Binary Relations

Outline for Today

Binary Relations

• Studying connections between objects from a different perspective.

Equivalence Relations

Relations that break objects into groups.

Partial Orders

Relations for ranking objects.

Quick Midterm Review

• Clarifying concepts from PS3

Studying Relationships

- We've explored graphs as a mathematical model of connections between objects.
- However, graphs are not the only formalism we can use to do this.
- Today, we'll study *binary relations*, a different way of studying and modeling relations between objects.

Relationships

- In CS103, you've seen examples of relationships
 - between sets:
 - $-A \subseteq B$
 - between numbers:

$$-x < y \quad x \equiv_k y \quad x \leq y$$

between nodes in a graph:

```
-u\leftrightarrow v
```

• Goal: Focus on these types of relationships and study their properties.

Some Notation

Consider these examples:

$$a = b$$
 $a < b$ $A \subseteq B$ $a \equiv_k b$ $u \leftrightarrow v$

- In each case, we're indicating a specific relationship between two objects by writing those objects with an appropriate symbol between them.
- Today, we will be talking about general classes of relations.
- **Notation:** If *R* is some relationship and *a* is related to *b* by relation *R*, we write

aRb

• *Order matters.* For example, if a < b, then we know for a fact that $b \not< a$.

Binary Relations

- A binary relation over a set A is some relation R where, for every $x, y \in A$, the statement xRy is either true or false.
- Examples:
 - < can be a binary relation over \mathbb{N} , \mathbb{Z} , \mathbb{R} , etc.
 - \leftrightarrow can be a binary relation over V for any undirected graph G = (V, E).
 - \equiv_k is a binary relation over \mathbb{Z} for any integer k.

Binary Relations and Graphs

- We can visualize a binary relation R over a set A as a graph:
 - The nodes are the elements of A.
 - There is an edge from x to y iff xRy.
- Example: the relation $a \mid b$ (meaning "a divides b") over the set $\{1, 2, 3, 4\}$ looks like this:

Binary Relations and Graphs

- We can visualize a binary relation *R* over a set *A* as a graph:
 - The nodes are the elements of A.
 - There is an edge from x to y iff xRy.
- Example: the relation $a \neq b$ over $\{1, 2, 3, 4\}$ looks like this:

Binary Relations and Graphs

- We can visualize a binary relation R over a set A as a graph:
 - The nodes are the elements of A.
 - There is an edge from x to y iff xRy.
- Example: the relation a = b over $\{1, 2, 3, 4\}$ looks like this:

Categorizing Relations

- Collectively, there are few properties shared by all relations.
- We often categorize relations into different types to study relations with particular properties.
- General outline for today:
 - Find certain properties that hold of the relations we've seen so far.
 - Categorize relations based on those properties.
 - See what those properties entail.

Reflexivity

- Some relations always hold for any element and itself.
- Examples:
 - x = x for any x.
 - $A \subseteq A$ for any set A.
 - $x \equiv_k x$ for any x.
 - $u \leftrightarrow u$ for any node u.
- Relations of this sort are called reflexive.
- Formally speaking, a binary relation R over a set A is reflexive if the following is true:

 $\forall a \in A. aRa$

("Every element is related to itself.")

An Intuition for Reflexivity

 $\forall a \in A. aRa$ ("Every element is related to itself.")

Symmetry

- In some relations, the relative order of the objects doesn't matter.
- Examples:
 - If x = y, then y = x.
 - If $u \leftrightarrow v$, then $v \leftrightarrow u$.
 - If $x \equiv_k y$, then $y \equiv_k x$.
- These relations are called symmetric.
- Formally: a binary relation R over a set A is called symmetric if

 $\forall a \in A. \ \forall b \in A. \ (aRb \rightarrow bRa)$

("If a is related to b, then b is related to a.")

An Intuition for Symmetry

 $\forall a \in A. \ \forall b \in A. \ (aRb \rightarrow bRa)$ ("If a is related to b, then b is related to a.")

Transitivity

- Many relations can be chained together.
- Examples:
 - If x = y and y = z, then x = z.
 - If $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$.
 - If $x \equiv_k y$ and $y \equiv_k z$, then $x \equiv_k z$.
- These relations are called *transitive*.
- A binary relation *R* over a set *A* is called *transitive* if

 $\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow aRc)$

("Whenever a is related to b and b is related to c, we know a is related to c.)

An Intuition for Transitivity

 $\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow aRc)$ ("Whenever a is related to b and b is related to c, we know a is related to c.)

