ETSI TS 138 521-1 V15.2.0 (2019-05)

5G; NR;

User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 standalone (3GPP TS 38.521-1 version 15.2.0 Release 15)

Reference RTS/TSGR-0538521-1vf20 Keywords 5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M[™] logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ectual Property Rights	2
Forev	word	2
Moda	al verbs terminology	2
Forev	vord	20
2	Reference	21
3	Definitions, symbols and abbreviations	22
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	
4.3	Specification suffix information	
4.4	Test points analysis	26
5	Operating bands and Channel arrangement	26
5.1	General	
5.2	Operating bands	
5.2A	Operating bands for CA	
5.2A.1		
5.2A.2		
5.2B	Operating bands for DC	
5.2B.1		
5.2C	Operating band combination for SUL	
5.3	UE channel bandwidth	
5.3.1	General	
5.3.2	Maximum transmission bandwidth configuration	
5.3.4	RB alignment	
5.3.5	UE channel bandwidth per operating band	
5.3.6	Asymmetric channel bandwidths	
5.3A	UE channel bandwidth for CA	
5.3A.1		
5.3A.2		
5.3A.3		
5.3A.4		
5.3A.5		
5.4	Channel arrangement	
5.4.1	Channel spacing	
5.4.1.1	1 0	
5.4.2	Channel raster	
5.4.2.1	NR-ARFCN and channel raster	38
5.4.2.2	2 Channel raster to resource element mapping	39
5.4.2.3		
5.4.3	Synchronization raster	
5.4.3.1		
5.4.3.2		
5.4.3.3	Synchronization raster entries for each operating band	41
5.4.4	TX-RX frequency separation	
5.4A	Channel arrangement for CA	
5.4A.1		
5.4A.2		
5.4A.3		
5.4A.4	·	
5.5	Configurations	
5.5A	Configurations for CA	

5.5A.1	Configurations for intra-band contiguous CA	
5.5A.2	Configurations for intra-band non-contiguous CA	45
5.5A.3	Configurations for inter-band CA	46
5.5B	Configurations for DC	
5.5C	Configurations for SUL	49
6 7	Fransmitter characteristics	50
6.1	General	
6.2	Transmitter power	53
6.2.1	UE maximum output power	53
6.2.1.1	Test purpose	
6.2.1.2	Test applicability	53
6.2.1.3	Minimum conformance requirements	
6.2.1.4	Test description	55
6.2.1.4.		
6.2.1.4.2	1	
6.2.1.4.3	8	
6.2.1.5	Test requirement	
6.2.2	Maximum Power Reduction (MPR)	
6.2.2.1	Test purpose	
6.2.2.2	Test applicability	
6.2.2.3	Minimum conformance requirements	
6.2.2.4	Test description	
6.2.2.4.		
6.2.2.4.2	1	
6.2.2.4.3	E	
6.2.2.5	Test requirement	
6.2.3 6.2.3.1	UE additional maximum output power reduction	
6.2.3.1	Test ambientity	
6.2.3.3	Test applicability Minimum conformance requirements	
6.2.3.3.		
6.2.3.3.		
6.2.3.3.	-	
6.2.3.3.4	<u> </u>	
6.2.3.3.		
6.2.3.3.		
6.2.3.3.		
6.2.3.3.		
6.2.3.3.9		
6.2.3.3.	-	
6.2.3.3.	-	
6.2.3.3.	-	
6.2.3.4	Test description	
6.2.3.4.		
6.2.3.4.2		
6.2.3.4.3	1	
6.2.3.5	Test requirement	
6.2.4	Configured transmitted power	
6.2.4.1	Test purpose	
6.2.4.2	Test applicability	
6.2.4.3	Minimum conformance requirements	
6.2.4.4	Test description	
6.2.4.4.	1 Initial condition	99
6.2.4.4.2		
6.2.4.4.3	3 Message contents	100
6.2.4.5	Test requirement	100
6.2A	Transmitter power for CA	101
6.2B	Transmitter power for DC	
6.2C	Transmitter power for SUL	
6.2C.1	Configured transmitted power for SUL	
6.2C.1.1	1 Test purpose	101

6.2C.1.2	Test applicability	
6.2C.1.3	Minimum conformance requirements	
6.2C.1.4	Test description	102
6.2C.1.5	Test requirement	103
6.2C.2	$\Delta T_{\mathrm{IB,c}}$	103
6.2D	Transmitter power for UL-MIMO	103
6.2D.1	UE maximum output power for UL-MIMO	103
6.2D.1.1	Test purpose	104
6.2D.1.2	Test applicability	104
6.2D.1.3	Minimum conformance requirements	104
6.2D.1.4	Test description	
6.2D.1.4.1		
6.2D.1.4.2		
6.2D.1.4.3	•	
6.2D.1.5	Test requirement	
6.2D.2	UE maximum output power reduction for UL-MIMO	
6.2D.2.1	Test purpose	
6.2D.2.2	Test applicability	
6.2D.2.3	Minimum conformance requirements	
6.2D.2.4	Test description	
6.2D.2.4.1	<u>.</u>	
6.2D.2.4.1		
6.2D.2.4.3		
6.2D.2.4.3	Test requirement	
6.2D.2.3	Configured transmitted power for UL-MIMO	
6.2D.4 6.2D.4.1		
	Test purpose	
6.2D.4.2	Test applicability	
6.2D.4.3	Minimum conformance requirements	
6.2D.4.4	Test description	
6.2D.4.4.1		
6.2D.4.4.2	F	
6.2D.4.4.3	8	
6.2D.4.5	Test requirement	
	Output power dynamics	
6.3.1	Minimum output power	
6.3.1.1	Test purpose	
6.3.1.2	Test applicability	
6.3.1.3	Minimum conformance requirements	
6.3.1.4	Test description	
6.3.1.4.1	Initial condition	
6.3.1.4.2	Test procedure	
6.3.1.4.3	Message contents	
6.3.1.5	Test requirement	115
6.3A.1	Minimum output power for CA	115
6.3A.1.0	Minimum conformance requirements	115
6.3A.1.1	Minimum output power for CA (2UL CA)	116
6.3A.1.1.1		
6.3A.1.1.2	Test applicability	116
6.3A.1.1.3	Minimum conformance requirements	116
6.3A.1.1.4	Test description	116
6.3A.1.1.5	1	
6.3A.2	Transmit OFF power for CA	
6.3A.2.0	Minimum conformance requirements	
6.3A.2.1	Transmit OFF power for CA (2UL CA)	
6.3A.2.1.1	Test purpose	
6.3A.2.1.2		
6.3A.2.1.3	11 *	
6.3A.2.1.3	1	
6.3A.2.1.5	1	
6.3A.2.1.3	Transmit ON/OFF time mask for CA	
6.3A.3.0	Minimum conformance requirements	110

6.3A.3.1.1	Test mymess	110
	Test purpose	
6.3A.3.1.2.	Test applicability	
6.3A.3.1.3	Minimum conformance requirements	
6.3A.3.1.4	Test description	
6.3A.3.3.5	Test requirement	
6.3.2	Transmit OFF power	
6.3.2.1	Test purpose	
6.3.2.2	Test applicability	
6.3.2.3	Minimum conformance requirements	
6.3.2.4	Test description	122
6.3.2.5	Test requirement	122
6.3.3	Transmit ON/OFF time mask	
6.3.3.1	General	
6.3.3.2	General ON/OFF time mask	
6.3.3.2.1	Test purpose	
6.3.3.2.2	Test applicability	
6.3.3.2.3	Minimum conformance requirements	
6.3.3.2.4	Test description	
6.3.3.2.5	Test requirement	
6.3.3.3		
	Transmit power time mask for slot and [mini-slot] boundaries	
6.3.3.4	PRACH time mask	
6.3.3.4.1	Test purpose	
6.3.3.4.2	Test applicability	
6.3.3.4.3	Minimum conformance requirements	
6.3.3.4.4	Test description	
6.3.3.5	PUCCH time mask	
6.3.3.5.1	Long PUCCH time mask	
6.3.3.5.2	Short PUCCH time mask	130
6.3.3.6	SRS time mask	130
6.3.3.6.1	Test purpose	130
6.3.3.6.2	Test applicability	
6.3.3.6.3	Minimum conformance requirements	
6.3.3.6.4	Test description	
6.3.3.6.4.1	Initial condition	
6.3.3.6.5	Test requirement	
6.3.3.7	PUSCH-PUCCH and PUSCH-SRS time masks	
6.3.3.7.1	Test purpose	
6.3.3.7.2	Test applicability	
6.3.3.7.3	Minimum conformance requirements	
6.3.3.7.4	Test description	
	•	
6.3.3.7.5	Test requirement	
6.3.4	Power control	
6.3.4.1	General	
6.3.4.2	Absolute power tolerance	
6.3.4.2.1	Test purpose	
6.3.4.2.2	Test applicability	
6.3.4.2.3	Minimum conformance requirements	
6.3.4.2.4	Test description	
6.3.4.2.5	Test requirement	
6.3.4.3	Power Control Relative power tolerance	140
6.3.4.3.1	Test purpose	140
6.3.4.3.2	Test applicability	140
6.3.4.3.3	Minimum conformance requirement	140
6.3.4.3.4	Test description	141
6.3.4.3.5	Test requirement	
6.3.4.4	Aggregate power tolerance	
6.3.4.4.1	Test purpose	
6.3.4.4.2	Test applicability	
6.3.4.4.3	Minimum conformance requirements	
6.3.4.4.4	Test description	
6.3.4.4.5	Test requirement	
6.3. 4 .4.3	1000 10quitoinoite	162

6.3D.1	Minimum output power for UL-MIMO	162
6.3D.1.1	Test purpose	
6.3D.1.2	Test applicability	
6.3D.1.3	Minimum conformance requirements	
6.3D.1.4	Test description	
6.3D.1.4.1	Initial condition	
6.3D.1.4.2	Test procedure	
6.3D.1.4.3	Message contents	
6.3D.1.5	Test requirement	
6.3D.2	Transmit OFF power for UL-MIMO	
6.3D.2.1	Test purpose	
6.3D.2.1	Test applicability	
6.3D.2.2	Minimum conformance requirements	
6.3D.2.3	Test description	
6.3D.2.4	Test requirement	
6.3D.2.3	Transmit ON/OFF time mask for UL-MIMO	
6.3D.3.1		
6.3D.3.1	Test applicability	
	Test applicability	
6.3D.3.3	Minimum conformance requirements	
6.3D.3.4	Test description	
6.3D.3.4.1	Initial condition	
6.3D.3.4.2	Test procedure	
6.3D.3.4.3	Message contents	
6.3D.3.5	Test requirement	
6.3D.4	Power control for UL-MIMO	
6.3D.4.1	Absolute power tolerance for UL-MIMO	
6.3D.4.1.1	Test purpose	
6.3D.4.1.2	Test applicability	
6.3D.4.1.3	Minimum conformance requirements	
6.3D.4.1.4	Test description	
6.3D.4.1.5	Test requirement	
6.3D.4.2	Relative power tolerance for UL-MIMO	
6.3D.4.2.1	Test purpose	
6.3D.4.2.2	Test applicability	
6.3D.4.2.3	Minimum conformance requirements	
6.3D.4.2.4	Test description	
6.3D.4.2.5	Test requirement	
6.3D.4.3	Aggregate power tolerance for UL-MIMO	
6.3D.4.3.1	Test purpose	
6.3D.4.3.2	Test applicability	
6.3D.4.3.3	Minimum conformance requirements	173
6.3D.4.3.4	Test description	173
6.3D.4.3.5	Test requirement	174
6.4 T	ransmit signal quality	174
6.4.1	Frequency error	174
6.4.1.1	Test purpose	174
6.4.1.2	Test applicability	174
6.4.1.3	Minimum conformance requirements	174
6.4.1.4	Test description	175
6.4.1.4.1	Initial condition	175
6.4.1.4.2	Test procedure	175
6.4.1.4.3	Message contents	176
6.4.1.5	Test requirement	
6.4.2	Transmit modulation quality	
6.4.2.1	Error Vector Magnitude	
6.4.2.1.1	Test Purpose	
6.4.2.1.2	Test applicability	
6.4.2.1.3	Minimum conformance requirements	
6.4.2.1.4	Test description	
6.4.2.1.4.2	Test procedure	
6.4.2.1.5	Test requirement	
6.4.2.2	Carrier leakage	181

6.4.2.2.1	Test purpose	
6.4.2.2.2	Test applicability	181
6.4.2.2.3	Minimum conformance requirements	181
6.4.2.2.4	Test description	181
6.4.2.2.5	Test requirement	
6.4.2.3	In-band emissions	
6.4.2.3.1	Test purpose	
6.4.2.3.2	Test applicability	
6.4.2.3.3	Minimum conformance requirements	
6.4.2.3.4		
6.4.2.3.5	Test description	
	Test requirement	
6.4.2.4	EVM equalizer spectrum flatness	
6.4.2.4.1	Test purpose	
6.4.2.4.2	Test applicability	
6.4.2.4.3	Minimum conformance requirements	
6.4.2.4.4	Test description	189
6.4.2.4.5	Test requirement	
6.4.2.5	EVM equalizer spectrum flatness for Pi/2 BPSK	192
6.4.2.5.1	Test purpose	192
6.4.2.5.2	Test applicability	192
6.4.2.5.3	Minimum conformance requirements	
6.4.2.5.4	Test description	
6.4.2.5.5	Test requirement	
	Fransmit signal quality for CA	
6.4A.1	Frequency error for CA	
6.4A.1.0	Minimum conformance requirements	
6.4A.1.1		
	Frequency error for CA (2UL CA)	
6.4A.1.1.1	Test purpose	
6.4A.1.1.2	Test applicability	
6.4A.1.1.3	Minimum conformance requirements	
6.4A.1.1.4	Test description	
6.4A.1.1.5	Test requirement	
6.4A.2	Transmit modulation quality for CA	197
6.4A.2.1	Error Vector Magnitude for CA	197
6.4A.2.1.0	Minimum conformance requirements	197
6.4A.2.1.1	Error Vector Magnitude for CA (2UL CA)	198
6.4A.2.2	Carrier leakage for CA	
6.4A.2.2.0	Minimum conformance requirements	
6.4A.2.2.1	Carrier leakage for CA (2UL CA)	
6.4A.2.3	In-band emission for CA	
6.4A.2.3.0	Minimum conformance requirements	
6.4A.2.3.1	In-band emissions for CA (2UL CA)	
	Fransmit signal quality for UL-MIMO	
	• • •	
6.4D.1	Frequency error for UL-MIMO	
6.4D.1.1	Test purpose	
6.4D.1.2	Test applicability	
6.4D.1.3	Minimum conformance requirements	
6.4D.1.4	Test description	
6.4D.1.4.1	Initial conditions	
6.4D.1.4.2	Test procedure	
6.4D.1.4.3	Message contents	
6.4D.1.5	Test requirement	
6.4D.2	Transmit modulation quality for UL-MIMO	210
6.4D.2.1	Error Vector Magnitude for UL-MIMO	210
6.4D.2.1.1	Test purpose	
6.4D.2.1.2	Test applicability	
6.4D.2.1.3	Minimum conformance requirements	
6.4D.2.1.4	Test description	
6.4D.2.1.5	Test requirement	
6.4D.2.2	Carrier leakage for UL-MIMO	
6.4D.2.2.1	Test purpose	
6.4D.2.2.1	Test applicability	212

6.4D.2.2.3	Minimum conformance requirements	212
6.4D.2.2.4	Test description	213
6.4D.2.2.5	Test requirement	214
6.4D.2.3	In-band emissions for UL-MIMO	215
6.4D.2.3.1	Test purpose	215
6.4D.2.3.2	Test applicability	215
6.4D.2.3.3	Minimum conformance requirements	
6.4D.2.3.4	Test description	
6.4D.2.3.4.	<u>.</u>	
6.4D.2.3.5	Test requirement	
6.4D.2.4	EVM equalizer spectrum flatness for UL-MIMO	
6.4D.2.4.1	Test purpose	
6.4D.2.4.2	Test applicability	
6.4D.2.4.3	Minimum conformance requirements	
6.4D.2.4.5	Test requirement	
6.4D.3	Time alignment error for UL-MIMO	
6.4D.3.1	Test purpose	
6.4D.3.2	Test applicability	
6.4D.3.3	Minimum conformance requirements	
6.4D.3.4	Test description	
6.4D.3.4.1	Initial condition	
6.4D.3.4.1	Test procedure	
6.4D.3.4.3	Message contents	
6.4D.3.5	Test requirement	
6.4D.4	Requirements for coherent UL MIMO	
6.4D.4.1	Test purpose	
6.4D.4.2	Test applicability	
6.4D.4.3	Minimum conformance requirements	
6.4D.4.4	Test description	
6.4D.4.4.1	Initial condition	
6.4D.4.4.2	Test procedure	
6.4D.4.4.3	Message contents	
6.4D.4.5	Test requirement	
	Output RF spectrum emissions	
6.5.1	Occupied bandwidth	
6.5.1.1	Test purpose	
6.5.1.2	Test applicability	
6.5.1.3	Minimum conformance requirements	
6.5.1.4	Test description	
6.5.1.4.1	Initial conditions	
6.5.1.4.2	Test procedure	225
6.5.1.4.3	Message contents	226
6.5.1.5	Test requirement	226
6.5.2	Out of band emission	226
6.5.2.1	General	226
6.5.2.2	Spectrum Emission Mask	226
6.5.2.2.1	Test purpose	226
6.5.2.2.2	Test applicability	
6.5.2.2.3	Minimum conformance requirements	
6.5.2.2.4	Test description	
6.5.2.2.5	Test requirement	
6.5.2.3	Additional spectrum emission mask	
6.5.2.3.1	Test purpose	
6.5.2.3.2	Test applicability	
6.5.2.3.3	Minimum conformance requirements	
6.5.2.3.3.5	Requirements for network signalled value "NS_40"	
6.5.2.3.4	Test description	
6.5.2.4	Adjacent channel leakage ratio	
6.5.2.4.1	NR ACLR	
6.5.2.4.1	UTRA ACLR	
6.5.3 6.5.3.1	Spurious emissions General spurious emissions	244
	CIEDRIAL SOULDING PHINSIONS	7/1/1

	_	
6.5.3.1.1	Test purpose	
6.5.3.1.2	Test applicability	
6.5.3.1.3	Minimum conformance requirements	
6.5.3.1.4	Test description	
6.5.3.1.5	Test requirement	
6.5.3.2	Spurious emission for UE co-existence	
6.5.3.2.1	Test purpose	247
6.5.3.2.2	Test applicability	247
6.5.3.2.3	Minimum conformance requirements	247
6.5.3.2.4	Test description	253
6.5.3.2.5	Test requirement	255
6.5.3.3	Additional spurious emissions	255
6.5.3.3.1	Test purpose	255
6.5.3.3.2	Test applicability	
6.5.3.3.3	Minimum conformance requirements	
6.5.3.3.4	Test description	
6.5.3.3.5	Test requirement	
6.5.4	Transmit intermodulation	
6.5.4.1	Test purpose	
6.5.4.2	Test applicability	
6.5.4.3	Minimum conformance requirements	
6.5.4.4	Test description	
6.5.4.4.1	Initial conditions	
6.5.4.4.2	Test procedure	
6.5.4.4.3		
	Message contents	
6.5.4.5	Test requirement	
	atput RF spectrum emissions for CA	
6.5A.2	Out of band emission for CA	
6.5A.2.2	Spectrum emission mask	
6.5A.2.2.0	Minimum conformance requirements	
6.5A.2.2.1	Spectrum emission mask for CA (2UL CA)	
6.5A.2.4	Adjacent channel leakage ratio	
6.5A.2.4.1	NR ACLR	
6.5A.2.4.1.0	Minimum conformance requirements	
6.5A.2.4.1.1	NR ACLR for CA (2UL CA)	
6.5A.2.4.2	UTRA ACLR	
6.5A.2.4.2.0	Minimum conformance requirements	
6.5A.2.4.2.1	UTRA ACLR for CA (2UL CA)	274
6.5A.3	Spurious emission for CA	276
6.5A.3.1	General spurious emissions for CA	276
6.5A.3.1.0	Minimum conformance requirements	276
6.5A.3.1.1	General spurious emissions for CA (2UL CA)	277
6.5A.3.2	Spurious emission for UE co-existence	
6.5A.3.2.0	Minimum conformance requirements	
6.5A.3.2.1	Spurious emissions for UE co-existence for CA (2UL CA)	
6.5A.4	Transmit intermodulation for CA	
6.5A.4.0	Minimum conformance requirements	
6.5A.4.1	Transmit intermodulation for CA (2UL CA)	
6.5A.4.1.1	Test purpose	
6.5A.4.1.2	Test applicability	
6.5A.4.1.3	Minimum conformance requirements	
6.5A.4.1.4	Test description	
	Test requirement	
6.5A.4.1.5	•	
	utput RF spectrum emissions for SUL	
6.5C.1	Occupied bandwidth for SUL	
6.5C.1.1	Test purpose	
6.5C.1.2	Test applicability	
6.5C.1.3	Minimum conformance requirements	
6.5C.1.4	Test description	
6.5C.1.5	Test requirement	
6.5C.2	Out of band emission for SUL	
6 5C 2 1	General	287

6.5C.2.2	Spectrum Emission Mask for SUL	287
6.5C.2.2.1	Test purpose	
6.5C.2.2.1		
6.5C.2.2.3	T1	
6.5C.2.2.4	1	
6.5C.2.2.5	1	
6.5C.2.3	Additional spectrum emission mask for SUL	
6.5C.2.3.1	Test purpose	
6.5C.2.3.2	11 2	
6.5C.2.3.3	1	
6.5C.2.3.4	1	
6.5C.2.3.5	4	
6.5C.2.4	Adjacent channel leakage ratio for SUL	
6.5C.2.4.1	NR ACLR for SUL	290
6.5C.2.4.2	UTRA ACLR for SUL	292
6.5C.3	Spurious emissions for SUL	293
6.5C.3.1	General spurious emissions for SUL	293
6.5C.3.1.1	Test purpose	294
6.5C.3.1.2		
6.5C.3.1.3	11 7	
6.5C.3.1.4		
6.5C.3.1.5		
6.5C.3.2	Spurious emission for UE co-existence for SUL	
6.5C.3.2.1	Test purpose	
6.5C.3.2.2		
6.5C.3.2.3		295
6.5C.3.2.4		
6.5C.3.2.5		
6.5C.3.3	Additional spurious emissions for SUL	
6.5C.3.3.1	•	
6.5C.3.3.1	Test purpose	
6.5C.3.3.4	11 2	
	1	
6.5C.3.3.5	Test requirement	
6.5C.4	Transmit intermodulation for SUL	
6.5C.4.1	Test purpose	
6.5C.4.2	Test applicability	
6.5C.4.3	Minimum conformance requirements	
6.5C.4.4	Test description	
6.5C.4.5	Test requirement	
	Output RF spectrum emissions for UL-MIMO	
6.5D.1	Occupied bandwidth for UL-MIMO	
6.5D.1.1	Test purpose	
6.5D.1.2	Test applicability	
6.5D.1.3	Minimum conformance requirements	
6.5D.1.4	Test description	
6.5D.1.4.1		
6.5D.1.4.2	±	
6.5D.1.4.3	ϵ	
6.5D.1.5	Test requirement	
6.5D.2	Out of band emission for UL-MIMO	301
6.5D.2.1	General	
6.5D.2.2	Spectrum Emission Mask for UL-MIMO	301
6.5D.2.2.1	Test purpose	
6.5D.2.2.2	<u> </u>	
6.5D.2.2.3		
6.5D.2.2.4	•	
6.5D.2.2.4	*	
6.5D.2.2.5		
6.5D.2.3	Additional spectrum emission mask for UL-MIMO	
6.5D.2.3.1	•	
6.5D.2.3.2	<u> </u>	
6.5D.2.3.2		305

	Test description	
6.5D.2.3.5	Test requirement	
6.5D.2.4	Adjacent channel leakage ratio for UL-MIMO	
6.5D.2.4.1	NR ACLR for UL-MIMO	
6.5D.2.4.2	UTRA ACLR for UL-MIMO	
6.5D.3	Spurious emissions for UL-MIMO	
6.5D.3.1	General spurious emissions for UL-MIMO	310
6.5D.3.1.1	Test purpose	310
6.5D.3.1.2	Test applicability	311
6.5D.3.1.3	Minimum conformance requirements	311
6.5D.3.1.4	Test description	311
6.5D.3.1.5	Test requirement	312
6.5D.3.2	Spurious emission for UE co-existence for UL-MIMO	312
6.5D.3.2.1	Test purpose	312
6.5D.3.2.2	Test applicability	
6.5D.3.2.3	Minimum conformance requirements	
6.5D.3.2.4	Test description	
6.5D.3.2.5	Test requirement	
6.5D.3.3	Additional spurious emissions for UL-MIMO	
6.5D.3.3.1	Test purpose	
6.5D.3.3.2	Test applicability	
6.5D.3.3.5	Test requirement	
6.5D.4	Transmit intermodulation for UL-MIMO	
6.5D.4.1	Test purpose	
6.5D.4.2	Test applicability	
6.5D.4.3	Minimum conformance requirements	
6.5D.4.4	Test description	
6.5D.4.4.1	Initial conditions	
6.5D.4.4.2	Test procedure	
6.5D.4.4.3	Message contents	
6.5D.4.5	Test requirement	
	•	
	eiver characteristics	
	General	
	Diversity characteristics	
7.3 I	Reference sensitivity	
721	Canaral	210
7.5.1	General	
	Reference sensitivity power level	319
7.3.2 7.3.2.1	Reference sensitivity power level	319
7.3.2 7.3.2.1	Reference sensitivity power level	319
7.3.2 7.3.2.1 7.3.2.2	Reference sensitivity power level	319
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3	Reference sensitivity power level	319 319 319 319
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4	Reference sensitivity power level	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2_1 7.3.2_1.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2_1 7.3.2_1.1 7.3.2_1.2 7.3.2_1.3	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements	
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2_1 7.3.2_1.1 7.3.2_1.2 7.3.2_1.3	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description	319 319 319 319 319 326 326 331 331 332 335 335 335
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2_1.1 7.3.2_1.2 7.3.2_1.4 7.3.2_1.4	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description Initial conditions	319 319 319 319 319 326 326 331 331 332 335 335 335 335
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2.1 7.3.2.1.1 7.3.2.1.2 7.3.2.1.4 7.3.2.1.4 7.3.2.1.4.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure	319 319 319 319 319 326 326 331 331 332 335 335 335 335
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.5 7.3.2.1 7.3.2.1.1 7.3.2.1.2 7.3.2.1.4 7.3.2.1.4.1 7.3.2.1.4.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents	319 319 319 319 319 319 326 326 331 331 332 335 335 335 335 335
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.1 7.3.2.1.1 7.3.2.1.2 7.3.2.1.3 7.3.2.1.4 7.3.2.1.4.1 7.3.2.1.4.2 7.3.2.1.4.3 7.3.2.1.4.3	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test procedure Message contents Test requirement	319 319 319 319 319 319 326 326 331 331 332 335 335 335 335 335 335
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2_1 7.3.2_1.1 7.3.2_1.2 7.3.2_1.4 7.3.2_1.4.1 7.3.2_1.4.1 7.3.2_1.4.2 7.3.2_1.4.3 7.3.2_1.4.3 7.3.2_1.5 7.3.3.3	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test procedure Message contents Test procedure Message contents Test requirement ARIB,c	319 319 319 319 319 319 326 326 331 331 332 335 335 335 335 335 335 335
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.1 7.3.2.1.1 7.3.2.1.2 7.3.2.1.4 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test procedure Message contents Test requirement Test procedure Message contents Test requirement ARIB,c	319 319 319 319 319 319 326 326 331 331 331 335 335 335 335 335 335 335
7.3A.0	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test procedure Message contents Test requirement ARIB,c Reference sensitivity for CA Minimum conformance requirements	319 319 319 319 319 319 326 326 331 331 332 335 335 335 335 336 336 339 339
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.1 7.3.2.1.1 7.3.2.1.2 7.3.2.1.4 7.3.2.1.4 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.5 7.3.3 7.3.1 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3 7.3.3	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement ARIB,c Reference sensitivity for CA Minimum conformance requirements General	319 319 319 319 319 319 326 326 331 331 332 335 335 335 335 336 336 339 339
7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 7.3.2.4 7.3.2.4.1 7.3.2.4.2 7.3.2.4.3 7.3.2.1 7.3.2.1.1 7.3.2.1.2 7.3.2.1.4 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.1 7.3.2.1.4.3 7.3.2.1.5 7.3.3 7.3.4 1 7.3.4.0	Reference sensitivity power level Test purpose Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test requirement Reference sensitivity level with 4 Rx antenna ports Test applicability Minimum conformance requirements Test description Initial conditions Test procedure Message contents Test procedure Message contents Test requirement ARIB,c Reference sensitivity for CA Minimum conformance requirements	319 319 319 319 319 319 326 326 331 331 332 335 335 335 335 335 336 336 339 339

7.3A.0.2.3	Reference sensitivity power level for Inter-band CA	340
7.3A.0.3	ΔRIB,c for CA	340
7.3A.0.3.	l General	340
7.3A.0.3.	2 ΔRIB,c for Inter-band CA	340
7.3A.0.4	Reference sensitivity exceptions due to UL harmonic interference for CA	341
7.3A.0.5	Reference sensitivity exceptions due to intermodulation interference due to 2UL CA	343
7.3A.1	Reference sensitivity power level for 2DL CA	343
7.3A.1.1	Test purpose	343
7.3A.1.2	Test applicability	343
7.3A.1.3	Minimum requirements	343
7.3A.1.4	Test description	344
7.3A.1.4.	I Initial conditions	344
7.3A.1.4.2	2 Test procedure	344
7.3A.1.4.3	Message contents	344
7.3A.1.5	Test requirement	344
7.3A.2	Reference sensitivity power level for 3DL CA	344
7.3A.3	Reference sensitivity power level for 4DL CA	344
7.3A.4	Reference sensitivity power level for 5DL CA	344
7.3B	Reference sensitivity for DC	344
7.3C	Reference sensitivity for SUL	344
7.3C.1	General	344
7.3C.2	Reference sensitivity power level for SUL	344
7.3C.2.1	Test purpose	345
7.3C.2.2	Test applicability	345
7.3C.2.3	Minimum conformance requirements	345
7.3C.2.4	Test description	347
7.3C.2.4.1	Initial conditions	347
7.3C.2.4.2	2 Test procedure	347
7.3C.2.4.3	Message contents	348
7.3C.2.5	Test requirement	348
7.3C.2.5.1		
7.3C.3	$\Delta R_{IB,c}$ for SUL	350
7.3C.3.1	General	350
7.3C.3.2	SUL band combination	350
7.3D	Reference sensitivity for UL-MIMO	
7.3D.1	General	
7.3D.2	Reference sensitivity power level for UL-MIMO	
7.3D.2.1	Test purpose	
7.3D.2.2	Test applicability	
7.3D.2.3	Minimum conformance requirements	
7.3D.2.4	Test description	
7.3D.2.4.		
7.3D.2.4.2	1	
7.3D.2.4.	e	
7.3D.2.5	Test requirement	
7.4	Maximum input level	
7.4.1	Test purpose	
7.4.2	Test applicability	
7.4.3	Minimum conformance requirements	
7.4.4	Test description	
7.4.4.1	Initial conditions	
7.4.4.2	Test procedure	
7.4.4.3	Message contents	
7.4.5	Test requirement	
7.4A	Maximum input level for CA	
7.4D	Maximum input level for UL-MIMO	
7.4D.1	Test purpose	
7.4D.2	Test applicability	
7.4D.3	Minimum conformance requirements	
7.4D.4	Test description	
7.4D.4.1	Initial conditions Test procedure	355 359

7.4D.4.3	Message contents	356
7.4D.5	Test requirement	
7.5	Adjacent channel selectivity	356
7.5.1	Test purpose	356
7.5.2	Test applicability	357
7.5.3	Minimum conformance requirements	357
7.5.4	Test description	361
7.5.4.1	Initial conditions	361
7.5.4.2	Test procedure	361
7.5.4.3	Message contents	362
7.5.5	Test requirement	362
7.5A	Adjacent channel selectivity for CA	366
7.5A.0	Minimum conformance requirements	366
7.5A.0.1	Adjacent channel selectivity for Intra-band contiguous CA	366
7.5A.0.2	Adjacent channel selectivity Intra-band non-contiguous CA	367
7.5A.0.3	Adjacent channel selectivity Inter-band CA	367
7.5A.1	Adjacent channel selectivity for 2DL CA	367
7.5A.1.1	Test Purpose	367
7.5A.1.2	Test Applicability	367
7.5A.1.3	Minimum Conformance Requirements	368
7.5A.1.4	Test Description	368
7.5A.1.4.1	Initial Conditions	368
7.5A.1.4.2	Test Procedure	368
7.5A.1.4.3	Message Contents	369
7.5A.1.5	Test Requirement	369
7.5A.2	Adjacent channel selectivity for 3DL CA	374
7.5A.2.1	Test Purpose	374
7.5A.2.2	Test Applicability	374
7.5A.2.3	Minimum Conformance Requirements	374
7.5A.2.4	Test Description	375
7.5A.2.4.1	Initial Conditions	375
7.5A.2.4.2	Test Procedure	375
7.5A.2.4.3	Message Contents	375
7.5A.2.5	Test Requirement	375
7.5A.3	Adjacent channel selectivity for 4DL CA	
7.5A.3.1	Test Purpose	376
7.5A.3.2	Test Applicability	
7.5A.3.3	Minimum Conformance Requirements	377
7.5A.3.4	Test Description	
7.5A.3.4.1		
7.5A.3.4.2		
7.5A.3.4.3	E	
7.5A.3.5	Test Requirement	
7.5D	Adjacent channel selectivity for UL-MIMO	
7.5D.1	Test purpose	
7.5D.2	Test applicability	
7.5D.3	Minimum conformance requirements	
7.5D.4	Test description	
7.5D.4.1	Initial conditions	
7.5D.4.2	Test procedure	
7.5D.4.3	Message contents	
7.5D.5	Test requirement	
7.6	Blocking characteristics	
7.6.1	General	
7.6.2	Inband Blocking	
7.6.2.1	Test purpose	
7.6.2.2	Test applicability	
7.6.2.3	Minimum conformance requirements	
7.6.2.4	Test description	
7.6.2.4.1	Initial conditions	
7.6.2.4.2	Test procedure	

7 (1 7		20
7.6.1.5	Test requirement	
7.6.3	Out-of-band blocking	
7.6.3.1	Test Purpose	
7.6.3.2	Test Applicability	
7.6.3.3	Minimum Conformance Requirements	
7.6.3.4	Test Description	
7.6.3.4.1	Initial Conditions	
7.6.3.4.2	Test Procedure	
7.6.3.4.3	Message Contents	389
7.6.3.5	Test Requirement	390
7.6.4	Narrow band blocking	391
7.6.4.1	Test Purpose	391
7.6.4.2	Test Applicability	
7.6.4.3	Minimum Conformance Requirements	
7.6.4.4	Test Description	
7.6.4.4.1	Initial Conditions	
7.6.4.4.2	Test Procedure	
7.6.4.4.3	Message Contents	
7.6.4.5	Test Requirement	
7.6A	Blocking characteristics for CA	
7.6A.1	General	
7.6A.1 7.6A.2	Inband blocking for CA	
7.6A.2.1	Intra-band contiguous CA	
7.6A.3	Out-of-band blocking for CA	
7.6A.3.1	Intra-band contiguous CA	
7.6A.4	Narrow band blocking for CA	
7.6D	Blocking characteristics for UL-MIMO	
7.6D.1	General	
7.6D.2	Inband blocking for UL-MIMO	
7.6D.2.1	Test purpose	
7.6D.2.2	Test applicability	
7.6D.2.3	Minimum conformance requirements	
7.6D.2.4	Test description	
7.6D.2.4.1		
7.6D.2.4.2	T	
7.6D.2.4.3	C	
7.6D.2.5	Test requirement	
7.6D.3	Out-of-band blocking for UL-MIMO	
7.6D.3.1	Test purpose	397
7.6D.3.2	Test applicability	397
7.6D.3.3	Minimum conformance requirements	397
7.6D.3.4	Test description	397
7.6D.3.4.1	Initial conditions	397
7.6D.3.4.2		
7.6D.3.4.3	<u> •</u>	
7.6D.3.5	Test requirement	
7.6D.4	Narrow band blocking for UL-MIMO	
7.6D.4.1	Test purpose	
7.6D.4.1 7.6D.4.2	Test applicability	
7.6D.4.3	Minimum conformance requirements	
7.6D.4.3	Test description	
7.6D.4.4 7.6D.4.4.1	Initial conditions	
7.6D.4.4.1 7.6D.4.4.2		
7.6D.4.4.3	· · · · · · · · · · · · · · · · · · ·	
7.7	Spurious response	
7.7A.0	Minimum conformance requirements	
7.7A.0.1	Minimum conformance requirements for intra-band contiguous CA	
7.7A.0.2	Minimum conformance requirements for intra-band non-contiguous CA	
7.7A.0.3	Minimum conformance requirements for inter-band CA	
7.7A.1	Spurious response for 2DL CA	
7.7A.1.1	Test Purpose	
$77\Delta12$	Test Applicability	401

7.7A.1.3	Minimum Conformance Requirements	401
7.7A.1.3 7.7A.1.4	Test Description	
7.7A.1.4.1	Initial Conditions	
7.7A.1.4.2		
7.7A.1.4.3	ϵ	
7.7A.1.5	Test Requirement	
7.7A.2	Spurious response for 3DL CA	402
7.7A.2.1	Test Purpose	402
7.7A.2.2	Test Applicability	402
7.7A.2.3	Minimum Conformance Requirements	403
7.7A.2.4	Test Description	
7.7A.2.4.1		
7.7A.2.4.2		
7.7A.2.4.3		
7.7A.2.5	Test Requirement	
7.7A.3	Spurious response for 4DL CA	
7.7A.3.1	Test Purpose	
7.7A.3.2	Test Applicability	
7.7A.3.3	Minimum Conformance Requirements	
7.7A.3.4	Test Description	404
7.7A.3.4.1	Initial Conditions	404
7.7A.3.4.2	Test Procedure	404
7.7A.3.4.3		
7.7A.3.5	Test Requirement	
7.7.1	Test Purpose	
7.7.2	Test Applicability	
	Minimum Conformance Requirements	
7.7.3		
7.7.4	Test Description	
7.7.4.1	Initial Conditions	
7.7.4.2	Test Procedure	
7.7.4.3	Message Contents	
7.7.5	Test Requirement	
7.7D	Spurious response for UL-MIMO	407
7.7D.1	Test Purpose	407
7.7D.2	Test Applicability	407
7.7D.3	Minimum Conformance Requirements	
7.7D.4	Test Description	
7.7D.4.1	Initial Conditions	
7.7D.4.2	Test Procedure.	
7.7D.4.2 7.7D.4.3	Message Contents	
7.7D.4.3 7.7D.5		
	Test Requirement	
	Intermodulation characteristics	
7.8.1	General	
7.8.2	Wide band Intermodulation	
7.8.2.1	Test purpose	409
7.8.2.2	Test applicability	409
7.8.2.3	Minimum conformance requirements	409
7.8.2.4	Test description	411
7.8.2.4.1	Initial conditions	411
7.8.2.4.2	Test procedure	411
7.8.2.4.3	Message contents	
7.8.2.5	Test requirement	
	Intermodulation characteristics for UL-MIMO	
7.8D.1	General	
	Wide band Intermodulation for UL-MIMO	
7.8D.2		
7.8D.2.1	Test purpose	
7.8D.2.2	Test applicability	
7.8D.2.3	Minimum conformance requirements	
7.8D.2.4	Test description	
7.8D.2.4.1	Initial conditions	
7.8D.2.4.2	Test procedure	
78D243	Message contents	/115

7.9	Spurious emissions	
7.9.1	Test purpose	
7.9.2	Test applicability	
7.9.3	Minimum conformance requirements	
7.9.4	Test description	
7.9.4.1	Initial conditions	
7.9.4.2	Test procedure	
7.9.4.3	Message contents	
7.9.5	Test requirement	
7.9A.0	Minimum conformance requirements	
7.9A.1	Spurious emission for 2DL CA	
7.9A.1.1	Test Purpose	
7.9A.1.2	Test Applicability	
7.9A.1.3	Minimum Conformance Requirements	
7.9A.1.4	Test Description	
7.9A.1.4.1		
7.9A.1.4.2		
7.9A.1.4.3		
7.9A.1.5	Test Requirement	418
Annex A	(normative): Measurement channels	419
A.1 Ge	eneral	419
A.2 UI	L reference measurement channels	∆10
A.2.1	General	
A.2.1 A.2.2	Reference measurement channels for FDD	
A.2.2.1	DFT-s-OFDM Pi/2-BPSK	
A.2.2.2	DFT-s-OFDM QPSK	
A.2.2.3	DFT-s-OFDM 16QAM	
A.2.2.4	DFT-s-OFDM 10QAM	
A.2.2.5	DFT-s-OFDM 256QAM	
A.2.2.6	CP-OFDM QPSK	
A.2.2.7	CP-OFDM 16QAM	
A.2.2.8	CP-OFDM 64QAM	
A.2.2.9	CP-OFDM 256QAM	
A.2.3	Reference measurement channels for TDD	
A.2.3.1	DFT-s-OFDM Pi/2-BPSK	
A.2.3.2	DFT-s-OFDM QPSK	
A.2.3.3	DFT-s-OFDM 16QAM	
A.2.3.4	DFT-s-OFDM 64QAM	
A.2.3.5	DFT-s-OFDM 256QAM	
A.2.3.6	CP-OFDM QPSK	
A.2.3.7	CP-OFDM 16QAM	464
A.2.3.8	CP-OFDM 64QAM	467
A.2.3.9	CP-OFDM 256QAM	470
A.3 DI	L reference measurement channels	Δ73
A.3.1	General	
A.3.2	DL reference measurement channels for FDD	
A.3.2.1	General	
A.3.2.2	FRC for receiver requirements for QPSK	
A.3.2.3	FRC for maximum input level for 64QAM	
A.3.2.4	FRC for maximum input level for 256 QAM	
A.3.3	DL reference measurement channels for TDD.	
A.3.3.1	General	
A.3.3.2	FRC for receiver requirements for QPSK	
A.3.3.3	FRC for maximum input level for 64QAM	
A.3.3.4	FRC for maximum input level for 256 QAM	
A.4 CS	SI reference measurement channels	
	FDMA Channel Noise Generator (OCNG)	
1.5 OI	OCNC Detterms for EDD	403

A.5.1.		attern 1: Generic OCNG FDD Pattern for all unused REs	
A.5.2		r TDD	
A.5.2.	I OCNG IDD pa	attern 1: Generic OCNG TDD Pattern for all unused REs	493
Anne	x B (normative):	Propagation Conditions	494
B.0	No interference		494
	x C (normative):	Downlink physical channels	
		els	
C.1	•		
C.2			
	-		
C.3 C.3.1		eceiver Characteristics	
Anne	5 ()	Characteristics of the Interfering Signal	
		Characteristics of the Interfering Signal	
D.2	interference signals.		
Anne	x E (normative):	Global In-Channel TX-Test	499
E.1	General		499
E.2	Signals and results		499
E.2.1			
E.2.2		e TX under test	
E.2.3			
E.2.4 E.2.5		lts	
	-	ts	
E.3			
E.3.1		tion process	
E.3.2 E.3.3	_	windowion	
	•		
E.4		sults	
E.4.1			
E.4.2			
E.4.3 E.4.4		measurementectrum flatness	
E.4.5		rd Carrier leakage	
E.4.6		ation reference symbols (EVM _{DMRS})	
E.4.6.1		EVM _{DMRS}	
E.4.6.2	_	or EVM _{DMRS}	
E.5	EVM and inhand en	nissions for PUCCH	508
E.5.1		101 1 0 CO11	
E.5.2		e TX under test	
E.5.3			
E.5.4	Measurement resul	lts	508
E.5.5	-	ts	
E.5.6		tion process	
E.5.7	•	window	
E.5.8		ion	
E.5.9 E.5.9.1		esults	
E.5.9.1			
E.5.9.3	C	ons measurement	
E.6 E.6.1			
₽.0.1	Dasie principie		

Histor	nrv	550				
Anne	ex I: Change history	544				
H.2.5	1					
H.2.4						
H.2.3						
H.2.1 H.2.2						
	Statistical testing of receiver characteristics					
H.1	General	540				
Anne	ex H (normative): Statistical Testing	540				
G.3.2						
G.3.1						
G.3 G.3.0	Connection					
G.2	Set-up					
G.1	General	537				
G.0	Uplink Signal Levels	537				
Anne	ex G (normative): Uplink Physical Channels	537				
F.3.3	Measurement of receiver	534				
F.3.2	Measurement of transmitter					
F.3.1	Measurement of test environments					
F.3	Test Tolerance and Derivation of Test Requirements (informative)					
F.2	Interpretation of measurement results (normative)					
F.1.3	Measurement of receiver					
F.1.2	Measurement of transmitter					
F.1 F.1.1	Acceptable uncertainty of Test System (normative)					
Anne	ex F (normative): Measurement uncertainties and Test Tolerances	515				
E.6.9.2	2 Averaged EVM _{PRACH}	514				
E.6.9.	1101011					
E.6.9	*					
E.6.8	Post FFT equalisation					
E.6.7	Timing of the FFT window					
E.6.6	1					
E.6.4 E.6.5						
E.6.3	Reference signal					
E.6.2	Output signal of the TX under test					

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

The present document is one part of a multi-part Technical Specification (TS) covering the New Radio (NR) User Equipment (UE) conformance specification, which is divided in the following parts:

- 3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone" (the present document).
- 3GPP TS 38.521-2 [13]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
- 3GPP TS 38.521-3 [14]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios"
- 3GPP TS 38.521-4 [15]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 4: Performance".
- 3GPP TS 38.522 [16]: NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases;
- 3GPP TS 38.533 [17]: NR; User Equipment (UE) conformance specification; Radio resource management;

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain RF characteristics for frequency Range 1 as part of the 5G-NR.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "definition and applicability" part of the test.

For example only Release 15 and later UE declared to support 5G-NR shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 Reference

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

Editor's note: intended to capture more references

[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone".
[3]	3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone".
[4]	3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".
[5]	3GPP TS 38.508-1: "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment ".
[6]	3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
[7]	Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
[8]	3GPP TS 38.211: "NR; Physical channels and modulation".
[9]	3GPP TS 38.213: "NR; Physical layer procedures for control".
[10]	3GPP TR 38.903: "NR; Derivation of test tolerances and measurement uncertainty for User Equipment (UE) conformance tests".
[11]	3GPP TR 38.905: "NR; Derivation of test points for radio transmission and reception conformance test cases".
[12]	3GPP TS 38.214: "NR; Physical layer procedures for data".
[13]	3GPP TS 38.521-2: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
[14]	3GPP TS 38.521-3: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".

[15]	3GPP TS 38.521-4: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 4: Performance".
[16]	3GPP TS 38.522: "NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases".
[17]	3GPP TS 38.533: "NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases".
[18]	3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification".
[19]	3GPP TS 38.133: "NR; Requirements for support of radio resource management ".
[20]	3GPP TS 38.215: "NR; Physical layer measurements".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

UE transmission bandwidth configuration: Set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE.

Vehicular UE: A UE embedded in a vehicle, permanently connected to an embedded antenna system that radiates externally for NR operating bands.

NOTE: Vehicular UE does not refer to other UE form factors placed inside the vehicle.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 $\begin{array}{ll} \Delta F_{Global} & Granularity \ of \ the \ global \ frequency \ raster \\ \Delta F_{Raster} & Band \ dependent \ channel \ raster \ granularity \\ \Delta f_{OOB} & \Delta \ Frequency \ of \ Out \ Of \ Band \ emission \end{array}$

 $\begin{array}{ll} \Delta F_{TX\text{-}RX} & \Delta \text{ Frequency of default TX-RX separation of the FDD operating band} \\ \Delta P_{PowerClass} & \Delta \text{ Adjustment to maximum output power for a given power class} \end{array}$

 Δ_{RB} The starting frequency offset between the allocated RB and the measured non-allocated RB $\Delta R_{IB,c}$

Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving

cell c

 $\Delta R_{IB.4R}$ Reference sensitivity adjustment due to support for 4 antenna ports

 Δ_{Shift} Channel raster offset

 $\Delta T_{\rm C}$ Allowed operating band edge transmission power relaxation

 $\Delta T_{C,c}$ Allowed operating band edge transmission power relaxation for serving cell c

ΔT_{IB,c} Allowed maximum configured output power relaxation due to support for inter-band CA

operation, for serving cell c

BW_{Channel} Channel bandwidth

 $BW_{Channel,block} \qquad \text{Sub-block bandwidth, expressed in MHz. } BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} - F_{ed$

BW_{Channel_CA} Aggregated channel bandwidth, expressed in MHz

 $BW_{Channel,max} \qquad \quad \text{Maximum channel bandwidth supported among all bands in a release}$

 BW_{GB} max($BW_{GB,Channel(k)}$)

 $BW_{GB,Channel(k)}$ Minimum guard band defined in sub-clause 5.3A.1 of carrier k

 $\begin{array}{ll} BW_{DL} & Channel \ bandwidth \ for \ DL \\ BW_{UL} & Channel \ bandwidth \ for \ UL \\ BW_{interferer} & Bandwidth \ of \ the \ interferer \end{array}$

Ceil(x) Rounding upwards; ceil(x) is the smallest integer such that $ceil(x) \ge x$ Floor(x) Rounding downwards; floor(x) is the greatest integer such that floor(x) $\le x$ F_C RF reference frequency on the channel raster, given in table 5.4.2.2-1

 $F_{C,block, high}$ Fc of the highest transmitted/received carrier in a sub-block $F_{C,block, low}$ Fc of the lowest transmitted/received carrier in a sub-block

 $\begin{array}{ll} F_{C_low} & The \ Fc \ of \ the \ lowest \ carrier, \ expressed \ in \ MHz \\ F_{C_high} & The \ Fc \ of \ the \ highest \ carrier, \ expressed \ in \ MHz \\ F_{DL_low} & The \ lowest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{UL_low} & The \ lowest \ frequency \ of \ the \ uplink \ operating \ band \\ F_{UL_high} & The \ highest \ frequency \ of \ the \ uplink \ operating \ band \\ \hline \end{array}$

$$\begin{split} F_{\text{edge,block,low}} & \quad \text{The lower sub-block edge, where } F_{\text{edge,block,low}} = F_{\text{C,block,low}} - F_{\text{offset., low}} \\ F_{\text{edge,block,high}} & \quad \text{The upper sub-block edge, where } F_{\text{edge,block,high}} = F_{\text{C,block,high}} + F_{\text{offset., high}} \end{split}$$

 $F_{edge, \, low} = F_{C,low} - F_{offset, low}$ The $lower \, edge \, of \, aggregated \, channel \, bandwidth, \, expressed \, in \, MHz. \, F_{edge, \, low} = F_{C,low} - F_{offset, low}$ The $higher \, edge \, of \, aggregated \, channel \, bandwidth, \, expressed \, in \, MHz. \, F_{edge, \, high} = F_{C,high} + F_{offset, high}$ Frequency offset of the interferer (between the centre frequency of the interferer and the carrier

frequency of the carrier measured)

F_{Interferer} Frequency of the interferer

F_{loffset} Frequency offset of the interferer (between the centre frequency of the interferer and the closest

edge of the carrier measured)

 F_{offset} Frequency offset from F_{C_high} to the *higher edge* or F_{C_low} to the *lower edge*

 $F_{offset,high} \hspace{1.5cm} Frequency \hspace{0.1cm} offset \hspace{0.1cm} from \hspace{0.1cm} F_{C,high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{RF} \hspace{0.1cm} \textit{Bandwidth} \hspace{0.1cm} \textit{edge}, \hspace{0.1cm} or \hspace{0.1cm} from \hspace{0.1cm} F_{C,block,\hspace{0.1cm} high} \hspace{0.1cm} to \hspace{0.1cm} the \hspace{0.1cm} upper \hspace{0.1cm} \textit{IS} \hspace{0.1cm} \textit{All} \hspace{0.1cm} \textit{UE} \hspace{0.1cm} \textit{All} \hspace{0.1cm} \textit{IS} \hspace{0.1cm} \textit{I$

sub-block edge

 $F_{offset,low}$ Frequency offset from $F_{C,low}$ to the lower UE RF Bandwidth edge, or from $F_{C,block, low}$ to the lower

sub-block edge

F_{OOB} The boundary between the NR out of band emission and spurious emission domains

 $\begin{array}{ll} F_{REF} & RF \ reference \ frequency \\ F_{REF-Offs} & Offset \ used \ for \ calculating \ F_{REF} \end{array}$

F_{REF,Shift} RF reference frequency for Supplementary Uplink (SUL) bands

F_{uw} (offset) The frequency separation of the centre frequency of the carrier closest to the interferer and the

centre frequency of the interferer

GB_{Channel} Minimum guard band defined in sub-clause 5.3.3

L_{CRB} Transmission bandwidth which represents the length of a contiguous resource block allocation

expressed in units of resources blocks

Max() The largest of given numbers Min() The smallest of given numbers n_{PRB} Physical resource block number

NR_{ACLR} NR ACLR

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{RB alloc} Total number of simultaneously transmitted resource blocks in Channel bandwidth or Aggregated

Channel Bandwidth configuration

N_{RB,low} The transmission bandwidth configurations according to Table 5.3.2-1 for the lowest assigned

component carrier in section 5.3A.1

 $N_{RB,high}$ The transmission bandwidth configurations according to Table 5.3.2-1 for the highest assigned

component carrier in section 5.3A.1

NR Absolute Radio Frequency Channel Number (NR-ARFCN)

 $N_{REF-Offs}$ Offset used for calculating N_{REF}

P_{CMAX} The configured maximum UE output power

 $P_{CMAX, c}$ The configured maximum UE output power for serving cell c

 $P_{CMAX, f, c}$ The configured maximum UE output power for carrier f of serving cell c in each slot

P_{EMAX} Maximum allowed UE output power signalled by higher layers

P_{EMAX, c} Maximum allowed UE output power signalled by higher layers for serving cell c

 $P_{Interferer}$ Modulated mean power of the interferer $P_{PowerClass}$ is the nominal UE power (i.e., no tolerance)

 $\begin{array}{ll} \text{P-MPR}_c & \text{Maximum allowed UE output power reduction for serving cell } c \\ \text{P}_{\text{RB}} & \text{The transmitted power per allocated RB, measured in dBm} \\ \text{P}_{\text{UMAX}} & \text{The measured configured maximum UE output power} \end{array}$

Puw Power of an unwanted DL signal Pw Power of a wanted DL signal

P_LCRB Number of transmitted resource blocks on the Primary Component Carrier

RB_{Start} Indicates the lowest RB index of transmitted resource blocks SCS_{low} SCS for the lowest assigned component carrier in section 5.3A.1 SCS_{high} SCS for the highest assigned component carrier in section 5.3A.1

S_L_{CRB} Number of transmitted resource blocks on the Secondary Component Carrier

 $T(P_{CMAX}, f, c)$ Tolerance for applicable values of P_{CMAX}, f, c for configured maximum UE output power for carrier

f of serving cell c

T_{L,c} Absolute value of the lower tolerance for the applicable *operating band* as specified in section

6.2.1

SS_{REF} SS block reference frequency position

UTRA_{ACLR} UTRA ACLR

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

BS Base Station
BW Bandwidth
BWP Bandwidth Part
CA Carrier Aggregation

CA_nX-nY Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable NR operating band

CC Component Carriers
CP-OFDM Cyclic Prefix-OFDM
CW Continuous Wave
DC Dual Connectivity

DFT-s-OFDM Discrete Fourier Transform-spread-OFDM

DM-RS Demodulation Reference Signal

DTX Discontinuous TransmissionE-UTRA Evolved UTRA

EVM Error Vector Magnitude FR Frequency Range FRC Fixed Reference Channel

GSCN Global Synchronization Channel Number

IBB In-band Blocking

IDFT Inverse Discrete Fourier Transformation

ITU-R Radiocommunication Sector of the International Telecommunication Union

MBW Measurement bandwidth defined for the protected band

MOP Maximum Output Power

MPR Allowed maximum power reduction
MSD Maximum Sensitivity Degradation

NR New Radio

NR-ARFCN NR Absolute Radio Frequency Channel Number

NS Network Signalling

OCNG OFDMA Channel Noise Generator

OOB Out-of-band

P-MPR Power Management Maximum Power Reduction

PRB Physical Resource Block

QAM Quadrature Amplitude Modulation

RE Resource Element
REFSENS Reference Sensitivity
RF Radio Frequency

RMS Root Mean Square (value)

RSRP Reference Signal Receiving Power

Rx Receiver

SC Single CarrierSCS Subcarrier spacing

SDL Supplementary Downlink
SEM Spectrum Emission Mask
SNR Signal-to-Noise Ratio
SRS Sounding Reference Symbol
SUL Supplementary uplink
SS Synchronization Symbol
TAE Time Alignment Error

Tx Transmitter

UL-MIMO Uplink Multiple Antenna transmission

4 General

4.1 Relationship between minimum requirements and test requirements

The TS 38.101-1 [2] is a Single-RAT specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the TS 38.101-1 [2] is demonstrated by fulfilling the test requirements specified in the present document.

The Minimum Requirements given in TS 38.101-1 [2] make no allowance for measurement uncertainty (MU). The present document defines test tolerances (TT) and measurement uncertainty. These test tolerances are individually defined for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by either the "Never fail a good DUT" principle for Test Tolerance equal measurement uncertainty (TT = MU) or "Shared Risk" principle for Test Tolerance equal to 0 (TT = 0). Test tolerances lower that measurement uncertainty and greater than 0 (TT = 0) are also considered in this specification.

The "Never fail a good DUT" and the "Shared Risk" principles are defined in Recommendation ITU-R M.1545 [7].

4.2 Applicability of minimum requirements

- a) In TS 38.101-1 [2] the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.
- d) All the requirements for intra-band contiguous and non-contiguous CA apply under the assumption of the same uplink-downlink and special subframe configurations in the PCell and SCells for SA. 3GPP3GPP

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level subclause, shown in Table 4.3-1.

 Clause suffix
 Variant

 None
 Single Carrier

 A
 Carrier Aggregation (CA)

 B
 Dual-Connectivity (DC)

 C
 Supplement Uplink (SUL)

 D
 UL MIMO

Table 4.3-1: Definition of suffixes

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffix A, B, C and D) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C and D) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

4.4 Test points analysis

The information on test point analysis and test point selection including number of test points for each test case is shown in TR 38.905 [11] clause 4.1.

5 Operating bands and Channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specification are identified as described in Table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	450 MHz – 6000 MHz
FR2	24250 MHz – 52600 MHz

The present specification covers FR1 operating bands.

5.2 Operating bands

NR is designed to operate in the FR1 operating bands defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR1

NR operating band	Uplink (UL) operating band BS receive / UE transmit FuL_low - FuL_high	Downlink (DL) operating band BS transmit / UE receive FDL_low - FDL_high	Duplex Mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD ¹
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780MHz	N/A	SUL

NOTE 1: UE that complies with the NR Band n50 minimum requirements in this specification. Shall also comply with the NR Band n51 minimum requirements.

NOTE 2: UE that complies with the NR Band n75 minimum requirements in this specification. Shall also comply with the NR Band n76 minimum requirements.

5.2A Operating bands for CA

5.2A.1 Intra-band CA

NR intra-band contiguous carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1, where all operating bands are within FR1.

Table 5.2A.1-1: Intra-band contiguous CA operating bands in FR1

NR CA Band	NR Band (Table 5.2-1)
CA_n77	n77
CA_n78	n78
CA_n79	n79

5.2A.2 Inter-band CA

NR inter-band carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.2-1, where all operating bands are within FR1.

Table 5.2A.2-1: Inter-band CA operating bands involving FR1 (two bands)

NR CA Band	NR Band (Table 5.2-1)
CA_n3-n77	n3, n77
CA_n3-n78	n3, n78
CA_n3-n79	n3, n79
CA_n8A-n75A	n8, n75
CA n8-n78	n8, n78
CA_n8-n79	n8, n79
CA_n28-n75 ²	n28, n75
CA_n28_n78	n28, n78
CA_n41-n78	n41, n78
CA_n75-n78 ¹	n75, n78
CA_n77-n79	n77, n79
CA_n78-n79	n78, n79
NOTE 1: Applicable for UE	supporting inter-band carrier
aggregation with mandatory simultaneous	

NOTE 1: Applicable for UE supporting inter-band carrier aggregation with mandatory simultaneous Rx/Tx capability.

NOTE 2: The frequency range in band n28 is restricted for this band combination to 703-733 MHz for the UL and 758-788 MHz for the DL.

5.2B Operating bands for DC

5.2B.1 General

NR dual connectivity is designed to operate in the operating bands defined in Table 5.2B.1-1, where all operating bands are within FR1.

Table 5.2B.1-1: Inter-band DC operating bands involving FR1 (two bands)

NR DC Band		NR Band (Table 5.2-1)
NOTE:	Applicable for UE supporting inter-band dual connectivity with mandatory simultaneous Rx/Tx capability.	

5.2C Operating band combination for SUL

NR operation is designed to operate in the operating band combination defined in Table 5.2C-1, where all operating bands are within FR1.

NR Band combination for SUL	NR Band (Table 5.2-1)
SUL_n78-n80 ²	n78, n80
SUL_n78-n81 ²	n78, n81
SUL_n78-n82 ²	n78, n82
SUL_n78-n83 ²	n78, n83
SUL_n78-n84 ²	n78, n84
SUL_n78-n86 ²	n78, n86
SUL_n79-n80 ²	n79, n80
SUL n79-n81 ²	n79 n81

Table 5.2C-1: Operating band combination for SUL in FR1

NOTE 1: If a UE is configured with both NR UL and NR SUL carriers in a cell, the switching time between NR UL carrier and NR SUL carrier is

NOTE 2: For UE supporting SUL band combination simultaneous Rx/Tx capability is mandatory.

5.3 UE channel bandwidth

5.3.1 General

The UE channel bandwidth supports a single NR RF carrier in the uplink or downlink at the UE. From a BS perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. Transmission of multiple carriers to the same UE (CA) or multiple carriers to different UEs within the BS channel bandwidth can be supported.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the BS channel bandwidth or how the BS allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the BS channel bandwidth.

The relationship between the channel bandwidth, the guardband and the maximum transmission bandwidth configuration is shown in Figure 5.3.1-1.

Figure 5.3.1-1: Definition of the channel bandwidth and the maximum transmission bandwidth configuration for one NR channel

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1.

Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}

SCS (kHz)	5MHz	10MHz	15MHz	20 MHz	25 MHz	30 MHz	40 MHz	50MHz	60 MHz	80 MHz	90 MHz	100 MHz
(KHZ)	N _{RB}	N _{RB}	N _{RB}	N_{RB}	N _{RB}	N _{RB}	N_{RB}	N _{RB}	N_{RB}	N _{RB}	N _{RB}	N_{RB}
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	217	245	273
60	N/A	11	18	24	31	38	51	65	79	107	121	135

5.3.3 Minimum guard band and transmission bandwidth configuration

The minimum guard band for each UE channel bandwidth and SCS is specified in Table 5.3.3-1.

Table 5.3.3-1: Minimum guard band for each UE channel bandwidth and SCS (kHz)

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50MHz	60 MHz	80 MHz	90 MHz	100 MHz
15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N/A	N/A	N/A	N/A
30	505	665	645	805	785	945	905	1045	825	925	885	845
60	N/A	1010	990	1330	1310	1290	1610	1570	1530	1450	1410	1370

NOTE: The minimum guard bands have been calculated using the following equation: (CHBW x 1000 (kHz) - RB value x SCS x 12) / 2 - SCS/2, where RB values are from Table 5.3.2-1.

Figure 5.3.3-1: Void

The number of RBs configured in any channel bandwidth shall ensure that the minimum guard band specified in this clause is met.

Figure 5.3.3-2: UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol due to transmission of SSB, the minimum guard band on each side of the carrier is the guard band applied at the configured channel bandwidth for the numerology that is received immediately adjacent to the guard.

If multiple numerologies are multiplexed in the same symbol and the UE channel bandwidth is >50 MHz, the minimum guard band applied adjacent to 15 kHz SCS shall be the same as the minimum guard band defined for 30 kHz SCS for the same UE channel bandwidth.

Figure 5.3.3-3: Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-3 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

5.3.4 RB alignment

For each numerology, its common resource blocks are specified in Section 4.4.4.3 in [8], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology. The *UE transmission bandwidth configuration* is indicated by the higher layer parameter *carrierBandwidth* [20] and will fulfil the minimum UE guard band requirement specified in Section 5.3.3.

5.3.5 UE channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the TX and RX path.

Table 5.3.5-1: Channel Bandwidths for Each NR band

					band /			annel b	andwic				
NR Band	SCS kHz	5 MHz	10 ^{1,2} MHz	15 ² MHz	20 ² MHz	25 ² MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
	15	Yes	Yes	Yes	Yes								
n1	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
	15	Yes	Yes	Yes	Yes								
n2	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n3	15	Yes	Yes	Yes	Yes	Yes	Yes						
	30		Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes						
n5	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
n7	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n8	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes									
n12	30		Yes	Yes									
	60												
n20	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes	Yes								
n25	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n28	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes									
n34	30		Yes	Yes									
	60		Yes	Yes								1	
n38	15	Yes	Yes	Yes	Yes							1	
	30			Yes	Yes								
	60		Yes	Yes	Yes							1	
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n39	30		Yes	Yes	Yes	Yes	Yes	Yes					
1100	60		Yes	Yes	Yes	Yes	Yes	Yes					
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
n40	30	. 50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
1170	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
n41	15		Yes	Yes	Yes	. 55	. 55	Yes	Yes	. 55	. 00		
	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
n50	15	Yes	Yes	Yes	Yes			Yes	Yes	169	169	163	169
1100	30	103	Yes	Yes	Yes			Yes	Yes	Yes	Yes ³		
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes ³		
n51	15	Yes	169	169	169			169	169	169	100		
1101	30	103											
nee	60	Yes	Voc	Voc	Voc			Voc					
n66	15	162	Yes	Yes	Yes			Yes					
	30		Yes	Yes	Yes			Yes	-				
n70	60	Voc	Yes	Yes	Yes Yes ³	Vc-3		Yes					
n70	15	Yes	Yes	Yes	Yes ³	Yes ³							
	30		Yes	Yes	Yes ³	Yes ³							
	60		Yes	Yes	Yes ³	Yes ³							

n71	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
n74	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n75	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n76	15	Yes											
	30												
	60												
	15		Yes	Yes	Yes			Yes	Yes				
n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	15		Yes	Yes	Yes			Yes	Yes				
n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	15							Yes	Yes				
n79	30							Yes	Yes	Yes	Yes		Yes
	60							Yes	Yes	Yes	Yes		Yes
	15	Yes	Yes	Yes	Yes	Yes	Yes						
n80	30		Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes						
	15	Yes	Yes	Yes	Yes								
n81	30		Yes	Yes	Yes								
	60		.,	.,	.,								
	15	Yes	Yes	Yes	Yes								
n82	30		Yes	Yes	Yes								
	60	V											
00	15	Yes	Yes	Yes	Yes								
n83	30		Yes	Yes	Yes								
	60	Vaa	\/	\/	\/								
-04	15	Yes	Yes	Yes	Yes								
n84	30	<u> </u>	Yes	Yes	Yes						ı		
		0	Yes	Yes	Yes			Voc					
-00	15	Yes	Yes	Yes	Yes			Yes					1
n86	30	-	Yes	Yes	Yes			Yes					
NOTE 4	60	1	Yes	Yes	Yes	L		Yes	<u> </u>				

NOTE 1: 90% spectrum utilization may not be achieved for 30kHz SCS.

NOTE 2: 90% spectrum utilization may not be achieved for 60kHz SCS.

NOTE 3: This UE channel bandwidth is applicable only to downlink.

NOTE 4: For test configuration tables from the transmitter and receiver tests in Section 6 and 7 that refer to this table for test SCS, the Lowest SCS refers to lowest supported SCS per channel bandwidth. Highest SCS refers to highest supported SCS per channel bandwidth.

NOTE 5: For test configuration tables from the transmitter and receiver tests in Section 6 and 7 that refer to this table and list and list the test SCS as Mid or any other value; if that value is not supported by the UE in UL and/or DL, select the closest SCS supported by the UE in both UL and DL.

5.3.6 Asymmetric channel bandwidths

The UE channel bandwidth can be asymmetric in downlink and uplink. In asymmetric channel bandwidth operation, the narrower carrier shall be confined within the frequency range of the wider channel bandwidth.

In FDD, the confinement is defined as a deviation to the default Tx-Rx carrier centre frequency separation (defined in Table 5.4.4-1) as following:

$$\Delta F_{TX\text{-}RX} = \mid (BW_{DL} - BW_{UL})/2 \mid$$

The operating bands and supported asymmetric channel bandwidth combinations are defined in Table 5.3.6-1.

Table 5.3.6-1: FDD asymmetric UL and DL channel bandwidth combinations

NR Band	Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)			
n66	5, 10	20, 40			
1100	20	40			
n70	5	10, 15			
n70	5, 10, 15	20, 25			
	5	10			
n71	10	15			
	15	20			

In TDD, the operating bands and supported asymmetric channel bandwidth combinations are defined in Table 5.3.6-2.

Table 5.3.6-2: TDD asymmetric UL and DL channel bandwidth combinations

NR Band	Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)
n50	60	80

5.3A UE channel bandwidth for CA

5.3A.1 General

Figure 5.3A.1-1: Void

Figure 5.3A.1-2: Void

5.3A.2 Maximum transmission bandwidth configuration for CA

For carrier aggregation, the maximum transmission bandwidth configuration is defined per component carrier and the requirement is specified in subclause 5.3.2.

5.3A.3 Minimum guard band and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, *Aggregated Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.3-1.

Figure 5.3A.3-1: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The aggregated channel bandwidth, BW_{Channel CA}, is defined as

$$BW_{Channel_CA}\!=F_{edge,high}$$
 - $F_{edge,low}$ (MHz).

The lower bandwidth edge $F_{\text{edge, low}}$ and the upper bandwidth edge $F_{\text{edge, high}}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{edge,low} = F_{C,low} - F_{offset,low}$$

$$F_{edge,high} = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$F_{offset,low} = (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB} (MHz)$$

$$F_{offset,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB} (MHz)$$

$$BW_{GB} = max(BW_{GB,Channel(k)})$$

 $BW_{GB,Channel(k)}$ is the minimum guard band defined in sub-clause 5.3.3 of carrier k, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.3-2.

Figure 5.3A.3-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth ($BW_{Channel,block}$) is defined as

$$F_{\text{edge,block, low}} = F_{\text{C,block,low}} - F_{\text{offset, low}}$$

The upper sub-block edge of the Sub-block Bandwidth is defined as

$$F_{edge,block,high} = F_{C,block,high} + F_{offset,high}$$

The Sub-block Bandwidth, $BW_{\text{Channel},\text{block}},$ is defined as follows:

$$BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$$

The lower and upper frequency offsets $F_{offset,block,low}$ and $F_{offset,block,high}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$\begin{split} F_{offset,block,low} &= (N_{RB,low}*12+1)*SCS_{low}/2 + BW_{GB}\,(MHz) \\ F_{offset,block,high} &= (N_{RB,high}*12-1)*SCS_{high}/2 + BW_{GB}(MHz) \\ BW_{GB} &= max(BW_{GB,Channel(k)}) \end{split}$$

where $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. $BW_{GB,Channel(k)}$ is the minimum guard band defined in sub-clause 5.3.3 of carrier k within a sub-block.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

$$W_{\text{gap}} = F_{\text{edge,block n+1,low -}} \, F_{\text{edge,block n,high}} \, (MHz)$$

5.3A.4 RB alignment with different numerologies for CA

5.3A.5 UE channel bandwidth per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations.

For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class with associated bandwidth combination sets specified in clause 5.5A.1. For each carrier aggregation configuration, requirements are specified for all aggregated channel bandwidths contained in a bandwidth combination set, a UE can indicate support of several bandwidth combination sets per carrier aggregation

configuration. For intra-band non-contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting two or more sub-blocks, each supporting a carrier aggregation bandwidth class.

For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.

Table 5.3A.4-1: CA bandwidth classes

NR CA bandwidth class	Aggregated channel bandwidth	Number of contiguous CC	Fallback group
Α	BW _{Channel_CA} ≤ BW _{Channel,max}	1	
В	20 MHz ≤ CBW ≤ 100 MHz	2	
С	100 MHz < BW _{Channel_CA} ≤ 2 x BW _{Channel,max}	2	1
D	200 MHz < BW _{Channel_CA} ≤ 3 x BW _{Channel,max}	3	
E	300 MHz < BW _{Channel_CA} ≤ 4 x BW _{Channel,max}	4	
F	50 MHz < BW _{Channel_CA} ≤ 100 MHz	2	2
G	100 MHz < BW _{Channel_CA} ≤ 150 MHz	3	
Н	150 MHz < BW _{Channel_CA} ≤ 200 MHz	4	
I	200 MHz < BW _{Channel_CA} ≤ 250 MHz	5	
J	250 MHz < BW _{Channel_CA} ≤ 300 MHz	6	
K	300 MHz < BW _{Channel_CA} ≤ 350 MHz	7	
L	350 MHz < BW _{Channel_CA} ≤ 400 MHz	8	

NOTE 1: BW_{Channel,max} is maximum channel bandwidth supported among all bands in a release

NOTE 2: It is mandatory for a UE to be able to fallback to lower order CA bandwidth class configuration within a fallback group. It is not mandatory for a UE to be able to fallback to lower order CA bandwidth class configuration that belong to a different fallback group

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

- For NR operating bands with 100 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

- For NR operating bands with 15 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-5kHz, 0kHz, 5kHz\}$

- For NR operating bands with 30 kHz channel raster,

Nominal Channel spacing = (BWChannel(1) + BWChannel(2))/2+{-10kHz, 0kHz, 10kHz}

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency channel raster defines a set of RF reference frequencies $F_{REF.}$ The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range (0.. 2016666] on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in Table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

$$F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of N _{REF}
0 – 3000	5	0	0	0 – 599999
3000 – 24250	15	3000	600000	600000 - 2016666

The channel raster defines a subset of RF reference frequencies that can be used to identify the RF channel position in the uplink and downlink. The RF reference frequency for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity Δ FRaster, which may be equal to or larger than Δ F $_{\text{Global}}$.

For SUL bands and for the uplink of FDD bands defined in Table 5.2-1.

$$F_{REF, shift} = F_{REF} + \Delta_{shift}$$
, $\Delta_{shift} = 0kHz$ or 7.5 kHz.

where Δ_{shift} is signalled by the network in higher layer parameter frequencyShift7p5khz [6].

The mapping between the channel raster and corresponding resource element is given in Section 5.4.2.2. The applicable entries for each operating band are defined in Section 5.4.2.3

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on the channel raster and the corresponding resource element is given in Table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the UE.

Table 5.4.2.2-1: Channel raster to resource element mapping

	$N_{\rm RB} \mod 2 = 0$	$N_{\rm RB} \mod 2 = 1$
Resource element index k	0	6
Physical resource block number $n_{ m PRB}$	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$

k, n_{PRB} , N_{RB} are as defined in TS 38.211[8].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in subclause 5.4.2.2.

For NR operating bands with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case every 20^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <20>.

For NR operating bands with 15 kHz channel raster below 3GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{3,6\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as < I >.

For NR operating bands with 15 kHz channel raster above 3GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1,2\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as < I >.

In frequency bands with two ΔF_{Raster} , the higher ΔF_{Raster} applies to channels using only the SCS that equals the higher ΔF_{Raster} .

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

NR	ΔF _{Raster}	Uplink	Downlink
Operating	(kHz)	Range of N _{REF}	Range of N _{REF}
Band		(First – <step size=""> – Last)</step>	(First – <step size=""> – Last)</step>
n1	100	384000 - <20> - 396000	422000 - <20> - 434000
n2	100	370000 - <20> - 382000	386000 - <20> - 398000
n3	100	342000 - <20> - 357000	361000 - <20> - 376000
n5	100	164800 - <20> - 169800	173800 – <20> – 178800
n7	100	500000 - <20> - 514000	524000 - <20> - 538000
n8	100	176000 - <20> - 183000	185000 - <20> - 192000
n12	100	139800 - <20> - 143200	145800 - <20> - 149200
n20	100	166400 - <20> - 172400	158200 - <20> - 164200
n25	100	370000 - <20> - 383000	386000 - <20> - 399000
n28	100	140600 - <20> - 149600	151600 - <20> - 160600
n34	100	402000 - <20> - 405000	402000 - <20> - 405000
n38	100	514000 - <20> - 524000	514000 - <20> - 524000
n39	100	376000 - <20> - 384000	376000 - <20> - 384000
n40	100	460000 - <20> - 480000	460000 - <20> - 480000
n41	15	499200 - <3> - 537999	499200 - <3> - 537999
	30	499200 - <6> - 537996	499200 - <6> - 537996
n51	100	285400 - <20> - 286400	285400 - <20> - 286400
n66	100	342000 - <20> - 356000	422000 - <20> - 440000
n70	100	339000 - <20> - 342000	399000 - <20> - 404000
n71	100	132600 - <20> - 139600	123400 - <20> - 130400
n75	100	N/A	286400 - <20> - 303400
n76	100	N/A	285400 - <20> - 286400
n77	15	620000 - <1> - 680000	620000 - <1> - 680000
	30	620000 - <2> - 680000	620000 - <2> - 680000
n78	15	620000 - <1> - 653333	620000 - <1> - 653333
	30	620000 - <2> - 653332	620000 - <2> - 653332
n79	15	693334 - <1> - 733333	693334 - <1> - 733333
	30	693334 - <2> - 733332	693334 - <2> - 733332
n80	100	342000 - <20> - 357000	N/A
n81	100	176000 - <20> - 183000	N/A
n82	100	166400 - <20> - 172400	N/A
n83	100	140600 - <20> -149600	N/A
n84	100	384000 - <20> - 396000	N/A
n86	100	342000 - <20> - 356000	N/A

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in subclause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block are defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Frequency range	SS Block frequency position SSREF	GSCN	Range of GSCN						
0 – 3000 MHz	N * 1200kHz + M * 50 kHz, N=1:2499, M ε {1,3,5} (Note 1)	[3N + (M-3)/2]	[2 – 7498]						
3000-24250 MHz	2400 MHz + N * 1.44 MHz N = 0:14756	[7499 + N]	[7499 – 22255]						
NOTE 1: The default value for operating bands with SCS spaced channel raster is M=3.									

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in Table 5.4.3.2-1. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL.

Table 5.4.3.2-1: Synchronization raster to SS block resource element mapping

Resource element index k	0
Physical resource block number $n_{ m PRB}$ of the SS block	$n_{\text{PRB}} = 10$

k, n_{PRB} , are as defined in TS 38.211[8].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is given in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NR Operating Band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last)</step>
n1	15kHz	Case A	5279 - <1> - 5419
n2	15kHz	Case A	4829 - <1> - 4969
n3	15kHz	Case A	4517 - <1> - 4693
n5	15kHz	Case A	2177 - <1> - 2230
no	30kHz	Case B	2183 - <1> - 2224
n7	15kHz	Case A	6554 – <1> – 6718
n8	15kHz	Case A	2318 - <1> - 2395
n12	15kHz	Case A	1828 – <1> – 1858
n20	15kHz	Case A	1982 – <1> – 2047
n25	15 kHz	Case A	4829 - <1> - 4981
n28	15kHz	Case A	1901 – <1> – 2002
n34	15kHz	Case A	5030 - <1> - 5056
n38	15kHz	Case A	6431 - <1> - 6544
n39	15kHz	Case A	4706 – <1> – 4795
n40	15kHz	Case A	5756 - <1> - 5995
n41	15kHz	Case A	6246 – <9> – 6714
	30 kHz	Case C	6252 - <3> - 6714
n51	15kHz	Case A	3572 - <1> - 3574
n66	15kHz	Case A	5279 - <1> - 5494
1100	30kHz	Case B	5285 - <1> - 5488
n70	15kHz	Case A	4993 - <1> - 5044
n71	15kHz	Case A	1547 – <1> – 1624
n74	15kHz	Case A	3692 - <1> - 3790
n75	15kHz	Case A	3584 - <1> - 3787
n76	15kHz	Case A	3572 - <1> - 3574
n77	30kHz	Case C	7711 – <1> – 8329
n78	30kHz	Case C	7711 – <1> – 8051
n79	30kHz	Case C	8480 - <16> - 8880
NOTE 1: SS Block pattern	is defined in section 4.1 in 7	S 38.213 [9]	

5.4.4 TX-RX frequency separation

The default TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation for operating bands is specified in Table 5.4.4-1.

NR Operating Band	TX – RX carrier centre frequency separation
n1	190 MHz
n2	80 MHz
n3	95 MHz
n5	45 MHz
n7	120 MHz
n8	45 MHz
n12	30 MHz
n20	-41 MHz
n25	80 MHz
n28	55 MHz
n66	400 MHz
n70	295,300 ¹ MHz
n71	-46 MHz
n74	48 MHz
NOTE 1: Default TX-RX carrier	centre frequency separation.

Table 5.4.4-1: Default UE TX-RX frequency separation

5.4A Channel arrangement for CA

5.4A.1 Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent NR component carriers is defined as the following unless stated otherwise:

For NR operating bands with 100 kHz channel raster:

Nominal channel spacing =
$$\frac{BW_{Channel(1)} + BW_{Channel(2)} - 2|GB_{Channel(1)} - GB_{Channel(2)}|}{0.6} = 0.3 \text{ [MHz]}$$

For NR operating bands with 15 kHz channel raster:

Nominal channel spacing =
$$\left[\frac{BW_{Channel(1)} + BW_{Channel(2)} - 2 |GB_{Channel(1)} - GB_{Channel(2)}|}{0.015 * 2^{n+1}} \right] 0.015 * 2^{n} \text{ [MHz]}$$

with

$$n = \max(\mu_1, \mu_2)$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 with values in MHz. and the $GB_{Channel(i)}$ is the minimum guard band defined in sub-clause 5.3.3, while μ_1 and μ_2 are the subcarrier spacing configurations of the component carriers as defined in TS 38.211. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause

5.4A.2 Channel raster for CA

For inter-band carrier aggregation, the channel raster requirements in subclause 5.4.2 apply for each operating band.

5.4A.3 Synchronization raster for CA

For inter-band carrier aggregation, the synchronization raster requirements in subclause 5.4.3 apply for each operating band.

5.4A.4 Tx-Rx frequency separation for CA

For inter-band carrier aggregation, the Tx-Rx frequency separation requirements in subclause 5.4.4 apply for each operating band.

5.5 Configurations

5.5A Configurations for CA

5.5A.1 Configurations for intra-band contiguous CA

Table 5.5A.1-1: NR CA configurations and bandwidth combination sets defined for intra-band contiguous CA for fallback group 1

NR CA configuration / Bandwidth combination set Component carriers in order of increasing carrier frequency												
	11111	Compone	nt carriers in o	order of increa			A					
NR CA configuration n Uplink CA configur ations		Channel bandwidths for carrier (MHz)	bandwidth s for carrier (MHz) chainer bandwidth s for carrier (MHz) chainer		Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Aggregat ed bandwidt h (MHz)	Bandwidth combination set				
		5	20									
CA ~71D		10	15				25	0				
CA_n71B		15	10				25	0				
		20	5									
		50	60				110					
		60	60				120					
		50	80				130					
CA_n77C		60	80				140					
CA_n78C		50	100				150	0				
CA_n79C		60	100				160					
		80	80				100					
		80	100				180					
		100	100				200					
		50	60	100			210					
		60	60	100			220					
		50	80	100			230					
		60	80	100			240					
CA_n77D,		50	100	100			250					
CA_n78D, CA_n79D		80	80	100			260	0				
_		80	90	100			270					
		80	100	100			280					
		90	100	100			290					
		100	100	100			300					

	50	60	100	100	310	
	60	60	100	100	320	
	50	80	100	100	330	
	60	80	100	100	340	
CA_n77E,	50	100	100	100	350	0
CA_n78E, CA_n79E	80	80	100	100	360	0
	80	90	100	100	370	
	80	100	100	100	380	
	90	100	100	100	390	
	100	100	100	100	400	

Table 5.5A-2: Void

5.5A.2 Configurations for intra-band non-contiguous CA

Detailed structure of the subclause is TBD.

5.5A.3 Configurations for inter-band CA

Table 5.5A.3-1: NR CA configurations and bandwidth combinations sets defined for inter-band CA (two bands)

NR CA configur ation	Uplink CA configur ation	NR Ban d	SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Band width comb inatio n set
			15	Yes	Yes	Yes	Yes	Yes	Yes							II Set
		n3	30	100	Yes	Yes	Yes	Yes	Yes							
CA_n3A-			60		Yes	Yes	Yes	Yes	Yes							<u> </u>
n77A	-		15		Yes	Yes	Yes			Yes	Yes					0
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	•
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	İ
			15	Yes	Yes	Yes	Yes	Yes	Yes							
		n3	30		Yes	Yes	Yes	Yes	Yes							İ
CA_n3A-	CA_n3A-		60		Yes	Yes	Yes	Yes	Yes							0
n78A	n78A		15		Yes	Yes	Yes			Yes	Yes					U
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes	Yes	Yes							
		n3	30		Yes	Yes	Yes	Yes	Yes							0
CA_n3A-	_		60		Yes	Yes	Yes	Yes	Yes							
n79A			15		Yes	Yes	Yes			Yes	Yes					
		n79	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
		n8	15	Yes	Yes	Yes	Yes									
			30		Yes	Yes	Yes									0
CA_n8A-	_		60													
n75A			15	Yes	Yes	Yes	Yes									
		n75	30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
			15	Yes	Yes	Yes	Yes									
		n8	30		Yes	Yes	Yes									
CA_n8A-	CA_n8A-		60													0
n78A	n78A		15		Yes	Yes	Yes			Yes	Yes					
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15	Yes	Yes	Yes	Yes									
0.4		n8	30		Yes	Yes	Yes									<u> </u>
CA_n8A-	-		60				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									0
n79A		70	15		Yes	Yes	Yes			Yes	Yes	V	\/a=	-	Vaa	}
		n79	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	}
		1	60	Voc	Yes	Yes	Yes			Yes	Yes	Yes	Yes	 	Yes	
CA =00A		-00	15	Yes	Yes	Yes	Yes							 		}
CA_n28A -n75A	-	n28	30 60		Yes	Yes	Yes			-		1	1	-		0
-1175A		75	15	Voc	Voc	Voc	Voc			-		1	1	-		
		n75	15	Yes	Yes	Yes	Yes									

			30		Yes	Yes	Yes									
			60		Yes	Yes	Yes									
			15	Yes	Yes	Yes	Yes									
		n28	30	162	Yes	Yes	Yes									,
CA_n28A	1120	60		162	162	162										
-n78A	-		15		Yes	Yes	Yes			Yes	Yes					0
-117 OA		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	,
		1176	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	,
			15		Yes	Yes	Yes			Yes	Yes	165	165	165	165	
		n41	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	
CA 541A		1141	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes		Yes	,
CA_n41A -n78A	-		15		Yes	Yes	Yes			Yes	Yes	165	165		165	0
-1170A		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	,
		1176	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	,
			15	Yes	Yes	Yes	Yes			165	165	165	165	165	165	
		n75	30	162	Yes	Yes	Yes									0
CA_n75A		11/3	60		Yes	Yes	Yes									
-n78A	-		15		Yes	Yes	Yes			Yes	Yes					
-117 OA		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	,
		n76	15	Yes	165	165	165			165	162	165	168	165	165	
		1176	30	165												
CA			60													
n76A-	-		15		Yes	Yes	Yes			Yes	Yes					0
n78A		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	,
		1176	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
			15		Yes	Yes	Yes			Yes	Yes	163	163	163	163	
		n77	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
CA_n77A		1177	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
-n79A	-		15		162	162	162			Yes	Yes	165	165	165	165	U
-117 3/4		n79	30							Yes	Yes	Yes	Yes		Yes	,
		1179	60							Yes	Yes	Yes	Yes		Yes	,
			15		Yes	Yes	Yes			Yes	Yes	165	165		165	
		n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
CA n784		1170	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
-n79A	CA_n78A		15		162	162	162			Yes	Yes	162	169	162	162	
-117 3/1		n70	30							Yes	Yes	Yes	Yes		Yes	
			60								Yes				Yes	
			UO	l	l			ļ	l	Yes	res	Yes	Yes]	res	

5.5B Configurations for DC

5.5C Configurations for SUL

Table 5.5C-1: Supported channel bandwidths per SUL band combination

SUL configurati on	NR Band	Subcarrier spacing (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Ban dwid th com bina tion set
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes] _
n80A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes							1
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1
n81A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
	n81	15	Yes	Yes	Yes	Yes									1
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
n82A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1 0
	n82	15	Yes	Yes	Yes	Yes									
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1 ,
n83A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	1 0
	n83	15	Yes	Yes	Yes	Yes									<u> </u>
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	
n84A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n84	15	Yes	Yes	Yes	Yes									1
		15		Yes	Yes	Yes			Yes	Yes					
SUL_n78A-	n78	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
n86A		60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes	0
	n86	15	Yes	Yes	Yes	Yes									
		15							Yes	Yes					
SUL_n79A- n80A	n79	30							Yes	Yes	Yes	Yes		Yes	0
		60							Yes	Yes	Yes	Yes		Yes	J
	n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
		15							Yes	Yes					
SUL_n79A-	n79	30							Yes	Yes	Yes	Yes		Yes	
n81A		60							Yes	Yes	Yes	Yes		Yes	0
-	n81	15	Yes	Yes	Yes	Yes									

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

Uplink RB allocations given in Table 6.1-1 are used throughout this section, unless otherwise stated by the test case.

Table 6.1-1: Common uplink configuration

						RB all	location			
Channel Bandwidth	SCS(kHz)	OFDM	Edge_Full_Left	Edge_Full_Right	Edge_1RB_Left	Edge_1RB_Right	Outer_Full	Inner_Full	Inner_1RB_Left	Inner_1RB_Right
	15	DFT-s	2@0	2@23	1@0	1@24	25@0	12@6	1@1	1@23
		CP DFT-s	2@0 2@0	2@23 2@9	1@0 1@0	1@24 1@10	25@0 10@0	13@6 5@2 ¹	1@1 1@1	1@23 1@9
5MHz	30	CP	2@0	2@9	1@0	1@10	11@0	5@2 ¹	1@1	1@9
	60	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		CP DFT-s	N/A 2@0	N/A 2@50	N/A 1@0	N/A 1@51	N/A 50@0	N/A 25@12	N/A 1@1	N/A 1@50
	15	CP	2@0	2@50	1@0	1@51	52@0	26@13	1@1	1@50
10MHz	30	DFT-s	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
		CP DFT-s	2@0 2@0	2@22 2@9	1@0 1@0	1@23 1@10	24@0 10@0	12@6 5@2 ¹	1@1 1@1	1@22 1@9
	60	CP	2@0	2@9	1@0	1@10	11@0	5@2 ¹	1@1	1@9
	15	DFT-s	2@0	2@77	1@0	1@78	75@0	36@18	1@1	1@77
		CP DFT-s	2@0 2@0	2@77 2@36	1@0 1@0	1@78 1@37	79@0 36@0	39@19 ¹ 18@9	1@1 1@1	1@77 1@36
15MHz	30	CP	2@0	2@36	1@0	1@37	38@0	19@9	1@1	1@36
	60	DFT-s	2@0	2@16	1@0	1@17	18@0	9@4	1@1	1@16
-	- 00	CP	2@0	2@16	1@0	1@17	18@0	9@4	1@1	1@16
	15	DFT-s CP	2@0 2@0	2@104 2@104	1@0 1@0	1@105 1@105	100@0 106@0	50@25 53@26	1@1 1@1	1@104 1@104
20MH-	30	DFT-s	2@0	2@49	1@0	1@50	50@0	25@12	1@1	1@49
20MHz	30	CP	2@0	2@49	1@0	1@50	51@0	25@12¹	1@1	1@49
	60	DFT-s CP	2@0 2@0	2@22 2@22	1@0 1@0	1@23 1@23	24@0 24@0	12@6 12@6	1@1 1@1	1@22 1@22
	45	DFT-s	2@0	2@131	1@0	1@132	128@0	64@32	1@1	1@131
	15	CP	2@0	2@131	1@0	1@132	133@0	67@33	1@1	1@131
25MHz	30	DFT-s CP	2@0	2@63	1@0	1@64	64@0	32@16	1@1	1@63
		DFT-s	2@0 2@0	2@63 2@29	1@0 1@0	1@64 1@30	65@0 30@0	33@16 15@7¹	1@1 1@1	1@63 1@29
	60	CP	2@0	2@29	1@0	1@30	31@0	15@7 ¹	1@1	1@29
	15	DFT-s	2@0	2@158	1@0	1@159	160@0	80@40	1@1	1@158
		DFT-s	2@0	2@158 2@76	1@0 1@0	1@159 1@77	160@0 75@0	80@40 36@18	1@1 1@1	1@158 1@76
30MHz	30	CP	2@0	2@76	1@0	1@77	78@0	39@19	1@1	1@76
	60	DFT-s	2@0	2@36	1@0	1@37	36@0	18@9	1@1	1@36
		CP DFT-s	2@0 2@0	2@36 2@214	1@0 1@0	1@37 1@215	38@0 216@0	19@9 108@54	1@1 1@1	1@36 1@214
	15	CP	2@0	2@214	1@0	1@215	216@0	108@54	1@1	1@214
40MHz	30	DFT-s	2@0	2@104	1@0	1@105	100@0	50@25	1@1	1@104
4011112		CP DET -	2@0	2@104 2@49	1@0	1@105	106@0	53@26	1@1	1@104 1@49
	60	DFT-s CP	2@0 2@0	2@49	1@0 1@0	1@50 1@50	50@0 51@0	25@12 25@12 ¹	1@1 1@1	1@49
	15	DFT-s	2@0	2@268	1@0	1@269	270@0	135@67	1@1	1@268
	10	CP	2@0	2@268	1@0	1@269	270@0	135@67	1@1	1@268
50MHz	30	DFT-s CP	2@0 2@0	2@131 2@131	1@0 1@0	1@132 1@132	128@0 133@0	64@32 67@33	1@1 1@1	1@131 1@131
	60	DFT-s	2@0	2@63	1@0	1@64	64@0	32@16	1@1	1@63
	60	CP	2@0	2@63	1@0	1@64	65@0	33@16	1@1	1@63
	15	DFT-s CP	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
001411		DFT-s	2@0	2@160	1@0	1@161	162@0	81@40	1@1	1@160
60MHz	30	CP	2@0	2@160	1@0	1@161	162@0	81@40	1@1	1@160
	60	DFT-s	2@0	2@77	1@0	1@78	75@0	36@18	1@1	1@77
		CP DFT-s	2@0 N/A	2@77 N/A	1@0 N/A	1@78 N/A	79@0 N/A	39@19 ¹ N/A	1@1 N/A	1@77 N/A
80MHz	15	CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

30	DFT-s	2@0	2@215	1@0	1@216	216@0	108@54	1@1	1@215
30	CP	2@0	2@215	1@0	1@216	217@0	109@54	1@1	1@215
60	DFT-s	2@0	2@105	1@0	1@106	100@0	50@25	1@1	1@105
60	CP	2@0	2@105	1@0	1@106	107@0	53@26 ¹	1@1	1@105
15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15	CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
30	DFT-s	2@0	2@243	1@0	1@244	240@0	120@60	1@1	1@243
	CP	2@0	2@243	1@0	1@244	245@0	123@61	1@1	1@243
60	DFT-s	2@0	2@119	1@0	1@120	120@0	60@30	1@1	1@119
	CP	2@0	2@119	1@0	1@120	121@0	61@30	1@1	1@119
4.5	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15	CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
20	DFT-s	2@0	2@271	1@0	1@272	270@0	135@67	1@1	1@271
30	CP	2@0	2@271	1@0	1@272	273@0	137@68	1@1	1@271
00	DFT-s	2@0	2@133	1@0	1@134	135@0	64@32	1@1	1@133
00	CP	2@0	2@133	1@0	1@134	135@0	67@33 ¹	1@1	1@133
		30 CP 60 DFT-s CP 15 CP 30 DFT-s CP 60 DFT-s CP 60 DFT-s CP 15 CP 15 CP 15 CP 15 CP 0 DFT-s CP 0 DFT-s CP DFT-s CP DFT-s	30	CP 2@0 2@215 60 DFT-s 2@0 2@105 CP 2@0 2@105 15 DFT-s N/A N/A CP N/A N/A N/A 30 DFT-s 2@0 2@243 CP 2@0 2@219 CP 2@0 2@119 CP 2@0 2@119 15 DFT-s N/A N/A CP N/A N/A OFT-s 2@0 2@271 CP 2@0 2@271 CP 2@0 2@271 DFT-s 2@0 2@2133	30 CP 2@0 2@215 1@0 60 DFT-s 2@0 2@105 1@0 CP 2@0 2@105 1@0 15 DFT-s N/A N/A N/A 30 DFT-s 2@0 2@243 1@0 CP 2@0 2@243 1@0 CP 2@0 2@119 1@0 CP 2@0 2@119 1@0 CP 2@0 2@119 1@0 DFT-s N/A N/A N/A AN/A N/A N/A N/A CP N/A N/A N/A DFT-s 2@0 2@271 1@0 CP 2@0 2@271 1@0 DFT-s 2@0 2@133 1@0	CP 2@0 2@215 1@0 1@216 60 DFT-s 2@0 2@105 1@0 1@106 CP 2@0 2@105 1@0 1@106 15 DFT-s N/A N/A N/A N/A 30 DFT-s 2@0 2@243 1@0 1@244 CP 2@0 2@243 1@0 1@244 60 DFT-s 2@0 2@119 1@0 1@120 CP 2@0 2@119 1@0 1@120 15 DFT-s N/A N/A N/A N/A CP N/A N/A N/A N/A 30 DFT-s 2@0 2@271 1@0 1@272 CP 2@0 2@271 1@0 1@272 CP 2@0 2@271 1@0 1@272 DFT-s 2@0 2@2133 1@0 1@134	CP 2@0 2@215 1@0 1@216 217@0 60 DFT-s 2@0 2@105 1@0 1@106 100@0 CP 2@0 2@105 1@0 1@106 107@0 15 DFT-s N/A N/A N/A N/A N/A 30 DFT-s 2@0 2@243 1@0 1@244 240@0 CP 2@0 2@243 1@0 1@244 245@0 60 DFT-s 2@0 2@119 1@0 1@120 120@0 CP 2@0 2@119 1@0 1@120 121@0 15 DFT-s N/A N/A N/A N/A N/A CP N/A N/A N/A N/A N/A N/A 30 DFT-s 2@0 2@271 1@0 1@272 270@0 CP 2@0 2@271 1@0 1@272 273@0 DFT-s 2@0 2@2133 1@0	CP 2@0 2@215 1@0 1@216 217@0 109@54 60 DFT-s 2@0 2@105 1@0 1@106 100@0 50@25 CP 2@0 2@105 1@0 1@106 107@0 53@26¹ 15 DFT-s N/A N/A N/A N/A N/A N/A 30 DFT-s 2@0 2@243 1@0 1@244 240@0 120@60 CP 2@0 2@243 1@0 1@244 245@0 123@61 60 DFT-s 2@0 2@119 1@0 1@120 120@0 60@30 CP 2@0 2@119 1@0 1@120 121@0 61@30 15 DFT-s N/A N/A N/A N/A N/A N/A 30 DFT-s 2@0 2@271 1@0 1@272 270@0 135@67 CP 2@0 2@271 1@0 1@272 273@0 137@68	CP 2@0 2@215 1@0 1@216 217@0 109@54 1@1 60 DFT-s 2@0 2@105 1@0 1@106 100@0 50@25 1@1 CP 2@0 2@105 1@0 1@106 107@0 53@26¹ 1@1 15 DFT-s N/A N/A

Note 1: The allocated RB number L_{CRB} is ceil(N_{RB}/2) -1 in order to meet Inner RB allocation definition (RB_{Start,Low} ≤ RB_{Start,High}) described in subclause 6.2.2 of TS 38.101-1 [2].

6.2 Transmitter power

6.2.1 UE maximum output power

6.2.1.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.2.1.3 Minimum conformance requirements

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth of NR carrier unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.1.3-1: UE Power Class

NR	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance
band	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
n1					23	± 2
n2					23	± 2 ³
n3					23	± 2 ³
n5					23	± 2
n7					23	± 2 ³
n8					23	± 2 ³
n12					23	± 2 ³
n20					23	± 2 ³
n25					23	± 2
n28					23	+2/-2.5
n34					23	± 2
n38					23	± 2
n39					23	± 2
n40					23	± 2
n41			26	+2/-3 ³	23	± 2 ³
n50					23	± 2
n51					23	± 2
n66					23	± 2
n70					23	± 2
n71					23	+2/-2.5
n74					23	± 2
n77			26	+2/-3	23	+2/-3
n78			26	+2/-3	23	+2/-3
n79			26	+2/-3	23	+2/-3
n80					23	± 2
n81					23	± 2
n82					23	± 2
n83					23	± 2/-2.5
n84					23	± 2
n86					23	± 2

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 2: Power class 3 is default power class unless otherwise stated

NOTE 3: Refers to the transmission bandwidths (Figure 5.3.3-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

If a UE supports a different power class than the default UE power class for the band and the supported power class enables the higher maximum output power than that of the default power class:

- if the field of UE capability *maxUplinkDutyCycle* is absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than 50% (The exact evaluation period is no less than one radio frame); or
- if the field of UE capability *maxUplinkDutyCycle* is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than *maxUplinkDutyCycle* as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); or
- if the IE *P-Max* as defined in TS 38.331 [6] is provided and set to the maximum output power of the default power class or lower;
 - shall apply all requirements for the default power class to the supported power class and set the configured transmitted power as specified in sub-clause 6.2.4;
- else if (the IE *P-Max* as defined in TS 38.331 [6] is not provided or set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to *maxUplinkDutyCycle* as defined in TS 38.331; or
- the IE *P-Max* as defined in TS 38.331 [6] is not provided or set to the higher value than the maximum output power of the default power class and the percentage of uplink symbols transmitted in a certain evaluation period is less than or equal to 50% when *maxUplinkDutyCycle* is absent. The exact evaluation period is no less than one radio frame):

- shall apply all requirements for the supported power class and set the configured transmitted power class as specified in sub-clause 6.2.4;

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.1.

6.2.1.4 Test description

6.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.1.4.1-1: Test Configuration Table

		Initial Conditions					
Test Environme [5] subclause 4.	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH					
Test Frequencie [5] subclause 4.	es as specified in TS 38.508-1 3.1	Low range, Mid range, High range					
Test Channel B 38.508-1 [5] sul	andwidths as specified in TS oclause 4.3.1	Lowest, Mid, Highest					
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest					
	Test Parameters						
Test ID	Downlink Configuration	Uplink Configura	ation				
	N/A for maximum output	Modulation (NOTE 2)	RB allocation (NOTE 1)				
1	power test case	DFT-s-OFDM PI/2 BPSK	Inner Full				
2		DFT-s-OFDM PI/2 BPSK	Inner 1RB Left				
3		DFT-s-OFDM PI/2 BPSK	Inner 1RB Right				
4		DFT-s-OFDM QPSK	Inner Full				
5		DFT-s-OFDM QPSK	Inner 1RB Left				
6		DFT-s-OFDM QPSK	Inner 1RB Right				
	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.1.4.3.

