8 Teste de hipóteses com duas amostras

Estatística Aplicada

Seção 8.1

Testando a diferença entre duas médias (amostras grandes e independentes)

Visão geral

Para testar o efeito benéfico de um tratamento fitoterápico sobre a memória, você seleciona aleatoriamente duas amostras de pessoas; uma delas receberá o medicamento e a outra tomará um placebo. Um mês depois, os dois grupos são submetidos a um teste de memória e obtêm os resultados a seguir.

Amostra
$$\overline{x}_1 = 77$$
 $\overline{x}_1 = 73$ Amostra $s_1 = 15$ $s_1 = 12$ Amostra $n_1 = 95$ $n_1 = 105$

Grupo experimental (tratamento)

Grupo de controle (placebo)

A estatística teste resultante é 77 - 73 = 4. Essa diferença é significativa ou pode ser atribuída ao acaso (erro amostral)?

Amostras independentes

Os membros de uma amostra não têm relação com os membros da outra.

Uma pessoa que recebeu o tratamento fitoterápico não estava relacionada nem podia ser emparelhada com outra no grupo de controle.

Grupo experimental

Grupo de controle

Amostras dependentes

Cada membro de uma amostra pode ser emparelhado a um membro da outra amostra.

A nota no teste de memória de cada pessoa da amostra podia ser registrada antes e depois do tratamento.

Pode-se calcular a diferença $\bar{x}_1 - \bar{x}_2$ para cada par.

Aplicação

Para testar o efeito benéfico de um tratamento fitoterápico sobre a memória, você seleciona aleatoriamente uma amostra de 95 pessoas, as quais receberão o tratamento, e uma amostra de 105 pessoas que tomarão um placebo. Um mês depois, ambos os grupos submetem-se a um teste. A nota média do grupo experimental é de 77, com um desvio padrão de 15. No grupo de controle, a média é 73 e o desvio padrão, 12. Teste a alegação de que o tratamento fitoterápico melhora a memória a $\alpha = 0.01$.

1. Estabeleça as hipóteses nula e alternativa.

A hipótese nula H0 em geral contém a condição de igualdade. (Não há diferença entre os parâmetros das duas populações.) A hipótese alternativa Ha é verdadeira quando H0 é falsa.

$$H_0$$
: $\mu_1 \le \mu_2$
 H_a : $\mu_1 > \mu_2$ (alegação)

2. Estabeleça o nível de significância.

$$\alpha = 0.01.$$

Essa é a probabilidade de H_0 ser verdadeira e você a rejeitar.

3. Identifique a distribuição amostral.

A distribuição da estatística amostral $\bar{x}_1 - \bar{x}_2$ é normal, já que as duas amostras são grandes.

4. Determine o valor crítico.

Determine a região de rejeição.

6. Determine a estatística teste.

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sigma_{\overline{x}_1 - \overline{x}_2}}$$

Se as duas amostras são grandes, você pode usar s_1 e s_2 no lugar de σ_1 e σ_2 .

$$z=\frac{4-0}{1,933}=2,07$$

$$\sqrt{\frac{15^2}{95} + \frac{12^2}{105}} = \sqrt{3,74} = 1,933$$

7. Tome sua decisão.

z = 2,07 não cai na região de rejeição. Não rejeite a hipótese nula. O valor P é 0,019 > 0,01. Não rejeite H_0 .

8. Interprete sua decisão.

Não há evidência suficiente para aceitar a alegação de que o tratamento fitoterápico aumenta a memória.

Seção 8.2

Testando a diferença entre duas médias (amostras pequenas e independentes)

Testando a diferença entre médias (amostras pequenas)

Quando você não pode colher amostras de 30 ou mais itens, você pode usar um teste *t*, se as duas populações forem normalmente distribuídas. A distribuição amostral depende do fato de as variâncias populacionais serem ou não iguais.

Se as variâncias das duas populações são iguais, você pode combinar ou 'agrupar' informação das duas amostras, a fim de formar uma estimativa agrupada do desvio padrão.