Equivalence Relations

 Some relations are reflexive, symmetric, and transitive:

- x = y
- $u \leftrightarrow v$
- $\chi \equiv_k \gamma$
- Definition: An *equivalence relation* is a relation that is reflexive, symmetric and transitive.

Let R be "has the same shape as"

Let R be "has the same shape as"

Let R be "has the same shape as"

Let *R* be "has the same shape as"

Let R be "has the same shape as"

Let *R* be "has the same shape as"

Let R be "has the same shape as"

Let *R* be "has the same shape as"

Let R be "has the same shape as"

Let R be "has the same shape as"

Let R be "has the same shape as"

Let *T* be "is the same **color** as"

Let *T* be "is the same **color** as"

Equivalence Classes

• Given an equivalence relation R over a set A, for any $x \in A$, the **equivalence** class of x is the set

$$[x]_{R} = \{ y \in A \mid xRy \}$$

- $[x]_R$ is the set of all elements of A that are related to x.
- Theorem: If R is an equivalence relation over A, then every $a \in A$ belongs to exactly one equivalence class.

Closing the Loop

• In any graph G = (V, E), we saw that the connected component containing a node $v \in V$ is given by

$$\{ x \in V \mid v \leftrightarrow x \}$$

• What is the equivalence class for some node $v \in V$ under the relation \leftrightarrow ?

$$[v]_{\leftrightarrow} = \{ x \in V \mid v \leftrightarrow x \}$$

 Connected components are just equivalence classes of ↔!

Why This Matters

- Developing the right definition for a connected component was challenging.
- Proving every node belonged to exactly one equivalence class was challenging.
- Now that we know about equivalence relations, we get both of these for free!
- If you arrive at the same concept in two or more ways, it is probably significant!

Time-Out for Announcements!

Midterm Logistics

- Midterm exam is this Thursday, 6PM 9PM.
- Room locations divvied up by last name:
 - Abr Hsu: Go to 420-040
 - Hua Med: Go to 420-041
 - Mei Raj: Go to Art 2
 - Ram Saw: Go to Art 4
 - Sch Zie: Go to Bishop Auditorium
- Alternate exam locations will be handled over email; you should hear back with location information later today.

Midterm Logistics

- Exam is closed-book, closed-computer.
- You may have one double-sided sheet of notes on $8.5" \times 11"$ paper.
- Covers material up through and including first-order logic.

Extra Review

- There are now three sets of extra review problems, one released last Wednesday, one released last Friday, and one released today.
- Solutions to the first two now available for pickup in hard copy.
- Solutions to the third set of practice problems goes out on Wednesday.

Practice Midterm

- We will be holding a practice midterm exam from 7PM - 10PM tonight in Annenberg Auditorium.
- Purely optional, but would be a great way to practice for the exam.
- Course staff will be available outside the practice exam to answer your questions afterwards.
- We'll release the practice exam questions tonight / Tuesday morning.

Problem Set Four

- PS4 checkpoint will be returned later than usual (Friday instead of Wednesday) so that we can get all PS3's graded before the midterm.
- Sorry about that!

Reviewing Q6

 $(\forall x. Happy(x)) \rightarrow (\forall y. Happy(y))$

 $\forall x. (Happy(x) \rightarrow (\forall y. Happy(y)))$

 $\forall x. \ \forall y. \ (Happy(x) \rightarrow Happy(y))$

Approaching Math Problems

- *Try lots of examples*. Lots of math problems look much harder than they are. Working through examples often helps you spot patterns.
- **Expand out definitions**. Sometimes, writing out the definitions involved in a problem will help guide how you go about approaching the problem.
- Think about related problems. The more math you do, the more problems you'll have seen, and the more solution routes you'll know.

Back to CS103!

Partial Orders

Partial Orders

Many relations are equivalence relations:

$$x = y$$
 $x \equiv_k y$ $u \leftrightarrow v$

What about these sorts of relations?

$$x \le y$$
 $x \subseteq y$

 These relations are called partial orders, and we'll explore their properties next.

