Министерство науки и высшего образования РФ $\Phi\Gamma BOY$ ВО «Тверской государственный университет» Математический факультет

Направление 02.04.01 Математика и компьютерные науки Профиль «Математическое и компьютерное моделирование»

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Вариационный квантовый алгоритм с оптимизацией методом отжига

Автор: Алешин Д.А. Подпись:

Научный руководитель: д. ф.-м. н. Цирулёв А.Н. Подпись:

Допущен к за:	щите:		
Руководитель	ООП:	Цветков	В.П.
$(no\partial nucb, \partial a)$	ma)	_	

Оглавление

	Вве	едение		3
1	Обі	цая сх	кема квантовых вариационных алгоритмов	4
	1.1	Базис	е Паули	4
		1.1.1	Связь стандартного базиса и базиса Паули	4
		1.1.2	Коммутационное и антикоммутационное соотношение	7
		1.1.3	Коммутирующие элементы в алгебре Ли группы $SU(2^n)$	8
	1.2	Вариа	ационная квантовая оптимизация	10
	1.3	Обща	я схема алгоритма и анзац	13
	1.4	Прим	ер, иллюстрирующий особенности алгоритма	13
	1.5	Опти	мизация	18
2	Bap	оиацио	онный квантовый алгоритм на основе метода от-	
	ЖИ	га		19
	2.1	Метод	д отжига	19
	2.2	Алгор	ОИТМ	21
	2.3	Сравн	нительные результаты тестирования	21
	Зак	ключеі	ние	21
	Ли	герату	vpa	22
	Пр	иложе	ние Python	25

Введение

Глава 1

Общая схема квантовых вариационных алгоритмов

1.1 Базис Паули

1.1.1 Связь стандартного базиса и базиса Паули

Рассмотрим квантовую систему из n кубитов, где каждый кубит связан с двумерным гильбертовым пространством \mathcal{H} и его эрмитово сопряжённым пространством \mathcal{H}^{\dagger} . Обозначим через $\mathcal{H}_n = \mathcal{H}^{\otimes n}$ и $\mathcal{H}_n^{\dagger} = (\mathcal{H}^{\dagger})^{\otimes n}$ гильбертово пространство системы и его эрмитово сопряжение соответственно. Пространство линейных операторов, действующих на \mathcal{H} и \mathcal{H}^{\dagger} левым и правым умножением, задаётся как $L(\mathcal{H}_n) = \mathcal{H}_n \otimes \mathcal{H}_n^{\dagger}$. Тогда

$$\dim_{\mathbb{C}} \mathcal{H}_n = \dim_{\mathbb{C}} \mathcal{H}_n^{\dagger} = 2^n, \quad \dim_{\mathbb{C}} L(\mathcal{H}_n) = 2^{2n}.$$

Пространство $L(\mathcal{H}_n)$ наделено скалярным произведением Гильберта-Шмидта:

$$\langle \hat{A}, \hat{B} \rangle = \operatorname{tr}(\hat{A}^{\dagger} \hat{B}), \quad \hat{A}, \hat{B} \in L(\mathcal{H}_n),$$
 (1.1)

которое естественно продолжает скалярное произведение в \mathcal{H}_n . Вещественное линейное пространство эрмитовых операторов далее обозначим как $H(\mathcal{H}_n)$.

Пусть $\{|0\rangle, |1\rangle\}$ образуют ортонормированный базис в однокубитном пространстве \mathcal{H} . Единичная матрица и матрицы Паули задаются как:

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

а соответствующие операторы Паули представляются в виде:

$$\hat{\sigma}_0 = |0\rangle\langle 0| + |1\rangle\langle 1|, \ \hat{\sigma}_1 = |0\rangle\langle 1| + |1\rangle\langle 0|,$$
$$\hat{\sigma}_2 = -i|0\rangle\langle 1| + i|1\rangle\langle 0|, \ \hat{\sigma}_3 = |0\rangle\langle 0| - |1\rangle\langle 1|.$$

Эти операторы одновременно эрмитовы и унитарны, а также образуют базис в \mathcal{H} . Обратное преобразование выражается следующим образом:

$$|0\rangle\langle 0| = \frac{\hat{\sigma}_0 + \hat{\sigma}_3}{2}, \ |0\rangle\langle 1| = \frac{\hat{\sigma}_1 + i\hat{\sigma}_2}{2}, \ |1\rangle\langle 0| = \frac{\hat{\sigma}_1 - i\hat{\sigma}_2}{2}, \ |1\rangle\langle 1| = \frac{\hat{\sigma}_0 - \hat{\sigma}_3}{2}.$$

Для $k,l,m\in\{1,2,3\}$ выполняются свойства: $\mathrm{tr}\hat{\sigma}_k=0,\,\hat{\sigma}_k^2=\hat{\sigma}_0,\,$ а также

$$\hat{\sigma}_k \hat{\sigma}_l = -\hat{\sigma}_l \hat{\sigma}_k, \quad \hat{\sigma}_k \hat{\sigma}_l = i \operatorname{sign}(\pi) \hat{\sigma}_m, \quad (klm) = \pi(123),$$
 (1.2)

где $\pi(123)$ — произвольная перестановка множества $\{1,2,3\}$.

Рассмотрим стандартный бинарный базис в \mathcal{H}_n , образованный ортонормированными базисами $\{|0\rangle, |1\rangle\}$ в однокубитных пространствах. Позиция в тензорном произведении позволяет различать кубиты. Для фиксированного n элементы этого базиса и соответствующие им элементы двумерного базиса удобно записывать как:

$$|k\rangle = |k_1 \dots k_n\rangle = |k_1\rangle \otimes \dots \otimes |k_n\rangle, \quad \langle k| = \langle k_1 \dots k_n| = \langle k_1| \otimes \dots \otimes \langle k_n|,$$

где строки $k_1 \dots k_n$ $(k_1, \dots, k_n \in \{0, 1\})$ интерпретируются как двоичные числа с десятичным представлением k. Например, $|101\rangle = |5\rangle$ и $|00110\rangle = |6\rangle$.

 $^{^{1}}$ Мы избегаем термина «вычислительный», так как он может приводить к неоднозначности. И базис Паули, и стандартный базис являются вычислительными в одинаковом контексте.

В стандартном базисе:

$$|u\rangle = \sum_{k=0}^{2^{n}-1} u_k |k\rangle, \quad \hat{A} = \sum_{k,l=0}^{2^{n}-1} a_{kl} |k\rangle\langle l|,$$

где $|u\rangle \in \mathcal{H}_n$ и $\hat{A} \in L(\mathcal{H}_n)$.

Базис Паули $P(\mathcal{H}_n)$ в $L(\mathcal{H}_n)$ определяется как:

$$\{\hat{\sigma}_{k_1...k_n}\}_{k_1,...,k_n\in\{0,1,2,3\}}, \quad \hat{\sigma}_{k_1...k_n} = \hat{\sigma}_{k_1} \otimes \ldots \otimes \hat{\sigma}_{k_n},$$
 (1.3)

где $\hat{\sigma}_{0...0}$ — тождественный оператор. Базис $P(\mathcal{H}_n)$ содержит 4^n элементов. Для краткости будем использовать обозначение:

$$\hat{\sigma}_K = \hat{\sigma}_{k_1 \dots k_m},$$

где строка Паули $k_1 \dots k_n$ ($k_1, \dots, k_n \in \{0, 1, 2, 3\}$) соответствует числу K в десятичной системе ($0 \le K \le 4^n - 1$). Строка Паули K и элемент $\hat{\sigma}_K$ взаимно однозначно соответствуют друг другу.

