Théorie des langages rationnels : THLR CM 7

Uli Fahrenberg

EPITA Rennes

S3 2022

Aperçu

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Dernièrement : Automates finis

- poly chapitre 4, sections 4.1.1, 4.1.2, 4.1.4 première moitié, 4.1.5
- plus la moitié de section 4.2.2

Dernièrement : Automates finis

Définition

Un automate fini (à transitions spontanées) : $A = (\Sigma, Q, Q_0, F, \delta)$:

- ullet Σ : ensemble fini de symboles, Q : ensemble fini d'états
- $Q_0 \subseteq Q$: états initiaux, $F \subseteq Q$: états finaux
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: relation de transition
- on note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$

Définition (Sémantique de A)

- Un calcul dans $A: \sigma = q_1 \stackrel{a_1}{\longrightarrow} q_2 \stackrel{a_2}{\longrightarrow} \cdots \stackrel{a_{n-1}}{\longrightarrow} q_n$
- L'étiquette d'un calcul : $\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*$
- Un calcul réussi : $q_1 = q_0$ et $q_n \in F$
- Le langage reconnu par A: $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}$

Variants

Un automate fini (à transitions spontanées) : $A = (\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: la relation de transition

Définition

- A est sans transitions spontanées si $\delta \subseteq Q \times \Sigma \times Q$.
- A est complet si $\forall q \in Q : \forall a \in \Sigma : |\{r \in Q \mid (q, a, r) \in \delta\}| \ge 1$.
- A est déterministe si $\delta \subseteq Q \times \Sigma \times Q$, $|Q_0| = 1$ et $\forall q \in Q : \forall a \in \Sigma : |\{r \in Q \mid (q, a, r) \in \delta\} \leq 1$.

On les a vu dans l'ordre

- automates finis déterministes complets
- automates finis déterministes
- automates finis (sans transitions spontanées)
- automates finis (à transitions spontanées)

Dernièrement : Langages reconnaissables

Définition

Un langage L est reconnaissable si \exists un automate fini A t.q. L = L(A).

syntaxe

sémantique

langages reconnaissables

|| ✓
langages reconnaissables
|| ?
langages reconnaissables
|| ✓
langages reconnaissables
|| || ↑

langages rationnelles

aut. finis à trans. spontanées

expressions rationnelles

Dernièrement : Algorithme de Thompson

• pour traduire une expression rationnelle e en automate fini A(e), inductivement

•
$$e_1e_2 \mapsto A(e_1) \xrightarrow{\varepsilon} A(e_2) \xrightarrow{\varepsilon}$$

Déterminisation

Automate des parties

Définition

Soit $A=(\Sigma,Q,Q_0,F,\delta)$ un automate fini. L'automate des parties de A est l'automate fini déterministe complet $A'=(\Sigma,Q',q'_0,F',\delta')$ définit comme suite :

- $Q' = \mathcal{P}(Q)$, l'ensemble des parties de Q,
- $q_0' = Q_0$,
- $F' = \{ P \subseteq Q \mid P \cap F \neq \emptyset \}$, et
- $\delta'(P, a) = \{ q \in Q \mid \exists p \in P : (p, a, q) \in \delta \}.$

Exemple (sur tableau)

Exemple (sur tableau)

• et ça marche aussi avec transitions spontanées :

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

- **1** Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

- **1** Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

- **1** Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.
- Soit $Q_1 = \delta'(Q_0, a_1)$, $Q_2 = \delta'(Q_1, a_2)$ etc., alors $\sigma' = Q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} Q_n$ est un calcul dans A' t.q. $\lambda(\sigma') = w$.

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

- Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- ② Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.
- Soit $Q_1 = \delta'(Q_0, a_1)$, $Q_2 = \delta'(Q_1, a_2)$ etc., alors $\sigma' = Q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} Q_n$ est un calcul dans A' t.q. $\lambda(\sigma') = w$.
- **3** On a $q_i \in Q_i$ pour tout i, donc $q_n \in Q_n \cap F$, c.à.d. $Q_n \in F'$, alors σ' est un calcul réussi, donc $w \in L(A')$.

Théorème

Pour tout automate fini A il existe un automate fini déterministe complet A' tel que L(A') = L(A).

Démonstration.

- **1** Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- Soit A' l'automate des parties de A, on montre que L(A') = L(A).
- Soit $w \in L(A)$, alors il existe un calcul réussi $\sigma = q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} q_n$ dans A t.q. $\lambda(\sigma) = w$.
- Soit $Q_1 = \delta'(Q_0, a_1)$, $Q_2 = \delta'(Q_1, a_2)$ etc., alors $\sigma' = Q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} Q_n$ est un calcul dans A' t.q. $\lambda(\sigma') = w$.
- **9** On a $q_i \in Q_i$ pour tout i, donc $q_n \in Q_n \cap F$, c.à.d. $Q_n \in F'$, alors σ' est un calcul réussi, donc $w \in L(A')$.

Et l'autre direction?

Le non-déterminisme paye

- difficile d'inventer un traduction directe des expressions rationnelles en automates finis déterministes
- le non-déterminisme est utile pour des spécifications partielles
- des automates finis non-déterministes peuvent être exponentiellement plus distinctes que des automates finis déterministes :

Exercice

Pour $n \ge 2$ soit A_n l'automate fini comme suit :

1 Trouver une expression rationnelle e_n telle que $L(e_n) = L(A_n)$.

Quelle est le nombre d'états le plus petit d'un automate fini déterministe A'_n tel que $L(A'_n) = L(A_n)$?

Exercice

Pour $n \ge 2$ soit A_n l'automate fini comme suit :

① Trouver une expression rationnelle e_n telle que $L(e_n) = L(A_n)$.

$$(a+b)^*b(a+b)^{n-1}$$

Quelle est le nombre d'états le plus petit d'un automate fini déterministe A'_n tel que $L(A'_n) = L(A_n)$?

Exercice

Pour $n \ge 2$ soit A_n l'automate fini comme suit :

① Trouver une expression rationnelle e_n telle que $L(e_n) = L(A_n)$.

$$(a+b)^*b(a+b)^{n-1}$$

Quelle est le nombre d'états le plus petit d'un automate fini déterministe A'_n tel que $L(A'_n) = L(A_n)$?

 2^n

