ME111 - Laboratório de Estatística

Aula 12 - Testes Chi-Quadrado

Profa. Larissa Avila Matos

Testes Chi-Quadrado: Aderência e Independência

- Muitas vezes, a informação da amostra coletada tem a estrutura de dados categorizados, ou seja, cada membro da população pode assumir um entre k valores de uma ou mais características estudadas.
- Dessa forma, o conjunto de dados consiste em frequências de contagens para essas categorias.
- Esse tipo de dados ocorre com frequência nas áreas sociais e biomédicas.
- O objetivo aqui é estudar dados agrupados em categorias múltiplas e veremos isso através de dois tipos de testes:
 - Teste de Aderência (ou Bondade de Ajuste);
 - Teste de Independência.

Introdução

- Teste de Aderência: considere uma população na qual cada membro assume qualquer um de k possíveis valores. Iremos verificar quão adequado uma amostra obtida dessa população se ajusta a um modelo de probabilidade proposto.
- Teste de Independência: considere uma população na qual cada membro é classificado de acordo com duas características distintas. Com os dados de uma amostra dessa população, iremos verificar se essas duas características podem ser consideradas independentes.
- Duas características serão independentes se a classificação de um membro da população de acordo com uma característica não interfere na probabilidade de classificação em relação à segunda característica desse mesmo membro.

Exemplo: Cores de Geladeira

- Uma determinada marca de geladeira é vendida em cinco cores diferentes e uma pesquisa de mercado quer avaliar a popularidade das várias cores.
- As frequências abaixo são observadas para uma amostra de 300 vendas feitas num semestre.
- Suponha que seja de interesse testar a hipótese das cinco cores serem igualmente populares.
- Vendas das cinco cores das geladeiras da marca W:

Cor	marrom	creme	vermelho	azul	branco	Total
Frequência	88	65	52	40	55	300

```
obs <- c(G1=88, G2=65, G3=52, G4=40, G5=55)
obs

G1 G2 G3 G4 G5
88 65 52 40 55

names(obs) <- c("Marrom", "Creme", "Vermelho", "Azul", "Branco")
```

Marrom	Creme	Vermelho	Azul	Branco
88	65	52	40	55

obs

Modelo Multinomial

Distribuição Multinomial: Para acomodar dados como no Exemplo 1, precisamos estender o modelo Bernoulli de forma que os resultados possam ser classificados em mais de duas categorias. Esse modelo é chamado de distribuição multinomial.

Modelo Multinomial

Distribuição Multinomial: Para acomodar dados como no Exemplo 1, precisamos estender o modelo Bernoulli de forma que os resultados possam ser classificados em mais de duas categorias. Esse modelo é chamado de distribuição multinomial.

Modelo Multinomial

- \blacksquare O resultado de cada amostra pode ser classificado em uma de k respostas denotadas por $1, 2, \ldots, k$.
- 2 A probabilidade da amostra assumir o valor $i \in p_i, i = 1, 2, \dots, k$, com

$$\sum_{i=1}^{k} p_i = 1$$

3 As observações são independentes.

Distribuição Multinomial

- Considere uma amostra de uma população que consiste de elementos em diversas categorias, por exemplo, k valores possíveis.
- Denotaremos por n_1, n_2, \ldots, n_k , com $\sum_{i=1}^k n_i = n$ as frequências e p_1, p_2, \ldots, p_k as probabilidades.
- A distribuição conjunta de n_1, n_2, \ldots, n_k é chamada de distribuição multinomial e tem função de probabilidade dada por:

$$f(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k},$$

em que
$$\sum_{i=1}^k n_i = n \text{ e com } \sum_{i=1}^k p_i = 1.$$

Distribuição Multinomial

■ Se designarmos a componente n_1 como "sucesso" e juntarmos as demais numa mesma que designamos "fracasso", a variável aleatória n_1 é o número de sucessos em n ensaios de Bernoulli, ou seja, $n_1 \sim Bin(n, p_1)$.

Distribuição Multinomial

- Se designarmos a componente n_1 como "sucesso" e juntarmos as demais numa mesma que designamos "fracasso", a variável aleatória n_1 é o número de sucessos em n ensaios de Bernoulli, ou seja, $n_1 \sim Bin(n, p_1)$.
- Portanto, $\mathbb{E}(n_1) = np_1$, $Var(n_1) = np_1(1 p_1)$.
- Analogamente aplicando o mesmo argumento a cada n_i temos:

$$\mathbb{E}(n_i) = np_i$$
 e $Var(n_i) = np_i(1-p_i)$.

