НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Электротехника

Лабораторная работа №3 ИССЛЕДОВАНИЕ НЕЛИНЕЙНЫХ ЦЕПЕЙ

Вариант 3R382

Студент: Кирбаба Д.Д.

Группа: R3338

Преподаватель: Китаев Ю.В.

Цель работы

Снятие прямых и обратных вольт-амперных характеристик(ВАХ) диодов.

Ход работы

пп.5,6 - V1=3B max. R1=1 Ом п.7 - V1=6B max. R1=100 Ом

Рис. 1: Начальные данные.

Исследуем вольт-амперные характеристики прямого прохода диодов SB320 и 1N4001GP, используя данную схему:

Рис. 2: Схема моделирования прямого прохода.

Последовательно задавая напряжение на источнике V1 от 0.2~V до 3~V с шагом 0.2~V будем производить измерения напряжения и силы тока на диоде:

	SB3	320	1N4001GP		
V_v1	V_d I_d		V_d	I_d	
V	V	Α	V	Α	
0,2	0,192	0,000767	0,2	0,000016	
0,4	0,275	0,125	0,4	0,000405	
0,6	0,304	0,296	0,591	0,008704	
0,8	0,322	0,478	0,727	0,073	
1	0,336	0,664	0,796	0,204	
1,2	0,347	0,853	0,839	0,361	
1,4	0,357	1,043	0,87	0,53	
1,6	0,366	1,234	0,895	0,705	
1,8	0,375	1,425	0,917	0,883	
2	0,383	1,617	0,936	1,064	
2,2	0,391	1,809	0,954	1,246	
2,4	0,398	2,002	0,97	1,43	
2,6	0,405	2,195	0,985	1,615	
2,8	0,412	2,388	1	1,8	
3	0,418	2,582	1,014	1,986	

Рис. 3: Таблица измерений при прямом проходе.

По данным значениям построим график зависимости тока I_d от напряжения V_d на диоде при различных значениях входного напряжения V_v1 :

Рис. 4: ВАХ прямого прохода диодов SB320 и 1N4001GP.

Таким же образом исследуем поведение BAX при прямом проходе следующих диодов: LED_{red} и LED_{blue} . Для этого установим сопротивление $100\ Ohm$:

Рис. 5: Схема моделирования прямого прохода.

Последовательно задавая напряжение на источнике V1 от 0.4~V до 6~V с шагом 0.4~V будем производить измерения напряжения и силы тока на диоде:

	LED_red		LED_blue		
V_v1	V_d	I_d	V_d	I_d	
V	V	Α	V	Α	
0,4	0,4	0	0,4	0	
0,8	0,8	0,111*10^-6	0,8	0,111*10^-6	
1,2	1,2	0,222*10^-6	1,2	0	
1,6	1,582	0,181*10^-3	1,6	0,222*10^-6	
2	1,723	2,767*10^-3	2	0,222*10^-6	
2,4	1,766	6,338*10^-3	2,4	0,444*10^-6	
2,8	1,79	0,01	2,799	5,529*10^-6	
3,2	1,807	0,014	3,154	0,457*10^-3	
3,6	1,82	0,018	3,301	2,995*1-^-3	
4	1,83	0,022	3,36	6,404*10^-3	
4,4	1,839	0,026	3,395	0,01	
4,8	1,846	0,03	3,419	0,014	
5,2	1,853	0,033	3,438	0,018	
5,6	1,858	0,037	3,454	0,021	
6	1,864	0,041	3,467	0,025	

Рис. 6: Таблица измерений при прямом проходе.

По данным значениям построим график зависимости тока I_d от напряжения V_d на диоде при различных значениях входного напряжения V_v1 :

Рис. 7: ВАХ прямого прохода диодов LED_{red} и LED_{blue} .

Диапазоны предельно допустимых значений:

	SB320	1N4001GP	LED_{red}	LED_{blue}
$I_{d_{max}}, A$	3	1	0.03	0.03
$V_{d_{max}}, V$	200	1.1	2.2	4

Отметим выпадающие из диапазона точки на ВАХ:

Рис. 8: Прямые ВАХ с диапазоном.

Теперь проведем такие же манипуляции для исследования обратных ВАХ данных диодов.

Необходимо только подавать напряжение в обратной полярности и убрать резистор:

Рис. 9: Схема моделирования обратного прохода диодов.

