06.10.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月 3日

REC'D 26 NOV 2004

出 願 番 号 Application Number:

人

特願2003-345723

WIFO PC

[ST. 10/C]:

[JP2003-345723]

出 願
Applicant(s):

日産ディーゼル工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月11日

i) 11]

特許願 【書類名】 103-0314 【整理番号】 平成15年10月 3日 【提出日】 特許庁長官殿 【あて先】 F01N 3/08 【国際特許分類】 F01N 9/00 【発明者】 埼玉県上尾市大字壱丁目1番地 日産ディーゼル工業株式会社内 【住所又は居所】 仁科 充広 【氏名】 【発明者】 日産ディーゼル工業株式会社内 埼玉県上尾市大字壱丁目1番地 【住所又は居所】 栗田 弘之 【氏名】 【発明者】 埼玉県上尾市大字壱丁目1番地 日産ディーゼル工業株式会社内 【住所又は居所】 加藤 寿一 【氏名】 【特許出願人】 000003908 【識別番号】 日産ディーゼル工業株式会社 【氏名又は名称】 【代理人】 100078330 【識別番号】 【弁理士】 笹島 富二雄 【氏名又は名称】 03-3508-9577 【電話番号】 【手数料の表示】 【予納台帳番号】 009232 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】

要約書 1

【包括委任状番号】 9712169

【物件名】

【書類名】特許請求の範囲

【請求項1】

エンジンの排気にNOxの還元剤を添加する還元剤添加手段と、

還元剤添加手段に発生する異常を第1の異常として、この第1の異常が発生したことを 検出する第1の異常検出手段と、

エンジンから排出される時点での排気の組成に影響を与えるエンジン制御手段と恊働し て、第1の異常の発生が検出されたときと、それ以外の通常時とで、同じ運転条件に対す るエンジンのNOx排出量を異ならせる排気制御手段と、を含んで構成されるエンジンの 排気浄化装置。

【請求項2】

排気にNOxの還元剤を添加する還元剤添加手段と、

還元剤添加手段に発生する異常を第1の異常として、この第1の異常が発生したことを 検出する第1の異常検出手段と、

エンジンから排出される時点での排気の組成に影響を与えるエンジン制御手段に発生す る異常を第2の異常として、この第2の異常が発生したことを検出する第2の異常検出手 段と、

第1及び第2の異常のうち、少なくとも一方の異常の発生が検出されたとき以外のとき を通常時として、第1の異常の発生が検出された第1の異常発生時において、前記エンジ ン制御手段と協働して、同じ運転条件に対するエンジンのNOx排出量を通常時とは異な らせる一方、第2の異常の発生が検出された第2の異常発生時において、還元剤添加手段 の還元剤添加量を通常時とは異ならせる排気制御手段と、を含んで構成されるエンジンの 排気浄化装置。

【請求項3】

排気制御手段は、第2の異常によるNOx排出量の減少に対して還元剤添加量を減少さ せ、NOx排出量の増加に対して還元剤添加量を増加させる請求項2に記載のエンジンの 排気浄化装置。

【請求項4】

排気を吸気通路に還流させる排気還流装置を備えるエンジンに設けられ、

第2の異常検出手段は、第2の異常として、この排気還流装置に発生する異常を含む請 求項2又は3に記載のエンジンの排気浄化装置。

【請求項5】

吸入空気を圧縮して送り出す過給装置を備えるエンジンに設けられ、

第2の異常検出手段は、第2の異常として、この過給装置に発生する異常を含む請求項 2~4のいずれかに記載のエンジンの排気浄化装置。

【請求項6】

排気制御手段は、第1の異常の発生が検出されたときに、NOx排出量を通常時よりも 減少させるとともに、還元剤添加手段による還元剤の添加を停止させる請求項1~5のい ずれかに記載のエンジンの排気浄化装置。

【請求項7】

還元剤添加手段は、NOxの還元剤又はその前駆体の水溶液を貯蔵するタンクと、排気 通路に設置され、タンクに貯蔵されている還元剤又は前駆体水溶液を噴射する噴射ノズル と、を含んで構成され、噴射ノズルにより還元剤又は前駆体水溶液を噴射して、排気にN Oxの還元剤を添加する請求項1~6のいずれかに記載のエンジンの排気浄化装置。

