

Obtención de raíces Método de bisección

Claudia Ballester Niebla, Carlos Herrera Carballo, Cathaysa Pérez Quintero

Grupo (1 | *E*)

 $T\'{e}cnicas$ Experimentales. 1^{er} curso. 2^{do} cuatrimestre

Lenguajes y Sistemas Informáticos

Facultad de Matemáticas

Universidad de La Laguna

Índice general

1.	Mot	tivación y objetivos	1
	1.1.	Objetivo Principal]
		Objetivo Específico	
2.		damentos teóricos	2
	2.1.	Primer apartado del segundo capítulo	2
		Segundo apartado del segundo capítulo	
3.			•
	3.1.	Descripción de los experimentos	٠
		Descripción del material	
		Resultados obtenidos	
		Análisis de los resultados	
4.	Con	clusiones	-
Α.	Títı	ılo del Apéndice 1	7
	A.1.	Algoritmo XXX	7
		Algoritmo YYY	
в.	Títu	ılo del Apéndice 2	8
	B.1.	Otro apendice: Seccion 1	8
		Otro apendice: Seccion 2	
\mathbf{Bi}	bliog	grafía	8

Índice de figuras

3.1.	Ejemplo de	figura .																													4	
------	------------	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--

Índice de cuadros

3.1.	Resultados experimentales de tiempo	(s)	уу	velocidad	(m)	$/\mathrm{s})$			 		3
3.2.	Mi primer cuadro de datos								 		4

Motivación y objetivos

En la guía docente de la asignatura de Técnicas Experimentales de Primero de Grado en Matemáticas surge como una de las competencias básicas la realización de un experimento del que posteriormente se realizará un informe y una presentación. Para ello, los alumnos deben emplear las herramientas informáticas explicadas durante las clases.

De este modo, el alumno debe analizar, sintetizar, evaluar y describir los datos obtenidos del estudio de la función propuesta. Escoger un intervalo específico, realizar las operaciones correspondientes al método de bisección y obtener un resultado que será, posteriormente, evaluado y analizado cuantitativamente de forma experimental. Representar gráficamente los resultados obtenidos, sintetizándolos y exponiéndolos de forma objetiva. Utilizar herramientas informáticas, programando en un lenguaje relevante para el cálculo científico (python, LATEX, beamer).

- Objetivo principal: Implementación con Python del método de bisección.
- Objetivo específico: Cómo se aproximan las raíces de una función, mediante el método de bisección.

1.1. Objetivo Principal

El objetivo principal es implementar el algoritmo del método de bisección en un intervalo [a,b], tal que f(a) * f(b) < 0:

- 1. Se toma $c = \frac{(b-a)}{2}$
- 2. Si $b-a \leq error$ se acepta c como la raíz y se para.
- 3. Si $f(b) * f(c) \le 0$, se toma a = c, por el contrario hacer b = c.

1.2. Objetivo Específico

Mediante el método citado obtenemos la raíz única (x = 0) de la función:

$$f(x) = 5^x - 5$$

Fundamentos teóricos

En este capítulo se han de presentar los antecedentes teóricos y prácticos que apoyan el tema objeto de la invetigación.

2.1. Primer apartado del segundo capítulo

Primer párrafo de la primera sección. En LATEX [4] es sencillo escribir expresiones matemáticas como $a = \sum_{i=1}^{10} x_i^3$ y deben ser escritas entre dos símbolos \$. Los superíndices se obtienen con el símbolo ^, y los subíndices con el símbolo _. Por ejemplo: $x^2 \times y^{\alpha+\beta}$. También se pueden escribir fórmulas centradas:

$$h^2 = a^2 + b^2$$

2.2. Segundo apartado del segundo capítulo

Primer párrafo de la segunda sección.

Procedimiento experimental

Este capítulo ha de contar con seccciones para la descripción de los experimentos y del material. También debe haber una sección para los resultados obtenidos y una última de análisis de los resultados.

3.1. Descripción de los experimentos

bla, bla, etc.

3.2. Descripción del material

bla, bla, etc.

3.3. Resultados obtenidos

bla, bla, etc.

$ \begin{array}{c} \text{Tiempo} \\ (\pm \ 0.001 \ \text{s}) \end{array} $	$egin{array}{c} ext{Velocidad} \ (\pm \ 0.1 \ ext{m/s}) \end{array}$
1.234	67.8
2.345	78.9
3.456	89.1
4.567	91.2

Cuadro 3.1: Resultados experimentales de tiempo (s) y velocidad (m/s)

3.4. Análisis de los resultados

bla, bla, etc.

Nombre del alumno

Figura 3.1: Ejemplo de figura

Nombre	Edad	Nota
Pepe	24	10
Juan	19	8
Luis	21	9

Cuadro $3.2\!\colon \mathrm{Mi}$ primer cuadro de datos

Conclusiones

bla, bla, bla, etc.

Apéndice A

Título del Apéndice 1

A.1. Algoritmo XXX

A.2. Algoritmo YYY

Apéndice B

Título del Apéndice 2

B.1. Otro apendice: Seccion 1

Texto

B.2. Otro apendice: Seccion 2

Texto

Bibliografía

- [1] Anita de Waard. A pragmatic structure for research articles. In *Proceedings of the 2nd international conference on Pragmatic web*, ICPW '07, pages 83–89, New York, NY, USA, 2007. ACM.
- [2] J. Gibaldi and Modern Language Association of America. *MLA handbook for writers of research papers*. Writing guides. Reference. Modern Language Association of America, 2009.
- [3] G.D. Gopen and J.A. Swan. The Science of Scientific Writing. *American Scientist*, 78(6):550–558, 1990.
- [4] Leslie Lamport. \(\mathbb{P}T_EX: A Document Preparation System. \) Addison-Wesley Pub. Co., Reading, MA, 1986.
- [5] Coromoto León. Diseño e implementación de lenguajes orientados al modelo PRAM. PhD thesis, 1996.
- [6] Guido Rossum. Python library reference. Technical report, Amsterdam, The Netherlands, The Netherlands, 1995.
- [7] Guido Rossum. Python reference manual. Technical report, Amsterdam, The Netherlands, The Netherlands, 1995.
- [8] Guido Rossum. Python tutorial. Technical report, Amsterdam, The Netherlands, The Netherlands, 1995.
- [9] ACM LaTeX Style. http://www.acm.org/publications/latex_style/.