K-THEORY FOR THE SIMPLE C^* -ALGEBRA OF THE FIBONACCHI DYCK SYSTEM

KENGO MATSUMOTO

ABSTRACT. Let F be the Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. The Fibonacci Dyck shift is a subshsystem of the Dyck shift D_2 constrained by the matrix F. Let $\mathfrak{L}^{Ch(D_F)}$ be a λ -graph system presenting the subshift D_F , that is called the Cantor horizon λ -graph system for D_F . We will study the C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)}$ associated with $\mathfrak{L}^{Ch(D_F)}$. It is simple purely infinite and generated by four partial isometries with some operator relations. We will compute the K-theory of the C^* -algebra. As a result, the C^* -algebra is simple purely infinite and not semiprojective. Hence it is not stably isomorphic to any Cuntz-Krieger algebra.

Keywords: C^* -algebra, Cuntz-Krieger algebra, subshift, λ -graph system, Dyck shift, K-theory,

Mathematics Subject Classification 2000: Primary 46L80; Secondary 46L55, 37B10.

1. Introduction

Let Σ be a finite set with its discrete topology, that is called an alphabet. Each element of Σ is called a symbol. Let $\Sigma^{\mathbb{Z}}$ be the infinite product space $\prod_{i=-\infty}^{\infty} \Sigma_i$, where $\Sigma_i = \Sigma$, endowed with the product topology. The transformation σ on $\Sigma^{\mathbb{Z}}$ given by $\sigma((x_i)_{i\in\mathbb{Z}}) = (x_{i+1})_{i\in\mathbb{Z}}$ is called the full shift over Σ . Let Λ be a closed subset of $\Sigma^{\mathbb{Z}}$ such that $\sigma(\Lambda) = \Lambda$. The topological dynamical system $(\Lambda, \sigma|_{\Lambda})$ is called a subshift or a symbolic dynamical system. It is written as Λ for brevity.

In [17], the author has introduced a notion of λ -graph system as a presentation of subshifts. A λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ consists of a vertex set $V = V_0 \cup V_1 \cup V_2 \cup \cdots$, an edge set $E = E_{0,1} \cup E_{1,2} \cup E_{2,3} \cup \cdots$, a labeling map $\lambda : E \to \Sigma$ and a surjective map $\iota_{l,l+1} : V_{l+1} \to V_l$ for each $l \in \mathbb{Z}_+$, where \mathbb{Z}_+ denotes the set of all nonnegative integers. An edge $e \in E_{l,l+1}$ has its source vertex s(e) in V_l , its terminal vertex t(e) in V_{l+1} and its label $\lambda(e)$ in Σ ([17]).

The theory of symbolic dynamical system has a close relationship to automata theory and language theory. In the theory of language, there is a class of universal languages due to W. Dyck. The symbolic dynamics generated by the languages are called the Dyck shifts D_N (cf. [3], [10],[11],[12]). Its alphabet consists of the 2N brackets: $(1, \ldots, (N,)_1, \ldots,)_N$. The forbidden words consist of words that do not obey the standard bracket rules. In [14], a λ -graph system $\mathfrak{L}^{Ch(D_N)}$ that presents the subshift D_N has been introduced. The λ -graph system is called the Cantor horizon λ -graph system for the Dyck shift D_N . The K-groups for $\mathfrak{L}^{Ch(D_N)}$, that are invariant under topological conjugacy of the subshift D_N , have been computed ([14]).

In [22] (cf. [14]), the C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_N)}}$ associated with the Cantor horizon λ -graph system $\mathfrak{L}^{Ch(D_N)}$ has been studied. In the paper, it has been proved that the algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_N)}}$ is simple and purely infinite and generated by N partial isometries and N isometries satisfying some operator relations. Its K-groups are

$$K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_N)}}) \cong \mathbb{Z}/N\mathbb{Z} \oplus C(\mathfrak{K}, \mathbb{Z}), \qquad K_1(\mathcal{O}_{\mathfrak{L}^{Ch(D_N)}}) \cong 0$$

where $C(\mathfrak{K}, \mathbb{Z})$ denotes the abelian group of all integer valued continuous functions on a Cantor discontinuum \mathfrak{K} (cf. [14]).

Let u_1, \ldots, u_N be the canonical generating isometries of the Cuntz algebra \mathcal{O}_N that satisfy the relations: $\sum_{j=1}^N u_j u_j^* = 1$, $u_i^* u_i = 1$ for $i = 1, \ldots N$. Then the bracket rule of the symbols $(1, \ldots, (N, 1), \ldots, N)$ of the Dyck shift D_N may be interpreted as the relations $u_i^* u_i = 1$, $u_i^* u_j = 0$ for $i \neq j$ of the partial isometries $u_1^*, \ldots, u_N^*, u_1, \ldots, u_N^*$ in the C^* -algebra \mathcal{O}_N (cf. (2.1)).

In [23], we have considered a generalization of Dyck shifts D_N by using the canonical generators of the Cuntz-Krieger algebras \mathcal{O}_A for $N \times N$ matrices A with entries in $\{0,1\}$. The generalized Dyck shift is denoted by D_A and called the topological Markov Dyck shift for A (cf. [7], [15]). Let $\alpha_1, \ldots, \alpha_N, \beta_1, \ldots, \beta_N$ be the alphabet of D_A . They correspond to the brackets $(1, \ldots, (N, 1), \ldots, N)$ respectively. Let t_1, \ldots, t_N be the canonical generating partial isometries of the Cuntz-Krieger algebra \mathcal{O}_A that satisfy the relations: $\sum_{j=1}^N t_j t_j^* = 1$, $t_i^* t_i = \sum_{j=1}^N A(i,j) t_j t_j^*$ for $i = 1, \ldots, N$. Consider the correspondence $\varphi(\alpha_i) = t_i^*, \varphi(\beta_i) = t_i, i = 1, \ldots, N$. Then a word w of $\{\alpha_1, \ldots, \alpha_N, \beta_1, \ldots, \beta_N\}$ is defined to be admissible for the subshift D_A precisely if the corresponding element to w through φ in \mathcal{O}_A is not zero. Hence we may recognize D_A to be the subshift defined by the canonical generators of the Cuntz-Krieger algebra \mathcal{O}_A . The subshifts D_A are not sofic in general and reduced to the Dyck shifts if all entries of A are 1.

The Cantor horizon λ -graph system $\mathfrak{L}^{Ch(D_A)}$ for the topological Markov Dyck shift D_A has been also studied in [23]. It has been proved to be λ -irreducible with λ -condition (I) in the sense of [21] if the matrix is irreducible with condition (I) in the sense of Cuntz-Krieger [5]. Hence the associated C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_A)}}$ is simple and purely infinite. It is the unique C^* -algebra generated by 2N partial isometries subject to some operator relations.