6.2.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level corresponding to Power Class 3.

- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.
- 4. For UEs supporting Power Class 2, repeat steps $1\sim3$ on the applicable bands except P_{UMAX} level in step 2 is corresponding to Power Class 2.

6.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions.

Table 6.2.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.2.1.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.1.5-1.

The maximum output power, derived in step 4 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.1.5-2.

Table 6.2.1.5-1: Maximum Output Power test requirement for Power Class 3

NR	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance
band	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
n1					23	±2±TT
n2					23	±2 ³ ±TT
n3					23	±2 ³ ±TT
n5					23	±2±TT
n7					23	±2 ³ ±TT
n8					23	±2 ³ ±TT
n12					23	±2 ³ ±TT
n20					23	±2 ³ ±TT
n25					23	±2±TT
n28					23	+2/-2.5
n34					23	±2±TT
n38					23	±2±TT
n39					23	±2±TT
n40					23	±2±TT
n41					23	± 2 ³ ±TT
n50					23	±2±TT
n51					23	±2±TT
n66					23	±2±TT
n70					23	±2±TT
n71					23	+2+TT/-2.5-
						TT
n74					23	±2±TT
n77					23	+2+TT/-3-TT
n78					23	+2+TT/-3-TT
n79					23	+2+TT/-3-TT
n80					23	±2±TT
n81					23	±2±TT
n82					23	±2±TT
n83					23	+2+TT/-2.5- TT
n84					23	±2±TT
n86					23	±2±TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 2: Power class 3 is default power class unless otherwise stated

NOTE 3: Refers to the transmission bandwidths (Figure 5.3.3-1) confined within F_{UL_low} and $FUL_low + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 4: TT for each frequency and channel bandwidth is specified in Table 6.2.1.5-3

Table 6.2.1.5-2: Maximum Output Power test requirement for Power Class 2

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)
n41			26	+2+TT/- 3 ³ -TT		
n77			26	+2+TT/-3- TT		
n78			26	+2+TT/-3- TT		
n79			26	+2+TT/-3- TT		

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 2: Power class 3 is default power class unless otherwise stated

NOTE 3: Refers to the transmission bandwidths (Figure 5.3.3-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB NOTE 4: TT for each frequency and channel bandwidth is specified in Table 6.2.1.5-3

Table 6.2.1.5-3: Test Tolerance (UE maximum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	0.7 dB	1.0 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0 dB

6.2.2 Maximum Power Reduction (MPR)

Editor's Note: The following aspects are either missing or not yet determined:

- There are still brackets and TBD left for PC 2 in the minimum requirement.

NOTE 1: - The minimum requirement for almost contiguous signals are not tested in the existing test points.

NOTE 2: - PC1 and PC4 requirements are not defined in RAN4 Rel-15 spec.

6.2.2.1 Test purpose

The number of RB identified in Table 6.2.2.3-1 is based on meeting the requirements for adjacent channel leakage ratio and the maximum power reduction (MPR) due to Cubic Metric (CM).

6.2.2.2 Test applicability

The requirements of this test apply in test cases 6.5.2.2. 1 Adjacent Channel Leakage power Ratio to all types of NR Power Class [2] and 3 UE release 15 and forward.

NOTE: As a result TC 6.2.2 has not been included in the test case applicability table 4.1.1-1, TS 38.522. This does not preclude the test from being used for R&D or other purposes if deemed useful.

6.2.2.3 Minimum conformance requirements

UE is allowed to reduce the maximum output power due to higher order modulations and transmit bandwidth configurations. For UE Power Class [2] and 3, the allowed maximum power reduction (MPR) is defined in Table 6.2.2.3-2 and 6.2.2.3-1, respectively for channel bandwidths that meets both following criteria:

- Channel bandwidth ≤ 100MHz.
- Relative channel bandwidth $\leq 4\%$ for TDD bands and $\leq 3\%$ for FDD bands.

Where relative channel bandwidth = $2*BW_{Channel}/(F_{UL_low} + F_{UL_high})$.

Table 6.2.2.3-1: Maximum Power Reduction (MPR) for Power 3

Modulation		MPR (dB)	
	Edge RB allocations	Outer RB allocations	Inner RB allocations
DFT-s-OFDM PI/2 BPSK	≤ 3.5 ¹	≤ 1.2 ¹	≤ 0.2 ¹
DF1-S-OFDIVIPI/2 BPSK	≤ (0^{2}	
DFT-s-OFDM QPSK	≤	0	
DFT-s-OFDM 16 QAM	≤	≤ 1	
DFT-s-OFDM 64 QAM		≤ 2.5	
DFT-s-OFDM 256 QAM		≤ 4.5	
CP-OFDM QPSK	≤	3	≤ 1.5
CP-OFDM 16 QAM	≤	3	≤ 2
CP-OFDM 64 QAM		≤ 3.5	
CP-OFDM 256 QAM		≤ 6.5	

NOTE 1: Applicable for UE operating in TDD mode with PI/2 PBSK modulation and UE indicates support for UE capability [powerBoosting-pi2BPSK] and if the IE powerBoostPi2BPSK is set to 1 and 40% or less slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. The reference power of 0dB MPR is 26dBm.

NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79 and if the IE *powerBoostPi2BPSK* is set to 0 and if more than 40% of slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79.

≤ 1.5

≤ 2

DFT-s-OFDM 256 QAM

CP-OFDM QPSK

CP-OFDM 16 QAM

CP-OFDM 64 QAM

CP-OFDM 256 QAM

Modulation MPR (dB) **Edge RB allocations Outer RB allocations** Inner RB allocations DFT-s-OFDM PI/2 BPSK ≤ 3.5 ≤ 0.5 0 DFT-s-OFDM QPSK ≤ 3.5 0 ≤ 1 DFT-s-OFDM 16 QAM ≤ 3.5 ≤ 2 ≤ 1 ≤ 2.5 DFT-s-OFDM 64 QAM ≤ 3.5

≤ 4.5

≤ 3

≤ 3

≤ 3.5

≤ 6.5

Table 6.2.2.3-2: Maximum Power Reduction (MPR) for Power Class 2

Where the following parameters are defined to specify valid RB allocation ranges for Outer and Inner RB allocations:

≤ 3.5

≤ 3.5

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

$$RB_{Start,Low} = max(1, floor(L_{CRB}/2))$$

where max() indicates the largest value of all arguments and floor(x) is the greatest integer less than or equal to x.

$$RB_{Start,High} = N_{RB} - RB_{Start,Low} - L_{CRB}$$

The RB allocation is an Inner RB allocation if the following conditions are met:

$$RB_{Start,Low} \leq RB_{Start} \leq RB_{Start,High}$$
, and

$$L_{CRB} \le ceil(N_{RB}/2)$$

where ceil(x) is the smallest integer greater than or equal to x.

An Edge RB allocation is one for which the RB's are allocated at the lowermost or uppermost edge of the channel with $LCRB \le 2 RB$'s.

The RB allocation is an Outer RB allocation for all other allocations which are not an Inner RB allocation or Edge RB allocation.

If CP-OFDM allocation satisfies following conditions it is considered as almost contiguous allocation

$$N_{RB_gap} \, / \, (N_{RB_alloc} + N_{RB_gap} \,) \leq 0.25$$

and $N_{RB_alloc} + N_{RB_gap}$ is larger than 106, 51 or 24 RBs for 15 kHz, 30 kHz or 60 kHz respectively where N_{RB_gap} is the total number of unallocated RBs between allocated RBs and N_{RB_alloc} is the total number of allocated RBs. The size and location of allocated and unallocated RBs are restricted by RBG parameters specified in sub-clause 6.1.2.2 of TS 38.214. For these almost contiguous signals in power class 3, the allowed maximum power reduction defined in Table 6.2.2-1 is increased by

CEIL(
$$10 \log_{10}(1 + N_{RB_gap}/N_{RB_alloc}), 0.5$$
) dB.

For almost contiguous signals in power class 2, the allowed maximum power reduction is TBD.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.4 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.2.

6.2.2.4 Test description

6.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in

table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table for Power Class 3

			Initial Conditions					
Test Env	rironment a	as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH					
[5] subcl		орожина и по остоос						
Test Fre		s specified in TS 38.508-1	Low range, High range					
Test Cha	annel Band	lwidths as specified in TS	Lowest, Highest					
38.508-1	[5] subcla	use 4.3.1	, 3					
Test SCS	S as specif	ied in Table 5.3.5-1	Lowest, Highest					
		Test Paran	neters for Channel Bandwidths					
Test ID	Freq	Downlink Configuration	Uplink Configu	ration				
		N/A for Maximum Power	Modulation (NOTE 2)	RB allocation (NOTE 1)				
1 ³	Default	Reduction (MPR) test case	DFT-s-OFDM PI/2 BPSK	Inner Full				
2 ³	Low		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left				
3 ³	High		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right				
4 ³	Default		DFT-s-OFDM PI/2 BPSK	Outer Full				
5 ⁴	Default		DFT-s-OFDM PI/2 BPSK	Inner Full				
6 ⁴	Low		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left				
7 ⁴	High		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right				
8 ⁴	Default		DFT-s-OFDM PI/2 BPSK	Outer Full				
9	Default		DFT-s-OFDM QPSK	Inner Full				
10	Low		DFT-s-OFDM QPSK	Edge_1RB_Left				
11	High		DFT-s-OFDM QPSK	Edge_1RB_Right				
12	Default		DFT-s-OFDM QPSK	Outer Full				
13	Default		DFT-s-OFDM 16 QAM	Inner Full				
14	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left				
15	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right				
16	Default		DFT-s-OFDM 16 QAM	Outer Full				
17	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left				
18	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right				
19	Default		DFT-s-OFDM 64 QAM	Outer Full				
20	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left				
21	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right				
22	Default		DFT-s-OFDM 256 QAM	Outer Full				
23	Default		CP-OFDM QPSK	Inner Full				
24	Low		CP-OFDM QPSK	Edge_1RB_Left				
25	High		CP-OFDM QPSK	Edge_1RB_Right				
26	Default		CP-OFDM QPSK	Outer Full				
27	Default		CP-OFDM 16 QAM	Inner Full				
28	Low		CP-OFDM 16 QAM	Edge_1RB_Left				
29	High		CP-OFDM 16 QAM	Edge_1RB_Right				
30	Default		CP-OFDM 16 QAM	Outer Full				
31	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left				
32	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right				
33	Default		CP-OFDM 64 QAM	Outer Full				
34	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left				
35	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right				
36	Default		CP-OFDM 256 QAM	Outer Full				

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. NOTE 3: UE operating in TDD mode with PI/2 PBSK modulation and UE indicates support for UE capability [powerBoosting-pi2BPSK] and the IE powerBoostPi2BPSK is set to 1 for bands n40, n41, n77, n78 and n79.

NOTE 4: UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79, or in TDD mode the IE powerBoostPi2BPSK is set to 0 for bands n40, n77, n78 and n79.

Table 6.2.2.4.1-2: Test Configuration Table for Power Class 2

			Initial Conditions	
[5] subcl	ause 4.1	s specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH	I
Test Fre [5] subcl	quencies a ause 4.3.1	s specified in TS 38.508-1	Low range, High range	
38.508-1	[5] subcla	widths as specified in TS use 4.3.1	Lowest, Highest	
Test SC	S as specif	ied in Table 5.3.5-1	Lowest, Highest	
			neters for Channel Bandwidths	
Test ID	Freq	Downlink Configuration	Uplink Config	uration
		N/A for Maximum Power	Modulation (NOTE 2)	RB allocation (NOTE 1)
1	Default	Reduction (MPR) test case	DFT-s-OFDM PI/2 BPSK	Inner Full
2	Low		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left
3	High		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right
4	Default		DFT-s-OFDM PI/2 BPSK	Outer Full
5	Default		DFT-s-OFDM QPSK	Inner Full
6	Low		DFT-s-OFDM QPSK	Edge_1RB_Left
7	High		DFT-s-OFDM QPSK	Edge_1RB_Right
8	Default		DFT-s-OFDM QPSK	Outer Full
9	Default		DFT-s-OFDM 16 QAM	Inner Full
10	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left
11	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right
12	Default		DFT-s-OFDM 16 QAM	Outer Full
13	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left
14	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right
15	Default		DFT-s-OFDM 64 QAM	Outer Full
16	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left
17	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right
18	Default		DFT-s-OFDM 256 QAM	Outer Full
19	Default		CP-OFDM QPSK	Inner Full
20	Low		CP-OFDM QPSK	Edge_1RB_Left
21	High		CP-OFDM QPSK	Edge_1RB_Right
22	Default		CP-OFDM QPSK	Outer Full
23	Default		CP-OFDM 16 QAM	Inner Full
24	Low		CP-OFDM 16 QAM	Edge_1RB_Left
25	High		CP-OFDM 16 QAM	Edge_1RB_Right
26	Default		CP-OFDM 16 QAM	Outer Full
27	Low		CP-OFDM 64 QAM	Edge_1RB_Left
28	High		CP-OFDM 64 QAM	Edge_1RB_Right
29	Default		CP-OFDM 64 QAM	Outer Full
30	Low		CP-OFDM 256 QAM	Edge_1RB_Left
31	High		CP-OFDM 256 QAM	Edge_1RB_Right
32	Default		CP-OFDM 256 QAM	Outer Full
			allocation is defined in Table 6.1-1.	o = 5.4
NOTE 2	DFT-s-O	FDM PI/2 BPSK test applies	only for UEs which supports half Pi BPS	SK in FR1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.2.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

6.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4.

6.2.2.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.2.5-1 and Table 6.2.2.5-4.

Table 6.2.2.5-1: UE Power Class test requirements(for Bands n1, n2, n3, n5, n7, n8, n12, n20, n25, n34, n38, n39, n40, n41, n50, n51, n66, n70, n74, n80, n81, n82, n84, n86) for Power Class 3

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	-3	0.2	0 (1.5²)	25.8 (24.3 ²)	2.0	2 (3.5 ²)	28.0 + TT	23.8 - TT (22.3 - TT ²)
2	23	-3	3.5	0 (1.5²)	22.5 (21.0 ²)	2.0	2 (3.5 ²)	28.0 + TT	20.5 - TT (19.0 - TT ²)
3	23	-3	3.5	0 (1.5²)	22.5 (21.0 ²)	2.0	2 (3.5 ²)	28.0 + TT	20.5 - TT (19.0 - TT ²)
4	23	-3	1.2	0 (1.5 ²)	24.8 (23.3²)	2.0	2 (3.5 ²)	28.0 + TT	22.8 - TT (21.3 - TT ²)
5	23	0	0	0 (1.5 ²)	23.0 (21.5 ²)	2.0	2 (3.5 ²)	25.0 + TT	21.0 - TT (19.5 - TT ²)
6	23	0	0.5	0 (1.5 ²)	22.5 (21.0 ²)	2.0	2 (3.5 ²)	25.0 + TT	20.5 - TT (19.0 - TT ²)
7	23	0	0.5	0 (1.5 ²)	22.5 (21.0 ²)	2.0	2 (3.5 ²)	25.0 + TT	20.5 - TT (19.0 - TT ²)
8	23	0	0.5	0 (1.5 ²)	22.5 (21.0 ²)	2.0	2 (3.5 ²)	25.0 + TT	20.5 - TT (19.0 - TT ²)
9	23	0	0	0 (1.5 ²)	23.0 (21.5²)	2.0	2 (3.5 ²)	25.0 + TT	21.0 - TT (19.5 - TT ²)
10	23	0	1	0 (1.5 ²)	22.0 (20.5²)	2.0 (2.5²)	2 (3.5 ²)	25.0 + TT	20.0 - TT (18.0 - TT ²)
11	23	0	1	0 (1.5 ²)	22.0 (20.5²)	2.0 (2.5²)	2 (3.5 ²)	25.0 + TT	20.0 - TT (18.0 - TT ²)
12	23	0	1	0 (1.5²)	22.0 (20.5²)	2.0 (2.5²)	2 (3.5 ²)	25.0 + TT	20.0 - TT (18.0 - TT ²)
13	23	0	1	0 (1.5 ²)	22.0 (20.5²)	2.0 (2.5²)	2 (3.5 ²)	25.0 + TT	20.0 - TT (18.0 - TT ²)
14	23	0	2	0 (1.5 ²)	21.0 (19.5²)	2.0 (3.5 ²)	2 (3.5 ²)	25.0 + TT	19.0 - TT (16.0 - TT ²)
15	23	0	2	0 (1.5²)	21.0 (19.5²)	2.0 (3.5 ²)	2 (3.5 ²)	25.0 + TT	19.0 - TT (16.0 - TT ²)
16	23	0	2	0 (1.5 ²)	21.0 (19.5²)	2.0 (3.5 ²)	2 (3.5 ²)	25.0 + TT	19.0 - TT (16.0 - TT ²)
17	23	0	2.5	0 (1.5²)	20.5 (19.0²)	2.5 (3.5 ²)	2 (3.5 ²)	25.0 + TT	18.0 - TT (15.5 - TT ²)
18	23	0	2.5	0 (1.5 ²)	20.5 (19.0²)	2.5 (3.5 ²)	2 (3.5 ²)	25.0 + TT	18.0 - TT (15.5 - TT ²)
19	23	0	2.5	0 (1.5²)	20.5 (19.0²)	2.5 (3.5 ²)	2 (3.5 ²)	25.0 + TT	18.0 - TT (15.5 - TT ²)
20	23	0	4.5	0 (1.5 ²)	18.5 (17.0 ²)	4.0 (5.0²)	2 (3.5 ²)	25.0 + TT	14.5 - TT (12.0 - TT ²)
21	23	0	4.5	0 (1.5 ²)	18.5 (17.0 ²)	4.0 (5.0²)	2 (3.5 ²)	25.0 + TT	14.5 - TT (12.0 - TT ²)

23	0	4.5	0	(1.5 ²)	18.5	(17.0²)	4.0	(5.0 ²)	2	(3.52)	25.0 + TT	14.5 - TT	(12.0 - TT ²)
23	0	1.5	0	(1.52)	21.5	(20.0²)	2.0	(2.5 ²)	2	(3.52)	25.0 + TT	19.5 - TT	(17.5 - TT ²)
23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	2.5	(4.02)	2	(3.52)	25.0 + TT	17.5 - TT	(14.5 - TT ²)
23	0	3	0	(1.52)	20.0	(18.5 ²)	2.5	(4.02)	2	(3.52)	25.0 + TT	17.5 - TT	(14.5 - TT ²)
23	0	3	0	(1.52)	20.0	(18.5 ²)	2.5	(4.02)	2	(3.52)	25.0 + TT	17.5 - TT	(14.5 - TT ²)
23	0	2	0	(1.5 ²)	21.0	(19.5 ²)	2.0	(3.52)	2	(3.52)	25.0 + TT	19.0 - TT	(16.0 - TT ²)
23	0	3	0	(1.52)	20.0	(18.5 ²)	2.5	(4.02)	2	(3.52)	25.0 + TT	17.5 - TT	(14.5 - TT ²)
23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	2.5	(4.02)	2	(3.52)	25.0 + TT	17.5 - TT	(14.5 - TT ²)
23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	2.5	(4.02)	2	(3.52)	25.0 + TT	17.5 - TT	(14.5 - TT ²)
23	0	3.5	0	(1.52)	19.5	(18.0 ²)	3.5	(4.02)	2	(3.52)	25.0 + TT	TT	(14.0 - TT ²)
23	0	3.5	0	(1.5 ²)	19.5	(18.0 ²)	3.5	(4.02)	2	(3.52)	25.0 + TT	16.0 - TT	(14.0 - TT ²)
23	0	3.5	0	(1.5 ²)	19.5	(18.0 ²)	3.5	(4.02)	2	(3.52)	25.0 + TT	16.0 - TT	(14.0 - TT ²)
23	0	6.5	0	(1.5 ²)	16.5	(15.0 ²)	5.0		2	(3.52)	25.0 + TT	11.5 - TT	(10.0 - TT ²)
23	0	6.5	0	(1.5 ²)	16.5	(15.0 ²)	5.0		2	(3.52)	25.0 + TT	11.5 - TT	(10.0 - TT ²)
23	0	6.5	0	(1.5 ²)	16.5	(15.0 ²)	5.0		2	(3.52)	25.0 + TT	11.5 - TT	(10.0 - TT ²)
	23 23 23 23 23 23 23 23 23 23 23 23 23 2	23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0	23 0 1.5 23 0 3 23 0 3 23 0 3 23 0 2 23 0 3 23 0 3 23 0 3 23 0 3.5 23 0 3.5 23 0 3.5 23 0 6.5 23 0 6.5	23 0 1.5 0 23 0 3 0 23 0 3 0 23 0 3 0 23 0 2 0 23 0 3 0 23 0 3 0 23 0 3.5 0 23 0 3.5 0 23 0 3.5 0 23 0 6.5 0 23 0 6.5 0 23 0 6.5 0	23 0 1.5 0 (1.5²) 23 0 3 0 (1.5²) 23 0 3 0 (1.5²) 23 0 3 0 (1.5²) 23 0 2 0 (1.5²) 23 0 3 0 (1.5²) 23 0 3 0 (1.5²) 23 0 3.5 0 (1.5²) 23 0 3.5 0 (1.5²) 23 0 3.5 0 (1.5²) 23 0 6.5 0 (1.5²) 23 0 6.5 0 (1.5²)	23 0 1.5 0 (1.5²) 21.5 23 0 3 0 (1.5²) 20.0 23 0 3 0 (1.5²) 20.0 23 0 3 0 (1.5²) 20.0 23 0 2 0 (1.5²) 21.0 23 0 3 0 (1.5²) 20.0 23 0 3 0 (1.5²) 20.0 23 0 3.5 0 (1.5²) 20.0 23 0 3.5 0 (1.5²) 19.5 23 0 3.5 0 (1.5²) 19.5 23 0 3.5 0 (1.5²) 19.5 23 0 3.5 0 (1.5²) 19.5 23 0 6.5 0 (1.5²) 16.5 23 0 6.5 0 (1.5²) 16.5	23 0 1.5 0 (1.5²) 21.5 (20.0²) 23 0 3 0 (1.5²) 20.0 (18.5²) 23 0 3 0 (1.5²) 20.0 (18.5²) 23 0 3 0 (1.5²) 20.0 (18.5²) 23 0 2 0 (1.5²) 21.0 (19.5²) 23 0 3 0 (1.5²) 20.0 (18.5²) 23 0 3 0 (1.5²) 20.0 (18.5²) 23 0 3.5 0 (1.5²) 20.0 (18.5²) 23 0 3.5 0 (1.5²) 19.5 (18.0²) 23 0 3.5 0 (1.5²) 19.5 (18.0²) 23 0 3.5 0 (1.5²) 19.5 (18.0²) 23 0 6.5 0 (1.5²) 16.5 (15.0²) 23 0 6.5 0 (1.5²) 16.5 (15.0²)	23 0 1.5 0 (1.5²) 21.5 (20.0²) 2.0 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 23 0 2 0 (1.5²) 21.0 (19.5²) 2.0 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 23 0 6.5 0 (1.5²) 16.5	23 0 1.5 0 (1.5²) 21.5 (20.0²) 2.0 (2.5²) 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 (4.0²) 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 (4.0²) 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 (4.0²) 23 0 2 0 (1.5²) 20.0 (18.5²) 2.5 (4.0²) 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 (4.0²) 23 0 3 0 (1.5²) 20.0 (18.5²) 2.5 (4.0²) 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 (4.0²) 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 (4.0²) 23 0 3.5 0 (1.5²) 19.5 (18.0²) 3.5 (4.0²) 23 0 3.5 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 2: For Band n2, n3, n7, n8, 12, 20, n41, transmission bandwidths (Figure 5.3.3-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high}.

NOTE 3: TT for each frequency and channel bandwidth is specified in Table 6.2.2.5-5.

Table 6.2.2.5-2: UE Power Class test requirements(for Bands n28, n71, n83) for Power Class 3

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
5	23	0	0	0	23.0	2.0	2.5	25.0 + TT	20.5 - TT
6	23	0	0.5	0	22.5	2.0	2.5	25.0 + TT	20.0 - TT
7	23	0	0.5	0	22.5	2.0	2.5	25.0 + TT	20.0 - TT
8	23	0	0.5	0	22.5	2.0	2.5	25.0 + TT	20.0 - TT
9	23	0	0	0	23.0	2.0	2.5	25.0 + TT	20.5 - TT
10	23	0	1	0	22.0	2.0	2.5	25.0 + TT	19.5 - TT
11	23	0	1	0	22.0	2.0	2.5	25.0 + TT	19.5 - TT
12	23	0	1	0	22.0	2.0	2.5	25.0 + TT	19.5 - TT
13	23	0	1	0	22.0	2.0	2.5	25.0 + TT	19.5 - TT
14	23	0	2	0	21.0	2.0	2.5	25.0 + TT	18.5 - TT
15	23	0	2	0	21.0	2.0	2.5	25.0 + TT	18.5 - TT
16	23	0	2	0	21.0	2.0	2.5	25.0 + TT	18.5 - TT
17	23	0	2.5	0	20.5	2.5	2.5	25.0 + TT	18.0 - TT
18	23	0	2.5	0	20.5	2.5	2.5	25.0 + TT	18.0 - TT
19	23	0	2.5	0	20.5	2.5	2.5	25.0 + TT	18.0 - TT
20	23	0	4.5	0	18.5	4.0	2.5	25.0 + TT	14.5 - TT
21	23	0	4.5	0	18.5	4.0	2.5	25.0 + TT	14.5 - TT
22	23	0	4.5	0	18.5	4.0	2.5	25.0 + TT	14.5 - TT
23	23	0	1.5	0	21.5	2.0	2.5	25.0 + TT	19.0 - TT
24	23	0	3	0	20.0	2.5	2.5	25.0 + TT	17.5 - TT
25	23	0	3	0	20.0	2.5	2.5	25.0 + TT	17.5 - TT
26	23	0	3	0	20.0	2.5	2.5	25.0 + TT	17.5 - TT
27	23	0	2	0	21.0	2.0	2.5	25.0 + TT	18.5 - TT
28	23	0	3	0	20.0	2.5	2.5	25.0 + TT	17.5 - TT
29	23	0	3	0	20.0	2.5	2.5	25.0 + TT	17.5 - TT
30	23	0	3	0	20.0	2.5	2.5	25.0 + TT	17.5 - TT
31	23	0	3.5	0	19.5	3.5	2.5	25.0 + TT	16.0 - TT
32	23	0	3.5	0	19.5	3.5	2.5	25.0 + TT	16.0 - TT
33	23	0	3.5	0	19.5	3.5	2.5	25.0 + TT	16.0 - TT
34	23	0	6.5	0	16.5	5.0	2.5	25.0 + TT	11.5 - TT
35	23	0	6.5	0	16.5	5.0	2.5	25.0 + TT	11.5 - TT
36	23	0	6.5	0	16.5	5.0	2.5	25.0 + TT	11.5 - TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2.2.5-5.

Table 6.2.2.5-3: UE Power Class test requirements (for Bands n77, n78, n79) for Power Class 3

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	-3	0.2	0	25.8	2.0	3	28.0 + TT	22.8 - TT
2	23	-3	3.5	0	22.5	2.0	3	28.0 + TT	19.5 - TT
3	23	-3	3.5	0	22.5	2.0	3	28.0 + TT	19.5 - TT
4	23	-3	1.2	0	24.8	2.0	3	28.0 + TT	21.8 - TT
5	23	0	0	0	23.0	2.0	3	25.0 + TT	20.0 - TT
6	23	0	0.5	0	22.5	2.0	3	25.0 + TT	19.5 - TT
7	23	0	0.5	0	22.5	2.0	3	25.0 + TT	19.5 - TT
8	23	0	0.5	0	22.5	2.0	3	25.0 + TT	19.5 - TT
9	23	0	0	0	23.0	2.0	3	25.0 + TT	20.0 - TT
10	23	0	1	0	22.0	2.0	3	25.0 + TT	19.0 - TT
11	23	0	1	0	22.0	2.0	3	25.0 + TT	19.0 - TT
12	23	0	1	0	22.0	2.0	3	25.0 + TT	19.0 - TT
13	23	0	1	0	22.0	2.0	3	25.0 + TT	19.0 - TT
14	23	0	2	0	21.0	2.0	3	25.0 + TT	18.0 - TT
15	23	0	2	0	21.0	2.0	3	25.0 + TT	18.0 - TT
16	23	0	2	0	21.0	2.0	3	25.0 + TT	18.0 - TT
17	23	0	2.5	0	20.5	2.5	3	25.0 + TT	17.5 - TT
18	23	0	2.5	0	20.5	2.5	3	25.0 + TT	17.5 - TT
19	23	0	2.5	0	20.5	2.5	3	25.0 + TT	17.5 - TT
20	23	0	4.5	0	18.5	4.0	3	25.0 + TT	14.5 - TT
21	23	0	4.5	0	18.5	4.0	3	25.0 + TT	14.5 - TT
22	23	0	4.5	0	18.5	4.0	3	25.0 + TT	14.5 - TT
23	23	0	1.5	0	21.5	2.0	3	25.0 + TT	18.5 - TT
24	23	0	3	0	20.0	2.5	3	25.0 + TT	17.0 - TT
25	23	0	3	0	20.0	2.5	3	25.0 + TT	17.0 - TT
26	23	0	3	0	20.0	2.5	3	25.0 + TT	17.0 - TT
27	23	0	2	0	21.0	2.0	3	25.0 + TT	18.0 - TT
28	23	0	3	0	20.0	2.5	3	25.0 + TT	17.0 - TT
29	23	0	3	0	20.0	2.5	3	25.0 + TT	17.0 - TT
30	23	0	3	0	20.0	2.5	3	25.0 + TT	17.0 - TT
31	23	0	3.5	0	19.5	3.5	3	25.0 + TT	16.0 - TT
32	23	0	3.5	0	19.5	3.5	3	25.0 + TT	16.0 - TT
33	23	0	3.5	0	19.5	3.5	3	25.0 + TT	16.0 - TT
34	23	0	6.5	0	16.5	5.0	3	25.0 + TT	11.5 - TT
35	23	0	6.5	0	16.5	5.0	3	25.0 + TT	11.5 - TT
36	23	0	6.5	0	16.5	5.0	3	25.0 + TT	11.5 - TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2.2.5-5.

Table 6.2.2.5-4: UE Power Class test requirements (for Bands n41, n77, n78, n79) for Power Class 2

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	26	0	0	0 (1.5 ²)	26.0 (24.5²)	2.0	3 (4.5²)	28.0 + TT	23.0 - TT (21.5 - TT²)
2	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5²)	28.0 + TT	19.5 - TT (18.0 - TT²)
3	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5²)	28.0 + TT	19.5 - TT (18.0- TT²)
4	26	0	0.5	0 (1.5 ²)	25.5 (24.0²)	2.0	3 (4.5 ²)	28.0 + TT	22.5 - TT (21.0 - TT²)
5	26	0	0	0 (1.5 ²)	26.0 (24.5²)	2.0	3 (4.5 ²)	28.0 + TT	23.0 - TT (21.5 - TT²)
6	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
7	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
8	26	0	1	0 (1.5 ²)	25.0 (23.5²)	2.0	3 (4.5²)	28.0 + TT	22.0 - TT (20.5 - TT²)
9	26	0	1	0 (1.5 ²)	25.0 (23.5²)	2.0	3 (4.5 ²)	28.0 + TT	22.0 - TT (20.5 - TT²)
10	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
11	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
12	26	0	2	0 (1.5 ²)	24.0 (22.5²)	2.0	3 (4.5 ²)	28.0 + TT	21.0 - TT (19.5 - TT²)
13	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
14	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0- TT²)
15	26	0	2.5	0 (1.5 ²)	23.5 (22.0²)	2.0	3 (4.5 ²)	28.0 + TT	20.5 - TT (19.0 - TT²)
16	26	0	4.5	0 (1.5 ²)	21.5 (20.0²)	2.0 (2.5²)	3 (4.5 ²)	28.0 + TT	18.5 - TT (17.0 - TT²)
17	26	0	4.5	0 (1.5 ²)	21.5 (20.0²)	2.0 (2.5²)	3 (4.5 ²)	28.0 + TT	18.5 - TT (17.0 - TT²)
18	26	0	4.5	0 (1.5 ²)	21.5 (20.0²)	2.0 (2.5²)	3 (4.5 ²)	28.0 + TT	18.5 - TT (17.0 - TT²)
19	26	0	1.5	0 (1.5 ²)	24.5 (23.0²)	2.0	3 (4.5 ²)	28.0 + TT	21.5 - TT (20.0 - TT²)
20	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (20.0 - TT²)
21	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
22	26	0	3	0 (1.5 ²)	23.0 (21.5²)	2.0	3 (4.5 ²)	28.0 + TT	20.0 - TT (18.5 - TT²)
23	26	0	2	0 (1.5 ²)	24.0 (22.5²)	2.0	3 (4.5 ²)	28.0 + TT	21.0 - TT (19.5 - TT²)
24	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
25	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
26	26	0	3	0 (1.5²)	23.0 (21.5²)	2.0	3 (4.5 ²)	28.0 + TT	20.0 - TT (18.5 - TT²)
27	26	0	3.5	0 (1.5²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
28	26	0	3.5	0 (1.5 ²)	22.5 (21.0 ²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT ²)
29	26	0	3.5	0 (1.5²)	22.5 (21.0²)	2.0	3 (4.5 ²)	28.0 + TT	19.5 - TT (18.0 - TT²)
30	26	0	6.5	0 (1.5 ²)	19.5 (18.0 ²)	3.5 (4.0²)	3 (4.5 ²)	28.0 + TT	16.0 - TT (14.0 - TT²)

31	26	0	6.5	0 (1.5 ²)	19.5 (18.0 ²)	3.5 (4.0²)	3 (4.5 ²)	28.0 + TT	16.0 - TT (14.0 - TT²)
32	26	0	6.5	0 (1.52)	19.5 (18.0 ²)	3.5 (4.0 ²)	3 (4.5 ²)	28.0 + TT	16.0 - TT (14.0 - TT²)

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 2: For Band n41, transmission bandwidths (Figure 5.3.3-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high}.

NOTE 3: TT for each frequency and channel bandwidth is specified in Table 6.2.2.5-5.

Table 6.2.2.5-5: Test Tolerance (Maximum Power Reduction (MPR))

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	0.7 dB	1.0 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0 dB

6.2.3 UE additional maximum output power reduction

Editor's note: The following aspects are either missing or not yet determined:

- Tests for network signalling values NS_03, NS_04, NS_10, NS_05, NS_08; NS_07, NS_40 and NS_09 not complete.

6.2.3.1 Test purpose

Additional emission requirements can be signalled by the network. Each additional emission requirement is associated a unique with network signalling (NS) value indicated in RRC signalling by an NR frequency band number of the applicable operating band and an associated value in the field *additionalSpectrumEmission*. Throughout this specification, the notion of indication or signalling of an NS value refers to the corresponding indication of an NR frequency band number of the applicable operating band (the IE *freqBandIndicatorNR*) and an associated value of *additionalSpectrumEmission* in the relevant RRC information elements [6].

To meet the additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table 6.2.1.3-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

6.2.3.2 Test applicability

The requirements of this test apply in test case 6.5.2.3 Additional Spectrum Emission mask for network signalled values NS_03, NS_03U, NS_04, NS_06, NS_35, NS_41 and NS_42, NS_40 to all types of NR UE release 15 and forward.

The requirements of this test apply in test case 6.5.3.3 Additional Spurious Emissions for network signalled values NS_05, NS_05U, NS_08U, NS_17, NS_18, NS_37, NS_38 and NS_39 to all types of NR UE release 15 and forward.

6.2.3.3 Minimum conformance requirements

6.2.3.3.1 General

Table 6.2.3.3.1-1 specifies for UE Power Class 3 the additional requirements requirements with their associated network signalling values and the allowed A-MPR and applicable operating band(s) for each NS value. The mapping of NR frequency band numbers and values of the *additionalSpectrumEmission* is specified in Table 6.2.3.3.1-1A. Unless otherwise stated, the allowed A-MPR is in addition to the allowed MPR specified in subclause 6.2.2.

Table 6.2.3.3.1-1: Additional maximum power reduction (A-MPR)

Network Signalling label	Requirements (subclause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)	Value of additional Spectrum Emission
NS_01		Table 5.2-1			N/A	1
NS_03	6.5.2.3.3	n2, n25, n66 n70			Table 6.2.3.3.7-1	3
NS_03U	6.5.2.3.3.3, 6.5.2.4.2	n2, n25, n66			FFS	
NS_04	6.5.2.3.3.2	n41	10, 15, 20, 40, 50, 60, 80, 100		Subclause 6.2.3.3.2	4
NS_05	6.5.3.3.3.3	n1, n84	5, 10, 15, 20 ⁵		Subclause 6.2.3.3.4	
NS_05U	6.5.3.3.3.3, 6.5.2.4.2	n1, n84	5, 10, 15, 20		FFS	
NS_06	6.5.2.3.3.4	n12	5, 10, 15	5.3.5	N/A	2
NS_08	6.5.3.3.3.4	n8, n81	5, 10, 15		Subclause 6.2.3.3.6	NS_08
NS_08U	6.5.3.3.3.4, 6.5.2.4.2	n8, n81	5, 10, 15		FFS	NS_08U
NS_10		n20, n82	15, 20	Table 6.2.3.3.3- 1	Table 6.2.3.3.3-1	NS_xx
NS_17	[TBD]	n28, n83	5, 10	Table 5.3.2-1	[1] ^{3,4}	
NS_18	[TBD]	n28, n83	5	≥ 2	≤2 ⁴	
			10, 15, 20	≥1	≤5 ⁴	
NS_35	6.5.2.3.3.1	n71	5, 10, 15, 20	Table 5.3.2-1	N/A	2
NS_37	[TBD]	n74 (Note 6)	10, 15	Table 6.2.3.8-1	Table 6.2.3.8-1	1
NS_38	[TBD]	n74	5, 10, 15, 20	Table 6.2.3.9-1	Table 6.2.3.9-1	2
NS_39	[TBD]	n74	10, 15, 20	Table 6.2.3.10-1	Table 6.2.3.10-1	3
NS_40	6.5.2.3.3.5	n51	5		Table 6.2.3.3.5-1	
NS_41	6.5.2.3.3.6	n50	5, 10, 15, 20, 40, 50, 60		Table 6.2.3.3.11-1	
NS_42	6.5.2.3.3.7	n50	5, 10, 15, 20, 40, 50, 60		Table 6.2.3.3.12-1	
NS_100	6.5.2.4.2	n1, n2, n3, n5, n8, n20, n25, n66, n80, n81, n82, n84, Note 1			Table 6.2.3.3.1-2	

NOTE 1: This NS can be signalled for NR bands that have UTRA services deployed.

NOTE 2: The total maximum output power reduction for NS_17 and NS_18 is obtained by taking the maximum value of MPR + A-MPR specified in Table 6.2.3.3.1-1 and Table 6.2.4-1 in TS 36.101 and A-MPR specified in Table 6.2.3.3-1.

NOTE 3: The A-MPR is 0 dB for inner RB allocations for DFT-s-OFDM PI/2 BPSK and QPSK.

NOTE 4: The A-MPR for CP-OFDM shall also add the corresponding MPR specified in Table 6.2.2.3-1.

NOTE 5: No A-MPR is applied for 5 MHz CBW where the lower channel edge is ≥1930 MHz,10 MHz CBW where the lower channel edge is ≥1950 MHz and 15 MHz CBW where the lower channel edge is ≥1955 MHz.

NOTE 6: Applicable when the NR carrier is within 1447.9 - 1462.9 MHz.

Table 6.2.3.3.1-1A: Mapping of Network Signalling label

NR band			Valu	e of additionalS	pectrumEm	ission		
	0	1	2	3	4	5	6	7
n1	NS_01	NS_100	NS_05	NS_05U				
n2	NS_01	NS_100	NS_03	NS_03U				
n3	NS_01	NS_100						
n5	NS_01	NS_100						
n7	NS_01							
n8	NS_01	NS_100	NS_08	NS_08U				
n12	NS_01	NS_06						
n20	NS_01	NS_100	NS_10					
n25	NS_01	NS_100	NS_03	NS_03U				
n28	NS_01	NS_17	NS_18					
n34	NS_01							
n38	NS_01							
n39	NS_01							
n40	NS_01	NS_40						
n41	NS_01	NS_04						
n51	NS_01							
n66	NS_01	NS_100	NS_03	NS_03U				
n70	NS_01	NS_03						
n71	NS_01	NS_35						
n75	NS_01							
n76	NS_01							
n77	NS_01							
n78	NS_01							
n79	NS_01							
n80	NS_01	NS_100						
n81	NS_01	NS_100	NS_08	NS_08U				
n82	NS_01	NS_100	NS_10					
n83	NS_01	NS_17	NS_18					
n84	NS_01	NS_100	NS_05	NS_05U				
n86	NS_01							
NOTE	1.11.01 10 1	' 						1 000

NOTE: additional Spectrum Emission corresponds to an information element of the same name defined in sub-clause 6.3.2 of TS 38.331.

Table 6.2.3.3.1-2: A-MPR for UTRA protections

Modulation	A-M	IPR
Wiodulation	Outer RB allocations	Inner RB allocations
DFT-s-OFDM PI/2 BPSK	≤ 1.5	0
DFT-s-OFDM QPSK	≤ 1	0
DFT-s-OFDM 16 QAM	≤ 0.5	0
DFT-s-OFDM 64 QAM	≤ 0.5	0
DFT-s-OFDM 256 QAM	0	0
CP-OFDM QPSK	≤ 1	0
CP-OFDM 16 QAM	≤ 1	0
CP-OFDM 64 QAM	≤ 0.5	0
CP-OFDM 256 QAM	0	0

NOTE 1: A-MPR defined in this Table is additive to MPR defined in Table 6.2.2.3-1 NOTE 2: Outer and inner allocations are defined in clause 6.2.2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.1.

6.2.3.3.2 A-MPR for NS_04

For NS_04, A-MPR is not added to MPR. Also, when NS_04 is signalled, MPR shall be set to zero in the P_{CMAX} equations to avoid double-counting MPR.

Allowed maximum power reduction is defined as A-MPR=max(MPR, A-MPR'),

Note that A-MPR=0 dB means only MPR is applied, where A-MPR is defined as

 $if \ RB_{start} \leq f_{start,max,IMD3} \ / \ (12 \cdot SCS) \ and \ L_{CRB} \leq AW_{max,IMD3} \ / \ (12 \cdot SCS) \ and \ F_{C} \ - \ BW_{Channel} \ / \ 2 < F_{UL_low} \ + \ offset_{IMD3}, \ then$

the A-MPR is defined according to Table 6.2.3.3.2-2 PC3_A2 for Power Class 3 and PC2 A4 for Power Class 2, else,

 $if \ RB_{start} \leq L_{CRB}/2 + \Delta_{start} \ / \ (12 \cdot SCS) \ and \ L_{CRB} \leq AW_{max,regrowth} \ / \ (12 \cdot SCS) \ and \ F_C \ - \ BW_{Channel}/2 < F_{UL_low} \ + \ offset_{regrowth}, \ then$

the A-MPR is defined according to Table 6.2.3.3.2-2 PC3_A1 for Power Class 3 and PC2 A3 for Power Class 2, else

A-MPR = 0 dB and apply MPR.

With the parameters defined in Table 6.2.3.3.2-1. Table 6.2.3.3.2-1: Parameters for region edges and frequency offsets

Dovementor	Cumala al	Val	ue	Deleted condition				
Parameter	Symbol	OFDM	DFT-S-OFDM	Related condition				
Max allocation start in IMD3 region	f _{start,max,IMD3}	0.33 BW _{Channel}		0.33 BW _{Channel}		0.33 BW _{Channel}		RB _{start} ≤ f _{start,max,IMD3} / (12SCS)
Max allocation BW in IMD3 region	AW _{max,IMD3}	4 MHz		4 MHz		L _{CRB} ≤ AW _{max,IMD3} / (12SCS)		
Max freq. offset for IMD3 region	offset _{max,IMD3}	BW _{Channe}	- 6MHz					
Freq. offset required to avoid A-MPR in IMD3 region	offset _{IMD3}	offset _n	nax,IMD3	F_C - BW _{Channel} /2 $\ge F_{UL_low}$ + offset _{IMD3}				
Right edge of regrowth region	Δ_{start}	0.08 B\	VChannel	$RB_{start} \le L_{CRB}/2 + \Delta_{start} / (12SCS)$				
Max allocation BW in regrowth region	AW _{max,regrowth}	100	MHz	L _{CRB} ≤ Min(L _{CRB,Max} , AW _{max,regrowth} / (12SCS))				
Freq. offset required to avoid A-MPR in regrowth region	offset _{regrowth}	Max (10 MHz, 0.25* BW _{Channel} MHz) Max (10 MHz, 0.45* BW _{Channel} MHz)		Fc - BW _{Channel} /2 ≥ F _{UL_low} + offset _{regrowth}				

Table 6.2.3.3.2-2: A-MPR values

Access	Modulation	MPR' (dB)						
Access	Modulation	PC3_A1	PC3_A2	PC2_A3	PC2_A4			
	pi/2-BPSK	3.5	3.5	3.5	[5.5]			
	QPSK	4	4	4.5	[6]			
DFT-S-OFDM	16-QAM	4	4	5	[6]			
	64-QAM		4.5	5	[6.5]			
	256-QAM	4.5	6	6.5	[8]			
	QPSK	5.5	5.5	6.5	[7.5]			
CP-OFDM	16-QAM	5.5	5.5	6.5	[7.5]			
CF-OFDIVI	64-QAM	5.5	5.5	6.5	[7.5]			
	256-QAM	6.5	8	7.5	[10]			

NOTE: The A-MPR' values in this table apply for both A-MPR relative to 23 dBm for PC3 and A-MPR relative to 26 dBm for PC2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.2.

6.2.3.3.3 A-MPR for NS_10

Table 6.2.3.3.3-1: A-MPR for NS 10

Channel bandwidth [MHz]	Parameters	Region A					
	RB _{start}	[0 – 10]					
15	L _{CRB} [RBs]	[1 -20]					
	A-MPR [dB]	≤ 3 ⁶					
	RB _{start}	[0 – 15]					
20	L _{CRB} [RBs]	[1 -20]					
	A-MPR [dB]	≤ 6 ⁶					
NOTE 1: RB _{start} i	ndicates the lowest RB index	of transmitted resource blocks					
NOTE 2: LCRB is	the length of a contiguous re	source block allocation					
NOTE 3: For intra	a-subframe frequency hopping	ng which intersects Region A, notes 1 and 2 apply					
on a per slot basis. For intra-slot or intra-subslot frequency hopping which intersects							
•	A, notes 1 and 2 apply on a						
NOTE 4 E							

NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe. For intra-slot frequency hopping which intersects Region A, the larger A-MPR value may be applied for the slot. For intra-subslot frequency hopping which intersects Region A, the larger A-MPR value may

be applied for the subslot.

NOTE 5: The total maximum output power reduction for NS_10 is obtained by taking the maximum value of MPR + A-MPR specified in Table 6.2.3.3.1-1 and Table 6.2.4-1 in TS 36.101 and A-MPR specified in Table 6.2.3.3.3-1.

NOTE 6: The A-MPR for CP-OFDM shall also add the corresponding MPR specified in Table 6.2.2.3-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.3.

6.2.3.3.4 A-MPR for NS_05

Table 6.2.3.3.4-1: A-MPR for NS_05

Channel Bandwidth,	Carrier Centre	1	Region A		R	egion B		R	egion C	
MHz	Frequency, Fc, MHz	Rbstart	LCRB	A- MPR	Rbstart	LCRB	A- MPR	Rbstart	LCRB	A- MPR

5 MHz	1922.5 ≤ F _C < 1927.5	<1.62MHz /12/SCS	>2.52MHz /12/SCS	А3						
10 MHz	1920 ≤ F _C < 1935	<1.62MHz /12/SCS	>0	A1	>1.62MHz/ 12/SCS ≤3.60MHz/ 12/SCS	>5.4MHz /12/SCS	A7	>7.74MHz /12/SCS	≤1.08 MHz/1 2/SCS	A2
10 MHz	1935 ≤ F _C < 1945		>4.5MHz/ 12/SCS	A4						
15 MHz	1927.5 ≤ F _C < 1932.5	<3.24MHz /12/SCS	>0	A1	>3.24MHz/ 12/SCS ≤5.40MHz/ 12/SCS	>8.1MHz /12/SCS	A7	>10.9MHz /12/SCS	≤1.08 MHz/1 2/SCS	A2
15 MHz	1932.5 ≤ F _C < 1942.5	<1.62MHz /12/SCS	>0	A1				>12.6 MHz/12/S CS	≤1.08 MHz/1 2/SCS	A2
15 MHz	1942.5 ≤ F _C < 1947.5		>7.2MHz/ 12/SCS	A5						
20 MHz	1930 ≤ F _C < 1950	<4.86MHz /12/SCS	>0	A1	>4.86MHz/ 12/SCS ≤7.20MHz/ 12/SCS	>9.0MHz /12/SCS	A7	>14.22MH z/12/SCS	≤1.08 MHz/1 2/SCS	A2
20 MHz	1950 ≤ F _C <1960		>9.0MHz/ 12/SCS	A6			_			

NOTE 1: The A-MPR values are listed in Table 6.2.3.3.4-2 and 6.2.3.3.4-3. NOTE 3: For any undefined region, MPR applies

Table 6.2.3.3.4-2: A-MPR for modulation and waveform type

Modulation/Waveform	A1	A2	A	3
Wodulation/wavelorm	Outer/Inner	Outer/Inner	Outer	Inner
DFT-s-OFDM PI/2 BPSK	≤ 10	≤ 5	≤ 4	N/A
DFT-s-OFDM QPSK	≤ 10	≤ 5	≤ 4.5	N/A
DFT-s-OFDM 16 QAM	≤ 10	≤ 5	≤6	N/A
DFT-s-OFDM 64 QAM	≤ 11	≤ 5	≤6	N/A
DFT-s-OFDM 256 QAM	≤ 13	≤ 5	≤7	N/A
CP-OFDM QPSK	≤ 10	≤ 5	≤ 7.5	≤ 2
CP-OFDM 16 QAM	≤ 10	≤ 5	≤ 7.5	N/A
CP-OFDM 64 QAM	≤ 11	≤ 5	≤8	N/A
CP-OFDM 256 QAM	≤ 13	N/A	≤ 10	N/A

NOTE 1: The backoff applied is max (MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

Table 6.2.3.3.4-3: A-MPR for modulation and waveform type

Modulation/Waveform	А	4	Α	5	Α	6	A7
Wodulation/wavelorm	Outer	Inner	Outer	Inner	Outer	Inner	Outer/Inner

DFT-s-OFDM PI/2 BPSK	≤ 1		≤ 1	N/A	≤ 1		≤ 6
DFT-s-OFDM QPSK	N/A		≤ 1.5	N/A	≤ 1.5		≤ 6
DFT-s-OFDM 16 QAM	N/A		N/A	N/A	N/A		≤ 6
DFT-s-OFDM 64 QAM	N/A		N/A	N/A	N/A		≤ 6
DFT-s-OFDM 256 QAM	N/A	N/A	N/A	N/A	N/A	N/A	≤ 6
CP-OFDM QPSK	≤ 3.5		≤ 3.5	N/A	≤ 3.5		≤ 6
CP-OFDM 16 QAM	≤ 3.5		≤ 3.5	N/A	≤ 3.5		≤ 6
CP-OFDM 64 QAM	N/A		N/A	≤ 4	N/A		≤ 6
CP-OFDM 256 QAM	N/A		N/A	N/A	N/A		≤ 6

NOTE 1: The backoff applied is max (MPR, A-MPR) where MPR is defined in Table

6.2.2.3-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.4.

6.2.3.3.5 A-MPR for NS_40

Table 6.2.3.3.5-1: A-MPR for NS 40

Modulation	A-N	/IPR
	Channel bandwi	dth (MHz): 5 MHz
	Outer RB allocations	Inner RB allocations
DFT-s-OFDM QPSK	15.5	12
DFT-s-OFDM 16 QAM	14.5	11
DFT-s-OFDM 64 QAM	14.5	10
DFT-s-OFDM 256 QAM	12.5	7.5
CP-OFDM QPSK	14.5	10
CP-OFDM 16 QAM	14.5	10
CP-OFDM 64 QAM	14	8
CP-OFDM 256 QAM	11	5.5

NOTE 1: The total maximum output power reduction for NS_40 is obtained by taking the maximum value of MPR + A-MPR specified in Table 6.2.3.3.1-1 and Table 6.2.4-30a in TS 36.101 and MPR+A-MPR specified in Table 6.2.2.3-1 and Table 6.2.3.3.5-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.5.

6.2.3.3.6 A-MPR for NS_08

Table 6.2.3.3.6-1: A-MPR for NS_08

Modulation	A-N	IPR	Configurations for A-MPR
Wodulation	Outer RB allocations	Inner RB allocations	(Note 3)
DFT-s-OFDM PI/2 BPSK	0	0	
DFT-s-OFDM QPSK	≤ 2	0	L _{CRB} > 15 for 15kHz SCS
DFT-s-OFDM 16 QAM	0	0	
DFT-s-OFDM 64 QAM	0	0	
DFT-s-OFDM 256 QAM	0	0	
CP-OFDM QPSK	≤ 3.5	0	L _{CRB} > 15 for 15kHz SCS
CP-OFDM 16 QAM	≤ 3.5	0	L _{CRB} > 15 for 15kHz SCS
CP-OFDM 64 QAM	0	0	
CP-OFDM 256 QAM	0	0	

NOTE 1: The total backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1.

NOTE 2: Outer and inner allocations are defined in clause 6.2.2.

NOTE 3: When configurations are specified, A-MPR is only applied for the conditions and zero A-MPR is applied for the rest of RB allocations.

Table 6.2.3.3.6-2: A-MPR for NS_08 for 10 MHz CBW

Modulation	A-MPR	Configurations for A-MPR
Wodulation	Outer RB allocations Inner RB allocations	(NOTE 3)

DFT-s-OFDM PI/2 BPSK	≤ 1.5	0	LCRB > 40 for 15kHz SCS
DFT-s-OFDM QPSK	≤ 2.5	0	LCRB > 30 for 15kHz SCS LCRB > 15 for 30kHz SCS
DFT-s-OFDM 16 QAM	≤ 2.5	0	LCRB > 40 for 15kHz SCS LCRB > 20 for 30kHz SCS
DFT-s-OFDM 64 QAM	≤ 2.5	0	LCRB > 45 for 15kHz SCS
DFT-s-OFDM 256 QAM	0	0	LCRB > 40 for 15kHz SCS LCRB > 20 for 30kHz SCS
CP-OFDM QPSK	≤ 4	0	LCRB > 40 for 15kHz SCS LCRB > 20 for 30kHz SCS
CP-OFDM 16 QAM	≤ 4	0	LCRB > 40 for 15kHz SCS LCRB > 20 for 30kHz SCS
CP-OFDM 64 QAM	≤ 4	0	LCRB > 45 for 15kHz SCS
CP-OFDM 256 QAM	0	0	

- NOTE 1: The total backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1.
- NOTE 2: Outer and inner allocations are defined in clause 6.2.2.
- NOTE 3: When configurations are specified, A-MPR is only applied for the conditions and zero A-MPR is applied for the rest of RB allocations.

Table 6.2.3.3.6-3: A-MPR for NS_08 for 15 MHz CBW

Modulation	A-N	A-MPR				
Modulation	Outer RB allocations	Inner RB allocations	(NOTE 3)			
DFT-s-OFDM PI/2 BPSK	≤ 9	≤ 9	NOTE 4			
1DFT-s-OFDM QPSK	≤ 9	≤ 9	NOTE 4			
DFT-s-OFDM 16 QAM	≤ 9	≤ 9	NOTE 4			
DFT-s-OFDM 64 QAM	≤ 9	≤ 9	NOTE 4			
DFT-s-OFDM 256 QAM	≤ 9	≤ 9	NOTE 4			
CP-OFDM QPSK	≤ 9	≤ 9	NOTE 4			
CP-OFDM 16 QAM	≤ 9	≤ 9	NOTE 4			
CP-OFDM 64 QAM	≤ 9	≤ 9	NOTE 4			
CP-OFDM 256 QAM	≤ 9	≤ 9	NOTE 4			

- NOTE 1: The total backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1.
- NOTE 2: Outer and inner allocations are defined in clause 6.2.2.
- NOTE 3: When configurations are specified, A-MPR is only applied for the conditions and zero A-MPR is applied for the rest of RB allocations.
- NOTE 4: For 15kHz SCS, applicable for RBstart<10 or >68 and LcrB>0, or 10≤ RBstart<34 and LcrB>40. For 30kHz SCS, applicable for RBstart<5 or >34 and LcrB>0, or 5≤ RBstart<17 and LcrB>12.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.6.

6.2.3.3.7 A-MPR for NS_03

Table 6.2.3.3.7-1: A-MPR for NS_03

Modulation		Channel BW	Z	A-M	PR		
	5	10	15	20	40	Outer RB allocations	Inner RB allocations
DFT-s-OFDM PI/2 BPSK, DFT-s-OFDM QPSK, DFT-s-OFDM 16	1.44	1.44 – 2.16	1.44 – 2.88	2.16 – 3.24	2.88 – 4.32	N/A	≤1
QAM	> 1.44	> 2.16	> 2.88	> 3.24	> 4.32	≤1	≤2
DFT-s-OFDM 64	1.44	1.44 – 2.16	1.44 – 2.88	2.16 - 3.24	2.88 - 4.32	≤0.5	≤0.5
QAM	> 1.44	> 2.16	> 2.88	> 3.24	> 4.32	≤1.5	≤1.5
DFT-s-OFDM 256		<1.44					≤0.5
QAM	≥1.44					≤1.5	≤1.5
CP-OFDM QPSK	1.44	1.44 – 2.16	1.44 – 2.88	2.16 - 3.24	2.88 - 4.32	N/A	≤1
CP-OFDINI QPSK	> 1.44	> 2.16	> 2.88	> 3.24	> 4.32	≤1	≤2
CP-OFDM 16	1.44	1.44 – 2.16	1.44 – 2.88	2.16 - 3.24	2.88 - 4.32	N/A	≤2
QAM	> 1.44	> 2.16	> 2.88	> 3.24	> 4.32	≤1	≤2
CP-OFDM 64 QAM	> 1.08	> 1.08	> 1.44	> 1.8	> 2.88	≤1	≤1
CP-OFDM 256 QAM	> 1.08	> 1.08	> 1.44	> 1.8	> 2.88	≤1	≤1
NOTE 1: A-MPR d	efined in this	s Table is addit	tive to MPR de	fined in Table	6.2.2.3-1		

NOTE 2: Inner and outer allocations are defined in clause 6.2.2

6.2.3.3.8 A-MPR for NS_37

Table 6.2.3.3.8-1: A-MPR for B11/B21 protection (NS_37) for 10MHz, 15MHz (1447.9-1462.9MHz)

Channel Carrier Centre		(Region A (Outer/Inner)		Region B (Outer/Inner)			Region C (Outer/Inner)		
Bandwidth, MHz	Frequency, Fc, MHz	RBstart,(MHz/12/ SCS)	LCRB (MHz/12/ SCS)	A-MPR	RBstart (MHz/12/ SCS)	LCRB (MHz/12/ SCS)	A-MPR	RBstart (MHz/12/ SCS)	LCRB (MHz/12/ SCS)	A-MPR
10MHz	1452.9 < F _C ≤1457.9	≥0	>40	≤ A1	N/A	N/A	N/A	N/A	N/A	N/A
15MHz	F _C =1455.4	≥0	>55	≤ A1	<[0.54]	< [1.08]	[≤ A2]	>[13.86]	< [1.08]	[≤ A2]

NOTE 1: A-MPR values in Table 6.2.3.3.8-2.

NOTE 2: The backoff applied is max (MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1

NOTE 3: For any undefined region, MPR applies

NOTE 4: No A-MPR for SCS=60 kHz.

Table 6.2.3.3.8-2: A-MPR for modulation and waveform type

Modulation/Waveform	A.	1	A2
Wodulation/wavelorm	Outer	Inner	Outer/Inner
DFT-s-OFDM PI/2 BPSK	≤ 1	N/A	[≤ 3]
DFT-s-OFDM QPSK	≤ 1.5	N/A	[≤ 3]
DFT-s-OFDM 16 QAM	≤ 2.5	N/A	[≤ 3]
DFT-s-OFDM 64 QAM	≤ 3	N/A	[≤ 3]
DFT-s-OFDM 256 QAM	N/A	N/A	[N/A]
CP-OFDM QPSK	≤ 3.5	N/A	[≤ 3]
CP-OFDM 16 QAM	≤ 3.5	N/A	[≤ 3]
CP-OFDM 64 QAM	N/A	N/A	[N/A]
CP-OFDM 256 QAM	N/A	N/A	[N\A]

NOTE 1: The backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.8.

6.2.3.3.9 A-MPR for NS_38

Table 6.2.3.3.9-1: A-MPR for EESS (NS_38) Protection (1430-1470MHz)

Channel Carrier Centre		Regio (Outer/	Region B (Outer/Inner)			
MHz	Frequency, Fc, MHz	RBstart,	LCRB	A-MPR	Rbstart+LCRB(M Hz/12/SCS)	A-MPR
10MHz	[1435 ≤ F _C < 1442]	[<= -1.8 MHz/12/SCS + LCRB/2]	[>3.6]	[≤ 12]	[≤2.16]	[≤ 9]
15MHz	[1437.5 ≤ F _C < 1447.5]	[<= -1.8 MHz/12/SCS + LCRB/2]	[>3.6]	[≤ 13]	[≤3.6]	[≤ 10]
20MHz	[1440 ≤ F _C < 1450]	[<= -1.8 MHz/12/SCS + LCRB/2]	[>3.6]	[≤ 13]	[≤5.4]	[≤ 10]

NOTE 1: The backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1.

NOTE 2: Outer and inner allocations are defined in clause 6.2.2.

NOTE 3: For any undefined region, MPR applies

NOTE 4: A-MPR applies to all modulation and waveform types.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.9.

6.2.3.3.10 A-MPR for NS_39

Table 6.2.3.3.10-1: A-MPR for own RX (NS_39) Protection for 10MHz,15MHz, 20MHz (1440-1470MHz)

Channel	Carrier Centre	Region A (Outer/Inner)		
Bandwidth, MHz	Frequency, Fc, MHz	Rbstart+LCRB(MHz/ 12/SCS)	A-MPR	
10MHz	[1462 < F _C ≤1465]	[>7.9]	[≤ 6]	
15MHz	[1456.3 < F _C ≤ 1462.5]	[>11.2]	[≤ 6]	
20MHz	[1450.8 < F _C ≤ 1460]	[>14.4]	[≤ 6]	

NOTE 1: The backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2.

NOTE 3: For any undefined region, MPR applies

NOTE 4: A-MPR applies to all modulation and waveform types.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.10.

6.2.3.3.11 A-MPR for NS_41

Table 6.2.3.3.11-1: A-MPR for NS_41

Channel Bandwidth,	Carrier Centre	Region A Region B (Outer/Inner)		_			
MHz	Frequency, Fc, MHz	Rbstart	LCRB A-MPR		Rbstart	LCRB	A-MPR [dB]
5 MHz	-	-	-	NA	-	-	NA
10 MHz	1437 ≤ F _C < 1442	<= -4.5MHz/12/SCS + LCRB	>4.5MHz/12/ SCS	≤ 9	LCRB < 1.7MHz/12/SCS	≤ 2.7 MHz/12/SCS	≤ 9
15 MHz	1439.5 ≤ F _C < 1447.5	<= -5.4MHz/12/SCS + LCRB	>5.4MHz/12/ SCS	≤ 11	LCRB < 3.42MHz/12/SCS	≤ 3.6 MHz/12/SCS	≤ 9
20 MHz	1442 ≤ F _C < 1450	<= -5.4MHz/12/SCS + LCRB	>5.4MHz/12/ SCS	≤ 12	LCRB < 5.04MHz/12/SCS	≤ 5 MHz/12/SCS	≤ 9
40 MHz	1452 ≤ F _C < 1497	<= -7.2MHz/12/SCS + LCRB	>7.2MHz/12/ SCS	≤ 13.5	LCRB < 11.7MHz/12/SCS	≤ 18 MHz/12/SCS	≤ 10.5
50 MHz	1457 ≤ F _C < 1492	<= -7.2MHz/12/SCS + LCRB	>7.2MHz/12/ SCS	≤ 13.5	LCRB < 15.12MHz/12/SCS	≤ 18 MHz/12/SCS	≤ 10.5
60 MHz	1462 ≤ F _C < 1487	<= -7.2MHz/12/SCS + LCRB	>7.2MHz/12/ SCS	≤ 13.5	LCRB < 18.72MHz/12/SCS	≤ 18.72 MHz/12/SCS	≤ 10.5

NOTE 1: The backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

NOTE 3: For any undefined region, MPR applies

NOTE 4: A-MPR applies to all modulation and waveform types.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.11.

6.2.3.3.12 A-MPR for NS_42

Table 6.2.3.3.12-1: A-MPR for NS_42

Channel	Carrier Centre	Region	A	Region B		
Bandwidth, MHz	Frequency, Fc, MHz	RBend	A-MPR (Outer/Inner)	Rbstart	A-MPR (Inner)	A-MPR (Outer)
5 MHz	1512 ≤ F _C ≤ 1514.5	>3.1MHz / 12 / SCS	≤ 7	<0.9MHz/12/SCS	≤ 1.5	≤ 4
10 MHz	1497 ≤ F _C ≤ 1512	>6.2MHz / 12 / SCS	≤ 8	<0.9MHz/12/SCS	≤ 1.5	≤ 5
15 MHz	1502 F _C ≤ 1509.5	>9.3MHz / 12 / SCS	≤ 8	<3.06MHz/12/SCS	≤ 1.5	≤ 5
20 MHz	1497 ≤ F _C ≤ 1507	>12.4MHz / 12 / SCS	≤ 8	<4.5MHz/12/SCS	≤ 1.5	≤ 5
40 MHz	1477 ≤ F _C ≤ 1497	>24.8MHz / 12 / SCS	≤ 8	<5.4MHz/12/SCS	≤ 1.5	≤ 5
50 MHz	1467 ≤ F _C ≤ 1492	>31MHz / 12 / SCS	≤ 8	<7.2MHz/12/SCS	≤ 1.5	≤ 5
60 MHz	1462 ≤ F _C ≤ 1487	>37.2MHz / 12 / SCS	≤ 8	<7.2MHz/12/SCS	≤ 1.5	≤ 5

NOTE 1: The backoff applied is max(MPR, A-MPR) where MPR is defined in Table 6.2.2.3-1.

NOTE 2: Outer and inner allocations are defined in clause 6.2.2.

NOTE 3: For any undefined region, MPR applies

NOTE 4: A-MPR applies to all modulation and waveform types.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.3.7.

6.2.3.4 Test description

6.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.3.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.2.3.4.1-1: Test Configuration table for NS_35

Initial Conditions										
Test E	Test Environment as specified in TS 38.508-1 [5] subclause 4.1 Normal									
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1 Low range, High range										
Test 0 4.3.1	Channel Ba	Lowest, Highest								
Test SCS as specified in Table 5.3.5-1 Lowest, Highest										
	A-MPR test parameters for NS_35									
				Downlink Configuration		Uplink Configur	ation			
Test	Freq	ChBw	SCS	N/A for A-MPR testing.		Modulation	RB allocation			
ID						(NOTE 2)	(NOTE 1)			
1	Low	Default	Default		DF	T-s-OFDM PI/2 BPSK	Edge_1RB_Left			
2	High				DF	T-s-OFDM PI/2 BPSK	Edge_1RB_Right			
3	Default				DF	T-s-OFDM PI/2 BPSK	Outer Full			
4	Low				I	DFT-s-OFDM QPSK	Edge_1RB_Left			
5	High					DFT-s-OFDM QPSK	Edge_1RB_Right			
6	Default					DFT-s-OFDM QPSK	Outer Full			
7	Low				D	FT-s-OFDM 16 QAM	Edge_1RB_Left			
8	High				D	DFT-s-OFDM 16 QAM				
9	Default				D	FT-s-OFDM 16 QAM	Outer Full			
10	Default				D	FT-s-OFDM 64 QAM	Outer Full			
11	Default				DI	FT-s-OFDM 256 QAM	Outer Full			
12	Low					CP-OFDM QPSK	Edge_1RB_Left			
13	High					CP-OFDM QPSK	Edge_1RB_Right			
14	Default					CP-OFDM QPSK	Outer Full			
15	Low					CP-OFDM 16 QAM	Edge_1RB_Left			
16	High					CP-OFDM 16 QAM	Edge_1RB_Right			
17			CP-OFDM 16 QAM	Outer Full						
18 Default CP-OFDM 64 QAM Outer F							Outer Full			
19	Default				(CP-OFDM 256 QAM	Outer Full			
				of each RB allocation is defin						
NOTE	: 2: DF1-	S-OFDM F	71/2 BPSK	test applies only for UEs which	n suppo	orts half Pi BPSK in FR1.				

Table 6.2.3.4.1-2: Test Configuration table for NS_04

Initial Conditions					
	Test Environment as specified in TS 38.508-1 [5] subclause 4.1 Normal				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1 (See Freq column)					
	Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1 Lowest, Highest				
	SCS as specified in Table 5.3.5-1			Lowest, Highest	
		A-MPR test parameters t	for NS		
		Downlink Configuration		Uplink Config	uration
Test	Freq	N/A for A-MPR		Modulation	RB allocation
ID		testing.		(NOTE 2)	(NOTE 1)
1	Low			Γ-s-OFDM PI/2 BPSK	Edge_1RB_Left
2	2496 + 3/2 × BW _{Channel} – 6 MHz			Γ-s-OFDM PI/2 BPSK	Edge_1RB_Left
3	2496 + BW _{Channel} /2 +			Γ-s-OFDM PI/2 BPSK	Edge_1RB_Left
4	MAX(10 MHz, 0.45 × BW _{Channel})			T-s-OFDM PI/2 BPSK	Inner Full
5 6	High			Γ-s-OFDM PI/2 BPSK Γ-s-OFDM PI/2 BPSK	Outer Full Edge_1RB_Right
7	High			T-s-OFDM PI/2 BPSK	Inner Full
8	High			Γ-s-OFDM PI/2 BPSK	Outer Full
9	Low			FT-s-OFDM QPSK	Edge_1RB_Left
10	2496 + 3/2 × BW _{Channel} - 6 MHz			FT-s-OFDM QPSK	Edge_1RB_Left
11	2496 + BW _{Channel} /2 +			FT-s-OFDM QPSK	Edge_1RB_Left
12	MAX(10 MHz, 0.45 × BW _{Channel})			FT-s-OFDM QPSK	Inner Full
13 14	High			FT-s-OFDM QPSK FT-s-OFDM QPSK	Outer Full Edge_1RB_Right
15	High			FT-s-OFDM QPSK	Inner Full
16	High			FT-s-OFDM QPSK	Outer Full
17	Low			T-s-OFDM 16 QAM	Edge_1RB_Left
18	2496 + 3/2 × BW _{Channel} – 6 MHz			T-s-OFDM 16 QAM	Edge_1RB_Left
19	2496 + BWchannel /2 +			T-s-OFDM 16 QAM	Edge_1RB_Left
20	MAX(10 MHz, 0.45 × BW _{Channel})			T-s-OFDM 16 QAM	Inner Full
21 22	· · · · · · · · · · · · · · · · · · ·			T-s-OFDM 16 QAM	Outer Full
23	High High			T-s-OFDM 16 QAM T-s-OFDM 16 QAM	Edge_1RB_Right Inner Full
24	High			T-s-OFDM 16 QAM	Outer Full
25	Low			T-s-OFDM 64 QAM	Edge_1RB_Left
26	2496 + 3/2 × BW _{Channel} – 6 MHz		DF	T-s-OFDM 64 QAM	Edge_1RB_Left
27	2496 + BW _{Channel} /2 +			T-s-OFDM 64 QAM	Edge_1RB_Left
28	MAX(10 MHz, 0.45 × BW _{Channel})			T-s-OFDM 64 QAM	Outer Full
29 30	High			T-s-OFDM 64 QAM T-s-OFDM 64 QAM	Edge_1RB_Right
31	High Low			T-s-OFDM 256 QAM	Outer Full Edge_1RB_Left
32	2496 + 3/2 × BW _{Channel} – 6 MHz			T-s-OFDM 256 QAM	Edge_1RB_Left
33	2496 + BW _{Channel} /2 +			T-s-OFDM 256 QAM	Edge_1RB_Left
34	MAX(10 MHz, 0.45 × BW _{Channel})		DF	T-s-OFDM 256 QAM	Outer Full
35	High			T-s-OFDM 256 QAM	Edge_1RB_Right
36	High			T-s-OFDM 256 QAM	Outer Full
37 38	2406 + 2/2 × P.W.o. + 6 MHz			CP-OFDM QPSK CP-OFDM QPSK	Edge_1RB_Left
39	2496 + 3/2 × BW _{Channel} - 6 MHz			CP-OFDM QPSK	Edge_1RB_Left Edge_1RB_Left
40	2496 + BW _{Channel} /2 +			CP-OFDM QPSK	Inner Full
41	MAX(10 MHz, 0.25 × BW _{Channel})			CP-OFDM QPSK	Outer Full
42	High			CP-OFDM QPSK	Edge_1RB_Right
43	High			CP-OFDM QPSK	Inner Full
44	High			CP-OFDM QPSK	Outer Full
45 46	Low 2496 + 3/2 × BW _{Channel} – 6 MHz			CP-OFDM 16 QAM CP-OFDM 16 QAM	Edge_1RB_Left Edge_1RB_Left
47				CP-OFDM 16 QAM	Edge_1RB_Left
48	2496 + BW _{Channel} /2 +			CP-OFDM 16 QAM	Inner Full
49	MAX(10 MHz, 0.25 × BW _{Channel})			CP-OFDM 16 QAM	Outer Full
50	High			CP-OFDM 16 QAM	Edge_1RB_Right
51	High			CP-OFDM 16 QAM	Inner Full
52	High			CP-OFDM 16 QAM	Outer Full
53	2406 + 2/2 × PW 6 MHz			CP-OFDM 64 QAM	Edge_1RB_Left
54	2496 + 3/2 × BW _{Channel} – 6 MHz			CP-OFDM 64 QAM	Edge_1RB_Left

55	2496 + BW _{Channel} /2 +
56	MAX(10 MHz, 0.25 × BW _{Channel})
57	High
58	High
59	Low
60	2496 + 3/2 × BW _{Channel} – 6 MHz
61	2496 + BW _{Channel} /2 +
62	MAX(10 MHz, 0.25 × BW _{Channel})
63	High
64	High

CP-OFDM 64 QAM	Edge_1RB_Left
CP-OFDM 64 QAM	Outer Full
CP-OFDM 64 QAM	Edge_1RB_Right
CP-OFDM 64 QAM	Outer Full
CP-OFDM 256 QAM	Edge_1RB_Left
CP-OFDM 256 QAM	Edge_1RB_Left
CP-OFDM 256 QAM	Edge_1RB_Left
CP-OFDM 256 QAM	Outer Full
CP-OFDM 256 QAM	Edge_1RB_Right
CP-OFDM 256 QAM	Outer Full

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

Editor's note: The following lines belong at the end of subclause 6.2.3.4.1. As new tables are added to this section, these lines should always follow the tables

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according Annex G.0, G.1, G.2 and G.3.0.
- 4. The UL Reference Measurement channels are set according to the applicable table from Table 6.2.3.4.1-1 to Table 6.2.3.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.3.4.3.

6.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to the applicable table from Table 6.2.4.3.1-1 to Table 6.2.4.3.1-2. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1ms). [For TDD slots with transient periods are not under test.]

6.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.1, with the following exceptions for each network signalled value.

6.2.3.4.3.1 Message contents exceptions for network signalled value "NS_03"

1. Information element additionalSpectrumEmission is set to NS_03. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 03" and NR band n2, n25 and n66

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_03)		

Table 6.2.3.4.3.1-2: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 03" and NR band n70

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_03)		

6.2.3.4.3.2 Message contents exceptions for network signalled value "NS_35"

1. Information element additionalSpectrumEmission is set to NS_35. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 35" and NR band n71

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_35)		

6.2.3.4.3.3 Message contents exceptions for network signalled value "NS_03U"

1. Information element additionalSpectrumEmission is set to NS_03U. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.3-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_03U"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	3 (NS_03U)		

6.2.3.4.3.4 Message contents exceptions for network signalled value "NS_04"

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.4-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 04"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_04)		

6.2.3.4.3.5 Message contents exceptions for network signalled value "NS_05"

1. Information element additionalSpectrumEmission is set to NS_05. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.5-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_05"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_05)		

6.2.3.4.3.6 Message contents exceptions for network signalled value "NS 05U"

1. Information element additional Spectrum Emission is set to NS_05U. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.6-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 05U"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	3 (NS_05U)		

6.2.3.4.3.7 Message contents exceptions for network signalled value "NS_06"

1. Information element additional Spectrum Emission is set to NS_06. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.7-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_06"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_06)		

6.2.3.4.3.8 Message contents exceptions for network signalled value "NS 08"

1. Information element additionalSpectrumEmission is set to NS_08. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.8-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 08"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_08)		

6.2.3.4.3.9 Message contents exceptions for network signalled value "NS_08U"

1. Information element additionalSpectrumEmission is set to NS_08U. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.9-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_08U"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	3 (NS_08U)			

6.2.3.4.3.10 Message contents exceptions for network signalled value "NS_10"

1. Information element additionalSpectrumEmission is set to NS_10. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.10-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 10"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	2 (NS_10)			

6.2.3.4.3.11 Message contents exceptions for network signalled value "NS_17"

1. Information element additionalSpectrumEmission is set to NS_17. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.11-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 17"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_17)		

6.2.3.4.3.12 Message contents exceptions for network signalled value "NS_18"

1. Information element additionalSpectrumEmission is set to NS_18. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.12-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_18"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_18)		

6.2.3.4.3.13 Message contents exceptions for network signalled value "NS_37"

1. Information element additionalSpectrumEmission is set to NS_37. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.13-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 37"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	1 (NS 37)			

6.2.3.4.3.14 Message contents exceptions for network signalled value "NS_38"

1. Information element additionalSpectrumEmission is set to NS_38. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.14-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_38"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	2 (NS_38)			

6.2.3.4.3.15 Message contents exceptions for network signalled value "NS_39"

1. Information element additionalSpectrumEmission is set to NS_39. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.15-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 39"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	3 (NS_39)			

6.2.3.4.3.16 Message contents exceptions for network signalled value "NS 40"

1. Information element additionalSpectrumEmission is set to NS_40. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.16-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 40"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_40)		

6.2.3.4.3.17 Message contents exceptions for network signalled value "NS 41"

1. Information element additionalSpectrumEmission is set to NS_41. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.17-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 41"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	[TBD] (NS_41)		

6.2.3.4.3.18 Message contents exceptions for network signalled value "NS_42"

1. Information element additionalSpectrumEmission is set to NS_42. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.18-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_42"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	[TBD] (NS_42)			

6.2.3.4.3.19 Message contents exceptions for network signalled value "NS_100"

1. Information element additionalSpectrumEmission is set to NS_100. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.19-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_100"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_100)		

6.2.3.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in the applicable table from table 6.2.3.5-1. The allowed A-MPR values specified in table 6.2.3.3-1 are in addition to the allowed MPR requirements specified in clause 6.2.2. For the UE maximum output power modified by MPR and/or A-MPR, the power limits specified in table 6.2.1.3-1 apply.

Table 6.2.3.5-0: Test Tolerance (UE additional maximum output power reduction)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	0.7 dB	1.0 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0 dB

Table 6.2.3.5-1: UE Power Class 3 test requirements (NS_35) for band n71.

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	0.5	0	0	22.5	2	2.5	25.7	19.3
2	23	0.5	0	0	22.5	2	2.5	25.7	19.3
3	23	0.5	0	0	22.5	2	2.5	25.7	19.3
4	23	1	0	0	22	2	2.5	25.7	18.8
5	23	1	0	0	22	2	2.5	25.7	18.8
6	23	1	0	0	22	2	2.5	25.7	18.8
7	23	2	0	0	21	2	2.5	25.7	17.8
8	23	2	0	0	21	2	2.5	25.7	17.8
9	23	2	0	0	21	2	2.5	25.7	17.8
10	23	2.5	0	0	20.5	2.5	2.5	25.7	17.3
11	23	4.5	0	0	18.5	4	2.5	25.7	13.8
12	23	3	0	0	20	2.5	2.5	25.7	16.8
13	23	3	0	0	20	2.5	2.5	25.7	16.8
14	23	3	0	0	20	2.5	2.5	25.7	16.8
15	23	3	0	0	20	2.5	2.5	25.7	16.8
16	23	3	0	0	20	2.5	2.5	25.7	16.8
17	23	3	0	0	20	2.5	2.5	25.7	16.8
18	23	3.5	0	0	19.5	3.5	2.5	25.7	15.3
19	23	6.5	0	0	16.5	5	2.5	25.7	10.8

NOTE 1: PPowerClass is the maximum UE power specified without taking into account the tolerance.

NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2.3.5-0.

Table 6.2.3.5-2: UE Power Class 2 test requirements (NS_04) for band n41.

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (Note 2) (dBm)
1	26	0	[5.5]	0	20.5	2.5	2	28+TT	[17.5+TT]
2	26	0	[5.5]	0	20.5	2.5	2	28+TT	[17.5+TT]
3	26	0	3.5	0	22.5	2	2	28+TT	19.5+TT
4	26	0	3.5	0	22.5	2	2	28+TT	19.5+TT
5	26	0	3.5	0	22.5	2	2	28+TT	19.5+TT
6	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
7	26	0.2	0	0	25.8	2	2	28+TT	22.8+TT
8	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
9	26	0	[6]	0	20	2.5	2	28+TT	[17+TT]
10	26	0	[6]	0	20	2.5	2	28+TT	[17+TT]
11	26	0	4.5	0	21.5	2	2	28+TT	18.5+TT
12	26	0	4.5	0	21.5	2	2	28+TT	18.5+TT
13	26	0	4.5	0	21.5	2	2	28+TT	18.5+TT
14	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
15	26	0.2	0	0	25.8	2	2	28+TT	22.8+TT
16	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
17	26	0	[6]	0	20	2.5	2	28+TT	[17+TT]
18	26	0	[6]	0	20	2.5	2	28+TT	[17+TT]
19	26	0	5	0	21	2	2	28+TT	18+TT
20	26	0	5	0	21	2	2	28+TT	18+TT
21	26	0	5	0	21	2	2	28+TT	18+TT
22	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
23	26	0.2	0	0	25.8	2	2	28+TT	22.8+TT
24	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
25	26	0	[6.5]	0	19.5	3.5	2	28+TT	[16+TT]
26	26	0	[6.5]	0	19.5	3.5	2	28+TT	[16+TT]
27	26	0	5	0	21	2	2	28+TT	18+TT
28	26	0	5	0	21	2	2	28+TT	18+TT
29	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
30	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
31	26	0	[8]	0	18	4	2	28+TT	[14+TT]
32	26	0	[8]	0	18	4	2	28+TT	[14+TT]
33	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
34	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
35	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
36	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
37	26	0	[7.5]	0	18.5	4	2	28+TT	[14.5+TT]
38	26	0	[7.5]	0	18.5	4	2	28+TT	[14.5+TT]
39	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
40	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
41	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
42	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
43	26	0.2	0	0	25.8	2	2	28+TT	22.8+TT
44	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
45	26	0	[7.5]	0	18.5	4	2	28+TT	[14.5+TT]
46	26	0	[7.5]	0	18.5	4	2	28+TT	[14.5+TT]
47	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
48	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT

49	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
50	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
51	26	0.2	0	0	25.8	2	2	28+TT	22.8+TT
52	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
53	26	0	[7.5]	0	18.5	4	2	28+TT	[14.5+TT]
54	26	0	[7.5]	0	18.5	4	2	28+TT	[14.5+TT]
55	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
56	26	0	6.5	0	19.5	3.5	2	28+TT	16+TT
57	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
58	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT
59	26	0	[10]	0	16	5	2	28+TT	[11+TT]
60	26	0	[10]	0	16	5	2	28+TT	[11+TT]
61	26	0	7.5	0	18.5	4	2	28+TT	14.5+TT
62	26	0	7.5	0	18.5	4	2	28+TT	14.5+TT
63	26	3.5	0	0	22.5	2	2	28+TT	19.5+TT
64	26	1.2	0	0	24.8	2	2	28+TT	21.8+TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 3: TT=0.7 dB for BW_{channel} \leq 40 MHz; TT=1.0 dB for 40 MHz < BW_{channel} \leq 100 MHz.

NOTE 2: For Band n41, refers to the transmission bandwidths (Figure 5.3.3-1) confined within Ful_low and Ful_low + 4 MHz or Ful_high - 4 MHz and Ful_high, the lower limit shall be decreased by 1.0 dB for CP-OFDM 256 QAM and decreased by 1.5 dB for other modulations.

Table 6.2.3.5-3: UE Power Class 3 test requirements (NS_04) for band n41.

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (Note 2) (dBm)
1	23								(20)
1	23	0	3.5	0	19.5	3.5	2	25+TT	16+TT
2	23	0	3.5	0	19.5	3.5	2	25+TT	16+TT
3	23	0	3.5	0	19.5	3.5	2	25+TT	16+TT
4	23	0	3.5	0	19.5	3.5	2	25+TT	16+TT
5	23	0	3.5	0	19.5	3.5	2	25+TT	16+TT
6	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
7	23	0.2	0	0	22.8	2	2	25+TT	20.8+TT
8	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
9	23	0	4	0	19	3.5	2	25+TT	15.5+TT
10	23	0	4	0	19	3.5	2	25+TT	15.5+TT
11	23	0	4	0	19	3.5	2	25+TT	15.5+TT
12	23	0	4	0	19	3.5	2	25+TT	15.5+TT
13	23	0	4	0	19	3.5	2	25+TT	15.5+TT
14	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
15	23	0.2	0	0	22.8	2	2	25+TT	20.8+TT
16	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
17	23	0	4	0	19	3.5	2	25+TT	15.5+TT
18	23	0	4	0	19	3.5	2	25+TT	15.5+TT
19	23	0	4	0	19	3.5	2	25+TT	15.5+TT
20	23	0	4	0	19	3.5	2	25+TT	15.5+TT
21	23	0	4	0	19	3.5	2	25+TT	15.5+TT
22	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
23	23	0.2	0	0	22.8	2	2	25+TT	20.8+TT
24	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
25	23	0	4	0	19	3.5	2	25+TT	15.5+TT
26	23	0	4	0	19	3.5	2	25+TT	15.5+TT
27	23	0	4.5	0	18.5	4	2	25+TT	14.5+TT
28	23	0	4.5	0	18.5	4	2	25+TT	14.5+TT
29	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
30	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
31	23	0	4.5	0	18.5	4	2	25+TT	14.5+TT
32	23	0	4.5	0	18.5	4	2	25+TT	14.5+TT
33	23	0	6	0	17	5	2	25+TT	12+TT
34	23	0	6	0	17	5	2	25+TT	12+TT
35	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
36	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
37	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
38	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
39	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
40	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
41	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
42	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
43	23	0.2	0	0	22.8	2	2	25+TT	20.8+TT
44	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
45	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
46	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
47	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
48	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT

49	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
50	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
51	23	0.2	0	0	22.8	2	2	25+TT	20.8+TT
52	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
53	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
54	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
55	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
56	23	0	5.5	0	17.5	5	2	25+TT	12.5+TT
57	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT
58	23	1.2	0	0	21.8	2	2	25+TT	19.8+TT
59	23	0	6.5	0	16.5	5	2	25+TT	11.5+TT
60	23	0	6.5	0	16.5	5	2	25+TT	11.5+TT
61	23	0	8	0	15	5	2	25+TT	10+TT
62	23	0	8	0	15	5	2	25+TT	10+TT
63	23	3.5	0	0	19.5	3.5	2	25+TT	16+TT

NOTE 1: PPowerClass is the maximum UE power specified without taking into account the tolerance.

NOTE 2: For Band n41, refers to the transmission bandwidths (Figure 5.3.3-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the lower limit shall be decreased by 1.0 dB for CP-OFDM 256 QAM and decreased by 1.5 dB for other modulations.

NOTE 3: TT=0.7 dB for BW_{channel} ≤ 40 MHz; TT=1.0 dB for 40 MHz < BW_{channel} ≤ 100 MHz.

6.2.4 Configured transmitted power

6.2.4.1 Test purpose

To verify the measured UE configured maximum output power P_{UMAX,f,c} is within the specified bounds.

6.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.2.4.3 Minimum conformance requirements

The UE is allowed to set its configured maximum output power $P_{CMAX,f,c}$ for carrier f of serving cell c in each slot. The configured maximum output power $P_{CMAX,f,c}$ is set within the following bounds:

$$P_{CMAX_L,f,c} \leq P_{CMAX,f,c} \leq P_{CMAX_H,f,c}$$
 with

$$P_{CMAX_L,f,c} = MIN \; \{ P_{EMAX,c} - \Delta T_{C,c}, \; \; (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{RxSRS}, P-MPR_c) \; \}$$

$$P_{CMAX_H,f,c} = MIN \{P_{EMAX,c}, P_{PowerClass} - \Delta P_{PowerClass} \}$$

where

P_{EMAX.c} is the value given by IE P-Max for serving cell c, defined in TS 38.331[6];

P_{PowerClass} is the maximum UE power specified in Table 6.2.1.3-1 without taking into account the tolerance specified in the Table 6.2.1.3-1;

When the IE powerBoostPi2BPSK is set to 1, $P_{EMAX,c}$ is increased by +3 dB for a power class 3 capable UE operating in TDD bands n40, n41, n77, n78, and n79 with PI/2 BPSK modulation and UE indicates support for UE capability [powerBoosting-pi2BPSK] and 40% or less slots in radio frame are used for UL transmission when $P_{EMAX,c} \ge 20$ dBm.

When the IE powerBoostPi2BPSK is set to 1, $\Delta P_{PowerClass} = -3$ dB for a power class 3 capable UE operating in TDD bands n40, n41, n77, n78, and n79 with PI/2 BPSK modulation and 40% or less slots in radio frame are used for UL transmission.

 $\Delta P_{PowerClass} = 3$ dB for a power class 2 capable UE, when P-max of 23 dBm or lower is indicated; or when the field of UE capability maxUplinkDutyCycle is absent and the percentage of uplink symbols transmitted in a certain evaluation

period is larger than 50%; or when the field of UE capability maxUplinkDutyCycle is not absent and the percentage of uplink symbols transmitted in a certain evaluation period is larger than maxUplinkDutyCycle as defined in TS 38.331 (The exact evaluation period is no less than one radio frame); otherwise $\Delta P_{PowerClass} = 0$ dB;

 $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in TS 38.101-3 [4] subclause 6.2A.4.2 and 6.2B.4.2; $\Delta T_{IB,c} = 0$ dB otherwise;

 $\Delta T_{C,c}$ = 1.5dB when NOTE 3 in Table 6.2.1-1 in 38.101-1 applies for a serving cell c, otherwise $\Delta T_{C,c}$ = 0dB;

MPR_c and A-MPR_c for serving cell c are specified in subclause 6.2.2.3 and subclause 6.2.3.3, respectively;

 ΔT_{RxSRS} is applied when UE transmits SRS to other than first SRS port when the SRS-TxSwitch capability is indicated as '1T2R', '1T4R' or, '1T4R/2T4R' with UE configured with 4 SRS resources in the SRS resource set, and when UE transmits SRS to other than first or second SRS port when the SRS-TxSwitch capability is indicated as '2T4R' or '1T4R/2T4R' with the UE configured with 2 SRS resources in the SRS resource set. The value of ΔT_{RxSRS} is 4.5dB for n79 and 3 dB for bands whose F_{UL_high} is lower than the F_{UL_low} of n79.

For other SRS transmissions ΔT_{RxSRS} is zero;

P-MPR_c is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self defence requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR $_c$ for serving cell c only for the above cases. For UE conducted conformance testing P-MPR $_c$ shall be 0 dB

- NOTE 1: P-MPR_c was introduced in the P_{CMAX,f,c} equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.
- NOTE 2: P-MPR_c may impact the maximum uplink performance for the selected UL transmission path.

 T_{REF} and T_{eval} are specified in Table 6.2.4.3-1. For each T_{REF} , the $P_{CMAX,L,c}$ for serving cell c are evaluated per T_{eval} and given by the minimum value taken over the transmission(s) within the T_{eval} ; the minimum $P_{CMAX_L,f,c}$ over one or more T_{eval} is then applied for the entire T_{REF}

Table 6.2.4.3-1: Evaluation and reference periods for Pcmax

Tref	Teval	T _{eval} with frequency hopping
Physical channel length	Physical channel length	$Min(T_{no_hopping}, Physical Channel Length)$

The measured configured maximum output power P_{UMAX,f,c} shall be within the following bounds:

$$P_{CMAX_L,f,c} \ - \ MAX\{T_{L,c}, \, T(P_{CMAX_L,f,c})\} \ \leq \ P_{UMAX,f,c} \ \leq \ P_{CMAX_H,f,c} \ + \ T(P_{CMAX_H,f,c}).$$

where the tolerance $T(P_{CMAX,f,c})$ for applicable values of $P_{CMAX,f,c}$ is specified in Table 6.2.4.3-2. The tolerance $T_{L,c}$ is the absolute value of the lower tolerance for the applicable operating band as specified in Table 6.2.1.3-1.

Table 6.2.4.3-2: P_{CMAX} tolerance

P _{CMAX,f,c} (dBm)	Tolerance T(P _{CMAX,f,c}) (dB)
23 < P _{CMAX,c} ≤ 33	2.0
21 ≤ P _{CMAX,c} ≤ 23	2.0
20 ≤ P _{CMAX,c} < 21	2.5
19 ≤ P _{CMAX,c} < 20	3.5
18 ≤ P _{CMAX,c} < 19	4.0
13 ≤ P _{CMAX,c} < 18	5.0
8 ≤ P _{CMAX,c} < 13	6.0
-40 ≤ P _{CMAX,c} < 8	7.0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2.4.

6.2.4.4 Test description

6.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.4.4.1-1: Test Configuration Table

		Initial Conditions			
	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
[5] subclause 4.	.1				
Test Frequencie	es as specified in TS 38.508-1	Mid range			
[5] subclause 4.	.3.1				
	andwidths as specified in TS	Lowest, Mid, Highest			
38.508-1 [5] sul	bclause 4.3.1				
Test SCS as sp	est SCS as specified in Table 5.3.5-1 Lowest				
	Test Parar	neters for Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configur	ation		
	N/A for minimum output	Modulation (NOTE 2)	RB allocation (NOTE 1)		
	power				
1	test case	DFT-s-OFDM Pi/2 BPSK	Inner Full		
2		DFT-s-OFDM QPSK	Inner Full		
3 ³		DFT-s-OFDM Pi/2 BPSK	Inner Full		
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
	NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.				
NOTE 3: UE o	NOTE 3: UE operating in TDD mode with PI/2 PBSK modulation and UE indicates support for UE capability				
[pow	rerBoosting-pi2BPSK] and the IE	powerBoostPi2BPSK is set to 1 for bands	n40, n41, n77, n78 and		
n79.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.4.4.3.

6.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE reaches the Pumax level of the test point.

3. Measure the mean power of the UE in the channel bandwidth for each test point in table 6.2.4.5-1 according to the test configuration from table 6.2.4.4.1-1. The period of measurement shall be at least the continuous duration of one active slot and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.2.4.4.3-1: FrequencyInfoUL: Test point 1

Derivation Path: TS 38.508-1 [5] Table 4.6.3-61 FrequencyInfoUL					
Information Element	Value/remark	Comment	Condition		
p-Max	-10				

Table 6.2.4.4.3-2: FrequencyInfoUL: Test point 2

Derivation Path: TS 38.508-1 [5] Table 4.6.3-61 FrequencyInfoUL					
Information Element	Value/remark	Comment	Condition		
p-Max	10				

Table 6.2.4.4.3-3: FrequencyInfoUL: Test point 3

Derivation Path: TS 38.508-1 [5] Table 4.6.3-61 Freque	ncyInfoUL		
Information Element	Value/remark	Comment	Condition
p-Max	15		

Table 6.2.4.4.3-4: FrequencyInfoUL: Test point 4

ncyInfoUL		
Value/remark	Comment	Condition
20		
		Value/remark Comment

Table 6.2.4.4.3-5: ServingCellConfig

Derivation Path: TS 38.508-1 [5] Table 4.6.3-16	57		•
Information Element	Value/remark	Comment	Condition
ServingCellConfig ::= SEQUENCE {			
uplinkConfig SEQUENCE {			
powerBoostPi2BPSK	0		Test ID 1, 2
	1		Test ID 3
}			
}			

6.2.4.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2.4.5-1.

Table 6.2.4.5-1: P_{CMAX} configured UE output power

Maximum ou	utput power
Test ID 1,2 Test ID 3 for Power Class 2	Test ID 3 for Power Class 3
-10 dBm ± (7+TT)	-10 dBm ± (7+TT)
10 dBm ± (6+TT)	10 dBm ± (6+TT)
15 dBm ± (5+TT)	15 dBm ± (5+TT)
20 dBm ± (2.5+TT)	23 dBm ± (2.0+TT)
	Test ID 1,2 Test ID 3 for Power Class 2 -10 dBm ± (7+TT) 10 dBm ± (6+TT) 15 dBm ± (5+TT)

Note 1: TT for each frequency and channel bandwidth is specified in Table 6.2.4.5-2. Note 2: In addition note 2 in Table 6.2.1.3-1 shall apply to the tolerances.

Table 6.2.4.5-2: Test Tolerance (Configured transmitted power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	0.7 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB

For the UE which supports inter-band NR CA configurations or inter-band EN-DC configurations, the $\Delta T_{IB,c}$ in TS 38.101-3 [4] subclause 6.2A.4.2 and 6.2B.4.2 shall be applied for applicable bands.

6.2A Transmitter power for CA

FFS

6.2B Transmitter power for DC

FFS

6.2C Transmitter power for SUL

6.2C.1 Configured transmitted power for SUL

Editor's notes:

- Connection diagram is TBD.
- Parameters setting for Cell setup in 38.508 subclause is FFS.

6.2C.1.1 Test purpose

Same test purpose as in clause 6.2.4.1

6.2C.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.2C.1.3 Minimum conformance requirements

Refer to clause 6.2.4.3, and with the following supplementary specification for UE configured with SUL

For single carrier configured transmit power, as the UL carrier and SUL carrier is a same cell, the configured transmit power is specified for each UL carrier in a serving cell. The configured transmit power requirement for serving cell is applied for each UL carrier.

For the UE which supports SUL band combination, $\Delta T_{IB,c}$ in Table 6.2C.2-1 applies.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.2C.

6.2C.1.4 Test description

Same test description as specified in clause 6.2.4.4 with following exceptions:

Instead of table $5.3.5-1 \rightarrow$ use Table 5.5C-1

Table 6.2C.1.4-1: Test Configuration Table

Initial Conditions						
	Test Environment as specified in TS 38.508-1 [5] subclause 4.1			L, TL/VH, TH/VL, TH/VH		
			Mid range for	Mid range for both SUL carrier and Non-SUL carrier		
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1 Lowest, Mid, Highest for both SUL carrier and Non-SUL carrier						
Test SCS as specified in Table 5.3.5-1			15kHz for both	15kHz for both SUL carrier and Non-SUL carrier		
Test Parameters for Channel Bandwidths						
	Downlink	UL C	onfiguration	SUL Configurat	ion	
	Configuration					
Test ID	N/A for Configured UE			Modulation	RB	
	transmitted Output				allocation	
1	Power test case		NA	DFT-s-OFDM Pi/2 BPSK	Inner Full	
2			NA	DFT-s-OFDM QPSK	Inner Full	
NOTE 1:	NOTE 1: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel bandwidths are specified in Table 5.5C-1.					
NOTE 2:	DFT-s-OFDM PI/2 BPSK	test ap	oplies only for I	UEs which supports half Pi B	PSK in FR1.	

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, additionally the following exceptions shown in Table 6.2C.1.4-2 ~ Table 6.2C.1.4-4 are considered.Table 6.2C.1.4-2: SIB1: Test point 1

Derivation Path: TS 38.508-1 [5] Table 4.6.1-28	SIB1		
Information Element	Value/remark	Comment	Condition
supplementaryUplink ::= SEQUENCE {			
frequencyInfoUL SEQUENCE {			
p-Max	-10		
}			
}			

Table 6.2C.1.4-3: SIB1: Test point 2

Derivation Path: TS 38.508-1 [5] Table 4.6.1-28 S	SIB1		
Information Element	Value/remark	Comment	Condition
supplementaryUplink ::= SEQUENCE {			
frequencyInfoUL SEQUENCE {			
p-Max	10		
}			
}			

Table 6.2C.1.4-4: SIB1: Test point 3

Derivation Path: TS 38.508-1 [5] Table 4.6.1-28 SIB1						
Information Element	Comment	Condition				
supplementaryUplink ::= SEQUENCE {						
frequencyInfoUL SEQUENCE {						
p-Max	15					
}						
}						

6.2C.1.5 Test requirement

The maximum output power measured on SUL carrier shall not exceed the values specified in Table 6.2C.1.5-1.

Table 6.2C.1.5-1: P_{CMAX} configured UE output power

		Channel bandwidth / maximum output power							
	5	10	15	20	25	30			
	MHz	MHz	MHz	MHz	MHz	MHz			
Measured UE output power test point 1	-10 dBm ± (7+TT)								
Measured UE output power test point 2	10 dPm + (6+TT)								
Measured UE output power test point 3	15 dBm ± (5+TT)								
Note 1: TT for each frequency and channel bandwidth is specified in Table 6.2.4.5-2. Note 2: In addition note 3 in Table 6.2.1.3-1 shall apply to the tolerances.									

For the UE which supports SUL configurations with uplink assigned to one E-UTRA band and one supplementary E-UTRA band the $\Delta T_{IB,c}$ in Tables 6.2C.2-1 shall be applied for applicable bands.

6.2C.2 $\Delta T_{IB,c}$

For the UE which supports SUL band combination, $\Delta T_{IB,c}$ in Tables below applies. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

Table 6.2C.2-1: ΔT_{IB,c} due to SUL

Band combination for SUL	NR Band	ΔT _{IB,c} (dB)
CIII n70 n00	n78	0.8
SUL_n78-n80	n80	0.6
CIII n70 n01	n78	0.8
SUL_n78-n81	n81	0.6
SUL n78-n82	n78	0.8
30L_1176-1162	n82	0.6
SUL n78-n83	n78	0.8
30L_1176-1183	n83	0.5
SUL n78-n84	n78	0.8
30L_1170-1104	n84	0.3
SUL_n78-n86	n78	0.8

6.2D Transmitter power for UL-MIMO

6.2D.1UE maximum output power for UL-MIMO

Editor's Note:

- Test point selection is FFS.

- MU/TT is FFS

- Test case is incomplete since there is no CP-OFDM configuration satisfying MPR=0dB requirements in RAN4

6.2D.1.1 Test purpose

To verify that the error of the UE maximum output power for UL-MIMO does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2D.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.2D.1.3 Minimum conformance requirements

For PC2 UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2D.1.3-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2D.1.3-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

The requirements shall be met with the UL-MIMO configurations of using 2-layer UL-MIMO transmission with codebook of $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. DCI Format for UE configured in PUSCH transmission mode for uplink single-user MIMO shall be used.

