

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

нын исследовательский университ (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 1 по дисциплине «Электротехника и схемотехника»

Тема: «Диоды в источниках питания»

Вариант 1

Выполнил: Антипов И.С., студент группы ИУ8-43

Проверил: Ковынёв Н.В., преподаватель каф. ИУ8

1. Цель работы

Исследование характеристик и параметров выпрямительных схем и стабилизаторов напряжения.

2. Теоретическая часть

Расчет коэффициента пульсации

$$k_{\Pi} = \frac{U_{m.\text{or}}}{U_{\text{cp}}}$$

Uср – среднее значение выпрямленного напряжения (тока) нагрузки;

 $U_{m.or}$ – амплитуда основной гармоники выпрямленного напряжения;

Сглаживающие фильтры предназначены для уменьшения пульсаций выпрямленного напряжения на нагрузке до значений, при которых не сказывается их отрицательное влияние на работу электронной аппаратуры.

Действие фильтра по уменьшению пульсаций напряжения (тока) на нагрузке характеризуется коэффициентом сглаживания $k_{\rm c}$, представляющим собой отношение коэффициента пульсаций на выходе выпрямителя kn (до фильтра) к коэффициенту пульсаций на нагрузке kn1 (после фильтра), т. е

$$k_{\rm c} = \frac{k_{\rm m}}{k_{\rm m1}}$$

Стабилитрон - это сильно или слабо легированный полупроводниковый диод, на котором напряжение сохраняется с определённой точностью при изменении протекающего через него тока в заданном диапазоне.

3. Практическая часть

1 задание:

Построим схему, необходимую для выполнения задания. (Рис. 1)

Рисунок 1 — Схема безтрансформаторного однофазного мостового выпрямителя Результаты измерений приведены в таблице 1.

Тип	Установлено	Измерено				Рассчитано		
выпрямителя		U2m,	Ucp,	lcp,	Um.or,	Коэффициент	Коэффициент	
		В	В	мА	В	пульсации	сглаживания	
	Клавиши 4, 2	29.191	9.182	9.182	14.238	kп = 1.550	Hem	
Однополупериодный	замкнуты;							
без фильтра	клавиши 1, 3							
	и 5							
	разомкнуты							
с С-фильтром	Клавиши 4, 2	-	26.588	27	2.207	<i>kп1 =</i> 0.083	kc1 = kn/kп1	
	и 3						= 18.6	
	замкнуты;							
	клавиши 1 и							
	5							
	разомкнуты							
с CLC-фильтром	Клавиши 1 и	-	26.581	27	0.097	<i>kп2 =</i> 0.003	kc2 = kп/kп2	
	4						= 516	
	разомкнуты;							
	клавиши 2, 3							
	и 5 замкнуты							

Таблица 1

На Рис. 2 — Рис. 4 представлены показания осциллографа и спектрального анализатора для всех вариантов выпрямителя.

Рисунок 2.1 — показание осциллографа для выпрямителя без фильтра

Рисунок 2.2 – показание спектрального анализатора для выпрямителя без фильтра

Рисунок 3.1 – показание осциллографа для выпрямителя с С-фильтром

Рисунок 3.2 – показание спектрального анализатора для выпрямителя с С-фильтром

Рисунок 4.1 – показание осциллографа для выпрямителя с CLC-фильтром

Рисунок 4.2 – показание спектрального анализатора для выпрямителя с СLС-фильтром

2 задание:

Замыкаем клавишу 1 и получаем двухполупериодный выпрямитель.

Результаты измерений приведены в таблице 2.

Тип	Установлено	Измерено				Рассчитано		
выпрямителя		U2m, Ucp, Icp, Um.or,		Коэффициент	Коэффициент			
		В	В	мА	В	пульсации	сглаживания	
	Клавиши 4, 1	28.408	17.647	18	12.415	kп = 0.703	Hem	
Однополупериодный	замкнуты;							
без фильтра	клавиши 2, 3							

	и 5 разомкнуты						
с С-фильтром	Клавиши 4, 3 и 1 замкнуты; клавиши 2 и 5 разомкнуты	-	26.754	27	0.804	kп1 = 0.030	kc1 = kn/kп1 = 23.4
с CLC-фильтром	Клавиши 2 и 4 разомкнуты; клавиши 1, 3 и 5 замкнуты	-	26.772	27	0.011	kп2 = 0.0004	kc2 = kп/kп2 = 1757

Таблица 2

На Рис. 5 — Рис. 7 представлены показания осциллографа и спектрального анализатора для всех вариантов выпрямителя.

Рисунок 5.1 – показание осциллографа для выпрямителя без фильтра

Рисунок 5.2 – показание спектрального анализатора для выпрямителя без фильтра

Рисунок 6.1 – показание осциллографа для выпрямителя с С-фильтром

Рисунок 6.2 – показание спектрального анализатора для выпрямителя с С-фильтром

Рисунок 7.1 – показание осциллографа для выпрямителя с СLС-фильтром

Рисунок 7.2 – показание спектрального анализатора для выпрямителя с СLС-фильтром Задание 3:

Построим схему, необходимую для выполнения задания. (Рис. 1)

Рисунок 8 – Схема испытания стабилитрона

Результаты измерений приведены в таблице 3.

Вариант	Тип стабилитрона	$U_{cm.min}$	Icm.min,	U cm . HOM ,	$U_{\rm ex} = 0.9 {\rm E}_1, {\rm B}$		$U_{ex} = 1,1E_1, B$	
		В	MΑ	В				
1	1N4743A	12.35	19	12.326	Ucm ₁ , B Icm ₁ , MA		Ucm2, B	Icm2, мА
					11.704 0.0003		12.948	13
					dUcm, %		<i>Rст.дин</i> , Ом	
					10.09		95,6	

Таблица 3

4. Выводы

В данной лабораторной работе мною были получены навыки работы в среде Multisim. Для выполнения заданий необходимо было построить схемы и настроить осциллограф и спектральный анализатор. После этого было проведено исследование характеристик и параметров выпрямительных схем и стабилизаторов напряжения.