# Redes Recorrentes - RNN

Deep Learning

#### Referências complementares

- <u>Understanding LSTM Networks</u>
- Understanding LSTM and its diagrams
- Redes Neurais Recorrentes
- Livro Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability de Danilo Mandic
- Livro Deep Learning: Recurrent Neurtal Networks in Python: LSTM, GRU, and more RNN
  machine learning architectures in Python and Theano de LazyProgrammerDeep Learning:
  Recurrent Neural Networks in Python: LSTM, GRU, and more RNN machine learning architectures
  in Python and Theano (Machine Learning in Python) (English Edition)

### Introdução

As arquiteturas de redes neurais que você já viu até agora foram treinadas usando apenas entradas atuais. Não consideramos entradas anteriores ao gerar a saída atual. Em outras palavras, nossos sistemas não continham nenhum elemento de **memória**.





As RNNs lidam com essa questão básica e importante usando **memória** (ou seja, entradas passadas da rede) ao produzir a entrada atual.

#### Entendendo a evolução das RNNs

Os marcos importantes da evolução das RNN:

- TDNN Rede neural de retardo de tempo.
- <u>Elman Network</u> Publicação original de 1990.
- <u>Redes Elman e Redes Jordan</u> Informações adicionais.
- <u>LSTM</u> Long Short-Term Memory Artigo original escrito por <u>Sepp Hochreiter</u> e <u>Jürgen</u> <u>Schmidhuber</u>.

#### Aplicações de RNNs

As empresas líderes mundiais em tecnologia estão todas usando RNNs, especialmente LSTMs, em suas <u>aplicações</u>. Algumas aplicações interessantes:

- Você se interesse por jogos e bots? Veja este bot de DotA 2 da Open Al.
- Que tal <u>adicionar sons a filmes mudos automaticamente?</u>
- Aqui está uma ferramenta legal para geração automática de caligrafia.
- Transcrição de voz para texto da Amazon usando reconhecimento de fala de alta qualidade,
   Amazon Lex.
- O Facebook usa tecnologias de RNN e LSTM para construir modelos de linguagem.
- A Netflix também usa modelos RNN aqui está uma leitura interessante.

#### Redes Neurais Recorrentes - RNNs

As RNNs são redes com loops permitindo que as informações persistam. Um loop permite que as informações sejam passadas de uma etapa da rede para a próxima. Uma RNN pode ser considerada como várias cópias da mesma rede, cada uma passando uma mensagem a um sucessor.



#### O Problema das Dependências de Longo Prazo

Um dos apelos das RNNs é a ideia de que elas podem ser capazes de conectar informações anteriores à tarefa presente, não precisando de contexto adicional. Isto ocorre quando não temos previsão de longo prazo em relação às entradas.





Infelizmente, à medida que essa lacuna aumenta, os RNNs tornam-se incapazes de aprender a conectar as informações.

O problema foi explorado em profundidade por Hochreiter (1991) [alemão] e Bengio, et al. (1994), que encontrou algumas razões fundamentais pelas quais isso pode ser difícil.

As RNNs utilizam um algoritmo de treinamento chamado *Backpropagation Through Time* (BPTT), o qual é uma extensão do *backpropagation*. Em uma RNN, a saída de uma célula é também a entrada dessa célula, então, o erro é propagado de uma célula para a própria célula. Então, a interpretação aqui é a de que o erro se propaga no tempo (para o passado, no caso).



Considere que estamos criando uma rede neural recorrente que seja capaz de prever a próxima palavra em um texto. Aqui temos as equações básicas da nossa RNN:

$$h_t = tanh(Ux_{t-1} + Vh_{t-1})$$

$$\hat{o}_t = Wh_t$$

OBS: Note a diferença entre o(t) e ô(t). O primeiro se refere ao valor de algo real que queremos prever, enquanto o segundo é o valor da nossa predição.

