Principios de Lenguajes de Programación

Tipo de Datos: Introducción Tipos de datos elementales

Facultad de Informática Universidad Nacional del Comahue

Primer Cuatrimestre

Índice

Unidad 2. Objeto, Valor y Tipos de Datos.

Concepto de Tipo de Datos. Mecanismos de definición de tipos. Tipos primitivos. Tipos compuestos y recursivos. Sistemas de Tipos. Equivalencia, Compatibilidad, Chequeo y Cohesión. Implementación de Objetos de Datos. Impacto en el diseño de los lenguajes de programación.

Índice

- Tipo de Datos
- Especificación e implementación
- Chequeo de tipo
- Lenguajes fuertemente tipados
- Conversiones de Tipos
- Tipos Elementales / Primitivos

Objeto de Dato

Un agrupación de una o más piezas de datos en una computadora virtual, que tiene entidad en ejecución

- Objetos de datos definidos por el programador:
- Objetos de datos definidos por el sistema:

Objeto de Dato

Un agrupación de una o más piezas de datos en una computadora virtual, que tiene entidad en ejecución

- Objetos de datos definidos por el programador: variables, constantes, arreglos, archivos etc.
- Objetos de datos definidos por el sistema:
 pilas de almacenamiento en tiempo de ejec.
 Memorias intermedia de archivo, lista de espacio libre

Objetos de Dato

- Los atributos de los OD
 - Permiten caracterizarlos
 - Descriptor: conjunto de atributos de un objeto de dato
 - Dependientes del lenguaje y la estructura asociada
 - Por ejemplo: Arreglos heterogéneos u homogéneos, fijos o de tamaño variante, con chequeo de rango, etc.
- OD Elementales
 - Contiene un valor que es manipulado como una unidad
- OD Compuestos / Estructurados
 - Combinan objetos de datos elementales

Objetos de Dato

- Se caracterizan por las ligaduras que pueden establecer con los atriburos
 - Ligaduras dinámicas
 - Ligaduras estáticas

Objeto de Dato

Objetos de Dato

- Variables: valor modificable (us. asignación)
- Constantes: OD enlazado en forma permanente a su valor o valores
 - Constante Literal
 - Definida por el programador
 - -Tiempo de la ligadura

Un **tipo de dato** define el conjunto de OD y el conjunto de operaciones definidas para manipular estos objetos

 Un OD representa una instancia de un tipo definido por el usuario (usualmente dato abstracto)

Elementos básicos de una especificación de un TD

- Atributos: que distinguen OD de ese TD
- Valores posibles: que un OD de un TD tiene
- Operaciones asociadas: manipulaciones de OD de ese tipo

Ej: TD array

- Atributos:
- Valores:
- Operaciones:

Elementos básicos de una especificación de un TD

- Atributos: que distinguen OD de ese TD
- Valores posibles: que un OD de un TD tiene
- Operaciones asociadas: manipulaciones de OD de ese tipo

Ej: TD array

- Atributos: #dimensión, rango de los subíndices p/u dimensiones,
 TD componentes
- Valores:conj de # que son valores válidos p/el array
- Operaciones: selección de un elem del array, crear array, acceder a su limite sup e inferior, etc.

Elem. básicos de una **implementación** de un TD

- Representación/Almacenamiento del dato
- Implementación propia de las operaciones que manipulan la representación

Especificación del TD Elemental

- **OD Elemental:** contiene un valor de dato simple.
- Tipo de Dato Elemental:
 - Clase de OD Elem. En la que se definen op
- Lges tienden a tener un conj de TPElem: Integer, real, character, boolean, enumerado y puntero.
 - Sus especificaciones pueden ser distintas según los lenguajes

Elem. básicos de una **implementación** de un TD

- Representación/Almacenamiento del dato
- Implementación propia de las operaciones que manipulan la representación

Especificación, implementación, representación sintáctica y verificación de tipo de datos.

