

Introdução

- Aula com conteúdo da Tese de Hugo Moreira, desenvolvida no LESF-MV. MOREIRA, Hugo Soeiro.
 Estudo de técnicas de rastreamento de máxima potência tolerantes a sombras para sistemas fotovoltaicos [recurso eletrônico]. 2018. 161 f. Dissertação (Mestrado em Engenharia Elétrica) Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP, 2018. Disponível em: https://repositorio.unicamp.br/acervo/detalhe/1061843. Acesso em: 28 maio 2025;
- Como já vimos no curso, o objetivo do sistema fotovoltaico é operar sempre no ponto de máxima potência, e para isso precisa de um MPPT (Maximum Power Point Tracking);
- O MPPT é basicamente uma lógica aplicada no conversor seja por componentes analógicos ou algoritmo computacional incrementado em um CI.

Introdução

Introdução

 O desafio de estudar e operar diferentes técnicas de MPPT surge, principalmente, com o sombreamento parcial. Pois, muitos algoritmos não conseguem localizar o ponto de máxima potência (MPP) nessas condições.

Soluções para Sombreamento

Conversores:

Soluções para Sombreamento

Diferentes configurações de arranjos fotovoltaicos;

Algoritmos de GMPP (Global maximum power point);

Teorema da Máxima Transferência de P

Referência do Material para o Teorema: SILVA, João Lucas de Souza. Estudo e desenvolvimento experimental de otimizadores de potência para sistemas fotovoltaicos conectados à rede elétrica [recurso eletrônico]. Campinas, SP: [s.n.], 2020. 122 p. Dissertação (Mestrado em Engenharia Elétrica) – FEEC-Unicamp. Orientador: Marcelo Gradella Villalva. Disponível em: https://repositorio.unicamp.br/acervo/detalhe/1129445. Acesso em: 28 maio 2025.

Figura 2.9 – Modelo de um circuito equivalente de Thévenin

Teorema da Máxima Transferência de P

 Sabendo-se que a potência fornecida será nula nos limites da carga, ou seja, R=0 e R= ∞, é passível a aplicação da equação (2.12), assim obtém-se a equação (2.13). Curiosidade, em conversores boost geralmente quando encontra MPP, a tensão de saída é aproximadamente o dobro da entrada.

$$P = \left(\frac{R}{R + R_{TH}}\right) V_{TH} \left(\frac{V_{TH}}{R + R_{TH}}\right) \tag{2.11}$$

$$\frac{dP}{dR} = 0 \tag{2.12}$$

$$dR = \frac{(R + R_{TH})^2 - 2R(R + R_{TH})}{(R + R_{TH})^4}$$
(2.13)

$$R = R_{TH} (2.14)$$

Exercício

• Um módulo fotovoltaico de 695 W está operando em condições ideais de radiação solar em STC. Esse módulo apresenta tensão de saída de 35 V quando fornece sua potência máxima. Deseja-se conectá-lo a uma carga puramente resistiva R de modo que a extração de energia seja a mais eficiente possível, ou seja, que o módulo opere exatamente em seu ponto de máxima potência. Com base nessas informações, determine o valor ótimo da resistência da carga R que deve ser conectada ao módulo para garantir a extração de sua potência máxima.

Figura 2.9 – Modelo de um circuito equivalente de Thévenin

Exercício

$$R = \frac{35^2}{695} \times \frac{1225}{695} \approx 1,763\,\Omega$$

Tensão Fixa

P&O: Perturbe e observe

- O sistema mede a tensão e a corrente do módulos FV.
- Calcula a potência gerada no momento.
- Compara com a potência anterior para ver se aumentou ou diminuiu.
- Se a potência aumentou, continua ajustando a tensão na mesma direção.
- Se a potência diminuiu, inverte a direção do ajuste da tensão.
- Repete o processo continuamente para seguir o ponto de máxima geração.
- O objetivo é manter o sistema operando no ponto de maior potência possível.

