

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A cryptographic method in an electronic component during which a modular exponentiation of the type x^d is performed, with d an integer exponent of $m+1$ bits, by scanning the bits of d from left to right in a loop indexed by i varying from m to 0 and calculating and storing in an accumulator ($R0$), at each turn of rank i , an updated partial result equal to $x^b(i)$, $b(i)$ being the $m-i+1$ most significant bits of the exponent d ($b(i) = d_{m-i}$), ~~the method being characterised in that wherein~~, at the end of a turn of rank $i(j)$ ($i = i(0)$) chosen randomly, a randomisation step E1 is performed during which:

E1: a random number z ($z = b(i(j))$, $z = b(i(j)).2^t$, $z = u$) is subtracted from a part of the bits of d not yet used ($d_{i-1>0}$) in the method

then, after having used the bits of d modified by the randomisation step E1, a consolidation step E2 is performed during which:

E2: the result of the multiplication of the content of the accumulator ($x^b(i)$) by a number that is a function of x^z stored in a register ($R1$) is stored ($R0 \leftarrow R1 \times R0$) in the accumulator ($R0$).

2. (Currently Amended) Method according to ~~the preceding claim~~ claim 1, in which step E1 is repeated one or more times, at the end of various turns of rank $i(j)$ ($i = i(0)$, $i = i(1)$, ...) chosen randomly between 0 and m .

3. (Currently Amended) Method according to ~~the preceding claim~~ claim 2, in which, at each turn i , it is decided randomly ($p=1$) whether or not step E1 is performed.

4. (Currently Amended) A cryptographic method according to ~~one of claims 1 to 3~~ claim 1, in which the number z ($z=b(i(j))$, $z = b(i(j)).2^t$) is a function of the exponent d , in which, during the randomisation step, the result of the multiplication of the content of the accumulator ($x^b(i)$) by the content of the register ($R1$) is also stored ($R1 \leftarrow R0 \times R1$) in the said register ($R1$).

5. (Original) A method according to claim 4, in which the consolidation step E2 is performed after the last turn of rank i equal to 0.

6. (Currently Amended) A method according to ~~the preceding claim~~ claim 5, during which, during step E1, the number $b(i)$ is subtracted from d .

7. (Original) A method according to claim 6, during which the following is effected:

Input: $x, d = (d_m, \dots, d_0)_2$

Output: $y = x^d \bmod N$

$R0 \leftarrow 1; R1 \leftarrow 1; R2 \leftarrow x, i \leftarrow m$

as long as $i \geq 0$, do:

$R0 \leftarrow R0 \times R0 \bmod N$

if $d_i = 1$ then $R0 \leftarrow R0 \times R2 \bmod N$

$p \leftarrow R\{0, 1\}$

if $((p = 1) \text{ and } d_{i-1 \rightarrow 0} \geq d_{m \rightarrow i})$ then

$d \leftarrow d - d_{m \rightarrow i}$

$R1 \leftarrow R1 \times R0 \bmod N$

end if

$i \leftarrow i-1$

end as long as

$R0 \leftarrow R0 \times R1 \bmod N$

return $R0$

8. (Currently Amended) A method according to claim 5, during which step E1 is modified as follows:

E1: a number equal to $g \cdot b(i)$ is subtracted from d , g being a positive integer; the current partial result ($x^b(i)$) is raised to the power of g and the result is stored in the register (R1).

9. (Currently Amended) A method according to ~~the preceding claim~~ claim 8, in which g is equal to 2^τ , τ being a random number chosen between 0 and T .

10. (Currently Amended) A method according to ~~the preceding claim~~ claim 9, in which the following is effected:

Input: $x, d = (d_m, \dots, d_0)_2$

Output: $y = x^d \bmod N$

$R0 \leftarrow 1; R1 \leftarrow 1; R2 \leftarrow x, i \leftarrow m$

as long as $i \geq 0$, do:

$R0 \leftarrow R0 \times R0 \bmod N$

if $d_i = 1$ then $R0 \leftarrow R0 \times R2 \bmod N$

$\rho \leftarrow R\{0, 1\}; \tau \leftarrow R\{0, \dots, T\}$

if $((\rho = 1) \text{ and } (d_{i-1 \rightarrow \tau} \geq d_{m \rightarrow i}))$ then

$d_{i-1 \rightarrow \tau} \leftarrow d_{i-1 \rightarrow \tau} - d_{m \rightarrow i}$

$R3 \leftarrow R0$

as long as $(\tau > 0)$ do:

$R3 \leftarrow R3^2 \bmod N; \tau \leftarrow \tau - 1$

end as long as

$R1 \leftarrow R1 \times R3 \bmod N$

end if

$i \leftarrow i - 1$

end as long as

$R0 \leftarrow R0 \times R1 \bmod N$

return $R0$

11. (Currently Amended) A method according to ~~one of claims 1 to 4~~ claim 1, in which the consolidation step E2 is performed at the end of the rank using the last bit of d modified during step E1.

12. (Original) A method according to claim 11, in the course of which, during step E1, the number $b(i)$ is subtracted from the bits of d of rank $i(j) - c(j)$ to $i(j)-1$, $c(j)$ being an integer, and the content of the accumulator ($x^b(i(j))$) is stored in the register (R1).

13. (Currently Amended) A method according to ~~the preceding claim~~ claim 12, in the course of which, during the turn of rank $i(j+1)$, it is chosen randomly to perform step E1 only if $i(j+1) \leq i(j) - c(j)$. (~~$\epsilon = 1$ free semaphore~~).

