Method of knowledge extraction applied to post-graduate computer science studies

Overview of CREA method

LSE – Lightning Talks

Fabrice BOISSIER

04 avril 2022

Knowledge and teaching

How to help a teacher build a new course?

- Ask for colleagues who have taught the same topic
- Gather previous course materials and/or from other teachers
- Find books, articles, ... talking about the same topic
- Knowledge Intensive Process
 (not just a regular Business Process)

Knowledge

- Knowledge: explicit and tacit [1][2][3]
 - Explicit knowledge: structured, codified, formalised with schemas, formulas, texts, ...
 - Tacit knowledge: intern to each person, depends on the 5 senses and past experiences
 - « Knowledge is not an object, [but it] exists in interaction, is linked and created through actions, requires an interpretative framework » [3]

SECI model

to

Tacit knowledge

Explicit knowledge

Tacit knowledge

Socialization

Externalization

from

Explicit knowledge

Internalization

Combination

SECI model [1]

SECI model

- Combination : (explicit → explicit)
 - Teacher is combining multiple books, articles, existing course materials, ...
 - Student searches for different information sources than the course (wikipedia, books, ...)
- Internalization : (explicit → tacit)
 - Teacher gives lecture to students
 - Student uses notions and appropriates them during exercises, labs, projects
- Socialization : (tacit → tacit)
 - Students works together on a topic
 - Teacher discusses with other teachers
 - Teacher helps a particular student on an exercise
- Externalization: (tacit → explicit)
 - Teacher adapts its course material for the next session (or next year)
 - Student prepares a presentation or a report on its project

Knowledge and teaching

- How to help a teacher build a new course?
- Help him by automatizing combination of documents
 - Show the keywords of the documents
 - Show graphically which document(s) are irrelevant
 - Build clusters of related notions for each session of the course

CREA method

Semantic PreProcessing • Extraction of the texts from chosen documents • Disambiguation with NLP techniques Structural Analysis • Calculation of metrics with FCA • Relevancy of input documents

Preparation of the texts

for structural analysis

• Building of clusters of

terms

Mutual impact graph

Clusters of terms

Selection of documents by the user

- Select documents based on their title, abstract, or syllabus
- Documents must be in a text format with enough content to analyze (pictures and arrays are not managed)

Extraction of texts

- Standardization from various input format into flat text
- [Usage of an OCR and/or PDF extractor, but it's not the objective to dig these techniques]

Cleaning of extracted texts

- Removes non printable characters, symbols, useless grammar classes
- TreeTagger [5] for POS tagging and a list of grammar classes to keep

Disambiguation

- Find concepts and named entities from the text of each document
- Word Sense Disambiguation and Entity Linking with BabelFy [6] (so, with BabelNet [7]... and therefore with Wikipedia)

Filtering of terms

- Removes irrelevant terms
- Keeps terms that have a coherence score above 0,05 (empirical value)

```
Cours; 0,1; bn:XXX; (1,5)
chapitre; 0,04; bn:XXX; (9,16)
PHP; 0,98; bn:XXX; (18,20)
...
Programmation; 0,96; bn:XXX; (,)
...
Base de données; 0,94; bn:XXX; (,)
...
```


Cours; 0,1; bn:XXX; (1,5)
PHP; 0,98; bn:XXX; (18,20)
Programmation; 0,96; bn:XXX; (,)
Base de données; 0,94; bn:XXX; (,)
...

Formal Concept Analysis [8]

A - Formal Concept Analysis: Normalization

- Makes the values independent of the length of documents
- Calculate proportions of occurrences per documents (%)

web		php	sql	mysql	
Cours 1	10	10	10	10	
Cours 2	1	2	2	0	
Cours 3	0	0	1	0	

	web	php	sql	mysql
Cours 1	25	25	25	25
Cours 2	20	40	40	0
Cours 3	0	0	100	0

Occurrence matrix

Normalized matrix

B - Formal Concept Analysis: Transposition

- Change the point of view
 - From: each document containing terms
 - To: each term present in documents

	web	php	sql	mysql
Cours 1	25	25	25	25
Cours 2	20	40	40	0
Cours 3	0	0	100	0

	Cours 1	Cours 2	Cours 3
web	25	20	0
php	25	40	0
sql	25	40	100
mysql	25	0	0

Normalized matrix

Normalized transposed matrix

C - Formal Concept Analysis: Binarization strategy

Build a « Formal Context » with binarization strategies [4]

- Transforms a multivaluated matrix into binary matrices
- Two interesting matrices:
 - Matrix of presence/lack of terms
 - Matrix of higher frequencies of presence of terms

	Cours 1	Cours 2	Cours 3
web	25	20	0
php	25	40	0
sql	25	40	100
mysql	25	0	0

Normalized transposed matrix

Frequencies matrix

	Cours 1	Cours 2	Cours 3
web	56%	44%	0%
php	38%	62%	0%
sql	15%	24%	61%
mysql	100%	0%	0%

