

FACULTAD DE CIENCIAS AGRARIAS UNIVERSIDAD NACIONAL DE ROSARIO

Paquete de R y aplicación Web para el análisis de datos provenientes de ensayos multiambientales

JULIA ANGELINI

TRABAJO FINAL PARA OPTAR AL TITULO DE ESPECIALISTA EN BIOINFORMÁTICA

DIRECTOR: Gerardo Cervigni CO-DIRECTOR: Marcos Prunello

AÑO: 2020

Paquete de R y aplicación Web para el análisis de datos provenientes de ensayos multiambientales

Julia Angelini

Licenciada en Estadística – Universidad Nacional de Rosario

Este Trabajo Final es presentado como parte de los requisitos para optar al grado académico de Especialista en Bioinformática, de la Universidad Nacional de Rosario y no ha sido previamente presentada para la obtención de otro título en ésta u otra Universidad. El mismo contiene los resultados obtenidos en investigaciones llevadas a cabo en el Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), durante el período comprendido entre los años 2017 y 2020, bajo la dirección del Dr. Gerardo Cervigni y Mgs. Marcos Prunello.

Nombre y firma del autor		
Nombre y firma del Director		
Nombre y firma del Co - Director		
	Defendida:	de 20

Agradecimientos

En este trabajo final, directa o indirectamente, participaron muchas personas a las que les quiero agradecer.

En primer lugar al Dr. Gerardo Cervigni por confiar en mí y permitirme explorar el mundo de la Bioinformática durante mi tesis doctoral, para que hoy sea parte de mis conocimientos. Al Mgs. Marcos Prunello por acompañarme en el desarrollo del trabajo final, por su dedicación y sus consejos.

Todo esto nunca hubiera sido posible sin el apoyo y el cariño de mis padres, de mi hermano, de Segundo y Kalita. Siempre estuvieron a mi lado, las palabras nunca serán suficientes para agradecerles.

A mis compañeras Jor y Lu, por su ayuda y por compartir excelentes momentos.

A Gaby y Euge mis compañeras de CEFOBI, gracias a ustedes este camino ha sido mas fácil!

A mis amigos, por estar siempre presentes.

Muchas gracias a todos!

Abreviaturas y Símbolos

EMA: ensayos multiambientales IGA: interacción genotipo ambiente NCOI: interacción sin cambio de rango, del inglés no crossover interaction COI: interacción con cambio de rango, del inglés crossover interaction ANOVA: análisis de la variancia, del inglés analysis of variance AMMI: modelo de los efectos principales aditivos y interacción multiplicativa, del inglés Additive Main effects and Multiplicative Interaction ACP: análisis de componentes principales SREG: modelo de regresión por sitio, del inlés Site Regression model DVS: descomposición de valores singulares GNU: General Public Licence CRAN: Comprehensive R Archve Network EM: maximización de la esperanza, del inglés Expectation-Maximization

Resumen

Las variedades mejoradas son el resultado del trabajo de desarrollo genético llevado a cabo en los programas de fi

tomejoramiento, los cuales se extienden a lo largo de varios años y requieren cuantiosas inversiones. En etapas avanzadas, los ensayos multiambientales (EMA), que comprenden experimentos en múltiples ambientes, son herramientas fundamentales para incrementar la productividad y rentabilidad de los cultivos. La vigencia comercial de las variedades puede extenderse durante varias décadas, por lo que su elección es crítica para que el productor evite pérdidas ecoómicas por malas campañas y el suministro al mercado sea constante. Consecuentemente, un análisis adecuado de la información de los EMA es indispensable para que el programa de mejoramiento de los cultivos sea efie

caz. Los programas informáticos se han convertido, hoy en día, en una herramienta esencial par el análisis de datos. Actualmente, R es uno de los programas más utilizados debido a su potencia y a su distribución como software libre. Actualmente existen numerosos paquetes de R lo cual provoca que no sea sencillo encontrar un paquete que sea útil para un determinado

propósito sino que se debe recurrir a varios de ellos. Frecuentemente, los mejoradores no tienen un manejo fluido de paquetes estadísticos que permitan entender la dinámica del problema. En este sentido el paquete Shiny que permite crear una interfaz gráfica entre R y el usuario, permitiendo acercar la potencia de R a todo tipo de usuarios. En el presente trabajo se desarrolló un paquete de R que permita analizar los datos provenientes de EMA para aquellos usuarios que tengan manejo del lenguaje de programación y una interfaz en Shiny que permita realizar los principales análisis del paquete sin necesidad de programar.

Palabras Clave:

Abstract

Keywords:

Índice general

Ca	apítu	los		Página
1.	Intr	oducci	ión	1
2.	Obj	etivos		6
	2.1.	Objeti	ivo general	6
	2.2.	Objeti	ivos específicos	6
3.	Mét	odos		7
	3.1.	Métod	los estadísticos	7
		3.1.1.	Modelo AMMI	7
		3.1.2.	Modelo SREG	10
		3.1.3.	Métodos de imputación	16
	3.2.	Paque	te de R \ldots	17
		3.2.1.	Esqueleto y estructura del paquete	18
		3.2.2.	Creación de funciones y conjuntos de datos	19
		3.2.3.	Documentación	20
		3.2.4.	Pruebas del flujo de trabajo	22
		3.2.5.	Compilación e instalación	23
		3.2.6.	Publicación	23
	3.3.	Shiny	APP	24
		3.3.1.	Flujo de trabajo	25
		3.3.2.	Compartiendo una Shiny Web App	28
4.	Res	ultado	s	29
	4.1.	Paque	te de R geneticae	29
		4.1.1.	Conjuntos de datos en geneticae	29
		4.1.2.	Funciones en geneticae	30
	4.2.	Geneti	icae Shiny Web App	47
		4.2.1.	Los datos	48

4.2.2.	Análisis descriptivo	49
	4.2.2.1. Boxplot	49
	4.2.2.2. Gráfico de correlación	51
	4.2.2.3. Matriz de correlación	53
	4.2.2.4. Gráfico de interacción	54
4.2.3.	Análisis de la variancia	55
4.2.4.	Biplot GGE	59
4.2.5.	Biplot GE	59
5. Conclusio	nes	6 0
Bibliografía		61

Índice de figuras

1.1.	Representación gráfica de tipos de IGA: (A)IGA no crossover, (B) IGA	
	crossover y (C) no IGA	2
3.1.	Ejemplo de un biplot GE	9
3.2.	Ranking de genotipos en el ambiente D a través del biplot GGE	11
3.3.	Ambientes favorables y desfavorables para el genotipo 2 en el biplot GGE .	12
3.4.	Comparación de los genotipos 6 y 8 en el biplot GGE	13
3.5.	Biplot GGE con el polígono envolvente y las perpendiculares a sus lados .	14
3.6.	Eje de coordenadas de ambiente medio para un mega-ambiente en el biplot	
	GGE	16
3.7.	Esquema interno de la aplicación	25
4.1.	Biplot básico obtenido de la función GGEPlot()	32
4.2.	Ranking de cultivares para un ambiente determinado obtenido de la función	
	GGEPlot()	32
4.3.	Ranking de ambientes para cultivar determinado obtenido de la función	
	GGEPlot()	33
4.4.	Relación entre ambientes obtenido de la función $\operatorname{GGEPlot}()$	34
4.5.	Comparación entre dos genotipos obtenido de la función $\operatorname{GGEPlot}()$	34
4.6.	Identificación del mejor cultivar en cada ambiente a partir de la función	
	GGEPlot()	35
4.7.	Evaluación de los ambientes basados tanto en la capacidad de discrimina-	
	ción y representatividad a partir de la función $\operatorname{GGEPlot}()$	36
4.8.	Clasificación de ambientes con respecto al ambiente ideal a partir de la	
	función GGEPlot()	36
4.9.	Clasificación de genotipos con respecto al genotipo ideal a partir de la	
	función GGEPlot()	37
4.10.	Evaluación de los cultivares con base en el rendimiento promedio y la es-	
	tabilidad a partir de la función GGEPlot()	38
4.11.	Biplot GE obtenido del modelo clasico AMMI	39

4.12.	Biplot GE obtenido del modelo robusto rAMMI	40
4.13.	Biplot GE obtenido del modelo robusto hAMMI	40
4.14.	Biplot GE obtenido del modelo robusto gAMMI	41
4.15.	Biplot GE obtenido del modelo robusto lAMMI	42
4.16.	Biplot GE obtenido del modelo robusto ppAMMI	42
4.17.	yan.winterwheat dataset disponible en Shiny Web App	48
4.18.	plrv dataset disponible en Shiny Web App	49
4.19.	Boxplot de ambientes a través de los genotipos para el conjunto de datos	
	Plrv	50
4.20.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	51
4.21.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	52
4.22.	Boxplot de ambientes a través de los genotipos para el conjunto de datos	
	Plrv	53
4.23.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	54
4.24.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	55
4.25.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	56
4.26.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	57
4.27.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	58
4.28.	Boxplot de genotipos a través de los ambientes para el conjunto de datos	
	Plrv	59

Índice de tablas

Lista de tareas pendientes

This is a note	 see 1.0 at p.

Capítulo 1

Introducción

A lo largo de la historia de la agricultura, el hombre ha desarrollado el mejoramiento vegetal (o fitomejoramiento) en forma sistemática y lo ha convertido en un instrumento esencial para la mejora de la producción agrícola en términos de cantidad, calidad y diversidad.

El fitomejoramiento, en un sentido amplio, busca alterar o modificar la herencia de las plantas para obtener cultivares mejorados genéticamente, adaptados a condiciones específicas, de mayores rendimientos económicos y de mejor calidad que las variedades nativas o criollas (Allard, 1967). En otras palabras, su objetivo es desarrollar plantas cuyo patrimonio hereditario esté de acuerdo con las condiciones, necesidades y recursos de los todos aquellos que producen, transforman y consumen productos vegetales.

Las variedades mejoradas son el resultado del trabajo de desarrollo genético llevado a cabo en los programas de fitomejoramiento, los cuales se extienden a lo largo de varios años y requieren cuantiosas inversiones. Generalmente, en etapas tempranas de estos programas existe un gran número de genotipos experimentales con pocos antecedentes de evaluación; mientras que en etapas posteriores se trabaja con pocos genotipos altamente selectos. En etapas avanzadas, los ensayos multiambientales (EMA), que comprenden experimentos en múltiples ambientes, son herramientas fundamentales para incrementar la productividad y rentabilidad de los cultivos.

