Backpropagation - A Perspective of Matrix Calculus

Yu Chen

Technical University of Munich

November 24, 2023

Table of contents

- 0. Motivation & Background
- 1. Basis of Matrix Calculus
- 2. The Application of Matrix Calculus
- 3. Backpropagation in Matrix Form
- 4. Matrix-Form Backpropagation in Deep Learning Models

Guided Map

- 0. Motivation & Background
- Basics of Matrix Calculus
- 2. The Application of Matrix Calculus
- 4. Matrix-Form Backpropagation in Deep Models

Motivation

Fully Connected NN Example

$$\begin{array}{l} \mathbb{R}^{D_0} \ni \vec{x} = \vec{h}_0 \xrightarrow{\vec{h}_1 = \sigma_1 \odot (W_1 \vec{h}_0 + \vec{b}_1)} \vec{h}_1 \xrightarrow{\vec{h}_2 = \sigma_2 \odot (W_2 \vec{h}_1 + \vec{b}_2)} \vec{h}_2 \to \cdots \to \\ \vec{h}_k \xrightarrow{C.E.Loss} L(\vec{h}_k) \in \mathbb{R} \\ \text{where } W_i \in \mathbb{R}^{D_{i-1} \times D_i} \text{ and } \vec{b}_i \in \mathbb{R}^{D_i} \text{ are parameters of the FCN,} \\ \sigma_i \odot (\cdot) \text{ is an element-wise activation function, and } L \text{ is a categorical cross-entropy loss function.} \end{array}$$

■ How to represent the backpropagation process in a closed-matrix form i.e.

$$L \to \nabla_{\vec{h}_k} L \to \nabla_{\vec{h}_{k-1}} L \to \cdots \to \nabla_{\vec{h}_0} L \ during \ \underset{\{W^i\}_{i=1}^k}{\text{min}} \ L(\cdot)?$$

■ How to derive any $\nabla_{W_i}L$ in a closed-matrix form during backpropagation?

Background – Numerical Optimization

$$\min_{\vec{x}} f(\vec{x}), \quad \vec{x} \in \mathbb{R}^{D} \quad \text{and} \quad f(\vec{x}) \in \mathbb{R}.$$
 (1)

solved by:

$$\vec{\mathbf{x}}_{t+1} \coloneqq \vec{\mathbf{x}}_t + \alpha_t \vec{\mathbf{d}}_t \tag{2}$$

where $\|\vec{\mathbf{d}}\|_2 = 1$ and α_t is the step size at $\vec{\mathbf{x}}_t$.

How to decide \vec{d}_t and α_t ?

Background – Intuition Behind Gradient Descent

$$\min_{\vec{d}_t,\alpha_t} f(\vec{x}_t + \alpha_t \vec{d}_t) \quad \mathrm{s.t.} \quad \|\vec{d}_t\|_2^2 = 1.$$

$$\blacksquare f(\vec{x}_t + \alpha_t \vec{d}_t) = f(\vec{x}_t) + \alpha_t \vec{d}_t^T \nabla_{\vec{x}_t} f(\vec{x}) + o(\alpha_t)$$

■Gradient Descent $f(\vec{x}_t + \alpha_t \vec{d}_t) \approx f(\vec{x}_t) + \alpha_t \vec{d}_t^T \nabla_{\vec{x}_t} f(\vec{x})$

$$\vec{d}_t^* = \operatorname{argmin}_{\vec{d}_t} f(\vec{x}_t) + \alpha_t \vec{d}_t^T \nabla_{\vec{x}_t} f(\vec{x}) \quad s.t. \quad \|\vec{d}_t\|_2^2 = 1 \quad (3$$

$$\alpha_{t}^{*} = \operatorname{argmin}_{\alpha_{t}} f(\vec{x}_{t} + \alpha_{t} \vec{d}_{t}^{*})$$
(4)

Background – Intuition Behind Gradient Descent

- $\blacksquare \alpha_{+}^{*}$: Line Search Methods.
- $\blacksquare \vec{d}_{t}^{*}$: Lagrange Multiplier Method.

$$\begin{split} \vec{d}_t^* &= \operatorname{argmin}_{\vec{d}_t} L(\vec{d}_t, \lambda_t) \\ &\coloneqq f(\vec{x}_t) + \alpha_t \vec{d}_t^T \nabla_{\vec{x}_t} f(\vec{x}) + \lambda_t (\|\vec{d}_t\|_2^2 - 1) \\ &= -\frac{\nabla_{\vec{x}_t} f(\vec{x})}{\|\nabla_{\vec{x}_t} f(\vec{x})\|_2} \end{split}$$

Background – Gradient Descent Algorithm

```
Step 1: initialize \vec{x}_0;
```

Step 2: calculate
$$\vec{d}_t^* = -\frac{\nabla_{\vec{x}_t} f(\vec{x})}{\|\nabla_{\vec{x}_t} f(\vec{x})\|_2};$$

Step 3: calculate α_t^* using line search or set $\alpha_t^* = 0.0001$;

Step 4:
$$\vec{\mathbf{x}}_{t+1} \coloneqq \vec{\mathbf{x}}_t - \alpha_t^* \vec{\mathbf{d}}_t^*$$
;

Step 5: repeat Step 2, 3, and 4 to approximate \vec{x}^* .

Backpropagation is applied to compute $\nabla_{\vec{x}} f(\vec{x})$ in machine learning especially when $f(\cdot)$ is complex.