P&O: Perturbe e observe

Regras de decisão:

Condição	Ação sobre $V_{ m ref}$
$\Delta P>0$ e $\Delta V>0$	Aumenta $V_{ m ref}$: $V_{ m ref}+=V_{ m passo}$
$\Delta P>0$ e $\Delta V<0$	Diminui $V_{ m ref}$: $V_{ m ref}-=V_{ m passo}$
$\Delta P < 0$ e $\Delta V > 0$	Diminui $V_{ m ref}$: $V_{ m ref}-=V_{ m passo}$
$\Delta P < 0$ e $\Delta V < 0$	Aumenta $V_{ m ref}$: $V_{ m ref}+=V_{ m passo}$

P&O: Perturbe e observe

Condutância incremental

- O sistema mede a tensão (V) e a corrente (I) no instante atual.
- Calcula:
- $\Delta I = I(k) I(k-1) \rightarrow \text{variação da corrente}$
- $\Delta V = V(k) V(k-1) \rightarrow variação da tensão$
- Compara a razão ΔI/ΔV com o valor –I/V, que representa a derivada da potência.
- Decisão:
- Se ΔI/ΔV > −I/V, significa que ainda não chegou no ponto ideal → aumenta Vref.
- Se ΔI/ΔV ≤ -I/V, está passando do ponto ideal → diminui Vref.
- Atualiza os valores anteriores para repetir o processo, o objetivo é chegar no zero da derivada.

$$\begin{cases} \frac{dP}{dV} = I + V \frac{\Delta I}{\Delta V} > 0 & \text{à esquerda do MPP} \\ \frac{dP}{dV} = I + V \frac{\Delta I}{\Delta V} = 0 & \text{em cima do MPP} \\ \frac{dP}{dV} = I + V \frac{\Delta I}{\Delta V} < 0 & \text{à direita do MPP} \end{cases}$$

A Equação 3.3 pode ser reescrita como a Equação 3.4.

$$\begin{cases} \frac{\Delta I}{\Delta V} > -\frac{I}{V} & \text{à esquerda do MPP} \\ \frac{\Delta I}{\Delta V} = -\frac{I}{V} & \text{em cima do MPP} \\ \frac{\Delta I}{\Delta V} < -\frac{I}{V} & \text{à direita do MPP} \end{cases}$$

- O método de tensão fixa vai deixar de produzir muita potência em alguns momentos do dia, logo só é indicado para sistemas off-grid simples (baixo-custo), exemplo, iluminação pública.
- O P&O comercialmente é o mais utilizado. Porém, vai errar em situações de sombreamento parcial e pode demorar para encontrar o ponto mesmo em curvas mais simples (sombreamento total ou sem sombras).
- O IC reduz as oscilações ao redor do ponto ideal que tem no P&O.

Vamos verificar um exemplo em Python que temos no GitHUB da disciplina!

- O método de tensão fixa vai deixar de produzir muita potência em alguns momentos do dia, logo só é indicado para sistemas off-grid simples (baixo-custo), exemplo, iluminação pública.
- O P&O comercialmente é o mais utilizado. Porém, vai errar em situações de sombreamento parcial e pode demorar para encontrar o ponto mesmo em curvas mais simples (sombreamento total ou sem sombras).
- O IC reduz as oscilações ao redor do ponto ideal que tem no P&O.

A seção de "Otimizadores com P&O" é da referência: SILVA, João Lucas de Souza. Estudo e desenvolvimento experimental de otimizadores de potência para sistemas fotovoltaicos conectados à rede elétrica [recurso eletrônico]. Campinas, SP: [s.n.], 2020. 122 p. Dissertação (Mestrado em Engenharia Elétrica) – FEEC-Unicamp. Orientador: Marcelo Gradella Villalva. Disponível em: https://repositorio.unicamp.br/a cervo/detalhe/1129445. Acesso em: 28 maio 2025.