Vamos considerar aqui um problema de classificação. Então, também definimos nossa perda, ou erro, como a perda de entropia cruzada, dada por:  $E_t(o_t, \hat{o}_t) = -o_t * log(\hat{o}_t)$ 

Normalmente, tratamos a sequência completa (sentença) como um exemplo de treinamento, portanto, o erro total é apenas a soma dos erros em cada etapa de tempo (palavra).

$$E(o,\hat{o}) = \sum_{t} E_t(o_t,\hat{o}_t) = -\sum_{t} o_t * log(\hat{o}_t)$$

Lembre-se de que nosso objetivo é calcular os gradientes do erro em relação aos nossos parâmetros U, V e W e, em seguida, aprender bons parâmetros usando o <u>Stochastic Gradient</u> <u>Descent</u>. Assim como resumimos os erros, também somamos os gradientes em cada etapa de tempo para um exemplo de treinamento:



$$\frac{\partial E}{\partial V} = \sum_{t} \frac{\partial E_t}{\partial V}$$

Para calcular esses gradientes, usamos a regra de diferenciação da cadeia. Esse é o algoritmo de retropropagação quando aplicado para trás a partir do erro. Usaremos o E₃ como exemplo:

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \widehat{o_3}} \frac{\partial \widehat{o_3}}{\partial W} = \frac{\partial E_3}{\partial \widehat{o_3}} \frac{\partial \widehat{o_3}}{\partial z_3} \frac{\partial z_3}{\partial W} = (\widehat{o_3} - o_3) \otimes h_3$$

Acima,  $z_3 = Wh_3$  e a última expressão é o produto vetorial entre  $\hat{o}_3$ - $o_3$  e  $h_3$ .

O foco aqui é entender que 
$$\frac{\partial E_3}{\partial W}$$

depende apenas dos valores no momento atual,  $\hat{o}_3$ ,  $o_3$ ,  $h_3$ . Se você tem estes valores, calcular o gradiente para W é uma multiplicação simples de matriz.

Mas a história é diferente para:  $\frac{\partial E_3}{\partial V}$ 

Para entender porque, escrevemos a regra da cadeia, como acima:

$$\frac{\partial E_3}{\partial V} = \frac{\partial E_3}{\partial \widehat{o_3}} \frac{\partial \widehat{o_3}}{\partial h_3} \frac{\partial h_3}{\partial V}$$

Agora, note que  $h_3$  = tanh ( $Ux_3+Vh_2$ ) depende de  $h_2$ , que depende de V e  $h_1$ , e assim por diante. Então, se pegarmos a derivada em relação a V, não podemos simplesmente tratar  $h_2$  como uma constante. Precisamos aplicar a regra da cadeia novamente e o que realmente temos é o seguinte:

$$\frac{\partial E_3}{\partial V} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \widehat{o_3}} \frac{\partial \widehat{o_3}}{\partial h_3} \frac{\partial h_3}{\partial h_k} \frac{\partial h_k}{\partial V}$$

Somamos as contribuições de cada passo de tempo para o gradiente. Em outras palavras, como V é usado em todas as etapas até a saída que nos interessa, precisamos retroceder gradientes na rede de t = 3 até t = 0:

A imagem acima ilustra todo o processo comentado. A única diferença está no modo como cada estado foi nomeado. Aqui, usamos a notação h(t), e na imagem, cada estado é representado por s(t).





Considerações Finais: Observe que isso é exatamente o mesmo que o algoritmo de retropropagação padrão que usamos nas Redes Neurais Profundas da Feedforward. A principal diferença é que resumimos os gradientes para V em cada etapa de tempo. Em um rede neural tradicional, não compartilhamos parâmetros entre camadas, portanto, não precisamos somar nada. Mas o BPTT é apenas um nome sofisticado para retropropagação padrão em uma RNN "desenrolada". Assim como com Backpropagation, você pode definir um vetor delta que você repassa, por exemplo:

$$\delta_2^{(3)} = \frac{\partial E_3}{\partial z_2} = \frac{\partial E_3}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

Isso também deve lhe dar uma ideia do motivo pelo qual as RNNs são difíceis de treinar: as sequências podem ser bastante longas e você precisa retroceder através de várias camadas. Na prática, é comum truncar a retropropagação em poucos passos.