Сравним $P(\mathcal{H}_n)$ со стандартным базисом. Для элементов базиса Паули выполняются:

$$\hat{\sigma}_{k_1...k_n}\hat{\sigma}_{k_1...k_n} = \hat{\sigma}_{0...0}, \quad \operatorname{tr}\hat{\sigma}_{0...0} = 2^n, \quad \operatorname{tr}\hat{\sigma}_{k_1...k_n}\Big|_{k_1...k_n \neq 0...0} = 0.$$
 (1.4)

Базис Паули является эрмитовым, унитарным и ортогональным относительно скалярного произведения (1.1). Отметим, что оператор $|k\rangle\langle l|$ из стандартного базиса не является унитарным или эрмитовым при $k \neq l$. Стандартный базис не включает тождественный оператор, который в этом базисе записывается как:

$$\sum_{k=0}^{2^n-1} |k\rangle\langle k|.$$

В базисе Паули любой оператор \hat{U} из унитарной группы $U(\mathcal{H}_n)$ (где $\hat{U}^{\dagger}\hat{U}=\hat{\sigma}_{0...0}$) раскладывается в виде:

$$\hat{U} = \sum_{i_1, \dots, i_n \in \{0, 1, 2, 3\}} U_{i_1 \dots i_n} \hat{\sigma}_{i_1 \dots i_n}, \quad \hat{U}^{\dagger} = \sum_{i_1, \dots, i_n \in \{0, 1, 2, 3\}} \overline{U}_{i_1 \dots i_n} \hat{\sigma}_{i_1 \dots i_n},$$

где коэффициенты удовлетворяют условиям:

$$\sum_{i_1,\dots,i_n\in\{0,1,2,3\}} \overline{U}_{i_1\dots i_n} U_{i_1\dots i_n} = 1, \qquad \sum_{\substack{i_1,\dots,i_n,j_1,\dots,j_n\in\{0,1,2,3\}\\(i_1,\dots,i_n)\neq(j_1,\dots,j_n)}} \overline{U}_{i_1\dots i_n} U_{j_1\dots j_n} = 0.$$

Последнее условие эквивалентно $2^{2n-1}(2^n-1)$ независимым соотношениям.

Эрмитовы операторы в базисе Паули разлагаются с вещественными коэффициентами.

1.1.2 Коммутационное и антикоммутационное соотношение

Коммутатор определяет взаимодействие операторов при их перестановке. Для операторов A и B он задаётся как:

$$[A, B] = AB - BA.$$

Если [A, B] = 0, операторы коммутируют; в противном случае — нет. В базисе Паули коммутаторы выражаются через символ Леви-Чивиты ε_{ijk} :

$$[\sigma_i, \sigma_j] = 2i\varepsilon_{ijk}\sigma_k,$$

где ε_{ijk} равен 1 при чётной перестановке индексов (i,j,k), -1 при нечётной и 0 в остальных случаях. Например:

$$[\sigma_1, \sigma_2] = 2i\sigma_3, \quad [\sigma_2, \sigma_3] = 2i\sigma_1.$$

Антикоммутатор характеризует симметричное произведение операторов:

$$\{A, B\} = AB + BA.$$

Если $\{A,B\}=0$, операторы антикоммутируют. Для операторов Паули:

$$\{\sigma_i, \sigma_j\} = 2\delta_{ij},$$

где δ_{ij} — символ Кронекера (1 при $i=j,\,0$ иначе). Примеры:

$$\{\sigma_1, \sigma_2\} = 0, \{\sigma_2, \sigma_3\} = 0.$$

Коммутаторы и антикоммутаторы применяются в квантовой механике для анализа свойств систем (спин электрона, кубиты), в квантовой теории поля (взаимодействия частиц) и квантовых вычислениях (алгоритмы, коррекция ошибок). Коммутаторы помогают определить совместную измеримость наблюдаемых, а антикоммутаторы — описать фермионные системы.

1.1.3 Коммутирующие элементы в алгебре Ли группы $SU(2^n)$

Рассмотрим базис Паули и множество строк Паули длины n:

$$Str_n = \{K = k_1 \dots k_n\}_{k_1,\dots,k_n \in \{0,1,2,3\}}.$$

1. Множество $\mathbb{F}_4 = \{0, 1, 2, 3\}$ образует квадгруппу Клейна с умножением:

$$0 \cdot k = k$$
, $k \cdot k = 0$, $k \cdot l = m$,

где $k, l, m \in \{1, 2, 3\}$ и (klm) — произвольная перестановка $(1\,2\,3)$.

2. Функция $s: \mathbb{F}_4 \times \mathbb{F}_4 \to \{1, i, -i\}$ задаётся значениями:

$$s(0,0) = s(0,k) = s(k,0) = s(k,k) = 1, \quad k = 1,2,3,$$

 $s(1,2) = s(2,3) = s(3,1) = i, \quad s(2,1) = s(3,2) = s(1,3) = -i.$

3. Функция $S: \operatorname{Str}_n \times \operatorname{Str}_n \to \{1, -1, i, -i\}$ определяется как:

$$S_{KL} = s(k_1, l_1) \cdot s(k_2, l_2) \cdot \ldots \cdot s(k_n, l_n),$$

где $K = k_1 k_2 \dots k_n$ и $L = l_1 l_2 \dots l_n$.

Симметрия функции S зависит от числа пар (k_r, l_r) (на позициях r в строках K и L), где $k_r, l_r \in \{1, 2, 3\}$ и $k_r \neq l_r$, а также от их взаимного порядка. Пусть ω_{KL}^+ и ω_{KL}^- — количество пар вида (1, 2), (2, 3), (3, 1) и (2, 1), (3, 2), (1, 3) соответственно, и $\omega_{KL} = \omega_{KL}^+ + \omega_{KL}^-$. Тогда

$$S_{(KL)} = \frac{S_{KL}}{2} \left(1 + (-1)^{\omega_{KL}} \right), \quad S_{[KL]} = \frac{S_{KL}}{2} \left(1 - (-1)^{\omega_{KL}} \right),$$
 (1.5)

где

$$S_{KL} = i^{\omega_{KL}} (-1)^{\omega_{KL}}.$$

Здесь $S_{(KL)}$ и $S_{[KL]}$ — симметричная и антисимметричная части S_{KL} . Значения S_{KL} , $S_{(KL)}$ и $S_{[KL]}$ приведены в таблице 2.

$\omega_{KL} \bmod 4$	0	2	0	2	1	3	1	3
$\omega_{KL}^{-} \bmod 4$	0	1	1	0	0	1	1	0
S_{KL}		1	-1	-1	i	i	-i	-i
$S_{(KL)}$	1	1	-1	-1	0	0	0	0
$S_{[KL]}$	0	0	0	0	i	i	-i	-i

Таблица 1: Множитель до $\hat{\sigma}_M$ в (1.6) для $\hat{\sigma}_K \hat{\sigma}_L$, $\{\hat{\sigma}_K, \hat{\sigma}_L\}$, и $[i\hat{\sigma}_K, i\hat{\sigma}_L]$.

