Assignment Project Exam Help Maths Preliminaries

https://eduassistpro.github.

Introduction

Assignment to Project Exam Help Recap relevant maths contents that you may have learned a

https://eduassistpro.github.

* Add All WeChat edu_assist_pr

Assignment Project Exam Help of linear equations, etc. We will review key concepts in LA

https://eduassistpro.github.

- Here we emphasize more on intuitions; We deliberately skip many concepts and present some conte
- It de la company de la compa

A Common Trick in Maths I

Question

Assignment Project Exam Help

https://eduassistpro.github.

- · Add WeChat.edu_assist_pr
 - f(u) * f(v) = f(u + v).
 - $f(x) = y \Leftrightarrow \ln(y) = x \ln(a) \Leftrightarrow f(x) = \exp\{x \ln a\}.$
 - $e^{ix} = cos(x) + i \cdot sin(x)$.
- The trick:
- Same in Linear algebra

Objects and Their Representations

Goal

Assignment Project Exam Help

- A good representation helps (a lot)!
- https://eduassistpro.github.

Basic Concepts I

Assignment Project Exam Help

https://eduassistpro.github.

constraints:

A Charles for the control of the con

- Communicative: a + b = b + a.
- Associative: (a + b) + c = a + (b + c).
- Distributive: $\lambda(a + b) = \lambda a + \lambda b$.

Basic Concepts II

```
Assignment Projectivis Exam Help

Tips

Alwa
Poly https://eduassistpro.github.

Why these constraints are natural and useful?

Add WeChat edu_assist_pro
```

Basic Concepts III

Representation matters?

What we represent vectors by a column of their coordinates?

What we represent vectors by a column of their coordinates?

https://eduassistpro.github.

Notes Add We Chat edu_assist_p

- Informally, the objects we are concerned w are (column) vectors.
- The set of all *n*-dimensional real vectors is called \mathbb{R}^n .

(Column) Vector

Assignment Project Exam Help

https://eduassistpro.github. **Operations**

- Addition: V1+V2=Chat edu_assist_pr

Linearity I

Linear Combination: Generalization of Univariate Linear Functions

$$Assignation and projector i_i Examine i_i Help $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k = i_i$ i_i i i_i i_i i_i i_i i_i $i_i$$$

https://eduassistpro.github.

- Span: All linear combination of a set of ve of them.
- Basis: The minimal set of vectors whose span is exactly the whole \mathbb{R}^n .

Linearity II

Assignment why uniqueness i desirable?

```
• Span of [1], [0], [2] is \mathbb{R}^2. But one o
• Decompose [4]
• Decompose [4]
```

Linearity III

Exercises

• What are the (natural) basis of all (univariate) Polynomials of

Assignment Project Exam Help

https://eduassistpro.github.

• The "same" polynomial is mapped to two di

Add WeChat edu_assist_pr

12/30

Matrix I

Assignment Project Exam Help vector in \mathbb{R}^m .

https://eduassistpro.github.

• The general We Chat edu_assist_property $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ \xrightarrow{f} $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ \Rightarrow $y_2 = M_{21}x_1 + M_{22}x_2$ $y_3 = M_{31}x_1 + M_{32}x_2$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \stackrel{f}{\longrightarrow} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_2 \end{bmatrix} \qquad \Longrightarrow \quad y_2 = M_{21}x_1 + M_{22}x_2 \\ y_3 = M_{31}x_1 + M_{32}x_2 \end{bmatrix}$$

Matrix II

Nonexample

Assignment
$$y_2$$
 Project $x_1 = x_2$ Help

https://eduassistpro.github.

Why Only Linear Transformation?

- Simple and nice properties hat edu_assist_pr
 - $(\lambda f)(x) = \lambda \cdot f(x)$
 - What about f(g(x))?
- Useful

Matrix I

Assignment Project Exam Help

https://eduassistpro.github.

• Transformation or Mapping emphasizes more on the mapping between two sets, rather than the detaile

Ampropriet letter is breat letter understanding of a function. The dumassist_propriet letter is breat letter understanding of a function. The dumassist_propriet letter understanding of a function. The dumassist propriet letter understanding of a function.

