DSGE Models: Dynamic Optimization and Solution Methods

Willi Mutschler

December 10, 2015

- ► A DSGE model consists of optimality equations, dynamic choice is use of ressources in different time periods
- ▶ There are 2 approaches to get these optimality conditions
 - 1. Dynamic programming: Bellman equation and principle of optimality
 - Lagrange method: Pontryagin's maximum principle and Lagrange multiplies

▶ Maximiere Zielfunktion über drei Perioden (t = 0, 1, 2)

$$\max_{\{c_t\}_{t=0}^3} \left\{ \sum_{t=0}^2 \beta^t u(x_t, y_t) \right\}$$
 (1)

unter der Nebenbedingung

$$x_{t+1} = f(x_t, y_t) + \varepsilon_{t+1} \tag{2}$$

mit β Diskontfaktor, $u(x_t,y_t)$ Nutzen für Periode t, der abhängen kann vom $n_x \times 1$ Vektor x_t von Zustandsvariablen und n_y Vektor y_t von Kontrollvariablen; f ist eine n_x vektorwertige Funktion und ε_t ein vektor mit zufälligen Schocks.

- ▶ Zunächst: Behandle ε_{t+1} bekannt zum zeitpunkt t und konstant (deterministischer Optimierungsproblem)
- Assume: u and f differenzierbar und konkav, wir betrachten nur innere Lösungen

Mit Lagrange multiplikatoren

▶ Definiere $n_{x} \times 1$ Vektoren λ_{1} und λ_{2} von Lagrange Multiplikatoren und forme den Lagrengean

$$\mathcal{L} = u(x_0, y_0) + \beta u(x_1, y_1) + \beta^2 u(x_2, y_2) - \beta \lambda_1' [x_1 - f(x_0, y_0) - \varepsilon_1] - \beta^2 \lambda_2' [x_2 - f(x_1, y_1) - \varepsilon_2]$$
 (3)

wobei x_0 als gegeben und Unbekannte: y_0, y_1, y_2, x_1, x_2 .

▶ Differenziere \mathcal{L} mit Respekt zu jedem y_t und jedem x_t ergibt:

$$\beta^{-2} \frac{\partial \mathcal{L}}{\partial y_2} = \frac{\partial}{\partial y_2} u(x_2, y_2) = 0 \tag{4}$$

$$\beta^{-1} \frac{\partial \mathcal{L}}{\partial y_1} = \frac{\partial}{\partial y_1} u(x_1, y_1) + \beta \frac{\partial}{\partial y_1} f'(x_1, y_1) \lambda_2 = 0$$
 (5)

$$\frac{\partial \mathcal{L}}{\partial y_0} = \frac{\partial}{\partial y_0} u(x_0, y_0) + \beta \frac{\partial}{\partial y_0} f'(x_0, y_0) \lambda_1 = 0 \tag{6}$$

$$\beta^{-2} \frac{\partial \mathcal{L}}{\partial x_2} = \frac{\partial}{\partial x_2} u(x_2, y_2) - \lambda_2 = 0 \tag{7}$$

$$\beta^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{x}_1} = -\lambda_1 + \frac{\partial}{\partial \mathbf{x}_1} u(\mathbf{x}_1, \mathbf{y}_1) + \beta \frac{\partial}{\partial \mathbf{x}_2} f'(\mathbf{x}_1, \mathbf{y}_1) \lambda_2 = 0$$
 (8)

- Mit backward induction können diese Gleichungen rückwärts in der Zeit gelöst werden.
- ▶ Die Lösung zu Gleichung (4) gibt eine optimal feedback control function $y_2 = g_2(x_2)$ (gegeben wir haben eine innere Lösung)
- ▶ Gleichung (6) mit $y_2 = g_2(x_2)$ gibt $\lambda_2(x_2) = \frac{\partial u(x_2g_2(x_2))}{\partial x_2}$
- ▶ Mithilfe von y_2 und λ_2 können wir Gleichung (5) für $y_1(x_1)$ lösen und Gleichung (8) für $\lambda_1(x_1)$.
- $y_0(x_0)$ lässt sich durch (6) berechnen

