Definitions

Definition (Norm). Given $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, the <u>norm</u> of x is defined by $||x|| := (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

Definition (Metric). A <u>metric</u> on a set *X* is a function $d: X \times X \to \mathbb{R}$ such that

- 1. $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y.
- 2. $d(x,y) = d(y,x) \forall x,y \in X$.
- 3. $d(x,z) \le d(x,y) + d(y,z), \forall x, y, z \in X$.

A **metric space** (X, d) is a set X equipped with a metric.

Definition (Euclidean Metric). The Euclidean Metric d on \mathbb{R}^n is defined by $d(\vec{x}, \vec{y}) := ||\vec{x} - \vec{y}|| = [(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2]^{1/2}$

Definition (Open/Closed Balls). Let $\vec{x} \in \mathbb{R}^n$ and $\varepsilon > 0$. The <u>open ball</u> of radius ε centered at \vec{x} with respect to the metric d_p is the subset $B^p_{\vec{x}}(\varepsilon) := \{\vec{y} \in \mathbb{R}^n | d_p(\vec{x}, \vec{y}) < \varepsilon\}$.

Respectively, the <u>closed ball</u> is the subset $\overline{B}_{\vec{x}}^p(\varepsilon) \coloneqq \{\vec{y} \in \mathbb{R}^n | d_p(\vec{x}, \vec{y}) \le \varepsilon\}.$

Definition (3.1 Continuity). A function $f: \mathbb{R} \to \mathbb{R}$ is **continuous at** $\vec{a} \in \mathbb{R}^n$ with respect to the metric d_p if and only if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $d_p(\vec{a}, \vec{x}) < \delta \implies d_p(f(\vec{a}), f(\vec{x})) < \varepsilon$.

We say f is **continuous** with respect to the metric d_p if and only if f is continuous $\forall \vec{a} \in \mathbb{R}^n$.

Definition (3.3 Converging Sequence). Let *S* be a set. A **sequence** in *S* is a function $\sigma : \mathbb{N} \to S$.

A sequence $\{\vec{x_k} \subseteq \mathbb{R}^n\}$ converges to $\vec{a} \in \mathbb{R}^n$ with respect to the metric d_p if and only if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $d_p(\vec{x_k}, \vec{a}) < \varepsilon \ \forall k \ge N$.

Definition (4.1 Closed/Open Subsets). Let $A \subseteq \mathbb{R}^n$. A is **closed in \mathbb{R}^n** if and only if \forall convergent sequences $\{x_k\} \subseteq A$, we have $\lim_{k \to \infty} x_k \in A$.

A is **open in** \mathbb{R}^n if and only if $\mathbb{R}^n - A$ is closed.

Definition (6.1 Topological Space). A **topological space** is a pair (X, \mathcal{T}) consisting of a set X and a collection $\mathcal{T} \subseteq \mathcal{P}(X)$ of subsets of X satisfying the following axioms:

- 1. $X \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$.
- 2. If $\{U_i\}_{i\in I}$ is a collection of subsets of X and $\forall i\in I$ and $U_i\in \mathcal{T}$, then $\bigcup_{i\in I}U_i\in \mathcal{T}$.
- 3. If $\{U_1, U_2, \dots, U_n\}$ is a finite collection of subsets of X such that $U_i \in \mathcal{T} \ \forall i = 1 \dots n$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

Definition (6.2). Let (X, \mathcal{T}) be a topological space.

- 1. A subset $U \subseteq X$ is **open** if and only if $U \in \mathcal{T}$.
- 2. A subset $A \subseteq X$ is **closed** if and only if $X A \in T$ is open.
- 3. Elements $x \in X$ are **points** of X.
- 4. If $x \in X$ and $U \in T$ such that $x \in U$, then U is a **neighborhood** of x.

