Descriptive Statistics

•••

PLSC 309 25 January 2019

What is description?

"If human beings could see in multiple dimensions, we wouldn't need data analysis."

-- Pedro Domingos, *University of Washington*

What is description?

country	beer_servings	spirit_servings	wine_servings
Afghanistan	0	0	0
Albania	89	132	54
Algeria	25	0	14
Andorra	245	138	312
Angola	217	57	45
Antigua & Barbuda	102	128	45
Argentina	193	25	221
Armenia	21	179	11
Australia	261	72	212
Austria	279	75	191
Azerbaijan	21	46	5
Bahamas	122	176	51
Bahrain	42	63	7
Bangladesh	0	0	0
Barbados	143	173	36
Belarus	142	373	42
Belgium	295	84	212
Belize	263	114	8
Benin	34	4	13

Mean	?
Median	?
Range	?

Two ways to summarize data

- Centrality
 - What is the middle point of the data?
 - Describes the average response
- Spread
 - What are the range of values?
 - How common are observations further away from the center?
 - Agnostic to direction

Two ways to summarize data

Centrality: Mean

- 1. Mean (geometric average)
- 2. Add up all values of a variable, divide by number of observations
- 3. Just use software!

Centrality: Median

- 1. Middle point of data
- 2. Sort all values of a variable, find the value that's at the number of observations / 2
- 3. Just use software!

Centrality: Mode

- 1. The most frequently occuring value
- 2. Use only for categorical variables or discrete variables with a small amount of values

Mean vs. Median

Mean	301,000
Median	45,000

Mean vs. Median

- For the median, all observations have the same weight
- For the mean, higher value observations have a higher weight

Spread: Range

- The lowest and highest values
- Not very informative...

$$\sigma^2 = \sum (X_i - \bar{X})^2 / N$$
 $\sigma^2 = variance$
 $X_i = the value of the ith element
 $\bar{X} = the mean of X$
 $N = the number of elements$$

The difference between a single observation and the mean

$$\sigma^2 = \sum (X_i - X)^2 / N$$
 $\sigma^2 = variance$
 $X_i = the value of the ith element
 $\bar{X} = the mean of X$
 $N = the number of elements$$

Squared to equalize positive and negative distances

$$\sigma^2 = \sum (X_i - \dot{X})^2/N$$
 $\sigma^2 = variance$
 $X_i = the value of the ith element
 $\bar{X} = the mean of X$
 $N = the number of elements$$

All the differences summed together and divided by total number of observations

$$\sigma^2 = \sum (X_i - \bar{X})^2 / N$$
 $\sigma^2 = variance$
 $X_i = the value of the ith element
 $\bar{X} = the mean of X$
 $N = the number of elements$$

Data visualization: histogram

- Y-axis represents number of observations
- X-axis represents values of variable

Data visualization: histogram

Data visualization: histogram

Review

- Descriptive statistics are a *lower dimensional* representation of data
- Centrality measures a "typical" or "most likely" value
 - o Mean
 - Median
 - o Mode
- Spread measures the average distance of observations from the center
 - Range
 - Variance
- We will come back to variance and histograms next week!