Como consecuencia de que los EMA se llevan a cabo en múltiples ambientes (ya sea localidades o años), la aparición de la interacción genotipo ambiente (IGA) es inevitable debido a las variaciones en las condiciones climáticas y de suelo. La IGA es considerada por los fitomejoradores como el principal factor que limita la respuesta a la selección y, en general, la eficiencia de los programas de mejoramiento, por provocar respuestas altamente variables en los diferentes ambientes (Crossa et al., 1990; Cruz Medina, 1992; Kang y Magari, 1996). Gauch y Zobel (1996) explicaron la importancia de IGA como: "Si no hubiera interacción, una sola variedad de trigo (Triticum aestivum L.) o maíz

This is a note

(Zea mays L.) o cualquier otro cultivo rendiría al máximo en todo el mundo, y además las variedades se deberían evaluar en un sólo lugar para proporcionar resultados universales".

Peto (1982) ha distinguido las interacciones cuantitativas, conocida también como interacción sin cambio de rango (NCOI) o no crossover, de las interacciones cualitativas, denominada también con cambio de rango (COI) o crossover (Cornelius et al., 1996). Cuando dos genotipos X e Y tienen una respuesta diferencial en dos ambientes diferentes, pero su ordenación permanece sin cambios se dice que la IGA es no crossover (Figura 1.1(A)). Sin embargo, es de tipo crossover cuando hay cambios en el orden de los genotipos (Figura 1.1(B)). Cuando los genotipos responden de manera similar en ambos ambientes (Figura 1.1(C)) no hay IGA.

Figura 1.1: Representación gráfica de tipos de IGA: (A)IGA no crossover, (B) IGA crossover y (C) no IGA

Entre las implicancias de IGA en los programas de mejoramiento se encuentra por ejemplo el impacto negativo en la heredabilidad, cuanto menor sea la heredabilidad de un caracter, mayor será la dificultad para mejorar ese caracter mediante la selección. Como consecuencia, información sobre la estructura y la naturaleza de la IGA es particularmente útil para determinar, por ejemplo, si se deben desarrollar cultivares para todos los ambientes de interés o si se deberían desarrollar para ambientes específicos (Bridges, 1989). Además, distintos conceptos como regiones ecológicas, ecotipos, mega-ambientes, adaptaciones de germoplasma tanto en sentido amplio (a través de los ambientes) como específico (para cada ambiente o grupos de ambiente particular) (Kang et al., 2004) se pueden analizar a partir de la IGA (Yan y Hunt, 2001).

La vigencia comercial de las variedades puede extenderse durante varias décadas, por lo que su elección es crítica para que el productor evite pérdidas económicas por malas campañas y el suministro al mercado sea constante. Consecuentemente, un análisis adecuado de la información de los EMA es indispensable para que el programa de mejoramiento de los cultivos sea eficaz. El rendimiento medio en los ambientes es un indicador suficiente del rendimiento genotípico solo en ausencia de IGA (Yan y Kang, 2003). Sin

embargo, la aparición de IGA es inevitable y no basta con la comparación de las medias de los genotipos, sino que se debe recurrir a una metodología estadística más aporopiada. La metodología estadística más difundida para analizar los datos provenientes de EMA se basa en modificaciones de los modelos de regresión, análisis de variancia (*Analysis of Variance*, ANOVA) y técnicas de análisis multivariado.

Particularmente, para el estudio de la IGA y los análisis que de ella se derivan, dos modelos multiplicativos han aumentado su popularidad entre los fitomejoradores como una herramienta de análisis gráfico: el modelo de los efectos principales aditivos e interacción multiplicativa (Additive Main effects and Multiplicative Interaction, AMMI) (Kempton 1984, Gauch, 1988), y el de regresión por sitio (Site Regression model, SREG) (Cornelius et al., 1996; Crossa y Cornelius, 1997 y 2002). Estos modelos combinan un ANOVA con la descomposición de valores singulares (DVS) o un análisis de componentes principales (ACP) sobre la matriz residual de ANOVA. En SREG, el ANOVA se realiza sobre el efecto principal de A mientras que en AMMI se consideran los efectos de G y A. Mientras que a través del modelo AMMI se obtiene el gráfico biplot Genotipe-Environment (GE), el cual es usado para explorar patrones puramente atribuibles a los efectos la IGA, para el modelo SREG el biplot GGE es usado para explorar simultáneamente patrones de variación conjunta de G e IGA (Yan y Hunt (2002)).

Una limitación importante de la mayoría de las propuestas de análisis provenientes de EMA es que requieren que el conjunto de datos este completo. Aunque los EMA están diseñados para que todos los genotipos se evalúen en todos los ambientes, las tablas de datos genotipo × ambiente completas son poco frecuentes (no todos los genotipos se encuentran en todos los ambientes). Esto ocurre, por ejemplo, debido a errores de medición o causas naturales como la destrucción de plantas por animales, inundaciones o durante la cosecha, la incorporación de nuevos genotipos y a que otros se descartan por su pobre desempeño (Hill y Rosemberg, 1985). En estos casos, entre las posibles soluciones para tratar con una tabla de datos incompleta se encuentran (i) el uso de un subconjunto completo de datos, eliminando aquellos genotipos que tienen valores faltantes (Ceccarelli et al., 2007, Yan et al., 2011), (ii) completar datos faltantes con la media ambiental, o (iii) imputación de datos faltantes con valores estimados utilizando, por ejemplo, un modelo multiplicativo (Kumar et al., 2012).

En este contexto, el análisis de datos provenientes de EMA requiere metodología estadística sofisticada cuyas rutinas informáticas se encuentran disponibles en programas desarrollados por diferentes empresas. Esto genera el inconveniente de tener que disponer de todos los programas necesarios para los distintos análisis, atender los requerimientos de formatos de datos usados por cada uno, y comprender los diversos tipos de salidas en las que se ofrecen los resultados obtenidos. Además, algunos procedimientos, especialmente

aquellas metodologías recientes, no se encuentran disponibles, y los costos de las licencias de dichos programas resultan muy elevados.

El software R se trata de un proyecto de software libre distribuido bajo los términos de la General Public Licence (GNU), desarrollado por The R Foundation for Statistical Computing. Surge como resultado de la implementación de uno de los lenguajes más utilizados en investigación por la comunidad estadística, el lenguaje S. A diferencia de los programas estadísticos utilizados frecuentemente, R es un lenguaje de programación y no dispone de una interfaz gráfica en la cual los distintos análisis se realizan por menús, lo cual genera dificultad en su uso para aquéllos que no se encuentran familiarizados con el lenguaje de programación. Sin embargo, por ser un software sea libre, permite a los usuarios definir sus propias funciones dando lugar mayores posibilidades en cuanto a la manipulación y análisis de los datos que desea realizar. Si bien la versión básica del programa dista mucho de ser amigable, RStudio permite una interacción más fluida con el programa, actuando como una interfaz amigable con el usuario. RStudio es un entorno de desarrollo integrado (IDE) gratuito y de código abierto para R.

R forma parte de un proyecto colaborativo ya que promueve el hecho de que los usuarios compartan con la comunidad las funciones creadas por ellos, es decir que está en continuo desarrollo y actualización. A menudo, no resulta sencillo reutilizar una función creada por algún usuario, por ello, se ha introducido la posibilidad de crear paquetes (package) o librerías. Éstas son una colección de objetos creados y organizados siguiendo un protocolo fijo que garantiza un soporte mínimo para el usuario así como la ausencia de errores (de sintaxis) en la programación.

Actualmente, R cuenta con 14 paquetes básicos y 29 recomendados para su funcionamiento instalados automaticamente en él, como por ejemplo, base o stats. La comunidad de usuarios de R ha ido creciendo notablemente en los últimos años, por lo que se ha incrementado la cantidad de paquetes que extienden las funciones básicas de R. Entre ellos se encuentran, plyr, lubridate, reshape2 y stringr para la manipulación de los datos; ggplot2 y rgl para la visualización; knitr y xtable para la presentación de resultados; entre otros. La lista completa de los paquetes oficiales puede consultarse en CRAN¹, se contaba con más de 14.000 paquetes disponibles en CRAN hasta junio de 2019. Esta gran variedad de paquetes es una de las razones de la gran difusión de R, cada usuario puede resolver el problema en el cual se encuentra trabajando utilizando el paquete de otro. Además de los paquetes oficiales, existen otros que pueden instalarse desde repositorios como, por ejemplo, Github. Sin embargo, no es sencillo encontrar un paquete que puede ser útil para un determinado fin sino que se debe recurrir a varios de ellos para cumplir un determinado

¹CRAN (Comprehensive R Archve Network) es el repositorio oficial de paquetes de R, el lugar donde se publican las nuevas versiones del programa, etc. Contiene la lista completa de paquetes oficiales. https://cran.r-project.org/web/packages/available_packages_by_name.html

objetivo.

Con frecuencia, los mejoradores usan programas que tienen una interfaz para realizar el análisis estadístico deseado sin necesidad del manejo de un lenguaje de programación. En el año 2012 se creó el paquete *Shiny* de R que permite desarrollar aplicaciones Web utilizando R, acercando la potencia de R a todo tipo de usuarios, sin tener que programar.

El objetivo del presente trabajo es: (i) crear un paquete de R que integre las funciones que permitan analizar los datos provenientes de EMA, incluyendo además metodología recientemente publicada que no se encuentra disponible en R; (ii) crear una interfaz gráfica, entre R y el usuario, mediante Shiny con el fin de poder realizar los análisis disponibles en el paquete creado sin necesidad de utilizar el lenguaje de programación.

Elousa, Paula. 2009. "¿EXISTE VIDA MÁS ALLÁ DEL SPSS? DESCUBRE R." Revista Psicothema 21 (4): 652–55. http://www.psicothema.com/psicothema.asp?id=3686.

FSF. 2019. "¿Qué Es El Software Libre?" Free Software Foundation. https://www.fsf.org/es/recurses-el-software-libre.

Capítulo 2

Objetivos

2.1. Objetivo general

Construir un paquete para el programa R con funciones necesarias para analizar datos provenientes de EMA y desarrollar una Shiny Web APP que permita a los usuarios utilizar las funciones del paquete sin necesidad de conocer el lenguaje de programación utilizado.

2.2. Objetivos específicos

- Mostrar un flujo de trabajo reproducible para la construcción de paquetes de R.
- Modificar funciones existentes para el análisis de datos provenientes de EMA de manera que sean más flexibles que las actuales.
- Incorporar metodología recientemente publicada en el paquete de R.
- Desarrollar una Shiny Web APP para analizar los datos provenientes de EMA, presentando un flujo de trabajo reproducible.

