

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Refine Search

Search Results -

Terms	Documents
L3 same node	62

Database:

	US Pre-Grant Publication Full-Text Database
	US Patents Full-Text Database
	US OCR Full-Text Database
	EPO Abstracts Database
	JPO Abstracts Database
	Derwent World Patents Index
	IBM Technical Disclosure Bulletins

Search:

L4	▼	▼	Refine Search
		Recall Text	Clear
		Interrupt	...

Search History

DATE: Tuesday, September 07, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u> <u>Name</u>	<u>Query</u>	<u>Hit</u> <u>Count</u>	<u>Set</u> <u>Name</u>
side by side			result set
DB=PGPB,USPT,USOC; PLUR=YES; OP=OR			
<u>L4</u>	L3 same node	62	<u>L4</u>
<u>L3</u>	L1 same cache	371	<u>L3</u>
<u>L2</u>	L1 and cache	732	<u>L2</u>
<u>L1</u>	control\$4 same ((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))	1085	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

TERMS	DOCUMENTS
L4	0

Database:

US Pre-Grant Publication Full-Text Database
 US Patents Full-Text Database
 US OCR Full-Text Database
 EPO Abstracts Database
 JPO Abstracts Database
 Derwent World Patents Index
 IBM Technical Disclosure Bulletins

Search:

Refine Search

Recall Text
Clear
Interrupt

Search History

DATE: Tuesday, September 07, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
side by side				result set
DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR	<u>L5</u>	L4	0	<u>L5</u>
DB=PGPB,USPT,USOC; PLUR=YES; OP=OR	<u>L4</u>	L3 same node	62	<u>L4</u>
	<u>L3</u>	L1 same cache	371	<u>L3</u>
	<u>L2</u>	L1 and cache	732	<u>L2</u>
	<u>L1</u>	control\$4 same ((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))	1085	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
(700/5 709/213 709/214 709/251 710/305 710/317 710/300 710/62 710/4 710/72 711/141 711/148 711/120 712/14 712/211).ccls.	5746

Database:	US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins
Search: <div style="border: 1px solid black; padding: 5px; width: 600px;"> <input type="text" value="L6"/> <input type="checkbox"/> <input type="checkbox"/> </div> <div style="display: flex; justify-content: space-between; width: 600px;"> Refine Search </div>	
<div style="display: flex; justify-content: space-around;"> Recall Text Clear Interrupt </div>	

Search History

DATE: Tuesday, September 07, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u>	<u>Name</u>	<u>Query</u>	<u>Hit</u>	<u>Set</u>
			<u>Count</u>	<u>Name</u>
side by side			result set	
		<i>DB=PGPB,USPT,USOC; PLUR=YES; OP=OR</i>		
<u>L6</u>	710/305,317,300,62,4,72;711/141,148,120;709/213,214,251;700/5;712/14,211.ccls.		5746	<u>L6</u>
	<i>DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR</i>			
<u>L5</u>	L4		0	<u>L5</u>
		<i>DB=PGPB,USPT,USOC; PLUR=YES; OP=OR</i>		
<u>L4</u>	L3 same node		62	<u>L4</u>
<u>L3</u>	L1 same cache		371	<u>L3</u>
<u>L2</u>	L1 and cache		732	<u>L2</u>
<u>L1</u>	control\$4 same ((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))		1085	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
L4 and L6	29

Database:

- US Pre-Grant Publication Full-Text Database
- US Patents Full-Text Database
- US OCR Full-Text Database
- EPO Abstracts Database
- JPO Abstracts Database
- Derwent World Patents Index
- IBM Technical Disclosure Bulletins

Search:

Refine Search
Recall Text
Clear
Interrupt

Search History

DATE: Tuesday, September 07, 2004 [Printable Copy](#) [Create Case](#)

<u>Set</u> <u>Name</u> <u>Query</u>	<u>Hit</u> <u>Count</u>	<u>Set</u> <u>Name</u> result set
side by side		
DB=PGPB,USPT,USOC; PLUR=YES; OP=OR		
<u>L7</u> l4 and L6	29	<u>L7</u>
<u>L6</u> 710/305,317,300,62,4,72;711/141,148,120;709/213,214,251;700/5;712/14,211.ccls.	5746	<u>L6</u>
DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR		
<u>L5</u> L4	0	<u>L5</u>
DB=PGPB,USPT,USOC; PLUR=YES; OP=OR		
<u>L4</u> L3 same node	62	<u>L4</u>
<u>L3</u> L1 same cache	371	<u>L3</u>
<u>L2</u> L1 and cache	732	<u>L2</u>
<u>L1</u> control\$4 same ((shared or common) near5 memory) same (multiprocessor or (multi adj1 processor))	1085	<u>L1</u>

END OF SEARCH HISTORY

EAST - [Untitled1:1]

File View Edit Tools Window Help

Drafts
Pending
Active
L1: (21) (node adj1 controls same
L2: (13) ll and cache
Failed
Saved
Favorites
Tagged (0)
UDC
Queue
Trash

Search List Browser Queries Clean

DBs USPAT

Default operator: OR Plurals

Highlight all hit terms initially

BRS IIS&R Image Text HTML

Type	L #	Hits	Search Text	DBs	Time Stamp	Comments	Error Definition	Err	
1	BRS	L1	21	(node adj1 control\$4) same ((shared or common) adj1	USPAT	2004/09/07 09:44			0
2	BRS	L2	13	ll and cache	USPAT	2004/09/07 09:44			0

