

Fake News Detection

Deep Learning

Name Roll Number
Ishank Kumar CS22B1043
Thallapally Nimisha CS22B1082

B.Tech in Computer Science and Engineering IIITDM Kancheepuram

Contents

1	Objective	2
2	Dataset	2
3	Preprocessing	2
4	Models Explored 4.1 Logistic Regression (Baseline) 4.2 Bi-LSTM	3 3 4 6 8
5	Evaluation Metrics	10
6	Results	11
7	Hyperparameter Tuning	11
8	Conclusion	11

1 Objective

The primary goal of this project is to develop and evaluate machine learning and deep learning models that can classify news articles as **fake** or **real**.

2 Dataset

We utilized the ISOT Fake News Dataset, which includes:

- Real news from Reuters (21,417 articles)
- Fake news from unreliable sources (23,481 articles)
- Fields: Title, text, label, date
- Focused on political and world news

Data Splitting

- Training: 27,366 samples
- Validation: 3,910 samples
- Testing: 7,820 samples
- Final dataset size after cleaning: 39,096 articles

3 Preprocessing

- 1. Merged real and fake datasets with labels (0 = fake, 1 = real)
- 2. Removed:
 - Duplicates and null entries
 - Articles with ≤ 6 words
 - URLs, special characters, extra whitespace
 - Dataset-specific patterns like datelines and image credits using regex
- 3. Created two dataset variants:
 - (a) With repeated header/footer patterns
 - (b) Without repeated patterns
- 4. Tokenized and padded sequences for deep learning models

4 Models Explored

4.1 Logistic Regression (Baseline)

A simple linear model used as a baseline. It captured basic textual patterns and showed reasonable performance on the clean dataset.

Figure 1: Confusion Matrix: Logistic Regression

Figure 2: ROC Curve: Logistic Regression

Evaluation	Metrics:			
Accuracy:	0.9844			
Precision:	0.9800			
AUC:	0.9985			
EER:	0.0144			
Classificat	ion Report:			
	precision	recall	fl-score	support
Fak	e 0.99	0.98	0.98	3580
Rea	l 0.98	0.99	0.99	4240
accurac	у		0.98	7820
macro av	g 0.98	0.98	0.98	7820
weighted av	g 0.98	0.98	0.98	7820

Figure 3: Classification Report: Logistic Regression

4.2 Bi-LSTM

```
model = Sequential([
    Embedding(input_dim=10000, output_dim=128),
    Bidirectional(LSTM(64, return_sequences=False)),
    Dropout(0.5),
    Dense(32, activation='relu'),
    Dropout(0.3),
    Dense(1, activation='sigmoid')
])

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
```

Listing 1: Bi-LSTM Model Architecture

- Embedding Layer 128-dimensional embedding vectors
- Bidirectional LSTM Layer 64 units
- **Dropout** 0.5 and 0.3
- Dense Layers 32 units (ReLU), 1 unit (Sigmoid)
- Optimizer: Adam Loss: Binary Crossentropy Metric: Accuracy

Model Architecture

Figure 4: Model Architecture: Bi-LSTM

Figure 5: Confusion Matrix: Bi-LSTM

Figure 6: Training and Validation Accuracy / Loss: Bi-LSTM

Figure 7: ROC Curve: Bi-LSTM

Classification Report:					
	precision	recall	f1-score	support	
Fake	0.97	0.99	0.98	3580	
Real	0.99	0.98	0.98	4240	
accuracy			0.98	7820	
macro avg	0.98	0.98	0.98	7820	
weighted avg	0.98	0.98	0.98	7820	

Figure 8: Classification Report: Bi-LSTM

4.3 Bi-GRU

```
model = Sequential([
    Embedding(input_dim=10000, output_dim=128),
    Bidirectional(GRU(64, return_sequences=False)),
    Dropout(0.5),
    Dense(32, activation='relu'),
    Dropout(0.3),
    Dense(1, activation='sigmoid')
])

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
```

Listing 2: Bi-GRU Model Architecture

- Embedding Layer 128-dimensional embedding vectors
- Bidirectional GRU Layer 64 units
- **Dropout** 0.5 and 0.3
- Dense Layers 32 units (ReLU), 1 unit (Sigmoid)
- Optimizer: Adam / RMSProp Loss: Binary Crossentropy Metric: Accuracy

Model Architecture

Figure 9: Model Architecture: Bi-GRU

Figure 10: Confusion Matrix: Bi-GRU

Figure 11: Training and Validation Accuracy / Loss: Bi-GRU

Figure 12: ROC Curve: Bi-GRU

Classificatio	n Report: precision	recall	fl-score	support
Fake Real	0.98 0.99	0.99 0.99	0.99 0.99	3580 4240
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	7820 7820 7820

