Seminar Notes Alifian

Alifian Mahardhika Maulana

April 24, 2018

1 3D Linear Elasticity

$$\Omega \subset \mathbb{R}^d (d=2,3)$$

 $u = \Omega \to \mathbb{R}^2 \text{(small displacement)}$
 $x \mapsto u(x)$

1.1 Strain Tensor

$$e[u] = (e_{ij}[u]) \in \mathbb{R}_{sym}^{dxd}$$

$$e[u] := \frac{1}{2} (\nabla^T u + (\nabla^T u)^T)$$
(1)

1.2 Stress Tensor

$$\sigma[u] = (\sigma i j[u]) \in \mathbb{R}_{sym}^{dxd} \tag{2}$$

Based on Hook's Law, stress tensor must have equality with strain so that

$$\sigma = \mathbf{C}e$$
with $\mathbf{C} = \mathbf{C}_{ijkl}$ (is a 4th order elasticity tensor)
$$\sigma ij = \mathbf{C}ijkle_{kl}$$

$$\mathbf{C}_{ijkl} = \mathbf{C}_{ijlk} = \mathbf{C}_{klij}$$
 (symmetry)
$$\mathbf{C}_{ijkl}\xi_{ij}\xi_{kl} \geq \mathbf{C}_*|\xi|^2$$

1.3 Boundary Value Problem

$$\begin{cases}
-\partial_i \sigma_{ij}[u] &= f_j(x), x \in \Omega \\
u &= g(x), x \in \Gamma_D \\
\sigma[u]_{\nu} &= q(x), x \in \Gamma_N
\end{cases}$$
(3)

1.4 Equilibrium Equations of Force in Ω and on Γ_N

1.4.1 Strain Energy Density

$$\omega[u](x) := \frac{1}{2}\sigma[u] : e[u] \tag{4}$$

Solving using Sobolev Space in Isotropic Case, equation 4 becomes

$$c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

with λ, μ called Lame Constant

$$\delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

$$\sigma[u] = (\sigma_{ij}[u])$$

$$\sigma_{ij}[u] = c_{ijkl}e_{kl}[u]$$

$$= \lambda(\delta_k u_k)\delta_{ij} + \mu(\delta_i u_j + \delta_j u_i)$$

$$= \lambda(\operatorname{div} u)I + 2\mu e[u]$$

$$\omega[u] = \frac{1}{2}(\lambda(\operatorname{div} u)I + 2\mu e[u]) : e[u]$$

$$\omega[u] = \frac{1}{2}(\lambda(\operatorname{div} u)^2 + \mu|e[u]|^2$$

Remark 1. Positivity of C

$$(\mathbf{C}\xi) : \xi \ge \mathbf{C}_* |\xi|^2 (\forall \xi \in \mathbb{R}^{dxd}_{sym})$$
$$(\mathbf{C}\xi) : \xi = \lambda |tr|^2 + 2\mu |\xi|^2$$

If $\lambda \geq 0, \mu > 0$, then $C_* = 2\mu$

$$\xi = (\xi_{ij}), |\xi|^2 = \xi_{ij}\xi_{ij} = \sum_{i=1...d}^{d} \sum_{j=1...d}^{d} |\xi_{ij}|^2$$

1.5 Elasticity Problem

$$\begin{cases}
-\text{div } \sigma[u] &= f(x) \text{ in } \Omega \subset \mathbb{R}^d \\
u &= g(x) \text{ on } \Gamma_D \\
\sigma[u]v &= q(x) \text{ on } \Gamma_N
\end{cases}$$
(5)

1.6 Crack Problem

$$\begin{cases}
-\text{div } \sigma[u] &= f(x) \text{ in } \Omega \setminus \Sigma \subset \mathbb{R}^d \\
u &= g(x) \text{ on } \Gamma_D \\
\sigma[u]v &= q(x) \text{ on } \Gamma_N \\
\sigma[u]v &= 0 \text{ on } \Sigma^+ \cup \Sigma^-
\end{cases}$$
(6)

1.7 Lebesque Measurable Theory

$$L^{p}(\Omega) := \left\{ v : \Omega \to \mathbb{R} \middle| \begin{cases} v = \text{Lebesque measurable} \\ \int_{\Omega} |v(x)|^{p} dx < \infty \end{cases} \right\}$$
 (7)