■ Iremos usar o valor esperado de n_i nos testes que veremos a seguir.

Teste de Aderência

■ Objetivo: Testar quão adequado é assumir um modelo probabilístico para descrever um determinado conjunto de dados.

Teste de Aderência

- Objetivo: Testar quão adequado é assumir um modelo probabilístico para descrever um determinado conjunto de dados.
- Exemplo: Vocês já devem ter visto em alguma aula de Biologia o seguinte:

Figure 1: 3 genótipos (categorias): AA, Aa e aa

Teste de Aderência

■ Em uma certa população, 100 descendentes foram estudados, fornecendo a tabela a seguir:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100

■ Objetivo: Verificar se o modelo genético proposto (Equilíbrio de Hardy-Weinberg) é adequado para essa população.

Se o modelo teórico for adequado, a freqüência esperada de descendentes para o genótipo AA, dentre os 100 indivíduos, pode ser calculada por:

$$100 \times P(AA) = 100 \times \frac{1}{4} = 25.$$

■ Da mesma forma para o genótipo Aa:

$$100 \times P(Aa) = 100 \times \frac{1}{2} = 50.$$

■ E para o genótipo aa:

$$100 \times P(aa) = 100 \times \frac{1}{4} = 25.$$

■ Podemos expandir a tabela de frequências dada anteriormente com as frequências esperadas sob o modelo teórico:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

Podemos expandir a tabela de frequências dada anteriormente com as frequências esperadas sob o modelo teórico:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

- Pergunta: Podemos afirmar que os valores observados estão suficientemente próximos dos valores esperados, de tal forma que o modelo genético teórico é adequado a esta população?
- O procedimento que responde esse tipo de pergunta é chamado de teste de bondade de ajuste ou teste de aderência.

Teste de Aderência - Procedimento

 \blacksquare Considere uma tabela de freqüências, com $k \geq 2$ categorias de resultados:

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	n

- Sendo O_i o total de indivíduos observados na categoria $i, i = 1, 2, \dots, k$.
- Seja p_i a probabilidade associada à categoria i, i = 1, 2, ..., k.
- O objetivo do teste de aderência é testar as hipóteses:

$$H_0: p_1 = p_{01}, \ldots, p_k = p_{0k},$$

 H_a : existe pelo menos uma diferença,

sendo p_{0i} a probabilidade da categoria i sob o modelo teórico e $\sum_{i=1}^{k} p_{0i} = 1$.

■ Se E_i é o total de indivíduos esperados na categoria i, quando a hipótese nula H_0 é verdadeira, então:

$$E_i = n \times p_{0i}, \quad i = 1, 2, \dots, k.$$

■ Então, expandindo a tabela de frequências original, temos

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	n
Frequência Esperada	E_1	E_2	 E_k	n

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Estatística do Teste:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^k \frac{(n_i - np_{0i})^2}{np_{0i}}.$$

- Se H_0 é verdadeira: $\chi^2 \sim \chi^2_{k-1}$.
- Em outras palavras, se H_0 é verdadeira, a v.a. χ^2 segue uma distribuição aproximadamente Qui-quadrado com k-1 graus de liberdade.
- Condição: Este resultado é válido para n grande e para frequências esperadas maiores ou iguais a 5.

- Calcular o p-valor ou encontrar o valor crítico.
- **p-valor**: $P(\chi_{k-1}^2 \ge \chi_{obs}^2)$, em que χ_{obs}^2 é o valor da estatística do teste calculada a partir dos dados.

■ Valor Crítico: Para um nível de significância α , encontrar o valor crítico χ^2_{crit} na tabela Chi-quadrado tal que $P(\chi^2_{k-1} \ge \chi^2_{crit}) = \alpha$.

■ Conclusão: Rejeitamos H_0 se

$$p$$
-valor $\leq \alpha$ ou $\chi^2_{obs} \geq \chi^2_{crit}$

Tabela da Distribuição Chi-Quadrado

Quantis da Distribuição χ^2 . Graus de liberdade na margem esquerda da tabela e probabilidades p dadas no topo da tabela tal que $p=P[\chi^2\geq\chi^2_t]$.