ProximaSSO

EAST - [Untitled1:1]

EAST - [Untitled1:1]

File View Edit Tools Window Help

Drafts Pending Active L1: (21) (node adj1 controls L2: (13) ll and cache Failed Saved Favorites Tagged (0) UDC Queue Trash

Search List Browse Queue Clear DBs USPAT Plurals Default operator: OR Highlight all hit terms initially

ll and cache

BRS I ISR Image Text HTML

U	I	Document ID	Issue Date	Pages	Title	Current OR	Current XRef
1	<input type="checkbox"/>	US 6751705 B1	20040615	29	Cache line converter	711/122	711/120; 711/124;
2	<input type="checkbox"/>	US 6751698 B1	20040615	101	Multiprocessor node controller circuit and	710/317	
3	<input type="checkbox"/>	US 6681293 B1	20040120	47	Method and cache-coherence system allowing purging of	711/122	711/120; 711/124;
4	<input type="checkbox"/>	US 6636926 B2	20031021	28	Shared memory multiprocessor performing cache coherence	710/305	700/5; 709/213;
5	<input type="checkbox"/>	US 6604185 B1	20030805	9	Distribution of address-translation-purge	711/207	709/250; 711/141;
6	<input type="checkbox"/>	US 6510496 B1	20030121	30	Shared memory multiprocessor system and method with	711/147	709/215; 711/146;
7	<input type="checkbox"/>	US 6363458 B1	20020326	16	Adaptive granularity method for integration of fine and	711/141	709/213; 711/147
8	<input type="checkbox"/>	US 6253292 B1	20010626	22	Distributed shared memory multiprocessor system based	711/146	709/218; 711/148
9	<input type="checkbox"/>	US 6041376 A	20000321	19	Distributed shared memory system having a first node	710/108	709/238; 710/100;
10	<input type="checkbox"/>	US 5970510 A	19991019	10	Distributed memory addressing system	711/149	718/100
11	<input type="checkbox"/>	US 5968114 A	19991019	14	Memory interface device	718/100	718/104

Start Proxima SSO EAST - [Untitled1:1]

> See

Membership Publications/Services Standards Conferences Careers/Jobs

IEEE Xplore®
RELEASE 1.8Welcome
United States Patent and Trademark Office

Help FAQ Terms IEEE Peer Review

Quick Links

Welcome to IEEE Xplore®

- Home
- What Can I Access?
- Log-out

Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

Search

- By Author
- Basic
- Advanced

Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

IEEE Enterprise

- Access the IEEE Enterprise File Cabinet

 Print FormatYour search matched **17** of **1069805** documents.A maximum of **500** results are displayed, **15** to a page, sorted by **Relevance Descending** order.

Refine This Search:

You may refine your search by editing the current search expression or enter a new one in the text box.

(shared or common) and memory and multiprocessor Check to search within this result set

Results Key:

JNL = Journal or Magazine **CNF** = Conference **STD** = Standard**1 A novel approach to reduce L2 miss latency in shared-memory multiprocessors***Acacio, M.E.; Gonzalez, J.; Garcia, J.M.; Duato, J.;*

Parallel and Distributed Processing Symposium., Proceedings International, IFIP 2002, Abstracts and CD-ROM , 15-19 April 2002

Pages:62 - 69

[\[Abstract\]](#) [\[PDF Full-Text \(319 KB\)\]](#) **IEEE CNF****2 Flexible use of memory for replication/migration in cache-coherent multiprocessors***Soundararajan, V.; Heinrich, M.; Verghese, B.; Gharachorloo, K.; Gupta, A.; Hennessy, J.;*

Computer Architecture, 1998. Proceedings. The 25th Annual International Symposium on , 27 June-1 July 1998

Pages:342 - 355

[\[Abstract\]](#) [\[PDF Full-Text \(80 KB\)\]](#) **IEEE CNF****3 Architectural support for uniprocessor and multiprocessor active memory systems***Kim, D.; Chaudhuri, M.; Heinrich, M.; Speight, E.;*

Computers, IEEE Transactions on , Volume: 53 , Issue: 3 , March 2004

Pages:288 - 307

[\[Abstract\]](#) [\[PDF Full-Text \(1212 KB\)\]](#) **IEEE JNL****4 The impact of negative acknowledgments in shared memory scientific applications***Mainak Chaudhuri; Heinrich, M.;*

Parallel and Distributed Systems, IEEE Transactions on , Volume: 15 , Issue: 2 , Feb 2004
Pages:134 - 150

[\[Abstract\]](#) [\[PDF Full-Text \(1831 KB\)\]](#) [IEEE JNL](#)

5 Performance and configuration of hierarchical ring networks for multiprocessors

Hamacher, V.C.; Hong Jiang;
Parallel Processing, 1997., Proceedings of the 1997 International Conference on , 11-15 Aug. 1997
Pages:257 - 265

[\[Abstract\]](#) [\[PDF Full-Text \(944 KB\)\]](#) [IEEE CNF](#)

6 Design trade-offs in high-throughput coherence controllers

Nguyen, A.-T.; Torrellas, J.;
Parallel Architectures and Compilation Techniques, 2003. PACT 2003. Proceedings of the 12th International Conference on , 27 Sept.-1 Oct. 2003
Pages:194 - 205

[\[Abstract\]](#) [\[PDF Full-Text \(292 KB\)\]](#) [IEEE CNF](#)

