Neural Networks ARISE 2020: ECE Machine Learning Lab

Apoorva Nandini Saridena

Department of Electrical and Computer Engineering NYU Tandon School of Engineering Brooklyn, New York

July 29, 2020

- 1 Review
- 2 Neural Network Mod
- 3 Training with Neural Network
- 4 Introduction to PyTorcl
- 5 Neural Network Dem
- 6 (Ontional) Lab: Cat vs. Non-Ca

Machine Learning Problem Pipeline

- 1 Gather data
- 2 Visualize the data
- 3 Formulate ML problem
 - Regression vs Classification
 - Choose an appropriate cost function
- 4 Design the model and train to find the optimal parameters of the model
 - Prepare a design matrix
 - Perform feature engineering
 - Validate your choice of hyper-parameters using a cross-validation set
- 5 Evaluate the model on a test set
 - If the performance is not satisfactory, go back to step 4

Data

Data

- Always save your data file as an .csv file
 - It is easy to edit in both excel and text file
 - Easy to load the data using Pandas
- Visualize the data
 - To get an rough estimate of how your machine learning model should be
 - Do you have sufficient training and testing data
- Always plot the data before pre-processing

Notation

Review

■ Numbers:

- N: total number of samples
- M: model order, number of features (engineered or not)
- K: number of outputs or classes

Vectors:

- **x**: feature vector, $\mathbf{x} = [x_1, x_2, ..., x_M]^T$
- **y**: target vector, $\mathbf{y} = [y_1, y_2, ..., y_K]^T$
- $\hat{\mathbf{y}}$: predicted target vector, $\hat{\mathbf{y}} = [\hat{y}_1, \hat{y}_2, ... \hat{y}_K]^T$
- **w**: weight vector for K = 1 targets, $\mathbf{w} = [w_1, w_2, ..., w_M]^T$
- **b**: bias vector, $\mathbf{b} = [b_1, b_2, ..., b_K]$

Matrices:

- X: (N,M) design matrix
- W: (K,M) weight matrix

Supervised Learning

Туре	Linear Regression	Logistic Regression
Use	Modeling Continuous Data	Classification
Features	Any Numerical Data, $\mathbf{x} = [x_1, x_2,, x_M]^T$	
Targets	Any Numerical Data, y	Class Labels, y
Model	$\hat{\mathbf{y}} = \mathbf{W}\mathbf{x} + \mathbf{b}$	$\hat{\mathbf{y}} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$
Loss Function	Error between ${f y}$ and ${f \hat{y}}$	Cross-Entropy

Optimization

- Use loss/error/cost function to find best model-parameters
- Non-linear opt. can use arbitrary Loss function

Problem	Loss Function	Formula
Regression	Squared/L2 Loss	$\sum_i (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2$
Binary Classification	Binary Cross- Entropy	$-\sum_i (y_i \ln(\hat{y}_i) + (1-y_i) \ln(1-\hat{y}_i))$
Multi-Class Classification	Cross- Entropy	$-\sum_i\sum_k(y_{ik}\ln(\hat{y}_{ik}))$

Linear vs. Logistic Regression

Review

Goodness of Fit.

- Evaluate the accuracy of the model
- Can use criteria different than that used for optimization
- Examples:
 - \blacksquare Mean Squared Error: $\frac{1}{M}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}$
 - May also represent result of optimization
 - Mean Absolute Error: $\frac{1}{N} \sum_{i} |\mathbf{y}_{i} \hat{\mathbf{y}}_{i}|$
 - Easily interpretable units
 - Root Mean Squared Error: $\sqrt{\frac{1}{N}\sum_{i}(\mathbf{y}_{i}-\hat{\mathbf{y}}_{i})^{2}}$
 - May represent opt. & easily interpretable units
 - Classification Accuracy: $\frac{1}{N} \sum_{i} (\mathbf{y}_{i} == \hat{\mathbf{y}}_{i})$

Train, Validation, and Test Sets

- Always split your data into train and test sets to see how well it does against new data
- Train set: set of data to be used for traininge.g. model.fit(x_train,y_train)
- Test set: After training is done, evaluate how well it does against unseen data using test set
- Validation set: If tuning hyper-paramters, perform one more split to get a validation set. Use validation set to tune parameters

