1

Matrix Analysis

G V V Sharma*

CONTENTS

1 Class 10 1 2 Class 12 2 3 **JEE** 7 4 **JNTU** 11 5 11 **Definitions** 5.1 11 2×1 vectors 5.2 12 3×1 vectors 5.3 Eigenvalues and Eigenvectors 13 5.4 13 Determinants 5.5 Rank of a Matrix 13 13 5.6 Inverse of a Matrix 6 14 **Linear Forms** 14 6.1 Two Dimensions 6.2 Three Dimensions 14 7 **Quadratic Forms** 17 7.1 Conic Sections 17 7.2 Tangent and Normal 19

Abstract—This manual provides an introduction to vectors and their properties, based on the question papers, year 2020, from Class 10 and 12, CBSE; JEE and JNTU.

1 CLASS 10

1.1. Find the distance between the points $\binom{m}{-n}$ and $\binom{-m}{n}$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Solution: Letting

$$\mathbf{A} = \begin{pmatrix} m \\ -n \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -m \\ n \end{pmatrix}$$

$$(1.1.1)$$

$$\mathbf{A} - \mathbf{B} = 2 \begin{pmatrix} m \\ -n \end{pmatrix} \qquad (1.1.2)$$

$$\implies \|\mathbf{A} - \mathbf{B}\| = 2 \left\| \begin{pmatrix} m \\ -n \end{pmatrix} \right\| \qquad (1.1.3)$$

$$= 2\sqrt{\begin{pmatrix} m \\ -n \end{pmatrix} \begin{pmatrix} m \\ -n \end{pmatrix}}$$

$$(1.1.4)$$

$$= 2\sqrt{m^2 + n^2} \qquad (1.1.5)$$

1.2. Find a point on the x-axis which is equidistant from $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 10 \\ 0 \end{pmatrix}$

Solution: Letting the given points be A, B.

and
$$\frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2} = -42,$$
 (1.2.3)

(5.1.8.4), can be expressed as

$$\begin{pmatrix} -14 & 0 \end{pmatrix} \mathbf{x} = 42 \tag{1.2.4}$$

$$\implies \begin{pmatrix} -14 & 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = -42 \tag{1.2.5}$$

or,
$$x = 3$$
 (1.2.6)

Hence, the desired point is $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$.

1.3. Find the centre of a circle whose end points of a diameter are $\begin{pmatrix} -6 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$.

Solution: Using section formula, from (5.1.15.1), the desired point is given by

$$O = \frac{\mathbf{B} + \mathbf{A}}{2} \tag{1.3.1}$$

$$= \frac{1}{2} \left[\begin{pmatrix} -6\\3 \end{pmatrix} + \begin{pmatrix} 6\\4 \end{pmatrix} \right] \tag{1.3.2}$$

$$=\frac{1}{2}\begin{pmatrix}0\\7\end{pmatrix}\tag{1.3.3}$$

1.4. AOBC is a rectangle whose three vertices are $A = \begin{pmatrix} 0 \\ -3 \end{pmatrix}, O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$. Find the length of its diagonal.

Solution: The fourth point is given by

$$OC = \mathbf{C} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \tag{1.4.1}$$

The length of the diagonal is

$$\|\mathbf{C}\| = \sqrt{4 - 3} \begin{pmatrix} 4 \\ -3 \end{pmatrix} \qquad (1.4.2)$$
$$= \sqrt{25} = 5 \qquad (1.4.3)$$

1.5. Find the ratio in which the y-axis divides the line segment joining the points $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -7 \end{pmatrix}$. Also find the point of intersection.

Solution: Let the desired point on the y-axis be

$$\mathbf{P} = \begin{pmatrix} 0 & y \end{pmatrix} \tag{1.5.1}$$

Using section formula, from (5.1.15.1),

$$\mathbf{P} = \begin{pmatrix} 0 & y \end{pmatrix} = \frac{1}{k+1} \begin{bmatrix} \begin{pmatrix} 6 \\ -4 \end{pmatrix} + k \begin{pmatrix} -2 \\ -7 \end{pmatrix} \end{bmatrix}$$
(1.5.2)

$$\implies 6 - 2k = 0 \text{ or, } k = 3$$
 (1.5.3)

Also,

$$y = \frac{-4 - 7k}{k + 1} \tag{1.5.4}$$

 $= -\frac{25}{4} \tag{1.5.5}$

Thus, the desired point is $-\frac{25}{4} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

1.6. Show that the points $\begin{pmatrix} 7 \\ 10 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ are vertices of an isoscles right triangle.

Solution: Let the given points be A, B, C

respectively. Then, the direction vectors of AB,BC and CA are

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 7\\10 \end{pmatrix} - \begin{pmatrix} -2\\5 \end{pmatrix} = \begin{pmatrix} 9\\5 \end{pmatrix} \tag{1.6.1}$$

$$\mathbf{B} - \mathbf{C} = -\begin{pmatrix} -2\\5 \end{pmatrix} - \begin{pmatrix} 3\\-4 \end{pmatrix} = \begin{pmatrix} -5\\9 \end{pmatrix}$$
(1.6.2)

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} - \begin{pmatrix} 7 \\ 10 \end{pmatrix} = \begin{pmatrix} -4 \\ -14 \end{pmatrix} \quad (1.6.3)$$

From the above, we find that

$$(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} 9 & 5 \end{pmatrix} \begin{pmatrix} -5 \\ 9 \end{pmatrix} \quad (1.6.4)$$
$$= 0 \qquad (1.6.5)$$

$$(\mathbf{B} - \mathbf{C})^{\top} (\mathbf{C} - \mathbf{A}) = \begin{pmatrix} -5 & 9 \end{pmatrix} \begin{pmatrix} -4 \\ -14 \end{pmatrix}$$
(1.6.6)

$$=-106$$
 (1.6.7)

$$(\mathbf{C} - \mathbf{A})^{\top} (\mathbf{A} - \mathbf{B}) = \begin{pmatrix} -4 & -14 \end{pmatrix} \begin{pmatrix} 9 \\ 5 \end{pmatrix}$$
(1.6.8)

$$=-106$$
 (1.6.9)

From the above equations, (5.1.9.1) and (5.1.10.1),

$$(\mathbf{A} - \mathbf{B}) \perp (\mathbf{B} - \mathbf{C}) \tag{1.6.10}$$

$$\angle BCA = \angle CAB$$
 (1.6.11)

Thus, the triangle is right angled and isosceles.

2 CLASS 12

2.1. Find the area of a triangle formed by vertices O, A and B, where

$$\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix}, \tag{2.1.1}$$

Solution: ::

$$\begin{pmatrix} 2 & -2 \\ 3 & 1 \end{pmatrix} = 8, \tag{2.1.2}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix} = -10, \tag{2.1.3}$$

$$\begin{pmatrix} 1 & -3 \\ 2 & -2 \end{pmatrix} = 4, \tag{2.1.4}$$

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} 8 \\ -10 \\ 4 \end{pmatrix}, \tag{2.1.5}$$

and the desired area can be obtained from (5.2.2.1) and (6.2.1.1) as

$$\frac{1}{2} \left\| \begin{pmatrix} 8 \\ -10 \\ 4 \end{pmatrix} \right\| = 3\sqrt{5} \tag{2.1.6}$$

2.2. Find the coordinates of the foot of the perpendicular drawn from the point $\begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$ on the yaxis.

Solution: By definition of y-axis, the desired coordinates are

$$\begin{pmatrix} 0 \\ -3 \\ 0 \end{pmatrix} \tag{2.2.1}$$

Alternatively, the equation of the y-axis can be written as

$$\mathbf{x} = \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \tag{2.2.2}$$

The equation of the plane perpendicular to the y-axis and passing through the origin is

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \mathbf{x} = 0 \tag{2.2.3}$$

From (6.2.14.1), the desired point is given by

$$\mathbf{x} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \tag{2.2.4}$$

$$= \begin{pmatrix} 0 \\ -3 \\ 0 \end{pmatrix} \tag{2.2.5}$$

2.3. Find the angle between the vectors $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and

$$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Solution ·

$$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = -1, \left\| \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\| = \sqrt{2}$$

$$(2.3.1)$$

From (5.1.9.1), the angle between the given vectors is

$$\cos^{-1}\frac{-1}{\sqrt{2}\times\sqrt{2}} = \cos^{-1}\frac{-1}{2} \qquad (2.3.2)$$

$$=\frac{2\pi}{3}$$
 (2.3.3)

2.4. If A is a non-singular square matrix of order 3 such that $A^2 = 3A$, then find the value of |A| Solution:

$$\left| \mathbf{A}^2 \right| = \left| 3\mathbf{A} \right| \tag{2.4.1}$$

$$\implies \left| \mathbf{A} \right|^2 = 3^3 \left| \mathbf{A} \right| \qquad (2.4.2)$$

from (5.4.4.1) yielding

$$\left| \mathbf{A} \right| = 27 \tag{2.4.3}$$

after simplification.

2.5. If $\|\mathbf{a}\| = 4$ and $-3 \le \lambda \le 2$ then find the range of values that $\|\lambda \mathbf{a}\|$ can satisfy.

Solution: From (5.1.6.3),

$$\|\lambda \mathbf{a}\| = |\lambda| \|\mathbf{A}\| \tag{2.5.1}$$

$$=4\left|\lambda\right| \tag{2.5.2}$$

•.•

$$0 \le |\lambda| \le 3,\tag{2.5.3}$$

$$0 \le 4 \left| \lambda \right| \le 12 \tag{2.5.4}$$

2.6. If

$$\begin{vmatrix} 2x & -9 \\ -2 & x \end{vmatrix} = \begin{vmatrix} -4 & 8 \\ 1 & -2 \end{vmatrix} \tag{2.6.1}$$

then find the value of x.

Solution: Exapanding the above determinants,

$$2x^2 - 18 = 0 (2.6.2)$$

$$\implies x = \pm 3 \tag{2.6.3}$$

2.7. Find the distance between parallel planes

$$2x + y - 2z - 6 = 0 (2.7.1)$$

$$4x + 2y - 4z = 0 (2.7.2)$$

Solution: The above planes have parameters

$$\mathbf{n} = \begin{pmatrix} 2 & 1 & -2 \end{pmatrix}, c_1 = 6, c_2 = 0$$
 (2.7.3)

Using (6.1.6.1), the distance is obtained as

$$d = \frac{|c_1 - c_2|}{\|\mathbf{n}\|}$$

$$= \frac{6}{3} = 2$$
(2.7.4)

2.8. If

$$\mathbf{P} = \begin{pmatrix} 1\\0\\-3 \end{pmatrix} \tag{2.8.1}$$

is the foot of the perpendicular from the origin to the plane, then find the equation of the plane. **Solution:** Let the equation of the plane be

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{2.8.2}$$

Since P is a point on the plane, it satisfies the above equation and

$$\mathbf{n}^{\mathsf{T}}\mathbf{P} = c \tag{2.8.3}$$

The normal vector to the plane is OP. Hence,

$$\mathbf{n} = \mathbf{P} \tag{2.8.4}$$

Substituting the above in (2.8.3),

$$\mathbf{P}^{\mathsf{T}}\mathbf{P} = c \tag{2.8.5}$$

and the desired equation of the plane is

$$\mathbf{P}^{\mathsf{T}}\mathbf{x} = \mathbf{P}^{\mathsf{T}}\mathbf{P} \tag{2.8.6}$$

$$\begin{pmatrix} 1 & 0 & -3 \end{pmatrix} \mathbf{x} = 10 \tag{2.8.7}$$

after substituting numerical values.