【請求項8】

還元剤添加手段は、タンクに貯蔵されている還元剤又は前駆体水溶液に含まれる還元剤 又は前駆体の濃度を検出する第1のセンサを含んで構成され、

第1の異常検出手段は、第1の異常として、この第1のセンサにより検出された濃度の 値が所定の範囲外にあることを含む請求項7に記載のエンジンの排気浄化装置。

【請求項9】

還元剤添加手段は、タンクに貯蔵されている還元剤又は前駆体水溶液の残量を検出する

第2のセンサを含んで構成され、

第1の異常検出手段は、第1の異常として、この第2のセンサにより検出された残量の 値が所定の値よりも小さいことを含む請求項7又は8に記載のエンジンの排気浄化装置。

【請求項10】

排気にNOxの還元剤を添加する還元剤添加手段と、

エンジンから排出される時点での排気の組成に影響を与えるエンジン制御手段に発生する異常を第2の異常として、この第2の異常が発生したことを検出する第2の異常検出手段と、

第2の異常の発生が検出されたときと、それ以外の通常時とで、還元剤添加手段の還元 剤添加量を異ならせる排気制御手段と、を含んで構成されるエンジンの排気浄化装置。

【請求項11】

排気制御手段は、第2の異常によるNOx排出量の減少に対して還元剤添加量を減少させ、NOx排出量の増加に対して還元剤添加量を増加させる請求項10に記載のエンジンの排気浄化装置。

【請求項12】

排気を吸気通路に還流させる排気還流装置を備えるエンジンに設けられ、

第2の異常検出手段は、第2の異常として、この排気還流装置に発生する異常を含む請求項10又は11に記載のエンジンの排気浄化装置。

【請求項13】

吸入空気を圧縮して送り出す過給装置を備えるエンジンに設けられ、

第2の異常検出手段は、第2の異常として、この過給装置に発生する異常を含む請求項 10~12のいずれかに記載のエンジンの排気浄化装置。

【請求項14】

NOxの還元剤がアンモニアである請求項1~13のいずれかに記載のエンジンの排気 浄化装置。

【請求項15】

車両用エンジンに設けられる請求項1~14のいずれかに記載のエンジンの排気浄化装置。

【請求項16】

排気にNOxの還元剤を添加するための添加装置と、

添加装置を制御するコントローラと、を含んで構成され、

コントローラは、通常時において、添加装置に対し、エンジンの運転状態に応じた量の 還元剤を添加させる一方、

この添加装置に異常が発生した第1の異常発生時には、エンジンから排出される時点での排気の組成に影響を与えるエンジン制御手段と協働して、エンジンのNOx排出量を通常時よりも減少させ、

また、前記エンジン制御手段に異常が発生した第2の異常発生時には、発生した異常によるNOx排出量の変化に応じ、添加装置により添加される還元剤の量を変化させるエンジンの排気浄化装置。

【書類名】明細書

【発明の名称】エンジンの排気浄化装置

【技術分野】

[0001]

本発明は、エンジンの排気浄化装置に関し、詳細には、自動車用エンジンから排出され る窒素酸化物を、アンモニアを還元剤に使用して浄化する技術に関する。

【背景技術】

[0002]

エンジンから排出される大気汚染物質、特に排気中の窒素酸化物(以下「NOx」とい う。)を後処理により浄化するものに、次のSCR(Selective Catalytic Reduction) 装置が知られている。エンジンの排気通路にアンモニア又はその前駆体の水溶液を噴射す る装置を設置し、噴射されたアンモニアを還元剤として、排気中の窒素酸化物(以下「N Ox」という。)と、このアンモニアとを触媒上で反応させ、NOxを還元し、浄化する ものである。また、車上でのアンモニアの貯蔵容易性を考慮し、タンクにアンモニア前駆 体としての尿素水を貯蔵しておき、実際の運転に際し、このタンクから供給された尿素水 を排気通路内に噴射し、排気熱を利用した尿素の加水分解によりアンモニアを発生させる SCR装置も知られている(特許文献1)。回転数及び負荷等のエンジンの運転状態を検 出し、排気に対し、検出した運転状態に応じた量の尿素水を噴射するのが一般的である(特許文献2)。

【特許文献1】特開2000-027627号公報(段落番号0013) 【特許文献2】特開2001-020724号公報(段落番号0004)

