やる夫で学ぶデジタル信号処理のノート

jojonki

July. 2020

Contents

1	Cheat Sheet	2
2	三角関数型のフーリエ級数展開 2.1 フーリエ係数の求め方	3
3	複素指数関数型のフーリエ級数展開 3.1 複素指数関数型のときのフーリエ係数の求め方	3 4 4
4	フーリエ変換 (Fourier Transform) 4.1 周期をどんどん長くする	5
5	離散時間信号について 5.1 離散時間フーリエ変換 (Discrete-Time Fourier Transform)	7 7 8
6	離散フーリエ変換 (Discrete Fourier Transform) 6.1 離散フーリエ逆変換	

1 Cheat Sheet

						時間領域 → 周波数領域			周波数領域 → 時間領域		
時間領域			周波数領域		时间 原义 70 水 双 原类			10 //文 双 次 /			
離散性	周期性		離散性	周期性		非周期的	周期的		非周期的	周期的	
連続	周期的	フーリエ級数展開 ←→	離散的	非周期的	****	C					
連続	非周期的	フーリエ変換	連続	非周期的	連続 	フーリエ変換 離散時間	フーリエ級数展開して	連続 	フーリエ逆変換 離散時間	フーリエ係数から	
離散的	非周期的	離散時間フーリエ変換 ←→ 離散フーリエ変換 ←→	連続	周期的	離散的	フーリエク変換	フーリエ係数を得る	離散的	フーリエ	/ フーリエ級数を組み立て	
離散的	周期的		離散的	周期的	MEHAUJ	/ /	離散フーリエ変換		' /	離散フーリエ逆変換	

2 三角関数型のフーリエ級数展開

周期 T_0 の周期信号の 1 周期分の信号は下記のように定義できる。各周波数が異なる \cos と \sin の和によって,信号を表現できる。k=1 のときの角周波数を $\Omega_0=\frac{2\pi}{T_0}=2\pi f$ と表せる。k=1 は 1 周期分,k=2 は 2 周期分,k=n は n 周期分の \sin , \cos 信号だと解釈できる。例えば基本周期 $T_0=0.01sec$ とすると,基本周波数は $100 \mathrm{Hz}$ となる。なので, $100 \mathrm{Hz}$, $200 \mathrm{Hz}$, $300 \mathrm{Hz}$,... の成分に分解されていると定義できる。

また a_k や b_k をフーリエ係数と呼ぶ.

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left\{ a_k \cos\left(\frac{2\pi k}{T_0}t\right) + b_k \sin\left(\frac{2\pi k}{T_0}t\right) \right\}$$
 (2)

2.1 フーリエ係数の求め方

1周期分で積分するとくくり出せる.例えば f(t) を-T0/2 ~T0/2 で積分すると, \cos , \sin の 1周期分の積分は 0 なので第 2,3 項はきれいに消える.

$$\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f(t)dt = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} a_0 dt = a_0 T_0$$

$$\sharp \quad \supset \mathcal{T}$$

$$a_0 = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f(t) dt$$
(3)

次に k>0 ではどうなるか,これも異なる周波数成分の積の1周期分の積分は0 になることから,取り出したいフーリエ級数に対応する sin or cos をかけて,1周期積分すれば良い.例えば a_3 を求める.同一周期の cos 同士(あるいは sin 同士)の1周期積分は $T_0/2$ になることも利用して,

$$\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f(t) \cos\left(\Omega_0 3t\right) dt = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} a_3 \cos\left(\Omega_0 3t\right) \cos\left(\Omega_0 3t\right) dt = a_3 \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(\Omega_0 3t\right)^2 dt = a_3 \frac{T_0}{2}$$
(4)

よってフーリエ係数の求め方は、まとめると下記のようになる、

$$a_{0} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t)dt$$

$$a_{k} = \frac{T_{0}}{2} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t) \cos(\Omega_{0}kt) dt, (k = 1, 2, 3...)$$

$$b_{k} = \frac{T_{0}}{2} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t) \sin(\Omega_{0}kt) dt, (k = 1, 2, 3...)$$
(5)

3 複素指数関数型のフーリエ級数展開

フーリエ級数展開を複素指数関数で表す.オイラーの公式を用いて,cosとsinを置き換える.

