Cálculo II.

1º DE GRADO EN MATEMÁTICAS Y DOBLE GRADO INFORMÁTICA-MATEMÁTICAS. Curso 2016-17. DEPARTAMENTO DE MATEMÁTICAS

Hoja 8

Curvas. Integrales de línea. Fórmula de Green

- 1.- Hallar el vector tangente (normalizado) a la trayectoria $\gamma(t)=(t^2,t^3)$ en el punto (1,-1). Escribir la ecuación de la recta tangente correspondiente. ¿Existe la recta tangente en el punto (0,0)?
- 2.- Para las siguientes trayectorias, hallar la velocidad, la rapidez (es decir, la longitud del vector velocidad), la aceleración y la ecuación de la recta tangente en el punto correspondiente al valor de t dado:

(a)
$$\gamma(t) = (e^{-t} \sin t, e^{-t} \cos t), \quad t = 2\pi.$$

(a)
$$\gamma(t) = (e^{-t} \sin t, e^{-t} \cos t), \quad t = 2\pi.$$
 (b) $\sigma(t) = (e^{-2t} \sin(2t), e^{-2t} \cos(2t), e^{-2t}), \quad t = \frac{\pi}{2}.$

- 3.- Hallar la longitud de la curva en el intervalo indicado:
 - (a) $\sigma(s) = (s, 4s, s^2), 0 < s < 4$.
 - (b) $\sigma(u) = (e^{-u} \cos u, e^{-u} \sin u), 0 < u < +\infty.$
- 4.- Dibujar el arco de cicloide descrito por $x=R(t-\sin t),\ y=R(1-\cos t),\ {\rm con}\ 0\leq t\leq 2\pi$ y hallar su longitud.
- 5.- Hallar la longitud del arco de hipocicloide descrito por $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le \pi/2$.
- 6.- Calcular la longitud de la curva:

$$\sigma(t) = \begin{cases} \left(\cos t, \sin t, 3t\right) & \text{si} \quad 0 \le t \le \pi, \\ \left(-1, -t + \pi, 3t\right) & \text{si} \quad \pi \le t \le 2\pi. \end{cases}$$

- 7.- Dada la curva γ mediante las ecuaciones paramétricas $x=t\cos t,\,y=t\sin t,\,z=t,\,0\leq t\leq 2\pi,\,$ calcúlese la integral $\int z \, ds$;
- 8.- Dibujar la curva descrita por la trayectoria σ dada por $\sigma(t)=(\text{sen }t,\cos t,t),\,0\leq t\leq\pi,\,y$ hallar la integral $\int_{-\pi} f \, ds, \text{ donde } f(x, y, z) = x + y + z.$
- 9.- Hallar la integral $\int_{\Gamma} F(x,y) ds$ del campo vectorial F a lo largo de la curva orientada Γ que se indica. Dibujar en cada caso el camino de integración.
 - (a) $F(x,y) = (x^2 + y^2, x^2 y^2)$, a lo largo de la curva y = 1 |1 x| desde (0,0) hasta (2,0).
 - (b) F(x,y)=(x+y,x-y), siendo Γ la elipse $b^2x^2+a^2y^2=a^2b^2$ recorrida en el sentido contrario al de las
- 10.- Para cada $(x,y) \in \mathbb{R}^2$ sea F(x,y) el vector unitario que apunta desde (x,y) hacia el origen de coordenadas. Calcular el trabajo que realiza el campo F para desplazar una partícula desde la posición (2a,0) hasta (0,0)a lo largo de la semicircunferencia superior de $(x-a)^2 + y^2 = a^2$.
- 11.- Calcular la integral $\int_{\Gamma} y \, dx + x^2 \, dy$, cuando Γ es:
 - (a) la circunferencia $x^2 + y^2 = a x$; (b) la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. recorridas en el sentido positivo (el de la medida de los ángulos).
- 12.- Hallar el trabajo que realiza el campo $F(x,y)=(y^2+x^3,x^4)$ al recorrer el contorno del cuadrado $[0,1]\times[0,1]$ en el sentido negativo.

