2*29.5
2192
          1*336. *818. *336. *690.
                                        -0
                                            25.
                                                    54
                                                         189
                                                                32
                                                                     -0.
                                                                             3.04785323.2*29.5
2193
          1 * 336. * 583. * 144. * 586.
                                                    77
                                                                             3.04785323.2*29.5
                                        -0
                                            25.
                                                         221
                                                                64
                                                                      -0.
                                                    34
2194
          1*336. *583. *144. *586.
                                        -0
                                            25.
                                                         196
                                                                53
                                                                             3.04785323.2*29.5
                                                                     -0.
          1 * 336 . * 583 . * 333 . * 471 .
2195
                                                    53
                                        -0
                                            25.
                                                          34
                                                               193
                                                                     -0.
                                                                             3.04785323.2*29.5
2196
          1*336. *583. *333. *471.
                                        -0
                                            25.
                                                   198
                                                          -0
                                                                36
                                                                     -0.
                                                                             3.04785323.2*29.5
2197
          1*333. *471. *336. *358.
                                        -0
                                            25.
                                                   195
                                                          36
                                                                -0
                                                                     -0.
                                                                             3.04785323.2*29.5
                                                                             3.04785323.2*29.5
2198
          1*333. *471. *336. *358.
                                        -0
                                            25.
                                                    -0
                                                         103
                                                                38
                                                                      -0.
                                                   141
78
2199
          1*955. *586. *815. *590.
                                        -0
                                            25.
                                                         135
                                                                             3.04785323.2*29.5
                                                               120
                                                                      -0.
2200
          1*955. *586. *815. *590.
                                        -0
                                            25.
                                                          -0
                                                                -0
                                                                     -0.
                                                                             3.04785323.2*29.5
2201
          1*141. *245. *235. *245.
                                        -0
                                            25.
                                                    87
                                                          -0
                                                                66
                                                                     -0.
                                                                             3.04785323.2*29.5
2202
          1*141. *245. *235. *245.
                                        -0
                                            25.
                                                    40
                                                          60
                                                                57
                                                                     -0.
                                                                             3.04785323.2*29.5
2203
          1*028. *245. *955. *248.
                                                                             3.04785323.2*29.5
                                        -0
                                            25.
                                                   225
                                                         111
                                                               114
                                                                      -0.
2204
          1 * 028 . * 245 . * 955 . * 248 .
                                        -0
                                            25.
                                                   224
                                                          -0
                                                               105
                                                                     -0.
                                                                             3.04785323.2*29.5
2205
          1*235. *026. *141. *026.
                                        -0
                                                          65
                                            25.
                                                   219
                                                               216
                                                                     -0.
                                                                             3.04785323.2*29.5
2206
          1*235. *026. *141. *026.
                                        -0
                                            25.
                                                    42
                                                         208
                                                                59
                                                                     -0.
                                                                             3.04785323.2*29.5
                                                                             3.04785323.2*29.5
2207
          1*235. *026. *235. *919.
                                        -0
                                            25.
                                                    59
                                                          42
                                                               205
                                                                     -0.
2208
          1*235. *026. *235. *919.
                                        -0
                                            25.
                                                    -0
                                                         213
                                                               210
                                                                     -0.
                                                                             3.04785323.2*29.5
2209
          1*327. *916. *235. *919.
                                        -0
                                            25.
                                                   213
                                                         207
                                                                -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2210
          1*327. *916. *235. *919.
                                                                -0
                                        -0
                                            25.
                                                    -0
                                                         212
                                                                      -0.
                                                                             3.04785323.2*29.5
          1*327. *916. *327. *828.
2211
                                        -0
                                                    -0
                                                               209
                                                                      -0.
                                             25.
                                                          -0
                                                                             3.04785323.2*29.5
                                                          45
                                                                     -0.
2212
          1*327. *916. *327. *828.
                                        -0
                                             25.
                                                    -0
                                                               184
                                                                             3.04785323.2*29.5
2213
          1*235. *919. *138. *919
                                        -0
                                                    95
                                                         215
                                                               218
                                                                     -0.
                                             25.
                                                                             3.04785323.2*29.5
2214
          1*235. *919. *138. *919.
                                        -0
                                             25.
                                                   210
                                                          -0
                                                               207
                                                                      -0.
                                                                             3.04785323.2*29.5
2215
          1 * 138. * 919. * 141. * 026.
                                        -0
                                                    65
                                                         206
                                                                             3.04785323.2*29.5
                                             25.
                                                               219
                                                                      -0.
                                                   218
2216
          1 * 138. * 919. * 141. * 026.
                                        -0
                                             25.
                                                          95
                                                               214
                                                                      -0.
                                                                             3.04785323.2*29.5
2217
          1*138.*919.*138.*797.
                                        -0
                                             25.
                                                   215
                                                         214
                                                                95
                                                                     -0.
                                                                             3.04785323.2*29.5
2218
          1*138. *919. *138. *797.
                                        -0
                                                    68
                                                          97
                                             25.
                                                                 46
                                                                      -0.
                                                                             3.04785323.2*29.5
2219
          1*141. *026. *043. *026.
                                        -0
                                             25.
                                                   231
                                                         107
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2220
          1*141. *026. *043. *026.
                                        -0
                                             25.
                                                   206
                                                         216
                                                                 65
                                                                      -0.
                                                                             3.04785323.2*29.5
2221
          1*147. *690. *144. *586.
                                        -0
                                                    61
                                                                75
                                             25.
                                                         190
                                                                      -0.
                                                                             3.04785323.2*29.5
          1 * 147. * 690. * 144. * 586.
                                                                             3.04785323.2*29.5
2222
                                        -0
                                             25.
                                                    64
                                                          77
                                                               194
                                                                      -0.
2223
          1 * 028 . * 245 . * 049 . * 245 .
                                        -0
                                                   203
                                                         105
                                             25.
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2224
          1 * 028 . * 245 . * 049 . * 245 .
                                        -0
                                             25.
                                                    88
                                                         108
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2225
          1*955. *248. *860. *251.
                                        -0
                                             25.
                                                    89
                                                         115
                                                                             3.04785323.2*29.5
                                                                 -0
                                                                      -0.
          1*955. *248. *860. *251.
2226
                                        -0
                                                   204
                                             25.
                                                         114
                                                               111
                                                                      -0.
                                                                             3.04785323.2*29.5
          1 * 769. * 251. * 671. * 251.
2227
                                        -0
                                             25.
                                                    91
                                                          -0
                                                               124
                                                                      -0.
                                                                             3.04785323.2*29.5
2228
          1*769. *251. *671. *251.
                                        -0
                                             25.
                                                    90
                                                          -0
                                                               121
                                                                      -0.
                                                                             3.04785323.2*29.5
2229
          1 *665 . *032 . *577 . *032 .
                                                         151
                                        -0
                                             25.
                                                   153
                                                               138
                                                                      -0.
                                                                             3.04785323.2*29.5
2230
          1 *665 . *032 . *577 . *032 .
                                        -0
                                                    94
                                             25.
                                                         160
                                                               123
                                                                      -0.
                                                                             3.04785323.2*29.5
2231
          1 * 952 . * 026 . * 043 . * 026 .
                                        -0
                                             25.
                                                    93
                                                         113
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2232
          1 * 952. * 026. * 043. * 026.
                                        -0
                                             25.
                                                   220
                                                          -0
                                                               107
                                                                      -0.
                                                                             3.04785323.2*29.5
2233
          1 * 662. * 800. * 662. * 590.
                                        -0
                                             25.
                                                   125
                                                          98
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2234
          1*662. *800. *662. *590.
                                                               100
                                        -0
                                             25.
                                                   128
                                                         236
                                                                      -0.
                                                                             3.04785323.2*29.5
2235
          1*662, *590, *470, *593.
                                        -0
                                                                             3.04785323.2*29.5
                                             25.
                                                   100
                                                         128
                                                               233
                                                                      -0.
2236
          1 *662, *590, *470, *593,
                                        -0
                                             25.
                                                    -0
                                                          -0
                                                               162
                                                                      -0.
                                                                             3.04785323.2*29.5
2237
          1*916. *315. *041. *187.
                                        -0
                                                    -0
                                                          -0
                                             25
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2238
          1*916, *315, *041, *187,
                                        -0
                                             25.
                                                   170
                                                         172
                                                               167
                                                                      -0.
                                                                             3.04785323.2*29.5
2239
          1*543. *325. *195. *940.
                                             25.
                                                    -0
                                                          49
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
2240
          1 * 543. * 325. * 195. * 940.
                                             25.
                                                    -0
                                                           -0
                                                                 -0
                                                                      -0.
                                                                             3.04785323.2*29.5
```

3	1	8	1	9	56	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	2	10	3	11	80	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	3	12	5	174	102	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	4	30	73	13	32	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	5	14	-0	175	34	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	6	176	-0		-	-0	-0	-0.	11.00		17000					
				15	36		-0		-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	7	16	55	17	186	-0		-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	8	18	79	19	178	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	9	20	101	179	182	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	10	21	-0	48	184	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	11	180	173	22	44	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	12	-0	185	23	38	-0	-0	-17.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	13	24	177	25	40	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	14	26	181	-0	42	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	15	27	-0	29	188	-0	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	16	192	31	53	190	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	17	54	33	195	194	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	18	196	35	197	-0	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	19	198	37	-0	104	-0	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	20	58	39	59	202	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	21	60	41	207	206	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	22	-0	77	43	200	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	23	-0	44	211	210	-0	-0	-0.	-0.	-0.	-0.					
3	24	218	45		98		-0	-0.				-0.	-0.	-0.	-0.	-0.
				67		-1			-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	25	212	183	-0	46	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	26	239	-0	-0	50	-0	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	27	-0	51	121	86	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	28	120	109	-0	52	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	29	-0	103	57	72	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	30	62	189	221	76	-0	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	31	222	193	63	78	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	32	64	71	-0	82	-0	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	33	-0	201	65	88	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	34	66	205	215	220	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	35	68	-0	69	100	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	36	118	75	135	-0	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	37	-0	81	105	84	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	38	83	-0	111	134	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	39	146	85	-0	148	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	40	-0	87	107	224	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	41	122	89	-0	228	-i	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	42	116	225	-0	90	-i	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	43	-0	91	151	150	-i	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	44	-0	227	123	92	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.		
3	45	124	93	159	230		-0	-0.	-0.	-0.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peter Comment	-0.	-0.
3	46	114	231	-0		-2	-0	950.01		0.000	-0.	-0.		-0.	-0.	-0.