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left\{ a_k \frac{e^{j\Omega_0 kt} + e^{-j\Omega_0 kt}}{2} + b_k \frac{e^{j\Omega_0 kt} - e^{-j\Omega_0 kt}}{2j} \right\}$$

$$= a_0 + \sum_{k=1}^{\infty} \left\{ \frac{a_k - jb_k}{2} e^{j\Omega_0 kt} + \frac{a_k + jb_k}{2} e^{-j\Omega_0 kt} \right\}$$
(6)

kの値は一無限から+無限の場合を考えていると解釈できるのでまとめる.

$$=\sum_{k=-\infty}^{\infty}F_ke^{jk\Omega_0t}$$

3.1 複素指数関数型のときのフーリエ係数の求め方

複素指数関数型のフーリエ級数のときも内積を利用する。実数表示のときと同じように、周波数が異なる複素指数関数をかけると積分は 0 になる(P25 参照)。そのため取り出したいフーリエ係数 F_k に対応する、複素指数関数の複素共役との内積を積分すれば良い。 F_3 を取り出したいときを考える、

$$\int_{-\pi}^{\pi} f(t)e^{-j\Omega_0 3t} dt = \int_{-\pi}^{\pi} \left\{ \sum_{k=-\infty}^{\infty} F_3 e^{jk\Omega_0 t} \right\} e^{-j\Omega_0 3t} dt
= \int_{-\pi}^{\pi} F_3 e^{j\Omega_0 3t} e^{-j\Omega_0 3t} dt = F_3 T_0$$
(7)

よって、下記のようになる、(複素共役での積分なのでeの符号がマイナスであることに注意)

$$F_k = \frac{1}{T_0} \int_{-\pi}^{\pi} f(t)e^{-j\Omega_0 kt} dt \tag{8}$$

3.2 フーリエ級数のイメージ

まとめると下記のようになる。三角関数型の場合,角周波数に対して, \cos と \sin の両方を考える必要がある。一方で,複素指数関数型の場合,フーリエ係数 F_k が各周波数成分の振幅と位相を示している。また $|F_k|$ を振幅スペクトル, $\angle F_k$ を位相スペクトル, $|F_k|^2$ をパワースペクトル,と呼ぶ。f(t) が実数である場合,複素指数関数型の振幅スペクトルは偶対象で,位相スペクトルは奇対象となっており,計算が楽。

三角関数型のフーリエ級数

複素指数関数型のフーリエ級数(絶対値と偏角)

4 フーリエ変換 (Fourier Transform)

4.1 周期をどんどん長くする

先程までの話では, $-T_0/2-T_0/2$ で考えていた.周波数成分は, $\Omega_0=2\pi/T_0$ であり, Ω_0 の整数倍の成分を足し合わせたものであった.ここで,もとの波形を変えずに,周期だけを長くする.例えば 2 倍にすると周期は $2T_0$ となる.このとき基本各周波数は, $\frac{2\pi}{2T_0}=\Omega_0/2$ となる.この整数倍の和で表されるのだから,先ほどとくらべて周波数成分が倍の密度になっている.

この周期を無限方向に広げていく。そうすると $-\infty$ から ∞ の連続時間上で定義された時間関数は、周波数領域で見ると、 $-\infty$ から ∞ の連続周波数上で定義されたスペクトルになる。

4.2 フーリエ変換とフーリエ逆変換

 $-3\Omega_0$ $-2\Omega_0$ $-\Omega_0$ 0 Ω_0 $2\Omega_0$ $3\Omega_0$

積分系にするために線でなく,面積として考える.

