河西区九年级疫情期间居家学习学情调查

数学试题参考答案及评分标准

一、	选择题	(本大题共	12 小题,	每小题 3 分,	共36分)

- (1) B (2) C (3) A (4) B (5) B (6) B

- (7) A (8) D (9) D (10) C (11) D (12) B
- 二、填空题(本大题共6小题,每小题3分,共18分)
- $(13) \ a \ge 1$
- (14) ac+ad+bc+bd (15) $\frac{2}{11}$

- (16)(-2,0)
- (17) $\frac{3\sqrt{29}}{2}$
- (18) $\sqrt{5}$ 1
- 三、解答题(本大题共7小题,共66分)
- (19) (本小题 8 分)

解: (I) $x \ge -3$: (2分)

(II) $x \leq 1$; (4分)

(Ⅲ) 略 (6分)

(IV) $-3 \le x \le 1$. (8分)

(20) (本小题 8 分)

解: (I) 40, 15. (2分)

- (Ⅱ): 在这组样本数据中, 35 出现了12次, 出现的次数最多,
 - : 这组样本数据的众数为35.(4分)
 - · 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是36,

有
$$\frac{36+36}{2}$$
=36,

- ∴ 这组样本数据的中位数为36.(6分)
- (Ⅲ): 在40名学生中, 鞋号为35的学生人数比例为30%,
 - ∴ 由样本数据,估计学校各年级学生中鞋号为35的人数比例约为30%,

于是, 计划购买 150 双运动鞋时, 有 150×30 %=45.

九年级数学试题参考答案 第 1 页 (共 4 页)

- ∴ 建议购买35号运动鞋45双.(8分)
- (21) (本小题 10 分)

解: (I) 连接 OA、AD, (1分)

∵切线 CF, ∴ $OA \perp CF$, ∴ $\angle OAC = 90^{\circ}$, (2分)

 $\therefore \angle C = 25^{\circ}$, $\therefore \angle COA = 65^{\circ}$,

又: $\angle COA = \angle B + \angle OAB$, (3分)

 $\therefore OA = OB$, $\therefore \angle B = \angle OAB$,

 $\therefore \angle OAB = 32.5^{\circ}$,

∴ $\angle BAF = \angle OAF - \angle OAB = 90^{\circ} - 32.5^{\circ} = 57.5^{\circ}$. (4 $\frac{1}{12}$)

(II) $\therefore AB = AC$, $\therefore \angle B = \angle C$, (5 %)

由(I) 知 $\angle COA=2\angle B$, $\therefore 3\angle C=90^{\circ}$, $\therefore \angle C=30^{\circ}$, (7分)

在 Rt $\triangle OCA$ 中, $OA = \frac{1}{2}CO$, OA = OD ,

$$\therefore$$
 CD=DO=OA=2, AC=2 $\sqrt{3}$, (9分)

∴
$$AB=AC=2\sqrt{3}$$
. (10 $\%$)

(22) (本小颗 10 分)

(I) 解: 由题意, 在 Rt△ADC 中,

 $\angle ACD=90^{\circ}, \ \angle ADC=60^{\circ},$

∴ $\angle A=30^{\circ}$, ∴ AD=2CD. (2 \oiint)

∴
$$CD=40$$
, ∴ $AD=80$, ∴ $AC=\sqrt{AD^2-DC^2}=40\sqrt{3}$. (4 $\frac{1}{12}$)

在 Rt△BDC 中,

 $\therefore \angle BDC = 45^{\circ}, \quad \therefore \angle DBC = 45^{\circ}, \quad \therefore \angle DBC = \angle BDC,$

∴
$$AB=40\sqrt{3}-40.$$
 (9 分)

答: 旗杆的高度为 $(40\sqrt{3}-40)$ m. (10分)

(23) (本小题 10 分)

解: (1) ①60, 70; ②300, 290; (4分)

(II) $y_1 = 6x (x > 0). (5 \%)$

当x > 20时, $y_2 = 7 \times 20 + 5(x - 20) = 5x + 40$. (7分)

(III) ① 40; ② 甲; ③乙 . (10分)

(24) (本小题 10 分)

解: (I) **∵**正方形 *ABCD* , ∴ ∠*EAM*=90°.

由折叠知 OE=EM,

在 Rt△AEM 中, ∠AEM=30°,

设 OE=x,则 EM=OE=x, $AE=\frac{\sqrt{3}}{2}x$,(2分)

∴E (0, 16-8√3). (4分)

(II) :: M 为 AC 中点, :: $AM = \frac{1}{2}AC = 2$, (5 分)

设 OE=x, 则 EM=OE=x, AE=4-x,

在 Rt $\triangle AEM$ 中, $EM^2 = AM^2 + AE^2$,

即 $x^2 = 2^2 + (4 - x)^2$, (7 分) 解得 $x = \frac{5}{2}$.

$$\therefore E(0, \frac{5}{2})$$
 (8分)

(III) 不变, 8

(10分)

(25)(本小题 10 分)

25. 解: (I) 把点 (-1, 0) 和 (3, 0) 代入函数 $y = -x^2 + bx + c$,

有
$$\begin{cases} -1-b+c=0, \\ -9+3b+c=0. \end{cases}$$
 解得 $b=2$, $c=3$.

$$y = -x^2 + 2x + 3 = -(x-1)^2 + 4$$
.

∴ A (0, 3), E (1, 4). (4𝒮)

九年级数学试题参考答案 第 3 页 (共 4 页)

$$\therefore$$
 点 E 在直线 $y = x$ 上, \therefore $\frac{b}{2} = \frac{4c + b^2}{4}$. \therefore $c = \frac{2b - b^2}{4}$

②曲①知
$$c = -\frac{1}{4}b^2 + \frac{1}{2}b = -\frac{1}{4}(b-1)^2 + \frac{1}{4}$$
. $\therefore A (0, -\frac{1}{4}(b-1)^2 + \frac{1}{4})$.

:. 当
$$b=1$$
时,点 A 是最高点. 此时, $y=-x^2+x+\frac{1}{4}$. (7分)

- (III) : 抛物线经过点 (-1, 0), 有-1-b+c=0.
 - $\therefore c = b + 1$.

$$E (\frac{b}{2}, \frac{4c+b^2}{4}), A (0, c),$$

:
$$E(\frac{b}{2}, \frac{(b+2)^2}{4}), A(0, b+1)$$
.

$$\therefore$$
 点 E 关于 x 轴的对称点 E' 为($\frac{b}{2}$, $-\frac{(b+2)^2}{4}$). (8分)

设过点 A, P 的直线为 y = kx + t.把 A (0, b+1), P (1, 0)代入 y = kx + t,

得
$$y = -(b+1)(x-1)$$
.

把点
$$E'$$
 ($\frac{b}{2}$, $-\frac{(b+2)^2}{4}$) 代入 $y = -(b+1)(x-1)$,

得
$$-\frac{(b+2)^2}{4} = -(b+1)(\frac{b}{2}-1)$$
,即 $b^2-6b-8=0$. (8分)

解得, $b=3\pm\sqrt{17}$.

∴
$$b > 0$$
, ∴ $b = 3 - \sqrt{17}$ \triangleq .

$$\therefore b = 3 + \sqrt{17} \ . \tag{10 }$$