7 Coherent block data transfer in the FLASH multiprocessor

Heinlein, J.; Bosch, R.P., Jr.; Gharachorloo, K.; Rosenblum, M.; Gupta, A.;
Parallel Processing Symposium, 1997. Proceedings., 11th International , 1-5 , 1997
Pages:18 - 27

[\[Abstract\]](#) [\[PDF Full-Text \(1188 KB\)\]](#) [IEEE CNF](#)

8 SOME-Bus-NOW: a Network of Workstations with broadcast

Katsinis, C.; Hecht, D.;
Network Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on , 16-18 April 2003
Pages:113 - 120

[\[Abstract\]](#) [\[PDF Full-Text \(602 KB\)\]](#) [IEEE CNF](#)

9 Coherence controller architectures for scalable shared-memory multiprocessors

Michael, M.M.; Nanda, A.K.; Beng-Hong Lim;
Computers, IEEE Transactions on , Volume: 48 , Issue: 2 , Feb. 1999
Pages:245 - 255

[\[Abstract\]](#) [\[PDF Full-Text \(864 KB\)\]](#) [IEEE JNL](#)

10 Toward a cost-effective DSM organization that exploits processor-memory integration

Torrellas, J.; Liuxi Yang; Nguyen, A.-T.;
High-Performance Computer Architecture, 2000. HPCA-6. Proceedings. Sixth International Symposium on , 8-12 Jan. 2000
Pages:15 - 25

[Abstract] [PDF Full-Text (368 KB)] IEEE CNF

11 PRISM-a design for scalable shared memory

Kattamuri, E.; Beng-Hong Lim; Pattnaik, P.; Snir, M.;

Innovative Architecture for Future Generation High-Performance Processors a
Systems, 1997 , 22-24 Oct. 1997

Pages:29

[Abstract] [PDF Full-Text (76 KB)] IEEE CNF

**12 The effect of limited network bandwidth and its utilization by laten
hiding techniques in large-scale shared memory systems**

Sunil Kim; Veidenbaum, A.V.;

Parallel Architectures and Compilation Techniques., 1997. Proceedings. 1997
International Conference on , 10-14 Nov. 1997

Pages:40 - 51

[Abstract] [PDF Full-Text (1284 KB)] IEEE CNF

13 Hardware versus software implementation of COMA

Moga, A.; Gefflaut, A.; Dubois, M.;

Parallel Processing, 1997., Proceedings of the 1997 International Conference
on , 11-15 Aug. 1997

Pages:248 - 256

[Abstract] [PDF Full-Text (972 KB)] IEEE CNF

14 Performance evaluation of a WDMA OIDS multiprocessors

I-Shyan Hwang;

Parallel and Distributed Systems, 1996. Proceedings., 1996 International
Conference on , 3-6 June 1996

Pages:162 - 168

[Abstract] [PDF Full-Text (556 KB)] IEEE CNF

**15 TWIN: a parallel scheme for a production system featuring both co
and data parallelism**

Yukawa, T.; Ishikawa, T.; Kikuchi, H.; Matsuzawa, K.;

Artificial Intelligence for Applications, 1991. Proceedings., Seventh IEEE Conf
on , Volume: i , 24-28 Feb. 1991

Pages:64 - 70

[Abstract] [PDF Full-Text (500 KB)] IEEE CNF

[1](#) [2](#) [Next](#)

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)

[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)

IEEE Xplore® RELEASE 1.8

Welcome United States Patent and Trademark Office

1 Million Documents
1 Million Users

Quick Links

Help Terms IEEE Peer Review Search Results [PDF FULL-TEXT 1212 KB] PREV NEXT DOWNLOAD CITATION

Request Permissions
RIGHTS LINK

Tables of Contents

Home What Can I Access? Log-out

Welcome to IEEE Xplore®

Journals & Magazines Conference Proceedings Standards

Search

By Author Basic Advanced

Member Services

Join IEEE Establish IEEE Web Account

Access the IEEE Member Digital Library

IEEE Enterprise

Access the IEEE Enterprise File Cabinet

Architectural support for uniprocessor and multiprocessor active memory systems

Kim, D. Chaudhuri, M. Heinrich, M. Speight, E.

Comput. Syst. Lab., Cornell Univ., Ithaca, NY, USA

This paper appears in: **Computers, IEEE Transactions on**

Publication Date: March 2004
On page(s): 288 - 307
Volume: 53 , Issue: 3
ISSN: 0018-9340
Inspec Accession Number: 8004231

Abstract:
We introduce an architectural approach to improve **memory** system performance in both uniprocessor and **multiprocessor** systems. The architectural innovation is a flexible active **memory controller** backed by specialized **cache** coherence protocols that permit the transparent use of address remapping techniques. The resulting system shows significant performance improvement across a spectrum of machine configurations, from uniprocessors through single-node **multiprocessors** (SMPs) to distributed **shared memory** clusters (DSMs). Address remapping techniques exploit the data access patterns of applications to enhance their **cache** performance. However, they create coherence problems since the processor is allowed to refer to the same data via more

h eee e eee g e ch ch b c be be c e ee

than one address. While most active **memory** implementations require **cache** flushes, we present a new approach to solve the coherence problem. We leverage and extend the **cache** coherence protocol so that our techniques work transparently to efficiently support uniprocessor, SMP and DSM active **memory** systems. We detail the coherence protocol extensions to support our active **memory** techniques and present simulation results that show uniprocessor speedup from 1.3 to 7.6 on a range of applications and microbenchmarks. We also show remarkable performance improvement on small to medium-scale SMP and DSM **multiprocessors**, allowing some parallel applications to continue to scale long after their performance levels off on normal systems.

