Multi-Target Prediction: A Unifying View on Problems and Methods

Willem Waegeman

Research Unit Knowledge-based Systems (KERMIT)
Department of Mathematical Modelling, Statistics and Bioinformatics
Ghent University, Belgium

October 13 2017

Oranje verslaat Zweden, maar gaat niet naar WK

© DINSDAG 22:38 VOETRAL

Het Nederlands elftal heeft zich zoals verwacht niet geplaatst voor de play-offs om de laatste vier Europese WK-tickets. Oranje won in Amsterdam met 2-0 van Zweden, maar het verschil had zeven of meer doelounten moeten zi

Multi-label classification: the example of document categorization

		Tennis	Football	Biking	Movies	TV	Belgium
01101	Text1	0	1	0	0	1	1
00111	Text2	1	0	0	0	0	1
01110	Text3	0	0	0	1	1	0
10001	Text4	0	0	1	0	1	0
01011	Text5	1	0	0	1	0	0
11110	Text6	?	?	?	?	?	?

Multivariate regression: the example of protein-ligand interaction prediction

		Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
01101	•	1,3	0,2	1,4	1,7	3,5	1,3
00111		2	1,7	1,5	7,5	8,2	7,6
01110		0,2	0	0,3	0,4	1,2	2,2
10001	•	3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110	•	?	?	?	?	?	?

Multi-task learning: the example of predicting student marks

		School1	School2	School3
01101	8	7		
00111	· ·	9		
01110			5	
10001	2		8	
01011	53			9
11110		?	3	?

There are a lot of multi-target prediction problems around...

Overview of this talk

- A unifying view on MTP problems
- 2 A unifying view on MTP methods
- 3 Loss functions in multi-target prediction
- 4 Conclusions

Let's assume a document hierarchy: How would you call this machine learning problem?

Let's assume a target representation: How would you call this machine learning problem?

Let's assume a target representation: How would you call this machine learning problem?

		€ Mol1	i Mol2	Mol3	Mol4	Mol5	Mol6
01101		1,3	0,2	1,4	1,7	3,5	1,3
00111	·	2	1,7	1,5	7,5	8,2	7,6
01110	ţ	0,2	0	0,3	0,4	1,2	2,2
10001		3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110	•	?	?	?	?	?	?

Generalizing to new targets

g(.,.): target similarity Mol1 Mol₂ Mol4 Mol5 Mol6 01101 1,3 0,2 1,4 1,7 3,5 1,3 00111 2 1,7 1,5 7,5 8,2 7,6 01110 0,2 0 ? 0,3 0,4 1,2 2,2 10001 1,1 1,7 ? 3,1 1,3 1,1 5,2 01011 4,7 2,1 2,5 1,5 2,3 8,5 11110

Important subdivision of different learning settings

General framework

Definition

A multi-target prediction setting is characterized by instances $x \in \mathcal{X}$ and targets $t \in \mathcal{T}$ with the following properties:

- 1. A training dataset consists of triplets (x_i, t_j, y_{ij}) , where $y_{ij} \in \mathcal{Y}$.
- 2. In total n instances and m targets are observed during training, with n and m finite numbers.
- 3. As such, the scores y_{ij} of the training data can be arranged in an $n \times m$ matrix Y.
- 4. The score set \mathcal{Y} is one-dimensional. It consists of nominal, ordinal or real values.
- 5. The goal consists of making predictions for any instance-target couple $(x,t) \in \mathcal{X} \times \mathcal{T}$.

Overview of this talk

- A unifying view on MTP problems
- 2 A unifying view on MTP methods
- 3 Loss functions in multi-target prediction
- 4 Conclusions

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

A baseline method: learning a model for each target independently

		Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
01101		1,3	0,2	1,4	1,7	3,5	1,3
00111	·	2	1,7	1,5	7,5	8,2	7,6
01110	·	0,2	0	0,3	0,4	1,2	2,2
10001	•	3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110	•	?	?	?	?	?	?

A baseline method: learning a model for each target independently

		Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
01101		1,3	0,2	1,4	1,7	3,5	1,3
00111		2	1,7	1,5	7,5	8,2	7,6
01110	ţ	0,2	0	0,3	0,4	1,2	2,2
10001	•	3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110		?	?	?	?	?	?

