

PCT/JP03/16178 17.12.03 JP3/16178

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年12月24日

出 願 番 号 Application Number:

人

特願2002-372783

[ST. 10/C]:

[JP2002-372783]

出 願 Applicant(s):

TDK株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

RECEIVED

12 FEB 2004

WIPO

PCT

特許庁長官 Commissioner, Japan Patent Office 2004年 1月29日

【書類名】 特許願

【整理番号】 04665

【提出日】 平成14年12月24日

【あて先】 特許庁長官殿

【国際特許分類】 H01G 4/12

CO4B 35/49

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】 佐々木 洋

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】 田中 均

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】 丹羽 康夫

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】 渡辺 松巳

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】 野中 智明

【特許出願人】

【識別番号】 000003067

【氏名又は名称】 ティーディーケイ株式会社

【代理人】

【識別番号】

100097180

【弁理士】

【氏名又は名称】

前田 均

【代理人】

【識別番号】

100099900

【弁理士】

【氏名又は名称】 西出 眞吾

【選任した代理人】

【識別番号】 100111419

【弁理士】

【氏名又は名称】 大倉 宏一郎

【手数料の表示】

【予納台帳番号】 043339

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 誘電体磁器組成物、電子部品およびこれらの製造方法 【特許請求の範囲】

【請求項1】 $\left[\left(\text{Ca}_{\mathbf{x}}\text{Sr}_{1-\mathbf{x}}\right)\text{O}\right]_{\mathbf{m}}\left[\left(\text{Ti}_{\mathbf{y}}\text{Zr}_{1-\mathbf{y}-\mathbf{z}}\text{H}\right]$ $\left(\text{f}_{\mathbf{z}}\right)\text{O}_{\mathbf{z}}\right]$ で示される組成の誘電体酸化物を含む主成分と、

Mn酸化物および/またはAl酸化物を含む第1副成分と、

ガラス成分とを少なくとも含む誘電体磁器組成物であって、

前記主成分に含まれる式中の組成モル比を示す記号m、x、yおよびzが、

- $0.90 \le m \le 1.04$
- $0.5 \le x < 1$
- $0.01 \le y \le 0.10$

 $0 < z \le 0$. 20の関係にあることを特徴とする誘電体磁器組成物。

【請求項2】 前記主成分100mol%に対して、前記Mn酸化物をMn Oに換算して0.2~5mol%、前記Al酸化物をAl₂O₃に換算して0. 1~10mol%含むことを特徴とする請求項1に記載の誘電体磁器組成物。

【請求項3】 前記ガラス成分が、 $[(Ba_vCa_{1-v})O]_wSiO_2$ で表され、前記ガラス成分の組成式中のv、wがそれぞれ、 $0 \le v \le 1$ 、 $0.5 \le w \le 4$. 0の範囲にあり、前記ガラス成分が、前記主成分100mol%に対して、 $0.5 \sim 15mol\%$ 含有する請求項1または2に記載の誘電体磁器組成物。

【請求項4】 ScおよびYを含む希土類元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLu)のうちの少なくとも1つを、前記主成分100モル%に対して、0.02~1.5mol%含む請求項1~3のいずれかに記載の誘電体磁器組成物。

【請求項 5 】 N b、M o、T a、WおよびM g の内の少なくとも 1 つを、前記主成分 1 0 0 モル%に対して、0 . 0 2 \sim 1 . 5 m o 1 %含む請求項 1 \sim 4 のいずれかに記載の誘電体磁器組成物。

【請求項6】 前記主成分に含まれる式中の組成モル比を示す記号mが、

【請求項7】 請求項 $1\sim6$ のいずれかに記載の誘電体磁器組成物を製造する方法であって、

前記誘電体磁器組成物の原料を準備する工程と、

前記原料を混合する工程と、

乾式合成法を用いて、前記混合された原料を一括に仮焼きして固相反応させ、 仮焼物を得る工程と、

前記仮焼物を本焼成し、前記誘電体磁器組成物を得る工程とを有する誘電体磁器組成物の製造方法。

【請求項8】 誘電体層を有する電子部品であって、

前記誘電体層が、請求項1~6のいずれかに記載の誘電体磁器組成物で構成してあることを特徴とする電子部品。

【請求項9】 内部電極と誘電体層とが交互に積層してある電子部品であって、

前記誘電体層が、請求項1~6のいずれかに記載の誘電体磁器組成物で構成してあることを特徴とする電子部品。

【請求項10】 前記内部電極が少なくともニッケルを含有する請求項9に 記載の電子部品。

【請求項11】 前記誘電体層における結晶の平均粒径が2μm以下である 請求項9または10に記載の電子部品。

【請求項12】 請求項9~11のいずれかに記載の電子部品を製造する方法であって、

前記内部電極と誘電体層とを同時に1300°C以下で本焼成することを特徴とする電子部品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、誘電体磁器組成物、電子部品およびこれらの製造方法に係り、さら

[0002]

【従来の技術】

積層セラミックコンデンサは、電子部品として広く利用されており、1台の電子機器の中で使用される個数も多数にのぼる。積層セラミックコンデンサは、通常、内部電極層用のペーストと誘電体層用のペーストとを、シート法や印刷法等により積層し、同時焼成して製造される。

[0003]

ところで、従来の積層セラミックコンデンサ等に用いられる誘電体磁器材料は、還元性の雰囲気下で焼成すると還元され、半導体化するという性質を有している。このため内部電極の材料として、誘電体磁器材料の焼結する温度で熔融せず、かつ誘電体磁器材料を半導体化しない高い酸素分圧の下で焼成しても酸化されないPd等の貴金属が用いられていた。

[0004]

しかし、Pd等の貴金属は高価なため、積層セラミックコンデンサの低価格化を図る上での大きな妨げとなっている。そこで、内部電極材として、比較的安価なNiやNi合金等の卑金属の使用が主流となってきている。

[0005]

ところが、内部電極層の導電材として卑金属を用いる場合、大気中で焼成を行うと内部電極層が酸化してしまう。したがって、誘電体層と内部電極層との同時 焼成を、還元性雰囲気中で行う必要がある。

[0006]

しかし、還元性雰囲気中で焼成すると、誘電体層が還元され絶縁抵抗が低くなってしまう。このため、非還元性の誘電体材料が提案されている。ところが、非還元性の誘電体材料を用いる積層セラミックコンデンサは、誘電体層の厚みを薄くすると($5\,\mu\,\mathrm{m以r}$)、絶縁抵抗(IR)の寿命が短くなり、信頼性が低下するという問題がある。

[0007]

[0008]

なお、下記の特許文献 1 に示すように、1 3 0 0° C以下で焼結し、静電容量の温度係数が小さく、かつ-1 5~+1 5 0 p p m/° Cの範囲で任意に制御可能で、2 5° Cでの絶縁抵抗が 1×1 0 1 3 Ω 以上で、比誘電率、誘電正接(t a n δ)の周波数依存性が少なく、絶縁体層を薄くしても絶縁抵抗の加速寿命時間が長く、高信頼性の非還元性誘電体磁器組成物が提案されている。この誘電体磁器組成物は、N i などの卑金属を内部電極とする積層セラミックコンデンサに好ましく用いられる。

[0009]

【特許文献1】 特許第2997236号公報

【発明が解決しようとする課題】

しかしながら、本発明者等の実験によれば、前記特許文献1に記載の誘電体磁器組成物では、絶縁抵抗にばらつきがあり、絶縁抵抗不良率を低減することが困難であると言うことが判明した。

[0010]

本発明は、このような実情に鑑みて成され、本発明の目的は、Ni等の卑金属を内部電極とする積層セラミックコンデンサなどの誘電体層として好適に用いられ、 1300° C以下で焼結可能であり、静電容量の温度係数が小さく、かつ $15\sim+150$ ppm/ $^\circ$ Cの範囲で任意に制御可能で、 25° Cでの絶縁抵抗が 1×10^{13} Ω 以上で、比誘電率、誘電正接($tan\delta$)の周波数依存性が少なく、絶縁体層を薄くしても絶縁抵抗の加速寿命時間が長く、しかも絶縁抵抗の不良率が少ない高信頼性の非還元性誘電体磁器組成物を実現することである。

[0011]

また、本発明の他の目的は、上記の特性を持つ誘電体磁器組成物を誘電体層として有する積層セラミックコンデンサなどの電子部品と、それらの誘電体磁器組

[0012]

