COURSES 9 + 10

Subspaces. The generated subspace

Let $(K, +, \cdot)$ be a field. Throughout this course this condition on K will always be valid. We remind that:

• A K-vector space is an Abelian group (V, +) with an external operation

$$\cdot: K \times V \to V$$
, $(k, v) \mapsto k \cdot v$,

satisfying the following axioms: for any $k, k_1, k_2 \in K$ and any $v, v_1, v_2 \in V$,

- $(L_1) k \cdot (v_1 + v_2) = k \cdot v_1 + k \cdot v_2;$
- $(L_2) (k_1 + k_2) \cdot v = k_1 \cdot v + k_2 \cdot v;$
- $(L_3) (k_1 \cdot k_2) \cdot v = k_1 \cdot (k_2 \cdot v);$
- $(L_4) \ 1 \cdot v = v.$
- If V is a vector space over K, a subset $S \subseteq V$ is a **subspace** of V (and we write $S \leq_K V$) if:
- (1) S is closed with respect to the addition of V and to the scalar multiplication, that is,

$$\forall x, y \in S, \quad x + y \in S,$$

$$\forall k \in K, \ \forall x \in S, \ kx \in S.$$

- (2) S is a vector space over K with respect to the induced operations of addition and scalar multiplication.
- If $S \leq_K V$ then S contains the zero vector of V, i.e. $0 \in S$.

We have the following characterization theorem for subspaces.

Theorem 1. Let V be a vector space over K and let $S \subseteq V$. The following conditions are equivalent:

- 1) $S \leq_K V$.
- 2) The following conditions hold for S:
 - α) $0 \in S$;
 - β) $\forall x, y \in S$, $x + y \in S$;
 - γ) $\forall k \in K$, $\forall x \in S$, $kx \in S$.
- 3) The following conditions hold for S:
 - α) $0 \in S$;
 - $\delta) \ \forall k_1, k_2 \in K \ , \ \forall x, y \in S \ , \ k_1 x + k_2 y \in S \ .$

Proof.

Remark 2. (1) One can replace α) in the previous theorem with $S \neq \emptyset$.

(2) If $S \leq_K V$, $k_1, \ldots, k_n \in K$ and $x_1, \ldots, x_n \in S$ then $k_1x_1 + \cdots + k_nx_n \in S$.

Examples 3. (a) Every non-zero vector space V over K has two subspaces, namely $\{0\}$ and V. They are called the **trivial subspaces**.

(b) Let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\},$$
$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$$

Then S and T are subspaces of the real vector space \mathbb{R}^3 .

(c) Let $n \in \mathbb{N}$ and let

$$K_n[X] = \{ f \in K[X] \mid \deg f \le n \}.$$

Then $K_n[X]$ is a subspace of the polynomial vector space K[X] over K.

d) Let $I \subseteq \mathbb{R}$ be an interval. The set $\mathbb{R}^I = \{f \mid f : I \to \mathbb{R}\}$ is a \mathbb{R} -vector space with respect to the following operations

$$(f+g)(x) = f(x) + g(x), \ (\alpha f)(x) = \alpha f(x)$$

with $f, g \in \mathbb{R}^I$ and $\alpha \in \mathbb{R}$. The subsets

$$C(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ continuous on } I \}, \ D(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ derivable on } I \}$$

are subspaces of \mathbb{R}^I since they are nonempty and

$$\alpha, \beta \in \mathbb{R}, \ f, g \in C(I, \mathbb{R}) \Rightarrow \alpha f + \beta g \in C(I, \mathbb{R});$$

$$\alpha, \beta \in \mathbb{R}, f, g \in D(I, \mathbb{R}) \Rightarrow \alpha f + \beta g \in D(I, \mathbb{R}).$$

Theorem 4. Let I be a nonempty set, V be a vector space over K and let $(S_i)_{i\in I}$ be a family of subspaces of V. Then $\bigcap_{i\in I} S_i \leq_K V$.

Proof.

Remark 5. In general, the union of two subspaces is not a subspace.

For instance, ...

Next, we will see how to complete a subset of a vector space to a subspace in a minimal way.

Definition 6. Let V be a vector space and let $X \subseteq V$. We denote

$$\langle X \rangle = \bigcap \{ S \leq_K V \mid X \subseteq S \}$$

and we call it the subspace generated (or spanned) by X. The set X is the generating set of $\langle X \rangle$. If $X = \{x_1, \ldots, x_n\}$, we denote $\langle x_1, \ldots, x_n \rangle = \langle \{x_1, \ldots, x_n\} \rangle$.