1

- 13.- Calcular la integral $\int_{\Gamma} (x^4 x^3 e^x y) dx + (x y \arctan y) dy$, donde Γ viene dado como sigue: dados los puntos $A=(2,0),\,B=(1,-1)$ y C=(0,-1) de $\mathbb{R}^2,\,\Gamma$ es el camino formado por el arco AB de la circunferencia de centro (1,0) y radio 1, y los segmentos orientados BC, CO, OA (O es el origen de coordenadas).
- 14.- Para cada uno de los siguientes campos vectoriales F(x,y) definidos en \mathbb{R}^2 , determinar si son gradientes de algún potencial $f: \mathbb{R}^2 \to \mathbb{R}$. En caso afirmativo, calcular el potencial f.
 - (a) $F(x,y) = (3x^2y, x^3)$
- (b) $F(x,y) = (\operatorname{sen} y y \operatorname{sen} x + x, \cos x + x \cos y + y)$
- (c) $F(x,y) = (2xe^y + y, x^2e^y + x 2y)$ (d) $F(x,y) = (\sin xy + xy\cos xy, x^2\cos xy)$.
- 15.- Evaluar $\int_{\Gamma} (2x^3 y^3) dx + (x^3 + y^3) dy$, donde Γ es el círculo unidad orientado en el sentido negativo.
- 16.- Verificar el teorema de Green para el campo (P,Q) con $P(x,y)=2\,x^3-y^3$ y $Q(x,y)=x^3+y^3$ y la región anular (corona) $a^2 \le x^2+y^2 \le 4\,a^2$.
- 17.- Sea A el área del recinto acotado por una curva γ de clase C^1 , simple y cerrada en el plano y orientada en el sentido positivo. Calcular la integral de línea $\int_{C} x \, dy - 4y \, dx$ en función de A.

16.- Sea $u:\mathbb{R}^n\to\mathbb{R}$ una función que tiene segundas derivadas continuas y que verifica

$$\Delta u(x) \equiv \sum_{i=1}^{n} u_{x_i x_i}(x) = 0.$$

Demostrar que para cada $x \in \mathbb{R}^n$ y todo r > 0, se verifica que

$$u(x) = \frac{1}{\omega_n r^{n-1}} \int_{|x-y|=r} u(y) d\sigma(y),$$

donde ω_n es el área de la esfera unidad y $d\sigma(y)$ el elemento de área de la esfera de radio r.

- 17.- Dibujar las siguientes curvas y hallar su longitud de arco.
 - (a) El arco de cicloide descrito por

$$\begin{cases} x = R(t - \sin t), \\ y = R(1 - \cos t), \end{cases}$$

con $0 < t < 2\pi$.

- (b) La cardioide que en coordenadas polares viene dada por $r=1+\cos\theta$, con $0<\theta<\pi$.
- 18.- Considérese la función $f:[0,1] \longrightarrow \mathbb{R}$ definida mediante f(0)=0, f(1/(2n-1))=1/n, f(1/(2n))=-1/n,y f lineal en los intervalos intermedios. Comprobar que su gráfica es una curva continua, cuya longitud es
- 19.- Calcular el área limitada por cada uno de los siguientes contornos.
 - (a) La elipse $x^2/a^2 + y^2/b^2 = 1$
 - (b) El arco de cicloide $x = R(\theta \sin \theta)$, $y = R(1 \cos \theta)$, con $0 \le \theta \le 2\pi$, y el eje de abscisas.
- 20.- Para cada uno de los siguientes campos vectoriales F(x,y) definidos en \mathbb{R}^2 , determinar si son gradientes de algún potencial $f: \mathbb{R}^2 \to \mathbb{R}$. En caso afirmativo, calcular el potencial f.
 - (a) $F(x,y) = (3x^2y, x^3)$
- (b) $F(x,y) = (\sin y y \sin x + x, \cos x + x \cos y + y)$
- (c) $F(x,y) = (2xe^y + y, x^2e^y + x 2y)$ (d) $F(x,y) = (\sin xy + xy\cos xy, x^2\cos xy)$
- 21.- Sea $f:[0,1]\longrightarrow\mathbb{R}$ una función derivable con derivada f' continua en [0,1], tal que f(0)=f(1)=0, f'(0) = 1, f'(1) = -1 y f(x) > 0 para 0 < x < 1. Sea