Index Terms:

cache storage **distributed shared memory** **systems** **memory architecture** **protocols** **DSM**
SMP **active memory controller** **address remapping** **technique** **architectural support** **cache**
coherence protocol **data access pattern** **distributed shared memory** **cluster** **machine configuration**
spectrum **memory system performance** **multiprocessor** **system** **single-node multiprocessor**
uniprocessor system

Documents that cite this document

There are no citing documents available in IEEE Xplore at this time.

Search Results [PDF FULL-TEXT 1212 KB] PREV NEXT DOWNLOAD CITATION

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)

[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)

IEEE Xplore®
RELEASE 1.8
1 Million Documents
1 Million Users

» ABSTRACT PLUS

[Help](#) [FAQ](#) [Terms](#) [IEEE Peer Review](#)

Welcome to IEEE Xplore®

[Search Results](#) [PDF FULL-TEXT 319 KB] [NEXT](#) [DOWNLOAD CITATION](#)

[Request Permissions](#)
RIGHTS LINK

[Quick Links](#)

Tables of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

Search

- By Author
 - Basic
 - Advanced
- Member Services**
- Join IEEE
 - Establish IEEE Web Account

- Access the IEEE Member Digital Library
- IEEE Enterprise**
- Access the IEEE Enterprise File Cabinet

Abstract:

Recent technology improvements allow **multiprocessor** designers to put some key components inside the processor chip, such as the **memory controller**, the coherence hardware and the network interface/router. In this work we exploit such integration scale, presenting a novel **node** architecture aimed at reducing the long L2 miss latencies and the **memory** overhead of using directories that characterize cc-NUMA machines and limit their scalability. Our proposal replaces the traditional directory with a novel three-

A. novel approach to reduce L2 miss latency in shared-memory multiprocessors

Acacio, M.E., Gonzalez, J., Garcia, J.M., Duato, J.

Dpto. Ing. y Tecnología de Computadores, Murcia Univ., Spain;

This paper appears in: **Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM**

Meeting Date: 04/15/2002 - 04/19/2002

Publication Date: 15-19 April 2002

Location: Ft. Lauderdale, FL USA

On page(s): 62 - 69

Reference Cited: 16

Number of Pages: CD-ROM

Inspec Accession Number: 7342351

level directory architecture and adds a small **shared** data **cache** to each of the **nodes** of a **multiprocessor** system. Due to their small size, the first-level directory and the **shared** data **cache** are integrated into the processor chip in every **node**. A taxonomy of the L2 misses, according to the actions performed by the directory to satisfy them is also presented. Using execution-driven simulations, we show significant L2 miss latency reductions (more than 60% in some cases). These important improvements translate into reductions of more than 30% in the application execution time in some cases

Index Terms:

[cache storage](#) [parallel architectures](#) [performance evaluation](#) [shared memory systems](#) [L2 miss](#)
[latency reduction](#) [cc-NUMA machines](#) [coherence hardware](#) [execution-driven simulations](#)
memory controller **memory overhead** [network interface](#) [node architecture](#) [scalability](#) **shared**
data cache **shared-memory multiprocessors** [three-level directory architecture](#)

Documents that cite this document

There are no citing documents available in IEEE Xplore at this time.

Search Results [PDF FULL-TEXT 319 KB] [NEXT](#) [DOWNLOAD CITATION](#)

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[Generate Collection](#)[Print](#)

L7: Entry 5 of 29

File: PGPB

Feb 19, 2004

PGPUB-DOCUMENT-NUMBER: 20040034747
PGPUB-FILING-TYPE: new
DOCUMENT-IDENTIFIER: US 20040034747 A1

TITLE: Scalable cache coherent distributed shared memory processing system

PUBLICATION-DATE: February 19, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Rowlands, Joseph B.	Santa Clara	CA	US	
Gulati, Manu	Santa Clara	CA	US	

APPL-NO: 10/ 356321 [PALM]
DATE FILED: January 31, 2003

RELATED-US-APPL-DATA:

Application is a non-provisional-of-provisional application 60/380740, filed May 15, 2002,

Application is a non-provisional-of-provisional application 60/419033, filed October 16, 2002,

INT-CL: [07] G06 F 12/08

US-CL-PUBLISHED: 711/148; 711/119, 711/144, 711/145
US-CL-CURRENT: 711/148; 711/119, 711/144, 711/145

REPRESENTATIVE-FIGURES: 14

ABSTRACT:

A packetized I/O link such as the HyperTransport protocol is adapted to transport memory coherency transactions over the link to support cache coherency in distributed shared memory systems. The I/O link protocol is adapted to include additional virtual channels that can carry command packets for coherency transactions over the link in a format that is acceptable to the I/O protocol. The coherency transactions support cache coherency between processing nodes interconnected by the link. Each processing node may include processing resources that themselves share memory, such as symmetrical multiprocessor configuration. In this case, coherency will have to be maintained both at the internode level as well as the internode level. A remote line directory is maintained by each processing node so that it can track the state and location of all of the lines from its local memory that have been provided to other remote nodes. A node controller initiates transactions over the link in response to local transactions initiated within itself, and initiates transactions over the link based on local transactions initiated within itself. Flow control is provided for each of the coherency virtual channels either by software through credits or through a buffer free command packet

that is sent to a source node by a target node indicating the availability of virtual channel buffering for that channel.