Remarks 7. (1) $\langle X \rangle$ is the smallest subspace of V (with respect to \subseteq) which contains X.

- (2) Notice that $\langle \emptyset \rangle = \{0\}.$
- (3) If V is a K-vector space, then:
 - (i) If $S \leq_K V$ then $\langle S \rangle = S$.
 - (ii) If $X \subseteq V$ then $\langle \langle X \rangle \rangle \subseteq \langle X \rangle$.
 - (iii) If $X \subseteq Y \subseteq V$ then $\langle X \rangle \subseteq \langle Y \rangle$.

Definition 8. A K-vector space V is **finitely generated** if there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in V$ such that $V = \langle x_1, \ldots, x_n \rangle$. The set $\{x_1, \ldots, x_n\}$ is also called **system of generators** for V.

Definition 9. Let V be a K-vector space. A finite sum of the form

$$k_1x_1+\cdots+k_nx_n$$
,

with $k_1, \ldots, k_n \in K$ and $x_1, \ldots, x_n \in V$, is called a **linear combination** of the vectors x_1, \ldots, x_n .

Let us show how the elements of a generated subspace look like.

Theorem 10. Let V be a vector space over K and let $\emptyset \neq X \subseteq V$. Then

$$\langle X \rangle = \{ k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^* \},$$

i.e. $\langle X \rangle$ is the set of all finite linear combinations of vectors of V.

Proof.

Corollary 11. Let V be a vector space over K and $x_1, \ldots, x_n \in V$. Then

$$\langle x_1, \dots, x_n \rangle = \{k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n\}.$$

Remark 12. Notice that a linear combination of linear combinations is again a linear combination.

Examples 13. (a) Consider the real vector space \mathbb{R}^3 . Then

$$\langle (1,0,0),(0,1,0),(0,0,1)\rangle = \{k_1(1,0,0)+k_2(0,1,0)+k_3(0,0,1)\mid k_1,k_2,k_3\in\mathbb{R}\} = 0$$

=
$$\{(k_1, 0, 0) + (0, k_2, 0) + (0, 0, k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \{(k_1, k_2, k_3) \mid k_1, k_2, k_3 \in \mathbb{R}\} = \mathbb{R}^3$$
.

Hence \mathbb{R}^3 is generated by the three vectors (1,0,0),(0,1,0),(0,0,1).

(b) More generally, the subspaces of \mathbb{R}^3 are the trivial subspaces, the lines containing the origin and the planes containing the origin.

If $S, T \leq_K V$, the smallest subspace of V which contains the union $S \cup T$ is $\langle S \cup T \rangle$. We will show that this subspace is the sum of the given subspaces.

Definition 14. Let V be a vector space over K and let $S, T \leq_K V$. Then we define the **sum** of the subspaces S and T as the set

$$S + T = \{s + t \mid s \in S, \ t \in T\}.$$

If $S \cap T = \{0\}$, then S + T is denoted by $S \oplus T$ and is called the **direct sum** of the subspaces S and T.

Remarks 15. a) If V is a K-vector space, $V_1, V_2 \leq_K V$, then $V = V_1 \oplus V_2$ if and only if

$$V = V_1 + V_2$$
 and $V_1 \cap V_2 = \{0\}.$

Under these circumstances, we say that V_i (i = 1, 2) is a **direct summand** of V.

- b) If $V_1, V_2, V_3 \leq_K V$ and $V = V_1 \oplus V_2 = V_1 \oplus V_3$, we cannot deduce that $V_2 = V_3$.
- c) The property of a subspace of being a direct summand is transitive. (during the seminar)

Theorem 16. Let V be a vector space over K and let $S, T \leq_K V$. Then

$$S + T = \langle S \cup T \rangle$$
.

Proof.

Remarks 17. (1) Actually, a more general result can be proved: if S_1, \ldots, S_n are subspaces of a K-vector space V then

$$S_1 + \cdots + S_n = \langle S_1 \cup \cdots \cup S_n \rangle.$$

(2) Moreover, if $X_i \subseteq V$ (i = 1, ..., n), then $\langle X_1 \cup \cdots \cup X_n \rangle = \langle X_1 \rangle + \cdots + \langle X_n \rangle$.

Linear maps

Definition 18. Let V and V' be vector spaces over K. The map $f: V \to V'$ is called a (vector space) homomorphism or a linear map (or a linear transformation) if

$$f(x+y) = f(x) + f(y), \ \forall x, y \in V,$$

$$f(kx) = kf(x), \ \forall k \in K, \ \forall x \in V.$$

The (vector space) isomorphism, endomorphism and automorphism are defined as usual.

We will mainly use the name linear map or K-linear map.

