Instituto Politécnico Nacional

Escuela Superior de Cómputo

Trabajo terminal

Dra. Sandra Díaz Santiago

Generación de tokens para protejer datos de tarjetas bancarias

Número 20180008

Daniel Ayala Zamorano Laura Natalia Borbolla Palacios Ricardo Quezada Figueroa

Enero de 2018

${\bf Contenido}$

1.	Intr	oducción	3		
	1.1.	Justificación	4		
	1.2.	Objetivos	4		
2.	Ant	ecedentes	5		
	2.1.	Introducción a la criptografía	6		
	2.2.	Cifrados por bloques	6		
	2.3.	Cifrados de flujo	6		
	2.4.	Modos de operación	7		
		2.4.1. Electronic Codebook (ECB)	8		
		2.4.2. Cipher-block Chaining (CBC)	9		
		2.4.3. Cipher Feedback (CFB)	10		
		2.4.4. Output Feedback (OFB)	12		
	2.5.	Funciones hash	12		
Bi	Bibliografía				
Li	ista de figuras				
Li	ista de tablas				
Li	Lista de pseudocódigos				

Capítulo 1

Introducción

1.1. Justificación

1.2. Objetivos

Trabajo terminal Página 4 de 17

Capítulo 2

Antecedentes

- 2.1. Introducción a la criptografía
- 2.2. Cifrados por bloques
- 2.3. Cifrados de flujo

Trabajo terminal Página 6 de 17

2.4. Modos de operación

Por sí solos, los cifrados por bloques solamente permiten el cifrado y descifrado de bloques de información de tamaño fijo. Para la mayoría de los casos, menos de 256 bits[1], lo cual es equivalente a alrededor de 8 caracteres. Es fácil darse cuenta de que esta restricción no es ningún tema menor: en la gran mayoría de las aplicaciones, la longitud de lo que se quiere ocultar es arbitraria.

Los modos de operación permiten extender la funcionalidad de los cifrados por bloques para poder aplicarlos a información de tamaño irrestricto. Formalizamos este concepto definiendo a un cifrado por bloques como una función C (ecuación 2.1) y a un modo de operación como una función M (ecuación 2.2).

$$C(L,B) \to Bc$$
 (2.1)

En donde L es la llave y B es el bloque a cifrar; ambos con un tamaño definido: $L \in \{0,1\}^k$ (k es el tamaño de la llave) y $B \in \{0,1\}^n$ (n es el tamaño de bloque). Bc representa al bloque cifrado, el cuál también tiene longitud n.

$$M(L,T) \to Tc$$
 (2.2)

En este caso L es la misma que en 2.1, T y Tc son el texto original y el texto cifrado, respectivamente, y ambos son de longitud arbitraria: $T, Tc \in \{0, 1\}^*$.

Un primer enfoque (y quizás el más intuitivo) es partir el mensaje original en bloques del tamaño requerido y después aplicar el algoritmo a cada bloque por separado; en caso de que la longitud del mensaje no sea múltiplo del tamaño de bloque, se puede agregar información extra al último bloque para completar el tamaño requerido. Este es, de hecho, el primero de los modos que presentamos a continuación (*Electronic Codebook*, ECB); su uso no es recomendado, pues es muy inseguro cuando el mensaje original es simétrico a nivel de bloque [1]. También presentamos otros tres modos, los cuales junto con ECB, son los más comunes.

Trabajo terminal Página 7 de 17

2.4.1. Electronic Codebook (ECB)

La figura 2.1 muestra un diagrama esquemático de este modo de operación. Según la ecuación 2.2, el algoritmo recibe a la entrada una llave y un mensaje de longitud arbitraria: la llave se pasa sin ninguna modificación a cada función del cifrado por bloques; el mensaje se debe de partir en bloques $(T = B_1 || B_2 || \dots || B_n)$.

Figura 2.1: Modo de operación ECB.

```
entrada: llave L; bloques de mensaje B_1, B_2 \dots B_n.

salida: bloques de mensaje cifrado Bc_1, Bc_2 \dots Bc_n.

inicio

para_todo B

Bc_i \leftarrow C(L, B_i)

fin

regresar Bc

s fin
```

Pseudocódigo 2.1: Modo de operación ECB, cifrado.

```
entrada: llave L; bloques de mensaje cifrado Bc_1, Bc_2...Bc_n.

salida: bloques de mensaje original B_1, B_2...B_n.

inicio

para_todo Bc

B_i \leftarrow C^{-1}(L, Bc_i)

fin

regresar B

fin
```

Pseudocódigo 2.2: Modo de operación ECB, descifrado.

Trabajo terminal Página 8 de 17

2.4.2. Cipher-block Chaining (CBC)

En CBC la salida del bloque cifrador uno se introduce (junto con el siguiente bloque del mensaje) en el bloque cifrador dos, y así en sucesivo. Para poder replicar este comportamiento en todos los bloque cifradores, este modo de operación necesita un argumento extra a la entrada: un vector de inicialización. De esta manera la salida del bloque i depende de todos los bloques anteriores; esto incrementa la seguridad con respecto a ECB.

Figura 2.2: Modo de operación CBC.

