Deep Learning

Angshuman Paul

Assistant Professor

Department of Computer Science & Engineering

Transformers

Attention in Research Papers

Attention in Research Papers

Attention in Language Modelling

• 2017: Attention is All You Need (Vaswani *et al.*)

Introduction of Transformer

• Mimics the process of retrieval of a value v_i based on key k_i from a database for a query q

• Mimics the process of retrieval of a value v_i based on key k_i from a database for a query q

Key	Value
k_1	v_1
k_2	v_2
	•
	•
	•
k_n	v_n

• Mimics the process of retrieval of a value v_i based on key k_i from a database for a query q

• Mimics the process of retrieval of a value v_i based on key k_i from a database for a query q

Compute similarity between query and keys

• Mimics the process of retrieval of a value v_i based on key k_i from a database for a query q

Compute similarity between query and keys

• Mimics the process of retrieval of a value v_i based on key k_i from a database for a query q

 v_m is the output of the query

• What else can we do to get the output?

	Similarity	Key	Value
	s_1	k_1	v_1
	 s_2	k_2	v_2
(q)			
	S_m	k_m	v_m
	\sim s_n	k_n	v_n

Instead of a single output, we may take a weighted combination of the outputs

$$Output = \sum_{i} softmax(s_i)v_i$$

Instead of a single output, we may take a weighted combination of the outputs

$$Output = \sum_{i} softmax(s_i)v_i$$
$$= \sum_{i} softmax(similarity(q, k_i)) \times v_i$$

How to Calculate Similarity?

Instead of a single output, we may take a weighted combination of the outputs

$$similarity(q, k_i) = q^T k_i$$
 Dot product

$$similarity(q, k_i) = \frac{q^T k_i}{\sqrt{d}}$$
 Scaled Dot product

d is the dimensionality

$$similarity(q, k_i) = q^T W k_i$$
 General Dot product

Attention value can be computed using similarity scores and values

Attention value $= \sum_{i} softmax(s_i)v_i$

Transformer for NLP

Where there is will, there

Can an ML model complete the sentence?

Transformer for NLP

Word embedding: Vector representation of words

Transformer for NLP

Where there is will, there

Each word is assigned an index based on the dictionary of words

Word	Index
a	0
is	882
there	3582
where	11442

Transformer for NLP

Where there is will, there	
----------------------------	--

(11442 3582 882 ... 3582)

Word	Index
a	0
is	882
there	3582
where	11442

Transformer for NLP

Word	Index
a	0
is	882
there	3582
where	11442

Where there is will, there

(11442 3582 882 ... 3582)

Input

Word Embedding

Word Embedding

Word embedding: Learnt during training for transformer

Word Embedding

Word	Index
a	0
is	882
there	3582
where	11442

After Word Embedding

Where there is will, there

(11442 3582 882 ... 3582)

0.30	0.17	0.20
0.22	0.29	0.52
0.17	0.10	 0.18
0.65	0.32	0.69
0.12	0.11	0.72

Word	Index
a	0
is	882
there	3582
where	11442

After Word Embedding

Where there is will, there

(11442 3582 882 ... 3582)

			_	
0.30	0	.17		0.20
0.22	0	.29		0.52
0.17	0	.10		0.18
0.65	0	.32		0.69
0.12	0	.11		0.72
			-	

26

 e_n

 e_0

 e_1

Positional Embedding

Although the sky is cloudy, it may **not** rain

Positional Embedding

Although the sky is cloudy, it may **not** rain

Although the sky is **not** cloudy, it may rain

Positional Embedding

Although the sky is cloudy, it may **not** rain

Although the sky is **not** cloudy, it may rain

The position of the word 'not' changes the meaning of the sentence

Positional Embedding

Although the sky is cloudy, it may **not** rain

Although the sky is **not** cloudy, it may rain

The position of the word 'not' changes the meaning of the sentence

So, position information should be incorporated with word embedding

Positional Embedding

Where there is will, there

(11442	3582	882	3582)
0.30	0.17		0.20
0.22	0.29		0.52
0.17	0.10		0.18
0.65	0.32		0.69
0.12	0.11		0.72
e_0	e_1		e_n

Positional Embedding

Where there is will, there

Positional Embedding

Where there is will, there

How to get p_i ?