Capítulo 3

Métodos

3.1. Métodos estadísticos

3.1.1. Modelo AMMI

Modelo AMMI clásico

El modelo AMMI es un modelo multiplicativo en el cual se expresa el fenotipo de un genotipo en un ambiente de la siguiente forma:

$$y_{ij} = \mu + G_i + A_j + \sum_{k=1}^q \lambda_k \alpha_{ik} \gamma_{jk}$$
 $i = 1, ..., g; \ j = 1, ..., a; \ q = min(g - 1, a - 1)$ donde

- y_{ij} es el caracter fenotípico evaluado (rendimiento o cualquier otro caracter de interes) del *i*-ésimo genotipo en el *j*-ésimo ambiente,
- μ es la media general,
- G_i es el efecto del *i*-ésimo genotipo,
- A_j es el efecto del j-ésimo ambiente
- $\sum_{k=1}^{q} \lambda_k \alpha_{ik} \gamma_{jk}$ es la sumatoria de componentes multiplicativas utilizadas para modelar la IGA. Siendo, λ_k el valor singular para la k-ésima componente principal (PC) α_{ik} y γ_{jk} son los scores de las PC para el i-ésimo genotipo y el j-ésima ambiente para la k-ésima componente, respectivamente;

Los parámetros de IGA en el modelo AMMI se estiman por medio de la DVS de la matriz que contiene los residuos del modelo aditivo luego de ajustar por mínimos cuadrados el modelo de efectos principales. Generalmente los dos primeros términos multiplicativos son suficientes para explicar los patrones de interacción; la variabilidad remanente se interpreta como ruido.

Los patrones de interacción se pueden visualizar mediante los biplots GE. El concepto del biplot fue presentado por Gabriel (1971), que consiste en una representación de las filas (individuos) y las columnas (variables) de una matriz de datos en un mismo gráfico.

Biplot GE

El biplot GE ayuda a interpretar la variación producida por los efectos de la IGA. Se grafican en un sistema de coordenadas cartesianas de dos dimensiones los scores de los genotipos (α_{ik}) y los ambientes (γ_{jk}) , ponderados por la raíz cuadrada del autovalor correspondiente (λ_k) .

Dado que los genotipos y los ambientes son definidos como vectores desde el origen (0,0) hasta sus scores, el biplot se interpreta en términos de las direcciones de vectores y sus proyecciones.

El módulo del vector de un ambiente indica la contribución del mismo a la interacción. Los puntos de los genotipos que se encuentran próximos al origen indican que los mismos contribuyen poco a la interacción, es decir, se adaptan de igual manera a todos los ambientes. Puntos cercanos entre sí indican patrones de interacción similares, mientras que puntos alejados entre sí tienen patrones diferentes. Ángulos de $< 90^{\circ}$ ó $> 270^{\circ}$ entre los ambientes y genotipos indica que contribuyen positivamente a la interacción (hay una asociación positiva entre ese genotipo y ese ambiente); y mientras más alejados del origen se encuentre los marcadores, más fuerte será esa asociación. Una asociación fuerte y positiva indica que ese ambiente es muy favorable para ese genotipo. De manera similar, cuando un genotipo y un ambiente forman un ángulo entre 90° y 270° se interpreta que ese ambiente es muy desfavorable para ese genotipo.

En la Figura 3.1, se presenta un ejemplo de un biplot GE con 6 ambientes (A, B, C, D, E y F) y 10 genotipos (1, 2, 3, 4, 5, 6, 7, 8, 9 y 10). Se observa los ambientes A y E son los que más contribuyen a la interacción. La cercanía de los genotipos 1 y 2 indica que esos genotipos tienen patrones de interacción similares, y a la vez, muy distintos a los del genotipo 4. Las cercanías entre el genotipo 9 y el ambiente A, entre el genotipo 5 con el ambiente C, entre los genotipos 1 y 2 con el ambiente E, entre los genotipos 6, 7 y 10 con el ambiente F y entre el genotipo 4 con el ambiente D, lo que indica, y la gran distancia con el origen de coordenadas, indica que esos ambientes son muy favorables para el genotipo 10. También se observa que los genotipos 3 y 8 se adaptan en igual medida a todos los ambientes, debido a su proximidad con el origen de coordenadas.

Figura 3.1: Ejemplo de un biplot GE

Modelo AMMI robusto

El modelo AMMI, en su forma estándar, asume que no hay valores atípicos en el conjunto de datos. La presencia de observaciones atípicas es más una regla que una excepción cuando se consideran datos agronómicos debido a errores de medición, algunas plagas / enfermedad que puede influir en algunos genotipos en un ambiente resultando por ejemplo en un rendimiento inferior al esperado, o incluso debido a alguna característica inherente de los genotipos que se evalúan.

Rodrigues et al. (2015) proponen una generalización robusta del modelo AMMI, que se puede obtener en dos etapas: primero ajustar la regresión robusta basada en el estimador M-Huber (Hub) para reemplazar el ANOVA; y luego utilizar un procedimiento DVS / PCA robusto para reemplazar la DVS estándar. En la segunda etapa, consideraron varios métodos dando lugar a total de cinco robustos llamados: R-AMMI, H-AMMI, G-AMMI, L-AMMI, PP-AMMI.

El empleo de la versión robusta del modelo AMMI puede ser extremadamente útil debido a que una mala representación de genotipos y ambientes en los biplots puede dar como resultado un mala decisión con respecto a qué genotipos seleccionar para un conjunto dado de ambientes (es decir, megaambientes; Gauch y Zobel, 1997; Yan et al., 2000). A su vez, la elección de los genotipos incorrectos pueden provocar grandes pérdidas en términos de producción de rendimiento. Los biplots obtenidos de los modelos robustos mantienen las características e interpretación estándar del modelo AMMI clásico (Rodrigues et al. (2015)).

3.1.2. Modelo SREG

El modelo SREG (Cornelius et al., 1996; Crossa y Cornelius, 1997 y 2002) expresa el fenotipo de un genotipo en un ambiente en función del efecto ambiente aditivo y los efectos genotipo e interacción agrupados y en forma multiplicativa. $y_{ij} = \mu + A_j + \sum_{k=1}^q \lambda_k \alpha_{ik} \gamma_{jk}$ i = 1, ..., g; j = 1, ..., a; q = min(g - 1, a - 1) donde

- y_{ij} es la característica fenotípica evaluada (rendimiento u otra variable cuantitativa de interés) del *i*-ésimo genotipo en el *j*-ésimo ambiente,
- μ es la media general,
- G_i es el efecto del *i*-ésimo genotipo,
- A_j es el efecto del j-ésimo ambiente
- $\sum_{k=1}^{q} \lambda_k \alpha_{ik} \gamma_{jk}$ es la sumatoria de componentes multiplicativas utilizadas para modelar los efectos G e IGA en forma conjunta. Siendo, λ_k el valor singular para la k-ésima PC α_{ik} y γ_{jk} son los scores de las PC para el i-ésimo genotipo y el j-ésima ambiente para la k-ésima PC, respectivamente;

Para visualizar conjuntamente el efecto de G y IGA Yan et al. (2000) proponen los gráficos biplots GGE (Genotipe plus Genotipe-Environment). A partir de estos gráficos se puede investigar la diferenciación de mega-ambientes entre los ambientes en estudio, seleccionar cultivares superiores en un mega-ambiente dado y seleccionar los mejores ambientes de evaluación para analizar las causas de la IGA. Se define como mega-ambiente a un grupo de ambientes en donde los cultivares de mejor desempeño son los mismos.

Biplot GGE

El biplot GGE, ayuda a interpretar conjuntamente la variación producida por los efectos principales de los G + IGA.

Para la construcción de los biplots GGE, al igual que para los biplots GE, se grafican en un sistema de coordenadas cartesianas de dos dimensiones los scores de los genotipos (α_{ik}) y los ambientes (γ_{jk}) , ponderados por la raíz cuadrada del autovalor correspondiente (λ_k) .

Para una mejor comprensión de las interpretaciones que se pueden extraer del gráfico biplot GGE, se presenta un ejemplo del mismo para un ensayo de 6 ambientes (A, B, C, D, E y F) con 12 genotipos (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12).

Biplot básico

Desempeño de los cultivares en un ambiente dado

Para identificar los mejores genotipos en un ambiente a través del biplot GGE, Yan y Hunt (2002) sugieren trazar una recta que pase por el origen y el punto del ambiente de interes, formando un eje para el ambiente. Luego, ranking de los genotipos en ese ambiente se puede obtener con las proyecciones de los marcadores de los genotipos sobre ese eje. La linea que pasa por el origen y es perpendicular al eje del ambiente separa aquellos genotipos con rendimiento superior e inferior al promedio del ambiente. El genotipo de mayor rendimiento en el ambiente es aquel cuya proyección sobre el eje está más alejada del origen hacia el semi-eje donde se encuentra el marcador del ambiente. Aquel cuya proyección sea la segunda más alejada del origen en ese sentido, es el de segundo mejor rendimiento y así hasta llegar al de menor rendimiento en el ambiente, que es aquel cuya proyección está más alejada del origen en sentido contrario al identificador del ambiente.

Como se observa en la Figura 3.2, el genotipo de mayor rendimiento en el ambiente D es el 4, luego le sigue el 7, luego el 8, y así sucesivamente hasta llegar al genotipo 12, que es el de peor rendimiento en ese ambiente. Además, los genotipos 4, 7, 8, 11, 2 y 5 quedan del lado del marcador del ambiente D, de acuerdo a la división de la perpendicular que pasa por el origen, por que se interpreta que estos genotipos tienen un rendimiento mayor al promedio del ambiente D. Los restantes genotipos tienen un rendimiento inferior al promedio.

Figura 3.2: Ranking de genotipos en el ambiente D a través del biplot GGE

Adaptación relativa de un cultivar dado en diferentes ambientes

Para identificar qué ambiente es el más adecuado para un cultivar, Yan y Hunt (2002) proponen graficar una línea que una el marcador del genotipo con el origen, formando un eje para el cultivar, y luego trazar otra línea perpendicular a la primera. Esta última perpendicular es la que separa los sitos favorables y desfavorables para el genotipo. Los sitios cuyos marcadores queden en el mismo lado donde está el genotipo son los mejores para ese genotipo y los restantes son aquellos donde el genotipo rinde por debajo de su promedio.

Como se puede apreciar en la Figura 3.3, la perpendicular al marcador del genotipo 2, determina que los ambientes favorables para ese genotipo son A, E, F y D, en donde el mismo tiene rendimientos mayores a su promedio. Los ambientes desfavorables son B y C. También se observa que el ambiente más favorable es el A, luego le siguen el E y el F. Si bien el ambiente D también es favorable, en ese ambiente el rendimiento del genotipo 2 es apenas superior a su rendimiento medio ya que el marcador del ambiente D, está muy cerca de la perpendicular que pasa por el origen.

