Titre: Théorème des deux carrés

Recasages: 121,122,126

Thème : Théorie des anneaux, arithmétique Références : Perrin - Cours d'algèbre (p. 57,58)

<u>Théorème</u> 1. Soit $\Sigma := \{n \in \mathbb{N} \mid \exists a, b \in \mathbb{Z} \mid a^2 + b^2 = n\}$, si p est premier, alors on a équivalence entre

- (i) $p \in \Sigma$.
- (ii) p = 2 ou $p \equiv 1[4]$.

Commençons par remarquer que la condition est nécéssaire : soit $a^2 + b^2 \in \Sigma$, si a = 2k est pair, on a $a^2 = 4k^2 \equiv 0$ [4], et si a = 2k + 1 est impair, on a $a^2 = 4k^2 + 4k + 1 \equiv 1$ [4] de même pour b, donc $a^2 + b^2 \equiv 0$, 1 ou 2[4]. Comme p est premier, on a bien p = 2 ou $p \equiv 1$ [4]. Ensuite, on introduit l'anneau des entiers de Gauss :

$$Z[i] = \{ z = a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z} \}$$

(c'est un sous-anneau comme image de $\mathbb{Z}[X]$ par le morphisme d'évalutation des polynômes en i). Pour $z=a+ib\in\mathbb{Z}[i]$, on pose $N(z)=z\overline{z}=a^2+b^2$, on remarque ainsi que Σ est constitué de l'image de $\mathbb{Z}[i]$ par N.

<u>Proposition</u> 2. L'anneau $\mathbb{Z}[i]$ est euclidien pour le stathme N. Par ailleurs ses inversibles sont donnés par $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$

Démonstration. L'application N est multiplicative : N(zz') = N(z)N(z') pour $z, z' \in \mathbb{Z}[i]$, en particulier, si $z \in \mathbb{Z}[i]^{\times}$, alors $1 = N(1) = N(z)N(z^{-1})$, donc $N(z) \in \mathbb{N}$ est un élément inversible : $N(z) = 1 = N(z^{-1})$. Si z = a + ib, alors on a

$$a = \pm 1 \text{ et } b = 0 \text{ ou } a = 0 \text{ et } b = \pm 1$$

d'où $\mathbb{Z}[i]^{\perp} \subset \{\pm 1, \pm i\}$, et l'inclusion réciproque est immédiate.

Considérons maintenant $z, z' \in \mathbb{Z}[i]$ avec $z' \neq 0$, on peut considérer $x + iy = \frac{z}{z'} \in \mathbb{C}$. On considère (a, b) l'unique couple d'entiers tel que $|a - x| \leq 1/2$ et $|b - y| \leq 1/2$ (on prends les parties entières ou les parties entières +1 selon les cas). On a

$$N\left(\frac{z}{z'} - (a+ib)\right) = |a-x|^2 + |b-y|^2 \leqslant \frac{1}{2}$$

Donc

$$N(z - z'(a + ib)) \leqslant \frac{N(z)}{2} < N(z)$$

ainsi, z = z'(a+ib) + (z-z'(a+ib)) est une division euclidienne de z par z' dans $\mathbb{Z}[i]$ pour le stathme N, ce qui termine la preuve.

Le lemme suivant fait un lien supplémentaire entre Σ et $\mathbb{Z}[i]$:

<u>Lemme</u> 3. Soit p premier, on a $p \in \Sigma$ si et seulement si p est réductible dans $\mathbb{Z}[i]$.

Démonstration. Si $p = a^2 + b^2 \in \Sigma$, on a p = N(a+ib) = (a+ib)(a-ib). Si a = 0 (resp b = 0), on a $p = b^2$ (resp $p = a^2$) ce qui est impossible car p est premier, donc $a, b \neq 0$ et a + ib n'est pas inversible : p est réductible.

