Machine Translation

Jordan Boyd-Graber

University of Maryland

Phrase-Based Models

Adapted from material by Mohit lyyer, Luke Zettlemoyer, Kalpesh Krishna, Karthik Narasimhan, Greg Durrett, Chris Manning, Dan Jurafsky

Argmax at every time step

$$\rho(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(1)

- top-k
- Nucleus / top-p
- Temperature

$$p(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(1)

- top-k: Only sample from k items with highest probability
- Nucleus / top-p
- Temperature

$$p(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(1)

- top-k: Only sample from k items with highest probability
- Nucleus / top-p: Only sample from highest items with at least p
 probability
- Temperature

$$\rho(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}} \tag{1}$$

- top-k: Only sample from k items with highest probability
- Nucleus / top-p: Only sample from highest items with at least p probability
- Temperature

$$p(w) = \frac{\exp\left\{\frac{\beta \cdot \vec{f}(w)}{T}\right\}}{\sum_{w'} \exp\left\{\frac{\beta \cdot \vec{f}(w')}{T}\right\}}$$
(2)

$$\rho(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(3)

- top-k
- Nucleus / top-p
- Temperature

$$\rho(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(3)

- top-k: Only sample from k items with highest probability
- Nucleus / top-p
- Temperature

$$p(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(3)

- top-k: Only sample from k items with highest probability
- Nucleus / top-p: Only sample from highest items with at least p probability
- Temperature

$$\rho(w) = \frac{\exp\left\{\beta \cdot \vec{f}(w)\right\}}{\sum_{w'} \exp\left\{\beta \cdot \vec{f}(w')\right\}}$$
(3)

- top-k: Only sample from k items with highest probability
- Nucleus / top-p: Only sample from highest items with at least p probability
- Temperature

$$p(w) = \frac{\exp\left\{\frac{\beta \cdot \vec{f}(w)}{T}\right\}}{\sum_{w'} \exp\left\{\frac{\beta \cdot \vec{f}(w')}{T}\right\}}$$
(4)

What do you do with samples?

- Getting out of being stuck in a garden path
- Getting diverse outputs
- · Combining multiple models together
- · Rescoring by a non-probability metric

Using multiple sources

- Generate from multiple models
- Generate from multiple directions
- Generate from multiple data
- Generate from multiple temperatures

How to pick?

• Show to a user

How to pick?

- Show to a user
- Take highest probability

How to pick?

Can Neural Machine Translation be Improved with User Feedback?

Julia Kreutzer¹* and Shahram Khadivi³ and Evgeny Matusov³ and Stefan Riezler^{1,2}

¹Computational Linguistics & ²IWR, Heidelberg University, Germany
(kreutzer, riceler)@cl. uni-heidelberg de

³eBay Inc., Aachen, Germany {skhadivi,enatusov}}ebay.com

- Show to a user
- Take highest probability
- Rerank

RankGen — Improving Text Generation with Large Ranking Models (EMNLP 2022)

Kalpesh Krishna

John Wieting

Mohit lyyer

UMassAmherst Manning College of Information & Computer Sciences

	GPT2-md		GPT2-XL	
Decoding Method	PG19	wiki	PG19	wiki
Nucleus $(p = 0.9)$	73.0	74.6	74.4	75.0
Eta (Hewitt et al., 2022)	76.9	71.2	76.9	74.8
Contrastive methods				
search (Su et al., 2022)	5.3	21.2	54.0	43.2
decode (Li et al., 2022)	65.2	83.2	73.2	84.9
RANKGEN-all-XL (ours)				
rerank full ancestral	79.0	84.9	79.0	86.4
beam search nucleus	76.2	88.9	77.0	89.4

Tones in Chinese (for "shu", not "ma" like I said)

Original Lyrics (Inconsistent Tone)

As if before my eyes

Inter-syllable pitch alignment score: 0.5

Misheard Lyrics (Consistent Tone)

Die before my eyes

Inter-syllable pitch alignment score: 0.75

Misheard lyrics when the tones are wrong

REST: intervals of silence that usually align with word segmentations or punctuation

One character (syllable) aligns with a group of multiple notes

One character (syllable) aligns with a single note

Aligning music to translated lyrics

Decoding song translations with tones in decoder