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかしながら、上記のSCR装置には、次のような問題がある。エンジンに関する設定 として、燃料噴射弁等のエンジン部品の作動特性を、パティキュレート排出量が少なくな るように設定する場合がある。このような設定では、一般的にNOx排出量が多くなるが 、SCR装置が正常に作動しているのであれば、排出されたNOxをアンモニアとの還元 反応により浄化することができる。このようなある程度のNOxの排出を許容する設定の もと、エンジン部品に異常が発生し、排気の組成が変化した場合を想定する。この場合に おいて、NOx排出量が増加したにも拘わらず、尿素水噴射量を正常時のまま維持したと すれば、NOxに対してアンモニアが不足し、未浄化のNOxが大気中に放出されること となる。他方、NOx排出量が減少したにも拘わらず、尿素水噴射量を正常時のまま維持 したとすれば、尿素水が無駄に消費されるばかりでなく、アンモニアが過剰に発生し、余 剰のアンモニアが大気中に放出されることとなる。また、SCR装置に異常が発生して、 尿素水噴射量が変化し、あるいは尿素水のアンモニア含有量(尿素の濃度)が変化したと する。この場合は、排気へのアンモニア添加量が変化することとなるので、NOxとアン モニアとの比率が適正値からずれ、還元反応が良好に進行せず、NOx除去率が要求を満 たさなくなる。また、アンモニアが過剰に添加されたときは、余剰のアンモニアが大気中 に放出される。

[0004]

本発明は、エンジン部品又はSCR装置に異常が発生したときに、大気中へのNOx又 はアンモニアの放出を抑制することを目的とする。

【課題を解決するための手段】

[0005]

本発明は、エンジンの排気浄化装置を提供する。本発明に係る装置は、排気にNOxの 還元剤を添加する添加装置を備え、添加された還元剤により排気中のNOxの還元を促す ものである。本発明に係る装置は、自動車用エンジンの排気浄化装置として好適に採用す ることができ、NOxの還元剤には、アンモニアを使用することができる。

[0006]

第1の形態では、添加装置に発生する異常を第1の異常として、この第1の異常が発生 したことを検出する。エンジンから排出される時点での排気の組成に影響を与えるエンジ ン制御手段(以下、単に「エンジン制御手段」という。)と協働して、第1の異常の発生 が検出されたときと、それ以外のときとで、同じ運転条件に対するエンジンのNOx排出 量を異ならせる。好ましくは、添加装置による還元剤の添加を停止するとともに、NOx 排出量を減少させる。

[0007]

第2の形態では、エンジン制御手段に発生する異常を第2の異常として、この第2の異 常が発生したことを検出する。第2の異常の発生が検出されたときと、それ以外のときと で、添加装置の還元剤添加量を異ならせる。好ましくは、第2の異常によるNOx排出量 の変化に応じ、還元剤添加量を調節する。

[0008]

第3の形態では、第1の異常が発生したことを検出するとともに、第2の異常が発生し たことを検出する。第1及び第2の異常のうち、少なくとも一方の異常の発生が検出され たとき以外のときを通常時として、第1の異常の発生が検出された第1の異常発生時にお いて、エンジン制御手段と協働して、同じ運転条件に対するエンジンのNOx排出量を通 常時とは異ならせる。また、第2の異常の発生が検出された第2の異常発生時において、 添加装置の還元剤添加量を通常時とは異ならせる。

【発明の効果】

[0009]

本発明によれば、エンジン制御手段に異常が発生し、エンジンのNOx排出量が変化し たときに、添加装置の還元剤添加量を制御し、実際のNOx排出量に見合ったものとする ことで、還元剤の不足によるNOxの放出や、過剰供給による還元剤の放出を防止するこ とができる。また、添加装置に異常が発生し、的確な量の還元剤を添加し得なくなったと きに、エンジン制御手段と協働し、NOxの発生自体を抑制することで、NOxの放出を 抑制することができる。

【発明を実施するための最良の形態】

[0010]

以下に図面を参照して、本発明の実施の形態について説明する。

[0011]

図1は、本発明の一実施形態に係る自動車用エンジン(以下「エンジン」という。)の 構成を示している。本実施形態では、エンジン1として直噴型のディーゼルエンジンを採 用している。

[0012]

吸気通路11の導入部には、図示しないエアクリーナが取り付けられており、エアクリ ーナにより吸入空気中の粉塵が除去される。吸気通路11には、可変ノズル型のターボチ ャージャ12 (「過給装置」を構成する。) のコンプレッサ12 aが設置されており、コ ンプレッサ12aにより吸入空気が圧縮されて送り出される。圧縮された吸入空気は、サ ージタンク13に流入し、マニホールド部で各気筒に分配される。

[0013]

エンジン本体において、シリンダヘッドには、インジェクタ21が気筒毎に設置されて いる。インジェクタ21は、エンジンコントロールユニット(以下「エンジンC/U」と いう。)51からの信号に応じて作動する。図示しない燃料ポンプにより送り出された燃 料は、コモンレール22を介してインジェクタ21に供給され、インジェクタ21により 燃焼室内に噴射される。

[0014]