Композицию элементов базиса Паули, их антикоммутаторов и коммутаторов можно компактно выразить в виде, удобном для программной реализации:

$$\hat{\sigma}_K \hat{\sigma}_L = S_{KL} \hat{\sigma}_M, \quad \{\hat{\sigma}_K, \hat{\sigma}_L\} = S_{(KL)} \hat{\sigma}_M, \quad [i\hat{\sigma}_K, i\hat{\sigma}_L] = -S_{[KL]} \hat{\sigma}_M, \quad (1.6)$$

где

$$\hat{\sigma}_M = \hat{\sigma}_{m_1 \dots m_n}, \quad m_r = k_r \cdot l_r \quad (r = 1, \dots, n). \tag{1.7}$$

Две строки Паули длины n могут коммутировать, даже имея ненулевые элементы в одних и тех же позициях. Например, операторы $\hat{\sigma}_{11}$, $\hat{\sigma}_{22}$ и $\hat{\sigma}_{33}$ коммутируют друг с другом. Унитарная матрица перехода из стандартного базиса $\{|i_1 \dots i_n\rangle\langle j_1 \dots j_n|\}$ в базис Паули содержит только элементы $0, \pm 1$ и $\pm i$. Например:

$$|00\dots0\rangle\langle00\dots0| \to \frac{1}{2^n} \sum_{i_1,\dots,i_n\in\{0,3\}} \hat{\sigma}_{i_1\dots i_n}.$$

Общее выражение для стандартных ортогональных проекторов имеет вид:

$$|i_1 \dots i_n\rangle\langle i_1 \dots i_n| = \frac{1}{2^n} \sum_{k_1,\dots,k_n \in \{0,3\}} \mathcal{X}_{k_1}^{i_1} \cdots \mathcal{X}_{k_n}^{i_n} \,\hat{\sigma}_{k_1\dots k_n},$$

где

$$\mathcal{X}_0^0 = \mathcal{X}_3^0 = \mathcal{X}_0^1 = 1, \quad \mathcal{X}_3^1 = -1.$$

Из выражения (1.6) следует, что: 1. Множество $\{i\hat{\sigma}_K\}_{K=0}^{4^n-1}$ образует ортонормированный базис в $\mathfrak{su}(2^n)$. 2. Множество

$$\widetilde{P}(\mathcal{H}_n) = \{\epsilon \hat{\sigma}_K \mid K \in \operatorname{Str}_n, \ \epsilon \in \{\pm 1, \pm i\}\},$$

содержащее 4^{n+1} элементов, образует группу — т.н. n-кубитную группу Паули.

Нормализатор группы Паули в унитарной группе:

$$C(\mathcal{H}_n) = \left\{ \hat{U} \in U(\mathcal{H}_n) \mid \hat{U}\hat{\sigma}_K \hat{U}^{\dagger} \in \widetilde{P}(\mathcal{H}_n), \ \forall \hat{\sigma}_K \in \widetilde{P}(\mathcal{H}_n) \right\},$$

называется группой Клиффорда. Исходя из (1.2), (1.4) и (1.7) получаем следующее утверждение

Утверждение 1.Взаимные унитарные преобразования базисных операторов Паули подчиняются соотношениям $\hat{\sigma}_{i_1...i_n}\hat{\sigma}_{k_1...k_n}\hat{\sigma}_{i_1...i_n} = \pm \hat{\sigma}_{i_1...i_n}$, где знак плюс стоит тогда и только тогда, когда количество троек $(i_m k_m i_m)_{m \in \{1,...,n\}}$, удовлетворяют условиям $i_m \neq k_m$, $i_m \neq 0$, и $k_m \neq 0$ четности.

l	0	1	2	3	4	5	6	7
$l_2l_1l_0$	000	001	010	011	100	101	110	111
$k_2k_1k_0$	011	011	011	011	011	011	011	011
$\bar{l} \wedge k$	011	010	001	000	011	010	001	000
$l \wedge k$	000	001	010	011	000	001	010	011
$l \wedge \overline{k}$	000	000	000	000	100	100	100	100
$\hat{\sigma}_I$	$\hat{\sigma}_{011}$	$\hat{\sigma}_{012}$	$\hat{\sigma}_{021}$	$\hat{\sigma}_{022}$	$\hat{\sigma}_{311}$	$\hat{\sigma}_{312}$	$\hat{\sigma}_{121}$	$\hat{\sigma}_{322}$

Таблица 2: Элементы базиса Паули, возникающие для k=011.

1.2 Вариационная квантовая оптимизация

Пусть \mathcal{H}_n — гильбертово пространство квантовой системы, состоящей из n кубитов, $\mathcal{S} \subset \mathcal{H}_n$ — пространство векторов состояния (т.е. векторов, нормированных на единицу), $L(\mathcal{H}_n)$ — алгебра операторов на \mathcal{H}_n и $\hat{H} \in L(\mathcal{H}_n)$ — эрмитов оператор. Определим функцию

$$E(|u\rangle) = \langle u|\hat{H}|u\rangle, \quad |u\rangle \in \mathcal{S}.$$
 (1.8)

В простейшей постановке **квантовой задачи оптимизации** требуется найти вектор состояния, на котором целевая функция (функция стоимости) Е принимает минимальное значение, т.е., в формальной записи, решить задачу

$$E(|u\rangle) \xrightarrow{|u\rangle \in \mathcal{S}} \min.$$
 (1.9)

Ниже, для определенности и краткости, будем называть \hat{H} гамильтонианом системы, а целевую функцию E — энергией.

Сложность алгоритмов прямого вычисления собственных значений гамильтониана \hat{H} растет экспоненциально с ростом числа кубитов, поэтому для больших систем используются вариационные методы решения задачи оптимизации (1.9).

Вариационными квантовыми алгоритмами обычно называют такие гибридные квантово-классические алгоритмы, нацеленные на решение квантовых задач оптимизации посредством квантовых вычислений или их классической имитации, которые проводят вариационную настройку параметров квантовой схемы. Параметрически управляемое квантовое устройство, обычно представленное квантовой цепью, реализует анзац, т.е. унитарное преобразование стандартного начального состояния $|0\rangle^{\otimes n}$ или, как вариант, предудущего полученного состояния. На каждом шаге регулирующие параметры подбираются так, чтобы минимизировать энергию (целевую функцию). Обычно это выполняется путём измерения энергии состояний, предоставляемых вариационной схемой, и обновления параметров для минимизации целевой функции.

В точной математической формулировке сказанное означает, что в функции (1.8) вектор состояния $|u\rangle$ зависит от набора m параметров $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_m)$, которые принимают значения в некоторой связной и односвязной области $\Omega\in\mathbb{R}^m$. Вариационная формулировка квантовой задачи оптимизации (1.9) имеет вид

$$E(|u(\boldsymbol{\theta})\rangle) \xrightarrow{\boldsymbol{\theta} \in \Omega} \min, \quad E(|u(\boldsymbol{\theta})\rangle) = \langle u(\boldsymbol{\theta})|\hat{H}|u(\boldsymbol{\theta})\rangle. \quad (1.10)$$

Итак, цель вариационного квантового алгоритма — найти такой набор параметров, на котором энергия достигает минимума. Число параметров m в наборе $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)$ зависит от конкретной задачи, в частности,

от числа кубитов в квантовом устройстве. Для n кубитов размерность пространства состояний, $N=2^n$, растет экспоненциально с ростом числа кубитов. Поэтому вариационный квантовый алгоритм должен быть организован и выполнен так, чтобы выполнялось условие $m \ll N$, поскольку в противном случае высокий класс сложности алгоритма сделает его неэффективным с практической точки зрения.

