

Neural Networks

Lecturer: Dr. Bo Yuan

E-mail: yuanb@sz.tsinghua.edu.cn

Overview

Biological Motivation

- ➤ 10¹¹: The number of neurons in the human brain
- ➤ 10⁴: The average number of connections of each neuron
- ➤ 10⁻³: The fastest switching time of neurons
- ➤ 10-10: The switching speed of computers
- ➤ 10-1: The time required to visually recognize your mother

Biological Motivation

- The power of parallelism
- The information processing abilities of biological neural systems follow from highly parallel processes operating on representations that are distributed over many neurons.
- The motivation of ANN is to capture this kind of highly parallel computation based on distributed representations.
- Group A
 - Using ANN to study and model biological learning processes.
- Group B
 - Obtaining highly effective machine learning algorithms, regardless of how closely these algorithms mimic biological processes.

Case Study

Perceptrons

$$o(x_{1},...,x_{n}) = \begin{cases} 1, & if \ w_{0} + w_{1} \cdot x_{1} + \dots + w_{n} \cdot x_{n} > 0 \\ 0, & otherwise \end{cases}$$

Power of Perceptrons

Inp	out	Σ	Output
0	0	-0.8	0
0	1	-0.3	0
1	0	-0.3	0
1	1	0.3	1

OR

Inj	out	\sum	Output
0	0	-0.3	0
0	1	0.2	1
1	0	0.2	1
1	1	0.7	1

Error Surface

Gradient Descent

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
 Batch Learning

$$\nabla E(\overrightarrow{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n}\right]$$

$$w_i \leftarrow w_i + \Delta w_i \quad where \quad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$
 Learning Rate

Delta Rule

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \qquad o(x) = w \cdot x$$

$$= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - w \cdot x_d)$$

$$= \sum_{d \in D} (t_d - o_d) (-x_{id})$$

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

$$o(x) = w \cdot x$$

Batch Learning

GRADIENT_DESCENT (training_examples, η)

- \bullet Initialize each w_i to some small random value.
- Until the termination condition is met, Do
 - Initialize each ∆w_i to zero.
 - For each <x, t> in training_examples, Do
 - Input the instance x to the unit and compute the output o
 - For each linear unit weight w_i , Do
 - $-\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$
 - For each linear unit weight w_i, Do
 - $W_i \leftarrow W_i + \Delta W_i$

Stochastic Learning

$$w_i \leftarrow w_i + \Delta w_i$$
 where $\Delta w_i = \eta(t - o)x_i$

For example, if x_i =0.8, η =0.1, t=1 and o=0

$$\Delta w_i = \eta(t-o)x_i = 0.1 \times (1-0) \times 0.8 = 0.08$$

Stochastic Learning: NAND

			Tar]	Initia	I	Out		put				Final			
	Input		get		eigh/		Ind	divid	ual	Sum	Final Output	Error	Correction		eigh'	
x_0	x_1	X ₂	t	\mathbf{w}_0	W_1	W_2	C_0	C_1	C_2	S	0	Е	R	\mathbf{w}_0	w_1	W ₂
							x ₀ · w ₀	$egin{array}{c} {\sf X}_1 \\ {\sf \cdot} \\ {\sf W}_1 \end{array}$	x ₂ · W ₂	C_0+ C_1+ C_2		t-o	LR x E			
1	0	0	1	0	0	0	0	0	0	0	0	1	+0.1	0.1	0	0
1	0	1	1	0.1	0	0	0.1	0	0	0.1	0	1	+0.1	0.2	0	0.1
1	1	0	1	0.2	0	0.1	0.2	0	0	0.2	0	1	+0.1	0.3	0.1	0.1
1	1	1	0	0.3	0.1	0.1	0.3	0.1	0.1	0.5	0	0	0	0.3	0.1	0.1
1	0	0	1	0.3	0.1	0.1	0.3	0	0	0.3	0	1	+0.1	0.4	0.1	0.1
1	0	1	1	0.4	0.1	0.1	0.4	0	0.1	0.5	0	1	+0.1	0.5	0.1	0.2
1	1	0	1	0.5	0.1	0.2	0.5	0.1	0	0.6	1	0	0	0.5	0.1	0.2
1	1	1	0	0.5	0.1	0.2	0.5	0.1	0.2	0.8	1	-1	-0.1	0.4	0	0.1
1	0	0	1	0.4	0	0.1	0.4	0	0	0.4	0	1	+0.1	0.5	0	0.1
1	1	0	1	0.8	2	1	8.0	2	0	0.6	1	0	0	8.0	2	1

threshold=0.5 learning rate=0.1

Multilayer Perceptron

XOR

$$p \oplus q = p\overline{q} + \overline{p}q = (p+q)(\overline{pq})$$

Inț	Output			
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Cannot be separated by a single line.

