THE HYDROGEN ATOM

General Chemistry I, Lecture Series 6 Pengxin Liu

Reading: OGB8 §5.1, YY §2.3

The first: Bohr Model

Old Quantum theory

- The electron orbits the nucleus. Each orbit is a circle specified by an angular momentum $L = nh/2\pi$ ($n \in \mathbb{N}$).
- The electron is stable in these orbits, but gains or loses energy when jumping between the orbits.

The second: Standing Wave Model

The third: Schrodinger equation

$$rac{-\hbar^2}{2m}rac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$$

$$-rac{\hbar^2}{2\mu r^2}igg[rac{\partial}{\partial r}igg(r^2rac{\partial}{\partial r}igg)+rac{1}{\sin heta}rac{\partial}{\partial heta}igg(\sin hetarac{\partial}{\partial heta}igg)+rac{1}{\sin^2 heta}rac{\partial^2}{\partialarphi^2}igg]+V\psi(r, heta,arphi) = E\psi(r, heta,arphi)$$

Spherical Polar Coordinates 球极坐标

$$egin{aligned} x &= r\sin heta\cosarphi \ y &= r\sin heta\sinarphi \ z &= rcos heta \end{aligned}$$

Wave function of hydrogen atom

General solution

$$E_n=-rac{m_e e^4}{8\epsilon_0^2 h^2 n^2}$$

$$\psi_{n\ell m}(r, \theta, \phi) = R_{n\ell}(r)Y_{\ell m}(\theta, \phi)$$

$$R_{nl}(r) = -\left[\left(\frac{2}{na_0}\right)^3 \frac{(n-l-1)!}{2n\{(n+l)!\}^3}\right]^{1/2} \left(\frac{2r}{na_0}\right)^l e^{-r/na_0} L_{n+l}^{2l+1}(2r/na_0)$$

$$Y_{lm}(\theta,\phi) = (-1)^m \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{1/2} P_l^m(\cos\theta) e^{im\phi}$$

Outline

- Atomic orbitals: Appearance
 - Quantum number
 - Oscillations in 1D, 2D and 3D
 - Shape of H atomic orbitals
- Atomic orbitals: Size
 - Most probable radius r_{mp}

The Principal Quantum Number 主量子数 (n)

$$E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2 n^2}$$

• The Principal Quantum Number 主量子数 (n): One of three quantum numbers that tells the the energy of the electron and the average distance of an electron from the nucleus

• n= 1, 2, 3, 4, ...

n in 1D Standing Wave

The n^{th} Wave function: $\psi_n(x) \propto \sin\left(n\pi\frac{x}{L}\right)$, n = number of nodes + 1.

$$2\pi r = \lambda$$

$$2\pi r = 2\lambda$$

n in oscillations of a Round Plate

The 1s Wave in 3D

No nodes.

$$n = 1$$
, $l = 0 \Longrightarrow 1s$

The 2s Wave in 3D

1 nodal sphere (radial node)

$$n = 2$$
, $l = 0 \Longrightarrow 2s$

2s orbital cross section

The 3s Orbital

Comparison of 1s, 2s, 3s Orbitals

Wave function of hydrogen atom

General solution

$$E_n=-rac{m_e e^4}{8\epsilon_0^2 h^2 n^2}$$

$$R_{nl}(r) = -\left[\left(\frac{2}{na_0}\right)^3 \frac{(n-l-1)!}{2n\{(n+l)!\}^3}\right]^{1/2} \left(\frac{2r}{na_0}\right)^l e^{-r/na_0} L_{n+l}^{2l+1}(2r/na_0)$$

$$Y_{lm}(\theta,\phi) = (-1)^m \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{1/2} P_l^m(\cos\theta) e^{im\phi}$$

• The Azimuthal(Angular) Quantum Number 角(动量)量子数 (I): One of three that describes the shape of the region of space occupied by an electron. The allowed values of I depend on the value of n and can range from 0 to n − 1:

```
• I = 0,1,..,2, 3,...(n-1)
```

```
• n = 1, l = 0 (s)
```

•
$$n = 2, I = 0, 1$$
 (s, p)

•
$$n = 3, I = 0, 1, 2$$
 (s, p, d)

• s, p, d, f, g, h, i

• The Magnetic Quantum Number 磁量子数 (m): One of three that describes the orientation of the region of space occupied by an electron with respect to an applied magnetic field. The allowed values of m depend on the value of I: m can range from -I to I in integral steps:

•
$$m = -1, -1+1, ... 0, ... 1-1, 1$$

- I = 0, m = 0
- \cdot I = 1, m = -1, 0, 1
- I = 2, m = -2, -1, 0, 1, 2

n	/	Subshell Designati on	m_l	Number of Orbitals in Subshell	Number of Orbitals in Shell
1	0	1 <i>s</i>	0	1	1
2	0	2 <i>s</i>	0	1	4
	1	2 <i>p</i>	-1, 0, 1	3	
3	0	3 <i>s</i>	0	1	9
	1	3 <i>p</i>	-1, 0, 1	3	
	2	3 <i>d</i>	-2, -1, 0, 1, 2	5	
4	0	4 <i>s</i>	0	1	16
	1	4 <i>p</i>	-1, 0, 1	3	
	2	4 <i>d</i>	-2, -1, 0, 1, 2	5	
	3	4 <i>f</i>	-3, -2, -1, 0, 1, 2, 3	7	

An orbital with quantum numbers n and I has I angular nodes and n-I-1 radial nodes, giving a total of n-1 nodes. An angular node is defined by a plane. A radial node is defined by a spherical surface.