Definition (Different Topologies). Let *X* be a set. Then

- 1. **Metric Topology**: Let (X, d) be a metric space. $\mathcal{T}_d := \{U \subseteq X | U = \emptyset \text{ or } \forall x \in U, \exists \varepsilon > 0 \text{ such that } B_x(\varepsilon) \subseteq U\}.$
- 2. **Discrete Topology**: $\mathcal{T}_{disc} := \{U \subseteq X\} = \mathcal{P}(X)\}$, i.e. every subset of X will be open.
- 3. Trivial Topology: $\mathcal{T}_{\text{triv}} := \{X, \emptyset\} \subseteq \mathcal{P}(X)$.
- 4. **Cofinite Topology** (6.5): $\mathcal{T}_{cof} := \{U \subseteq X | U = \emptyset \text{ or } X U \text{ is finite} \}.$

5. **Subspace Topology** (7.1): Let $A \subseteq X$. Then $\mathcal{T}_A := \{U \cap A | U \in \mathcal{T}\}.$

Definition (6.4 Comparable). Let X be a set and let \mathcal{T}_1 , \mathcal{T}_2 be topologies on X. We say \mathcal{T}_1 and \mathcal{T}_2 are **comparable** if and only if $\mathcal{T}_1 \subseteq \mathcal{T}_2$ or vice-versa. If $\mathcal{T}_1 \subseteq \mathcal{T}_2$, we say \mathcal{T}_1 is **coarser/smaller** than \mathcal{T}_2 and that \mathcal{T}_2 is **finer/larger** than \mathcal{T}_1 .

Definition (8.2 Limit Points). Let X be a topological space and $A \subseteq X$ a subset. A point $y \in X$ is a **limit point** of A if and only if for every open subset $U \subseteq X$ containing y, $A \cap (U - \{y\}) \neq \emptyset$. Define $L(A) := \{y \in X | y \text{ is a limit point of } A\}$.

Definition (9.2 Closure). Let *X* be a topological space, $A \subseteq X$ a subset. The <u>closure</u> of *A* in *X*, \overline{A} , is the intersection of all closed subsets of *X* containing *A*, that is, $\overline{A} := \bigcap B$ such that $B \subseteq X$ is closed and $A \subseteq B$.

Definition (10.3 Interior/Boundary). Let X be a space, $A \subseteq X$ be a subset. The <u>interior</u> of A, \mathring{A} , is the union of all open subsets contained in A, that is, $\mathring{A} := \bigcup U$ such that $U \subseteq A$ is open. The **boundary** of A is the subset $\partial A := \overline{A} - \mathring{A}$.

Definition (11.1 Dense/Separable). Let X be a topological space. A subset $A \subseteq X$ is **dense** if and only if $\overline{A} = X$. X is **separable** if and only if X contains a countable dense subset, that is, $\exists A \subseteq X$ such that $\operatorname{card}(A) = \operatorname{card}(\mathbb{N})$ and $\overline{A} = X$.

Definition (11.2 Basis). If X is a set, a <u>basis for a topology</u> on X is a collection \mathcal{B} of subsets of X (called basis elements) such that

- 1. For each $x \in X$, there is at least 1 element $B \in \mathcal{B}$ such that $x \in B$.
- 2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then $\exists B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Definition (14.1 2nd Countability). A topological space (X, \mathcal{T}) is **2nd Countable** if and only if there is a countable basis $\mathcal{B} = \{B_i\}_{i>1}^{\infty}$ for the topology \mathcal{T} .

Definition (15.1 Continuity). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces. Let $x \in X$. A function $f: X \to Y$ is **continuous** at x if and only if for every open subset $V \subseteq Y$ containing f(x), there is an open subset $U \subseteq X$ such that $x \in U$ and $f(U) \subseteq V$. $F: X \to Y$ is **continuous** if and only if $\forall x \in X$, f is continuous at x.

Definition (17.1 Homeomorphism). A continuous injective and surjective function $f: X \to Y$ between topological spaces is a **homeomorphism** if and only if its set-theoretic inverse $f^{-1}: Y \to X$ is continuous.

Two spaces are **homeomorphic** if and only if there exists a homeomorphism $f: X \to Y$ between them. We write $X \cong Y$.

Definition (18.1 Open/Closed maps). A map $f: X \to Y$ is an **open** (or **closed** map if and only if for each open (or closed) subset $B \subseteq X$, the image $f(B) \subseteq Y$ is open (or closed).

Definition (19.3 Metrizable). A topological space (X, T) is <u>metrizable</u> if and only if there is a metric $d : X \times X \to \mathbb{R}$ such that the metric topology T_d equals T.

Definition (19.5 Topological Property). A property \underline{P} of a topological space is a **topological property** if and only if it is preserved by a homeomorphism. i.e. if (X, \mathcal{T}_X) has a property P and $(X, \mathcal{T}_X) \cong (Y, \mathcal{T}_Y)$, then (Y, \mathcal{T}_Y) also has property P.

