Claims:

5

10

20

1. Use of alkylated and/or acylated monosaccharides and/or oligosaccharides as antimicrobial, antimycotic and/or antiviral active ingredients.

2. Note according to Claim 1, characterized in that the alkylated and/or acylated monosaccharide(s) is/are chosen from substances which are given by the general structural formulae

and

in which R_1 and/or R_2 include branched or unbranched saturated alkyl groups or acyl groups having 1 - 25 carbon atoms.

3. Use according to Claim 1, characterized in that the alkylated and/or acylated disaccharide(s) or oligoglucosides are chosen from substances which are given by the general structural formulae

where m = 1 - 4

$$H_2C-OH$$
 H_2C-OH
 H_2C

where n = 1 - 4

and

5

10

$$H_2C_1$$
OH
 H_2C_2 OH
 H_2C_3 OH
 H_3C_4 OH

where p = 1 - 4

where q = 1 - 4

in which R_3 - R_6 include branched or unbranched saturated alkyl groups or acyl groups having 1 - 25 carbon atoms.

a

The method

ske mather &

4. We according to Claim A, characterized in that the alkylated and/or acylated monosaccharides and/or oligosaccharides are present in cosmetic or dermatological formulations.

5

10

15

5. Use according to Claim 1, characterized in that the alkylated and/or acylated monosaccharides and/or oligosaccharides are chosen from the group consisting of β -D-octylglucopyranoside, β -D-nonylglucopyranoside, β -D-decylglucopyranoside, β -D-undecylglucopyranoside, β -D-tetradecylglucopyranoside and β -D-hexadecylglucopyranoside.

she method

6. When according to Claim X, characterized in that the alkylated and/or acylated monosaccharides and/or oligosaccharides are present in natural or synthetic raw materials or auxiliaries or mixtures.

The method

7. Note according to Claim 4, characterized in that the alkylated and/or acylated monosaccharides and/or oligosaccharides are used in cosmetic or dermatological formulations in a content of 0.005 - 50.0% by weight, in particular 0.01 20.0% by weight, based on the total weight of the composition.

20

add /

odd >