SIM Denoising Pipeline

Generated by Doxygen 1.9.1

1 Namespace Index
1.1 Packages
2 Hierarchical Index
2.1 Class Hierarchy
3 Class Index 5
3.1 Class List
4 File Index
4.1 File List
5 Namespace Documentation 9
5.1 analyse Namespace Reference
5.1.1 Variable Documentation
5.1.1.1 action
5.1.1.2 args
5.1.1.3 ckpt
5.1.1.4 cmap
5.1.1.5 default
5.1.1.6 device
5.1.1.7 df
5.1.1.8 exist_ok
5.1.1.9 gt
5.1.1.10 gt_dir
5.1.1.11 gt_files
5.1.1.12 gt_samples
5.1.1.13 img_idx
5.1.1.14 int
5.1.1.15 model
5.1.1.16 model_1
5.1.1.17 model_1_dir
5.1.1.18 model_1_files
5.1.1.19 model_1_samples
5.1.1.20 model_2
5.1.1.21 model_2_dir
5.1.1.22 model_2_files
5.1.1.23 model_2_samples
5.1.1.24 N
5.1.1.25 output_dir
5.1.1.26 parents
5.1.1.27 parser
5.1.1.28 psnr
5.1.1.29 raw

5.1.1.30 raw_dir	. 14
5.1.1.31 raw_files	. 14
5.1.1.32 raw_samples	. 14
5.1.1.33 required	. 14
5.1.1.34 rng	. 14
5.1.1.35 ssim	. 15
5.1.1.36 str	. 15
5.1.1.37 True	. 15
5.1.1.38 type	. 15
5.2 apply Namespace Reference	. 15
5.2.1 Variable Documentation	. 16
5.2.1.1 action	. 16
5.2.1.2 args	. 16
5.2.1.3 choices	. 16
5.2.1.4 ckpt	. 16
5.2.1.5 data	. 16
5.2.1.6 default	. 16
5.2.1.7 device	. 16
5.2.1.8 imagej	. 17
5.2.1.9 input_path	. 17
5.2.1.10 int	. 17
5.2.1.11 model	. 17
5.2.1.12 output_file	. 17
5.2.1.13 output_path	. 17
5.2.1.14 overlap_shape	. 17
5.2.1.15 parents	. 18
5.2.1.16 parser	. 18
5.2.1.17 percentile	. 18
5.2.1.18 raw	. 18
5.2.1.19 raw_files	. 18
5.2.1.20 RCAN_hyperparameters	. 18
5.2.1.21 required	. 18
5.2.1.22 restored	. 19
5.2.1.23 str	. 19
5.2.1.24 type	. 19
5.3 convert_omx_to_czxy Namespace Reference	. 19
5.3.1 Variable Documentation	. 19
5.3.1.1 action	. 20
5.3.1.2 args	. 20
5.3.1.3 converted	. 20
5.3.1.4 imagej	. 20
5.3.1.5 input_dir	. 20

	5.3.1.6 input_files	20
	5.3.1.7 int	20
	5.3.1.8 original	21
	5.3.1.9 parser	21
	5.3.1.10 required	21
	5.3.1.11 str	21
	5.3.1.12 type	21
5.4 convert_o	mx_to_paz Namespace Reference	21
5.4.1 Va	ariable Documentation	22
	5.4.1.1 action	22
	5.4.1.2 args	22
	5.4.1.3 converted	22
	5.4.1.4 imagej	22
	5.4.1.5 input_dir	22
	5.4.1.6 input_files	22
	5.4.1.7 int	22
	5.4.1.8 original	23
	5.4.1.9 parser	23
	5.4.1.10 required	23
	5.4.1.11 str	23
	5.4.1.12 type	23
5.5 convert_s	lices_to_volumes Namespace Reference	23
5.5.1 Va	ariable Documentation	24
	5.5.1.1 args	24
	5.5.1.2 default	24
	5.5.1.2 default	24 24
	5.5.1.3 exist_ok	24
	5.5.1.3 exist_ok	24 24
	5.5.1.3 exist_ok	24 24 24
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files	24 24 24
	5.5.1.3 exist_ok	24 24 24 24 24
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files 5.5.1.7 input_slice 5.5.1.8 output_dir	24 24 24 24 24 25
	5.5.1.3 exist_ok	24 24 24 24 25 25
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files 5.5.1.7 input_slice 5.5.1.8 output_dir 5.5.1.9 output_file 5.5.1.10 parents	24 24 24 24 25 25 25
	5.5.1.3 exist_ok	24 24 24 24 25 25 25 25
	5.5.1.3 exist_ok	24 24 24 24 25 25 25 25 25
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files 5.5.1.7 input_slice 5.5.1.8 output_dir 5.5.1.9 output_file 5.5.1.10 parents 5.5.1.11 parser 5.5.1.12 required 5.5.1.13 str	24 24 24 25 25 25 25 25 25
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files 5.5.1.7 input_slice 5.5.1.8 output_dir 5.5.1.9 output_file 5.5.1.10 parents 5.5.1.11 parser 5.5.1.12 required 5.5.1.13 str 5.5.1.14 subvolume	24 24 24 25 25 25 25 25 25 25 25
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files 5.5.1.7 input_slice 5.5.1.8 output_dir 5.5.1.9 output_file 5.5.1.10 parents 5.5.1.11 parser 5.5.1.12 required 5.5.1.13 str 5.5.1.14 subvolume 5.5.1.15 True	24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	5.5.1.3 exist_ok 5.5.1.4 imagej 5.5.1.5 input_dir 5.5.1.6 input_files 5.5.1.7 input_slice 5.5.1.8 output_dir 5.5.1.9 output_file 5.5.1.10 parents 5.5.1.11 parser 5.5.1.12 required 5.5.1.13 str 5.5.1.14 subvolume 5.5.1.15 True 5.5.1.16 tuple_of_ints	24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25

5.6.1 Function Documentation	 26
5.6.1.1 arange_zero()	 27
5.6.1.2 threshold_norm()	 27
5.6.2 Variable Documentation	 27
5.6.2.1 args	 27
5.6.2.2 default	 27
5.6.2.3 int	 27
5.6.2.4 parser	 27
5.6.2.5 required	 28
5.6.2.6 runner	 28
5.6.2.7 str	 28
5.6.2.8 type	 28
5.7 image_noising Namespace Reference	 28
5.7.1 Function Documentation	 29
5.7.1.1 save_image_pair()	 29
5.7.2 Variable Documentation	 29
5.7.2.1 args	 29
5.7.2.2 choices	 29
5.7.2.3 data	 30
5.7.2.4 default	 30
5.7.2.5 float	 30
5.7.2.6 gt	 30
5.7.2.7 img_idx_all	 30
5.7.2.8 img_idx_test	 30
5.7.2.9 img_idx_train	 30
5.7.2.10 img_idx_val	 30
5.7.2.11 input_path	 31
5.7.2.12 int	 31
5.7.2.13 n_acquisitions	 31
5.7.2.14 n_img	 31
5.7.2.15 output_path	 31
5.7.2.16 output_test_gt_path	 31
5.7.2.17 output_test_raw_path	 31
5.7.2.18 output_train_gt_path	 31
5.7.2.19 output_train_raw_path	 32
5.7.2.20 output_val_gt_path	 32
5.7.2.21 output_val_raw_path	 32
5.7.2.22 parents	 32
5.7.2.23 parser	 32
5.7.2.24 required	 32
5.7.2.25 rng	 32
5.7.2.26 split	 32

5.7.2.27 str	3	33
5.7.2.28 train_size	3	33
5.7.2.29 type	3	33
5.7.2.30 val_size	3	33
5.8 manage_stack Namespace Reference	3	33
5.8.1 Variable Documentation	3	34
5.8.1.1 action	3	34
5.8.1.2 args	3	34
5.8.1.3 choices	3	34
5.8.1.4 default	3	34
5.8.1.5 exist_ok	3	34
5.8.1.6 filename	3	34
5.8.1.7 files	3	35
5.8.1.8 img_data	3	35
5.8.1.9 int	3	35
5.8.1.10 number_of_stacks	3	35
5.8.1.11 output_data	3	35
5.8.1.12 output_dir	3	35
5.8.1.13 output_file	3	35
5.8.1.14 parents	3	35
5.8.1.15 parser	3	36
5.8.1.16 required	3	36
5.8.1.17 sample	3	36
5.8.1.18 stack_handler	3	36
5.8.1.19 stack_number	3	36
5.8.1.20 str	3	36
5.8.1.21 True	3	36
5.8.1.22 type	3	37
5.9 rcan Namespace Reference	3	37
5.10 rcan.data_generator Namespace Reference	3	37
5.10.1 Function Documentation	3	37
5.10.1.1 load_SIM_dataset()	3	37
5.11 rcan.data_processing Namespace Reference	3	38
5.11.1 Function Documentation	3	39
5.11.1.1 conv_czxy_to_omx()	3	39
5.11.1.2 conv_omx_to_czxy()	3	39
5.11.1.3 conv_omx_to_paz()	4	40
5.11.1.4 conv_paz_to_omx()	4	40
5.11.1.5 crop_volume()	4	40
5.12 rcan.model Namespace Reference	4	42
5.12.1 Function Documentation	4	42
5.12.1.1 _conv()		42

5.12.1.2 _destandardize()	. 43
5.12.1.3 _global_average_pooling()	. 43
5.12.1.4 _standardize()	. 44
5.13 rcan.plotting Namespace Reference	. 44
5.13.1 Function Documentation	. 44
5.13.1.1 plot_learning_curve()	. 44
5.13.1.2 plot_reconstructions()	. 45
5.14 rcan.utils Namespace Reference	. 45
5.14.1 Function Documentation	. 46
5.14.1.1 apply()	. 46
5.14.1.2 compute_metrics()	. 47
5.14.1.3 load_rcan_checkpoint()	. 47
5.14.1.4 normalize()	. 47
5.14.1.5 References	. 48
5.14.1.6 normalize_between_zero_and_one()	. 48
5.14.1.7 percentile()	. 48
5.14.1.8 reshape_to_bcwh()	. 49
5.14.1.9 tuple_of_ints()	. 49
5.15 recon_postprocess Namespace Reference	. 49
5.15.1 Variable Documentation	. 49
5.15.1.1 args	. 49
5.15.1.2 files	. 50
5.15.1.3 img_data	. 50
5.15.1.4 parser	. 50
5.15.1.5 required	. 50
5.15.1.6 str	. 50
5.15.1.7 type	. 50
5.16 recon_preprocess Namespace Reference	. 50
5.16.1 Function Documentation	. 51
5.16.1.1 normalize_acquisition_intensity()	. 51
5.16.2 Variable Documentation	. 51
5.16.2.1 action	. 51
5.16.2.2 args	. 51
5.16.2.3 choices	. 52
5.16.2.4 default	. 52
5.16.2.5 exist_ok	. 52
5.16.2.6 files	. 52
5.16.2.7 img_data	. 52
5.16.2.8 int	. 52
5.16.2.9 output_dir	. 52
5.16.2.10 output_file	. 52
5.16.2.11 parents	. 53

5.16.2.12 parser	 53
5.16.2.13 percentile	 53
5.16.2.14 required	 53
5.16.2.15 str	 53
5.16.2.16 True	 53
5.16.2.17 type	 53
5.17 stats Namespace Reference	 53
5.17.1 Function Documentation	 55
5.17.1.1 paired_t()	 55
5.17.2 Variable Documentation	 55
5.17.2.1 alpha	 55
5.17.2.2 args	 55
5.17.2.3 ax	 55
5.17.2.4 choices	 55
5.17.2.5 color	 55
5.17.2.6 data	 56
5.17.2.7 default	 56
5.17.2.8 df	 56
5.17.2.9 dflong	 56
5.17.2.10 dflongssim	 56
5.17.2.11 dodge	 57
5.17.2.12 exist_ok	 57
5.17.2.13 fig	 57
5.17.2.14 figsize	 57
5.17.2.15 hist_range_psnr	 57
5.17.2.16 hist_range_ssim	 57
5.17.2.17 hue	 58
5.17.2.18 int	 58
5.17.2.19 legend	 58
5.17.2.20 lw	 58
5.17.2.21 mean_psnr_1	 58
5.17.2.22 mean_psnr_2	 58
5.17.2.23 mean_ssim_1	 58
5.17.2.24 mean_ssim_2	 59
5.17.2.25 output_dir	 59
5.17.2.26 palette	 59
5.17.2.27 parents	 59
5.17.2.28 parser	 59
5.17.2.29 psnr_cols	 59
5.17.2.30 psnr_diff_1_max	 59
5.17.2.31 psnr_diff_1_min	 60
5.17.2.32 psnr_diff_2_max	 60

5.17.2.33 psnr_diff_2_min	60
5.17.2.34 range	60
5.17.2.35 required	60
5.17.2.36 se_psnr_1	60
5.17.2.37 se_psnr_2	61
5.17.2.38 se_ssim_1	61
5.17.2.39 se_ssim_2	61
5.17.2.40 ssim_cols	61
5.17.2.41 ssim_diff_1_max	61
5.17.2.42 ssim_diff_1_min	62
5.17.2.43 ssim_diff_2_max	62
5.17.2.44 ssim_diff_2_min	62
5.17.2.45 str	62
5.17.2.46 title	62
5.17.2.47 True	62
5.17.2.48 type	63
5.17.2.49 x	63
5.17.2.50 xlabel	63
5.17.2.51 y	63
5.18 synthetic_sim Namespace Reference	63
5.19 synthetic_sim.otf Namespace Reference	63
5.19.1 Function Documentation	63
5.19.1.1 calc_psf()	63
5.20 train Namespace Reference	64
5.20.1 Function Documentation	65
5.20.1.1 load_data_paths()	65
5.20.1.2 train()	65
5.20.2 Variable Documentation	65
5.20.2.1 args	65
5.20.2.2 ckpt	65
5.20.2.3 ckpt_path	66
5.20.2.4 config	66
5.20.2.5 device	66
5.20.2.6 exist_ok	66
5.20.2.7 input_shape	66
5.20.2.8 losses_train_epoch	66
5.20.2.9 losses_val_epoch	66
5.20.2.10 model	67
5.20.2.11 n_accumulations	67
5.20.2.12 ndim	67
5.20.2.13 nepoch	67
5.20.2.14 optimizer	67

5.20.2.15 output_dir	 . 67
5.20.2.16 parents	 . 68
5.20.2.17 parser	 . 68
5.20.2.18 psnr_train_epoch	 . 68
5.20.2.19 psnr_val_epoch	 . 68
5.20.2.20 RCAN_hyperparameters	 . 68
5.20.2.21 required	 . 68
5.20.2.22 saveinterval	 . 69
5.20.2.23 scheduler	 . 69
5.20.2.24 schema	 . 69
5.20.2.25 ssim_train_epoch	 . 69
5.20.2.26 ssim_val_epoch	 . 69
5.20.2.27 start_epoch	 . 69
5.20.2.28 str	 . 69
5.20.2.29 train_loader	 . 70
5.20.2.30 True	 . 70
5.20.2.31 type	 . 70
5.20.2.32 val_loader	 . 70
6 Class Documentation	71
6.1 rcan.modelchannel_attention_block Class Reference	 . 71
6.1.1 Detailed Description	
6.1.1.1 References	
6.1.2 Constructor & Destructor Documentation	
6.1.2.1 <u>init</u> ()	 . 72
6.1.3 Member Function Documentation	
6.1.3.1 forward()	
6.1.4 Member Data Documentation	 . 73
6.1.4.1 conv 1	 . 73
6.1.4.2 conv_2	 . 73
6.1.4.3 global_average_pooling	 . 73
6.2 rcan.modelresidual_channel_attention_blocks Class Reference	 . 74
6.2.1 Detailed Description	 . 75
6.2.1.1 References	 . 75
6.2.2 Constructor & Destructor Documentation	 . 75
6.2.2.1init()	 . 75
6.2.3 Member Function Documentation	 . 75
6.2.3.1 forward()	 . 75
6.2.4 Member Data Documentation	 . 76
6.2.4.1 channel_attention_block_list	 . 76
6.2.4.2 conv_list	
6.2.4.3 repeat	 . 76

6.2.4.4 residual_scaling	76
6.3 rcan.data_processing.ImageStack Class Reference	76
6.3.1 Detailed Description	77
6.3.2 Constructor & Destructor Documentation	77
6.3.2.1init()	77
6.3.3 Member Function Documentation	78
6.3.3.1 add_image()	78
6.3.3.2 export_stack()	78
6.3.4 Member Data Documentation	78
6.3.4.1 dim	78
6.3.4.2 n_acq	78
6.3.4.3 n_z	79
6.3.4.4 sample	79
6.3.4.5 stack	79
6.4 synthetic_sim.otf.PsfParameters Class Reference	79
6.4.1 Detailed Description	79
6.4.2 Member Data Documentation	79
6.4.2.1 Callable	80
6.4.2.2 float	80
6.4.2.3 int	80
6.5 rcan.model.RCAN Class Reference	80
6.5.1 Detailed Description	81
6.5.1.1 References	81
6.5.2 Constructor & Destructor Documentation	81
6.5.2.1init()	81
6.5.3 Member Function Documentation	82
6.5.3.1 forward()	82
6.5.4 Member Data Documentation	82
6.5.4.1 conv_input	82
6.5.4.2 conv_list	83
6.5.4.3 conv_output	83
6.5.4.4 num_residual_groups	83
6.5.4.5 rcab_list	83
6.6 rcan.data_generator.SIM_Dataset Class Reference	83
6.6.1 Detailed Description	84
6.6.2 Constructor & Destructor Documentation	85
6.6.2.1init()	85
6.6.3 Member Function Documentation	85
6.6.3.1getitem()	85
6.6.3.2 <u>len</u> ()	86
6.6.3.3 _scale()	86
6.6.4 Member Data Documentation	86