Definition (19.7 Converging Sequence). A sequence of points $\{x_n\}_{n\geq 1}^{\infty}$ of a topological space X **converges to a point** $x\in X$ if and only if for every open neighborhood U of x, there is an N>0 such that $x_n\in U$ $\forall n>N$.

Definition (19.9 Hausdorff). A space (X, T) is <u>Hausdorff</u> if and only if for each pair of distinct points $x \neq y \in X$, there exist open subsets $U, V \subseteq X$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition (20.5).

- 1. *X* is T_0 if and only if for any points $x \neq y \in X$, there exist open subsets $U \subseteq X$ such that $x \in U$ and $y \notin U$ OR $y \in U$ and $x \notin U$.
- 2. *X* is T_1 if and only if $\forall x \in X$, $\{x\} \subseteq X$ is closed.

- 3. X is T_2 if and only if X is Hausdorff.
- 4. X is $\underline{T_3}$ if and only if for every closed subset $A \subseteq X$ and $\forall x \in X A$, there exist open subsets U_A , $U_X \in X$ such that $\overline{A} \subseteq U_A$ and $x \in U_X$.
- 5. X is $\underline{T_4}$ if and only if for any pair of disjoint closed subsets $A, B \subseteq X$, there exist disjoint open subsets $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$.

Definition (23.1). An **open cover** of a (,) X is a collection $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ of open subsets of X such that $X = \bigcup_{{\alpha} \in A} I_{\alpha}$. If $\mathcal{U}' = \{U_{\beta}\}_{{\beta} \in A'} \subseteq \mathcal{U}$ is a subcollection of \mathcal{U} such that $X = \bigcup_{{\beta} \in A'} U_{\beta}$, then \mathcal{U}' is a subcover of \mathcal{U} .

Definition (23.3). A (,)X is **compact** if and only if every open cover of X has a finite subcover.

THEOREMS AND SUCH

Theorem (3.4). $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\vec{a} \in \mathbb{R}^n$ if and only if for any sequence $\{\vec{x_k}\} \subseteq \mathbb{R}^n$ that converges to \vec{a} , the sequence $\{\vec{y_k}\} \subseteq \mathbb{R}^m$ where $\vec{y_k} = f(\vec{x_k} \text{ converges to } f(\vec{a})$. That is, $f(\lim \vec{x_k}) = \lim f(\vec{x_k})$.

Proposition (4.2). A nonempty subset $U \subseteq \mathbb{R}^n$ is open if and only if $\forall x \in U$, $\exists \varepsilon > 0$ such that $B_{\varepsilon}(\varepsilon) \subseteq U$.

Proposition (4.5). Let $f: \mathbb{R}^n \to \mathbb{R}^m$.

- 1. f is continuous at $x \in \mathbb{R}^n$ if and only if for all open subsets $V \subseteq \mathbb{R}^m$ containing f(x), there is an open subset $U \subseteq \mathbb{R}^n$ containing x such that $U \subseteq f^{-1}(V)$.
- 2. f is continuous if and only if for every open subset $V \subseteq \mathbb{R}^m$, the subset $U = f^{-1}(V)$ is open in \mathbb{R}^n .

Theorem (5.2).

- 1. \mathbb{R}^n and \emptyset are open subsets of \mathbb{R}^n .
- 2. If $\{U_i\}_{i\in I}$ is a collection of open subsets of \mathbb{R}^n , then $\bigcup_{i\in I} U_i$ is an open subset.
- 3. If $\{U_1, \ldots, U_m\}$ is a finite collection of open subsets of \mathbb{R}^n , then $\bigcap_{i=1}^m U_i$ is an open subset.

Theorem (8.1). Let *X* be a topological space. Then

- 1. X and \emptyset are closed subsets.
- 2. Finite unions of closed subsets are closed.
- 3. Arbitrary intersections of closed subsets are closed.

Theorem (8.4). Let *X* be a topological space and let $A \subseteq X$. Then *A* is closed if and only if $L(A) \subseteq A$.

Remark (9.1). Useful trick to show a subset $V \subseteq X$ is open:

For each $y \in V$, find an open subset $U_y \subseteq X$ such that $y \in U_y$ and $U_y \subseteq V$. Then this implies that $V = \bigcup_{y \in V} U_y$ by

Axiom 2 of a topological space and so V is open.

