Lenguaje matemático, conjuntos y números

Pregunta 1 (2 puntos)

Sean A y B dos conjuntos arbitrarios. Para cada una de las siguientes afirmaciones demuestre que es verdadera o ponga un contraejemplo para demostrar que es falsa:

- a) $\mathcal{P}(A \cap B) \subset \mathcal{P}(A) \cap \mathcal{P}(B)$
- b) $\mathcal{P}(A) \cap \mathcal{P}(B) \subset \mathcal{P}(A \cap B)$
- c) $\mathcal{P}(A \cup B) \subset \mathcal{P}(A) \cup \mathcal{P}(B)$
- d) $\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$

Solución: Veamos en primer lugar que las afirmaciones de los apartados a) y b) son verdaderas. En efecto:

$$Z \in \mathcal{P}(A \cap B) \iff Z \subset A \cap B \iff Z \subset A \text{ y } Z \subset B$$
$$\iff Z \in \mathcal{P}(A) \text{ y } Z \in \mathcal{P}(B)$$
$$\iff Z \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

También es verdadera la afirmación del apartado d). En efecto:

$$Z \in \mathcal{P}(A) \cup \mathcal{P}(B) \Longrightarrow Z \subset A \text{ o } Z \subset B$$
.

Como $A \subset A \cup B$ y $B \subset A \cup B$, resulta por tanto

$$Z \in \mathcal{P}(A) \cup \mathcal{P}(B) \Longrightarrow Z \subset A \cup B \Longrightarrow Z \in \mathcal{P}(A \cup B)$$
.

La afirmación del apartado c) no es en general verdadera. Veáse el siguiente contraejemplo. Para $A = \{1\}$ y $B = \{5\}$ resulta que $A \cup B = \{1, 5\}$, $\mathcal{P}(A) = \{\emptyset, \{1\}\}$ y $\mathcal{P}(B) = \{\emptyset, \{5\}\}$.

Por tanto, $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{5\}\}\)$ y sin embargo $\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{5\}, \{1, 5\}\}\)$.

Pregunta 2 (3 puntos)

Sea en el conjunto \mathbb{R} de los números reales la relación dada por:

$$x\mathcal{R}y$$
 si y sólo si $x-y \in \mathbb{Q}$

- a) Demuestre que \mathcal{R} es una relación de equivalencia en \mathbb{R} .
- b) Determine las siguientes clases de equivalencia: [0], $\left[\frac{1}{5}\right]$ y $\left[\sqrt{2}\right]$.
- c) Justifique que el conjunto cociente no es un conjunto numerable.

Solución:

a) Veamos que \mathcal{R} es una relación de equivalencia:

Propiedad reflexiva: Para todo $x \in \mathbb{R}$, $x \mathcal{R} x$ pues $x - x = 0 \in \mathbb{Q}$.

Propiedad simétrica: Sean $x, y \in \mathbb{R}$ tales que $x \mathcal{R} y$. Veamos que $y \mathcal{R} x$. En efecto, si $x \mathcal{R} y$ entonces $x - y \in \mathbb{Q}$. En consecuencia, $y - x \in \mathbb{Q}$ pues y - x = -(x - y) y $(\mathbb{Q}, +)$ es un grupo. Por tanto, $y \mathcal{R} x$.

Propiedad transitiva: Para todo $x, y, z \in \mathbb{R}$, si $x \mathcal{R} y$ e $y \mathcal{R} z$, entonces $x - y \in \mathbb{Q}$ e $y - z \in \mathbb{Q}$. En consecuencia $x - z = (x - y) + (y - z) \in \mathbb{Q}$ pues la suma es una operación interna en \mathbb{Q} . Por tanto, $x \mathcal{R} z$.

b) Para la clase de equivalencia de 0 se obtiene:

$$[0] = \{ x \in \mathbb{R} \mid 0 - x \in \mathbb{Q} \} = \mathbb{Q}$$

Como $\frac{1}{5} \in [0]$ resulta que $\left[\frac{1}{5}\right] = [0] = \mathbb{Q}$. Finalmente:

$$[\sqrt{2}] = \{x \in \mathbb{R} \mid \sqrt{2} - x \in \mathbb{Q}\}$$

$$= \{x \in \mathbb{R} \mid x = \sqrt{2} + q, \ q \in \mathbb{Q}\}$$

El conjunto $\{x \in \mathbb{R} \mid x = \sqrt{2} + q, \ q \in \mathbb{Q}\}$ se denota usualmente como $\sqrt{2} + \mathbb{Q}$.