【課題を解決するための手段】

上記目的を達成するために、本発明に係る誘電体磁器組成物は、

 $[(Ca_xSr_{1-x})O]_m[(Ti_yZr_{1-y-z}Hf_z)O_2]$ で示される組成の誘電体酸化物を含む主成分と、

Mn酸化物および/またはAl酸化物を含む第1副成分と、

ガラス成分とを少なくとも含む誘電体磁器組成物であって、

前記主成分に含まれる式中の組成モル比を示す記号m、x、yおよびzが、

- $0.90 \le m \le 1.04$ 、好ましくは1. $005 \le m \le 1.025$ 、
- $0.5 \le x < 1$ 、好ましくは $0.6 \le x \le 0.9$ 、
- $0.01 \le y \le 0.10$ 、好ましくは $0.02 \le y \le 0.07$ 、

 $0 < z \le 0$. 20、好ましくは $0 < z \le 0$. 10の関係にあることを特徴とする。

[0013]

本発明に係る誘電体磁器組成物は、基本的には、前記特許文献 1 と略同一の組成を有しているため、特許文献 1 と同様に、1 3 0 0° C以下で焼結が可能であり、静電容量の温度係数が小さく、かつ-1 5~+1 5 0 p p m/° Cの範囲で任意に制御可能で、2 5° Cでの絶縁抵抗が 1×1 0 1 3 Ω 以上で、比誘電率、誘電正接(t a n δ)の周波数依存性が少なく、絶縁体層を薄くしても絶縁抵抗の加速寿命時間が長く、高信頼性の非還元性誘電体磁器組成物を実現することができる。

[0014]

特に、本発明では、前記特許文献1と異なり、主成分中にHfを添加してあるため、Hfを添加していない組成物に比較して、焼結時の収縮曲線のカーブが緩やかになり、内部電極との同時焼成に際して、クラックやデラミネーションが発生し難くなる。また、主成分中にHfを添加してあるため、Hfを添加していない組成物に比較して、結晶粒の成長を抑制し、細かく均一な結晶を実現すること

ができる。これらは、本発明者の実験により明らかになった。

[0015]

その結果、本発明によれば、クラック、デラミネーション、あるいは不均一な 結晶による界面の不均一により生じる絶縁抵抗のばらつきを抑制することができ る。

[0016]

なお、本発明において、主成分の組成式中のxの値が小さすぎると、静電容量 および t a n δ の周波数依存性が大きくなる傾向にあり、大きすぎると、焼結性 が低下する傾向にある。

[0017]

また、組成式中のyの値が小さすぎると、焼結性が低下する傾向にあり、大きすぎると、静電容量およびtan δ の周波数依存性が大きくなる傾向にある。

[0018]

さらに、組成式中のzの値が小さすぎると、静電容量およびt a n δ の周波数依存性が大きくなる傾向にあり、大きすぎると、焼結性が低下する傾向にある。

[0019]

さらに、組成式中のmの値が小さすぎると、静電容量および t a n δ の周波数 依存性が大きくなる傾向にあり、大きすぎると、1 3 0 0 $^{\circ}$ C以下の焼成温度では焼成し難くなる傾向にある。

[0020]

好ましくは、前記主成分100mo1%に対して、前記Mn酸化物をMnOに換算して $0.2\sim5$ mo1%、さらに好ましくは $0.2\sim3$ mo1%、前記A1酸化物をA12O3に換算して $0.1\sim10$ mo1%、さらに好ましくは $0.1\sim5$ mo1%含む。

[0021]

Mn酸化物は、耐還元性付与剤および焼結助剤として添加される。その添加量が少なすぎると、焼結性が低下し、多すぎると誘電率および静電容量の温度係数の周波数依存性が大きくなると共に、tan&の周波数依存性が大きくなってくる傾向にある。

[0022]

また、A 1 酸化物の添加量が添加量が少なすぎると、絶縁抵抗および焼結性が低下し、多すぎると比誘電率が低下してくる傾向にある。

[0023]

好ましくは、前記ガラス成分が、 $[(Ba_vCa_{1-v})O]_wSiO_2$ (珪酸バリウム/カルシウム) であり、前記ガラス成分の組成式中のv、wがそれぞれ、 $0 \le v \le 1$ 、0. $5 \le w \le 4$. 0 の範囲にあり、前記ガラス成分が、前記主成分100mol%に対して、0. $5 \sim 15mol\%$ 、さらに好ましくは0. $1 \sim 5mol\%$ 含有する。さらに好ましくは、前記ガラス成分の組成式中のv、wは、0. $5 \le v \le 1$ 、0. $55 \le w \le 3$. 0 の範囲である。

[0024]

前記ガラス成分の組成式中のvの値が小さすぎると、誘電体層を 5μ m以下と 薄層化したときに、I R加速寿命が短くなってくる傾向にあり、v の値が大きすぎると、焼結性が低下する傾向にある。

[0025]

ガラス成分は、焼結助剤として添加される。このガラス成分の添加量が少なすぎると、焼結性が低下する傾向にあり、多すぎると、焼結性を阻害する傾向にある。

[0026]

好ましくは、S c および Y を含む希土類元素(L a、C e、P r、N d、S m、E u、G d、T b、D y、H o、E r、T m、Y b および L u)のうちの少なくとも 1 つを、前記主成分 1 0 0 モル%に対して、0. 0 2 \sim 1. 5 m o 1 %、さらに好ましくは 0. 1 0 \sim 1. 0 m o 1 %含む。

[0027]

好ましくは、Nb、Mo、Ta、WおよびMgの内の少なくとも1つを、前記主成分100 モル%に対して、 $0.02 \sim 1.5$ mol%、さらに好ましくは $0.10 \sim 1.0$ mol%含む。これらの元素は、前記の希土類元素と組み合わせて誘電体磁器組成物中に含有させても良い。その場合には、合計の含有量が、前記主成分100 モル%に対して、 $0.02 \sim 1.5$ mol%、さらに好ましくは

[0028]

これらの元素(希土類元素含む)の酸化物を添加することにより、静電容量の温度係数および t a n δ の周波数依存性を抑制することができる。これらの酸化物の添加量が少なすぎると、静電容量の温度係数および t a n δ の周波数依存性の抑制効果が得難くなる傾向にあり、添加量が多すぎると、焼結温度が高くなる傾向にある。

[0029]

本発明に係る誘電体磁器組成物の製造方法は、

上記のいずれかに記載の誘電体磁器組成物を製造する方法であって、

前記誘電体磁器組成物の原料を準備する工程と、

前記原料(原料形態:酸化物、炭酸化物、液相合成粉等)を混合する工程と、 乾式合成法を用いて、前記混合された原料を一括に仮焼きして固相反応させ、 仮焼物を得る工程と、

前記仮焼物を本焼成し、前記誘電体磁器組成物を得る工程とを有する。

[0030]

好ましくは、前記原料を混合する工程では、主成分、ガラス成分および副成分からなる混合物の平均粒径が 1. 0 μ m以下まで高分散混合することが望ましい。

[0031]

本発明の方法では、前記主成分に対するガラス成分および副成分の固溶を均一に促進することになり、本焼成での反応性が緩慢となり、急激な粒成長を抑制できる。これにより、結晶粒径が均一で細かく、1300°C以下の焼成温度で十分焼結するため、薄層化対応が可能となる。また、本発明の方法では、本焼成時における熱収縮時に、内部電極との応力が緩和されるため、クラック不良が低減する。

[0032]

好ましくは、前記仮焼物をバインダと混合して誘電体ペーストを準備し、この 誘電体ペーストを本焼成し、その本焼成するための温度が1300°C以下であ る。

[0033]

好ましくは、前記仮焼物を本焼成した後に得られる誘電体磁器組成物における結晶の平均粒径が $2~\mu$ m以下、より好ましくは $1.~5~\mu$ m以下、特に $1.~0~\mu$ m以下である。

[0034]

結晶の平均粒径が大きすぎると、たとえば積層セラミックコンデンサにおける誘電体層を 5μ m以下程度に薄くした場合、 IR加速寿命時間が短くなり、信頼性が低下してくる傾向にある。

[0035]

本発明に係る誘電体磁器組成物は、上記に記載の方法により製造されることが好ましい。

[0036]

本発明に係る電子部品は、誘電体層を有する電子部品であって、前記誘電体層が、上記のいずれかに記載の誘電体磁器組成物で構成してある。

[0037]

好ましくは、本発明に係る電子部品は、内部電極と誘電体層とが交互に積層してある積層セラミックコンデンサなどの電子部品である。

[0038]

好ましくは、前記内部電極が少なくともニッケルなどの卑金属を含有する。

[0039]

