

Spacecraft Attitude Dynamics

prof. Franco Bernelli

Magnetic Field Modelling

Magnetic field disturbance torque

$$\underline{M} = \underline{m} \wedge \underline{B}$$

Magnetic B-field

Potential in terms of Schmidt quasi-normalized associated Legendre Polynomial

$$V(r,\theta,\varphi) = R \sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \left(g_n^m \cos(m\varphi) + h_n^m \sin(m\varphi)\right) P_n^m(\theta)$$

r, θ and φ are the spherical coordinates of the position of the satellite from the center of the Earth, co-latitude and East longitude from Greenwich.

IAGA – International Association of Geomagnetism and Aeronomy

IGRF – International Geomagnetic Reference Field

$$B_r = \frac{-\partial V}{\partial r}$$

$$B_{\theta} = \frac{-1}{r} \frac{\partial V}{\partial \theta}$$

$$B_{\theta} = \frac{-1}{r \sin \theta} \frac{\partial V}{\partial \varphi}$$

$$B_{\theta} -> \text{ coelevation component, positive if directed towards south}$$

$$B_{\theta} -> \text{ azimuth component, positive towards east}$$

The wandering magnetic North

Gaussian coefficients (nT)

		IGRF	1995	IGRF 2000		
n	m	$g_n^{\ m}$	h_n^{m}	$g_n^{\ m}$	h_n^{m}	
1	0	-29682	ı	-29615	1	
1	1	-1789	5318	-1728	5186	
2	0	-2197	ı	-2267	ı	
2	1	3074	-2356	3072	-2478	
2	2	1685	-425	1672	-458	
3	0	1329	ı	1341	-	
3	1	-2268	-263	-2290	-227	
3	2	1249	302	1253	296	
3	3	769	-406	715	-492	
4	0	941	ı	935	-	
4	1	782	262	787	272	
4	2	291	-232	251	-232	
4	3	-421	98	-405	119	
4	4	116	-301	110	-304	

		IGRF	1995	IGRF 2000		
n	m	$g_n^{\ m}$	h_n^{m}	$g_n^{\ m}$	h_n^{m}	
5	0	-210	-	-217	1	
5	1	352	44	351	44	
5	2	237	157	222	172	
5	3	-122	-152	-131	-134	
5	4	-167	-64	-169	-40	
5	5	-26	99	-12	107	
6	0	66	-	72	ı	
6	1	64	-16	68	-17	
6	2	65	77	74	64	
6	3	-172	67	-161	65	
6	4	2	-57	-5	-61	
6	5	17	4	17	1	
6	6	-94	28	-91	44	

		IGRF	1995	IGRF	2000
n	m	$g_n^{\ m}$	h_n^{m}	$g_n^{\ m}$	h_n^{m}
7	0	78	1	79	1
7	1	-67	-77	-74	-65
7	2	1	-25	0	-24
7	3	29	3	33	6
7	4	4	22	9	24
7	5	8	16	7	15
7	6	10	-23	8	-25
7	7	-2	-3	-2	-6
8	0	24	1	25	1
8	1	4	12	6	12
8	2	-1	-20	-9	-22
8	3	-9	7	-8	8
8	4	-14	-21	-17	-21
8	5	4	12	9	15

		IGRF 1995		1995 IGRF 2000	
n	m	$g_n^{\ m}$	h_n^{m}	$g_n^{\ m}$	h_n^{m}
8	6	5	10	7	9
8	7	0	-17	-8	-16
8	8	-7	-10	-7	-3
9	0	4	-	5	-
9	1	9	-19	9	-20
9	2	1	15	3	13
9	3	-12	11	-8	12
9	4	9	-7	6	-6
9	5	-4	-7	-9	-8
9	6	-2	9	-2	9
9	7	7	7	9	4
9	8	0	-8	-4	-8
9	9	-6	1	-8	5

