# An Application of QPE: Order-Finding

Renato Neves





#### Introduction

Renato Neves Introduction 2 / 14

# **Period-Finding**

### The Problem

A periodic function f. Find its period.

Introduction 3 / 14

# **Period-Finding**

#### The Problem

A periodic function f. Find its period.

Problem can be difficult (particularly if f has no obvious structure, such as being trigonometric)

We will see how quantum computation tackles it

Renato Neves Introduction 3 / 14

Actually we tackle only a specific case  $\Rightarrow$  order-finding

The latter is handled efficiently via QPE

Integer factorisation reduces to it

The only quantum component in Shor's algorithm

Renato Neves Introduction 4 / 14

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

### A Handful of Definitions

#### **Definition**

We call the integer x a divisor of the integer y if  $k \cdot x = y$  for some integer k

## **Examples**

2 is a divisor of 10 and 5 is a divisor of 15. What are the divisors of a prime number?

### **Definition**

For two integers x and y, gcd(x, y) is the greatest divisor common to x and y

## **Examples**

$$gcd(8,12) = 4$$
 and  $gcd(10,15) = 5$ 

# A Handful of Definitions pt. II

### **Definition**

Two integers x and y are called co-prime if gcd(x,y) = 1

## **Examples**

8 and 9 are co-prime and 13 and 15 are co-prime as well. The integers 12 and 15 are not co-prime.

### **Modular Arithmetic**

#### Definition

Given an integer N the set of integers mod N is  $\{0, 1, ..., N-1\}$ 

We can think of this set as a circular circuit with different positions and where the position after  ${\it N}-1$  is 0

### **Definition**

For two integers x and y we write  $x \equiv y \pmod{N}$  if  $x \mod N = y$ 

## **Examples**

 $5\equiv 0\,(\mathrm{mod}\,5)$  and  $6\equiv 1\,(\mathrm{mod}\,5)$ 

### **Definition**

For co-prime integers a < N the order of  $a \pmod{N}$  is the smallest integer r > 0 s.t.  $a^r \equiv 1 \pmod{N}$ 

## **Example**

If N=5 the sequence  $3^0,3^1,3^2,3^3,3^4,3^5,3^6,...$  leads to the sequence 1,3,4,2,1,3,4,...

Order of  $3 \pmod{5}$  is thus 4

### **Exercise**

What is the order of  $2 \pmod{11}$ ?

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

### The Problem

Co-prime integers a < N

What is the order of  $a \pmod{N}$ ?

#### The Problem

Co-prime integers a < N

What is the order of  $a \pmod{N}$ ?

Classically, problem can be difficult for large integers

Quantumly, it can be solved efficiently via QPE

## **QPE** Revisited

### Recall the QPE circuit



Need to choose suitable U and  $|\psi\rangle$  to disclose the order

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

## **Choosing the Right Unitary**

Take co-prime integers a < N

Let 
$$m = \lceil \log_2 N \rceil$$
 and define  $U : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$ 

$$U|x\rangle = \begin{cases} |xa \pmod{N}\rangle & \text{if } 0 \le x \le N-1 \\ |x\rangle & \text{otherwise} \end{cases}$$

#### **Exercise**

Show that  $U|a^n \pmod{N}\rangle = |a^{n+1} \pmod{N}\rangle$ 

# **Choosing the Right Unitary**

Take co-prime integers a < N

Let 
$$m = \lceil \log_2 N \rceil$$
 and define  $U : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$ 

$$U|x\rangle = \begin{cases} |xa \pmod{N}\rangle & \text{if } 0 \le x \le N-1 \\ |x\rangle & \text{otherwise} \end{cases}$$

#### **Exercise**

Show that 
$$U|a^n \pmod{N}\rangle = |a^{n+1} \pmod{N}\rangle$$

Next step is to identify suitable eigenvectors