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

O erro padrão é:

g.l. =
$$n_1 + n_2 - 2$$

$$s_{\overline{x}_1-\overline{x}_2}=\sqrt{\frac{sp^2}{n_1}+\frac{sp^2}{n_2}}$$

Se as variâncias forem diferentes, o erro padrão será:

E o g.l. será o menor entre $n_1 - 1$ e $n_2 - 1$.

$$s_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}$$

Aplicação

Cinco pick-ups pequenas e oito SUVs realizaram testes de colisão a cinco milhas por hora. Para as pick-ups, o conserto do pára-choques custou em média US\$ 1.520, com um desvio padrão de US\$ 403. No caso dos SUVs, o conserto custou uma média de US\$ 937, com um desvio padrão de US\$ 382. Sendo α = 0,05, teste a alegação de que o conserto de pára-choques das pick-ups custa mais que o dos SUVs. Suponha que as variâncias sejam iguais.

	Pick-up	SUV
n	5	8
\overline{X}	1.520	937
S	403	382

1. Estabeleça as hipóteses nula e alternativa.

$$H_0$$
: $\mu_1 \le \mu_2$
 H_a : $\mu_1 > \mu_2$ (alegação)

2. Estabeleça o nível de significância.

$$\alpha = 0.05.$$

3. Identifique a distribuição amostral.

Como as variâncias são iguais, a distribuição da estatística amostral $\overline{X}_1 - \overline{X}_2$ é uma distribuição t com g.l. = 5 + 8 - 2 = 11.

- 4. Determine o valor crítico.
 - 5. Determine a região de rejeição.

$$s_p^2 = \frac{s_1^2 . GL_1 + s_2^2 . GL_2}{GL_1 + GL_2}$$

6. Determine a estatística teste. $s_p^2 = \frac{(5-1)403^2 + (8-1)(382)^2}{5+9+3} = 151918,545$

$$s_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$

Se as variâncias forem $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$ iguais, determine o valor agrupado.

$$s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{151918,545}{5} + \frac{151918,545}{8}} = 222,203$$

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_{\overline{x}_1 - \overline{x}_2}}$$

$$t = \frac{(1520 - 937) - 0}{222,203} = 2,624$$

7. Tome sua decisão.

t = 2,624 cai na região de rejeição. Rejeite a hipótese nula.

8. Interprete sua decisão.

Há evidência suficiente para aceitar a alegação de que o conserto de pára-choques das pick-ups custa mais que o dos SUVs.

Aplicação

Segundo uma imobiliária, não há diferença entre a renda média familiar de dois condomínios. A renda média de 12 famílias do primeiro condomínio é de US\$ 48.250, com um desvio padrão de US\$ 1.200. No segundo condomínio, 10 famílias têm uma renda média de US\$ 50.375, com um desvio padrão de US\$ 3.400. Suponha que as rendas sejam normalmente distribuídas e que as variâncias sejam diferentes. Teste a alegação sendo α = 0,01.

1. Estabeleça as hipóteses nula e alternativa.

$$H_0$$
: $\mu_1 = \mu_2$ (alegação)
 H_a : $\mu_1 \neq \mu_2$

	Primeiro	Segundo
n	12	10
\overline{X}	48,250	50,375
S	1.200	3.400

2. Estabeleça o nível de significância

$$\alpha = 0.01$$

$$G.L. = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}$$

3. Identifique a distribuição amostral

Como as variâncias são diferentes, a distribuição da estatística amostral $\bar{x}_1 - \bar{x}_2$ é uma distribuição t com g.l. = 9. (A menor amostra tem 10 itens, e 10 – 1 = 9.)

- 4. Determine os valores críticos.
 - 5. Determine as regiões de rejeição.
- 6. Determine a estatística teste.