2.9. Find the coordinates of the point where the line $\frac{x-1}{3} = \frac{y+4}{7} = \frac{z+4}{2}$ cuts the xy-plane. **Solution:** The given line can be expressed as

$$\mathbf{x} = \begin{pmatrix} 1 \\ -4 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 7 \\ 2 \end{pmatrix} \tag{2.9.1}$$

and the xy- plane is

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{2.9.2}$$

From (6.2.13.1),

$$\mathbf{x} = \mathbf{A} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{A}}{\mathbf{n}^{\mathsf{T}} \mathbf{m}} \mathbf{m}$$
 (2.9.3)

$$= \begin{pmatrix} 1 \\ -4 \\ -4 \end{pmatrix} + \frac{0 - \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ -4 \end{pmatrix}}{\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \\ 2 \end{pmatrix}} \begin{pmatrix} 3 \\ 7 \\ 2 \end{pmatrix}$$

(2.9.4)

$$= \begin{pmatrix} 1 \\ -4 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 7 \\ 2 \end{pmatrix} \tag{2.9.5}$$

$$= \begin{pmatrix} 7 \\ 10 \\ 0 \end{pmatrix} \tag{2.9.6}$$

2.10. Find a vector r equally inclined to the three axes and whose magnitude is $3\sqrt{3}$ units.

Solution: From (5.1.9.1),

$$\frac{\mathbf{e}_{1}^{\top}\mathbf{r}}{\|\mathbf{e}_{1}\| \|\mathbf{r}\|} = \frac{\mathbf{e}_{2}^{\top}\mathbf{r}}{\|\mathbf{e}_{2}\| \|\mathbf{r}\|} = \frac{\mathbf{e}_{3}^{\top}\mathbf{r}}{\|\mathbf{e}_{3}\| \|\mathbf{r}\|} = \cos\theta$$
(2.10.1)

which can be expressed as the system of equations

$$\mathbf{e}_{1}^{\mathsf{T}}\mathbf{r} = \|\mathbf{r}\|\cos\theta \tag{2.10.2}$$

$$\mathbf{e}_2^{\top} \mathbf{r} = \|\mathbf{r}\| \cos \theta \tag{2.10.3}$$

$$\mathbf{e}_3^{\top} \mathbf{r} = \|\mathbf{r}\| \cos \theta \tag{2.10.4}$$

which can be combined to obtain the matrix equation

$$\begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{pmatrix}^{\top} \mathbf{r} = \|\mathbf{r}\| \cos \theta \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (2.10.5)

$$\implies \frac{\mathbf{r}}{\|\mathbf{r}\|} = \cos\theta \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad (2.10.6)$$

$$\therefore \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{pmatrix} = \mathbf{I} \tag{2.10.7}$$

From (2.10.6)

$$\left\|\cos\theta \begin{pmatrix} 1\\1\\1 \end{pmatrix}\right\| = 1 \tag{2.10.8}$$

$$\implies \cos \theta = \frac{1}{\sqrt{3}} \tag{2.10.9}$$

From (2.10.9) and (2.10.9),

$$\mathbf{r} = 3\sqrt{3} \times \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{2.10.10}$$

$$= 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{2.10.11}$$

2.11. Find the angle between unit vectors a and b so that $\sqrt{3}$ a - b is also a unit vector.

Solution: From the given information,

$$\left\|\sqrt{3}\mathbf{a} - \mathbf{b}\right\| = 1 \tag{2.11.1}$$

$$\implies \left\| \sqrt{3}\mathbf{a} - \mathbf{b} \right\|^2 = 1 \tag{2.11.2}$$

which can be expressed as

$$(\sqrt{3}\mathbf{a} - \mathbf{b})^{\top} (\sqrt{3}\mathbf{a} - \mathbf{b}) = 1$$

$$(2.11.3)$$

$$\implies 3 \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 - 2\sqrt{3}\mathbf{a}^{\top}\mathbf{b} = 1$$

and simplified to obtain

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \frac{\sqrt{3}}{2} \tag{2.11.5}$$

(2.11.4)

Thus the desired angle is

$$\cos^{-1}\frac{\sqrt{3}}{2} = 30^{\circ} \tag{2.11.6}$$

2.12. If $\mathbf{A} = \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix}$ and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, Find scalar k so that $\mathbf{A}^2 + \mathbf{I} = k\mathbf{A}$.

Solution: Using the Cayley-Hamilton theorem,

$$\lambda^2 - k\lambda + 1 = 0 \tag{2.12.1}$$

From (5.3.4.1),

$$k = \operatorname{tr}(\mathbf{A}) = -3 - 1 = -4$$
 (2.12.2)

2.13. Show that the plane x - 5y - 2z = 1 contains the line $\frac{x-5}{3} = y = 2 - z$.

Solution: The plane and line can be expressed in vector form as

$$(1 -5 -2) \mathbf{x} = 1$$
 (2.13.1)

$$\mathbf{x} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} \tag{2.13.2}$$

$$\begin{pmatrix} 1 & -5 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = 0 \qquad (2.13.3)$$

from (6.2.9.3), the given plain contains the given line.

2.14. Find the equation of the plane passing through the points

$$\begin{pmatrix} 1\\0\\-2 \end{pmatrix} \begin{pmatrix} 3\\-1\\0 \end{pmatrix} \tag{2.14.1}$$

and perpendicular to the plane 2x - y + z = 8. Also find the distance of the plane thus obtained from the origin.

Solution: Let the equation of the desired plane

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = 1 \tag{2.14.2}$$

$$\begin{pmatrix} 1\\0\\-2 \end{pmatrix} \begin{pmatrix} 3\\-1\\0 \end{pmatrix} \tag{2.14.3}$$

From the given information,

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = 1 \tag{2.14.4}$$

$$\begin{pmatrix} 1 & 0 & -2 \end{pmatrix} \mathbf{n} = 1$$

$$\implies \begin{pmatrix} 3 & -1 & 0 \end{pmatrix} \mathbf{n} = 1$$

$$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix} \mathbf{n} = 0$$
(2.14.5)

From (2.14.5), we obtain the matrix equation

$$\begin{pmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 (2.14.6)

Forming the augmented matrix, and choosing the pivot,

$$\begin{pmatrix}
1 & 0 & -2 & 1 \\
3 & -1 & 0 & 1 \\
2 & -1 & 1 & 0
\end{pmatrix}$$
(2.14.7)

$$\leftrightarrow \begin{pmatrix} 1 & 0 & -2 & | & 1 \\ 0 & 1 & -6 & | & 2 \\ 0 & -1 & 5 & | & -2 \end{pmatrix}$$
 (2.14.8)

$$\begin{pmatrix}
1 & 0 & -2 & | & 1 \\
0 & 1 & -6 & | & 2 \\
0 & 0 & 1 & | & 0
\end{pmatrix}$$
(2.14.9)

yielding

$$\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \tag{2.14.10}$$

Thus, the equation of the desired plane is

$$(1 \ 2 \ 0) \mathbf{n} = 1$$
 (2.14.11)

2.15. If $\mathbf{A} = \begin{pmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{pmatrix}$, Find \mathbf{A}^{-1} and use it to solve the following system of the equations:

$$5x - y + 4z = 5 \tag{2.15.1}$$

$$2x + 3y + 5z = 2 (2.15.2)$$

$$5x - 2y + 6z = -1 \tag{2.15.3}$$

Solution: Forming the augmented matrix and pivoting,

$$\begin{pmatrix}
5 & -1 & 4 & 1 & 0 & 0 \\
2 & 3 & 5 & 0 & 1 & 0 \\
5 & -2 & 6 & 0 & 0 & 1
\end{pmatrix}$$

$$(2.15.4)$$

$$\leftrightarrow \begin{pmatrix}
5 & -1 & 4 & 1 & 0 & 0 \\
0 & 17 & 17 & -2 & 5 & 0 \\
0 & 1 & -2 & 1 & 0 & -1
\end{pmatrix}$$

$$(2.15.5)$$

$$\leftrightarrow \begin{pmatrix}
17 & 0 & 17 & 3 & 1 & 0 \\
0 & 17 & 17 & -2 & 5 & 0 \\
0 & 0 & 51 & -19 & 5 & 17
\end{pmatrix}$$

$$(2.15.6)$$

$$\begin{pmatrix}
8_1 \leftarrow 3R_1 - R_3 \\
R_2 \leftarrow 3R_2 - R_3
\end{pmatrix}$$

$$(2.15.7)$$

$$\begin{pmatrix}
51 & 0 & 0 & 28 & -2 & -17 \\
0 & 51 & 0 & 13 & 10 & -17 \\
0 & 0 & 51 & -19 & 5 & 17
\end{pmatrix}$$

$$(2.15.8)$$

resulting in

$$\mathbf{A}^{-1} = \frac{1}{51} \begin{pmatrix} 28 & -2 & -17 \\ 13 & 10 & -17 \\ -19 & 5 & 17 \end{pmatrix}$$
 (2.15.9) 2.17. Find the area of the triangle *ABC*, coordinates of whose vertices are

2.16. If x, y, z are different and

$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$$
 (2.16.1)

then using properties of determinants show that 1 + xyz = 0.

