Um Estudo de Ferramentas de Gerenciamento de Requisição de Mudança

Julho de 2017

Vagner Clementino Rodolfo Resende - Orientador

Departamento de Ciência da Computação Universidade Federal de Minas Gerais

Contexto

Contexto

Problema

Contexto

Problema

Objetivos

Contexto

Problema

Objetivos

Metodologia

Contexto

Problema

Objetivos

Metodologia

Resultados

Contexto

Problema

Objetivos

Metodologia

Resultados

Discussão

Contexto

Problema

Objetivos

Metodologia

Resultados

Discussão

Ameças à Validade

Contexto

Problema

Objetivos

Metodologia

Resultados

Discussão

Ameças à Validade

Conclusão e Trabalhos Futuros

Importância da Manutenção de Software

- Dentro do ciclo de vida do software o processo de Manutenção de Software tem papel fundamental.
- Devido ao seu alto custo, que pode variar entre 60% e 90% do preço final do sistema [9], sua importância vêm sendo considerada tanto pela comunidade científica quanto pela indústria.

Conceito de Manutenção de Software

- Manutenção de Software: processo de modificar um componente ou sistema de software após a sua entrega com o objetivo de corrigir falhas, melhorar o desempenho ou adaptá-lo devido à mudanças ambientais [6].
- Manutenibilidade: propriedade de um sistema ou componente de software em relação ao grau de facilidade que ele pode ser corrigido, melhorado ou adaptado [6].

Tipos de Manutenção em Software

- A manutenção de software pode ser dividida em Corretiva, Adaptativa, Perfectiva e Preventiva [11, 6].
- A ISO 14764 [7] ropõe que exista um elemento denominado Requisição de Mudança (RM) que corresponde a uma agregação de características que representam uma solicitação de manutenção de qualquer das quatro categorias.

Tipos de Manutenção em Software

Figura 1: Tipos de manutenção segundo a norma ISO/IEC 14764 [7]

Papéis na Manutenção de Software

- Nesta dissertação consideramos os seguintes papéis desempenhados no processo de manter e evoluir software:
 - Usuário Afetado: Indivíduo que utiliza o software correspondente à Requisição de Mudanças (RM) que será relatada. O defeito, a melhoria ou evolução no software, representada pela RM, estão relacionadas com os desejos e necessidades deste papel.
 - Reportador: Responsável por registrar a RM. Em certas situações este papel é desempenhado tanto pelo usuário do sistema quanto pela equipe de manutenção.

Papéis na Manutenção de Software

- Gerente de Requisição de Mudança (Maintenance-request manager): Responsável por decidir se uma RM será aceita ou rejeitada. Além disso, ele define qual tipo de manutenção deverá ser aplicada. Posteriormente cabe ao profissional que cumpre este papel encaminhar a RM para o Agente de Triagem.
- Agente de Triagem (Scheduler): Deve planejar a fila de RMs e atribuí-las para o desenvolvedor mais apto. A decisão pode considerar a carga de trabalho existente

Papéis na Manutenção de Software

- Desenvolvedor: Responsável por realizar as ações que irão solucionar a RM.
- Analista de Qualidade: Tem por responsabilidade avaliar se uma RM solucionada por um Desenvolvedor foi resolvida de forma correta e dentro dos padrões de qualidade exigidos pelo projeto.
- Chefe da Manutenção (Head of Maintenance): Este papel é responsável por definir os padrões e procedimentos que compõem o processo de manutenção que será utilizado.

Requisição de Mudança

 Requisição de Mudança (RM) corresponde ao registro da informação sobre o defeito, evolução ou melhoria de um sistema [17]

Figura 2: Modelo conceitual de uma Requisição de Mudanças

Atributos de uma RM

Figura 3: Informações que compõem uma RM. Baseado em trabalho de Singh & Chaturvedi [15]

Exemplo de uma RM

Figura 4: RM do Projeto Eclipse

Ciclo de Vida da RM

Figura 5: Diagrama de estados de uma RM. Extraído de [17]

Volume de RMs do Projeto . . .

 Incluir uma figura ou tabela com o volume de RMs de um projeto

Ferramentas de Gerenciamento de Requisição de Mudança (FGRM)

- Gerenciar as atividades de manutenção e seus artefatos possui um alto custo.
- Dependendo do tamanho do projeto de software é necessário a utilização de uma FGRM para gerenciar as suas requisições de mudança.
- As partes interessadas (stakeholders) necessitam de um espaço único onde possam registrar as falhas encontradas e as melhorias que necessitam [14].

Ferramentas de Gerenciamento de Requisição de Mudança

Além do que Gerenciar RMs

- Ponto central para a comunicação e coordenação das diversas partes interessadas [3].
- Possibilita que os usuários participem do processo de solução das RMs [4].
- Suporte para atividades como [5]:
 - estimativa do custo do software
 - análise do impacto de uma modificação
 - planejamento do projeto
 - rastreabilidade de uma falha
 - extração de conhecimento

Problema

- Apesar da inegável importância das FGRMs percebe-se um aparente desacoplamento de suas funcionalidades com as necessidades de seus usuários [1, 8].
- A utilização de "demanda" parece estar distante das necessidades práticas dos projetos, especialmente no ponto de vista dos desenvolvedores [2].
- Diversas extensões (plugins) estão sendo propostas na literatura [13, 16, 10].

