第七章 复合优化算法

修贤超

https://xianchaoxiu.github.io

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

邻近算子

■ 考虑如下复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

- □ f(x) 为可微函数 (可能非凸)
- □ h(x) 可能为不可微函数
- 定义 7.1 对于一个凸函数 h. 定义邻近算子为

$$\operatorname{prox}_h(x) = \arg\min_{u} \left\{ h(u) + \frac{1}{2} ||u - x||_2^2 \right\}$$

■ 定理 7.1 如果 h 为闭凸函数,则对任意 x 有 $prox_h(x)$ 存在且唯一

邻近算子

■ 定理 7.2 若ħ 是适当的闭凸函数,则

$$u = \operatorname{prox}_h(x) \quad \Leftrightarrow \quad x - u \in \partial h(u)$$

证明 若 $u =_h (x)$, 则由最优性条件得 $0 \in \partial h(u) + (u - x)$, 因此有 $x - u \in \partial h(u)$. 反之,若 $x - u \in \partial h(u)$ 则由次梯度的定义可得到

$$h(v) \geqslant h(u) + (x - u)^{\top} (v - u), \quad \forall v \in \text{dom } h$$

两边同时加 $\frac{1}{2}||v-x||^2$, 即有

$$h(v) + \frac{1}{2} \|v - x\|^2 \ge h(u) + (x - u)^{\top} (v - u) + \frac{1}{2} \|(v - u) - (x - u)\|^2$$
$$\ge h(u) + \frac{1}{2} \|u - x\|^2, \quad \forall v \in \text{dom } h$$

根据定义可得 $u =_h (x)$

■ ℓ_1 范数 $h(x) = ||x||_1$, $\operatorname{prox}_{th}(x) = \operatorname{sign}(x) \max\{|x| - t, 0\}$

证明 邻近算子 $u = \text{prox}_{th}(x)$ 的最优性条件为

$$x - u \in t\partial ||u||_1 = \begin{cases} \{t\}, & u > 0 \\ [-t, t], & u = 0 \\ \{-t\}, & u < 0 \end{cases}$$

当 x > t 时, u = x - t; 当 x < -t 时, u = x + t; 当 $x \in [-t, t]$ 时, u = 0 因此 $u = \text{sign}(x) \max\{|x| - t, 0\}$

■
$$\ell_2$$
 范数 $h(x) = \|x\|_2$, $\operatorname{prox}_{th}(x) = \begin{cases} (1 - \frac{t}{\|x\|_2})x, & \|x\|_2 \geqslant t \\ 0, & \text{其他} \end{cases}$

证明 邻近算子 $u = \text{prox}_{th}(x)$ 的最优性条件为

$$x - u \in t\partial ||u||_2 = \begin{cases} \{\frac{tu}{||u||_2}\}, & u \neq 0\\ \{w : ||w||_2 \leqslant t\}, & u = 0 \end{cases}$$

当
$$||x||_2 > t$$
 时, $u = x - \frac{tx}{||x||_2}$; 当 $||x||_2 \leqslant t$ 时, $u = 0$

■ 邻近算子的计算规则

 \Box 变量的常数倍放缩以及平移 $(\lambda \neq 0)$

$$h(x) = g(\lambda x + a), \quad \operatorname{prox}_h(x) = \frac{1}{\lambda} \left(\operatorname{prox}_{\lambda^2 g}(\lambda x + a) - a \right)$$

 \Box 函数(及变量)的常数倍放缩 $(\lambda > 0)$

$$h(x) = \lambda g\left(\frac{x}{\lambda}\right), \quad \operatorname{prox}_h(x) = \lambda \operatorname{prox}_{\lambda^{-1}g}\left(\frac{x}{\lambda}\right)$$

□ 加上线性函数

$$h(x) = g(x) + a^{\mathsf{T}}x, \quad \operatorname{prox}_h(x) = \operatorname{prox}_g(x - a)$$

□ 加上二次项 (u > 0)

$$h(x) = g(x) + \frac{u}{2} ||x - a||_2^2, \quad \text{prox}_h(x) = \text{prox}_{\theta g}(\theta x + (1 - \theta)a)$$

其中
$$\theta = \frac{1}{1+u}$$

□ 向量函数

$$h\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \varphi_1(x) + \varphi_2(y), \quad \operatorname{prox}_h\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} \operatorname{prox}_{\varphi_1}(x) \\ \operatorname{prox}_{\varphi_2}(y) \end{array}\right]$$

 $lue{}$ 设C 为闭凸集,则示性函数 I_C 的邻近算子为点 x 到 C 的投影 $\mathcal{P}_C(x)$

$$\operatorname{prox}_{I_C}(x) = \underset{u}{\operatorname{arg \, min}} \left\{ I_C(u) + \frac{1}{2} \|u - x\|^2 \right\}$$
$$= \underset{u \in C}{\operatorname{arg \, min}} \|u - x\|^2$$
$$= \mathcal{P}_C(x)$$

■几何意义

$$u = \mathcal{P}_C(x) \quad \Leftrightarrow \quad (x - u)^\top (z - u) \leqslant 0, \quad \forall z \in C$$

近似点梯度法

■ 考虑复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

■ 对于光滑部分 f 做梯度下降, 对于非光滑部分 h 使用邻近算子

```
========
```

- 1 给定函数 f(x),h(x), 初始点 x^0
- 2 while 未达到收敛准则 do
- $3 x^{k+1} = \operatorname{prox}_{t,h}(x^k t_k \nabla f(x^k))$
- 4 end while

对近似点梯度法的理解

■ 把迭代公式展开

$$x^{k+1} = \operatorname{prox}_{t_k h}(x^k - t_k \nabla f(x^k))$$

$$\downarrow \downarrow$$

$$x^{k+1} = \arg\min_{u} \left\{ h(u) + \frac{1}{2t_k} \|u - x^k + t_k \nabla f(x^k)\|^2 \right\}$$

$$= \arg\min_{u} \left\{ h(u) + f(x^k) + \nabla f(x^k)^{\top} (u - x^k) + \frac{1}{2t_k} \|u - x^k\|^2 \right\}$$

■ 根据邻近算子与次梯度的关系, 可改写为

$$x^{k+1} = x^k - t_k \nabla f(x^k) - t_k g^k, \quad g^k \in \partial h(x^{k+1})$$

■ 对光滑部分做显式的梯度下降,对非光滑部分做隐式的梯度下降

步长选取

■ 当f 为梯度 L-利普希茨连续函数时,可取固定步长 $t_k = t \leqslant \frac{1}{L}$. 当 L 未知时可使用线搜索准则

$$f(x^{k+1}) \leqslant f(x^k) + \nabla f(x^k)^{\top} (x^{k+1} - x^k) + \frac{1}{2t_k} ||x^{k+1} - x^k||^2$$

■ 利用 BB 步长作为 tk 的初始估计并用非单调线搜索进行校正

$$\alpha_{\text{BB1}}^k = \frac{(s^{k-1})^\top y^{k-1}}{(y^{k-1})^\top y^{k-1}} \quad \mathbf{\vec{g}} \quad \alpha_{\text{BB2}}^k = \frac{(s^{k-1})^\top s^{k-1}}{(s^{k-1})^\top y^{k-1}}$$

其中
$$s^{k-1} = x^k - x^{k-1}$$
 以及 $y^{k-1} = \nabla f(x^k) - \nabla f(x^{k-1})$

■可构造如下适用于近似点梯度法的非单调线搜索准则

$$\psi(x^{k+1}) \le C^k - \frac{c_1}{2t_k} \|x^{k+1} - x^k\|^2$$

■ 考虑用近似点梯度法求解 LASSO 问题

$$\min_{x} \quad \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|^2$$

• $\Rightarrow f(x) = \frac{1}{2} ||Ax - b||^2, h(x) = \mu ||x||_1, \, \mathbf{M}$

$$\nabla f(x) = A^{\top}(Ax - b)$$
$$\operatorname{prox}_{t_k h}(x) = \operatorname{sign}(x) \max \{|x| - t_k \mu, 0\}$$

■ 相应的迭代格式为

$$y^{k} = x^{k} - t_{k} A^{\top} (Ax^{k} - b)$$
$$x^{k+1} = \text{sign}(y^{k}) \max\{|y^{k}| - t_{k}\mu, 0\}$$

即第一步做梯度下降, 第二步做收缩

■ 使用 BB 步长加速收敛

应用举例: 低秩矩阵恢复

■ 考虑低秩矩阵恢复模型

$$\min_{X \in \mathbb{R}^{m \times n}} \quad \mu \|X\|_* + \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2$$

令

$$f(X) = \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2, \quad h(X) = \mu ||X||_*$$

■ 定义矩阵

$$P_{ij} = \begin{cases} 1, & (i,j) \in \Omega \\ 0, & \text{其他} \end{cases}$$

则

$$f(X) = \frac{1}{2} ||P \odot (X - M)||_F^2$$

应用举例: 低秩矩阵恢复

■进一步可以得到

$$\nabla f(X) = P \odot (X - M)$$
$$\operatorname{prox}_{t_k h}(X) = U \operatorname{Diag}(\max\{|d| - t_k \mu, 0\}) V^{\top}$$

■ 得到近似点梯度法的迭代格式

$$Y^{k} = X^{k} - t_{k}P \odot (X^{k} - M)$$
$$X^{k+1} = \operatorname{prox}_{t_{k}h}(Y^{k})$$

收敛性分析

- 假设 7.1 为了保证近似点梯度算法的收敛性

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y$$

- □ h 是适当的闭凸函数 (因此 th 的定义是合理的)
- 定理 7.3 在假设 7.1 下,取定步长为 $t_k = t \in (0, \frac{1}{L}]$,设 $\{x^k\}$ 为迭代产生序列,则

$$\psi(x^k) - \psi^* \leqslant \frac{1}{2kt} \|x^0 - x^*\|^2$$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

典型问题形式

■ 考虑如下复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

■ f(x) 是连续可微的凸函数,且梯度是利普西茨连续的

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

■ h(x) 是适当的闭凸函数, 且临近算子

$$\operatorname{prox}_h(x) =_{u \in \operatorname{dom}h} \left\{ h(u) + \frac{1}{2} ||x - u||^2 \right\}$$

