DAFTAR ISI

DAFTAR	ISI	i
BAB 1 PE	NDAHULUAN	
1.1	Latar Belakang	1
1.2	Tujuan Khusus Riset	2
1.3	Manfaat Riset	2
1.4	Urgensi Riset	2
1.5	Temuan yang Ditargetkan	2
1.6	Kontribusi Riset	3
1.7	Luaran Riset	3
BAB 2 TIN	NJAUAN PUSTAKA	
2.1	Bahaya Sampah Plastik	3
	PVC dan Kandungan Hasil Pembakaran	
2.3	Zeolit Sebagai Filter Gas	4
2.4	Gas Analyzer	4
2.5	Atomic Absorption Spectropohotometry (AAS)	4
BAB 3 ME	CTODE RISET	
3.1	Waktu dan Tempat	4
3.2	Bahan dan Alat	5
3.3	Variabel Riset	5
3.4	Tahapan Riset	5
3.5	Prosedur Riset	5
	3.5.1 Pengumpulan Limbah Plastik PVC	5
	3.5.2 Aktivasi Zeolit	5
	3.5.3 Filtrasi Asap	6
	3.5.4 Pengujian Hasil Menggunakan AAS	6
	3.5.5 Pengujian Hasil Menggunakan Gas Analyzer	6
3.6	Luaran dan Indikator Capaian Setiap Tahapan	6
3.7	Analisis Data	7
3.8	Cara Penafsiran	7
3.9	Penyimpulan Hasil Riset	7
3.10	Pengiklanan Akun Media Sosial	8
BAB 4 BIA	AYA DAN JADWAL PELAKSANAAN	
4.1	Anggaran Biaya	9
4.2	Jadwal Kegiatan	9
DAFTAR	PUSTAKA	9
LAMPIRA	AN	
	npiran 1. Biodata Ketua dan Anggota, serta Dosen Pendamping	
	npiran 2. Justifikasi Anggaran Kegiatan	
	npiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas 1	
Lan	npiran 4. Surat Pernyataan Ketua Pelaksana	19

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Sampah merupakan masalah yang sangat sering dibicarakan dan cukup sulit diatasi karena kebiasaan masyarakat yang cenderung mengatasinya dengan cara yang salah. Sampah plastik merupakan limbah yang sulit terurai di alam sehingga menumpuk dan menjadi permasalahan lingkungan (Anggono, 2016). Menurut data oleh Kementerian Lingkungan Hidup dan Kehutanan (KLHK), pada tahun 2020 Indonesia menghasilkan sampah pertahun sekitar 67,8 Juta ton. Menurut riset yang sudah dilakukan oleh beberapa peneliti, sekitar 50,1% masyarakat Indonesia lebih menyukai mengelola sampah dengan cara dibakar, 49,9% lainnya ada yang membuang ke sungai dan selokan, menimbun di dalam tanah, serta masih banyak lagi ketidaksesuaian masyarakat dalam mengelola sampah (Sasoko, 2022).

Salah satu jenis sampah yang paling banyak ditemukan adalah sampah plastik. Hal ini bisa terjadi karena plastik memiliki banyak kelebihan dan tidak bisa terlepas dari berbagai aktivitas dan kebutuhan manusia. Contoh saja plastik memiliki sifat yang tahan lama, praktis, dan kuat serta mudah dibentuk sehingga banyak digunakan dalam bidang industri, makanan, peralatan, dll. Namun dari sifat tersebut dapat disimpulkan pula bahwa plastik yang selalu menjadi kebutuhan manusia juga dapat menjadi ancaman bagi manusia pula karena sifat ketahanan-nya tersebut.

Dari berbagai jenis plastik yang ada, PVC merupakan salah satu jenis plastik yang sering digunakan karena memiliki banyak fungsi terutama dalam kebutuhan rumah tangga, seperti bahan isolasi kabel, perpipaan, dan sebagainya (Pratama, 2017). Namun sampah jenis ini tergolong sebagai sampah plastik yang paling sulit didaur ulang berdasarkan sifat fisiknya. PVC mengandung gas klorin dimana jika diberikan perlakuan panas yang kurang tepat akan mengakibatkan kerusakan sangat fatal pada instalasi karena sifat korosif gas yang dihasilkan (Lewandowski, 2022). Masyarakat lebih menyukai mengelola sampah jenis PVC atau jenis lainnya dengan cara dibakar, akan tetapi proses pembakaran sampah plastik tersebut merupakan metode yang berbahaya sebab plastik dengan jenis *polyvinyl chloride* (PVC) memiliki kandungan halogen, yang dapat memproduksi dioksin di udara jika dilakukan proses pembakaran (Firdaus, 2020).

