DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 5 | Part 1

Stochastic Gradient Descent

Recall: (Sub)gradient descent

- ► **Goal:** minimize function $f(\vec{x})$.
- Iterative procedure that takes small steps in direction of steepest descent.

Recall: Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$.
- Until convergence, repeat:
 - Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f(\vec{x}^{(i)})$.
 - ► Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} \eta \vec{\nabla} f(\vec{x}^{(i)})$.

- When do we stop?
 - ▶ When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
 - ► I.e., when $\|\vec{x}^{(i)} \vec{x}^{(i+1)}\|$ is small.

```
def gradient_descent(
          gradient, x, learning_rate=.01,
          threshold=.1e-4
):
    while True:
        x_new = x - learning_rate * gradient(x)
        if np.linalg.norm(x - x new) < threshold:</pre>
```

break

x = x new

return x

Gradient Descent for Minimizing Risk

▶ In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk function is a sum of gradients:

$$\vec{\nabla}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \vec{\nabla}L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

Problem

- In machine learning, the number of training points *n* can be **very large**.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

► The (full) gradient of the risk uses all of the training data:

$$\nabla R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ It is an average of *n* gradients.
- ▶ **Idea:** instead of using all n points, randomly choose $\ll n$.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

$$\nabla R(\vec{w}) \approx \sum_{i \in R} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ **Good:** if $|B| \ll n$, this is much faster to compute.
- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$, batch size $m \ll n$.
- Until convergence, repeat:
 - Randomly sample a batch *B* of *m* training data points.
 - ► Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$\vec{g} = \sum_{i \in P} \vec{\nabla} L(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

► Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} - \eta \vec{g}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- ► The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- \triangleright Extreme case when m = 1 will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exactly solutions available.
 - E.g., least squares regression / classification.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 5 | Part 2

Convexity

Question

► When is gradient descent guaranteed to work?

Not here...

Convex Functions

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

Other Terms

- ▶ If a function is not convex, it is **non-convex**.
- Strictly convex: the line lies strictly above curve.
- **Concave**: the line lines on or below curve.

Convexity: Formal Definition

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb).$$

Example

Is f(x) = |x| convex?

Another View: Second Derivatives

- ▶ If $\frac{d^2f}{dx^2}(x) \ge 0$ for all x, then f is convex.
- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" straight line at x_0 :
 - $h_1(z) = f'(x_0) \cdot z + b$
- \triangleright "Best" parabola at x_0 :
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

- ightharpoonup Convex if for **every** x_0 , parabola is upward-facing.
 - ► That is, $f''(x_0) \ge 0$.

Proving Convexity Using Properties

Suppose that f(x) and g(x) are convex. Then:

- $w_1 f(x) + w_2 g(x)$ is convex, provided $w_1, w_2 \ge 0$
 - Example: $3x^2 + |x|$ is convex
- ightharpoonup g(f(x)) is convex, provided g is non-decreasing.
 - Example: e^{x^2} is convex
- $ightharpoonup \max\{f(x),g(x)\}$ is convex
 - Example: $\begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$ is convex

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- **Theorem**: if f(x) is convex and "not too steep"¹ then (stochastic) (sub)gradient descent converges to a **global optimum** of f provided that the step size is small enough².

¹Technically, *c*-Lipschitz

²step size related to steepness, should decrease like $1/\sqrt{t}$, where t is step number

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.

But not guaranteed to converge to a global minimum.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 5 | Part 3

Convexity in Many Dimensions

• $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

$$(\vec{a}, f(\vec{a}))$$
 and $(\vec{b}, f(\vec{b}))$

Convexity: Formal Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a}) + tf(\vec{b}) \ge f((1-t)\vec{a} + t\vec{b}).$$

The Second Derivative Test

- ► For 1-d functions, convex if second derivative ≥ 0 .
- ► For 2-d functions, convex if ???

