report

March 30, 2024

1 Naravni zlepek

Gregor Kovač

1.1 Matematično ozadje

Danih je n interpolacijskih točk $(x_i, f(x_i)), i = 1, ..., n$. Naravni interpolacijski kubični zlepek S je funkcija, za katero velja: - $S(x_i) = f_i$, - S je polinom stopnje 3 ali manj na intervalih $[x_i, x_{i+1}]$, - S je dvakrat zvezno odvedljiva funkcija na intervalu $[x_i, x_{i+1}]$, - $S''(x_1) = S''(x_n) = 0$.

Vsak polinom S_i zlepka S ima torej obliko $S_i(x) = a_i + b_i \cdot x + c_i \cdot x^2 + d_i \cdot x^3$. Za izračun koeficientov a_i, b_i, c_i in d_i najprej nastavimo naslednji sistem enačb:

$$S_i(x_i) = f(x_i), \quad i = 1, ..., n$$

Uporabimo lahko tudi prvi odvod polinoma: $S_i'(x) = b_i \cdot x + 2 \cdot c_i \cdot x + 3 \cdot d_i \cdot x^2$. Ker ima funkcija zvezen odvod vemo, da bo v neki interpolacijski točki odvod levega in desnega polinoma enak, torej lahko dodamo naslednje enačbe:

$$S'_{i-1}(x_i) = S'_i(x_i), \quad i = 2, ..., n$$

Ker je funkcija dvakrat zvezno odvedljiva, upoštevamo še drugi odvod: $S_i''(x) = b_i + 2 \cdot c_i + 6 \cdot d_i \cdot x$. Podobno kot prej zapišemo še enačbe z drugimi odvodi: $S_{i-1}''(x_i) = S_i''(x_i)$, i=2,...,n

Iz zadnje točke definicije direktno dobimo še dve enačbi:

$$S''(x_1) = 0$$

$$S''(x_n) = 0$$

Dobili smo sistem s4n enačbami in 4n neznankami. Sistem zapišemo v matrični obliki in ga rešimo. Kot rezultat torej dobimo koeficiente polinomov, ki sestavljajo zlepek.

1.2 Primeri

Sedaj si poglejmo nekaj primerov zlepkov. Za nekatere primere bomo interpolacijske točke generirali iz funkcije. Pri teh primerih bomo izrisali originalno funkcijo s črtkano črto poleg zlepka.

```
[]: # Uvoz knjižnic
import zlepek
import numpy as np
```

1.2.1 Poljubne točke

```
[]: x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y = np.array([0, 1, 3, 0.5, 2, -1, -1, -1, 4, 0, 0])
z = zlepek.interpoliraj(x, y)
zlepek.plot(z)
```


1.2.2 Parabola

```
[]: x = np.array([-2, -1, 0, 1, 2])
y = x ** 2

z = zlepek.interpoliraj(x, y)

zlepek.plot(z, lambda x: x ** 2)
```


1.2.3 Kosinus

```
[]: x = np.array([k * np.pi/2 for k in range(20)])
y = np.cos(x)

z = zlepek.interpoliraj(x, y)

zlepek.plot(z, lambda x: np.cos(x))
```


1.2.4 Naključne točke

```
[]: x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
np.random.seed(1001)
y = np.random.rand(11)
z = zlepek.interpoliraj(x, y)
zlepek.plot(z)
```