Remarks 19. (1) When defining a linear map, we consider vector spaces over the same field K. (2) If $f: V \to V'$ is a K-linear map, then the first condition from its definition tells us that f is a group homomorphism between (V, +) and (V', +). Thus we have

$$f(0) = 0'$$
 and $f(-x) = -f(x), \ \forall x \in V.$

We denote by $V \simeq V'$ the fact that two vector spaces V and V' are isomorphic and

$$Hom_K(V,V') = \{f: V \to V' \mid f \text{ is a K-linear map} \},$$

$$End_K(V) = \{f: V \to V \mid f \text{ is a K-linear map} \},$$

$$Aut_K(V) = \{f: V \to V \mid f \text{ is a K-isomorphism} \}.$$

Theorem 20. Let V, V' be K-vector spaces. Then $f: V \to V'$ is a linear map if and only if

$$f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2), \ \forall k_1, k_2 \in K, \ \forall v_1, v_2 \in V.$$

Proof.

One can easily prove by way of induction the following:

Corollary 21. If $f: V \to V'$ is a linear map, then

$$f(k_1v_1 + \dots + k_nv_n) = k_1f(v_1) + \dots + k_nf(v_n), \forall v_1, \dots, v_n \in V, \forall k_1, \dots, k_n \in K.$$

Examples 22. (a) Let V and V' be K-vector spaces and let $f: V \to V'$ be defined by f(x) = 0', for any $x \in V$. Then f is a K-linear map, called the **trivial linear map**.

- (b) Let V be a vector space over K. Then the identity map $1_V: V \to V$ is an automorphism of V.
- (c) Let V be a vector space and $S \leq_K V$. Define $i : S \to V$ by i(x) = x, for any $x \in S$. Then i is a K-linear map, called the **inclusion linear map**.
- (d) Let us consider $\varphi \in \mathbb{R}$. The map

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x,y) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi),$$

i.e. the plane rotation with the rotation angle φ , is a linear map.

(e) If $a, b \in \mathbb{R}$, a < b, I = [a, b], and $C(I, \mathbb{R}) = \{f : I \to \mathbb{R} \mid f \text{ continuous on } I\}$, then

$$F: C(I, \mathbb{R}) \to \mathbb{R}, \ F(f) = \int_{-\pi}^{b} f(x) dx$$

is a linear map.

As in the case of group homomorphisms, we have the following:

Theorem 23. Let V, V', V'' be K-vector spaces.

(i) If $f:V\to V'$ and $g:V'\to V''$ are K-linear maps (isomorphisms) then $g\circ f:V\to V''$ is a K-linear map (isomorphism).

(ii) If $f: V \to V'$ is an isomorphism of K-vector spaces then $f^{-1}: V' \to V$ is again an isomorphism of K-vector spaces.

 \square

Definition 24. Let $f: V \to V'$ be a K-linear map. Then the set

$$Ker f = \{x \in V \mid f(x) = 0'\}$$

is called the **kernel** of the K-linear map f and the set

$$Im f = \{ f(x) \mid x \in V \}$$

is called the **image** of the K-linear map f.

Theorem 25. Let $f: V \to V'$ be a K-linear map. Then we have

- 1) Ker $f \leq_K V$ and Im $f \leq_K V'$.
- 2) f is injective if and only if $Ker f = \{0\}$.

 \square

Theorem 26. Let $f: V \to V'$ be a K-linear map and let $X \subseteq V$. Then

$$f(\langle X \rangle) = \langle f(X) \rangle$$
.

Proof.

Theorem 27. Let V and V' be vector spaces over K. For any $f, g \in Hom_K(V, V')$ and for any $k \in K$, we consider $f + g, k \cdot f \in Hom_K(V, V')$,

$$(f+g)(x) = f(x) + g(x), \ \forall x \in V,$$

$$(kf)(x) = kf(x), \ \forall x \in V.$$

The above equalities define an addition and a sclar multiplication on $Hom_K(V, V')$ and $Hom_K(V, V')$ is a vector space over K.

 \square

Corollary 28. If V is a K-vector space, then $End_K(V)$ is a vector space over K.

Remarks 29. a) Let V be a K-vector space. From Theorem 23 one deduces that $End_K(V)$ is a subgroupoid of (V^V, \circ) and from Example 22 (b) it follows that $(End_K(V), \circ)$ is a monoid. Moreover, the endomorphism composition \circ is distributive with respect to endomorphism addition +, thus $End_K(V)$ also has a unitary ring structure, $(End_K(V), +, \circ)$.

b) The set $Aut_K(V)$ is the group of the units of $(End_K(V), \circ)$.