

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าชนบุรี การสอบกลางภาคการเรียนที่ 1 ปีการศึกษา 2552

วิชา ENE 231 Digital Circuit and Logic Design

วิศวกรรมอิเล็กฯ ปีที่ 2

สอบวันพุธที่ 22 กรกฎาคม 2552

เวลา 13.00-16.00 น.

<u>คำสั่ง</u>

- 1. ข้อสอบมีทั้งหมด 7 ข้อ 12 หน้า (รวมใบปะหน้า) คะแนนรวม 130 คะแนน
- 2. ให้ทำข้อสอบทุกข้อลงใน<u>ข้อสอบ</u>
- 3. <u>ห้าม</u>นำเอกสารใค ๆ เข้าห้องสอบ
- 4. <u>ไม่</u>อนุญาตให้นำเครื่องคำนวณใด ๆ เข้าห้องสอบ
- 5. มีทฤษฎีต่างของ Switching Algebra ให้ในหน้าสุดท้าย

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักสึกษานำข้อสอบและกระดาษกำตอบออกนอกห้องสอบ นักสึกษาซึ่งทุจริตในการสอบอาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักสึกษา

	•	เลขที่นั่งสอบ
ชื่อ-สกุล	รหัสนักศึกษา	
(ผศ. คร. พินิจ กำหอม)	ข้อสอบนี้ได้ผ่านการประเมินจาก	
ผู้ออกข้อสอบ	ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และ โทรดีนา	ามแล้ว
โทร. 0-2470-9075		

(ผศ.คร. วุฒิชัย อัศวินชัย โชติ) หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และ โทรคมนาคม

1

[สัญญาณคิจิตอล] (5 คะแนน) ให้ตีความหมายสัญญาณแรงคันไฟฟ้าข้างล่างนี้เป็นสัญญาณคิจิตอลโคย กำหนดให้

แรงคันช่วง 0 – 0.7 มีค่าเป็นลอจิก 0

- (45 คะแนน) คณิตศาสตร์ของเลขฐานและการเข้ารหัส
 - 2.1 (10 คะแนน) ให้แสดงวิธีแปลงเลขฐานต่อไปนี้
 - 2.1.1 10111011001₂ เป็นเลขฐานสิบ และฐานสิบหก

2.1.2 CODE₁₆ เป็นเลขฐานสิบ และฐานแปค

ชื่อ-สกล	รหัสนักศึกษา
10 - en l'ai	a field willing i

- 2.2 (5 คะแนน) คณิตศาสตร์ของเลขฐาน
- 2.2.1 FA89₁₆ DC6A₁₆

 $2.2.2\ 256_9 - 128_9$

- 2.3 (10 คะแนน) ให้ บวก/ลบ เลขฐานสองต่อไปนี้ เมื่อตัวเลขเหล่านี้ถูกแทนอยู่ในรูปอง 2's complement ให้บอกด้วยว่าเกิด overflow ขึ้นหรือไม่
- 2.3.1 10000001₂ + 10011101₂

2.3.2 01100011₂ - 01110111₂

ชื่อ-สกุล	รหัสนักศึกษา

- 2.4 (10 คะแนน) ให้ บวก/ลบ เลขฐานสองในข้อ 3.2 เมื่อตัวเลขเหล่านี้ถูกแทนอยู่ในรูปอง 1's complement ให้บอกด้วยว่าเกิด overflow ขึ้นหรือไม่
- 2.4.1 110111 100101

2.4.2 100110 + 101000

ชื่อ-สกุลรหัสนักศึกษา	
-----------------------	--

2.5 (10 กะแนน) ให้แปลงเลข -15.5625 เป็น IEEE single precision floating point representation

