Selected Solutions to Assignment #1

Exercise 2 (page 4 of B&C). (a) Show that Re(iz) = -Im z. (b) Show Im(iz) = Re z.

Proof. Let z = x + iy, then iz = ix - y, from this we have that

$$\operatorname{Re}(iz) = -y = -\operatorname{Im} z, \quad \operatorname{Im}(iz) = x = \operatorname{Re} z.$$

Exercise 5 (page 4 of B&C). PROOF. Let $z_1 = (x_1, x_2)$, $z_2 = (x_2, y_2)$, where x_i, y_i are real. Then, by definition,

$$z_1z_2 = (x_1x_2 - y_1y_2, y_1x_2 + x_1y_2)$$

and

$$z_2z_1 = (x_2x_1 - y_2y_1, y_2x_1 + x_2y_1).$$

By using the commutative law for real multiplication we see that the real parts of z_1z_2 and z_2z_1 are the same. By using the commutative law for real addition and for real multiplication we see that the imaginary parts of z_1z_2 and z_2z_1 are the same. Thus $z_1z_2 = z_2z_1$.

Exercise 4 (page 7 of B&C). Prove that if $z_1z_2z_3=0$ then at least one of three factors is zero.

Proof. If we denote $Z = z_1 z_2$ then we can rewrite our expression as

$$0 = z_1 z_2 z_3 = (z_1 z_2) z_3 = Z z_3.$$

Using the cancellation property for multiplication of complex numbers we deduce that Z=0 or $z_3=0$ or both. In the case Z=0, using this property again we see that at least one of factors z_1 , z_2 is zero.

Exercise 7 (page 7 of B&C). Derive the cancellation law

$$\frac{z_1 z}{z_2 z} = \frac{z_1}{z_2}, \quad z_2 \neq 0, \ z \neq 0.$$

Proof. Since $z_2 \neq 0$, $z \neq 0$, we can use property (8) on page 6:

$$\frac{z_1 z}{z_2 z} = \frac{z_1}{z_2} \frac{z}{z} = \frac{z_1}{z_2}.$$

The second equality follows from property (5) on page 6.

Exercise C1. Prove by mathematical induction that, for $n \geq 2$,

(1)
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof. We denote $S_n = 1 + 2 + 3 + \cdots + n$. We can check that

$$S_2 = 3 = \frac{2(3)}{2}, \quad S_3 = 6 = \frac{3(4)}{2}.$$

Let us assume we proved (1) for some n. Then

$$S_{n+1} = 1 + 2 + 3 + \dots + n + (n+1) = S_n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n^2 + n + 2n + 2}{2} = \frac{(n+1)(n+2)}{2}.$$

Thus formula (1) applies with n replaced by n+1. By the principle of mathematical induction, (1) holds for all n.

Exercise C2. Let $n \ge 1$ be an integer and let k be an integer in the range $1 \le k \le n$. Then

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

Proof. A direct proof. The first equality is by definition:

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-(k-1))!} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n+1-k)!}$$

$$\stackrel{\circledast}{=} \frac{(n+1-k)\,n!}{k!(n+1-k)!} + \frac{k\,n!}{k!(n+1-k)!}$$

$$= \frac{(n+1-k+k)\,n!}{k!(n+1-k)!} = \frac{(n+1)!}{k!(n+1-k)!} = \binom{n+1}{k}.$$

Note that the equality marked "⊛", though obscure looking, is just the usual step of finding a common denominator.

Note this is the statement that generates Pascal's triangle! Thinking about Pascal's triangle clarify the ranges on n and on k.