Uwaga: W poniższym zestawie przedstawiono wybrane wzory oraz stałe fizyczne. Przy każdym wzorze zapisano nazwę wielkości lub prawa albo zjawiska, którego wzór dotyczy. Symboli wszystkich wielkości występujących we wzorach nie opisano – przyjęto dla nich powszechnie używane oznaczenia. Podobnie nie opisano warunków i zakresów stosowalności przedstawionych wzorów. Wartości wielkości wektorowych zapisano bez symbolu wektora.

KINEMATYKA					
prędkość	$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$				
przyśpieszenie	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$				
prędkość kątowa	$\omega = \frac{\Delta \alpha}{\Delta t}$				
związek między wartościami prędkości kątowej i liniowej	$v = \omega r$				
związki w ruchu jednostajnym po okręgu	$\omega = \frac{2\pi}{T} \; ; T = \frac{1}{f}$				
przyśpieszenie dośrodkowe	$a_{do} = \frac{v^2}{r} = v\omega = \omega^2 r$				
przyśpieszenie kątowe	$\epsilon = \frac{\Delta\omega}{\Delta t}$				
przyśpieszenie styczne	$a_{st} = \epsilon r$				
prędkość w ruchu jednostajnie zmiennym prostoliniowym	$\vec{v} = \vec{v}_0 + \vec{a}t$				
droga w ruchu jednostajnie zmiennym prostoliniowym	$s = v_0 t + \frac{1}{2}at^2$				

SIŁY TARCIA I SIŁA SPRĘŻYSTOŚCI			
siła tarcia kinetycznego	$T_k = \mu_k F_N$		
siła tarcia statycznego	$T_s \leq \mu_s F_N$		
siła sprężystości	$\vec{F}_s = -k\vec{x}$		
energia potencjalna sprężystości	$E_{pot} = \frac{1}{2}kx^2$		

DYNAMIK	A
pęd	$\vec{p}=m\vec{v}$
II zasada dynamiki (w układzie inercjalnym)	$m\vec{a} = \vec{F}$; $\frac{\Delta \vec{p}}{\Delta t} = \vec{F}$
wartość momentu pędu punktu materialnego	$L = rp \sin \sphericalangle(\vec{r}, \vec{p})$
wartość momentu siły	$M = rF \sin \sphericalangle \left(\vec{r}, \vec{F} \right)$
moment bezwładności	$I = \sum_{i=1}^{n} m_i r_i^2$
związek między wartościami prędkości kątowej i momentu pędu bryły sztywnej	$L = I\omega$
II zasada dynamiki ruchu obrotowego (zapis skalarny)	$I\epsilon=M$
praca siły, praca momentu siły	$W_F = F\Delta r \cos \sphericalangle (\vec{F}, \Delta \vec{r})$ $W_M = M\Delta \alpha$
moc	$P = \frac{W}{\Delta t}$
energia kinetyczna ruchu postępowego	$E_{kin} = \frac{1}{2}mv^2$
energia kinetyczna ruchu obrotowego	$E_{kin} = \frac{1}{2}I\omega^2$

GRAWITACJA I ELEMEI	NTY ASTRONOMII
prawo powszechnego ciążenia	$F_g = \frac{Gm_1m_2}{r^2}$
natężenie pola grawitacyjnego, przyśpieszenie grawitacyjne	$\vec{\gamma} = \frac{\vec{F}_g}{m}$; $\vec{a}_g = \vec{\gamma}$
energia potencjalna grawitacji	r^2 $\vec{\gamma} = \frac{\vec{F}_g}{m}$; $\vec{a}_g = \vec{\gamma}$ $E_{pot} = -\frac{Gm_1m_2}{r}$
zmiana energii potencjalnej przy powierzchni Ziemi	$\Delta E_p = mg\Delta h$
prędkość na orbicie kołowej	prędkość ucieczki
$v_{or} = \sqrt{\frac{GM}{r}}$	$v_u = \sqrt{\frac{2GM}{r}}$
orbita eliptyczna a – półoś wielka r_P – najmniejsza odległość do centrum r_A – największa odległość do centrum	$r_A \longrightarrow A$
II prawo Keplera i zachowanie momentu pędu \vec{L} na orbicie (ΔS – pole zakreślone przez promień wodzący planety)	$\frac{\Delta S}{\Delta t} = \text{const};$ $\vec{L} = \overline{\text{const}}$
III prawo Keplera (a jest promieniem orbity kołowej lub półosią wielką elipsy)	$\frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} = \text{const}$
prawo Hubble'a	v = Hd

