CS 311 Computer Architecture 2025/2026

Lecture 2

Assis. Prof. Dr. Elmahdy Maree

A Top-Level View of Computer Function and Interconnection

Structure of IAS Computer

A Top-Level View of Computer Interconnection

Computer Components: Top-Level View

Digital Building Blocks

- 1. Registers
- 2. BUS System
- 3. COUNTERS
- 4. RAMS

COUNTERS

- A. SYNCHRONOUS COUNTERS
- B. ASYNCHRONOUS (RIPPLE) COUNTERS

SYNCHRONOUS COUNTERS

Design of Sequential Circuit

Example 1:

Design a 3 bit Counter (Using "T" FF) which counts in binary form as follows; 000, 001, 010, ... 111, 000, 001, ...

2- State diagram:

Solution

Lecture 2: Sequential Circuit

4- State Table:

Lecture 2: Sequential Circuit

5- K-Map for FFs inputs and circuit Outputs

Lecture 2: Sequential Circuit

5- K-Map for FFs inputs and circuit Outputs

Lecture 2: Sequential Circuit

6- Circuit diagram:

Symbol:

SYNCHRONOUS COUNTERS

SYNCHRONOUS COUNTERS

Many digital circuits participate during a computer run to fetch and execute instructions

Symbol:

Controlling a sequence of operations

RING COUNTERS IMPLEMENTATION

SAP-1 ring counter Hardware Implementation

Note: Pin 14 is connected to +5 V, and pin 7 is grounded.

ASYNCHRONOUS (RIPPLE) COUNTERS

RIPPLE COUNTER (Asy.)

ASYNCHRONOUS (RIPPLE) COUNTERS

-ve edge up counter (Asyn)

Count	Q_3	\mathbf{Q}_2	$\mathbf{Q_1}$	Q_0
О	O	o	o	O
1	O	O	O	1
2	O	O	1	O
3	O	\mathbf{O}	1	1
4	O	1	\mathbf{o}	O
5	O	1	O	1
6	O	1	1	O
7	O	1	1	1
8	1	O	O	O
9	1	O	0	1
10	1	O	1	O
11	1	O	1	1
12	1	1	O	O
13	1	1	O	1
14	1	1	1	O
15	1	1	1	1

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS (RIPPLE) COUNTERS

Controlled ripple counter(up counter -ve edge)

Symbol:

SAP-1 program counter

COUNTERS

Computer Components: Top-Level View

CH 1: MEMORY SYSTEM

Memory System

- ROM
- RAM

CH 4: MEMORY SYSTEM

ROM Design

CH 1: MEMORY SYSTEM

ROM Design

Design 8 x 4 ROM.

Address	Data
0 0 0	0000
0 0 1	1101
0 1 0	0011
0 1 1	1000
1 0 0	1111
1 0 1	1001
1 1 0	0111
1 1 1	0000

CH 1: MEMORY SYSTEM

Types of ROMs

Mask Programmed ROM

Programmed during manufacturing

Programmable Read-Only Memory (PROM)

Blow out fuses to produce '0'

Erasable Programmable ROM (EPROM)

Erase all data by *Ultra Violet* exposure

Electrically Erasable PROM (EEPROM)

Erase the required data using an electrical signal

CH 5

MEMORY SYSTEM

Cache Memory

Lecture 2: Comp. Arch. and Org.

CH 5: MEMORY SYSTEM

Questions

THANK YOU

