Gene List Enrichment Analysis

George Bell, Ph.D.

BaRC Hot Topics March 16, 2010

Outline

- Why do enrichment analysis?
- Main types
- Selecting or ranking genes
- Annotation sources
- Statistics
- Remaining issues
- Presenting findings
- Recommended tools

Why do enrichment analysis?

- Most array, sequencing, and screens produce
 - A measurement for most or all genes
 - List(s) of "interesting" genes
- Most cellular processes involve sets of genes.
- Can we compare the above two datasets?
- Is the overlap different than expected?
- Does this tell us something about cellular mechanisms?

Why not just link genes to physiology?

- Too many genes to examine in detail.
- Are we biased?
- How do we know that what we're seeing is surprising?

Main types of enrichment analysis

- List-based: inputs are
 - A subset of all genes chosen by some relevant method
 - A list of annotations, each linked to genes
- Rank-based: inputs are
 - A set of all genes ranked by some metric (ratio, fold change, etc.)
 - A list of annotations, each linked to genes
- List-based with relationships: inputs are
 - A subset of all genes
 - A list of annotations, each linked to genes, organized in some relationship (e.g., a hierarchy)

Getting your list

- Goal: Identify a list of genes (or probes) that appear to be working together in some way.
- What identifiers to use?
- Most common method: Get a list of differentially expressed genes
 - P-value and/or fold change?
 - Threshold?
- Alternatives:
 - Define a cluster
 - Sort data and/or apply a model to rank genes
- Recommendations:
 - Try lists of varying length
 - Try to maximize signal / noise (What produces the smallest p-values for enrichment?)

Annotation sources

- Gene Ontology (most popular)
 - biological process, molecular function, cellular component
 - Terms may have >1 "parent" (more general term)
 - GO Slim: includes only general categories
- KEGG; REACTOME pathways
- Genes sharing a motif of regulated by the same protein/miRNA
- Genes found on the same chromosome
- Also ... see Broad's Molecular Signatures Database (MSigDB)
- [any grouping that is biologically sensible]

Statistics to test for enrichment

Tests for enrichment

- Fisher's exact
- Hypergeometric
- Binomial
- Chi-squared
- Z
- Kolmogorov-Smirnov
- Permutation
- •

Statistics to test for enrichment

- What is the chance of observing enrichment at least this extreme due to chance?
- Different tests produce very different ranges of pvalues
- All look for over-enrichment; some look for underenrichment
- Recommendation: Use p-values as a tool to rank genes but don't take them literally
- Most methods correct for multiple testing (e.g., with FDR), which is necessary

Other statistical issues

- Goal: Identifying theme(s) of maximal biological significance
 - but this is not perfectly correlated with statistical significance
- What is your background gene set?
 - All genes that could appear in your list
- What about sparse annotation groups?
- Some annotation terms may be subsets of other terms.

Practicalities

- Choose a tool that
 - Includes your species
 - Includes your gene / probe identifiers
 - Has up-to-date annotation
 - Lets you define your background (if possible)
- Get recommendations from the usual sources.
- Try at least a few tools.
- Try lists of varying length.

Presenting results

- Generally ignore enriched categories which
 - Contain very few genes
 - Show high overlap with other categories
- When in doubt, select more general category.
- Simplify complex results.
- Graphical or text summary?
- Plan to share your gene lists when you publish.

Enrichment tools

See http://www.geneontology.org/GO.tools.shtml

Some recommended tools

- DAVID
- GSEA
- BIOBASE (Whitehead has license)
- BiNGO (uses Cytoscape)
- GoMiner: http://discover.nci.nih.gov/gominer
- GOstat: http://gostat.wehi.edu.au

DAVID

- Database for Annotation, Visualization and Integrated Discovery (NIAID)
- List-based
- http://david.abcc.ncifcrf.gov/
- Lots of identifiers; lots of species
- Allows background definition
- Statistic is a modified Fisher exact test

DAVID Bioinformatics Resources 6.7

National Institute of Allergy and Infectious Diseases (NIAID), NIH

DAVID Bioinformatics Resources 2008

National Institute of Allergy and Infectious Diseases (NIAID), NIH

Welcome to the new, temporary home of DAVID2008. We have extended the retirement of this version until 3/31/2010. Please complete any analysis using this version by this date as it will no longer be available. Thanks for using and supporting DAVID