DRGANIA, FALE MECHANICZNE I ŚWIETLNE

równania ruchu	$x(t) = A\sin(\omega t + \varphi_0)$
harmonicznego	$v(t) = A \omega \cos(\omega t + \varphi_0)$
	$a(t) = -A\omega^2 \sin(\omega t + \varphi_0)$
$x_{max} = A$	$v_{max} = A\omega$ $a_{max} = A\omega^2$

siła harmoniczna
$$\vec{F}_h = -m\omega^2 \vec{x}$$

częstość kołowa małych drgań masy na sprężynie i wahadła matematycznego
$$\omega = \sqrt{\frac{k}{m}}\;; \quad \omega = \sqrt{\frac{g}{l}}$$
 całkowita energia

całkowita energia
$$E=E_k+E_p=\frac{1}{2}mA^2\omega^2$$
 mechaniczna oscylatora

związki między parametrami
$$v=rac{\lambda}{T}=\lambda f$$
 ; $T=rac{1}{f}$

faza fali w punkcie
$$x$$
 i chwili t $\varphi(t) = \frac{2\pi}{T}t - \frac{2\pi}{\lambda}x + \varphi_0$

$$\begin{array}{ll} \text{warunki maksymalnego} & \varphi_2-\varphi_1=2\pi n \\ \text{wzmocnienia i osłabienia fali} \\ \text{w punkcie} & \varphi_2-\varphi_1=2\pi \left(n+\frac{1}{2}\right) \end{array}$$

natężenie fali, jego związek z energią
$$E$$
 i amplitudą A fali $I=\frac{E}{S\Delta t}$; $I{\sim}A^2$

zależność natężenia fali kulistej od odległości
$$I \sim \frac{1}{r^2}$$

załamanie fali na granicy ośrodków 1 i 2
$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

wzory przybliżone na efekt Dopplera dla fali dźwiękowej i świetlnej w kierunku prędkości źródła:

DRGANIA, FALE MECHANICZNE I ŚWIETLNE - CD.

wzory ścisłe na efekt Dopplera dla fali dźwiękowej i świetlnej w kierunku prędkości źródła

$$f_{ob} = f_{\acute{z}r} \frac{v_d \mp v_{ob}}{v_d \pm v_{\acute{z}r}}$$

$$f_{ob} = f_{\acute{z}r} \sqrt{\frac{c \mp v_{\acute{z}r}}{c \pm v_{\acute{z}r}}}$$

siatka dyfrakcyjna

 $d \sin \alpha_n = n\lambda$

światło po przejściu przez polaryzator o osi polaryzacji P

amplitudy pola elektrycznego: \vec{E}_0 – padającego na polaryzator \vec{E}_P – po przejściu przez polaryzator

OPTYKA GEOMETRYCZNA

kąt graniczny dla przejścia światła z ośrodka 2 do 1	$\sin \alpha_{2 \text{ gr}} = \frac{n_1}{n_2}$
	$\alpha_{\text{pad1}} + \alpha_{\text{zal2}} =$
warunek polaryzacji	

światła przy odbiciu		$\alpha_{ m p}$	_{ad1} +	$-\alpha_{ m zał2}$	= 90°	
,			1	1	1	

rowname socze	WKI	_	. * -	_ * .	20	< Λ
i zwierciadła:		$\frac{\overline{x}}{x}$	\overline{y}	$=\frac{1}{f}$;	χ.	<i>-</i> 0

y > 0, y < 0 – położenie obrazu rzeczywistego, pozornego f > 0 – ogniskowa soczewki/zwierciadła skupiającego f < 0 – ogniskowa soczewki/zwierciadła rozpraszającego

wzór na ogniskową $\frac{1}{f}$ soczewki $\frac{1}{f}$

$$\frac{1}{f} = \left(\frac{n_{socz}}{n_{otocz}} - 1\right) \left(\pm \frac{1}{R_1} \pm \frac{1}{R_2}\right)$$

