

BSM307 İşaretler ve Sistemler

Dr. Seçkin Arı

Doğrusal Zamanla Değişmez Sistemler

İçerik

- Temel Sistem Özellikleri
- Doğrusal Zamanla Değişmez Sistemler
- Birim Darbe Cevabi

- ♦ %10 faiz veren banka hesabı
- ♦ 10 sene sonraki balans?
- Giriş, x[n] = ?
- Çıkış, y[n] = ?

- ♦ %10 faiz veren banka hesabı
- ♦ 10 sene sonraki balans?
- Giriş, x[n] = Yatırılan para
- Çıkış, y[n] = Hesaptaki para (balans)
- Iterasyon, y[n] = ?

- ♦ %10 faiz veren banka hesabı
- ♦ 10 sene sonraki balans?
- \bullet Giriş, x[n] =Yatırılan para
- Çıkış, y[n] = Hesaptaki para (balans)
- iterasyon, y[n] = y[n-1]

- ♦ %10 faiz veren banka hesabı
- ♦ 10 sene sonraki balans?
- Giriş, x[n] = Yatırılan para
- Çıkış, y[n] = Hesaptaki para (balans)
- ♦ İterasyon, $y[n] = y[n-1] + 0,1 \times y[n-1]$

- ♦ %10 faiz veren banka hesabı
- ♦ 10 sene sonraki balans?
- Giriş, x[n] = Yatırılan para
- Çıkış, y[n] = Hesaptaki para (balans)
- iterasyon, $y[n] = y[n-1] + 0.1 \times y[n-1] + x[n]$

- ♦ %10 faiz veren banka hesabı
- ♦ 10 sene sonraki balans?
- Giriş, x[n] = Yatırılan para
- Çıkış, y[n] = Hesaptaki para (balans)
- iterasyon, $y[n] = y[n-1] + 0,1 \times y[n-1] + x[n]$
- $y[n] = 1,1 \times y[n-1] + x[n]$

- x[n]: Giriş işareti
- y[n]: Çıkış işareti
- T: Dönüşüm (Transform)

- Hafızalı ya da hafızasız sistem
- Hafızasız
 - ♦ Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
 - $y[n] = 2x[n] + x[n]^2$

Hafızalı

- Hafızalı ya da hafızasız sistem
- Hafızasız
 - ♦ Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
 - $y[n] = 2x[n] + (x[n])^2$

- Hafızalı
 - ♦ Sistem çıkışının, giriş işaretinin ötelenmiş hallerine bağlı olması
 - $\bullet \ y[n] = x[n-1]$

• $T{x[n]} = y[n] = 2x[n] + 3$

Hafızalı?	
Ters çevrilebilir	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 2x[n] + 3$

Hafızalı	X
Ters çevrilebilir	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 6(x[n-3])^2$

Hafızalı?	
Ters çevrilebilir	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 6(x[n-3])^2$

Hafızalı	✓
Ters çevrilebilir	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = n^2x[n+2]$

Hafızalı?	
Ters çevrilebilir	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = n^2x[n+2]$

Hafızalı	/
Ters çevrilebilir	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

- Ters çevrilebilir ya da ters sistem
- $y[n] = T1\{x[n]\}$ karşılık

• $x[n] = T2\{y[n]\}$ elde edilebiliyorsa

- Ters çevrilebilir ya da ters sistem
- $y[n] = T1\{x[n]\}$ karşılık
- $x[n] = T2\{y[n]\}$ elde edilebiliyorsa

- T1: Ters çevrilebilir bir sistem.
- T2: T1' in tersi.

- Ters çevrilebilir ya da ters sistem
- $y[n] = T1\{x[n]\}$ karşılık
- $x[n] = T2\{y[n]\}$ elde edilebiliyorsa
- T1: Ters çevrilebilir bir sistem.
- T2: T1' in tersi.