ν/p	99.5%	99%	97.5%	95%	90%	50%	10%	5%	2.5%	1%	0.5%
1	0.00	0.00	0.00	0.00	0.02	0.45	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	2.37	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	5.35	10.64	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.95
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49

Distribuição Chi-Quadrado no R

```
dchisq(x, df, ncp = 0, log = FALSE)
pchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp = 0)
```

Γ1] 11.0705

[1] 0.05

Exemplo: Genética

- Voltando no exemplo da Genética:
- Hipóteses:

 H_0 : o modelo proposto é adequado

 H_a : o modelo proposto não é adequado

■ Que de forma equivalente, podem ser escritas como:

$$H_0: p_1 = 1/4, p_2 = 1/2, p_3 = 1/4,$$

 H_a : ao menos umas das desigualdades não verifica,

sendo
$$p_1 = P(AA), p_2 = P(Aa) e p_3 = P(aa).$$

A tabela seguinte apresenta os valores observados e esperados (calculados anteriormente).

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

■ Estatística do Teste:

$$\chi_{obs}^2 = \sum_{i=1}^3 \frac{(O_i - E_i)^2}{E_i} = \frac{(26 - 25)^2}{25} + \frac{(45 - 50)^2}{50} + \frac{(29 - 25)^2}{25}$$
$$= 0.04 + 0.5 + 0.64 = 1.18$$

■ Sob H_0 , a estatística $\chi^2 \sim \chi_2^2$. Veja que os graus de liberdade é o número de categorias menos 1. Então o valor-de-p é dado por:

valor-de-p =
$$P(\chi_2^2 \ge \chi_{obs}^2) = P(\chi_2^2 \ge 1.18) = 0.554$$

- Para um nível de significância $\alpha = 0.1$, olhando na Tabela Qui-Quadrado, o valor crítico é: $\chi^2_{crit} = 7.779$.
- Conclusão: Para $\alpha = 0.1$, como valor-de-p= 0.554 > 0.1, não rejeitamos a hipótese H_0 , isto é, essa população segue o modelo genético proposto.
- Ou como $\chi^2_{obs} = 1.18 < 7.779 = \chi^2_{crit}$, não rejeitamos a hipótese H_0 .

```
obs <- c(AA=26, Aa=45, aa=29)
obs
AA Aa aa
26 45 29
p0 \leftarrow c(0.25, 0.5, 0.25)
xsq <- chisq.test(obs, p=p0)</pre>
xsq
```

Chi-squared test for given probabilities

```
data: obs
X-squared = 1.18, df = 2, p-value = 0.5543
```

Exemplo: Cores de Geladeira

Voltando aos dados do exemplo das cores da geladeira, cujas componentes têm frequências multinomiais, a hipótese nula especifica que as cinco cores são igualmente populares. Ou seja,

$$H_0: p_1 = p_2 = \ldots = p_k = 1/5$$

 H_a : existe pelo menos uma diferença

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300

 Como as probabilidades das componentes na hipótese nula são todas iguais, as frequências esperadas também serão todas iguais, ou seja,

$$E_i = n \times \frac{1}{5} = 300 \times \frac{1}{5} = 60, \quad i = 1, 2, 3, 4, 5.$$

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300
Frequência Esperada	60	60	60	60	60	300
$\frac{(O-E)^2}{E}$	13.07	0.42	1.07	6.67	0.42	21.63

■ Estatística do Teste:

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300
Frequência Esperada	60	60	60	60	60	300
$\frac{(O-E)^2}{E}$	13.07	0.42	1.07	6.67	0.42	21.63

■ Estatística do Teste:

$$\chi^2 = \sum_{i=1}^{5} \frac{(O_i - E_i)^2}{E_i} = 13.07 + 0.42 + 1.07 + 6.67 + 0.42 = 21.63$$

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300
Frequência Esperada	60	60	60	60	60	300
$\frac{(O-E)^2}{E}$	13.07	0.42	1.07	6.67	0.42	21.63

■ Estatística do Teste:

$$\chi^2 = \sum_{i=1}^{5} \frac{(O_i - E_i)^2}{E_i} = 13.07 + 0.42 + 1.07 + 6.67 + 0.42 = 21.63$$

[1] 9.488

■ Olhando na tabela Qui-quadrado com 4 graus de liberdade, para $\alpha=0.05$, o valor crítico é $\chi^2_{crit}=\chi^2_{4,0.05}=9.488$.