Но наиболее важным вопросом является выбор зависимости вектора состояния $|u(\boldsymbol{\theta})\rangle$ от параметров. В вариационных квантовых алгоритмах используется ansau (унитарное преобразование) вида

$$|u(\boldsymbol{\theta})\rangle = \hat{U}(\boldsymbol{\theta})|u_0\rangle.$$
 (1.11)

В общем случае форма анзаца определяет, какими будут параметры $\boldsymbol{\theta}$ и как их можно настроить для минимизации энергии (целевой функции). Структура анзаца, как правило, будет зависеть от поставленной задачи, так как во многих случаях можно использовать информацию о проблеме, чтобы подобрать анзац: это "анзац, подсказнный задачей". Однако можно построить анзацы достаточно общего вида, которые пригодны для использования в некоторых классах задач даже тогда, когда интуиция и известная информация о задаче не позволят его уточнить. Стандартно анзац выбирается в виде композиции m последовательно примененных унитарных преобразований

$$\hat{U}(\boldsymbol{\theta}) = \hat{U}_m(\theta_m) \cdots \hat{U}_1(\theta_1). \tag{1.12}$$

В композиции (1.12) выбор операторов определяется типом задачи и технической возможностью их реализации на конкретном квантовом устройстве. Например, можно выбрать

$$\hat{U}_K(\theta_K) = \hat{W}_K \exp(i\theta_K \hat{\sigma}_K) = \hat{W}_K (\cos\theta_K \hat{\sigma}_{0\dots 0} + i\sin\theta_K \hat{\sigma}_K), \tag{1.13}$$

где $1 \leqslant K \leqslant m$, $\hat{\sigma}_K = \hat{\sigma}_{k_1} \otimes \ldots \otimes \hat{\sigma}_{k_n}$, $k_1, \ldots, k_n \in \{0, 1, 2, 3\}$, $K = k_1 \ldots k_n$ (т.е. K — десятичное представление строки $k_1 \ldots k_n$, рассматриваемой как число по основанию 4), n — число кубитов, а \hat{W}_K — независящий от параметров унитарный оператор. Как правило, в строке $k_1 \ldots k_n$ только отдельные числа отличны от нуля, так что в тензорном произведении $\hat{\sigma}_{k_1} \otimes \ldots \otimes \hat{\sigma}_{k_n}$ часть операторов являются тождественными.

В другом распространенном варианте операторы в композиции (1.12) имеют вид

$$\hat{U}_K(\theta_K) = \hat{W}_K(e^{i\theta_{k_1}\hat{\sigma}_{k_1}} \otimes \dots \otimes e^{i\theta_{k_n}\hat{\sigma}_{k_n}}), \tag{1.14}$$

где по-прежнему $1 \leqslant K \leqslant m$ и $K = k_1 \dots k_n$. Если в (1.13) все операторы \hat{W}_K могут быть тождественными, то в (1.14), по крайней мере некоторые операторы \hat{W}_K должны быть запутывающими и, следовательно, как минимум двухкубитными.

Таким образом, анзацы (1.12), (1.13) и (1.14) конкретизируют вариационную квантовую задачу оптимизации (1.10) и (1.11) в отношении параметрической зависимости вектора состояния,

$$|u(\boldsymbol{\theta})\rangle = \hat{U}(\boldsymbol{\theta})|0\dots0\rangle$$

где начальное состояние имеет вид $|0\dots 0\rangle = |0\rangle^{\otimes n}$. Если предположить далее, что мы в состоянии уверенно приготовить начальное состояние, реализовать анзац на физическом устройстве и вычислить значение энергии $E\left(|u(\boldsymbol{\theta})\rangle\right) = \langle u(\boldsymbol{\theta})|\hat{H}|u(\boldsymbol{\theta})\rangle$ посредством измерений (с привлечением классического компьютера), то следующий — основной — вопрос можно сформулировать так: как искать параметры, которые обеспечивают глобальный минимум энергии. Этот этап выполняется с помощью классического компьютера, так что вариационный квантовый алгоритм — гибридный квантово-классический алгоритм: параметризованная квантовая схема и измерительный прибор представляют квантовую часть, а алгоритм настройки параметров — классическую.

1.3 Общая схема алгоритма и анзац

1.4 Пример, иллюстрирующий особенности алгоритма

Для иллюстрации алгоритма рассмотрим гамильтониан

$$\hat{H} = 2\,\hat{\sigma}_{03} + \hat{\sigma}_{30} - 4\,\hat{\sigma}_{11},\tag{1.15}$$

который в стандартном базисе $\{ |00\rangle, |01\rangle, |10\rangle, |11\rangle \}$ имеет матрицу

$$H = \begin{pmatrix} 3 & 0 & 0 & -4 \\ 0 & -1 & -4 & 0 \\ 0 & -4 & 1 & 0 \\ -4 & 0 & 0 & -3 \end{pmatrix}.$$

Используя систему Maple находим собственные значения и собственные состояния в порядке возрастания собственных значений, начиная с основного состояния $|u_0\rangle$ с собственным значением E_0 :

$$E_0 = -5, |u_0\rangle = \frac{1}{\sqrt{5}} |00\rangle + \frac{2}{\sqrt{5}} |11\rangle, (1.16)$$

$$E_1 = -\sqrt{17}, \quad |u_1\rangle = \frac{\sqrt{17} + 1}{\sqrt{34 + 2\sqrt{17}}} |01\rangle + \frac{\sqrt{8}}{\sqrt{17 + \sqrt{17}}} |10\rangle, \quad (1.17)$$

$$E_2 = \sqrt{17}, \qquad |u_1\rangle = -\frac{\sqrt{17} - 1}{\sqrt{34 - 2\sqrt{17}}} |01\rangle + \frac{\sqrt{8}}{\sqrt{17 - \sqrt{17}}} |10\rangle, \quad (1.18)$$

$$E_3 = 5,$$
 $|u_3\rangle = -\frac{2}{\sqrt{5}}|00\rangle + \frac{1}{\sqrt{5}}|11\rangle.$ (1.19)

Рассмотрим далее пошаговое выполнение вариационного квантового алгоритма, который позволяет найти состояние, близкое к основному.

Первый шаг — выбор анзаца, т.е. унитарного преобразования $\hat{U}(\boldsymbol{\theta})$. В гамильтониан (1.15) не входят операторы вида $\hat{\sigma}_{k2}$ и $\hat{\sigma}_{k2}$ с $k \neq 2$, поэтому имеет смысл сразу выбирать анзац так, чтобы при действии на $k \neq 2$ он давал вектор состояния с вещественными коэффициентами. Других наводящих соображений относительно формы анзаца не видно, поэтому следует рассмотреть разные варианты. В общем случае вектор параметров $\boldsymbol{\theta}$ четырехмерен. В простейшем варианте анзац с четырехмерным вектором параметров $\boldsymbol{\theta} = (\xi, \lambda, \mu, \nu)$ можно выбирать как композицию экспонент

$$\hat{U}(\boldsymbol{\theta}) = e^{i\xi\hat{\sigma}_{02}} e^{i\lambda\hat{\sigma}_{03}} e^{i\mu\hat{\sigma}_{30}} e^{i\nu\hat{\sigma}_{11}}$$
(1.20)

