5 Exercices

Ensemble № et notions en arithmétique

	Sommaire	
1	Notation	1
2	Parité d'un entier	1
	2.1 Entier pair – Entier impair	1
	2.2 Opérations sur les entiers pairs et les impairs	1
	2.2.1 Addition	1
	2.2.2 Multiplication	1
	2.2.3 Puissance	1
3	Multiples et diviseurs d'un entier	2
	3.1 Multiples d'un entier	2
	3.2 Plus petit commun multiple de deux entiers	2
	3.3 Diviseurs d'un entier	2
	3.4 Plus grand commun diviseur de deux entiers	
	3.5 Critères de divisibilité par quelques entiers	4
4		4
	4.1 Nombres premiers	4
	4.2 Décomposition en produit de facteurs premiers	5

6

1 Notation

On désigne par \mathbb{N} l'ensemble des entiers naturels, et on écrit $\mathbb{N} = \{0; 1; 2; 3; ...\}$. On désigne par \mathbb{N}^* l'ensemble des entiers naturels non nuls, et on écrit $\mathbb{N}^* = \{1; 2; 3; ...\}$.

2 Parité d'un entier

2.1 Entier pair – Entier impair

Définitions

Soit a un entier naturel

- On dit que *a* est « **pair** » s'il est divisible par 2. *a* s'écrit alors sous la forme 2*n* où *n* est un entier naturel.
- On dit que a est « **impair** » s'il n'est pas divisible par 2. a s'écrit alors sous la forme 2n + 1 où n est un entier naturel (ou 2n 1 si n est un entier naturel non nul).

Exemples

- 754 est un nombre pair. Car $754 = 2 \times 377$.
- 537 est un nombre impair. Car 537 = $2 \times 268 + 1$.
- A = 2n + 2, où n est un entier naturel, est un nombre pair. Car, par factorisation par 2, on a A = 2(n + 1).

Remarques

- Étudier la parité d'un entier c'est déterminer s'il est pair ou impair.
- Deux entiers sont dits de même parité s'ils sont soit tous les deux pairs ou tous les deux impairs.

2.2 Opérations sur les entiers pairs et les impairs

2.2.1 Addition

Activité 1

Soient a et b deux entiers naturels. Étudier la parité de a+b dans les cas suivants :

- 1. *a* est pair et *b* est impair.
- 2. a et b sont pairs.
- 3. a et b sont impairs.

Propriété

- La somme de deux entiers de la même parité donne un entier pair.
- La somme de deux entiers de parité différente donne un nombre impair.

2.2.2 Multiplication

Activité 2

Soient a et b deux entiers naturels. Étudier la parité de $a \times b$ dans les cas suivants :

- 1. *a* est pair et *b* est impair.
- 2. a et b sont pairs.
- 3. a et b sont impairs.

Propriété

Seul Le produit de deux entiers impairs donne un entier impair. Dans les autres cas le produit est un entier pair.

2.2.3 Puissance

Propriété

Soit *a* et *n* deux entiers naturels avec $n \neq 0$.

• Si a est pair alors a^n est pair.

• Si a est impair alors a^n est impair.

Exercice

Soit *n* un entier naturel. Étudier la parité des nombres suivants : 8n + 7; 3n + 6; $n^3 - n$.

3 Multiples et diviseurs d'un entier

3.1 Multiples d'un entier

Définition

Soient a et b deux entiers naturels.

On dit que « a **est un multiple de b** » s'il existe un entier naturel k tel que : a = bk.

Exemples

- 426 est un multiple de 71, car $426 = 71 \times 6$.
- 426 est aussi un multiple de 6.

Propriétés

Soient *a*, *b* et *c* des entiers naturels.

- Si a est un multiple de b et b est un multiple de c, alors a est un multiple de c.
- Si a et b sont deux multiples de c, alors a+b est un multiple de c.
- Si a et b sont deux multiples de c, avec $a \ge b$, alors a b est un multiple de c.
- Si *a* est un multiple de *b*, alors *ac* est aussi un multiple de *b*, pour *c* quelconque.

Exemples

- 12 est un multiple de 6, et 6 est un multiple de 3, alors 12 est un multiple de 3.
- 28 et 36 sont deux multiples de 2, alors 36 + 28 = 64 et 36 28 = 8 sont des multiples de 2.
- 25 est un multiple de 5, alors $25 \times 2 = 50$ et $25 \times 3 = 75$ sont des multiples de 5.

