### **Modeling of Complex Networks**

**Lecture 4: Internet** 

-- Topology and Modeling

S8101003Q-01(Sem A, Fall 2019)

Instructor: Aaron, Haijun Zhang



## **Network Topology Modeling**

- Graph representations
- AS-level:
- nodes are domains (AS)
- edges are peering relationships
- Router-level:
- nodes are routers
- edges are one-hop IP connections
- PC-level: not manageable today
- nodes are PCs
- edges are optical fibers





## Representative Models

Waxman (Waxman 1988)
 Router-level model capturing locality

■ Transit-Stub (Zegura 1997), Tiers (Doar 1997) Router level model capturing hierarchy

■ Inet (Jin 2000) AS-level model based on degree sequence

■ BRITE (Medina 2000)

AS-level model based on evolution

■ BA-Model (Barabasi-Albert 1999-2000)

AS-level model based on degree sequence and evolution

➤ HOT (CalTech 2004-2005)

**Heuristic Optimized Tradeoffs** 

MLW (Fan-Chen, 2007-2010)
Multi-Local-Worlds

## **Router-Level Internet Topology**

- A common software tool to represent the router-level Internet topology by a graph is the *traceroute* (Unix traceroute or Windows NT tracert.exe, free download), or its <u>IPv6</u> version *traceroute6(8)*
- The <u>traceroute</u> uses hop-limited probe, which consists of a hop-limited IP (Internet Protocol) packet and the corresponding ICMP (Internet Control Message Protocol) response, to probe every possible IP address and record every reached router and the corresponding edges.

## **Router-Level Internet Topology**

- Some analysis on the real data collected during October-November of 1999 shows that in the router-level of the Internet topology:
- > Basically, does not have hierarchical structure
- power-law node-distribution is not prominent but Weibull distribution seems better, yet the latter can only reflect Transit but not Stub subnets
- Some analytical results on the real data collected during December 2001 -- January 2002 show that the Weibull distribution can better fit the complementary cumulative distribution function of router out-degree than the Pareto and power-law distributions

#### **Weibull Distribution**



 $\chi$ 

$$f_k(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$$

k and  $\lambda$  are constant parameters

9/23/2019 6

#### **Pareto Distribution**





k and  $\lambda$  are constant parameters

# First Generation of Internet Topology Models

1980s

#### **Waxman Model**

#### Waxman modeling algorithm:

- Start with *N* nodes, randomly placed on a lattice, one in each small square.
- Each step, for every pair of two nodes, u and v, and then connect them by an edge according to the following probability (called Waxman probability):

$$P(u,v) = \alpha e^{-d(u,v)/(\beta L_{\text{max}})}$$

where d(u,v) is the distance,  $\alpha$  is the average number of edges,  $L_{max}$  is the longest distance,  $\beta$  is a parameter determined by the average path length, with  $0 < \alpha$ ,  $\beta \le 1$ 

## **Waxman Network Model**



Illustration of a generated network

#### **Waxman Model**



$$N = 150$$
,  $\alpha = 0.25$ ,  $\beta = 0.3$  (Waxman, 1988)



Degree distribution (~Weibull)

(Medina et al., 2000)

## Second Generation of Internet Topology Models

1990s

## **Transit-Stub Topology**



Illustration of network structure from Transit-Stub topology generator

## **Transit-Stub Topology Generator**

- Software
- Generate all Transit domains
- Use a random-graph generation method (e.g., the Waxman algorithm),
   where each node represents a Transit domain.
- Generate nodes in each Transit domain by adding some nodes around the Transit point, and then connect these nodes with edges at random.
- Generate Stubs for each Transit:
- This is similar to the above Transit-domain generation, but at a lower level.
- Connect every Stub domain to a Transit domain: Randomly select one node from a Stub domain and then connect this node to the Transit domain by an edge.
- Generate LANs for each Stub:
- This is similar to the above Transit-Stub generation, but at the lowest level.
- They all have star-shaped structures.
- Connect each LAN to a Stub domain.

