Professional program in AI

Eigenvalues and eigenvectors

May 30, 2019

System interpretation

Az = [A = 2

Matrix defined by how it "operates on" input

vectors

Examples: scalar matrix, diagonal matrix, rotation

manix

Eigenvalues and Eigenvectors

A $\in \mathbb{R}^{n \times n}$, λ is an eigen value of A if $A \times = A \times for$ some $\times \neq 0$. \times is an eigen vector corresponding to λ .

Examples:

Symmetric matrices

A real symmetric nxn matrix has northogonal eigen vectors:

A
$$v_1 = \lambda_1 v_1$$
, $A v_2 = \lambda_2 v_2$, $---$, $A v_3 = \lambda_1 v_3$
Share $v_i^T v_j^* = \delta$ for $i \neq j$ and $||v_i||_2 = 1$.
Can be written as $AV = VD$ or $A = VDV^T$

Quadratic forms

Given a symmetric matrix A,

$$\alpha^T A \chi = \sum_{ij=1}^{\infty} \chi_i \chi_j^* A_{ij}$$

Examples

Optima of quadratic forms

For any symmetric matrix A with largest eigen value λ_1 and smallest eigen value λ_n ,

matr & xAx & Axx

For any vector 2.

Positive semi definite matrices

A (symmetric) matrix S is positive semi definite if
$$z^TSz > D$$
 for all z^L .

S is positive semi-definite if and only if all eigen values of S are non-negative

Examples: Covariance matrix, Gram matrix

Matrix norms

$$Az = A = z$$

$$||A|| = \max \frac{||Az||_2}{||z||_2} = \lambda_{\max}$$

Rank of a matrix

Rank of a (symmetric) matrix is The number

of non-zero eigen values.

9f rank is n, the matrix has an inverse, and $\bar{A}' = V\bar{D}'V^T$

Low rank approximation

