

Network Layer: IPv4 Functions

Lecture 8 | CSE₄₂₁ – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

- Short overview of the Network Layer
- Packet Switching: Virtual Circuits & Datagram Networks
- IPv4 Packet Format
- IP Fragmentation & Reassembly
- ICMP
 - Ping
 - Traceroute

The Network Layer

- Encapsulates data into packets on the sending side.
- Network Layer protocols operates on hosts and routers.
- Routers inspect IP header fields for forwarding.
- Delivers segments to the transport layer on the receiving side.

BRAC UNIVERSITY

- Routing: determine route taken by packets from source to destination
 - The algorithms that calculate the paths are referred to as routing algorithms.
 - Analogy: process of planning trip from source to destination
- Forwarding: move packets from router's input to appropriate router output
 - Analogy: process of getting through a single interchange

Packet Switching

Packet Switching

- Part of Network layer
- Packet Switching is a method of transferring data across a network by breaking it into smaller packets.
- Two type of networks based on packet switching
 - Datagram Networks
 - Virtual Circuit Networks

Datagram networks

network

data link

physical

2. Receive data

No Call Setup:

Devices can send data immediately without establishing a connection.

Stateless Routers:

Routers forward packets independently based on their destination IP address.

Packet Forwarding:

data link

physical

Packets from he same source may take different paths to reach the destination application transport network

1. Send data

Virtual Circuits: Signaling Protocols

Call Setup:

A connection (virtual circuit) is established between sender and receiver before data transfer.

Stateful Routers:

Routers maintain information about active connections (virtual circuits).

Router architecture overview

high-level view of generic router architecture:

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Internet Protocol IPv4

Internet Network Layer

BRAC UNIVERSITY

Inspiring Excellence

• Host, router network layer functions:

IPv4 Datagram Format

The size of an IP datagram:

- The minimum size is 20 bytes (if you have no data)
- The maximum size is 65,535 bytes

IPv4 Datagram Header Format

- Version: value of which IP version is being used. For IPv4 the value will be 4 here.
- Internet Header Length: value of the header length, min 20 bytes, max 60 bytes. Shown in 4 byte word. So min value 5, max 15.
- Type of Service: for QoS (Quality of Service).
 To mark the packet to give special treatment or priority.
- Total Length: value of the entire size of the IP packet (header and data) in bytes.

IPv4 Datagram Header Format

- Time to Live: maximum number of hops (routers) a packet can travel
- Protocol: value tells us which upper layer protocol is present, for example TCP has value 6 and UDP has value 17.
- Header Checksum: to check if there are any errors in the header.
- Options: value of any extra information

Time to Live - TTL

- Maximum number of hops (routers) a packet can before being discarded.
- At each hop, the TTL is decreased by 1.
- When the TTL reaches o, the packet is dropped.

And an error message is sent back to the sender.

Time to Live - TTL

- Not just the "value of hops"
- It's a mechanism to prevent packets from looping endlessly in the network.
- Ensure finite packet lifetimes.

IPv4 Datagram Format

IP Fragmentation & Reassembly

Network links have MTU

- Maximum transmission unit or maximum transfer size
- Different link types have different MTUs

Original IP Datagram

Identifier	Total	DF	MF	Fragment
	Length	May / Don't	Last / More	Offset
345	5140	0	0	0

IP Fragments (Ethernet)

Identifier	Total Length	DF May / Don't	MF Last / More	Fragment Offset
345	1500	0	1	0
345	1500	0	1	185
345	1500	0	1	370
345	700	0	0	555

MTU=20(H)+1480(D)
5140=20(H)+5120(D)
5120-1480=3640 (1st)
3640-1480=2160 (2nd)
2160-1480=680 (3rd)
680+20=700

Data Bytes	Fragment Offset
0 -1479	o/8=o
1480-2959	1480/8=185
2960-4439	2960/8=370
4440-5119	4440/8=555

IP Fragmentation & Reassembly

			$\overline{}$
Identification	Res DF MF 1 bit 1 bit 1 bit	Fragment Offset	
16 bits	1 bit 1 bit 1 bit	13 bits	

Example:

- 4000 Bytes of datagram
- MTU = 1500 Bytes
- DF Don't Fragment Bit
 - Value o or 1
- Fragment Offset
 - The value of the offset is measured in units of 8 bytes.

ICMP

ICMP

Internet Control Message Protocol

• Helps manage and troubleshoot IP networks.

• Functions:

- Reports errors in communication between devices.
- Checks if a remote host is reachable.
- Monitors network congestion.

Key Point:

- ICMP doesn't send actual user data—it only provides network status updates.
- Mainly used by the operating systems in Pretwork management and administration.

Ping

Ping

- PING stands for Packet Internet Groper and is a network utility tool.
 - Purpose: Checks if a device is reachable and measures the time it takes for data to travel (round-trip time).
 - Mechanism: Sends ICMP Echo Request packets to a target and waits for Echo Reply packets.
 - Results: Displays the number of packets sent, received, lost, and the time taken for the round-trip.

Commands:ping 216.58.200.174

Ping


```
_ 🗆 ×
C:\Windows\system32\command.com
C:\USERS\LARRYP~1>ping www.pepperdine.edu
Pinging www.pepperdine.edu [137.159.8.186] with 32 bytes of data: Reply from 137.159.8.186: bytes=32 cime=37ms TTL=114
Reply from 137.159.8.186: bytes=32 time=38ms TTL=114
Reply from 137.159.8.186: bytes=32 time=36ms TTL=114
Reply from 137.159.8.186: bytes=32 time=38ms/TTL=114
Ping statistics for 137.159.8.186:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 36ms, Maximum = 38ms, Average = 37ms
C:\USERS\LARRYP~1>_
```

- Questions:
- Why 4 replies?
- What the time refer to?

