TERMODINÂMICA (FREDERICO W. TAVARES)

1) Uma corrente (corrente 1) de 10 lbm/s de vapor a 85 psia e 500 0 F passa por uma turbina (com eficiência de 80%) e produz uma corrente 2 a 14,7 psia. A corrente 2 é misturada à corrente 3 (14,7 psia e 101,7 0 F) em um trocador de calor de contato direto (perfeitamente isolado), produzindo uma corrente 4 que deve sair como líquido saturado. Encontre as propriedades termodinâmicas (T, P, H e S) das correntes e calcule a quantidade, em lbm/s, da corrente 3 que deve ser utilizada no processo.

TABLE C.4. S	UPERH	EATED STEAM	ENGLISH UNI	TS (Continued	0					
ABS PRESS PSIA		SAT	SAT	TEMPERATURE, 600	DEG F 700	800	900	1000	1100	1200
(SAT TEMP)	SHC	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	631 1 1219 3 1336 1 2 2708	690.7 1256.7 1384.5 2.3144	750.3 1294.9 1433.7 2.3551	809 9 1334 0 1483 8 2 3934	869.5 1374.0 1534.9 2.4296	929.0 1414.9 1586.8 2 4640	988 6 1456 7 1639 7 2 4969
(162.24)	> DIN	0 0164 130 18 130 20 0 2349	73.532 1063.1 1131.1 1.8443	125.1 1219.2 1335.9 2 0932	138.1 1256.5 1384.3 2.1369	150.0 1294.8 1433.5 2.1776	161.9 1333.9 1483.7 2.2159	173.9 1373.9 1534.7 2.2621	185 .8 1414 .8 1586 .7 2 .2866	197.7 1456.7 1639.6 2.3194
(10 (193.21)	Y U H S	0.0156 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	63.03 1218.9 1335.5 2.0166	69.00 1256.4 1384.0 2.0603	74.98 1294.6 1433.4 2.1011	80.94 1333.7 1483.5 2.1394	86.91 1373.8 1534.6 2.1757	92.87 1414.7 1586.6 2.2101	98.84 1456.6 1639.5 2.2430
14.696 (212.00)	>UHS	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568	42.86 1218.7 1335.2 1.9739	46,93 1255,2 1383.8 2.0177	51.00 1294.5 1433.2 2.0585	55.06 1333.6 1483.4 2.0969	59.13 1373.7 1534.5 2.1331	63.19 1414.6 1586.5 2.1676	67.25 1456.5 1639.4 2.2005
(2 ¹⁵ , 03)	VUHS	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552	41.99 1218.7 1335.2 1.9717	45.98 1256.2 1383.8 2.0155	49.96 1294.5 1433.2 2.0663	53.95 1333.6 1483.4 2.0946	57.93 1373.7 1534.5 2.1309	51.90 1414.6 1586.5 2.1653	65.88 1456.5 1639.4 2.1982
TABLE C.4.	Sur	ERHEATED STE	AM ENGLISH L	WITS (Continu	ed)				72/12/18	22 22
ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE 340	DEG F 360	380	400	420	46.0	500
(312,04)	V H S	0.0176 281.89 282.15 0.4534	1102.1	5.715 1114.0 1198.6 1.8406	5, 885 1122, 3 1209, 4 1, 6539	6.063 1130.4 1220.0 1.6667	6 218 1138 4 1230 5 1 5790	6 381 1145 3 1240 8 1,6909	6 522 1158 1 1256 1 1 7080	7,018 1177.4 1281.3 1,7349
(316, 25)	V UH S	0.0176 286.24 286.62 0.4590	1102.9 1184.2	5.364 1113.1 1197.5 1.6328	5.525 1121.5 1206.4 1.6463	5.684 1129.1 1219.1 1.6692	5.840 1137.8 1229.1 1.6716	8.995 1145.8 1240.1 1.6836	6.223 1167.6 1255.5 1.7008	6.597 1177.0 1280.8 1.7278
99	¥	0.0177 290.40	4.896 1103.7	5.061 1112.3	5_206 1120.8	5.355 1129.1	5 505 1137.2	8.652 1145.3	5.869 1167.3	5.223 1176.7

- 2) O enchimento rápido de um tanque pode ser considerado como um processo adiabático. Supondo que o tanque se encontra vazio no início do processo e que as propriedades da corrente de alimentação não variam durante o enchimento, calcule a quantidade de massa alimentada a um tanque de 100 ft³ Dados: corrente de alimentação contém 10% (em peso) de liquido a 80 psia.
- 3) O mesmo problema anterior, mas supondo que o tanque encontra-se inicialmente com vapor saturado a 15 psia.

Dados: corrente de alimentação contém 5% (em peso) de liquido a 80 psia. Volume do tanque de 100 ft³