Ansys

Ansys Fluent Simulation Report

Analyst	Athena
Date	3/17/2022 05:32 AM

Table of Contents

1 System Information

2 Geometry and Mesh

2.1 Mesh Size

2.2 Mesh Quality

2.3 Orthogonal Quality

3 Simulation Setup

3.1 Physics

3.1.1 Models

3.1.2 Material Properties

3.1.3 Cell Zone Conditions

3.1.4 Boundary Conditions

3.1.5 Reference Values

3.2 Solver Settings

4 Run Information

5 Solution Status

6 Report Definitions

7 Plots

System Information

Application	Fluent	
Settings	3d, double precision, pressure-based, standard k-epsilon	
Version	21.2.0-10201	
Source Revision	fcb749f05e	
Build Time	May 28 2021 13:54:12 EDT	
CPU	Intel(R) Core(TM) i7-10710U	
os	Windows	

Geometry and Mesh

Mesh Size

Cells	Faces	Nodes
489033	989429	87656

Mesh Quality

Name	Туре	Min Orthogonal Quality	Max Aspect Ratio
solid	Tet Cell	0.070025454	52.137383

Orthogonal Quality

Simulation Setup

Physics

Models

Model	Settings
Space	3D
Time	Steady
Viscous	Standard k-epsilon turbulence model
Wall Treatment	Standard Wall Functions
Heat Transfer	Enabled

Material Properties

- Fluid	
— air	
Density	1.225 kg/m^3
Cp (Specific Heat)	1006.43 J/(kg K)
Thermal Conductivity	0.0242 W/(m K)
Viscosity	1.7894e-05 kg/(m s)
Molecular Weight	28.966 kg/kmol
Thermal Expansion Coefficient	0
Speed of Sound	none
- Solid	
aluminum	
Density	2719 kg/m^3
Cp (Specific Heat)	871 J/(kg K)
Thermal Conductivity	202.4 W/(m K)

Cell Zone Conditions

- Fluid	
- solid	
Material Name	air
Specify source terms?	no
Specify fixed values?	
Frame Motion?	
Laminar zone?	no
Porous zone?	no
3D Fan Zone?	no

Boundary Conditions

- Inlet	
inlet	
Velocity Specification Method	Magnitude, Normal to Boundary
Reference Frame	Absolute
Velocity Magnitude [m/s]	15
Supersonic/Initial Gauge Pressure [Pa]	0
Temperature [K]	300
Turbulent Specification Method	Intensity and Viscosity Ratio
Turbulent Intensity [%]	5
Turbulent Viscosity Ratio	10
- Outlet	
outlet	
Backflow Reference Frame	Absolute
Gauge Pressure [Pa]	0
Pressure Profile Multiplier	1
Backflow Total Temperature [K]	300
Backflow Direction Specification Method	Normal to Boundary
Turbulent Specification Method	Intensity and Viscosity Ratio

D 16 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
Backflow Turbulent Intensity [%]	5
Backflow Turbulent Viscosity Ratio	10
Backflow Pressure Specification	Total Pressure
Build artificial walls to prevent reverse flow?	no
Radial Equilibrium Pressure Distribution	no
Average Pressure Specification?	no
Specify targeted mass flow rate	no
- Wall	
- wall_left	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
─ wall_up	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
─ wall_right	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- wall_down	

Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0 Wall Roughness Constant 0.5 Convective Augmentation Factor 1 — aircraft Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0 Wall Roughness Height [m] 0 Wall Roughness Constant 0.5		
Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0 Wall Roughness Constant 0.5 Convective Augmentation Factor 1 - aircraft Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Wall Thickness [m]	0
Thermal BC Type Heat Flux [W/m^2] Enable shell conduction? Wall Motion Stationary Wall Shear Boundary Condition Wall Roughness Height [m] Wall Roughness Constant Convective Augmentation Factor aircraft Wall Thickness [m] Heat Generation Rate [W/m^3] Material Name Thermal BC Type Heat Flux Heat Flux [W/m^2] Enable shell conduction? Wall Motion Stationary Wall No Slip Wall Roughness Height [m] O	Heat Generation Rate [W/m^3]	0
Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0 Wall Roughness Constant 0.5 Convective Augmentation Factor 1 — aircraft Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Material Name	aluminum
Enable shell conduction? Wall Motion Stationary Wall Shear Boundary Condition Wall Roughness Height [m] Wall Roughness Constant Convective Augmentation Factor - aircraft Wall Thickness [m] Heat Generation Rate [W/m^3] Material Name Thermal BC Type Heat Flux Heat Flux [W/m^2] Enable shell conduction? Wall Motion Stationary Wall Shear Boundary Condition Wall Roughness Height [m] No Slip Wall Roughness Height [m]	Thermal BC Type	Heat Flux
Wall Motion Shear Boundary Condition No Slip Wall Roughness Height [m] 0 Wall Roughness Constant 0.5 Convective Augmentation Factor 1 aircraft Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] Enable shell conduction? No Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m]	Heat Flux [W/m^2]	0
Shear Boundary Condition Wall Roughness Height [m] Wall Roughness Constant Convective Augmentation Factor aircraft Wall Thickness [m] Heat Generation Rate [W/m^3] Material Name Thermal BC Type Heat Flux Heat Flux [W/m^2] Enable shell conduction? Wall Motion Stationary Wall Shear Boundary Condition Wall Roughness Height [m] O	Enable shell conduction?	no
Wall Roughness Height [m] 0 Wall Roughness Constant 0.5 Convective Augmentation Factor 1	Wall Motion	Stationary Wall
Wall Roughness Constant Convective Augmentation Factor aircraft Wall Thickness [m] Heat Generation Rate [W/m^3] Material Name Thermal BC Type Heat Flux Heat Flux [W/m^2] Enable shell conduction? Wall Motion Stationary Wall Shear Boundary Condition Wall Roughness Height [m] 0.5 0 0 Condition Stationary Wall No Slip Wall Roughness Height [m]	Shear Boundary Condition	No Slip
Convective Augmentation Factor 1 - aircraft Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Wall Roughness Height [m]	0
- aircraft Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Wall Roughness Constant	0.5
Wall Thickness [m] 0 Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Convective Augmentation Factor	1
Heat Generation Rate [W/m^3] 0 Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	aircraft	
Material Name aluminum Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Wall Thickness [m]	0
Thermal BC Type Heat Flux Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Heat Generation Rate [W/m^3]	0
Heat Flux [W/m^2] 0 Enable shell conduction? no Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Material Name	aluminum
Enable shell conduction? Wall Motion Stationary Wall Shear Boundary Condition Wall Roughness Height [m] 0	Thermal BC Type	Heat Flux
Wall Motion Stationary Wall Shear Boundary Condition No Slip Wall Roughness Height [m] 0	Heat Flux [W/m^2]	0
Shear Boundary Condition Wall Roughness Height [m] 0	Enable shell conduction?	no
Wall Roughness Height [m] 0	Wall Motion	Stationary Wall
	Shear Boundary Condition	No Slip
Wall Roughness Constant 0.5	Wall Roughness Height [m]	0
	Wall Roughness Constant	0.5
Convective Augmentation Factor 1	Convective Augmentation Factor	1

Reference Values

Area	1 m^2
Density	1.225 kg/m^3
Enthalpy	0 J/kg
Length	1 m
Pressure	0 Pa
Temperature	288.16 K
Velocity	1 m/s
Viscosity	1.7894e-05 kg/(m s)
Ratio of Specific Heats	1.4
Yplus for Heat Tran. Coef.	300
Reference Zone	solid

Solver Settings

Equations	
Flow	True
Turbulence	True
Energy	True
- Numerics	

Absolute Velocity Formulation	True
Pseudo Transient Explicit Relaxation Factors	
Density	1
Body Forces	1
Turbulent Kinetic Energy	0.75
Turbulent Dissipation Rate	0.75
Turbulent Viscosity	1
Energy	0.75
Explicit Momentum	0.5
Explicit Pressure	0.5
 Pressure-Velocity Coupling 	
Туре	Coupled
Pseudo Transient	True
 Discretization Scheme 	
Pressure	Second Order
Momentum	Second Order Upwind
Turbulent Kinetic Energy	First Order Upwind
Turbulent Dissipation Rate	First Order Upwind
Energy	Second Order Upwind
 Solution Limits 	
Minimum Absolute Pressure [Pa]	1
Maximum Absolute Pressure [Pa]	5e+10
Minimum Temperature [K]	1
Maximum Temperature [K]	5000
Minimum Turb. Kinetic Energy [m^2/s^2]	1e-14
Minimum Turb. Dissipation Rate [m^2/s^3]	1e-20
Maximum Turb. Viscosity Ratio	100000

Run Information

Number of Machines	1
Number of Cores	2
Case Read	10.889 seconds
Iteration	3610.58 seconds
AMG	2647.79 seconds
Virtual Current Memory	1.53482 GB
Virtual Peak Memory	1.80626 GB
Memory Per M Cell	2.87674

Solution Status

Iterations: 1000

	Value	Absolute Criteria	Convergence Status
continuity	0.002537266	0.001	Not Converged
x-velocity	7.971406e-08	0.001	Converged
y-velocity	9.478898e-08	0.001	Converged
z-velocity	1.786453e-07	0.001	Converged
energy	1.553887e-16	1e-06	Converged
k	6.428137e-06	0.001	Converged
epsilon	1.119027e-05	0.001	Converged

Report Definitions

lift-co	-13.65841
drag-co	0.009688326
drag-force	0.0059341 N
lift-force	-8.365779 N

Plots

Residuals

lift-co-rplot

lift-co-rplot

drag-co-rplot

drag-co-rplot

drag-force-rplot

drag-force-rplot

report-plot-0