3.2 Plus petit commun multiple de deux entiers

Définition

Soient a et b deux entiers naturels.

Le plus petit des multiples communs non nuls de a et b s'appelle le « **plus petit commun multiple de** a et b », et on le note PPCM(a; b).

Exemple

Les multiples de 6 sont : $M_6 = \{0; 6; 12; 18; 24; 30; 36; 42; 48; ...\}$

Les multiples de 8 sont : $M_8 = \{0; 8; 16; 24; 32; 40; 48; 56; 64; ...\}$

Les multiples commun de 6 et 8 sont $\{0; 24; 48; ...\}$.

Le plus petit commun multiple de 6 et 8 est PPCM(6; 8) = 24.

3.3 Diviseurs d'un entier

Définition

Soient a et b deux entiers naturels.

On dit que « a est un diviseur de b » ou « a divise b » si b est un multiple de a.

Exemple

- 6 est un diviseur de 426, car $426 = 71 \times 6$.
- 71 est aussi un diviseur de 426.

Propriété

Soient *a*, *b* et *c* des entiers naturels.

- Si a divise b et b divise c, alors a divise c.
- Si a divise à la fois b et c, alors a divise b + c, et si $b \ge c$, alors a divise b c.
- Si *a* divise *b*, alors *a* divise *bc* quel que soit le nombre *c*.

Exemple

- 3 est un diviseur de 6, et 6 est un diviseur de 12, alors 3 est un diviseur de 12.
- 12 et 4 sont deux diviseurs de 48, alors 12 + 4 = 16 et 12 4 = 8 sont des diviseurs de 48.
- 7 est un diviseur de 14, alors $14 \times 2 = 28$ et $14 \times 3 = 42$ sont des diviseurs de 7.

Propriété

Soient a, b et d des entiers naturels, et r le reste de la division euclidienne de a et b (a < b). Si d est un diviseur à la fois de a et de b, alors, d divise r.

Exemple

3 est un diviseur à la fois de 36 et de 81, et $81 = 36 \times 2 + 9$, alors, 3 divise 9.

3.4 Plus grand commun diviseur de deux entiers

Définition

Soient a et b deux entiers naturels.

Le plus grand parmi les diviseurs communs des deux entiers a et b s'appelle le « **plus grand commun diviseur de** a **et** b », et on le note PGCD(a; b).

Exemple

Les diviseurs de 12 sont : $D_{12} = \{1; 2; 3; 4; 6; 12\}$.

Les diviseurs de 30 sont : $D_{30} = \{1; 2; 3; 5; 6; 10; 15; 30\}.$

Les diviseurs communs de 12 et 30 sont : {1;2;3;6}.

Le plus grand commun diviseurs de 30 et 12 est : PGCD(12;30) = 6.

Propriétés

Soient a et b deux entiers naturels, et r le reste de la division euclidienne de a et b (a < b).

• Si $r \neq 0$, alors, PGCD(a; b) = PGCD(a; r).

• Si r = 0, alors, PGCD(a; b) = a.

Exemples

- On a $30 = 12 \times 2 + 6$, donc PGCD(12; 30) = PGCD(12; 6) = 6.
- On a $97 = 15 \times 6 + 7$, donc PGCD(15; 97) = PGCD(15; 7).

On a $15 = 7 \times 2 + 1$, donc PGCD(15;7) = PGCD(7;1) = 1.

Par suite PGCD(15; 97) = 1.

Exercice

- 1. (a) Encadrer entre deux multiples successives de 9, les entiers suivants : 30; 123.
 - (b) Déterminer l'entier naturel n tel que 8n < 90 < 8(n+1).
- 2. Déterminer les multiples de 9 et 12, inférieurs à 40, et en déduire le PPCM(9;12).
- 3. Déterminer le PGCD(a; b) et simplifier la fraction $\frac{a}{b}$, dans les cas suivants :

(i)
$$a = 24$$
 et $b = 15$;

(ii)
$$a = 56$$
 et $b = 72$;

(iii) a = 448 et b = 350.

Remarque

Si PGCD(a; b) = 1, alors a et b sont dits « **premiers entre eux** ».

Dans ce cas, la fraction $\frac{a}{b}$ (ou encore $\frac{b}{a}$) est irréductible.

À titre d'exemple, 8 et 15 sont premiers entre eux puisque PGCD(8; 15) = 1.

