THU-70250403, Convex Optimization (Fall 2021)

Homework: 11

Unconstrained Minimization

Lecturer: Li Li li-li@tsinghua.edu.cn

Student:

Problem 1

i) Suppose f(x) and g(x) are two convex functions on \mathbb{R} , please show how many intersection points they can have at most.

ii) Suppose f(x) and g(x) are two convex functions on \mathbb{R} which have only countable intersection points, please show how many intersection points they can have at most.

Problem 2

Let us consider a unconstrained minimization constant step size $t \in \mathbb{R}_{++}$.

Suppose

- i) $f: \mathbb{R}^{\ltimes} \to \mathbb{R}$ is convex on \mathbb{R}^n .
- ii) The gradient of f is Lipschitz continuous, such that

$$|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})|_2 \le L |\boldsymbol{x} - \boldsymbol{y}|_2 \tag{1}$$

iii) The optimal value of f is finite and can be reached at a certain \boldsymbol{x}^* .

A unconstrained minimization constant step size can be formulated as

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - t\nabla f(\boldsymbol{x}^k) \tag{2}$$

Please prove

1)

$$f\left(\boldsymbol{x}^{k} - t\nabla f(\boldsymbol{x}^{k})\right) \le f(\boldsymbol{x}^{k}) - t\left(1 - \frac{Lt}{2}\right) \left|\nabla f(\boldsymbol{x}^{k})\right|_{2}^{2}$$
 (3)

So, if we choose $0 < t \le \frac{1}{L}$, we have

$$f(\boldsymbol{x}^{k+1}) \le f(\boldsymbol{x}^k) - \frac{t}{2} \left| \nabla f(\boldsymbol{x}^k) \right|_2^2 \tag{4}$$

In other words, the value of $f(\mathbf{x}^k)$ is always decreasing when k increases.

Unconstrained Minimization 2

2)
$$0 \le f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^*) \le \frac{1}{2t} \left(\left| \boldsymbol{x}^k - \boldsymbol{x}^* \right|_2^2 - \left| \boldsymbol{x}^{k+1} - \boldsymbol{x}^* \right|_2^2 \right)$$
 (5)

This indicates that our distance to the optimal point x^* is decreasing, when k increases.

3) $f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{1}{2kt} |\mathbf{x}^0 - \mathbf{x}^*|_2^2$ (6)

So, the number of iterations required to satisfy $f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \epsilon$ should be $O(1/\epsilon)$.

4) If f is strong convex with $f(\mathbf{x}) - \frac{m}{2} |\mathbf{x}|_2^2$ is a convex function, we can choose $0 < t < \frac{2}{m+L}$, such that

$$\left|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\right|_2^2 \le \left(1 - t\frac{2mL}{m+L}\right) \left|\boldsymbol{x}^k - \boldsymbol{x}^*\right|_2^2 \tag{7}$$

In other words, we have

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{\left(1 - t\frac{2mL}{m+L}\right)^k L}{2} |\mathbf{x}^0 - \mathbf{x}^*|_2^2$$
 (8)

So, the number of iterations required to satisfy $f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \epsilon$ should be $O(\log(1/\epsilon))$.

Problem 3

Please solve the following unconstrained optimization problems using the normalized steepest descent directions separately with respect to the l_1 , l_2 and l_{∞} norm.

The exact linear search (0.618 method) should be used for all linear searches. The initial point is taken to be $\mathbf{x}^0 = (0,0)^T$, and the stopping criterion is $|\nabla f(\mathbf{x})|_2 \le 10^{-8}$.

It is required to draw the trajectory of the iteration points in the 2-dimensional plane (by connecting each point) and the change of the objective function value with respect to the number of iterations.

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x}) = (1 - x_1)^2 + 3(x_2 - x_1^2)^2$$
(9)

References