Table 6.2D.1.3-1: UE Power Class for UL-MIMO in closed loop spatial multiplexing scheme

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
n41			26	+2/-3 ¹	23	+2/-3 ¹		
n77			26	+2/-3	23	+2/-3		
n78			26	+2/-3	23	+2/-3		
n79			26	+2/-3	23	+2/-3		

NOTE 1: ¹ refers to the transmission bandwidths confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

Table 6.2D.1.3-2: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index		
Codebook based uplink	DCI format 0_1	Codebook index 0		

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.1 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2D.1.

6.2D.1.4 Test description

6.2D.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2D.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2D.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2D.1.4.3.

6.2D.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2D.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at each transmit antenna connector in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of 1ms over all active uplink slots and in the uplink symbols. For TDD slots only slots consisting of only UL symbols are under.

Editor's note: the end of the sentence of 3. is missing!

6.2D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 ensuring Table 4.6.3-182 with the condition 2TX_UL_MIMO.

6.2D.1.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2D.1.5-1.

Table 6.2D.1.5-1: UE Power Class

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
n41			26	+2+TT/- 3 ¹ -TT	23	+2+TT/-3 ¹ - TT		
n77			26	+2+TT/-3- TT	23	+2+TT/-3-TT		
n78			26	+2+TT/-3- TT	23	+2+TT/-3-TT		
n79			26	+2+TT/-3- TT	23	+2+TT/-3-TT		

NOTE 1: ¹ refers to the transmission bandwidths confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2D.1.5-2

Table 6.2D.1.5-2: Test Tolerance (UE maximum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS	FFS

6.2D.2 UE maximum output power reduction for UL-MIMO

Editor's Note:

-MU and TT are FFS

-MU and TT are FFS

6.2D.2.1 Test purpose

To verify that the power reduction of UE due to higher order modulations and transmit bandwidth configuration does not exceed the specified maximum power reduction.

6.2D.2.2 Test applicability

The requirements of this test apply in test cases 6.5.2.4 Adjacent Channel Leakage power Ratio for UL-MIMO to all types of NR UE release 15 and forward that support UL-MIMO.

6.2D.2.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2D.1.3-1 is specified in Table 6.2.2.3-1. The requirements shall be met with UL-MIMO configurations defined in Table 6.2D.1.3-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2D.4.3 apply.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.2.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2D.2.

6.2D.2.4 Test description

6.2D.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2D.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2D.2.4.1-1: Test Configuration Table for Power Class 3

Initial Conditions							
Test Environment as specified in TS 38.508-1		as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subclause 4.1							
	Test Frequencies as specified in TS 38.508-1		Low range, High range				
	[5] subclause 4.3.1						
Test Channel Bandwidths as specified in TS			Lowest, Highest				
	38.508-1 [5] subclause 4.3.1						
Test SCS	Test SCS as specified in Table 5.3.5-1		Lowest and Highest				
			neters for Channel Bandwidths				
Test	Freq	Downlink Configuration	Uplink Configuration				
ID		N 1/A		DD III (NOTE 4)			
		N/A	Modulation	RB allocation (NOTE 1)			
1	Default		CP-OFDM QPSK	Inner Full			
2	Low		CP-OFDM QPSK	Edge_1RB_Left			
3	High		CP-OFDM QPSK	Edge_1RB_Right			
4	Default		CP-OFDM QPSK	Outer Full			
5	Default		CP-OFDM 16 QAM	Inner Full			
6	Low		CP-OFDM 16 QAM	Edge_1RB_Left			
7	High		CP-OFDM 16 QAM	Edge_1RB_Right			
8	Default		CP-OFDM 16 QAM	Outer Full			
9	Low		CP-OFDM 64 QAM	Edge_1RB_Left			
10	High		CP-OFDM 64 QAM	Edge_1RB_Right			
11	Default		CP-OFDM 64 QAM	Outer Full			
12	Low		CP-OFDM 256 QAM	Edge_1RB_Left			
13	High		CP-OFDM 256 QAM	Edge_1RB_Right			
14	Default		CP-OFDM 256 QAM	Outer Full			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							
NOTE 2: CP-OFDM 256 QAM test applies only for UEs which supports 256QAM in FR1.							

Table 6.2D.2.4.1-2: Test Configuration Table for Power Class 2

Initial Conditions							
			Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subcl		to opeomod iii 10 oo.ooo 1	1401111ai, 12, 12, 12, 11, 11, 12, 11, 11				
	Test Frequencies as specified in TS 38.508-1		Low range, High range				
	[5] subclause 4.3.1						
Test Channel Bandwidths as specified in TS		widths as specified in TS	Lowest, Highest				
	38.508-1 [5] subclause 4.3.1						
	Test SCS as specified in Table 5.3.5-1		Lowest and Highest				
	Test Parameters for Channel Bandwidths						
Test ID	Freq	Downlink Configuration	Uplink Configuration				
		N/A	Modulation	RB allocation (NOTE 1)			
1	Default		CP-OFDM QPSK	Inner Full			
2	Low		CP-OFDM QPSK	Edge_1RB_Left			
3	High		CP-OFDM QPSK	Edge_1RB_Right			
4	Default		CP-OFDM QPSK	Outer Full			
5	Default		CP-OFDM 16 QAM	Inner Full			
6	Low		CP-OFDM 16 QAM	Edge_1RB_Left			
7	High		CP-OFDM 16 QAM	Edge_1RB_Right			
8	Default		CP-OFDM 16 QAM	Outer Full			
9	Low		CP-OFDM 64 QAM	Edge_1RB_Left			
10	High		CP-OFDM 64 QAM	Edge_1RB_Right			
11	Default		CP-OFDM 64 QAM	Outer Full			
12	Low		CP-OFDM 256 QAM	Edge_1RB_Left			
13	High		CP-OFDM 256 QAM	Edge_1RB_Right			
14	Default		CP-OFDM 256 QAM	Outer Full			
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.						
NOTE 2:	NOTE 2: CP-OFDM 256 QAM test applies only for UEs which supports 256QAM in FR1.						

^{1.} Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.

^{2.} The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2D.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2D.2.4.3.

6.2D.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2D.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at each transmit antenna connector in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active subframe (1ms) and in the uplink symbols. For TDD symbol with transient periods are not under test.

6.2D.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4.

6.2D.2.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2D.2.5-1 and Table 6.2D.2.5-2.

Table 6.2D.2.5-1: UE Power Class test requirements (for Band n41, n77, n78, n79) for Power Class 3

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	Δ٦	Г _{С,с} (dВ)	Pcmax_L	.,f,c (dBm)	Т(Рсма	x_L,f,c) (dB)	T _{L,c}	Upper limit (dBm)	Lower	limit (dBm)
1	23	0	1.5	0	(1.5 ²)	21.5	(20.0 ²)	5.0	(6.02)	3	25.0 + TT	16.5 - TT	(14.0 - TT ²)
2	23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	6.0	(5.02)	3	25.0 + TT	14.0 - TT	(13.5 - TT ²)
3	23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	6.0	(5.02)	3	25.0 + TT	14.0 - TT	(13.5 - TT ²)
4	23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	6.0	(5.02)	3	25.0 + TT	14.0 - TT	(13.5 - TT ²)
5	23	0	2	0	(1.5 ²)	21.0	(19.5 ²)	5.0	(5.02)	3	25.0 + TT	16.0 - TT	(14.5 - TT ²)
6	23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	6.0	(5.02)	3	25.0 + TT	14.0 - TT	(13.5 - TT ²)
7	23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	6.0	(5.02)	3	25.0 + TT	14.0 - TT	(13.5 - TT ²)
8	23	0	3	0	(1.5 ²)	20.0	(18.5 ²)	6.0	(5.02)	3	25.0 + TT	14.0 - TT	(13.5 - TT ²)
9	23	0	3.5	0	(1.5 ²)	19.5	(18.0 ²)	5.0	(5.02)	3	25.0 + TT	14.5 - TT	(13.0 - TT ²)
10	23	0	3.5	0	(1.5 ²)	19.5	(18.0 ²)	5.0	(5.02)	3	25.0 + TT	14.5 - TT	(13.0 - TT ²)
11	23	0	3.5	0	(1.5 ²)	19.5	(18.0 ²)	5.0	(5.02)	3	25.0 + TT	14.5 - TT	(13.0 - TT ²)
12	23	0	6.5	0	(1.5 ²)	16.5	(15.0 ²)	5.0	(6.02)	3	25.0 + TT	11.5 - TT	(9.0 - TT ²)
13	23	0	6.5	0	(1.5 ²)	16.5	(15.0 ²)	5.0	(6.02)	3	25.0 + TT	11.5 - TT	(9.0 - TT ²)
14	23	0	6.5	0	(1.5 ²)	16.5	(15.0 ²)	5.0	(6.0 ²)	3	25.0 + TT	11.5 - TT	(9.0 - TT ²)

Table 6.2D.2.5-2: UE Power Class test requirements (for Bands n41, n77, n78, n79) for Power Class 2

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	26	0	1.5	0 (1.5 ²)	24.5 (23.0 ²)	2.0 (2.5²)	3	28.0 + TT	21.5 - TT (20.0 - TT ²)
2	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0 ²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
3	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0 ²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
4	26	0	3	0 (1.5 ²)	23.0 (21.5²)	3.0 (5.0²)	3	28.0 + TT	20.0 - TT (16.5 - TT ²)
5	26	0	2	0 (1.5 ²)	24.0 (22.5²)	3.0 (5.0²)	3	28.0 + TT	21.0 - TT (17.5 - TT ²)
6	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
7	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0 ²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
8	26	0	3	0 (1.5 ²)	23.0 (21.5²)	3.0 (5.0²)	3	28.0 + TT	20.0 - TT (16.5 - TT ²)
9	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0 ²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
10	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
11	26	0	3.5	0 (1.5 ²)	22.5 (21.0²)	5.0 (5.0²)	3	28.0 + TT	17.5 - TT (16.0 - TT ²)
12	26	0	6.5	0 (1.5 ²)	19.5 (18.0 ²)	5.0 (5.0²)	3	28.0 + TT	14.5 - TT (13.0 - TT ²)
13	26	0	6.5	0 (1.5²)	19.5 (18.0 ²)	5.0 (5.0²)	3	28.0 + TT	14.5 - TT (13.0 - TT ²)
14	26	0	6.5	0 (1.5 ²)	19.5 (18.0 ²)	5.0 (5.0²)	3	28.0 + TT	14.5 - TT (13.0 - TT ²)

Table 6.2D.2.5-3: Test Tolerance (Maximum Power Reduction (MPR))

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.2D.4 Configured transmitted power for UL-MIMO

Editor's Note:

- MU and TT need further study on whether any deviation from basic test case is needed.

6.2D.4.1 Test purpose

To verify the measured UE configured maximum output power P_{UMAX,f,c} for UL-MIMO is within the specified bounds.

6.2D.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.2D.4.3 Minimum conformance requirements

For UE supporting UL-MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power $P_{CMAX,c}$, the lower bound $P_{CMAX_L,c}$, and the higher bound $P_{CMAX_H,c}$ specified in subclause 6.2.4 shall apply to UE supporting UL-MIMO, where

 $P_{PowerClass}, \Delta P_{PowerClass}$ and $\Delta T_{C,\it{c}}$ are specified in subclause 6.2D.1.3;

 MPR_c is specified in subclause 6.2D.2.3;

A-MPR_c is specified in subclause 6.2D.3.3.

The measured configured maximum output power $P_{UMAX,c}$ for serving cell c shall be within the following bounds:

$$P_{CMAX_L,c} - \ MAX\{T_L, T_{LOW}(P_{CMAX_L,c})\} \ \leq \ P_{UMAX,c} \leq \ P_{CMAX_H,c} + \ T_{HIGH}(P_{CMAX_H,c})$$

where $T_{LOW}(P_{CMAX_L,c})$ and $T_{HIGH}(P_{CMAX_H,c})$ are defined as the tolerance and applies to $P_{CMAX_L,c}$ and $P_{CMAX_H,c}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2D.1.3-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial amultiplexing scheme, the tolerance is specified in Table 6.2D.4.3-1. The requirements shall be met with UL-MIMO configurations specified in Table 6.2D.1.3-2.

Table 6.2D.4.3-1: P_{CMAX,c} tolerance in closed-loop spatial multiplexing scheme

Pcmax,c	Tolerance	Tolerance
(dBm)	TLOW(PCMAX_L,c) (dB)	Thigh($P_{CMAX_h,c}$) (dB)
P _{CMAX,c} =26	3.0	2.0
23 ≤ P _{CMAX,c} < 26	3.0	2.0
22 ≤ P _{CMAX,c} < 23	5.0	2.0
21 ≤ P _{CMAX,c} < 22	5.0	3.0
20 ≤ P _{CMAX,c} < 21	6.0	4.0
16 ≤ P _{CMAX,c} < 20	5	.0
11 ≤ P _{CMAX,c} < 16	6	.0
-40 ≤ P _{CMAX,c} < 11	7	.0

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.2.4.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.2D.4.

6.2D.4.4 Test description

6.2D.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in

table 6.2D.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2D.4.4.1-1: Test Configuration Table

		Initial Conditions				
Test Environme	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subclause 4	.1					
Test Frequenci	es as specified in TS 38.508-1	Low range, Mid range, High range				
[5] subclause 4	.3.1					
Test Channel Bandwidths as specified in TS		Lowest, Mid, Highest				
38.508-1 [5] su	bclause 4.3.1					
Test SCS as sp	ecified in Table 5.3.5-1	Lowest				
	Test Paran	neters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configuration				
	N/A	Modulation	RB allocation (NOTE 1)			
1	1 CP-OFDM QPSK Inner Full					
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1. 1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2D.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2D.4.4.3.

6.2D.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2D.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level of the test point.
- 3. Measure the sum of the mean power of the UE at each transmit antenna connector in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of 1ms over all active uplink slots and in the uplink symbols. For TDD slots only slots consisting of only UL symbols are under test.

6.2D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with the condition 2TX_UL_MIMO and following exception.

Table 6.2D.4.4.3-1: FrequencyInfoUL: Test point 1

Derivation Path: TS 38.508-1 [5] Table 4.6.3-61 FrequencyInfoUL					
Information Element	Value/remark	Comment	Condition		
p-Max	0				

Table 6.2D.4.4.3-2: FrequencyInfoUL: Test point 2

Derivation Path: TS 38.508-1 [5] Table 4.6.3-61 FrequencyInfoUL					
Information Element	Value/remark	Comment	Condition		
p-Max	14				

Table 6.2D.4.4.3-3: FrequencyInfoUL: Test point 3

Derivation Path: TS 38.508-1 [5] Table 4.6.3-61 FrequencyInfoUL					
Information Element	Value/remark	Comment	Condition		
p-Max	18				

6.2D.4.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2D.4.5-1.

Table 6.2D.4.5-1: P_{CMAX} configured UE output power

Configured transmitted power					
Measured UE output power test point 1 0 dBm ± (7+TT)					
Measur	ed UE output power test point 2	14 dBm ± (6+TT)			
Measur	Measured UE output power test point 3 18 dBm ± (5+TT)				
Note 1:	Note 1: TT for each frequency and channel bandwidth is specified in Table 6.2D.4.5-2.				
Note 2:	Note 2: In addition note 2 in Table 6.2D.1.3-1 shall apply to the tolerances.				

Table 6.2D.4.5-2: Test Tolerance (Configured transmitted power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS	FFS

6.3 Output power dynamics

6.3.1 Minimum output power

6.3.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.1.3 Minimum conformance requirements

The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

The minimum output power is defined as the mean power in one sub-frame TBD ms. The minimum output power shall not exceed the values specified in Table 6.3.1.3-1.

Table 6.3.1.3-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40	4.515
10	-40	9.375
15	-40	14.235
20	-40	19.095
25	-39	23.955
30	-38.2	28.815
40	-37	38.895
50	-36	48.615
60	-35.2	58.35
80	-34	78.15
90	-33.5	88.23
100	-33	98.31

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.1.

6.3.1.4 Test description

6.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.1.4.1-1: Test Configuration Table

	Initial Conditions					
Test Environme	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subclause 4.	.1					
Test Frequencie	es as specified in TS 38.508-1	Low range, Mid range, High range				
[5] subclause 4.	.3.1					
Test Channel B	andwidths as specified in TS	Lowest, Mid, Highest				
38.508-1 [5] sul	oclause 4.3.1					
Test SCS as sp	ecified in Table 5.3.5-1	Highest				
	Test Paran	neters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configuration				
	N/A for minimum output	Modulation	RB allocation (NOTE 1)			
power						
1	test case	DFT-s-OFDM QPSK	Outer Full			
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.1.4.3.

6.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Measure the mean power of the UE in the associated measurement channel bandwidth specified in Table 6.3.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.

6.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.3.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3.1.5-1.

Channel bandwidth Minimum output power Measurement bandwidth (MHz) (dBm) (MHz) 5 -40+TT 4.515 10 -40+TT 9.375 14.235 15 -40+TT 20 -40+TT 19.095 25 -39+TT 23.955 28.815 30 -38.2+TT 40 -37+TT 38.895 48.615 50 -36+TT 58.35 60 -35.2+TT 80 -34+TT 78.15 88.23 90 -33.5+TT 100 -33+TT 98.31 TT for each frequency and channel bandwidth is specified in Table 6.3.1.5-2

Table 6.3.1.5-1: Minimum output power

Table 6.3.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.3 dB
40MHz < BW ≤ 100MHz	1.3 dB	1.3 dB

6.3A.1 Minimum output power for CA

6.3A.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum output power is defined per carrier and the requirement is specified in subclause 6.3.1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.1.

6.3A.1.1 Minimum output power for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is FFS.
- Connection diagram is FFS in TS 38.508-1.
- MU and TT is FFS in Annex F.

6.3A.1.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power for 2UL CA below the value specified in the test requirement when the power is set to a minimum value.

6.3A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support 2UL CA.

6.3A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.1.0.

6.3A.1.1.4 Test description

6.3A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configurations specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.1.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [FFS] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.1.1.4.3.

6.3A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.3A.1.3.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3).

- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.1.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "down" commands for both carriers in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 6. Measure the mean power of the UE for each component carrier in the associated measurement channel bandwidth specified in Table 6.3A.1.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of 1ms in all active uplink slots and in the uplink symbols. For TDD, only slots consisting of only UL symbols are under test

6.3A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.3A.1.1.5 Test requirement

The minimum output power of each component carrier, derived in step 6 shall not exceed the values specified in Table 6.3A.1.1.5-1.

Channel bandwidth Minimum output power Measurement bandwidth (MHz) (dBm) (MHz) 4.515 5 -40+TT 10 -40+TT 9.375 15 -40+TT 14.235 19.095 20 -40+TT 25 -39+TT 23.955 30 -38.2+TT 28.815 40 -37+TT 38.895 50 -36+TT 48.615 60 -35.2+TT 58.35 -34+TT 78.15 80 88.23 90 -33.5+TT 100 -33+TT 98.31

Table 6.3A.1.1.5-1: Minimum output power

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3A.1.1.5-

Table 6.3A.1.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.3A.2 Transmit OFF power for CA

6.3A.2.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit OFF power specified in subclause 6.3.2 is applicable for each component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.2

6.3A.2.1 Transmit OFF power for CA (2UL CA)

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is FFS.

- Test description is not complete.
- Connection diagram is FFS in TS 38.508-1 [5].
- MU/TT is FFS in Annex F

6.3A.2.1.1 Test purpose

To verify that the UE transmit OFF power for 2UL CA is lower than the value specified in the test requirement.

6.3A.2.1.2 Test applicability

The requirements of this test apply in test cases 6.3A.3.1 Transmit ON/OFF time mask for CA (2UL CA) to all types of NR UE release 15 and forward that support 2UL CA.

6.3A.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.2.0.

6.3A.2.1.4 Test description

This test is covered by clause 6.3A.3.1 Transmit ON/OFF time mask for 2UL CA.

6.3A.2.1.5 Test requirement

The requirement for the transmit OFF power of each component carrier shall not exceed the values specified in Table 6.3A.2.1.5-1.

Table 6.3A.2.1.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)	
5	-50+TT	4.515	
10	-50+TT	9.375	
15	-50+TT	14.235	
20	-50+TT	19.095	
25	-50+TT	23.955	
30	-50+TT	28.815	
40	-50+TT	38.895	
50	-50+TT	48.615	
60	-50+TT	58.35	
80	-50+TT	78.15	
100	-50+TT	88.23	
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3A.2.1.5-			

Table 6.3A.2.1.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

Transmit ON/OFF time mask for CA 6.3A.3

6.3A.3.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the general output power ON/OFF time mask specified in subclause 6.3.3.2 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.3.2 shall only be applicable for each component carrier when all the component carriers are OFF.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.3.

6.3A.3.1 Transmit ON/OFF time mask for CA (2UL CA)

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is FFS
- Connection diagram is FFS in TS 38.508-1.
- MU/TT is FFS in Annex F

6.3A.3.1.1 Test purpose

To verify that the general ON/OFF time mask for CA (2UL CA) meets the requirements given in 6.3A.3.1.5

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power and transmit ON power symbols for CA.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3A.3.1.2. Test applicability

This test case applies to all types of NR UE release 15 and forward that support 2UL CA.

6.3A.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.3.0.

6.3A.3.1.4 Test description

6.3A.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.3.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [FFS] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.3.1.4.3.

6.3A.3.3.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.3A.3.1.4.3.

- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3).
- 4. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment for each component carrier is such that the UE transmits on slots 4 and 9 for 15kHz SCS, on slots 9 and 19 for 30kHz SCS and on slots 4, 9, 14, 19, 24, 29, 34 and 39 for 60kHz SCS.
- 5. Measure the UE transmission OFF power for each component carrier during the slot prior to the PUSCH transmission, excluding a transient period of 10 µs in the end of the slot.
- 6. Measure the output power of the UE PUSCH transmission for each component carrier during one slot.
- 7. Measure the UE transmission OFF power of each component carrier during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

6.3A.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Table 6.3A.3.3.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

6.3A.3.3.5 Test requirement

The requirement for the power of each component carrier measured in steps 5, 6 and 7 of the test procedure shall not exceed the values specified in Table 6.3A.3.1.5-1.

Table 6.3A.3.1.5-1: General ON/OFF time mask

	SCS			Cha	nnel band	width / min	imum outp	ut power / i	measureme	ent bandwi
	[kHz]	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz
Transmit OFF power							≤ -50+T	T dBm		
Transmission OFF Measurement bandwidth		4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35
Expected Transmission ON	15	-9.62±9.0 ±TT	- 6.44±9.0 ±TT	- 4.62±9.0 ±TT	3.35±9.0 ±TT	2.36±9.0 ±TT	- 1.56±9.0 ±TT	- 0.26±9.0 ±TT	0.71±9.0 ±TT	N/A
Measured power for CP-OFDM	30	- 10.18±9.0 ±TT	- 6.79±9.0 ±TT	- 4.79±9.0 ±TT	- 3.51±9.0 ±TT	- 2.46±9.0 ±TT	- 1.67±9.0 ±TT	- 0.34±9.0 ±TT	0.65±9.0 ±TT	1.51±9.0 ±TT
	60	N/A	- 7.17±9.0 ±TT	- 5.03±9.0 ±TT	- 3.78±9.0 ±TT	- 2.67±9.0 ±TT	- 1.78±9.0 ±TT	- 0.50±9.0 ±TT	0.55±9.0 ±TT	1.40±9.0 ±TT
Expected Transmission ON	15	-9.62±9.0 ±TT	- 6.61±9.0 ±TT	- 4.85±9.0 ±TT	- 3.60±9.0 ±TT	- 2.53±9.0 ±TT	- 1.56±9.0 ±TT	- 0.26±9.0 ±TT	0.71±9.0 ±TT	N/A
Measured power for DFT-s-OFDM	30	- 10.59±9.0 ±TT	- 6.79±9.0 ±TT	- 5.03±9.0 ±TT	- 3.60±9.0 ±TT	- 2.53±9.0 ±TT	- 1.84±9.0 ±TT	- 0.59±9.0 ±TT	0.48±9.0 ±TT	1.51±9.0 ±TT
NOTE 1: TT o	60	N/A	- 7.58±9.0 ±TT	- 5.03±9.0 ±TT	- 3.78±9.0 ±TT	- 2.81±9.0 ±TT	- 2.02±9.0 ±TT	- 0.59±9.0 ±TT	0.48±9.0 ±TT	1.17±9.0 ±TT

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz ~ RW < 100MHz	EEC	FFS

Table 6.3A.3.1.5-2: Test Tolerance for OFF power

Table 6.3A.3.1.5-3: Test Tolerance for ON power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.3.2 Transmit OFF power

6.3.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3.2.2 Test applicability

The requirements of this test apply in test cases 6.3.3 Transmit ON/OFF time mask to all types of NR UE release 15 and forward.

6.3.2.3 Minimum conformance requirements

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the transmitter is not considered OFF.

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.2.3-1.

Table 6.3.2.3-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50	4.515
10	-50	9.375
15	-50	14.235
20	-50	19.095
25	-50	23.955
30	-50	28.815
40	-50	38.895
50	-50	48.615
60	-50	58.35
80	-50	78.15
100	-50	88.23

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.2.

An excess transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3.2.4 Test description

This test is covered by clause 6.3.3 Transmit ON/OFF time mask.

6.3.2.5 Test requirement

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3.2.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50+TT	4.515
10	-50+TT	9.375
15	-50+TT	14.235
20	-50+TT	19.095
25	-50+TT	23.955
30	-50+TT	28.815
40	-50+TT	38.895
50	-50+TT	48.615
60	-50+TT	58.35
80	-50+TT	78.15
100	-50+TT	88.23
NOTE 1: TT for each frequ	ency and channel bandwidth is	specified in Table 6.3.2.5-2

Table 6.3.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3.3 Transmit ON/OFF time mask

6.3.3.1 General

The transmit power time mask defines the transient period(s) allowed

- between transmit OFF power as defined in sub-clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)

between continuous ON-power transmissions with power change or RB hopping is applied.

In case of RB hopping, transition period is shared symmetrically.

Unless otherwise stated the minimum requirements in clause 6.5 apply also in transient periods.

In the following sub-clauses, following definitions apply:

- A slot transmission is a Type A transmission.
- A long subslot transmission is a Type B transmission with more than 2 symbols.
- A short subslot transmission is a Type B transmission with 1 or 2 symbols.

6.3.3.2 General ON/OFF time mask

6.3.3.2.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3.3.2.5.

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power as defined in sub-clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.2.3 Minimum conformance requirements

The general ON/OFF time mask defines the observation period between transmit OFF and ON power and between transmit ON and OFF power for each SCS. ON/OFF scenarios include: the beginning or end of DTX, measurement gap, contiguous, and non-contiguous transmission, etc

The OFF power measurement period is defined in a duration of at least one slot excluding any transient periods. The ON power is defined as the mean power over one slot excluding any transient period.

Figure 6.3.3.2.3-1: General ON/OFF time mask for NR UL transmission in FR1

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.3.2.

6.3.3.2.4 Test description

6.3.3.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.2.4.1-1: Test Configuration Table

		Initial Conditions		
Test Environment as specified in TS 38.508-1		Normal, TL/VL, TL/VH, TH/VL, TH/VH		
[5] subclause 4	4.1			
Test Frequenc	ies as specified in TS 38.508-1	Low range, Mid range, High range		
[5] subclause 4	4.3.1			
Test Channel	Bandwidths as specified in TS	Lowest, Mid, Highest		
38.508-1 [5] su	ubclause 4.3.1			
Test SCS as s	pecified in Table 5.3.5-1	Lowest, Highest		
	Test Parar	meters for Channel Bandwidths		
Test ID	Downlink Configuration	Uplink Configuration		
	N/A for minimum output	Modulation	RB allocation (NOTE 1)	
	power			
1	test case	CP-OFDM QPSK	Outer Full	
NOTE 1: The	specific configuration of each RE	allocation is defined in Table 6.1-1.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.3.2.4.3.

6.3.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.3.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 4 and 9 for15kHz SCS, on slots 9 and 19 for 30kHz SCS and on slots 4, 9, 14, 19, 24, 29, 34 and 39 for 60kHz SCS.
- 2. Measure the UE transmission OFF power during the slot prior to the PUSCH transmission, excluding a transient period of $10 \mu s$ in the end of the slot.
- 3. Measure the output power of the UE PUSCH transmission during one slot.
- 4. Measure the UE transmission OFF power during the slot following the PUSCH transmission, excluding a transient period of 10 μs at the beginning of the slot.

6.3.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Table 6.3.3.2.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

Table 6.3.3.2.4.3-2: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition CP-OFDM

6.3.3.2.5 Test requirement

The requirement for the power measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3.3.2.5-1.

Table 6.3.3.2.5-1: General ON/OFF time mask

	scs			Cha	nnel band	vidth / mini	mum outp	ut power / i	neasureme	nt bandwid	dth		
	[kHz]	5	10	15	20	25	30	40	50	60	80	90	100
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit OFF power							≤ -50+T	TdBm					
Transmission OFF		4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
Measurement bandwidth													
Expected	15	-9.62±9.0	-	-	-	-	-	-	0.71±9.0	N/A	N/A	N/A	N/A
Transmission		±TT	6.44±9.0	4.62±9.0	3.35±9.0	2.36±9.0	1.56±9.0	0.26±9.0	±TT				
ON			±TT	±TT	±TT	±TT	±TT	±TT					
Measured	30	-	-	-	-	-	-	-	0.65±9.0	1.51±9.0	2.77±9.0	3.30±9.0	3.77±9.0
power for		10.18±9.0	6.79±9.0	4.79±9.0	3.51±9.0	2.46±9.0	1.67±9.0	0.34±9.0	±TT	±TT	±TT	±TT	±TT
CP-OFDM		±TT	±TT	±TT	±TT	±TT	±TT	±TT					
	60	N/A	-	-	-	-	-	-	0.55±9.0	1.40±9.0	2.71±9.0	3.25±9.0	3.72±9.0
			7.17±9.0	5.03±9.0	3.78±9.0	2.67±9.0	1.78±9.0	0.50±9.0	±TT	±TT	±TT	±TT	±TT
			±TT	±TT	±TT	±TT	±TT	±TT					
Expected	15	-9.62±9.0	-	-	-	-	-	-	0.71±9.0	N/A	N/A	N/A	N/A
Transmission		±TT	6.61±9.0	4.85±9.0	3.60±9.0	2.53±9.0	1.56±9.0	0.26±9.0	±TT				
ON			±TT	±TT	±TT	±TT	±TT	±TT					
Measured	30	-			-	-	-	-	0.48±9.0	1.51±9.0	2.75±9.0	3.21±9.0	3.72±9.0
power for		10.59±9.0	6.79±9.0	5.03±9.0	3.60±9.0	2.53±9.0	1.84±9.0	0.59±9.0	±TT	±TT	±TT	±TT	±TT
DFT-s-OFDM		±TT	±TT	±TT	±TT	±TT	±TT	±TT					
	60	N/A	-	-	-	-	-	-	0.48±9.0	1.17±9.0	2.42±9.0	3.21±9.0	3.72±9.0
			7.58±9.0	5.03±9.0	3.78±9.0	2.81±9.0	2.02±9.0	0.59±9.0	±TT	±TT	±TT	±TT	±TT
NOTE 4	L		±TT	±TT	±TT	±TT	±TT	±TT					
NOTE 1: TT fo	or each t	requency an	d channel b	andwidth is	specified in	1 able 6.3.3	3.2.5-2						

Table 6.3.3.2.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

Table 6.3.3.2.5-3: Test Tolerance for ON power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3.3.3 Transmit power time mask for slot and [mini-slot] boundaries

FFS

6.3.3.4 PRACH time mask

6.3.3.4.1 Test purpose

To verify that the PRACH time mask meets the requirements given in 6.3.3.4.5.

The time mask for PRACH time mask defines the transient period(s)allowed between transmit OFF power and transmit ON power when transmitting the PRACH.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel

6.3.3.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.4.3 Minimum conformance requirements

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.3.4.3-1. The measurement period for different PRACH preamble format is specified in Table 6.3.3.4.3-1.

Table 6.3.3.4.3-1: PRACH ON power measurement period

PRACH preamble format	SCS (kHz)	Measurement period (ms)
0	1.25	0.903125
1	1.25	2.284375
2	1.25	3.352604
3	5	0.903125
A1	15	0.142708
AT	30	0.071354
۸.0	15	0.285417
A2	30	0.142708
۸.۵	15	0.428125
A3	30	0.2140625
D4	15	0.140365
B1	30	0.070182
D.4	15	0.83046875
B4	30	0.415234375
	45	0.142708 ms for first six occasion
Λ 1 /D 1	15	0.140365 ms for the last occasion
A1/B1	30	0.071354 ms for first six occasion
	30	0.070182 ms for the last occasion
	15	0.285417 ms for first two occasion
A2/B2	15	0.278385 ms for the third occasion
AZ/DZ	30	0.142708 ms for first two occasion
	30	0.1391925 ms for the third occasion
	15	0.428125 ms for the first occasion
A3/B3	10	0.41640625 ms for the second occasion
70/00	30	0.2140625 ms for the first occasion
30		0.208203125 ms for the second occasion
C0	15	0.10703125
	30	0.053515625
C2	15	0.333333
	30	0.166667 In start from the beginning of 0.5ms or span the

Figure 6.3.3.4.3-1: PRACH ON/OFF time mask

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.3.4.

6.3.3.4.4 Test description

6.3.3.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes [TBD]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions Test Environment as specified in TS 38.508-1 [5] Normal, TL/VL, TL/VH, TH/VL, TH/VH subclause 4.1 Test Frequencies as specified in TS 38.508-1 [5] Mid range subclause 4.3.1 Test Channel Bandwidths as specified in TS 38.508-1 Lowest, Mid, Highest [5] subclause 4.3.1 SCS defined in TS 38.211 [8] subclause 6.3.3.2 Test SCS as specified in Table 5.3.5-1 PRACH preamble format Unpaired Spectrum Paired Spectrum **PRACH Configuration Index** 4 (long sequence), 15 (long sequence), 160 (short sequence) 131 (short sequence)

Table 6.3.3.4.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.3.4.4.3.

6.3.3.4.4.2 Test procedure

1. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.

- 2. The UE shall send the signalled preamble to the SS.
- 3. The SS measure the UE transmission OFF power during the slot preceding the PRACH preamble excluding a transient period of 10 µs according to Figure 6.3.3.4.3-1.
- 4. Measure the output power of the transmitted PRACH preamble according to Figure 6.3.3.4.3-1.
- 5. Measure the UE transmission OFF power, starting $10~\mu s$ after the PRACH preamble ends for a measurement period.

6.3.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.3 with the following exceptions:

Table 6.3.3.4.4.3-1: RACH-ConfigGeneric: PRACH measurement

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	Condition
RACH-ConfigGeneric ::= SEQUENCE {			
prach-ConfigurationIndex	4	Paired Spectrum	PRACH
			Format 0
	160	Paired Spectrum	PRACH
			Format A3
	15	Unpaired	PRACH
		Spectrum	Format 0
	131	Unpaired	PRACH
		Spectrum	Format A3
powerRampingStep	dB0		
}			

Table 6.3.3.4.4.3-2: ServingCellConfigCommonSIB: PRACH measurement

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommonSIB ::= SEQUENCE {			
ss-PBCH-BlockPower	32		
}			

6.3.3.4.5 Test requirement

The requirement for the power measured in steps (3), (4) and (5) of the test procedure shall not exceed the values specified in Table 6.3.3.4.5-1.

Table 6.3.3.4.5-1: PRACH time mask

		Channel bandwidth / minimum output power / measurement ba							
	5	5 10 15 20 25 30 40 50							
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
Transmit OFF power		≤ -50+TT dBm							
Transmission OFF Measurement bandwidth	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	
Expected PRACH Transmission ON Measured Power	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-
ON Power Tolerance		± (9+TT)dB							
NOTE 1: TT for each f	requency and	d channel bai	ndwidth is sp	ecified in Tab	ole 6.3.3.4.5-2	2			

Table 6.3.3.4.5-2: Test Tolerance (Transmit OFF power and PRACH time mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3.3.5	PUCCH time mask
6.3.3.5.1	Long PUCCH time mask
FFS	
6.3.3.5.2	Short PUCCH time mask
FFS	
0 0 0 0	ODO ('

6.3.3.6 SRS time mask

6.3.3.6.1 Test purpose

To verify that the SRS time mask meets the requirements given in 6.3.3.6.5.

The time mask for SRS time mask defines the transient period(s) allowed between transmit OFF power and transmit ON power when transmitting the SRS.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.3.6.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.6.3 Minimum conformance requirements

For SRS transmission mapped to one OFDM symbol, the ON power is defined as the mean power over the symbol duration excluding any transient period; Figure 6.3.3.6.3-1

Figure 6.3.3.6.3-1: Single SRS time mask for NR UL transmission

For SRS transmission mapped to two OFDM symbols the ON power is defined as the mean power for each symbol duration excluding any transient period. See Figure 6.3.3.6.3-2

Figure 6.3.3.6.3-2: Consecutive SRS time mask for the case when no power change is required

When power change between consecutive SRS transmissions is required, then Figure 6.3.3.6.3-3 and Figure 6.3.3.6.3-4 apply.

Figure 6.3.3.6.3-3: Consecutive SRS time mask for the case when power change is required and when 15kHz and 30kHz SCS is used in FR1

Figure 6.3.3.6.3-4: Consecutive SRS time mask for the case when power change is required and when 60kHz SCS is used in FR1

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.3.6.

6.3.3.6.4 Test description

6.3.3.6.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.6.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.6.4.1-1: Test Configuration Table

Initial Condi	tions	
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal, TL/VL,	TL/VH, TH/VL, TH/VH
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1	Mi	d range
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	Lowest,	Mid, Highest
SRS configuration Test SCS as specified in Table 5.3.5-1	Lowes	st , Highest
	Paired Spectrum	Unpaired Spectrum
c-SRS (SRS bandwidth configuration)	61	7 (for BW 5 MHz) 13 (for BW 10 MHz) 19 (for BW 15 MHz) 25 (for BW 20 MHz) 30 (for BW 25 MHz) 40 (for BW 30 MHz) 51 (for BW 40MHz) 62 (for BW 50MHz) for SCS 15 KHz 1 (for BW 10 MHz) 4 (for BW 15 MHz) 7 (for BW 20, 25 MHz) 9 (for BW 30 MHz) 13 (for BW 40MHz) 17 (for BW 50MHz) 19 (for BW 50MHz) 19 (for BW 60MHz) 25 (for BW 80MHz) 27 (for BW 90MHz) 30 (for BW 100MHz) for SCS 60 KHz
b-SRS	63	63
b-hop	3	0
freqDomainPosition	0	0
SRS-PeriodicityAndOffset	sl8	sl8
transmissionComb	0	0
cyclicShift	0	0

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.3.6.4.3.

6.3.3.6.4.2 Test procedure

- The SS measure the UE transmission OFF power during the 13 OFDM symbols preceding the SRS symbol
 excluding a transient period of 10 μs according to Figure 6.3.3.6.3-1. The SS measure the UE transmission OFF
 power during the 8 OFDM symbols preceding the four SRS symbols excluding a transient period of 10μs
 according to Figure 6.3.3.6.3-2.
- 2. Measure the output power of the transmitted SRS according to Figure 6.3.3.6.3-1 for UE and according to Figure 6.3.3.6.3-2 for UE, The transient periods are excluded from measurement accordingly.
- 3. Measure the UE transmission OFF power during the slot following the SRS under test, excluding a transient period of 10 µs according to Figure 6.3.3.6.3-1 for UE and according to Figure 6.3.3.6.3-2 for UE.

6.3.3.6.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6. 3 with the following exceptions:

Table 6.3.3.6.4.3-1: SRS-Config: SRS time mask measurement

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	Condition
SRS-Config ::= SEQUENCE {			
srs-ResourceToAddModList SEQUENCE	1 entry		
(SIZE(1maxNrofSRS-Resources)) OF SEQUENCE {	-		
srs-Resourceld	0		
nrofSRS-Ports	port1		
transmissionComb CHOICE {			
n2 SEQUENCE {			
combOffset-n2	0		
cyclicShift-n2	0		
}			
}			
freqDomainPosition	0		
freqDomainShift	0		
freqHopping SEQUENCE {			
c-SRS	61		Paired Spectrum
	7 (for BW 5 MHz)		Unpaired Spectrum
	13 (for BW 10 MHz)		for SCS 15 KHz
	19 (for BW 15 MHz)		
	25 (for BW 20 MHz)		
	30 (for BW 25 MHz)		
	40 (for BW 30 MHz)		
	51 (for BW 40MHz)		
	62 (for BW 50MHz)		
	1 (for BW 10 MHz)		Unpaired Spectrum
	4 (for BW 15 MHz)		for SCS 60 KHz
	7 (for BW 20, 25 MHz)		
	9 (for BW 30 MHz)		
	13 (for BW 40MHz)		
	17 (for BW 50MHz)		
	19 (for BW 60MHz)		
	25 (for BW 80MHz)		
	27 (for BW 90MHz)		
	30 (for BW 100MHz)		
b-SRS	63		
b-hop	3		Paired Spectrum
•	0		Unpaired Spectrum
}			
sequenceld	0		
}			
}			

6.3.3.6.5 Test requirement

The requirement for the power measured in steps (1), (2) and (3) of the test procedure shall not exceed the values specified in Table 6.3.3.6.5-1.

Table 6.3.3.6.5-1: SRS time mask

	SCS		Channel bandwidth / minimum output power / measureme								
	[kHz]	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	
Transmit OFF power				•		•	≤ -50+	TT dBm			
Transmission OFF Measurement bandwidth		4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	
Expected SRS	15	-2.6	-2.6	-2.6	-2.6	-2.6	-2.6	-2.6	-2.6	N/A	
Transmission ON Measured power	30	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	
	60	N/A	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	
ON Power Tolerar			•		•	± (9+	TT)dB				

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3.3.6.5-2

Table 6.3.3.6.5-2: Test Tolerance (Transmit OFF power and SRS time mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3.3.7 PUSCH-PUCCH and PUSCH-SRS time masks

Editor's Note:

- Test Configuration Table, Test procedure, Message contents and Test requirement for SRS are not complete

6.3.3.7.1 Test purpose

To verify that the PUSCH-PUCCH and PUSCH-SRS time mask meets the requirements given in 6.3.3.7.5.

The time mask for PUSCH-PUCCH and PUSCH-SRS time mask defines the transient period(s) allowed between transmit OFF power and transmit ON power when transmitting the PUSCH-PUCCH and PUSCH-SRS.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.3.7.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.3.7.3 Minimum conformance requirements

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent UL transmissions. The time masks apply for all types of frame structures and their allowed PUCCH/PUSCH/SRS transmissions unless otherwise stated.

Figure 6.3.3.7.3-1: PUCCH/PUSCH/SRS time mask when there is a transmission before or after or both before and after SRS

When there is no transmission preceding SRS transmission or succeeding SRS transmission, then the same time mask applies as shown in Figure 6.3.3.7.3-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.3.7.

6.3.3.7.4 Test description

6.3.3.7.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3.3.7.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.3.7.4.1-1: Test Configuration Table

		Initial Conditions						
Test Environme	ent as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH						
[5] subclause 4	.1							
Test Frequenci	es as specified in TS 38.508-1	Mid range						
[5] subclause 4								
Test Channel B	Sandwidths as specified in TS	Lowest, Mid, Highest						
38.508-1 [5] sul	bclause 4.3.1							
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest						
	Test Paran	neters for Channel Bandwidths						
Test ID	Downlink Configuration	Uplink Configu	ration					
	N/A for minimum output	Modulation	RB allocation (NOTE 1)					
	power							
1	1 test case CP-OFDM QPSK Outer Full							
NOTE 1: The	specific configuration of each RB	allocation is defined in Table 6.1-1.	·					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.3.7.4.3.

6.3.3.7.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.3.7.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 4 and 9 for15kHz SCS, on slots 9 and 19 for 30kHz SCS and on slots 4, 9, 14, 19, 24, 29, 34 and 39 for 60kHz SCS.
- 2. Measure the output power of the UE PUSCH/PUCCH transmission during one slot, excluding a transient period of $10 \,\mu s$ at the beginning of the slot.
- 3. Excluding a transient period of 10 µs before SRS.
- 4. Excluding a transient period of 10 µs at the end of the slot after SRS.

6.3.3.7.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Table 6.3.3.7.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

Table 6.3.3.7.4.3-2: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition CP-OFDM

6.3.3.7.5 Test requirement

The requirement for the power measured in step (2) of the test procedure shall not exceed the values specified in Table 6.3.3.7.5-1.

Table 6.3.3.7.5-1: PUSCH-PUCCH and PUSCH-SRS time mask

	SCS		Channel bandwidth / minimum output power / measurement ba										
	[kHz]	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz				
Expected PUSCH/PUCCH Transmission ON	15	9.6	6.4	4.6	3.3	2.3	1.5	0.2	0.7				
Measured power for CP- OFDM	30	10.1	6.7	4.7	3.5	2.4	1.6	0.3	0.6				
	60	N/A	7.1	5.0	3.7	2.6	1.7	0.5	0.5				
ON Power Tole	rance						± (9+	TT)dB					

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3.3.7.5-2

Table 6.3.3.7.5-2: Test Tolerance for ON power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3.4 Power control

6.3.4.1 General

The requirements on power control accuracy apply under normal conditions.

6.3.4.2 Absolute power tolerance

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 [5] is FFS.
- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS
- Message Contents are tentative pending review of values for p0-NominalWithGrant
- Test requirement is TBD
- Test Tolerance is TBD for SCS60, needs to be higher due to shorter measurement period forced by UL-DL Config.

6.3.4.2.1 Test purpose

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.2.3 Minimum conformance requirements

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. The tolerance includes the channel estimation error.

The minimum requirement specified in Table 6.3.4.2.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 and the maximum output power as specified in sub-clause 6.2.1.

Table 6.3.4.2.3-1: Absolute power tolerance

Conditions	Tolerance
Normal	± 9.0 dB

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.2

6.3.4.2.4 Test description

6.3.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.2.4.1-1: Test Configuration Table

	Initial Conditions										
Test Enviro subclause 4	nment as specified in TS 4.1	38.508-1 [5]	Normal								
Test Freque subclause 4	encies as specified in TS 4.3.1	38.508-1 [5]	Mid range								
Test Chann	el Bandwidths as specifi	ed in TS 38.508-1	Lowest, Mid, Highest								
[5] subclaus	se 4.3.1										
Test SCS a	s specified in Table 5.3.	5-1	Lowest, Highest								
		Test Pa	rameters								
Test ID	Downlink Co	nfiguration	Upli	nk Configuration							
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)							
1	N/A for Absolute power	tolerance test case	CP-OFDM QPSK Outer_Full								
NOTE 1	: The specific configura	ation of each RF alloca	ation is defined in Table	6.1-1.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.2.4.1-1 and Table 6.3.4.2.4.1-2
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.4.2.4.3. Note that PDCCH DCI format 0_1 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3.4.2.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.4.2.4.1-1 and Table 6.3.4.2.4.1-2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Measure the initial output power of the first sub-frame (1ms) of UE PUSCH first transmission, or 1 slot (0.25ms) in the case of TDD SCS 60kHz.

3. Repeat for the two test points as indicated in section 6.3.4.2.4.3. The timing of the execution between the two test points shall be larger than 20ms.

6.3.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.3.4.2.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-119 PUSCH-ConfigCommon									
Information Element	Value/remark	Comment	Condition						
PUSCH-ConfigCommon::= SEQUENCE {									
p0-NominalWithGrant	[-105]	Test point 1 to verify a UE relative low initial power transmission							
}									

Table 6.3.4.2.4.3-2: UplinkPowerControlCommon: Test point 2

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-119 PUSCH-ConfigCommon										
Information Element	Value/remark	Comment	Condition							
PUSCH-ConfigCommon::= SEQUENCE {										
p0-NominalWithGrant	[-93]	Test point 2 to verify a UE relative high initial power transmission								
}										

Table 6.3.4.2.4.3-3: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition CP-OFDM

6.3.4.2.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3.4.2.5-1 and 6.3.4.2.5-2.

Table 6.3.4.2.5-1: Absolute power tolerance: test point 1

			Channel bandwidth / expected output power (dBm)										
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	
Ever a start Management	SCS15	-6	-2.8	-1.0	0.3	1.2	2.0	3.3	4.3				
Expected Measured power	SCS30	-6.6	-3.2	-1.2	0.1	1.1	1.9	3.3	4.2	5.1	6.4	6.9	7.4
power	SCS60		-3.6	-1.4	-0.2	0.9	1.8	3.1	4.1	5.0	6.3	6.8	7.3
Power tolerand						± (9+TT)dB						

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3

Note 2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3.4.2.5-3.

Table 6.3.4.2.5-2: Absolute power tolerance: test point 2

			Channel bandwidth / expected output power (dBm)										
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Expected Measured	SCS15	6	9.2	11.0	12.3	13.2	14.0	15.3	16.3				
power	SCS30	5.4	8.8	10.8	12.1	13.1	13.9	15.3	16.2	17.1	18.4	18.9	19.4
power	SCS60		8.4	10.6	11.8	12.9	13.8	15.1	16.1	17.0	18.3	18.8	19.3
Power tolerand	± (9+TT)dB												
Note 1: The lower po	Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3												

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3 Note 2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3.4.2.5-3.

Table 6.3.4.2.5-3: Test Tolerance

		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
FDD, TDD SCS 15kHz	BW ≤ 40MHz	1.0 dB	1.4 dB	1.4 dB
& TDD SCS 30khz	40MHz < BW ≤ 100MHz	1.4 dB	1.4 dB	1.4 dB
TDD SCS 60kHz		[TBD]	[TBD]	[TBD]

6.3.4.3 Power Control Relative power tolerance

6.3.4.3.1 Test purpose

To verify the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is larger than 20ms.

6.3.4.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.3.4.3.3 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.4.3.3-1.

The minimum requirements specified in Table 6.3.4.3.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and the measured PUMAXas defined in sub-clause 6.2.4.

Table 6.3.4.3.3-1: Relative Power Tolerance

Power step ΔP (Up or down) (dB)	All combinations of PUSCH and PUCCH transitions (dB)	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames (dB)	PRACH (dB)
ΔP < 2	± 2.0 (NOTE)	± 2.5	± 2.0
2 ≤ ΔP < 3	± 2.5	± 3.5	± 2.5
3 ≤ ΔP < 4	± 3.0	± 4.5	± 3.0
4 ≤ ΔP ≤ 10	± 3.5	± 5.5	± 3.5
10 ≤ ΔP < 15	± 4.0	± 7.0	± 4.0
15 ≤ ΔP	± 5.0	± 8.0	± 5.0

NOTE: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is \pm 0.7 dB.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.3.

6.3.4.3.4 Test description

6.3.4.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.3.4.1-1 and table 6.3.4.3.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.3.4.1-1: Test Configuration Table

Initial Conditions								
Test Environment as specified in TS 38.508-1 [5] subclause 4.3.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH					
subclause 4	encies as specified in TS 4.3.1		Low range					
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1			Lowest, Mid, Highest					
Test SCS as specified in TS 38.508-1 [5] subclause 4.3.1			Lowest, Highest					
Test Parameters								
Ch BW	Downlink Co		Uplink Configuration					
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)				
5MHz	N/A for Relative power	tolerance test case	DFT-s-OFDM QPSK	See Table 6.3.4.3.5-1				
				See Table 6.3.4.3.5-2				
				See Table 6.3.4.3.5-7				
10MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
				See Table 6.3.4.3.5-7				
15MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
				See Table 6.3.4.3.5-7				
20MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
	_			See Table 6.3.4.3.5-7				
25MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
				See Table 6.3.4.3.5-7				
30MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
				See Table 6.3.4.3.5-7				
40MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
	_			See Table 6.3.4.3.5-7				
50MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3				
				See Table 6.3.4.3.5-4				
001411	_		DET. OFDIA ODDIA	See Table 6.3.4.3.5-7				
60MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-5				
				See Table 6.3.4.3.5-6				
001411	4		DET - OFDM ODOM	See Table 6.3.4.3.5-7				
80MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-5				
				See Table 6.3.4.3.5-6				
001411-	4		DET a OFDM ODOM	See Table 6.3.4.3.5-7				
90MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-5				
				See Table 6.3.4.3.5-6				
100MHz	-		DFT-s-OFDM QPSK	See Table 6.3.4.3.5-7 See Table 6.3.4.3.5-5				
TUUIVIHZ			DF 1-8-UFDINI QP3K	See Table 6.3.4.3.5-5 See Table 6.3.4.3.5-6				
				See Table 6.3.4.3.5-6 See Table 6.3.4.3.5-7				
Note 1:								
Note 1: The starting resource block shall be RB# 1								

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.3.4.1-1 and Table 6.3.4.3.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5 Message contents are defined in clause 6.3.4.3.4.3.

6.3.4.3.4.2 Test procedure

The procedure is separated in various subtests to verify different aspects of relative power control. The power patterns of the subtests are described in figure 6.3.4.3.4.2-1 thru figure 6.3.4.3.4.2-11.

Figure 6.3.4.3.4.2-1: FDD ramping up test power patterns

Figure 6.3.4.3.4.2-2: FDD ramping down test power patterns

Figure 6.3.4.3.4.2-2: TDD ramping up test power patterns, SCS 15kHz

Figure 6.3.4.3.4.2-4: TDD ramping up test power patterns, SCS 30kHz

Figure 6.3.4.3.4.2-5: TDD ramping up test power patterns, SCS 60kHz

Figure 6.3.4.3.4.2-6: TDD ramping down test power patterns, SCS 15kHz

Figure 6.3.4.3.4.2-7: TDD ramping down test power patterns, SCS 30kHz

Figure 6.3.4.3.4.2-8: TDD ramping down test power patterns, SCS 60kHz

Figure 6.3.4.3.4.2-9: Alternating Test Power patterns, SCS 15kHz

Figure 6.3.4.3.4.2-10: Alternating Test Power patterns, SCS 30kHz

Figure 6.3.4.3.4.2-11: Alternating Test Power patterns, SCS 60kHz

1. Sub test: ramping up pattern

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at -30.3 dBm +/- 2.7 dB
- 1.2 Schedule the UE's PUSCH data transmission as described in Figure 6.3.4.3.4.2-1 (FDD pattern A: sub-test is divided in 4/2/1 arbitrary radio frames with 10/20/40 active uplink slots per radio frame for SCS 15kHz/30kHz/60kHz), Figure 6.3.4.3.4.2-3 (TDD, SCS 15kHz, pattern A: sub-test is divided in 20 arbitrary radio frames with 2 active uplink slots per radio frame), Figure 6.3.4.3.4.2-4 (TDD, SCS 30kHz, pattern A: sub-test is divided in 10 arbitrary radio frames with 4 active uplink slots per radio frames), Figure 6.3.4.3.4.2-5 (TDD, SCS 60kHz, pattern A: sub-test is divided in 5 arbitrary radio frames with 8 active uplink slots per radio frames). Uplink RB allocation as defined in table 6.3.4.3.5-1/6.3.4.3.5-3/6.3.4.3.5-5 depending on channel bandwidth. On the PDCCH format 0_1 for the scheduling of the PUSCH the SS will transmit a +1dB TPC command. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.
- 1.3 Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.4.3.5. For power transients between slots, transient periods of 40us between slots are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the slot are excluded.
- 1.4 Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.4.3.5-1/6.3.4.3.5-3/6.3.4.3.5-5 to force bigger UE power steps at various points in the power range.

2. Sub test: ramping down pattern

- 2.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 18 dBm +/- 2.7 dB.
- 2.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.4.3.4.2-2 (FDD pattern A: subtest is divided in 4/2/1 arbitrary radio frames with 10/20/40 active uplink slots per radio frame for SCS 15kHz/30kHz/60kHz), Figure 6.3.4.3.4.2-6 (TDD, SCS 15kHz, pattern A: sub-test is divided in 20 arbitrary radio frames with 2 active uplink slots per radio frame), Figure 6.3.4.3.4.2-7 (TDD, SCS 30kHz, pattern A: sub-test is divided in 10 arbitrary radio frames with 4 active uplink slots per radio frames), Figure 6.3.4.3.4.2-8 (TDD, SCS 60kHz, pattern A: sub-test is divided in 5 arbitrary radio frames with 8 active uplink slots per

radio frames). Uplink RB allocation as defined in table 6.3.4.3.5-2/6.3.4.3.5-4/6.3.4.3.5-6 depending on channel bandwidth. On the PDCCH format 0_1 for the scheduling of the PUSCH the SS will transmit a -1dB TPC command. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.

- 2.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.4.4.5. For power transients between slots, transient periods of 40us between slots are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the slot are excluded.
- 2.4. Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.4.3.5-2/6.3.4.3.5-4/6.3.4.3.5-6 to force bigger UE power steps at various points in the power range.

3. Sub test: alternating pattern

- 3.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at -10 dBm +/- 2.7 dB. The initial uplink RB allocation is defined as the smaller uplink RB allocation value specified in table 6.3.4.3.4.1-1. The power level and RB allocation are reset for each sub-test.
- 3.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-9 for 20 frames, Figure 6.3.5.2.4.2-10 for 10 frames, Figure 6.3.5.2.4.2-11 for 5 frames for SCS 15/30/60 kHz respectively with an uplink RB allocation alternating pattern as defined in table 6.3.4.3.5-7 while transmitting 0dB TPC command for PUSCH via the PDCCH.
- 3.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements specified in clause 6.3.4.3.5. For power transients between slot, transient periods of 40us between slots are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the slots are excluded.

6.3.4.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.3.4.3.5 Test requirement

Each UE power step measured in the test procedure 6.3.4.3.4.2 should satisfy the test requirements specified in Table 6.3.4.3.5-1 thru 6.3.4.3.5-7.

Table 6.3.4.3.5-1: Test Requirements Relative Power Tolerance for Transmission, channel BW 5MHz, ramp up sub-test

Test SCS [kHz]	Sub- test ID	Applicable slots	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		Slots before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
15	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- 3.5 + TT
		Slots after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	2	RB change	1RB to 15 RBs	TPC=+1dB	12.76	10dB ≤ ΔP < 15dB	12.76 +/- 4 + TT
		Slots after RB change	Fixed = 15	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 2 RBs	TPC=+1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- 3.5 + TT
		Slots after RB change	Fixed = 2	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
30		Slots before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	2	RB change	1RB to 7 RBs	TPC=+1dB	12.46	10dB ≤ ΔP < 15dB	12.46 +/- 4 + TT
		Slots after RB change	Fixed = 7	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Note 1: Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink slots Pattern B the position of RB uplink allocation change is after 20 active uplink slots Pattern C the position of RB uplink allocation change is after 30 active uplink slots Note 2: The starting resource block shall be RB# 1. Note 3: TT=0.7dB					plink slots

Table 6.3.4.3.5-2: Test Requirements Relative Power Tolerance for Transmission, channel BW 5MHz, ramp down sub-test

Test SCS [kHz]	Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		Slots before RB change	Fixed = 5	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- 3.5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
15		Slots before RB change	Fixed = 15	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
	2	RB change	15 RBs to 1 RB	TPC=-1dB	12.76	10dB ≤ ΔP < 15dB	12.76 +/- 3.5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 2	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
	1	RB change	2 RBs to 1 RB	TPC=-1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- 3.5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
30		Slots before RB change	Fixed = 7	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
	2	RB change	7 RBs to 1 RB	TPC=-1dB	12.46	10dB ≤ ΔP < 15dB	12.46 +/- 4 + TT

Note 1:

Position of RB change:
Pattern A the position of RB uplink allocation change is after 10 active uplink slots
Pattern B the position of RB uplink allocation change is after 20 active uplink slots Pattern C the position of RB uplink allocation change is after 30 active uplink slots

The starting resource block shall be RB# 1. TT=0.7dB Note 2:

Note 3:

Table 6.3.4.3.5-3: Test Requirements Relative Power Tolerance for Transmission, channel BW 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz ramp up sub-test

Test SCS [kHz]	Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- 3.5 + TT
		Slots after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
15	2	RB change	1RB to 20 RBs	TPC=+1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 20	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
	3	RB change	1RB to 50 RBs	TPC=+1dB	17.99	15dB ≤ ΔP	17.99 +/- 5 + TT
		Slots after RB change	Fixed = 50	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 2 RBs	TPC=+1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- 3.5 + TT
		Slots after RB change	Fixed = 2	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
30	2	RB change	1RB to 10 RBs	TPC=+1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 10	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	3	RB change	1RB to 22 RBs	TPC=+1dB	17.43	15dB < ΔP	17.43 +/- 5 + TT
		Slots after RB change	Fixed = 22	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 5 RBs	TPC=+1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
60		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
	2	RB change	1RB to 9 RBs	TPC=+1dB	16.56	15dB < ΔP	16.56 +/- 5 + TT
Note 1	Docition	Slots after RB change	Fixed = 9	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT

Pattern A the position of RB uplink allocation change is after 10 active uplink slots, except for TDD SCS 60 kHz which is after 8 active uplink slots.

Pattern B the position of RB uplink allocation change is after 20 active uplink slots

Pattern C the position of RB uplink allocation change is after 30 active uplink slots, except for TDD SCS 60 kHz which is after 28 active uplink slots.

Note 2: The starting resource block shall be RB# 1.

Table 6.3.4.3.5-4: Test Requirements Relative Power Tolerance for Transmission, channel BW 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz ramp down sub-test

Test SCS [kHz]	Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		Slots before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	5 RBs to 1RBs	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- 3.5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 20	TPC=-1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
15	2	RB change	20 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 50	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	3	RB change	50 RBs to 1 RB	TPC=-1dB	17.99	15dB ≤ ΔP	17.99 +/- 5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 2	TPC=-1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
	1	RB change	2 RBs to 1 RB	TPC=-1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- 3.5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 10	TPC=-1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
30	2	RB change	10 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 22	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	3	RB change	22 RBs to 1 RB	TPC=-1dB	17.43	15dB < ΔP	17.43 +/- 5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	5 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT
60		Slots before RB change	Fixed = 9	TPC=-1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
	2	RB change	9 RBs to 1 RB	TPC=-1dB	16.56	15dB < ΔP	16.56 +/- 5 + TT
Note 1	Docition	Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT

Pattern A the position of RB uplink allocation change is after 10 active uplink slots, except for TDD SCS 60 kHz which is after 8 active uplink slots.

Pattern B the position of RB uplink allocation change is after 20 active uplink slots

Pattern C the position of RB uplink allocation change is after 30 active uplink slots, except for TDD SCS 60 kHz which is after 28 active uplink slots.

Note 2: The starting resource block shall be RB# 1.

Table 6.3.4.3.5-5: Test Requirements Relative Power Tolerance for Transmission, channel BW 60MHz, 80MHz, 90MHz, 100MHz ramp up sub-test

Test SCS [kHz]	Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 2 RBs	TPC=+1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- 3.5 + TT
		Slots after RB change	Fixed = 2	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
30	2	RB change	1RB to 6 RBs	TPC=+1dB	11.79	10dB ≤ ΔP < 15dB	11.79 +/- 4 + TT
		Slots after RB change	Fixed = 6	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	3	RB change	1RB to 81 RBs	TPC=+1dB	23.10	15dB < ΔP	23.10 +/- 5 + TT
		Slots after RB change	Fixed = 81	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 5 RBs	TPC=+1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
60		Slots before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	2	RB change	1RB to 75 RBs	TPC=+1dB	25.77	15dB < ΔP	25.77 +/- 5 + TT
		Slots after RB change	Fixed = 75	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT

Pattern A the position of RB uplink allocation change is after 10 active uplink slots, except for TDD SCS 60 kHz which is after 8 active uplink slots.

Pattern B the position of RB uplink allocation change is after 20 active uplink slots

Pattern C the position of RB uplink allocation change is after 30 active uplink slots, except for TDD SCS 60 kHz which is after 28 active uplink slots.

Note 2: The starting resource block shall be RB# 1.

Table 6.3.4.3.5-6: Test Requirements Relative Power Tolerance for Transmission, channel BW 60MHz, 80MHz, 90MHz, 100MHz ramp down sub-test

Test SCS	Sub- test	Applicable sub-	Uplink RB allocation	TPC command	Expected power	Power step size	PUSCH
[kHz]	ID	frames			step size (Up)	range (Up)	РОЗСП
					ΔP [dB]	ΔP [dB]	[dB]
		Slots before RB change	Fixed = 2	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	2 RBs to 1 RB	TPC=-1dB	7.02	4dB ≤ ΔP < 10dB	7.02 +/- 3.5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 6	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
30	2	RB change	6 RBs to 1 RB	TPC=-1dB	11.79	10dB ≤ ΔP < 15dB	11.79 +/- 4 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 81	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	3	RB change	81 RBs to 1 RB	TPC=-1dB	23.10	15dB < ΔP	23.10 +/- 5 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Slots before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	5 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- 4 + TT
		Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
60		Slots before RB change	Fixed = 75	TPC=-1dB	1	ΔP ≤1 dB	1 +/-0.7 + TT
	2	RB change	75 RBs to 1 RB	TPC=-1dB	25.77	15dB < ΔP	25.77 +/- 5 + TT
Note 4:	Danitia	Slots after RB change	Fixed = 1	TPC=-1dB	1	ΔP≤1 dB	1 +/-0.7 + TT

Pattern A the position of RB uplink allocation change is after 10 active uplink slots, except for TDD SCS 60 kHz which is after 8 active uplink slots.

Pattern B the position of RB uplink allocation change is after 20 active uplink slots

Pattern C the position of RB uplink allocation change is after 30 active uplink slots, except for TDD SCS 60 kHz which is after 28 active uplink slots.

Note 2: The starting resource block shall be RB# 1.

Table 6.3.4.3.5-7: Test Requirements Relative Power Tolerance for Transmission, alternating sub-test

BW	Test SCS [kHz]	Sub- test ID	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- 3 + TT
	15	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- 3.5 + TT
5		3	Alternating 1 and 15	TPC=0dB	11.76	10dB ≤ ΔP < 15dB	11.76 +/- 4 + TT
		1	Alternatting 1 and 2	TPC=0dB	6.02	4dB ≤ ΔP < 10dB	6.02 +/- 3.5 + TT
	30	2	Alternating 1 and 7	TPC=0dB	11.46	10dB ≤ ΔP < 15dB	11.46 +/- 4 + TT
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- 3 + TT
		2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- 3.5 + TT
	15	3	Alternating 1 and 20	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- 4 + TT
		4	Alternating 1 and 50	TPC=0dB	16.99	15dB ≤ ΔP	16.99 +/- 5 + TT
		1	Alternating 1 and 2	TPC=0dB	6.02	4dB ≤ ΔP < 10dB	6.02 +/- 3.5 + TT
10,15,20, 25,30,40,50	30	2	Alternating 1 and 10	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- 4 + TT
		3	Alternating 1 and 22 RBs	TPC=0dB	16.43	15dB < ΔP	16.43 +/- 5 + TT
		1	Alternating 1 and 5	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- 4 + TT
	60	2	Alternating 1 and 9	TPC=0dB	15.56	15dB < ΔP	15.56 +/- 5 + TT
		1	Alternating 1 and 2	TPC=0dB	6.02	4dB ≤ ΔP < 10dB	6.02 +/- 3.5 + TT
	30	2	Alternating 1 and 6	TPC=0dB	10.79	10dB ≤ ΔP < 15dB	10.79 +/- 4 + TT
		3	Alternating 1 and 81	TPC=0dB	22.10	15dB < ΔP	22.10 +/- 5 + TT
60,80,90,100		1	Alternating 1 and 2	TPC=0dB	9.03	4dB ≤ ΔP < 10dB	9.03 +/- 3.5 + TT
	60	2	Alternating 1 and 5	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- 4 + TT
		3	Alternating 1 and 75	TPC=0dB	24.77	15dB < ΔP	24.77 +/- 5 + TT

Note 1: The starting resource block shall be RB# 1.

Note 2: TT=0.7dB

6.3.4.4 Aggregate power tolerance

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 [5] is FFS.
- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS
- Test Tolerance is TBD

6.3.4.4.1 Test purpose

To verify the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

6.3.4.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.4.3 Minimum conformance requirements

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

The minimum requirement specified in Table 6.3.4.4.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 and the maximum output power as specified in sub-clause 6.2.2.

Table 6.3.4.4.3-1: Aggregate power tolerance

TPC command	UL channel	Aggregate power tolerance within 21ms
0 dB	PUCCH	± 2.5 dB
0 dB	PUSCH	± 3.5 dB

The normative reference for this requirement is TS 38.01-1 [2] clause 6.3.4.4

6.3.4.4.4 Test description

6.3.4.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.4.4.1-1 and table 6.3.4.4.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.4.4.1-1: Test Configuration Table: PUCCH sub-test

	Initial Conditions				
Test Environme	ent as specified in TS 38.508-1 [5]	Normal			
subclause 4.1					
Test Frequencie	es as specified in TS 38.508-1 [5]	Mid range			
subclause 4.3.1					
Test Channel B	andwidths as specified in TS 38.508-1 [5]	Lowest, Mid, Highest			
subclause 4.3.1					
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest			
	Test Parameters for	Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configuration			
	N/A for aggregate power tolerance	PUCCH format = Format 1			
1	testcase	Length in OFDM symbols = 14			

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Mid range				
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Mid, Highest				
Test SCS as sp	pecified in Table 5.3.5-1	Lowest, Highest				
-	Test Paran	neters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configura	ation			
	N/A for aggregate power	Modulation	RB allocation (NOTE 1)			
1 tolerance testcase		CP-OFDM QPSK	Outer_Full			
NOTE 1: The	NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to G.0, G.1, G.2, G.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.4.4.1-1 (PUCCH sub-test) and Table 6.3.4.4.1-2 (PUSCH sub-test)
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.4.4.4.3.

6.3.4.4.4.2 Test procedure

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns are described in figure 6.3.4.4.2-1.

Figure 6.3.4.4.4.2-1 Test uplink transmission

1. PUCCH sub test:

- 1.1 The SS transmits PDSCH via PDCCH DCI format 0_1 for C_RNTI to transmit the DL RMC according to Table 6.3.4.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at 0dBm +/-3.5 dB+TT for carrier frequency 1.5 dB+TT frequency 1.5 dB+TT frequency 1.5 dB+TT f
- 1.2. Every 5 sub-frames (5ms) transmit to the UE downlink PDSCH MAC padding bits as well as 0 dB TPC command for PUCCH via the PDCCH to make the UE transmit ACK/NACK on the PUCCH for 1 sub-frame(1ms), or 1 slot (0.25ms) in the case of TDD SCS 60kHz. The downlink transmission is scheduled in the appropriate slots to make the UE transmit PUCCH as described in figure 6.3.4.4.2-1
- 1.3. Measure the power of 5 consecutive PUCCH transmissions to verify the UE transmitted PUCCH power is maintained within 21ms.

2. PUSCH sub test:

- 2.1. The SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 0dBm + 2.5 dB + TT for carrier frequency 1.0dBm + 2.0dBm + 2.0
- 2.2. Every 5 sub-frames (5ms) schedule the UE's PUSCH data transmission for 1 sub-frame(1ms), or 1 slot (0.25ms) in the case of TDD SCS 60kHz,and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH. The uplink transmission patterns are described in figure 6.3.4.4.4.2-1,
- 2.3. Measure the power of 5 consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within 21ms transmissions.

6.3.4.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.3.4.4.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3.4.4.5-1. The power measurement period shall be 1 sub-frame, or 1 slot (0.25ms) in the case of TDD SCS 60kHz.

Table 6.3.4.4.5-1: Power control tolerance

TPC command	ommand UL channel Test requirement measured power				
0 dB	PUCCH	Given 5power measurements in the pattern, the 2 nd , and later measurements shall be within ± 2.5dB of the 1 st measurement.			
0 dB PUSCH		Given TBD power measurements in the pattern, the 2 nd , and later measurements shall be within ± 3.5dB of the 1 st measurement.			
Note 1: For SCS 30kHz 1 sub-frame corresponds to 2 slots, so 2 TPC commands will be sent for a single measurement period.					
	TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3.4.4.5-2.				

Table 6.3.4.4.5-2: Test Tolerance

[TBD]

6.3D

6.3D.1 Minimum output power for UL-MIMO

Editor's Note:

- Test point analysis is still pending.

98.31

- MU/TT is still FFS

6.3D.1.1 Test purpose

To verify the UE's ability to transmit with a UL-MIMO broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3D.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.3D.1.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each UE antenna connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3D.1.3-1.

Channel bandwidth Minimum output power Measurement bandwidth (MHz) (MHz) (dBm) 5 -40 4.515 10 -40 9.375 15 -40 14.235 -40 19.095 20 23.955 25 -39 38.2 28.815 30 40 -37 38.895 50 -36 48.615 58.35 60 -35.2 78.15 80 -34 90 -33.5 88.23

Table 6.3D.1.3-1: Minimum output power

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.1.

100

6.3D.1.4 Test description

6.3D.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

-33

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.1.4.1-1: Test Configuration Table

		Initial Conditions			
Test Environment as specified in TS 38.508-1		Normal, TL/VL, TL/VH, TH/VL, TH/V	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
[5] subclause 4					
Test Frequence	ies as specified in TS 38.508-1	Low range, Mid range, High range			
[5] subclause 4	1.3.1				
Test Channel Bandwidths as specified in TS		Lowest, Mid, Highest			
38.508-1 [5] su	ıbclause 4.3.1				
Test SCS as s	pecified in Table 5.3.5-1	Lowest, Highest			
	Test Parai	meters for Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configuration			
N/A for minimum output		Modulation	RB allocation (NOTE 1)		
power					
1	test case	CP-OFDM QPSK	Outer Full		
NOTE 1: The	specific configuration of each RE	3 allocation is defined in Table 6.1-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and Figure A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.1.4.3.

6.3D.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3D.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Measure the sum of mean power of the UE at each UE antenna connector in the associated measurement channel bandwidth specified in Table 6.3D.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of 1ms over all active uplink slots and in the uplink symbols. For TDD, only slots consisting of only UL symbols are under test.

6.3D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

6.3D.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3D.1.5-1.

Table 6.3D.1.5-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40+TT	4.515
10	-40+TT	9.375
15	-40+TT	14.235
20	-40+TT	19.095
25	-39+TT	23.955
30	-38.2+TT	28.815
40	-37+TT	38.895
50	-36+TT	48.615
60	-35.2+TT	58.35
80	-34+TT	78.15
90	-33.5+TT	88.23
100	-33+TT	98.31
NOTE 1: TT for each frequ	ency and channel bandwidth is	specified in Table 6.3D.1.5-2

Table 6.3D.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.3D.2 Transmit OFF power for UL-MIMO

Editor's note: Test description is not complete

6.3D.2.1 Test purpose

To verify that the UE transmit OFF power for UL-MIMO is lower than the value specified in the test requirement.

6.3D.2.2 Test applicability

The requirements of this test apply in test cases 6.3D.3 Transmit ON/OFF time mask for UL-MIMO to all types of NR UE release 15 and forward that support UL-MIMO.

6.3D.2.3 Minimum conformance requirements

The transmit OFF power is defined as the mean power at each transmit connector in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power at each transmit connector shall not exceed the values specified in Table 6.3D.2.3-1.

Table 6.3D.2.3-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50	4.515
10	-50	9.375
15	-50	14.235
20	-50	19.095
25	-50	23.955
30	-50	28.815
40	-50	38.895
50	-50	48.615
60	-50	58.35
80	-50	78.15
90	-50	88.23
100	-50	98.31

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the transmitter is not considered OFF.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.2.

An excess transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3D.2.4 Test description

This test is covered by clause 6.3D.3 Transmit ON/OFF time mask for UL-MIMO.

6.3D.2.5 Test requirement

The requirement for the transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3D.2.5-1.

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (TBD)		
5	-50+TT			
10	-50+TT			
15	-50+TT			
20	-50+TT			
25	-50+TT			
30	-50+TT			
40	-50+TT			
50	-50+TT			
60	-50+TT			
80	-50+TT			
90	-50+TT			
100	-50+TT			
NOTE 1: TT for each frequ	NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3D.2.5-2			

Table 6.3D.2.5-1: Transmit OFF power

Table 6.3D.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.3D.3 Transmit ON/OFF time mask for UL-MIMO

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 [2] is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test config table is FFS
- Connection diagram is FFS

6.3D.3.1 Test purpose

To verify that the general ON/OFF time mask for UL-MIMO meets the requirements given in 6.3D.3.5

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power as defined in sub-clause 6.3D.2 and transmit ON power symbols (transmit ON/OFF)

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3D.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.3D.3.3 Minimum conformance requirements

For UE with multiple transmit antenna connectors, the ON/OFF time mask requirements in subclause 6.3.3.2.3 apply to each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.3.2.3 apply to each transmit antenna connector with the UL-MIMO configurations specified in Table 6.3D.3.3-1.

Table 6.3D.3.3-1: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index	
Codebook based uplink	DCI format 0_1	Codebook index 0	

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.3

6.3D.3.4 Test description

6.3D.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.3.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [FFS] for TE diagram and section [FFS] for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.3.4.3.

6.3D.3.4.2 Test procedure

1. SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3D.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 4 and 9 for15kHz SCS, on slots 9 and 19 for 30kHz SCS and on slots 4, 9, 14, 19, 24, 29, 34 and 39 for 60kHz SCS. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.

- 2. Measure the UE transmission OFF power during the slot prior to the PUSCH transmission, excluding a transient period of $10 \mu s$ in the end of the slot.
- 3. Measure the output power of the UE PUSCH transmission during one slot.
- 4. Measure the UE transmission OFF power during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.
- 5. Repeat step 2) until 4) for each of transmit antenna of the UE

6.3D.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Table 6.3D.3.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-106		
}			

Table 6.3D.3.4.3-2: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition CP-OFDM

6.3D.3.5 Test requirement

The requirement for the power of each transmit antenna measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3D.3.5-1.

Table 6.3D.3.5-1: General ON/OFF time mask

	SCS		Channel bandwidth / minimum output power / measurement bandwidth								
	[kHz]	5	10	15	20	25	30	40	50	60	
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	<u></u>
Transmit							≤ -50+T	T dBm			
OFF power											
Transmission OFF		4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	
Measurement bandwidth											
Expected	15	-9.62±9.0	-	-	-	-	-	-	0.71±9.0	N/A	
Transmission		±TT	6.44±9.0	4.62±9.0	3.35±9.0	2.36±9.0	1.56±9.0	0.26±9.0	±TT		
ON			±TT	±TT	±TT	±TT	±TT	±TT			
Measured	30	-	-	-	-	-	-	-	0.65±9.0	1.51±9.0	2
power for		10.18±9.0	6.79±9.0	4.79±9.0	3.51±9.0	2.46±9.0	1.67±9.0	0.34±9.0	±TT	±TT	
CP-OFDM		±TT	±TT	±TT	±TT	±TT	±TT	±TT			
	60	N/A	-	-	-	-	-	-	0.55±9.0	1.40±9.0	2
			7.17±9.0	5.03±9.0	3.78±9.0	2.67±9.0	1.78±9.0	0.50±9.0	±TT	±TT	
			±TT	±TT	±TT	±TT	±TT	±TT			<u> </u>
Expected	15	-9.62±9.0	-	-	-	-	-	-	0.71±9.0	N/A	
Transmission		±TT	6.61±9.0	4.85±9.0	3.60±9.0	2.53±9.0	1.56±9.0	0.26±9.0	±TT		
ON			±TT	±TT	±TT	±TT	±TT	±TT			Ļ
Measured	30		-		-				0.48±9.0	1.51±9.0	2
power for		10.59±9.0	6.79±9.0	5.03±9.0	3.60±9.0	2.53±9.0	1.84±9.0	0.59±9.0	±TT	±TT	
DFT-s-OFDM		±TT	±TT	±TT	±TT	±TT	±TT	±TT			Ļ
	60	N/A	-	-	-	-	-	-	0.48±9.0	1.17±9.0	2
			7.58±9.0	5.03±9.0	3.78±9.0	2.81±9.0	2.02±9.0	0.59±9.0	±TT	±TT	
NOTE 4 TT	<u> </u>		±TT	±TT ,	±TT	±TT	±TT	±TT	00.50	<u> </u>	Ļ
NOTE 1: TTC	NOTE 1: TT of each transmit antenna for each frequency and channel bandwidth is specified in Table 6.3D.3.5-2 and Table 6.3D.										

Table 6.3D.3.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

Table 6.3D.3.5-3: Test Tolerance for ON power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3D.4 Power control for UL-MIMO

6.3D.4.1 Absolute power tolerance for UL-MIMO

Editor's Note:- Test config table is FFS

- SA generic procedure is FFS
- MU/TT is still FFS
- Test procedure is FFS with measurement period undecided.

6.3D.4.1.1 Test purpose

To verify the ability of the UE transmitter for UL-MIMO to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20ms.

6.3D.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.3D.4.1.3 Minimum conformance requirements

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.4.2 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations described in Table 6.3D.4.1.3-1

Table 6.3D.4.1.3-1: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.4.

6.3D.4.1.4 Test description

6.3D.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.4.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.4.1.4.1-1 and Table 6.3D.4.1.4.1-2
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.4.1.4.3. Note that PDCCH DCI format 0_1 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3D.4.1.4.2 Test procedure

Same test procedure as clause 6.3.4.2.4.2 with following exceptions.

The power of UE PUSCH fiest transmissions should be measured as the sum power at each antenna connector.

6.3D.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and Table 4.6.3-118 with condition CP-OFDM.

6.3D.4.1.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3D.4.1.5-1 and 6.3D.4.1.5-2.

Table 6.3D.4.1.5-1: Absolute power tolerance: test point 1

		Channel bandwidth / expected output power (dBm)											
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Exported Magazired	SCS15	-6	-2.8	-1.0	0.3	1.2	2.0	3.3	4.3				
Expected Measured power	SCS30	-6.6	-3.2	-1.2	0.1	1.1	1.9	3.3	4.2	5.1	6.4	6.9	7.4
power	SCS60		-3.6	-1.4	-0.2	0.9	1.8	3.1	4.1	5.0	6.3	6.8	7.3
Power tolerance ± (9+TT)dB													
Note 1: The lower po	wer limit sl	nall not e	exceed t	he minin	num out	out powe	er requir	ements	define	d in sub	-clause	6.3.2.3	}

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3

Note 2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3D.4.1.5-3.

Table 6.3D.4.1.5-2: Absolute power tolerance: test point 2

		Channel bandwidth / expected output power (dBm)											
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Evanstad Massurad	SCS15	6	9.2	11.0	12.3	13.2	14.0	15.3	16.3				
Expected Measured	SCS30	5.4	8.8	10.8	12.1	13.1	13.9	15.3	16.2	17.1	18.4	18.9	19.4
power	SCS60		8.4	10.6	11.8	12.9	13.8	15.1	16.1	17.0	18.3	18.8	19.3
Power tolerance ± (9+TT)dB													

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3

Note 2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3D.4.1.5-3.

Table 6.3D.4.1.5-3: Test Tolerance

		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
FDD, TDD SCS 15kHz	BW ≤ 40MHz	FFS	FFS	FFS
& TDD SCS 30khz	40MHz < BW ≤ 100MHz	FFS	FFS	FFS
TDD SCS 60kHz		FFS	FFS	FFS

6.3D.4.2 Relative power tolerance for UL-MIMO

Editor's Note:

- SA generic procedure is FFS- Test config table is FFS
- Test requirement is FFS

6.3D.4.2.1 Test purpose

To verify the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

6.3D.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.3D.4.2.3 Minimum conformance requirements

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.4.3 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations described in Table 6.3D.4.2.3-1

Table 6.3D.4.2.3-1: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.4

6.3D.4.2.4 Test description

6.3D.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.4.2.4.1-1 and table 6.3D.4.2.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.4.2.4.1-1: Test Configuration Table

FFS

Table 6.3.4.2.4.1-2: Uplink Configuration of each RB allocation

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.4.2.4.1-1 and Table 6.3D.4.2.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.4.2.4.3.

6.3D.4.2.4.2 Test procedure

Same test procedure as clause 6.3.4.3.4.2 with following exceptions.

The power of PUSCH transmissions should be measured as the sum power at each antenna connector.

6.3D.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and Table 4.6.3-118 with condition CP-OFDM.

6.3D.4.2.5 Test requirement

FFS

6.3D.4.3 Aggregate power tolerance for UL-MIMO

Editor's Note:

- Test config table is FFS
- MU/TT is FFS

6.3D.4.3.1 Test purpose

To verify the ability of the UE with UL-MIMO to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

6.3D.4.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.3D.4.3.3 Minimum conformance requirements

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.4.4 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations described in Table 6.3D.4.3.3-1

Table 6.3D.4.3.3-1: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.4

6.3D.4.3.4 Test description

6.3D.4.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.4.3.4.1-1 and table 6.3D.4.3.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.4.3.4.1-1: Test Configuration Table: PUCCH sub-test

FFS

Table 6.3D.4.3.4.1-2: Test Configuration Table: PUSCH sub-test

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3D.4.3.4.1-1 (PUCCH sub-test) and Table 6.3D.4.3.4.1-2 (PUSCH sub-test)
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.4.3.4.3.

6.3D.4.3.4.2 Test procedure

Same test procedure as clause 6.3.4.4.4.2 with following exceptions.

The power of PDCCH /PUSCH transmissions should be measured as the sum power at each antenna connector.

6.3D.4.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and Table 4.6.3-118 with condition CP-OFDM.

6.3D.4.3.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3D.4.3.5-1. The power measurement period shall be 1 sub-frame, or [TBD]slot in the case of TDD SCS 60kHz.

TPC UL channel Test requirement measured power commands 0 dB **PUCCH** Given 5 power measurements in the pattern, the 2nd, and later measurements shall be within ± 2.5dB+TT of the 1st measurement. PUSCH 0 dB Given 5 power measurements in the pattern, the 2nd, and later measurements shall be within ± 3.5dB+TT of the 1st measurement. Note 1: For SCS 30kHz 1 sub-frame corresponds to 2 slots, so 2 TPC commands will be sent for a single measurement period. Note 2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in

Table 6.3D.4.3.5-1: Power control tolerance

Table 6.3D.4.3.5-2: Test Tolerance

FFS

6.4 Transmit signal quality

Table 6.3D.4.3.5-2.

In this clause a multitude of results are derived, all using one common algorithm returning these results: Global In-Channels TX-Test Annex E. Each sub clause of this clause contains a procedure and test requirements described for a specific measurement. If all relevant test parameters in different sub clauses are the same, then the results, returned by the Global In-Channel TX-Test, may be used across the applicable sub clauses.

6.4.1 Frequency error

6.4.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.1.3 Minimum conformance requirements

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of 1 ms compared to the carrier frequency received from the NR Node B.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.1

6.4.1.4 Test description

6.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.1.4.1-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range			
Test Channel Bandwidths as specified in TS 38.508-			Highest			
1 [5] subclause 4.3.1						
Test SCS as specified in Table 5.3.5-1			Lowest			
		Test	Parameters			
	Downlink	Configuration	Uplink Configuration			
Test ID	Modulation	RB allocation	Modulation	RB allocation		
1	CP-OFDM QPSK	Full RB (NOTE 1) DFT-s-OFDM QPSK REFSENS (NOTE 2)				
NOTE 2:		Table 7.3.2.4.1-3 which	CS and channel BW as spe n defines uplink RB configur	cified in Table 7.3.2.4.1-2 ation and start RB location for		

- each SCS, channel BW and NR band.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.1.4.3

6.4.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL RMC according to Table 6.4.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.

6.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.1.5 Test requirement

The 20 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 15 \text{ Hz})$

6.4.2 Transmit modulation quality

Transmit modulation defines the modulation quality for expected in-channel RF transmissions from the UE. This transmit modulation limit is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resources blocks (RB),
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.4.2 are defined using the measurement methodology specified in Annex E.

6.4.2.1 Error Vector Magnitude

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Annex on Global In-Channel TX-Test contains TBDs for PRACH.

6.4.2.1.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4.2.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and the duration of PUCCH/PUSCH channel, or one hop, if frequency hopping is enabled for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in subclause 6.3.3.3.

6.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.1.3 Minimum conformance requirements

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.4.2.1.3-1 for the parameters defined in Table 6.4.2.1.3-2. For EVM evaluation purposes, all PRACH preamble formats 0-4 and all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.4.2.1.3-1: Requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5

Table 6.4.2.1.3-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ Table 6.3.1.3-1
UE Output Power for 256 QAM	dBm	≥ Table 6.3.1-1 + 10 dB
Operating conditions		Normal conditions

The normative reference for this requirement is TS 38.101 [2] clause 6.4.2.1.

6.4.2.1.4 Test description

6.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.1.4.1-1: Test Configuration Table for PUSCH

Toot Enviro					
subclause -		Normal			
Test Frequ subclause	encies as specified in TS 38.508-1 [5] 4.3.1	Low range, Mid range, High	range		
	nel Bandwidths as specified in TS i] subclause 4.3.1	Lowest, Highest			
	as specified in Table 5.3.5-1	All			
		est Parameters			
Test ID	Downlink Configuration		Configuration		
	N/A	Modulation (NOTE 3)	RB allocation (NOTE 1)		
1 ³		DFT-s-OFDM PI/2 BPSK	Inner Full		
2 ³		DFT-s-OFDM PI/2 BPSK	Outer Full		
3		DFT-s-OFDM QPSK	Inner Full		
4		DFT-s-OFDM QPSK	Outer Full		
5		DFT-s-OFDM 16 QAM	Inner Full		
6		DFT-s-OFDM 16 QAM	Outer Full		
7		DFT-s-OFDM 64 QAM	Outer Full		
8		DFT-s-OFDM 256 QAM	Outer Full		
9		CP-OFDM QPSK	Inner Full		
10		CP-OFDM QPSK	Outer Full		
11		CP-OFDM 16 QAM	Inner Full		
12		CP-OFDM 16 QAM	Outer Full		
13		CP-OFDM 64 QAM	Outer Full		
14		CP-OFDM 256 QAM	Outer Full		
NOTE 2:	The specific configuration of each RB a Test Channel Bandwidths are checked bandwidths are specified in Table 5.3.5 DFT-s-OFDM PI/2 BPSK test applies or	separately for each NR band, a	which applicable channel		

Table 6.4.2.1.4.1-2: Test Configuration Table for PUCCH

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal			
Test Fred subclause	quencies as specified e 4.3.1	in TS 38.508-1 [5]	See Table 6.4.2.1.4.1-1			
	nnel Bandwidths as s [5] subclause 4.3.1	specified in TS	See Table 6.4.2.1.4.1-1			
Test SCS	as specified in Table	e 5.3.5-1	See Table 6.4.2.1.4.1-1			
Test Parameters						
ID	Downlink Co	onfiguration	Uplink Configuration			
	Modulation	RB allocation	Waveform	PUCCH format		
1	CP-OFDM QPSK	Full RB (Note 1)	CP-OFDM	FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b		
2	2 CP-OFDM QPSK Full RB (Note 1) DFT-s-OFDM FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b					
	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.					
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.					
NOTE 3:	DFT-s-OFDM PI/2	BPSK test applies or	ly for UEs which support	s half Pi BPSK in FR1.		

Table 6.4.2.1.4.1-3: Test Configuration for F	PRACH
---	-------

Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1	See Table 6.4.2.1.4.1-1				
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	See Table 6.4.2.1.4.1-1				
Test SCS as specified in Table 5.3.5-1 See Table 6.4.2.1.4.1-1					
PRAC	CH preamble format				
	FDD	TDD			
PRACH Configuration Index	17	52			
RS EPRE setting for test point 1 (dBm/15kHz)	-71	-65			
RS EPRE setting for test point 2 (dBm/15kHz)	-86	-80			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.1.4.3

6.4.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 1.2 Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $P_{UMAX\ level}$, allow at least 200ms starting from the first TPC command in this step for the UE to reach $P_{UMAX}\ level$.
- 1.3 Measure the EVM and EVM _{DMRS} using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.4 For modulations except 256QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range $P_{min} + P_W \pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
 - For 256 QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range $P_{min}+10~dB+P_W\pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW
- 1.5 Measure the EVM and EVM _{DMRS} using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.

NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition..

Table 6.4.2.1.4.2-1: Power Window (dB) for EVM PUSCH and PUCCH

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	1.7	2.0	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.5

Test procedure for PUCCH:

- 2.1 PUCCH is set according to Table 6.4.2.1.4.1-2.
- 2.2 SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL RMC according to Table 6.4.2.1.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. There is no PUSCH transmission.
- 2.3~SS send appropriate TPC commands for PUCCH to the UE until the UE transmit PUCCH at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 2.4 Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- 2.5 Send the appropriate TPC commands for PUCCH to the UE until the UE transmits PUCCH at $P_{min} + P_W \pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 2.6 Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).

NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

Test procedure for PRACH:

- 3.1 The SS shall set RS EPRE according to Table 6.4.2.1.4.1-3.
- 3.2 PRACH is set according to Table 6.4.2.1.4.1-3.
- 3.3 The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.
- 3.4 The UE shall send the signalled preamble to the SS.
- 3.5 In response to the preamble, the SS shall transmit a random access response not corresponding to the transmitted random access preamble, or send no response.
- 3.6 The UE shall consider the random access response reception not successful then re-transmit the preamble with the calculated PRACH transmission power.
- 3.7 Repeat step 5 and 6 until the SS collect enough PRACH preambles ([2] preambles for format 0 and [10] preambles for format 4). Measure the EVM in PRACH channel using Global In-Channel Tx-Test (Annex E).

6.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4.2.1.5-1.

The PUSCH EVM_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4.2.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4.2.1.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	
Pi/2-BPSK	%	30 + TT	
QPSK	%	17.5 + TT	
16 QAM	%	12.5 + TT	
64 QAM	%	8 + TT	
256 QAM	%	3.5 + TT	
Note 1: TT is defined in Table 6.4.2.1.5-2.			

Table 6.4.2.1.5-2: Test Tolerance

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	0
QPSK	%	0
16 QAM	%	0
64 QAM	%	0
256 QAM	%	0.3 for 15 dBm < P _{UL}
		0.8 for -25 dBm < P _{UL} ≤ 15 dBm
		1.1 for -40dBm ≤ P _{UL} ≤ -25dBm

The PUCCH EVM derived in Annex E.5.9.2 shall not exceed 17.5 %.

The PRACH EVM derived in Annex E.6.9.2 shall not exceed 17.5%.

6.4.2.2 Carrier leakage

6.4.2.2.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency or centre frequency of aggregated transmission bandwidth configuration. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.2.3 Minimum conformance requirements

Carrier leakage is an additive sinusoid waveform whose frequency is the same as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

In the case that uplink sharing, the carrier leakage may have 7.5 kHz shift with the carrier frequency.

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2-1.

Table 6.4.2.2.3-1: Requirements for Carrier Leakage

Parameter	Relative Limit (dBc)
Output power > 10 dBm	-28
0 dBm ≤ Output power ≤ 10 dBm	-25
-30 dBm ≤ Output power ≤ 0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.2.

6.4.2.2.4 Test description

6.4.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.2.4.1-1: Test Configuration

	Initial Conditions			
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal		
Test Frequencies as specified in TS 38.508-1 [5] Low range, Mid range, High range subclause 4.3.1		n range		
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1				
Test SCS	as specified in Table 5.3.5-1	Lowest		
	Test Parameters			
Test ID	Downlink Configuration	Uplink	c Configuration	
	N/A	Modulation	RB allocation (NOTE 1, 3)	
1		DFT-s-OFDM QPSK	Inner_1RB_Left	
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.			
NOTE 3:	NOTE 3: When the signalled DC carrier position is at Inner_1RB_Left, use Inner_1RB_Right for UL RB allocation.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.2.4.3

6.4.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 3. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 4. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-2 for the carrier frequency f and the channel bandwidth BW.

- 7. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 8. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.2.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 9. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.

Table 6.4.2.2.4.2-1: Power Window (dB) for carrier leakage (step 2 and step 4)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

Table 6.4.2.1.4.2-2: Power Window (dB) for carrier leakage (step 6 and step 8)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	1.7	2.0	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.5

6.4.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.2.5 Test requirement

Each of the *n* carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4.2.2.5-1. Allocated RBs are not under test.

Table 6.4.2.2.5-1: Test requirements for Relative Carrier Leakage Power

		5 1 11 11 11		
	Parameters	Relative limit		
	UE output power	(dBc)		
	$10 + P_W dBm \pm P_W dB^5$	-28 + TT		
	$0 + P_W dBm \pm P_W dB^5$ -25 + TT			
	$-30 + P_W dBm \pm P_W dB^6$	-20 + TT		
	$-40 + P_W dBm \pm P_W dB^6$	-10 + TT		
NOTE 1:	The measurement bandwidth is 1 RB and	the limit is		
	expressed as a ratio of measured power i	n one non-		
	allocated RB to the measured total power	in all allocated		
	RBs.			
NOTE 2:	The applicable frequencies for this limit ar	e those that are		
	enclosed in the RBs containing the carrier	r leakage frequency		
	if $N_{\it RB}$ is odd, or in the two RBs immedia	tely adjacent to the		
	carrier leakage frequency if $N_{\it RB}$ is even	but excluding any		
	allocated RB.			
NOTE 3:	$N_{\it RB}$ is the Transmission Bandwidth Con	figuration (see		
	Figure 5.3.3).			
NOTE 4:	Pw is the power window according to Tab	le 6.4.2.2.4.2-1 for		
	the carrier frequency f and the channel ba	andwidth BW.		
NOTE 5:	Pw is the power window according to Tab	le 6.4.2.2.4.2-2 for		
	the carrier frequency f and the channel ba	andwidth BW.		
NOTE 6:				

6.4.2.3 In-band emissions

6.4.2.3.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

The in-band emission is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain, however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

6.4.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.3.3 Minimum conformance requirements

The average of the basic in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.3-1.

Parameter **Applicable** Limit (NOTE 1) Unit description **Frequencies** $\max \{ -25 - 10 \cdot \log_{10}(N_{RR} / L_{CRR}),$ Any non-allocated $20 \cdot \log_{10} EVM - 3 - 5 \cdot (|\Delta_{RB}| - 1) / L_{CRB}$, General dB (NOTE 2) $-57 dBm + 10 \log_{10} (SCS / 15kHz) - P_{RB}$ -28 Image frequencies when output power > 10 dBm Image **IQ** Image dB frequencies -25 Image frequencies when output power ≤ 10 dBm (NOTES 2, 3) -28 Output power > 10 dBm Carrier leakage Carrier -25 0 dBm ≤ Output power ≤ 10 dBm dBc frequency leakage -20 -30 dBm ≤ Output power ≤ 0 dBm (NOTES 4, 5) -40 dBm ≤ Output power < -30 dBm -10

Table 6.4.2.3.3-1: Requirements for in-band emissions

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if $N_{\it RB}$ is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if $N_{\it RB}$ is even but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: N_{RR} is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: *EVM* is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.3.

6.4.2.3.4 Test description

6.4.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.3.4.1-1: Test Configuration Table for PUSCH

	Initial Conditions			
Test Environ	onment as specified in TS 38.508-1 [5] 4.1	Normal		
Test Freque subclause	encies as specified in TS 38.508-1 [5] 4.3.1	Low range, Mid range, High	range	
	nel Bandwidths as specified in TS 5] subclause 4.3.1	Lowest, Mid, Highest		
Test SCS a	as specified in Table 5.3.5-1	Lowest		
Test Parameters				
Test ID	Downlink Configuration	Uplink	Configuration	
	N/A	Modulation	RB allocation (NOTE 1)	
1		DFT-s-OFDM QPSK	Inner_1RB_Left	
2		DFT-s-OFDM QPSK	Inner_1RB_Right	
3		CP-OFDM QPSK	Inner_1RB_Left	
4	4 CP-OFDM QPSK Inner_1RB_Right			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.				

Table 6.4.2.3.4.1-2: Test Configuration Table for PUCCH

	Initial Conditions			
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		See Table 6.4.2.3.4.1-1		
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		See Table 6.4.2.3.4.1-1		
	nnel Bandwidths as s [5] subclause 4.3.1	specified in TS	See Table 6.4.2.3.4.1-1	
Test SCS	as specified in Table	e 5.3.5-1	See Table 6.4.2.3.4.1-1	
	Test Parameters			
ID	Downlink Configuration		Ur	olink Configuration
	Modulation	RB allocation	Waveform	PUCCH format
1	CP-OFDM QPSK	Full RB (Note 1)	DFT-s-OFDM FDD: PUCCH format = Format TDD: PUCCH format = Format 1a	
2	2 CP-OFDM QPSK Full RB (Note 1) CP-OFDM FDD: PUCCH format = Format 1a TDD: PUCCH format = Format 1a / 1b			
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.				
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel			
bandwidths are specified in Table 5.3.5-1.				
NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.

- 4. The UL Reference Measurement channels are set according to Table 6.4.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.3.4.3

6.4.2.3.4.2 Test procedure

Test procedure for PUSCH:

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.2 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 1.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.4 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 1.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.6 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.7 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.8 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.9 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.3.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition

Test procedure for PUCCH:

- 2.1 PUCCH is set according to Table 6.4.2.3.4.1-2. SS transmits PDSCH via PDCCH DCI format [1A] for C_RNTI to transmit the DL RMC according to Table 6.4.2.3.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH.
- 2.2 Send the appropriate TPC commands in the uplink scheduling information for PUCCH to the UE until UE output power is $10 + P_W$ dBm $\pm P_W$ dB where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 2.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.4 Send the appropriate TPC commands in the uplink scheduling information for PUCCH to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 2.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E)

- 2.6 Send the appropriate TPC commands for PUCCH in the uplink scheduling information to the UE until UE output power is $-30 + P_W$ dBm $\pm P_W$ dB where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 2.7 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.8 Send the appropriate TPC commands for PUCCH in the uplink scheduling information to the UE until UE output power is $-40 + P_W$ dBm $\pm P_W$ dB where P_W is the power window according to Table 6.4.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 2.9 Measure In-band emission using Global In-Channel Tx-Test (Annex E)

NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.3.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition

Table 6.4.2.3.4.2-1: Power Window (dB) for carrier leakage (steps 1.2, 1.4, 2.2, and 2.4)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

Table 6.4.2.3.4.2-2: Power Window (dB) for carrier leakage (steps 1.6, 1.8, 2.6, and 2.8)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	1.7	2.0	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.5

6.4.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.3.5 Test requirement

Each of the *n* In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Tables 6.4.2.3.5-1.

Table 6.4.2.3.5-1: Test requirements for in-band emissions

Parameter description	Unit		Applicable Frequencies	
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, + TT \\ -57 \ dBm + 10 \log_{10} \left(SCS / 15 \ kHz \right) - P_{RB} \right\}$		Any non-allocated (NOTE 2)
		-28 + TT	Image frequencies when output power > 10 dBm	Image
IQ Image	dB	-25 + TT	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
		-28 + TT	Output power > 10 dBm	Carrior lookaga
Carrier	dBc	-25 + TT	0 dBm ≤ Output power ≤ 10 dBm	Carrier leakage frequency
leakage	uBC	-20 + TT	-30 dBm ≤ Output power ≤ 0 dBm	(NOTES 4, 5)
		-10 + TT	-40 dBm ≤ Output power < -30 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of *P*_{RB}- 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. *P*_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even, but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: EVM is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: $P_{\it RB}$ is the transmitted power normalized by the number of allocated RBs, measured in dBm.
- NOTE 11: Test tolerance TT = 0.8 dB.

6.4.2.4 EVM equalizer spectrum flatness

6.4.2.4.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements.

6.4.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.4.3 Minimum conformance requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.3-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.4.2.4.3-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4.3-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.4.2.4.3-1).

