Math255 Probability and Statistics Midterm 2 Solutions 9 April 2018

Problem 1. [6 pts] Let X be exponentially distributed: $P(X > x) = e^{-\lambda x}$, $x \ge 0$, where $\lambda > 0$ is a fixed parameter. Let $Y = e^{-2X}$. Determine the PDF $f_Y(y)$ for all possible values of y as a function of λ .

Solution. We can solve this using the CDF approach. Note that Y takes values in the interval (0,1]. So, $F_Y(y) = 0$ and $f_Y(y) = 0$ for y < 0; and, $F_Y(y) = 1$ for $y \ge 1$. For $0 < y \le 1$, we have

$$F_Y(y) = P(Y \le y) = P(e^{-2X} \le y) = P(-2X \le \ln y) = P(X \ge -\frac{2}{\ln}y) = e^{\frac{\lambda}{2}\ln y} = y^{\frac{\lambda}{2}}.$$

So, for $0 < y \le 1$,

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} y^{\frac{\lambda}{2}} = \frac{\lambda}{2} y^{\frac{\lambda}{2} - 1}.$$

To summarize,

$$f_Y(y) = \begin{cases} \frac{\lambda}{2} y^{\frac{\lambda}{2} - 1}, & 0 < y \le 1\\ 0, & \text{elsewhere.} \end{cases}$$

Problem 2. [6 pts] Let X_1 and X_2 be independent identically distributed random variables. Let

$$f_{X_i}(x) = c x e^{-x}, \qquad x > 0, \ i = 1, 2,$$

where c is a constant. Compute the PDF $f_Z(z)$ of the sum $Z = X_1 + X_2$, and evaluate it at z = 1 to two significant digits. You should determine the constant c as part of solving the problem. (You may use $e^{-1} = 0.3679$ if needed.)

Solution. This is a straightforward convolution problem. The constant c is given by

$$c = \left(\int_0^\infty x e^{-x} dx\right)^{-1}.$$

The integral can be evaluated using integration by parts

$$\int_0^\infty x e^{-2x} dx = -x e^{-x} \Big|_{x=0}^\infty + \int_0^\infty e^{-x} dx = -e^{-x} \Big|_{x=0}^\infty = 1.$$

Thus, c = 1.

Since Z is the sum of two non-negative random variables, we only need to compute $f_Z(z)$ for $z \ge 0$. For z > 0, the convolution integral is given by

$$f_Z(z) = \int_0^z f_{X_1}(x) f_{X_2}(z - x) dx = \int_0^z (z - x) e^{-(z - x)} x e^{-x} dx$$
$$= \int_0^z (z - x) x e^{-z} dx = e^{-z} \left(z \frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^z = \frac{z^3 e^{-z}}{6}.$$

Problem 3. [6 pts] Let $X_1, X_2, ...$ be independent normal random variables with mean 1 and variance 4. Let N a Poisson random variable with $p_N(n) = \lambda^n e^{-\lambda}/n!$, where $\lambda > 0$ is fixed and n = 0, 1, 2, ... You may use the fact that $E[N] = \lambda$ and $\text{var}(N) = \lambda$. Assume that N and $X_1, X_2, ...$ are jointly independent. Let $S = \sum_{i=1}^{N} X_i$. Compute $\mathbf{E}[S^2]$ as a function of λ .

Solution. This is an exercise in conditional expectations.

$$\mathbf{E}[S^2] = \mathbf{E} \bigg[E \big[S^2 \big| N \big] \bigg]$$

$$\mathbf{E}[S^{2}|N=n] = \mathbf{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i}X_{j}|N=n\right] = \mathbf{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i}X_{j}\right]$$

$$= \mathbf{E}\left[\sum_{i=1}^{n} X_{i}^{2} + 2\sum_{i=1}^{n} \sum_{j=1}^{i-1} X_{i}X_{j}\right]$$

$$= n\mathbf{E}[X_{1}^{2}] + n(n-1)\mathbf{E}[X_{1}X_{2}] = n(4+1^{2}) + n(n-1)1^{2} = n^{2} + 4n.$$

Thus, $\mathbf{E}[S^2|N] = N^2 + 4N$. It follows that

$$\mathbf{E}[S^2] = \mathbf{E}[N^2 + 4N] = \lambda + \lambda^2 + 4\lambda = \lambda^2 + 5\lambda = \lambda(\lambda + 5).$$

Problem 4. [6 pts] A transport plane has a cargo capacity of 1000 kg. Suppose 50 boxes of cargo arrive for transport, with box number i containing X_i kgs of cargo, i = 1, 2, ..., 50. Suppose $X_1, X_2, ..., X_{50}$ are independent normal random variables with mean $\mu = 20.1$ kg and variance $\sigma^2 = 2$ kg². Compute to four significant digits the probability p that the sum of the weights in all 50 boxes does not exceed the cargo capacity of transport plane? (Use the table Φ given on the next page if needed.)

Solution. Let $S = X_1 + \cdots + X_{50}$. We are interested in the probability that P(S < 1000). If the X_i were not normal, the solution would call for using the Central Limit Theorem (CLT) approximation. But here the X_i 's are normal, so their sum S is normal, and we can compute the probability exactly. Since $S \sim N(50 \times 20.1, 50 \times 2) = N(1005, 100)$, we have

$$P(S < 1000) = P\left(\frac{S - 1005}{\sqrt{100}} < \frac{1000 - 1005}{\sqrt{100}}\right) = \Phi\left(\frac{1000 - 1005}{\sqrt{100}}\right) = \Phi(-0.5) = 1 - \Phi(0.5).$$

From table, $\Phi(0.5) = 0.6915$, so the desired probability is 1 - 0.6915 = 0.3085.

Problem 5. [6 pts]

Suppose that n points are chosen at random on the perimeter of a circle. What is the probability p that they all lie in some semicircle, such as in the picture on the right? Express your answer as a function of n. (Hint: the law of total probability.) (Correct answers without sufficient explanation will receive no credit.)

Solution. Let E be the desired event that all points lie on a semicircle. Number the points on the perimeter of the circle in the order they are chosen with integers 1 through n. Draw a straight line that passes through the ith point on the perimeter and the center of the circle. Let E_i be the event that all other n-1 points on the perimeter lie on the "clockwise" semicircle, i.e., the semicircle that lies in the clockwise direction from the ith point. Convince yourself that the events E_1, E_2, \ldots, E_n form a partition of E. Then,

$$P(E) = P(E_1) + P(E_2) + \dots + P(E_n).$$

Next note that, by symmetry, $P(E_i)$ does not depend on i, hence $P(E) = nP(E_1)$. Finally, note that $P(E_1) = 2^{-(n-1)}$ since each point, numbered 2 through n, has probability 1/2 of lying in the clockwise semicirle, independent of other points. So, the correct answer is $n2^{-(n-1)}$.