In this paper we study the C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)}$ for the Fibonacci matrix $F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. It is the smallest matrix in the irreducible square matices with condition (I) such that the associated topological Markov shift Λ_F is not conjugate to any full shift. The topological entropy of Λ_F is $\log \frac{1+\sqrt{5}}{2}$ the logarithm of the Perron eigenvalue of F. We call the subshift D_F the Fibonacci Dyck shift. As the matrix is irreducible with condition (I), the associated C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)}$ is simple and purely infinite. We will compute the K-groups $K_i(\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)})$, i = 0, 1 of the algebra so that we have

Theorem 1.1. The C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)}$ associated with the λ -graph system $\mathfrak{L}^{Ch}(D_F)$ is unital, separable, nuclear, simple and purely infinite. It is the unique C^* -algebra generated by one isometry T_1 and three partial isometries S_1, S_2, T_2 subject to the following operator relations:

$$\sum_{j=1}^{2} (S_j S_j^* + T_j T_j^*) = \sum_{j=1}^{2} S_j^* S_j = 1, \qquad T_2^* T_2 = S_1^* S_1,$$
(1.1)

$$E_{\mu_1 \dots \mu_k} = \sum_{j=1}^{2} F(j, \mu_1) S_j S_j^* E_{\mu_1 \dots \mu_k} S_j S_j^* + T_{\mu_1} E_{\mu_2 \dots \mu_k} T_{\mu_1}^*, \qquad k > 1$$
(1.2)

where $E_{\mu_1\cdots\mu_k} = S_{\mu_1}^*\cdots S_{\mu_k}^*S_{\mu_k}\cdots S_{\mu_1}$, $(\mu_1,\cdots,\mu_k)\in\Lambda_F^*$, and Λ_F^* is the set of admissible words of the topological Markov shift Λ_F defined by the matrix F. The K-groups are

$$K_0(\mathcal{O}_{\mathfrak{C}^{Ch(D_F)}}) \cong \mathbb{Z} \oplus C(\mathfrak{K}, \mathbb{Z})^{\infty}, \qquad K_1(\mathcal{O}_{\mathfrak{C}^{Ch(D_F)}}) \cong 0.$$

This paper is a continuation of [23].

2. The subshift D_A and the λ -graph system $\mathfrak{L}^{Ch(D_A)}$

We will briefly review the topological Markov Dyck shift D_A and its Cantor horizon λ -graph system $\mathfrak{L}^{Ch(D_A)}$.

Consider a pair of N symbols where $\Sigma^- = \{\alpha_1, \cdots, \alpha_N\}, \Sigma^+ = \{\beta_1, \cdots, \beta_N\}$. We set $\Sigma = \Sigma^- \cup \Sigma^+$. Let $A = [A(i,j)]_{i,j=1,\dots,N}$ be an $N \times N$ matrix with entries in $\{0,1\}$. Throughout this paper, A is assumed to have no zero rows or columns. Consider the Cuntz-Krieger algebra \mathcal{O}_A for the matrix A that is the universal C^* -algebra generated by N partial isometries t_1, \dots, t_N subject to the following relations:

$$\sum_{j=1}^{N} t_j t_j^* = 1, \qquad t_i^* t_i = \sum_{j=1}^{N} A(i,j) t_j t_j^* \quad \text{for } i = 1, \dots, N$$

([5]). Define a correspondence $\varphi_A: \Sigma \longrightarrow \{t_1^*, \dots, t_N^*, t_1, \dots, t_N\}$ by setting

$$\varphi_A(\alpha_i) = t_i^*, \qquad \varphi_A(\beta_i) = t_i \quad \text{ for } i = 1, \dots, N.$$

We denote by Σ^* the set of all words $\gamma_1 \cdots \gamma_n$ of elements of Σ . Define the set

$$\mathfrak{F}_A = \{ \gamma_1 \cdots \gamma_n \in \Sigma^* \mid \varphi_A(\gamma_1) \cdots \varphi_A(\gamma_n) = 0 \}.$$

Let D_A be the subshift over Σ whose forbidden words are \mathfrak{F}_A . The subshift is called the topological Markov Dyck shift defined by A (cf. [7], [15]). If all entries of A are 1, the subshift D_A becomes the Dyck shift D_N with 2N bracket (cf. [11],[12], [14], [22],[23]). We note the fact that $\alpha_i\beta_j \in \mathfrak{F}_A$ if $i \neq j$, and $\alpha_{i_n} \cdots \alpha_{i_1} \in \mathfrak{F}_A$ if and only if $\beta_{i_1} \cdots \beta_{i_n} \in \mathfrak{F}_A$. Consider the following subsystem of D_A

$$D_A^+ = \{ (\gamma_i)_{i \in \mathbb{Z}} \in D_A \mid \gamma_i \in \Sigma^+ \text{ for all } i \in \mathbb{Z} \}.$$

The subshift D_A^+ is identified with the topological Markov shift

$$\Lambda_A = \{(x_i)_{i \in \mathbb{Z}} \in \{1, \dots, N\}^{\mathbb{Z}} \mid A(x_i, x_{i+1}) = 1, i \in \mathbb{Z}\}$$

defined by the matrix A. Hence the subshift D_A is recognized to contain the topological Markov shift Λ_A .

We denote by $B_l(D_A)$ and $B_l(\Lambda_A)$ the set of admissible words of length l of D_A and that of Λ_A respectively. Let m(l) be the cardinal number of $B_l(\Lambda_A)$. We use lexcographic order from the left on the words of $B_l(\Lambda_A)$, so that we may assign to a word $\mu_1 \cdots \mu_l \in B_l(\Lambda_A)$ the number $N(\mu_1 \cdots \mu_l)$ from 1 to m(l). For example, if $A = F = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, then

$$B_1(\Lambda_F) = \{1, 2\},$$
 $N(1) = 1, N(2) = 2,$ $B_2(\Lambda_F) = \{11, 12, 21\},$ $N(11) = 1, N(12) = 2, N(21) = 3,$

and so on. Hence the set $B_l(\Lambda_A)$ bijectively corresponds to the set of natural numbers less than or equal to m(l). Let us now describe the Cantor horizon λ -graph system $\mathfrak{L}^{Ch(D_A)}$ of D_A . The vertices V_l at level l for $l \in \mathbb{Z}_+$ are given by the admissible words of length l consisting of the symbols of Σ^+ . We regard V_0 as a one point set of the empty word $\{\emptyset\}$. Since V_l is identified with $B_l(\Lambda_A)$, we may write V_l as

$$V_l = \{ v_{N(\mu_1 \cdots \mu_l)}^l \mid \mu_1 \cdots \mu_l \in B_l(\Lambda_A) \}.$$

The mapping $\iota(=\iota_{l,l+1}):V_{l+1}\to V_l$ is defined by deleting the rightmost symbol of a corresponding word such as

$$\iota(v_{N(\mu_1\cdots\mu_{l+1})}^{l+1}) = v_{N(\mu_1\cdots\mu_l)}^{l} \quad \text{for} \quad v_{N(\mu_1\cdots\mu_{l+1})}^{l+1} \in V_{l+1}.$$

We define an edge labeled α_j from $v^l_{N(\mu_1\cdots\mu_l)}\in V_l$ to $v^{l+1}_{N(\mu_0\mu_1\cdots\mu_l)}\in V_{l+1}$ precisely if $\mu_0=j$, and an edge labeled β_j from $v^l_{N(j\mu_1\cdots\mu_{l-1})}\in V_l$ to $v^{l+1}_{N(\mu_1\cdots\mu_{l+1})}\in V_{l+1}$. For l=0, we define an edge labeled α_j form v^0_1 to $v^1_{N(j)}$, and an edge labeled β_j form v^0_1 to $v^1_{N(i)}$ if A(j,i)=1. We denote by $E_{l,l+1}$ the set of edges from V_l to V_{l+1} . Set $E=\cup_{l=0}^\infty E_{l,l+1}$. It is easy to see that the resulting labeled Bratteli diagram with ι -map becomes a λ -graph system over Σ , that is called the Cantor horizon Λ -graph system and is denoted by $\mathfrak{L}^{Ch(D_A)}$.

A λ -graph system \mathfrak{L} is said to present a subshift Λ if the set of all admissible words of Λ coincides with the set of all finite labeled sequences appearing in concatenating edges of \mathfrak{L} . In [23], the following propositions have been proved.

Proposition 2.1.

- (i) If A satisfies condition (I) in the sense of Cuntz-Krieger [5], the subshift D_A is not sofic.
- (ii) The λ -graph system $\mathfrak{L}^{Ch(D_A)}$ presents the subshift D_A .
- (iii) If A is an irreducible matrix with condition (I), then the λ -graph system $\mathfrak{L}^{Ch(D_A)}$ is λ -irreducible with λ -condition (I) in the sense of [21].

