1.2.11 ∞ 圏の部分圏

通常の圏論と同様に、高次圏における部分圏を定義する。 \mathfrak{C} を ∞ 圏、 \mathfrak{h} \mathfrak{C} を \mathfrak{C} のホモトピー圏、 $(\mathfrak{h}\mathfrak{C})'$ を $\mathfrak{h}\mathfrak{C}$ の部分圏とする。このとき、次のプルバックで定義される \mathfrak{C}' を $(\mathfrak{h}\mathfrak{C})'$ で貼られる \mathfrak{C} の部分圏 (subcategory) という。

$$\begin{matrix} \mathcal{C}' & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow \\ N((h\mathcal{C})') & \longrightarrow & N(h\mathcal{C}) \end{matrix}$$

注意 1.2.11.1. 部分 ∞ 圏ではなく、部分圏という用語を用いていることに注意. これは任意の部分圏がある圏の脈体で表せるという意味ではない (これは偽である).

 \mathbb{C} を ∞ 圏, h \mathbb{C} を \mathbb{C} のホモトピー圏とする. (h \mathbb{C})' が h \mathbb{C} の充満部分圏のとき, \mathbb{C} ' を \mathbb{C} の充満部分圏 (full subcategory) という. *1 \mathbb{C} を ∞ 圏, \mathbb{C} ' を \mathbb{C} の部分圏とする. ∞ 圏の定義より, 包含 \mathbb{C} ' \hookrightarrow \mathbb{C} は忠実充満である.

 ∞ 圏の部分圏は内ファイブレーション (2 章を参照) を用いて表すことができる.

補題 1.2.11.2. \mathcal{C} を ∞ 圏, \mathcal{C}' を \mathcal{C} の単体的部分集合とする. このとき, 次は全て同値である.

- (1) C' は C の部分圏である.
- (2) 包含 $\mathcal{C}' \hookrightarrow \mathcal{C}$ は内ファイブレーションである.

特に, \mathcal{C}' は ∞ 圏である.

 $^{^{*1}}$ \mathcal{C}' が \mathcal{C} の充満部分圏のとき, \mathcal{C}' は \mathcal{C}' に属する \mathcal{C} の対象のなす集合 \mathcal{C}'_0 より定まる. このことから, \mathcal{C}' を \mathcal{C}'_0 で貼られる \mathcal{C} の部分圏ということもある.