En la figura 2.2 se muestran los diagramas esquemáticos para cifrar y descifrar; en los pseudocódigos 2.3 y 2.4 se muestran unos de los posibles algoritmos a seguir. Es importante notar que mientras que el proceso de cifrado debe ser forzosamente secuencial (por la dependencias entre salidas), el proceso de descifrado puede ser ejecutado en paralelo.

```
entrada: llave L; vector de inicialización VI;
                  bloques de mensaje B_1, B_2 \dots B_n.
2
       salida: bloques de mensaje cifrado Bc_1, Bc_2 \dots Bc_n.
3
      inicio
         Bc_0 \leftarrow VI
                                          // El vector de incialización
5
                                          // entra al primer bloque.
         para_todo B
           Bc_i \leftarrow C(L, B_i \oplus Bc_{i-1})
         fin
         regresar Bc
      fin
10
```

Pseudocódigo 2.3: Modo de operación CBC, cifrado.

Trabajo terminal Página 9 de 17

```
entrada: llave L; vector de inicialización VI;

bloques de mensaje cifrado Bc_1, Bc_2...Bc_n.

salida: bloques de mensaje original B_1, B_2...B_n.

inicio

Bc_0 \leftarrow VI

para_todo Bc

B_i \leftarrow C^{-1}(L, Bc_i) \oplus Bc_{i-1}

fin

regresar B
```

Pseudocódigo 2.4: Modo de operación CBC, descifrado.

2.4.3. Cipher Feedback (CFB)

Al igual que la operación de cifrado de CBC, ambas operaciones de CFB (cifrado y descifrado) están encadenadas bloque a bloque, por lo que son de naturaleza secuencial. En este caso, lo que se cifra en el primer paso es el vector de inicialización; la salida de esto se opera con un xor sobre el primer bloque de texto en claro, para obtener el primer bloque cifrado (figura 2.3).

Esta distribución presenta varias ventajas con respecto a CBC: las operaciones de cifrado y descifrado son sumamente similares, lo que permite ser implementadas por un solo algoritmo (pseudocódigo 2.5); tanto para cifrar como para descifrar solamente se ocupa la operación de cifrado del algoritmo a bloques subyacente. Estas ventajas se deben principalmente a las propiedades de la operación xor (ecuación 2.3).

Figura 2.3: Modo de operación CFB.

Trabajo terminal Página 10 de 17

```
entrada: llave L; vector de inicialización VI;

bloques de mensaje (cifrado o descifrado) B_1, B_2 \dots B_n.

salida: bloques de mensaje (cifrado o descifrado) Bc_1, Bc_2 \dots Bc_n.

inicio

Bc_0 \leftarrow VI

para_todo B

Bc_i \leftarrow C(L, Bc_{i-1}) \oplus B_i

fin

regresar Bc
```

Pseudocódigo 2.5: Modo de operación CFB (cifrado y descifrado).

Trabajo terminal Página 11 de 17

2.4.4. Output Feedback (OFB)

Este es muy similar al anterior (CFB), salvo porque la retroalimentación va directamente de la salida del cifrador a bloques. De esta forma, nada que tenga que ver con el texto en claro, llega al cifrado a bloques; este solamente se la pasa cifrando una y otra vez el vector de inicialización.

Figura 2.4: Modo de operación OFB.

```
entrada: llave L; vector de inicialización VI;

bloques de mensaje (cifrado o descifrado) B_1, B_2 \dots B_n.

salida: bloques de mensaje (cifrado o descifrado) Bc_1, Bc_2 \dots Bc_n.

inicio

aux \leftarrow VI

para_todo B

aux \leftarrow C(L, \text{ aux})

Bc_i \leftarrow \text{ aux} \oplus B_i

fin

regresar Bc
```

Pseudocódigo 2.6: Modo de operación OFB (cifrado y descifrado).

2.5. Funciones hash

Trabajo terminal Página 12 de 17

Bibliografía

[1] Debrup Chakraborty y Francisco Rodríguez-Henríquez. "Block Cipher Modes of Operation from a Hardware Implementation Perspective". En: *Cryptographic Engineering*. Ed. por Çetin Kaya Koç. Springer, 2009, págs. 321-363. ISBN: 978-0-387-71816-3. DOI: 10.1007/978-0-387-71817-0_12. URL: https://doi.org/10.1007/978-0-387-71817-0_12.

Trabajo terminal Página 14 de 17

Lista de figuras

2.1.	Modo de operación ECB.	 8
2.2.	Modo de operación CBC.	 S
2.3.	Modo de operación CFB.	 10
2.4	Modo de operación OFR	19

Trabajo terminal Página 15 de 17

Lista de tablas

Trabajo terminal Página 16 de 17

Lista de pseudocódigos

2.1.	Modo de operación ECB, cifrado	8
2.2.	Modo de operación ECB, descifrado	8
2.3.	Modo de operación CBC, cifrado	,
2.4.	Modo de operación CBC, descifrado	10
2.5.	Modo de operación CFB (cifrado y descifrado)	1
2.6	Modo de operación OFB (cifrado y descifrado)	1'

Trabajo terminal Página 17 de 17