Machine Learning for Economists (and Business Analysts)

High-Dimensional Confounding

Anthony Strittmatter

References

- Belloni, Chernozhukov, and Hansen (2014): "High-Dimensional Methods and Inference on Structural and Treatment Effects", Journal of Economic Perspectives, 28 (2), pp. 29-50, download.
- ► Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2017): "Double/Debiased/Neyman Machine Learning of Treatment Effects", American Economic Review, 107 (5), pp. 261-265, download.

©Strittmatter Machine Learning 2/26

Estimation Target

Multivariate Linear Regression Model:

$$Y_i = D_i \delta + X_i \beta_g + U_i$$
 (structural model)
 $D_i = X_i \beta_m + V_i$ (selection model)

with
$$E[U_i|D_i, X_i] = 0$$
 and $E[V_i|X_i] = 0$.

- ightharpoonup Parameter of interest: δ
- Nuisance parameters: β_g and β_m
- $ightharpoonup X_i$ contains $p \gg N$ covariates.
- We assume controlling for $K \ll N$ covariates is sufficient to identify δ .
- Controlling for too many irrelevant covariates may reduce the efficiency of OLS.

Types of Covariates

Relation between covariates and outcome (for some $s_g > 0$):

- ▶ $|\beta_{gj}| > s_g$: covariate X_j has a **strong association** with Y_i
- ▶ $0 < |\beta_{gj}| \le s_g$: covariate X_i has a **weak association** with Y_i
- $\beta_{gj} = 0$: covariate X_j has a **no association** with Y_i

Relation between covariates and treatment (for some $s_m > 0$):

- $|\beta_{mj}| > s_m$: covariate X_j has a **strong association** with D_i
- ▶ $0 < |\beta_{mj}| \le s_m$: covariate X_j has a **weak association** with D_i
- $ightharpoonup eta_{mj} = 0$: covariate X_j has a **no association** with D_i
- → All covariates are standardised

Types of Covariates (cont.)

	$\beta_{gj} = 0$	$0< eta_{gj} \leq s_g$	$ eta_{g j} > s_{g}$
$\beta_{mj} = 0$	Irrelevant	Irrelevant	Irrelevant
$0< \beta_{mj} \leq s_m$	Irrelevant	Unclear?	Weak Confounder
$ \beta_{mj} > s_m$	Irrelevant	Weak Confounder	Strong Confounder

- $|\beta_{gj}| > s_g$ and $0 < |\beta_{mj}| \le s_m$: "Weak Outcome Confounder"
- $ightharpoonup |eta_{mj}| > s_m$ and $0 < |eta_{gj}| \le s_g$: "Weak Treatment Confounder"

©Strittmatter Machine Learning 5/26

Naive Approach I: Structural Model

Apply Lasso to the structural model

$$\min_{\beta_g} \{ E[(Y_i - D_i \delta - X_i \beta_g)^2] + \lambda \|\beta_g\|_1 \}$$

without a penalty on δ and estimate a Post-Lasso model using all covariates with non-zero $\beta_{\bf g}$ coefficients.

Covariates that are weakly associated with Y_i could be dropped.

→ Potentially we drop "weak treatment confounders"

Covariates that are strongly associated with D_i could be dropped.

→ Potentially we drop "strong confounders"

Naive Approach II: Selection Model

Apply Lasso to the selection model

$$\min_{\beta_m} \{ E[(D_i - X_i \beta_m)^2] + \lambda \|\beta_m\|_1 \}$$

and estimate a Post-Lasso structural model using all covariates with non-zero β_m coefficients.

Covariates that are weakly associated with D_i could be dropped.

 \rightarrow Potentially we drop "weak outcome confounders"

Double Selection Procedure

1. Apply Lasso to the reduced form models

$$\min_{\tilde{\beta}_{g}} \{ E[(Y_{i} - X_{i}\tilde{\beta}_{g})^{2}] + \lambda \|\tilde{\beta}_{g}\|_{1} \}, \tag{1}$$

$$\min_{\beta_m} \{ E[(D_i - X_i \beta_m)^2] + \lambda \|\beta_m\|_1 \},$$
 (2)

with $\tilde{\beta}_{\mathbf{g}} = \delta \beta_{\mathbf{m}} + \beta_{\mathbf{g}}$.