- $y[n] = T1\{x[n]\} = 2x[n]$
- $x[n] = T2\{y[n]\} = y[n]/2$

• $T{x[n]} = y[n] = 2x[n] + 3$

Hafızalı	X
Ters çevrilebilir?	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 2x[n] + 3$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

•
$$T{y[n]} = x[n] = \frac{y[n]-3}{2}$$

• $T{x[n]} = y[n] = 6(x[n-3])^2$

Hafızalı	✓
Ters çevrilebilir?	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 6(x[n-3])^2$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

•
$$T{y[n]} = x[n] = \pm \sqrt{\frac{y[n+3]}{6}}$$

• $T{x[n]} = y[n] = n^2x[n+2]$

Hafızalı	✓
Ters çevrilebilir?	
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T\{x[n]\} = y[n] = n^2x[n+2]$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

•
$$T{y[n]} = x[n] = \frac{y[n-2]}{(n-2)^2}$$

• $T\{x[n]\} = y[n] = n^2x[n+2]$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	
Kararlı	
Zamanla Değişmez	
Doğrusal	

•
$$T{y[n]} = x[n] = \frac{y[n-2]}{(n-2)^2}$$

 \bullet n=2, sıfıra bölme hatası

- Nedensellik
- Nedensel
 - Sistem çıkışının, giriş işaretinin zamanın o andaki ve/veya geçmişteki bilgisine bağlı olması
 - $\bullet \ y[n] = x[n] + x[n-1]$

Nedensel olmayan

Nedensellik

- Nedensel
 - Sistem çıkışının, giriş işaretinin zamanın o andaki ve/veya geçmişteki bilgisine bağlı olması
 - $\bullet \ y[n] = x[n] + x[n-1]$

- Nedensel olmayan
 - ♦ Sistem çıkışının, giriş işaretinin gelecekteki bilgisine bağlı olması
 - $\bullet \ y[n] = x[n] + x[n+1]$

• $T{x[n]} = y[n] = 2x[n] + 3$

Hafızalı	X
Ters çevrilebilir	/
Nedensel?	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 2x[n] + 3$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 6(x[n-3])^2$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel?	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = 6(x[n-3])^2$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	✓
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = n^2x[n+2]$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel?	
Kararlı	
Zamanla Değişmez	
Doğrusal	

• $T{x[n]} = y[n] = n^2x[n+2]$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	
Zamanla Değişmez	
Doğrusal	

Kararlılık

- Kararlı
 - ♦ Giriş işaretinin maksimum genliğinin sınırlı olması durumunda (sonsuza gitmemesi), sistem çıkış genliğinin de sınırlı olması (sonsuza gitmemesi)
 - $\bullet \ \forall n, |x[n]| < N \text{ iken}$
 - $\bullet \ \forall n, |y[n]| < M \text{ iken}$
- Kararsız
 - ♦ Giriş işareti sınırlı iken, sistem çıkışı sonsuza gidiyorsa
 - $\bullet \ \forall n, |x[n]| < N \text{ iken}$
 - $\bullet \ \forall n, |y[n]| \rightarrow \infty \text{ ise}$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı?	
Zamanla Değişmez	
Doğrusal	

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	
Doğrusal	

- $\max(|x[n]|) = N$ iken
- $\max(|y[n]|) = 2N + 3 \ll \infty$ dur.

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	✓
Kararlı?	
Zamanla Değişmez	
Doğrusal	

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	✓
Kararlı	/
Zamanla Değişmez	
Doğrusal	

- $\max(|x[n]|) = N$ iken
- $\max(|y[n]|) = 6N^2 \ll \infty$ dur.

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı?	
Zamanla Değişmez	
Doğrusal	

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	
Doğrusal	

- $\max(|x[n]|) = N$ iken
- $n \to \infty$ iken $\max(|y[n]|) = \infty$

Temel Sistem Özellikleri

- Zamanla Değişmezlik
- $y[n] = T\{x[n]\}$ iken
- Zamanla değişmez
 - $T\{x[n-k]\} = y[n-k]$ ise

- Zamanla değişir
 - $T\{x[n-k]\} \neq y[n-k]$ ise

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T\{x_1[n]\} = y_1[n] = ?$$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = 2x_1[n] + 3$$

•
$$y_1[n] = 2x[n-k] + 3$$

•
$$y[n-k] = ?$$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = 2x_1[n] + 3$$

•
$$y_1[n] = 2x[n-k] + 3$$

•
$$y[n-k] = 2x[n-k] + 3$$

•
$$y_1[n] = y[n-k]$$
?

