Modeling Continuous Data

Week 10

Learning Objectives

- Write cost function of linear regression
- Implement Gradient Descent algorithm for optimisation
- Train linear regression model using gradient descent
- Evaluate linear regression model using r^2 and mean-squared-error
- Plot cost function over iteration time
- Plot linear regression
- Transform data for polynomial model

Linear Regression

- Independent vs dependent variable
- Try to model relationship between the two: e.g linear relationship

$$y = mx + c$$

Goal: given arbitrary independent variable, predict dependent variable

Hypothesis

A proposed explanation for a phenomenon

$$y = \beta_0 + \beta_1 x$$

- A hypothesis models the relationship between dependent and independent variables. Also known as model
- It contains parameters
- We need to train our model (hypothesis) to figure out the value of the parameters
- These parameters later are used for prediction

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Hypothesis

A proposed explanation for a phenomenon

$$\beta_0 = 52643$$

$$\beta_1 = 4030$$

$$y=eta_0+eta_1 x$$

Cost Function

- We initially only have a hypothesis with unknown parameters
- We need to train that model to figure out the optimum parameters
- How do we know if the training goes well or not?

$$RSS = \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight)^2$$

- Using cost function
- It measures the difference between the model's predictions and the actual values
- Many types of cost function: Residual Sum Square, Mean Squared Error, Mean Absolute Error, Huber Lost, KL Divergence, Hinge Loss, Poison Loss, etc

Gradient Descent

- Gradient decent is one of the ways to train a model and find optimum parameters.
 - Other ways: Stochastic GD, simulated annealing, Newton's method, Bayesian optimisation, genetic algorithm, etc
- Goal: find parameters that minimise cost function
- Start: with initial guess of all parameters
- Then, compute the rate of error (gradient of the cost function)
 - Next, update the parameters
 - Repeat

$$\hat{eta}_j = \hat{eta}_j - lpha rac{\partial}{\partial \hat{eta}_j} J(\hat{eta}_0, \hat{eta}_1)$$

 $egin{array}{ll} ext{minimize} & J(\hat{eta}_0,\hat{eta}_1) \ \hat{eta}_0,\hat{eta}_1 & \end{array}$

Gradient Descent

$$\hat{eta}_0 = \hat{eta}_0 - lpha rac{\partial}{\partial \hat{eta}_0} J$$
 $\hat{eta}_1 = \hat{eta}_1 - lpha rac{\partial}{\partial \hat{eta}_1} J$

$$J(\hat{eta}_0,\hat{eta}_1) = rac{1}{2m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight)^2 \ rac{\partial}{\partial \hat{eta}_j} J(\hat{eta}_0,\hat{eta}_1) = rac{\partial}{\partial \hat{eta}_j} rac{1}{2m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight)^2$$

Update function:

$$egin{aligned} \hat{eta}_0 &= \hat{eta}_0 - lpha rac{1}{m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight) \ \hat{eta}_1 &= \hat{eta}_1 - lpha rac{1}{m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight) x^i \end{aligned}$$

Matrix Representation of Hypothesis

- Representing the hypothesis as matrices allow us to use matrix operations to clean the data & train the model, easier to implement as a program
- Use NumPy matrix operations for ease of computation

$$\mathbf{x} = egin{bmatrix} 1 & x^1 \ 1 & x^2 \ \dots & \dots \ 1 & x^m \end{bmatrix} \qquad \mathbf{\hat{b}} = egin{bmatrix} \hat{eta}_0 \ \hat{eta}_1 \end{bmatrix} \qquad \qquad \mathbf{\hat{y}} = \mathbf{X} imes \mathbf{\hat{b}}$$

Matrix Representation of Cost Function

- Representing the cost function as matrices allow us to use matrix operations
 to clean the data & train the model, easier to implement
- Use NumPy matrix operations for ease of computation
- Note: MSE is used

$$J(\hat{eta}_0,\hat{eta}_1) = rac{1}{2m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight)^2$$

$$J(\hat{eta}_0,\hat{eta}_1) = rac{1}{2m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight) imes \left(\hat{y}(x^i) - y^i
ight)$$

$$J(\hat{eta}_0,\hat{eta}_1) = rac{1}{2m}(\mathbf{\hat{y}}-\mathbf{y})^T imes(\mathbf{\hat{y}}-\mathbf{y})$$

Matrix Representation of Gradient Descent Update Function

$$\hat{eta}_0 = \hat{eta}_0 - lpha rac{1}{m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight)$$

$$\hat{eta}_1 = \hat{eta}_1 - lpha rac{1}{m} \Sigma_{i=1}^m \left(\hat{y}(x^i) - y^i
ight) x^i$$

$$\hat{\mathbf{b}} = \hat{\mathbf{b}} - \alpha \frac{1}{m} \mathbf{X}^T \times (\hat{\mathbf{y}} - \mathbf{y})$$

$$\hat{\mathbf{b}} = \hat{\mathbf{b}} - \alpha \frac{1}{m} \mathbf{X}^T \times (\mathbf{X} \times \hat{\mathbf{b}} - \mathbf{y})$$

$$\mathbf{X} = egin{bmatrix} 1 & x^1 \ 1 & x^2 \ \cdots & \cdots \ 1 & x^m \end{bmatrix}$$

$$\mathbf{X}^T = egin{bmatrix} 1 & 1 & \dots & 1 \ x^1 & x^2 & \dots & x^m \end{bmatrix}$$

