# PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-340718

(43) Date of publication of application: 11.12.2001

(51)Int.CI.

B01D 39/20 B01D 39/00 C04B 35/622 C04B 38/00

(21)Application number: 2000-165468

(71)Applicant: NGK INSULATORS LTD

(22)Date of filing:

02.06.2000

(72)Inventor: BABA TATSUO

# (54) BASE MATERIAL FOR HONEYCOMB FILTER AND ITS MANUFACTURING METHOD (57) Abstract:

PROBLEM TO BE SOLVED: To provide a base material for a honeycomb filter, which has a high mechanical strength and penetrate a large quantity of fluid. SOLUTION: The base material 22 for the honeycomb filter is made of a porous body of honeycomb structure having a large number of cells 23. 50% particle diameter (D50) of aggregate particles constituting the base material 22 is made to be within a range of 40 to 100  $\mu m$ . Further, >20 mass% and <80 mass% of the aggregate particles are constituted of globular particles of  $\cdot$  1.1 aspect ratio and a residual part is constituted of nonglobular particles having aspect ratio of  $\cdot$  1.2 times that of the globular particles.



# LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

## (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-340718 (P2001-340718A)

(43)公開日 平成13年12月11日(2001.12.11)

| (51) Int.Cl.7 |             | 觀別記号                        | FΙ       |         |                 | テーマコード(参考)    |
|---------------|-------------|-----------------------------|----------|---------|-----------------|---------------|
| B01D          | 39/20       |                             | B01D 3   | 9/20    | r               | 4D019         |
|               | 39/00       |                             | 3        | 9/00    | E               | 3 4G019       |
| C 0 4 B       | 35/622      |                             | C04B 3   | 8/00    | 3032            | 4G030         |
|               | 38/00       | 303                         | 3        | 5/00    | C               | ;             |
|               |             | ·                           | 審査請求     | 未請求     | 請求項の数7          | OL (全 9 頁)    |
| (21)出願番       | <del></del> | 特願2000-165468(P2000-165468) | (71) 出願人 | 日本码     | 子株式会社           |               |
| (22)出願日       |             | 平成12年6月2日(2000.6.2)         |          |         | 名古屋市瑞穂区多        | (田町2番56号      |
|               |             |                             | (72)発明者  |         |                 |               |
|               |             |                             |          |         |                 | 旬田町2番56号 日    |
|               |             |                             |          |         | 朱式会社内           |               |
|               |             |                             | (74)代理人  |         |                 |               |
|               |             |                             |          |         | 渡邉 一平           |               |
|               |             | ·                           | F ターム(参  | ·考) 4D0 | 119 AA01 AA03 B |               |
|               |             |                             |          |         | BB06 BD01 BI    | D10 CA01 CB06 |
|               |             |                             |          | 4C0     | 119 FA01 FA12   |               |
|               |             |                             |          | 4C0     | 130 AA36 AA37 B | 120 CA09 CA10 |
|               |             |                             |          |         | GA11 GA14 G     | A21 HA04 HA15 |
|               |             |                             |          |         |                 |               |

### (54) 【発明の名称】 ハニカムフィルタ用基材及びその製造方法

# (57)【要約】

【課題】 機械的強度が高く、流体透過量が大きいハニカムフィルタ用基材を提供する。

【解決手段】 多数のセル23を有するハニカム構造の多孔体からなるハニカムフィルタ用の基材22である。 基材22を構成する骨材粒子の50%粒子径(D,。)を40~100μmの範囲内とし、かつ、骨材粒子の20質量%超、80質量%未満はアスペクト比1.1以下の球状粒子、残部はアスペクト比が球状粒子の1.2倍以上の非球状粒子から構成する。



#### 【特許請求の範囲】

【請求項1】 多数のセルを有するハニカム構造の多孔 体からなるハニカムフィルタ用の基材であって、

当該基材を構成する骨材粒子の50%粒子径(D,。)が 40~100μmの範囲内にあり、かつ、当該骨材粒子 の20質量%超、80質量%未満はアスペクト比1.1 以下の球状粒子、残部はアスペクト比が前記球状粒子の 1. 2倍以上の非球状粒子からなることを特徴とするハ ニカムフィルタ用基材。

下記式(2)の関係を満たす請求項1に記載のハニカム フィルタ用基材。

 $0.7 \times D_{sa} \leq D_{sa} \cdots (1)$ 

 $D_{so} \leq 1.3 \times D_{so} \cdots (2)$ 

(但し、D,o:20%粒子径、D,o:50%粒子径、D 1。:80%粒子径)

【請求項3】 多数のセルを有するハニカム構造の多孔 体からなるハニカムフィルタ用の基材であって、

50%細孔径(d,o)が5~25µmの範囲内にあり、 かつ、水銀圧入法により測定した細孔径分布が下記式

(3)及び下記式(4)の関係を満たすハニカムフィル タ用基材。

 $0. 75 \times d_{so} \leq d_{lo} \cdots (3)$ 

 $d_{so} \leq 1.25 \times d_{so} \cdots (4)$ 

(但し、d,o:20%細孔径、d,o:50%細孔径、d 。。: 80%細孔径)

【請求項4】 骨材粒子を含む坏土を、ハニカム構造と 相補的な形状を有する押出用口金から押し出すことによ り成形する工程を含むハニカムフィルタ用基材の製造方 法であって、

50%粒子径(D,o)が40~100μmの範囲内にあ り、かつ、アスペクト比が1.1以下である球状粒子の 比率が20質量%超、80質量%未満、残部はアスペク ト比が前記球状粒子の1.2倍以上である非球状粒子か らなる骨材粒子から調製した坏土を使用することを特徴 とするハニカムフィルタ用基材の製造方法。

【請求項5】 球状粒子を噴霧乾燥法により得る請求項 4に記載のハニカムフィルタ用基材の製造方法。

【請求項6】 坏土を調製する骨材粒子の粒度分布が、 下記式(1)及び下記式(2)の関係を満たす請求項4 40 用されてきた。 又は5に記載のハニカムフィルタ用基材の製造方法。