Figure 13: Classification Report: Bi-GRU

4.4 Transformer-based Model

```
inputs = Input(shape=(max_len,))
embedding = Embedding(input_dim=10000, output_dim=128)(inputs)
attention_output = MultiHeadAttention(num_heads=4, key_dim=128)(embedding,
   embedding)
attention_output = LayerNormalization()(attention_output)
attention_output = Dropout(0.3)(attention_output)
pooling_output = GlobalAveragePooling1D()(attention_output)
dense_1 = Dense(64, activation='relu')(pooling_output)
dropout_1 = Dropout(0.5)(dense_1)
dense_2 = Dense(32, activation='relu')(dropout_1)
dropout_2 = Dropout(0.3)(dense_2)
output = Dense(1, activation='sigmoid')(dropout_2)
model = Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['
   accuracy'])
model.summary()
```

Listing 3: Transformer Model Architecture

Model Architecture

Figure 14: Model Architecture: Transformer

- Multi-Head Attention 4 heads, key dim 128
- Dense Layers 64 and 32 units (ReLU), final 1 unit (Sigmoid)
- Dropout: 0.3, 0.5, 0.3 Pooling: Global Average Pooling

Figure 15: Confusion Matrix: Transformer

Figure 16: Training and Validation Accuracy / Loss: Transformer

Figure 17: ROC Curve: Transformer

Classificatio		11	61	
	precision	recall	fl-score	support
Fake	0.99	0.99	0.99	3580
Real	0.99	0.99	0.99	4240
accuracy			0.99	7820
macro avg	0.99	0.99	0.99	7820
weighted avg	0.99	0.99	0.99	7820

Figure 18: Classification Report: Transformer

5 Evaluation Metrics

- Accuracy, Precision, F1-Score
- AUC (Area Under ROC Curve)
- EER (Equal Error Rate)
- Confusion Matrix

6 Results

Model Performance Summary

Metric	Logistic Reg.	Bi-LSTM	Bi-GRU	Transformer
Accuracy	0.9844	0.9830	0.9884	0.9884
Precision	0.9800	0.9902	0.9929	0.9904
AUC	0.9985	0.9948	0.9994	0.9992
EER	0.0144	0.0160	0.0108	0.0094
F1-Score	0.98	0.98	0.99	0.99

7 Hyperparameter Tuning

We experimented with different batch sizes and optimizers to identify optimal configurations for each model. Evaluation was based on EER and AUC.

Model Batch Size Length Optimizer \mathbf{EER} AUC32 Adam 0.0278 0.9923 Bi-LSTM Adam 64 0.01600.9948 32 Adam 0.0132 0.998664 Adam 0.0108 0.9994 0.9922 Bi-GRU 128 Adam 0.02810.0158 32 RMSProp 0.998064 **RMSProp** 0.99830.0111 64 (len=907)Adam 0.00940.9992 Transformer 64 (len=500)Adam 0.01080.9987**RMSProp** 32 0.0125 0.9993

Table 1: Hyperparameter Tuning Results

Confusion Matrix Breakdown

• Transformer: TP = 3539, FP = 49, FN = 21, TN = 4211

• **Bi-GRU:** TP = 3550, FP = 30, FN = 61, TN = 4179

• **Bi-LSTM:** TP = 3539, FP = 41, FN = 92, TN = 4148

• Logistic Regression: TP = 3494, FP = 86, FN = 36, TN = 4204

8 Conclusion

- Bi-GRU and Transformer emerged as the top-performing models with an impressive F1-score of 0.99.
- Transformer achieved the lowest Equal Error Rate (EER) and false negatives, making it ideal for minimizing the risk of missing real news.
- **Bi-GRU** recorded the highest AUC and precision, making it particularly suitable for applications where false positives carry a high cost.

- Logistic Regression captures surface-level patterns but lacks semantic understanding, leading to good performance on this specific dataset but may not generalize well.
- **Bi-LSTM** showed slightly higher false negatives, making it less optimal for reliable real news detection.

Recommendation: For balanced, high-stakes scenarios, **Transformer** is recommended. In cases where high precision is crucial, such as legal or medical news screening, **Bi-GRU** is the better choice.

This project explores various deep learning models in detecting fake news with high accuracy. By evaluating models such as Bi-GRU, Transformer, Bi-LSTM, and Logistic Regression, we provide a comparative analysis of their strengths and trade-offs based on key performance metrics like F1-score, AUC, precision, and Equal Error Rate (EER).

The findings highlight that while traditional models like Logistic Regression can perform decently on this specific dataset, deep learning models—particularly Transformer and Bi-GRU—excel in terms of robustness and predictive reliability.