Metrics

- Training data set is used to train (build) the hypothesis (model)
- Test data set is used to evaluate the model: we compute metrics to determine whether the model is good/bad

$$MSE = rac{1}{n}\Sigma_{i=1}^n(y^i - \hat{y}^i)^2$$

$$r^2 = 1 - rac{SS_{res}}{SS_{tot}} \hspace{1cm} SS_{tot} = \Sigma_{i=1}^n (y_i - \overline{y})^2$$

$$SS_{res} = \Sigma_{i=1}^n (y_i - \hat{y}_i)^2 \qquad \qquad \overline{y} = rac{1}{n} \Sigma_{i=1}^n y_i \, .$$

Multiple Linear Regression

 Model the relationship between a dependent variable and multiple (no longer single) independent variable

• SLR:
$$\hat{y}(x) = \hat{eta}_0 + \hat{eta}_1 x$$

• MLR:
$$\hat{y}(x)=\hat{eta}_0+\hat{eta}_1x_1+\hat{eta}_2x_2+\ldots+\hat{eta}_nx_n$$

Multiple Linear Regression: Matrix Expression

$$\hat{y}(x^1) = \hat{eta}_0 + \hat{eta}_1 x_1^1 + \hat{eta}_2 x_2^1 + \ldots + \hat{eta}_n x_n^1 \ \hat{y}(x^2) = \hat{eta}_0 + \hat{eta}_1 x_1^2 + \hat{eta}_2 x_2^2 + \ldots + \hat{eta}_n x_n^2 \ \ldots$$

$$\hat{y}(x^m)=\hat{eta}_0+\hat{eta}_1x_1^m+\hat{eta}_2x_2^m+\ldots+\hat{eta}_nx_n^m$$

$$\mathbf{\hat{y}} = \mathbf{X} \times \mathbf{\hat{b}}$$

Same as SLR

$$\mathbf{\hat{b}} = egin{bmatrix} \hat{eta}_0 \ \hat{eta}_1 \ \hat{eta}_n \end{bmatrix} \in {
m I\!R}^{n+1}$$

$$\mathbf{X} = egin{bmatrix} 1 & x_1^1 & \dots & x_n^1 \ 1 & x_1^2 & \dots & x_n^2 \ \dots & \dots & \dots \ 1 & x_1^m & \dots & x_n^m \end{bmatrix} \in {
m I\!R}^{m imes(n+1)}$$

MLR Cost Function: Matrix Expression

$$J(\hat{eta}_0,\hat{eta}_1) = rac{1}{2m}(\mathbf{\hat{y}}-\mathbf{y})^T imes(\mathbf{\hat{y}}-\mathbf{y})$$

Same as SLR

MLR Gradient Descent Update Function: Matrix Expression

$$\mathbf{\hat{b}} = \mathbf{\hat{b}} - lpha rac{1}{m} \mathbf{X}^T imes (\mathbf{X} imes \mathbf{\hat{b}} - \mathbf{y})$$

Same as SLR

About R²

- Sometimes it can be **misleading**: R² always increases with more features as it measures the **proportion** of variance explained by the variance and adding features generally **reduces** the RSS, making R² higher
 - R² is good for simple models, easier to interpret
- A high R² does not necessarily mean a better model—it might just be overfitting.
- Adjusted R2 penalise the inclusion of irrelevant features

Adjusted R² = 1 -
$$\left(\frac{(1-R^2)(n-1)}{n-k-1}\right)$$

About R² vs Adjusted R²

- Some nuances
- With R² = N%, you can say "N% of the variation in the application is explained by our predictors"
- With Adjusted R² = N, you must say "After accounting for the number of predictors and penalizing any unnecessary ones, the model explains around N% variance in the application"

Polynomial Model

Transform features into polynomial terms

- Plot first see the relationship between independent and dependent variable
- Transform the independent variable as necessary, e.g. quadratic hypothesis
- Note: you don't always need the lower order terms if you are confident that only the higher order has predictive power.
 Otherwise, it won't "hurt" either, as the params can be near zero if the data doesn't have meaningful relationship with lower order terms

$$x_1 = x$$

$$x_2 = x^2$$

$$\hat{y}(x) = \hat{eta}_0 + \hat{eta}_1 x + \hat{eta}_2 x^2$$

$$\mathbf{X} = egin{bmatrix} 1 & x^{(1)} & (x^2)^{(1)} \ 1 & x^{(2)} & (x^2)^{(2)} \ \cdots & \cdots & 1 \end{pmatrix} \in {
m I\!R}^{m imes 3}$$

Polynomial Model

Considerations

- Overfitting: higher degree polynomials can overfit data, capturing noise instead of underlying pattern
- Feature scaling: polynomial terms can result in large differences in magnitude, requiring normalization or standardization before polynomial transformation
- Application: modeling non-linear behaviors like trajectories, forces, market trends

Learning Objectives

- Write cost function of linear regression
- Implement Gradient Descent algorithm for optimisation
- Train linear regression model using gradient descent
- Evaluate linear regression model using r^2 and mean-squared-error
- Plot cost function over iteration time
- Plot linear regression
- Transform data for polynomial model