好ましくは、前記誘電体層における結晶の平均粒径が 2 μm以下である。

[0040]

本発明に係る電子部品の製造方法は、前記内部電極と誘電体層とを同時に13 00°C以下で本焼成することを特徴とする。

[0041]

【発明の実施の形態】

以下、本発明を、図面に示す実施形態に基づき説明する。

図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図、

図3はHf添加およびHf無添加の誘電体磁器組成物における本焼成時の熱収縮率(TMA)曲線を示すグラフ、

図4(A)は液相法で得られる誘電体磁器組成物における t a n δ の温度依存性を示すグラフ、図4(B)は本発明の実施例に係る固相法で得られる誘電体磁器組成物における t a n δ の温度依存性を示すグラフである。

[0042]

積層セラミックコンデンサ

図1に示すように、本発明の一実施形態に係る電子部品としての積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよいが、通常、(0.6~5.6 mm)×(0.3~5.0 mm)×(0.3~1.9 mm) 程度である。

[0043]

内部電極層 3 は、各端面がコンデンサ素子本体 1 0 の対向する 2 端部の表面に 交互に露出するように積層してある。一対の外部電極 4 は、コンデンサ素子本体 1 0 の両端部に形成され、交互に配置された内部電極層 3 の露出端面に接続され て、コンデンサ回路を構成する。

[0044]

誘電体層 2

誘電体層 2 は、本発明の誘電体磁器組成物を含有する。

本発明の誘電体磁器組成物は、

 $[(Ca_xSr_{1-x})O]_m[(Ti_yZr_{1-y-z}Hf_z)O_2]$ で示される組成の誘電体酸化物を含む主成分と、

Mn酸化物および/またはAl酸化物を含む第1副成分と、ガラス成分とを少なくとも含む。

[0045]

前記主成分に含まれる式中の組成モル比を示す記号m、x、yおよびzは、

- 0.90≤m≤1.04、好ましくは1.005≤m≤1.025
- $0.5 \le x < 1$ 、好ましくは $0.6 \le x \le 0.9$ 、
- $0.01 \le y \le 0.10$ 、好ましくは $0.02 \le y \le 0.07$ 、
- $0 < z \le 0$. 20、好ましくは $0 < z \le 0$. 10の関係にある。

[0046]

主成分の組成式中のxの値が小さすぎると、静電容量およびt a n δ の周波数依存性が大きくなる傾向にあり、大きすぎると、焼結性が低下する傾向にある。

[0047]

また、組成式中のyの値が小さすぎると、焼結性が低下する傾向にあり、大きすぎると、静電容量およびtan δ の周波数依存性が大きくなる傾向にある。

[0048]

さらに、組成式中のzの値が小さすぎると、静電容量およびtan δ の周波数依存性が大きくなる傾向にあり、大きすぎると、焼結性が低下する傾向にある。

[0049]

さらに、組成式中のmの値が小さすぎると、静電容量および t a n δ の周波数 依存性が大きくなる傾向にあり、大きすぎると、1 3 0 0 $^{\circ}$ C以下の焼成温度では焼成し難くなる傾向にある。

[0050]

好ましくは、前記主成分100mo1%に対して、Mn酸化物をMnOに換算して $0.2\sim5$ mo1%、さらに好ましくは $0.2\sim3$ mo1%、A1酸化物をA12O3に換算して $0.1\sim10$ mo1%、さらに好ましくは $0.1\sim5$ mo1%含む。

[0051]

Mn酸化物は、耐還元性付与剤および焼結助剤として添加される。その添加量が少なすぎると、焼結性が低下し、多すぎると誘電率および静電容量の温度係数

[0052]

また、A 1 酸化物の添加量が添加量が少なすぎると、絶縁抵抗および焼結性が低下し、多すぎると比誘電率が低下してくる傾向にある。

[0053]

好ましくは、ガラス成分が、 $[(Ba_vCa_{1-v})O]_wSiO_2$ (珪酸バリウム/カルシウム) であり、ガラス成分の組成式中のv、wがそれぞれ、 $0 \le v \le 1$ 、 $0.5 \le w \le 4.0$ の範囲にあり、前記ガラス成分が、前記主成分 $100 = 0 \le 1$ の1%に対して、 $10 \le 0 \le 1$ の $10 \le 1$ の1

[0054]

ガラス成分の組成式中のvの値が小さすぎると、誘電体層を 5μ m以下と薄層化したときに、I R加速寿命が短くなってくる傾向にあり、v の値が大きすぎると、焼結性が低下する傾向にある。

[0055]

ガラス成分は、焼結助剤として添加される。このガラス成分の添加量が少なすぎると、焼結性が低下する傾向にあり、多すぎると、焼結性を阻害する傾向にある。

[0056]

好ましくは、Sc およびYを含む希土類元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb およびLu) のうちの少なくとも1つを、主成分100 モル%に対して、100 の 100 の

[0057]

好ましくは、Nb、Mo、Ta、WおよびMgの内の少なくとも1つを、主成分100モル%に対して、 $0.02\sim1.5$ mo1%、さらに好ましくは0.10 ~1.0 mo1%含む。これらの元素は、前記の希土類元素と組み合わせて誘

電体磁器組成物中に含有させても良い。その場合には、合計の含有量が、前記主成分100 モル%に対して、 $0.02 \sim 1.5$ mol%、さらに好ましくは $0.10 \sim 1.0$ mol%であることが好ましい。

[0058]

これらの元素(希土類元素含む)の酸化物を添加することにより、静電容量の温度係数および t a n δ の周波数依存性を抑制することができる。これらの酸化物の添加量が少なすぎると、静電容量の温度係数および t a n δ の周波数依存性の抑制効果が得難くなる傾向にあり、添加量が多すぎると、焼結温度が高くなる傾向にある。

[0059]

なお、図1に示す誘電体層2の積層数や厚み等の諸条件は、目的や用途に応じ 適宜決定すればよい。また、誘電体層2は、結晶グレインと粒界相とで構成され 、誘電体層2の結晶グレインの平均粒径は2μm以下であることが好ましい。こ の粒界相は、通常、誘電体材料あるいは内部電極材料を構成する材質の酸化物や 、別途添加された材質の酸化物、さらには工程中に不純物として混入する材質の 酸化物を成分とし、通常ガラスないしガラス質で構成されている。

[0060]

内部電極層3

内部電極層 3 に含有される導電材は、特に限定されないが、誘電体層 2 の構成 材料が耐還元性を有するため、卑金属を用いることができる。導電材として用いる卑金属としては、NiまたはNi合金が好ましい。Ni合金としては、Mn, Cr, CoおよびAlから選択される1種以上の元素とNiとの合金が好ましく、合金中のNi含有量は95重量%以上であることが好ましい。なお、NiまたはNi合金中には、P, Fe, Mg等の各種微量成分が0.1重量%程度以下含まれていてもよい。

内部電極層の厚さは用途等に応じて適宜決定すればよいが、通常、 $0.5\sim5$ μ m、特に $1\sim2.5$ μ m程度であることが好ましい。

[0061]

外部電極4

外部電極 4 に含有される導電材は、特に限定されないが、通常、C uやC u合金あるいはN i やN i 合金等を用いる。なお、A gやA g -P d 合金等も、もちろん使用可能である。なお、本実施形態では、安価なN i , C u や、これらの合金を用いる。外部電極の厚さは用途等に応じて適宜決定されればよいが、通常、 $10\sim50$ μ m程度であることが好ましい。

[0062]

積層セラミックコンデンサの製造方法

本発明の誘電体磁器組成物を用いた積層セラミックコンデンサは、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を印刷または転写して焼成することにより製造される。以下、製造方法について具体的に説明する。

[0063]

まず、誘電体層用ペースト、内部電極用ペースト、外部電極用ペーストをそれ ぞれ製造する。

[0064]

<u>誘電体層用ペースト</u>

誘電体層用ペーストは、誘電体原料と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。

[0065]

誘電体原料には、前述した本発明に係る誘電体磁器組成物の組成に応じ、主成分と副成分(ガラス成分含む)とを構成する原料が用いられる。なお、原料形態は、特に限定されず、主成分および副成分を構成する酸化物および/または焼成により酸化物になる化合物が用いられ、それらの原料は、液相合成法により得られた粉体であっても良い。

[0066]

なお、焼成により酸化物になる化合物としては、例えば炭酸塩、硝酸塩、シュウ酸塩、有機金属化合物等が例示される。もちろん、酸化物と、焼成により酸化物になる化合物とを併用してもよい。誘電体原料中の各化合物の含有量は、焼成後に上記した誘電体磁器組成物の組成となるように決定すればよい。これらの原

