

The Open Power ISA: Architecture Compliancy and Future Foundations

Workshop on RISC-V and OpenPOWER International Conference on Supercomputing June 29, 2020

Brian Thompto

POWER ISA: Open Contribution Timeline

- August 20, 2019 Open ISA Announcement at NA OpenPOWER Summit
- **February 13, 2020** Final Draft of the End User License Released by OPF:
 - https://openpowerfoundation.org/final-draft-of-the-power-isa-eula-released/
- April 2020 POWER ISA 3.0c contribution to OPF
 - Same as POWER ISA 3.0b except for
 - Compliancy Subsets
 - Custom Extension Space (Sandbox)
 - SMF Feature
- May 2020 POWER ISA 3.1 contribution to OPF
- May 2020 POWER ISA Workgroup Chartered in OPF

Power ISA Timeline

1985 America

- Abbreviated Lineage of the Power ISA
 - Greater than 30 years of innovation and a developed ecosystem
 - Instruction heritage shown for *Power ISA 3.1*

Instruction Heritage	Note	# Instr.	Cum Instr.	Open ISA
POWER (P1)	Base	218	218	Contributing
POWER (P2)		6	224	Contributing
PowerPC (P3)	64b	119	343	Contributing
PowerPC 2.00 (P4)		7	350	Contributing
PowerPC 2.01		2	352	Contributing
PowerPC 2.02 (P5)		14	366	Contributing
Power ISA 2.03	SIMD-VMX	171	537	Contributing
Power ISA 2.05 (P6)		105	642	Contributing
Power ISA 2.06 (P7)	SIMD-VSX	189	831	Contributing
Power ISA 2.07 (P8)		111	942	Contributing
Power ISA 3.0 (P9)		231	1173	Compliance
Power ISA 3.1 (P10)	Prefix	246	1419	Compliance

Power Architecture Format – The Books

Books and Contents Environment Base instruction set and **Book I** related facilities: Application-level programming model Memory reference User Flow control **Generally compiler generated Instruction Set** Integer Architecture **Floating Point** Numeric acceleration **Book II** Storage model for thread Non-privileged Virtual and resource interaction: library-level programming model Environment Time, synchronization **Generally assembler generated** Cache management Architecture Storage features **Book III Supervisor instructions** and related facilities: Supervisor/Hypervisor programming model Operating Exceptions, interrupts Environment Memory management Architecture Debug facilities Special control / resources

Open Power ISA: Compliancy

A supporting / compliant design must:

- Support the <u>Base</u> architecture (never optional)
- And support at least one of the compliancy sub-sets:
 - ACS: AIX Compliancy Subset
 - **LCS**: **Linux** Compliancy Subset
 - SFFS: Scalar Fixed-Point + Floating-Point Compliancy Subset
 - **SFS**: **Scalar Fixed-Point** Compliancy Subset
- And may support any optional features for the compliancy subset
 - All optional features must be supported in their entirety per compliancy specification
- And may support custom extensions using the architecture sandbox
- And may utilize a combination of hardware and firmware
 - Any firmware must rely on on base architecture, the included optional features and the included custom extensions; must honor restrictions specified in the architecture for use of storage; and must honor explicitly prohibited uses.

Open Power ISA: Compliancy Subsets

Power ISA: Compliancy Subsets

Refer to official PowerISA document for compliancy subset definition and additional details

Copy-paste-accel (\underline{CPA}) Non-coherent-mem ($\underline{M=0}$) Matrix-math-assist (\underline{MMA})

Secure-mem-facility ($\underline{\sf SMF}$) Wr-tru-req-mem ($\underline{\sf W=1}$)

Data-stream-prefetch (<u>STM</u>) Power-management (<u>PM</u>)

Always Optional Features <320i>

<u>AIL</u>-HAIL-programmability <u>EVIRT</u>-programmability Quad-prec-float (<u>QFP</u>)

Atomic-mem-ops (<u>AMO</u>) SLB / <u>HPT</u> xlate Decimal-float (<u>DFP</u>)

