# 

# 1 Vecteurs, généralités



## Définition: translation

Soit P et P' deux point distincts du plan.

On appelle **translation** une transformation qui envoie P sur P' en faisant glisser P vers P' suivant une droite.

Cette transformation se caractérise par trois critères :

- $\implies$  la direction : c'est la droite suivant laquelle on se déplace, la droite (PP').
- $\implies$  le sens : on part de P pour directement aller vers P'
- $\implies$  la longueur du déplacement : la longueur du segment [PP'].



#### Définition : vecteur

Soit t la translation qui envoie  $A \operatorname{sur} A'$ ,  $B \operatorname{sur} B'$  et  $C \operatorname{sur} C'$ .

Les couples (A; A'), (B; B') et (C; C') définissent un vecteur  $\vec{u}$  caractérisé par :

- $\implies$  une norme : la longueur AA' = BB' = CC'

Ce vecteur  $\vec{u}$  a trois **représentants**, des vecteurs qui ont les mêmes caractéristiques que  $\vec{u}: \overrightarrow{AA'}, \overrightarrow{BB'}$  et  $\overrightarrow{CC'}$ .

On peut écrire :

$$\vec{u} = \overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{CC'}$$





# Définition : égalité de deux vecteurs

Deux vecteurs sont égaux si et seulement si ils ont même direction, même norme, même longueur.



## Propriété: égalité de deux vecteurs

 $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow ABDC$  est un parallélogramme



### Somme de deux vecteurs

La somme de deux vecteurs  $\vec{u}$  et  $\vec{v}$  est le vecteur associé à l'enchainement des translations de vecteur  $\vec{u}$  et  $\vec{v}$ 





# Relation de Chasles

Pour tous points A, B et C, on a:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$



# Règle du parallélogramme

Pour tous points A, B, C et D, on a:

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD} \Leftrightarrow ABDC$$
 parallélogramme



## Vecteur nul

On appelle **vecteur nul**, noté  $\vec{0}$ , tout vecteur dont son origine et son extrémité sont confondues. La translation associée laisse tous les point invariants. On appelle **vecteurs opposés** tous les vecteurs  $\vec{u}$  et  $\vec{v}$  tels que  $\vec{u} + \vec{v} = \vec{0}$ . On peut écrire  $\vec{u} = -\vec{v}$  et  $\vec{v} = -\vec{u}$ 



#### Vecteurs opposés

Les vecteurs  $\overrightarrow{AB}$  et  $\overrightarrow{BA}$  sont des vecteurs opposés



#### Multiplication d'un vecteur par un scalaire

Soit k un réel non nul et  $\vec{u}$  un vecteur non nul. alors le vecteur  $k\vec{u}$  est un vecteur caractérisé par :

- $\implies$  sa direction qui est la même que celle de  $\vec{u}$ .
- $\implies$  son sens qui est le sens que celui de  $\vec{u}$  si k > 0, opposé sinon.
- $\implies$  sa norme qui vaut  $k||\vec{u}||$



## Conditions de colinéarité

Soient A, B, C et D quatre points du plan.

A, B, C alignés  $\Leftrightarrow \overrightarrow{AB}$  et  $\overrightarrow{AC}$  colinéaires  $(AB)//(CD) \Leftrightarrow \overrightarrow{AB}$  et  $\overrightarrow{CD}$  colinéaires

# 2 Vecteurs, expression analytique



#### Système de coordonnées

Quand le plan est muni d'une base  $(\vec{i}, \vec{j})$ , on va pouvoir exprimer tous les vecteurs du plan en fonction des vecteurs de la base.

Autrement dit, pour tout vecteur  $\vec{u}$  du plan, il existe un unique couple (x, y) de réels appelé coordonnées de  $\vec{u}$  tel que :

$$\vec{u} = x\vec{i} + y\vec{j}$$

L'origine du repère n'a pas d'importance dans l'expression d'un vecteur par rapport aux vecteurs de la base.



