定理 2.17 < G , * > を群とする。 < G , * > が可換群である必要十分条件は任意の要素 $a,b \in G$ に対して,(a*b)*(a*b)=(a*a)*(b*b) が成り立つことである。

【証明】

" ⇒ ":
$$<$$
 G , * $>$ は可換群であるとする。 G の任意の要素 a と b に対して , $a*b=b*a$ から , $(a*b)*(a*b)=a*(b*a)*b$
$$=a*(a*b)*b$$

$$=(a*a)*(b*b)$$

が成り立つ。

"
$$\Leftarrow$$
 ": G の任意の要素 a と b に対して, $(a*b)*(a*b)=(a*a)*(b*b)$ より, $a*b=(a^{-1}*a)*(a*b)*(b*b^{-1})$
$$= a^{-1}*((a*a)*(b*b))*b^{-1}$$

$$= a^{-1}*((a*b)*(a*b))*b^{-1}$$

$$= (a^{-1}*a)*(b*a)*(b*b^{-1})$$

$$= b*a$$

すなわち,*は可換演算である。ゆえに, < G, * > が可換群である。