Table 6.4.2.4.3-1: Requirements for EVM equalizer spectrum flatness (normal conditions)

Frequency range	Maximum ripple (dB)
Ful_Meas - Ful_Low ≥ 3 MHz and Ful_High - Ful_Meas ≥ 3 MHz	4 (p-p)
(Range 1)	
Ful_Meas - Ful_Low < 3 MHz or Ful_High - Ful_Meas < 3 MHz	8 (p-p)
(Range 2)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for whice evaluated	n the equalizer coefficient is
NOTE 2: Ful_Low and Ful_High refer to each E-UTRA frequenc 5.5-1	y band specified in Table

Table 6.4.2.4.3-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency range	Maximum Ripple (dB)
Ful_Meas	s – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)
	(Range 1)	
F _{UL_Mea}	$_{as}$ - F_{UL_Low} < 5 MHz or F_{UL_High} - F_{UL_Meas} < 5 MHz	12 (p-p)
	(Range 2)	
NOTE 1:	$F_{\text{UL_Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2:	$F_{\text{UL_Low}}$ and $F_{\text{UL_High}}$ refer to each E-UTRA frequency 5.5-1	band specified in Table

Figure 6.4.2.4.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement are within brackets)

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.4.

6.4.2.4.4 Test description

6.4.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.4.4.1-1: Test Configuration

	Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Low range, Mid range, High range			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Mid, Highest			
Test SCS as specified in Table 5.3.5-1		Lowest			
	Test Parameters				
Test ID	Downlink Configuration	Uplink Configuration			
	N/A	Modulation	RB allocation (NOTE 1)		
1		DFT-s-OFDM QPSK	Outer Full		
2	2 CP-OFDM QPSK Outer Full				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.4.4.3.

6.4.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.

NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

6.4.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.4.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4. The derived results shall not exceed the values in Figure 6.4.2.4.5-1:

For normal conditions, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.4.2.4.5-1 and the following additional requirement: the relative difference between the maximum coefficient in Range

1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4.2.4.5-1).

For normal conditions, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.5-1. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4.2.4.5-1).

For extreme conditions, the EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4.5-2. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.4.2.4.5-1).

Table 6.4.2.4.5-1: Requirements for EVM equalizer spectrum flatness (normal conditions)

Frequency range	Maximum ripple [dB]
F _{UL_Meas} – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz	4 + TT (p-p)
(Range 1)	
Ful_Meas - Ful_Low < 3 MHz or Ful_High - Ful_Meas < 3 MHz	8 + TT (p-p)
(Range 2)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2: Ful_Low and Ful_High refer to each E-UTRA frequency 5.5-1	band specified in Table
NOTE 3: Test tolerance TT = 1.4 dB.	

Table 6.4.2.4.5-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency range	Maximum Ripple [dB]
F _{UL_Meas}	s – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 + TT (p-p)
	(Range 1)	
Ful_Mea	as - Ful_Low < 5 MHz or Ful_High - Ful_Meas < 5 MHz	12 + TT (p-p)
	(Range 2)	
NOTE 1:	F _{UL_Meas} refers to the sub-carrier frequency for which	the equalizer coefficient is
	evaluated	
NOTE 2:	Ful_Low and Ful_High refer to each E-UTRA frequency	band specified in Table
	5.5-1	
NOTE 3:	Test tolerance TT = 1.4 dB.	

Figure 6.4.2.4.5-1: The test requirements for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC test requirements are within brackets)

6.4.2.5 EVM equalizer spectrum flatness for Pi/2 BPSK

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Whether and, if yes, how to test the requirement on shaping filter is FFS.

6.4.2.5.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

6.4.2.5.2 Test applicability

This test case applies to all types of NR UE release 15 and forward indicating support for UE capability [powerBoosting-pi2BPSK].

6.4.2.5.3 Minimum conformance requirements

These requirements apply if the IE *powerBoostPi2BPSK* is set to 1 for power class 3 capable UE operating in TDD bands n40, n41, n77, n78 and n79 with pi/2 BPSK modulation and UE indicates support for UE capability [*powerBoosting-pi2BPSK*] and 40 % or less slots in radio frame are used for UL transmission. Otherwise the requirements for EVM equalizer spectrum flatness defined in clause 6.4.2.4.3 apply.

The EVM equalizer coefficients across the allocated uplink block shall be modified to fit inside the mask specified in Table 6.4.2.5.3-1 for normal conditions, prior to the calculation of EVM.

Table 6.4.2.5.3-1: Mask for EVM equalizer coefficients for pi/2 BPSK, normal conditions

Frequency range	Parameter	Maximum ripple [dB]	
F_meas – F_center ≤ X MHz or F_center – F_meas ≤ X MHz	X1	6 (p-p)	
(Range 1)			
F_meas - F_center > X MHz or F_center - F_meas > X MHz	X2	14 (p-p)	
(Range 2)			
NOTE 1: F_meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated			
NOTE 2: F_center refers to the centre frequency of an allocated block of PRBs			
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation			
NOTE 4: See Figure 6.4.2.4-1 for description of X1, X2			

Figure 6.4.2.5.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation.

F_center denotes the centre frequency of the allocated block of PRBs. F_alloc denotes the bandwidth of the PRB allocation

For pi/2 BPSK modulation the UE shall be allowed to employ spectral shaping and the shaping filter shall be restricted so that the impulse response of the shaping filter itself shall meet

$$\begin{aligned} \left| \ \tilde{a}_{t}(t,0) \ \right| & \geq \left| \ \tilde{a}_{t}(t,\tau) \ \right| \quad \forall \tau \neq 0 \\ \\ 20log_{10} \left| \ \tilde{a}_{t}(t,\tau) \ \right| & < -15 \ \mathrm{dB} \quad 1 < \tau < \mathrm{M} - 1, \end{aligned}$$

where, $|\tilde{a}_{t}(t,\tau)| = IDFT\{ |\tilde{a}_{t}(t,f)| e^{j\varphi(t,f)}\}$, f is the frequency of the M allocated subcarriers, $\tilde{a}(t,f)$ and $\varphi(t,f)$ are the amplitude and phase response.

0dB reference is defined as $20log_{10} \mid \tilde{a}_t(t,0) \mid$.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.4.1.

6.4.2.5.4 Test description

6.4.2.5.4.1 Initial condition

Same initial conditions as in clause 6.4.2.4.4.1 with following exceptions:

- Instead of Table 6.4.2.4.4.1-1 → use Table 6.4.2.5.4.1-1

Table 6.4.2.5.4.1-1: Test Configuration

	Initial Conditions				
Test Enviro	onment as specified in TS 38.508-1 [5]	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
subclause	4.1				
Test Frequ	encies as specified in TS 38.508-1 [5]	Low range, Mid range, High	Low range, Mid range, High range		
subclause	4.3.1				
Test Chan	nel Bandwidths as specified in TS	Lowest, Mid, Highest			
38.508-1 [5] subclause 4.3.1				
Test SCS	as specified in Table 5.3.5-1	Lowest			
	T	est Parameters			
Test ID	Downlink Configuration	Uplink	Configuration		
	N/A	Modulation	RB allocation (NOTE 1)		
1	1 DFT-s-OFDM Pi/2 BPSK Outer Full				
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
	bandwidths are specified in Table 5.3.5-1.				

6.4.2.5.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.

6.4.2.5.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exception:

Table 6.4.2.5.4.3-1: ServingCellConfig

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-167				
Information Element	Value/remark	Comment	Condition	
uplinkConfig SEQUENCE {				
initialUplinkBWP	BWP-UplinkDedicated			
uplinkBWP-ToReleaseList	Not present			
uplinkBWP-ToAddModList	Not present			
firstActiveUplinkBWP-Id	BWP-Id			
pusch-ServingCellConfig CHOICE {				
setup	PUSCH-			
	ServingCellConfig			
}				
carrierSwitching	Not present			
powerBoostPi2BPSK	enabled			
}		•		

6.4.2.5.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4. The derived results shall not exceed the values in Figure 6.4.2.5.5-1:

Table 6.4.2.5.5-1: Mask for EVM equalizer coefficients for pi/2 BPSK, normal conditions

Frequency range	Parameter	Maximum ripple [dB]
F_meas – F_center ≤ X MHz or F_center – F_meas ≤ X MHz	X1	6 + TT (p-p)
(Range 1)		
F_meas - F_center > X MHz or F_center - F_meas > X MHz	X2	14 + TT (p-p)
(Range 2)		

NOTE 1: F_meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated

NOTE 2: F_center refers to the centre frequency of an allocated block of PRBs

NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation

NOTE 4: See Figure 6.4.2.4-1 for description of X1, X2

NOTE 5: Test tolerance TT = 1.4 dB.

Figure 6.4.2.5.5-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation.

F_center denotes the centre frequency of the allocated block of PRBs. F_alloc denotes the bandwidth of the PRB allocation

6.4A Transmit signal quality for CA

6.4A.1 Frequency error for CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS.
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- The subclauses 7.3A.2.3.4 in reference to REFSENS value for inter-band CA is FFS
- TTs and MUs for CA are FFS in Annex F.

6.4A.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum conformance requirements specified in subclause 6.4.1.3 shall apply on each component carrier with all component carriers active.

6.4A.1.1 Frequency error for CA (2UL CA)

6.4A.1.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency for 2UL CA correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.4A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.1.0.

6.4A.1.1.4 Test description

6.4A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state. The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.1.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.1.1.4.1-1: Inter band CA Test Configuration Table

Initial Conditions					
Test Environment as specified in TS 38.508-1 [5]		Normal, TL/VL, TL/VH, TH/VL, TH/VH			
subclause		: TO 00 500 4 [5]	1.00		
	Test Frequencies as specified in TS 38.508-1 [5] subclause4.3.1.1.3 for inter band CA in FR1		Mid range for PCC and SCC		
			Highaat far bath DCC	and 200	
		pecified in TS 38.508-	Highest for both PCC and SCC		
	1 [5] subclause 4.3.1		Lewest		
Test SCS	Test SCS as specified in Table 5.5A.3-1		Lowest		
Test Parameters					
	Downlink	Configuration	Upl	ink Configuration	
Test ID	Modulation	RB allocation	Modulation	RB allocation	
1	CP-OFDM	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)	
	QPSK				
NOTE 1:	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2				

- NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.

 NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band belongs to inter-band CA combination.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.1.1.4.3

6.4A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.4A.1.1.4.3
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause 9.3).
- 4. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL RMC according to Table6.4A.1.3.4.1-1 on both PCC and SCC. The SS sends downlink MAC padding bits on the DL RMC.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.1.1.4.1-1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Set the Downlink signal level to the appropriate REFSENS value defined in subclauses 7.3A.2.3.4 and 7.3A.4. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE so

that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

7. Measure the Frequency Error on PCC and SCC using Global In-Channel Tx-Test (Annex E) respectively. For TDD slots with transient periods are not under test.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.4A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.1.1.5 Test requirement

The 20 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + \text{TT})$ for each test point

where PPM refers to each CC UL frequency.

Table 6.4A.1.1.5-1: Test Tolerance for frequency error

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.4A.2 Transmit modulation quality for CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- MUs and TTs for CA is FFS in Annex F.

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.4A.2.1 Error Vector Magnitude for CA

6.4A.2.1.0 Minimum conformance requirements

For Inter-band carrier aggregation, EVM measurements are evaluated for each component carrier, and for the different modulations schemes, the EVM requirements shall not exceed the values specified in Table 6.4A.2.1.0-1 for the parameters defined in Table 6.4A.2.1.0-2, if CA is configured in uplink.

Table 6.4A.2.1.0-1: Requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16QAM	%	12.5
64QAM	%	8
256 QAM	%	3.5

Table 6.4A.2.1.0-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥Table 6.3.1.3-1
UE Output Power for 256 QAM	dBm	≥Table 6.3.1.3-1 + 10 dB
Operating conditions		Normal conditions

The normative reference for this requirement is TS 38.101 [2] clause 6.4A.2.3.1

6.4A.2.1.1 Error Vector Magnitude for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Table 6.4A.2.1.1.4.1-1: Inter band CA Test Configuration Table is FFS.
- The minimum requirements for intra-band contiguous CA and intra-band non-contiguous CA have not been defined.
- TTs and MUs for Error Vector Magnitude for CA are FFS in Annex F.

6.4A.2.1.1.1 Test Purpose

For 2UL carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirement applies for the allocated component carrier, when all other component carriers are activated, but not allocated.

Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in sub-section 6.4.2.1.

6.4A.2.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.4A.2.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.1.0.

6.4A.2.1.1.4 Test description

6.4A.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.2.1.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.1.1.4.1-1: Inter band CA Test Configuration Table

for PCC and SCC e for PCC and SCC both PCC and SCC r both PCC and SCC nd biggest supported SCS per Channel Bandwidt eters Uplink Configuration on (NOTE 3) RB allocation (NOTE 1) PCC SCC OFDM PI/2 Inner Full 0 BPSK OFDM PI/2 Outer Full 0 BPSK OFDM QPSK Inner Full 0
to for PCC and SCC both PCC and SCC r both PCC and SCC rd biggest supported SCS per Channel Bandwidt sters Uplink Configuration on (NOTE 3) RB allocation (NOTE 1) PCC SCC OFDM PI/2 Inner Full 0 BPSK OFDM PI/2 Outer Full 0 BPSK
both PCC and SCC r both PCC and SCC nd biggest supported SCS per Channel Bandwidt sters Uplink Configuration on (NOTE 3) RB allocation (NOTE 1) PCC SCC OFDM PI/2 Inner Full 0 BPSK OFDM PI/2 Outer Full 0 BPSK
Tooth PCC and SCC Ind biggest supported SCS per Channel Bandwidth
Ind biggest supported SCS per Channel Bandwidters
Variable Variable
Uplink Configuration on (NOTE 3) RB allocation (NOTE 1) PCC SCC OFDM PI/2 Inner Full 0 BPSK Outer Full 0
On (NOTE 3) RB allocation (NOTE 1) PCC SCC OFDM PI/2 Inner Full 0 BPSK Outer Full 0
PCC SCC OFDM PI/2 Inner Full 0 BPSK Outer Full 0 BPSK Outer Full 0
OFDM PI/2 Inner Full 0 BPSK OFDM PI/2 Outer Full 0 BPSK Outer Full 0
BPSK OFDM PI/2 Outer Full 0 BPSK
BPSK
OFDM QPSK Inner Full 0
OFDM QPSK Outer Full 0
FDM 16 QAM Inner Full 0
FDM 16 QAM Outer Full 0
DM 64 QAM Outer Full 0
DM 256 QAM Outer Full 0
DM QPSK Inner Full 0
DM QPSK Outer Full 0
DM 16 QAM Inner Full 0
DM 16 QAM Outer Full 0
OM 64 QAM Outer Full 0
F

- NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.
- NOTE 4: The frequencies of PCC and SCC shall be switched and tested in each configuration.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.2.1.1.4.3

6.4A.2.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.4A.2.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).

- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.1.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX level}, allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 6. Measure the EVM and EVM DMRS on PCC using Global In-Channel Tx-Test (Annex E).
- 7. For modulations except 256QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range $P_{min} + P_{W} \pm P_{W}$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_{W} is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
 - For 256 QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range $P_{min} + 10 \text{ dB} + P_W \pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW..
- 8. Measure the EVM and \overline{EVM}_{DMRS} on PCC using Global In-Channel Tx-Test (Annex E).
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.4A.2.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.2.1.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4A.2.1.1.5-1.

The PUSCH EVM_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4A.2.1.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4A.2.1.1.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30+TT
QPSK	%	17.5+TT
16QAM	%	12.5+TT
64QAM	%	8+TT
256 QAM	%	3.8+TT for 15 dBm< P∪L
		4.3+TT for -25 dBm< P _{UL} ≤ 15 dBm
		4.6+TT for -40dBm ≤ PuL≤ -25dBm

Table 6.4A.2.1.1.5-2: Test Tolerance for Error Vector Magnitude

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.4A.2.2 Carrier leakage for CA

6.4A.2.2.0 Minimum conformance requirements

6.4A.2.2.0.1 Minimum conformance requirements for intra-band contiguous CA

FFS

6.4A.2.2.0.2 Minimum conformance requirements for intra-band non-contiguous CA

FFS

6.4A.2.2.0.3 Minimum conformance requirements for inter-band CA

For inter-band carrier aggregation, the carrier leakage shall not exceed the values specified in Table 6.4A.2.2.0.3-1.

In the case that uplink sharing, the carrier leakage may have 7.5 kHz shift with the carrier frequency.

Table 6.4A.2.2.0.3-1: Requirements for carrier leakage

Parameter description	Unit		Limit	Applicable Frequencies
		-28	Output power > 10 dBm	Comion lookoma
Carrier	dBc	-25	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage	UDC	-20	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 1, 2)
		-10	-40 dBm ≤ Output power < -30 dBm	(NOTES 1, 2)

NOTE 1: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.

NOTE 2: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even but excluding any allocated RB.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.4A.2.3.

6.4A.2.2.1 Carrier leakage for CA (2UL CA)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Table 6.4A.2.2.1.4.1-1: Inter band CA Test Configuration Table is FFS.
- The minimum requirements for intra-band contiguous CA and intra-band non-contiguous CA have not been defined.
- TTs and MUs for Error Vector Magnitude for CA are FFS in Annex F.

6.4A.2.2.1.1 Test purpose

Carrier leakage is an additive sinusoid waveform that is confined within the aggregated transmission bandwidth configuration. The carrier leakage requirement for 2UL CA is defined for each component carrier and is measured on the component carrier with PRBs allocated.

6.4A.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.4A.2.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.2.0.

6.4A.2.2.1.4 Test description

6.4A.2.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.2.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.2.1.4.1-1: Inter band CA Test Configuration Table

Initial Conditions					
Test Environment Subclause	onment as specified in TS 38.508-1 [5] 4.1	Normal			
Test Frequencies as specified in TS 38.508-1 [5] Low range for PCC and SCC					
subclause	4.3.1.1.3 for inter band CA in FR1	High range for PCC and S	CC		
Test Channel Bandwidths as specified in TS					
38.508-1 [5] subclause 4.3.1					
Test SCS as specified in Table 5.5A.3-1 Smallest supported SCS per Channel Bandwidth					
Test Parameters					
Test ID Downlink Configuration Uplink Configuration					
		Modulation RB allocation (NOTE 1, 3)			
	_	Modulation	RB allocation	n (NOTE 1, 3)	
	_	Modulation	RB allocation PCC	SCC	
1	N/A	Modulation DFT-s-OFDM QPSK			
1 NOTE 1:	N/A The specific configuration of each RB al	DFT-s-OFDM QPSK	PCC Inner_1RB_Left	SCC	
NOTE 2:	·	DFT-s-OFDM QPSK Control of the cont	PCC Inner_1RB_Left 6.1-1. r each NR CA band le 5.5A3-1.	SCC 0 combination,	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.

NOTE 4: The frequencies of PCC and SCC shall be switched and tested in each configuration.

- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.2.2.1.4.3.

6.4A.2.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.4A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4A.2.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 10 + P_WdBm±P_W dB where P_W is the power window according to Table 6.4A.2.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 6. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 7. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4A.2.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 8. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

- 9. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is -30 + P_WdBm±P_W dB where P_W is the power window according to Table 6.4A.2.2.1.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 10. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 11. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4A.2.2.1.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 12. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition

Table 6.4A.2.2.1.4.2-1: Power Window (dB) for carrier leakage (step 5 and step 7)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4A.2.2.1.4.2-2: Power Window (dB) for carrier leakage (step 9 and step 11)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4A.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.2.2.1.5 Test requirement

Each of the [20] carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4A.2.2.1.5-1. Allocated RBs are not under test.

Table 6.4A.2.2.1.5-1: Test requirements for Carrier Leakage

LO Leakage		Parameters	Relative limit		
		UE output power	(dBc)		
		10 + PwdBm±Pw dB⁵	-27.2+TT		
		-24.2+TT			
		$-30 + P_W dBm \pm P_W dB^6$	-19.2+TT		
		$-40 + P_W dBm \pm P_W dB^6$	-9.2+TT		
NOTE 1:	The n	neasurement bandwidth is 1 RB and	I the limit is		
	expre	ssed as a ratio of measured power i	n one non-		
	alloca RBs.	ted RB to the measured total power	in all allocated		
NOTE 2:		pplicable frequencies for this limit and sed in the RBs containing the carried			
	if $N_{\it RB}$ is odd, or in the two RBs immediately adjacent to the				
		r leakage frequency if $N_{{\scriptscriptstyle RB}}$ is even	but excluding any		
	alloca	ted RB.			
NOTE 3:	$N_{\scriptscriptstyle RR}$	is the Transmission Bandwidth Con	figuration (see		
		e 5.3.3).			
	•	,			
NOTE 4:	4: P_{RB} is the transmitted power normalized by the number of				
	alloca	allocated RBs, measured in dBm.			
NOTE 5:	•••	P _W is the power window according to Table 6.4A.2.3.2.4.2-1			
		for the carrier frequency f and the channel bandwidth BW.			
NOTE 6:		the power window according to Tabe carrier frequency f and the channe			

Table 6.4A.2.2.1.5-2: Test Tolerance for Carrier Leakage

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.4A.2.3 In-band emission for CA

6.4A.2.3.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the requirements shall apply on each component carrier as defined in clause 6.4.2 with all component carriers active.

The requirements in Table 6.4A.2.3.0-1 apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

Table 6.4A.2.3.0-1: Inter band CA Requirements for in-band emissions

Parameter description	Unit		Limit (NOTE 1)	Applicable Frequencies
General	dB	20 -	$\begin{cases} -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), \\ \log_{10} EVM - 3 - 5 \cdot (\left \Delta_{RB} \right - 1) / L_{CRB}, \\ 7 dBm + 10 \log_{10} (SCS / 15kHz) - P_{RB} \end{cases}$	Any non-allocated (NOTE 2)
		-28	Image frequencies when output power > 10 dBm	Image
IQ Image dB	-25	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)	
		-28	Output power > 10 dBm	Comien le else me
Carrier	Carrier	-25	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage	dBc	-20	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 4, 5)
		-10	-40 dBm≤ Output power < -30 dBm	(1101234, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of *P*_{RB}- 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. *P*_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: EVM is the limit specified in Table 6.4A.2.3.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: $\Delta_{\it RB}$ is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{RR} = 1$ or $\Delta_{RR} = -1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: $P_{\it RB}$ is the transmitted power normalized by the number of allocated RBs, measured in dBm.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4A.2.3.

6.4A.2.3.1 In-band emissions for CA (2UL CA)

6.4A.2.3.1.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

For an allocated component carrier, the in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB. The basic in-band emissions measurement interval is defined over one slot in the time domain, however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

For a non allocated component carrier a spectral measurement is specified.

6.4A.2.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.4A.2.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.3.0.

6.4A.2.3.1.4 Test description

6.4A.2.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.2.3.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.2.3.1.4.1-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [5]		Normal				
subclause 4	4.1					
Test Frequ	encies as specified in TS 38.508-1 [5]	Low range for PCC and S				
subclause4	I.3.1.1.3 for inter band CA in FR1	High range for PCC and S	SCC			
Test Chann	nel Bandwidths as specified in TS	Lowest for both PCC and	SCC			
38.508-1 [5	5] subclause 4.3.1	Highest for both PCC and	SCC			
Test SCS a	as specified in Table 5.5A.3-1	Smallest supported SCS	per Channel Bandwid	th		
Test Parameters						
Test ID	Downlink Configuration	Upli	nk Configuration			
		Modulation RB allocation (NOTE 1)				
			PCC	SCC		
1	N/A	DFT-s-OFDM QPSK	Inner_1RB_Left	0		
2		DFT-s-OFDM QPSK	Inner_1RB_Right	0		
3		CP-OFDM QPSK	Inner_1RB_Left	0		
4		CP-OFDM QPSK Inner_1RB_Right 0				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel						

- bandwidths are specified in Table 5.5A3-1.
- NOTE 3: The frequencies of PCC and SCC shall be switched and tested in each configuration.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.2.3.1.4.3.

6.4A.2.3.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.4A.2.3.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 1_0 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 10 + PwdBm±Pw dB where Pw is the power window according to Table 6.4A.2.3.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 6. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- 7. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 0 + P_WdBm±P_W dB where P_W is the power window according to Table 6.4A.2.3.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

- 8. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- 9. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is -30 + P_WdBm±P_W dB where P_W is the power window according to Table 6.4A.2.3.1.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 10. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- 11. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4A.2.3.1.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 12. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.Table 6.4A.2.3.1.4.2-1: Power Window (dB) for carrier leakage (steps 5, 7)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4A.2.3.1.4.2-2: Power Window (dB) for carrier leakage (steps 9, 11)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4A.2.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.2.3.1.5 Test requirement

Each of the [20] In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4A.2.1.3.5-1.

Table 6.4A.2.3.1.5-1: Test requirements for in-band emissions

Parameter description	Unit		Applicable Frequencies	
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, + 0.8 \\ -57 \ dBm + 10 \log_{10} \left(SCS / 15kHz \right) - P_{RB} \right\}$		Any non-allocated (NOTE 2)
		-28+TT	Image frequencies when output power > 10 dBm	Image
IQ Image	dB	-25+TT	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
		-28+TT	Output power > 10 dBm	Camian la akama
Carrier	dBc	-25+TT	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage		-20+TT	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 4, 5)
		-10+TT	-40 dBm≤ Output power < -30 dBm	(NOTES 4, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of *P*_{RB}- 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. *P*_{RB} defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even, but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: N_{RR} is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: EVM is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: $\Delta_{\it RB}$ is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{RR} = 1$ or $\Delta_{RR} = -1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.

Table 6.4A.2.3.1.5-2: Test Tolerance for In-band emission

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.4D Transmit signal quality for UL-MIMO

6.4D.1 Frequency error for UL-MIMO

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test point selection is FFS.
- Connection diagram is FFS.
- MU and TT need further study on whether any deviation from basic test case is needed.

6.4D.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter for UL-MIMO, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency for each antenna connector from the results, gained by the receiver.

6.4D.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.4D.1.3 Minimum conformance requirements

For UE(s) supporting UL-MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within \pm 0.1 PPM observed over a period of one sub-frame (1 ms) compared to the carrier frequency received from the NR Node B.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.1.

6.4D.1.4 Test description

6.4D.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [A.3.1.2.2] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.1.4.3.

6.4D.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_0] for C_RNTI to transmit the DL RMC according to Table 6.4D.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in [Table 7.3D.2.5-1]. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E) at each transmit antenna connector of the UE. For TDD slots with transient periods are not under test.

6.4D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the exceptions in [clause 7.3D.4.3].

6.4D.1.5 Test requirement

The requirements apply to each transmit antenna connector.

The n frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \le (0.1PPM + 15 Hz)$

n is 10 for 15kHz SCS, 20 for 30kHz SCS and 30 for 60kHz SCS.

6.4D.2 Transmit modulation quality for UL-MIMO

For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

If UE is configured for transmission on single-antenna port, the requirements specified for single carrier apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

6.4D.2.1 Error Vector Magnitude for UL-MIMO

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test point selection is FFS.
- Connection diagram is FFS.

6.4D.2.1.1 Test purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4D.2.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is the duration of PUSCH channel, or one hop, if frequency hopping is enabled for PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in subclause 6.3D.3.3.

6.4D.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.4D.2.1.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.4.2.1.3-1 which is defined in subclause 6.4.2.1.3 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2D.1.3-2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.1.

6.4D.2.1.4 Test description

6.4D.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.2.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [A.3.1.2.2] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.1.4.3.

6.4D.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4D.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 1.2 Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $P_{UMAX \, level}$, allow at least 200ms starting from the first TPC command in this step for the UE to reach $P_{UMAX} \, level$.
- 1.3 Measure the EVM and \overline{EVM}_{DMRS} using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE.
- 1.4 For modulations except 256QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range $P_{min} + P_W \pm P_W$, where P_{min} is the minimum output power according to Table 6.3.1.3-1 and P_W is the power window according to Table 6.4D.2.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
 - For 256 QAM, send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is in the range TBD \pm TBD.
- 1.5 Measure the EVM and EVM_{DMRS} using Global In-Channel Tx-Test (Annex E).

NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4D.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

Table 6.4D.2.1.4.2-1: Power Window (dB) for EVM PUSCH and PUCCH except 256QAM

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4D.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.1.5 Test requirement

The requirements apply to each transmit antenna connector.

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4D.2.1.5-1.

The PUSCH EVM_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4D.2.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4.2.1.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.8 for 15 dBm < P∪L
		4.3 for -25 dBm < P∪∟≤ 15 dBm
		4.6 for -40dBm ≤ P _{UL} ≤ -25dBm

6.4D.2.2 Carrier leakage for UL-MIMO

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test point selection is FFS.
- Connection diagram is FFS.

6.4D.2.2.1 Test purpose

The purpose of this test is to exercise the UE transmitter for UL-MIMO to verify its modulation quality in terms of carrier leakage.

6.4D.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.4D.2.2.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.4.2.2.3-1 which is defined in subclause 6.4.2.2.3 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2D.1.3-2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.2.

6.4D.2.2.4 Test description

6.4D.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.2.2.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [A.3.1.2.2] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.2.4.3.

6.4D.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4D.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.2.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 3. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD slots with transient periods are not under test.
- 4. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.2.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD slots with transient periods are not under test.
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $30 + P_W dB m \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.2.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 7. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD slots with transient periods are not under test
- 8. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.2.4.2-2 for the carrier frequency f and the channel bandwidth BW.

9. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD slots with transient periods are not under test

Table 6.4D.2.2.4.2-1: Power Window (dB) for carrier leakage (step 2 and step 4)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4D.2.1.4.2-2: Power Window (dB) for carrier leakage (step 6 and step 8)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4D.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.2.5 Test requirement

The requirements apply to each transmit antenna connector.

Each of the n carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4D.2.2.5-1. Allocated RBs are not under test. n is 10 for 15kHz SCS, 20 for 30kHz SCS and 30 for 60kHz SCS.

Table 6.4D.2.2.5-1: Test requirements for Relative Carrier Leakage Power

LO Leakage		Parameters	Relative limit	
		UE output power	(dBc)	
		10 + Pw dBm ± Pw dB ⁵	-28 + TT	
		$0 + P_W dBm \pm P_W dB^5$	-25 + TT	
		$-30 + P_W dBm \pm P_W dB^6$	-20 + TT	
		$-40 + P_W dBm \pm P_W dB^6$	-10 + TT	
NOTE 1:	The m	neasurement bandwidth is 1 RB and	I the limit is	
		ssed as a ratio of measured power i		
	alloca	ited RB to the measured total power	in all allocated	
	RBs.			
NOTE 2:		pplicable frequencies for this limit ar		
	enclo	sed in the RBs containing the carrie	r leakage frequency	
	if $N_{\scriptscriptstyle R}$	$_{\it B}$ is odd, or in the two RBs immedia	tely adjacent to the	
	carrie	r leakage frequency if $N_{\scriptscriptstyle RR}$ is even	but excluding any	
	alloca	ited RB.		
NOTE 3:	N_{RB}	is the Transmission Bandwidth Con	figuration (see	
	Figure	e 5.3.3).		
NOTE 4:	$P_{\scriptscriptstyle RB}$	is the transmitted power normalized	by the number of	
	alloca	ated RBs, measured in dBm.	o,	
		the power window according to Table 6.4.2.2.4.2-1 for		
	the ca	arrier frequency f and the channel ba	andwidth BW.	
NOTE 6:	Pw is	the power window according to Tab	le 6.4.2.2.4.2-2 for	
	the ca	arrier frequency f and the channel ba	andwidth BW.	
NOTE 7:	TT for	r each frequency and channel bandy	vidth is specified in	
	Table	6.4D.2.2.5-2		

Table 6.4D.2.2.5-2: Test Tolerance (Carrier leakage)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	0.8	0.8	1.0
40MHz < BW ≤ 100MHz	1.5	1.6	1.6

6.4D.2.3 In-band emissions for UL-MIMO

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test point selection is FFS.
- Connection diagram is FFS.

6.4D.2.3.1 Test purpose

The purpose of this test is to exercise the UE transmitter for UL-MIMO to verify its modulation quality in terms of inband emissions.

6.4D.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.4D.2.3.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.4.2.3.3-1 which is defined in subclause 6.4.2.3.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2D.1.3-2.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.3.

6.4D.2.3.4 Test description

6.4D.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.2.3.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [A.3.1.2.2] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.3.4.3.

6.4D.2.3.4.2 Test procedure

Test procedure for PUSCH:

- 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [1_0] for C_RNTI to schedule the UL RMC according to Table 6.4D.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 1.2 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $10 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 1.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD slots with transient periods are not under test.
- 1.4 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 1.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD slots with transient periods are not under test.
- 1.6 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.7 Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD slots with transient periods are not under test.
- 1.8 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4D.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW.
- 1.9 Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD slots with transient periods are not under test.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4D.2.3.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition

Table 6.4D.2.3.4.2-1: Power Window (dB) for carrier leakage (steps 1.2, 1.4)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4D.2.3.4.2-2: Power Window (dB) for carrier leakage (steps 1.6, 1.8)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4D.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.3.5 Test requirement

The requirements apply to each transmit antenna connector.

Each of the n In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Tables 6.4D.2.3.5-1. n is 10 for 15kHz SCS, 20 for 30kHz SCS and 30 for 60kHz SCS.

Table 6.4D.2.3.5-1: Test requirements for in-band emissions

Parameter description	Unit	Limit (NOTE 1)		Applicable Frequencies
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, + 0.8 \\ -57 \ dBm + 10 \log_{10} \left(SCS / 15 kHz \right) - P_{RB} \right\}$		Any non-allocated (NOTE 2)
	-28 + TT		Image frequencies when output power > 10 dBm	Image
IQ Image dB		-25 + TT	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
		-28 + TT	Output power > 10 dBm	Comien le else me
Carrier	dBc	-25 + TT	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage		-20 + TT	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 4, 5)
		-10 + TT	-40 dBm ≤ Output power < -30 dBm	(1101634, 5)

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of *P*_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. *P*_{RB} is defined in NOTE 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the carrier leakage frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the carrier leakage frequency if N_{RB} is even, but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.3.3).
- NOTE 7: N_{RR} is the Transmission Bandwidth Configuration (see Figure 5.3.3).
- NOTE 8: *EVM* is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.
- NOTE 11: TT for each frequency and channel bandwidth is specified in Table 6.4D.2.3.5-2

Table 6.4D.2.3.5-2: Test Tolerance (In-band emissions)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	0.8	0.8	1.0
40MHz < BW ≤ 100MHz	1.5	1.6	1.6

6.4D.2.4 EVM equalizer spectrum flatness for UL-MIMO

Editor's Note:

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test point selection is FFS.
- Connection diagram is FFS.

6.4D.2.4.1 Test purpose

The purpose of this test is to verify the zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) meets a spectrum flatness requirement for the EVM measurement to be valid.

6.4D.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.4D.2.4.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.4.2.4.3-1 and Table 6.4.2.4.3-2 which are defined in subclause 6.4.2.4.3 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2D.1.3-2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.4.

6.4D.2.4.4 Test description

6.4D.2.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.2.4.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [A.3.1.2.2] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.4.4.3.

6.4D.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.4D.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD slots with transient periods are not under test.

6.4D.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.4.5 Test requirement

The requirements apply to each transmit antenna connector.

Each of the [20] spectrum flatness functions, shall derive four ripple results in Annex E.4.4. The derived results shall not exceed the values in Figure 6.4D.2.4.5-1:

For shaped Pi/2-BPSK modulated waveforms, the test requirements are TBD.

For normal conditions and unshaped modulated waveforms, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.4D.2.4.5-1 and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4D.2.4.5-1).

For normal conditions and for unshaped modulated waveforms, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4D.2.4.5-1. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4D.2.4.5-1).

For extreme conditions, the EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4D.2.4.5-2. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.4D.2.4.5-1).

Table 6.4D.2.4.5-1: Requirements for EVM equalizer spectrum flatness for unshaped modulations (normal conditions)

Frequency range	Maximum ripple [dB]
Ful_Meas - Ful_Low ≥ 3 MHz and Ful_High - Ful_Meas ≥ 3 MHz	5.4 (p-p)
(Range 1)	
Ful_Meas - Ful_Low < 3 MHz or Ful_High - Ful_Meas < 3 MHz	9.4 (p-p)
(Range 2)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2: Ful_Low and Ful_High refer to each E-UTRA frequency 5.5-1	band specified in Table

Table 6.4D.2.4.5-2: Minimum requirements for EVM equalizer spectrum flatness for unshaped modulations (extreme conditions)

	Frequency range	Maximum Ripple [dB]
F _{UL_Mea}	s – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	5.4 (p-p)
	(Range 1)	
F _{UL_Me}	as - Ful_Low < 5 MHz or Ful_High - Ful_Meas < 5 MHz	13.4 (p-p)
	(Range 2)	
NOTE 1:	F _{UL_Meas} refers to the sub-carrier frequency for which	the equalizer coefficient is
	evaluated	
NOTE 2:	Ful_Low and Ful_High refer to each E-UTRA frequency	band specified in Table
	5.5-1	

Figure 6.4D.2.4.5-1: The test requirements for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC test requirements are within brackets)

6.4D.3 Time alignment error for UL-MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- TT value is still FFS.

6.4D.3.1 Test purpose

To verify that the error of time alignment in UL MIMO does not exceed the range prescribed by the specified UL MIMO Time Alignment Error (TAE) and tolerance.

An excess time alignment error has the possibility to interfere to other channels or other systems and decrease UL MIMO performance because of the timing unsynchronization.

6.4D.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.4D.3.3 Minimum conformance requirements

For UE(s) with multiple transmit antenna connectors supporting UL-MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.3

6.4D.3.4 Test description

6.4D.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4D.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.3.4.1-1: Test Configuration Table

		Initial Conditions	
Test Environment as specified in TS 38.508-1		Normal	
[5] subclause 4			
Test Frequenci	es as specified in TS 38.508-1	Mid range	
[5] subclause 4	.3.1		
Test Channel B	sandwidths as specified in TS	Lowest, Mid, Highest	
38.508-1 [5] su	bclause 4.3.1	-	
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest	
	Test Paran	neters for Channel Bandwidths	
Test ID	Downlink Configuration	Uplink Config	uration
	N/A for Time alignment error for UL-MIMO	Modulation	RB allocation (NOTE 1)
1	test case	CP-OFDM QPSK	Outer Full
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4D.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.3.4.3

6.4D.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the timing of one sub-frame at each antenna connector.

6.4D.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.4D.3.5 Test requirement

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 + TT ns.

Table 6.4D.3.5-1: Test Tolerance (Time alignment error for UL-MIMO)

Test Tolerance
[25ns]

6.4D.4 Requirements for coherent UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is still FFS.

- SA Generic procedures with condition NR in TS 38.508-1 is FFS.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- The test procedure is FFS.
- TT value is still FFS

6.4D.4.1 Test purpose

To verify that the difference of relative phase error and the difference of relative power error between antenna ports in coherent UL MIMO do not exceed the range prescribed by the specified requirements for coherent UL MIMO and tolerance.

An excess relative phase error or excess relative power error has the possibility to interfere to other channels and decrease UL MIMO performance because of the timing unsynchronization.

6.4D.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support coherent UL-MIMO.

6.4D.4.3 Minimum conformance requirements

For coherent UL MIMO, Table 6.4D.4.3-1 lists the maximum allowable difference between the measured relative power and phase errors between different antenna ports in any slot within the specified time window from the last transmitted SRS on the same antenna ports, for the purpose of uplink transmission (codebook or non-codebook usage) and those measured at that last SRS. The requirements in Table 6.4D.4.3-1 apply when the UL transmission power at each antenna port is larger than 0 dBm for SRS transmission and for the duration of time window.

Table 6.4D.4.3-1: Maximum allowable difference of relative phase and power errors in a given slot compared to those measured at last SRS transmitted

Difference of relative phase error	Difference of relative power error	Time window
40 degrees	4 dB	20 msec

The above requirements when all the following conditions are met within the specified time window:

- UE is not signaled with a change in number of SRS ports in SRS-config, or a change in PUSCH-config
- UE remains in DRX active time (UE does not enter DRX OFF time)
- No measurement gap occurs
- No instance of SRS transmission with the usage antenna switching occurs
- Active BWP remains the same
- EN-DC and CA configuration is not changed for the UE (UE is not configured or de-configured with PScell or SCell(s))

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.4

6.4D.4.4 Test description

6.4D.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table

6.4D.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.4.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.2 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4D.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.4.4.3

6.4D.4.4.2 Test procedure

FFS

6.4D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception [FFS]

6.4D.4.5 Test requirement

Maximum allowable difference of relative phase and power errors in a given slot within the Time window compared to those measured at last SRS transmitted shall not exceed the described value in Table 6.4D.4.5-1.

Table 6.4D.4.5-1: Maximum allowable difference of relative phase and power errors in a given slot compared to those measured at last SRS transmitted

Difference of relative phase error	Difference of relative power error	Time window
40+TT degrees	4+TT dB	20 msec

6.5 Output RF spectrum emissions

Unwanted emissions are divided into "Out-of-band emission" and "Spurious emissions" in 3GPP RF specifications. This notation is in line with ITU-R recommendations such as SM.329 [TBD] and the Radio Regulations [TBD].

ITU defines:

Out-of-band emission = Emission on a frequency or frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.

Spurious emission = Emission on a frequency, or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products but exclude out-of-band emissions.

Unwanted emissions = Consist of spurious emissions and out-of-band emissions.

The UE transmitter spectrum emission consists of the three components; the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

Figure 6.5-1: Transmitter RF spectrum

6.5.1 Occupied bandwidth

6.5.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits

6.5.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.5.1.3 Minimum conformance requirements

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.5.1.3-1

Occupied channel bandwidth / NR Channel bandwidth 10 15 20 30 40 50 60 90 100 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz Channel bandwidth 5 10 15 20 25 30 40 50 60 100 80 (MHz)

Table 6.5.1.3-1: Occupied channel bandwidth

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.1.

6.5.1.4 Test description

6.5.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.1.4.1-1: Test Configuration Table

	Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal			
Test Freque	uencies as specified in TS 38.508-1 [5] 4.3.1	Mid range by default, exceptions listed in Table 6.5.1.4.1-2			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		All			
Test SCS as specified in Table 5.3.5-1		Lowest			
	7	Test Parameters			
Test ID	Downlink Configuration	Uplir	k Configuration		
	N/A for occupied bandwidth test	Modulation	RB allocation (NOTE 1)		
1	case	CP-OFDM QPSK	Outer_full		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

Table 6.5.1.4.1-2: Test frequency exceptions for Occupied Bandwidth

5G NR Band	Test Frequency
n77	Low Range, Mid Range, High Range
n78	Low Range, Mid Range, High Range
n79	Low Range, Mid Range, High Range

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0 -
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.1.4.3

6.5.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the power spectrum distribution within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is at least 1ms over consecutive active uplink slots.
- 4. Calculate the total power within the range of all frequencies measured in step 3 and save this value as "Total power".
- 5. Identify the measurement window whose center is aligned on the center of the channel for which the sum of the power measured is 99% of the "Total power".
- 6. The "Occupied Bandwidth" is the width of the measurement window obtained in step 5.

6.5.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.5.1.5-1.

Table 6.5.1.5-1: Occupied channel bandwidth

		Occupied channel bandwidth / NR Channel bandwidth										
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	80	90	100

6.5.2 Out of band emission

6.5.2.1 General

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.2 Spectrum Emission Mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies offset greater than F_{OOB} , the spurious requirements in subclause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.2.3 Minimum conformance requirements

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3-1 for the specified channel bandwidth.

Table 6.5.2.2.3-1: NR General spectrum emission mask

				Spect	rum em	nission	limit (dE	3m) / Cł	nannel k	pandwic	ith		
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13	-13	-13	-13	-13	-13	-13						1 % channel bandwidth
± 0-1								-24	-24	-24	-24	-24	30 kHz
± 1-5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	
± 5-6	-13	-13											
± 6-10	-25	-13	-13	-13									
± 10-15		-25		-13	-13	-13							
± 15-20			-25			-13	-13						
± 20-25				-25			-13	-13					
± 25-30					-25]	-13	-13				
± 30-35						-25]		-13	-13			
± 35-40										-13	-13		
± 40-45							-25					-13	1 MHz
± 45-50													
± 50-55								-25					
± 55-60													
± 60-65									-25]			
± 65-80													
± 80-90										-25		[
± 90-95											-25]	
± 95-100													
± 100-105												-25	

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.2

6.5.2.2.4 Test description

6.5.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5.2.2.4.1-1: Test Configuration Table

				Default Condi	tions	
Test I	Environme	nt as spec	ified in TS	38.508-1 [5]	Normal	
subcla	ause 4.1	•				
	Frequencie ause 4.3.1	es as spec	ified in TS	38.508-1 [5]	Low range, High ra	inge
	Channel Bar 8-1 [5] sub			ed in TS	Lowest, Highest	
	SCS as sp			5-1	Lowest, Highest	
					nnel Bandwidths	
Test ID	Freq	ChBw	SCS	Downlink Configuration	Uplink (Configuration
		Default	Default	N/A for Spectrum	Modulation (NOTE 2)	RB allocation (NOTE 1)
1 ³	Low			Emission Mask test case	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left
2 ³	High			Mack tool case	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right
33	Default				DFT-s-OFDM PI/2 BPSK	Outer_Full
4	Low				DFT-s-OFDM QPSK	Edger_1RB_Left
5	High				DFT-s-OFDM QPSK	Edge_1RB_Right
6	Default				DFT-s-OFDM QPSK	Outer_Full
7	Low				DFT-s-OFDM 16 QAM	Edge_1RB_Left
8	High				DFT-s-OFDM 16 QAM	Edge_1RB_Right
9	Default				DFT-s-OFDM 16 QAM	Outer_Full
10	Low				DFT-s-OFDM 64 QAM	Edge_1RB_Left
11	High				DFT-s-OFDM 64 QAM	Edge_1RB_Right
12	Default				DFT-s-OFDM 64 QAM	Outer_Full
13	Low				DFT-s-OFDM 256 QAM	Edge_1RB_Left
14	High				DFT-s-OFDM 256 QAM	Edge_1RB_Right
15	Default				DFT-s-OFDM 256 QAM	Outer_Full
16	Low				CP-OFDM QPSK	Outer_1RB_Left
17	High				CP-OFDM QPSK	Outer_1RB_Right
18	Default				CP-OFDM QPSK	Outer_Full
19	Low				CP-OFDM 16 QAM	Outer_1RB_Left
20	High				CP-OFDM 16 QAM	Outer_1RB_Right
21	Default				CP-OFDM 16 QAM	Outer_Full
22	Low				CP-OFDM 64 QAM	Edge_1RB_Left
23	High				CP-OFDM 64 QAM	Edge_1RB_Right
24	Default				CP-OFDM 64 QAM	Outer_Full
25	Low				CP-OFDM 256 QAM	Edge_1RB_Left
26	High				CP-OFDM 256 QAM	Edge_1RB_Right
27	Default				CP-OFDM 256 QAM	Outer_Full

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.
- NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.
- NOTE 3: For Power Class 3 testing, include two steps for UE operating in bands n40, n77, n78 and n79, with IE [P-Boost-BPSK] set to 1 and 0 separately.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.2.4.3

6.5.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.2.1.5-1 for 6.2.2.5-1. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.2.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.1.5-1 or 6.2.2.5-1 as appropriate, and the power of any UE emission shall fulfil requirements in Table 6.5.2.2.5-1.

Table 6.5.2.2.5-1: NR General spectrum emission mask

				Speci	rum en	nission	limit (dE	Bm) / Cl	nannel k	oandwic	lth		
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1								-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	30 kHz
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13 + TT	-13											
± 6-10	-25 + TT	+ TT	-13 + TT	-13									
± 10-15		-25 + TT		+ TT	-13 + TT	-13 +							
± 15-20			-25 + TT			TT	-13 +						
± 20-25				-25 + TT			TT	-13 + TT					
± 25-30					-25 + TT				-13 + TT	-13 +			
± 30-35						-25 + TT				TT	-13 + TT		
± 35-40												-13	1 MHz
± 40-45							-25 + TT					+ TT	
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-90										-25 + TT			
± 90-95											-25 + TT		
± 95-100													
± 100-105												-25 + TT	

Note 1: The first and last measurement position with a 30 kHz filter is at ΔfOOB equals to 0.015 MHz and 0.985 MHz.

Table 6.5.2.2.5-2: Test Tolerance (Spectrum Emission Mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3 Additional spectrum emission mask

Editor's note: The following aspects are either missing or not yet determined:

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Note 4: TT for each frequency and channel bandwidth is specified in Table 6.5.2.2.5-2.

- Initial condition is not complete.

6.5.2.3.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.3.3 Minimum conformance requirements

6.5.2.3.3.1 Minimum requirement for "NS_35"

NOTE 1:

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_35" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3.3.1-1.

10 15 20 Δfоов 5 Measurement (MHz) MHz MHz MHz MHz bandwidth (unless otherwise stated) -15 -18 -20 -21 $\pm 0 - 0.1$ 30 kHz -13 -13 100 kHz $\pm 0.1-6$ -13 -13 -25¹ -13 100 kHz ± 6-10 -13 -13 ± 10-15 -25^{1} -13 -13 100 kHz -25^{1} -13 100 kHz $\pm 15-20$ -25 1 MHz $\pm 20-25$

The measurement bandwidth shall be 1 MHz

Table 6.5.2.2.3.3.1-1: Additional requirements for "NS_35"

NOTE:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.1.

6.5.2.3.3.2 Requirements for network signalled value "NS_04"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

The n41 SEM transition point from -13 dBm/MHz to -25 dBm/MHz is based on the emission bandwidth. The emission bandwidth is defined as the width of the signal between two points, one below the carrier centre frequency and one above the carrier centre frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Since the 26-dB emission bandwidth is implementation dependent, the transmission bandwidths occupied by RBs is used for the SEM.

Table 6.5.2.3.3.2-1: n41 transmission bandwidths for CP-OFDM

SCS		Channel bandwidths (MHz)								
(kHz)	10	15	20	40	50	60	80	90	100	
15	9.36	14.22	19.08	38.88	48.6	N.A	N.A	N.A	N.A	
30	8.64	13.68	18.36	38.16	47.88	58.32	78.12	88.02	98.28	
60	7.92	12.96	17.28	36.72	46.8	56.88	77.04	87.12	97.20	

Table 6.5.2.3.3.2-2: n41 transmission bandwidths for DFT-S-OFDM

SCS		Channel bandwidths (MHz)									
(kHz)	10	15	20	40	50	60	80	90	100		
15	9.00	13.50	18.00	38.88	48.60	N/A	N/A	N/A	N/A		
30	8.64	12.96	18.00	36.00	46.08	58.32	77.76	87.48	97.20		
60	7.20	12.96	17.28	36.00	46.08	54.00	72.00	86.40	97.20		
SCS			C	hannel	bandwid	dths (MF	lz)				
(kHz)	10	15	20	40	50	60	80	90	100		
15	9.00	13.50	18.00	38.88	48.60	N/A	N/A	N/A	N/A		
30	8.64	12.96	18.00	36.00	46.08	58.32	77.76	87.48	97.20		
60	7.20	12.96	17.28	36.00	46.08	54.00	72.00	86.40	97.20		

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.2-3.

Table 6.5.2.3.3.2-3: n41 SEM with "NS_04"

		Sp	ectru	m emi		limit (d				ent bandwidth
Δf _{OOB} MHz	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0 - 1	-10	-10	-10	-10						2 % channel bandwidth
							-1	10		1 MHz
± 1 - 5					-1	10				
± 5 - X					-1	3				1 MHz
± X - (BW _{Channel} + 5 MHz)	-25									
NOTE: X is defined in	Table 6	5.5.2.3	.2-1 fo	r CP-C	FDM a	and 6.5	5.2.3.2	-2 for l	DFT-S	-OFDM

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.2.

6.5.2.3.3.3 Requirements for network signalled value "NS_03"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03", is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3-1.

Table 6.5.2.3.3.3-1: Additional requirements for "NS_03"

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	40 MHz	Measurement bandwidth				
± 0-1	-13	-13	-13	-13	-13	1 % of channel BW				
± 1-6	-13	-13	-13	-13	-13	1 MHz				
± 6-10	-25	-13	-13	-13	-13	1 MHz				
± 10-15		-25	-13	-13	-13	1 MHz				
± 15-20			-25	-13	-13	1 MHz				
± 20-25				-25	-13	1 MHz				
± 25-40					-13	1 MHz				
± 40-45					-25	1 MHz				

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.3.

6.5.2.3.3.4 Requirements for network signalled value "NS 06"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.4-1.

Spectrum emission limit (dBm) / Channel bandwidth Δfоов Measurement (MHz) MHz MHz MHz bandwidth ± 0 - 0.1 -15 -18 -20 30 kHz ± 0.1 – 1 -13 -13 -13 100 kHz $\pm 1 - 6$ -13 -13 $\pm 6 - 10$ -25 -13 1 MHz ± 10 - 15 -25 $\pm 15 - 20$ -25

Table 6.5.2.3.3.4-1: Additional requirements for "NS_06"

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.4.

6.5.2.3.3.5 Requirements for network signalled value "NS_40"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_40" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.5-1.

Table 6.5.2.3.3.5-1: Additional requirements for NR channels are assigned within 1427-1452 MHz

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 27 MHz	Measurement bandwidth				
1400 ≤ f ≤ 1427	-32	27 MHz				
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.						

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.5.

6.5.2.3.3.6 Requirements for network signalled value "NS_41"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_41" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.6-1.

Table 6.5.2.3.3.6-1: Additional requirements for NR channels assigned within 1427-1452 MHz

Frequency band	Channel bandwidth /	Measurement
(MHz)	Spectrum emission limit	bandwidth
, ,	(dBm)	
	27 MHz	1

1400) ≤ f ≤ 1427	-32	27 MHz
NOTE 1:	This requirement sh	all be verified with UE transmission po	wer of 15 dBm.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.6.

6.5.2.3.3.7 Requirements for network signalled value "NS_42"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_42" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.7-1.

Table 6.5.2.3.3.7-1: Additional requirements for NR channels assigned within 1492-1517 MHz

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1 MHz	Measurement bandwidth
1518 ≤ f ≤ 1520	-0.8	1 MHz
1520 < f ≤ 1559	-30	1 MHz

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.7.

6.5.2.3.4 Test description

6.5.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.3.4.1-1 through 6.2.3.4.1-2". The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3..
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according Annex G.0, G.1, G.2, G.3.0..
- 4. The UL Reference Measurement channels are set according to the applicable table from Table 6.2.3.4.1-1 to Table 6.2.3.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.2.3.4.3.

6.5.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to the applicable table from table 6.2.4.3.1-1 to table 6.2.4.3.1-2.1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.5.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause [TBD], with the following exceptions for each network signalled value.

6.5.2.3.4.3.1 Message contents exceptions (network signalled value " NS_35")

For "NS_35" see A-MPR test case in table 6.2.3.4.3.2-1.

6.5.2.3.4.3.2 Message contents exceptions (network signalled value "NS_04")

For "NS_04" see A-MPR test case in table 6.2.3.4.3.4-1.

6.5.2.3.5 Test requirement

Table 6.5.2.3.5-1: Test Tolerance (Additional spectrum emission mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB

6.5.2.3.5.1 Test requirements (network signalled value "NS 35")

When "NS 35" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.5.2.3.5.1-1 as appropriate for a NR UE.

and

- the power of any UE emission shall fulfil requirements in table [TBD], as applicable.

Table 6.5.2.3.5.1-1: Additional test requirements "NS_35"

Δfooв (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth (unless otherwise stated)		
± 0-0.1	-15 + TT	-18 + TT	-20 + TT	-21 + TT	30 kHz		
± 0.1-6	-13 + TT	-13 + TT	-13 + TT	-13 + TT	100 kHz		
± 6-10	-25 + TT ¹	-13 + TT	-13 + TT	-13 + TT	100 kHz		
± 10-15							
± 15-20			-25 + TT ¹	-13 + TT	100 kHz		
± 20-25				-25 + TT	1 MHz		
NOTE 1: The measurement bandwidth shall be 1 MHz NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.5.2.3.5-1							

6.5.2.3.5.2 Test requirements (network signalled value "NS_04")

When "NS_04" is indicated in the cell:

the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-2 for UE power class 2 or Table 6.2.3.5-3 UE power class 2.

and

the power of any UE emission shall fulfil requirements in table 6.5.2.3.5.2-1.

Table 6.5.2.3.5.2-1: Additional test requirements for "NS_04"

		Spectrum emission limit (dBm) / measurement bandwidth for each channel bandwidth								
Δf ₀ 0в МHz	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0 - 1	-10 + TT	-10 + TT	-10 + TT	-10 + TT						2 % channel bandwidth
		-10 + TT 1 MHz						1 MHz		
±1-5				-10	+ TT					
± 5 - X				-13	+ TT					1 MHz
± X - (BW _{Channel} + 5 MHz)										
NOTE1: X is defined in Table 6.5.2.3.2-1 for CP-OFDM and 6.5.2.3.2-2 for DFT-S-OFDM NOTE2: TT for each frequency and channel bandwidth is specified in Table 6.5.2.3.5-1										

It for each frequency and channel bandwidth is specified in Table 6.5.2.3.5-1

6.5.2.4 Adjacent channel leakage ratio

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5.2.4.1 NR ACLR

Editor's note: The following aspects are either missing or not yet determined:

Only for DFT-s-OFDM PI/2 BPSK pending analysis about DFT-s-OFDM PI/2 BPSK test points is required to aligned with DFT-s-OFDM PI/2 BPSK MPR requirements defined in TS 38.101-1 v15.4.0.

6.5.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.4.1.3 Minimum conformance requirements

NR adjacent channel leakage power ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing.

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1.3-1.

If the measured adjacent channel power is greater than -50 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5.2.4.1.3-2.

Table 6.5.2.4.1.3-1: NR ACLR measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5.2.4.1.3-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3
NR ACLR		31 dB	30 dB

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.4.1.

6.5.2.4.1.4 Test description

6.5.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.2.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5.2.4.1.4.1-1: Test Configuration Table

Test Frequencies as specified in TS 38.508-1 [5] Normal, TLVL, TLVH, TH/VL, TH/VH					Default Cond	litions			
Test Frequencies as specified in TS 38.508-1 [5] Low range, High range subclause 4.3.1 Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1 Test SC as specified in Table 5.3.5-1 Lowest, Highest Default			nt as spec	ified in TS		Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Channel Bandwidths as specified in TS Saf.508-1 [5] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Lowest, Highest Test SCS as specified in Table 5.3.5-1 Lowest, Highest Test IP Freq ChBw SCS Downlink Configuration Default Defa	Test F	requencie	es as spec	ified in TS	38.508-1 [5]	Low range, High range			
Test SCS as specified in Table 5.3.5-1 Lowest, Highest	Test C	Test Channel Bandwidths as specified in TS				Lowest, Highest			
Test	Test S	SCS as sp	ecified in	Table 5.3.					
D	Tost	Frog	ChBw				onfiguration		
Default Default Default Adjacent Adjacent Channel Leakage Ratio Eakage Ratio E		Freq	CIIDW	303		Оринк С	omiguration		
13			Default	Default			RB allocation (NOTE		
Leakage Ratio test case DFT-s-OFDM PI/2 Edge_1RB_L6 BPSK DFT-s-OFDM PI/2 Edge_1RB_L6 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM Inner_Full QPSK DFT-s-OFDM QPSK DFT-s-OFDM Edge_1RB_L6 QPSK DFT-s-OFDM Edge_1RB_L6 QPSK DFT-s-OFDM GPSK GPS-s-OFDM GPS-s-OFDM GPSK GPS-s-OFDM GPSK GPS-s-OFDM GPSK GPS-	43	Defecult					1)		
DFT-s-OFDM PI/2 Edge_1RB_LEG	1	Delault					inner_ruii		
DFT-s-OFDM PI/2 Edge_1RB_Rig	2 ³	Low			•	DFT-s-OFDM PI/2	Edge_1RB_Left		
Default	3 ³	High				DFT-s-OFDM PI/2	Edge_1RB_Right		
5 Default DFT-s-OFDM QPSK Inner_Full QPSK 6 Low DFT-s-OFDM QPSK Edge_1RB_Le QPSK 7 High DFT-s-OFDM QPSK Defa_1RB_Rig QPSK 8 Default DFT-s-OFDM QPSK Outer_Full QPSK 9 Default DFT-s-OFDM 16 Inner_Full QAM Inner_Full QAM 10 Low DFT-s-OFDM 16 QAM Edge_1RB_Rig QAM 11 High DFT-s-OFDM 16 QAM Outer_Full QAM 12 Default DFT-s-OFDM 64 Edge_1RB_Rig QAM DFT-s-OFDM 64 Edge_1RB_Rig QAM 14 High DFT-s-OFDM 64 Edge_1RB_Rig QAM Outer_Full QAM 15 Default DFT-s-OFDM 256 Edge_1RB_Rig QAM Outer_Full QAM 17 High DFT-s-OFDM 256 Edge_1RB_Rig QAM Outer_Full QAM 18 Default DFT-s-OFDM QPSK Inner_Full QAM CP-OFDM QPSK Edge_1RB_Lig QAM 20 Low CP-OFDM QPSK Edge_1RB_Lig QAM CP-OFDM QPSK Edge_1RB_Lig QAM 21 High CP-OFDM QPSK Edge_1RB_Lig QAM CP-OFDM QPSK Edge_1RB_Lig QAM 24 Low CP-OFDM 16 Edge_	43	Default				DFT-s-OFDM PI/2	Outer_Full		
DFT-s-OFDM	5	Default				DFT-s-OFDM	Inner_Full		
Record R		1.					Edm. ADD L #		
QPSK						QPSK	5 – –		
QPSK						QPSK			
Default	8	Default					Outer_Full		
DFT-s-OFDM 16	9	Default				DFT-s-OFDM 16	Inner_Full		
Default	10	Low				DFT-s-OFDM 16	Edge_1RB_Left		
Default	11	High				DFT-s-OFDM 16	Edge_1RB_Right		
13	12	Default				DFT-s-OFDM 16	Outer_Full		
14 High 15 Default 16 Low 17 High 18 Default 19 Default 20 Low 21 High 22 Default 23 Default 24 Low 25 High 26 Default 27 Low 27 Low 27 Low 28 Default 29 Default 29 Default 29 Default 20 Default 21 Default 22 Default 23 Default 24 Low 25 High 26 Default 27 Low 28 Default 29 Default 29 Default 29 Default 20 De	13	Low				DFT-s-OFDM 64	Edge_1RB_Left		
QAM	14	High					Edge_1RB_Right		
16 Low 17 High 18 Default 19 Default 20 Low 21 High 22 Default 23 Default 24 Low 25 High 26 Default 27 Low 27 Low DFT-s-OFDM 256 QAM CP-OFDM 256 QAM CP-OFDM QPSK Inner_Full CP-OFDM QPSK Edge_1RB_Le CP-OFDM QPSK Outer_Full QAM CP-OFDM QPSK Outer_Full QAM CP-OFDM 16 QAM CP-OFDM 1	15	Default				DFT-s-OFDM 64	Outer_Full		
17	16	Low				DFT-s-OFDM 256	Edge_1RB_Left		
18 Default 19 Default 20 Low 21 High 22 Default 23 Default 24 Low 25 High 26 Default 27 Low Default CP-OFDM 16 QAM CP-OFDM 16 QAM Edge_1RB_Legenty CP-OFDM 16 QAM CP-OFDM 16 QAM CP-OFDM 16 QAM Outer_Full CP-OFDM 64 QAM Edge_1RB_Legenty CP-OFDM 64 QAM Edge_1RB_Legenty	17	High				DFT-s-OFDM 256	Edge_1RB_Right		
19 Default	18	Default				DFT-s-OFDM 256 QAM			
21 High 22 Default 23 Default 24 Low 25 High 26 Default 27 Low CP-OFDM QPSK Outer_Full QAM CP-OFDM 16 QAM Edge_1RB_Leg QAM CP-OFDM 16 QAM Outer_Full QAM CP-OFDM 64 QAM						CP-OFDM QPSK			
22 Default 23 Default 24 Low 25 High 26 Default 27 Low CP-OFDM 16 Edge_1RB_Legate QAM CP-OFDM 16 Edge_1RB_Right QAM CP-OFDM 16 Outer_Full QAM CP-OFDM 64 Edge_1RB_Legate QAM							Edge_1RB_Left		
23 Default CP-OFDM 16 QAM Inner_Full 24 Low CP-OFDM 16 QAM Edge_1RB_Legen 25 High CP-OFDM 16 QAM Edge_1RB_Right 26 Default CP-OFDM 16 QAM Outer_Full 27 Low CP-OFDM 64 QAM Edge_1RB_Legen									
QAM							_		
QAM CP-OFDM 16 Edge_1RB_Rig QAM CP-OFDM 16 QAM CP-OFDM 16 QAM CP-OFDM 16 QAM CP-OFDM 64 Edge_1RB_Leg QAM QAM CP-OFDM 64 QAM QAM CP-OFDM 64 QAM CP-OFDM 64 QAM					QAM				
QAM CP-OFDM 16 Outer_Full QAM CP-OFDM 64 Edge_1RB_Le						QAM	· ·		
QAM CP-OFDM 64 Edge_1RB_Le						QAM			
QAM QAM						QAM			
	27	Low					Edge_1RB_Left		
26 High	28	High				CP-OFDM 64	Edge_1RB_Right		
29 Default CP-OFDM 64 Outer_Full QAM	29	Default				CP-OFDM 64	Outer_Full		

30	Low	W		CP-OFDM 256	Edge_1RB_Left
				QAM	
31	High	gh	(CP-OFDM 256	Edge_1RB_Righ
				QAM	
32	Default	ault	(CP-OFDM 256	Outer_Full
				QAM	

NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

NOTE 3: For Power Class 3 testing, include two steps for UE operating in bands n40, n77, n78 and n79, with IE [P-Boost-BPSK] set to 1 and 0 separately.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.4.1.4.3

6.5.2.4.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 1 for C RNTI to schedule the UL RMC according to Table 6.5.2.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.2.5-5 as appropriate. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.4.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.2.5-1 and 6.2.2.5-5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5.2.4.1.5-2.

Table 6.5.2.4.1.5-1: NR ACLR measurement bandwidth

NR channel bandwidth / NR ACLR measurement bandwidth												
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3		
NR ACLR		31 - TT dB	30 - TT dB		
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5.2.4.1.5-3.					

Table 6.5.2.4.1.5-3: Test Tolerance (NR ACLR)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	0.8 dB	0.8 dB	0.8 dB

6.5.2.4.2 UTRA ACLR

6.5.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.4.2.3 Minimum conformance requirements

UTRA adjacent channel leakage power ratio (UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

 $UTRA_{ACLR}$ is specified for the first adjacent UTRA channel ($UTRA_{ACLR1}$) which centre frequency is \pm 2.5 MHz from NR channel edge and for the 2^{nd} adjacent UTRA channel ($UTRA_{ACLR2}$) which centre frequency is \pm 7.5 MHz from NR channel edge.

The UTRA channel power is measured with an RRC filter with roll-off factor α =0.22 and bandwidth of 3.84 MHz. The assigned NR channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.5.2.4.1.3-1.

If the measured adjacent channel power is greater than - 50dBm then the $UTRA_{ACLR1}$ and $UTRA_{ACLR2}$ shall be higher than the value specified in Table 6.5.2.4.2.3-1.

Table 6.5.2.4.2.3-1: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB
UTRA _{ACLR2}	36 dB

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.4.2.

6.5.2.4.2.4 Test description

6.5.2.4.2.4.1 Initial conditions

Same as in subclause 6.5.2.4.1.4.1 with the following exepction;

- For band n8 and n81, use 15MHz test channel bandwidth instead of Highest if NS_08U is signaled.

6.5.2.4.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.2.5-5 as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both lower and upper side of the NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper UTRA ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.4.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.5.2.4.2.4.3-1: Additional Spectrum Emission

Information Element	rmation Element Value/remark Comment				
AdditionalSpectrumEmission	NS_03U	for band n2, n25, n66			
	NS_05U	for band n1, n84			
	NS_08U	for band n8, n81			
	NS_100	for band n1, n2, n3, n5, n8,			
		n20, n25, n66, n80, n81, n82,			
		n84 (NOTE1)			

6.5.2.4.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.2.5-1 and 6.2.2.5-5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured UTRA ACLR, derived in step 6, shall be higher than the limits in table 6.5.2.2.1.5-2.

Table 6.5.2.4.2.5-1: Measurement bandwidth for NR carrier

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
NR ACLR measurement bandwidth	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31

Table 6.5.2.4.2.5-2: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB -TT
UTRA _{ACLR2}	36 dB - TT
NOTE 1:	TT = 0.8 dB

6.5.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 and NR operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.1 General spurious emissions

6.5.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.1.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in table 6.5.3.1.3-2.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.3-2 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.1.3-1: Boundary between NR out of band and general spurious emission domain

	Channel bandwidth	OOB boundary Δf _{OOB} (MHz)
ſ	BWChannel	BW _{Channel} + 5

Table 6.5.3.1.3-2: Requirement for general spurious emissions limits

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm 1 MHz		
	-25 dBm	1 MHz	3
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in sub-clause 5.2B of [4] when NS_04 is signalled.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.1

6.5.3.1.4 Test description

6.5.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.1.4.1-1: Test Configuration Table

Initial Conditions							
Test Enviro	nment as specified in TS	Normal					
38.508-1 [5] subclause 4.1.							
Test Frequencies as specified in TS							
38.508-1 [5] subclause 4.3.1.							
Test Channel Bandwidths as specified in Lowest, Mid, Highest							
TS 38.508-1 [5] subclause 4.3.1.							
Test SCS as specified in Table 5.3.5-1 Lowest							
Test Parameters							
Test ID	Downlink Configuration	Uplink Configura	ation				
		Modulation	RB allocation (NOTE 1)				
1	N/A for Spurious Emissions	CP-OFDM QPSK	OuterFull				
2	testing	CP-OFDM QPSK Edge_1RB_Left					
3		CP-OFDM QPSK	Edge_1RB_Right				
NOTE 1: T	he specific configuration of each	RB allocation is defined in Table 6.1-1 Co	mmon UL configuration				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.

- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.1.4.3.

6.5.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.3.1.5 Test requirement

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in table 6.5.3.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.1.5-1.

Table 6.5.3.1.5-1: General spurious emissions test requirements

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm 1 MHz		
	-25 dBm	1 MHz	3
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in sub-clause 5.2B of [4] when NS_04 is signalled.

6.5.3.2 Spurious emission for UE co-existence

6.5.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band for coexistence with protected bands as indicated in Table 6.5.3.2.3-1.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.2.3-1: Requirements for spurious emissions for UE co-existence

	Spurious emission for UE co-existence								
NR Band	Protected band	Frequer	ncy ra	ange (MHz)	Maxim um Level (dBm)	MBW (MHz)	NOTE		
n1, n84	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR Band n78, n79	F _{DL_low}		F _{DL_high}	-50	1			
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2		
	E-UTRA Band 3, 34	F_{DL_low}	-	F _{DL_high}	-50	1	15		
	Frequency range	1880	-	1895	-40	1	15, 27		
	Frequency range	1895	-	1915	-15.5	5	15, 26, 27		
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27		
n2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 50, 51, 66, 70, 71, 74	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 2, 25	F _{DL_low}	-	F _{DL_high}	-50	1	15		
n3, n80	E-UTRA Band 43 E-UTRA Band 1, 5, 7, 8, 20, 26,	FDL_low	-	FDL_high	-50 -50	1	2		
113, 1160	27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73,74, 75, 76 NR Band n79	FDL_low	-	F_{DL_high}	-50	ı			
	E-UTRA Band 3	F _{DL_low}	-	F_{DL_high}	-50	1	15		
	E-UTRA Band 11, 18, 19, 21	F_{DL_low}	-	F _{DL_high}	-50	1	13		
	E-UTRA Band 22, 42 NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2		
_	Frequency range	1884.5	-	1915.7	-41	0.3	13		
n5	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85	F _{DL_low}	-	F _{DL_high}	-50				
	E-UTRA Band 41, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2		
	E-UTRA Band 11, 21	F _{DL_low} 1884.5	-	F _{DL_high} 1915.7	-50 -41	1	39 8,39		
n7	Frequency range E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76 NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	0.3			
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26		
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26		
0.51	Frequency range	2595	-	2620	-40	1	15, 21		
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F_{DL_low}	-	F_{DL_high}	-50	1			
	E-UTRA band 3, 7, 22, 41, 42, 43 NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2		
	E-UTRA 8	F_{DL_low}	-	F_{DL_high}	-50	1	15		
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	23		
	Frequency range	1884.5	 _ 	1915.7	-41	0.3	8		
n12	E-UTRA Band 2, 5, 13, 14, 17, 24, 25, 26, 27, 30, 41, 48, 50, 51, 71, 74	F _{DL_low}	-	F _{DL_high}	-50	1			

E-UTRA Band 12, 85 Fol. bw Fol. by Fol		E LITPA Pand 4 10 66 70	E	Ι- Ι	E	-50	1	2
RODING Color Col		E-UTRA Band 4, 10, 66, 70	F _{DL_low}	-	FDL_high			
32, 33, 34, 40, 43, 50, 51, 65, 67, 68, 72, 47, 57, 67 E-UTRA Band 20 FDL, DW - FD	n20 n22	,						10
E-UTRA Band 30, 42, 69 Fpc_low - Fpc_low -50 1 15	1120, 1162	32, 33, 34, 40, 43, 50, 51, 65,	►DL_low	-	⊏ DL_high	-50	'	
E-UTRA Band 38, 42, 69 FDL_low FDL_low FFDL_low			F _{DL low}	-	F _{DL high}	-50	1	15
Frequency range				-		-50	1	2
R-UTRA Band 4, 5, 10,12, 13, 14, 17, 24, 25, 27, 28, 29, 30, 41, 42, 48, 66, 70, 71, 85			758	-	788	-50	1	
14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 66, 70, 71, 85	n25			-				
Reduce	0	14, 17, 24, 26, 27, 28, 29, 30,	. DL_10W		· DL_IIIgII			
E-UTRA Band 43		E-UTRA Band 2	F_{DL_low}	-	F_{DL_high}	-50	1	15
Reduce R		E-UTRA Band 25	F_{DL_low}	-	F_{DL_high}	-50	1	15
43,50,51,65,73,74,75,76 NR Band n77, n78 E-UTRA Band 1 FDL_low - FDL_high -50 1 19,25		E-UTRA Band 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 40, 41, 66, 72 NR Band n79 E-UTRA Band 11, 21 Frequency range F	n28, n83	43, 50, 51, 65, 73, 74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	2
19, 20, 25, 26, 27, 31, 34, 38, 40, 41, 66, 72 NR Band n179			F _{DL_low}	-	F _{DL_high}	-50	1	19, 25
E-UTRA Band 11, 21		19, 20, 25, 26, 27, 31, 34, 38, 40, 41, 66, 72	F_{DL_low}	-	F_{DL_high}	-50	1	
Frequency range			F _{DL_low}	-	F _{DL_high}	-50	1	19, 24
Frequency range		Frequency range		-	_	-42	8	
Frequency range			470	-	710			
Frequency range			662	-				15
Frequency range				-				
Frequency range				-				
R34				-				8. 19
19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 65, 67, 69, 72, 74, 75, 76 NR Band n78, n79 NR Band n77 FDL_low - FDL_high -50 1 2	n34			T -				
Frequency range		19, 20, 21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44, 45, 50, 51, 65, 67, 69, 72, 74, 75, 76 NR Band n78, n79			- 3			
Radia		NR Band n77	F _{DL_low}	-		-50	1	
10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76 Frequency range 2620 - 2645 - 15.5 5 15, 22, 26 Frequency range 2645 - 2690 -40 1 15, 22 139 E-UTRA Band 1, 8, 22, 26, 34, 40, 41, 42, 44, 45, 50, 51, 74 NR Band n79 Frequency range 1805 - 1855 -40 1 33 Frequency range 1805 - 1880 -15.5 5 15, 26, 33 140 E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 74, 75, 76 NR Band n77 NR Band n77 FDL_low FDL_low FDL_low FDL_high -50 1 2 141 E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74 NR Band n77, n78		· · · · ·	1884.5	-	1915.7	-41	0.3	8
Prequency range 2645 - 2690 -40 1 15, 22	n38	10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 66, 67, 68,	F _{DL_low}	-	$F_{DL_{\!-}high}$	-50	1	
R39		Frequency range	2620	-	2645	-15.5	5	
## August			2645	-]			1	15, 22
Frequency range Frequency range 1805 - 1855 -40 1 33 Frequency range 1855 - 1880 -15.5 5 15, 26, 33 1800 -15.5 5 15, 26, 33 1800 -15.5 5 15, 26, 33 FDL_low - FDL_high -50 1 2 FDL_high -50 1 2 FDL_high -50 1 2 FDL_high -50 1 2 FDL_high -50 1 2	n39	40, 41, 42, 44, 45, 50, 51, 74	F_{DL_low}	-	F_{DL_high}	-50		
Frequency range			1805	-	1855	-40	1	33
n40 E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 74, 75, 76 NR Band n77, n78 - FDL_low - FDL_high -50 1 n41 E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74 NR Band n77, n78 FDL_low - FDL_high -50 1				-	1880	-15.5	5	
NR Band n79	n40	22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 74, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	
n41			F _{DL_low}	-	F _{DL_high}	-50	1	2
NR Band n79	n41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74 NR Band n77, n78	_	-		-50	1	
		NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2

Frequency range 1884.5 1915.7 -41 0.3 8, n50 E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	30 30
n50	30
12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68 n51	
34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68 n51	
65, 66, 67, 68 n51	
n51	
12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68 n66, n86	
65, 66, 67, 68	
n66, n86 E-UTRA Band 2, 4, 5, 7, 12, 13, F _{DL_low} - F _{DL_high} -50 1	
17, 26, 28, 29, 38, 41, 43, 66, 70, 71	
, ,	2
	2
13, 14, 17, 24, 25, 29, 30, 41,	
48, 66, 70, 71	
n71 E-UTRA Band 4, 5, 12, 13, 14, F _{DL_low} - F _{DL_high} -50 1	
17, 24, 26, 30, 48, 66, 85	
52g	2
52_50	5
52_isii 52_isii	5
n74 E-UTRA Band 1, 2, 3, 4, 5, 7, 8, F _{DL_low} - F _{DL_high} -50 1	
12, 13, 17, 18, 19, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42,	
43, 48, 65, 66, 67, 68	
	8
	, 41
	2
11.1.1	5
n77, n78 E-UTRA Band 1, 3, 5, 7, 8, 11, F _{DL_low} - F _{DL_high} -50 1	
18, 19, 20, 21, 26, 28, 34, 39,	
40, 41, 65	
Frequency range 1884.5 - 1915.7 -41 0.3	8
n79 E-UTRA Band 1, 3, 5, 8, 11, 18, F _{DL_low} - F _{DL_high} -50 1	
19, 21, 28, 34, 39, 40, 41, 42, 65	
Frequency range 1884.5 - 1915.7 -41 0.3	8
n80 See n3	
n81 See n8	
n82 See n20	
n83 See n28	
n83 See n28 n84 See n1	

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.2-1 in TS 38.101-1 [2].
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1.3-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: 15 kHz SCS is assumed when RB is mentioned in the note.
- NOTE 4: N/A
- NOTE 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- NOTE 6: N/A
- NOTE 7: Applicable when co-existence with PHS system operating in 1884.5 -1919.6MHz.
- NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
- NOTE 9: N/A
- NOTE 10: N/A
- NOTE 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD
- NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB
- NOTE 13: This requirement applies for 5, 10, 15 and 20 MHz NR channel bandwidth allocated within 1744.9MHz and 1784.9MHz.
- NOTE 14: N/A
- NOTE 15: These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1.3-1 and Table 6.6A.3.1.3-1 from the edge of the channel bandwidth.
- NOTE 16: N/A
- NOTE 17: N/A
- NOTE 18: N/A
- NOTE 19: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 20: N/A
- NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 22: This requirement is applicable for power class 3 UE for any channel bandwidths within the range 2570 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For power class 2 UE for any channel bandwidths within the range 2570 2615 MHz, NS_44 shall apply. For power class 2 or 3 UE for carriers with channel bandwidth overlapping the frequency range 2615 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.
- NOTE 23: Void.
- NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.3-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.3-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 27: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 28: N/A
- NOTE 29: N/A
- NOTE 30: This requirement applies when the NR carrier is confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz
- **NOTE 31: N/A**

NOTE 32: Void

- NOTE 33: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1892.5 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1895 1903 MHz.
- NOTE 34: This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with Restart > 1 and Restart < 48.
- NOTE 35: This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
- NOTE 36: This requirement is applicable for NR channel bandwidth allocated within 1920-1980 MHz.
- NOTE 37: Applicable when the upper edge of the channel bandwidth frequency is greater than 1980MHz.
- NOTE 38: Applicable when NS_33 or NS_34 is configured by the pre-configured radio parameters.

NOTE 39: Void.

- NOTE 40: In the frequency range x-5950MHz, SE requirement of -30dBm/MHz should be applied; where x = max (5925, face + 15), where face is the channel centre frequency.
- NOTE 41: Applicable for 1.4 MHz bandwidth, and when the lower edge of the assigned NR UL channel bandwidth frequency is greater than or equal to 1427 MHz + the channel BW assigned for 3, 5 and 10 MHz bandwidth, and when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is greater than or equal to 1440 MHz for 15 and 20 MHz bandwidth.
- NOTE 42: Applicable for 1.4, 3 and 5 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1467 MHz assigned for 10 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1463.8 MHz for 15 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1460.8 MHz for 20 MHz bandwidth.

Note: To simplify Table 6.5.3.2.3-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.2.

6.5.3.2.4 Test description

6.5.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.2.4.1-1: Test Configuration Table

		Initial Conditions				
	ment as specified in TS subclause 4.1.	Normal				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1.		Low range, Mid range, High range				
TS 38.508-1	el Bandwidths as specified in [5] subclause 4.3.1.	Lowest, Mid, Highest				
Test SCS as	specified in Table 5.3.5-1	Lowest,				
Test Parameters						
Ch BW	Downlink Configuration	Uplink Conf	iguration			
		Modulation	RB allocation (NOTE 1)			
5 MHz		CP-OFDM QPSK	Outer_Full			
0 1011 12		OF OF DIVI QUOIN	Edge_1RB_Left			
			Edge_1RB_Right			
			Outer_Full			
10 MHz		CD OFDM ODEK				
IU IVIDZ		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			
			Outer_Full			
15 MHz		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			
20 MHz		CP-OFDM QPSK	Outer_Full			
			Edge_1RB_Left			
			Edge_1RB_Right			
			Outer_Full			
25 MHz		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			
			Outer_Full			
30 MHz		CP-OFDM QPSK	Edge_1RB_Left			
	N/A for Spurious Emissions		Edge_1RB_Right			
	testing		Outer_Full			
40 MHz		CP-OFDM QPSK	Edge_1RB_Left			
40 IVII 12		OI -OI DIW QI OK	Edge_1RB_Right			
			Outer_Full			
50 MHz		CD OEDM OBSK				
30 IVITZ			Edge_1RB_Left			
			Edge_1RB_Right			
00 1411		OD OFDM ODOK	Outer_Full			
60 MHz		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			
			Outer_Full			
80 MHz		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			
\neg			Outer_Full			
90 MHz		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			
			Outer_Full			
100 MHz		CP-OFDM QPSK	Edge_1RB_Left			
			Edge_1RB_Right			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.2.4.3.

6.5.3.2.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.3.2.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements and are not repeated in this section.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.2.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.2.3-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step [3], shall not exceed the described value in Table 6.5.3.2.3-1.

- NOTE 1: The frequency range applicable with network signalled values of NS_04, NS_17, NS_18, NS_05, NS_08, NS_37, NS_38, NS_39 are covered in subclause 6.6.3.3 Additional Spurious Emissions.
- NOTE 2: The following is applied to Note 2 in Table 6.6.3.2.3-1. For frequency with 2nd, 3rd or 4th harmonic spurious emissions, the measurements are covered in subclause 6.6.3.1.
- NOTE 3: The restriction on the maximum uplink transmission to 54 RB in Notes 21 and 22 of Table 6.6.3.2.5-1 is intended for conformance testing and may be applied to network operation to facilitate coexistence when the aggressor and victim bands are deployed in the same geographical area. The applicable spurious emission requirement of -15.5 dBm/5MHz is a least restrictive technical condition for FDD/TDD coexistence and may have to be revised in the future.

6.5.3.3 Additional spurious emissions

Editor's note: Initial condition for NS value of 17, 18, 05, 08, 37, 38 and 39 are incomplete.

6.5.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.3.3 Minimum conformance requirements

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.3.3.1 Minimum conformance requirements (network signalled value "NS_04")

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band Channel bandwidth / Spectrum Measurement (MHz) emission limit (dBm) bandwidth 10, 15, 20, 40, 50, 60, 80, 90, 100 MHz 2495 ≤ f < 2496 -13 1% of Channel BW $2490.5 \le f < 2495$ -13 1 MHz 0.009 < f < 2490.5 -25 1 MHz

Table 6.5.3.3.3.1-1: Additional requirements

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.1.

6.5.3.3.3.2 Minimum conformance requirements (network signalled value "NS 17")

When "NS_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.2-1: Additional requirements

	Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10 MHz	Measurement bandwidth	NOTE				
ŀ	470 ≤ f ≤ 710	-26.2	6 MHz	1				
ĺ	NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz							
	and 748	MHz and when the channel bandwid	and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.					

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.2.

6.5.3.3.3.3 Minimum conformance requirements (network signalled value "NS_18")

When "NS_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.3-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth	NOTE
692-698	-26.2	6 MHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.3.

6.5.3.3.3.4 Minimum conformance requirements (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.4-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)			Measurement bandwidth	NOTE	
, ,	5	10	15	20	1	
	MHz	MHz	MHz	MHz		
1884.5 ≤ f ≤1915.7	-41	-41	-41	-41	300 KHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.4.

6.5.3.3.3.5 Minimum conformance requirements (network signalled value "NS 08")

When "NS_08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.5-1: Additional requirement

Frequency band				Measurement bandwidth
(MHz)	5 MHz	10 MHz	15 MHz	
860 ≤ f ≤ 890	-40	-40	-40	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.5.

6.5.3.3.3.6 Minimum conformance requirements (network signalled value "NS_37")

When "NS 37" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.6-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.6-1: Additional requirement

Frequency band Channel bandwidth / Spectrum emission limit (dBm) (MHz)				on limit (dBm)	Measurement bandwidth	
,	5MHz	10MHz	15MHz	20MHz		
1475.9 ≤ f ≤ 1510.9	-35	-35	-35	-35	1 MHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.6.

6.5.3.3.3.7 Minimum conformance requirements (network signalled value "NS_38")

When "NS 38" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.7-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.7-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5 MHz, 10 MHz, 15 MHz, 20 MHz	Measurement bandwidth	
1400 ≤ f ≤ 1427	-32	27MHz	
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.			

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.7.

6.5.3.3.3.8 Minimum conformance requirements (network signalled value "NS_39")

When "NS 39" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.8-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.8-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5 MHz, 10 MHz, 15 MHz, 20 MHz	Measurement bandwidth
1475 ≤ f ≤ 1488	-28	1MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.8.

6.5.3.3.4 Test description

6.5.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All these configurations shall be tested with applicable test parameters for each channel bandwidth and sub-carrier spacing, are shown in Table 6.5.3.3.4.1-1 through Table 6.5.3.3.4.1-8 for different NS values. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.3.4.1-1: Test Configuration Table (network signalled value "NS 04")

Initial Conditions				
Test Enviror subclause 4	nment as specified in TS 38.508-1 [5]	Normal		
Test Freque subclause 4	encies as specified in TS 38.508-1 [5]	Low r	ange	
Test Channe [5] subclaus	el Bandwidths as specified in TS 38.508-1 se 4.3.1	Lowest, M	id, Highest	
Test SCS as	s specified in Table 5.3.5-1	Lowest, Highest		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink Cor	nfiguration	
		Modulation	RB allocation (NOTE 1)	
1		CP-OFDM QPSK	Edge_1RB_Left	
2	N/A for Spurious Emissions testing	CP-OFDM QPSK	Edge_1RB_Right	
3		CP-OFDM QPSK	Inner Full	
4 CP-OFDM QPSK Outer Full				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration				

Table 6.5.3.3.4.1-2: Test Configuration Table (network signalled value "NS_17")

	Initial (Conditions		
Test Environment as specified in TS 38.508-1 [5]		Normal		
subclause 4	.1			
Test Freque	ncies as specified in TS 38.508-1 [5]	[TBD]		
subclause 4	.3.1			
Test Channe	el Bandwidths as specified in TS 38.508-1	[TBD]		
[5] subclaus	e 4.3.1			
Test SCS as specified in Table 5.3.5-1		[TBD]		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink Configuration		
		Modulation	RB allocation (NOTE 1)	
1	N/A for Spurious Emissions testing	FFS	FFS	
2	14/7 for Opunous Emissions testing	FFS	FFS	
3	3 FFS FFS			
NOTE 1: T	he specific configuration of each RB allocat	ion is defined in Table 6.1-1	Common UL configuration	

Table 6.5.3.3.4.1-3: Test Configuration Table (network signalled value "NS_18")

	Initial Conditions					
Test Enviror	nment as specified in TS 38.508-1 [5]	Normal				
subclause 4	.1					
Test Freque subclause 4	encies as specified in TS 38.508-1 [5] .3.1	[TBD]				
Test Chann	el Bandwidths as specified in TS 38.508-1	[TBD]				
[5] subclaus	e 4.3.1					
Test SCS as	s specified in Table 5.3.5-1	[TBD]				
	Test P	arameters				
Test ID	Downlink Configuration	Uplink Configuration				
		Modulation	RB allocation (NOTE 1)			
1	N/A for Spurious Emissions testing	FFS	FFS			
2		FFS	FFS			
3		FFS	FFS			
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration					

Table 6.5.3.3.4.1-4: Test Configuration Table (network signalled value "NS_05")

	Initial Conditions				
Test Enviror	nment as specified in TS 38.508-1 [5]	Normal			
subclause 4					
Test Freque	encies as specified in TS 38.508-1 [5]	[TBD]			
subclause 4	i.3.1				
Test Chann	el Bandwidths as specified in TS 38.508-1	[TBD]			
[5] subclaus	se 4.3.1				
Test SCS as	s specified in Table 5.3.5-1	[TBD]			
	Test P	arameters			
Test ID	Downlink Configuration	Uplink Configuration			
		Modulation	RB allocation (NOTE 1)		
1	N/A for Spurious Emissions testing	FFS	FFS		
2	147 Clor Opunous Emissions tosting	FFS	FFS		
3		FFS	FFS		
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration				

Table 6.5.3.3.4.1-5: Test Configuration Table (network signalled value "NS_08")

In	itial Conditions			
Test Environment as specified in TS 38.508-1 [5]	Normal			
subclause 4.1				
Test Frequencies as specified in TS 38.508-1 [5]	[TBD]			
subclause 4.3.1				
Test Channel Bandwidths as specified in TS 38.50	08-1 [TBD]			
[5] subclause 4.3.1				
Test SCS as specified in Table 5.3.5-1	[TBD]			
Т	est Parameters			
Test ID Downlink Configuration	Uplink Configuration			
	Modulation RB allocation (NOTE 1)			
1 N/A for Spurious Emissions testin	g FFS FFS			
2	FFS FFS			
3	FFS FFS			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration				

Table 6.5.3.3.4.1-6: Test Configuration Table (network signalled value "NS_37")

	Initial (Conditions		
Test Enviror	nment as specified in TS 38.508-1 [5]	Normal		
subclause 4				
Test Freque subclause 4	encies as specified in TS 38.508-1 [5] .3.1	[TBD]		
Test Chann	el Bandwidths as specified in TS 38.508-1	[TBD]		
[5] subclaus	e 4.3.1			
Test SCS as	s specified in Table 5.3.5-1	[TBD]		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink C	Configuration	
		Modulation	RB allocation (NOTE 1)	
1	N/A for Spurious Emissions testing	FFS	FFS	
2	TWATER Spanious Emissions testing	FFS	FFS	
3		FFS	FFS	
NOTE 1: T	he specific configuration of each RB allocat	ion is defined in Table 6.1-1	Common UL configuration	

Table 6.5.3.3.4.1-7: Test Configuration Table (network signalled value "NS_38")

	Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] Normal					
subclause 4					
Test Freque	encies as specified in TS 38.508-1 [5]	[TBD]			
subclause 4	i.3.1				
Test Chann	Test Channel Bandwidths as specified in TS 38.508-1 [TBD]				
[5] subclaus	se 4.3.1				
Test SCS as	as specified in Table 5.3.5-1 [TBD]				
	Test P	arameters			
Test ID	Downlink Configuration	Uplink C	Configuration		
		Modulation	RB allocation (NOTE 1)		
1	N/A for Spurious Emissions testing	FFS	FFS		
2	147 Clor Opunous Emissions tosting	FFS	FFS		
3		FFS	FFS		
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration				

Table 6.5.3.3.4.1-8: Test Configuration Table (network signalled value "NS_39")

Initial Conditions				
	nment as specified in TS 38.508-1 [5]	Normal		
subclause 4.1				
Test Freque	ncies as specified in TS 38.508-1 [5]	[TBD]		
subclause 4	.3.1			
Test Channe	el Bandwidths as specified in TS 38.508-1	[TBD]		
[5] subclaus	[5] subclause 4.3.1			
Test SCS as	s specified in Table 5.3.5-1	[TBD]		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink Cor	nfiguration	
		Modulation	RB allocation (NOTE 1)	
1	N/A for Spurious Emissions testing	FFS	FFS	
2	14/7 Tol Opunous Emissions testing	FFS	FFS	
3		FFS	FFS	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration				

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.3.4.1-1 through Table 6.5.3.3.4.1-8.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.3.4.3.

6.5.3.3.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.3.4.1-1 through Table [TBD]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements with allowed A-MPR values specified in table 6.2.3.5-2 per test condition specified in Table 6.2.3.4.1-2. For NS_04. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Tables 6.5.3.3.3.1-1 to Table 6.5.3.3.8-1 as appropriate. The centre frequency of the filter shall be stepped in contiguous steps according to the same table.

6.5.3.3.4.3 Message contents

6.6.3.3.4.3.1 Message contents exceptions (network signalled value "NS_04")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 04"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	1 (NS_04)		

6.6.3.3.4.3.2 Message contents exceptions (network signalled value "NS_17")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_17. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 17"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_17)		

6.6.3.3.4.3.3 Message contents exceptions (network signalled value "NS_18")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_18. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_18"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	2 (NS_18)		

6.6.3.3.4.3.4 Message contents exceptions (network signalled value "NS 05")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_05. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 05"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_05)		

6.6.3.3.4.3.5 Message contents exceptions (network signalled value "NS_08")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_08. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 08"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	2 (NS_08)		

6.6.3.3.4.3.6 Message contents exceptions (network signalled value "NS_37")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_37. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 37"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Conditio			
additionalSpectrumEmission	1 (NS_37)		

6.6.3.3.4.3.7 Message contents exceptions (network signalled value "NS_38")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_38. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 38"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Conditi			
additionalSpectrumEmission	2 (NS_38)		

6.6.3.3.4.3.8 Message contents exceptions (network signalled value "NS_39")

Message contents are according to TS 38.508 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_39. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 39"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1				
Information Element Value/remark Comment Condition				
additionalSpectrumEmission	3 (NS_39)			

6.5.3.3.5 Test requirement

This clause specifies the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated from Table 6.5.3.3.5.1-1 to Table 6.5.3.3.5.8-1 for different NS_values.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.3.5.1 Test requirement (network signalled value "NS_04")

When "NS 04" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-2.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3 from the edge of the channel bandwidth.

Table 6.5.3.3.5.1-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10, 15, 20, 40, 50, 60, 80, 90 100 MHz	Measurement bandwidth
2495 ≤ f < 2496	-13	1% of Channel BW
2490.5 ≤ f < 2495	-13	1 MHz
0 < f < 2490.5	-25	1 MHz

6.5.3.3.5.2	Test requirement (network signalled value "NS_17")
FFS	
6.5.3.3.5.3	Test requirement (network signalled value "NS_18")
FFS	
6.5.3.3.5.4	Test requirement (network signalled value "NS_05")
FFS	
6.5.3.3.5.5	Test requirement (network signalled value "NS_08")
FFS	
6.5.3.3.5.6	Test requirement (network signalled value "NS_37")
FFS	
6.5.3.3.5.7	Test requirement (network signalled value "NS_38")
FFS	
6.5.3.3.5.8	Test requirement (network signalled value "NS_39")
FFS	

6.5.4 Transmit intermodulation

6.5.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.4.3 Minimum conformance requirements

UE transmit intermodulation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each transmitter antenna port with the other antenna port(s) if any terminated. Both the wanted signal power and the intermodulation product power are measured through NR rectangular filter with measurement bandwidth shown in Table 6.5.4.3-1.

The requirement of transmit intermodulation is specified in Table 6.5.4.3-1.

Table 6.5.4.3-1: Transmit Intermodulation

Wanted signal channel bandwidth	BWchannel					
Interference signal frequency offset from channel centre	BW _{Channel}	2*BWchannel				
Interference CW signal level	-40dBc					
Intermodulation product	< -29dBc	< -35dBc				
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs for the channel BW as defined in Table 6.5.2.2.3-1					
Measurement offset from channel centre	BW _{Channel} and 2*BW _{Channel}	2*BW _{Channel} and 4*BW _{Channel}				

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.4.

6.5.4.4 Test description

6.5.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.4.4.1-1: Test Configuration Table

	Initial Conditions						
Test Environme	ent as specified in TS 38.508-1	Normal					
[5] subclause 4.	.1						
Test Frequencie	es as specified in TS 38.508-1	Mid range					
[5] subclause 4.	.3.1						
Test Channel B	andwidths as specified in TS	Mid, Highest					
38.508-1 [5] sul	oclause 4.3.1						
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest					
		Test Parameters					
Test ID	Downlink Configuration	Uplink Configuration					
	N/A for transmit	Modulation	RB allocation (NOTE 1)				
1	intermodulation test case	DFT-s-OFDM PI/2 BPSK	Inner Full				
2	intermodulation test case	DFT-s-OFDM QPSK	Inner Full				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.3.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.

- 4. The UL Reference Measurement channels are set according to Table 6.5.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.4.4.3.

6.5.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power of the UE. For TDD, only slots consisting of only UL symbols are under test for the wanted signal and for the intermodulation product.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 5. Set the interference CW signal level according to table 6.5.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5.4.5-1.

6.5.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5.4.5-1.

Table 6.5.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW _{Channel}				
Interference signal frequency offset from channel centre	BW _{Channel}	2*BW _{Channel}			
Interference CW signal level	-40dBc				
Intermodulation product	< -29dBc < -35dBc				
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs for the channel BW as defined in Table 6.5.2.2.3-1				
Measurement offset from channel centre	BWChannel and 2*BWChannel	2*BWChannel and 4*BWChannel			

6.5A Output RF spectrum emissions for CA

6.5A.2 Out of band emission for CA

6.5A.2.2 Spectrum emission mask

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS.
- The subclause 6.2A. 2 in reference to requirements for transmitter power for inter-band CA is FFS.
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- MU and TT for CA is FFS in Annex F.

6.5A.2.2.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum conformance requirements specified in subclause 6.5.2.2 shall apply on each component carrier with all component carriers active. If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

6.5A.2.2.1 Spectrum emission mask for CA (2UL CA)

6.5A.2.2.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth for 2UL CA.

6.5A.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.5A.2.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5 A.2.2.0.

6.5A.2.2.1.4 Test description

6.5A.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.2.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.2.2.1.4.1-1: Inter band CA Test Configuration Table

	Initial Conditions								
		t as specified in TS 38.508-1	Normal						
	clause 4.1								
		as specified in TS 38.508-1	Low range for PCC and S						
		1.1.3 for inter band CA in FR1	High range for PCC and						
		ndwidths as specified in TS	Lowest for both PCC and						
		cified in Table 5.5A.3-1	Highest for both PCC and Smallest and biggest sup		anal Pandwidth				
1681.30	so as spec	cilied in Table 5.5A.5-1	Test Parameters	ported 303 per Chai	inei banuwium				
Test	Freq	Downlink Configuration		ink Configuration					
ID	1104	20mm Comigaranon	Modulation (NOTE 3)	RB allocation	on (NOTE 1)				
			,	PCC	SCC				
1 ³	Low	N/A	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left	Outer_1RB_Left				
2 ³	High		DFT-s-OFDM PI/2	Outer_1RB_Right	Outer_1RB_Right				
			BPSK						
3	Low		DFT-s-OFDM QPSK	Outer_1RB_Left	Outer_1RB_Left				
4	High		DFT-s-OFDM QPSK	Outer_1RB_Right	Outer_1RB_Right				
5	Low		DFT-s-OFDM 16 QAM	Outer_1RB_Left	Outer_1RB_Left				
6	High		DFT-s-OFDM 16 QAM	Outer_1RB_Right	Outer_1RB_Right				
7	Default		DFT-s-OFDM 64 QAM	Outer_Full	Outer_Full				
8	Default		DFT-s-OFDM 256 QAM	Outer_Full	Outer_Full				
9	Low		CP-OFDM QPSK	Outer_1RB_Left	Outer_1RB_Left				
10	High		CP-OFDM QPSK	Outer_1RB_Right	Outer_1RB_Right				
11	Low		CP-OFDM 16 QAM Outer_1RB_Left Outer_1RB						
12	High		CP-OFDM 16 QAM Outer_1RB_Right Outer_1RB_						
13	Default		CP-OFDM 64 QAM	Outer_Full	Outer_Full				
14	Default		CP-OFDM 256 QAM	Outer_Full	Outer_Full				

- NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.
- NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which applicable channel bandwidths and SCS are specified in Table 5.5A3-1.
- NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.2.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.2.2.1.4.3.

6.5A.2.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).

- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.2.2.1.4.1-1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously power control "up" commands in every uplink scheduling information to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 6. Measure the mean power of the UE in the channel bandwidth of the radio access mode for each CC according to the test configuration, which shall meet the requirements described in clause 6.2A.2. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 7. Measure the power of the transmitted signal with a measurement filter of bandwidths for each CC according to Table 6.5A.2.2.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5A.2.2.1.5 Test requirement

The measured UE mean power in the channel bandwidth for each CC, derived in step 6, shall fulfil requirements in clause 6.2A.2 as appropriate, and the power of any UE emission for each CC, derived in step 7, shall fulfil requirements in Table 6.5A.2.2.1.5-1.If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

Table 6.5A.2.2.1.5-1: NR General spectrum emission mask

	Spectrum emission limit (dBm) / Channel bandwidth												
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1								-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	30 kHz
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13 + TT	-13											
± 6-10	-25 + TT	+ 11	-13 + TT	-13									
± 10-15		-25 + TT		+ TT	-13 + TT	-13							
± 15-20			-25 + TT			+ TT	-13						
± 20-25				-25 + TT			+ TT	-13 + TT					
± 25-30					-25 + TT				-13 + TT	-13			
± 30-35						-25 + TT				+ TT	-13 + TT		
± 35-40												-13	1 MHz
± 40-45							-25 + TT					+TT	
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-90										-25 + TT			
± 90-95											-25 + TT		
± 95-100												1	
± 100-105												-25 + TT	

Note 1: The first and last measurement position with a 30 kHz filter is at ΔfOOB equals to 0.015 MHz and 0.985 MHz.