Positional Embedding

Where there is will, there

How to get p_i ? Vaswani *et al.*

$$PE(pos, 2i) = \sin\left(\frac{pos}{1000\frac{2i}{d}}\right)$$
 Dimesnions at even positions

$$PE(pos, 2i + 1) = \cos\left(\frac{pos}{1000^{\frac{2i}{d}}}\right)$$
 Dimensions at odd positions

Positional Embedding

Where there is will, there

How to combine e_i and p_i ?

Positional Embedding

Where there is will, there

Positional Embedding

Where there is will, there

Output Probabilities Softmax Linear Linear Add & Norm Feed Forward Add & Norm Multi-Head Attention Attention Attention Positional Encoding Inputs (shifted right)

Positional Embedding

Where there is will, there

Positional Embedding

Where there is will, there

Multi-head Self-Attention

Head 1 Head 2 Head 3

Multi-head Self-Attention

Concatenation

Multi-Head Attention Linear Concat Scaled Dot-Product Attention Linear Linear

Encoder

Decoder

```
A ....
Am ....
....
You ....
....
....
....
Zebra
....
```

The English vocabulary

(Let's say ~50*K* words)

The English vocabulary (Let's say ~50K words)

Each word converted to vector (Word embedding)

Learnt from data

s: Embedding dimension

In GPT 3, the vocabulary has 50257 tokens

Embedding dimension: 12288

The English vocabulary (Let's say ~50K words)

Each word converted to vector (Word embedding)

Learnt from data

Consider the sentence translation problem. We want to translate the following sentence to Hindi

Where there is a will, there is a way

Consider the sentence translation problem. We want to translate the following sentence to Hindi

Where there is a will, there is a way

Assume that the Transformer can take at most 20 token-long sentences as input.

Where there is a will, there is a way

Assume that the Transformer can take at most 20 token-long sentences as input.

We first divide our input sentence into tokens and pad suitable number of additional tokens so that the total number of tokens become 20

Where there is a will, there is a way

Assume that the Transformer can take at most 20 token-long sentences as input.

We first divide our input sentence into tokens and pad suitable number of additional tokens so that the total number of tokens become 20

Where there is a will, there is a way

Where there is a will, there is a way

Assume that the Transformer can take at most 20 token-long sentences as input.

We first divide our input sentence into tokens and pad suitable number of additional tokens so that the total number of tokens become 20

Where there is a will, there is a way

Where there is a will, there is a way

Assume that the Transformer can take at most 20 token-long sentences as input.

We first divide our input sentence into tokens and pad suitable number of additional tokens so that the total number of tokens become 20

Where there is a will, there is a way

Assume that the Transformer can take at most 20 token-long sentences as input.

We first divide our input sentence into tokens and pad suitable number of additional tokens so that the total number of tokens become 20

c is the max number of tokens

Add positional embedding

$$\begin{bmatrix} e_{11} \\ e_{12} \\ \dots \\ \vdots \\ e_{1s} \end{bmatrix} \begin{bmatrix} e_{21} \\ e_{22} \\ \dots \\ \vdots \\ e_{2s} \end{bmatrix}$$

$$egin{bmatrix} p_{11} \ p_{12} \ p_{22} \ \dots \ \dots \ \dots \ p_{1s} \end{bmatrix} egin{bmatrix} p_{21} \ p_{22} \ \dots \ p_{2s} \end{bmatrix}$$

$$egin{bmatrix} ep_{11} \ ep_{12} \ ... \ ... \ ... \ ep_{1s} \end{bmatrix} \quad egin{bmatrix} ep_{21} \ ep_{22} \ ... \ ... \ ... \ ep_{2s} \end{bmatrix}$$

$$egin{bmatrix} ep_{c1} \ ep_{c2} \ \dots \ \dots \ \dots \ ep_{cs} \end{bmatrix}$$