Oleh karena hal itulah perlu dilakukan inovasi untuk mengatasi permasalahan tersebut, contohnya seperti inovasi terhadap filtrasi asap pembakaran yang dihasilkan oleh pembakaran sampah plastik. Inovasi yang dilakukan terhadap pemfilteran asap memiliki peran penting dalam kehidupan yaitu dihasilkannya lingkungan yang bersih dan sehat serta bebas dari gas-gas berbahaya baik dari asap pembakaran, kendaraan, maupun pabrik. Inovasi tersebut dapat diterapkan dengan dibuatnya filter terhadap asap hasil pembakaran. Dimana Filter tersebut dibuat dengan berbahan dasar zeolit, dipilihnya zeolit sebagai bahan dasar pembuatan filter karena zeolit memiliki keunggulan dalam proses adsorpsi terutama dalam

mengikat gas hasil dari pembakaran sampah plastik. Selain itu, zeolit merupakan salah satu bahan adsorpsi yang paling mudah di dapat karena terbentuk secara alami di daerah bebatuan sedimen pada gunung berapi. Di zaman sekarang pemanfaatan zeolit masih terbilang kurang oleh sebabnya dibutuhkan pengelolaan yang lebih terarah agar potensi zeolit dapat digunakan semaksimal mungkin.

Riset ini menggunakan metode adsorpsi secara eksperimen melalui tiga tahap, yaitu aktivasi zeolit, perancangan serangkaian alat adsorber, dan proses penyerapan gas yang merupakan tahap inti dari riset ini. Aktivasi zeolit sangat penting karena zeolit yang digunakan akan terbebas dari zat-zat pengotor dan memperbaiki karakter zeolit. Terdapat 2 pengujian dalam riset ini yaitu uji *Atomic Absorption Spectrophotometry* (AAS) dan *Gas Analyzer*, yang mana metode pengujian AAS memiliki keakuratan dan ketelitian yang lebih tinggi dibanding pengujian sejenis lainnya begitu pula pada pengujian *Gas Analyzer* yang memiliki tingkat keakuratan dalam membaca kadar gas yang lebih baik dibanding dengan pengujian sejenis lainnya (Rahmawati,2015).

Berdasarkan uraian tersebut, oleh sebabnya akan dilakukan riset lebih lanjut mengenai cara mengurangi gas beracun pada asap pembakaran sampah plastik PVC dengan memanfaatkan zeolit sebagai filter. Riset ini diharapkan dapat memberikan solusi terhadap permasalahanan lingkungan yang disebabkan oleh gas beracun dari hasil pembakaran sampah plastik terutama jenis PVC.

1.2 Tujuan Khusus Riset

Riset ini memiliki tujuan khusus untuk mendapatkan temuan terhadap kemampuan zeolit yang sudah teraktivasi dalam proses filtrasi gas beracun pada asap pembakaran sampah yang belakangan ini menjadi masalah besar terhadap kelestarian lingkungan.

1.3 Manfaat Riset

Hasil dari riset ini sangat diharapkan akan memberikan banyak manfaat dan sumbangan pemikiran bagi pemerintah, maupun masyarakat dalam upaya mengurangi gas beracun dari asap pembakaran sampah plastik PVC dengan memanfaatkan zeolit sebagai filter sehingga menjadikan udara lebih sehat dan bebas dari polutan atau gas-gas berbahaya sehingga dapat terciptanya pola hidup yang lebih sehat.

1.4 Urgensi Riset

Riset ini dilakukan atas dasar urgensi untuk mengatasi permasalahan lingkungan berupa polusi udara yang dihasilkan dari asap pembakaran sampah plastik PVC. Dikarenakan sampah plastik jenis ini memiliki kandungan gas berbahaya, sehingga dengan riset ini dapat membantu dalam mengurangi dampak tersebut karena digunakannya zeolit sebagai filter untuk mengubah asap yang mulanya berbahaya menjadi asap yang tidak berbahaya.

1.5 Temuan yang Ditargetkan

Target riset ini mampu menghasilkan gas yang tidak beracun dari asap pembakaran sampah plastik PVC sehingga keberlangsungan hidup makhluk hidup

baik di daratan maupun perairan semakin meningkat dengan berkurangnya gas beracun di lingkungan dikarenakan adanya pemfilteran asap pembakaran PVC dengan zeolit. Selain itu riset ini juga diharapkan akan menjadi tolak ukur kemampuan proses filtrasi terhadap sampah plastik jenis lainnya. Sebab uji coba yang dilakukan ini menggunakan sampah plastik jenis tertinggi yaitu PVC sehingga sampah plastik jenis lainnya juga akan mudah untuk di uji coba keberhasilannya menggunakan filter zeolit ini.

1.6 Kontribusi Riset

Hasil dari riset ini diharapkan asap yang telah difilter oleh zeolit dapat berkontribusi bagi masyarakat demi menurunkan potensi pencemaran lingkungan, khususnya polusi udara yang ditimbulkan dari asap pembakaran sampah plastik PVC sehingga masyarakat dan pemerintah dapat menggunakan metode ini dalam pembakaran sampah plastik PVC.

1.7 Luaran Riset

Riset ini memiliki luaran berupa laporan kemajuan, laporan akhir, dan artikel ilmiah yang akan dipublikasikan pada jurnal nasional terakreditasi, serta akun media sosial yang berisi konten edukasi terkait kegiatan riset yang dilaksanakan dan diiklankan pada jadwal yang ditentukan. Selain itu, dihasilkannya asap yang tidak beracun dari pembakaran sampah plastik PVC dengan memanfaatkan zeolit sebagai filter.

