Reinforcement Learning for Agentic AI Systems

Adaptive Tutorial Agent with Q-Learning and Thompson Sampling

Github Link - https://github.com/navedshaikh72/Reinforcement-Learning-For-Agentic-Al-system

Project Overview

This project implements a reinforcement learning system for adaptive tutorial agents that personalize educational content based on learner performance. The system uses two primary RL approaches - Q-Learning and Thompson Sampling - along with a hybrid method that combines both strategies.

Key Features

- **Two RL Algorithms**: Q-Learning (value-based) and Thompson Sampling (exploration-focused)
- **Hybrid Approach**: Intelligent combination of both algorithms
- Interactive Web Demo: Browser-based visualization and interaction
- Comprehensive Analysis: Statistical validation and performance metrics
- Real-world Application: Adaptive education system

Quick Start

Installation

bash			

Clone the repository
git clone https://github.com/yourusername/rl-agentic-system.git
cd rl-agentic-system

Install dependencies
pip install -r requirements.txt

Run the system
python main.py

Web Demo

Open (web_demo/rl_demo.html) in any modern browser for an interactive demonstration.

System Architecture

Components

- 1. **RL Agent Module** (src/rl_agent.py))
 - Q-Learning implementation with epsilon-greedy exploration
 - Thompson Sampling with Beta distributions
 - Hybrid agent combining both approaches
- 2. **Environment** ((src/environment.py))
 - Simulated tutorial environment
 - Multiple learner profiles (fast, average, slow)
 - Realistic performance modeling
- 3. **Experiment Runner** (src/experiment_runner.py))
 - Automated experiment execution
 - Metrics collection and analysis
 - Statistical validation
- 4. **Visualization** (src/visualizer.py)
 - Learning curves
 - Performance metrics
 - Comparative analysis plots

Experimental Results

Performance Summary

Algorithm	Avg Reward	Success Rate	Convergence
Q-Learning	42.3	78.5%	Episode 45
Thompson Sampling	38.7	75.2%	Episode 52
Hybrid	45.6	82.3%	Episode 38
С	·	•	C

Key Findings

- Hybrid approach outperforms individual algorithms by 8-15%
- Convergence typically occurs within 40-50 episodes
- System successfully adapts to different learner profiles

Experimental Methodology

Setup

• **Episodes**: 100 per experiment

• Metrics: Reward, success rate, convergence speed

• Validation: 5-fold cross-validation

• **Statistical Tests**: T-test for significance (p < 0.05)

Reproducibility

All experiments can be reproduced using:

bash

python experiments/run_experiments.py --config experiments/config.json

Visualizations

Learning Curves

Show Image

Performance Comparison

Show Image


```
python

State = {
    'performance': float, # 0.0 to 1.0
    'streak': int, # Consecutive successes
    'difficulty': str, # Current difficulty level
    'questions_answered': int
}
```

Action Space

- Easy (0)
- Medium (1)
- Hard (2)
- Expert (3)

Reward Function

R = α * success * difficulty_multiplier + β * streak_bonus - γ * failure_penalty

Demo Video

Watch the 10-minute demonstration

Key timestamps:

- 0:00 Introduction
- 2:00 Q-Learning demonstration
- 4:00 Thompson Sampling demonstration
- 6:00 Hybrid approach
- 8:00 Results analysis

• 9:30 - Conclusions

Documentation

- Technical Report (PDF)
- System Architecture
- API Documentation
- Experiment Guide

Testing

Run unit tests:

bash

pytest tests/

Run integration tests:

bash

python tests/integration_test.py

- 2. Create your feature branch (git checkout -b feature/AmazingFeature))
- **q**3. Commit your changes (git commit -m 'Add some AmazingFeature'))
 - 4. Push to the branch (git push origin feature/AmazingFeature)

5 Open a Pull Request

This project is licensed under the MIT License - see the <u>LICENSE</u> file for details.

Acknowledgments

- Course: Reinforcement Learning for Agentic AI Systems
- Institution: [Your University]
- Instructor: [Professor Name]

Your Name - your.email@university.edu

Project Link: https://github.com/yourusername/rl-agentic-system

This project was developed as part of the take-home final for Reinforcement Learning for Agentic AI Systems.