2. Take the union of all covariates \tilde{X}_i with either non-zero β_m or $\tilde{\beta}_g$ coefficients and estimate the Post-Lasso structural model

$$Y_i = D_i \delta + \tilde{X}_i \beta_g^* + u_i.$$

Double Selection Procedure (cont.)

Potentially (2) omits "weak outcome confounders"

 $\tilde{\beta}_{gj} \approx \beta_g$ when $0 < |\beta_{mj}| \le s_m$, such that the missing "weak outcome confounders" are likely selected in (1).

Disadvantages:

- \to Potentially we omit "very weak" confounders with $0<|\beta_{gj}|\leq s_g$ and $0<|\beta_{mj}|\leq s_g$.
- → All procedures potentially include irrelevant variables.

Simulation Exercise

Distribution of Estimators

Source: Belloni, Chernozhukov, and Hansen (2014)

Asymptotic Results

Consistency and asymptotic normality

$$\sqrt{N}(\hat{\delta} - \delta) \stackrel{d}{\rightarrow} N(0, \sigma^2).$$

- Model selection step is asymptotically negligible for building confidence intervals.
- ▶ Optimal penalty parameter $\lambda^* = 2c \cdot \Phi^{-1}(1 \gamma/2p)/\sqrt{N}$ (e.g., c = 1.1 and $\gamma \leq 0.05$) for "Feasible LASSO"

$$\min_{\beta} E[(Y_i - X_i\beta)^2] + \lambda^* \|\beta\|_1.$$

Reference: Belloni, Chernozhukov, and Hansen (2014)

Summary Double Selection Procedure

Advantages:

- Standard inference
- ► Computationally fast
- Packages: LassoShooting (for Stata) and hdm (for R)

Disadvantages:

- Effect homogeneity
- Potentially irrelevant covariates selected
- Sparsity assumptions required

Potential Outcome Framework

Notation:

- \triangleright D_i binary treatment dummy (e.g., assignment to training program)
- $Y_i(1)$ potential outcome under treatment (e.g., earnings under participation in training)
- $ightharpoonup Y_i(0)$ potential outcome under non-treatment (e.g., earnings under non-participation in training)

Infeasible parameter:

▶ Individual causal effect: $\delta_i = Y_i(1) - Y_i(0)$

Feasible parameters:

- Average Treatment Effect (ATE): $\delta = E[Y_i(1) Y_i(0)] = E[\delta_i]$
- Average Treatment Effect on the Treated (ATET): $\rho = E[\delta_i | D_i = 1]$

©Strittmatter Machine Learning 13/ 26

Identifying Assumptions for ATE

Stable Unit Treatment Value Assumption (SUTVA):

$$Y_i = Y_i(1)D_i + Y_i(0)(1 - D_i)$$

Exogeneity of Covariates:

$$X_i(1) = X_i(0)$$

► No Support Problems:

$$\epsilon < Pr(D_i = 1|X_i = x) = p(x) < 1 - \epsilon$$

for some small $\epsilon > 0$ and all x in the support of X_i

► Conditional Independence Assumption (CIA):

$$Y_i(1), Y_i(0) \perp \!\!\!\perp D_i | X_i = x$$

for all x in the support of X_i

Modified Outcome Method for ATE

Inverse Probability Weighting:

$$Y_{i,IPW}^* = \frac{D_i}{p(X_i)}Y_i - \frac{1 - D_i}{1 - p(X_i)}Y_i = \frac{D_i - p(X_i)}{p(X_i)(1 - p(X_i))}Y_i$$

with the propensity score $p(x) = Pr(D_i = 1 | X_i = x)$.

