Esercizi su Vettori, dipendenza e indipendenza lineare

- (1) Considera i seguenti vettori di \mathbb{R}^2 : $v_1 = (-1,0), v_2 = (1/2,1)$.
 - (a) Dimostra che v_1, v_2 non hanno la stessa direzione.
 - (b) Determina i coefficienti t, s per cui il vettore $v = tv_1 + sv_2$ quando v è uno dei seguenti vettori: $v = v_1, v = v_2, v = v_1 - v_2,$ v = (3/2, 1).
- (2) Considera i seguenti vettori di \mathbb{R}^3 : $v_1 = (-1, 0, 3), v_2 = (1/2, 1, 1)$.
 - (a) Dimostra che $L(v_1, v_2)$ non è una retta di \mathbb{R}^3 ed è quindi un piano per l'origine.
 - (b) Trova l'equazione parametrica del piano $L(v_1, v_2)$ e la sua equazione cartesiana.
 - (c) Consider il vettore v = (-1/2, 1, 4) e dimostra che $v \in L(v_1, v_2)$ in tre modi diversi:
 - (i) trovando due coefficienti s, t per cui vale $v = tv_1 + sv_2$;
 - (ii) dimostrando che le coordinate di v soddisfano l'equazione parametrica del piano $L(v_1, v_2)$;
 - (iii) dimostrando che le coordinate di v soddisfano l'equazione cartesiana del piano $L(v_1, v_2)$.
- (3) Date le due rette dello spazio di equazioni parametriche

$$r := \begin{cases} x = t; \\ y = -t \\ z = t \end{cases}$$

$$r := \begin{cases} x = t; \\ y = -t \\ z = t \end{cases}$$

$$s := \begin{cases} x = 1; \\ y = s \\ z = -s \end{cases}$$

determina se le due rette si incontrano ed in caso affermativo determina le coordinate del punto di intersezione.

(4) Date le due rette dello spazio di equazioni parametriche

$$r := \begin{cases} x = t; \\ y = -t \\ z = t \end{cases}$$

$$s := \begin{cases} x = 0; \\ y = s + 1 \\ z = -s \end{cases}$$

Dimostra che le due rette non si incontrano e non sono parallele (rette di questo tipo si dicono "sghembe").

- (5) Sia $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$
 - (a) Dimostrare che $W \neq \mathbb{R}^3, W \neq \{\vec{0}\}.$
 - (b) Dimostrare che W non è una retta di \mathbb{R}^3 , trovando due vettori di W che non appartengono alla stessa retta (sono indipendenti).
 - (c) È possibile trovare tre vettori linearmente indipendenti in W?

- (d) È possibile generare W con un solo vettore?
- (e) Dati i vettori $v_1 = (1, 1, 1), v_2 = (0, 0, 1),$ trovare se possibile:
 - un vettore v che appartiene a $L(v_1, v_2)$ ma non a W;
 - un vettore w che appartiene a W ma non a $L(v_1, v_2)$;
 - un vettore u che appartiene sia a W che a $L(v_1, v_2)$.
- (6) Considerare i seguenti vettori di \mathbb{R}^4 :

$$v_1 = (1, 0, 3, 0), v_2 = (1/2, -1, 0, 1).$$

- (a) Utilizzando due parametri, descrivere il sottospazio delle combinazioni lineari $L(v_1, v_2)$.
- (b) Determinare se possibile una combinazione lineare di v_1, v_2 con prima coordinata nulla e seconda e terza coordinata non nulla.
- (c) Determinare, se possibile, una combinazione lineare di v_1, v_2 con prima coordinata non nulla e seconda e terza coordinata nulla.
- (d) Determinare se i vettori w = (1, 2, 6, 0) e w' = (1/2, 1, 3, -1) appartengono o meno a $L(v_1, v_2)$.
- (7) Dati i vettori $v_1 = (1, 0, 1), v_2 = (0, 0, 1), v_3 = (1, 0, 2)$ in \mathbb{R}^3 considerare il sottospazio $W = L(v_1, v_2)$.
 - (a) Dimostrare che $v_3 \in L(v_1, v_2)$.
 - (b) I vettori v_1, v_2, v_3 sono indipendenti?
- (8) Nello spazio \mathbb{R}^3 si consideri il seguente sottospazio vettoriale:

