

INTRODUCTION

Le problème de la boîte noire

- Problème dans des contextes critiques en matière de sécurité (santé...)
- > Rends difficile leur adoption à grande échelle

Apparition de méthodes pour expliquer ces boîtes noires

GLOBALE VS LOCALE

Globale:

- Comprendre le comportement sur l'ensemble du jeu de données
- Frontière très complexe
- Difficile à expliquer de manière simple le comportement

Frontière de décision globale

GLOBALE VS LOCALE

Locale:

- Comprendre le comportement pour une entrée spécifique
- Frontière souvent simple
- Comportement facile à expliquer (arbre de décision)

Frontière de décision globale

Frontière de décision locale

MÉTHODE GLOBALE: GLOCALX

GLOCALX

Méthode Agnostique

- r: règle de décision
- ►A partir d'explication locale d'un modèle
 - P : Ensemble de prémisses
- \triangleright Obtenir une explication globale de ce modèle \triangleright y : La prédiction de la règle

Forme:

$$e = \langle r = P
ightarrow y
angle$$

$$= \langle r = \{age \geq 25, job = unemployed, amount \leq 10k\}
ightarrow deny
angle$$

Exemple:

GLOCALX: SIMILARITY

- Cover(e,x): e couvre x si P satisfaits par x
- Cover(E,x): E couvre x si $e \in E$, Cover(e,x) => Vrai
- ightharpoonup Cover(E,X_i) => {x₁,...,x_m} \in X, Cover(E,x_i) => Vrai

$$ightharpoonup$$
 Cover(e_i,x) => {e₁,...,e_m} \in E,

$$similarity_X(E_i, E_j) = \frac{|coverage(E_i, X) \cap coverage(E_j, X)|}{|coverage(E_i, X) \cup coverage(E_j, X)|}$$

GLOCALX: ALGORITHME

```
Algorithm 1 GLOCALX(\mathbb{E}, \alpha)
Input: \mathbb{E} explanation theories, \alpha filter threshold
Output: E explanation theory
 1: E ← Ø
 2: repeat
         \mathbb{Q} \leftarrow \text{sort}(\mathbb{E})
                                                                > sort pairs of theories by similarity
         merged \leftarrow \texttt{False}
        X' \leftarrow \text{batch}(X)
          while \neg merged \land \mathbb{Q} \neq \emptyset do
              E_i, E_i \leftarrow POP(\mathbb{Q})
                                                                          > select most similar theories
              E_{i+j} \leftarrow \text{MERGE}(E_i, E_j, X')
                                                                                          D merge theories
              if BIC(E_{i+j}) \leq BIC(E_i \cup E_j) then
                                                                                     > verify improvement
                   merged \leftarrow True
10:
                   break
11:
          if merged then
12:
                                                                                          D merge occurred
              \mathbb{E} \leftarrow \text{UPDATE}(E_i, E_j, E_{i+j})
13:
                                                                                        D update hierarchy
14: until \mid E \mid > 1 \land merged
                                                                        D until the merge is successful
15: E \leftarrow \text{FILTER}(E, \alpha)

    ▷ Filter final theory

16: return E
```

GLOCALX: JOIN

$$P \oplus Q = \{P_1 + Q_1, ..., P_m + Q_m\}$$

$$P \oplus Q = \left\{P_1 + Q_1, ..., P_m + Q_m\right\} \qquad P_i + Q_i = \begin{cases} P_i \cup Q_i \\ (\min\left\{P_i \cup Q_i\right\}, \max\left\{P_i \cup Q_i\right\}) \end{cases}$$

intersection non nulle intersection vide P_i ou Q_i est vide

$$e_1 = \{age \ge 50, job = \text{office clerk}\} \rightarrow deny$$

 $e_2 = \{age \ge 40\} \rightarrow deny$

$$e_1' = \{age \geq 40\} \rightarrow deny$$

GLOCALX: CUT

$$P \ominus Q = \{P_1 - Q_1, ..., P_m - Q_m\}$$

$$P_i - Q_i = \begin{cases} \{P_i, \emptyset\} & Q_i \text{ vide} \\ \{P_i, Q_i \backslash P_i\} & \text{sinon} \end{cases}$$

$$e_1 = \{age \ge 25, job = \text{unemployed}, amount \ge 10k\} \rightarrow deny$$