Proposition 2.2. The C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_A)}}$ associated with the λ -graph system $\mathfrak{L}^{Ch(D_A)}$ is unital, separable, nuclear, simple and purely infinite. It is the unique C^* -algebra generated by 2N partial isometries $S_i, T_i, i = 1, \ldots, N$ subject to the following operator relations:

$$\sum_{j=1}^{N} (S_j S_j^* + T_j T_j^*) = \sum_{j=1}^{N} S_j^* S_j = 1,$$

$$T_i^* T_i = \sum_{j=1}^{N} A(i, j) S_j^* S_j, \qquad i = 1, 2, \dots, N,$$

$$E_{\mu_1 \dots \mu_k} = \sum_{j=1}^{N} A(j, \mu_1) S_j S_j^* E_{\mu_1 \dots \mu_k} S_j S_j^* + T_{\mu_1} E_{\mu_2 \dots \mu_k} T_{\mu_1}^*, \qquad k > 1$$

where $E_{\mu_1\cdots\mu_k}=S_{\mu_1}^*\cdots S_{\mu_k}^*S_{\mu_k}\cdots S_{\mu_1}$, $(\mu_1,\cdots,\mu_k)\in\Lambda_A^*$ the set of admissible words of the topological Markov shift Λ_A defined by the matrix A.

3. K-Theory for
$$\mathcal{O}_{\mathfrak{C}^{Ch(D_F)}}$$

We will prove Theorem 1.1. The operator relations (1.1) and (1.2) are direct from the operator relations in Proposition 2.2. By Proposition 2.2, it remains to

prove the K-group formulae. This section is devoted to computing the K-groups $K_i(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}), i = 0, 1$ for the C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}$. The symbols $\alpha_1, \alpha_2, \beta_1, \beta_2$ of the subshift D_F correspond to the brackets $(1, (2,)_1,)_2$ respectively. Let $V_l, l \in \mathbb{Z}$ be the vertex set of the λ -graph system $\mathfrak{L}^{Ch(D_F)}$. They are identified with the admissible words consisting of the symbols β_1, β_2 in Σ^+ . Since the word $\beta_2\beta_2$ is forbidden, the following is a list of the vertex sets V_l for $l = 0, 1, 2, 3, 4, \ldots$:

```
V_{0}: *
V_{1}: (\beta_{1}), (\beta_{2}),
V_{2}: (\beta_{1}\beta_{1}), (\beta_{1}\beta_{2}), (\beta_{2}\beta_{1}),
V_{3}: (\beta_{1}\beta_{1}\beta_{1}), (\beta_{1}\beta_{1}\beta_{2}), (\beta_{1}\beta_{2}\beta_{1}), (\beta_{2}\beta_{1}\beta_{1}), (\beta_{2}\beta_{1}\beta_{2}),
V_{4}: (\beta_{1}\beta_{1}\beta_{1}\beta_{1}), (\beta_{1}\beta_{1}\beta_{1}\beta_{2}), (\beta_{1}\beta_{1}\beta_{2}\beta_{1}), (\beta_{1}\beta_{2}\beta_{1}\beta_{1}), (\beta_{1}\beta_{2}\beta_{1}\beta_{2}),
(\beta_{2}\beta_{1}\beta_{1}\beta_{1}), (\beta_{2}\beta_{1}\beta_{1}\beta_{2}), (\beta_{2}\beta_{1}\beta_{2}\beta_{1}),
...
```

Let f_l be the l-th Fibonacci number for $l \in \mathbb{N}$. They are inductively defined by

$$f_1 = f_2 = 1,$$
 $f_{l+2} = f_{l+1} + f_l$ for $l \in \mathbb{N}$.

By the structure of the λ -graph system $\mathfrak{L}^{Ch(D_F)}$, the number m(l) of the vertex set V_l is f_{l+2} . We denote by $(\mathcal{M}_{l,l+1},I_{l,l+1})_{l\in\mathbb{Z}_+}$ the symbolic matrix system of the Cantor horizon λ -graph system $\mathfrak{L}^{Ch(D_F)}$. We write the vertex set V_l as $\{v_1^l,\ldots,v_{m(l)}^l\}$. Both the matrices $\mathcal{M}_{l,l+1}$ and $I_{l,l+1}$ are the $m(l)\times m(l+1)$ matrices for each $l\in\mathbb{Z}_+$. For $i=1,\ldots,m(l),\ j=1,\ldots,m(l+1)$, the component $\mathcal{M}_{l,l+1}(i,j)$ denotes the formal sum of labels of edges starting at the vertex v_i^l and terminating at the vertex v_j^{l+1} , and the component $I_{l,l+1}(i,j)$ denotes 1 if $\iota(v_j^{l+1}=v_i^l)$, otherwise 0. They satisfy the relations $I_{l,l+1}\mathcal{M}_{l+1,l+2}=\mathcal{M}_{l,l+1}I_{l+1,l+2}$ for $l\in\mathbb{Z}_+$ as symbolic matrices. The orderings of the rows and columns of the matrices are arranged lexcographically on indices $i_1\cdots i_n$ of the words $\beta_{i_1}\cdots\beta_{i_n}$ from the left. Let us denote by $0_{p,q}$ the $m(p)\times m(q)$ matrix all of whose entries are 0's.

Lemma 3.1. The $m(l) \times m(l+1)$ matrix $I_{l,l+1}$ is given by :

$$I_{0,1} = \begin{bmatrix} 1 & 1 \end{bmatrix}, \qquad I_{1,2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad I_{l+2,l+3} = \begin{bmatrix} I_{l+1,l+2} & 0_{l+1,l+1} \\ 0_{l,l+2} & I_{l,l+1} \end{bmatrix}, \quad l \in \mathbb{Z}_+.$$

In what follows, blanks at components of matrices denote 0's. For $l \in \mathbb{Z}_+$ and $a \in \{\alpha_1, \alpha_2, \beta_1, \beta_2\}$, let $I_l(a)$ be the $m(l) \times m(l)$ diagonal matrix with diagonal entries a, and $\mathcal{S}_l(a)$ the $m(l-1) \times m(l+1)$ matrix defined by

$$S_0(a) = \begin{bmatrix} a & a \end{bmatrix}, \quad S_1(a) = \begin{bmatrix} a & a & a \end{bmatrix}, \quad S_{l+2}(a) = \begin{bmatrix} S_{l+1}(a) & 0_{l,l+1} \\ 0_{l-1,l+2} & S_l(a) \end{bmatrix}$$

where m(-1) denotes 1. For l = 2, 3, 4 and $a \in \{\alpha_1, \alpha_2, \beta_1, \beta_2\}$, one sees that

$$S_2(a) = \begin{bmatrix} a & a & a \\ & & a & a \end{bmatrix} : 2 \times 5 \text{ matrix},$$

$$S_3(a) = \begin{bmatrix} a & a & a \\ & & a & a \\ & & & a & a \end{bmatrix} : 3 \times 8 \text{ matrix},$$

$$\begin{bmatrix} a & a & a \\ & & & a \end{bmatrix}$$

and

Lemma 3.2. The $m(l) \times m(l+1)$ matrix $\mathcal{M}_{l,l+1}$ is given by :

$$\mathcal{M}_{0,1} = [\alpha_1 + \beta_1 + \beta_2, \ \alpha_2 + \beta_1],$$

$$\mathcal{M}_{l,l+1} = \left[\frac{S_l(\beta_1)}{S_{l-1}(\beta_2) \ | \ 0_{l-2,l-1}} \right] + \left[I_l(\alpha_1) \ | \frac{I_{l-1}(\alpha_2)}{0_{l-2,l-1}} \right].$$

Proof. In the right hand side in the second equation above, the first summand describes the transitions that arise when a vertex accepts a symbol in Σ^+ . The second summand describes the transitions that arise when a vertex accepts a symbol in Σ^- .