A baseline: Independent Models

		Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
01101	والم	1,3	0,2	1,4	1,7	3,5	1,3
00111		2	1,7	1,5	7,5	8,2	7,6
01110	ıţ.	0,2	0	0,3	0,4	1,2	2,2
10001		3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110	•	?	?	?	?	?	?

A baseline: Independent Models

Linear basis function model for *i*-th target:

$$f_i(\boldsymbol{x}) = \boldsymbol{a}_i^{\mathsf{T}} \phi(\boldsymbol{x}),$$

Solving as a joint optimization problem:

$$\min_{A} ||Y - XA||_F^2 + \sum_{i=1}^m \lambda_i ||a_i||^2,$$

With the following notations:

$$X = egin{bmatrix} \phi(oldsymbol{x}_1)^T \ dots \ \phi(oldsymbol{x}_n)^T \end{bmatrix} \qquad A = egin{bmatrix} oldsymbol{a}_1 & \cdots & oldsymbol{a}_m \end{bmatrix}.$$

Hamming loss as alternative for binary labels:

$$L_{\mathit{Ham}}(oldsymbol{y}, \hat{oldsymbol{y}}) = \sum_{j=1}^m I(y_j = \hat{y}_j)$$

Learning a model for each target independently is still state-of-the-art in extreme multi-label classification¹:

Figure 3: nDCG@k for k=1, 3 and 5

¹ Babbar and Schölkopf, DISMEC: Distributed Sparse Machines for Extreme Multi-label classification, WSDM 2017

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

Mean-regularized multi-task learning²

- Simple assumption: models for different targets are related to each other.
- Simple solution: the parameters of these models should have similar values.
- Approach: bias the parameter vectors towards their mean vector.

$$\min_{A} ||Y - XA||_F^2 + \lambda \sum_{i=1}^m ||\boldsymbol{a}_i - \frac{1}{m} \sum_{j=1}^m \boldsymbol{a}_j||^2,$$

Evgeniou and Pontil, Regularized multi-task learning, KDD 2004.

Joint feature selection

• Enforce that the same features are selected for different targets³:

$$\min_{A} ||Y - XA||_F^2 + \lambda \sum_{j=1}^{p} ||a_j||^2$$

• The vectors a_i now represent the rows of matrix A^T :

³ Obozinski et al. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing 2010

Stacking (Stacked generalization)

- Originally introduced as a general ensemble learning or blending technique.⁴
- Level 1 classifiers: apply a series of ML methods on the same dataset (or, one ML method on bootstrap samples of the dataset)
- Level 2 classifier: apply an ML method to a new dataset consisting of the predictions obtaining at Level 1

Wolpert, Stacked generalization. Neural Networks 1992

Stacking applied to multi-target prediction⁵

- Level 1 classifiers: learn a model for every target independently
- Level 2 classifier: learn again a model for every target independently, using the predictions of the first step as features

⁵ Cheng and Hüllermeier, Combining Instance-based learning and Logistic Regreession for Multi-Label classification, Machine Learning, 2009

MTP in (Deep) Neural Networks

Commonly-used architecture: weight sharing among targets⁶

Caruana, Multitask learning: A knowledge-based source of inductive bias. Machine Learning 1997

Re-using Pretrained Models in (Deep) Neural Networks

Commonly-used training method: first train on targets that have a lot of observations, only train some parameters for targets that have few observations ⁷

Keras Tutorial: Transfer Learning using pre-trained models

An intuitive explanation: James-Stein estimation

• Consider a multivariate normal distribution $\boldsymbol{y} \sim N(\boldsymbol{\theta}, \sigma^2 \mathbf{I})$.

- What is the best estimator of the mean vector θ ?
- Evaluation w.r.t. MSE: $\mathbb{E}[(\boldsymbol{\theta} \hat{\boldsymbol{\theta}})^2]$
- $oldsymbol{ullet}$ Single-observation maximum likelihood estimator: $\hat{oldsymbol{ heta}}^{ ext{ML}}=oldsymbol{y}$
- James-Stein estimator⁸:

$$\hat{ heta}^{\mathrm{JS}} = \left(1 - \frac{(m-2)\sigma^2}{\|oldsymbol{y}\|^2}\right)oldsymbol{y}$$

⁸ W. James and C. Stein. Estimation with quadratic loss. In Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1, pages 361-379, 1961

• Works best when the norm of the mean vector is close to zero:

• Works best when the norm of the mean vector is close to zero:

Regularization towards other directions is also possible:

$$\hat{\theta}^{\mathrm{JS+}} = \left(1 - \frac{(m-2)\sigma^2}{\|\boldsymbol{y} - \boldsymbol{v}\|^2}\right)(\boldsymbol{y} - \boldsymbol{v}) + \boldsymbol{v}$$

 Only outperforms the maximum likelihood estimator w.r.t. the sum of squared errors over all components.

