TỔNG HỢP LÝ THUYẾT GÓC LƯỢNG GIÁC - GTLG

A. GTLG GÓC LƯỢNG GIÁC

 $m{\Theta}$ Đổi đơn vị đo: $\boxed{1 \text{ vòng} = 360^\circ = 2\pi \ rad}, \boxed{180^\circ = \pi rad}$

Độ	0°	30°	45°	60°	90°	120°	135°	150°	180°
Rađian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π

- $oldsymbol{eta}$ Độ dài cung tròn bán kính R số đo lpha rad là $\overline{l=Rlpha}$.
- $oldsymbol{\Theta}$ Điểm biểu diễn góc lượng giác α lên đường tròn lượng giác là M. Khi đó M cũng biểu diễn các góc lượng giác $\alpha + k2\pi$.

Góc α và β có chung điểm biểu diễn khi $\boxed{\alpha-\beta=k2\pi}$ (chẵn lần π)

Định nghĩa GTLG

$$\Theta \cos \alpha = x$$

$$\Theta \sin \alpha = y$$

$$\Theta \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{y}{x}$$

$$\Theta \cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{x}{y}$$

Các công thức lượng giác cơ bản

$$\Theta \sin^2 \alpha + \cos^2 \alpha = 1$$

$$m{\Theta} \ 1 + an^2 lpha = rac{1}{\cos^2 lpha} \left(lpha
eq rac{\pi}{2} + k\pi, k \in \mathbb{Z}
ight)$$

$$\Theta \ 1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \ (\alpha \neq k\pi, k \in \mathbb{Z})$$

$$m{\Theta} \ an lpha \cdot \cot lpha = 1 \left(lpha
eq rac{k\pi}{2}, k \in \mathbb{Z}
ight)$$

 $\underline{\mathit{Ch\'u}\ \acute{y}} \colon \tan\alpha\ \mathit{x\'ac}\ \mathit{dịnh}\ \mathit{khi}\ \alpha \neq \frac{\pi}{2} + k\pi\ (k \in \mathbb{Z})\ \mathit{v\`a}\ \cot\alpha\ \mathit{x\'ac}\ \mathit{dịnh}\ \mathit{khi}\ \alpha \neq k\pi\ (k \in \mathbb{Z}).$

cos đối

$$\Theta \sin(-\alpha) = -\sin \alpha$$

$$\Theta \tan(-\alpha) = -\tan \alpha$$

$$\Theta$$
 $\cot(-\alpha) = -\cot \alpha$

.

$$\Theta \sin(\pi - \alpha) = \sin \alpha$$

$$\Theta \cos(\pi - \alpha) = -\cos\alpha$$

$$\Theta \tan(\pi - \alpha) = -\tan \alpha$$

$$\Theta$$
 $\cot(\pi - \alpha) = -\cot \alpha$

phụ chéo

$$\Theta \, \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\Theta \, \cos \left(\frac{\pi}{2} - \alpha\right) = \sin \alpha$$

$$\Theta \tan \left(\frac{\pi}{2} - \alpha\right) = \cot \alpha$$

$\pm \pi \tan, \cot$

sin bù

$$\Theta \sin(\pi + \alpha) = -\sin \alpha$$

$$\Theta$$
 $\cos(\pi + \alpha) = -\cos\alpha$

$$\Theta$$
 tan $(\pi + \alpha) = \tan \alpha$

 Θ $\cot(\pi + \alpha) = \cot \alpha$

B. CÔNG THỨC LƯỢNG GIÁC

1. Công thức cộng

Công thức cộng

- $\cos(a-b) = \cos a \cos b + \sin a \sin b.$
- $\Theta \sin(a-b) = \sin a \cos b \sin b \cos a.$
- $\Theta \tan(a-b) = \frac{\tan a \tan b}{1 + \tan a \tan b}$

- $\Theta \cos(a+b) = \cos a \cos b \sin a \sin b.$
- $\Theta \sin(a+b) = \sin a \cos b + \sin b \cos a.$
- $\Theta \tan(a+b) = \frac{\tan a + \tan b}{1 \tan a \tan b}$

Trường hợp đặc biệt

$$\Theta \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right) = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right).$$

$$\Theta \sin x + \sqrt{3}\cos x = 2\sin\left(x + \frac{\pi}{3}\right) = 2\cos\left(x - \frac{\pi}{6}\right).$$

2. Công thức nhân đôi

Công thức nhân đôi

- $\Theta \sin 2a = 2\sin a\cos a$.
- $\Theta \cos 2a = \cos^2 a \sin^2 a = 2\cos^2 a 1 =$ $1-2\sin^2 a$
- $\Theta \tan 2a = \frac{2\tan a}{1 \tan^2 a}$

Công thức hạ bậc

- $\Theta \sin^2 a = \frac{1 \cos 2a}{2}.$ $\Theta \cos^2 a = \frac{1 + \cos 2a}{2}.$
- $\Theta \tan^2 a = \frac{1 \cos 2a}{1 + \cos 2a}$

Áp dụng công thức cộng cho 3a = a + 2a, ta có công thức nhân ba:

Công thức nhân ba

- $\Theta \sin 3a = 3\sin a 4\sin^3 a$
- $\Theta \cos 3a = 4\cos^3 a 3\cos a.$

- $\Theta \tan 3a = \frac{3\tan a \tan^3 a}{1 3\tan^2 a}$
- 3. Công thức biến đổi tích thành tổng

Công thức tích thành tổng

- $\Theta \cos a \cos b = \frac{1}{2} \left[\cos(a-b) + \cos(a+b) \right].$
- $\Theta \sin a \sin b = \frac{1}{2} \left[\cos(a-b) \cos(a+b) \right].$
- $\Theta \sin a \cos b = \frac{1}{2} \left[\sin(a-b) + \sin(a+b) \right].$

4. Công thức biến đổi tổng thành tích

Công thức biến đổi tổng thành tích được xây dựng bằng cách $a = \frac{a+b}{2}$, $b = \frac{a-b}{2}$ trong công thức biến đổi tích thành tổng.