BAB 2. TINJAUAN PUSTAKA

2.1 Bahaya Sampah Plastik

Sampah plastik selalu menjadi topik permasalahan yang berdampak serius untuk lingkungan dan juga untuk manusia (Alabi, 2019). Jika sampah plastik menumpuk dalam jumlah besar akan sulit terurai (non-biodegradable) sehingga membutuhkan waktu yang sangat lama untuk terurai dengan sempurna (Karuniastuti, 2016). Meskipun dapat terurai, partikel kecil (mikroplastik) hasil penguraian lebih berbahaya karena berpotensi untuk masuk ke tubuh makhluk hidup. Makanan, minuman, air, hingga udara merupakan media terpaparnya mikroplastik masuk ke dalam tubuh manusia (Vianello, 2019).

2.2 PVC dan Kandungan Hasil Pembakaran

Polimer termoplastik dengan frekuensi pemakaian urutan terbesar ketiga adalah PVC. Jenis plastik ini sering digunakan dalam kontruksi bangunan-bangunan karena sifatnya yang tahan lama, fleksibel, dan murah untuk dirangkai (Pratama, 2017). Plastik dengan jenis PVC tergolong sampah plastik yang paling berbahaya dan paling sulit didaur ulang. Akibatnya, limbah ini akan tertimbun dan menimbulkan permasalahan lingkungan serta mengancam kesehatan (Rasul, 2022). PVC mengandung gas klorin yang tergolong senyawa yang berbahaya, dimana pembakarannya akan menghasilkan gas HCl yang sifatnya korosif serta menghasilkan dioksin yang berbahaya bagi tumbuhan

2.3 Zeolit sebagai Filter Gas

Zeolit sebagai penyerap gas atau cairan dimana yang dipengaruhi oleh luas permukaan dan banyaknya ruang kosong. Molekul air akan mengisi ruang kosong atau rongga-rongga dalam kristal zeolit dan jika kristal dipanaskan, molekul air tersebut akan keluar. Molekul yang ukurannya lebih besar tidak akan bisa melewati zeolit tersebut (Saleh, 2017). Berdasarkan riset zeolit sebagai filter gas CO₂ menunjukkan konsentrasi CO₂ menurun dengan bertambahnya zeolit sebagai adsorben, sehingga kemampuan menyerap dari zeolit akan semakin meningkat dengan dihasilkannya pertambahan berat pada suatu zeolit (Ramli, 2019).

2.4 Gas Analyzer

Gas analyzer merupakan suatu alat yang memiliki kegunaan untuk melakukan analisis, mengukur konsentrasi atau mengukur kadar dari suatu gas tertentu dimana akan diketahui gas tersebut memiliki ambang batas yang sesuai dan diperbolehkan untuk lingkungan atau tidak baik dan dapat membahayakan lingkungan serta makhluk hidup yang berada di lingkungan tersebut. Gas analyzer memiliki kegunaan yang mana alat ini dapat mengukur konsentrasi atau kadar emisi gas buang. Secara umum, beberapa gas seperti CO (karbonmonoksida), HC (hidrokarbon), O₂ (Oksigen), dan CO₂ (karbondioksida) adalah gas yang mampu diukur oleh gas analyzer (Martawati, 2017).

2.5 Atomic Absorption Spectrophotometry (AAS)

Atomic Absorption Spectrophotometry (AAS) merupakan salah satu teknik untuk melakukan analisis dan menentukan kadar dari suatu logam yang terdapat pada senyawa melalui proses atomisasi. Atomisasi dilakukan dengan nyala cahaya. Metode AAS memiliki prinsip absorpsi cahaya dimana akan mengakibatkan atom yang berada pada keadaan dasar naik tingkat ke energi eksitasi. Dilakukannya proses absorpsi energi akan menghasilkan energi yang lebih banyak, lalu pada keadaan standar atom akan naik ke tingkat energi eksitasi. Cahaya yang telah di absorpsi oleh logam yang spesifik untuk setiap unsur disesuaikan dengan energi emisinya dari beberapa unsur tertentu (Solikha, 2019). Contohnya Natrium pada panjang gelombang 589 nm melakukan proses penyerapan energi, kalium 766,5 nm dan uranium pada 358,5 nm. Untuk menganalisa sampel, maka dilakukan atomisasi pada sampel terlebih dahulu, yang kemudian sampel tersebut harus dilewatkan oleh cahaya, dan cahaya tersebut akan ditransmisikan lalu diukur dengan detektor tertentu (Uhamka, 2018).

BAB 3. METODE RISET

3.1 Waktu dan Tempat

Riset ini dilaksanakan selama lima bulan, dalam riset ini terdapat dua pengujian yaitu Pengujian AAS yang dilakukan di Laboratorium Terpadu Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sumatera Utara dan pengujian *Gas Analyzer* yang dilakukan pada Laboratorium Dinas Lingkungan Pemerintahan Provinsi Sumatera Utara.

