Equilibria of Acids, Bases, and Salts

Ionization Constant of a Weak Acid

About 1.3% of the solute molecules in a 0.1 M acetic acid solution are ionized at room temperature. The remaining 98.7% of the acetic acid molecules, CH₃COOH, remain nonionized. Thus, the solution contains three species of particles in equilibrium: CH₃COOH molecules, H₃O⁺ ions, and acetate ions, CH₃COO⁻. From the equilibrium equation for the ionization of acetic acid, the equilibrium constant equation can be written.

$$CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$$

$$K = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH][H_2O]}$$

Notice that the concentration of water is not included in the equilibrium expression. The reason is that water is the solvent, and water molecules greatly exceed the number of acetic acid molecules. Without introducing a measurable error, one can assume that the molar concentration of H_2O molecules remains constant in such a solution. Thus, because both K and $[H_2O]$ are constant, the product $K[H_2O]$ is constant.

$$K[H_2O] = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

The left side of the equation can be simplified by setting $K[H_2O] = K_a$.

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]}$$

The term K_a is called the **acid ionization constant**. The acid ionization constant, K_a , like the equilibrium constant, K, is constant for a specified temperature but has a new value for each new temperature.

The acid ionization constant for a weak acid represents a small value. To determine the numerical value of the ionization constant for acetic acid at a specific temperature, the equilibrium concentrations of H_3O^+ ions, CH_3COO^- ions, and CH_3COOH molecules must be known. The ionization of a molecule of CH_3COOH in water yields one H_3O^+ ion and one CH_3COO^- ion. These concentrations can, therefore, be found experimentally by measuring the pH of the solution.

SECTION 3

OBJECTIVES

- Explain the concept of acid ionization constants, and write acid ionization equilibrium expressions.
- Review the ionization constant of water.
- Explain buffering.
- Compare cation and anion hydrolysis.