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

Exploiting relations in regularization terms

⁹ Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013

Exploiting relations in regularization terms

Graph-based regularization is an approach that can be applied to the three types of relations⁹:

$$\min_{A} ||Y - XA||_F^2 + \lambda \sum_{i=1}^m \sum_{j \in \mathcal{N}(i)} ||a_i - a_j||^2$$

Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013

Hierarchical multi-label classfication

In addition to performance gains in general, hierarchies can also be used to define specific loss functions, such as the H-loss 10 :

$$L_H(oldsymbol{y}, \hat{oldsymbol{y}}) = \sum_{i: y_i
eq \hat{y_i}} c_i \, I(\mathsf{anc}(y_i) = \mathsf{anc}(\hat{y_i}))$$

c_i depends on the depth of node i

¹⁰ Bi and Kwok, Bayes-optimal hierarchical multi-label classification, IEEE Transactions on Knowledge and Data Engineering, 2014

Exploiting similarity measures among targets

	1	-	-	×
1	- 1	0.26	0.26	0.04
- di	0.26	- 1	0.7	0.57
-	0.26	0.7	- 1	0.44
	0.04	0.57	0.44	1

Can be done within the framework of vector-valued kernel functions¹¹:

$$f(\boldsymbol{x}, \boldsymbol{t}) = \boldsymbol{w}^T \Psi(\boldsymbol{x}, \boldsymbol{t}) = \sum_{(\bar{\boldsymbol{x}}, \bar{\boldsymbol{t}}) \in \mathcal{D}} \alpha_{(\bar{\boldsymbol{x}}, \bar{\boldsymbol{t}})} \Gamma((\boldsymbol{x}, \boldsymbol{t}), (\bar{\boldsymbol{x}}, \bar{\boldsymbol{t}}))$$

Model the joint kernel as a product of an instance kernel $k(\cdot,\cdot)$ and a target kernel $g(\cdot,\cdot)$:

$$\Gamma((\boldsymbol{x}, \boldsymbol{t}), (\bar{\boldsymbol{x}}, \bar{\boldsymbol{t}})) = k(\boldsymbol{x}, \bar{\boldsymbol{x}}) \cdot g(\boldsymbol{t}, \bar{\boldsymbol{t}})$$

 $^{^{11}}$ Alvarez et al., Kernels for vector-valued functions: a review, Foundation and Trends in Machine Learning

Converting graphs to similarities or target representations

- **Similarities:** use graph structure to express target similarities e.g. the shortest-path kernel between two nodes
- Representations: often characteristics of a specific vertex or edge
 e.g. the number of positive labels that are siblings of a vertex¹²

 $^{^{12}}$ Rousu et al., Kernel-based learning of hierarchical multilabel classification models, JMLR 2006

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

Constructing target hierarchies

- It might be difficult for a human expert to define a hierarchy¹³
- Perhaps one can try to learn the hierarchy from data?
- Algorithms: level flattening, node removal, hierarchy modification, hierarchy generation, etc.

 $^{^{13}}$ Rangwala and Naik, Tutorial on Large-Scale Hierarchical Classification, KDD 2017.