3	47	160	95		94	-1		-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	48			125	156	-2	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
		216	213	217	96	-2	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	49	126	97	233	-0	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	50	234	99	127	235	2	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	51	106	223	-0	204	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	52	108	219	-0	232	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	53	-0	133	115	110	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	54	112	203	113	226	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	55	136	199	119	142	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	56	128	-0	-0	131	-1	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	57	152	229	137	154	-2	-0	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.
3	58	-0	155	138	158	-0	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	59	140	141	143	-0	-1	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3	60	147	149	-0	172	-0	-0	-0.	-0.	-0.	-0.	-0.		-0.	-0.	-0.
3		169	171	238	168	2	90	13.	13.	-0.	-0.		2400.2		-0.	-0.

```
0 214
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 15,
3 74 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -0.
-00
-00
-00
-01
167
-01
174
111
9
-00
29
19
21
45
-54
11
106
-01
1146
-1106
41
136
136
136
136
136
136
136
137
137
137
114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -0.

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -0

-0 -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IMS61 13. 2. IMS61 13. 2. ICH61 13. 2. ICH61 13. 2. ITH61 13. 2. ITH65 25. 0. I 277 17 - 0. I 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
1. 0. 0.
20. 0.
33. 7. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
-0. -0. -0.
37. 13.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 000000233323664344643333475454175555424552844454361
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -0.
-0.
-0.
-0.
179634.
27779.
22187.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1206
697
138
218
81.
238
-0.
-0.
```

```
5 57 75.
          -0.
                  327.
                           61.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0
                                                                                        77560.
                                                                      -0.
                                                                               -0. -0.
  67288.
           -0.
                  244.
                            48.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                        38506.
  72102.
           -0.
                   21.
                            44.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          6833.
                   17.
  82 30.
           -0.
                             3.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                            73.
  92120.
           -0.
                   51.
                             8.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                                          7169.
                                                                               -0. -0.
5102 57.
                   48.
                            72.
           -0.
                                             -0.
                                    -0.
                                                              -0.
                                                     -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                            -0
          -0.
5114 70.
                    0.
                             0.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                           825.
5124 51.
           -0.
                    7.
                             4.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                                4. -0.
                                                                                            -0.
5132178.
           -0.
                  115.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          4303.
                             6.
                                                                               5. -0.
5144126.
           -0.
                   21.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                                          1635.
5156 80.
                    7.
                             8.
                                            103.
           -0.
                                    -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                        12265.
5166 38.
          -0.
                   12.
                            24.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                            -0.
5176 81.
           -0.
                    5.
                             9.
                                    -0.
                                             -0.
                                                              -0.
                                                                      -0.
                                                                                3. -0.
                                                     -0.
                                                                                             6.
                   21.
5184306.
           -0.
                            48.
                                     -0.
                                             -0.
                                                     35.
                                                              -0.
                                                                      -0.
                                                                                3. -0.
                                                                                            98.
                           27.
5192 20.
                                    -0.
                                             -0.
           -0.
                   48.
                                                     -0.
                                                              -0.
                                                                                       83235.
                                                                      -0.
                                                                               -0. -0.
5202586.
           -0.
                  135.
                           122.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.132471.
5214186.
          -0.
                   14.
                            24.
                                    -0.
                                             -0.
                                                     32.
                                                               3.
                                                                      -0.
                                                                               -0. -0.114080.
5221188.
                    2.
                             2.
                                    -0.
                                                                               -0. -0.
           -0.
                                            428.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                                            -0.
                    5.
                           26.
                                                                                            -0.
5233 85.
                                    -0.
                                             -0.
                                                     -0.
                                                                      -0.
                                                                               -0. -0.
           -0.
                                                              24.
                  359.
5247195.
           -0.
                           120.
                                    -0.
                                             -0.
                                                              -0.
                                                                                        15833.
                                                     -0.
                                                                      -0.
                                                                               -0. -0.
                   56.
5256 82.
          -0.
                            44.
                                    -0.
                                             -0.
                                                     -0.
                                                               3.
                                                                      -0.
                                                                               -0. -0.
                                                                                         7849.
5264350.
          -0.
                  184.
                            37.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                               -0. -0.
                                                                                        53104.
                                                                     221.
5274165.
                   40.
                                                     27.
           -0.
                            64.
                                    -0.
                                             -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          8570.
5284 64.
           -0.
                    0.
                             0.
                                    -0.
                                             -0.
                                                              -0.
                                                     -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          8570.
5291217.
                    5.
                                    -0.
           -0.
                             7.
                                            216.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          4998.
5306 29.
          -0.
                   36.
                             8.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          6541.
                                                                                            -0.
5314186.
          -0.
                    6.
                                    -0.
                                             -0.
                                                                                7. -0.
                            11.
                                                      -0.
                                                              -0.
                                                                      -0.
5324 92.
           -0.
                    5.
                             1.
                                    -0.
                                             -0.
                                                      -0.
                                                              -0.
                                                                               -0. -0.
                                                                                          1635.
                                                                      -0.
5334 50.
                    2.
                             7.
                                    -0.
                                             -0.
           -0.
                                                      2.
                                                                      -0.
                                                              -0.
                                                                               3. -0.
                                                                                            -0.
5341300.
                    0.
                             0.
                                             -0.
           -0.
                                   152.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                            -0.
5352592.
                   50.
           -0.
                            25.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.384742.
5362 9.
           -0.
                  116.
                            39.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                               3. -0.
                                                                      -0.
                                                                                          9442.
5371600.
           -0.
                   -0.
                            -0.
                                   251.
                                             -0.
                                                     -0.
                                                              -0.
                                                                               -0. -0.
                                                                      -0.
                                                                                            -0.
5381200.
                   -0.
                            -0.
                                             -0.
           -0.
                                    70.
                                                                      -0.
                                                                                            -0.
                                                     -0.
                                                              -0.
                                                                               -0. -0.
5392 72.
5404 70.
                   12.
                            14.
                                    -0.
          -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                        21260.
          -0.
                   26.
                            13.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                            -0.
5411300.
          -0.
                   -0.
                            -0.
                                   102.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                             -0.
5422 72.
          -0.
                   26.
                           29.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                        44972.
5433613. -0.
                   26.
                          204.
                                    -0.
                                             -0.
                                                      9.
                                                             161.
                                                                      -0.
                                                                                4. -0.
                                                                                        24279.
5442 50. -0.
                   26.
                           16.
                                    -0.
                                             -0.
                                                     -0.
                                                              -0.
                                                                      -0.
                                                                               -0. -0.
                                                                                          8512.
6HOME-WORK .50.50* 1 .0005 .0045* 2 .0005 .0045* 3 .0049 .0005* 4 .0049 .0005
6SHOPPING *00.103 62.48002.4800*-0*.0000*.0000*-0*.0000*.0000*.0000*
6SERVICE
             *00.104 7 .3300 .33004 8*.0000*.00004 53.00008.0000*-0*.0000*.0000
GEXTERNAL
             .01.015 3 .1565 .1648*-0*.0000*.0000*-0*.0000*.0000*-0*.0000*
6INDUSTRIAL.50.502 1*.0000*.0000*-0*.0000*-0*.0000*-0*.0000*-0*.0000*-0*.0000
6ADMINISTER.50.506 1*.0000*.0000*-0*.0000*-0*.0000*.0000*.0000*.0000
6FLT.LINE .50.507 1*.0000*.0000*-0*.0000*-0*.0000*-0*.0000*.0000
6HOME
             .50.501 1*.0000*.0000*-0*.0000*.0000*-0*.0000*.0000*-0*.0000
6MILITARY
              .01.05010 .0003 .0003*-0*.0000*.0000*-0*.0000*.0000*-0*.0000*.0000
172 371. 366. -0. -0. -0. -0. -0. -0. -0. -0.
T2= 11.931
                                    T2-T1=
                                               8.160
```

3.	INITIALIZATION WILLIAMS	AFB	11-13	300 CALIB	RATE		
					NG CAPACITIES	AND TRIP LE	NGTHS
		ZONE	CAPACITY	LENGTH	TRAVEL TIME		TRAVEL TIME
		MS	-0.	1603.	1440.		1800.
		CH	-0.	223.	760.		760.
		PH	-0.	1604.	2376.		2970.
		TM	-0.	1603.	2080.		2340.
		GL	-0.	222.	648.		648.
		OT	-0.	1604.	2952.		2952.
		1	88.	227.	36.		36.
		2	116.	165.	26.		26.
		3 4	157.	243.	38.		38.
		4	170.	179.	28.		28.
		5	75.	254.	40.		40.
		6	288.	292.	46.		46.
		7	102.	258.	40.		40.
		8	30.	122.	19.		19.
		9	120.	241.	38.		38.
		10	57.	231.	36.		36.
		11	70.	233.	36.		36
		12	51.	242.	38.		38.
		13	178.	260.	41.		41.
		14	126.	244.	38.		38.
		15	80.	232.	36.		36.
		16	38.	225.	35.		35.
		17	81.	137.	21.		21.
		18	306.	268.	42.		42.
		19	20.	244.	38.		38.
		21	586. 186.	511.	80.		80.
		22	166.	248.	39.		39.
		23	85.	251.	39.		39.
		24	195.	140. 904.	22. 141.		22.
		25	82.	139.	22.		141.
		26	350.	335.	52.		52.
		27	165.	250.	39.		39.
		28	64.	235.	37.		37.
		29	217.	357.	56.		56.
		30	29.	224.	35.		35.
		31	186.	248.	39.		39.
		32	92.	503.	79.		79.
		33	50.	534.	83.		83.
		34	300.	550.	86.		86.
		35	592.	462.	72.		72.
		36	9.	242.	38.		38.
		37	600.	518.	81.		81.
		38	200.	490.	76.		76.
		39	72.	481.	75.		75.
		40	70.	645.	101.		101.
		41	300.	657.	103.		103.
		42	72.	142.	22.		22.
		43	613.	358.	56.		56.
		44	50.	1923.	301.		301.

JRS								
Ę								
1200								
5								
1100								
FROM								
PERIOD FROM 1100. TO 1200. HOURS								
	CTIONS	89.	13.	62.	49.	.61	38.	
ш	TTRAC		•			7.		
IBRAT	A ONA	13.	•	2.	39.			
CAL	SNO	.08	ei.	.7.	150.	ó	ó	
11-1300 CALIBRATE	PRODUCTIONS AND ATTRAC	95. 354. 150.	4	59. 157.	246.	69. 186.	96	
	USE		5.	9	101		<u>و</u>	
AFB	OF LAND USE		e,	ó	30.	4	4	
WILLIAMS AFB	1. ARRAY	173	•	Š	142.	119.	13.	
78/ 9/29	C.	HOME	INDS	SHOP	SERV	EXTN	ADMN	
78/								
BATS MODEL OUTPUT***								

BATS MODEL GUTPUT

12

33.

