Inserir Equações

Nightwind

Colégio Técnico Industrial de Santa Maria

12 de outubro de 2021

Sumário

- Pacotes
- Ambientes
 - Alinhamento
- Símbolos
- Delimitadores
- Operadores
- Fontes
- Novos Comandos
- Novos Operadores
- Oonstruções Matemáticas
 - Frações
 - Limites
 - Somatórios
 - Raízes
 - Integrais
 - Derivadas

Pacotes

Sugestão dos pacotes:

- mathtools: complementa, corrige e substitui o pacote amsmath.
- xfrac: para inserir frações inclinadas.
- subtack: para limites com mais de uma linha.
- ams fonts: para ter acesso a mais fontes matemáticas (e.g. Fraktur, Blackboard bold).
- mathrsfs: para ter acesso a mais fontes matemáticas (e.g. Script).

Ambientes

Os ambientes de equações no LATEXSÃO:

Tabela: Ambientes para equações.

Comando	Apresentação	Numerada
\(\)	corpo de texto	não
\$\$	corpo de texto	não
\[\]	em destaque	não
\begin{equation} \end{equation}	em destaque	sim

Sendo que somente o último pode receber o comando \label{<text>} pois é o único numerado.

4/26

Ambientes: alinhamento I

- Existem ambientes específicos para gerarem equações rigidamente alinhadas. Ou para equações que ocupem mais que uma linha. São eles:
 - \begin{split}...\end{split}: só pode ser chamado dentro do ambiente equation. Ele possui um nível obrigatório de alinhamento. E infinitas linhas. Toda a equação será numerada uma única vez.
 - \begin{align}...\end{align}: substitui o ambiente equation. Possui infinitos níveis de alinhamento. Cada linha da equação é numerada individualmente, consequentemente, cada linha pode ser referenciada através do comando label.
 - \begin{gather}...\end{gather}: substitui o ambiente equation. Centraliza todas as equações citadas no ambiente. Não possui nenhum nível de alinhamento. Cada linha da equação é numerada individualmente, consequentemente, cada linha podeser referenciada através do comando label.

Ambientes: alinhamento II

- \begin{multiline}...\end{multiline}: substitui o ambiente equation. Permite a quebra de linha, fazendo com que a equação ocupe duas linhas, mas não dê a impressão que é mais de uma equação.
- Em todos os ambiente acima descritos (exceto split) é só adicionar um * depois do comando, por exemplo, align*, gather*, multiline*, para que a numeração seja desconsiderada e não exibida. Portanto, não se pode referenciar esse tipo de ambiente porque não tem contador.

Símbolos Básicos

Comando
+
-
=
\times
\div
\neq
\simeq
\pm

Símbolos Relacionais

Símbolo	Comando
<	<
>	>
<u></u>	\leq
<u>></u>	\geq

Setas

Símbolo	Comando
\rightarrow	\rightarrow
\leftarrow	\leftarrow
\Rightarrow	\Rightarrow
=	\Leftarrow
\longrightarrow	\longmapsto
\uparrow	\uparrow
$\overline{\downarrow}$	\downarrow
<u></u>	\Uparrow
#	\Downarrow

Letras gregas

Símbolo	Comando	Símbolo	Comando
α	\alpha		
β	\beta		
γ	\gamma	Γ	\Gamma
δ	\delta	Δ	\Delta
ϵ	\epsilon		
ε	\varepsilon		
ζ	\zeta		
η	\eta		
θ	\theta	Θ	\Theta
L	\iota		
κ	\kappa		
λ	\1ambda	Λ	Lambda
μ	\mu		
ν	\nu		
ξ	\xi	Ξ	\Xi
π	\pi	П	\Pi
$\overline{\omega}$	\varpi		
ρ	\rho		
ρ	\varrho		
σ	\sigma	Σ	\Sigma
ς	\varsigma		
τ	\tau		
υ	\upsilon	Υ	\Upsilon
φ	\phi	Φ	\Phi
φ	\varphi		
X	\chi		
ψ	\psi	Ψ	\Psi
ω	\omega	Ω	\Omegα = =

10/26

Acentos

Símbolo	Comando
\hat{a}	\ hat {a}
\dot{a}	\ dot { a }
ă	\check{a}
\ddot{a}	\ddot{a}
\tilde{a}	\ tilde {a}
$oxed{\breve{a}}$	\breve{a}
á	\ acute {a}
\bar{a}	\bar{a}
à	\ grave {a}
\vec{a}	\ vec {a}

Delimitadores

Delimi- tador	Comando
a	\left\lvert a\right\rvert
a	\left\lVert a\right\rVert
$\overline{(a)}$	\left(a\right)
$\overline{[a]}$	\left[a\right]
a	\left\{a\right\}
$\langle a \rangle$	\left\langle a\right\rangle
$\overline{\lfloor a \rfloor}$	\left\lfloor a\right\rfloor
$\lceil a \rceil$	\left\lceil a\right\rceil
$\lfloor a \rceil$	\left\lfloor a\right\rceil

Delimitadores

- Os delimitadores acima expostos s\u00e3o substitu\u00edveis por seus equivalentes sem necessitar \lfloor=\u00edt...\u00br\u00edpide quando o conte\u00eddo interno n\u00e3o for maior que uma linha, por exemplo.
- Caso o intuito seja adaptar manualmente o tamanho do delimitador de acordo com o conteúdo é só substituir \left...\right por: \big(\Big(\bigg(\Bigg(.)))