#### Système de coordonnées et opérations

Le plan est muni d'une base  $(\vec{i}, \vec{j})$ .

Soit  $\vec{u}$  et  $\vec{v}$  deux vecteurs et k un nombre réel :

$$\vec{u}(x;y) = \vec{v}(x',y') \Leftrightarrow \begin{cases} x = x' \\ y = y' \end{cases}$$

 $\vec{u} + \vec{v}$  a pour coordonnées (x + x'; y + y')

 $k\vec{u}$  a pour coordonnées (kx; ky)



## Norme dans un repère orthonormé

Le plan est muni d'un repère **orthonormé** : les vecteurs de la base sont orthogonaux et de norme 1.

Alors la norme du vecteur  $\vec{u}(x; y)$  est  $||\vec{u}|| = \sqrt{x^2 + y^2}$ .



# Coordonnées d'un point

Le plan etant muni d'un repère  $(O, \vec{i}; \vec{j})$ , on appelle cordonnées du point M, les coordonnées du vecteur  $\overrightarrow{OM}$ .

Si le vecteur  $\overrightarrow{OM}$  s'écrit  $\overrightarrow{OM} = x\vec{i} + y\vec{j}$ , x sera l'abscisse de M et y sera l'ordonnée de M.

Les coordonnées du point M dépend de l'origine O.



## Coordonnées du milieu d'un segment

Dans un plan muni d'un repère, soit  $A(x_A; yA)$ ,  $B(x_B; y_B)$  et  $I(x_I; y_I)$  le milieu de [AB].

On a:

$$x_I = \frac{x_A + x_B}{2}$$

$$y_I = \frac{y_A + y_B}{2}$$



### Coordonnées d'un vecteur

Dans un plan muni d'un repère, soit  $A(x_A; yA)$  et  $B(x_B; y_B)$  deux points du plan.

Alors les coordonnées du vecteur  $\overrightarrow{AB}$  sont  $(x_B - x_A; y_B - y_A)$ 



# Longueur d'un vecteur dans un repère orthonormée

Dans un plan muni d'un repère orthonormée, soit  $A(x_A; yA)$  et  $B(x_B; y_B)$  deux points du plan.

Alors la distance *AB* est donnée par  $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ .



# Colinéarité de deux vecteurs

Soit  $\vec{u}(x; y)$  et  $\vec{v}(x'; y')$  deux vecteurs du plan :

 $\vec{u}(x; y)$  et  $\vec{v}(x'; y')$  deux vecteurs du plan  $\Leftrightarrow xy' - x'y = 0$ 



#### Théorème

Dans un plan muni d'un repère:

- toute droite du plan admet une équation de la forme ax + by = c = 0 avec  $(a; b) \neq (0; 0)$ : on l'appelle équation cartésienne.
- l'ensemble des points M du plan dont les coordonnées vérifient ax + by = c = 0 avec  $(a; b) \neq (0; 0)$  est une droite.



#### Vecteur directeur d'un droite

Soit  $\mathcal{D}$  une droite et  $\overrightarrow{A}$ ,  $\overrightarrow{B}$  deux points de cette droite. On appelle vecteur directeur de  $\mathcal{D}$  tout vecteur  $\overrightarrow{u}$  colinéaire à  $\overrightarrow{AB}$ .

La direction d'un vecteur directeur d'une droite est parallèle à cette droite.



#### Vecteur directeur d'une droite à partir de son équation cartésienne

Dans un plan muni d'un repère, toute droite admettant une équation de la forme ax + by + c = 0 admet  $\vec{u}(-b; a)$  comme vecteur directeur.



### Vecteur directeur d'une droite à partir de son équation réduite

Dans un plan muni d'un repère, toute droite admettant une équation de la forme y = mx + p admet  $\vec{u}(1; m)$  comme vecteur directeur.



# Condition de parallélisme

Deux droites sont parallèlessi et seulement si leurs vecteurs directeurs respectifs sont colinéaires.