Orbital Energy

Bohr, OGB8 p.143

$$E_n = -\frac{Ry}{n^2}$$
,
Ry = 2.18×10⁻¹⁸ J

= 13.6 eV

Outline

- Atomic orbitals: Appearance
 - Quantum number
 - Oscillations in 1D, 2D and 3D
 - Shape of H atomic orbitals
- Atomic orbitals: Size
 - Most probable radius r_{mp}

The 1s Wave

主量子数

Principal quantum number n =Total number of nodes + 1

角(动量)量子数

Angular quantum number / = Number of angular nodes

$$I = 0, 1, 2, 3... \implies s, p, d, f...$$

No nodes.

$$n = 1, I = 0 \Longrightarrow 1s$$

The 2s Wave

1 nodal ring (radial node)

$$n = 2, I = 0 \Longrightarrow 2s$$

The 2p Wave

1 nodal line (angular node)

$$n = 2, l = 1 \implies 2p$$

The 3s Wave

2 nodal rings (radial nodes)

$$n = 3, l = 0 \implies 3s$$

The 3p Wave

1 nodal ring (radial node)

1 nodal line (angular node)

$$n = 3, l = 1 \implies 3p$$

The 3d Wave

2 nodal lines (angular nodes)

$$n = 3, l = 2 \implies 3d$$

Outline

- Atomic orbitals: Appearance
 - Quantum number
 - Oscillations in 1D, 2D and 3D
 - Shape of H atomic orbitals
- Atomic orbitals: Size
 - Most probable radius r_{mp}

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

The 2p Wave in 3D

2p orbital cross section

1 nodal plane (angular node)

$$n = 2, l = 1 \implies 2p$$

The $2p_x$ and $2p_y$ Orbitals

The 3p Orbitals

0.06

0.04

0.02

-0.02

-0.04

The 3d Wave in 3D

3d orbital cross section

2 nodal planes (angular nodes)

$$n = 3, l = 2 \implies 3d$$

The 3d Orbitals (1)

The 3d Orbitals (2)

Comparison of 3s, 3p, 3d Orbitals

Outline

- Atomic orbitals: Appearance
 - Quantum number
 - Oscillations in 1D, 2D and 3D
 - Shape of H atomic orbitals
- Atomic orbitals: Size
 - Most probable radius r_{mp}

Wave function of hydrogen atom

General solution

$$E_n=-rac{m_e e^4}{8\epsilon_0^2 h^2 n^2}$$

$$R_{nl}(r) = -\left[\left(\frac{2}{na_0}\right)^3 \frac{(n-l-1)!}{2n\{(n+l)!\}^3}\right]^{1/2} \left(\frac{2r}{na_0}\right)^l e^{-r/na_0} L_{n+l}^{2l+1}(2r/na_0)$$

$$Y_{lm}(\theta,\phi) = (-1)^m \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{1/2} P_l^m(\cos\theta) e^{im\phi}$$

TABLE 5.2 Appler and Color Functions for One-Electron Atoms

Angular Part $Y(\theta, \phi)$

Radial Part $R_{n\ell}(r)$

$$\ell = 0 \left\{ Y_{s} = \left(\frac{1}{4\pi} \right)^{1/2} \right\}$$

$$R_{1s} = 2 \left(\frac{Z}{a_{0}} \right)^{3/2} \exp(-\sigma)$$

$$R_{2s} = \frac{1}{2\sqrt{2}} \left(\frac{Z}{a_{0}} \right)^{3/2} (2 - \sigma) \exp(-\sigma/2)$$

$$R_{3s} = \frac{2}{81\sqrt{3}} \left(\frac{Z}{a_{0}} \right)^{3/2} (27 - 18\sigma + 2\sigma^{2}) \exp(-\sigma/3)$$

$$R_{2p} = \frac{1}{2\sqrt{6}} \left(\frac{Z}{a_{0}} \right)^{3/2} \sigma \exp(-\sigma/2)$$

$$R_{3p} = \frac{1}{81\sqrt{6}} \left(\frac{Z}{a_{0}} \right)^{3/2} \sigma \exp(-\sigma/2)$$

$$R_{3p} = \frac{4}{81\sqrt{6}} \left(\frac{Z}{a_{0}} \right)^{3/2} (6\sigma - \sigma^{2}) \exp(-\sigma/3)$$

$$Y_{d_{x}} = \left(\frac{15}{4\pi} \right)^{1/2} \sin\theta \cos\theta \cos\phi$$

