Graphes & Algo. Examen

AU 2017-2018 GI-GE 1

Durée: 2h00

Questions de cours:

- a) Existe-t-il un graphe simple non orienté dont la liste des degrés des sommets est 4,2,2,2,1,1? Si oui tracer un exemple si non justifier.
- b) Expliquer la différence entre un graphe Eulérien et un graphe Hamiltonien.
- c) Donner la matrice d'adjacence du graphe suivant :

Exercice 1:

Huit jeunes candidats veulent travailler dans un supermarché dans lequel trois postes sont disponibles. Le responsable, soucieux d'éviter les problèmes, veut tenir compte des affinités entre ces jeunes candidats :

- a) Ali ne peut supporter Driss et Chaimae
- b) Chaimae refuse de travailler avec Badr
- c) Driss ne supporte pas Ghizlane
- d) Esrae ne veut côtoyer ni Badr, ni Fouad, ni Hanane V
- e) Fouad n'apprécie pas Ghizlane et Hanane
- f) Ghizlane ne s'entend pas avec Ali
- g) Hanane refuse de travailler avec Fouad ou Chaimae.
- 1. Construire un graphe non-orienté traduisant cette situation d'incompatibilité d'humeur.
- 2. Esrae à le meilleur CV. Qui peut-on embaucher avec elle?
- 3. Donner une autre combinaison possible de trois jeunes, autres qu'esrae, que l'on peut embaucher.

Exercice 2:

Un graphe orienté pondéré G est donné par la matrice d'incidence suivante, où les sommets du graphe sont s, a, b, c, d et t. Une arête parts du sommet s_1 vers le sommet s_2 si et seulement si la case de la ligne s_1 et de la colonne s_2 contient un entier, égal à la distance de s_1 à s_2 .

	S	a	b	С	d	t
S		19	8			
a			14		6	
b				4	22	
c		2			10	11
d						2
t						

1. Dessinez le graphe G.

- 2. Calculer, au moyen de l'algorithme de Moore-Dijkstra, les distances des plus courts chemins allant de s à tous les autres sommets du graphe.

 Donnez toutes les étapes de l'algorithme.
- 3. Quel est le plus court chemin permettant d'aller de s à t?

Exercice 3:

1. Donner la matrice d'adjacence du graphe suivant :

2. Construire en expliquant toutes les étapes de l'algorithme un arbre couvrant de poids minimum et un arbre couvant de poids maximum.