## **Transit-Stub Topology Generator**



A typical Transit-Stub topology

(Calvert, 1997)

## **Transit-Stub Topology Generator**



Out-degree distribution of a Transit-Stub network with 6660 nodes (Medina et al., 2000)

16

# Third Generation of Internet Topology Models

2000s

#### **Inet**

- Router-level model and AS-level model
- Input:
  - Total number of nodes
  - Percentage of degree-one nodes
- Degree sequence: power-law





 $P(k) \propto k^{-\gamma}$  $\gamma = 2.14 \sim 2.21$ 

#### Inet

- $\blacksquare$  From the real data set, let  $V_I$  be the set of all degree-1 nodes, typically has about 30% of the total (green nodes). Let the rest be  $V_2$  (pink nodes).
- Generate a spanning tree consisting of nodes from  $V_2$

To generate the spanning tree in a network G, start from empty initial conditions, and then a node i is connected to a node j, both in  $V_2$ , according to the following (preferential attachment) probability:

$$\Pi(i,j) = \frac{w_i^J}{\sum_{k \in G} w_i^k} \quad w_i^J \text{--weigt (reverse distance) from } i \text{ to } j$$
Connect the degree-1 nodes from  $V_I$  to the spanning

- tree, according to the above same probability.
- Connect high-degree nodes to those available nodes without connections to  $V_{I}$ , also according to the above same probability (blue dashed lines).



19

#### **Inet**

- University of Michigan (2002)
- Inet3.0: <u>Program</u>
- Simulations:
- 6700 nodes (Feb. 2000), 8880 nodes (Feb. 2001) and 12700 nodes (Feb. 2002)



#### **BRITE**

- (Boston university Representative Internet Topology gEnerator)
- Software
- Framework:
- Set a lattice on the plane, divide the lattice into some large squares, and then further divide all large squares into small squares.
- According to a certain (e.g., uniform or Pareto) distribution, determine how many nodes will be assigned into each large square.
- > Then, in each large square, randomly pick a small square and assign at most one future node to it (next page shows how to add future nodes).



Average nodes: (a) Uniform distribution 9/23/2019

(b) Pareto distribution

#### Now, start to add nodes:

- Initially, generate a random graph with  $m_0$  nodes
- Then, add more nodes to the graph gradually.
- ❖ The way to connect nodes is determined by two parameters: Incremental Growth (IG) and Preferential Connectivity (PC):
  - if IG = 0 then put m nodes onto the plane simultaneously, and randomly pick one node among them and then connect it to the other nodes;
  - ightharpoonup if IG = 1 then put one node onto the plane each time, and connect this new node to m existing nodes in the network.
- $\clubsuit$  The way to establish connections is based on the PC parameter value:
  - ightharpoonup if PC = 0 then follow the Waxman probability to connect the new node to the existing nodes;
  - $\triangleright$  if PC = 1 then follow the BA linear preferential attachment probability;
  - ightharpoonup if PC = 2 then use the following weighted preferential attachment probability:

$$\Pi(k_i) = \frac{w_i k_i}{\sum_{j \in C} w_j k_j}$$

where  $k_i$  is the degree of node i,  $w_i$  is the Waxman probability, and C is the set of all m nodes being connected to node i.

#### **BRITE**



Node-degree distribution - 5000 router nodes (Di Fatta et al., 2001)

## **Geographic Layout of the Internet**



(a) Router density (b) Human population density (Yook et al., 2002)

## **Geographic Layout of the Internet**

Correlation between router interfaces and human population

|               | Population (Millions) | Interface | People per interface |
|---------------|-----------------------|-----------|----------------------|
| Australia     | 18                    | 18,277    | 975                  |
| Japan         | 136                   | 37,649    | 3,631                |
| Mexico        | 154                   | 4,361     | 35,534               |
| USA           | 299                   | 282,048   | 1,061                |
| South America | 341                   | 10,131    | 33,752               |
| W. Europe     | 366                   | 95,993    | 3,817                |
| Africa        | 837                   | 8,379     | 100,011              |

Data source

## GeoBA model (Yook et al., 2002)

- Starting with a lattice consisting of many small squares
- Assign to each square a user population density  $\rho(x,y)$
- At each step, add a node i into a square centered at (x,y) in such a way that the probability of adding node i to this square is proportional to its user population density
- This new node will bring in m new edges, and each edge connects to an existing node j of degree  $k_j$ , with geographic distance  $d_{ij}$  to node i, according to the probability (nonlinear preferential attachment)

$$\Pi(k_j, d_{ij}) \sim \frac{k_j^a}{d_{ij}^\sigma}$$

where  $\alpha$  and  $\sigma$  are constant parameters.

