FDA

Homework 2 key

Jun Song

1. 10.6.2

Let \mathcal{H} be a Hilbert space and $x \in \mathcal{H}$. Let $L : \mathcal{H} \to \mathcal{H}$ such that $y \mapsto \langle x, y \rangle$. By CS-inequality,

$$||L(y_1 - y_2)|| = ||\langle x, y_1 - y_2 \rangle|| \le ||x|| ||y_1 - y_2||.$$

For any $\epsilon > 0$, if $\delta = \epsilon/\|x\|$, $\|y_1 - y_2\| < \delta$ implies $\|L(y_1 - y_2)\| < \epsilon$

2. **10.6.6**

Let $x \in \mathcal{H}$. Let's rewrite this.

$$x = \sum_{j=1}^{\infty} \langle x, f_j \rangle f_j + \tilde{x},$$

where $\langle \tilde{x}, f_j \rangle = 0$ for all $j = 1, 2, \dots$ Then

$$\|\tilde{x}\|^2 = \sum_{j=1}^{\infty} \langle \tilde{x}, e_j \rangle^2 = \sum_{j=1}^{\infty} (\langle \tilde{x}, e_j - f_j \rangle + \langle \tilde{x}, f_j \rangle)^2 = \sum_{j=1}^{\infty} \langle \tilde{x}, e_j - f_j \rangle^2 \le \|\tilde{x}\|^2 \sum_{j=1}^{\infty} \|e_j - f_j\|^2.$$

The first equation is from Parseval's equality. The second and third equation is from $\langle \tilde{x}, f_j \rangle = 0$. The last inequality is from the CS-inequality. Then by the condition in the question $\sum_{j=1}^{\infty} ||e_j - f_j||^2 < 1$, we have

$$\|\tilde{x}\|^2 \le \|\tilde{x}\|^2 \sum_{j=1}^{\infty} \|e_j - f_j\|^2 < \|\tilde{x}\|^2.$$

This tells $\|\tilde{x}\|^2 = 0$ and $\tilde{x} = 0$. In other words,

$$x = \sum_{j=1}^{\infty} \langle x, f_j \rangle f_j.$$

3. **10.6.10**

Note that using Parseval's equality,

$$\langle x, y \rangle = \langle \sum_{i} \langle x, e_i \rangle e_i, \sum_{j} \langle y, e_j \rangle e_j \rangle = \sum_{i} \langle x, e_i \rangle \langle x, e_j \rangle,$$

if $\{e_i\}$ is an orthonormal basis.

Let Ψ and Φ be two Hilbert-Schmidt operators. The inner product between these two

$$\sum_{i=1}^{\infty} \langle \Psi(f_i), \Phi(f_i) \rangle = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle \Psi(f_i), e_j \rangle \langle \Phi(f_i), e_j \rangle = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \langle f_i, \Psi^*(e_j) \rangle \langle f_i, \Phi^*(e_j) \rangle$$

$$= \sum_{j=1}^{\infty} \langle \Psi^*(e_j), \Phi^*(e_j) \rangle = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle e_i, \Psi^*(e_j) \rangle \langle e_i, \Phi^*(e_j) \rangle$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle \Psi(e_i), e_j \rangle \langle \Phi(e_i), e_j \rangle = \sum_{i=1}^{\infty} \langle \Psi(e_i), \Phi(e_i) \rangle$$

4. 10.6.12

(a)
$$||L^*||_{\mathcal{L}} = ||L||_{\mathcal{L}}$$

i
$$||L^*||_{\mathcal{L}} \le ||L||_{\mathcal{L}}$$

For any $x \in \mathcal{H}$.

$$||L^*(x)||^2 = \langle L^*(x), L^*(x) \rangle = \langle x, L(L^*(x)) \rangle \le ||x|| ||L(L^*(x))||$$

By dividing $||L^*(x)||$,

$$||L^*(x)|| \le ||x|| \left| \left| L\left(\frac{L^*(x)}{\|L^*(x)\|}\right) \right| \right| \le ||x|| ||L||_{\mathcal{L}}.$$

Thus $||L^*||_{\mathcal{L}} \leq ||L||_{\mathcal{L}}$. Since L is bounded, we can also verify that L^* is bounded.

ii $||L^*||_{\mathcal{L}} \ge ||L||_{\mathcal{L}}$

We can use a similar argument by replacing L with L^* since we verified that L^* is bounded.

$$||L(x)||^2 = \langle L(x), L(x) \rangle = \langle x, L^*(L(x)) \rangle \le ||x|| ||L^*(L(x))||$$

Thus

$$||L(x)|| \le ||x|| ||L^*||_{\mathcal{L}}.$$

(b) To see $||L^*L||_{\mathcal{L}} = ||L||_{\mathcal{L}}^2$, using the above results $||L^*||_{\mathcal{L}} = ||L||_{\mathcal{L}}$,

$$\|L^*L(x)\|^2 \leq \|L^*\|_{\mathcal{L}}\|L(x)\| \leq \|L^*\|_{\mathcal{L}}\|L\|_{\mathcal{L}}\|x\| \leq \|L\|_{\mathcal{L}}^2\|x\|.$$

Thus $||L^*L||_{\mathcal{L}} \leq ||L||^2$, and L^*L is bounded since L is bounded. On the other hand,

$$||L(x)||^2 = \langle L(x), L(x) \rangle = \langle L^*L(x), x \rangle \le ||L^*L||_{\mathcal{L}}||x||.$$

Thus $||L||_{\mathcal{L}}^2 \leq ||L^*L||_{\mathcal{L}}$. Therefore, $||L^*L||_{\mathcal{L}} = ||L||_{\mathcal{L}}^2$.