 $e_2 = \{age \ge 20, job = \text{manager}, amount > 8k\} \rightarrow accept$

 $e_1 = \{age \ge 25, job = \text{unemployed}, amount \ge 10k\} \rightarrow deny$ $e'_1 = \{age \in [20, 25], job = \text{manager}, amount \in [8k, 10k] \rightarrow accept$

GLOCALX: MERGE

```
Algorithm 2 MERGE(E_i, E_j, X)
Input: E_i, E_j explanation theories, X batch
Output: E_{(i+j)} explanation theory
 1: E \leftarrow E_i \cup E_j
 2: for x \in X do
        C_i \leftarrow \text{COVERED}(x, E_i)
                                                                        \triangleright retrieve rules in E_i covering x
  4: C_j \leftarrow \text{COVERED}(x, E_j)
                                                                        \triangleright retrieve rules in E_j covering x
        C_{=} \leftarrow \text{NON-CONFLICTING}(x, C_i, C_j)
                                                                    \triangleright non-conflicting rules in C_i, C_j and
     covering x
        C_{\neq} \leftarrow \text{CONFLICTING}(x, C_i, C_j) \quad 	riangle \text{ non-conflicting rules in } C_i, C_j \text{ covering } x
  7: E \leftarrow E \setminus (E^i \cup E^j)
 8: E_{=} \leftarrow \text{JOIN}(C_{=})
      E_{\neq} \leftarrow \text{CUT}(C_{\neq}, X)
       E \leftarrow E \cup E_{=} \cup E_{\neq}
11: return E
```


MÉTHODES LOCALES: ANCHORS

Anchors

- Méthode Agnostique
- Créer un modèle de prédiction interprétable sur le voisinage d'un individu
- A partir de ce modèle, il trouve une explication
- Exemple : critique de film

Anchors : Exemple critique de film

"J'ai adoré ce film! L'intrigue était captivante, les acteurs étaient excellents."

Prédicat d'ancrage simple

If 'adoré' Then 'positif'

{"not", "bad"} → Positive

Anchors : Exemple sur données tabulaires

	If	Predict
adult	No capital gain or loss, never married	≤ 50K
	Country is US, married, work hours > 45	> 50K
rcdv	No priors, no prison violations and crime not against property	Not rearrested
	Male, black, 1 to 5 priors, not married, and crime not against property	Re-arrested
lending	FICO score ≤ 649	Bad Loan
	$649 \leq$ FICO score ≤ 699 and $\$5,400 \leq$ loan amount $\leq \$10,000$	Good Loan

L'état matrimonial assez déterminant

Mais

D'autres Nécessitent une exploration plus approfondie

Anchors

$$\mathbb{E}_{D(z|A)} [1[f(x) = f(z)]] \ge \tau, \quad A(x) = 1$$

Espérance de la Distribution par l'ancre A

Seuil minimum \mathcal{T} (tau) Niveau de précision souhaité

Indicateur: 1 si la prédiction du modèle f pour l'exemple x est égale à la prédiction pour l'exemple z, et 0 sinon.

Anchors

Garantir une précision exacte = Très complexe

$$P(\operatorname{prec}(A) \ge \tau) \ge 1 - \delta$$

Une précision satisfaisante avec une probabilité élevé

Probabilité minimale requise pour que la précision de l'ancrage A soit supérieure ou égale à $\mathcal T$

Anchors : GenerateCands(A,c)

- Création de l'ensemble d'ancres A.
- >Ajout itératif de candidats ancrés en étendant A.
- Choix des candidats basé sur l'amélioration de la couverture.
- > Préférence pour une haute couverture avec des prédicats significatifs.
- Optimisation de l'explication en privilégiant les candidats à haute couverture.