Semantic Interpretation

Matrix II

Assignment Project Exam Help https://eduassistpro.github. $y = x_1 M_{\bullet 1} + \ldots + x M$

• Example: We Chat edu_assist_properties: $\begin{bmatrix} 1 & 2 \\ -4 & 9 \\ 25 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 10 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -4 \\ 25 \end{bmatrix} + 10 \begin{bmatrix} 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 86 \\ 35 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 \\ -4 & 9 \\ 25 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 10 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -4 \\ 25 \end{bmatrix} + 10 \begin{bmatrix} 9 \\ 1 \end{bmatrix} = \begin{bmatrix} 86 \\ 35 \end{bmatrix}$$

Assignment Project Exam Help

https://eduassistpro.github.

System of Linear Equations I

Assignment Project Exam Help $M_{11} = M_{11} \times_1 + M_{12} \times_2$ https://eduassistpro.github.

- . Addio We Chatedu_assist_pr M) is exactly the given vector $y \in$
- How to solve it?

System of Linear Equations II

Assignment Project Exam Help

https://eduassistpro.github.

A Matrix Also Specifies a (Generalized) Coordinate System

Yet another interpretation

Assignmenty Project Exam Help The vector y wrt standard coordinate system, I, is the same as

s of M.

https://eduassistpro.github.

for Add We Chat edu_assist_properties of the form of the following contents of the following co

Let
$$x = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies Mx = I \begin{bmatrix} -1 \\ 13 \end{bmatrix}$$

20/30

Assignment Project Exam Help

https://eduassistpro.github.

0 0 2 0 0 1

• The dut Weeting part \mathbf{G} \mathbf{G}

Inner Product

THE binary operator – some kind of "similarity"

- Assignment called for each f, $g = \int_a^b f(t)g(t) dt$. leads to the
 - https://eduassistpro.github.
 - linearity in the first argument: $\langle ax + y, z = a x, z + y, z \rangle$
 - positive definitiveness: $\langle x, x \rangle \ge$
 - Geralies may comet in a tore CV _ assist_projection, norm
 - $\langle \sin nt, \sin mt \rangle = 0$ within $[-\pi, \pi]$ $(m \neq n) \Rightarrow$ they are orthogonal to each other.
 - $C = A^T B$: $C_{ij} = \langle A_i, B_j \rangle$
 - Special case: $A^{T}A$.

Eigenvalues/vectors and Eigen Decomposition

"Eigen" means "characteristic of" (German)

Assignment tor of some detrix Axiam tha Help

Assign = \(\lambda u \).

. https://eduassistpro.github.

- We can use all eigenvectors of A to construct a columns). Then $\Delta U = U A$, or equiv is the can interpret U as a transformation b is We can interpret U as a transformation b
 - systems. Note that vectors in U are not necessarily orthogonal.
 - $oldsymbol{\Lambda}$ as the scaling on each of the directions in the "new" coordinate system.

Similar Matrices

Assignment Project Exam Help

• Let A and B be two n matrix. A is similar to B (denoted

. https://eduassistpro.github.

- Think of P as a change of basis
- Relationship with the Figen decompose Similar Atrices have the Gastvale Cluba assist_pi
 - (e.g., rank, trace, eigenvalues, determin

SVD

Singular Vector Decomposition

Assignment Project Exam Help Reduced SVD: $M = \hat{U}\hat{\Sigma}V^{T}$ exists for any M, such that

led

https://eduassistpro.github.

V consists of a set of basis vectors v

- Add We hat edu_assist_pr
 - Add the remaining (n-d) basis vectors to \hat{U} (thus becomes $n \times n$).
 - Add the n-d rows of 0 to $\hat{\Lambda}$ (thus becomes $n \times d$).

Geometric Illustration of SVD

Assignment Project Exam Help

https://eduassistpro.github.

Graphical Illustration of SVD I

Graphical Illustration of SVD II

Assignment Project Exam Help

Mea

- https://eduassistpro.github.
- Rows of V are the basis of \mathbb{R}

SVD Applications I

Relationship between Singular Values and Eigenvalues

What are the eigenvalues of MTM?

Assignment a rojecturia xia matiful elp

https://eduassistpro.github.

Add WeChat edu_assist_pr

• Related to PCA (Principle Component Analysis)

References and Further Reading I

Assignment Project Exam Help

https://www.youtube.com/watch?v=k-yUdqRXijo

- https://eduassistpro.github.
- Scipy LA tutorial. https://docs.scipy.org/doc/scipy/ reference/tutorial/linalg.htm
- Ware of the war of the property of the prope