Công thức tổng thành tích

- Θ $\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$
- $\Theta \cos a \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}.$
- Θ $\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2}$
- $\Theta \sin a \sin b = 2\cos \frac{a+b}{2}\sin \frac{a-b}{2}.$

C. HÀM SỐ LƯỢNG GIÁC

Hàm số chẵn, hàm số lẻ

- $oldsymbol{\Theta}$ Hàm số f(x) được gọi là hàm số chẵn nếu $\forall x \in \mathcal{D}$ thì $-x \in \mathcal{D}$ và f(-x) = f(x). Đồ thị của một hàm số chẵn nhận trục tung là trục đối xứng.
- **②** Hàm số f(x) được gọi là hàm số lẻ nếu $\forall x \in \mathcal{D}$ thì $-x \in \mathcal{D}$ và f(-x) = -f(x). Đồ thị của một hàm số lẻ nhận gốc toạ độ là tâm đối xứng.

Các hàm số $y = \sin x$, $y = \tan x$, $y = \cot x$ là hàm số $l\ell$, hàm số $y = \cos x$ là hàm số ℓ

Hàm số tuần hoàn

f Định nghĩa 0.1. Hàm số y = f(x) có tập xác định $\mathscr D$ được gọi là hàm số tuần hoàn nếu tồn tại số $T \neq 0$ sao cho với mọi $x \in \mathscr D$ ta có:

$$\Theta$$
 $x + T \in \mathcal{D}$ và $x - T \in \mathcal{D}$;

$$f(x+T) = f(x).$$

Số T dương nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là **chu kì** của hàm số tuần hoàn đó.

Các hàm số $y = A \sin \omega x$ và $y = A \cos \omega x$ ($\omega > 0$) là những hàm số tuần hoàn với chu kì $T = \frac{2\pi}{100}$

Các hàm số $y = A \tan \omega x$ và $y = A \cot \omega x$ ($\omega > 0$) là những hàm số tuần hoàn với chu kì $T = \frac{\pi}{\omega}$.

D. PHƯƠNG TRÌNH LƯỢNG GIÁC

Phương trình $\sin x = a$.

lacktriangle Trường hợp a>1 hoặc a<-1 phương trình vô nghiệm.

lacktriangledown Trường hợp $a \in \{-1; 0; 1\}$.

 $\sin x = 0 \Leftrightarrow x = k\pi$

- - ① Công thức theo đơn vị rad: $\sin x = \sin \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi \alpha + k2\pi \end{bmatrix}, \ k \in \mathbb{Z}$
 - $\text{@ Công thức theo đơn vị độ: } \sin x = \sin \beta^\circ \Leftrightarrow \begin{bmatrix} x = \beta^\circ + k360^\circ \\ x = 180^\circ \beta^\circ + k360^\circ \end{bmatrix}, \ k \in \mathbb{Z}$

Phương trình $\cos x = a$.

- $oldsymbol{\boxtimes}$ Trường hợp a>1 hoặc a<-1 phương trình vô nghiệm.
- lacktriangledown Trường hợp $a \in \{-1; 0; 1\}$.

- - ① Công thức theo đơn vị rad: $\cos x = \cos \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = -\alpha + k2\pi \end{bmatrix}, \ k \in \mathbb{Z}$
 - $\text{ 2 Công thức theo đơn vị độ: } \cos x = \cos \beta^\circ \Leftrightarrow \begin{bmatrix} x = \beta^\circ + k360^\circ \\ x = -\beta^\circ + k360^\circ \end{bmatrix}, \ k \in \mathbb{Z}$

Phương trình $\tan x = a$ và $\cot x = b$.

- $lacksymbol{arPsi}$ Trường hợp $a\in\left\{0;\pmrac{\sqrt{3}}{3};\pm1;\pm\sqrt{3}
 ight\}$ hoặc a bất kì. Ta bấm máy shift tan để tìm góc lpha hoặc eta° tương ứng.
 - ① Công thức theo đơn vị rad:

$$\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$$

2 Công thức theo đơn vi đô:

$$\tan x = \tan \beta^{\circ} \Leftrightarrow x = \beta^{\circ} + k180^{\circ}, \, k \in \mathbb{Z}$$

 \bigstar Phương trình cot x=b. $b\in\left\{\pm\frac{\sqrt{3}}{3};\pm1;\pm\sqrt{3}\right\}$ hoặc b bất kì. Ta bấm máy sư tương ứng. Riêng b=0 thì $\alpha=\frac{\pi}{2}$. Công thức nghiệm tương tự phương trình $\tan x=a$