FURTHER MATHEMATICS HIGHER LEVEL

August 2019

Name in block letters

Review Assignment

7	Ē	R	R	Y	7	I	A	N	G	
---	---	---	---	---	---	---	---	---	---	--

INSTRUCTIONS

- Do not use the calculator unless directed to do so in the question.
- · There are 20 questions. Try to answer them all.
- All numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is snown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1.	(a) Draw a tree that has no Hamiltonian path.
	(b) Draw a graph with an Eulerian circuit but no Hamiltonian cycle.
	(c) For what values of $\mathfrak n$ does the complete graph $K_{\mathfrak n}$ have an Eulerian circuit?
	(b) (b)
	(e) (p)
	(c) onher n=1, there's no circuit.
	when n>2, . n is even, then all vertices are
	odd degreed, so it's not possible to
	start and end at all certices.
	· n is odd, there are Eulerian circuits.
	· when n=2, a line connecting the two vertices
	is the Enlerian circuit.
	Therefore, N=2 or all the odd numbers when N>2.

2. Consider the elementary matrices $E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$	
(a) To what elementary row operations do E ₁ and E ₂ correspond?	
(b) Write down det E ₁ and det E ₂ .	
(c) Write down E_1^{-1} and E_2^{-1} .	
(a) E: R> Rz. Rz -> R.	
Ez: R3 - 2R1 -> R3	
(b) Let E, = -1	
det Ez= 1	
$\det E_{\lambda} = 1$ $(c) E_{1}^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_{\lambda}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$	
(001), (201).	
	•
	••
	••
	••
	٠.
	٠.
	٠.
	••
	٠.

. Consider the Abelian group $(\{2,4,6,8\}, \otimes)$ where the operation \otimes is multiplication modulo 10.
(a) Construct the Cayley table for the group.
(b) List all the proper subgroups of the group.
(c) Is this group cyclic? If so, name a generator.
(a) 8 2 4 6 8
4 8 6 4 2
6 2 4 6 8
8 6 2 8 4
•
(b) ({4,6}, ⊗)
(c) Yes. 2. 282=4
28282={
2020202= identity.
2020202-1000119.
•

A cycle gru	ph Cn is a graph on it vertices that is a cycle.
(a) Draw	the first five cycle graphs C_1 through C_5
(b) For w	that values of n is C_n bipartite?
(c) Prove	that a bipartite graph contains no cycle of odd length.
(a)	
	C, Cz Cz C4 C5
<i>(.</i> p.)	when n=2. (n is bipartite.
	a cycle starts and ends at the same vertex
	In a bipartite graph, getting back to the startion
	side requires even-number moves, so there's no
	Cycle of odd length.
	8
•••••	

_				000	1
5.	Consider	the	series	_	n(n+1)

(a) Show that the series converges	has annonanima t	ha sastas to a	audtable a come
(a) Show that the series converges	by comparing t	the series to a	suitable p-series

(b) Show that
$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
.
(c) Hence find the exact sum of the series.

(c) Pience and the exact sum of the series.
$ a \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$
with the when is positive integer.
(∑ √(n+1) < ∑ /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2
in person in Etc. it convertes.
Therefore \$ times also converges.
Therefore $\sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{n$
(c) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1}$
$(C) \underset{\sim}{\sim} \overline{N} = (MH) = (MH) = (MH)$
= (.+.+.+.+.)(+.+.+).

where $\det M =$	where det M =
,	

- (a) Find the two possible values of x.
- (b) Let A be the matrix when x = 3. Find the smallest group of matrices that contains A and state another group to which this group is isomorphic.

$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$					
b) A = (-1-3.)	<u>×</u>	A	B	 <u>Ç.</u>	D.
B = (-3 -9)	A	C	D	B	A
15 = \3	B	 B	C.	D	!5 C
			В.		
The group in gnestio	v #3	ìs ì	50 mo	· phìc	
I D <=> L A	≥ 2	, B	۵٤.	C 4	(+)

7	Consider	the	series	1	$1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$	++	1	1 +			
	Consider	Lite	Serres	•	3	5	' 7		2n - 1		

- (a) Show that the ratio test cannot be used to establish the convergence or divergence of the series
- (b) Use the integral test, clearly stating any necessary conditions for its use, to establish whether the series converges or diverges.

(a) $\lim_{N\to\infty} \left \frac{1}{2m_1} \right = \lim_{N\to\infty} \frac{2n-1}{2m_1} = 1$, in conclusive.
(b) the series is continuous, positive and decreasing.
$\int_{1}^{\infty} \frac{1}{2n-1} = \frac{\ln(2n-1)}{2} = \infty$
···················
Therefore, the series diverges.