 $0.7 \times D_{10} \leq D_{10} \cdots (1)$ 

 $D_{\bullet,\bullet} \leq 1.3 \times D_{\bullet,\bullet} \cdots (2)$ 

(但し、D,o:20%粒子径、D,o:50%粒子径、D 。: 80%粒子径)

【請求項7】 請求項1~3のいずれか一項に記載のハ ニカムフィルタ用基材のセル内周面に、セル内周面に比 して50%細孔径が小さい濾過膜を少なくとも1層備え たハニカムフィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は多数のセルを有す るハニカム構造の多孔体からなるハニカムフィルタ用基 材に関し、詳しくは機械的強度が高く、流体透過量が大 きいハニカムフィルタ用基材に関する。

[0002]

【従来の技術】 ハニカムフィルタは、例えば図1に示 すような多数のセル23を有するハニカム構造の多孔体 を基材22とするフィルタであり、多数のセル23に供 【請求項2】 骨材粒子の粒度分布が下記式(1)及び 10 給されたガス、液体等の被処理流体が多孔体の細孔を透 過する際に濾過が行われるため、単位体積あたりの濾過 面積が大きい集座フィルタ、固液分離フィルタとして利 用されている。

> 【0003】 例えば、フィルタ21をハウジング内に 収容し、基材22の外周面側と端面側とを〇ーリング等 で気密的に隔離する構造とすると、セル23内に供給さ れた被処理流体のうち基材の細孔内を透過した濾過流体 のみを外周面側から流出させ、濾過されなかった被処理 流体を端面側から回収するクロスフローフィルタとして 20 利用することができる。

【0004】 ハニカムフィルタにおいては、セル23 の内周面に、基材の細孔に比して更に細孔径が小さい濾 過膜(0.01~1.0µm程度)を少なくとも1層備 える構造とし、基材内部の細孔径を極力大きく構成する ととが理想的である。とのような構造では、細孔径が小 さい濾過膜により濾過性能を確保する一方、細孔径が大 きく(1~数100µm程度)、内部の流動抵抗が低い 基材により流体透過量を増加させることが期待できるか らである。

【0005】 一般に、ハニカムフィルタ用の基材は、 30 骨材粒子を含む坏土を、ハニカム構造と相補的な形状を 有する押出用口金から押し出すことにより成形する方法 により製造される。従来、細孔径が大きい基材を得る方 法としては、①骨材粒子の粒径を大きくすることにより 骨材粒子間の間隙部である細孔を大きくする方法(以下 「第1の方法」という。)、或いは②基材焼成時に焼失 する有機物(ピッチ、コークス等)を坏土中に添加する ととにより、空隙部を形成させ通常と比較して細孔を大 きくする方法(以下「第2の方法」という。)、等が採

[0006]

【発明が解決しようとする課題】 しかしながら、第1 の方法では、得られた基材が、フィルタとしての使用に 耐え得る機械的強度を備えていないという問題があっ た、具体的には、基材のセル内周面に濾過膜を製膜する 工程におけるハンドリングで破損するため製品歩留まり が低下したり、或いはフィルタとして使用する際に逆洗 浄の圧力で破損する等の不具合があった。

【0007】 また、第2の方法は、細孔径が大きくな 50 り難く透水量が増加し難いととに加えて、基材焼成時に

3

有機物が急激に燃焼するため、熱衝撃により基材にクラックを生じるという問題があった。

【0008】 即ち、従前においては、機械的強度が高く、流体透過量が大きいハニカムフィルタ用の基材は存在しておらず、そのような基材が切望されている。本発明は、このような従来技術の問題点に鑑みてなされたものであって、その目的とするところは、機械的強度が高く、流体透過量が大きいハニカムフィルタ用基材を提供することにある。

#### [0009]

【課題を解決するための手段】 本発明者らが鋭意検討した結果、基材を構成する骨材粒子の50%粒子径及び球状粒子の質量比を所定の範囲内に制御することにより、従来技術の問題点を解決できることに想到して本発明を完成した。

【0010】 即ち、本発明によれば、多数のセルを有するハニカム構造の多孔体からなるハニカムフィルタ用の基材であって、当該基材を構成する骨材粒子の50%粒子径(D,。)が40~100µmの範囲内にあり、かつ、当該骨材粒子の20質量%超、80質量%未満はア20スペクト比1.1以下の球状粒子、残部はアスペクト比が前記球状粒子の1.2倍以上の非球状粒子からなることを特徴とするハニカムフィルタ用基材が提供される。【0011】 上記ハニカムフィルタ用基材は、骨材粒子の粒度分布が下記式(1)及び下記式(2)の関係を満たすことが好ましい。

 $0. 7 \times D_{10} \leq D_{10} \cdots (1)$ 

 $D_{so} \leq 1.3 \times D_{so} \cdots (2)$ 

(但し、D<sub>2</sub>。: 20%粒子径、D<sub>5</sub>。: 50%粒子径、D<sub>6</sub>。: 80%粒子径)

 $\{0012\}$  また、本発明によれば、多数のセルを有するハニカム構造の多孔体からなるハニカムフィルタ用の基材であって、50%細孔径( $d_{10}$ )が $5\sim25\mu$  mの範囲内にあり、かつ、水銀圧入法により測定した細孔径分布が下記式(3)及び下記式(4)の関係を満たすハニカムフィルタ用基材が提供される。

0.  $75 \times d_{so} \leq d_{lo} \cdots (3)$ 

 $d_{10} \leq 1.25 \times d_{10} \cdots (4)$ 

(但し、d.o.: 20%細孔径、d.o.: 50%細孔径、d.o.: 80%細孔径)

【0013】 更に、本発明によれば、骨材粒子を含む 坏土を、ハニカム構造と相補的な形状を有する押出用口 金から押し出すことにより成形する工程を含むハニカムフィルタ用基材の製造方法であって、50%粒子径(Dso)が40~100μmの範囲内にあり、かつ、アスペクト比が1.1以下である球状粒子の比率が20質量% 超、80質量%未満、残部はアスペクト比が前記球状粒子の1.2倍以上である非球状粒子からなる骨材粒子から調製した坏土を使用することを特徴とするハニカムフィルタ用基材の製造方法が提供される。

