

Two-proton sequential decay from excited states of ^{18}Ne

YU Ning^{1,*} MAGLIONE Enrico² FERREIRA Lidia³

¹Institute of Particle Physics, Huazhong Normal University, Wuhan 430079, China

²Dipartimento di Fisica “G.Galilei”, Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova, Italy

³Centro de Física das Interacções Fundamentais, and Departamento de Física, Instituto Superior Técnico, Lisbon, Portugal

Abstract Two-proton radioactivity from ^{18}Ne is discussed in terms of sequential decay. The branch ratios for one-proton emission from excited states are calculated, which including spectroscopic factors, obtained from a Shell-model calculation with realistic interactions. The branch ratios show that the two-proton emission from the 1^- state of ^{18}Ne at 7.94 MeV is most likely to go through the sequential decay. The same mechanism is discussed for other excited states at higher energy by different interactions.

Key words Two-proton radioactivity, Nuclear shell model, Branch ratios

1 Introduction

Proton radioactivity, experimentally observed as a decay from the ground state, at GSI in 1981, has provided very important information on the structure of nuclei beyond the proton drip-line. The more complicated decaying mode, two-proton radioactivity, proposed 50 years ago in a classical article^[1] opened a new window to investigate nucleon-nucleon correlations and the structure of atomic nuclei. In 2002, the simultaneous emission of two-protons was for the first time observed in the decay of ^{45}Fe by Pfutzner, Giovinazzo experiments at GSI and GANIL^[2,3]. Research in the field flourished after this breakthrough, and to date ^{54}Zn ^[4], ^{48}Ni ^[5], ^{19}Mg ^[6], ^{16}Ne ^[7], ^{17}Ne ^[8], ^{18}Ne ^[9], ^{10}C ^[10], ^{14}O ^[11] and ^{29}S ^[12] have been found to exhibit two-proton emission. Several theoretical approaches such as Diproton model^[13,14], R-matrix approach^[15], continuum shell model^[16], adiabatic hyperspherical approach^[17], and the quantum three body cluster approach^[18], where the tunneling through the barrier is treated in a dynamical way, were applied to the problem.

There are two different decay modes for simultaneous two-proton emission: (1) three-body direct breakup involving an uncorrelated emission of the two protons, usually referred to as democratic

emission. (2) ^2He cluster emission where a pair of protons, correlated in a quasi-bound ^1S configuration, breakup, when emitted into two protons (diproton emission). The two protons have strong angular and energy correlations. The ^2He appears as a resonance at 20 MeV/c in the two-proton relative momentum distribution^[19]. The microscopic calculations for the one- and two-proton decays of the 6.15 MeV 1^- state of ^{18}Ne had been presented in the Ref.[20]. It was found that for the two-proton the sequential decay through a ghost of the $1/2^+$ state is within a factor of three of the observed width obtained with the assumption of democratic decay. The calculated width for diproton emission is only about a factor of two smaller than that for sequential decay indicating that the observed decay may be a combination of the two processes. In the excitation-energy spectrum of ^{18}Ne in the Ref.[9], it's strange that some states can be seen in the two-proton emission $^{18}\text{Ne} \rightarrow ^{16}\text{O} + 2\text{p}$ channel and not in the one-proton emission $^{18}\text{Ne} \rightarrow ^{17}\text{F} + \text{p}$ channel. That means that in these states we cannot find the ^{17}F in ground state. So the sequential decay for two protons is most likely to occur in these states.

In this paper we present the microscopic shell-model calculations for sequential two-proton decay from excited states in ^{18}Ne by some different Hamiltonians.

Supported by the Fundação para a Ciência e a Tecnologia (Portugal), Project: PTDC/FIS/68340/2006 and CERN/FP/116385/2010

