华东理工大学 2010 - 2011 学年第一学期

研究生《数理统计》课程期末考试试卷 2011. 01

开课学院: 理学院, 考试形式: 闭卷, 所需时间 120 分钟

考生姓名	:	学号:		学院		任课教师	朱坤刊	<u> </u>
题序	_	1 1	111	四	五	六	七	总 分
得分								
评卷人								

附表 $\chi^2_{0.025}(8) = 2.180$, $\chi^2_{0.975}(8) = 17.535$, $\chi^2_{0.95}(3) = 7.815$, $\chi^2_{0.95}(1) = 3.841$

$$t_{0.975}(3) = 3.1824$$
, $t_{0.975}(8) = 2.306$, $t_{0.975}(4) = 2.776$

$$t_{0.975}(8) = 2.306$$

$$t_{0.975}(4) = 2.776$$

$$F_{0.95}(3,12) = 3.49$$
 $F_{0.975}(2,9) = 5.71$ $F_{0.95}(2,9) = 4.26$

$$F_{0.975}(2.9) = 5.71$$

$$F_{0.95}(2, 9) = 4.26$$

- 一. 选择题(每小题4分,共36分)
 - 1. 设总体的期望 μ 和方差 σ^2 均未知, 从总体中抽取了一个容量为 n 的样本 (X_1,X_2,\cdots,X_n) ,则下述选项中可以作为总体的期望 μ 和方差 σ^2 的无偏估计量的 选项是(A)

(A)
$$X_1 \neq \prod_{n-1} \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 (B) $\overline{X} \neq \prod_{n-1} \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - \overline{X}^2$

(B)
$$\overline{X}$$
 \overline{A} $\frac{1}{n-1}\sum_{i=1}^{n}X_{i}^{2}-\overline{X}^{2}$

(C)
$$\overline{X} \approx \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

(C)
$$\overline{X} \approx \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (D) $\overline{X} \approx \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

- 2. 5 名评委对某歌手的打分分别是: 63, 65, 70, 71, 95, 根据打分, 代表该歌手水平最 合理的指标应是这些分值的(B
 - (A) 均值;
- (B) 中值; (C) 方差; (D) 众数
- 3. 设总体期望为 μ ,方差为 σ_0^2 , (X_1, X_2, \dots, X_n) 为总体的一个容量为n的样本, \overline{X} 为 样本均值,则(D).
 - (A) 当 n 充分大时, \overline{X} 近似服从正态分布 $\mathbb{N}(\mu, \sigma_0^2)$;
 - (B) 当 n 充分大时, \overline{X} 的取值收敛于总体期望 μ :

- (C) 因总体分布未知, 无论 n 多大, \overline{X} 都未必可视为服从正态分布;
- (D) 当 n 充分大时, \overline{X} 近似服从正态分布 $N(\mu, \sigma_0^2/n)$
- 4. 设总体 $\xi \sim N(1,2^2)$, $(X_1, X_2, \dots, X_{10})$ 是 ξ 的样本,

 $Y = (X_1 - 1)^2 + (X_2 - 1)^2 + ... + (X_{10} - 1)^2$,则下述选项正确的是(C).

(A) $Y \sim \chi^2(10)$;

(B) $Y \sim N(10, 40)$:

(C) $\frac{Y}{4} \sim \chi^2(10)$;

- (D) $\frac{Y}{2} \sim \chi^2(10)$
- 5. 不考虑交互作用的正交试验, 若问题中有 4 个因子,每个因子都是 2 个水平, 应选取的 正交表是 (B).

 - (A) $L_4(2^3)$; (B) $L_8(2^7)$; (C) $L_9(3^4)$; (D) $L_{16}(2^{15})$
- 6. 设总体 $\xi \sim \mathbf{N}(\mu,\sigma_0^2)$,其中 σ_0^2 已知, (X_1,X_2,\cdots,X_n) 是 ξ 的样本,总体期望 μ 的置信水平为 $1-\alpha$ 的置信区间的长度记为 L ,则错误的选项是 (C)。
 - (A) L与样本容量 n 有关;
- (B) L与置信水平 1-α 有关;
- (C) L与样本 (X_1, X_2, \dots, X_n) 的取值有关; (D) L与总体方差 σ_0^2 有关.
- 7. 显著性水平 α 下的某假设检验,原假设 H_0 ,则(A).
 - (A) 犯第一类错误的概率一定不超过 α ;
 - (B) 犯第二类错误的概率一定为 $1-\alpha$;
 - (C) 犯第一类错误的概率一定为 α :
 - (D) 要么犯第一类错误,要么犯第二类错误,二者必居其一
- 8. 多元线性回归模型 $Y = X\beta + e$, 其中 $e \sim N(0, \sigma^2 I)$, 关于 β 的最小二乘估计 $\hat{\beta}$, 下 述错误的选项是(C)。
 - (A) $\hat{\beta} = (X'X)^{-1}X'Y$ (B) $E(\hat{\beta}) = \beta$
- - (C) $\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2 \mathbf{I})$ (D) $\hat{\boldsymbol{\beta}}$ 与残差平方和 SS_e 相互独立
- 9. 根据变元的 n 组观测值来求 m 元线性回归的复相关系数,下述选项正确的是(A)
 - (A) $R = \sqrt{\frac{SS_R}{SS_T}}$