Train and Test Sets (Dealing with Time Series)

- Train and test split is usually done by taking samples at random from the entire data set
- But when using time series to predict future, it is better to select test set to be a continuous chunk at the end of the time series
- Because we want to see how well the model does in predicting the future

Regularization

- Prevent over-fitting by adding a term to loss function
- Loss Function = Target loss function + λ Regularization
- \blacksquare λ hyper-parameter determine how much to emphasize on regularizing
- Large weights usually lead to over-fitting
- Weight-based regularization is most commonly used
 - L2 (Ridge) Regularization: $\sum_{j=1}^{D} |w_j|^2$
 - L1 (Lasso) Regularization: $\sum_{i=1}^{D} |w_i|$
- First over-estimate the model order you need, then use regularization to prevent over-fitting

- 1 Review
- 2 Neural Network Model
- 3 Training with Neural Network
- 4 Introduction to PyTorcl
- 5 Neural Network Dem
- 6 (Optional) Lab: Cat vs. Non-Ca

Extending Logistic Regression

- Motivation: Feature engineering in the model
 - Removes need for domain knowledge
 - Domain knowledge often doesn't exist: ex. object recognition
- Logistic Regression Model: $\hat{y} = \sigma(W\mathbf{x} + b)$
- Replace **x** with $\mathbf{z} = f(W\mathbf{x} + b)$: $\hat{y} = \sigma(Wz + b)$
- So, $\hat{y} = \sigma(W_2 f(W_1 \mathbf{x} + b_1) + b_2)$
- Fact: all linear transforms can be represented as matrix multiplication
- We use non-linear function as *f* to give us a more expressive model
 - Recall polynomial transformations and exponential transformations of the data
 - These cannot be expressed as matrix multiplication

Extension to Neural Network

- Restrict f(x) to non-linear function applied to all input values
 - Simplest example of a Neural Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both W_1 , \mathbf{b}_1 and W_2 , b_2 2 model-parameters

 - Now we're *learning* the feature engineering
- But why stop here?...

Extension to Neural Network

- Restrict f(x) to non-linear function applied to all input values
 - Simplest example of a Neural Network
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both W_1 , \mathbf{b}_1 and W_2 , b_2 2 model-parameters

 - Now we're *learning* the feature engineering
- But why stop here?...

Extension to Neural Network

- Restrict f(x) to non-linear function applied to all input values
 - Simplest example of a **Neural Network**
- $\hat{\mathbf{y}} = \sigma(W_2 f_1(W_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- We can optimize for both W_1 , \mathbf{b}_1 and W_2 , b_2 2 model-parameters

 - Now we're *learning* the feature engineering
- But why stop here?...

Mathematical Model: Multi-Layer Perceptron

■ Model:

$$\hat{\mathbf{y}} = f_{out}(W_{out}\mathbf{z}_L + b_{out})$$

- Where, $z_l = f_l(W_l \mathbf{z}_{l-1} + b_l)$ for $1 \le l \le L$, $z_0 := \mathbf{x}$, and L is the number of hidden layers
- ie. all hidden layers are non-linear activation of linear transform
- f_{out} depends on type of ML problem: (regression: linear, classification: sigmoid/soft-max)
 - Regression: Linear Output
 - Binary Classification: Sigmoid Output
 - Multi-Class Classification: Soft-max Output

Layers

■ Input: feature vector, x

■ Output: target vector, ŷ

■ linear/logistic regression

■ **Hidden**: intermediate vectors, **z** or **a**

■ feature extraction

Common Activation Functions

- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
 - $\sigma(z) \in (0,1)$
- Tanh (hyperbolic tangent): $tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$
 - \blacksquare tanh(z) \in [-1, 1]
- ReLu (Rectified Linear Unit): relu(z) = max(0, z)
 - easy to compute, performs well in practice

Guidelines for Designing a NN

■ The design space for NN is HUGE

- Hyper-parameters so far:
 - *L*: # of layers
 - N_L : # hidden units per layer
 - f: activation function for each layer
 - *bs*: batch-size
 - Ir: learning-rate
 - # of epochs
 - \blacksquare λ : weight-regularization constant
 - *J*: cost/loss function
- This can be overwhelming...

