Estrutura de Dados

Hamilton José Brumatto

Bacharelado em Ciências da Computação - UESC

5 de fevereiro de 2024

Definição Representações Implementações Percurso

Árvores enraizadas: Árvores Binárias

Conceitos gerais

- O conceito de árvore é mais amplo, ele vem da definição de grafos.
- Uma árvore é um grafo acíclico.
- Vamos, no entanto, nos restringir a um tipo específico de árvores: árvores enraizadas.
- Neste conceito, um dos nós é especial, é chamado de raiz, e os demais nós são descendentes deste.
- Apesar de árvores enraizadas serem contempladas no contexto de grafos orientados, não trabalharemos com a visão de grafos neste momento.

Árvores enraizadas - Conceitos básicos

Estrutura complexa que representa uma hierarquia.

Representação Matemática

- Uma árvore T é um conjunto finito, não vazio de nós.
- $T = \{r\} \cup T_1 \cup T_2 \cup ... \cup T_n$, com as propriedades:
 - Um nó especial da árvore, r, é chamado de raiz da árvore; e
 - O restante dos nós é particionado em $n \ge 0$ subconjuntos, T_1 , T_2 , ..., T_n , cada um dos quais sendo uma árvore.

Resumindo, representa-se a árvore como:

$$T = \{r, T_1, T_2, \dots, T_n\}$$

Representação Matemática

• Exemplos:

•
$$T = \{A\}$$

•
$$T = \{B, \{C\}\}$$

•
$$T = \{D, \{E, \{F\}\}, \{G, \{H, \{I\}\}, \{J, \{K\}, \{L\}\}, \{M\}\}\}$$

Representação Gráfica

Terminologia

- Nó um elemento da árvore, pode ser a raiz (no topo), uma folha (terminador) ou um ramo (intermediário)
- Grau (de um nó) é o número de subárvores relacionadas com aquele nó (esta terminologia é diferente se a árvore não for enraizada)
- Folha Um nó de grau 0.
- Filho/Neto Nó raiz de uma subárvore, com relação à árvore que pertence.
- Raiz Não é filho, origem das árvores.
- Irmãs Raízes distintas de subárvores de uma mesma árvore
- Caminho Sequência não vazia de nós.
- Comprimento Quantos nós foram passados (com excessão do primeiro) em uma sequência.

Terminologia

- Altura É o comprimento do caminho mais longo do nó até uma folha descendente do nó.
- Profundidade (de um nó) Comprimento do raiz da árvore ao nó.
- Altura da árvore É a altura do raiz.
- Ancestral (de um nó) Um nó de menor profundidade, em relação a este, desde que esteja no caminho do comprimento da profundidade.
- Descendente Um nó de uma profundidade maior, em relação a este. Sendo este parte do caminho para o comprimento da profundidade.

Representações

Representações

```
class D {
        class E {
                class F {
        class G {
                class H {
                         class I {
                class J {
                         class K {
                         class L {
                class M {
```

Representações

- Não existe ordem entre os filhos. Algumas árvores possuem, como a árvore n-ária, por conta das árvores vazias.
- As duas árvores a seguir são isomorfas:

Implementação de uma árvore

- São várias formas possíveis, estática, dinâmica, ...
- Normalmente se implementa de forma dinâmica para permitir inserir ou remover ramos.
- Assim cada ramo passa a ser um objeto/posição de memória alocado dinamicamente
- Os nós apontam para filhos (e para o pai) usando ponteiros da linguagem.
- Como todos os nós são árvores, então as operações realizadas nas árvores ocorrem de forma recursiva:
 - Um valor de um nó pode depender do resultado de seus descententes
 - É feita uma chamada recursiva (até que não exista descendentes / folha)
 - O nó processa o resultado da chamada a seus filhos e retorna seu valor.

Implementação de uma árvore

- Na implementação algumas funções que são importantes:
 - void iniciar(arvore *a) → inicia a estrutura interna da árvore, atribuindo info.
 - obj_t info(arvore *a) → retorna o conteúdo de informação.
 - int altura(arvore *a) \rightarrow retorna a altura da árvore.
 - int profundidade(arvore *a) \rightarrow retorna a profundidade.
 - arvore *pai(arvore *a) → retorna quem é o pai da árvore.
 - int filhos(arvore *a) → retorna quantos filhos tem a árvore.
 - arvore *filho(arvore *a, int i) → retorna um filho, por índice.
 - int insereFilho(arvore *a, arvore *f) → insere o filho e retorna o índice.
 - void removeFilho(arvore *a, int i) \rightarrow remove o filho na posição i.
- A implementação está no código que faz parte desta aula.