Figura 3.3: Ambientes favorables y desfavorables para el genotipo 2 en el biplot GGE

Relación entre ambientes

Comparación entre dos cultivares

Para comparar dos cultiares, se propone unir mediante una línea recta los genotipos a comparar, luego trazar una línea perpendicular a la anterior que pase por el origen. Esta

última línea es la que separa sitios favorables a uno y a otro genotipo.

Al hacer comparaciones de a pares, la longitud de la linea que conecta los cultivares es importante para hacer inferencias. Cuanto más larga sea, más confiable será la comparación. Por el contrario, una línea corta implica que los dos cultivares a comparar son similares en todos los entornos y, por lo tanto, la comparación puede no tener sentido.

Los sitios cuyos marcadores queden en el mismo lado donde está el marcador del genotipo son los mejores para ese genotipo. Si un ambiente queda posicionado sobre la línea perpendicular, los dos genotipos tienen rendimientos similares en ese ambiente. Si dos genotipos están cercanos, sus rendimientos son similares en los ambientes evaluados. Por último, si todos los ambientes quedan a un lado de la línea perpendicular, el genotipo cuyo identificador está de ese lado rinde más que el otro en todos los ambientes.

En la Figura 3.4 se puede ver la comparación de los desempeños de los genotipos 6 y 8. Los ambientes que resultan favorables para el genotipo 6 son el E, el A y el F. Mientras que los favorables para el genotipo 8 son el B, el C y el D.

Figura 3.4: Comparación de los genotipos 6 y 8 en el biplot GGE

"Which-Won-Where"

Para poder identificar mega-ambientes y los mejores genotipos en cada uno de ellos se propone graficar un polígono envolvente. Este polígono se forma uniendo los genotipos más extremos en el biplot, de manera que todos los cultivares son contenidos en el mismo. Luego se trazan líneas rectas que pasan por el origen y que son perpendiculares a cada uno de los lados del polígono. De esta forma, el biplot queda dividido en sectores, y los sitios que

quedan dentro un mismo sector se consideran pertenecientes a un mismo mega-ambiente. El cultivar que se encuentra en el vertice de cada sector es el de mayor rendimiento en todos los ambientes que comparten el sector con él. A los grupos de ambientes de cada sector se los llama mega-ambientes.

En la Figura 3.5 se presenta el biplot GGE con el polígono envolvente y las perpendiculares a sus lados, que ayudan a la interpretación del mismo.

En primer lugar se observa una mayor variabilidad en los ambientes A y B, es decir, en ellos es donde mejor se diferencian los efectos de los genotipos.

Las perpendiculares a los lados del polígono envolvente determinan tres mega-ambientes:

- uno formado por los ambientes A, E y F, en donde el genotipo de mejor desempeño es el 2 (se encuentra en el vértice del polígono encerrado por las perpendiculares).
- otro está formado solo por el ambiente D y el genotipo ganador en él es el 4, y
- el tercer mega-ambiente lo componen los ambientes B y C, en este caso el genotipo ganador es el 1.

Figura 3.5: Biplot GGE con el polígono envolvente y las perpendiculares a sus lados

Evaluación de los cultivares basada en el desempeño y estabilidad

Si se identifican distintos mega-ambientes, la selección de genotipos debe hacerse para cada mega-ambiente en particular. Los genotipos se seleccionan en base a su desempeño y a su estabilidad a través de los ambientes. Esto se puede visualizar al graficar un eje

medio para todos los ambientes pertenecientes a un mismo mega-ambiente. Para ello se traza una línea recta entre la media de scores de la componente 1 y la componente 2 de los ambientes pertenecientes al mega-ambiente y el origen; y una perpendicular a la línea media de scores de ambientes. Estas dos líneas constituyen "el eje de coordenadas de ambiente medio".

Las proyecciones de los marcadores de los genotipos sobre el eje de la media de scores de ambientes da un ranking de los rendimientos de los genotipos en ese mega-ambiente. A su vez la magnitud de la proyección de los marcadores de los genotipos a la perpendicular al eje de ambientes da una idea de la estabilidad. Cuanto mayor sea esta magnitud, más inestable será el genotipo.

En este ejemplo se calcula el ambiente medio para un mega-ambienteformado por los ambientes A, E y F. El promedio de los scores de la primer componentes es 1,00 y el de la segunda es 1,13, por lo que el punto medio que determina la dirección del eje es (1,00; 1,13), que está graficado con un círculo en la Figura 3.6.

Como se puede observar en el biplot el orden de los genotipos (de mayor a menor rendimiento) es: 2, 4, 12, 11, 5, 6 todos ellos con rendimientos superiores al promedio, seguidos por los de rendimiento menor al promedio: el 10, 9, 7, 3 y por último el 1, el de peor rendimiento medio en ese mega-ambiente.

Debido a que las proyecciones sobre el eje perpendicular al eje medio de ambiente dan una idea de la estabilidad, se observa que el genotipo 12, el 9, el 7 y el 4 son los más inestables. También se observa que el genotipo 2, además de tener el mejor rendimiento medio es de los más estables en el megaambiente.

Figura 3.6: Eje de coordenadas de ambiente medio para un mega-ambiente en el biplot GGE

Comparación de todos los ambientes con respecto a uno ideal

Comparación de todos los genotipos con respecto a uno ideal

El cultivar ideal, representado por el círculo pequeño con una flecha apuntando hacia él, se define como el que tiene el mayor rendimiento en todos los entornos. es decir, tiene el rendimiento medio más alto y es absolutamente estable. los genotipos se clasifican según su distancia del cultivar ideal

3.1.3. Métodos de imputación

Una limitación importante que presentan los modelos multiplicativos (AMMI y SREG) es que requieren que el conjunto de datos este completo, es decir no admiten valores perdidos. Aunque los EMA están diseñados para que todos los genotipos se evalúen en todos los ambientes, la presencia de valores faltantes es muy común, debido por ejemplo a la incorporación de nuevos genotipos, errores de medición o causas naturales como la destrucción de plantas por animales, inundaciones o durante la cosecha.

Entre las posibles soluciones para tratar un conjunto de datos con observaciones perdidas: el uso de un subconjunto completo de datos, eliminando aquellos genotipos que tienen valores faltantes (Ceccarelli et al., 2007, Yan et al., 2011), completar datos faltantes con la media ambiental, o imputación de los valores faltantes mediante estimaciones utilizando, por ejemplo, un modelo multiplicativo (Kumar et al., 2012).

Se han propuesto numerosas metodologías para superar el problema de valores ausentes en el conjunto de datos, entre las cuales se encuentran:

- EM-AMMI: Gauch y Zobel (1990) desarrollaron este enfoque mediante el cual se imputa utilizando el algoritmo de maximización de la esperanza (EM, del inglés Expectation-Maximization) incorporando el modelo AMMI. Consiste en un procedimiento iterativo que funciona de la siguiente forma: Dependiendo del número de términos multiplicativos empleados, el método de imputación puede denominarse EM-AMMI0, EM-AMMI1, etc. (Gauch y Zobel 1990). Los estudios de Caliński y col. (1992), Piepho (1995), Arciniegas-Alarcón y Dias (2009) y Paderewski y Rodrigues (2014) mostraron que se obtienen los mejores resultados para la imputación con modelos AMMI al incluir como máximo una componente multiplicativa.
- EM-SVD: Perry (2009a) propone un método de imputación que combina el algoritmo EM con DVS. Este método reemplaza los valores faltantes de una matriz $G \times E$ inicialmente por valores arbitrarios para obtener una matriz completa, y luego la DVS se calcula iterativamente en esa matriz. Al final del proceso, cuando las iteraciones alcanzan estabilidad, se obtiene la matriz imputada.Podria ponerlo tambien de manera formal... pero creo que con esto basta

■ EM-PCA:

■ Gabriel Eigen: Arciniegas-Alarcón et al. (2010) propuso un método de imputación que combina regresión y aproximación de rango inferior usando DVS. El método reemplaza inicialmente las celdas faltantes por valores arbitrarios, y posteriormente el las imputaciones se refinan a través de un esquema iterativo que define una partición de la matriz para cada valor que falta a su vez y utiliza una regresión lineal de columnas (o filas) para obtener el nueva imputación. En esta regresión, la matriz de diseño se aproxima por una matriz de menor rango usando la DVS.

• WGabriel Eigen:

Vale la pena señalar que el modelo de análisis no siempre será el mismo que el modelo de imputación.

3.2. Paquete de R

Una librería o paquete (package) es una colección de objetos creados y organizados siguiendo un protocolo fijo que garantiza la ausencia de errores (de sintaxis) en la programación. Éstos son las unidades fundamentales de un código reproducible de R ya que

incluyen funciones reutilizables, la documentación que describe cómo usar cada una de ellas y, además pueden incluir datos de ejemplo.

Los pasos necesarios para la creación de un paquete son:

- Creación del esqueleto del paquete.
- Inclusión de los objetos que contendrá el paquete (funciones y/o datos).
- Redacción de la documentación.
- Compilación del paquete en Linux y creación de la versión para Windows.
- Instalación.
- Prueba y publicación.

Para la cración del paquete se utilizan numerosas funciones incluidas en el paquete devtools que permiten realizar diversos aspectos del desarrollo de paquetes. Por lo tanto, antes de comenzar a crear el paquete se deben instalar el mismo como se indica a continuación:

```
# Instalar el paquete devtools desde CRAN
install.packages("devtools")

# Instalar el paquete devtools desde GitHub:
install_github("r-lib/devtools")
```

3.2.1. Esqueleto y estructura del paquete

Para crear la estructura del paquete se utiliza la función create_package(). El principal y único argumento requerido por dicha función es el directorio donde el nuevo paquete se alojará. Por lo general, si el directorio se llama "geneticae", entonces el nombre del paquete también será "geneticae":

```
# Cargar la libreria devtools
library(devtools)
# Crear el paquete geneticae
create_package("C:/Users/Julia/Desktop/geneticae")
```

El resultado de ejecutar la función create_package() es un paquete con los siguientes componentes:

- Un directorio R/.
- DESCRIPTION, un archivo simple cuyo objetivo es almacenar metadatos importantes sobre el paquete, epecifica el título, la versión del mismo, identifica al autor

y brinda un mail de contacto, una breve descripción del paquete, la lista de los paquetes que el paquete creado necesita para funcionar, la licencia, entre otros.

