# Neighbor Query Friendly Compression of Social **Networks**

Hossein Maserrat <sup>1</sup> Jian Pei <sup>1</sup>

<sup>1</sup>School of Computing Science Simon Fraser University {hmaserra, jpei}@cs.sfu.ca

### Outline

- Background
  - Motivations
  - Existing Approaches
- Our Framework
  - Some Observations
  - The Idea
- Secondary Property of the secondary o
  - Concepts
  - Theoretical Results
- Experiments
  - Heuristic
  - Results

#### Motivations

- Real world networks (i.e. webgraphs, online social networks) are huge
- Even though there are distributed platforms for large scale graph processing still graph compression is beneficial:
  - Processing larger portion of graph per computer
  - Reducing the communication cost
- Ideally we like to be able to run different types of guery on the compressed graph

## Existing Approaches: Web graphs

### Boldi and Vigna [WWW04]

- Locality of webgraphs: A large percentage of links are intra-domain
- Sort by URL to improve locality of links
- Sort the list of out-links for each node.
- Use  $\zeta$  codes to encode the gaps between out-links
- This compress the webgraphs down to almost 2 bits per edge

### Existing approaches: Friendship networks

### Chierichetti et. al. [KDD09]

- There is no natural ordering of vertices for friendship networks
- Instead of sorting by URL in the previous approach, use shingle ordering
- Shingle ordering tends to place nodes with similar out-links list close to each other (similar in the sense of Jaccard Coefficient)
- The compression rate is not nearly as good as webgraphs

### Some Observations

Observation: The optimality of adjacency matrix representation

- Consider the class of random graph on n vertices where each possible edge is included in the graph with probability half
- Based on information theoretical lower bound, Any compression scheme on expectation uses at least  $n^2$  bits
- Provably for this class of graphs adjacency matrix is the optimal schema
- Message: Roughly speaking for dense random graph adjacency matrix is the best option

### Some Observations

Background

Observation: The optimality of adjacency list representation:

- Consider the class of random graph on *n* vertexes, where:
  - Each vertex has only one outgoing edge
  - The destination of that edge is picked uniformly at random
- For this class of graphs any compression scheme on expectation uses at least  $n \log n$  bits
- In this case provably adjacency list is the optimal schema
- Message: Roughly speaking for sparse random graph adjacency list is the best option

- It is well known that social networks are locally dense and globally sparse
- Question: Is it possible to combine the adjacency matrix and adjacency list effectively to get a compression schema?
- General Idea: For "local" edges use adjacency matrix and for "global" connections use pointers

- Let's consider a very simple case
- Assume a linear arrangement of nodes is given
- Notice that all the edges are "local" (i.e. every edge is connecting two nodes next to each other)



- Let's consider a very simple case
- Assume a linear arrangement of nodes is given
- Notice that all the edges are "local" (i.e. every edge is connecting two nodes next to each other)



- Now we consider a more sophisticated case
- In this case there is no arrangement of vertices such that every edge is "local"
- Relaxation: A node can appear more than once



- Now we consider a more sophisticated case
- In this case there is no arrangement of vertices such that every edge is "local"
- Relaxation: A node can appear more than once





- Now we consider a more sophisticated case
- In this case there is no arrangement of vertices such that every edge is "local"
- Relaxation: A node can appear more than once





## Representation Schema



- Representation schema is an array in which each cell consists of a pointer and two bits
- The index of the first appearance of a node is its ID
- We can extent the idea by using 2k bits for each position to encode the outlinks that are at most k positions away

#### S-distance

• Given a sequence S of nodes of the graph, the S-distance between u and v, is the minimum norm-1 distance among all pairs of appearances of u and v

Formalization

00000



• An  $MP_k$  linearization of graph G is a sequence S of vertices, such that for all  $(u, v) \in E(G)$ , S-dist $(u, v) \le k$ 



• An  $MP_k$  linearization of graph G is a sequence S of vertices, such that for all  $(u, v) \in E(G)$ , S-dist $(u, v) \le k$ 

















• An  $MP_k$  linearization of graph G is a sequence S of vertices, such that for all  $(u, v) \in E(G)$ , S-dist $(u, v) \le k$ 











