User-interface design for MIMO LTI human-automation systems through sensor placement

Abraham Vinod*, Tyler Summers**, and Meeko Oishi*

*Electrical and Computer Engineering,
University of New Mexico
**Mechanical Engineering,
University of Texas at Dallas

July 7, 2016

ACC 2016 — Boston

Motivation

- Intuition not sufficient
- Design tools lack human factors perspective
 - ► Too little information ⇒ nondeterminism
 - ► Too much information ⇒ overwhelming
- Dynamics-driven interface design required

Introduction Problem formulation Human factors guidelines User-interface design Example Conclusion

Main contributions

- Synthesis of user-interfaces for MIMO LTI systems
- ► Translation of human factors guidelines into constraints and cost function
- Sensor placement algorithms for optimal user-interfaces
 - Operation scenario
 - Measurement noise

Related work

Formal methods in user-interface design

Introduction

Dix (1991); Sarter, Woods, & Billings (1999); Pritchett & Feary (2011); Bailleiul, Leonard, & Morgansen (2012); Bolton, Bass, & Siminicean (2013); Gelman, Feigh, & Rushby (2014);

User-interface analysis

Suzuki, Ushio, & Adachi (2006); Hyun, Park, Wang, & Girard (2010); Eskandari & Oishi (2011); Oishi (2014); Hammond, Eskandari, & Oishi (2015)

User-interface design

Degani & Heymann (2002); Oishi, Mitchell, Bayen, & Tomlin (2008)

Sensor placement

Van De Wal & De Jager (2001); Mourikis & Roumeliotis (2006); Rowaihy, Eswaran, Johnson, Verma, Bar-Noy, Brown, & La Porta (2007); Krause & Guestrin (2007); Joshi & Boyd (2009); Shamaiah, Banerjee, & Vikalo (2010); Summers, Cortesi & Lygeros (2016)

Outline

- 1. Introduction
- 2. Problem formulation
- 3. Translation of human factors guidelines
- 4. User-interface design via sensor placement
- 5. Example
- 6. Conclusion

LTI MIMO system under "manual" control

Human factors guidelines

- Under "manual" control:
 - Low-level control by the automation
 - High-level reference tracking by the human

$$x \in \mathbb{R}^n$$
$$u \in \mathbb{R}^m$$
$$y, y_R \in \mathbb{R}^p$$

- \triangleright Measurement noise v(t) with bounded energy V
- ▶ Sensors: $\mathscr{S} = \{s_1, \dots, s_N\}$, with $s_i \in \mathbb{R}^n$
- ▶ Sensor combination $S \in 2^{\mathscr{S}}$ determine user-interface C_S

Conclusion

Optimization problem

Human factors guidelines

Given a task, find $S^* \in 2^{\mathscr{S}}$ that:

- 1. Provides sufficient information to complete the specified task
- 2. Accounts for the trust of the user on automation
- 3. Minimizes an information objective

Optimization problem

Outline

- 1. Introduction
- 2. Problem formulation
- 3. Translation of human factors guidelines
- 4. User-interface design via sensor placement
- 5. Example
- 6. Conclusion

Modeling the task

Tasks considered:

Introduction

- Depends on the current state
- ▶ Uses information from $S_{\text{task}} \subseteq \mathscr{S}$
- Safety/liveness specification
- Set of states for which task is feasible

$$\mathcal{F} = \{ x \in \mathbb{R}^n : \mathcal{L}\left(C_{S_{\text{task}}}x\right) \ge 0 \}$$

- ▶ Sensors used $S_{\text{task}} \subseteq \mathscr{S}$
- ▶ Task matrix: $C_{S_{\text{task}}} \in \mathbb{R}^{|S_{\text{task}}| \times n}$
- ► Task space: $\mathbb{T} = \mathcal{R}^{\perp}(C_{S_{\text{task}}})$
- $ightharpoonup \mathcal{L}: \mathbb{T} \to \mathbb{R}$ (possibly nonlinear)