24.

92. 123.

FLTL

18/

BATS MODEL GUTPUT

TRIP PRODUCTIONS

WILLIAMS

CALIBRATE 11-1300

8---05--8084000-04-48478-485-485-8000-80480-80-805

WILLIAMS

AFB

11-1300

400000 Ceres 2 Grando 000 -- - 4000 Crate 000 Ceres 2 Grando 000 -- - 4000 Crate 000 Ceres 2 Grando Ceres 2 Gra

£00000000004-810010000014000000000000000

278

CALIBRATE

TRIP ATTRACTIONS MODEL OUTPUTARE

***BATS

		PURPOSE									
USE	HOME -	A SHOPP	1 SERVIC	EXTERN	INDUST	ADMINI	F.T.	₹	HOME	MILITA	TOTAL
EXI			9 7 7	0 (ν.		4 (9 .		5 8
X 7 X			90	•	- 0	- 0		, -	9 69		120
X				0	0	0		-	10	0	- 19
EXT	_		1 3	•	0	0		0	N	•	9
EXTN		ē	102	•	8	4		0	65	57	279
FLT			0	~	-	6			~ (0) 1	66
FLT	-	0	9	N	- 1	N		- 1	9	`	33
7		5	34		0	o .		n	24	0	2:
7		0	4	- '	0 (- '		0 0	9	,	-:
E			29	9	m (,	2 .	22	- 5
- 6				, (vc	, ,		v c			
				•	0				0		, -
					, c				0		,
N			. 4	•	0	0			0		. 9
SFRV				9		0		0	0	0	
SERV								0	10	0	25
SON				•	0	0		-	-	•	6
SERV			12	7	-	8		0	1	-	37
ADM		-	8 26	8	-	•		6	0	4	20
ADM		0	9 2	-	0	•		0	-	•	12
ADMIN	_				-	•		1	N	0	36
SERV			28	77	0	4 (9.	9 0	0 !	82
					0 0			- 0	- 0	42	4
200					0	- 61			42	37	264
TO THE		200			00			-	4	0	508
SHOP					-	-		4	4	0	31
FLTL				4	2	9		8	-	80	71
ADMIN				0	-	-		0	10	6	
SERV		0 29		43	6	=	-	4	4	17	
SERV				16	0	4		80	5	6	
SERV	_	0			0	0		0	-	6	
HOME		1 54		82	4	1		20	66	0	
ADMN	_		3 10	-	0	0		4	-	8	
SERV				•	8	N		0	•	0	
SERV			-	-	0	0		0	- '	- '	
SERV				4 (- (- •		- 1	4 (0 0	2 .
A POPE				0 -	0 0			0 0	n -	193	143
N					- 0	•		, 4	- 6		42
OME			31			-			-	0	78
HOME			2 9	4	0	0		N	4	0	12
INDS				0	0	٥		0	0	1	•
SERV		0		6	-	-		-	6	0	16
HOME				0	0	0		0	9	0	30
INDS	_	0		0	0	0		-	0	4	6-
SHOP					•					•	
O STATESTICAL PROPERTY.		52	147	18	0	19		28	9	80	436

COUNTS

TRIP ATTRACTIONS MODEL OUTPUT***

AND SHIFT

COUNTS (PERSONS)

DNSTHE TO TO TO THE TOTAL OF TH

BEBREAR HOUSE CON COCON CHA - NE AL BRAN HAR - B- - 4 - 5 NE 4 - UNINGO

PERIOD FROM 1100. TO1200. CALIBRATE WILLIAMS AFB

#00-0--0000000000-000000-0000000--0000 8-0404-0000000--0-40-48--44-0--00--4-0-0000000 E--404400000---4-444-447400--0-4-46-0-0 vu-a-mu-co-o--um-um-um-uüduamumomuno-uuamuo-u-mova--oō 8-0404-0000000-40-40-44404--00---4-00-00040-0v 200-0-0000000000--004-000--00--00--000-000-%--≈0≈и000000--0--0*04≈-ии4-0*-0-0-0--00000-0и-0004 88-8-8800000-08-0040000-4-04-808080-80-4-0--04088--0E - uur- a4-00-0u-uu-40-uüru4rüno-4uu0-4unau0-u-80en-u-ŭ-0u0u-000000-u0-u0-u0-4b--u4u0ŭ--00---u-00-0w0u-000p woo-o-ooooooooooou-oo4w-oww-oñ--oo-o-nooo-o4on-ooc4 puec-o--oooo-o-u-uuo-4m--44-o4--oo---u-oo-omou-ooo4 p-300000000000-0-000-N00--004000000-000000-0000-

4 m n u e - 000 - 00 - 4 r u m o - u d a u 4 o 8 o - 4 u m o u 4 u u r u o u u - 6 o 5 e u u - 8

CALIBRATE - 404-0000-04-04-04-----400000-48-6-0---0000000 -400000000-0-rus-mun-mr-m-m-monus-mo-u-2000000 •••••••••••••

TRIPS

VEH

č

67/6

18/ FOR

OUTPUT***

HOURS

PERIOD FROM 1100. TO1200. HOURS

11-1300 CALIBRATE

WILLIAMS AFB

78/ 9/29

BATS MODEL GUTPUT

EXTERIOR PRODUCTIONS EXTERIOR ATTRACTIONS INTERIOR PRODUCTIONS INTERIOR ATTRACTIONS 1.004 1.004 1.004 F.1. CALIBRATION FACTORS (FACTOR-GATE COUNT = ATTRACTIONS OR PRODUCTIONS)

11-1300 CALIBRATE

WILLIAMS AFB

BATS MODEL OUTPUT

ZONE								_	2		, .	•	10	9	1			2	.:	::	2	23	7	2	16	17		19	50	21	25	23	24	23	56	27	28	53	30	3	35	33	34	32	36	37	36	36	40	41	42	43
9	20	45	0	7		,	214.	0	6			-		4	0	0	0				•	ò	9	'n	-	ci	14.	6	9	42	52		4	0	36.	-3	-	20	-	9	-	6	9	17.	N	0	e .	-	'n	4	2	6.7
9	155.		-	28	10			'n	ď	1		- 1		•	0	0	0	•				- :	=	'n	0	-	4	*	~	37.	50	-	'n	'n	= !	27.	0	43	-	- 2	0	0	4	17.	i	1	ei.	-	0	e i	2	2
90	o	0	ò	0	0			28	24		::	= ;	3	4	•	-	•				•		23	36	6	27.	53.	24	43	172.	121		40	20	146	25	6	256	9	27.	oi.	13	58	101	30	45	2	0	0	17.	-3	270
905	0	o	o	o	0		5	32.	25.	5			8	47.	'n	-	4	9			9			32	0	27.	223	24.	43	200				40		. 40		-	17.	40	-	46.	- 9	100	28	30	•	9	0		13	223
8																																																				

PERIOD FROM 1100.																																														
TE		NO. PATHS	FOLLOWED	21	21	30	17	36	32	17	18	9	26	22	31	38	27	26	43		25	2 0	9, 4	94	60	96	48	62	52	37	62	64	67	39	46	52	99	96	28	52	49	-6	57	26	90	53
CALIBRATE		TOTAL	TIME	24.598	25.146	25.785	26.247	27.038	27.728	28.260	28.991	29.405	30.164	30.543	31.030	31.517	31.912	32 388	32 939	33 400	23.400	20.00	34 363	35.067	35.486	36.172	36.690	37.478	37.979	38.348	38.960	39.461	40.036	40.431	40.855	41.334	42.099	42.644	43.290	43.796	44.201	44.625	45.112	45.577	46.277	46.702
11-1300	S	ASSIGNMENT					. 462						759						185													. 501														
WILLIAMS AFB	G . ASSIGNMENT COUNS AND ASSCIATED COMPUTER RUN TIMES	ASSON. VEH.	INTERNAL 0-D	28.227	22.002	81.674	10.503	88.621	44.839	4.145	2.950	2.671	13.354	3.593	20.430	35.853	6.338	25 350	46 795	24 042	44 001	1000	168.03/	116.128	17.551	49.361	55.922	149.024	49.076	3.886	233.063	14.754	24.270	. 950	10.267	26.063	86.600	27.403	42.331	10.509	5.720	6.338	16.739	13.552	252.132	3.916
78/ 9/29	NS AND ASSCIATED	ASSON. VEH.	GATES TO DEST.	2.386	1.886	6.926	. 864	7.487	3.946	369	315	204	9 084	1.018	11 035	1 783	340	1 068	40.65	20.00	2.000	200.00	36.696	0.00	7.165	5.085	2.473	11.484	26.545	.380	42.588	.867	15.304	.127	8.502	4.426	16.521	1.978	7.331	2.075	606	000.0	3.043	1.843	49.974	.427
BATS MODEL GUTPUT	. ASSIGNMENT COU	ASSGN. VEH.	CAG. TO GATES	2.833	2.509	6.350	1.195	8.106	3.546	253	237	0000	4 201	125	5 770	2.014	818	1 614	13 781	2 440	20.00	10.00	42.183	25.451	4. 798	3.683	2.792	36.330	13.281	1.195	54.208	1.068	6.471	. 942	3.235	5.801	16.892	1.900	9.352	2.841	. 862	2.427	3.551	1.712	66.652	.372
***BATS	0	ZONE		-	~	0	7	0	9		•	10			**		9.					200		25	23	24	25	56	27	28	58	30	31	32	33	34	35	36	37	38	39	40	-	42	43	44

T01200. HOURS

	-			AND	HOT/COLD	פרה פ	STATUS		CONTINUED	103												
W	THREE	-	121			201		5	172	HDT	HDC		T	M LDT			HDTM	HOOM	TOF	_	DS H	918
200 42 40 6 97 0 00	6.97	0	00.00		35.43	3.50		75	23	6	0.0	99.	6.	13 .92		0.00	16	4	0.00		1.08 4.13	13
201175 0414	2	0	30		-	32		2 2	63		36		3.8	9 16		_	56	1.07	0	G	29137	97
202229 60			63			50.18	•••	-	83	77	0.00			6 9			=	. 35	0	Ö	54133	15
203160 3310	7 08	4 6	38			96. 56	*	9	25	4	.37			2 14			20	. 93	0	6	11128	92
204295 0626	90				, ,	31.17			03	79	0 00						1.77	3.50	0	4	36162.	70
204146 0110	000					20 08			2	0	46			A 27			3 14	5 54	0	~	13128	48
206227 8417			40		, ,,	26. 25			22		00			8 30			88 8	14 81	0	0	90158	63
2002 01 00							•			3 6				1							1 20	20
207 34.49	29.0	4			_	50.00				30						200	200	5	9			
208 0.00	0.00	0	0		•	9.0		2		0.00				9	•	36	3.	30	9			38
209 53.78	2.41	. 3	0		_	18.42		4		80				9 23.	•	35	9	2	9		90 40	35
210 0.00	0.00	0.0	0.0			0.00		0		0.00				0	_	00	00.00	0.00	0		000	86
211 5.21	0.0	0.0	0.0			30		9		.03				7		02		. 33	0		38 4	83
212 16.44	0.0	7.6	9.6			5.94		2		6				3				2.30	0	-	31 14.	13
213 32.41 3	2.41	0.00	0.0			4.35		6		.03				3 25				2.19	o	•	29 29.	
