

Hybrid Approach to Data Analysis

Eli T. Brown

Shameless Plug!

Remco Chang's lab:

- Visualization (COMP 150-VIZ)
- Visual Analytics (COMP 150-VAN)

Motivation

Please help me with my complicated data!

Machine Learning

- Know labels: supervised learning (classifiers)
- Know nothing: unsupervised learning (clustering, regression, dimension reduction)
- Hopefully we know a little semisupervised
 - Provide some labels
 - Provide constraints

Semi-supervised Learning

Clustering

- COP-KMEANS (Wagstaff, et al., 2001)
- Early separation from just building clusters (Keim, et al., 2002)

Metric

- Learning Mahalanobis distance metrics (Xing, et al., 2002)
 - For PSD matrix A: $D_A(x_i, x_j) = \sqrt{(x_i x_j)^T A(x_i x_j)}$
- Newer work has been speed improvements, accuracy analysis, applications, extensions like grouping constraints
- Relevant Component Analysis (RCA) (Bar-Hillel, et al., 2005)
- Distance metric learning with eigenvalue optimization (Ying and Li,
 2012)

High-Dimensional Visualization

Approach

Visualization

Machine Learning

<u>Hybrid</u>

Dis-Function (Brown, 2012)

Visualization w/ Machine Learning

Manipulate visualization parameters

- iPCA (D. Jeong, et al., 2009)
- iVisClassifier (Choo, et al., 2010)

Interacting with Machine Learning Parameters

- Interactive MDS (Buja, et al., 2004)
- Interactive Tool... for Constrained Clustering (Okabe and Yamada, 2011)

Cluster building

- ClusterSculptor (Nam, et al., 2007)
- iCluster (Drucker, et al., 2011)

Spatial Metaphors

- ForceSPIRE (Endert, et al., 2012)
- Object Level Interaction (Endert, et al., 2011)
- Interactive Visual Clustering (desJardins, et al., 2007)
- Object-Centered MDS (Broekens, et al., 2006)

My Work:

Helping users interactively explore, analyze and understand complex data

- Visualization front end
- Machine learning back-end
- => Model hidden from the user
- Learn the "parameters" of the machine learning algorithms from the user's interactions

As it turns out...

- Learning from interactions not limited to data models (parameters)
- Interactions with software encode users' analysis profile and individual differences
- Using the same scaffolding of interaction capturing, we can simultaneously do:
 - Learning of a data model
 - Learning of a model of the user

Dis-Function:

Learning Distance Functions Interactively*

^{*}Brown, Eli T., Liu, J., Brodley, C. E. and Chang, R. Dis-Function: Learning Distance Functions Interactively. In Proceedings of the IEEE VAST (2012)

Weighted Euclidean Distance Functions

Approach

Visualization

Iterative Process:

- 1. Start: standard distance function (all $\Theta_k = 1/M$)
- 2. Discover feedback opportunities

3. Provide feedback by directly moving points

4. Dis-Function makes new Θ , new projection

DEMO

Interaction:

```
Y_1 = \{x_{14}, x_{17}, x_{121}, x_{145}\} (blue points) Y_2 = \{x_{25}, x_{28}, x_{44}, x_{45}, x_{48}, x_{119}, x_{158}, x_{159}\} (red points) intended\_distance = \left(x_i^t - x_j^t\right)^2 \qquad x_i^t \text{ indicates point } x_i \text{ (in projected space) at } time t \text{ (after user moved it for this round)}
```

$$U_{ij} = \begin{cases} \frac{intended_distance}{original_projected_distance} & \text{if } (x_i, x_j) \in Y_1 \times Y_2, \\ 1 & \text{otherwise.} \end{cases}$$

Tells how much user has moved each pair of points (x_i and x_i)

Optimization to pick new Θ:

$$\Theta^t = \arg\min_{\Theta^t} \sum_{i < j \le N} L_{ij}^t \left(D(x_i, x_j | \Theta^t) - U_{ij}^t \cdot D(x_i, x_j | \Theta^{t-1}) \right)^2$$

N, *M* Number of Dimensions, Points

 x_i Point i of the data

 θ_k

 x_{ij} Value of feature k of data point x_i Θ^{t-1} , Θ^t Vectors containing the weight of

each dimension for a distance function after or before (resp.) an interaction step

Weight of feature k in Θ

 $D(x_i, x_i | \Theta)$ Distance between x_i and x_i with

parameter Θ (dimension weight vector)

$$L_{ij}^t = \begin{cases} \frac{N(N-1)}{|Y_1^t||Y_2^t|} - 1 & \text{if } (x_i, x_j) \in Y_1^t \times Y_2^t, \\ 1 & \text{otherwise.} \end{cases}$$

