MATHEMATICAL REASONING Chapter 1

5TH GRADE OF SECONDARY

RAZONAMIEN TO LÓGICO

HELICO | MOTIVATION

01

En el tablero mostrado hay que distribuir los dígitos del 1 al 9, de manera que la suma de los cuatro dígitos alrededor de cada uno de los puntos señalados sea 20. Si ya se han colocado los dígitos 3 y 5, ¿de cuántas maneras se puede completar el tablero?

a) 1

b) 2

c) 3

d) 4

Resolución:

Sean los números: 1, 2, 3, 4, 5, 6, 7, 8, 9

Primera forma

Segunda forma

HELICO | THEORY

RAZONAMIENTO LÓGICO

Es un tema que incluye diversas situaciones problemáticas en la que el estudiante utiliza su creatividad e ingenio para resolverlas.

HELICO | THEORY

EJEMPLO

Sobre una mesa hay tres naipes en hilera, y se sabe que: a la izquierda del rey hay un as, a la derecha de la jota hay uno de diamante, a la izquierda del diamante hay uno de trébol, a la derecha del corazón hay una jota. ¿Cuál es el naipe del medio?

- A) Rey de trébol.
- C) Jota de diamante.

- B) As de trébol.
- D) Jota de trébol.

Resolución

Piden el naipe del medio.

- ...a la derecha del corazón hay una jota.
- ...a la derecha de la jota hay uno de diamantes.
- ...a la izquierda del diamante hay uno de trébol.

RESOLUCIÓN DE LA PRÁCTICA

PROBLEMA 1

¿Cuántos cerillos hay que cambiar de posición como mínimo para generar una igualdad verdadera?

Resolución:

Se cambian de posición: 2 cerillos

PROBLEMA 2

¿Cuántos cerillos hay que cambiar de posición como mínimo para generar una igualdad verdadera? **Resolución:**

Se cambia de posición: <u>1 cerillo</u>

PROBLEMA 3

¿Cuántos cerillos hay que cambiar de posición para poder contar exactamente cuatro cuadrados iguales a los cinco mostrados en la figura? (No deben quedar cerillos sueltos).

Resolución:

Se cambian de posición: <u>2 cerillos</u>

PROBLEMA 4

Si un movimiento consiste en avanzar o retroceder una moneda a un casillero contiguo vacío o saltar sobre otra moneda al casillero vacío más cercano, ¿cuántos movimientos son necesarios para intercambiar las posiciones de las monedas mostradas en la figura?.

Resolución:

N° de movimientos:

01

PROBLEMA 5

Resolución:

¿Cuántas monedas como mínimo son necesarias para poder formar seis hileras de cuatro monedas en cada una de ellas?

Si fueran 6 hileras de 4 personas cada fila

En el caso de monedas:

Se necesitan: 8 monedas

PROBLEMA 6

En una carrera participaron cinco atletas: Sandro, Luis, Iván, Roberto y Gabriel. Al término de la carrera cada uno llegó en un puesto diferente y se sabe que:

- Roberto llegó antes que Luis. pero después que Gabriel.
- Sandro no llegó antes que Iván.
- Iván llegó en tercer puesto.

Según lo expuesto, ¿cuáles de las siguientes afirmaciones son verdaderas?

- I. Roberto llegó en segundo lugar. (V)
- II. Iván llegó antes que Luis. (V)
- III. Sandro llegó en quinto lugar. (F)

Resolución:

1°	2°	3°	4°	5°
GABRIEL	ROBERTO	IVAN	SANDRO	LUIS
1°	2°	3°	4°	5°
GABRIEL	ROBERTO	IVAN	LUIS	SANDRO

PROBLEMA 7

Seis amigos, A, B, C, D, E y F, se sientan alrededor de una mesa circular con seis asientos distribuidos simétricamente, además,

- D no se sienta junto a B.
- A se sienta junto y a la derecha de B y frente a C.
- E no se sienta junto a C.

Podemos afirmar como verdadero

- F se sienta entre B y C. (V)
- II. D no se sienta frente a B.(F)
- III. B se sienta entre F y A. (V)

Resolución:

De los datos indicados:

PROBLEMA 8

Ana, Betty, Carla y Diana toman, aunque no en ese orden, alguna de las siguientes bebidas gaseosas: Pepsi, Fanta, Sprite y Guaraná, además se sabe que

- Ana y la que toma Fanta son primas hermanas de la que toma Guaraná.
- Betty nunca volvió a probar una Fanta desde que derramó una en su cuarto cumpleaños.
- Carla, que es única nieta de su abuelo, es la madre de la que toma Pepsi. ¿Qué toman, respectivamente, Carla y Diana?

Resolución:

	PEPSI	FANTA	SPRITE	GUARANA
ANA	√	×	×	×
BETTY	×	×	×	√
CARLA	×	×	√	×
DIANA	×	√	×	×