We present the above matrices for l = 1, 2, 3, 4:

Let $(M_{l,l+1},I_{l,l+1})_{l\in\mathbb{Z}_+}$ be the nonnegative matrix system for (\mathcal{M},I) . The matrix $M_{l,l+1}$ for each $l\in\mathbb{Z}_+$ is obtained from $\mathcal{M}_{l,l+1}$ by setting all the symbols of $\mathcal{M}_{l,l+1}$ equal to 1. That is, the (i,j)-component $M_{l,l+1}(i,j)$ of the matrix $M_{l,l+1}$ denotes the number of the symbols in Σ that appear in $\mathcal{M}_{l,l+1}(i,j)$. The groups $K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}), K_1(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}})$ are realized as the K-groups $K_0(M,I)$ and $K_1(M,I)$ for the nonnegative matrix system (M,I) respectively (cf. [18]). They are calculated by the following formulae.

Lemma 3.3 (([18], cf. [17])).

(i) $K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) = \varinjlim_{l} \{\mathbb{Z}^{m(l+1)}/(M_{l,l+1}^t - I_{l,l+1}^t)\mathbb{Z}^{m(l)}, \bar{I}_{l,l+1}^t\},$ where the inductive limit is taken along the natural induced homomorphisms $\bar{I}_{l,l+1}^t$, $l \in \mathbb{Z}_+$ by the matrices $I_{l,l+1}^t$.

(ii) $K_1(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) = \varinjlim_{l} \{ \operatorname{Ker}(M_{l,l+1}^t - I_{l,l+1}^t) \text{ in } \mathbb{Z}^{m(l)}, I_{l,l+1}^t \}, \text{ where the inductive limit is taken along the homomorphisms of the restrictions of } I_{l,l+1}^t \text{ to } \operatorname{Ker}(M_{l,l+1}^t - I_{l,l+1}^t).$

By the formulae of $\mathcal{M}_{l,l+1}$ in Lemma 3.2, the matrices $M_{l,l+1}^t - I_{l,l+1}^t$ for l = 1, 2, 3, 4 are presented as in the following way:

$$M_{1,2}^t - I_{1,2}^t = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ \hline 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ \hline 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 \\ \hline 2 & -1 \end{bmatrix},$$

$$M_{2,3}^t - I_{2,3}^t = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ \hline 1 & 2 \\ \hline 1 & 1 \\ \hline 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ \hline 1 \\ \hline 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline 2 & -1 \end{bmatrix},$$

$$M_{3,4}^t - I_{3,4}^t = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ \hline 1 & 1 \\ \hline$$

and

$$= \begin{bmatrix} 1 & & & & & 1 & & \\ & 1 & & & & & 1 & \\ & 1 & -1 & 1 & & & 1 & \\ & 1 & -1 & 1 & & & 1 & \\ & 1 & -1 & & 1 & & 1 & \\ & 1 & -1 & & 1 & & 1 & \\ & & 1 & -1 & & & 1 & 1 \\ & & 1 & & -1 & & & 2 \\ \hline 1 & & & 1 & & & -1 & \\ & & 1 & 1 & & & -1 & \\ & & & 1 & 1 & & & -1 & \\ & & & & 1 & 1 & & & -1 \\ & & & & & 2 & & & -1 \end{bmatrix}.$$

It is easy to see that the kernels of the matrices $M_{l,l+1}^t - I_{l,l+1}^t$ are $\{0\}$ for all $l \in \mathbb{N}$. Hence $K_1(\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)}) = \{0\}$ is obvious. The computation of the K_0 -group $K_0(\mathcal{O}_{\mathfrak{L}^{Ch}(D_F)})$ is the main body of this section. We denote by $\mathbb{A}_{l+1,l}$ the $m(l+1) \times m(l)$ matrix $M_{l,l+1}^t - I_{l,l+1}^t$. We will compute the cokernels of the matrices $\mathbb{A}_{l+1,l}$. We set subblock matrices $\mathbb{A}_{l+1,l}^{UL}$, $\mathbb{A}_{l+1,l}^{UL}$, and $\mathbb{A}_{l+1,l}^{LR}$ of $\mathbb{A}_{l+1,l}$ by setting

$$\begin{split} & \mathbb{A}^{UL}_{l+1,l}(i,j) = \mathbb{A}_{l+1,l}(i,j) \quad \text{for } 1 \leq i \leq m(l), 1 \leq j \leq m(l-1), \\ & \mathbb{A}^{UR}_{l+1,l}(i,j) = \mathbb{A}_{l+1,l}(i,m(l-1)+j) \quad \text{for } 1 \leq i \leq m(l), 1 \leq j \leq m(l-2), \\ & \mathbb{A}^{LL}_{l+1,l}(i,j) = \mathbb{A}_{l+1,l}(m(l)+i,j) \quad \text{for } 1 \leq i \leq m(l-1), 1 \leq j \leq m(l-1), \\ & \mathbb{A}^{LR}_{l+1,l}(i,j) = \mathbb{A}_{l+1,l}(m(l)+i,m(l-1)+j) \quad \text{for } 1 \leq i \leq m(l-1), 1 \leq j \leq m(l-2). \end{split}$$

They are an $m(l) \times m(l-1)$ matrix, an $m(l) \times m(l-2)$ matrix, an $m(l-1) \times m(l-1)$ matrix and an $m(l-1) \times m(l-2)$ matrix respectively such that

$$\mathbb{A}_{l+1,l} = \begin{bmatrix} \mathbb{A}_{l+1,l}^{UL} & \mathbb{A}_{l+1,l}^{UR} \\ \mathbb{A}_{l+1,l}^{LL} & \mathbb{A}_{l+1,l}^{LR} \end{bmatrix}.$$

Let I_l be the $m(l) \times m(l)$ identity matrix. Recall that $0_{k,l}$ denotes the $m(k) \times m(l)$ matrix all of which entries are 0's. By Lemma 3.1 and Lemma 3.2, one sees the general form of $\mathbb{A}_{l+1,l}$ as in the following way:

Lemma 3.4. For l = 3, 4, ..., we have

$$\begin{split} \mathbb{A}_{l+2,l+1}^{UL} &= \begin{bmatrix} & \mathbb{A}_{l+1,l}^{UL} & \frac{0_{l-1,l-2}}{I_{l-2}} \\ & 0_{l-1,l-2} & S_{l-2}^t(1) & \mathbb{A}_{l+1,l}^{LR} \end{bmatrix}, \\ \mathbb{A}_{l+2,l+1}^{UR} &= \begin{bmatrix} & S_{l-1}^t(1) & 0_{l,l-3} \\ & \mathbb{A}_{l+1,l}^{LL} & \end{bmatrix}, \\ \mathbb{A}_{l+2,l+1}^{LL} &= \begin{bmatrix} & I_{l-1} \\ & 0_{l-2,l-1} & \mathbb{A}_{l+1,l}^{UR} \\ & 0_{l-2,l-2} & \mathbb{A}_{l-1,l-3}^{LR} & \end{bmatrix}, \end{split}$$

Hence the sequence $\mathbb{A}_{l+1,l}, l \in \mathbb{N}$ of the matrices are inductively determined.