[0067]

有機ビヒクルとは、バインダを有機溶剤中に溶解したものであり、有機ビヒクルに用いられるバインダは、特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。また、このとき用いられる有機溶剤も特に限定されず、印刷法やシート法等利用する方法に応じてテルピネオール、ブチルカルビトール、アセトン、トルエン等の有機溶剤から適宜選択すればよい。

[0068]

また、水溶系塗料とは、水に水溶性バインダ、分散剤等を溶解させたものであり、水溶系バインダは、特に限定されず、ポリビニルアルコール、セルロース、水溶性アクリル樹脂、エマルジョン等から適宜選択すればよい。

[0069]

本実施形態では、主成分(母材)と副成分(添加材)とを液相法でビヒクルと混合してペーストー括調合するのではなく、固相法を採用している。すなわち、主成分原料と副成分原料とを高分散混合した後、乾燥させ、その後に一括仮焼し、その後に、ビヒクルと混合してペースト調合している。

[0070]

主成分原料と副成分原料との高分散混合は、たとえば主成分原料と副成分原料とに媒体として水を加え、 $16\sim40$ 時間ボールミルなどで混合することにより行う。仮焼の条件は、特に限定されないが、たとえば 1100° C $\sim1300^{\circ}$ C $\sim2\sim4$ 時間の条件である。仮焼後には、仮焼物はボールミルなどで湿式粉砕されて乾燥される。その後にペースト調合される。

[0071]

内部電極用ペースト、外部電極用ペースト

内部電極用ペーストは、上述した各種導電性金属や合金からなる導電材料あるいは焼成後に上述した導電材料となる各種酸化物、有機金属化合物、レジネート等と、上述した有機ビヒクルとを混練して調製される。また、外部電極用ペース

[0072]

上述した各ペーストの有機ビヒクルの含有量は、特に限定されず、通常の含有量、たとえば、バインダは1~5重量%程度、溶剤は10~50重量%程度とすればよい。また、各ペースト中には必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選択される添加物が含有されても良い。

[0073]

印刷法を用いる場合は、誘電体ペーストおよび内部電極用ペーストをポリエチレンテレフタレート等の基板上に積層印刷し、所定形状に切断したのち基板から剥離することでグリーンチップとする。これに対して、シート法を用いる場合は、誘電体ペーストを用いてグリーンシートを形成し、この上に内部電極ペーストを印刷したのちこれらを積層してグリーンチップとする。

[0074]

次に、このグリーンチップを脱バインダ処理および焼成する。

[0075]

脱バインダ処理

脱バインダ処理は、通常の条件で行えばよいが、特に内部電極層の導電材としてNiやNi合金等の卑金属を用いる場合には、空気雰囲気において、昇温速度を $5\sim300$ ° C/時間、より好ましくは $10\sim10$ 0° C/時間、保持温度を $180\sim400$ ° C、より好ましくは $200\sim300$ ° C、温度保持時間を $0.5\sim24$ 時間、より好ましくは $5\sim20$ 時間とする。

[0076]

本焼成

グリーンチップの焼成雰囲気は、内部電極層用ペースト中の導電材の種類に応じて適宜決定すればよいが、導電材としてNi やNi 合金等の卑金属を用いる場合には、還元雰囲気とすることが好ましく、焼成雰囲気の酸素分圧を、好ましくは 10^{-10} ~ 10^{-3} Paとし、より好ましくは 10^{-7} ~ 10^{-3} Pa とし、より好ましくは 10^{-5} ~ 10^{-12} atm)とする。焼成時の酸素分圧が低すぎると内部電極の導電材が異常焼結を起こして途切れてしまう傾向にあり、酸素分圧が高す

[0077]

本焼成の保持温度は、1300° C以下、好ましくは1000~1300° C、より好ましくは1200~1300° Cである。保持温度が低すぎると緻密化が不充分となる傾向にあり、保持温度が高すぎると内部電極の異常焼結による電極の途切れまたは内部電極材質の拡散により容量温度特性が悪化する傾向にある。

[0078]

これ以外の焼成条件としては、昇温速度を50~500° C/時間、より好ましくは200~300° C/時間、温度保持時間を0.5~8時間、より好ましくは1~3時間、冷却速度を50~500° C/時間、より好ましくは200~300° C/時間とし、焼成雰囲気は還元性雰囲気とすることが望ましく、雰囲気ガスとしてはたとえば、窒素ガスと水素ガスとの混合ガスを加湿して用いることが望ましい。

[0079]

還元性雰囲気で焼成した場合は、コンデンサチップの焼結体にアニール (熱処理)を施すことが望ましい。

[0800]

<u>アニール (熱処理)</u>

アニールは誘電体層を再酸化するための処理であり、これにより絶縁抵抗を増加させることができる。アニール雰囲気の酸素分圧は、好ましくは 10^{-4} Pa以上、より好ましくは $1\sim10^{-3}$ Pa($10^{-5}\sim10^{-8}$ atm)である。酸素分圧が低すぎると誘電体層 2 の再酸化が困難となる傾向にあり、酸素分圧が高すぎると内部電極層 3 が酸化される傾向にある。

[0081]

アニールの際の保持温度は、1150° C以下、より好ましくは500~1100° Cである。保持温度が低すぎると誘電体層の再酸化が不充分となって絶縁抵抗が悪化し、その加速寿命も短くなる傾向がある。また、保持温度が高すぎると内部電極が酸化されて容量が低下するだけでなく、誘電体素地と反応してしま

[0082]

これ以外のアニール条件としては、温度保持時間を0~20時間、より好ましくは6~10時間、冷却速度を50~500°C/時間、より好ましくは100~300°C/時間とし、アニールの雰囲気ガスとしては、たとえば、窒素ガスを加湿して用いることが望ましい。

[0083]

なお、上述した焼成と同様に、前記脱バインダ処理およびアニール工程において、窒素ガスや混合ガスを加湿するためには、たとえばウェッター等を用いることができ、この場合の水温は5~75°Cとすることが望ましい。

[0084]

また、これら脱バインダ処理、焼成およびアニールは連続して行っても互いに独立して行っても良い。これらを連続して行う場合には、脱バインダ処理ののち冷却することなく雰囲気を変更し、続いて焼成の際の保持温度まで昇温して焼成を行い、続いて冷却してアニールの保持温度に達したら雰囲気を変更してアニール処理を行うことがより好ましい。一方、これらを独立して行う場合には、焼成に関しては脱バインダ処理時の保持温度まで窒素ガスあるいは加湿した窒素ガス雰囲気下で昇温したのち、雰囲気を変更してさらに昇温を続けることが好ましく、アニールの保持温度まで冷却したのちは、再び窒素ガスまたは加湿した窒素ガス雰囲気に変更して冷却を続けることが好ましい。また、アニールに関しては窒素ガス雰囲気下で保持温度まで昇温したのち雰囲気を変更しても良く、アニールの全工程を加湿した窒素ガス雰囲気としても良い。

[0085]

以上のようにして得られたコンデンサ焼成体に、たとえば、バレル研磨やサンドブラストにより端面研磨を施し、外部電極用ペーストを印刷または転写して焼成し、外部電極4を形成する。外部電極用ペーストの焼成条件は、たとえば、加湿した窒素ガスと水素ガスとの混合ガス中で600~800°Cにて10分~1

時間程度とすることが好ましい。そして、必要に応じて外部電極4の表面にメッキ等により被覆層 (パッド層)を形成する。

[0086]

このようにして製造された本実施形態のセラミックコンデンサ1は、はんだ付け等によってプリント基板上に実装され、各種電子機器に用いられる。

[0087]

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲 内で種々に改変することができる。

[0088]

たとえば、上述した実施形態では、本発明に係る電子部品として積層セラミックコンデンサを例示したが、本発明に係る電子部品としては、積層セラミックコンデンサに限定されず、上記組成の誘電体磁器組成物で構成してある誘電体層を有するものであれば何でも良い。

[0089]

【実施例】

次に、本発明の実施の形態をより具体化した実施例を挙げ、本発明をさらに詳細に説明する。但し、本発明は、これらの実施例のみに限定されるものではない。

[0090]

実施例 1

まず、誘電体材料を作製するための出発原料として、それぞれ平均粒径0.1 $\sim 1.5 \mu$ mの主成分原料($SrCO_3$ 、 $CaCO_3$ 、 TiO_2 、 ZrO_2 、 HfO_2)および副成分原料(ガラス成分含む)を用意した。副成分の原料には、炭酸塩($MnCO_3$ 、 $BaCO_3$)または酸化物(Al_2O_3 、 SiO_2 、 Y_2O_3 など)を用いた。