【0014】 本発明の製造方法においては、球状粒子 を噴霧乾燥法により得ることが好ましく、坏土を調製す

る骨材粒子の粒度分布が、下記式(1)及び下記式(2)の関係を満たすことが好ましい。

 $0. 7 \times D_{so} \leq D_{lo} \cdots (1)$ 

 $D_{so} \leq 1.3 \times D_{so} \cdots (2)$ 

(但し、D<sub>2</sub>0:20%粒子径、D<sub>2</sub>0:50%粒子径、D<sub>2</sub>0:80%粒子径)

[0015] 更にまた、本発明によれば、上記のハニ カムフィルタ用基材のセル内周面に、セル内周面に比して50%細孔径が小さい濾過膜を少なくとも1層備えた ハニカムフィルタが提供される。

#### [0016]

【発明の実施の形態】 本発明のハニカムフィルタ用基 材は、基材を構成する骨材粒子の50%粒子径及び球状 粒子の質量比を所定の範囲内に制御したものである。本 発明のハニカムフィルタ用基材は、機械的強度が高く、 流体透過量が大きい。以下、本発明について詳細に説明 する。

20 【0017】(1)基材

本発明のハニカムフィルタ用基材(以下、単に「基材」という。)は、骨材粒子のうち少なくとも1種をアスペクト比が1.1以下である球状粒子としたものである。 このような球状粒子を骨材粒子とすることにより、基材焼成後においても骨材粒子間に確実に間隙部(即ち細孔)が形成され、流体の透過量を大きくすることができる。具体的には、前記球状粒子を骨材粒子中に20質量%以上含むことにより流体透過量を増加させ、基材内部の微構造を均一化する効果を得ることができる。

30 【0018】 但し、基材を構成する骨材粒子の全てを 上記球状粒子とすると骨材粒子間の結合が弱くなり、基 材の機械的強度が低下する。従って、前記球状粒子は骨 材粒子の20質量%以上とすることに加え、その上限を 80質量%とする必要がある。

[0019] 骨材粒子のうち球状粒子以外の残部についてはアスペクト比が上記球状粒子の1.2倍以上である非球状粒子により構成する。即ち、球状粒子としてアスペクト比1.0の粒子を用いた場合には1.2以上、1.04のを思いた場合では1.2以上の2.7

1.1のものを用いた場合であれば1.32以上のアス 40 ベクト比を有する粒子が非球状粒子となる。非球状粒子 は流体透過量を増加させるという観点からは好ましくな いが、骨材粒子間の結合を強化する効果を有し、基材の 機械的強度を向上させる作用がある。

【0020】 なお、本発明にいう「アスペクト比」とは、粉末状態においては走査型電子顕微鏡で撮影した写真から任意に選択した20個の骨材粒子のアスペクト比(長辺と短辺の比)の平均値、焼結体においては、焼結体の切断面に樹脂(例えばエボキシ樹脂)を塗布して穴埋めし、更に鏡面仕上げを行った面について同様に算出50 したアスペクト比の平均値である。

4

【0021】 球状粒子、非球状粒子は、既述のアスペ クト比を満たしていることに加え、50%粒子径

(D,o) が所定の範囲、具体的には40~100 µmの 範囲内に制御されていることが必要である。50%粒子 径(D, )が40μm未満の場合には流体透過量が減少 する点において、100μm超となる場合には基材の機 械的強度が低下する点においていずれも好ましくない。 また、50%粒子径(D,0)を40~100μmの範囲 内とすることにより、基材の50%細孔径(d,。)も5 ~25 µm (水銀圧入法)の範囲内に制御される。

【0022】 なお、本発明に言う「x%粒子径」と は、粉末状態においては節分け法により測定した粒子径 である。具体的には、公称目開き径の異なる複数の篩 を、上段ほど目開き径が大きくなるように多段に積重し たものを用意し、最上段の篩に粒子径の測定対象である 粉体試料を注入し、振とう機で15分間振とうした後、 各段の篩上にある粉末質量とその篩の目開き径との関係 から粒度分布曲線を作成し、積算質量がx%となる粒子 径をx%粒子径と規定した。

子比率、50%粒子径(D,,)を満たしていることに加 え、粒度分布が所定の範囲に制御されていること、具体 的には下記式(1)及び下記式(2)の関係を満たすこ とが好ましい。

 $0. 7 \times D_{so} \leq D_{zo} \cdots (1)$ 

 $D_{n_0} \leq 1.3 \times D_{n_0} \cdots (2)$ 

(但し、D.o: 20%粒子径、D.o: 50%粒子径、D 。。: 80%粒子径)

【0024】 骨材粒子の粒度分布が上記式(1)及び 上記式(2)の関係を満たす基材は細孔径分布がシャー プとなるからである。具体的には、水銀圧入法により測 定した細孔径分布が下記式(3)及び下記式(4)の関 係を満たす範囲内に制御された基材となる。

0.  $75 \times d_{50} \leq d_{20} \cdots (3)$ 

 $d_{so} \leq 1.25 \times d_{so} \cdots (4)$ 

(但し、d, ): 20%細孔径、d, ): 50%細孔径、d 。::80%細孔径)

【0025】 一方、上記式(1)を満たさない場合に は微粒成分が多くなることに起因して基材の骨材粒子間 の空隙部が閉塞され、流体透過量が減少するおそれがあ る。また、上記式(2)を満たさない場合には、骨材粒 子間の空隙部は大きくなるが、製膜工程において製膜用 スラリーが当該空隙部に入り込み閉塞するため、やはり フィルタの流体透過量は低下するおそれがある。