We set the $m(l) \times m(l)$ square matrix B_l by setting

$$B_l = \left[\begin{array}{c|c} \mathbb{A}_{l+1,l}^{UL} & \mathbb{A}_{l+1,l}^{UR} \end{array} \right]$$

the upper half of the matrix $\mathbb{A}_{l+1,l}$. We next provide a sequence $C_{l+1,l}, l \in \mathbb{N}$ of $m(l+1) \times m(l)$ matrix such as:

To define the matrices $C_{l+1,l}$ for $l \geq 6$, divide $C_{l+1,l}$ into 6 subblock matrices $C_{l+1,l}^{UL}, C_{l+1,l}^{UM}, C_{l+1,l}^{UR}, C_{l+1,l}^{LL}, C_{l+1,l}^{LR}$ as in the following way:

$$\begin{split} C_{l+1,l}^{UL}(i,j) = & C_{l+1,l}(i,j) \text{ for } 1 \leq i \leq m(l), 1 \leq j \leq m(l-2), \\ C_{l+1,l}^{UM}(i,j) = & C_{l+1,l}(i,j+m(l-2)) \text{ for } 1 \leq i \leq m(l), 1 \leq j \leq m(l-3), \\ C_{l+1,l}^{UR}(i,j) = & C_{l+1,l}(i,j+m(l-2)+m(l-3)) \text{ for } 1 \leq i \leq m(l), 1 \leq j \leq m(l-2), \\ C_{l+1,l}^{LL}(i,j) = & C_{l+1,l}(i+m(l),j) \text{ for } 1 \leq i \leq m(l-1), 1 \leq j \leq m(l-2), \\ C_{l+1,l}^{LM}(i,j) = & C_{l+1,l}(i+m(l),j+m(l-2)) \text{ for } 1 \leq i \leq m(l-1), 1 \leq j \leq m(l-3), \\ C_{l+1,l}^{LR}(i,j) = & C_{l+1,l}(i+m(l),j+m(l-2)+m(l-3)) \text{ for } 1 \leq i \leq m(l-1), 1 \leq j \leq m(l-2). \end{split}$$

They are an $m(l) \times m(l-2)$ matrix, an $m(l) \times m(l-3)$ matrix, an $m(l) \times m(l-2)$ matrix, an $m(l-1) \times m(l-2)$ matrix, an $m(l-1) \times m(l-3)$ matrix and an $m(l-1) \times m(l-2)$ matrix respectively such that

$$C_{l+1,l} = \begin{bmatrix} C_{l+1,l}^{UL} & C_{l+1,l}^{UM} & C_{l+1,l}^{UR} \\ C_{l+1,l}^{LL} & C_{l+1,l}^{LM} & C_{l+1,l}^{LR} \end{bmatrix}.$$

These block matrices are defined inductively as in the following way:

$$\begin{split} C_{l+1,l}^{UL} &= \left[\begin{array}{c} C_{l,l-1}^{UL} \\ \hline C_{l,l-1}^{LL} \end{array} \middle| \ 0_{l,l-4} \end{array} \right], \quad C_{l+1,l}^{UM} &= \left[\begin{array}{c} C_{l,l-1}^{UM} \\ \hline C_{l,l-1}^{LM} \end{array} \middle| \ 0_{l,l-5} \end{array} \right], \quad C_{l+1,l}^{UL} &= \left[0_{l,l-2} \right], \\ C_{l+1,l}^{LL} &= \left[\begin{array}{c} 0_{l-1,l-2} \\ \hline C_{l-1,l-2}^{LL} \end{array} \right], \quad C_{l+1,l}^{LM} &= \left[\begin{array}{c} 0_{l-1,l-4} \\ \hline C_{l-1,l-2}^{LM} \end{array} \right], \quad C_{l+1,l}^{LR} &= \left[0_{l,l-2} \right]. \end{split}$$

Let $L_{l+1,l}$ be the $m(l+1) \times m(l)$ matrix defined by the block matrix:

$$L_{l+1,l} = \begin{bmatrix} L_{l+1,l}^{UL} & L_{l+1,l}^{UR} \\ L_{l+1,l}^{LL} & L_{l+1,l}^{LR} \end{bmatrix}$$

where

$$\begin{split} L_{l+1,l}^{UL} &= \mathbb{A}_{l+1,l}^{UL}: \quad m(l) \times m(l-1) \text{ matrix,} \\ L_{l+1,l}^{UR} &= \left[\frac{0_{l-1,l-2}}{B_{l-2}}\right]: \quad m(l) \times m(l-2) \text{ matrix,} \\ L_{l+1,l}^{LL} &= \mathbb{A}_{l+1,l}^{LL}: \quad m(l-1) \times m(l-1) \text{ matrix,} \\ L_{l+1,l}^{LR} &= -I_{l-2,l-1}^{t} - C_{l-1,l-2}: \quad m(l-1) \times m(l-2) \text{ matrix.} \end{split}$$

We write down the above matrices for l = 1, 2, 3, 4.

$$L_{2,1} = \begin{bmatrix} 1 & & & & \\ & 2 & \\ \hline 2 & -3 \end{bmatrix}, \qquad L_{3,2} = \begin{bmatrix} 1 & & & & \\ & 1 & & \\ & 1 & -1 & 2 \\ \hline 1 & 1 & -3 & \\ & 2 & -3 \end{bmatrix}, \qquad L_{4,3} = \begin{bmatrix} 1 & & & & \\ & 1 & & \\ & 1 & -1 & 1 & \\ & 1 & -1 & 1 & 1 \\ & 1 & -1 & 1 & 1 \\ & 1 & -1 & 2 \\ \hline 1 & & 1 & -3 & \\ & & & 1 & 1 & -3 \\ & & & & 2 & -2 & -1 \end{bmatrix},$$

and

$$L_{5,4} = \begin{bmatrix} 1 & & & & & & & \\ & 1 & & & & & \\ 1 & -1 & 1 & & & & \\ & 1 & -1 & 1 & & & \\ & 1 & -1 & & 1 & & \\ & 1 & -1 & & 1 & & 1 \\ & & 1 & -1 & & 1 & 1 \\ & & 1 & -1 & & 1 & -1 & 2 \\ \hline 1 & & & 1 & & -2 & -1 \\ & & & 1 & & -2 & -1 \\ & & & 1 & & -1 & -2 & -1 \\ & & & & 1 & & -1 & -1 & -1 \\ & & & & & 2 & -1 & -1 & -1 \end{bmatrix}.$$

We define the elementary column operations on integer matrices to be:

- (1) Multiply a column by -1,
- (2) Add an integer multiple of one column to another column.

The elementary row operations are similarly defined. We know that the matrices $L_{l+1,l}$ is obtained from $\mathbb{A}_{l+1,l}$ by elementary column operations, that operation is denoted by Γ_l . The operation Γ_l is an $m(l) \times m(l)$ matrix corresponding to the column operation such that

$$L_{l+1,l} = \mathbb{A}_{l+1,l} \Gamma_l.$$

Since

$$L_{l+1,l} = \begin{bmatrix} \mathbb{A}_{l+1,l}^{UL} & 0_{l-1,l-2} \\ & & & \\ \hline \mathbb{A}_{l+1,l}^{LL} & -I_{l-2,l-1}^{t} - C_{l-1,l-2} \end{bmatrix},$$

we may apply the elementary column operation $I_{l-1} \oplus \Gamma_{l-2}$ to $L_{l+1,l}$ so that the matrix B_{l-2} in $L_{l+1,l}$ goes to

$$\left[\mathbb{A}_{l-1,l-2}^{UL} \left| \frac{0_{l-3,l-1}}{B_{l-4}} \right| \right].$$

The new matrix $L_{l+1,l}(I_{l-1} \oplus \Gamma_{l-2})$ is

$$L_{l+1,l}(I_{l-1} \oplus \Gamma_{l-2}) = \begin{bmatrix} \mathbb{A}_{l+1,l}^{UL} & & & & \\ & \mathbb{A}_{l-1,l-2}^{UL} & & & \\ & \mathbb{A}_{l-1,l-2}^{UL} & & & & \\ & \mathbb{A}_{l-1,l-2}^{UL} & & & & \\ & \mathbb{A}_{l-1,l-2}^{LL} & (-I_{l-2,l-1}^t - C_{l-1,l-2})\Gamma_{l-2} \end{bmatrix}.$$

As

$$B_{l-2n}\Gamma_{l-2n} = \left[A_{l-2n+1,l-2n}^{UL} \left| \frac{0_{l-2n-1,l-2n-2}}{B_{l-2n-2}} \right] \right]$$

for $n=1,2,\ldots$ with 2n< l, by continuing these procedures k-times for l=2k,2k+1 we finally get

$$B_2\Gamma_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$
 for $l = 2k$ and $B_1\Gamma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ for $l = 2k + 1$.