[0091]

これらの原料を、焼成後の組成が下記の表1に示す組成となるように秤量した後、この原料に媒体として水を加えて $16\sim40$ 時間ボールミルで混合し、高分散混合を行った。その後に、この混合物を乾燥させ、その乾燥物を、1100°

[0092]

このようにして得られた乾燥後の誘電体原料100重量部と、アクリル樹脂4.8重量部と、塩化メチレン40重量部と、酢酸エチル20重量部と、ミネラルスピリット6重量部と、アセトン4重量部とをボールミルで混合してペースト化し、誘電体層用ペーストを得た。

[0093]

次いで、Ni粒子100重量部と、有機ビヒクル(エチルセルロース8重量部をブチルカルビトール92重量部に溶解したもの)40重量部と、ブチルカルビトール10重量部とを3本ロールにより混練してペースト化し、内部電極層用ペーストを得た。

[0094]

次いで、Cu粒子100重量部と、有機ビヒクル(エチルセルロース樹脂8重量部をブチルカルビトール92重量部に溶解したもの)35重量部およびブチルカルビトール7重量部とを混練してペースト化し、外部電極用ペーストを得た。

[0095]

次いで、上記誘電体層用ペーストを用いてPETフィルム上に、厚さ7μmのグリーンシートを形成し、この上に内部電極層用ペーストを印刷したのち、PETフィルムからグリーンシートを剥離した。次いで、これらのグリーンシートと保護用グリーンシート(内部電極層用ペーストを印刷しないもの)とを積層、圧着してグリーンチップを得た。内部電極を有するシートの積層数は4層とした。

[0096]

次いで、グリーンチップを所定サイズに切断し、脱バインダ処理、焼成およびアニール(熱処理)を行って、積層セラミック焼成体を得た。脱バインダ処理は、昇温時間 15° C/時間、保持温度 280° C、保持時間 8時間、空気雰囲気の条件で行った。また、焼成は、昇温速度 200° C/時間、保持温度 1280° C、保持時間 2時間、冷却速度 300° C/時間、加湿した N_2 $+ H_2$ 混合ガス雰囲気(酸素分圧は $2 \times 10^{-7} \sim 5 \times 10^{-3}$ Pa内に調節)の条件で

[0097]

次いで、積層セラミック焼成体の端面をサンドブラストにて研磨したのち、外部電極用ペーストを端面に転写し、加湿した N_2 + H_2 雰囲気中において、 800° Cにて10分間焼成して外部電極を形成し、図1に示す構成の積層セラミックコンデンサのサンプルを得た。

[0098]

このようにして得られた各サンプルのサイズは、3.2 mm×1.6 mm×0.6 mmであり、内部電極層に挟まれた誘電体層の数は 4 、その厚さは 7 μ mであり、内部電極層の厚さは 2 μ mであった。各サンプルについて下記特性の評価を行った。

[0099]

<u>比誘電率(εr)、絶縁抵抗(IR)</u>

コンデンサのサンプルに対し、基準温度 25° CでデジタルLCRメータ(YHP社製 4274A)にて、周波数 1kHz,入力信号レベル(測定電圧) 1Vrms の条件下で、静電容量を測定した。そして、得られた静電容量と、コンデンササンプルの電極寸法および電極間距離とから、比誘電率(単位なし)を算出した。

その後、絶縁抵抗計(アドバンテスト社製R·8340A)を用いて、25°CにおいてDC50Vを、コンデンササンプルに60秒間印加した後の絶縁抵抗IRを測定した。結果を表2に示す。

静電容量の温度特性

コンデンサのサンプルに対し、LCRメータを用いて、 $1\,k\,H\,z$ 、 $1\,V$ の電圧での静電容量を測定し、基準温度を $2\,0$ ° Cとしたとき、 $2\,5\sim1\,2\,5$ ° Cの温度範囲内で、温度に対する静電容量変化率が $-1\,5\,0\sim+1\,5\,0\,p\,p\,m$ /° Cを満足するかどうかを調べ、結果を表 $2\,c\,r\,r\,r$ 。

[0100]

 \triangle C125/C25= $\{(C125-C25)/C25\} \times (1/(125-25))$ …式1。ただし、式1中、C125は125° Cにおける静電容量、C25は25° Cにおける静電容量を表す。

[0101]

高温負荷寿命(絶縁抵抗の加速寿命)

コンデンサのサンプルに対し、 200° Cで70 V $/\mu$ mの直流電圧の印加状態に保持し、抵抗(IR)が 2×10^5 Ω になるまでの時間を、高温負荷寿命として測定した。この高温負荷寿命は、10 個のコンデンササンプルについて行い、平均寿命時間を測定することにより評価した。結果を表 2 に示す。

結晶平均粒径

コンデンササンプルを切断し、その断面の拡大写真を撮り、誘電体層を構成する結晶グレインの平均粒径を求めた。結果を表2に示す。なお、表1および表2に示す試料番号3に対応する実施例のコンデンササンプルの拡大断面写真を図2(B)に示し、試料番号10に対応する比較例のコンデンササンプルの拡大断面写真を図2(A)に示す。

[0102]

絶縁抵抗不良率

同じ組成の1000個のコンデンササンプルに対して、前記の絶縁抵抗の測定方法により絶縁抵抗を測定し、 $10^{10}\Omega$ 以下となるものを不良であるとし、その不良品の%割合を求めた。

[0103]

【表 1】

Ń		Γ	Τ	Γ	Γ	Т	Γ	Γ	Γ	Τ	Γ	Γ	Ī	Γ	Γ	Γ	Т	Γ	Г	Г	Т	Т	Т	Т	Т	Т
molick中	然加亞	ļ,	1			,		,	1	,	ŀ	ŀ		,				,	1	,		1	1			
副成分2 主成分100mo1に対する	mo1% 液仁を	,	ļ.	,	,	,	,	,	,		1		,	1		1	,		1	1		,			1	,
添加盘		3	က	3	6	c	22	3	m	က	8	8	3	3	3	3	3	က	3	3	3	8	с,	6	3	c
	Þ	-	-	-	_	I	7	r	1	-	1	1		-	-	1	1	1	-	-	-	-	-	1	-	 -
} v)0]₩S102	1-A	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0,5				0.5			0.5		0,5	0.5		0.5		0.5			
ガラス既分 [(BavCal-	101比略 V	0.5	0.5	0.5	0.5	0.5		0.5			0.5	0.5	0.5	0.5	0,5	0.5	0,5	0.5	0.5		0.5		0.5		0.5	u c
副成分1 主成分100molに対する [[BavCal-v)0]wS102	A1203	0.5	0.5	0, 5	0.5			0.5	0.5	0,5	0.5	0.5	0.5	0.5	0, 5	0.5	0.5	0.5	0.3	0.5	0.5	0,5	0.05	0.1	10	=
副成分1 主成分100m	mo1% Mn0		1	1	1	-	1	1	1	1	1	1	I	1	1	1	1	1	0.1	0.2	75	9	-	-	-	-
	Ħ	1	1	1	1	1	1	1	1	Ĭ	1	1	1	1	0.8	0,9	1.04	1, 05	I	1	-	1		1	1	-
	Z	0.05	0.02	0.05	0, 05	0, 05	0.05	0.05	0,06	0.05	00'0	0.01	0, 20	0.22	0.05	0, 05	0, 05	0,05	0.05	0.05	0.05	0.05	0,05	0.05	0.05	100
Hfz)02]	14-4-2	0.9	6.0	0.9	6.0	6.0	0.95	0.94	0.85	0.84	0.95	0.94	0.75	0.73	0.9	0.9	0.9	0,9	0.9	0.9	0.9	0.9	0.9	0.9	6.0	000
y Zrl-y-z	ļv	0,05	0,05	0.05	0,05	0.05	0	0.01	0, 1	0.11	0,05	0, 05	0,05	0.05	0.05	0.05	0,05	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0,05	20.0
± μεστ [(Cax Srl-π)0]ω[(Tiy Zrl-y-z Hfz)02]	ll-x	9.0	0.5	0.3	0.1	0.0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0,3	0.3	0.3	0.3	0.3	0.3	0.3	0,3		6 0
[(Cax Srl	ショロス4 X	0.4			6.0			0.7	9		0.7	0.7	0.7	0.7	0.7	0.7	0.7	0,7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0 7
中中支孔		<u> </u>	2	3	4	<u>%</u>	9%	7	8	6 <u>%</u>	<u>01</u> %	TI	12	% 13	¥14 ≪	157	16	<u>*17</u>	% 18	19	20	% 21	% 22	23	24	36% 20%