#### GeoBA model: Simulation Results



 $\alpha = 1$  gives power-law

# Limitation of most scale-free Internet models

Preferential Attachment:

$$\Pi_i = \frac{k_i}{\sum_j k_j} \qquad \text{(or, its variants)}$$

- They all use global preferential attachment –
- Every newly added node requires the connectivity information of all nodes in the network
- A real network only uses local preferential attachment with information of only some nodes in the network

# Question: How to describe a topology of the AS-level Internet with localization property?



- The Internet consists of several sub-networks: each subnetwork is called a "local-world"
- The newly added node only needs connectivity information of those nodes in a local-world
- The connections among different local-worlds are sparse
- The connections of nodes within the same local-world are dense

### Multi-Local-World (MLW) Model

#### This model includes 5 events:

- Addition of local-worlds
- Addition of new nodes to local-worlds
- Addition of edges of new nodes to local-worlds
- Deletion of edges within a local-world
- Addition of edges among local-worlds





Oregon data (1998)

Start with m isolated local-worlds, with  $m_0$  nodes and  $e_0$  edges in each local-world



#### **Example:**

Start with m=3 local-worlds (A, B, C), with  $m_0=3$  nodes (black circles) and  $e_0=2$  edges in each local-world

Each local-world has a unique identifier (red circle)

At each step, perform one of the five operations:

(i) With probability p a new local-world is created, which contains  $m_0$  nodes and  $e_0$  edges. Meanwhile, a unique identifier is generated for this new local-world.

Local world D is created with probability *p* 

(with  $m_0$ =3 nodes (black circles) and  $e_0$ =2 edges)



(ii) With probability q a new node is added to an existing local-world, which has  $m_1$  edges with the nodes within the same local-world:

First, a local-world  $\Omega$  is selected at random.

Then, a node to which the new node connects in the local-world  $\Omega$  is chosen with probability

$$\Pi(k_i) = \frac{k_i + \alpha}{\sum_{j \in \Omega} (k_j + \alpha)} \tag{1}$$

(Step (ii) continued)

In (1),  $\Omega$  is the  $\Omega$ -th local-world in which node i locates, and the parameter  $\alpha > 0$  represents the "attractiveness" of node i which is used to govern the probability for "young" nodes to get new edges.

This process is repeated  $m_1$  times.

# MLW Model (Step (ii) continued)



Example (continued) A new node j joins the network. First, it selects the local-world C where it will locate, and then connects an existing node  $(m_I=1)$  in this local-world with preferential attachment probability given by (1)

(iii) With probability r,  $m_2$  edges are added to a chosen local-world:

First, a local-world  $\Omega$  is selected at random.

Then, one end of an edge is chosen at random,

while the other end of the edge is selected by (1).

This process is repeated  $m_2$  times.

(Step (iii) continued)



#### **Example:**

First, local-world C is chosen at random. Then  $m_2$ =2 edges are added to this local-world.

One end of an edge is selected at random, while the other end of the edge is chosen with a probability given by (1)

(iv) With probability s,  $m_3$  edges are deleted within a chosen local-world:

First, a local-world  $\Omega$  is selected at random.

Then, one end of an edge is chosen at random, while the other end of the edge is selected with probability

$$\Pi'(k_i) = \frac{1}{N_O(t) - 1} (1 - \Pi(k_i))$$
 (2)

where  $N_{\Omega}(t)$  represents the number of nodes within the  $\Omega$ -th local world, and  $\prod (k_i)$  is determined by (1)

This process is repeated  $m_3$  times.

38

(Step (iv) continued)



#### **Example:**

First, local-world C is chosen at random. Then  $m_3$ =1 edge is deleted within this chosen localworld.

An end of the edge is selected at random, while the other end of the edge is chosen with probability given by (2)

(v) With probability  $u_r$ , a selected local-world has  $m_4$  edges with the other existing local-worlds:

First, randomly select a local-world and a node in this local-world with probability given by (1).

Then, the selected node is acted as one end of an edge, while the other node of the edge, which is in another local-world chosen at random, is selected with probability given by (1).

This process is repeated  $m_4$  times.

(Step (v) continued)



#### **Example:**

Depending on the probability u,  $m_4$ =1 link is added between two nodes in two different localworlds.

Both ends of the link are chosen with preferential attachment according to a probability given by (1)

9/23/2019 4.

# Illustration of a Resultant Network



#### Degree Distribution has a power-law form:

$$P(k) = \frac{t}{a(3m+t(1+2p))} (m_1 + b/a)^{1/a} (k+b/a)^{-\gamma}$$

#### Here:

$$0 \le p, r, s, u \le 1, \quad 0 < q \le 1, \quad p + q + r + s + u = 1$$
  
 $\gamma = 1 + 1/a$ 

$$a = \frac{qm_1}{c} + \frac{rm_2(q + m_0p - p)}{(q + m_0p)c} + \frac{sm_3p}{(q + m_0p)c} + \frac{2um_4}{c}$$

$$b = \frac{q\alpha m_1}{c} + \frac{rm_2}{(q + m_0p)} + \frac{rm_2(q + m_0p - p)\alpha}{(q + m_0p)c} + \frac{sm_3p\alpha}{(q + m_0p)c} - \frac{2sm_3}{(q + m_0p)} + \frac{2um_4\alpha}{c}$$