ATE:
$$\delta = E[Y_{i,IPW}^*]$$
 and $\hat{\delta} = \frac{1}{N} \sum_{i=1}^N \hat{Y}_{i,IPW}^*$

Proof of Identification

$$\delta = E[Y_{i}(1)] - E[Y_{i}(0)] \stackrel{LIE}{=} \int E[Y_{i}(1)|X_{i} = x] - E[Y_{i}(0)|X_{i} = x] f_{X}(x) dx$$

$$\stackrel{CIA}{=} \int E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x] f_{X}(x) dx$$

$$= \int E[Y_{i}|D_{i} = 1, X_{i} = x] - E[Y_{i}|D_{i} = 0, X_{i} = x] f_{X}(x) dx$$

$$= \int E[D_{i}Y_{i}|D_{i} = 1, X_{i} = x] - E[(1 - D_{i})Y_{i}|D_{i} = 0, X_{i} = x] f_{X}(x) dx$$

$$\stackrel{LIE}{=} \int E\left[\frac{D_{i}Y_{i}}{p(X_{i})} \middle| X_{i} = x\right] - E\left[\frac{(1 - D_{i})Y_{i}}{1 - p(X_{i})} \middle| X_{i} = x\right] f_{X}(x) dx$$

$$= \int E\left[\frac{D_{i}Y_{i}}{p(X_{i})} - \frac{(1 - D_{i})Y_{i}}{1 - p(X_{i})} \middle| X_{i} = x\right] f_{X}(x) dx$$

$$= \int E\left[\frac{D_{i} - p(X_{i})}{p(X_{i})(1 - p(X_{i}))} Y_{i} \middle| X_{i} = x\right] f_{X}(x) dx \stackrel{LIE}{=} E\left[\frac{D_{i} - p(X_{i})}{p(X_{i})(1 - p(X_{i}))} Y_{i} \middle| X_{i} = x\right] f_{X}(x) dx$$

Reference: Horvitz and Thompson (1952)

Modified Outcome Method with IPW

Advantages:

- Generic approach
- Sparsity assumptions can be avoided by appropriate choice of estimator for propensity score
- ► Heterogeneous treatment effects

Disadvantages:

- ▶ Potentially omitting "weak outcome confounders"
- Shows weak performance in simulations (Knaus, Lechner, and Strittmatter, 2018)
- Not \sqrt{N} -consistent in high-dimensional setting

See comprehensive discussion in Goller, Lechner, Moczall, Wolff (2019).

©Strittmatter Machine Learning 17/26

Conditional Mean Differences

Identification:

$$\delta = E[Y_{i}(1)] - E[_{i}Y(0)]$$

$$\stackrel{LIE}{=} \int E[Y_{i}(1)|X_{i} = x] - E[Y_{i}(0)|X_{i} = x]f_{X}(x)dx$$

$$\stackrel{CIA}{=} \int E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x]f_{X}(x)dx$$

$$= \int \underbrace{E[Y_{i}|D_{i} = 1, X_{i} = x]}_{=\mu_{1}(x)} - \underbrace{E[Y_{i}|D_{i} = 0, X_{i} = x]}_{=\mu_{0}(x)}f_{X}(x)dx$$

Estimator:

$$\hat{\delta} = \frac{1}{N} \sum_{i=1}^{N} (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$

with $\hat{\mu}_1(x) = \hat{E}[Y_i|D_i = 1, X_i = x]$ and $\hat{\mu}_0(x) = \hat{E}[Y_i(0)|D_i = 0, X_i = x]$ being the estimated conditional expectations of the potential outcomes.

©Strittmatter Machine Learning 18/26

Double/Debiased Machine Learning (DML)

Efficient Score:

$$Y_{i,DML}^* = \mu_1(X_i) - \mu_0(X_i) + \frac{D_i - p(X_i)}{p(X_i)(1 - p(X_i))} Y_i - \frac{D_i}{p(X_i)} \mu_1(X_i) + \frac{1 - D_i}{1 - p(X_i)} \mu_0(X_i)$$

$$= \mu_1(X_i) - \mu_0(X_i) + \frac{D_i(Y_i - \mu_1(X_i))}{p(X_i)} - \frac{(1 - D_i)(Y_i - \mu_0(X_i))}{1 - p(X_i)}$$

ATE:
$$\delta = E[Y_{i,DML}^*]$$
 and $\hat{\delta} = \frac{1}{N} \sum_{i=1}^N \hat{Y}_{i,DML}^*$

We can use standard ML methods to estimate $\hat{\mu}_1(x)$, $\hat{\mu}_0(x)$, and $\hat{p}(x)$.