операторов Паули, присутствующих в гамильтониане (1.15). Вычислим

вначале

$$e^{i\mu\hat{\sigma}_{30}}e^{i\nu\hat{\sigma}_{11}}|00\rangle = \left(\cos\mu\,\hat{\sigma}_{00} + i\sin\mu\,\hat{\sigma}_{30}\right)\left(\cos\nu\,|00\rangle + i\sin\nu\,|11\rangle\right)$$

$$= \cos\mu\cos\nu\,|00\rangle - \sin\mu\sin\nu\,|11\rangle + i\sin\mu\cos\nu\,|00\rangle + i\cos\mu\sin\nu\,|11\rangle$$

$$= e^{i\mu}\cos\nu\,|00\rangle + ie^{i\mu}\sin\nu\,|11\rangle = e^{i\mu}\cos\nu\,|00\rangle + e^{i(\mu+\pi/2)}\sin\nu\,|11\rangle.$$

Действуя на результат оператором $e^{i\lambda\hat{\sigma}_{03}}$, получим следующий промежуточный вектор состояния:

$$e^{i\lambda\hat{\sigma}_{03}}e^{i\mu\hat{\sigma}_{30}}e^{i\nu\hat{\sigma}_{11}}|00\rangle = e^{i\mu}\cos\nu\left(\cos\lambda\,\hat{\sigma}_{00} + i\sin\lambda\hat{\sigma}_{03}\right)|00\rangle$$

$$+ e^{i(\mu+\pi/2)}\sin\nu\left(\cos\lambda\,\hat{\sigma}_{00} + i\sin\lambda\hat{\sigma}_{03}\right)|11\rangle$$

$$= e^{i\mu}\cos\nu\left(\cos\lambda + i\sin\lambda\right)|00\rangle + e^{i(\mu+\pi/2)}\sin\nu\left(\cos\lambda + i\sin\lambda\right)|11\rangle$$

$$= e^{i(\mu+\lambda)}\cos\nu|00\rangle + e^{i(\mu+\pi/2-\lambda)}\sin\nu|11\rangle. \tag{1.21}$$

Очевидно, что этот анзац не является универсальным.

Варьируя параметры λ, μ, ν , можно получить основное состояние (1.16) с точностью до несущественного множителя $\mathrm{e}^{i(\mu+\pi/4)}$, например, при

$$\lambda = \pi/4, \quad \mu \in \mathbb{R}, \quad \cos \nu = 1/\sqrt{5}, \quad \sin \nu = 2/\sqrt{5}.$$
 (1.22)

Здесь μ — любое, поэтому к нужному результату приводит более простой анзац (при $\mu=0$) $\hat{U}(\boldsymbol{\theta})=\mathrm{e}^{i\lambda\hat{\sigma}_{03}}\mathrm{e}^{i\nu\hat{\sigma}_{11}}$, однако заранее это нам не известно. Более того основное состояние (1.16) можно достигнуть (что заранее также неизвестно и неочевидно) даже однопараметрическим анзацем

$$e^{i\nu\hat{\sigma}_{12}}|00\rangle = \left(\cos\nu\,\hat{\sigma}_{00} + i\sin\nu\,\hat{\sigma}_{12}\right)|00\rangle = \cos\nu\,|00\rangle + \sin\nu\,|11\rangle\,,$$

с теми же значениями $\cos \nu$ и $\sin \nu$, что и в (1.22).

Действуя на (1.21) оператором $e^{i\hat{\xi}\hat{\sigma}_{02}}$, получим вектор состояния

$$|\Phi\rangle = \hat{U}(\boldsymbol{\theta})|00\rangle$$

$$= \left(\cos\xi\,\hat{\sigma}_{00} + i\sin\xi\,\hat{\sigma}_{02}\right) \left(e^{i(\mu+\lambda)}\cos\nu|00\rangle + e^{i(\mu+\pi/2-\lambda)}\sin\nu|11\rangle\right)$$

$$= e^{i(\mu+\lambda)}\sin\xi\cos\nu|01\rangle - e^{i(\mu+\pi/2-\lambda)}\sin\xi\sin\nu|10\rangle$$

$$+ e^{i(\mu+\lambda)}\cos\xi\cos\nu|00\rangle + e^{i(\mu+\pi/2-\lambda)}\cos\xi\sin\nu|11\rangle, \quad (1.23)$$

который зависит от четырех параметров. Из формы данного вектора видно, что анзац (1.20) универсален (с учетом замечания о вещественности коэффициентов, сделанного выше). Основное состояние достигается при произвольном $\mu \in \mathbb{R}$ и

$$\xi = 0, \ \lambda = \{\pi/4, 7\pi/4\}, \ \cos\nu = 1/\sqrt{5}, \ \sin\nu = \{2/\sqrt{5}, -2/\sqrt{5}\}\$$
 (1.24)

или

$$\xi = \pi$$
, $\lambda = \{\pi/4, 7\pi/4\}$, $\cos \nu = -1/\sqrt{5}$, $\sin \nu = \{-2/\sqrt{5}, 2/\sqrt{5}\}$. (1.25)

Для сокращения записи имеет смысл освободиться в (1.23) от фазового множителя и записать вектор состояния в виде

$$|\Phi\rangle = \sin\xi \left(\cos\nu |01\rangle - e^{i(\pi/2 - 2\lambda)} \sin\nu |10\rangle\right) + \cos\xi \left(\cos\nu |00\rangle + e^{i(\pi/2 - 2\lambda)} \sin\nu |11\rangle\right) (1.26)$$

Второй шаг — вычисление энергии состояния, т.е. среднего значения $\langle \Phi | \hat{H} | \Phi \rangle$. Заметим, что первый и второй шаги должны выполняться на квантовых устройствах, а при классической симуляции алгоритма необходимо проводить явные вычисления. Из (1.15) и (1.26) находим

$$\begin{split} \hat{H} |\Phi\rangle &= \sin \xi \left(2\,\hat{\sigma}_{03} + \hat{\sigma}_{30} - 4\hat{\sigma}_{11} \right) \left(\cos \nu |01\rangle - \mathrm{e}^{i(\pi/2 - 2\lambda)} \sin \nu |10\rangle \right) \\ &+ \cos \xi \left(2\,\hat{\sigma}_{03} + \hat{\sigma}_{30} - 4\hat{\sigma}_{11} \right) \left(\cos \nu |00\rangle + \mathrm{e}^{i(\pi/2 - 2\lambda)} \sin \nu |11\rangle \right) \\ &= \sin \xi \left\{ \left(4\mathrm{e}^{i(\pi/2 - 2\lambda)} \sin \nu - \cos \nu \right) |01\rangle \right. \\ &\qquad \left. - \left(\mathrm{e}^{i(\pi/2 - 2\lambda)} \sin \nu + 4 \cos \nu \right) |10\rangle \right\} \\ &+ \cos \xi \left\{ \left(3\cos \nu - 4\mathrm{e}^{i(\pi/2 - 2\lambda)} \sin \nu \right) |00\rangle \right. \\ &\qquad \left. - \left(4\cos \nu + 3\mathrm{e}^{i(\pi/2 - 2\lambda)} \sin \nu \right) |11\rangle \right\}. \end{split}$$

