

管理类联考数学 必修课

等差数列 (2015年1月)

【练习1】设数列 $\{a_n\}$ 为等差数列,则能确定数列 $\{a_n\}$.

- $(1) \quad a_1 + a_6 = 0.$
- (2) $a_1a_6 = -1$.

条件1:1个方程两个未知数,解不出 不充分

条件2: 1个方程两个未知数,解不出 不充分

联合: $a_1 = 1$, $a_6 = -1$

 $a_1 = -1$, $a_6 = 1$

不唯一,不确定,不充分

答案: E

等比数列 (2013年1月)

【练习2】设数列 $\{a_n\}$ 为等比数列,则 $a_2=2$.

(1)
$$a_1 + a_3 = 5$$
.

(2)
$$a_1a_3=4$$
.

数列1:
$$a_1 = 1$$
, $a_2 = -2$, $a_3 = 4$

数列2:
$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 4$

$$a_2 = -2$$
或2

答案: E

强化 综合运用(2016年1月)

【练习3】已知数列 a_1 , a_2 , a_{10} , 则 $a_1 - a_2 + a_3 - a_4$+ $a_9 - a_{10} \ge 0$

- (1) $a_n \ge a_{n+1}$, n=1,2,3.....9.
- (2) $a_n^2 \ge a_{n+1}^2$, n=1,2,3.....9.

条件1:
$$a_n - a_{n+1} \ge 0$$

 $a_1 - a_2 \ge 0$
 $a_3 - a_4 \ge 0$
......
 $a_9 - a_{10} \ge 0$

相加: $a_1 - a_2 + a_3 - a_4 \dots + a_9 - a_{10} \ge 0$

充分

强化 综合运用(2016年1月)

【练习3】已知数列 a_1 , a_2 , a_{10} , 则 $a_1 - a_2 + a_3 - a_4$+ $a_9 - a_{10} \ge 0$

(1)
$$a_n \ge a_{n+1}$$
, $n=1,2,3.....9$.

(2)
$$a_n^2 \ge a_{n+1}^2$$
, n=1,2,3.....9.

条件2: $a_n^2 - a_{n+1}^2 \ge 0$ $(a_n - a_{n+1})(a_n + a_{n+1}) \ge 0$

情况1:

$$a_n - a_{n+1} \ge 0$$

$$a_n + a_{n+1} \ge 0$$

情况2:

$$a_n - a_{n+1} \le 0$$

 $a_n + a_{n+1} \le 0$

情况2不成立,不充分

强化 综合运用(2016年1月)

$$a_n - a_{n+1} \ge 0$$

【练习3】已知数列 a_1 , a_2 , a_{10} , 则 $a_1 - a_2 + a_3 - a_4$+ $a_9 - a_{10} \ge 0$

- (1) $a_n \ge a_{n+1}$, n=1,2,3.....9.
- (2) $a_n^2 \ge a_{n+1}^2$, n=1,2,3.....9. n 比较大,将其缩小为n=1

要验证结论: a₁ - a₂≥0

- (1) $a_1 \ge a_2$, n=1.
- (2) $a_1^2 \ge a_2^2$, n=1.

A

强化练习题(2015年1月) 整体思维

【练习4】已知M=
$$(a_1 + a_2 + ... + a_{n-1})(a_2 + a_3 + ... + a_n)$$

N= $(a_1 + a_2 + ... + a_n)(a_2 + a_3 + ... + a_{n-1})$, 则M>N.

(1) $a_1 > 0$

n 太大,将其缩小为n=3

(2)
$$a_1 a_n > 0$$

 $M = (a_1 + a_2)(a_2 + a_3)$

$$N = (a_1 + a_2 + a_3) a_2$$

- (1) $a_1 > 0$
- (2) $a_1 a_3 > 0$

做题思路:直接乘开不现实,找式子的公共部分作为整体,

观察发现 $a_2+a_3+...+a_{n-1}$ 是公共部分,设为A

$$M = (a_1 + a_2 + ... + a_{n-1})(a_2 + a_3 + ... + a_{n-1} + a_n)$$

$$N = (a_1 + a_2 + ... + a_{n-1} + a_n)(a_2 + a_3 + ... + a_{n-1})$$

强化 综合运用(2011年1月)

