10.2 The labor supply of married women has been a subject of a great deal of economic research. Consider the following supply equation specification

$$HOURS = \beta_1 + \beta_2 WAGE + \beta_3 EDUC + \beta_4 AGE + \beta_5 KIDSL6 + \beta_6 NWIFEINC + e$$

where *HOURS* is the supply of labor, *WAGE* is hourly wage, *EDUC* is years of education, *KIDSL6* is the number of children in the household who are less than 6 years old, and *NWIFEINC* is household income from sources other than the wife's employment.

a. Discuss the signs you expect for each of the coefficients.

,工资个,更愿意投入工资時間 翅勞動後给正相關 expect 的知,教育程度个,可能有更高新曼 的工作,更可能参與勞動市場,工時可能,个 expect By not sure,年龄较大可能工時更是 但可能因家庭或健康問題減少巧作時間 expect Bs Co, b最以下幼兒了,要包擔更 多家路、等致工時心 expect Paco, 家庭其他来源收入个, 经产 壓力 () 一勞動作生给 ()

b. Explain why this supply equation cannot be consistently estimated by OLS regression.

以MAGE复数具有风生性,可能受到未熟察到的個人特質累/響,這些因素同時也會影響 被解釋變數(HOURS)。

(WAGE與巴相關)

d. Is the supply equation identified? Explain.

"过是製製量:271:內生變數數量 1、13 identified

e. Describe the steps [not a computer command] you would take to obtain IV/2SLS estimates.

I.用纸有外生變數和工具變數去迴歸內生變數,取得預測性給於在 工在原本的勞動性給於程式中以WAGE代替 WAGE,然後用OL戶估計這個新方程式 3、所得估計值即為 2分L戶的一致估計結果

- 10.3 In the regression model $y = \beta_1 + \beta_2 x + e$, assume x is endogenous and that z is a valid instrument. In Section 10.3.5, we saw that $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$.
 - a. Divide the denominator of $\beta_2 = \cos(z, y)/\cos(z, x)$ by $\sin(z)$. Show that $\cos(z, x)/\sin(z)$ is the coefficient of the simple regression with dependent variable x and explanatory variable z, $x = \gamma_1 + \theta_1 z + v$. [Hint: See Section 10.2.1.] Note that this is the first-stage equation in two-stage least squares.

| least squares. |
$$\chi = r_1 + \theta_1 Z + V$$
 | $-\int E(X) = r_1 + \theta_1 Z + V$ | $-\int E(X) = r_1 + \theta_1 Z + V$ | $-\int E(X) = \theta_1 (Z - E(Z)) + V$ | $-\int E(Z) = \theta_1 (Z - E(Z)) + V$ | $-\int E(Z) = \theta_1 (Z - E(Z)) + ($

b. Divide the numerator of $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$ by var(z). Show that cov(z, y)/var(z) is the coefficient of a simple regression with dependent variable y and explanatory variable z, $y = \pi_0 + \pi_1 z + u$. [*Hint*: See Section 10.2.1.]

similar to (a)

$$Y=\pi_1+\pi_1z+1$$
人
-) E(Y)= $\pi_1(z-E(z))+1$ 人
同乗 ($z-E(z)$)
 $(z-E(z))(Y-E(Y))=\pi_1(z-E(z))^2+(z-E(z))$ 从
取基月望値
 $E(e-E(z))(Y-E(Y))]=\pi_1E(z-E(z))+E((z-E(z)))$
⇒ $\pi_1=\frac{E(z-E(z))(Y-E(Y))}{E(z-E(z))}=\frac{c_0V(z,Y)}{V_{0X}(z)}$
與 OLS 估計 經 歸係數公式一致

c. In the model $y = \beta_1 + \beta_2 x + e$, substitute for x using $x = \gamma_1 + \theta_1 z + v$ and simplify to obtain $y = \pi_0 + \pi_1 z + u$. What are π_0 , π_1 , and u in terms of the regression model parameters and error and the first-stage parameters and error? The regression you have obtained is a **reduced-form** equation.

绢到 Y 尺跟 Z 有關 fcn, 内生发数 X 被解释

d. Show that $\beta_2 = \pi_1/\theta_1$.

e. If $\hat{\pi}_1$ and $\hat{\theta}_1$ are the OLS estimators of π_1 and θ_1 , show that $\hat{\beta}_2 = \hat{\pi}_1/\hat{\theta}_1$ is a consistent estimator of $\beta_2 = \pi_1/\theta_1$. The estimator $\hat{\beta}_2 = \hat{\pi}_1/\hat{\theta}_1$ is an **indirect least squares** estimator.

by (a), (b)

$$\widehat{\theta}_1$$
 是 $X=P$, f_0 , $Z=V$ 的迴歸條數估計量

 $\widehat{\theta}_1 = \frac{CoV(Z_1X)}{Var(Z_1)}$ 且 $\widehat{\theta}_1$ 是 $\widehat{P} \to 0$ [若Z與V不相關)

 \widehat{T}_1 是 $Y=T_0$ + T_1 Z + U 的迴歸條數估計量

 $\widehat{T}_1 = \frac{CoV(Z_1X)}{Var(Z_1)}$ 且 \widehat{T}_1 是 \widehat{T}_2 (# Z與 U 不相關)

CONSIDER $\widehat{\beta}_2 = \frac{T_1}{\widehat{\theta}_1}$ (Absume $\widehat{\theta}_1 \neq 0$)

('The Potential Mapping Than

in $\widehat{\beta}_2 = \frac{\widehat{T}_1}{\widehat{\theta}_1}$ Potential Properties of the properties of the

Y Prior Condition \ \(\O(\frac{\text{to}}{Z_iV} = 0\) \(\ov(\frac{\text{Z}_iV}{Z_iU} = 0\) \(\ov(\frac{\text{Z}_iV}{Z_iU} = 0\) \(\ov(\frac{\text{Z}_iV}{Z_iU} = 0\) \(\ov(\frac{\text{Z}_iV}{Z_iU} = 0\) \(\overline{\text{Cov}}(\frac{\text{Z}_iV}{Z_iU} = 0\) \(\overline{\text{Cov}}(\frac{\text{Z}_iV}{Z_iU} = 0\)