6.6.4.1 _area_threshold	86
6.6.4.2 _intensity_threshold	86
6.6.4.3 _scale_factor	87
6.6.4.4 _shape	87
6.6.4.5 _transform_function	87
6.6.4.6 _y	. 87
6.6.4.7 output_shape	. 87
6.6.4.8 output_signature	87
6.6.4.9 p_max	87
6.6.4.10 p_min	87
6.6.4.11 steps_per_epoch	. 88
6.7 generate_sim.SimulationRunner Class Reference	. 88
6.7.1 Detailed Description	. 88
6.7.2 Constructor & Destructor Documentation	. 88
6.7.2.1init()	. 88
6.7.3 Member Function Documentation	. 89
6.7.3.1 do_sim()	89
6.7.3.2 run()	. 89
6.7.4 Member Data Documentation	89
6.7.4.1 input_dir	89
6.7.4.2 input_files	. 89
6.7.4.3 output_dir	. 89
6.7.4.4 range	90
6.7.4.5 z_offset	90
6.8 generate_sim.Simulator Class Reference	90
6.8.1 Detailed Description	91
6.8.2 Constructor & Destructor Documentation	91
6.8.2.1init()	91
6.8.3 Member Function Documentation	92
6.8.3.1 add_noise()	92
6.8.3.2 illumination()	92
6.8.3.3 in_focus_plane()	92
6.8.3.4 params_dict()	92
6.8.3.5 psf()	92
6.8.3.6 psf_params()	93
6.8.3.7 randomise()	93
6.8.3.8 simulate_ideal_superres()	93
6.8.3.9 simulate_sim()	93
6.8.3.10 wavevectors()	93
6.8.4 Member Data Documentation	93
6.8.4.1 _illumination	94
6.8.4.2 psf	94

6.8.4.3 _superres_psf	. 94
6.8.4.4 angle_error	. 94
6.8.4.5 beam_position	. 94
6.8.4.6 delta_z_p	. 94
6.8.4.7 k0	. 94
6.8.4.8 k_exc	. 94
6.8.4.9 lambda0	. 95
6.8.4.10 lambda_exc	. 95
6.8.4.11 n_angles	. 95
6.8.4.12 n_g	. 95
6.8.4.13 n_i	. 95
6.8.4.14 n_rotations	. 95
6.8.4.15 n_sample	. 95
6.8.4.16 n_shifts	. 95
6.8.4.17 n_x	. 96
6.8.4.18 n_z	. 96
6.8.4.19 poisson_photons	. 96
6.8.4.20 res_axial	. 96
6.8.4.21 res_lateral	. 96
6.8.4.22 signal_to_noise	. 96
6.8.4.23 z	. 96
6.8.4.24 z_p	. 96
7 File Documentation	97
7.1 /home/jhughes2712/projects/sim_project/jh2284/src/analyse.py File Reference	. 97
7.1.1 Detailed Description	. 98
7.2 /home/jhughes2712/projects/sim_project/jh2284/src/apply.py File Reference	. 98
7.2.1 Detailed Description	. 99
7.3 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_czxy.py File Reference	100
7.3.1 Detailed Description	100
7.4 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_paz.py File Reference	100
7.4.1 Detailed Description	. 101
7.5 /home/jhughes2712/projects/sim_project/jh2284/src/convert_slices_to_volumes.py File Reference	. 101
7.5.1 Detailed Description	102
7.6 /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py File Reference	102
7.6.1 Detailed Description	103
7.7 /home/jhughes2712/projects/sim_project/jh2284/src/image_noising.py File Reference	103
7.7.1 Detailed Description	104
7.8 /home/jhughes2712/projects/sim_project/jh2284/src/manage_stack.py File Reference	105
7.8.1 Detailed Description	105
7.9 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/initpy File Reference	106
	. 106

Index	115
7.20.1 Detailed Description	 114
7.20 /home/jhughes2712/projects/sim_project/jh2284/src/train.py File Reference	 113
7.19 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/otf.py File Reference	 113
7.18 /home/jhughes2712/projects/sim_project/jh2284/src/stats.py File Reference	 112
7.17.1 Detailed Description	 111
$7.17\ / home/jhughes 2712/projects/sim_project/jh 2284/src/recon_preprocess.py\ File\ Reference\ .\ .$	 110
7.16.1 Detailed Description	 110
7.16 /home/jhughes2712/projects/sim_project/jh2284/src/recon_postprocess.py File Reference .	 110
7.15.1 Detailed Description	 110
7.15 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/utils.py File Reference	 109
7.14.1 Detailed Description	 109
7.14 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/plotting.py File Reference	 108
7.13.1 Detailed Description	 108
7.13 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py File Reference	 108
7.12.1 Detailed Description	 107
7.12 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_processing.py File Reference	 107
7.11.1 Detailed Description	 107
$7.11\ /home/jhughes 2712/projects/sim_project/jh 2284/src/rcan/data_generator.py\ File\ Reference\ .$	 106

Namespace Index

1.1 Packages

Here are the packages with brief descriptions (if available):

analyse	9
apply	15
convert_omx_to_czxy	19
convert_omx_to_paz	21
convert_slices_to_volumes	23
generate_sim	26
image_noising	28
manage_stack	33
rcan	37
rcan.data_generator	37
rcan.data_processing	38
rcan.model	42
rcan.plotting	44
rcan.utils	45
recon_postprocess	49
recon_preprocess	50
	53
	63
-,	63
train	61

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

rcan.data_processing.lmageStack
torch.nn.Module
rcan.model.RCAN
rcan.modelchannel_attention_block
rcan.modelresidual_channel_attention_blocks
synthetic_sim.otf.PsfParameters
generate_sim.SimulationRunner
generate_sim.Simulator
Dataset
rcan.data_generator.SIM_Dataset

4 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

rcan.modelcnannel_attention_block	
Implements channel attention block/layer	71
rcan.modelresidual_channel_attention_blocks	
Implements residual group based on [1]	74
rcan.data_processing.lmageStack	
Handles creation and loading of image hyperstacks in order to make reconstructions using Im-	
ageJ easier	76
synthetic_sim.otf.PsfParameters	
Class to store PSF parameters	79
rcan.model.RCAN	
Builds a residual channel attention network	80
rcan.data_generator.SIM_Dataset	
Generates batches of images with real-time data augmentation	83
generate_sim.SimulationRunner	
Class which performs a batch of simulations, either sequentially or in parallel	88
generate_sim.Simulator	
The Simulator class encapsulates the state of a 3D microscope simulation	90

6 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

/home/jhughes2712/projects/sim_project/jh2284/src/analyse.py	
Script producing plots and small datasets that summarise the performance of models	97
/home/jhughes2712/projects/sim_project/jh2284/src/apply.py	
Script producing restored images resulting from an RCAN denoiser being applied to low SNR	
images	98
/home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_czxy.py	
Script enabling .tif file conversion between OMX and CZXY	100
/home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_paz.py	
Script enabling .tif file conversion between OMX and PAZ	100
/home/jhughes2712/projects/sim_project/jh2284/src/convert_slices_to_volumes.py	
Script enabling construction of 3D image volumes from large RGB 2D image slices	101
/home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py	
Script simulating the acquisition of 3D SIM image volumes	102
/home/jhughes2712/projects/sim_project/jh2284/src/image_noising.py	
Script which converts a directory of high-SNR SIM images into a training dataset	103
/home/jhughes2712/projects/sim_project/jh2284/src/manage_stack.py	
Script handling the stacking and unstacking of groups of images, for the purpose of batch recon-	
structions	105
/home/jhughes2712/projects/sim_project/jh2284/src/recon_postprocess.py	
Script handling the postprocessing of SIM reconstructions	110
/home/jhughes2712/projects/sim_project/jh2284/src/recon_preprocess.py	
Script handling the preprocessing of images before SIM reconstruction	110
/home/jhughes2712/projects/sim_project/jh2284/src/stats.py	112
/home/jhughes2712/projects/sim_project/jh2284/src/train.py	
Script used to train RCAN	113
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/initpy	106
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_generator.py	
Module that handles processing and batching of data during training loop	106
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_processing.py	
Contains tools used to pre-process image data	107
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py	
Module defining the RCAN model architecture	108
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/plotting.py	
Module providing helper functions for matplotlib plots	108
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/utils.py	
Contains utility functions for the training loop and inference	109
$/home/jhughes 2712/projects/sim_project/jh 2284/src/synthetic_sim/__init_\py \\ ~~\dots \\ ~~$	106
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/otf.py	113

8 File Index

Namespace Documentation

5.1 analyse Namespace Reference

Variables

```
• parser = argparse.ArgumentParser()
type
• str
· required
· default
• int

    action

• args = parser.parse args()

    output_dir = pathlib.Path(args.output_dir)

· parents

    True

· exist ok
· tuple device

    ckpt

• gt_dir = pathlib.Path(args.gt_dir)
raw_dir = pathlib.Path(args.raw_dir)

    model_1_dir = pathlib.Path(args.model_1_dir)

    gt_files = sorted(list(gt_dir.glob(args.glob_str)))

raw_files = sorted(list(raw_dir.glob(args.glob_str)))
model_1_files = sorted(list(model_1_dir.glob(args.glob_str)))
• model 2 dir = pathlib.Path(args.model 2 dir)
model_2_files = sorted(list(model_2_dir.glob(args.glob_str)))
• N = len(gt files)
• psnr = PSNR(data range=65536, device=device)

    ssim

• df
gt = reshape_to_bcwh(tifffile.imread(gt_files[i]))
raw = reshape_to_bcwh(tifffile.imread(raw_files[i]))
• model_1 = reshape_to_bcwh(tifffile.imread(model_1_files[i]))

    model_2 = reshape_to_bcwh(tifffile.imread(model_2_files[i]))

rng = np.random.default_rng(seed=31052024)
• img idx = list(range(N))
• list gt_samples = [np.squeeze(tifffile.imread(gt_files[i])) for i in img_idx]
• list raw samples = [np.squeeze(tifffile.imread(raw files[i])) for i in img idx]
• list model 1 samples
• list model_2_samples
```

cmap

5.1.1 Variable Documentation

5.1.1.1 action

analyse.action

5.1.1.2 args

```
analyse.args = parser.parse_args()
```

5.1.1.3 ckpt

analyse.ckpt

5.1.1.4 cmap

analyse.cmap

5.1.1.5 default

analyse.default

5.1.1.6 device

tuple analyse.device

Initial value:

```
1 = (
2 torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3 )
```

5.1.1.7 df

analyse.df

Initial value:

5.1.1.8 exist_ok

```
analyse.exist_ok
```

5.1.1.9 gt

```
analyse.gt = reshape_to_bcwh(tifffile.imread(gt_files[i]))
```

5.1.1.10 gt_dir

```
analyse.gt_dir = pathlib.Path(args.gt_dir)
```

5.1.1.11 gt_files

```
analyse.gt_files = sorted(list(gt_dir.glob(args.glob_str)))
```

5.1.1.12 gt_samples

```
list \ analyse.gt\_samples = [np.squeeze(tifffile.imread(gt\_files[i])) \ for \ i \ in \ img\_idx]
```

5.1.1.13 img_idx

```
analyse.img_idx = list(range(N))
```

5.1.1.14 int

analyse.int

5.1.1.15 model

analyse.model

5.1.1.16 model_1

```
analyse.model_1 = reshape_to_bcwh(tifffile.imread(model_1_files[i]))
```

5.1.1.17 model_1_dir

```
analyse.model_1_dir = pathlib.Path(args.model_1_dir)
```

5.1.1.18 model_1_files

```
analyse.model_1_files = sorted(list(model_1_dir.glob(args.glob_str)))
```

5.1.1.19 model_1_samples

```
list analyse.model_1_samples
```

Initial value:

5.1.1.20 model_2

```
analyse.model_2 = reshape_to_bcwh(tifffile.imread(model_2_files[i]))
```

5.1.1.21 model_2_dir

```
analyse.model_2_dir = pathlib.Path(args.model_2_dir)
```

5.1.1.22 model_2_files

```
list analyse.model_2_files = sorted(list(model_2_dir.glob(args.glob_str)))
```

5.1.1.23 model_2_samples

```
analyse.model_2_samples
```

Initial value:

5.1.1.24 N

```
analyse.N = len(gt_files)
```

5.1.1.25 output_dir

```
analyse.output_dir = pathlib.Path(args.output_dir)
```

5.1.1.26 parents

analyse.parents

5.1.1.27 parser

```
analyse.parser = argparse.ArgumentParser()
```

5.1.1.28 psnr

```
analyse.psnr = PSNR(data_range=65536, device=device)
```

5.1.1.29 raw

```
analyse.raw = reshape_to_bcwh(tifffile.imread(raw_files[i]))
```

5.1.1.30 raw_dir

```
analyse.raw_dir = pathlib.Path(args.raw_dir)
```

5.1.1.31 raw_files

```
analyse.raw_files = sorted(list(raw_dir.glob(args.glob_str)))
```

5.1.1.32 raw_samples

```
list\ analyse.raw\_samples = [np.squeeze(tifffile.imread(raw\_files[i]))\ for\ i\ in\ img\_idx]
```

5.1.1.33 required

analyse.required

5.1.1.34 rng

```
analyse.rng = np.random.default_rng(seed=31052024)
```

5.1.1.35 ssim

```
analyse.ssim
```

Initial value:

5.1.1.36 str

```
analyse.str
```

5.1.1.37 True

```
analyse.True
```

5.1.1.38 type

```
analyse.type
```

5.2 apply Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- int
- choices
- default
- percentile
- action
- args = parser.parse_args()
- input_path = pathlib.Path(args.input)
- output_path = pathlib.Path(args.output)
- parents
- raw_files = sorted(input_path.glob("*.tif"))
- data = itertools.zip_longest(raw_files, [])
- tuple device
- ckpt
- mode
- RCAN_hyperparameters = ckpt["hyperparameters"]
- list overlap_shape
- raw = normalize(tifffile.imread(raw_file), args.p_min, args.p_max)
- · restored
- output_file = output_path / ("pred_" + raw_file.name)
- imagej

5.2.1 Variable Documentation

5.2.1.1 action

apply.action

5.2.1.2 args

```
apply.args = parser.parse_args()
```

5.2.1.3 choices

apply.choices

5.2.1.4 ckpt

apply.ckpt

5.2.1.5 data

```
list apply.data = itertools.zip_longest(raw_files, [])
```

5.2.1.6 default

apply.default

5.2.1.7 device

tuple apply.device

Initial value:

```
1 = (
2    torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3 )
```

5.2.1.8 imagej

```
apply.imagej
```

5.2.1.9 input_path

```
apply.input_path = pathlib.Path(args.input)
```

5.2.1.10 int

apply.int

5.2.1.11 model

apply.model

5.2.1.12 output_file

```
apply.output_file = output_path / ("pred_" + raw_file.name)
```

5.2.1.13 output_path

```
apply.output_path = pathlib.Path(args.output)
```

5.2.1.14 overlap_shape

```
apply.overlap_shape
```

Initial value:

5.2.1.15 parents

apply.parents

5.2.1.16 parser

```
apply.parser = argparse.ArgumentParser()
```

5.2.1.17 percentile

apply.percentile

5.2.1.18 raw

```
apply.raw = normalize(tifffile.imread(raw_file), args.p_min, args.p_max)
```

5.2.1.19 raw_files

```
apply.raw_files = sorted(input_path.glob("*.tif"))
```

5.2.1.20 RCAN_hyperparameters

```
apply.RCAN_hyperparameters = ckpt["hyperparameters"]
```

5.2.1.21 required

apply.required

5.2.1.22 restored

```
apply.restored
```

Initial value:

```
1 = apply(
2     model,
3     raw,
4     RCAN_hyperparameters["input_shape"],
5     RCAN_hyperparameters["input_shape"],
6     RCAN_hyperparameters["num_input_channels"],
7     RCAN_hyperparameters["num_output_channels"],
8     batch_size=1,
9     device=device,
10     overlap_shape=overlap_shape,
11     verbose=True,
12     )
```

5.2.1.23 str

```
apply.str
```

5.2.1.24 type

```
apply.type
```

5.3 convert_omx_to_czxy Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- action
- args = parser.parse_args()
- input_dir = pathlib.Path(args.input)
- input_files = sorted(input_dir.rglob("*.tif"))
- original = tifffile.imread(input_file)
- · converted
- imagej

5.3.1 Variable Documentation

5.3.1.1 action

```
\verb"convert_omx_to_czxy.action"
```

5.3.1.2 args

```
convert_omx_to_czxy.args = parser.parse_args()
```

5.3.1.3 converted

convert_omx_to_czxy.converted

Initial value:

5.3.1.4 imagej

```
convert_omx_to_czxy.imagej
```

5.3.1.5 input_dir

```
convert_omx_to_czxy.input_dir = pathlib.Path(args.input)
```

5.3.1.6 input_files

```
convert_omx_to_czxy.input_files = sorted(input_dir.rglob("*.tif"))
```

5.3.1.7 int

```
convert_omx_to_czxy.int
```

5.3.1.8 original

```
convert_omx_to_czxy.original = tifffile.imread(input_file)
```

5.3.1.9 parser

```
convert_omx_to_czxy.parser = argparse.ArgumentParser()
```

5.3.1.10 required

```
convert_omx_to_czxy.required
```

5.3.1.11 str

```
convert_omx_to_czxy.str
```

5.3.1.12 type

convert_omx_to_czxy.type

5.4 convert_omx_to_paz Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- int
- action
- args = parser.parse args()
- input_dir = pathlib.Path(args.input)
- input_files = sorted(input_dir.rglob("*.tif"))
- original = tifffile.imread(input_file)
- converted = conv_omx_to_paz(original, args.num_phases, args.num_angles)
- imagej

