CS241 Tutorial 7

Graham Cooper

June 26th, 2015

Topics:

- Top-Down Parsing Definitions:
 - LL(1): LEft to right scan of input Lefct canonical derivation 1 symbol of lookahead
 - Top-down Parser: begins at start symbol and finds a derviation for hte input string
 - An LL(1) grammar is a grammar that can be parsed by an LL(1) Parser

Predict Function

$$\begin{array}{l} \operatorname{Predict}(A,a) = \{A \to \gamma \mid a \in \operatorname{First}(\gamma) \ v \ (\gamma \implies *\epsilon \ \text{and} \ a \in \operatorname{Follow}(A))\} \\ \operatorname{First}(\gamma) = \{b \mid \gamma \implies b\beta \ \text{for some} \ \beta \ \} \\ \operatorname{Follow}(A) = \{C \mid S' \implies *\alpha Ac\beta \ \text{for some} \ \alpha, \beta \ \} \\ \operatorname{-} A \ \operatorname{grammar} \ \text{is} \ \operatorname{LL}(1) \ \text{if} \ \forall A, a \ |\operatorname{Predict}(A,a)| \leq 1 \end{array}$$

- 1. $S' \rightarrow \vdash S \dashv$
- 2. $S \rightarrow a X Y b$
- 3. $S \rightarrow XY$
- 4. $X \rightarrow pX$
- 5. $X \rightarrow \epsilon$
- 6. $Y \rightarrow q$
- 7. $Y \rightarrow \epsilon$

1) Create Predict Table

```
First(\vdash S \dashv) = {\vdash}

First(aXYb) = {a}

First(XY) = {p,q}

First(pX) = {p}

First(\epsilon) = {}

First(q) = {q}

Follow(S') = {} Follow(S) = {\dashv}

Follow(X) = {b, \dashv, q}

Follow(Y) = {b, dashv}
```

	\vdash	a	b	р	q	\dashv
S'	1					
S		2		3	3	3
X			5	4	5	5
Y			7		6	7

2) Parsing Example

Action	Consumed Input	$ {Top}Stack_{Bot} $	Remaining Input
Initialize	ϵ	S'	⊢appqb⊣
Expand 1	ϵ	$\vdash S \dashv$	⊢appqb⊣
$\mathrm{Match} \vdash$		S-I	appqb∃
Expand 2		aXYb∃	appqb∃