Scalar weight emphasizing terms of the sum related to user input

$$D(x_i, x_j | \Theta) = \sum_{k=1}^{M} \theta_k (x_{ik} - x_{jk})^2$$

Optimization to pick new Θ:

$$\Theta^t = \arg\min_{i < j \le N} \sum_{i < j \le N} L_{ij}^t \left(D(x_i, x_j | \Theta^t) - U_{ij}^t \cdot D(x_i, x_j | \Theta^{t-1}) \right)^2$$

Pick a new Θ to minimize,

Optimization to pick new Θ:

$$\Theta^t = \arg\min_{\Theta^t} \sum_{i < j \le N} L_{ij}^t \left(D(x_i, x_j | \Theta^t) - U_{ij}^t \cdot D(x_i, x_j | \Theta^{t-1}) \right)^2$$

Pick a new Θ to minimize, Over the sum of all points

Optimization to pick new Θ:

$$\Theta^t = \arg\min_{\Theta^t} \sum_{i < j \le N} L_{ij}^t \left(D(x_i, x_j | \Theta^t) - U_{ij}^t \cdot D(x_i, x_j | \Theta^{t-1}) \right)^2$$

Pick a new Θ to minimize,
Over the sum of all points,
The change in total distance
between those points
before and after update

Optimization to pick new Θ:

$$\Theta^{t} = \arg\min_{\boldsymbol{\Theta}^{t}} \sum_{i < j \leq N} L_{ij}^{t} \left(D(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} | \boldsymbol{\Theta}^{t}) - U_{ij}^{t} \cdot D(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} | \boldsymbol{\Theta}^{t-1}) \right)^{2}$$

Pick a new Θ to minimize,
Over the sum of all points,
The change in total distance
between those points
before and after update,
Only when signaled by user input

Optimization to pick new Θ:

$$\Theta^{t} = \arg\min_{\boldsymbol{\Theta}^{t}} \sum_{i < j \leq N} L_{ij}^{t} \left(D(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} | \boldsymbol{\Theta}^{t}) - U_{ij}^{t} \cdot D(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} | \boldsymbol{\Theta}^{t-1}) \right)^{2}$$

Pick a new Θ to minimize,
Over the sum of all points,
The change in total distance
between those points
before and after update,
Only when signaled by user input

Experiments:

- 1. 10 participants used software
 - Simulated expertise by coloring points by true class
- 2. Augmented dataset with 10 dimensions filled with uniformly distributed noise in the same range as the data
- 3. Used *k*-NN to evaluate resulting distance functions
 - Evaluated for classification under leave-one-out cross-validation for k = 1, 3, 5, 7

Example Set of Interactions:

Projections from successive iterations of user feedback with Wine dataset. Corresponding bar graph shows weight of each dimension's coefficient.

Example Set of Interactions:

Projections from successive iterations of user feedback with Wine dataset. Corresponding bar graph shows weight of each dimension's coefficient.

Experiments:

- 1. 10 participants used software
 - Simulated expertise by coloring points by true class
- 2. Augmented dataset with 10 dimensions filled with uniformly distributed noise in the same range as the data
- 3. Used *k*-NN to evaluate resulting distance functions
 - o Evaluated for classification under leave-one-out cross-validation for k = 1, 3, 5, 7

Results:

Distance Function	Accuracy*
Even Weights	90 %
User 1	97 %
User 2	94 %
User 3	94 %
User 4	96 %
User 5	97 %
User 6	96 %
User 7	96 %
User 8	96 %
User 9	96 %
User 10	97 %

^{*} K Nearest Neighbor accuracy, average of k= 1, 3, 5, 7; Leave-one-out cross validation7

Empirical Runtime Performance:

Complexity (#dimensions)

0.7 0.6 Optimization 0.5 Seconds 0.3 0.2

500

1000

Dimensions

1500

2000

0.1

Size (#instances)

Dis-Function Summary:

- Can learn a simple human- and computer-readable representation of an expert's knowledge about data
- Distance functions learned here are usable in many machine learning applications (including k-NN)
- Can read importance of dimensions off distance function, which helps user understanding
- Performance is promising for small data

Future Work:

- High Dimensional Understanding and Interaction
 - Different representations, new interaction semantics
 - Non-real-valued data
 - Traditional tools: filtering, faceted search, RadVis, parallel coordinates
 - Topological, hierarchical views
- Active Learning
 - Intelligently help user discover points of interest (maybe useful ones for learning distance function)
- Applications:
 - MS patient data
 - Phylogenetic trees

Future Work:

- High Dimensional Understanding and Interaction
 - Different representations, new interaction semantics
 - Non-real-valued data
 - Traditional tools: filtering, faceted search, RadVis, parallel coordinates
 - Topological, hierarchical views
- Active Learning
 - Intelligently help user discover points of interest (maybe useful ones for learning distance function)
- Applications:
 - MS patient data
 - Phylogenetic trees

Future Work:

- High Dimensional Understanding and Interaction
 - Different representations, new interaction semantics
 - Non-real-valued data
 - Traditional tools: filtering, faceted search, RadVis, parallel coordinates
 - Topological, hierarchical views
- Active Learning
 - Intelligently help user discover points of interest (maybe useful ones for learning distance function)
- Applications:
 - MS patient data
 - Phylogenetic trees

EigenSense

Brown, Eli T and Chang, Remco. *EigenSense: Saving User Effort with Active Metric Learning*. KDD IDEA Workshop 2014.

EigenSense: Motivation

- How does the user know what points to choose?
- Might like points that have the most impact (most effect for effort)

- From machine learning: active learning
- Determines which instances are most helpful to the model

EigenSense: Inspiration

- Need an active learning method for our interactive distance function learning
- Representation of the model: pairwise distance matrix

- Eigenvectors represent asymptotic behavior of matrix transformations
 - PageRank
 - Biology: population models

EigenSense at Work

Algorithm 1: EigenScore

Input: Data points x_i, x_j , distance matrix D

Output: $ES_{ij} \in [0, 1]$

1 Calculate $v_1 = eigs(D, 1)$ [dominant eigenvector]

- **2** Let D' = D
- 3 Set $D'_{ij} = D'_{ji} = 0$
- 4 Calculate $v'_1 = eigs(D', 1)$
- 5 Set $ES_{ij} = 1 Cosine Similarity(v_1, v'_1)$
- 6 return ES_{ij}

Working in Dis-Function

EigenSense Evidence

Future Work

Evaluation!

- Does this type of guidance actually help people?
- Is our method for choosing guidance a good one?

Learning a User Model

Finding Waldo (TVCG 2014)

- User performs a visual search task (Where's Waldo)
- The system records and learns a user's characteristics
 - Completion time
 - Cognitive Factors (Locus of Control, Big Five Personality)

Waldo Study Interface

Waldo Results: Completion Time

Fast

Slow

Waldo Results: Personality

External LOC

Internal LOC

State space

State space

State space

Mouse event

State space

Mouse event

Sequences

U1: LIIDLURRUUIRRDD...
U2: URDIIDDLLOLO...
U3: LLIIDDORRRURIII...

...

+					
	U	U	U		
	1	2	3		
LI	1	0	2		
LII	1	0	0		
IID	3	1	1		
IDI	0	0	0	•••	
DD	1	2	1		
IRR	1	0	0		

State space

Mouse event

Sequences

U1: LIIDLURRUUIRRDD...
U2: URDIIDDLLOLO...

U3: LLIIDDORRRURIII...

L = Left, R = Right, U = Up, D = Down, I = Zoom In, O = Zoom Out

• • •

Classes

- Supervised learning need label for each participant
- Predict performance (fast vs. slow)

State space

Mouse event

Sequences

Performance Prediction Accuracy

state space (SVM)	79 %	83 %
mouse events (SVM)	62 %	79 %
sequences (decision tree)	77 %	79 %

Interpreting Decision Trees

Decision tree on sequences encoding

Left, Down too much => slow

Waldo is in upper right

Interpreting Decision Trees

Decision tree on sequences encoding

Found, Up and

Down, Found, Right => slow

Clicking Found incorrectly

Interpreting Decision Trees

Decision tree on sequences encoding

Out, Out, In and Left, Out, In => slow

Out then in, null move?

Limited Observation Time

State Space

Mouse Events

Sequences

Beyond Performance

- Learning about the user
- Research has shown some testable personality traits correlate with performance on visualization tasks

- Surveyed users:
 - Big Five personality traits
 - Locus of Control

Beyond Performance: Visualization

Locus of Control: External

Locus of Control: Internal

Beyond Performance: Accuracy

Waldo Conclusions

- It is possible to automatically extract information about users from their interactions
 - Performance
 - Personality, though noisier
- Little observation needed
- Get an idea of strategy

Conclusion

- Machine Learning + Interactive Visualization can be the future of Visual Analytics
 - It provides an intuitive interface,
 - and hides the ugly math
- Can leverages user's interactions for:
 - Learning a data model
 - Learning a user model

Ongoing Research Agenda

Data stakeholders

 Continue my Microsoft Research work (Interactive machine learning)

Graduate

• • •

Profit

Thank You

Eli T. Brown