# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Ciencias

Integrantes: Adrián Aguilera Moreno Sebastián Alejandro Gutierrez Medina



Compiladores

## Tarea 01

## Pregunta 1.



## Pregunta 2.

La siguiente tabla define los tokens para un lenguaje simple donde  $\Sigma = \{a, \cdots, z, 0, \cdots, 9, \oplus, (,)\}$ 

| token | $exp.\ regular$        |
|-------|------------------------|
| num   | $0 + [1 - 9][0 - 9]^*$ |
| lam   | "lam"                  |
| dot   |                        |
| lр    | (                      |
| rp    |                        |
| binop | $\oplus$               |

- a) Extiende la tabla anterior para agregar un token para identificadores donde la primera letra debe ser mayúscula seguida de cualquier secuencia de letras o números.
- b) Construye un autómata finito determinista que acepte los tokens descritos en la tabla. Puedes usar algún método, eg. derivadas de expresiones regulares o construcción de un  $AFN_{\epsilon}$  y transformaciones. Indica el método usado y muestra el proceso.

#### Solución.

a) Extendiendo la tabla anterior tenemos que

| token            | exp. regular           |
|------------------|------------------------|
| num              | $0 + [1 - 9][0 - 9]^*$ |
| lam              | "lam"                  |
| dot              | •                      |
| lp               | (                      |
| $^{\mathrm{rp}}$ | )                      |
| binop            | $\oplus$               |
| mi               | $[A-Z][a-zA-Z0-9]^*$   |

b) Para diseñar este autómata utilizaremos el método de derivaciones en expresión regular. Así, nuestra expresión regular sería

$$token = (num \mid lam \mid dot \mid lp \mid rp \mid binop \mid mi)$$

nuestro autómata estará definido por la expresión

token token\*

**Obs.** No aceptamos a la cadena vacía, por tanto nuestro autómata debe tener un estado inicial que no sea terminal y del cuál sus transiciones a otros estados sean <u>no</u> vacías. Cada estado final debe poder decidir si termina o regresa al inicio de nuestro autómata (pues el token en cuestión puede formarse de los diferentes tokens en la tabla).

A continuación se da la gráfica que represer<br/>nta el autómata  $AFN_{\epsilon}$  solicitado, este es



## Pregunta 3.

- Dado que un comentario valido en c<br/> seria /\*\*/ y en base a la expresión regular brindada esta cadena no es aceptada, no es posible que la expresión regular /\*([^\*/]|[^\*]/|\*[^/])\* \*\* \*/
- Autómata que acepta comentarios de c :



Expresión regular que corresponde a los comentarios en c

## Pregunta 4.

Considera el siguiente autómata



- a) ¿Cuál es la definición del lenguaje que acepta este autómata? Proporciona la gramática regular de los tokens que se reconocen.
- b) ¿Qué tokens son reconocidos al procesar la cadena 3e-z? Recuerda utilizar la técnica de la coincidencia más larga y si no es posible avanzar en un estado puedes hacer un retroceso o backtracking al estado de aceptación anterior para tratar de identificar el mayor número de tokens posible.

### Solución.

- a) A continuación se da la gramática requerida, esta es
  - Desde el estado A.

$$A_{e} \rightarrow iB_{e}$$

$$\rightarrow (a-h)D_{e}$$

$$\rightarrow (j-z)D_{e}$$

$$\rightarrow (A-Z)D_{e}$$

$$\rightarrow (.)D_{e}$$

$$\rightarrow (.)E_{e}$$

$$\rightarrow +F_{e}|-F_{e}$$

$$\rightarrow (0-9)G_{e}$$

Desde el estado B.

$$\begin{array}{cccc} B_e & \rightarrow & \epsilon \\ & \rightarrow & (a-e)D_e \\ & \rightarrow & (g-z)D_e \\ & \rightarrow & (A-Z)D_e \\ & \rightarrow & (-)D_e \\ & \rightarrow & (0-9)D_e \\ & \rightarrow & fC_e \end{array}$$

– Desde el estado C.

$$C_{e} \rightarrow \epsilon$$

$$\rightarrow (a-z)D_{e}$$

$$\rightarrow (A-Z)D_{e}$$

$$\rightarrow (-)D_{e}$$

$$\rightarrow (0-9)D_{e}$$

- Desde el estado D.

$$D_{e} \rightarrow \epsilon$$

$$\rightarrow (a-z)D_{e}$$

$$\rightarrow (A-Z)D_{e}$$

$$\rightarrow (-)D_{e}$$

$$\rightarrow (0-9)D_{e}$$

- Desde el estado E.

$$E \rightarrow (0-9)H_e$$

- Desde el estado F.

$$\begin{array}{ccc} D_e & \rightarrow & (.)E_e \\ & \rightarrow & (0-9)G_e \end{array}$$

 $E \rightarrow (0-9)k_e$ 

- Desde el estado G.

- Desde el estado H.

Lo anterior es la gramática definida para los estados A<sup>1</sup>, B, C, D, E, F, G, H, J, y K.

- b) Para este inciso usemos el método visto en clase, así
  - 1. Encontramos la cadena "3e-" del token pasando por los estados  $[A \to G \to I \to J]$ , al llegar a J realizamos backtracking para llegar a I, pues no encontramos una transición que nos permita encontrar z desde j. Caso análogo para I, G, y finalmente llegamos a el estado A.
  - 2. Encontramos "e" por la transición  $A \rightarrow D$ . Sin embargo, no podemos encontrar el siguiente caracter del token y hacemos backtracking llegando nuevamente al estado inicial (A).
  - 3. Encontramos "-" por la transición  $A \to F$ . Sin embargo, no podemos encontrar el siguiente caracter del token y hacemos backtracking llegando nuevamente al estado inicial (A).
  - 4. Encontramos "z" por la transición  $A \rightarrow D$ . Sin embargo, no podemos encontrar el siguiente caracter del token y hacemos backtracking llegando nuevamente al estado inicial (A).

<sup>&</sup>lt;sup>1</sup>En la gramática se hace alusión a  $A_e$  para no confundir con el carácter A.