Problèmes Série A p.1/10

Problème A01

Pour l'ensemble des dipôles suivants, déterminer les résistances équivalentes entre les points A et B des différents montages suivants :

Problèmes Série A p.2/10

Que devient la résistance équivalente si toutes les résistances sont égales à R

Problèmes Série A p.3/10

Problème A02

Ecrire l'équation des courants de nœuds pour le nœud (A) du schéma ci-dessous, et écrire l'équation de la maille Im5.

Problème A03

A .- Vous avez le schéma ci-dessous

- 1. Déterminer le nombre de nœuds et numéroter les de (N_1) à (N_y) .
- 2. Déterminer le nombre de branches et numéroter les de (b_1) à (b_x)
- 3. Indiquer par des flèches le sens que vous définissez pour tous les courants de branches, mettre la même numérotation que celle des branches.
- 4. Poser le jeu d'équations nécessaires permettant de calculer, par les équations de Kirchhoff, l'ensemble des courants et tensions du circuit. NE PAS RESOUDRE
- B.- Quelle est la source de tension équivalente U_{AB} pour le circuit ci-après

<u>Valeurs numériques</u> : $U_{01} = 3 \text{ V}$; $U_{02} = 5 \text{ V}$; $U_{03} = 10 \text{ V}$;

Problèmes Série A p.4/10

C.- Quelle est la source de courant équivalente I pour le circuit ci-après

<u>Valeurs numériques</u>: $I_{S1} = 2 \text{ mA}$; $I_{S2} = 10 \text{ mA}$; $I_{S3} = 15 \text{ mA}$

Problème A04

1. Une résistance de valeur 100 $[\Omega]$ est traversée par un courant de 1,5 [A]. Calculer la tension à ses bornes.

Dessiner le schéma correspondant avec les indications de courant et tension.

2. Vous avez le schéma ci-dessous. J'ai placé un ampèremètre idéal dans la branche contenant les résistances R_A, il indique : I_A = 1, 5 [A].

 $R_A = 50 [\Omega]$

 $R_B = 60 [\Omega]$

 $R_C = 45 [\Omega]$

- a) Quelle est la valeur de la tension entre les bornes X et Y du circuit ?
- b) Quelle est la puissance dissipée dans une des résistances RA?
- c) Quelle est la valeur du courant dans la branche des résistances RB?
- d) Quelle est la valeur du courant total consommé par le circuit
- e) Calculer la puissance totale absorbée par le circuit
- f) Calculer l'énergie consommée par le circuit au bout de 22 minutes. Donner le résultat en [J] ainsi qu'en [kWh]

Problèmes Série A p.5/10

Problème A05

1. Calculer par les lois de Kirchoff (mailles et nœuds) le courant qui circule dans chacune des branches. Indiquer leur valeur et sens.

2. Calculer la tension U_{AB} et indiquer son sens.

Problème A06

Vous avez une source réelle de tension dont les valeurs caractéristiques sont : tension à vide = 72 [V] et sa résistance interne = 0,2 [Ω] .

- a) Calculer les valeurs de la source de courant équivalente et dessiner son schéma en indiquant les valeurs qui la caractérise.
- b) Qu'elle est la tension à ses bornes si on lui fait débiter un courant de 100 [A] dans une résistance de charge externe ?
- c) Qu'elle est la valeur de la résistance de charge pour obtenir le point de travail défini sous (b) ?

Problème A07

Vous avez une lampe de poche contenant 3 accumulateurs un interrupteur et une ampoule. Tous les éléments sont montés en série.

- Dessiner le schéma de principe de l'appareil (on doit voir les composants, accumulateur, interrupteur, ampoule)

Les données des composants sont :

- chaque accumulateur a une tension à vide de 1,3 [V] et une résistance interne de 0,2 [Ω]
- 1'ampoule porte les indications : U = 3.6 [V] P = 5 [W]

Calculer la résistance de l'ampoule correspondante à son point de fonctionnement.

- Dessiner le schéma électrotechnique équivalent (modèle).
- Calculer la tension aux bornes de l'interrupteur et le courant le traversant quand il est ouvert (déclenché)
- Calculer les mêmes valeurs quand l'interrupteur est fermé (enclenché)
- Calculer la puissance dissipée dans l'ampoule
- Calculer l'énergie absorbée par l'ampoule après 45 [min] de fonctionnement (en [J] et en [kWh])
- Calculer les pertes d'énergie les accumulateurs pour la même durée de fonctionnement
- Calculer la quantité de courant fournie par chaque accumulateur, ainsi que par l'ensemble des 3 accumulateurs

Problèmes Série A p.6/10

Problème A08

Calculer au moyen du théorème de superposition et de Thévenin les valeurs de U_{CH} et I_{CH} correspondant au schéma et aux valeurs ci-dessous.

 $R_{11} = 1 \; [\Omega] \; ; \; R_{12} = 5 \; [\Omega] \; ; \; R_{CH} = 20 \; [\Omega] \; ; \; R_{21} = 2 \; [\Omega] \; ; \; R_{22} = 2 \; [\Omega] \; ; \; U_1 = 30 \; [V] \; ; \; U_2 = 40 \; [V] \; ; \; U_3 = 40 \; [V] \; ; \; U_4 = 40 \; [V] \; ; \; U_5 = 40 \; [V] \; ; \; U_7 = 40 \; [V] \; ; \; U_8 = 40 \; [V] \; ; \; U_9 = 40 \; [V] \; ; \; U_{11} = 20 \; [V] \; ; \; U_{12} = 40 \; [V] \; ; \; U_{13} = 40 \; [V] \; ; \; U_{14} = 40 \; [V] \; ; \; U_{15} =$

Problème A09

Calculer la valeur de Uo du circuit ci-dessous par la méthode de superposition.

Problème A10

Calculer la valeur de Io du circuit ci-dessous par la méthode de superposition.

Problème A11

Calculer la valeur de Uo et Io du circuit par la méthode de superposition.

Electrotechnique

Problèmes Série A p.7/10

Problème A12

Donner les expressions littérales des éléments de Thévenin correspondant au circuit aux points F-G.

Problème A13

Calculer la valeur du courant qui serait débité dans une résistance de 15 ohms placées entre les bornes A et B du circuit. Utiliser pour ce faire la méthode de Thévenin.

Problèmes Série A p.8/10

Problème A14

Calculer les valeurs du générateur de Thévenin équivalent du circuit ci-dessous, puis calculer la puissance de la résistance R1, respectivement R2 lorsqu'elles sont placées à tour de rôle entre les bornes du générateur équivalent.

Problème A15

Calculer le générateur de Norton équivalent entre la borne A et la masse du circuit par la méthode de votre choix.

On branche une charge de valeur 6R aux bornes du générateur de courant, calculer la tension aux bornes de cette charge.

Problème A16

Calculer les valeurs de I4 et de U1 du circuit ci-dessous en utilisant la méthode de superposition.