5.4.1 Variable Documentation

5.4.1.1 action

convert_omx_to_paz.action

5.4.1.2 args

convert_omx_to_paz.args = parser.parse_args()

5.4.1.3 converted

convert_omx_to_paz.converted = conv_omx_to_paz(original, args.num_phases, args.num_angles)

5.4.1.4 imagej

convert_omx_to_paz.imagej

5.4.1.5 input_dir

convert_omx_to_paz.input_dir = pathlib.Path(args.input)

5.4.1.6 input_files

convert_omx_to_paz.input_files = sorted(input_dir.rglob("*.tif"))

5.4.1.7 int

convert_omx_to_paz.int

5.4.1.8 original

```
convert_omx_to_paz.original = tifffile.imread(input_file)
```

5.4.1.9 parser

```
convert_omx_to_paz.parser = argparse.ArgumentParser()
```

5.4.1.10 required

```
convert_omx_to_paz.required
```

5.4.1.11 str

```
convert_omx_to_paz.str
```

5.4.1.12 type

```
convert_omx_to_paz.type
```

5.5 convert slices to volumes Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- tuple_of_ints
- default
- args = parser.parse_args()
- input dir = pathlib.Path(args.input)
- output_dir = pathlib.Path(args.output)
- input_files = sorted(input_dir.glob("*.tif"))
- parents
- True
- exist_ok
- volume = np.zeros((len(input_files), 3061, 4096), dtype=np.uint8)
- input_slice = tifffile.imread(file)
- output_file = output_dir / filename
- subvolume
- imagej

5.5.1 Variable Documentation

5.5.1.1 args

```
convert_slices_to_volumes.args = parser.parse_args()
```

5.5.1.2 default

 ${\tt convert_slices_to_volumes.default}$

5.5.1.3 exist_ok

convert_slices_to_volumes.exist_ok

5.5.1.4 imagej

convert_slices_to_volumes.imagej

5.5.1.5 input_dir

```
convert_slices_to_volumes.input_dir = pathlib.Path(args.input)
```

5.5.1.6 input_files

```
convert_slices_to_volumes.input_files = sorted(input_dir.glob("*.tif"))
```

5.5.1.7 input_slice

convert_slices_to_volumes.input_slice = tifffile.imread(file)

5.5.1.8 output_dir

```
convert_slices_to_volumes.output_dir = pathlib.Path(args.output)
```

5.5.1.9 output_file

```
convert_slices_to_volumes.output_file = output_dir / filename
```

5.5.1.10 parents

```
convert_slices_to_volumes.parents
```

5.5.1.11 parser

```
convert_slices_to_volumes.parser = argparse.ArgumentParser()
```

5.5.1.12 required

```
\verb"convert_slices_to_volumes.required"
```

5.5.1.13 str

```
convert_slices_to_volumes.str
```

5.5.1.14 subvolume

convert_slices_to_volumes.subvolume

5.5.1.15 True

convert_slices_to_volumes.True

5.5.1.16 tuple_of_ints

convert_slices_to_volumes.tuple_of_ints

5.5.1.17 type

convert_slices_to_volumes.type

5.5.1.18 volume

convert_slices_to_volumes.volume = np.zeros((len(input_files), 3061, 4096), dtype=np.uint8)

5.6 generate_sim Namespace Reference

Classes

· class Simulator

The Simulator class encapsulates the state of a 3D microscope simulation.

class SimulationRunner

Class which performs a batch of simulations, either sequentially or in parallel.

Functions

- def arange_zero (n, spacing=1)
- def threshold_norm (sample)

Applies a threshold and normalises the sample to improve contrast.

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- int
- default
- args = parser.parse_args()
- runner

5.6.1 Function Documentation

5.6.1.1 arange_zero()

```
\label{eq:continuous_spacing} \begin{array}{l} \text{def generate\_sim.arange\_zero (} \\ & n, \\ & spacing = 1 \ ) \end{array}
```

5.6.1.2 threshold_norm()

Applies a threshold and normalises the sample to improve contrast.

5.6.2 Variable Documentation

5.6.2.1 args

```
generate_sim.args = parser.parse_args()
```

5.6.2.2 default

generate_sim.default

5.6.2.3 int

generate_sim.int

5.6.2.4 parser

```
generate_sim.parser = argparse.ArgumentParser()
```

5.6.2.5 required

generate_sim.required

5.6.2.6 runner

generate_sim.runner

Initial value:

5.6.2.7 str

generate_sim.str

5.6.2.8 type

 ${\tt generate_sim.type}$

5.7 image_noising Namespace Reference

Functions

• def save_image_pair (gt_img, split, name, channel_idx)

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- · choices
- float
- default
- args = parser.parse_args()
- input_path = pathlib.Path(args.input)
- output_path = pathlib.Path(args.output)
- parents
- output_train_gt_path = output_path.joinpath("Training", "GT")
- output_train_raw_path = output_path.joinpath("Training", "Raw")

```
output_val_gt_path = output_path.joinpath("Validation", "GT")
• output_val_raw_path = output_path.joinpath("Validation", "Raw")
• output_test_gt_path = output_path.joinpath("Testing", "GT")
• output_test_raw_path = output_path.joinpath("Testing", "Raw")
• data = sorted(input_path.glob("*.tif"))
• n_acquisitions = tifffile.imread(data[0]).shape[0] // args.channels
• n_img = len(data)
• train_size = int((1 - args.test_fraction) * n_img)
• val_size = int(args.val_fraction * train_size)
• rng = np.random.default_rng(seed=25042024)
img_idx_all = list(range(n_img))
• img_idx_test = img_idx_all[train_size:]
• img_idx_train = img_idx_all[: train_size - val_size]
• img_idx_val = img_idx_all[train_size - val_size : train_size]
• gt = tifffile.imread(img_file)
• string split = "train"
```

5.7.1 Function Documentation

5.7.1.1 save_image_pair()

5.7.2 Variable Documentation

5.7.2.1 args

```
image_noising.args = parser.parse_args()
```

5.7.2.2 choices

```
\verb|image_noising.choices||
```

5.7.2.3 data

```
list image_noising.data = sorted(input_path.glob("*.tif"))
```

5.7.2.4 default

image_noising.default

5.7.2.5 float

image_noising.float

5.7.2.6 gt

```
image_noising.gt = tifffile.imread(img_file)
```

5.7.2.7 img_idx_all

```
image_noising.img_idx_all = list(range(n_img))
```

5.7.2.8 img_idx_test

```
image_noising.img_idx_test = img_idx_all[train_size:]
```

5.7.2.9 img_idx_train

```
image_noising.img_idx_train = img_idx_all[: train_size - val_size]
```

$5.7.2.10 \quad img_idx_val$

```
image_noising.img_idx_val = img_idx_all[train_size - val_size : train_size]
```

5.7.2.11 input_path

```
image_noising.input_path = pathlib.Path(args.input)
```

5.7.2.12 int

image_noising.int

5.7.2.13 n_acquisitions

```
image\_noising.n\_acquisitions = tifffile.imread(data[0]).shape[0] // args.channels
```

5.7.2.14 n_img

image_noising.n_img = len(data)

5.7.2.15 output_path

image_noising.output_path = pathlib.Path(args.output)

5.7.2.16 output_test_gt_path

 $image_noising.output_test_gt_path = output_path.joinpath("Testing", "GT")$

5.7.2.17 output_test_raw_path

image_noising.output_test_raw_path = output_path.joinpath("Testing", "Raw")

5.7.2.18 output_train_gt_path

image_noising.output_train_gt_path = output_path.joinpath("Training", "GT")

5.7.2.19 output_train_raw_path

```
image_noising.output_train_raw_path = output_path.joinpath("Training", "Raw")
```

5.7.2.20 output_val_gt_path

```
image_noising.output_val_gt_path = output_path.joinpath("Validation", "GT")
```

5.7.2.21 output_val_raw_path

```
image_noising.output_val_raw_path = output_path.joinpath("Validation", "Raw")
```

5.7.2.22 parents

image_noising.parents

5.7.2.23 parser

```
image_noising.parser = argparse.ArgumentParser()
```

5.7.2.24 required

image_noising.required

5.7.2.25 rng

image_noising.rng = np.random.default_rng(seed=25042024)

5.7.2.26 split

string image_noising.split = "train"

5.7.2.27 str

```
image_noising.str
```

5.7.2.28 train_size

```
image_noising.train_size = int((1 - args.test_fraction) * n_img)
```

5.7.2.29 type

image_noising.type

5.7.2.30 val_size

```
image_noising.val_size = int(args.val_fraction * train_size)
```

5.8 manage_stack Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- choices
- · default
- action
- args = parser.parse_args()
- output_dir = pathlib.Path(args.output_dir)
- parents
- True
- exist_ok
- files = sorted(list(pathlib.Path(args.input_dir).glob(args.glob_str)))
- int stack_number = -1 else args.stack_number
- int number_of_stacks = len(files) // stack_number
- sample = tifffile.imread(files[0])
- · stack_handler
- img_data = tifffile.imread(input_file)
- tuple filename
- tuple output_file = output_dir / filename
- output_data = img_data[j * args.z_slices : (j + 1) * args.z_slices]

5.8.1 Variable Documentation

5.8.1.1 action

manage_stack.action

5.8.1.2 args

```
manage_stack.args = parser.parse_args()
```

5.8.1.3 choices

manage_stack.choices

5.8.1.4 default

manage_stack.default

5.8.1.5 exist_ok

manage_stack.exist_ok

5.8.1.6 filename

tuple manage_stack.filename

Initial value:

5.8.1.7 files

```
manage_stack.files = sorted(list(pathlib.Path(args.input_dir).glob(args.glob_str)))
```

5.8.1.8 img_data

```
manage_stack.img_data = tifffile.imread(input_file)
```

5.8.1.9 int

manage_stack.int

5.8.1.10 number_of_stacks

```
int manage_stack.number_of_stacks = len(files) // stack_number
```

5.8.1.11 output_data

```
\verb|manage_stack.output_data| = \verb|img_data[j * args.z_slices| : (j + 1) * args.z_slices||
```

5.8.1.12 output_dir

```
manage_stack.output_dir = pathlib.Path(args.output_dir)
```

5.8.1.13 output_file

```
string manage_stack.output_file = output_dir / filename
```

5.8.1.14 parents

manage_stack.parents

5.8.1.15 parser

```
manage_stack.parser = argparse.ArgumentParser()
```

5.8.1.16 required

manage_stack.required

5.8.1.17 sample

```
manage_stack.sample = tifffile.imread(files[0])
```

5.8.1.18 stack_handler

manage_stack.stack_handler

Initial value:

```
1 = ImageStack(
2 args.dimension,
3 stack_number,
4 stack_idx,
5 sample,
6 files,
7 args.num_acquisitions,
```

5.8.1.19 stack_number

```
int manage_stack.stack_number = -1 else args.stack_number
```

5.8.1.20 str

manage_stack.str

5.8.1.21 True

manage_stack.True

5.8.1.22 type

```
manage_stack.type
```

5.9 rcan Namespace Reference

Namespaces

- data_generator
- · data_processing
- model
- plotting
- utils

5.10 rcan.data_generator Namespace Reference

Classes

· class SIM_Dataset

Generates batches of images with real-time data augmentation.

Functions

def load_SIM_dataset (images, shape, batch_size, transform_function, intensity_threshold, area_threshold, scale_factor, steps_per_epoch, p_min, p_max)

Wraps SIM_Dataset object in a PyTorch Dataloader object to enable batch loading.

5.10.1 Function Documentation

5.10.1.1 load_SIM_dataset()

Wraps SIM_Dataset object in a PyTorch Dataloader object to enable batch loading.

Parameters

images	(list[dict]) - List of dictionaries of data pairs with keys ["raw","gt"]. Images in CZXY format
shape	(tuple[int]) - Shape of batch images excluding the channel dimension
batch_size	(int) - Batch size
transform_function	(str or callable or None) - Function used for data augmentation. Typically you will set transform_function='rotate_and_flip' to apply combination of randomly selected image rotation and flipping. Alternatively, you can specify an arbitrary transformation function which takes two input images (source and target) and returns transformed images. If transform_function=None, no augmentation will be performed
intensity_threshold	(float) - If $intensity_threshold > 0$, pixels whose intensities are greater than this threshold will be considered as foreground
area_ratio_threshold	(float) - Threshold between 0 and 1. If intensity_threshold > 0, the generator calculates the ratio of foreground pixels in a target patch, and rejects the patch if the ratio is smaller than this threshold
scale_factor	(int) - Scale factor for the target patch size. Positive and negative values mean up- and down-scaling respectively.
steps_per_epoch	(int) - Determines how many times each image is used to generate a patch per batch
p_min	(float) - Minimum percentile used for scaling
p_max	(float) - Maximum percentile used for scaling

Returns

torch.utils.data.DataLoader object

5.11 rcan.data_processing Namespace Reference

Classes

· class ImageStack

Handles creation and loading of image hyperstacks in order to make reconstructions using ImageJ easier.

Functions

• def crop_volume (volume, num_steps, start, step, label)

Takes an image volume and divides part of it into smaller volumes by cropping lateral sections (the full z dimension is used).

• def conv_omx_to_czxy (original, n_phases, n_angles)

Converts image array from OMX (PZA format) to CZXY format.

• def conv_czxy_to_omx (original, n_phases, n_angles)

Converts image array from CZXY to OMX format.

• def conv_omx_to_paz (original, n_phases, n_angles)

Converts image array from OMX (PZA format) to PAZ format.

• def conv_paz_to_omx (original, n_phases, n_angles)

Converts image array from PAZ to OMX(PZA) format.

5.11.1 Function Documentation

5.11.1.1 conv_czxy_to_omx()

Converts image array from CZXY to OMX format.

Parameters

original	(np.ndarray) - Image array in original format
n_phases	(int) - Number of phases
n_angles	(int) - Number of angles

Returns

np.ndarray Converted image array

5.11.1.2 conv_omx_to_czxy()

Converts image array from OMX (PZA format) to CZXY format.

Parameters

original	(np.ndarray) - Image array in original format
n_phases	(int) - Number of phases
n_angles	(int) - Number of angles

Returns

np.ndarray Converted image array

5.11.1.3 conv_omx_to_paz()

Converts image array from OMX (PZA format) to PAZ format.

Parameters

original	(np.ndarray) - Image array in original format
n_phases	(int) - Number of phases
n_angles	(int) - Number of angles

Returns

np.ndarray Converted image array

5.11.1.4 conv_paz_to_omx()

Converts image array from PAZ to OMX(PZA) format.

Parameters

original	(np.ndarray) - Image array in original format
n_phases	(int) - Number of phases
n_angles	(int) - Number of angles

Returns

np.ndarray Converted image array

5.11.1.5 crop_volume()

step, label)

Takes an image volume and divides part of it into smaller volumes by cropping lateral sections (the full z dimension is used).

Parameters

volume	(np.ndarray) - image volume to crop
num_steps	(tuple[int]) - number of images in each lateral dimension (total number of subvolumes is the product)
start	(tuple[int]) - start coordinates for crop region
step	(tuple[int]) - lateral size of subvolume images
label	(str) - prefix for output file names

Returns

generator that yields image subvolumes

5.12 rcan.model Namespace Reference

Classes

```
    class _channel_attention_block
    Implements channel attention block/layer.
    class _residual_channel_attention_blocks
    Implements residual group based on [1].
```

· class RCAN

Builds a residual channel attention network.

Functions

```
• def _conv (ndim, in_filters, out_filters, kernel_size, padding="same", **kwargs)

Returns the appropriate torch.nn convolution layer based on parameters.
```

def _global_average_pooling (ndim)

Returns the appropriate torch.nn pooling layer based on parameters.

• def _standardize (x)

Standardises input data.

• def _destandardize (x)

Inverse of _standardize.

5.12.1 Function Documentation

5.12.1.1 _conv()

Returns the appropriate torch.nn convolution layer based on parameters.

Parameters

ndim	(int) - Specifies a 1, 2, or 3 dimensional convolution kernel
in_filters	(int) - Number of hidden input channels
out_filters	(int) - Number of hidden output channels
kernel_size	(int or tuple) Size of convolution kernel
padding	(str, optional) - Border padding strategy. Default: "same"

Returns

torch.nn.Module object of the specified type

5.12.1.2 _destandardize()

Inverse of _standardize.

Parameters

```
x (torch.Tensor) Input
```

Returns

torch. Tensor representing destandardised output.

5.12.1.3 _global_average_pooling()

Returns the appropriate torch.nn pooling layer based on parameters.

Parameters

```
ndim (int) - Specifies a 2 or 3 dimensional convolution kernel
```

Returns

torch.nn.Module object of the specified type

5.12.1.4 _standardize()

Standardises input data.

Standardize the signal so that the range becomes [-1, 1] (assuming the original range is [0, 1]).

Parameters

```
x (torch.Tensor) Input
```

Returns

torch. Tensor representing standardised output

5.13 rcan.plotting Namespace Reference

Functions

def plot_learning_curve (losses_train, losses_val, psnr_train, psnr_val, ssim_train, ssim_val, figsize, output
 —path)

Plots the learning curve metrics from a model checkpoint according to loss, PSNR, and SSIM.

def plot_reconstructions (device, output_path, dim, gt_imgs, raw_imgs, model_1_imgs, model_2_
 imgs=None, cmap="inferno")

Plots a sample of reconstructions comparing GT vs Raw vs Restored.

5.13.1 Function Documentation

5.13.1.1 plot_learning_curve()

Plots the learning curve metrics from a model checkpoint according to loss, PSNR, and SSIM.

Parameters

losses_train	(list[float]) - List of training losses

Parameters

losses_val	(list[float]) - List of validation losses
psnr_train	(list[float]) - List of training psnrs
psnr_val	(list[float]) - List of validation psnrs
ssim_train	(list[float]) - List of training ssims
ssim_val	(list[float]) - List of validation ssims
figsize	(tuple[int]) - Specifies matplotlib layout size
output_path	(str) - Determines where plot is saved

5.13.1.2 plot_reconstructions()

Plots a sample of reconstructions comparing GT vs Raw vs Restored.

