Тогда объём части пирамиды SABCD, содержащей точку D, равен

$$V_{MADP} - V_{KCPN} = \frac{1}{2}V - \frac{1}{12}V = \frac{5}{12}V < \frac{1}{2}V.$$

Следовательно, объём большей части равен $\frac{7}{12}V$.

Подготовительные задачи

 \triangleleft

- **1.** Объём параллелепипеда $ABCDA_1B_1C_1D_1$ равен 1. Найдите:
- а) объём пирамиды A_1ABD ;
- б) объём треугольной пирамиды, отсекаемой от параллелепипеда плоскостью, проходящей через вершины B, D и середину ребра CC_1 ;
 - в) объём пирамиды ACB_1D_1 ;
- Γ) объёмы частей, на которые параллелепипед разбивается плоскостью, проходящей через вершины $A,\,C$ и середину ребра $A_1D_1;$
 - д) объём общей части пирамид ACB_1D_1 и BDA_1C_1 .
 - 2. Объём треугольной пирамиды DABC равен 1. Найдите:
- а) объёмы частей, на которые пирамида разбивается плоскостью, проходящей через точки A, D и середину ребра BC;
- б) объёмы частей, на которые пирамида разбивается плоскостью, проходящей через вершину D и середины рёбер AB и BC;
- в) объёмы частей, на которые пирамида разбивается плоскостью, проходящей через середины рёбер AB, BC и BD;
- г) объём пирамиды, вершины которой A, B и середины рёбер AC и BD;
- д) объёмы частей, на которые пирамида разбивается плоскостью, проходящей через середины рёбер AB, BC и CD.
- **3.** Основание четырёхугольной пирамиды SABCD параллелограмм ABCD. Объём пирамиды равен 1. Найдите объёмы частей, на которые пирамида разбивается плоскостью, проходящей через:
 - а) середины рёбер SA, SB и SC;
 - б) вершину S и середины рёбер AB и BC;
 - в) точки A, C и середину ребра SB;
 - Γ) точку A и середину ребра SC параллельно прямой BD;
 - д) точки A, B и середину ребра SD.
 - **4.** Объём треугольной призмы $ABCA_1B_1C_1$ равен 1. Найдите:
- а) объёмы частей, на которые призма разбивается плоскостью, проходящей через вершины A, C и $B_1;$

- б) объёмы частей, на которые призма разбивается плоскостью, проходящей через вершину C_1 и середины рёбер AC и BC;
- в) объёмы частей, на которые призма разбивается плоскостью, проходящей через вершины A, B и середину ребра A_1C_1 ;
- г) объёмы частей, на которые призма разбивается плоскостью, проходящей через вершины C, A_1 и середину ребра BB_1 ;
 - д) объём общей части пирамид $ABCB_1$ и $A_1B_1C_1B$.
- **5.** Основания ABCDEF и $A_1B_1C_1D_1E_1F_1$ шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ правильные шестиугольники. Объём призмы равен 1. Найдите:
 - а) объём пятиугольной призмы $ABCDEA_1B_1C_1D_1E_1$;
 - б) объём пирамиды $BCED_1$;
 - в) объём пирамиды A_1BDF ;
- г) объёмы частей, на которые призма разбивается плоскостью, проходящей через вершины A, C и $D_1;$
- д) объёмы частей, на которые призма разбивается плоскостью, проходящей через вершины $B,\, C$ и $A_1.$
- **6.** Основание *ABCDEF* шестиугольной пирамиды *SABCDEF* правильный шестиугольник. Объём пирамиды равен 1. Найдите:
- а) объём четырёхугольной пирамиды, отсекаемой от данной пирамиды плоскостью, проходящей через точки A, S и середину ребра DE;
- б) объём пирамиды, отсекаемой от данной пирамиды плоскостью, проходящей через середину ребра *SA* параллельно диагоналям *AD* и *CE* основания;
- в) объём пирамиды, отсекаемой от данной пирамиды плоскостью, проходящей через точки $B,\,D$ и середину ребра SC;
 - г) объём пирамиды SBCM, где M середина SD;
- д) объёмы частей, на которые пирамида разбивается плоскостью, проходящей через точки B, C и середину ребра SE.