For l = 2k, 2k + 1, let $\mathbb{M}_{l+1,l}$ be the $m(l+1) \times m(l)$ matrix obtained from $L_{l+1,l}$ after the k times procedures above. Then we have

$$\mathbb{M}_{l+1,l}(i,j) = \begin{cases} 0 & \text{if } i < j, \ 1 \le i, j \le m(l) \\ 1 & \text{if } i = j, \ 1 \le i < m(l) \\ 2 & \text{if } i = j = m(l). \end{cases}$$

Let $v_l = [v_l(i)]_{i=1}^{m(l-1)}$ be the column vector of length m(l-1) defined by

$$v_l(i) = \mathbb{M}_{l+1,l}(m(l) + i, m(l)), \qquad i = 1, 2, \dots, m(l-1)$$

so that the matrix $\mathbb{M}_{l+1,l}$ is of the form

$$\mathbb{M}_{l+1,l} = \begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & & \ddots & & & \\ & * & & 1 & & \\ & & & & 2 & & \\ & & & & v_l(1) & & \\ & & & & v_l(2) & & \\ & * & & & \vdots & & \\ & & & & v_l(m(l-1)) \end{bmatrix}.$$

For l = 1, 2, 3, 4, 5, 6, we see

By induction, one has:

Lemma 3.5.

(i)
$$v_l(i) = \begin{cases} -3 & \text{if } l = 4k+1, 4k+2, k \in \mathbb{Z}_+, \text{ and } 1 \le i \le m(l-2), \\ 3 & \text{if } l = 4k+3, 4k+4, k \in \mathbb{Z}_+, \text{ and } 1 \le i \le m(l-2), \end{cases}$$

(ii)
$$v_l(m(l-2)+i) = v_{l-2}(i)$$
 for $i = 1, 2, ..., m(l-3)$

where for $u = \pm 3, \pm 1$, the integer \hat{u} is defined by

$$\hat{u} = \begin{cases} u - 4 & \text{if } u = 3, 1, \\ u + 4 & \text{if } u = -3, -1. \end{cases}$$

$$\mathbb{N}_{l+1,l}(i,j) = \begin{cases} 1 & \text{if } i = j, \ 1 \leq i < m(l), \\ 2 & \text{if } i = j = m(l), \\ v_l(i - m(l)) & \text{if } i > m(l), \ j = m(l), \\ 0 & \text{otherwise}, \end{cases}$$

$$\mathbb{H}_{l+1,l}(i,j) = \begin{cases} 1 & \text{if } i = j, \ 1 \leq i < m(l), \\ 2 & \text{if } i = j = m(l), \\ -1 & \text{if } i > m(l), \ j = m(l), \\ 0 & \text{otherwise} \end{cases}$$

We set $m(l+1) \times m(l)$ matrices $\mathbb{N}_{l+1,l}$ and $\mathbb{H}_{l+1,l}$ by setting For l=1,2,3,4, one sees

$$\mathbb{N}_{2,1} = \begin{bmatrix} \frac{1}{2} \\ \frac{2}{-3} \end{bmatrix}, \quad \mathbb{N}_{3,2} = \begin{bmatrix} \frac{1}{1} \\ \frac{2}{-3} \\ -3 \end{bmatrix}, \quad \mathbb{N}_{4,3} = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{2}{3} \\ \frac{3}{1} \end{bmatrix}, \quad \mathbb{N}_{5,4} = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{2} \\ \frac{3}{3} \\ \frac{3}{1} \end{bmatrix}$$

and

$$\mathbb{H}_{2,1} = \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix}, \quad \mathbb{H}_{3,2} = \begin{bmatrix} \frac{1}{1} \\ \frac{2}{-1} \\ -1 \end{bmatrix}, \quad \mathbb{H}_{4,3} = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{2}{-1} \\ -1 \end{bmatrix}, \quad \mathbb{H}_{5,4} = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1}$$

By elementary row operations compatible to $I_{l,l+1}^t$, one gets the matrix $\mathbb{N}_{l+1,l}$ from the matrix $\mathbb{M}_{l+1,l}$. In the matrix $\mathbb{N}_{l+1,l}$, for $i=1,2,\ldots,m(l)$, if $v_l(i)=-3$, then add the m(l)-th row to the i+m(l)-th row at the i+m(l)-th row, if $v_l(i)=3$, then subtract the twice of m(l)-th row from the i+m(l)-th row at the i+m(l)-th row, if $v_l(i)=-3$, then subtract the m(l)-th row from the i+m(l)-th row at the i+m(l)-th row, then one gets the matrix $\mathbb{H}_{l+1,l}$. These row operations are compatible to the map $I_{l,l+1}^t$ and the relations

$$I_{l,l+1}^t \mathbb{N}_{l,l-1} = \mathbb{N}_{l+1,l} I_{l-1,l}^t, \qquad I_{l,l+1}^t \mathbb{H}_{l,l-1} = \mathbb{H}_{l+1,l} I_{l-1,l}^t$$

for $l = 2, 3, \ldots$ hold. As

$$(M_{l,l+1}^t - I_{l,l+1}^t)\mathbb{Z}^{m(l)} = \mathbb{A}_{l+1,l}\mathbb{Z}^{m(l)} = L_{l+1,l}\mathbb{Z}^{m(l)} = \mathbb{M}_{l+1,l}\mathbb{Z}^{m(l)}, \qquad l \in \mathbb{N}$$

we see that $\mathbb{Z}^{m(l+1)}/(M_{l,l+1}^t-I_{l,l+1}^t)\mathbb{Z}^{m(l)}$ coincides with the group $\mathbb{Z}^{m(l+1)}/\mathbb{M}_{l+1,l}\mathbb{Z}^{m(l)}$ for all $l \in \mathbb{N}$. We then have

Proposition 3.6. There exist isomorphisms

$$\xi_l: \mathbb{Z}^{m(l)}/\mathbb{M}_{l,l-1}\mathbb{Z}^{m(l-1)} \to \mathbb{Z}^{m(l)}/\mathbb{N}_{l,l-1}\mathbb{Z}^{m(l-1)},$$
$$\eta_l: \mathbb{Z}^{m(l)}/\mathbb{N}_{l,l-1}\mathbb{Z}^{m(l-1)} \to \mathbb{Z}^{m(l)}/\mathbb{H}_{l,l-1}\mathbb{Z}^{m(l-1)}$$

of abelian groups such that the following diagrams are commutative:

where $\widehat{I}_{l,l+1}^t: \mathbb{Z}^{m(l)}/\mathbb{H}_{l,l-1}\mathbb{Z}^{m(l-1)} \to \mathbb{Z}^{m(l+1)}/\mathbb{H}_{l+1,l}\mathbb{Z}^{m(l)}$ is the homomorphism induced by the matrix $I_{l,l+1}^t$. Hence we have an isomorphism

$$K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong \varinjlim_{l} \{\widehat{I}_{l,l+1}^t : \mathbb{Z}^{m(l)}/\mathbb{H}_{l,l-1}\mathbb{Z}^{m(l-1)} \to \mathbb{Z}^{m(l+1)}/\mathbb{H}_{l+1,l}\mathbb{Z}^{m(l)}\}.$$