			<u>c</u> SF		
Irradiância por	Ideal	Convencional	Convencional	Otimizadores	Otimizadores
módulo (W/m²)		Simulação	Real	Simulação	Real
1000/1000/1000	180,00 W	177,62 W	179,10 W	177,58 W	175,40 W
1000/800/600	144,00 W	118,14 W	121,04 W	142,12 W	142,29 W
800/900/500	132,00 W	99,02 W	102,55 W	130,22 W	129,99 W

 Retornando a Dissertação do Hugo Moreira, temos alguns testes práticos do LESF-MV.

Figura 5.2: Sistema monofásico dois estágios experimental. 1: interface TMS320F28335 DSP, 2: Conversores CC-CC e CC-CA, 3: Sensores de tensão e corrente, 4: Relé para conexão com a rede elétrica, 5: Transformador para conexão com a rede elétrica, 6: Indutor do boost, 7: Indutor do inversor, 8: Capacitor, 9: Relé para conexão dos módulos fotovoltaicos. [149].

Figura 5.7: Formas de onda de corrente, tensão e potência fotovoltaica para o método de rastreamento pelo número de diodos de *bypass* durante o sombreamento parcial da condição X.

Figura 5.11: Formas de onda de corrente, tensão e potência fotovoltaica para a busca pela sequência de Fibonacci durante o sombreamento parcial da condição X.

Figura 5.16: Formas de onda de corrente, tensão e potência fotovoltaica para o método de otimização por enxame de partículas durante o sombreamento parcial da condição X. Teste com o menor valor de eficiência: 84,99%.

Figura 5.24: Formas de onda de corrente, tensão e potência fotovoltaica para o algoritmo dos vagalumes durante o sombreamento parcial da condição X. Teste com o menor valor de eficiência: 98,20%.

Figura 5.32: Formas de onda de corrente, tensão e potência fotovoltaica para o ABC durante o sombreamento parcial da condição X. Teste com o menor valor de eficiência: 98,33%.

Tabela 5.1: Resultados experimentais.

		Ndha	Eib on o soi	PSO		FFA			ABC			
		Ndbp	Fibonacci	Mínimo	Média	Máximo	Mínimo	Média	Máximo	Mínimo	Média	Máximo
	Potência (W)	Pico	232,14	230,87	232,00	232,58	217,11	222,93	228,10	229,32	231,94	233,94
Início	Eficiência (%)	Global	98,73%	98,19%	$98,\!87\%$	99,88%	92,34%	$94,\!82\%$	97,01%	$97,\!53\%$	$98,\!64\%$	99,50%
	Energia perdida (kJ)	0,3026	0,0958	0,2275	0,2703	0,4203	0,1233	0,2263	0,362	0,6215	0,7701	0,9212
	Tempo (s)	0,40	$0,\!95$	4,00	4,00	4,00	1,00	1,64	3,00	4,60	$5,\!26$	5,90
	Potência (W)	Pico	175,86	149,87	164,8	175,65	$173,\!17$	174,95	175,76	173,4	174,75	175,66
	Eficiência (%)	Global	99,73%	84,99%	$93,\!44\%$	99,61%	98,20%	$99,\!21\%$	$99,\!67\%$	$98,\!33\%$	$99,\!10\%$	$99,\!62\%$
X	Energia perdida (kJ)	0,0246	0,0488	0,0346	0,2102	0,366	0,0276	0,1264	0,2825	0,2101	0,3675	0,542
	Tempo (s)	1,50	1,80	4,00	5,01	5,90	1,35	3,07	4,50	2,60	4,92	7,95
Y	Potência (W)	Pico	114,92	100,02	110,24	117	113,35	115,64	116,27	105,91	114,35	116,95
	Eficiência (%)	Global	97,76%	85,01%	93,77%	99,52%	$96,\!42\%$	$98,\!36\%$	98,90%	90,09%	$97,\!26\%$	99,48%
	Energia perdida (kJ)	0,0100	0,0361	0,0561	0,1263	0,2064	0,0116	0,0758	0,1641	0,1372	0,2251	0,3350
	Tempo (s)	1,50	1,80	4,08	5,22	5,90	2,40	4,77	9,00	3,65	5,61	7,10
	Potência (W)	Pico	104,91	87,46	96,18	102,43	94,99	97,66	102,78	97,04	102,11	105,04
	Eficiência (%)	Global	$98,\!61\%$	82,20%	90,40%	$96,\!28\%$	89,29%	91,78%	96,61%	91,21%	$95,\!98\%$	98,73%
Z	Energia perdida (kJ)	0,0585	0,127	0,0288	0,1555	0,2905	0,1389	0,2199	0,3173	0,2045	0,2641	0,3197
	Tempo (s)	1,60	3,30	4,45	5,20	6,30	2,20	4,42	7,90	3,20	4,88	6,85
	Potência (W)	Pico	156,9575	87,46	150,805	232,58	94,99	152,795	228,10	97,04	155,7875	233,94
Média	Eficiência (%)	Global	98,71%	82,20%	$94,\!12\%$	$99,\!88\%$	89,29%	96,04%	$99,\!67\%$	90,09%	97,75%	$99,\!62\%$
	Energia perdida (kJ)	0,0989	0,0769	0,0288	0,1906	0,4203	0,0116	0,1621	0,3620	0,1372	0,4067	0,9212
	Tempo (s)	1,25	1,96	4,00	4,86	6,30	1,00	3,48	9,00	2,60	5,17	7,95

