

planetmath.org

Math for the people, by the people.

intersection structure

Canonical name IntersectionStructure
Date of creation 2013-03-22 17:06:28
Last modified on 2013-03-22 17:06:28

Cwoo (3771)

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Definition
Classification msc 03G10
Classification msc 06B23
Synonym closure system

Related topic CriteriaForAPosetToBeACompleteLattice

Defines topped intersection structure
Defines algebraic intersection structure

Defines algebraic closure system

Intersection structures

An intersection structure is a set C such that

- 1. C is a subset of the powerset P(A) of some set A, and
- 2. intersection of a non-empty family \mathcal{F} of elements of C is again in C.

If order C by set inclusion, then C becomes a poset.

There are numerous examples of intersection structures. In algebra, the set of all subgroups of a group, the set of all ideals of a ring, and the set of all subspaces of a vector space. In topology, the set of all closed sets of a topological space is an intersection structure. Finally, in functional analysis, the set of all convex subsets of a topological vector space is also an intersection structure.

The set of all partial orderings on a set is also an intersection structure. A final example can be found in domain theory: let C be the set of all partial functions from a non-empty set X to a non-empty set Y. Since each partial function is a subset of $X \times Y$, C is a subset of $P(X \times Y)$. Let $\mathcal{F} := \{f_i \mid i \in I\}$ be an arbitrary collection of partial functions in C and $f = \bigcap \mathcal{F}$. f is clearly a relation between X and Y. Suppose x is in the domain of f. Let $E = \{y \in Y \mid xfy\}$. Then xf_iy for each f_i where x is in the domain of f_i . Since f_i is a partial function, $y = f_i(x)$, so that y is uniquely determined. This means that E is a singleton, hence f is a partial function, so that $\bigcap \mathcal{F} \in C$, meaning that C is an intersection structure.

The main difference between the last two examples and the previous examples is that in the last two examples, C is rarely a complete lattice. For example, let \leq be a partial ordering on a set P. Then its dual \leq^{∂} is also a partial ordering on P. But the join of \leq and \leq^{∂} does not exist. Here is another example: let $X = \{1\}$ and $Y = \{2,3\}$. Then $C = \{\varnothing, (1,2), (1,3)\}$. (1,2) and (1,3) are the maximal elements of C, but the join of these two elements does not exist.

Topped intersection strucutres

If, in condition 2 above, we remove the requirement that \mathcal{F} be non-empty, then we have an intersection structure called a *topped intersection structure*.

The reason for calling them topped is because the top element of such an intersection structure always exists; it is the intersection of the empty family.

In addition, a topped intersection structure is always a complete lattice. For a proof of this fact, see this http://planetmath.org/CriteriaForAPosetToBeACompleteLatticelin

As a result, for example, to show that the subgroups of a group form a complete lattice, it is enough to observe that arbitrary intersection of subgroups is again a subgroup.

Remarks.

• A topped intersection structure is also called a *closure system*. The reason for calling this is that every topped intersection structure $C \subseteq P(X)$ induces a closure operator cl on P(X), making X a closure space. cl: $P(X) \to P(X)$ given by

$$cl(A) = \bigcap \{ B \in C \mid A \subseteq B \}$$

is well-defined.

- Conversely, it is not hard to see that every closure space (X, cl) gives rise to a closure system $C := \{\operatorname{cl}(A) \mid A \in P(X)\}.$
- An intersection structure C is said to be algebraic if for every directed set $B \subseteq C$, we have that $\bigcup B \in C$. All of the examples above, except the set of closed sets in a topological space, are algebraic intersection structures. A topped intersection structure that is algebraic is called an algebraic closure system if,
- Every algebraic closure system is an algebraic lattice.

References

- [1] B. A. Davey, H. A. Priestley, *Introduction to Lattices and Order*, 2nd Edition, Cambridge (2003)
- [2] G. Grätzer: Universal Algebra, 2nd Edition, Springer, New York (1978).