【表2】

	誘電率	絶縁抵抗	容量変化率	加速寿命	結晶平均粒径	^生 絶縁抵抗不良容
	F	IR (Ω)	△C / C (ppm/℃)	(h)	(μm)	(%)
Ж ।	33	2×10 ¹³	+45	250	1.7	0.0
2		9×10 ¹³	+3	260	1.5	0.0
3		6101×6	+3	280	1.5	0.0
4		9×10 ¹³	+6	265	1.5	0.0
※ 5		2×10^{9}	+3	20	0.9	
<u></u> %6		3×10 ⁹	+3	19	0, 9	-
7		3×10 ¹³	H8	275	1.4	0,0
8		5×10 ¹³	+10	270	1. 6	0, 0
<u> </u>		3×10^{13}	+44	250	0. 9	0, 0
<u> </u>		3×10^{13}	+41	30	0. 9	2.0
11	36	9×10 ¹³	+5	265	1.4	0.0
12		6×10 ¹³	+7	270	1.5	0.0
<u> </u>		2×10 ⁹	+3	25	0. 9	_
<u> </u>		3×10^{13}	+50	235	1	0.0
15		9×10 ¹³	+5	270	1.4	0.0
16	35	9×10 ¹³	+5	265	1.5	0.0
<u> </u>	15	5×10 ⁹	+3	25	0. 9	-
<u> </u>	33	7×10 ⁴	+9	10	1, 3	-
19	38	9×10 ¹³	+5	280	1.6	0.0
20	36	5×10 ¹³	+5	280	1.6	0, 0
※21	36	8×10 ¹³	+50	20	1.5	0.0
※22	33	9×10°	+9	10	1. 3	-
23	37	9×10 ¹³	+3	270	1.5	0, 0
24	38	8×10 ¹³	+9	270	1.4	0.0
※25 庭囲外を	20	8×10 ¹³	+4	260	0, 9	0, 0

注) 絶縁抵抗不良率は、n=1000中、10¹⁰以下を不良とする

なお、表1および2において、試料番号の数字に*を付けてあるものが、本発 明の好ましい組成範囲を外れている試料番号を示す。他の表でも同様である。

[0105]

評価1

表 1 および表 2 に示すように、試料番号 $1\sim5$ を比較することで、 $[(Ca_xSr_{1-x})O]_m[(Ti_yZr_{1-y-z}Hf_z)O_2]$ で示される組成の誘電体酸化物を含む主成分において、 $0.5\leq x<1$ 、好ましくは $0.6\leq x\leq0.9$ の場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、結晶平均粒径が小さく、絶縁抵抗不良率が少ないことが確認できた。

[0106]

また、表1および表2に示すように、試料番号6~9を比較することで、[(

 Ca_xSr_{1-x} $O]_m$ $[(Ti_yZr_{1-y-z}Hf_z)O_2]$ で示される組成の誘電体酸化物を含む主成分において、 $0.01 \le y \le 0.10$ 、好ましくは $0.02 \le y \le 0.07$ の場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0107]

また、表1および表2に示すように、試料番号 $10\sim13$ を比較することで、 [(CaxSr1-x)O] m [(TiyZr1-y-zHfz)O2] で示される組成の誘電体酸化物を含む主成分において、 $0<z\leq0$. 20、好ましくは $0<z\leq0$. 10の場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0108]

また、表1および表2に示すように、試料番号 $14\sim17$ を比較することで、 [(CaxSr1-x)O] m [(Tiy Zr_{1-y-z} Hf $_z$)O $_2$] で示される組成の誘電体酸化物を含む主成分において、 $0.90\leq m\leq 1.04$ の場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0109]

また、表1および表2に示すように、試料番号18~21を比較することで、主成分100mol%に対して、Mn酸化物をMnOに換算して0.2~5mol%、さらに好ましくは0.2~3mol%含ませる場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0110]

また、表1および表2に示すように、試料番号22~25を比較することで、主成分100mol%に対して、A1酸化物をAl2O3に換算して0.1~10mol%、さらに好ましくは0.1~5mol%含ませる場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0111]

[0112]

また、表1および表2に示す試料番号3に対応する実施例のコンデンササンプルにおける図3に示す焼結時の収縮(TMA)曲線のカーブBと、試料番号10に対応する比較例のコンデンササンプルにおける図3に示す焼結時のTMA曲線のカーブAとを比較することで、次のことも判明した。すなわち、主成分中にHfを添加することで、Hfを添加していない組成物に比較して、焼結時の収縮曲線のカーブが緩やかになり、内部電極との同時焼成に際して、クラックやデラミネーションが発生し難くなる。また、主成分中にHfを添加することで、Hfを添加していない組成物に比較して、結晶粒の成長を抑制し、細かく均一な結晶を実現することができる。これは図2に示す結果とも合致している。

[0113]

その結果、本発明によれば、クラック、デラミネーション、あるいは不均一な結晶による界面の不均一により生じる絶縁抵抗のばらつきを抑制することができると考えられる。このことは、表1および表2に示す結果からも明らかである。

[0114]

<u>実施例 2</u>

焼成後の組成が下記の表3に示す組成となるように秤量した以外は、実施例1 と同様にしてコンデンササンプルを作製し、実施例1と同様な評価を行った。結 果を表4に示す。

[0115]

【表3】

_			Т	_	_	_	_	_	_	_	_	_	_
	主成分100mo1に対する mo1%	添加量	_	,								1	,
剧成分2	主成分100gmo1%	然怕物	i	-		ļ		ŀ		1	1	,	-
	於J加量 mo 1%		3	6	,	6	9	, .	9 60	¥ 0	0.5	15	16
		æ		-	-	7,0	20		4 1	-	-	_	
1	v)0]wSi02	1-4	Ė	6.0	c	2.5	100	2	2	200	0.5	0.5	0.5
ガラス成分	[(BavCal-no]	۸	0	0	-	C.	5	0.5	200	0.5	0.5	0.5	0.5
	士成分100molに対する	A1203	0.5	0.5	0.5	0.5	C	0 5	5.0	0.5	0.5	0.5	0.5
剧成分1	市政分100m 181%	Mno	1	-			-					-	1
		m	_	_	-	-	-	-	_		_	-	1
	-	2	0.05	0,05	0.05	0.05	0.05	0.05	0.05	0,05	0.09	0.05	0.05
	Hfz) 02]	1-7-2	6.0	0.9	0.9	6.0	6.0	6.0	6.0	0.9	0.9	6'0	6.0
	y Zrl-y-z	٨	0.05	0,05	0.05	0.05	0.05	0.05	0.05	0.05	0,05	0, 05	0.05
3	(Cax Sr1-x)0]m[(Tiy Zr1-y-z Hfz)02] mol比略	1-x	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0, 3	0, 3	0, 3	0, 3
主成分	L(Cax Srl-Omol比母	×	0.7	0.7	0.7	0.7	0, 7	0.7	0.7	0,7	0.7	0.7	0.7
就海路与			26	27	28	% 58	30	31	35	33	34	35	% 36

【表4】

试料番号	電気特性					
	誘電率	絶縁抵抗 IR (Ω)	容量変化率 △C/C(ppm/℃)	加速寿命 (h)	結晶平均粒径 (µm)	注: 絶縁抵抗不良率 (%)
26	37	9×10 ¹³	+3	200	1.9	0,0
27		6×10^{13}	+5	250	1.7	0.0
28		5×10 ¹⁸	+5	250	1.5	0.0
<u> </u>		6×10 ⁹	+3	30	0. 9	
30		7×10^{13}	+7	245	1.6	0, 0
31	33	2×10 ¹³	+7	230	1.6	0, 0
※ 32		6×10 ⁹	+12	25	0.9	
※ 33		1×10 ⁹	+3	10	0.8	
34		2×10 ¹³	+10	240	1	0, 0
35		5×10 ¹³	+10	275	1.5	0.0
※ 36	18	5×10 ⁹	+3	10	2	

<u>評価2</u>

表3および表4に示すように、試料番号 $26\sim28$ を比較することで、主成分に添加することが好ましいガラス成分としての [(Ba_vCa_{1-v})O]_wS i O₂において、 $0\leq v\leq 1$ の範囲で、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0117]