Solution: The given determinant can be expressed as

$$\begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + \begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix}$$
 (2.16.2)

Since

$$\begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix} = xyz \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$
 (2.16.3) 2.1

and

$$\begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}, \tag{2.16.4}$$

(2.16.2) can be expressed as

$$(1+xyz)\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}, (2.16.5)$$

The above determinant can be simplified as

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}, \quad (2.16.6)$$

$$\begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix}, \quad (2.16.6)$$

$$\underset{R_{2} \leftarrow R_{1} - R_{3}}{\overset{R_{3} \leftarrow R_{1} - R_{3}}{\underset{R_{2} \leftarrow R_{1} - R_{2}}{\longleftrightarrow}}} \begin{vmatrix} 1 & x & x^{2} \\ 0 & x - y & x^{2} - y^{2} \\ 0 & x - z & x^{2} - z^{2} \end{vmatrix}, \quad (2.16.7)$$

$$= (x - y) (x - z) \begin{vmatrix} 1 & x & x^{2} \\ 0 & 1 & x + y \\ 0 & 1 & x + z \end{vmatrix}, \quad (2.16.8)$$

$$= (x - y) (y - z) (z - x) (2.16.9)$$

and (2.16.1) can be obtained from (2.16.5) as

$$(1 + xyz)(x - y)(y - z)(z - x) = 0$$
(2.16.10)

Since

$$x \neq y \neq z, (1 + xyz) = 0$$
 (2.16.11)

$$\mathbf{A} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}.$$
 (2.17.1)

Solution: Since

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -2 \\ -5 \end{pmatrix}, \tag{2.17.2}$$

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}, \tag{2.17.3}$$

the desired area is the magnitude of

$$\begin{vmatrix} 2 & 4 \\ 5 & 3 \end{vmatrix} \tag{2.17.4}$$

Thus the desired area is 14 units.

(2.16.3) 2.18. A cottage industry manufactures pedestal lamps and wooden shades. Both the products require machine time as well as craftsman time in the making. The number of hours required for producing 1 unit of each and the corresponding profit is given in the following table.

Item	Machine Time	Craftsman Time	Profit(in INR)
Pedestal Lamp	1.5 hours	3 hours	30
Wooden shades	3 hours	1 hour	20

TABLE 2.18

In a day, the factory has availability of not more than 42 hours of machine time and 24 hours of craftsman time. Assuming that all items manufactured are sold, how should the manufacturer schedule his daily production in order to maximise the profit? Formulate it as an LPP and solve it graphically.

Solution: Let x be the number of lamps and y be the number of wooden shades produced. From the given information, the problem can be formulated as

$$P = \max_{x,y} 30x + 20y \tag{2.18.1}$$

$$1.5x + 3y < 42 \tag{2.18.2}$$

$$3x + y \le 24 \tag{2.18.3}$$

which can be expressed in vector form as

$$P = \max_{\mathbf{x}} \begin{pmatrix} 30 & 20 \end{pmatrix} \mathbf{x} \tag{2.18.4}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \mathbf{x} \preceq \begin{pmatrix} 28 \\ 24 \end{pmatrix} \tag{2.18.5}$$

The feasible region is a quadrilateral with vertices

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 8 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 14 \end{pmatrix}, \begin{pmatrix} 4 \\ 12 \end{pmatrix}$$
 (2.18.6)

with respective profit

$$\begin{pmatrix} 30 & 20 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$
(2.18.7)

$$(30 \ 20) \begin{pmatrix} 8 \\ 0 \end{pmatrix} = 240$$
 (2.18.8)

$$(30 \ 20) \begin{pmatrix} 0 \\ 14 \end{pmatrix} = 280$$
 (2.18.9)

$$(30 \ 20) \begin{pmatrix} 4 \\ 12 \end{pmatrix} = 360$$
 (2.18.10)

Thus, the manufacturer should produce 4 pedestal lamps and 12 wooden shades daily.

2.19. The corner points of the feasible region of an LPP are

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 8 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$
 and $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$. (2.19.1)

Find the point at which the maximum profit P = 3x + 2y occurs.

Solution: The profit can be expressed as

$$P = \begin{pmatrix} 3 & 2 \end{pmatrix} \mathbf{x} \tag{2.19.2}$$

and the respective values at each of the above points are given by

$$\begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0,
\tag{2.19.3}$$

$$\begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 8 \end{pmatrix} = 16 \tag{2.19.4}$$

$$\begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 7 \end{pmatrix} = 20 \tag{2.19.5}$$

$$\begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} = 23 \tag{2.19.6}$$

$$\begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \end{pmatrix} = 18 \tag{2.19.7}$$

Hence, the maximum profit is P=23 which occurs at $\binom{5}{4}$

3 JEE

3.1. Let α be a root of the equation

$$x^2 + x + 1 = 0 (3.1.1)$$

and the matrix

$$\mathbf{A} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \alpha & \alpha^2\\ 1 & \alpha^2 & \alpha^4 \end{pmatrix} \tag{3.1.2}$$

Find A^{31} .

Solution: Since

$$\mathbf{A}^{2} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4} \end{pmatrix} (3.1.3)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \mathbf{E}, \tag{3.1.4}$$

where E is an elementary matrix that interchanges the 2nd and 3rd row,

$$\mathbf{E}^2 = \mathbf{I}.\tag{3.1.5}$$

Thus, from (3.1.4) and (3.1.5),

$$\mathbf{A}^{31} = \mathbf{A} \left(\mathbf{A}^2 \right)^{15} = \mathbf{A} \left(\mathbf{E}^2 \right)^{15} \tag{3.1.6}$$

$$= \mathbf{A} \left(\mathbf{I} \right)^{15} = \mathbf{A} \tag{3.1.7}$$

3.2. A vector

$$\mathbf{a} = \begin{pmatrix} \alpha \\ 2 \\ \beta \end{pmatrix} \tag{3.2.1}$$

lies in the plane of the vectors

$$\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \tag{3.2.2}$$

If a bisects the angle between b, c, find a. **Solution:** From the given information,

$$\frac{\mathbf{a}^{\top}\mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{\mathbf{a}^{\top}\mathbf{c}}{\|\mathbf{a}\| \|\mathbf{c}\|}$$
(3.2.3)

$$\implies \frac{\mathbf{a}^{\top}\mathbf{b}}{\|\mathbf{b}\|} = \frac{\mathbf{a}^{\top}\mathbf{c}}{\|\mathbf{c}\|}$$
 (3.2.4)

Since

$$\|\mathbf{b}\| = \sqrt{2}, \|\mathbf{c}\| = 3\sqrt{2}$$
 (3.2.5)

from (3.2.4),

$$3\mathbf{a}^{\mathsf{T}}\mathbf{b} = \mathbf{a}^{\mathsf{T}}\mathbf{c} \tag{3.2.6}$$

$$\implies \mathbf{a}^{\top} (3\mathbf{b} - \mathbf{c}) = 0 \tag{3.2.7}$$

or,
$$(1 \ 2 \ -2) \mathbf{a} = 0$$
 (3.2.8)

Also, since a, b, c lie on the same plane,

$$\mathbf{a}^{\top} (\mathbf{b} \times \mathbf{c}) = 0 \tag{3.2.9}$$

$$\implies \begin{pmatrix} 2 & -2 & -1 \end{pmatrix} \mathbf{a} = 0 \tag{3.2.10}$$

From (3.2.8) and (3.2.10)

$$\begin{pmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \end{pmatrix} \mathbf{a} = 0 \tag{3.2.11}$$

Row reducing the above coefficient matrix,

$$\begin{pmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \end{pmatrix} \tag{3.2.12}$$

(pivoting)
$$\begin{pmatrix} 1 & 2 & -2 \\ 0 & 2 & -1 \end{pmatrix}$$
 (3.2.13)

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -1 \end{pmatrix} \tag{3.2.14}$$

Thus,

$$\mathbf{a} = k \begin{pmatrix} 2\\1\\2 \end{pmatrix} \tag{3.2.15}$$

where k is some constant. Comparing the above with (3.2.1),

$$k = 2 \implies \mathbf{a} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix} \tag{3.2.16}$$

3.3. If the system of linear equations

$$2x + 2ay + az = 0 (3.3.1)$$

$$2x + 3by + bz = 0 (3.3.2)$$

$$2x + 4cy + cz = 0 (3.3.3)$$

where $a, b, c \in \mathbb{R}$ are nonzero and distinct; has a nonzero solution, find the relation between a, b, c.

Solution: The given system of equations can be expressed as the matrix equation

$$\begin{pmatrix} 2 & 2a & a \\ 2 & 3b & b \\ 2 & 4c & c \end{pmatrix} \mathbf{x} = \mathbf{0} \tag{3.3.4}$$

Row reducing the coefficient matrix in, (3.3.5) yields (3.3.7). For the given system to have a nontrivial solution, the rank of the coefficient matrix should be 2. Hence, from (3.3.7),

$$-bc - ab + 2ac = 0 (3.3.8)$$

$$\implies ab + bc = 2ac$$
 (3.3.9)

or,
$$\frac{1}{a} + \frac{1}{c} = \frac{2}{b}$$
 (3.3.10)

Thus, a, b, c are in H.P.

3.4. Let P be a plane passing through the points

$$\begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\1\\1 \end{pmatrix}, \begin{pmatrix} 5\\0\\1 \end{pmatrix} \tag{3.4.1}$$

and

$$\mathbf{R} = \begin{pmatrix} 2\\1\\6 \end{pmatrix} \tag{3.4.2}$$

be any point. Find the image of \mathbf{R} in the plane \mathbf{P} .

Solution: From (6.2.16.1), the normal vector of the plane is given by

$$\begin{pmatrix} 2 & 1 & 0 \\ 4 & 1 & 1 \\ 5 & 0 & 1 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (3.4.3)

which can be solved by row reducing the augmented matrix as follows

obtained as

$$\stackrel{\text{pivoting}}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 3 & -2 \end{pmatrix} \stackrel{\text{pivoting}}{\longleftrightarrow} \begin{pmatrix} 6 & 0 & 0 & 2 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 3 & -2 \end{pmatrix} \qquad \text{be the vertices of a triangle. If P is a point inside the triangles}$$

$$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 2 \end{pmatrix}, C = \begin{pmatrix} \frac{3}{2} \\ 6 \end{pmatrix} \qquad (3.5.1)$$

$$be the vertices of a triangle. If P is a point inside the triangles ABC such that the triangles inside the triangles inside$$

yielding

$$\mathbf{n} = \frac{1}{3} \begin{pmatrix} 1\\1\\-2 \end{pmatrix} \tag{3.4.7}$$

Thus, the equation of the desired plane can be expressed as

$$\begin{pmatrix} 1\\1\\-2 \end{pmatrix} \mathbf{x} = 3 \tag{3.4.8}$$

From (6.2.11.2), the desired image is then

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} \frac{3}{2} \\ 6 \end{pmatrix} \quad (3.5.1)$$

inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then find the length of the line segment PQ, where

$$\mathbf{Q} = \begin{pmatrix} -\frac{7}{6} \\ -\frac{1}{3} \end{pmatrix} \tag{3.5.2}$$

Solution: The point P is the median of the given triangle. Hence,

$$\mathbf{P} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{3.5.3}$$

$$= \begin{pmatrix} \frac{17}{6} \\ \frac{8}{3} \end{pmatrix} \tag{3.5.4}$$

Thus,

$$\mathbf{P} - \mathbf{Q} = \begin{pmatrix} 4\\3 \end{pmatrix} \tag{3.5.5}$$

$$\implies PQ = 5$$
 (3.5.6)

$$\begin{pmatrix} 2 & 2a & a \\ 2 & 3b & b \\ 2 & 4c & c \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_1} \begin{pmatrix} 2 & 2a & a \\ 0 & 3b - 2a & b - a \\ 0 & 4c - 2a & c - a \end{pmatrix}$$
(3.3.5)

$$\begin{pmatrix}
2 & 2a & a \\
2 & 3b & b \\
2 & 4c & c
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 - R_1}
\begin{pmatrix}
2 & 2a & a \\
0 & 3b-2a & b-a \\
0 & 4c-2a & c-a
\end{pmatrix}$$
(3.3.5)

pivoting
$$\begin{pmatrix}
2 & (3b-2a) & 0 & a & (3b-2a) - 2a & (b-a) \\
0 & (3b-2a) & b-a & \\
0 & (3b-2a) & (c-a) - (b-a) & 4c-2a
\end{pmatrix}$$

$$= \begin{pmatrix}
2 & (3b-2a) & 0 & ab \\
0 & 3b-2a & b-a \\
0 & 0 & -bc-ab+2ac
\end{pmatrix}$$
(3.3.7)

$$= \begin{pmatrix} 2(3b-2a) & 0 & ab \\ 0 & 3b-2a & b-a \\ 0 & 0 & -bc-ab+2ac \end{pmatrix}$$
(3.3.7)

3.6. The line

$$y = mx + 4 \tag{3.6.1}$$

is tangent to both the parabolas

$$y^2 = 4x (3.6.2)$$

$$x^2 = 2by (3.6.3)$$

Find the value of b.