Theorem (9.5). Let $A \subseteq X$ be a subset of a topological space X. Then $\overline{A} = A \cup L(A)$.

Proposition (10.1). Let *X* be a space, $Y \subseteq X$ a subspace. Then $B \subseteq Y$ is closed in Y if and only if there is a closed subset $A \subseteq X$ such that $B = Y \cap A$.

Proposition (10.6). Let *X* be a space, $A \subseteq X$, and $x \in X$. Then $x \in \mathring{A}$ if and only if there is an open neighborhood $V \subseteq X$ of x such that $V \subseteq A$.

Proposition (10.7). Let *X* be a space, $A \subseteq X$, and $x \in X$. Then $x \in \partial A$ if and only if for every open neighborhood $U \subseteq X$ of x, we have $U \cap A \neq \emptyset$ and $U \cap (X - A) \neq \emptyset$.

Proposition (11.3). The subset $A \subseteq X$ is dense if and only if $A \cap U \neq \emptyset$, where U is any non-empty open subset of X.

Proposition (12.1). Let X be a set, \mathcal{B} be a basis for a topology on X.

- 1. The collection of subsets $\mathcal{T}_{\mathcal{B}} := \{U \subseteq X | \forall x \in U, \exists B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}$ is a topology on X generated by \mathcal{B} .
- 2. A subset $U \subseteq (X, \mathcal{T}_{\mathcal{B}})$ is open if and only if U is a union of elements in \mathcal{B} .

Proposition (12.2). If (X, \mathcal{T}) is a topological space and $\mathcal{B} \subseteq \mathcal{T}$ such that $\forall U \in \mathcal{T}$ and $\forall x \in U \exists B \in \mathcal{B}$ such that $x \in B \subseteq U$, then \mathcal{B} is a basis and $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$.

Proposition (12.4 Comparison Lemma). Let \mathcal{T} , \mathcal{T}' be topologies on X and let \mathcal{B} , \mathcal{B}' be bases for \mathcal{T} , \mathcal{T}' respectively. Then $\mathcal{T} \subseteq \mathcal{T}'$ if and only if $\forall x \in X$ and $\forall B \in \mathcal{B}$ containing x, $\exists B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Theorem (14.2). If (X, \mathcal{T}) is 2nd countable, then X contains a countable dense subset. That is, (X, \mathcal{T}) is separable.

Proposition (14.3). Let $\mathbb{R}_I = (\mathbb{R}, \mathcal{T}_I)$ be the lower limit topology. Then \mathbb{R}_I is separable and \mathbb{R}_I is NOT 2nd countable.

Theorem (14.4). Let (X,d) be a metric space. Let \mathcal{T}_d be the metric topology on X induced by d. If (X,\mathcal{T}_d) is separable, then it is 2nd countable.

Theorem (15.2). A function $f: X \to Y$ is is continuous if and only if for every open subset $V \subseteq Y$, $f^{-1}(V) \subseteq X$ is open.

Proposition (15.3). Let (X, d_X) , (Y, d_Y) be metric spaces and \mathfrak{T}_{d_X} , \mathfrak{T}_{d_Y} be their corresponding metric topologies. Then a function $f: X \to Y$ is a map between (X, d_X) and (Y, d_Y) if and only if $\forall a \in X$ and $\forall \varepsilon > 0$, $\exists \delta_a > 0$ such that if $d_X(x, a) < \delta_a$, then $d_Y(f(x), f(a)) < \varepsilon$.

Theorem (16.1). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces and let $f: X \to Y$. Then

- 1. f is continuous if and only if for every closed subset $B \subseteq Y$, $f^{-1}(B) \subseteq X$ is closed.
- 2. Let \mathcal{B}_X , \mathcal{B}_Y be bases for \mathcal{T}_X , \mathcal{T}_Y respectively. Then f is continuous if and only if $\forall B' \in \mathcal{B}_Y$ and $\forall x \in f^{-1}(B')$, $\exists B \subseteq \mathcal{B}_X$ such that $x \in B \subseteq f^{-1}(B')$.

Proposition (16.3). If $f: X \to Y$, $g: Y \to Z$ are continuous functions between spaces X, Y and Z, then $g \circ f: X \to Z$ is continuous.