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	/
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = 2x_1[n] + 3$$

•
$$y_1[n] = 2x[n-k] + 3$$

•
$$y[n-k] = 2x[n-k] + 3$$

•
$$y_1[n] = y[n-k]$$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	✓
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T\{x_1[n]\} = y_1[n] = ?$$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	/
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = 6(x_1[n-3])^2$$

•
$$y_1[n] = 6(x[n-3-k])^2$$

•
$$y[n-k] = ?$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	/
Kararlı	/
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = 6(x_1[n-3])^2$$

•
$$y_1[n] = 6(x[n-3-k])^2$$

•
$$y[n-k] = 6(x[n-k-3])^2$$

•
$$y_1[n] = y[n-k]$$
?

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	✓
Kararlı	/
Zamanla Değişmez?	/
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = 6(x_1[n-3])^2$$

•
$$y_1[n] = 6(x[n-3-k])^2$$

•
$$y[n-k] = 6(x[n-k-3])^2$$

•
$$y_1[n] = y[n-k]$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T\{x_1[n]\} = y_1[n] = ?$$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez?	
Doğrusal	

$$\bullet \ x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = n^2x_1[n+2]$$

•
$$y_1[n] = n^2x[n+2-k]$$

•
$$y[n-k] = ?$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez?	
Doğrusal	

•
$$x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = n^2x_1[n+2]$$

•
$$y_1[n] = n^2 x[n+2-k]$$

•
$$y[n-k] = (n-k)^2 x[n-k+2]$$

•
$$y_1[n] = y[n-k]$$
?

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	X
Doğrusal	

•
$$x_1[n] = x[n-k]$$

•
$$T{x_1[n]} = y_1[n] = n^2x_1[n+2]$$

•
$$y_1[n] = n^2 x[n+2-k]$$

•
$$y[n-k] = (n-k)^2 x[n-k+2]$$

•
$$y_1[n] \neq y[n-k]$$

Temel Sistem Özellikleri

- Doğrusallık
- $T\{x_1[n]\} = y_1[n]$ ve
- $T\{x_2[n]\} = y_2[n]$ ve
- $x_3[n] = ax_1[n] + bx_2[n]$ iken
- Doğrusal

Dr. Ari

- $T\{x_3[n]\} = ay_1[n] + by_2[n]$ ise
- Doğrusal değil
 - $T\{x_3[n]\} \neq ay_1[n] + by_2[n]$ ise

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	/
Doğrusal?	

•
$$y_1[n] = 2x_1[n] + 3$$

•
$$y_2[n] = 2x_2[n] + 3$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = ?$$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	/
Doğrusal?	

•
$$y_1[n] = 2x_1[n] + 3$$

•
$$y_2[n] = 2x_2[n] + 3$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 2x_3[n] + 3$$

•
$$y_3[n] = 2() + 3$$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	/
Doğrusal?	

•
$$y_1[n] = 2x_1[n] + 3$$

•
$$y_2[n] = 2x_2[n] + 3$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 2x_3[n] + 3$$

•
$$y_3[n] = 2(ax_1[n] + bx_2[n]) + 3$$

•
$$ay_1[n] + by_2[n] = ?$$

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	/
Doğrusal?	

•
$$y_1[n] = 2x_1[n] + 3$$

•
$$y_2[n] = 2x_2[n] + 3$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 2x_3[n] + 3$$

•
$$y_3[n] = 2(ax_1[n] + bx_2[n]) + 3$$

•
$$ay_1[n] + by_2[n] = a(2x_1[n] + 3) + b(2x_2[n] + 3)$$

•
$$y_3[n] = ay_1[n] + by_2[n]$$
?

Hafızalı	X
Ters çevrilebilir	/
Nedensel	/
Kararlı	/
Zamanla Değişmez	✓
Doğrusal	X

•
$$y_1[n] = 2x_1[n] + 3$$

•
$$y_2[n] = 2x_2[n] + 3$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 2x_3[n] + 3$$

•
$$y_3[n] = 2(ax_1[n] + bx_2[n]) + 3$$

•
$$ay_1[n] + by_2[n] = a(2x_1[n] + 3) + b(2x_2[n] + 3)$$

•
$$y_3[n] \neq ay_1[n] + by_2[n]$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	✓
Kararlı	✓
Zamanla Değişmez	/
Doğrusal?	

•
$$y_1[n] = 6(x_1[n-3])^2$$

•
$$y_2[n] = 6(x_2[n-3])^2$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = ?$$

Hafızalı	
Ters çevrilebilir	X
Nedensel	✓
Kararlı	\
Zamanla Değişmez	/
Doğrusal?	