Solution: The given equations can be expressed as

$$\begin{pmatrix} m & -1 \end{pmatrix} \mathbf{x} = -4 \qquad (3.6.4)$$

$$\mathbf{x}^{\top} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} - 4 \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 0 \tag{3.6.5}$$

$$\mathbf{x}^{\top} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} - 2 \begin{pmatrix} 0 & b \end{pmatrix} \mathbf{x} = 0 \qquad (3.6.6)$$

and the respective conic parameters for (3.6.5), (3.6.6) can be expressed as

$$\mathbf{n} = \begin{pmatrix} m \\ -1 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix}$$
(3.6.7)

$$\mathbf{V}_{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u}_{1} = -2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{p}_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(3.6.8)

$$\mathbf{V}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u}_2 = -\begin{pmatrix} 0 \\ b \end{pmatrix}, \mathbf{p}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(3.6.9)

where $\mathbf{p}_1, \mathbf{p}_2$ are the eigenvectors corresponding to the 0 eigenvalue for $\mathbf{V}_1, \mathbf{V}_2$ respectively. From (7.2.5.1) and (7.2.5.2) the expression for the point of contact is given by

$$\begin{pmatrix} \mathbf{u}^{\top} + \kappa \mathbf{n}^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
(3.6.10)

where
$$\kappa = \frac{\mathbf{p}^T \mathbf{u}}{\mathbf{p}^T \mathbf{n}}$$
, $\mathbf{V} \mathbf{p} = 0$ (3.6.11)

a) Let \mathbf{q}_1 be the point of contact for (3.6.5). Then, from (7.2.5.2),

$$\kappa_1 = \frac{\mathbf{p}_1^T \mathbf{u}_1}{\mathbf{p}_1^T \mathbf{n}} \tag{3.6.12}$$

$$= -2 \frac{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}}{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} m \\ -1 \end{pmatrix}}$$
 (3.6.13)

$$= -\frac{2}{m} \tag{3.6.14}$$

Substituting the above in (7.2.5.1),

$$\begin{pmatrix} -2\begin{pmatrix} 1 & 0 \end{pmatrix} - \frac{2}{m}\begin{pmatrix} m & -1 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \mathbf{q}_{1} = \begin{pmatrix} 0 \\ -\frac{2}{m}\begin{pmatrix} m \\ -1 \end{pmatrix} + 2\begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$\implies \begin{pmatrix} -4 & \frac{2}{m} \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{q}_{1} = \begin{pmatrix} 0 \\ 0 \\ \frac{2}{m} \end{pmatrix} \quad (3.6.15)$$

which can be expressed as

$$\begin{pmatrix} -4 & \frac{2}{m} \\ 0 & 1 \end{pmatrix} \mathbf{q}_1 = \begin{pmatrix} 0 \\ \frac{2}{m} \end{pmatrix} \tag{3.6.16}$$

$$\implies \mathbf{q}_1 = \begin{pmatrix} \frac{1}{m^2} \\ \frac{2}{m} \end{pmatrix} \tag{3.6.17}$$

b) Similarly,

$$\kappa_2 = \frac{\mathbf{p}_2^T \mathbf{u}_2}{\mathbf{p}_2^T \mathbf{n}} \tag{3.6.18}$$

$$= -\frac{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ b \end{pmatrix}}{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ -1 \end{pmatrix}}$$
 (3.6.19)

$$=b \tag{3.6.20}$$

Substituting the above in (7.2.5.1),

$$\begin{pmatrix} -\begin{pmatrix} 0 & b \end{pmatrix} + b\begin{pmatrix} m & -1 \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \mathbf{q}_{2} = \begin{pmatrix} 0 \\ b\begin{pmatrix} m \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix} \end{pmatrix}$$

$$\implies \begin{pmatrix} bm & -2b \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{q}_{2} = \begin{pmatrix} 0 \\ bm \\ 0 \end{pmatrix} \quad (3.6.21)$$

which can be expressed as

$$\begin{pmatrix} m & -2 \\ 1 & 0 \end{pmatrix} \mathbf{q}_1 = \begin{pmatrix} 0 \\ bm \end{pmatrix} \tag{3.6.22}$$

$$\implies \mathbf{q}_2 = \begin{pmatrix} bm \\ \frac{bm^2}{2} \end{pmatrix} \tag{3.6.23}$$

c) Since $\mathbf{q}_1, \mathbf{q}_2$ lie on (3.6.4),

$$\begin{pmatrix} m & -1 \end{pmatrix} \mathbf{q}_1 = -4 \tag{3.6.24}$$

$$\begin{pmatrix} m & -1 \end{pmatrix} \mathbf{q}_2 = -4 \tag{3.6.25}$$

which can be expressed as

$$\begin{pmatrix} bm & \frac{bm^2}{2} \\ \frac{1}{m^2} & \frac{2}{m} \end{pmatrix} \begin{pmatrix} m \\ -1 \end{pmatrix} = -4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (3.6.26)$$

yielding

$$m = \frac{1}{4}, b = -128 \tag{3.6.27}$$

- 3.7. If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12, then find the length of its latus rectum.
- 3.8. Find the area of the region, enclosed by the circle

$$\mathbf{x}^{\top}\mathbf{x} = 2 \tag{3.8.1}$$

which is not common to the region bounded by the parabola

$$\mathbf{x}^{\top} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 0$$
 (3.8.2)

and the straight line

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 0. \tag{3.8.3}$$

4 JNTU

4.1. Find the value of k such that the rank of the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{pmatrix} \tag{4.1.1}$$

is 2.

4.2. Find the LU decomposition of

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & -1 \end{pmatrix} \tag{4.2.1}$$

4.3. If a square matrix **A** has an eigenvalue λ , then what is the eigenvalue of the matrix k**A**, where $k \neq 0$ is a scalar.

4.4. If a matrix

$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{pmatrix} \tag{4.4.1}$$

then what are the eigenvalues of A^2 ?

4.5. Factorize the matrix

$$\begin{pmatrix} 2 & -3 & 1 \\ 3 & 4 & 2 \\ 2 & -3 & 4 \end{pmatrix} \tag{4.5.1}$$

by the LU decomposition method.

4.6. For what values of λ and μ do the system of equations

$$x + y + z = 6 (4.6.1)$$

$$x + 2y + 3z = 10 \tag{4.6.2}$$

$$x + 2y + \lambda z = \mu \tag{4.6.3}$$

have

- a) no solution
- b) unique solution
- c) more than one solution
- 4.7. Find the value of k for which the system of equations

$$(k+1) x + y = 4k (4.7.1)$$

$$kx + (k-3)y = 3k-1$$
 (4.7.2)

has infinitely many solutions.

4.8. Verify Cayley-Hamilton Theorem for the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \tag{4.8.1}$$

and obtain A^{-1} and A^3 .

4.9. Reduce the quadratic form

$$3x^2 + 3y^2 + 3z^2 - 2yz + 2zx + 2xy$$
 (4.9.1)

to its canonical form.

5 DEFINITIONS

 $5.1 \ 2 \times 1 \ vectors$

5.1.1. Let

$$\mathbf{A} \equiv \overrightarrow{A} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \tag{5.1.1.1}$$

$$\equiv a_1 \overrightarrow{i} + a_2 \overrightarrow{j}, \qquad (5.1.1.2)$$

$$\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \tag{5.1.1.3}$$

be 2×1 vectors. Then, the determinant of the 2×2 matrix

$$\mathbf{M} = egin{pmatrix} \mathbf{A} & \mathbf{B} \end{pmatrix}$$

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \mathbf{x} = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2} \qquad (5.1.8.4)$$

is defined as

5.1.9. The angle between two vectors is given by

which can be simplified to obtain

$$\begin{vmatrix} \mathbf{M} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{B} \end{vmatrix}$$
 (5.1.1.5) $\theta = \cos^{-1} \frac{\mathbf{A}^{\mathsf{T}} \mathbf{B}}{\|A\| \|B\|}$ (5.1.9.1)
$$= \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$
 (5.1.1.6)
$$5.1.10. \text{ If two vectors are orthogonal (perpendicular),}$$

5.1.2. The value of the cross product of two vectors is given by (5.1.1.5).

$$\mathbf{A}^{\top}\mathbf{B} = 0 \tag{5.1.10.1}$$

5.1.3. The area of the triangle with vertices A, B, C5.1.11. The direction vector of the line joining two is given by the absolute value of points A, B is given by

$$\frac{1}{2} \left| \mathbf{A} - \mathbf{B} \quad \mathbf{A} - \mathbf{C} \right| \tag{5.1.3.1}$$

$$\mathbf{m} = \mathbf{A} - \mathbf{B}$$

5.1.4. The transpose of A is defined as

5.1.12. The unit vector in the direction of m is defined as

$$\mathbf{A}^{\top} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \tag{5.1.4.1}$$

$$\frac{\mathbf{m}}{\|\mathbf{m}\|}\tag{5.1.12.1}$$

5.1.5. The inner product or dot product is defined as

 $\mathbf{A}^{\mathsf{T}}\mathbf{B} \equiv \mathbf{A} \cdot \mathbf{B}$

(5.1.5.1\$.1.13. If the direction vector of a line is expressed as

$$= (a_1 \ a_2) \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2 \qquad \mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix}, \qquad (5.1.13.1)$$

