ASSIGNMENT-III

FERTILIZER RECOMMENDATION AND DISEASE PREDICTION USING AI

STUDENTNAME	1.MATHIARASI.J	
	(TEAMLEADER)-622219104015	
	2.R.KAVIPRIYA-622219104010	
	3.P.SANDHIYA-622219104024	
	4.MAMTHA.M-622219104013	
	5.SAABIRA.S-622219104023	
DATE	31 October 2022	
MAXIMUM MARKS	2MARKS	
MARKSALLOTTED		

SOURCE CODE

import tensor flow ast ffrom tensorflow import keras import matplotlib.pyplotasplt import numpyas np from os import listdir fromos.pathimportjoin import pandas import cv2

import os

import random

In[6]: data_lead = 'D:/IBMProject/Flowers-Dataset/flowers'

folders_lead = os.listdir(data_lead)

print(folders_lead)

['daisy', 'dandelion', 'rose', 'sunflower', 'tulip'

In[10]: image_names = [

train_labels=[

train_images=[]

size = 64,64

for folder in folders_lead:

for file in os.listdir(os.path.join(data_lead,folder)):

if file.endswith("jpg"):

image_names.append(os.path.join(data_lead,folder,file))

train_labels.append(folder)

```
img = cv2.imread(os.path.join(data_lead,folder,file))
im=cv2.resize(img,size)
train_images.append(im)
else:
Continue
In[11]:
train=np.array(train_images)
train.shape
Out[11]:
(4317, 64, 64, 3)
In[12]:
train=train.astype('float32')/255.0
In[13]:
label_dummies = pandas.get_dummies(train_labels)
labels=label_dummies.values.argmax(1)
In[14]:
pandas.unique(train_labels)
Out[14]:
array(['daisy', 'dandelion', 'rose', 'sunflower', 'tulip'], dtype=object)
In[15]:
union_list = list(zip(train, labels))
random.shuffle(union_list)
train,labels = zip(*union_list)
# Convert the shuffled list to numpyarray type
train=np.array(train) labels=np.array(labels)
In[17]:
model = keras. Sequential ([
keras.layers.Flatten(input_shape=(64,64,3)),
keras.layers.Dense(256, activation=tf.nn.relu),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(6, activation=tf.nn.softmax)])
In[18]:
model.summary() Model: "sequential_1"
```

LAYER(TYPE)	OUTPUT SHAPE	PARAM#	
Flatten_1 (flatten)	(None, 12288)	0	
Dense_3 (Dense)	(None,256)	3145984	
Dense_4(Dense)	(None, 128)	32896	
Dense_5(Dense)	(None,6)	774	

Total params: 3,179,654
Trainable params: 3,179,654
Non-trainable params: 0

In[19]:

```
model.compile(optimizer=tf.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
In[21]:
model.fit(train,labels,epochs=15)
Epoch 1/15
Epoch 2/15
Epoch 3/15
Epoch 4/15
Epoch 5/15
Epoch6/15
Epoch7/15
Epoch 8/15
Epoch 9/15
Epoch 10/15
Epoch 11/15
Epoch12/15
135/135 [=============================] - 4s33ms/step-loss: 0.5464 - accuracy: 0.8024
Epoch 13/15
Epoch14/15
Epoch15/15
135/135[================================]-4s32ms/step-loss: 0.4804-accuracy: 0.8279
Out[21]:
In[22]:
model.save("D:/IBMProject/Flowers-Dataset/flowers.h5")
```