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority under 35 U.S.C. 119(e) to the following applications, each of which is incorporated herein for all purposes:

[0002] (1) provisional patent application entitled SYSTEM ON A CHIP FOR NETWORKING, having an application No. 60/380,740, and a filing date of May 15, 2002; and

[0003] (2) provisional patent application having the same title as above, having an application No. 60/419,033, and a filing date of Oct. 16, 2002.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[Generate Collection](#)[Print](#)

L7: Entry 14 of 29

File: PGPB

Jun 28, 2001

PGPUB-DOCUMENT-NUMBER: 20010005873
PGPUB-FILING-TYPE: new-utility
DOCUMENT-IDENTIFIER: US 20010005873 A1

TITLE: Shared memory multiprocessor performing cache coherence control and node controller therefor

PUBLICATION-DATE: June 28, 2001

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Yasuda, Yoshiko	Tokorozawa		JP	
Hamanaka, Naoki	Tokyo		JP	
Shonai, Toru	Hachioji		JP	
Akashi, Hideya	Kunitachi		JP	
Tsushima, Yuji	Kokubunji		JP	
Uehara, Keitaro	Kokubunji		JP	

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	COUNTRY	TYPE CODE
Hitachi, Ltd.				03

APPL-NO: 09/ 740816 [PALM]
DATE FILED: December 21, 2000

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	DOC-ID	APPL-DATE
JP	11-366235	1999JP-11-366235	December 24, 1999

INT-CL: [07] G06 F 13/00, G06 F 13/38

US-CL-PUBLISHED: 710/129
US-CL-CURRENT: 710/305

REPRESENTATIVE-FIGURES: 1

ABSTRACT:

Each node includes a node controller for decoding the control information and the address information for the access request issued by a processor or an I/O device, generating, based on the result of decoding, the cache coherence control information indicating whether the cache coherence control is required or not, the node information and the unit information for the transfer destination, and adding these information to the access request. An intra-node connection circuit for

connecting the units in the node controller holds the cache coherence control information, the node information and the unit information added to the access request. When the cache coherence control information indicates that the cache coherence control is not required and the node information indicates the local node, then the intra-node connection circuit transfers the access request not to the inter-node connection circuit interconnecting the nodes but directly to the unit designated by the unit information.

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)
 [Generate Collection](#) [Print](#)

L7: Entry 21 of 29

File: USPT

Oct 21, 2003

US-PAT-NO: 6636926

DOCUMENT-IDENTIFIER: US 6636926 B2

TITLE: Shared memory multiprocessor performing cache coherence control and node controller therefor

DATE-ISSUED: October 21, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Yasuda; Yoshiko	Tokorozawa			JP
Hamanaka; Naoki	Tokyo			JP
Shonai; Toru	Hachioji			JP
Akashi; Hideya	Kunitachi			JP
Tsushima; Yuji	Kokubunji			JP
Uehara; Keitaro	Kokubunji			JP

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Hitachi, Ltd.	Tokyo			JP	03

APPL-NO: 09/ 740816 [PALM]

DATE FILED: December 21, 2000

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	11-366235	December 24, 1999

INT-CL: [07] G06 F 13/00, G06 F 15/167

US-CL-ISSUED: 710/305; 710/317, 711/141, 709/213, 700/5

US-CL-CURRENT: 710/305; 700/5, 709/213, 710/317, 711/141

FIELD-OF-SEARCH: 710/305, 710/317, 710/300, 710/62, 710/4, 710/72, 711/141, 711/148, 711/120, 709/213, 709/214, 709/251, 700/5, 712/14, 712/211

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO

ISSUE-DATE

PATENTEE-NAME

US-CL

<input type="checkbox"/>	<u>4747043</u>	May 1988	Rodman
<input type="checkbox"/>	<u>6011791</u>	January 2000	Okada et al.
<input type="checkbox"/>	<u>6092173</u>	July 2000	Sasaki et al.
<input type="checkbox"/>	<u>6378029</u>	April 2002	Venkitakrishnan et al.
<input type="checkbox"/>	<u>6466825</u>	October 2002	Wang et al.

OTHER PUBLICATIONS

"RISC System/6000SMP System," 1995 Comcon95 Proceedings, pp. 102-109.
"Starfire: Extending the SMP Envelope," 1998 Micro Jan./Feb. pp. 39-49.

ART-UNIT: 2181

PRIMARY-EXAMINER: Ray; Gopal C.

ABSTRACT:

Each node includes a node controller for decoding the control information and the address information for the access request issued by a processor or an I/O device, generating, based on the result of decoding, the cache coherence control information indicating whether the cache coherence control is required or not, the node information and the unit information for the transfer destination, and adding these information to the access request. An intra-node connection circuit for connecting the units in the node controller holds the cache coherence control information, the node information and the unit information added to the access request. When the cache coherence control information indicates that the cache coherence control is not required and the node information indicates the local node, then the intra-node connection circuit transfers the access request not to the inter-node connection circuit interconnecting the nodes but directly to the unit designated by the unit information.

19 Claims, 16 Drawing figures

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[First Hit](#) [Fwd Refs](#)[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)
 [Generate Collection](#) [Print](#)

L7: Entry 23 of 29

File: USPT

Apr 8, 2003

US-PAT-NO: 6546471

DOCUMENT-IDENTIFIER: US 6546471 B1

TITLE: Shared memory multiprocessor performing cache coherency

DATE-ISSUED: April 8, 2003

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Tarui; Toshiaki	Sagamihara			JP
Okazawa; Koichi	Ebina			JP
Okada; Yasuyuki	Yamato			JP
Shonai; Toru	Kodaira			JP
Okochi; Toshio	Kokubunji			JP
Akashi; Hideya	Hachiouji			JP

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Hitachi, Ltd.	Tokyo			JP	03

APPL-NO: 09/ 506810 [PALM]

DATE FILED: February 18, 2000

PARENT-CASE:

This is a continuation application of U.S. Ser. No. 09/030,957, filed Feb. 26, 1998, now U.S. Pat. No. 6,088,770.