$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = \sqrt{\frac{1.200^2}{12} + \frac{3.400^2}{10}} = 1.129,6017$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{S_{\overline{X}_1 - \overline{X}_2}}$$

$$t = \frac{(48.250 - 50.375) - 0}{1129,6017} = -1,88$$

7. Tome sua decisão.

t = -1,881 não cai na região de rejeição. Não rejeite a hipótese nula. (O valor P é 0,087 > 0,01.)

8. Interprete sua decisão.

Não há evidência suficiente para rejeitar a alegação de que não há diferença entre as rendas familiares médias dos dois condomínios.

Teste de duas amostras para variâncias

Para comparar duas variâncias populacionais, σ_1^2 e σ_2^2 , use a distribuição F.

Suponha que s_1^2 e s_2^2 representem as variâncias amostrais de duas populações diferentes. Se estas duas forem normais e as variâncias populacionais, σ_1^2 e σ_2^2 , forem iguais, a distribuição será chamada de **distribuição** F. s_1^2 sempre representa a maior entre duas variâncias.

Teste F para variâncias

Para testar se as variâncias de duas populações normalmente distribuídas são iguais, selecione aleatoriamente uma amostra de cada população.

Suponha que s_1^2 e s_2^2 representem as variâncias amostrais.

A estatística teste é: $s_1^2 \ge s_2^2$

A distribuição amostral é uma distribuição F com g.l. numerador = n_1 – 1 e g.l. denominador = n_2 – 1. $F = \frac{s_1^2}{s_2^2}$

Nos testes F para verificar se as variâncias são iguais, use somente o valor crítico da cauda direita. Para um teste monocaudal direito, use o valor crítico correspondente ao valor que você encontrar na tabela para o α dado. Para um teste bicaudal, use o valor crítico da direita correspondente a %.

Aplicação

Um engenheiro quer realizar um teste t para verificar se o consumo médio de combustível do carro A é inferior ao do B. Uma amostra aleatória do consumo de combustível de 16 carros A tem um desvio padrão de 4,5. Já a amostra aleatória do consumo de 22 carros B tem um desvio padrão de 4,2. O engenheiro deveria usar o teste t com variâncias iguais ou com variâncias diferentes? Use $\alpha = 0,05$.

1. Estabeleça as hipóteses nula e alternativa.

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_a: \sigma_1^2 \neq \sigma_2^2$

2. Estabeleça o nível de significância.

$$\alpha = 0.05$$

Como a variância amostral do carro A é maior que a do carro B, use s_1^2 para representá-la.

3. Determine a distribuição amostral.

Uma distribuição F com g.l._N = 15, g.l._D = 21.

6. Determine a estatística teste.

$$F = \frac{s_1^2}{s_2^2} = \frac{4,5^2}{4,2^2} = 1,148$$

Como F = 1,148 não cai na região de rejeição, não rejeite a hipótese nula.

8. Interprete sua decisão.

Não há evidência suficiente para rejeitar a alegação de que as variâncias são iguais. Ao fazer um teste *t* para comparar as médias das duas populações, use o teste para variâncias iguais.

Exemplo: Para se verificar o efeito de uma nova droga que tem poder cicatrizante, foi utilizado 72 cobaias e anotado o número de dias para obter total cicatrização, obtendo-se a seguinte tabela:

Sexo	Tamanho da amostra	Média	Variância
Machos	41	23	3,2
Fêmeas	31	19	2,5

- a) Testar a igualdade das variâncias do no de dias de cicatrização para machos e fêmeas, utilizando-se $\alpha = 5\%$.
- b) Idem para as médias.

💖 t - Teste: Resumo Amostral (Duas Amostras) <u>A</u>rquivo Editar Amostra 2 Amostra 1 31 Tamanho = Média = 19.0000 23,0000 Variância = 3.2000 2.5000 F(40, 30) =1.2800 0.48589.8689 Graus de liberdade = 70 p (unilateral) = < 0.0001 p (bilateral) = < 0.0001 Poder (0.05) = 1.0000 1.0000 Poder (0.01) = Diferença entre as médias = 4.0000 IC 95% (Dif. entre médias) = 3.1908 a 4.8092 2.9244 a 5.0756 IC 99% (Dif. entre médias) =

Exemplo: Um pesquisador está interessado em comparar os pesos de duas raças de uma espécie animal. A tabela abaixo apresenta os pesos observados (em gramas).