■ 近似点梯度法

$$x^{k+1} = \operatorname{prox}_{t_k h}(x^k - t_k \nabla f(x^k))$$

在步长取常数 $t_k = 1/L$ 时,收敛速度为 (1/k)

Nesterov 加速算法简史

- Nesterov 分别在 1983 年、1988 年和 2005 年提出了三种改进的一阶算法,收敛速度能达到 $\mathcal{O}\left(\frac{1}{k^2}\right)$
- Beck 和 Teboulle 在 2008 年提出了 FISTA 算法, 第一步沿着前两步的计算方向计算一个新点, 第二步在该新点处做一步近似点梯度迭代

FISTA 的等价形式

- 1 \hat{m} $\lambda x^0 = x^{-1} \in \mathbb{R}^n, k \leftarrow 1$
- 2 while 未达到收敛准则 do
- 3 计算 $y^k = x^{k-1} + \frac{k-2}{k+1}(x^{k-1} x^{k-2})$
- 4 选取 $t_k = t \in (0, 1/L]$, 计算 $x^k = \text{prox}_{t_k h}(y^k t_k \nabla f(y^k))$
- $5 k \leftarrow k+1$
- 6 end while

========

- 1 \hat{m} $\lambda x^0 = x^{-1} \in \mathbb{R}^n, k \leftarrow 1$
- 2 while 未达到收敛准则 do
- 3 计算 $y^k = (1 \gamma_k)x^{k-1} + \gamma_k v^{k-1}$
- 4 选取 t_k , 计算 $x^k = \operatorname{prox}_{t_k h}(y^k t_k \nabla f(y^k))$
- 5 计算 $v^k = x^{k-1} + \frac{1}{\gamma_k} (x^k x^{k-1})$
- 6 $k \leftarrow k+1$
- 7 end while

第二类 Nesterov 加速算法

■ 第二类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$
$$y^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})h} \left(y^{k-1} - \frac{t_{k}}{\gamma_{k}} \nabla f(z^{k}) \right)$$
$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

■ 三个序列 $\{x^k\}$, $\{y^k\}$ 和 $\{z^k\}$ 都可以保证在定义域内

$$y^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})h}(y^{k-1} - (t_{k}/\gamma_{k})\nabla f(z^{k}))$$

$$y^{k-1} \quad z^{k} \qquad x^{k-1}$$

第三类 Nesterov 加速算法

■ 第三类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$y^{k} = \operatorname{prox}_{(t_{k} \sum_{i=1}^{k} 1/\gamma_{i})h} \left(-t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} \nabla f(z^{i}) \right)$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

- 计算 y^k 时需要利用全部已有的 $\{\nabla f(z^i)\}, i=1,2,\cdots,k$
- 取 $\gamma_k = \frac{2}{k+1}$, $t_k = \frac{1}{L}$ 时,也有 $\mathcal{O}\left(\frac{1}{k^2}\right)$ 的收敛速度

针对非凸问题的 Nesterov 加速算法

- 考虑 f(x) 是非凸函数,但可微且梯度是利普希茨连续
- 非凸复合优化问题的加速梯度法框架

$$z^{k} = \gamma_{k} y^{k-1} + (1 - \gamma_{k}) x^{k-1}$$
$$y^{k} = \operatorname{prox}_{\lambda_{k} h} \left(y^{k-1} - \lambda_{k} \nabla f(z^{k}) \right)$$
$$x^{k} = \operatorname{prox}_{t_{k} h} \left(z^{k} - t_{k} \nabla f(z^{k}) \right)$$

- ullet 当 λ_k 和 t_k 取特定值时,它等价于第二类 Nesterov 加速算法
- $lacksymbol{\blacksquare}$ 当 f 为凸函数,收敛速度为 $\mathcal{O}\left(rac{1}{k^2}
 ight)$; 当 f 为非凸函数,收敛速度为 $\mathcal{O}\left(rac{1}{k}
 ight)$

■ 考虑 LASSO 问题

$$\min_{x} \quad \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1}$$

■ FISTA 算法可以由下面的迭代格式给出

$$y^{k} = x^{k-1} + \frac{k-2}{k+1}(x^{k-1} - x^{k-2})$$

$$w^{k} = y^{k} - t_{k}A^{T}(Ay^{k} - b)$$

$$x^{k} = \operatorname{sign}(w^{k}) \max\{|w^{k}| - t_{k}\mu, 0\}$$

■ 与近似点梯度算法相同,由于最后一步将 w^k 中绝对值小于 $t_k \mu$ 的分量置零,该算法能够保证迭代过程中解具有稀疏结构

■ 第二类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$w^{k} = y^{k-1} - \frac{t_{k}}{\gamma_{k}}A^{\top}(Az^{k} - b)$$

$$y^{k} = \operatorname{sign}(w^{k}) \max \left\{ |w^{k}| - \frac{t_{k}}{\gamma_{k}}\mu, 0 \right\}$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

■ 第三类 Nesterov 加速算法

$$z^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k-1}$$

$$w^{k} = -t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} A^{T} (Az^{i} - b)$$

$$y^{k} = \operatorname{sign}(w^{k}) \max \left\{ |w^{k}| - t_{k} \sum_{i=1}^{k} \frac{1}{\gamma_{i}} \mu, 0 \right\}$$

$$x^{k} = (1 - \gamma_{k})x^{k-1} + \gamma_{k}y^{k}$$

■ 取 $\mu = 10^{-3}$, 步长 $t = \frac{1}{L}$, 这里 $L = \lambda_{\max}(A^{\top}A)$

收敛性分析

■ 定理 7.5 在假设 7.1 下,取定步长 $t_k = t \in (0, 1/L]$. 设 $\{x^k\}$ 是由近似点梯 度法迭代产生的序列,则

$$\psi(x^k) - \psi^* \le \frac{1}{2kt} \|x^0 - x^*\|^2$$

■ <mark>推论 7.1</mark> 在假设 7.1 下,当用 FISTA 算法求解凸复合优化问题时,若迭代点 x^k, y^k ,步长 t_k 以及组合系数 γ_k 满足一定条件,则

$$\psi(x^k) - \psi(x^*) \le \frac{C}{k^2}$$

其中 C 仅与函数 f,初始点 x^0 的选取有关.特别地,采用线搜索的 FISTA 算法具有 $\mathcal{O}\left(\frac{1}{k^2}\right)$ 的收敛速度

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

近似点算法

■ 考虑一般形式的优化问题

$$\min_{x} \quad \psi(x)$$

- ullet ψ 是一个适当的闭凸函数,并不要求连续或可微
- 次梯度法求解收敛较慢, 且收敛条件苛刻
- 近似点梯度法做隐性的梯度下降

$$x^{k+1} = \operatorname{prox}_{t_k \psi}(x^k)$$

$$= \arg \min_{u} \left\{ \psi(u) + \frac{1}{2t_k} \|u - x^k\|_2^2 \right\}$$

- lue $\psi(x)$ 的邻近算子一般需要通过迭代求解
- 🛮 目标函数强凸,相比原问题更利于迭代法的求解

FISTA 算法加速

■ 用 FISTA 算法对近似点算法进行加速,其迭代格式为

$$x^{k} = \operatorname{prox}_{t_{k}\psi} \left(x^{k-1} + \gamma_{k} \frac{1 - \gamma_{k-1}}{\gamma_{k-1}} (x^{k-1} - x^{k-2}) \right)$$

■ 第二类 Nesterov 加速算法的迭代格式可以写成

$$v^{k} = \operatorname{prox}_{(t_{k}/\gamma_{k})\psi}(v^{k-1}), \quad x^{k} = (1 - \gamma_{k}) x^{k-1} + \gamma_{k} v^{k}$$

- 关于算法参数的选择有两种策略
 - $oxed{oxed}$ 固定步长 $t_k=t$ 以及 $\gamma_k=rac{2}{k+1}$
 - $oldsymbol{\circ}$ 可变步长 t_k ,当 k=1 时取 $\gamma_1=1$; 当 k>1 时, γ_k 来自 $\frac{(1-\gamma_k)t_k}{\gamma_k^2}=\frac{t_{k-1}}{\gamma_{k-1}^2}$

■ 考虑具有如下形式的优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x) + h(Ax)$$

- 例 7.4 一些常见例子
 - \square 当 h 是单点集 $\{b\}$ 的示性函数时,等价于线性等式约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x) \quad \text{s.t.} \quad Ax = b$$

 \square 当 h 是凸集 C 上的示性函数时,等价于凸集约束问题

min
$$f(x)$$
 s.t. $Ax \in C$

$$\min \quad f(x) + ||Ax - b||$$

对偶问题

■ 原问题的增广拉格朗日函数法

$$(x^{k+1}, y^{k+1}) = \underset{x,y}{\operatorname{argmin}} \left\{ f(x) + h(y) + \frac{t_k}{2} ||Ax - y + z^k/t_k||_2^2 \right\}$$
$$z^{k+1} = z^k + t_k (Ax^{k+1}k - y^{k+1})$$

■ 对偶问题

$$\max \quad \psi(z) = \inf_{x,y} L(x, y, z) = -f^*(-A^{\top}z) - h^*(z)$$

近似点算法

$$z^{k+1} = \operatorname{prox}_{t\psi}(z^k) = \operatorname*{arg\,min}_{z} \left\{ f^*(-A^\top z) + h^*(z) + \frac{1}{2t_k} \|z - z^k\|_2^2 \right\}$$

■ 对原问题用增广拉格朗日函数法 ⇔ 对对偶问题用近似点算法

■ 考虑 LASSO 问题

$$\min_{x \in \mathbb{R}^n} \ \psi(x) = \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|_2^2$$

■ 引入变量 y = Ax - b, 等价地转化为

$$\min_{x,y} f(x,y) = \mu \|x\|_1 + \frac{1}{2} \|y\|_2^2 \quad \text{s.t.} \quad Ax - y - b = 0$$

■ 采用近似点算法进行求解, 其第 k 步迭代为

$$(x^{k+1}, y^{k+1}) \approx \arg\min_{(x,y) \in \mathbb{D}} \left\{ f(x,y) + \frac{1}{2t_k} (\|x - x^k\|_2^2 + \|y - y^k\|_2^2) \right\}$$