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY	APPL-NO	APPL-DATE
JP	9-059914	February 27, 1997

INT-CL: [07] G06 F 13/14

US-CL-ISSUED: 711/148; 711/141, 711/147, 711/149, 711/169

US-CL-CURRENT: 711/148; 711/141, 711/147, 711/149, 711/169

FIELD-OF-SEARCH: 711/100, 711/113, 711/118, 711/119, 711/133-135, 711/141-149, 711/169, 711/206, 709/200, 709/201, 709/213, 709/218, 364/131

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>4985825</u>	January 1991	Webb, Jr. et al.	711/169
<input type="checkbox"/> <u>5117350</u>	May 1992	Parrish et al.	711/1
<input type="checkbox"/> <u>5710907</u>	January 1998	Hagersten et al.	711/148
<input type="checkbox"/> <u>5829034</u>	October 1998	Hagersten et al.	711/141
<input type="checkbox"/> <u>5890189</u>	March 1999	Nozue et al.	711/100
<input type="checkbox"/> <u>5956754</u>	September 1999	Kimmel	711/206
<input type="checkbox"/> <u>6456628</u>	September 2002	Greim et al.	370/466

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
08-320828	March 1996	JP	
09-022381	January 1997	JP	

OTHER PUBLICATIONS

"Evolved System Architecture", Sun World, Jan. 1996, pp. 29-32.
 "The Stanford Flash Multiprocessor", (The 21st Annual International Symposium on Computer Architecture, Apr. 18-21, 1994, Chicago, Illinois, pp. 302-313.
 "Hive: Fault Containment for Shared-Memory Multiprocessors" (15th ACM Symposium on Operating Systems Principles, Dec. 3-6, 1995, Copper Mountain Resort, Colorado, pp. 12-25.
 "DDM-A Cache-Only Memory Architecture", Computer, Sep. 1992, vol. 25, pp. 44-54.
 "Cache coherent shared memory hypercube", Parallel and Distributed Processing, 1992. Proceedings of the 4th IEEE Symposium, Dec. 1-4 1992, pp. 515-520.
 "Software Caching on cache-coherent multiprocessors", Parallel and Distributed Processing, 1992. Proceedings of the 4th IEEE Symposium, Dec. 1-4 1992, pp. 521-526.

ART-UNIT: 2187

PRIMARY-EXAMINER: Nguyen; T. V.

ATTY-AGENT-FIRM: Mattingly, Stanger & Malur, P.C.

ABSTRACT:

A shared memory multiprocessor (SMP) has efficient access to a main memory included in a particular node and a management of partitions that include the nodes. In correspondence with each page of main memory included in a node, a bit stored in a register indicates if the page has been accessed from any other node. In a case where the bit is "0", a cache coherent command to be sent to the other nodes is not transmitted. The bit is reset by software at the time of initialization and memory allocation, and it is set by hardware when the page of the main memory is accessed from any other node. In a case where the interior of an SMP is divided into partitions, the main memory of each node is divided into local and shared areas, for which respectively separate addresses can be designated. In each node, the configuration information items of the shared area and the local area are stored in registers. The command of access to the shared area is multicast to all of the nodes, whereas the command is multicast only to the nodes within the corresponding

partition when the local area is accessed.

4 Claims, 20 Drawing figures

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

(12) United States Patent
Deneroff et al.

(10) Patent No.: US 6,751,698 B1
(45) Date of Patent: Jun. 15, 2004

(54) MULTIPROCESSOR NODE CONTROLLER CIRCUIT AND METHOD

(75) Inventors: Martin M. Deneroff, Palo Alto, CA (US); Givargis G. Kaldani, San Jose, CA (US); Yuval Koren, San Francisco, CA (US); David Edward McCracken, San Francisco, CA (US); Swami Venkataaraman, San Jose, CA (US)

(73) Assignee: Silicon Graphics, Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/407,428

(22) Filed: Sep. 29, 1999

(51) Int. Cl. 7 G06F 13/00

(52) U.S. Cl. 710/317

(58) Field of Search 710/100, 305, 710/306, 311, 316, 317; 709/238, 218, 249; 712/12; 370/351, 419

(56) References Cited

U.S. PATENT DOCUMENTS

4,330,858 A	5/1982	Chequet	370/111
4,630,259 A	12/1986	Lemon et al.	370/60

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP 0501524	9/1992	G06F 15/16
EP 0570729	11/1993	G06F 15/16
WO 96/37634	11/1996	G06F 9/46
WO 99/26429	5/1999	H04Q 3/00

OTHER PUBLICATIONS

International Search Report for International Application No. PCT/IE95/00047; Date of Completion—Dec. 22, 1995;
Authorized Officer—R. Salm.

"Deadlock-Free Routing Schemes on Multistage Interconnection Networks", IBM Technical Disclosure Bulletin, 35, 232-233, (Dec., 1992).

"IEEE Standard for Scalable Coherent Interface (SCI)". IEEE Std 1596-1992, Table of Contents, (Mar., 1992).