【0026】 なお、本発明にいう「x%細孔径」と は、下記式(5)を原理式とする水銀圧入法により測定 した細孔径である。具体的には、乾燥した基材に対して 徐々に圧力を上昇させながら水銀を圧入すると、径の大 きい細孔から順に水銀が圧入されて水銀の累積容量が増 加していき、最終的に全ての細孔が水銀で満たされる

と、累積容量は衡量に達する。本発明においては、累積 容量がx%となった際の圧力Pから算出された細孔径d をx%細孔径と規定した。

 $d = -\gamma \times \cos \theta / P \quad \cdots \quad (5)$ 

(但し、d:細孔径、γ:表面張力、θ:接触角、P: 圧力)、

【0027】(2)製造方法

ハニカムフィルタ用の基材は、骨材粒子を含む坏土を、 ハニカム構造と相補的な形状を有する押出用口金から押 10 し出すことにより成形し、当該成形体を乾燥し、焼成す ることにより得られる。本発明の基材を製造するために は、坏土を調製する際にアスペクト比、50%粒子径、 粒度分布を既述の範囲内に制御した骨材粒子を使用すれ ばよい。

【0028】 即ち、50%粒子径(D<sub>50</sub>)が40~1 00μmの範囲内にあり、かつ、アスペクト比が1.1 以下である球状粒子の比率が20質量%超、80質量% 未満、残部はアスペクト比が前記球状粒子の1.2倍以 上である非球状粒子からなる骨材粒子から坏土を調製す 【0023】 球状粒子、非球状粒子は、既述の球状粒 20 る。基材の細孔径分布をシャープにしたい場合には、当 該骨材粒子の粒度分布が下記式(1)及び下記式(2) の関係を満たすようにする。

 $0.7 \times D_{so} \leq D_{so} \cdots (1)$ 

 $D_{so} \leq 1.3 \times D_{so} \cdots (2)$ 

(但し、D,o:20%粒子径、D,o:50%粒子径、D "。:80%粒子径)

【0029】 調製の方法としては、例えば市販のセラ ミック原料をそのまま、或いはこれを粉砕・分級したも のを骨材粒子とし、2種以上の骨材粒子を既述の条件を 満たすように適宜混合する方法などが挙げられる。

【0030】 本発明の製造方法においては、球状粒子 を噴霧乾燥法により得ることが好ましい。球状粒子は粉 砕機や混合機 (ボールミル等) で粉砕・混合する方法に より調製したものを使用しても良いが、液状とした原料 をスプレードライヤーにより造粒・乾燥し、焼成する噴 霧乾燥法によれば、比較的容易にアスペクト比1. 1以 下の球状粒子が得られるからである。また、噴霧乾燥法 により得られた粒子は粉砕により得られた粒子と比較し て表面が平滑であるため、押出成形用口金を痛めずその 耐用期間が10倍程度に長くなる点においても好まし

【0031】 本発明の製造方法は、坏土を調製する際 にアスペクト比、50%粒子径、所望により粒度分布を 既述の範囲内に制御した骨材粒子を使用することを除 き、従来公知の製造方法と同様の方法により製造するこ とが可能である。

【0032】 坏土は、骨材粒子の他、分散媒、有機バ インダ、必要により無機結合材、界面活性剤、可塑剤等 を添加し、混練し成形原料とする。

50 【0033】 骨材粒子としては、アルミナ、ムライ

ト、セルベン、コージェライト、炭化珪素或いはこれら の混合物等を、分散媒としては、水等を、有機バインダ としてはメチルセルロース等を用いることができる。 【0034】 無機結合材は、骨材粒子の結合を強化す

るための添加材であり、粒径1 μm未満のアルミナ、シ リカ、ジルコニア、チタニア、ガラスフリット、長石、 コージェライトのうちの1種又は2種以上の混合物を使 用することができる。なお、無機結合材はセラミック粒 子ではあるが本発明にいう骨材粒子には包含されない。

質量%とした場合において、これに対し、15質量%以 上、35質量%以下に相当する量を添加することが好ま しい。15質量%未満であると基材の強度が低下する一 方、35質量%超となると充分な強度は得られるものの 骨材粒子の間隙に無機結合材が止まるため、基材内部の 細孔を閉塞し流体透過量を低下させるおそれがあるから である。

【0036】 坏土を所望の形状に押出成形し、乾燥・ 焼成することによりハニカム構造の基材を製造すること ー押出機やプランジャー押出機等の従来公知の押出機に 投入した坏土を、基材のハニカム構造と相補的な形状を 有する押出用口金から押し出すことにより成形体を得る **とができる。** 

【0037】 口金の形状により、基材の端面形状(円 形、正方形、長方形、六角形等)、端面外径(円形の場 合30~200mmφ)、セルの形状(円形、四角形、 六角形等)、セルの内接孔直径(通常は2~5mmφ程 度) 等を所望の形状とすることが可能である。基材のサ イズは特に限定されないが、長手方向の全長が150~ 30 載の比率で混合して骨材粒子を調製した。 2000mm程度のものが汎用される。

【0038】(3)フィルタ

上述の基材のセル内周面に、骨材粒子を含む製膜用スラ リーを付着せしめた後、当該製膜体を乾燥・焼成する方 法により瀘過膜を形成することができ、ハニカムフィル タを得ることができる。

\*【0039】 例えば、骨材粒子を水等の分散媒中に分 散し、必要に応じ有機パインダ、p H調整剤、界面活性 **剤等を添加することにより製膜用のスラリーとし、従来** 公知の方法、例えばディップ製膜法、本出願人が既に開 示した特公昭63-66566号公報に記載の濾過製膜 法等を用いてセル内周面に成膜して乾燥し、更に当該製 膜体を1300℃程度の高温で焼成する等の方法により フィルタを得ることができる。骨材粒子、分散媒、有機 バインダについては基材と同様のものを使用することが 【0035】 無機結合材は、骨材粒子の質量を100 10 できる。但し、濾過膜の細孔径を小さくするため骨材粒 子の50%粒子径は基材よりも小さくすることが一般的 である。