- 8. Let ω be the cube root of unity which has smallest positive argument.
 - (a) Show that $1 + \omega + \omega^2 = 0$

 - (c) Hence solve the following system giving your answers as real numbers.

$$x + y + z = 3$$

$$x + \omega y + \omega^2 z = -3$$

$$x + \omega^2 y + \omega z = -3$$

 $(a) \quad W = \left[1, \frac{2}{3}\pi \right].$

50 1+ w+ w2 = 0

(b) product = (1+w+w2 1+w+w2) = (3 0 0) (+w+w2 3 (+w+w2) = (0 3 0) (+w+w2 1+w+w2 3) = (0 0 3)

(c). From (b), we have:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix}.$$

9. (a) State De Mo	rgan's laws for sets.					
(b) Use Venn di	agrams to show that	$(A \cup B)' = A'$	∩B′.			
(c) With the hel	p of De Morgan's lav	vs prove that ((A'UB)	$]]' = A \triangle B.$		
(a) (A)	(B)' = A' AB'					
(A)	\B)' = A' UB'	<i></i>				ė
(1)						_
(6)		=				3/
	(^ 2)	::	Λ1	<u>,</u>	n !	
	(AUB)'		A'	()	В'	

(c) [LA	UB) M (AUB')]' = (A	UBY V LA	υΒ')'		٠
		= (A	NB') ULA'	NB)		2
			ALB)ULF			
*************				d	•••••	•
		t	1.ΔB			٠
***************************************						•
						•

***************************************						ä

- 10. Consider the cycle graph C5.
 - (a) Draw the complement C's of Cs.
 - (b) Draw another graph with five vertices that is also isomorphic to its complement.
 - (c) If G is a simple graph with five vertices, find the sum of the adjacency matrices A(G) and A(G').

<u>(a)</u>		<u>/</u>	·····				<i>j</i> .	. /				 	
	\ 3	/	<u>j</u>	S 	,,,,,,			1				 	
		<u>Ç</u> .						(ء)				 	
(6)		ix		 			 					 	
			\. <i>.j</i>			:	\leq	<u>></u>				 	
	(!	, 1 , 2	. 3,3)		possi	 : b:l:	†5				 	
	(1	, 2, 2 , -, 2 , 2	Σ, 3)	3	Poss	; 5; 1	ities	·			 	
								7:				 •••••	• • • • • • •
	٠e	0	<u>©</u>									 	
	(3)	ত	0	3	Ð		 	2 =	:	024	 t	 	
	. S.	<u>D</u>	<u>ର</u>	. 0	9							 	
		: <i>.</i>	<u>.</u>		 							 	
												 	,

11. Con	sider the	points A(-3,9	and B	(1,5	in (the	Cartesian	plane.
---------	-----------	-----------	------	-------	------	------	-----	-----------	--------

- (a) Find the equation of the circle with diameter [AB].
- (b) The locus of the point P such that PA = 3PB is the circle C. Find the centre and radius of C.

(b) The locus of the point i such that i A = 5 b is the chese of that the centre and radius of c.
(c) The tangents to C through A meet C at P1 and P2 respectively. Find the lengths AP1 and AP2.
$(a) 0 \left(\frac{-3+1}{2}, \frac{9+5}{2}\right) \implies 0 (-1,7)$
0 B ² = 2 ¹ +1 ¹ = 8.
- (x+1)2+ (y-7)2=8.
(b) P. (o.6).
P. A = 3.12, P. B=12, satisfy PA= 3PB.
P2 (3,3)
P2A=6.F2, P2B=2FE, satisfy PA=3PB.
$(\text{enter} \left(\left(\frac{3}{2}, \frac{4}{2} \right), \text{ radius} = \frac{3}{2} \sqrt{2}$
(c) Note: P. & Pz in (c) is different from that in Ub).
((1/2))
-, AC= -2/2.
$-AP_1 = \sqrt{(\frac{1}{2}\pi)^2 - (\frac{2}{3}\pi)^2} = AP_2$
= 6.
AP1 = AP2=6.