其中 $\mathbb{D} = \{(x,y) \mid Ax - y = b\}$ 为可行域, t_k 为步长

- 除了直接求解,一种比较实用的方式是通过对偶问题的解来构造 (x^{k+1}, y^{k+1})
- 引入拉格朗日乘子 z, 对偶函数为

$$\Phi_{k}(z) = \inf_{x} \left\{ \mu \|x\|_{1} + z^{\top} A x + \frac{1}{2t_{k}} \|x - x^{k}\|_{2}^{2} \right\}$$

$$+ \inf_{y} \left\{ \frac{1}{2} \|y\|_{2}^{2} - z^{\top} y + \frac{1}{2t_{k}} \|y - y^{k}\|_{2}^{2} \right\} - b^{\top} z$$

$$= \mu \Gamma_{\mu t_{k}} (x^{k} - t_{k} A^{\top} z) - \frac{1}{2t_{k}} \left(\|x_{k} - t_{k} A^{\top} z\|_{2}^{2} - \|x_{k}\|_{2}^{2} \right)$$

$$- \frac{1}{2(t_{k} + 1)} (\|z\|_{2}^{2} + 2(y^{k})^{\top} z - \|y^{k}\|_{2}^{2}) - b^{\top} z$$

其中

$$\Gamma_{\mu t_k}(u) = \inf_x \left\{ \|x\|_1 + \frac{1}{2\mu t_k} \|x - u\|_2^2 \right\}$$

应用举例: LASSO 问题

■ 记函数 $q_{\mu t_k}: \mathbb{R} \to \mathbb{R}$ 为

$$q_{\mu t_k}(v) = \begin{cases} \frac{v^2}{2\mu t_k}, & |v| \le t \\ |v| - \frac{\mu t_k}{2}, & |v| > t \end{cases}$$

■ 易知 $\Gamma_{\mu t_k}(u)$ 是关于 u 的连续可微函数且导数为

$$\nabla_u \Gamma_{\mu t_k}(u) = u - \operatorname{prox}_{\mu t_k \|x\|_1}(u)$$

■ 对偶问题为

$$\min_{z} \quad \Phi_k(z)$$

应用举例: LASSO 问题

 $lacksymbol{\blacksquare}$ 设对偶问题的逼近最优解为 z^{k+1} ,根据最优性条件有

$$\begin{cases} x^{k+1} = \operatorname{prox}_{\mu t_k \|x\|_1} (x^k - t_k A^T z^{k+1}) \\ y^{k+1} = \frac{1}{t_k + 1} (y^k + t_k z^{k+1}) \end{cases}$$

■ 在第 k 步迭代,LASSO 问题的近似点算法的迭代格式写为

$$\begin{cases} z^{k+1} \approx \arg\max_{z} & \Phi_{k}(z) \\ x^{k+1} = \max_{\mu t_{k} \|x\|_{1}} (x^{k} - t_{k} A^{\top} z^{k+1}) \\ y^{k+1} = \frac{1}{t_{k} + 1} (y^{k} + t_{k} z^{k+1}) \end{cases}$$

■ 根据 $\Phi_k(z)$ 的连续可微性,可以调用梯度法进行求解

收敛性分析

■ 定理 7.6 设 ψ 是闭凸函数 (从而 $\operatorname{prox}_{t\psi}(x)$ 对任意 x 存在且唯一), 最优值 ψ^* 有限且在 x^* 取到, 则对近似点算法有

$$\psi(x^{(k)}) - \psi^* \le \frac{||x^{(0)} - x^*||_2^2}{2\sum_{i=1}^k t_i} \quad \forall \ k \ge 1$$

- \square 若 $\sum_i t_i \to \infty$, 则算法收敛
- lue 若 t_i 固定或在一个正下界以上变化,则收敛速率为 1/k
- $oldsymbol{arphi}$ t_i 可以任意选取,然而邻近算子的计算代价依赖于 t_i

加速版本的近似点算法

■ FISTA 取 $x^{(0)} = x^{(-1)}$ 且对于 k > 1 有

$$x^{(k)} = \operatorname{prox}_{t_k f} \left(x^{(k-1)} + \theta_k \frac{1 - \theta_{k-1}}{\theta_{k-1}} (x^{(k-1)} - x^{(k-2)}) \right)$$

■ 第二类 Nesterov 加速算法 取 $x^{(0)} = v^{(0)}$ 且对于 $k \geq 1$

$$v^{(k)} = \text{prox}_{(t_k/\theta_k)f}(v^{(k-1)}), \quad x^{(k)} = (1 - \theta_k)x^{(k-1)} + \theta_k v^{(k)}$$

- 固定步长 $t_k = t$ 以及 $\theta_k = 2/(k+1)$
- 变化步长 选择任意的 $t_k > 0, \theta_1 = 1$, 对于任意 k > 1, θ_k 满足

$$\frac{(1-\theta_k)t_k}{\theta_k^2} = \frac{t_{k-1}}{\theta_{k-1}^2}$$

收敛性分析

■ 定理 7.7 设 ψ 是闭凸函数, 最优值 ψ^* 有限且在 x^* 处取到. 假设参数 t_k, γ_k 按照加速策略选取,那么

$$\psi(x^{(k)}) - \psi^*$$
 $\leq \frac{2||x^{(0)} - x^*||_2^2}{(2\sqrt{t_1} + \sum_{i=2}^k \sqrt{t_i})^2}, \quad k \geq 1$

- \square 若 $\sum_{i} \sqrt{t_i} \rightarrow \infty$, 则保证收敛
- $oldsymbol{arphi}$ 步长 t_i 取固定值或有正下界时,其收敛速度可达到 $\mathcal{O}\left(rac{1}{k^2}
 ight)$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

问题形式

■ 考虑具有如下形式的问题

$$\min_{x \in \mathcal{X}} F(x_1, x_2, \dots, x_s) = f(x_1, x_2, \dots, x_s) + \sum_{i=1}^{s} r_i(x_i)$$

- □ f 是关于 x 的可微函数, 但不一定凸
- 挑战和难点
 - □ 在非凸问题上,很多针对凸问题设计的算法通常会失效
 - □ 目标函数的整体结构十分复杂,变量的更新需要很大计算量

问题形式

■ 例 7.5 设参数 $x=(x_1,x_2,\cdots,x_G)\in\mathbb{R}^p$, 分组 LASSO 模型

$$\min_{x} \quad \frac{1}{2n} \|b - Ax\|_{2}^{2} + \lambda \sum_{i=1}^{G} \sqrt{p_{i}} \|x_{i}\|_{2}$$

■ M 7.6 设 $b \in \mathbb{R}^m$ 是已知的观测向量,低秩矩阵恢复模型

$$\min_{X,Y} \quad \frac{1}{2} \|\mathcal{A}(XY) - b\|_2^2 + \alpha \|X\|_F^2 + \beta \|Y\|_F^2$$

 \blacksquare 例 7.7 设 M 是已知的矩阵,非负矩阵分解模型

$$\min_{XY \ge 0} \quad \frac{1}{2} ||XY - M||_F^2 + \alpha r_1(X) + \beta r_2(Y)$$

变量更新方式

- 按照 x_1, x_2, \cdots, x_s 的次序依次固定其他 (s-1) 块变量极小化 F
- ■辅助函数

$$f_i^k(x_i) = f(x_1^k, \dots, x_{i-1}^k, x_i, x_{i+1}^{k-1}, \dots, x_s^{k-1}),$$

■ 在每一步更新中,通常使用以下三种更新格式之一

$$x_i^k = \underset{x_i \in \mathcal{X}_i^k}{\arg\min} \left\{ f_i^k(x_i) + r_i(x_i) \right\} \tag{1}$$

$$x_i^k = \underset{x_i \in \mathcal{X}_i^k}{\arg\min} \left\{ f_i^k(x_i) + \frac{L_i^{k-1}}{2} ||x_i - x_i^{k-1}||_2^2 + r_i(x_i) \right\}$$

$$x_i^k = \operatorname*{arg\,min}_{x_i \in \mathcal{X}_i^k} \left\{ \langle \hat{g}_i^k, x_i - \hat{x}_i^{k-1} \rangle + \frac{L_i^{k-1}}{2} ||x_i - \hat{x}_i^{k-1}||_2^2 + r_i(x_i) \right\}$$

(2)

(3)

算法格式

- 1 选择两组初始点 $(x_1^{-1}, x_2^{-1}, \cdots, x_s^{-1}) = (x_1^0, x_2^0, \cdots, x_s^0)$
- **2** for $k = 1, 2, \cdots$ do
- 3 for $k=1,2,\cdots$ do
- 4 更新 x_i^k
- 5 end for
- 6 if 满足停机条件 then
- 7 返回 $(x_1^k, x_2^k, \cdots, x_s^k)$, 算法终止
- 8 end if
- 9 end for

- 三种格式都有其适用的问题,特别是子问题是否可写出显式解
- 在每一步更新中,三种迭代格式对不同自变量块可以混合使用

算法格式

- BCD 算法的子问题可采用三种不同的更新格式,这三种格式可能会产生不同的 的迭代序列,可能会收敛到不同的解,坐标下降算法的数值表现也不相同
- 格式(1)是最直接的更新方式,保证整个迭代过程的目标函数值是下降的. 然而由于 f 的形式复杂,子问题求解难度较大. 在收敛性方面,格式(1)在强凸问题上可保证目标函数收敛到极小值,但在非凸问题上不一定收敛
- 格式(2) (3) 则是对格式(1)的修正,不保证迭代过程目标函数的单调性,但可以改善收敛性结果. 使用格式(2)可使得算法收敛性在函数 F 为非严格凸时有所改善
- 格式(3)实质上为目标函数的一阶泰勒展开近似,在一些测试问题上有更好的表现,可能的原因是使用一阶近似可以避开一些局部极小值点. 此外, 格式(3)的计算量很小, 比较容易实现