(List continued on next page.)

Primary Examiner—Xuan M. Thai
(74) Attorney, Agent, or Firm—Schwegman, Lundberg, Woessner & Kluth, P.A.

(37) ABSTRACT

Improved method and apparatus for parallel processing. One embodiment provides a multiprocessor computer system that includes a first and second node controller, a number of processors being connected to each node controller, a memory connected to each controller, a first input/output system connected to the first node controller, and a communications network connected between the node controllers. The first node controller includes a crossbar unit to which are connected a memory port, an input/output port, a network port, and a plurality of independent processor ports. A first and a second processor port connected between the crossbar unit and a first subset and a second subset, respectively, of the processors. In some embodiments of the system, the first node controller is fabricated onto a single integrated circuit chip. Optionally, the memory is packaged on pluggable memory/directory cards wherein each card includes a plurality of memory chips including a first subset dedicated to holding memory data and a second subset dedicated to holding directory data. Further, the memory port includes a memory data port including a memory data bus and a memory address bus coupled to the first subset of memory chips, and a directory data port including a directory data bus and a directory address bus coupled to the second subset of memory chips. In some such embodiments, the ratio of (memory data space) to (directory data space) on each card is set to a value that is based on a size of the multiprocessor computer system.

31 Claims, 70 Drawing Sheets

(12) United States Patent
Fromm(10) Patent No.: US 6,604,185 D1
(45) Date of Patent: Aug. 5, 2003(54) DISTRIBUTION OF
ADDRESS-TRANSLATION-PURGE
REQUESTS TO MULTIPLE PROCESSORS6,128,282 A * 10/2000 Liebene et al. 370/235
6,339,812 B1 * 1/2002 McCracken et al. 711/141
6,374,331 B1 * 4/2002 Janakiraman et al. 711/141
6,412,056 B1 * 6/2002 Ghoshchotra et al. 711/202

(75) Inventor: Eric C. Fromm, Eau Claire, WI (US)

OTHER PUBLICATIONS

(73) Assignee: Silicon Graphics, Inc., Mountain View,
CA (US)Gjessing, et al., "Performance of the RamLink Memory
Architecture", *Proceedings HICSS'94*, (1994), 154-162.
Gjessing, Stein., et al., "RamLink: A High-Bandwidth
Point-to-Point Memory Architecture", *Proceeding Comp-
Con*, (1992), 328/331.(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.IEEE STD, "IEEE Standard for High-Bandwidth Memory
Interface Based on Scalable Coherent Interface(SCI) Sig-
naling Technology (RAMLink)", *IEEE Std 1396.4-1996*,
(1996), 1-91.

(21) Appl. No.: 09/619,851

* cited by examiner

(22) Filed: Jul. 20, 2000

Primary Examiner—B. James Pelkari
(74) Attorney, Agent, or Firm—Schwegman, Lundberg,
Woerner & Kluth, PA.

(51) Int. Cl. 7 G06F 12/12

(57) ABSTRACT

(52) U.S. Cl. 711/207, 711/141; 711/166;
709/250A method and apparatus for deallocating memory in a
multi-processor, shared memory system. In one aspect, a
node in the system has a node controller that contains
sequencing logic. The sequencing logic receives a command
across a network. The sequencing logic translates the
received command into a Purge Translation Cache (PTC)
instruction and sends the PTC instruction across a bus to a
processor. The processor contains bus control logic that
receives the PTC instruction and purges a virtual address
specified in the PTC instruction from the processor's trans-
lation lookaside buffer. By purging the virtual address, the
memory is deallocated.(58) Field of Search 709/1, 213, 218,
709/232, 250; 711/141, 207, 206, 202,
166; 713/2; 710/53, 54

(56) References Cited

U.S. PATENT DOCUMENTS

- 4,779,168 A * 10/1988 Cum et al. 709/1
5,437,017 A * 7/1995 Moore et al. 709/213
5,506,953 A 4/1996 Dao
5,574,578 A * 11/1996 Onodera et al. 711/207
5,603,056 A 2/1997 Itozaki
5,617,537 A 4/1997 Yamada
5,644,575 A * 7/1997 McDaniel 370/416
5,682,512 A 10/1997 Tewick
577,429 A 7/1998 Sukegawa et al. 711/129
5,784,394 A * 7/1998 Alvarez et al. 714/799
5,784,705 A * 7/1998 Oberlin et al. 711/202
5,906,001 A * 5/1999 Wu et al. 711/141

16 Claims, 4 Drawing Sheets

(12) United States Patent

Jhang et al.

(10) Patent No. US 6,253,292 B1

(45) Date of Patent Jun. 26, 2001

(54) DISTRIBUTED SHARED MEMORY
MULTIPROCESSOR SYSTEM BASED ON A
UNIDIRECTIONAL RING BUS USING A
SNOOPING SCHEME

(76) Inventor: Seong Tae Jhang, 103-1611, Woosung Apt., San 72, Jeongrung 1-Dong, Seongbuk-Gu, Seoul (KR), 136-101; Chu Shik Jhon, 125-601, Keonyoung Apt., Jangan Town, Fundang-Dong, Fundang-Gu, Seongnam-Si, Kyungki-Do (KR), 463-030; Hyung Ho Kim, 504-1108, Jukong Apt., Byoulys-Dong, Guacheon-Si, Kyungki-Do (KR), 427-040