Задачи на доказательство и вычисление

- **8.1.** Диагональ прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ равна 13, а диагонали двух соседних граней равны $4\sqrt{10}$ и $3\sqrt{17}$.
 - а) Докажите, что треугольник AC_1D_1 прямоугольный.
 - б) Найдите объём параллелепипеда.
- **8.2.** Диагональ прямоугольного параллелепипеда равна $4\sqrt{2}$ и образует с боковыми гранями углы 30° и 45° .
 - а) Докажите, что одна из этих граней квадрат.
 - б) Найдите объём параллелепипеда.

- **8.3.** Сторона основания *ABC* правильной треугольной пирамиды *ABCD* равна 6, а площадь сечения, проходящего через ребро *AB* и середину бокового ребра *CD*, равна $6\sqrt{6}$.
- а) Докажите, что плоскость сечения образует с плоскостью основания угол 45° .
 - б) Найдите объём пирамиды *ABCD*.
- **8.4.** Сторона основания *ABCDEF* правильной шестиугольной пирамиды *SABCDEF* равна 4, а площадь сечения, проходящего через прямую *CF* и середину бокового ребра *SD*, равна $10\sqrt{3}$.
- а) Докажите, что плоскость сечения образует с плоскостью основания угол 60° .
 - б) Найдите объём пирамиды SABCDEF.
- **8.5.** Точки M и N середины рёбер соответственно CC_1 и B_1C_1 треугольной призмы $ABCA_1B_1C_1$ с основаниями ABC и $A_1B_1C_1$.
- а) Докажите, что плоскость BA_1M делит отрезок AN в отношении 4:3, считая от точки A.
 - б) В каком отношении плоскость BA_1M делит объём призмы?
- **8.6.** Основания ABCDEF и $A_1B_1C_1D_1E_1F_1$ шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ правильные шестиугольники, M точка пересечения BD и FC.
- а) Докажите, что плоскость BDF_1 делит отрезок FC_1 в отношении 3:4, считая от точки F.
 - б) В каком отношении плоскость BDF_1 делит объём призмы?
- **8.7.** Точка P середина медианы BK основания ABC треугольной пирамиды ABCD.
- а) Докажите, что плоскость α , проходящая через точку B и середины рёбер AD и CD, делит отрезок DP в отношении 2:1, считая от вершины D.
- б) Найдите расстояние от вершины C до плоскости α , если объём пирамиды ABCD равен 16, а площадь её сечения плоскостью α равна 3.
- **8.8.** Через вершину D треугольной пирамиды DABC и точку M пересечения медиан грани ABC проведена плоскость α , параллельная ребру AC. На медиане DN грани ACD отмечена точка P, причём DP:PN=2:3.
 - а) Докажите, что прямая BP проходит через середину отрезка DM.
- б) Найдите расстояние от точки C до плоскости α , если объём пирамиды ABCD равен 18, а площадь её сечения плоскостью α равна 4.

- **8.9.** Точка M середина ребра BD правильного тетраэдра ABCD. Плоскость, проходящая через точку M перпендикулярно ребру AD, пересекает это ребро в точке K, а ребро CD в точке N.
 - а) Докажите, что N середина ребра CD.
- б) Найдите объём тетраэдра ABCD, если объём пирамиды DKMN равен V.
- **8.10.** Точка P лежит на ребре AD правильного тетраэдра ABCD, причём AP:PD=1:2. Плоскость, проходящая через точку P перпендикулярно ребру CD, пересекает это ребро в точке M, а ребро BD в точке Q.
 - а) Докажите, что плоскость PMQ делит высоту пирамиды пополам.
- б) Найдите объём треугольной пирамиды QABC, если объём пирамиды DPMQ равен V.
- **8.11.** Плоскость α проходит через середины рёбер AD, CD и BB_1 параллелепипеда $ABCDA_1B_1C_1D_1$.
- а) Докажите, что эта плоскость делит ребро CC_1 в отношении 1:5, считая от вершины C.
- б) Найдите объём меньшего из многогранников, на которые плоскость α разбивает параллелепипед, если объём параллелепипеда равен V.
- **8.12.** Плоскость α проходит через вершину D и центры граней AA_1B_1B и BB_1C_1C параллелепипеда $ABCDA_1B_1C_1D_1$.
- а) Докажите, что эта плоскость делит ребро BB_1 в отношении 2:1, считая от вершины B.
- б) Найдите объёмы многогранников, на которые плоскость α разбивает параллелепипед, если его объём равен V.
- **8.13.** Основание четырёхугольной пирамиды SABCD параллелограмм ABCD. Через середины рёбер SC и AB проведена плоскость, параллельная диагонали BD основания.
- а) Докажите, что эта плоскость делит ребро SB в отношении 3:1, считая от вершины пирамиды.
 - б) В каком отношении эта плоскость делит объём пирамиды?
- **8.14.** Основание четырёхугольной пирамиды SABCD параллелограмм ABCD. Через середину ребра SC и точку A проведена плоскость, параллельная диагонали BD основания. Пусть P точка пересечения этой плоскости с прямой CD.
 - а) Докажите, что D середина отрезка CP.
- б) Найдите объём большей из частей, на которые эта плоскость разбивает пирамиду, если объём пирамиды равен V.

