Car Plate Recognition and Reconstruction with Deep Learning

Alessandro Tagliaferri – Federico Navarra Computer Vision 2024-2025 Sapienza University of Rome

Table of contents

Task overview Dataset Proposed methods State of the Art Results Conclusions

Task overview

The goal is to develope a complete pipeline for **Car Plate Detection and Recognition** using Deep Learning.

Objectives

- Implement a simple baseline for both detection and recognition.
- Reproduce the proposed pipeline:
 - → YOLOv5 for detection
 - → **PDLPR** for recognition
- Train, evaluate, and compare models on a real-world dataset (CCPD).
- Investigate alternative recognition models beyond those strictly required.

Presentation Title - Name Surname

Two parts

Detection

Predict plate box on the image and crop it

Recognize plate number from cropped image

Presentation Title - Name Surname

Dataset

CCPD 2019 dataset

Key Features:

- Over 250,000 images of cars with visible license plates.
- Captured in unconstrained scenarios: varying lighting, angles, distances, occlusions, and weather conditions.
- Each image comes with annotated bounding boxes and plate text labels.
- Plate numbers include both
 Chinese characters and
 alphanumeric digits.

CCPD 2019

State of the art

Two steps approach

Most recent works adopt a **twostage pipeline**:

- **1. Detection:** Locate the license plate in the input image.
- 2. Recognition: Decode the characters from the cropped plate. Detection is typically solved with object detection models (YOLO, Faster R-CNN, SSD...).

 Recognition relies on OCR engines or sequence-based neural networks (CRNN, Transformer, etc).

S.O.T.A

Method	Overall Accuracy	$egin{aligned} { m Base} \ (100{ m k}) \end{aligned}$	DB (20k)	FN (20k)	$egin{array}{c} ext{Rotate} \ (10 ext{k}) \end{array}$	$egin{array}{c} ext{Tilt} \ (10 ext{k}) \end{array}$	$egin{array}{c} ext{Weather} \ (10 ext{k}) \end{array}$	$rac{ ext{Challenge}}{ ext{(10k)}}$	$egin{array}{c} { m Speed} \\ { m (FPS)} \end{array}$
YOLOv5-PDLPR	99.4	99.9	99.5	99.5	99.5	99.3	99.4	94.1	159.8
YOLOv5	96.7	97.2	97.7	92.9	98.9	98.9	99.0	90.6	218
RPNET	95.5	98.5	96.9	94.3	90.8	92.5	87.9	85.1	61

Proposed methods

From Baseline to Final Model

We implemented a **simple baseline**for both detection and recognition
We reproduced and trained the **YOLOv5 + PDLPR model** as proposed
in the reference paper

Explored **alternative models** like Holistic CNN , LPRNET and CRNN for recognition

Trained and evaluated all models on the **CCPD dataset**, using consistent metrics

Detection – Baseline with SimpleCNN

Detection – Yolo_v5 for Plate Recogniction

- One-stage detector with real-time performance
- High detection speed with good accuracy
- Uses CSPDarknet backbone and PANet for feature fusion.
- Outputs bounding boxes with confidence scores
- Fine-tuned on CCPD with pretrained COCO weights
- Cropped plates from YOLO detections used for recognition

Detection with Yolo

Recogniction - Holistic CNN vs CRNN vs LPRNet

Model	Model Architecture	Output Type	Loss Function	Robust- ness	Strengths	Weaknesses
Holistic CNN	Fully Conv. CNN	Fixed-length classification vector	Cross Entropy	Low	Fast, simple, lightweight	Sensitive to distortions and variations
CRNN	CNN + BiLSTM + CTC	Variable-length sequence	CTC	Medium	handles variable-length outputs effectively	Slower, less efficient
LPRNet	Lightweight CNN + sequence head	Variable-length logits	CTC	High	High inference speed with good accuracy	Slightly lower accuracy than transformer models
PDLPR	CNN + Transformer decoder	Character sequence	Cross Entropy	Very High	Robust, state-of-the-art performance	Complex architecture, long training