Dynamische Programmierung

- ▶ Zunächst löse das Problem der letzten Periode 2: Maximiere $u(x_2, y_2)$ nach y_2 , d.h. optimal feedback control function $y_2 = g_2(x_2)$.
- ▶ Substituiere $y_2 = g_2(x_2)$ in Nutzenfunktion der Periode 2, dann erhalten wir die Value function

$$V_2(x_2) = u(x_2, g(x_2))$$
 (9)

▶ Löse Problem für Perioden 2 und 1, d.h. gesucht wird die Value function $V_1(x_1)$ derart:

$$V_1(x_1) = \max^{y_1} \left\{ u(x_1, y_1) + \beta V_2(x_2) \right\}$$
 (10)

einzige Kontrollvariable ist nur noch y_1 da y_2 bereits optimal

- ▶ Zu Beginn der Periode 1 wird der Ausdruck in geschweiften Klammern maximiert um eine optimale contrl function $y_1 = g_1(x_1)$ zu erhalten.
- \triangleright Annahme: Differenzierbares u und V_2 und innere Lösung

$$\frac{\partial\{\}}{\partial y_1} = \frac{\partial}{\partial y_1} u(x_1, y_1) + \beta \frac{\partial}{\partial y_1} f'(x_1, y_1) \frac{\partial}{\partial x_2} V_2(x_2) = 0$$
 (11)

Lösen nach y_1 gibt optimales $y_1 = g_1(x_1)$, einsetzen ergibt Value function der Periode 1

$$V_1(x_1) = u(x_1, g_1(x_1)) + \beta V_2(f(x_1, g_1(x_1)) + \varepsilon_2)$$
 (12)

- Wir haben somit ein Problem thas zhwei Vektorvariablen y₁ und y₂ reduziert auf zwei Probleme mit je einer Variablen
- Anstatt y_1 und y_2 gleichzweitig zu finden, finde erst y_2 und danach y_1
- Nun können wir auch das drei Perioden Problem lösen, wir suchen also

$$V_0(x_0) = \max^{y_0} \left\{ u(x_0, y_0) + \beta V_1(x_1) \right\}$$
 (13)

▶ Im Allgemeinen: betrachte x_t als gegeben und bereits gefundene optimale y_{t+1}, y_{t+2}, \ldots und zugehöriger Value functions $V_{t+1}(x_{t+1})$, löse

$$V_t(x_t) = \max^{y_t} \{ u(x_t, y_t) + \beta V_{t+1}(x_{t+1}) \}$$
 (14)

Dies ist die Bellman Gleichung

- Prinzip der Optimalität: Benutze diese Gleichung und beginne in der letzten Periode, gibt die optimale Lösung for alle Perioden.
- ▶ Intuitiv: egal welche Anfangsbedingung wir unterstellen in jeder periode ist, die Lösung $y_t = g_t(x_t)$ ist immer optimal, da lle vorherigen Kontrollvariablen optima lsind

- ▶ Gegeben $V_2(x_2)$ dynamische Progrmmierung empfiehlt Gleichungen (11) und (12) für $y_1 = g_1(x_1)$ und $V_1(x_1)$ zu lösen
- ▶ Gegeben $\lambda_2(x_2)$ methode Lagrange Multiplikatoren empfiehlt Gleichungen (5) und (8) für $g_1(x_1)$ und $\lambda_1(x_1)$ zu lösen.
- ▶ Da (11) identisch mit (5), liegt Unterschied zwischen (12) und (8)
- \triangleright (8) kann über differenzierung von (12) erlangt werden w.r.t. x_1
- Value function Berechnungen sind aber oft umständlicher
- Außerdem: nachdem man optimierungsproblem mit Lagrange gelöst hat, kann man die Value functions erhalten, indem man die optimal control functionkne ins dynamische Modell substitutirt oder integrieren der Lagrange Funktion (im skalaren Fall: Wenn Value function quadratisch, dann ist die Ableitung (und somit der Lagrangean) linear)

