

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2024

CLASA a XII-a – soluții și barem orientativ de corectare

Problema 1. Determinați numerele naturale n, cu $n \in \mathbb{N}$, $n \geq 2$, pentru care ecuația

$$x^2 - \hat{3} \cdot x + \hat{5} = \hat{0} \tag{1}$$

are o unică soluție în inelul $(\mathbb{Z}_n, +, \cdot)$.

Gazeta Matematică

Soluție. Vom nota cu M mulțimea numerelor naturale n, cu $n \ge 2$, pentru care ecuația (1) are o unică soluție în inelul $(\mathbb{Z}_n, +, \cdot)$.

Vom arăta că $M = \{11\}.$

În inelul $(\mathbb{Z}_{11}, +, \cdot)$, ecuația (1) se scrie echivalent

$$x^2 - \hat{3} \cdot x + \hat{5} = \hat{0} \iff x^2 - \hat{14} \cdot x + \hat{49} = \hat{0} \iff (x - \hat{7})^2 = \hat{0}$$

$$y^2 - \hat{3} \cdot y + \hat{5} = \hat{9} - \hat{6} \cdot x + x^2 - \hat{3} \cdot \hat{3} + \hat{3} \cdot x + \hat{5} = x^2 - \hat{3} \cdot x + \hat{5} = \hat{0}$$

astfel că y este soluție a ecuației (1). Din condiția de unicitate rezultă atunci că $x=y=\hat{3}-x$, sau, echivalent, $\hat{2} \cdot x=\hat{3}$. Deoarece n este impar, $\hat{2}$ este inversabil, și obținem că $x=\hat{3}\cdot\hat{2}^{-1}$.

Faptul că $x = \hat{3} \cdot \hat{2}^{-1}$ este soluție a ecuației se transcrie echivalent, ținând cont de faptul că n este impar:

$$(\hat{3} \cdot \hat{2}^{-1})^2 - \hat{3} \cdot (\hat{3} \cdot \hat{2}^{-1}) + \hat{5} = \hat{0} \iff \hat{4} \cdot ((\hat{3} \cdot \hat{2}^{-1})^2 - \hat{3} \cdot (\hat{3} \cdot \hat{2}^{-1}) + \hat{5}) = \hat{0} \iff \hat{9} - \hat{18} + \hat{20} = \hat{0} \iff \hat{11} = \hat{0} \iff n|11.$$

Problema 2. Fie $f:[0,1] \longrightarrow (0,\infty)$ o funcție continuă pe [0,1], iar $A = \int_{0}^{1} f(t) dt$.

a) Arătați că funcția $F:[0,1] \longrightarrow [0,A]$, definită pentru orice $x \in [0,1]$ prin

$$F(x) = \int_0^x f(t) dt,$$

este inversabilă, cu inversa derivabilă.

b) Arătați că există o unică funcție $g:[0,1] \longrightarrow [0,1]$, astfel încât egalitatea

$$\int_0^x f(t) \, dt = \int_{g(x)}^1 f(t) \, dt \tag{2}$$

să aibă loc pentru orice $x \in [0, 1]$.

c) Arătați că există $c \in [0,1]$ pentru care

$$\lim_{x \to c} \frac{g(x) - c}{x - c} = -1,$$

unde g este funcția unic determinată prin relația (2).

Soluție. a) Deoarece f este continuă, F este continuă și derivabilă, cu F'(x) = f(x) > 0, pentru orice $x \in [0,1]$. Prin urmare, F este strict crescătoare, deci injectivă. Fiind continuă, F are proprietatea valorilor intermediare ("a lui Darboux" - termen folosit doar în România), și cum F(0) = 0 și F(1) = A, F este surjectivă. Prin urmare, F este bijectivă, deci inversabilă. În plus, deoarece F'(x) = f(x) > 0 pentru orice $x \in [0,1]$, F^{-1} este derivabilă, cu

$$(F^{-1})'(x) = \frac{1}{f(F^{-1}(x))}, \quad \text{pentru orice } x \in [0, A].$$

$$g'(x) = \frac{(A - F(x))'}{f(F^{-1}(A - F(x)))} = \frac{-f(x)}{f(F^{-1}(A - F(x)))}, \quad \text{pentru orice } x \in [0, 1].$$
 (3)

Funcția g este strict descrescătoare, astfel că are un unic punct fix $c \in [0,1]$.

Pentru acesta avem: 2F(c) = F(c) + F(g(c)) = A, astfel că $F(c) = \frac{1}{2} \cdot A$ și $c = F^{-1}(\frac{1}{2} \cdot A)$.