5.1.6. *norm* of **A** is defined as

the m is defined to be the slope of the line. 5.1.14. The *normal vector* to m is defined by

$$||A|| \equiv \left| \overrightarrow{A} \right| \tag{5.1.6.1}$$

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0 \tag{5.1.14.1}$$

$$= \sqrt{\mathbf{A}^{\top}\mathbf{A}} = \sqrt{a_1^2 + a_2^2}$$

 $= \sqrt{\mathbf{A}^{\top}\mathbf{A}} = \sqrt{a_1^2 + a_2^2} \qquad (5.1.6.2)_{5.1.15}.$ The point **P** that divides the line segment ABin the ratio k:1 is given by

Thus,

$$\|\lambda \mathbf{A}\| \equiv \left| \lambda \overrightarrow{A} \right|$$
 (5.1.6.3)
= $|\lambda| \|\mathbf{A}\|$ (5.1.6.4)
$$\mathbf{P} = \frac{k\mathbf{B} + \mathbf{A}}{k+1}$$
 (5.1.15.1)

5.1.7. The distance betwen the points A and B is.1.16. The standard basis vectors are defined as given by

$$\|\mathbf{A} - \mathbf{B}\| \tag{5.1.7.1}$$

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{e}_2 \qquad = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad (5.1.16.1)$$

5.1.8. Let x be equidistant from the points A and B. Then

> 5.2 3×1 vectors $\|\mathbf{x} - \mathbf{A}\| = \|\mathbf{A} - \mathbf{B}\| \qquad (5.1.8.1)$ $\implies \|\mathbf{x} - \mathbf{A}\|^2 = \|\mathbf{x} - \mathbf{B}\|^2 \qquad (5.1.8.2)$ 5.2.1. Let

which can be expressed as

$$\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \equiv a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{j}, \quad (5.2.1.1)$$

$$(\mathbf{x} - \mathbf{A})^{\top} (\mathbf{x} - \mathbf{A}) = (\mathbf{x} - \mathbf{B})^{\top} (\mathbf{x} - \mathbf{B})$$

$$\implies \|\mathbf{x}\|^{2} - 2\mathbf{x}^{\top} \mathbf{A} + \|\mathbf{A}\|^{2}$$

$$= \|\mathbf{x}\|^{2} - 2\mathbf{x}^{\top} \mathbf{B} + \|\mathbf{B}\|^{2} \quad (5.1.8.3)$$

$$\mathbf{B} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix}, \quad (5.2.1.2)$$

and

5.4 Determinants

5.4.1. Let

$$\mathbf{A}_{ij} = \begin{pmatrix} a_i \\ a_j \end{pmatrix}, \mathbf{B}_{ij} = \begin{pmatrix} b_i \\ b_j \end{pmatrix}, \quad (5.2.1.3)$$

$$\mathbf{A} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}. \tag{5.4.1.1}$$

5.2.2. The cross product or vector product of A, B is defined as

be a 3×3 matrix. Then,

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} \begin{vmatrix} \mathbf{A}_{23} & \mathbf{B}_{23} \\ \mathbf{A}_{31} & \mathbf{B}_{31} \\ \mathbf{A}_{12} & \mathbf{B}_{12} \end{vmatrix} \end{pmatrix}$$
(5.2.2.1)

$$\begin{vmatrix} \mathbf{A} \end{vmatrix} = a_1 \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} - a_2 \begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix} + a_3 \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}. \quad (5.4.1.2)$$

5.2.3. Verify that

 $A \times B = -B \times A$ (5.2.3.1)

5.4.2. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of a matrix A. Then, the product of the eigenvalues is equal to the determinant of A.

$$\left|\mathbf{A}\right| = \prod_{i=1}^{n} \lambda_i \tag{5.4.2.1}$$

- 5.3 Eigenvalues and Eigenvectors
- 5.3.1. The eigenvalue λ and the eigenvector x for a 5.4.3. matrix A are defined as.

$$\left| \mathbf{AB} \right| = \left| \mathbf{A} \right| \left| \mathbf{B} \right| \tag{5.4.3.1}$$

 $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ (5.3.1.1) 5.4.4. If **A** be an $n \times n$ matrix,

5.3.2. The eigenvalues are calculated by solving the equation

$$\left| k\mathbf{A} \right| = k^n \left| \mathbf{A} \right| \tag{5.4.4.1}$$

5.5 Rank of a Matrix

The above equation is known as the characteristic equation.

- $f(\lambda) = |\lambda \mathbf{I} \mathbf{A}| = 0$ (5.3.2.1) 5.5.1. The rank of a matrix is defined as the number of linearly independent rows. This is also known as the row rank.
- 5.3.3. According to the Cayley-Hamilton theorem,
- 5.5.2. Row rank = Column rank.
- 5.5.3. The rank of a matrix is obtained as the number of nonzero rows obtained after row reduction.

 $f(\lambda) = 0 \implies f(\mathbf{A}) = 0$

- (5.3.3.1) 5.5.4. An $n \times n$ matrix is invertible if and only if its rank is n.
- 5.3.4. The trace of a square matrix is defined to be the sum of the diagonal elements.
- 5.6 Inverse of a Matrix 5.6.1. For a 2×2 matrix

 $\operatorname{tr}(\mathbf{A}) = \sum^{N} a_{ii}.$ (5.3.4.1)

$$\mathbf{A} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}, \tag{5.6.1.1}$$

where a_{ii} is the *i*th diagonal element of the matrix \mathbf{A} .

the inverse is given by

5.3.5. The trace of a matrix is equal to the sum of the eigenvalues

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}, \quad (5.6.1.2)$$

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{N} \lambda_{i}$$
 (5.3.5.1) 5.6.2. For higher order matrices, the inverse should be calculated using row operations.

6 LINEAR FORMS

- 6.1 Two Dimensions
- 6.1.1. The equation of a line is given by

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{6.1.1.1}$$

where n is the normal vector of the line.

6.1.2. The equation of a line with normal vector n and passing through a point A is given by

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{6.1.2.1}$$

6.1.3. The parametric equation of a line is given by

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{6.1.3.1}$$

where m is the direction vector of the line and A is any point on the line.

6.1.4. The distance from a point P to the line in (6.1.1.1) is given by

$$d = \frac{\left| \mathbf{n}^{\mathsf{T}} \mathbf{P} - c \right|}{\|\mathbf{n}\|} \tag{6.1.4.1}$$

Solution: Without loss of generality, let A be the foot of the perpendicular from P to the line in (6.1.3.1). The equation of the normal to (6.1.1.1) can then be expressed as

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{n} \tag{6.1.4.2}$$

$$\implies \mathbf{P} - \mathbf{A} = \lambda \mathbf{n} \tag{6.1.4.3}$$

 \therefore P lies on (6.1.4.2). From the above, the 6.2.1. The area of a triangle with vertices A, B, C is

$$d = \|\mathbf{P} - \mathbf{A}\| = |\lambda| \|\mathbf{n}\|$$
 (6.1.4.4)

From (6.1.4.3),

$$\mathbf{n}^{\top}(\mathbf{P} - \mathbf{A}) = \lambda \mathbf{n}^{\top} \mathbf{n} = \lambda \|\mathbf{n}\|^2$$
 (6.1.4.5) 6.2.2. Points $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are on a line if

$$\implies |\lambda| = \frac{\left|\mathbf{n}^{\top} (\mathbf{P} - \mathbf{A})\right|}{\left\|\mathbf{n}\right\|^2}$$
 (6.1.4.6)

Substituting the above in (6.1.4.4) and using 6.2.3. Points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form a paralelogram if the fact that

$$\mathbf{n}^{\top} \mathbf{A} = c \tag{6.1.4.7}$$

from (6.1.1.1), yields (6.1.4.1).

6.1.5. The distance from the origin to the line in (6.1.1.1) is given by

 $d = \frac{|c|}{\|\mathbf{n}\|}$

$$\mathbf{n}^{\top} \mathbf{x} = c_1 \mathbf{n}^{\top} \mathbf{x} = c_2$$
 (6.1.6.1)

is given by

$$d = \frac{|c_1 - c_2|}{\|\mathbf{n}\|} \tag{6.1.6.2}$$

6.1.7. The equation of the line perpendicular to (6.1.1.1) and passing through the point P is given by

$$\mathbf{m}^{\top} \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{6.1.7.1}$$

6.1.8. The foot of the perpendicular from P to the line in (6.1.1.1) is given by

$$\begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix}^{\mathsf{T}} \mathbf{x} = \begin{pmatrix} \mathbf{m}^{\mathsf{T}} \mathbf{P} \\ c \end{pmatrix} \tag{6.1.8.1}$$

Solution: From (6.1.1.1) and (6.1.2.1) the foot of the perpendicular satisfies the equations

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{6.1.8.2}$$

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{6.1.8.3}$$

where m is the direction vector of the given line. Combining the above into a matrix equation results in (6.1.8.1).

- 6.2 Three Dimensions

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| \tag{6.2.1.1}$$

$$\operatorname{rank} \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \end{pmatrix} = 1 \tag{6.2.2.1}$$

$$\operatorname{rank} \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{D} \end{pmatrix} = 1, \operatorname{rank} \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \end{pmatrix} = 2 \quad (6.2.3.1)$$

- 6.2.4. The equation of a line is given by (6.1.3.1)
- 6.2.5. The equation of a plane is given by (6.1.1.1)
- (6.1.5.1) 6.2.6. The distance from the origin to the line in (6.1.1.1) is given by (6.1.5.1)

6.2.7. The distance from a point P to the line in (6.1.3.1) is given by

$$d = \|\mathbf{A} - \mathbf{P}\|^2 - \frac{\left\{\mathbf{m}^{\top} (\mathbf{A} - \mathbf{P})\right\}^2}{\|\mathbf{m}\|^2}$$
 (6.2.7.1)

Solution:

$$d(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\|$$
 (6.2.7.2) which can be simplified to obtain (6.2.9.3)
 $\Rightarrow d^2(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\|^2$ (6.2.7.3)6.2.10. The foot of the perpendicular from a point **P**

which can be simplified to obtain

$$d^{2}(\lambda) = \lambda^{2} \|\mathbf{m}\|^{2} + 2\lambda \mathbf{m}^{\top} (\mathbf{A} - \mathbf{P}) + \|\mathbf{A} - \mathbf{P}\|^{2}$$
(6.2.7.4)

which is of the form

$$d^{2}(\lambda) = a\lambda^{2} + 2b\lambda + c \qquad (6.2.7.5)$$

$$= a\left\{ \left(\lambda + \frac{b}{a}\right)^{2} + \left[\frac{c}{a} - \left(\frac{b}{a}\right)^{2}\right] \right\} \qquad (6.2.7.6)$$

with

$$a = \|\mathbf{m}\|^2$$
, $b = \mathbf{m}^{\top} (\mathbf{A} - \mathbf{P})$, $c = \|\mathbf{A} - \mathbf{P}\|^2$ 6.2.11. The image of a point \mathbf{P} with respect to the plane

which can be expressed as From the above, $d^{2}\left(\lambda\right)$ is smallest when upon substituting from (6.2.7.7)

$$\lambda + \frac{b}{2a} = 0 \implies \lambda = -\frac{b}{2a} \qquad (6.2.7.8)$$
$$= -\frac{\mathbf{m}^{\top} (\mathbf{A} - \mathbf{P})}{\|\mathbf{m}\|^{2}} \qquad (6.2.7.9)$$

and consequently,

$$d_{\min}(\lambda) = a \left(\frac{c}{a} - \left(\frac{b}{a}\right)^{2}\right)$$
 (6.2.7.10)
= $c - \frac{b^{2}}{a}$ (6.2.7.11)6.2.12

yielding (6.2.7.1) after substituting (6.2.7.7).

