1 More on Orthogonal Complements

Remark 1.1. If x = w + z ($w \in W$, $z \in W^{\perp}$, then w is the orthogonal projection of x on W. In fact, any orthogonal projection is a linear map.

Corollary 1.2

If V is finite dimensional, then dim $V = \dim W + \dim W^{\perp}$ and $(W^{\perp})^{\perp} = W$.

Proof. Since $V = W \oplus W^{\perp}$, then dim $V = \dim W + \dim W^{\perp}$.

Moreover, $\dim(W^{\perp}) = \dim V - \dim W^{\perp} = \dim W$.

We prove now that $W \subset (W^{\perp})^{\perp}$.

If $x \in W$, then $\langle x, y \rangle = 0$ for all $y \in W^{\perp}$. Therefore, $x \in (W^{\perp})^{\perp}$.

Corollary 1.3

If x = w + z for $w \in W, z \in W^{\perp}$, then w is the unique vector closest to x in W. Thus, for all $u \in W$ such that $u \neq w$:

$$||x - u|| < ||x - w||$$

Proof. If $a, b \in V$ and $\langle a, b \rangle = 0$, then $||a + b||^2 = ||a||^2 + ||b||^2$.

Therefore, $||(w-u) + z||^2 = ||w-u||^2 + ||z||^2 \ge ||z||^2$.

Theorem 1.4

Let $S = \{v_1, \dots, v_k\}$ be an orthonormal subset such that dim V = n:

- a) Then S can be extended to an orthonormal basis of V
- b) If $W = \text{span}\{v_1, \dots, v_k\}$, then $W^{\perp} = \text{span}\{v_{k+1}, \dots, v_n\}$.

Proof. a) First, extend $\{v_1, \ldots, v_k\}$. Use the Gram-Schmidt procedure to make it orthonormal. Note that any orthonormal subset is linearly independent.

The first k elements of the new basis are unchanged. In this way, v_1, \ldots, v_n is an orthonormal basis of V after normalisation.

b) If $V = \text{span}\{v_k, \dots, v_n\}$, then $\langle x, y \rangle = 0$ for all $x \in W$ and $g \in V$, which is logically equivalent to $V \subset W^{\perp}$. Since dim $W^{\perp} = \dim U$, then $V = W^{\perp}$.

2 Adjoints

If V is a finite dimensional inner product space and $T \in \text{Hom}(V, V)$, then there exists a unique $T^* \in \text{Hom}(V, V)$, called an **adjoint** such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$.

Note that $[T^*]_{\beta} = ([T]_{\beta})^*$. Tho show this, note that if $y \in V$, the function $f_y : V \to \mathbb{F}$ is linear.

Theorem 2.1

Let V be a finite dimensional vector space. If $f:V\to\mathbb{F}$ is linear, then there exists a unique $y\in V$ such that $f=f_y$, i.e. $f(x)=\langle x,y\rangle$ for all $x\in V$.

Proof. Pick an orthonormal basis v_1, \ldots, v_n .

Suppose $f = f_y$.

Therefore,
$$f(v_1) = \langle v_1, y \rangle$$
. Hence, $y = \sum_{i=1}^n \langle y, v_i \rangle v_i = \sum_{i=1}^n \overline{f(v_i)} v_i$.

Define
$$y = \sum_{i=1}^{n} \overline{f(v_i)} v_i$$
.

To prove that y is unique, it's enough to show that $f(v_i) = f_y(v_i)$.

Observe that
$$f_y(v_i) = \langle v_i, y \rangle = \langle v_i, \sum_{j=1}^n \overline{f(v_j)} v_j \rangle$$
.

Therefore,
$$f_y(v_i) = \sum_{j=1}^n f(v_j) \langle v_i, v_j \rangle = f(v_i)$$
.