Magnetic Flux

April 28, 2020 12:58 PM

Magnetic Flor

Magnetic Flux Density

$$H = \frac{\pi}{2\pi\rho} \hat{a}_{q}$$

$$e^{\frac{1}{2} \int_{\Omega} \frac{h \omega I}{h \pi I_{0}} \frac{\partial}{\partial u} \frac{du}{du} \frac{\partial}{\partial u} \frac{\partial}{\partial u} = \frac{h \omega I}{2\pi} \int_{\Omega}^{1} du \int_{\Omega}^{1} \frac{du}{du} = \frac{h \omega I L}{2\pi} \ln \left(\frac{b}{a}\right)$$

Magnetic Flor for Closed Surface

Dive gence Theorem

- Integral of moveral comp of victor over closed surface. Integral of divergence of this vector hield throughout valuem enclosed by closed surface.

Q.B=0 → If divergence of vestor field +0 then vector field + magnetic field

ex. A = a cos (2) = x + by sn (2) = 3y

ex. Motor

& Weburk 8

Assignment 8: Problem 1

Previous Problem Problem List Next Problem (1 point) Let S be the surface formed by combining the cylinder given by $x^2+y^2=1$, $0\leq z\leq 1$, with the hemispherical cap perined by $x^2+y^2+(z-1)^2=1$, $z\geq 1$. Notice that S is not a closed surface: if has no "bottom".

For the vector field ${\bf F}=\langle zx+z^2y+5y,\,z^3yx+3x,\,z^4x^2\rangle$, find the flux integral shown below Use the upward/outward orientation.

ANSWER: $\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} =$

\$ F. To = 1, (\$ x 6) - nds Stokes Theorem S= <0,0,1> 25 25 2€ 111 弘为元 # (9x6) 248 = 1 = 34 - 2-7 - 2-62

Assignment 8: Problem 2

Previous Problem Problem List Next Problem

m. A potential difference of 0.15 Volts between the ends at z=0 m and z=28 m drives a steady current in the direction ${\bf a}_-$, and this produces a magnetic field intensity inside the conductor given (in A solid conductor occupies the cylindrical region $\rho \le b, 0 \le z \le h$, where b=6 mm and h=28 m. A potential difference of 0.15 Volts between the ends at z=0 m and z=28 m drives a steady

a) R = V H = 170 = 9210 672200 -> SUMC I: I = 1. WHS A R = 0.1228SL

() H = IRD I = 9x65 c3 2R

- set 2=0:-2pT =-2R

Assignment 8: Problem 4

Previous Problem Problem List Next Problem

The magnetic flux density in all of space is given by

Let ${\mathcal S}$ denote the paraboloidal surface defined by $y = x^2 + z^2, \qquad 0 \le y \le 81.$ $y=x^2+z^2, \qquad 0 \le y \le 81.$ Find the net magnetic flux Φ passing through S in the direction away from the xz- = $\int_{-1}^{2\pi} \int_{0}^{\pi} \left(3 \rho^2 \cos^2 \phi - \rho^2 \cos^2 \phi - 81 \right) \rho \, d\rho \, d\phi$

= 1 9 - 78 p3 word dp de ANSWER: $\Phi =$ = -401933.793304 Wb