XOR

$$p \oplus q = \neg (p \land q) \land (p \lor q)$$

Hidden Layer Representations

The Sigmoid Threshold Unit

Sigmoid Function

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\sigma(y) = \frac{1}{1 + e^{-y}} \qquad \frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))$$

Backpropagation Rule

$$E_d(\overline{w}) = \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2 \qquad \Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

$$\frac{\partial E_d}{\partial w_{ii}} = \frac{\partial E_d}{\partial net_i} \cdot \frac{\partial net_j}{\partial w_{ii}} = \frac{\partial E_d}{\partial net_j} x_{ji}$$

- x_{ii} = the i th input to unit j
- w_{ii} = the weight associated with the i th input to unit j
- $net_i = \sum w_{ii} x_{ii}$ (the weighted sum of inputs for unit j)
- o_i = the output of unit j
- t_i= the target output of unit j
- σ = the sigmoid function
- *outputs* = the set of units in the final layer
- Downstream(j) = the set of units directly taking the output of unit j as inputs

Training Rule for Output Units

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \cdot \frac{\partial o_j}{\partial net_j}$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= \frac{1}{2} 2 (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j)$$

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j} = o_j(1 - o_j)$$

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j)o_j(1 - o_j)$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji}$$

Training Rule for Hidden Units

$$\begin{split} \frac{\partial E_{d}}{\partial net_{j}} &= \sum_{k \in Downstream(j)} \frac{\partial E_{d}}{\partial net_{k}} \frac{\partial net_{k}}{\partial net_{j}} = \sum_{k \in Downstream(j)} -\delta_{k} \frac{\partial net_{k}}{\partial o_{j}} \frac{\partial o_{j}}{\partial net_{j}} \\ &= \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} \frac{\partial o_{j}}{\partial net_{j}} = \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} \frac{\partial o_{j}}{\partial o_{j}} \frac{\partial net_{k}}{\partial net_{j}} \end{split}$$

$$\begin{split} \delta_k &= -\frac{\partial E_d}{\partial net_k} \\ \delta_j &= o_j (1 - o_j) \sum_{k \in Downstream(j)} \delta_k w_{kj} \end{split}$$

$$\Delta w_{ji} = \eta \delta_j x_{ji}$$

BP Framework

- * BACKPROPAGATION (*training_examples*, η , n_{in} , n_{out} , n_{hidden})
- \diamond Create a network with n_{in} inputs, n_{hidden} hidden units and n_{out} output units.
- Initialize all network weights to small random numbers.
- Until the termination condition is met, Do
 - For each <x, t> in training_examples, Do
 - Input the instance x to the network and computer the output o of every unit.
 - For each output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

• For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

• Update each network weight w_{ii}

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji} = w_{ji} + \eta \delta_j x_{ji}$$

More about BP Networks ...

- Convergence and Local Minima
 - The search space is likely to be highly multimodal.
 - May easily get stuck at a local solution.
 - Need multiple trials with different initial weights.
- Evolving Neural Networks
 - Black-box optimization techniques (e.g., Genetic Algorithms)
 - Usually better accuracy
 - Can do some advanced training (e.g., structure + parameter).
 - Xin Yao (1999) "Evolving Artificial Neural Networks", Proceedings of the IEEE, pp. 1423-1447.
- Representational Power
- Deep Learning

More about BP Networks ...

- Overfitting
 - Tend to occur during later iterations.
 - Use validation dataset to terminate the training when necessary.
- Practical Considerations
 - Momentum
 - Adaptive learning rate

• Small: slow convergence, easy to get stuck

• Large: fast convergence, unstable

 $\Delta w_{ii}(n) = \eta \delta_i x_{ii} + \alpha \Delta w_{ii}(n-1)$

Beyond BP Networks

Elman Network

Beyond BP Networks

- ullet $w_{ii}=0, orall i$ (no unit has a connection with itself)
- $w_{ij} = w_{ji}, orall i, j$ (connections are symmetric)

$$E = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j + \sum_i \theta_i \ s_i$$

Hopfield Network

Energy Landscape of Hopfield Network

Beyond BP Networks

When does ANN work?

- Instances are represented by attribute-value pairs.
 - Input values can be any real values.
- The target output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes.
- The training samples may contain errors.
- Long training times are acceptable.
 - Can range from a few seconds to several hours.
- Fast evaluation of the learned target function may be required.
- The ability to understand the learned function is not important.
 - Weights are difficult for humans to interpret.

Reading Materials

Text Book

- R. O. Duda et al., Pattern Classification, Chapter 6, John Wiley & Sons Inc.
- * Tom Mitchell, *Machine Learning*, Chapter 4, McGraw-Hill.
- http://page.mi.fu-berlin.de/rojas/neural/index.html.html

Online Demo

- http://neuron.eng.wayne.edu/software.html
- http://facstaff.cbu.edu/~pong/ai/hopfield/hopfieldapplet.html

Online Tutorial

- http://www.autonlab.org/tutorials/neural13.pdf
- http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html