Parameters

device	(torch.device) - Handles the processing unit for torch
output_path	(str) - Determines where the plot is saved
dim	(int) - Dimensionality of the images
gt_imgs	(list[np.ndarray]) - List containing GT image arrays
raw_imgs	(list[np.ndarray]) - List containing Raw image arrays
model_1_imgs	(list[np.ndarray]) - List containing Step 1 image arrays
model_2_imgs	(list[np.ndarray], optional) - List containing Step 2 image arrays. Default: None
стар	(str) - Matplotlib colormap string

5.14 rcan.utils Namespace Reference

Functions

- def normalize (image, p_min=2, p_max=99.9, dtype="float32")
 - Normalizes the image intensity so that the p_min -th and the p_max -th percentiles are converted to 0 and 1 respectively.
- def apply (model, data, model_input_image_shape, model_output_image_shape, num_input_channels, num_output_channels, batch_size, device, overlap_shape=None, verbose=False)

Applies a model to an input image.

• def load_rcan_checkpoint (ckpt_path, device)

Enables loading of RCAN checkpointed model.

def tuple_of_ints (string)

Defines behaviour of parsing tuples of ints (argparse).

• def percentile (x)

Defines behaviour of parsing percentiles (argparse).

def reshape_to_bcwh (data)

Reshapes 2D or 3D array to have batch x channel x width x height format, by prepending extra dimensions.

• def normalize_between_zero_and_one (data)

Coerce pixel values to [0, 1] range.

• def compute_metrics (img, gt_img, psnr, ssim)

Uses ignite metric objects to compute PSNR and SSIM.

5.14.1 Function Documentation

5.14.1.1 apply()

Applies a model to an input image.

The input image stack is split into sub-blocks with model's input size, then the model is applied block by block.

Parameters

model	(torch.nn.module) - PyTorch model
data	(array_like or list of array_like) - Input data. Either an image or a list of images
batch_size	(int) - Controls the batch size used to process image data
device	(torch.device) - PyTorch device object to specify processor to use
overlap_shape	(tuple of int or None) - Overlap size between sub-blocks in each dimension. If not specified, a default size ((32, 32) for 2D and (2, 32, 32) for 3D) is used. Results at overlapped areas are blended together linearly

Returns

np.ndarray Result image

5.14.1.2 compute_metrics()

Uses ignite metric objects to compute PSNR and SSIM.

Parameters

img	(np.ndarray) - Predicted image
gt_img	(np.ndarray) - Reference image
psnr	(ignite.metrics.PSNR) - PSNR object
ssim	(ignite.metrics.SSIM) - SSIM object

Returns

dict of metric values

5.14.1.3 load_rcan_checkpoint()

Enables loading of RCAN checkpointed model.

Uses the hyperparameters key saved in checkpoint file in order to avoid the need to know the architecture specifications in advance.

Parameters

ckpt_path	(str) - filepath for checkpoint, should end in .pth
device	(torch.device) - handles processing unit for torch

Returns

tuple of checkpoint, and model with weights loaded

5.14.1.4 normalize()

```
p_min = 2,
p_max = 99.9,
dtype = "float32")
```

Normalizes the image intensity so that the p_min -th and the p_max -th percentiles are converted to 0 and 1 respectively.

Parameters

image	(np.ndarray) - Image to apply the normalization to
p_min	(float, optional) - Percentile that is mapped to zero. Default: 2
p_max	(float, optional) - Percentile that is mapped to one. Default: 99.9
dtype	(str) - Datatype to use for the output

Returns

np.ndarray Image with transformed pixel values

5.14.1.5 References

Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy https://doi.epsigon org/10.1038/s41592-018-0216-7

5.14.1.6 normalize_between_zero_and_one()

```
def rcan.utils.normalize_between_zero_and_one ( data )
```

Coerce pixel values to [0, 1] range.

Parameters

data	(np.ndarray or torch.Tensor) - image array to transform
------	---

Returns

np.ndarray or torch. Tensor transformed image array

5.14.1.7 percentile()

```
def rcan.utils.percentile ( x )
```

Defines behaviour of parsing percentiles (argparse).

5.14.1.8 reshape_to_bcwh()

Reshapes 2D or 3D array to have batch x channel x width x height format, by prepending extra dimensions.

Parameters

```
data (np.ndarray) - array to be reshaped
```

Returns

np.ndarray transformed data

5.14.1.9 tuple_of_ints()

Defines behaviour of parsing tuples of ints (argparse).

5.15 recon_postprocess Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- args = parser.parse_args()
- $\bullet \ \ \, \mathsf{files} = \mathsf{sorted}(\mathsf{list}(\mathsf{pathlib.Path}(\mathsf{args.input_dir}).\mathsf{rglob}("*.\mathsf{tif"}))) \\$
- img_data = tifffile.imread(input_file)

5.15.1 Variable Documentation

5.15.1.1 args

```
recon_postprocess.args = parser.parse_args()
```

5.15.1.2 files

recon_postprocess.files = sorted(list(pathlib.Path(args.input_dir).rglob("*.tif")))

5.15.1.3 img_data

tuple recon_postprocess.img_data = tifffile.imread(input_file)

5.15.1.4 parser

recon_postprocess.parser = argparse.ArgumentParser()

5.15.1.5 required

recon_postprocess.required

5.15.1.6 str

recon_postprocess.str

5.15.1.7 type

recon_postprocess.type

5.16 recon_preprocess Namespace Reference

Functions

• def normalize_acquisition_intensity (data, dim)

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- int
- choices
- percentile
- default
- action
- args = parser.parse_args()
- output_dir = pathlib.Path(args.output_dir)
- parents
- True
- exist_ok
- files = sorted(list(pathlib.Path(args.input_dir).glob("*.tif")))
- img_data = tifffile.imread(input_file).astype("float32")
- output_file = output_dir / input_file.name

5.16.1 Function Documentation

5.16.1.1 normalize_acquisition_intensity()

```
def recon_preprocess.normalize_acquisition_intensity ( data, dim )
```

5.16.2 Variable Documentation

5.16.2.1 action

```
recon_preprocess.action
```

5.16.2.2 args

```
recon_preprocess.args = parser.parse_args()
```

5.16.2.3 choices

recon_preprocess.choices

5.16.2.4 default

recon_preprocess.default

5.16.2.5 exist_ok

 ${\tt recon_preprocess.exist_ok}$

5.16.2.6 files

recon_preprocess.files = sorted(list(pathlib.Path(args.input_dir).glob("*.tif")))

5.16.2.7 img_data

int recon_preprocess.img_data = tifffile.imread(input_file).astype("float32")

5.16.2.8 int

recon_preprocess.int

5.16.2.9 output_dir

recon_preprocess.output_dir = pathlib.Path(args.output_dir)

5.16.2.10 output_file

recon_preprocess.output_file = output_dir / input_file.name

5.16.2.11 parents

recon_preprocess.parents

5.16.2.12 parser

recon_preprocess.parser = argparse.ArgumentParser()

5.16.2.13 percentile

recon_preprocess.percentile

5.16.2.14 required

recon_preprocess.required

5.16.2.15 str

recon_preprocess.str

5.16.2.16 True

recon_preprocess.True

5.16.2.17 type

recon_preprocess.type

5.17 stats Namespace Reference

Functions

• def paired_t (gt_data, data)

Variables

lw

```
• parser = argparse.ArgumentParser()
• type
• str
· required
int
· choices

    default

• args = parser.parse args()
• output_dir = pathlib.Path(args.output_dir)
· parents
• True
exist_ok

    df

• fig

    ax

· figsize
• psnr_diff_1_max
· psnr_diff_2_max
• psnr_diff_1_min
• psnr_diff_2_min
· tuple hist range psnr
• ssim_diff_1_max
• ssim_diff_2_max
• ssim diff 1 min
• ssim_diff_2_min
tuple hist_range_ssim

    xlabel

· title

    range

• color
mean_psnr_1 = np.mean(np.array(df['psnr_model_1']) - np.array(df['psnr_raw']))
• se_psnr_1
• mean_ssim_1 = np.mean(np.array(df['ssim_model_1']) - np.array(df['ssim_raw']))
• se_ssim_1
• mean_psnr_2
• se psnr 2
• mean_ssim_2
• se_ssim_2
• int psnr_cols = 2 else df.columns[1:3]
• int ssim_cols = 2 else df.columns[3:5]

    dflong

• dflongssim
• data
• X
• y
• hue
· dodge

    legend

    palette

• alpha
```

5.17.1 Function Documentation

5.17.1.1 paired_t()

5.17.2 Variable Documentation

5.17.2.1 alpha

stats.alpha

5.17.2.2 args

```
stats.args = parser.parse_args()
```

5.17.2.3 ax

stats.ax

5.17.2.4 choices

stats.choices

5.17.2.5 color

stats.color

5.17.2.6 data

stats.data

5.17.2.7 default

stats.default

5.17.2.8 df

stats.df

Initial value:

```
1 = pd.read_csv(
2     pathlib.Path(args.dataset),
3     index_col=False
4 ).drop(columns="Unnamed: 0")
```

5.17.2.9 dflong

stats.dflong

Initial value:

```
1 = pd.melt(
2          df,
3          id_vars=["file"],
4          value_vars=df.columns[1:4],
5          var_name="type",
6          value_name="psnr"
```

5.17.2.10 dflongssim

stats.dflongssim

Initial value:

```
1 = pd.melt(
2          df,
3          id_vars=["file"],
4          value_vars=df.columns[4:7],
5          var_name="type",
6          value_name="ssim"
7 )
```

5.17.2.11 dodge

stats.dodge

5.17.2.12 exist_ok

stats.exist_ok

5.17.2.13 fig

stats.fig

5.17.2.14 figsize

stats.figsize

5.17.2.15 hist_range_psnr

tuple stats.hist_range_psnr

Initial value:

```
1 = (
2 min(psnr_diff_1_min, psnr_diff_2_min),
3 max(psnr_diff_1_max, psnr_diff_2_max)
4 )
```

5.17.2.16 hist_range_ssim

tuple stats.hist_range_ssim

```
1 = (
2     min(ssim_diff_1_min, ssim_diff_2_min),
3     max(ssim_diff_1_max, ssim_diff_2_max)
```

5.17.2.17 hue

stats.hue

5.17.2.18 int

stats.int

5.17.2.19 legend

stats.legend

5.17.2.20 lw

stats.lw

5.17.2.21 mean_psnr_1

```
\verb|stats.mean_psnr_1| = \verb|np.mean(np.array(df['psnr_model_1'])| - \verb|np.array(df['psnr_raw'])|| \\
```

5.17.2.22 mean_psnr_2

 ${\tt stats.mean_psnr_2}$

Initial value:

5.17.2.23 mean_ssim_1

```
stats.mean_ssim_1 = np.mean(np.array(df['ssim_model_1']) - np.array(df['ssim_raw']))
```

5.17.2.24 mean_ssim_2

```
stats.mean_ssim_2
```

Initial value:

5.17.2.25 output_dir

```
stats.output_dir = pathlib.Path(args.output_dir)
```

5.17.2.26 palette

stats.palette

5.17.2.27 parents

stats.parents

5.17.2.28 parser

```
stats.parser = argparse.ArgumentParser()
```

5.17.2.29 psnr_cols

```
int stats.psnr_cols = 2 else df.columns[1:3]
```

5.17.2.30 psnr_diff_1_max

```
stats.psnr_diff_1_max
```

```
1 = np.max(
2 np.array(df["psnr_model_1"]) - np.array(df["psnr_raw"])
```

5.17.2.31 psnr_diff_1_min

```
\verb|stats.psnr_diff_1_min|
```

Initial value:

5.17.2.32 psnr_diff_2_max

```
stats.psnr_diff_2_max
```

Initial value:

5.17.2.33 psnr_diff_2_min

```
stats.psnr_diff_2_min
```

Initial value:

5.17.2.34 range

stats.range

5.17.2.35 required

stats.required

5.17.2.36 se_psnr_1

```
stats.se_psnr_1
```

```
1 = np.std(
2     np.array(df['psnr_model_1']) - np.array(df['psnr_raw']), ddof=1
3 )/np.sqrt(len(df['psnr_model_1']))
```

5.17.2.37 se_psnr_2

```
stats.se_psnr_2
```

Initial value:

5.17.2.38 se_ssim_1

```
stats.se_ssim_1
```

Initial value:

5.17.2.39 se_ssim_2

```
stats.se_ssim_2
```

Initial value:

5.17.2.40 ssim_cols

```
int stats.ssim_cols = 2 else df.columns[3:5]
```

5.17.2.41 ssim_diff_1_max

```
stats.ssim_diff_1_max
```

5.17.2.42 ssim_diff_1_min

```
\verb|stats.ssim_diff_1_min|
```

Initial value:

```
1 = np.min(
2 np.array(df["ssim_model_1"]) - np.array(df["ssim_raw"])
3)
```

5.17.2.43 ssim_diff_2_max

```
{\tt stats.ssim\_diff\_2\_max}
```

Initial value:

```
1 = np.max(
2     np.array(df["ssim_model_2"]) - np.array(df["ssim_raw"])
3 )
```

5.17.2.44 ssim_diff_2_min

```
stats.ssim_diff_2_min
```

Initial value:

```
1 = np.min(
2     np.array(df["ssim_model_2"]) - np.array(df["ssim_raw"])
3 )
```

5.17.2.45 str

stats.str

5.17.2.46 title

stats.title

5.17.2.47 True

stats.True

5.17.2.48 type

stats.type

5.17.2.49 x

stats.x

5.17.2.50 xlabel

stats.xlabel

5.17.2.51 y

stats.y

5.18 synthetic_sim Namespace Reference

Namespaces

otf

5.19 synthetic_sim.otf Namespace Reference

Classes

class PsfParameters

Class to store PSF parameters.

Functions

• def calc_psf (params)

Calculate an approximate Gibson-Lanni PSF based on the parameters provided.

5.19.1 Function Documentation

5.19.1.1 calc_psf()

Calculate an approximate Gibson-Lanni PSF based on the parameters provided.

Code ported from MATLAB, original copyright Jizhou Li, 2016, The Chinese University of Hong Kong.

Parameters

params	(PsfParameters) - dataclass storing the PSF parameters

Returns

np.ndarray representing the PSF

5.20 train Namespace Reference

Functions

- def load_data_paths (config, data_type)
- def train (train_loader, val_loader, optimizer, scheduler, net, batchsize, n_accumulations, saveinterval, nepoch, start_epoch=0, losses_train_epoch=[], losses_val_epoch=[], psnr_train_epoch=[], psnr_val_epoch=[], ssim_train_epoch=[], ssim_val_epoch=[])

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- args = parser.parse_args()
- · dictionary schema
- config = json.load(f)
- int ndim = tifffile.imread(training_data[0]["raw"]).ndim 1
- input_shape = config["input_shape"]
- tuple device
- ckpt_path = None if args.model_ckpt is None else pathlib.Path(args.model_ckpt)
- model
- dictionary RCAN_hyperparameters
- ckpt
- · train_loader
- · val_loader
- · optimizer
- · scheduler
- output_dir = pathlib.Path(args.output_dir)
- · parents
- True
- exist_ok
- n_accumulations
- · saveinterval
- · nepoch
- · start_epoch
- · losses_train_epoch
- · losses_val_epoch
- · psnr_train_epoch
- psnr_val_epoch
- ssim_train_epoch
- ssim_val_epoch

5.20.1 Function Documentation

5.20.1.1 load_data_paths()

5.20.1.2 train()

```
def train.train (
             train_loader,
             val_loader,
             optimizer,
             scheduler,
             net,
             batchsize,
             n_accumulations,
             saveinterval,
             nepoch,
             start_epoch = 0,
             losses_train_epoch = [],
             losses_val_epoch = [],
             psnr_train_epoch = [],
             psnr_val_epoch = [],
              ssim_train_epoch = [],
              ssim_val_epoch = [] )
```

5.20.2 Variable Documentation

5.20.2.1 args

```
train.args = parser.parse_args()
```

5.20.2.2 ckpt

train.ckpt

5.20.2.3 ckpt_path

```
train.ckpt_path = None if args.model_ckpt is None else pathlib.Path(args.model_ckpt)
```

5.20.2.4 config

```
train.config = json.load(f)
```

5.20.2.5 device

tuple train.device

Initial value:

```
1 = (
2    torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3 )
```

5.20.2.6 exist_ok

```
train.exist_ok
```

5.20.2.7 input_shape

```
tuple train.input_shape = config["input_shape"]
```

5.20.2.8 losses_train_epoch

```
train.losses_train_epoch
```

5.20.2.9 losses_val_epoch

```
{\tt train.losses\_val\_epoch}
```

5.20.2.10 model

train.model

Initial value:

5.20.2.11 n_accumulations

train.n_accumulations

5.20.2.12 ndim

```
int train.ndim = tifffile.imread(training_data[0]["raw"]).ndim - 1
```

5.20.2.13 nepoch

train.nepoch

5.20.2.14 optimizer

train.optimizer

Initial value:

```
1 = torch.optim.Adam(
2     model.parameters(), lr=config["initial_learning_rate"]
3 )
```

5.20.2.15 output_dir

```
train.output_dir = pathlib.Path(args.output_dir)
```

5.20.2.16 parents

train.parents

5.20.2.17 parser

```
train.parser = argparse.ArgumentParser()
```

5.20.2.18 psnr_train_epoch

train.psnr_train_epoch

5.20.2.19 psnr_val_epoch

train.psnr_val_epoch

5.20.2.20 RCAN_hyperparameters

train.RCAN_hyperparameters

Initial value:

```
"input_shape": input_shape,
"num_input_channels": config["num_input_channels"],
"num_hidden_channels": config["num_hidden_channels"],
"num_residual_blocks": config["num_residual_blocks"],
"num_residual_groups": config["num_residual_groups"],
"channel_reduction": config["channel_reduction"],
"residual_scaling": 1.0,
"num_output_channels": config["num_output_channels"],
```

5.20.2.21 required

train.required

5.20.2.22 saveinterval

train.saveinterval

5.20.2.23 scheduler

train.scheduler

Initial value:

```
1 = torch.optim.lr_scheduler.StepLR(
2    optimizer, step_size=config["epochs"] // 4, gamma=config["lr_decay"]
3 )
```

5.20.2.24 schema

dictionary train.schema

5.20.2.25 ssim_train_epoch

 ${\tt train.ssim_train_epoch}$

5.20.2.26 ssim_val_epoch

train.ssim_val_epoch

5.20.2.27 start_epoch

train.start_epoch

5.20.2.28 str

train.str

5.20.2.29 train_loader

train.train_loader

Initial value:

5.20.2.30 True

train.True

5.20.2.31 type

train.type

5.20.2.32 val_loader

train.val_loader

```
1 = load_SIM_dataset(
            validation_data,
            input_shape,
4
            batch_size=config["batch_size"],
            transform_function=(
    "rotate_and_flip" if config["data_augmentation"] else None
5
6
            intensity_threshold=config["intensity_threshold"],
            area_threshold=config["area_ratio_threshold"],
10
            scale_factor=1,
             steps_per_epoch=config["steps_per_epoch"],
p_min=config["p_min"],
p_max=config["p_max"],
11
12
13
14
```

Chapter 6

Class Documentation

6.1 rcan.model._channel_attention_block Class Reference

Implements channel attention block/layer.