### **Evaluating the Internet models**

- Internet Models at the AS-level:
- Waxman model
- Transit-stub model

Poisson distribution

- Fluctuation-driven model
- BA model
- Generalization BA (GBA) model
- > Fitness model
- HOT model

Power-law distribution

Fluctuation-driven model - Exponentially growing network

- > BA model
- Generalization BA (GBA) model
- > Fitness model
- HOT model

Linearly growing network



Linearly growing network

Fluctuation-driven model is NOT suitable for the AS-level Internet

**Number of Nodes** 

**Data** (from 2004 to 2010)



Internet snapshot on May 15, 2005

#### Power Exponent:

r=2.2 for real Internet

r=3.0 for BA model

r=1.5 for HOT model

BA and HOT models can NOT capture the scale-free feature of the Internet



**Distance distribution** of the Internet and of different scale-free models



BA, GBA, Fitness, and **HOT** models can NOT capture the small-world feature of the

**Clustering coefficients** as functions of the degree for the real Internet and the BA, GBA, Fitness, HOT, and MLW models.



Comparison of the **average shortest path-lengths** in the giant component for the real Internet and the five models studied.

### Comparison: Four Models vs Real

|                    | ВА    | GBA   | Fitness | MLW    | Real<br>Internet<br>(May 15,2005) |
|--------------------|-------|-------|---------|--------|-----------------------------------|
| N                  | 21999 | 21999 | 21999   | 21999  | 21999                             |
| $\overline{C}$     | 0.003 | 0.01  | 0.01    | 0.24   | 0.46                              |
| $\bar{d}$          | 4.14  | 3.49  | 3.71    | 3.45   | 3.49                              |
| γ                  | 3     | 2.69  | 2.45    | 2.36   | 2.18                              |
| $\lambda_{ m max}$ | 27.82 | 62.83 | 39.16   | 111.87 | 141.12                            |

# Comparison of MLW Model with Other Models

|               | Structural Features of the Internet |                     |  |  |  |
|---------------|-------------------------------------|---------------------|--|--|--|
|               | Scale-free feature                  | Small-world feature |  |  |  |
| BA model      | Yes                                 | No                  |  |  |  |
| EBA model     | Yes                                 | No                  |  |  |  |
| Fitness model | Yes                                 | No                  |  |  |  |
| HOT model     | Yes                                 | No                  |  |  |  |
| MLW model     | YES                                 | YES                 |  |  |  |

MLW model is better than the BA, GBA, and Fitness models in capturing the scale-free and small-world features of the Internet

# Further Evaluating the Internet Models

#### **Summary -**

MLW model is better than BA, GBA, Fitness, and HOT models in capturing the scale-free and small- world features of the Internet

#### **Topological Statistics -**

degree distribution, power-law exponent,
distance distribution, clustering coefficient,
average shortest path-length, hierarchical clustering
But what about performances?

### Comparison: What about performances?

### Robustness against random attacks



 $S_f$ : the size of the largest component after a fraction of nodes, f, in the network are randomly removed.  $S_f / S_0$  measures the capability of the network in which nodes still can communicate each other after the f portion of nodes has been randomly removed.

### Comparison: What about performances?

- Canonical variable analysis
- Bayesian decision theory

Topological measurements are projected into a reduced dimensional feature space by using canonical analysis, so that the Bayesian decision method can be applied onto a more representative feature space in a lower dimension.

L. F. Costa, F. A. Rodrigues, G. Travieso, P. R. V. Boas, Advances in Physics 56(2007): 167

# Comparison: Bayesian Test

Consider: average clustering coefficient, average distance, and largest nonzero eigenvalue of adjacency matrix



Bayesian decision method



MLW model is most compatible with the Internet

### Comparison: Hierarchical Clustering Algorithm

Applying the hierarchical clustering algorithm to evaluate different Internet models

#### **Principle:**

The sooner two networks are merged, the more similar they are

L. F. Costa, F. N. Silva, J. Stat. Phys. 125(2006): 841



MLW model is closest to the Internet

### Conclusions

- MLW is the best model for the AS-level Internet as compared to Fluctuation-Driven, BA, EBA, and Fitness models
- These comparisons were performed only based on part of the Internet features:
- degree distribution
- distance distribution
- average path-length
- clustering coefficient
- robustness against random attack
- The MLW model is rather complicated
- More comparisons are needed
- Internet is too complex to comprehend. As of today, there is no commonly-agreed model of the Internet.

→ Good models are badly needed ....