CIS 721 - Real-Time Systems Lecture 9: Preemption Thresholds

Mitch Neilsen neilsen@ksu.edu

Daily Humor

Outline

- Clock-Driven Scheduling (Ch. 5)
- Priority-Driven Scheduling
 - Periodic Tasks (Ch. 6)
 - Optimal Priority Assignment
 - Arbitrary Start Times
 - Leung's Feasibility Test
 - Audsley's Feasibility Test
 - Arbitrary Deadlines
 - Preemption Thresholds
 - Aperiodic and Sporadic Tasks (Ch. 7)

Terms and Concepts

- A task set $\Gamma = \{\tau_1, \tau_2, ..., \tau_n\}$ is a collection of related tasks.
- Each periodic task τ_i is characterized by:
 - □ an execution time or run-time (C_i),
 - a period (T_i),
 - a (relative) deadline (D_i), and
 - \square a **phase** or **offset** (φ_i or O_i).

Response Time Analysis

For each (potentially overlapping) release, a worstcase completion time w_i(q) is defined by:

$$w_i^{n+1}(q) = q \cdot C_i + \sum_{j \in hp(i)} \left\lceil \frac{w_i^n(q)}{T_j} \right\rceil \cdot C_j$$

 $w_i^0(q) = C_i + (q-1) \cdot T_i$

where q is the instance or job number and $w_i(q)$ is the least fixed point of $w_i^n(q)$.

The response time of the q^{th} instance, $R_i(q)$, is given by $R_i(q) = w_i(q) - (q-1) T_i$.

Response Time Analysis (cont.)

- Set $q' = min \{ q \mid R_i(q) \leq T_i \}$.
- Then, the **level-i busy period** is $[0, w_i(q^i)]$.
- The worst-case response time R_i is given by:

$$R_{i} = \max_{q=1,2,...,q'} \{R_{i}(q)\}$$

• If $R_i \le D_i$ for all i, the system is **schedulable**.

Lehoczky's Example

Task	Period	Run-Time	Phase	Deadline
$ullet_{ ext{i}}$	$ m T_{i}$	$\mathbf{C_i}$	φ _i	D _i
$ au_1$	70	26	0	68
$ au_2$	100	62	0	118

General Time-Driven Analysis

- Check to see if the first job completes before it's deadline and before the second job in the same task is released.
- If it completes before it's deadline, but not before the second job is released, then check the second job.
- In general, continue to check all jobs over a level-i busy period; that is, until a deadline is missed or until one job completes before the next one is released.

- Y. Wang and M. Saksena, "Scheduling Fixed-Priority Tasks with Preemption Threshold", In Proceedings of the IEEE Intl. Conf. on Real-Time Computing Systems and Applications, Dec. 1999.
- Scheduling with Preemption Thresholds
 - Task Model and Run-Time Model
 - Response Time Analysis
 - Priority and Preemption Threshold Assignment Algorithms
 - Example: ThreadX Real-Time Operating System

Task Model

- Task Set $\Gamma = \{\tau_1, \tau_2, \tau_3, \dots, \tau_n\}$
 - Each task τ_i is characterized by (C_i, T_i, D_i), denoted τ_i ~ (C_i, T_i, D_i).
 - □ Each task τ_i is assigned a priority $\pi_i \in \{1,2,...,n\}$
 - □ and a preemption threshold $\gamma_i \in \{\pi_i, \pi_i + 1,...,n\}$.

Notes:

- □ 1 = lowest priority, n = highest priority.
- \blacksquare π_i = static priority.
- $\neg \gamma_i$ = dynamic priority.

Run-Time Model

- Modified fixed-priority, preemptive scheduling.
- When task τ_i is released, it is scheduled using its static priority π_i .
- After task τ_i starts executing, another task τ_j can preempt τ_i only if $\pi_i > \gamma_i \ge \pi_i$.

Extremes

- If $\gamma_i = \pi_i$ for each i, then the result is **preemptive**, priority-based scheduling.
- If γ_i = n (max. priority) for each i, then the result is **non-preemptive**, priority-based scheduling.