214 26.38	0.00	0.00	13.1			1.86				00.0		-		2 8		20	. 26	. 49	0		12.	17
215 42.19 2	2.53	7.01	2.6		63	30.06		9		60		2.4		5	٥	00	. 28	. 72	ó	_	57 33.	62
216 33 23 2	3.60	1.60	9.6		"	20.21		7 0		00.0		2.6		4		22	1.03	5.06	0	_	3 56.	29
217 40.92 4	0.92	0.00	0.0		W	29.05				00		2.3		- 5	O		. 28	. 72	o		27 32.	65
218 23 60 2	3.60	0.00	0.0		-	18.44		50		00.0		2.5					00	6	o	•	18.	90
219124 3911	0.73	0.00	0.0		w	56.33		.6 9		60		3.1		5 16.			1.76	3.93	o	-	1 91.	90
220163 3014	8.49	8.78	2.3		O	90.76	_		39	44		4.66	6 8.46	6 21.		30	4.32	9.69	0	-	56 74.	20
221 26.71	0.00	16.71	0.0		-	19.33				00.0		1.2		- 0			00.0		0		17.	93
222148 9611	6.36	3.48	29.1		0	36.72				.46		11.2		5 2			. 13	. 34	0	0	3117.	23
223244. 7816	0.33 6	4.45	0.0		•	30.19	**	9		4		7.0		3 16.			. 57	1.05	o	4	0196	68
224348 6120	3.8114	14.81	0.0		4	22.83		-		. 83		27.4		12			1.87	3.69	0	'n	15204	26
225148 7712	1.76	7.01	0		O1	34.61		17 1.		4		11.4		0 15.			30	. 93	o	N	6119	21
226293.3725	6.22 3	11.35	3.6		o	95.03	•,			.61		23.36		.00			1.43	2.77	0	6	13145.	43
227252.0217	9.42	0.00	6.3		63	33.24	"	. 4		4		11.9		8 6.			.47	. 88	0	ĕ	13146	92
228163.4412	0.29	0.00	39.0		-	13.44	"			90		10.8		2 6.			38	. 70	0	_	15 35	38
229130.68	0.0012	11.68	0.0		_	70.66	_	1 1.		60		9.0		18 18			1.84	4.09	0	Ñ	1018	10
230140 2811	5.37 2	0.27	1.8		-	74.03	-			. 13		7.7		1 23			3.09	6.73	0	•	11 18	90
231204 5010	2.81 9	12.81	0.0		a	26.08	_	7		60	. 70	1 9.7		5 24			1.79	3.99	0	ñ	15159	99
232167 0814	1.82	0.00	15.3		o	12.57	"	4		40	0.00	5.8		6 18			3.16	6.82	0	=	10 65.	47
233 34 79 3	4 79	0.00	0.0		a	96.85				0	.07	1.8		0 0	0		00.0	0.00	0		30 27.	19
234 14.53	00 0	2.46	0.0			9. 76		0		00.0	0.00	1.3		0 0	0		00.0	0.00	0		9 4.	04
235 0 00	00 0	0.00	0			0.00		0 0		00.0	00.0	0.0		0 0	0		00.0	00.0	0	_	0 0	00
236 12 46	00 0	000	12.4			9.76		5		00.0	0.00	1.3		0 0	0		00.0	0.00	0		19 4	04
237 0 00	00 0	000	0			00		0		00 0	00 0	0.0		0 0	0		00 0	00.0	0	_	0 0	00
238 0 00	000	0	0			00		0		00.0	00.0	0		0	0		00 0	0.00	0	-	0 0	00
230	200	0				0				00	00	0		0			00	00	0	_	0	00
239 0.00	3	5	,			5				3	3	5		0	,		3	5	,			20
	-	1	•					4		000	000	0		4	•		000	0	•	•		

INTERSECTION	000	~				2	•	.0	.0	
INTERSECTION	98	0				0		.0	0	
INTERSECTION	57	-						4.	0.	
INTERSECTION	28	0	0	0		0	0	0		
INTERSECTION	88	-	0	0	0	-	0	0.	.0	
INTERSECTION	9	0		•	·	•		.0	· o	
INTERSECTION	19									
		PHASE 1			PHASE 2			PHASE 3		PHASE 4
TIME (SEC)		13.			-0-			-0.		9
V/GCAP		.05569			14661			0.00000		0.0000
NOR	H-APPR	SOUTH-APPR			WEST-APPR	N-N	PP-LEFT S	3-APP-LEFT	E-APP-LEFT	W-APP-LEFT
DELAY (SEC)	9				6			·ø	•	9
OUEUE (VEH)	0	0			0		0	· o	•	0
VOLUME (VEH)	160	0			206.		0	.0	•	0
CAPACI TY (VEH)	1040				1503		0	•	•	0
V/GCAP	. 05569	0.00000		. 14661	.07449		0.0000	0.00000 0.00000	0.0000	0.00000 0.00000
	2	-APPR DELAY	OUFUE	E-APPR DELAY	Y OUFUE	S-APPR DEL	AY QUEUE		OUFUE	
INTERSECTION	62	(SEC) (VEH) 0. 0.	(VEH)	(SEC) (VEH) 0. 0.	(VEH)	(SEC) (VEH) 0. 0.	O.	(SEC) (VEH) 0. 0.	(VEH) 0.	

H.3. PARKING LOT TRAVEL TIMES AND DELAYS

BATS MODEL GUTPUT

TOTAL						*******		-
	(SEC)		(SEC)	(SEC)	(SEC)	(VEH)	(VEH)	(METERS)
-	2619.997		47.943	0.00	0.00	30.415	32.324	227.228
8	1648.428		37.961	0.00	0.00	25.410	26.341	165.402
9	7903.210		51.068	000.0	000.0	84.444	91.914	243.341
4	833.533		39.941	000.0	0.00	12.091	12.548	178.552
	8639,557		53.443	000.0	0.00	88.610	94.199	254.120
9	4362.930		57.895	000.0	000.0	40.833	43.555	292.164
1	374.386		52.460	000.0	0.00	3.685	4.475	257.818
•	31.948		31.041	000.0	0.00	. 629	. 652	121.807
•	289.206		49.712	000.0	0.00	2.992	3.724	240.526
10	386.183		48.420	000.0	0.00	4.176	5.052	231.070
:	0.00		48.406	0.000	0.00	0.000	000.0	233.001
12	3880.026		69.410	0.00	000.0	16.578	47.542	241.943
13	665.604		52.641	000.0	0.00	7.089	7.195	260.017
14	4465.555		57.900	000.0	0.00	26.316	64.093	244.219
13	2822.261		48.191	000.0	000.0	33.802	32.973	231.621
9-	668.127		47.192	0.00	0.00	8.288	7.872	225.229
17	1377.836		33.374	0.00	000	25.359	24.867	136.793
10	18747.497		73.630	000.0	000.0	59.418	233.204	268.429
19	1736.899		50.197	0.00	0.00	19.593	19.724	243,554
50	7021.257		91.924	000.0	0.00	40.435	41.343	511.068
21	17477.605		53.065	000.0	0.00	177.448	196.306	247.829
22	8440.227		51.177	0.000	0.000	108.611	73.560	250.733
23	1815.221	25.210	37.210	0.00	0.00	21.132	40.813	140.331
24	14855.803		155.439	0.000	0.00	47.198	52.422	904.179
25	3180.322		33.792	0.00	0.00	57.952	56.079	139.466
56	15084.003		64.374	0.00	0.00	178.411	68.715	335.196
27	15209.780		73.062	0.00	0.00	65.278	170.980	249.975
28	385.695		48.725	0.00	0.00	6.032	2.499	235.038
59	25348.611		67.765	0.00	000.0	238.859	164.304	356.895
30	1375.463		47.384	0.00	0.00	16.373	16.946	223.942
31	5957.590		59.000	0.00	0.00	30.318	88.678	247.755
32	333.979		90.591	000.0	000.0	2.964	. 833	502.985
33	8621.870		147.568	0.00	0.00	14.808	48.954	534.345
34	3987.604		97.947	0.00	0.00	25.643	17.173	550.064
35	14507.351		84.183	000.0	0.00	93.196	92.291	461.971
36	1879.501		49.617	0.00	000.0	22.093	20.596	242.029
37	6162.608		92.878	000.0	0.00	41.612	28.409	517.622
36	1598.085		88.488	000	0.00	11.188	7.950	489.523
30	1026.298		87.524	0.00	0000	5.948	969.9	480.532
40	1271 647		112 719	000	000	11.282	000	644.603
2:	100			200		020	11 070	
-:	3048.024		24.082	900	98		77.0.7	141 767
75	187.187		20.00	90.0	96	20.00		0.0
43	40966.466		67. 938	0.000	0.000	340.962	316.236	336.010
			Tall College C		1		-	-

HOURS	
1200	
5	
100	
PERIOD FROM 1100. TO 1200. HOURS	
PERIO	
1-1300 CALIBRATE	
11-1300	
WILLIAMS AFB	•
	TRAVEL TIMES (SECOND)
78/ 9/29	TIME
	RAVEL
	H.4. LINK TO LINK T
5	5
ATS MODEL OUTPUTER	2
ATS	I.