Inheritance diagram for rcan.model._channel_attention_block:

 $Collaboration\ diagram\ for\ rcan.model._channel_attention_block:$

Public Member Functions

```
    def __init__ (self, ndim, num_channels, reduction=16)
        Initialises class.

    def forward (self, x)
        Forward method for class.
```

Public Attributes

- · global_average_pooling
- conv 1
- conv 2

6.1.1 Detailed Description

Implements channel attention block/layer.

Instantiates a simple attention mechanism which pools all spatial information in each channel, and computes channel attention weights through a series of linear transformations and activation layers. Builds part of the architecture originally presented in [1]. Software implementation based on [2].

6.1.1.1 References

[1] Image Super-Resolution Using Very Deep Residual Channel Attention Networks https://arxiv.eporg/abs/1807.02758 [2] Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning https://doi.org/10.1364/BOE.510912 (Implementation based on CALayer from the paper's source code: https://github.com/edward-n-ward/ML-OS-eporghold-blob/master/RCAN/Training%20code/models.py)

6.1.2 Constructor & Destructor Documentation

```
6.1.2.1 __init__()
```

Initialises class.

Parameters

ndim	(int) - Feature dimensionality
num_channels	(int) - Number of hidden channels
reduction	(int, optional) - Factor to reduce the number of channels by during the attention weight computation. Default: 16.

6.1.3 Member Function Documentation

6.1.3.1 forward()

Forward method for class.

Parameters

```
x (torch.Tensor) Input
```

Returns

torch. Tensor representing x multiplied by attention weights across channels.

6.1.4 Member Data Documentation

6.1.4.1 conv_1

```
rcan.model._channel_attention_block.conv_1
```

6.1.4.2 conv_2

```
rcan.model._channel_attention_block.conv_2
```

6.1.4.3 global_average_pooling

```
\verb|rcan.model._channel_attention_block.global_average_pooling|\\
```

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py

6.2 rcan.model._residual_channel_attention_blocks Class Reference

Implements residual group based on [1].

Inheritance diagram for rcan.model._residual_channel_attention_blocks:

Collaboration diagram for rcan.model._residual_channel_attention_blocks:

Public Member Functions

- def __init__ (self, ndim, num_channels, repeat=1, channel_reduction=8, residual_scaling=1.0)
 Initialises object.
- def forward (self, x)

Forward method for class.

Public Attributes

- repeat
- residual_scaling
- conv list
- channel_attention_block_list

6.2.1 Detailed Description

Implements residual group based on [1].

6.2.1.1 References

[1] Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning $https://doi.org/10.1364/BOE.510912 \mbox{ (Implementation based on ResidualGroup from the paper's source code: <math display="block">https://github.com/edward-n-ward/ML-OS-SIM/blob/master/\leftarrow RCAN/Training \% 20 code/models.py)$

6.2.2 Constructor & Destructor Documentation

```
6.2.2.1 __init__()
```

Initialises object.

Parameters

ndim	(int) - Spatial dimension of input features
num_channels	(int) - Number of hidden channels
repeat	(int) - Number of residual blocks in group
channel_reduction	(int) - Channel reduction during attention mechanism
residual_scaling	(float) - output multiplier before residual connection

6.2.3 Member Function Documentation

6.2.3.1 forward()

```
def rcan.model._residual_channel_attention_blocks.forward ( self, \\ x \ )
```

Forward method for class.

Parameters

x (torch.Tensor) - Input values

Returns

torch. Tensor representing output values

6.2.4 Member Data Documentation

6.2.4.1 channel_attention_block_list

rcan.model._residual_channel_attention_blocks.channel_attention_block_list

6.2.4.2 conv_list

rcan.model._residual_channel_attention_blocks.conv_list

6.2.4.3 repeat

 $\verb|rcan.model._residual_channel_attention_blocks.repeat|\\$

6.2.4.4 residual_scaling

rcan.model._residual_channel_attention_blocks.residual_scaling

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py

6.3 rcan.data_processing.lmageStack Class Reference

Handles creation and loading of image hyperstacks in order to make reconstructions using ImageJ easier.

Public Member Functions

```
    def __init__ (self, dim, stack_number, stack_idx, sample, files, n_acq)
        Initialises class.
    def add_image (self, img_data, i)
        Adds an image to the initialised stack.
    def export_stack (self)
        Returns the stack.
```

Public Attributes

- dim
- n_acq
- sample
- stack
- n z

6.3.1 Detailed Description

Handles creation and loading of image hyperstacks in order to make reconstructions using ImageJ easier.

6.3.2 Constructor & Destructor Documentation

Initialises class.

Parameters

dim	(int) - Dimension of images
stack_number	(int) - Number of images in the stack
stack_idx	(int) - The index of the stack within the set of stacks for the files list
sample	(np.ndarray) - Image from the directory which enables correct image stack shape/dtype and error catching
files	(list) - List of all files in directory
n_acq	(int) - Number of SIM acquisitions in the images

6.3.3 Member Function Documentation

6.3.3.1 add_image()

Adds an image to the initialised stack.

Parameters

img_data	(np.ndarray) - Image to be added
i	(int) - Index of the image in the stack

6.3.3.2 export_stack()

```
\label{lem:def:can.data_processing.ImageStack.export\_stack} \mbox{ (} \\ self \mbox{ )}
```

Returns the stack.

Returns

np.ndarray

6.3.4 Member Data Documentation

6.3.4.1 dim

 ${\tt rcan.data_processing.ImageStack.dim}$

6.3.4.2 n_acq

rcan.data_processing.ImageStack.n_acq

6.3.4.3 n_z

 ${\tt rcan.data_processing.ImageStack.n_z}$

6.3.4.4 sample

rcan.data_processing.ImageStack.sample

6.3.4.5 stack

rcan.data_processing.ImageStack.stack

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_processing.py

6.4 synthetic_sim.otf.PsfParameters Class Reference

Class to store PSF parameters.

Static Public Attributes

- int
- float
- Callable

6.4.1 Detailed Description

Class to store PSF parameters.

Class to store the parameters used to evaluate an approximate Gibson-Lanni PSF. Default values are provided except for the PSF size.

6.4.2 Member Data Documentation

6.4.2.1 Callable

synthetic_sim.otf.PsfParameters.Callable [static]

6.4.2.2 float

synthetic_sim.otf.PsfParameters.float [static]

6.4.2.3 int

synthetic_sim.otf.PsfParameters.int [static]

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/otf.py

6.5 rcan.model.RCAN Class Reference

Builds a residual channel attention network.

Inheritance diagram for rcan.model.RCAN:

Collaboration diagram for rcan.model.RCAN:

Public Member Functions

def __init__ (self, input_shape=(16, 256, 256), *num_input_channels=9, num_hidden_channels=32, num
 _residual_blocks=3, num_residual_groups=5, channel_reduction=8, residual_scaling=1.0, num_output_
 channels=-1)

Initialises object.

• def forward (self, x)

Forward method for class.

Public Attributes

- · num residual groups
- rcab_list
- conv_input
- · conv list
- · conv_output

6.5.1 Detailed Description

Builds a residual channel attention network.

Note that the upscale module at the end of the network is omitted so that the input and output of the model have the same size.

6.5.1.1 References

[1] Image Super-Resolution Using Very Deep Residual Channel Attention Networks https://arxiv.eporg/abs/1807.02758 [2] Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning https://doi.org/10.1364/BOE.510912 (Implementation based on RCAN from the paper's source code: https://github.com/edward-n-ward/ML-OS-eporghold-blob/master/RCAN/Training%20code/models.py)

6.5.2 Constructor & Destructor Documentation

6.5.2.1 __init__()

```
def rcan.model.RCAN.__init__ (
    self,
    input_shape = (16, 256, 256),
    * num_input_channels = 9,
    num_hidden_channels = 32,
    num_residual_blocks = 3,
    num_residual_groups = 5,
    channel_reduction = 8,
    residual_scaling = 1.0,
    num_output_channels = -1)
```

Initialises object.

Builds a residual channel attention network. Note that the upscale module at the end of the network is omitted so that the input and output of the model have the same size.

Parameters

input_shape	(tuple[int]) - Input shape of the model.
num_channels	(int) - Number of feature channels.
num_residual_blocks	(int) - Number of residual channel attention blocks in each residual group.
num_residual_groups	(int) - Number of residual groups.
channel_reduction	(int) - Channel reduction ratio for channel attention.
residual_scaling	(float) - Scaling factor applied to the residual component in the residual channel attention block.
num_output_channels	(int) - Number of channels in the output image. if negative, it is set to the same number as the input.

Returns

torch.nn.Module PyTorch model instance.

6.5.3 Member Function Documentation

6.5.3.1 forward()

```
def rcan.model.RCAN.forward ( self, x )
```

Forward method for class.

Parameters

```
x (torch.Tensor) - Input
```

Returns

torch.Tensor Output

6.5.4 Member Data Documentation

6.5.4.1 conv_input

rcan.model.RCAN.conv_input

6.5.4.2 conv_list

rcan.model.RCAN.conv_list

6.5.4.3 conv_output

rcan.model.RCAN.conv_output

6.5.4.4 num_residual_groups

rcan.model.RCAN.num_residual_groups

6.5.4.5 rcab_list

rcan.model.RCAN.rcab_list

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py

6.6 rcan.data_generator.SIM_Dataset Class Reference

Generates batches of images with real-time data augmentation.

 $Inheritance\ diagram\ for\ rcan.data_generator.SIM_Dataset:$

Collaboration diagram for rcan.data_generator.SIM_Dataset:

Public Member Functions

- def __init__ (self, images, shape, transform_function="rotate_and_flip", intensity_threshold=0.0, area_ratio
 _threshold=0.0, scale_factor=1, steps_per_epoch=1, p_min=2.0, p_max=99.9)

 Initialises object.
- def <u>getitem</u> (self, j)

 Method used during batch loading.
- def __len__ (self)

Public Attributes

- · steps_per_epoch
- p_min
- p_max
- output_shape
- · output_signature

Private Member Functions

• def _scale (self, shape)

Private Attributes

- _shape
- _transform_function
- _intensity_threshold
- _area_threshold
- _scale_factor
- _y

6.6.1 Detailed Description

Generates batches of images with real-time data augmentation.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 __init__()

Initialises object.

Parameters

images	(list[dict]) - List of dictionaries of data pairs with keys ["raw","gt"]. Images in CZXY format
shape	(tuple[int]) - Shape of batch images excluding the channel dimension
transform_function	(str or callable, optional) - Function used for data augmentation. Typically you will set transform_function='rotate_and_flip' to apply combination of randomly selected image rotation and flipping. Alternatively, you can specify an arbitrary transformation function which takes two input images (source and target) and returns transformed images. If transform_function=None, no augmentation will be performed. Default: "rotate_and_flip"
intensity_threshold	(float, optional) - If $intensity_threshold > 0$, pixels whose intensities are greater than this threshold will be considered as foreground. Default: 0.0
area_ratio_threshold	(float, optional) - Threshold between 0 and 1. If intensity_threshold > 0, the generator calculates the ratio of foreground pixels in a target patch, and rejects the patch if the ratio is smaller than this threshold. Default: 0.0
scale_factor	(int, optional) - Scale factor for the target patch size. Positive and negative values mean up- and down-scaling respectively. Default: 1
steps_per_epoch	(int, optional) - Determines how many times each image is used to generate a patch per batch. Default: 1
p_min	(float, optional) - Minimum percentile used for scaling. Default: 2.0
p_max	(float, optional) - Maximum percentile used for scaling. Default: 99.9

6.6.3 Member Function Documentation

Method used during batch loading.

Standardises pixel values and takes patches from the image pair. Also implements the rejection of patches based on area/intensity threshold, if $self._intensity_threshold > 0$. Augments data pair.

Parameters

```
j (int) - Index of data to be loaded. Note that if self.steps_per_epoch > 1, this can be more than the dataset size, in which case it is interpreted modulo the dataset size.
```

Returns

tuple(torch.Tensor) raw-gt image pair

```
6.6.3.2 len ()
```

```
\label{lem:def_constraint} $\operatorname{def} \ \operatorname{rcan.data\_generator.SIM\_Dataset.}\_\ \operatorname{len}\_\ ($\operatorname{\it self}\ )
```

6.6.3.3 _scale()

```
def rcan.data_generator.SIM_Dataset._scale ( self, \\ shape \ ) \quad [private]
```

6.6.4 Member Data Documentation

6.6.4.1 _area_threshold

```
rcan.data_generator.SIM_Dataset._area_threshold [private]
```

6.6.4.2 _intensity_threshold

```
\verb|rcan.data_generator.SIM_Dataset._intensity\_threshold | [private]|\\
```

6.6.4.3 _scale_factor

rcan.data_generator.SIM_Dataset._scale_factor [private]

6.6.4.4 _shape

rcan.data_generator.SIM_Dataset._shape [private]

6.6.4.5 _transform_function

rcan.data_generator.SIM_Dataset._transform_function [private]

6.6.4.6 _y

rcan.data_generator.SIM_Dataset._y [private]

6.6.4.7 output_shape

 $\verb|rcan.data_generator.SIM_Dataset.output_shape|\\$

6.6.4.8 output_signature

rcan.data_generator.SIM_Dataset.output_signature

6.6.4.9 p_max

rcan.data_generator.SIM_Dataset.p_max

6.6.4.10 p_min

 $\verb|rcan.data_generator.SIM_Dataset.p_min| \\$

6.6.4.11 steps_per_epoch

```
rcan.data_generator.SIM_Dataset.steps_per_epoch
```

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_generator.py

6.7 generate_sim.SimulationRunner Class Reference

Class which performs a batch of simulations, either sequentially or in parallel.

Public Member Functions

```
    def __init__ (self, input_dir, output_dir, index_range, z_offset)
```

```
• def do sim (self, i, sim, vol)
```

Creates a new random virtual microscope simulator, takes a new sample from the VHP dataset, runs the simulation on the sample, and saves the results, along with the ground truth, in a single TIFF file.

· def run (self)

Runs a series of simulations sequentially.

Public Attributes

- input_dir
- · input files
- · output_dir
- range
- · z offset

6.7.1 Detailed Description

Class which performs a batch of simulations, either sequentially or in parallel.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 __init__()

6.7.3 Member Function Documentation

6.7.3.1 do_sim()

Creates a new random virtual microscope simulator, takes a new sample from the VHP dataset, runs the simulation on the sample, and saves the results, along with the ground truth, in a single TIFF file.

The parameters are saved in an accompanying JSON file.

6.7.3.2 run()

```
\label{eq:continuous} \mbox{def generate\_sim.SimulationRunner.run (} \\ self \mbox{)}
```

Runs a series of simulations sequentially.

6.7.4 Member Data Documentation

6.7.4.1 input_dir

```
{\tt generate\_sim.SimulationRunner.input\_dir}
```

6.7.4.2 input_files

```
generate_sim.SimulationRunner.input_files
```

6.7.4.3 output_dir

```
generate_sim.SimulationRunner.output_dir
```

6.7.4.4 range

```
{\tt generate\_sim.SimulationRunner.range}
```

6.7.4.5 z_offset

```
generate_sim.SimulationRunner.z_offset
```

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py

6.8 generate_sim.Simulator Class Reference

The Simulator class encapsulates the state of a 3D microscope simulation.

Public Member Functions

- def __init__ (self, **kwargs)
- def randomise (self)
- def params_dict (self)
- def psf_params (self)
- def wavevectors (self)

Calculates wavevectors inside the sample for the three beams, for a given number of rotations of those beams.

def illumination (self)

Calculates the illumination intensity in the sample; returns ndarray of shape (n_rotations, n_shifts, n_x, n_x, n_z)

• def in focus plane (self, sample)

Returns the designated 'ground truth' plane.

def psf (self)

Calculates a PSF if it has not been done already.

• def simulate_sim (self, sample)

Calculates the 15 simulated SIM images for a given sample.

def simulate_ideal_superres (self, sample)

Simulates the best-case scenario for a 3D SIM reconstruction, by convolving the in-focus plane with a small PSF.

