Busca em Espaço de Estados

Jomi F. Hübner

Universidade Federal de Santa Catarina Departamento de Automação e Sistemas http://jomifred.github.io/ia

Introdução

Agente orientado a meta

- O projetista determina que objetivo o agente deve alcançar (e não um programa a ser executado)
- É necessário que o próprio agente construa um plano de ações que atinjam seu objetivo (como se o próprio agente construísse seu programa)
- Exemplos: o agente aspirador de pó, um agente motorista de táxi, uma sonda espacial, ...

Exemplo do aspirador de pó i

- Um robô aspirador de pó deve limpar uma casa com duas posições. Operações que ele sabe executar:
 - sugar
 - ir para a posição da esquerda
 - ir para a posição da direita
- Como o aspirador pode montar um plano para limpar a casa se inicialmente ele esta na posição direita e as duas posições têm sujeira?
 - Quais os estados possíveis do mundo do aspirador e as transições?

Exemplo do aspirador de pó ii

Estados possíveis:

Exemplo do aspirador de pó iii

Exemplo do aspirador de pó iv

Espaço de busca

O que é busca?

- O mundo do agente é modelado por conjunto de estados possíveis (muitas vezes este conjunto é infinito)
- Existem transições entre os estados do mundo, formando um grafo
- São utilizados algoritmos para encontrar um caminho neste grafo
 - partindo do estado inicial (atual)
 - até o estado objetivo

Por que estados?

- As informações do mundo real são absurdamente complexas, é praticamente impossível considerar todas
 - No exemplo do aspirador, o mundo tem várias outras informações: a cor do tapete, se é dia, de que material o aspirador é feito, quanto ele tem de energia, como é o nome do/a proprietário/a,
- A noção de estado abstrai esses detalhes e modela somente o que é relevante para a solução do problema
- O mesmo se dá com as operações: são abstrações das operações reais (ir para a posição da direita implica em várias outras operações)

Exemplo dos jarros

- Temos dois jarros, um com capacidade para 4 litros de água e outro com capacidade para 3 litros.
- Utilizando somente operações de encher, esvaziar e derramar a água de um jarro no outro, o agente deve encontrar uma seqüência de operações que deixa o jarro com capacidade para 3 litros com 2 litros de água
- Quais os estados e as transições?

Busca como desenvolvimento de software i

- No desenvolvimento de um software para resolver um problema, o projetista pode optar por várias paradigmas de modelagem do problema:
 - O sistema é modelado por procedimentos que alteram os dados de entrada
 - O sistema é modelado por funções
 - O sistema é modelado por predicados
 - O sistema é modelado por objetos
 - ...

Busca como desenvolvimento de software ii

- Busca é mais uma forma de modelar um problema:
 - Definir os estados
 - Definir as transições
 - Escolher um algoritmo de busca

Exercício i

O que é

- estado
- transição
- estado meta e
- custo da solução encontrada

para os seguintes problemas

Exercício ii

• 8-Puzzle

Start State

Goal State

Exercício iii

• Encontrar um caminho da cidade "i" até "x"

Algoritmos de Busca "Cega"

Árvore de busca

- Coloca-se o estado inicial como nodo raiz
- Cada operação sobre o estado raiz gera um novo nodo (chamado de sucessor)
- Repete-se este processo para os novos nodos até gerar o nodo que representa o estado meta
- Estratégia de busca: que nodo escolher para expandir
- Exemplo: [fazer as árvores para o exemplo do aspirador e do jarro]

Estratégias de busca

- Busca em **largura**: o nodo mais **antigo** é escolhido para gerar sucessores
- Busca em profundidade: o nodo mais recente é escolhido para gerar sucessores

Nodos da árvore

- · Cada nodo tem
 - o estado que representa
 - · o nodo pai
 - o operador que o gerou
 - sua profundidade na árvore de busca
 - o custo de ter sido gerado (denotado por *g*)
 - · opcionalmente, os nodos sucessores

Estratégias de poda da árvore de busca i

- Um nodo não gera um sucessor igual a seu pai
- Um nodo não gera um sucessor igual a um de seus ascendentes
- Um nodo não gera um sucessor que já exista na árvore de busca