Algorithm 1 Identifying the Best Candidate for Greedy

```
function GenerateCands(\mathcal{A}, c)
\mathcal{A}_r = \emptyset
for all A \in \mathcal{A}; a_i \in x, a_i \notin A do
if \operatorname{cov}(A \wedge a_i) > c then {Only high-coverage}
\mathcal{A}_r \leftarrow \mathcal{A}_r \cup (A \wedge a_i) \qquad \{ \text{Add as potential anchor} \}
return \mathcal{A}_r \qquad \{ \text{Candidate anchors for next round} \}
```

Anchors: BestCand(\mathcal{A} , \mathcal{D} , ϵ , δ)

- Estimation initiale des précisions & Sélection de règle A initial
- Itération pour améliorer la précision
- Génération d'échantillons
- >Actualisation des estimations
- > Sélection de la règle optimale
- ➤ Renvoi de la règle optimale

```
function \operatorname{BestCand}(\mathcal{A}, \mathcal{D}, \epsilon, \delta)

initialize \operatorname{prec}, \operatorname{prec}_{ub}, \operatorname{prec}_{lb} estimates \forall A \in \mathcal{A}

A \leftarrow \operatorname{arg} \max_A \operatorname{prec}(A)

A' \leftarrow \operatorname{arg} \max_{A' \neq A} \operatorname{prec}_{ub}(A', \delta) \{\delta \text{ implicit below}\}

while \operatorname{prec}_{ub}(A') - \operatorname{prec}_{lb}(A) > \epsilon do

sample z \sim \mathcal{D}(z|A), z' \sim \mathcal{D}(z'|A') \{\text{Sample more}\}

update \operatorname{prec}, \operatorname{prec}_{ub}, \operatorname{prec}_{lb} \text{ for } A \text{ and } A'

A \leftarrow \operatorname{arg} \max_A \operatorname{prec}(A)

A' \leftarrow \operatorname{arg} \max_{A' \neq A} \operatorname{prec}_{ub}(A')

return A
```

Anchors: BeamSearch(f, x, \mathcal{D} , τ)

Initialisation : A* à null, A_0 à un ensemble vide.

➤ Recherche par faisceau :

Itération pour les règles candidates. Génération de nouveaux candidats en considérant la meilleure règle actuelle A*. Sélection des meilleurs candidats avec LUCB.

- >Si aucun candidat, fin de la recherche.
- Filtrage des candidats sur la précision supérieure
- Mise à jour de la meilleure règle

Résultat : Meilleure règle A*

Cette fonction effectue une recherche progressive pour trouver la meilleure règle candidate, en considérant la couverture et la précision, et s'arrête lorsque le seuil de précision est atteint.

Algorithm 2 Outline of the Beam Search

```
function BeamSearch(f, x, \mathcal{D}, \tau)

hyperparameters B, \epsilon, \delta

A^* \leftarrow \text{null}, A_0 \leftarrow \emptyset {Set of candidate rules}

loop

A_t \leftarrow \text{GenerateCands}(A_{t-1}, \text{cov}(A^*))

A_t \leftarrow \text{B-BestCand}(A_t, \mathcal{D}, B, \delta, \epsilon) {LUCB}

if A_t = \emptyset then break loop

for all A \in A_t s.t. \text{prec}_{lb}(A, \delta) > \tau do

if \text{cov}(A) > \text{cov}(A^*) then A^* \leftarrow A

return A^*
```


MÉTHODES LOCALES: LORE

Local Rule-Based Explanations (LORE)

- Méthode Agnostique
- Créer un modèle de prédiction interprétable sur le voisinage d'un individu
- A partir de ce modèle, LORE trouve une explication
- ➤ Résultat :

$$e = \langle r = p \rightarrow y, \varphi \rangle$$

Règle de décision

Règles contrefactuelles

Algorithm 1: LORE(x, b)

Local Rule-Based Explanations (LORE)

On commence par créer deux populations à l'aide d'un algorithme génétique:

- \geq $Z_{=}$ où $\forall z \in Z_{=}, b(z) = b(x)$
- Z_{\pm} où $\forall z \in Z_{\pm}, b(z) \neq b(x)$
- \triangleright b(z): la prédiction du modèle

```
Input : x - instance to explain, b - black box, fitness - fitness
             function, N - population size, G - # of generations, pc -
             crossover probability, pm - mutation probability
  Output: Z - neighbors of x
1 P_0 \leftarrow \{x | \forall 1 \dots N\}; i \leftarrow 0;
                                                                 // population init.
2 evaluate(P_0, fitness, b);
                                                             // evaluate population
3 while i < G do
      P_{i+1} \leftarrow select(P_i);
                                                          // select sub-population
     P'_{i+1} \leftarrow crossover(P_{i+1}, pc);
                                                                     // mix records
     P''_{i+1} \leftarrow mutate(P'_{i+1}, pm);
                                                              // perform mutations
      evaluate(P''_{i+1}, fitness, b);
                                                            // evaluate population
     P_{i+1} = P''_{i+1}; i \leftarrow i+1
                                                              // update population
9 end
```