Functional Annotation Chart

Help and Manual

Current Gene List: Testes enriched
Current Background: HOMO SAPIENS
74 DAVID IDs

■ Options

Rerun Using Options

Create Sublist

March Download File

Sublist	<u>Category</u>	Ţerm	RT	Genes	Count =	<u>%</u>	P-Value	<u> </u>
	GOTERM_MF_ALL	catalytic activity	<u>RT</u>		58	78.4	2.6E-14	4.6E-11
	GOTERM_MF_ALL	transmembrane transporter activity	<u>RT</u>		18	24.3	9.2E-7	1.6E-3
	SP_PIR_KEYWORDS	<u>oxidoreductase</u>	<u>RT</u>		12	16.2	1.2E-6	1.9E-3
	GOTERM_MF_ALL	transporter activity	<u>RT</u>		21	28.4	1.4E-6	2.5E-3
	GOTERM_MF_ALL	cation transmembrane transporter activity	<u>RT</u>		13	17.6	5.3E-6	9.4E-3
	GOTERM_MF_ALL	ion transmembrane transporter activity	RI		15	20.3	5.6E-6	1.0E-2
	GOTERM_MF_ALL	substrate-specific transmembrane transporter activity	RT		16	21.6	5.9E-6	1.1E-2
	GOTERM_BP_ALL	cellular carbohydrate catabolic process	<u>RT</u>		7	9.5	6.9E-6	1.3E-2
	GOTERM_BP_ALL	alcohol metabolic process	<u>RT</u>		10	13.5	3.0E-6	1.5E-2
	GOTERM_BP_ALL	carbohydrate catabolic process	<u>RI</u>	=	1	9.5	9.8Ŀ-6	1.9E-2
	GOTERM_CC_ALL	flagellum	<u>RT</u>		5	6.8	1.0E-5	1.6E-2
	SP_PIR_KEYWORDS	glycolysis	RT	=	5	6.8	1.3E-5	2.0E-2
	GOTERM_BP_ALL	glucose catabolic process	<u>RT</u>		6	8.1	1.3E-5	2.5E-2
	GOTERM_BP_ALL	carbohydrate metabolic process	<u>RT</u>		12	16.2	1.5E-5	3.0E-2

GSEA

- Gene Set Enrichment Analysis
- Rank-based
- http://www.broadinstitute.org/gsea/
- As a Java Web Start or desktop application
- Linked to MSigDB (annotated gene lists)
- Also permits custom annotation

Fig 1: Enrichment plot: CARIES_PULP_UP
Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

Table: GSEA details [plain text format]

	PROBE	GENE SYMBOL	GENE_TITLE	RANK IN GENE LIST	RANK METRIC SCORE	RUNNING ES	CORE ENRICHMENT
1	I I		methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase	149	1.379	-0.0116	No
2	I I	KYNU Entrez, Source	kynureninase (L-kynurenine hydrolase)	215	1.092	0.0001	No
3	II I	SOD2 Entrez, Source	superoxide dismutase 2, mitochondrial	382	0.609	-0.0447	No

Input: preranked gene list

Enrichment at bottom of list

Enrichment at top of list

BINGO

- BiNGO: A Biological Network Gene Ontology tool
- http://www.psb.ugent.be/cbd/papers/BiNGO/
- Works with Cytoscape network visualization tool
- Also permits custom annotation

L-lactate dehydrogenase activity

Shows relationship between annotation categories

Number of

genes in list

48

12 18

BIOBASE

- BIOBASE Knowledge Library
- Use Internet Explorer
- Go to "Gene Set Analysis"

BP = GO biological process GF = gene family PP = plant phenotype Legend: CC = GO cellular component IN = protein interaction PT = canonical pathway MD = protein modification PX = expression in plants DI = disease DG = pharmaceutical MF = GO molecular function RE = regulators of fungal genes DO = protein domain PH = mouse phenotype SP = species & chromosomes WX = expression in worms PM = yeast or worm phenotype EX = expression in mammals

P-value	Term	Protein count	Expected Protein count
5.03e-45	SP <u>Human</u>	58	10.7
8.62e-21	SP <u>Mammal</u>	58	28.3
2.3e-12	EX <u>testis</u>	27	7.73
3.09e-11	MF catalytic activity	45	21.3
1.03e-10	SP <u>Human chromosome 17</u>	6	0.594

References

- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. (PMID: 19033363) Review
- Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. (PMID: 19131956) DAVID
- Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. (PMID: 16199517) GSEA

Statistics – supplementary info

Fisher's test by hand in R

- counts = (matrix(data = c(3, 297, 40, 19960), nrow = 2))
- counts
- fisher.test(counts)
- # is better than
- chisq.test(counts)

	Gene list	Genome
In anno group	3	40
Not in anno group	297	19960

Fisher's Exact Test for Count Data

Binomial test by hand in R

binom.test(3, 300, p=40/20000)

	Gene list	Genome
In anno group	3	40
Not in anno group	297	19960

Exact binomial test

Hypergeometric test by hand in R

- min(1 cumsum(dhyper(0:(3-1), 40, 19960, 300)))
- 0.02193491

	Gene list	Genome
In anno group	3	40
Not in anno group	297	19960

Equation above tests only for over-enrichment