MATH 321: HOMEWORK 0 DUE THURSDAY, SEPT 8 BY 11:59PM

Problem 1. Consider the English statement "If it is low tide then I will snorkel and if it is not low tide then I will surf". Translate this sentence into a formula in propositional logic and construct a truth table for the formula.

Problem 2. Consider the logical connect ↓, called nor, given by the following truth table.

p	q	$p \downarrow q$
F	F	T
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	F	\mathbf{F}
\mathbf{T}	Τ	\mathbf{F}

Show that $p \downarrow q$ is equivalent to $\neg(p \lor q)$ by constructing a truth table for the latter formula. Come up with formulae using only \downarrow which are equivalent to $\neg p$, $p \lor q$, and $p \land q$. Verify they are equivalent by constructing their truth tables.

Problem 3. Verify the two DeMorgan's laws by constructing truth tables.

Problem 4. Find a formula using only \neg and \rightarrow which is equivalent to $p \leftrightarrow q$. Verify they are equivalent by constructing their truth tables.

Problem 5. Consider the two formulae

$$\neg \neg \neg (a \to (\neg \neg b \lor a))$$
 and $(\neg a \land b) \to \neg a$.

Construct truth tables for each formula to determine whether each is a tautology, a contradiction, or neither.