- **8.15.** Высота SH правильной треугольной пирамиды SABC относится к высоте основания ABC как 4:9. Плоскость α проходит через ребро AB и делит пополам двугранный угол пирамиды при этом ребре.
- а) Докажите, что плоскость α делит высоту пирамиды в отношении 3:5, считая от точки H.
- б) Найдите объём меньшей из частей, на которые пирамида разбивается плоскостью α , если сторона основания пирамиды равна 6.
- **8.16.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Апофема пирамиды вдвое больше стороны основания. Плоскость α проходит через ребро AB и делит пополам двугранный угол пирамиды при этом ребре.
- а) Докажите, что плоскость α делит высоту пирамиды в отношении 4:1, считая от вершины S.
- б) Найдите объём большей из частей, на которые пирамида разбивается плоскостью α , если сторона основания пирамиды равна $\sqrt{15}$.
- **8.17.** Дан параллелепипед $ABCDA_1B_1C_1D_1$. На лучах AB, AD и AA_1 отмечены точки K, L и M соответственно, причём $AK=\frac{5}{2}AB$, $AL=\frac{5}{2}AD$ и $AN=\frac{5}{2}AA_1$.
 - а) Докажите, что плоскость KLM делит ребро B_1C_1 пополам.
- б) В каком отношении плоскость *KLM* делит объём параллелепипеда?
- **8.18.** На диагонали BD_1 параллелепипеда $ABCDA_1B_1C_1D_1$ отмечена точка M, причём $BM:MD_1=1:3$. Через точку M проведена плоскость α , параллельная прямым AB_1 и CB_1 .
- а) Докажите, что плоскость α делит ребро AB в отношении 1:3, считая от вершины A.
 - б) В каком отношении плоскость α делит объём параллелепипеда?
- **8.19.** Точка M середина ребра B_1C_1 правильной треугольной призмы $ABCA_1B_1C_1$ с основаниями ABC и $A_1B_1C_1$. Прямые BA_1 и CB_1 перпендикулярны.
 - а) Докажите, что треугольник BMA_1 равнобедренный.
- б) Найдите объём призмы, если расстояние между прямыми BA_1 и CB_1 равно 2.
- **8.20.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ грань ABCD квадрат. Точка M лежит на ребре BC, причём CM:MB=1:2. Известно, что диагональ DB_1 параллелепипеда перпендикулярна отрезку C_1M .

- а) Докажите, что угол между прямой CB_1 и плоскостью $A_1B_1C_1$ равен 30° .
- б) Найдите объём параллелепипеда, если расстояние между прямыми DB_1 и C_1M равно $\sqrt{\frac{3}{7}}$.
- **8.21.** Точки M и N середины рёбер AA_1 и CC_1 параллелепипеда $ABCDA_1B_1C_1D_1$. Прямые A_1C , B_1M и BN попарно перпендикулярны.
- а) Докажите, что расстояние между плоскостями BND и B_1MD_1 вдвое меньше диагонали A_1C .
- б) Найдите объём параллелепипеда, если известно, что $A_1C=a$, $B_1M=b,\ BN=c$.
- **8.22.** Основание пирамиды SABCD параллелограмм ABCD, точки M и N середины рёбер SC и SD соответственно. Прямые SA, BM и CN попарно перпендикулярны.
- а) Докажите, что отрезок CN делится плоскостью BMD в отношении 2:1, считая от точки C.
 - б) Найдите объём пирамиды, если SA = a, BM = b, CN = c.