Remark 2. for $u, v \in \mathbb{L}^p(\Omega)$, if $\exists N \subset \Omega$ such that $\begin{cases} u(x) = v(x)(x \in \Omega \setminus N) \\ \mathcal{L}^d(N) = 0, \end{cases}$ then we identify u and v, $\mathcal{L}^d(N) = 0 \Leftrightarrow volume \ of \ N = 0 \ for \ simplicity, \ we \ also \ can \ say \ that <math display="block">u(x) = v(x) \ for \ a.e. \ x \in \Omega$

for example

$$v: \mathbb{R} \to \mathbb{R}$$

$$v(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

$$\int_{\mathbb{R}} v dx = 0, \mathcal{L}^{1}(\mathbb{Q}) = 0$$

$$v(x) = 0 \text{ on } \mathbb{R} \setminus \mathbb{Q}, \text{ or we can say } v = 0 \text{ a.e. in } \mathbb{R}$$

$$(8)$$

1.8 Sobolev Space

$$\mathbb{W}^{1,p}(\Omega) := \left\{ v \in \mathbb{L}^p(\Omega) \frac{\partial v}{\partial x_j} \Big|_{(j=1\dots d)} \in \mathbb{L}^p(\Omega) \right\}$$
(9)

such $\frac{\partial v}{\partial x_j}$ we called it distribution sence. example of Sobolev Space is as follow:

$$v \in \mathbb{L}^p(\Omega)$$
 if $\exists \omega_i \in \mathbb{L}(\Omega)$

such that

$$\int_{\Omega} v \frac{\partial \varphi}{\partial x_j} dx = -\int_{\Omega} \omega_j \varphi dx (\forall \varphi \in \mathbb{C}_0^{\infty}(\Omega))$$

$$\Rightarrow \frac{\partial \varphi}{\partial x_j} = \omega_j \text{ in distribution sence}$$

for

$$v \in \mathbb{C}^{1}(\Omega), \frac{\partial v}{\partial x_{j}}(x) = \omega_{j}(x)$$

$$\updownarrow$$

$$\int_{\Omega} \omega_{j} \varphi dx = -\int_{\Omega} v \frac{\partial \varphi}{\partial x_{i}} dx (\forall \varphi \in \mathbb{C}_{0}^{\infty}(\Omega))$$

In particular,

$$\mathbb{H}^{1}(\Omega) := \mathbb{W}^{1,2}(\Omega), \nabla u = \begin{pmatrix} \frac{\partial u}{\partial x_{1}} \\ \vdots \\ \frac{\partial u}{\partial x_{d}} \end{pmatrix}$$

inner product

$$(u,v)_{\mathbb{H}^1(\Omega)} := \int_{\Omega} uv \ dx + \int_{\Omega} \nabla u \cdot \nabla v \ dx$$

norm

$$||u||_{\mathbb{H}^1(\Omega)} := \sqrt{(u,v)_{\mathbb{H}^1(\Omega)}} = \sqrt{\int_{\Omega} |u|^2 dx + \int_{\Omega} |\nabla u|^2 dx}$$

 $\mathbb{H}^1(\Omega)$ is complete $(\mathbb{H}^1(\Omega))$ is a Hilbert Space

$$(u,v)_{\mathbb{L}^2(\Omega)} = \int_{\Omega} uv dx$$

1.9 Incomplete Hilbert Space

 $\mathbb V$: a vector space in $\mathbb R$

$$\begin{cases} u, v \in \mathbb{V} \Rightarrow \alpha u + \beta v \in \mathbb{V} \\ \alpha, \beta \in \mathbb{R} \end{cases}$$

If $(\cdot, \cdot) : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ satisfies

$$\begin{cases} (u \cdot v) \ge 0 \text{ and } (u, u) = 0 \Leftrightarrow u = 0_v \in \mathbb{V} \\ (u, v) = (v, u) \\ (\alpha u + \beta v, \omega) = \alpha(u, \omega) + \beta(v, \omega) \end{cases}$$

then we call $[\mathbb{V} \times \mathbb{V}]$ pre Hilbert space or incomplete Hilbert Space.

1.10 Property of $\mathbb{L}^2(\Omega)$

For $v \in \mathbb{C}^1(\Omega)$,

$$\frac{\partial v}{\partial x_j}(x) = w_j(x)$$

$$\updownarrow$$

$$\int_{\Omega} w_j \varphi dx = -\int \Omega v \frac{\partial \varphi}{\partial x_j} dx \ (\forall \varphi \in \mathbb{C}_0^{\infty}(\Omega))$$

 $(u,v)_{\mathbb{L}^2(\Omega)} = \int_{\Omega} uv dx$

$$\Rightarrow \left| \int_{\Omega} uv dx \right| \leq \int_{\Omega} |u| |v| dx \leq ||u||_{\mathbb{L}^2(\Omega)} ||v||_{\mathbb{L}^2(\Omega)}$$

 $u, v \in \mathbb{H}^1(\Omega)$

$$| \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} | \frac{\partial v}{\partial$$

1.11 Energy (Revisited)

$$E(u) := \frac{1}{2} \int_{\Omega} \sigma[u] : e[u] dx - \int_{\Omega} f \cdot u dx - \int_{\Gamma_N} q \cdot u ds \tag{11}$$

with u is a vector of the elasticity problem define by:

$$u \in \mathbb{H}^1(\Omega : \mathbb{R}^d) := \{u : \Omega \to \mathbb{R}^d | u = (u_i, \dots, u_d), u_i \in \mathbb{H}^1(\Omega)\}$$

 $\Rightarrow E(u) < \infty$

u: become solution $\Leftrightarrow u = argmin_{v \in \mathbb{H}^1(\Omega:\mathbb{R}^d)} E(v)$ such a technique we call it variational principle.