El contenido básico en un archivo DESCRIPTION es:

Un archivo NAMESPACE

Estas carpetas se iran modificando a medida que el paquete se vaya creando. También puede incluir un archivo de proyecto de RStudio pkgname.Rproj, que hace que el paquete sea fácil de usar con RStudio; .Rbuildignore enumera los archivos que se necesitan, pero que no deben incluirse al compilar el paquete R desde la fuente; .gitignore anticipa el uso de Git. Se crearán, a través de devtools, las siguientes carpetas: data/ y man/.

3.2.2. Creación de funciones y conjuntos de datos

Una vez creada la estructura del paquete se deben incluir las funciones que el mismo contendrá. Cada una de ellas debe ser guardada en un archivo de extensión .R, en el subdirectorio R/. Para ello, se utiliza la función use_r() la cual crea y/o abre un script de la carpeta R/.

Una vez creada una función, se realizan pruebas para asegurar que el código realice lo que realmente se desea utilizando la función load_all() que simula el proceso de construcción, instalación y conexión del paquete. Permite que las funciones creadas estén disponible rápidamente para uso interactivo, del mismo modo que si se hubiera construido e instalado el paquete y luego cargada en la sesión de R a través de la función library(geneticae).

Muy frecuentemente se utilizan funciones que se encuentran disponibles en otros paquetes, para ello se utiliza la función use_package() que agrega el paquete al archivo DESCRIPTION.

A menudo es útil incluir datos en un paquete a fin de proporcionar ejemplos de aplicaciones de las funciones incluidas en él. Ellos se almacenan en el directorio data/, siendo cada archivo un .RData que sólo contiene un objeto. Para esto, se utiliza la función usethis::use_data(). Notar que el archivo DESCRIPTION creado con la función create_package(), mencionada anteriormente, contiene el campo LazyData: true, lo cual genera que los conjuntos de datos no ocupen memoria hasta que sean usados.

3.2.3. Documentación

La documentación es uno de los aspectos más importantes del código, sin ella, los usuarios no sabrán cómo usar el paquete. Existen múltiples formas de documentar un paquete, la forma estándar es escribir archivos .Rd en la carpeta man, los cuales utilizan una sintaxis personalizada, basada en LaTeX. Sin embargo, el paquete roxygen2, utilizado en este trabajo, convierte los comentarios con formato especial en archivos .Rd. Esta última proporciona una serie de ventajas sobre la estándar:

- El código y la documentación son adyacentes, de modo que cuando el código se modifique, será fácil actualizar la documentación.
- Inspecciona dinámicamente los objetos que está documentando, para que pueda agregar automáticamente los datos que de otra forma se deben escribir a mano.
- Resume las diferencias en la documentación de los métodos S3 y S4, los genéricos y las clases, por lo que necesita aprender menos detalles.

Además de generar archivos .Rd, roxygen2 también creará el archivo NAMESPACE. El flujo de trabajo para crear la documentación con el paquete roxygen2 es el siguiente:

- Agregar comentarios a los archivos .R, los cuales comienzan con #'y preceden a una función. La primera oración se convierte en el título y el segundo párrafo es una descripción de la función. Seguidamente, las funciones son documentadas, la mayoría de las funciones tienen tres etiquetas: @param, @examples y @return.
 - @param describe los parámetros de la función, indica de que clase es el parámetro y para que sirve.
 - @examples proporciona un código ejecutable que muestra cómo usar la función en la práctica.

- @return describe el resultado de la función.
- Ejecutar devtools::document() para convertir los comentarios de roxygen en archivos .Rd.

Roxygen2 permite utilizar la descripción de los parámetros de otras funciones usando @inheritParams. Esta documentará los parámetros que no están documentados en la función actual, pero que si lo están en la función fuente. La fuente puede ser una función en el paquete actual, vía @inheritParams function, u otro paquete, vía @inheritParams package::function.

A diferencia de las funciones que son documentadas directamente, para los objetos en data/, se debe crear un archivo y guardarlo en el directorio R/.

Viñetas

A diferencia de la documentación, en la cual se detalla como se utiliza cada una de las funciones del paquete, una viñeta es una descripción el problema que el paquete está diseñado para resolver y muestra al lector cómo resolverlo.

Muchos de los paquetes existentes tienen viñetas la cual puede ser buscada mediante la función browseVignettes("packagename"). Cada viñeta proporciona el archivo fuente original, una página HTML o PDF y un archivo de código R. Las viñetas de paquetes que no han sido instalados pueden ser consultados en su página de CRAN, por ejemplo para el paquete dplyr: http://cran.r-project.org/web/packages/dplyr.

Las Viñetas se pueden construir de diversas formas, en este trabajo se utiliza devtools para crear la estructura de la misma y luego se añade el contenido que se desee en formato Rmarkdown. Rmarkdown permite combinar, texto plano, bloques de código y salidas.

Para crear la viñeta, se utiliza usethis::use_vignette("my-vignette"). La misma crea un directorio vignettes/, agrega las dependencias necesarias a DESCRIPTION y redacta la viñeta. Las tres componentes fundamentales de la misma son las siguientes:

• El bloque inicial de metadatos, que contiene la siguiente información:

```
title: "Vignette Title"
output: rmarkdown::html_vignette
vignette: >
   %\VignetteIndexEntry{Vignette Title}
   %\VignetteEngine{knitr::rmarkdown}
   \usepackage[utf8]{inputenc}
```

- Markdown para formatear texto.
- Knitr para interpretar texto, código y resultados.

3.2.4. Pruebas del flujo de trabajo

Las pruebas resultan fundamentales en el desarrollo de paquetes, asegura que el código haga lo que realmente se desea. Existen pruebas informales como aquellas realizadas con la función load_all(). Sin embargo, estas pruebas interactivas pueden convertirse en scripts reproducibles, los cuales resultan superiores debido a que:

- Se indica explícitamente cómo debería comportarse el código, provocando que los errores solucionados no vuelvan a ocurrir.
- El código que es fácil de probar generalmente está mejor diseñado, reduce la duplicación en el código. Como resultado, las funciones serán más fáciles de probar, comprender y trabajar.
- Si toda la funcionalidad del paquete tiene una prueba asociada, se pueden hacer grandes cambios sin preocuparse por generar errores.

Para ello se utiliza la función usethis::usetestthat() (Wickham,2011). Esta crea un directorio tests/testthat, agrega testthat al campo Suggests en el archivo DESCRIPTION y además, crea un archivo tests/testthat.R.

Las pruebas se organizan jerárquicamente, las expectativas se agrupan en pruebas que se organizan en archivos :

- Una expectativa describe el resultado esperado de un cálculo.
- Una prueba agrupa múltiples expectativas para probar la salida de una función simple, un rango de posibilidades para un solo parámetro de una función más complicada o una funcionalidad estrechamente relacionada de varias funciones.
- Un archivo agrupa múltiples pruebas relacionadas.

Existen tres formas de llevar a cabo las pruebas:

- Ejecutar todas las pruebas en un archivo o directorio test_file() o test_dir().
- Ejecutar pruebas automáticamente cada vez que algo cambie con la función autotest(). Estas son útiles cuando las pruebas se ejecutan con frecuencia. Si se modifica un archivo de prueba, probará ese archivo; si se modifica un archivo de código, volverá a cargar ese archivo y volverá a ejecutar todas las pruebas.
- Hacer que R CMD check ejecute sus pruebas.

3.2.5. Compilación e instalación

Mediante la función load_all() fue utilizado para simular el proceso de construcción, instalación y conexión del paquete, con el fin de ir probando las funciones creadas. Sin embargo, R CMD check ejecutado en el shell o la función check(), es utilizado para verificar que un paquete R esta en pleno funcionamiento. La misma verificará que no haya errores de sintaxis o no se generen warnings. Está compuesto por más de 50 chequeos individuales entre los cuales se encuentran: la estructura del paquete, el archivo descripción, namespace, el código de R, los datos, la documentación, entre otros. Se aconseja realizar verificaciones completas de que todo funciona a medida que se van incorporando funciones ya que si se incorporan muchas y luego se verifican será dificil identificar y resolver los problemas. Una vez que las verificaciones completas no encuentran errores, advertencias o notas, se ejecuta la función install(), con el objetivo de instalar el paquete en la biblioteca.

3.2.6. Publicación

Un repositorio es el lugar dónde se encuentran alojados los paquetes y desde el cuál se pueden descargarlos. Entre los repositorios más populares de paquetes R se encuentran:

- CRAN: es el principal repositorio de paquetes de R, está coordinado por la fundación R. Previa a la publicación en este repositorio el paquete debe pasar por diferentes pruebas para asegurar que cumple con las políticas de CRAN.
- **Bioconductor**: se trata de un repositorio específico para bioinformática. Del mismo modo que CRAN, tiene sus propias políticas de publicaciones y procesos de revisión.
- **GitHub**: a pesar que no es específico para R, github es con toda seguridad el repositorio más popular para la publicación de proyectos *open source* (del inglés, código abierto). Su popularidad procede del espacio ilimitado que proporciona para el alojamiento de proyectos *open source*, la integración con git (un software de control de versiones) y, la facilidad de compartir y colaborar con otras personas. Una de sus desventajas es que no proporciona procesos de control.
- R-Forge y RForge: son entornos de desarrollo de paquetes y repositorios. Eso significa que incluyen control de fuente, seguimiento de errores y otras características. Puede obtener versiones de desarrollo de paquetes de estos.

El paquete *geneticae* se encuentra en GitHub, para instalar el mismo se deben seguir las siguientes instrucciones:

```
library(devtools)
install_github("jangelini/geneticae")
```

3.3. Shiny APP

Una aplicación web es una aplicación o herramienta informática accesible desde cualquier navegador, bien sea a través de internet (lo habitual) o bien a través de una red local. Estas aplicaciones son muy populares hoy en día para los usuarios no expertos, debido a la facilidad de su uso, ya que no requiere de una instalación en el ordenador del usuario, simplemente se accede a través de un navegador. Por lo que es posible utilizar una aplicación web desde desde cualquier dispositivo con conexión a internet, ya sea un ordenador, un smartphone o una tablet, es decir que es independiente del sistema operativo del usuario. Otra gran ventaja es el bajo consumo de recursos, ya que la mayor parte del tiempo estos se consumen en el servidor donde se encuentra alojada la aplicación, que generalmente tiene mucha más potencia de cómputo que cualquier ordenador personal.

Crear aplicaciones web puede resultar difícil para la mayoría de los usuarios de R debido a que se necesita un conocimiento profundo de las tecnologías web como HTML, CSS y JavaScript; y además hacer aplicaciones interactivas complejas requiere un análisis cuidadoso de los flujos de interacción para asegurarse de que cuando una entrada cambie, solo se actualicen las salidas relacionadas. Shiny es un paquete R que te permite crear aplicaciones web interactivas, permitiendo exhibir un trabajo de R a través de un navegador web para que cualquiera pueda usarlo. Este paquete hace que sea mucho más fácil para el programador R crear aplicaciones web al proporcionar un conjunto de funciones de interfaz de usuario (UI para abreviar) que generan el HTML, CSS y JavaScript que necesita para tareas comunes. Esto significa que no se necesita conocer los detalles de HTML / CSS / JS.

