

CSEN1083: Data Mining

Association Analysis

Seif Eldawlatly

 Point-of-sale data collection (bar code scanners, radio frequency identification (RFID), and smart card technology) have allowed retailers to collect up-to-the-minute data

- Discover patterns that describe strongly associated features in the data
- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Example:

Transaction ID	Items	
1	{Bread, Butter, Diapers, Milk}	
2	{Coffee, Sugar, Cookies, Salmon}	
3	{Bread, Butter, Coffee, Diapers, Milk, Egg	s}
4	{Bread, Butter, Salmon, Chicken}	
5	{Eggs, Bread, Butter}	Rules Discovered:
6	{Salmon, Diapers, Milk}	{Diapers}> {Milk}
7	{Bread, Tea, Sugar, Eggs}	{Butter}> {Bread}
8	{Coffee, Sugar, Chicken, Eggs}	[Butter] > [Bread]
9	{Bread, Diapers, Milk, Salt}	3
10	{Tea, Eggs, Cookies, Diapers, Milk}	

Itemset: A collection of zero or more items. If an itemset contains k items, it is called a k-itemset

Example: {Milk, Bread, Diaper} is a 3-itemset

- Transaction Width: number of items present in a transaction
- Example:

TID	Items
1	Bread, Milk
2	Bread, Diaper, Wipes, Eggs
3	Milk, Diaper, Wipes, Coke
4	Bread, Milk, Diaper, Wipes
5	Bread, Milk, Diaper, Coke

 Transaction 2 is of width 4 where the itemset {Bread, Diaper} is subset of it

 Support Count (σ): the number of transactions that contain a particular itemset X

$$\sigma(X) = \left| \left\{ t_i \middle| X \subseteq t_i, t_i \in T \right\} \right|$$

where | . | represents the number of transactions t_i for which the itemset X is subset and T is the set of all transactions in the dataset

- Example:
 - $\sigma(\{\text{Bread, Milk}\}) = 3$
 - $\sigma(\{Bread, Diaper, Wipes\}) = 2$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Wipes, Eggs
3	Milk, Diaper, Wipes, Coke
4	Bread, Milk, Diaper, Wipes
5	Bread, Milk, Diaper, Coke

- Association Rule: An association rule is an implication expression of the form X → Y, where X and Y are disjoint itemsets
- The strength of an association rule can be measured in terms of its support and confidence
- Support: Determines how often a rule is applicable to a given dataset
- Measured by

$$s(X \to Y) = \frac{\sigma(X \cup Y)}{Total \ Number \ of \ Transactions}$$

- Support is an important measure because a rule that has very low support may occur simply by chance
- Confidence: Determines how frequently items in Y appear in transactions that contain X

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

- Example:
- s({Milk, Diaper} → {Wipes}) = 2/5
- $c(\{Milk, Diaper\} \rightarrow \{Wipes\}) = 2/3$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Wipes, Eggs
3	Milk, Diaper, Wipes, Coke
4	Bread, Milk, Diaper, Wipes
5	Bread, Milk, Diaper, Coke

Confidence measures the reliability of the inference made by a rule

7

Association Rule Mining

- Given a set of transactions T, find all the rules having support \geq minsup and confidence $\geq minconf$, where minsup and minconf are the corresponding support and confidence thresholds
- Frequent Itemset: An itemset whose support is greater than or equal to a minsup threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- This approach is computationally very expensive

Association Rule Mining

TID	Items
1	Bread, Milk
2	Bread, Diaper, Wipes, Eggs
3	Milk, Diaper, Wipes, Coke
4	Bread, Milk, Diaper, Wipes
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Wipes} (s=0.4, c=0.67)
{Milk, Wipes} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Wipes} \rightarrow {Milk} (s=0.4, c=0.67)
{Wipes} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Wipes} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Wipes} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Wipes}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Association Rule Mining

 A common strategy adopted by many association rule mining algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation

Generate all itemsets whose support ≥ minsup

2. Rule Generation

 Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent Itemset Generation

- A lattice structure can be used to enumerate the list of all possible itemsets
- Example: Itemset lattice for I: {A, B, C, D, E}
- Given d items, there are 2^d possible candidate itemsets

Frequent Itemset Generation

- Because itemsets can be very large in many practical applications, the search space of itemsets that need to be explored is exponentially large
- Brute-force approach: Determine the support count for every candidate itemset in the lattice structure
- Example: Match each transaction against every candidate

TID	Items	List of Candidates
1	Bread, Milk	Candidates
2	Bread, Diaper, Wipes, Eggs	
3	Milk, Diaper, Wipes, Coke	
4	Bread, Milk, Diaper, Wipes	IVI
5	Bread, Milk, Diaper, Coke	→

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Apriori Algorithm

 Apriori Principle: If an itemset is frequent, then all of its subsets must also be frequent