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/120,850

(22) Filed: Jul. 22, 1998

(30) Foreign Application Priority Data

Aug. 22, 1997 (KR) 97-40083
Apr. 23, 1998 (KR) 98-14513

(51) Int. Cl. G06F 12/00

(52) U.S. Cl. 711/144; 711/148; 709/218

(58) Field of Search 711/141, 146,
711/147, 148; 710/128; 709/216, 217, 218,
251

(56) References Cited
U.S. PATENT DOCUMENTS

5,566,177 * 10/1996 Bhandari et al. 370/155.5
5,588,131 * 12/1996 Bemill 395/473
5,781,737 * 7/1998 Dehpurdie 395/473

* cited by examiner

Primary Examiner—Kevin Verbrugge

(74) Attorney, Agent, or Firm—Anderson Kill & Olick, PC

(57) ABSTRACT

A distributed shared memory multiprocessor system based on a unidirectional ring bus using a snooping scheme comprises a group of processor nodes and a ring bus. The processor nodes are arranged in the form of a ring and one of the processor nodes generates a request signal for a data block, the remaining processor nodes sweep their own internal parts, and one of the remaining processor nodes provides the data block. The ring bus is used for connecting the processor nodes in the form of the ring and providing a path through which the request signal is broadcast to each of the remaining processor nodes and the data block is unicasted to the processor node which has generated the request signal for the data block.

13 Claims, 13 Drawing Sheets

Sher et al.

[45] Date of Patent: *Oct. 19, 1999

[54] DISTRIBUTED MEMORY ADDRESSING SYSTEM

[75] Inventors: Richard A. Sher, Huntington; Jerry Rogers, Seaford; Mark J. Wentka, East Northport, all of N.Y.

[73] Assignee: Northrop Grumman Corporation, Los Angeles, Calif.

[*] Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

[21] Appl. No.: 08/639,839

[22] Filed: Apr 10, 1996

[51] Int. Cl.^d G06F 9/45

[52] U.S. Cl. 711/149; 709/100

[58] Field of Search 709/102, 100, 709/800.11, 106; 711/149, 203, 202

[56] References Cited
U.S. PATENT DOCUMENTS

4,803,485	2/1989 Ryphard	340/823.03
4,972,314	11/1990 Getzlager	711/149
5,325,525	6/1994 Cameron et al.	395/672
5,384,773	1/1995 Olinowich et al.	365/189.01
5,535,373	7/1996 Olinowich	395/500
5,696,922	12/1997 Fromm	711/5

Primary Examiner—Majid A. Banankhah
Attorney, Agent, or Firm—Terry J. Anderson; Karl J. Hoch, Jr.

[57] ABSTRACT

A distributed memory addressing system has a plurality of separate processing elements. Each processing element has at least one CPU. A shared memory is utilized to store data to be used by the separate processing elements, as required. A high bandwidth interface interconnects processing elements and the shared memory. The high bandwidth interface is configured so as to provide non-blocking access to the shared memory for each of the processing elements.

25 Claims, 3 Drawing Sheets

Wentka et al.

[45] Date of Patent: Oct. 19, 1999

[54] MEMORY INTERFACE DEVICE

[75] Inventors: Mark J. Wentka, E. Northport; Richard A. Sher, Huntington, both of N.Y.

[73] Assignee: Northrop Grumman Corporation, Los Angeles, Calif.

[21] Appl. No.: 08/822,746

[22] Filed: Mar. 24, 1997

Related U.S. Application Data

[63] Continuation of application No. 08/629,839, Apr. 10, 1996.

[51] Int. Cl. 4 G06F 9/00

[52] U.S. Cl. 709/100; 709/104

[58] Field of Search 709/100, 102, 709/104, 105, 106; 711/100, 170; 712/38, 16

[56] References Cited

U.S. PATENT DOCUMENTS

4,177,511	12/1979	Todd	364/200
4,454,575	6/1984	Brahm et al.	364/200
4,476,524	10/1984	Brown et al.	710/126
4,787,041	11/1988	Yousif	364/424
4,821,185	4/1989	Espósito	364/200
4,847,757	7/1989	Smith	710/114
4,901,230	2/1990	Chen et al.	364/200
5,237,673	8/1993	Orbits et al.	395/425

5,247,630	9/1993	Parikh et al.	395/400
5,386,841	2/1993	San et al.	463/44
5,390,336	2/1993	Hill	365/800
5,410,654	4/1993	Foster et al.	395/275
5,438,666	8/1995	Craft et al.	395/842
5,446,862	8/1995	Ohkami	711/100
5,475,858	12/1995	Gupta et al.	395/800
5,485,590	1/1996	Hyatt et al.	395/442
5,487,146	1/1996	Gurtag et al.	345/516
5,513,374	4/1996	Bajji	395/846
5,524,255	6/1996	Balmer et al.	712/28
5,560,030	9/1996	Gurtag et al.	712/16
5,850,632	12/1998	Robertson	711/170

Primary Examiner—Majid A. Banankhab
Attorney, Agent, or Firm—Terry I. Anderson; Karl J. Hoch,
Jr.

[57] ABSTRACT

A memory interface device for facilitating electrical communication between distributed memory and a plurality of processors has a memory interface circuit configured to interface the memory interface device to at least one random access memory, an address generator circuit configured to generate addresses for data stored within the random access memories, and a processor interface circuit configured to interface the memory interface device to a plurality of processors. Interfacing the memory interface device to both the random access memories and the plurality of processors facilitates simultaneous non-interruptible access by all of the processors to data stored in the random access memories.

17 Claims, 4 Drawing Sheets

