

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 97/20160
F16L 1/23		(43) International Publication Date:	5 June 1997 (05.06.97)
<p>(21) International Application Number: PCT/GB96/02905</p> <p>(22) International Filing Date: 25 November 1996 (25.11.96)</p> <p>(30) Priority Data: 9524087.5 24 November 1995 (24.11.95) GB</p> <p>(71) Applicant (for all designated States except US): COFLEXIP STENA OFFSHORE LIMITED [GB/GB]; Stena House, Westhill Industrial Estate, Westhill, Aberdeen AB32 6TQ (GB).</p> <p>(72) Inventor; and</p> <p>(75) Inventor/Applicant (for US only): MARTIN, Robert, George [GB/GB]; Balneden, Back Wynd, Oldmeldrum, Aberdeen AB51 0DE (GB).</p> <p>(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).</p>		<p>(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
<p>(54) Title: MARINE PIPELAYING AND HANDLING OF RIGID PIPELINES</p> <p>(57) Abstract</p> <p>A support element (12) for supporting a rigid pipeline (10) during plastic bending of the pipeline has a transverse cross-sectional configuration such that, in use, a pipeline supported by the support element contacts said support element at at least first and second points (14, 16) disposed substantially symmetrically on either side of the plane of bending, the points of contact being arranged such that resultant forces between the pipeline and the support element act at points which are disposed substantially symmetrically about the plane of bending and which are spaced apart by an angle α greater than 90° and less than 180° around the cross-sectional circumference of the pipeline. The angle α is selected so as to minimise ovalisation for a pipeline of given material, diameter and wall thickness, and for a given bend radius and pipeline tension, or to provide useful modification of ovalisation over ranges of these parameters. For most practical applications, the optimal angle α will be greater than 90° and less than or equal to 150°. In preferred embodiments of the invention, the angle α is greater than 90° and less than or equal to 110°.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LJ	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

1 **MARINE PIPELAYING AND HANDLING OF RIGID PIPELINES**

2

3

4 The present invention relates to improvements in or
5 relating to marine pipelaying methods and apparatus.
6 The invention is particularly concerned with
7 controlling the ovality of rigid pipeline during
8 pipelaying operations in which the pipeline is
9 plastically deformed during bending of the pipeline
10 around an arcuate path and is subsequently straightened
11 prior to laying.

12

13 The invention will be discussed herein with particular
14 reference to rigid steel pipe, but is also applicable
15 to rigid pipe formed from other materials.

16

17 Rigid steel pipe is manufactured to a nominal circular
18 diameter. However, in practice the pipe will not be
19 perfectly circular along its entire length, but will
20 exhibit variations in ovality, within defined
21 tolerances. Subsequent processing of the pipe, such as
22 by bending, will cause further variations in ovality.
23 In the context of marine pipelaying, ovality affects
24 the ability of the pipe to resist hydrostatic pressure,
25 particularly at extreme water depths, and it is

1 important that the ovality of the pipe as finally laid
2 does not exceed predetermined limits. Ovalisation of
3 the pipe may become particularly significant where the
4 pipe is being laid in relatively great water depths
5 requiring unusually high tension to be applied to the
6 pipeline, thereby increasing the forces exerted between
7 the pipeline and an underlying pipe bearing surface,
8 prior to the launch of the pipeline from the vessel.
9

10 Ovality may be defined as:

$$11 \text{Ovality} = \frac{D_{\max} - D_{\text{mean}}}{D_{\text{mean}}} \\ 12 ;$$

13 where D_{\max} is the maximum diameter of the pipe and
14 D_{mean} is the mean diameter of the pipe. In a given
15 length of pipe, the angle formed between the maximum
16 diameter (or "major axis") and a reference plane
17 extending through the longitudinal axis of the pipe may
18 vary along the length of the pipe. Typically, the
19 maximum diameter may rotate along the length of the
20 pipe so that the ovality spirals along the pipe.
21

22 In the present discussion the following conventions
23 will be employed:

24 where the major axis of the pipe lies along the
25 reference plane the ovality will be referred to as a
26 positive ovality; in this case, the diameter along the
27 reference plane is greater than the nominal circular
28 diameter;

29 where the major axis lies at right angles to the
30 reference plane the ovality will be referred to as a
31 negative ovality; in this case the diameter along the
32 reference plane will be less than the nominal circular
33 diameter;

34 in cases where the pipe is being bent around an
35 arcuate path the reference plane will be the plane of
36 curvature of the pipe.