Example

Task	C_i	T_i	D_i	π_i	WCRT	WCRT
					Preemptive	Non-Preemptive
$ au_1$	20	70	50	3	20	55
$ au_2$	20	80	80	2	40	75
$ au_3$	35	200	100	1	115	75

Task	Priority	Preemption Threshold	WCRT
$ au_1$	3	3	40
$ au_2$	2	3	75
$ au_3$	1	2	95

Figure 1. Run-time Behavior with Preemption Threshold

Problem Statement

- Given a task set $\Gamma = \{\tau_1, \tau_2, \tau_3, \dots, \tau_n\}$, determine if there exists an assignment $\{(\pi_i, \gamma_i) \mid i = 1, 2, ..., n\}$ such that Γ is schedulable.
- In other words, determine if there exists an optimal assignment of task priorities and preemption thresholds.

Solutions

- Brute Force try all possible assignments of priorities and preemption thresholds.
 - Time Complexity in O(n! n!) => not feasible for large n.
- Use a Branch and Bound Algorithm to perform an efficient search for priorities and preemption thresholds.

Three Step Process

Response Time Analysis

- □ Given assignment { (π_i , γ_i) | i = 1, 2, ..., n }, compute the worst-case response time (R_i or WCRT_i) for each task τ_i .
- □ A task set Γ is schedulable iff $R_i \leq D_i$ for all i.
- Given a priority assignment { π_i | i = 1, .., n }, determine a feasible set of preemption thresholds, if such a set exists.
- Use a branch and bound algorithm to search for a feasible assignment set of **priorities** (and preemption thresholds).

Response Time Analysis

The blocking time of task τ_i is denoted B(τ_i).
Blocking occurs if a lower priority task is running and task τ_i cannot preempt it.

$$B(\tau_i) = \max_j \{C_j/\gamma_j \ge \pi_i > \pi_j\}$$

Busy Period Analysis

 A critical instant occurs when all higher priority tasks arrive at the same time, and the task that contributes to the maximum blocking arrives at the critical instant - ε.

Divide Busy Period

- Divide the busy period for τ_i into two parts:
 - the length of time from the critical instant (time 0) to the point when τ_i starts executing its q^{th} job ($S_i(q)$).
 - □ the length of time from the time $τ_i$ starts executing its q^{th} job until it finishes executing its q^{th} job ($F_i(q)$ - $S_i(q)$).
- Let q = 1, 2, ..., m until we reach q = m s.t. F_i(m) ≤ m T_i that is, the mth job completes before the next job is released.
- Then,

$$R_i = \max_{q \in \{1,...,m\}} \{F_i(q) - (q-1)T_i\}$$

Worst-Case Start Time (S_i(q))

$$S_i(q) = B(\tau_i) + (q-1)C_i + \sum_{\substack{j \in \{1,...,n\} \\ \pi_j > \pi_i}} (1 + \left\lfloor \frac{S_i(q)}{T_j} \right\rfloor)C_j$$

Worst-Case Finish Time ($\mathbf{F_i}(\mathbf{q})$)

$$F_{i}(q) = S_{i}(q) + C_{i} + \sum_{\substack{j \in \{1,...,n\} \\ \pi_{i} > \gamma_{i}}} \left(\left\lceil \frac{F_{i}(q)}{T_{j}} \right\rceil - (1 + \left\lfloor \frac{S_{i}(q)}{T_{j}} \right\rfloor))C_{j}$$

$WCRT(\pi_{i}, \gamma_{i})$

Algorithm to compute R_i

```
Input: C_1,...,C_m,T_1,...,T_m,\pi_1,...,\pi_m,\gamma_1,...,\gamma_m
Output : R_1, R_2, ..., R_m
done = FALSE
q = 1
while (not done)
   compute S_i(q) and F_i(q)
   if F_i(q) \le q T_i then
      done = TRUE
      m = q
   else
      q = q + 1
   end if
end while
R_i = \max_{q \in \{1,..., m\}} (F_i(q) - (q-1) T_i)
```