Réciproquement, si p = zz' est réductible (avec donc $z, z' \notin \mathbb{Z}[i]^{\times}$), on a

$$p^2 = N(p) = N(z)N(z')$$

Comme par hypothèse, N(z) et N(z') sont différents de 1, on a N(z)=N(z')=p, donc $p\in \Sigma$

Comme l'anneau $\mathbb{Z}[i]$ est principal (car euclidien), p y est réductible si et seulement si l'idéal (p) n'est pas premier, autrement dit si $\mathbb{Z}[i]/(p)$ n'est pas intègre.

Considérons (X^2+1) dans $\mathbb{Z}[X]$, l'évaluation des polynômes en i donne $\mathbb{Z}[i] \simeq \mathbb{Z}[X] / (X^2+1)$.

Par ailleurs, on a également $\mathbb{Z}[X] / (p) \simeq \mathbb{F}_p[X]$, d'où

$$\mathbb{F}_p[X] / (X^2 + 1) \simeq \left(\mathbb{Z}[X] / (p) \right) / (X^2 + 1) \simeq \left(\mathbb{Z}[X] / (X^2 + 1) \right) / (p) \simeq \mathbb{Z}[i] / (p)$$

on peut exhiber directement l'isomorphisme au centre mais c'est long et rébarbatif. Cet isomorphisme donne la chaîne d'équivalences suivante

$$\mathbb{Z}[i] / (p)$$
 est intègre $\Leftrightarrow \mathbb{F}_p[X] / (X^2 + 1)$ est intègre $\Leftrightarrow (X^2 + 1)$ est premier dans $\mathbb{F}_p[X]$ $\Leftrightarrow X^2 + 1$ est irréductible dans $\mathbb{F}_p[X]$ $\Leftrightarrow X^2 + 1$ admet une racine dans $\mathbb{F}_p[X]$

(car $\mathbb{F}_p[X]$ est principal, et X^2+1 est de degré 2). On a donc que $p\in\Sigma$ si et seulement si -1 est un carré dans \mathbb{F}_p , on conclut alors par le lemme suivant :

<u>Lemme</u> 4. Soit p un nombre premier, -1 est un carré dans \mathbb{F}_p si et seulement si p=2 ou $p\equiv 1[4]$

 $D\'{e}monstration$. Le cas p=2 se règle immédiatement, on peut donc supposer p impair. On considère l'application

$$\varphi: \quad \mathbb{F}_p^* \quad \longrightarrow \quad \mathbb{F}_p^*$$

$$x \quad \longmapsto \quad x^{\frac{p-1}{2}}$$

Il s'agit d'un morphisme de groupe. Son noyau est donnée par les racines non nulles du polynôme $X^{\frac{p-1}{2}}-1$, il contient donc au plus $\frac{p-1}{2}$ éléments. Si $x=y^2$ est un carré non nul dans \mathbb{F}_p , on a $\varphi(x)=y^{p-1}=1$ donc \mathbb{F}_p^{*2} est inclus dans $\ker \varphi$. Par ailleurs, \mathbb{F}_p^{*2} est l'image de \mathbb{F}_p^* par le morphisme $x\mapsto x^2$, de noyau $\{\pm 1\}$, donc \mathbb{F}_p^{*2} est de cardinal $\frac{p-1}{2}$, on a donc $\mathbb{F}_p^{*2}=\ker \varphi$ par cardinalité.

Donc -1 est un carré dans \mathbb{F}_p si et seulement si $(-1)^{\frac{p-1}{2}}=1$, ce qui est équivalent à $p\equiv 1[4]$.

Comme N est une application multiplicative, Σ est stable par produit, on a donc le corollaire suivant

<u>Corollaire</u> 5. Soit $n \in \mathbb{N}$, $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ sa décomposition en produit de facteurs premiers, on a équivalence entre

- $n \in \Sigma$
- Pour tout $i \in [1, r]$ tel que $p_i \equiv 3[4]$, on a α_i pair.