Convolutional Neural Networks

Areeb Gani, Michael Ilie, Vijay Shanmugam

Welcome!

ml.mbhs.edu

Motivation

Often, with neural networks, we have to deal with images

Images have lots of data, as they are represented as multiple 2-dimensional

arrays

Motivation

- We want to "simplify" the image, keeping its core features, while making it easier for our model to process all the data and perform the normal computations
- We can achieve this using some special functions which we call kernels

Convolutional Kernel

- "Sliding window," called **filter**, applies transformation on certain parts of the image sequentially
- Returns a smaller array than original image, but still retains high-level features (the *gist* of the image)

Convolutional Kernel

 Mathematically, our filter is just a matrix - we multiply the element of the image array with the elements of our matrix to get our output

Convolutional Kernel

 For higher dimensions, we add together the output of each filter in each color channel to our final output matrix

Pooling Layer

- After applying the convolution filter, we run our output matrix through a pooling layer
- There are different types of pooling layers, but the most common is called "maximum pooling," which is what we'll focus on

Pooling Layer

- Max pooling has a similar "sliding window" process to convolutional kernels, but instead of multiplying by a matrix, we simply take the maximum value of each window in our output
- This will find the most dominant features in the image, which is what we need to make our prediction

Fully Connected Layer and Output

- We apply the previous two steps (Convolutional Kernel and Pooling Layer)
 repeatedly, to minimize the size of the image, for as long as we wish
- Then we use a fully connected layer to get our output this is just a standard neural network layer like we have discussed before
- Finally, we get our output using an activation function such as sigmoid or softmax

Full Model

Some Practice Tutorials

- https://www.tensorflow.org/tutorials/images/cnn (TensorFlow)
- https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html (PyTorch)
- https://www.analyticsvidhya.com/blog/2019/10/building-image-classification-m odels-cnn-pytorch/ (also PyTorch)

Join Our Groups

- Sign up for Discord (https://discord.gg/3Z5YuPqt)
- Join Deepnote (https://deepnote.com/join-team?token=af3af0284bc8497)
- Fill out our form (<u>https://forms.gle/Fr31aFLWx8cHdtTY8</u>)
 - Join mailing list + Github organization