Label trees (\neq decision trees)

- Organize classifiers in a tree structure (one leaf ⇔ one label)
- Mainly used in multi-class and multi-label classification
- Goal is fast prediction: almost logarithmic in the number of labels
- Algorithms: Label embedding trees¹⁴, Nested dichotomies¹⁵, Conditional probability trees¹⁶, Hierarchical softmax¹⁷, FastText¹⁸, Probabilistic classifier chains¹⁹

 $^{^{14}\,\}mathrm{Bengio}$ et al., Label embedding trees for large multi-class tasks, NIPS 2010

 $^{^{15}\,\}mathrm{Frank}$ and Kramer, Ensembles of nested dichotomies for multi-class problems, ICML 2004

 $^{^{16}}$ Beygelzimer et al., Conditional probability tree estimation analysis and algorithms. UAI 2009

 $^{^{}m 17}\,{
m Morin}$ and Bengio, Hierarchical probabilistic neural network language model, AISTATS 2005

 $^{^{18}}$ Joulin et al., Bag of tricks for efficient text classification. CoRR, abs/1607.01759, 2016

 $^{^{19}}$ Dembczynski et al., Bayes optimal multilabel classification via probabilistic classifier chains, ICML 2010

Hierarchical softmax / Probabilistic classifier trees

- Encode the targets by a **prefix code** (\Rightarrow tree structure)²⁰
- ullet Multi-class classification: each label y coded by $oldsymbol{z}=(z_1,\ldots,z_l)\in\mathcal{C}$
- Multi-label classification: a label vector $\mathbf{y} = (y_1, \dots, y_m)$ is a prefix code.

²⁰ Dembczynski et al., Consistency of probabilistic classifier trees. ECMLPKDD 2016

Probabilistic classifier chains

- Estimate the joint conditional distribution P(Y | x).
- For optimizing the subset 0/1 loss:

$$\ell_{0/1}(\boldsymbol{y}, \hat{y}) = [\![\boldsymbol{y} \neq \hat{y}]\!]$$

Repeatedly apply the product rule of probability:

$$P(Y = y | x) = \prod_{i=1}^{m} P(Y_i = y_i | x, y_1, ..., y_{i-1}).$$

• Learning relies on constructing probabilistic classifiers for estimating

$$P(Y_i = y_i | \boldsymbol{x}, y_1, \dots, y_{i-1}),$$

independently for each $i = 1, \ldots, m$.

• Inference relies on exploiting a probability tree:

- ullet For subset 0/1 loss one needs to find $m{h}(m{x}) = rg \max_{m{y} \in \mathcal{Y}} P(m{y} \,|\, m{x}).$
- Greedy and approximate search techniques with guarantees exist.²¹
- Other losses: compute the prediction on a sample from $P(Y \mid x)$.²²

²¹ Kumar et al., Beam search algorithms for multilabel learning, Machine Learning 2013

²²23 Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012

Constructing target similarities by output kernel learning

- ullet Consider models $\mathbf{f}:\mathcal{X}
 ightarrow \mathbb{R}^{\mathbf{m}}$
- Training dataset $\{x_i, y_i\}_{i=1}^n$
- ullet Learnable correlation matrix Γ between targets
- Learn output kernel and model parameters jointly²³:

$$\min_{\mathbf{\Gamma} \in \mathbb{R}^{\mathbf{m} \times \mathbf{m}}} \left[\min_{\mathbf{f} \in \mathcal{F}} \sum_{i=1}^{n} \frac{||\mathbf{f}(\mathbf{x_i}) - \mathbf{y_i}||_{\mathbf{2}}^2}{2\lambda} + \frac{||\mathbf{f}||_{\mathcal{F}}^2}{2} + \frac{||\mathbf{f}||_{\mathbf{F}}^2}{2} \right]$$

²³ Dinuzzo et al., Learning Output Kernels with Block Coordinate Descent, ICML 2011

Construcing hierarchies to obtain additional insight

- Application in climate science
- Result of learning 20000 tasks simultaneously with a multi-task learning method
- Followed by hierarchical clustering of the learned weight vectors²⁴:

²⁴ Papagiannopoulou et al. Globral hydro-climatic biomes identified with multi-task learning, Geoscientific Model Development Discussions 2018

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

A target representation in computer vision

Target representations are the key element of zero-shot learning methods²⁵

²⁵ Examples taken from the CVPR 2016 Tutorial on Zero-shot learning for Computer Vision

Target representations can take many forms

Kronecker kernel ridge regression

Pairwise model representation in the primal:

$$f(\boldsymbol{x}, \boldsymbol{t}) = \boldsymbol{w}^T \left(\phi(\boldsymbol{x}) \otimes \psi(\boldsymbol{t}) \right)$$

