Increasing Performance in Byzantine Fault-Tolerant Systems with On-Demand Replica Consistency

Tobias Distler and Rüdiger Kapitza

System Software Group Friedrich-Alexander University Erlangen-Nuremberg

> EuroSys April 11, 2011

Byzantine Fault Tolerance (BFT)

- Agreement-based Byzantine fault tolerance
 - 3f + 1 replicas to tolerate f faults
 - BFT agreement protocol
 - Client-side voting
- Drawbacks
 - High resource usage
 - Performance overhead for agreement

REFIT Project Research Goal Resource-efficient BFT systems

Making BFT Systems More Resource-Efficient

REFIT Project Research Goal Resource-efficient BFT systems

Optimizing Resource Usage

- Reduced number of replicas
- Same performance
- Recent examples
 - SPARE [Distler et al., NDSS '11]
 - ZZ [Wood et al., EuroSys '11]

Optimizing **Performance**

- Default number of replicas
- Increased performance

Where to Optimize?

- Agreement stage
 - BFT agreement protocol
 - Sequence of agreed requests
- Execution stage

Observations

- Service application
- Request processing

- Past optimizations have significantly reduced agreement overhead
- Non-trivial services: response times are dominated by execution stage

ODRC Approach Reducing the load on the execution stage

Basic Approach

- Traditional BFT systems
 - All 3f + 1 replicas process all requests
 - Client waits for f + 1 identical replies

Insight

In the **absence of faults**, a client only needs f + 1 replies to make progress

- ODRC
 - Each request is processed by only f + 1 replicas
 - Load distribution across replicas
 - Additional replicas process the request in case of faults

Talk Outline

ODRC

- Selective Request Execution
- On-Demand Replica Consistency
- Evaluation
- Conclusion

Talk Outline

ODRC

- Selective Request Execution
- On-Demand Replica Consistency
- Evaluation
- Conclusion

Architecture

Selector

- Selects requests for execution
- Stores requests that have not been selected

Application State

- Set of objects
 - Examples: files, directories, ...
 - Assumption: requests carry information about object access

Application State Distribution

- Object distribution scheme
 - **Each** object is **maintained** on f + 1 replicas, **unmaintained** on others
 - State of unmaintained objects may be outdated

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

- Garbage collection of stored requests
 - Periodic object checkpoints of maintained objects
 - Stable checkpoint: f + 1 identical checkpoints

Talk Outline

ODRC

- Selective Request Execution
- On-Demand Replica Consistency
- Evaluation
- Conclusion

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects \Rightarrow store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

Tobias Distler (distler@cs.fau.de)

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects ⇒ store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

- Access of multiple objects
 - Only unmaintained objects \Rightarrow store request
 - At least one maintained object
 - Update unmaintained objects
 - Process request

Cross-Border Requests

- Additional consistency overhead
 - Processed by more than f+1 replicas
 - Goal: minimize number of cross-border requests

- Optimized object distribution
 - Application-centric strategies
 - Consider object dependencies

- Example: Network File System (NFS)
 - Assign files and their parent directories to the same replicas
 - Subdirectories may be assigned to different replicas

- Providing additional replies on demand
 - Standard BFT clients
 - Request retransmission after timeout
 - Additional replicas process the request

- Providing additional replies on demand
 - Standard BFT clients
 - Request retransmission after timeout
 - Additional replicas process the request

- Providing additional replies on demand
 - Standard BFT clients
 - Request retransmission after timeout
 - Additional replicas process the request

- Providing additional replies on demand
 - Standard BFT clients
 - Request retransmission after timeout
 - Additional replicas process the request

- Providing additional replies on demand
 - Standard BFT clients
 - Request retransmission after timeout
 - Additional replicas process the request

Talk Outline

ODRC

- Selective Request Execution
- On-Demand Replica Consistency
- Evaluation
- Conclusion

NFS Evaluation: Postmark Benchmark

NFS Evaluation: Postmark Benchmark

NFS Evaluation: Append-Only Micro-Benchmark

Talk Outline

ODRC

- Selective Request Execution
- On-Demand Replica Consistency
- Evaluation
- Conclusion

Conclusion

- Execution matters!
- Traditional BFT systems
 - All replicas process all requests
 - Consistency overhead
- ODRC
 - Selective request execution based on object access
 - On-demand replica consistency
 - Additional replies in case of faults

Thank you very much.

Questions?