Guided Map

- 1. Basics of Matrix Calculus
- 2. The Application of Matrix Calculus
- 4. Matrix-Form Backpropagation in Deep Models

Gradient Computation - Example

Example 1-1

 $f(\vec{x}, A, \vec{y}) = \vec{x}^T A \vec{y}$ where $A \in \mathbb{R}^{M \times N}, \vec{x} \in \mathbb{R}^M$, and $\vec{y} \in \mathbb{R}^N$. How to derive gradients $\nabla_{\vec{x}} f(\cdot)$, $\nabla_{\vec{y}} f(\cdot)$, and $\nabla_A f(\cdot)$ in closed forms?

- 1. Intuitively, $\nabla_{\vec{x}} f(\cdot) = A\vec{y}$ and $\nabla_{\vec{y}} f(\cdot) = A^T \vec{x}$, but why and how?
- 2. How to derive $\nabla_A f(\cdot)$ systematically rather than intuitively?
- 3. If $\vec{y} = \sigma \odot (B^{-1}\vec{z} + \vec{b})$ where $B^{-1} \in \mathbb{R}^{N \times N}$ is the inverse of $B, \vec{z}, \vec{b} \in \mathbb{R}^{N}$, and $\sigma \odot (\vec{y}) \coloneqq [\sigma(y_{0}), \sigma(y_{1}), \cdots, \sigma(y_{N})]^{T}$ is an element-wise Sigmoid function with $\sigma(y_{i}) \coloneqq \frac{1}{1 + \exp(-y_{i})}$, how to derive $\nabla_{B} f(\cdot)$?

Definition of Gradient

Suppose $f_1(x) : \mathbb{R} \to \mathbb{R}$, $f_2(\vec{x}) : \mathbb{R}^D \to \mathbb{R}$, and $f_3(X) : \mathbb{R}^{M \times N} \to \mathbb{R}$ where $x \in \mathbb{R}$, $\vec{x} := [x_1, \dots, x_D]^T \in \mathbb{R}^D$, and $X := [X_{ij}] \in \mathbb{R}^{M \times N}$.

Definition (1-1)

The derivative of
$$f_1(x)$$
 w.r.t. x is defined as $f_1'(x) = \frac{\partial f_1(x)}{\partial x} := \lim_{\Delta x \to 0} \frac{f_1(x + \Delta x) - f_1(x)}{\Delta x}$.

The gradient of
$$f_2(\vec{x})$$
 w.r.t. \vec{x} is defined as $\nabla_{\vec{x}} f_2(\cdot) = \frac{\partial f_2}{\partial \vec{x}} := [\frac{\partial f_2}{\partial x_1}, \cdots, \frac{\partial f_2}{\partial x_D}]^T \in \mathbb{R}^D$

The gradient of
$$f_3(X)$$
 w.r.t. X is defined as $\nabla_X f_3(\cdot) = \frac{\partial f_3}{\partial X} := \left[\frac{\partial f_3}{\partial X}\right] \in \mathbb{R}^{M \times N}$

where $\frac{\partial f_3}{\partial X_{ii}}$ is the partial derivative of f_3 w.r.t. the matrix entry

$$X_{ij} \text{ defined as } \tfrac{\partial f_3}{\partial X_{ij}} \coloneqq \lim_{\Delta X_{ii} \to 0} \tfrac{f_3(X_{ij} + \Delta X_{ij}) - f_3(X_{ij})}{\Delta X_{ij}}.$$

Differential

Differential is used to derive the gradient of a function w.r.t. a vector or a matrix in a closed-matrix form .

Definition (1-2)

$$\begin{split} \partial f_1 &\coloneqq f_1'(x) \, \partial x \\ \partial f_2 &\coloneqq \sum_{i=1}^D \frac{\partial f_2}{\partial x_i} \, \partial x_i = \big(\frac{\partial f_2}{\partial \vec{x}} \big)^T \, \partial \vec{x} \\ \partial f_3 &\coloneqq \sum_{i=1}^M \sum_{j=1}^N \frac{\partial f_3}{\partial X_{ij}} \, \partial X_{ij} = \mathrm{Tr} \big(\frac{\partial f_3}{\partial X}^T \, \partial X \big) \end{split}$$

where Tr() represents the trace operation defined as

$$\operatorname{Tr}(A) \coloneqq \sum_{i=1}^{N} A_{ii} \text{ where } A \in \mathbb{R}^{N \times N}.$$

 \rightarrow the laws of matrix differential operations and properties of trace help!

Laws of Matrix Differential

Theorem (1-1)

Assume $A, B \in \mathbb{R}^{M \times N}$, $C \in \mathbb{R}^{N \times M}$, and $D \in \mathbb{R}^{N \times N}$ is invertible. |D| is the determinant and D^* is the adjugate matrix.

1.
$$\partial(A \pm B) = \partial A \pm \partial B$$

2.
$$\partial(AC) = (\partial A)C + A(\partial C)$$

3.
$$\partial (A^T) = (\partial A)^T$$

4.
$$\partial Tr(D) = Tr(\partial D)$$

5.
$$\partial D^{-1} = -D^{-1}(\partial D)D^{-1}$$

6.
$$\partial |D| = \frac{1}{N} Tr(D^* \partial D) = \frac{1}{N} |D| Tr(D^{-1} \partial D)$$

7.
$$\partial (A \odot B) = (\partial A) \odot B + A \odot \partial B$$

8.
$$\partial f \odot (A) = f'(A) \odot \partial A$$
 where $f'(A) := \left[\frac{\partial f}{\partial A_{ij}}\right] \in \mathbb{R}^{M \times N}$

Properties of Trace

Theorem (1-2)

Assume $a \in \mathbb{R}$ is a real number, matrices $A, B \in \mathbb{R}^{N \times N}$, and $C, D, F \in \mathbb{R}^{M \times N}$.