Example: Stop at intersection (Eventually \mathcal{F} — liveness)

$$\mathcal{F} = \left\{ x \in \mathbb{R}^n : \mathcal{L}\left(C_{S_{\mathrm{task}}} x\right) \ge 0 \right\} \qquad \mathcal{F} = \left\{ \left(p, v, \cdots\right) \in \mathbb{R}^n : p = p_{\mathrm{stop}} \right.$$

$$\land v = 0 \right\}$$

- \triangleright $S_{\text{task}} = \{\mathbf{e}_1, \mathbf{e}_2\} \subseteq \mathscr{S}_{\text{car}}$
- $C_{S_{\text{task}}} = [\mathcal{I}_{2\times 2} \ \mathbf{0}]$
- $\mathbb{T} = \mathbb{R}^2$
- $\mathcal{L}(p, v) = -(p p_{\text{stop}})^2 v^2$

Eskandari & Oishi, IEEE ICSMC, 2011; Oishi, ACC, 2014

- User modeled as a special observer
 - Unreliable memory
 - Comprehends displayed information (output)
 - Understand higher derivatives of output
- ► Task space T must be user-observable and user-predictable
 - Reconstruct current information relevant for task
 - Predict evolution of information relevant for task
 - User-interface available: Information displayed is sufficient for task completion

$$\mathscr{S}_{\text{avail}} = \{ S \in 2^{\mathscr{S}} : S_{\text{task}} \in \mathcal{X}_{O}(S) \}$$

where $\mathcal{X}_O(S)$ is the user-observable (and user-predictable) space

Introduction

Example

Conclusion

Conclusion

- $ightharpoonup \gamma(S)$ dimension of $\mathcal{X}_{\mathcal{O}}(S) = \mathcal{R}^{\perp}(T(S))$
 - Amount of information processed by user
 - Computed using the Markov parameters
 - ▶ For SISO systems, $\gamma(S)$ is relative degree
 - $\gamma(S)$ is monotone increasing \Rightarrow Compute $\gamma_{\min}, \gamma_{\max}$ easily
- lacktriangledown Equivalent representation of $\mathscr{S}_{ ext{avail}}$ using $\gamma(\mathcal{S})$

$$\mathscr{S}_{\text{avail}} = \{ S \in 2^{\mathscr{S}} : \gamma(S \cup S_{\text{task}}) = \gamma(S) \}$$

Outline

- 1. Introduction
- 2. Problem formulation
- 3. Translation of human factors guidelines
- 4. User-interface design via sensor placement
- 5. Example
- 6. Conclusion

$$\begin{array}{ll} \underset{S \in 2^{\mathscr{S}}}{\text{minimize}} & J(S) & \text{ (information objective)} \\ \text{subject to} & \left\{ \begin{array}{ll} S \in \mathscr{S}_{\mathrm{avail}} & \text{ (availability constraint)} \\ S \in \mathscr{S}_{\mathrm{trust}} & \text{ (trust constraint)} \end{array} \right.$$

- Operation scenario ⇒ trust constraint
- Measurement noise ⇒ information objective

Operation Scenario	Measurements	
Operation Scenario	Noise-free	Noisy
Nominal	Case 1	Case 3
Off-Nominal	Case 2	Case 4

Case 1: Nominal operation, noise-free measurements

Problem 1a.

$$\begin{array}{lll} \textit{minimize} & |\mathcal{S}| \\ \textit{subject to} & \left\{ \begin{array}{ll} \mathcal{S} & \in & 2^{\mathscr{G}} \\ \gamma(\mathcal{S}) & = & \gamma(\mathcal{S} \cup \mathcal{S}_{task}) \\ \gamma(\mathcal{S}) & = & \gamma_{min} \end{array} \right. \quad \left(\mathscr{S}_{avail} \right) \end{array}$$

Case 1: Nominal operation, noise-free measurements

Problem 1a.

