

# Solved Example on Floating-Point/Int/Fixed-Point Number

Sparsh Mittal

FP – Floating point

FxP – Fixed-point

Int – Integer

# Range vs precision



#### Comparison of Weighing machines



High precision Low range



Low precision High range

They have same number of total bits

#### Example 1

• Int: 4 integer bits

• FxP: 2 int and 2 fractional bits

2 2

• FP: 2 exp and 2 mantissa bits

2 2

### Comparing Int, FP, and FxP

```
FxP
                        FP
string
          int
0000
         0
0001
               0.25
                         Denormal number 0.25
                        Denormal number 0.5
0010
               | 0.5 |
                         Denormal number 0.75
0011
               | 0.75
0100
                                           Here, difference between
0101
         5
               1.25
                         1.25
                                           consecutive numbers = 0.25
0110
               | 1.5
                         1.5
0111
               1.75
                         1.75
1000
          8
                         2
1001
          9
               2.25
                         2.5
                         3
1010
         10
                2.5
                                              Here, difference between
                         3.5
1011
         11
                2.75
                                              consecutive numbers = 0.5
1100
                         +infinity
1101
         13
                3.25
                         NAN
                         NAN
1110
         14
                3.5
```

NAN

Range = 1 to 3.5

1111

15

3.75

#### **Observation**

- Given a FxP number, we can multiply it by 4 to get corresponding integer number.
- We multiplied by 4 because FxP had 2 bits after decimal.
- → Int and FxP are related.
- But, there is no such correlation between FxP and FP value of a binary representation.

### Example 1: Let's Do the Math for FP

$$x = (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- Find bias.
- Bias =  $2^{NumberOfExpBits-1}$  = 1
- Find least normal number
  - Fraction= 00, Exponent=01, so actual exponent = 1-bias = 0
  - Number =  $1 * 2^0 = 1$
- Find largest number
  - Fraction = 11, Exponent = 10, so actual exponent = 2-bias = 1
  - Number =  $1.11_2$  \*  $2^1 = 1.75$
- Which combination is infinity
  - Exponent is all 1, fraction is all-zero, which means 1100

### Example 1: Let's Do the Math for FP

- Which combination is zero?
  - 0000
- Which combination is NaN
  - Fraction is not all-zero, exponent is all 1
  - Three combinations: 1101, 1110, 1111
- Denormal number (exp bits =0, fraction not all-zero)

$$x = (0 + Fraction) \times 2^e$$

- Here, e = 1-bias =0
- Three combinations: 0001, 0010, 0011

#### Let's Translate One Number 1001 to FP

• The number in binary is 1001, so Exponent (or ExcessExponent) is 10 and mantissa (fraction) is 01.

ActualExponent = ExcessExponent-Bias = 10-01 = 1 (in base2 format)

Thus, actual exponent is 1

Fraction = .01(base2) = 0.25 (base10)

Thus, overall number 1.25\*2 = 2.5 (decimal)

They have same number of total bits

#### Example 2

• Int: 4 integer bits

• FxP: 2 int and 2 fractional bits

 $2 \qquad \qquad 2$ 

• FP: 3 exp and 1 mantissa bits

3 1

# Example 2

Bias = 3Range = 0.25 to 12

| string | integer | fixed poin | t FP          |                                                      |
|--------|---------|------------|---------------|------------------------------------------------------|
| 0000   | 0       | 0          | 0             |                                                      |
| 0001   | 1       | 0.25 De    | enormal 0.125 |                                                      |
| 0010   | 2       | 0.5        | 0.25          | Here, difference between consecutive numbers = 0.125 |
| 0011   | 3       | 0.75       | 0.375         |                                                      |
| 0100   | 4       | 1          | 0.5           |                                                      |
| 0101   | 5       | 1.25       | 0.75          | Here, difference between consecutive                 |
| 0110   | 6       | 1.5        | 1             | numbers = 0.25                                       |
| 0111   | 7       | 1.75       | 1.5           |                                                      |
| 1000   | 8       | 2          | $2 \qquad $   | Difference = 0.5                                     |
| 1001   | 9       | 2.25       | 3             |                                                      |
| 1010   | 10      | 2.5        | 4             |                                                      |
| 1011   | 11      | 2.75       | 6             |                                                      |
| 1100   | 12      | 3          | 8             |                                                      |
| 1101   | 13      | 3.25       | 12            | Difference = 4                                       |
| 1110   | 14      | 3.5        | +infinity     |                                                      |
| 1111   | 15      | 3.75       | NAN           |                                                      |
|        |         |            |               | 17                                                   |

They have same number of total bits

#### Example 3

- Int: 4 integer bits
- FxP: 2 int and 2 fractional bits
- FP: 4 exp and 0 mantissa bits