• def add_noise (self, image)

Adds a combination of Gaussian and Poissonian noise to the image.

Public Attributes

- n_shifts
- n_angles
- n x
- n_z
- n_rotations
- res_axial
- res_lateral
- delta_z_p
- n_sample
- n_i
- n_g
- **Z**
- z_p
- angle_error
- poisson_photons
- signal_to_noise
- lambda0
- k0
- lambda_exc
- k_exc
- beam_position

Private Attributes

- _psf
- _superres_psf
- _illumination

6.8.1 Detailed Description

The Simulator class encapsulates the state of a 3D microscope simulation.

A single instance of this class corresponds to a specific set of microscope parameters. These parameters are randomly chosen upon object creation.

6.8.2 Constructor & Destructor Documentation

6.8.3 Member Function Documentation

6.8.3.1 add noise()

Adds a combination of Gaussian and Poissonian noise to the image.

6.8.3.2 illumination()

```
\label{eq:continuous} \mbox{def generate\_sim.Simulator.illumination (} \\ self \mbox{)}
```

Calculates the illumination intensity in the sample; returns ndarray of shape (n_rotations, n_shifts, n_x, n_x, n_z)

6.8.3.3 in_focus_plane()

Returns the designated 'ground truth' plane.

6.8.3.4 params_dict()

```
\begin{tabular}{ll} $\operatorname{def generate\_sim.Simulator.params\_dict} & \\ & self \end{tabular} \label{eq:self}
```

6.8.3.5 psf()

```
\begin{tabular}{ll} \tt def \ generate\_sim.Simulator.psf \ ( \\ self \ ) \end{tabular}
```

Calculates a PSF if it has not been done already.

6.8.3.6 psf_params()

```
\begin{tabular}{ll} \tt def generate\_sim.Simulator.psf\_params ( \\ self ) \end{tabular}
```

6.8.3.7 randomise()

6.8.3.8 simulate_ideal_superres()

Simulates the best-case scenario for a 3D SIM reconstruction, by convolving the in-focus plane with a small PSF.

6.8.3.9 simulate_sim()

```
def generate_sim.Simulator.simulate_sim ( self, \\ sample )
```

Calculates the 15 simulated SIM images for a given sample.

6.8.3.10 wavevectors()

```
\begin{tabular}{ll} \tt def & \tt generate\_sim.Simulator.wavevectors & ( \\ & \tt self ) \end{tabular}
```

Calculates wavevectors inside the sample for the three beams, for a given number of rotations of those beams.

Returns ndarray of shape (n_rotations, n_beams, 3), where n_beams = 3

6.8.4 Member Data Documentation

94 Class Documentation

6.8.4.1 _illumination

generate_sim.Simulator._illumination [private]

6.8.4.2 _psf

generate_sim.Simulator._psf [private]

6.8.4.3 _superres_psf

generate_sim.Simulator._superres_psf [private]

6.8.4.4 angle_error

generate_sim.Simulator.angle_error

6.8.4.5 beam_position

 ${\tt generate_sim.Simulator.beam_position}$

6.8.4.6 delta_z_p

generate_sim.Simulator.delta_z_p

6.8.4.7 k0

 ${\tt generate_sim.Simulator.k0}$

6.8.4.8 k_exc

 ${\tt generate_sim.Simulator.k_exc}$

6.8.4.9 lambda0

generate_sim.Simulator.lambda0

6.8.4.10 lambda_exc

generate_sim.Simulator.lambda_exc

6.8.4.11 n_angles

generate_sim.Simulator.n_angles

6.8.4.12 n_g

generate_sim.Simulator.n_g

6.8.4.13 n_i

 ${\tt generate_sim.Simulator.n_i}$

6.8.4.14 n_rotations

generate_sim.Simulator.n_rotations

6.8.4.15 n_sample

generate_sim.Simulator.n_sample

6.8.4.16 n_shifts

 ${\tt generate_sim.Simulator.n_shifts}$

96 Class Documentation

6.8.4.17 n_x

generate_sim.Simulator.n_x

6.8.4.18 n_z

generate_sim.Simulator.n_z

6.8.4.19 poisson_photons

generate_sim.Simulator.poisson_photons

6.8.4.20 res_axial

generate_sim.Simulator.res_axial

6.8.4.21 res_lateral

generate_sim.Simulator.res_lateral

6.8.4.22 signal_to_noise

generate_sim.Simulator.signal_to_noise

6.8.4.23 z

generate_sim.Simulator.z

6.8.4.24 z_p

 ${\tt generate_sim.Simulator.z_p}$

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py

Chapter 7

File Documentation

7.1 /home/jhughes2712/projects/sim_project/jh2284/src/analyse.py File Reference

Script producing plots and small datasets that summarise the performance of models.

Namespaces

· analyse

Variables

- analyse.parser = argparse.ArgumentParser()
- · analyse.type
- · analyse.str
- · analyse.required
- · analyse.default
- · analyse.int
- · analyse.action
- analyse.args = parser.parse_args()
- analyse.output_dir = pathlib.Path(args.output_dir)
- · analyse.parents
- · analyse.True
- · analyse.exist_ok
- · tuple analyse.device
- · analyse.ckpt
- · analyse.model
- analyse.gt_dir = pathlib.Path(args.gt_dir)
- analyse.raw_dir = pathlib.Path(args.raw_dir)
- analyse.model_1_dir = pathlib.Path(args.model_1_dir)
- analyse.gt_files = sorted(list(gt_dir.glob(args.glob_str)))
- analyse.raw_files = sorted(list(raw_dir.glob(args.glob_str)))
- analyse.model_1_files = sorted(list(model_1_dir.glob(args.glob_str)))
- analyse.model_2_dir = pathlib.Path(args.model_2_dir)
- analyse.model_2_files = sorted(list(model_2_dir.glob(args.glob_str)))
- analyse.N = len(gt_files)

- analyse.psnr = PSNR(data_range=65536, device=device)
- · analyse.ssim
- · analyse.df
- analyse.gt = reshape_to_bcwh(tifffile.imread(gt_files[i]))
- analyse.raw = reshape to bcwh(tifffile.imread(raw files[i]))
- analyse.model_1 = reshape_to_bcwh(tifffile.imread(model_1_files[i]))
- analyse.model_2 = reshape_to_bcwh(tifffile.imread(model_2_files[i]))
- analyse.rng = np.random.default_rng(seed=31052024)
- analyse.img idx = list(range(N))
- list analyse.gt samples = [np.squeeze(tifffile.imread(gt files[i])) for i in img idx]
- list analyse.raw_samples = [np.squeeze(tifffile.imread(raw_files[i])) for i in img_idx]
- list analyse.model_1_samples
- list analyse.model 2 samples
- · analyse.cmap

7.1.1 Detailed Description

Script producing plots and small datasets that summarise the performance of models.

This script reads directories of reconstructed images, and compares raw versus model reconstructions versus ground truth. The script then produces summary statistics, saves relevant metrics to a .csv file, and produces samples of cropped image regions for comparison.

Arguments:

- · g: directory path for ground-truth images
- · r: directory path for raw images
- · a: directory path for model-1-restored images
- · b: directory path for model-2-restored images
- · o: output directory for analysis plots, default "figures/"
- x: filepath for model 1 checkpoint (plots learning curve)
- y: filepath for model 2 checkpoint (plots learning curve)
- · s: globbing string, to analyse a subset of images
- n: number of sample crops to display, default 0.
- · p: plot only mode, skips data analysis

7.2 /home/jhughes2712/projects/sim_project/jh2284/src/apply.py File Reference

Script producing restored images resulting from an RCAN denoiser being applied to low SNR images.

Namespaces

apply

Variables

- apply.parser = argparse.ArgumentParser()
- · apply.type
- · apply.str
- · apply.required
- · apply.int
- · apply.choices
- · apply.default
- · apply.percentile
- · apply.action
- apply.args = parser.parse args()
- apply.input_path = pathlib.Path(args.input)
- apply.output_path = pathlib.Path(args.output)
- · apply.parents
- apply.raw_files = sorted(input_path.glob("*.tif"))
- apply.data = itertools.zip_longest(raw_files, [])
- · tuple apply.device
- · apply.ckpt
- · apply.model
- apply.RCAN_hyperparameters = ckpt["hyperparameters"]
- list apply.overlap_shape
- apply.raw = normalize(tifffile.imread(raw_file), args.p_min, args.p_max)
- · apply.restored
- apply.output_file = output_path / ("pred_" + raw_file.name)
- apply.imagej

7.2.1 Detailed Description

Script producing restored images resulting from an RCAN denoiser being applied to low SNR images.

This script takes directories of raw images, and a model checkpoint file, and applies the model to the image in a patched fashion. The details of this patching, and the output datatype, can be configured.

Arguments:

- · m: model checkpoint filepath
- · i: low SNR image directory path
- · o: output directory path
- b: specifies pixel bit depth to save for output (8 or 16)
- O: block overlap shape (by default input_shape / 8)
- p_min: input normalization parameter, percentile maps to zero
- p_max: input normalization parameter, percentile maps to one
- normalize_output_range_between_zero_and_one: scaling for output

Adapted from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/apply.py

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

7.3 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_ to_czxy.py File Reference

Script enabling .tif file conversion between OMX and CZXY.

Namespaces

convert_omx_to_czxy

Variables

- convert omx to czxy.parser = argparse.ArgumentParser()
- convert_omx_to_czxy.type
- convert_omx_to_czxy.str
- · convert omx to czxy.required
- convert_omx_to_czxy.int
- convert_omx_to_czxy.action
- convert_omx_to_czxy.args = parser.parse_args()
- convert_omx_to_czxy.input_dir = pathlib.Path(args.input)
- convert omx to czxy.input files = sorted(input dir.rglob("*.tif"))
- convert_omx_to_czxy.original = tifffile.imread(input_file)
- · convert omx to czxy.converted
- convert_omx_to_czxy.imagej

7.3.1 Detailed Description

Script enabling .tif file conversion between OMX and CZXY.

This script takes directories of image volumes as input, and converts, in place, between the OMX and CZXY formats (in either direction). In the OMX format, the first dimension is of size n_p hases x n_z x n_z angles; moving along this dimension, the phase changes first, then the z-value, then the angle. The CZXY format is the same, but the z-dimension of the image is separated into the 2nd dimension, so that the first dimension is just n_z phases x n_z angles.

Arguments:

- · i: image directory
- · p: number of phases
- · a: number of angles
- b: specifies conversion if not used it will be OMX to CZXY, the b flag reverses this direction.

7.4 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_ to_paz.py File Reference

Script enabling .tif file conversion between OMX and PAZ.

Namespaces

· convert_omx_to_paz

Variables

- convert_omx_to_paz.parser = argparse.ArgumentParser()
- · convert omx to paz.type
- convert_omx_to_paz.str
- convert_omx_to_paz.required
- convert_omx_to_paz.int
- convert_omx_to_paz.action
- convert omx to paz.args = parser.parse args()
- convert_omx_to_paz.input_dir = pathlib.Path(args.input)
- convert omx to paz.input files = sorted(input dir.rglob("*.tif"))
- convert omx to paz.original = tifffile.imread(input file)
- convert_omx_to_paz.converted = conv_omx_to_paz(original, args.num_phases, args.num_angles)
- convert_omx_to_paz.imagej

7.4.1 Detailed Description

Script enabling .tif file conversion between OMX and PAZ.

This script takes directories of image volumes as input, and converts, in place, between the OMX and PAZ formats (in either direction). In the OMX format, the first dimension is of size n_phases x n_z x n_angles; moving along this dimension, the phase changes first, then the z-value, then the angle. The PAZ format is the same except the order is changed so that z-values and angels are swapped.

Arguments:

- · i: image directory
- · p: number of phases
- · a: number of angles
- b: specifies conversion if not used it will be OMX to PAZ, the b flag reverses this direction.

7.5 /home/jhughes2712/projects/sim_project/jh2284/src/convert_slices to volumes.py File Reference

Script enabling construction of 3D image volumes from large RGB 2D image slices.

Namespaces

· convert_slices_to_volumes

Variables

- convert_slices_to_volumes.parser = argparse.ArgumentParser()
- · convert slices to volumes.type
- convert_slices_to_volumes.str
- · convert_slices_to_volumes.required
- convert_slices_to_volumes.tuple_of ints
- · convert slices to volumes.default
- convert_slices_to_volumes.args = parser.parse_args()
- convert_slices_to_volumes.input_dir = pathlib.Path(args.input)
- convert_slices_to_volumes.output_dir = pathlib.Path(args.output)
- convert_slices_to_volumes.input_files = sorted(input_dir.glob("*.tif"))
- · convert slices to volumes.parents
- · convert_slices_to_volumes.True
- · convert_slices_to_volumes.exist_ok
- convert_slices_to_volumes.volume = np.zeros((len(input_files), 3061, 4096), dtype=np.uint8)
- convert_slices_to_volumes.input_slice = tifffile.imread(file)
- convert_slices_to_volumes.output_file = output_dir / filename
- · convert slices to volumes.subvolume
- · convert_slices_to_volumes.imagej

7.5.1 Detailed Description

Script enabling construction of 3D image volumes from large RGB 2D image slices.

Takes a directory of 2D image slices as input, and converts to 3D volumes. The 2D images are assumed to be ordered z-axially; the number of images is the number of voxels in the z-direction of the 3D volumes. The lateral cross-sections of the 3D images are determined by script arguments. Saves in uint16 depth.

Arguments:

- i: directory path for 2D images
- · o: directory path for 3D image volumes
- s: start pixel coordinates (x, y)
- j: crop size for image volume (crop_x, crop_y)
- n: number of crops to take in each direction (steps x, steps y)
- · I: filename prefix, default "volume"

7.6 /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py File Reference

Script simulating the acquisition of 3D SIM image volumes.

Classes

· class generate_sim.Simulator

The Simulator class encapsulates the state of a 3D microscope simulation.

· class generate_sim.SimulationRunner

Class which performs a batch of simulations, either sequentially or in parallel.

Namespaces

• generate_sim

Functions

- def generate_sim.arange_zero (n, spacing=1)
- def generate_sim.threshold_norm (sample)

Applies a threshold and normalises the sample to improve contrast.

Variables

- generate_sim.parser = argparse.ArgumentParser()
- generate_sim.type
- generate_sim.str
- generate_sim.required
- · generate sim.int
- · generate sim.default
- generate_sim.args = parser.parse_args()
- · generate_sim.runner

7.6.1 Detailed Description

Script simulating the acquisition of 3D SIM image volumes.

Takes a directory of 3D image volumes as input, and produces synthetic 3-beam SIM volumes of size (15, 32, 256, 256).

Arguments:

- · i: directory path of input volumes
- · o: directory path of output volumes
- · s: start index of sorted input files to process
- e: end index of sorted input files to process
- z: z_offset, used to specify the region of the input volume to use.

7.7 /home/jhughes2712/projects/sim_project/jh2284/src/image_ noising.py File Reference

Script which converts a directory of high-SNR SIM images into a training dataset.

Namespaces

image_noising

Functions

• def image_noising.save_image_pair (gt_img, split, name, channel_idx)

Variables

- image_noising.parser = argparse.ArgumentParser()
- · image noising.type
- · image noising.str
- · image noising.required
- · image_noising.int
- · image_noising.choices
- · image_noising.float
- · image_noising.default
- image_noising.args = parser.parse_args()
- image noising.input path = pathlib.Path(args.input)
- image noising.output path = pathlib.Path(args.output)
- image_noising.parents
- image_noising.output_train_gt_path = output_path.joinpath("Training", "GT")
- image_noising.output_train_raw_path = output_path.joinpath("Training", "Raw")
- image_noising.output_val_gt_path = output_path.joinpath("Validation", "GT")
- image_noising.output_val_raw_path = output_path.joinpath("Validation", "Raw")
- image_noising.output_test_gt_path = output_path.joinpath("Testing", "GT")
- image_noising.output_test_raw_path = output_path.joinpath("Testing", "Raw")
- image noising.data = sorted(input path.glob("*.tif"))
- image_noising.n_acquisitions = tifffile.imread(data[0]).shape[0] // args.channels
- image_noising.n_img = len(data)
- image noising.train size = int((1 args.test fraction) * n img)
- image noising.val size = int(args.val fraction * train size)
- image_noising.rng = np.random.default_rng(seed=25042024)
- image_noising.img_idx_all = list(range(n_img))
- image_noising.img_idx_test = img_idx_all[train_size:]
- image noising.img idx train = img idx all[: train size val size]
- image_noising.img_idx_val = img_idx_all[train_size val_size : train_size]
- image noising.gt = tifffile.imread(img file)
- string image_noising.split = "train"

7.7.1 Detailed Description

Script which converts a directory of high-SNR SIM images into a training dataset.

Each image is duplicated so that a low SNR counterpart is produced, simulating the same sample imaged with a lower illumination intensity. The data is then randomly split into train, validation, and testing subsets.

Arguments:

- · i: directory path of input image
- · o: directory path of output
- · d: dimension
- · s: scale factor used to simulate the low SNR images.
- tf: the fraction of the full dataset used for the hold-out test set.
- vf: the fraction of the training dataset that is reserved for validation during training.

7.8 /home/jhughes2712/projects/sim_project/jh2284/src/manage_ stack.py File Reference

Script handling the stacking and unstacking of groups of images, for the purpose of batch reconstructions.