* Corresponding author. E-mail address: yuning_ok@hotmail.com

Received date: 2013-06-30

2 Calculation and discussion

The spectroscopic factor is the most important quantity needed to obtain the decay width. In order to calculate it, we perform a shell-model calculation to get the wave functions for ^{18}Ne . The model space was used, including the 0s, 0p, 1s0d and 1p0f orbits. ^{16}O is treated as a $s^4 p^{12}$ closed shell, and the low-lying positive parity states of ^{17}F and ^{18}Ne are taken as $s^4 p^{12}(\text{sd})^1$ and $s^4 p^{12}(\text{sd})^2$. The low-lying negative parity states of ^{17}F and ^{18}Ne are treated as 1 ω excitations of the form $s^4 p^{11}(\text{sd})^2$, $s^4 p^{12}(\text{pf})^1$ and $s^4 p^{11}(\text{sd})^3$, $s^4 p^{12}(\text{sd})^1(\text{pf})^1$. So the emitted protons in the ^{18}Ne and ^{17}F are coming from (sd)(pf) shells. Two Hamiltonians designed for those types of model space are chosen for calculating the wave functions, namely the WBP and WBT interactions^[21]. We use a simply shell-model code by our group, in this code the spurious states are removed by the usual method^[22] by adding a center-of-mass Hamiltonian to the interaction.

The calculated excited energies of these low-lying states are shown in Fig.1. Some states are in reasonable agreement with the energies found in ^{18}Ne . The low-lying negative states are dominated by the $s^4 p^{11}(\text{sd})^3$ configuration, but the smaller $s^4 p^{12}(\text{sd})^1(\text{pf})^1$ component is the one responsible for one- and two-proton decay. The shell-model spectroscopic factors are obtained by the wave functions of ^{18}Ne and ^{17}F . The decays from the positive states of ^{18}Ne to the positive states of ^{17}F and from the negative states of ^{18}Ne to the negative states of ^{17}F can go by 0d-shell wave emission or 1s-shell wave emission. The decays from the positive states of ^{18}Ne to the negative states of ^{17}F and from the negative states of ^{18}Ne to the positive states of ^{17}F can go by 0f-shell wave emission or 1p-shell wave emission. Because the $s^4 p^{11}(\text{sd})^3$ component in ^{18}Ne is quite larger than that of $s^4 p^{12}(\text{sd})^1(\text{pf})^1$, the spectroscopic factors are larger in the channel of positive states in ^{18}Ne .

According to the scattering theory, the half-life for decay from initial state i to a final state f by one particle emission is given by:

$$T_{1/2} = \hbar \ln 2 / \Gamma_j^{if} \quad (1)$$

where the decay width can be found from the relation^[25,26]:

$$\Gamma_j^{if} = S_j^{if} \Gamma_j = S_j^{if} \frac{^2 k \alpha_j^2}{m} \quad (2)$$

S_j^{if} is spectroscopic factor which corresponds to the probability that taking away a particle j with angular momentum j from an initial state i , will lead to a final state f . α_j is the asymptotic normalization of the proton single particle wave function in a state of spin j .

Fig.1 WBP and WBT predictions for the low-lying $T=1$ energy spectrum of ^{18}Ne . Some levels are labeled by J^{π} and E_x . The experimental data^[23, 24] are presented on the right column. The J^{π} of levels which are not label are unknown.

The total width for decay is a sum of partial widths:

$$\Gamma_{\text{Tot}}^i = \sum_{if} \Gamma_j^{if} \quad (3)$$

The branching ratios are simply the ratio between a partial decay width and the total one:

$$\text{Br}^{if} = \frac{\sum_j \Gamma_j^{if}}{\Gamma_{\text{Tot}}^i} \quad (4)$$

For the fourth 1^- state at 7.94 MeV in ^{18}Ne , we find that the spectroscopic factors decaying to the $1/2^-$ third excited state ($Q_{1p} = 0.914$ 1 MeV) is quite larger than that decaying to the $5/2^+$ ground state ($Q_{1p} = 4.018$ 4 MeV) of ^{17}F . The spectroscopic factors and the widths for each of the channels are shown in Table 1. In this table, we can find the branch ratio that decays to $1/2^-$ state is larger than those decays to the ground state and the first ground state because it has

larger spectroscopic factor even though it has smaller single-particle width. We can conclude that the 7.94 MeV 1^- state is most likely to be the best candidate for two-proton sequential decay. That is why it can be seen in the two-proton emission channel and not in the one-proton one. There are other states in this situation, like the 3^- state around 9–10 MeV (9.809 MeV for WBP and 10.099 MeV for WBT) and the 5^- state near 13 MeV (13.412 MeV for WBP and 13.200 MeV for WBT).

