CS2101 Midterm II

Date: 3:30-5:10pm, Thursday, May 21, 2015

- 1. (40pt) Analyze the FSM below
- i. (12pt) Find next state function and output function
 - \blacksquare NS1 = f1 (PS1, PS0, X)
 - \blacksquare NS0 = f2 (PS1, PS0, X)
 - Y = f3(PS1, PS0, X)
- ii. (13pt) Write state transition table

Truth Table Format

X	PS1	PS0	NS1	NS0	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

*Hint: Three 1s in Column NS1 & NS0; One 1 in Column Y

Symbolic State Format

DC	N	IS	Y				
PS	X = 0	X = 1	X = 0	X = 1			
A (00)							
B (01)							
C (10)							
D (11)							

- iii. (5pt) Draw symbolic state transition diagram. It's a Mealy machine with four states and eight transitions.
- iv. (5pt) Find state transition S and output stream Y given input stream X. Assume initial state A.

X	1	0	1	1	1	0	1	1	0	1	1	1	0	0	1	1	0	0
S	A																	
Y																		

v. (5pt) Describe its functionality

2. (35pt) Design an FSM that has one input X and one output Y. Y should output "1" when the FSM sees the end of a string of 1s; and "0" otherwise. E.g.,

X: 0001 0111 0011 00

Y: 0000 1000 1000 10

- i. (10pt) Draw symbolic state transition diagram. Use Mealy style machine with two states, A and B, where A is the initial state.
- ii. (5pt) Write state transition table.
- iii. (5pt) Assign binary codes to states (A \leftarrow "0", B \leftarrow "1") and write state transition table in truth table form.
- iv. (5pt) Define next state function NS = f(PS, X)
- v. (5pt) Define output function Y = g(PS, X)
- vi. (5pt) Draw logic gate circuit diagram
- 3. (10pt) A positive-edge-triggered D-type flip-flop has following timing spec

Set-up time constraint $(t_s) = 35ps$

Hold time constraint $(t_h) = 20ps$

Contamination delay $(t_{cCO}) = 10ps$

Propagation delay $(t_{dCQ}) = 25ps$

- i. When combinational delay tpd = 140ps. How fast can the system being clocked (in GHz)?
- ii. What is the minimal value of tpd to guarantee no hold-time violation?

4. (15pt) Given a datapath below and an incomplete controlling FSM that calculates the running difference between the sum of prime numbers and sum of non-prime numbers. Write actions associated with each of three transitions.

E.g.,

2.6.,												
Start	0	1	0	0	0	0	0	0	0	0	0	0
Count	-	8	-	-	-	-	-	-1	-	-	-	-
InNum	-	-	2	5	6	8	7	11	14	17-	-	-
RunDiff		-	0	2	7	1	-7	0	11	-3	14	-
Done	0	0	0	0	0	0	0	0	0	0	1	-

start/<I>

(II)

In Num X n TY Run Diff

PND TY Run Diff

LX Is Prime Addsub CYLY

Count C Z

DOTAC

FSM Input & Output:

Start: Begin Operation

Done: Job is done

Datapath Input and Output:

Count: Number of Input Data to be processed

InNum: Input Port of Data RunDiff: Running Difference

Command Signals to Datapath:

LC: Load Counter C from input "Count"

CC: Clear Counter C to 0 DC: Down Count C

LX: Load Register X CY: Clear Register Y LY: Load Register Y

AddSub: 0 for Addition; 1 for Subtraction

Status Signals from Datapath:

IsPrime: The Value of Register X is Prime

Z: The Value of the Counter is zero

1. (i)

$$NSI = X \cdot PSI \cdot PSO \mid \overline{X} \cdot PSO$$

 $NSO = X \cdot PSI \mid X \cdot \overline{PSO}$
 $Y = X \cdot PSI \cdot PSO$

<ii><ii>

X	P51	PSO	161	NS	0 7
0	0	0	0	0	0
0	0	1	1	0	0
0	1	ð	0	0	0
0	1	1	1	0	0
1	0	0	0)	0
	O	1	0	0	0
	(0)	1	0
1		1	0	1	1

PS	X=0	X=1	Y=0	Y=1
A	A	B	0	0
B	C	A	0	D
C	A	D	D	D
D	C	B	0)

<iV>

X: 10(11011011001100 S: ABCDBAABAABAAAAA Y: 0001000000000000000

< >> It detects 1st "1011".

It was meant to detect all "1011", if B-> B is changed to B-> B.

<11>

y, <u></u>	1	(5	Y	
PS	X=0	X=1	X=o	X=1
A	A	B	0	0
B	A	B	1	0
				- 1

<iii>

PS	NS	151
0	0	0
1	0	1.
T	1	0
1)	0
	7	0 0

<V (>

25 15 X = 15/ (1)

3. (i) Tayale
$$\geq t_{dag} + t_{pol} + t_{s}$$

$$= 25 + 140 + 35$$

$$= 200 \text{ ps}$$

$$free = \frac{1}{t_{cycle}} \leq \frac{1}{200 \times 10^{-12}} = 5 \text{ GHz} - ... \text{ Max Speed}$$
(ii) $t_{ccl} + t_{pol} \leq t_{n}$

$$10 + t_{pol} \leq 20$$
Apol $\leq 10\text{ ps} - ... \text{ Min Path delay to method time Constraint}$

4

LC DC LX CY LY Add Dul Done

CI> 1 0 X 1 0 X 0

CI> 0 1 1 0 1 IRVING 0

0(不做)跟X(don't care)的區別: 用"別人問你"去想