Namespaces

· manage stack

Variables

- manage_stack.parser = argparse.ArgumentParser()
- · manage stack.type
- · manage_stack.str
- manage_stack.required
- · manage stack.int
- manage_stack.choices
- manage_stack.default
- manage_stack.action
- manage_stack.args = parser.parse_args()
- manage_stack.output_dir = pathlib.Path(args.output_dir)
- · manage stack.parents
- manage_stack.True
- manage_stack.exist_ok
- manage stack.files = sorted(list(pathlib.Path(args.input dir).glob(args.glob str)))
- int manage_stack.stack_number = -1 else args.stack_number
- int manage stack.number of stacks = len(files) // stack number
- manage_stack.sample = tifffile.imread(files[0])
- · manage stack.stack handler
- manage_stack.img_data = tifffile.imread(input_file)
- tuple manage_stack.filename
- tuple manage_stack.output_file = output_dir / filename
- manage_stack.output_data = img_data[j * args.z_slices : (j + 1) * args.z_slices]

7.8.1 Detailed Description

Script handling the stacking and unstacking of groups of images, for the purpose of batch reconstructions.

Takes a directory of images as input, and either stacks or unstacks the images there according to the configuration. 3D Image Volumes are expected to be in PAZ format. Note in unstack mode, images are saved with a first dimension of length 1 - this is the correct format for training the second step models (CZXY).

Arguments:

- · i: directory path of input images
- · o: directory path of output images
- n: output image name prefix only applies in 'stack' mode
- · d: dimension

- · q: number of SIM acquisitions per image
- · g: glob string used to choose images from input directory
- · u: if used, sets mode to 'unstack'
- · s: start index of sorted input files to process
- · e: end index of sorted input files to process
- t: number of images to stack together only applies in 'stack' mode. Default: -1 (all images are stacked)
- z: number of z slices of images only applies in 'unstack' mode

7.9 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/__init__.py File Reference

Namespaces

rcan

7.10 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_- sim/__init__.py File Reference

Namespaces

• synthetic sim

7.11 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_ generator.py File Reference

Module that handles processing and batching of data during training loop.

Classes

· class rcan.data generator.SIM Dataset

Generates batches of images with real-time data augmentation.

Namespaces

· rcan.data_generator

Functions

def rcan.data_generator.load_SIM_dataset (images, shape, batch_size, transform_function, intensity_

 threshold, area_threshold, scale_factor, steps_per_epoch, p_min, p_max)

Wraps SIM_Dataset object in a PyTorch Dataloader object to enable batch loading.

7.11.1 Detailed Description

Module that handles processing and batching of data during training loop.

This module primarily defines the SIM_Datatset class which handles image cropping, normalization, augmentation, and intensity-threshold-area based rejection.

Migrated from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/rcan/data_←
generator.py

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

7.12 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_-processing.py File Reference

Contains tools used to pre-process image data.

Classes

class rcan.data_processing.ImageStack

Handles creation and loading of image hyperstacks in order to make reconstructions using ImageJ easier.

Namespaces

· rcan.data_processing

Functions

- def rcan.data_processing.crop_volume (volume, num_steps, start, step, label)

 Takes an image volume and divides part of it into smaller volumes by cropping lateral sections (the full z dimension is used)
- def rcan.data_processing.conv_omx_to_czxy (original, n_phases, n_angles)

Converts image array from OMX (PZA format) to CZXY format.

def rcan.data_processing.conv_czxy_to_omx (original, n_phases, n_angles)

Converts image array from CZXY to OMX format.

- def rcan.data_processing.conv_omx_to_paz (original, n_phases, n_angles)
 - Converts image array from OMX (PZA format) to PAZ format.
- def rcan.data_processing.conv_paz_to_omx (original, n_phases, n_angles)

Converts image array from PAZ to OMX(PZA) format.

7.12.1 Detailed Description

Contains tools used to pre-process image data.

7.13 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py File Reference

Module defining the RCAN model architecture.

Classes

• class rcan.model._channel_attention_block

Implements channel attention block/layer.

class rcan.model._residual_channel_attention_blocks

Implements residual group based on [1].

· class rcan.model.RCAN

Builds a residual channel attention network.

Namespaces

· rcan.model

Functions

- def rcan.model._conv (ndim, in_filters, out_filters, kernel_size, padding="same", **kwargs)

 Returns the appropriate torch.nn convolution layer based on parameters.
- def rcan.model._global_average_pooling (ndim)

Returns the appropriate torch.nn pooling layer based on parameters.

• def rcan.model._standardize (x)

Standardises input data.

• def rcan.model._destandardize (x)

Inverse of _standardize.

7.13.1 Detailed Description

Module defining the RCAN model architecture.

Module that defines a number of classes inheriting from nn.Module, implementing different levels of the RCAN architecture. This includes the channel attention layer, residual channel attention block, and RCAN itself.

Migrated from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/rcan/model.py

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

7.14 /home/jhughes2712/projects/sim_← project/jh2284/src/rcan/plotting.py File Reference

Module providing helper functions for matplotlib plots.

Namespaces

· rcan.plotting

Functions

def rcan.plotting.plot_learning_curve (losses_train, losses_val, psnr_train, psnr_val, ssim_train, ssim_val, fig-size, output_path)

Plots the learning curve metrics from a model checkpoint according to loss, PSNR, and SSIM.

Plots a sample of reconstructions comparing GT vs Raw vs Restored.

7.14.1 Detailed Description

Module providing helper functions for matplotlib plots.

Provides tools to assist with analysis of trained networks, including samples of restored reconstructions, metrics, and model progress during training.

7.15 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/utils.py File Reference

Contains utility functions for the training loop and inference.

Namespaces

rcan.utils

Functions

• def rcan.utils.normalize (image, p_min=2, p_max=99.9, dtype="float32")

Normalizes the image intensity so that the p_{min} -th and the p_{max} -th percentiles are converted to 0 and 1 respectively.

def rcan.utils.apply (model, data, model_input_image_shape, model_output_image_shape, num_input_

 channels, num_output_channels, batch_size, device, overlap_shape=None, verbose=False)

Applies a model to an input image.

def rcan.utils.load_rcan_checkpoint (ckpt_path, device)

Enables loading of RCAN checkpointed model.

def rcan.utils.tuple_of_ints (string)

Defines behaviour of parsing tuples of ints (argparse).

• def rcan.utils.percentile (x)

Defines behaviour of parsing percentiles (argparse).

def rcan.utils.reshape_to_bcwh (data)

Reshapes 2D or 3D array to have batch x channel x width x height format, by prepending extra dimensions.

def rcan.utils.normalize_between_zero_and_one (data)

Coerce pixel values to [0, 1] range.

• def rcan.utils.compute_metrics (img, gt_img, psnr, ssim)

Uses ignite metric objects to compute PSNR and SSIM.

7.15.1 Detailed Description

Contains utility functions for the training loop and inference.

Migrated from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/rcan/utils.py

Copyright 2021 SVision Technologies LLC. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

7.16 /home/jhughes2712/projects/sim_project/jh2284/src/recon_postprocess.py File Reference

Script handling the postprocessing of SIM reconstructions.

Namespaces

· recon_postprocess

Variables

- recon_postprocess.parser = argparse.ArgumentParser()
- recon_postprocess.type
- · recon_postprocess.str
- · recon_postprocess.required
- recon postprocess.args = parser.parse args()
- recon_postprocess.files = sorted(list(pathlib.Path(args.input_dir).rglob("*.tif")))
- recon_postprocess.img_data = tifffile.imread(input_file)

7.16.1 Detailed Description

Script handling the postprocessing of SIM reconstructions.

Takes a directory of images as input, clips zero values, and scales to the full 16-bit depth range. Operates in-place.

Arguments:

· i: directory path of input images

7.17 /home/jhughes2712/projects/sim_project/jh2284/src/recon_← preprocess.py File Reference

Script handling the preprocessing of images before SIM reconstruction.

Namespaces

· recon_preprocess

Functions

• def recon_preprocess.normalize_acquisition_intensity (data, dim)

Variables

- recon preprocess.parser = argparse.ArgumentParser()
- · recon preprocess.type
- · recon_preprocess.str
- recon_preprocess.required
- recon_preprocess.int
- recon_preprocess.choices
- · recon preprocess.percentile
- · recon preprocess.default
- recon_preprocess.action
- recon_preprocess.args = parser.parse_args()
- recon_preprocess.output_dir = pathlib.Path(args.output_dir)
- · recon preprocess.parents
- recon_preprocess.True
- · recon_preprocess.exist_ok
- recon_preprocess.files = sorted(list(pathlib.Path(args.input_dir).glob("*.tif")))
- recon_preprocess.img_data = tifffile.imread(input_file).astype("float32")
- recon_preprocess.output_file = output_dir / input_file.name

7.17.1 Detailed Description

Script handling the preprocessing of images before SIM reconstruction.

Takes a directory of images as input, equalizes the total acquisition, intensities within each image, subtracts background and extreme pixels on a percentile basis, then scales to the full 16-bit depth range.

Arguments:

- · i: directory path of input images
- · o: directory path of output images
- · d: dimension
- I: lower percentile used for clipping (background)
- u: upper percentile used for clipping (bright values)
- · n: turns on normalization of acquisition intensity

7.18 /home/jhughes2712/projects/sim_project/jh2284/src/stats.py File Reference

Namespaces

stats

Functions

• def stats.paired_t (gt_data, data)

Variables

```
• stats.parser = argparse.ArgumentParser()
```

- · stats.type
- · stats.str
- · stats.required
- · stats.int
- · stats.choices
- · stats.default
- stats.args = parser.parse_args()
- stats.output_dir = pathlib.Path(args.output_dir)
- · stats.parents
- · stats.True
- stats.exist_ok
- · stats.df
- stats.fig
- · stats.ax
- · stats.figsize
- stats.psnr_diff_1_max
- stats.psnr_diff_2_max
- stats.psnr_diff_1_min
- stats.psnr_diff_2_min
- tuple stats.hist_range_psnr
- stats.ssim_diff_1_max
- stats.ssim_diff_2_max
- stats.ssim_diff_1_min
- stats.ssim_diff_2_min
- tuple stats.hist_range_ssim
- · stats.xlabel
- · stats.title
- · stats.range
- · stats.color
- stats.mean_psnr_1 = np.mean(np.array(df['psnr_model_1']) np.array(df['psnr_raw']))
- stats.se_psnr_1
- stats.mean_ssim_1 = np.mean(np.array(df['ssim_model_1']) np.array(df['ssim_raw']))
- stats.se_ssim_1
- stats.mean psnr 2
- stats.se_psnr_2
- stats.mean_ssim_2
- stats.se_ssim_2

- int stats.psnr_cols = 2 else df.columns[1:3]
- int stats.ssim_cols = 2 else df.columns[3:5]
- stats.dflong
- · stats.dflongssim
- stats.data
- stats.x
- stats.y
- stats.hue
- stats.dodge
- stats.legend
- · stats.palette
- stats.alpha
- · stats.lw

7.19 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_ sim/otf.py File Reference

Classes

· class synthetic_sim.otf.PsfParameters

Class to store PSF parameters.

Namespaces

· synthetic_sim.otf

Functions

def synthetic_sim.otf.calc_psf (params)

Calculate an approximate Gibson-Lanni PSF based on the parameters provided.

7.20 /home/jhughes2712/projects/sim_project/jh2284/src/train.py File Reference

Script used to train RCAN.

Namespaces

· train

Functions

- def train.load_data_paths (config, data_type)
- def train.train (train_loader, val_loader, optimizer, scheduler, net, batchsize, n_accumulations, saveinter-val, nepoch, start_epoch=0, losses_train_epoch=[], losses_val_epoch=[], psnr_train_epoch=[], psnr_val_epoch=[], ssim_train_epoch=[], ssim_val_epoch=[])

Variables

- train.parser = argparse.ArgumentParser()
- · train.type
- train.str
- · train.required
- train.args = parser.parse_args()
- · dictionary train.schema
- train.config = json.load(f)
- int train.ndim = tifffile.imread(training_data[0]["raw"]).ndim 1
- train.input_shape = config["input_shape"]
- · tuple train.device
- train.ckpt_path = None if args.model_ckpt is None else pathlib.Path(args.model_ckpt)
- · train.model
- dictionary train.RCAN_hyperparameters
- · train.ckpt
- · train.train_loader
- · train.val loader
- · train.optimizer
- · train.scheduler
- train.output_dir = pathlib.Path(args.output_dir)
- · train.parents
- train.True
- · train.exist ok
- · train.n accumulations
- · train.saveinterval
- train.nepoch
- train.start_epoch
- train.losses_train_epoch
- · train.losses val epoch
- train.psnr_train_epoch
- train.psnr_val_epoch
- train.ssim_train_epoch
- train.ssim_val_epoch

7.20.1 Detailed Description

Script used to train RCAN.

Reads the specified config.json file, and trains an RCAN model accordingly. Intermediate training progress is saved using model checkpoints. Can handle resumed model training if a previous checkpoint is provided.

Arguments:

- · c: filepath for config JSON file
- · o: path of model checkpoint directory
- · m: filepath of intermediate model checkpoint (if given, training resumes from this checkpoint)

Adapted from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/train.py

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

Index

```
/home/jhughes2712/projects/sim_project/jh2284/src/analyse.py,
                                                                  75
                                                             rcan.model.RCAN, 81
/home/jhughes2712/projects/sim_project/jh2284/src/apply.py,len_
                                                             rcan.data generator.SIM Dataset, 86
/home/jhughes2712/projects/sim_project/jh2284/src/convertaceaxthoestalphy,
                                                             rcan.data_generator.SIM_Dataset, 86
/home/jhughes2712/projects/sim project/jh2284/src/convertcomx to paz.py,
                                                             rcan.model, 42
/home/jhughes2712/projects/sim_project/jh2284/src/convertdestasdtardizaelumes.py,
                                                             rcan.model, 43
/home/jhughes2712/projects/sim project/jh2284/src/generate/lostianl.pay/erage pooling
                                                             rcan.model, 43
/home/jhughes2712/projects/sim_project/jh2284/src/image_ihloisringatiogn
                                                             generate_sim.Simulator, 93
/home/jhughes2712/projects/sim_project/jh2284/src/managentstasktypythreshold
                                                             rcan.data_generator.SIM_Dataset, 86
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/__ipsif_
                                                             generate_sim.Simulator, 94
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/dataatgenerator.py,
                                                             rcan.data_generator.SIM_Dataset, 86
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/dataateofæetsing.py,
                                                             rcan.data generator.SIM Dataset, 86
/home/jhughes2712/projects/sim project/jh2284/src/rcan/mosthelppy,
                                                             rcan.data_generator.SIM_Dataset, 87
/home/jhughes2712/projects/sim project/jh2284/src/rcan/plosttangdaydize
                                                             rcan.model, 43
/home/jhughes2712/projects/sim project/jh2284/src/rcan/utilsuperres psf
                                                             generate_sim.Simulator, 94
/home/jhughes2712/projects/sim_project/jh2284/src/recon__tarasteriores_sturn_ction
                                                             rcan.data_generator.SIM_Dataset, 87
/home/jhughes2712/projects/sim project/jh2284/src/recon preprocess.py,
                                                             rcan.data generator.SIM Dataset, 87
/home/jhughes2712/projects/sim_project/jh2284/src/stats.py,
                                                        action
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic samalysat 10.py,
                                                             apply, 16
          106
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_spantato_czxy, 19
                                                             convert_omx_to_paz, 22
                                                             manage_stack, 34
/home/jhughes2712/projects/sim_project/jh2284/src/train.py,
                                                             recon_preprocess, 51
         113
                                                        add image
 _getitem_
                                                             rcan.data_processing.ImageStack, 78
    rcan.data generator.SIM Dataset, 85
                                                        add_noise
 _init
                                                             generate sim.Simulator, 92
    generate sim.SimulationRunner, 88
                                                        alpha
    generate sim.Simulator, 91
                                                             stats, 55
    rcan.data generator.SIM Dataset, 85
                                                        analyse, 9
    rcan.data_processing.lmageStack, 77
                                                             action, 10
    rcan.model._channel_attention_block, 72
                                                             args, 10
    rcan.model. residual channel attention blocks,
                                                             ckpt, 10
```

cmap, 10	RCAN_hyperparameters, 18
default, 10	required, 18
device, 10	restored, 18
df, 10	str, 19
exist_ok, 11	type, 19
gt, 11	arange_zero
gt_dir, 11	generate_sim, 26
gt_files, 11	args
gt_samples, 11	analyse, 10
img_idx, 11	apply, 16
int, 12	convert omx to czxy, 20
model, 12	convert_omx_to_paz, 22
model_1, 12	convert_slices_to_volumes, 24
model_1_dir, 12	generate_sim, 27
model_1_files, 12	_
	image_noising, 29
model_1_samples, 12	manage_stack, 34
model_2, 12	recon_postprocess, 49
model_2_dir, 13	recon_preprocess, 51
model_2_files, 13	stats, 55
model_2_samples, 13	train, 65
N, 13	ax
output_dir, 13	stats, 55
parents, 13	
parser, 13	beam_position
psnr, 14	generate_sim.Simulator, 94
raw, 14	and a mark
raw_dir, 14	calc_psf
raw_files, 14	synthetic_sim.otf, 63
raw_samples, 14	Callable
required, 14	synthetic_sim.otf.PsfParameters, 79
rng, 14	channel_attention_block_list
ssim, 14	rcan.modelresidual_channel_attention_blocks,
str, 15	76
True, 15	choices
type, 15	apply, 16
angle_error	image_noising, 29
generate_sim.Simulator, 94	manage_stack, 34
apply, 15	recon_preprocess, 51
action, 16	stats, 55
args, 16	ckpt
choices, 16	analyse, 10
	apply, 16
ckpt, 16	train, 65
data, 16	ckpt_path
default, 16	train, 65
device, 16	cmap
imagej, 16	analyse, 10
input_path, 17	color
int, 17	stats, 55
model, 17	
output_file, 17	compute_metrics
output_path, 17	rcan.utils, 46
overlap_shape, 17	config
parents, 17	train, 66
parser, 18	conv_1
percentile, 18	rcan.modelchannel_attention_block, 73
raw, 18	conv_2
raw_files, 18	rcan.modelchannel_attention_block, 73
rcan.utils, 46	conv_czxy_to_omx
,	rcan.data_processing, 39

