2. 准粉の加管	補数表現についる	_
ムに致り川昇、		_

[3学期授業用プリント No.7]

教科書 P.53 サポートノート P.31

1年()組()番 名前(

☆目標☆

2進数の加算、補数表現について知る

1 次の中でコンピューターが計算できるものはどれ?

①3+6 ②4×3 ③7-2 ④10÷5

- ☆コンピュータの計算は論理回路の組み合わせで実現されています。論理回路を複雑に すると計算スピードが落ちるので、究極のシンプルな形を追い求めこうなりました
- 2 次の計算を足し算で表現してみよう。

 $(1)4 \times 3$

27-2

答え

答え

- 3 補数について知ろう。 <u>補数とは・・・</u>元の数を足したときに桁上がりする「最小」の数のことを指しています。
 - 例) 10 進法における 4 に対する補数は 6 、 2 3 に対する補数は 7 7
 - 例) 7-2

10 進法: 7-2=7+8=15

補数

4 次の10進数を補数を使い求めてみよう。 (マイナスを使わずに足し算で求めてみよう)

05-3

(2)8-4

足し算を使った式:

足し算を使った式:

答え_____

答え

☆計算はすべて足し算で表現できる。この原理を使ってコンピュータは高速計算をしている。

5	それでは2進数で考えてみましょう。	まず2進数の足し算はどうするのか?

2進数の足し算(加算)をしてみよう。

 $1000_{(2)} + 0101_{(2)}$

答え

② 0111₍₂₎+0101₍₂₎

<u>☆ポイントは桁上がりをする!</u>

答え

|6| 次の2進数を加算して求められる答えは何か計算しなさい。

 $(1)1011_{(2)}+1101_{(2)}$ $(2)10101_{(2)}+111111_{(2)}$

答え

答え

7 補数の求め方について知ろう。

例) 7-2

10 進法: 7-2=7+8=15 補数

10 進法で2の補数は8になります

10 進法で補数を求める方法は 10-2 をすれば求まります。

2進法でも同じように引き算をすれば求めることができます。

7-2を2進法にすると

2進法:0111 - 0010

2進法で補数を求める方法は 10000₍₂₎-0010₍₂₎をすれば求まります。 でもこれおかしくないですか?

8 2の補数の求め方について知ろう。

例) 0101 の場合の2の補数の求め方は

9 次の2進法の補数を求めなさい。

\bigcirc	٦.	
10001	- 1	
\odot		(2)

②00111000₍₂₎

答え

答え_____

10 次の計算を、2の補数表現を使った足し算で求めよ。(教科書.53より。)

 $\bigcirc 0100_{(2)} - 0011_{(2)}$

手順①右側の2進法(0011(2))の2の補数を求める。

手順②左側の2進法数字(0100%)+手順①

手順③下位4ビットだけとる

答え_____

 $20111_{(2)} - 0100_{(2)}$

 $30110_{(2)} - 0001_{(2)}$

答え_____

答え_____

1 符号付きビットについて(符号あり、符号なし)		進法 表現	2の補数表現での	符号なし 整数での
・コンピューターではマイナス表現をするために	5	4321	数値	数値
(①) を用いる。	1	0111	7	7
(U) / EMVISO	1	0110	6	6
	1	0101	5	5
・4 ビットでは先頭のビットを見て	1	0100	4	4
0のときは(2)	1	0011	3	3
002314 (6)	1	0010	2	2
	1	0001	1	1
・4 ビットでは先頭のビットを見て	1	0000	0	0
1のときは(③)	0	1111	-1	15
1002818 (3)	0	1110	-2	14
	0	1101	-3	13
「1110」の表現するとこれが		1100	-4	12
	_	1011	-5	11
「-2」か「14」を表す数なのかわからない。	0	1010	-6	10
そこで「符号付きビットで表限」のように断り書きが	0	1001	-7	9
付くことが多い。	0	1,000	-8	8
		一先頭	のビット	
		教科	斗書 P.53	参考

☆ 1 を補数変換をして - 1 にするには 0 と 1 を反転して

1 を足す

12 2の補数表現で表現された2進数の数を10進数に変換せよ。(サポートノート P.33 より)

解き方

☆符号付きビットとして考えます。

先頭のビットをみてください。0ならそのまま求める。

<u>1 ならマイナスなので2の補数を求める→10進数にする→マイナスを最後に</u>つける計算する

※サポートノートの解説は難しい解き方をしているのでこちらの 解き方で解いてください!

①01010101 ₍₂₎	②11111101 ₍₂₎	311111011(2)
答え	答え	答え