MES 12.	24.	4	4	23	2	50	- 6	- 4	25	28	0	2		o	46.	•	2	2	2	=	17.	0		17.	-	4	23	-9	=	•	12	0	7	•	10	=	o	-
_ = =	24	1	7	23	2.	8		4	23	25	0.	2.		o	46	•	53	2.	2	=	17.	0	•	7	'n	-	23	9	-	•	8	o.	۲.	•	o.	=	ö	6
₩																																						
18A	24	-	-	23	2	8	0	7	25	25	0	2	7	o	46	•	2	2	2	= !	17.	0	-	17.	- 2	4	23	9	=	a	ė.	0		•	0	Ξ	ø	9
ž.	12	•	24	9	36	42	4	20	90	99	72	20	2	06	96	05	90	-	20	56	35	38	7	20	26	62	89	74	90	96	85	96	8	0	91	22	28	34
ES -	4	Ö	ö		8			0		-	0	-				-	-	9	5	-	0	-	-	7.		-	0		-	-	2.1		0.5	8.2	8.5	9.2	9.2	9.2
Ī																																						
<u>-</u> 4	24	0	9	23	22	22	-	2	23	2	0	5	-	a	46	•	ē	56	22	=	0	=	6	17	60	4	20	16	4	9	2	Ö	Ö	•		o	6	9
TRAVE																																						
=-	14	-			14	"		-	14		-				•					_			-	-		4	N	-	-	-	-	-	-		-			-
Ž'n	=	17	23	58	30	4	47	83	20	65	7	11	93	8	6	5	101	=	-	123	5	137	143	149	155	161	167	173	179	185	191	197	203	209	215	221	227	233
ES-	7	0	7	2	22	80	17.	'n	2	2	2	30	0	•	56	43	~	9	106	2	9	=	5	0	33	0	172.	46	=	63	-	0	Ξ	0	à	2	2	0
12. E.S.																																						
_																																						
TRA 12.	-	=	÷	=	ä	Ñ	-	-	=	N	ě	ĕ	Ξ	•	Ñ	4	=	=	ē	à	=	-	0	ž	ë	~	17	4	-	ĕ	=	ĭ	=	=	.	-	=	0,
ž.	0	9	22	28	2	9	9	25	80	3	20	16	95	:	7	8	90	2	•	54	30	36	42	79	24	90	99	72	18	4	06	96	05	80	4	50	56	32
																	12																					
Σ					0																																	
FL 13	-	-	-	-	N	N	-		-	~	n	ē	-		Ñ	4	-	-	0	N	-	=	N	=	Ñ	-	- 2	4	=	9	-	-	•	=	-	•	•	•
A	7	0	2	~	2	22	•	4	Ξ	2	38	9	0	ø	28	43	12	=	9	2	=	0	27.	0	29		172.	49	0	61	17.	4	Ö	-	.0	0	6	6
ž n	•	5	53	27	33	39	5	51	22	63	69	75	=	87	23	8	90	=	17	23	58	33	=	17	23	20	22	7	11	93	99	20	-	22	0	0	53	3
12. 3	9	0	2		=		2	7.	•	0		-		7				7	=	-	3.	-		-	-	7.	2.	3.	-	2.	7.7		7.2	- 2	9.2	- 2	3.2	0.2
= .				10	- 1		1		-			1		-	- 2					. 10																		
EL 1																																						
TRAV	56	10	25	2	21.	-2	22.	37.	•	20.		11.	7	24	å	43	•	4	=	=		0	6	0	2	57.	215.	143	0	15	7	10	17.	=	•	=	6	10
¥ ~																																						
ES L1	N	0	4	4	8		1.		7.	0.0		1	7. 6	7		4	9.1	5.1	-		5. 12	9. 13	0.14	7.14		7.15	2.16	1.17	0.17	1.16	7.18	2.19	7.20	1.20	8.21	2.21	2.25	2.23
E																																						
11 12 13 14	22	10	24	24	22	12	21	38	1	20	19	11	1	24	0	4	•		=	=	-	0	7	1	2	57	212	151	0	=	1	22	17	=	•	-	N	12
TRAVE 13.	22	0.	24.	24	22.	12	21.	38		20.	19	::		24.	0	44	0	, 10	:	:	13.	Ö	40	7	21.	57.	-2	. 15	10	=	7	25.	17.	=	•	75	ď	12
-	-	3			-	-	6	0	10	=	2	2	19		5	2	2	6		5	27	2	0	0	=	2	33	2	2	=	1	2	0	0	-	-	2	50

I. 1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD

71. (VEH-HRS) 73. (VEH-HRS) 1603. (VEH-MI)	5. (VEH-HRS) 4818. (VEH) 249. (M)
Ī	4818 0THS 249
TOTAL TRAVEL TIME ON NETWORK TOTAL RUNNING TIME IN PARKING ZONES TOTAL VEHICLE MILES TRAVELED ON NETWORK	101AL INTERSECTION DELAY ON NETWORK 101AL STOPS AT INTERSECTIONS 101AL OF INTERSECTION AVERAGE QUEUF LENGTHS 249. (H)
RUNNING TI	STOPS AT I
101AL 101AL	TOTAL

TABLE OF CONTENTS

- A. INPUT DATA
 - 1. INPUT LISTING
- B. INITIALIZATION
 - 1. ZONE PARKING CAPACITIES AND TRIP LENGTHS
- C. TRIP GENERATION
 - 1. ARRAY OF LAND USE PRODUCTIONS AND ATTRACTIONS (IPFLG(1)=1)
 - 2. TRIP PRODUCTIONS (PERSONS) (IPFLG(1)=1)
 - 3. TRIP ATTRACTIONS (PERSONS) (IPFLG(1)=1)
 - 4. MATRIX ASSOCIATING ZONES WITH GATES(IPFLG(1)=1)
 - 5. TRIP PRODUCTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS)
 - 6. TRIP ATTRACTIONS MODIFIED BY GATE COUNTS AND SHIFT COUNTS (PERSONS)

D. TRIP DISTRIBUTION

- 1. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(2)>=1)
- 2. ORIGIN-DESTINATION ARRAY (IPFLG(2)=1)
- 3. ORIGIN-DESTINATION ARRAY FOR CIVILIAN VEHICLE TRIPS (1PFLG(2)=2)
- 4. ORIGIN-DESTINATION ARRAY FOR MILITARY VEHICLE TRIPS (IPFLG(2)=4)

E. MODAL SPLIT

- 1. MODAL SPLIT VEHICLE LOAD FACTORS (IPFLG(3)=1)
- 2. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(3)=1)

F. CALIBRATION

- 1. CALIBRATION FACTORS
- 2. ORIGIN TO GATE AND GATE TO DESTINATION TRIPS (IPFLG(3)=2)

G. ASSIGNMENT

1. ASSIGNMENT COUNTS AND ASSOCIATED COMPUTER RUN TIME

(IPFLG(3)>=4)

- 2. VEHICLE COUNT, TYPE AND HOT/COLD STARTS (1PFLG(3)>0)
- H. TRAFFIC FLOW ANALYSIS
 - 1. LINK COUNTS (IPFLG(3)=0)
 - 2. INTERSECTION DELAYS AND QUEUEING
 - 3. PARKING LOT TRAVEL TIMES AND DELAYS
 - 4. LINK TO LINK TRAVEL TIMES
- 1. SUMMARY
- 1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD.

 POSSIBLE REPETITION OF A THROUGH I FOR EACH TIME PERIOD.

INTRODUCTION

THE U.S. AIR FORCE THROUGH A CONTRACTURAL ARRANGEMENT HAS DEVELOPED AN AIR BASE MOTOR VEHICLE MODEL THAT WILL SIMULATE A BASE TRAFFIC NETWORK USING AVAILABLE LAND USE, EMPLOYMENT, AND ENGINEERING DATA. THE MODEL WILL GRAPHICALLY REPRESENT AIR BASE MOTOR VEHICLE OPERATION ON VOLUME/FLOW MAPS, AND WILL OUTPUT A FILE OF TRAFFIC FLOWS FOR INPUT TO THE AGAM (AIR QUALITY ASSESSMENT) MODEL.1

A.1. INPUT LISTING: OF EACH DATA CARD - WITH MODIFICATIONS MADE BY SUBROUTINE INPT.

78/ 9/			-120					ONE WAY STREETS
1 240	62 50 50 9 1 -0	1	2	0****		6.36		-00.133*1*91377
2 1	1=644.=358.=778.=358.	-0	25.	55	7	10	-0.	3.04785323.2*29.5
2 2	1=644. *358. *778. *358.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 3	1*641.*245.*778.*245.	-0	25.	79	9	12	-0.	3.04785323.2*29.5
2 4	1*641, *245, *778, *245.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 5	1*638.*023.*775.*023.	-0	25.	101	11	173	-0.	3.04785323.2*29.5
2 6	1*638.*023.*775.*023.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5
2 7	1*644. *358. *647. *602.	-0	25.	73	-0	-0	-0.	3.04785323.2*29.5
2 8	1*644.*358.*647.*602.	-0	25.	10	55	2	-0.	3.04785323.2*29.5
2 9	1*641.*245.*644.*358.	-0	25.	7	2	55	-0.	3.04785323.2*29.5
2 10	1*641. *245. *644. *358.	-0	25.	12	79	4	-0.	3.04785323.2*29.5
2 11	1*641. *245. *641. *026.	-0	25.	9	4	79	-0.	3.04785323.2*29.5
2 12	1*641.*245.*641.*026.	-0	25.	173	101	6	-0.	3.04785323.2*29.5
2 13	1 *564. *687. *564. *580.	-0	25.	29	74	31	-0.	3.04785323,2*29.5
2 14	1*564.*687.*564.*580.	-0	25.	176	33	-0	-0.	3.04785323.2*29.5
2 15	1*568.*358.*568.*465.	-0	25.	175	-0	35	-0.	3.04785323.2*29.5
2 16	1*568.*358.*568.*465.	-0	25.	18	185	56	-0.	3.04785323,2*29.5
2 17	1*568. *245. *568. *358.	-0	25.	15	56	185	-0.	3.04785323.2*29.5
2 18	1*568. *245. *568. *358.	-0	25.	20	177	80	-0.	3.04785323.2*29.5
2 19	1*568. *245. *564. *023.	-0	25.	17	80	177	-0.	3.04785323.2*29.5
2 20	1 * 566 . * 245 . * 564 . * 023 .	-0	25.	180	181	102	-0.	
2 21	1*568.*916.*464.*828.	-0	25.	47	183	-0	-0.	3.04785323.2*29.5
2 22	1*568.*916.*464.*828.	-0	25.	179	174	44	-0.	
2 23	1*464.*358.*458.*245.	-0	25.	-0	186	37	-0.	3.04785323.2*29.5
2 24	1*464.*358.*458.*245.	-0	25.	26	39	178	-0.	
2 25	1*455. *245. *455. *026.	-0	25.	23	178	39	-0.	
2 26	1*455. *245. *455. *026.	-0	25.	-0	41	182	-0.	
2 28	1#479. #964. #388. #870.	-0	25.	187	-0	30	-0.	3.04785323.2*29.5
2 29	1*479.*964.*388.*870.	-0	25.	-0	-0	-0	-0.	