- 1. a = Tr(a)
- 2. $\operatorname{Tr}(A^{\mathrm{T}}) = \operatorname{Tr}(A)$
- 3. $Tr(A \pm B) = Tr(A) \pm Tr(B)$
- 4. $\operatorname{Tr}(\operatorname{CD}^{\mathrm{T}}) = \operatorname{Tr}(\operatorname{D}^{\mathrm{T}}\operatorname{C})$
- 5. $\operatorname{Tr}(C^{T}(D \odot F)) = \operatorname{Tr}((C \odot D)^{T}F)$

With the laws of matrix differential and trace properties, we can derive some closed-matrix form gradients for some functions.

Guided Map

- 1. Motivation & Background
- 2. Basics of Matrix Calculus
- 3. The Application of Matrix Calculus
- 4. Backpropagation in Matrix Form
- 5. Matrix-Form Backpropagation in Deep Models

Simple Example

Example 2-1-1

 $f(\vec{x}, A, \vec{y}) = \vec{x}^T A \vec{y}$ where $A \in \mathbb{R}^{M \times N}, \vec{x} \in \mathbb{R}^M$, and $\vec{y} \in \mathbb{R}^N$. Derive $\nabla_{\vec{x}} f(\cdot)$ in its closed-matrix form.

- 1. $\partial f = (\partial \vec{x}^T)A\vec{v} + \vec{x}^T \partial (A\vec{v}) = (\partial \vec{x}^T)A\vec{v}$
- 2. $\operatorname{Tr}(\partial f) = \operatorname{Tr}((\partial \vec{x}^T) A \vec{y}) = \operatorname{Tr}(\vec{y} A^T \partial \vec{x}) = \operatorname{Tr}((A \vec{v})^T \partial \vec{x})$
- 3. $\partial f = Tr((A\vec{v})^T \partial \vec{x})$
- 4. So, $\nabla_{\vec{x}} f(\cdot) = \frac{\partial f}{\partial \vec{y}} = A\vec{y}$ compared with Definition 2.

Simple Example

Example 2-1-2

 $f(\vec{x}, A, \vec{v}) = \vec{x}^T A \vec{v}$ where $A \in \mathbb{R}^{M \times N}, \vec{x} \in \mathbb{R}^M$, and $\vec{v} \in \mathbb{R}^N$. Derive $\nabla_{\vec{\mathbf{v}}}\mathbf{f}(\cdot)$ in its closed-matrix form.

- 1. $\partial f = (\partial \vec{x}^T A) \vec{y} + \vec{x}^T A \partial (\vec{y}) = (\vec{x}^T A) \partial \vec{y}$
- 2. $\operatorname{Tr}(\partial f) = \operatorname{Tr}((\vec{x}^T A) \partial \vec{y}) = \operatorname{Tr}((A^T \vec{x})^T \partial \vec{v})$
- 3. $\partial f = Tr((A^T\vec{x})^T \partial \vec{v})$
- 4. So, $\nabla_{\vec{v}} f(\cdot) = \frac{\partial f}{\partial \vec{v}} = A^T \vec{x}$ compared with Definition 2.

Simple Example

Example 2-1-3

 $f(\vec{x}, A, \vec{y}) = \vec{x}^T A \vec{y}$ where $A \in \mathbb{R}^{M \times N}, \vec{x} \in \mathbb{R}^M$, and $\vec{y} \in \mathbb{R}^N$. Derive $\nabla_{\mathbf{A}} \mathbf{f}(\cdot)$ in its closed-matrix form.

- 1. $\partial f = \vec{x}^T \partial(A)\vec{v}$
- 2. $\operatorname{Tr}(\partial f) = \operatorname{Tr}(\vec{x}^T \partial (A) \vec{y}) = \operatorname{Tr}(\vec{y} \vec{x}^T \partial A) = \operatorname{Tr}((\vec{x} \vec{v}^T)^T \partial A)$
- 3. $\partial f = Tr((\vec{x}\vec{v}^T)^T \partial A)$
- 4. So, $\nabla_{\mathbf{A}} \mathbf{f}(\cdot) = \frac{\partial \mathbf{f}}{\partial \mathbf{A}} = \vec{\mathbf{x}} \vec{\mathbf{y}}^{\mathrm{T}}$ compared with Definition 2.

Linear Regression

Example 2-2

Suppose $L(\vec{w}) = ||X\vec{w} - \vec{y}||^2$ where $\vec{y} \in \mathbb{R}^M$, $\vec{w} \in \mathbb{R}^N$, and $X \in \mathbb{R}^{M \times N}$. Solving $\min_{\vec{w}} L(\vec{w})$ requires $\nabla_{\vec{w}} L(\vec{w}) = 0$, so we need to derive the closed-matrix form of $\nabla_{\vec{w}} L(\vec{w})$.