■ 考虑二元二次函数的优化问题

$$\min \quad f(x,y) = x^2 - 2xy + 10y^2 - 4x - 20y$$

■ 采用格式(1)的分块坐标下降法

$$x^{k+1} = 2 + y^k$$
 $y^{k+1} = 1 + \frac{x^{k+1}}{10}$

■ 当初始点为 (x,y) = (0.5,0.2) 时的迭代点轨迹

不收敛反例

■ 对于非凸函数 f(x), 分块坐标下降法可能失效. 考虑

$$F(x_1, x_2, x_3) = -x_1 x_2 - x_2 x_3 - x_3 x_1 + \sum_{i=1}^{3} [(x_i - 1)_+^2 + (-x_i - 1)_+^2]$$

■ 设 $\varepsilon > 0$, 初始点取为

$$x^0 = \left(-1 - \varepsilon, 1 + \frac{\varepsilon}{2}, -1 - \frac{\varepsilon}{4}\right)$$

容易验证迭代序列满足

$$x^{k} = (-1)^{k} \cdot (-1, 1, -1) + (-\frac{1}{8})^{k} \cdot \left(-\varepsilon, \frac{\varepsilon}{2}, -\frac{\varepsilon}{4}\right)$$

■ 迭代序列有两个聚点 (-1,1,-1) 与 (1,-1,1), 但都不是 F 的稳定点

应用举例: LASSO 问题求解

■ 使用分块坐标下降法来求解 LASSO 问题

$$\min_{x} \quad \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|^2$$

- 将自变量 x 记为 $x=[x_i,\bar{x}_i^\top]^\top$, 矩阵 A 在第 i 块的更新记为 $A=[a_i\bar{A}_i]$
- 应用格式(1), 替换 $c_i = b \bar{A}_i \bar{x}_i$, 原问题等价于

$$\min_{x_i} \quad f_i(x_i) = \mu |x_i| + \frac{1}{2} ||a_i||^2 x_i^2 - a_i^\top c_i x_i$$

■ 可直接写出最小值点

$$x_i^k =_{x_i} f_i(x_i) = \begin{cases} \frac{a_i^\top c_i - \mu_i}{\|a_i\|^2}, & a_i^\top c_i > \mu \\ \frac{a_i^\top c_i + \mu_i}{\|a_i\|^2}, & a_i^\top c_i < -\mu \\ 0, & \sharp \text{ } \\ \end{cases}$$

应用举例: 非负矩阵分解

■ 考虑最基本的非负矩阵分解问题

$$\min_{X,Y \ge 0} \quad f(X,Y) = \frac{1}{2} ||XY - M||_F^2$$

■ 计算梯度

$$\frac{\partial f}{\partial X} = (XY - M)Y^{\top}, \quad \frac{\partial f}{\partial Y} = X^{\top}(XY - M)$$

■ 应用格式(3),当 $r_i(X)$ 为凸集示性函数时即是求解到该集合的投影,因此得到分块坐标下降法如下

$$X^{k+1} = \max\{X^k - t_k^x (X^k Y^k - M)(Y^k)^\top, 0\}$$

$$Y^{k+1} = \max\{Y^k - t_k^y (X^k)^\top (X^k Y^k - M), 0\}$$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

对偶方法

- ■梯度法
 - □ 对偶函数可能不可微,或定义域非平凡
 - □ 对原始函数加小的强凸项,将对偶函数光滑化
- 增广拉格朗日法
 - □ 等价于对光滑化的对偶问题做梯度上升
 - □ 但是光滑化会破坏可分结构
- 近似点梯度法
 - □ 一项是梯度利普希茨连续函数
 - □ 另一项有方便计算的近似点算子

对偶问题

 $lacksymbol{\bullet}$ 设f, h 是闭凸函数,考虑如下形式的问题

(P)
$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(Ax)$$

 \blacksquare 引入新变量 y = Ax, 考虑问题

(P)
$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(y)$$
 s.t. $Ax = y$

■ 拉格朗日函数为

$$L(x, y, z) = f(x) + g(y) + z^{\top} (Ax - y)$$

■ 对偶问题

(D)
$$\max_{z} \quad \phi(z) = -f^*(-A^{\top}z) - h^*(z)$$

强凸函数共轭函数的性质

- 引理 7.1 设f(x) 是适当且闭的强凸函数,强凸参数为 $\mu > 0$,则 $f^*(y)$ 在全空间 \mathbb{R}^n 上有定义, $f^*(y)$ 是梯度 $\frac{1}{\mu}$ -利普希茨连续的可微函数
- 考虑在对偶问题上应用近似点梯度算法,每次迭代更新如下

$$z^{k+1} = \operatorname{prox}_{th^*}(z^k + tA\nabla f^*(-A^{\top}z^k))$$

■ 引入变量 $x^{k+1} = \nabla f^*(-A^{\mathrm{T}}z^k)$, 迭代格式等价于

$$x^{k+1} = \underset{x}{\operatorname{arg\,min}} \{ f(x) + (A^{\top} z^k)^{\top} x \}, \quad z^{k+1} = \underset{x}{\operatorname{prox}}_{th^*} (z^k + tAx^{k+1})$$

- \Box 如果 f 可分, x 的计算可分解为多个独立的问题
- □ 步长 t 可取常数或采取回溯线搜索法
- □ 可使用加速近似点梯度法

Moreau 分解

■ 引理 7.2 设f 是定义在 \mathbb{R}^n 上的适当的闭凸函数,则对任意的 $x \in \mathbb{R}^n$ 有

$$x = \operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x)$$

■ 或更一般地,

$$x = \operatorname{prox}_{\lambda f}(x) + \lambda \operatorname{prox}_{\lambda^{-1} f^*} \left(\frac{x}{\lambda}\right)$$

■ 对任意的闭凸函数 f , 空间 \mathbb{R}^n 上的恒等映射总可以分解成两个函数 f 与 f^* 邻近算子的和

交替极小的解释

■ 取 $\lambda = t$, $f = h^*$, 并注意到 $h^{**} = h$, 有

$$z^{k} + tAx^{k+1} = \operatorname{prox}_{th^{*}}(z^{k} + tAx^{k+1}) + t\operatorname{prox}_{t^{-1}h}\left(\frac{z^{k}}{t} + Ax^{k+1}\right)$$
$$= z^{k+1} + t\operatorname{prox}_{t^{-1}h}(\frac{z^{k}}{t} + Ax^{k+1})$$

■ 由此给出对偶近似点梯度法等价的针对原始问题的更新格式

$$x^{k+1} = \arg\min_{x} \left\{ f(x) + (z^{k})^{\top} Ax \right\}$$

$$y^{k+1} = \operatorname{prox}_{t^{-1}h} \left(\frac{z^{k}}{t} + Ax^{k+1} \right)$$

$$=_{y} \left\{ h(y) - (z^{k})^{\top} (y - Ax^{k+1}) + \frac{t}{2} ||Ax^{k+1} - y||_{2}^{2} \right\}$$

$$z^{k+1} = z^{k} + t(Ax^{k+1} - y^{k+1})$$

交替极小方法

■ 考虑等价问题

$$\min_{x,y} f(x) + h(y), \quad \text{s.t.} \quad y = Ax$$

■ 定义拉格朗日函数和增广拉格朗日函数

$$L(x, y, z) = f(x) + h(y) - z^{\top}(y - Ax)$$

$$L_t(x, y, z) = f(x) + h(y) - z^{\top}(y - Ax) + \frac{t}{2}||y - Ax||^2$$

■ 等价的交替极小格式是

$$x^{k+1} = \arg\min_{x} L(x, y^{k}, z^{k})$$
$$y^{k+1} = \arg\min_{y} \frac{L_{t}}{L_{t}}(x^{k+1}, y, z^{k})$$
$$z^{k+1} = z^{k} + t(Ax^{k+1} - y^{k+1})$$

■ 对偶近似点梯度法等价于对原始约束问题使用交替极小化方法

■ 假设 f 是强凸函数, ||·|| 是任意一种范数, 考虑

$$\min \quad f(x) + ||Ax - b||$$

■ 对应原始问题我们有 h(y) = ||y - b||

$$h^*(z) = \begin{cases} b^{\top} z & ||z||_* \le 1 \\ +\infty &$$
 $\mathbf{fm} \end{cases} \quad \text{prox}_{th^*}(x) = \mathcal{P}_{||z||_* \le 1}(x - tb)$

■ 从而对偶问题为

$$\max_{\|z\|_* \le 1} \quad -f^*(-A^{\top}z) - b^{\top}z$$

应用对偶近似点梯度法, 更新如下

$$x^{k+1} = \arg\min_{x} \left\{ f(x) + (A^{\top} z^{k})^{\top} x \right\}$$
$$z^{k+1} = \mathcal{P}_{\|z\|_{*} \le 1} (z^{k} + t(Ax^{k+1} - b))$$

■考虑等价问题

$$\min_{x,y} \quad f(x) + ||y|| \quad \text{s.t.} \quad Ax - b = y$$

■ 交替极小化格式

$$x^{k+1} = \arg\min_{x} f(x) + ||y^{k}|| + (z^{k})^{\top} (Ax - b - y^{k})$$

$$y^{k+1} = \arg\min_{y} f(x^{k+1}) + ||y|| + (z^{k})^{\top} (Ax^{k+1} - b - y) + \frac{t}{2} ||Ax^{k+1} - b - y||_{2}^{2}$$

$$z^{k+1} = z^{k} + t(Ax^{k+1} - b - y^{k+1})$$

■ 假设ƒ 是强凸函数,考虑

min
$$f(x) + \sum_{i=1}^{p} ||B_i x||_2$$

■ 根据 ||·||2 的共轭函数定义,对偶问题形式如下

$$\max_{\|z_i\|_2 \le 1} \quad -f^* \left(-\sum_{i=1}^p B_i^\top z_i \right)$$

lacksquare 记 C_i 是 \mathbb{R}_{m_i} 中的单位欧几里得球,对偶近似点梯度法更新如下

$$x^{k+1} = \arg\min_{x} \left\{ f(x) + (\sum_{i=1}^{p} B_i^{\top} z_i)^{\top} x \right\}$$
$$z_i^{k+1} = \mathcal{P}_{C_i}(z_i^k + tB_i x^{k+1}), i = 1, 2, \dots, p$$