Corollary (16.4 Restriction of Domain). If $f: X \to Y$ is continuous and $A \subseteq X$ is equipped with the subspace topology, then the restriction $f|_A := f \circ i_A : A \to Y$ is continuous, where $i_A(a) := a$.

Proposition (16.6). Let $f: X \to Y$ be continuous, $B \subseteq Y$ be a subspace, and $j_Y: B \to Y$ be the inclusion function. Suppose $f(X) \subseteq B$. Then there exists a unique continuous function $g: X \to B$ such that $f = j_B \circ g$.

Theorem (16.7 "Pasting Lemma"). Let X, Y be topological spaces and let $\mathbf{a} = \{A_{\alpha}\}_{\alpha \in I}$ be a collection of subspaces of X such that $X = \bigcup_{\alpha \in I} A_{\alpha}$. Suppose $\{f : A_{\alpha} \to Y\}_{\alpha \in I}$ is a collection of continuous functions such that $f_{\alpha}|_{A_{\alpha} \cap A_{\beta}} = f_{\beta}|_{A_{\alpha} \cap A_{\beta}} \ \forall \alpha, \beta \in I$. If either

- 1. **a** is a collection of open subspaces of *X*, or
- 2. **a** is a finite collection of closed subspaces of *X*,

then there exists a unique continuous function $f: X \to Y$ such that $f|_{A_\alpha} = f_\alpha \ \forall \alpha \in I$.

Proposition (18.2). Let $f: X \to Y$ be a continuous bijection. Then f is a homeomorphism if and only if f is an open (or closed) map.

Proposition (19.1). If $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ is a homeomorphism, then it induces a bijection of sets $\mathcal{T}_X\leftrightarrow \mathcal{T}_Y$, i.e. there is a one-to-one correspondence between topologies X and Y where $U\mapsto f(U)$ and $V\mapsto f^{-1}(V)$.

Theorem (19.10). If (X,d) is a metric space, then (X,\mathcal{T}_d) is Hausdorff.

Proposition (20.6).

- 1. T_1 and T_2 properties are necessary, but NOT sufficient for (X, \mathcal{T}) to be metrizable.
- 2. Separation and countability properties are distinct.

Theorem (20.8). If *X* is Hausdorff, then every sequence in *X* converges to at MOST one point.

Definition (21.1). *X* is **regular** if and only if *X* is T_0 and T_3 . *X* is **normal** if and only if *X* is T_1 and T_4 .

Proposition (21.2).

- 1. $T_1 \Longrightarrow T_0$
- 2. $T_2 \Longrightarrow T_1$
- 3. T_1 and $T_3 \implies T_2$

4. T_1 and $T_4 \Longrightarrow T_3$

Theorem (21.3). If (X, \mathcal{T}) is a topological space and metrizable, then X is T_i for i = 0, 1, 2, 3, 4.

Proposition (22.1). If $A \subseteq X$ is a subspace and X is metrizable, then A is T_i for i = 0, 1, 2, 3, 4.

Lemma (22.2). If X is metrizable and $A \subseteq X$ is a subspace, then A (equipped with the subspace topology) is metrizable.

Theorem (22.3).

- 1. If *X* is Hausdorff (T_2) , then every subspace in *X* is T_2 .
- 2. If *X* is T_1 and T_3 , then every subspace $A \subseteq X$ is T_1 and T_3 .

Remark (23.5). Heine-Borel Theorem: Every closed interval $[a,b] \subseteq \mathbb{R}$ is compact. More generally, every closed and <u>bounded</u> subspace of \mathbb{R}^n is compact. e.g. $S^n \subseteq \mathbb{R}^{n+1}$, $\overline{B}_{\vec{x}}(\varepsilon) \subseteq \mathbb{R}^m$.

Theorem (23.6). Let $f: X \to Y$ be a continuous function between topological spaces X and Y. If X is compact, then the subspace $f(X) \subseteq Y$ is compact.

Remark (23.7). Theorem 23.6 implies that compactness is a topological property. That is, if $f: X \to Y$ is a homeomorphism between spaces X and Y, then X is compact if and only if Y is compact.

Corollary (23.8). \mathbb{R} is not homeomorphic to [a,b] for any $a,b \in R$. Hence $[a,b] \not\cong (a,b)$.