- $(B) \quad R = \sqrt{\frac{SS_e}{n-2}}$
- (C) $R = \sqrt{\frac{SS_e}{n m 1}}$
- (D) $R = \sqrt{1 \frac{SS_R}{SS_R}}$

- 二. (本题 10 分) 立邦牌油漆的干燥时间 $\xi \sim N(\mu, \sigma^2)$, 随机抽取 9 个样品,测得干燥时间(单位:小时)的样本均值为 6.2, **修正样本标准差**为 0.6928, 分别求 μ, σ^2 的置信水平为 95%的置信区间。
- 解: (1) μ 的置信水平为 1- α 的置信区间为:

$$[\overline{X} - t_{1-\alpha/2}(n-1)\frac{S^*}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2}(n-1)\frac{S^*}{\sqrt{n}}]$$

=[6.2-2.306*0.6928/3, 6.2+2.306*0.6928/3]=[5.6675, 6.7325]

(2) 由样本数据得到n=9, $s_{n-1}^2=0.48$, 对于 $\alpha=0.05$, 自由度为8, 有

$$\chi^2_{0.025}(8) = 2.180$$
, $\chi^2_{0.975}(8) = 17.535$, 所以

$$\frac{(n-1)S_{n-1}^2}{\chi_{0.975}^2(n-1)} = \frac{8 \times 0.48}{17.535} = 0.2190; \qquad \frac{(n-1)S_{n-1}^2}{\chi_{0.025}^2(n-1)} = \frac{8 \times 0.48}{2.180} = 1.7615$$

故 σ^2 的 95%的置信区间为[0.2190, 1.7615]

三. (本题 10 分) 设 $(X_1,...,X_n)$ 是取自总体 ξ 的一个简单随机样本 ξ 的密度函数为

$$p(x) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$$
 其中 $\theta > 0$ 为未知参数,

- (1) 求 θ 的矩法估计量 $\hat{\theta}$,并说明 $\hat{\theta}$ 是否为 θ 的无偏估计?
- (2) 求 θ 的极大似然估计.

解: (1)先计算
$$E\xi = \int_{\theta}^{+\infty} x e^{-(x-\theta)} dx = (-xe^{-(x-\theta)})\Big|_{\theta}^{+\infty} + \int_{\theta}^{+\infty} e^{-(x-\theta)} dx = \theta + 1$$
 由于 $E\xi = \overline{X}$,得到 $\hat{\theta} = \overline{X} - 1$

因 $\operatorname{E}\hat{\theta} = E(\overline{X} - 1) = E\overline{X} - 1 = E\xi - 1 = (\theta + 1) - 1 = \theta$, 故 $\hat{\theta} = \overline{X} - 1$ 是 θ 无偏估计。

(2) 对于一组观测值 $(x_1, x_2, \dots x_n)$, 设 $x_1, \dots, x_n \ge \theta$, 此时似然函数

$$L(\theta) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} (e^{-(x_i - \theta)})$$

两边取对数,得对数似然函数 $\ln L(\theta) = -\sum_{i=1}^{n} x_i + n\theta$

分别关于 θ 求导,可得 $\frac{d \ln L(\theta)}{d \theta} = n > 0$ $\ln L(\theta)$ 关于 θ 严格单调递增,所以 $\ln L(\theta)$ 的

极大值应在 θ 取值的右面的边界点上取到,故极大似然估计为 $\hat{\theta} = \min_{i \in C} x_i$,

四. (本题 10 分) 对某种合金材料的熔点作了四次测试,根据 4 次的测试数据算得样本均值为 $\overline{X}=1267$ (度),修正样本标准差 $S^*=3.65$ (度).设合金材料的熔点服从正态分布,在显著性水平 $\alpha=5$ % 下:

- (1) 能否认为该种合金的熔点符合厂家所公布的 1260 度?
- (2) 能否认为该种合金熔点的标准差不超过2度?

解: 由样本得 $\overline{X} = 1267$,

(1) 要检验的假设为 $H_0: \mu = 1260, H_1: \mu \neq 1260$

检验用的统计量
$$T = \frac{\overline{X} - \mu_0}{S^* / \sqrt{n}} \sim t(n-1)$$
,

拒绝域为 $|T| \ge t_{1-\frac{\alpha}{2}}(n-1) = t_{0.975}(3) = 3.1824.$

$$|T| = \frac{1267 - 1260}{3.65/\sqrt{4}} = 3.836 > 3.1824$$
,落在拒绝域内,

故拒绝原假设 H_0 ,即不能认为结果符合公布的数字 1260° C.

