Ортогональность

Содержание

Ортогональный базис

§3

81	Ортогональные векторы	1
§2	Процесс ортогонализации	2

§1. Ортогональные векторы

Определение 1.1. Пусть $x, y \in E$. Говорят, что x **ортогонален** y (пишут $x \perp y$), если $\langle x, y \rangle = 0$.

Лемма 1.1. Пусть $x \perp y_1, y_2, ..., y_k$, тогда $x \perp \mathcal{L} \{y_1, y_2, ..., y_k\}$.

Доказательство.

$$\left\langle x, \sum_{i=1}^{k} \alpha_i y_i \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle x, y_i \right\rangle.$$

Теорема 1.1. (Об ортогональности и линейной независимости) Пусть $\{x_1, x_2, \ldots, x$ - набор ненулевых попарно ортогональных векторов, тогда $\{x_1, x_2, \ldots, x_k\}$ - линейно независимый набор.

Доказательство. Рассмотрим нулевую линейную комбинацию

$$\sum_{i=1}^{k} \alpha_{i} x_{i} = 0, \quad \|x_{j}\| \neq 0,$$

$$\left\langle x_{j}, \sum_{i=1}^{k} \alpha_{i} x_{i} \right\rangle = \sum_{i=1}^{k} \alpha_{i} \left\langle x_{j}, x_{i} \right\rangle = \alpha_{j} \left\langle x_{j}, x_{j} \right\rangle = \alpha_{j} \left\| x_{j} \right\|^{2} = 0 \quad \Rightarrow \quad \alpha_{j} = 0.$$

Теорема 1.2. (Пифагора) Пусть $\{x_1, x_2, \dots, x_k\}$ - набор ненулевых попарно ортогональных векторов, тогда

$$\left\| \sum_{i=1}^{k} x_i \right\|^2 = \sum_{i=1}^{k} \|x_i\|^2.$$

3

Доказательство.

$$\left\| \sum_{i=1}^{k} x_i \right\|^2 = \left\langle \sum_{i=1}^{k} x_i, \sum_{j=1}^{k} x_j \right\rangle = \sum_{i,j=1}^{k} \left\langle x_i, x_j \right\rangle = \sum_{i=1}^{k} \left\langle x_i, x_i \right\rangle = \sum_{i=1}^{k} \left\| x_i \right\|^2.$$

Определение 1.2. Говорят, что x ортогонален подпространству $L\leqslant X_E,$ если

$$\forall y \in L \quad \langle x, y \rangle = 0.$$

Замечание. Для обозначения данного факта обычно пишут $x \perp L$.

Определение 1.3. Ортогональным дополнением пространства L называется множество

$$M = \{ x \in X : \quad x \perp L \} .$$

Пемма 1.2. Ортогональное дополнение является подпространством X_E .

Доказательство. В этом легко убедиться прямой проверкой.

§2. Процесс ортогонализации

Теорема 2.1. Пусть $\{x_j\}_{j=1}^k$ - линейно-независимый набор в евклидовом пространстве X_E , тогда $\{x_j\}_{j=1}^k$ можно преобразовать в ортогональный набор $\{e_j\}_{j=1}^k$.

Доказательство. Используем процесс ортогонализации Грама-Шмидта:

1. $e_1 = x_1$,

2.
$$e_2 = x_2 + \alpha_2^1 e_1$$
, $e_2 \perp e_1 \implies \alpha_2^1 = -\frac{\langle e_1, x_2 \rangle}{\langle e_1, e_1 \rangle}$,

$$3. \ e_3 = x_3 + \alpha_3^2 e_2 + \alpha_3^1 e_1, \quad e_3 \perp e_1, e_2 \quad \Rightarrow \quad \alpha_3^1 = -\frac{\langle e_1, x_3 \rangle}{\langle e_1, e_1 \rangle}, \alpha_3^2 = -\frac{\langle e_2, x_3 \rangle}{\langle e_2, e_2 \rangle},$$

.

m.
$$e_m = x_3 + \alpha_m^{m-1} e_{m-1} + \ldots + \alpha_m^2 e_2 + \alpha_m^1 e_1, \quad \Rightarrow \quad \alpha_m^j = -\frac{\langle e_j, x_m \rangle}{\langle e_j, e_j \rangle}.$$

Замечание. Для $\{x_j\}_{j=1}^k$ процесс ортогонализации не оборвется, то есть все $e_j \neq 0$.

Доказательство. От противного. Пусть

$$e_m = x_m + \alpha_m^{m-1} e_{m-1} + \ldots + \alpha_m^2 e_2 + \alpha_m^1 e_1 = 0,$$

тогда

$$e_m = x_m + \alpha_m^{m-1} \sum_{i=1}^{m-1} \alpha_{m-1}^i x_i + \ldots + \alpha_m^2 \sum_{i=1}^2 \alpha_2^i x_i + \alpha_m^1 x_1 = 1 \cdot x_m + \sum_{i=1}^{m-1} \beta_i x_i = 0,$$

но это означает, что $\left\{x_j\right\}_{j=1}^k$ - линейно зависимый набор. Противоречие.

Замечание. Пусть $\{x_j\}_{j=1}^k$ - линейно независимый набор, а $\{x_j\}_{j=1}^{k+1}$ - линейно-зависимый, тогда $e_{k+1}=0$.

Замечание. Имеет место следующее неравенство: $||e_m|| \le ||x_m||$

Доказательство. Рассмотрим скалярное произведение:

$$\langle e_m, e_m \rangle = \langle e_m, x_m \rangle + 0 + \ldots + 0, \quad \Rightarrow \quad \|e_m\|^2 = \langle x_m, e_m \rangle \leqslant \|x_m\| \cdot \|e_m\|.$$

§3. Ортогональный базис

Определение 3.1. Базис $\{e_j\}_{j=1}^n$ евклидова пространства X_E называется

- ортогональным, если $\langle e_i, e_{i\neq i} \rangle = 0$.
- ullet ортонормированным, если $\langle e_i, e_j \rangle = \delta_{ij}$.

Теорема 3.1. Любой базис евклидова пространства X_E может быть преобразован κ ортонормированному базису.

Доказательство. Ортогонализация Грама-Шмидта и нормировка.

Пемма 3.1. Базис $\{e_j\}_{j=1}^n$ в X_E ортонормирован тогда и только тогда, когда

$$\forall x, y \in X_E : \quad x = \sum_{i=1}^n \xi^i e_i, \quad y = \sum_{i=1}^n \eta^j e_j, \quad \langle x, y \rangle = \sum_{i=1}^n \xi^i \eta^i.$$

Доказательство. Действительно, прямой проверкой можем убедиться, что

$$\langle x, y \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{\xi^{i}} \eta^{j} \langle e_{i}, e_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{\xi^{i}} \eta^{j} \delta_{ij} = \sum_{i=1}^{n} \xi^{i} \eta^{i}.$$

Замечание. Матрица Грама скалярного произведения в ортогональном базисе имеет диагональный вид, а в ортонормированном базисе имеет вид единичной матрицы:

$$G_{\text{OB}} = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}, \quad \lambda_i \neq 0, \quad G_{\text{OHB}} = \|\delta_i^i\|.$$

3