Big-endian (BE) Proc-compat-reg (PCR) Load-store-multiple (LM)

Branch-history-buf (BHRB) Broadcast-<u>TLBIE</u> Load-store-string (<u>LS</u>)

Event-based-branch (<u>EBB</u>) Control-reg (<u>CTRL</u>) <u>SMT</u>

SIMD-VMX-VSX SF=1 (64-bit mode)

Nested radix xlate (\underline{ROR}) \underline{LE} -mode

<u>OV</u> modifying ops <u>LPAR</u>

Linux Subset (LCS) <962i>

AIX Subset (ACS) <1099i>

Scalar-Binary-FP Scalar Fixed-Point & Floating- Point Subset (SFFS) <214i>

Base Architecture Scalar Fixed-Point Subset (SFS) <129i>

Power ISA: Compliancy Subsets + Sandbox

Opcode-22 [H]FSCR(8:9) FPSCR(14:15) Interrupt 0x0FE0
SPR-704:719,720:735 XER(54:55) VSCR 96,112

Architecture Sandbox

For customization with <u>limited</u> applicability

Copy-paste-accel (\underline{CPA}) Non-coherent-mem ($\underline{M=0}$) Matrix-math-assist (\underline{MMA})

Secure-mem-facility (<u>SMF</u>) Wr-tru-req-mem (<u>W=1</u>)

Data-stream-prefetch (STM) Power-management (PM)

Always Optional Features <320i>

<u>AIL</u>-HAIL-programmability <u>EVIRT</u>-programmability Quad-prec-float (<u>QFP</u>)

Atomic-mem-ops (<u>AMO</u>) SLB / <u>HPT</u> xlate Decimal-float (<u>DFP</u>)

Big-endian (<u>BE</u>) Proc-compat-reg (<u>PCR</u>) Load-store-multiple (<u>LM</u>)

Branch-history-buf (BHRB) Broadcast-<u>TLBIE</u> Load-store-string (<u>LS</u>)

Event-based-branch (<u>EBB</u>) Control-reg (<u>CTRL</u>) <u>SMT</u>

SIMD-VMX-VSX SF=1 (64-bit mode)

Nested radix xlate (ROR) <u>LE</u>-mode

<u>OV</u> modifying ops <u>LPAR</u>

Linux Subset (LCS) <962i>

AIX Subset (ACS) <1099i>

Scalar-Binary-FP Scalar Fixed-Point & Floating- Point Subset (SFFS) <214i>

Base Architecture Scalar Fixed-Point Subset (SFS) <129i>

The Open Power ISA: Architecture Sandbox

The compliancy subset permits "custom extensions"

The architecture sandbox features are intended to allow implementation dependent customization

For facilities with broad applicability:

- Developers are <u>strongly</u> encouraged to submit a proposal for adoption into the architecture.
- Adopted proposals will become optional or required features of the architecture
 - These will be assigned resources that are not in the architecture sandbox to <u>avoid fragmentation</u> <u>of the architecture</u>.
- Facilities described in proposals that are not adopted into the architecture may be implemented as Custom Extensions using the architecture sandbox.

System software and toolchain support of Custom Extensions is not guaranteed.

 Developers are encouraged to provide a means to disable custom extensions to present an architecture that is supported by standard system software and toolchain.

TSA PowerISA 3.1: Foundation for Expansion

The PowerISA 3.1 includes a number of new features (see specification / preface for details):

- General: Byte reverse instructions, Vector Integer Multiply/Divide/Modulo Instructions, 128-bit Binary Integer Operations, Set Boolean Extension, String Operations, Test LSB by Byte Operation, VSX Scalar Minimum/Maximum/Compare Quad-Precision
- SIMD: VSX 32-byte Storage Access Operations, SIMD Permute-Class Operations, Bit-Manipulation Operations, VSX Load/Store
 Rightmost Element Operations, VSX Mask Manipulation Operations, VSX PCV Generate Operations for expand/compress,
- Translation Management Extensions
- Copy/Paste Extensions
- Persistent Storage / Store Sync
- Pause / Wait-reserve
- Hypervisor Interrupt Location Control
- Reduced-Precision: Outer Product Operations
 (Matrix Math Assist see presentation by José Moreira)
- Debug: BHRB Filtering updates, Multiple DEAW, New Performance Monitor SPRs, Performance Monitor Facility Sampling Security
- Instruction Prefix Support : 8B and modifying opcodes
 - Prefixed addi Instruction and Prefixed Load/Store Instructions and Addressing
 - CMODX Extension for Prefix
 - See next slide