(+)/(-) - przy promieniu powierzchni wypukłej/wklęsłej

HYDROSTATYKA, AEROSTATYKA

siła parcia i ciśnienie	$F = p\Delta S$, $\vec{F} \perp \Delta S$
zmiana ciśnienia hydro- i aerostatycznego	$\Delta p = ho g \Delta h$
siła wyporu	$F_{wyp} = \rho V_{zan} g$

 V_{zan} – objętość zanurzonej części ciała ho – gęstość cieczy (lub gazu)

TERMODYNAMIKA

I zasada termodynamiki

 $\Delta U = Q + W$

praca siły parcia,

gdy p = const

 $|W| = p|\Delta V|$

związek pracy siły parcia z polem pod wykresem zależności p(V) – ciśnienia od objętości

 $|W_{AB}| = \text{Pole pod } AB$

ciepło właściwe

$$c_w = \frac{Q}{m\Delta T}$$

ciepło molowe

$$C = \frac{Q}{n\Delta T}$$

ciepło przemiany fazowej

$$L = \frac{Q}{m}$$

średnia energia ruchu cząsteczki gazu doskonałego

$$E_{\pm r} = \frac{s}{2} k_B T$$

s – liczba współrzędnych opisujących położenie cząsteczki w przestrzeni

równanie stanu gazu doskonałego (Clapeyrona)

pV = nRT

związek między ciepłami molowymi gazu doskonałego

 $C_p = C_V + R$

praca i ciepło w cyklu silnika i pompy cieplnei

 $0 = Q_{calk} + W_{calk}$

 Q_{calk} – całkowite ciepło wymienione w cyklu z otoczeniem W_{calk} – całkowita praca mechaniczna wykonana w cyklu (nad i przez otoczenie)

sprawność silnika cieplnego $\eta = \frac{|W_{calk}|}{|Q_{pob}|} = \frac{|Q_{pob}| - |Q_{odd}|}{|Q_{pob}|}$

ELEKTRO	STATYKA
prawo Coulomba	$F_e = \frac{kq_1q_2}{r^2} \; ; \; \; k = \frac{1}{4\pi\varepsilon_0}$
natężenie pola elektrycznego	$\vec{E} = \frac{\vec{F}_e}{q}$
wartość natężenia pola na zewnątrz sferycznego rozkładu ładunku	$E = \frac{kQ}{r^2}$
napięcie pomiędzy punktami A i B pola elektrycznego	$U_{AB} = rac{W_{AB}}{q}$ W_{AB} - praca przeciw sile elektrycznej
związek napięcia z potencjałami elektrycznymi	$U_{AB} = V_B - V_A$
energia potencjalna elektryczna układu ładunków	$E_{pot} = \frac{kq_1q_2}{r}$
związek napięcia z natężeniem w polu jednorodnym	U = Ed
natężenie pola między płytami naładowanymi różnoimiennie	$E = \frac{\sigma}{\varepsilon_0}$; $\sigma = \frac{Q}{\Delta S} = \text{const}$
natężenie pola elektrycznego wewnątrz dielektryka	$ec{E} = rac{ec{E}_0}{arepsilon_r} \qquad rac{ec{E}_0}{\mathrm{zewnetrzne}}$ - nateżenie zewnętrzne
pojemność kondensatora	$C = \frac{Q}{U}$
pojemność kondensatora płaskiego z dielektrykiem	$C = \varepsilon_r \varepsilon_0 \frac{S}{d}$
energia elektryczna kondensatora	$W = \frac{Q^2}{2C} = \frac{1}{2}QU = \frac{1}{2}U^2C$
własności pola wewnątrz i na powierzchni bryły przewodnika	$\vec{E}_{wew} = 0$; $\vec{E}_{pow} \perp \Delta S$