12.	The parametric equations of the hyperbola \mathcal{H} are $x = e^t + e^{-t}$ and $y = e^t - e^{-t}$.
	(a) Find the Cartesian equation of H.
	(b) Find the coordinates of the foci of \mathcal{H} .
	(c) Use parametric differentiation to find the gradient of $\mathcal H$ when $t=\ln 2$.
	(a) $\chi^{1} = e^{2t} + e^{-2t} + 2$
	y'= ext +e-xt-2
	$\frac{A_{r}}{A_{r}} - \frac{A_{r}}{A_{r}} = 1$
	(b) < m2 = 4
	(b) $\begin{cases} \alpha^2 = 4 \\ \alpha^2 (1-E^2) = -4 \end{cases}$ E: eccentricity.
	α=2, E= T
	F (aE.o) → F(2√2,0).
	(c) 4x2-y2=4.
	8 x - y; y'=0
	$\frac{1}{2}$ $\frac{4x}{y}$
	when t= ln2, { 7= 2+ = = = =
	when $t = l_{n2}$, $\begin{cases} 7 = 2 + \frac{1}{2} = \frac{5}{2} \\ 3 = 2 - \frac{1}{2} = \frac{3}{2} \end{cases}$
	- gradient = 10 = 3
)::::::::::::::::::::::::::::::::::::::

13.	Let S be the series	∑ n ₩0	$\left(\frac{t}{t+1}\right)^n$	where t ≠	0
		n=0	(141)		

- (a) Find the value to which S converges when t = 1.
- (b) Determine the values of t for which S converges.
- (c) Find all values of t for which the sum of the series is greater than 10.

0-	1	148	1-(4)00
(a) ≥	2"	ニリナラナナナー	= 1. 1-4 = 4 = 2.

(b)	'n	order	for	S	+•	conv	erge	t +1	has	+0	be	less	than	١.
		t												
	_' _	+41	> 0 .		++	170	٠.	t>-	1					

	(1)	1	-	:			-	l				ı	^	0	t		,	٥	υ	4	-	~	e	e	Ļ	
					۳,			٠			٠,						*					4						9

 ۷.	1- (+	>	10 - +
	10	τ _	a	
	-+	-T >		

	1		9++9
 10	T	2	100

								,					+		7	>		٩	2														
	•	•			•	•			•		•			• •		,						•						:			٠		

Therefore	4<-1	or +>	9.	

- 14. (a) Prove that the base angles of an isosceles trapezium are equal.
 - (b) Hence prove that an isosceles trapezium is cyclic.
 - (c) An isosceles trapezium has sides of length 5, 5, 7 and 8. Use Ptolemy's theorem to find the lengths of the diagonals.

(a) we have AD=BC, ABIICD.
Draw two heights AE and BF.
Since ABIICO, the distance between the two lines shoul
be the same, so AE=BF.
Therefore, DADE & DBCF, LD=LC.
Cb) ~ ABII CO
CC+ CBC=180°.
CD+ LABC= 180°
ABCD is a cyclic quadrilateral.
(c) <u>{</u> <u> </u>
CO=OC => DADC Z D BCD.
1 A0=BC
AC=BD
-: ABCD is cyclic
:. Ac. BD = 7.84 52 = 81
: AC=BD=9.
••••••••••••••••••••••••••••••
등 전에 발생하는 경험 전쟁을 받아 있다면 하는 경험 이 전쟁에서 전혀 보고 있다면 가장 하는 것이 되었다면 보다면 보다면 보다면 보다면 보다면 보다면 보다면 보다면 보다면 보

15. Consider the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \end{pmatrix}$.

- (a) Use your calculator to find the reduced row echelon form for A.
- (b) Write down a basis for the row space of A.
- (c) State the rank of A.
- (d) State the nullity of A.
- (e) Find a basis for the null space of A.

(a)	[!		-1	۰		 						
					1							
	(。	0	0	ı	7	 				••••		
(4)						 0)	, (0 о	0 1)	<u>}</u>	

(r)	rank	- 3		
(4)	(×.)		1 '. \	nullity (A)=1.
	×3	= r	1	nullity (A)=1,
	- Xu		1	

(e) basis for null space:	{ -2 }
(e) basis for null space:	(
3	

......

16.	Consider the simple connected planar graph G with ν vertices, e edges and f faces.
	(a) State Euler's formula for G
	(b) If $v \ge 3$ prove that $e \le 3v - 6$.
	(c) Hence prove that K_n is not planar when $n \ge 5$.
	(a) V-e+f=2.
	(b) three edges are the minimum required to form 2 faces
	:. (2e >, 3f. >> f=2-v+e. 2e>, b-3v+3e.
	: e ≤ 3v-b
	(c) V=573.
	. e ≤ 15-6=9.
	e(k=)= 5x4 = 10>9.
	:. it's not planar.
	,

