CS106L Lecture 14: std::optional & type safety!

Autumn 2024

Fabio Ibanez, Jacob Roberts-Baca

Attendance

https://tinyurl.com/optionalF24

Plan

- 1. Type safety
- 2. std::optional
 - Looking at real world applications of this stuff too!

Move semantics

 We have move semantics because sometimes the resource we're going to take is no longer needed by the original owner

- We have move semantics because sometimes the resource we're going to take is no longer needed by the original owner
- Use **std::move(x)** to turn **x**, an l-value, to an r-value so that you can immediately take its resources

- We have move semantics because sometimes the resource we're going to take is no longer needed by the original owner
- Use std::move(x) to turn x, an l-value, to an r-value so that you can immediately take its resources
- **Rule of zero:** if you have self-managing member variables, and don't need to define custom constructors, and operators, then don't!

- We have move semantics because sometimes the resource we're going to take is no longer needed by the original owner
- Use **std::move(x)** to turn **x**, an l-value, to an r-value so that you can immediately take its resources
- Rule of zero: if you have self-managing member variables, and don't need to define custom constructors, and operators, then don't!
- **Rule of three:** if you define a custom destructor then you need to also define a custom copy constructor and copy assignment operator.

- We have move semantics because sometimes the resource we're going to take is no longer needed by the original owner
- Use std::move(x) to turn x, an l-value, to an r-value so that you can immediately take its resources
- **Rule of zero:** if you have self-managing member variables, and don't need to define custom constructors, and operators, then don't!
- **Rule of three:** if you define a custom destructor then you need to also define a custom copy constructor and copy assignment operator.
- **Rule of Five:** If you have a custom copy constructor, and copy assignment operator, then you should also define a move constructor and a move assignment operator!

What questions do we have?

A definition!

Type Safety: The extent to which a language prevents typing errors.

Python (english) vs. C++

```
Python
def div_3(x):
   return x / 3
div_3("hello")
//CRASH during runtime,
can't divide a string
```

```
C++
int div_3(int x){
   return x / 3;
div_3("hello")
//Compile error: this code
will never run
```

Python (english) vs. C++

Type Safety: The extent to which a language guarantees the behavior of programs.

What does this code do?

of vector::push_back(elem).It

removes the last element from the vector.

```
void removeOddsFromEnd(vector<int>& vec) {
    while(vec.back() % 2 == 1) {
        vec.pop_back();
    }
}

vector::back() returns a reference to
the last element in the vector

vector::pop_back() is like the opposite
```

Anyone see a problem?

```
void removeOddsFromEnd(vector<int>& vec){
  while(vec.back() % 2 == 1){
     vec.pop_back();
                             the last element in the vector
```

vector::back() returns a reference to

vector::pop_back() is like the opposite of vector::push_back(elem).It removes the last element from the vector.

Anyone see a problem?

```
void removeOddsFromEnd(vector<int>& vec)
   while(vec.back() % 2 == 1){
       vec.pop_back();
                                  vector::back() returns a reference to
                                  the last element in the vector
                                  vector::pop_back() is like the opposite
                                  of vector::push_back(elem).It
```

removes the last element from the vector.

Anyone see a problem?

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back() % 2 == 1){
     vec.pop_back();
   }
}
```

What if **vec** is {} / an empty vector!?

std::vector documentation

std::vector<T,Allocator>::back

```
reference back(); (until C++20)

constexpr reference back(); (since C++20)

const_reference back() const; (until C++20)

constexpr const_reference back() const; (since C++20)
```

Returns a reference to the last element in the container.

Calling back on an empty container causes undefined behavior.

Undefined behavior: Function could crash, could give us garbage, could accidentally give us some actual value

Taking another look at our code

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back() % 2 == 1){
     vec.pop_back();
   }
}
```

We can make no guarantees about what this function does!

Credit to Jonathan Müller of foonathan.net for the example!

One solution

```
void removeOddsFromEnd(vector<int>& vec){
   while(!vec.empty() && vec.back() % 2 == 1){
     vec.pop_back();
   }
}
```

One solution

```
void removeOddsFromEnd(vector<int>& vec){
   while(!vec.empty() && vec.back() % 2 == 1){
     vec.pop_back();
   }
}
```

Key idea: it is the **programmers job** to enforce the **precondition** that **vec** be non-empty, otherwise we get undefined behavior!

There may or may not be a "last element" in vec

How can vec.back() have deterministic behavior in either case?

The problem

```
valueType& vector<valueType>::back(){
   return *(begin() + size() - 1);
}
```

Dereferencing a pointer without verifying it points to real memory is undefined behavior!

The problem

```
valueType& vector<valueType>::back(){
  if(empty()) throw std::out_of_range;
  return *(begin() + size() - 1);
}
```

Now, we will at least reliably error and stop the program **or** return the last element whenever back() is called

The problem

Deterministic behavior is great, but can we do better?