$$C = \{(x, f(x)) : x \in [0, 1] \} \{ \{(x, -f(x)) : x \in [0, 1] \}.$$

- (a) Hallar una parametrización γ de C, con la orientación positiva del plano.
- (b) Calcular $\int_{\mathbb{R}} y^2 dx + xy dy$.
- (c) Demostrar que $\frac{1}{4} \int_{\gamma} x \, dy y \, dx = \int_{0}^{1} f(t) \, dt$.
- 22.- Considérese la función $f(x,y) = -\log \sqrt{x^2 + y^2}$, definida en $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$, y el campo $F = \nabla f$ en Ω . Hallar el flujo de F hacia el exterior del disco de radio 1 centrado en el punto (2,1). Cuál es el flujo de Fhacia el exterior del disco unidad de \mathbb{R}^2 ?
- 23.- Calcular la integral $\int_{\Gamma} (x^2 + y^2) dx + (x^2 y^2) dy$, donde Γ es el contorno del triángulo de vértices (0,0), (1,0) y (0,1), orientado positivamente.
- 24.- Calcular el flujo de los campos F(x,y)=(y,-x) y G(x,y)=(x,y) hacia el exterior del disco unidad $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}.$
- 25.- Considérese la función $f(x,y) = -\log \sqrt{x^2 + y^2}$, definida en $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$, y el campo $F = \nabla f$ en Ω . Hallar el flujo de F hacia el exterior del disco de radio 1 centrado en el punto (2,1). ¿Cuál es el flujo de Fhacia el exterior del disco unidad de \mathbb{R}^2 ?

3

- 26.- Comprobar si el campo vectorial $F(x, y) = 2xy\mathbf{i} + (x^2 y)\mathbf{j}$ es conservativo y, si procede, hallar una función potencial para F.
- 27.- Sean r > 0, $D = \{(x,y): x^2 + y^2 \le r^2\}$ y ∂D su frontera orientada en positivamente. Usando primero el teorema de Green y luego las coordenadas polares, calcular la integral $\int_{\partial D} xy^2 dy yx^2 dx$.
- 28.- Las condiciones z=12 y $x^2+y^2\leq 5$ describen un disco, S, contenido en un plano horizontal. Para el campo vectorial $F(x,y,z)=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$, calcúlese $\iint_S F\cdot dS$ de, por lo menos, dos maneras distintas.

5. Hipocicloide
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad 0 \le t \le \frac{\pi}{2}$$

$$x^{\frac{7}{3}} = \cos^2 t$$
 => $x^{\frac{7}{3}} + y^{\frac{7}{3}} = \cos^2 t + \sin^2 t = 1$

$$y^{2/3} = 1 - x^{2/3} \implies y = (1 - x^{2/3})^{3/2}$$
 $0 \le x \le 1$

$$\int_{t=0}^{\pi/2} |\mathcal{T}'(t)| dt$$

$$\gamma(t) = (\cos^3 t, \sin^3 t)$$

$$\chi'(t) = (\cos^3 t, \sin^3 t)$$

$$\chi'(t) = (3\cos^2 t (-\sin t), 3\sin^2 c \cos t) = 3 \operatorname{sent} \operatorname{cost} (-\sin t, \cos t)$$

$$\chi''(t) = (3\cos^2 t (-\sin t), 3\sin^2 c \cos t) = 3 \operatorname{sent} \operatorname{cost} (-\sin t, \cos t)$$