Поскольку

$$\langle \Phi | = \sin \xi \left(\cos \nu \langle 01 | - e^{-i(\pi/2 - 2\lambda)} \sin \nu \langle 10 | \right)$$
$$+ \cos \xi \left(\cos \nu \langle 00 | + e^{-i(\pi/2 - 2\lambda)} \sin \nu \langle 11 | \right),$$

$$E_{\Phi} = \langle \Phi | \hat{H} | \Phi \rangle$$

$$= \sin^2 \xi \left\{ \cos \nu \left(4e^{i(\pi/2 - 2\lambda)} \sin \nu - \cos \nu \right) + \sin \nu \left(\sin \nu + 4e^{-i(\pi/2 - 2\lambda)} \cos \nu \right) \right\}$$

$$+ \cos^2 \xi \left\{ \cos \nu \left(3\cos \nu - 4e^{i(\pi/2 - 2\lambda)} \sin \nu \right) - \sin \nu \left(4e^{-i(\pi/2 - 2\lambda)} \cos \nu + 3\sin \nu \right) \right\}$$

$$= \sin^2 \xi \left(4\sin 2\lambda \sin 2\nu - \cos 2\nu \right) + \cos^2 \xi \left(3\cos 2\nu - 4\sin 2\lambda \sin 2\nu \right). \quad (1.27)$$

Разумеется, если взять значения ξ , λ , $\cos \nu$, $\sin \nu$ как в (1.24) или в (1.25), то мы получим энергию основного состояния (1.16), т.е. $E_{\Phi} = -5$.

Третий шаг — изменение значений параметров λ , μ , ν (с целью минимизации E_{Φ}) и возвращение к первому шагу; предполагается, что в начале выполнения алгоритма начальные значения параметров заданы. Из (1.27) видно, что на значение E_{Φ} параметр μ не влияет, а параметры λ , ν должны варьироваться в области $[0,\pi]\times[0,\pi]$. Однако изначально это неизвестно, поэтому все четыре параметра должны варьироваться в области $[0,2\pi]\times[0,2\pi]\times[0,2\pi]$. Имеет смысл установить независимость энергии от параметра μ (и ее зависимость от остальных параметров) в начале работы алгоритма.

Мы уже знаем, что глобальный минимум энергии достигается для четырех наборов параметров (1.24) и (1.25). Соответствующие собственные векторы, вычисленные по выражению (1.26) отличаются от (1.16) только фазовыми множителями. Теперь необходимо выяснить, имеются ли у функции (трех переменных) (1.27) другие локальные минимумы.

Используя систему Maple, вычислим производные

$$\partial_{\xi} E_{\Phi}, \ \partial_{\lambda} E_{\Phi}, \ \partial_{\nu} E_{\Phi},$$

$$A = \partial_{\xi}^{2} E_{\Phi}, \ B = \partial_{\lambda}^{2} E_{\Phi}, \ C = \partial_{\nu}^{2} E_{\Phi},$$

$$K = \partial_{\xi \lambda} E_{\Phi}, \ L = \partial_{\xi \nu} E_{\Phi}, \ M = \partial_{\lambda \nu} E_{\Phi}.$$

Находим

$$\partial_{\xi} E_{\Phi} = 4 \sin 2\xi \left(2 \sin 2\lambda \sin 2\nu - \cos 2\nu \right),$$

$$\partial_{\lambda} E_{\Phi} = -8 \cos 2\xi \cos 2\lambda \sin 2\nu,$$

$$\partial_{\nu} E_{\Phi} = \sin^{2} \xi \left(8 \sin 2\lambda \cos 2\nu + 2 \sin 2\nu \right) - \cos^{2} \xi \left(6 \sin 2\nu + 8 \sin 2\lambda \cos 2\nu \right),$$

$$A = 8 \cos 2\xi \left(2 \sin 2\lambda \sin 2\nu - \cos 2\nu \right),$$

$$B = 16 \cos 2\xi \sin 2\lambda \sin 2\nu,$$

$$C = 4 \cos^{2} \xi \left(4 \sin 2\lambda \sin 2\nu - 3 \cos 2\nu \right) - 4 \sin^{2} \xi \left(4 \sin 2\lambda \sin 2\nu - \cos 2\nu \right),$$

$$K = 16 \sin 2\xi \cos 2\lambda \sin 2\nu,$$

$$L = 4 \sin 2\xi \left(4 \sin 2\lambda \cos 2\nu + 2 \sin 2\nu \right),$$

$$M = -16 \cos 2\xi \cos 2\lambda \cos 2\nu.$$

Необходимые и достаточные условия минимума имеют вид

$$\partial_{\xi} E_{\Phi} = 0, \quad \partial_{\lambda} E_{\Phi} = 0, \quad \partial_{\nu} E_{\Phi} = 0,$$

$$A > 0, \quad \det \begin{pmatrix} A & K & L \\ K & B & M \\ L & M & C \end{pmatrix} > 0.$$

Снова проводя вычисления с помощью системы Maple, обнаруживаем четыре точки локального минимума с энергией $E_{\Phi}=-\sqrt{17}$:

$$\xi = \frac{\pi}{2}, \qquad \lambda = \frac{\pi}{4}, \qquad \nu = \pi - \frac{1}{2}\arctan(4),$$
 $\xi = \frac{\pi}{2}, \qquad \lambda = \frac{\pi}{4}, \qquad \nu = 2\pi - \frac{1}{2}\arctan(4),$
 $\xi = \frac{\pi}{2}, \qquad \lambda = \frac{3\pi}{4}, \qquad \nu = \frac{1}{2}\arctan(4),$
 $\xi = \frac{\pi}{2}, \qquad \lambda = \frac{3\pi}{4}, \qquad \nu = \pi + \frac{1}{2}\arctan(4).$

Таким образом, в процессе оптимизации целевой функции должны использоваться методы, которые позволяют избежать попадания в точку локального минимума, например, метод отжига.

1.5 Оптимизация

Глава 2

Вариационный квантовый алгоритм на основе метода отжига

2.1 Метод отжига

Метод отжига, как фундаментальная концепция в решении задач глобальной оптимизации, находит широкое применение в квантовых вычислениях, особенно в контексте вариационных квантовых алгоритмов. Основная идея метода заключается в постепенном снижении "температуры" системы, чтобы достичь состояния минимальной энергии. В этом разделе подробно рассмотрим как классический, так и квантовый подходы к отжигу, их теоретические основы и практическое применение.

Классический метод отжига основывается на аналогии с физическим процессом термического отжига, при котором материал медленно охлаждается, чтобы избежать образования дефектов и достичь состояния минимальной энергии. Математическое основание метода связано с распределением Больцмана, которое описывает вероятность состояния системы при заданной температуре T:

$$p(x) = \frac{1}{Z(T)} \exp\left(-\frac{E(x)}{k_B T}\right),\tag{2.1}$$

где E(x) — энергия состояния x, k_B — константа Больцмана, а Z(T) — статистическая сумма. Процесс отжига моделирует систему, которая может переходить между состояниями x и y с вероятностью, зависящей от разности энергий $\Delta E = E(y) - E(x)$:

$$p(x \to y) = \min\left(1, \exp\left(-\frac{\Delta E}{k_B T}\right)\right).$$
 (2.2)

С течением времени, температура T постепенно уменьшается, что приводит к уменьшению вероятности перехода в состояния с более высокой энергией, в то время как система стремится к состоянию глобального минимума энергии.

Квантовый алгоритм отжига использует преимущества квантовой механики, такие как суперпозиция и туннелирование, для более эффективного поиска глобального минимума. В отличие от классического подхода, квантовый отжиг позволяет системе преодолевать энергетические барьеры, используя когерентное туннелирование, что значительно увеличивает вероятность нахождения глобального минимума.