Solution 2-2:

1. Apply laws of matrix differential:

$$\begin{split} \partial L &= \partial ((\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}})^{\mathrm{T}} (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}})) \\ &= \partial (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}})^{\mathrm{T}} (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}}) + (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}})^{\mathrm{T}} \partial (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}}) \\ &= (\mathbf{X} \, \partial \mathbf{w})^{\mathrm{T}} (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}}) + (\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{y}})^{\mathrm{T}} \mathbf{X} \, \partial \vec{\mathbf{w}} \end{split}$$

2. Add trace operation and apply properties of trace:

$$\mathrm{Tr}(\partial L) = \mathrm{Tr}((X\,\partial w)^T(X\vec{w} - \vec{y}) + (X\vec{w} - \vec{y})^TX\,\partial\vec{w})$$

Linear Regression

Solution 2-2:

2. Apply properties of trace

$$\begin{split} \operatorname{Tr}(\partial L) &= \operatorname{Tr}((X \, \partial \vec{w})^T (X \vec{w} - \vec{y}) + (X \vec{w} - \vec{y})^T X \, \partial \vec{w}) \\ &= \operatorname{Tr}((X \, \partial \vec{w})^T (X \vec{w} - \vec{y})) + \operatorname{Tr}((X \vec{w} - \vec{y})^T X \, \partial \vec{w})) \\ &= \operatorname{Tr}((\partial \vec{w})^T X^T (X \vec{w} - \vec{y})) + \operatorname{Tr}((X \vec{w} - \vec{y})^T X \, \partial \vec{w}) \\ &= \operatorname{Tr}((X \vec{w} - \vec{y})^T X \, \partial \vec{w}) + \operatorname{Tr}((X \vec{w} - \vec{y})^T X \, \partial \vec{w}) \\ &= \operatorname{Tr}(2(X \vec{w} - \vec{y})^T X \, \partial \vec{w}) \\ &= \operatorname{Tr}(2(X^T (X \vec{w} - \vec{y}))^T \, \partial \vec{w}) \end{split}$$

3. So, $\nabla_{\vec{\mathbf{w}}} \mathbf{L} = 2\mathbf{X}^{\mathrm{T}}(\mathbf{X}\vec{\mathbf{w}} - \vec{\mathbf{v}})$

Maximum Likelihood Estimation

Example 2-3

Suppose the data set
$$\{\vec{x}_i\}_{i=1}^N$$
 with $\vec{x}_i \in \mathbb{R}^D$ where $\vec{x}_i \sim P(\vec{x}_i|\mu,\Sigma) := (2\pi)^{-\frac{D}{2}}|\Sigma|^{-\frac{1}{2}}e^{-\frac{1}{2}(\vec{x}_i-\vec{\mu})^T\Sigma^{-1}(\vec{x}_i-\vec{\mu})}$. Then,
$$\max_{\vec{\mu},\Sigma} \prod_{i=1}^N P(\vec{x}_i|\vec{\mu},\Sigma) \iff \max_{\vec{\mu},\Sigma} -\frac{ND}{2}\log(2\pi) - \frac{N}{2}\log(|\Sigma|) - \frac{1}{2}\sum_{i=1}^N (\vec{x}_i-\vec{\mu})^T\Sigma^{-1}(\vec{x}_i-\vec{\mu}) \iff \min_{\vec{\mu},\Sigma} L(\vec{\mu},\Sigma) = N\log(|\Sigma|) + \sum_{i=1}^N (\vec{x}_i-\vec{\mu})^T\Sigma^{-1}(\vec{x}_i-\vec{\mu}).$$
 The minimization of L w.r.t. $\vec{\mu}$ is independent to that of Σ . The MLE of Σ requires $\nabla_{\Sigma}L = 0$, so we need to derive $\nabla_{\Sigma}L$.

Maximum Likelihood Estimation

Example 2-3

$$\begin{array}{l} \underset{\vec{\mu}, \Sigma}{\text{min}} \, L(\vec{\mu}, \Sigma) = \mathrm{Nlog}(|\Sigma|) + \sum\limits_{i=1}^{N} (\vec{x}_i - \vec{\mu})^T \Sigma^{-1} (\vec{x}_i - \vec{\mu}). \ \, \mathrm{Derive} \, \, \nabla_{\Sigma} L. \end{array}$$

Solution 2-3:

1. Apply laws of matrix differential:

$$\begin{split} \partial L &= N \, \partial (\log(|\Sigma|)) + \sum_{i=1}^N (\vec{x}_i - \vec{\mu})^T \, \partial (\Sigma^{-1}) (\vec{x}_i - \vec{\mu}) \\ &= N(|\Sigma|)^{-1} \, \partial |\Sigma| - \sum_{i=1}^N (\vec{x}_i - \vec{\mu})^T \Sigma^{-1} \, \partial (\Sigma) \Sigma^{-1} (\vec{x}_i - \vec{\mu}) \end{split}$$

Maximum Likelihood Estimation

Solution 2-3:

2. Add trace operation and apply properties of trace:

$$\begin{split} \operatorname{Tr}(\partial L) &= \operatorname{Tr}(N(|\Sigma|)^{-1} \, \partial |\Sigma|) - \\ \operatorname{Tr}(\sum_{i=1}^{N} (\vec{x}_i - \vec{\mu})^T \Sigma^{-1} \, \partial (\Sigma) \Sigma^{-1} (\vec{x}_i - \vec{\mu})) \\ &= N/D|\Sigma|^{-1} |\Sigma| \operatorname{Tr}(\Sigma^{-1} \, \partial \Sigma) - \\ \operatorname{Tr}(\sum_{i=1}^{N} \Sigma^{-1} (\vec{x}_i - \vec{\mu}) (\vec{x}_i - \vec{\mu})^T \Sigma^{-1} \, \partial \Sigma) \\ &= \operatorname{Tr}(N/D\Sigma^{-1} \, \partial \Sigma - \sum_{i=1}^{N} \Sigma^{-1} (\vec{x}_i - \vec{\mu}) (\vec{x}_i - \vec{\mu})^T \Sigma^{-1} \, \partial \Sigma) \end{split}$$

3. So,
$$\nabla_{\Sigma} L = N/D\Sigma^{-1} - \sum_{i=1}^{N} \Sigma^{-1} (\vec{x}_i - \vec{\mu}) (\vec{x}_i - \vec{\mu})^T \Sigma^{-1}$$

Guided Map

- Basics of Matrix Calculus
- 2. The Application of Matrix Calculus
- 3. Backpropagation in Matrix Form

Backpropagation - A Perspective of Matrix Calculus

4. Matrix-Form Backpropagation in Deep Models

Backpropagation in Matrix Form

Example 3-1

 $f = \vec{x}^T A \vec{y}$ with $\vec{y} = \sigma \odot (\vec{h})$ and $\vec{h} = B^{-1} \vec{z} + \vec{b}$ where $\vec{y} \in \mathbb{R}^N$, $A \in \mathbb{R}^{M \times N}, \vec{x} \in \mathbb{R}^{M}, B^{-1} \in \mathbb{R}^{N \times N}, \vec{z}, \vec{b} \in \mathbb{R}^{N}, and$ $\sigma \odot (\vec{y}) := [\sigma(y_0), \cdots, \sigma(y_N)]^T$ is an element-wise Sigmoid function. Derive $\nabla_{\mathbf{B}} f(\cdot)$ in its closed-matrix form.

- 1. $\partial f = \vec{x}^T A \partial \vec{y}$. After adding $Tr(\cdot)$ operation on both side:
- 2. $\operatorname{Tr}(\partial f) = \operatorname{Tr}(\vec{x}^T A \partial(\vec{v})) = \operatorname{Tr}((A^T \vec{x})^T \partial \vec{v})$ leads to: $2.1. \nabla_{\vec{x}} f = A^T \vec{x}$
- 3. $\operatorname{Tr}(\partial f) = \operatorname{Tr}(\nabla_{\vec{v}} f^{T} \partial(\vec{v}))$
 - 3.1. $\partial(\vec{\mathbf{v}}) = \partial\{\sigma \odot (\vec{\mathbf{h}})\} = \sigma'(\vec{\mathbf{h}}) \odot \partial \vec{\mathbf{h}}$
 - 3.2. $\operatorname{Tr}(\partial f) = \operatorname{Tr}(\nabla_{\vec{v}} f^{T}(\sigma'(\vec{h}) \odot \partial \vec{h})) = \operatorname{Tr}((\nabla_{\vec{v}} f \odot \sigma'(\vec{h}))^{T} \partial \vec{h})$ leads to
 - 3.3. $\nabla_{\vec{\mathbf{r}}} \mathbf{f} = \nabla_{\vec{\mathbf{v}}} \mathbf{f} \odot \sigma'(\vec{\mathbf{h}})$

Backpropagation in Matrix Form

Solution:

4.
$$\operatorname{Tr}(\nabla_{\mathbf{h}} \mathbf{f}) = \operatorname{Tr}(\nabla_{\vec{\mathbf{h}}} \mathbf{f}^{\mathrm{T}} \partial \vec{\mathbf{h}})$$

4.1.
$$\partial \vec{h} = \partial (B^{-1}\vec{z} + \vec{b}) = \partial (B^{-1})\vec{z} = -B^{-1}(\partial B)B^{-1}\vec{z}$$

4.2. Substituting 4.1. to 4. leads to:

$$\begin{split} \operatorname{Tr}(\nabla_{\vec{h}} f) &= \operatorname{Tr}(-\nabla_{\vec{h}} f^{T} B^{-1} (\partial B) B^{-1} \vec{z}) \\ &= \operatorname{Tr}(-B^{-1} \vec{z} \nabla_{\vec{h}} f^{T} B^{-1} \partial B) \\ &= \operatorname{Tr}((-B^{-T} \nabla_{\vec{h}} f \vec{z}^{T} B^{-T})^{T} \partial B) \end{split}$$

4.3.
$$\nabla_{\mathbf{B}} \mathbf{f} = -\mathbf{B}^{-\mathsf{T}} \nabla_{\vec{\mathbf{h}}} \mathbf{f} \vec{\mathbf{z}}^{\mathsf{T}} \mathbf{B}^{-\mathsf{T}}$$

We can finally combine the backpropagation equations 2.1.,

3.3., and 4.3. to derive the closed-matrix form of
$$\nabla_{\mathbf{B}}\mathbf{f} = -\mathbf{B}^{-T}\mathbf{A}^{T}\vec{\mathbf{x}}\odot(\sigma\odot(\vec{\mathbf{h}})(1-\sigma\odot(\vec{\mathbf{h}})))\vec{\mathbf{z}}^{T}\mathbf{B}^{-T}$$