Algorithm 2: GeneticNeigh(x, fitness, b, N, G, pc, pm)

10 $Z \leftarrow P_i$ return Z;

ALGORITHME GÉNÉTIQUE: EVALUATION

Fonction de fitness:

$$fitness_{=}^{x}(z) = I_{b(x)=b(z)} + (1 - d(x,z)) - I_{x=z}$$

 $fitness_{\neq}^{x}(z) = I_{b(x)\neq b(z)} + (1 - d(x,z)) - I_{x=z}$

Valeur de I:

$$I_{true} = 1$$
 $I_{false} = 0$

Pour calculer la distance :

$$d(x,z) = \frac{h}{m} \cdot SimpleMatch(x,z) + \frac{m-h}{m} \cdot NormEuclid(x,z)$$

ALGORITHME GÉNÉTIQUE: SÉLECTION

ALGORITHME GÉNÉTIQUE: CROSSOVER

Two-point crossover

ALGORITHME GÉNÉTIQUE: MUTATION

ALGORITHME GÉNÉTIQUE: ÉVALUATION

LORE: LE VOISINAGE (Z)

LORE: MODÈLE INTERPRÉTABLE

LORE: EXTRACTION DE LA RÈGLE

LORE: EXTRACTION DES RÈGLES CONTREFACTUELLES


```
q1 = \{age \le 25, job = clerk, income > 900\}

q2 = \{17 < age \le 25, job = other\}

q3 = \{age > 25, income \le 1500, job = other\}

q4 = \{age > 25, income > 1500\}
```

LORE ne prend que les minimales

$$\varphi = \{q1 \rightarrow grant, q2 \rightarrow grant\}$$

COMPARAISON LORE/ANCHORS

LORE	ANCHORS	
Règles contrefactuelles	Pas de règles contrefactuelles explicites	
Couverture plus élevée	Couverture plus faible	
Précision plus faible	Précision plus élevée	
Plus stable face aux perturbations	Moins stable face aux perturbations	
Seulement sur des données tabulaires	Possible aussi sur des images et du texte	

ÉVALUATION DES MÉTHODES

PRÉSENTATION DES MÉTRIQUES

Completeness

C = nombre \overline{N} d'instances couverte N = nombre d'instancestotal

Fidelity

f = nombre d'instances où les prédictions du modèle et des règles sont identiques

Correctness

$$\frac{r}{N}$$

r = nombre d' instancescorrectement classifier

Robustness
$$\frac{\sum_{n=1}^{N} f(x_n) - f(x_n + \delta)}{N}$$

 δ = la perturbation et (f(xn)) = prédiction du model

PRÉSENTATION DES MÉTRIQUES

Number of rules

|R|

Fraction of classes
$$\frac{1}{|C|} \sum_{c' < =C} 1 (\exists r = (s,c) \in R | c = c')$$

R = liste des règles |C| = nombre de classe

Average rule length
$$\frac{\sum_{i=1}^{R} a_i}{|R|}$$

ai = nombre d'antécédents de la règle i

Fraction overlap
$$\frac{2}{|R|(|R|-1)} \sum_{r_i,r_j,i<=j} \frac{overlap(r_i,r_j)}{N}$$

overlap renvoie le nombre d'antécédents sur la même classe et dont les conditions sont remplies sur une instance

NOTRE EXPÉRIMENTATION

NOTRE MODÈLE

ENTRAINEMENT ET RÉSULTATS

Mise en place d'un GridSearch sur les hyperparamètres :

- Batch size
- Dropout
- Learning rate

Entraînement sur 4 jeux de données : Diabètes, Breast-cancer, Heart et Covid-19

Précision déterminée sur l'ensemble de test :

