Проект по статье "The Power of First-Order Smooth Optimization for Black-Box Non-Smooth Problems"

by Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii1, Farshed Abdukhakimov, Dmitry Kamzolov, Aleksandr Beznosikov, Martin Takáč, Pavel Dvurechensky, and Bin Gu

> Шевцова Маргарита (МФТИ)

1 декабря 2023 г.

Содержание

- 1. Введение
 - Классическая задача символической динамики
 - Постановка задачи
- 2. Способ сглаживания
 - Случайное сглаживание негладкой целевой функции
 - ullet Несмещенный стохастический градиент для f_γ
- 3. Метод
- 4. Области применения сглаживания
- 5. Эксперименты
 - Варианты приближения градиента
 - LAD Regression
 - Support Vector Machine
- 6. Заключение

Введение: о статье

"The Power of First-Order Smooth Optimization for Black-Box Non-Smooth Problems"by Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii1, Farshed Abdukhakimov, Dmitry Kamzolov, Aleksandr Beznosikov, Martin Takáč, Pavel Dvurechensky, and Bin Gu

Постановка задачи

Задача

$$\min_{x \in Q \subseteq R^d} f(x) \qquad (1)$$

для оракула нулевого порядка. Оракул возвращает f(x) в точке запроса x, возможно с некоторым шумом, ограниченным $\Delta>0$.

$$\gamma>0$$
 — малое число $Q_{\gamma}:=Q+B_2^d(\gamma)$ Предположим, что

- множество Q выпуклое
 - $oldsymbol{Q}$ функция f выпуклая на множестве Q_{γ}
 - ullet функция f Липшецево с константой M , то есть $|f(y)-f(x)|\leq M||y-x||_p$ на Q_γ , где $p\in [1,2]$ и $||\cdot||_p$ —p-норма. Если p=2, то обозначим как M_2 константу Липшица.

Обзор результатов

Случайное сглаживание негладкой целевой функции

Случайное сглаживание негладкой целевой функции f

 $f_{\gamma}(x) = \mathbb{E}_u f(x+u)$, где $u \sim RB_2^d(\gamma)$, u случайный вектор с равномерным распределением в $B_2^d(\gamma)$

Theorem 2.1 (свойства f_{γ})

Для всех $x,y\in Q$ верно

- $f(x) \le f_{\sigma}(x) \le f(x) + \sigma M_2$
- **2** $f_{\sigma}(x)$ Липшицева с константой M:

$$|f_{\sigma}(y)-f_{\sigma}(x)|\leq M||y-x||_{p};$$

ullet градиент $f_{\sigma}(x)$ Липшицев с константой $L=rac{\sqrt{d}M}{\sigma}$: $||\nabla f_{\sigma}(y)-\nabla f_{\sigma}(x)||_{q}\leq L||y-x||_{p},$ где q такое, что 1/p+1/q=1.

Несмещенный стохастический градиент для f_γ

Несмещенный стохастический градиент для f_{γ} [67]

$$\nabla f_{\gamma}(x,e) = d \frac{f(x+\gamma e) - f(x-\gamma e)}{2\gamma} e \qquad (2),$$

где $e \sim RS_d^2(1)$ случайный вектор с равномерным распределением на сфере.

Theorem 2.2 (свойства $\nabla f_{\gamma}(x,e)$)

Для всех $x \in Q$

- $lackbox{0}$ $abla f_{\gamma}(x,e)$ несмещенная оценка $abla f_{\gamma}(x): 3\mathbb{E}_{e}[
 abla f_{\gamma}(x,e)] =
 abla f_{\gamma}(x);$
- $\nabla f_{\gamma}(x,e)$ имеет ограниченную дисперсию:

$$\mathbb{E}_{m{e}}[||
abla f_{\gamma}(x,m{e})||_{m{q}}^2] \leq \kappa(m{p},m{d})\cdot(m{d}M_2^2+rac{m{d}^2\Delta^2}{\gamma^2})$$
, где $1/m{p}+1/m{q}=1$

и
$$\kappa(p,d) = O(\sqrt{\mathbb{E}_e||e||_q^4}) = O(\min\{q, \ln d\}d^{\frac{2}{q-1}}).$$

1 декабря 2023 г.

Алгоритм решения гладкой задачи

Алгоритм решения гладкой задачи

 $A(L,\sigma^2)$ – алгоритма с batch, который решает (1)

- ullet в предположении, что f гладкая и $||\nabla f(y) \nabla f(x)||_q \leq L||y-x||_p, x,y \in Q_\gamma$
- ② используя стохастического оракула 1-порядка, который зависит от случайной величины ν и возвращает в точке x несмещенный стохастический градиент $\nabla_x f(x,\nu)$ с ограниченной дисперсией: $\mathbb{E}_{\nu}[||\nabla_x f(x,\nu) \nabla f(x)||_a^2] \leq \sigma^2$.

 $N(L,\varepsilon)$ последовательных итераций $T(L,\sigma^2,\varepsilon)$ стохастических вызовов оракула 1-порядка. Значит, в A(L,2) можно использовать batch-parallelization со средним размером batch $B(L,\sigma^2,\varepsilon)=T(L,\sigma^2,\varepsilon)/N(L,\varepsilon)$.