Estratégias de poda da árvore de busca ii

- Detalhes de implementação:
 - Verificar se um estado já esta na árvore pode levar muito tempo
 - imagine uma árvore com milhares de estados do jogo de xadrez, cada novo estado deve ser comparado com outros milhares de estados!
 - Ter uma tabela hash (que tem tempo de ótimo para consulta) para saber se determinado nodo existe na árvore

Algoritmo de busca em largura

function BL(Estado inicial): Nodo

```
PriorityQueue(g) abertos {fila ordenada por g}
abertos.add(new Nodo(inicial))
while not abertos.isEmpty() do
  Nodo n \leftarrow abertos.remove()
  if n.getEstado().éMeta() then
     return n
  end if
  abertos.add(n.sucessores())
end while
return null
```


Critérios de comparação entre os algoritmos

- Completo: o algoritmo encontra a solução se ela existir
- Ótimo: o algoritmo encontra a solução de menor custo
- Tempo: quanto tempo o algoritmo leva para encontrar a solução no pior caso
- Espaço: quanto de memória o algoritmo ocupa

Análise do algoritmo BL

- Completo: sim
- · Ótimo: sim
- Tempo: explorar todos os nodos da árvore
 - b = fator de ramificação
 - d = profundidade do estado meta
 - tamanho da árvore: $1+b+b^2+b^3+\ldots +b^d$
 - complexidade: $O(b^d)$
- Espaço: $O(b^d)$

Exemplo de complexidade

Prof.	Nodos	Tempo	Memória
0	1	1ms	100 bytes
2	111	0,1 seg	11 Kbytes
4	11.111	11 seg	1 Mbyte
6	10^{6}	18 min	111 Mbytes
8	10^{8}	31 horas	11 Gbytes
12	10^{12}	35 anos	111 Tbytes
14	10^{14}	3500 anos	11.111 Tbytes

(b=10, 1000 nodos por segundo, 100 bytes por nodo)

Algoritmo de busca em profundidade

```
function BP(Estado inicial, int m): Nodo
Stack abertos
abertos.add(new Nodo(inicial))
while not abertos.isEmpty() do
  Nodo n \leftarrow abertos.remove()
  if n.getEstado().éMeta() then
     return n
  end if
  if n.getProfundidade() < m then
     abertos.add(n.sucessores())
  end if
end while
return null
```


Análise do algoritmo BP

- Completo: não (caso a meta esteja em profundidade maior que m)
 - Se $m=\infty$, é completo se o espaço de estados é finito e existe poda para não haver loops entre as operações
- Ótimo: não
- Tempo: explorar $O(b^m)$ nodos (ruim se m é muito maior que d)
- Espaço: guardar O(bm) nodos. (em profundidade 12, ocupa 12 Kbytes!)

Algoritmo de busca em profundidade iterativo

```
function BPI(Estado inicial): Nodo
int p \leftarrow 1
loop
   Nodo n \leftarrow BP(inicial, p)
   if n \neq \text{null then}
      return n
   end if
  p \leftarrow p + 1
end loop
```


Análise do algoritmo BPI

- Completo: sim
- Ótimo: sim se todas as ações tem o mesmo custo
- Tempo: explorar $O(b^d)$ nodos
- Espaço: guardar O(bd) nodos.

Algoritmo de busca em Bidirecional

```
function BBD(Estado inicial, meta): Nodo
Queue abCima, abBaixo
abCima.add(new Nodo(inicial))
abBaixo.add(new Nodo(meta))
while not (abCima.empty() and abBaixo.empty()) do
  Nodo n \leftarrow abCima.remove() {verifica lista de cima}
  if n.getEstado() \in abBaixo then return meta end if
  abCima.add(n.sucessores())
  n \leftarrow abBaixo.remove() {verifica lista de baixo}
  if n.getEstado() \in abCima then return meta end if
  abBaixo.add(n.antecessores())
end while
return null
```


Análise do algoritmo BBD

- · Completo: sim
- · Ótimo: sim
- Tempo: explorar $O(b^{d/2})$ nodos
- Espaço: guardar $O(b^{d/2})$ nodos
- Observação: deve ser possível gera antecessores

Resumo i

Resumo ii

	BL	BP	BPI	BBD
Completo	sim	não	sim	sim
Ótimo	sim	não	sim	sim
Tempo	$O(b^d)$	$O(b^m)$	$O(b^d)$	$O(b^{d/2})$
Espaço	$O(b^d)$	O(bm)	O(bd)	$O(b^{d/2})$

Algoritmos de Busca "Inteligente"

Exemplo: ir de "h" para "o" (com BL)

A árvore de busca gerada é "inteligente"?