Example

Task	C_i	T_i	D_i	π_i	WCRT	WCRT
					Preemptive	Non-Preemptive
$ au_1$	20	70	50	3	20	55
$ au_2$	20	80	80	2	40	75
$ au_3$	35	200	100	1	115	75

Task	Priority	Preemption Threshold	WCRT
$ au_1$	3	3	40
$ au_2$	2	3	75
$ au_3$	1	2	95

Preemption Threshold Assignment

- **Lemma 5.1:** Changing the preemption threshold of task τ_i from γ_1 to γ_2 may only affect the worst-case response time of task τ_i and those tasks whose priority is between γ_1 and γ_2 .
- Corollary 5.1: The worst-case response time of task τ_i will not be affected by the preemption threshold assignment of any higher priority task; e.g., any task τ_j with $\pi_j > \pi_i$.
- This implies that we should assign preemption thresholds from lowest to highest priority.

- **Theorem 5.1:** Start with a schedulable system with n tasks. If decreasing the value of γ_j does not change the schedulability of task τ_j , then the whole system is still schedulable.
- Idea: Keep γ_i as small as possible for each task.
- **Lemma 5.2:** (Quick Test) If setting $\gamma_j = n$ cannot make task τ_i schedulable, then the task set is not schedulable.

Preemptive Scheduling

Non-Preemptive Scheduling

Algorithm: Assign Preemption Thresholds

(12) return SUCCESS

// Assumes that task priorities are already known (1) **for** (i := 1 to n) (2) $\gamma_i = \pi_i$ // Calculate worst-case response time of τ_i (3) $\mathcal{R}_i = WCRT(\tau_i, \gamma_i)$; while $(\mathcal{R}_i > D_i)$ do // while not schedulable (4) (5) γ_i ++; // increase threshold (6) if $\gamma_i > n$ then (7)**return** FAIL; // system not schedulable. (8)endif (9) $\mathcal{R}_i = \text{WCRT}(\tau_i, \gamma_i)$; (10)end (11) **end**

<u>F</u>ile

Task	С	Т	D	Prio	PT	В	S	F	WCRT _
1	5	50	15	9	9	0	0	5	5
2	5	60	25	8	8	0	5	10	10
3	7	80	30	7	7	0	10	17	17
4	7	200	40	6	6	0	17	24	24
5	10	200	50	5	5	0	24	34	34
6	8	200	60	4	4	0	34	42	42
7	12	220	70	3	3	0	42	59	59
8	10	230	70	2	2	0	59	74	74
9	15	240	100	1	1	0	74	96	96
1									•

······· Compute

<u>F</u>ile

		D	Prio	PT	В	S	F	WCRT _▲
5	50	15	9	9	0	0	5	5
5	60	25	8	8	0	5	10	10
7	80	30	7	7	0	10	17	17
7	200	40	6	6	0	17	24	24
10	200	50	5	5	0	24	34	34
8	200	60	4	4	0	34	42	42
12	220	70	3	3	10	57	74	74
10	230	70	2	i Ji	0	59	74	74
15	240	100		1	0	74	96	96
	5 7 7 10 8 12 10	5 60 7 80 7 200 10 200 8 200 12 220 10 230	5 60 25 7 80 30 7 200 40 10 200 50 8 200 60 12 220 70 10 230 70	5 60 25 8 7 80 30 7 7 200 40 6 10 200 50 5 8 200 60 4 12 220 70 3 10 230 70 2	5 60 25 8 8 7 80 30 7 7 7 200 40 6 6 10 200 50 5 5 8 200 60 4 4 12 220 70 3 3 10 230 70 2 3	5 60 25 8 8 0 7 80 30 7 7 0 7 200 40 6 6 0 10 200 50 5 5 0 8 200 60 4 4 0 12 220 70 3 3 10 10 230 70 2 3 0	5 60 25 8 8 0 5 7 80 30 7 7 0 10 7 200 40 6 6 0 17 10 200 50 5 5 0 24 8 200 60 4 4 0 34 12 220 70 3 3 10 57 10 230 70 2 3 0 59	5 60 25 8 8 0 5 10 7 80 30 7 7 0 10 17 7 200 40 6 6 0 17 24 10 200 50 5 5 0 24 34 8 200 60 4 4 0 34 42 12 220 70 3 3 10 57 74 10 230 70 2 3 0 59 74