- 3. [สารสนเทศของโจทย์] (15 กะแนน) ในการแก้ปัญหาที่กำหนดให้ต่อไปนี้ จงวิเคราะห์ว่า (1) มีสารสนเทศ อะไรบ้างที่ค้องใช้ (2) แต่ละสารสนเทศเป็นชนิดใด (3) ถ้าเป็นตัวเลขให้บอกว่าเป็นตัวเลขชนิดใด ช่วงใด และ มีความละเอียดเท่าไร และ (4) ให้บอกว่าค้องใช้สัญญาณดิจิตอลกี่บิทจึงจะเพียงพอในการแทนสารสนเทศ
 - 3.1 (5 คะแนน) ค้องการควบคุมความสว่างของหลอดไฟเพื่อให้มีความเหมาะสมกับสภาพแสงในห้อง โดยให้สามารถปรับความสว่างของหลอดไฟได้อยู่ในช่วง 5-90 lux และให้สามารถปรับค่าความ สว่างได้ทั้งหมด 6 ระดับ

3.2 (10 คะแนน) ต้องการสร้างระบบบันทึกข้อมูลสุขภาพของคนไข้แต่ละคน โดยข้อมูลที่ต้องการ บันทึกคืออายุเป็นจำนวนปี น้ำหนักและส่วนสูงที่ความละเอียค 0.1 kg และ 0.1 cm ตามลำคับ วัน เคือน ปี ค.ศ. ที่เกิดและอุณหภูมิร่างกายที่ความละเอียด 0.5 องศาเซลเซียส ในเวลาที่ได้รับการตรวจ

4. (15 กะแนน) จงเติมค่าในตารางความจริงตามคุณลักษณะของลอจิกเกทต่างๆต่อไปนี้

AND

A	В	С	Z=A•B•C
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

OR				
	Α	В	С	Z=A+B+C
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

BUFFER

Α	Z
0	
1	

NAND

Α	В	Z=A•B
0	0	
0	1	-
1	0	
1	1	

NOR

Α	В	Z=A+B
0	0	
0	1	
1	0	
1	1	

Exclusive OR

A	В	Z=A⊕ B
0	0	
0	1	-
1	0	
1	1	

Exclusive NOR

Α	В	Z= A⊕ B
0	0	
0	1	
1	0	
1	1	

- 5. [Combinational Circuit Analysis] (20 กะแนน) ให้วิเคราะห์วงจรต่อไปนี้ตามวิธีที่กำหนด
 - 5.1 ให้ใช้การวิเคราะห์แบบ literal analysis ในการวิเคราะห์วงจรข้างล่าง โดยใส่อินพุทตามที่กำหนดให้ในรูป ให้แสดงวิธีการวิเคราะห์ (10 คะแนน)

ABCD	F	ABCD	F
0000		1000	
0011		1011	
0100		1100	
0111		1111	

5.2 ให้ใช้การวิเคราะห์แบบ symbolic analysis เพื่อหา Logic Expression ของ F และตารางความจริงของวงจร (10 คะแนน)

F =

ตารางความจริงของ F

ABCD			F
0000			
0001			
0010			
0011			
0100			
0101			
0110			
0111			
1000			
1001			
1010			
1011			
1100			
1101			
1110			
1111			

- 6. จากตารางความจริง (truth table) ที่กำหนดให้ ข้างล่าง (20 คะแนน)
 - 6.1 ให้เขียน canonical logic expression ของ F(A,B,C,D) ในรูปของ sum-of-product (SOP) (ให้เขียนทั้งแบบย่อและแบบเต็ม) (4 คะแนน)
 - 6.2 ให้เขียน canonical logic expression ของ F(A,B,C,D) ในรูปของ product-of-sum (POS) (ให้เขียนทั้งแบบย่อและแบบเต็ม) (4 คะแนน)
 - 6.3 ให้ใช้ทฤษฎีต่าง ๆ ของ Switching Algebra ที่ให้มาเพื่อลครูปของ logic expression ในข้อ (6.1) ให้ได้ $\overline{AB} + BC + A\overline{B}C\overline{D}$ (10 คะแนน)
 - 6.4 ให้บอกถึงข้อจำกัดของการใช้ Switching Algebra ในการลดรูป logic expression (2 คะแนน)

ชื่อ-สกุลรหัสนักศึกษารหัสนักศึกษา	
-----------------------------------	--

Row#	Inputs	Output
	ABCD	F
0	0000	1
1	0001	1
2	0010	1
3	0011	1
4	0100	0
5	0101	0
6	0110	1
7	0111	1
8	1000	0
9	1001	0
10	1010	1
11	1011	0
12	1100	0
13	1 1 0 1	0
14	1110	1
15	1111	1