Tipo de Dato: especificación TD Elemental

Atributos

- Tipo y Nombre (invariantes durante su tiempo de vida)
- Algunos atributos se Incorporados al descriptor (en ejecución)
- Otros son usados sólo para diseñar representación del almacenamiento, no explícitamente en ejecución
- Valor de atributo <> Valor del OD (rep explicita en ejec)

Valores

- El tipo determina el conjunto de valores que puede ligarse a un objeto de dato. 1 solo valor
 - Ej, C int short long char (los caracteres se guardan como enteros de 8 bits en el tipo char).
- Usualmente un conjunto ordenado (valor menor y mayor)

Tipo de Dato: especificación TD Elemental

- Operaciones
 - Posibles operaciones del objeto de un tipo de dato
 - Primitivas, parte del lenguaje
 - Definidas por programador como subprogramas, métodos de clase, etc.
 - Operaciones
 - Fc. Mat: argumentos y resultados
 - Dominio, conjunto de valores de entrada válidos
 - Rango, conjunto de resultados posibles
 - Acción, cómo se produce el resultado

Tipo de dato: especificación

- Especificación de la Signatura de la Operación
 - Especifica dominio y rango
 Número, orden y tipo de los argumentos del dominio
 - Número, orden y tipo del rango

- Acción:
 - Especificada por una semántica formal o
 - Especificada durante la implementación

Tipo de dato: especificación

- Problemas con las especif. formal de las op.
 - No definidas para algunas entrada
 - -Argumentos Implícitos, ej, uso de variables globales
 - Efectos colaterales: Resultados implícitos, la operación modifican otros OD
 - -Auto modificable (sensible a la historia), con cambios de datos locales entre llamadas
 - Ej. función random modifica la semilla (seed)

- Implementación de un TD: representación + algoritmo/s
 - -Representación del Almacenamiento del dato
 - Atributos:
 - Representación que el hw proporciona:
 - Eficientes en almacenamiento y velocidad. C, FORTRAN, PASCAI
 - Descriptor:
 - se pueden guardar en el descriptor como parte del OD. Flexibilidad. LISP, PROLOG

Tipo de Dato: implementación

- Implementación propia de las operaciones
 - -Operaciones de Hardware
 - · Implementación directa, ej suma entera
 - -Funciones/Subprogramas
 - Cálculo de raíz cuadrada en otras representaciones
 - -Código in-line
 - Simil subprograma, con código copiado
 - Levemente más eficiente

Tipo de Dato: algunos conceptos

- Chequeo/Control de Tipo
- Tipado Fuerte
- Conversiones de tipo

Chequeo o verificación de Tipo

- Chequeo/verificación de cada operación que ejecuta el programa, para verificar el número correcto de argumentos con los tipos de dato apropiados
- Chequeo de Tipo Dinámico
 - En ejecución.
 - Marcas de tipo
 - Ej. lisp Prolog
- Chequeo de Tipo Estático
 - Durante la compilación (antes de la ejecución)

Chequeo de Tipo Dinámico

- Ventaja:
 - -Flexibilidad
- Desventajas:
 - -Se dificulta la depuración (debugging), algunas alternativas de ejecución nunca se controlan
 - -Almacenamiento extra para la información del tipo durante la ejecución del programa
 - -Se simula el chequeo por software, lo que reduce la velocidad de ejecución

Chequeo de Tipo Estático

- Ventaja:
 - Mayor velocidad de ejecución
- Requiere:
 - -Para cada operación, el número, orden y tipo de dato de cada operando y del resultado
 - El tipo de cada objeto de dato:
 - Variable, usualmente con nombre
 - -Siempre con el mismo tipo
 - Constante definida y literal

Tipado fuerte

- Si se detecta todos los errores sintáctico estáticamente
 - Una función f, con signatura f: S → R, es seguro con respecto al tipo si cualquier ejecución de f no puede generar valores fuera de R
 - Si todas las op son seguras en cto a tipos, el lge es fuertemente tipado

Inferencia de Tipo

- Para tipos de dato implícitos, se usa si la interpretación no es ambigua
- Ej ML

```
fun area(long:int,ancho:int):int=long*ancho
```

Inferencia de Tipo

- fun square(x) : real = x * x;
 - La función devuelve valor real, luego el parámetro es real
 - -X ahora es real
- Ejemplo,
 - ML no permite funciones sobrecargadas
 - No pueden existir square(x) para enteros y otra para real
- Otras formas de especificar un parámetro real:

```
-fun square(x : real) = x * x;

-fun square(x) = (x : real) * x;

-fun square(x) = x * (x : real);
```

Conversión de Tipo

- Un error de tipo (type mismatch) genera:
 - Error
 - -Conversión de Tipo
- Conversión de tipo:

```
Op-Conversión: Tipo1 → Tipo2
```

- -Implícita: o Coerción, realizada por el sistema
- Explícita: rutina que cambia de un tipo de dato a otro
- Coerciones:
 - -Con o sin pérdida de información
 - Promoción o Ensanchamiento
 - Degradación o Estrechamiento

