Lesson 7. A General Stochastic Process Model

Course standards covered in this lesson: C2 - Constructing and interpreting stochastic process models.

1 A general stochastic process model

- Let's generalize the Bit Bucket example from last time
- Notation: $\mathbf{S}_n = \begin{pmatrix} S_{1,n} \\ \vdots \\ S_{m,n} \end{pmatrix}$ is a vector of m random variables
- $\{S_n; n = 0, 1, 2, ...\}$ is the state-change process
 - o Represents all relevant information about system status
- $\{T_n; n = 0, 1, 2, ...\}$ is the **event-epoch process**
 - \circ T_n is the time of the nth system event
- $\{Y_t; t \ge 0\}$ is the **output process**, defined by $Y_t \leftarrow S_n$ for $t \in [T_n, T_{n+1})$
 - Connects state changes with times that they occur
- System events e_1, e_2, \ldots, e_k
 - Update the new system state S_{n+1} from previous system state S_n
 - Reset clocks $C = (C_1, C_2, ..., C_k)$ if necessary
- Initial system event e_0
- Simulation algorithm

algorithm Simulation:

- ∘ $\mathbf{S}_{n+1} \leftarrow \mathbf{S}_n$ in Step 3 is for convenience
 - ♦ With this, system event functions only need to specify changes in system state

- A **stochastic process** is a model describing a collection of time-ordered <u>random variables</u> that represent possible sample paths
- A **sample path** is a collection of time-ordered <u>data</u> describing how a stochastic process actually behaved in one instance

2 The Case of Copy Enlargement, revisited

The Darker Image, a national chain of small photocopying shops, currently configures each store with one photocopying machine and one clerk. Arriving customers stand in a single line to wait for the clerk. The clerk completes the customers' photocopying jobs one at a time, first-come-first-served, including collecting payment for the job.

- Let's formulate a stochastic process model for the copy shop as it currently operates
- Assumptions:
 - \circ Interarrival times are independent with common cdf F_G
 - \circ Service times are independent with common cdf F_X
 - o Interarrival times and service times are independent

System events:			
System state:			

em event algorithms:		

Output process:
Time-average number of customers waiting for service over the first 6 hours:
Time-average number of copiers in use – the utilization of the copier – over the first 6 hours:
In words, what is $\int_0^6 Y_{1,t} dt$?