排気通路31には、マニホールド部の下流にターボチャージャ12のタービン12bが 設置されている。排気によりタービン12bが駆動されることで、コンプレッサ12aが 回転する。タービン12bは、VNTコントロールユニット122により可動ベーン12 1の角度が制御される。可動ベーン121の角度に応じ、タービン12b及びコンプレッ

サ12aの回転数が変化する。

[0015]

タービン12bの下流には、上流側から順に酸化触媒32、NOx浄化触媒33及びアンモニア浄化触媒34が設置されている。酸化触媒32は、排気中の炭化水素及び一酸化炭素を酸化するとともに、排気中の一酸化窒素(以下「NO」という。)を、二酸化窒素(以下「NO」という。)を主とするNOxに転換するものであり、排気に含まれるNOxNO2との比率を、後述するNOxの還元反応に最適なものに調整する作用を奏する。NOx浄化触媒33は、排気中のNOxを還元し、浄化する。NOx浄化触媒33でのNOxの還元を促すため、本実施形態では、NOx浄化触媒33の上流で排気に還元剤としてのアンモニアを添加する。

[0016]

本実施形態では、アンモニアの貯蔵容易性を考慮し、アンモニア前駆体としての尿素を水溶液の状態で貯蔵する。アンモニアを尿素として貯蔵することで、安全性を確保することができる。

[0017]

尿素水を貯蔵するタンク41には、尿素水供給管42が接続されており、この尿素水供給管42の先端に尿素水の噴射ノズル43が取り付けられている。尿素水供給管42には、上流側から順にフィードポンプ44及びフィルタ45が介装されている。フィードポンプ44は、電動モータ441により駆動される。電動モータ441は、SCRコントロールユニット(以下「SCR-C/U」という。)61からの信号により回転数が制御され、フィードポンプ44の吐出し量を調整する。また、フィルタ45の下流において、尿素水供給管42に尿素水戻り管46が接続されている。尿素水戻り管46には、圧力制御弁47が設置されており、規定圧力を超える分の余剰尿素水がタンク41に戻されるように構成されている。

[0018]

噴射ノズル43は、エアアシスト式の噴射ノズルであり、本体431と、ノズル部432とで構成される。本体431には、尿素水供給管42が接続される一方、アシスト用の空気(以下「アシストエア」という。)を供給するための空気供給管48が接続されている。空気供給管48は、図示しないエアタンクと接続されており、このエアタンクからアシストエアが供給される。ノズル部432は、NOx浄化触媒33の上流において、NOx浄化触媒33及びアンモニア浄化触媒34の筐体を貫通させて設置されている。ノズル部432の噴射方向は、排気の流れと平行な方向に、NOx浄化触媒33の端面に向けて設定されている。

[0019]

尿層水が噴射されると、噴射された尿素水中の尿素が排気熱により加水分解し、アンモニアが発生する。発生したアンモニアは、NOx浄化触媒33上でNOxの還元剤として作用し、NOxの還元を促進させる。アンモニア浄化触媒34は、NOxの還元に寄与せずにNOx浄化触媒33を通過したスリップアンモニアを浄化するためのものである。アンモニアは、刺激臭があるため、未浄化のまま放出するのは好ましくない。酸化触媒32でのNOの酸化反応、尿素の加水分解反応、NOx浄化触媒33でのNOxの還元反応、及びアンモニア浄化触媒34でのスリップアンモニアの酸化反応は、次の(1)~(4)式により表される。なお、本実施形態では、NOx浄化触媒33と、アンモニア浄化触媒34とを一体の筐体に内蔵させているが、それぞれの筐体を別体のものとして構成してもよい。

[0020]

 $NO+1/2O_2 \rightarrow NO_2 \cdot \cdot \cdot (1)$ $(NH_2)_2CO+H_2O \rightarrow 2NH_3+CO_2 \cdot \cdot \cdot (2)$ $NO+NO_2+2NH_3 \rightarrow 2N_2+3H_2O \cdot \cdot \cdot (3)$ $4NH_3+3O_2 \rightarrow 2N_2+6H_2O \cdot \cdot \cdot (4)$

また、排気通路31は、EGR管35により吸気通路11と接続されている。このEG

[0021]

排気通路 31 において、酸化触媒 32 と NO x 浄化触媒 33 との間には、尿素水添加前の排気の温度を検出するための温度センサ 71 が設置されている。アンモニア浄化触媒 34 の下流には、還元後の排気の温度を検出するための温度センサ 72、及び還元後の排気に含まれる NO x の濃度を検出するための NO x センサ 73 が設置されている。また、タンク 41 内には、貯蔵されている尿素水に含まれる尿素の濃度(以下、単に「濃度」というときは、尿素の濃度をいうものとする。) Du を検出するための尿素センサ 74 と、貯蔵されている尿素水の量 Ru を検出するための残量センサ 75 とが設置されている。