また、表 3 および表 4 に示すように、試料番号 2 9 \sim 3 2 を比較することで、主成分に添加することが好ましいガラス成分としての $[(Ba_vCa_{1-v})O]_wSiO_2$ において、 $0.5 \le w \le 4.0$ の範囲で、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0118]

また、表3および表4に示すように、試料番号33~36を比較することで、ガラス成分が、主成分100mol%に対して、0.5~15mol%含有させる場合に、誘電率および絶縁抵抗が大きく、容量変化率が小さく、加速寿命が長く、絶縁抵抗不良率が少ないことが確認できた。

[0119]

実施例3

焼成後の組成が下記の表 5 に示す組成となるように秤量した以外は、実施例 1 と同様にしてコンデンササンプルを作製し、実施例 1 と同様な評価を行った。結果を表 6 に示す。

[0120]

【表 5】

	_	_	_	_	_		_		_	_	_	_	_	_	_		_									
副成分2 主成分100mo1に対する mo1%	添加量	0.01	0.02	0.5	1, 5	2	0,5	0.5	0.5	0.5	0.5		0.5	0.5	0.5			0,5	<u>0</u> . හ	0, 5	0.5	0.5			10	0.5
副成分2 主成分100 mol%	添加物	Mg .	Мя	Mg	Mg	Me	Sc	٨	La	ల్ప	P:	PN	S	Eu	pg	Tb	Dy	Но	Er	T.	χ	Lu	g.	ş	Ta	æ
海加强 mo1%	ı	3	3	3	3	3	က	۶.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
_	Δ	-1		_	-		-		-	-	1	-	1	1	1	_	1	1		1	1	1	1	1	1	1
5 v)0]wSi02	Λ-1	9.4	0.4		0.4	0.4	0.4	0.4	0.4	0.4	0,4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	9.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
ガラス成分 [(BavCal- mol比率	>	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0, 5		0.5	0.5	0.5
副成分1 主成分100molに対する [(BavCal-v)0]wSi02 molk molk w	A1203	0.5	0,5	0.5	0.5	0.0	n .	0,0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0,5	0,5	0.5	0.5	0.5		0.6	0.5
剧成分1 主成分100 101%	, will	-	-,	1			1			1		1		-	-	-	1		1						1	1
	Į,	╣.	- -	-	-	-	-	1	- -								-	-	1	1	1	1	1	-		
	0 05	0.00	3 2	20.00	3 2	3 6	0.00	3 6	3 5	0.00	0.05	3 3 3	0.0 0.0	0.05	0,02	0.05	0.05	200	00.00	0.00	000	0.00	0.02	0,05	0.03	0.05
Hfz)02]	0,0		000		200	000	000	0	000	5 0	300	200	2,0	9,0	5.0	5 0	5 0	200	6.0	600	6.0	S C		6,0	-1	6.9
ly 2x1-y-z	0 50 70	900	0 05	0.05	20.0	0.05	0.05	0.05	20.0	300	200	0.00	20.00	0.00	0.00	0.00	S 15	300	300	200	0.00		0.00	5 5	0.00	0.00
主成分 [(Cax Sr1-x)0]m[(Tiy Zr1-y-z Hfz)02] Omol比率 x	0.3	6		0 3	0 3	0.3	0.3	0.3	0	200	0.0	200	200		6	200	000	2.0			7		200		5 0	0,0
	₩	L		1		1	1	0.7		l			10	ı	1	عإذ	1		1		je	i c	1	1	100	中山
欧将番号	**37	38	39	40	** **	42	43	44	45	46	47	48	40	Q.	210	52	53	24	55	29	57	58	200	S	3 2	※範囲外を示す

【表 6】

料番号	電気特性					
	誘電率 ε	絶縁抵抗 I R (Ω)	容量変化率 ΔC/C(μμμ/℃)	加速寿命 (h)	結晶平均粒径 (µm)	生) 絶縁抵抗不良率 (%)
※ 37	18	4×10 ⁹	+3	10	0.8	
38	33	2×10^{13}	+10	220	0.9	0, 0
39	38	9×10^{13}	+3	280	1.5	0.0
40	38	9×10 ¹³	13	230	0.9	0.0
<u> </u>	38	9×10 ¹³	+45	240	1.5	0.0
42	38	9×10^{13}	+3	280	1.5	0.0
43	38	9×10 ¹³	+3	280	1. 5	0.0
41	38	9×10 ¹³	13	280	1. 5	0.0
45	38	9×10 ¹³	+3	280	1.5	0.0
46	38	9×10 ¹³	+3	280	1, 5	0, 0
47	38	9×10 ¹³	+3	280	1. 5	0.0
48	38	9×10^{13}	+3	280	1.5	0.0
49	38	9×10 ¹³	+3	280	1, 5	0, 0
50	38	9×10 ¹³	+3	280	1.5	0.0
51	38	9×10 ¹³	+3	280	1.5	0.0
52	38	9×10 ¹⁸	+3	280	1.5	0.0
53	38	9×10 ¹³	+3	280	1.5	0.0
54	38	9×10^{13}	+3	280	1.5	0.0
55	38	9×10 ¹³	+3	280	1.5	0.0
56	38	9×10 ¹³	+3	280	1. 5	0.0
57	38	9×10 ¹³	+3	280	1.5	0.0
58	38	9×10^{13}	+3	280	1.5	0, 0
59	38	9×10 ¹³	+3	280	1.5	0.0
60	38	9×10 ¹³	+3	280	1.5	0.0
61	38	9×10^{13}	+3	280	1.5	0.0

<u>評価3</u>

[0122]

また、表5および表6に示すように、試料番号37~61を比較することで、Mgの代わりに、Nb、Mo、TaおよびWの内の少なくとも1つ、あるいは、ScおよびYを含む希土類元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLu)のうちの少なくとも1つを含ませた場合でも、Mgを含ませる場合と同等の効果が得られることが確認できた

[0.1 2 3]

<u>実施例 4</u>

焼成後の組成が下記の表7に示す組成となるように秤量した以外は、実施例1 と同様にしてコンデンササンプルを作製し、実施例1と同様な評価を行った。結 果を表8に示す。

[0124]

【表7】

11 THE 1														
文字もか	上校分 「Cax Sr]	19627 Gar Srl-1 0] [(Tiv 2rl-v-14fe) 02]	v Zrl-w-	HF.) 0.01			型成分1	No. 10 P. Spinster, N.	ガラス政分	المرين المرين	-	rC.4. (9)	副成分2	5 T 17 = 1 0
	のmo1 光砂	3	7 (1177)	(20/2111	·		1100 1100 1100 1100 1100 1100 1100 110	= XXプ100mo1f(X) 9 の 「C(BaVcaL-V/U)W210Z o1%	L(Bavcat- 同] 孔母	V/UJWS10Z		所2加加mo1%	王成分100 mo1%	王及分100mo1に対する mo1%
	Ix	1-x	V	1-y-z	Z	lm,	Mno	A1203	٨	11-v w			添加物	※
. 63	0.7	0.3	0.05	0.9	0.05	1.000°	T	0.5	0.5	5 0		67.	,	-
9	0.7	0 3	0 05	٥	200	TOV.	-	,	ļ		†			
			3	2	200	enny.	-	0.0	U. 5	0. 5	_	· •	1	
70	0.7	0.3	0,05	0.0	0.05	S10:1	7	0.5	0.5	0.5	-	67	ı	
99	0.7	0.3	0.05	0.9	0.05	(1,025)		0.5	0.5	0.5	-	-	,	
99.	0.7	0,3	0, 05	0.0	0.05	1.040	_	0,5	0.5	0.5	-	60	,	

【表8】

試料番号	電気特性					
	誘電率		容量変化率 AC/C(ppm/℃)	加速寿命(h)	結晶平均粒径 (μm)	^{注)} 絶縁抵抗不良率 (%)
#F - 2.62	38	9×10 ¹³	+3	280	1.5	<u> </u>
* 63	39	1×10 ¹⁴	+2	290	1.1	0.0
64	42	3×10 ¹⁴	+1	305	0.8	0.0
65	39	1×10 ¹⁴	+2	290	1.1	0, 0
66	38	9×10^{13}	+3	280	1.5	0.0

<u>評価4</u>

表 7 および表 8 に示すように、試料番号 6 $2\sim6$ 6 を比較することで、 [(C a x S r 1-x) O] m [(T i y Z r 1-y-z H f z) O 2] で示される組成の誘電体酸化物を含む主成分において、特に、1. 0 0 $5 \leq m \leq 1$. 0 2 5 の場合に、誘電率および絶縁抵抗がさらに大きく、容量変化率がさらに小さく、加速寿命がさらに長く、結晶平均粒径が小さく、絶縁抵抗不良率が少ないことが確認できた。

