Computational Complexity and Linguistic Theory

Turing Completeness of Unification

Complexity in Phonology

Judicious Incoherence

- Turing Completeness of Unification
 - Powerful formalism for developing theory
- Complexity in Phonology

Judicious Incoherence

- Turing Completeness of Unification
 - Powerful formalism for developing theory
- Complexity in Phonology
 - Constrained theory
- Judicious Incoherence

- Turing Completeness of Unification
 - Powerful formalism for developing theory
- Complexity in Phonology
 - Constrained theory
- Judicious Incoherence
 - Constraints on human behaviour

Turing Completeness of Unification

Bender and Emerson (2021): In HPSG, "the formalism is stable, even as the theory develops"

Turing Completeness of Unification

- Bender and Emerson (2021): In HPSG, "the formalism is stable, even as the theory develops"
- Computation types and wrapper types (including append-lists) do not change the formalism

2017 Diff-list appends, list copying

- 2017 Diff-list appends, list copying
- 2018 Berthold: this looks fun

- 2017 Diff-list appends, list copying
- 2018 Berthold: this looks fun
- 2019 List appends, Turing completeness

- 2017 Diff-list appends, list copying
- 2018 Berthold: this looks fun
- 2019 List appends, Turing completeness
- 2020 Olga: this looks fun

- 2017 Diff-list appends, list copying
- 2018 Berthold: this looks fun
- 2019 List appends, Turing completeness
- 2020 Olga: this looks fun
- 2021 More careful implementation

- 2017 Diff-list appends, list copying
- 2018 Berthold: this looks fun
- 2019 List appends, Turing completeness
- 2020 Olga: this looks fun
- 2021 More careful implementation
- 2023 Dan: this looks fun

Turing Completeness of Unification

- Separating formalism from theory: new applications can be surprising
- Comments welcome on draft paper! https://www.cl.cam.ac.uk/~gete2/wrapper.pdf

 Phonological processes widely believed to be finite-state (can be computed in linear time)

- Phonological processes widely believed to be finite-state (can be computed in linear time)
- Lamont (2023): Optimality Theory is Turing-complete

- Phonological processes widely believed to be finite-state (can be computed in linear time)
- Lamont (2023): Optimality Theory is Turing-complete
- Hao (2024): Single-tape Optimality Theory is PSPACE-complete (at least as hard as NP)

- Phonological processes widely believed to be finite-state (can be computed in linear time)
- Lamont (2023): Optimality Theory is Turing-complete
- Hao (2024): Single-tape Optimality Theory is PSPACE-complete (at least as hard as NP)
- Emerson and Lamont (in prep.): Single-tape
 Harmonic Grammar is finite-state

Optimality Theory

- Underlying phonological representation is distinct from surface realisation
 - e.g. English plural -s: [s], [z], [əz]

Optimality Theory

- Underlying phonological representation is distinct from surface realisation
 - e.g. English plural -s: [s], [z], [əz]
- A grammar is a set of constraints (which may conflict), and a ranking of those constraints

Optimality Theory

- Underlying phonological representation is distinct from surface realisation
 - e.g. English plural -s: [s], [z], [əz]
- A grammar is a set of constraints (which may conflict), and a ranking of those constraints
- Computational problem: given a grammar and an input, what is the optimal output?

- Underlying phonological representation is distinct from surface realisation
 - e.g. English plural -s: [s], [z], [əz]
- A grammar is a set of constraints (which may conflict), and a weighting of those constraints
- Computational problem: given a grammar and an input, what is the optimal output?

- Can use a Viterbi algorithm
 - At each step, sufficient to consider a finite set of candidates

- Can use a Viterbi algorithm
 - At each step, sufficient to consider a finite set of candidates
- Relies on comparing candidates as a single score

- Can use a Viterbi algorithm
 - At each step, sufficient to consider a finite set of candidates
- Relies on comparing candidates as a single score
 - In contrast, Optimality Theory requires comparison for each constraint

Harmonic Grammar vs. Optimality Theory

- Theoretical commitments very similar
 - Explain complex phenomena as interactions between simple constraints
- Computational behaviour very different
 - Finite-state vs. PSPACE-complete

10 Years of My Semantics Research...

Truth is useful

Truth is painful

10 Years of My Semantics Research...

- Truth is useful
 - A truth-conditional model can learn and generalise meanings in a more human-like way
- Truth is painful

10 Years of My Semantics Research...

- Truth is useful
 - A truth-conditional model can learn and generalise meanings in a more human-like way
- Truth is painful
 - A truth-conditional model is intractable with respect to dimensionality of feature space

Judicious Incoherence

- A computational system cannot be all three:
 - Expressive
 - Tractable
 - Coherent

Judicious Incoherence

- A computational system cannot be all three:
 - Expressive
 - Tractable
 - Coherent
- Human cognition is expressive and tractable, so cannot be coherent

Bayesian Coherence

• Given p(x, y), this defines p(x|y) and p(y|x)

Bayesian Coherence

- Given p(x, y), this defines p(x|y) and p(y|x)
- Bayesian inference is #P-complete (at least as hard as NP-complete), even in restricted settings and even when approximated (Roth, 1996)