Objetivos

- Elaboramos um estudo sobre as FGRMs com os seguintes objetivos:
 - entender os requisitos e funcionalidades oferecidas por este tipo de ferramenta;
 - (ii) mapear as melhorias para as FGRMs que estão sendo propostas na literatura;
- (iii) avaliar sobre o ponto de vista dos profissionais a situação atual funcionalidades oferecidas pelas FGRMs;
- (iv) propor melhorias para as funcionalidades das FGRMs.

Metodologia

- Estudo sobre as funcionalidades das FGRMs
- Mapeamento Sistemático da Literatura [12]
- Levantamento (Survey) com desenvolvedores [18]
- Sugestões de melhorias para as FGRMs
- Implementação de extensão para FGRM

Estudo sobre as funcionalidades das FGRMs

Mapeamento Sistemático da Literatura

Levantamento com Desenvolvedores

Sugestões de Melhorias

Implementação de Extensão

Mapeamento Sistemático da Literatura

Situação: Feito

Caracterização de Requisitos das FSPS

- Situação: Em andamento
- Resultados Parciais:
 - CRUD dos problemas
 - CRUD de interessados (desenvolvedores, usuários, gerentes de projeto e etc)
 - Regras relacionando Problemas vs Interessados
 - Classificação (Prioridade e Severidade)

Survey com os desenvolvedores

- Situação: Em andamento
- Atividades:
 - Planejamento do Survey (Feito)
 - Ferramenta de Coleta (Em andamento)
 - "Survey Piloto" (Em andamento)

Discussão

Ameças à Validade

Conclusão e Trabalhos Futuros

Dúvidas?

References I

- [1] O. Baysal and R. Holmes, "A Qualitative Study of Mozillas Process Management Practices," David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, Tech. Rep. CS-2012-10, 2012.
- [2] O. Baysal, R. Holmes, and M. W. Godfrey, "Situational awareness: Personalizing issue tracking systems," in *Proceedings of the 2013 International Conference on Software Engineering*, ser. ICSE '13. Piscataway, NJ,

References II

USA: IEEE Press, 2013, pp. 1185–1188. [Online]. Available: http://dl.acm.org.ez27.periodicos.capes.gov.br/citation.cfm?id=2486788.2486957

[3] D. Bertram, A. Voida, S. Greenberg, and R. Walker, "Communication, collaboration, and bugs: The social nature of issue tracking in small, collocated teams," in *Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work*, ser. CSCW '10. New York, NY, USA: ACM, 2010, pp. 291–300. [Online].

References III

Available: http://doi.acm.org/10.1145/1718918.1718972

S. Breu, R. Premraj, J. Sillito, and [4] T. Zimmermann, "Information needs in bug reports: Improving cooperation between developers and users," in Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, ser. CSCW '10. New York, NY, USA: ACM, 2010, pp. 301-310. [Online]. Available: http://doi.acm.org/10.1145/1718918.1718973

References IV

- [5] Y. C. Cavalcanti, P. A. d. M. S. Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R. de Lemos Meira, "The bug report duplication problem: an exploratory study," *Software Quality Journal*, vol. 21, no. 1, pp. 39–66, 2013.
- [6] IEEE, "IEEE Standard Glossary of Software Engineering Terminology," *IEEE Std* 610.12-1990, pp. 1–84, Dec 1990.

References V

[7] ISO/IEC, "International Standard - ISO/IEC 14764 IEEE Std 14764-2006 Software Engineering 2013; Software Life Cycle Processes 2013; Maintenance," ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), pp. 01–46, 2006.

References VI

- [8] S. Just, R. Premraj, and T. Zimmermann, "Towards the next generation of bug tracking systems," in 2008 IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE, 2008, pp. 82–85.
- [9] U. Kaur and G. Singh, "A review on software maintenance issues and how to reduce maintenance efforts," *International Journal of Computer Applications*, vol. 118, no. 1, 2015.

References VII

[10] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey, "Dashboards: Enhancing developer situational awareness," in Companion Proceedings of the 36th International Conference on Software Engineering, ser. ICSE Companion 2014. New York, NY, USA: ACM, 2014, pp. 552-555. [Online]. Available: http://doi.acm.org.ez27.periodicos.capes.gov. br/10 1145/2591062 2591075

References VIII

- [11] B. P. Lientz and E. B. Swanson, Software Maintenance Management. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1980.
- [12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping studies in software engineering," EASE'08 Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, pp.

References IX

68–77, 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=2227115.2227123

[13] H. Rocha, G. Oliveira, H. Marques-Neto, and M. T. Valente, "Nextbug: a bugzilla extension for recommending similar bugs," *Journal of Software Engineering Research and Development*, vol. 3, no. 1, 2015. [Online]. Available: http://dx.doi.org/10.1186/s40411-015-0018-x

References X

- [14] N. Serrano and I. Ciordia, "Bugzilla, itracker, and other bug trackers," *IEEE Software*, vol. 22, no. 2, pp. 11–13, March 2005.
- [15] V. Singh and K. K. Chaturvedi, "Bug tracking and reliability assessment system (btras)," International Journal of Software Engineering and Its Applications, vol. 5, no. 4, pp. 1–14, 2011.

References XI

[16] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo, "Buglocalizer: Integrated tool support for bug localization," in Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014, pp. 767-770. [Online]. Available: http://doi.acm.org.ez27.periodicos.capes.gov. br/10 1145/2635868 2661678

References XII

- [17] P. Tripathy and K. Naik, Software Evolution and Maintenance. Wiley, 2015. [Online]. Available: https://books.google.com.br/books?id= 0UXxBQAAQBAJ
- [18] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, *Experimentation in software engineering*. Springer Science & Business Media, 2012.