Raça 1: 37 32 43 35 41 37 31 35 31 37 36 29

Raça 2: 37 43 33 45 47 51 37 43 41

Existe diferença de peso entre as duas espécies? Use $\alpha = 0.05$. Proceder ao teste F para comparação das variâncias e o teste t de Student para médias.

	Raça 1	R	aça 2		
Tamanho =	12		9		
Média =	35.3333		41.8889		
Variância =	17.1515		31.1111		
	Homocedasticidade		Orá	l ofice de coive ("boy plotor	.115
Variância =	23.0292		Gra	ifico de caixa (''box-ploter)
t =	-3.0979		⁶⁰ T		
Graus de liberdade =	19				
p (unilateral) =	0.0029				
p (bilateral) =	0.0059		50—	1	
Poder (0.05)	0.9164				
Poder (0.01)	0.7569	(g)		T .	-
Diferença entre as médias =	-6.5556	00	40		
IC 95% (Dif. entre médias) =	-10.9846 a - 2.1265	Peso			
IC 99% (Dif. entre médias) =	-12.6097 a - 0.5014	-			
			30—		

20

Raça 1

Raça 2

Exemplo: Deseja-se saber se duas máquinas de empacotar café estão fornecendo o mesmo peso médio em kg. Extraem-se duas amostras, uma de cada máquina (supondo que os pesos das amostras sigam uma distribuição normal):

Máquina nova: 36 amostras, média de 0,81 kg variância de 0,00020 kg²

Máquina velha: 39 amostras, média de 0,78 kg variância de 0,00135 kg²

Qual é a sua conclusão ao nível de 5% de significância?

t - Teste: Resumo Amostral (Duas Amostras) Arquivo Editar

	Amostra 1	Amostra 2
Tamanho =	36	39
Média =	0.8100	0.7800
Variância (DESIGUAIS) =	0.0002	0.0014
F(35, 38) =	6.7500	
p =	0.0000	222
t =	4.7333	222
Graus de liberdade =	50	3777
p (unilateral) =	< 0.0001	(444)
p (bilateral) =	< 0.0001	9229
Poder (0.05) =	0.9966	5. 15
Poder (0.01) =	0.9814	2.12
Diferença entre as médias =	0.0300	5.75
IC 95% (Dif. entre médias) =	0.0171 a 0.0429	
IC 99% (Dif. entre médias) =	0.0127 a 0.0473	9335

Exemplo: Um experimento foi realizado com o objetivo de verificar a resistência (kgf) de dois tipos de fibra vegetal. Os dados são os seguintes:

Tabela *.*: Resistência (kgf) de dois tipos de fibra vegetal.

Fibra 1: 10,12 10,20 10,08 10,23 10,16

Fibra 2: 10,00 10,28 10,15 9,90 10,20

Pede-se: Há evidência de que a fibra 1 seja mais resistente do que a fibra 2? Estabeleça $\alpha = 0.05$.

	Fibra 2	Fibra 1
Média	10,106	10,158
Variância	0,02368	0,00362
Observações	5	5
gl	4	4
F	6,5414365	
P(F<=f) uni-caudal	0,0480858	
F crítico uni-caudal	6,3882329	
gl	5	
Stat t	0,7037316	
t crítico uni-caudal	2,0150484	
P(T<=t) uni-caudal	0,2565059	
t crítico bi-caudal	2,5705818	
P(T<=t) bi-caudal	0,5130118	

Seção 8.3

Testando a diferença entre duas médias (amostras dependentes)

A diferença entre médias: amostras dependentes

Se cada valor de uma amostra puder ser emparelhado com um valor da outra, as amostras serão dependentes.