 $(1) \quad \log_a M + \log_a N = \log_a MN$

【练习5】实数a,b,c成等差数列。

(2)
$$\log_a M - \log_a N = \log_a \frac{M}{N}$$

- (1) e^a , e^b , e^c 成等比数列。
- (2) $\ln a , \ln b , \ln c$ 成等差数列。

条件1:
$$e^b \cdot e^b = e^a \cdot e^c$$
 $\rightarrow e^{2b} = e^{a+c} \rightarrow 2b = a+c$

充分,等差中项进行判断。

条件2:
$$\ln b + \ln b = \ln a + \ln c$$
 $\rightarrow b^2 = ac$

答案: A

进阶综合运用(2011年1月)

【例6】已知 $\{a_n\}$ 为等差数列,则该数列的公差为零 d=0

- (1) 对于任何正整数n有 $a_1 + a_2 \dots a_n \le n$
- (2) $a_2 \ge a_1$ $a_1 + a_2 \dots a_n = n \times a_{\frac{n+1}{2}} \le n$ 对任何正整数n恒成立 条件1:

即 $a_{\frac{n+1}{2}} \le 1$,对任何正整数n恒成立 则 $a_{\frac{n+1}{2}} \le 1$,数列每一项 $a_n \le 1$ 且d ≤ 0

答案: C

不充分

条件2: $a_2 \ge a_1$ $a_2 - a_1 = d \ge 0$ 不充分

联合: d=0 充分

进阶综合运用(2011年1月)

【 \mathbf{M}_{6} 】已知 $\{a_{n}\}$ 为等差数列,则该数列的公差为零

(1) 对于任何正整数
$$n$$
有 $a_1 + a_2 \dots a_n \le n$

(2)
$$a_2 \ge a_1$$

$$a_1 + a_2 \dots a_n \le n$$
 满足条件1,

条件2:
$$a_2 \ge a_1$$
 $a_2 - a_1 = d \ge 0$

联合:
$$d=0$$
 充分

答案: C

此时 d = 0

 $d \leq 0$, 存在反例, 不充分

此时 d =-1

不充分

强化公式运用(2012年1月)

$$S_n = \frac{a_1(1 - q^n)}{1 - q}$$

【练习7】某人在保险柜中存放了M元现金,第一天取出它的²,以后每天取出前一天

所取的3, 共取了7次, 保险柜中剩余的现金为(

B.
$$\frac{M}{3^6}$$

$$\frac{M}{3^{7}}$$
 B. $\frac{M}{3^{6}}$ C. $\frac{2M}{3^{6}}$

D.
$$[1-(\frac{2}{3})^{7}]M$$
 E. $[1-7\times(\frac{2}{3})^{7}]M$

E.
$$[1-7 \times (\frac{2}{3})]^{'}$$

第一天
$$\frac{2}{3}$$
M

第二天
$$\frac{2}{3}M \times \frac{1}{3}$$

第三天
$$\frac{2}{3}M \times \frac{1}{3} \times \frac{1}{3}$$

以
$$\frac{2}{3}$$
M为首项, $\frac{1}{3}$ 公比的等比数列

7天共取出
$$S_7 = \frac{\frac{2}{3}M[1-(\frac{1}{3})^7]}{1-\frac{1}{3}} = [1-(\frac{1}{3})^7]M$$

剩余:
$$M - [1 - (\frac{1}{3})^7]M$$

强化公式运用(2012年1月)

$$S_n = \frac{a_1(1 - q^n)}{1 - q}$$

【练习7】某人在保险柜中存放了M元现金,第一天取出它的²,以后每天取出前一天

所取的3, 共取了7次, 保险柜中剩余的现金为(

$$n=1$$
时 $\frac{M}{3^1}$

$$n=2$$
时 $\frac{M}{3^2}$

B.
$$\frac{M}{3^6}$$

$$\frac{M}{3^{7}} \qquad B. \frac{M}{3^{6}} \qquad C. \frac{2M}{3^{6}} \qquad D. \quad [1 - (\frac{2}{3})^{7}]M \qquad E. \quad [1 - 7 \times (\frac{2}{3})^{7}]M$$

$$\frac{M}{3^{1}} \qquad \frac{2M}{3^{0}} \qquad [1 - (\frac{2}{3})^{1}]M = \frac{M}{3} \qquad [1 - 1 \times (\frac{2}{3})^{1}]M = \frac{M}{3}$$