$$\begin{bmatrix} ep_{11} \\ ep_{12} \\ \dots \\ \dots \\ \dots \\ ep_{1s} \end{bmatrix} \quad \begin{bmatrix} ep_{21} \\ ep_{22} \\ \dots \\ \dots \\ \dots \\ ep_{2s} \end{bmatrix}$$

 ep_1 ep_2

$$egin{bmatrix} ep_{c1} \ ep_{c2} \ ... \ ... \ ... \ ep_{cs} \end{bmatrix}$$

Transformer: Step by Step

66

 Q_i : Query vector of dimension d for i^{th} token

 Q_i : Query vector of dimension d for i^{th} token

 K_i : Key vector of dimension d for i^{th} token

Attention matrix

Entry (i, j) indicate some sort of correlation between the token of the i^{th} row and the token of the j^{th} row

Attention matrix

For each query column, we apply softmax. As a result, each column kind of indicates the probabilities of the corresponding query to match with different keys

 a'_{12} : Value of the entry after softmax

 Q_1 is influenced by only K_1

 Q_1 is influenced by only K_1 Q_2 is influenced by only K_1 , K_2

 Q_1 is influenced by only K_1 Q_2 is influenced by only K_1 , K_2 Q_3 is influenced by only K_1 , K_2 , K_3 , and so on

 Q_1 is influenced by only K_1 Q_2 is influenced by only K_1 , K_2 Q_3 is influenced by only K_1 , K_2 , K_3 , and so on

 Q_1 is influenced by only K_1 Q_2 is influenced by only K_1 , K_2 Q_3 is influenced by only K_1 , K_2 , K_3 , and so on

This is equivalent to masking the white region

This is equivalent to masking the white region

For that, we make the entries at the white boxes $-\infty$

This is equivalent to masking the white region

For that, we make the entries at the white boxes $-\infty$

After column-wise softmax, these entries become 0

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

This is equivalent to masking the white region

For that, we make the entries at the white boxes $-\infty$

After column-wise softmax, these entries become 0

This is called **masked attention**

Attention matrix

For each query column, we apply softmax. As a result, each column kind of indicates the probabilities of the corresponding query to match with different keys

Attention matrix

After applying softmax to every column

Value vectors

Multiply Value vectors with every column

Consider column 2

Multiply Value vectors with every column

Consider column 2

Similarly, for other columns

	ep_1	ep_2			ep_c
ep_1	$a_{11}'V_1$	$a_{12}^{\prime}V_{1}$			
ep_2			:		
ep_c		$a'_{c2}V_c$			$a_{cc}'V_c$

Multiply Value vectors with every column

Consider column 2

Similarly, for other columns

	ep_1	ep_2			ep_c
ep_1	$a_{11}'V_1$	$a'_{12}V_1$			
ep_2					
ep_c		$a'_{c2}V_c$			$a_{cc}'V_c$
		Δep_2			

Sum up values at each column

 $Attention value = \sum_{i} softmax(s_i)v_i$

	ep_1	ep_2			ep_c
ep_1	$a_{11}'V_1$	$a'_{12}V_1$			
ep_2			:		
ep_c		$a'_{c2}V_c$			$a_{cc}'V_c$
		$\Delta e p_2$			

Sum up values at each column

Get $ep'_i = ep_i + \Delta ep_i$ Through residual connection

	ep_1	ep_2				ep_c
ep_1	$a_{11}'V_1$	$a_{12}^{\prime}V_{1}$				
ep_2			::			
				:		
ep_c		$a'_{c2}V_c$				$a_{cc}'V_c$
		$\Delta e p_2$				

This entire thing is one head of attention

Scaled Dot-Product Attention

We will have many such heads with different W_V , W_Q , and W_K

	ep_1	ep_2			ep_c
ep_1	$a_{11}'V_1$	$a_{12}^{\prime}V_{1}$			
ep_2					
ep_c		$a'_{c2}V_c$			$a_{cc}'V_c$
		Δep_2			

This entire thing is one head of attention

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Encoder-decoder Attention

Key and value comes from the encoder through two paths

Query comes from the decoder

Training

Training

Output tokens

Nakutakia kila la kheri <EOS>

Vision Transformer

Detection Transformer