1 It can readily be seen that where the pipe exhibits
2 positive ovality prior to bending of the pipe, the
3 ovality of the pipe will be reduced by such bending,
4 since the process of bending will tend to increase the
5 diameter at right angles to the plane of bending and to
6 reduce the diameter in the plane of bending.
7 Conversely, where the pipe exhibits negative ovality
8 prior to bending, the ovality will be increased by
9 bending.

10

11 Where the pipe is bent elastically, it can be expected
12 to return to its original ovality when the bending
13 forces are removed. However, where the pipe is
14 plastically deformed during bending and is subsequently
15 straightened, the pipe will not fully recover its
16 original ovality and there will be a net residual
17 change in its final ovality as compared with its
18 ovality prior to bending. Where the original ovality is
19 positive, the net residual change will result in a
20 reduced positive ovality. Where the original ovality is
21 negative, the net residual change will result in an
22 increased negative ovality. In the latter case it can
23 be seen that there may be cases where a length of pipe
24 which is within predetermined ovality tolerances prior
25 to bending might exceed such tolerances after bending
26 and straightening owing to the net increase in negative
27 ovality. In the former case the net decrease in
28 positive ovality will generally be desirable.

29

30 It will be understood that, where the pipe is bent
31 against a supporting surface, there will also be a
32 degree of flattening of the pipe. Herein, such
33 flattening is considered to be a component of the
34 overall ovalisation.

35

36 The present invention is primarily concerned with

1 controlling pipeline ovalisation in marine pipelaying
2 operations where the pipe is subject to plastic
3 deformation during bending and subsequent straightening
4 in the course of the laying operation. Such plastic
5 deformation occurs both in pipelay systems where a
6 continuous length of pipeline is assembled onshore and
7 is spooled onto a reel, the pipe being unspooled from
8 the reel, plastically bent around an arcuate path to a
9 desired launch angle and straightened as it is laid
10 from the lay vessel. Plastic deformation also occurs
11 in a variation of "stovepipe" operations in which
12 joints of pipe are assembled into a continuous pipe on
13 board the vessel and in which the assembled pipe is
14 plastically bent around an arcuate path and
15 subsequently straightened in order to achieve a desired
16 launch angle of the pipe from the vessel. Reel
17 pipelaying systems of the former type are utilised by
18 the vessel "Stena Apache" and are described in detail
19 in, for example, US Patents Nos. RE30846, 4260287,
20 4230421 and 4297054. Pipelay systems of the latter
21 type are described in co-pending International Patent
22 Applications Nos. PCT/GB95/00573 and PCT/GB95/00574 in
23 the name of the present Applicant.

24
25 In both of these cases, the arcuate path around which
26 the pipe is bent is typically defined by a plurality of
27 pipe support pads. In order to prevent relative
28 movement between the pipeline and the pipeline
29 contacting portions of the pads, such pads might be
30 mounted on endless-belt type tracks or on a rotatable
31 wheel-like structure, such that the pads move with the
32 pipe, or might be static and include pipe-contacting
33 roller bearings. Arrangements of these general types
34 are known in the art. In the case of the rotatable
35 wheel-like structure referred to above, the pipe
36 supporting surface might comprise a continuous,

1 circular rim of the structure, rather than a plurality
2 of discrete pads. References to "support pads" and
3 "support elements" used herein will be understood to
4 include such arrangements.