■ Conclusão: Para $\alpha = 0.05$, como $\chi^2_{obs} = 21.63 > 9.488 = \chi^2_{crit}$, rejeitamos a hipótese de que as cinco cores são igualmente populares.

```
obs <- c(G1=88, G2=65, G3=52, G4=40, G5=55)
obs

G1 G2 G3 G4 G5
88 65 52 40 55

p0 <- rep(1/5, 5)
xsq <- chisq.test(obs, p=p0)
xsq
```

Chi-squared test for given probabilities

```
data: obs
X-squared = 21.633, df = 4, p-value = 0.0002371
```

Exemplo: Tipo Sanguíneo

- Entre os americanos, 41% tem sangue do tipo A, 9% tem sangue tipo B, 4% tipo AB e 46% tem sangue tipo O.
- Em uma amostra aleatória de 200 pacientes americanos com câncer de estômago, 92 pacientes têm sangue do tipo A, 20 do tipo B, 4 do tipo AB e 84 do tipo O.

Tipo	A	В	AB	О	Total
Frequência Observada	92	20	4	84	200

■ Essas frequências observadas trazem evidência contra a hipótese de que a distribuição do tipo sanguíneo dos pacientes é igual à distribuição dos tipos sanguíneos na população geral americana? Use nível de significância $\alpha=0.05$.

 $H_0: p_1 = 0.41, p_2 = 0.09, p_3 = 0.04, p_4 = 0.46$ $H_a:$ existe pelo menos uma diferença

Tipo	A	В	AB	О	Total
Frequência Observada	92	20	4	84	200
Frequência Esperada	82	18	8	92	200
$\frac{(O-E)^2}{E}$	1.22	0.22	2	0.7	4.14

■ Estatística do Teste:
$$\chi^2 = \sum_{i=1}^4 \frac{(O_i - E_i)^2}{E_i} = 4.14$$

- Conclusão: Como $\chi^2_{obs} = 4.14 \le 7.815 = \chi^2_{3,0.05}$, não temos evidência para rejeitar a hipótese nula.
- Portanto, concluímos que não há discrepância significativa entre o que foi observado e a distribuição sanguínea da população americana.

Exemplo: Ervilhas de Mendel

Figure 2: Ervilhas de Mendel

Figure 3: Cruzamento de ervilhas puramente amarelas e puramente verdes

Figure 4: Cruzamento de ervilhas puramente amarelas e puramente verdes

■ Mendel fez o cruzamento de 8023 ervilhas híbridas e o resultado foram 6022 ervilhas amarelas e 2001 ervilhas verdes. Teoricamente, cada cruzamento deve resultar em ervilha amarela com probabilidade 3/4 e verde com probabilidade 1/4.

$$H_0: p_1 = 3/4 \text{ e } p_2 = 1/4$$

 H_a : existe pelo menos uma diferença

Tipo	Amarela	Verde	Total
Frequência Observada	6022	2001	8023
Frequência Esperada	6017.25	2005.75	8023
$\frac{(O-E)^2}{E}$	0.004	0.011	0.015

■ Estatística do Teste: $\chi^2 = \sum_{i=1}^{2} \frac{(O_i - E_i)^2}{E_i} = 0.015$

■ Conclusão: Como $\chi^2_{obs} = 0.015 \le 3.841 = \chi^2_{1,0.05}$, não temos evidência para rejeitar a hipótese nula. Concluímos que não há discrepância significativa entre o que foi observado e a hipótese nula.

data: obs

```
obs <- c(Amarelas=6022, Verdes=2001)
obs
Amarelas Verdes
    6022
             2001
p0 < -c(3/4, 1/4)
xsq <- chisq.test(obs, p=p0)</pre>
xsq
    Chi-squared test for given probabilities
```

X-squared = 0.014999, df = 1, p-value = 0.9025

Referências

- Notas de aula da Profa. Samara F. Kiihl, Profa. Tatiana Benaglia e do Prof. Benilton Carvalho - ME414
- Wardrop, R. L. (1995). Statistics: Learning in the presence of variation.
- Bussab, W. O. & Morettin, P. A. (1987). Estatística Básica. Atual Editora Ltda., São Paulo.