Tipado fuerte-Conclusión

- Un lenguaje de programación es de tipado fuerte si siempre se pueden detectar los errores originados por tipos
 - Los tipos de todos los operandos se pueden conocer, ya sea en compilación o en ejecución
- Ventaja:
 - Permite la detección temprana de los usos incorrectos de variables que resultan de errores de tipo

Conversión de Tipo

- Dos filosofías opuestas:
 - No hay coerciones (Ada)
 - Coerción es la regla (lenguaje C)
- Ejemplo de Lenguajes
 - Pascal
 - Conversión Explícita, ej, con función round
 - Conversión Implícita, en operaciones de enteros y reales
 - -C
 - Conversión Explícita, con casting (int) X para X float

Conversión de Tipo: coerción

- Ventajas:
 - Libera al programador de algunas consideraciones de bajo nivel por ejemplo, suma de enteros y reales
- Desventajas:
 - -Puede "esconder" errores de programación serios

- Tipos de Dato Elementales / Simples
- Tipos de Dato Primitivos
- Tipos de Dato Estructurados / Complejos

Asignación

- Operación básica para cambiar la ligadura de un valor a un OD
- Efecto colateral:
 - C, Lisp devuelve un valor: OD con una copia del valor asignado
- Especificación
 - Pascal:Asignación(:=):int₁ x int₂→ vacío

Valor de int₁ sea una copia de ent₂ (ef colateral modificación int₁)

-C:

Asignación(=):int₁ x int₂ \rightarrow int

Asignación

Tipos de Datos Elementales

- Tipos de dato numéricos
 - -Enteros
 - -Subrangos
 - Reales con punto variable (flotante)
 - -Reales con punto fijo
- Enumerados
 - Conjunto de valores simbólicos (us. Ordenados)
- Booleanos
- Caracteres

Tipos de Dato Estructurados

- Objetos de dato estructurados o datos con una estructura:
 - Construcción como agregación de otros objetos de dato, llamados componentes
- Consideraciones:
 - -Cómo se establecen los componentes
 - -Cómo se relacionan los componentes
 - -Cómo se gestiona el almacenamiento
 - -Cómo se manipulan las estructuras

Tipos de Dato Estructurados: Especificación

- Número de componentes
- Tipo de cada componente
- Nombres / Funciones para seleccionar un componente individual
- Máximo número de componentes
- Organización de los componentes

- Número de componentes
 - -Tamaño Fijo
 - Arreglos, registros, cadena de caracteres
 - -Tamaño Variable
 - Pilas, listas, conjuntos, tablas, archivos, cadenas de caracteres
 - Gestión a través de tipo puntero
 - Operaciones de crecimiento y decrecimiento, inserción y borrado

- Tipo de cada componente
 - Homogéneos
 - Arreglos, cadena de caracteres, conjuntos, archivos
 - Heterogéneos
 - Registros, listas

- Nombre / Función de selección de cada componente
 - -Subíndice entero o secuencia de subíndices
 - Arreglos
 - Identificador definido por el programador
 - Registros
 - -Operaciones
 - Acceso secuencial: pilas, archivos
 - Acceso aleatorio: archivos
 - -Operaciones sobre estructura completa

- Organización de los componentes
 - -Secuencia lineal (simple)
 - Vectores, arreglos, cadenas de caracteres, pilas, listas, archivos
 - Multidimensionales
 - Arreglos
 - Registros
 - Listas

Tipos de Datos Elementales

- Casi todos los lenguajes de programación proveen un conjunto de tipos de dato primitivos
- Tipo de Dato Primitivo/Simple:
 - No se define en términos de otro tipo de dato
- Algunos tipos de dato primitivos son reflejo del hardware subyacente
- Otros tipos requieren una leve adecuación para su implementación en hardware

Tipo de Dato Numérico

- Entero / Integer
 - -Muchas veces como un reflejo exacto del entero propio del hardware.
 - -Pueden existir varios subtipos en los lenguajes
 - Hasta 8 tipos de enteros en algunos
 - byte, short, int, long, char

Tipo de Dato Entero

- Entero / Integer
 - Especificación
 - Valores mínimo y máximo (tamaño), ordenados
 - Signo o sin Signo
 - Operaciones
 - -Aritméticas: ej. BinOp: integer x integer → integer
 - -Relacionales: RelOp: integer x integer → boolean
 - -Asignaciones: Asig: ej. integer x integer → void
 - -Operaciones a nivel bit: BinOp: integer x integer → integer
 - Implementación
 - Definidas por hardware

Bibliografía

- Pratt, Terrance W., Programming Languages: Design and Implementation, cap 4
- Sebesta, Robert, Concepts of Programming Languages, Cap 6