<u>F</u>ile

Task	С	Т	D	Prio	PT	В	S	F	WCRT _
1	5	50	15	9	9	0	0	5	5_
2	5	60	25	8	8	0	5	10	10
3	7	80	30	7	7	0	10	17	17
4	7	200	40	6	6	0	17	24	24
5	10	200	50	5	5	0	24	34	34
6	8	200	60	4	4	10	44	57	57
7	12	220	70	3	_	10	57	74	74
8	10	230	70	2	4	0	59	74	74
9	15	240	100		1	0	74	96	96
4)

<u>F</u>ile

Task	С	T	D	Prio	PT	В	S	F	WCRT _
1	5	50	15	9	9	0	0	5	5
2	5	60	25	8	8	0	5	10	10
3	7	80	30	7	7	0	10	17	17
4	7	200	40	6	6	0	17	24	24
5	10	200	50	5	5	10	34	44	44
6	8	200	60	4	4	10	44	57	57
7	12	220	70	3	3	10	57	74	74
8	10	230	70	2	5	0	59	74	74
9	15	240	100		1	0	74	96	96

<u>F</u>ile

Task	С	Т	D	Prio	PT	В	S	F	WCRT
1	5	50	15	9	9	0	0	5	5_
2	5	60	25	8	8	0	5	10	10
3	7	80	30	7	7	0	10	17	17
4	7	200	40	6	6	10	27	34	34
5	10	200	50	5	5	10	34	44	44
6	8	200	60	4	4	10	44	57	57
7	12	220	70	3	_	10	57	74	74
8	10	230	70	2	6	0	59	74	74
9	15	240	100		1	0	74	96	96
4)

<u>F</u>ile

Task	С	Т	D	Prio	PT	В	S	F	WCRT	•
1	5	50	15	9	9	0	0	5	5 _	
2	5	60	25	8	8	0	5	10	10	
3	7	80	30	7	7	10	20	27	27	
4	7	200	40	6	6	10	27	34	34	
5	10	200	50	5	5	10	34	44	44	
6	8	200	60	4	4	10	44	57	57	
7	12	220	70	3	_	10	57	74	74	
8	10	230	70		7	0	59	74	74	
9	15	240	100		1	0	74	96	96	•
4									▶	

Preemption Threshold

<u>F</u>ile

Task	С	Т	D	Prio	PT	В	S	F	WCRT	•
1	5	50	15	9	9	0	0	5	5 _	
2	5	60	25	8	8	10	15	20	20	
3	7	80	30	7	7	10	20	27	27	
4	7	200	40	6	6	10	27	34	34	
5	10	200	50	5	5	10	34	44	44	
6	8	200	60	4	4	10	44	57	57	
7	12	220	70	3		10	57	74	74	
8	10	230	70	2	8	0	59	69	69	
9	15	240	100		1	0	74	96	96	•
4									▶	

Compute

Preemption Threshold

<u>F</u>ile

Task	С	Т	D	Prio	PT	В	S	F	WCRT _
1	5	50	15	9	9	0	0	5	5_
2	5	60	25	8	8	10	15	20	20
3	7	80	30	7	7	12	22	29	29
4	7	200	40	6	6	12	29	36	36
5	10	200	50	5	5	12	36	46	46
6	8	200	60	4	4	12	46	59	59
7	12	220	70	3	7	10	57	74	74
8	10	230	70	2	8	0	59	69	69
9	15	240	100	1	1	0	74	96	96
1									>

······· Compute

Preemption Threshold

<u>F</u>ile

1 5 2 5 3 7 4 7 2	50 15 60 25 80 30	8	9 8 7	0 12 12	0 17	5 22	5 <u> </u>
3 7	80 30						
		7	7	12	22		
4 7 2	100			12	22	29	29
	200 40	6	6	12	29	36	36
5 10 2	200 50	5	5	12	36	46	46
6 8 2	200 60	4	4	12	46	59	59
7 12 2	220 70	3	8	10	57	69	69
8 10 2	230 70	2	8	0	59	69	69
9 15 2	240 100	1	1	0	74	96	96 🕶

