n		. 1	D		_
$\boldsymbol{\nu}$	'nn	TOM	Page	•	•
		ıcu	Pages	•	J

447

NCS-302

(Following Paper ID and Roll No. to be filled in your Answer Book)

Paper ID: 110302

Roll No.

B.Tech.

(SEM. III) THEORY EXAMINATION. 2015-16 DISCRETE STRUCTURES AND GRAPH THEORY

[Time: 3 hours] [Total Marks: 100]

Section-A

- 1. Attempt all parts. All parts carry equal marks. Write answers of each section in short. (10x2=20)
 - (a) Define multiset and power set. Determine the power set $A = \{1, 2\}$.
 - (b) Show that $[((pq) =>r) (\sim p))] => (q=r)$ is tautology or contradication.
 - (c) State and prove pigeon hole principle.
 - (d) Show that if set A has 3 elements, then we can have 26 symmetric relation on A.
 - (e) Prove that $(P \vee Q) \rightarrow (P \wedge Q)$ is logically equivalent to $P \leftrightarrow Q$.

- How many 4 digit numbers can be formed by using the digits 2, 4, 6, 8 when repetition of digits is allowed.
- The converse of a statements is: If a steel rod is stretched, then it has been heated. Write the inverse of the statement.
- (h) If a and b are any two elements of group G then prove $(ab)^{-1}=(b^{-1}a^{-1}).$
- If $f: A \rightarrow B$ is one-one onto mapping, then prove that $f^{-1}: B \rightarrow A$ will be one-one onto mapping.
- Write the following in DNF (x+y)(x'+y').

Section-B

Attempt any five questions.

 $(10 \times 5 = 50)$

- 2. If Dn define the set of all positive odd integers, i.e. $Dn=\{1,3, 5,\dots, \}$, then prove with the help of mathematical induction P(n): 1+3n is divisible by 4.
- 3. Solve the recurrence relation using generating function: an-7an-1+10n-2=0 with a0=3, a1=3.

(2)

- Express the following statements using quantifiers and 4. logical connectives.
 - Mathematics book that is published in India has a blue cover.
 - (b) All animals are mortal. All human being are animal. Therefore, all human being are mortal.
 - There exists a mathematics book with a cover that is not blue.
 - He eats crackers only if he drinks milk.
 - There are mathematics books that are published outside India.
 - Not all books have bibliographies.
- Draw the Haase digram of [p (a, b, c), \leq], (Note: ' \leq ' 5. stands for subset). Find greatest element, least element, minimal element and maximal element.
- Simplify the following boolean expressions using k map: 6.
 - Y=((AB)'+A'+AB)'
 - b) A'B'C'D'+A'B'C'D+A'B'CD+A'B'B'CD'=A'B'

(3)

- 7. Let G be the set af all non-zero real number and let a*b=ab/2. Show that (G,*) be an abelian group.
- 8. The following relation on $A=\{1, 2, 3, 4\}$. Dtermine whether the following:
 - a) $R = \{(1,3), (3,1), (1,1), (1,2), (3,3), (4,4)\},\$
 - b) R = AXA
- 9. If the permutation of the elements of $\{1,2,3,4,5\}$ are given by $a=(1\ 2\ 3)(4\ 5)$, $b=(1)(2)(3)(4\ 5)$, $c=(1\ 5\ 2\ 4)(3)$. Find the value of x, if ax=b. And also prove that the set Z4=(0,1,2,3) is a commutative ring with respect to the binary modulo operation +4 and *4.

Section-C

Attempt any two questions.

$$(2 \times 15 = 30)$$

10. Let L be a bounded distributed lattice, prove if a complement exists, it is unique. Is D_{12} a complemented lattice? Draw the Hasse diagram of $[P(a,b,c), \leq]$, (Note: ' \leq ' stands for subset). Find greatest element, least element, minimal element and maximal element.

- 11. Determine whether each of these functions is a bijection from R to R.
 - (a) $f(x) = x^2 + 1$
 - (b) f(x) = x3
 - (c) f(x) = (x2+1)/(x2+2)
- 12. a) Prove that inverse of each element in a group is unique.
 - b) Show that G=[(1, 2, 4, 5, 7, 8), X9] is cyclic. How many generators are there? What are they?

—x—