Los dos componentes clave de una Shiny APP son:

- ui (user interfaz): la interfaz de usuario controla el diseño de la aplicación, recibe los inputs y muestra los outputs en el navegador.
- server, funciones de R que contienen las instrucciones que se necesitan para construir los resultados de los análisis incluidos en la aplicación.
- shinyApp, función que crea objetos de aplicación Shiny a partir de ui / servidor.

El esquema interno de la aplicación puede observarse en la Figura 3.7.

Figura 3.7: Esquema interno de la aplicación.

3.3.1. Flujo de trabajo

El esta sección se motrará como mejorar dos flujos de trabajo de Shiny importantes: el ciclo de desarrollo básico de crear aplicaciones, realizar cambios y experimentar con los resultados; y la depuración, proceso de identificar y corregir errores de programación.

1. Flujo de trabajo de desarrollo

El objetivo de optimizar el flujo de trabajo de desarrollo es reducir el tiempo entre hacer un cambio y ver el resultado. Cuanto más rápido se pueda iterar, más rápido se podrá experimentar y más rápido se podrá obtener la Shiny APP. Aquí hay dos flujos de trabajo principales para optimizar: crear la aplicación por primera vez y acelerar el ciclo iterativo de ajustar el código y probar los resultados.

Creación de la Shiny APP

Para poder crear una shiny APP se debe tener instado R, RStudio, y el paquete shiny. Una forma de crear la aplicación es crear un nuevo directorio con un sólo archivo llamado app.R. Este archivo especificará la interfaz de usuario así como también las funciones de R que se incluirán.

```
library(shiny)
ui<- ...
server<- ...
shinyApp(ui = ui, server = server)
```

Por lo tanto, en el archivo app.R se realizan las siguientes tareas:

- Carga el paquete shiny: library(shiny)
- Define la interfaz de usuario, la página web HTML con la que los usuarios interactúan.

- Especifica el comportamiento de la aplicación definiendo la función server.
- Se ejecuta función shinyApp(ui, server) para construir e iniciar una aplicación Shiny desde la interfaz de usuario y el servidor.

La sesión de R estará monitoreando la aplicación y ejecutando las reacciones de la aplicación mientras la aplicación Shiny esté activa, por lo que no se podrá ejecutar ningún comando.

En todo tipo de programación, es una mala práctica tener código duplicado; puede ser un desperdicio computacional y, lo que es más importante, aumenta la dificultad de mantener o depurar el código. En la secuencia de comandos R tradicional, se utilizan dos técnicas para lidiar con el código duplicado: capturar el valor usando una variable o capturar el cálculo con una función. Desafortunadamente, ninguno de estos enfoques funciona en una Shiny APP y se necesita un nuevo mecanismo: expresiones reactivas. Una expresión reactiva tiene una diferencia importante con una variable: sólo se ejecuta la primera vez que se llama y luego almacena en caché el resultado de la misma hasta que necesite actualizarse.

La programación reactiva es un estilo de programación que enfatiza valores que cambian con el tiempo, y cálculos y acciones que dependen de esos valores. Esto es importante para las aplicaciones Shiny porque son interactivas: los usuarios cambian los inputs, lo que hace que la lógica se ejecute en el servidor que finalmente resultan en actualización de los outputs/resultados.

Ver los cambios

Al crear o modificar la aplicacion, se la ejecuta para poder ver los cambios realizados, por lo que el dominio de flujo de trabajo de desarrollo es especialmente importante. La primera forma de reducir la velocidad de iteración es evitar hacer clic en el botón "Ejecutar aplicación" y, en su lugar, aprender el método abreviado de teclado Cmd/Ctrl+ Shift+ Enter. Esto brinda el siguiente flujo de trabajo de desarrollo:

- 1. Escribir un código.
- 2. Iniciar la aplicación con Cmd/Ctrl+ Shift+ Enter.
- 3. Experimentar interactivamente con la aplicación.
- 4. Cerrar la aplicación.
- 5. Ir a 1.

Otra forma de reducir aún más la velocidad de iteración es activar la recarga automática (options(shiny.autoreload = TRUE)) y luego ejecutar la aplicación en un trabajo en segundo plano. Con este flujo de trabajo cuando se guarde un archivo, su aplicación se reiniciará: no es necesario cerrarla y reiniciarla. Esto conduce a un flujo de trabajo aún más rápido:

- 1. Escribir un código y presione Cmd/Ctrl+S para guardar en el archivo.
- 2. Experimentar interactivamente.
- 3. Ir a 1.

La principal desventaja de esta técnica es que debido a que la aplicación se ejecuta en un proceso separado, es considerablemente más difícil de depurar.

De manera predeterminada, cuando ejecuta la aplicación, aparecerá en una ventana emergente. Sin embargo ,existen otras dos opciones que puede elegir del menú desplegable $Run\ App$

- 1. La ejecución en el panel del visor es útil para aplicaciones más pequeñas porque puede verla al mismo tiempo que ejecuta el código de la aplicación.
- 2. Ejecutar en un navegador externo es útil para aplicaciones más grandes, o si desea verificar que su aplicación se ve exactamente de la manera que espera en el contexto que la mayoría de los usuarios la verán.

2. Depuración

Entre los problemas que pueden surgir al crear una Shiny app se encuentran los siguientes:

- Error inesperado. Este es el caso más fácil, porque obtendrá un rastreo que le permitirá averiguar exactamente de dónde proviene el error. Una vez que haya identificado el problema, deberá probar sistemáticamente su suposición hasta que encuentre una diferencia entre sus expectativas y lo que realmente está sucediendo. El depurador interactivo es una herramienta poderosa para este proceso.
- No obtiene ningún error, pero un valor es incorrecto. Aquí, generalmente es mejor transformar esto en el primer problema utilizando stop()para arrojar un error cuando se produce el valor incorrecto.
- Todos los valores son correctos, pero no se actualizan cuando espera. Este es el problema más desafiante porque es exclusivo de Shiny, por lo que no puede aprovechar sus habilidades de depuración de R.

Una vez localizado la fuente del error, la herramienta más poderosa es el depurador interactivo. El depurador detiene la ejecución y le brinda una consola R interactiva donde puede ejecutar cualquier código para descubrir qué salió mal. Hay dos formas de iniciar el depurador:

- Agregar una llamada a la función browser() en código fuente. Esta es la forma estándar de R de iniciar el depurador interactivo, y funcionará sin embargo, se está ejecutando brillante.
- Agregar un punto de interrupción RStudio haciendo clic a la izquierda del número de línea. Puede eliminar el punto de interrupción haciendo clic en el círculo rojo. La ventaja de los puntos de interrupción es que no son código, por lo que nunca tendrá que preocuparse por registrarlos accidentalmente en su sistema de control de versiones.

3.3.2. Compartiendo una Shiny Web App

Una vez creada la aplicación, resulta conveniente ponerlas a disposición de los usuarios. En este caso la Shiny Web App encuentra disponible en el servidor de CONICET www.cefobi.com. Además el proyecto se encuentra en GitHub https://github.com/jangelini/shinyAPP_geneticae.

Capítulo 4

Resultados

4.1. Paquete de R geneticae

El paquete *geneticae* permite analizar datos provenientes de etapas avanzadas de los programas de mejoramiento, donde se evalúan pocos genotipos.

Una vez instalado el paquete, se debe cargar en la sesion de R mediante el comando: library(geneticae)

Es posible obtener información detallada sobre las funciones del paquete geneticae mediante help(package = "geneticae"). La ayuda para una función, por ejemplo, imputation(), en una sesión R se puede obtener usando ?imputation o help(imputation). Además, a partir de la función browseVignettes("geneticae") se obtiene la viñeta del paquete, es decir una descripción el problema que está diseñado para resolver asi como ejemplos de aplicación del mismo.

4.1.1. Conjuntos de datos en geneticae

El paquete geneticae proporciona dos conjuntos de datos para ilustrar la metodología incluida para analizar los datos obtenidos de EMA.

• yan.winterwheat dataset: rendimiento de 18 variedades de trigo de invierno cultivadas en nueve ambientes en Ontario en 1993. No hay réplicas disponibles en los datos. Este conjunto de datos se obtuvo del paquete agridat.

```
dat_yan <- yan.winterwheat
head(dat_yan)

## gen env yield
## 1 Ann BH93 4.460

## 2 Ari BH93 4.417

## 3 Aug BH93 4.669

## 4 Cas BH93 4.732

## 5 Del BH93 4.390

## 6 Dia BH93 5.178
```

■ plrv dataset: rendimiento, peso de planta y parcela de 28 clones de la población del virus del enrollamiento de la papa (PLRV) evaluada en seis ambientes. Las réplicas están disponibles en los datos. Este conjunto de datos se obtuvo del paquete agricolae.

```
data(plrv)
  dat_{rep} < - plrv
  head(dat_rep)
##
     Genotype Locality Rep WeightPlant WeightPlot
                                                         Yield
## 1
       102.18
                               0.5100000
                                                5.10 18.88889
                   Ayac
                           1
## 2
       104.22
                               0.3450000
                                                2.76 12.77778
                   Ayac
## 3
       121.31
                   Ayac
                               0.5425000
                                                4.34 20.09259
## 4
       141.28
                   Ayac
                          1
                               0.9888889
                                                8.90 36.62551
       157.26
                                                5.00 23.14815
## 5
                   Ayac
                          1
                               0.6250000
## 6
        163.9
                                                2.56 18.96296
                   Ayac
                               0.5120000
```

4.1.2. Funciones en geneticae

Modelo de regresión por sitio

Para ejecutar la función GGEmodel(), se debe proporcionar un conjunto de datos con genotipos, ambientes, repeticiones (si hay disponibles), el fenotipo observado y los nombres que dichas variables tienen en el archivo de entrada. Además, se debe indicar el método de centrado, escala y SVD.