■ 假设f 是强凸函数,集合 C_i 为闭凸集,且易于计算投影,考虑

$$\min_{x \in C_1} f(x)$$
s.t. $x \in C_1 \cap C_2 \cap \cdots \cap C_m$

- 有 $h(y_1, y_2, \cdots, y_m) = \sum_{i=1}^m I_{C_i}(y_i)$, $A = [I \ I \ \cdots \ I]^\top$
- 对偶问题为

$$\max_{z_i \in C_i} -f^* \left(-\sum_{i=1}^m z_i \right) - \sum_{i=1}^m I_{C_i}^*(z_i),$$

 $I_{C_i}^*(z_i)$ 是集合 C_i 的支撑函数,其显式表达式不易求出

■ 利用 Moreau 分解将迭代格式写成交替极小化方法的形式

$$x^{k+1} =_x \left\{ f(x) + \left(\sum_{i=1}^m z_i \right)^\top x \right\}$$
$$y_i^{k+1} = \mathcal{P}_{C_i} \left(\frac{z_i^k}{t} + x^{k+1} \right), \quad i = 1, 2, \dots, m$$
$$z_i^{k+1} = z_i^k + t(x^{k+1} - y_i^{k+1}), \quad i = 1, 2, \dots, m$$

■ 假设 f_i 是强凸函数, h_i^* 有易于计算的邻近算子.考虑

$$\min \sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} h_i (A_{i1}x_1 + A_{i2}x_2 + \dots + A_{in}x_N)$$

■ 其对偶问题形式如下

$$\max \quad -\sum_{i=1}^{m} h_i^*(z_i) - \sum_{i=1}^{n} f_j^*(-A_{1j}^{\top} z_1 - A_{2j}^{\top} z_2 - \dots - A_{mj}^{\top} z_m)$$

■ 对偶近似点梯度法更新如下

$$x_j^{k+1} = \arg\min_{x_j} \left\{ f_j(x_j) + (\sum_{i=1}^m A_{ij} z_i^k)^\top x_j \right\}, \quad j = 1, 2, \dots, n$$
$$z_i^{k+1} = \operatorname{prox}_{th_i^*} \left(z_i + t \sum_{j=1}^n A_{ij} x_j^{k+1} \right), \quad i = 1, 2, \dots, m$$

鞍点问题

● 令 f, h 是适当的闭凸函数. 考虑原始问题

$$\min f(x) + h(Ax)$$

■ 由于 h 有自共轭性, 将问题变形为

$$(L_{PD}) \quad \min_{x} \quad \max_{z} \quad \psi_{PD}(x, z) = f(x) - h^{*}(z) + z^{\top} A x$$

■ 另一种常用的鞍点问题定义方式构造拉格朗日函数. 问题

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} \quad f(x) + h(y) \quad \text{s.t.} \quad y = Ax$$

■ 相应的鞍点问题形式如下

(L_P)
$$\min_{x,y} \max_{z} f(x) + h(y) + z^{\top}(Ax - y)$$

PDHG 算法

- PDHG 算法的思想就是分别对两类变量应用近似点梯度算法
- 以求解问题 (L_{PD}) 为例, PDHG 算法交替更新原始变量以及对偶变量, 其迭 代格式如下

$$z^{k+1} = \arg\max_{z} \left\{ -h^{*}(z) + \langle Ax^{k}, z - z^{k} \rangle - \frac{1}{2\delta_{k}} \|z - z^{k}\|_{2}^{2} \right\}$$

$$= \operatorname{prox}_{\delta_{k}h^{*}}(z^{k} + \delta_{k}Ax^{k})$$

$$x^{k+1} = \arg\min_{x} \left\{ f(x) + (z^{k+1})^{\top} A(x - x^{k}) + \frac{1}{2\alpha_{k}} \|x - x^{k}\|_{2}^{2} \right\}$$

$$= \operatorname{prox}_{\alpha_{k}f}(x^{k} - \alpha_{k}A^{\top}z^{k+1})$$

■ 始变量和对偶变量的更新顺序是无关紧要的

Chambolle-Pock 算法

- PDHG 算法的收敛性需要比较强的条件,有些情形下未必收敛.
- Chambolle-Pock 算法与 PDHG 算法的区别在于多了一个外推步
- 具体的迭代格式如下:

$$z^{k+1} = \text{prox}_{\delta_k h^*} (z^k + \delta_k A y^k)$$
$$x^{k+1} = \text{prox}_{\alpha_k f} (x^k - \alpha_k A^\top z^{k+1})$$
$$y^{k+1} = 2x^{k+1} - x^k$$

应用举例: LASSO 问题求解

■ 考虑 LASSO 问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|_2^2$$

■ 取 $f(x) = \mu ||x||_1$ 和 $h(x) = \frac{1}{2} ||x - b||_2^2$, 相应的鞍点问题

$$\min_{x \in \mathbb{R}^n} \max_{z \in \mathbb{R}^m} f(x) - h^*(z) + z^{\top} A x$$

■ 根据共轭函数的定义

$$h^*(z) = \sup_{y \in \mathbb{R}^m} \quad \left\{ y^\top z - \frac{1}{2} \|y - b\|_2^2 \right\} = \frac{1}{2} \|z\|_2^2 + b^\top z$$

■ 应用 PDHG 算法, x^{k+1} 和 z^{k+1} 的更新格式分别为

$$z^{k+1} = \text{prox}_{\delta_k h^*}(z^k + \delta_k A x^k) = \frac{1}{\delta_k + 1} \left(z^k + \delta_k A x^k - \delta_k b \right)$$
$$x^{k+1} = \text{prox}_{\alpha_k \mu \| \cdot \|_1} (x^k - \alpha_k A^\top z^{k+1})$$

LASSO 问题求解

■ Chambolle-Pock 算法格式为

$$z^{k+1} = \frac{1}{\delta_k + 1} (z^k + \delta_k A y^k - \delta_k b)$$

$$x^{k+1} = \operatorname{prox}_{\alpha_k \mu \| \cdot \|_1} (x^k - \alpha_k A^\top z^{k+1})$$

$$y^{k+1} = 2x^{k+1} - x^k$$

$$y^{k+1} = 2x^{k+1} - x^k$$

$TV-L^1$ 模型

■ 考虑去噪情形下的 $TV-L^1$ 模型(即 A 为矩阵空间的恒等算子)

$$\min_{U \in \mathbb{R}^{n \times n}} \quad \|U\|_{TV} + \lambda \|U - B\|_1$$

■ 对任意的 $W, V \in \mathbb{R}^{n \times n \times 2}$, 记

$$||W|| = \sum_{1 \le i,j \le n} ||w_{ij}||_2, \quad \langle W, V \rangle = \sum_{1 \le i,j \le n,1 \le k \le 2} w_{i,j,k} v_{i,j,k}$$

■ 利用 ||·|| 的定义,有

$$||U||_{TV} = ||DU||$$

 \blacksquare 取 D 为相应的线性算子,并取

$$f(U) = \lambda ||U - B||_1, \quad U \in \mathbb{R}^{n \times n}, \quad h(W) = ||W||, \quad W \in \mathbb{R}^{n \times n \times 2}$$

$|\mathsf{TV} ext{-}L^1$ 模型

■ 相应的鞍点问题如下

(L_{PD})
$$\min_{U \in \mathbb{R}^{n \times n}} \max_{V \in \mathbb{R}^{n \times n \times 2}} f(U) - h^*(V) + \langle V, DU \rangle$$

■ 根据共轭函数的定义

$$h^*(V) = \sup_{U \in \mathbb{R}^{n \times n \times 2}} \{ \langle U, V \rangle - ||U|| \} = \begin{cases} 0, & \max_{i,j} ||v_{ij}||_2 \le 1 \\ +\infty, & \not\equiv \text{ i.i.} \end{cases}$$

■ 记 $\mathcal{V}=\{V\in\mathbb{R}^{n\times n\times 2}\mid\max_{ij}\|v_{ij}\|_2\leq 1\}$,其示性函数记为 $I_{\mathcal{V}}(V)$,则问题 $(\mathrm{L_{PD}})$ 可以整理为

$$\min_{U} \max_{V} f(U) + \langle V, DU \rangle - I_{\mathcal{V}}(V)$$

$TV-L^1$ 模型

■ 应用 PDHG 算法,则 V^{k+1} 的更新为

$$V^{k+1} = \operatorname{prox}_{sI_{\mathcal{V}}}(V^k + sDU^k) = \mathcal{P}_{\mathcal{V}}(V^k + sDU^k)$$

 U^{k+1} 的更新如下

$$U^{k+1} = \operatorname{prox}_{tf}(U^k + tGV^{k+1})$$

= $\operatorname{arg\,min}_{U} \left\{ \lambda \|U - B\|_1 + \langle V^{k+1}, DU \rangle + \frac{1}{2t} \|U - U^k\|_F^2 \right\}$

其中 $G: \mathbb{R}^{n \times n \times 2} \to \mathbb{R}^{n \times n}$ 为离散的散度算子,其满足

$$\langle V, DU \rangle = -\langle GV, U \rangle, \quad \forall \ U \in \mathbb{R}^{n \times n}, \ V \in \mathbb{R}^{n \times n \times 2}$$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

典型问题形式

■ 考虑如下凸问题

$$\min_{x_1, x_2} f_1(x_1) + f_2(x_2)
\text{s.t.} A_1 x_1 + A_2 x_2 = b$$
(4)