Квантовый отжиг моделируется с помощью временного гамильтониана, который постепенно изменяется от начального состояния к целевому:

$$H(t) = (1 - s(t))H_B + s(t)H_P, \tag{2.3}$$

где H_B — начальный гамильтониан, часто представляющий собой простую задачу, такую как сумма операторов Паули X, а H_P — проблемаспецифический гамильтониан. Функция s(t), изменяющаяся от 0 до 1, управляет эволюцией системы от начального состояния к состоянию минимальной энергии.

Эволюция квантовой системы описывается уравнением Шрёдингера:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(t) |\psi(t)\rangle,$$
 (2.4)

где \hbar — приведённая постоянная Планка. Это уравнение описывает, как квантовая система изменяется со временем под воздействием изменяющегося гамильтониана.

Важным аспектом квантового отжига является адъективная эволюция системы, которая позволяет системе оставаться в состоянии минимальной энергии в течение всего процесса. Это достигается за счёт медленного изменения параметра s(t) в соответствии с адъективным теоремой:

$$\frac{ds}{dt} \ll \frac{\Delta^2}{\hbar \left\| \frac{dH}{ds} \right\|},\tag{2.5}$$

где Δ — энергетический разрыв между основным и первым возбужденными состояниями гамильтониана.

2.2 Алгоритм

2.3 Сравнительные результаты тестирования

Заключение

Литература

- [1] V. V. Nikonov, A. N. Tsirulev. Pauli basis formalism in quantum computations. Volume 8, No 3, pp. 1 14, 2020. (doi:10.26456/mmg/2020-831)
- [2] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, vol. 2, p. 79, 2018.

 (quantum-journal:q-2018-08-06-79)
- [3] M. Cerezo, et al. Variational Quantum Algorithms. Nature Reviews Physics, vol. 3, pp. 625-644, 2021.

 (nature:42254-021-00348-9)
- [4] A. Peruzzo, et al. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, vol. 5, p. 4213, 2014. (nature:ncomms5213)
- [5] E. Farhi, J. Goldstone, and S. Gutmann. A Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1411.4028, 2014. (arXiv:1411.4028)
- [6] J. R. McClean, et al. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, vol. 18, p. 023023, 2016. (iopscience:1367-2630-18-2-023023)
- [7] A. Kandala, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, vol. 549, pp. 242-246, 2017.
 - (nature:nature23879)
- [8] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical Review Letters, vol. 103, no. 15, p. 150502,

2009.

(aps:PhysRevLett.103.150502)

[9] J. Biamonte, et al. Quantum machine learning. Nature, vol. 549, pp. 195-202, 2017.

(nature:nature23474)

- [10] А. А. Lopatin. Квантовая механика и её приложения. Санкт-Петербургский Государственный Университет. (math.spbu:user/gran/sb1/lopatin)
- [11] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon. Simulated Quantum Computation of Molecular Energies. Science, vol. 309, no. 5741, pp. 1704-1707, 2005.

 (science:1113479)
- [12] M. Schuld, I. Sinayskiy, F. Petruccione. *An introduction to quantum machine learning*. Contemporary Physics, vol. 56, no. 2, pp. 172-185, 2015.

(tandfonline:00107514.2014.964942)

- [13] A. Daskin, S. Kais. Decomposition of unitary matrices for finding quantum circuits: Application to molecular Hamiltonians. The Journal of Chemical Physics, vol. 141, no. 23, p. 234115, 2014.

 (aip:1.4904315)
- [14] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, A. Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, vol. 4, no. 1, p. 014008, 2018.

 (iopscience:2058-9565/aad3e4)
- [15] V. Havlicek, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, J. M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, vol. 567, pp. 209-212, 2019. (nature:s41586-019-0980-2)
- [16] N. Moll, P. Barkoutsos, L. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, et al. Quantum

optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, vol. 3, no. 3, p. 030503, 2018. (iopscience:2058-9565/aab822)

