

Contents

1	Introdu	ction .							•		•		•		•		•	•	 •	•	 •	•	2
2	Prim's	Algori	$_{ m thm}$																				3
	2.1 Dat	a Struc	cture																 •				3
	2.1.	1 Mii	nHeap																				3
	2.1.	2 No	\det																				3
	2.1.	3 Gra	aph .																				3
	2.2 Imp	olement	ation																				3
	2.3 Cor	nplexit	у				• •		•														3
3	Kruskal	's Alg	orithn	a with	ı "n	aive	e" in	npl	em	en	tai	tio	n									_	4
		a Struc						_															
	3.1.		aph .																				
	3.1.		ge																				
	3.2 Imp	olement	_																				
		nplexit																					
4	Kruskal	's Alg	orithn	a with	ı Uı	nior	ı-Fi	nd .															5
		a Struc																					
	4.1.		aph and																				
	4.1.		ion Fin																				
	4.2 Imp	olement																					
	4.3 Con	nplexit	у										•						 •	•	 ٠	•	5
5	Results																						6
	5.1 Tab	le with	calcul	ated N	IST																		6
		ph of t																					9
		ph of t																					10
	5.4 Gra	ph of t	he perf	formar	ice o	of K	rusk	m al's	Un	ion	ı F	inc	ł A	lgo	orit	hn	1			•	 •		11
6	Conclus	ion																					19

1 Introduction

2 Prim's Algorithm

```
PRIM (G, s)  X = \{s\} \text{ //set of vertexes included in the MST}   A = \emptyset \text{ //set of edges included in the MST}   \text{while there is an edge } (u, v) \text{ with } u \in X \text{ and } v \notin X \text{ do}   (u*, v*) = a \text{ minimum cost such edge //light edge}   \text{add vertex } v* \text{ to } X   \text{add edge } (u*, v*) \text{ to } A   \text{return } A
```

2.1 Data Structure

- 2.1.1 MinHeap
- 2.1.2 Node
- 2.1.3 Graph
- 2.2 Implementation
- 2.3 Complexity

3 Kruskal's Algorithm with "naive" implementation

```
1 KRUSKAL (G)  
2 A = \emptyset  
3 sort edges of G by cost  
4 for each edge e, in non decreasing order of cost do  
5 if A \cup {e} is acyclic then  
6 A = A \cup {e}  
7 return A
```

- 3.1 Data Structure
- 3.1.1 Graph
- 3.1.2 Edge
- 3.2 Implementation
- 3.3 Complexity

4 Kruskal's Algorithm with Union-Find

- 4.1 Data Structure
- 4.1.1 Graph and Edge
- 4.1.2 Union Find
- 4.2 Implementation
- 4.3 Complexity

5 Results

5.1 Table with calculated MST

Input file	num_nodes	num_edges	MST
input_random_01_10.txt	10	9	29316
input_random_02_10.txt	10	11	16940
input_random_03_10.txt	10	13	-44448
input_random_04_10.txt	10	10	25217
input_random_05_20.txt	20	24	-32021
input_random_06_20.txt	20	24	25130
input_random_07_20.txt	20	28	-41693
input_random_08_20.txt	20	26	-37205
input_random_09_40.txt	40	56	-114203
input_random_10_40.txt	40	50	-31929
input_random_11_40.txt	40	50	-79570
input_random_12_40.txt	40	52	-79741
input_random_13_80.txt	80	108	-139926
input_random_14_80.txt	80	99	-198094
input_random_15_80.txt	80	104	-110571
input_random_16_80.txt	80	114	-233320
input_random_17_100.txt	100	136	-141960
input_random_18_100.txt	100	129	-271743
input_random_19_100.txt	100	137	-288906
input_random_20_100.txt	100	132	-229506
input_random_21_200.txt	200	267	-510185
input_random_22_200.txt	200	269	-515136
input_random_23_200.txt	200	269	-444357
input_random_24_200.txt	200	267	-393278
input_random_25_400.txt	400	540	-1119906

Input file	num_nodes	num_edges	MST
input_random_26_400.txt	400	518	-788168
input_random_27_400.txt	400	538	-895704
input_random_28_400.txt	400	526	-733645
input_random_29_800.txt	800	1063	-1541291
input_random_30_800.txt	800	1058	-1578294
input_random_31_800.txt	800	1076	-1664316
input_random_32_800.txt	800	1049	-1652119
input_random_33_1000.txt	1000	1300	-2089013
input_random_34_1000.txt	1000	1313	-1934208
input_random_35_1000.txt	1000	1328	-2229428
input_random_36_1000.txt	1000	1344	-2356163
input_random_37_2000.txt	2000	2699	-4811598
input_random_38_2000.txt	2000	2654	-4739387
input_random_39_2000.txt	2000	2652	-4717250
input_random_40_2000.txt	2000	2677	-4537267
input_random_41_4000.txt	4000	5360	-8722212
input_random_42_4000.txt	4000	5315	-9314968
input_random_43_4000.txt	4000	5340	-9845767
input_random_44_4000.txt	4000	5368	-8681447
input_random_45_8000.txt	8000	10705	-17844628
input_random_46_8000.txt	8000	10670	-18798446
input_random_47_8000.txt	8000	10662	-18741474
input_random_48_8000.txt	8000	10757	-18178610
input_random_49_10000.txt	10000	13301	-22079522
input_random_50_10000.txt	10000	13340	-22338561
input_random_51_10000.txt	10000	13287	-22581384
input_random_52_10000.txt	10000	13311	-22606313
input_random_53_20000.txt	20000	26667	-45962292

Input file	num_nodes	num_edges	MST
input_random_54_20000.txt	20000	26826	-45195405
input_random_55_20000.txt	20000	26673	-47854708
input_random_56_20000.txt	20000	26670	-46418161
input_random_57_40000.txt	40000	53415	-92003321
input_random_58_40000.txt	40000	53446	-94397064
input_random_59_40000.txt	40000	53242	-88771991
input_random_60_40000.txt	40000	53319	-93017025
input_random_61_80000.txt	80000	106914	-186834082
input_random_62_80000.txt	80000	106633	-185997521
input_random_63_80000.txt	80000	106586	-182065015
input_random_64_80000.txt	80000	106554	-180793224
input_random_65_100000.txt	100000	133395	-230698391
input_random_66_100000.txt	100000	133214	-230168572
input_random_67_100000.txt	100000	133524	-231393935
input_random_68_100000.txt	100000	133463	-231011693

5.2 Graph of the performance of Prim's Algorithm

Figure 1: Performance of Prim's Algorithm

5.3 Graph of the performance of Kruskal's "naive" Algorithm

Figure 2: Performance of Kruskal's "naive" Algorithm

5.4 Graph of the performance of Kruskal's Union Find Algorithm

Figure 3: Performance of Kruskal's Union Find Algorithm

6 Conclusion

Figure 4: Comparison between the performances of the three algorithms

From Fig. 4 we can observe that for graphs with 1000 vertices or less the performance are more or less the same. When the number of vertices grows, the execution time of the Kruskal's "naive" algorithm grows exponentially and it could even take some minutes to calculate the MST of the bigger graphs of the dataset. The execution time of Prim's and Kruskal's Union Find are very similar. They take a few seconds to calculate the MST of the bigger graphs of the dataset. The results are consistent with the complexity of the algorithms. Kruskal's "naive" is the most complex algorithm, instead the other two have the same algorithmic complexity but the Kruskal's Union Find has an execution time lower than Prim's.