Operadores

Operador	Comando
arccos	arccos
cos	\cos
arcsin	\arcsin
sin	\sin
arctan	\arctan
tan	\tan
sec	\sec
cosh	∖cosh
sinh	\sinh
lim	\1im
ln	\1n
lg	\1g

Fontes

Letra	Comando	Só para	Pacote
$\overline{\mathcal{AB}}$	\mathcal {AB}	Maiúsculas	
$\overline{\mathbb{AB}}$	\mathbb{AB}	Maiúsculas	amssymb
$\mathscr{A}\mathscr{B}$	\mathscr{AB}	Maiúsculas	mathrsfs
AaBb	\mathfrak{AaBb}		amssymb
AaBb	AaBb		
AaBb	\mathrm{AaBb}		
AaBb	\mathbf{AaBb}		
AaBb	\mathit{AaBb}		

Novos Comandos

- Determinadas partes nas equações podem se tornar repetitivas e inconvenientes de serem repetidas.
- Por isso, o LATEXoferece um meio de tornar a escrita mais simplificada.
- \newcommand{<cmd>} [<args>] [<def>] {<definition>}
- Em que o primeiro campo é preenchido pelo nome do comando, não pode ser repetido.
- O segundo campo diz respeito à quantidade de campos o futuro comando irá receber.
- O terceiro campo serve para estabelecer o padrão do primeiro campo preenchível no pelo futuro comando. Se ele for omitido, significa que nenhum campo é opcional. Se ele for preenchido, ocupa o calor no primeiro campo.

Exemplo

Novos Operadores

 Para novos operadores, precisamos do pacote amsmath, no mínimo.

1\DeclareMathOperator{<cmd>} {<text>}

Exemplo:

\DeclareMathOperator{\sen}{sen}

Resultado:

 $sen \theta$

Frações

Para fazer uma fração, basta chamar o comando:

|\frac{<numerador>}{<denominador>}

Exemplo:

 $\frac{3}{4}$.

Nos ambientes que em linhas de texto, a fração vai ficar menor para caber na linha. Exemplo: $\frac{3}{4}$. Caso o intuito seja deixar ela grande, usar o comando:

|\dfrac{<numerador>} {<denominador>}

Exemplo: $\frac{3}{4}$.

Para fazer uma fração inclinada, chamar o pacote xfrac e usar o comando:

\sfrac{<numerador>} {<denominador>}

Exemplo: 3/4.

Limites

Para o comando de limite, usar:

Exemplo:

$$\lim_{x \to \infty} x$$

Somatórios

Para o comando de limite, usar:

Exemplo:

$$\sum_{n=1}^{\infty} x$$

Raízes

A raiz é um comando formado por um campo opcional e um campo obrigatório. No campo opcional é colocado o índice. E no campo obrigatório é colocado o radicando.

Exemplo:

$$\sqrt{9}$$

$$\sqrt[3]{8}$$

Integrais

A integral é representada pelo comando

$$1 \cdot int_{a}^{a}$$

Uma sugestão de complemento seria

Resultado:

$$\int_{a}^{b} [x] \, \mathrm{d}x$$

Pode-se fazer um novo comando para a integral:

$$\int_{a}^{b} [x] \, \mathrm{d}x$$

Derivadas

Para demonstrar uma derivada, podemos usar:

Comando	Resultado
$\label{linear_def} $$ \f(t)_{\infty}_{\mathbf{d}}(t) = \mathbf{d}_t . $$$	$\frac{\mathrm{d}f(t)}{\mathrm{d}t}$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{g(x)}{h(x)} \right]$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\frac{\mathrm{d}^4 f(t)}{\mathrm{d} t^4}$
\frac{\partial f(t)}{\partial t}	$\frac{\partial f(t)}{\partial t}$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\frac{\partial}{\partial x} \left[\frac{g(x)}{h(x)} \right]$
\frac{\partial^4f(t))}{\partial t^4}	$\frac{\partial^4 f(t)}{\partial t^4}$

Rótulo e Referência Cruzada

- Pode-se referenciar as equações. Para isso, coloca-se um rótulo na equação através do comando \label{eq:<text>}
- Para chamar a equação, normalmente precisa compilar duas vezes.
- Usar o comando \eqref{eq:>{<text>}}.
- Com o pacote hyperref, pode se usar o \autoref{eq:<text>}.
- Com o pacote cleveref, pode se usar o \cref{eq:<text>}.

Referências

```
LATEX/MATHEMATICS. Disponível em:
```

<https://en.wikibooks.org/wiki/LaTeX/Mathematics>. Acesso em: 05/10/2021.

OVERLEAF. Mathematical expressions. Disponível em:

<https://www.overleaf.com/learn/latex/Mathematical_</pre> expressions>. Acesso em: 05/10/2021.

YING, Xiong. LaTeX Math and Equation – Tutorial with code examples. Disponível em:

<https://latex-tutorial.com/tutorials/amsmath/>. Acesso em: 05/10/2021.

