浙江大学 2017 - 2018 学年春夏学期

《 量子力学 I 》课程期末考试试卷

课程号: __06120991__, 开课学院: __物理学系____

考试试卷: A 卷、B √卷 (请在选定项上打 √)

考试形式:闭√、开卷(请在选定项上打√),允许带_计算器_入场

考试日期: 2018 年 6 月 28 日, 考试时间: 90 分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:				*号:_				
题序		1	三	四	五	六	总 分	
得分								
评卷人								

可能会用到的物理常数:

电子电荷 e=1.602×10⁻¹⁹ C

普朗克常量 $h = 6.63 \times 10^{-34}$ Js

Rydberg 常数 $R = 1.097 \times 10^7 m^{-1}$

- 一. $(20\ \beta)$ 一个质量为m的粒子在一维宽度为a的无限深方势阱: $V(x) = \{0,\ 0 \le x \le a,\ p$ 运动,求(1)第一激发态的位置期望值 $\langle x \rangle$; (2)第一激发态的位置方差 σ_x ; (3)第n个本征态的能量。
- 二. (20~分) 谐振子相干态: 利用公式 $a_{\pm}=\frac{1}{\sqrt{2\hbar m\omega}}(\mp ip+m\omega x)$ 证明对任意一个谐振子相干态满足 $\sigma_x\sigma_p=\hbar/2$ 。

三. (10 分)氢原子跃迁光谱: (1)计算氢原子从 n=4 的激发态直接跃迁到基态所放出光子的能量; (2)计算这个能量对应的光子频率。

四. (20分)自旋与观测量: (1)写出自旋算符的 Pauli 矩阵 σ_x , σ_y , σ_z ; (2)已知一个状态在 σ_z 表象中可以用 $\frac{1}{\sqrt{2}}\binom{1}{1}$ 表示,问在这个态中观测 σ_x 得到的可能值是什么,其几率分别是多少? (3)如果在态 $\frac{1}{\sqrt{2}}\binom{1}{1}$ 观测得到 $\sigma_z = 1$,请问观测后的波函数是什么?

五. $(10\, \mathcal{G})$ 原子中有两个价电子,在能级 E_{nl} 上,LS 耦合时,证明L+S为偶数。

六. $(20\,

ota)$ 原子填充的 Hund 规则: 在满足 Pauli 不相容原理的前提下,电子填充按顺序满足以下规则: (1) 同等条件下,总自旋S最大的态具有最低的能量; (2) 对于给定的自旋,总轨道角动量L最大的态具有最低的能量; (3) 对于一个子壳层(n,l),在填充电子数少于半满电子数时,总角动量 J=L+S; 但填充电子数超过一半时,J=|L-S|。根据给出的原子电子组态用 Hund 规则写出以下原子的基态构形 $^{2S+1}L_J$: (1) H: $(1s)^1$; (2) O: $(He)(2s)^2(2p)^4$; (3) P: $(Ne)(3s)^2(3p)^3$; (4) Ni: $(Ar)(4s)^2(3d)^8$