Reference: Chernozhukov et al., 2017

©Strittmatter Machine Learning 19/26

Proof of Identification

$$\begin{split} \delta &= E\left[\mu_{1}(X_{i}) - \mu_{0}(X_{i}) + \frac{D_{i}(Y_{i} - \mu_{1}(X_{i}))}{\rho(X_{i})} - \frac{(1 - D_{i})(Y_{i} - \mu_{0}(X_{i}))}{1 - \rho(X_{i})}\right] \\ &= E\left[\frac{D_{i} - \rho(X_{i})}{\rho(X_{i})(1 - \rho(X_{i}))}Y_{i} + \frac{(\rho(X_{i}) - D_{i})\mu_{1}(X_{i})}{\rho(X_{i})} - \frac{(D_{i} - \rho(X_{i}))\mu_{0}(X_{i})}{1 - \rho(X_{i})}\right] \\ &= \int E\left[\frac{D_{i} - \rho(X_{i})}{\rho(X_{i})(1 - \rho(X_{i}))}Y_{i} + \frac{(\rho(X_{i}) - D_{i})\mu_{1}(X_{i})}{\rho(X_{i})} - \frac{(D_{i} - \rho(X_{i}))\mu_{0}(X_{i})}{1 - \rho(X_{i})} |X_{i} = x\right]f_{X}(x)dx \\ &= \int \left(E\left[\frac{D_{i} - \rho(X_{i})}{\rho(X_{i})(1 - \rho(X_{i}))}Y_{i} | X_{i} = x\right] + \frac{E[\rho(X_{i}) - D_{i}|X_{i} = x]}{\rho(x)}\mu_{1}(x) - \frac{E[D_{i} - \rho(X_{i})|X_{i} = x]}{1 - \rho(x)}\mu_{0}(x)\right)f_{X}(x)dx \\ &= \int E\left[\frac{D_{i} - \rho(X_{i})}{\rho(X_{i})(1 - \rho(X_{i}))}Y_{i} | X_{i} = x\right]f_{X}(x)dx = E\left[Y_{i}(1) - Y_{i}(0)\right] \end{split}$$

Reference: Robins and Rotnitzki (1995)

©Strittmatter Machine Learning 20/ 26

DML Cross-Fitting Algorithm

- 1. Partition the data randomly in samples S^A and S^B
- 2. Estimate the nuisance parameters $\hat{\mu}_1^A(x), \hat{\mu}_0^A(x)$, and $\hat{p}^A(x)$ in S^A ; and $\hat{\mu}_1^B(x), \hat{\mu}_0^B(x)$, and $\hat{p}^B(x)$ in S^B with ML
- 3. Calculate the efficient scores in samples S^A and S^B , respectively:

$$\begin{split} \hat{Y}_{i,DML}^{A*} &= \hat{\mu}_{1}^{B}(X_{i}^{A}) - \hat{\mu}_{0}^{B}(X_{i}^{A}) + \frac{D_{i}^{A}(Y_{i}^{A} - \hat{\mu}_{1}^{B}(X_{i}^{A}))}{\hat{p}^{B}(X_{i}^{A})} - \frac{(1 - D_{i}^{A})(Y_{i}^{A} - \hat{\mu}_{0}^{B}(X_{i}^{A}))}{1 - \hat{p}^{B}(X_{i}^{A})} \\ \hat{Y}_{i,DML}^{B*} &= \hat{\mu}_{1}^{A}(X_{i}^{B}) - \hat{\mu}_{0}^{A}(X_{i}^{B}) + \frac{D_{i}^{B}(Y_{i}^{B} - \hat{\mu}_{1}^{A}(X_{i}^{B}))}{\hat{p}^{A}(X_{i}^{B})} - \frac{(1 - D_{i}^{B})(Y_{i}^{B} - \hat{\mu}_{0}^{A}(X_{i}^{B}))}{1 - \hat{p}^{A}(X_{i}^{B})} \end{split}$$

4. Calculate ATE,

$$\hat{\delta} = \frac{1}{2} (\underbrace{\hat{\mathcal{E}}[\hat{Y}^{A*}_{i,DML}|S^A]}_{=\hat{\delta}_A} + \underbrace{\hat{\mathcal{E}}[\hat{Y}^{B*}_{i,DML}|S^B]}_{=\hat{\delta}_B}),$$

