PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-128570

(43) Date of publication of application: 22.05.1989

(51)Int.Cl.

H01L 29/78

(21)Application number : 62-285441

(71)Applicant: FUJITSU LTD

(22) Date of filing:

13.11.1987

(72)Inventor: KAWAMURA SEIICHIRO

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To make it possible to form a highly reliable SOI type MOSFET, in which irregularities are not present in a gate forming part, readily, by forming a gate electrode, implanting oxygen ions only in the source region and the drain region of a single crystal silicon substrate with the patterned resist mask on said gate electrode as a mask, and forming a silicon dioxide layer.

CONSTITUTION: A gate electrode 6 comprising patterned polycrystalline silicon is formed on a single crystal silicon substrate 1 by using a field insulating film 7, a gate insulating film 5 are resist 8. O+ ions (oxygen ions) are implanted with the resist 8 and the gate electrode as masks. An SiO2 layer 9 is formed

at a position with a depth W of about 3,000~4,000Å from the gate insulating film 5. Thereafter, a source region 4a and a drain region 4b are formed on the SiO2 layer 9 by ordinary ion implantation and annealing. There are no irregularities in the state of the gate electrode forming part at all, and the electrode forming part is flat. Thus, the reliability of the gate electrode is not decreased.

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 平1 − 128570

⑤Int Cl.⁴

識別記号

庁内整理番号

❸公開 平成1年(1989)5月22日

H 01 L 29/78

301

Z - 8422 - 5F

審査請求 未請求 発明の数 1 (全4頁)

4 4 4 4 5 6 7 7 8 9

②特 願 昭62-285441

②出 願 昭62(1987)11月13日

②発 明 者 河 村 誠

誠一郎

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑪出 願 人 富士 通株式会社

神奈川県川崎市中原区上小田中1015番地

⑩代 理 人 弁理士 青 木 朗 外3名

明 紐 書

1. 発明の名称

半導体装置の製造方法

2. 特許請求の範囲

1. 単結晶シリコン基板(1)上にゲート絶縁層(5)を形成し、パターニングされたレジスト(8)をマスクとして該ゲート絶縁層(b)上にゲート電極(6)を形成し、該ゲート電極(6)をマスクとして不純物イオンを注入して該単結晶シリコン基板(1)内にソース領域(4 a)、ドレイン領域(4 b)を形成する工程を含んでなる半導体装置の製造方法において、

前記ゲート電極(6)を形成した後、該ゲート電極(6)上のパターニングされたレジスト(8)をマスクとして酸素イオンを前記単結晶シリコン基板(1)の前記ソース領域、ドレイン領域にのみイオン注入して二酸化シリコン層を形成することを特徴とする半導体装置の製造方法。

3. 発明の詳細な説明

(概 要)

本発明は半導体装置の製造方法に係り、特に SOIS(Silicon-On-Insulator & Silicon)タイプの MOSFETの製造方法に関し、本発明はゲート形成部 の信頼性が高いSOISタイプのMOSFETを製造することを目的とし、

単結晶シリコン基板(1)上にゲート絶縁層(5)を形成し、パターニングされたレジスト(8)をマスクとして該ゲート絶縁層(b)上にゲート電極(6)を形成し、該ゲート電極(6)をマスクとして不純物イオンを注入して該単結晶シリコン基板(1)内にソース領域、ドレイン領域を形成する工程を含んでなる半導体装置の製造方法において、

前記ゲート電極(6)を形成した後該ゲート電極(6)上のパターニングされたレジスト(8)をマスクとして酸素イオンを前記単結晶シリコン基板(1)の前記ソース領域、ドレイン領域にのみイオン注入して二酸化シリコン層を形成するこ

とを構成とする。

(産業上の利用分野)

本発明は半導体装置の製造方法に係り、特に SOIS(Silicon-On-Insulator & Silicon)タイプの MOSFETの製造方法に関する。

(従来の技術及びその問題点)

従来MOSFETにおけるソース領域とドレイン領域がSOI(Silicon-On-Insulating Substrate)構造であり、チャネル部のみがバルクシリコン上にあるいわゆるSOISは、第4図に示される。すなわち、単結晶シリコン(100)基板1上に約1mの厚にことを形成し、該SiOz層とを形成し、該SiOz層に記りにより形成された多結晶シリコンをメサ型エッチし次に窓開けされたを記りコンをメサ型エッチし次に窓開けされたしたりコン(100)基板部をシード(種結晶)として再は品化する。この再結晶化された単結晶域4(ソース・ドレイン領域4a、4bを形成する)の上

なる半導体装置の製造方法において、前記ゲート 電極を形成した後該ゲート電極上のパターニング されたレジストをマスクとして酸素イオンを前記 単結晶シリコン基板の前記ソース領域、ドレイン 領域にのみイオン注入して二酸化シリコン層を形 成することを特徴とする半導体装置の製造方法に よって解決される。