> 【0040】 また、製膜用スラリーには基材と同様の 目的で無機結合材を含有させても良い。濾過膜の場合に は、粒径1μm未満の粘土、カオリン、チタニアゾル、 シリカゾル、ガラスフリット等を用いることができ、骨 材粒子及び無機結合材の全質量中に、5質量%以上、2 5質量%以下の比率で含まれていることが好ましい。

【0041】 なお、濾過膜は少なくとも1層形成する ができる。例えば、単軸、2軸、或いは多軸のスクリュ 20 ととが必要があるが、2層以上形成して複層としてもよ

[0042]

【実施例】 以下、本発明のフィルタを実施例により更 に詳細に説明するが、本発明は下記の実施例により限定 されるものではない。

【0043】 基材の骨材粒子となるセラミック原料と しては、表1に記載の組成及びアスペクト比を有するア ルミナ $(A1\sim A6)$ , ムライト $(M1\sim M3)$ , セル ベン(S1)を使用した。これらの原料を表2~3に記

【0044】 なお、A3, M1については、原料を液 状とした後スプレードライヤーにより造粒・乾燥し、焼 成することによりアスペクト比を1.1以下とした。

[0045]

【表1】

| 記号        | 種類   |           | =   | 粒度分布 |     |           | アス・ | ペクト比    |
|-----------|------|-----------|-----|------|-----|-----------|-----|---------|
|           |      | D50 × 0.7 | D20 | D50  | D80 | D50 × 1.3 | 平均  | 1.1以下粒子 |
|           |      | μm        | μm  | μm   | μm  | μm        |     | 96      |
| A1        | アルミナ | 60        | 62  | 85   | 106 | 111       | 1.8 | 0       |
| A2        |      | 49        | 55  | 70   | 86  | 91        | 1.9 | 0       |
| A3        | :    | 53        | 65  | 75   | 85  | 98        | 1.1 | 100     |
| A4        |      | 74        | 92  | 105  | 135 | 137       | 1.8 | 0       |
| A5        |      | 18        | 18  | 26   | 33  | 34        | 1.8 | O       |
| A6        |      | 53        | 41  | 75   | 105 | 98        | 1.7 | 0       |
| M1        | ムライト | 53        | 65  | 76   | 85  | 99        | 1   | 100     |
| M2        | 1    | 46        | 45  | 65   | 87  | 85        | 1.5 | 0       |
| М3        |      | 55        | 62  | 78   | 104 | 101       | 1.8 | 0       |
| <b>S1</b> | セルベン | 49        | 54  | 70   | 87  | 91        | 1.8 | 0       |

【0046】(基材)上記骨材粒子に、無機結合材(長 メチルセルロースを加えて混練した坏土を押出成形し、 石、ガラスフリット等)、水の他、有機パインダとして 50 外径ゆ30mm、直径ゆ2.4mmのセルを37本有す 9

るハニカム構造の押出成形体を得た。無機結合材は骨材粒子の質量を100質量%とした場合において、これに対し25質量%に相当する量を添加した。当該押出成形体を電気炉で1500°Cで焼成することにより基材を得た。

【0047】 上記基材は、基材の50%細孔径及び細孔径分布、機械的強度について評価した。

【0048】 基材の50%細孔径及び細孔径分布については、水銀圧入法に従って以下の方法により測定した。まず、基材を端面から25mmの長さだけ切り出し、更にセル4~5個残るように切削して測定用サンプルとし、当該サンプルを水銀中に浸漬した状態で水銀を圧入し、その累積容量を測定することにより20%細孔径、50%細孔径、80%細孔径を算出した。

【0049】 基材の機械的強度については、各成形用 坏土を直径 φ20 mm×長さ100 mmの円筒状に押出 した成形体を、基材と同様の条件で乾燥し、焼成してなる焼結体を支点間距離80 mmとして3点曲げ強度の試験を行うととにより評価した。

【0050】 上記基材は濾過膜を形成してフィルタと 20 しての性能についても評価した。濾過膜は複層構造と し、中間層と濾過層を設けた。

【0051】中間層及び濾過層の製膜は、特開昭61-238315号公報に記載の濾過成膜法により行った。具体的には、図2に示す真空チャンバ6、貯蔵槽8、ポンプ7、フランジ2、3、配管10等からなる装置に対し、細孔内を水などの液体で置換した基材1のセル内周面側と基材1外周面側とをフランジ2、3、ボルト5で気密的に隔離した状態で固定し、次いで貯蔵槽8内のスラリー9をポンプ7により基材1のセル内に連続30的に送液してセル内周面12に接触させながら、真空チャンバ6内を真空ポンプ13により真空排気し、基材1外周面側を減圧状態とする。このような操作により、基材1外周面側を被圧状態とする。このような操作により、基材1外周面側とセル内周面12側との間に濾過差圧が付与されるため、基材1のセル内周面12にはスラリーが製膜され、スラリー中の水分は濾液として基材1外周面

側から排出される。

【0052】(中間層)基材と同材質で50%粒子径 ( $D_{so}$ )が3.2 $\mu$ mの骨材粒子、無機結合材(長石、ガラスフリット等)、水を27:3:70の質量比で混合してスラリーを調製した。各セルの内周面にスラリーを製膜した後、乾燥し、焼成することにより基材に固着させ中間膜を形成した。

【0053】(濾過層)基材と同材質で50%粒子径(D,。)が0.4μmの骨材粒子、無機結合材(ガラス 10 フリット)、水を9:1:90の質量比で混合してスラリーを調製した。各セルの中間層の表面にスラリーを製膜した後、乾燥し、焼成することにより中間層に固着させ濾過層を形成した。

【0054】 上記のように製造されたフィルタについては、流体透過量を透水量により、濾過性能を濾過層の最大細孔径により評価した。透水量は、水中、6.7kPa以下の減圧下で2時間、フィルタ内の気泡を脱気した後、差圧4.8~9.8kPa、温度25℃の条件で純水をフィルタのセルに注入し、セル内からフィルタ外周面側へ、透過させることにより濾過し、濾過面積当たりの時間当たりの透水量を測定することにより評価した。