[0022]

尿素センサ(「第1のセンサ」に相当する。)74には、公知のいかなる形態のものが採用されてもよい。本実施形態では、尿素の濃度に応じた尿素水の熱伝達率をもとに、濃度 D u を検出するものが採用されている。また、残量センサ(「第2のセンサ」に相当する。)75は、フロートと、このフロートの位置(すなわち、高さ)を検出する可変抵抗体とを含んで構成され、検出されたフロートの高さをもとに、尿素水の残量 R u を検出する。なお、尿素水の熱伝達率に基づいて濃度 D u を検出する感温型尿素センサ74によれば、尿素水と空気との間で熱伝達率に大きな違いがあることから、尿素センサ74が空気中にあるときの尿素センサ74の出力特性を予め把握しておくことで、残量 R u に代え、タンク41が空であるか否かを判定することができ、第1及び第2のセンサを1つの尿素センサ74で兼ねることができる。

[0023]

図2は、エンジン1の制御系の構成を示している。

[0024]

エンジンC/U51と、SCR-C/U61とは、双方向に通信可能に接続されている

[0025]

エンジンC/U51は、EGRコントロールユニット361及びVNTコントロールユニット122とも双方向に通信可能に接続されている。EGRコントロールユニット361は、EGR系に異常が発生したことを検出する機能を有しており、異常の発生を示す信号をエンジンC/U51に出力する。VNTコントロールユニット122は、VNT系に異常が発生したことを検出する機能を有しており、異常の発生を示す信号をエンジンC/U51は、EGRコントロールユニット361及びVNTコントロールユニット122に対し、エンジン1の運転状態に応じた指令信号を出力する一方、これらのコントロールユニット361、122から異常の発生を示す信号を出力する一方、これらのコントロールユニット361、122から異常の発生を示す信号を入力したときは、SCR-C/U61に対し、エンジン1に異常が発生したことを示すエンジン側異常信号を出力する。また、エンジン1には、イグニッションスイッチ、スタートスイッチ、クランク角センサ、車速センサ及びアクセルセンサ等が設置されており、これらのセンサの検出信号は、エンジンC/U51に出力される。エンジンC/U51は、クランク角センサから入力した信号をもとに、エンジン回転数Neを算出する。エンジンC/U51は、燃料噴射量等の尿素水の噴射制御に必要な情報をSCR-C/U61に出力する。

[0026]

SCR-C/U61は、温度センサ71,72、NOxセンサ73、尿素センサ74及び残量センサ75の検出信号、並びに燃料噴射量等の演算情報を入力するとともに、アシストエア圧力Pa、尿素水圧力Pu及び尿素センサ電圧Vsを入力する。アシストエア圧力Paは、空気供給管48内の圧力であり、空気供給管48に設置された圧力センサ76により検出される。尿素水圧力Puは、尿素水供給管42内の圧力であり、フィードポン

プ44の下流の尿素水供給管43に設置された圧力センサ77により検出される。尿素センサ電圧Vsは、尿素センサ74の検知濃度に応じて出力される電圧であり、電圧センサ78により検出される。SCR-C/U61は、入力した信号及び情報をもとに、最適な尿素水噴射量を演算及び設定し、設定した尿素水噴射量に応じた指令信号を噴射ノズル43に出力する。また、アシストエア圧力Pa、尿素水圧力Pu、尿素センサ電圧Vs、濃度Dn及び残量Ruをもとに、後述するように尿素水噴射系に異常が発生したことを検出し、エンジンC/U51に対し、異常の発生を示すSCR側異常信号を出力する。

[0027]

次に、エンジンC/U51及びSCR-C/U61の動作をフローチャートにより説明する。

[0028]

まず、SCR-C/U61の動作について説明する。

[0029]

図3は、異常検出ルーチンのフローチャートである。このルーチンは、イグニッションスイッチがオンされることにより起動され、その後所定の時間毎に繰り返される。このルーチンにより尿素水噴射系に異常が発生したことが検出される。

[0030]

S101では、アシストエア圧力Pa、尿素水圧力Pu、尿素センサ電圧Vs、濃度Du及び残量Ruを読み込む。

[0031]