- 目标函数可以分成彼此分离的两块,但是变量被线性约束结合在一起

问题形式举例

■ 例 7.13 可以分成两块的无约束优化问题

$$\min_{x} \quad f_1(x) + f_2(x)$$

引入一个新的变量 z 并令 x=z, 将问题转化为

$$\min_{x,z} \quad f_1(x) + f_2(z)$$

s.t.
$$x - z = 0$$

■ 例 7.14 带线性变换的无约束优化问题

$$\min_{x} \quad f_1(x) + f_2(Ax)$$

引入一个新的变量 z, 令 z = Ax, 则问题变为

$$\min_{x,z} \quad f_1(x) + f_2(z)$$

s.t.
$$Ax - z = 0$$

问题形式举例

■ \mathbf{M} 7.15 凸集 $C \subset \mathbb{R}^n$ 上的约束优化问题

$$\min_{x} \quad f(x) \\
\text{s.t.} \quad Ax \in C$$

引入约束 z = Ax, 那么问题转化为

$$\min_{x,z} \quad f(x) + I_C(z)$$
s.t.
$$Ax - z = 0$$

问题形式举例

■ 例 7.16 全局一致性问题

$$\min_{x} \quad \sum_{i=1}^{N} \phi_i(x)$$

令 x = z, 并将 x 复制 N 份, 分别为 x_i , 那么问题转化为

$$\min_{x_i, z} \quad \sum_{i=1}^{N} \phi_i(x_i)$$
s.t. $x_i - z = 0, i = 1, 2, \dots, N$

增广拉格朗日函数法

■ 首先写出问题(4)的增广拉格朗日函数

$$L_{\rho}(x_1, x_2, y) = f_1(x_1) + f_2(x_2) + y^{\top} (A_1 x_1 + A_2 x_2 - b) + \frac{\rho}{2} ||A_1 x_1 + A_2 x_2 - b||_2^2$$

■ 增广拉格朗日函数法为如下更新

$$(x_1^{k+1}, x_2^{k+1}) = \arg\min_{x_1, x_2} L_{\rho}(x_1, x_2, y^k)$$
$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} - b)$$

交替方向乘子法

- Alternating direction method of multipliers, ADMM
- 同时对 x_1 和 x_2 进行优化有时候比较困难,而固定一个变量求解关于另一个变量的极小问题可能比较简单
- 其迭代格式可以总结如下

$$x_1^{k+1} =_{x_1} L_{\rho}(x_1, x_2^k, y^k)$$

$$x_2^{k+1} = \arg\min_{x_2} L_{\rho}(x_1^{k+1}, x_2, y^k)$$

$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} - b)$$

原问题最优性条件

■ 问题(4)的拉格朗日函数为

$$L(x_1, x_2, y) = f_1(x_1) + f_2(x_2) + y^{\top} (A_1 x_1 + A_2 x_2 - b)$$

■ 根据最优性条件定理,若 x_1^*, x_2^* 为问题(4)的最优解, y^* 为对应的拉格朗日乘子,则以下条件满足

$$0 \in \partial_{x_1} L(x_1^*, x_2^*, y^*) = \partial f_1(x_1^*) + A_1^\top y^*$$
(5a)

$$0 \in \partial_{x_2} L(x_1^*, x_2^*, y^*) = \partial f_2(x_2^*) + A_2^\top y^*$$
(5b)

$$A_1 x_1^* + A_2 x_2^* = b (5c)$$

■ 条件(5c)又称为原始可行性条件,条件(5a)和条件(5b)又称为对偶可行性条件

ADMM 单步迭代最优性条件

 \blacksquare 由 x_2 的更新步骤

$$x_2^k = \arg\min_{x} \left\{ f_2(x) + \frac{\rho}{2} ||A_1 x_1^k + A_2 x - b + \frac{y^{k-1}}{\rho}||^2 \right\}$$

■ 根据最优性条件推出

$$0 \in \partial f_2(x_2^k) + A_2^{\top} [y^{k-1} + \rho(A_1 x_1^k + A_2 x_2^k - b)]$$

 \blacksquare 当 $\tau = 1$ 时知

$$0 \in \partial f_2(x_2^k) + A_2^\top y^k$$

ADMM 单步迭代最优性条件

■ 由x1 的更新公式

$$x_1^k =_x \left\{ f_1(x) + \frac{\rho}{2} ||A_1 x + A_2 x_2^{k-1} - b + \frac{y^{k-1}}{\rho}||^2 \right\}$$

■ 假设子问题能精确求解,根据最优性条件

$$0 \in \partial f_1(x_1^k) + A_1^{\top} [\rho(A_1 x_1^k + A_2 x_2^{k-1} - b) + y^{k-1}]$$

 \blacksquare 当 $\tau = 1$ 时知

$$0 \in \partial f_1(x_1^k) + A_1^{\top}(y^k + \rho A_2(x_2^{k-1} - x_2^k))$$

ADMM 单步迭代最优性条件

■ 对比条件(5a)可知多出来的项为 $A_1^{\top}A_2(x_2^{k-1}-x_2^k)$, 因此要检测对偶可行性只需要检测残差

$$s^k = A_1^{\top} A_2 (x_2^{k-1} - x_2^k)$$

■ 综上当 x_2 更新取到精确解且 $\tau = 1$ 时,判断 ADMM 是否收敛只需要检测前 述两个残差 r^k , s^k 是否充分小

$$0 \approx ||r^k|| = ||A_1 x_1^k + A_2 x_2^k - b||$$
 (原始可行性)
 $0 \approx ||s^k|| = ||A_1^{\mathsf{T}} A_2 (x_2^{k-1} - x_2^k)||$ (对偶可行性)

线性化

- 线性化技巧使用近似点项对子问题目标函数进行二次近似
- ■考虑第一个子问题

$$\min_{x_1} \quad f_1(x_1) + \frac{\rho}{2} ||A_1 x_1 - v^k||^2$$

当子问题目标函数可微时,线性化为

$$x_1^{k+1} = \arg\min_{x_1} \left\{ (\nabla f_1(x_1^k) + \rho A_1^\top (A_1 x_1^k - v^k))^\top x_1 + \frac{1}{2\eta_k} ||x_1 - x^k||_2^2 \right\}$$

这等价于做一步梯度下降

■ 当目标函数不可微时,可以考虑只将二次项线性化

$$x_1^{k+1} =_{x_1} \left\{ f_1(x_1) + \rho (A_1^\top (A_1 x_1^k - v^k))^\top x_1 + \frac{1}{2\eta_k} ||x_1 - x^k||_2^2 \right\}$$

这等价于做一步近似点梯度步

缓存分解

■ 如果目标函数中含二次函数,例如 $f_1(x_1) = \frac{1}{2} ||Cx_1 - d||_2^2$, 那么针对 x_1 的更 新等价于求解线性方程组

$$(C^{\top}C + \rho A_1^{\top}A_1)x_1 = C^{\top}d + \rho A_1^{\top}v^k$$

- 虽然子问题有显式解, 但是每步求解的复杂度仍然比较高
- 首先对 $C^{\top}C + \rho A_1^{\top}A_1$ 进行 Cholesky 分解并缓存分解的结果,在每步迭代中 只需要求解简单的三角形方程组
- 当 ρ 发生更新时,就要重新进行分解.特别地,当 $C^{\top}C + \rho A_1^{\top}A_1$ 一部分容易求逆,另一部分是低秩的情形时,可以用 SMW 公式来求逆

优化转移

■ 为了方便求解子问题,可以用一个性质好的矩阵 D 近似二次项 $A_1^{\mathsf{T}}A_1$, 此时子问题可替换为

$$x_1^{k+1} = \arg\min_{x_1} \left\{ f_1(x_1) + \frac{\rho}{2} ||A_1 x_1 - v^k||_2^2 + \frac{\rho}{2} (x_1 - x^k)^\top (D - A_1^\top A_1)(x_1 - x^k) \right\}.$$

这种方法也称为优化转移

- 通过选取合适的 D,当计算 $\arg\min_{x_1} \left\{ f_1(x_1) + \frac{\rho}{2} x_1^\top D x_1 \right\}$ 明显比计算 $\arg\min_{x_1} \{ f_1(x_1) + \frac{\rho}{2} x_1^\top A_1^\top A_1 x_1 \}$ 要容易时,优化转移简化子问题的计算
- 特别地,当 $D=rac{\eta_k}{
 ho}I$ 时,优化转移等价于做单步的近似点梯度步

二次罚项系数的动态调节

- 原始可行性和对偶可行性分别用 $||r^k||$ 和 $||s^k||$ 度量
- 求解过程中二次罚项系数 ρ 太大会导致原始可行性 $||r^k||$ 下降很快,但是对偶可行性 $||s^k||$ 下降很慢;二次罚项系数太小,则会有相反的效果.这样都会导致收敛比较慢或得到的解的可行性很差.
- lacktriangle 在每次迭代时动态调节惩罚系数 ho 的大小,从而使得原始可行性和对偶可行性能够以比较一致的速度下降到零

$$\rho^{k+1} = \begin{cases} \gamma_p \rho^k, & \|r^k\| > \mu \|s^k\| \\ \rho^k / \gamma_d & \|s^k\| > \mu \|r^k\| \\ \rho^k, & 其他 \end{cases}$$

■ 常见的选择为 $\mu = 10, \gamma_p = \gamma_d = 2$

多块问题的 ADMM

■ 考虑有多块变量的情形

$$\min_{x_1, x_2, \dots, x_N} \quad f_1(x_1) + f_2(x_2) + \dots + f_N(x_N)$$

s.t.
$$A_1 x_1 + A_2 x_2 + \dots + A_N x_N = b$$

■ 多块 ADMM 迭代格式为

$$x_1^{k+1} = \arg\min_{x} L_{\rho}(x, x_2^k, \dots, x_N^k, y^k)$$

$$x_2^{k+1} = \arg\min_{x} L_{\rho}(x_1^{k+1}, x, \dots, x_N^k, y^k)$$

$$\dots$$

$$x_N^{k+1} = \arg\min_{x} L_{\rho}(x_1^{k+1}, x_2^{k+1}, \dots, x, y^k)$$

$$y^{k+1} = y^k + \tau \rho (A_1 x_1^{k+1} + A_2 x_2^{k+1} + \dots + A_N x_N^{k+1} - b)$$

其中 $\tau \in (0, (\sqrt{5} + 1)/2)$ 为步长参数

■ 考虑 LASSO 问题

$$\min \quad \mu \|x\|_1 + \frac{1}{2} \|Ax - b\|^2$$

■ 转换为标准问题形式

$$\min_{x,z} \quad \frac{1}{2} ||Ax - b||^2 + \mu ||z||_1$$
s.t. $x = z$

■ 交替方向乘子法迭代格式为

$$x^{k+1} = \arg\min_{x} \left\{ \frac{1}{2} ||Ax - b||^{2} + \frac{\rho}{2} ||x - z^{k} + y^{k}/\rho||_{2}^{2} \right\}$$
$$= (A^{T}A + \rho I)^{-1} (A^{T}b + \rho z^{k} - y^{k})$$