Example: Looptail g

g g g

Example: Looptail g

Recognised easily

 Produced with difficulty or not at all (Wong et al., 2018)

Example: Looptail g

- Recognised easily
 - p(class|shape) accurate
- Produced with difficulty or not at all (Wong et al., 2018)

Example: Looptail g

- Recognised easily
 - p(class|shape) accurate
- Produced with difficulty or not at all (Wong et al., 2018)
 - p(shape|class) skewed to handwritten form

VAE objective: inference network approximates
 Bayesian inference for generative model

- VAE objective: inference network approximates
 Bayesian inference for generative model
- Zhao et al. (2019) alternative view:
 - VAE objective minimises KL-divergence between
 - generative model $p_{\theta}(z)p_{\theta}(x|z)$
 - inference model $p_D(x)p_{\phi}(z|x)$

- Truth-conditional model $p(t_u|s)$
- World-inferential model $p(s|t_u)$

- Truth-conditional model $p(t_u|s)$
- World-inferential model $p(s|t_u)$
- No coherent joint $p(s, t_u)$

Masked Language Modelling Revisited

- Masked language model predictions:
 - $p(w_i|w_1,...,w_{i-1},w_{i+1},...,w_n)$

Masked Language Modelling Revisited

- Masked language model predictions:
 - $p(w_i|w_1,...,w_{i-1},w_{i+1},...,w_n)$
- No coherent joint $p(w_1, \ldots, w_n)$

Compatibility Problem

• Given conditional distributions p(x|y) and p(y|x), are they compatible with some joint distribution p(x, y)?

Compatibility Problem

- Given conditional distributions p(x|y) and p(y|x), are they compatible with some joint distribution p(x, y)?
- Can be solved by iterating over all (x, y) pairs (Arnold & Press, 1989)

Succinctly Encoded Distributions

- Consider high-dimensional spaces: $x, y \in \{0, 1\}^n$
- Not feasible to store p(x|y) explicitly

Succinctly Encoded Distributions

- Consider high-dimensional spaces: $x, y \in \{0, 1\}^n$
- Not feasible to store p(x|y) explicitly
- Instead: polynomially bounded encoding of p, which allows p(x|y) to be calculated in polynomial time

Succinctly Encoded Distributions

- Consider high-dimensional spaces: $x, y \in \{0, 1\}^n$
- Not feasible to store p(x|y) explicitly
- Instead: polynomially bounded encoding of p, which allows p(x|y) to be calculated in polynomial time
- This includes all neural network models

Succinct Compatibility Problem

• Given succinctly encoded p(x|y) and p(y|x), are they compatible with some p(x, y)?

Succinct Compatibility Problem

- Given succinctly encoded p(x|y) and p(y|x), are they compatible with some p(x, y)?
- Theorem:
 - If p(x|y), p(y|x) > 0, this is co-NP-complete.
 - In the general case, this is Σ_2^P -complete.

Succinct Compatibility is in co-NP

- If p(x|y) and p(y|x) are incompatible, we can find a certificate (x_1, x_2, y_1, y_2)
- Verify by checking:

```
 p(x_1|y_1)p(y_1|x_2)p(x_2|y_2)p(y_2|x_1) 
\neq 
p(y_1|x_1)p(x_1|y_2)p(y_2|x_2)p(x_2|y_1)
```

Succinct Compatibility is in co-NP

- If p(x|y) and p(y|x) are incompatible, we can find a certificate (x_1, x_2, y_1, y_2)
- Verify by checking:
 - $p(x_1|y_1)p(y_1|x_2)p(x_2|y_2)p(y_2|x_1)$ \neq $p(y_1|x_1)p(x_1|y_2)p(y_2|x_2)p(x_2|y_1)$

Coherence as Regulariser

• Given observed (x_1, y_1) , sample alternatives x_2, y_2 .

• Regularise
$$\frac{p(x_1|y_1)p(y_1|x_2)p(x_2|y_2)p(y_2|x_1)}{p(y_1|x_1)p(x_1|y_2)p(y_2|x_2)p(x_2|y_1)} \approx 1$$

Coherence as Regulariser

• Given observed (x_1, y_1) , sample alternatives x_2, y_2 .

• Regularise
$$\frac{p(x_1|y_1)p(y_1|x_2)p(x_2|y_2)p(y_2|x_1)}{p(y_1|x_1)p(x_1|y_2)p(y_2|x_2)p(x_2|y_1)} \approx 1$$

 Model can appear coherent in a subspace (polynomially bounded in size)

Coherence as Regulariser

• Given observed (x_1, y_1) , sample alternatives x_2, y_2 .

• Regularise
$$\frac{p(x_1|y_1)p(y_1|x_2)p(x_2|y_2)p(y_2|x_1)}{p(y_1|x_1)p(x_1|y_2)p(y_2|x_2)p(x_2|y_1)} \approx 1$$

- Model can appear coherent in a subspace (polynomially bounded in size)
- First steps: experiments planned on BabyLM

Judicious Incoherence

- Cognitive models must be expressive and tractable
- Expressive tractable models are incoherent
- Humans and models can be judiciously incoherent