PowerISA 3.1 Prefix architecture

- Prefix architecture, Primary-Opcode=1
 - RISC-friendly variable length instructions:
 - New 8B instruction space lays the foundation for future ISA expansion
 - Always 4B instruction alignment
 - Two forms: modifying (M=1) and 8B opcode (M=0)
 - Modifying: prefix extends function of existing instructions
 - 8B opcode: provides new opcode space for expansion, multi-operand instructions, etc.
 - PC-relative addressing: reduced path-length with new Power ABI support
 - MMA lane masking: mask by lane for MMA operations
 - Additional instructions and capabilities
- Generous room for expanded capabilities including opcode space and additional modifiers

PowerISA 3.1 Prefix architecture

Table 11: Primary Opcode Map for Opcode Space 1 (64-bit instruction encoding) (suffix bits 0-5)

Primary opcodes of suffixes of 8[M](LS|RR)-form prefixed instructions are mapped to opcode space 1

	000	001	010	011	100	101	110	111	
000	1-00 {reserved}	1-01 {reserved}	1-02	1-03	1-04	1-05 {reserved}	1-06	1-07	000
001	1-08	1-09 {reserved}	1-10	1-11	1-12	1-13	1-14	1-15	001
011	1-16	1-17	1-18	1-19	1-20	1-21	1-22 {reserved}	1-23	011
010	1-24	1-25	1-26	1-27	1-28	1-29	1-30	1-31	010
110	EXT132	EXT133	1-34 EXT134 {extended}	1-35	1-36	1-37	1-38	1-39	110
111	1-40	1-41 I plwa v3.1 8LS:D	plxsd	1-43 plxssp v3.1 8LS:D	1-44		1-46 pstxsd v3.1 8LS:D	1-47 I pstxssp v3.1 8LS:D	111
101	1-48		plxv v3.1 8LS:D	1-50 I plxv v3.1 8LS:D	1-52		pstxv v3.1 8LS:D	1-54 I pstxv v3.1 8LS:D	101
100	1-56 I plq v3.1 8LS:D	pld	plxvp	1-59	1-60 I pstq v3.1 8LS:D	pstd	pstxvp	1-63	100
	000	001	010	011	100	101	110	111	

Table 12: PREFIX: Opcode Map (64-bit instruction encoding) (prefix bits 6:11)

		•	• `		37 (I	,			
	000	001	010	011	100	101	110	111	
000	000 0 8LS-form							000	
001									001
010	01 0000 8RR-form v3.1								010
011									011
100	100 MLS-form						100		
101									101
110	11 0000 MRR-form v3.1								110
111		11 1001 MMIRR-form v3.1							111
	000	001	010	011	100	101	110	111	

Prefix	Suffix		
0 56711 3	1 0 5 31		
PO=1 0	PO new suffix opcode space		

Generous room for expanded capabilities including opcode space and additional modifiers

THANK YOU!

Brian Thompto bthompto@us.ibm.com

The Open Power ISA: Architecture Compliancy and Future Foundations

Abstract

The Open Power ISA enables access to unencumbered open innovation and a mature software ecosystem developed over the last 30 years. In this talk, we will review the major options for architectural compliancy that provide freedom of choice in design, including four recently specified compliancy subsets, separate optional features, and custom extensions. IBM has also recently contributed the Power ISA Version 3.1 to the Open Power ISA. This latest architectural version includes a number of new features developed for the POWER10 server including a new foundation for future expansion via the introduction of an instruction prefix. New capabilities and compliancy implications will be summarized.