14. (Currently Amended) A method according to claim 12 or 13, in which $c(j)$ is equal to $m - i(j) + 1$.

15. (Currently Amended) A method according to ~~the preceding claim~~ claim 14, during which the following steps are performed:

Input: $x, d = (d_m, \dots, d_0)_2$

Output: $y = x^d \bmod N$

$R0 \leftarrow 1; R1 \leftarrow 1; R2 \leftarrow x,$

$i \leftarrow m; c \leftarrow -1; \sigma \leftarrow 1$

as long as $i \geq 0$, do:

$R0 \leftarrow R0 \times R0 \bmod N$

if $d_i = 1$ then $R0 \leftarrow R0 \times R2 \bmod N$ end if

if $(2i \geq m+1) \text{ and } (\sigma=1)$ then $c \leftarrow m-i+1$

if not $\sigma = 0$

end if

$p \leftarrow R\{0, 1\}$

$\varepsilon \leftarrow p \text{ and } (d_{i-1 \rightarrow i-c} \geq d_{m \rightarrow i}) \text{ and } \sigma$

if $\varepsilon = 1$ then

$R1 \leftarrow R0; \sigma \leftarrow 0$

$d_{i-1 \rightarrow i-c} \leftarrow d_{i-1 \rightarrow i-c} - d_{m \rightarrow i}$

end if

if $c = 0$ then

$R0 \leftarrow R0 \times R1 \bmod N; \sigma \leftarrow 1$

end if

$c \leftarrow c-1; i \leftarrow i-1$

end as long as

return $R0$

16. (Currently Amended) A method according to claim 12 or 13, in which $c(j)$ is chosen randomly between $i(j)$ and $m-i(j)+1$.

17. (Currently Amended) A method according to ~~the preceding claim~~ claim 16, during which the following is effected:

Input: $x, d = (d_m, \dots, d_0)_2$

Output: $y = x^d \bmod N$

$R0 \leftarrow 1; R1 \leftarrow 1; R2 \leftarrow x,$

$i \leftarrow m; c \leftarrow -1; \sigma \leftarrow 1$

as long as $i \geq 0$, do:

```

R0 <- R0xR0 mod N
if  $d_i = 1$  then R0 <- R0xR2 mod N
    if  $(2i \geq m+1)$  and ( $\sigma = 1$ )
        then  $c <- R\{m-i+1, \dots, i\}$ 
        if not  $\sigma = 0$ 
             $\varepsilon <- \rho$  and  $(d_{i-1 \rightarrow i-c} \geq d_{m \rightarrow i})$  and  $\sigma$ 
            if  $\varepsilon = 1$  then
                R1 <- R0;  $\sigma <- 0$ 
                 $d_{i-1 \rightarrow i-c} <- d_{i-1 \rightarrow i-c} - d_{m \rightarrow i}$ 
            end if
            if  $c = 0$  then
                R0 <- R0xR1 mod N;  $\sigma <- 1$ 
            end if
             $c <- c-1$ ;  $i <- i-1$ 
        end as long as
    return R0

```

18. (Currently Amended) A method according to ~~one of claims 1 to 2~~ claim 1, in which the number z is a number u ($z = u$) of v bits chosen randomly and independent of the exponent d .

19. (Currently Amended) A method according to ~~the preceding claim~~ claim 18, in which, during step E1, the number u is subtracted from a packet w of v bits of d .

20. (Currently Amended) A method according to ~~the preceding claim~~ claim 19, during which:

- if $H(w-u) + 1 < H(w)$, it is chosen to perform a randomisation step E1,
- if $H(w-u) + 1 > H(w)$, it is chosen not to perform step E1,
- if $H(w-1) + 1 = H(w)$, it is chosen randomly to perform or not a randomisation step E1.

21. (Currently Amended) A method according to ~~the preceding claim~~ claim 20, during which the following is effected:

Input: $x, d = (d_m, \dots, d_0)_2$

Parameters: v, k

Output: $y = x^d \bmod N$

$R0 \leftarrow 1; R2 \leftarrow x; i \leftarrow m; L = \emptyset$

as long as $i \geq 0$, do:

$R0 \leftarrow R0 \times R0 \bmod N$

if $d_i = 1$ then $R0 \leftarrow R0 \times R2 \bmod N$ end if

if $i = m \bmod ((m+1)/k)$ then $\sigma \leftarrow -1$ end if

if $\sigma = 1$ and $L = \emptyset$ then

$s \leftarrow 0; u \leftarrow R \{0, \dots, 2^v - 1\};$

$R1 = x^u \bmod N$

end if

$w \leftarrow d_{i-v+1}$

$h \leftarrow H(w)$

if $w \geq u$ then $\Delta \leftarrow w - u; h_\Delta \leftarrow 1 + H(\Delta)$

if not $h_\Delta \leq v+2$

end if

$\rho \leftarrow R\{0, 1\}$

if $[(\sigma=0) \wedge (i-v+1 \geq 0)] \wedge$

$[(h > h_\Delta) \text{ or } ((\rho=1) \text{ and } (h=h_\Delta))]$ then

$d_{i-v+1} \leftarrow \Delta; L \leftarrow L \cup \{i-v+1\}$

end if

if $(i \in L)$ then

$R0 \leftarrow R0 \times R1 \bmod N$

$L \leftarrow L \setminus \{i\}$

end if

$i \leftarrow i-1$

end as long as

return $R0$