$$\begin{array}{lll} \textit{minimize} & |\mathcal{S}| \\ \textit{subject to} & \left\{ \begin{array}{ll} \mathcal{S} & \in & 2^{\mathscr{G}} \\ \gamma(\mathcal{S}) & = & \gamma(\mathcal{S} \cup \mathcal{S}_{task}) \\ \gamma(\mathcal{S}) & = & \gamma_{min} \end{array} \right. \quad \left(\mathscr{S}_{avail} \right) \end{array}$$

Problem 1b (Relaxed Problem 1a when $\mathscr{S}_{\text{feas}} = \{\emptyset\}$).

$$\begin{array}{ll} \textit{minimize} & |\mathcal{S}| \\ \textit{subject to} & \left\{ \begin{array}{ll} \mathcal{S} & \in & 2^{\mathscr{S}} \\ \gamma(\mathcal{S}) & = & \gamma(\mathcal{S} \cup \mathcal{S}_{task}) \\ \gamma(\mathcal{S}) & \leq & \gamma(\mathcal{S}_{task}) \end{array} \right. & \left(\mathcal{S}_{avail}^+ \right) \end{array}$$

 Observable space at most as large as when using S_{task}

Relaxed feasible solution space $\mathscr{S}^+_{\mathrm{feas}}$ guaranteed to be non-empty

duction Problem formulation Human factors guidelines **User-interface design** Example Conclusion

Case 2: Off-Nominal operation, noise-free measurements

Problem 2a.

$$\begin{array}{lll} \textit{minimize} & |\mathcal{S}| \\ \textit{subject to} & \left\{ \begin{array}{l} \mathcal{S} \in 2^{\mathscr{S}} \\ \gamma(\mathcal{S}) = \gamma(\mathcal{S} \cup \mathcal{S}_{task}) & (\mathcal{S}_{avail}) \\ \gamma(\mathcal{S}) = \gamma_{max} & (\mathcal{S}_{trust}) \end{array} \right. \end{array}$$

oduction Problem formulation Human factors guidelines **User-interface design** Example Conclusion

Case 2: Off-Nominal operation, noise-free measurements

Problem 2a.

$$\begin{array}{lll} \textit{minimize} & |S| \\ \textit{subject to} & \left\{ \begin{array}{l} S \in 2^{\mathscr{S}} \\ \gamma(S) = \gamma(S \cup S_{task}) & (\mathscr{S}_{avail}) \\ \gamma(S) = \gamma_{max} & (\mathscr{S}_{trust}) \end{array} \right. \end{array}$$

Case 2: Off-Nominal operation, noise-free measurements Problem 2b (Equivalent set-covering problem).

From a collection of subspaces $\mathcal{R}^{\perp}(T(S)) \subseteq \mathbb{R}^{\gamma_{\mathsf{max}}}$ where $S \in 2^{\mathscr{S}}$, find the minimum cardinality set S^* such that $\mathcal{R}^{\perp}(T(S^*)) = \mathbb{R}^{\gamma_{\mathsf{max}}}$

- Problem 2b is NP-hard
- OffGreedy(): Best polynomial time approximation algorithm

Case 2: Off-Nominal operation, noise-free measurements Problem 2b (Equivalent set-covering problem).

From a collection of subspaces $\mathcal{R}^{\perp}(T(S)) \subseteq \mathbb{R}^{\gamma_{\mathsf{max}}}$ where $S \in 2^{\mathscr{S}}$, find the minimum cardinality set S^* such that $\mathcal{R}^{\perp}(T(S^*)) = \mathbb{R}^{\gamma_{\mathsf{max}}}$

- Problem 2b is NP-hard
- OffGreedy(): Best polynomial time approximation algorithm

Example

Conclusion

Introduction

Case 2: Off-Nominal operation, noise-free measurements **Problem 2b (Equivalent set-covering problem).**