Il en résulte que les fractions $\frac{8}{15}$ et $\frac{15}{8}$ sont irréductibles.

3.5 Critères de divisibilité par quelques entiers

Règles

- **Un entier est divisible par** 2, si son chiffre des unités est 0, 2, 4, 6 ou 8.
- **Un entier est divisible par** 3, si la somme de ses chiffres est divisible par 3 (un procédé à répéter sur la somme obtenue).
- Un entier est divisible par 4, si l'entier formé par ses deux derniers chiffres est divisible par 4.
- Un entier est divisible par 5, si son chiffre des unités est 0 ou 5.
- Un entier est divisible par 6, s'il est divisible par 2 et par 3.
- **Un entier est divisible par** 7, si le nombre des dizaines additionner à cinq fois le chiffre des unités, est divisible par 7 (un procédé à répéter sur la somme obtenue).
- **Un entier est divisible par** 8, si la somme de quatre fois les centaines et deux fois le chiffre des dizaines, additionner au chiffre des unités est divisible par 8 (un procédé à répéter sur la somme obtenue).
- **Un entier est divisible par** 9, si la somme de ses chiffres est divisible par 9 (un procédé à répéter sur la somme obtenue).
- Un entier est divisible par 10, si son chiffre des unités est 0.
- **Un entier est divisible par** 11, si le chiffre des unités soustrait de le nombre des dizaines est divisible par 11 (un procédé à répéter sur la différence obtenue).

Exemples

• 17381 est divisible par 7 car:

$$1738 + 5 \times 1 = 1743$$
 $174 + 5 \times 3 = 189$ $18 + 5 \times 9 = 63$ $6 + 5 \times 3 = 21 = 7 \times 3$

• 72984 est divisible par 8 car:

$$729 \times 4 + 8 \times 2 + 4 = 2936$$
 $29 \times 4 + 3 \times 2 + 6 = 128$ $1 \times 4 + 2 \times 2 + 8 = 16 = 8 \times 2$

• 108636 est divisible par 11 car:

$$10863 - 6 = 10857$$
 $1085 - 7 = 1078$ $107 - 8 = 99 = 11 \times 9$

4 Décomposition d'un entier

4.1 Nombres premiers

Définition

Soit a un entier naturel.

On dit que « *a* est un nombre premier » s'il admet uniquement deux diviseurs : 1 et *a*.

Exemples

5 et 13 sont des nombres premiers, alors que 6 et 12 ne le sont pas.

Remarques

- 0 et 1 ne sont pas des nombres premiers.
- Tous les nombres premiers différents de 2 sont impairs.

Propriété

Soit *a* un entier naturel.

Si pour tout nombre premier p, vérifiant $p^2 < a$, p ne divise pas a ,alors a est premier.

Sinon, alors a n'est pas premier.

Exemple

113 est un nombre premier. En effet, on a :

- $2^2 < 113$ et 2 ne divise pas 113.
- $3^2 < 113$ et 3 ne divise pas 113.
- $5^2 < 113$ et 5 ne divise pas 113.
- $7^2 < 113$ et 7 ne divise pas 113.
- $11^2 > 113$.

Donc 113 est premier.

4.2 Décomposition en produit de facteurs premiers

Définition

Soit *a* un entier naturel supérieur à 2.

L'écriture de a sous forme de produit de nombres premiers s'appelle la « **décomposition de** a **en produit de facteurs premiers** ».

Exemple

La décomposition de 420 en produit de facteurs premiers est $840 = 2^3 \times 5 \times 3 \times 7$. En effet, on a :

La décomposition en produit de facteurs premiers peut être utilisée pour déterminer le PGCD et le PPCM de deux entiers naturels. En effet,

- Le PPCM des deux entiers s'obtient en multipliant tous les facteurs communs ou non, chacun d'eux étant affecté de son plus grand exposant.
- Le PGCD des deux entiers s'obtient en multipliant les facteurs communs, chacun d'eux étant affecté de son plus petit exposant.

Exemple

Afin de déterminer le PPCM(270;360) et le PGCD(270;360), on décompose 270 et 360 en produit de facteurs premier. On a :

Donc: $270 = 3^3 \times 5 \times 2$ et $360 = 2^3 \times 3^2 \times 5$

D'où: PPCM(270; 360) = $3^3 \times 2^3 \times 5 = 1080$ et PGCD(270; 360) = $2 \times 3^2 \times 5 = 90$

Exercice

- 1. Vérifier que 197 est premier. Est-ce le cas pour 259?
- 2. Décomposer en produit de facteur premier les entiers 120 et 144, et en déduire leurs PGCD et PPCM.