©Strittmatter Machine Learning 21/26

Asymptotic Results for ATE

- Main Regularity Condition: Convergence rate of nuisance parameters is at least $\sqrt[4]{N}$.
- ▶ ATE can be estimated \sqrt{N} -consistently

$$\sqrt{N}(\hat{\delta} - \delta) \stackrel{d}{\rightarrow} N(0, \sigma^2)$$

with
$$\sigma^2 = Var(Y_{i,DML}^*)$$
 and $Var(\hat{\delta}) = \sigma^2/N$

▶ Split sample estimator of σ^2

$$\hat{\sigma}^2 = \frac{1}{2} \left(\hat{\sigma}_A^2 + (\hat{\delta}_A - \hat{\delta})^2 \right) + \frac{1}{2} \left(\hat{\sigma}_B^2 + (\hat{\delta}_B - \hat{\delta})^2 \right)$$

for
$$\hat{\delta}=1/2(\hat{\delta}_{A}+\hat{\delta}_{B})$$

Advantages of DML

Advantages compared to IPW and Conditional Mean Differences:

- ▶ Treatment and outcome equations are modelled explicitly
- Double robustness property
- $ightharpoonup \sqrt{N}$ -consistent and asymptotically normal even under high-dimensional confounding

©Strittmatter Machine Learning 23/ 26

Efficient Score for ATET

$$Y_{i,ATET}^* = \frac{D_i(Y_i - \mu_0(X_i))}{p} - \frac{p(X_i)(1 - D_i)(Y_i - \mu_0(X_i))}{p(1 - p(X_i))}$$

with $p = Pr(D_i = 1)$.

ATET:
$$\rho = E[Y_{i,ATET}^*]$$
 and $\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \hat{Y}_{i,ATET}^*$

Estimator of Asymptotic Variance:

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{Y}_{i,ATET}^* - \hat{\rho} \right)^2$$

and $\hat{Var}(\hat{\rho}) = \hat{\sigma}^2/N$

References: Chernozhukov et al., 2017, Farrell, 2015

©Strittmatter Machine Learning 24/ 26

Proof of Identification for ATET

$$\rho = E\left[\frac{D_{i}(Y_{i} - \mu_{0}(X_{i}))}{p} - \frac{p(X_{i})(1 - D_{i})(Y_{i} - \mu_{0}(X_{i}))}{p(1 - p(X_{i}))}\right]$$

$$= \int E\left[\frac{D_{i}Y_{i}}{p} - \frac{p(X_{i})(1 - D_{i})Y_{i}}{p(1 - p(X_{i}))} - \frac{(D_{i} - p(X_{i}))\mu_{0}(X_{i})}{p(1 - p(X_{i}))}\right] X_{i} = x\right] f_{X}(x)dx$$

$$= \int \left(\frac{E[D_{i}Y_{i}|X_{i} = x]}{p} - \frac{p(x)E[(1 - D_{i})Y_{i}|X_{i} = x]}{p(1 - p(x))}\right)$$

$$- \frac{E[D_{i} - p(X_{i})|X_{i} = x]}{p(1 - p(x))} \mu_{0}(x)\right) f_{X}(x)dx$$

$$= \int \left(\frac{E[D_{i}Y_{i}|X_{i} = x]}{p} - \frac{p(x)E[(1 - D_{i})Y_{i}|X_{i} = x]}{p(1 - p(x))}\right) f_{X}(x)dx$$

$$= \int \frac{p(x)}{p}\left(E[D_{i}Y_{i}|D_{i} = 1, X_{i} = x] - E[(1 - D_{i})Y_{i}|D_{i} = 0, X_{i} = x]\right) f_{X}(x)dx$$

$$= \int (E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x]) f_{X|D=1}(x)dx$$

$$= \int (E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 1, X_{i} = x]) f_{X|D=1}(x)dx$$

$$= E[Y_{i}(1) - Y_{i}(0)|D_{i} = 1]$$

Other Orthogonal Scores

- ► LATE (see Chernozhukov et al., 2018).
- ► Difference-in-differences (see, e.g., Chen, Nie, and Wager, 2018, Zimmert, 2019).
- ► Multiple treatments (see, e.g., Farrell, 2015).
- Continuous treatments (see, e.g., Graham and Pinto, 2018).
- ▶ Mediation analysis (see Tchetgen Tchetgen and Shpitser, 2012).
- ► Synthetic control group method (see, e.g., Arkhangelsky et al., 2018).