Second Derivatives in 2-d

► In 2-d, there are 4 second derivatives of $f(\vec{x})$:

Convexity in 2-d

• "Best" quadratic function approximating f at \vec{x} :

$$\begin{split} h_2(z_1,z_2) &= az_1^2 + bz_2^2 + cz_1z_2 + \dots \\ &= \frac{1}{2} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) \cdot z_1 + \frac{1}{2} \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \cdot z_1 z_2 + \dots \end{split}$$

- a, b, c determine rough shape. Possibilities:
 - Upward-facing bowl.
 - Downward-facing bowl.
 - "Saddle"

Convexity in 2-d

Convex if at any \vec{x} , for any z_1, z_2 :

$$\frac{1}{2} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) \cdot z_1 + \frac{1}{2} \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \cdot z_1 z_2 \ge 0$$

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \end{pmatrix}$$

In General

▶ If $f: \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_1 x_d} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_2 x_d} (\vec{x}) \\ \cdots & \cdots & \cdots \\ \frac{\partial f^2}{\partial x_d x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) \end{pmatrix}$$

Observations

► *H* is square.

► *H* is symmetric.

Convexity in 2-d

Convex if at any \vec{x} , for any z_1, z_2 :

$$\frac{1}{2} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) \cdot z_1 + \frac{1}{2} \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \cdot z_1 z_2 \ge 0$$

Equivalently, convex if for any \vec{x} and any \vec{z} :

$$\vec{z}^T H(\vec{x}) \vec{z} \geq 0$$

Positive Semi-Definite

A square, $d \times d$ symmetric matrix X is **positive** semi-definite (PSD) if for any \vec{u} :

$$\vec{u}^T X \vec{u} \ge 0$$

The Second Derivative Test

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is positive semi-definite.

But wait...

How can we tell if a matrix is positive semi-definite?

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Is $f(x, y) = x^2 + 4xy + y^2$ convex?

Sums of Convex Functions

Suppose that $f(\vec{x})$ and $g(\vec{x})$ are convex. Then $w_1 f(\vec{x}) + w_2 g(\vec{x})$ is convex, provided $w_1, w_2 \ge 0$.

Affine Composition

Suppose that f(x) is convex. Let A be a matrix, and \vec{x} and \vec{b} be vectors. Then

$$g(\vec{x}) = f(A\vec{x} + \vec{b})$$

is convex as a function of \vec{x} .

Useful!

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 5 | Part 4

Convex Loss Functions

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if f(x) is convex and "not too steep"³ then (stochastic) (sub)gradient descent converges to a **global optimum** of f provided that the step size is small enough⁴.

³Technically, *c*-Lipschitz

⁴step size related to steepness, should decrease like $1/\sqrt{t}$, where t is step number

Convex Loss

- Recall: sums of convex functions are convex.
- Implication: if loss function is convex as a function of \vec{w} , so is the risk.
- Convex losses are nice.

Recall the square loss:

$$L(H(\vec{x}, \vec{w}), y) = (\vec{x} \cdot \vec{w} - y)^2$$

ls this convex as a function of \vec{w} ?

Mean Squared Error

- ► The square loss is a convex function of \vec{w} .
- ▶ We had an explicit solution for the best \vec{w} :

$$\vec{W} = (X^T X)^{-1} X^T \vec{y}$$

But we could also have used gradient descent.

Perceptron Loss

► The perceptron loss is:

$$L_{\text{tron}}(H(\vec{x}; \vec{w}), y) = \begin{cases} 0, & \text{sign}(\vec{w} \cdot \vec{x}) = \text{sign}(y) \\ |\vec{w} \cdot \vec{x}|, & \text{sign}(\vec{w} \cdot \vec{x}) \neq \text{sign}(y) \end{cases}$$

► Is it convex as a function of \vec{w} ?

Summary

We learned what it means for a function to be convex.

- Convex functions are (relatively) easy to optimize with gradient descent.
- We like convex loss functions, like the square loss.