Process Algebra (2IMF10) — Assignment 3

Deadline: Friday June 16, 2023

This is the third assignment for the course on *Process Algebra* (2IMF10). Please submit your solutions via Canvas. The only accepted format for your document is PDF. As before, feel free to simplify notation and write X instead of $\mu X.E$, Y instead of $\mu Y.F$, etc.

Simulating infinitely branching behaviour in $TCP_{\tau}(A, \gamma)$

Consider the (unguarded!) recursive specification E consisting of the following equations

$$X = a.(X' \cdot X)$$

$$X' = X' \cdot c.1 + b.1.$$

The goal of this assignment is to show that the behaviour associated with $\mu X.E$ by the operational semantics is finitely definable with abstraction in the process theory $\text{TCP}_{\tau}(A, \gamma)$.

- 1. Sketch the transition system associated with $1 \cdot (\mu X.E)$ and notice that it is infinitely branching.
- 2. Sketch a finitely branching transition system that is rooted branching bisimilar to $\mu X.E$. Then define a guarded recursive specification F over BSP(A) including a variable Y such that

$$\tau_{\{i\}}(\mu Y.F) \leq_{\mathrm{rb}} 1 \cdot (\mu X.E)$$
.

Prove the correctness of your specification F by defining a branching bisimulation that satisfies the root condition for $\tau_{\{i\}}(\mu Y.F)$ and $1 \cdot (\mu X.E)$.

3. Let G_1 be the recursive specification consisting of the following equations (which defines the behaviour of a counter that signals when it is zero):

$$C = zero.C' \cdot C$$

 $C' = 1 + inc.C' \cdot dec.C'$.

Declare a suitable set of actions A (which should at least include the actions a, b, c, zero, inc and dec, i, and possibly more), define a suitable communication function γ on A, define a suitable set $H \subseteq A$, and give a finite guarded recursive specification G_2 over BSP(A) including a definition for recursion variable Z such that

$$\tau_{\{i\}}(\partial_H(\mu C.G_1 \parallel \mu Z.G_2)) \leq_{\text{rb}} 1 \cdot (\mu X.E)$$
,

and prove that your answer is correct.

(Note that since $p \leftrightarrow q$ implies $p \leftrightarrow_{\rm rb} q$ and $\leftrightarrow_{\rm rb}$ is compatible with $\tau_{\{i\}}$, by part 2 of the assignment it suffices to show that $\partial_H(\mu C.G_1 \parallel \mu Z.G_2) \leftrightarrow \mu Y.F.$)