[0126]

実施例5

[0127]

ľ	_			S ; .	1344	डरम
	z、140℃での	n ô			6.0	0.7
1	20Hz	t a 1				
	^也) 絶縁抵抗不良率	(%)	0.0	0.0	0.0	0.0
1						
	結晶平均粒径	(mm)	0.9	1.5	1.6	2.6
	加速寿命	(p)	290	265	270	20
	容量変化率	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+3	*	<u>9</u> +	+10
	絡綠抵抗	IR (0)	2×10^{13}	9×10^{13}	1×10^{14}	1×10^{10}
	誘電率	w	33	36	45	52
	焼成温度	7 (C) I	1220	1260	1300	1330
	就将番号		19	89	69	10

[0128]

【表10】

10.0	3.2	6	+3	9×10^{13}	38	1300	73
0.0	1.8	210	+10	5×10^{12}	32	1260	72
0.0	0.9	150	+18	2×10^{11}	24	1220	7
tan	(mm)	(h)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	IR (0)	1 8	(C)	
^{建)} 絶縁抵抗不良率 20H z、140℃での	結晶平均粒径	加速等命線	容量変化率	絶縁抵抗	誘電率	焼成温度	就对串号

<u>参考例 1</u>

[0129]

評価 5

表9に示すように、本実施例では、1300°C以下の焼成温度で十分焼結するため、薄層化対応が可能となることが確認できた。

[0130]

また、表9と表10とを比較、および図4(B)と図4(A)とを比較して分かるように、液相法ではなく、固相法により誘電体ペーストを作製することで、誘電率および絶縁抵抗を向上させ、容量変化率を低減し、加速寿命を向上させ、 140° Cにおける t and t を低下させることができることが確認できた。

[0131]

<u>参考例 2</u>

実施例1における試料番号10 (Hf添加無し)の組成において、固相法ではなく、液相法により、誘電体ペーストを一括調合した以外は、実施例1における試料番号10と同様にしてコンデンササンプルを作製し、実施例1と同様な評価を行った。結果を表11に示す。なお、本実施例では、コンデンササンプルの誘電体層に対して、X線分析も行い、表11に示すように、誘電体層における各元素の分散性を示すCV値(変動係数)も測定した。

[0132]

CV値は、誘電体層における各元素の<math>X線強度分布から標準偏差D(x)を求め、その標準偏差D(x)を、各元素のX線強度分布の期待値E(x)で割り算した値として定義される。このCV値が小さいほど、分散性が良好である。

[0133]

実施例 6

実施例1における試料番号3 (Hf添加有り) の組成のコンデンササンプルに

ついて、参考例2と同様にして、誘電体層における各元素の分散性を示すCV値 (変動係数)を測定した。結果を表11に示す。

[0134]

【表11】

中工作	生物功能													
C HILLY	_													
	路・一番	為破損犯 IR(U)	谷母変化率 △C/C(pp3/℃)	加速等命 (h)	結晶平均粒径 (μm)	(%) (%)				分散性 (CV値)	; v 値)			
							Ca	Sr	ī.	7.5	R,		Ma	Α 1
		1				,						, 2		
7	35	3×1013	₩.	30	0.0	2.0	0, 191	0, 199	0,677	0, 186	0, 715	0, 455	0, 425	0.653
	3 38	9×10 ¹³	+3	280	1.5	0.0	0.145	0. 151	0.402	0.177	0, 502	0.219	0.351	0.418
														-

<u>評価 6</u>

表11において、試料番号74と試料番号3とを比較して分かるように、主成分に対してHf添加(試料番号3)し、しかも液相法(試料番号74)ではなく、固相法(試料番号3)を採用することで、各元素(Ca, Sr, Ti, Zr, Ba, Si, Mn, Al)の分散性が向上することが確認できた。また、実施例である試料番号3では、絶縁抵抗および加速寿命が向上し、絶縁抵抗不良率が低減できることも確認できた。

[0136]

【発明の効果】

以上説明してきたように、本発明によれば、Ni等の卑金属を内部電極とする 積層セラミックコンデンサなどの誘電体層として好適に用いられ、1300°C 以下で焼結可能であり、静電容量の温度係数が小さく、かつ-15~+150p pm/°Cの範囲で任意に制御可能で、25°Cでの絶縁抵抗が1×1013 Ω以上で、比誘電率、誘電正接(tanδ)の周波数依存性が少なく、絶縁体層 を薄くしても絶縁抵抗の加速寿命時間が長く、しかも絶縁抵抗の不良率が少ない 高信頼性の非還元性誘電体磁器組成物を実現することができる。

【図面の簡単な説明】

- 【図1】 図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図である。
- 【図2】 図2 (A) はHf無添加の誘電体磁器組成物を用いたコンデンサの要部拡大写真、図2 (B) はHf添加の誘電体磁器組成物を用いたコンデンサの要部拡大写真である。
- 【図3】 図3はHf添加およびHf無添加の誘電体磁器組成物における本 焼成時の熱収縮率(TMA)曲線を示すグラフである。
- 【図4】 図4 (A) は液相法で得られる誘電体磁器組成物における t a n δ の温度依存性を示すグラフ、図4 (B) は本発明の実施例に係る固相法で得られる誘電体磁器組成物における t a n δ の温度依存性を示すグラフである。

【符号の説明】

10… コンデンサ素子本体

2… 誘電体層

3 … 内部電極層

4 … 外部電極

【書類名】 図面

図1]

図 1

【図2】

05mol% H f : 0. (E)H「無添加 (Y)

5.4 m 5.4 m

2 # m

平均粒径=3.

【図3】

【図4】

図

【書類名】 要約書

【要約】

【課題】 Ni等の卑金属を内部電極とする積層セラミックコンデンサなどの誘電体層として好適に用いられ、 1300° C以下で焼結可能であり、静電容量の温度係数が小さく、かつ -15° + $150ppm/^\circ$ Cの範囲で任意に制御可能で、 25° Cでの絶縁抵抗が 1×10^{13} Ω 以上で、比誘電率、誘電正接($tan\delta$)の周波数依存性が少なく、絶縁体層を薄くしても絶縁抵抗の加速寿命時間が長く、しかも絶縁抵抗の不良率が少ない高信頼性の非還元性誘電体磁器組成物を実現すること。

【解決手段】 $[(Ca_xSr_{1-x})O]_m[(Ti_yZr_{1-y-z}Hf_z)O_2]$ で示される組成の誘電体酸化物を含む主成分と、Mn酸化物および/またはA1酸化物を含む第1副成分と、ガラス成分とを少なくとも含む誘電体磁器組成物である。主成分に含まれる式中の組成モル比を示す記号m、x、yおよびzが、 $0.90 \le m \le 1.04$ 、好ましくは $1.005 \le m \le 1.025$ 、 $0.5 \le x < 1$ 、好ましくは $0.6 \le x \le 0.9$ 、 $0.01 \le y \le 0.10$ 、好ましくは $0.02 \le y \le 0.07$ 、 $0 < z \le 0.20$ 、好ましくは $0 < z \le 0.1$

【選択図】 無し

認定・付加情報

特許出願の番号 特願2002-372783

受付番号 50201952992

書類名 特許願

担当官 佐々木 吉正 2424

作成日 平成15年 1月 6日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000003067

【住所又は居所】 東京都中央区日本橋1丁目13番1号

【氏名又は名称】 ティーディーケイ株式会社

【代理人】 申請人

【識別番号】 100097180

【住所又は居所】 東京都千代田区猿楽町2丁目1番1号 桐山ビル

前田・西出国際特許事務所

【氏名又は名称】 前田 均

【代理人】

【識別番号】 100099900

【住所又は居所】 東京都千代田区猿楽町2丁目1番1号 桐山ビル

前田・西出国際特許事務所

【氏名又は名称】 西出 眞吾

【選任した代理人】

【識別番号】 100111419

【住所又は居所】 東京都千代田区猿楽町2丁目1番1号 桐山ビル

前田·西出国際特許事務所

【氏名又は名称】 大倉 宏一郎

F願2002-372783

出願人履歴情報

識別番号

[000003067]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所 氏 名 東京都中央区日本橋1丁目13番1号

ティーディーケイ株式会社

2. 変更年月日 [変更理由]

2003年 6月27日

名称変更

住 所

東京都中央区日本橋1丁目13番1号

氏 名 TDK株式会社