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Table 6.5A.2.2.1.5-2: Test Tolerance for Spectrum emission mask

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5A.2.4 Adjacent channel leakage ratio

6.5A.2.4.1 NR ACLR

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- PC1 and PC4 requirements are missing in TS 38.101-1 [2].
- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS.
- The subclause 6.2A.2 in reference to requirements for transmitter power for inter-band CA is FFS.
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- MUs and TTs for CA is FFS in Annex F.

6.5A.2.4.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum conformance requirements specified in subclause 6.5.2.4.1.3 shall apply on each component carrier with all component carriers active.

6.5A.2.4.1.1 NR ACLR for CA (2UL CA)

6.5A.2.4.1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR) for 2UL CA.

6.5A.2.4.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.5A.2.4.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.2.4.1.0.

6.5A.2.4.1.1.4 Test description

6.5A.2.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.2.4.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5A.2.4.1.1.4.1-1: Inter band CA Test Configuration Table

	Initial Conditions								
Test Environment as specified in TS 38	3.508-1 Normal, TL/VL, TL/VH, TH/VL, TH/VH								
[5] subclause 4.1									
Test Frequencies as specified in TS 38									
[5] subclause4.3.1.1.3 for inter band CA	A in FR1 High range for PCC and SCC								
Test Channel Bandwidths as specified	in TS Lowest for both PCC and SCC								
38.508-1 [5] subclause 4.3.1	Highest for both PCC and SCC								
Test SCS as specified in Table 5.5A.3-	1 Smallest and biggest supported SCS per Channel Bandwidth								
	Test Parameters								
Test Freq Downlink Configu	uration Uplink Configuration								
ID	Modulation (NOTE 3) RB allocation (NOTE 1)								
	PCC SCC								

1 ³	Low	N/A	DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left	Outer_1RB_Left
2 ³	High		DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right	Outer_1RB_Right
33	Default		DFT-s-OFDM PI/2 BPSK	Outer_Full	Outer_Full
4	Default		DFT-s-OFDM PI/2 BPSK	Inner_Full	Inner_Full
5	Low		DFT-s-OFDM QPSK	Outer_1RB_Left	Outer_1RB_Left
6	High		DFT-s-OFDM QPSK	Outer_1RB_Right	Outer_1RB_Right
7	Default		DFT-s-OFDM QPSK	Outer_Full	Outer_Full
8	Default		DFT-s-OFDM QPSK	Inner_Full	Inner_Full
9	Default		DFT-s-OFDM 16 QAM	Inner_Full	Inner_Full
10	Low		DFT-s-OFDM 16 QAM	Outer_1RB_Left	Outer_1RB_Left
11	High		DFT-s-OFDM 16 QAM	Outer_1RB_Right	Outer_1RB_Right
12	Default		DFT-s-OFDM 16 QAM	Outer_Full	Outer_Full
13	Low		DFT-s-OFDM 64 QAM	Outer_1RB_Left	Outer_1RB_Left
14	High		DFT-s-OFDM 64 QAM	Outer_1RB_Right	Outer_1RB_Right
15	Default		DFT-s-OFDM 64 QAM	Outer_Full	Outer_Full
16	Default		DFT-s-OFDM 256 QAM	Outer_Full	Outer_Full
17	Default		CP-OFDM QPSK	Inner_Full	Inner_Full
18	Low		CP-OFDM QPSK	Outer_1RB_Left	Outer_1RB_Left
19	High		CP-OFDM QPSK	Outer_1RB_Right	Outer_1RB_Right
20	Default		CP-OFDM QPSK	Outer_Full	Outer_Full
21	Default		CP-OFDM 16 QAM	Inner_Full	Inner_Full
22	Low		CP-OFDM 16 QAM	Outer_1RB_Left	Outer_1RB_Left
23	High		CP-OFDM 16 QAM	Outer_1RB_Right	Outer_1RB_Right
24	Default		CP-OFDM 16 QAM	Outer_Full	Outer_Full
25	Low		CP-OFDM 64 QAM	Outer_1RB_Left	Outer_1RB_Left
26	High		CP-OFDM 64 QAM	Outer_1RB_Right	Outer_1RB_Right
27	Default		CP-OFDM 64 QAM	Outer_Full	Outer_Full
28	Default		CP-OFDM 256 QAM	Outer_Full	Outer_Full

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which applicable channel bandwidths and SCS are specified in Table 5.5A3-1.

NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.2.4.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.2.4.1.1.4.3

6.5A.2.4.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.2.4.1.1.4.3.

- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.2.2.1.1.4.1-1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 6. Measure the mean power of the UE in the channel bandwidth of the radio access mode on PCC according to the test configuration, which shall meet the requirements described in clause 6.2A.2 as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 7. Measure the rectangular filtered mean power for the assigned NR channel on PCC.
- 8. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel on PCC, respectively.
- 9. Calculate the ratios of the power between the values measured in step 7 over step 8 for lower and upper NR ACLR, respectively.
- 10. Measure the mean power of the UE in the channel bandwidth of the radio access mode on PCC according to the test configuration, which shall meet the requirements described in clause 6.2A.2 as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 11. Measure the rectangular filtered mean power for the assigned NR channel on PCC.
- 12. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel on PCC, respectively.
- 13. Calculate the ratios of the power between the values measured in step 11 over step 12 for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.4.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5A.2.4.1.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 6 and step 10, shall fulfil requirements in clause 6.2A.2 as appropriate, and if the measured adjacent channel power is greater than -50 dBm, then the measured NR ACLR for each CC, derived in step 9 and step 13, shall be higher than the limits in Table 6.5A.2.4.1.1.5-2.

Table 6.5A.2.4.1.1.5-1: NR ACLR measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5A.2.4.1.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3
NR ACI R		31 + TT dB	30 + TT dB

Table 6.5A.2.4.1.1.5-3: Test Tolerance for NR ACLR

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.5A.2.4.2 UTRA ACLR

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS.
- The subclause 6.2A.2 in reference to requirements for transmitter power for inter-band CA is FFS.
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- MUs and TTs for CA is FFS in Annex F.

6.5A.2.4.2.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum conformance requirements specified in subclause 6.5.2.4.2.3 shall apply on each component carrier with all component carriers active.

6.5A.2.4.2.1 UTRA ACLR for CA (2UL CA)

6.5A.2.4.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent UTRA channels in terms of Adjacent Channel Leakage power Ratio (UTRA ACLR) for 2UL CA.

6.5A.2.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.5A.2.4.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.2.4.2.0.

6.5A.2.4.2.1.4 Test description

6.5A.2.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.2.4.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5A.2.4.2.1.4.1-1: Void

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.2.4.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.2.4.2.1.4.3

6.5A.2.4.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.2.4.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.2.2.1.1.4.1-1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 6. Measure the mean power of the UE in the channel bandwidth of the radio access mode on PCC according to the test configuration, which shall meet the requirements described in clause 6.2A.2 as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 7. Measure the rectangular filtered mean power for the assigned NR channel on PCC.
- 8. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both lower and upper side of the assigned NR channel on PCC, respectively.
- 9. Calculate the ratios of the power between the values measured in step 7 over step 8 for lower and upper UTRA ACLR, respectively.
- 10. Measure the mean power of the UE in the channel bandwidth of the radio access mode on SCC according to the test configuration, which shall meet the requirements described in clause [6.2A.3.3.5] as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 11. Measure the rectangular filtered mean power for the assigned NR channel on SCC.
- 12. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both lower and upper side of the assigned NR channel on SCC, respectively.
- 13. Calculate the ratios of the power between the values measured in step 11 over step 12 for lower and upper UTRA ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.5A.2.4.2.3.4.3-1: Additional Spectrum Emission

Derivation Path: 38.508-1 [5] clause 4.6.3, Table 4.6.3-1 Additional Spectrum Emission					
Information Element	Value/remark	Comment	Condition		
AdditionalSpectrumEmission	1	Only for NR band n1, n2, n3,			
·		n5, n8, n20, n25, and n66			
	3	For NR band n1, n2, n8, n25,			
		n66			

6.5A.2.4.2.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 6 and step 10, shall fulfil requirements in clause 6.2A.2 as appropriate, and if the measured adjacent channel power is greater than –50 dBm, then the measured UTRA ACLR for each CC, derived in step 9 and step 13, shall be higher than the limits in Table 6.5A.2.4.2.1.5-2.

Table 6.5A.2.4.2.1.5-1: Measurement bandwidth for NR carrier

			NR c	hannel ba	andwidth	/ UTRA A	CLR mea	suremen	t bandw	/idth		
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
NR channel measurement bandwidth (MHz)	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
UTRA channel Measurement bandwidth (MHz)		3.84										
1st Adjacent channel centre frequency offset		± 2.5 MHz from NR channel edge										
2 nd Adjacent channel centre frequency offset					± 7.5 MH	Hz from N	R channe	l edge				

Table 6.5A.2.4.2.1.5-2: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB +TT
UTRA _{ACLR2}	36 dB + TT

Table 6.5A.2.4.2.1.5-3: Test Tolerance for UTRA ACLR

	f ≤ 3.0GHz
BW ≤ 40MHz	FFS
40MHz < BW ≤ 100MHz	FFS

6.5A.3 Spurious emission for CA

6.5A.3.1 General spurious emissions for CA

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS
- MUs for CA is FFS in Annex F

6.5A.3.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the spurious emission requirement Table 6.5.3.1.3-2 apply for the frequency ranges that are more than F_{OOB} as defined in Table 6.5.3.1.3-1 away from edges of the assigned channel bandwidth on a component carrier. If for some frequency a spurious emission requirement of

individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

NOTE 1: For inter-band carrier aggregation with uplink assigned to two NR bands the requirements in Table 6.5.3.1.3-2 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.5.3.1.3-2 would be considered to be verified by the measurements verifying the one uplink inter-band CA spurious emission requirement.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5A.3.1

6.5A.3.1.1 General spurious emissions for CA (2UL CA)

6.5A.3.1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.5A.3.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.3.1.0.

6.5A.3.1.1.4 Test description

6.5A.3.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.3.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.3.1.1.4.1-1: Inter band CA Test Configuration Table

	Initial Conditions								
Test Envir	onment as specified in TS 38.508-1	Normal							
[5] subclau	use 4.1								
Test Frequ	uencies as specified in TS 38.508-1	Low range for PCC and S	SCC						
[5] subclau	use4.3.1.1.3 for inter band CA in FR1	High range for PCC and	SCC						
Test Chan	nel Bandwidths as specified in TS	Lowest for both PCC and	SCC						
	5] subclause 4.3.1	Highest for both PCC and	d SCC						
Test SCS	as specified in Table 5.5A.3-1	Smallest and biggest sup	ported SCS per Cha	nnel Bandwidth					
		Test Parameters							
Test ID	Downlink Configuration	Upl	ink Configuration						
		Modulation	RB allocation	on (NOTE 1)					
			PCC	SCC					
1	N/A	CP-OFDM QPSK	Outer_Full	Outer_Full					
1 2	N/A	CP-OFDM QPSK CP-OFDM QPSK							
1 2 3	N/A		Outer_Full	Outer_Full					
3 NOTE 1:		CP-OFDM QPSK CP-OFDM QPSK allocation is defined in Table	Outer_Full Outer_1RB_Left Outer_1RB_Right e 6.1-1.	Outer_Full Outer_1RB_Lef Outer_1RB_Righ					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.3.1.1.4.3.

6.5A.3.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.3.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.3.1.1.4.1-1 on both PCC and SCC. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 6. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5A.3.1.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5A.3.1.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5A.3.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5A.3.1.1.5 Test requirement

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5A.3.1.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. If for some frequency a spurious emission requirement of individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

The measured average power of spurious emission, derived in step 6, shall not exceed the described value in Table 6.5A.3.1.1.5-1.

Maximum Measurement Frequency Range **Notes Bandwidth** Level Test requirements for CA_n3A-n78A Configuration 270 MHz ≤ f ≤ 380 MHz 100 kHz dBm+TT 1515MHz ≤ f ≤ 2090 MHz $3270 \text{ MHz} \le f \le 3830 \text{ MHz}$ -30 $4815 \text{ MHz} \le f \le 5890 \text{ MHz}$ 1 MHz dBm+TT 6720 MHz ≤ f ≤ 7370 MHz 8310 MHz \leq f \leq 9385 MHz Test requirements for CA_n8A-n78A Configuration -36 780 MHz ≤ f ≤1000 MHz 100 kHz dBm+TT 1000MHz £ f £ 1015 MHz 1470 MHz £ f £ 2040MHz 2385 MHz ≤ f ≤ 2920 MHz 3290 MHz ≤ f ≤ 3810 MHz -30 1 MHz 4180 MHz ≤ f ≤4715 MHz dBm+TT 5060 MHz ≤ f ≤5630 MHz 5685 MHz ≤ f ≤6720 MHz

Table 6.5A.3.1.1.5-1: General spurious emissions test requirements

Table 6.5A.3.1.1.5-2: Test Tolerance for General spurious emissions

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0	0
40MHz < BW ≤ 100MHz	0	0

6.5A.3.2 Spurious emission for UE co-existence

7480 MHz ≤ f ≤8515 MHz

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Extending the coverage of the TCs with intra-band CA scenarios is FFS.
- The connection diagram for inter-band CA in TS 38.508-1[5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1[5] clause [TBD] is FFS.
- MUs for CA is FFS in Annex F

6.5A.3.2.0 Minimum conformance requirements

This clause specifies the requirements for the specified NR carrier aggregation configurations for coexistence with protected bands.

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For inter-band carrier aggregation with the uplink assigned to two NR bands, the requirements in Table 6.5.3.2.3-1apply on each component carrier with both component carriers are active. The minimum conformance requirements are specified in Table 6.5A.3.2.0-1.

NOTE 2: For inter-band carrier aggregation with uplink assigned to two NR bands, the requirements in Table 6.5.3.2.3-1 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.5.3.2.3-1 would be considered to be verified by the measurements verifying the one uplink inter-band CA UE to UE co-existence requirements.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5A.3.2.

Table 6.5A.3.2.0-1: Requirements for uplink inter-band carrier aggregation (two bands)

NR CA	Spurious emission									
Configuration	Protected Band	Frequen	cy ranç	ge (Mhz)	Maximum Level (dBm)	MBW (MHz)	NOTE			
CA_n3A-n78A	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1				
	Frequency range	1884.5	-	1915.7	-41	0.3	3			
	NR Band n257	26500	-	29500	-5	100				
CA_n8A-n78A	E-UTRA Band 1,8, 20, 28, 34, 39, 40,65	F _{DL_low}	-	F _{DL_high}	-50	1				
	E-UTRA Band 3, 7,41	F _{DL_low}	-	F _{DL_high}	-50	1	2			
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	5			
	Frequency range	860	-	890	-40	1	4,5			
	Frequency range	1884.5	-	1915.7	-41	0.3	3			
	NR Band n257	26500	-	29500	-5	100				
İ	NR Band n258	24250	-	27500	-5	100				

NOTE 1: FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x 180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.

NOTE 3: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz

NOTE 4: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 and Table 6.5A.3.1-1 from the edge of the channel bandwidth.

NOTE 5: This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 902.5 MHz ≤ Fc < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 907.5 MHz ≤ Fc ≤ 912.5 MHz without any restriction on uplink transmission bandwidth. - for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart> 3.

6.5A.3.2.1 Spurious emissions for UE co-existence for CA (2UL CA)

6.5A.3.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions for 2UL CA.

6.5A.3.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support 2DL and 2UL CA.

6.5A.3.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.3.2.0.

6.5A.3.2.1.4 Test description

6.5A.3.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.3.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.3.2.1.4.1-1: Inter band CA Test Configuration Table

					I	nitial Condition	ons					
Test Env	ironmen	t as speci	ified in T	S 38.508	-1 [5] subclaus	se 4.1		NC				
Test Frequencies as specified in TS 38.508-1 [5] subclause4.3.1.1.3 for inter band CA in FR1						For test frequencies refer to "Range" columns.						
Test Cha	nnel Ba	ndwidths	as spec	fied in TS	38.508-1 [5] s	subclause 4.3.		Refer colum	to "PCC N _{RE} ns	₃@SCS"a	nd "SCC N _F	B@SCS"
Test SCS	as spe	cified in T	able 5.5	A.3-1				Refer colum	to "PCC N _{RE} ns	@SCS"a	nd "SCC N _F	B@SCS"
					Test Param	eters for CA (Conf	figurat	ions			
			CA Co	nfiguratio	on / N _{RB_agg} (N	ote 4)		Al	DL llocation		UL Alloca 2,3)	tion (Note
ID		CA C	onfigura	ation	PCC N _{RB}	SCC NRB@SCS		CC MOD	PCC & SCC RB allocatio	CC MOD	RB all	CC & SCC
		PCC		scc					၂ ၁	ပ္ပ	(LCRB	② RB _{start})
	Band	Range	Band	Range						0		
				Defa	ult Test Settir	ngs for a CA_			nfiguration			
1	X	Low	Y	Low	Highest N _{RB} @SCS	Highest N _{RB} @SCS		FDM NA		CP- OFDM QPSK	1@0	1@0
2	X	High	Υ	High	Highest N _{RB} @SCS	Highest N _{RB} @SCS	CP- OFI QP:	DM	NA	CP- OFDM QPSK	1@RB _{max}	1@RB _{max}
				Т	est Settings f	or CA_n3A-n7	78A (Config	guration			
1	n3	Mid	n78	Mid	160@15kHz	270@15kHz	2 O	CP- FDM PSK	NA	CP- OFDM QPSK	1@160	1@270
2	n3	Mid	n78	Mid	78@30KHz	273@30KHz	2 O Q	CP- FDM PSK	NA	CP- OFDM QPSK	1@78	1@273
3	n3	Mid	n78	Mid	38@60KHz	135@60KHz	<u>z</u> 0	CP- FDM PSK	NA	CP- OFDM QPSK	1@38	1@135
				Т	est Settings f	or CA_n8A-n7	78A (Config	guration			
1	n8	Mid	n78	Mid	106@15kHz	270@15kHz	<u> </u>	CP- FDM PSK	NA	CP- OFDM QPSK	1@0	1@0
2	n8	Mid	n78	Mid	106@15kHz	270@15kHz	2 O	CP- FDM PSK	NA	CP- OFDM QPSK	1@106	1@270
3	n8	Low	n78	Low	51@30KHz	273@30KHz	z O Q	CP- FDM PSK	NA	CP- OFDM QPSK	1@51	1@273
4	n8	Mid	n78	Mid	51@30KHz	273@30KHz	z 0	CP- FDM PSK	NA	CP- OFDM QPSK	1@51	1@273

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.3.2.1.4.3.

6.5A.3.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, and Annex C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.3.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.3.2.1.4.1-1 on both PCC and SCC. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 6. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5A.3.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5A.3.2.1.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements. The measured average power of spurious emission, derived in step 6, shall not exceed the described value in Table 6.5A.3.2.1.5-1.

Table 6.5A.3.2.1.5-1: Requirements for uplink inter-band carrier aggregation (two bands)

NR CA	Spurious emission									
Configuration	Protected Band	Frequen	Frequency range (Mhz) Maximum Level (dBm)				NOTE			
CA_n3A-n78A	E-UTRA Band 3, 34, 39	F _{DL_low}	-	F _{DL_high}	-50+TT	1				
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3			
CA_n8A-n78A	E-UTRA Band 8, 20, 28, 34, 39, 40	F _{DL_low}	-	F _{DL_high}	-50+TT	1				
	E-UTRA Band 3, 7,41	F _{DL_low}	-	F _{DL_high}	-50+TT	1	2			
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50+TT	1	5			
	Frequency range	860	-	890	-40+TT	1	4,5			
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3			

NOTE 1: FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101
NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x 180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.

NOTE 3: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz

NOTE 4: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 and Table 6.5A.3.1-1 from the edge of the channel bandwidth.

NOTE 5: This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 902.5 MHz ≤ Fc < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 907.5 MHz ≤ Fc ≤ 912.5 MHz without any restriction on uplink transmission bandwidth. - for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart> 3.

Table 6.5A.3.2.1.5-2: Test Tolerance for uplink inter-band carrier aggregation (two bands)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0	0
40MHz < BW ≤ 100MHz	0	0

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.2.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.2.3-1 apply for all transmitter band configurations (NRB) and channel bandwidths for all CC combinations.

6.5A.4 Transmit intermodulation for CA

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The connection diagram for inter-band CA in TS 38.508-1 [5] Annex A is FFS.
- Procedure to configure SCC in TS 38.508-1 [5] clause [TBD] is FFS.
- Extending the coverage of the TCs with intra-band CA scenarios is FFS
- MUs and TTs for CA is FFS in Annex F.

6.5A.4.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit intermodulation requirement is specified in Table 6.5.4-1 which shall apply on each component carrier with both component carriers active.

6.5A.4.1 Transmit intermodulation for CA (2UL CA)

6.5A.4.1.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5A.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2DL and 2UL CA.

6.5A.4.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.4.0.

6.5A.4.1.4 Test description

6.5A.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A	4.1.4.1-1:	Inter-band C	A Test Co	onfiguration	Table

		Initial Conditions					
Test Environ [5] subclau	onment as specified in TS 38.508-1 use 4.1	Normal					
	uencies as specified in TS 38.508-1 use4.3.1.1.3 for inter band CA in FR1	Mid range for PCC and SCC					
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest for both PCC and SCC Highest for both PCC and SCC					
Test SCS	as specified in Table 5.5A.3-1	Smallest and biggest supported SCS per Channel Bandwidth					
		Test Parameters					
Test ID	Downlink Configuration	Uplink Configuration					
		Modulation(NOTE 3)	RB allocation (NOTE 1)				
			PCC	SCC			
1 ³	N/A	DFT-s-OFDM PI/2 BPSK	Inner Full	Inner Full			
2		DFT-s-OFDM QPSK	Inner Full	Inner Full			
NOTE 1:	The specific configuration of each RB	allocation is defined in Table (6.1-1.	•			

- blicable channel bandwidths and SCS are specified in Table 5.5A3-1
- DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.4.1.4.3.

6.5A.4.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.4.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 1 for C RNTI to schedule the UL RMC according to Table 6.5A.4.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands on PCC and SCC to the UE until the UE transmits at its P_{UMAX} level; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX}
- 6. Measure the rectangular filtered mean power of the UE. For TDD slots with transient periods are not under test for the wanted signal and for the intermodulation product.
- 7. Set the interference signal frequency below the UL carrier frequency of the PCC using the first offset in Table 6.5A.4.1.5-1.
- 8. Set the interference CW signal level according to Table 6.5A.4.1.5-1.

- 9. Search the intermodulation product signals below and above the UL carrier frequency of the PCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 10. Set the interference signal frequency above the UL carrier frequency of the PCC using the first offset in Table 6.5A.4.1.5-1.
- 11. Search the intermodulation product signals below and above the UL carrier frequency of the PCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 12. Set the interference signal frequency below the UL carrier frequency of the SCC using the first offset in Table 6.5A.4.1.5-1.
- 13. Search the intermodulation product signals below and above the UL carrier frequency of the SCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 14. Set the interference signal frequency above the UL carrier frequency of the SCC using the first offset in Table 6.5A.4.1.5-1.
- 15. Search the intermodulation product signals below and above the UL carrier frequency of the SCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 16. Repeat the measurement using the second offset in Table 6.5A.4.1.5-1.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5A.4.1.5 Test requirement

The ratio derived in steps9, 11, 13 and 15, shall not exceed the described value in Table 6.5A.4.1.5-1.

Table 6.5A.4.1.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW _{Channel}			
Interference signal frequency offset from channel centre	BWChannel	2*BWchannel		
Interference CW signal level	-40)dBc		
Intermodulation product	<-29dBc+TT	< -35dBc+TT		
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs for the channel BW as defined in Table 6.5.2.2.3-1			
Measurement offset from channel centre	BW _{Channel} and 2*BW _{Channel}	2*BW _{Channel} and 4*BW _{Channel}		

Table6.5A.4.1.5-2: Test Tolerance for Transmit Intermodulation

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.5C Output RF spectrum emissions for SUL

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly

6.5C.1 Occupied bandwidth for SUL

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS
- Test Configuration Table is FFS

6.5C.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE supporting SUL are less than their specific limits when UE is configured using SUL transmission.

6.5C.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3

6.5C.1.4 Test description

Same test description as specified in clause 6.5.1.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.1.4.1-1 → use Table 6.5C.1.4-1

Table 6.5C.1.4.1-1: Test Configuration Table

Initial Conditions								
Test Environment as specified in TS			Normal, TL/VL, TL/VH, TH/VL, TH/VH					
38.508-1 [5] subclause 4.1								
Test Frequencies as specified in TS			FFS					
38.508-1 [5] subclause 4.3.1								
Test Cha	Test Channel Bandwidths as specified in			FFS				
TS 38.508-1 [5] subclause 4.3.1								
Test SCS	Test SCS as specified in Table 5.3.5-1							
	Test Parameters for Channel Bandwidths							
	Downlink UL Configuration SUL Configuration							
	Configuration							
Test ID	N/A for Configured UE			Modulation	RB			
	transmitted Output				allocation			
1	Power test case		NA	FFS	FFS			
2		NA		FFS	FFS			
Note 1: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel bandwidths are specified in Table 5.5C-1.								

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.1.5 Test requirement

The measured Occupied Bandwidth on SUL carrier shall not exceed values in Table 6.5C.1.5-1.

Table 6.5C.1.5-1: Occupied channel bandwidth

			Occupied channel bandwidth / NR Channel bandwidth									
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	80	90	100

6.5C.2 Out of band emission for SUL

6.5C.2.1 General

Void

6.5C.2.2 Spectrum Emission Mask for SUL

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}) the spurious requirements in subclause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Configuration table is FFS
- The clause in reference to the total transmission power is TBD.

6.5C.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5C.2.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.2.3 Minimum conformance requirements

Same minimum conformance requirements as in the clause 6.5.2.2.3.

6.5C.2.2.4 Test description

Same test description as specified in clause 6.5.2.2 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.2.2.4.1-1 → use Table 6.5C.2.2.4.1-1

Table 6.5C.2.2.4.1-1: Test Configuration Table(FFS)

	Initial Conditions						
Test Environment as specified in TS			Normal, TL	/VL, TL/VH, TH/VL, TH/VH			
38.508-1	[5] subclause 4.1						
Test Fred	quencies as specified in TS	;	FFS				
38.508-1	[5] subclause 4.3.1						
Test Cha	innel Bandwidths as specifi	ied in	FFS				
TS 38.508-1 [5] subclause 4.3.1							
Test SCS as specified in Table 5.3.5-1			FFS				
	Test Pa	ramete	ers for Chan	nel Bandwidths			
	Downlink		UL	SUL Configu	ration		
	Configuration	Con	figuration				
Test ID	N/A for Configured UE			Modulation	RB allocation		
1	1 transmitted Output		NA	FFS	FFS		
2	Power test case		NA	FFS	FFS		
Note 1:	Note 1: Test Channel Bandwidths are checked separately for each SUL band combination, the						
	applicable channel bandwidths are specified in Table 5.5C-1.						

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.2.2.5 Test requirement

The measured sum of the UE mean power in the channel bandwidth on the SUL carrier, derived in step 3, shall fulfil requirements in Tables [6.2C.1.5-1 or 6.2C.2.5-1] as appropriate, and the power of any UE emission shall fulfil requirements in Table 6.5C.2.2.5-1.

Table 6.5C.2.2.5-1: NR General spectrum emission mask

Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measuremen bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1	-15	-18	-20	-21	-22 +	-23 +	-24 +	-24	-24 +	-24 +	-24 +	-24	30 kHz
± 1-5	+ TT	+ TT -10	+ TT	+ TT	-10 +	-10 +	-10 +	+ TT -10	-10 +	-10 +	-10 +	+ TT -10	
± 5-6	+ TT -13	+ TT	+ TT	+ TT	TT	TT	TT	+ TT	TT	TT	TT	+ TT	
± 6-10	+ TT -25 + TT	-13 + TT	-13 + TT	-13									
± 10-15	+ 11	-25 + TT	+11	+ TT	-13 + TT	-13 +							
± 15-20			-25 + TT			TT	-13 +						
± 20-25				-25 + TT			TT	-13					
± 25-30					-25 + TT			+ TT	-13 + TT				
± 30-35						-25 + TT				-13 + TT	-13 +		
± 35-40											TT	40	
± 40-45							-25 + TT					-13 + TT	1 MHz
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-90										-25 + TT			
± 90-95											-25 + TT		
± 95-100	†										<u> </u>		

Note 1: The first and last measurement position with a 30 kHz filter is at ΔfOOB equals to 0.015 MHz and 0.985 MHz.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5C.2.3 Additional spectrum emission mask for SUL

Editor's note: The following aspects are either missing or not yet determined:

- Configuration table is TBD and NS_XXS apply to SUL Bands is FFS.
- Parameters setting for Cell setup in 38.508 subclause is FFS

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Note 4: $TT = 1.5 \text{ dB for } f \le 3 \text{GHz}, TT = 1.8 \text{ dB for } 3 \text{GHz} < f \le 4.2 \text{GHz}, TT = 1.8 \text{ dB for } 4.2 \text{GHz} < f \le 6.0 \text{GHz}.$

- SA Generic procedures with condition NR in TS 38.508-1 [5] is FFS.
- Message contents in reference to clause 6.2C.3.4.3 is TBD
- Test point analysis in reference to clause 6.2C.3 is TBD
- Test procedure is incomplete, the clause in reference to the total transmission power is TBD.
- Test requirements is incomplete.

6.5C.2.3.1 Test purpose

Same test purpose as in clause 6.5.2.3.1

6.5C.2.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.3.3 Minimum conformance requirements

Same minimum conformance requirements as in the clause 6.5.2.3.3 with consideration of the NS_XXs applicable to the SUL bands.

6.5C.2.3.4 Test description

Same test description as specified in clause 6.5.2.3.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, additionally the following exceptions shown in Table 6.2C.1.4-2 ~ Table 6.2C.1.4-4 are considered.

[FFS]

6.5C.2.3.4.3 Message contents

The same message contents as in Clause 6.2C.3.4.3

6.5C.2.3.5 Test requirement

[FFS for NS_XXs]

6.5C.2.4 Adjacent channel leakage ratio for SUL

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5C.2.4.1 NR ACLR for SUL

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- PC1 and PC4 requirements are missing in TS 38.101-1 [2].
- Test point analysis is FFS
- The clause 6.2C.2.5 in reference to the total transmission power is TBD

6.5C.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5C.2.4.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.4.1.3 Minimum conformance requirements

The minimum conformance requirements specified in Clause 6.5.2.4.1.3 applies to the UE that support SUL operating on the SUL bands.

The normative reference for this requirement is TS 38.101-] clauses 6.5.2.4.1.

6.5C.2.4.1.4 Test description

Same test description as specified in clause 6.5.2.4.1.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.2.4.1.4.1-1 \rightarrow use Table 6.5C.2.4.1.4-1

Table 6.5C.2.4.1.4-1: Test Configuration Table

	Initial Conditions						
Test Env	ironment as specified in TS	3	Normal, TL/V	L, TL/VH, TH/VL, TH/VH			
38.508-1	[5] subclause 4.1						
Test Free	quencies as specified in TS	3	Mid range for	both SUL carrier and Non-	SUL carrier		
38.508-1	[5] subclause 4.3.1		_				
Test Cha	nnel Bandwidths as specif	ied in	Lowest, Mid,	Highest for both SUL carrie	r and Non-SUL		
TS 38.50	TS 38.508-1 [5] subclause 4.3.1			carrier			
Test SCS as specified in Table 5.3.5-1 15kHz for both			th SUL carrier and Non-SUI	_ carrier			
	Test Pa	ramete	ers for Channe	el Bandwidths			
	Downlink	UL C	onfiguration	SUL Configura	ation		
	Configuration						
Test ID	N/A for Configured UE			Modulation	RB		
	transmitted Output				allocation		
1 Power test case NA FFS			FFS	FFS			
2	2 NA FFS FFS						
Note 1:	Test Channel Bandwidth	s are cl	hecked separa	tely for each SUL band com	nbination, the		
	applicable channel bandwidths are specified in Table 5.5C-1.						

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth on SUL carrier, derived in step 3, shall fulfil requirements in [Clause 6.2C.2.5] as appropriate, and if the measured adjacent channel power is greater than –50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5C.2.4.1.5-1.

Table 6.5C.2.4.1.5-1: NR ACLR measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5 10 15 20 25 30 40 50 60 80 90 100											
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR	NR ACLR											
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5C.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3				
NR ACLR		31 + TT dB	30 + TT dB				
NOTE 1: TT =	NOTE 1: TT = 0.8 dB for $f \le 4.0$ GHz, TT = 1.0 dB for 4.0 GHz $< f \le 6.0$ GHz,						

6.5C.2.4.2 UTRA ACLR for SUL

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS
- Test point analysis is FFS
- The requirement is incomplete: No specified requirements for the UEs of PC other than PC3, the additionalSpectrumEmission. is unspecified in the core requirement.
- The clause 6.2C.3.5 in reference to the total transmission power is TBD
- The clause 6.5.2.4.2.3 in reference to the minimum requirements is TBD.

6.5C.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5C.2.4.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.4.2.3 Minimum conformance requirements

The minimum conformance requirements specified in Clause [6.5.2.4.2.3] the UE that support SUL operating on the SUL bands.

The normative reference for this requirement is TS 38.101-] clause 6.5.2.4.2.

6.5C.2.4.2.4 Test description

Same test description as specified in clause 6.5.2.4.2.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table $6.5.2.4.2.4.1-1 \rightarrow$ use Table 6.5C.2.4.2.4-1

Table 6.5C.2.4.2.4-1: Test Configuration Table(FFS)

	Initial Conditions						
	Test Environment as specified in TS			L, TL/VH, TH/VL, TH/VH			
	38.508-1 [5] subclause 4.1						
	quencies as specified in TS	3	FFS				
38.508-1	[5] subclause 4.3.1						
Test Cha	Test Channel Bandwidths as specified in						
TS 38.50	TS 38.508-1 [5] subclause 4.3.1						
Test SCS as specified in Table 5.3.5-1 FFS							
	Test Pa	ramete	ers for Channe	el Bandwidths			
	Downlink	UL C	onfiguration	SUL Configurat	tion		
	Configuration						
Test ID	N/A for Configured UE			Modulation	RB		
	transmitted Output				allocation		
1	1 Power test case			FFS	FFS		
2	2 NA FFS FFS						
Note 1:	Note 1: Test Channel Bandwidths are checked separately for each SUL band combination, the						
	applicable channel bandwidths are specified in Table 5.5C-1.						

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, together with the exceptions as specified in Table 6.5C.2.4.2.4-2

Table 6.5C.2.4.2.4-2: SystemInformationBlockType2: UTRA ACLR test requirement for "NS_XX"

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	XX (NS_XX)		

6.5C.2.4.2.5 Test requirement

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

The measured UE mean total power in the channel bandwidth on SUL carrier, derived in step 3, shall fulfil requirements in [Clause 6.2C.3.5] as appropriate, and if the measured adjacent channel power is greater than –50 dBm then the measured UTRA ACLR, derived in step 6, shall be higher than the limits in Table 6.5C.2.4.2.5-1.

Table 6.5C.2.4.2.5-1: NR ACLR requirement

	Power class 3				
UTRA _{ACLR1}	33 dB + TT				
UTRA _{ACLR2}	36 dB + TT				
NOTE 1: TT = 0.8 d	NOTE 1: TT = 0.8 dB for $f \le 4.0$ GHz, TT = 1.0 dB for				
4.0GHz <	< f ≤ 6.0GHz,				

6.5C.3 Spurious emissions for SUL

6.5C.3.1 General spurious emissions for SUL

Editor's Note:

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- The clause 6.2C.2.5 in reference to the total transmission power is TBD

- Parameters setting for Cell setup in 38.508 subclause is FFS.
- The configuration needs FFS to incorporate into the Edge allocation.

6.5C.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5C.3.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.3.1.3 Minimum conformance requirements

The general spurious emission requirement specified in clause 6.5.3.1.3 applies to the UE that support SUL operating on the SUL bands.

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5.3.1

6.5C.3.1.4 Test description

Same test description as specified in clause 6.5.3.1.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table $6.5.3.1.4.1-1 \rightarrow$ use Table 6.5C.3.1.4-1

Table 6.5C.3.1.4-1: Test Configuration Table

	Initial Conditions						
Test Environment as specified in TS			Normal, TL/V	L, TL/VH, TH/VL, TH/V	′H		
38.508-1	[5] subclause 4.1						
Test Free	quencies as specified in T	ΓS	Low range, M	/lid range, High range			
38.508-1	[5] subclause 4.3.1						
Test Cha	annel Bandwidths as spec	ified in	Lowest, Mid,	Highest			
TS 38.50	TS 38.508-1 [5] subclause 4.3.1						
Test SCS	Test SCS as specified in Table 5.3.5-1			est			
	Test F	Paramete	ers for Chann	el Bandwidths			
	Downlink	UL Co	nfiguration	SUL Confi	guration		
	Configuration						
Test ID	N/A for Configured			Modulation	RB allocation		
1	UE transmitted	CP-O	FDM QPSK	Outer_Full	CP-OFDM QPSK		
2	Output Power test	CP-O	FDM QPSK	Outer_1RB_Left	CP-OFDM QPSK		
3	case	CP-O	FDM QPSK	Outer_1RB_Right	CP-OFDM QPSK		
Note 1:	Note 1: Test Channel Bandwidths are checked separately for each SUL band combination, the						
	applicable channel bandwidths are specified in Table 5.5C-1.						

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.
- Instead of Table 6.5C.3.1.5-1 \rightarrow use Table 6.5C.3.1.5-1

6.5C.3.1.5 Test requirement

The measured average power of spurious emission on the SUL carrier, derived in step 3, shall not exceed the described value in Table 6.5C.3.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than $\Delta fOOB$ (MHz) in Table 6.5C.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5C.3.1.5-1: General spurious emissions test requirements

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

6.5C.3.2 Spurious emission for UE co-existence for SUL

Editor's note

- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- Initial conditions is incomplete.
- The configuration needs FFS to incorporate into the Edge allocation.
- Parameters setting for Cell setup in 38.508 subclause is FFS.

6.5C.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5C.3.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.3.2.3 Minimum conformance requirements

The requirements for NR bands for coexistence with protected bands specified in subclause 6.5.3.2.3 apply to the UE that support SUL operating on the SUL bands

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.2.

6.5C.3.2.4 Test description

Same test description as specified in clause 6.5.3.2.4 with following exceptions:

- Instead of table 5.3.5-1 → use Table 5.5C-1
- Instead of table 6.5.3.2.4.1-1 → use Table 6.5C.3.2.4-1

Table	6.5C.3.2.4-	1: Test	Configur	ation	Table

	Initial Conditions						
	nment as specified in TS	Normal					
38.508-1 [5] subclause 4.1.							
Test Freque	encies as specified in TS	Low range, Mid range, High range					
38.508-1 [5]	subclause 4.3.1.						
Test Chann	el Bandwidths as specified in	Lowest, Mid, Highest					
TS 38.508-1 [5] subclause 4.3.1.							
Test SCS as	s specified in Table 5.3.5-1	Lowest supported SCS per test channel BW,					
		Highest supported SCS per test channel	BW				
		Test Parameters					
Test ID	Downlink Configuration	Uplink Configura	ation				
		Modulation	RB allocation (NOTE 1)				
1	1 N/A for Spurious Emissions CP-OFDM QPSK Outer_Full						
2	testing	CP-OFDM QPSK Outer_1RB_Left					
3	3 CP-OFDM QPSK Outer_1RB_Right						
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.							

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.3.2.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as specified in clause 6.5.3.2.3-1.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.2.3-1.

6.5C.3.3 Additional spurious emissions for SUL

- Initial condition for NS value is incomplete. TP analysis is pending.
- SA message contents in TS 38.508-1[5] subclause 4.6 is FFS.
- Initial conditions is incomplete: incomplete test configuration
- The test requirement is TBD
- The clause in reference to message contents is TBD.
- The configuration needs FFS to incorporate into the Edge allocation.
- Parameters setting for Cell setup in 38.508 subclause is FFS.

6.5C.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5C.3.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.3.3.3 Minimum conformance requirements

The additional spurious emission requirements specified in 6.5.3.3.3 apply to the UE operating on SUL bands.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.3.3

6.5C.3.3.4 Test description

Same test description as specified in clause 6.5.3.2.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.3.3.4.1-1 → use Table 6.5C.3.3.4-1

Table 6.5C.3.3.4-1: Test Configuration Table

	Initial (Conditions			
Test Enviror	nment as specified in TS 38.508-1 [5]	Normal			
subclause 4	.1				
Test Freque	encies as specified in TS 38.508-1 [5]		[TBD]		
subclause 4	.3.1				
Test Channe	el Bandwidths as specified in TS 38.508-1		[TBD]		
[5] subclaus	e 4.3.1				
Test SCS as	s specified in Table 5.3.5-1	[TBD]			
	Test P	arameters			
Test ID	Downlink Configuration	Uplink Configuration			
		Modulation	RB allocation (NOTE 1)		
1	N/A for Spurious Emissions testing	FFS	FFS		
2	TW/Tior openious Emissions testing	FFS FFS			
3		FFS	FFS		
NOTE 1: T	he specific configuration of each RB allocate	tion is defined in Table 6.1-1	Common UL configuration		

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Instead of table 6.5.3.3.5.1-1 → use Table 6.5C.3.3.5-1
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, together with the exceptions as specified in Clause [6.2C.3.4.3]

6.5C.3.3.5 Test requirement

The measured power on SUL carrier derived in step 4 shall meet the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated in Table 6.5C.3.3.5-1.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5C.3.3.5-1: Additional spurious emissions test requirements

[FFS]

6.5C.4 Transmit intermodulation for SUL

Editor's Note:

- SA message contents in TS 38.508-1 [5] subclause 4.6 is FFS
- How to deal with TDD slots with transient periods is FFS
- Initial conditions is incomplete: Test configuration table is incomplete
- Parameters setting for Cell setup in 38.508 subclause is FFS.

6.5C.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5C.4.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.4.3 Minimum conformance requirements

The requirements in subclause 6.5.4 apply to the UE operating on SUL bands

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.4.

6.5C.4.4 Test description

Same test description as specified in clause 6.2.4.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table $6.5.4.4.1-1 \rightarrow$ use Table 6.5C.4.4-1

Table 6.5C.4.4-1: Test Configuration Table

		Initial Conditions						
Test Environme	ent as specified in TS 38.508-1	Normal						
[5] subclause 4	.1							
Test Frequenci	es as specified in TS 38.508-1	FFS						
[5] subclause 4								
Test Channel E	Sandwidths as specified in TS	FFS						
38.508-1 [5] su	bclause 4.3.1							
Test SCS as sp	pecified in Table 5.3.5-1	Lowest, Highest						
		Test Parameters						
Test ID	Downlink Configuration	Uplink Conf	iguration					
	N/A for transmit	Modulation	RB allocation (NOTE 1)					
1	intermodulation test case	FFS	FFS					
2	intermodulation test case	FFS	FFS					
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Instead of table 6.5.4.5-1 → use Table 6.5C.4.5-1
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5C.4.5-1.

Table 6.5C.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW _{Channel}					
Interference signal frequency offset from channel centre	BWChannel	2*BW _{Channel}				
Interference CW signal level	-40dBc					
Intermodulation product	< -29dBc	< -35dBc				
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs for the channel BW as defined in Table 6.5.2.2.3-1					
Measurement offset from channel centre	BW _{Channel} and 2*BW _{Channel}	2*BWChannel and 4*BWChannel				

6.5D Output RF spectrum emissions for UL-MIMO

6.5D.1 Occupied bandwidth for UL-MIMO

6.5D.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE supporting UL-MIMO are less than their specific limits when UE is configured using UL-MIMO transmission.

6.5D.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support UL MIMO.

6.5D.1.3 Minimum conformance requirements

For UE supporting UL-MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in table 6.5.1.3-1. The requirements shall be met with UL-MIMO configurations described in sub-clause 6.2D.1.3.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.1.3 apply

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.1.

6.5D.1.4 Test description

6.5D.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5D.1.4.1-1: Test Configuration Table

	li li	nitial Conditions		
Test Environment subclause	onment as specified in TS 38.508-1 [5] 4.1	Normal		
Test Freque subclause	encies as specified in TS 38.508-1 [5] 4.3.1	Mid range by default, exce	ptions listed in Table 6.5D.1.4.1-2	
	nel Bandwidths as specified in TS 5] subclause 4.3.1	All		
Test SCS a	as specified in Table 5.3.5-1	Lowest SCS		
	7	Test Parameters		
Test ID	Downlink Configuration	Uplin	k Configuration	
	N/A for occupied bandwidth test	Modulation	RB allocation (NOTE 1)	
1	case	CP-OFDM QPSK	Outer_full	
NOTE 1:	The specific configuration of each RB a	Illocation is defined in Table (3.1-1.	

Table 6.5D.1.4.1-2: Test frequency exceptions for Occupied Bandwidth

5G NR Band	Test Frequency
n77	Low Range, Mid Range, High Range
n78	Low Range, Mid Range, High Range
n79	Low Range, Mid Range, High Range

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.1.4.3

6.5D.1.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the power spectrum distribution within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4. Calculate the total power within the range of all frequencies measured in step 3 and save this value as "Total power".
- 5. Sum up the power upward from the lower boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Lower Frequency".

- 6. Sum up the power downward from the upper boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Upper Frequency".
- 7. Calculate the difference "Upper Frequency" "Lower Frequency" = "Occupied Bandwidth" between the two limit frequencies obtained in step 5 and step 6.
- 8. Repeat step 3 until step 7 for each of transmit antenna of the UE.

6.5D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO

6.5D.1.5 Test requirement

The measured Occupied Bandwidth in step 6 for each antenna shall not exceed values in Table 6.5D.1.5-1.

Occupied channel bandwidth / NR Channel bandwidth 5 10 15 20 25 30 50 60 80 90 100 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz Channel bandwidth 5 10 15 20 25 30 40 50 60 80 90 100 (MHz) Note 1: TT = 0

Table 6.5D.1.5-1: Occupied channel bandwidth

6.5D.2 Out of band emission for UL-MIMO

6.5D.2.1 General

For UE supporting UL-MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.5.2 apply to each transmit antenna connector. The requirements shall be met with UL-MIMO configurations described in sub-clause 6.2D.1.3

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.2 apply.

6.5D.2.2 Spectrum Emission Mask for UL-MIMO

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}) the spurious requirements in subclause 6.5D.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5D.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5D.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL-MIMO.

6.5D.2.2.3 Minimum conformance requirements

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3-1 for the specified channel bandwidth at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.2 and 6.5.2.2

6.5D.2.2.4 Test description

6.5D.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5D.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5D.2.2.4.1-1: Test Configuration Table

	Default Conditions									
	nvironme	nt as spec	ified in TS	Normal						
	ause 4.1									
		es as spec	ified in TS	38.508-1 [5]	Low range, High ra	ange				
	ause 4.3.1									
	Channel B			ed in TS	Lowest, Highest					
	8-1 [5] sub									
Test S	SCS as sp	ecified in ⁻	Table 5.3.	5-1	Lowest and Highes	st				
		•			nnel Bandwidths					
Test	Freq	ChBw	SCS	Downlink	Uplink (Configuration				
ID				Configuration						
		Default	Default	N/A for	Modulation	RB allocation (NOTE				
				Spectrum		1)				
1	Low			Emission	CP-OFDM	Outer_1RB_Left				
				Mask test case	QPSK					
2	High				CP-OFDM	Outer_1RB_Right				
					QPSK					
3	Default				CP-OFDM	Outer_Full				
					QPSK					
4	Low				CP-OFDM 16	Outer_1RB_Left				
					QAM	0 1 100 0111				
5	High				CP-OFDM 16	Outer_1RB_Right				
	5 ()				QAM	0.4 5 "				
6	Default				CP-OFDM 16	Outer_Full				
					QAM	E 488 "				
7	Low				CP-OFDM 64	Edge_1RB_Left				
	1101-				QAM	Edua ADD Diabt				
8	High				CP-OFDM 64 QAM	Edge_1RB_Right				
9	Default				CP-OFDM 64	Outer_Full				
9	Delault					Outer_Full				
10	Low				QAM CP-OFDM 256	Edge_1RB_Left				
10	LOW				QAM	Euge_IRD_Lett				
11	High				CP-OFDM 256	Edge_1RB_Right				
''	riigii				QAM	Luge_IND_Night				
12	Default				CP-OFDM 256	Outer_Full				
'-	Delault				QAM	Outel_Full				
NOTE	1 The c	necific co	nfiguration	n of each RF alloc		1 2hla 6 1-1				
INOIL	NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.									

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.2.2.4.1-1.

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.2.4.3

6.5D.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.2.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2D.2.5-1 or 6.2D.2.5-2 as appropriate. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to table 6.5D.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.5D.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

6.5D.2.2.5 Test requirement

The measured sum of the UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2D.2.5-1 or 6.2D.2.5-2 as appropriate, and the power of any UE emission measured at each antenna in step 4 shall fulfil requirements in Table 6.5D.2.2.5-1.

Table 6.5D.2.2.5-1: NR General spectrum emission mask

	Spectrum emission limit (dBm) / Channel bandwidth												
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1	-15 + TT	-18 + TT	-20 + TT	-21 + TT	-22 + TT	-23 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	30 kHz
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13		711	711	11	- 11	11	711	11	11	11	711	
± 6-10	+ TT -25 + TT	-13 + TT	-13 + TT	-13									
± 10-15	711	-25 + TT	7 ' '	+ TT	-13 + TT	-13 +							
± 15-20		711	-25 + TT		''	TT	-13 +						
± 20-25				-25 + TT			TT	-13 + TT					
± 25-30					-25 + TT				-13 + TT	-13 +			
± 30-35						-25 + TT				TT	-13 + TT		
± 35-40							1					-13	1 MHz
± 40-45							-25 + TT					+ TT	
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-90										-25 + TT			
± 90-95											-25 + TT		
± 95-100													
100-105	_							_				-25 + TT	

Note 1: The first and last measurement position with a 30 kHz filter is at ΔfOOB equals to 0.015 MHz and 0.985 MHz.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5D.2.3 Additional spectrum emission mask for UL-MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The pointer to A-MPR UL-MIMO measurements is TBD
- There are FFS for NS-XXs:
- Test points analysis is TBD

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Note 4: TT = 1.5 dB for $f \le 3GHz$, TT = 1.8 dB for $3GHz < f \le 4.2GHz$, TT = 1.8 dB for $4.2GHz < f \le 6.0GHz$.

- Test configuration table is TBD.

6.5D.2.3.1 Test purpose

To verify that the power of any UE emission at each transmit antenna shall not exceed specified lever for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5D.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL-MIMO.

6.5D.2.3.3 Minimum conformance requirements

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3-1 for the specified channel bandwidth at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.2 and 6.5.2.3

6.5D.2.3.4 Test description

6.5D.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5D.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5D.2.3.4.1-1: Test Configuration Table for NS_35

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Tables 6.5D.2.3.4.1-1 as appropriate for NS_35.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.3.4.3

6.5D.2.3.4.2 Test procedure

Same test procedure as defined in clause 6.5D.2.2.4.2 with the following exceptions:

- Instead of Table 6.2D.2.5-1, [Table 6.2D.3.5-1] as approriate for NS_35 is applied in step 3;
- Intead of Table 6.5D.2.2.5-1, [6.5D.2.3.5-1] as approriate for the corresponding NS_35 is applied in step 4;

6.5D.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and exceptions listed in clause [6.2D.3.4.3]

6.5D.2.3.5 Test requirement

The measured sum of the UE mean power in the channel bandwidth, derived in step 3 shall fulfil the requirements as specified in Table [6.2D.2.3.5-1] as approriate for the corresponding NS_35, and the power of any UE emission measured at each antenna in step 4 shall fulfil requirements in Table 6.5D.2.3.5-1.

Table 6.5D.2.3.5-1: Additional requirements for "NS_35"

Spec	trum emis	sion limit	(dBm) / C	Channel b	andwidth
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth (unless otherwise stated)
± 0-0.1	-15 + TT	-18 + TT	-20 + TT	-21 + TT	30 kHz
± 0.1-6	-13 + TT	-13 + TT	-13 + TT	-13 + TT	100 kHz
± 6-10	-25 ¹ + TT	-13 + TT	-13 + TT	-13 + TT	100 kHz
± 10-15		-25 ¹ + TT	-13 + TT	-13 + TT	100 kHz
± 15-20			-25 ¹ + TT	-13 + TT	100 kHz
± 20-25				-25 + TT	1 MHz

NOTE 1: The measurement bandwidth shall be 1 MHz;

NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.5D.2.3.5-2

Table 6.5D.2.3.5-2: Test Tolerance (Spectrum Emission Mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5D.2.4 Adjacent channel leakage ratio for UL-MIMO

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5D.2.4.1 NR ACLR for UL-MIMO

6.5D.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5D.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL-MIMO.

6.5D.2.4.1.3 Minimum conformance requirements

The minimum conformance requirements specified in Clause 6.5.2.4.1.3 applies to each antenna connector of the UE.

The normative reference for this requirement is TS 38.101-] clauses and 6.5D.2 and 6.5.2.4.1.

6.5D.2.4.1.4 Test description

6.5D.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.2.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5D.2.4.1.4.1-1: Test Configuration Table

	Default Conditions								
Test Environment as specified in TS 38.508-1 [5] subclause 4.1					NC, TL/VL, TL/VH, TH/	VL, TH/VH			
Test F	requencie	s as spec	ified in TS	38.508-1 [5]	Low range, High range				
	ause 4.3.1								
	Channel Ba			ed in TS	Lowest, Highest				
	8-1 [5] sub								
Test S	SCS as sp	ecified in ⁻			Lowest and Highest				
					annel Bandwidths				
Test	Freq	ChBw	SCS	Downlink	Uplink Con	figuration			
ID				Configuration					
		Default	Default	N/A for	Modulation (NOTE	RB allocation			
				Adjacent	2)	(NOTE 1)			
1	Default			Channel	CP-OFDM QPSK	Inner_Full			
2	Low			Leakage Ratio	CP-OFDM QPSK	Edge_1RB_Left			
3	High			test case	CP-OFDM QPSK	Edge_1RB_Right			
4	Default				CP-OFDM QPSK	Outer_Full			
5	Default				CP-OFDM 16 QAM	Inner_Full			
6	Low				CP-OFDM 16 QAM	Edge_1RB_Left			
7	High				CP-OFDM 16 QAM	Edge_1RB_Right			
8	Default				CP-OFDM 16 QAM	Outer_Full			
9	Low				CP-OFDM 64 QAM	Edge_1RB_Left			
10	High				CP-OFDM 64 QAM	Edge_1RB_Right			
11	Default				CP-OFDM 64 QAM	Outer_Full			
12	Low				CP-OFDM 256 QAM	Edge_1RB_Left			
13	High				CP-OFDM 256 QAM	Edge_1RB_Right			
14	Default				CP-OFDM 256 QAM	Outer_Full			
NOTE	1: The s	pecific co	nfiguration	n of each RF alloc	ation is defined in Table	6.1-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.2.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.4.1.4.3

6.5.2.4.1.4.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5D.2.4.1.4.1-1. Since the UL has no payload and no loopback

data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2

- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at each antenna connector in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in clauses 6.2D.2.5 and [6.2D.3.5] as appropriate. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the rectangular filtered mean power for the assigned NR channel at each antenna connector of UE.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel at each antenna connector of UE on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR at each antenna connector of UE, respectively.

6.5D.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

6.5D.2.4.1.5 Test requirement

The measured UE mean total power in the channel bandwidth at all the antenna connectors, derived in step 3, shall fulfil requirements in Clause 6.2D.2.5 and [6.2D.3.5] as appropriate, and if the measured adjacent channel power is greater than –50 dBm then the measured NR ACLR, derived in step 6 for each antenna connector, shall be higher than the limits in Table 6.5D.2.4.1.5-2.

Table 6.5D.2.4.1.5-1: NR ACLR measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5 10 15 20 25 30 40 50 60 80 90 100								100			
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5D.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3
NR ACLR		31 + TT dB	30 + TT dB
NOTE 1: TT	T = 0.8 dB		

6.5D.2.4.2 UTRA ACLR for UL-MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test point analysis is FFS
- The clause 6.2D.3.5 in reference to the total transmission power is TBD

6.5D.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5D.2.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL-MIMO.

6.5D.2.4.2.3 Minimum conformance requirements

The minimum conformance requirements specified in Clause 6.5.2.4.2.3 applies to each antenna connector of the UE.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.2 and 6.5.2.4.2.

6.5D.2.4.2.4 Test description

6.5D.2.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.2.4.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5D.2.4.2.4.1-1: Test Configuration Table

[FFS]

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.2.4.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.4.2.4.3

6.5D.2.4.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5D.2.4.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at each antenna connector in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in clause [6.2D.3.5] as appropriate. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the rectangular filtered mean power for the assigned NR channel at each antenna connector of UE.
- 5. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel at each antenna connector of UE on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratio of the power between the values measured in step 4 over step 5 for UTRA_{ACLR1}, UTRA_{ACLR2} for both lower an upper side of the assigned NR channel, respectively.

6.5D.2.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and Table 4.6.3-118 with condition CP-OFDM and with the exception specified in Table 6.5D.2.4.2.4.3 - 1

Table 6.5D.2.4.2.4.3-1: SystemInformationBlockType2: UTRA ACLR test requirement for "NS XX"

Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1	NS_100 for band	
·		n1, n2, n3, n5, n8,	
		n20, n25, n66,	
		n80, n81, n82,	
		n84 NOTE1	
	3	NS_03U for n2,	
		n25, n66	
		NS_05U for n1,	
		n84	
		NS_08U for n8,	
		n81	

6.5D.2.4.2.5 Test requirement

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field additional Spectrum Emission.

The measured UE mean total power in the channel bandwidth at all the antenna connectors, derived in step 3, shall fulfil requirements in [Clause 6.2D.3.5] as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured UTRA ACLR, derived in step 6 for each antenna connector, shall be higher than the limits in Table 6.5D.2.4.2.5-1.

Table 6.5D.2.4.2.5-1: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB + TT
UTRA _{ACLR2}	36 dB + TT
NOTE 1: TT = 0.8 d	В

Spurious emissions for UL-MIMO 6.5D.3

For UE supporting UL-MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements specified in subclause 6.5.3 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1.3.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.3

6.5D.3.1 General spurious emissions for UL-MIMO

6.5D.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5D.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.5D.3.1.3 Minimum conformance requirements

The general spurious emission requirement specified in clause 6.5.3.1.3 applies to each antenna connector of the UE.

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5D.3 and 6.5.3.1

6.5D.3.1.4 Test description

6.5D.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5D.3.1.4.1-1: Test Configuration Table

Initial Conditions									
Test Enviror	nment as specified in TS	Normal							
38.508-1 [5] subclause 4.1.									
Test Freque	encies as specified in TS	Low range, Mid range, High range							
38.508-1 [5]	subclause 4.3.1.								
Test Channe	el Bandwidths as specified in	Lowest, Mid, Highest							
TS 38.508-1 [5] subclause 4.3.1.									
Test SCS as	s specified in Table 5.3.5-1	Lowest, Highest							
		Test Parameters							
Test ID	Downlink Configuration	Uplink Configura	ation						
		Modulation	RB allocation (NOTE 1)						
1	N/A for Spurious Emissions	CP-OFDM QPSK	OuterFull						
2	testing	CP-OFDM QPSK	Edge_1RB_Left						
3 CP-OFDM QPSK Edge_1RB_Right									
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration									

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex [A, Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.3.1.4.3.

6.5D.3.1.4.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5D.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.

- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to table 6.5D.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5D.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5D.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO

6.5D.3.1.5 Test requirement

The measured average power of spurious emission at each antenna connector, derived in step 3, shall not exceed the described value in Table 6.5D.3.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than $\Delta fOOB$ (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5D.3.1.5-1: General spurious emissions test requirements

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz

6.5D.3.2 Spurious emission for UE co-existence for UL-MIMO

6.5D.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5D.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.5D.3.2.3 Minimum conformance requirements

The requirements for NR bands for coexistence with protected bands specified in subclause 6.5.3.2.3 apply to each UE transmit antenna connector

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5.3.2 and 6.5D.3.

6.5D.3.2.4 Test description

6.5D.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5D.3.2.4.1-1: Test Configuration Table

Initial Conditions									
	nment as specified in TS subclause 4.1.	Normal							
	encies as specified in TS subclause 4.3.1.	Low range, Mid range, High range							
	el Bandwidths as specified in [5] subclause 4.3.1.	Lowest, Mid, Highest							
Test SCS as	s specified in Table 5.3.5-1	Lowest supported SCS per test channel BW,							
		Highest supported SCS per test channel BW							
		Test Parameters							
Test ID	Downlink Configuration	Uplink Configu	ration						
		Modulation	RB allocation (NOTE 1)						
1	N/A for Spurious Emissions	CP-OFDM QPSK	Outer_Full						
2	testing CP-OFDM QPSK Edge_1RB_Left CP-OFDM QPSK Edge_1RB_Right								
3									
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.									

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3..
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.3.2.4.3.

6.5D.3.2.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal at each UE antenna connector with a measurement filter of bandwidths according to table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5D.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.3.2.5 Test requirement

The measured average power of spurious emission, derived in step 3 at each UE antenna connector, shall not exceed the described value in Table 6.5.3.2.3-1.

6.5D.3.3 Additional spurious emissions for UL-MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The A-MPR test for UL-MIMO is TBD
- There are NS-XXs other than NS_04 FFS:

6.5D.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5D.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.5D.3.3.3 Minimum conformance requirements

The additional spurious emission requirements specified in 6.5.3.3.3 apply to each UE antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.3 and 6.5.3.3

6.5D.3.3.4 Test description

6.5D.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 6.5D.3.3.4.1-1 through Table 6.5D.3.3.4.1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5D.3.3.4.1-1: Test Configuration Table (network signalled value "NS_04")

Initial Conditions										
Test E	Test Environment as specified in TS 38.508-1 [5] subclause 4.1 Normal									
	requencies as specified in TS 38.50			(See Freq column)						
	Channel Bandwidths as specified in 1	e Lowest and Highest								
	SCS as specified in Table 5.3.5-1		Lowest and Highest							
A-MPR test parameters for NS_04										
		Downlink		Uplink Config	juration					
	Configuration									
Test	Freq	N/A for A-MPR		Modulation	RB allocation					
ID		testing.			(NOTE 1)					
1	Low			CP-OFDM QPSK	Edge_1RB_Left					
2	2496 + 3/2 × BW _{Channel} – 6 MHz			CP-OFDM QPSK	Edge_1RB_Left					
3	240C : DW /2 :			CP-OFDM QPSK	Edge_1RB_Left					
4	2496 + BW _{Channel} /2 +			CP-OFDM QPSK	Inner Full					
5	MAX(10 MHz, 0.25 × BW _{Channel})			CP-OFDM QPSK	Outer Full					
6	High			CP-OFDM QPSK	Edge_1RB_Right					
7	High			CP-OFDM QPSK	Inner Full					
8	High			CP-OFDM QPSK	Outer Full					
9	Low			CP-OFDM 16 QAM	Edge_1RB_Left					
10	2496 + 3/2 × BW _{Channel} – 6 MHz			CP-OFDM 16 QAM	Edge_1RB_Left					
11			Edge_1RB_Left							
12	2496 + BW _{Channel} /2 +		(CP-OFDM 16 QAM	Inner Full					
13	MAX(10 MHz, 0.25 × BW _{Channel})	CP-OFDM		CP-OFDM 16 QAM	Outer Full					
14	High			CP-OFDM 16 QAM	Edge_1RB_Right					
15	High			CP-OFDM 16 QAM	Inner Full					
16	High		(CP-OFDM 16 QAM	Outer Full					
17	Low			CP-OFDM 64 QAM	Edge_1RB_Left					
18	2496 + 3/2 × BW _{Channel} – 6 MHz		(CP-OFDM 64 QAM	Edge_1RB_Left					
19	2496 + BW _{Channel} /2 +		(CP-OFDM 64 QAM	Edge_1RB_Left					
20	MAX(10 MHz, 0.25 × BW _{Channel})		(CP-OFDM 64 QAM	Outer Full					
21	High			CP-OFDM 64 QAM	Edge_1RB_Right					
22	High			CP-OFDM 64 QAM	Outer Full					
23	Low			P-OFDM 256 QAM	Edge_1RB_Left					
24	2496 + 3/2 × BW _{Channel} – 6 MHz			P-OFDM 256 QAM	Edge_1RB_Left					
25	2496 + BW _{Channel} /2 +			P-OFDM 256 QAM	Edge_1RB_Left					
26	MAX(10 MHz, 0.25 × BW _{Channel})			P-OFDM 256 QAM	Outer Full					
27	High			P-OFDM 256 QAM	Edge_1RB_Right					
28	High			P-OFDM 256 QAM	Outer Full					
NOTE	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.									

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.3.3.4.1-1 through Table [TBD]
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.3.3.4.3.

6.5D.3.3.4.2 Test procedure

1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.3.4.1-1 as appropriate for NS_04. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2

- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the sum of the mean power at each UE antenna connector in the channel bandwidth of the radio access mode, which shall meet the requirements described in Clauses from 6.2D.2.5, or [6.2D.3.5] as appropriate for NS_04. The period of measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal at each UE antenna connector with a measurement filter of bandwidths according to Tables 6.5.3.3.5.1-1 as appropriate for NS_04. The centre frequency of the filter shall be stepped in contiguous steps according to the same table the measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5D.3.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and same exceptions listed in clause 6.5.3.3.4.3

6.5D.3.3.5 Test requirement

The measured power at each UE antenna connector derived in step 4 shall meet the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated in clause 6.5.3.3.5.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5D.4 Transmit intermodulation for UL-MIMO

6.5D.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5D.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

6.5D.4.3 Minimum conformance requirements

For UE supporting UL-MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements specified in subclause 6.5.4 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.4 apply.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.4 and 6.5.4.

6.5D.4.4 Test description

6.5D.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with

applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5D.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5D.4.4.1-1: Test Configuration Table

Initial Conditions									
Test Environm	ent as specified in TS 38.508-1	Normal							
[5] subclause 4	1.1								
Test Frequenc	ies as specified in TS 38.508-1	Mid range							
[5] subclause 4	1.3.1								
Test Channel I	Bandwidths as specified in TS	Mid, Highest							
38.508-1 [5] su	ıbclause 4.3.1	-							
Test SCS as s	pecified in Table 5.3.5-1	Lowest, Highest							
		Test Parameters							
Test ID	Downlink Configuration	Uplink Configuration							
	N/A for transmit	Modulation	RB allocation (NOTE 1)						
1	intermodulation test case	CP-OFDM QPSK Inner Full							
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.									

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.3.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.4.4.3.

6.5D.4.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power at each antenna connector of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5D.4.5-1.
- 5. Set the interference CW signal level according to table 6.5D.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency at each UE antenna connector, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios for each UE antenna connector with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5D.4.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency at each UE antenna connector, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios for each UE antenna with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5D.4.5-1.
- 10. Repeat step 3) until 9) for each of transmit antenna of the UE.

6.5D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

6.5D.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5D.4.5-1.

Table 6.5D.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW _{Channel}							
Interference signal frequency offset from channel centre	BW _{Channel}	2*BWchannel						
Interference CW signal level	-40dBc							
Intermodulation product	< -29dBc	< -35dBc						
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs the channel BW as defined in Table 5.3.5-1							
Measurement offset from channel centre	BW _{Channel} and 2*BW _{Channel}	2*BWChannel and 4*BWChannel						

7 Receiver characteristics

TRD

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.3.3-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

7.2 Diversity characteristics

The UE is required to be equipped with a minimum of two Rx antenna ports in all operating bands except for the bands n7, n38, n41, n77, n78, n79 where the UE is required to be equipped with a minimum of four Rx antenna ports. This requirement applies when the band is used as a standalone band or as part of a band combination.

For the requirements in Section 7, the UE shall be verified with two Rx antenna ports in all supported frequency bands. Additional requirements for four Rx ports shall be verified in operating bands where the UE is equipped with four Rx antenna ports.

The above rules apply for all subclasses with the exception of subclause 7.9.

7.3 Reference sensitivity

7.3.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

In later subclauses of Section 7 where the value of REFSENS is used as a reference to set the corresponding requirement.

For all bands, the UE shall be verified against those requirements by applying the REFSENS value in Table 7.3.2.3-1 with 2 Rx antenna ports tested.

For bands where the UE is required to be equipped with 4 Rx antenna ports, the UE shall additionally be verified against those requirements by applying the resulting REFSENS value derived from the requirement in Table 7.3.2_1.3-1 with 4 Rx antenna ports tested.

7.3.2 Reference sensitivity power level

Editor's note: For bands with asymmetric CH BWs (defined in clause 5.3.6), the test point analysis requires an to accommodate the test configurations for asymmetric CH BWs.

7.3.2.1 Test purpose

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

7.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward

7.3.2.3 Minimum conformance requirements

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.2.3-1 and Table 7.3.2.3-2.

Table 7.3.2.3-1: Two antenna port reference sensitivity QPSK P_{REFSENS}

							hannel b							
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15	-100.0	-96.8	-95.0	-93.8									
n1	30		-97.1	-95.1	-94.0									FDD
	60		-97.5	-95.4	-94.2									
	15	-98.0	-94.8	-93.0	-91.8									
n2	30		-95.1	-93.1	-92.0									FDD
	60		-95.5	-93.4	-92.2									
	15	-97.0	-93.8	-92.0	-90.8	-89.7	-88.9							
n3	30		-94.1	-92.1	-91.0	-89.8	-89.0							FDD
	60		-94.5	-92.4	-91.2	-90.0	-89.1							
	15	-98.0	-94.8	-93.0	-90.8									
n5	30		-95.1	-93.1	-91.0									FDD
	60													
	15	-98.0	-94.8	-93.0	-91.8									
n7¹	30		-95.1	-93.1	-92.0									FDD
	60		-95.5	-93.4	-92.2									
	15	-97.0	-93.8	-92.0	-90.0									
n8	30		-94.1	-92.1	-90.2									FDD
	60													
	15	-97.0	-93.8	-84.0										
n12	30		-94.1	-84.1										FDD
	60													
	15	-97.0	-93.8	-91.0	-89.8									FDD
n20	30		-94.1	-91.1	-90.0									
	60													
	15	-96.5	-93.3	-91.5	-90.3									
n25	30		-93.6	-91.6	-90.5									FDD
	60		-94.0	-91.9	-90.7									
	15	-98.5	-95.5	-93.5	-90.8									
n28	30		-95.6	-93.6	-91.0									FDD
	60													
	15	-100.0	-96.8	-95.0										
n34	30		-97.1	-95.1										TDD
	60		-97.5	-95.4										
	15	-100.0	-96.8	-95.0	-93.8									
n38 ¹	30		-97.1	-95.1	-94.0									TDD
	60		-97.5	-95.4	-94.2									
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6						
n39	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7						TDD
1100	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9						100
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6					
n40	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7	-88.9	-87.6			TDD
1140	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8	-89.1	-87.6			100
	15		-94.8	-93.0	-91.8	00.0	0=::	-88.6	-87.6		01.10			
n41 ¹	30		-95.1	-93.1	-92.0			-88.7	-87.7	-86.9	-85.6	-85.1	-84.7	TDD
11-7-1	60		-95.5	-93.1	-92.0			-88.9	-87.8	-87.1	-85.6	-85.1	-84.7	100
		-100.0	-95.5 -96.8							-01.1	-00.0	50.1	-04.7	
n50	15 30	-100.0	-96.8 -97.1	-95.0 -95.1	-93.8 -94.0			-90.6 -90.7	-89.6 -89.7	_000	_07.6			TDD
1100	-							-90.7	-89. <i>1</i>	-88.9 -89.1	-87.6 -87.6			טטו
	60	100.0	-97.5	-95.4	-94.2			30.3	03.0	00.1	37.0			
n51	15	-100.0						1						TDD
	30	1	Ì		l		I		I		l		l	

	60												
	15	-99.5	-96.3	-94.5	-93.3		-90.1						
n66	30		-96.6	-94.6	-93.5		-90.2						FDD
	60		-97.0	-94.9	-93.7		-90.4						
	15	-100.0	-96.8	-95.0	-93.8	-92.7							
n70	30		-97.1	-95.1	-94.0	-92.8							FDD
	60		-97.5	-95.4	-94.2	-93.0							
	15	-97.2	-94.0	-91.6	-86.0								
n71	30		-94.3	-91.9	-87.4								FDD
	60	-											
	15	-99.5 ³	-96.3 ³	-94.5 ³	-93.3 ³								FDD
n74	30		-96.6 ³	-94.6 ³	-93.5 ³								
	60		-97.0 ³	-94.9 ³	-93.7 ³								
	15		-95.8	-94.0	-92.7		-89.6	-88.6					
n77(3.3 to 3.8 GHz) ¹	30		-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
3.6 GHZ)	60	-	-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
	15		-95.3	-93.5	-92.2		-89.1	-88.1					
n77¹	30		-95.6	-93.6	-92.4		-89.2	-88.2	-87.4	-86.1	-85.6	-85.1	TDD
	60	-	-96.0	-93.9	-92.6		-89.4	-88.3	-87.5	-86.2	-85.7	-85.2	
	15		-95.8	-94.0	-92.7		-89.6	-88.6					
n78¹	30		-96.1	-94.1	-92.9		-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
	60		-96.5	-94.4	-93.1		-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
	15						-89.6	-88.6					
n79¹	30						-89.7	-88.7	-87.9	-86.6		-85.6	TDD
	60						-89.9	-88.8	-88.0	-86.7		-85.7	ı

NOTE 1: Four Rx antenna ports shall be the baseline for this operating band except for two Rx vehicular UE.

NOTE 2: The transmitter shall be set to Pumax as defined in subclause 6.2.4.

NOTE 3: ³ indicates that the requirement is modified by -0.5 dB when the assigned NR channel bandwidth is confined within 1475.9-1510.9 MHz

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.2.3-1 and Table 7.3.2.3-2 shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3-1.

Table 7.3.2.3-3: Uplink configuration for reference sensitivity

n1			FDD FDD
60 10¹ 18 24 15 25 50¹ 50¹ 50¹ 30 10¹ 24 24¹ 24¹ 60 10¹ 10¹ 10¹ 50¹ 50¹ 15 25 50¹ 50¹ 50¹ 50¹ 13 30 24 24¹ 24¹ 24¹ 24¹ 60 10¹ 10¹ 10¹ 10¹ 10¹ 15 25 25¹ 25¹ 25¹ 25¹ 25¹ 25¹ 25¹ 15 25 50¹ 75¹ 75¹ 15 25 50¹ 75¹ 75¹ 15 25 50¹ 75¹ 75¹ 15 25 50¹ 75¹ 75¹ 15 25 50¹ 18¹ 18¹ 15 25 25¹ 25¹ 25¹			FDD
n2			
n2 30 10¹ 24 24¹ 24¹ 60 10¹ 10¹ 10¹ 10¹ n3 15 25 50¹ 50¹ 50¹ 50¹ 30 24 24¹ 24¹ 24¹ 24¹ 60 10¹ 10¹ 10¹ 10¹ 10¹ n5 30 10¹ 10¹ 10¹ 10¹ 60 10¹ 10¹ 10¹ 10¹ n7 30 24 36¹ 36¹ 60 10¹ 18 18¹ 15 25 25¹ 25¹			
n3 15 25 501 501 501 501 501 n3 30 24 241 241 241 241 60 101 101 101 101 101 n5 30 101 101 101 101 60 101 101 101 101 60 15 25 501 751 751 73 30 24 361 361 60 101 18 181 15 25 251 251 251			
n3			FDD
n3 30 24 24¹ 24¹ 24¹ 24¹ 24¹ 36¹ 30 10¹ 10¹ 10¹ 10¹ 10¹ 10¹ 10¹ 10¹ 10¹ 10			FDD
60 10¹ 10¹ 10¹ 10¹ 10¹ 15 25 25¹ 25¹ 25¹ 30 10¹ 10¹ 10¹ 0 60 15 25 50¹ 75¹ 75¹ 7 30 24 36¹ 36¹ 60 10¹ 18 18¹ 15 25 25¹ 25¹ 25¹			FDD
n5			
n5 30 10 ¹ 10 ¹ 10 ¹ 10 ¹			
60 15 25 50¹ 75¹ 75¹ 17 30 24 36¹ 36¹ 60 10¹ 18 18¹ 15 25 25¹ 25¹ 25¹			FDD
n7		l l	FDD
n7 30 24 36 ¹ 36 ¹		<u> </u>	
60 10 ¹ 18 18 ¹ 15 25 25 ¹ 25 ¹ 25 ¹			
15 25 25 ¹ 25 ¹ 25 ¹			FDD
ne 20 101 101 101			
110 30 10. 10. 10.			FDD
60			
15 20 ¹ 20 ¹ 20 ¹			
n12 30 10 ¹ 10 ¹			FDD
60			
15 25 20 ¹ 20 ² 20 ²			
n20 30 10 ¹ 10 ² 10 ²			FDD
60			
15 25 50 50 ¹ 50 ¹			
n25 30 24 24¹ 24¹			FDD
60 10 10 ¹ 10 ¹			
15 25 25 ¹ 25 ¹ 25 ¹			
n28 30 10 ¹ 10 ¹ 10 ¹			FDD
60			
15 25 50 75			
n34 30 24 36			
60 10 18			
15 25 50 75 100			
n38 30 24 36 50			TDD
60 10 18 24			
15 25 50 75 100 128 160 216			
n39 30 24 36 50 64 75 100			TDD
60 10 18 24 30 36 50			
15 25 50 75 100 128 160 216 270			
n40 30 24 36 50 64 75 100 128 162 216			TDD
60 10 18 24 30 36 50 64 75 100			
15 50 75 100 216 270			
	243	270	TDD
	120	135	- טטט
15 25 50 75 100 216 270		1	
30 24 36 50 100 128 162 NOTE 3			TDD
60 10 18 24 50 64 75 NOTE 3			טטו
15 25			
n51 30			TDD
60		1	

			1		1								
	15	25	50 ¹	75 ¹	100 ¹		216						
n66	30		24	36¹	50 ¹		100 ¹						FDD
	60		10 ¹	18	24								
	15	25	50¹	75¹	NOTE 3	NOTE 3							
n70	30		24	36¹	NOTE 3	NOTE 3							FDD
	60		10 ¹	18	NOTE 3	NOTE 3							
	15	25	25 ¹	20 ¹	20 ¹								
n71	30		12 ¹	10 ¹	10 ¹								FDD
	60												
	15	25	25 ¹	25 ¹	25 ¹								
n74	30		10 ¹	10 ¹	10 ¹								FDD
	60		5 ¹	5 ¹	5 ¹								
	15		50	75	100		216	270					
n77	30		24	36	50		100	128	162	216	243	270	TDD
	60	-	10	18	24		50	64	75	100	120	135	
n77 (3.8	15		50	75	100		216	270					
to 4.2	30		24	38	51		100	128	162	216	243	270	TDD
GHz)	60		10	18	24		50	64	75	100	120	135	
	15		50	75	100		216	270					
n78	30		24	36	50		100	128	162	216	243	270	TDD
	60		10	18	24		50	64	75	100	120	135	
	15						216	270					
n79	30						100	128	162	216		270	TDD
	60						50	64	75	100		135	

NOTE 1: ¹ Refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1).

NOTE 2: ² refers to Band 20; for 15kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16; for 30kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 6 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 8; for 60kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 3 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 4.

NOTE 3: For DL channel bandwidths that do not have symmetric UL channel bandwidth, highest valid UL configuration with lowest duplex distance shall be used.

Unless given by Table 7.3.2.3-4, the minimum requirements specified in Tables 7.3.2.3-1 and 7.3.2.3-2 shall be verified with the network signalling value NS_01 (Table 6.2.3.3-1) configured.

Table 7.3.2.3-4: Network signalling value for reference sensitivity

Operating	Network					
band	Signalling					
	value					
n2	NS_03					
n12	NS_06					
n25	NS_03					
n66	NS_03					
n70	NS_03					
n71	NS_35					

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3.3 for the applicable operating bands.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.3.2.

7.3.2.4 Test description

7.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 The details of the uplink reference measurement channels (RMCs) are specified in Annexe A2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3.2.4.1-1: Test Configuration Table

			Initial Conditions				
Test Enviro	nment as specified	d in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
	encies as specified	d in TS 38.508-1 [5]	Low range, Mid range, High range				
Test Chann	el Bandwidths as	specified in TS	Lowest, Mid, Highest				
	subclause 4.3.1		Lowest UL / Lowest DL , Lowest UL / Highest DL (NOTE 3)				
Test SCS a	s specified in Tabl	le 5.3.5-1	Lowest				
			Test Parameters				
Test ID	Downlink	Configuration	Uplink Configuration				
	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM QPSK	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)			
NOTE 1: F	ull RB allocation s	shall be used per ead	ch SCS and channel BW as specified in T	able 7.3.2.4.1-2.			
	REFSENS refers to SCS, channel BW		hich defines uplink RB configuration and	start RB location for each			

NOTE 3: According to asymmetric channel bandwidths specified in clause 5.3.6.

Table 7.3.2.4.1-2: Downlink Configuration of each RB allocation

5MHz	15 30 60	25 11	25@0
5MHz	60	11	44.00
			11@0
	4.5	N/A	N/A
	15	52	52@0
10MHz	30	24	24@0
	60	11	11@0
	15	79	79@0
15MHz	30	38	38@0
	60	18	18@0
	15	106	106@0
20MHz	30	51	51@0
	60	24	24@0
	15	133	133@0
25MHz	30	65	65@0
	60	31	31@0
	15	160	160@0
30MHz	30	78	78@0
	60	38	38@0
	15	216	216@0
40MHz	30	106	106@0
	60	51	51@0
	15	270	270@0
50MHz	30	133	133@0
	60	65	65@0
	15	N/A	N/A
60MHz	30	162	162@0
	60	79	79@0
	15	N/A	N/A
80MHz	30	217	217@0
	60	107	107@0
	15	N/A	N/A
90MHz	30	245	245@0
	60	121	121@0
	15	N/A	N/A
100MHz	30	273	273@0
	60	135	135@0

NOTE 1: Test Channel Bandwidths are checked separately for each NR band, the applicable channel bandwidths are specified in Table 5.3.5-1.

Table 7.3.2.4.1-3: Uplink configuration for reference sensitivity, LCRB @ Restart format

Operating Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Duplex Mode
Dallu	15	25@0	50@0 ¹	75@0 ¹	100@0 ¹	IVITIZ		IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	Wiode
n1	30	20@0	24@0	36@0 ¹	50@0¹									FDD
	60		10@0¹	18@0	24@0									
	15	25@0	50@0¹	50@25 ¹	50@50 ¹									
n2	30	10@0¹	24@0	24@12 ¹	24@26 ¹									FDD
	60		10@0¹	10@8¹	10@14 ¹									
	15	25@0	50@0¹	50@25 ¹	50@50 ¹	50@78 ¹	50@110 ¹							
n3	30		24@0	24@12 ¹	24@26 ¹	24@40 ¹	24@51 ¹							FDD
	60		10@0¹	10@8¹	10@14 ¹	10@20 ¹	10@26 ¹							
	15	25@0	25@25¹	25@50 ¹	25@75 ¹									
n5	30		10@14 ¹	10@26 ¹	10@40 ¹									FDD
	60													
	15	25@0	50@0¹	75@0¹	75@25 ¹									
n7	30		24@0	36@0¹	36@14 ¹									FDD
	60		10@0¹	18@0	18@8¹									
	15	25@0	25@25 ¹	25@50 ¹	25@75 ¹									
n8	30		10@14 ¹	10@26 ¹	10@40 ¹									FDD
	60													
	15	20@5 ¹	20@30¹	20@55 ¹										
n12	30		10@14 ¹	10@26 ¹										
	60													
	15	25@0	20@0¹	20@11 ²	20@16 ²									
n20	30		10@0¹	10@6²	10@8²									FDD
	60													
	15	25@0	50@0	50@25 ¹	50@50 ¹									
n25	30		24@0	24@12 ¹	24@26¹									FDD
	60		10@0	10@8¹	10@14 ¹									
	15	25@0	25@25 ¹	25@50 ¹	25@75 ¹									
n28	30		10@14 ¹	10@26¹	10@40 ¹									FDD
	60													
	15	25@0	50@0	75@0										
n34	30		24@0	36@0										TDD
	60		10@0	18@0										

	15	25@0	50@0	75@0	100@0									
n38	30		24@0	36@0	50@0									TDD
	60		10@0	18@0	24@0									
	15	25@0	50@0	75@0	100@0	128@0	160@0	216@0						
n39	30		24@0	36@0¹	50@0	64@0	75@0	100@0						TDD
	60		10@0	18@0	24@0	30@0	36@0	50@0						
	15	25@0	50@0	75@0	100@0	128@0	160@0	216@0	270@0					
n40	30		24@0	36@0	50@0	64@0	75@0	100@0	128@0	162@0	216@0			TDD
	60		10@0	18@0	24@0	30@0	36@0	50@0	64@0	75@0	100@0			
	15		50@0	75@0	100@0			216@0	270@0					
n41	30		24@0	36@0	50@0			100@0	128@0	162@0	216@0	243@0	270@0	TDD
	60		10@0	18@0	24@0			50@0	64@0	75@0	100@0	120@0	135@0	
	15	25@0	50@0	75@0	100@0¹			216@0	270@0					
n50	30		24@0	36@0	50@0			100@0	128@0	162@0	NOTE 3			TDD
	60		10@0	18@0	24@0			50@0	64@0	75@0	NOTE 3			
	15	25@0									-			
n51	30													TDD
	60													
	15	25@0	50@0¹	75@0¹	100 ¹			216@0						
n66	30		24@0	36@0¹	50@0¹			100@0¹						FDD
	60		10@0¹	18@0	24@0			50@0¹						
	15	25@0	50@0¹	75@0¹	NOTE 3	NOTE 3								
n70	30		24@0	36@0¹	NOTE 3	NOTE 3								FDD
	60		10@0¹	18@0	NOTE 3	NOTE 3								
	15	25@0	25@0¹	20@0¹	20@0¹	-								
n71	30		12@0¹	10@0¹	10@0¹									FDD
	60													
	15	25@0	25@25¹	25@50¹	25@75¹									
n74	30		10@14 ¹	10@26¹	10@40¹									FDD
	60		5@5 ¹	5@13 ¹	5@19 ¹									רטט
	15		50@0	75@0	100@0			216@0	270@0					
n77	30		24@0	36@0	50@0			100@0	128@0	162@0	216@0	243@0	270@0	TDD
	60	-	10@0	18@0	24@0			50@0	64@0	75@0	100@0	120@0	135@0	

n77 (3.8	15	50@0 ¹	75@0¹	100@0 ¹		216@0	270@0					
to 4.2	30	24@0	36@0	50@0		100@0¹	128@0¹	162@0	216@0¹	243@0¹	270@0¹	TDD
GHz)	60	10@0¹	18@0	24@0		50@0¹	64@0¹	75@0¹	100@0¹	120@0¹	135@0	
	15	50@0	75@0	100@0¹		216@0	270@0					
n78	30	24@0	36@0	50@0		100@0	128@0	162@0	216@0	243@0	270@0	TDD
	60	10@0	18@0	24@0		50@0	64@0	75@0	100@0	120@0	135@0	
	15					216@0	270@0					
n79	30					100@0	128@0	162@0	216@0		270@0	TDD
	60					50@0	64@0	75@0	100@0		135@0	

- NOTE 1: ¹ Refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1).
- NOTE 2: ² refers to Band 20; for 15kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16; for 30kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 6 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 8; for 60kHz SCS, in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 3 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 4.
- NOTE 3: For DL channel bandwidths that do not have symmetric UL channel bandwidth, highest valid UL configuration with lowest duplex distance shall be used.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and Figure A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The UL and Reference Measurement Channel is set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.3.2.4.3.

7.3.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits PUMAX level for at least the duration of the Throughput measurement.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2

7.3.2.4.3 Message contents

Message contents are according to TS 38.508-1[5] subclause 4.6 with the following exceptions.

7.3.2.4.3.1 Message contents exceptions (network signalled value "NS_01")

Message contents according to TS 38.508-1 [5] subclause 4.6 can be used without exceptions.

7.3.2.4.3.2 Message contents exceptions (network signalled value "NS_03")

1. Information element additional Spectrum Emission is set to NS_03. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.2.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 03" and NR band n2, n25 and n66

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1								
Information Element	Value/remark	Comment	Condition					
additionalSpectrumEmission	2 (NS_03)							

Table 7.3.2.4.3.2-2: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_03" and NR band n70

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]									
Information Element	Value/remark	Comment	Condition						
additionalSpectrumEmission	1 (NS_03)								

7.3.2.4.3.3 Message contents exceptions (network signalled value "NS_06")

1. Information element additionalSpectrumEmission is set to NS_06. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.2.4.3.3-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_06" and NR band n12

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1									
Information Element	Value/remark	Comment	Condition							
additionalSpectrumEmission	1 (NS_06)									

7.3.2.4.3.4 Message contents exceptions (network signalled value "NS_35")

1. Information element additional Spectrum Emission is set to NS_35. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.2.4.3.4-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS 35" and NR band n71

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1									
Information Element Value/remark Comment Condition									
additionalSpectrumEmission	1 (NS_35)								

7.3.2.5 Test requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A3.2 with reference receive power level specified in Tables 7.3.2.5-1 and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3.

Table 7.3.2.5-1: Reference sensitivity QPSK PREFSENS

				Operatir	ng band /	SCS/C	hannel b	andwidth	/ Duple	x-mode				
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15	-100.0 +TT	-96.8 +TT	-95.0 +TT	-93.8 +TT									
n1	30		-97.1 +TT	-95.1 +TT	-94.0 +TT									FDD
	60		-97.5 +TT	-95.4 +TT	-94.2 +TT									
	15	-98.0 +TT	-94.8 +TT	-93.0 +TT	-91.8 +TT									
n2	30		-95.1 +TT	-93.1 +TT	-92.0 +TT									FDD
	60		-95.5 +TT	-93.4 +TT	-92.2 +TT									
	15	-97.0 +TT	-93.8 +TT	-92.0 +TT	-90.8 +TT	-89.7 +TT	-88.9 +TT							
n3	30		-94.1 +TT	-92.1 +TT	-91.0 +TT	-89.8 +TT	-89.0 +TT							FDD
	60		-94.5 +TT	-92.4 +TT	-91.2 +TT	-90.0 +TT	-89.1 +TT							
	15	-98.0 +TT	-94.8 +TT	-93.0 +TT	-90.8 +TT									
n5	30		-95.1 +TT	-93.1 +TT	-91.0 +TT									FDD
	60													
n7¹	15	-98.0 +TT	-94.8 +TT	-93.0 +TT	-91.8 +TT									FDD

	30		-95.1	-93.1	-92.0									
	30		+TT	+TT	+TT									
	60		-95.5	-93.4	-92.2									
	00		+TT	+TT	+TT									
	15	-97.0	-93.8	-92.0	-90.0									
		+TT	+TT	+TT	+TT									
n8	30		-94.1	-92.1	-90.2									FDD
			+TT	+TT	+TT									
	60													
	15	-97.0	-93.8	-84.0										
		+TT	+TT	+TT										
n12	30		-94.1	-84.1										FDD
			+TT	+TT										
	60													
	15	-97.0	-93.8	-91.0	-89.8									
	13	+TT	+TT	+TT	+TT									
n20	30		-94.1	-91.1	-90.0									FDD
	30		+TT	+TT	+TT									
	60													
	15	-96.5	-93.3	-91.5	-90.3									
		+TT	+TT	+TT	+TT									
- OF	30		-93.6	-91.6	-90.5									- CDD
n25			+TT	+TT	+TT									FDD
	60		-94.0	-91.9	-90.7									
			+TT	+TT	+TT									
	15	-98.5	-95.5	-93.5	-90.8									
	15	+TT	+TT	+TT	+TT									
n28	30		-95.6	-93.6	-91.0									FDD
	30		+TT	+TT	+TT									
	60													
	15	-100.0	-96.8	-95.0										
		+TT	+TT	+TT										
0.4	30		-97.1	-95.1										
n34			+TT	+TT										TDD
	60		-97.5	-95.4										
			+TT	+TT										
	4.5	-100.0	-96.8	-95.0	-93.8									
	15	+TT	+TT	+TT	+TT									
n38	30		-97.1	-95.1	-94.0									TDD
1130	30		+TT	+TT	+TT									טטו
	60		-97.5	-95.4	-94.2									
			+TT	+TT	+TT									
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6						
		+TT	+TT	+TT	+TT	+TT	+TT	+TT						
n39	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7						TDD
1100			+TT	+TT	+TT	+TT	+TT	+TT						100
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9						
	1		+TT	+TT	+TT	+TT	+TT	+TT						
	15	-100.0	-96.8	-95.0	-93.8	-92.7	-91.9	-90.6	-89.6					
		+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT	60.5	67.5			
n40	30		-97.1	-95.1	-94.0	-92.8	-92.0	-90.7	-89.7	-88.9	-87.6			TDD
-		<u> </u>	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT			_
	60		-97.5	-95.4	-94.2	-93.0	-92.1	-90.9	-89.8	-89.1	-87.6			
	+	<u> </u>	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT		1	
	15		-94.8	-93.0	-91.8			-88.6	-87.6					
	-		+TT -95.1	+TT -93.1	+TT -92.0			+TT -88.7	+TT -87.7	96.0	-85.6	-85.1	-84.7	-
n41 ¹	30			-93.1 +TT	-92.0 +TT				-87.7 +TT	-86.9 TT				TDD
	-	-	+TT -95.5	-93.4	-92.2			+TT -88.9	-87.8	+TT -87.1	+TT	+TT -85.1	+TT -84.7	-
	60		-95.5 +TT	-93.4 +TT	-92.2 +TT			-88.9 +TT	-87.8 +TT	-87.1 +TT	-85.6 +TT	-85.1 +TT	-84.7 +TT	
	+	-100.0	-96.8	-95.0	-93.8			-90.6	-89.6	+11	+11	+11	+11	
	15	-100.0 +TT	-96.8 +TT	-95.0 +TT	-93.8 +TT			-90.6 +TT	-89.6 +TT					
	 	711	-97.1	-95.1	-94.0		1	-90.7	-89.7	-88.9	-87.6	1	1	1
n50	30		-97.1 +TT	+TT	-94.0 +TT			-90.7 +TT	+TT	-00.9 +TT	-67.6 +TT			TDD
	-		-97.5	-95.4	-94.2			-90.9	-89.8	-89.1	-87.6			1
	60		-97.5 +TT	-95.4 +TT	-94.2 +TT			-90.9 +TT	+TT	+TT	+TT			
	1	1			_ '''	l	L					L	i	1

	15	-100.0												
n51	30	+TT												TDD
	60													
	15	-99.5	-96.3	-94.5	-93.3			-90.1						
		+TT	+TT	+TT	+TT			+TT						
n66	30		-96.6	-94.6	-93.5			-90.2						FDD
			+TT -97.0	+TT -94.9	+TT -93.7			+TT -90.4						
	60		-97.0 +TT	-94.9 +TT	-93.7 +TT			-90.4 +TT						
		-100.0	-96.8	-95.0	-93.8	-92.7		T11						
	15	+TT	+TT	+TT	+TT	+TT								
			-97.1	-95.1	-94.0	-92.8								
n70	30		+TT	+TT	+TT	+TT								FDD
			-97.5	-95.4	-94.2	-93.0								
	60		+TT	+TT	+TT	+TT								
	45	-97.2	-94.0	-91.6	-86.0									
	15	+TT	+TT	+TT	+TT									
n71	30		-94.3	-91.9	-87.4									FDD
	30		+TT	+TT	+TT									
	60	-												
	45	-99.5 ³	-96.3 ³	-94.5 ³	-93.3 ³									
	15	+TT	+TT	+TT	+TT									
n74	30		-96.6 ³	-94.6 ³	-93.5 ³									FDD
1174	30		+TT	+TT	+TT									FDD
	60		-97.0 ³	-94.9 ³	-93.7 ³									
	00		+TT	+TT	+TT									
	15		-95.8	-94.0	-92.7			-89.6	-88.6					
			+TT	+TT	+TT			+TT	+TT					
n77(3.3 to	30		-96.1	-94.1	-92.9			-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
3.8 GHz) ¹			+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
	60	-	-96.5	-94.4	-93.1			-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
			+TT	+TT -93.5	+TT -92.2			+TT	+TT -88.1	+TT	+TT	+TT	+TT	
	15		-95.3 +TT	-93.5 +TT	-92.2 +TT			-89.1 +TT	-88.1 +TT					
			-95.6	-93.6	-92.4			-89.2	-88.2	-87.4	-86.1	-85.6	-85.1	
n77¹	30		+TT	+TT	-92.4 +TT			+TT	+TT	+TT	+TT	+TT	+TT	TDD
			-96.0	-93.9	-92.6			-89.4	-88.3	-87.5	-86.2	-85.7	-85.2	
	60	-	+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
			-95.8	-94.0	-92.7			-89.6	-88.6					
	15		+TT	+TT	+TT			+TT	+TT					
701			-96.1	-94.1	-92.9			-89.7	-88.7	-87.9	-86.6	-86.1	-85.6	TDD
n78¹	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	TDD
	60		-96.5	-94.4	-93.1			-89.9	-88.8	-88.0	-86.7	-86.2	-85.7	
	60		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
	15							-89.6	-88.6					
	10							+TT	+TT					
n79¹	30							-89.7	-88.7	-87.9	-86.6		-85.6	TDD
117.5	30							+TT	+TT	+TT	+TT		+TT	100
	60							-89.9	-88.8	-88.0	-86.7		-85.7	
	"	1	1	1			1	+TT	+TT	+TT	+TT	1	+TT	

NOTE 1: Four Rx antenna ports shall be the baseline for this operating band except for two Rx vehicular UE.

NOTE 2: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.4

NOTE 3: ³ indicates that the requirement is modified by -0.5 dB when the assigned NR channel bandwidth is confined within 1475.9-1510.9 MHz.

NOTE 4: TT for each frequency and channel bandwidth is specified in Table 7.3.2.5-2

Table 7.3.2.5-2: Test Tolerance (TT) for RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz
0.7 dB	1.0 dB

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.2.5-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3.3 for the applicable operating bands

7.3.2_1 Reference sensitivity level with 4 Rx antenna ports

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined.

- Connection diagram for 4-Rx port is FFS.
- This test case will merge with clause 7.3.2 reference sensitivity per 38.521-1 WP change. A new CR is required to align with pending WP change.

7.3.2 1.1 Test purpose

To verify the ability of UE that supports 4 Rx antenna ports to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area.

7.3.2_1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that supports 4 Rx antenna ports.

7.3.2_1.3 Minimum conformance requirements

For UE(s) equipped with 4 Rx antenna ports, reference sensitivity for 2Rx antenna ports in Table 7.3.2-1 shall be modified by the amount given in $\Delta R_{IB,4R}$ in Table 7.3.2_1.3-1 for the applicable operating bands.

Table 7.3.2_1.3-1: Four antenna port reference sensitivity allowance ΔR_{IB,4R}

Operating band	ΔR _{IB,4R} (dB)
n1, n2, n3, n7, n34, n38, n39,	-2.7
n40, n41, n66, n70	
n77, n78, n79	-2.2

The minimum conformance requirements are defined in TS 38.101-1 [2] clause 7.3.2.3.

7.3.2 1.4 Test description

7.3.2_1.4.1 Initial conditions

Same as in clause 7.3.2.4.1 with following exceptions:

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [TBD] for TE diagram and Figure [TBD] for UE diagram
- Instead of clause 7.3.2.4.3 for message content \rightarrow use clause 7.3.2_1.4.3.

7.3.2_1.4.2 Test procedure

Same as in clause 7.3.2.4.2.

7.3.2_1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 subclause 4.6 with the following exceptions.

7.3.2_1.4.3.1 Message contents exceptions (network signalled value "NS_01")

Message contents according to TS 38.508-1 [5] subclause 4.6 subclause 4.6 can be used without exceptions.

7.3.2_1.4.3.2 Message contents exceptions (network signalled value "NS_03")

1. Information element additional Spectrum Emission is set to NS_03. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.2.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_03" and NR band n2, n25 and n66

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1							
Information Element Value/remark Comment Condition							
additionalSpectrumEmission	2 (NS_03)						

Table 7.3.2.4.3.2-2: SystemInformationBlockType2: Additional spurious emissions test requirement for "NS_03" and NR band n70

Derivation Path: TS 38.508-1 [5] clause [TBD], Table [TBD]								
Information Element	Value/remark	Comment	Condition					
additionalSpectrumEmission	1 (NS_03)							

7.3.2_1.5 Test requirement

Same as in clause 7.3.2.5 with the following exceptions:

- Instead of Table 7.3.2.5-1 → use Table 7.3.2_1.5-1.

Table 7.3.2_1.5-1: Reference sensitivity QPSK PREFSENS

		T _	1						h / Duple		T	I	T	1
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15	-102.7	-99.5	-97.7	-96.5	,	,	,	,		,	,	,	
	13	+TT	+TT	+TT	+TT									
n1	30		-99.8 +TT	-97.8 +TT	-96.7 +TT									FDD
	60		-100.2 +TT	-98.1 +TT	-96.9 +TT									
		-100.7	-97.5	-95.7	-94.5									
	15	+TT	+TT	+TT	+TT									
n2	30		-97.8	-95.8	-94.7									FDD
			+TT -98.2	+TT -96.1	+TT -94.9									
	60		+TT	+TT	+TT									
	15	-99.7	-96.5	-94.7	-93.5	-92.4	-91.6							
		+TT	+TT	+TT -94.8	+TT -93.7	+TT -92.5	+TT -91.7							
n3	30		-96.8 +TT	-94.6 +TT	-93.7 +TT	-92.5 +TT	-91.7 +TT							FDD
	60		-97.2	-95.1	-93.9	-92.7	-91.8							
	00		+TT	+TT	+TT	+TT	+TT							
	15	-100.7 +TT	-97.5 +TT	-95.7 +TT	-94.5 +TT									
_		T11	-97.8	-95.8	-94.7									
n7	30		+TT	+TT	+TT									FDD
	60		-98.2	-97.1	-94.9									
	15	-102.7	+TT -99.5	+TT -97.7	+TT									
	13	+TT	+TT	+TT										
n34	30		-99.8	-97.8										TDD
110-1	- 00		+TT	+TT										100
	60		-100.2 +TT	-98.1 +TT										
	15	-102.7	-99.5	-97.7	-96.5									
	13	+TT	+TT	+TT	+TT									
n38	30		-99.8 +TT	-97.8 +TT	-96.7 +TT									TDD
			-100.2	-98.1	-96.9									
	60		+TT	+TT	+TT									
	15	-102.7	-99.5	-97.7	-96.5	-95.4	-94.6	-93.3						
	30	+TT	+TT -99.8	+TT -97.8	+TT -96.7	+TT -95.5	+TT -94.7	+TT -93.4						
n39			+TT	+TT	+TT	+TT	+TT	+TT						TDD
	60		-100.2	-98.1	-96.9	-95.7	-94.8	-93.6						
	15	-102.7	+TT -99.5	+TT -97.7	+TT -96.5	+TT -95.4	+TT -94.6	+TT -93.3	-92.3					
	13	+TT	+TT	+TT	+TT	+TT	+TT	+TT	+TT					
n40	30		-99.8	-97.8	-96.7	-95.5	-94.7	-93.4	-92.4	-91.6	-90.3			TDD
1140	- 00		+TT			100								
	60		-100.2 +TT	-98.1 +TT	-96.9 +TT	-95.7 +TT	-94.8 +TT	-93.6 +TT	-92.5 +TT	-91.8 +TT	-90.3 +TT			
	15		-97.5	-95.7	-94.5			-91.3	-90.3					
	13		+TT	+TT	+TT			+TT	+TT					
n41	30		-97.8 +TT	-95.8 +TT	-94.7 +TT			-91.4 +TT	-90.4 +TT	-89.6 +TT	-88.3 +TT	-87.8 +TT	-87.4 +TT	TDD
			-98.2	-96.1	-94.9			-91.6	-90.5	-89.8	-88.3	-87.8	-87.4	
	60		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
	15	-102.2	-99.0	-97.2	-96.0			-92.8						
		+TT	+TT -99.3	+TT -97.3	+TT -96.2			+TT -92.9	-	-				
n66	30		-99.3 +TT	-97.3 +TT	-96.2 +TT			-92.9 +TT						FDD
	60		-99.7	-97.6	-96.4			-93.1						
	00	400.7	+TT	+TT	+TT	05.4		+TT	-					
n70	15	-102.7 +TT	-99.5 +TT	-97.7 +TT	-96.5 +TT	-95.4 +TT								FDD
	l						1	l .	1	1	l .	1	l .	

