Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:	

Fecha: 08/10/2020

Esta memoria deberá ser incluida también en el CD junto a la obra. Es importante que en la obra no aparezcan referencia a personas físicas o jurídicas distintas a los autores.

I. TÍTULO DE LA OBRA
Harramianta Coftuara nara Ontimización de Mix Eléctrica
Herramienta Software para Optimización de Mix Eléctrico
II. DESCRIPCIÓN

La aplicación consiste en una herramienta software para la optímización de un mix eléctrico, dicha optimización se lleva a cabo aplicando inteligencia artificial, en concreto algoritmos genéticos. La optimización estima la potencia óptima a instalar para plantas fotovoltáicas, eóllicas y termosolares que al menos cubre la demanda y minimiza los vertidos al menor coste posible, y puede además estar sujeta a restricciones, por ejemplo no sobrepasar las máximas emisiones equivalentes de CO₂ permitidas.

PT-CIEMAT-12-01-F02 Edición: 1 Fecha: Enero 2015 Pág: 1 de 7

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:	
Fecha: 08/10/2020	

III. LENGUAJE DE PROGRAMACIÓN

La herramienta software desarrollada ha sido implementada con el lenguaje de programación, de código abierto (licencia Python Software Foundation (PSF)), Python y hace uso de una seríe de liberías que se enumeran a continuación todas ellas con licencias open source que permiten su uso de forma comercial.

Librería	Licencia
argparse	Python Software Foundation (PSF)
certifi	Mozilla Public License 2.0 (MPL 2.0)
chardet	Lesser General Public License (LGPL)
deap	Lesser General Public License (LGPL)
greenlet	MIT License
idna	BSD License
numpy	OSI Approved (BSD)
pandas	Apache License 2.0
pip	MIT License
plotly	MIT License
psutil	BSD License
python-dateutil	BSD License
pytz	MIT License
pyzmq	BSD License
requests	Apache License 2.0
retrying	Apache License 2.0
setuptools	MIT License
six	MIT License
urllib	MIT License
yattag	Lesser General Public License (LGPL)

El entorno de desarrollo integrado utilizado ha sido PyCharm Community Edition de JetBrains cuya licencia es Apache License 2.0, cuyo uso está permitido para el desarrollo de software comercial.

PT-CIEMAT-12-01-F02 Edición: 1 Fecha: Enero 2015 Pág: 2 de 7

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:	
Fecha: 08/10/2020	

IV. ENTORNO OPERATIVO

La herramienta software puede ser ejecutada tanto en computadores y portátiles convencionales, como en clústers y supercomputadores para mejorar el rendimiento y reducir el tiempo de ejecución necesario para obtener los resultados.

La herramienta desarrollada ha sido programada en Python, al ser Python un lenguaje interpretado y no compilado, no se dispone de binarios de dicho software. Por otro lado, esto permite que el software pueda ser ejecutado en cualquier sistema operativo (Windows, Linux, macOS, etc.) que soporte Python 3 (versión 3.8 recomendada) junto con las siguientes librerías, donde se muestra la versión recomendada o cualquier versión posterior donde se mantenga la compatibilidad con la versión mencionada.

Librería	Versión
argparse	1.4.0
certifi	2020.6.20
chardet	3.04
deap	1.3.1
greenlet	0.4.17
idna	2.10
numpy	1.19.2
pandas	1.1.3
pip	20.2.3
plotly	4.11.0
psutil	5.7.2
python-dateutil	2.8.1
pytz	2020.1
pyzmq	19.0.2
requests	2.24.0
retrying	1.3.3
setuptools	50.3.0
six	1.15.0
urllib	1.25.10
yattag	1.14.0

PT-CIEMAT-12-01-F02 Edición: 1 Fecha: Enero 2015 Pág: 3 de 7

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:	
Fecha: 08/10/2020	

V. LISTADO DE FICHEROS

A continuación se enumeran el conjunto de ficheros que forman el software junto con una descripción de su función principal.

Fichero	Descripción
DEAP.py	Implementación del algoritmo génetico
DocSolution.py	Generación del documento de resultados
PlotParetoFront.py	Generación de la gráfica que muestra el frente de Pareto
PlotSolution.py	Generación de gráficas de los resultados
common.py	Conjunto de constantes y funciones globales utilizadas por el programa
download_esios.py	Descarga de datos históricos del servidor de Red Eléctrica de España
esios_api.py	Conjutno de funciones para conectarse al servidor de Red Eléctrica de España
match_production.py	Cálculo de la producción de cada fuente eléctrica para satisfacer la demanda junto con el coste médio de la producción eléctrica anual
optProblem.py	Definición del problema de optimización para el algoritmo genético
optimizer.py	Ejecución del proceso de optimización
prepare_mix.py	Preprocesado de los datos históricos
simple_web.py	Generación de la web de resultados
ex/prepare_mix_2030.py	Preparar datos de entrada – Caso España 2030
ex/optimizer_2030.py	Optimizar mix eléctrico – Caso España 2030
ex/result_2030.py	Generar web de resultados – Caso España 2030

Como ejemplo de aplicación de la herramienta software, para la optimización del mix eléctrico en España en 2030, se debería de llevar a cabo la siguiente secuencia de ejecución:

- 1. $ex/prepare_mix_2030.py$ Preparar datos de entrada
- 2. **ex/optimizer_2030.py** Optimizar mix eléctrico
- 3. ex/result_2030.py Generar web de resultados

Las gráficas y web de resultados se generan automaticamente en una nueva carpeta creada llamada results.

 PT-CIEMAT-12-01-F02
 Edición: 1
 Fecha: Enero 2015
 Pág: 4 de 7

Centro de Investigaciones Energécicas, Medicambiontales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:

Fecha: 08/10/2020

VI. DIAGRAMA DE FLUJO

El siguiente diagrama de bloques muestra el flujo general de la información de entrada (datos históricos de demanda eléctrica y producción eléctrica de años anteriores desde el servidor de Red Eléctrica de España), el proceso de optimización realizado por el software desarrollado en Python, y la generación de los resultados que se presentan en una página web.

La herramienta software aplica inteligencia artificial, en concreto algoritmos genéticos para obtener las soluciones óptimas siguiendo un proceso evolutivo donde se seleccionan las soluciones mas prometdores y se aplican operadores de cruce y mutación.

 PT-CIEMAT-12-01-F02
 Edición: 1
 Fecha: Enero 2015
 Pág: 5 de 7

iemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, **MEDIOAMBIENTALES Y TECNOLÓGICAS**

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:

Fecha: 08/10/2020

La evaluación de cada una los mix eléctricos se lleva a cabo según el siguiente diagrama de flujo.

- Average electricity cost
- CO₂ emissions

PT-CIEMAT-12-01-F02 Edición: 1 Fecha: Enero 2015 Pág: 6 de 7

Centro de Investigaciones Energécicas, Medicambientales y Tecnológicas

CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS

MEMORIA DESCRIPTIVA

DE

PROGRAMA INFORMÁTICO

Ref. OTT:

Fecha: 08/10/2020

VII. DOCUMENTACIÓN ADICIONAL

Deberá aportarse también la siguiente documentación:

- Dos ejemplares de la obra que se pretenda registrar, mediante grabación en CD del código fuente y ejecutables.
- Relación de los autores y fotocopias de sus DNI.
- Fecha primera divulgación

remitir este documento cumplimentado, a través de correo electrónico, a la **Oficina de Transferencia de Tecnología** miguel.burguera@ciemat.es

 PT-CIEMAT-12-01-F02
 Edición: 1
 Fecha: Enero 2015
 Pág: 7 de 7