 Example: Suppose that CDE is a frequent itemset, then any transaction that includes CDE will include its subsets. They will all be frequent

Apriori Algorithm

 Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets must be infrequent too

15

- Example: For the dataset below, assume that the support threshold is 60%, which is equivalent to a minimum support count equal to 3
- Generating frequent 1-itemsets

	i -	Iten	ns (1-itemsets)	
TID	Items	Item	Count	
1	Bread, Milk	Brea	d 4	
2	Bread, Diaper, Wipes, Eggs	Coke	, 2	
2	1 1 2	Milk	4	
3	Milk, Diaper, Wipes, Coke	Wipe		
4	Bread, Milk, Diaper, Wipes	Diap		
5	Bread, Milk, Diaper, Coke	-99	•	

Itams (1 itamsets)

Generating frequent 2-itemsets

TID	Items
1	Bread, Milk
2	Bread, Diaper, Wipes, Eggs
3	Milk, Diaper, Wipes, Coke
4	Bread, Milk, Diaper, Wipes
5	Bread, Milk, Diaper, Coke

Items (1-itemsets)

Items (2-itemsets)

Itemset	Count
{Bread,Milk}	3
{ Bread, Wipes}	2
{Bread,Diaper}	3
{ Milk , Wipes}	2
{ Milk, Diaper }	3
{Wipes,Diaper}	3

(No need to generate candidates involving Coke or Eggs)

Generating frequent 3-itemsets

TID	Items
1	Bread, Milk
2	Bread, Diaper, Wipes, Eggs
3	Milk, Diaper, Wipes, Coke
4	Bread, Milk, Diaper, Wipes
5	Bread, Milk, Diaper, Coke

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Wipes	3
Diaper	4
Eggs	4

Items (2-itemsets)

Itemset	Count
{Bread,Milk}	3
{ Bread, Wipes}	2
{Bread,Diaper}	3
{ Milk , Wipes}	2
{ Milk, Diaper }	3
{Wipes,Diaper}	3

Items (3-itemsets)

18

 Brute-force Method: Considers every k-itemset as a potential candidate and then applies the candidate pruning step to remove any unnecessary candidate

- F_{k-1} x F₁ Method: Extend each frequent (k 1)-itemset with other frequent items
- The procedure is complete because every frequent k-itemset is composed of a frequent (k - 1)-itemset and a frequent 1-itemset

 F_{k-1} x F_{k-1} Method: Merges a pair of frequent (k-1)-itemsets if their first k-2 items are identical

• If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB
```

- If |L| = k, then there are 2^k 2 candidate association rules (ignoring L → Ø and Ø → L)
- All such rules must have already met the support threshold because they are generated from a frequent itemset

- Confidence of rules generated from the same itemset has an anti-monotone property
- Example: Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
- Therefore, if c(ABC → D) is less than minconf, then all ABC → D,
 AB → CD and A → BCD rules could be pruned

 Example: Let the itemset {A, B, C, D} be a frequent itemset. The following lattice of rules can be generated. If the confidence of BCD → A is low

Back to the Example:

Items (1-itemsets)

ŀ	tem	Count
E	Bread	4
	Coke	2
ľ	Milk	4
V	Vipes	3
	Diaper	4
	aas	4
	-99	· · · · · · · · · · · · · · · · · · ·

Items (2-itemsets)

Itemset	Count
{Bread,Milk}	3
{ Bread, Wipes}	2
{Bread,Diaper}	3
{ Milk , Wipes}	
{ Milk, Diaper }	3
{Wipes,Diaper}	3

Items (3-itemsets)

(All not satisfying the *minsup*)

- The frequent itemsets are then:
 - {Bread, Milk}, {Bread, Diaper}, {Milk, Diaper}, {Wipes, Diaper}

TID

4

Items

Bread, Milk

- From each frequent itemset, we generate rules and compute
 - their confidence. Let *minconf* be 90%
 - {Bread, Milk}:
 - c(Bread → Milk) = ¾
 - c(Milk \rightarrow Bread) = $\frac{3}{4}$
 - {Bread, Diaper}:
 - c(Bread \rightarrow Diaper) = $\frac{3}{4}$
 - c(Diaper \rightarrow Bread) = $\frac{3}{4}$
 - {Milk, Diaper}:
 - c(Milk \rightarrow Diaper) = $\frac{3}{4}$
 - c(Diaper \rightarrow Milk) = $\frac{3}{4}$
 - {Wipes, Diaper}:
 - c(Wipes → Diaper) = 1 (Only rule satisfying the minconf)
 - c(Diaper \rightarrow Wipes) = $\frac{3}{4}$

Final Rule Inferred: Wipes → Diaper

TID Items Bread, Milk 2 Bread, Diaper, Wipes, Eggs 3 Milk, Diaper, Wipes, Coke 4 Bread, Milk, Diaper, Wipes 5 Bread, Milk, Diaper, Coke