5. **11.5.5**

• **Theorem 11.1.3** Suppose that for each u, $X_n(u) \stackrel{D}{\longrightarrow} X(u)$ $(n \to \infty)$, and $X(u) \stackrel{D}{\longrightarrow} X(u \to \infty)$. If

$$\lim_{u \to \infty} \limsup_{n \to \infty} P(d(X_n(u), X_n) > \epsilon) = 0,$$

then $X_n \stackrel{D}{\longrightarrow} X$.

- Let $X_n(M) = \sum_{k=1}^M w_k Y_{k,n}$, $X_n = \sum_{k=1}^\infty w_k Y_{k,n}$, $X = \sum_{k=1}^\infty w_k Y_k$. Then the conditions in the question tells us that $X_n(M) \stackrel{D}{\longrightarrow} X(M)$ and $X(M) \stackrel{D}{\longrightarrow} X$.
- By Markov inequality,

$$P(|X_n(M) - X_n| > \epsilon) \le \frac{E(|X_n(M) - X_n|)}{\epsilon}$$

$$= \frac{E|\sum_{k=M+1}^{\infty} w_k(Y_{k,n} - Y_k + Y_k)}{\epsilon}$$

$$\le \underbrace{\sum_{k=M+1}^{\infty} |w_k|E|Y_{k,n} - Y_k|}_{(a)} + \underbrace{\sum_{k=M+1}^{\infty} |w_k|E|Y_k|}_{(b)}$$

We need to show that

$$\lim_{M \to \infty} \limsup_{n \to \infty} ((a) + (b)) = 0.$$

(a)

$$\lim_{M\to\infty}\limsup_{n\to\infty}\frac{\sum_{k=M+1}^{\infty}|w_k|E|Y_{k,n}-Y_k|}{\epsilon}\leq \frac{1}{\epsilon}\lim_{M\to\infty}\sum_{k=M+1}^{\infty}|w_k|\sup_{n\geq 1}E|Y_{k,n}-Y_k|=0,$$

because $\sum_{k=1}^{\infty} |w_k| \sup_{n \ge 1} E|Y_{k,n} - Y_k| < \infty$.

(b)

$$\lim_{M \to \infty} \limsup_{n \to \infty} \frac{\sum_{k=M+1}^{\infty} |w_k| E|Y_k|}{\epsilon} = \frac{1}{\epsilon} \lim_{M \to \infty} \sum_{k=M+1}^{\infty} |w_k| E|Y_k| = 0$$

because $\sum_{k=1}^{\infty} |w_k| E|Y_k| < \infty$.

6. **11.5.9**

Bounded

$$\|\Psi(x)\|^2 = \langle \Psi(x), \Psi(x) \rangle = \sum_{k=1}^{\infty} j^{-2} \langle x, e_j \rangle^2 \le \sum_{k=1}^{\infty} \langle x, e_j \rangle^2 = \|x\|^2$$

Thus $\|\Psi\|_{\mathcal{L}} \leq 1$.

• Symmetric

$$\langle \Psi(x), y \rangle = \left\langle \sum_{j=1}^{\infty} \langle x, e_j \rangle e_j, y \right\rangle = \sum_{j=1}^{\infty} \langle x, e_j \rangle y, e_j = \langle x, \Psi(y) \rangle$$

• Nonnegative

$$\langle \Psi(x), x \rangle = \sum_{j=1}^{\infty} j^{-1} \langle x, e_j \rangle^2 \ge 0$$

• Not a covariance operator

$$\Psi = \sum_{j=1}^{\infty} j^{-1} e_j \otimes e_j.$$

The eigenvalues are $\{j^{-1}\}_{j=1}^{\infty}$ and $\sum_{j} j^{-1} = \infty$.

7. 11.5.14

The characteristic function of L(X) is

$$\phi_{L(X)}(y) = E \exp(i\langle y, L(X)\rangle)$$

$$= E \exp(i\langle L^*(y), X)\rangle)$$

$$= \exp\{i\langle \mu, L^*(y)\rangle - \frac{1}{2}\langle C(L^*(y)), L^*(y)\rangle\}$$

$$= \exp\{i\langle L(\mu), y\rangle - \frac{1}{2}\langle LCL^*(y), y\rangle$$

L(X) is Gaussian with $L^*(\mu)$ and LCL^* .