17. A matrix A is called <i>skew symmetric</i> if $A^{\Gamma} = -A$.
(a) Calculate the product $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
(b) Prove that if A is an $n \times n$ skew symmetric matrix and $\vec{x} \in \mathbb{R}^n$, then $\vec{x}^T A \vec{x} = 0$.
(a) (123). (8)
······=···O·····
(b) A has dimension: nxn.
P, 9 < N.
In A, an, azz , ann =0.
apq = - app
· For apq, after \$ Ax,
the product is \overrightarrow{X}_{1} p. apq. \overrightarrow{X}_{2} = \overrightarrow{X}_{1} p. apq. \overrightarrow{X}_{2} = \overrightarrow{X}_{2} p. apq. \overrightarrow{X}_{2}
· For agp, after ZTAZ. the product is ZTiqiaqpi Zpi = Zqi aqpi Zpi
the product is Ziqiaqpi xp1 = Zq1 : aqp: Zp1
Sum = 3 q1 · xp, · (apq + app) =0.
This is the same for all p and g, so $\overrightarrow{x}^7 \overrightarrow{A} \overrightarrow{x} = 0$

18. (a)	Find $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$
(b)	Show that $\int_{1}^{\infty} xe^{-x} dx = \frac{1}{e}$
(C)	Find $\lim_{x\to 0^+} \frac{e^{-1/x}}{x}$.
Ja) lim ex-1-x = lim x2=0.
	Apply L'Hapital's Rule
	lim ex -1
	11 to 12 to
	Apply L'Hôpital's Rule again
	$\lim_{n \to \infty} \frac{e^n}{2} = \frac{1}{2}$
	7→0
CP.) ∫,° xe-x dx
	= -xe-x-e-x °°
	= lim [-xe-x-e-x]-[-e-1-e-1]
	= Lim [-x.o-o] - [- 2]
	= 2
. lc) lim e = = = = Lim x.
	Apply L'Hôpital's Rule.
	(im e * (-(-x-2)) lim e *
	x->0 1 x->0 X
	Appy again,
	Apply again. $\lim_{\chi \to 0^+} \frac{e^{\frac{\chi}{\chi}} \cdot \chi^2}{2\chi} = \lim_{\chi \to 0^+} \frac{e^{\frac{\chi}{\chi}} \cdot \chi}{2\chi} = 0$
	ton: How is the "+" in x-) of presented?
oues.	LON. LION IS ING I IN X-> of Lossen Col.

19. Consider the structure $(\mathbb{R}\setminus\{-1\},\circ)$ where the operation \circ is defined by $a\circ b=a+ab+b$.	
(a) Prove that the structure is an Abeiian group	
(b) Solve the equation $2 \circ (x \circ (-3)) = 5$ where $x \in \mathbb{R} \setminus \{-1\}$.	
(a) when a=0 or b=0,	
$a \circ b = o + o \cdot b + b = b.$	
Osa o is the identity.	
a = b = a + a b + b + 1 -1 = (a+1)(b+1)-1	
if a = -1, then (a+1)(b+1)=0,	
either a = -1 or b=-1 and that's not possible.	
9 so it's closed within RI {-1}.	
a o b = a + a b + b , b o a = b + b a + b = a + a b + b .	
3 so it's abelian.	
(aob)oc = (atabtb)c = atabtb+c+altabc+bc	
= a + b + c + ab + a c + b c + abc	
a = (6 = c) = a = (6+6+4) = a + b + b + + + + + + + + + + + + + + +	
Oso it's associative.	
For $a \circ b = 0$, $(a+1)(b+1) = 1$, then $a = \frac{-b}{b+1}$	
For every b, its inverse $b^{-1} = \frac{b}{b+1}$.	
D has inverse.	
Therefore, from O-D, we know that it's an Abelian	group
(b) $2 \circ (x-3-3x) = 2+x-3-3x + 2x-6-6x = 5$	•
$\lambda = -\tau$	

20. (a) State Menelaus's theorem.

(b) Use Menelaus's theorem to prove Ceva's theorem.

(c) In the diagram, the numbers 3, 4 and 6 are the areas of their respective triangles. What is the

area of the unmarked quadrilateral?

(a) Menelan's theorem: AB CD EF =1

(b) $\frac{AB}{BC}$ $\frac{CE}{ED}$ $\frac{DO}{OA} = 1$ $\frac{O}{O}$ $\frac{O}{O} \Rightarrow \frac{AB}{BC}$ $\frac{CD}{DE}$ $\frac{EF}{FA} = 1$.

Le). BO 1 CO 3

$$\frac{\int_{\Delta} A \circ c}{\int_{\Delta} A \circ c} = \frac{3 + \alpha}{5} = \frac{3}{2}$$

$$\frac{\int_{\Delta} A \circ g}{\int_{\Delta} A \circ g} = \frac{\alpha}{5 + 4} = \frac{1}{2}$$

=>
$$\begin{cases} a = \frac{9}{2} \\ b = 5 \end{cases}$$