そのためにフーリエ級数の式に対して、面積を求める形式に変えて周期を無限長にすることで、フーリエ逆変換の式を導き出すことができる. (フーリエ変換でなくフーリエ逆変換であることに注意)

フーリエ変換も求めよう. フーリエ係数を求める式から展開することで求められる.

$$F_{k} = \frac{1}{T_{0}} \int_{-\pi}^{\pi} f(t)e^{-j\Omega_{0}kt}dt$$

$$= \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t)e^{-j\Omega[k]t}dt$$

$$F(\Omega[k]) = 2_{k}/\Omega_{0} \ \text{であるから},$$

$$F(\Omega[k]) = \frac{2\pi}{\Omega_{0}} \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t)e^{-j\Omega[k]t}dt$$

$$= \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t)e^{-j\Omega[k]t}dt$$

$$T_{0} \to \infty \ \text{とすると}, \ \ 7 - \text{リエ変換の式となる}.$$

$$F(\Omega) = \int_{-\infty}^{\infty} f(t)e^{-j\Omega t}dt$$

4.3 ここまでのまとめ

フーリエ級数のときは、周期的な時間信号を、無限個の複素指数関数の足し合わせで表現できた。しかし、周期的とは限らない一般の時間信号 f(t) を表現しようと思うとあらゆる実数を考えなくてはならない。数式で表現すると複素指数関数の「総和」でなく、「積分」で表現した。フーリエ級数展開もフーリエ変換も、信号を複数の周波数に分解している点は変わらない。ただしフーリエ級数展開の場合は、離散的な周波数を取ったのに対して、フーリエ変換時は連続的な成分として取った。

5 離散時間信号について

まず離散時間信号は,連続時間信号から,サンプリング周期 T_0 単位で取ってきた値 f[n] と表現される.また時間軸からサンプリングの個数単位 n 軸へと変化している.つまり時間を正規化していると言える.このとき周波数や角周波数も正規化する必要がある,つまり 1 サンプルで何回振動するか (Hz), 1 サンプルで何 rad 位相が進むか,ということになる.このときの正規化した角周波数を正規化角周波数 ω と小文字のオメガで定義する.サンプリング周期を T_s とすると, $\omega = \Omega T_s$ となる.

ちなみに $x[n] = \cos \omega_1 n$ の離散時間信号を考えてみる. ω_1 を増やしていって、 2π 増やすと、再び $\cos(\omega_1 + 2\pi)n = \cos \omega_1 n = x[n]$ に戻る不思議な現象がある. これは 1 サンプルごとに 1 周多く回っていると考えられ、下記のようにサンプリング周期が大きいため、もとの信号を復元できていないことがわかる.

5.1 離散時間フーリエ変換 (Discrete-Time Fourier Transform)

では、離散時間信号 f[n] のフーリエ変換を 2 つの考え方で導く、復習として、連続時間信号 f(t) のフーリエ変換は下記だった。

$$F(\Omega) = \int_{-\infty}^{\infty} f(t)e^{-j\Omega t}dt \tag{11}$$

まず 1 つ目の考え方.離散時間信号を線ではなく,面積として考えることで,積分を可能にする.そのために,幅 1 ,高さ $f[n]e^{-j\omega n}$ の短冊をイメージ.そうすると積分は面積の和として表現できるので,簡単に表現できる.

$$F(\Omega) = \sum_{n = -\infty}^{\infty} f[n]e^{-j\omega n}$$
(12)

2つ目の考え方は、デルタ関数を使って、積分値を計算できるようにする.

$$f(t) = \sum_{n = -\infty}^{\infty} f[n]\delta(t - n)$$
(13)

これをフーリエ変換の式に入れれば良い. 先ほどと同じ結果になる.