#### Problema do Gradiente Desaparecendo

O problema do gradiente de desaparecimento é encontrado ao treinar redes neurais artificiais com métodos de aprendizado baseados em gradiente e retropropagação. Em tais métodos, cada um dos pesos da rede neural recebe uma atualização proporcional à derivada parcial da função de erro em relação ao peso atual em cada iteração de treinamento. O problema é que, em alguns casos, o gradiente será extremamente pequeno, evitando efetivamente que o peso mude de valor. Na pior das hipóteses, isso pode impedir completamente o treinamento adicional da rede neural.

#### Algumas soluções:

- Utilização do BPTT;
- Inicialização dos pesos: <u>Xavier Initialization</u>
- LSTM Long Short Term Memory

<sup>\*</sup>Quando funções de ativação são usadas cujas derivadas podem assumir valores maiores, corre-se o risco de encontrar o problema de gradiente explosivo.

#### Problema do Gradiente Explosivo

#### Algumas soluções:

- Não visitar todas as camadas ocultas\*\*
- RMSProp tenta resolver o problema de que gradientes podem variar amplamente em magnitudes. Alguns gradientes podem ser minúsculos e outros podem ser enormes, o que resulta em um problema muito difícil - tentar encontrar uma única taxa de aprendizado global para o algoritmo.
- Cliping gradient O recorte de gradiente envolve forçar os valores de gradiente (elemento a elemento) para um valor mínimo ou máximo específico se o gradiente exceder um intervalo esperado.

<sup>\*</sup>Quando funções de ativação são usadas cujas derivadas podem assumir valores maiores, corre-se o risco de encontrar o problema de gradiente explosivo.

Todas as redes neurais recorrentes têm a forma de uma cadeia de módulos repetidos de rede neural. Em RNNs padrão, esse módulo de repetição terá uma estrutura muito simples, como uma única camada de *tanh*.

Redes de memória de longo prazo - geralmente chamadas apenas de "LSTMs" - são um tipo especial de RNN, capaz de aprender dependências de longo prazo. Eles foram introduzidos por Hochreiter & Schmidhuber (1997) para resolver esse problema, introduzindo explicitamente uma unidade de memória na rede chamada de célula.





A rede tem três entradas. X\_t é a entrada da etapa de tempo atual. h\_t-1 é a saída da unidade LSTM anterior e C\_t-1 é a "memória" da unidade anterior, que eu acho que é a entrada mais importante. Quanto às saídas, h\_t é a saída da rede atual. C\_t é a memória da unidade atual.

Portanto, esta única unidade toma decisões considerando a entrada atual, a saída anterior e a memória anterior. E gera uma nova saída e altera sua memória.





A forma como a memória interna C\_t muda é muito semelhante a canalizar água por um cano. Supondo que a memória seja água, ela flui para um cano. Você deseja alterar esse fluxo de memória ao longo do caminho e essa alteração é controlada por duas válvulas.



A primeira válvula é chamada de válvula de esquecimento. Se você fechá-lo, nenhuma memória antiga será mantida. Se você abrir totalmente esta válvula, toda a memória antiga passará.



No diagrama LSTM, o "tubo" superior é o tubo de memória. A entrada é a memória antiga (um vetor). A primeira cruz pela qual ela passa é a válvula de esquecimento. Na verdade, é uma operação de multiplicação por elemento. Portanto, se você multiplicar a memória antiga C\_t-1 por um vetor próximo a 0, isso significa que você deseja esquecer a maior parte da memória antiga. Você deixa a memória antiga passar, se sua válvula de esquecimento for igual a 1.