From a collection of subspaces $\mathcal{R}^{\perp}(T(S)) \subseteq \mathbb{R}^{\gamma_{\mathsf{max}}}$ where $S \in 2^{\mathscr{S}}$, find the minimum cardinality set S^* such that $\mathcal{R}^{\perp}(T(S^*)) = \mathbb{R}^{\gamma_{\mathsf{max}}}$

- ▶ Problem 2b is NP-hard
- OffGreedy(): Best polynomial time approximation algorithm

Introduction

Conclusion

User-interface design with noisy measurements

- Noisy measurements ⇒ User has access to unreliable data
- User-interface availability and trust constraints remain same
- ▶ Uncertainty ellipse $\mathcal{E}_{\operatorname{err}}(S) = \{e \in \mathbb{R}^n : e^{ op} rac{W_S}{V^2} e \leq 1\}$ where
 - $ightharpoonup W_S$ observability gramian associated with C_S
 - e error in estimation of observable initial state $\xi(0)$
- ▶ MMSE operation \Rightarrow Present information with least Vol(\mathcal{E}_{err})

$$J(S) = \log(\text{Vol}(\mathcal{E}_{err}(S)))$$

Introduction Problem formulation Human factors guidelines User-interface design Example Conclusion

Case 3 & 4: Operation with noisy measurements

Problem 3a (Nominal operation).

minimize $log(Vol(\mathcal{E}_{err}(S)))$ subject to $S \in \mathscr{S}_{feas}$

Case 3 & 4: Operation with noisy measurements

Problem 3a (Nominal operation).

minimize $\log(\operatorname{Vol}(\mathcal{E}_{\operatorname{err}}(S)))$ subject to $S \in \mathscr{S}_{\operatorname{feas}}$

Problem 3b (Relax for $\mathscr{S}_{feas} = \{\emptyset\}$).

minimize $log(Vol(\mathcal{E}_{err}(S)))$ subject to $S \in \mathscr{S}^+_{food}$

Introduction

Case 3 & 4: Operation with noisy measurements

Problem 3a (Nominal operation).

minimize $log(Vol(\mathcal{E}_{err}(S)))$ subject to $S \in \mathscr{S}_{feas}$

Problem 3b (Relax for $\mathscr{S}_{\text{feas}} = \{\emptyset\}$).

minimize $log(Vol(\mathcal{E}_{err}(S)))$ subject to $S \in \mathscr{S}_{fonc}^+$

Problem 4 (Off-nominal operation).

minimize $log(Vol(\mathcal{E}_{err}(S)))$ subject to $S \in \mathcal{S}_{trust}$

Conclusion

Summary of design solutions and computational complexity

	Noise-free		Noisy
Nominal	$ S^* \leq S_{\mathrm{task}} $	$\begin{aligned} & S^* \in \mathscr{S}_{\mathrm{feas}} \\ & \text{if } \mathscr{S}_{\mathrm{feas}} \neq \{\emptyset\} \\ & S^* \in \mathscr{S}_{\mathrm{feas}}^+ \\ & \text{if } \mathscr{S}_{\mathrm{feas}} = \{\emptyset\} \end{aligned}$	$\begin{aligned} & \mathcal{S}^* \in \mathscr{S}_{\mathrm{feas}} \\ & \text{if } \mathscr{S}_{\mathrm{feas}} \neq \{\emptyset\} \\ & \mathcal{S}^* \in \mathscr{S}_{\mathrm{feas}}^+ \\ & \text{if } \mathscr{S}_{\mathrm{feas}} = \{\emptyset\} \end{aligned}$
Off- Nominal	$ S^* \le S^+ $	Sub-optimal S^+ in $\mathcal{O}(\mathscr{S} ^2)$ $S^* \in \mathscr{S}_{\mathrm{trust}}$	$\mathcal{S}^* \in \mathscr{S}_{ ext{trust}}$

- Off-nominal noise-free suboptimal \rightarrow Quadratic in $|\mathscr{S}|$.
- Noise-free cases \rightarrow scalable designs (polynomial in $|\mathcal{S}|$).
- Noisy cases \rightarrow need not scale well with $|\mathcal{S}|$.