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} f[n]\delta(t-n)\right)e^{-j\omega t}dt$$

$$= \sum_{k=-\infty}^{\infty} f[n] \int_{-\infty}^{\infty} \delta(t-n)e^{-j\omega t}dt$$

$$= \sum_{k=-\infty}^{\infty} f[n]e^{-j\omega n}$$
(14)

ちなみにこのとき、時間軸上において、1 ごとに値を持つ離散関数. その周波数領域での周期は、 $\Omega_0=2\pi/T_0=2\pi/1=2\pi$ となる. よって同じスペクトルの形状が角周波数 2π ごとに繰り返し現れる. (自信なし) 複素指数関数のときと同じ.

5.2 離散時間フーリエ逆変換

 $F(\omega)$ を f[n] に戻す処理を行う. まず連続時間信号のフーリエ逆変換は下記だった.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\Omega)e^{j\Omega t} d\Omega \tag{15}$$

ただ今は周期的な周波数スペクトルを逆フーリエ変換するので,積分範囲は 1 周期で十分(P49,65 参照). 先程の $F(\omega)$ の式を代入すれば, f[n] になることは確かめられる.

$$f[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\omega)e^{j\omega n} d\omega$$
 (16)

6 離散フーリエ変換(Discrete Fourier Transform)

実はまだ離散時間信号の周波数スペクトルはコンピュータ上で求まらない.というのも離散時間フーリエ逆変換の式に積分があり、周波数は連続のままなので積分が計算できない.そこで周波数も離散化する.

これから導出するのは、N点のりさん時間信号からN点の離散周波数スペクトルの変換とその逆変換.離散時間・離散周波数フーリエ変換、通称、離散フーリエ変換(DFT: Discrete Fourier Transform)だ.

6.1 離散フーリエ逆変換

まず積分ができないので逆変換側から導出する. おさらいとして、離散時間フーリエ変換とその逆変換を載せておく.

$$F(\omega) = \sum_{n = -\infty}^{\infty} f[n]e^{-j\omega n}$$

$$f[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\omega)e^{j\omega n} d\omega$$
(17)

ここで $F(\omega)$ がどのような値になるか考えると下記 (N=8 とした). $F(\omega)$ から f[n] への変換は, $2\pi/N$ 間隔で並んだ N 本のインパルスの面積を足し合わせると f[n] が得られる.

まず、下記を導入する. $F(\omega)$ はインパルスを $2\pi/N$ おきに並べたものだった。 でインパルスの面積を c_k と考えると、下記のようになる. c_k は k=0,1,...,N-1 の周期的な値だ.

$$F(\omega) = \sum_{k=-\infty}^{\infty} c_k \delta(\omega - \frac{2\pi k}{N})$$
(18)

これをフーリエ逆変換の積分の式に代入すると、離散フーリエ逆変換(DFT)が求まる.

$$f[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(\omega) e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} c_k \delta(\omega - \frac{2\pi k}{N}) e^{j\omega n} d\omega$$

 c_k は周期性を持ち、サンプリング間隔だと 1 周期は k = 0, ..., N-1 にあたるので、

6.2 離散フーリエ変換

次に離散フーリエ変換を導出する.これも離散時間フーリエ変換からスタート.

$$F(\omega) = \sum_{n = -\infty}^{\infty} f[n]e^{-j\omega n}$$
(20)

f[n] が周的である場合, $F(\omega)$ は $\omega=2\pi k/N$ に無限大のインパルスが立っている.f[n] の 1 周期分の総和をさらに無限に足し合わせて無限大になってしまう.なので総和を 1 周気分だけでやめて無限大を回避する.これが離散フーリエ変換.

$$F[k] = \sum_{k=0}^{N-1} f[n]e^{-j\frac{2\pi k}{N}n}$$
(21)

ちなみに計算量は,e の箇所は計算済みとした場合,F[k] の計算は N 回,さらにこれを F[0],..,F[N-1] の N 回行うので $O(N^2)$ になる.ちなみに FFT を使うと $O\log(N)$ まで削減できる.