Implementação de uma árvore - Estrutura Dinâmica

```
typedef struct arvore{
    obj_t info;
    struct arvore *filho;
    listafilhos *prole;
    struct listafilhos *prox;
    struct arvore *pai;
} listafilhos;
} arvore;
```



```
void iniciar(arvore *a, obj_t info) {
 a - > info = info:
 a->pai=NULL:
 a->prole=NULL;
obj_t info(arvore *a) {
 obj_t ret = ' \setminus 0';
 if(a! = NULL)
   ret = a - > info:
 return ret;
```

```
int altura(arvore *a) {
 int nfilhos:
 int alt=0, h, i;
 nfilhos = filhos(a);
 for(i=1; i \le nfilhos; i++) {
   h = altura(filho(a,i));
   if(alt \leq h) alt = h+1;
 return alt;
int profundidade(arvore *a) {
 int p = 0:
 if(a->pai!=NULL) p = profundidade(a->pai) + 1;
 return p;
```

```
int filhos(arvore *a) {
 int k = 0;
 listafilhos *f = a - > prole;
 while(f! = NULL) {
   f=f->prox;
   k++;
 return k;
arvore *filho(arvore *a, int i) {
 int k = 1:
 arvore *filho = NULL:
 listafilhos *f = a - > prole;
 while(k < i \&\& f! = NULL) {
   f = f - > prox;
   k++:
 if(k==i \&\& f! = NULL) filho = f->filho;
 return filho:
```

```
int insereFilho(arvore *a, arvore *f) {
 int k = 1;
 listafilhos *fi = a->prole;
 if(fi == NULL)  {
   a -> prole = (listafilhos *) malloc(sizeof(listafilhos));
   fi = a - > prole;
 } else{
   while(fi - > prox! = NULL) {
    fi = fi - > prox;
    k++:
   fi- >prox = (listafilhos *) malloc(sizeof(listafilhos));
   fi = fi - > prox:
   k++;
 f->pai=a:
 fi - > filho = f:
 return k;
```

```
void removeFilho(arvore *a, int i) {
 int k. nfilhos: arvore *f = NULL: listafilhos *ant. *fi = a - > prole:
 if(i == 1) +
  if(fi! = NULL)  {
    a - > prole = fi - > prox;
    f = fi - > filho;
    free(fi);
 } else {
   k = 1;
   while(fi != NULL && k < (i-1)) fi = fi -> prox;
   if(fi! = NULL) {
    ant = fi:
    fi = fi - > prox;
    if(fi! = NULL) {
      ant - > prox = fi - > prox;
      f = fi - > filho;
      free(fi);
     else ant->prox= NULL:
 if(f! = NULL)  {
   nfilhos = filhos(f):
   if(nfilhos > 0) for(k = 1; k \leq nfilhos; k++) removeFilho(f,1);
   free(f);
 return:
```

Percurso em árvores

- A árvore é uma estrutura de dados para guardar informações de maneira hierárquica.
- Mas uma vez guardada as informações, podemos querer tratar a árvore de diversas formas:
 - Listar tudo que está guardado.
 - Identificar se uma determinada informação está guardada.
 - Traçar uma ordem parcial com as informações guardadas.
- Para isto, é necessário "visitar" as informações guardadas nos nós da árvore.
- A "visita" aos nós se dá através de uma "busca em percurso" na árvore.
- São dois tipos básicos (herdados dos grafos): percurso em largura ou em profundidade.

Percurso em árvores

- Percurso em largura:
 - Começa pelo raiz e visita cada um dos filhos do nó.
 - Após isto, visita cada filho de cada filho...
- Percurso em profundidade:
 - Começa pelo raiz e recursivamente visita o filho.
 - Não havendo mais filhos a visitar de um nó, começa o percurso no nó irmão deste...
- Ao realizar a visita temos duas opções: Tratar a info do nó antes de visitar os filhos, ou após visitar os filhos: pré-percurso e pós-percurso.

Percurso em Profundidade

- Este é o mais simples.
 - Em um pré-percurso, trata primeiro a informação do nó.
- Para cada um dos filhos, chama o percurso em profundidade recursivamente.
 - Em um pós-percurso, trata por último a informação do nó.
- Fim do percurso.
- Normalmente este percurso é chamado de DFS (Depth First Search), busca primeiro em profundidade.