Guided Map

- 1. Basics of Matrix Calculus
- 2. The Application of Matrix Calculus
- 3. Backpropagation in Matrix Form
- 4. Matrix-Form Backpropagation in Deep Models
 - 4.1. Logistics Regression
 - 4.2. Fully Connected Neural Networks
 - 4.3. Convolutional Neural Networks
 - 4.4. Future Work

Example 4-1

Suppose $\vec{h} = W\vec{x}$, $L = -\vec{y}^T log \odot (\sigma(\vec{h}))$ where $\vec{x} \in \mathbb{R}^N$, $W \in \mathbb{R}^{M \times N}$, $\vec{y} \in \{0,1\}^M : \sum_{i=1}^M y_i = 1$, $\sigma(\vec{h}) = \frac{\exp \odot(\vec{h})}{\vec{1}^T \exp \odot(\vec{h})}$ with $\vec{1} = [1,1,\cdots,1]^T$ and $\dim(\vec{1}) = M$. Formulate the backpropagation process $L \to \nabla_{\vec{h}} L \to \nabla_W L$ in a closed-matrix form.

Solution 4-1-1:

1.
$$\log \odot (\sigma(\vec{\mathbf{h}})) = \log \odot (\frac{\exp \odot (\vec{\mathbf{h}})}{\vec{\mathbf{1}}^T \exp \odot (\vec{\mathbf{h}})}) = \vec{\mathbf{h}} - \log(\vec{\mathbf{1}}^T \exp \odot (\vec{\mathbf{h}})) \cdot \vec{\mathbf{1}}$$

2. So,
$$L = -\vec{y}^T \underbrace{(\vec{h} - \log(\vec{1}^T \exp \odot (\vec{h})) \cdot \vec{1})}_{\vec{z}} = -\vec{y}^T \vec{z}$$

3.
$$\partial \mathbf{L} = \mathrm{Tr}(-\vec{\mathbf{y}}^{\mathrm{T}} \, \partial \vec{\mathbf{z}})$$

Solution 4-1-2:

3.
$$\partial \mathbf{L} = \mathrm{Tr}(-\vec{\mathbf{y}}^{\mathrm{T}}\,\partial\vec{\mathbf{z}})$$

3.1. Apply laws of matrix differential

$$\begin{split} \partial(\vec{z}) &= \partial \vec{h} - \partial(\log(\vec{1}^T exp \odot (\vec{h})) \cdot \vec{1}) \\ &= \partial \vec{h} - \frac{1}{\vec{1}^T exp \odot (\vec{h})} \vec{1}^T \partial(exp \odot (\vec{h}) \cdot \vec{1}) \\ &= \partial \vec{h} - \vec{1} \cdot \frac{1}{\vec{1}^T exp \odot (\vec{h})} \vec{1}^T \partial(exp \odot (\vec{h})) \\ &= \partial \vec{h} - \vec{1} \cdot \frac{1}{\vec{1}^T exp \odot (\vec{h})} \vec{1}^T (exp'(\vec{h}) \odot (\partial \vec{h})) \end{split}$$

Solution 4-1-3:

3.
$$\partial \mathbf{L} = \mathrm{Tr}(-\vec{\mathbf{y}}^{\mathrm{T}} \, \partial \vec{\mathbf{z}})$$

3.1.
$$\partial(\vec{z}) = \partial \vec{h} - \vec{1} \cdot \frac{1}{\vec{1}^{T} \exp(\vec{h})} \vec{1}^{T} (\exp'(\vec{h}) \odot (\partial \vec{h}))$$

3.2. Add trace and apply its properties

$$\begin{split} \operatorname{Tr}(\partial L) &= -\operatorname{Tr}(\vec{y}^{T} \, \partial \vec{h}) + \\ \operatorname{Tr}(\vec{y}^{T} \vec{1} \cdot \frac{1}{\vec{1}^{T} \exp \odot (\vec{h})} \underbrace{\vec{1}^{T} (\exp'(\vec{h}) \odot (\partial \vec{h})))}_{\operatorname{Trace property 5}} \\ &= -\operatorname{Tr}(\vec{y}^{T} \, \partial \vec{h}) + \frac{1}{\vec{1}^{T} \exp \odot (\vec{h})} \operatorname{Tr}(\underbrace{(\vec{1} \odot \exp'(\vec{h}))^{T} \partial \vec{h}})_{= \exp \odot (\vec{h})} \\ &= -\operatorname{Tr}(\vec{y}^{T} \, \partial \vec{h}) + \operatorname{Tr}(\underbrace{(\exp \odot (\vec{h}))^{T}}_{\vec{1}^{T} \exp \odot (\vec{h})} \partial \vec{h}) \end{split}$$

Solution 4-1-4:

- 3. $\partial \mathbf{L} = \mathrm{Tr}(-\vec{\mathbf{y}}^{\mathrm{T}} \, \partial \vec{\mathbf{z}})$
 - 3.2. Add trace and apply its properties

$$\begin{aligned} \operatorname{Tr}(\partial L) &= -\operatorname{Tr}(\vec{y}^{T} \, \partial \vec{h}) + \operatorname{Tr}(\underbrace{\frac{(\exp \odot (\vec{h}))^{T}}{\vec{l}^{T} \exp \odot (\vec{h})}}_{=\sigma(\vec{h})^{T}} \partial \vec{h}) \\ &= \operatorname{Tr}((\sigma(\vec{h}) - \vec{y})^{T} \, \partial \vec{h}) \end{aligned}$$