2 30	1*564.*687.*388.*870.	-0	25.	-0	28	187	-0.	
2 31	1*564.*687.*388.*870. 1*564.*687.*336.*690.	-0	25.	14	31	74	-0.	
2 32	1*564.*687.*336.*690.	-0		189	191	54	-0.	3.04785323.2*29.5
2 33	1*564.*580.*336.*583.	-0	25.	74	14	29	-0.	
2 34	1=564. =560. =336. =563.	-0	25.	193	176	196	-0.	
2 35	1*568. *471. *333. *471.	-0		-0		13	-0.	3.04785323.2*29.5
2 36	1*568.*471.*333.*471.	-0	25.	-0	195	198	-0.	3.04785323.2*29.5
2 37	1 * 464 . * 358 . * 336 . * 358 .	-0	25.	103	16	175	-0.	3.04785323.2*29.5
2 38	1*464.*358.*336.*358.	-0	25.	-0	-0	-0	-0.	
2 39	1*458. *245. *235. *245.	-0	25.	-0	-0	-0	-0.	3.04785323.2*29.5 3.04785323.2*29.5
2 40	1*458. *245. *235. *245.	-0	25.	178	26	23	-0	3.04785323.2*29.5
2 41	1*452.*023.*235.*026.	-0	25.	205	59	208	-0.	
2 42	1 * 452 . * 023 . * 235 . * 026 .	-0	25.	182	-0	25	-0	
2 43	1*955. *586. *955. *361.	-0	25.	-0	78	199	-0	
2 44	1*568. *916. *327. *916.	-0	25.	209	-0	212	-0	
2 45	1*327. *828. *138. *797.	-0	25.	-0	217	68	-0	
2 46	1*327. *828. *138. *797.	-0	25.	184	-0	211	-0	
2 47	1*464. *828. *318. *672.	-0	25.	-0	-0	50	-0	
2 48	1 * 464 . * 828 . * 318 . * 672 .	-0	25.	22	-0	183	-0	
2 49	1*318. *672. *543. *325.	-0	25.	-0	48	-0	-0	
2 50	1*318. *672. *543. *325.	-0	25.	-0	-0	240	-0.	
2 51	1*769. *364. *815. *364.	-0	25.	85	-0	122	-0	
2 52	1*769. *364. *815. *364.	-0	25.	-0	-0	-0	-0	
2 53	1*336. *690. *336. *583.	-0	25.	191	32	189	-0	
2 54	1*336. *690. *336. *583.	-0	25.	196	193	34	-0	
2 55	1 *644 . * 358 . * 568 . * 358 .	-0	25.	185	15	18	-0	
2 56	1*644. *358. *568. *358.	-0	25.	-0	-0	-0	-0	
2 57	1 * 238 . * 358 . * 235 . * 245 .	-0	25.	-0	104	71	-0	

```
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
```

```
| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
```

••••••••••••• - con 50 - c

```
. 0000000000000000000
```

3									
8									
5 5									
8									
=									
7									
PERIOD FROM 1100. TO 1200. HOUR									
Ä	SZ								
2 ×	ACT 10	2	:	5.		4	•	38	5
11-1200 PREDICTIVE RUN - GNE	C.1. ARRAY OF LAND USE PRODUCTIONS AND ATTRACTIONS	DMN FLTL	13.	÷	2.		7.	÷	33.
O PRED	TIONS A	HOME INDS SHOP SERV EXTN ADMIN	150.	6	. 70	150.	ó	ò	24.
11-1200	PRODUC	SERV	354	7.	157.	246.	186.	96	12. 92. 123.
	USE	•	8	5	8	101		2	92
و	LAND	8	~	6	á	90.	÷	÷	12
AS AS	× 04	ž	178.			142.		5.	98
WILLIAMS AFB	1. ARRA	HOT	17			-	=	•	•
38	ö	FROM/TO	HOME	SQ	SHOP	SERV	EXTN	ADMIN	11
78/ 9/29		•							
BATS MODEL OUTPUT									
HOEL C									
**BATS									

WILLIAMS AFB

78/ 9/29 C.2. TRIP PRODUCTIONS (PERSONS) ***BATS MODEL GUTPUT***

	USE	HOME - W	SHOPPI	SERVIC	EXTERN	NDOST	ADMIN	FLT. LI	HOME	MILITA	TOIAL
######################################	EXTN	9	16	40	•	-	8	4	28	•	101
	EXTN		•	25	•	-	-	6	16	•	58
	EXTN	-				0	0	-		0	12
	EXTN	-		•	0	•	0	-	10	0	18
	EXTN	0	-		0	0	0	•	~	0	9
2	EXTN	-	38	102	•	~	4	10	69	57	279
88 c 1 2 c c c c c c c c c c c c c c c c c	11	0	1			-	•	-	7	01	39
88 c 2 c c c c c c c c c c c c c c c c c	FI 71	•		•	0	-	0	•		7	33
	E		. 2	25	1				24		110
	E			•		0		0		•	-
			, .	000	- 4			2.0			118
2000 - 0 2 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•	::		•	00		00			67
200 - 0 c c - 2 c c c c c c c c c c c c c c c c		•	20	-	, (4 6					3
	3	0	0	n .	0	0	•	•			ρ.
0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	202	0	0	- '	0	0	0	0			
	202	•	•	8	•	0	0	0			4
	ZOZ	0	-	•	•	•	•				9
	SERV	•	•	•	•	•	0	٥			0
	SERV	•	•	•	60	-	-	~			25
25	SONI	0		80	•	0	•	-			6
	SERV	0		12	1	-	8	8			37
20	ADMIN	-		26	~	-	0	0			54
1	ADMIN	0		9	-	0	0	8			12
20	ADM	0		1.0	~	•	•	7			36
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SERV	0		28	17		4	9			92
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SON	0			0	0	0	-			34
20	NDS	0		12	-	0	-	8			61
22	SERV	0		74	40	•	12	15			264
29	TOME	N		83	35	N	6	12			209
29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SHOP	0		=	9	-	-	*			3
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	11	0		2	7		9	~	13	•	71
29 71 72 72 72 72 72 72 72 72 72 72 72 72 72	MEN	0		36		-	-	13			74
26 - 26 - 26 - 26 - 26 - 26 - 26 - 26 -	SERV	0		71	43	•	=	14			235
- 2	SERV	0		28	16	•	7				63
20	SERV.	0		0	-	0	•	•			•
		-		200		4	1	20			502
24 -	-			200	:-	0	. 0	•			21
	LE PV	0		7	•	~	~				43
25 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	SERV	0				0	0	0			4
21	SERV	0		1	•	-	-	-			2
24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A	-		19	•	•	-				40
24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NOS	•		13	-	•	-	N			143
	NOS	•		24	8	-	-	*			42
2	HO	-		3	13	-	-	•			78
13 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AL	•		0	•	•	•	8			2
13 98 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MOS	•	0	-	•	•	•	•			•
13 % 0 0 3 % 0 14 147 % 19 % 6 0 0 0 3 % 0 0 0 3 % 0 0 0 3 % 0 0 0 3 % 0 0 0 3 % 0 0 0 3 % 0 0 0 0	SERV	0	8	60	•	-	-	-			16
147 61 6 19 56 60 6	P	•	•	-13	80	•	•	•			30
147 61 6 19 56 60 6 2 0 0 0 0 0 3	SOE	•	-	6	•	0	•	-			9-
8 0 0 0 0	HOL	•	22	147	•	•	6	80			436
	NOS	0	•	2	•	•	•	•			*

TRIP ATTRACTIONS

BATS MODEL OUTPUT

11-1200

- ONE

Ş PREDICTIVE

0
0
1200
=
÷
_
-
•
•
A P
1
-

PREDI	(PERSONS)
1-1200	PE
=	COUNTS
	SHIFT
S AFB	AND
HILLIAMS	COUNTS
	BATE
129	6
78/ 9/29	1 50
7	100
	ONS
SUTPUT	C.S. TRIP PRODUCTIONS MODIFIED BY GATE COUNTS AND SHIFT (
HODEL	TRIP
***BATS MODEL GUTPUT**	G. 9.

TOTAL	101	28	12	-	9	279	39	33	110	-	118	67		-	•	9	0	52		6		36	8	8	5	200	6	7	74	232	3	502	2	43	7	2		42	78	2	• :	- 6	3 -	436	1
HLITA	•	•	•	0	0	57	•	1		, e	50	200		0	~	•	•	•		- •	• •	0	•	27	4	è 0	•	•			. «	. ~	~	•	-	0 0	133	9 6	0	0	-	0			•
HOME	28	16			8	65	1		24		00	200		•	•	•	•	0	-1		, -	- ~	9.	•	- :	7 7	•	-	0	7:	2-	66	-	•	-	•	n -	. 67	-	•	0	m (• •	90	•
FLT.LI	•	3	-	-	0	10	-		•	, c		0		0	•	-	•	~	- 1	~			9	-	~ :	2 5	•	~	2	7.	0	20	•	0	0	- •	0 0	. 4	•	~	0.	- •	, -		
ADMINI	8	-	•	•	0	4	•	8	•		•		•	0	•	•	•	-	0	~ <	•	•	•	0	- :		. –	9	-	= `			•	~	0			-	-	•	0.	- «			
NDUST A	-	-	•	0	0	2	-	-		, c				0	0	•	•	-	0		- c			0	0 (. –	8	-	• •		•	•	~	0	- (.	. –	-	•	0.	- 0		•	•
EXTERN !	0	0	0	0	0	0	~	0					, c	0	•	•	•	•	01	•	۰-	- ~	17	•	- ;	9 8		•		4	-	93	-	•	-	•	• -	- 0	- 2	•	0		, 0	•	
SERVIC 6	4	25	•	•	0	102	•	•	72	,	90			-	~	•	•	•		2 6	2 4		28	•	2;		=	2	96	- 4	3 0	200	2	=	-1	- :	2 5	24	5	•	- '		2 6	147	
SHOPPI	16	•	8	•	-	38	1			3	10		20	0	0	-	•	0	-1		• •		=	-	~ 5	3 %	•	9_	2	5 :	-	3	•	•	0		0 0	•	•	~	0	N (2	
HOME-W	9		-	-	•	-	•	•		0		•	0	0	•	•	•	•	0	0.	- 0	•	0	•	0	0 0	. 0	•	0	0 0	00	,-	•	•	0	٥.	- 6	0	-	•	0	0	00		
USE	EXTN	EXTN	EXTN	EXTN	EXTN	EXTN	FLTL	FLTL	11 13	1	11.11	1	NO.	NDS	NOS	MDS	SERV	SERV	SON	SERV		NEW	SERV	NDS	SON	SER.	HOLE	FLT	A DIE	SERV	SERV		MO	SERV	SERV	SERV		NOS	4	40	200	N. S.			
