Bev	
	$n \sim m = 0 n = m$ $n = 0 \checkmark$
	$n = 0$ \vee $10 = 0$
	n 2 n+1: Ang J:n+1 - m' Bijektion,
	elwa m' = m+1 (da n+1 $\neq \emptyset$ is $1 \text{ m'} \neq \emptyset$).
	Falls s(n) = m, ist str.: n - m Bijektion
	$1 \vee -0 = m = 0 = m + 1$
	Falls s(K) = m sov ein x < n ist
	falls f(x) = m for ein x < n, isl $g(z) = f(n) for z = x$ $g(z) = f(z) fon st$
	Bijcktion = n+1 = m+1.
	(2.) n ± w 12 n €w
	=0 IN 1 ≤ 1 W 1 . 3. N € W
	n < n+1 = 1n+11 < 1w1 12. new
	=P \W\ = W.
De	1. 2.57: (1.) a endl. == 0 lal < w
	(2.) a ahzāhlhav « lal = w
	manchmal auch "abzāhlbav unendlich"
P=Pot Sal	2 2.58 (Cantor) For jede Menge a gilt lat-1Pot(a)1.
	Bew sei s: a - Pof(a) Funktion
4 (*);	Betvache b=1xea: -1xes(x)).
	Falls I duriektiv 1st ex vea mit I(v) = b
	Falls & surjektiv 1st, ex. y & a mit f(y) = b. Dann: y & b = 0 y & f(y) = b & D.
In	igerung 2.59 Es gibt keine größle kardinalzahl.

```
Del 260 Sei k Kardinalzahl
       K+: - Kleinste Kard. Zahl, die echt großer als k ist.
 Bem: 2.58 => K+ < 1.P(K)
Kontinuumshypothese ((ontinuum hypothesis, kurz ((H))
          w+ = 1 P(w)1
konsistenz TCH konsistenz CH '
Fakt ((uhen 63, 60clel 138) Wenn 2FC Wickerspruchs-
    Iver ist, kann CH weder bewiesen noch
    wickviegt werden (CH ist unabh. von 270)
Lemma 2.61: (1.) a.b clisjunkt, endl =0 laubl=121+161.
     (2.) m, n \in \omega = 0 \mid m \times n \mid = m \cdot n.
   Bew Leichl Induktion
12 2.62 (Hesseberg). Wenn a unendlich ist, gilt
         19 x 9/ = 191
  Ben. Nuv sür a abz. (allgemein Ind über lat).
      0= a = w
      Betrache lexikographische ordnung aut wxwxw:
         DIES 1ST PINE MO (X = WXWXW, maiste X = {(3,6,6):..3
      wante avst ersten Eintrag min in w. dann.)
      Delinière NO aus wx w missels
         (m,n) < (m',n') \Leftrightarrow (max(m,n),m,n) < lex
                                     (\max(m',n'), m', h')
```

Beh: Jedos (m, n) e wxw hat nuv viele Vorgângev Ben: Alle vorgângev von (m, n) sin	
viele Vorgânger (a,o) (3,o) Rew: Alle vargânger von (m,n) sin	din
(4,0) (3,0) Rew: Alle VAV Q anger von (mn) sin	din
	C1 1.1
enthallen, mit emax (m, n	1+1
=0 Ovdnungstyp von (wxw,<) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(Jalls J: wxw - B ordnungstreu, s(x) = w	
~ x hat unendt viele vorganger)	
$= \delta \left(\omega \times \omega \right) = \omega = \omega.$	
Lemma 2.63: Jei X eine Menge von Kard Zahlen. Dist $\lambda = \sup_{k \in X} k := U k$ auch eine Kard. Bew Zeige zuerst $\lambda \in On$. A transitiv, da λ Vereinigung transitiver.	ann
ist x = suprex k = U k auch eine Kard.	£dhl.
Ben Zeige zuerst nen λ ∈ On	
l lyansiliv, da l vereinigung transiliver	Mengen
λ 10121 GEONGINET (12 $\lambda \leq 0$) (116N6 5.38)	
Jei nun B< X. Dann ex. KEX mit B< K. K Kava. 22 NI = 0 K = 1KI < 1XI = 0 1B1< 1XI	
K Kard. 22N1 =0 K = 1K1 < 1X1 =0 131< 1X1	
dh. λ nich) gleichmachlig zu einem βε On 1 β<λ, ø also λ kard 2ahl	nit
B <x, 2ahl<="" also="" d="" kard.="" td="" x=""><td>Z1</td></x,>	Z 1
nel 2.64. Die 2- Hierarchie Ordnel jedem & E On e Karol 2ahl wie solgt zu	ine
$\lambda' = \omega$	7
$\gamma_{\alpha+1} = \gamma_{\alpha}^{+}$	
· Xx = SUPBXX YB Wenn & Limesza	h)
Prop 2.65: Jede unendl kardzahl ist von der fo)vm