PRĄD ELEKTRYCZNY					
natężenie prądu	$I = \frac{\Delta Q}{\Delta t}$				
definicja oporu elektrycznego przewodnika	$R = \frac{U}{I}$				
prawo Ohma (dla stałej temperatury przewodnika)	$\frac{U}{I} = \text{const}$				
opór przewodnika z drutu	$R = ho rac{l}{S}$ $ ho$ - opór właściwy				
moc prądu stałego wydzielona na oporniku	$P = UI = I^2 R = \frac{U^2}{R}$				
zależność oporu metali od temperatury (w pewnym zakresie temperatur)	$R(T) = R(T_0)(1 + \alpha \Delta T);$ $\Delta T = T - T_0$				
dodawanie napięć pomiędzy punktami przewodnika	$U_{AC} = U_{AB} + U_{BC}$				
II prawo Kirchhoffa dla obwodu (lub oczka)	$\sum_{i=1}^{k} (\pm \mathcal{E}_i) - \sum_{j=1}^{n} (\pm U_j) = 0$				
związek siły elektromotorycznej z napięciem na baterii	$\mathcal{E} = U + IR_{w}$				
opór zastępczy oporników połączonych szeregowo	$R_z = \sum_{i=1}^n R_i$				
opór zastępczy oporników połączonych równolegle	$\frac{1}{R_Z} = \sum_{i=1}^n \frac{1}{R_i}$				

ELEMENTY MECHANIKI RELATYWISTYCZNEJ

energia całkowita ciała energia całkowita ciała poruszającego się w układzie $E=\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}$; $v=\frac{\Delta x}{\Delta t}$ inercjalnym (t,x)

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad v = \frac{\Delta x}{\Delta t}$$

równoważność masy i energii spoczynkowej

$$E_0 = mc^2$$

związek między zmianą masy układu a energią pochłoniętą / $\Delta E = \Delta mc^2$ emitowaną przez układ

pęd

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \quad ; \quad v = \frac{\Delta x}{\Delta t}$$

niezmiennik relatywistyczny (dynamiczny)

$$E_0^2 = E^2 - (cp)^2$$

energia kinetyczna poruszajacego się ciała

$$E_{kin} = E - E_0$$

ELEMENTY FIZYKI ATOMOWEJ I JĄDROWEJ prawo Wiena

(b – stała Wiena)

 $\lambda_{max}T = b$

prawo Stefana-Boltzmanna

(moc wypromieniowana z jednostki powierzchni ciała) $I = \sigma T^4$; $[I] = \frac{W}{m^2}$

energia i ped fotonu

$$E_f = hf = \frac{hc}{\lambda}$$
; $p_f = \frac{h}{\lambda}$

zjawisko fotoelektryczne

$$E_f = W_{el} + E_{kin\;el\;max}$$

emisja lub absorpcja fotonu przez atom (E_m , E_n – energie elektronu w atomie)

$$E_m - E_n = h f_{mn} + E_{\text{odrzutu}}$$
 $m > n$

poziomy energetyczne atomu wodoru

$$E_n = -\frac{13,606 \text{ eV}}{n^2}$$

długość fali de Broglie'a cząstki swobodnej

$$\lambda = \frac{h}{p}$$

zasady zachowania (niektóre) • zachowanie energii układu w procesach na poziomie fundamentalnym

- · zachowanie ładunku układu
- zachowanie pędu układu
- zachowanie liczby nukleonów w układzie

statystyczne prawo rozpadu promieniotwórczego

$$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T}}$$

WYBRANE ZALEŻNOŚCI

środek masy układu n punktów materialnych

 $\vec{r}_{SM} = \frac{\sum_{i=1}^{n} m_i \vec{r}_i}{\sum_{i=1}^{n} m_i}$

związek drogi z polem pod wykresem zależności v(t) – prędkości od czasu

$$s_{AB} = \text{Pole pod } AB$$

związek pracy z polem pod wykresem zależności F(s) – sily od drogi

związek pracy z polem pod wykresem zależności P(t) – mocy od czasu

dodawanie wektorów

przeniesienie równoległe

rozkład na składowe

Podstawowe jednostki układu SI							
nazwa metr kilogram sekunda amper kelwin mol kande						kandela	
symbol	m	kg	S	А	К	mol	cd
wielkość	długość	masa	czas	natężenie pradu	temperatura	liczność materii	światłość

Przedrostki jednostek miar																					
mnożnik	10 ²⁴	10 ²¹	10 ¹⁸	10 ¹⁵	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10 ¹	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻²¹	10 ⁻²⁴
nazwa	jotta	zetta	eksa	peta	tera	giga	mega	kilo	hekto	deka		decy	centy	mili	mikro	nano	piko	femto	atto	zepto	jokto
oznaczenie	Υ	Z	Е	Р	T	G	М	k	h	da		d	С	m	μ	n	р	f	а	Z	у

Uwaga: Niektóre wartości stałych fizycznych oraz parametrów astronomicznych podano zaokrąglone z możliwie największą dokładnością – taką, aby ostatnia cyfra zaokrąglenia nie zmieniała się przy uwzględnieniu niepewności pomiaru. Wartości podano na podstawie: M. Tanabashi et al. (Particle Data Group), Physical Review D 98, 030001 (2018) and 2019 update.

