Table 3: Parameter values of all algorithm instances. Each algorithm instance was generated by tuning its parameter on different problems using iRace.

(a) PSO. n: population size, w: inertia multiplier, c1: personal best multiplier, and c2: global best multiplier.

PSO						
instance	n	\mathbf{w}	c1	c2		
0 (F01)	50	0.88	0.54	0.83		
1 (F06)	800	0.57	0.64	1.54		
2 (F10)	25	0.81	1.28	0.57		
3 (F16)	800	0.79	1.27	0.63		
4 (F23)	800	0.63	0.15	0.95		

(c) FFA. n: population size, gamma:distance multiplier, alpha: random walk multiplier.

FFA					
instance	n	gamma	alpha		
0 (F01)	25	0.11	3.74		
1 (F06)	25	0.39	1.53		
2 (F10)	25	0.99	0.92		
3 (F16)	200	0.87	3.49		
4 (F23)	200	0.9	1.63		

(e) DE. n: population size, crx_prob: crossover probability (exponential), beta: differential multiplier.

DE					
instance	n	crx_prob	beta		
0 (F01)	200	0.89	-0.11		
1 (F06)	25	0.74	-0.63		
2 (F10)	25	0.83	-0.66		
3 (F16)	25	0.82	-0.99		
4 (F23)	100	0.94	0.25		

(b) ATA. n: population size, c: personal best multiplier, tol: fitness tolerance to switch behavior.

ATA						
instance	n	С	tol			
0 (F01)	200	1.67	0.48			
1 (F06)	400	1.96	0.73			
2 (F10)	800	1.94	0.99			
3 (F16)	800	1.45	0.27			
4 (F23)	400	1.99	0.77			

(d) GSA. n: population size, g0 and alpha:parameters for the distance between solutions multiplier.

GSA					
instance	n	$\mathbf{g0}$	alpha		
0 (F01)	200	1	17		
1 (F06)	100	1	11		
2 (F10)	100	2	3		
3 (F16)	200	4	6		
4 (F23)	200	4	6		

(f) SAA. n: population size, alpha: neighborhood step size.

\mathbf{SAA}				
instance	n	alpha		
0 (F01)	25	0.01		
1 (F06)	25	0.02		
2 (F10)	25	0.06		
3 (F16)	25	0.06		
4 (F23)	25	0.01		

(g) RIO. n: population size, t_hunger: random update threshold, a: chances of exchange information with neighbors, c0: inertial multiplier, c1: personal and local best multipliers.

RIO					
instance	n	t_{-} hunger	a	c 0	c1
0 (F01)	25	0.84	(0.10, 0.48, 0.88)	1.46	1.38
1 (F06)	50	0.79	(0.32, 0.65, 0.82)	0.85	0.58
2 (F10)	25	0.9	(0.04, 0.43, 0.84)	0.77	0.45
3 (F16)	100	0.36	(0.04, 0.59, 0.79)	1.25	0.41
4 (F23)	200	0.67	(0.24, 0.74, 0.86)	1.22	1.1