【0055】 減過層の最大細孔径については以下の方法で測定した。ASTM F316に記載のエアフロー法に準拠し、水温20°Cの水で湿潤したフィルタに対し、圧力を徐々に上昇させながら加圧エアをセル内周面から送り込み、基材外周面から最初に気泡が確認された圧力Pから算出された細孔径Dを濾過層の最大細孔径とした。

【0056】(実施例1)実施例1として、種々の球状 粒子比率、50%粒子径、粒度分布を有するアルミナ粒 子を骨材粒子として基材を作製し、更に濾過膜を形成し てフィルタとした例を示す。

[0057]

【表2】

|             |            |    |            | #        | <b>事柱松</b> 平 |          |     |        |                 |            |          |            | 林湖       | <u>127</u> |      |          | 綅   | 巡视病     | 是完装          |
|-------------|------------|----|------------|----------|--------------|----------|-----|--------|-----------------|------------|----------|------------|----------|------------|------|----------|-----|---------|--------------|
|             |            | 報及 |            |          |              | 對限公布     |     |        | アスペクト比          |            | Ħ        | 平均無孔御      | 串        |            | 田子塔原 | 協大量      | 中本学 | 会村村子050 | 最大個孔径        |
|             | 10年        | ** | <b>会村2</b> | D50×0.7  | 020          | 8        | 8   | D50×13 | D50×1.3 1.1以下粒子 | d50 × 0.75 | 02P      | ş          | 8<br>—   | d50 × 1.25 |      |          | 超级  | 建设层 进笆中 |              |
|             | 2          |    | 描数         |          |              |          |     |        | 原料中比率           |            |          |            |          |            |      |          |     |         |              |
|             |            | £  | \$         | mπ       | шĦ           | ωπ       | шn  | E H    | *               | Шπ         | ωπ       | μ          | шĦ       | E          | MPa  | m3/hr-m2 | E   | μm      | шл           |
| 比胶例1-1      | ۲          | 0  | A3 100     | 53       | 92           | 51       | æ   | 88     | 061             | 122        | 13.9     | 16.3       | 18.4     | 20.4       | 5'81 | 121      | •   | ,       |              |
| 比较例1-2      | 7          | 8  | A3 80      | 23       | 64           | 35       | 88  | 88     | 2               | 12.4       | 13.9     | 16.5       | £ .      | 20.7       | 18.7 | 12.7     | ı   | 1       | •            |
| 東施倒1-1      | ¥          | 23 | A3 75      | 83       | æ            | 92       | 28  | 88     | 75              | 12.5       | 13.9     | 18.7       | 19.6     | 50.8       | 33.1 | 73.8     | 3.6 | 0.7     | 41.8         |
| 東施例1-2      | ₹          | 8  | A3 50      | <b>3</b> | . 29         | 11       | 84  | 8      | જ               | 121        | 13.7     | 17.0       | 20.2     | 212        | 32.5 | 75.0     | 3.8 | 0.7     | 41.8         |
| 東格朗1-3      | ₹          | 22 | A3 25      | 25       | 29           | 22       | 6   | 5      | 53              | 13.0       | 13.0     | 17.3       | 212      | 21.7       | 31.9 | 76.2     | 3.6 | 0.7     | 41.8         |
| 比较例1-3      | ٦          | 80 | A3 20      | 22       | 61           | 78       | 101 | 101    | 20              | 13.2       | 13.2     | 17.6       | 22.9     | 22.0       | 31.9 | 76.2     | 36  | .0.7    | 4.2          |
| 比较例1-4      | <b>A</b> 2 | 8  | A3 80      | 25       | 63           | 74       | 23  | 26     | 90              | 121        | 13.5     | 18.1       | 183      | 20.1       | 19.3 | 71.5     | ٠   | •       |              |
| 東特別1-4      | <b>A</b> 2 | 52 | A3 75      | 25       | 62           | 74       | 88  | 8      | 22              | 120        | 13,3     | 16.0       | 18.9     | 20.0       | 34.3 | 71.5     | 3.6 | 0.7     | <b>6</b> ,15 |
| 東部第1-5      | 3          | S  | A3 50      | 5        | 99           | E        | 98  | 8      | 22              | 11.7       | 12.7     | 15.7       | 19.      | 19.6       | 34.8 | 70.3     | 3.6 | 0.7     | <b>6.1</b> 5 |
| 景括第1-6      | <b>¥</b> 5 | 22 | A3 25      | 20       | . 57         | =        | 6   | 88     | 52              | 11.2       | Ξ.       | 15.0       | 18.0     | 18.7       | 36.0 | 68.0     | 3.6 | g.,     | 8.15         |
| 比较例1-5      | ₹          | 8  | A3 20      | 49       | 58           | 50       | 67  | 16     | 20              | 11.0       | 11.4     | 14.7       | 18.4     | 18.4       | 36.6 | 68.8     | 3.6 | 0.7     | 2.8          |
| 9-1級御守      | A4         | 82 | A3 80      | 53       | 19.          | 76       | 88  | 66     | 80              | 128        | 14.9     | 17.1       | 21.2     | 21.4       | 18.1 | 73.8     | •   |         | ,            |
| 米加例-7       | ₹          | ĸ  | A3 75      | 99       | 2            | 92       | 88  | 5      | 22              | 13.0       | 15.5     | 17.3       | 20.8     | 21.7       | 31.9 | 76.2     | 3.6 | a,      | ¢1.8         |
| <b>斯斯金山</b> | ¥          | ន  | A3 50      | 8        | 72           | 2        | ==  | 114    | 9               | 15,5       | 16.7     | 20.7       | 24.8     | 25.8       | 1.92 | 87.8     | 3.6 | 0,7     | \$(1.8       |
| 比较倒1-7      | ¥          | 22 | A3 25      |          | 11           | <u>1</u> | 125 | 52     | 52              | 18.0       | 18.8     | 25.3       | 30.6     | 31.7       | 17.9 | 104.2    | '   | ,       | ,            |
| 比較例1-8      | ¥          | 8  | A3 20      | 74       | 85           | 105      | 128 | 137    | 20              | 19.7       | 20.9     | 26.3       | 322      | 32.9       | 16.2 | 107.7    | ٠   |         | ٠            |
| 6-1級發電      | A5         | 22 | A3 80      | _        | 30           | 13       | æ   | 8      | 80              | 11.9       | 9.4      | 15.9       | 18.7     | 19.9       | 19.8 | 70.3     |     | '       |              |
| 比較例1-10     | <b>¥</b> 2 | ន  | A3 75      |          | 26           | 22       | 8   | 25     | 'n              | 11.5       | <u>a</u> | 15.3       | 18,6     | 19.2       | 35.4 | 69.2     | 8   | 0.7     | 3.8          |
| 比较例-11      | \$         | S  | A3 50      | 58       | 20           | Ŧ        | 23  | 23     | 20              | 62         | 5.8      | <b>B</b> 3 | <u>.</u> | 10.4       | 53.5 | 33.0     | •   | ,       | •            |
| 比較例1-12     | <b>5</b> 5 | 22 | A3 25      | 2        | 19           | 23       | 8   | 35     | 52              | 4          | 3.9      | 5.5        | 6.5      | 6.8        | 61.7 | 16.7     | •   | ı       | •            |
| 比較例1-13     | Α5         | 8  | A3 20      | 18       | 18           | 25       | æ   | 33     | 20              | 4.0        | 3.6      | 5.3        | 6.7      | 6.6        | 62.8 | 14.3     | ٠   | '       | ,            |
| 比较991-14    | 98         | 2  | A3 80      | 8        | 2            | 22       | 88  | 8      | 80              | 12.1       | 13.3     | 16.1       | -B.3     | 20.1       | 18.7 | 71.1     | 1   | •       | •            |
| 東特別1-9      | ٧          | 23 | A3 75      | 8        | 5            | 75       | 8   | 8      | 22              | 123        | 13.2     | 16.4       | 19.5     | 20.5       | 33.4 | 70.2     | 36  | 0.7     | <1.8         |
| 英格例-10      | <b>A6</b>  | જ  | A3 50      |          | 55           | 7.       | 83  | 88     | 20              | 12.2       | 12.3     | 182        | 19.8     | 20.3       | 33.1 | 6.83     | 3.6 | 0.7     | <1.8         |
| 東施到(-11     | <b>A6</b>  | 22 | A3 25      | ន        | 54           | 75       | 9   | 88     | 52              | 120        | 17.1     | 16.0       | 19.8     | 20.0       | 33.8 | 72.3     | 3.6 | 0.7     | \$.I.S       |
| 比较例1-15     | 94         | 8  | A3 20      | S        | 45           | 7.5      | 183 | 98     | 20              | 12.5       | 9.8      | 16.6       | 229      | 20.8       | 32.9 | 73.1     | 3.6 | 0.7     | 4.1          |