ICMP Packet Format

Туре	Code	Description
0 – Echo Reply	0	Echo reply
3 – Destination	0	Destination network
Unreachable		unreachable
	1	Destination host
		unreachable
	2	Destination protocol
		unreachable
	3	Destination port
		unreachable
	4	Fragmentation needed and
		DF flag set
5 B II	5	Source route failed
5 – Redirect Message	0	Redirect datagram for the
	2	Network
	1	Redirect datagram for the
	2	host
	2	Redirect datagram for the Type of Service and
		Network
	3	Redirect datagram for the
	3	Service and Host
8 - Echo Request	0	Echo request
9 – Router Advertisement	0	Use to discover the
10 – Router Solicitation	0	addresses of operational
To House Concluded		routers
11 - Time Exceeded	0	Time to live exceeded in
		transit
	1	Fragment reassembly time
		exceeded
12 – Parameter Problem	0	Pointer indicates error
	1	Missing required option
	2	Bad length
13 - Timestamp	0	Used for time
		synchronization
14 - Timestamp Reply	0	Reply to Timestamp
		message

Unsuccessful Ping

```
C:\>ping 10.2.104.2
Pinging 10.2.104.2 with 32 bytes of data:
Request timed out.
Ping statistics for 10.2.104.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Ping Attacks

• ICMP DDOS attack – Zombie Attack:

• ICMP DDOS attack – Packet magnification (or ICMP Smurf):

IP MTU Discovery with ICMP

IP MTU Discovery with ICMP

IP MTU Discovery with ICMP

Length = 1500, Don't Fragment

IP Packet

When successful, no reply at IP level
"No news is good news"
Higher level protocol might have some form
of acknowledgement

Traceroute

- A network diagnostic tool used to trace the path that data packets take from your computer to a target server or IP address.
 - Purpose: Identifies the routers or hops data passes through to reach its destination mostly for troubleshooting
 - Mechanism: Uses ICMP or UDP packets with incrementing TTL (Time-to-Live) values to get "Time Exceeded" responses from each hop.
 - Results: Displays the IP address, hostname (if resolvable), and latency for each hop.

Commands:

Unix: traceroute

Cisco IOS: traceroute (trace)

DOS: tracert


```
Microsoft Windows [Version 10.0.19045.5131]
(c) Microsoft Corporation. All rights reserved.
C:\Users\skazi>traceroute www.yahoo.com
'traceroute' is not recognized as an internal or external command,
operable program or batch file.
C:\Users\skazi>tracert www.yahoo.com
Tracing route to me-ycpi-cf-www.g06.yahoodns.net [27.123.42.205]
over a maximum of 30 hops:
                         1 ms 172.18.192.1
                               Request timed out.
                         1 ms 172.31.2.129
                 1 ms
                               10.151.6.89
       1 ms
                 2 ms
                         1 ms 10.0.100.5
        2 ms
                         1 ms 202.4.100.253
                               GIO-2-2-aggr01.as58656.net [103.12.177.1]
       1 ms
        2 ms
                               10.12.176.237
        3 ms
                 2 ms
                         2 ms 103.16.155.149
       2 ms
                1 ms
                         1 ms 103.16.152.30
                11 ms
       11 ms
                         10 ms 103.16.152.82
                51 ms
                         51 ms 103.16.153.21
13
      51 ms
                51 ms
                        51 ms 103.16.153.18
                        57 ms ae6-1538.rt.eqx.sin.sg.retn.net [87.245.240.208]
               57 ms
      57 ms
                        62 ms ix-be-20.ecore4.esin4-singapore.as6453.net [180.87.54.66]
      62 ms
               63 ms
                        64 ms if-bundle-18-2.qcore2.esin4-singapore.as6453.net [180.87.108.80]
               65 ms
      64 ms
       70 ms
                70 ms
                        71 ms 180.87.55.59
                               Request timed out.
 19
                        78 ms 14.143.59.46.static-mumbai.vsnl.net.in [14.143.59.46]
      69 ms
                70 ms
                        67 ms e2-ha.ycpi.ina.yahoo.com [27.123.42.205]
      68 ms
                68 ms
Trace complete.
```

C:\Users\skazi>_

Using Tracert

Hop 1: Our local router or gateway (private IP address). Hops 2-5: Internal routing within Bracu ISP's private network (non-public IPs). Hop 6: First public IP, ISP's gateway to the internet. Hops 7–9: Routing through regional and backbone ISPs. Hops 10–13: Routing through Singapore (a major internet hub).

Hops 14–19: Routing through Indian networks, ending in Mumbai.

Hop 20: Final destination—Yahoo's server, located in India, near Mumbai.

Traceroute: Another example

BRAC UNIVERSITY

Inspiring Excellence

Hop 1: User LAN router

Hops 2-4: Verizon network (a backbone ISP)

Hops 5-6: Alternet (a backbone ISP)

Hops 7-11: Level 3 (a backbone ISP)

Hops 12-14: the Google LAN

```
C:\Windows\system32\COMMAND.com
C:\USERS\LARRYP~1>tracert www.google.com
Tracing route to www.l.google.com [74.125.19.147]
over a maximum of 30 hops:
                                L100.LSANCA-DSL-14.verizon-gni.net [71.105.96.1]
                                     .LSANCA-LCR-03.verizon-gni.net [130.81.35.8]
                               ae-1-69.edge1.SanJose1.Level3.net [4.68.18.14]
                                G00GLE-INC.edge1.SanJose1.Level3.net [4.79.43.146]
                               nug04s01-in-f147.1e100.net [74.125.19.147]
Trace complete.
```


This message indicates that the router security settings keep it from revealing its identity or the router and connection are slow.

* * * Request timed out.

The End