〔実施例〕

以下、本発明の実施例を図面に基づいて説明する。

第1A図から第1C図迄は本発明に係るMOSFETの製造工程を示す工程断面図である。

第1A図によれば通常の工程により単結晶シリコン基板(100) I上でにSiOz等からなるフィールド 絶縁膜7及びゲート絶縁膜5及びレジスト8を用いてパターニングされた多結晶シリコンからなる ゲート電極6が形成されている。このような状態 で第3A図に示したように〇・(酸素イオン)を 用いたイオン注入を、レジスト8及びゲート電極 部中央AはSiOz層2の窓3形成の影響を受けて凹状となる。この後ゲート絶縁膜(SiOz)5が形成され、A上方にゲート電極6が形成される。

このようにして得られたSOIタイプのMOSFET は上記のようにゲート形成部に凹凸が形成され、ゲート部の信頼性の面で問題があった。第4図ではシード(種結晶)を有する方式で再結晶化する方法を述べたが選択的エピタキシャル成長法を用いる場合もゲート形成部に凹凸部が形成され、信頼性の面で同様の問題があった。

本発明はゲート形成部の信頼性が高いSOISタイプのMOSFETを製造することを目的とする。

(問題点を解決するための手段)

上記問題点は本発明によれば単結晶シリコン基板上にゲート絶縁層を形成し、パターニングされたレジストをマスクとして該ゲート絶縁層上にゲート電極を形成し、該ゲート電極をマスクとして不純物イオンを注入して該単結晶シリコン内にソース領域、ドレイン領域を形成する工程を含んで

をマスクとして200KeV, 1.5×10¹⁸/clの注入条件で行い、1200で程度の熱処理温度でアニール処理を施すとゲート絶縁膜 5 から約3,000 ~4,000 人の深さWの位置にSiO₂層 9 が形成され、いわゆるSOI 構造が形成される。ゲート電極 6 の下方のチャネル部にはO・は注入されないので、単結晶シリコン1 の結晶性はバルクのシリコンのままで良好である。この後、通常のイオン注入、アニール処理によりソース(S)領域 4 a ドレイン(D)領域 4 b がSiO₂層 9 上に形成される。

更にゲート電極形成部Bの状態は従来技術に示した方法の場合とは異なり、凹凸が全くなく平坦であり、ゲート電極の信頼性を低下させない。

第2図は本方法を使用して形成したオフセット 型高耐圧SOI/MOS の一実施例を示す断面図である。

第2図においてシリコン基板 1 は p ⁻ 層であり、 ソースおよびドレイン領域にそれぞれ n [・] 層及び n ⁻ , n [・] 層が形成されている。すなわち第2図 にはソース、ドレイン領域のみがSOI構造なっ ており、ゲート電極形成部も平坦となっている。

特開平1-128570(3)

図中11はPSG膜、12はアルミニウムである。 このような構造はCMOSを作る場合、ラッチアッ プフリーになり、SOI構造のため高速の可能性 を有し、様々なデバイスに適用できる。特にオフ セット部をSOI構造にすることによって高耐圧 MOSに適している。

第3A図から第3C図迄はメサ型SOIのMOSFET の製造方法を示す工程断面図である。

第3Aに示すようにメサ型単結晶シリコン(100) 基板10上にSiOzからなるゲート絶縁膜をを熱酸 化により形成し、次に多結晶シリコン層 6を形成 しレジスト8で該多結晶ゲート電極6とゲート絶 緑膜5、パターニング該レジスト8をマスクとし て単結晶シリコン(100)1に上記実施例と同様に O· をイオン注入後1200で程度のアニールにより SiO2層9を形成する第3B図。次に通常工程As* を注入しアニールによりソース(S)、ドレイン (D)領域n・層を形成する(第3C図)。 このようにしてメサ型SOIのMOSFETを形成する ことができる。

8 … レジスト、 9 ···SiOz層、 10 …メサ型単結晶シリコン基板。

> 特許出願人 富士通株式会社 特許出願代理人

弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 内 田 男 弁理士 山 口 眍 Ż

以上説明したように本発明によれば、ゲート形 成部が凹凸のない信頼性が高いSOIタイプの MOSFETを容易に形成することができる。

なお、本発明の素子分離法としてはLOCOS 方式 にもまたメサ型にも適用できる。

4. 図面の簡単な説明

第1 A 図と第1 B 図は本発明に係る第1の実施 例を説明するための工程断面図であり、第2図は 上記第1の実施例を用いたオフセット型高耐圧 SOI/MOS の例を示す断面図であり、第3A図から 第3C図は本発明に係る第2の実施例を説明する ための工程断面図であり、第4図は従来例を説明 するための断面図である。

1…単結晶シリコン基板、

2 ···SiOz層、

3 … 窓、

4 … 単結晶域、

4 a …ソース領域、

4 b … ドレイン領域、 5 … ゲート絶縁膜、

6 …ゲート電極、

7…フィールド絶縁膜、

第IA図

第1B 図

1・・・ 単結晶 シリコン基板

5・・・ゲート絶縁膜

4 · · · 単結晶域

6・・・ゲート電極

7・・・フィールド絶縁膜

4a・・・ソース領域

8・・・レジスト

4b・・・ドレイン領域

9···SiO。隱

特開平1-128570(4)

第 2 図

従来例第4図

1・・・ 単結晶シリコン基板

2··· SiO₂層

3… 窓