### Example 3

#### Range = 0.015625 to 128

| String | integer | fixed point | $\operatorname{FP}$ |                                      |
|--------|---------|-------------|---------------------|--------------------------------------|
| 0000   | 0       | 0           | 0                   |                                      |
| 0001   | 1       | 0.25        | 0.015625            | Here, difference between consecutive |
| 0010   | 2       | 0.5         | 0.03125             | numbers = $0.015625$                 |
| 0011   | 3       | 0.75        | 0.0625              | 1141110010 0.019020                  |
| 0100   | 4       | 1           | 0.125               |                                      |
| 0101   | 5       | 1.25        | 0.25                | Here, difference between consecutive |
| 0110   | 6       | 1.5         | 0.5                 | numbers = 0.25                       |
| 0111   | 7       | 1.75        | ן 1                 |                                      |
| 1000   | 8       | 2           | 2                   | Difference = 1                       |
| 1001   | 9       | 2.25        | 4                   |                                      |
| 1010   | 10      | 2.5         | 8                   |                                      |
| 1011   | 11      | 2.75        | 16                  |                                      |
| 1100   | 12      | 3           | 32                  |                                      |
| 1101   | 13      | 3.25        | $64$ $\lfloor$      |                                      |
| 1110   | 14      | 3.5         | 128                 | Difference = 64                      |
| 1111   | 15      | 3.75        | +infinity           |                                      |

There is no mantissa bit, so we can represent only power-of-two numbers

They have same number of total bits

#### Example 4

- Int: 4 integer bits
- FxP: 2 int and 2 fractional bits
- FP: 1 exp and 3 mantissa bits

### Example 4

| Comb. | Integer | Fixed Point FP            |  |  |  |
|-------|---------|---------------------------|--|--|--|
| 0000  | 0       | 0 0                       |  |  |  |
| 0001  | 1       | 0.25 Denormal number 0.25 |  |  |  |
| 0010  | 2       | 0.5 Denormal number 0.5   |  |  |  |
| 0011  | 3       | 0.75 Denormal number 0.75 |  |  |  |
| 0100  | 4       | 1 Denormal number 1       |  |  |  |
| 0101  | 5       | 1.25 Denormal number 1.25 |  |  |  |
| 0110  | 6       | 1.5 Denormal number 1.5   |  |  |  |
| 0111  | 7       | 1.75 Denormal number 1.75 |  |  |  |
| 1000  | 8       | 2 +infinity               |  |  |  |
| 1001  | 9       | 2.25 NAN                  |  |  |  |
| 1010  | 10      | 2.5 NAN                   |  |  |  |
| 1011  | 11      | 2.75 NAN                  |  |  |  |
| 1100  | 12      | 3 NAN                     |  |  |  |
| 1101  | 13      | 3.25 NAN                  |  |  |  |
| 1110  | 14      | 3.5 NAN                   |  |  |  |
| 1111  | 15      | 3.75 NAN                  |  |  |  |

This number format is of not much use (too many NaNs)

Need to have a minimum number of exponent bits

### Insights

- Exponent controls the range.
- Mantissa decides the precision.
- Needs to balance them. For a fixed total bit-width
  - Having too many mantissa bits will lead to overflow due to small range.
  - Having too many exponent bits will lead to approximate many values to nearby representable value.

#### FP16 vs Bfloat16



FP16 has only 5 exponent bits, hence, it has very low range BFloat16 has 8 exponent bits, same as FP32. Hence, it can be used as a replacement of FP32 (although it has low precision)

### Gaps between numbers in FP vs FxP

- FxP: gaps between adjacent numbers is fixed
- FP: gaps are not uniformly spaced. Large gaps between large numbers and small gaps between small numbers

Illustration of 8b FP format on number line



# Range of Integer, FP, and fixed-point

- A signed 32-bit integer variable has a maximum value of  $2^{31} 1 = 2,147,483,647$ ,
- An IEEE 754 32-bit base-2 floating-point variable has a maximum value of  $(2-2^{-23}) \times 2^{127} \approx 3.4028235 \times 10^{38}$ .
- A floating-point variable can represent a wider range of numbers than a fixed point (or integer) variable of the same bit width at the cost of precision.

### Relative costs

| Bit-width | Operation                 | Energy                     | Relative costs |
|-----------|---------------------------|----------------------------|----------------|
| 32-bit    | 32-bit Floating-point ADD |                            | 30             |
|           | Floating-point MUL        | 3.7pJ                      | 123.33         |
|           | Fixed-point ADD           | 0.1pJ                      | 3.33           |
|           | Fixed-point MUL           | 3.1pJ                      | 103.33         |
|           | DRAM access (Average)     | $0.65 \sim 1.3 \text{nJ}$  | 21667~43333    |
| 16-bit    | Floating-point ADD        | 0.4pJ                      | 13.33          |
|           | Floating-point MUL        | 1.1pJ                      | 36.67          |
|           | *Fixed-point ADD          | $0.05 \mathrm{pJ}$         | 1.67           |
|           | *Fixed-point MUL          | 1.55pJ                     | 51.67          |
|           | DRAM access (Average)     | $0.33 \sim 0.65 \text{nJ}$ | 10000~21667    |
| 8-bit     | Fixed-point ADD           | 0.03pJ                     | 1              |
|           | Fixed-point MUL           | 0.2pĴ                      | 6.67           |
|           | DRAM access (Average)     | $0.16 \sim 0.33 \text{nJ}$ | 5333~10000     |