3.2 Bahan dan Alat

Riset ini menggunakan alat-alat diantaranya yaitu tong pembakaran, ember, pompa air, sensor filter, *exhaust fan*, saringan kain, pipa, bunsen, alu dan mortar. Bahan yang digunakan adalah zeolit, limbah plastik PVC, tempurung kelapa, arang aktif, ijuk, dan akuades.

3.3 Variabel Riset

Variabel pada riset ini adalah sebagai berikut:

a. Variabel kontrol

Variabel kontrolnya adalah jenis zeolit dan bahan pendukung filtrasi (ijuk, arang aktif) yang digunakan dalam riset serta lamanya proses pembakaran.

b. Variabel bebas

Variabel bebasnya adalah zeolit sebagai filter pada riset.

c. Variabel terikat

Variabel terikatnya adalah gas yang dihasilkan setelah proses filtrasi.

3.4 Tahapan Riset

Adapun tahapan-tahapan dalam riset ini yaitu:

Gambar 3.1 Tahapan Riset Pengurangan Gas Beracun Pada Asap Pembakaran Limbah Plastik PVC

3.5 Prosedur Riset

3.5.1 Pengumpulan Limbah Plastik PVC

Sampel yang dikumpulkan berupa limbah plastik dengan jenis PVC. Kemudian, dilakukan proses perakitan dan persiapan filter, dan selanjutnya dilakukan pembakaran dengan wadah tong yang sudah dipersiapkan sebelumnya, pembakaran dilakukan selama 5 jam dengan suhu 600°C-900°C.

3.5.2 Aktivasi Zeolit

Berikutnya dilakukan aktivasi zeolit. Pertama, zeolit dihaluskan menggunakan alu dan mortar. Lalu, zeolit dimasukkan ke dalam *beaker glass*. Selanjutnya, direndam menggunakan akuades dalam kurun waktu 24 jam. Setelah dilakukan proses perendaman, kemudian zeolit tersebut disaring menggunakan corong gelas dan kertas saring. Setelah itu, zeolit yang sudah disaring kemudian dibakar menggunakan bunsen dengan suhu 110°C. Langkah terakhir, didiamkan di suhu ruangan sampai dingin.

3.5.3 Filtrasi Asap

Prosedur selanjutnya adalah proses filtrasi dimana proses ini merupakan langkah penting dan yang utama dalam riset ini. Dalam langkah ini asap dari hasil pembakaran akan menuju ke pipa yang sudah dipasang diatas tong. Pipa yang sudah dipasang tersebut diberi sekat filter berupa zeolit, dan sejenisnya misalnya (ijuk dan arang aktif). Sehingga sebelum asap keluar, akan terjadi proses penyaringan oleh zeolit, dimana zeolit tersebut berfungsi sebagai alat filter atau penyerap gas beracun yang terkandung didalam asap pembakaraan. Setelah gas hasil pembakaran melewati filter, maka dilakukan penyemprotan terhadap gas tersebut dengan menggunakan pompa air. Selanjutnya asap tersebut akan jatuh ke ember yang telah disediakan hingga menjadi larutan yang akan di uji coba hasilnya menggunakan AAS. Dalam filtrasi asap, juga digunakan alat seperti sensor filter (H₂S, CO dan O₂), dimana sensor ini diletakkan di tempat pembakaran. Selanjutnya, asap yang dihasilkan dari pembakaran sampah plastik tersebut akan otomatis terdeteksi oleh sensor filter yang sudah dipasang. Sehingga cara ini juga dapat dilakukan untuk mengetahui perbandingan kandungan gas/asap hasil pembakaran sampah plastik.

3.5.4 Pengujian Hasil Menggunakan AAS

Untuk prosedur analisis, terlebih dahulu dilakukan pembuatan larutan berupa sampel yang sudah didapatkan dari proses filtrasi asap pembakaran dengan zeolit. Pertama-tama, larutan/sampel yang sudah didapatkan akan dianalisis dan dituang ke labu ukur sebanyak 5 ml. Selanjutnya, sampel tersebut diencerkan dengan labu ukur menjadi 25 ml dan dituang kedalam *beaker glass*. Untuk analisis dengan alat AAS, lakukan kalibrasi dengan larutan akuades yang diletakkan ke dalam *beaker glass*. Lalu, dilakukan analisis AAS dengan program komputer. Lakukanlah cara yang sama untuk sampel tanpa filter untuk mengetahui perbandingan.

3.5.5 Pengujian menggunakan Gas Analyzer

Pengujian ini dilakukan pada saat pembakaran dan setelah penyaringan gas. Pertama-tama pasang dan nyalakan alat, tekan tombol *zero* dan tunggu hingga angka pada *time* menuju angka 0. Langkah kedua adalah masukkan *probe* ke dalam ruangan yang ingin dianalisa. Langkah selanjutnya adalah tekan tombol *measure*, lalu tunggu hingga angka pada kadar CO₂ dan O₂ tetap, lalu tekan *hold*. Tekan tombol *print* untuk mencetak hasil secara tertulis. Lakukan hal serupa untuk udara lainnya yang ingin dianalisa.