■ 交替方向乘子法迭代格式为

$$z^{k+1} = \arg\min_{z} \left\{ \mu \|z\|_{1} + \frac{\rho}{2} \|x^{k+1} - z + y^{k}/\rho\|^{2} \right\}$$
$$= \operatorname{prox}_{(\mu/\rho)\|\cdot\|_{1}} \left(x^{k+1} + y^{k}/\rho \right)$$
$$y^{k+1} = y^{k} + \tau \rho (x^{k+1} - z^{k+1})$$

- lacksquare 在求解 x 迭代时,可以使用固定的罚因子 ho,缓存矩阵 $A^{\mathsf{T}}A+
 ho I$ 的初始分解
- 主要运算量来自更新 x 变量时求解线性方程组,复杂度为 $O(n^3)$

■ 考虑 LASSO 问题的对偶问题

min
$$b^{\top}y + \frac{1}{2}||y||^2$$

s.t. $||A^{\top}y||_{\infty} \le \mu$

■ 引入约束 $A^{T}y + z = 0$, 可以得到如下等价问题

min
$$\underbrace{b^{\top}y + \frac{1}{2}||y||^{2}}_{f(y)} + \underbrace{I_{||z||_{\infty} \le \mu}(z)}_{h(z)}$$

s.t. $A^{\top}y + z = 0$

■ 对约束 $A^{T}y + z = 0$ 引入乘子 x, 对偶问题的增广拉格朗日函数为

$$L_{\rho}(y,z,x) = b^{\mathsf{T}}y + \frac{1}{2}||y||^{2} + I_{||z||_{\infty} \le \mu}(z) - x^{\mathsf{T}}(A^{\mathsf{T}}y + z) + \frac{\rho}{2}||A^{\mathsf{T}}y + z||^{2}$$

- 当固定 y,x 时,对 z 的更新即向无穷范数球 $\{z\mid \|z\|_\infty \le \mu\}$ 做欧几里得投影,即将每个分量截断在区间 $[-\mu,\mu]$ 中
- 当固定 z, x 时,对 y 的更新即求解线性方程组

$$(I + \rho A A^{\mathsf{T}})y = A(x^k - \rho z^{k+1}) - b$$

■ ADMM 迭代格式为

$$z^{k+1} = \mathcal{P}_{\|z\|_{\infty} \le \mu} \left(x^k / \rho - A^{\top} y^k \right)$$
$$y^{k+1} = (I + \rho A A^{\top})^{-1} (A(x^k - \rho z^{k+1}) - b)$$
$$x^{k+1} = x^k - \tau \rho (A^{\top} y^{k+1} + z^{k+1})$$

■ 由于 $m \ll n$, 求解 y 更新的线性方程组需要的计算量是 $O(m^3)$

应用举例: 矩阵分离问题

■ 考虑矩阵分离问题

$$\min_{X,S} \quad ||X||_* + \mu ||S||_1$$

s.t.
$$X + S = M$$

 \blacksquare 引入乘子 Y 作用在约束 X+S=M 上,得到增广拉格朗日函数

$$L_{\rho}(X, S, Y) = ||X||_{*} + \mu ||S||_{1} + \langle Y, X + S - M \rangle + \frac{\rho}{2} ||X + S - M||_{F}^{2}$$

应用举例: 矩阵分离问题

■ 对于X 子问题

$$X^{k+1} = \arg\min_{X} L_{\rho}(X, S^{k}, Y^{k})$$

$$= \arg\min_{X} \left\{ \|X\|_{*} + \frac{\rho}{2} \|X + S^{k} - M + \frac{Y^{k}}{\rho}\|_{F}^{2} \right\}$$

$$= \arg\min_{X} \left\{ \frac{1}{\rho} \|X\|_{*} + \frac{1}{2} \|X + S^{k} - M + \frac{Y^{k}}{\rho}\|_{F}^{2} \right\}$$

$$= U \operatorname{Diag}(\operatorname{prox}_{(1/\rho)\|\cdot\|_{1}}(\sigma(A)))V^{\top}$$

其中 $A=M-S^k-\frac{Y^k}{\rho}$, $\sigma(A)$ 为 A 的所有非零奇异值构成的向量并且 $U\mathrm{Diag}(\sigma(A))V^{\top}$ 为 A 的约化奇异值分解

应用举例: 矩阵分离问题

■ 对于S 子问题

$$S^{k+1} = \arg\min_{S} L_{\rho}(X^{k+1}, S, Y^{k})$$

$$= \arg\min_{S} \left\{ \mu \|S\|_{1} + \frac{\rho}{2} \|X^{k+1} + S - M + \frac{Y^{k}}{\rho}\|_{F}^{2} \right\}$$

$$= \operatorname{prox}_{(\mu/\rho)\|\cdot\|_{1}} (M - X^{k+1} - \frac{Y^{k}}{\rho})$$

■ 交替方向乘子法的迭代格式为

$$X^{k+1} = U \operatorname{Diag}(\operatorname{prox}_{(1/\rho)\|\cdot\|_1}(\sigma(A))) V^{\top}$$

$$S^{k+1} = \operatorname{prox}_{(\mu/\rho)\|\cdot\|_1} (M - L^{k+1} - \frac{Y^k}{\rho})$$

$$Y^{k+1} = Y^k + \tau \rho (X^{k+1} + S^{k+1} - M)$$

应用举例: 全局一致性优化问题

■ 考虑全局一致性优化问题

$$\min_{x_i, z} \quad \sum_{i=1}^{N} \phi_i(x_i)
\text{s.t.} \quad x_i - z = 0, \ i = 1, 2, \dots, N$$

■ 增广拉格朗日函数为

$$L_{\rho}(x_1, \cdots, x_N, z, y_1, \cdots, y_N) = \sum_{i=1}^{N} \phi_i(x_i) + \sum_{i=1}^{N} y_i^{\top}(x_i - z) + \frac{\rho}{2} \sum_{i=1}^{N} \|x_i - z\|^2$$

■ 固定 z^k, y_i^k , 更新 x_i 的公式为

$$x_i^{k+1} = \arg\min_{x} \left\{ \phi_i(x) + \frac{\rho}{2} ||x - z^k + y_i^k/\rho||^2 \right\}$$

应用举例: 全局一致性优化问题

 \blacksquare 在一般情况下更新 x_i 的表达式为

$$x_i^{k+1} = \operatorname{prox}_{\phi_i/\rho}(z^k - y_i^k/\rho)$$

■ 固定 x_i^{k+1}, y_i^k , 关于 z 可以直接写出显式解

$$z^{k+1} = \frac{1}{N} \sum_{i=1}^{N} (x_i^{k+1} + y_i^k / \rho)$$

■ 交替方向乘子法迭代格式为

$$x_i^{k+1} = \operatorname{prox}_{\phi_i/\rho}(z^k - y_i^k/\rho), \ i = 1, 2, \dots, N$$

$$z^{k+1} = \frac{1}{N} \sum_{i=1}^{N} (x_i^{k+1} + y_i^k/\rho)$$

$$y_i^{k+1} = y_i^k + \tau \rho (x_i^{k+1} - z^{k+1}), \ i = 1, 2, \dots, N$$

目录

- 7.1 近似点梯度法
- 7.2 Nesterov 加速算法
- 7.3 近似点算法
- 7.4 分块坐标下降法
- 7.5 对偶算法
- 7.6 交替方向乘子法
- 7.7 随机优化算法

- 假定(a,b) 服从概率分布 P, 其中 a 为输入, b 为标签
- 例如在自动邮件分类任务中, a 表示邮件内容, b 表示邮件为正常邮件或垃圾邮件
- 又例如人脸识别任务中,a 表示人脸的图像信息,b 表示该人脸属于何人
- 实际问题中我们不知道真实的概率分布 P, 而是随机采样得到一个数据集 $\mathcal{D} = \{(a_1,b_1),(a_2,b_2),\cdots,(a_N,b_N)\}$. 数据集 \mathcal{D} 对应经验分布

$$\hat{P} = \frac{1}{N} \sum_{n=1}^{N} \delta_{a_i, b_i}$$

- 任务是要给定输入 a 预测标签 b, 即决定一个最优的函数 ϕ 使得期望风险 $\mathbb{E}[L(\phi(a),b)]$ 最小,其中 $L(\cdot,\cdot)$ 表示损失函数,函数 ϕ 为某个函数空间中的 预测函数
- ℓ₂ 损失函数

$$L(x,y) = \frac{1}{2} ||x - y||_2^2$$

■ 若 $x,y \in \mathbb{R}^d$ 为概率分布(即各分量和为 1 的向量),则可定义互熵损失函数

$$L(x,y) = \sum_{i=1}^{d} x_i \log \frac{x_i}{y_i}$$

- 为了缩小 目标函数的范围,需要将 $\phi(\cdot)$ 参数化为 $\phi(\cdot;x)$
- 线性函数

$$\phi(a) = pa + q$$

■ 深度神经网络

$$\phi_0(a) = a$$

$$\hat{\phi}_l(a) = W_l \phi_{l-1}(a) + b_h, \quad \phi_l(a) = \sigma(\phi_l(a))$$

$$\phi(a) = \hat{\phi}_L(a)$$

■ 用经验风险来近似期望风险,即要求解下面的极小化问题

$$\min_{x} \quad \frac{1}{N} \sum_{i=1}^{N} L(\phi(a_{i}; x), b_{i}) = \mathbb{E}_{(a,b) \sim \hat{P}}[L(\phi(a; x), b)]$$

■ 记 $f_i(x) = L(\phi(a_i; x), b_i)$, 则只需考虑如下随机优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

■由于数据规模巨大,通过采样的方式只计算部分样本的梯度来进行梯度下降

梯度下降算法

- 用假设每一个 $f_i(x)$ 是凸的、可微的
- ■可以运用梯度下降算法

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$
$$\nabla f(x^k) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x^k)$$

