Yuying Ren LING82100: Statistics in Linguistics Homework 02 Mar/03

1. Reporting a binominal test

Report:

<u>Description:</u> The experiment is detecting a total number of 2,360 American English spontaneous phone conversations, to find whether people use the prepositional datives(A) or the double objects(B) in these conversations. The outcome is: 501 prepositional datives and 1,859 double objects.

<u>Test statistic:</u> according to the hypothesis that the two constructions are equiprobable, p = 0.5. <u>95% confidence intervals:</u>

• The 95% confidence intervals of A: 0.1959431 0.2293504

• The 95% confidence intervals of B: 0.7706496 0.8040569

The test was significant at $\alpha = 0.5$, p-value < 2.2e-16.

R expressions:

> binom.test(501, 501+1859, 0.5)

Exact binomial test

data: 501 and 501 + 1859

number of successes = 501, number of trials = 2360, p-value < 2.2e-16 alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.1959431 0.2293504 sample estimates: probability of success 0.2122881

> binom.test(1859, 501+1859, 0.5)

Exact binomial test

data: 1859 and 501 + 1859

number of successes = 1859, number of trials = 2360, p-value < 2.2e-16 alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.7706496 0.8040569 sample estimates: probability of success 0.7877119

2. McNemar's test

	> d <- read.table("https://raw.githubusercontent.com/statistics-for-linguistic-research/hw02-yuyingren/master/PTB.tsv", comment.char = "#", header = TRUE)	#Load the TSV file to R
	> Staf.correct <- d\$gold.tag == d\$Stanford.tag > sum(Staf.correct) [1] 126203 > NLP4correct <- d\$gold.tag == d\$NLP4J.tag > sum(!NLP4.correct) [1] 2104	#Get the data for x1(the "wins" for Standford tagger over NLP4J tagger)
1.	> x1 <- sum(Staf.correct & !NLP4.correct) > x1 [1] 943	Answer for Q1: the number of "wins" for Standford tagger over NLP4J is 943 .
2.	> x2 <- sum(NLP4.correct & !Staf.correct) > x2 [1] 2275	Answer for Q2: the number of "wins" for NLP4J tagger over Standford tagger is 2275.
3.	> binom.test(x1, x1+x2, 0.5)	Answer for Q3:
	Exact binomial test	According to the results, we don't see
	data: x1 and x1 + x2 number of successes = 943, number of trials = 3218, p-value < 2.2e-16 alternative hypothesis: true probability of success is not equal to 0.5 95 percent confidence interval:	that one tagger is significantly better than the other at $\alpha = 0.05$. Because the p-value
	0.2773518 0.3091035 sample estimates: probability of success 0.2930392	for both taggers is significantly smaller than α , and the 95 percent confidence
	> binom.test(x2, x1+x2, 0.5)	interval is about the same.
	Exact binomial test	
	data: x2 and x1 + x2 number of successes = 2275, number of trials = 3218, p-value < 2.2e-16 alternative hypothesis: true probability of success is not equal to 0.5 95 percent confidence interval: 0.6908965 0.7226482 sample estimates: probability of success	