Digital Integrated Circuit Lecture 20 Circuit Simulation

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 19

- Cu wire
 - -Cu is a difficult material, however, we have managed to adopt it in the mass production.
- Wire capacitance
 - We need
 - Low-k material is desirable.
- Long wire
 - It significantly contributes to the delay.
 - Also, the energy consumption

8.1 Introduction

8.1. Introduction (1)

- Simulation Program with Integrated Circuit Emphasis
 - Developed in 1970's at UC Berkeley
 - Many commercial versions are available. (For example, HSPICE)
- Initially, written in FORTRAN for punch-card machines
 - Circuit elements are called cards.
 - Complete description is called a SPICE deck.

Larry Nagel, the main author of SPICE (Google Images)

8.1. Introduction (2)

- Consider a simple problem.
 - What is the current?

- Of course, you can easily answer that $I = \frac{V_A}{R_1}$.
- But, how can we teach our computer to solve this problem?

8.1. Introduction (3)

- Elements: Resistors, capacitors, etc.
 - A circuit is made by connecting the elements.
 - -They can have multiple terminals.
 - A resistor has two terminals.
 - A diode has two terminals.
 - A MOSFET has three (or four) terminals.

8.1. Introduction (4)

- Terminal current
 - Conventionally, an in-coming current is regarded as a positive one.

8.1. Introduction (5)

- Node: A point to which multiple terminals are tied.
 - -Usually, a dot is used to represent a node.
 - -There is a special node, GND.

8.1. Introduction (6)

- How can we describe a circuit?
 - -Of course, we can draw a circuit schematic. What else?
 - A netlist for this circuit reads:

8.1. Introduction (7)

A netlist for this circuit reads:

8.1. Introduction (8)

- Solve a simple problem by a numerical means.
 - Identifying the governing equation

8.1. Introduction (9)

- Our simple problem
 - We have only one node. Apply the KCL:

$$I_{va} + I_{r1} = 0$$
 KCL

– Two equations from elements:

Voltage source

$$V(out) - 0.0 = 1.0$$

Resistor

$$I_{r1} = \frac{V(out)}{1000}$$

GIST Lecture

8.2 SPICE Tutorial

8.2. SPICE tutorial (1)

Meaning of characters

Letter	Unit	Magnitude
а	atto	10 ⁻¹⁸
f	fempto	10 ⁻¹⁵
р	pico	10 ⁻¹²
n	nano	10 ⁻⁹
u	micro	10 ⁻⁶
m	milli	10 ⁻³
k	kilo	10 ³
х	mega	10 ⁶
g	giga	10 ⁹

Table 8.2

\ — /	
Letter	Element
R	Resistor
С	Capacitor
L	Inductor
K	Mutual Inductor
V	Independent voltage source
1	Independent current source
М	MOSFET
D	Diode
Q	Bipolar transistor
W	Lossy transmission line
X	Subcircuit
E	Voltage-controlled voltage source
G	Voltage-controlled current source
Н	Current-controlled voltage source
F	Current-controlled current source

Table 8.1

8.2. SPICE tutorial (2)

An example of RC circuit

```
Piecewise linear
         * rc.sp for SPICE3F5
         Vin in 0 pwl 0ps 0 100ps 0 150ps 1.0 lns 1.0
         R1 in out 2k
         C1 out 0 100f
TSTEP
                                          TSTOP
         .tran 20ps 1ns
         .plot tran v(in) v(out)
         .end
```

8.2. SPICE tutorial (3)

- M element for MOSFET
 - For NMOSFETs and PMOSFETs,

Mname drain gate source body type

- + W=<width> L=<length>
- + AS=<area source> AD = <area drain>
- + PS=<perimeter source> PD=<perimeter drain>

8.2. SPICE tutorial (4)

An example of DC analysis

```
* mosiv.sp for SPICE3F5
               .include models_1p2mu.sp
                            VSTOP
               Vgs g 0 0
               Vds d 0 0
VSTART
                                                  VINCR
               M1 d g 0 0 NM0S W=2.4 L=1.2
               .dc Vds 0 5.0 0.05 Vgs 0 5.0 1.0
               .print dc V(g) I(Vds)
               .end
```

8.2. SPICE tutorial (5)

- An example of inverter
 - It calculates the voltage transfer curve.

```
* inv.sp for SPICE3F5
.include models 1p2mu.sp
Vdd vdd 0 5.0
Vin a 0 0.0
M1 y a 0 0 NMOS W=2.4 L=1.2
M2 y a vdd vdd PMOS W=4.8 L=1.2
.dc Vin 0 5 0.01
.print dc V(a) V(y)
.end
```

Homework#5

- Due: AM08:00, November 21
- Problem#1
 - -Run the RC circuit example. (If you don't have any SPICE, then install it. For example, SPICE3f5 is freely available. You may try any SPICE.)
 - -Show the simulation result.

Thank you!