Table 1 Spectroscopic factors from the state $J^\pi=1^-$ of ^{18}Ne at $E_x=7.94$ MeV. The channel $5/2^+\otimes 0f7/2$ means that the emitted proton is from the $0f7/2$ shell and decay to the $5/2^+$ state in ^{17}F . The last line is the total widths for single-proton

	WBP	WBT	Expt.
E_x / MeV	7.648 0	7.698 6	7.94
Channel	Spectroscopic factor		
	WBP	WBT	Γ_{sp} / keV
$5/2^+\otimes 0f7/2$	0.010 61	0.003 52	129
$5/2^+\otimes 0f5/2$	0.010 11	0.007 65	101
$5/2^+\otimes 1p3/2$	0.001 01	0.004 28	2 818
$1/2^+\otimes 1p3/2$	0.003 34	0.002 23	2 239
$1/2^+\otimes 1p1/2$	0.000 13	0.000 13	2 188
$1/2^+\otimes 0d3/2$	0.001 06	0.005 25	2
$1/2^-\otimes 1s1/2$	0.091 86	0.240 19	122
	Γ_{WBP}	Γ_{WBT}	Br_{WBP}
$5/2^+\otimes(0f+1p)$	5	13	0.216
$1/2^+\otimes 1p$	8	5	0.32
$1/2^-\otimes(0d+1s)$	11	29	0.464
Total Γ	24	47	Expt. ≤ 50 keV

3 Conclusion

We have presented some preliminary results of the proton decay branch ratios and decay width in ^{18}Ne using a shell-model calculation. The results obtained for the branch ratio from the 1^- state at 7.94 MeV in ^{18}Ne show that this state is most likely to be a candidate for sequential two-proton decay. The 3^- and the 5^- states can also be candidates for the same process.

References

- Goldansky V. Nucl Phys, 1960, **19**: 482–495.
- Putzner M, Badura E, Bingham C, et al. Eur Phys J A, 2002, **14**: 279–285.
- Giovinazzo J, Blank B, Chartier M, et al. Phys Rev Lett, 2002, **89**: 102501.
- Blank B, Bey A, Canel C, et al. Phys Rev Lett, 2005, **94**: 232501.
- Dossat C, Bey A, Blank B, et al. Phys Rev C, 2005, **72**: 054315.
- Mukha I, Summerer K, Acosta L, et al. Phys Rev Lett, 2007, **99**: 182501.
- Mukha I, Giovinazzo J, Summerer K, et al. Phys Rev C, 2008, **77**: 061303(R).
- Zerguerras T, Blank B, Blumenfeld Y, et al. Eur Phys J, 2004, **A20**: 389–396.
- Raciti G, Cardella G, Napoli M D, et al. Phys Rev Lett, 2008, **100**: 192503.
- Mercurio K, Charity R J, Shane R, et al. Phys Rev C, 2008, **78**: 031602(R).
- Bain C R, Woods P J, Coszach R, et al. Phys Lett B, 1996, **373**: 35–39.
- Lin C J, Xu X X, Jia H M, et al. Phys Rev C, 2009, **80**: 014310.
- Brown B A. Phys Rev C, 1991, **43**: R1513–R1517.
- Brown B A. Phys Rev C, 1991, **44**: 924(E).
- Bartlett A J, Tostevin J A, Thompson I J. Phys Rev C, 2008, **78**: 054603.
- Rotureau J, Okolowicz J, Ploszajczak M. Phys Rev Lett, 2005, **95**: 042503.
- Nielsen E, Fedorov D V, Jensen A S, et al. Phys Rep, 2001, **347**: 374–460.
- Grigorenko L, Mukha I, Thompson I, et al. Phys Rev Lett, 2002, **88**: 042502.
- Koonin S. Phys Lett B, 1977, **70**: 43–47.
- Brown B A, Barker F C, Millener D J. Phys Rev C, 2002, **65**: 051309(R).
- Warburton E K, Brown B A. Phys Rev C, 1992, **46**: 923–944.
- Glockner D H, Lawson R D. Phys Lett B, 1974, **53**: 313–318.
- Bardayan D W, Blackmon J C, Brune C R, et al. Phys Rev C, 2000, **62**: 055804.
- Hahn K I, Garcia A, Adelberger E G, et al. Phys Rev C, 1996, **54**: 1999–2013.
- Maglione E, Ferreira L S, Liotta R J. Phys Rev Lett, 1998, **81**: 538–541.
- Ferreira L S, Maglione E, Liotta R J. Phys Rev Lett, 1997, **78**: 1640–1643.