There may or may not be a "last element" in vec How can vec.back() warn us of that when we call it?

Revisiting our definition

Type Safety: The extent to which a function **signature** guarantees the behavior of a **function**.

Back to the problem

```
valueType& vector<valueType>::back(){
  return *(begin() + size() - 1);
}
```

back() is promising to return something of type
valueType when its possible no such value exists!

A look at a first solution

```
std::pair<bool, valueType&> vector<valueType>::back(){
   if(empty()){
      return {false, valueType()};
   }
   return {true, *(begin() + size() - 1)};
}
```

back() now advertises that there may or may not be a last element

A look at a first solution

```
std::pair<bool, valueType&> vector<valueType>::back(){
   if(empty()){
      return {false, valueType()}
    }
   return {true, *(begin() + size() - 1)};
}
```

back() now advertises that there may or may not be a last element

Problems with std::pair

```
std::pair<bool, valueType&> vector<valueType>::back(){
   if(empty()){
      return {false, valueType()};
   }
   return {true, *(begin() + size() - 1)};
}
```

valueType may not have a default constructor

Problems with std::pair

```
std::pair<bool, valueType&> vector<valueType>::back(){
   if(empty()){
      return {false, valueType()};
   }
   return {true, *(begin() + size() - 1)};
}
```

- valueType may not have a default constructor
- Even if it does, calling constructors is **expensive**

Problems with std::pair

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back().second % 2 == 1){
     vec.pop_back();
   }
}
```

This is still pretty unpredictable behavior! What if the default constructor for an int produced an odd number?

What should back return in this case?

```
??? vector<valueType>::back(){
   if(empty()){
     return ??;
   }
  return *(begin() + size() - 1);
}
```

What questions do we have?

Introducing std::optional

What is std::optional<T>

 std::optional is a template class which will either contain a value of type T or contain nothing (expressed as nullopt)

What is std::optional<T>

 std::optional is a template class which will either contain a value of type T or contain nothing (expressed as nullopt)

Note: that's nullopt NOT nullptr. It's a new thing!

nullptr: an object that can be
converted to a value of any pointer
type

nullopt: an object that can be
converted to a value of any optional
type

What is std::optional<T>

 std::optional is a template class which will either contain a value of type T or contain nothing (expressed as nullopt)

```
void main(){
    std::optional<int> num1 = {}; //num1 does not have a value
    num1 = 1; //now it does!
    num1 = std::nullopt; //now it doesn't anymore
}

Can be used
    interchangeably!
```

What is std::optional<T>

```
std::optional<valueType> vector<valueType>::back(){
   if(empty()){
      return {};
   }
   return *(begin() + size() - 1);
}
```

What using back() look like:

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back() % 2 == 1){
     vec.pop_back();
   }
}
```

We can't do arithmetic with an optional, we have to get the value inside the optional (if it exists) first!

What's the interface of std::optional?

```
std::optional types have a:
```

 - .value() method: returns the contained value or throws bad_optional_access error

What's the interface of std::optional?

```
std::optional types have a:
```

- .value() method: returns the contained value or throws bad_optional_access error
- .value_or(valueType val)

returns the contained value or default value, parameter val

What's the interface of std::optional?

```
std::optional types have a:
```

- .value() method: returns the contained value or throws bad_optional_access error
- .value_or(valueType val)

returns the contained value or default value, parameter val

- .has_value()

returns **true** if contained value exists, **false** otherwise

Revisiting back()

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back().value() % 2 == 1){
     vec.pop_back();
   }
}
```

Now, if we access the back of an empty vector, we will at least reliably get the **bad_optional_access** error

Revisiting back()

```
void removeOddsFromEnd(vector<int>& vec){
    while(vec.back().has_value() && vec.back().value() % 2 == 1){
        vec.pop_back();
    }
}
```

This will no longer error, but it is pretty unwieldy:/

Revisiting back ()

```
void removeOddsFromEnd(vector<int>& vec) {
    while(vec.back() && vec.back().value() % 2 == 1) {
       vec.pop_back();
    }
}
```

Better?

Revisiting back()

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back().value_or(2) % 2 == 1){
     vec.pop_back();
   }
}
```

Totally hacky, but totally works ;)

Revisiting back()

```
void removeOddsFromEnd(vector<int>& vec){
   while(vec.back().value_or(2) % 2 == 1){
     vec.pop_back();
   }
}
```

Totally hacky, but totally works ;) Please don't do this!

