"Smart Home Energy Usage Insights: BigQuery & Power BI Driven Analysis"

From Raw Data to Actionable Energy Efficiency Insights

Role: Data Analyst

Date: 2025-09-15

Business problem: "Energy consumption optimization is critical"

Key findings:

- •Weekends have **3% higher avg consumption** than weekdays
- •Peak usage occurs **between 6–8 PM**
- •Weather (temperature) strongly impacts consumption patterns

Tools used: Python, BigQuery, Power BI

Deliverables: **Dashboard + Insights + Forecast**

- •Background of dataset (University of California, Irvine Appliances Energy Dataset)
- •Objective of the project:
- Identify peak demand periods
- Compare weekend vs weekday usage
- Correlate weather with consumption
- Build dashboards for storytelling
- Provide recommendations

- •Dataset description:
- •19735 records (Jan-May 2016)
- •Columns: Appliances, Lights, T_out, RH_out, Windspeed, etc.
- •Data sources:
- •Raw CSV (UCI ML Repo)
- Stored in BigQuery
- •Analyzed in Python + SQL

Schem	a Details	Preview	Table Expl	lorer Preview	Insights	Lineage	Data Profil	e Data Q	uality				
Row /	date	11	Appliances //	lights //	T1 //	RH_1 //	T2 //	RH_2	, T3 //	RH_3	, T4	RH_4	, T5
1	2016-01-11 17:00:00 U	тс	55.0	35.0	19.89	46.5027777	19.2	44.6265277	19.79	44.8977777	18.93277777	45.73875	17.166666
2	2016-01-11 18:00:00 U	тс	176.6666666	51.66666666	19.89777777	45.8790277	19.26888888	44.4388888	19.77	44.8633333	18.90833333	46.0666666	17.111111
3	2016-01-11 19:00:00 U	тс	173.3333333	25.0	20.49555555	52.80555555	19.92555555	46.0616666	20.05222222	47.2273611	18.96944444	47.8155555	17.136111
4	2016-01-11 20:00:00 U	тс	125.0	35.0	20.96111111	48.4533333	20.25111111	45.6326388	20.21388888	47.2688888	19.19083333	49.2279166	17.615555
5	2016-01-11 21:00:00 U	тс	103.3333333	23.33333333	21.31166666	45.7683333	20.58777777	44.9611111	20.37333333	46.1644444	19.42555555	47.9188888	18.427222
6	2016-01-11 22:00:00 U	тс	266.6666666	21.66666666	21.57222222	44.6633333	20.90555555	44.1188888	20.46944444	45.8294444	20.10888888	47.5066666	19.112916
7	2016-01-11 23:00:00 U	тс	56.66666666	18.33333333	21.53166666	44.2711111	20.9344444	43.7125	20.31791666	45.6958333	20.90972222	46.55125	19
8	2016-01-12 00:00:00 U	тс	141.6666666	16.66666666	21.26611111	44.9605555	20.63722222	44.0183333	20.1444444	45.5422222	20.51444444	47.1127777	19.155555
9	2016-01-12 01:00:00 U	тс	168.3333333	8.333333333	20.96361111	45.6131944	20.33333333	44.2733333	20.13333333	45.54	21.50555555	46.9466666	18.969444
10	2016-01-12 02:00:00 U	тс	45.0	0.0	20.69666666	46.1977777	20.06666666	44.5033333	20.17083333	45.4541666	21.14305555	45.9055555	18.813333
11	2016-01-12 03:00:00 U	тс	35.0	0.0	20.46222222	46.24	19.79222222	44.56	20.23	45.4277777	20.41666666	46.1088888	18.655555
12	2016-01-12 04:00:00 U	тс	45.0	0.0	20.22944444	46.4836111	19.59999999	44.6511111	20.285	45.525	19.95111111	46.3966666	18.522222
13	2016-01-12 05:00:00 U	тс	43.3333333	0.0	20.03888888	46.3388888	19.4144444	44.77	20.32333333	45.59	19.65444444	46.6388888	18.422083
14	2016-01-12 06:00:00 U	тс	40.0	3.333333333	19.89611111	46.5133333	19.263	45.0661111	20.30111111	45.5488888	19.41611111	46.715	18.317777
15	2016-01-12 07:00:00 U	тс	56.66666666	18.33333333	19.80666666	47.2119444	19.16249999	45.2191666	20.1444444	45.29	19.24944444	46.4216666	18.218333
16	2016-01-12 08:00:00 U	тс	86.66666666	10.0	19.85666666	48.5988888	19.05370370	45.0868518	20.13055555	45.2375000	19.14444444	45.5961111	18.04722
													4.7

Methodology:

Break into pipeline style:

1.Data Collection

- 1. Imported CSV → BigQuery
- 2. SQL queries for aggregation (hourly/day/week level)

2.Data Preparation (Python)

- 1. Converted timestamps
- 2. Resampled into hourly means
- 3. Created features (hour, day, month)
- 4. Calculated total consumption

3.Exploratory Analysis

- 1. Trend charts
- 2. Weather correlation
- 3. Weekend vs Weekday usage

4. Visualization (Power BI)

- 1. Daily consumption trend
- 2. Weather vs Usage scatter
- 3. Top 10 peak days
- 4. KPI cards (min, avg, peak)

5.Forecasting (Baseline)

1. 24-hour moving average model

Key Insights:

- •Daily Patterns: Usage peaks in evenings (6–8 PM).
- •Weekend vs Weekday: Weekend avg = 104 units vs Weekday avg = 101 units.
- •Weather Effect: Consumption rises when temp > 20°C (AC usage).
- •Top Usage Days: Feb & April show extreme spikes.

Dashboard:

Recommendations

- •Shift heavy appliance usage away from evening peaks.
- •Consider renewable integration during high-demand hours.
- •Alert system for abnormal consumption days.
- •Future work: Improve forecasting using ML models (Prophet, Long Short-Term Memory).

Conclusion:

"The analysis provided clear patterns in energy usage, showing how weekdays vs weekends and weather conditions influence demand. The dashboards allow stakeholders to monitor usage effectively and take action to optimize energy costs."

Appendix

- SQL queries (BigQuery)
- Python code snippets

Thank You (Lets Connect):

LinkedIn: https://www.linkedin.com/in/tanmay-

sharma-800599373/

Git hub: https://github.com/Tanu272004

Project Link <u>Home Energy</u>