conv_input	volume, 26
rcan.model.RCAN, 82	converted
conv_list	convert_omx_to_czxy, 20
rcan.modelresidual_channel_attention_blocks,	convert_omx_to_paz, 22
76	crop_volume
rcan.model.RCAN, 82	rcan.data_processing, 40
conv_omx_to_czxy	
rcan.data_processing, 39	data
conv_omx_to_paz	apply, 16
rcan.data_processing, 39	image_noising, 29
conv_output	stats, 55
rcan.model.RCAN, 83	default
conv_paz_to_omx	analyse, 10
rcan.data_processing, 40	apply, 16
convert_omx_to_czxy, 19	convert_slices_to_volumes, 24
action, 19	generate_sim, 27
args, 20	image_noising, 30
converted, 20	manage_stack, 34
imagej, 20	recon_preprocess, 52
input_dir, 20	stats, 56
input_files, 20	delta_z_p
int, 20	generate sim.Simulator, 94
original, 20	device
parser, 21	analyse, 10
required, 21	apply, 16
str, 21	train, 66
type, 21	df
convert_omx_to_paz, 21	analyse, 10
_	stats, 56
action, 22	dflong
args, 22	stats, 56
converted, 22	dflongssim
imagej, 22	stats, 56
input_dir, 22	dim
input_files, 22	rcan.data_processing.lmageStack, 78
int, 22	do_sim
original, 22	generate_sim.SimulationRunner, 89
parser, 23	
required, 23	dodge
str, 23	stats, 56
type, 23	exist_ok
convert_slices_to_volumes, 23	analyse, 11
args, 24	convert_slices_to_volumes, 24
default, 24	manage_stack, 34
exist_ok, 24	recon_preprocess, 52
imagej, <mark>24</mark>	stats, 57
input_dir, 24	train, 66
input_files, 24	
input_slice, 24	export_stack
output_dir, 24	rcan.data_processing.ImageStack, 78
output_file, 25	fig
parents, 25	stats, 57
parser, 25	figsize
required, 25	-
str, 25	stats, 57
subvolume, 25	filename
True, 25	manage_stack, 34
tuple_of_ints, 25	files
type, 26	manage_stack, 34
	recon_postprocess, 49

recon_preprocess, 52	res_lateral, 96
float	signal_to_noise, 96
image_noising, 30	simulate_ideal_superres, 93
synthetic sim.otf.PsfParameters, 80	simulate_sim, 93
forward	wavevectors, 93
rcan.modelchannel_attention_block, 73	z, 96
	•
rcan.modelresidual_channel_attention_blocks,	z_p, 96
75	global_average_pooling
rcan.model.RCAN, 82	rcan.modelchannel_attention_block, 73
	gt
generate_sim, 26	analyse, 11
arange_zero, 26	image_noising, 30
args, 27	gt_dir
default, 27	analyse, 11
int, 27	
parser, 27	gt_files
required, 27	analyse, 11
·	gt_samples
runner, 28	analyse, 11
str, 28	
threshold_norm, 27	hist_range_psnr
type, 28	stats, 57
generate_sim.SimulationRunner, 88	hist_range_ssim
init, 88	stats, 57
do_sim, 89	hue
input_dir, 89	stats, 57
input_files, 89	stats, 57
• —	illumination
output_dir, 89	
range, 89	generate_sim.Simulator, 92
run, 89	image_noising, 28
z_offset, 90	args, 29
generate_sim.Simulator, 90	choices, 29
init, 91	data, 29
illumination, 93	default, 30
_psf, 94	float, 30
_superres_psf, 94	gt, 30
add_noise, 92	img_idx_all, 30
	-
angle_error, 94	img_idx_test, 30
beam_position, 94	img_idx_train, 30
delta_z_p, 94	img_idx_val, 30
illumination, 92	input_path, 30
in_focus_plane, 92	int, 31
k0, 94	n_acquisitions, 31
k_exc, 94	n_img, 31
lambda0, 94	output_path, 31
lambda_exc, 95	output test gt path, 31
	output test raw path, 31
n_angles, 95	
n_g, 95	output_train_gt_path, 31
n_i, 95	output_train_raw_path, 31
n_rotations, 95	output_val_gt_path, 32
n_sample, 95	output_val_raw_path, 32
n_shifts, 95	parents, 32
n_x, 95	parser, 32
n z, 96	required, 32
params_dict, 92	rng, 32
poisson_photons, 96	save_image_pair, 29
psf, 92	split, 32
psf_params, 92	str, 32
randomise, 93	train_size, 33
res_axial, 96	type, 33

val_size, 33	generate_sim.Simulator, 95
imagej	legend
apply, 16	stats, 58
convert_omx_to_czxy, 20	load_data_paths
convert_omx_to_paz, 22	train, 65
convert_slices_to_volumes, 24	load_rcan_checkpoint
img_data	rcan.utils, 47
manage_stack, 35	load_SIM_dataset
recon_postprocess, 50	rcan.data_generator, 37
recon_preprocess, 52	losses_train_epoch
img_idx	train, 66
analyse, 11	losses_val_epoch
img_idx_all	train, 66
image_noising, 30	lw
img_idx_test	stats, 58
image_noising, 30	manage stack, 33
img_idx_train	action, 34
image_noising, 30 img_idx_val	args, 34
-	choices, 34
image_noising, 30 in focus plane	default, 34
generate_sim.Simulator, 92	exist_ok, 34
input_dir	filename, 34
convert_omx_to_czxy, 20	files, 34
convert_omx_to_paz, 22	img_data, 35
convert_clinz_to_paz, 22 convert_slices_to_volumes, 24	int, 35
generate_sim.SimulationRunner, 89	number_of_stacks, 35
input_files	output_data, 35
convert_omx_to_czxy, 20	output_dir, 35
convert_omx_to_paz, 22	output_file, 35
convert_slices_to_volumes, 24	parents, 35
generate_sim.SimulationRunner, 89	parser, 35
input_path	required, 36
apply, 17	sample, 36
image_noising, 30	stack_handler, 36
input shape	stack_number, 36
train, 66	str, <mark>36</mark>
input slice	True, 36
convert_slices_to_volumes, 24	type, 36
int	mean_psnr_1
analyse, 12	stats, 58
apply, 17	mean_psnr_2
convert_omx_to_czxy, 20	stats, 58
convert_omx_to_paz, 22	mean_ssim_1
generate_sim, 27	stats, 58
image_noising, 31	mean_ssim_2
manage stack, 35	stats, 58
recon_preprocess, 52	model
stats, 58	analyse, 12
synthetic_sim.otf.PsfParameters, 80	apply, 17
oyoo_o	train, <mark>66</mark>
k0	model_1
generate_sim.Simulator, 94	analyse, 12
k_exc	model_1_dir
generate_sim.Simulator, 94	analyse, 12
	model_1_files
lambda0	analyse, 12
generate_sim.Simulator, 94	model_1_samples
lambda_exc	analyse, 12

model 0	analyse 10
model_2	analyse, 13
analyse, 12	convert_slices_to_volumes, 24
model_2_dir	generate_sim.SimulationRunner, 89
analyse, 13	manage_stack, 35
model_2_files	recon_preprocess, 52
analyse, 13	stats, 59
model_2_samples	train, 67
analyse, 13	output_file
	apply, 17
N	convert_slices_to_volumes, 25
analyse, 13	manage_stack, 35
n_accumulations	recon_preprocess, 52
train, 67	output_path
n_acq	apply, 17
rcan.data_processing.ImageStack, 78	image_noising, 31
n_acquisitions	output_shape
image_noising, 31	rcan.data_generator.SIM_Dataset, 87
n_angles	output_signature
generate_sim.Simulator, 95	rcan.data_generator.SIM_Dataset, 87
n_g	output test gt path
generate_sim.Simulator, 95	
n i	image_noising, 31
generate_sim.Simulator, 95	output_test_raw_path
_	image_noising, 31
n_img	output_train_gt_path
image_noising, 31	image_noising, 31
n_rotations	output_train_raw_path
generate_sim.Simulator, 95	image_noising, 31
n_sample	output_val_gt_path
generate_sim.Simulator, 95	image_noising, 32
n_shifts	output_val_raw_path
generate_sim.Simulator, 95	image_noising, 32
n_x	overlap_shape
generate_sim.Simulator, 95	apply, 17
n_z	
generate_sim.Simulator, 96	p_max
rcan.data_processing.ImageStack, 78	rcan.data_generator.SIM_Dataset, 87
ndim	p_min
train, 67	rcan.data_generator.SIM_Dataset, 87
nepoch	paired_t
train, 67	stats, 55
normalize	palette
rcan.utils, 47	stats, 59
normalize_acquisition_intensity	params dict
recon_preprocess, 51	generate_sim.Simulator, 92
normalize_between_zero_and_one	parents
rcan.utils, 48	analyse, 13
num_residual_groups	apply, 17
	convert_slices_to_volumes, 25
rcan.model.RCAN, 83	
number_of_stacks	image_noising, 32
manage_stack, 35	manage_stack, 35
	recon_preprocess, 52
optimizer	stats, 59
train, 67	train, 67
original	parser
convert_omx_to_czxy, 20	analyse, 13
convert_omx_to_paz, 22	apply, 18
output_data	convert_omx_to_czxy, 21
manage_stack, 35	convert_omx_to_paz, 23
output_dir	convert_slices_to_volumes, 25

ganarata aim 07	gotitom 95
generate_sim, 27	getitem, 85
image_noising, 32	init, 85
manage_stack, 35	len, 86
recon_postprocess, 50	_area_threshold, 86
recon_preprocess, 53	_intensity_threshold, 86
stats, 59	_scale, 86
train, 68	_scale_factor, 86
percentile	_shape, 87
apply, 18	_transform_function, 87
rcan.utils, 48	_y, 87
recon_preprocess, 53	output_shape, 87
plot_learning_curve	output_signature, 87
rcan.plotting, 44	p_max, 87
plot_reconstructions	p_min, 87
rcan.plotting, 45	steps_per_epoch, 87
poisson_photons	rcan.data_processing, 38
generate_sim.Simulator, 96	conv_czxy_to_omx, 39
psf	conv_omx_to_czxy, 39
generate_sim.Simulator, 92	conv_omx_to_paz, 39
psf_params	conv_paz_to_omx, 40
generate_sim.Simulator, 92	crop_volume, 40
psnr	rcan.data_processing.lmageStack, 76
analyse, 14	init , 77
psnr_cols	add image, 78
stats, 59	dim, 78
psnr_diff_1_max	export_stack, 78
stats, 59	n_acq, 78
psnr_diff_1_min	n_z, 78
stats, 59	sample, 79
	stack, 79
psnr_diff_2_max	•
stats, 60	rcan.model, 42
psnr_diff_2_min	_conv, 42
stats, 60	_destandardize, 43
psnr_train_epoch	_global_average_pooling, 43
train, 68	_standardize, 43
psnr_val_epoch	rcan.modelchannel_attention_block, 71
train, 68	init, 72
randomise	conv_1, 73
generate sim.Simulator, 93	conv_2, 73
,	forward, 73
range	global_average_pooling, 73
generate_sim.SimulationRunner, 89	rcan.modelresidual_channel_attention_blocks, 74
stats, 60	init, 75
raw	channel_attention_block_list, 76
analyse, 14	conv_list, 76
apply, 18	forward, 75
raw_dir	repeat, 76
analyse, 14	residual_scaling, 76
raw_files	rcan.model.RCAN, 80
analyse, 14	init, 81
apply, 18	conv_input, 82
raw_samples	conv_list, 82
analyse, 14	conv_output, 83
rcab_list	forward, 82
rcan.model.RCAN, 83	num_residual_groups, 83
rcan, 37	rcab_list, 83
rcan.data_generator, 37	rcan.plotting, 44
load_SIM_dataset, 37	plot_learning_curve, 44
rcan.data_generator.SIM_Dataset, 83	p.ooag_oa.ro, 11

plot_reconstructions, 45	res_lateral
rcan.utils, 45	generate_sim.Simulator, 96
apply, 46	reshape_to_bcwh
compute_metrics, 46	rcan.utils, 48
load_rcan_checkpoint, 47	residual_scaling
normalize, 47	rcan.modelresidual_channel_attention_blocks,
normalize_between_zero_and_one, 48	76
percentile, 48	restored
reshape_to_bcwh, 48	apply, 18
tuple_of_ints, 49	rng
RCAN_hyperparameters	analyse, 14
apply, 18	image_noising, 32
train, 68	run
recon_postprocess, 49	generate_sim.SimulationRunner, 89
args, 49	runner
files, 49	generate_sim, 28
img data, 50	_
parser, 50	sample
required, 50	manage_stack, 36
str, 50	rcan.data_processing.lmageStack, 79
type, 50	save_image_pair
recon_preprocess, 50	image_noising, 29
action, 51	saveinterval
args, 51	train, 68
choices, 51	scheduler
default, 52	train, 69
exist_ok, 52	schema
files, 52	train, 69
img_data, 52	se_psnr_1
int, 52	stats, 60
normalize_acquisition_intensity, 51	se_psnr_2
output_dir, 52	stats, 60
output file, 52	se_ssim_1
parents, 52	stats, 61
parser, 53	se_ssim_2
percentile, 53	stats, 61
required, 53	signal_to_noise
str, 53	generate_sim.Simulator, 96
True, 53	simulate_ideal_superres
type, 53	generate_sim.Simulator, 93
repeat	simulate_sim
rcan.model. residual channel attention blocks,	generate_sim.Simulator, 93
76	split
required	image_noising, 32
analyse, 14	ssim
apply, 18	analyse, 14
convert omx to czxy, 21	ssim_cols
convert omx to paz, 23	stats, 61
convert_slices_to_volumes, 25	ssim_diff_1_max
generate_sim, 27	stats, 61
image_noising, 32	ssim_diff_1_min
manage_stack, 36	stats, 61
	ssim_diff_2_max
recon_postprocess, 50	stats, 62
recon_preprocess, 53	ssim_diff_2_min
stats, 60	stats, 62
train, 68	ssim_train_epoch
res_axial	train, 69
generate_sim.Simulator, 96	ssim_val_epoch

train, 69	type, 62
stack	x, 63
rcan.data_processing.ImageStack, 79 stack_handler	xlabel, 63
	y, 63
manage_stack, 36 stack_number	steps_per_epoch rcan.data_generator.SIM_Dataset, 87
	str
manage_stack, 36 start_epoch	analyse, 15
train, 69	apply, 19
stats, 53	convert_omx_to_czxy, 21
alpha, 55	convert_omx_to_paz, 23
args, 55	convert_slices_to_volumes, 25
ax, 55	generate_sim, 28
choices, 55	image_noising, 32
color, 55	manage_stack, 36
data, 55	recon postprocess, 50
default, 56	recon_preprocess, 53
df, 56	stats, 62
dflong, 56	train, 69
dflongssim, 56	subvolume
dodge, 56	convert_slices_to_volumes, 25
exist_ok, 57	synthetic_sim, 63
fig, 57	synthetic_sim.otf, 63
figsize, 57	calc_psf, 63
hist_range_psnr, 57	synthetic_sim.otf.PsfParameters, 79
hist_range_ssim, 57	Callable, 79
hue, 57	float, 80
int, 58	int, 80
legend, 58	Alexandra dal con como
lw, 58	threshold_norm
mean_psnr_1, 58	generate_sim, 27
mean_psnr_2, 58	title
mean_ssim_1, 58	stats, 62
mean_ssim_2, 58	train, 64 args, 65
output_dir, 59	ckpt, 65
paired_t, 55	ckpt_path, 65
palette, 59	config, 66
parents, 59	device, 66
parser, 59	exist_ok, 66
psnr_cols, 59	input_shape, 66
psnr_diff_1_max, 59	load_data_paths, 65
psnr_diff_1_min, 59 psnr_diff_2_max, 60	losses_train_epoch, 66
psnr_diff_2_min, 60	losses_val_epoch, 66
range, 60	model, 66
required, 60	n accumulations, 67
se_psnr_1, 60	ndim, 67
se psnr 2,60	nepoch, 67
se_ssim_1, 61	optimizer, 67
se_ssim_2, 61	output_dir, 67
ssim_cols, 61	parents, 67
ssim_diff_1_max, 61	parser, 68
ssim_diff_1_min, 61	psnr_train_epoch, 68
ssim_diff_2_max, 62	psnr_val_epoch, 68
ssim_diff_2_min, 62	RCAN_hyperparameters, 68
str, 62	required, 68
title, 62	saveinterval, 68
True, 62	scheduler, 69
	schema, 69

```
ssim_train_epoch, 69
                                                        z_p
     ssim_val_epoch, 69
                                                             generate_sim.Simulator, 96
    start_epoch, 69
    str, 69
    train, 65
    train loader, 69
    True, 70
    type, 70
    val loader, 70
train loader
    train, 69
train_size
    image_noising, 33
True
    analyse, 15
    convert_slices_to_volumes, 25
     manage stack, 36
    recon_preprocess, 53
    stats, 62
    train, 70
tuple_of_ints
    convert_slices_to_volumes, 25
     rcan.utils, 49
type
    analyse, 15
    apply, 19
    convert_omx_to_czxy, 21
    convert omx to paz, 23
    convert slices to volumes, 26
    generate_sim, 28
    image_noising, 33
    manage_stack, 36
     recon_postprocess, 50
    recon_preprocess, 53
    stats, 62
    train, 70
val_loader
    train, 70
val_size
    image_noising, 33
volume
    convert_slices_to_volumes, 26
wavevectors
     generate_sim.Simulator, 93
Χ
    stats, 63
xlabel
     stats, 63
У
    stats, 63
Z
    generate_sim.Simulator, 96
z_offset
    generate_sim.SimulationRunner, 90
```