Übungen zur Vorlesung Differentialgeometrie I

Blatt 5

Aufgabe 15. (Skalierungsverhalten der Hauptkrümmungen) (2 Punkte)

Beweise Lemma 5.16. Untersuche bei der Herleitung auch das Skalierungsverhalten der Metrik und der zweiten Fundamentalform.

Aufgabe 16. (2 Punkte)

Zeige, dass

$$|A|^2 = \sum_{i=1}^n \lambda^2 = h_{ij}g^{jk}h_{kl}g^{li}$$

gilt.

Aufgabe 17. (Min-Max Charakterisierung der Hauptkrümmungen) (4 Punkte) Beweise Lemma 5.21.

Aufgabe 18. (4 Punkte)

Sei $X: \Omega \to \mathbb{R}^{n+1}$ eine immersierte Hyperfläche. Sei $0 \in \Omega$ und $\xi \in \mathbb{R}^n$.

- (i) Zeige, dass es eine Kurve $\alpha: (-\varepsilon, \varepsilon) \to \Omega$ mit $\alpha(0) = 0$ und $\alpha'(0) = \xi$ gibt, so dass im $(X \circ \alpha) \subset \operatorname{span}(\nu(0), X_i(0)\xi^i)$ gilt.
- (ii) Zeige, dass die Beträge der Krümmung von $X \circ \alpha$ und von $\frac{h_{ij}\xi^i\xi^j}{g_{ij}\xi^i\xi^j}$ im Ursprung übereinstimmen.

Hinweis: Nehme ohne Einschränkung an, dass $\nu(0) = e_{n+1}$.

Aufgabe 19. (4+2 Punkte)

- (i) Beweise Korollar 5.22.
- (ii) Sei $X : \Omega \subset \mathbb{R}^n \to \mathbb{R}^{n+1}$ eine C^3 -Fläche, sodass für ein $x \in \Omega$ und ein $i \in \{1, ..., n\}$ der Eigenwert $\lambda_i(x)$ nur einmal vorkommt. Zeige, dass $\lambda_i(x)$ in einer Umgebung von x differenzierbar ist.
- (iii) Finde eine diffferenzierbare Funktion $\mathbb{R} \ni t \mapsto A(t) \in \mathbb{R}^{3\times 3}$ für die die geordneten Eigenwerte $\lambda_i(t)$ nicht differenzierbar von t abhängen.
- (iv) Zusatz: Finde eine C^3 -Immersion, sodass die geordneten Hauptkrümmungen nicht differenzierbar von x anhängen.

Abgabe: Bis Donnerstag, 30.11.2017, 10.00 Uhr, in die Mappe vor Büro F 402.