Brauche dazu Lemma 2.66 Jeien a. B. E. On. I a + B streng mon Wachsende Fkl. Dann gill (2) y Ex f(y) > y.
8eW Ang f(y) < y sei y ex min. mit clieser Eigenschaft. f ireng mon wachsend => 1(f(y.)) < f(y.) < y. 4 zur Minimalität von so Beneis von 2.65: Sei k unendl. Kard 22hl. Dann is! J. K+1 - Nhin, Brong monoton wachsend 2.66 -D N/K ZK =D N/K+1 > K Sei nun a < k+1 min. mit 2/2 > K. K unencil = a >0 Falls @ & E On Limeszahl = KE U NB "

= KE NB IVV ein B < A 12UV Min von &

Dh. & = Bil IVV ein B & On, NB < K < NB = NB + 2/st ist der direkte Nachlolger von 2/3 (2.60) $=\nabla K = N_{\mathcal{B}}$ ((H): 2 x0 = 2/1. (GCH): 1.a. K = N'o gill 2" = K+ Es gill 2 x + 2/w (nicht so schwer).

કરા		M	610	m	alh	le n	16.6N	K	VC	n	2	F(, (iki	220	<u> </u>		«	in Evi	cle! Nei 2FC	inif Levu	orisi ng	(her von
Plan	·	(0(rgil	9	LM	ę - :	Ŧm	1	21	di	urch	١	Ko	ns!	an	18	Γ2	1			/ 1		
									(124														
			1 1	3.						4 11		li li	(h)										
Dack	vng	sh	eil	a () ():	1716	Jej	į	(api	W	1 (.	11	ni	ch.	 	in	J		٨	ah	gea	sch	ICI.
56	n.	1)a	S	Be	He i	sh	ark	011	j pr	à (1	ika	11	H	140	r	۱U۷	1	in	S	3	Vi	904	os.
l	ing	ejú	hrl		([Ū	, J	rear	100	Live	hr	net	ik)										
	U									i (4				1	dj.							
2101:	ÓÔ	cle	150	he	(Ini	1011	Sta	and	Q	Kei	138	ā12	е.									
260.															d	an	n	C	ill				
		1					1250	1		1-1			14			J.	N.	. <i>(</i>)					
,							11 7	Be	M (F	1)		1 1	4	Ŋ.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
164	5 -	M	enr	1	2F	(Wi	cles	v S D Y	V(hJ.	lve	ΪÍ	11	0	lar	ı'n	P	χ.	1	A A D	- AL	/ʃ.
									2F(c			5	-14(6		
									2f					7	1								
									EALAA	1	4								11				
Also	NU	n .	K	00	liev	un	0 1	v(1)	n (Ŧ	M	In				1			1		d.			
1.01	dn	P	ied	em	\	201	chi	211	Pi	ne	n	T	2 YW		711		7						
		SLL P	•		0,6								4										
		FA	٦	= (0,	1)			3 1 5		1	1/	1	()	0	\ \			7		j		
					0,3			10	3 3 3				1 2				1.2	., .					
		1 1			0	1 1							łc.	ΛΞ	1 5			Ac _ 1					
		1			0,		. 1					1	r L .	74			7			1			
		r 7	7		(0'	21 6)								3 7 8			7				- 6		
		-	٠ ٦	-	(0)	61	1 1				aoi ch	o w	Vul)	21									
2 fr	ĵv	pin	0	1	10,	7.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1	_ Y	8	Z(I(I	4	YUIL	1	01/	1 2	i n	00	3.	٨	80	100	-
4. 1	<i>)</i> ¥		Car	1	18	11	n I	4	, = J), (?	6 J	1	Jh	c)	(n	1	14) I X	y	1	1	16	1 24	
			4		- 1	U		0 /	', C	-1	JA	_/,_	,	(II)	-1,	J	1-1	1	1				+
											_												

Ja12 2.67 (Fixpunkissatz) For jecle Lme-Fm1 Z(x) in einer Iveien Variablen ex. Lme-Aussage & mit 2F(+ \$ -> \(\mathcal{Z}(\gamma^7)\) Eigenslich: die Ime-FmI, die zu & ('¢') 2q. Ist Brauche: Lemma 268: Es gibs eine in 2FC desinierbare Fks. sub mil 2FC + [24 ([¢])] = JUD ([2]], [¢]) [a Lme-Im1 & und 2(x). Berceis: (nicht vollsi.!) Jub beschveibt ein Jach die EINS et 2 un g in Fmin, elwa 2 = Jo... J. x J. ... Ben. von 267. Jei 2 (Vo) die Lme-Fml, die 24 Σ(Juh(v., v.)) āquivalent ist. Dann gilt. 2F(+ 24 (217) - Σ(Juh(27, 217)) - Σ(124(27)7) felze nun = 2([2]) Kovollar 269 (Tarski). Henn ZFC Kons ist, dann ex. Keine Instormel WK) ("Wahrheitspräclikal"), so 12 kogo étrad Lue-Aussagen & gilt: 2FC + ¢ → ω(r¢).

Ben: Wähle in 2.67 φ mit 2FC+ ¢ → 7 W(r¢) Ø ar "¢ ist manv" nicht in 2FC delinierhar.
Anders "¢ ist beweisbar"