5

6 When a pipeline contacts such support pads under
7 tension, the reaction force between the pipeline and
8 the support tends to deform the pipeline towards
9 negative ovality, and may also result in the formation
10 of flats on the pipeline surface. It is an object of
11 the present invention to provide improved pipeline
12 support pads which reduce the tendency for ovalisation
13 of the pipeline and/or reduce flat-formation.

14

15 In accordance with a first aspect of the invention
16 there is provided a support element for supporting a
17 rigid pipeline during plastic bending of said pipeline
18 in a plane of bending including the longitudinal axis
19 of said pipeline, said support element having a
20 transverse cross-sectional configuration such that, in
21 use, a pipeline supported by the support element
22 contacts said support element at at least first and
23 second points disposed substantially symmetrically on
24 either side of the plane of bending, wherein said
25 points of contact are arranged such that resultant
26 forces between the pipeline and the support element act
27 at points which are disposed substantially
28 symmetrically about said plane of bending and which are
29 spaced apart by an angle α greater than 90° and less
30 than 180° around the cross-sectional circumference of
31 said pipeline.

32

33 Preferably, the angle α is selected so as to minimise
34 ovalisation for a pipeline of given material, diameter
35 and wall thickness, and for a given bend radius and
36 pipeline tension, or to provide useful modification of

1 ovalisation over ranges of these parameters.
2
3 Preferably also, the support element is arranged so as
4 to prevent contact between the pipe and an underlying
5 support at the point on the external surface of the
6 pipe where intersected by the plane of bending on the
7 inside of the bend.
8
9 Preferably also, the angle α is no greater than about
10 170°.
11
12 For most practical applications, the optimal angle α
13 will be greater than 90° and less than or equal to 150°.
14 In preferred embodiments of the invention, said angle α
15 is greater than 90° and less than or equal to 110°.
16
17 Preferably, said element comprises first and second
18 pipe-contacting portions disposed symmetrically on
19 either side of said plane of bending.
20
21 In one embodiment, said pipe contacting portions
22 comprise generally planar members disposed on either
23 side of said plane of bending. Preferably, the planar
24 members are each braced by first and second diagonal
25 bracing members extending between the outer surfaces of
26 said planar members and an underlying support
27 structure.
28
29 In accordance with a second aspect of the invention,
30 there is provided a pipeline support structure
31 comprising a series of pipeline support means defining
32 a pipeline path, in which said pipeline support means
33 comprise or include support elements in accordance with
34 the first aspect of the invention. Preferably, said
35 support means define an arcuate path. Most preferably,
36 said support means each comprises a roller track

1 assembly including an endless track having a plurality
2 of pipeline support pads disposed along its length,
3 said support pads comprising support elements in
4 accordance with the first aspect of the invention.

5

6 Embodiments of the invention will now be described, by
7 way of example only, with reference to the accompanying
8 drawings in which:

9

10 Fig. 1 is a schematic end view of a first
11 embodiment of a support element in accordance
12 with the present invention;

13

14 Fig. 2 is a schematic side view of a
15 plurality of elements as shown in Fig. 1
16 viewed in the direction A-A of Fig. 1;

17

18 Fig. 3 is schematic end view of a second
19 embodiment of a support element in accordance
20 with the invention;

21

22 Fig. 4 is a schematic side view of a pipeline
23 passing around a pipe diverter sheave of a
24 pipelaying vessel illustrating the
25 application of the invention thereto.

26

27 Referring now to the drawings, Fig. 1 shows a tubular
28 member such as a pipeline 10, indicated in phantom
29 lines, mounted on a support element 12 in accordance
30 with the invention. The pipeline 10 is supported by
31 first and second pipe-contacting members 14, 16 of the
32 support element 12. In this example, the pipe-
33 contacting members 14, 16 comprise generally planar
34 plate members which are disposed symmetrically on
35 either side of a plane 18 extending along the
36 longitudinal axis of the pipeline 10 and diverging

1 upwardly on either side of the pipeline 10. For the
2 purposes of the present invention, the plane 18 is the
3 plane in which the pipeline 10 will be bent. The plane
4 of bending is most likely to be vertical but for some
5 pipelay systems may be horizontal or at some other
6 angle. References herein to "vertical" and
7 "horizontal" orientations will be understood as
8 relating to the illustrated examples, and may vary
9 according to the orientation of the plane of bending.