Introduction

Outline

- 1. Introduction
- 2. Problem formulation
- 3. Translation of human factors guidelines
- 4. User-interface design via sensor placement
- 5. Example
- 6. Conclusion

Dynamics characterization

- Remotely controlled fleet:
 - Four homogeneous UAVs
 - Leader-follower formation control
- UAV model:
 - Moves only in the horizontal direction
 - Double integrator model

- ▶ Inner control loop maintains formation *h*
- Outer control loop tracks user-specified trajectory

$$\dot{x}(t) = I_4 \otimes A_{\nu} x(t) + \Gamma_{I} \otimes B_{\nu} F(x(t) - h) + \Gamma_{F} \otimes B_{\nu} z(t)$$

Conclusion

Problem formulation

Human factors guidelines

- ▶ $\mathscr{S} = \{p_1, v_1, p_2, ..., v_4\}$ with $p_i = \mathbf{e}_{2i-1}, \ v_i = \mathbf{e}_{2i}, \ \mathbf{e}_j \in \mathbb{R}^8$
- ▶ *Problem*: User-interface synthesis for the following tasks:
 - 1. Waypoint tracking: Leader moves to a specific waypoint (or set of waypoints) with $S_{\text{waypoint}} = \{p_1\}$, and
 - 2. Trajectory tracking: Leader tracks a time-varying profile of position and speed with $S_{\text{trajectory}} = \{p_1, v_1\}$
- $\gamma_{\mathsf{max}} = \gamma(\mathscr{S}) = n = 8$

Results

lacksquare Nominal: $\mathscr{S}^+_{\mathrm{feas}} = \{\{p_1\}, \{p_1, v_1\}\}$ for both $\mathcal{S}_{\mathrm{task}}$

$\{p_1\}$	$\{p_1\}$
$\{p_1,v_1\}$	$\{p_1,v_1\}$

 $lackbox{Nominal} \leftarrow \mathsf{Matches}$ intuition-based interface; simplified by dynamics

Results

- ▶ Nominal: $\mathscr{S}_{\text{feas}}^+ = \{\{p_1\}, \{p_1, v_1\}\}$ for both S_{task}
- Off-nominal: $S^+ = \{p_1, p_2, p_4\}.$

Case	$egin{aligned} S_{ m waypoint} \ S_{ m task} = \{p_1\} \end{aligned}$	$S_{ m trajectory} \ S_{ m task} = \{p_1, v_1\}$
Nominal No-Noise	$\{p_1\}$	{p ₁ }
Nominal Noise	$\{p_1,v_1\}$	$\{p_1,v_1\}$
Off-Nominal No-Noise	$\{p_1,p_2,p_4\}$	$\{p_1, p_2, p_4\}$
Off-Nominal Noise	$\{v_1, p_2, p_4\}$	$\{v_1, p_2, p_4\}$

- $lackbox{Nominal} \leftarrow \mathsf{Matches}$ intuition-based interface; simplified by dynamics
- ▶ Off-nominal ← Observability guaranteed interface

Outline

- 1. Introduction
- 2. Problem formulation
- 3. Translation of human factors guidelines
- 4. User-interface design via sensor placement
- 5. Example
- 6. Conclusion

Introduction Problem formulation Human factors guidelines User-interface design Example Conclusion

Summary & future work

Summary

- User-interface design problem: combinatorial optimization problems + human factors guidelines
- Scalable solutions for the noise-free cases and characterized the solution space for the noisy cases
- Demonstrated the user-interface synthesis on an example

Future work

- Improvement of suggested algorithms in terms of scalability
- Extensions to hybrid LTI systems, e.g, power systems

Acknowledgments

This work was supported by the following grants:

- ► NSF CMMI-1254990 (CAREER, Oishi),
- CNS-1329878, and
- ► CMMI-1335038