Percurso em Profundidade - Código

```
void dfs(arvore *a, void function(obj_t), boolean pre) {
    if(pre) function(a - > info);
    listafilhos *fi = a - > prole;
    while(fi ! = NULL) {
        dfs(fi - > filho, function, pre);
        fi = fi - > prox;
    }
    if(!pre) function(a - > info);
    return;
}
```

Percurso em Largura

- Este traz uma complicação maior, pois vamos visitar os irmãos de um nó antes de visitar seus filhos.
- É necessário guardarmos estes filhos para uma visita futura.
- Existe uma estrutura que nos ajuda nisto: Fila.
- Os nós que precisamos visitar são colocados numa fila.
- Cada vez que visitamos um nó, colocamos seus filhos na fila.
- Assim, garantimos que os filhos do nó estão na fila de visita antes de visitarmos os irmãos que já estão na fila, também.
- Como não há recursão neste tipo de percurso, então não faz sentido em falar em pré percurso e pós percurso, a visita é feita na ordem de largura e pronto.
- Normalmente este percurso é chamado de BFS (Breadth First Search), busca primeiro em largura.

Percurso em Largura - Código

```
void bfs(arvore *a, void function(obj_t)) {
 fila f; iniciarFila(&f);
 enfileirar(&f,a);
 while(!ehvazia(&f)) {
   arvore v = frente(\&f); desenfileirar(&f);
   listafilhos *fi = v->prole;
   while(fi != NULL) {
    enfileirar(&f,fi->filho);
    fi = fi - > prox;
   function(v->info);
 return;
```

Árvores N-árias

- Ainda é possível restringir o escopo de árvores.
- Podemos restringir quanto à quantidade de filhos que cada nó pode ter.
- Por exemplo, vamos especificar que a árvore possui exatamente N filhos.
- Este caso parece ser recursivo ao infinito, portanto precisamos de um limite.
- Definimos uma árvore vazia, como uma árvore válida.
- A árvore vazia não possui valor no raiz, nem filhos, é apenas uma árvore que irá auxiliar na quantidade de filhos possíveis.

Árvores N-árias

- Uma árvore N-ária T é definida como:
 - ullet O conjunto (árvore) é vazio, $T=\emptyset$ ou
 - O conjunto consiste de uma raíz R, e exatamente N árvores N-árias distintas:

$$T = \{R, T_1, T_2, \dots, T_N\}$$

Exemplo de árvores 3-árias (ternárias):

$$T_{a} = \{A, \emptyset, \emptyset, \emptyset\},\$$

$$T_b = \{B, \{C, \emptyset, \emptyset, \emptyset\}, \emptyset, \emptyset\}$$

$$T_{d} = \{D, \{E, \{F, \emptyset, \emptyset, \emptyset\}, \emptyset, \emptyset\}, \{G, \{H, \{I, \emptyset, \emptyset, \emptyset\}, \emptyset, \emptyset\}, \{J, \{K, \emptyset, \emptyset, \emptyset\}, \{L, \emptyset, \emptyset, \emptyset\}, \emptyset\}, \{M, \emptyset, \emptyset, \emptyset, \emptyset\}\}, \emptyset\}$$

Árvores N-árias

- As árvores vazias são chamadas de nós externos
- As árvores não vazias são chamadas de nós internos.
- Folhas são nós internos que somente possuem subárvores que são nós externos.
- Uma árvore N-ária com $n \ge 0$ nós internos possui (N-1)n+1 nós externos.
- A altura de um nó externo é -1.
- A altura de uma folha é 0.

Representação Gráfica

Implementações de árvore N-ária

- Utiliza as mesmas rotinas implementadas na árvore geral.
- A implementação é mais simples, usa somente uma estrutura.
- A lista de filhos é então um vetor de ponteiros para novas árvores, dentro da própria estrutura da árvore.
- As árvores vazias são representadas como NULL na lista de filhos.
- A ordem importa, filhos $\{T_1, T_2, \emptyset\} \neq \{T_1, \emptyset, T_2\}$.
- Cada árvore filha tem sua posição fixada por um índice do vetor.
- As implementações estão em códigos que acompanham esta aula.

Implementações de árvore N-ária

- A grande diferença da implementação em relação à árvore geral é o tratamento dos filhos.
- Ao invés de navegar via ponteiros, temos um vetor onde percorremos iterativamente.
- Um cuidado especial é ao inserir um novo filho, é preciso agora dizer qual a posição.
- O que fazer se for inserir um filho em um lugar que já existe uma árvore:
 - Retornar "falso" obrigando explicitamente a remover o que lá existia pois não pode inserir algo em um lugar já ocupado, ou
 - Considerar que é mandatório a operação e remove o filho que lá existia e insere um novo.
 - Muitas vezes a solução depende do problema proposto
- Vamos mostrar a implementação de três funções apenas: removeFilho, e os dois percursos bfs e dfs, o resto está no material de aula.