3.3. So,
$$\nabla_{\vec{h}} L = \sigma(\vec{h}) - \vec{y}$$

4.
$$\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{h}}} \mathbf{L}^{\mathrm{T}} \partial \vec{\mathbf{h}})$$

4.1.
$$\partial \vec{h} = \partial(W)\vec{x}$$

4.2.
$$\partial \mathbf{L} = \text{Tr}(\nabla_{\vec{\mathbf{h}}} \mathbf{L}^{\mathrm{T}} \, \partial(\mathbf{W}) \vec{\mathbf{x}}) = \text{Tr}((\nabla_{\vec{\mathbf{h}}} \mathbf{L} \vec{\mathbf{x}}^{\mathrm{T}})^{\mathrm{T}} \, \partial \mathbf{W})$$

4.3. So,
$$\nabla_{\mathbf{W}} \mathbf{L} = \nabla_{\vec{\mathbf{k}}} \mathbf{L} \vec{\mathbf{x}}^{\mathrm{T}}$$

Fully Connected Neural Networks

Example 4-2

- 1. The loss $L = -\vec{y}^T \log \odot (\sigma_2(\vec{h}_2))$ where $\sigma_2(\vec{h}_2) = \frac{\exp \odot (\vec{h}_2)}{\vec{1}^T \exp \odot (\vec{h}_2)}$, $\vec{1} = [1, \cdots, 1]^T \in \{1\}^{M_2}, \ \vec{y} \in \{0, 1\}^{M_2} : \sum_{i=1}^{M_2} y_i = 1;$
- 2. 2nd layer $\vec{h}_2 = W_2 \vec{z}_1 + \vec{b}_2$ where $W_2 \in \mathbb{R}^{M_2 \times M_1}, \vec{b}_2 \in \mathbb{R}^{M_2},$ $\vec{z}_1 = \sigma_1 \odot (\vec{h}_1)$ and $\sigma_1 \odot (\cdot)$ is an elementwise Sigmoid;
- 3. 1st layer $\vec{h}_1 = W_1 \vec{x} + \vec{b}_1$ where $\vec{x} \in \mathbb{R}^{M_0}$, $W_1 \in \mathbb{R}^{M_1 \times M_0}$, $\vec{b}_1 \in \mathbb{R}^{M_1}$

Formulate the backpropagation process

 $L \to \nabla_{\vec{h}_2} L \to \nabla_{\vec{z}_1} L \to \nabla_{\vec{h}_1} L \to \nabla_{W_1} L$ in a closed-matrix form.

Fully Connected Neural Networks

Example 4-2

Formulate the backpropagation process

$$L \to \nabla_{\vec{h}_2} L \to \nabla_{\vec{z}_1} L \to \nabla_{\vec{h}_1} L \to \nabla_{W_1} L \text{ in a closed-matrix form.}$$

Solution 4-2-1:

- 1. Example 4-1 indicates that $\nabla_{\vec{h}_2} L = \sigma_2(\vec{h}_2) \vec{y}$
 - 1.1. $\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{h}}} \mathbf{L}^{\mathrm{T}} \, \partial \vec{\mathbf{h}}_{2})$
 - 1.2. $\partial \vec{h}_2 = W_2 \partial(\vec{z}_1)$
 - 1.3. $\partial L = Tr((W_2^T \nabla_{\vec{h}} L)^T \partial \vec{z}_1)$
 - 1.4. So, $\nabla_{\vec{z}_1} L = W_2^T \nabla_{\vec{b}} L$
- 2. $\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{z}}_1} \mathbf{L}^{\mathrm{T}} \, \partial \vec{\mathbf{z}}_1)$

Fully Connected Neural Networks

Solution 4-2-2:

1.
$$\nabla_{\vec{\mathbf{h}}_2} \mathbf{L} = \sigma_2(\vec{\mathbf{h}}_2) - \vec{\mathbf{y}}$$

2.
$$\nabla_{\vec{\mathbf{z}}_1} \mathbf{L} = \mathbf{W}_2^{\mathrm{T}} \nabla_{\vec{\mathbf{h}}} \mathbf{L}$$

3.
$$\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{z}}_1} \mathbf{L}^T \partial \vec{\mathbf{z}}_1)$$

3.1.
$$\partial \vec{\mathbf{z}}_1 = \partial \sigma_1 \odot (\vec{\mathbf{h}}_1) = \sigma'_1(\vec{\mathbf{h}}_1) \odot \partial \vec{\mathbf{h}}_1$$
 where $\sigma'_1(\vec{\mathbf{h}}_1) = \sigma_1 \odot (\vec{\mathbf{h}}_1) \odot (1 - \sigma_1 \odot (\vec{\mathbf{h}}_1))$

3.2.
$$\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{z}}_1} \mathbf{L}^{\mathrm{T}}(\sigma_1'(\vec{\mathbf{h}}_1) \odot \partial \vec{\mathbf{h}}_1)) = \mathrm{Tr}((\nabla_{\vec{\mathbf{z}}_1} \mathbf{L} \odot \sigma_1'(\vec{\mathbf{h}}_1))^{\mathrm{T}} \partial \vec{\mathbf{h}}_1)$$