A segunda válvula é a nova válvula de memória. Uma nova memória virá através de uma junta em forma de T como acima e se fundirá com a memória antiga. Exatamente a quantidade de memória nova que deve entrar é controlada pela segunda válvula.



Então, a segunda operação pela qual o fluxo de memória passará é este operador +. Este operador significa soma por peça. Assemelha-se ao tubo de junção em forma de T. A memória nova e a memória antiga se fundirão por esta operação. A quantidade de memória nova que deve ser adicionada à memória antiga é controlada por outra válvula, o \* abaixo do sinal +.



A segunda válvula é a nova válvula de memória. Uma nova memória virá através de uma junta em forma de T como acima e se fundirá com a memória antiga. Exatamente a quantidade de memória nova que deve entrar é controlada pela segunda válvula.



Então, a segunda operação pela qual o fluxo de memória passará é este operador +. Este operador significa soma por peça. Assemelha-se ao tubo de junção em forma de T. A memória nova e a memória antiga se fundirão por esta operação. A quantidade de memória nova que deve ser adicionada à memória antiga é controlada por outra válvula, o \* abaixo do sinal +.



Após essas duas operações, você tem a memória antiga C\_t-1 alterada para a nova memória C\_t.

Agora vamos dar uma olhada nas válvulas. O primeiro é chamado de válvula de esquecimento. É controlado por uma rede neural simples de uma camada. As entradas da rede neural são h\_t-1, a saída do bloco LSTM anterior, X\_t, a entrada para o bloco LSTM atual, C\_t-1, a memória do bloco anterior e, finalmente, um vetor de polarização b\_0.



Esta rede neural tem uma função sigmóide como ativação, e seu vetor de saída é a válvula de esquecimento, que será aplicada à velha memória C\_t-1 por multiplicação elemento a elemento.

Agora, a segunda válvula é chamada de nova válvula de memória. Novamente, é uma rede neural simples de uma camada que recebe as mesmas entradas que a válvula de esquecimento. Esta válvula controla o quanto a nova memória deve influenciar a memória antiga.



A nova memória em si, entretanto, é gerada por outra rede neural. É também uma rede de uma camada, mas usa *tanh* como função de ativação. A saída desta rede irá multiplicar os elementos da nova válvula de memória e adicionar à memória antiga para formar a nova memória.

Esses dois sinais **x** são a válvula de esquecimento e a nova válvula de memória.



Por exemplo, Grid LSTMs de Kalchbrenner, *et al.* (2015) parecem extremamente promissores. Trabalho usando RNNs em modelos generativos - como Gregor, *et al.* (2015), <u>Chung, *et al.* (2015)</u>, ou Bayer & Osendorfer (2015) - também parece muito interessante. Os últimos anos foram uma época empolgante para as redes neurais recorrentes, e os que estão por vir prometem ser ainda mais!

E, finalmente, precisamos gerar a saída para esta unidade LSTM. Esta etapa possui uma válvula de saída que é controlada pela nova memória, a saída anterior h\_t-1, a entrada X\_t e um vetor de polarização. Esta válvula controla quanta memória nova deve produzir para a próxima unidade LSTM.



#### Outros materiais interessantes

- O próximo vídeo irá se concentrar no modelo desdobrado conforme tentamos entendê-lo.
- O vídeo a seguir resume as RNN.
- (LSTM) d\u00e4o uma solu\u00e7\u00e4o para o problema do desaparecimento de gradiente, ao ajudar-nos a usar redes que t\u00e4m depend\u00eancias temporais. Elas foram propostas em 1997 por [Sepp Hochreiter] (https://en.wikipedia.org/wiki/Sepp\_Hochreiter) e [J\u00fcrgen Schmidhuber] (http://people.idsia.ch/~juergen/).
- A postagem do Chris Olah sobre LSTM.
- Postagem do Edwin Chen's sobre LSTM.
- A aula do Andrej Karpathy sobre RNNs e LSTMs do curso CS231n.