Implementações de árvore N-ária: removeFilho

```
void removeFilho(arvore *a, uint i) {
 int k:
 arvore *f = NULL:
 assert(i < NARIA);
 if(a!=NULL) {
  f = a - > filhos[i];
  a->filhos[i] = NULL;
   if(f! = NULL) for(k = 0; k < NARIA; k++)
      removeFilho(f,k);
   free(f);
 return;
```

Implementações de árvore N-ária: buscas

```
void bfs(arvore *a, void function(obj_t)) {
 fila f; iniciarFila(&f);
 enfileirar(&f,a);
 while(!ehvazia(&f)) {
   arvore v = frente(\&f); desenfileirar(\&f);
   for(int i = 0; i < NARIA; i++)
    if(v->filhos[i]! = NULL) enfileirar(&f,v->filhos[i]);
   function(v->info);
 return;
void dfs(arvore *a, void function(obj_t), boolean pre) {
 if(pre) function(a - > info);
 for(int i = 0; i < NARIA; i++)
   if(a->filhos[i]!=NULL) dfs(a->filhos[i],function,pre);
 if(!pre) function(a- >info);
 return:
```

Árvores Binárias

- O conjunto é vazio, $T = \emptyset$; ou
- O conjunto consiste em uma raiz, R, e em exatamente duas árvores binárias distintas T_e e T_d , $T = \{R, T_e, T_d\}$
- A árvore T_e é dita subárvore esquerda de T, e a árvore T_d é dita a subárvore direita de T.

Exemplo de Árvores Binárias

Árvores binárias distintas, a primeira possui a subárvore esquerda, como nó interno, e a segunda a subárvore direita: $\{A, \{B, \emptyset, \emptyset\}, \emptyset\}$ e $\{A, \emptyset, \{B, \emptyset, \emptyset\}\}$

Definições sobre árvores binárias

- Uma árvore binária completa de profundidade d é a árvore estritamente binária onde todas as folhas estejam no nível d.
- Uma árvore binária completa de profundidade d possui 2^d folhas e 2^d – 1 nós não folhas.
- Uma árvore binária quase completa de profundidade d ocorre quando:
 - Cada folha na árvore está no nível d ou d-1.
 - Para cada nó n na árvore que contenha um descendente direito folha no nível d, então todos descendentes esquerdos que forem folha também estão no nível d.
- Uma árvore (completa ou quase completa) estritamente binária com n folhas possui no total 2n-1 nós.
- Uma árvore quase completa que não seja estritamente binária com n folhas possui no total 2n nós
- Existe uma única árvore binária quase completa com n nós,
 esta árvore será estritamente binária se n for ímpar

Exemplos - omitindo-se quase todas árvores vazias

- Árvore não estritamente binária
- Árvore binária completa
- Árvore estritamente binária quase completa

Percurso em Árvores Binárias

- O percurso, tal qual em árvores gerais pode ser em largura ou em profundidade.
- Nas árvores binárias os percursos em profundidade são de três tipos:
 - Percurso em pré-ordem: Faz-se uma pesquisa sobre o conteúdo do raiz, em seguida, recursivamente aplica-se o percurso no filho esquerdo e depois no direito.
 - Percurso em ordem simétrica (ou em ordem): Aplica-se recursivamente o percurso no filho esquerdo, faz-se a pesquisa no raiz, e aplica-se recursivamente o percurso no filho direito.
 - Percurso em pós-ordem: Aplica-se recursivamente primeiro o percurso no filho esquerdo, em seguida no filho direito e então faz-se a pesquisa no raiz.
- O percurso em ordem é o único restrito para árvores binárias, também aparece nas árvores m-múltiplas.

Exemplo de percurso em Árvores Binárias

Percurso em pré-ordem: ABCDEFGHI Percurso em ordem: CBAFEDHGI Percurso em pós-ordem: CBFEHIGDA

Implementações em Árvores Binárias

- As implementações em árvores binárias são semelhantes às implementações de N-árias.
- Substitui-se o vetor de filhos por dois filhos: FilhoEsquerdo e FilhoDireito.
- As operações para os filhos, substitui-se o índice por duas operações, uma para cada filho.
- Nesta implementação, inclui-se os percursos.
- Uma implementação especial da árvore binária não utiliza o ponteiro pai, já que basta, a partir do raiz, em algum percurso, recursivamente, chegar a todos os filhos.