Wartości wybranych stałych fizycznych						
prędkość światła w próżni	c = 299 792 458 m/s (wartość dokładna)					
stała Plancka	$h = 6,62607015\cdot10^{-34}\text{J}\cdot\text{s}$ (wartość dokładna)					
ładunek elementarny	$e = 1,602 176 634 \cdot 10^{-19} \text{ C (wartość dokładna)}$					
stała Boltzmanna	$k_B = 1,380 \ 649 \cdot 10^{-23} \ \text{J/K (wartość dokładna)}$					
stała Avogadro	$N_A = 6,022 \ 140 \ 76 \cdot 10^{23} \ \text{mol}^{-1} \ \text{(wartość dokładna)}$					
uniwersalna stała gazowa	R = 8,314 462 618 2 J/(K·mol) (wartość dokładna)					
stała grawitacji	$G = 6,674 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$					
przenikalność magnetyczna próżni	$\mu_0 = 4\pi \cdot 10^{-7} \text{ N/A}^2$					
przenikalność elektryczna próżni, stała elektryczna	$\varepsilon_0 = 8,854 \ 187 \ 81 \cdot 10^{-12} \ \text{C}^2/(\text{N} \cdot \text{m}^2)$ $k = \frac{1}{4\pi\varepsilon_0} = 8,987 \ 551 \ 8 \cdot 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2$					
związek między $c,\mu_0,arepsilon_0$	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$					
masa elektronu	m_e = 9,109 383 7 ·10 ⁻³¹ kg					
masa protonu	m_p = 1,672 621 92 ·10 ⁻²⁷ kg					
masa neutronu	m_n = 1,674 927 49 ·10 ⁻²⁷ kg					
jednostka masy atomowej	1 u = 1,660 539 066 ·10 ⁻²⁷ kg					

Wartości wybranych stałych fizycznych – cd.							
przyśpieszenie ziemskie (standardowe)	g = 9,806 65 m/s 2 (wartość dokładna odpowiadająca przyśpieszeniu na szerokości geograficznej ok. 45 $^\circ$ na poziomie morza)						
stała Wiena	$b = 2,897 771 955 \cdot 10^{-3} \text{ m·K} \text{ (wartość dokładna)}$						
stała Stefana-Boltzmanna	$\sigma = 5,670 \ 374 \ 419\cdot 10^{-8} \ W/(m^2 \cdot K^4)$ (wartość dokładna)						

WYBRANE STAŁE I PARAMETRY ASTROFIZYCZNE						
jednostka astronomiczna	1 au = 1,495 978 707·10 ¹¹ m (wartość dokładna)					
parsek	1 pc = 3,085 677 581 49 ·10 ¹⁶ m (wartość dokładna)					
rok świetlny	1 ly = 0,946 073·10 ¹⁶ m = 0,306 601 pc					
masa Słońca	$M_S = 1,988 \cdot 10^{30} \text{ kg}$					
odległość Słońca od centrum galaktyki	$R_0 \approx 27 \text{ kly}$					
masa Ziemi	$M_Z = 5,972 \cdot 10^{24} \text{ kg}$					
promień równikowy Ziemi	$R_Z = 6,378 \cdot 10^6 \text{ m}$					
stała Hubble'a	$H_0 \approx 70 \text{ (km/s)/Mpc}$					
temperatura promieniowania tła	$T_0 = 2.7 \text{ K}$					

Wartości wybranych jednostek spoza układu SI								
1 eV = 1,602 176 634·10 ⁻¹⁹ J (wartość	0 °C ≡ 273,15 K							
1 atmosfera ≡ 101 325 Pa	1 G ≡ 10 ⁻⁴ T	1 Å = 0,1 nm						

 π = 3,141 592 653 589 793... (liczba pi) e = 2,718 281 828 459 045... (liczba Eulera)