•
$$y_1[n] = 6(x_1[n-3])^2$$

•
$$y_2[n] = 6(x_2[n-3])^2$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 6(x_3[n-3])^2$$

•
$$y_3[n] = 6()^2$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	✓
Kararlı	/
Zamanla Değişmez	✓
Doğrusal?	

•
$$y_1[n] = 6(x_1[n-3])^2$$

•
$$y_2[n] = 6(x_2[n-3])^2$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 6(x_3[n-3])^2$$

•
$$y_3[n] = 6(ax_1[n-3] + bx_2[n-3])^2$$

•
$$ay_1[n] + by_2[n] = ?$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	✓
Kararlı	/
Zamanla Değişmez	✓
Doğrusal?	

•
$$y_1[n] = 6(x_1[n-3])^2$$

•
$$y_2[n] = 6(x_2[n-3])^2$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 6(x_3[n-3])^2$$

•
$$y_3[n] = 6(ax_1[n-3] + bx_2[n-3])^2$$

•
$$ay_1[n] + by_2[n] = a6(x_1[n-3])^2 + b6(x_2[n-3])^2$$

•
$$y_3[n] = ay_1[n] + by_2[n]$$
?

Hafızalı	/
Ters çevrilebilir	X
Nedensel	✓
Kararlı	✓
Zamanla Değişmez	✓
Doğrusal?	X

•
$$y_1[n] = 6(x_1[n-3])^2$$

•
$$y_2[n] = 6(x_2[n-3])^2$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = 6(x_3[n-3])^2$$

•
$$y_3[n] = 6(ax_1[n-3] + bx_2[n-3])^2$$

•
$$ay_1[n] + by_2[n] = a6(x_1[n-3])^2 + b6(x_2[n-3])^2$$

•
$$y_3[n] \neq ay_1[n] + by_2[n]$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	X
Doğrusal?	

•
$$y_1[n] = n^2 x_1[n+2]$$

•
$$y_2[n] = n^2 x_2[n+2]$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = ?$$

Hafızalı	/
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	X
Doğrusal?	

•
$$y_1[n] = n^2 x_1[n+2]$$

•
$$y_2[n] = n^2 x_2[n+2]$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = n^2 x_3[n+2]$$

•
$$y_3[n] = n^2($$
)

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	X
Doğrusal?	

•
$$y_1[n] = n^2 x_1[n+2]$$

•
$$y_2[n] = n^2 x_2[n+2]$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = n^2 x_3[n+2]$$

•
$$y_3[n] = n^2(ax_1[n+2] + bx_2[n+2])$$

•
$$ay_1[n] + by_2[n] = ?$$

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	X
Doğrusal?	

•
$$y_1[n] = n^2 x_1[n+2]$$

•
$$y_2[n] = n^2 x_2[n+2]$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = n^2 x_3[n+2]$$

•
$$y_3[n] = n^2(ax_1[n+2] + bx_2[n+2])$$

•
$$ay_1[n] + by_2[n] = an^2x_1[n+2] + bn^2x_2[n+2]$$

•
$$y_3[n] = ay_1[n] + by_2[n]$$
?

Hafızalı	✓
Ters çevrilebilir	X
Nedensel	X
Kararlı	X
Zamanla Değişmez	X
Doğrusal	✓

•
$$y_1[n] = n^2 x_1[n+2]$$

•
$$y_2[n] = n^2 x_2[n+2]$$

•
$$x_3[n] = ax_1[n] + bx_2[n]$$

•
$$y_3[n] = n^2 x_3[n+2]$$

•
$$y_3[n] = n^2(ax_1[n+2] + bx_2[n+2])$$

•
$$ay_1[n] + by_2[n] = an^2x_1[n+2] + bn^2x_2[n+2]$$

•
$$y_3[n] = ay_1[n] + by_2[n]$$

Birim Darbe İşareti

$$\bullet \ \delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

Birim Darbe İşareti

•
$$\delta[n-2] = ?$$

Birim Darbe İşareti

• $\delta[n-2]$

Birim Basamak İşareti

•
$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

Birim Basamak İşareti

• u[n+3] = ?

• u[n] = ?

• u[n] = ?

• u[n] = ?