	Diabètes	Breast-cancer	Heart	Covid-19
Précision	78,81 %	95,65 %	83,61 %	74,25 %

Précision obtenus par notre modèle

COMPARAISON AVEC XGBOOST

- XGBoost est un modèle réputé pour ces performances sur des données tabulaire
- Nous utilisons les mêmes jeux d'entraînement, validation et de test

	Diabètes	Breast-cancer	Heart	Covid-19
Notre modèle	78,81 %	95,65 %	83,61 %	74,25 %
XGBoost	83,12 %	96,49 %	80,33 %	72,80 %

Comparaison de la précision entre notre modèle et xgboost

Métrique d'anchor

Métrique de lore

	Covid-19	breast-cancer	diabetes	heart		Covid-19	breast-cancer	diabetes	heart
Completeness	0.2150	0.3215	0.1382	0.1794	Completeness	0.1599	0.2105	0.2258	0.1873
Correctness	0.5	0.3796	0.3398	0.4785	Correctness	0.4999	0.5975	0.6002	0.5049
Fidelity	0.7705	0.3567	0.3398	0.4983	Fidelity	0.7552	0.6203	0.6028	0.5181
Robustness	0.9999	0.9894	0.9817	0.9141	Robustness	0.9999	0.9859	0.9791	0.9504
Number of rules	140	114	154	61	Number of rules	140	114	154	61
Average rule length	2.8642	1.1578	2.1623	2.1803	Average rule length	3.7214	2.6140	3.6493	3.7704
Fraction of classes	0.3809	0.3333	1	0.8461	Fraction of classes	1	0.7333	1	1
Fraction overlap	0.6718	0.1867	0.1708	0.0617	Fraction overlap	0.3066	0.0460	0.0786	0.0831

GlocalX-anchor

Covid-19 breast-cancer diabetes heart Completeness 0.89321 1 Correctness 0.49990.6133 0.49600.4587Fidelity 0.22930.63620.52210.4389Robustness 0.99990.98940.84630.97029 Number of rules 8 23 6 Average rule length 2.55552 3.82602.1666Fraction of classes 0.3333 0.26660.5384Fraction overlap 0.63820.04390.00610.1355

GlocalX-lore

	Covid-19	breast-cancer	diabetes	heart
Completeness	1	0.9982	1	1
Correctness	0.4999	0.6115	0.6145	0.4488
Fidelity	0.2293	0.6344	0.6276	0.4290
Robustness	0.9999	09876	0.9830	0.8481
Number of rules	29	14	26	10
Average rule length	5	3.6428	4.0769	3.2
Fraction of classes	0.9523	0.3	1	0.7692
Fraction overlap	0.1646	0.0246	0.0121	0.0885

GlocalX-anchor-lore

	Covid-19	breast-cancer	diabetes	heart
Completeness	1	0.7838	1	0.9933
Correctness	0.5046	0.4393	0.6497	0.4554
Fidelity	0.3055	0.4551	0.6835	0.4323
Robustness	0.9999	0.7662	0.9973	0.8745
Number of rules	66	16	40	57
Average rule length	4.4696	4.1875	4.3750	3.3157
Fraction of classes	1	0.5	1	0.8461
Fraction overlap	0.0423	0.0114	0.0067	0.0110

CONCLUSION

- [1] Riccardo Guidotti et al. « Local Rule-Based Explanations of Black Box Decision Systems ». In: (2018). arXiv: 1805.10820 [cs.Al]. url: https://arxiv.org/abs/1805.10820.
- [2] Marco Tulio Ribeiro, Sameer Singh et Carlos Guestrin. « Anchors: High-Precision Model-Agnostic Explanations ». In : (2018).
- [3] Mattia Setzu et al. « GLocalX From Local to Global Explanations of Black Box Al Models ». In: Artificial Intelligence 294 (2021), p. 103457. issn: 0004-3702. doi: https://doi.org/10.1016/j.artint. 2021.103457. url: https://www.sciencedirect.com/science/article/pii/S0004370221000084.

[4] Giulia Vilone et Luca Longo. « A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods ». In: Frontiers in Artificial Intelligence 4 (2021). issn: 2624-8212. doi: 10.3389/frai.2021.717899. url: https://www.frontiersin.org/articles/10.3389/frai. 2021.717899.

RÉFÉRENCES