Cuando no hay repeticiones disponibles en el conjunto de datos, como es el caso del conjunto de datos yan.winterwheat, el modelo GGE se indica de la siguiente manera:

```
GGE1 <- GGEmodel(dat_yan, genotype = "gen", environment = "env", response = "yield", centering = "tester")
```

Sin embargo, en el caso de que haya repeticiones disponibles, como el conjunto de datos plrv, se indica de la siguiente manera:

```
GGE1_rep <- GGEmodel(dat_rep, genotype = "Genotype", environment = "Locality", response = "Yield", rep = "Rep", centering = "tester")
```

La salida de la función GGEmodel() es una lista con los siguientes elementos:

- coordgenotype: trazado de coordenadas para genotipos de todos los componentes.
- coordenviroment: trazado de coordenadas para entornos de todos los componentes.
- valores propios: vector de valores propios de cada componente.
- vartotal: varianza general.
- varexpl: porcentaje de varianza explicado por cada componente.
- labelgen: nombres de genotipo.
- labelenv: nombres de entorno.
- ejes: etiquetas de eje.
- Datos: datos de entrada escalados y centrados.
- centrado: nombre del método de centrado.
- escala: nombre del método de escala.
- SVP: nombre del método SVP.

Biplot GGE

Para ejecutar la función GGEPlot(), se requiere un objeto de la clase GGEmodel(). La salida es un biplot construido a través de los componentes principales generados por GGEmodel(). Los diferentes biplots que se pueden obtener usando la función GGEPlot() se muestran usando el conjunto de datos yan.winterwheat. Si hay repeticiones disponibles en el conjunto de datos, como es el caso del conjunto plrv, se debe indicar el nombre de la columna que contiene las réplicas en el archivo de entrada.

Biplot básico

• Ranking de los cultivares en función de su rendimiento en el ambiente OA93.

GGEPlot()

• Ranking de los ambientes en función del rendimiento relativo del cultivar Kat.

Figura 4.3: Ranking de ambientes para cultivar determinado obtenido de la función GGEPlot()

• Relación entre ambientes.

• Comparación entre los genotipos Kat y Cas.

• Identificación del mejor cultivar en cada ambiente.

Figura 4.6: Identificación del mejor cultivar en cada ambiente a partir de la función GGEPlot()

■ Evaluación de los ambientes basados tanto en la capacidad de discriminación como en la representatividad.

Figura 4.7: Evaluación de los ambientes basados tanto en la capacidad de discriminación y representatividad a partir de la función GGEPlot()

• Clasificación de ambientes con respecto al ambiente ideal.

Figura 4.8: Clasificación de ambientes con respecto al ambiente ideal a partir de la función GGEPlot()

• Clasificación de genotipos con respecto al genotipo ideal.

Figura 4.9: Clasificación de genotipos con respecto al genotipo ideal a partir de la función GGEPlot()

• Evaluación de los cultivares con base en el rendimiento promedio y la estabilidad.

Figura 4.10: Evaluación de los cultivares con base en el rendimiento promedio y la estabilidad a partir de la función GGEPlot()

Classic AMMI model

Para ejecutar la función rAMMI(), como en la función GGEmodel(), se debe proporcionar un conjunto de datos con genotipo, entorno, repeticiones (si las hay) y la variable de respuesta. Se debe indicar el nombre de las columnas que contienen cada una de estas variables en el conjunto de datos de entradas. La salida de la función es un biplot.

A continuación se muestra el biplot GE obtenido del modelo AMMI clásico obtenido con el conjunto de datos yan.winterwheat.

Robust AMMI model

Como se dijo anteriormente, el modelo AMMI clasico, en su forma estándar, no funciona bien en presencia de observaciones atípicas. Dado que los outliers son muy comun en los datos agronómicos, Rodrigues et al. (2015) proponen cinco modelos AMMI robustos, que permiten superar el problema de la contaminación de datos con observaciones atípicas. Los biplots de los cinco modelos AMMI robustos propuestos por Rodrigues et al. (2015), se pueden obtener utilizando la función rAMMI() A continuación se muestran los biplots obtenidos con dichos modelos robustos usando el conjunto de datos yan.winterwheat.

■ modelo rAMMI"

■ modelo "hAMMI"

■ modelo "gAMMI"

■ modelo "lAMMI"

■ modelo "ppAMMI"

Métodos de imputación

Una limitación importante de los modelos presentados anteriormente es que requieren una que el conjunto de datos este completo. Por lo tanto, en el paquete se incluyen una serie de metodologías propuestas, algunas de las cuales no se encuentran disponible en R, para superar el problema de las observaciones perdidas.

El conjunto de datos yan.winterwheat se utilizó como ejemplo. Como el conjunto de datos no contaba con observaciones perdidas, algunas fueron eliminadas con el objetivo de mostrar las metodologías de imputación incluidas.

```
# generates missing data
dat_yan[1, 3] <- NA
dat_yan[3, 3] <- NA
dat_yan[2, 3] <- NA
```

■ GabrielEigein proposed by Arciniegas-Alarcón S., et al. (2010).

```
imputation(dat_yan, PC.nb = 2, genotype = "gen", environment = "env", response = "yield
      ", type = "EM-AMMI")
##
           BH93 EA93 HW93 ID93 KE93 NN93 OA93 RN93
## Ann 4.150120 4.150 2.849 3.084 5.940 4.450 4.351 4.039 2.672
## Ari 4.035814 4.771 2.912 3.506 5.699 5.152 4.956 4.386 2.938
## Aug 4.305244 4.578 3.098 3.460 6.070 5.025 4.730 3.900 2.621
## Cas 4.732000 4.745 3.375 3.904 6.224 5.340 4.226 4.893 3.451
## Del 4.390000 4.603 3.511 3.848 5.773 5.421 5.147 4.098 2.832
## Dia 5.178000 4.475 2.990 3.774 6.583 5.045 3.985 4.271 2.776
## Ena 3.375000 4.175 2.741 3.157 5.342 4.267 4.162 4.063 2.032
## Fun 4.852000 4.664 4.425 3.952 5.536 5.832 4.168 5.060 3.574
## Ham 5.038000 4.741 3.508 3.437 5.960 4.859 4.977 4.514 2.859
## Har 5.195000 4.662 3.596 3.759 5.937 5.345 3.895 4.450 3.300
## Kar 4.293000 4.530 2.760 3.422 6.142 5.250 4.856 4.137 3.149
## Kat 3.151000 3.040 2.388 2.350 4.229 4.257 3.384 4.071 2.103
## Luc 4.104000 3.878 2.302 3.718 4.555 5.149 2.596 4.956 2.886
## Reb 4.375000 4.701 3.655 3.592 6.189 5.141 3.933 4.208 2.925
## Ron 4.940000 4.698 2.950 3.898 6.063 5.326 4.302 4.299 3.031
## Rub 3.786000 4.969 3.379 3.353 4.774 5.304 4.322 4.858 3.382
## Zav 4.238000 4.654 3.607 3.914 6.641 4.830 5.014 4.363 3.111
## m12 3.340000 3.854 2.419 2.783 4.629 5.090 3.281 3.918 2.561
```

■ EM-AMMI proposed by Gauch and Zobel (1990).

```
imputation(dat_yan, PC.nb = 1, genotype = "gen", environment = "env", response = "yield
      ", type = "EM-AMMI")
##
           BH93 EA93 HW93 ID93 KE93 NN93 OA93 RN93 WP93
## Ann 4.136249 4.150 2.849 3.084 5.940 4.450 4.351 4.039 2.672
## Ari 4.474249 4.771 2.912 3.506 5.699 5.152 4.956 4.386 2.938
## Aug 4.386299 4.578 3.098 3.460 6.070 5.025 4.730 3.900 2.621
## Cas 4.732000 4.745 3.375 3.904 6.224 5.340 4.226 4.893 3.451
## Del 4.390000 4.603 3.511 3.848 5.773 5.421 5.147 4.098 2.832
## Dia 5.178000 4.475 2.990 3.774 6.583 5.045 3.985 4.271 2.776
## Ena 3.375000 4.175 2.741 3.157 5.342 4.267 4.162 4.063 2.032
## Fun 4.852000 4.664 4.425 3.952 5.536 5.832 4.168 5.060 3.574
## Ham 5.038000 4.741 3.508 3.437 5.960 4.859 4.977 4.514 2.859
## Har 5.195000 4.662 3.596 3.759 5.937 5.345 3.895 4.450 3.300
## Kar 4.293000 4.530 2.760 3.422 6.142 5.250 4.856 4.137 3.149
## Kat 3.151000 3.040 2.388 2.350 4.229 4.257 3.384 4.071 2.103
## Luc 4.104000 3.878 2.302 3.718 4.555 5.149 2.596 4.956 2.886
## Reb 4.375000 4.701 3.655 3.592 6.189 5.141 3.933 4.208 2.925
## Ron 4.940000 4.698 2.950 3.898 6.063 5.326 4.302 4.299 3.031
## Rub 3.786000 4.969 3.379 3.353 4.774 5.304 4.322 4.858 3.382
## Zav 4.238000 4.654 3.607 3.914 6.641 4.830 5.014 4.363 3.111
## m12 3.340000 3.854 2.419 2.783 4.629 5.090 3.281 3.918 2.561
```

```
imputation(dat_yan, genotype = "gen", environment = "env", response = "yield", type = "
      EM-SVD")
##
             [,1] [,2] [,3] [,4]
                                     [,5]
                                           [,6] [,7]
##
    [1,] 4.332467 4.150 2.849 3.084 5.940 4.450 4.351 4.039 2.672
    [2,] 4.332467 4.771 2.912 3.506 5.699 5.152 4.956 4.386 2.938
    [3,] 4.332467 4.578 3.098 3.460 6.070 5.025 4.730 3.900 2.621
    [4,] 4.732000 4.745 3.375 3.904 6.224 5.340 4.226 4.893 3.451
    [5,] 4.390000 4.603 3.511 3.848 5.773 5.421 5.147 4.098 2.832
##
    [6,] 5.178000 4.475 2.990 3.774 6.583 5.045 3.985 4.271 2.776
    [7,] 3.375000 4.175 2.741 3.157 5.342 4.267 4.162 4.063 2.032
   [8,] 4.852000 4.664 4.425 3.952 5.536 5.832 4.168 5.060 3.574
##
   [9,] 5.038000 4.741 3.508 3.437 5.960 4.859 4.977 4.514 2.859
## [10,] 5.195000 4.662 3.596 3.759 5.937 5.345 3.895 4.450 3.300
## [11,] 4.293000 4.530 2.760 3.422 6.142 5.250 4.856 4.137 3.149
## [12,] 3.151000 3.040 2.388 2.350 4.229 4.257 3.384 4.071 2.103
## [13,] 4.104000 3.878 2.302 3.718 4.555 5.149 2.596 4.956 2.886
## [14,] 4.375000 4.701 3.655 3.592 6.189 5.141 3.933 4.208 2.925
## [15,] 4.940000 4.698 2.950 3.898 6.063 5.326 4.302 4.299 3.031
## [16,] 3.786000 4.969 3.379 3.353 4.774 5.304 4.322 4.858 3.382
## [17,] 4.238000 4.654 3.607 3.914 6.641 4.830 5.014 4.363 3.111
## [18,] 3.340000 3.854 2.419 2.783 4.629 5.090 3.281 3.918 2.561
```