【0058】(結果)表2に示したように、骨材粒子の球状粒子比率、50%粒子径が本発明の範囲内にある実施例1-1~1-11については、基材曲げ強度、基材透水量、濾過層の最大細孔径のいずれも良好な結果を示した。

11

【0059】 一方、骨材粒子中の球状粒子が80質量%以上である比較例1-1、1-2、1-4、1-6、1-9、1-14、50%粒子径が100μm超の比較例1-7、1-8についてはいずれも基材曲げ強度が20MPa以下と顕著に低下した。

【0060】 また、50%粒子径が40 $\mu$ m未満の比較例1-12、1-13は基材透水量が20m<sup>3</sup>/hr ・m<sup>4</sup>以下と顕著に低下した。更に、骨材粒子中の球状粒子が20質量%以下である比較例1-3、1-5、1-15については濾過層の最大細孔径が大きくなる傾向があった。これは基材内部の微構造が不均一となり、製膜時において、基材へのスラリーの付着が不均一となったことによるものである。

【0061】 更に、骨材粒子の粒度分布が本発明の範 50 囲内にある実施例1-1~1-11については、基材の 細孔径がd1.がd1.の0.75倍以上、d1.がd1.の1.25倍以下となっており、細孔径分布がシャープであった。一方、球状粒子比率と50%粒子径を満たしている場合でも、粒度分布が本発明の範囲にない比較例1-10,1-11は基材の細孔径分布においてd1.が低下し、細孔径分布はブロードとなった。

【0062】(実施例2)実施例2は、実施例1と同様にして、種々のアスペクト比、50%粒子径、粒度分布を有するムライト粒子、セルベン粒子を骨材粒子として基材を作製し、更に濾過膜を形成してフィルタとした例 10を示す。

[0063]