Calcula-se a diferença, $d = x_1 - x_2$, para cada par de dados.

A distribuição amostral de \overline{d} , a média das diferenças, é uma distribuição t com n-1 graus de liberdade (n é o número de pares.)

Aplicação

A tabela abaixo mostra a freqüência cardíaca (em batidas por minuto) de cinco pessoas antes e depois de uma sessão de exercícios físicos. Há evidência suficiente para se concluir que o exercício acelera a freqüência cardíaca? Use $\alpha=0.05$.

Indivíduo	Antes	Depois	d
1	65	127	62
2	72	135	63
3	85	140	55
4	78	136	58
5	93	150	57

A média das diferenças, *d*, é 59. O desvio padrão de *d* é 3,39.

$$d = 59$$

 $s_d = 3,39$

1. Estabeleça as hipóteses alternativa e nula.

$$H_0$$
: $\mu_1 \le 0$
 H_a : $\mu_1 > 0$ (alegação)

2. Estabeleça o nível de significância.

$$\alpha = 0.05$$

3. Identifique a distribuição amostral.

A distribuição da estatística amostral \overline{d} é uma distribuição t com g.l. = 4.

(Como há cinco pares de dados, g.l.= 5 - 1 = 4.)

4. Determine o valor crítico.

5. Determine a região de rejeição.

6. Determine a estatística teste.

$$t = \frac{\overline{d} - \mu_d}{\frac{s_d}{\sqrt{n}}}$$

$$t = \frac{59 - 0}{\frac{3,39}{\sqrt{5}}} = 38,92$$

t = 38,92 cai na região de rejeição. Rejeite ahipótese nula. O valor P é muito próximo de 0.

8. Interprete sua decisão.

Há evidência suficiente para aceitar a alegação de que o exercício acelera a freqüência cardíaca.

Exemplo: Um novo medicamento está sendo pesquisado com intuito de diminuir a pressão sistólica em indivíduos hipertensos. Dez pacientes voluntários submeteram-se ao tratamento que consistia em medir a pressão antes e após seis meses da administração do medicamento. Os dados são os seguintes:

Tabela *.*. Valores de pressão arterial (mm Hg) obtidos no ensaio

Antes	179	200	161	170	181	190	202	220	195	165
Após	160	180	161	180	165	170	196	216	170	160
Dif. (d _i)	-19	-20	0	10	-16	-20	-6	-4	-25	-5
Dif. (d _i)	19	20	0	-10	16	20	6	4	25	5

Você acreditaria que o medicamento surte o efeito desejado, com $\alpha = 0.01$?

	Antes	Após
Média	186,3	175,8
Variância	344,5	329,1
Observações	10	10
Hipótese da diferença de média	0	
gl	9	
Stat t	2,981	
P(T<=t) uni-caudal	0,008	
t crítico uni-caudal	1,833	
P(T<=t) bi-caudal	0,015	
t crítico bi-caudal	2,262	

Exemplo: Dez cobaias foram submetidas ao tratamento de engorda com certa ração. Os pesos (em g), antes e após o teste são dados a seguir (supõe-se que provenham de distribuições normais). Ao nível de 1% de significância, podemos concluir que o uso da ração contribuiu para o aumento do peso médio dos animais?

Cobaia	1	2	3	4	5	6	7	8	9	10
Antes	635	704	662	560	603	745	698	575	633	669
Depois	640	712	681	558	610	740	707	585	635	682
Dif. (d _i)	5	8	19	-2	7	-5	9	10	2	13

	Antes	Depois
Média	648,4	655
Variância	3464	3504,7
Observações	10	10
Hipótese da diferença	0	
gl	9	
Stat t	-2,96	
P(T<=t) uni-caudal	0,008	
t crítico uni-caudal	2,821	
P(T<=t) bi-caudal	0,016	
t crítico bi-caudal	3,25	