Ein Standard Dynamische Optimierungs Probelm

$$\max_{\{y_t\}_{t=0}^{\infty}} E_0 \left[\sum_{t=0}^{\infty} \beta^t u(x_t, y_t) \right]$$
 (15)

subject to

$$x_{t+1} = f(x_t, y_t) + \varepsilon_{t+1} \tag{16}$$

 E_0 ist Erwartungsoperator gegeben Information zum Zeitpunkt 0 und $\varepsilon_{t+1} \sim iid(0,\Sigma)$. Lösung mithilfe $n_{\scriptscriptstyle X}$ Vektor Lagrange multiplikatoren λ_t und Langrangean

$$\mathcal{L} = E_0 \left[\sum_{t=0}^{\infty} \left\{ \beta^t u(x_t, y_t) - \beta^{t+1} \lambda'_{t+1} \left[x_{t+1} - f(x_t, y_t) - \varepsilon_{t+1} \right] \right\} \right]$$
(17)

Ableiten mit Respekt zu $y_t(t=0,1,...)$ und $x_t(t=1,2,...)$. BEO:

$$\frac{\partial}{\partial y_t} u(x_t, y_t) + \beta \frac{\partial}{\partial y_t} f'(x_t, y_t) E_t \lambda_{t+1} = 0$$
 (18)

$$\lambda_t = \frac{\partial}{\partial x_t} u(x_t, y_t) + \beta \frac{\partial}{\partial x_t} f'(x_t, y_t) E_t \lambda_{t+1}$$
 (19)

- ▶ Man beachte E_t anstelle E_0
- ▶ Wir wählen nicht u_0, u_1, \ldots gleichzeitig, sondern sequentiell gegeben der information x_t zum Zeitpunkt t in einer closed-loop policy. Da x_t im Informationsset liegt, wenn u_t bestimmt wird, ist der bedingte Erwartungswert auf Periode t zu betrachten und nicht in Periode 0.

hinreichende Bedingungen

- ▶ Wann bekommt die Lagrange Funkion (17) ein Maximum an
 - Zunächst: betrachte nicht-stochastische Variante, also ohne Erwartungswert, definiere

$$\mathcal{L}_{t}(x_{t}, y_{t}, x_{t+1}) \equiv \beta^{t} u(x_{t}, y_{t}) - \beta^{t+1} \lambda'_{t+1} [x_{t+1} - f(x_{t}, y_{t})]$$

so dass, das Optimierungsproblem nun folgende Gestalt hat

$$\max_{\{y_t, x_{t+1}\}_{t=0}^{\infty}} \mathcal{L} = \sum_{t=0} \infty \mathcal{L}_t(x_t, y_t, x_{t+1})$$

▶ BEO ergeben sich durch Maximierung von $\mathcal{L}_t + \beta \mathcal{L}_{t+1}$ w.r.t y_t und x_{t+1} (gegeben x_t, y_{t+1}, x_{t+2}), also

$$x_{t+1}$$
 (gegeben x_t, y_{t+1}, x_{t+2}), also
$$\max_{t \in \mathcal{X}} \beta^{-t} (\mathcal{L}_t + \beta \mathcal{L}_{t+1}) = u(x_t, y_t) - \beta \lambda'_{t+1} [x_{t+1} - f(x_t, y_t)] + \beta u(x_{t+1}, y_{t+1})$$

▶ Differenzieren ergibt
$$\frac{\partial}{\partial y_t} u(x_t,y_t) + \beta \frac{\partial}{\partial y_t} f'(x_t,y_t) \lambda_{t+1} = 0$$

$$-\beta \lambda_{t+1} + \beta \frac{\partial}{\partial x_{t+1}} u(x_{t+1}, y_{t+1}) + \beta^2 \frac{\partial}{\partial x_{t+1}} f'(x_{t+1}, y_{t+1}) \lambda_{t+2} = 0$$
WILLI MUTSCHLER
WILLI MUTSCHLER
WILLI MUTSCHLER

WILLI MUTSCHLER

(20)

► Sei