ONE S	MS	H	H	I	OL I	10	-	~		, ,					0	0	=	~	2		2	1	:		2	22	23	24	2	36	200	29	90	5	35	2		36	37	3	6	2			

	TOTAL	8	-	2			2	8	7	8	120		2	2	2	•	-	•	•		,	2	•	6	53	=		3	3	7	63	283	143	8	8 8	21	72	5	219	•	345	22	126	-	2			7	8	20	2	0	•	22	19	408	n	3876
	וורוא	•	•	•		,	0	27	•		47	•	,	e:	2	~	•	•		•	•	•	-	-	•	0	•	•	0	27	42	37	•		•	0	•	17	•	•	8	•				•		2		•	•	1	•	•	=	•	•	428
	*	0	0	0		•	0	0	0	•	0	•	•	0	0	•	0	•		•	•	0	•	0	0	•		•	0	•	0	•	27.	!	•		0	•	•	•	25	0	•		•	2	,		0	3	2	•	0	22	0	•	•	209
	2	c	0	•		•	•	0	*	23	12		21	8	200	•	•			•	•	0	0	•	•	•			0	•	•	0			,	-	0	•	•	•	•	0								0	0	•	0	•	0		0	410
	7																																																							•		
	į																																																									
	150	•	•	•	•	•	0	•	•	•	0	•	•	•	•	•	-		•																																					•		
	T.	2	-	2	1	3	2	8	•	•	•	•	•		•	•	•	•	•	•	•	0	•	•	0	•	•	•	0	•	•	•	•	•	•	0	0	•	0	0	0	0	•			•	•	•	0	0	•	•	0	•	•	0	0	475
0	MAIC E	•	•			•		•	•	•	•	•	•		•	•	•	•		•	•	2	•	8	•	•		,	Š	•	0	2			•		0	2	216	0	•	0	136		2				0	0	0	•	0	•	0	•	•	1237
	ī	•	•	0		,	0	0	•	•	•		•	0	•	•	0			•	•	0	0	•	•	0		•	0	0	0	0		8	3	0	0	•	•	0	0	0					•		0		0	•	0	•	0	380	0	650
į	7	-	•				•						, .	_	-	•				•	•		-					•							•	,		-				0							- (0	:
Ľ	Į																																																									
	3	E	E	T.				E	5	7	-			1	4	Ē	2						5		1					<u>=</u>	2					-	Į			SER	ě	-		5				3	3			8	SER	ğ	50	43 SHOP	SCM	TAIL
2	Ž,	E	8	Z			4	5	-	~		•	, ,	,	•	^	•	•		::	:	2	2	-		=		::	:	•	2	-		1	3		8	K	2	R	R	8	-		1		1	31		-	2	2	Ş	Ŧ	4	\$	1	10

BATS MODEL OUTPUT

318

- MERTER P- 444 +

HODEL

PERIOD FROM 1100. TO1200.

5

m m m m = - 0 0 0 - 0 u - 4 v m m 0 - u m m u 4 0 m 0 - r u m 0 u 4 m u v u 0 u u u v u 0 u u u - 6 0 ü m u u - 0 u Noooooooooooooooooooooooooooooooo Vu-a-nu-00-0--un-un-un-444-nu-000000000--004--000-4---00 **8-0001-000000-00-00-40--0400**--00---0-00-000000-0 u--wowugggggg--o--gaw-uu4-oro-o---coocorou-coo4 <u>••••••••••••••</u>

PERSONS PER	PERSONS									
IE VEHICLE	DED MIL	CIVILIAN	CIVILIAN	MILITARY VEH TRIPS	MILITARY VEH TRIPS	PERCENT	PERCENT	PERSON TRIPS FROM	PERSON TRIPS TO	
-	VEHICLE	ORG-GATE	GATE-DEST	ORG-GATE	GATE-DEST	VEHI CLES	VEHICLES	ORIGIN	DEST.	
1.26936	1.25226	79.57	157.56	0.0	8.0	99.300	300	101.000	200 000	
1.26936	1.25228	45.69	90.60	000	0.00	99.300		56.000	15.000	
1.26936	1.25228	9.45	18.12	9.0	86	300		200	36.000	
1.26936	1.25228	14.10	26.36	8 6	98	200		900	13 000	
1 26926	1 2522	174 80	30.72	20.50	45.50	300	300	279.000	000 96	
1 25760	1 28000	24.36	26. 46	6.84	6.71	103 000	8	39.383	41.866	
1.26320	1.28000	20.95	22.00	5.17	5.03	100.000	8	33.075	34.327	
1 26320	1 28000	83.49	12.16	3.36	3.37	100,000	8	109.768	119.530	
1.27160	1.28000	0.00	10.11	2.59	2.51	101.000	8	15.461	16.063	
1.26040	1.28000	72.89	78.90	17.94	17.73	101.000	8	114.041	122.147	
1.22960	1.25200	45.59	49.29	8.61	9.64	92.000	8	66.844	71.435	
1.26320	1.24360	2.52	3.40	1.71	1.73	100.000	8	6.307	6.451	
1.24920	1.24360	08	. 83	0.00	0.0	93.000	8	1.000	1.036	
1.24080	1.28000	1.74	2.62	1.68	1.69	99.000	8	4.307	5.415	
1.27160	1.24360	4.72	8.70	0.00	0.00	100.000		6.000	7.252	
1.25480	1.28000	0.0	0.00	00.0	0.00	100.000	88	00.000	000	
1.22960	1.24360	20.33	58.46	0.00	0.00	200.000	3	25.000	7.004	
1.27160	1.28000	6.40	6.37	67.	8.	100.000	38		200.00	
7. 28000	24360	28.06	20.00	2.00	200	000	38	27. 134	A2 A70	
1 26320	1 24360	0 0	20.0	4.0	000	1000	38	12.000	11.418	
1 28000	1 24360	28.13	27.60	00.0	00.0	100.000	00	36.000	35.332	
1.27440	1.24360	66.70	262.47	0.00	0.00	100.000	8	92.000	334.492	
1.24920	1.19040	6.36	6.43	21.99	22.16	93.000	8	34.148	34.401	
1.23800	1.24640	16.55	16.92	32.87	33.62	100.000	8	61.453	62.852	
1.24080	1.24360	181.58	206.19	30.86	29.39	100.000		263.685	292.362	
1.19040	1.24360	175.85	19.15	9.0	0.00	83.000		2000	000	
7.26600	1.24360	24.49	47.41	9.6	9.0	000	38	20.00	78 630	
24920	1 27720	53.52	20.40	3. 3	2.40	200		74 461	72.086	
1 22160	1 27720	170 82	20.00	20.40		000		234 612	90 505	
28000	1 27720	62.28	168.42	2 93	2.77	100 000	000	83.461	219.114	
1.27720	1.24360	3.79	00.0	2.92	2.78	100 000	8	8.461	3.461	
1.20720	1.24360	414.23	284.18	26.	2.00	74.000	8	502.474	345.551	
1.26320	1.28000	15.18	15.81	1.66	- 64	100.000	8	21.307	22.068	
1.27720	1.24360	33.67	89.96	0.00	0.00	100.000	8	43.000	126.048	
1.27720	1.24360	2.17	00.0	1.1	. 93	100 000	8	4.154	1.154	
. 27720	1.24360	16.44	54.46	00.0	0.00	100.000	8	21.000	69.582	
1.20720	1.24360	39.90	26.73	0.0	0.00	83.000	8	48.167	32.273	
1.27720	1.20440	17.28	16.36	100.32	100.21	99.000	8	142.898	141.582	
1.24920	1.28000	31.44	29.11	2.49	2.31	93.000		42.461	39.579	
1.20720	1.24360	64.75	44.23	0.00	000	83.000		78.167	23.390	
20720	. 24360	17.40	2.30	00.00		000		2000	47.0	
24920	2,5000	75.	200		900	2000		200	200	
27720	24360	12.53	20.00	900	9 6	000.000		3000	20.000	
24920	1 28000	4 51	2 2	10.00	10.66	93 000	000	19.151	19.331	
07440	28000			00.0	2	000	ł			
200				2 74	47			436 229	408 067	

-	
-	
HOURS	
Ŧ	
0	
2	
=	
101200	
-	
8	
-	
-	
Σ	
PERIOD FROM 1100	
ī	
•	
5	
=	
W	
•	
NO.	