Exercices

Exercice 1

Soit *n* un entier naturel. Étudier la parité des nombres suivants :

- (a) 2n+3;
- (b) 10n + 5;
- (c) 4n+2;
- (d) (n+2)(n+3);

- (e) $2n^2 + 4n + 5$;
- (f) $(2022)^2 n^2 + (2021)^2$;
- (g) $(2n+1)^2-4n-1$;
- (h) $n^3 + 13n + 17$.

Exercice 2

- 1. Quels sont les diviseurs de 84, strictement inférieurs à 21?
- 2. Quels sont les multiples de 456, compris entre 500 et 2500?
- 3. Déterminer le PGCD et le PPCM des entiers suivants en passant par la décomposition en facteurs premiers :
- (a) 540 et 168;

- (b) 225, 75 et 525;
- (c) 126, 123 et 270.
- 4. Déterminer les nombres premiers parmi les nombres suivants :
 - (a) 210;
- (b) 543;
- (c) 781;
- (d) 2005;
- (e) 97;
- (f) 117.

Exercice 3

- 1. Décomposer en facteurs premiers les entiers 18900 et 945. 2. Simplifier les nombres $\frac{18900}{945}$ et $\sqrt{18900}$.

Exercice 4

Montre que a est un multiple de b dans les cas suivants : (i) a = 3333 et b = 33; (ii) a = 142128 et b = 7.

Exercice 5

Soient x; y et z des entiers naturels.

- 1. Soit A = y + 10x et B = x + 10y. Montrer que A + B est divisible par 11.
- 2. Soient N = z + 10y + 100x et M = 100z + 10y + x
 - (a) Montrer que si N > M alors N M est un multiple de 99.
 - (b) Montrer que si x + y + z = 9 alors N est divisible par 9.
 - (c) Montrer que si y = x + z alors N est un multiple de 11.

Exercice 6

Soit a et b deux entiers naturels tels que ab = 2880 et PGCD(a;b) = 24. Déterminer a et b.

Exercice 7

- 1. Développer et réduire $(n+1)^2 n^2$, où n est un entier naturel.
- 2. En déduire que tout entier naturel impair est la différence des carrés de deux entiers naturels successifs.
- 3. Appliquer le résultat précédent aux nombres 39 et 31.

Exercice 8

Soit a un entier naturel.

On dit que «a est un carré parfait» si $a = b^2$ où b est un entier naturel.

Soit *n* un entier naturel.

1. Montrer que le nombre $(n^3 + 3n^2 + n)(n^3 + 3n^2 + n + 2) + 1$ est un carré parfait.

2. Montrer que le nombre n(n+1)(n+2)(n+3)+1 est un carré parfait.

Exercice 9

- 1. Déterminer les diviseurs de 22.
- 2. En déduire tous les entiers naturels x et y vérifiant (y+1)(x+2)=22.
- 3. Déterminer tous les entiers naturels x et y vérifiant xy + x + y = 30.

Exercice 10

Soient x et y deux entiers naturels tels que $2^{x-2} + 7^{2y+1} + 6^x = 16844$ ($x \ge 2$).

- 1. Montrer que $2^{x-2}(1+4\times3^x)=16844-7^{2y+1}$.
- 2. Montrer que $16844 7^{2y+1}$ est impair.
- 3. Déduire que x = 2 et déterminer la valeur de y.

Exercice 11

Deux livres *A* et *B* ont respectivement 378 et 420 pages chacun. Chacun des deux livres est formé de chapitres qui ont le même nombre de pages.

- 1. Déterminer le nombre maximal de pages qu'on peut avoir dans un chapitre.
- 2. En déduire le nombre de chapitres dans chacun des deux livres.

Exercice 12

Deux voitures partent, en même temps, de la ligne de départ, et font plusieurs tours d'un même circuit. La voiture *A* fait le tour du circuit en 36 minutes et la voiture *B* en 30 minutes.

- 1. Y-a-t-il des moments (autres que le départ) où les voitures se croisent sur la ligne de départ?
- 2. Préciser le nombre de tours fait par chaque voiture, avant que les deux voitures ne se croisent.