(2) 要检验的假设为 $H_0: \sigma \leq 2$, $H_1: \sigma > 2$

检验用的统计量
$$\chi^2 = \frac{(n-1)S^{*2}}{\sigma_0^2} \sim \chi^2 (n-1)$$
,

拒绝域
$$\chi^2 > \chi^2_{1-\alpha}(n-1) = \chi^2_{0.95}(3) = 7.815$$

 $\chi^2 = 40/4 = 10 > 7.815$,落在拒绝域内,故拒绝原假设 H_0 ,即不能认为测定值的标准差不超过 2° C.

五. (本题 10 分) 把一枚硬币连抛 100 次, 结果出现了 40 次正面向上,60 次反面向上,在显著性水平显著性水平 $\alpha = 5\%$ 下,能否认为这枚硬币是均匀的?

解: 假设硬币是均匀的, 令 X=0 表示反面向上,否则,X=1, 即:

$$H_0: X \sim \begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$$

$$\chi^2 = \frac{1}{n} \sum_{i=1}^r \frac{n_k^2}{p_k} - n \sim \chi^2(r-1); \quad \chi^2 = \frac{1}{100} (\frac{60^2}{0.5} + \frac{40^2}{0.5}) - 100 = 4$$

 $\chi^2 = 4 > \chi^2_{1-\alpha}(r-1) = 3.841$, 故拒绝原假设,认为该硬币不均匀.

六. (本题 14分) 抽查 6家企业,根据产量 x_i (台) 与单位成本 y_i (万元)的统计数据得:

$$\sum x_i = 360$$
, $\sum x_i^2 = 25000$, $\sum y_i = 55$, $\sum y_i^2 = 565$, $\sum x_i y_i = 2860$

- (1) 求单位成本与产量的相关系数;
- (2) 求单位成本关于产量的回归方程;
- (3) 求线性回归的残差平方和 SS_a 及估计的标准差 $\hat{\sigma}$;
- (4) 在显著性水平 $\alpha = 0.05$ 下检验单位成本与产量是否有线性相关关系.

解: 1)
$$\overline{x} = 60$$
, $\overline{y} = 9.1667$, $L_{xx} = \sum x_i^2 - n\overline{x}^2 = 3400$, $L_{yy} = 60.8333$ $L_{xy} = \sum x_i y_i - n\overline{x} \overline{y} = -440$, $r = \frac{L_{xy}}{\sqrt{L_{xx}L_{yy}}} = -0.9675$

2)
$$y = \beta_0 + \beta_1 x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma)$

$$\hat{\beta}_1 = \frac{L_{xy}}{L_{xx}} = -0.1294,$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 16.931$$

回归方程为 y=16.931-0.1294x

3)
$$SS_e = L_{yy} - \hat{\beta}_1 L_{xy} = 3.8973$$

$$\hat{\sigma} = \sqrt{\frac{SS_e}{n-2}} = 0.9871$$

4) $H_0: \beta_1 = 0$

$$T = \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}} \sqrt{L_{xx}} \sim t(n-2)$$

$$T = \frac{-0.1294 - 0}{0.9871} \sqrt{3400} = -7.6439$$

$$|T| > t_{0.975}(4) = 2.7764$$

故拒绝原假设,即认为单位成本与产量有统计的线性相关关系.

七. (本题 10 分)为了研究一天中的不同工作时间对工作效率的影响,随机抽取 12 人,等分成三组, A 组做早班, B 组做晚班, C 组做夜班,分别记录他们完成同一种工作的完工时间,数据如下:

组别	完	工	时	间	
A 早班	5. 2	5. 6	5.8	5. 4	
B晚班	5. 4	4. 9	6. 1	6.6	
C夜班	6. 1	5. 8	5. 9	7. 2	

试利用方差分析的方法,在显著性水平 $\alpha = 0.05$ 下分析不同的班次对工作效率是否有显著性影响?

解: 方差分析的前提是: 假设不同班次的完工时间服从正态分布,且方差相等,即 $\xi_i \sim N(\mu_i, \sigma^2)$, i=1,2,3.

检验班次对工作效率是否有影响,相当于检验: $H_0: \mu_1 = \mu_2 = \mu_3$

方差分析: 单因素方差分析

SUMMARY

组	计数	求和	平均	方差
行 1	4	22	5. 5	0.066667
行 2	4	23	5.75	0. 563333
行 3	4	25	6.25	0.416667

方差分析

73 /11/3 1/1					
差异源	SS	df	MS	F	F crit
组间	1.166667	2	0. 583333	1.671975	4. 256492
组内	3. 14	9	0. 348889		
总计	4.306667	11			

F < F crit = 4.26, 故 接受原假设,即在显著性水平 0.05 下认为不同的班次对工作效率无显著性影响.