•
$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \cdots$$

81

•
$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \dots = \sum_{k=0}^{\infty} \delta(n-k)$$

• x[n]

87

$$x[n] = x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2]$$

$$x[n] = x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2]$$

- $x[n] = x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2]$
- Herhangi bir x[n] ayrık zaman işaret birim darbe işaretleri ile ifade edilebilir.
- En genel hali
 - $\star x[n] = \dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \dots$
- $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
 - $\star x[k]$: İşaretin k anındaki genlik değeri (sabit katsayı)
 - \bullet $\delta[n-k]$: Birim darbe işaretinin k kadar ötelenmiş hali

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise
 - $T{ax_1(n) + bx_2(n)} =$

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise

Dr. Ari

◆ $\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$

92

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise
 - $\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$
- $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- $y[n] = T\{x(n)\} =$

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise
 - $\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$
- $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- $y[n] = \mathbf{T}\{x(n)\} = \mathbf{T}\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\}$

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise
 - $\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$
- $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- $y[n] = \mathbf{T}\{x(n)\} = \mathbf{T}\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\}$
- $y[n] = \mathbf{T}\{\dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \dots\}$

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise
 - $\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$
- $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- $y[n] = T\{x(n)\} = T\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\}$
- $y[n] = \mathbf{T}\{\dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \dots\}$
- y[n] =

- $y[n] = \mathbf{T}\{x(n)\}$
 - ◆ T doğrusal ise
 - $T{ax_1(n) + bx_2(n)} = T{ax_1(n)} + T{bx_2(n)}$
- $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- $y[n] = T\{x(n)\} = T\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\}$
- $y[n] = \mathbf{T}\{\dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \dots\}$
- $y[n] = \cdots + \mathbf{T}\{x[-1]\delta[n+1]\} + \mathbf{T}\{x[0]\delta[n]\}$ + $\mathbf{T}\{x[1]\delta[n-1]\} + \mathbf{T}\{x[2]\delta[n-2]\} + \cdots$

•
$$\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$$

=?

•
$$\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$$

= $a\mathbf{T}\{x_1(n)\} + b\mathbf{T}\{x_2(n)\}$

•
$$y[n] = \cdots + \mathbf{T}\{x[-1]\delta[n+1]\} + \mathbf{T}\{x[0]\delta[n]\} + \mathbf{T}\{x[1]\delta[n-1]\} + \mathbf{T}\{x[2]\delta[n-2]\} + \cdots$$

• y[n] = ?

•
$$\mathbf{T}\{ax_1(n) + bx_2(n)\} = \mathbf{T}\{ax_1(n)\} + \mathbf{T}\{bx_2(n)\}$$

= $a\mathbf{T}\{x_1(n)\} + b\mathbf{T}\{x_2(n)\}$

•
$$y[n] = \cdots + \mathbf{T}\{x[-1]\delta[n+1]\} + \mathbf{T}\{x[0]\delta[n]\}$$

+ $\mathbf{T}\{x[1]\delta[n-1]\} + \mathbf{T}\{x[2]\delta[n-2]\} + \cdots$

•
$$y[n] = \cdots + x[-1]\mathbf{T}\{\delta[n+1]\} + x[0]\mathbf{T}\{\delta[n]\}$$

 $+x[1]\mathbf{T}\{\delta[n-1]\} + x[2]\mathbf{T}\{\delta[n-2]\} + \cdots$

•
$$y[n] = \cdots + x[-1]\mathbf{T}\{\delta[n+1]\} + x[0]\mathbf{T}\{\delta[n]\}$$

 $+x[1]\mathbf{T}\{\delta[n-1]\} + x[2]\mathbf{T}\{\delta[n-2]\} + \cdots$

•
$$y[n] = \cdots + x[-1]\mathbf{T}\{\delta[n+1]\} + x[0]\mathbf{T}\{\delta[n]\}$$

 $+x[1]\mathbf{T}\{\delta[n-1]\} + x[2]\mathbf{T}\{\delta[n-2]\} + \cdots$

- $h[n] = \mathbf{T}\{\delta[n]\}$
 - ♦ Birim darbe cevabi

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{x[n-k]\} = y[n-k]$
- $T{\delta[n-k]} = ?$

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{\delta[n-k]\}=h[n-k]$
- $y[n] = \cdots + x[-1]\mathbf{T}\{\delta[n+1]\} + x[0]\mathbf{T}\{\delta[n]\}$ $+x[1]\mathbf{T}\{\delta[n-1]\} + x[2]\mathbf{T}\{\delta[n-2]\} + \cdots$
- y[n] = ?