Heurística

- Heurística: Estimativa de custo até a meta. (denotado pela função h : Estados → Reais)
- · No exemplo das cidades, poderia ser a distância em linha reta
- Algoritmo de busca gananciosa: retira de abertos sempre o nodo com menor estimativa de custo
 - Refazer a busca de um caminho entre "h" e "o". ótimo!
 - Refazer a busca de um caminho entre "i" e "x". não ótimo!

Busca A*

- Idéia: Evitar explorar caminhos que já estão muito caros e preferir os que têm menor expectativa de custo.
- Utilizar na escolha de um nodo da lista de abertos
 - tanto a estimativa de custo de um nodo (h(n))
 - quanto o custo acumulado para chegar no nodo $\left(g(n)\right)$

$$f(n) = g(n) + h(n)$$

• Refazer a busca de um caminho entre "i" e "x" utilizando f.

Algoritmo de busca A*

function BA*(Estado inicial): Nodo

```
PriorityQueue(f) abertos {fila ordenada por f}
abertos.add(new Nodo(inicial))
while not abertos.isEmpty() do
  Nodo n \leftarrow abertos.remove()
  if n.getEstado().éMeta() then
     return n
  end if
  abertos.add(n.sucessores())
end while
return null
```


Propriedades da função h

- Supondo que o valor de h, no exemplo das cidades, é dados por 10 * a distância em linha reta
- O algoritmo A* ainda é ótimo?
- h(n): estimativa de custo de n até a meta
- $h^*(n)$: custo real de n até a meta
- Se $h(n) \le h^*(n)$, então h é admissível.
- Se h é admissível, o algoritmo A^* é ótimo!

Análise do algoritmo A*

- Completo: sim
- Ótimo: sim (se h é admissível)
- Tempo: explorar $O(b^d)$ nodos no pior caso (quando a heurística é "do contra")
- Espaço: guardar $O(b^d)$ nodos no pior caso.

Exercício i

• Determine uma heurística para o problema 8-Puzzle e verifique se é admissível.

Start State

Goal State

Exercício ii

- h_1 : número de peças fora do lugar
- h_2 : distância de cada peça de seu lugar
- h_3 : peças fora da formação de caracol
- $h_4 = h_2 + h_3$

Complexidade no problema 8-puzzle

	número de abertos			fator ramificação		
d	BPI	$A^*(h_1)$	$A^*(h_2)$	BPI	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
8	6384	39	25	2.80	1.33	1.24
12	364404	227	73	2.78	1.42	1.24
16	_	1301	211	_	1.45	1.25
20	_	7276	676	_	1.47	1.27
24	_	39135	1641	_	1.48	1.26

Exercício

• Determine uma heurística para o problema das 8-rainhas e verifique se é admissível.

Algoritmo Subida da Montanha-1

Idéia: escolher sempre o sucessor melhor

```
function BSM-1(Estado inicial): Estado
Estado atual \leftarrow inicial
loop
  prox \leftarrow melhor sucessor de atual (segundo h)
  if h(prox) \ge h(atual) then {sem sucessor melhor}
     return atual
  end if
  atual \leftarrow prox
end loop
```


Análise do algoritmo BSM-1

- Não mantém a árvore (logo, não pode retornar o caminho que usou para chegar à meta).
- Completo: não (problema de máximos locais)
- Ótimo: não se aplica
- Tempo: ?
- Espaço: nada!

Algoritmo Subida da Montanha-2

```
function BSM-2(Estado inicial): Estado
Estado atual \leftarrow inicial
loop
  prox \leftarrow melhor sucessor de atual (segundo h)
   if h(prox) \ge h(atual) then {sem successor melhor}
      if atual.éMeta() then
         return atual
      else
         atual \leftarrow estado gerado aleatoriamente
      end if
   else
      atual \leftarrow prox
   end if
end loop
```


Análise do algoritmo BSM-2

- Completo: sim (se a geração de estados aleatórios distribuir normalmente os estados gerados)
- · Ótimo: não se aplica
- Tempo: ?
- Espaço: nada!

Material de consulta

- Capítulos 3 e 4 do livro do Russell & Norvig
- Implementação dos algoritmos disponível em http://jomifred.github.io/ia