$$W := \{(x, y, z) \in \mathbb{R}^3 : -x + y + z = 0\}$$

- (a) Riconoscere che $W = L(v_1, v_2)$ dove $v_1 = (1, 1, 0)$ e $v_2 = (0, 1, -1)$.
- (b) I vettori v_1, v_2 sono dipendenti?
- (9) Sia W il sottospazio di \mathbb{R}^4 di equazione parametrica

$$\begin{cases} x = h - k + 2t \\ y = h \\ z = t \\ w = t \end{cases}$$

ovvero,

$$W = \{(h - k + 2t, h, t, t) : h, k, t \in \mathbb{R}\}\$$

Trovare dei generatori di W, ovvero. vettori w_1, \ldots, w_k tali. che $W = L(w_1, \ldots, w_k)$.

(10) Considerare i seguenti vettori di \mathbb{R}^3 :

$$v_1 = (1, 1, 1), v_2 = (1, 0, -1), v_3 = (2, 1, 0)$$

- (a) Determinare se i vettori v_1, v_2, v_3 sono indipendenti.
- (b) Determinare se $L(v_1, v_2, v_3 = \mathbb{R}^3)$
- (11) Considerare i vettori $v_1 = (1, 1, 1), v_2 = (1, 0, 1), v_3 = (1, 2, 1)$ in \mathbb{R}^3 ;
 - (a) descrivere l'insieme delle loro combinazioni linerari $L(v_1, v_2, v_3)$;
 - (b) determinare se il vettore v_3 appartiene o meno allo spazio $L(v_1, v_2)$;

- (c) i vettori v_1, v_2, v_3 sono dipendenti? Se la risposta è positiva, scrivere il vettore $\vec{0}$ come combinazione lineare di v_1, v_2, v_3 a coefficienti non tutti nulli.
- (12) Considerare i vettori $v_1 = (1, 0, 1), v_2 = (0, 0, 1), v_3 = (1, 0, 2)$ di \mathbb{R}^3 .
 - (a) Determinare se i vettori v_1, v_2, v_3 sono indipendenti.
 - (b) Determinare se $v_3 \in L(v_1, v_2)$, se $v_2 \in L(v_1, v_3)$, se $v_3 \in L(v_1, v_2)$.
 - (c) Determinare se $L(v_1, v_2) = L(v_1, v_2, v_3)$.
 - (d) Dimostrare che il vettore $(\sqrt{2},0,1)$ appartiene a $L(v_1,v_2)$ e scriverlo come combinazione lineare di v_1,v_2 .
- (13) Scrivere il vettore $(1,1,0,0) \in \mathbb{R}^4$ come combinazione lineare dei vettori e_1,e_1+e_2 di \mathbb{R}^4 .
- (14) Sia W il seguente sottoinsieme di \mathbb{R}^4 :

$$W = \{(h+k, h-k, h, k) : h, k \in \mathbb{R}\}$$

- (a) Stabilire se i seguenti vettori di \mathbb{R}^4 appartengono o meno al sottospazio: e_1 , $e_1 + e_2$, (8,0,2,6), (8,0,4,4)
- (b) Trovare due vettori v_1, v_2 di W tali che $W = L(v_1, v_2)$.
- (15) Dati i vettori $v_1 = (1, 0, 0, 1), v_2 = (1, 1, 1, 1), v_3 = (0, 1, 1, 0),$ determinare se sono linearmente indipendenti. È possibile scrivere in in due modi diversi il vettore $\vec{0}$ come combinazione lineare dei vettori v_1, v_2, v_3 ?