- 6.2.8. The distance between the parallel planes (6.1.6.1) is given by (6.1.6.2).
- 6.2.9. The plane

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{6.2.9.1}$$

contains the line

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{6.2.9.2}$$

if

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0 \tag{6.2.9.3}$$

Solution: Any point on the line (6.2.9.2) should also satisfy (6.2.9.1). Hence,

$$\mathbf{n}^{\top} (\mathbf{A} + \lambda \mathbf{m}) = \mathbf{n}^{\top} \mathbf{A} = c \qquad (6.2.9.4)$$

which can be simplified to obtain (6.2.9.3) to the plane

$$\mathbf{n}^{\top}\mathbf{x} = c \tag{6.2.10.1}$$

is given by

Solution: The equation of the line perpendicular to the given plane and passing through P

$$\mathbf{x} = \mathbf{P} + \lambda \mathbf{n} \tag{6.2.10.2}$$

From (6.2.13.1), the intersection of the above line with the given plane is

$$\mathbf{x} = \mathbf{P} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{P}}{\|\mathbf{n}\|^2} \mathbf{n}$$
 (6.2.10.3)

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{6.2.11.1}$$

is given by

$$\mathbf{R} = \mathbf{P} + 2\frac{c - \mathbf{n}^{\top} \mathbf{P}}{\|\mathbf{n}\|^2}$$
 (6.2.11.2)

Solution: Let R be the desired image. Then, subtituting the expression for the foot of the perpendicular from P to the given plane using (6.2.10.3),

$$\frac{\mathbf{P} + \mathbf{R}}{2} = \mathbf{P} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{P}}{\|\mathbf{n}\|^2}$$
 (6.2.11.3)

(6.2.7.11)6.2.12. Let a plane pass through the points A, B and be perpendicular to the plane

$$\mathbf{n}^{\top}\mathbf{x} = c \tag{6.2.12.1}$$

Then the equation of this plane is given by

$$\mathbf{p}^{\mathsf{T}}\mathbf{x} = 1 \tag{6.2.12.2}$$

where

$$\mathbf{p} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{n} \end{pmatrix}^{-\top} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \tag{6.2.12.3}$$

Solution: From the given information,

$$\mathbf{p}^{\mathsf{T}}\mathbf{A} = d \tag{6.2.12.4}$$

$$\mathbf{p}^{\mathsf{T}}\mathbf{B} = d \tag{6.2.12.5}$$

$$\mathbf{p}^{\mathsf{T}}\mathbf{n} = 0 \tag{6.2.12.6}$$

: the normal vectors to the two planes will also be perpendicular. The system of equations in (6.2.12.6) can be expressed as the matrix equation

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{n} \end{pmatrix}^{\mathsf{T}} \mathbf{p} = d \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \tag{6.2.12.7}$$

which yields (6.2.12.3) upon normalising with

6.2.13. The intersection of the line represented by (6.1.3.1) with the plane represented by (6.1.1.1)is given by

$$\mathbf{x} = \mathbf{A} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{A}}{\mathbf{n}^{\mathsf{T}} \mathbf{m}} \mathbf{m}$$
 (6.2.13.1)

Solution: From (6.1.3.1) and (6.1.1.1),

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \quad (6.2.13.2)$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{6.2.13.3}$$

$$\implies \mathbf{n}^{\top} (\mathbf{A} + \lambda \mathbf{m}) = c$$
 (6.2.13.4)

which can be simplified to obtain

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{n}^{\mathsf{T}}\mathbf{m} = c \tag{6.2.13.5}$$

$$\implies \lambda = \frac{c - \mathbf{n}^{\top} \mathbf{A}}{\mathbf{n}^{\top} \mathbf{m}} \qquad (6.2.13.6)$$

(6.2.13.1).

6.2.14. The foot of the perpendicular from the point P to the line represented by (6.1.3.1) is given by

$$\mathbf{x} = \mathbf{A} + \frac{\mathbf{m}^{\top} (\mathbf{P} - \mathbf{A})}{\|\mathbf{m}\|^{2}} \mathbf{m}$$
 (6.2.14.1)

Solution: Let the equation of the line be

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{6.2.14.2}$$

The equation of the plane perpendicular to the given line passing through P is given by

$$\mathbf{m}^{\top} (\mathbf{x} - \mathbf{P}) = 0 \tag{6.2.14.3}$$

$$\implies \mathbf{m}^{\top} \mathbf{x} = \mathbf{m}^{\top} \mathbf{P} \tag{6.2.14.4}$$

The desired foot of the perpendicular is the intersection of (6.2.14.2) with (6.2.14.3) which can be obtained from (6.2.13.1) as (6.2.14.1)

6.2.15. The foot of the perpendicular from a point P to a plane is Q. The equation of the plane is given by

$$(\mathbf{P} - \mathbf{Q})^{\top} (\mathbf{x} - \mathbf{Q}) = 0 ag{6.2.15.1}$$

Solution: The normal vector to the plane is given by

$$\mathbf{n} = \mathbf{P} - \mathbf{Q} \tag{6.2.15.2}$$

Hence, the equation of the plane is (6.2.15.1). 6.2.16. Let A, B, C be points on a plane. The equation of the plane is then given by

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\top} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{6.2.16.1}$$

Solution: Let the equation of the plane be

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = 1 \tag{6.2.16.2}$$

Then

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = 1 \tag{6.2.16.3}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{B} = 1 \tag{6.2.16.4}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{C} = 1 \tag{6.2.16.5}$$

which can be combined to obtain (6.2.16.1). Substituting the above in (6.2.13.4) yield 6.2.17. (Affine Transformation) Let A, C, be opposite sides of a square. The other two points can be obtained as

$$\mathbf{B} = \frac{\|\mathbf{A} - \mathbf{C}\|}{\sqrt{2}} \mathbf{P} \mathbf{e}_1 + \mathbf{A}$$
 (6.2.17.1)

$$\mathbf{D} = \frac{\|\mathbf{A} - \mathbf{C}\|}{\sqrt{2}} \mathbf{P} \mathbf{e}_2 + \mathbf{A} \qquad (6.2.17.2)$$

where

$$\mathbf{P} = \begin{pmatrix} \cos\left(\theta - \frac{\pi}{4}\right) & \sin\left(\theta - \frac{\pi}{4}\right) \\ \sin\left(\theta - \frac{\pi}{4}\right) & \cos\left(\theta - \frac{\pi}{4}\right) \end{pmatrix} (6.2.17.3)$$

and

$$\cos \theta = \frac{(\mathbf{C} - \mathbf{A})^{\top} \mathbf{e}_1}{\|\mathbf{A} - \mathbf{C}\| \|\mathbf{e}_1\|}$$
(6.2.17.4)

7 QUADRATIC FORMS

7.1 Conic Sections

7.1.1. Let P be a point such that the ratio of its distance from a fixed point F and the distance (d) from a fixed line $L: \mathbf{n}^{\top} \mathbf{x} = c$ is constant, given by

$$\frac{\|\mathbf{P} - \mathbf{F}\|}{d} = e \tag{7.1.1.1}$$

The locus of P such is known as a conic section. The line L is known as the directrix and the point F is the focus. e is defined to be the eccentricity of the conic.

- a) For e = 1, the conic is a parabola
- b) For e < 1, the conic is an ellipse
- c) For e > 1, the conic is a hyperbola
- 7.1.2. The equation of a conic with directrix $\mathbf{n}^{\top}\mathbf{x} = c$, eccentricity e and focus \mathbf{F} is given by

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{7.1.2.1}$$

where

$$\mathbf{V} = \|\mathbf{n}\|^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^\top, \tag{7.1.2.2}$$

$$\mathbf{u} = ce^2 \mathbf{n} - \|\mathbf{n}\|^2 \mathbf{F}, \tag{7.1.2.3}$$

$$f = \|\mathbf{n}\|^2 \|\mathbf{F}\|^2 - c^2 e^2 \tag{7.1.2.4}$$

Solution: From (7.1.1.1) and (6.1.4.1), for any point x on the conic,

$$\|\mathbf{x} - \mathbf{F}\|^2 = e^2 \frac{\left(\mathbf{n}^\top \mathbf{x} - c\right)^2}{\|\mathbf{n}\|^2}$$
(7.1.2.5)

$$\implies \|\mathbf{n}\|^{2} (\mathbf{x} - \mathbf{F})^{\top} (\mathbf{x} - \mathbf{F}) = e^{2} (\mathbf{n}^{\top} \mathbf{x} - c)^{2}$$
(7.1.2.6)

yielding

$$\|\mathbf{n}\|^{2} \left(\mathbf{x}^{\top}\mathbf{x} - 2\mathbf{F}^{\top}\mathbf{x} + \|\mathbf{F}\|^{2}\right)$$

$$= e^{2} \left(c^{2} + \left(\mathbf{n}^{\top}\mathbf{x}\right)^{2} - 2c\mathbf{n}^{\top}\mathbf{x}\right)$$

$$= e^{2} \left(c^{2} + \left(\mathbf{x}^{\top}\mathbf{n}\mathbf{n}^{\top}\mathbf{x}\right) - 2c\mathbf{n}^{\top}\mathbf{x}\right) \quad (7.1.2.7)$$

which can be expressed as (7.1.2.1) after simplification.

- 7.1.3. (7.1.2.1) represents
 - a) a parabola for $|\mathbf{V}| = 0$,
 - b) ellipse for $|\mathbf{V}| > 0$ and
 - c) hyperbola for $|\mathbf{V}| < 0$.

In general (7.1.2.1) represents a conic if and only if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\top} & f \end{vmatrix} \neq 0 \tag{7.1.3.1}$$

else, it represents a pair of straight lines.