Последовательно задавая напряжение на источнике V1 от 0.4~V до 6~V с шагом 0.4~V будем производить измерения напряжения и силы тока на диодах:

	SB320		1N4001GP		LED_red		LED_blue	
V_v1	V_d	I_d	V_d	I_d	V_d	I_d	V_d	I_d
V	V	uA	V	uA	V	uA	V	uA
0,4	-0,4	-9,825	-0,4	-0,666	-0,4	0	-0,4	0
0,8	-0,8	-9,881	-0,8	-0,777	-0,8	-0,111	-0,8	-0,111
1,2	-1,2	-9,77	-1,2	-0,888	-1,2	-0,222	-1,2	-0,222
1,6	-1,6	-9,992	-1,6	-0,888	-1,6	-0,222	-1,6	-0,222
2	-2	-9,992	-2	-0,888	-2	0	-2	0
2,4	-2,4	-10	-2,4	-0,888	-2,4	0	-2,4	0
2,8	-2,8	-11	-2,8	-0,888	-2,8	-0,444	-2,8	-0,444
3,2	-3,2	-10	-3,2	-1,332	-3,2	-0,444	-3,2	-0,444
3,6	-3,6	-10	-3,6	-0,888	-3,6	-0,444	-3,6	-0,444
4	-4	-11	-4	-0,888	-4	-1,332	-4	-1,332
4,4	-4,4	-9,77	-4,4	-0,888	-4,4	-0,888	-4,4	-0,888
4,8	-4,8	-11	-4,8	-0,888	-4,8	0	-4,8	0
5,2	-5,2	-9,77	-5,2	-1,776	-5,2	0	-5,2	0
5,6	-5,6	-11	-5,6	-0,888	-5,6	-0,888	-5,6	-0,888
6	-6	-11	-6	-0,888	-6	-0,888	-6	-0,888

Рис. 10: Таблица измерений при обратном проходе.

По данным значениям построим график зависимости тока I_d от напряжения V_d на диодах при различных значениях входного напряжения V_v1 :

Рис. 11: ВАХ обратного прохода диодов.

Получим ВАХ с помощью осциллографа:

Рис. 12: Схема моделирования ВАХ с помощью осциллографа.

Рис. 13: ВАХ с осциллограммы.

Рис. 14: ВАХ с осциллограммы.

Данные BAX совпадают с построенными поточечно графиками в предыдущим заданиях.

В заключительном задании необходимо рассчитать величину ограничевающего ток через светодиод(возьмем исследованный выше LED_{red}) резистора R_{load} , с учетом заданных значений яркости и справочных данных $I_{d_{max}}=0.03~A,\,V_{d_{max}}=2.2~V,\,P_{d_{max}}=0.066~W.$

Рис. 15: Схема включения светодиода.

Рис. 16: Цветовая классификация.

Так как мы выбрали красный светодиод, то по цветовой классификации он имеет прямое падение напряжения в пределах $[1.6;\ 2.2]\ V.$

Необходимость ограничивающего резистора R_{load} (параметры которого необходимо рассчитать) обуславливается тем, что напрямую светодиод нельзя подключать к источнику питания, так как при значительных напряжениях светодиод может выйти из строя. Также необходимо, чтобы рассеиваемая мощность светодиодом не превышала $P_{d_{max}}$.

Итого, рабочая область светодиода будет ограничена так:

Рис. 17: Рабочая область светодиода.

Рассчитаем рабочий ток I_w и рабочее напряжение V_w на светодиоде. Пусть $E_{in}=2.15\ V,$ тогда по 2 закону Кирхгофа:

$$E_{in} = I_w R_{load} + V_w \Rightarrow I_w = \frac{E_{in} - V_w}{R_{load}},$$

построим данную прямую по двум точкам: первая - $(V_1=2.15\ V,\ I_1=0\ A)$, для второй точки зададимся током, не превышающим $I_{d_{max}}$, например $I_2=0.015\ A$. Тогда для второй точки получаем:

$$V_2 = 0 \ V, \ I_2 = \frac{E_{in}}{R_{load}} = 0.015 \Rightarrow R_{load} = 143, 3 \ Ohm.$$

Проведем на графике данную *нагрузочную прямую* по вычисленным 2-м точкам и отметим точку пересечения её с ВАХ - *рабочая точка*.

Рис. 18: Нагрузочная прямая с рабочей точкой.

Координаты рабочей точки: $V_w=1.73490982\ V,\ I_w=0.00351158\ A.$ Теперь вычислим сопротивление:

$$R_{load} = \frac{E_{in} - V_w}{I_w} = 118.2 \ Ohm.$$

Выводы

В данной лабораторной работе исследовались диоды. Диод - двухэлектродный электронный компонент, обладающий различной электрической проводимостью в зависимости от полярности приложенного к диоду напряжения. Диоды обладают нелинейной несимметричной вольт-амперной характеристикой.

Соответственно в первых двух частях работы требовалось смоделировать прямой и обратный проход 4 видов диодов и построить их ВАХ. Данные ВАХ действительно нелинейны и несимметричны. Это происходит из-за того, что при приложении прямого напряжения (прямой проход) диод открыт (через диод течёт прямой ток, диод имеет малое сопротивление), а если к диоду приложено обратное напряжение (катод имеет положительный потенциал относительно анода), то диод закрыт (сопротивление диода велико, обратный ток мал, и может считаться равным нулю во многих практических случаях).

В последней части работы проивзодился расчет каскада подключения светодиода (было найдено сопротивление ограничевающего резистора в цепи). Рабочая точка (определяющая режим работы прибора по постоянному току) была найдена как пересечение нагрузочной линии и ВАХ светодиода. Далее, исходя из 2 закона Кирхгофа было найдено значение сопротивления.