	Cours 1	Cours 2	Cours 3
web	1	1	0
php	1	1	0
sql	1	1	1
mysql	1	0	0

Direct strategy

High strategy ($\beta = 0.50$)

	Cours 1	Cours 2	Cours 3
web	1	0	0
php	0	1	0
sql	0	0	1
mysql	0	0	0

D - Formal Concept Analysis: Lattice construction

Prepare data for the metrics to calculate

- Build a lattice from a Formal Context
 - Objects: terms
 - Attributes: documents
 - « Terms » are described by their presence within « Documents »

	C1	C2	C3	C4
web	1	1	0	0
php	1	1	0	0
sql	1	1	0	1
mysql	1	0	1	1
function	0	1	0	1

Formal Context

E - Formal Concept Analysis: Metrics calculus

- Calculates mutual impact and conceptual similarity metrics in lattice
- Mutual Impact [4]:

$$MI(O_i, A_j) = \frac{Nb \ of \ Concepts \ containing \ O_i \ AND \ A_j}{Nb \ of \ Concepts \ containing \ O_i \ OR \ A_j}$$

• Conceptual Similarity [4]:

$$CS(O_i, O_j) = \frac{Nb \ of \ Concepts \ containing \ O_i \ AND \ O_j}{Nb \ of \ Concepts \ containing \ O_i \ OR \ O_j}$$

Construction of the mutual impact graph

- Show graphically:
 - Relevancy of each document
 - Keywords of the documents

- Gephi on Mutual Impact matrix (Terms X Documents)
 - Force Atlas spatialization (force-based/force-directed)
 - Nodes produces repulsive force
 - Edges produces attractive force

Construction of the clusters

- Proposes group of notions to explain/present together
- Group terms based on their similarity in documents
 - Regular HCA [9] for non-overlapping clusters

Stratégie Haute (β = 1,00)

1	php	code	fois	post	jour	foreach	cle	classe	class	mysqli	
2	page web	navigateur	serveur web	texte	concerner	délimiter	utilisateur	associer	personne	machine	mysql
3	url	langage	case	fermeture	session	chaîne	entête	avoir accès			
4	fichier	commentaire	case à cocher	interpréter	côté serveur	serveur	côté client				
5	typage	mot	moteur	affiche	transaction	visiteur					
6	base de donnée	insert	varchar	null							
7	xml	configuration	composer	doctype							
8	donnée	text	méthode post	programmation	site	langage de script	list	méthode	timestamp	files	

Experiments

• 5 scenarios

- PHP courses [french]
 - 9 docs: 6 Slides, 3 Texts
 - 10 docs: [9 PHP] + 1 Java text
 - 18 docs: 11 Slides, 7 Texts
 - 7 docs: 7 Texts [Correction of a document]
- Statecharts
 - 13 documents of various nature in english (webpage, article, slides, ...)

Limitations

- Unable (for now) to dissociate text from meta-data
- Filtering with TreeTagger is probably useless as BabelFy might does it
- The generation of the clusters is currently difficult to manage
 - Too many terms are inside clusters in some cases
- Format of documents has an impact on the graph
- Only regular text is managed...
 - What about code? Arrays? Pictures?
- Experiments done only on computer science courses
- Clusters are difficult to read for a beginner in the domain
 - It is required to have a minimal knowledge of the domain managed

Future Work: Temporal analysis

Future Work: Temporal analysis

Thanks for your attention

Knowledge:

- [1] Ikujiro Nonaka and Hirotaka Takeuchi. The knowledge-creating company. Harvard business review, 85(7/8):162, 2007.
- [2] Klaus North and Gita Kumta. Knowledge management: Value creation through organizational learning. Springer, 2018.
- [3] Jawad Syed, Peter A Murray, Donald Hislop, and Yusra Mouzughi. The Palgrave handbook of knowledge management. Springer, 2018.

Data science and Natural Language Processing:

- [4] Ali Jaffal. Aide à l'utilisation et à l'exploitation de l'Analyse de Concepts Formels pour des non-spécialistes de l'analyse des données. PhD thesis, Université Panthéon Sorbonne Paris I, 2019.
- [5] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In New methods in language processing, page 154, 1994.
- [6] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence, 193:217–250, 2012.
- [7] Andrea Moro, Alessandro Raganato, and Roberto Navigli. Entity linking meets word sense disambiguation: a unified approach. Transactions of the Association for Computational Linguistics, 2:231–244, 2014.
- [8] Rudolf Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In Ivan Rival, editor, Ordered Sets, volume 83 of NATO Advanced Study Institutes Series, pages 445–470. Springer Netherlands, 1982.
- [9] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge discovery handbook, pages 321–352. Springer, 2005.