3.6 Luaran dan Indikator Capaian Setiap Tahapan

riset

No	Kegiatan	Luaran	Indikator Capaian
1	Studi literatur	Jurnal riset	Didapatkan jurnal yang benar dan sesuai dari riset yang dilakukan.
2	Pembuatan surat	Surat	Didapatkan surat izin melakukan riset
	izin riset	perizinan	di Laboratorium Terpadu FMIPA

USU

dan

Laboratorium

Dinas

Tabel 3.1 Luaran dan Indikator Capaian Setiap Tahapan

			Lingkungan Pemerintahan Provinsi	
			Sumatera Utara.	
3	Preparasi alat dan	Alat dan	Tersedianya alat dan bahan yang	
	bahan	bahan	dibutuhkan dalam riset.	
4	Proses riset dan	Data dan	Didapatkannya data hasil riset	
	Pengolahan data	analisis data	terhadap gas pembakaran sampah	
	hasil riset		plastik PVC. Analisis data riset	
			meliputi uji Atomic Absorption	
			Spectrophotometry (AAS) dan gas	
			analyzer.	
5	Mengiklankan	Konten	Dihasilkannya konten edukasi	
	PKM kepada	edukasi	mengenai topik riset yang dilakukan	
	masyarakat	terkait	sehingga menambah wawasan bagi	
	melalui media	kegiatan riset	masyarakat dan sebagai wadah	
	sosial	yang	tersalurkannya ide kreatif mahasiswa	
		dilakukan		
6	Membuat laporan	Laporan	Didapatnya kesimpulan mengenai	
	kemajuan dan	kemajuan dan	keberhasilan riset dengan dibuatnya	
	laporan akhir riset	laporan akhir	laporan hasil riset. Selanjutnya	
		riset	laporan kemajuan dan laporan akhir	
			dievaluasi	
7	Pembuatan Artikel	Jurnal hasil	Artikel ilmiah dimuat pada sebuah	
	Ilmiah	riset	jurnal dan didapatkan hak paten	

3.7 Analisis Data

Metode analisis data yang diterapkan pada riset ini berupa analisis kualitatif melalui studi literatur dan kuantitatif melalui pengumpulan data terhadap kandungan yang di hasilkan oleh gas hasil pembakaran PVC sebelum dan sesudah difiltrasi. Dalam riset ini, terdapat dua pengujian yaitu Pengujian AAS (*Atomic Absorption Spectrophotometry*) dan pengujian menggunakan *gas analyzer*.

3.8 Cara Penafsiran

Penafsiran dilakukan ketika diketahuinya perbandingan antara kandungan gas yang dihasilkan sebelum dan sesudah terjadi proses filtrasi menggunakan zeolit dan bahan lainnya di berbagai variasi data serta membuat kesimpulan terhadap dampak dari diberikannya zeolit sebagai filter pada pembakaran plastik PVC. Selain itu jika riset terhadap pengurangan gas beracun pada limbah plastik PVC berhasil, dapat ditafsirkan bahwa filter zeolit ini akan mampu mengurangi kadar gas beracun dari limbah plastik jenis lainnya.

3.9 Penyimpulan Hasil Riset

Kesimpulan yang diharapkan dalam riset ini adalah adanya penurunan kadar batas pada gas beracun dari pembakaran plastik PVC. Dimana sebelum dilakukannya proses filtrasi kadar gas yang dihasilkan oleh pembakaran plastik PVC terbilang tinggi, namun setelah dilakukannya proses filtrasi berdampak pada menurunnya kadar gas beracun pada proses pembakaran.

3.10 Pengiklanan Pada Akun Media Sosial

Seluruh rangkaian kegiatan riset ini akan dipublikasikan secara reguler melalui akun media sosial berupa postingan mingguan diantaranya akan diberikan *adsense (ads)*. Publikasi tersebut diupload sebanyak 5 postingan dalam rentang waktu 5 bulan selama proses berlangsungnya riset, yang jadwal penayangannya terdapat pada tabel 3.2.

Tabel 3.2 Jadwal pengiklanan di media sosial

Hari, Tanggal	Waktu	Konten diiklankan
Selasa, 25 April 2023	12.00 WIB	Pengenalan metode filtrasi gas
		dengan zeolit
Kamis, 25 Mei 2023	12.00 WIB	Publikasi tentang skema
		pemilihan alat dan bahan yang
		diperlukan untuk riset
Minggu, 25 Juni 2023	12.00 WIB	Publikasi tentang perakitan dan
		penyusunan zeolit sebagai filter
Selasa, 25 Juni 2023	12.00 WIB	Publikasi tentang pengujian dan
		pengolahan data untuk
		mengetahui keberhasilan uji
		coba riset
Jumat, 25 Agustus 2023	12.00 WIB	Publikasi hasil dari program
		PKM berupa asap yang sudah di
		filter

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Anggaran biaya yang diperlukan dalam riset ditampilkan pada Tabel 4.1.

