

An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale

ENSF 619.02 | Fall 2021

By: Shirin Yamani (<u>yamani.shirin@ucalgary.ca</u>), Mahsa Malek (<u>mahsa.malek@ucalgary.ca</u>)

Instructor: Dr. Roberto Medeiros de Souza

Course: Advanced topic in Machine Learning for Image Analysis.

Content

Transformer Notational Vision Meaning of Transformer **Transformer**

Introduction to Transformer

Word mapping

Transformer

Bat ?!

Accounting for the Word Context

- Mapping each word to a single vector is restrictive!
- Words often have different meanings!

Transformer

Inner Product between two vectors!

Goal!

Quantify how similar kth word is to the sequence!

- If inner product is positive, then words are similar
- If inner product is negative, then words are dissimilar

Attention Mechanism

Transformer

Notional meaning of Transformer

Transformer Encoder

Positional Embedding

Accounts for the Order

Vision Transformer (ViT)

Vision Transformer (ViT) Method: 1) ViT Components

- Close to original Transformer (Vaswani et al., 2017).
- Transformer receives as input 2D images.
- Reshape the image into 2 sequence of flattened 2D patches with same resolution of the original image.
- ViT uses constant latent vector size D through all of its layers.
- Position embeddings are added to the patch embeddings to retain positional information.

Vision Transformer (ViT) Method:

2) Fine-tuning and higher resolution

- Typically, pre-train ViT on large datasets, and fine-tune to (smaller) downstream tasks.
 - ullet Remove the pre-trained prediction head and attach a zero-initialized D imesK feedforward layer, where K is the number of downstream classes.
 - Fine-tune at a higher resolution than pre-training -> keep the patch size the same, which results in a larger effective sequence length.

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Details of Vision Transformer model variants

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Comparison with state of the art on popular image classification benchmarks

Transfer to ImageNet

Total pre-training compute [exaFLOPs]

Performance vs pre-training compute for different architectures

Vision Transformer (ViT) Conclusion

 ViT interprets an image as a sequence of patches and process it by a standard Transformer encoder as used in NLP.

cheap to pre-train.

Vision Transformer (ViT) Future work

- Apply ViT to other computer vision tasks.
- Exploring self-supervised pre-training methods.
- Scaling of ViT

References

- 1. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.
- 2. Dosovitskiy, Alexey, et al. "An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale." *ArXiv:2010.11929 [Cs]*, June 2021.