(7.1.1.1) *7.2 Conic Parameters*

7.2.1. The conic in (7.1.2.1) can be expressed in standard form (centre/vertex at the origin, major axis - x axis) as

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = \mathbf{u}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{u} - f \quad |V| \neq 0 \quad (7.2.1.1)$$

$$\mathbf{y}^{\mathsf{T}} \mathbf{D} \mathbf{y} = -2\eta \mathbf{e}_{1}^{\mathsf{T}} \mathbf{y}$$
 $|V| = 0$ (7.2.1.2)

where

 $P^{T}VP = D$. (Eigenvalue Decomposition)

(7.2.1.3)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix},\tag{7.2.1.4}$$

$$\mathbf{P} = (\mathbf{p}_1 \ \mathbf{p}_2), \ \mathbf{P}^{\top} = \mathbf{P}^{-1}, (7.2.1.5)$$

$$\eta = \mathbf{u}^{\mathsf{T}} \mathbf{p}_1 \tag{7.2.1.6}$$

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{7.2.1.7}$$

Solution: Using

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c}$$
 (Affine Transformation) (7.2.1.8)

(7.1.2.1) can be expressed as

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^T \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^T (\mathbf{P}\mathbf{y} + \mathbf{c}) + f$$

= 0, (7.2.1.9)

yielding

$$\mathbf{y}^{T}\mathbf{P}^{T}\mathbf{V}\mathbf{P}\mathbf{y} + 2\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{P}\mathbf{y}$$
$$+\mathbf{c}^{T}\mathbf{V}\mathbf{c} + 2\mathbf{u}^{T}\mathbf{c} + f = 0 \quad (7.2.1.10)$$

From (7.1.4.10) and (7.1.4.3),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{P}\mathbf{y}$$
$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \quad (7.2.1.11)$$

When V^{-1} exists,

$$Vc + u = 0$$
, or, $c = -V^{-1}u$, (7.2.1.12)

and substituting (7.1.4.12) in (7.1.4.11) yields (7.1.4.1). When $|V| = 0, \lambda_1 = 0$ and

$$Vp_1 = 0, Vp_2 = \lambda_2 p_2.$$
 (7.2.1.13)

where p_1, p_2 are the eigenvectors of V such that (7.1.4.3)

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \tag{7.2.1.14} \ 7.2.3.$$

Substituting (7.1.4.14) in (7.1.4.11),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\left(\mathbf{p}_{1} \quad \mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{1}\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\mathbf{u}^{T}\mathbf{p}_{1} \quad \left(\lambda_{2}\mathbf{c}^{T} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \text{ from (7.1.4.13)}$$

$$\implies \lambda_2 y_2^2 + 2 \left(\mathbf{u}^T \mathbf{p}_1 \right) y_1 + 2 y_2 \left(\lambda_2 \mathbf{c} + \mathbf{u} \right)^T \mathbf{p}_2$$
$$+ \mathbf{c}^T \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^T \mathbf{c} + f = 0$$

which is the equation of a parabola. Thus, (7.1.4.15) can be expressed as (7.1.4.2) by choosing

$$\eta = \mathbf{u}^T \mathbf{p}_1 \tag{7.2.1.15}$$

and c in (7.1.4.11) such that

$$\mathbf{P}^{T}(\mathbf{V}\mathbf{c} + \mathbf{u}) = \eta \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (7.2.1.16) 7.2.5. The equation of the minor and major axes are respectively given by

$$\mathbf{c}^{T} \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^{T} \mathbf{c} + f = 0 \tag{7.2.1.17}$$

Multiplying (7.1.4.16) by P yields

$$(\mathbf{Vc} + \mathbf{u}) = \eta \mathbf{p}_1, \tag{7.2.1.18}$$

which, upon substituting in (7.1.4.17) results in

$$\eta \mathbf{c}^T \mathbf{p}_1 + \mathbf{u}^T \mathbf{c} + f = 0 \tag{7.2.1.19}$$

(7.1.4.18) and (7.1.4.19) can be clubbed together to obtain (7.1.5.2).

7.2.2. The centre/vertex of the conic is given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |V| \neq 0$$
(7.2.2.1)

$$\begin{pmatrix} \mathbf{u}^{\top} + \eta \mathbf{p}_{1}^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_{1} - \mathbf{u} \end{pmatrix} \quad |V| = 0$$
(7.2.2.2)

Solution: From (7.1.4.8),

$$\mathbf{y} = \mathbf{P}^{\top} \left(\mathbf{x} - \mathbf{c} \right) \tag{7.2.2.3}$$

For the standard conic, y = 0 is the centre/vertex and in (7.1.5.3),

$$\mathbf{y} = \mathbf{0} \implies \mathbf{x} = \mathbf{c} \tag{7.2.2.4}$$

(7.2.1.14) 7.2.3. The focal length of the parabola in (7.1.4.2) is given by

$$\left|\frac{2\eta}{\lambda_2}\right| \tag{7.2.3.1}$$

where λ_2 is the nonzero eigenvalue of V and η is defined in (7.1.4.6).

7.2.4. For $|V| \neq 0$, the lengths of the semi-major and semi-minor axes of the conic in (7.1.2.1) are given by

$$\sqrt{\frac{\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_1}}, \sqrt{\frac{\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_2}}.$$
 (ellipse) (7.2.4.1)

$$\sqrt{\frac{\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_1}}, \sqrt{\frac{f - \mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u}}{\lambda_2}}, \quad \text{(hyperbola)}$$
(7.2.4.2)

Solution: For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0, \lambda_2 > 0$ (7.2.4.3)

and (7.1.4.1) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 = \mathbf{u}^\top \mathbf{V}^{-1} \mathbf{u} - f$$
 (7.2.4.4)

yielding (7.1.7.1). Similarly, (7.1.7.2) can be obtained for

$$|\mathbf{V}| < 0$$
, or, $\lambda_1 > 0, \lambda_2 < 0$ (7.2.4.5)

respectively given by

$$\mathbf{p}_i^{\mathsf{T}}\left(\mathbf{x} - \mathbf{c}\right) = 0, i = 1, 2 \tag{7.2.5.1}$$

7.2.6. The eccentricity, directrices and foci of (7.1.2.1) are given by (7.1.9.1) - (7.1.9.4) So**lution:** From (7.1.2.2),

$$\mathbf{V}^{\top}\mathbf{V} = (\|\mathbf{n}\|^{2}\mathbf{I} - e^{2}\mathbf{n}\mathbf{n}^{\top})^{\top}$$

$$(\|\mathbf{n}\|^{2}\mathbf{I} - e^{2}\mathbf{n}\mathbf{n}^{\top})$$

$$\Rightarrow \mathbf{V}^{2} = \|\mathbf{n}\|^{4}\mathbf{I} + e^{4}\mathbf{n}\mathbf{n}^{\top}\mathbf{n}\mathbf{n}^{\top}$$

$$-2e^{2}\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top}$$

$$= \|\mathbf{n}\|^{4}\mathbf{I} + e^{4}\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top} - 2e^{2}\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top}$$

$$= \|\mathbf{n}\|^{4}\mathbf{I} + e^{2}(e^{2} - 2)\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top}$$

$$= \|\mathbf{n}\|^{4}\mathbf{I} + (e^{2} - 2)\|\mathbf{n}\|^{2}(\|\mathbf{n}\|^{2}\mathbf{I} - \mathbf{V})$$

$$(7.2.6.5)$$

which can be expressed as

$$\mathbf{V}^{2} + (e^{2} - 2) \|\mathbf{n}\|^{2} \mathbf{V} - (e^{2} - 1) \|\mathbf{n}\|^{4} \mathbf{I} = 0$$
(7.2.6.6)

Using the Cayley-Hamilton theorem, (7.1.9.6) results in the characteristic equation,

$$\lambda^{2} - (2 - e^{2}) \|\mathbf{n}\|^{2} \lambda + (1 - e^{2}) \|\mathbf{n}\|^{4} = 0$$
(7.2.6.7)

which can be expressed as

$$\left(\frac{\lambda}{\|\mathbf{n}\|^2}\right)^2 - \left(2 - e^2\right) \left(\frac{\lambda}{\|\mathbf{n}\|^2}\right) + \left(1 - e^2\right) = 0 \quad (7.2.6.8)$$

$$\Rightarrow \frac{\lambda}{\|\mathbf{n}\|^2} = 1 - e^2, 1 \quad (7.2.6.9)$$

or,
$$\lambda_2 = \|\mathbf{n}\|^2$$
, $\lambda_1 = (1 - e^2) \lambda_2$ (7.2.6.10)

From (7.1.9.10), the eccentricity of (7.1.2.1) is given by (7.1.9.1). Multiplying both sides of (7.1.2.2) by n,

$$\mathbf{V}\mathbf{n} = \|\mathbf{n}\|^2 \mathbf{n} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{n} \qquad (7.2.6.11)$$

$$= \|\mathbf{n}\|^2 \left(1 - e^2\right) \mathbf{n}$$
 (7.2.6.12)

$$= \lambda_1 \mathbf{n} \tag{7.2.6.13}$$

from (7.1.9.10) Thus, λ_1 is the corresponding eigenvalue for n. From (7.1.4.5), (7.1.9.10) and (7.1.9.13),

$$\mathbf{n} = \|\mathbf{n}\| \, \mathbf{p}_1 = \sqrt{\lambda_2} \mathbf{p}_1$$
 (7.2.6.14)

From (7.1.2.3) and (7.1.9.10),

$$\mathbf{F} = \frac{ce^2 \mathbf{n} - \mathbf{u}}{\lambda_2} \qquad (7.2.6.15)$$

$$\implies \|\mathbf{F}\|^2 = \frac{(ce^2 \mathbf{n} - \mathbf{u})^\top (ce^2 \mathbf{n} - \mathbf{u})}{\lambda_2^2} \qquad (7.2.6.16)$$

$$\implies \lambda_2^2 \|\mathbf{F}\|^2 = c^2 e^4 \lambda_2 - 2ce^2 \mathbf{u}^\top \mathbf{n} + \|\mathbf{u}\|^2 \qquad (7.2.6.15)$$

Also, (7.1.2.4) can be expressed as

$$\lambda_2 \|\mathbf{F}\|^2 = f + c^2 e^2$$
 (7.2.6.18)

From (7.1.9.17) and (7.1.9.18),

$$c^{2}e^{4}\lambda_{2} - 2ce^{2}\mathbf{u}^{\top}\mathbf{n} + \|\mathbf{u}\|^{2} = \lambda_{2}\left(f + c^{2}e^{2}\right)$$
(7.2.6.19)

$$\implies \lambda_2 e^2 \left(e^2 - 1 \right) c^2 - 2ce^2 \mathbf{u}^{\top} \mathbf{n}$$
$$+ \|\mathbf{u}\|^2 - \lambda_2 f = 0 \quad (7.2.6.20)$$

yielding (7.1.9.4).