S102では、アシストエア圧力 Paが所定の値 Pa2及び Pa1 (<Pa2)を上下限とする所定の範囲内にあるか否かを判定する。所定の範囲内にあるときは、S103へ進み、所定の範囲内にないときは、S108へ進む。所定の値 Pa1よりも小さいアシストエア圧力が検出されたときは、空気供給管42でアシストエアの漏れが発生していると判断し、所定の値 Pa2よりも大きいアシストエア圧力が検出されたときは、噴射ノズル43に詰りが発生していると判断する。噴射ノズル43の詰りは、ノズル部432内で尿素が凝結し、通路が塞がれた場合等に発生する。

[0032]

S103では、尿素水圧力Puが所定の値Pul以上であるか否かを判定する。Pul以上であるときは、S104へ進み、Pulよりも小さいときは、S108へ進む。所定の値Pulよりも小さい尿素水圧力が検出されたときは、フィードポンプ44が故障し、尿素水を充分な圧力で供給し得ない状態にあると判断する。

[0033]

S104では、尿素センサ電圧Vsが所定の値Vs1以下であるか否かを判定する。Vs1以下であるときは、S105へ進み、Vs1よりも大きいときは、S108へ進む。所定の値Vs1よりも大きい尿素センサ電圧が検出されたときは、尿素センサ74に断線が発生していると判断する。

[0034]

S105では、残量Ruが所定の値Rul以上であるか否かを判定する。Rul以上であるときは、S106へ進み、Rulよりも小さいときは、タンク41が空であり、残量が不足しているとして、S108へ進む。所定の値Rulは、噴射に必要な最小限の残量に設定する。

[0035]

S106では、濃度Duが所定の値Du1以上であるか否かを判定する。Du1以上であるときは、S107へ進み、Du1よりも小さいときは、尿素水が過剰に希釈されているとして、S108へ進む。所定の値Du1は、アンモニアの添加に必要な最低限の濃度に設定する。

[0036]

S107では、尿素水噴射系に想定した異常は発生していないとして、SCR側異常判 定フラグFscrを0に設定する。なお、以上のように検出されるアシストエアの漏れ、

[0037]

S108では、尿素水噴射系に何らかの異常が発生したとして、SCR側異常判定フラグFscrを1に設定するとともに、警告灯を作動させ、異常の発生を運転者に認識させる。

[0038]

図4は、尿素水噴射制御ルーチンのフローチャートである。このルーチンは、所定の時間毎に実行される。

[0039]

S201では、SCR側異常判定フラグFscrを読み込み、読み込んだFscrが0であるか否かを判定する。0であるときは、S202へ進み、0でないときは、尿素水噴射系に異常が発生しているとして、S208へ進む。

[0040]

S 2 0 2 では、燃料噴射量Q f 、NOx 濃度NOX (NOx センサ 7 3 の出力である。) 及び濃度D u を読み込む。

[0041]

S203では、尿素水噴射量Quを演算する。尿素水噴射量Quの演算は、燃料噴射量Qf及びNOx濃度NOXに応じた基本噴射量を演算するとともに、算出した基本噴射量を濃度Duにより補正することにより行う。濃度Duが高く、単位噴射量当たりの尿素含有量が多いときは、基本噴射量に対して減量補正を施す。他方、濃度Duが低く、単位噴射量当たりの尿素含有量が少ないときは、基本噴射量に対して増量補正を施す。

[0042]

S204では、エンジン側異常判定フラグFengを読み込み、読み込んだFengが0であるか否かを判定する。0であるときは、S205へ進み、0でないときは、エンジン1に異常が発生しているとして、S206へ進む。

[0 0 4 3]

S205では、S203で算出した尿素水噴射量Quを出力値Quに設定する。

[0044]

S206では、S203で算出した尿素水噴射量Quに対し、エンジン1に発生した異常に応じた補正を施し、補正後のQuを出力値Quに設定する。発生した異常の態様は、エンジンC/U51からその態様に応じた識別信号を入力することにより判断することができる。エンジン1について想定した異常毎にNOx排出量の変化の傾向を予め実験等により解明しておき、実際の運転に際し、発生した異常によるNOx排出量の増減に応じて尿素水噴射量を変化させる。例えば、異常によりNOx排出量が増大したときは、その増大分に応じた量だけ尿素水噴射量を増大させる。なお、尿素水噴射量の補正に併せ、エンジン部品の制御量マップを通常時のものから切り換え、NOxの発生自体を抑制する制御を行うとよい。

[0045]

S207では、噴射ノズル43に対し、設定した出力値Quに応じた作動信号を出力する。

[0046]

