Diskrete Strukturen I; WS 2020/2021

Jörg Vogel

Institut für Informatik der FSU

9. Aufgabenblatt

Kreuzprodukt

- 1.) Überprüfen Sie, welche Beziehungen zwischen folgenden Mengen gelten:
 - a) $(A \cap B) \times C$ und $(A \times C) \cap (B \times C)$
 - b) $(A \cup B) \times C$ und $(A \times C) \cup (B \times C)$
 - c) $(A \cap B) \times (C \cap D)$ und $(A \times C) \cap (B \times D)$
 - d) $(A \cup B) \times (C \cup D)$ und $(A \times C) \cup (B \times D)$
 - e) $(A \times B) \cap (C \times D)$ und $(A \cap C) \times (B \cap D)$
 - f) $(A \times B) \cup (C \times D)$ und $(A \cup C) \times (B \cup D)$

Relationen

2.) Auf einer "Menge" M von Frauen seien die folgende Relationen definiert:

 $a S b :\Leftrightarrow a \text{ ist Schwester von } b$,

 $a \ T \ b :\Leftrightarrow a \ \text{ist Tochter von} \ b$.

Beschreiben Sie die verwandtschaftliche Beziehung von a zu b für die folgenden acht Fälle:

$$(\alpha)$$
 $a S^{-1} b$

$$(\varepsilon)$$
 $a (S \circ S) b$

$$(\beta)$$
 $a T^{-1} b$

$$(\zeta)$$
 $a (S \circ T) b$

$$(\gamma)$$
 $a (T \circ T) b$

$$(\eta)$$
 $a (T \circ S) b$

$$(\theta)$$
 $a (S \circ T)^{-1} b$

- 3.) Im folgenden bezeichnen R, S und T binäre Relationen über einer Menge M.
 - a) Wiederholen Sie die Definition des o-Produktes (oder wie man auch sagt: der **Komposition**) $R \circ S$ zweier Relationen.
 - b) Beweisen Sie, dass diese zweistellige Operation assoziativ ist; d.h. zeigen Sie, dass $(R \circ S) \circ T = R \circ (S \circ T)$.
 - c) Beweisen Sie: $(R \cap S) \circ T \subseteq R \circ T \cap S \circ T$.
 - d) Beweisen Sie folgende Rechenregel: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Abgabetermin:

Montag, 25. Januar 2021 bis 14 Uhr als pdf-Datei.

Bitte schreiben Sie in den Titel dieser pdf-Datei Ihren Namen.