 $\mathbf{B} = -\nabla V$

Earth rotating-fixed frame

$$b_r = \sum_{n=1}^k \left(\frac{R}{r}\right)^{n+2} (n+1) \sum_{m=0}^n \left(g_n^m \cos m \, \phi + h_n^m \sin m \, \phi\right) P_n^m(\theta)$$

$$b_\theta = -\sum_{n=1}^k \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^n \left(g_n^m \cos m \, \phi + h_n^m \sin m \, \phi\right) \frac{\partial P_n^m(\theta)}{\partial \theta}$$

$$b_\phi = -\frac{1}{\sin \theta} \sum_{n=1}^k \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^n \left(-g_n^m \sin m \, \phi + h_n^m \cos m \, \phi\right) P_n^m(\theta)$$

Schmidt quasi-normalized associated Legendre Polynomial

$$P_n^m = \left[\frac{2(n-m)!}{(n+m)!}\right]^{1/2} P_{n,m}$$

$$P_{n,m}(v) = (1-v^2)^{1/2m} \frac{d^m}{dv^m} (P_n(v))$$

$$P_0(v) = 1$$

$$P_1(v) = v$$

$$P_2(v) = (3v^2 - 1)/2$$

$$P_3(v) = (5v^3 - 3v)/2$$

Davis, J., "Mathematical Modeling of Earth's Magnetic Field" Virginia Tech, Technical Note, 2004.

 $\mathbf{B} = -\nabla V$

Alternative normalization due to Gauss

$$B_{r} = \frac{-\partial V}{\partial r} = \sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+2} (n+1) \sum_{m=0}^{n} \left(g^{n,m} \cos(m\varphi) + h^{n,m} \sin(m\varphi)\right) P^{n,m}(\theta)$$

$$B_{\theta} = \frac{-1}{r} \frac{\partial V}{\partial \theta} = -\sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^{n} \left(g^{n,m} \cos(m\varphi) + h^{n,m} \sin(m\varphi)\right) \frac{\partial P^{n,m}(\theta)}{\partial \theta}$$

$$B_{\varphi} = \frac{-1}{r \sin \theta} \frac{\partial V}{\partial \varphi} = \frac{-1}{\sin \theta} \sum_{m=1}^{k} \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^{n} m \left(-g^{n,m} \sin(m\varphi) + h^{n,m} \cos(m\varphi)\right) P^{n,m}(\theta)$$

$$g^{n,m} = S_{n,m}g_n^m$$

 $h^{n,m} = S_{n,m}h_n^m$

$$\mathbf{B} = -\nabla V$$

Alternative normalization due to Gauss

$$S_{0,0} = 1$$

$$S_{n,0} = S_{n-1,0} \frac{(2n-1)}{n} \quad \text{for } n \ge 1$$

$$S_{n,m} = S_{n,m-1} \left[\frac{(\delta_m^1 + 1)(n-m+1)}{(n+m)} \right]^{\frac{1}{2}} \quad \text{for } m \ge 1$$

$$P^{0,0} = 1$$
 $P^{n,n} = \sin\theta P^{n-1,n-1}$
 $P^{n,m} = \cos\theta P^{n-1,m} - K^{n,m}P^{n-2,m}$

$$K^{n,m} = 0$$
 for $n = 1$
 $K^{n,m} = \frac{(n-1)^2 - m^2}{(2n-1)(2n-3)}$ for $n > 1$

$$\mathbf{B} = -\nabla V$$

Earth rotating fixed frame

$$b_r = \sum_{n=1}^k \left(\frac{R}{r}\right)^{n+2} (n+1) \sum_{m=0}^n (g_n^m \cos m \, \phi + h_n^m \sin m \, \phi) P_n^m(\theta)$$

$$b_\theta = -\sum_{n=1}^k \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^n (g_n^m \cos m \, \phi + h_n^m \sin m \, \phi) \frac{\partial P_n^m(\theta)}{\partial \theta}$$

$$b_\phi = -\frac{1}{\sin \theta} \sum_{n=1}^k \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^n (-g_n^m \sin m \, \phi + h_n^m \cos m \, \phi) P_n^m(\theta)$$