$$\chi''(t) = (3\cos^2 t (-\sin t), 3\sin^2 c \cos t) = 3 \operatorname{sent} \operatorname{cost} (-\sin t, \cos t)$$

$$\chi''(t) = (3\cos^2 t (-\sin t), 3\sin^2 c \cos t) = 3 \operatorname{sent} \operatorname{cost} (-\sin t, \cos t)$$

$$\int |\sigma'(t)| = 3 \operatorname{sent} \operatorname{cost} = \frac{3}{2} \operatorname{sen} (2t)$$

$$|v'(t)| = 3 \text{ sent cost} = \frac{3}{2} \text{ sen (2t)}$$

$$|v'(t)| = \frac{3}{2} \text{ sen (2t)} = \frac{3}{4} (-\cos(2t)) \int_{t=0}^{t=\frac{\pi}{2}} \frac{3}{2} dt$$

8.
$$\nabla(t) = (\text{sent}, \cos t, t)$$
, $0 \le t \le t\tau$
 $\forall \text{ hallow } I = \int_{\nabla} f \, ds$; $f(x,y_1; z) = x + y + z$
 $I = \int_{0}^{\pi} \frac{1}{(\sigma(t))} \cdot |\nabla'(t)| \, dt$
 $I =$

Iz: x=1, y=3-t, 25t63

I3: 4=0, x=4-t, 36+64

velocidad = (-1,0) 3 < t < 4

velocidad = (0,-1), 2<+<3

continuación del 12

$$T = \int_{\delta} \vec{F} \cdot d\vec{s} = \int_{0}^{4} \vec{F} (\delta(t)) \cdot |\delta'(t)| dt =$$

$$= \sum_{i=0}^{3} \int_{i}^{i+1} \vec{F} (\delta(t)) \cdot |\delta'(t)| dt$$

$$T_0: \int_0^1 (t^2, 0). (0, 1) dt = 0$$

$$I_{A}: \int_{1}^{2} (\lambda + (t-1)^{3}, (t-1)^{4}).(\lambda, 0) dt = \int_{1}^{2} \lambda + (t-1)^{3} dt = \frac{5}{4}$$

$$I_2: \int_2^3 (1+(3-t)^2, 1)(0,-1) dt = -1$$

$$I_3: \int_3^4 ((4-t)^3, (4-t)^4) (-1,0) dt = -\frac{1}{4}$$

Como $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x} \Rightarrow F$ no es conservativo

Calcular el área encerrada por las curvas:

a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Belipse semicye a y b.

Rara calcular áreas quacias al teorem de Green:

A(D) = $\frac{1}{2}$

Name trización de la elipse:

 $X(t) = (a\cos t, b \sec t)$

Vamos a calcular la siguiente integral de línea:

 $X(t) = (a \sec t, b \csc t)$
 $X(t) = (a \sec t, b \cot t)$
 $X(t) = (a \cot t)$
 X

$$= \int_{0}^{2\pi} abdt = ab2TT$$
Por lo tauto $A(D) = \frac{1}{2} \int_{\gamma} x dx - y dy = \frac{1}{2} (ab2TT) = abTT$