6.1 Canonical SOP
F =(แบบย่อ)
=(แบบเต็ม)
6.2 Canonical POS
F =(แบบย่อ)
=(แบบเต็ม

Logic Expression	เหตุผล
F =	Canonical SOP

$$= \overline{A}\overline{B} + BC + A\overline{B}C\overline{D}$$

7. จาก list ของ minterms และ don't care terms ของ F ข้างล่างนี้ ให้ใช้ Karnaugh Map technique ลครูปให้อยู่ใน รูปของ minimal SOP (10 คะแนน)

$$F(A,B,C,D) = \sum_{n} m(2,6,7,9,13,15)$$

- 7.1 หา prime implicants ทั้งหมด (4 กะแนน)
- 7.2 หา essential prime implicants ทั้งหมด (3 คะแนน)
- 7.3 พา minimal logic expression ของ F (3 คะแนน)

- 7.1 Prime implicants ทั้งหมดได้แก่
- 7.2 Essential prime implicants ทั้งหมดได้แก่
- 7.3 หา minimal logic expression (แสคงที่มาของคำตอบ)

Switching Algebra Postulates and Theorems

1. Closure Properties

- a. Postulate 1a (P1a): If X and Y are in the domain, that is, take on only the values {0,1}, then (X+Y) is also in the domain.
- b. Postulate 1b (P1b): If X and Y are in the domain, that is, take on only the values {0,1}, then $(X \cdot Y)$ is also in the domain.

2. Identity Properties

- a. Postulate 2a (P2a): X + 0 = X
- b. **Postulate 2b (P2b):** $X \cdot 1 = X$

3. Commutative Properties

- a. Postulate 3a (P3a): X + Y = Y + X
- b. Postulate 3b (P3b): $X \cdot Y = Y \cdot X$

4. <u>Distributive Properties</u>

- a. Postulate 4a (P4a): $X + (Y \cdot Z) = (X+Y) \cdot (X+Z)$
- b. Postulate 4b (P4b): $X \cdot (Y+Z) = X \cdot Y + X \cdot Z$

5. Complement Properties

- a. Postulate 5a (P5a): $X + \overline{X} = 1$ b. Postulate 5b (P5b): $X \cdot \overline{X} = 0$

Theorems

1. Involution Theorem

Theorem 1 (T1): $\overline{X} = X$

2. Identity Theorems

- a. Theorem 2a (T2a): X + 1 = 1
- b. **Theorem 2b (T2b):** $X \cdot 0 = 0$

3. Idempotency Theorems

- a. Theorem 3a (T3a): X + X = X
- b. Theorem 3b (T3b): $X \cdot X = X$

4. Associative Theorems

- a. Theorem 4a (T4a): X + (Y + Z) = (X + Y) + Z
- b. Theorem 4b (T4b): $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$

5. DeMorgan's Theorems

- a. Theorem 5a (T5a): $\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$ b. Theorem 5b (T5b): $\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$

6. Adjacency Theorems

- a. Theorem 6a (T6a): $X \cdot Y + X \cdot \overline{Y} = X$ b. Theorem 6b (T6b): $(X + Y) \cdot (X + \overline{Y}) = X$

7. Absorption Theorems

- a. Theorem 7a (T7a): $X + X \cdot Y = X$ b. Theorem 7b (T7b): $X \cdot (X+Y) = X$

8. Simplification Theorems

- a. Theorem 8a (T8a): $X + X \cdot Y = X + Y$ b. Theorem 8b (T8b): $X \cdot (\overline{X} + Y) = X \cdot Y$

9. Consensus Theorems

- a. Theorem 9a (T9a): $X \cdot Y + \overline{X} \cdot Z + Y \cdot Z = X \cdot Y + \overline{X} \cdot Z$ b. Theorem 9b (T9b): $(X+Y) \cdot (\overline{X}+Z) \cdot (Y+Z) = (X+Y) \cdot (\overline{X}+Z)$