MP<sub>2</sub> Linearization











Background

• An  $MP_k$  linearization of graph G is a sequence S of vertices, such that for all  $(u, v) \in E(G)$ , S-dist $(u, v) \le k$ 



• Given MP<sub>k</sub> linearization L of G, one can encode G using  $(2k + \lceil log|L| \rceil) \times |L|$  bits, where |L| is the length of L

#### Minimum MP<sub>1</sub> linearization

Start from a node with odd degree, if there is no such a node, start from an arbitrary node with nonzero degree

Formalization

- Choose an edge whose deletion does not disconnect the graph, unless there is no other choice
- Move across the edge and remove it
- Keep removing edges until getting to a node that does not have any remaining edge to choose
- **1** If the graph is not empty go to step 1

• This algorithm partitions the edges to exactly  $N_{odd}/2$ edge-disjoint paths, where  $N_{odd}$  is the number of vertices with odd degree (assuming  $N_{odd} > 0$ )

Formalization

000000

- The length of an optimal MP<sub>1</sub> linearization is  $|E| + N_{odd}/2$  $(N_{odd} > 0)$
- It can be implemented in O(|E|) time

## Compression Rate: Upper Bound

Using  $MP_1$  linearization to encode a graph G the bits/edge rate is at most

$$(1+rac{1}{ar{d}})\Big(\lceil\log_2(|V(G)|)+\log_2(ar{d}+1)
ceil+1\Big)$$

while the in-neighbor and out-neighbor query processing time is

$$O\Big(\sum_{u\in N_V} deg(u)\log|V(G)|\Big)$$

The trivial encoding of the graph that answers both in-neighbor and out-neighbor queries uses  $2 \log |V|$  bits/edge

• How hard is it to compute an optimal MP<sub>2</sub> linearization?

Formalization

000000

- We don't know, pretty hard I guess!
- Minimum MP<sub>k</sub> linearization when k is part of the input is a generalization of Min-Bandwidth problem and therefore it is NP-hard
- Min-Bandwidth problem: Find an arrangement of vertices of the graph that minimize the maximum stretch of an edge

### $MP_k$ linearization: Heuristic

- A greedy heuristic to compute MP<sub>k</sub> linearization:
  - Start with a random node and add it to list
  - Find the node that has the most number of edges to the last k nodes in the list
  - Remove the edges between this node and the last k nodes in the list
  - Add the node to the list
  - Sepeat until no edge is left
- The graph gets sparser and sparser while we are removing the edges
- We use a threshold to reduce the value of k in the process of linearization

# **Experimental Results**

|      |                    |          |       | Query processing time (ns) |           |              |           |
|------|--------------------|----------|-------|----------------------------|-----------|--------------|-----------|
|      | Dataset statistics |          |       | Adj query                  |           | Neigh. query |           |
|      | V                  | <i>E</i> | FCT   | Comp.                      | Adj. list | Comp.        | Adj. list |
| CN   | 12006              | 236978   | 0.659 | 520                        | 400       | 1849         | 19        |
| PCN  | 34546              | 421534   | 0.145 | 1300                       | 480       | 2745         | 28        |
| P2PN | 26518              | 65369    | 0.004 | 500                        | 320       | 1488         | 50        |
| LJN  | 4845609            | 68475391 | 0.288 | 3050                       | 1130      | 9734         | 49        |



### Comparison

Comparison: The compression rate of the previous schema [KDD09] on LiveJournal dataset is 14.38 while it can only answer out-neighbor queries, our compression rate is 13.91 while our method can answer both in-neighbor and out-neighbor queries

#### Conclusions

- We introduce a novel framework for representing graphs
- In its simplest settings, our framework comes with an upper bound on bits/edge rate
- Our method can efficiently answer more types of query and retain the comparable compression rate than the state-of-the-art methods
- Our framework reduces the problem of compressing a graph to an intuitive combinatorial problem

### Future works

- Finding smarter algorithms for linearizing a graph
- Using other compression techniques on top of our framework
- Hardness result for  $MP_k$  linearization when k is fixed