■ 计算 $\nabla f(x^k)$ 需要非常大的计算量

随机梯度下降算法 (SGD)

■ SGD 的基本迭代格式为

$$x^{k+1} = x^k - \alpha_k \nabla f_{s_k}(x^k)$$

其中 s_k 是从 $\{1,2,\cdots,N\}$ 中随机等可能地抽取的一个样本, α_k 称为步长. 在机器学习和深度学习领域中, 更多的时候被称为学习率 (learning rate)

- 随机梯度算法不去计算全梯度 $\nabla f(x^k)$,而是从众多样本中随机抽出一个样本 s_i ,然后仅仅计算这个样本处的梯度 $\nabla f_{s_k}(x^k)$,以此作为 $\nabla f(x^k)$ 的近似
- 要保证随机梯度的条件期望恰好是全梯度,即

$$\mathcal{E}_{s_k}[\nabla f_{s_k}(x^k)|x^k] = \nabla f(x^k)$$

小批量随机梯度法

- 实际计算中每次只抽取一个样本 s_k 的做法比较极端,常用的形式是小批量(mini-batch)随机梯度法
- 每次迭代中,随机选择一个元素个数很少的集合 $_k \subset \{1,2,\cdots,N\}$,然后执行迭代格式

$$x^{k+1} = x^k - \frac{\alpha_k}{|\mathcal{I}_k|} \sum_{s \in \mathcal{I}_k} \nabla f_s(x^k)$$

其中 $|\mathcal{I}_k|$ 表示 k 中的元素个数

随机次梯度法

- 当 $f_i(x)$ 是凸函数但不一定可微时,可以用 $f_i(x)$ 的次梯度代替梯度进行迭代,这就是随机次梯度算法.
- 迭代格式为

$$x^{k+1} = x^k - \alpha_k g^k$$

其中 α_k 为步长, $g^k \in \partial f_{s_k}(x^k)$ 为随机次梯度, 其期望为真实的次梯度

动量方法

- 在算法迭代时一定程度上保留之前更新的方向,同时利用当前计算的梯度调整最终的更新方向
- 动量方法的具体迭代格式如下

$$v^{k+1} = \mu_k v^k - \alpha_k \nabla f_{s_k}(x^k)$$
$$x^{k+1} = x^k + v^{k+1}$$

■ 在计算当前点的随机梯度 $\nabla f_{s_i}(x^k)$ 后,并不是直接将其更新到变量 x^k 上,而是将其和上一步更新方向 v^k 做线性组合来得到新的更新方向 v^{k+1}

动量方法

- 由动量方法迭代格式立即得出当 $\mu_k=0$ 时该方法退化成随机梯度下降法. 在动量方法中,参数 μ_k 的范围是 [0,1),通常取 $\mu_k \geq 0.5$,其含义为迭代点带有较大惯性,每次迭代会在原始迭代方向的基础上做一个小的修正
- 在普通的梯度法中,每一步迭代只用到了当前点的梯度估计,动量方法的更新方向还使用了之前的梯度信息
- 当许多连续的梯度指向相同的方向时,步长就会很大,这从直观上看也是非常合理的

Nesterov 加速算法

■ 假设f(x) 为光滑的凸函数、针对凸问题的 Nesterov 加速算法为

$$y^{k+1} = x^{k} + \mu_{k}(x^{k} - x^{k-1})$$
$$x^{k+1} = y^{k} - \alpha_{k} \nabla f(y^{k})$$

■ 针对光滑问题的 Nesterov 加速算法迭代的随机版本为

$$y^{k+1} = x^k + \mu_k(x^k - x^{k-1})$$
$$x^{k+1} = y^{k+1} - \alpha_k \nabla f_{s_k}(y^{k+1})$$

其中 $\mu_k = \frac{k-1}{k+2}$,步长 α_k 是一个固定值或者由线搜索确定

■ 二者的唯一区别为随即版本将全梯度 $\nabla f(y^k)$ 替换为随机梯度 $\nabla f_{s_k}(y^{k+1})$

Nesterov 加速算法与动量方法的联系

■ 若在第 k 步迭代引入速度变量 $v^k = x^k - x^{k-1}$, 再合并原始 Nesterov 加速算 法的两步迭代可以得到

$$x^{k+1} = x^k + \mu_k(x^k - x^{k-1}) - \alpha_k \nabla f_k(x^k + \mu_k(x^k - x^{k-1}))$$

 \blacksquare 定义有关 v^{k+1} 的迭代式

$$v^{k+1} = \mu_k v^k - \alpha_k \nabla f_k (x^k + \mu_k v^k)$$

■ 于是得到关于 x^k 和 v^k 的等价迭代

$$v^{k+1} = \mu_k v^k - \alpha_k \nabla f_{s_k} (x^k + \mu_k v^k)$$

$$x^{k+1} = x^k + v^{k+1}$$

■ 二者的主要差别在梯度的计算上,Nesterov 加速算法先对点施加速度的作用, 再求梯度,可以理解为对标准动量方法做了校正

AdaGrad

- 在一般的随机梯度法中,调参是一个很大的难点.我们希望算法能在运行的过程中,根据当前情况自发地调整参数.
- 对无约束光滑凸优化问题,点 x 是问题的解等价于该点处梯度为零向量.但梯度的每个分量收敛到零的速度是不同的.传统梯度算法只有一个统一的步长 α_k 来调节每一步迭代,它没有针对每一个分量考虑
- 当梯度的某个分量较大时,可以推断出在该方向上函数变化比较剧烈,要用小步长;当梯度的某个分量较小时,在该方向上函数比较平缓,要用大步长. AdaGrad 就是根据这个思想设计的

AdaGrad

ullet 令 $g^k =
abla f_{s_k}(x^k)$,为了记录整个迭代过程中梯度各个分量的累积情况,引入

$$G^k = \sum_{i=1}^k g^i \odot g^i$$

从 G^k 的定义可知 G^k 的每个分量表示在迭代过程中,梯度在该分量处的累积平方和. 当 G^k 的某分量较大时,我们认为该分量变化比较剧烈,因此应采用小步长,反之亦然.

AdaGrad 的迭代格式为

$$x^{k+1} = x^k - \frac{\alpha}{\sqrt{G^k + \varepsilon 1_n}} \odot g^k$$
$$G^{k+1} = G^k + g^{k+1} \odot g^{k+1}$$

■ 这里 $\frac{\alpha}{\sqrt{G^k+\varepsilon 1_n}}$ 中的除法和求根运算都是对向量每个分量分别操作的(下同),

 α 为初始步长,引入 $\varepsilon 1_n$ 这一项是为了防止除零运算

AdaGrad 的收敛阶

- 如果在 AdaGrad 中使用真实梯度 $\nabla f(x^k)$, 那么 AdaGrad 也可以看成是一种介于一阶和二阶的优化算法
- 考虑 f(x) 在点 x^k 处的二阶泰勒展开

$$f(x) \approx f(x^k) + \nabla f(x^k)^{\top} (x - x^k) + \frac{1}{2} (x - x^k)^{\top} B^k (x - x^k)$$

■ 选取不同的 B^k 可以导出不同的优化算法. AdaGrad 是使用一个对角矩阵来作为 B^k . 具体地,取

$$B^k = \frac{1}{\alpha} \text{Diag}(\sqrt{G^k + \varepsilon 1_n})$$

时导出的算法就是 AdaGrad

RMSProp

- RMSProp(root mean square propagation)是对 AdaGrad 的一个改进,该方法在非凸问题上可能表现更好. AdaGrad 会累加之前所有的梯度分量平方,这就导致步长是单调递减的,因此在训练后期步长会非常小,计算的开销较大
- RMSProp 提出只需使用离当前迭代点比较近的项,同时引入衰减参数 ρ . 具体地,令

$$M^{k+1} = \rho M^k + (1 - \rho)g^{k+1} \odot g^{k+1}$$

再对其每个分量分别求根,就得到均方根 (root mean square)

$$R^k = \sqrt{M^k + \varepsilon 1_n}$$

最后将均方根的倒数作为每个分量步长的修正

RMSProp

■ RMSProp 迭代格式为

$$x^{k+1} = x^k - \frac{\alpha}{R^k} \odot g^k$$

$$M^{k+1} = \rho M^k + (1-\rho)g^{k+1} \odot g^{k+1}$$

- 引入参数 ε 同样是为了防止分母为 0 的情况发生. 一般取 $\rho=0.9$, $\alpha=0.001$
- 可以看到 RMSProp 和 AdaGrad 的唯一区别是将 G^k 替换成了 M^k .

AdaDelta

■ AdaDelta 在 RMSProp 的基础上,对历史的 Δx^k 也同样累积平方并求均方根

$$D^{k} = \rho D^{k-1} + (1 - \rho) \Delta x^{k} \odot \Delta x^{k}$$
$$T^{k} = \sqrt{D^{k} + \varepsilon 1_{n}}$$

然后使用 T^{k-1} 和 R^k 的商对梯度进行校正

$$\Delta x^k = -\frac{T^{k-1}}{R^k} \odot g^k$$
$$x^{k+1} = x^k + \Delta x^k$$

AdaDelta 的特点是步长选择较为保守,同时也改善了 AdaGrad 步长单调下降的缺陷

Adam

■ Adam 选择了一个动量项进行更新

$$S^k = \rho_1 S^{k-1} + (1 - \rho_1) g^k$$

■ 类似 RMSProp, Adam 也会记录梯度的二阶矩

$$M^{k} = \rho_{2} M^{k-1} + (1 - \rho_{2}) g^{k} \odot g^{k}$$

■ 与原始动量方法和 RMSProp 的区别是,由于 S^k 和 M^k 本身带有偏差, Adam 在更新前先对其进行修正

$$\hat{S}^k = \frac{S^k}{1 - \rho_1^k}, \quad \hat{M}^k = \frac{M^k}{1 - \rho_2^k}$$

■ Adam 最终使用修正后的一阶矩和二阶矩进行迭代点的更新

$$x^{k+1} = x^k - \frac{\alpha}{\sqrt{\hat{M}^k + \varepsilon \mathbf{1}_n}} \odot \hat{S}^k$$

Q&A

Thank you!

感谢您的聆听和反馈