S208では、尿素水の噴射を停止させる。尿素水噴射系に異常が発生している状態では、NOx排出量に対して的確な量の尿素水を噴射することができず、適正値に対して尿素水噴射量が少ないときは、NOxが未浄化のまま大気中に放出されるおそれがあり、多いときは、尿素水が無駄に消費されるばかりでなく、過剰に発生したアンモニアがアンモニア浄化触媒 34 により完全には分解されず、大気中に放出されるおそれがあるからである。また、タンク41 が空であるときは勿論、尿素水が過度に希薄であるときや、尿素水ではなく、水又は尿素水以外の異種水溶液がタンク41 に貯蔵されているときは、NOxの浄化に必要な量のアンモニアを添加することができないからである。

[0047]

次に、エンジンC/U51の動作について説明する。

[0048]

図5は、異常検出ルーチンのフローチャートである。このルーチンは、イグニッションスイッチがオンされることにより起動され、その後所定の時間毎に繰り返される。このルーチンによりエンジン1に異常が発生したことが検出される。

[0049]

S301では、EGR系異常判定フラグFegrが0であるか否かを判定する。0であるときは、S302へ進み、1であるときは、EGR系に異常が発生しているとして、S304へ進む。EGR系の異常は、EGRコントロールユニット361により検出される。EGRコントロールユニット361は、EGR弁36に出力した指令信号の電圧を検出し、検出した電圧が所定の値よりも大きいときに、EGR系の制御線に断線が発生していると判断して、EGR系異常判定フラグFegrを1に設定する。

[0050]

S302では、VNT系異常判定フラグFvntが0であるか否かを判定する。0であるときは、S303へ進み、1であるときは、VNT系に異常が発生しているとして、S304へ進む。VNT系の異常は、VNTコントロールユニット122により検出される。VNTコントロールユニット122は、ブーストセンサにより検出される吸気圧力をもとに、この吸気圧力が正常を示す所定の範囲内にないときに、VNT系に異常が発生していると判定する。なお、ブーストセンサは、サージタンク13に設置され、サージタンク13内の圧力を検出する。以上のように検出されるEGR系及びVNT系の異常が「第2の異常」に相当する。

[0051]

S303では、エンジン側異常判定フラグFengを0に設定する。

[0052]

S304では、エンジン側異常判定フラグFengを1に設定する。

[0053]

図6は、エンジン制御ルーチンのフローチャートである。このルーチンは、所定の時間 毎に実行される。

[0054]

S401では、エンジン側異常判定フラグFengを読み込み、読み込んだFengが0であるか否かを判定する。0であるときは、S402へ進み、0でないときは、エンジン1に異常が発生しているとして、S407へ進む。

[0055]

S402では、エンジン回転数Neや、アクセル開度APOなど、エンジン部品の制御に用いられる各種の運転状態を読み込む。

[0056]

S403では、SCR側異常判定フラグFscrを読み込み、読み込んだFscrが0であるか否かを判定する。0であるときは、S404へ進み、0でないときは、尿素水噴射系に異常が発生しているとして、S405へ進む。

[0057]

S404では、通常運転用マップを選択するとともに、読み込んだ運転状態により選択したマップを検索して、エンジン部品の制御量を演算する。なお、このエンジン部品には、EGR弁36及びターボチャージャ12が含まれ、演算される制御量には、EGR弁36の開度及び(タービン12bの)可動ベーン121の角度が含まれる。

[0058]

S405では、低NOx運転用マップを選択するとともに、読み込んだ運転状態により選択したマップ検索して、エンジン部品の制御量を演算する。尿素水噴射系に異常が発生しているときは、前述のように尿素水の噴射が停止されるが、低NOx運転用マップを選択することによりNOxの発生自体を抑制し、大気中へのNOxの放出を抑制する。NO

[0059]

S406では、算出した制御量をエンジン部品のコントロールユニット361, 122 に出力する。

[0060]

S407では、エンジン1に発生した異常の態様に応じた識別信号をSCR-C/U61に出力する。例えば、発生した異常がEGR系に関するものであるときは、EGR系の異常の発生を示す識別信号を出力する。EGR系に異常が発生すると、排気の還流が停止されるため、NOx排出量が増大する。SCR-C/U61は、NOx排出量の増大に対し、尿素水噴射量を増大させて、大気中へのNOxの放出を防止する。

[0061]

本実施形態に関し、タンク41、尿素水供給管42、噴射ノズル43、フィードポンプ44、空気供給管48、尿素センサ74及び残量センサ75が還元剤添加手段としての機能を備え、還元剤の添加装置を構成する。尿素センサ74は、濃度を検出する第1のセンサとしての機能と、残量を判定する第2のセンサとしての機能とを兼ね備えることもできる。また、エンジンC/U51又はSCR-C/U61が備える機能のうち、図3に示すフローチャート全体の機能が第1の異常検出手段に、図5に示すフローチャート全体の機能が第2の異常検出手段に、図4に示すフローチャートS201,204~206,208の機能及び図6に示すフローチャートのS403~405の機能が排気制御手段に相当する。エンジンC/U51と、SCR-C/U61とは、添加装置のコントローラを構成する。