Guidelines for Designing a NN

- **Start Small**: 1 or 2 layers
 - \blacksquare # hidden units \sim 128
 - make sure code is working
 - increase size if val good
 - classification acc ≥ guessing
- One activation function
 - for all hidden layers
- Simple MLP Arch:
 - Pyramid
 - Expand, combine & reduce

Toy Example: Spiral Classification

Human Engineered
Feature Transformations:

NN Engineered
Feature Transformations:

Toy Example: Spiral Classification

Human Engineered
Feature Transformations:

NN Engineered
Feature Transformations:

Advantages and Disadvantages

Advantages	Disadvantages
Further removed need for domain knowledgeInfinitely expressive	Less control over behavior of modelComputationally expensive (kind of)

Biological Justification

- Example: Steps for Processing Vision
 - 1 Eyes gather light
 - 2 Light intensities converted to shapes
 - 3 Shapes recognized as objects
 - 4 Objects associated with ideas
 - 5 Idea recognized as Cat

- 1 Revieu
- 2 Neural Network Mode
- 3 Training with Neural Networks
- 4 Introduction to PyTorc
- 5 Neural Network Demo
- 6 (Optional) Lab: Cat vs. Non-Ca

Large Scale Machine Learning

- Learning with large data sets
- Algorithms today perform so much better than five years ago due to shear amount of data availability
- "It's not who has the best algorithm that wins. It's who has the most data"
 - So we want to learn from large data sets

Learning with Large Data Sets

- Challenges:
 - Computationally very expensive to compute gradients
 - And each gradient computation performs only one step of update
- In large scale machine learning, we want to come up with computationally reasonable ways to deal with large data sets
 - Batch Gradient Descent
 - Stochastic Gradient Descent
 - Mini-batch Gradient Descent

Digression: Revisiting Learning Rate

Correct learning rate

Batch Gradient Descent

- Batch Gradient Descent takes all the examples in the training data to compute one step of gradient descent update
- Algorithm: Consider linear regression (N = 100,000,000)

$$\hat{y} = \sum_{i=0}^{N} w_i x_i$$

■
$$Cost, J = \frac{1}{N} \sum_{i=0}^{N} (y_i - \hat{y}_i)^2$$

■ Gradient Descent Update
$$w_{new} = w_{old} - \alpha \frac{dJ}{dw}$$

Stochastic Gradient Descent

- **SGD** takes only one example in the training example to perform one step of gradient descent
 - The algorithm modifies the parameters a little bit to fit just the first example (x_1, y_1)
 - Then again modify the parameters to fit the second training example (x_2, y_2) and so on...
- Algorithm (Let N be the total number of training examples):
 Repeat{

```
for i=1,2...N\{ Cost, J=(y_i-\hat{y}_i)^2 Gradient Descent Update w_{new}=w_{old}-\alpha\frac{dJ}{dw} \}
```

Batch Gradient Descent

- Batch Gradient Descent uses 'b' training examples to perform one update step
 - 'b' is called batch size
 - Number of iterations = $\frac{N}{b}$
- Algorithm:

```
Repeat \{ \\ j = 0 \\ \text{for $i$ in range( iterations)} \{ \\ Cost, J = \frac{1}{b} \sum_{j=1}^{i+b} (y_j - \hat{y}_j)^2 \\ \text{Gradient Descent Update } w_{new} = w_{old} - \alpha \frac{dJ}{dw} \\ j = j + b \\ \}
```

- 1 Revieu
- 2 Neural Network Mode
- 3 Training with Neural Network
- 4 Introduction to PyTorch
- 5 Neural Network Dem
- 6 (Optional) Lab: Cat vs. Non-Ca

- 1 Review
- 2 Neural Network Mod
- 3 Training with Neural Network
- 4 Introduction to PyTorcl
- 5 Neural Network Demo
- 6 (Optional) Lab: Cat vs. Non-Ca

- 1 Revieu
- 2 Neural Network Mode
- 3 Training with Neural Network
- 4 Introduction to PyTorcl
- 5 Neural Network Dem
- 6 (Optional) Lab: Cat vs. Non-Cat

Thank You!

■ Next: Hands-On PyTorch MLP assignment