-	1						1							
	30		-99.8	-97.8	-96.7	-95.5								
	30		+TT	+TT	+TT	+TT								
	60		-100.2	-98.1	-96.9	-95.7								
	00		+TT	+TT	+TT	+TT								
	15		-98.0	-96.2	-94.9			-91.8	-90.8					
	15		+TT	+TT	+TT			+TT	+TT					
n77	30		-98.3	-96.3	-95.1			-91.9	-90.9	-90.1	-88.8	-88.3	-87.8	TDD
n77	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	טטו
	-00		-98.7	-96.6	-95.3			-92.1	-91.0	-90.2	-88.9	-88.4	-87.9	
	60	-	+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
	4.5		-98.0	-96.2	-94.9			-91.8	-90.8					
	15		+TT	+TT	+TT			+TT	+TT					
70	00		-98.3	-96.3	-95.1			-91.9	-90.9	-90.1	-88.8	-88.3	-87.8	TDD
n78	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	TDD
	60		-98.7	-96.6	-95.3			-92.1	-91.0	-90.2	-88.9	-88.4	-87.9	
	60		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT	
								-91.8	-90.8					
·- 70								+TT	+TT					TDD
n79								-91.9	-90.9	-90.1	-88.8		-87.8	TDD
								+TT	+TT	+TT	+TT		+TT	

NOTE 1: Four Rx antenna ports shall be the baseline for above listed operating band except for two Rx vehicular UE

NOTE 2: TT for each frequency and channel bandwidth is specified in Table 7.3.2_1.5-2

Table 7.3.2_1.5-2: Test Tolerance (TT) for RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz
0.7 dB	1.0 dB

7.3.3 \triangle RIB,c

Editor's note: ΔRIB,c is pending RAN4 update.

7.3A Reference sensitivity for CA

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Minimum requirement for Reference sensitivity power level for Intra-band non-contiguous CA is FFS (pending RAN4).
- Test procedure is not complete
- Message contents is not complete
- Test requirement table is incomplete.
- Reference sensitivity power level for 3DL CA is FFS.
- Tests for network signalling values NS_03, NS_04, NS_06, NS_40, NS_41 and NS_42 not complete.
- Test description for exceptional cases are incomplete.

7.3A.0 Minimum conformance requirements

7.3A.0.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3A.0.2 Reference sensitivity power level for CA

7.3A.0.2.1 Reference sensitivity power level for Intra-band contiguous CA

For intra-band contiguous carrier aggregation, the throughput of each component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with peak reference sensitivity specified in Table 7.3.2.3-1.

7.3A.0.2.2 Reference sensitivity power level for Intra-band non-contiguous CA

FFS

7.3A.0.2.3 Reference sensitivity power level for Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal) with parameters specified in Table 7.3.2.3-1, Table 7.3.2.3-2 and Table 7.3.2.3-3 modified in accordance with sub-clause 7.3A.0.3. The reference sensitivity is defined to be met with all downlink component carriers active and one of the uplink carriers active. Exceptions to reference sensitivity are allowed in accordance with sub-clauses s 7.3A.0.4 and 7.3A.0.5.

7.3A.0.3 \triangle RIB,c for CA

7.3A.0.3.1 General

For a UE supporting a CA configuration, the $\Delta R_{IB,c}$ applies for both SC and CA operation.

7.3A.0.3.2 ΔRIB,c for Inter-band CA

For the UE which supports inter-band carrier aggregation, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given by $\Delta R_{IB,c}$ defined in subclause 7.3A.0.3.2.1 and subclause 7.3A.0.3.2.2 for the applicable operating bands. Unless otherwise stated, $\Delta R_{IB,c}$ is set to zero.

7.3A.0.3.2.1 $\Delta R_{IB,c}$ for two bands

Table 7.3A.0.3.2.1-1: $\Delta R_{IB,c}$ due to CA (two bands)

Inter-band CA configuration	NR Band	ΔR _{IB,c} (dB)
CA n3-n77	n3	0.2
CA_113-1177	n77	0.5
CA n3A-n78A	n3	0.2
CA_II3A-II76A	n78	0.5
CA_n3-n79	n79	0.5
CA 20A 270A	n8	0.2
CA n8A-n78A	n78	0.5
CA_n8-n79	n79	0.5
CA n28-n75	n28	0.2
CA n28A-n78A	n28	0.2
CA_IIZOA-II/OA	n78	0.5
CA_n41A-n78A ¹	n78	0.5
CA_n75A-n78A	n78	0.5
CA n76A-n78A	n78	0.5

NOTE 1: The requirements only apply when the sub-frame and Tx-Rx timings are synchronized between the component carriers. In the absence of synchronization, the requirements are not within scope of these specifications.

7.3A.0.3.2.2 \triangle RIB,c for three bands

Table 7.3A.0.3.2.2-1: ΔR_{IB,c} due to CA (three bands)

FFS

Inter-band CA configuration	NR Band	ΔR _{IB,c} (dB)

7.3A.0.4 Reference sensitivity exceptions due to UL harmonic interference for CA

Sensitivity degradation is allowed for a band in frequency range 1 if it is impacted by UL harmonic interference from another band in frequency range 1 of the same CA configuration. Reference sensitivity exceptions are specified in Table 7.3A.0.4-1 with uplink configuration specified in Table 7.3A.0.4-2.

Table 7.3A.0.4-1: Reference sensitivity exceptions due to UL harmonic for NR CA FR1

			М	SD due	to harm	onic exc	eption f	or the D	L band				
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
" 2	n77 ^{1,2}		23.9	22.1	20.9			17.9	16.9	16.1			
n3	n77 ³		1.1	0.8	0.3								
n3	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.9	16.1			
	n78 ³		1.1	0.8	0.3								
n8	n78 ^{4,5}		10.8	9.1	8.0			5.1	4.2	3.5	2.3		1.4
n8	n78 ^{1,2}		10.8	9.1	8			3.5	2.3	1.4			
n8	n79 ^{1,2}							[6.8]	6.2	[5.6]	4.9		4.4
n28	n75 ^{1,2}	28.1	25.3	24.0	22.8								
1120	n78 ^{1,2}		[10.4]	[8.9]	[7.8]			[4.7]	[3.7]	[3]	[1.7]	[1.2]	[0.7]

NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.

NOTE 2: The requirements should be verified for UL NR-ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.2 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.

NOTE 3: The requirements are only applicable to channel bandwidths with a carrier frequency at $\frac{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)}{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)} \text{ MHz offset from } 2f_{UL}^{LB} \text{ in the victim (higher band) with }$ $F_{UL_low}^{LB} + BW_{Channel}^{LB} \ / \ 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} \ / \ 2}, \text{ where } \frac{BW_{Channel}^{LB}}{BW_{Channel}^{LB}} \text{ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.}$

NOTE 4: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a high band.

Table 7.3A.0.4-2: Uplink configuration for reference sensitivity exceptions due to UL harmonic interference for NR CA, FR1

				NR Ban	d / Char	nel ban	dwidth o	of the hi	gh band				
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
n3	n77		26	39	53			106	133	160			
n3	n78		26	39	53			106	133	160		25	
n8	n78		16	25	25			25	25	25	25	25	25
n8	n79							25	25	25	25		25
n28	n75	12	25	36	50								
n28	n78	5	10	15	20								
NOTE:	15kHz	SCS is	assume	d for UL	band.	•	•						

For unsynchronized operation, Rx de-sensing in one band will be caused by another band due to lack of isolation in the band filters. Reference sensitivity exceptions for cross band are specified in Table 7.3A.0.4-3 with uplink configuration specified in Table 7.3A.0.4-4.

Table 7.3A.0.4-3: MSD for the CA configuration for asynchronous operation and cross band isolation for CA

	Channel bandwidth														
NR CA NR 5 10 15 20 40 50 60 80 90 100 Duplex Configuration band MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz															
CA_n41A-n78A	n41		90.3	- 88.5	- 87.3	- 84.1	- 83.1					TDD			

Table 7.3A.0.4-4: Uplink configuration for reference sensitivity exceptions due to cross band isolation for CA

	NR Band / Channel bandwidth of the high band														
UL band															
n78	n41	30	N/A	273	273	273	N/A	N/A	273	273	273	273	273	273	

Table 7.3A.0.4-5: Reference sensitivity exceptions due to harmonic mixing for CA in NR FR1

UL band	DL band	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)
n41	n78¹	N/A	8.3	8.0	6.9	N/A	3.9	3	2.3	1.2		0.4
n78	n41 ²	N/A	10.4	10.4	10.4	N/A	7.2	6.2	5.5	4.5		4.5

NOTE 2: The requirements should be verified for UL EARFCN of the aggressor (high) band (superscript HB) such that $f_{UL}^{LB} = \left\lfloor 15 * f_{DL}^{HB} \right\rfloor 0.1_{\text{in MHz and}} F_{UL_low}^{HB} + BW_{Channel}^{HB} / 2 \le f_{UL}^{HB} \le f_{UL_high}^{HB} - BW_{Channel}^{HB} / 2$ with f_{DL}^{LB} carrier frequency in the victim (lower) band in MHz and $F_{Channel}^{HB}$ the channel bandwidth configured in the higher hand

Table 7.3A.0.4-6: Uplink configuration for reference sensitivity exceptions due to receiver harmonic mixing for CA in NR FR1

UL band	DL band	SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
n41	n78	30	N/A	24	24	24	N/A	24	24	24	24	24	24
n78	n41	30	N/A	50	50	50	N/A	50	50	50	50	50	50

7.3A.0.5 Reference sensitivity exceptions due to intermodulation interference due to 2UL CA

For inter-band carrier aggregation with uplink assigned to two NR bands given in Table 7.3A.0.5-1 the reference sensitivity is defined only for the specific uplink and downlink test points specified in Table 7.3A.0.5-1. For these test points the reference sensitivity requirement specified in Table 7.3.2.3-1 and Table 7.3.2.3-2 are relaxed by the amount of the corresponding parameter MSD given in Table 7.3A.0.5-1.

Table 7.3A.0.5-1: 2DL/2UL interband Reference sensitivity QPSK P_{REFSENS} and uplink/downlink configurations

	Band / C	hannel ban	dwidth / N _R	B / Duplex n	node			Source of IMD
NR CA Configuration	NR band	UL F _c (MHz)	UL/DL BW (MHz)	UL C _{LRB}	DL F _c (MHz)	MSD (dB)	Duplex mode	
CA_n3A-n78A	n3	1740	5	25	1835	[26] [28.7 ⁵]	FDD	IMD2 ⁴
	n78	3575	10	25	3575	N/A	TDD	N/A
CA_n3A-n78A	n3	1765	5	25	1860	[8.0] [10.7 ⁵]	FDD	IMD4 ⁴
	n78	3435	10	25	3435	N/A	TDD	N/A
CA n8A-n78A	n8	897.5	5	25	942.5	8.3	FDD	IMD4
CA_IIOA-II/OA	n78	3635	10	52	3635	N/A	TDD	N/A

NOTE 1: Both of the transmitters shall be set min(+20 dBm, PcMAX Lf.c) as defined in subclause 6.2A.4

NOTE 2: RB_{START} = 0, 15kHz SCS is assumed.

NOTE 3: No requirements apply when there is at least one individual RE within the intermodulation generated by the dual uplink is within the downlink transmission bandwidth of the FDD band. The reference sensitivity should only be verified when this is not the case (the requirements specified in clause 7.3 apply).

NOTE4: This band is subject to IMD5 also which MSD is not specified.

NOTE 5: Applicable only if operation with 4 antenna ports is supported in the band with carrier aggregation configured.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.3.A.

7.3A.1 Reference sensitivity power level for 2DL CA

7.3A.1.1 Test purpose

To verify the ability of UE that support CA to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area

7.3A.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support NR 2DL CA

7.3A.1.3 Minimum requirements

The minimum conformance requirements are defined in clause 7.3A2.0.

7.3A.1.4 Test description

7.3A.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.2-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table TBD. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3A.1.4.1-1: Test Configuration Table

FFS

7.3A.1.4.2 Test procedure

FFS

7.3A.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.3A.1.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3A.1.5-1 and Table 7.3A.1.5-2.

Table 7.3A.1.5-1: Reference sensitivity for intra-band 2DL_CA

FFS

Table 7.3A.1.5-2: Intra-band 2DL_CA uplink configuration for reference sensitivity

FFS

7.3A.2 Reference sensitivity power level for 3DL CA

FFS

7.3A.3 Reference sensitivity power level for 4DL CA

FFS

7.3A.4 Reference sensitivity power level for 5DL CA

FFS

- 7.3B Reference sensitivity for DC
- 7.3C Reference sensitivity for SUL

7.3C.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3C.2 Reference sensitivity power level for SUL

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test point analysis and selection are FFS.
- Initial condition is FFS
- Test configuration for exceptional test points is FFS

7.3C.2.1 Test purpose

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under SUL operation and conditions of low signal level, ideal propagation and no added noise.

7.3C.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports SUL operation on the SUL bands.

7.3C.2.3 Minimum conformance requirements

For SUL operation, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3.2.3-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3-1 or supplementary uplink transmission bandwidth less than or equal to that specified in Table 7.3C.2.3-1 with uplink transmission using QPSK DFT-s-OFDM waveforms.

Table 7.3C.2.3-1: Supplementary Uplink configuration for reference sensitivity

Do	wnlink ba	nd/ Upli	nk ban	d / Cha	nnel ba	ndwidth	/ N _{RB}	
Downlink band	Uplink band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz
n78	n80	15	25	50	75	100	128	160
n78	n81	15	25	50	75	100		
n78	n82	15	25	50	75	100		
n78	n83	15	25	50	75	100		
n78	n84	15	25	50	75	100		
n78	n86	15	25	50	75	100		
n79	n80	15	25	50	75	100		
n79	n81	15	25	50	75	100		

For the UE that supports any of the SUL operation given in Table 7.3C.2.3-2, exceptions to the requirements specified in Table 7.3.2.3-1 are allowed when the uplink is active in a lower frequency band and is within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3C.2.3-2. For these exceptions, the UE shall meet the requirements specified in Table 7.3C.2.3.-2 and Supplementary Uplink configuration (exceptions due to harmonic issue given in Table 7.3C.2.3.-3.

Table 7.3C.2.3-2: Reference sensitivity for SUL operation (exceptions due to harmonic issue)

			N	IR Band	/ Chanr	nel band	lwidth o	f the hig	h band				
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
		dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
n80	n78 ^{1,2}		23.9	22.1	20.9			17.9					
	n78³		1.1	0.8	0.3								
n82	n78 ^{4,5}		10.8	9.1	8			6					
n81	n78 ^{1,2}		10.8	9.1	8			5.1	4.2	3.5	2.3		1.4
n81	n78 ^{6,7}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
n86	n78 ^{1,2}		23.9	22.1	20.9			17.9					
1100	n78³		1.1	0.8	0.3								
n81	n79 ^{6,7}							[6.8]	6.2	[5.6]	4.9		4.4

- NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 2: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.2 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $\frac{BW_{Channel}^{LB}}{BW_{Channel}^{LB}}$ the channel bandwidth configured in the lower band.
- NOTE 3: The requirements are only applicable to channel bandwidths with a carrier frequency at $\frac{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)}{\pm \left(20 + BW_{Channel}^{HB} \ / \ 2\right)} \text{ MHz offset from } \frac{2f_{UL}^{LB}}{\text{in the victim (higher band) with}}$ in the victim (higher band) with $F_{UL_low}^{LB} + BW_{Channel}^{LB} \ / \ 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} \ / \ 2$, where $\frac{BW_{Channel}^{LB}}{\text{and BW}_{Channel}^{HB}} \text{ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.}$
- NOTE 4: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 5: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} / 0.4 \right \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{HB} carrier frequency in the victim (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.
- NOTE 7: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band

Table 7.3C.2.3-3: Supplementary Uplink configuration (exceptions due to harmonic issue)

				NR Ban	d / Chann	el bandv	vidth of t	he high b	and				
UL band	DL band	5 MHz (N _{RB})	10 MHz (N _{RB})	15 MHz (N _{RB})	20 MHz (N _{RB})	25 MHz (N _{RB})	30 MHz (N _{RB})	40 MHz (N _{RB})	50 MHz (N _{RB})	60 MHz (N _{RB})	80 MHz (N _{RB})	90 MHz (N _{RB})	100 MHz (N _{RB})
n80	n78		25	36	50			100					
n81	n78		16	25	25			25	25	25	25	25	25
n81	n79							25	25	25	25	25	25
n83	n78		10	15	20			25	25	25	25	25	25
n86	n78		26	39	53			100					

NOTE 1: 15kHz SCS is assumed for UL band.

NOTE 2: The UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.2.3-3 for the uplink bandwidth in which case the allocation according to Table 7.3.2.3-3 applies.

For the UE which supports SUL band combination, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3C.3 for the applicable NR bands. The normative reference for this requirement is TS 38.101-1 [2] clause 7.3C.2

7.3C.2.4 Test description

7.3C.2.4.1 Initial conditions

Same test description as specified in clause 7.3.2.4.1 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 7.3.2.4.1-1 \rightarrow use Table 7.3C.2.4.1-1

Table 7.3C.2.4.1-1: Test Configuration Table

			Initial Con	ditions		
Test Er	nvironment	as specified in TS	FFS			
38.508	-1 [5] subcla	ause 4.1				
Test Fr	equencies a	as specified in TS	FFS			
38.508	-1 [5] subcla	ause4.3.1				
Test Ch	nannel Band	dwidths as specified in	FFS			
TS 38.5	508-1 [5] su	bclause 4.3.1				
Test S0	CS as speci	fied in Table 5.3.5-1	FFS			
			Test Para	meters		
Test	Dow	nlink Configuration	Uplink C	onfiguration	SUL Co	nfiguration
ID						
	Modula tion	RB allocation	Modulation	RB allocation	Modulation	RB allocation
1	FFS	FFS	FFS	FFS	FFS	FFS

Table 7.3C.2.4.1-2: Test configurations table for SUL operation exceptions due to UL harmonic issue for n78 with SUL 80

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1, C.2, C3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.0 with consideration of supplementary uplink physical channels.
- 4. The UL and DL Reference Measurement Channel shall be set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, Table 7.3.2.4.1-3 and Table 7.3C.2.4.1-1.
- 5. The UL Reference Measurement Channel shall be set according to Table 7.3C.2.3-2 and 7.3C.2.3-3 when testing is performed with UL/DL band combination listed in Table 7.3C.2.3-2 for exceptions due to harmonic issue.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.3C.2.4.3

7.3C.2.4.2 Test procedure

- 1 SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.3.1. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits P_{UMAX} level for at least the duration of the Throughput measurement.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

7.3C.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.3-13, 4.6.3-97, and 4.6.3-129A with conditions SUL, and Table 4.6.3-167 with condition PUSCH PUCCH ON SUL.

7.3C.2.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A3.2 with parameters specified in Tables 7.3.2.3-1 and Tables 7.3.2.3-2.

For SUL operation, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3.2.5-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.4.1-3 with exceptions listed in clause 7.3C.2.5.1.

7.3C.2.5.1 Reference sensitivity exceptions due to harmonic issue

For SUL operation with DL band listed in Table 7.3C.2.3-2 with supplementary uplink transmission bandwidth less than or equal to that specified in Table 7.3C.2.3-1, the reference receive sensitivity (REFSENS) requirement for downlink bands specified in Table 7.3C.2.5.1-1 due to harmonic exceptions.

Table 7.3C.2.5.1-1: Reference sensitivity for SUL operation (exceptions due to harmonic issue)

SUL band	DL band	scs	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
		kHz	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm	dBm
		15		-70.9	-70.9	-70.8			-70.7					
				+TT	+TT	+TT			+TT					
n80	n78 ^{1,2}	30		-71.2	-71.0	-70.9			-70.8					
1100	1170',-			+TT	+TT	+TT			+TT					
		60		-71.6	-71.3	-71.2			-71.0					
				+TT	+TT	+TT			+TT					
		15		-93.7	-92.2	-91.4								
				+TT	+TT	+TT								
n80	n78³	30		-94.0	-92.3	-91.5								
1100	1170			+TT	+TT	+TT								
		60		-94.4	-92.6	-91.8								
				+TT	+TT									

			1	1	1						1	
		15	-85.0 +TT	-84.9 +TT	-84.7 +TT		-83.6 +TT					
	0		-85.3	-85.0	-84.9		-83.7					
n82	n78³	30	+TT	+TT	+TT		+TT					
			-85.7	-85.3	-85.1		-83.9					
		60	+TT	+TT	+TT		+TT					
			-85.0	-84.9	-84.7		-84.5	-				
		15	+TT	+TT	+TT		+TT	84.4				
		-						+TT				
			-85.3	-85.0	-84.9		-84.6	-	-	-		-
n81	n78 ⁴	30	+TT	+TT	+TT		+TT	84.5	84.4	84.3		84.2
								+TT	+TT	+TT		+TT
			-85.7	-85.3	-85.1		-84.8	-	-	-		-
		60	+TT	+TT	+TT		+TT	84.6	84.5	84.4		84.3
								+TT	+TT	+TT		+TT
			-85.4	-85.1	-84.9		-84.9	-				
		15	+TT	+TT	+TT		+TT	84.9				
								+TT				
			-85.7	-85.2	-85.1		-85.0	-	-	-	-	-
n81	n78⁵	30	+TT	+TT	+TT		+TT	85.0	84.9	84.9	84.9	84.9
								+TT	+TT	+TT	+TT	+TT
			-86.1	-85.5	-85.3		-85.2	-	-	-	-	-
		60	+TT	+TT	+TT		+TT	85.1	85.0	85.0	85.0	85.0
								+TT	+TT	+TT	+TT	+TT
		4.5	-71.9	-71.9	-71.8		-71.7					
		15	+TT	+TT	+TT		+TT					
00	706	00	-72.2	-72.0	-72.0		-71.8					
n86	n78 ⁶	30	+TT	+TT	+TT		+TT					
		00	-72.6	-72.3	-72.2		-72.0					
		60	+TT	+TT	+TT		+TT					
			-94.7	-93.2	-92.4							
		15	+TT	+TT	+TT							
00	707	00	-95.0	-93.3	-92.6							
n86	n78 ⁷	30	+TT	+TT	+TT							
			-95.4	-93.6	-92.8							
		60	+TT	+TT	+TT							
							-82.8	-				
		15					+TT	82.4				
								+TT				
							-85.0	-	-	-		-
n81	n79 ⁸	30					+TT	85.0	84.9	84.9		84.9
								+TT	+TT	+TT		+TT
							-85.2	-	-	-		-
		60					+TT	85.1	85.0	85.0		85.0
								+TT	+TT	+TT		+TT

NOTE 1: 1 indicates requirement for test configuration specified by Table [TBD]

Table 7.3C.2.5.1-2: Test Tolerance (TT) for RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz
0.7 dB	1.0 dB

For the UE which supports SUL band combination, the minimum requirement for reference sensitivity in Table 7.3C.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3C.3.

NOTE 2: ² indicates requirement for test configuration specified by Table [TBD]

NOTE 3: ³ indicates requirement for test configuration specified by Table [TBD]

NOTE 4: 4 indicates requirement for test configuration specified by Table [TBD]

NOTE 5: ⁵ indicates requirement for test configuration specified by Table [TBD]

NOTE 6: ⁶ indicates requirement for test configuration specified by Table [TBD]

NOTE 7: 7 indicates requirement for test configuration specified by Table [TBD]

NOTE 8: 8 indicates requirement for test configuration specified by Table [TBD]

NOTE 9: TT for each frequency and channel bandwidth is specified in Table 7.3C.2.5.1-2.

7.3C.3 $\Delta R_{IB.c}$ for SUL

7.3C.3.1 General

For a UE supporting a SUL configuration, the $\Delta R_{IB,c}$ applies for both SC and SUL operation.

7.3C.3.2 SUL band combination

For the UE which supports SUL band combination, the minimum requirement for reference sensitivity in Table 7.3.2.3-1 shall be increased by the amount given in $\Delta R_{IB,c}$ defined in Table 7.3C.3.2-1 for the applicable operating bands.

Table 7.3C.3.2-1: ΔR_{IB,c} due to SUL (two bands)

Band combination for SUL	NR Band	ΔR _{IB,c} [dB]
SUL n78-n80	n78	0.5
30L_1176-1160	n80	0.2
SUL n78-n81	n78	0.2
30L_1176-1161	n81	0.2
SUL_n78-n82	n78	0.5
SUL n78-n83	n78	0.5
30L_1176-1163	n83	0.2
SUL_n78-n84	n78	0.5
SUL n78-n86	n78	0.5
30L_II/0-II00	n86	0.2

7.3D Reference sensitivity for UL-MIMO

7.3D.1 General

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in subclause 7.3 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmits power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clauses 7.3D

7.3D.2 Reference sensitivity power level for UL-MIMO

7.3D.2.1 Test purpose

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

7.3D.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO

7.3D.2.3 Minimum conformance requirements

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in subclause 7.3 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmits power over the two transmit antenna connectors

The normative reference for this requirement is TS 38.101-1 [2] clauses 7.3D and 7.3.

7.3D.2.4 Test description

7.3D.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.2-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3D.2.4.1-1, Table 7.3D.2.4.1-2, and Table 7.3D.2.4.1-3. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexe A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3D.2.4.1-1: Test Configuration Table

		Initial Conditions				
Test Environment as specifi	ed in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[5] subclause 4.1						
Test Frequencies as specifi	ed in TS 38.508-1 [5]	Low range, Mid range, High range				
subclause4.3.1						
Test Channel Bandwidths a	s specified in TS	Lowest, Mid, Highest				
38.508-1 [5] subclause 4.3.	1					
Test SCS as specified in Ta	ble 5.3.5-1	Lowest				
		Test Parameters				
Test ID Downline	c Configuration	Uplink Configura	ation			
Modulation	RB allocation	Modulation RB allocation				
1 CP-OFDM	Full RB (NOTE 1)	CP-OFDM QPSK REFSENS (NOTE				
QPSK						

NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2.

NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The UL and DL Reference Measurement Channel is set according to Table 7.3D.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.3D.2.4.3.

7.3D.2.4.2 Test procedure

Same test procedure as specified in 7.3.2.4.2 with the following exception:

Step 2: SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.3D.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.

7.3D.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and exceptions listed in clause 7.3.2.4.3

7.3D.2.5 Test requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A3.2 with reference receive power level specified in Tables 7.3.2.5-1 and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3.

7.4 Maximum input level

7.4.1 Test purpose

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to a g-NodeB.

7.4.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.4.3 Minimum conformance requirements

Maximum input level is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel. The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.3-1.

Table 7.4.3-1: Maximum input level

Rx	Units					Ch	annel b	andwi	dth				
Parameter		5	10	15	20	25	30	40	50	60	80	90	100
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Power in			-2	5 ²		-24 ²	-23 ²	-22 ²	-21 ²		-2	0 ²	
Transmission Bandwidth Configuration	dBm		-2	7 ³		-26 ³	-25 ³	-24 ³	-23 ³		-2	2 ³	

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX} at the minimum uplink configuration specified in Table 7.3.2.3-3 with P_{CMAX} as defined in subclause 6.2.4.

NOTE 2: Reference measurement channel is Annex A.3.2.3/A.3.3.3 for 64-QAM. NOTE 3: Reference measurement channel is Annex A.3.2.4/A.3.3.4 for 256-QAM.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.4.

7.4.4 Test description

7.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.4.4.1-1: Test Configuration Table	Table 7.4.4	1.1-1: Test	Configurat	ion Table
---	-------------	-------------	------------	-----------

Initial Conditions					
Test Environment as speci	fied in TS 38.508-1 [5]	Normal			
subclause 4.1					
Test Frequencies as specif	ied in TS 38.508-1 [5]	Mid range			
subclause 4.3.1					
Test Channel Bandwidths	as specified in TS	Lowest, Mid, Highest			
38.508-1 [5] subclause 4.3	.1				
Test SCS as specified in Ta	able 5.3.5-1	Lowest			
	Test Parameters for	Channel Bandwidths			
Downlink Cor	ıfiguration	Uplink Configuration			
Modulation	RB allocation	Modulation	RB allocation		
CP-OFDM 64 QAM NOTE 1		DFT-s-OFDM QPSK	NOTE 2		
CP-OFDM 256 QAM	NOTE 1	DFT-s-OFDM QPSK NOTE 2			
		allocation is defined in Table			
NOTE 2: The specific confi	guration of uplink RB allo	ocation is defined in Table 7.3	3.2.4.1-3.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The DL and UL Reference Measurement Channels are set according to Table 7.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.4.4.3.

7.4.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Tables 7.4.4.1-1. Since the UE has no payload data and no loopback data to send, the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.4.5-1. Send uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within $-P_W \pm P_W dB$ of the target power level in Table 7.4.5-1 for at least the duration of the Throughput measurement. P_W is the power window according to Table 7.4.5-2 for the carrier frequency f and the channel bandwidth BW.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2

7.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.

7.4.5 Test requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3 with parameters specified in Tables 7.4.5-1.

Table 7.4.5-1: Maximum input level

Rx	Units					(Channel	bandwid	th				
Parameter		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Power in Transmission	dD.ee		-25 ² -TT			-24 ² - TT	-23 ² - TT	-22 ² - TT	-21 ² - TT	-20 ² -TT			
Bandwidth Configuration	dBm		-27 ⁵	³-TT		-26 ³ - TT	-25 ³ - TT	-24 ³ - TT	-23 ³ - TT		-22 ³	³-TT	

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L} at the minimum uplink configuration specified in Table

7.3.2.3-3 with P_{CMAX_L} as defined in subclause 6.2.4. NOTE 2: Reference measurement channel is Annex A.3.2.3/A.3.3 for 64-QAM.

NOTE 2. Reference measurement channel is Annex A.3.2.4/A.3.3.4 for 256-QAM.

NOTE 4: TT for each frequency is specified in Table 7.4.5-3.

Table 7.4.5-2: Power Window (dB) for Maximum input level

$f \le 3GHz$ $3GHz < f \le 4.2GHz$ $4.2GHz < f \le 6GHz$							
BW ≤ 20MHz	1.4	1.7	2.0				
20MHz < BW ≤ 40MHz 1.4 1.7 2.2							
40MHz < BW ≤ 100MHz 2.1 2.3 2.3							
NOTE: Power Window comprises two parts, UE Power step tolerance and test system							
power measure	power measurement uncertainty.						

Table 7.4.5-3: Test Tolerance (Maximum input level)

f ≤ 3.0GHz	3.0GHz < f ≤6.0GHz
0.7 dB	1.0 dB

7.4A Maximum input level for CA

FFS

7.4D Maximum input level for UL-MIMO

7.4D.1 Test purpose

Maximum input level tests the ability of UE that supports UL- MIMO to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to an e-NodeB.

7.4D.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.4D.3 Minimum conformance requirements

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements specified in sub-clause 7.4 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clauses 7.4D and 7.4.

7.4D.4 Test description

7.4D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.2-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.4D.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annex A.2 and Annex A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.4D.4.1-1: Test Configuration Table

	Initial Conditions						
Test Environment as speci	fied in TS 38.508-1 [5]	Normal					
subclause 4.1							
Test Frequencies as specif	ied in TS 38.508-1 [5]	Mid range					
subclause 4.3.1							
Test Channel Bandwidths	as specified in TS	Lowest, Mid, Highest					
38.508-1 [5] subclause 4.3	.1	, , ,					
Test SCS as specified in Ta	able 5.3.5-1	Lowest					
	Test Parameters for	Channel Bandwidths					
Downlink Cor	figuration	Uplink Confi	iguration				
Modulation	RB allocation	Modulation	RB allocation				
CP-OFDM 64 QAM	NOTE 1	CP-OFDM QPSK NOTE 2					
CP-OFDM 256 QAM	NOTE 1	CP-OFDM QPSK NOTE 2					
NOTE 1: The specific confi	NOTE 1: The specific configuration of downlink RB allocation is defined in Table 7.3.2.4.1-2.						
NOTE 2: The specific configuration of uplink RB allocation is defined in Table 7.3.2.4.1-3.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A Figure A.3.1.1.2 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The UL and DL Reference Measurement Channel is set according to Table 7.4D.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.4D.4.3.

7.4D.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.4D.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.4D.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 3. Set the Downlink signal level to the value defined in Table 7.4D.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within $-P_W \pm P_W$ of the target level in Table 7.4D.5-1, for at least the duration of the throughput measurement. P_W is the power window according to Table 7.4D.4.2-1 for the carrier frequency f and the channel bandwidth BW

4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2

Table 7.4D.4-2-1: Power Window (dB) for Maximum input level

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

7.4D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO

7.4D.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 and A3.3 with parameters specified in Table 7.4D.5-1.

Table 7.4D.5-1 Maximum input level

Rx	Unit		Channel bandwidth										
Parameter	s	5	10	15	20	25	30	40	50	60	80	90	100
		МН	МН	MH	MH	MH	МН	МН	МН	MH	MH	МН	МН
		Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
Power in								-	-		-20-TT	² + TT	
Transmissi						24 ²	23 ²	22 ²	21 ²				
on			-25 ²	² -TT				-	-				
Bandwidth			+	TT		-TT	-TT	TT	TT				
Configurati						+	+	+	+				
on	alD.aa					TT	TT	TT	TT				
	dBm					-	-	-	-		-22 ³ -T	T+ TT	
						26 ³	25 ³	24 ³	23 ³				
			-27 ³	³-TT		-	-	-	-				
			+	TT		TT	TT	TT	TT				
						+	+	+	+				
						TT	TT	TT	TT				

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX} at the minimum uplink configuration

specified in Table 7.3-3 with PCMAX_L as defined in subclause 6.2.4.

NOTE 2: Reference measurement channel is A.3.2.3/A.3.3.3 for 64-QAM. NOTE 3: Reference measurement channel is A.3.2.4/A.3.3.4 for 256-QAM.

NOTE 4: TT for each frequency is specified in Table 7.4D.5-2 Table 7.4.5-3.

Table 7.4D.5-2: Test Tolerance (Maximum input level)

f ≤ 3.0GHz	3.0GHz < f ≤6.0GHz
0.7 dB	1.0 dB

7.5 Adjacent channel selectivity

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- ACS requirements in square brackets.
- Annex D: Characteristics of the interfering signal is TBD.

7.5.1 Test purpose

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the

assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.5.3 Minimum conformance requirements

The UE shall fulfil the minimum requirements specified in Table 7.5.3-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and the minimum requirements specified in Table 7.5.3-2. for NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz. These requirements apply for all values of an adjacent channel interferer up to -25 dBm and for any SCS specified for the channel bandwidth of the wanted signal. However, it is not possible to directly measure the ACS; instead the lower and upper range of test parameters are chosen as in Table 7.5.3-3 and Table 7.5.3-4 for verification of the requirements specified in Table 7.5.3-1 and as in Table 7.5.3-5, and Table 7.5.3-6 for verification of the requirements specified in Table 7.5.3-2. For these test parameters, the throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2(with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5)]. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.5.3-1: ACS for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

RX parameter	Units	Channel bandwidth						
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz		
ACS	dB	[33]	[33]	[30]	[27]	[26]		
RX parameter	Units		Channel bandwidth					
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
ACS	dB	[25.5]	[24]	[23]	[22.5]	[21]		
RX parameter	Units	Channel bar			idth			
		90 MHz	100 MHz					
ACS	dB	[20.5]	[20]					

Table 7.5.3-2: ACS for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth						
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz		
ACS	dB	[33]	[33]	[33]	[33]	[33]		
RX parameter Units		Channel bandwidth						
		60 MHz	80 MHz	90 MHz	100 MHz			
ACS	dB	[33]	[33]	[33]	[33]			

Table 7.5.3-3: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 1

RX parameter	Units	Channel bandwidth				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in transmission bandwidth configuration	dBm			REFSENS + 14 d		
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [42.5] dB	REFSENS + [39.5] dB	REFSENS + [38.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15
RX parameter	Units			hannel bandwid		
•		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in transmission bandwidth configuration	dBm		R	REFSENS + 14 d	В	
P _{interferer}	dBm	REFSENS + [38] dB	REFSENS + [36.5] dB	REFSENS + [35.5] dB	REFSENS + [35] dB	REFSENS + [33.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5
RX parameter	Units		CI	hannel bandwid	lth	•
-		90 MHz	100 MHz			
Power in transmission bandwidth configuration	dBm	REFSEN	S + 14 dB			
Pinterferer	dBm	REFSENS + [33] dB	REFSENS + [32.5] dB			
BW _{interferer}	MHz	5	5			
Finterferer (offset)	MHz	47.5 / -47.5	52.5 / -52.5			

NOTE 1: The transmitter shall be set to 4dB below $P_{CMAX_L,f,c}$ at the minimum UL configuration specified in Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the NR interferer RMC specified in FFS

Table 7.5.3-4: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 2

RX parameter	Units	Channel bandwidth							
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz			
Power in	dBm	[-56.5]	[-56.5]	[-53.5]	[-50.5]	[-49.5]			
transmission									
bandwidth									
configuration									
Pinterferer	dBm			-25					
BWinterferer	MHz	5	5	5	5	5			
Finterferer (offset)	MHz	5	7.5	10	12.5	15			
		/	/	/	/	/			
		-5	-7.5	-10	-12.5	-15			
RX parameter	Units		С	hannel bandwic	dth				
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz			
Power in	dBm	[-49]	[-47]	[-46.5]	[-46]	[-44.5]			
transmission									
bandwidth									
configuration									
Pinterferer	dBm			-25					
BW _{interferer}	MHz	5	5	5	5	5			
Finterferer (offset)	MHz	17.5	22.5	27.5	32.5	42.5			
,		/	/	/	/	/			
		-17.5	-22.5	-27.5	-32.5	-42.5			
RX parameter	Units	Channel bandwidth							
		90 MHz	100 MHz						
Power in	dBm								
transmission		[44]	[-43.5]						
bandwidth		[-44]	[-43.5]						
configuration									
Pinterferer	dBm		25						
BWinterferer	MHz	5	5						
Finterferer (offset)	MHz	47.5	52.5						
		/							
		-47.5	-52.5						

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FFS

Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(|F_{interferer}|/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

Table 7.5.3-5: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

RX parameter	Units		Channel bandwidth				
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В		
Pinterferer	dBm		RE	FSENS + [45.5]	dB		
BWinterferer	MHz	10	15	20	40	50	
Finterferer (offset)	MHz	10 / -10	15 / -15	20 / -20	40 / -40	50 / -50	
RX parameter	Units	-	l	hannel bandwid	lth		
		60 MHz	80 MHz	90 MHz	100 MHz		
Power in transmission bandwidth configuration	dBm		REFSENS	S + 14 dB			
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB		
BW _{interferer}	MHz	60	80	90	100		
Finterferer (offset)	MHz	60	80	90	100		
. ,		/	/	/	/		
		-60	-80	-90	-100		

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal. NOTE 3: The interferer consists of the RMC specified in FFS

Table 7.5.3-6: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

RX parameter	Units		CI	hannel bandwid	ith	
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm					
transmission bandwidth configuration				[-56.5]		
Pinterferer	dBm			-25		
BWinterferer	MHz	10	15	20	40	50
Finterferer (offset)	MHz	10	15	20	40	50
		/	/	/	/	/
		-10	-15	-20	-40	-50
RX parameter	Units		CI	hannel bandwid	lth	
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in transmission bandwidth configuration	dBm		[-56	6.5]		
Pinterferer	dBm	-25	-25	-25	-25	
BWinterferer	MHz	60	80	90	100	
Finterferer (offset)	MHz	60	80	90	100	
. ,		/	/	/	/	
		-60	-80	-90	-100	

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer} \mid /SCS \mid + 0.5)SCS]$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FSS

The normative reference for this requirement is TS 38.101-1 [2] clause 7.5.

7.5.4 Test description

7.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Default Conditions Test Environment as specified in TS Normal 38.508-1 [5] subclause 4.1 Test Frequencies as specified in TS Mid range 38.508-1 [5] subclause 4.3.1 Test Channel Bandwidths as specified in Lowest, Mid, Highest TS 38.508-1 [5] subclause 4.3.1 Lowest Test SCS as specified in Table 5.3.5-1 **Test Parameters Downlink Configuration Uplink Configuration** Test ID Mod'n **RB** allocation **RB** allocation Mod'n CP-OFDM QPSK DFT-s-OFDM QPSK NOTE 1 NOTE 1 1 The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1. NOTE 1:

Table 7.5.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.5.4.3.

7.5.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.5.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.5.5-2 or Table 7.5.5-5 as appropriate (Case 1). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within $P_W \pm P_W$ dB of the target power level in Table 7.5.5-2 or Table 7.5.5-5 for at least the duration of the Throughput measurement. P_W is the power window according to Table 7.5.5-7 for the carrier frequency f and the channel bandwidth BW..
- 4. Set the Interferer signal level to the value as defined in Table 7.5.5-2 or Table 7.5.5-5 as appropriate (Case 1) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex [TBD].

- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 4.
- 7. Set the Downlink signal level to the value as defined in Table 7.5.5-3 or Table 7.5.5-6 as appropriate (Case 2). Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within $P_W \pm P_W$ dB of the target power level in Table 7.5.5-3 or Table 7.5.5-6 for at least the duration of the Throughput measurement. P_W is the power window according to Table 7.5.5-7 for the carrier frequency f and the channel bandwidth BW..
- 8. Set the Interferer signal level to the value as defined in Table 7.5.5-3 or Table 7.5.5-6 as appropriate (Case 2) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex [TBD].
- 9. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 10. Repeat steps from 7 to 9, using an interfering signal above the wanted signal in Case 2 at step 8.
- 11. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

7.5.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-118 PUSCH-Config.

7.5.5 Test requirement

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Tables 7.5.5-2 and 7.5.5-3.

Table 7.5.5-1: ACS for NR bands with FDL high < 2700 MHz and FUL high < 2700 MHz

RX parameter	Units	Channel bandwidth				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
ACS	dB	[33]	[33]	[30]	[27]	[26]
RX parameter	Units	Channel bandwidth				
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
ACS	dB	[25.5]	[24]	[23]	[22.5]	[21]
RX parameter	Units	Channel bandwidth				
		90 MHz	100 MHz			
ACS	dB	[20.5]	[20]			

Table 7.5.5-2: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 1

RX parameter	Units		CI	hannel bandwid	lth	
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В	
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [42.5] dB	REFSENS + [39.5] dB	REFSENS + [38.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15
RX parameter	Units		CI	hannel bandwid	th	
-		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В	
P _{interferer}	dBm	REFSENS + [38] dB	REFSENS + [36.5] dB	REFSENS + [35.5] dB	REFSENS + [35] dB	REFSENS + [33.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5
RX parameter	Units			hannel bandwid	lth	
		90 MHz	100 MHz			
Power in transmission bandwidth configuration	dBm	REFSEN:	S + 14 dB			
Pinterferer	dBm	REFSENS + [33] dB	REFSENS + [32.5] dB			
BW _{interferer}	MHz	5	5			
Finterferer (offset)	MHz	47.5 / -47.5	52.5 / -52.5			

NOTE 1: The transmitter shall be set to 4dB below $P_{CMAX_L,f,c}$ at the minimum UL configuration specified in Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the NR interferer RMC specified in FFS

Table 7.5.5-3: Test parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 2

RX parameter	Units		С	hannel bandwid	lth	
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in	dBm	[-56.5]	[-56.5]	[-53.5]	[-50.5]	[-49.5]
transmission						
bandwidth						
configuration						
Pinterferer	dBm			-25		
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset)	MHz	5	7.5	10	12.5	15
		/	/	/	/	/
		-5	-7.5	-10	-12.5	-15
RX parameter	Units		С	hannel bandwid	lth	
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in	dBm	[-49]	[-47]	[-46.5]	[-46]	[-44.5]
transmission						
bandwidth						
configuration						
Pinterferer	dBm			-25		
BW _{interferer}	MHz	5	5	5	5	5
F _{interferer} (offset)	MHz	17.5	22.5	27.5	32.5	42.5
		/	/	/	/	/
		-17.5	-22.5	-27.5	-32.5	-42.5
RX parameter	Units			hannel bandwid	lth	
		90 MHz	100 MHz			
Power in	dBm					
transmission		[-44]	[-43.5]			
bandwidth		[-44]	[-43.5]			
configuration						
Pinterferer	dBm	ī	25			
BWinterferer	MHz	5	5			
Finterferer (offset)	MHz	47.5	52.5			
		/	/			
		-47.5	-52.5			

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{interferer}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FFS

For NR bands with F_{DL_high} < 3300 MHz and F_{UL_high} < 3300 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Tables 7.5.5-5 and 7.5.5-6.

Table 7.5.5-4: ACS for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth				
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
ACS	dB	[33]	[33]	[33]	[33]	[33]
RX parameter	Units		Cha	nnel bandw	idth	
		60 MHz	80 MHz	90 MHz	100 MHz	
ACS	dB	[33]	[33]	[33]	[33]	

Table 7.5.5-5: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

RX parameter	Units		Channel bandwidth				
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В		
Pinterferer	dBm		RE	FSENS + [45.5]	dB		
BWinterferer	MHz	10	15	20	40	50	
Finterferer (offset)	MHz	10 / -10	15 / -15	20 / -20	40 / -40	50 / -50	
RX parameter	Units		CI	hannel bandwid	lth		
-		60 MHz	80 MHz	90 MHz	100 MHz		
Power in transmission bandwidth configuration	dBm		REFSEN	S + 14 dB			
Pinterferer	dBm	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB	REFSENS + [45.5] dB		
BW _{interferer}	MHz	60	80	90	100		
Finterferer (offset)	MHz	60	80	90	100		
,		/	/	/	/		
		-60	-80	-90	-100		

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_Lf,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with PCMAX L.f.c defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS}] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal. NOTE 3: The interferer consists of the RMC specified in FFS

Table 7.5.5-6: Test parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

RX parameter	Units		CI	hannel bandwid	ith	
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm					
transmission bandwidth configuration				[-56.5]		
Pinterferer	dBm			-25		
BWinterferer	MHz	10	15	20	40	50
Finterferer (offset)	MHz	10	15	20	40	50
		/	/	/	/	/
		-10	-15	-20	-40	-50
RX parameter	Units		CI	hannel bandwid	lth	
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in transmission bandwidth configuration	dBm		[-56	6.5]		
Pinterferer	dBm	-25	-25	-25	-25	
BWinterferer	MHz	60	80	90	100	
Finterferer (offset)	MHz	60	80	90	100	
. ,		/	/	/	/	
		-60	-80	-90	-100	

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS}] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FFS

Table 7.5.5-7: Power Window (dB) for Adjacent channel selectivity

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz				
BW ≤ 20MHz	1.4	1.7	2				
20MHz < BW ≤ 40MHz	1.4	1.7	2.2				
40MHz < BW ≤ 100MHz	2.1	2.3	2.3				
Note: Power Window setting comprises two quantities, UE Power tolerance and test							
system power m	system power measurement						

7.5A Adjacent channel selectivity for CA

7.5A.0 Minimum conformance requirements

7.5A.0.1 Adjacent channel selectivity for Intra-band contiguous CA

For intra-band contiguous carrier aggregation with two component carriers and aggregated bandwidth BWChannel_CA shall be configured at nominal channel spacing to the PCC. The UE shall fulfil the minimum requirement specified in Table 7.5A.0.1-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm.

The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5A.0.1-2 and 7.5A.0.1-3.

Table 7.5A.0.1-1: ACS for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

		CA Bandwidth Class					
Rx Parameter	Units	C D E					
ACS	dB	33.0	25.2	24.0			

Table 7.5A.0.1-2: Test parameters for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

Rx Parameter	Units	CA Bandwidth Class				
		С	D	E		
Pw in Transmission Bandwidth Configuration, per CC		REFSENS + 14 dB	REFSENS + 14 dB	REFSENS + 14 dB		
P _{Interferer}	dBm	Aggregated power + 31.5	Aggregated power + 23.7	Aggregated power + 22.5		
		dB	dB	dB		
BWInterferer	MHz	BW _{channel} CA	50	50		
Finterferer (offset)	MHz	BW _{channel} CA	25 + F _{offset}	25 + F _{offset}		
		/	/	/		
		-BW _{channel} CA	-25 -F _{offset}	-25 -F _{offset}		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [FFS]

Table 7.5A.0.1-3: Test parameters for intra-band contiguous CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

Rx Parameter	Units	CA Bandwidth Class				
		С	D	E		
Pw in Transmission Bandwidth Configuration, per CC		REFSENS + 14 dB	REFSENS + 14 dB	REFSENS + 14 dB		
P _{Interferer}	dBm	Aggregated power + 31.5	Aggregated power + 23.7	Aggregated power + 22.5		
		dB	dB	dB		
BWInterferer	MHz	BW _{channel} CA	50	50		
F _{Interferer} (offset)	MHz	BW _{channel} CA	25 + F _{offset}	25 + F _{offset}		
		/	/	/		
		-BW _{channel} CA	-25 -F _{offset}	-25 -F _{offset}		

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in [FFS]

7.5A.0.2 Adjacent channel selectivity Intra-band non-contiguous CA

Detailed structure of the subclause is TBD.

7.5A.0.3 Adjacent channel selectivity Inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the adjacent channel requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.5.3 for each component carrier while all downlink carriers are active.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

7.5A.1 Adjacent channel selectivity for 2DL CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is FFS
- Connection diagram is FFS
- Characteristics of the interfering signal is TBD.
- Statistical testing of receiver characteristics for CA is TBD
- MU/TT is still FFS
- ACS requirements in square brackets.

7.5A.1.1 Test Purpose

Adjacent channel selectivity for 2DL CA verifies the receiver's ability to receive a wanted 2DL carrier aggregated at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel.

7.5A.1.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support 2DL CA.

7.5A.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.5A.0.

7.5A.1.4 Test Description

7.5A.1.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in table 7.5A.1.4.1-1 or table 7.5A.1.4.1-2. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.5A.1.4.1-1: Test Configuration Table for intra-band contiguous 2CA

FFS

Table 7.5A.1.4.1-2: Test Configuration Table for inter-band 2CA

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.5A.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release on according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.5A.1.4.3.

7.5A.1.4.2 Test Procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 7.5A.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.5A.1.4.1-1 on both PCC and SCC. The SS sends downlink MAC padding bits on the DL RMC.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.5A.1.4.1-1 or 7.5A.1.4.1-2. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. For intra-band contiguous CA, Set the Downlink signal level to the value as defined in Table 7.5A.1.5-2 for intra-band contiguous CA or Table 7.5A.1.5-5 and Table 7.5A.1.5-8 for inter-band CA as appropriate (Case 1). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within $P_W \pm P_W$ dB of the target power level in Table 7.5A.1.5-2 for intra-band contiguous CA or Table 7.5A.1.5-5 and Table 7.5A.1.5-8 for inter-band CA for at least the duration of the Throughput measurement. P_W is the power window according to Table 7.5A.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

- 7. Set the Interferer signal level to the value as defined in Table 7.5A.1.5-2 for intra-band contiguous CA or Table 7.5A.1.5-5 and Table 7.5A.1.5-8 for inter-band CA as appropriate (Case 1) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex [TBD].
- 8. Measure the average throughput for each component carrier for a duration sufficient to achieve statistical significance according to Annex [TBD].
- 9. Repeat steps from 6 to 8, using an interfering signal above the wanted signal in Case 1 at step 7.
- 10. Set the Downlink signal level to the value as defined in Table 7.5A.1.5-3 for intra-band contiguous CA or Table 7.5A.1.5-6 and Table 7.5A.1.5-9 for inter-band CA as appropriate (Case 2). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the PCC and SCC output power is within $P_W \pm P_W$ dB of the target power level in Table 7.5A.1.5-3 for intra-band contiguous CA or Table 7.5A.1.5-6 and Table 7.5A.1.5-9 for inter-band CA for at least the duration of the Throughput measurement. P_W is the power window according to Table 7.5A.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.
- 11. Set the Interferer signal level to the value as defined in Table 7.5A.1.5-3 for intra-band contiguous CA or Table 7.5A.1.5-6 and Table 7.5A.1.5-9 for inter-band CA as appropriate (Case 2) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex [TBD].
- 12. Measure the average throughput for each component carrier for a duration sufficient to achieve statistical significance according to Annex [TBD].
- 13. Repeat steps from 10 to 12, using an interfering signal above the wanted signal in Case 2 at step 11.
- 14. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

Table 7.5A.1.4.2-1: Power Window (dB) for Adjacent channel selectivity

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3
Note: Power Window setting	na comprises two	quantities LIF Power to	lerance and test

Note: Power Window setting comprises two quantities, UE Power tolerance and test system power measurement

7.5A.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-118 PUSCH-Config.

7.5A.1.5 Test Requirement

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5A.1.5-2 and 7.5A.1.5-3.

Table 7.5A.1.5-1: ACS for intra-band contiguous 2CA with F_{DL low} ≥ 3300 MHz and F_{UL low} ≥ 3300 MHz

		CA Bandwidth Class				
Rx Parameter	Units	C D E				
ACS	dB	33.0				

Table 7.5A.1.5-2: Test parameters for intra-band contiguous 2CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

Rx Parameter	Units	CA Bandwidth Class					
		С	D	E			
Pw in Transmission Bandwidth Configuration, per CC		REFSENS + 14 dB					
P _{Interferer}	dBm	Aggregated power + 31.5					
		dB					
BWInterferer	MHz	BW _{channel} CA					
Finterferer (offset)	MHz	BW channel CA					
		/					
		-BW _{channel} CA					

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [FFS]

Table 7.5A.1.5-3: Test parameters for intra-band contiguous 2CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

Rx Parameter	Units	CA Bandwidth Class				
		С	D	E		
Pw in Transmission Bandwidth Configuration, per CC		REFSENS + 14 dB				
PInterferer	dBm	Aggregated power + 31.5				
		dB				
BW _{Interferer}	MHz	BW _{channel} CA				
F _{Interferer} (offset)	MHz	BW _{channel} CA				
		/				
		-BW _{channel} CA				

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in [FFS]

For NR SCC of inter-band CA with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Tables 7.5A.1.5-5 and 7.5A.1.5-6.

Table 7.5A.1.5-4: ACS for NR band with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

RX parameter	Units	Channel bandwidth				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
ACS	dB	[33]	[33]	[30]	[27]	[26]
RX parameter	Units	Channel bandwidth				
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
ACS	dB	[25.5]	[24]	[23]	[22.5]	[21]
RX parameter	Units		Cha	nnel bandw	idth	
		90 MHz	100 MHz			
ACS	dB	[20.5]	[20]			

Table 7.5A.1.5-5: Test parameters for NR inter-band CA with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 1

RX parameter	Units		C	hannel bandwid	lth	
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Pw in Transmission Bandwidth Configuration, per CC	dBm		F	REFSENS + 14 d	В	
P _{interferer}	dBm	REFSENS for SCC + [45.5] dB	REFSENS for SCC + [45.5] dB	REFSENS for SCC + [42.5] dB	REFSENS for SCC + [39.5] dB	REFSENS for SCC + [38.5] dB
BW _{interferer}	MHz	5	5	5	5	5
Finterferer (offset from SCC)	MHz	5 / -5	7.5 / -7.5	10 / -10	12.5 / -12.5	15 / -15
RX parameter	Units			hannel bandwid		
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Pw in Transmission Bandwidth Configuration, per CC	dBm		F	REFSENS + 14 d	В	
Pinterferer	dBm	REFSENS for SCC + [38] dB	REFSENS for SCC + [36.5] dB	REFSENS for SCC + [35.5] dB	REFSENS for SCC + [35] dB	REFSENS for SCC + [33.5] dB
BWinterferer	MHz	5	5	5	5	5
Finterferer (offset from SCC)	MHz	17.5 / -17.5	22.5 / -22.5	27.5 / -27.5	32.5 / -32.5	42.5 / -42.5
RX parameter	Units			hannel bandwid	th	T
		90 MHz	100 MHz			
Pw in Transmission Bandwidth Configuration, per CC	dBm	REFSEN	S + 14 dB			
Pinterferer	dBm	REFSENS for SCC + [33] dB	REFSENS for SCC + [32.5] dB			
BWinterferer	MHz	5	5			
Finterferer (offset from SCC)	MHz	47.5 / -47.5	52.5 / -52.5			

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{\text{interferer}}$ (offset) shall be further adjusted to $(F_{\text{interferer}} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the NR interferer RMC specified in FFS

Table 7.5A.1.5-6: Test parameters for NR inter-band CA with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, case 2

RX parameter	Units		CI	hannel bandwid	lth	
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Pw in	dBm	[-56.5]	[-56.5]	[-53.5]	[-50.5]	[-49.5]
Transmission						
Bandwidth						
Configuration,						
per CC						
Pinterferer	dBm		T	-25	1	1
BW _{interferer}	MHz	5	5	5	5	5
Finterferer (offset	MHz	5	7.5	10	12.5	15
from SCC)		/	/	/	/	/
		-5	-7.5	-10	-12.5	-15
RX parameter	Units		_	nannel bandwid		
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Pw in	dBm	[-49]	[-47]	[-46.5]	[-46]	[-44.5]
Transmission						
Bandwidth						
Configuration,						
per CC						
Pinterferer	dBm			-25		
514						
BW _{interferer}	MHz	5	5	5	5	5
Finterferer (offset	MHz	17.5	22.5	27.5	32.5	42.5
from SCC)		/	/	/	/	/
		-17.5	-22.5	-27.5	-32.5	-42.5
RX parameter	Units			hannel bandwid	ith	T
		90 MHz	100 MHz			
_ Pw in	dBm					
Transmission						
Bandwidth		[-44]	[-43.5]			
Configuration,						
per CC						
Pinterferer	dBm		25			
BWinterferer	MHz	5	5			
Finterferer (offset	MHz	47.5	52.5			
from SCC)		/	/			
		-47.5	-52.5			

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{\text{interferer}}$ (offset) shall be further adjusted to $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FFS

For NR SCC of inter-band CA with $F_{DL_high} < 3300$ MHz and $F_{UL_high} < 3300$ MHz, the throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1)] with parameters specified in Tables 7.5A.1.5-8 and 7.5A.1.5-9.

Table 7.5A.1.5-7: ACS for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth				
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
ACS	dB	[33]	[33]	[33]	[33]	[33]
RX parameter	Units	Channel bandwidth				
		60 MHz	80 MHz	90 MHz	100 MHz	
ACS	dB	[33]	[33]	[33]	[33]	

Table 7.5A.1.5-8: Test parameters for NR inter-band CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

RX parameter	Units		CI	hannel bandwid	lth	
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Pw in	dBm		R	EFSENS + 14 d	iB	
Transmission						
Bandwidth						
Configuration,						
per CC						
Pinterferer	dBm		REFSE	NS for SCC + [4	15.5] dB	
BW _{interferer}	MHz	10	15	20	40	50
Finterferer (offset	MHz	10	15	20	40	50
from SCC)		/	/	/	/	/
		-10	-15	-20	-40	-50
RX parameter	Units		CI	hannel bandwid	lth	
		60 MHz	80 MHz	90 MHz	100 MHz	
Pw in	dBm					
Transmission						
Bandwidth			REFSEN	S + 14 dB		
Configuration,						
per CC						
Pinterferer	dBm	REFSENS	REFSENS	REFSENS	REFSENS	
		for SCC +	for SCC +	for SCC +	for SCC +	
		[45.5] dB	[45.5] dB	[45.5] dB	[45.5] dB	
BWinterferer	MHz	60	80	90	100	
Finterferer (offset	MHz	60	80	90	100	
from SCC)		/	/	/	/	
		-60	-80	-90	-100	

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in

Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $(F_{interferer} \mid /SCS \mid + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FFS

Table 7.5A.1.5-9: Test parameters for NR inter-band CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

RX parameter	Units		CI	hannel bandwic	lth	
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Pw in	dBm					
Transmission						
Bandwidth				[-56.5]		
Configuration,						
per CC						
Pinterferer	dBm			-25		
BW _{interferer}	MHz	10	15	20	40	50
Finterferer (offset	MHz	10	15	20	40	50
from SCC)		/	/	/	/	/
		-10	-15	-20	-40	-50
RX parameter	Units		CI	hannel bandwid	ith	
		60 MHz	80 MHz	90 MHz	100 MHz	
Pw in	dBm					
Transmission						
Bandwidth			[-56	6.5]		
Configuration,						
per CC						
Pinterferer	dBm	-25	-25	-25	-25	
BWinterferer	MHz	60	80	90	100	
Finterferer (offset	MHz	60	80	90	100	
from SCC)		/	/	/	/	
		-60	-80	-90	-100	

NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(\lceil F_{\text{interferer}} \mid / SCS \rceil + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz.

The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 3: The interferer consists of the RMC specified in FFS

7.5A.2 Adjacent channel selectivity for 3DL CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is FFS
- Connection diagram is FFS
- Characteristics of the interfering signal is TBD.
- Statistical testing of receiver characteristics for CA is TBD
- MU/TT is still FFS

7.5A.2.1 Test Purpose

Adjacent channel selectivity for 3DL CA verifies the receiver's ability to receive a wanted 3DL carrier aggregated at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel.

7.5A.2.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support 3DL CA.

7.5A.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.5A.0.

7.5A.2.4 Test Description

7.5A.2.4.1 Initial Conditions

Same as in clause 7.5A.1.4.1 with following exceptions:

- Instead of Table 7.5A.1.4.1-1 → use Table 7.5A.2.4.1-1.
- Instead of Table 7.5A.1.4.1-2 \rightarrow use Table 7.5A.2.4.1-2.

Table 7.5A.2.4.1-1: Test Configuration Table for intra-band contiguous 3CA

FFS

Table 7.5A.2.4.1-2: Test Configuration Table for inter-band 3CA

FFS

7.5A.2.4.2 Test Procedure

Same test procedure as clause 7.5A.1.4.2 with following exceptions:

- Instead of Table 7.5A.1.4.1-1 \rightarrow use Table 7.5A.2.4.1-1.
- Instead of Table 7.5A.1.4.1-2 \rightarrow use Table 7.5A.2.4.1-2.
- Instead of Table 7.5A.1.5-2 \rightarrow use Table 7.5A.2.5-2.
- Instead of Table 7.5A.1.5-3 \rightarrow use Table 7.5A.2.5-3.

7.5A.2.4.3 Message Contents

Same test procedure as clause 7.5A.1.4.3.

7.5A.2.5 Test Requirement

The throughput of each carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5A.2.5-2 and 7.5A.2.5-3.

Table 7.5A.2.5-1: ACS for intra-band contiguous 3DL CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

		CA Bandwidth Class			
Rx Parameter	Units	С	D	E	
ACS	dB		25.2		

Table 7.5A.2.5-2: Test parameters for intra-band contiguous 3DL CA with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, case 1

Rx Parameter	Units	CA Bandwidth Class				
		С	D	E		
Pw in Transmission Bandwidth Configuration, per CC			REFSENS + 14 dB			
P _{Interferer}	dBm		Aggregated power + 23.7 dB			
BWInterferer	MHz		50			
F _{Interferer} (offset)	MHz		25 + F _{offset} / -25 -F _{offset}			

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in [FFS]

Table 7.5A.2.5-3: Test parameters for intra-band contiguous 3DL CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

Rx Parameter	Units		CA Bandwidth Class				
		С	D	E			
Pw in Transmission Bandwidth Configuration, per CC			REFSENS + 14 dB				
P _{Interferer}	dBm		Aggregated power + 23.7 dB				
BW _{Interferer}	MHz		50				
F _{Interferer} (offset)	MHz		25 + F _{offset} / -25 -F _{offset}				

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in [FFS]

7.5A.3 Adjacent channel selectivity for 4DL CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is FFS
- Connection diagram is FFS
- Characteristics of the interfering signal is TBD.
- Statistical testing of receiver characteristics for CA is TBD
- MU/TT is still FFS

7.5A.3.1 Test Purpose

Adjacent channel selectivity for 4DL CA verifies the receiver's ability to receive a wanted 4DL carrier aggregated at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel.

7.5A.3.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support 4DL CA.

7.5A.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.5A.0.

7.5A.3.4 Test Description

7.5A.3.4.1 Initial Conditions

Same as in clause 7.5A.1.4.1 with following exceptions:

- Instead of Table 7.5A.1.4.1-1 \rightarrow use Table 7.5A.3.4.1-1.
- Instead of Table 7.5A.1.4.1-2→ use Table 7.5A.3.4.1-2.

Table 7.5A.3.4.1-1: Test Configuration Table for intra-band contiguous 4CA

FFS

Table 7.5A.3.4.1-2: Test Configuration Table for inter-band 4CA

FFS

7.5A.3.4.2 Test Procedure

Same test procedure as clause 7.5A.1.4.2 with following exceptions:

- Instead of Table 7.5A.1.4.1-1 \rightarrow use Table 7.5A.3.4.1-1.
- Instead of Table 7.5A.1.4.1-2→ use Table 7.5A.3.4.1-2.
- Instead of Table 7.5A.1.5-2 \rightarrow use Table 7.5A.3.5-2.
- Instead of Table 7.5A.1.5-3 \rightarrow use Table 7.5A.3.5-3.

7.5A.3.4.3 Message Contents

Same test procedure as clause 7.5A.1.4.3.

7.5A.3.5 Test Requirement

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5A.3.5-2 and 7.5A.3.5-3.

Table 7.5A.3.5-1: ACS for intra-band contiguous 4DL CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

		CA Bandwidth Class				
Rx Parameter	Units	С	D	E		
ACS	dB			24.0		

Table 7.5A.3.5-2: Test parameters for intra-band contiguous 4DL CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 1

Rx Parameter	Units	CA Bandwidth Class					
		С	D	Е			
Pw in Transmission Bandwidth Configuration, per CC				REFSENS + 14 dB			
P _{Interferer}	dBm			Aggregated power + 22.5 dB			
BWInterferer	MHz			50			
Finterferer (offset)	MHz			25 + Foffset / -25 - Foffset			

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.3.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in [FFS]

Table 7.5A.3.5-3: Test parameters for intra-band contiguous 4DL CA with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz, case 2

Rx Parameter	Units		CA Bandwidth Class				
		С	D	E			
Pw in Transmission Bandwidth Configuration, per CC				REFSENS + 14 dB			
PInterferer	dBm			Aggregated power + 22.5 dB			
BW _{Interferer}	MHz			50			
F _{Interferer} (offset)	MHz			25 + F _{offset} / -25 -F _{offset}			

- NOTE 1: The transmitter shall be set to 4 dB below $P_{CMAX_L,f,c}$ at the minimum UL configuration specified in Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.3.
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([F_{interferer}]/SCS]+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in [FFS]

7.5D Adjacent channel selectivity for UL-MIMO

7.5D.1 Test purpose

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5D.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.5D.3 Minimum conformance requirements

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in sub-clause 7.5 shall be met with the UL-MIMO configurations described in sub-clause

6.2D.1. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clauses 7.5D and 7.5.

7.5D.4 Test description

7.5D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.2-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.5D.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annex A.2 and Annex A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.5D.4.1-1: Test Configuration Table

	Default Conditions						
Test Environment as specified in TS			Normal				
38.508-1 [5] subclause 4.1 Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range				
Test Chan	Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1			Lowest, Mid and Highest			
Test SCS	as specified in Table 5.3	.5-1	Lowest				
		Т	est Parameter	s			
	Downlink Co	nfigura	ition	Uplink Config	guration		
Test ID	Mod'n	RB	allocation	Mod'n	RB allocation		
1	CP-OFDM QPSK	1	NOTE 1	CP-OFDM QPSK	NOTE 1		
NOTE 1:	NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-2 and						
	7.3.2.4.1-3 for Downlinkd and Uplink respectively.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.4 for TE diagram and section A.3.2.3 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.5D.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On* and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.5D.4.3.

7.5D.4.2 Test procedure

Same test procedure as specified in 7.5.2.4.2 with the following exception:

- Instead of Table 7.5.4.1-1, use Table 7.5D.4.1-1 in step 1.
- Step 2: SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.5D.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.

7.5D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO

7.5D.5 Test requirement

Same test requirement as defined in Clause 7.5.5.

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

7.6.1 General

FFS

7.6.2 Inband Blocking

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Annex D: Characteristics of the interfering signal is TBD.

7.6.2.1 Test purpose

Inband blocking is defined for an unwanted interfering signal falling into the range from 15 MHz below to 15 MHz above the UE receive band, with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, or into an immediately adjacent frequency range up 3CBW below or above the UE receive band, with $F_{DL_high} < 3300$ MHz and $F_{UL_high} < 3300$ MHz, at which the relative throughput shall meet or exceed the requirement for the specified measurement channel.

7.6.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.6.2.3 Minimum conformance requirements

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, in-band blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL signal as described in Annex A.5) with parameters specified in Table 7.6.2.3-1 and Table 7.6.2.3-2. The said relative throughput shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.2-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.2.3-1: In-band blocking parameters for NR bands with FDL_high < 2700 MHz and FUL_high < 2700 MHz

RX parameter	Units	Channel bandwidth				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission	dB	6	6	7	9	10
bandwidth						
configuration						
BWinterferer	MHz			5		
Floffset, case 1	MHz			7.5		
Floffset, case 2	MHz			12.5		
RX parameter	Units			nannel bandwid		
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission	dB	11	12	13	14	15
bandwidth						
configuration						
BWinterferer	MHz			5		
Floffset, case 1	MHz			7.5		
Floffset, case 2	MHz			12.5		
RX parameter	Units			hannel bandwid	ith	
		90 MHz	100 MHz			
Power in	dBm					
transmission			channel specific			
bandwidth		value	below			
configuration						
	dB	15.5	16			
BWinterferer	MHz		5			
Floffset, case 1	MHz		7.5			
Floffset, case 2	MHz	1:	2.5		111	: <i>t</i> : :

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_Lf,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_Lf,c} defined in clause 6.2.4.

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex C.3.1.

Table 7.6.2.3-2: In-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Case 1	Case 2	Case 3
	Pinterferer	dBm	-56	-44	-15
n1, n2, n3,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -	
n5, n7, n8,			Floffset, case 1	Floffset, case 2	
n12, n20,			and	and	
n25, n28,			CBW/2 +	≥ CBW/2 +	
n34, n38,			Floffset, case 1	Floffset, case 2	
n39, n40,	Finterferer	MHz		F _{DL_low} – 15	
n41, n50,				to	
n51, n66,			NOTE 2	FDL_high + 15	
n70, n74,					
n75, n76					
n71	Finterferer	MHz	NOTE 2	F _{DL_low} – 12 to	F _{DL_low} – 12
			INOTE 2	$F_{DL_high} + 15$	

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to

 $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -CBW/2 - F_{loffset, case 1}; b: CBW/2 + F_{loffset, case 1}

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, in-band blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into an immediately adjacent frequency range up 3CBW below or above the UE receive band with CBW is the bandwidth of the wanted signal. The throughput of the wanted signal shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in [Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex

A.5.1.1/A.5.2.1)] with parameters specified in Table 7.6.2.3-3 and Table 7.6.2.3-4. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6.2.3-3: In-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth				
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission bandwidth configuration	dB			6		
BW _{interferer}	MHz	10	15	20	40	50
Floffset, case 1	MHz	15	22.5	30	60	75
Floffset, case 2	MHz	25	37.5	50	100	125
RX parameter	Units		CI	nannel bandwid	lth	
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in	dBm	REF	SENS + channe	l specific value b	elow	
transmission bandwidth configuration	dB	6				
BWinterferer	MHz	60	80	90	100	
F _{loffset, case 1}	MHz	90	120	135	150	
Floffset, case 2	MHz	150	200	225	250	

NOTE 1: The transmitter shall be set to 4dB below $P_{CMAX_L,f,c}$ at the minimum UL configuration specified in Table 7.3.2.3-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex C.3.1.

Table 7.6.2.3-4: In-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2				
	Pinterferer	dBm	-56	-44				
n77, n78,	F _{interferer} (offset)	MHz	-CBW/2 -	≤ -CBW/2 -				
n79			Floffset, case 1	Floffset, case 2				
			and	and				
			BW/2 +	≥ CBW/2 +				
			Floffset, case 1	Floffset, case 2				
	Finterferer			F _{DL_low} – 3CBW				
			NOTE 2	to				
				F _{DL_high} + 3CBW				
			ferer_offset Finterfere					
further adjusted to $([F_{\text{interferer}} / SCS] + 0.5)SCS$ MHz with SCS the								
	sub-carrier spacing of the wanted signal in MHz. The interferer is an							
	NR signal with an SCS equal to that of the wanted signal.							
		<i>,</i>	e requirement applies - F _{loffset, case 1} ; b: CB\					

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6.2.

7.6.2.4 Test description

7.6.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

NOTE 3: CBW denotes the channel bandwidth of the wanted signal

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.6.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6.2.4.1-1: Test Configuration	ion	Table
---------------------------------------	-----	-------

	Default Conditions					
	onment as specified in T	S	Normal			
	5] subclause 4.1					
Test Frequ	encies as specified in T	S	Mid range			
38.508-1 [5	5] subclause 4.3.1					
Test Chan	nel Bandwidths as speci	fied in	Lowest, Mid, Highest			
TS 38.508	-1 [5] subclause 4.3.1					
Test SCS a	as specified in Table 5.3	.5-1	Lowest			
		Т	est Parameter	rs		
	Downlink Co	nfigura	ition	Uplink Config	guration	
Test ID	Mod'n	RB allocation		Mod'n	RB allocation	
1	CP-OFDM QPSK	1	NOTE 1 DFT-s-OFDM QPSK NOTE 1			
NOTE 1:	NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.6.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.6.2.4.3.

7.6.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to Tables 7.6.2.5-1 and 7.6.2.5-2 or Tables 7.6.2.5-3 and 7.6.2.5-4 as appropriate depending on NR band.
- 4. Set the downlink signal level according to the table 7.6.2.5-1 or 7.6.2.5-3 as appropriate. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within $P_W \pm P_W$ dB of the target power level in Table 7.6.2.5-1 or Table 7.6.2.5-3 for at least the duration of the Throughput measurement. P_W is the power window according to Table 7.6.2.5-5 for the carrier frequency f and the channel bandwidth BW..
- Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 3.
- 7. Repeat steps from 3 to 6, using interfering signals in Case 2 at step 3 and 6. The ranges of case 2 are covered in steps equal to the interferer bandwidth.

7.6.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-118 PUSCH-Config.

7.6.1.5 Test requirement

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex in Annexes A.2.2, A.2.3 and A.3.2 with parameters specified in Tables 7.6.2.5-1 and 7.6.2.5-2.

Table 7.6.2.5-1: In-band blocking parameters for NR bands with FDL high < 2700 MHz and FUL high < 2700 MHz

RX parameter	Units	Channel bandwidth				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission	dB	6	6	7	9	10
bandwidth						
configuration						
BWinterferer	MHz			5		
Floffset, case 1	MHz			7.5		
Floffset, case 2	MHz			12.5		
RX parameter	Units		CI	hannel bandwid	lth	
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission	dB	11	12	13	14	15
bandwidth						
configuration						
BWinterferer	MHz			5		
Floffset, case 1	MHz			7.5		
Floffset, case 2	MHz			12.5		
RX parameter	Units		CI	hannel bandwid	lth	
		90 MHz	100 MHz			
Power in	dBm					
transmission		REFSENS + 0	channel specific			
bandwidth		value	below			
configuration						
	dB	15.5	16			
BW _{interferer}	MHz		5			
Floffset, case 1	MHz	7	' .5	-		
Floffset, case 2	MHz	1:	2.5			

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX} L.f.c at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex C.3.1.

Table 7.6.2.5-2: In-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Case 1	Case 2	Case 3
	Pinterferer	dBm	-56	-44	-15
n1, n2, n3,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -	
n5, n7, n8,			Floffset, case 1	Floffset, case 2	
n12, n20,			and	and	
n28, n38,			CBW/2 +	≥ CBW/2 +	
n39, n40,			Floffset, case 1	Floffset, case 2	
n41, n50,	Finterferer	MHz		F _{DL_low} – 15	
n51, n66,			NOTE 2	to	
n70, n74,			NOTE 2	F _{DL_high} + 15	
n75, n76					
n71	Finterferer	MHz	NOTE 2	F _{DL_low} – 12 to	F _{DL_low} – 12
			NOTE 2	FDL bigh + 15	

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to

 $(|F_{\text{interferer}}|/SCS|+0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -CBW/2 - Floffset, case 1; b: CBW/2 + Floffset, case 1

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, the throughput measurement derived in test procedure shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.2 and A.3 with parameters specified in Tables 7.6.2.5-3 and 7.6.2.5-4.

Table 7.6.2.5-3: In-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz
MHz

RX parameter	Units		CI	nannel bandwid	ith	
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm		REFSENS +	channel specific	c value below	
transmission bandwidth configuration	dB			6		
BWinterferer	MHz	10	15	20	40	50
Floffset, case 1	MHz	15	22.5	30	60	75
Floffset, case 2	MHz	25	37.5	50	100	125
RX parameter	Units	Channel bandwidth				
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in	dBm	REF	SENS + channe	l specific value b	elow	
transmission bandwidth configuration	dB		(6		
BW _{interferer}	MHz	60	80	90	100	
Floffset, case 1	MHz	90	120	135	150	
Floffset, case 2	MHz	150	200	225	250	

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: The interferer consists of the RMC specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set up according to Annex C.3.1.

Table 7.6.2.5-4: In-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2					
	P _{interferer}	dBm	-56	-44					
n77, n78,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -					
n79			Floffset, case 1	Floffset, case 2					
			and	and					
			BW/2 +	≥ CBW/2 +					
			Floffset, case 1	Floffset, case 2					
	F _{interferer}			F _{DL_low} – 3CBW					
			NOTE 2	to					
				FDL_high + 3CBW					
	NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to $([F_{\text{interferer}}] / SCS] + 0.5)SCS$ MHz with SCS the								
SI	ub-carrier spacing of	of the want	ted signal in MHz. Th	ne interferer is an					
N	R signal with an S0	CS equal to	o that of the wanted	signal.					

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: -CBW/2 - Floffset, case 1; b: CBW/2 + Floffset, case 1

NOTE 3: CBW denotes the channel bandwidth of the wanted signal

Table 7.6.2.5-5: Power Window (dB) for Inband Blocking

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3
Neter Device Miceless entire		titi LIE Dt-	lanana an al taat

Note: Power Window setting comprises two quantities, UE Power tolerance and test system power measurement

7.6.3 Out-of-band blocking

7.6.3.1 **Test Purpose**

Out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band, with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, or falling outside a frequency range up to 3CBW below or from 3CBW above the UE receive band, with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

7.6.3.2 **Test Applicability**

This test applies to all types of NR UE release 15 and forward.

7.6.3.3 Minimum Conformance Requirements

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be ≥ 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-1 and Table 7.6.3-2. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.5-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.3-1: Out-of-band blocking parameters for NR bands with F_{DL high} < 2700 MHz and F_{UL high} < 2700 MHz

DV naramatar	Units		CI	hannel bandwid	lth		
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm						
transmission bandwidth configuration	dB	6	6	7	9	10	
DV noromotor	Units		CI	hannel bandwic	lth		
RX parameter	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in transmission	dBm	REFSENS + channel specific value below					
bandwidth configuration	dB	11	12	13	14	15	
DV naramatar	Units	Channel bandwidth					
RX parameter	Units	90 MHz	100 MHz				
Power in transmission bandwidth	dBm		channel specific below				
configuration	dB	15.5	16				
			B below P _{CMAX_L,f,}		UL configuration	n specified in	

Table 7.6.3-2: Out of-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Range 1	Range 2	Range 3
n1, n2, n3,	Pinterferer	dBm	-44	-30	-15
n5, n7, n8,	F _{interferer} (CW)	MHz			
n12, n20,					
n25, n28,					1 ≤ f ≤ F _{DL low} – 85
n34, n38,			$-60 < f - F_{DL_{low}} < -15$	$-85 < f - F_{DL_{low}} \le -60$	0r
n39, n40,			or	or	F _{DL high} + 85 ≤ f
n41, n51,			$15 < f - F_{DL_high} < 60$	$60 \le f - F_{DL_high} < 85$	FDL_nign + 65 ≤ 1 ≤ 12750
n66, n70,					= 12750
n71, n75,					
n76					
NOTE: Th	ne power level of the	ne interfere	er (P _{Interferer}) for Range 3	shall be modified to -20 of	dBm for Finterferer >
60	000 MHz.				

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-2, a maximum of

$$\left\lfloor \max\left\{24,6\cdot\left\lceil n\cdot N_{\scriptscriptstyle RB} \ / \ 6 \right\rceil\right\} / \min\left\{\left\lfloor n\cdot N_{\scriptscriptstyle RB} \ / \ 10 \right\rfloor,5\right\}\right\rfloor$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor CBW/2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, CBW the bandwidth of the frequency channel in MHz and n = 1,2,3 for SCS = 15,30,60 kHz, respectively. For these exceptions, the requirements in sub-clause 7.7 apply.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range up to 3CBW below or from 3CBW above the UE receive band, where CBW is the channel bandwidth. The throughput of the wanted signal shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-3 and Table 7.6.3-4. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6.3-3: Out-of-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units		CI	nannel bandwid	lth		
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
Power in	dBm		REFSENS +	channel specific	value below		
transmission bandwidth configuration	dB	6	7	9	9	9	
RX parameter	Units	Channel bandwidth					
-		60 MHz	80 MHz	90 MHz	100 MHz		
Power in	dBm	REF	SENS + channe	specific value b	elow		
transmission bandwidth configuration	dB	9	9	9	9		

NOTE: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.6.3-4: Out of-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Range1	Range 2	Range 3
n77, n78	Pinterferer	dBm	-44	-30	-15
(NOTE 3)	Finterferer (CW)	MHz	$\begin{array}{c} -60 < f - F_{DL_low} \leq \\ -3CBW \\ or \\ 3CBW \leq f - F_{DL_high} < \\ 60 \end{array}$	$\begin{array}{l} -200 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ or \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 200 \end{array}$	$1 \le f \le F_{DL_low} - \\ MAX(200,3CBW) \\ or \\ F_{DL_high} \\ + MAX(200,3CBW) \\ \le f \le 12750$
n79 (NOTE 4)	Finterferer (CW)	MHz	N/A	$ \begin{array}{l} -150 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ \text{or} \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 150 \end{array} $	$1 \le f \le F_{DL_low} - MAX(150,3CBW)$ or $F_{DL_high} + MAX(150,3CBW)$ $\le f \le 12750$

- NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 6000 MHz.
- NOTE 2: CBW denotes the channel bandwidth of the wanted signal
- NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz. For CBW > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3CBW from the band edge. For CBW larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.
- NOTE 4: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 3650 MHz and F_{Interferer} < 5750 MHz. For CBW ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-4, a maximum of

$$\left| \max \left\{ 24,6 \cdot \left\lceil n \cdot N_{RR} / 6 \right\rceil \right\} / \min \left\{ \left\lceil n \cdot N_{RR} / 10 \right\rceil, 5 \right\} \right|$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor CBW/2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, CBW the bandwidth of the frequency channel in MHz and n = 1,2,3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in sub-clause 7.7 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6.3.

7.6.3.4 Test Description

7.6.3.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 7.6.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.3.

Table 7.6.3.4.1-1: Test Configuration Table

		De	fault Conditio	ns	
Test Environment as specified in TS			Normal		
38.508-1 [5] subclause 4.1				
Test Frequ	encies as specified in T	S	One frequence	cy chosen arbitrarily from	low or high range
38.508-1 [5	5] subclause 4.3.1				
Test Chan	nel Bandwidths as speci	fied in	Lowest, Mid,	Highest	
TS 38.508	-1 [5] subclause 4.3.1				
Test SCS	as specified in TS 38.50	8-1 [5]	Lowest		
subclause	4.3.1				
		Т	est Parameter	S	
	Downlink Co	nfigura	ition	Uplink Config	guration
Test ID	Mod'n	RB	allocation	Mod'n	RB allocation
1	CP-OFDM QPSK	1	NOTE 1	DFT-s-OFDM QPSK	NOTE 1
NOTE 1:	The specific configuration	n of upl	ink and downling	nk are defined in Table 7.	.3.2.4.1-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508 [5] Annex A, in Figure A.3.1.4.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.6.3.4.3.

7.6.3.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to Table 7.6.3.5-2 or 7.6.3.5-4. The frequency step size is $\min(|CBW/2|,5)$ MHz.
- 4. Set the downlink signal level according to the table 7.6.3.5-1 or 7.6.3.5-3. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within PW ± PW dB of the target power level in table 7.6.3.5-1 for NR bands with FDL_high < 2700 MHz and FUL_high < 2700 MHz or PW ± PW dB of the target power level in table 7.6.2.5-3 for NR bands with FDL_low ≥ 3300 MHz and FUL_low ≥ 3300 MHz, for at least the duration of the throughput measurement. PW is the power window according to Table 7.6.3.5-5 for the carrier frequency f and the channel bandwidth BW..</p>
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex
- 6. Record the frequencies for which the throughput doesn't meet the requirements.
- 7. Repeat steps from 3 to 6, using an interfering signal above the wanted signal at step 3.

7.6.3.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.6.3.5 Test Requirement

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.3.5-1 and 7.6.3.5-2.

For NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, the number of spurious response frequencies recorded in the final step of test procedure shall not exceed $\lfloor \max\{24,6 \cdot \lceil n \cdot N_{RB} / 6 \rceil\} / \min\{\lfloor n \cdot N_{RB} / 10 \rfloor, 5\} \rfloor$ in each assigned frequency channel when measured using a $\min(\lfloor CBW / 2 \rfloor, 5)$ MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.3.5-1: Out-of-band blocking parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

DV noremeter	Units		CI	hannel bandwid	ith		
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm		REFSENS +	channel specific	c value below		
transmission	dB	6	6	7	9	10	
bandwidth							
configuration							
RX parameter	Units		CI	hannel bandwid	ith		
IXX parameter	Ullits	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm		REFSENS +	channel specific	c value below		
transmission							
bandwidth	dB	11	12	13	14	15	
configuration							
RX parameter	Units	Channel bandwidth					
IXX parameter	Offics	90 MHz	100 MHz				
Power in	dBm	REFSENS + c	hannel specific				
transmission		value	below				
bandwidth							
configuration	dB	15.5	16				
NOTE: The tra	ansmitter sh	all be set to 4dB	below P _{CMAX_L,f,}	cat the minimum	UL configuration	n specified in	
		PCMAX_L,f,c define			-		

Table 7.6.3.5-2: Out of-band blocking for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

NR band	Parameter	Unit	Range 1	Range 2	Range 3
n1, n2, n3,	Pinterferer	dBm	-44	-30	-15
n5, n7, n8,	Finterferer (CW)	MHz			
n12, n20,					
n25, n28,					1 ≤ f ≤ F _{DL low} – 85
n34, n38,			$-60 < f - F_{DL_{low}} < -15$	$-85 < f - F_{DL_{low}} \le -60$	= -
n39, n40,			or	or	or F _{DL high} + 85 ≤ f
n41, n51,			$15 < f - F_{DL_high} < 60$	$60 \le f - F_{DL_high} < 85$	FDL_nign + 65 ≤ 1 ≤ 12750
n66, n70,					≥ 12750
n71, n75,					
n76					
NOTE: Th	ne power level of the	ne interfere	er (P _{Interferer}) for Range 3	shall be modified to -20 of	dBm for F _{Interferer} >
60	000 MHz.				

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, the throughput measurement derived in test procedure shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex 3.2 with parameters specified in Tables 7.6.3.5-3 and 7.6.3.5-4.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, the number of spurious response frequencies recorded in the final step of test procedure shall not exceed $\left[\max\left\{24,6\cdot\left\lceil n\cdot N_{RB} \mid 6\right\rceil\right\}\right]/\min\left\{\left\lceil n\cdot N_{RB} \mid 10\right\rfloor,5\right\}\right]$ in each assigned frequency channel when measured using a $\min(\left\lceil CBW \mid 2\right\rfloor,5)$ MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.3.5-3: Out-of-band blocking parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

	10 MHz	4 - 3 - 3			
	I U IVI 🗆 Z	15 MHz	20 MHz	40 MHz	50 MHz
dBm		REFSENS +	channel specific	value below	
dB	6	7	9	9	9
Units	Channel bandwidth				
	60 MHz	80 MHz	90 MHz	100 MHz	
dBm	REF	SENS + channel	specific value b	elow	
dB	9	9	9	9	
	dB Units dBm dB	dB 6 Units 60 MHz dBm REF dB 9	dB 6 7 Units CI 60 MHz 80 MHz dBm REFSENS + channe dB 9	dB 6 7 9 Units Channel bandwid 60 MHz 80 MHz 90 MHz dBm REFSENS + channel specific value b dB 9 9	dB 6 7 9 9 Units Channel bandwidth 60 MHz 80 MHz 90 MHz 100 MHz dBm REFSENS + channel specific value below

Table 7.3.2-3 with $P_{CMAX_L,f,c}$ defined in clause 6.2.4.

Table 7.6.3.5-4: Out of-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Range1	Range 2	Range 3
n77, n78	Pinterferer	dBm	-44	-30	-15
(NOTE 3)	Finterferer (CW)	MHz	$\begin{array}{c} -60 < f - F_{DL_low} \leq \\ -3CBW \\ or \\ 3CBW \leq f - F_{DL_high} < \\ 60 \end{array}$	$\begin{array}{l} -200 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ or \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 200 \end{array}$	$1 \le f \le F_{DL_low} - \\ MAX(200,3CBW) \\ or \\ F_{DL_high} \\ + MAX(200,3CBW) \\ \le f \le 12750$
n79 (NOTE 4)	Finterferer (CW)	MHz	N/A	$ \begin{array}{l} -150 < f - F_{DL_low} \leq \\ -MAX(60,3CBW) \\ or \\ MAX(60,3CBW) \leq f - \\ F_{DL_high} < 150 \end{array} $	$1 \le f \le F_{DL_low} - MAX(150,3CBW)$ or F_{DL_high} + MAX(150,3CBW) $\le f \le 12750$

NOTE 1: The power level of the interferer (Pinterferer) for Range 3 shall be modified to -20 dBm for Finterferer > 6000 MHz.

CBW denotes the channel bandwidth of the wanted signal

NOTE 3: The power level of the interferer (PInterferer) for Range 3 shall be modified to -20 dBm, for FInterferer > 2700 MHz and F_{Interferer} < 4800 MHz. For CBW > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3CBW from the band edge. For CBW larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

The power level of the interferer (PInterferer) for Range 3 shall be modified to -20 dBm, for FInterferer > 3650 MHz and F_{Interferer} < 5750 MHz. For CBW ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

Table 7.6.3.5-5: Power Window (dB) for Out-of-band Blocking

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz						
BW ≤ 20MHz	1.4	1.7	2						
20MHz < BW ≤ 40MHz	1.4	1.7	2.2						
40MHz < BW ≤ 100MHz 2.1 2.3 2.3									
Note: Power Window setting comprises two quantities. UE Power tolerance and test									

system power measurement;

7.6.4 Narrow band blocking

Test Purpose 7.6.4.1

Verifies a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

The lack of narrow-band blocking ability will decrease the coverage area when other NR Node B transmitters exist (except in the adjacent channels and spurious response).

7.6.4.2 Test Applicability

This test applies to all types of NR UE release 15 and forward.

7.6.4.3 Minimum Conformance Requirements

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.4.3-1. For operating bands with an unpaired DL part (as noted in Table 5.5-1), the requirements only apply for carriers assigned in the paired part.

Table 7.6.4.3-1: Narrow Band Blocking

NR	Para	Unit		Channel Bandwidth									
band	meter		5 MHz	10	15	20	25	40	50	60	80	90	100M
				MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Hz
n1,n2,	Pw	dBm		Prefsens + channel-bandwidth specific value below									
n3,			16	13	14	16	16	16	16	16	16	16	16
n5,	Puw	dBm	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55
n7,	(CW)												
n8,	F_{uw}	MHz	2.7075	5.21	7.702	10.20	13.02	20.55	NA	NA	NA	NA	NA
n12,	(offset			25	5	75	75	75					
n20,	SCS=												
n25	15												
n28,	kHz)												
n34,	Fuw	MHz	NA	NA	NA	NA			TBD	TBD			
n38,	(offset												
n39,	SCS=												
n40,	30												
n41,	kHz)												
n50,													
n51,													
n66,													
n70,													
n71,													
n74,													
n75,													
n76													

NOTE 1: The transmitter shall be set a 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

NOTE 3: The PREFSENS power level is specified in Table 7.3.1-1 and Table 7.3.1-1a for two and four antenna ports, respectively.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6.4.

7.6.4.4 Test Description

7.6.4.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 7.6.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6.4.4.1-1: Test Configuration Table

Default Conditions								
Test Enviro	onment as specified in T	S	Normal					
38.508-1 [5	5] subclause 4.1							
Test Frequ	encies as specified in T	S	Mid range	Mid range				
38.508-1 [5	5] subclause 4.3.1							
Test Channel Bandwidths as specified in			Lowest, Mid and Highest					
TS 38.508-1 [5] subclause 4.3.1								
Test SCS as specified in TS 38.508-1 [5]			Lowest					
subclause 4.3.1								
Test Parameters								
Downlink Configuration Uplink Configuration								
Test ID	Mod'n	RB	allocation	Mod'n	RB allocation			
1	CP-OFDM QPSK	1	NOTE 1 DFT-s-OFDM QPSK NOTE 1					
NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1.								

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.2 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.6.4.4.3.

7.6.4.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.6.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.4.4.1-1. Since the UE has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to Table 7.6.4.5-1.
- 4. Set the downlink signal level according to the table 7.6.4.5-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within- $P_W \pm P_W$ dB of the target power level in table 7.6.4.5-1 for NR bands for at least the duration of the throughput measurement. P_W is the power window according to Table 7.6.4.5-2 for the carrier frequency f and the channel bandwidth BW.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 3.

7.6.4.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.6.4.5 Test Requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.6.4.5-1.

Table 7.6.4.5-1: Narrow-band blocking

NR	Para	Unit	Channel Bandwidth										
band	meter		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100M Hz
n1,n2,	Pw	dBm			Pr	REFSENS +	channe	l-bandwid	th specif	ic value b	elow	•	
n3,			16	13	14	16	16	16	16	16	16	16	16
n5, n7,	P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55
n8, n12, n20, n25 n28,	F _{uw} (offset SCS= 15 kHz)	MHz	2.7075	5.2125	7.7025	10.2 075	13.02 75	20.55 75	NA	NA	NA	NA	NA
n34, n38, n39, n40, n41, n50, n51, n66, n70, n71, n74, n75, n76	Fuw (offset SCS= 30 kHz)	MHz	NA	NA	NA	NA			TBD	TBD			

NOTE 1: The transmitter shall be set a 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.6.4.5-2 Power Window (dB) for Narrow Band Blocking

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

Note: Power Window setting comprises two quantities, UE Power tolerance and test system power measurement;

7.6A Blocking characteristics for CA

- 7.6A.1 General
- 7.6A.2 Inband blocking for CA
- 7.6A.2.1 Intra-band contiguous CA

FFS

- 7.6A.3 Out-of-band blocking for CA
- 7.6A.3.1 Intra-band contiguous CA

FFS

7.6A.4 Narrow band blocking for CA

7.6D Blocking characteristics for UL-MIMO

7.6D.1 General

The blocking characteristic for UL-MIMO is a measure of the receiver's ability of an UE that support UL-MIMO to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in subclause 7.6 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter $P_{\text{CMAX L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.6D.2 Inband blocking for UL-MIMO

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- TP analysis is TBD.

7.6D.2.1 Test purpose

In-band blocking for UL- MIMO is defined for an unwanted interfering signal falling into the range from 15MHz below to 15MHz above the receive band of an UE that support UL-MIMO, with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, or into the range from 3CBW below to 3CBW above the receive band of an UE that support UL-MIMO, with $F_{DL_high} < 3300$ MHz and $F_{UL_high} < 3300$ MHz, at which the relative throughput shall meet or exceed the requirement for the specified measurement channels.

The lack of in-band blocking ability will decrease the coverage area when other g-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6D.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.6D.2.3 Minimum conformance requirements

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in subclause 7.6 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6D.

7.6D.2.4 Test description

7.6D.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.6D.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6D.2.4.1-1: Test Configuration Table

Default Conditions						
Test Environment as specified in TS		Normal				
	5] subclause 4.1					
Test Frequ	encies as specified in T	S	Mid range			
38.508-1 [5	5] subclause 4.3.1		_			
Test Channel Bandwidths as specified in			Lowest, Mid a	Lowest, Mid and Highest		
TS 38.508-1 [5] subclause 4.3.1				-		
Test SCS a	as specified in Table 5.3	.5-1	Lowest			
		Т	est Parameter	rs		
	Downlink Co	nfigura	tion	Uplink Config	guration	
Test ID	Mod'n	RB	allocation	Mod'n	RB allocation	
1 CP-OFDM QPSK			NOTE 1 CP-OFDM QPSK NOTE 1			
NOTE 1:	NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3D.2.4.1-1.					

- 1. Connect the SS and interfering source to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.4 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.6D.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.6D.2.4.3.

7.6D.2.4.2 Test procedure

Same test procedure as specified in 7.6.2.4.2 with the following exceptions:

P_W is the power window according to Table 7.6D.2.5-1 for the carrier frequency f and the channel bandwidth BW.

7.6D.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

7.6D.2.5 Test requirement

Same test requirement as specified in 7.6.2.5 with the following exceptions:

The power window table is replaced by Table 7.6D.2.5-1.

Table 7.6D.2.5-1: Power Window (dB) for Inband blocking for UL-MIMO

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz			
BW ≤ 20MHz	1.7	2.1	2.5			
20MHz < BW ≤ 40MHz	1.7	2.1	2.8			
40MHz < BW ≤ 100MHz	2.7	3.0	3.0			
NOTE: Power Window comprises two parts, UE Power step tolerance and test system						
power measurement uncertainty.						

7.6D.3 Out-of-band blocking for UL-MIMO

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- TP analysis is TBD.

7.6D.3.1 Test purpose

Out-of-band blocking for UL-MIMO is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the receive band of an UE that support UL- MIMO, with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz, or falling more than 3CBW below or above the receive band of an UE that support UL- MIMO, with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

The lack of out-of-band blocking ability will decrease the coverage area when other g-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6D.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.6D.3.3 Minimum conformance requirements

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in subclause 7.6 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6D.

7.6D.3.4 Test description

7.6D.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.6D.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Default Conditions Test Environment as specified in TS Normal 38.508-1 [5] subclause 4.1 Test Frequencies as specified in TS One frequency chosen arbitrarily from low or high range 38.508-1 [5] subclause 4.3.1 Test Channel Bandwidths as specified in Lowest, Mid and Highest TS 38.508-1 [5] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Lowest **Test Parameters** Downlink Configuration **Uplink Configuration** Test ID Mod'n **RB** allocation **RB** allocation Mod'n CP-OFDM QPSK NOTE 1 CP-OFDM QPSK NOTE 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3D.2.4.1-1

Table 7.6D.3.4.1-1: Test Configuration Table

- 1. Connect the SS and interfering source to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.5 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.6D.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.6D.3.4.3.

7.6D.3.4.2 Test procedure

Same test procedure as specified in 7.6.3.4.2 with the following exceptions:

Pw is the power window according to Table 7.6D.3.5-1 for the carrier frequency f and the channel bandwidth BW.

7.6D.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

7.6D.3.5 Test requirement

Same test requirement as specified in 7.6.3.5 with the following exceptions:

The power window table is replaced by Table 7.6D.3.5-1.

Table 7.6D.3.5-1: Power Window (dB) for Out-of-band blocking for UL-MIMO

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz			
BW ≤ 20MHz	1.7	2.1	2.5			
20MHz < BW ≤ 40MHz	1.7	2.1	2.8			
40MHz < BW ≤ 100MHz	2.7	3.0	3.0			
NOTE: Power Window comprises two parts, UE Power step tolerance and test system						
power measurement uncertainty.						

7.6D.4 Narrow band blocking for UL-MIMO

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- TP analysis is TBD.

7.6D.4.1 Test purpose

Narrow band blocking for UL-MIMO is defined for a receiver's ability of an UE that supports UL-MIMO to receive a NR signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

The lack of narrow-band blocking ability will decrease the coverage area when other g-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6D.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.6D.4.3 Minimum conformance requirements

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements specified in subclause 7.6 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.6D.

7.6D.4.4 Test description

7.6D.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.6D.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6D.4.4.1-1: Test Configuration Table

	Default Conditions						
Test Enviro	Test Environment as specified in TS						
38.508-1 [5] subclause 4.1						
Test Frequ	encies as specified in T	S	Mid range				
38.508-1 [5] subclause 4.3.1						
Test Chan	Test Channel Bandwidths as specified in		Lowest, Mid a	and Highest			
TS 38.508	TS 38.508-1 [5] subclause 4.3.1			-			
Test SCS	as specified in Table 5.3	.5-1	Lowest				
		Т	est Parameter	rs			
	Downlink Co			Uplink Config	guration		
Test ID Mod'n RB		allocation	Mod'n	RB allocation			
1 CP-OFDM QPSK			NOTE 1	CP-OFDM QPSK	NOTE 1		
NOTE 1:							

- 1. Connect the SS and interfering source to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.5 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.6D.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.6D.4.4.3.

7.6D.4.4.2 Test procedure

Same test procedure as specified in 7.6.4.4.2 with the following exceptions:

P_W is the power window according to Table 7.6D.4.5-1 for the carrier frequency f and the channel bandwidth BW.

7.6D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

7.6D.4.5 Test requirement

Same test requirement as specified in 7.6.4.5 with the following exceptions:

The power window table is replaced by Table 7.6D.4.5-1.

Table 7.6D.4.5-1: Power Window (dB) for Narrow band blocking for UL-MIMO

		f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz	
BW ≤ 20N	ИHz	1.7	2.1	2.5	
20MHz <	BW ≤ 40MHz	1.7	2.1	2.8	
40MHz < BW ≤ 100MHz		2.7	3.0	3.0	
NOTE: Power Window comprises two parts, UE Power step tolerance and test syster					
power measurement uncertainty					

7.7 Spurious response

7.7A.0 Minimum conformance requirements

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The Spurious response parameters with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz (intra-band contiguous CA) are still missing in Clause 7.7A.1 Spurious response for Intra-band contiguous CA of TS 38.101-1 [2].
- The Spurious response parameters with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz (intra-band non-contiguous CA) are still missing in Clause 7.7A.2 Spurious response for Intra-band non-contiguous CA of TS 38.101-1 [2].
- The Spurious response parameters with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz (intra-band non-contiguous CA) are still missing in Clause 7.7A.2 Spurious response for Intra-band non-contiguous CA of TS 38.101-1 [2].
- [Table 7.3A.2.xx] Intra-band xDL_CA uplink configuration for reference sensitivity are still missing in Clause 7.3A.2

7.7A.0.1 Minimum conformance requirements for intra-band contiguous CA

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall configure closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.7A.0-1 with the uplink configuration set according to [Table 7.3A.2.xx] for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.2.3-3. The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7A.0-1 and 7.7A.0-2. For operating bands of SDL (as noted in Table 5.2-1), the requirements also apply for an SCC assigned in the unpaired part with parameters specified in Tables 7.7A.0-1 and 7.7A.0-2.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.7A.1.

Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7A.0.1-1: Spurious response parameters with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz (intraband contiguous CA)

RX parameter	Units		Channel bandwidth			
		110 MHz	120 MHz	130 MHz	140 MHz	150 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission bandwidth configuration	dB	9	9	9	9	9
RX parameter	Units	Channel bandwidth				
		160 MHz	180 MHz	200 MHz		
Power in transmission bandwidth configuration	dBm	REFSENS + channel specific value below	REFSENS + channel specific value below	REFSENS + channel specific value below		
	dB	9	9	9		
NOTE 1: The tra	ansmitter sh	nall be set to 4 dE	B below Pcmax_L,f	c at the minimum	UL configuratio	n specified in

Table 7.7A.0.1-2: Spurious response for CA

Parameter	Unit	Level	
PInterferer (CW)	dBm	-44	
FInterferer	MHz	Spurious response frequencies	

7.7A.0.2 Minimum conformance requirements for intra-band non-contiguous CA

7.7A.0.3 Minimum conformance requirements for inter-band CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the spurious response are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.7 for each component carrier while all downlink carriers are active.

For the UE which supports inter-band CA configuration in subclause 7.3A.2.0.4.2, $P_{interferer}$ power defined in Table 7.7A-2 is increased by the amount given by $\Delta R_{IB,c}$ defined in subclause 7.3A.2.0.4.2.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

The normative reference for this requirement is TS 38.101-1 [2] clause 7.7A.3.

7.7A.1 Spurious response for 2DL CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The content of sub-clause 7.6A.3 is FFS.
- The content of clause "7.6A.3.1.4.1 Initial Conditions" for Out-of-band blocking for 2DL CA has not been defined yet.
- Annex [H.2A] Statistical testing of receiver characteristics for CA is FFS.
- The MU and TT for Spurious response CA is FFS in Annex F.

7.7A.1.1 Test Purpose

Spurious response for 2DL CA verifies the receiver's ability to receive a wanted 2DL carrier aggregated signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6A.3 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7A.1.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support 2DL CA.

7.7A.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.7A.0.

7.7A.1.4 Test Description

7.7A.1.4.1 Initial Conditions

The initial conditions shall be the same as in clause [7.6A.3.1.4.1] in order to test spurious responses obtained in clause 7.6A.3.1 under the same conditions.

7.7A.1.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Test Configuration Table [FFS] in Clause [7.6A.3] on both PCC and SCC. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Test Configuration Table [FFS] in Clause [7.6A.3] on both PCC and SCC. Since the UE has no payload data to send, the UE sends uplink MAC padding bits on the UL RMC.

- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7A.0.1-2. The spurious frequencies are taken from records in the final step of test procedures in clause 7.6A.3 Out-of-band blocking for CA.
- 4. Set the downlink signal level according to Table 7.7A.0.1-1 for both carriers. Send uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the throughput measurement:

The PCC output power is within $-P_W \pm P_W$ dB of (target level in Table 7.7A.0.1-1 + $10\log(P_L_{CRB}/N_{RB_alloc})$), for carrier frequency $f \le 3.0 GHz$,

or within $-P_W \pm P_W$ dB of (target level in Table 7.7A.0.1-1 + $10log(P_L_{CRB}/N_{RB_alloc})$) for carrier frequency $3.0GHz < f \le 4.2GHz$.

The SCC output power is within $-P_W \pm P_W$ dB of (target level in Table 7.7A.0.1-1 + $10log(S_L_{CRB}/N_{RB_alloc}))$, for carrier frequency $f \le 3.0GHz$,

or within -P_W \pm P_W dB of (target level in Table 7.7A.0.1-1 + $10log(S_L_{CRB}/N_{RB_alloc}))$ for carrier frequency $3.0GHz < f \le 4.2GHz$.

 P_W is the power window according to Table 7.7A.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

5. For each spurious frequency, measure the average throughput for each component carrier for duration sufficient to achieve statistical significance according to Annex [H.2A].

Table 7.7A.1.4.2-1: Power Window (dB) for Spurious response CA

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

7.7A.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.7A.1.5 Test Requirement

The throughput measurement of each carrier derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.7A.0.1-1 and 7.7A.0.1-2.For the UE which supports inter-band 2DL CA configuration in Table 7.3.2_1.3-1 and Table 7.3A.2.0.4.2.1-1, $P_{Interferer}$ power defined in Table 7.7A.0.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.2_1.3-1 and Table 7.3A.2.0.4.2.1-1.

7.7A.2 Spurious response for 3DL CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The content of sub-clause 7.6A.3 is FFS.
- The content of clause "7.6A.3.2.4.1 Initial Conditions" for Out-of-band blocking for 3DL CA has not been defined yet.

7.7A.2.1 Test Purpose

Spurious response for 3DL CA verifies the receiver's ability to receive a wanted 3DL carrier aggregated signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6A.3 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7A.2.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support 3DL CA.

7.7A.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.7A.0.

7.7A.2.4 Test Description

7.7A.2.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6A.3.2.4.1 in order to test spurious responses obtained in clause 7.6A.3.2 under the same conditions.

7.7A.2.4.2 Test Procedure

Same test procedure as sub-clause 7.7A.1.4.2 with the following exceptions:

Step 1, 2 and 4 of Test Procedure as in clause 7.7A.1.4.2 is replaced by:

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Test Configuration Table [FFS] in Clause [7.6A.3] on both PCC and SCCs. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Test Configuration Table [FFS] in Clause [7.6A.3] on both PCC and SCCs. Since the UE has no payload data to send, the UE sends uplink MAC padding bits on the UL RMC.
- 4. Set the downlink signal level according to Table 7.7A.0.1-1 for both carriers. Send uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the throughput measurement:

The PCC output power is within $-P_W \pm P_W$ dB of (target level in Table 7.7A.0.1-1 + $10log(P_L_{CRB}/N_{RB_alloc})$), for carrier frequency $f \le 3.0 GHz$,

or within $-P_W \pm P_W$ dB of (target level in Table 7.7A.0.1-1 + $10log(P_LC_{RB}/N_{RB_alloc})$) for carrier frequency $3.0GHz < f \le 4.2GHz$.

The SCCs output power is within $-P_W \pm P_W$ dB of (target level in Table 7.7A.0.1-1 + $10\log(S_L_{CRB}/N_{RB_alloc})$), for carrier frequency $f \le 3.0GHz$,

or within -Pw \pm Pw dB of (target level in Table 7.7A.0.1-1 + $10log(S_L_{CRB}/N_{RB_alloc}))$ for carrier frequency $3.0GHz < f \le 4.2GHz$.

P_W is the power window according to Table 7.7A.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

7.7A.2.4.3 Message Contents

Same message contents as sub-clause 7.7A.1.4.3.

7.7A.2.5 Test Requirement

The throughput measurement of each carrier derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.7A.0.1-1 and 7.7A.0.1-2.For the UE which supports inter-band 3DL CA configuration in Table 7.3.2_1.3-1 and Table 7.3A.2.0.4.2.2-1, $P_{Interferer}$ power defined in Table 7.7A.0.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.2_1.3-1 and Table 7.3A.2.0.4.2.2-1.

7.7A.3 Spurious response for 4DL CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The content of sub-clause 7.6A.3 is FFS.
- Table [7.3A.2.0.4.2.3-1] $\Delta R_{IB,c}$ due to CA (four bands) has not been defined yet.
- The content of clause "7.6A.3.3.4.1 Initial Conditions" for Out-of-band blocking for 4DL CA has not been defined yet.

7.7A.3.1 Test Purpose

Spurious response for 4DL CA verifies the receiver's ability to receive a wanted 4DL carrier aggregated signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6A.3 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7A.3.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support 4DL CA.

7.7A.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.7A.0.

7.7A.3.4 Test Description

7.7A.3.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6A.3.3.4.1 in order to test spurious responses obtained in clause 7.6A.3.3 under the same conditions.

7.7A.3.4.2 Test Procedure

Same test procedure as sub-clause 7.7A.2.4.2.

7.7A.3.4.3 Message Contents

Same message contents as sub-clause 7.7A.1.4.3.

7.7A.3.5 Test Requirement

The throughput measurement of each carrier derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.7A.0.1-1 and 7.7A.0.1-2.For the UE which supports inter-band 4DL CA configuration in Table 7.3.2_1.3-1 and Table [7.3A.2.0.4.2.3-1], $P_{Interferer}$ power defined in Table 7.7A.0.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.2_1.3-1 and Table [7.3A.2.0.4.2.3-1].

7.7.1 Test Purpose

Spurious response is a measure of the ability of the receiver to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency for which a response is obtained, i.e. for which the out-of-band blocking limit as specified in subclause 7.6.3 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7.2 Test Applicability

This test applies to all types of NR UE release 15 and forward.

7.7.3 Minimum Conformance Requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters for the wanted signal as specified in Table 7.7.3-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and for the interferer as specified in Table 7.7.3-2. The said relative throughput requirement shall

be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.5-1), the requirements only apply for carriers assigned in the paired part.

Table 7.7.3-1: Spurious response parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

DV parameter	Units	Channel bandwidth					
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm		REFSENS +	channel specific	value below		
transmission bandwidth configuration	dB	6	6	7	9	10	
DV maramatar	l luita		Cl	nannel bandwid	ith		
RX parameter	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm		REFSENS +	channel specific value below			
transmission bandwidth	dB	11	12	13	14	15	
configuration			CI	nannel bandwid	lth		
RX parameter	Units	90 MHz	100 MHz	iao. Sanawie			
Power in	dBm	REFSENS + c	hannel specific				
transmission		value below					
bandwidth configuration	dB	15.5	16				

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7.3-1a: Spurious response parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units	Channel bandwidth				
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission	dB	6	7	9	9	9
bandwidth						
configuration						
RX parameter	Units		CI	hannel bandwid	lth	
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in	dBm	REF	SENS + channe	l specific value b	elow	
transmission	dB	9	9	9	9	
bandwidth						
configuration		ı	1	I		ı

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7.3-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

The normative reference for this requirement is TS 38.101-1 [2] clause 7.7.

7.7.4 Test Description

7.7.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6.3.4.1 in order to test spurious responses obtained in clause 7.6.3 under the same conditions.

7.7.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.6.3.4.1-1. Since the UE has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7.5-2. The spurious frequencies are taken from records in the final step of test procedures in clause 7.6.3.4.2.
- 4. Set the downlink signal level according to the table 7.7.5-1 or 7.7.5-1a. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within $P_W \pm P_W$ dB of the target power level in table 7.7.5-1 or 7.7.5-1a for NR bands for at least the duration of the throughput measurement. P_W is the power window according to Table 7.7.5-3 for the carrier frequency f and the channel bandwidth BW.
- 5. For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

7.7.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.7.5 Test Requirement

The throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters for the wanted signal as specified in Table 7.7.5-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and in Table 7.7.5-1a for NR bands with $F_{DL_high} \geq$ 3300 MHz and $F_{UL_high} \geq$ 3300 MHz and for the interferer as specified in Table 7.7.5-2.

Table 7.7.5-1: Spurious response parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

RX parameter	Units	Channel bandwidth				
IXX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission bandwidth configuration	dB	6	6	7	9	10
DV naramatar	Units	. Channel bandwidth				
RX parameter	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz
Power in	dBm	REFSENS + channel specific value below				
transmission bandwidth configuration	dB	11	12	13	14	15
<u> </u>	Harlton.		CI	nannel bandwid	lth	
RX parameter	Units	90 MHz	100 MHz			
Power in	dBm	REFSENS + c	hannel specific			
transmission			value below			
bandwidth configuration	dB	15.5	16			

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7.5-1a: Spurious response parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

RX parameter	Units		CI	hannel bandwid	lth	
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm		REFSENS +	channel specific	value below	
transmission bandwidth configuration	dB	6	7	9	9	9
RX parameter	Units		CI	hannel bandwid	lth	
-		60 MHz	80 MHz	90 MHz	100 MHz	
Power in	dBm	REF	SENS + channe	specific value b	elow	
transmission bandwidth configuration	dB	9	9	9	9	

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

Table 7.7.5-2: Spurious response

Parameter	Unit	Level		
P _{Interferer} (CW)	dBm	-44		
FInterferer	MHz	Spurious response frequencies		

Table 7.7.5-3 Power Window (dB) for Spurious Response

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz					
BW ≤ 20MHz	1.4	1.7	2					
20MHz < BW ≤ 40MHz	1.4	1.7	2.2					
40MHz < BW ≤ 100MHz	2.1	2.3	2.3					
Note: Power Window setting comprises two quantities. LIF Power tolerance and test								

Note: Power Window setting comprises two quantities, UE Power tolerance and test system power measurement;

7.7D Spurious response for UL-MIMO

Editor's note:

7.7D.1 Test Purpose

Spurious response verifies the ability of the UE that support UL-MIMO to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking for UL-MIMO limit as specified in sub-clause 7.6D.3 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7D.2 Test Applicability

This test applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.7D.3 Minimum Conformance Requirements

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.7D.3 shall be met with the UL-MIMO configurations specified in Table 6.2D.1.4.1-1 in Clause 6D.2.1 UE maximum output power for UL-MIMO. For UL-MIMO, the parameter Pcmax_L is defined as the total transmitter power over the two transmitter antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.7D.

7.7D.4 Test Description

7.7D.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6D.3.4.1 in order to test spurious responses obtained in clause 7.6D.3 under the same conditions.

7.7D.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Test Configuration Table 7.6D.3.4.1-1 in Clause 7.6D.3. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Test Configuration Table 7.6D.3.4.1-1 in Clause 7.6D.3. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7D.5-2. The spurious frequencies are taken from records in the final step of test procedures in clause 7.6D.3.4.2.
- 4. Set the downlink signal level according to the Table 7.7D.5-1. Send uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, -3.4 dB of the target level in table 7.7D.5-1 for carrier frequency $f \le 3.0$ GHz or within +0, -4.0 dB of the target level for carrier frequency 3.0GHz $< f \le 4.2$ GHz, for at least the duration of the throughput measurement.
- 5. For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

7.7D.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] clause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.

7.7D.5 Test Requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3 with parameters specified in Tables 7.7D.5-1 and 7.7D.5-2.

Table 7.7D.5-1: Spurious response parameters

RX parameter	Units		Channel bandwidth							
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz				
Power in	dBm		REFSENS + channel specific value below							
transmission	dB	6	7	9	9	9				
bandwidth										
configuration										
RX parameter	Units		CI	hannel bandwid	lth					
		60 MHz	80 MHz	90 MHz	100 MHz					
Power in	dBm	REF	SENS + channe	l specific value b	elow					
transmission	dB	9	9	9	9					
bandwidth										

Note 1: The transmitter shall be set to 4dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.4.

Note 2: The reference measurement channel is specified in Annex A.3 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.7D.5-2: Spurious Response

Parameter	Unit	Level		
P _{Interferer} (CW)	dBm	-44		
FInterferer	MHz	Spurious response frequencies		

7.8 Intermodulation characteristics

7.8.1 General

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal

7.8.2 Wide band Intermodulation

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:- TBD remains in the 38.101-1

7.8.2.1 Test purpose

Intermodulation response tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.8.2.3 Minimum conformance requirements

The wide band intermodulation requirement is defined using a CW carrier and modulated NR signal as interferer 1 and interferer 2 respectively.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.2-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and Table 7.8.2-2 for NR bands with $F_{DL_low} \geq 3300$ MHz and $F_{UL_low} \geq 3300$ MHz. The said relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 5.5-1), the requirements only apply for carriers assigned in the paired part.

Table 7.8.2-1: Wide band intermodulation parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

Rx parameter	Units		Channel bandwidth										
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
P _w in			REFSENS + channel bandwidth specific value below										
Transmission Bandwidth Configuration, per CC	dBm	6	6	7	9	10	11	12	13	14	15	15	16
P _{Interferer 1} (CW)	dBm		-46										
P _{Interferer 2} (Modulated)	dBm							-46					
BWInterferer 2	MHz							5					
Finterferer 1 (Offset)	MHz		-BW/2 - 7.5 / +BW/2 + 7.5										
F _{Interferer 2} (Offset)	MHz						2	*FInterferer 1	1				

- NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is TBD.
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in TBD.
- NOTE 4: The Finterferer 1 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and Finterferer 2 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.

Table 7.8.2-2: Wide band intermodulation parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

Rx	Unit				Channe	l bandwidth				
parameter	S	10 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	
P _w in Transmission Bandwidth Configuration , per CC	dBm					REFSENS	+ 6			
P _{Interferer 1} (CW)	dBm			-46						
P _{Interferer 2} (Modulated)	dBm					-46				
BW _{Interferer 2}	MHz					BW				
F _{Interferer 1} (Offset)	MHz		-2BW / +2BW							
F _{Interferer 2} (Offset)	MHz		2*FInterferer 1							

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: Reference measurement channel is TBD.

NOTE 3: The modulated interferer consists of the Reference measurement channel specified in TBD.

NOTE 4: The Finterferer 1 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and Finterferer 2 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.8.2.

7.8.2.4 Test description

7.8.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.8.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.8.2.4.1-1: Test Configuration Table

		De	fault Conditio	ons		
Test Enviro	onment as specified in T	S	Normal			
	5] subclause 4.1					
Test Frequ	encies as specified in T	S	Mid range			
38.508-1 [5	5] subclause 4.3.1					
Test Channel Bandwidths as specified in			Lowest, Mid, Highest			
TS 38.508-	-1 [5] subclause 4.3.1					
Test SCS a	as specified in Table 5.3	.5-1	Highest			
		T	est Parameter	rs		
	Downlink Co	nfigura	ition	Uplink Config	guration	
Test ID	Mod'n	RB allocation		Mod'n	RB allocation	
1	CP-OFDM QPSK	1	NOTE 1	DFT-s-OFDM QPSK	NOTE 1	
NOTE 1:	The specific configuration	n of upl	ink and downli	nk are defined in Table 7	.3.2.4.1-1.	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.3 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.5.4.3.

7.8.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.8.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.8.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.8.2.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within $-P_W \pm P_W$ dB of the target level in Table 7.8.2.5-1. P_W is the power window according to Table 7.8.2-3 for the carrier frequency f and the channel bandwidth BW.
- 4. Set the Interfering signal levels to the values as defined in Table 7.8.2.5-1 and frequency below the wanted signal, using a modulated interferer bandwidth as defined in [TBD] of the present document.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 4.

7.8.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-118 PUSCH-Config.

7.8.2.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8.2.5-1 for the specified wanted signal mean power in the presence of two interfering signals.

Table 7.8.2.5-1: Wide band intermodulation parameters for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

Rx parameter	Units		Channel bandwidth										
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
P _w in			REFSENS + channel bandwidth specific value below										
Transmission Bandwidth Configuration, per CC	dBm	6	6	7	9	10	11	12	13	14	15	15	16
P _{Interferer 1} (CW)	dBm		-46										
P _{Interferer 2} (Modulated)	dBm							-46					
BW _{Interferer 2}	MHz							5					
F _{Interferer 1} (Offset)	MHz		-BW/2 - 7.5 / +BW/2 + 7.5										
F _{Interferer 2} (Offset)	MHz						2	*FInterferer 1	I				

- NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is TBD.
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in TBD.
- NOTE 4: The F_{interferer 1} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.

Table 7.8.2-2: Wide band intermodulation parameters for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

Dv	Unit	Channel bandwidth										
Rx parameter	S	10 MHz	20 40 50 60 80 90 MHz MHz MHz MHz MHz MHz						100 MHz			
P _w in Transmission Bandwidth Configuration , per CC	dBm		REFSENS + 6									
P _{Interferer 1} (CW)	dBm			-46								
P _{Interferer 2} (Modulated)	dBm					-46						
BW _{Interferer 2}	MHz					BW						
F _{Interferer 1} (Offset)	MHz		-2BW / +2BW									
F _{Interferer 2} (Offset)	MHz		2*Finterferer 1									

NOTE 1: The transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table

7.3.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4. NOTE 2: Reference measurement channel is TBD.

NOTE 3: The modulated interferer consists of the Reference measurement channel specified in TBD.

NOTE 4: The Finterferer 1 (offset) is the frequency separation of the centre frequency of the carrier closest to the

interferer and the centre frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated

interferer.

Table 7.8.2-3: Power Window (dB) for Wideband Intermodulation

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2.0
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

7.8D Intermodulation characteristics for UL-MIMO

7.8D.1 General

Intermodulation response rejection for UL-MIMO is a measure of the capability of the receiver of an UE that support UL-MIMO to receive a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8D.2 Wide band Intermodulation for UL-MIMO

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- TP analysis is TBD.

7.8D.2.1 Test purpose

Wide band Intermodulation for UL-MIMO tests the ability of UE that support UL-MIMO to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

An UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8D.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL-MIMO.

7.8D.2.3 Minimum conformance requirements

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.8 shall be met with the UL-MIMO configurations described in sub-clause 6.2D.1. For UL-MIMO, the parameter $P_{CMAX\ L}$ is defined as the total transmitter power over the two transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.8D.

7.8D.2.4 Test description

7.8D.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.8D.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.8D.2.4.1-1: Test Configuration Table

	Default Conditions								
Test Enviro	Test Environment as specified in TS								
	5] subclause 4.1								
Test Frequ	encies as specified in T	S	Mid range						
38.508-1 [5	5] subclause 4.3.1								
Test Chan	Test Channel Bandwidths as specified in			and Highest					
TS 38.508	-1 [5] subclause 4.3.1								
Test SCS a	as specified in Table 5.3	.5-1	Lowest						
		Т	est Parameter	s					
	Downlink Co	nfigura	ition	Uplink Config	guration				
Test ID	Mod'n	RB	allocation	Mod'n	RB allocation				
1	CP-OFDM QPSK	NOTE 1		CP-OFDM QPSK	NOTE 1				
NOTE 1:	The specific configuration	n of upl	ink and downling	nk are defined in Table 7	.3D.2.4.1-1.				

- 1. Connect the SS and interfering sources to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.4.6 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.8D.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.8D.2.4.3.

7.8D.2.4.2 Test procedure

Same test procedure as specified in 7.8.2.4.2 with the following exceptions:

P_W is the power window according to Table 7.8D.2.5-1 for the carrier frequency f and the channel bandwidth BW.

7.8D.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX UL MIMO.7.8D.2.5

Test requirement

Same test requirement as specified in 7.8.2.5 with the following exceptions:

The power window table is replaced by Table 7.8D.2.5-1.

Table 7.8D.2.5-1: Power Window (dB) for Wide band Intermodulation for UL-MIMO

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.7	2.1	2.5
20MHz < BW ≤ 40MHz	1.7	2.1	2.8
40MHz < BW ≤ 100MHz	2.7	3.0	3.0
NOTE: Power Window	comprises two p	arts, UE Power step toler	ance and test system
power measure	ment uncertainty	'.	

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Test purpose

Test verifies the UE's spurious emissions meet the requirements described in clause 7.9.3.

Excess spurious emissions increase the interference to other systems.

7.9.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

7.9.3 Minimum conformance requirements

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1

Table 7.9.3-1: General receiver spurious emission requirements

Frequency range	Measurement bandwidth	Maximum level	NOTE
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
1 GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz \leq f \leq 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	2
12.75 GHz – 26 GHz	1 MHz	-47dBm	3

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH_RA/RB as defined in Annex C.3.1.

NOTE 2: Applies for Band that the upper frequency edge of the DL Band more than 2.69 GHz.

NOTE 3: Applies for Band that the upper frequency edge of the DL Band more than 5.2 GHz.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.9.

0

7.9.4 Test description

7.9.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.9.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Default Conditions Test Environment as specified in TS Normal 38.508-1 [5] subclause 4.1 Test Frequencies as specified in TS Low range, Mid range, High range 38.508-1 [5] subclause 4.3.1 Test Channel Bandwidths as specified in Highest TS 38.508-1 [5] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Highest **Test Parameters Downlink Configuration Uplink Configuration Test ID** Mod'n **RB** allocation **RB** allocation

Table 7.9.4.1-1: Test Configuration Table

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.5 for TE diagram and section A.3.2.1 for UE diagram.

The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1.

N/A

0

- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.9.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

N/A

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message content are defined in clause 7.5.4.3.

7.9.4.2 Test procedure

NOTE 1:

- 1. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.
- 2. Repeat step 1 for all NR Rx antennas of the UE.

7.9.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.9.5 Test requirement

The measured spurious emissions derived in step 1), shall not exceed the maximum level specified in Table 7.9.5-1.

Table 7.9.5-1: General receiver spurious emission requirements

Frequency range	Measurement bandwidth	Maximum level	NOTE
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
1 GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz ≤ f ≤ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	2
12.75 GHz – 26 GHz	1 MHz	-47dBm	3

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given

by PDCCH_RA/RB as defined in Annex C.3.1.

NOTE 2: Applies for Band that the upper frequency edge of the DL Band more than 2.69 GHz. NOTE 3: Applies for Band that the upper frequency edge of the DL Band more than 5.2 GHz.

7.9A.0 Minimum conformance requirements

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one NR band, the UE shall meet the Rx spurious emissions requirements specified in subclause 7.9 for each component carrier while all downlink carriers are active.

The normative reference for this requirement is TS 38.101-1 [2] clause 7.9A.3.

7.9A.1 Spurious emission for 2DL CA

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- Table [5.3A.5-X] NR CA configurations and bandwidth combination sets defined for inter-band 2DL CA

7.9A.1.1 Test Purpose

Test verifies the UE's spurious emissions meet the requirements described in clause 7.9A.1.3.

Excess spurious emissions increase the interference to other systems.

7.9A.1.2 Test Applicability

This test case applies to all types of NR UE release 15 and forward that support inter-band 2DL CA with a DL-only band.

7.9A.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.9A.0.

7.9A.1.4 Test Description

7.9A.1.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR CA bands specified in Table [5.3A.5-X]. All of these configurations shall be tested with applicable test parameters for each CA Configuration, and are shown in Table 7.9A.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.9A.1.4.1-1: Test Configuration Table

			Initial Condition	s					
Test Environme subclause 4.1	nt as specified in ⁻	TS 38.508-1 [5]	Normal						
Test Frequencie subclause 4.3.1	es as specified in 1	S 38.508-1 [5]	Low range, Mid	range, High rang	e				
Test Channel B 38.508-1 [5] sub	andwidths as spec oclause 4.3.1	ified in TS	Highest						
Test SCS as sp	ecified in Table 5.3	3.5-1	Highest						
		Test Param	eters for CA Co	nfigurations					
Ch Configur	ation / N _{RB_agg}	Dov	vnlink Configura	ation	Uplink C	onfiguration			
PCC N _{RB}	SCCs N _{RB}	Mod'n		& SCC ocation	Mod'n	PCC RB allocation			
100	100	N/A	A 0 0 N/A 0						
NOTE 1: The	specific configurati	on of uplink and o	downlink are defir	ned in Table 7.3.2	.4.1-1.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure [TBD] for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 7.9A.1.4.3.

7.9A.1.4.2 Test Procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause [TBD]. Message contents are defined in clause 6.5A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission. During measurement SS sends no uplink scheduling information to the UE.
- 5. Repeat step 1 for all NR Rx antennas of the UE.

7.9A.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.9A.1.5 Test Requirement

The measured spurious emissions derived in step 1), shall not exceed the maximum level specified in Table 7.9A-1.

Annex A (normative): Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per data stream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all data streams (code words).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

The measurement channels in the following subclauses are defined to derive the requirements in clause 6 (Transmitter Characteristics) and clause 7 (Receiver Characteristics). The measurement channels represent example configurations of physical channels for different data rates.

A.2.2 Reference measurement channels for FDD

A.2.2.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.2.1-1: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	15	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	5	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	15	15	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	15	15	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	20	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	20	15	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	25	15	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	25	15	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	30	15	80	11	pi/2 BPSK	0	1/4	2472	16	2	1	10560	10560
	30	15	160	11	pi/2 BPSK	0	1/4	4872	24	2	2	21120	21120
	40	15	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	40	15	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	50	15	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	50	15	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.1-2: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	30	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	5	30	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	10	30	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	10	30	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	15	30	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	15	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	20	30	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	20	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	25	30	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	25	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	30	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	30	30	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	40	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	40	30	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	50	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	50	30	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	60	30	81	11	pi/2 BPSK	0	1/4	2536	16	2	1	10692	10692
	60	30	162	11	pi/2 BPSK	0	1/4	5000	24	2	2	21384	21384
	80	30	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	80	30	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	90	30	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	90	30	243	11	pi/2 BPSK	0	1/4	7560	24	2	2	32076	32076
	100	30	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	100	30	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.1-3: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	10	60	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	10	60	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	15	60	9	11	pi/2 BPSK	0	1/4	288	16	2	1	1188	1188
	15	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	20	60	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	20	60	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	25	60	15	11	pi/2 BPSK	0	1/4	480	16	2	1	1980	1980
	25	60	30	11	pi/2 BPSK	0	1/4	984	16	2	1	3960	3960
	30	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	30	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	40	60	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	40	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	60	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	60	60	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	80	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	80	60	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	90	60	60	11	pi/2 BPSK	0	1/4	1864	16	2	1	7920	7920
	90	60	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, Note 1: 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.2 DFT-s-OFDM QPSK

Table A.2.2.2-1: Reference Channels for DFT-s-OFDM QPSK for 15kHz SCS

Paramet er	Channel bandwidt h	Subcarri er Spacing	Allocate d resourc e blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Codin g Rate	Payloa d size	Transpo rt block CRC	LDPC Base Graph	Numbe r of code blocks per slot (Note 3)	Total numbe r of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	5	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	10	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	15	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	15	15	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	15	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	20	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	20	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	20	15	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	25	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	15	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	25	15	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	30	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512

50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.2-2: Reference Channels for DFT-s-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	100	30	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

- Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.
- Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2-3: Reference Channels for DFT-s-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	10	60	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	15	11	QPSK	2	1/6	768	16	2	1	3960	1980
	25	60	30	11	QPSK	2	1/6	1544	16	2	1	7920	3960
	30	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	30	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	40	60	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	40	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	60	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	60	60	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	80	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	80	60	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	90	60	60	11	QPSK	2	1/6	3104	16	2	1	15840	7920
	90	60	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.3 DFT-s-OFDM 16QAM

Table A.2.2.3-1: Reference Channels for DFT-s-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	15	15	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	15	15	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	20	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	20	15	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	25	15	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	25	15	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
Note 1: D	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.3-2: Reference Channels for DFT-s-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		-				Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	5	30	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	15	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	20	30	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	20	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	25	30	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	25	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	30	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	30	30	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	40	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	40	30	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	50	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	50	30	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	80	30	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	90	30	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	90	30	243	11	16QAM	10	1/3	43032	24	1	6	128304	32076
	100	30	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	100	30	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data. Note 1:

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.3-3: Reference Channels for DFT-s-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	10	60	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	15	11	16QAM	10	1/3	2664	16	2	1	7920	1980
	25	60	30	11	16QAM	10	1/3	5248	24	1	1	15840	3960
	30	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	30	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	40	60	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	40	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	60	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	60	60	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	80	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	80	60	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	90	60	60	11	16QAM	10	1/3	10504	24	1	2	31680	7920
	90	60	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.4 DFT-s-OFDM 64QAM

Table A.2.2.4-1: Reference Channels for DFT-s-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		,				Bits	Bits			Bits	
	5	15	25	11	64QAM	18	1/2	9992	24	1	2	19800	3300
	10	15	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	15	15	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	20	15	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	25	15	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	30	15	160	11	64QAM	18	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.4-2: Reference Channels for DFT-s-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits	·		Bits	
	5	30	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	10	30	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	15	30	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	20	30	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	25	30	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	30	30	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	40	30	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	50	30	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	60	30	162	11	64QAM	18	1/2	64552	24	1	8	128304	21384
	80	30	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	90	30	243	11	64QAM	18	1/2	96264	24	1	12	192456	32076
	100	30	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.4-3: Reference Channels for DFT-s-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	15	60	18	11	64QAM	18	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	25	60	30	11	64QAM	18	1/2	12040	24	1	2	23760	3960
	30	60	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	40	60	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	60	60	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	80	60	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	90	60	120	11	64QAM	18	1/2	48168	24	1	6	95040	15840
	100	60	135	11	64QAM	18	1/2	54296	24	1	7	106920	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.5 DFT-s-OFDM 256QAM

Table A.2.2.5-1: Reference Channels for DFT-s-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	15	15	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	20	15	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	25	15	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.5-2: Reference Channels for DFT-s-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	20	30	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	25	30	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	30	30	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	40	30	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	50	30	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	90	30	243	11	256QAM	20	2/3	172176	24	1	21	256608	32076
	100	30	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.5-3: Reference Channels for DFT-s-OFDM 256QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	30	11	256QAM	20	2/3	21000	24	1	3	31680	3960
	30	60	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	40	60	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	50	60	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	60	60	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	80	60	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	90	60	120	11	256QAM	20	2/3	83976	24	1	10	126720	15840
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.6 CP-OFDM QPSK

Table A.2.2.6-1: Reference Channels for CP-OFDM QPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	13	11	QPSK	2	1/6	672	16	2	1	3432	1716
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	10	15	52	11	QPSK	2	1/6	2600	16	2	1	13728	6864
	15	15	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	15	15	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	20	15	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	20	15	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	25	15	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	25	15	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.6-2: Reference Channels for CP-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	5	30	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	15	30	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	20	30	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	20	30	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	25	30	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	25	30	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	30	30	39	11	QPSK	2	1/6	2024	16	2	1	10296	5148
	30	30	78	11	QPSK	2	1/6	3848	24	2	2	20592	10296
	40	30	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	40	30	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	50	30	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	50	30	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	109	11	QPSK	2	1/6	5384	24	2	2	28776	14388
	80	30	217	11	QPSK	2	1/6	10752	24	2	3	57288	28644
	90	30	123	11	QPSK	2	1/6	6152	24	2	2	32472	16236
	90	30	245	11	QPSK	2	1/6	12296	24	2	4	64680	32340
	100	30	137	11	QPSK	2	1/6	6792	24	2	2	36168	18084
	100	30	273	11	QPSK	2	1/6	13576	24	2	4	72072	36036

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.2.6-3: Reference Channels for CP-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	10	60	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	25	60	31	11	QPSK	2	1/6	1544	16	2	1	8184	4092
	30	60	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	30	60	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	40	60	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	40	60	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	60	60	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	60	60	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	80	60	54	11	QPSK	2	1/6	2664	16	2	1	14256	7128
	80	60	107	11	QPSK	2	1/6	5256	24	2	2	28248	14124
	90	60	61	11	QPSK	2	1/6	3104	16	2	1	16104	8052
	90	60	121	11	QPSK	2	1/6	6024	24	2	2	31944	15972
	100	60	68	11	QPSK	2	1/6	3368	16	2	1	17952	8976
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.7 CP-OFDM 16QAM

Table A.2.2.7-1: Reference Channels for CP-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	13	11	16QAM	10	1/3	2280	16	2	1	6864	1716
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	10	15	52	11	16QAM	10	1/3	9224	24	1	2	27456	6864
	15	15	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	15	15	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	20	15	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	20	15	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	25	15	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	25	15	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
<u> </u>	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.7-2: Reference Channels for CP-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		-				Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	5	30	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	15	30	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	20	30	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	20	30	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	25	30	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	25	30	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	30	30	39	11	16QAM	10	1/3	6784	24	1	1	20592	5148
	30	30	78	11	16QAM	10	1/3	13576	24	1	2	41184	10296
	40	30	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	40	30	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	50	30	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	50	30	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	109	11	16QAM	10	1/3	18960	24	1	3	57552	14388
	80	30	217	11	16QAM	10	1/3	37896	24	1	5	114576	28644
	90	30	123	11	16QAM	10	1/3	21504	24	1	3	64944	16236
	90	30	245	11	16QAM	10	1/3	43032	24	1	6	129360	32340
	100	30	137	11	16QAM	10	1/3	24072	24	1	3	72336	18084
	100	30	273	11	16QAM	10	1/3	48168	24	1	6	144144	36036

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 1:

Note 2:

Note 3:

Table A.2.2.7-3: Reference Channels for CP-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz		-				Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	10	60	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	25	60	31	11	16QAM	10	1/3	5376	24	1	1	16368	4092
	30	60	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	30	60	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	40	60	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	40	60	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	60	60	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	60	60	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	80	60	54	11	16QAM	10	1/3	9480	24	1	2	28512	7128
	80	60	107	11	16QAM	10	1/3	18960	24	1	3	56496	14124
	90	60	61	11	16QAM	10	1/3	10760	24	1	2	32208	8052
-	90	60	121	11	16QAM	10	1/3	21000	24	1	3	63888	15972
-	100	60	68	11	16QAM	10	1/3	11784	24	1	2	35904	8976
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.8 CP-OFDM 64QAM

Table A.2.2.8-1: Reference Channels for CP-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	19	1/2	9992	24	1	2	19800	3300
	10	15	52	11	64QAM	19	1/2	21000	24	1	3	41184	6864
	15	15	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	20	15	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	25	15	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	30	15	160	11	64QAM	19	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	19	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	19	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.8-2: Reference Channels for CP-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	10	30	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	15	30	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	20	30	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	25	30	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	30	30	78	11	64QAM	19	1/2	31240	24	1	4	61776	10296
	40	30	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	50	30	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	60	30	162	11	64QAM	19	1/2	64552	24	1	8	128304	21384
	80	30	217	11	64QAM	19	1/2	86040	24	1	11	171864	28644
	90	30	245	11	64QAM	19	1/2	98376	24	1	12	194040	32340
	100	30	273	11	64QAM	19	1/2	108552	24	1	13	216216	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.8-3: Reference Channels for CP-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	15	60	18	11	64QAM	19	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	25	60	31	11	64QAM	19	1/2	12296	24	1	2	24552	4092
	30	60	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	40	60	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	50	60	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	60	60	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	80	60	107	11	64QAM	19	1/2	43032	24	1	6	84744	14124
	90	60	121	11	64QAM	19	1/2	48168	24	1	6	95832	15972
	100	60	135	11	64QAM	19	1/2	54296	24	1	7	106920	17820

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, Note 1: 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.2.9 CP-OFDM 256QAM

Table A.2.2.9-1: Reference Channels for CP-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	52	11	256QAM	20	2/3	36896	24	1	5	54912	6864
	15	15	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	20	15	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	25	15	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.9-2: Reference Channels for CP-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulate d symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	20	30	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	25	30	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	30	30	78	11	256QAM	20	2/3	55304	24	1	7	82368	10296
	40	30	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	50	30	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	217	11	256QAM	20	2/3	151608	24	1	18	229152	28644
	90	30	245	11	256QAM	20	2/3	172176	24	1	21	258720	32340
	100	30	273	11	256QAM	20	2/3	192624	24	1	23	288288	36036

PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 1:

Note 2:

Table A.2.2.9-3: Reference Channels for CP-OFDM 256QAM for 60kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size	Transport block CRC	LDPC Base Graph	Number of code blocks per slot (Note 3)	Total number of bits per slot	Total modulated symbols per slot
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	31	11	256QAM	20	2/3	22032	24	1	3	32736	4092
	30	60	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	40	60	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	50	60	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	60	60	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	80	60	107	11	256QAM	20	2/3	75792	24	1	9	112992	14124
	90	60	121	11	256QAM	20	2/3	86040	24	1	11	127776	15972
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

A.2.3 Reference measurement channels for TDD

TDD slot patterns defined for reference sensitivity tests will be used for UL RMCs defined below.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.3.1-1: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	15	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	5	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	10	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	15	15	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	15	15	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	20	15	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	20	15	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	25	15	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	25	15	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	30	15	80	11	pi/2 BPSK	0	1/4	2472	16	2	1	10560	10560
	30	15	160	11	pi/2 BPSK	0	1/4	4872	24	2	2	21120	21120
	40	15	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	40	15	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	50	15	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	50	15	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.1-2: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	5	30	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	5	30	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	10	30	12	11	pi/2 BPSK	0	1/4	384	16	2	1	1584	1584
	10	30	24	11	pi/2 BPSK	0	1/4	768	16	2	1	3168	3168
	15	30	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	15	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	20	30	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	20	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	25	30	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	25	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	30	30	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	30	30	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	40	30	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	40	30	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	50	30	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	50	30	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	60	30	81	11	pi/2 BPSK	0	1/4	2536	16	2	1	10692	10692
	60	30	162	11	pi/2 BPSK	0	1/4	5000	24	2	2	21384	21384
	80	30	108	11	pi/2 BPSK	0	1/4	3368	16	2	1	14256	14256
	80	30	216	11	pi/2 BPSK	0	1/4	6664	24	2	2	28512	28512
	90	30	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	90	30	243	11	pi/2 BPSK	0	1/4	7560	24	2	2	32076	32076
	100	30	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820
	100	30	270	11	pi/2 BPSK	0	1/4	8448	24	2	3	35640	35640

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.1-3: Reference Channels for DFT-s-OFDM Pi/2-BPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz			1/2 22017			Bits	Bits			Bits	
	10-100	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	10	60	5	11	pi/2 BPSK	0	1/4	160	16	2	1	660	660
	10	60	10	11	pi/2 BPSK	0	1/4	320	16	2	1	1320	1320
	15	60	9	11	pi/2 BPSK	0	1/4	288	16 16	2	1	1188	1188
	15	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	20	60	12	11	pi/2 BPSK	0	1/4 1/4	384		2	1	1584	1584
	20 25	60 60	24 15	11 11	pi/2 BPSK pi/2 BPSK	0	1/4	768 480	16 16	2	1	3168 1980	3168
	25 25	60	30	11	pi/2 BPSK	0	1/4	984	16	2	1	3960	1980 3960
	30	60	18	11	pi/2 BPSK	0	1/4	576	16	2	1	2376	2376
	30	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	40	60	25	11	pi/2 BPSK	0	1/4	808	16	2	1	3300	3300
	40	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	60	60	36	11	pi/2 BPSK	0	1/4	1128	16	2	1	4752	4752
	60	60	75	11	pi/2 BPSK	0	1/4	2408	16	2	1	9900	9900
	80	60	50	11	pi/2 BPSK	0	1/4	1544	16	2	1	6600	6600
	80	60	100	11	pi/2 BPSK	0	1/4	3104	16	2	1	13200	13200
	90	60	60	11	pi/2 BPSK	0	1/4	1864	16	2	1	7920	7920
	90	60	120	11	pi/2 BPSK	0	1/4	3752	16	2	1	15840	15840
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	135	11	pi/2 BPSK	0	1/4	4104	24	2	2	17820	17820

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.3.2 DFT-s-OFDM QPSK

Table A.2.3.2-1: Reference Channels for DFT-s-OFDM QPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	5	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	10	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	15	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	15	15	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	15	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	15	15	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	20	15	20	11	QPSK	2	1/6	1032	16	2	1	5280	2640
	20	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	20	15	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	25	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	15	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	25	15	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	30	15	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2-2: Reference Channels for DFT-s-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	100	30	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2-3: Reference Channels for DFT-s-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	10	60	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	15	11	QPSK	2	1/6	768	16	2	1	3960	1980
	25	60	30	11	QPSK	2	1/6	1544	16	2	1	7920	3960
	30	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	30	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	40	60	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	40	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	60	60	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	60	60	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	80	60	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	80	60	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	90	60	60	11	QPSK	2	1/6	3104	16	2	1	15840	7920
	90	60	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.3.3 DFT-s-OFDM 16QAM

Table A.2.3.3-1: Reference Channels for DFT-s-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	15	15	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	15	15	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	20	15	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	20	15	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	25	15	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	25	15	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
•	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.3-2: Reference Channels for DFT-s-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	5	30	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	15	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	20	30	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	20	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	25	30	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	25	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	30	30	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	30	30	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	40	30	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	40	30	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	50	30	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	50	30	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	80	30	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	90	30	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	90	30	243	11	16QAM	10	1/3	43032	24	1	6	128304	32076
	100	30	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
	100	30	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.3-3: Reference Channels for DFT-s-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	5	11	16QAM	10	1/3	888	16	2	1	2640	660
	10	60	10	11	16QAM	10	1/3	1800	16	2	1	5280	1320
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	25	60	15	11	16QAM	10	1/3	2664	16	2	1	7920	1980
	25	60	30	11	16QAM	10	1/3	5248	24	1	1	15840	3960
	30	60	18	11	16QAM	10	1/3	3240	16	2	1	9504	2376
	30	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	40	60	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	40	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	60	60	36	11	16QAM	10	1/3	6272	24	1	1	19008	4752
	60	60	75	11	16QAM	10	1/3	13064	24	1	2	39600	9900
	80	60	50	11	16QAM	10	1/3	8712	24	1	2	26400	6600
	80	60	100	11	16QAM	10	1/3	17424	24	1	3	52800	13200
	90	60	60	11	16QAM	10	1/3	10504	24	1	2	31680	7920
	90	60	120	11	16QAM	10	1/3	21000	24	1	3	63360	15840
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.3.4 DFT-s-OFDM 64QAM

Table A.2.3.4-1: Reference Channels for DFT-s-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	18	1/2	9992	24	1	2	19800	3300
	10	15	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	15	15	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	20	15	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	25	15	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	30	15	160	11	64QAM	18	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.4-2: Reference Channels for DFT-s-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	10	30	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	15	30	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	20	30	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	25	30	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	30	30	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
· 	40	30	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	50	30	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
· 	60	30	162	11	64QAM	18	1/2	64552	24	1	8	128304	21384
·	80	30	216	11	64QAM	18	1/2	86040	24	1	11	171072	28512
	90	30	243	11	64QAM	18	1/2	96264	24	1	12	192456	32076
	100	30	270	11	64QAM	18	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.4-3: Reference Channels for DFT-s-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	64QAM	18	1/2	3968	24	1	1	7920	1320
	15	60	18	11	64QAM	18	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	18	1/2	9480	24	1	2	19008	3168
	25	60	30	11	64QAM	18	1/2	12040	24	1	2	23760	3960
	30	60	36	11	64QAM	18	1/2	14344	24	1	2	28512	4752
	40	60	50	11	64QAM	18	1/2	19968	24	1	3	39600	6600
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	60	60	75	11	64QAM	18	1/2	30216	24	1	4	59400	9900
	80	60	100	11	64QAM	18	1/2	39936	24	1	5	79200	13200
	90	60	120	11	64QAM	18	1/2	48168	24	1	6	95040	15840
	100	60	135	11	64QAM	18	1/2	54296	24	1	7	106920	17820

Note 2:

MCS Index is based on MCS table 6.1.4.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.5 DFT-s-OFDM 256QAM

Table A.2.3.5-1: Reference Channels for DFT-s-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	15	15	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	20	15	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	25	15	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.5-2: Reference Channels for DFT-s-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	20	30	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	25	30	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	30	30	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
`	40	30	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	50	30	128	11	256QAM	20	2/3	90176	24	1	11	135168	16896
<u>-</u>	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	90	30	243	11	256QAM	20	2/3	172176	24	1	21	256608	32076
	100	30	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.5-3: Reference Channels for DFT-s-OFDM 256QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	DFT-s- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	10	11	256QAM	20	2/3	7040	24	1	1	10560	1320
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	30	11	256QAM	20	2/3	21000	24	1	3	31680	3960
	30	60	36	11	256QAM	20	2/3	25104	24	1	3	38016	4752
	40	60	50	11	256QAM	20	2/3	34816	24	1	5	52800	6600
	50	60	64	11	256QAM	20	2/3	45096	24	1	6	67584	8448
	60	60	75	11	256QAM	20	2/3	53288	24	1	7	79200	9900
	80	60	100	11	256QAM	20	2/3	69672	24	1	9	105600	13200
	90	60	120	11	256QAM	20	2/3	83976	24	1	10	126720	15840
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

Note 2:

MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.6 CP-OFDM QPSK

Table A.2.3.6-1: Reference Channels for CP-OFDM QPSK for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	15	13	11	QPSK	2	1/6	672	16	2	1	3432	1716
	5	15	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	10	15	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	10	15	52	11	QPSK	2	1/6	2600	16	2	1	13728	6864
	15	15	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	15	15	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	20	15	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	20	15	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	25	15	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	25	15	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	30	15	80	11	QPSK	2	1/6	3976	24	2	2	21120	10560
	30	15	160	11	QPSK	2	1/6	7944	24	2	3	42240	21120
	40	15	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	40	15	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	50	15	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
	50	15	270	11	QPSK	2	1/6	13320	24	2	4	71280	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.6-2: Reference Channels for CP-OFDM QPSK for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	QPSK	2	1/6	56	16	2	1	264	132
	5	30	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	5	30	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	15	30	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	20	30	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	20	30	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	25	30	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	25	30	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	30	30	39	11	QPSK	2	1/6	2024	16	2	1	10296	5148
	30	30	78	11	QPSK	2	1/6	3848	24	2	2	20592	10296
	40	30	53	11	QPSK	2	1/6	2664	16	2	1	13992	6996
	40	30	106	11	QPSK	2	1/6	5256	24	2	2	27984	13992
	50	30	67	11	QPSK	2	1/6	3368	16	2	1	17688	8844
	50	30	133	11	QPSK	2	1/6	6664	24	2	2	35112	17556
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	109	11	QPSK	2	1/6	5384	24	2	2	28776	14388
	80	30	217	11	QPSK	2	1/6	10752	24	2	3	57288	28644
	90	30	123	11	QPSK	2	1/6	6152	24	2	2	32472	16236
	90	30	245	11	QPSK	2	1/6	12296	24	2	4	64680	32340
	100	30	137	11	QPSK	2	1/6	6792	24	2	2	36168	18084
	100	30	273	11	QPSK	2	1/6	13576	24	2	4	72072	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.6-3: Reference Channels for CP-OFDM QPSK for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	QPSK	2	1/6	56	16	2	1	264	132
	10	60	6	11	QPSK	2	1/6	304	16	2	1	1584	792
	10	60	11	11	QPSK	2	1/6	552	16	2	1	2904	1452
	15	60	9	11	QPSK	2	1/6	456	16	2	1	2376	1188
	15	60	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	20	60	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	20	60	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	25	60	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	25	60	31	11	QPSK	2	1/6	1544	16	2	1	8184	4092
	30	60	19	11	QPSK	2	1/6	984	16	2	1	5016	2508
	30	60	38	11	QPSK	2	1/6	1928	16	2	1	10032	5016
	40	60	26	11	QPSK	2	1/6	1288	16	2	1	6864	3432
	40	60	51	11	QPSK	2	1/6	2536	16	2	1	13464	6732
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	65	11	QPSK	2	1/6	3240	16	2	1	17160	8580
	60	60	40	11	QPSK	2	1/6	2024	16	2	1	10560	5280
	60	60	79	11	QPSK	2	1/6	3912	24	2	2	20856	10428
	80	60	54	11	QPSK	2	1/6	2664	16	2	1	14256	7128
	80	60	107	11	QPSK	2	1/6	5256	24	2	2	28248	14124
	90	60	61	11	QPSK	2	1/6	3104	16	2	1	16104	8052
	90	60	121	11	QPSK	2	1/6	6024	24	2	2	31944	15972
	100	60	68	11	QPSK	2	1/6	3368	16	2	1	17952	8976
	100	60	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.3.7 CP-OFDM 16QAM

Table A.2.3.7-1: Reference Channels for CP-OFDM 16QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	15	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	15	13	11	16QAM	10	1/3	2280	16	2	1	6864	1716
	5	15	25	11	16QAM	10	1/3	4352	24	1	1	13200	3300
	10	15	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	10	15	52	11	16QAM	10	1/3	9224	24	1	2	27456	6864
	15	15	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	15	15	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	20	15	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	20	15	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	25	15	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	25	15	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	30	15	80	11	16QAM	10	1/3	14088	24	1	2	42240	10560
	30	15	160	11	16QAM	10	1/3	28168	24	1	4	84480	21120
	40	15	108	11	16QAM	10	1/3	18960	24	1	3	57024	14256
	40	15	216	11	16QAM	10	1/3	37896	24	1	5	114048	28512
	50	15	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820
N	50	15	270	11	16QAM	10	1/3	47112	24	1	6	142560	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.2.3.7-2: Reference Channels for CP-OFDM 16QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5-50	30	1	11	16QAM	10	1/3	176	16	2	1	528	132
	5	30	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	5	30	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	10	30	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	10	30	24	11	16QAM	10	1/3	4224	24	1	1	12672	3168
	15	30	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	15	30	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	20	30	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	20	30	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	25	30	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	25	30	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	30	30	39	11	16QAM	10	1/3	6784	24	1	1	20592	5148
	30	30	78	11	16QAM	10	1/3	13576	24	1	2	41184	10296
	40	30	53	11	16QAM	10	1/3	9224	24	1	2	27984	6996
	40	30	106	11	16QAM	10	1/3	18432	24	1	3	55968	13992
	50	30	67	11	16QAM	10	1/3	11784	24	1	2	35376	8844
	50	30	133	11	16QAM	10	1/3	23040	24	1	3	70224	17556
	60	30	81	11	16QAM	10	1/3	14088	24	1	2	42768	10692
	60	30	162	11	16QAM	10	1/3	28168	24	1	4	85536	21384
	80	30	109	11	16QAM	10	1/3	18960	24	1	3	57552	14388
	80	30	217	11	16QAM	10	1/3	37896	24	1	5	114576	28644
	90	30	123	11	16QAM	10	1/3	21504	24	1	3	64944	16236
	90	30	245	11	16QAM	10	1/3	43032	24	1	6	129360	32340
-	100	30	137	11	16QAM	10	1/3	24072	24	1	3	72336	18084
	100	30	273	11	16QAM	10	1/3	48168	24	1	6	144144	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.7-3: Reference Channels for CP-OFDM 16QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 416, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10-100	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	10	60	6	11	16QAM	10	1/3	1064	16	2	1	3168	792
	10	60	11	11	16QAM	10	1/3	1928	16	2	1	5808	1452
	15	60	9	11	16QAM	10	1/3	1608	16	2	1	4752	1188
	15	60	18	11	16QAM	10	1/3	3240	16	2	1 1	9504	2376
	20	60	12	11	16QAM	10	1/3	2088	16	2	1	6336	1584
	20	60	24	11	16QAM	10	1/3	4224	24	1	1 1	12672	3168
	25	60	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	25	60	31	11	16QAM	10	1/3	5376	24	1	1	16368	4092
	30	60	19	11	16QAM	10	1/3	3368	16	2	1	10032	2508
	30	60	38	11	16QAM	10	1/3	6656	24	1	1	20064	5016
	40	60	26	11	16QAM	10	1/3	4480	24	1	1	13728	3432
	40	60	51	11	16QAM	10	1/3	8968	24	1	2	26928	6732
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	65	11	16QAM	10	1/3	11272	24	1	2	34320	8580
	60	60	40	11	16QAM	10	1/3	7040	24	1	1	21120	5280
	60	60	79	11	16QAM	10	1/3	13832	24	1	2	41712	10428
	80	60	54	11	16QAM	10	1/3	9480	24	1	2	28512	7128
	80	60	107	11	16QAM	10	1/3	18960	24	1	3	56496	14124
	90	60	61	11	16QAM	10	1/3	10760	24	1	2	32208	8052
	90	60	121	11	16QAM	10	1/3	21000	24	1	3	63888	15972
	100	60	68	11	16QAM	10	1/3	11784	24	1	2	35904	8976
	100	60	135	11	16QAM	10	1/3	23568	24	1	3	71280	17820

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

A.2.3.8 CP-OFDM 64QAM

Table A.2.3.8-1: Reference Channels for CP-OFDM 64QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	64QAM	19	1/2	9992	24	1	2	19800	3300
	10	15	52	11	64QAM	19	1/2	21000	24	1	3	41184	6864
	15	15	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	20	15	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
	25	15	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
	30	15	160	11	64QAM	19	1/2	63528	24	1	8	126720	21120
	40	15	216	11	64QAM	19	1/2	86040	24	1	11	171072	28512
	50	15	270	11	64QAM	19	1/2	108552	24	1	13	213840	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.8-2: Reference Channels for CP-OFDM 64QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	10	30	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	15	30	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	20	30	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	25	30	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	30	30	78	11	64QAM	19	1/2	31240	24	1	4	61776	10296
•	40	30	106	11	64QAM	19	1/2	42016	24	1	5	83952	13992
•	50	30	133	11	64QAM	19	1/2	53288	24	1	7	105336	17556
•	60	30	162	11	64QAM	19	1/2	64552	24	1	8	128304	21384
•	80	30	217	11	64QAM	19	1/2	86040	24	1	11	171864	28644
	90	30	245	11	64QAM	19	1/2	98376	24	1	12	194040	32340
•	100	30	273	11	64QAM	19	1/2	108552	24	1	13	216216	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2:

Note 3:

Table A.2.3.8-3: Reference Channels for CP-OFDM 64QAM for 60kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulate d symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	64QAM	19	1/2	4352	24	1	1	8712	1452
	15	60	18	11	64QAM	19	1/2	7168	24	1	1	14256	2376
	20	60	24	11	64QAM	19	1/2	9480	24	1	2	19008	3168
	25	60	31	11	64QAM	19	1/2	12296	24	1	2	24552	4092
	30	60	38	11	64QAM	19	1/2	15112	24	1	2	30096	5016
	40	60	51	11	64QAM	19	1/2	20496	24	1	3	40392	6732
	50	60	65	11	64QAM	19	1/2	26120	24	1	4	51480	8580
	60	60	79	11	64QAM	19	1/2	31752	24	1	4	62568	10428
	80	60	107	11	64QAM	19	1/2	43032	24	1	6	84744	14124
	90	60	121	11	64QAM	19	1/2	48168	24	1	6	95832	15972
	100	60	135	11	64QAM	19	1/2	54296	24	1	7	106920	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2:

MCS Index is based on MCS table 5.1.3.1-1 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.9 CP-OFDM 256QAM

Table A.2.3.9-1: Reference Channels for CP-OFDM 256QAM for 15kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 4 and 9	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 4 and 9 (Note 3)	Total number of bits per slot for slots 4 and 9	Total modulate d symbols per slot for slots 4 and 9
Unit	MHz	KHz						Bits	Bits			Bits	
	5	15	25	11	256QAM	20	2/3	17424	24	1	3	26400	3300
	10	15	52	11	256QAM	20	2/3	36896	24	1	5	54912	6864
	15	15	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	20	15	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	25	15	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	30	15	160	11	256QAM	20	2/3	112648	24	1	14	168960	21120
	40	15	216	11	256QAM	20	2/3	151608	24	1	18	228096	28512
	50	15	270	11	256QAM	20	2/3	188576	24	1	23	285120	35640

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.9-2: Reference Channels for CP-OFDM 256QAM for 30kHz SCS

Paramete r	Channel bandwidt h	Subcarrie r Spacing	Allocate d resource blocks	CP- OFDM Symbol s per slot (Note 1)	Modulatio n	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transpor t block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulate d symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	KHz						Bits	Bits			Bits	
	5	30	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	10	30	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	15	30	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	20	30	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	25	30	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	30	30	78	11	256QAM	20	2/3	55304	24	1	7	82368	10296
-	40	30	106	11	256QAM	20	2/3	73776	24	1	9	111936	13992
	50	30	133	11	256QAM	20	2/3	94248	24	1	12	140448	17556
	60	30	162	11	256QAM	20	2/3	114776	24	1	14	171072	21384
	80	30	217	11	256QAM	20	2/3	151608	24	1	18	229152	28644
	90	30	245	11	256QAM	20	2/3	172176	24	1	21	258720	32340
	100	30	273	11	256QAM	20	2/3	192624	24	1	23	288288	36036

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2:

Note 3:

Table A.2.3.9-3: Reference Channels for CP-OFDM 256QAM for 60kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 16, 17, 18, 19, 36, 37, 38 and 39	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39 (Note 3)	Total number of bits per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39	Total modulated symbols per slot for slots 16, 17, 18, 19, 36, 37, 38 and 39
Unit	MHz	KHz						Bits	Bits			Bits	
	10	60	11	11	256QAM	20	2/3	7680	24	1	1	11616	1452
	15	60	18	11	256QAM	20	2/3	12552	24	1	2	19008	2376
	20	60	24	11	256QAM	20	2/3	16896	24	1	3	25344	3168
	25	60	31	11	256QAM	20	2/3	22032	24	1	3	32736	4092
	30	60	38	11	256QAM	20	2/3	26632	24	1	4	40128	5016
	40	60	51	11	256QAM	20	2/3	35856	24	1	5	53856	6732
	50	60	65	11	256QAM	20	2/3	46104	24	1	6	68640	8580
	60	60	79	11	256QAM	20	2/3	55304	24	1	7	83424	10428
	80	60	107	11	256QAM	20	2/3	75792	24	1	9	112992	14124
	90	60	121	11	256QAM	20	2/3	86040	24	1	11	127776	15972
	100	60	135	11	256QAM	20	2/3	94248	24	1	12	142560	17820

Note 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

Note 2: MCS Index is based on MCS table 5.1.3.1-2 defined in TS 38.214 [12].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3 DL reference measurement channels

A.3.1 General

Unless otherwise stated, Tables A.3.2.2-1, A.3.2.2-2, A.3.2.2-3, A.3.3.2-1, A.3.3.2-2 and A.3.3.2-3 are applicable for measurements of the Receiver Characteristics (clause 7) with the exception of subclauses 7.4 (Maximum input level).

Unless otherwise stated, Tables A.3.2.3-1, A.3.2.3-2, A.3.2.3-3, A.3.3.3-1, A.3.3.3-2 and A.3.3.3-3 are applicable for subclauses 7.4 (Maximum input level) and for UE not supporting PDSCH 256QAM,

Unless otherwise stated, Tables A.3.2.4-1, A.3.2.4-2, A.3.2.4-3, A.3.3.4-1, A.3.3.4-2 and A.3.3.4-3 are applicable for subclauses 7.4 (Maximum input level) and for UE supporting PDSCH 256QAM,

Unless otherwise stated, Tables A.3.2.2-1, A.3.2.2-2, A.3.2.2-3, A.3.3.2-1, A.3.3.2-2 and A.3.3.2-3 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.1-1: Common reference channel parameters

Parameter	Unit	Value
CORESET frequency domain allocation		Full BW
CORESET time domain allocation		2 OFDM symbols at the begin of each slot
PDSCH mapping type		Type A
PDSCH start symbol index (S)		2
Number of consecutive PDSCH symbols (L)		12
PDSCH PRB bundling	PRBs	2
Dynamic PRB bundling		false
Overhead value for TBS determination		0
First DMRS position for Type A PDSCH mapping		2
DMRS type		Type 1
Number of additional DMRS		2
FDM between DMRS and PDSCH		Disable
TRS configuration		2 slots, periodicity 10 ms, offset 0
PTRS configuration		PTRS is not configured

A.3.2 DL reference measurement channels for FDD

A.3.2.1 General

Table A.3.2.1-1: Additional reference channels parameters for FDD

Parameter	Unit	Value
Number of HARQ Processes		4
K1 value		2 for all slots

A.3.2.2 FRC for receiver requirements for QPSK

Table A.3.2.2-1: Fixed reference channel for receiver requirements (SCS 15 kHz, FDD, QPSK 1/3)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		4	4	4	4	4	4	4	4
MCS Table for TBS determination					64C	(MA)			
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	1672	3368	5120	6912	8712	10504	14088	17424
Transport block CRC	Bits	16	16	24	24	24	24	24	24
LDPC base graph		2	2	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	CBs	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	5400	11232	17064	22896	28728	34560	46656	58320
Max. Throughput averaged over 1 frame	Mbps	1.504	3.031	4.608	6.220	7.841	9.454	12.67 9	15.68 2

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame, QPSK 1/3.

Table A.3.2.2-2: Fixed reference channel for receiver requirements (SCS 30 kHz, FDD, QPSK 1/3)

Parameter	Unit						Va	lue					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	90	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	[78]	106	133	162	217	245	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19	19
MCS Index		4	4	4	4	4	4	4	4	4	4	4	4
MCS Table for TBS determination								QAM					
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot													
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088	15880	17928
Transport block CRC	Bits	16	16	16	16	24	24	24	24	24	24	24	24
LDPC base graph		2	2	2	2	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot													
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	CBs	1	1	1	1	1	1	1	2	2	2	2	3
Binary Channel Bits per Slot													
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872	52920	58968
Max. Throughput averaged over 1													
frame	Mbps	1.398	3.055	4.697	6.399	8.025	9.485	13.133	16.553	19.958	26.767	30.172	34.063

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

SS/PBCH block is transmitted in slot #0 of each frame. Note 3:

Note 4: Slot i is slot index per frame.

Table A.3.2.2-3: Fixed reference channel for receiver requirements (SCS 60 kHz, FDD, QPSK 1/3)

Parameter	Unit						Value					
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	90	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	121	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38	38
MCS Index		4	4	4	4	4	4	4	4	4	4	4
MCS Table for TBS Determination							64QAM					
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	736	1192	1608	2024	2472	3368	4224	5120	6912	7808	8712
Transport block CRC	Bits	16	16	16	16	16	16	24	24	24	24	24
LDPC base graph		2	2	2	2	2	2	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	CBs	1	1	1	1	1	1	1	1	1	1	2
Binary Channel Bits per Slot												
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	2376	3888	5184	6696	8208	11016	14040	17064	23112	26136	29160
Max. Throughput averaged over 1 frame	Mbps	2.870	4.649	6.271	7.894	9.641	13.135	16.474	19.968	26.957	30.451	33.977

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot #0 of each frame.

NOTE 4: Slot i is slot index per frame.

A.3.2.3 FRC for maximum input level for 64QAM

Table A.3.2.3-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, FDD, 64QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		24	24	24	24	24	24	24	24
MCS Table for TBS determination					64C	MA(
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	12296	25608	38936	52224	64552	77896	10657 6	13117 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	CBs	2	4	5	7	8	10	13	16
Binary Channel Bits per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	16200	33696	51192	68688	86184	10368 0	13996 8	17496 0
Max. Throughput averaged over 1 frame	Mbps	11.06 6	23.04 7	35.04 2	47.00 2	58.09 7	70.10 6	95.91 8	118.0 58

NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

NOTE 4: Slot i is slot index per frame

Table A.3.2.3-2: Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, FDD, 64QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	[78]	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		24	24	24	24	24	24	24	24	24	24	24
MCS Table for TBS determination							64QAM					
Modulation		64	64	64	64	64	64	64	64	64	64	64
		QAM	QAM	QAM	QAM							
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	5376	11784	18432	25104	31752	37896	52224	64552	79896	106576	135296
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	CBs	1	2	3	3	4	5	7	8	10	13	17
Binary Channel Bits per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	7128	15552	24624	33048	42120	50544	68688	86184	104976	140616	176904
Max. Throughput averaged over 1 frame	Mbps	10.214	22.390	35.021	47.698	60.329	72.002	99.226	122.64 9	151.80 2	202.49 4	257.06 2

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.2.3-3: Fixed Reference Channel for Maximum input level receiver requirements (SCS 60 kHz, FDD, 64QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	[38]	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38
MCS Index		24	24	24	24	24	24	24	24	24	24
MCS Table for TBS determination						640	QAM				
Modulation		64	64	64	64	64	64	64	64	64	64
		QAM	QAM	QAM	QAM						
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	5376	8712	11784	15112	18432	25104	31752	38936	52224	65576
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	CBs	1	2	2	2	3	3	4	5	7	8
Binary Channel Bits per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	7128	11664	15552	20088	24624	33048	42120	51192	69336	87480
Max. Throughput averaged over 1 frame	Mbps	20.429	33.106	44.779	57.426	70.042	95.395	120.65 8	147.95 7	198.45 1	249.18 9

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.2.4 FRC for maximum input level for 256 QAM

Table A.3.2.4-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, FDD, 256QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		9	9	9	9	9	9	9	9
MCS Index		23	23	23	23	23	23	23	23
MCS Table for TBS determination					2560	QAM			
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	16896	34816	53288	71688	90176	10855 2	14340 0	18037 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	CBs	3	5	7	9	12	14	18	23
Binary Channel Bits per Slot									
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,3,4,5,6,7,8,9	Bits	21600	44928	68256	91584	11491 2	13824 0	18662 4	23328 0
Max. Throughput averaged over 1 frame	Mbps	15.20 6	31.33 4	47.95 9	64.51 9	81.15 8	97.69 7	129.0 60	162.3 38

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.2.4-2: Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, FDD, 256QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	[78]	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		19	19	19	19	19	19	19	19	19	19	19
MCS Index		23	23	23	23	23	23	23	23	23	23	23
MCS Table for TBS determination							256QAM					
Modulation		256	256	256	256	256	256	256	256	256	256	256
		QAM	QAM	QAM	QAM							
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	7424	16136	25608	33816	44040	52224	71688	90176	108552	147576	184424
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slot 0	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	CBs	1	3	4	5	6	7	9	12	14	19	23
Binary Channel Bits per Slot												
For Slot 0	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,,19	Bits	9504	20736	32832	44064	56160	67392	91584	114912	139968	187488	235872
Max. Throughput averaged over 1 frame	Mbps	14.106	30.658	48.655	64.250	83.676	99.226	136.20	171.33 4	206.24 9	280.39 4	350.40 6

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.2.4-3: Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, FDD, 256QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	[38]	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		38	38	38	38	38	38	38	38	38	38
MCS Index		23	23	23	23	23	23	23	23	23	23
MCS Table for TBS determination						2560	QAM				
Modulation		256	256	256	256	256	256	256	256	256	256
		QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	7424	12040	16136	21000	25608	33816	44040	53288	71688	90176
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slot 0,1	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	CBs	1	2	3	3	4	5	6	7	9	12
Binary Channel Bits per Slot											
For Slot 0,1	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 2,,39	Bits	9504	15552	20736	26784	32832	44064	56160	68256	92448	116640
Max. Throughput averaged over 1 frame	Mbps	28.211	45.752	61.317	79.800	97.310	128.50 1	167.35 2	202.49 4	272.41 4	342.66 9

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.2.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.3 DL reference measurement channels for TDD

A.3.3.1 General

Table A.3.3.1-1: Additional reference channels parameters for TDD

D	arameter		Value	
	arameter	SCS 15 kHz (µ=0)	SCS 30 kHz (µ=1)	SCS 60 kHz (µ=2)
UL-DL configuration	referenceSubcarrie rSpacing	15 kHz	30 kHz	60 kHz
	dl-UL- TransmissionPerio dicity	5 ms	5 ms	5 ms
	nrofDownlinkSlots	3	7	14
	nrofDownlinkSymb ols	10	6	12
	nrofUplinkSlot	1	2	4
	nrofUplinkSymbols	2	4	8
Number of HA	RQ Processes	8	8	16
K1 value		K1 = 4 if mod(i,5) = 0 K1 =3 if mod(i,5) = 1 K1 =2 if mod(i,5) = 2 where i is slot index per frame; i = {0,,9}	K1 =8 if mod(i,10) = 0 K1 =7 if mod(i,10) = 1 K1 =6 if mod(i,10) = 2 K1 =5 if mod(i,10) = 3 K1 =4 if mod(i,10) = 4 K1 =3 if mod(i,10) = 5 K1 =2 if mod(i,10) = 6 where i is slot index per frame; i = {0,,19}	K1 = 13 if $mod(i,20) = 2$ K1 = 12 if $mod(i,20) = 3$ K1 = 11 if $mod(i,20) = 4$ K1 = 10 if $mod(i,20) = 5$ K1 = 9 if $mod(i,20) = 6$ K1 = 8 if $mod(i,20) = 7$ K1 = 7 if $mod(i,20) = 8$ K1 = 6 if $mod(i,20) = 9$ K1 = 6 if $mod(i,20) = 10$ K1 = 6 if $mod(i,20) = 11$ K1 = 6 if $mod(i,20) = 12$ K1 = 6 if $mod(i,20) = 13$ where i is slot index per frame; i = $\{0,,39\}$

A.3.3.2 FRC for receiver requirements for QPSK

Table A.3.3.2-1: Fixed reference channel for receiver requirements (SCS 15 kHz, TDD, QPSK 1/3)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	1672	3368	5120	6912	8712	10504	14088	17424
Transport block CRC	Bits	16	16	24	24	24	24	24	24
LDPC base graph		2	2	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	CBs	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	5400	11232	17064	22896	28728	34560	46656	58320
Max. Throughput averaged over 1 frame	Mbps	0.836	1.684	2.560	3.456	4.356	5.252	7.044	8.712

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.2-2: Fixed reference channel for receiver requirements (SCS 30 kHz, TDD, QPSK 1/3)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		4	4	4	4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088	17928
Transport block CRC	Bits	16	16	16	16	24	24	24	24	24	24	24
LDPC base graph		2	2	2	2	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872	58968
Max. Throughput averaged over 1 frame	Mbps	0.957	2.090	3.214	4.378	5.491	6.490	8.986	11.326	13.655	18.314	23.306

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

SS/PBCH block is transmitted in slot #0 of each frame. Note 3:

Note 4: Slot i is slot index per frame.

Table A.3.3.2-3: Fixed reference channel for receiver requirements (SCS 60 kHz, TDD, QPSK 1/3)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		26	26	26	26	26	26	26	26	26	26
MCS Index		4	4	4	4	4	4	4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) = {14, 15, 16, 17, 18, 19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 20) = \{0,,13\}$ for i from $\{2,,39\}$	Bits	736	1192	1608	2024	2472	3368	4224	5120	6912	8712
Transport block CRC	Bits	16	16	16	16	16	16	24	24	24	24
LDPC base graph		2	2	2	2	2	2	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) = {14, 15, 16, 17, 18, 19} for i from {0,,39}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 20) = \{0,,13\}$ for i from $\{2,,39\}$	CBs	1	1	1	1	1	1	1	1	1	2
Binary Channel Bits per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) = {14, 15, 16, 17, 18, 19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,,13\}$ for i from $\{2,,39\}$	Bits	2376	3888	5184	6696	8208	11016	14040	17064	23112	29160
Max. Throughput averaged over 1 frame	Mbps	1.914	3.099	4.181	5.262	6.427	8.757	10.982	13.312	17.961	22.651

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.3.3 FRC for maximum input level for 64QAM

Table A.3.3.3-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, TDD, 64QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		24	24	24	24	24	24	24	24
Modulation		64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM	64 QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	12296	25608	38936	52224	64552	77896	10657 6	13117 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	CBs	2	4	5	7	8	10	13	16
Binary Channel Bits per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	16200	33696	51192	68688	86184	10368 0	13996 8	17496 0
Max. Throughput averaged over 1 frame	Mbps	6.148	12.80 4	19.46 8	26.11 2	32.27 6	38.94 8	53.28 8	65.58 8

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.3-2: Fixed reference channel for maximum input level receiver requirements (SCS 30 kHz, TDD, 64QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		24	24	24	24	24	24	24	24	24	24	24
Modulation		64	64	64	64	64	64	64	64	64	64	64
		QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM	QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0 and Slot i, if mod(i, 10) =	D:4-	N1/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A
{7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for	D:4-a	F070	44704	40400	25404	24752	27000	50004	04550	70000	400570	405000
i from {1,,19}	Bits	5376	11784	18432	25104	31752	37896	52224	64552	79896	106576	135296
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0 and Slot i, if mod(i, 10) =	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
{7,8,9} for i from {0,,19}	CDS	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for	CBs	1	2	3	3	4	5	7	8	10	13	17
i from {1,,19}	CDS	ļ		3	3	4	5	1	0	10	13	17
Binary Channel Bits per Slot												
For Slots 0 and Slot i, if mod(i, 10) =	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
{7,8,9} for i from {0,,19}	DIIS	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for	Bits	7128	15552	24624	33048	42120	50544	68688	86184	104976	140616	176904
i from {1,,19}	סווס	7120	10002	24024	33040	42120	30344	00000	00104			
Max. Throughput averaged over 1 frame	Mbps	6.989	15.319	23.962	32.635	41.278	49.265	67.891	83.918	103.86	138.54	175.88
	IVIDPS	0.303	13.518	20.302	32.033	+1.270	+3.200	07.081	00.810	5	9	5

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.3-3: Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, TDD, 64QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		26	26	26	26	26	26	26	26	26	26
MCS Index		24	24	24	24	24	24	24	24	24	24
Modulation		64	64	64	64	64	64	64	64	64	64
		QAM									
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) =	Dita	NI/A									
{14, 15, 16, 17, 18, 19} for i from {0,,39}	Bits	N/A									
For Slot i, if $mod(i, 5) = \{0,, 13\}$ for i from	Bits	5376	0740	11701	15112	10422	25104	24752	38936	E2224	65576
{2,,39}	DIIS	5576	8712	11784	13112	18432	25104	31752	30930	52224	00070
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) =	CBs	N/A									
{14, 15, 16, 17, 18, 19} for i from {0,,39}	CDS	IN/A									
For Slot i, if $mod(i, 5) = \{0,, 13\}$ for i	CBs	1	2	2	2	3	3	4	5	7	8
from {2,,39}	CDS	ı				3	3	4	J	'	0
Binary Channel Bits per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) =	Bits	N/A									
{14, 15, 16, 17, 18, 19} for i from {0,,39}	Dits	IN/A									
For Slot i, if $mod(i, 5) = \{0,, 13\}$ for i	Bits	7128	11664	15552	20088	24624	33048	42120	51192	69336	87480
from {2,,39}	טונס	7120	11004	10002	20000	24024	33040	72120	31132		
Max. Throughput averaged over 1 frame	Mbps	13.978	22.651	30.638	39.291	47.923	65.270	82.555	101.23	135.78	170.49
	IVIDPS	13.310	22.001	30.030	33.231	+1.323	00.270	02.000	4	2	8

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.3.3.4 FRC for maximum input level for 256 QAM

Table A.3.3.4-1: Fixed reference channel for maximum input level receiver requirements (SCS 15 kHz, TDD, 256QAM)

Parameter	Unit				Va	lue			
Channel bandwidth	MHz	5	10	15	20	25	30	40	50
Subcarrier spacing	kHz	15	15	15	15	15	15	15	15
Subcarrier spacing configuration μ		0	0	0	0	0	0	0	0
Allocated resource blocks		25	52	79	106	133	[160]	216	270
Subcarriers per resource block		12	12	12	12	12	12	12	12
Allocated slots per Frame		5	5	5	5	5	5	5	5
MCS Index		23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1
Information Bit Payload per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	16896	34816	53288	71688	90176	10855 2	14340 0	18037 6
Transport block CRC	Bits	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1
Number of Code Blocks per Slot									
For Slots 0,3,4,8,9	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	CBs	3	5	7	9	12	14	18	23
Binary Channel Bits per Slot									
For Slots 0,3,4,8,9	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slots 1,2,5,6,7	Bits	21600	44928	68256	91584	11491 2	13824 0	18662 4	23328 0
Max. Throughput averaged over 1 frame	Mbps	8.448	17.40 8	26.64 4	35.84 4	45.08 8	54.27 6	71.70 0	90.18 8

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot 0 of each frame.

Note 4: Slot i is slot index per frame.

Table A.3.3.4-2: Fixed Reference channel for maximum input level receiver requirements (SCS 30 kHz, TDD, 256QAM)

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		23	23	23	23	23	23	23	23	23	23	23
Modulation		256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM	256 QAM
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot		'	'	'	'	'	'	'	'	'	'	
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	7424	16136	25608	33816	44040	52224	71688	90176	108552	147576	184424
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 10) = \{0,1,2,3,4,5,6\}$ for i from $\{1,,19\}$	Bits	9504	20736	32832	44064	56160	67392	91584	114912	139968	187488	235872
Max. Throughput averaged over 1 frame	Mbps	9.651	20.977	33.290	43.961	57.252	67.891	93.194	117.22 9	141.11 8	191.84 9	239.75 1

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

SS/PBCH block is transmitted in slot #0 of each frame. Note 3:

Note 4: Slot i is slot index per frame.

Table A.3.3.4-3: Fixed reference channel for maximum input level receiver requirements (SCS 60 kHz, TDD, 256QAM)

Parameter	Unit					Va	lue				
Channel bandwidth	MHz	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration μ		2	2	2	2	2	2	2	2	2	2
Allocated resource blocks		11	18	24	31	38	51	65	79	107	135
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		26	26	26	26	26	26	26	26	26	26
MCS Index		23	23	23	23	23	23	23	23	23	23
Modulation		256	256	256	256	256	256	256	256	256	256
		QAM									
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) = {14, 15, 16, 17, 18, 19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 20) = \{0,,13\}$ for i from $\{2,,39\}$	Bits	7424	12040	16136	21000	25608	33816	44040	53288	71688	90176
Transport block CRC	Bits	24	24	24	24	24	24	24	24	24	24
LDPC base graph		1	1	1	1	1	1	1	1	1	1
Number of Code Blocks per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) = {14, 15, 16, 17, 18, 19} for i from {0,,39}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,, 13\}$ for i from $\{2,,39\}$	CBs	1	2	3	3	4	5	6	7	9	12
Binary Channel Bits per Slot											
For Slots 0,1 and Slot i, if mod(i, 20) = {14, 15, 16, 17, 18, 19} for i from {0,,39}	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if $mod(i, 5) = \{0,, 13\}$ for i from $\{2,,39\}$	Bits	9504	15552	20736	26784	32832	44064	56160	68256	92448	116640
Max. Throughput averaged over 1 frame	Mbps	19.302	31.304	41.954	54.600	66.581	87.922	114.50	138.54	186.38	234.45

Note 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

A.4 CSI reference measurement channels

TBD

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

A.5.1.1 OCNG FDD pattern 1: Generic OCNG FDD Pattern for all unused REs

Table A.5.1.1-1: OP.1 FDD: Generic OCNG FDD Pattern for all unused REs

OCNG Distribution	Control Region	Data Region								
OCNG Parameters	(Core Set)									
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)								
Structure	PDCCH	PDSCH								
Content	Uncorrelated pseudo random	Uncorrelated pseudo random QPSK								
	QPSK modulated data	modulated data								
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH								
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP								
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH								
Note 1: All unused REs in the active C	ORESETS appointed by the search	ch spaces in use.								

A.5.2 OCNG Patterns for TDD

A.5.2.1 OCNG TDD pattern 1: Generic OCNG TDD Pattern for all unused REs

Table A.5.2.1-1: OP.1 TDD: Generic OCNG TDD Pattern for all unused REs

OCNG Distribution	Control Region	Data Region							
OCNG Parameters	(Core Set)	-							
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)							
Structure	PDCCH	PDSCH							
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data							
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH							
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP							
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH							
Note 1: All unused REs in the active CORESETS appointed by the search spaces in use. Note 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETS, synchronization signals or reference signals in channel bandwidth.									

Annex B (normative): Propagation Conditions

The propagation conditions and channel models for various environments are specified. For each environment a propagation model is used to evaluate the propagation pathless due to the distance. Channel models are formed by combining delay profiles with a Doppler spectrum, with the addition of correlation properties in the case of a multi-antenna scenario.

B.0 No interference

The downlink connection between the System Simulator and the UE is without Additive White Gaussian Noise, and has no fading or multipath effects.

Annex C (normative): Downlink physical channels

Downlink signal levels C.0

The downlink power settings in Table C.0-1 is used unless otherwise specified in a test case.

If the UE has more than one Rx antenna, the downlink signal is applied to each one. All UE Rx antennas shall be connected.

If the UE has one Rx antenna, the downlink signal is applied to it.

Table C.0-1: Default Downlink power levels for NR

scs		Unit					CI	nannel b	andwidth	า				
(kHz)			5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
15	Number of RBs		25	50	75	100	128	160	215	270	N/A	N/A	N/A	N/A
15	Channel BW power	dBm	-60	-57	-55	-54	-53	-52	-51	-50	N/A	N/A	N/A	N/A
30	Number of RBs		10	24	36	50	64	75	100	128	162	216	243	270
30	Channel BW power	dBm	-61	-57	-55	-54	-53	-52	-51	-50	-49	-48	-47	-47
60	Number of RBs		N/A	10	18	24	30	36	50	64	75	100	120	135
60	Channel BW power	dBm	N/A	-58	-56	-54	-53	-52	-51	-50	-49	-48	-47	-47
	RS EPRE	dBm/ 15kH z	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85
	Note 1: The channel bandwidth powers are informative, based on -85dBm/15kHz SS/PBCH SSS EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed.													
	Note 3: DI	ne power _ level is 5dBm/15k	applied for	•				nfiguratio	n () with	the same	e power	spectrum	density	of -

The default signal level uncertainty is +/-3dB at each test port, for any level specified. If the uncertainty value is critical for the test purpose, a tighter uncertainty is specified for the related test case in Annex F

C.1 General

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.2 Setup

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PDCCH
PDSCH
PBCH DMRS
PDCCH DMRS
PDSCH DMRS
CSI-RS

C.3 Connection

C.3.1 Measurement of Receiver Characteristics

Unless otherwise stated, Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Parameter	Unit	Value
SSS transmit power	W	Test specific
EPRE ratio of PSS to SSS	dB	0
EPRE ratio of PBCH DMRS to SSS	dB	0
EPRE ratio of PBCH to PBCH DMRS	dB	0
EPRE ratio of PDCCH DMRS to SSS	dB	0
EPRE ratio of PDCCH to PDCCH DMRS	dB	0
EPRE ratio of PDSCH DMRS to SSS (Note 1)	dB	3
EPRE ratio of PDSCH to PDSCH DMRS (Note 1)	dB	-3
EPRE ratio of CSI-RS to SSS	dB	0
EPRE ratio of PTRS to PDSCH	dB	Test specific
EPRE ratio of OCNG DMRS to SSS	dB	0
EPRE ratio of OCNG to OCNG DMRS (Note 1)	dB	0
Note 1: No boosting is applied to any of the channels except PDSCH DMRS boosting is applied assuming DMRS Type 1 configuration when DM half of the DMRS REs are occupied.		

Note 2: Number of DMRS CDM groups without data for PDSCH DMRS configuration for OCNG is set to 1.

Annex D (normative): Characteristics of the Interfering Signal

D.1 General

Some RF performance requirements for the NR UE receiver are defined with interfering signals present in addition to the wanted signal.

For NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz, a modulated 5MHz full bandwidth NR down link signal, and in some cases an additional CW signal, are used as interfering signal.

For NR bands with $F_{DL_low} \ge 3300$ MHz and $F_{UL_low} \ge 3300$ MHz, a modulated NR downlink signal which equals to channel bandwidth of the wanted signal for Single Carrier case and Inter-band CA case is used as interfering. For intraband contiguous CA Bandwidth Class C case, a modulated NR downlink signal which equals to the aggregated channel bandwidth of the wanted signal is used. For intra-band contiguous CA Bandwidth Class D and E case, a modulated 50MHz NR downlink signal is used. And in some cases, an additional CW signal is used.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel bandwidth options for NR band lower than 2700MHz.

Table D.2-1: Description of modulated NR interferer for NR bands with F_{DL_high} < 2700 MHz and F_{UL_high} < 2700 MHz

		Channel bandwidth										
	5 MHz	10MHz	15 MHz	20 MHz	25 MHz	30 MHz						
RB		NOTE1										
BWInterferer		5 MHz										
		Channel bandwidth										
	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz						
RB			NC	TE1								
BWInterferer			5 N	ИHz								
NOTE 1: The												
	e RB configu mber defined											

Table D.2-2 and Table D.2-3 describe the modulated interferer for different channel bandwidth options for NR band higher than 3300MHz.

Table D.2-2: Description of modulated NR interferer for NR bands with F_{DL_low}≥ 3300 MHz and F_{UL_low}≥ 3300 MHz

		Channel bandwidth											
	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz				
RB					NOTE1								
BWInterferer	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz				
NOTE 1: The	NOTE 1: The RB configured for interfering signal is the same as maximum RB number defined in Table 5.3.2-1 for												
eac	each sub-carrier spacing.												

Table D.2-3: Description of modulated NR interferer for NR bands with F_{DL_low}≥ 3300 MHz and F_{UL_low}≥ 3300 MHz for Intra-band contiguous CA

		Aggı	egated Ch	nannel bar	dwidth of B	andwidth Cl	ass C		Bandwidth		
	110 MHz	120 MHz	130 MHz	140 MHz	150 MHz	160 MHz	180 MHz	200 MHz	Class D/E		
RB(SCS=30 kHz)		Note 1									
RB(SCS=60 kHz)		Note 1									
BWInterferer	110 MHz	120 MHz	130 MHz	140 MHz	150 MHz	160 MHz	180 MHz	200 MHz	50MHz		

NOTE 1: The interfering signal shall be configured in the same way as the aggregated bandwidth of the wanted signal. The RB configurations for each component carrier are defined in Table 5.3.2-1 for each sub-carrier spacing.

Annex E (normative): Global In-Channel TX-Test

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Number of preamble sequences over which EVM_{PRACH} is averaged is TBD in TS 38.101-1.

Note: Clauses E.2.2 to E.5.9.3 are descriptions, which assume no power ramping adjacent to the measurement period.

E.1 General

The global in-channel TX test enables the measurement of all relevant parameters that describe the in-channel quality of the output signal of the TX under test in a single measurement process.

The parameters describing the in-channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters.

E.2 Signals and results

E.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. All signals are represented as equivalent (generally complex) baseband signals.

The description below uses numbers as examples. These numbers are taken from FDD with normal CP length and 100 MHz bandwidth with 30 kHz SCS. The application of the text below, however, is not restricted to this frame structure and bandwidth.

E.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment and stored for further processing. It is sampled at a sampling rate of 122.88 Mbps. In the time domain it comprises at least 10 uplink subframes. The measurement period is derived by concatenating the correct number of individual uplink slots until the correct measurement period is reached. The output signal is named z(v). Each slot is modelled as a signal with the following parameters: demodulated data content, carrier frequency, amplitude and phase for each subcarrier, timing, carrier leakage.

NOTE 1: TDD

Since the uplink subframes are not continuous, n slots should be extracted from more than 1 continuous radio frame where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

E.2.3 Reference signal

Two types of reference signal are defined:

The reference signal $i_1(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: demodulated data content, nominal carrier frequency, nominal amplitude and phase for each

subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 122.88 Msps in the time domain.

The reference signal $i_2(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted data content: nominal reference symbols, (all modulation symbols for user data symbols are set to 0V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 122.88 Msps in the time domain.

NOTE: The PUCCH is off during the time under test.

E.2.4 Measurement results

The measurement results, achieved by the global in channel TX test are the following:

- Carrier Frequency error
- EVM (Error Vector Magnitude)
- Carrier leakage
- Unwanted emissions, falling into non allocated resource blocks.
- EVM equalizer spectrum flatness

E.2.5 Measurement points

The unwanted emission falling into non-allocated RB(s) is calculated directly after the FFT as described below. In contrast to this, the EVM for the allocated RB(s) is calculated after the IDFT for DFT-s-OFDM or after the Tx-Rx chain equalizer for CP-OFDM. The samples after the TX-RX chain equalizer are used to calculate EVM equalizer spectrum flatness. Carrier frequency error and carrier leakage is calculated in the block "RF correction".

Figure E.2.5-1: EVM measurement points

E.3 Signal processing

E.3.1 Pre FFT minimization process

Before applying the pre-FFT minimization process, z(v) and i(v) are portioned into n pieces, comprising one slot each, where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

Each slot is processed separately. Sample timing, Carrier frequency and carrier leakage in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

The carrier frequency variation and the IQ variation are the measurement results: Carrier Frequency Error and Carrier leakage.

From the acquired samples n carrier frequencies and n carrier leakages can be derived.

- NOTE 1: The minimisation process, to derive carrier leakage and RF error can be supported by Post FFT operations. However the minimisation process defined in the pre FFT domain comprises all acquired samples (i.e. it does not exclude the samples in between the FFT widths and it does not exclude the bandwidth outside the transmission bandwidth configuration
- NOTE 2: The algorithm would allow deriving Carrier Frequency error and Sample Frequency error of the TX under test separately. However there are no requirements for Sample Frequency error. Hence the algorithm models the RF and the sample frequency commonly (not independently). It returns one error and does not distinguish between both.

After this process the samples z(v) are called $z^{0}(v)$.

E.3.2 Timing of the FFT window

The FFT window length is 4096 samples per OFDM symbol. 14 FFTs (57344 samples) cover less than the acquired number of samples (61440 samples). The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP. There are three different instants for FFT:

Centre of the reduced window, called $\Delta \tilde{c}$, $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2.

The timing of the measured signal is determined in the pre FFT domain as follows, using $z^0(v)$ and $i_2(v)$:

- 1. The measured signal is delay spread by the TX filter. Hence the distinct boarders between the OFDM symbols and between Data and CP are also spread and the timing is not obvious.
- 2. In the Reference Signal $i_2(v)$ the timing is known.
- 3. Correlation between (1.) and (2.) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The meaning of "impulse response" assumes that the autocorrelation of the reference signal $i_2(v)$ is a Dirac peak and that the correlation between the reference signal $i_2(v)$ and the data in the measured signal is 0. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal.

From the acquired samples, n timings can be derived.

For all calculations, except EVM, the number of samples in $z^0(v)$ is reduced to 14 blocks of samples, comprising 4096 samples (FFT width) and starting with $\Delta \tilde{c}$ in each OFDM symbol including the demodulation reference signal.

For the EVM calculation the output signal under test is reduced to 28 blocks of samples, comprising 4096 samples (FFT width) and starting with $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2 in each OFDM symbol including the demodulation reference signal.

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z'(v).

The timing of the centre $\Delta \tilde{c}$ with respect to the different CP length in a slot is as follows: (FDD, normal CP length)

 $\Delta \widetilde{c}$ is on T_f =144 (=CP/2) within the CP of length 288 FFT samples (in OFDM symbols except 0 and 28 (=7 \cdot 2 $^{\mu}$), where symbol 0 is the first symbol of each subframe) for 100 MHz channel bandwidth and SCS = 30 kHz.

 $\Delta \tilde{c}$ is on T_f=176 (=320-144) within the CP of length 320 (in OFDM symbol 0 and 28 (=7 · 2 $^{\mu}$), where symbol 0 is the first symbol of each subframe) for 100 MHz channel bandwidth and SCS = 30 kHz.

E.3.3 Post FFT equalisation

Perform 14 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \tilde{c}$, including the demodulation reference symbol. The result is an array of samples, 14 in the time axis t times 4096 in the frequency axis f. The

samples represent the data symbols (in OFDM-symbol 0,1,3,4,5,6,8,9,10,12,13 in each slot) and demodulation reference symbols (OFDM symbol 2, 7, 11 in each slot) in the allocated RBs and inband emissions in the non-allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal demodulation reference symbols and nominal data symbols are used to equalize the measured data symbols. (Location for equalization see Figure E.2.5-1)

NOTE: The nomenclature inside this note is local and not valid outside.

The nominal data symbols are created by a demodulation process. The location to gain the demodulated data symbols is "EVM" in Figure E.2.5-1. For CP-OFDM, the process described in Annex E.5 can be applied. A demodulation process as follows is recommended for DFT-s-OFDM:

- 1. Equalize the measured data symbols using the reference symbols for equalisation. Result: Equalized data symbols
- 2. Only for DFT-s-OFDM, iDFT transform the equalized data symbols: Result: Equalized data symbols
- 3. Decide for the nearest constellation point: Result: Nominal data symbols
- 4. Only for DFT-s-OFDM, DFT transform the nominal data symbols: Result: Nominal data symbols

At this stage we have an array of \underline{M} easured data- \underline{S} ymbols and reference- \underline{S} ymbols (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

(complex, the arrays comprise 11 data symbols and 3 demodulation reference symbol in the time axis and the number of allocated subcarriers in the frequency axis.)

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f) is defined as

$$EC(f) = \frac{\sum_{t=0}^{13} NS(f,t)^* NS(f,t)}{\sum_{t=0}^{13} NS(f,t)^* MS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the DFT-coded data symbols. The measured DFT-coded data and the references symbols are equalized by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With denoting multiplication.

Z'(f,t), restricted to the data symbol (excluding t=2.7,11) is used to calculate EVM, as described in E.4.1.

EC(f) is used in E.4.4 to calculate EVM equalizer spectral flatness.

NOTE: The post FFT minimisation process is done over 14 symbols (11 DFT-coded data symbols and 3 reference symbols).

The samples of the non-allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non-allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.4 Derivation of the results

E.4.1 EVM

For EVM create two sets of Z'(f,t)., according to the timing " $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2" using the equalizer coefficients from E.3.3.

Perform the iDFTs on Z'(f,t) in the case of DFT-s-OFDM waveform. The IDFT-decoding preserves the meaning of t but transforms the variable f (representing the allocated sub carriers) into another variable g, covering the same count and representing the demodulated symbols. The samples in the post IDFT domain are called iZ'(g,t). The equivalent ideal samples are called iI(g,t). Those samples of Z'(f,t), carrying the reference symbols (=symbol 2,7,11) are not iDFT processed.

The EVM is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\displaystyle\sum_{t \in T} \sum_{g \in G} \left| iZ^{'}\left(g^{'}, t^{'}\right) - iI\left(g^{'}, t^{'}\right)^{2}}{\left|G\right| \cdot \left|T\right| \cdot P_{0}}} \;,$$

where

t covers the count of demodulated symbols with the considered modulation scheme being active within the measurement period, (i.e. symbol 0,1,3,4,5,6,8,9,10,12,13 in each slot, $\rightarrow |T|=11$)

g covers the count of demodulated symbols with the considered modulation scheme being active within the allocated bandwidth. ($|G|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

iZ'(g,t) are the samples of the signal evaluated for the EVM.

iI(g,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 2n EVM values can be derived, n values for the timing $\Delta \widetilde{c}$ -W/2 and n values for the timing $\Delta \widetilde{c}$ +W/2

E.4.2 Averaged EVM

EVM is averaged over all basic EVM measurements.

The averaging comprises n UL slots

$$\overline{EVM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_i^2}$$

where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

for PUCCH, PUSCH.

The averaging is done separately for timing $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2 leading to \overline{EVM}_1 and \overline{EVM}_h

$$EVM_{final} = max(\overline{EVM}_1, \overline{EVM}_h)$$
 is compared against the test requirements.

E.4.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

Explanatory Note:

The inband emission measurement is only meaningful with allocated RB(s) next to non-allocated RB. The allocated RB(s) are necessary but not under test. The non-allocated RBs are under test. The RB allocation for this test is as follows: The allocated RB(s) are at one end of the channel BW, leaving the other end unallocated. The number of allocated RB(s) is smaller than half of the number of RBs, available in the channel BW. This means that the vicinity of the carrier in the centre is unallocated.

There are 3 types of inband emissions:

- 1. General
- 2. IQ image
- 3. Carrier leakage

Carrier leakage are inband emissions next to the carrier.

IQ image are inband emissions symmetrically (with respect to the carrier) on the other side of the allocated RBs.

General are applied to all unallocated RBs.

For each evaluated RB, the minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply.

In specific the following combinations:

- Power (General)
- Power (General + Carrier leakage)
- Power (General + IQ Image)

1 and 2 is expressed in terms of power in one non allocated RB under test, normalized to the average power of an allocated RB (unit dB).

3 is expressed in terms of power in one non allocated RB, normalized to the power of all allocated RBs. (unit dBc).

This is the reason for two formulas *Emissions* relative.

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs below the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\max(f_{\min},(c_{t}+12 \cdot \Delta_{RB} * \Delta f))}^{c_{t}+(12 \cdot \Delta_{RB} * \Delta f))} |Y(t,f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{c_{h}+(12 \cdot \Delta_{RB} * \Delta f))}^{\min(f_{\max},(c_{h}+12 \cdot \Delta_{RB} * \Delta f))} |Y(t,f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

the upper formula represents the in band emissions below the allocated frequency block and the lower one the in band emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ DFT-s-OFDM symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 $f_{
m min}$ and $f_{
m max}$ are the lower and upper edge of the UL transmission BW configuration,

 \boldsymbol{c}_l and \boldsymbol{c}_h are the lower and upper edge of the allocated BW,

 Δf is the SCS, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.3.3

The allocated RB power per RB and the total allocated RB power are given by:

$$P_{RB} = \frac{1}{|T_{s}| \cdot L_{CRBs}} \sum_{t \in T_{s}}^{c_{1} + (12 \cdot L_{CRBs} - 1) \cdot \Delta f} |\text{MS}(t, f)|^{2} [\text{dBm}/(12\Delta f)]$$

$$P_{All-RBs} = \frac{1}{|T_{s}|} \sum_{t \in T_{s}}^{c_{1} + (12 \cdot L_{CRBs} - 1) * \Delta f} |\text{MS}(t, f)|^{2} [\text{dBm}]$$

The relative in-band emissions, applicable for General and IQ image, are given by:

$$Emissions_{relative}(\Delta_{RB}) = 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_S| \cdot L_{CRBS}} \sum_{t \in T_S} \sum_{c_l}^{c_l + (12 \cdot L_{CRBS} - 1) \cdot \Delta f} |\mathsf{MS}(t, f)|^2} \right) [\mathsf{dB}] = Emissions_{absolute}(\Delta_{RB}) [\mathsf{dBm}/12\Delta f] - P_{RB}[dBm/12\Delta f]$$

where

 L_{CRBs} is the number of allocated resource blocks,

and

MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.3.3.

The relative in-band emissions, applicable for carrier leakage, is given by:

$$\begin{split} Emissions_{relative} &= 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(RBnextDC)}{\frac{1}{|T_s|} \sum_{t \in T_s} \sum_{c_l}^{c_l + (12 \cdot L_{CRBs} - 1) \cdot \Delta f} |\mathsf{MS}(t, f)|^2} \right) [\mathsf{dBc}] \\ &= Emissions_{absolute}(RBnextDC)[\mathsf{dBm}/12\Delta f] - P_{All\ RBs}[\mathsf{dBm}] \end{split}$$

where RBnextDC means: Resource Block next to the carrier.

This can be one RB or one pair of RBs, depending whether the DC carrier is inside an RB or in-between two RBs.

Although an exclusion period may be applicable in the time domain, when evaluating EVM, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples *n* functions for general in band emissions and IQ image inband emissions can be derived. n values or n pairs of carrier leakage inband emissions can be derived. They are compared against different limits.

E.4.4 EVM equalizer spectrum flatness

For EVM equalizer spectrum flatness use EC(f) as defined in E.3.3. Note, EC(f) represents equalizer coefficient $f \in F$, f is the allocated subcarriers within the transmission bandwidth $((|F|=12*L_{CRB}))$

From the acquired samples n functions EC(f) can be derived.

EC(f) is broken down to 2 functions:

$$EC_1(f), f \in Range 1$$

$$EC_2(f), f \in Range \ 2$$

Where Range 1 and Range 2 are as defined in Table 6.5.2.4.5-1 for normal condition and Table 6.5.2.4.5-2 for extreme condition

The following peak to peak ripple is calculated:

 $RP_1 = 20 * \log (max(|EC_1(f)|) / min(|EC_1(f)|))$, which denote the maximum ripple in Range 1

 $RP_2 = 20*log\left(max\left(\mid EC_2(f)\mid\right)/min(\mid EC_2(f)\mid\right)\right), \text{which denote the maximum ripple in Range 2}$

 $RP_{12} = 20*\log(\max(|EC_1(f)|)/\min(|EC_2(f)|))$, which denote the maximum ripple between the upper side of Range 1 and lower side of Range 2

 $RP_{21} = 20*log\left(max\left(|EC_{2}(f)|\right)/min(|EC_{1}(f)|\right)) \text{ ,which denote the maximum ripple between the upper side of Range 2 and lower side of Range 1}$

E.4.5 Frequency error and Carrier leakage

See E.3.1.