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{\delta[n-k]\}=h[n-k]$

•
$$y[n] = \cdots + x[-1]\mathbf{T}\{\delta[n+1]\} + x[0]\underbrace{\mathbf{T}\{\delta[n]\}}_{h[n]} + x[1]\underbrace{\mathbf{T}\{\delta[n-1]\}}_{2} + x[2]\mathbf{T}\{\delta[n-2]\} + \cdots$$

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{\delta[n-k]\}=h[n-k]$

•
$$y[n] = \cdots + x[-1]\mathbf{T}\{\delta[n+1]\} + x[0]\underbrace{\mathbf{T}\{\delta[n]\}}_{h[n]} + x[1]\underbrace{\mathbf{T}\{\delta[n-1]\}}_{h[n-1]} + x[2]\underbrace{\mathbf{T}\{\delta[n-2]\}}_{?} + \cdots$$

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{\delta[n-k]\}=h[n-k]$

•
$$y[n] = \cdots + x[-1] \underbrace{\mathbf{T}\{\delta[n+1]\}}_{?} + x[0] \underbrace{\mathbf{T}\{\delta[n]\}}_{h[n]} + x[1] \underbrace{\mathbf{T}\{\delta[n-1]\}}_{h[n-1]} + x[2] \underbrace{\mathbf{T}\{\delta[n-2]\}}_{h[n-2]} + \cdots$$

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{\delta[n-k]\}=h[n-k]$
- $y[n] = \cdots + x[-1] \underbrace{T\{\delta[n+1]\}}_{h[n+1]} + x[0] \underbrace{T\{\delta[n]\}}_{h[n]} + x[1] \underbrace{T\{\delta[n-1]\}}_{h[n-1]} + x[2] \underbrace{T\{\delta[n-2]\}}_{h[n-2]} + \cdots$
- $y[n] = \cdots + x[-1]h[n+1] + x[0]h[n]$ + $x[1]h[n-1] + x[2]h[n-2] + \cdots$

Doğrusal Zamanla Değişmez Sistemler

- $h[n] = \mathbf{T}\{\delta[n]\}$
- Zamanla değişmez sistem ise
- $\mathbf{T}\{\delta[n-k]\}=h[n-k]$

•
$$y[n] = \cdots + x[-1] \underbrace{T\{\delta[n+1]\}}_{h[n+1]} + x[0] \underbrace{T\{\delta[n]\}}_{h[n]} + x[1] \underbrace{T\{\delta[n-1]\}}_{h[n-1]} + x[2] \underbrace{T\{\delta[n-2]\}}_{h[n-2]} + \cdots$$

•
$$y[n] = \cdots + x[-1]h[n+1] + x[0]h[n]$$

+ $x[1]h[n-1] + x[2]h[n-2] + \cdots$

Doğrusal Zamanla Değişmez Sistemler

•
$$y[n] = \cdots + x[-1]h[n+1] + x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \cdots$$

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - ♦ Konvolüsyon Toplamı

Doğrusal Zamanla Değişmez Sistemler

- Konvolüsyon Toplamı
- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$

- y[n] = x[n] * h[n] = h[n] * x[n]
- $\sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$

•
$$x[n] * \delta[n] = ?$$

•
$$x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] =$$

- $x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] =$
 - $\delta[0] = 1$, diğerleri 0

- $x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] =$
 - $\delta[0] = 1$, diğerleri 0
 - ♦ Toplamın indisi k, k = n ise $\delta[n k] = 1$

- $x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] =$
 - $\delta[0] = 1$, diğerleri 0
 - ♦ Toplamın indisi k = n ise $\delta[n k] = 1$
- $x[n] * \delta[n] = \cdots 0 + 0 + x[n]\delta[0] + 0 + 0 + \cdots$

- $x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] =$
 - $\delta[0] = 1$, diğerleri 0
 - ♦ Toplamın indisi k = n ise $\delta[n k] = 1$
- $x[n] * \delta[n] = \cdots 0 + 0 + x[n]\delta[0] + 0 + 0 + \cdots$
- $x[n] * \delta[n] = x[n]$

•
$$x[n] * \delta[n] = \delta[n] * x[n] =$$

•
$$x[n] * \delta[n] = \delta[n] * x[n] = \sum_{k=-\infty}^{\infty} \delta[k] x[n-k] =$$

