E-YANTRA SUMMER INTERNSHIP

PID:17/Shreya Rastogi

May 2020

GY-87 and Filter Design

1 Aim

To understand GY-87 sensor, collect data using it and then filter that data for noise using the complimentary filter. To also understand about the function of Kalman Filter and compare it with complimentary filter.

2 Answers

1. What is GY-87? What are some of its features? What is it's benefit over MPU6050?

Ans. This is a breakout board for the MPU-6050 with a on-board Voltage regulator so it can be used with 5 volt supply. It is a 10 degree of freedom(DOF) device which incorporates a MPU6050 accelerometer and gyroscope chip, a HMC5883L digital compass, and a BMP180 barometer.

The MPU6050 devices combine a 3-axis gyroscope and a 3-axis accelerometer on the same silicon together with an onboard Digital Motion Processor (DMP) capable of processing complex 9-axis MotionFusion algorithms.

The **HMC5883** is a surface mount multi-chip module designed for low field magnetic sensing with a digital interface for applications such as low cost compassing and magnetometry. The **BMP180** is the new digital barometric pressure sensor of Bosch Sensortec, with a very high performance, which enables applications in advanced mobile devices, such as smart phones, tablet PCs and sports devices.

Features

- Acceleration, Gyroscope and Magnetometer
- 10DOF modules (three-axis gyroscope + triaxial accelerometer and three-axis magnetic field + atmospheric pressure)
- Build in ultra low noise linear LDO voltage regulator
- Build-in on board filters, which reduce noise from motor and other high current electronics
- All sensors connected to I2C bus
- Build in Logic level converter for I2C
- Power indicator LED

2. What are filters and why do we use them in our systems?

Ans. In signal processing, filters are devices that remove some unwanted components or features from a signal. A filter is a circuit capable of passing (or amplifying) certain frequencies while attenuating other frequencies. Thus, a filter can extract important frequencies from signals that also contain undesirable or irrelevant frequencies.

The four primary types of filters include the **low-pass filter**, the **high-pass filter**, the **band-pass filter**, and the **notch filter** (or the band-reject or band-stop filter).

• Low Pass Filter

The low pass filter only allows low frequency signals from 0Hz to its cut-off frequency, fc point to pass while blocking those any higher.

• High Pass Filter

The high pass filter only allows high frequency signals from its cut-off frequency to infinity to pass while blocking the ones lower than the cutoff frequency..

- 3. What kind of filter will be used for a balance bot system?
- 4. Why do we use a high pass filter for Gyroscope and a low pass filter for Accelerometer?
- 5. What is a Kalman Filter and why should we use it instead of a complimentary filter?