We fix $l \geq 3$. Define the $(m(l-1)+1) \times 1$ matrix R_{l-1} and the $(m(l-1)+1) \times (m(l-2)+1)$ matrix $I_{l-1,l-2}^R$ by setting:

$$R_{l-1} = \begin{bmatrix} 2\\-1\\ \vdots\\-1 \end{bmatrix}, \qquad I_{l-1,l-2}^R = \begin{bmatrix} 1 & 0 & \dots & 0\\ \hline 0 & & \\ \vdots & & I_{l-2,l-1}\\ 0 & & & \end{bmatrix}.$$

Then the following diagram is commutative:

$$\mathbb{Z}^{m(l)}/\mathbb{H}_{l,l-1}\mathbb{Z}^{m(l-1)} \xrightarrow{\widehat{I}_{l,l+1}^t} \mathbb{Z}^{m(l+1)}/\mathbb{H}_{l+1,l}\mathbb{Z}^{m(l)}$$

$$\parallel \qquad \qquad \parallel$$

$$\mathbb{Z}^{m(l-2)+1}/R_{l-2}\mathbb{Z} \xrightarrow{\bar{I}_{l-1,l-2}^R} \mathbb{Z}^{m(l-1)+1}/R_{l-1}\mathbb{Z}$$

where $\bar{I}_{l-1,l}^R$ is the homomorphism induced by the matrix $I_{l-1,l}^R$. Let $\varphi_{l-2}: \mathbb{Z}^{m(l-2)+1} \to \mathbb{Z}^{m(l-2)+1}$ be an isomorphism defined by the operations on the row vectors of $\mathbb{Z}^{m(l-2)+1}$ to add the 2-times multiplication of the second row to the first row, and subtract the second row from the k-th rows for $k=3,4,\ldots,m(l-2)+1$. It is given by the matrix:

$$Q_{l-2} = \begin{bmatrix} 1 & 2 & & \\ 1 & & & \\ -1 & 1 & & \\ \vdots & \ddots & \\ \vdots & & \ddots & \\ -1 & & & 1 \end{bmatrix}.$$

Since
$$Q_{l-2}R_{l-2}=\begin{bmatrix}0\\-1\\0\\\vdots\\0\end{bmatrix}$$
 , φ_{l-2} yields an isomorphism

$$\varphi_{l-2}: \mathbb{Z}^{m(l-2)+1}/R_{l-2}\mathbb{Z} \to \mathbb{Z} \oplus 0 \oplus \mathbb{Z}^{m(l-2)-1} = \mathbb{Z}^{m(l-2)}.$$

Let $J_{l-1,l-2}: \mathbb{Z}^{m(l-2)-1} \to \mathbb{Z}^{m(l-1)-1}$ be a homomorphism defined by the $(m(l-1)-1)\times (m(l-2)-1)$ matrix

$$J_{l-1,l-2}(i,j) = \begin{cases} 0 & \text{if } i = 1, \\ I_{l-2,l-1}(i+1,j+1) & \text{if } i = 2,\dots, m(l-2) - 1 \end{cases}$$

for $i=1,2,\ldots,m(l-1)-1,\ j=1,2,\ldots,m(l-2)-1.$ We set $\widetilde{I}_{l-1,l-2}:\mathbb{Z}^{m(l-2)}\to\mathbb{Z}^{m(l-1)}$ a homomorphism defined by the $m(l-1)\times m(l-2)$ matrix

$$\widetilde{I}_{l-1,l-2}(i,j) = \begin{cases} 1 & \text{if } i = j = 1, \\ 0 & \text{if } i = 1, j \ge 2, \\ 0 & \text{if } i = 2, \\ I_{l-2,l-1}(i,j) & \text{if } i = 3, 4, \dots, m(l-2) - 1 \end{cases}$$

for i = 1, 2, ..., m(l-1), j = 1, 2, ..., m(l-2). That is,

$$\widetilde{I}_{l-1,l-2} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & J_{l-1,l-2} & \\ 0 & & & \end{bmatrix}.$$

Lemma 3.7. The diagram

$$\mathbb{Z}^{m(l-2)+1}/R_{l-2}\mathbb{Z} \xrightarrow{\widetilde{I}_{l-1,l-2}^R} \mathbb{Z}^{m(l-1)+1}/R_{l-1}\mathbb{Z}$$

$$\varphi_{l-2} \downarrow \qquad \qquad \varphi_{l-1} \downarrow$$

$$\mathbb{Z}^{m(l-2)} \xrightarrow{\widetilde{I}_{l-1,l-2}} \mathbb{Z}^{m(l-1)}$$

is commutative. Hence we have an isomorphism

$$K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong \mathbb{Z} \oplus \varinjlim_{l} \{J_{l-1,l-2} : \mathbb{Z}^{m(l-2)-1} \to \mathbb{Z}^{m(l-1)-1}\}.$$

Proof. Since the commutativity $\varphi_{l-1} \circ \overline{I}_{l-1,l-2}^R = \widetilde{I}_{l-1,l-2} \circ \varphi_{l-2}$ is immediate, one has

$$K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong \varinjlim_{l} \{\widetilde{I}_{l-1,l-2} : \mathbb{Z}^{m(l-2)} \to \mathbb{Z}^{m(l-1)} \}.$$

As $\widetilde{I}_{l-1,l-2} = 1 \oplus J_{l-1,l-2}$, the assertion is clear.

We will compute the group of the inductive limit $\varinjlim_{l} \{J_{l+1,l} : \mathbb{Z}^{m(l)-1} \to \mathbb{Z}^{m(l+1)-1}\}$, that we denote by G. Let $I_{l+1,l}^c$ be the $(m(l)-2)\times (m(l)-1)$ matrix defined by

$$I_{l+1,l}^c(i,j) = I_{l,l+1}(i+2,j+1)$$
 for $i = 1, ..., m(l) - 2, j = 1, ..., m(l) - 1.$

Hence $J_{l+1,l} = \left\lceil \frac{0 - \cdots - 0}{I_{l+1,l}^c} \right\rceil$. It gives rise to a homomorphism :

$$I_{l+1,l}^c:\mathbb{Z}^{m(l)-1}\to\mathbb{Z}\oplus I_{l+1,l}^c\mathbb{Z}^{m(l)-1}\subset\mathbb{Z}^{m(l)-1}.$$

Put

$$\mathbb{Z}(l) = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} = \mathbb{Z}^{m(l)-1}.$$

For $k \in \mathbb{N}$, take $l \in \mathbb{Z}_+$ such that $k \leq m(l)$. Define a sequence of positive integers

$$g_k = \sum_{i=1}^k \sum_{i=2}^{m(l+1)} I_{l,l+1}^t(i,j), \qquad k = 1, 2, \dots$$

that is independent of the choice of l, so that

$$g_1 = 1$$
, $g_2 = 2$, $g_3 = 4$, $g_4 = 6$, $g_5 = 7$, $g_6 = 9$, ...