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana
110	Jems i engeluaran	Sumper Dana	(Rp)
1	Bahan habis pakai	Belmawa	4.368.000
1		Perguruan Tinggi	500.000
2	Sewa dan jasa	Belmawa	1.300.000
2		Perguruan Tinggi	100.000
3	Transportasi lokal	Belmawa	2.650.000
3		Perguruan Tinggi	200.000
4	T . 1 .	Belmawa	1.280.000
4	Lain-lain	Perguruan Tinggi	200.000
	Jumlah	10.598.000	

	Belmawa	9.598.000
Rekap Sumber Dana	Perguruan Tinggi	1.000.000
	Jumlah	10.598.000

4.2 Jadwal Kegiatan

Rencana kegiatan yang akan dilaksanakan dapat dilihat pada Tabel 4.2.

Tabel 4.2 Jadwal Kegiatan

No	Jonia Wagiatan	Bulan					Person Penanggung
100	Jenis Kegiatan	1	2	3	4	5	Jawab
1	Studi literatur						Maulia Syahrina
2	Pemilahan limbah						Eva Purwanti
	plastik/persiapan alat dan						
	bahan						
3	Aktivasi zeolit dan						Eva Purwanti
	penyusunan atau						
	perangkaian filter						
4	Pembakaran, pengamatan						Syafira Falatansya
	proses pembakaran dan						
	pengambilan data sebelum						
	di uji						
5	Pengujian dengan AAS						Luke Gilbert Buysang
	(Atomic Absorption						
	Spectrophotometry) dan						
	Gas Analyzer						
6	Posting konten PKM di						Maulia Syahrina
	akun media sosial						
7	Analisis data						Luke Gilbert Buysang
8	Penulisan laporan						Syafira Falatansya
	kemajuan						
9	Penulisan laporan akhir						Eva Purwanti
	dan pembuatan artikel						
	ilmiah/jurnal riset						
10	Seminar hasil						Semua Anggota Tim

DAFTAR PUSTAKA

Alabi, O. A., Kehinde I, O., Oluwaseun, A., dan Olufiropo E, A. 2019. Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. *Journal of Toxicology and Risk Assessment.* 5(2):1-13.

Anggono, T., Wahyu, E., Handayani, H., Rahmadani, A., dan Abdullah, A. 2016. Pirolisis Sampah Plastik Untuk Mendapatkan Asap Cair Dan Penentuan

- Komponen Kimia Penyusunnya Serta Uji Kemampuannya Sebagai Bahan Bakar Cair. *Jurnal Sains dan Terapan Kimia*. 3: 164-173.
- Firdaus, A. R., Altaftazani, D. H., dan Pratama, D. F. 2020. Penyuluhan tentang Pentingnya Membawa Bekal dari Rumah sebagai Upaya Pengurangan Sampah Plastik pada Das Citarum dan Menjaga Kualitas Gizi Siswa. *Abdimas Siliwangi*. 3(1): 148–156.
- Karuniastuti, N. 2016. Bahaya Plastik terhadap Kesehatan dan Lingkungan. *Jurnal Forum Teknologi*. 3(1): 6-14.
- Lewandowski, K., and Skorczewska, K. 2022. A Brief Review of Poly (Vinyl Chloride) (PVC) Recycling. *Polymers*. 14: 1-14.
- Martawati, M. E., dan Hardiyana, H. 2017. Pembuatan dan Analisis Pembacaan Sensor Karbon Dioksida Pada Gas Analyzer Terhadap Variasi Bahan Bakar Berbasis Aplikasi Android. *Jurnal ELTEK*. 15(2): 95-112.
- Pratama, A. R. A., Erfan, M., Priskasari, E., dan Prajitno, A. 2017. Pengaruh Penambahan Limbah Plastik Polyvinyl Chloride Pada Campuran Asphalt Treated Base ATB Terhadap Nilai Parameter Marshall Test. *Jurnal Sondir.* 2: 1-8.
- Rachmawati, Eny., dkk. 2015. Analysis of Metal Copper Concentration at Candy using Atomic Absorption Spectrophotometry (AAS). *Journal of Chemistry*. 4(1): 39-40.
- Ramli, A. R., Suryanto, A., dan Yani, S. 2019. Adsorpsi Gas CO2 Menggunakan Kapur Tohor, Arang Aktif Dan Zeolit Pada Kendaraan Bermotor Roda Dua. *Journal of Chemical Proses Engineering*. 4(1): 7-12.
- Rasul, R. F., dan Sari, Y. A. 2022. Pengaruh Penambahan Limbah Serbuk Pvc Pada Campuran Laston Lapis Aus. *Jurnal Ilmiah Rekayasa Sipil.* 19(2): 127-135.
- Saleh, A., S., Oktariya Rera, dan P., Yuni Aviva Sarah. 2017. Pengaruh Massa Zeolit Dan Laju Alir Compressed Natural Gas Terhadap Peningkatan Metana Melalui Proses Pemurnian. *Jurnal Teknik Kimia*. 23(2): 95-103.
- Sasoko, Derajat M. 2022. Bank Sampah, Sebuah Upaya Mengurangi Jumlah Produksi Sampah Rumah Tangga. *Jurnal Perspektif.* 21(2): 2-4.
- Solikha, D. F. 2019. Penentuan Kadar Tembaga (II) pada Sampel Menggunakan Spektroskopi Serapan Atom (SSA) Perkin Erlmer Analyst 100 Metode Kurva Kalibrasi. *Jurnal Ilmiah Indonesia*. 4(2): 1-11.
- Uhamka, 2018. *Atomic Absorption Spectrophotometry (AAS)*. URL: https://onlinelearning.uhamka.ac.id/mod/resource/view.php?id=360708. Diakses tanggal 18 Januari 2023.
- Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. *Scientific Reports.* 9(1): 1-11.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping

1.1 Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Eva Purwanti
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Fisika
4	NIM	210801015
5	Tempat dan Tanggal Lahir	Medan Krio, 17 Februari 2004
6	Alamat Email	evapurwantiperanginangin2@gmail.com
7	Nomor Telepon/HP	083193661471

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Inkubator Sains USU	Anggota Divisi	2021 - Sekarang;
		Saintek	USU
2	Ikatan Mahasiswa Fisika (IMF)	Anggota	2021 - Sekarang; USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	(=)(-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Ketua Tim

(Eva Purwanti)

1.2 Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Maulia Syahrina
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Kimia
4	NIM	210802027
5	Tempat dan Tanggal Lahir	Tanjung Pura,14 April 2003
6	Alamat Email	mauliasyahrina@gmail.com
7	Nomor Telepon/HP	081276141403

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Inkubator Sains USU	Anggota divisi Saintek	2021-sekarang; USU
2	UKMI Al-Falak FMIPA USU	Anggota Departemen Kaderisasi	2022-sekarang; USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Beasiswa Etos ID	LPI Dompet Dhuafa	2021-sekarang

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-02-2023 Anggota Tim

(Maulia Syahrina)

Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Luke Gilbert Buysang
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	210405093
5	Tempat dan Tanggal Lahir	Jambi, 9 Desember 2001
6	Alamat Email	lukegilbert2104@gmail.com
7	Nomor Telepon/HP	082288729517

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Inkubator Sains USU	Anggota	2021-sekarang, USU
2	Badan Koordinasi Kegiatan Mahasiswa Teknik Kimia Indonesia	Staff Riset dan Teknologi	2022-sekarang, Online
3	Gantari Engineering Research Club	Staff Research and Development	2022-sekarang, FT USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Bronze Medal International Scientific writing competition	MARS #9 FMIPA UNY	2022
2	Juara 2 dan Best Presentation Business Plan Competition	Administrasi Bisnis FISIP USU	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Anggota Tim

Luke Gilbert Buysang

Biodata Anggota

A. Identitas Diri

1	Nama Lengkap	SYAFIRA FALATANSYA
2	Jenis Kelamin	Laki-laki/Perempuan
3	Program Studi	S1 KIMIA
4	NIM	210802113
5	Tempat dan Tanggal Lahir	Medan, 30 Agustus 2002
6	Alamat E-mail	syafirafalatansya123@gmail.com
7	Nomor Telepon/HP	081273377784

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Pertukaran Mahasiswa Merdeka (PMM)	Peserta	Untirta, 14 Agustus 2022 - 2 Januari 2023
2	Start Up Smart Generation Comunity USU	Anggota	USU, 2021- Sampai sekarang
3	Ikatan Mahasiswa Kimia (IMK)	Anggota	USU, 2021-2022

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14 -02-2023 Anggota Tim

Syafira Falatansya

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Rahmadhani Banurea, S.Si., M.Si.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Fisika
4	NIP/NIDN	197310042001121001
5	Tempat dan Tanggal Lahir	Belawan/ 04 Oktober 1973
6	Alamat Email	ramadhani_banurea@usu.ac.id
7	Nomor Telepon/HP	08126579483

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Fisika	Universitas Sumatera Utara (USU)	1999
2	Magister (S2)	Fisika	Universitas Sumatera Utara (USU)	2011

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Fisika Dasar I	Wajib	3
2	Kedokteran Nuklir	Wajib	2
3	Fisika Statistik	Wajib	3
4	BioFisika	Wajib	2
5	Fisika Dasar Lanjutan	Wajib	3
6	Pengantar Pesawat Imaging Diagnostik	Wajib	2
7	Antar Muka	Wajib	2
8	Akuisisi Data dan Pengolahan Sinyal	Wajib	2
9	Radiasi Biologi	Wajib	2
10	Bahasa Assembly	Wajib	2
11	Instrumentasi Industri	Wajib	2
12	Fisika Komputasi	Wajib	2
13	Elektronika Dasar I	Wajib	2
14	Elektronika Dasar II	Wajib	2

