Oppg 1

Forklaring:

Uttrykk	Binære Tallsystem			
34 + 32	010010 34			
	+ 010000 32			
	= 100010 66			
34 - 32	10010 34			
	+ 10000 32 (toerkomplement)			
	= 00010 2 (overflow går bort)			
34 + -32	Samme som over (34 - 32)			
3432	010010 34			
	+ 010000 32 (toerkomplement av toerkomplement			
	= 100010 64 blir det samme tallet)			
altså samme som 34 + 32.				

Flyttall:

Oppg 2

Delop pg	Digital krets	Boolsk uttrykk	Sannhetstabell
a)	A B	¬ (A ^ B) = F ¬A v ¬B = F	A B F 0 0 1 1 0 1 0 1 1 1 1 0
b)	A B	¬A v ¬B = F ¬(A ^ B) = F	A B F 0 0 1 1 0 1 0 1 1 1 1 0

i) ja den blir alltid False

a)

sum
_
1
2
3
4
5
6

b) Diode a →

BC 00 01 10 11 A 0 1 1 1

Diode b →

		BC					
		00	01	10	0	11	
^	0		C)	0		1
Α	1	0	C)	0		

Diode c →

		BC			
		00	01	10	11
۸	0		1	_ C) 1
Α	1	0	1	_ C)

Diode g →

c)

Diode a \rightarrow Denne lyser for alle tilfeller utenom et altså ikke når 001. Dermed blir boolsk uttrykk negativen av det enkle tilfellet:

(C
$$\vee$$
 B) $\vee \neg A$

Diode b → Denne lyser kun når 110 blir sendt altså når terningen blir 6.

Diode c \rightarrow Denne lyser I tilfellene 101, 100 og 110. altså når terningen er 4, 5 eller 6.

Diode g \rightarrow Denne lyser I tilfellene 101 og 011 og 001. altså når terningen er 1, 3 eller 5.

d)

Diode a:

Diode b:

Diode c:

Diode g:

Oppg 4