E.4.6 EVM of Demodulation reference symbols (EVM_{DMRS})

For the purpose of EVM $_{DMRS}$, the steps E.2.2 to E.4.2 are repeated 6 times, constituting 6 EVM $_{DMRS}$ sub-periods. The only purpose of the repetition is to cover the longer gross measurement period of EVM $_{DMRS}$ (6 · n time slots) and to derive the FFT window timing per sub-period.

The bigger of the EVM results in one n TS period corresponding to the timing $\Delta \widetilde{c} - W/2$ or $\Delta \widetilde{c} + W/2$ is compared against the limit. (Clause E.4.2) This timing is re-used for EVM _{DMRS} in the equivalent EVM _{DMRS} sub-period.

For EVM the demodulation reference symbols are excluded, while the data symbols are used. For EVM $_{DMRS}$ the data symbols are excluded, while the demodulation references symbols are used. This is illustrated in figure E.4.6-1

Figure E.4.6-1: EVM_{DMRS} measurement points

Re-use the following formula from E.3.3:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

To calculate EVM_{DMRS}, the data symbol (t=0,1,3,4,5,6,8,9,10,12,13) in Z'(f,t) are excluded and only the reference symbols (t=2,7,11) is used.

The EVM $_{DMRS}$ is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{DMRS} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{'}(f, t) - I(f, t) \right|^{2}}{\left| T \left| \cdot P_{0} \cdot \middle| F \right|}},$$

where

t covers the count of demodulation reference symbols (i.e. symbols 2,7,11 in each slot, so count=3)

f covers the count of demodulation reference symbols within the allocated bandwidth. ($|F|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

Z '(f,t) are the samples of the signal evaluated for the EVM $_{
m DMRS}$

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

n such results are generated per measurement sub-period.

E.4.6.1 1st average for EVM DMRS

EVM $_{DMRS}$ is averaged over all basic EVM $_{DMRS}$ measurements in one sub-period

The averaging comprises n UL slots

$$1stEVM_{DMRS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (EVM_{DMRS,i})^{2}}$$

The timing is taken from the EVM for the data. 6 of those results are achieved from the samples. In general the timing is not the same for each result.

E.4.6.2 Final average for EVM DMRS

$$finalEVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{i=1}^{6} \left(1stEVM_{DMRS,i}\right)^{2}}$$

E.5 EVM and inband emissions for PUCCH

For the purpose of worst case testing, the PUCCH shall be located on the edges of the Transmission Bandwidth Configuration (6,15,25,50,75,100 RBs).

The EVM for PUCCH (EVM $_{PUCCH}$) is averaged over n slots, where

$$n = \begin{cases} 10, \text{ for } 15 \text{ kHz SCS} \\ 20, \text{ for } 30 \text{ kHz SCS} \\ 30, \text{ for } 60 \text{ kHz SCS} \end{cases}$$

At least *n* TSs shall be transmitted by the UE without power change. SRS multiplexing shall be avoided during this period. The following transition periods are applicable: One OFDM symbol on each side of the slot border (instant of band edge alternation).

The description below is generic in the sense that all 5 PUCCH formats are covered. Although the number of OFDM symbols in one slot can be different from 7 (depending on the format, configuration and cyclic prefix length), the text below uses 7 without excluding the others.

E.5.1 Basic principle

The basic principle is the same as described in E.2.1

E.5.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

E.5.3 Reference signal

The reference signal is defined same as in E.2.3. Same as in E.2.3, $i_1(v)$ is the ideal reference for EVM_{PUCCH} and $i_2(v)$ is used to estimate the FFT window timing.

Note PUSCH is off during the PUCCH measurement period.

E.5.4 Measurement results

The measurement results are:

- EVM_{PUCCH}
- Inband emissions with the sub-results: General in-band emission, IQ image (according to: 38.101. Annex F.4, Clause starting with: "At this stage the")

E.5.5 Measurement points

The measurement points are illustrated in Figure E.2.5-1.

E.5.6 Pre FFT minimization process

The pre FFT minimisation process is the same as describes in clause E.3.1.

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the pre FFT minimisation process is done over the complete slot.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.5.7 Timing of the FFT window

Timing of the FFT window is estimated with the same method as described in E.3.2.

E.5.8 Post FFT equalisation

The post FFT equalisation is described separately without reference to E.3.3:

Perform 14 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \widetilde{c}$, including the demodulation reference symbol. The result is an array of samples, 14 in the time axis t times 4096 in the frequency axis f. The samples represent the OFDM symbols (data and reference symbols) in the allocated RBs and inband emissions in the non-allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal reference symbols and **nominal** OFDM data symbols are used to equalize the measured data symbols.

Note: (The nomenclature inside this note is local and not valid outside)

The nominal OFDM data symbols are created by a demodulation process. A demodulation process as follows is recommended:

- 1. Equalize the measured OFDM data symbols using the reference symbols for equalisation. Result: Equalized OFDM data symbols
- 2. Decide for the nearest constellation point, however not independent for each subcarrier in the RB. 12 constellation points are decided dependent, using the applicable CAZAC sequence. Result: Nominal OFDM data symbols

At this stage we have an array of Measured data-Symbols and reference-Symbols (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

The arrays comprise in sum 14 data and reference symbols, depending on the PUCCH format, in the time axis and the number of allocated sub-carriers in the frequency axis.

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{6} NS(f,t)^{*} NS(f,t)}{\sum_{t=0}^{6} MS(f,t)^{*} NS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the OFDM data together with the demodulation reference symbols by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With denoting multiplication.

Z'(f,t) is used to calculate EVM_{PUCCH}, as described in E.5.9 1

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the post FFT minimisation process is done over 14 OFDM symbols.

The samples of the non-allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non-allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.5.9 Derivation of the results

E.5.9.1 EVM_{PUCCH}

For EVM_{PUCCH} create two sets of Z'(f,t)., according to the timing " $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2" using the equalizer coefficients from E.5.8

The EVM_{PUCCH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{PUCCH} = \sqrt{\frac{\displaystyle\sum_{t \in T} \sum_{f \in F} \left| Z^{-1}(f, t) - I(f, t) \right|^{2}}{\left| T \left| \cdot P_{0} \cdot \middle| F \right|}},$$

where

the OFDM symbols next to slot boarders (instant of band edge alternation) are excluded:

t covers less than the count of demodulated symbols in the slot (|T|=5)

f covers the count of subcarriers within the allocated bandwidth. (|F|=12)

Z'(f,t) are the samples of the signal evaluated for the EVM_{PUCCH}

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 2n EVM_{PUCCH} value can be derived, n values for the timing $\Delta \widetilde{c}$ -W/2 and n values for the timing $\Delta \widetilde{c}$ +W/2

E.5.9.2 Averaged EVM_{PUCCH}

EVM_{PUCCH} is averaged over all basic EVM_{PUCCH} measurements

The averaging comprises n UL slots

$$\overline{EVM}_{PUCCH} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (EVM_{PUCCH,i})^{2}}$$

The averaging is done separately for timing: $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2 leading to $\overline{EVM}_{PUCCH,low}$ and $\overline{EVM}_{PUCCH,high}$

 $EVM_{PUCCH,final} = \max(\overline{EVM}_{PUCCH,low},\overline{EVM}_{PUCCH,high})$ is compared against the test requirements.

E.5.9.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

Create one set of Y(t,f) per slot according to the timing " $\Delta \widetilde{c}$ "

For the non-allocated RBs the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\max(f_{\min}, (c_{t}+12 \cdot \Delta_{RB} + \Delta f))}^{c_{t}+(12 \cdot \Delta_{RB} + \Delta f)} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{c_{h}+(12 \cdot \Delta_{RB} - 11) * \Delta f}^{\min(f_{\max}, (c_{h}+12 \cdot \Delta_{RB} * \Delta f))} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases},$$

where

the upper formula represents the inband emissions below the allocated frequency block and the lower one the inband emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ OFDM symbols in the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ for the first upper or $\Delta_{RB} = -1$ for the first lower adjacent RB),

 f_{\min} and f_{\max} are the lower and upper edge of the UL system BW,

 \boldsymbol{c}_l and \boldsymbol{c}_h are the lower and upper edge of the allocated BW,

 Δf is the SCS, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.5.8

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = 10*\log_{10} \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot L_{CRBs}} \sum_{t \in T_{s}}^{c_{1} + (12 \cdot L_{CRBs} - 1)*\Delta f} \left|MS(t, f)\right|^{2}} [dB]$$

where

 $L_{\it CRBs}$ is the number of allocated RBs,

and MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.5.8

Although an exclusion period for EVM is applicable in E.5.9.1, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples n functions for inband emissions can be derived.

Since the PUCCH allocation is always on the upper or lower band-edge, the opposite of the allocated one represents the IQ image, and the remaining inner RBs represent the general inband emissions. They are compared against different limits.

E.6 EVM for PRACH

The description below is generic in the sense that all PRACH formats are covered. The numbers, used in the text below are taken from PRACH format#0 without excluding the other formats. The sampling rate for PRACH is assumed as , 30.72 Msps in the time domain.

E.6.1 Basic principle

The basic principle is the same as described in E.2.1

E.6.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

The measurement period is TBD.

E.6.3 Reference signal

The test description in 6.4.2.1.4.1 is based on non-contention based access:

- PRACH configuration index (responsible for Preamble format, System frame number and subframe number)
- Preamble ID
- Preamble power

signalled to the UE, defines the reference signal unambiguously, such that no demodulation process is necessary to gain the reference signal.

The reference signal i(v) is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: the applicable Zadoff Chu sequence, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 122.88 Msps in the time domain.

E.6.4 Measurement results

The measurement result is:

- EVMPRACH

E.6.5 Measurement points

The measurement points are illustrated in the figure below:

Figure E.6.5-1: Measurement points

E.6.6 Pre FFT minimization process

The pre-FFT minimization process is applied to each PRACH preamble separately. The time period for the pre-FFT minimisation process includes the complete CP and Zadoff-Chu sequence (in other words, the power transition period is per definition outside of this time period) Sample timing, Carrier frequency and carrier leakage in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

After this process the samples z(v) are called $z^{0}(v)$.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.6.7 Timing of the FFT window

The FFT window length is 24576 samples for preamble format 0, however in the measurement period at least 27744 samples are taken. The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP.

The reference instant for the FFT start is the centre of the reduced window, called $\Delta \tilde{c}$,

EVM is measured at the following two instants: $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$.

The timing of the measured signal $z^0(v)$ with respect to the ideal signal i(v) is determined in the pre FFT domain as follows:

Correlation between $z^0(v)$ and i(v) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal with respect to the ideal signal.

W is different for different preamble formats and shown in Table E.6.7-1 for $L_{\rm RA} = 839$ and $\Delta f^{\rm RA} \in \{1.25,5\}$ kHz in Table E.6.7-2 for $L_{\rm RA} = 139$ and $\Delta f^{\rm RA} = 15 \cdot 2^{\mu}$ kHz where $\mu \in \{0,1,2\}$.

Table E.6.7-1: EVM window length for PRACH formats for $L_{\rm RA} = 839$

Preamble format	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length} \ N_{cp} \end{array}$	Nominal FFT size ¹	EVM window length W in FFT samples	Ratio of W to CP*
0	3168	24576	2307	72.8%
1	21024	24576	20163	95.9%
2	4688	24576	3827	81.6%
3	3168	6144	2952	93.2%
Note 1: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied Note 2: These percentages are informative.				

Table E.6.7-2: EVM window length for PRACH formats for $L_{\rm RA}$ = 139

Preamble format	$\begin{array}{c} \textbf{Cyclic} \\ \textbf{prefix} \\ \textbf{length} \ N_{cp} \end{array}$	Nominal FFT size ¹	EVM window length W in FFT samples	Ratio of W to CP*
A1	288·2 ⁻ µ	2048·2 ^{-μ}	144·2 ⁻	50.0%
A2	576·2 ^{-μ}	2048·2 ^{-μ}	432·2 ⁻	75.0%
A3	864·2 ^{-μ}	2048·2 ^{-μ}	720·2 ⁻	83.3%
B1	216·2 ⁻ µ	2048·2 ^{-μ}	72·2 ⁻ µ	33.3%
B2	360·2 ⁻ µ	2048·2 ^{-μ}	216·2 ^{-μ}	60.0%
B3	504·2 ^{-μ}	2048·2 ^{-μ}	360·2 ⁻ µ	71.4%
B4	936·2 ^{-μ}	2048·2 ^{-μ}	792·2 ⁻ µ	84.6%
C0	1240·2 ⁻ µ	2048·2 ^{-μ}	1096·2⁻ ^μ	88.4%
C2	2048·2 ^{-μ}	2048·2 ^{-μ}	1904·2 ^{-μ}	93.0%
Note 1: The use of other FFT sizes is possible as long as appropriate				
scaling of the window length is applied				
Note 2: T	Note 2: These percentages are informative			

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z'(v).

EVM is based on Nominal FFT size samples per PRACH preamble and demodulated symbol.

E.6.8 Post FFT equalisation

Equalisation is not applicable for the PRACH.

E.6.9 Derivation of the results

E.6.9.1 EVMPRACH

Perform FFT on z'(v) and i(v) using the FFT timing $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2.

For format 2 and 3 the first and the repeated preamble sequence are FFT-converted separately. using the standard FFT length of 2048.

The EVM_{PRACH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s).

$$EVM_{PRACH} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{'}(f, t) - I(f, t) \right|^{2}}{\left| T \right| \cdot P_{0} \cdot \left| F \right|}}$$

where

t covers the count of demodulated symbols in the slot.

f covers the count of demodulated symbols within the allocated bandwidth.

Z '(f,t) are the samples of the signal evaluated for the ${
m EVM_{PRACH}}$

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples TBD EVM_{PRACH} values can be derived, TBD values for the timing $\Delta \widetilde{c}$ –W/2 and TBD values for the timing $\Delta \widetilde{c}$ +W/2.

E.6.9.2 Averaged EVM_{PRACH}

The PRACH EVM, $\ensuremath{\mathit{EVM}}_{\mathit{PRACH}}$, is averaged over TBD preamble sequence measurements.

$$\overline{EVM}_{PRACH} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (EVM_{PRACH,i})^2}$$
where m is TBD.

The averaging is done separately for timing $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2 leading to $\overline{EVM}_{PRACH,low}$ and $\overline{EVM}_{PRACH,high}$

 $EVM_{PRACH,final} = \max(\overline{EVM}_{PRACH,low},\overline{EVM}_{PRACH,high})$ is compared against the test requirements.

Annex F (normative): Measurement uncertainties and Test Tolerances

F.1 Acceptable uncertainty of Test System (normative)

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

The downlink signal uncertainties apply at each receiver antenna connector.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in TS 38.508-1 [5] subclause 4.1, Test environments shall be

- Pressure ±5 kPa.

- Temperature ±2 degrees.

- Relative Humidity ±5 %.

- DC Voltage $\pm 1,0 \%$.

- AC Voltage $\pm 1,5 \%$.

- Vibration 10 %.

- Vibration frequency 0,1 Hz.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Table F.1.2-1: Maximum Test System Uncertainty for transmitter tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2.1 UE maximum output	f ≤ 3.0GHz	
power	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
6.2.2 Maximum Power	f ≤ 3.0GHz	
Reduction (MPR)	±0.7 dB, BW ≤ 40MHz ±1.4 dB, 40MHz < BW ≤ 100MHz	
	11.4 db, 40lvii i2 < bvv 3 100lvii i2	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
6.2.3 UE additional	f ≤ 3.0GHz	
maximum output power	±0.7 dB, BW ≤ 40MHz	
reduction	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
6.2.4 Configured transmitted		
power	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	±1.5 dB, 20MHz < BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
6.2C.1 Configured	Same as 6.2.1	
transmitted power for SUL 6.2D.1 UE maximum output	f ≤ 3.0GHz	MU is for the sum of power at
power for UL-MIMO	±1.0 dB, BW ≤ 40MHz	each of UE antenna connector,
F 1.35. 15. 52 Millio	±2.0 dB, 40MHz < BW ≤ 100MHz	and is derived as RSS of 2 single Tx antenna MU in 6.2.1
	3.0GHz < f ≤ 4.2GHz	Single 17 differing WO III 0.2.1
	±1.4 dB, BW ≤ 40MHz	
	±2.3 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.8 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 40MHz	
	±2.3 dB, 40MHz < BW ≤ 100MHz	

6.2D.2 UE maximum output power reduction for UL-MIMO	$f \le 3.0 \text{GHz}$ $\pm 1.0 \text{ dB, BW} \le 40 \text{MHz}$ $\pm 2.0 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz}$ $3.0 \text{GHz} < f \le 4.2 \text{GHz}$ $\pm 1.4 \text{ dB, BW} \le 40 \text{MHz}$ $\pm 2.3 \text{ dB, 40MHz} < \text{BW} \le 100 \text{MHz}$	MU is for the sum of power at each of UE antenna connector, and is derived as RSS of 2 single Tx antenna MU in 6.2.2
	4.2GHz < f ≤ 6.0GHz ±1.8 dB, BW ≤ 20MHz ±2.1 dB, 20MHz < BW ≤ 40MHz ±2.3 dB, 40MHz < BW ≤ 100MHz	
6.2D.3 UE additional maximum output power reduction for UL-MIMO	f ≤ 3.0GHz ±1.0 dB, BW ≤ 40MHz ±2.0 dB, 40MHz < BW ≤ 100MHz	MU is for the sum of power at each of UE antenna connector, and is derived as RSS of 2 single Tx antenna MU in 6.2.3
	3.0GHz < f ≤ 4.2GHz ±1.4 dB, BW ≤ 40MHz ±2.3 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz ±1.8 dB, BW ≤ 20MHz ±2.1 dB, 20MHz < BW ≤ 40MHz ±2.3 dB, 40MHz < BW ≤ 100MHz	
6.2D.4 Configured transmitted power for UL-MIMO	f ≤ 3.0GHz ±1.0 dB, BW ≤ 40MHz ±2.0 dB, 40MHz < BW ≤ 100MHz	MU is for the sum of power at each of UE antenna connector, and is derived as RSS of 2 single Tx antenna MU in 6.2.4
	3.0GHz < f ≤ 4.2GHz ±1.4 dB, BW ≤ 40MHz ±2.3 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz ±1.8 dB, BW ≤ 20MHz ±2.1 dB, 20MHz < BW ≤ 40MHz ±2.3 dB, 40MHz < BW ≤ 100MHz	
6.3.1 Minimum output power	f ≤ 3.0GHz ±1.0 dB, BW ≤ 40MHz ±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz ±1.3 dB, BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz	
6.3.2 Transmit OFF power	4.2GHz < f ≤ 6.0GHz ±1.5 dB, BW ≤ 40MHz ±1.8 dB, 40MHz < BW ≤ 100MHz f ≤ 3.0GHz	
0.0.2 Hanshiit Of F power	±1.5 dB, BW ≤ 40MHz ±1.7 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz ±1.8 dB, BW ≤ 40MHz ±1.9 dB, 40MHz < BW ≤ 80MHz ±2.2 dB, 80MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz ±2.0 dB, BW ≤ 20MHz ±2.1 dB, 20MHz < BW ≤ 80MHz ±2.2 dB, 80MHz < BW ≤ 100MHz	

6.3.3.2 General ON/OFF	f ≤ 3.0GHz	
time mask	±1.5 dB, BW ≤ 40MHz	
	±1.7 dB, 40MHz < BW ≤ 100MHz	
	2 00Hz +f < 4 20Hz	
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
	4.2011 4 < 0.0011-	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.3.4 PRACH time mask	f ≤ 3.0GHz	
0.5.5.4 FIXACIT tillle mask		
	±1.5 dB, BW ≤ 40MHz	
	±1.7 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.3.6 SRS time mask	f ≤ 3.0GHz	
	±1.5 dB, BW ≤ 40MHz	
	±1.7 dB, 40MHz < BW ≤ 100MHz	
	±1.7 db, 401/11 12 < by 5 1001/11 12	
	0.0011 (. 4.0011	
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
	±2.2 db, 001vii 12 < bv = 1001vii 12	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 80MHz	
	· ·	
0.0.0.7.0110.011.0110.011	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.3.7 PUSCH-PUCCH and		
PUSCH-SRS time masks	±1.5 dB, BW ≤ 40MHz	
	±1.7 dB, 40MHz < BW ≤ 100MHz	
	, '	
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 80MHz	
	±2.2 dB, 80MHz < BW ≤ 100MHz	
6.3.4.2 Absolute power	f ≤ 3.0GHz	Test System uncertainty =
tolerance	±1.0 dB, BW ≤ 40MHz	SQRT (UL Meas Uncer ² + DL
13.0141100	±1.6 dB, 40MHz < BW ≤ 100MHz	Meas Uncer ²)
	ET.O OD, HOIVII IZ < DVV > TOUIVIEZ	ivicas Ulicei-)
	3.0GHz < f ≤ 4.2GHz	
	±1.4 dB, BW ≤ 40MHz	
	±1.9 dB, 40MHz < BW ≤ 100MHz	
	4 20Uz + f < 6 00Uz	
	4.2GHz < f ≤ 6.0GHz	
	±2.0 dB, BW ≤ 20MHz	
	±2.1 dB, 20MHz < BW ≤ 40MHz	
		Ī
	1 ±2.2 dB. 80MHZ < BW ≤ 100MHZ	
6343 Power Control	±2.2 dB, 80MHz < BW ≤ 100MHz +0.7 dB, BW < 40MHz	
6.3.4.3 Power Control	±0.7 dB, BW ≤ 40MHz	
Relative power tolerance	±0.7 dB, BW ≤ 40MHz ±1.0 dB, 40MHz < f ≤ 100MHz	
Relative power tolerance 6.3.4.4 Aggregate power	±0.7 dB, BW ≤ 40MHz ±1.0 dB, 40MHz < f ≤ 100MHz ±0.7 dB, BW ≤ 40MHz	
Relative power tolerance	±0.7 dB, BW ≤ 40MHz ±1.0 dB, 40MHz < f ≤ 100MHz	

	T	T
6.3D.1 Minimum output power for UL-MIMO	f ≤ 3.0GHz ±1.4 dB, BW ≤ 40MHz ±2.0 dB, 40MHz < BW ≤ 100MHz	MU is for the sum of power at each of UE antenna connector, and is derived as RSS of 2
		single Tx antenna MU in 6.3.1
	3.0GHz < f ≤ 4.2GHz	
	±1.8 dB, BW ≤ 40MHz	
	±2.3 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±2.1 dB, BW ≤ 40MHz	
	±2.5 dB, 40MHz < BW ≤ 100MHz	
6.3D.2 Transmit OFF power for UL-MIMO	FFS	
6.3D.3 Transmit ON/OFF	Same as 6.3.3.2 for each antenna	
time mask for UL-MIMO		
6.3D.4.1 Absolute Power	f ≤ 3.0GHz	MU is for the sum of power at
tolerance	±1.4 dB, BW ≤ 40MHz	each of UE antenna connector
	±2.3 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±2.0 dB, BW ≤ 40MHz	
	±2.7 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±2.8 dB, BW ≤ 20MHz	
	±3.0 dB, 20MHz < BW ≤ 40MHz	
	±3.1 dB, 80MHz < BW ≤ 100MHz	
6.3D.4.2 Relative Power	FFS	MU is for the sum of power at
tolerance	550	each of UE antenna connector
6.3D.4.3 Aggregate Power tolerance	FFS	MU is for the sum of power at each of UE antenna connector
6.4.1 Frequency Error	±15 Hz, f ≤ 3.0GHz	each of the antenna connector
o r roquency Enter	±36 Hz, f > 3.0GHz	
	DL Signal level:	
	±0.7 dB, f ≤ 3.0GHz	
	±1.0 dB, 3.0GHz < f ≤ 4.2GHz	
C 4 C 4 F V 4	±1.5 dB, 4.2GHz < f ≤ 6.0GHz	
6.4.2.1 Error Vector Magnitude	For up to 256QAM: f ≤ 6.0GHz, BW ≤ 100MHz	
Magrittado	1 = 0.001.12, 200 = 100000.12	
	15 dBm < P∪L	
	PUSCH, PUCCH, PRACH: ±1.5 %	
	-25 dBm < P _{UL} ≤ 15 dBm	
	PUSCH, PUCCH, PRACH: ±2.5 %	
	-40dBm ≤ P _{UL} ≤ -25dBm PUSCH, PUCCH, PRACH: ±3.0 %	
6.4.2.2 Carrier Leakage	f ≤ 3.0GHz	
	±0.8 dB, BW ≤ 40MHz	
	±1.5 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	$\pm 0.8 \text{ dB, BW} \le 40 \text{MHz}$	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	

6.4.2.3 In-band emissions	f ≤ 3.0GHz
	±0.8 dB, BW ≤ 40MHz
	±1.5 dB, 40MHz < BW ≤ 100MHz
	3.0GHz < f ≤ 4.2GHz
	±0.8 dB, BW ≤ 40MHz
	±1.6 dB, 40MHz < BW ≤ 100MHz
	21.5 dB, 16W 2 186W 12
	4.2GHz < f ≤ 6.0GHz
	$\pm 1.0 \text{ dB, BW} \le 40 \text{MHz}$
0.4.0.4.5.4.4	±1.6 dB, 40MHz < BW ≤ 100MHz
6.4.2.4 EVM equalizer	±1.4 dB, BW ≤ 40MHz
spectrum flatness	±1.6 dB, 40MHz < BW ≤ 100MHz
6.4.2.5 EVM equalizer	Same as 6.4.2.4
spectrum flatness for Pi/2	
BPSK	
6.4D.1 Frequency error for	Same as 6.4.1 for each antenna
UL-MIMO	
6.4D.2.1 Error Vector	Same as 6.4.2.1 for each antenna
Magnitude for UL-MIMO	Camb de C. 1.2.1 Tot Gash allound
6.4D.2.2 Carrier leakage for	Same as 6.4.2.2 for each antenna
UL-MIMO	Camb as 0.7.2.2 for each antenna
	Same as 6.4.2.3 for each antenna
6.4D.2.3 In-band emissions	Same as 6.4.2.3 for each antenna
for UL-MIMO	
6.4D.2.4 EVM equalizer	Same as 6.4.2.4 for each antenna
spectrum flatness for UL-	
MIMO	
6.4D.3 Time alignment error	[±25ns]
for UL-MIMO	
6.4D.4 Requirements for	FFS
Coherent UL MIMO	
6.5.1 Occupied bandwidth	1.5% of channel bandwidth
6.5C.1 Occupied bandwidth	Same as 6.5.1
for SUL	Same as 0.3.1
	±1.5 dB, f ≤ 3.0GHz
6.5.2.2 Spectrum Emission	
Mask	±1.8 dB, 3.0GHz < f ≤ 4.2GHz
	±2.0 dB, 4.2GHz < f ≤ 6.0GHz
6.5C.2.2 Spectrum Emission	Same as 6.5.2.2
Mask for SUL	
6.5.2.3 Additional spectrum	±1.5 dB, f ≤ 3.0GHz
emission mask	±1.8 dB, 3.0GHz < f ≤ 4.2GHz
	±2.0 dB, 4.2GHz < f ≤ 6.0GHz
6.5C.2.3 Additional	Same as 6.5.2.3
spectrum emission mask for	
SUL	
6.5.2.4.1 NR ACLR	±0.8 dB, f ≤ 4.0GHz
	±1.0 dB, 4.0GHz < f ≤ 6.0GHz
6.5C.2.4.1 NR ACLR for	Same 6.5.2.4.1
SUL	Outilo 0.0.2.7. I
6.5.2.4.2 UTRA ACLR	±0.8 dB, f ≤ 4.0GHz
0.0.2.4.2 UTNA ACER	
C. F.C. Q. A. Q. LITTO A. A. C.L. D. (±1.0 dB, 4.0GHz < f ≤ 6.0GHz
6.5C.2.4.2 UTRA ACLR for	Same as 6.5.2.4.2
SUL	
6.5.3.1 General spurious	for results > -60 dBm:
emissions	$\pm 2.0 \text{ dB}, 9\text{kHz} < f \le 3\text{GHz}$
	±2.5 dB, 3GHz < f ≤ 4GHz
	±4.0 dB, 4GHz < f ≤ 19GHz
	±6.0 dB, 19GHz < f ≤ 26GHz
6.5C.3.1 General spurious	Same as 6.5.3.1
emissions for SUL	
6.5.3.2 Spurious emission	for results > -60 dBm:
for UE co-existence	±2.0 dB, 9kHz < f ≤ 3GHz
02 00 0/10/100	±2.5 dB, 3GHz < f ≤ 4GHz
	±2.5 dB, 36Hz < f ≤ 19GHz
6 FC 2 2 Spurious arriagies	±6.0 dB, 19GHz < f ≤ 26GHz
6.5C.3.2 Spurious emission	Same as 6.5.3.2
for UE co-existence for SUL	

0.5.0.0.4.4.191	f	
6.5.3.3 Additional spurious	for results > -60 dBm:	
emissions	±2.0 dB, 9kHz < f ≤ 3GHz	
	±2.5 dB, 3GHz < f ≤ 4GHz	
	±4.0 dB, 4GHz < f ≤ 19GHz	
	±6.0 dB, 19GHz < f ≤ 26GHz	
6.5C.3.3 Additional spurious	Same as 6.5.3.3	
emissions for SUL		
6.5.4 Transmit	f ≤ 3.0GHz	Overall system uncertainty
intermodulation	±2.7 dB, BW ≤ 40MHz	comprises four quantities:
	±3.1 dB, 40MHz < BW ≤ 100MHz	4 Montodoined attion are
		Wanted signal setting error CW Interferer level error
	3.0GHz < f ≤ 4.2GHz	
	±3.7 dB, BW ≤ 40MHz	3. Wanted signal meas. error
	±4.0 dB, 40MHz < BW ≤ 100MHz	4. Intermodulation product
		measurement error
	4.2GHz < f ≤ 6.0GHz	The veletive level of the constant
	±5.1 dB, BW ≤ 40MHz	The relative level of the wanted
	±5.3 dB, 40MHz < BW ≤ 100MHz	signal and the CW interferer
		has 2 x effect on the
		intermodulation product.
		Itomo 1 2 2 and 4 are
		Items 1, 2, 3 and 4 are
		assumed to be uncorrelated so
		can be root sum squared to
		provide the combined effect.
		To at Occata an our anatainte
		Test System uncertainty =
		SQRT [(2 x SQRT (Wanted
		setting_error ² +
		CW_level_error ²)) ² +
		Wanted_level_meas error ² +
		Intermodulation product
		measurement error ²]
6.5C.4 Transmit	Same as 6.5.4	
intermodulation for SUL		
6.5D.1 Occupied bandwidth	Same as 6.5.1 for each antenna	
for UL-MIMO		
6.5D.2.2 Spectrum emission	Same as 6.5.2.2 for each antenna	
mask for UL-MIMO		
6.5D.2.3 Additional	Same as 6.5.2.3 for each antenna	
spectrum emission mask for		
ÚL-MIMO		
6.5D.2.4.1 NR ACLR for	Same as 6.5.2.4.1 for each antenna	
UL-MIMO		
6.5D.2.4.2 UTRA ACLR for	Same as 6.5.2.4.2 for each antenna	
UL-MIMO	Same as stolet the for salit attention	
6.5D.3.1 General spurious	Same as 6.5.3.1 for each antenna	
emissions for UL-MIMO	Camb as 6.6.6.1 for each antenna	
6.5D.3.2 Spurious emissions	Same as 6.5.3.2 for each antenna	
for UE co-existence for UL-	Same as 0.3.3.2 for each antenna	
MIMO	0.5007	
6.5D.3.3 Additional spurious	Same as 6.5.3.3 for each antenna	
emissions for UL MIMO		
6.5D.4 Transmit	Same as 6.5.4 for each antenna	
intermodulation for UL-		
MIMO		

F.1.3 Measurement of receiver

Table F.1.3-1: Maximum Test System Uncertainty for receiver tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
7.3.2 Reference sensitivity power level	±0.7 dB, f ≤ 3.0GHz ±1.0 dB, 3.0GHz < f ≤ 4.2GHz ±1.5 dB, 4.2GHz < f ≤ 6GHz	
7.3.2_1 Reference sensitivity level with 4 Rx antenna ports	±0.7 dB, f ≤ 3.0GHz ±1.0 dB, 3.0GHz < f ≤ 4.2GHz ±1.5 dB, 4.2GHz < f ≤ 6GHz	
7.3C.2 Reference sensitivity power level	Same as 7.3.2	
7.3D Reference sensitivity for MIMO	Same as 7.3.2	
7.4 Maximum input level	Downlink power ± 0.7 dB, f ≤ 3.0 GHz ± 1.0 dB, 3.0 GHz $<$ f ≤ 4.2 GHz ± 1.5 dB, 4.2 GHz $<$ f ≤ 6 GHz Uplink power measurement f ≤ 3.0 GHz ± 0.7 dB, BW ≤ 40 MHz ± 1.4 dB, 40 MHz $<$ BW ≤ 100 MHz $= 1.0$ dB, BW ≤ 40 MHz $= 1.0$ dB, BW ≤ 40 MHz $= 1.0$ dB, BW ≤ 40 MHz $= 1.0$ dB, $= $	
7.4D Maximum input level for UL-MIMO	±1.6 dB, 40MHz < BW ≤ 100MHz Downlink power same as 7.4	The overall UL power is the linear sum of the output powers
7.5 Adjacent channel	Uplink power measurement same as 6.2D.1 ACS value	over all Tx antenna connectors Overall ACS uncertainty
selectivity	±1.6 dB, f ≤ 3.0GHz ±2.3 dB, 3.0GHz < f ≤ 4.2GHz ±3.0 dB, 4.2GHz < f ≤ 6.0GHz Uplink power measurement f ≤ 3.0GHz ±0.7 dB, BW ≤ 40MHz	comprises three quantities: 1. Wanted signal level error 2. Interferer signal level error 3. Additional impact of interferer ACLR Items 1 and 2 are assumed to
	±1.4 dB, 40MHz < BW ≤ 100MHz 3.0GHz < f ≤ 4.2GHz ±1.0 dB, BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 4.2GHz < f ≤ 6.0GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz	be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The interferer ACLR effect is systematic, and is added arithmetically. Test System uncertainty = [SQRT (wanted_level_error² + interferer_level_error²)] + ACLR effect.
7.5D Adjacent channel selectivity for UL-MIMO	ACS value same as 7.5 Uplink power measurement same as 6.2D.1	The overall UL power is the linear sum of the output powers over all Tx antenna connectors

7.6.2 Inband Blocking	Blocking ± 1.6 dB, f ≤ 3.0 GHz $+ 2.3$ dB, 3.0 GHz $< f \leq 4.2$ GHz $+ 2.3$ dB, 4.2 GHz $< f \leq 6.0$ GHz Uplink power measurement $f \leq 3.0$ GHz $+ 2.0$ 7 dB, BW ≤ 40 MHz $+ 2.0$ 7 dB, BW ≤ 40 MHz $+ 2.0$ 7 dB, 40MHz $+ 2.0$ 8 dB, 40MHz $+ 2.0$ 9 dB, 40MHz $+ 2.$	Overall blocking uncertainty can have these contributions: 1. Wanted signal level error 2. Interferer signal level error 3. Interferer ACLR 4. Interferer broadband noise Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added arithmetically. Test System uncertainty = [SQRT (wanted_level_error² + interferer_level_error²)] + ACLR effect + Broadband noise effect. In-band blocking, using modulated interferer:
7.6.3 Out-of-band blocking	Wanted signal, f ≤ 3.0GHz ±2.0 dB, Blocking, 1MHz < finterferer ≤ 3GHz ±3.9 dB, Blocking, 3GHz < finterferer ≤ 12.75GHz Wanted signal, 3.0GHz < f ≤ 4.2GHz ±2.2 dB, Blocking, 1MHz < finterferer ≤ 3GHz ±4.0 dB, Blocking, 3GHz < finterferer ≤ 12.75GHz Wanted signal, 4.2GHz < f ≤ 6GHz ±2.6 dB, Blocking, 1MHz < finterferer ≤ 3GHz ±4.2 dB, Blocking, 3GHz < finterferer ≤ 12.75GHz Uplink power measurement f ≤ 3.0GHz ±0.7 dB, BW ≤ 40MHz ±1.4 dB, 40MHz < BW ≤ 100MHz	Broadband noise not applicable Out of band blocking, using CW interferer: Interferer ACLR not applicable Impact of interferer Broadband noise 0.8dB Figures are combined to give Test System uncertainty, using formula given for 7.6.2
7.6.4 Narrow band blocking	3.0GHz < f ≤ 4.2GHz ±1.0 dB, BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz 4.2GHz < f ≤ 6.0GHz ±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz ±1.6 dB, 40MHz < BW ≤ 100MHz Blocking	Narrow band blocking, using
	\pm 2.0dB, f ≤ 3.0GHz \pm 2.4dB, 3.0GHz < f ≤ 4.2GHz \pm 3.1dB, 4.2GHz < f ≤ 6.0GHz Uplink power measurement f ≤ 3.0GHz \pm 0.7 dB, BW ≤ 40MHz \pm 1.4 dB, 40MHz < BW ≤ 100MHz 3.0GHz < f ≤ 4.2GHz \pm 1.0 dB, BW ≤ 40MHz \pm 1.6 dB, 40MHz < BW ≤ 100MHz 4.2GHz < f ≤ 6.0GHz \pm 1.3 dB, BW ≤ 20MHz \pm 1.5 dB, 20MHz < BW ≤ 100MHz	CW interferer: Interferer ACLR not applicable Impact of interferer Broadband noise 0.8dB Figures are combined to give Test System uncertainty, using formula given for 7.6.2
7.6D.2 Inband blocking for UL MIMO	Blocking same as 7.6.2 Uplink power measurement same as 6.2D.1	The overall UL power is the linear sum of the output powers over all Tx antenna connectors

7.6D.3 Out-of-band blocking for UL MIMO	Wanted signal same as 7.6.3	The overall UL power is the linear sum of the output powers
	Uplink power measurement same as 6.2D.1	over all Tx antenna connectors
7.6D.4 Narrow-band	Blocking same as 7.6.4	The overall UL power is the
blocking for UL MIMO		linear sum of the output powers
	Uplink power measurement same as 6.2D.1	over all Tx antenna connectors
7.7 Spurious response	Same as 7.6.3	Same as 7.6.3
7.7D Spurious response for	Same as 7.7	The overall UL power is the
UL-MIMO		linear sum of the output powers
	Uplink power measurement same as 6.2D.1	over all Tx antenna connectors
7.8.2 Wide band	Intermodulation	Overall intermodulation
Intermodulation	± 2.3dB, f ≤ 3.0GHz	uncertainty comprises three
	± 3.1dB, 3.0GHz < f ≤ 4.2GHz	quantities:
	± 4.3dB, 4.2GHz < f ≤ 6.0GHz	1. Wanted signal level error
		2. CW Interferer level error
	Uplink power measurement	Modulated Interferer level
	f ≤ 3.0GHz	error
	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	Effect of interferer ACLR has
		not been included as modulated
	3.0GHz < f ≤ 4.2GHz	interferer has larger frequency
	±1.0 dB, BW ≤ 40MHz	offset
	±1.6 dB, 40MHz < BW ≤ 100MHz	The effect of the closer CW signal has twice the effect.
	4.2GHz < f ≤ 6.0GHz	Items 1, 2 and 3 are assumed
	±1.3 dB, BW ≤ 20MHz	to be uncorrelated so can be
	±1.5 dB, 20MHz < BW ≤ 40MHz	root sum squared to provide the
	±1.6 dB, 40MHz < BW ≤ 100MHz	combined effect of the three
		signals.
		Test System uncertainty =
		SQRT [(2 x CW_level_error) ²
		+(mod interferer_level_error) ²
		+(wanted signal_level_error) ²]
7.8D Intermodulation	Intermodulation same as 7.8.2	The overall UL power is the
characteristics for UL-MIMO		linear sum of the output powers
	Uplink power measurement same as 6.2D.1	over all Tx antenna connectors
7.9 Spurious emissions	for results > -60 dBm:	
	±2.0 dB, 9kHz < f ≤ 3GHz	
	±2.5 dB, 3GHz < f ≤ 4GHz	
	±4.0 dB, 4GHz < f ≤ 19GHz	
	±6.0 dB, 19GHz < f ≤ 26GHz	

F.2 Interpretation of measurement results (normative)

The measurement results returned by the Test System are compared – without any modification – against the Test Requirements. The Test Requirement is defined as a threshold considered in a test to assess compliance of the device; it might be either equal ("Shared Risk" principle) or relaxed ("Never fail a good DUT" principle) compared to the corresponding core specification value by an amount defined in Annex F.3 as Test Tolerance.

The "Shared Risk" and the "Never fail a good DUT" principles are defined in Rec. ITU-R M.1545.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows:

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement, making the test harder to pass. For some tests, for example receiver tests, this may require modification of stimulus signals. This procedure will ensure that a Test System not compliant with clause F.1does not

increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.3 Test Tolerance and Derivation of Test Requirements (informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in this clause. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for the relaxation is given in this clause.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

The downlink Test Tolerances apply at each receiver antenna connector.

F.3.1 Measurement of test environments

The UE test environments are set to the values defined in TS 38.508-1 subclause 4.1, without any relaxation. The applied Test Tolerance is therefore zero.

F.3.2 Measurement of transmitter

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
6.2.1 UE maximum output	<u>f ≤ 3.0GHz</u>	Upper limit + TT, Lower limit - TT
power	0.7 dB, BW ≤ 40MHz	
	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
6.2.2 Maximum Power	f ≤ 3.0GHz	Upper limit + TT, Lower limit - TT
Reduction (MPR)	0.7 dB, BW ≤ 40MHz	
	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
6.2.3 UE additional	<u>f ≤ 3.0GHz</u>	Upper limit + TT, Lower limit - TT
maximum output power	0.7 dB, BW ≤ 40MHz	
reduction	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
6.2.4 Configured	<u>f ≤ 3.0GHz</u>	Upper limit + TT, Lower limit - TT
transmitted power	0.7 dB, BW ≤ 40MHz	
	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
6.2C.1 Configured	Same as 6.2.1	Same as 6.2.1
transmitted power for SUL	550	0
6.2D.1 UE maximum output power for UL-MIMO	FFS	Same as 6.2.1
power for of imme		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx
CODOLLE magnines and and	FFO	antenna connectors
6.2D.2 UE maximum output power reduction for UL-	FFS	Same as 6.2.2
MIMO		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx
6.2D.3 UE additional	FFS	antenna connectors Same as 6.2.3
maximum output power		Game as 6.2.6
reduction for UL-MIMO		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx antenna connectors
6.2D.4 Configured	FFS	Same as 6.2.4
transmitted power for UL-		333
MIMO		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx antenna connectors
6.3.1 Minimum output	f ≤ 3.0GHz	Minimum requirement + TT
power	1.0 dB, BW ≤ 40MHz	,
	1.3 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	3.0GHZ < 1 ≤ 6.0GHZ 1.3 dB, BW ≤ 100MHz	
6.3.2 Transmit OFF power	f ≤ 3.0GHz	Minimum requirement + TT
·	1.5 dB, BW ≤ 40MHz	·
	1.7 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.8 dB, BW ≤ 100MHz	
	, -:· · • • · · · · · · · · · · · · · · · ·	1

r		
6.3.3.2 General ON/OFF	<u>f ≤ 3.0GHz</u>	OFF Power:
time mask	1.5 dB, BW ≤ 40MHz	Minimum requirement + TT
	1.7 dB, 40MHz < BW ≤ 100MHz	
		ON Power:
	3.0GHz < f ≤ 6.0GHz	Upper limit + TT, Lower limit - TT
	1.8 dB, BW ≤ 100MHz	
6.3.3.4 PRACH time mask	<u>f</u> ≤ 3.0GHz	OFF Power:
	1.5 dB, BW ≤ 40MHz	Minimum requirement + TT
	1.7 dB, 40MHz < BW ≤ 100MHz	'
		ON Power:
	3.0GHz < f ≤ 6.0GHz	Upper limit + TT, Lower limit - TT
	1.8 dB, BW ≤ 100MHz	- грез шин түү данан шин тү
6.3.3.6 SRS time mask	f ≤ 3.0GHz	OFF Power:
0.0.0.0 Cito time mask	1.5 dB, BW ≤ 40MHz	Minimum requirement + TT
	1.7 dB, 40MHz < BW ≤ 100MHz	William roquiromone . T .
	1.7 db, 400012 \ bv = 1000012	ON Power:
	3.0GHz < f ≤ 6.0GHz	Upper limit + TT, Lower limit - TT
	1.8 dB, BW ≤ 100MHz	Opper mint + 11, Lower mint - 11
6.3.3.7 PUSCH-PUCCH		OFF Dowers
	$f \le 3.0 \text{GHz}$	OFF Power:
and PUSCH-SRS time	1.5 dB, BW ≤ 40MHz	Minimum requirement + TT
masks	1.7 dB, 40MHz < BW ≤ 100MHz	ON Devere
		ON Power:
	3.0GHz < f ≤ 6.0GHz	Upper limit + TT, Lower limit - TT
	1.8 dB, BW ≤ 100MHz	
6.3.4.2 Absolute power	<u>UL Power ≥ 0dBm</u>	Upper limit + TT, Lower limit – TT
tolerance	TDD SCS 60kHz: [TBD] dB due to 0.25ms	
	measurement time	
	Otherwise:	
	<u>f ≤ 3.0GHz</u>	
	1.0 dB, BW ≤ 40MHz	
	1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.4 dB, BW ≤ 100MHz	
6.3.4.3 Power Control	0.7 dB, BW ≤ 100MHz	Upper limit + TT, Lower limit - TT
Relative power tolerance	0.7 dB, BW = 100WHZ	Oppor mine 1 11, Lower mine 11
6.3.4.4 Aggregate power	TBD	Upper limit + TT, Lower limit - TT
tolerance	100	Opper mint + 11, Lower mint - 11
	FFS	Same as 6.3.1
6.3D.1 Minimum output	FFS	Same as 6.3.1
power for UL-MIMO		
		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx
		antenna connectors
6.3D.2 Transmit OFF	FFS	Same as 6.3.2
power for UL-MIMO		
		Uplink power measurement applies to
		each Tx antenna connector
6.3D.3 Transmit ON/OFF	Same as 6.3.3.2 for each antenna	
time mask for UL-MIMO	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
6.3D.4.1 Absolute Power	FFS	Same as 6.3.4.2
tolerance	1	
15.5141100		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx
		antenna connectors
6.3D.4.2 Relative Power	FFS	Same as 6.3.4.3
	FFO	Same as 0.3.4.3
tolerance		Liplink power management and the
		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx
		antenna connectors

	T ====	Ta
6.3D.4.3 Aggregate Power	FFS	Same as 6.3.4.4
tolerance		Unlink names assessment as the
		Uplink power measurement applies to
		overall UL power, which is the linear
		sum of the output powers over all Tx
0.4.4.5	45.11-	antenna connectors
6.4.1 Frequency Error	15 Hz	Modulated carrier frequency:
		Upper limit + TT, Lower limit – TT
		DI navven
		DL power: REFSENS + TT
6.4.2.1 Error Vector	For up to 64QAM	Minimum requirement + TT
Magnitude	0%	Williman requirement + 11
Magrittude	078	
	For 256QAM	
	f ≤ 6.0GHz, BW ≤ 100MHz	
	0.3%, 15dBm < P _{UL}	
	0.8%, -25dBm < P _{UL} ≤ 15dBm,	
	1.1%, -40dBm ≤ P _{UL} ≤ -25dBm	
6.4.2.2 Carrier Leakage	0.8 dB, BW ≤ 100MHz	Minimum requirement + TT
6.4.2.3 In-band emissions	0.8 dB, BW ≤ 100MHz	Minimum requirement + TT
6.4.2.4 EVM equalizer	1.4 dB, BW ≤ 100MHz	Minimum requirement + TT
spectrum flatness	, -, - · · · · · · · · · · · · · · · · ·	
6.4.2.5 EVM equalizer	Same as 6.4.2.4	Minimum requirement + TT
spectrum flatness for Pi/2	Same as single	l
BPSK		
6.4D.1 Frequency error for	Same as 6.4.1 for each antenna	Same as 6.4.1
UL-MIMO		
6.4D.2.1 Error Vector	Same as 6.4.2.1 for each antenna	Same as 6.4.2.1
Magnitude for UL-MIMO		
		Uplink power measurement window
		applies to overall UL power, which is
		the linear sum of the output powers
		over all Tx antenna connectors
6.4D.2.2 Carrier leakage	Same as 6.4.2.2 for each antenna	Same as 6.4.2.2
for UL-MIMO		
		Uplink power measurement window
		applies to overall UL power, which is
		the linear sum of the output powers
		over all Tx antenna connectors
6.4D.2.3 In-band emissions	Same as 6.4.2.3 for each antenna	Same as 6.4.2.3
for UL-MIMO		Hallata a succession
		Uplink power measurement window
		applies to overall UL power, which is
		the linear sum of the output powers
CAD DA EVAA	Company C. 4. O. 4 for another interest	over all Tx antenna connectors
6.4D.2.4 EVM equalizer	Same as 6.4.2.4 for each antenna	Same as 6.4.2.4
spectrum flatness for UL-		
MIMO 6.4D.3 Time alignment	[25nol	Minimum Paguiroment : TT
error for UL-MIMO	[25ns]	Minimum Requirement + TT
	FFS	FFS
6.4D.4 Requirements for Ccoherent UL MIMO	rro	rro
	TDD	Modulated aggrees fragues as ::
6.4A.1.1 Frequency error	TBD	Modulated carrier frequency:
for CA (2UL CA) 6.4A.2.1.1 Error Vector	For up to 640AM	Upper limit + TT, Lower limit - TT
	For up to 64QAM	Minimum requirement + TT
Magnitude for CA (2UL CA)	0%	
	For 256QAM	
	TBD	
6.44.2.2.1 Carrier laskage	TBD	Minimum requirement + TT
6.4A.2.2.1 Carrier leakage for CA (2UL CA)	עטו	Minimum requirement + TT
6.4A.2.3.1 In-band	TBD	Minimum requirement + TT
	עטו	iviiniinum requirement + 11
emissions for CA (2UL CA) 6.5.1 Occupied bandwidth	0 kHz	Minimum requirement LTT
6.5.2.2 Spectrum Emission	1.5 dB, f ≤ 3.0GHz	Minimum requirement + TT
Mask	1.5 dB, 1 ≤ 3.0GHz 1.8 dB, 3.0GHz < f ≤ 6.0GHz	Minimum requirement + TT
	1 1.0 ap. 3.0GHZ S 1 2 0.0GHZ	I and the second

6.5.2.3 Additional spectrum	1.5 dB, f ≤ 3.0GHz	Minimum requirement + TT	
emission mask	1.8 dB, 3.0GHz < f ≤ 6.0GHz		
6.5.2.4.1 NR ACLR	Absolute requirement 0 dB	Absolute requirement ACLR Minimum Requirement + TT	
	Relative requirement 0.8 dB	Relative requirement ACLR Minimum Requirement - TT	
6.5.2.4.2 UTRA ACLR	Same as 6.5.2.4.1	Same as 6.5.2.4.1	
6.5.3.1 General spurious	0 dB	Minimum requirement + TT	
emissions	0.40	Minimum na suina sa suit a TT	
6.5.3.2 Spurious emission for UE co-existence	0 dB	Minimum requirement + TT	
6.5.3.3 Additional spurious emissions	0 dB	Minimum requirement + TT	
6.5.4 Transmit intermodulation	0 dB	CW interferer Minimum Requirement - TT	
6.5A.2.2.1 Spectrum emission mask for CA (2UL CA)	TBD	Minimum requirement + TT	
6.5A.2.4.1.1 NR ACLR for CA (2UL CA)	TBD	Same as 6.5.2.4.1	
6.5A.2.4.2.1 UTRA ACLR for CA (2UL CA)	TBD	Same as 6.5.2.4.2	
6.5A.3.1.1 General spurious emissions for CA (2UL CA)	0 dB	Minimum requirement + TT	
6.5A.3.2.1 Spurious emissions for UE co- existence for CA (2UL CA)	0 dB	Minimum requirement + TT	
6.5A.4.1 Transmit intermodulation for CA (2UL CA)	0 dB	CW interferer Minimum Requirement - TT	
6.5C.1 Occupied bandwidth for SUL	Same as 6.5.1	Same as 6.5.1	
6.5C.2.2 Spectrum Emission Mask for SUL	Same as 6.5.2.2	Same as 6.5.2.2	
6.5C.2.3 Additional spectrum emission mask for SUL	Same as 6.5.2.3	Same as 6.5.2.3	
6.5C.2.4.1 NR ACLR for SUL	Same as 6.5.2.4.1	Same as 6.5.2.4.1	
6.5C.2.4.2 UTRA ACLR for SUL	Same as 6.5.2.4.2	Same as 6.5.2.4.2	
6.5C.3.1 General spurious emissions for SUL	Same as 6.5.3.1	Same as 6.5.3.1	
6.5C.3.2 Spurious emission for UE co-existence for SUL	Same as 6.5.3.2	Same as 6.5.3.2	
6.5C.3.3 Additional spurious emissions for SUL	Same as 6.5.3.3	Same as 6.5.3.3	
6.5C.4 Transmit intermodulation for SUL	Same as 6.5.4	Same as 6.5.4	
6.5D.1 Occupied bandwidth for UL-MIMO	Same as 6.5.1 for each antenna	Same as 6.5.1	
6.5D.2.2 Spectrum emission mask for UL- MIMO	Same as 6.5.2.2 for each antenna	Same as 6.5.2.2	
6.5D.2.3 Additional spectrum emission mask for UL-MIMO	Same as 6.5.2.3 for each antenna	Same as 6.5.2.3	
6.5D.2.4.1 NR ACLR for UL-MIMO	Same as 6.5.2.4.1 for each antenna	Same as 6.5.2.4.1	
6.5D.2.4.2 UTRA ACLR for UL-MIMO	Same as 6.5.2.4.2 for each antenna	Same as 6.5.2.4.2	
6.5D.3.1 General spurious emissions for UL-MIMO	Same as 6.5.3.1 for each antenna	Same as 6.5.3.1	

6.5D.3.2 Spurious emissions for UE co- existence for UL-MIMO	Same as 6.5.3.2 for each antenna	Same as 6.5.3.2
6.5D.3.3 Additional spurious emissions for UL MIMO	Same as 6.5.3.3 for each antenna	Same as 6.5.3.3
6.5D.4 Transmit intermodulation for UL-MIMO	Same as 6.5.4 for each antenna	Same as 6.5.4

F.3.3 Measurement of receiver

Table F.3.3-1: Derivation of Test Requirements (Receiver tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
7.3.2 Reference sensitivity	0.7 dB, f ≤ 3.0GHz	Reference sensitivity power level +
power level	1.0 dB, 3.0GHz < f ≤ 6.0GHz	TT
		T-put limit unchanged
7.3.2_1 Reference	0.7 dB, f ≤ 3.0GHz	Reference sensitivity power level +
sensitivity level with 4 Rx	1.0 dB, 3.0GHz < f ≤ 6.0GHz	TT
antenna ports		To and Book are also as and
7.3C.2 Reference	Same as 7.3.2	T-put limit unchanged Same as 7.3.2
sensitivity power level	Game as 7.5.2	Came as 1.5.2
7.3D Reference sensitivity for MIMO	Same as 7.3.2	Same as 7.3.2
7.4 Maximum input level	0.7 dB, f ≤ 3.0GHz 1.0 dB, 3.0GHz < f ≤ 6.0GHz	Maximum input level - TT
7.4D Maximum input level for UL-MIMO	Same as 7.4	Same as 7.4
		Uplink power measurement window
		applies to overall UL power, which is
		the linear sum of the output powers over all Tx antenna connectors
7.5 Adjacent channel	0 dB	Wanted signal power + TT
selectivity	0 45	Wanted dignal power 1 11
•	<u>Uplink power</u>	Interferer signal power unchanged
	f ≤ 3.0GHz	T-put limit unchanged
	0.7 dB, BW ≤ 40MHz 1.0 dB, 40MHz < BW ≤ 100MHz	
	1.0 dB, 40001112 \ BVV = 100001112	
	$\frac{3.0\text{GHz} < f \le 6.0\text{GHz}}{1.0 \text{ dB, BW} \le 100\text{MHz}}$	
7.5D Adjacent channel	Same as 7.5	Same as 7.5
selectivity for UL-MIMO		I la link a come a come accept original com
		Uplink power measurement window applies to overall UL power, which is
		the linear sum of the output powers
		over all Tx antenna connectors
7.6.2 Inband Blocking	0 dB	Wanted signal power + TT
	Uplink power	Interferer signal power unchanged
	f ≤ 3.0GHz	T-put limit unchanged
	0.7 dB, BW ≤ 40MHz	
	1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
7.6.3 Out-of-band blocking	0 dB	Wanted signal power + TT
		Interferer signal power unchanged T-put limit unchanged
7.6.4 Narrow band blocking	0 dB	Wanted signal power + TT
		Interferer signal power unchanged T-put limit unchanged
7.6D.2 Inband blocking for	Same as 7.6.2	Same as 7.6.2
UL MIMO		33
		Uplink power measurement window
		applies to overall UL power, which is
		the linear sum of the output powers over all Tx antenna connectors
7.6D.3 Out-of-band	Same as 7.6.3	Same as 7.6.3
blocking for UL MIMO		
		Uplink power measurement window
		applies to overall UL power, which is
		the linear sum of the output powers over all Tx antenna connectors
	<u> </u>	Over all 1x antenna connectors

7.6D.4 Narrow-band	Same as 7.6.4	Same as 7.6.4	
blocking for UL MIMO			
		Uplink power measurement window	
		applies to overall UL power, which is	
		the linear sum of the output powers	
		over all Tx antenna connectors	
7.7 Spurious response	0 dB	Wanted signal power + TT	
		laterform simulations on the model	
		Interferer signal power unchanged	
7.70.0	0 77	T-put limit unchanged	
7.7D Spurious response for UL-MIMO	Same as 7.7	Same as 7.7	
		Uplink power measurement window	
		applies to overall UL power, which is	
		the linear sum of the output powers	
		over all Tx antenna connectors	
7.8.2 Wide band Intermodulation	0 dB	Wanted signal power +TT	
		CW Interferer signal power	
		unchanged	
		Modulated Interferer signal power	
		unchanged	
		T-put limit unchanged	
7.8D Intermodulation characteristics for UL-	Same as 7.8.2	Same as 7.8.2	
MIMO		Uplink power measurement window	
I WIIIWIO		applies to overall UL power, which is	
		the linear sum of the output powers	
		over all Tx antenna connectors	
7.9 Spurious emissions	0 dB	Minimum requirement + TT	
1.3 Opulious cillissions	ן ט עט	wii iii ii	

Annex G (normative): Uplink Physical Channels

G.0 Uplink Signal Levels

Uplink signal power is a UE figure, which is configured by the Test System by means of:

RRC messages (IE-s), such as:

- PUSCH-PowerControl
- PUCCH-PowerControl
- RACH-ConfigGeneric
- SRS-Config

and L1/2 Power control commands (TPC).

The uplink power settings are specified in the test case.

Otherwise, the uplink power settings result from the default RRC messages described in 3GPP TS 38.508 [5], and appropriate TPC-s, which are sent to the UE to transmit with an UL power level necessary for maintaining the call during the test.

G.1 General

This annex specifies the uplink physical channels that are needed for setting a connection and channels that are needed during a connection. Table G.1-1 describes the mapping of uplink physical channels and signals to physical resources

Table G.1-1: Mapping of uplink physical channels and signals to physical resources

Physical channel	Time Domain Location	Frequency Domain Location	Note
PRACH	Allowed by the parameter prach- ConfigurationIndex provided by higher layers	Allowed by the parameter msg1- FrequencyStart provided by higher layers	Mapping rule is specified in TS 38.211 [8] Section 6.3.3
DMRS	For DMRS on PUCCH format 1: Every other symbols i.e., 0, 2, 4 For DMRS on PUCCH format 2: All the PUCCH symbols For DMRS on PUCCH format 3,4: PUCCH length dependent For One symbol DMRS on PUSCH: Symbol 0 of each slot	DMRS on CP-OFDM PUSCH: Specified by the parameters dmrs-Type provided by higher layers. DMRS on DFT-OFDM PUSCH: Allowed for DMRS configuration type1 DMRS on PUCCH: PUCCH bandwidth dependent.	Mapping rule of DMRS for PUCCH is specified in TS 38.211 [8] Section 6.4.1.3 Mapping rule of DMRS for PUSCH is specified in TS 38.211 [8] Sections 6.4.1.1, 6.4.1.2
PUCCH	For PUCCH Format 0: 1 ~ 2 symbols each slot, specified by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format0 provided by the higher layer. For PUCCH Format 1: 4 ~ 14 symbols each slot, specified by the parameters of nrofSymbols and those of startingSymbolIndex of PUCCH-format1 provided by the higher layer. For PUCCH Format 2, 1 ~ 2 symbols each slot, specified by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format2 provided by the higher layer. For PUCCH Format 3: 4 ~ 14 symbols each slot, allowed by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format3, provided by the higher layer. For PUCCH Format 4: 4 ~ 14 symbols each slot, specified by the parameters of nrofSymbols and startingSymbolIndex in PUCCH-format4, provided by higher layer.	For PUCCH Format 0, 1 1 RB, the position specified by the parameters of startingPRB and intraSlotFrequencyHopping in the corresponding PUCCH-Resource provided by the higher layer. For PUCCH Format 2, 3: 1~16 RBs, specified by the parameter of nrofPRBs in PUCCH-format2 and PUCCH-format3 respectively; additionally the position specified by the parameters of startingPRB and intraSlotFrequencyHopping in the corresponding PUCCH-Resource provided by the higher layer. For PUCCH Format 4 1 RB, the position specified by the parameters of startingPRB and intraSlotFrequencyHopping in the corresponding PUCCH-Resource provided by the higher layer	Mapping rule is specified in TS 38.211 [8] Section 6.3.2 and 38.213 [9] Section 9.2
PUSCH	All remaining uplink symbols of each slot not allocated to DMRS	RBs allocated according to Reference Measurement channel in Annex A.2	Mapping rule is specified in TS 38.211 [8] Section 6.3 and 38.214 [12] Section 6.1
SRS	1, 2, or 4 symbols among the last 6 symbols in each SRS transmission slot specified by the parameters of resourceMapping, and resourceType in SRS-Config provided by the higher layer.	RBs specified by the ue-specific parameters of freqDomainPosition, freqDomainShift and freqHopping in SRS-Config provided by the higher layer.	Mapping rule is specified in TS 38.211 [8] Section 6.4.1.4.3

G.2 Set-up

Table G.2-1 describes the uplink physical channels that are required for connection set up.

Table G.2-1: Uplink Physical Channels required for connection set-up

Physical Channel
PRACH
PUCCH
PUSCH
PUCCH DMRS
PUSCH DMRS
SRS

In case of supplementary test, Table G.2-2 describes the supplementary uplink physical channels that are required for connection set-up, and unless stated otherwise, there is no other uplink physical channels configured on the NON-SUL carrier except PRACH.

Table G.2-2: Supplementary Uplink Physical Channels required for connection set-up

Physical Channel
PRACH
DMRS
PUCCH
PUSCH

G.3 Connection

The following clauses describes the uplink physical channels that are transmitted during a connection i.e., when measurements are done.

G.3.0 Measurement of Transmitter Characteristics

As specified in the test case. Otherwise:

- PUSCH + DMRS for PUSCH (and DMRS) measurements.
- PUCCH + DMRS for PUCCH (and DMRS) measurements.
- PRACH for PRACH measurements.

SRS for SRS measurements.

G.3.1 Measurement of Receiver Characteristics

As specified in the test case. Otherwise:

- PUSCH + DMRS for measurements with uplink interference configured.
- PUCCH + DMRS for measurements without uplink interference configured.

G.3.2 Measurement of Performance Requirements

As specified in the test case. Otherwise:

PUCCH + DMRS for measurements without CSI feedback, or with CSI feedback in PUCCH mode.

PUSCH + DMRS for measurements with CSI feedback in PUSCH mode.

Annex H (normative): Statistical Testing

H.1 General

FFS.

H.2 Statistical testing of receiver characteristics

H.2.1 General

The test of receiver characteristics is twofold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is >95% of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

H.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.
 - If payload is received, but damaged and cannot be decoded, the UE signals a NACK.
- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different subframes, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received subframes (ACK), unsuccessfully received subframes (NACK) and no reception at all (DTX-subframes).
- f) DTX-subframes may occur regularly according the applicable reference measurement channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special subframes. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-subframes occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)
 - This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs
- number of ACKs and
- number of statDTXs (regDTX is implicitly known to the SS)

The ratio (NACK + statDTX)/(NACK+ statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

H.2.3 Design of the test

The test is defined by the following design principles (see clause H.x, Theory....):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Customer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

H.2.4 Numerical definition of the pass fail limits

Table H.2.4-1: pass fail limits

ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f	ne	ns _p	ns _f
0	67	NA	39	763	500	78	1366	1148	117	1951	1828
1	95	NA	40	778	516	79	1381	1166	118	1965	1845
2	119	NA	41	794	532	80	1396	1183	119	1980	1863
3	141	NA	42	810	548	81	1412	1200	120	1995	1881
4	162	NA	43	826	564	82	1427	1217	121	2010	1899
5	183	NA	44	842	580	83	1442	1234	122	2025	1916
6	202	NA	45	858	596	84	1457	1252	123	2039	1934
7	222	NA	46	873	612	85	1472	1269	124	2054	1952
8	241	NA	47	889	629	86	1487	1286	125	2069	1969
9	259	NA	48	905	645	87	1502	1303	126	2084	1987
10	278	76	49	920	661	88	1517	1321	127	2099	2005
11	296	88	50	936	678	89	1532	1338	128	2113	2023
12	314	100	51	952	694	90	1547	1355	129	2128	2040
13	332	113	52	967	711	91	1562	1373	130	2143	2058
14	349	126	53	983	727	92	1577	1390	131	2158	2076
15	367	140	54	998	744	93	1592	1407	132	2172	2094
16	384	153	55	1014	760	94	1607	1425	133	2187	2111
17	401	167	56	1029	777	95	1623	1442	134	2202	2129
18	418	181	57	1045	793	96	1637	1459	135	2217	2147
19	435	195	58	1060	810	97	1652	1477	136	2231	2165
20	452	209	59	1076	827	98	1667	1494	137	2246	2183
21	469	224	60	1091	844	99	1682	1512	138	2261	2201
22	486	238	61	1106	860	100	1697	1529	139	2275	2218
23	503	253	62	1122	877	101	1712	1547	140	2290	2236
24	519	268	63	1137	894	102	1727	1564	141	2305	2254
25	536	283	64	1153	911	103	1742	1582	142	2320	2272
26	552	298	65	1168	928	104	1757	1599	143	2334	2290
27	569	313	66	1183	944	105	1772	1617	144	2349	2308
28	585	328	67	1199	961	106	1787	1634	145	2364	2326
29	602	343	68	1214	978	107	1802	1652	146	2378	2344
30	618	359	69	1229	995	108	1817	1669	147	2393	2361
31	634	374	70	1244	1012	109	1832	1687	148	2408	2379
32	650	389	71	1260	1029	110	1847	1704	149	2422	2397
33	667	405	72	1275	1046	111	1861	1722	150	2437	2415
34	683	421	73	1290	1063	112	1876	1740	151	2452	2433
35	699	436	74	1305	1080	113	1891	1757	152	2466	2451
36	715	452	75	1321	1097	114	1906	1775	153*)	NA	2469
37	731	468	76	1336	1114	115	1921	1793			
38	747	484	77	1351	1131	116	1936	1810	*) no	te 2 in F	1.2.5

NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX)

NOTE 2: The second column is the number of samples for the pass limit (nsp, ns=Number of Samples= number of NACK + statDTX + ACK)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

H.2.5 Pass fail decision rules

The pass fail decision rules apply for a single test, comprising one component in the test vector. The overall Pass /Fail conditions are defined in clause H.2.6and H.2A.6

Having observed 0 errors, pass the test at 67+ samples, otherwise continue

Having observed 1 error, pass the test at 95+ otherwise continue

Having observed 2 errors, pass the test at 119+ samples, otherwise continue

Etc. etc.

Having observed 151 errors, pass the test at 2452+ samples, fail the test at 2433- samples, otherwise continue

Having observed 152 errors, pass the test at 2466+ samples, fail the test at 2451- samples.

Where x+ means: x or more, x- means x or less

NOTE 1: an ideal DUT passes after 67 samples. The maximum test time is 2466 samples.

NOTE 2: It is allowed to deviate from the early decision concept by postponing the decision (pass/fail or continue). Postponing the decision to or beyond the end of Table H.2.4-1 requires a pass fail decision against the test limit: pass the DUT for ER<0.0618, otherwise fail.

Annex I: Change history

Change history							
Date	Meeting	TDoc	CR	R ev	Cat	Subject/Comment	New versio n
2017-08	RAN5#76	R5-175705	-	Ŀ		Draft skeleton	0.0.1
2018-01	RAN5#1- 5G-NR Adhoc	R5-180068 R5-180069 R5-180070 R5-180071 R5-180072 R5-180073 R5-180075 R5-180077 R5-180078 R5-180079	-	-	-	Implementation of pCRs to TS 38.521-1 V0.1.0	0.1.0
2018-01	RAN5#78	R5-181506 R5-181507 R5-181670 R5-181671 R5-181672 R5-181676 R5-181677 R5-181679 R5-181685 R5-181698 R5-181699 R5-181690 R5-181700	-	-	-	Implementation of pCRs to TS 38.521-1 V0.2.0	0.2.0
2018-03	RAN5#2- 5G-NR Adhoc	R5-181759	-	-	-	Update TS 38.521-1 to align with new structure of TS 38.101-1 based on endorsed CR R4-1802403	0.3.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-81976	-	-	-	3GU mismatch	0.3.1
2018-04	RAN5#2- 5G-NR Adhoc	R5-181771 R5-181833 R5-181842 R5-182000 R5-182002 R5-182003 R5-182004 R5-182005 R5-182020 R5-182021 R5-182026	-	-	_	Implementation of pCRs to TS 38.521-1 V0.4.0 Add clause 4.4 Test point analysis	0.4.0
2018-07	RAN5#79	R5-182768 R5-182973 R5-183702 R5-183703 R5-183704 R5-183906 R5-183936 R5-183923 R5-183953 R5-183955 R5-183955 R5-183956 R5-183957 R5-183958 R5-183959 R5-183960	-		-	Implementation of pCRs to TS 38.521-1 V0.5.0	0.5.0
2018-07	RAN5#79	R5-183960 R5-183279	-	-	-	Corrected Table numbering issues in subclause 6.5.2.4.1.4.2 Test procedure to capture R5-183960 changes into draft TS 38.521-1 v0.5.1	0.5.1
2018-07	RAN5#79	R5-182363	-	-	-	withdrawn	1.0.0

2018-08	RAN5#80	R5-185321	-	-	-	Implementation of pCRs to TS 38.521-1 V1.0.1	1.0.1
		R5-184298					
		R5-185305					
		R5-185322					
		R5-185323					
		R5-185495					
		R5-185444					
		R5-185565					
		R5-185445					
		R5-185524					
		R5-184572					
		R5-185390					
		R5-184574					
		R5-185521					
		R5-185408					
		R5-184822					
		R5-185446					
		R5-185324					
		R5-185447					
		R5-185411					
		R5-185413					
		R5-185496					
1		R5-185414					
1		R5-185415					
1		R5-185325					
1		R5-185500					
1		R5-185501					
1		R5-185312					
		R5-185326					
		R5-185315					
		R5-185317					
		R5-185327					
2018-09	RAN#81	R5-185320				raised to v15.0.0 with editorial changes only	15.0.0
		- DE 400004	0070	Ι-	-	<u> </u>	
2018-12	RAN#82	R5-186604	0072	-	F	5G_FR1 Text update for 7.3 Reference sensitivity	15.1.0
2018-12	RAN#82	R5-186605	0073	-	F	5R_FR1 Text Update for 6.5.3.1_General spurious emissions	15.1.0
2018-12	RAN#82	R5-186606	0074	-	F	5R FR1 Text Update for 6.5.3.2 Spurious emission for UE co-	15.1.0
2010 10	D 4 4 1 1 1 0 0	D = 1000=0				existence	1-10
2018-12	RAN#82	R5-186670	0078	-	F	Updating test case 6.2.3 UE additional maximum output power	15.1.0
						reduction	
2018-12	RAN#82	R5-186671	0079	-	F	Updating test case 6.5.2.3 Additional spectrum emission mask	15.1.0
2018-12	RAN#82	R5-186680	0800	-	F	Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1	15.1.0
2018-12	RAN#82	R5-186736	0084	-	F	Update of FR1 Transmit OFF power	15.1.0
2018-12	RAN#82	R5-186774	8800	-	F	Addition of 6.3D.1 Minimum output power for UL-MIMO	15.1.0
2018-12	RAN#82	R5-186776	0089	-	F	Addition of 6.3D.2 Transmit OFF power for UL-MIMO	15.1.0
2018-12	RAN#82	R5-186781	0090	-	F	Addition of 6.3D.3 Transmit ON/OFF time mask for UL-MIMO	15.1.0
2018-12	RAN#82	R5-186901	0091	-	F	Update SEM requirements to TS 38.101-1 v15.3.0	15.1.0
2018-12		R5-186902	0092	-	F	Update ACS and inband blocking test cases in TS 38.521-1	15.1.0
2018-12	RAN#82	R5-187034	0107	-	F	Adding edge allocation into common uplink configuration in 6.1	15.1.0
2018-12	RAN#82	R5-187038	0109	ļ-	F	Update test points for multiple FR1 test cases	15.1.0
2018-12	RAN#82	R5-187149	0111	t	F.	Updated to Annexes for FR1 tests	15.1.0
2018-12	RAN#82	R5-187150	0112	<u> </u>	F	General clauses updated for TS38.521-1	15.1.0
	RAN#82	R5-187376	0120	Ľ	F	Update of 6.2.1 MOP	15.1.0
2018-12 2018-12		R5-187378	0120	1		Update of 6.3.1 Minimum Output Power	15.1.0
	RAN#82			-	F		
2018-12	RAN#82	R5-187379	0123	<u>-</u>		Update of 6.3.3.2 General ON/OFF time mask	15.1.0
2018-12	RAN#82	R5-187380	0124	-	F	Addition of 6.2D.1 MOP for MIMO	15.1.0
2018-12	RAN#82	R5-187381	0125		F	Addition of 6.2D.2 MPR for MIMO	15.1.0
2018-12	RAN#82	R5-187382	0126		F	Addition of 6.2D.4 Configured Output Power for MIMO	15.1.0
2018-12	RAN#82	R5-187383	0127		F	Addition of 6.4D.1 Frequency error for MIMO	15.1.0
2018-12	RAN#82	R5-187384	0128	-	F	Addition of 6.4D.2.1 EVM for MIMO	15.1.0
2018-12	RAN#82	R5-187385	0129	-	F	Addition of 6.4D.2.2 Carrier Leakage for MIMO	15.1.0
2018-12	RAN#82	R5-187386	0130	Ŀ	F	Addition of 6.4D.2.3 In-band emissions for MIMO	15.1.0
2018-12	RAN#82	R5-187387	0131	Ŀ	F	Addition of 6.4D.2.4 EVM equalizer spectrum flatness for MIMO	15.1.0
2018-12	RAN#82	R5-187395	0132	Ŀ	F	Update of test case 6.2.3 UE A-MPR, general	15.1.0
2018-12	RAN#82	R5-187397	0133	-	F	Update of test case 6.2.3 UE A-MPR, NS_04	15.1.0
2018-12	RAN#82	R5-187399	0134	-	F	Update of test case test case 6.5.2.3 Additional spectrum emission	15.1.0
						mask, NS_04	
2018-12	RAN#82	R5-187421	0136	-	F	Introduction of TC 6.5D.1 Occupied bandwidth for UL MIMO	15.1.0
2018-12	RAN#82	R5-187422	0137	 -	F	Introduction of TC 6.5D.2.2 Spectrum Emission Mask for UL MIMO	15.1.0
2018-12	RAN#82	R5-187423	0138	t	F	Introduction of TC 6.5D.2.3 Additional Spectrum Emission Mask for	
2010-12	1.0.0111102	101720	0100		l'	UL MIMO	10.1.0
2018-12	RAN#82	R5-187424	0139	 	F	Introduction of TC 6.5D.2.4.1 NR ACLR for UL MIMO	15.1.0
2018-12	RAN#82	R5-187425	0140	Ľ	F	Introduction of TC 6.5D.2.4.1 NR ACLR for UL MIMO	15.1.0
2018-12	RAN#82	R5-187425 R5-187429	0140	Ι-	F	Introduction of TC 6.5D.2.4.2 UTRA ACER for DE MIMO Introduction of TC 6.5D.4 Transmit intermodulation for UL MIMO	15.1.0
	117/11/HOZ	10/429	U 144	1-	F	Introduction of TC 0.5D.4 Hansinit intermodulation for UL MIMO	10.1.0

	1	1_		1		T	
2018-12	RAN#82	R5-187431	0146	-	F	Introduction of TC 7.4D Maximum input level for UL-MIMO	15.1.0
2018-12	RAN#82	R5-187432	0147	-	F	Updating of 6.2C.1 Configured transmitted power for SUL	15.1.0
2018-12	RAN#82	R5-187433	0148	-	F	Introduction of TC 6.5C.1 Occupied bandwidth for SUL	15.1.0
2018-12 2018-12	RAN#82 RAN#82	R5-187434 R5-187435	0149 0150	-	F	Introduction of TC 6.5C.2.2 Spectrum Emission Mask for SUL Introduction of TC 6.5C.2.3 Additional Spectrum Emission Mask for	15.1.0 15.1.0
2018-12	KAN#82	R5-18/435	0150	-	F	SUL SUL	15.1.0
2018-12	RAN#82	R5-187436	0151	_	F	Introduction of TC 6.5C.2.4.1 NR ACLR for SUL	15.1.0
2018-12	RAN#82	R5-187437	0151	E	F	Introduction of TC 6.5C.2.4.2 UTRA ACLR for SUL	15.1.0
2018-12	RAN#82	R5-187438	0153	 	F	Introduction of TC 6.5C.3.2 General spurious emissions for SUL	15.1.0
2018-12	RAN#82	R5-187439	0154	 	F	Introduction of TC 6.5C.3.3 Spurious Emission for UE co-existence	15.1.0
2010 12	11/11/11/02	107400	0104		l'	for SUL	13.1.0
2018-12	RAN#82	R5-187440	0155	-	F	Introduction of TC 6.5C.3.4 Additional Spurious Emission for SUL	15.1.0
2018-12	RAN#82	R5-187455	0158	-	F	Updating test case 6.3.4.2 Absolute Power Tolerance	15.1.0
2018-12	RAN#82	R5-187456	0159	† <u> </u>	F	Updating test case 6.3.4.4 Aggregate Power Tolerance	15.1.0
2018-12	RAN#82	R5-187560	0162	-	F	Update to Table 5.3.5-1 in TS 38.521-1	15.1.0
2018-12	RAN#82	R5-187585	0164	-	F	Update of transmit signal quality test cases in 38.521-1	15.1.0
2018-12	RAN#82	R5-187615	0167	-	F	Introduction of TC 6.5D.3.1 General spurious emissions for UL	15.1.0
						MIMO	
2018-12	RAN#82	R5-187616	0168	-	F	Introduction of TC 6.5D.3.2 Spurious Emission for UE co-existence	15.1.0
2010 10	D 4 1 1 1 1 2 2	D = 10=01=	2.4.0.0			for UL MIMO	
2018-12	RAN#82	R5-187617	0169	-	F	Introduction of TC 6.5D.3.3 Additional Spurious Emission for UL MIMO	15.1.0
2018-12	RAN#82	R5-187618	0170	 	F	Updating of Uplink channel for SUL in Annex G	15.1.0
2018-12	RAN#82	R5-187804	0069	1	F	Editorial Cleaning up for description of test requirement in clause 6	15.1.0
2018-12	RAN#82	R5-187805	0063	1	F	Introduction of TC 7.7D Spurious response for UL-MIMO	15.1.0
2018-12	RAN#82	R5-187807	0113	1	F	Introduction of receiver spurious emission tests for FR1 SA	15.1.0
2018-12	RAN#82	R5-187810	0114	1	F	Introduction of wideband intermodulation tests for FR1 SA	15.1.0
2018-12	RAN#82	R5-187811	0145	1	F	Introduction of TC 7.3D Reference sensitivity for UL-MIMO	15.1.0
2018-12	RAN#82	R5-187812	0085	1	F	Update of operating bands and channel arrangement to TS 38.521-1	15.1.0
2018-12	RAN#82	R5-187888	0121	1	F	Update of 6.2.4 Configured Output Power	15.1.0
2018-12	RAN#82	R5-187890	0156	1	F	Introduction of TC 6.5C.4 Transmit intermodulation for SUL	15.1.0
2018-12	RAN#82	R5-187892	0108	1	F	Removing the Editor's notes of SA messages and procedures for all	15.1.0
						FR1 test cases	
2018-12	RAN#82	R5-187893	0083	1	F	Update of FR1 6.2.2 MPR	15.1.0
2018-12	RAN#82	R5-187894	0086	1	F	Addition of Time alignment error for UL-MIMO to TS38.521-1	15.1.0
2018-12	RAN#82	R5-187895	0115	1	F	Introduction of New FR1 test case 6.3.3.6 SRS time mask	15.1.0
2018-12	RAN#82	R5-187896	0116	1	F	5G_FR1 Text update for 6.5.3.3 Additional Spurious emission	15.1.0
2018-12	RAN#82	R5-187897	0161	1	F	Update of test case 6.3.4.3, Power Control Relative power tolerance	15.1.0
2018-12	RAN#82	R5-187898	0165	1	F	in 38.521-1 Addition of EVM equalizer spectral flatness test case 6.4.2.5 to TS	15.1.0
						38.521-1	
2018-12	RAN#82	R5-187899	0099	1	F	Introduction of test case for Frequency error for CA	15.1.0
2018-12	RAN#82	R5-187900	0100	1	F	Introduction of test cases for Transmit modulation quality for CA	15.1.0
2018-12	RAN#82	R5-187901	0101	1	F	Introduction of test case for Spectrum emission mask for Inter-band CA	15.1.0
2018-12	RAN#82	R5-187902	0102	1	F	Introduction of test case for NR ACLR for Inter-band CA	15.1.0
2018-12	RAN#82	R5-187903	0103	1	F	Introduction of test case for UTRA ACLR for Inter-band CA	15.1.0
2018-12	RAN#82	R5-187904	0104	1	F	Introduction of test case for General spurious emissions for Inter-	15.1.0
						band CA	
2018-12	RAN#82	R5-187905	0105	1	F	Introduction of test case for Spurious emission for UE co-existence for CA	15.1.0
2018-12	RAN#82	R5-187906	0106	1	F	Introduction of test case for Transmit intermodulation for Inter-band	15.1.0
						CA	
2018-12	RAN#82	R5-187911	0118	1	F	Addition of notes to clarify test point selection into general section of	15.1.0
2010 12	RAN#82	DE 107044	0162	1	_	TS 38.521-1 Update of Global In-channel Tx Test Annex in 38.521-1	15 1 0
2018-12 2018-12	RAN#82	R5-187914 R5-187915	0163 0082	1	F F	Introduction of FR1 7.4 Maximum input level	15.1.0 15.1.0
				1		Addition of 6.3D.4.1 Absolute Power tolerance for UL-MIMO	
2018-12	RAN#82	R5-188032	0075 0076	1	F F	Addition of 6.3D.4.1 Absolute Power tolerance for UL-MIMO Addition of 6.3D.4.2 Relative Power Tolerance for UL-MIMO	15.1.0
2018-12	RAN#82	R5-188033	0076	1	F		15.1.0
2018-12	RAN#82	R5-188034		_	F	Addition of 6.3D.4.3 Aggregate Power tolerance for UL-MIMO	15.1.0
2018-12 2018-12	RAN#82 RAN#82	R5-188035 R5-188206	0110 0117	1	F	Update to FR1 test case 6.3.3.4 PRACH time mask Introduction of New FR1 test case 6.3.3.7 PUSCH-PUCCH and	15.1.0 15.1.0
2010-12	KAIN#02	K3-100200	0117	'	Г	PUSCH-SRS time masks	15.1.0
2018-12	RAN#82	R5-188207	0071	1	F	5G_FR1 Text update for 7.3A Reference sensitivity for CA	15.1.0
2018-12	RAN#82	R5-188208	0067	2	F	Updates of MU in TS 38.521-1 Annex F during RAN5#81	15.1.0
2018-12	RAN#82	R5-188209	0068	2	F	Updates of TT in TS 38.521-1 Annex F during RAN5#81	15.1.0
		R5-188210	0097	1	F	TDD configuration for UE Tx test in FR1	15.1.0
	RAN#82				F		
2018-12 2018-12	RAN#82	R5-188211	0119	1	F	Core alignment CR to capture TS 38.101-1 updates during	15.1.0
2018-12 2018-12	RAN#82			1		RAN4#89	
2018-12 2018-12 2019-03	RAN#82 RAN#83	R5-191034	0228	1	F	RAN4#89 Update Clause 2 of TS 38.521-1	15.2.0
2018-12 2018-12	RAN#82			1 -		RAN4#89	

2019-03 RAN#83 R5-191089 0246 F Editorial cleaning up of test configuration tables in TS 38.521-1	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0
2019-03 RANNESS R5-191090 0246 F Updates of TT in TS38 521-1 Annex F during RANS#NR4	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RAN#83 R5-191244 Q49 F Editorial change in 6.5.2.1 general section 2019-03 RAN#83 R5-191245 Q29 F Editorial change in 6.5.2.1 general section 2019-03 RAN#83 R5-191258 Q250 F Update ACS and Inband Blocking test cases in TS38.521-1 Q2019-03 RAN#83 R5-191262 Q252 F Update to FR1 test case 6.5.4 Transmit intermedulation Q2019-03 RAN#83 R5-191265 Q252 F Update for TC.7.6.3 Qut-of-band blocking Q2019-03 RAN#83 R5-191265 Q254 F Introduction of TC.7.6.3 Qut-of-band blocking Q2019-03 RAN#83 R5-191265 Q254 F Introduction of TC.7.5 Qut-of-band blocking Q2019-03 RAN#83 R5-191265 Q254 F Introduction of TC.7.5 Qut-of-band blocking Q2019-03 RAN#83 R5-191365 Q257 F Q2019-03 RAN#83 R5-191365 Q257 F Correction of FR1 6.2.2 Maximum Power Reduction (MPR) Q2019-03 RAN#83 R5-191565 Q262 F Shared Risk clarification in TS 38.521-1 Q2019-03 RAN#83 R5-191565 Q263 F Q2019-03 RAN#83 R5-19186 Q272 F Q2019-03 RAN#83 R5-191846 Q272 F Q2019-03 RAN#83 R5-191846 Q272 F Q2019-03 RAN#83 R5-191846 Q273 F FR1 Test update for 6.5.3.1 General spurious emission Q2019-03 RAN#83 R5-191848 Q278 F Correction of Parts update for 6.5.3.1 General spurious emission Q2019-03 RAN#83 R5-191849 Q279 F FR1 Test update for 6.5.3.2 Spurious emission for UE co-existe Q2019-03 RAN#83 R5-191849 Q279 F FR1 Test update for 6.5.3.2 Spurious emission P2019-03 RAN#83 R5-191849 Q279 F FR1 Test update for 6.5.3.2 Spurious emission for UE co-existe Q2019-03 RAN#83 R5-192809 Q2019-03 RAN#83 R5-192400 Q2019-03 RAN#83	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
Editorial change in 6.5.2.1 general section	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RAN#83 RS-191255 0250 F Update ACS and Inband Blocking test cases in TS38.521-1 2019-03 RAN#83 RS-191256 0251 F Update to FR1 test case 6.5.4 Transmit intermodulation 2019-03 RAN#83 RS-191265 0252 F Update to TC 7.6.3 Out-of-band blocking 2019-03 RAN#83 RS-191265 0254 F Introduction of TC 7.6.4 Narrow-band blocking 2019-03 RAN#83 RS-191265 0254 F Introduction of TC 7.7 Spurious response F Update of test case 6.3.4.3, Power Control Relative power tolers in 38.521-1 38.521-	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RANN83 R5-191265 0250 F Update to FRI test case 6.5.4 Transmit intermodulation	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RAN#83 R5-191262 C252 F Update to FR1 test case 6.5.4 Transmit intermodulation	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RAN#83 R5-191262 0252 F Update of TC 7.6.3 Out-of-band blocking	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RAN#83 R5-191264 0253 F Introduction of TC 7.6.4 Narrow-band blocking 2019-03 RAN#83 R5-191265 0254 F Introduction of TC 7.7. Spurious response 2019-03 RAN#83 R5-191338 0256 F Update of test case 6.3.4.9, Power Control Relative power tolers in 38.521-1 2019-03 RAN#83 R5-191506 0262 F Shared Risk clarification in TS 38.521-1 2019-03 RAN#83 R5-191526 0263 F Update to FR1 test case 6.3.3.6 SRS time mask 2019-03 RAN#83 R5-191526 0263 F Update to FR1 test case 6.3.3.6 SRS time mask 2019-03 RAN#83 R5-191815 0272 F OBW test procedure update for 38.521-1 0219-03 RAN#83 R5-191846 0277 F FR1 Test update for 6.3.1 General spurious emission 2019-03 RAN#83 R5-191849 0279 F FR1 Test update for 7.3.2 Reference sensitivity power level for S 2019-03 RAN#83 R5-191849 0279 F FR1 Test update for 7.3.2 Reference sensitivity power level for S 2019-03 RAN#83 R5-191849 0279 F FR1 Test update for 7.3.2 Reference sensitivity power level for S 2019-03 RAN#83 R5-191849 0279 F FR1 Test update for 6.5.3.2 Spurious emission for UE co-existe 2019-03 RAN#83 R5-192089 0311 F FR1 Test update for 6.5.3.2 Spurious emission for UE co-existe 2019-03 RAN#83 R5-192089 0318 F FR1 Test update for 6.5.3.2 Spurious emission for UE co-existe 1 Ts 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activation in SA Tx RF test case in TS 38.521-1 1 Test mode and test loop function activa	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 20 15.2.0
2019-03 RAN#83 R5-191265 0254 F Introduction of TC 7.7 Spurious response 2019-03 RAN#83 R5-191365 0256 F Update of test case 6.3.4.3, Power Control Relative power tolers in 38.521-1 03	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0
2019-03 RAN#83 R5-191338 0256 F Update of test case 6.3.4.3, Power Control Relative power tolera in 38.521-1	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0 26 15.2.0
2019-03 RAN#83 R5-191465 0257 F Correction of FR1 6.2.2 Maximum Power Reduction (MPR)	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0 26 15.2.0
2019-03 RAN#83 RS-191465 0262 - F Shared Risk clarification in TS 38.521-1	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0 te 15.2.0
2019-03 RAN#83 RS-191506 0262 F Shared Risk clarification in TS 38.521-1	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0 te 15.2.0
2019-03	15.2.0 15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0 te 15.2.0
2019-03 RAN#83 R5-191815 0227 - F Addition of MU and TT for NR FR1 UL-MIMO test cases	15.2.0 15.2.0 15.2.0 15.2.0 JL 15.2.0 20 15.2.0
2019-03	15.2.0 15.2.0 15.2.0 JL 15.2.0 ce 15.2.0
2019-03	15.2.0 15.2.0 15.2.0 JL 15.2.0 ce 15.2.0
2019-03	15.2.0 15.2.0 JL 15.2.0 ce 15.2.0
2019-03 RAN#83 R5-191849 0278 F Correction of errors in Table 6.1-1 of 38.521-1	15.2.0 JL 15.2.0 ce 15.2.0
2019-03	JL 15.2.0 ce 15.2.0
2019-03	e 15.2.0
2019-03	
2019-03	15,2.0
In TS 38.521-1 In TS 38.521-1	
2019-03 RAN#83 R5-192121 0320 - F Update of Global In-channel Tx Test Annex for FR1	s 15.2.0
In TS 38.521-1 In TS 38.521-1 In TS 38.521-1	
In TS 38.521-1 In TS 38.521-1 In TS 38.521-1	es 15.2.0
2019-03 RAN#83 R5-192407 0294 1 F Update of FR1 6.2.4 Configured transmitted power	
2019-03	15.2.0
2019-03	15.2.0
2019-03	15.2.0
2019-03	
2019-03	15.2.0
2019-03	15.2.0
2019-03 RAN#83 R5-192413 0321 1 F Update of transmit signal quality test cases for FR1 2019-03 RAN#83 R5-192414 0231 1 F Introduction of TC 7.7A.0 Minimum conformance requirements 2019-03 RAN#83 R5-192416 0240 1 F Update to Wideband Intermodulation for SA FR1 2019-03 RAN#83 R5-192417 0241 1 F Updates to 7.9 spurious emission for SA in FR1 2019-03 RAN#83 R5-192418 0259 1 F Introduction of FR1 7.6D.3 Out-of-band blocking for UL-MIMO 2019-03 RAN#83 R5-192419 0260 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-19240 0261 1 F Correction of FR1 7.6D.4 Narrow band blocking for UL-MIMO	15.2.0
2019-03 RAN#83 R5-192414 0231 1 F Introduction of TC 7.7A.0 Minimum conformance requirements 2019-03 RAN#83 R5-192416 0240 1 F Update to Wideband Intermodulation for SA FR1 2019-03 RAN#83 R5-192417 0241 1 F Updates to 7.9 spurious emission for SA in FR1 2019-03 RAN#83 R5-192418 0259 1 F Introduction of FR1 7.6D.3 Out-of-band blocking for UL-MIMO 2019-03 RAN#83 R5-192419 0260 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.8D.2 Wide band Intermodulation for UL-MIMO 2019-03 RAN#83 R5-192421 0276 1 F Correction of FR1 7.4 Maximum input level 2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192544 0230 1 F Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1	15.2.0
2019-03 RAN#83 R5-192416 0240 1 F Update to Wideband Intermodulation for SA FR1 2019-03 RAN#83 R5-192417 0241 1 F Updates to 7.9 spurious emission for SA in FR1 2019-03 RAN#83 R5-192418 0259 1 F Introduction of FR1 7.6D.3 Out-of-band blocking for UL-MIMO 2019-03 RAN#83 R5-192419 0260 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.8D.2 Wide band Intermodulation for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Correction of FR1 7.4 Maximum input level 2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192540 0230 1 F Correction to TC 6.4A.2.2 Carrier leakage for CA 2019-03 RAN#83 R5-192540 0248 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 </td <td>15.2.0</td>	15.2.0
2019-03 RAN#83 R5-192416 0240 1 F Update to Wideband Intermodulation for SA FR1 2019-03 RAN#83 R5-192417 0241 1 F Updates to 7.9 spurious emission for SA in FR1 2019-03 RAN#83 R5-192418 0259 1 F Introduction of FR1 7.6D.3 Out-of-band blocking for UL-MIMO 2019-03 RAN#83 R5-192419 0260 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.8D.2 Wide band Intermodulation for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Correction of FR1 7.4 Maximum input level 2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192540 0230 1 F Correction to TC 6.4A.2.2 Carrier leakage for CA 2019-03 RAN#83 R5-192540 0248 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 </td <td>15.2.0</td>	15.2.0
2019-03 RAN#83 R5-192417 0241 1 F Updates to 7.9 spurious emission for SA in FR1 2019-03 RAN#83 R5-192418 0259 1 F Introduction of FR1 7.6D.3 Out-of-band blocking for UL-MIMO 2019-03 RAN#83 R5-192419 0260 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.8D.2 Wide band Intermodulation for UL-MI 2019-03 RAN#83 R5-192421 0276 1 F Correction of FR1 7.4 Maximum input level 2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192544 0230 1 F Correction to TC 6.4A.2.2 Carrier leakage for CA 2019-03 RAN#83 R5-192545 0248 1 F Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1 2019-03 RAN#83 R5-192548 0275 1 F Update of FR1 6.2D.1 MOP for MIMO 2019	15.2.0
2019-03 RAN#83 R5-192418 0259 1 F Introduction of FR1 7.6D.3 Out-of-band blocking for UL-MIMO 2019-03 RAN#83 R5-192419 0260 1 F Introduction of FR1 7.6D.4 Narrow band blocking for UL-MIMO 2019-03 RAN#83 R5-192420 0261 1 F Introduction of FR1 7.8D.2 Wide band Intermodulation for UL-MI 2019-03 RAN#83 R5-192421 0276 1 F Correction of FR1 7.4 Maximum input level 2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192544 0230 1 F Correction to TC 6.4A.2.2 Carrier leakage for CA 2019-03 RAN#83 R5-192545 0248 1 F Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1 2019-03 RAN#83 R5-192547 0273 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-M 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of TC 6.5D.2.4.2	15.2.0
2019-03	15.2.0
2019-03	15.2.0
2019-03 RAN#83 R5-192421 0276 1 F Correction of FR1 7.4 Maximum input level 2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192544 0230 1 F Correction to TC 6.4A.2.2 Carrier leakage for CA 2019-03 RAN#83 R5-192545 0248 1 F Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1 2019-03 RAN#83 R5-192547 0273 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 029	
2019-03 RAN#83 R5-192510 0322 1 F Asymmetric CH BWs test configuration for Reference Sensitivity 2019-03 RAN#83 R5-192544 0230 1 F Correction to TC 6.4A.2.2 Carrier leakage for CA 2019-03 RAN#83 R5-192545 0248 1 F Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1 2019-03 RAN#83 R5-192547 0273 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300	
2019-03	15.2.0
2019-03 RAN#83 R5-192545 0248 1 F Update of test case 6.5.2.4.2, UTRA ACLR in 38.521-1 2019-03 RAN#83 R5-192547 0273 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4	15.2.0
2019-03 RAN#83 R5-192547 0273 1 F Update of FR1 6.2D.1 MOP for MIMO 2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192548 0275 1 F Update of 6.2D.4 Configured Output Power for MIMO 2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192549 0284 1 F Update of FR1 test case 6.3D.1 Minimum output power for UL-N. 2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192550 0296 1 F Update of TC 6.5D.1 2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	
2019-03 RAN#83 R5-192551 0297 1 F Update of TC 6.5D.2.2 2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192553 0298 1 F Introduction of TC 6.5D.2.3 2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192554 0299 1 F Update of TC 6.5D.2.4.1 2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	
2019-03 RAN#83 R5-192555 0300 1 F Update of TC 6.5D.2.4.2 2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
2019-03 RAN#83 R5-192556 0301 1 F Update of 6.5D.3.1	15.2.0
	15.2.0
	15.2.0
2019-03 RAN#83 R5-192557 0302 1 F Update of 6.5D.3.2	15.2.0
2019-03 RAN#83 R5-192558 0303 1 F Update of 6.5D.3.3	15.2.0
2019-03 RAN#83 R5-192559 0304 1 F Update of 6.5D.4	15.2.0
2019-03 RAN#83 R5-192561 0313 1 F Addition of FR1 6.3A.3 Transmit ON/OFF time mask for CA	15.2.0
2019-03 RAN#83 R5-192562 0325 1 F Update of FR1 6.2D.2 MPR for MIMO	15.2.0
	15.2.0
	15.2.0
2019-03 RAN#83 R5-192565 0235 1 F Introduction of TC 7.7A.3 Spurious response for 4DL CA	15.2.0
2019-03 RAN#83 R5-192566 0258 1 F Introduction of FR1 7.6D.2 Inband blocking for UL-MIMO	15.2.0
2019-03 RAN#83 R5-192567 0285 1 F Update on TC 6.4A.1.1 Frequency error for CA	15.2.0
2019-03 RAN#83 R5-192570 0286 1 F Update on TCs in section 6.4A.2 Transmit modulation quality for	CA 15.2.0
2019-03 RAN#83 R5-192576 0287 1 F Update on TC 6.5A.2.2.1 Spectrum emission mask for CA	15.2.0
2019-03 RAN#83 R5-192577 0288 1 F Update on TC 6.5A.2.4.1.1 NR ACLR for CA	15.2.0
2019-03 RAN#83 R5-192578 0289 1 F Update on TC 6.5A.2.4.2.1 UTRA ACLR for CA	15.2.0
2019-03 RAN#83 R5-192579 0290 1 F Update on TC 6.5A.3.1.1 General spurious emissions for CA	15.2.0
	11.7 / 11
CA CA CA CA CA CA CA CA CA CA CA CA CA C	
2019-03 RAN#83 R5-192581 0292 1 F Update on TC 6.5A.4.1 TX IM for CA	for 15.2.0
2019-03 RAN#83 R5-192583 0268 1 F Addition of 7.5A.0 Minimum conformance requirements	

2019-03	RAN#83	R5-192584	0269	1	F	Addition of 7.5A.1 Adjacent channel selectivity for 2DL CA	15.2.0
2019-03	RAN#83	R5-192585	0270	1	F	Addition of 7.5A.2 Adjacent channel selectivity for 3DL CA	15.2.0
2019-03	RAN#83	R5-192586	0271	1	F	Addition of 7.5A.3 Adjacent channel selectivity for 4DL CA	15.2.0
2019-03	RAN#83	R5-192587	0282	1	F	FR1 Text update for 7.3A.2 Reference sensitivity power level for CA	15.2.0
2019-03	RAN#83	R5-192588	0283	1	F	FR1 Text update for 7.3.2_1 Reference sensitivity level with 4 Rx	15.2.0
						antenna ports	
2019-03	RAN#83	R5-192589	0305	1	F	Update of 7.3D.2	15.2.0
2019-03	RAN#83	R5-192590	0306	1	F	Update of TC 7.4D	15.2.0
2019-03	RAN#83	R5-192591	0307	1	F	Introduction of TC 7.5D	15.2.0
2019-03	RAN#83	R5-192592	0324	1	F	Update of TC 7.7D Spurious response for UL-MIMO	15.2.0
2019-03	RAN#83	R5-192593	0243	1	F	Updates of TT in TS38.521-1 Annex F during RAN5#82	15.2.0
2019-03	RAN#83	R5-192594	0265	1	F	Correction of HARQ-ACK transmission timing for DL RMC for FR1	15.2.0
						TDD SCS=60kHz	
2019-03	RAN#83	R5-192597	0319	1	F	Updating test case 7.3.2 Reference sensitivity power level Table	15.2.0
						7.3.2.4.1-3	
2019-03	RAN#83	R5-192598	0323	1	F	Update OBW, SEM and ACLR in TS 38.521-1	15.2.0
2019-03	RAN#83	R5-192682	0236	1	F	Introduction of TC 7.9A.0 Minimum conformance requirements	15.2.0
2019-03	RAN#83	R5-192683	0237	1	F	Introduction of TC 7.9A.1 Spurious emission for 2DL CA	15.2.0
2019-03	RAN#83	R5-192685	0312	2	F	Addition of FR1 6.3A.2 Transmit OFF power for CA	15.2.0
2019-03	RAN#83	R5-192693	0293	1	F	Introduction of Annex on Characteristics of the Interfering Signal	15.2.0
						FR1	
2019-03	RAN#83	R5-192837	0326	1	F	Update of operating bands and channel arrangement to TS 38.521-1	15.2.0
2019-03	RAN#83	-	-	-	-	Editorial correction of references to TS 38.508-1 clause 4.6 tables	15.2.0

History

	Document history							
V15.0.0	October 2018	Publication						
V15.1.0	April 2019	Publication						
V15.2.0	May 2019	Publication						