■ WGabriel proposed by Alarcon.....

```
imputation(dat_yan, genotype = "gen", environment = "env", response = "yield", type = "
      WGabriel")
##
           BH93 EA93 HW93 ID93 KE93 NN93 OA93 RN93 WP93
## Ann 4.004664 4.150 2.849 3.084 5.940 4.450 4.351 4.039 2.672
## Ari 4.455727 4.771 2.912 3.506 5.699 5.152 4.956 4.386 2.938
## Aug 4.328095 4.578 3.098 3.460 6.070 5.025 4.730 3.900 2.621
## Cas 4.732000 4.745 3.375 3.904 6.224 5.340 4.226 4.893 3.451
## Del 4.390000 4.603 3.511 3.848 5.773 5.421 5.147 4.098 2.832
## Dia 5.178000 4.475 2.990 3.774 6.583 5.045 3.985 4.271 2.776
## Ena 3.375000 4.175 2.741 3.157 5.342 4.267 4.162 4.063 2.032
## Fun 4.852000 4.664 4.425 3.952 5.536 5.832 4.168 5.060 3.574
## Ham 5.038000 4.741 3.508 3.437 5.960 4.859 4.977 4.514 2.859
## Har 5.195000 4.662 3.596 3.759 5.937 5.345 3.895 4.450 3.300
## Kar 4.293000 4.530 2.760 3.422 6.142 5.250 4.856 4.137 3.149
## Kat 3.151000 3.040 2.388 2.350 4.229 4.257 3.384 4.071 2.103
## Luc 4.104000 3.878 2.302 3.718 4.555 5.149 2.596 4.956 2.886
## Reb 4.375000 4.701 3.655 3.592 6.189 5.141 3.933 4.208 2.925
## Ron 4.940000 4.698 2.950 3.898 6.063 5.326 4.302 4.299 3.031
## Rub 3.786000 4.969 3.379 3.353 4.774 5.304 4.322 4.858 3.382
## Zav 4.238000 4.654 3.607 3.914 6.641 4.830 5.014 4.363 3.111
## m12 3.340000 3.854 2.419 2.783 4.629 5.090 3.281 3.918 2.561
```

```
imputation(dat_yan, genotype = "gen", environment = "env", response = "yield", type = "
      EM-PCA")
           BH93 EA93 HW93 ID93 KE93 NN93 OA93 RN93
##
                                                           WP93
## Ann 3.980317 4.150 2.849 3.084 5.940 4.450 4.351 4.039 2.672
## Ari 4.463093 4.771 2.912 3.506 5.699 5.152 4.956 4.386 2.938
## Aug 4.327731 4.578 3.098 3.460 6.070 5.025 4.730 3.900 2.621
## Cas 4.732000 4.745 3.375 3.904 6.224 5.340 4.226 4.893 3.451
## Del 4.390000 4.603 3.511 3.848 5.773 5.421 5.147 4.098 2.832
## Dia 5.178000 4.475 2.990 3.774 6.583 5.045 3.985 4.271 2.776
## Ena 3.375000 4.175 2.741 3.157 5.342 4.267 4.162 4.063 2.032
## Fun 4.852000 4.664 4.425 3.952 5.536 5.832 4.168 5.060 3.574
## Ham 5.038000 4.741 3.508 3.437 5.960 4.859 4.977 4.514 2.859
## Har 5.195000 4.662 3.596 3.759 5.937 5.345 3.895 4.450 3.300
## Kar 4.293000 4.530 2.760 3.422 6.142 5.250 4.856 4.137 3.149
## Kat 3.151000 3.040 2.388 2.350 4.229 4.257 3.384 4.071 2.103
## Luc 4.104000 3.878 2.302 3.718 4.555 5.149 2.596 4.956 2.886
## Reb 4.375000 4.701 3.655 3.592 6.189 5.141 3.933 4.208 2.925
## Ron 4.940000 4.698 2.950 3.898 6.063 5.326 4.302 4.299 3.031
## Rub 3.786000 4.969 3.379 3.353 4.774 5.304 4.322 4.858 3.382
## Zav 4.238000 4.654 3.607 3.914 6.641 4.830 5.014 4.363 3.111
## m12 3.340000 3.854 2.419 2.783 4.629 5.090 3.281 3.918 2.561
```

4.2. Geneticae Shiny Web App

La aplicación Geneticae permite a los usuarios realizar alguno de los análisis incluidos en el paquete geneticae. La misma se organiza en las siguientes pestañas:

- Los datos
- Análisis descriptivo
- ANOVA
- Biplot GGE
- Biplot GE
- Ayuda

En muchos casos, algunos atributos estilísticos de salida pueden personalizarse para que el usuario obtenga la salida a su gusto. A su vez, los gráficos obtenidos pueden ser descargados.

4.2.1. Los datos

Al iniciar la aplicación Geneticae, se muestra una pantalla en la cual se carga el conjunto de datos a analizar. La aplicación admite datos en formato .csv, delimitados por coma o punto y coma; y permite el siguiente formato de datos:

- Cada fila contiene una observación, en la cual deben estar presentes los siguientes datos: nombre del cultivar, ambiente, repetición si está disponible y valor fenotipico medido. Pueden estar presentes otras variables que no serán utilizadas por la aplicación.
- La primera fila de encabezado contiene los nombres de cada variable. Los encabezados pueden dar cualquier nombre que elija, y deben indicarse al cargar el archivo de datos.
- El número de repeticiones puede diferir con los genotipos y los ambientes.

Se utilizan dos conjuntos de datos, incluidos en el paquete geneticae, para ilustrar la aplicación. Estos conjuntos de datos, uno de los cuales tiene repeticiones (plrv dataset) y el otro no (yan.winterwheat dataset), los cuales se pueden ver y descargar en la pestaña $The\ data \rightarrow Example\ datasets$ (Figura 4.17,4.18).

Figura 4.17: yan.winterwheat dataset disponible en Shiny Web App

Figura 4.18: plrv dataset disponible en Shiny Web App

4.2.2. Análisis descriptivo

El menú *Descriptive analysis* le permite describir un conjunto de datos utilizando diagrama de caja (o boxplot), gráfico y matriz de correlación y gráfico de interacción.

4.2.2.1. Boxplot

El boxplot proporciona una medida central, la mediana y una idea de la dispersión a través del rango y el rango intercuartil. La posición de la mediana dentro de la caja y la similitud en la longitud de los bigotes nos dan una idea de la simetría de la distribución.

Un boxplot intetactivo que compara el caracter cuantitativo de interés a través de genotipos, así como a través de los ambientes se pueden obtener (Figura 4.19,4.20). A partir de los mismos se pueden obtener medidas resumen en forma interactiva usando el *Toggle Spike Lines* como se muestra en la figura 4.19. Estos gráficos se pueden descagar en formato interactivo (.HTML) a partir del boton *Download* (Figura 4.19 y 4.20), así como también en formato .png como se muestra en la Figura 4.20.

Figura 4.19: Boxplot de ambientes a través de los genotipos para el conjunto de datos Plrv

Figura 4.20: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

4.2.2.2. Gráfico de correlación

El correlograma o gráfico de correlación muestra la correlación tanto entre los genotipos como entre los ambientes (Figura 4.21 y 4.22). Se pueden mostrar las correlaciones de Pearson y Spearman. Las correlaciones positivas se muestran en azul y las negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación.

Figura 4.21: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

Figura 4.22: Boxplot de ambientes a través de los genotipos para el conjunto de datos Plrv

4.2.2.3. Matriz de correlación

Una matriz de correlación se utiliza como una forma de resumir datos. Muestra los coeficientes de correlación de pares de variables. Las correlaciones de Spearman o Pearson se pueden calcular tanto para ambientes como para genotipos (Figura 4.23).

Figura 4.23: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

4.2.2.4. Gráfico de interacción

Un diagrama de interacción es una representación visual de la interacción entre los efectos de dos factores, o entre un factor y una variable numérica.

Se puede obtener el gráfico interactivo que muestra el cambio en el efecto genotípico a través de los entornos y también el que muestra el cambio en el efecto ambiental a través de los genotipos (Figura 4.28,??). Es posible descargarlo en formato interactivo (.HTML) a partir del boton *Download* (Figura 4.28), así como también en formato .png como se muestra en la Figura ??.

Figura 4.24: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

4.2.3. Análisis de la variancia

Cuando se pretende llevar a cabo el análisis de la variancia si el conjunto de datos tiene repeticiones entonces saldrá un mensaje en el cual se aclara que la interacción puede ser testada debido a la presencia de repeticiones "The interaction effect can be tested since there are repetitions in the data set", si no hay repeticiones disponibles entonces el mensaje será que la interacción no puede testarse.

Figura 4.25: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

El ANOVA depende del cumplimiento de los supuestos de que los errores tengan distribución normal con media cero y variancia constante. Por ello, tres pestañas: *Check normality, Check homocedasticity* y *Outliers* se encuentran disponibles para la verificación de los supuestos mencionados.

Para verificar el supuesto de normalidad, se puede realizar un histograma, un gráfico de probabilidad normal y la prueba de shapiro-wilks sobre los residuos del ANOVA.

Figura 4.26: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

El grafico de residuos vs. valores predichos y las pruebas de levene permiten verificar el supuesto de variancia constante u homocedasticidad.

Figura 4.27: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plrv

Por último, la presencia de observaciones atipicas u outliers provoca que el ANOVA no de buenos resultados, un grafico para detectar outliers es posible realizarlo.

Figura 4.28: Boxplot de genotipos a través de los ambientes para el conjunto de datos Plry

4.2.4. Biplot GGE

El biplot GGE aborda visualmente muchos problemas relacionados con la evaluación de los genotipo y ambientes de prueba. En el caso de repeticiones disponibles en el conjunto de datos, se obtiene el valor fenotípico promedio para cada combinación de genotipo y ambiente. Los valores faltantes no están permitidos.

4.2.5. Biplot GE

Capítulo 5

Conclusiones

Bibliografía

- R.W. Allard. Principios de la mejora genética de las plantas. Ediciones Omega, 1967.
- H. G. Gauch y R. W. Zobel. Identifying mega-environments and targeting genotypes. *Crop Science*, 37:311—-326, 1997.
- W. Yan, L. A. Hunt, Q. Sheng, y Z. Szlavnics. Cultivar evaluation and mega-environment investigation based on the GGE biplot. *Crop Science*, 40:597—605, 2000.