Compute

Preemption Thresholds

Preemption Thresholds – ThreadX RTOS

- Response Time Analysis to computer WCRT given Priorities and Preemption Thresholds
- Algorithm to optimally assign Preemption
 Thresholds given Priority Assignment
- Algorithm to Assign Priorities

Finding Priority Assignment

 Problem: How to find an optimal assignment of task priorities and preemption thresholds.

Solution Proposed in Paper:

- Arrange tasks into two sets -- unsorted (remaining higher priority tasks) and sorted (lower priority tasks).
- Recursively add tasks from unsorted list to sorted list based on "lateness" heuristic.
- Tasks are added in priority order, from lowest to highest priority.

Priorities and Preemption Thresholds

Initially determine if the task set is schedulable using preemptive priority-based scheduling without preemption thresholds (e.g., can priorities be assigned using RM?).

"Lateness" Heuristic

- From the unsorted list, select the task with the smallest lateness, and add it to the sorted list.
- Since the task selected has the smallest "lateness" (delay), it should need a lower priority and smaller preemption threshold, leaving more time for higher priority tasks.

Greedy Assignment Algorithm

Algorithm: GreedyAssignment(RemainingTasks, nextPriority)

```
/* Terminating Condition */
```

- (1) if (RemainingTasks == NULL) then
 - /* Call the algorithm in Figure 1 for optimal preemption threshold assignment */
- (2) if (AssignThresholds() == SUCCESS) then return SUCCESS
- (3) else return FAIL
- (4) endif
- (5) endif

Greedy Assignment Algorithm (cont.)

```
/* Assign Heuristic Value to Each Task */
        foreach \tau_k in RemainingTasks do
(6)
(7)
              \pi_k := \text{nextPriority}; /* tentative assignment */
              \mathcal{R}_k := WCRT(\tau_k); /* compute response time */
(8)
              if \mathcal{R}_k > D_k then h\_val_k := \mathcal{D}_k - \mathcal{R}_k
(9)
              else h_{\bullet}val_{k} := GetBlockingLimit(\tau_{k});
(10)
(11)
              endif
              \pi_k := n; /* reset, to allow computing heuristic value for other tasks */
(12)
(13)
        end
```

Get Blocking Limit Function

```
Input: \tau_k, D_k
```

Output: Blocking limit of τ_k

```
R_k = WCRT(\tau_k)
Max = D_k - R_k
Limit = 0
For \ B(\tau_k) = 1 \ to \ Max
R_k = WCRT(\tau_k, B(\tau_k))
If \ R_k > D_k \ Then \ Break
Else \ Limit = B(\tau_k)
End \ For
Return \ Limit
```

Greedy Assignment Algorithm (cont.)

```
/* Select the task with the largest heuristic value next */
π<sub>k</sub> := max_heuristic_val(RemainingTasks);
π<sub>k</sub> := nextPriority; /* final priority assignment */
/* Recursively Assign Priorities to Remaining Tasks */
if GreedyAssignment(RemainingTasks - τ<sub>k</sub>, nextPriority+1) == SUCCESS then
return SUCCESS;
return FAIL;
```

Note

- There are cases when this heuristic algorithm is not able to find a feasible assignment, even though a non-preemptive priority assignment algorithm is able to find a solution.
- Thus, we could try a non-preemptive assignment algorithm first, before using this heuristic algorithm (or use a better algorithm)

Depth-First Search

- Perform a depth-first search to find an optimal priority assignment.
- When a leaf is reached, call AssignThresholds() to see if an optimal preemption threshold assignment exists; if not, continue searching.

Summary

- Preemption thresholds provide a way of generalizing both preemptive and nonpreemptive scheduling in a single framework.
- Read Y. Wang and M. Saksena's paper on preemption thresholds.