Метод

Стохастический оракул 1-порядка

Зависит от случайной величины ν и возвращает в точке x несмещенный стохастический градиент $\nabla_x f(x,\nu)$ с ограниченной дисперсией: $\mathbb{E}_{\nu}[||\nabla_x f(x,\nu) - \nabla f(x)||_q^2] \leq \sigma^2$.

Метод

Применяем $A(L,\sigma^2)$ к сглаженной задаче

$$\min_{x \in Q \subseteq R^d} f_{\gamma}(x) \qquad (6)$$

$$c \gamma = \varepsilon/(2M_2) \qquad (7)$$

и $\nu=e,\ \nabla_x f(x,\nu)=\nabla f_\gamma(x,e)$, где $\varepsilon>0$ точность, с которой хотим решить задачу (1) в терминах матожидания ошибки.

Оценки количества итераций и вызовов оракула

Чтобы добиться arepsilon-точности в матожидании, алгоритму требуется:

$A(L,\sigma^2)$ для гладкой задачи

 $N(L, \varepsilon)$ последовательных итераций $T(L, \sigma^2, \varepsilon)$ стохастических вызовов оракула 1-порядка. Значит, в A(L,2) можно использовать batch-parallelization со средним размером batch $B(L, \sigma^2, \varepsilon) = T(L, \sigma^2, \varepsilon)/N(L, \varepsilon)$.

$A(L,\sigma^2)$ после адаптации для негладкой задачи

 $N(rac{2\sqrt{d}MM_2}{arepsilon},arepsilon)$ последовательных итераций $2T(rac{2\sqrt{d}MM_2}{arepsilon},2\kappa(p,d)dM_2^2,arepsilon)$ вызовов оракула 1-порядка.

По Theorem 2.1 и формуле для γ , $L \leq \frac{2\sqrt{d}MM_2}{\varepsilon}$. По Theorem 2.2, если достаточно малое, то $\sigma^2 \leq 2\kappa(p,d)dM_2^2$.

Стохастическая оптимизация

Если оракул нулевого порядка возвращает несмещенное стохастическое значение $f(x,\xi)$ с шумом $(\mathbb{E}_{\xi}f(x,\xi)=f(x))$, то с помощью оракула по 2 точкам получаем такой аналог (2):

$$\nabla f_{\gamma}(x,\xi,e) = d \frac{f(x+\gamma e,\xi) - f(x-\gamma e,\xi)}{2\gamma} e.$$

Негладкая выпуклая задача стохастической оптимизации

$$\min_{w \in R^d} \{ f(w) := \mathbb{E}_{\xi} f(x, \xi) \} \qquad (10)$$

//

Задачи оптимизации с конечной суммой

Минимизация эмпирического риска

Задача (10), но ξ имеет равномерное распределение по $1\dots m$

$$\min_{w \in R^d} \{ f(w) := \mathbb{E}_{\xi} f(x, \xi) = \frac{1}{m} \sum_{k=1}^m f_k(x) \}$$
 (10)

Оракул 0-порядка возвращает значения $\{f(x_i,\xi)\}_{i=1}^2$ для точек x_1,x_2 .

Сильно выпуклые задачи оптимизации

Теорема: оценка на количество арифметических подслов

Количество различных арифметических подслов длины m хотя бы (m-1)m(m+1)/6 и не больше $3(m-1)m(m+1)^{-1}$

Кузнечик Кронеккера

- lacktriangle {lg(n)} всюду плотен на [0,1)

 $^{^{1}}$ Точные многочлены для некоторых частных случаев есть в

Варианты приближения градиента

Central finite difference (Central)

$$\nabla f_{\gamma}(x,e) = d \frac{f(x+\gamma e) - f(x-\gamma e)}{2\gamma} e \qquad (2)$$

Forward finite difference (Forward)

$$\nabla f_{\gamma}(x,e) = d \frac{f(x+\gamma e) - f(x)}{\gamma} e.$$
 (14)

As a result, coordinate steps are more accurate approximation of the gradient but also, they are more expensive computationally.

LAD Regression

Least absolute deviation (LAD) Regression

$$\min_{w \in R^d} \{f(w) = \frac{1}{m} \sum_{k=1}^m |x_i^T w - y_i|\}$$
 негладкая функция

задача оптимизации с конечной суммой

Данные

Датасет "abalone scale"из LibSVM, всего 8 признаков.

Альтернативы

- Central Coordinate: считаем апроксимацию градиента по каждой координате. Поэтому 2d вызова оракула на каждый шаг.
- $oldsymbol{2}$ Forward Coordinate: считаем апроксимацию градиента по каждой координате. Поэтому d+1 вызов оракула на каждый шаг.

LAD Regression: сравнение методов

Puc. 1: Gradient Descent

Рис. 2: Nesterov

LAD Regression: сравнение методов

Рис. 3: Gradient Descent

Рис. 4: Nesterov

LAD Regression: сравнение методов

Рис. 5: Gradient Descent

Рис. 6: Nesterov

Support Vector Machine

Support Vector Machine

$$\min_{w \in R^d} \{ f(w) = \frac{\mu}{2} ||w||^2 + \frac{1}{m} \sum_{k=1}^m (1 - y_i \cdot x_i^T w)_+ \},$$

Данные

LibSVM basic dataset "a9a"

Выводы

0

Спасибо за внимание!