10
11 The pipe-contacting members 14, 16 are mounted on a
12 horizontal support plate 20 at equal and opposite
13 angles b thereto. In this example, the angle b is 55°,
14 and the members 14, 16 are arranged such that a pipe of
15 predetermined diameter will rest on the members 14, 16
16 without contacting the horizontal plate 20. The pipe
17 10 thus contacts the members 14, 16 at first and second
18 points spaced apart around its lower circumference by
19 an angle a, equal to 2b, which in this case is 110°.
20

21 The members 14, 16 thus define a V-section "support
22 pad" with an internal angle of $(180^\circ - 2b)$; i.e. 70° in
23 this example. V-section pipeline support pads are
24 known as such, typically having an internal angle of
25 about 120°, corresponding to angles b=30°; i.e. angle
26 a=60°.

27
28 Fig. 3 shows an alternative embodiment of the invention
29 in which the angle b is 50°, the corresponding angle a
30 being 100°.

31
32 In accordance with the invention, the angle a is
33 selected to be greater than 90°, (ie, the internal angle
34 of the V-section is less than 90°) such that the
35 ovalising components of the reactive forces exerted on
36 the pipe 10 by the members 14, 16 cancel one another

1 (to an extent depending on the angle α and the pipelay
2 parameters - principally, the pipe material, diameter
3 and wall thickness, the applied tension and the radius
4 of pipe bending) or act in a direction which tends to
5 deform the pipe 10 towards positive ovality.

6

7 If the pipe simply rested on the horizontal plate 20,
8 then the reactive force acting on the bottom-most point
9 of the pipe cross-section would obviously tend to
10 deform the pipe 10 towards negative ovality. If the
11 pipe rests on a conventional V-section pad with an
12 internal angle greater than 90° then the negatively
13 ovalising force components will be reduced, but will
14 still tend to deform the pipe towards negative ovality.

15

16 Making angle α equal to 90° is a special case in which
17 the ovalising force components can be seen to cancel
18 completely, by superposition of the force components.
19 This has been found to be true for rigid pipeline which
20 is bent elastically. However, it has been found that,
21 for rigid pipeline which is bent plastically, it is
22 preferable that the support pads are configured such
23 that α is greater than 90°. Bending the pipe around an
24 arcuate path itself tends to deform the pipe towards
25 negative ovality, as previously mentioned. This effect
26 can be reduced or cancelled by selecting the angle α
27 such that the ovality inducing force components
28 produced by contact with the support pads oppose the
29 negative ovalisation induced by bending. If the radius
30 of curvature of the path varies along its length then
31 the configuration of a series of pads defining the path
32 may also be arranged such that the angle α varies
33 accordingly.

34

35 The optimal value of the angle α is best determined
36 empirically for a particular pipelay scenario, being

1 dependent, as aforesaid, on the parameters of the
2 pipeline, the pipelay apparatus and the particular
3 pipelay operation. Tests conducted by the Applicants
4 suggest that, for most practical purposes, the optimal
5 angle α will be greater than 90° and less than or equal
6 to 150°. For relatively large diameter, thick-walled
7 pipeline of the type employed in deepwater pipelay
8 operations, the optimal angle is likely to be greater
9 than 90° and less than 110°, assuming that the pipe is
10 bent to radius close to the minimum acceptable radius
11 of curvature for the particular pipeline. Generally
12 speaking, the optimal angle α will be greater where the
13 tendency towards ovalisation of the pipeline is
14 greater. The tendency to ovalisation induced by
15 plastic bending has been found generally to increase
16 with increasing pipe diameter, decreasing bend radius
17 and decreasing wall thickness. It has also been found
18 that increased pipeline tension appears to reduce
19 ovalisation during plastic bending.

