EA772U CIRCUITOS LÓGICOS 20/05/2011 Prova 2.1 Sem Consulta Duração: 100 minutos ne: RA:

Nome: RA:

Questão 1 (3,0) Dada a função lógica

F(w, x, y, z) = conjunto-um (0, 1, 6, 8, 9, 13, 14) + conjunto-dc (2, 5, 11)

- a) Obter as expressões mínimas nas formas de **soma de produtos** e de **produto de somas** utilizando o método de **Quine-McCluskey** determinar todos os implicantes/implicados primos e aplicar o algoritmo de seleção de implicantes/implicados primos. Mostrar todos os passos da aplicação do método.
- b) Qual é a expressão lógica mínima dentre as obtidas? Quantas portas lógicas e quantas entradas são necessárias para implementá-la? Considere que as entradas complementadas estão disponíveis.

Questão 2 (2,0) Determinar a **tabela de estados mínima** equivalente à tabela de estados abaixo. Mostrar todos os passos de sua solução e desenhar o diagrama de estados correspondente à tabela de estados mínima.

EA	Entrada		
	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	$\mathbf{x} = \mathbf{c}$
A	A,1	В,0	C,0
G	C,0	D,1	F,0
С	G,1	D,0	F,0
Е	B,1	D,0	C,1
D	B,1	C,0	F,0
В	D,0	C,1	E,0
F	G,1	C,0	D,1
	PE, saída		

Questão 3 (2,0) Dada a sequência 1, 2, 4, 5, 6, projetar um contador síncrono cíclico "updown" que, dependendo do valor de uma variável de controle U, conte essa sequência no sentido crescente (U = 1) ou decrescente (U = 0).

Usar um flip-flop do tipo **JK** para o bit **menos significativo** da codificação do estado e flip-flops do tipo **D** para os demais bits do contador. Montar a **Tabela da Verdade** (**U** deve ser a entrada binária mais significativa) e mostrar os mapas de Karnaugh para as entradas dos flip-flops.

Tabelas de excitação dos flip-flops JK, D, SR e T

Q	Q+	J	K	D	S	R	T
0	0	0	X	0	0	X	0
0	1	1	X	1	1	0	1
1	0	X	1	0	0	1	1
1	1	X	0	1	X	0	0

Questão 4 (2,0) a) Obter os diagramas de estados **reduzidos** para os detectores do padrão 11011 **com** sobreposição e **sem** sobreposição. Mostrar todos os passos para a obtenção dos diagramas.

b) Projetar o detector **com** sobreposição usando um registrador de deslocamento (mostrar o esquema do circuito com os flip-flops do tipo **D**).

Questão 5 (1,0) Determinar as expressões lógicas para as entradas Da, Db, Dc, e Dd dos flip-flops do tipo **D** usados no projeto "um flip-flop por estado" para o circuito seqüencial com a especificação a seguir. Lembrete: as entradas do flip-flops são funções dos estados atuais (Qa, Qb, Qc, e Qd) e das entradas x_1 e x_0 .

Entradas binárias: x_1, x_0 Saída binária: z

Estados: a, b, c, d

Funções de transição de estado e de saída

EA	$x_1 x_0$	$x_1 x_0$	$x_1 x_0$
	01	10	11
a	b,0	c,1	c,0
b	a,0	d,1	d,0
С	d,0	c,0	a,1
d	c,0	a,0	d,1
	PE, z	PE, z	PE, z