c) Procederemos por reducción al absurdo. Observemos en primer lugar que la clase de cualquier elemento $a \in \mathbb{R}$ es:

$$[a] = \{ x \in \mathbb{R} \mid x = a + q, \ q \in \mathbb{Q} \}$$

En consecuencia, la aplicación f_a de \mathbb{Q} a [a], tal que $f_a(q) = a + q$ para todo $q \in \mathbb{Q}$, es biyectiva. Por tanto la clase de equivalencia de cualquier elemento $a \in \mathbb{R}$ es un conjunto numerable. Por otro lado, \mathbb{R} es la unión de todas las clases de equivalencia. Por reducción al absurdo, si el conjunto cociente fuera numerable, entonces \mathbb{R} sería una unión numerable de clases de equivalencias, por tanto, una unión numerable de conjuntos numerables. Aplicando el apartado iv) de la proposición 5.32 resultaría que \mathbb{R} es numerable, que es falso.

Pregunta 3 (2,5 puntos)

Sea $(A_n)_{n\in\mathbb{N}}$ la sucesión de puntos del eje Ox dada recurrentemente por:

 A_0 es el origen de coordenadas y A_1 es el punto de abscisa 1.

 A_{n+2} es el punto medio del segmento de extremos A_n y A_{n+1} para todo $n \in \mathbb{N}$. Sea a_n la abscisa del punto A_n para todo $n \in \mathbb{N}$.

- a) Exprese a_{n+2} en función de a_{n+1} y de a_n .
- b) Demuestre por inducción que $a_{n+1} = -\frac{1}{2}a_n + 1$ para todo $n \in \mathbb{N}$.

Solución:

a) Como la sucesión de puntos $(A_n)_{n\in\mathbb{N}}$ es del eje Ox, las coordenadas de cada punto A_n son $(a_n,0)$. Al ser A_{n+2} el punto medio del segmento de extremos A_n y A_{n+1} para todo $n\in\mathbb{N}$ resulta que

$$(a_{n+2},0) = \left(\frac{a_{n+1} + a_n}{2}, \frac{0+0}{2}\right)$$

y en consecuencia,

$$a_{n+2} = \frac{a_{n+1} + a_n}{2}$$

para todo $n \in \mathbb{N}$.

- b) Veamos por inducción que $a_{n+1} = -\frac{1}{2}a_n + 1$ para todo $n \in \mathbb{N}$.
 - i) La igualdad es verdadera para n = 0 pues $a_1 = 1$ y $-\frac{1}{2}a_0 + 1 = 0 + 1 = 1$.
- ii) Supongamos que la igualdad es verdadera para n, esto es, $a_{n+1} = -\frac{1}{2}a_n + 1$, y veamos que es cierta para n+1, esto es, $a_{n+2} = -\frac{1}{2}a_{n+1} + 1$. En efecto, de la hipótesis de inducción, $a_{n+1} = -\frac{1}{2}a_n + 1$, se deduce que $a_n = 2 2a_{n+1}$. Por tanto, utilizando el apartado a) se obtiene:

$$a_{n+2} = \frac{a_{n+1} + a_n}{2} = \frac{a_{n+1} + 2 - 2a_{n+1}}{2} = \frac{2}{2} - \frac{a_{n+1}}{2}$$

= $-\frac{1}{2}a_{n+1} + 1$

Pregunta 4 (2,5 puntos)

Sea el número complejo $z = -\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$.

- a) Calcule z^2 en forma binómica.
- b) Exprese z^2 en forma exponencial y deduzca la forma exponencial de z.

Solución:

a)
$$z^2 = \left(-\sqrt{2+\sqrt{2}} + i\sqrt{2-\sqrt{2}}\right)^2 = 2 + \sqrt{2} - (2-\sqrt{2}) - 2i\sqrt{(2+\sqrt{2})(2-\sqrt{2})} = 2\sqrt{2} - 2i\sqrt{2}.$$

b)
$$|z^2| = \sqrt{(2\sqrt{2})^2 + (2\sqrt{2})^2} = \sqrt{16} = 4$$
. Por tanto:

$$z^2 = 4e^{i\frac{7\pi}{4}}$$

El número complejo z es una de las dos raíces cuadradas de z^2 . Las dos raíces cuadradas de z^2 son $2e^{i\frac{7\pi}{8}}$ y $2e^{i\frac{15\pi}{8}}$, pero como z es un punto cuyo afijo está en el segundo cuadrante, se obtiene:

$$z = 2e^{i\frac{7\pi}{8}}$$