Define for $l \geq k$,

$$\mathbb{Z}(l;k) = \underbrace{0 \oplus \cdots \oplus 0}_{g_k} \oplus \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{m(l)-1-g_k} \subset \mathbb{Z}^{m(l)-1} = \mathbb{Z}(l)$$

so that we have

$$I_{l+1,l}^c(\mathbb{Z}(l;k)) \subset \mathbb{Z}(l+1;k+1).$$

Set the group of the inductive limit

$$G_k = \varinjlim_n \{I_{k+n+1,k+n}^c : \mathbb{Z}(k+n;n) \to \mathbb{Z}(k+n+1;n+1)\}.$$

Since the following diagram is commutative:

$$\mathbb{Z}(1) \xrightarrow{I_{2,1}^c} \mathbb{Z}(2;1) \xrightarrow{I_{3,2}^c} \mathbb{Z}(3;2) \xrightarrow{I_{4,3}^c} \mathbb{Z}(4;3) \xrightarrow{I_{5,4}^c} \cdots \longrightarrow G_1$$

$$\downarrow^{\iota} \qquad \qquad \downarrow^{\iota} \qquad \qquad \downarrow^{\iota}$$

$$\mathbb{Z}(2) \xrightarrow{I_{3,2}^c} \mathbb{Z}(3;1) \xrightarrow{I_{4,3}^c} \mathbb{Z}(4;2) \xrightarrow{I_{5,4}^c} \cdots \longrightarrow G_2$$

$$\downarrow^{\iota} \qquad \qquad \downarrow^{\iota}$$

$$\mathbb{Z}(4) \xrightarrow{I_{4,3}^c} \mathbb{Z}(4;1) \xrightarrow{I_{5,4}^c} \cdots \longrightarrow G_3$$

$$\downarrow^{\iota}$$

$$\mathbb{Z}(4) \xrightarrow{I_{5,4}^c} \cdots \longrightarrow G_4$$

$$\vdots$$

where the vertical arrows ι mean the natural inclusion maps, one sees the next lemma:

Lemma 3.8.

- (i) For each k = 1, 2, ..., the group G_k is isomorphic to the abelian group $C(\mathfrak{K}_k, \mathbb{Z})$ of all integer valued continuous functions on a Cantor discontinuum \mathfrak{K}_k .
- (ii) The sequence G_k , k = 1, 2, ... are increasing whose union generate G.

Hence one has

Lemma 3.9. The group G is isomorphic to the countable direct sum of the group $C(\mathfrak{K}, \mathbb{Z})$ of all integer valued continuous functions on a Cantor discontinuum \mathfrak{K} .

Proof. It is easy to see that G_k is isomorphic to the direct sum $C(\mathfrak{K}_{k,k-1},\mathbb{Z}) \oplus G_{k-1}$ of all integer valued continuous functions on a Cantor discontinuum $\mathfrak{K}_{k,k-1}$ and G_{k-1} for each k. Hence we have

$$G_k \cong C(\mathfrak{K}_{k,k-1}, \mathbb{Z}) \oplus G_{k-1}$$

$$\cong C(\mathfrak{K}_{k,k-1}, \mathbb{Z}) \oplus C(\mathfrak{K}_{k-1,k-2}, \mathbb{Z}) \oplus \cdots \oplus C(\mathfrak{K}_{2,1}, \mathbb{Z}) \oplus G_1.$$

Since both G_1 and $C(\mathfrak{K}_{i,i-1},\mathbb{Z})$ are isomorphic to the group $C(\mathfrak{K},\mathbb{Z})$ of all integer valued continuous functions on a Cantor discontinuum \mathfrak{K} , we have

$$G \cong \varinjlim_{k} G_{k} \cong C(\mathfrak{K}, \mathbb{Z})^{\infty}.$$

Therefore we conclude

Theorem 3.10.

$$K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong \mathbb{Z} \oplus C(\mathfrak{K}, \mathbb{Z})^{\infty}, \qquad K_1(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong 0.$$

Proof. Since $K_0(\mathcal{O}_{\mathfrak{C}^{Ch(D_F)}})$ is isomorphic to

$$\mathbb{Z} \oplus \varinjlim_{l} \{J_{l+1,l} : \mathbb{Z}^{m(l)-1} \to \mathbb{Z}^{m(l+1)-1}\}$$

and the second summand above denoted by G is isomorphic to $C(\mathfrak{K}, \mathbb{Z})^{\infty}$, one gets $K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong \mathbb{Z} \oplus C(\mathfrak{K}, \mathbb{Z})^{\infty}$. We have already seen the formula $K_1(\mathcal{O}_{\mathfrak{L}^{Ch(D_F)}}) \cong \mathbb{Z} \oplus C(\mathfrak{K}, \mathbb{Z})^{\infty}$.

Therefore Theorem 1.1 holds.

References

- [1] B. BLACKADAR, Shape theory for C*-algebras, Math. Scand. 56(1978), pp. 249–275.
- B. Blackadar, Semiprojectivity in simple C*-algebras, Adv. Stud. Pure Math. 38(2004), pp. 1–17.
- [3] N. Chomsky and M. P. Schützenberger, *The algebraic theory of context-free languages*, Computer programing and formal systems, North-Holland (1963), pp. 118–161
- [4] J. Cuntz Simple C*-algebras generated by isometries, Commun. Math. Phys. 57(1977), pp. 173–185.
- [5] J. Cuntz and W. Krieger, A class of C^* -algebras and topological Markov chains, Inventions Math. **56**(1980), pp. 251–268.
- [6] E. G. Effros and J. Kaminker, Homotopy continuity and shape theory for C*-algebras, In Geometric methods in operator algebras (Kyoto, 1983), Longman Sci. Tech., Harlow (1986), pp. 152–180.
- [7] T. Hamachi, K. Inoue and W. Krieger, Subsystems of finite type and semigroup invariants of subshifts, preprint.
- [8] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading (2001).
- [9] B. P. KITCHENS, Symbolic dynamics, Springer-Verlag, Berlin, Heidelberg and New York (1998).
- [10] W. KRIEGER, On the uniqueness of the equilibrium state, Math. Systems Theory 8 (1974), pp. 97–104.
- [11] W. KRIEGER, On subshifts and topological Markov chains, Numbers, information and complexity (Bielefeld 1998), Kluwer Acad. Publ. Boston MA (2000) pp. 453–472
- [12] W. Krieger, On subshift presentations, preprint
- [13] W. Krieger, On a class of algebraic subshifts, preprint
- [14] W. KRIEGER AND K. MATSUMOTO, A lambda-graph system for the Dyck shift and its K-groups, Doc. Math. 8 (2003), pp. 79–96.

- [15] W. KRIEGER AND K. MATSUMOTO, A class of topological conjugacy of subshifts, Ergodic Theory Dynam. Systems 24 (2004) pp. 1155–1172.
- [16] D. LIND AND B. MARCUS, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1995).
- [17] K. Matsumoto, Presentations of subshifts and their topological conjugacy invariants, Doc. Math. 4 (1999), pp. 285-340.
- [18] K. Matsumoto, C*-algebras associated with presentations of subshifts, Doc. Math. 7 (2002), pp. 1–30.
- [19] K. MATSUMOTO, A simple purely infinite C*-algebra associated with a lambda-graph system of Motzkin shift, Math. Z. 248 (2004), pp. 369–394.
- [20] K. Matsumoto, K-theoretic invariants and conformal measures of the Dyck subshift, Internat. J. Math. 16 (2005), pp. 213–248.
- [21] K. Matsumoto, Construction and pure infiniteness of C*-algebras associated with lambdagraph systems, Math. Scand. 97 (2005), pp. 73–88.
- [22] K. Matsumoto, On the simple C^* -algebras arising from Dyck systems, to appear in J. Operator Theory.
- [23] K. Matsumoto, C*-algebras arising from Dyck systems of topological Markov chains, preprint.

Department of Mathematical Sciences, Yokohama City University, 22-2 Seto, Kanazawaku, Yokohama, 236-0027 Japan

 $E ext{-}mail\ address: kengo@yokohama-cu.ac.jp}$