Considerações Finais

• Tese Hugo: "Os métodos testados foram capazes de encontrar o GMPP ou operar próximos a ele, demonstrando boa capacidade de rastreamento do ponto de máxima potência global em condições de sombreamento parcial. Entre todos os métodos avaliados, a busca baseada na sequência de Fibonacci apresentou os melhores resultados em termos de potência extraída, eficiência e menor perda de energia. Já o método baseado no número de diodos de bypass se destacou pela maior velocidade, com tempo médio de convergência de 1,25 segundos."

Considerações Finais

 Aula: Foram apresentados diversos métodos para melhorar o desempenho dos sistemas fotovoltaicos operando no ponto de máxima potência. No entanto, a aplicação desses métodos, seja por meio de algoritmos ou conversores, depende de fatores como o custo e a finalidade do sistema. Essas decisões devem ser cuidadosamente analisadas durante o desenvolvimento dos inversores pelos fabricantes e no dimensionamento do sistema fotovoltaico pelos integradores.

Exercícios para Aula

- 1 Mudar a tensão fixa do algoritmo proposto no GitHUB para 20 V, 25 V, e 35 V e comentar os resultados de eficiência.
- 2 Alterar o irrad e responder: O algoritmo P&O é igualmente eficaz em todas as condições? O que acontece com a potência máxima conforme a irradiância diminui?
- 3 Fazer o mesmo exercício que está no código, alterando o modelo de módulo FV.

Referências

MOREIRA, Hugo Soeiro. Estudo de técnicas de rastreamento de máxima potência tolerantes a sombras para sistemas fotovoltaicos [recurso eletrônico]. 2018. 161 f. Dissertação (Mestrado em Engenharia Elétrica) — Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas, SP, 2018. Disponível em: https://repositorio.unicamp.br/acervo/detalhe/1061843. Acesso em: 28 maio 2025;

SILVA, João Lucas de Souza. Estudo e desenvolvimento experimental de otimizadores de potência para sistemas fotovoltaicos conectados à rede elétrica [recurso eletrônico]. Campinas, SP: [s.n.], 2020. 122 p. Dissertação (Mestrado em Engenharia Elétrica) – FEEC-Unicamp. Orientador: Marcelo Gradella Villalva. Disponível em: https://repositorio.unicamp.br/acervo/detalhe/1129445. Acesso em: 28 maio 2025.

