				1 6			
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{3 (1+2 k^2) t_1 t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
${\tau_1^{\#1}}_{+}{\alpha}_{\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$+^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\frac{1}{2} + \alpha$	$\mathfrak{r}_{1}^{\#2} +^{\alpha}$
	$\sigma_{1}^{\#1}$	$\sigma_1^{\#2}$ †	${\mathfrak l}_1^{\#1}$	σ_1^*	$\sigma_{1.}^{\#}$	$\tau_1^{\#}$	$\tau_1^{\#}$

$f_{1^-}^{\#2} \alpha$	0	0	0	$\frac{1}{3}$ <i>i k</i> (t_1 - 2 t_3)	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^{2}(t_{1}+t_{3})$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\Big -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\Big $
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}_{+} \omega_{1}^{\#2}_{+} \omega_{1}^{\#1}_{+} \alpha_{eta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

 $\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha'}\;\omega_{\kappa\alpha}^{\;\;\kappa}+\frac{2}{3}t_{3}\;\omega_{\alpha}^{\;\;\alpha'}\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_{1}\;\omega_{\kappa\lambda}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+\frac{2}{3}r_{2}\;\partial^{\beta}\omega^{\theta\alpha}_{\;\;\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\;\;\kappa}.$

Lagrangian density

 $\frac{1}{3} r_2 \, \partial_\theta \omega_{\alpha\beta}^{\quad \ \ \, \kappa} \partial_\kappa \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \, \partial_\theta \omega_{\alpha\beta}^{\quad \ \ \, \kappa} \partial_\kappa \omega^{\theta\alpha\beta} - \frac{1}{2} t_1 \, \partial^\alpha f_{\theta\kappa} \, \partial^\kappa f_{\alpha}^{\quad \ \, \theta} - \frac{1}{2} e_{\alpha\beta} \partial_\kappa f_{\alpha\beta}^{\quad \ \, \theta} - \frac{1}{2} e_{\alpha\beta} \partial$

 $(\alpha \partial^{\kappa} f') + \frac{1}{3} t_1 \omega_{\kappa\lambda}^{\ \lambda} \partial^{\kappa} f' - \frac{2}{3} t_3 \omega_{\kappa\lambda}^{\ \lambda} \partial^{\kappa} f' + \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa\alpha}^{\ \lambda} \partial^{\kappa} f' - \frac{2}{3} (\alpha \partial^{\kappa} f') + \frac{2}{3$

 $_{\kappa}^{}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_{1}\omega_{\kappa\alpha}^{c}$

 $\frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{}$

 $\int_{\lambda} \partial^{\kappa} f'_{l} + 2t_{1} \, \omega_{l\kappa\theta} \, \partial^{\kappa} f^{l\theta} -$

 $t_{1}^{\prime\prime}+rac{2}{3}\,t_{3}\,\partial_{\kappa}f^{\lambda}_{\lambda}$

 $\frac{2}{3}t_3 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{,} + \frac{1}{3}t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{,}$ $\frac{4}{3}t_3 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{,} - \frac{1}{3}t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{,} +$

 $\frac{1}{3}t_{1} \omega_{,\alpha}^{\alpha} \partial^{k} f'_{k} + \frac{2}{3}t_{3} \omega_{,\alpha}^{\alpha} \partial^{k} f'_{k} - \frac{1}{3}t_{1} \omega_{,\lambda}^{\lambda} \partial^{k} f'_{k} + \frac{2}{3}t_{3} \omega_{,\lambda}^{\lambda} \partial^{k} f'_{k} + \frac{2}{3}t_{3} \omega_{,\lambda}^{\lambda} \partial^{k} f'_{k} + \frac{1}{2}t_{1} \partial^{\alpha} f^{\lambda}_{k} \partial^{k} f_{\lambda\alpha} + \frac{1}{2}t_{1} \partial_{k} f^{\lambda}_{\beta} \partial^{k} f^{\lambda}_{\beta} - \frac{1}{2}t_{1} \partial^{\alpha} f^{\lambda}_{\lambda} \partial^{k} f_{\lambda\alpha} + \frac{1}{2}t_{3} \partial^{\alpha} f^{\lambda}_{\lambda} \partial^{k} f_{\lambda\alpha} + \frac{1}{3}t_{2} \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{1}{3}t_{1} \partial^{\alpha} f^{\lambda}_{\lambda} \partial^{k} f_{\lambda\alpha} + \frac{1}{3}t_{2} \partial^{\alpha} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{1}{3}t_{1} \partial^{\alpha} f^{\lambda}_{\lambda} \partial^{\alpha} f$

 $\frac{2}{3}r_2\,\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\,\partial^\beta\omega^{\;\alpha\lambda}_{\;\;\alpha}\partial_\lambda\omega^{\;\;\prime}_{\alpha\beta} + \frac{2}{3}r_2\,\partial^\beta\omega^{\;\lambda\alpha}_{\;\;\lambda}\partial_\lambda\omega^{\;\;\prime}_{\alpha\beta}$

Added source term: $\left|f^{lphaeta}\; \iota_{lphaeta} + \omega^{lphaeta\chi}\; \sigma_{lphaeta\chi}
ight.$

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_2^{\#1} +^{lphaeta\chi}$	

$-i\sqrt{2}kt_3$	$2 k^2 t_3$	0	0		$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{#1}{}_{\alpha\beta}$
<i>t</i> 3	$\frac{1}{2}kt_3$	0	0	$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
7	- i V			$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0}^{\#1}$ †	$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

σ_{0}^{*+}	$\tau_{0}^{\#\pm}$	$\tau_{0}^{#2}$	$\sigma_0^{\#1}$		#	1	1	3	3	3	2	16
$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0	nts			0	α == 0		$\alpha\beta$ == 0	$\alpha\beta$ == 0	
$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	Source constraints	sd		$\sigma_{0}^{\#1} == 0$	$\sigma_{1}^{\#2}$		$\sigma_1^{\#_+^2}$	$k \sigma_2^{\#1}$	
0	0	0	0	e co	irreps	0	ūk	+ 2 ī k	0 ==	+	- 2 <i>i</i>	:#
0	0	0	$\frac{1}{k^2 r_2 - t_1}$	Sourc	50(3)	$\tau_{0}^{\#2} ==$	$\tau_{0}^{\#1}$ - 2	α	$\tau_{1}^{\#_1\alpha}$	$\tau_1^{\#1}{}^{\alpha\beta}$	$\tau_2^{\#1}{}^{\alpha\beta}$	Total

0

0

0

0

0

0

	Massive particl	е
? $J^P = 0^- $?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^{2} \equiv 0$	Polarisations:	1
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

Z O	
O	
_	
\rightarrow	
ש	
S	
ĺΛ	
<u> </u>	
ന	
ĺΛ	
massless	
0,	
$\overline{}$	
\sim	
pai	
ュ	
\overline{C}	
<u>''</u>	
<u> </u>	