Приложение Python

```
import numpy as np
2 import sys
3 import io
4 from rich.progress import Progress, BarColumn, TextColumn, SpinnerColumn
5 from rich.panel import Panel
6 from typing import Tuple, List, Dict
8 # Импорт самописных util функций
9 from utils.console_and_print import console_and_print
10 from utils.print_pauli_table import print_pauli_table
from utils.read_hamiltonian_data import read_hamiltonian_data
12 from utils.print_hamiltonian import print_hamiltonian
13 from utils.print_composition_table import print_composition_table
  from utils.format_ansatz import format_ansatz
  from utils.initialize_environment import initialize_environment
16
  # Импорт констант
18 from constants.file_paths import HAMILTONIAN_FILE_PATH
  from constants.pauli import PAULI_MAP
  # Установка кодировки для корректного вывода
  sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8")
   sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding="utf-8")
24
25
26
   def generate_random_theta(m: int) -> np.ndarray:
       """Генерирует массив из m случайных углов в диапазоне [0, 2\pi)."""
27
      return np.random.uniform(0, 2*np.pi, size=m).astype(np.float64)
28
29
   def multiply_pauli(i: int, j: int) -> Tuple[complex, int]:
31
32
      Вычисляет произведение базисных операторов Паули.
      Возвращает: (коэффициент, индекс результата)
34
35
       if i == j:
          return (1, 0)
      if i == 0:
38
       return (1, j)
```

```
if j == 0:
40
           return (1, i)
41
       return PAULI_MAP.get((i, j), (1, 0))
42
43
44
   def pauli_compose(s1: List[int], s2: List[int]) -> Tuple[complex, List[int]]:
45
46
       Вычисляет композицию двух операторов Паули.
47
       Возвращает: (коэффициент, результирующий оператор)
48
49
       coefficient = 1.0
50
       result = []
51
       for a, b in zip(s1, s2):
52
           coeff, idx = multiply_pauli(a, b)
53
           coefficient *= coeff
54
           result.append(idx)
       return coefficient, result
56
57
   def calculate_ansatz(
59
       theta: np.ndarray, pauli_operators: List[Tuple[complex, List[int]]]
60
   ) -> Tuple[Dict[Tuple[int, ...], complex], str, str]:
62
       Вычисляет анзац в виде произведения экспонент операторов Паули.
63
       Возвращает: (словарь операторов, символьное представление, численное представление
       )
65
       operator_length = len(pauli_operators[0][1])
       result = {tuple([0] * operator_length): 1.0}
67
68
       for t, (_, op) in zip(theta, pauli_operators):
69
           cos_t = np.cos(t)
70
           sin_t = np.sin(t)
           new_result: Dict[Tuple[int, ...], complex] = {}
72
73
           for existing_op, existing_coeff in result.items():
74
               # Слагаемое c cos()*I
               identity_coeff = existing_coeff * cos_t
               new_result[existing_op] = new_result.get(existing_op, 0) + identity_coeff
78
               # Слагаемое с i*sin()*
79
               pauli_coeff = existing_coeff * 1j * sin_t
80
               compose_coeff, compose_op = pauli_compose(list(existing_op), op)
81
               final_coeff = pauli_coeff * compose_coeff
82
               final_op = tuple(compose_op)
               new_result[final_op] = new_result.get(final_op, 0) + final_coeff
84
85
           result = new_result
86
87
       symbolic_str, numeric_str = format_ansatz(pauli_operators, result)
88
       return result, symbolic_str, numeric_str
```

```
90
91
    def compute_uhu(
        u_dict: Dict[Tuple[int, ...], complex], h_terms: List[Tuple[complex, List[int]]]
93
     -> Dict[Tuple[int, ...], complex]:
94
95
        Вычисляет оператор U† H U.
96
        Возвращает: словарь {оператор: коэффициент}
97
        uhu_dict: Dict[Tuple[int, ...], complex] = {}
99
100
        for coeff_h, op_h in h_terms:
101
            for j_op, j_coeff in u_dict.items():
102
                conjugated_j_coeff = np.conj(j_coeff)
103
104
                c1, op_uh = pauli_compose(list(j_op), op_h)
105
                for k_op, k_coeff in u_dict.items():
106
                     c2, op_uhu = pauli_compose(op_uh, list(k_op))
107
                     total_coeff = conjugated_j_coeff * k_coeff * coeff_h * c1 * c2
109
                     # Стабилизация малых значений
110
                     if abs(total_coeff) < 1e-12:</pre>
                         continue
112
113
                     op_tuple = tuple(op_uhu)
114
                     uhu_dict[op_tuple] = uhu_dict.get(op_tuple, 0) + total_coeff
115
        return uhu_dict
116
118
   def calculate_expectation(uhu_dict: Dict[Tuple[int, ...], complex]) -> float:
119
        0.00
120
        Вычисляет <0|U^{\dagger}HU|O> для состояния |0...0>.
121
        Возвращает: ожидаемое значение
122
        0.00
123
        expectation = 0.0
124
        for op, coeff in uhu_dict.items():
125
            if all(p in {0, 3} for p in op):
126
                expectation += coeff.real
127
        return expectation
128
129
130
    def generate_neighbor_theta(
131
        current_theta: np.ndarray, step_size: float = 0.1
     -> np.ndarray:
133
        """Генерирует соседнее решение, добавляя случайное изменение к текущему theta."""
134
        perturbation = np.random.normal(scale=step_size, size=current_theta.shape)
135
        return np.clip(current_theta + perturbation, 0.0, 1.0)
136
137
138
   def simulated_annealing(
139
        initial_theta: np.ndarray,
```

```
pauli_operators: list,
141
        initial_temp: float = 1000.0,
142
        cooling_rate: float = 0.99,
143
        min_temp: float = 1e-5,
144
        num_iterations_per_temp: int = 500,
145
        step_size: float = 0.5,
146
   ) -> tuple:
147
        """Реализует алгоритм имитации отжига с термализацией."""
148
        current_theta = initial_theta.copy()
149
        best_theta = current_theta.copy()
150
        best_energy = float("inf")
151
        rng = np.random.default_rng()
152
        with Progress(
154
            SpinnerColumn(),
155
            TextColumn("[progress.description]{task.description}"),
156
            BarColumn(bar_width=None),
157
            TextColumn("[progress.percentage] {task.percentage:>3.0f}%"),
158
        ) as progress:
            task = progress.add_task("[cyan]Отжиг...", total=100)
160
161
            temp = initial_temp
            iteration = 0
163
164
            while temp > min_temp:
                for _ in range(num_iterations_per_temp):
166
                     # Генерация соседнего решения с адаптивным шагом
167
                     perturbation = rng.normal(0, step_size*(temp/initial_temp), size=
168
        current_theta.shape)
                     neighbor_theta = (current_theta + perturbation) % (2*np.pi)
169
170
                     # Вычисление энергии нового состояния
171
                     ansatz_dict, _, _ = calculate_ansatz(neighbor_theta, pauli_operators)
172
                     uhu_dict = compute_uhu(ansatz_dict, pauli_operators)
173
                     current_energy = calculate_expectation(uhu_dict)
174
175
                     # Критерий принятия решения
176
                     energy_diff = current_energy - best_energy
177
                     if energy_diff < 0 or rng.random() < np.exp(-energy_diff / temp):</pre>
178
                         current_theta = neighbor_theta.copy()
179
                         if current_energy < best_energy:</pre>
181
                             best_theta = current_theta.copy()
182
                             best_energy = current_energy
183
                     iteration += 1
185
                     if iteration % 100 == 0:
186
                         progress.update(task, advance=1)
187
188
                temp *= cooling_rate
189
```

```
return best_theta, best_energy
191
192
193
   def main():
194
        """Основная логика программы."""
195
        console = initialize_environment()
196
197
        # Явная проверка существования файла
198
        if not HAMILTONIAN_FILE_PATH.exists():
199
            msg = (
200
                f"Файл [bold]{HAMILTONIAN_FILE_PATH}[/] не найден!\n"
201
                "Убедитесь, что рядом с EXE есть папка [bold] params[/] с файлом [bold]
202
        hamiltonian_operators.txt[/]."
203
204
            console_and_print(console, Panel(msg, border_style="red"))
            return
206
        try:
207
            pauli_operators, pauli_strings = read_hamiltonian_data(HAMILTONIAN_FILE_PATH)
209
            print_hamiltonian(console, pauli_operators)
210
            print_pauli_table(console, pauli_operators)
            print_composition_table(console, pauli_compose, pauli_strings)
212
213
        except FileNotFoundError:
            console_and_print(
215
                console,
216
                Panel(
                     f"[red]Файл {HAMILTONIAN_FILE_PATH} не найден[/red]", border_style="
218
        red"
                ),
220
            )
            return
221
222
        if len(pauli_operators) < 2:</pre>
223
            console_and_print(
224
225
                Panel("[red]Требуется минимум 2 оператора Паули[/red]", border_style="red"
        ),
227
            return
228
229
        best_energy = float("inf")
230
        best_result = None
231
232
        # Собираем все результаты для анализа
233
        all_results = []
234
        for m in range(2, len(pauli_operators) + 1):
236
237
            initial_theta = generate_random_theta(m)
```

```
optimized_theta, energy = simulated_annealing(
239
                 initial_theta=initial_theta,
240
                 pauli_operators=pauli_operators,
241
                 initial_temp=100.0,
242
                 cooling_rate=0.95,
243
                 min_temp=1e-3,
244
                 num_iterations_per_temp=100,
245
                 step_size=0.1,
246
            )
248
            all_results.append(
249
                 {
250
                     "m": m,
                     "theta": optimized_theta,
252
253
                     "energy": energy,
                 }
            )
255
256
            # Обновляем лучший результат
            if energy < best_energy:</pre>
258
                 best_energy = energy
259
                 best_result = all_results[-1]
261
        _, ansatz_symbolic, ansatz_numeric = calculate_ansatz(
262
            best_result["theta"], pauli_operators[: best_result["m"]]
264
265
        console_and_print(
            console,
267
            Panel(
268
                 ansatz_symbolic,
269
                 title="[bold]Символьное представление анзаца[/]",
270
                 border_style="green",
271
            ),
272
        )
273
274
        console_and_print(
275
            console,
            Panel(
                 ansatz_numeric,
278
                 title="[bold] Численное представление анзаца[/]",
279
                 border_style="purple",
280
            ),
281
        )
282
        console_and_print(
284
            console,
285
            Panel(
                 f"{best_result[energy]:.6f}",
287
                 title="[bold]Энергия (0|U^{\dagger}HU|0 для состояния |0...0)[/]",
288
                 border_style="green",
```

```
290     ),
291    )
292
293     input(text)
294
295
296     if __name__ == "__main__":
297          main()
```