```
In [1]: import pandas as pd
  import matplotlib.pyplot as plt
  data=pd.read_csv('kmeans.csv')
  data.head()
```

Out[1]:

_		Name	Age	Income(\$)
	0	Rob	27	70000
	1	Michael	29	90000
	2	Mohan	29	61000
	3	Ismail	28	60000
	4	Kory	42	150000

```
In [2]: plt.scatter(data['Age'],data['Income($)'])
    plt.xlabel(['Age'])
    plt.ylabel(['Income'])
    plt.show()
```



```
In [3]: from sklearn.cluster import KMeans
km=KMeans(n_clusters=3)
y_predict=km.fit_predict(data[['Age','Income($)']])
y_predict
```

Out[3]: array([2, 2, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0])

```
In [4]: data['clusters']=y_predict
  data.head()
```

Out[4]:

	Name	Age	Income(\$)	clusters
0	Rob	27	70000	2
1	Michael	29	90000	2
2	Mohan	29	61000	0
3	Ismail	28	60000	0
4	Kory	42	150000	1

```
In [5]: km.cluster_centers_
```

```
Out[5]: array([[3.29090909e+01, 5.61363636e+04], [3.82857143e+01, 1.50000000e+05], [3.40000000e+01, 8.050000000e+04]])
```

```
In [6]: df1=data[data.clusters==0]
    df2=data[data.clusters==1]
    df3=data[data.clusters==2]
    plt.scatter(df1['Age'],df1['Income($)'],color='red')
    plt.scatter(df2['Age'],df2['Income($)'],color='blue')
    plt.scatter(df3['Age'],df3['Income($)'],color='green')
    plt.show()
```



```
In [7]: from sklearn.preprocessing import MinMaxScaler
    s=MinMaxScaler()
    s.fit(data[['Age']])
    data['Age']=s.transform(data[['Age']])

s.fit(data[['Income($)']])
    data['Income']=s.transform(data[['Income($)']])

data.head()
```

Out[7]:

	Name	Age	Income(\$)	clusters	Income
0	Rob	0.058824	70000	2	0.213675
1	Michael	0.176471	90000	2	0.384615
2	Mohan	0.176471	61000	0	0.136752
3	Ismail	0.117647	60000	0	0.128205
4	Kory	0.941176	150000	1	0.897436

```
In [8]: km=KMeans(n_clusters=3)
    y_predict=km.fit_predict(data[['Age','Income']])
    y_predict
```

Out[8]: array([1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2])

```
In [9]: data['clusters']=y_predict
data.head()
```

Out[9]:

	Name	Age	Income(\$)	clusters	Income
0	Rob	0.058824	70000	1	0.213675
1	Michael	0.176471	90000	1	0.384615
2	Mohan	0.176471	61000	1	0.136752
3	Ismail	0.117647	60000	1	0.128205
4	Kory	0.941176	150000	0	0.897436

```
In [10]: km.cluster_centers_
```

```
Out[10]: array([[0.72268908, 0.8974359], [0.1372549, 0.11633428], [0.85294118, 0.2022792]])
```



```
In [15]:
    ran=range(1,10)
    s=[]
    for i in ran:
        km=KMeans(n_clusters=i)
        km.fit(data[['Age','Income']])
        s.append(km.inertia_)
    s
```

C:\Users\admin\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: User Warning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environ ment variable OMP_NUM_THREADS=1.

warnings.warn(

```
Out[15]: [5.434011511988179,
2.091136388699078,
0.4750783498553097,
0.3491047094419566,
0.2766936276300279,
0.21552563314755377,
0.17355596555312644,
0.14257076249690037,
0.10383752586603562]
```

```
In [17]: plt.xlabel('i')
plt.ylabel('s')
plt.plot(ran,s)
plt.show()
```



```
In [ ]:
```