$$Y_{d_{y}} = \left(\frac{15}{4\pi} \right)^{1/2} \sin\theta \cos\theta \sin\phi$$

$$R_{3d} = \frac{4}{81\sqrt{30}} \left(\frac{Z}{a_{0}} \right)^{3/2} \sigma^{2} \exp(-\sigma/3)$$

$$Y_{d_{y}} = \left(\frac{15}{16\pi} \right)^{1/2} \sin\theta \cos\theta \sin\phi$$

$$Y_{d_{y}} = \left(\frac{15}{16\pi} \right)^{1/2} \sin^{2}\theta \sin2\phi$$

$$Y_{d_{x^{2}-y^{2}}} = \left(\frac{15}{16\pi} \right)^{1/2} \sin^{2}\theta \cos2\phi$$

$$\sigma = \frac{Zr}{a_{0}} \qquad a_{0} = \frac{\epsilon_{0}h^{2}}{\pi e^{2}m} = 0.529 \times 10^{-10} \text{ m}$$

Wave Function of the 1s Orbital

$$\psi_{1s} = \frac{1}{\sqrt{\pi}} a_0^{-3/2} \cdot \exp\left(-\frac{r}{a_0}\right)$$

Bohr radius $a_0 = 53 \text{ pm} = 0.53 \text{ Å}$

1 Ångstrom = 10^{-10} m

Wave Function of the 2s Orbital

 $7.1a_0$

0 L

0.5

2.5

2

1.5

 $r(10^{-10} m)$

Comparison of 1s, 2s, 3s Orbitals

 $2a_0$

Spherical Shell

$$A = 4\pi r^2$$

$$dV = Adr = 4\pi r^2 dr$$

TABLE 5.2

Angular and Radial Parts of Wave Functions for One-Electron Atoms

Angular Part $Y(\theta, \phi)$

$$\ell = 0 \left\{ Y_s = \left(\frac{1}{4\pi} \right)^{1/2} \right\}$$

$$\ell = 1 \begin{cases} Y_{\rho_x} = \left(\frac{3}{4\pi}\right)^{1/2} \sin\theta \cos\phi \\ Y_{\rho_y} = \left(\frac{3}{4\pi}\right)^{1/2} \sin\theta \sin\phi \\ Y_{\rho_z} = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta \end{cases}$$

Radial Part $R_{n\ell}(r)$

$$R_{1s} = 2 \left(\frac{Z}{a_0}\right)^{3/2} \exp(-\sigma)$$

$$R_{2s} = \frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} (2 - \sigma) \exp(-\sigma/2)$$

$$R_{3s} = \frac{2}{81\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} (27 - 18\sigma + 2\sigma^2) \exp(-\sigma/3)$$

$$\ell = 1 \begin{cases} Y_{p_x} = \left(\frac{3}{4\pi}\right)^{1/2} \sin\theta \cos\phi & R_{2p} = \frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma \exp(-\sigma/2) \\ Y_{p_y} = \left(\frac{3}{4\pi}\right)^{1/2} \sin\theta \sin\phi & R_{3p} = \frac{4}{81\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} (6\sigma - \sigma^2) \exp(-\sigma/3) \end{cases}$$

$$P = |\psi|^2 dV = R^2 Y^2 dV$$
$$= R^2 \cdot \frac{1}{4\pi} \cdot 4\pi r^2 dr$$
$$= r^2 R^2 dr$$

(a)

Wave Function of the $2p_z$ Orbital

Radial Distribution

For H atom, r(3s) > r(3p) > r(3d)

Orbital Radius

Most probable radius r_{mp}

For Bohr Model: $r_n = n^2 a_0$ For 1s, 2p, 3d, ...: $r_{mp,n} = n^2 a_0$

Old vs. New Quantum Theory

Niels Bohr (Copenhagen, Cambridge, 1885–1962)

Erwin Schrödinger (Zürich, 1887–1961)

Orbital 轨道; 轨域

Orbital Angular Momentum

$$L = \sqrt{I(I+1)} \cdot h/2\pi \approx I \cdot h/2\pi$$

For 1s, 2s orbitals: I = 0, L = 0.

For 2p, 3p orbitals: I = 1, $L = \sqrt{2} \hbar$, L can take 3 orientations.

For 3*d*, 4*d* orbitals: I = 2, $L = \sqrt{6} \hbar$, *L* can take 5 orientations.

磁量子数 Magnetic quantum number *m*

 $L_{\rm n} = nh/2\pi$ in two dimensions

The fourth Quantum Number

The fourth Quantum Number

Summary

Principal quantum number n = Total number of nodes + 1n = 1, 2, 3, ...

Angular momentum quantum number I = Number of nodal planesI = 0, 1, 2, ..., n - 1.

$$E_n = -\frac{13.6 \text{ eV}}{n^2}$$

For 1s, 2p, 3d, ...:
$$r_{mp,n} = n^2 a_0$$

2s, 3s, 2p exhibit penetration effect.

Midterm 1 on Wednesday Oct. 30th