D.
$$[1-(\frac{2}{3})^{7}]M$$

$$[1-(\frac{2}{3})^{1}]M = \frac{M}{3}$$

$$[1-(\frac{2}{3})^2]M = \frac{5M}{9}$$

E.
$$[1-7 \times (\frac{2}{3})]$$

$$[1-1 \times (\frac{2}{3})^{-1}]M = \frac{M}{3}$$

$$[1-\left(\frac{2}{3}\right)^{2}]M = \frac{5M}{9} \qquad [1-2\times\left(\frac{2}{3}\right)^{2}]M = \frac{M}{9}$$

第一天
$$\frac{2}{3}$$
M 第二天 $\frac{2}{3}$ M× $\frac{1}{3}$ 第三天 $\frac{2}{3}$ M× $\frac{1}{3}$ × $\frac{1}{3}$ 以 $\frac{2}{3}$ M为首项, $\frac{1}{3}$ 公比的等比数列

以
$$\frac{2}{3}$$
M为首项, $\frac{1}{3}$ 公比的等比数列

END • Thanks for listening

等差数列 (2008年10月)

$$a_n = a_1 + (n-1)d$$

【自行练习8】 $a_1a_8 < a_4a_5$

- (1) $\{a_n\}$ 为等差数列,且 $a_1 > 0$ 不充分
- (2) $\{a_n\}$ 为等差数列,且公差 $d\neq 0$ 充分

$$a_1 a_8 = a_1 (a_1 + 7d) = a_1^2 + 7a_1 d$$

$$a_4 a_5 = (a_1 + 3d) (a_1 + 4d) = a_1^2 + 7a_1d + 12d^2$$

要想 $a_1a_8 < a_4a_5$, 即 $a_1^2 + 7a_1d < a_1^2 + 7a_1d + 12d^2$

 $0 < 12d^2$ (根据平方的非负性,只要 $d \neq 0$,该式子就成立)

答案: B

强化 综合运用(2011年1月) ——解法1

【自行练习9】在一次数学考试中,某班前6名同学的成绩恰好成等差数列,若前6名同

学的平均成绩为95分,前4名同学的成绩之和为388分,则第6名同学的成绩为()分。

A.92

B.91

C90

D.89

E.88

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 570$$
 $6a_1 + 15d = 570$ $d = -2$

$$a_1 + a_2 + a_3 + a_4 = 388$$
 $4a_1 + 6d = 388$ $a_1 = 100$

$$a_6 = a_1 + (6 - 1)d = 100 + 5 \times (-2) = 90$$

强化 综合运用(2011年1月) ——解法2

【自行练习9】在一次数学考试中,某班前6名同学的成绩恰好成等差数列,若前6名同

学的平均成绩为95分,前4名同学的成绩之和为388分,则第6名同学的成绩为()分。

A.92 B.91 C.90 D.89 E.88
$$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} = 95 \times 6$$

$$6a_{3.5} = 95 \times 6$$

$$a_{3.5} = 95$$

$$a_{2.5} = 97$$

$$a_{6} = a_{3.5} + (6 - 3.5)d = 95 + 2.5 \times (-2) = 90$$

备注:利用项数×中间项,这样可以不用求 a_1 ,减少求未知数的个数。

强化 综合运用(2013年10月)

【**课后练习10**】设a,b为常数,则关于x的二次方程(a²+1) *x*²+2(a+b)x+ *b*²+1=0

具有重实根。

(1) a, 1, b成等差数列 ^{等差}中项: 2 = a + b

(2) a, 1, b成等比数列 等比中项: 1 = ab

具有重实根,说明是两个相等的实数根,即△=0

$$\triangle = [2(a+b)]^2 - 4 \times (a^2+1)(b^2+1) = 0$$

式子化简整理: $-4(a^2 b^2 - 2ab+1)=0$

ab=1

对应条件2充分

强化 综合运用(2013年10月)

【课后练习10】设a, b为常数,则关于x的二次方程(a^2+1) $x^2+2(a+b)x+b^2+1=0$ 具有重实根。

(1) a, 1, b成等差数列 用满足条件的特殊值来代入验证是否有重实根!!

(2) a, 1, b成等比数列

条件1: a, 1, b成等差数列

特殊值: 0、1、2, 方程整理为: $x^2+4x+5=0$ 不是重实根 不充分

条件2: a, 1, b成等比数列

特殊值: $1 \times 1 \times 1$, 方程整理为: $2x^2+4x+2=0$ 是重实根 满足结论

特殊值: -1,1,-1, 方程整理为: $2x^2-4x+2=0$ 是重实根 满足结论