Inertial Frame

$$b_1 = (b_r \cos(\delta) + b_\theta \sin(\delta)) \cos(\alpha) - b_\phi \sin(\alpha)$$

$$b_2 = (b_r \cos(\delta) + b_\theta \sin(\delta)) \sin(\alpha) + b_\phi \cos(\alpha)$$

$$\delta = \frac{\pi}{2} - \theta$$

$$b_3 = (b_r \sin(\delta) - b_\theta \cos(\delta))$$

$$\alpha = \phi + \alpha_G$$

Body Frame

$$\underline{b}_B = A_{B/E}\underline{b}_E$$

Simple dipole model of the Earth's Magnetic Field (n=1)

$$\underline{b}_N = \frac{R^3 H_0}{r^3} \left[3(\underline{\widehat{m}} \cdot \underline{\hat{r}}) \underline{\hat{r}} - \underline{\widehat{m}} \right]$$

$$H_0 = \left((g_1^0)^2 + (g_1^1)^2 + (h_1^1)^2 \right)^{1/2}$$

$$\widehat{m} = -\begin{bmatrix} \sin 1 \cdot 1.5^{\circ} \cos \omega_{\bigoplus} t \\ \sin 1 \cdot 1.5^{\circ} \sin \omega_{\bigoplus} t \\ \cos 1 \cdot 1.5^{\circ} \end{bmatrix}$$

Magnetic field Model at 500km altitude

Total Intensity [nT] for 2007.0 IGRF 2005 (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) Contour interval is 2000 nT

Dipole model

Total Intensity [nT] for 2007.0

IGRF 2005 (n = 1)

Contour interval is 2000 nT

Magnetic field Model at 10000km altitude

Order 13

Dipole Model

Permanent magnet for passive pointing

Magnetic field disturbance torque

$$\underline{M} = \underline{m} \wedge \underline{B}$$

$$\underline{m} = [0.1 \quad 0.1 \quad 0.1]^T A m^2$$

worst case scenario

Table I.-Criteria for Magnetic Properties Control

	Tuble 1. Criteria jor in	agnetic Properties Contr	OI .					
	Class I	Class II	Class III					
Design	Formal specification on magnetic properties control; approved materials and parts lists; cancellation of moments by preferred mounting arrangements and control of current loops.	Advisory specifications and guidelines for material and parts selection. Avoidance of "soft" magnetic materials or current loops and awareness of good design practices.	Nominal contro current loop lines for avo of "soft" ma materials.	os; guide- idance	NASA SP-8018			
Quality control	Complete magnetic in- spection of parts and testing of sub- assemblies.	Inspection or test of suspect parts.	Test of subasses that are pote major source dipole mome	entially es of				
Test and compensation	Deperming either at subassembly or spacecraft level; test of final spacecraft assembly and com-	Deperming and com- pensation frequently used.	Test and compo		Factors for Estimating Spacecraj	ft Dipole Moment (M).		
	pensation if re- quired.			Category of magnetic properties control	Estimate of dipole moment per unit mass for nonspinning space-	Estimate of dipole mome unit mass for spinning spa		

Note.-Class I-Magnetic torques dominant when compared with other torques.

II-Magnetic torques comparable to other torques.

III-Magnetic torques insignificant when compared with other torques.

Category of magnetic properties control (see table I)	Estimate of dipole moment per unit mass for nonspinning space- craft		Estimate of dipole moment pe unit mass for spinning space- craft	
	A-m ² /kg	(pole-cm/lb)	A-m ² /kg	(pole-cm/lb)
Class I	1X10 ⁻³	(0.45)	0.4X10 ⁻³	(0.18)
Class II	3.5X10 ⁻³	(1.6)	1.4X10 ⁻³	(0.63)
Class III	10×10 ⁻³ and higher	(4.5)	4×10-3 and higher	(1.8)