(4) $[y = R(1 - \cos \theta)]$ $\theta \in [0.2\pi]$ Sea $V(t) = \int (R(t-sent), R(1-cost)), 0 \le t \le 2\pi$ $R(4\pi - t, 0), 2\pi \le t \le 4\pi$ $\delta(t)$ es una curva cerrada y simple que encierra el área que buscamo La orientación negativa. $\delta'(t) = \frac{1}{R}(1-\cos t), R(\sin t)$ $\delta'(t) = \frac{1}{R}(-1,0)$ 2 $2 \times dx - 4d4 \rightarrow F = (x,-4)$ $\int_{-\infty}^{\infty} x dx - y dy \rightarrow F^{0} = (x, -y)$ $2A(D) = -\int xdx - ydy$ lo llamamos I $I = \int_{0}^{2\pi} F(x(t)) \cdot x'(t) dt + \int_{2\pi}^{4\pi} F(x(t)) \cdot x'(t) dt =$ = $\int_{0}^{2\pi} (R(t-sent), -R(t-cost)) (R(t-cost), R(sewt)) dt$ $+\int_{-\infty}^{4\pi} (R4\pi - tR_0)(-R_0) dt =$ $= \int_{0}^{2\pi} R^{2}(t-sent)(1-cost) - R^{2}(1-cost)(seut) dt +$ + $\int_{2\pi}^{4\pi} R^2 4\pi + R^2 t dt = \int_{0}^{2\pi} R^2 (1-\cos t) (t-2 \operatorname{sent}) dt + R^2 8\pi^2 + R^2 \frac{t^2}{2}$ = $R^2 \int_0^{2\pi} t - 2 \operatorname{sent} - t \operatorname{cost} + 2 \operatorname{costsent} dt + R^2 \delta \pi^2 + 6 \pi^2 =$ $= R^{2} \left(2\pi^{2} + 2\cos^{2} \frac{1}{2} \right)^{2} = 2\pi^{2} R^{2} + R^{2} 8\pi^{2} + 6\pi^{2} = \underline{\Pi^{2}}$

> Posiblemente mal.

$$(25.1a) f(x,y) = -\log \sqrt{x^2 + y^2}$$
 en $\mathbb{R}^2 \setminus \{0,0\}$

Flujo havia el exterior de F = Vf en el disco de radio 1 centrado en (2,1).

$$f(x_1y) = -\frac{1}{2}\log(x^2 + y^2) \leq \mathbb{R}^2 \setminus \{0,0\}$$

$$-D \partial x f : -\frac{1}{2} \frac{\partial x (x^2 + y^2)}{x^2 + y^2} = \frac{-x}{x^2 + y^2}$$
 esto está bien definido en $\mathbb{R}^2 \setminus \{0,0\}$ y es \mathbb{C}^2 .

$$\overline{F} = \left(\frac{-x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

$$D = \{(x,y) / (x-2)^2 + (y-1)^2 \le 1 \}$$

$$D = \{(x,y) / (x-2)^2 + (y-1)^2 \le 1 \}$$
Flujo de F a la large de DD

$$= \int \overrightarrow{F} \cdot \overrightarrow{N} \cdot d\overrightarrow{S} \longrightarrow \overrightarrow{N} = \text{normal exterior a}$$

$$D \text{ (a lo large defined to large$$

Flujo de F =
$$\iint_D (\partial_x Q - \partial_y P) dA(x,y)$$
 (esto puedo aplicarlo) porque $D \subset \Omega$

$$\frac{\partial xQ}{\partial x^2 + y^2} = \frac{2xy}{(x^2 + y^2)^2}$$

$$\frac{\partial xQ}{\partial y} = \frac{2xy}{(x^2 + y^2)^2}$$

$$\frac{\partial xQ}{\partial y} = \frac{2xy}{(x^2 + y^2)^2}$$

$$\frac{\partial xQ}{\partial y} = \frac{\partial xQ}{\partial y} = 0$$

$$\frac{\partial xQ}{\partial y} = 0$$

b) Si fijamos ahora D en el (0,0) donde et puyo ya no está definido NO PODEMOS UTILITAR EL TE GREEN. Solo nos queda calcular el flujo directamente.

 $D = \frac{1}{(x,y)} / \frac{x^2 + y^2}{x^2 + y^2} = \frac{1}{x^2}$ vector normal exterior W(x,y) = (x,y)

(x,y) = (x,y) (particularidad de la circunt

$$\int_{\partial D} \overrightarrow{F} \cdot \overrightarrow{N} \cdot d\overrightarrow{s} = \int_{\partial D} \left(\frac{x}{x^2 + y^2} , \frac{-y}{x^2 + y^2} \right) (x, y) ds =$$

$$= \int_{\partial D} (-x, -y)(x, y) ds = \int_{\partial D} (-x^2 - y^2) ds = -2\pi$$