•
$$x[n] * \delta[n] = \delta[n] * x[n] = \sum_{k=-\infty}^{\infty} \delta[k] x[n-k] = \delta[0] = 1$$
, diğerleri 0

•
$$\delta[n] * x[n] = \cdots + 0 + 0 + \delta[0]x[n] + 0 + 0 + \cdots$$

Dr. Ari

•
$$x[n] * \delta[n] = \delta[n] * x[n] = \sum_{k=-\infty}^{\infty} \delta[k] x[n-k] = \delta[0] = 1$$
, diğerleri 0

•
$$\delta[n] * x[n] = \cdots + 0 + 0 + \delta[0]x[n] + 0 + 0 + \cdots = x[n]$$

121

Dr. Arı

•
$$x[n] * \delta[n-1] = ?$$

• $x[n]*\delta[n-1] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k-1] =$ • $\delta[0]=1$, diğerleri 0

- $x[n] * \delta[n-1] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k-1] =$
 - $\delta[0] = 1$, diğerleri 0
 - ♦ Toplamın indisi k = n 1 ise $\delta[n k 1] = 1$

- $x[n] * \delta[n-1] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k-1] =$
 - $\delta[0] = 1$, diğerleri 0
 - ♦ Toplamın indisi k = n 1 ise $\delta[n k 1] = 1$
- $x[n] * \delta[n-1] = \cdots + 0 + x[n-1]\delta[0] + 0 + 0 + \cdots$

- $x[n] * \delta[n-1] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k-1] =$
 - $\delta[0] = 1$, diğerleri 0
 - ♦ Toplamın indisi k = n 1 ise $\delta[n k 1] = 1$
- $x[n] * \delta[n-1] = \cdots + 0 + x[n-1]\delta[0] + 0 + 0 + \cdots$
- $x[n] * \delta[n-1] = x[n-1]$

- $x[n] * \delta[n] = x[n]$
- $x[n] * \delta[n-1] = x[n-1]$
- $x[n] * \delta[n+1] = ?$

- $x[n] * \delta[n] = x[n]$
- $x[n] * \delta[n-1] = x[n-1]$
- $x[n] * \delta[n+1] = x[n+1]$

• y[n] = ?

•
$$y[n] = \sum_{k=0}^{1} x[k]h[n-k]$$

$$y[n] = x[0]h[n] + x[1]h[n-1]$$

•
$$y[n] = x[0]h[n] + x[1]h[n-1]$$

• $y[n] = \frac{1}{2}h[n] + 2h[n-1]$

•
$$y[n] = \frac{1}{2}h[n] + 2h[n-1]$$

•
$$y[n] = \frac{1}{2}h[n] + 2h[n-1]$$

•
$$y[n] = \frac{1}{2}h[n] + 2h[n-1]$$

Dr. Arı

•
$$y[n] = \frac{1}{2}h[n] + 2h[n-1]$$

•
$$y[n] = \frac{1}{2}h[n] + 2h[n-1]$$

•
$$y[n] = y[n] = \frac{1}{2}h[n] + 2h[n-1]$$

BSM307 - İşaretler ve Sistemler

•
$$y[n] = \sum_{k=0}^{1} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• n < 0 iken

$$y[n] = 0$$

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - $\bullet n = 0$ ise
 - $y[0] = 0.5 \times 1 = 0.5$

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - $\bullet n = 1$ ise
 - $y[1] = 0.5 \times 1 + 2 \times 1 = 2.5$

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - \bullet n=2 ise
 - $y[2] = 0.5 \times 1 + 2 \times 1 = 2.5$

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - \bullet n = 3 ise
 - $y[3] = 2 \times 1 = 2$

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - \bullet n=4 ise
 - y[4] = 0

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
 - \bullet $n \ge 4$ ise
 - y[n] = 0

•
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

•
$$n < 0$$
 iken $y[n] = 0$

$$y[0] = 0.5 \times 1 = 0.5$$

$$y[1] = 0.5 \times 1 + 2 \times 1 = 2.5$$

$$y[2] = 0.5 \times 1 + 2 \times 1 = 2.5$$

$$y[3] = 2 \times 1 = 2$$

$$\bullet n \ge 4 \text{ iken } y[n] = 0$$

