Learning axis-aligned rectangles

(In particular, PAC learnability of axis-aligned rectangles)

We consider the hypothesis class \mathcal{H} of axis-aligned rectangles in $\mathcal{X} = \mathbb{R}^2$. Our label space is $\mathcal{Y} = \{0, 1\}$. A hypothesis $h \in \mathcal{H}$ is

$$h: \mathcal{X} \to \mathcal{Y}, \quad \mathbf{x} \mapsto h_{b,t,r,s}(\mathbf{x}) = \begin{cases} 1 & \text{if } b \leq x \leq t \text{ and } r \leq y \leq s \\ 0 & \text{else} \end{cases}$$

with $\mathbf{x} = (x, y) \in \mathbb{R}^2$. For this class, $|\mathcal{H}| = \infty$.

We are given a sample

$$S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$$

where $\mathbf{x}_i \sim \mathcal{D}$ and labeled according to a hypothesis $f \in \mathcal{H}$, i.e., $y_i = f(\mathbf{x}_i)$. Assuming realizability, $\exists h \in \mathcal{H}$, s.t. $L_{\mathcal{D},f}(h) = 0$. We identify the corresponding rectangle with R.

Learning algorithm. We choose a very simple algorithm A which receives S as input, i.e., A(S), and selects the *tightest rectangle* around the positively labeled points in S. We denote the hypothesis returned by this algorithm as h_S and its corresponding rectangle as R_S .

Claim 1. A is an ERM algorithm.

Proof. First, *A* labels all positive samples in *S* correctly. Second, since we assume realizability and *A* returns the tightest rectangle around the positive samples, all negative samples are labeled correctly as well $\Rightarrow L_S(A(S) = L_S(h_S) = 0$.

Claim 2. \mathcal{H} is PAC learnable via the proposed ERM algorithm A.

Proof. Assume the rectangle corresponding to f is given by

$$R = [b^*, t^*] \times [r^*, s^*] ,$$

where $[b^*, t^*]$ denotes an interval on the *x*-axis and $[r^*, s^*]$ an interval on the *y*-axis.

We now fix some $\epsilon \in (0,1)$ and assume that $\mathcal{D}([b^*,t^*] \times [r^*,s^*]) > \epsilon$. Otherwise, any selected hypothesis would have error $< \epsilon$ and the result is trivial.

We also observe that $R_S \subseteq R$, by construction, and the only region where errors can occur is $R \setminus R_S$ (here: \ denotes the set difference).

We start by constructing four axis-parallel "strips", r_1, \dots, r_4 , as follows (here, only r_1 is formally defined):

$$r_1 = [b^*, t_1] \times [r^*, s^*], \text{ with } t_1 = \inf\{t : \mathcal{D}([b^*, t] \times [r^*, s^*]) \ge \epsilon/4\}$$

The infimum exists, as the measure, \mathcal{D} , is continuous from below and above. Letting

$$r_1' = [b^*, t_1[\times [r^*, s^*] ,$$

it follows that

$$\mathcal{D}(r_1') < \epsilon/4 ,$$

i.e., the probability drops below $\epsilon/4$ as soon as t_1 is excluded.

Lets assume for a moment that all r_i overlap R_S , i.e.,

$$\forall i : R_S \cap r_i \neq \emptyset \iff S \cap r_i \neq \emptyset$$

In that case,

$$R \setminus R_S \subset \bigcup_{i=1}^4 r_i',$$

which implies

$$\mathcal{D}(R \setminus R_S) < \mathcal{D}\left(\bigcup_{i=1}^4 r_i'\right)$$

$$\leq \sum_{i=1}^4 \mathcal{D}(r_i')$$

$$\leq \epsilon$$
(1)

and $L_{D,f}(h_S) < \epsilon$ would hold.

Question. How large does m = |S| have to be such that $\forall i : R_S \cap r_i \neq \emptyset$ with probability $1 - \delta$, $\delta \in (0, 1/2)$?

We turn this question around and aim to bound the probability of the event that $R_S \cap r_i = 0$ for *some i*. In fact,

$$\mathcal{D}^{m}(\lbrace S|_{x} : L_{D,f}(h_{S}) > \epsilon \rbrace) \leq \mathcal{D}^{m}(\bigcup_{i} \lbrace S|_{x} : R_{S} \cap r_{i} = 0 \rbrace)$$

$$\leq \sum_{i} \mathcal{D}^{m}(\lbrace S|_{x} : R_{S} \cap r_{i} = 0 \rbrace)$$

$$= \sum_{i} \mathcal{D}^{m}(\lbrace S|_{x} : S \cap r_{i} = 0 \rbrace)$$

$$= 4(1 - \mathcal{D}(r_{i}))^{m}$$

$$(2)$$

By construction, $\mathcal{D}(r_i) \ge \epsilon/4$, hence, $1 - \mathcal{D}(r_i) \le \epsilon/4$ and we get

$$\mathcal{D}^{m}(\{S|_{x}: L_{\mathcal{D},f}(h_{S}) > \epsilon\}) \le 4(1 - \epsilon/4)^{m} \le 4e^{-\epsilon/4}$$
(3)

Requiring that the last term is $< \delta$, yields

$$4e^{-m\epsilon/4} < \delta$$

$$\Leftrightarrow e^{-m\epsilon/4} < \delta/4$$

$$\Leftrightarrow -m\epsilon/4 < \log(\delta/4)$$

$$\Leftrightarrow m\epsilon/4 > \log(\delta/4)$$

$$\Leftrightarrow m > \frac{4}{\epsilon} \log\left(\frac{\delta}{4}\right)$$

In summary, we have

$$\mathcal{D}^m\big(\{S|_x\,:\,L_{\mathcal{D},f}(A(S))>\epsilon\}\big)<\delta$$

for $\epsilon \in (0, 1)$, $\delta \in (0, 1/2)$ as long as

$$m > \frac{4}{\epsilon} \log \left(\frac{\delta}{4} \right)$$
.

This establishes *PAC learnability* of \mathcal{H} by the chosen ERM algorithm A, as we have shown that given enough samples, labeled by f, the generalization error of a hypothesis selected by A being $> \epsilon$ holds with probability $< \delta$ (over S).