Math. - CC 1 - S1 - Algèbre

vendredi 07 octobre 2016 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

Dans \mathbb{R}^3 , on note f l'endomorphisme dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

1. a. Calculer $\det(A)$.

b. Que peut-on en déduire sur f?

2. Déterminer le(s) scalaire(s) $\lambda \in \mathbb{R}$ pour le(s)quel(s) l'endomorphisme $f - \lambda \mathrm{Id}_{\mathbb{R}^3}$ n'est pas injectif.

3. On note $E_2 = \operatorname{Ker}(f - 2\operatorname{Id}_{\mathbb{R}^3})$, et $E_3 = \operatorname{Ker}(f - 3\operatorname{Id}_{\mathbb{R}^3})$.

a. Déterminer une base de E_2 et une base de E_3 .

b. Montrer que $E_2 \oplus E_3 = \mathbb{R}^3$.

 ${\bf c.}\;\;$ Donner la matrice de f dans une base adaptée à cette somme directe.

4. Soit $p \in \mathcal{L}(E)$ la projection sur E_2 parallèlement à E_3 . Donner la matrice de $f \circ p$ dans la base canonique.

Exercice 2

Résoudre le système suivant d'inconnue (x,y,z), en discutant suivant la valeur du paramètre m:

$$\left\{ \begin{array}{l} x-y+z=m\\ m\,x+2y-z=1\\ x+(1+m)y+z=-2 \end{array} \right.$$

Fin de l'énoncé d'algèbre