Exp:7

Implement Linear and Logistic Regression

```
a) Linear regression
# Sample data
heights <- c(150, 160, 165, 170, 175, 180, 185)
weights <- c(55, 60, 62, 68, 70, 75, 80)
# Create a data frame
data <- data.frame(heights, weights)
# Fit a linear regression model
linear_model <- lm(weights ~ heights, data = data)
# Print the summary of the model
print(summary(linear_model))
# Plotting the data and regression line
plot(data$heights, data$weights,
   main = "Linear Regression: Weight vs. Height",
  xlab = "Height (cm)",
  ylab = "Weight (kg)",
  pch = 19, col = "blue")
# Add regression line
abline(linear_model, col = "red", lwd = 2)
```

```
# Sample data
> heights <- c(150, 160, 165, 170, 175, 180, 185)
> weights <- c(55, 60, 62, 68, 70, 75, 80)
> # Create a data frame
> data <- data.frame(heights, weights)</pre>
> # Fit a linear regression model
> linear_model <- lm(weights ~ heights, data = data)</pre>
> # Print the summary of the model
> print(summary(linear_model))
lm(formula = weights ~ heights, data = data)
Residuals:
 1.7049 -0.4754 -2.0656 0.3443 -1.2459 0.1639 1.5738
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                 -6.223 0.00157 **
(Intercept) -54.40984
                      8.74376
heights
              0.71803
                         0.05154 13.932 3.42e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.521 on 5 degrees of freedom
Multiple R-squared: 0.9749,
                              Adjusted R-squared: 0.9699
F-statistic: 194.1 on 1 and 5 DF, p-value: 3.424e-05
```

Linear Regression: Weight vs. Height

b) Logistic regression

```
# Load the dataset
data(mtcars)
# Convert 'am' to a factor (categorical variable)
mtcarsam <- factor(mtcarsam, levels = c(0, 1), labels = c("Automatic", "Manual"))
# Fit a logistic regression model
logistic_model <- glm(am ~ mpg, data = mtcars, family = binomial)
# Print the summary of the model
print(summary(logistic_model))
# Predict probabilities for the logistic model
predicted_probs <- predict(logistic_model, type = "response")</pre>
# Display the predicted probabilities
print(predicted_probs)
# Plotting the data and logistic regression curve
plot(mtcars$mpg, as.numeric(mtcars$am) - 1,
   main = "Logistic Regression: Transmission vs. MPG",
  xlab = "Miles Per Gallon (mpg)",
  ylab = "Probability of Manual Transmission",
  pch = 19, col = "blue")
# Add the logistic regression curve
curve(predict(logistic_model, data.frame(mpg = x), type = "response"),
   add = TRUE, col = "red", lwd = 2)
```

<pre>> # Display the pred > print(predicted_pr</pre>			
Mazda RX4	Mazda RX4 Wag	Datsun 710	Hornet 4 Drive
0.46109512	0.46109512	0.59789839	0.49171990
Hornet Sportabout	Valiant	Duster 360	Merc 240D
0.29690087	0.25993307	0.09858705	0.70846924
Merc 230	Merc 280	Merc 280C	Merc 450SE
0.59789839	0.32991148	0.24260966	0.17246396
Merc 450SL	Merc 450SLC	Cadillac Fleetwood	Lincoln Continental
0.21552479	0.12601104	0.03197098	0.03197098
Chrysler Imperial	Fiat 128	Honda Civic	Toyota Corolla
0.11005178	0.96591395	0.93878132	0.97821971
Toyota Corona	Dodge Challenger	AMC Javelin	Camaro Z28
0.49939484	0.13650937	0.12601104	0.07446438
Pontiac Firebird	Fiat X1-9	Porsche 914-2	Lotus Europa
0.32991148	0.85549212	0.79886349	0.93878132
Ford Pantera L	Ferrari Dino	Maserati Bora	Volvo 142E
0.14773451	0.36468861	0.11940215	0.49171990

Logistic Regression: Transmission vs. MPG