Kronecker product pairwise kernel in the dual²⁶:

$$f(\boldsymbol{x},\boldsymbol{t}) = \sum_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}}) \in \mathcal{D}} \alpha_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}})} k(\boldsymbol{x},\bar{\boldsymbol{x}}) \cdot g(\boldsymbol{t},\bar{\boldsymbol{t}}) = \sum_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}}) \in \mathcal{D}} \alpha_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}})} \Gamma((\boldsymbol{x},\boldsymbol{t}),(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}}))$$

Least-squares minimization with $\mathbf{z} = \text{vec}(Y)$:

$$\min_{\boldsymbol{\alpha}} || \boldsymbol{\Gamma} \boldsymbol{\alpha} - \mathbf{z} ||_2^2 + \lambda \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\Gamma} \boldsymbol{\alpha}$$

²⁶ Waegeman et al., A kernel framework for learning graded relations from data, IEEE Transaction on Fuzzy Systems, 2012

Two-step zero-shot learning^{27 28}

		Mol1	i Mol2	Mol3	Mol4	Mol5	Mol6	Mol7
01101		1,3	0,2	1,4	1,7	3,5	1,3	?
00111	·	2	1,7	1,5	7,5	8,2	7,6	?
01110	ţ	0,2	0	0,3	0,4	1,2	2,2	?
10001		3,1	1,1	1,3	1,1	1,7	5,2	?
01011	4	4,7	2,1	2,5	1,5	2,3	8,5	?
11110	٠	?	?	?	?	?	?	?

 $^{^{27}}$ Pahikkala et al. A two-step approach for solving full and almost full cold-start problems in dyadic prediction, ECML/PKDD 2014.

²⁸ Romero-Paredes and Torr, An embarrassingly simple approach to zero-shot learning, ICML 2015.

Two-step zero-shot learning²⁹ 30

		Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
01101		1,3	0,2	1,4	1,7	3,5	1,3
00111	·	2	1,7	1,5	7,5	8,2	7,6
01110	į	0,2	0	0,3	0,4	1,2	2,2
10001		3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110	•	1,2	2,1	1,7	4,3	2,4	2,5

 $^{^{29}}$ Pahikkala et al. A two-step approach for solving full and almost full cold-start problems in dyadic prediction, ECML/PKDD 2014.

³⁰ Romero-Paredes and Torr, An embarrassingly simple approach to zero-shot learning, ICML 2015.

Two-step zero-shot learning³¹ ³²

Mol1	Mol2	Mol3	Mol4	Mol5	Mol6	Mol7
1,3	0,2	1,4	1,7	3,5	1,3	1,2
2	1,7	1,5	7,5	8,2	7,6	1,4
0,2	0	0,3	0,4	1,2	2,2	3,8
3,1	1,1	1,3	1,1	1,7	5,2	1,1
4,7	2,1	2,5	1,5	2,3	8,5	1,5
1,2	2,1	1,7	4,3	2,4	2,5	4,3

 $^{^{31}}$ Pahikkala et al. A two-step approach for solving full and almost full cold-start problems in dyadic prediction, ECML/PKDD 2014.

³² Romero-Paredes and Torr, An embarrassingly simple approach to zero-shot learning, ICML 2015.

Kernel evaluations for new test instance:

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n))^{\mathsf{T}}$$

 $\mathbf{g}(\mathbf{t}) = (g(\mathbf{t}, \mathbf{t}_1), \dots, g(\mathbf{t}, \mathbf{t}_q))^{\mathsf{T}}$

Kernel evaluations for new test instance:

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n))^{\mathsf{T}}$$
$$\mathbf{g}(\mathbf{t}) = (g(\mathbf{t}, \mathbf{t}_1), \dots, g(\mathbf{t}, \mathbf{t}_q))^{\mathsf{T}}$$

Step 1: prediction for x on all the training targets

$$\mathbf{f}_T(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathsf{T}} A^{IT} = \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda_d \mathbf{I})^{-1} Y$$

Kernel evaluations for new test instance:

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n))^\mathsf{T}$$

 $\mathbf{g}(\mathbf{t}) = (g(\mathbf{t}, \mathbf{t}_1), \dots, g(\mathbf{t}, \mathbf{t}_q))^\mathsf{T}$

Step 1: prediction for x on all the training targets

$$\mathbf{f}_T(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathsf{T}} A^{IT} = \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda_d \mathbf{I})^{-1} Y$$