Recap: The problem with std::vector::back()

- Why is it so easy to accidentally call **back()** on empty vectors if the outcome is so dangerous?
- The function signature gives us a false promise!

valueType& vector<valueType>::back()

- Promises to return an something of type valueType
- But in reality, there either may or may not be a "last element" in a vector

An optional take on realVector

More bad code!

```
int thisFunctionSucks(vector<int>& vec){
   return vec[0];
}
```

}
What happens if **Vec** is empty? More undefined behavior!

std::optional<T&> is not available!

```
std::optional<valueType&>
vector<valueType>::operator[](size_t index){
   return *(begin() + index);
}
```

A reference must be always bound to a valid object, and optional doesn't guarantee that

Best we can do is error..which is what .at() does

```
valueType& vector<valueType>::operator[](size_t index){
   return *(begin() + index);
valueType& vector<valueType>::at(size_t index){
   if(index >= size()) throw std::out_of_range;
   return *(begin() + index);
```

Why have both?

Pros of using **std::optional** returns:

- Function signatures create more informative contracts
- Class function calls have guaranteed and usable behavior

Cons:

- You will need to use .value() EVERYWHERE
- (In cpp) It's still possible to do a bad_optional_access
- (In cpp) optionals can have undefined behavior too (*optional does same thing as .value() with no error checking)
- In a lot of cases we want **std::optional<T&>**...which we don't have

Why even bother with optionals?

- .and_then(function f)

returns the result of calling f(value) if contained value exists, otherwise null_opt (f must return optional)

- .transform(function f)

returns the result of calling f(value) if contained value exists, otherwise null_opt (f must return optional<valueType>)

- .or_else(function f)

returns value if it exists, otherwise returns result of calling f

- otherwise n
- .or_else(fun

- .and_then(fu Monadic: a software design pattern with returns the a structure that combines program otherwise r fragments (functions) and wraps their - .transform(f return values in a type with additional returns the computation

These all let you try a function and will either return the result of the returns value computation or some default value.

- .and_then(function f)

returns the result of calling f(value) if contained value exists, otherwise null_opt (f must return optional)

- .transform(function f)

returns the result of calling f(value) if contained value exists, otherwise null_opt (f must return optional<valueType>)

- .or_else(function f)

returns value if it exists, otherwise returns result of calling f

Revisiting our back() code...again!

```
void removeOddsFromEnd(vector<int>& vec){
   auto isOdd = [](optional<int> num){
      if(num)
          return num % 2 == 1;
      else
          return std::nullopt;
       //return num ? (num % 2 == 1) : {};
   } ;
   while(vec.back().and_then(isOdd)){
      vec.pop_back();
```

Revisiting our back() code...again!

```
void removeOddsFromEnd(vector<int>& vec){
   auto isOdd = [](optional<int> num){
      if(num)
          return num % 2 == 1;
                                                     Recall lambda
      else
                                                      functions!
          return std::nullopt;
       //return num ? (num % 2 == 1) : {};
   while(vec.back().and_then(isOdd)){
       vec.pop_back();
```

Disclaimer: std::vector::back() doesn't actually return an optional (and probably never will)

Recall: Design philosophies of C++

- Only add features if they solve an actual problem
- Programmers should be free to choose their style
- Compartmentalization is key
- Allow the programmer full control if they want it
- Don't sacrifice performance except as a last resort
- Enforce safety at compile time whenever possible

Recall: Design philosophies of C++

- Only add features if they solve an actual problem
- Programmers should be free to choose their style
- Compartmentalization is key
- Allow the programmer full control if they want it
- Don't sacrifice performance except as a last resort
- Enforce safety at compile time whenever possible

Languages that really use optional monads

- Rust 🥰 😍

Systems language that guarantees memory and thread safety

- Swift

Apple's language, made especially for app development

- JavaScript

Everyone's favorite

- You can guarantee the behavior of your programs by using a strict type system!

- You can guarantee the behavior of your programs by using a strict type system!
- std::optional is a tool that could make this happen: you can return either a value or nothing: .has_value(),
 .value_or(), .value()

- You can guarantee the behavior of your programs by using a strict type system!
- std::optional is a tool that could make this happen: you can return either a value or nothing: .has_value(),
 .value_or(), .value()
- This can be unwieldy and slow, so cpp doesn't use optionals in most stl data structures

- You can guarantee the behavior of your programs by using a strict type system!
- std::optional is a tool that could make this happen: you can return either a value or nothing: .has_value(),
 .value_or(), .value()
- This can be unwieldy and slow, so cpp doesn't use optionals in most stl data structures
- Many languages, however, do!

- You can guarantee the behavior of your programs by using a strict type system!
- std::optional is a tool that could make this happen: you can return either a value or nothing: .has_value(),
 .value_or(), .value()
- This can be unwieldy and slow, so cpp doesn't use optionals in most stl data structures
- Many languages, however, do!
- Besides using them in classes, you can use them in application code where it makes sense! This is highly encouraged :)

All in all

"Well typed programs cannot go wrong."

- Robert Milner (very important and good CS dude)

Let's look at some code