[0062]

本実施形態によれば、次のような効果を得ることができる。

[0063]

第1に、エンジン1に異常が発生し、NOx排出量が変化したときに、この変化に応じて尿素水噴射量を変化させ、実際のNOx排出量に見合ったものとすることで、尿素水が不足することによるNOxの放出や、尿素水が過剰であることによるアンモニアの放出を防止することができる。

[0064]

第2に、尿素水噴射系に異常が発生したときに、EGR弁36等のエンジン部品を制御し、NOxの発生自体を抑制することで、NOxの放出を抑制することができる。本実施形態では、エンジン部品の制御に併せ、尿素水の噴射を停止することとしたので、不安定な動作により尿素水が過剰に噴射され、アンモニアが放出されることを防止することができる。

[0065]

第3に、尿素水噴射系の異常として、噴射ノズル43等の部品の異常に加え、残量の不足や、希釈といった尿素水の異常を採用し、この異常の発生を検出したときに警告灯を作動させることで、運転者に対し、尿素水の適正な保持及び管理を促すことができる。

[0066]

なお、以上では、尿素の加水分解によりアンモニアを発生させることとしたが、この加水分解のための触媒は、特に明示していない。加水分解の効率を高めるため、NOxの還元触媒(すなわち、NOx浄化触媒33)の上流に加水分解触媒を設置してもよい。

[0067]

また、以上では、第2の異常として、EGR系及びVNT系に発生する異常を採用したが、これらの異常に加え、燃料供給用のインジェクタや、このインジェクタに燃料を供給する燃料供給系に発生する異常を採用してもよい。インジェクタに発生する異常として、例えば、制御線の断線は、インジェクタに微弱な電流を通電し、そのときに流れる実際の

電流が所定の値よりも小さいときに、発生していると判断することができる。また、燃料供給系に発生する異常として、例えば、燃料ポンプの故障は、コモンレール22内の圧力を検出し、検出した圧力が所定の値よりも小さいときに、発生していると判断することができる。

[0068]

本発明は、ガソリンエンジンの排気浄化装置に適用することもできる。

【図面の簡単な説明】

[0069]

- 【図1】本発明の一実施形態に係るエンジンの構成
- 【図2】同上エンジン及びその排気浄化装置の制御系の構成
- 【図3】SCR-C/Uが行う異常検出ルーチンのフローチャート
- 【図4】尿素水噴射制御ルーチンのフローチャート
- 【図5】エンジンC/Uが行う異常検出ルーチンのフローチャート
- 【図6】エンジン制御ルーチンのフローチャート

【符号の説明】

[0070]

1…エンジン、11…吸気通路、12…ターボチャージャ、13…サージタンク、21 …インジェクタ、22…コモンレール、31…排気通路、32…酸化触媒、33…NO x 浄化触媒、34…アンモニア浄化触媒、35…EGR管、36…EGR弁、41…タンク、42…尿素水供給管、43…噴射ノズル、44…フィードポンプ、45…フィルタ、46…尿素水戻り管、47…圧力制御弁、48…空気供給管、51…エンジンC/U、61…SCR-C/U、71,72…排気温度センサ、73…NOxセンサ、74…尿素センサ、75…残量センサ、76…空気圧力センサ、77…尿素水圧力センサ、78…素子部電圧センサ。

[図2]

【図5】

【課題】エンジン又はSCR装置に異常が発生したときに、大気中へのNOxの放出を抑制する。

【解決手段】エンジンC/U51は、エンジンに異常が発生したことを検出し、異常の発生を示す信号をSCR-C/U61に出力する。SCR-C/U61は、発生した異常に応じ、尿素水噴射量を増減させる。一方、SCR-C/U61は、SCR装置に異常が発生したことを検出し、異常の発生を示す信号をエンジンC/U51に出力する。エンジンC/U51は、EGR弁等のエンジン部品を制御し、NOx排出量を低減させる。SCR装置に異常が発生したときは、尿素水の噴射を停止させる。

【選択図】 図2

特願2003-345723

出願人履歴情報

識別番号

[000003908]

1. 変更年月日 [変更理由]

1990年 8月20日 新規登録

住所氏名

埼玉県上尾市大字壱丁目1番地 日産ディーゼル工業株式会社