Deoarece g este derivabilă, există limita

$$\lim_{x \to c} \frac{g(x) - c}{x - c} = \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = g'(c),$$

iar această limită este

$$g'(c) = \frac{-f(c)}{f(F^{-1}(A - F(c)))} = \frac{-f(c)}{f(c)} = -1.$$

Problema 3. Fie $k \in \mathbb{N}^*$. Spunem că inelul $(A, +, \cdot)$ are proprietatea CP(k), dacă pentru orice $a, b \in A$ există $c \in A$, astfel încât $a^k = b^k + c^k$.

- a) Dați un exemplu de inel finit $(A, +, \cdot)$, care nu are proprietatea CP(k) pentru niciun număr natural k, cu $k \ge 2$.
- b) Fie $n \in \mathbb{N}$, $n \geq 3$, $iar\ M(n) = \{m \in \mathbb{N}^* | (\mathbb{Z}_n, +, \cdot) \ are\ proprietatea\ CP(m)\}$. Demonstrați că M(n) este un monoid în raport cu operația de înmulțire, inclus în mulțimea $2 \cdot \mathbb{N} + 1$ a numerelor naturale impare.

Soluție. Pentru fiecare $k \in \mathbb{N}^*$ notăm $P_k(A) = \{a^k \mid a \in A\}$. Condiția CP(k) este atunci echivalentă cu

$$x - y \in P_k(A)$$
, pentru orice $x, y \in P_k(A)$,

b) Pentru $n \in \mathbb{N}$, $n \geq 3$, considerăm inelul $(\mathbb{Z}_n, +, \cdot)$. Deoarece $\hat{1} \in P_k(\mathbb{Z}_n)$ pentru orice $k \in \mathbb{N}$, $k \geq 2$, și $(\mathbb{Z}_n, +)$ este ciclic, generat de $\hat{1}$, rezultă că $CP(k) \iff P_k(\mathbb{Z}_n) = \mathbb{Z}_n$. Echivalent, $CP(k) \iff$ funcția $p_k : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$, definită prin $p_k(x) = x^k$ pentru orice $x \in \mathbb{Z}_n$, este bijectivă.

Putem atunci rescrie $M(n) = \{m \in \mathbb{N}^* | p_m \text{ este bijectivă}\}.$

Deoarece pentru k par avem că $p_k(\hat{1}) = p_k(-\hat{1})$, iar $\hat{1} \neq -\hat{1}$, rezultă că orice $m \in M(n)$ este impar, astfel că $M(n) \subseteq 2 \cdot \mathbb{N} + 1$.

......2p

Deoarece $p_1 = id_{\mathbb{Z}_n}$ este bijectivă, avem că $1 \in M(n)$.

Fie $m_1, m_2 \in M(n)$ oarecare. Funcțiile p_{m_1} și p_{m_2} sunt bijective, iar funcția $p_{m_1m_2} = p_{m_1} \circ p_{m_2}$ este bijectivă, fiind compusa a două funcții bijective, astfel că $m_1 \cdot m_2 \in M(n)$.

Rezultă că M(n) este un submonoid al monoidului (\mathbb{N}^*,\cdot)2p

Problema 4. Fie $f:[0,\infty) \longrightarrow \mathbb{R}$ o funcție derivabilă, cu derivata continuă, astfel încât f(0) = 0, iar $0 \le f'(x) \le 1$ pentru orice x > 0. Demonstrați că

$$\int_0^a f(t)^{2n+1} dt \le (n+1) \cdot \left(\int_0^a f(t)^n dt \right)^2,$$

pentru orice a > 0 și orice $n \in \mathbb{N}^*$.

$$F(x) = (n+1) \cdot \left(\int_0^x f(t)^n dt \right)^2 - \int_0^x f(t)^{2n+1} dt.$$

Vom arăta că F este monoton crescătoare, ceea ce, cum F(0) = 0, va demonstra inegalitatea din enunț.

Funcția f fiind continuă, F este derivabilă și

$$F'(x) = 2(n+1) \cdot \left(\int_0^x f(t)^n dt \right) \cdot f(x)^n - f(x)^{2n+1} =$$

$$= f(x)^n \cdot \left(2(n+1) \cdot \left(\int_0^x f(t)^n dt \right) - f(x)^{n+1} \right).$$

Deoarece $f'(x) \le 1$ pentru orice $x \ge 0$, avem că $f(x)^n \ge f(x)^n \cdot f'(x)$, $\forall x \ge 0$, astfel că

$$(n+1)\cdot\left(\int_0^x f(t)^n dt\right) \ge \int_0^x (n+1)\cdot f(t)^n\cdot f'(t) dt = f(x)^{n+1}.$$

......2p

Rezultă că

$$F'(x) = f(x)^n \cdot \left(2(n+1) \cdot \left(\int_0^x f(t)^n dt \right) - f(x)^{n+1} \right) \ge$$

$$\ge f(x)^n \cdot \left(2 \cdot f(x)^{n+1} - f(x)^{n+1} \right) = f(x)^{2n+1} \ge 0,$$