0	
-	
5	
2	
5	
=	
5	
=	
8	
PREDICTIVE RUN	
•	
8	
×	
1-1200	
÷	
-	
4	
•	
5	
4	
¥	
TITA	
ILLIAP	
VILLIAMS AFB	
VILLIAP	
VILLIA	
18/ 9/29 WILLIAM	
78/ 8/29	
78/ 8/29	
78/ 8/29	
78/ 8/29	
78/ 8/29	
78/ 8/29	
78/ 8/29	
78/ 8/29	
78/ 8/29	

INTERIOR ATTRACTIONS . 974 EXTERIOR PRODUCTIONS EXTERIOR ATTRACTIONS INTERIOR PRODUCTIONS 1.004 F.1. CALIBRATION FACTORS (FACTOR-GATE COUN; = ATTRACTIONS OR PRODUCTIONS)

BATS MODEL GUTPUT

6. 338 6. 338
--

LINK SUM THRU RT LL 200 57 09 20 44 0.00 0 201 1.75 0.00 0.00 0.00 202 10.00 0.00 0.00 0.00			E, AND	D HOLVEDED	מפרה פ	STATUS	TANG	100												
1.75 0 1.75 0 18.81113 0.00 0 47.48347 57.76113	2	2	LEFT	TERM	707	LDT1	LDT2	HOT	HOO			5	-	HDTM	HDDH		COLDS	S HOT	s	
1.75 0 18.81113 0.00 0 47.48347 57.76:13	7	0.00	0.0	36.65	12.61	2.71	30	6	0.0	-		oi.		- 1	. 45		3.88	14.76		
47.48347 57.76113	8	0.0	0.0	1.75	0.0	0.0	0.0	0	0.00	0		0	0.0	0.0	0.0		0.0	0.00		
47.48347 57.76:13	1712	. 88	66.31	17.44	230.97	42.80	2.46		0.00	2 (,		97	99		40. 22	177.00		
57.76:13	8	00.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0		o .		0.00	0.00		0.00	0.00		
57.76:13	40	00.0	0.0	0.00	229.70	69.13		. 79	0.00	22		ë		. 80	3.65		40.41	180.47		
00.00	87 4	1.05	2.84	0.0	90.24	18.52	3.36	0	. 46	~				1.59	3.00		29. 82	127.94		
39. 60130	66	00.0	48.34	00.0	130.20	29.31	1.0	. 83	0.0	9	-	4		7 50	15.45		30.87	136 47		
36.31 6	84	4.13	25.35	0.00	17.28	4.19	.21	.08	. 02	-		o		. 33	.61		4. 84	31.48		
0 00 0	00	00.0	0.00	0.00	0.00	00.0	0.00	0.0	0.0	0		o		00.0	00.0		0.00	0.0		
53.78 30	58 2	3.20			18.42	4.44	.27	80	. 02	-				1.16	2.3		6.85	46,92		
0 00 0	8	00.0			0.00	0.00	0.00	0.00	0.00	0		ö		0.00	0.0		0.0	0.0		
5.21 0	8	00.0			.30	38	0.00	.03	0.0		.17	ë		. 17	. 33	00.0	38	4.03		
16.44 0	8	7.62			5.94	. 93	8	6	0.0		2.03	0		1.03	5.30	00.0	2.3	14.13		
30.58 30	20	00.0			3.00	. 77	80	.03	0.00			-		1.09	2 . 19	0.0	2.97	27.61		
26.38 0	8	00.0			1.86	5	.03	0.0	0.0					. 26	4.	00.0	. 9	12.17		
42.23 7	63 2	1.29			30.25	5.92	. 23	60	0.0	'n		Ë		. 28	. 72	0.00	9. 29	33.66		
34.84 25	21	1.60			21.48	3.15	0.0	0.0	0.00	o,		'n		1.03	5.06	00.0	6.9	27.86		
40.96 40	96	00.0			29.50	8.72	. 23	80	0.0	'n		-		. 28	. 72	0.00	9. 28	32.66		
25.21 23	9	1.61			19.71	2.73	0.00	0.00	0.00	o,				8	5	0.0	3.34	19.87		
46.34132	89	0.0			\$5.02	10.68	3.84	0.0	. 53	4		4		8	8	000	26.00	106.68		
67.25153	68	8.78			92.21	9.0	. 47	4	0.0	4 .		N C		4 34	9.72	000	9 . 10	77. 32		
34.69	88	2.81			24.07	5.69	= :	0.00	0.00	- 9		N C	2.5	0.0		9 6	6.40	77.77		
58.14 91	72	3.48			16.9	27.17	7.75		9.0	v c		N C	3 8	200	6 6	9 6	20.00	24.40		
00.00	200	86			9 9	9 6	3 6	5	9 6	5				3 4	3 4	3 6	27 81	284 16		
20000		3 6			200	200	2 6	2 6	9 6	, 0				0	0	000	00	00		
85 73319	62 3	41	20.00	0.00262.36	96. 36	70.02	1.63	3 7	000	28.16	3.11	14.1	. 62	1.66	3.35	00	49.931	93184 77		
64 24 0	00	00			0.00	000	00.0	00.0	0.00	0		0		0.00	0.0	000	0.00	0.0		
09.16257	3	3.001			313.70	47.76	6.13	80	. 65	16		4		. 45	8	0.0	33.07	124.87		
0 99.66	00	99.0			58.37	7.18	2.14	0.0	0.0	6			.27	01.		0.0	15.52	65.16		
42.94116	29 2	0.27			74.94	15.70	.20	. 13	0.0	۲.		4	44	3.12	6.70	0.0	3.30	20.42		
92.14 75	1320	9.14			187.41	32.43	6.04	0.0	. 76	<u>4</u>			.69	. 40	. 89	0.0	53.43	221 . 85		
67.08144	92	00.0			92.22	22.19	39	.4	0.00	'n				3.19	6.87	0.0	15.40	65.47		
34.74 34	74	00.0			28.77	3.32	. 76	6	.07	-		o		0.00	0.0	0.00	7.59	27.16		
14.53 0	00	2.46			9.76	1.35	0.00		0.0	-		ö		0.00	0.00	0.0	1.09	4.04		
0 00 0	8	00.0			0.0	0.0	0.00		0.0	ó		ö		0.0	0.00	0.0	0.0	0.0		
12.46 0	00	00.0			9.76	1.35	0.00		0.0	-		o		0.0	0.0	0.00	- 08	4.04		
0.00	8	00.0			0.0	0.0	0.00		0.0	o		0		0.00	0.0	0.0	0.0	0.0		
0.00	8	00.0			0.00	0.00	0.00		0.0	o		o		0.0	0.00	0.0	0.00	0.0		
0.00	8	00.0			0.00	0.00	0.00	0.0	0.00	o		ö	0.0	00.0	0.0	0.0	0.0	0.0		
1.69 0	8	00.0			0.00	0.0	0.00		0.0	o		ö		0.0	0.0	0.0	0.0	0.0		

HOURS

NTERSECTION	8 0		6 -	66		- 6		ò-	o-	
INTERSECTION	19	DUACE 1								
(SEC)		13.			19.			PHASE 3		PHASE 4
Š	TH-APPR	SOUTH-APPR		EAST-APPR	WEST-APPR	N-APP-LEFT		-APP-LEFT	E-APP-LEFT	W-APP-LEFT
DUEUE (VEH)	. 0	.		40	e c		.	ø (4	6
OLUME (VEH)	160.	0		371	206		· ·	· ·		0
CAPACI TY (VEH)	1040.	867.		1378.	1503.			<i>i</i> c		
	. 02269	0.00000		. 14661	. 07449	0	0.00000	0.0000	0.00000	0 0000

2	
-	
10UR	
Ĭ	
ŏ	
16 1200.	
N	
-	
-	
Ľ	
0	
PERIOD FROM 1100.	
-	
-	
ħ	
ž	
-	
0	
=	
ā	
¥	
O	
-	
Z	
⊃	
œ	
۳	
-	
=	
Ü	
=	
REDICTIVE RUN	
W	
×	
•	
0	
ŏ	
N	
-	
7	
1-1200	
11-1	
11-1	
11-1	
11-1	
11-11	
11-1	
11-11	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
VILLIAMS AFB 11-1	
-	
-	
-	
-	
WILLIAMS AFB	
-	
WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	
T*** 78/ 9/29 WILLIAMS AFB	

MES. LINK T 16. 2 22. 8	& - N	12. 12.	12. 3	13. 13.	13. 4	22	TRAVEL 12. 14.	12.4 14.4	12.	ž»=	TRAVEL 14.	14.	14.	14. 6	TRAV	/EL T1	MES 12.
			10. 15		- 6				0	22			9	2	4.		
			21. 2		יה מ				4 6	2 2			23	30	23		
			21. 3		1. 3				25.	35			22	36	21.		
	nistra		11. 35		0. 40				21.	4			22.	42	20.		
			22. 4		8. 4				17.	47			-	40	-		
			37. 5		5. 5				4	53			-0	3	4		
			7. 5.		1. 5				- 2	29			25	9	25		
			20. 6		2. 6				21.	65			2	99	25		
	•		19. 65		5. 7				3	7			-0	72	•		
	_		11. 7		0. 7				30	11			2	7.8	22		
					1. 6				0	63			7	3	7.		
	63		23. 87		8. 81				•	60			•	8	10		
	0		0.0		9 .				26.	83			46	96	46		
	0		43. 95		3.100				43.1	6			•	102	•		
			9 10		0.10				12.1	02			2	100	2		
	7		7						17.	6			26	7	2		
	N .		12.11.		9.11				106.	6			55	150	55		
	_		2		20.					8			- :	92	::		
	0		15. 12						9	5			2:	35	-		
			6. 13		0.0				- 1	37			= :	38	9		
	•		49.14						31	53							
			9.147		-				-	2				20	•		
			21 . 153		9.15				33.	33			•	156	72		
			57.15		5.160				-0-	9			=	162	4		
	64		12.165		2.16				172.1	67			20	168	23		
			43.171		9.17				47.1	73			-	174	16.		
			10.17		0.17				=	79			13	180	=		
			12.183		1.10				63.1	8			10	186	•		
			7.189		7.190				1.0	5			=	192	-2		
			10.195		4.196				10.	97			0	196	-		
			17.201		6.202				11.2	60			,	207	-		
			11.207		5.206				10.2	80			•	210	•		
			6.213		3.214				9.2	13			-	216	0		
			11.219		9.220				12.2	.21			•	222	=		
			3.22		. 226				13.2	27			•	228	0		
			10.231		222				0	-				23.4	9		
										3					•		

1.1. NETWORK SUMMARY PARAMETERS FOR TIME PERIOD

TOTAL TRAVEL TIME ON NETWORK
TOTAL RUNNING TIME IN PARKING ZONES
TOTAL VEHICLE MILES TRAVELED ON NETWORK
TOTAL LINTERSECTION DELAY ON NETWORK
TOTAL STOPS AT INTERSECTIONS
TOTAL STOPS AT INTERSECTIONS
TOTAL OF INTERSECTION AVERAGE QUEUE LENGTHS 255. (M)

16.04.51.DJD5,CM200000,P20,T400.
16.04.51.PRIGRITY 208.
16.04.51.ACCOUNT(WADJD,)
16.04.51.ATACH(LGOPLGT)
16.04.52.MAP.
16.04.52.MAP.
16.04.52.MAP.
16.04.53.NGEXIT.
16.05.36.NGIN.
16.05.36.NGIN.
16.06.36.NGIN.
16.06.36.UGIN.

INITIAL DISTRIBUTION

AD/DLODL	1	HQ AFISC	. 1
DDC/DDA	2	HQ AUL/LSE 71-249	1
HQ AFSC/DLWM	1	HQ USAFA/Library	1
HQ AFSC/SD	1	1 MSEW	1
HQ USAF/LEEV	1	OUSDR&E	1
HQ USAF/SGPA	1	MTMC/TEA	1
OSAF/MIQ	1	HQ AFESC/RDVA	10
OSAF/OI	1	HQ AFESC/TST	2
AFIT/Library	1	SRI International	1
AFIT/DE	1	HQ TAC/DEEV	1
NSF	1	HQ SAC/DEPV	1
EPA/ORD	1	HQ MAC/DEEE	1
USA Chief, R&D/EQ	1	HQ ATC/DEPV	1
USN Chief, R&D/EQ	1	HQ AFLC/DEPV	1
OEHL/CC	1	USAFRCE/WR	1
HQ AFESC/DEV	1	USAFRCE/CR	1
USAFSAM/EDE	1	USAFRCE/ER	1
USAF Hospital, Wiesbaden	1		

ADTC EGLIN AFB, FLA. 32542 OFFICIAL BUSINESS FEMALTY FOR PRIVATE USE \$550

THIRD CLASS