3.3. So,
$$\nabla_{\vec{\mathbf{h}}_1} \mathbf{L} = \nabla_{\vec{\mathbf{z}}_1} \mathbf{L} \odot \sigma'_1(\vec{\mathbf{h}}_1)$$

4.
$$\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{h}}_1} \mathbf{L}^{\mathrm{T}} \partial \vec{\mathbf{h}}_1)$$

4.1.
$$\partial \vec{h}_1 = (\partial W_1)\vec{x}$$

4.2.
$$\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{h}}_1} \mathbf{L}^{\mathrm{T}}(\partial \mathbf{W}_1)\vec{\mathbf{x}}) = \mathrm{Tr}((\nabla_{\vec{\mathbf{h}}_1} \mathbf{L}\vec{\mathbf{x}}^{\mathrm{T}})^{\mathrm{T}} \partial \mathbf{W}_1)$$

4.3. So,
$$\nabla_{\mathbf{W}_1} \mathbf{L} = \nabla_{\vec{\mathbf{h}}_1} \mathbf{L} \vec{\mathbf{x}}^{\mathrm{T}}$$

Convolutional Neural Networks

Example 4-3

 $X \overset{\leftarrow}{*} K = H$ represents that the convolution between $X \in \mathbb{R}^{3 \times 3}$ and the kernel $K \in \mathbb{R}^{2 \times 2}$ with stride 1 is $H \in \mathbb{R}^{2 \times 2}$.

$$\begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix} \overset{\leftarrow}{\underset{s=1}{\overset{}{\leftarrow}}} \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$$

where

$$\begin{split} H_{11} &= X_{11}K_{11} + X_{12}K_{12} + X_{21}K_{21} + X_{22}K_{22} \\ H_{12} &= X_{12}K_{11} + X_{13}K_{12} + X_{22}K_{21} + X_{23}K_{22} \\ H_{21} &= X_{21}K_{11} + X_{22}K_{12} + X_{31}K_{21} + X_{32}K_{22} \\ H_{22} &= X_{22}K_{11} + X_{23}K_{12} + X_{32}K_{21} + X_{33}K_{22} \end{split}$$

Convolutional Neural Networks

Example 4-3

In the convolution $X \overset{\leftarrow}{\underset{s=1}{*}} K = H$, assume $L(H) \in \mathbb{R}$ and $\nabla_H L$ are given, derive $\nabla_K L$ and $\nabla_X L$ in their closed matrix forms.

Solution 4-3-1:

1. Write $X \overset{\leftarrow}{\underset{s=1}{\times}} K = H$ to a matrix multiplication $\hat{K} \vec{x} = \vec{h}$:

$$\begin{bmatrix} K_{11} & K_{12} & 0 & K_{21} & K_{22} & 0 & 0 & 0 & 0 \\ 0 & K_{11} & K_{12} & 0 & K_{21} & K_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{11} & K_{12} & 0 & K_{21} & K_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 & K_{11} & K_{12} & 0 & K_{21} & K_{22} & 0 \\ 0 & 0 & 0 & 0 & K_{11} & K_{12} & 0 & K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} X_{11} \\ X_{12} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{31} \\ X_{32} \\ X_{33} \end{bmatrix} = \begin{bmatrix} H_{11} \\ H_{12} \\ H_{13} \\ H_{21} \end{bmatrix}$$

Convolutional Neural Networks

Solution 4-3-2:

- 1. Write $X \underset{s=1}{\overset{\leftarrow}{\times}} K = H$ as a matrix multiplication $\hat{K}\vec{x} = \vec{h}$.
- 2. $\nabla_{\rm H} L \iff \nabla_{\vec{k}} L$.
- 3. $\partial \mathbf{L} = \mathrm{Tr}(\nabla_{\vec{\mathbf{h}}} \mathbf{L}^{\mathrm{T}} \partial \vec{\mathbf{h}}).$
 - 3.1. $\partial \vec{h} = \partial (\hat{K}\vec{x}) = (\partial \hat{K})\vec{x} + \hat{K}(\partial \vec{x})$
 - 3.2. So

$$\begin{split} \partial L &= \mathrm{Tr}(\nabla_{\vec{h}} L^T(\partial \hat{K}) \vec{x}) + \mathrm{Tr}(\nabla_{\vec{h}} L^T \hat{K} \, \partial \vec{x}) \\ &= \mathrm{Tr}((\nabla_{\vec{h}} L \vec{x}^T)^T \, \partial \hat{K}) + \mathrm{Tr}((\hat{K}^T \nabla_{\vec{h}} L)^T \, \partial \vec{x}) \end{split}$$

3.3.
$$\nabla_{\hat{K}}L = \nabla_{\vec{h}}L\vec{x}^T$$
 and $\nabla_{\vec{x}}L = \hat{K}^T\nabla_{\vec{h}}L$

Future Work

- 1. In CNN, derive new differential laws using ∂K and ∂X to represent $\partial (X \overset{\leftarrow}{*} K)$ and Trace properties converting $\operatorname{Tr}(H^T(X \overset{\leftarrow}{*} K))$ to $\operatorname{Tr}(F(H, X, K)^T X)$ and $\operatorname{Tr}(G(H, X, K)^T K)$.
- Derive the backpropagation process for other typical deep learning models: Generative Adversarial Networks(GANs)and Transformers.
- 3. Use the closed-matrix form backpropagation to analyze Batch Normalization and Residual Connection.