Riset

No	Judul Riset	Penyandang Dana	Tahun
1	Characterization of the sensing properties of Zinc Oxide Chitosan as an acetone sensor	Non PNBP USU	2020
2	Characterization Using SEM and Testing The Sensing Properties of Kitosan Film Sensors with The Addition of Tin Oxide	Non PNBP USU	2021

3	Rancang Bangun Mesin berteknologi Pengubah Sampah Plastik Menjadi Fuel Renewable Energy	Non PNBP USU	2022
4	Pemodelan dan Simulasi Sistem Energi Angin Skala Rumah Tangga Berbasis Mikrokontroller	Non PNBP USU	2021
5	Rancang Bangun Sistem Konversi Energi Angin dan Penerapannya di Sumatera Utara Berbasis Turbin Angin	Non PNBP USU	2022

Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Penerapan Ipteks Penanaman Indigofera Dan Sorgum Sebagai Pakan Ternak Di Desa Paluh Kurau Kecamatan Hamparan Perak Kabupaten Deli Serdang	Non PNBP LPPM USU	2021
2	Penerapan Teknologi Tepat Guna dan Tenaga Surya pada Aktifitas Usaha Masyarakat di Desa Sayur Matua Kec.Aek Nabara Barumun Kab.Padang Lawas	Non PNBP LPPM USU	2022

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Dosen Pendamping

(Rahmadhani Banurea)

Lampiran 2. Justifikasi Anggaran Kegiatan

Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
lanja Bahan			
olit	35 kg	20.000	700.000
nbah Plastik PVC	50 kg	7.000	350.000
mpurung Kelapa	10 kg	10.000	100.000
ang Aktif	10 Pcs	40.000	400.000
k	10 Ikat	11.000	110.000
uades	20 Liter	20.000	400.000
oa e	6 Meter	30.000	180.000
nsor Filter	1 Unit	600.000	600.000
haust Fan	2 Unit	200.000	400.000
k Sambung	2 Unit	80.000	160.000
nsen	2 Unit	50.000	100.000
ı dan Mortar	1 Unit	100.000	100.000
ringan Kain	6 Unit	50.000	300.000
ng Besi	2 Unit	130.000	260.000
mpa Air	2 Unit	150.000	300.000
ber	5 Unit	30.000	150.000
rtas Saring	4 Kajang	17.000	68.000
tter	5 Unit	20.000	100.000
u	6 Gulung	15.000	90.000
SUB TOTAL	8		4.868.000
lanja Sewa			
wa laboratorium (alat dan	4 Bulan	200.000	800.000
nan laboratorium)			
wa Alat Giling/Cacah Plastik	2 Bulan	300.000	600.000
SUB TOTAL			1.400.000
jalanan lokal			
insportasi pembelian bahan	12 Kali	75.000	900.000
n peralatan			
insportasi pelaksanaan riset	15 Kali	70.000	1.050.000
n pengambilan sampel			
insportasi uji hasil riset	3 Bulan	300.000	900.000
SUB TOTAL			2.850.000
n-lain			
AAS	3 Kali	120.000	360.000
gas analyzer	3 Kali	130.000	390.000
sker	3 Kotak	50.000	150.000
nd sanitizer	2 Botol	40.000	80.000
sense akun media sosial	5 kali	100.000	500.000
SUB TOTAL			1.480.000
GRAND TOTAL			10.598.000
sense	akun media sosial SUB TOTAL GRAND TOTAL	akun media sosial 5 kali SUB TOTAL GRAND TOTAL	akun media sosial 5 kali 100.000 SUB TOTAL

GRAND TOTAL (Terbilang Sepuluh Juta Lima Ratus Sembilan Puluh Delapan Ribu Rupiah)

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu	Uraian Tugas
1	Eva Purwanti/ 210801015	S1 Fisika	Fisika	(jam/minggu) 12	 Mengkoordinir pelaksanaan riset Preparasi alat dan bahan Pemilahan limbah plastik Pengaktivasian zeolit Pembuatan laporan akhir dan artikel ilmiah
2	Maulia Syahrina/ 210802027	S1 Kimia	Kimia	10	 Studi literatur dan analisa hasil Pembuatan laporan akhir Publikasi konten PKM melalui akun sosial media
3	Luke Gilbert Buysang/ 210405093	S1 Teknik Kimia	Teknik Kimia	10	 Pengujian dengan AAS dan gas analyzer Penulisan laporan kemajuan
4	Safira Falatansya/ 210802113	S1 Kimia	Kimia	10	 Pengamatan proses pembakaran dan pengambilan data Penulisan laporan kemajuan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Eva Purwanti	
Nomor Induk Mahasiswa	:	210801015	
Program Studi	:	S1 Fisika	
Nama Dosen Pendamping	:	Rahmadhani Banurea, S.Si., M.Si	
Perguruan Tinggi	:	Universitas Sumatera Utara	

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Zeolit Teraktivasi sebagai Filter Asap Pembakaran Limbah Plastik PVC (Polyvinyl Chloride) yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Medan, 14-2-2023 Yang menyatakan,

Eva Purwanti NIM. 210801015