Idempotent theorems and matrices

MARCEL K. GOH

Department of Mathematics and Statistics, McGill University

Abstract. These expository notes move at a leisurely pace though background material needed to appreciate the Cohen idempotent theorem and its quantitative version, due to Green and Sanders. We introduce Schur multipliers and investigate a conjectured analogue in this setting.

1. Topological preliminaries

A topology on a set S is a collection of subsets of S that contains the empty set and is closed under the formation of unions and finite intersections. If S has a topology defined on it, then S is said to be a $topological\ space$, and the members of its topology are called $open\ sets$. The complements of open sets are called $closed\ sets$.

Proposition 1.1. A set A is open if and only if for every $x \in A$, there is an open set U_x with $x \in U_x$ and $U_x \subseteq A$.

Proof. If A is open, then for any $x \in A$ we can simply take U = A. Conversely, if for every point $x \in A$ there is some open $U_x \subseteq A$ with $x \in U_x$, then $A = \bigcup_{x \in A} U_x$, so A is open, being a union of open sets.

The largest open set contained in a set A is the *interior* of A, and the smallest closed set containing A is its *closure*, denoted \overline{A} . If $A\overline{A}$ is the whole set S, then we say A is *dense* in S, and if some countable set is dense in S, then S is a *separable* space.

A set A is said to be a neighbourhood of a point p if p belongs to the interior of A. The space S is called Hausdorff if for all points $x, y \in S$ with $x \neq y$, there is some open neighbourhood U of X and open neighbourhood V of y such that $U \cap V = \emptyset$. A set A is compact if every open cover of A has a finite subcover. If every point of S has some compact neighbourhood, then S is called locally compact.

If the singleton set $\{p\}$ is open, then p is called an *isolated point* of S, and if p is isolated for all points $p \in S$, then S is a discrete space.

Nets. A relation \leq on a set I is an *ordering* if it is reflexive, antisymmetric, and transitive. An ordering \leq is said to be *directed* if any two elements have an upper bound; that is, for all $i, j \in I$, there exists $k \in S$ such that $i \leq k$ and $j \leq k$.

Let I and S be sets such that I admits a directed ordering. Then any function $f:I\to S$ is called a net. We usually index the elements of the net by elements of I; writing $x_i=f(i)$ for all $i\in I$, the net f can be expressed as $(x_i)_{i\in I}$. When $I=\mathbf{N}$ under the usual ordering \leq , we recover the usual definition of a sequence of points in S. We say that $(x_i)_{i\in I}$ is eventually in A if there exists some $j\in I$ such that for all $i\succeq j, x_i\in A$. A point $x\in S$ is called a $limit\ point$ of $(x_i)_{i\in I}$ if for every open neighbourhood U of x, the net $(x_i)_{i\in I}$ is eventually in U. In this case we write $x_i\to x$.

Proposition 1.2. If S is a Hausdorff space, then every net $(x_i)_{i \in I}$ valued in S has at most one limit point.

Proof. Let S be a topological space and suppose there is a net $(x_i)_{i\in I}$ with two distinct limit points x and y. Let U be an open neighbourhood of x and V an open neighbourhood of Y. By definition of limit point, there is some $i \in I$ such that $x_k \in U$ for all $k \succeq i$, and similarly there is some $j \in I$ such that $x_i \in V$ for all $k \succeq j$. But since I is a directed set, there must exist some $k \in I$ with $k \succeq i$ and $k \succeq j$, and we find that $x_k \in U \cap V$. Since U and V were arbitrary, we conclude that S is not Hausdorff.

In light of the proposition, so long as the ambient space is Hausdorff it makes sense to write $\lim_{i \in I} x_i = x$ whenever the limit point of $(x_i)_{i \in I}$ is x. We may also choose to write $x_i \to x$.

We now introduce a common choice of directed set that features in some of the proofs below.

Proposition 1.3. Let x be a point in a topological space S and let N(x) be the set of all open neighbourhoods of x. Define an order on N(x) by declaring $U \leq V$ if and only if $U \supset V$. Then the order \leq is directed, and x is a limit point of any net $(x_U)_{U \in N(x)}$ satisfying $x_U \in U$ for all $U \in N(x)$.

Proof. The set N(x) is clearly directed, since for every $U, V \in N(x), U \supset U \cap V$ and $V \supset U \cap V$. Now let $(x_U)_{U \in N(x)}$ be any net with $x_U \in U$ for all $U \in N(x)$. Pick any open set V containing x. This set V is a member of N(x), and for any $U \in N(x)$ with $U \succeq V$, we must have $x_U \in U \subseteq V$.

One can characterise closed sets in terms of convergent nets.

Proposition 1.4. A set A is closed if and only if whenever a net with $(x_i)_{i \in I}$ satisfying $x_i \in A$ for all $i \in I$ possesses a limit point x we must have $x \in A$.

Proof. Suppose that A is closed and let $(x_i)_{i\in I}$ be a net with limit point x and $x_i \in A$ for all $i \in I$. For a contradiction, suppose that $x \notin A$. Then $x \in A^c$, which is open. By the definition of limit point, there exists j such that $x_i \in A^c$ for all $j \succeq i$. This contradicts the assumption that x is a limit point of $(x_i)_{i\in I}$.

Now we assume the second condition and prove that A^c is open. Let N(x) be the set of all open neighbourhoods of x. Towards a contradiction, assume that there is some $x \in A^c$ such that for all $U \in N(x)$, we have $U \cap A \neq \emptyset$. So for all $U \in N(x)$, we may pick $x_U \in U \cap A$, and the net $(x_U)_{U \in N(x)}$ has x as its limit

point, by Proposition 3. But $x_U \in A$ for all $U \in N(x)$, so by our assumption, we must have $x \in A$. This contradiction shows that any $x \in A^c$ must have some open neighbourhood U that is contained in A^c . Hence by Proposition 1, A is closed.

2. The structure of locally compact abelian groups

A topological abelian group is an abelian group G endowed with the topology of a Hausdorff space, such that the map from $G \times G$ to G sending $(x,y) \mapsto x-y$ is continuous. (The topology on $G \times G$ is taken to be the product topology). If, in addition, G is also locally compact, then G is said to be a *locally compact abelian* group.

The following proposition shows that by passing to closures, we can always assume subgroups to be closed.

Proposition 2.1. Let G be a locally compact abelian group and H a subgroup of G. Then the closure \overline{H} of H is also a subgroup of G.

Proof. Let $x, y \in \overline{H}$ and let Z be any neighbourhood of x-y. Since multiplication is continuous (and by the definition of the product topology), there is an open neighbourhood X of x and Y of y such that $X-Y\subseteq Z$. By the definition of closure, there are points $a\in X\cap H$ and $b\in Y\cap H$. The point a-b is in H because H is a subgroup, and thus $a-b\in Z\cap H$.

Let G be a locally compact abelian group. The set of all measures μ on G forms a topological semigroup under the convolution operation

$$\mu * \nu(A) = \int_G \chi_A(x+y) \ d\mu(x) \ d\nu(x),$$

where χ_A denotes the characteristic function of A.

References