Step 2: generalizing to new targets

$$f^{\mathsf{TS}}(\mathbf{x}, \mathbf{t}) = \mathbf{g}(\mathbf{t})^{\mathsf{T}} (\mathbf{G} + \lambda_t \mathbf{I})^{-1} \mathbf{f}_T(\mathbf{x})^{\mathsf{T}}$$

Kernel evaluations for new test instance:

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n))^\mathsf{T}$$

 $\mathbf{g}(\mathbf{t}) = (g(\mathbf{t}, \mathbf{t}_1), \dots, g(\mathbf{t}, \mathbf{t}_q))^\mathsf{T}$

Step 1: prediction for x on all the training targets

$$\mathbf{f}_T(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathsf{T}} A^{IT} = \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda_d \mathbf{I})^{-1} Y$$

Step 2: generalizing to new targets

$$f^{\mathsf{TS}}(\mathbf{x}, \mathbf{t}) = \mathbf{g}(\mathbf{t})^{\mathsf{T}} (\mathbf{G} + \lambda_t \mathbf{I})^{-1} \mathbf{f}_T(\mathbf{x})^{\mathsf{T}}$$
$$= \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda_d \mathbf{I})^{-1} Y (\mathbf{G} + \lambda_t \mathbf{I})^{-1} \mathbf{g}(\mathbf{t})$$

Kernel evaluations for new test instance:

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n))^\mathsf{T}$$

 $\mathbf{g}(\mathbf{t}) = (g(\mathbf{t}, \mathbf{t}_1), \dots, g(\mathbf{t}, \mathbf{t}_q))^\mathsf{T}$

Step 1: prediction for x on all the training targets

$$\mathbf{f}_T(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathsf{T}} A^{IT} = \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda_d \mathbf{I})^{-1} Y$$

Step 2: generalizing to new targets

$$f^{\mathsf{TS}}(\mathbf{x}, \mathbf{t}) = \mathbf{g}(\mathbf{t})^{\mathsf{T}} (\mathbf{G} + \lambda_t \mathbf{I})^{-1} \mathbf{f}_T(\mathbf{x})^{\mathsf{T}}$$

$$= \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda_d \mathbf{I})^{-1} Y (\mathbf{G} + \lambda_t \mathbf{I})^{-1} \mathbf{g}(\mathbf{t})$$

$$= \mathbf{k}(\mathbf{x})^{\mathsf{T}} A^{\mathsf{TS}} \mathbf{g}(\mathbf{t})$$

$$= \mathbf{w}^T (\phi(\mathbf{x}) \otimes \psi(\mathbf{t}))$$

Almost zero-shot learning: definition and experimental setup

Gradually increase the number of training instances for the "new" task

Almost zero-shot learning: results for protein-ligand interaction prediction

Zero-shot learning of document categorization

12,000 labels: from 5,000 to 350,000 instances

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

Methods that learn target representations (B and C) Example: low-rank parameter matrix approximation³³

$$\min_{A} ||Y - XA||_F^2 + \lambda \operatorname{rank}(A)$$

 $^{^{33}}$ Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009.

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	B and C
Similarity-enforcing methods	B and C
Relation-exploiting methods	B, C and D
Relation-constructing methods	B and C
Representation-exploiting methods	B, C and D
Representation-constructing methods	B and C
Matrix completion and hybrid methods	Α

Matrix completion and hybrid methods (A) Example: matrix factorization + bilinear models³⁴

$$f(\boldsymbol{x}, \boldsymbol{t}) = \boldsymbol{w}^T (\phi(\boldsymbol{x}) \otimes \psi(\boldsymbol{t}))$$

³⁴ Menon and Elkan, A log-linear model with latent features for dyadic prediction, ICDM 2010.

Overview of this tutorial

- A unifying view on MTP problems
- 2 A unifying view on MTP methods
- 3 Loss functions in multi-target prediction
- 4 Conclusions

Conclusions

- Multi-target prediction is an active field of research that connects different types of machine learning problems
- In the corresponding subfields of machine learning, problems have typically been solved in isolation, without establishing connections between methods
- Two-step zero-shot learning is a simple MTP method with a lot of interesting properties

Upcoming paper:
Waegeman et al.
Multi-Target Prediction:
A Unifying View on Problems and Methods