【表3】

20

30

|               |     |     |     |    | 骨材粒子    | 竹子 |      |     |           |         |            |      |       | 斯林   | •          |      |          | 護   | 西根据     | 医脱剂           |
|---------------|-----|-----|-----|----|---------|----|------|-----|-----------|---------|------------|------|-------|------|------------|------|----------|-----|---------|---------------|
|               |     | 世   |     |    |         |    | 對限分布 |     |           | アスペクト比  |            | 叶    | 平均相孔径 | نبزو |            | 由げ弦段 | 別大庫      | 古社会 | 7-050   | 骨材粒子D50 最大細孔径 |
|               | ##1 | 4   | 青林2 |    | D50×0.7 | å  | 8    | 98  | 050 × 1.3 | 1.1以下数子 | d50 × 0.75 | 8    | 92    | 9    | d50 × 1.25 |      |          | 建三十 | 中國語 深透層 |               |
|               | 類   |     | 舞   |    |         |    |      |     |           | 原料中比斯   |            |      |       |      |            |      |          |     |         |               |
|               |     | *   |     | \$ | E       | шĦ | E    | ωĦ  | шπ        | £       | ШĦ         | ШĦ   | E     | шn   | шn         | MPa  | m3/hr-m2 | ĦΉ  | ΕĦ      | шπ            |
| 比较例2-1        | ¥   | જ્ઞ | Ē   | 8  | 25      | ន  | 7    | 2   | 98        | 2       | 123        | 13.8 | 16.4  | 19.1 | 20.5       | 19.3 | 21.5     | ,   | -       |               |
| 東施例2-1        | ¥   | z   | Ē   | 75 | 25      | 3  | z    | 98  | 98        | 22      | 120        | 129  | 16.0  | 181  | 50.0       | 34.3 | 71.5     | 36  | 0.7     | <b>41.8</b>   |
| 実施例2-2        | ¥   | ঞ   | ₹   | S  | 5       | 54 | E    | 8   | 8         | ន       | 11.7       | 1.9  | 16.7  | 18.6 | 19.6       | 34.8 | 25       | 3.6 | 0.7     | <b>41.8</b>   |
| 美拖倒2-3        | ¥   | 55  | ī   | 22 | 64      | 25 | 2    | 2   | 5         | 25      | 0.11       | 11.3 | 14.7  | 18.0 | 18.3       | 36.6 | 66.8     | 3.6 | 0.7     | ¢1.8          |
| 比较例2-2        | ¥   | 8   | ₹   | 20 | \$      | 41 | 28   | 8   | 8         | 8       | 10.B       | 93   | 14.1  | 18.3 | 17.8       | 37.8 | 64.5     | 3.6 | 0.7     | 3.3           |
| 比较例2-3        | £   | 20  | Ξ   | 8  | 53      | 53 | 3/8  | 87  | 66        | 9       | 121        | 13.6 | 1.8.1 | 18.2 | 20.1       | 18.1 | 73.8     | •   | •       | ı             |
| <b>新拓宏2-4</b> | ¥   | 23  | ₹   | 75 | 83      | 8  | \$   | 88  | 68        | 27      | 12.5       | 14.2 | 16.7  | 19.6 | 2078       | 33.1 | 73.8     | 3.6 | 0.7     | <1.8          |
| 東施図2-5        | Ê   | 8   | Ē   | S  | ¥       | 3  | E    | 8   | 8         | ន       | 127        | 13.9 | 0.71  | 20.2 | 21.2       | 32.5 | 75.0     | 3.6 | 6.      | <1.8          |
| 東施例2-6        | Ë   | 22  | Ē   | 52 | Z       | 8  | 11   | 83  | 8         | \$2     | 12.9       | 13.8 | 172   | 21.3 | 21.5       | 325  | 75.0     | 3.6 | 6.7     | <1.8          |
| 比較例2-4        | Œ   | 8   | Ξ   | 8  | ĸ       | ន  | 78   | 101 | 101       | 20      | 13.1       | 13.7 | 17.5  | 22.8 | 21.9       | 31.9 | 76.2     | 38  | 0.7     | 5.3           |
| 比較例2~5        | S   | 20  | E   | 80 | 25      | R  | 14   | 87  | 96        | 9       | 12.4       | 14.1 | 16.5  | 18.2 | 20.6       | 19.3 | 71.5     |     | ٠       | •             |
| 実施例2-7        | ফ   | 52  | Ē   | 35 | 8       | 8  | 7    | 87  | 86        | 22      | 021        | 13.5 | 16.0  | 19.1 | 20.0       | 34.3 | 71.5     | 3.6 | 62      | <1.8          |
| 東特例2-6        | ឆ   | 8   | Ξ   | 20 | 5       | 5  | 5    | 87  | 86        | S       | 11.3       | 129  | 15.7  | 18.6 | 19.6       | 34.8 | 70.3     | 36  | 0.7     | <1.8          |
| 資料を           | 20  | 25  | Ī   | 25 | ន       | 57 | =    | 88  | 83        | 52      | 11.8       | 121  | 15.4  | 18.7 | 18.3       | 36.0 | 68.0     | 3.6 | 0,7     | <b>41.8</b>   |
| 比較例2-6        | S   | 8   | Ē   | 8  | 4       | 56 | 2    | 88  | 5         | 20      | 11.4       | 11.8 | 15.2  | 19.2 | 19.0       | 36.6 | 86.8     | 3.6 | 0.7     | 4.8           |

40

【0064】(結果)表3に示したように、骨材粒子の球状粒子比率、50%粒子径が本発明の範囲内にある実施例2-1~2-9については、基材曲が強度、基材透水量、濾過層の最大細孔径のいずれも良好な結果を示した。

【0065】 一方、骨材粒子中の球状粒子が80質量%以上である比較例2-1,2-3,2-5についてはいずれも基材曲が強度が20MPa以下と顕著に低下した。骨材粒子中の球状粒子が20質量%以下である比較50 例2-2,2-4,2-6についてはいずれも濾過層の

1

最大細孔径が大きくなる傾向があった。基材内部の微構造が不均一であることに起因して、製膜時において、基材へのスラリーの付着が不均一となったためである。 【0066】

15

【発明の効果】 本発明のハニカムフィルタ用基材は、 基材を構成する骨材粒子の50%粒子径及び球状粒子の 質量比を所定の範囲内に制御したので、機械的強度が高 く、流体透過量が大きい。また、骨材粒子の粒度分布を 所定の範囲内に制御した場合には基材の細孔径分布もシャープなものとなる。

### 【図面の簡単な説明】

【図1】 ハニカムフィルタの一般的な構造を示す概略\*

\* 図であって、フィルタ全体の斜視図である。

【図2】 濾過成膜法に使用する製膜装置の例を示す概略図である。

## 【符号の説明】

1…多孔質基材、2、3…フランジ、4…〇-リング、5…ボルト、6…真空チャンバ、7…スラリーポンプ、8…貯蔵槽、9…成膜用スラリー、10…配管、11、14…バルブ、12…多孔質基材の貫通孔内壁、13…真空ポンプ、15、16…圧力計、17…貫通孔、A…10 供給口、B…排出口、21…フィルタ、22…基材、23…セル。

【図1】

23 22

[図2]

