

Cloud Computing

Dr.P.Chinnasamy
Department of CS/IS

CSI ZG527/ SE ZG527 — Virtualization Techniques and Types — L2

Agenda

- **✓** Introduction to Virtualization
- √ Use & demerits of Virtualization
- **✓** Types of Virtualization
- √ Examples
- √ x86 Hardware Virtualization
- ✓ Manage the resources for the SaaS, PaaS and IaaS models

Virtualization

- ✓ Virtualization refers to the creation of a virtual resource such as a server, desktop, operating system, file, storage or network.
- ✓ Virtualization is a computer architecture technology by which multiple virtual machines (VMs) are multiplexed in the same hardware machine. The idea of VMs can be dated back to the 1960s.
- ✓ The purpose of a VM is to enhance resource sharing by many users and improve computer performance in terms of resource utilization and application flexibility.

Virtualization

- ✓ Host Machine: The machine on which the virtual machine is going to be created is known as Host Machine.
- ✓ **Guest Machine:** The virtual machines that are created on the Host Machine are called **Guest Machines**.

Virtualization Explanation

What is Virtualization?

Virtualization Explanation

Hypervisor

- ✓ A hypervisor is a form of **virtualization software used in Cloud hosting** to divide and allocate the resources on various pieces of hardware.
- ✓ The program which provides partitioning, isolation, or abstraction is called a virtualization hypervisor.
- ✓ The hypervisor is a **hardware virtualization technique** that allows multiple guest operating systems (OS) to run on a single host system at the same time.
- ✓ A hypervisor is sometimes also called a **virtual** machine manager(VMM).

Hypervisor

✓ A hypervisor is a **process or a function** to help admins **isolate operating systems and applications from the underlying hardware**.

Types of Hypervisor

Hypervisor Types

Type I Hypervisor

✓ A Type I hypervisor operates directly on the host's hardware to monitor the hardware and guest virtual machines, and is referred to as bare

metal.

✓ Example: Ora Oracle VM Se and VMware's

✓ Its also known **Hypervisor**

SPARC, yper-V,

e Metal

Type II Hypervisor

✓ Type 2 hypervisors run as an annication over a

traditic

✓ Develop need to OS vers their op

✓ KVM, **Micros QEMU**

✓ Its also

ers who n select sors for

station, ox, and

Types of Virtualization

Hardware Virtualization

- ✓ When the virtual machine **software or virtual machine manager** (VMM) is directly installed on the hardware system is known as hardware virtualization.
- ✓ The main job of hypervisor is to control and monitoring the **processor**, **memory and other hardware resources**.
- ✓ After virtualization of hardware system we can **install** different operating system on it and run different applications on those OS.
- ✓ Hardware virtualization is mainly done for the **server platforms**, because controlling virtual machines is much easier than controlling a physical server.

Operating System Virtualization

✓ When the virtual machine software or virtual

Figure 8.6 OS Virtualization

Figure 8.7 Kernel Level Virtualization

Types of Server Virtualization

Para Virtualization

Full Virtualization

- The physical server's resources are monitored by the hypervisor.
- Virtual servers operate independently and are not aware of other virtual servers using hypervisor.

Para Virtualization

- Hypervisor uses less processing power to manage virtual OS.
- It work based on network administrator

Uses of Virtualization

- Cost reduction in infrastructure such as hardware and its maintenance
- Utilization of resource to the fullest
- Increased efficiency of server
- Increased security

Storage Virtualization

- ✓ Storage virtualization is the *process of* **grouping the physical storage from multiple network storage devices** so that it looks like a single storage device.
- ✓ Storage virtualization is also implemented by using **software applications**.
- ✓ Storage virtualization is mainly done for **back-up** and recovery purposes.

Virtualization Characteristics

- **✓ Increased Security**
- **✓ Managed Execution**
- √ Sharing
- ✓ Aggregation
- **✓** Emulation
- **√** Isolation
- **✓ Portability**

Benefits of Virtualization

- ✓ More flexible and efficient allocation of resources.
- **✓** Enhance development productivity.
- ✓ It lowers the cost of IT infrastructure.
- √ Remote access and rapid scalability.
- ✓ High availability and disaster recovery.
- ✓ Pay peruse of the IT infrastructure on demand.
- ✓ Enables running multiple operating systems.

X86 Virtualization

✓ Hardware-Assisted Virtualization can be related to Full Virtualization and Paravirtualization in operational terms except that it **requires Hardware support**.

Manage Resources in Cloud Service Models

On-Premises

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Infrastructure as a Service

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Platform as a Service

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Software as a Service

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

You Manage

Other Manages

Manage Resources in Cloud Service Models

Data & Configurations

Application Code

Scaling...

Runtime

OS

Virtualization

Hardware

Data & Configurations

Application Code

Scaling...

Runtime

Virtualization

Hardware

Data & Configurations

Application Code

Scaling...

Runtime

Virtualization

Hardware

Data & Configurations

Application Code

Scaling...

Runtime

Virtualization

Hardware

Data & Configurations

Application Code

Scaling...

Runtime

OS

Virtualization

Hardware

Data & Configurations

Application Code

Scaling...

Runtime

Virtualization

Hardware

You Manage

Cloud Provider Manages

Thank You