PDLPR - License Plate Character Recognition

PDLPR Model Architecture

Our setup

DATASET

100k images sampled from CCPD-base Train/Eval 80/20 Used cropped plates from YOLOv5 with IoU > 0.6 for recognition training

DETECTION

Pretrained YOLOv5s

Fine-tuned on our subset

RECOGNITION

Input: 48×144 cropped plates

Augmentations: color jitter,

rotation, erasing

Results

Performance results and output plots

Detection performance: YOLOv5

outperforms CNN baseline

Recognition accuracy: PDLPR shows

best results among tested models

CRNN and Holistic CNN show

competitive performance but lower

generalization

Visual samples: detection boxes +

predicted license plates

Error cases: mainly due to occlusion,

blur, or incorrect crops

Detection – SimpleCNN vs Yolo_v5

The bounding box is considered to be correct if and only if its IoU with the ground truth bounding box is more than 70%

YOLO_v5 metrics

Category	Total Images	$\begin{array}{c} {\rm Images~with} \\ {\rm IoU} > 0.7 \end{array}$	Percentage (%)
blur	20611	16643	80.8
challenge	50003	45586	91.2
db	10132	6193	61.1
fn	20967	15893	75.8
rotate	10053	9450	94.0
tilt	30216	24525	81.2
weather	9999	9825	98.3
base	199996	198764	99.4

Distribution of YOLO Prediction IoUs on base dataset

Recognition baseline models performance

Model	$\begin{array}{c} \text{Sequence} \\ \text{Accuracy } (\%) \end{array}$	Character Accuracy (%)		
Holistic CNN	24.2	82.9		
CRNN	98.3	99.5		
LPRNet	99.1	99.8		

Performance comparison of recognition models on the base test-set

- All models trained on 20k images from base dataset.
- High accuracy on training-like data, low generalization on unseen styles.
- Holistic CNN struggles with full sequence prediction.

These baselines show promising results on the base set, but fail to generalize effectively beyond it

Possible improvements could be train on a larger amount of images and enhance data augmentation

PDLPR metrics on different test datasets

Dataset	$\begin{array}{c} \textbf{Sequence} \\ \textbf{Accuracy} \ (\%) \end{array}$	Character Accuracy (%)
base	98.7	99.7
blur	21.7	71.6
db	33.8	76.2
fn	62.1	89.6
rotate	65.3	91.7
weather	95.6	99.1
challenge	51.2	85.6
tilt	68.4	91.7

PDLPR model - Successes and Failures

Pred: 皖A67B56

Conclusions

What we learned and how we can improve

Summary of **key findings** from our experiments

Insights on model **performance** and **comparison**

Ideas for improving the system in **future work**

Summary of key findings

PDLPR delivered the best recognition results due to its dedicated **parallel decoding** and feature extraction.

YOLOv5 significantly outperformed the baseline CNN in detection accuracy and generalization.

LPRNet and **CRNN** were useful for comparison, but struggled with complex license plates.

End-to-end performance was strongly influenced by **detection quality** and **input clarity.**

Future Work

Collect and include more diverse real-world plate images to improve model generalization

Add robust augmentations

Add robust augmentations (blur, occlusion, brightness) to enhance generalization

Experiment with end-toend joint training

Integrate both tasks in a unified end-to-end architecture for improved accuracy

References

- Papers:

- 1. Tao, L., Hong, S., Lin, Y., Chen, Y., He, P. and Tie, Z. (2024). A Real-Time License Plate Detection and Recognition Model in Unconstrained Scenarios. Sensors, 24(9), 2791
- 2. Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; Huang, L. Towards end-to-end license plate detection and recognition: A large dataset and baseline. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
- 3. R. K. Prajapati, Y. Bhardwaj, R. K. Jain and D. Kamal Kant Hiran, "A Review Paper on Automatic Number Plate Recognition using Machine Learning: An In-Depth Analysis of Machine Learning Techniques in Automatic Number Plate Recognition: Opportunities and Limitations," 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), Ghaziabad, India, 2023, pp. 527-532
- Dataset:

https://github.com/detectRecog/CCPD

- Slides:

https://github.com/pietro-nardelli/sapienza-ppt-template

Thank you for the attention!