$$x \leq y$$

$$x \leq y$$

$$1 \le 5$$
 and $5 \le 8$

$$x \leq y$$

$$1 \le 5$$
 and $5 \le 8$

$$x \leq y$$

$$42 \le 99$$
 and $99 \le 137$

$$x \leq y$$

$$42 \le 99$$
 and $99 \le 137$
 $42 \le 137$

$$x \leq y$$

$$x \le y$$
 and $y \le Z$

$$x \le y$$

$$X \le y \quad \text{and} \quad y \le Z$$

$$X \le Z$$

$$x \leq y$$

$$x \le y$$
 and $y \le Z$

$$X \leq Z$$

Transitivity

$$x \leq y$$

$$x \leq y$$

$$x \leq y$$

$$x \leq y$$

$$137 \le 137$$

$$x \leq y$$

$$X \leq X$$

$$x \leq y$$

$$X \leq X$$

Reflexivity

$$x \leq y$$

$$x \leq y$$

$$x \leq y$$

$$19 \le 21$$
 $21 \le 19$?

$$x \leq y$$

19 ≤ 21

21 ≤ 19?

$$x \leq y$$

$$42 \le 137$$

$$x \leq y$$

$$42 \le 137$$
 $137 \le 42$?

$$x \leq y$$

$$42 \le 137$$

137 ≤ 42?

$$x \leq y$$

$$137 \le 137$$

$$x \leq y$$

$$137 \le 137$$
 $137 \le 137$?

$$x \leq y$$

 $137 \le 137$

137 ≤ 137

Antisymmetry

 A binary relation R over a set A is called antisymmetric if the following is true:

```
\forall a \in A. \ \forall b \in A. \ (a \neq b \land aRb \rightarrow \neg (bRa))
```

("If a is related to b and $a \neq b$, then b is not related back to a.")

• Equivalently:

$$\forall a \in A. \ \forall b \in A. \ (aRb \land bRa \rightarrow a = b)$$

("If a is related to b and b is related back to a, then a = b.")

An Intuition for Antisymmetry

 $\forall a \in A. \ \forall b \in A. \ (a \neq b \land aRb \rightarrow \neg (bRa))$

("If a is related to b and $a \neq b$, then b is not related back to a.")

Antisymmetry

• Antisymmetry is probably the least intuitive of the four properties we've just seen.

A few notes:

- It's helpful to think of \leq or \subseteq as canonical examples of antisymmetric relations.
- Antisymmetry is *not* the opposite of symmetry. There are relations that are both symmetric and antisymmetric (as you'll see in Problem Set Four).

Partial Orders

- A binary relation R is a partial order over a set A if it is
 - reflexive,
 - antisymmetric, and
 - · transitive.

Partial Orders

• A binary relation R is a **partial order** over a set A if it is

- reflexive,
- antisymmetric, and
- transitive.

Why "partial"?

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

Define the relationship

 $(gold_0, total_0)R(gold_1, total_1)$

to be true when

 $gold_0 \le gold_1$ and $total_0 \le total_1$

88

65

82

44

28

65

82

44

28

82

44

28

82

44

28

Total Orders

- If R is a partial order relation over a set A, it's possible that some elements of A are incomparable by R.
- In some partial orders, any pair of elements can be compared.
- A binary relation *R* over a set *A* is *total* if

 $\forall a \in A. \ \forall b \in A. \ (aRb \ \lor bRa)$

("Any two elements can be compared by R")

- A binary relation R over a set A is called a **total order** if R is a partial order and R is total.
 - The ≤ relation is a great example of a total order.

Hasse Diagrams

- A *Hasse diagram* is a graphical representation of a partial order.
- No self-loops: by *reflexivity*, we can always add them back in.
- Higher elements are bigger than lower elements: by *antisymmetry*, the edges can only go in one direction.
- No redundant edges: by *transitivity*, we can infer the missing edges.

Hasse Artichokes

Hasse Artichokes

For More on the Olympics:

http://www.nytimes.com/interactive/2012/08/07/sports/olympics/the-best-and-worst-countries-in-the-medal-count.html

An Important Milestone

Recap: Discrete Mathematics

• The past four weeks have focused exclusively on discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle

Relations Logic

Set Theory Cardinality

- These are the building blocks we will use throughout the rest of the quarter.
- These are the building blocks you will use throughout the rest of your CS career.

Next Up: Computability Theory

- It's time to switch gears and address the limits of what can be computed.
- We'll explore these questions:
 - What is the formal definition of a computer?
 - What might computers look like with various resource constraints?
 - What problems can be solved by computers?
 - What problems can't be solved by computers?
- Get ready to explore the boundaries of what computers could ever be made to do.

Next Time

Formal Language Theory

 How are we going to formally model computation?

Finite Automata

 A simple but powerful computing device made entirely of math!

• **DFAs**

A fundamental building block in computing.