7.3 Tangent and Normal

7.3.1. The points of intersection of the line

$$L: \mathbf{x} = \mathbf{q} + \mu \mathbf{m} \quad \mu \in \mathbb{R}$$
 (7.3.1.1)

with the conic section in (7.1.2.1) are given by

$$\mathbf{x}_i = \mathbf{q} + \mu_i \mathbf{m} \tag{7.3.1.2}$$

where

$$\begin{split} \mu_i &= \frac{1}{\mathbf{m}^T \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^T \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right. \\ & \pm \left. \sqrt{ \left[\mathbf{m}^T \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right]^2 - \left(\mathbf{q}^T \mathbf{V} \mathbf{q} + 2 \mathbf{u}^T \mathbf{q} + f \right) \left(\mathbf{m}^T \mathbf{V} \mathbf{m} \right)} \right) \end{split}$$

$$e = \sqrt{1 - \frac{\lambda_1}{\lambda_2}} \tag{7.2.6.1}$$

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p}_1, \tag{7.2.6.2}$$

$$c = \begin{cases} \frac{e\mathbf{u}^{\top}\mathbf{n} \pm \sqrt{e^{2}(\mathbf{u}^{\top}\mathbf{n})^{2} - \lambda_{2}(e^{2} - 1)(\|\mathbf{u}\|^{2} - \lambda_{2}f)}}{\lambda_{2}e(e^{2} - 1)} & e \neq 1\\ \frac{\|\mathbf{u}\|^{2} - \lambda_{2}f}{2e^{2}\mathbf{u}^{\top}\mathbf{n}} & e = 1 \end{cases}$$
(7.2.6.3)

$$\mathbf{F} = \frac{ce^2\mathbf{n} - \mathbf{u}}{\lambda_2} \tag{7.2.6.4}$$

Solution: Substituting (7.2.1.1) in (7.1.2.1),

$$(\mathbf{q} + \mu \mathbf{m})^{T} \mathbf{V} (\mathbf{q} + \mu \mathbf{m})$$

$$(7.3.1.4)$$

$$+2\mathbf{u}^{T} (\mathbf{q} + \mu \mathbf{m}) + f = 0$$

$$(7.3.1.5)$$

$$\implies \mu^{2} \mathbf{m}^{T} \mathbf{V} \mathbf{m} + 2\mu \mathbf{m}^{T} (\mathbf{V} \mathbf{q} + \mathbf{u})$$

$$(7.3.1.6)$$

$$+\mathbf{q}^{T} \mathbf{V} \mathbf{q} + 2\mathbf{u}^{T} \mathbf{q} + f = 0$$

$$(7.3.1.7)$$

Solving the above quadratic in (7.2.1.7) yields (7.2.1.3).

7.3.2. If L in (7.2.1.1) touches (7.1.2.1) at exactly one point \mathbf{q} ,

$$\mathbf{m}^T \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) = 0 \tag{7.3.2.1}$$

Solution: In this case, (7.2.1.7) has exactly one root. Hence, in (7.2.1.3)

$$\left[\mathbf{m}^{T} \left(\mathbf{V}\mathbf{q} + \mathbf{u}\right)\right]^{2} - \left(\mathbf{m}^{T}\mathbf{V}\mathbf{m}\right)$$
$$\left(\mathbf{q}^{T}\mathbf{V}\mathbf{q} + 2\mathbf{u}^{T}\mathbf{q} + f\right) = 0 \quad (7.3.2.2)$$

 \therefore q is the point of contact, q satisfies (7.1.2.1) and

$$\mathbf{q}^T \mathbf{V} \mathbf{q} + 2\mathbf{u}^T \mathbf{q} + f = 0 \tag{7.3.2.3}$$

Substituting (7.2.2.3) in (7.2.2.2) and simplifying, we obtain (7.2.2.1).

7.3.3. Given the point of contact q, the equation of a tangent to (7.1.2.1) is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^T \mathbf{x} + \mathbf{u}^T \mathbf{q} + f = 0 \qquad (7.3.3.1)$$

Solution: The normal vector is obtained from (7.2.2.1) and (6.1.1.1) as

$$\mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u} \tag{7.3.3.2}$$

From (7.2.3.2) and (6.1.2.1), the equation of the tangent is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{T} (\mathbf{x} - \mathbf{q}) = 0$$

$$(7.3.3.3)$$

$$\implies (\mathbf{V}\mathbf{q} + \mathbf{u})^{T} \mathbf{x} - \mathbf{q}^{T} \mathbf{V} \mathbf{q} - \mathbf{u}^{T} \mathbf{q} = 0$$

$$(7.3.3.4)$$

which, upon substituting from (7.2.2.3) and simplifying yields (7.2.1.1).

7.3.4. If V^{-1} exists, given the normal vector \mathbf{n} , the tangent points of contact to (7.1.2.1) are given by

$$\mathbf{q}_{i} = \mathbf{V}^{-1} \left(\kappa_{i} \mathbf{n} - \mathbf{u} \right), i = 1, 2$$
where $\kappa_{i} = \pm \sqrt{\frac{\mathbf{u}^{T} \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^{T} \mathbf{V}^{-1} \mathbf{n}}}$
(7.3.4.1)

Solution: From (7.2.3.2),

$$\mathbf{q} = \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}), \quad \kappa \in \mathbb{R}$$
 (7.3.4.2)

Substituting (7.2.4.2) in (7.2.2.3),

$$(\kappa \mathbf{n} - \mathbf{u})^T \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u})$$

+ $2\mathbf{u}^T \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}) + f = 0$ (7.3.4.3)

$$\implies \kappa^2 \mathbf{n}^T \mathbf{V}^{-1} \mathbf{n} - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} + f = 0$$
(7.3.4.4)

or,
$$\kappa = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (7.3.4.5)

Substituting (7.2.4.5) in (7.2.4.2) yields (7.2.4.1).

7.3.5. If V is not invertible, given the normal vector n, the point of contact to (7.1.2.1) is given by the matrix equation

$$\begin{pmatrix} \mathbf{u}^{\top} + \kappa \mathbf{n}^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
(7.3.5.1)

where
$$\kappa = \frac{\mathbf{p}_1^T \mathbf{u}}{\mathbf{p}_1^T \mathbf{n}}, \quad \mathbf{V} \mathbf{p}_1 = 0$$
 (7.3.5.2)

Solution: If V is non-invertible, it has a zero eigenvalue. If the corresponding eigenvector is \mathbf{p}_1 , then,

$$\mathbf{V}\mathbf{p}_1 = 0 \tag{7.3.5.3}$$

From (7.2.3.2),

$$\kappa \mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u}, \quad \kappa \in \mathbb{R}$$
 (7.3.5.4)

$$\implies \kappa \mathbf{p}_1^T \mathbf{n} = \mathbf{p}_1^T \mathbf{V} \mathbf{q} + \mathbf{p}_1^T \mathbf{u} \tag{7.3.5.5}$$

or,
$$\kappa \mathbf{p}_1^T \mathbf{n} = \mathbf{p}_1^T \mathbf{u}, \quad :: \mathbf{p}_1^T \mathbf{V} = 0, \quad (7.3.5.6)$$

yielding κ in (7.2.5.2). From (7.2.5.4),

$$\kappa \mathbf{q}^T \mathbf{n} = \mathbf{q}^T \mathbf{V} \mathbf{q} + \mathbf{q}^T \mathbf{u} \qquad (7.3.5.8)$$

$$\implies \kappa \mathbf{q}^T \mathbf{n} = -f - \mathbf{q}^T \mathbf{u} \quad \text{from (7.2.2.3)},$$
(7.3.5.9)

or,
$$(\kappa \mathbf{n} + \mathbf{u})^{\mathsf{T}} \mathbf{q} = -f$$
 (7.3.5.10)

(7.2.5.4) can be expressed as

$$\mathbf{V}\mathbf{q} = \kappa \mathbf{n} - \mathbf{u}.\tag{7.3.5.11}$$

(7.2.5.10) and (7.2.5.11) clubbed together result in (7.2.5.1).

7.3.6. When (7.1.2.1) is a hyperbola, its asymptotes 7.3.10. Another hyperbola with the same asymptotes are defined as the pair of intersecting straight lines

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + \mathbf{u}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{u} = 0, \quad |\mathbf{V}| < 0$$
(7.3.6.1)

7.3.7. (7.2.6.1) can be expressed as the lines

$$\left(\sqrt{|\lambda_1|} \pm \sqrt{|\lambda_2|}\right) \mathbf{P}^{\top} (\mathbf{x} - \mathbf{c}) = 0 \quad (7.3.7.1)$$

Solution: Reducing (7.2.6.1) to standard form using the affine transformation yields

$$\lambda_1 y_1^2 - (-\lambda_2) y_1^2 = 0 (7.3.7.2)$$

From (7.2.6.1), the equation of the asymptotes for (7.2.7.2) is

$$\left(\sqrt{|\lambda_1|} \quad \pm \sqrt{|\lambda_2|}\right) \mathbf{y} = 0 \tag{7.3.7.3}$$

from which (7.2.7.1) is obtained using (7.1.4.8).

7.3.8. The angle between the asymptotes is then given by using the inner product

$$\cos \theta = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1| + |\lambda_2|} \tag{7.3.8.1}$$

7.3.9. The normal vectors of the lines in (7.2.7.1) are

$$\mathbf{n}_{1} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ \sqrt{|\lambda_{2}|} \end{pmatrix}$$

$$\mathbf{n}_{2} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ -\sqrt{|\lambda_{2}|} \end{pmatrix}$$
(7.3.9.1)

The angle between the asymptotes is given by

$$\cos \theta = \frac{{\mathbf{n_1}}^{\top} {\mathbf{n_2}}}{\|{\mathbf{n_1}}\| \|{\mathbf{n_2}}\|}$$
 (7.3.9.2)

The orthogonal matrix P preserves the norm, i.e.

$$\|\mathbf{n_1}\| = \left\| \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_1|} \\ \sqrt{|\lambda_2|} \end{pmatrix} \right\|$$

$$= \left\| \begin{pmatrix} \sqrt{|\lambda_1|} \\ \sqrt{|\lambda_2|} \end{pmatrix} \right\| = \sqrt{|\lambda_1| + |\lambda_2|} = \|\mathbf{n_2}\|$$

$$(7.3.9.4)$$

It is easy to verify that

$$\mathbf{n_1}^{\mathsf{T}} \mathbf{n_2} = |\lambda_1| - |\lambda_2| \tag{7.3.9.5}$$

Thus, the angle between the asymptotes is obtained from (7.2.9.2) as (7.2.8.1).

as (7.2.7.1) can be obtained from (7.1.2.1) and (7.2.6.1) as

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f = 0$$
(7.3.10.1)