20

21 In the illustrated embodiments, the horizontal plate 20
22 is supported in turn by an underlying structure 22
23 configured to be capable of withstanding whatever
24 forces may be encountered in use. In this case the
25 underlying structure includes diagonal bracing plates
26 24, 26 which support the outer lateral portions of the
27 horizontal plate. The pipe-contacting members 14, 16
28 are similarly braced by support plates 28, 30, which
29 engage the outer surfaces of the members 14, 16 on
30 either side of the points at which the pipe contacts
31 the members 14, 16. This arrangement allows a degree
32 of flexibility in the members 14, 16, enabling them to
33 deform slightly around their pipe-contact points. This
34 reduces any tendency for flats to form on the outer
35 surface of the pipe 10 as a result of contact with the
36 members 14, 16.

1 It will be understood that if the angle α was equal to
2 or greater than 180° then the pipeline would rest on the
3 underlying support structure unless held by frictional
4 contact with the pipe contacting members 14, 16.

5 Accordingly, for the purposes of the invention the
6 angle α must be less than 180° . For most purposes, the
7 will be such as to support the pipe so as to prevent
8 contact between the pipe and the underlying support at
9 the point on the external surface of the pipe where
10 intersected by the plane of bending on the inside of
11 the bend. For this purpose, the angle α should
12 preferably be no greater than about 170° . In some
13 circumstances, particularly where the angle α is
14 greater than this, it may be desirable for there to be
15 contact with the underlying support.
16

17 It will be appreciated that the structural details of
18 support pads in accordance with the invention may be
19 varied widely from those of the presently described
20 embodiments. The pipe-contacting surfaces of the pipe-
21 contacting members need not be planar or platelike, so
22 long as they are configured in such a way that the
23 points of contact between the members and the pipeline
24 are arranged such that resultant forces between the
25 pipe and the support elements act at points which are
26 disposed substantially symmetrically about the plane of
27 bending 18 and which are spaced apart by an angle α
28 greater than 90° and less than 180° around the cross-
29 sectional circumference of the pipeline. Similarly,
30 the underlying structure of the support pad may be
31 varied to suit particular applications.
32

33 Fig. 4 illustrates an example of a pipeline diverter
34 structure in which the present invention might be
35 employed. In this example the purpose of the diverter
36 structure is to divert a pipeline 100, which is

1 initially fabricated along a horizontal axis on the
2 deck of a vessel upon which the diverter structure is
3 mounted, from its initial horizontal orientation to a
4 final launch angle. The pipeline 100 is plastically
5 deformed around an arcuate path as it passes in the
6 clockwise direction around the structure before
7 departing therefrom at the desired launch angle
8 (approximately 90° in this case).

9

10 The arcuate path of the diverter structure is defined,
11 in this instance, by a plurality of roller track
12 assemblies 102, mounted on a suitable support structure
13 (not shown). The roller track assemblies each
14 comprises a chassis having sprocket wheels at either
15 end around which an endless belt or track is arranged.
16 Roller track assemblies of this general type are well
17 known in the art and will not be described in greater
18 detail herein. Such assemblies are typically used in
19 pipe straightening and/or tensioning apparatus. The
20 endless track may be driven or idle, depending upon the
21 application, and the pipe contacting surface of the
22 track is fitted with a series of pipe support pads.
23 The present invention may be employed in place of
24 conventional support pads in roller track assemblies of
25 this type.

26

27 It will be appreciated that pipe support elements
28 configured in accordance with the present invention
29 might be employed in place of any existing type of pipe
30 support, but the invention is particularly applicable
31 in situations where the pipe is bent while under
32 relatively high tension.

33

34 Improvements or modifications may be incorporated
35 without departing from the scope of the invention.

36

1 Claims

2

3 1. A support element for supporting a rigid pipeline
4 during plastic bending of said pipeline in a plane of
5 bending including the longitudinal axis of said
6 pipeline, said support element having a transverse
7 cross-sectional configuration such that, in use, a
8 pipeline supported by the support element contacts said
9 support element at at least first and second points
10 disposed substantially symmetrically on either side of
11 the plane of bending, wherein said points of contact
12 are arranged such that resultant forces between the
13 pipeline and the support element act at points which
14 are disposed substantially symmetrically about said
15 plane of bending and which are spaced apart by an angle
16 α greater than 90° and less than 180° around the cross-
17 sectional circumference of said pipeline.

18

19 2. A pipeline support element as claimed in Claim 1,
20 wherein the angle α is selected so as to minimise
21 ovalisation for a pipeline of given material, diameter
22 and wall thickness, and for a given bend radius and
23 pipeline tension, or to provide useful modification of
24 ovalisation over ranges of these parameters.

25

26 3. A pipeline support element as claimed in Claim 1
27 or Claim 2, wherein the support element is arranged to
28 support the pipeline so as to prevent contact between
29 the pipe and an underlying support at the point on the
30 external surface of the pipe where intersected by the
31 plane of bending on the inside of the bend.

32

33 4. A pipeline support as claimed in any preceding
34 Claim, wherein the angle α is no greater than about
35 170° .

36

- 1 5. A pipeline support element as claimed in any
2 preceding Claim, wherein the angle α is greater than 90°
3 and less than or equal to 150° .
- 4
- 5 6. A pipeline support element as claimed in Claim 5,
6 wherein said angle α is greater than 90° and less than
7 or equal to 110° .
- 8
- 9 7. A support element as claimed in any one of Claims
10 1 to 6, wherein said element comprises first and second
11 pipe-contacting portions disposed symmetrically on
12 either side of said vertical plane.
- 13
- 14 8. A support element as claimed in Claim 7, wherein
15 said pipe contacting portions comprise generally planar
16 members disposed on either side of said vertical plane.
- 17
- 18 9. A pipe support element as claimed in Claim 8,
19 wherein the planar members are each braced by first and
20 second diagonal bracing members extending between the
21 outer surfaces of said planar members and an underlying
22 support structure.
- 23
- 24 10. A pipeline support structure comprising a series
25 of pipeline support means defining a pipeline path, in
26 which said pipeline support means comprise or include
27 support elements as claimed in any one of Claims 1 to
28 9.
- 29
- 30 11. A pipeline support structure as claimed in Claim
31 10, wherein said support means define an arcuate path.
- 32
- 33 12. A pipeline support structure as claimed in Claim
34 10 or Claim 11, wherein said support means each
35 comprises a roller track assembly including an endless
36 track having a plurality of pipeline support pads

1 disposed along its length, said support pads comprising
2 support elements as claimed in any one of Claims 1 to
3 9.
4

1/2

SUBSTITUTE SHEET (RULE 26)

2/2

INTERNATIONAL SEARCH REPORT

National Application No PCT/GB 96/02905

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 F16L1/23

According to International Patent Classification (IPC) or in both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 F16L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 486 324 A (OTIS ENGINEERING CORPORATION) 20 May 1992 see abstract see page 6, line 14 - line 33 see figure- 8	1,7-10
P,A	WO 96 12908 A (COFLEXIP STENA OFFSHORE LIMITED) 2 May 1996 see the whole document	1-12
A	US 4 531 391 A (ENGMAN GUY R) 30 July 1985 see abstract see figure 7	1,6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *I* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

1

Date of the actual completion of the international search

12 March 1997

Date of mailing of the international search report

28.04.97

Name and mailing address of the ISA
European Patent Office, P.O. SR18 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax. (+ 31-70) 340-3016

Authorized officer

Schaeffler, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

National Application No

PCT/GB 96/02905

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0486324 A -	20-05-92	US 5094340 A		10-03-92
WO 9612908 A	02-05-96	AU 3615995 A		15-05-96
US 4531391 A	30-07-85	DE 3211489 A FR 2502993 A GB 2097554 A,B JP 1579489 C JP 2005489 B JP 57177831 A SE 8102089 A		04-11-82 08-10-82 03-11-82 13-09-90 02-02-90 01-11-82 02-10-82