А. Кратчайшие расстояния

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дан ориентированный граф. Найдите расстояния от вершины $oldsymbol{x}$ до всех остальных вершин графа.

Входные данные

В первой строке входного файла содержатся два натуральных числа N и x ($1 \le N \le 1\,000$, $1 \le x \le N$) — количество вершин в графе и стартовая вершина соответственно. Далее в N строках по N чисел — матрица смежности графа: в i-й строке на j-м месте стоит «1», если из вершины i в вершину j идёт ребро, и «0», если ребра между ними нет. На главной диагонали матрицы стоят нули.

Выходные данные

Выведите через пробел числа $d_1, d_2, \dots d_n$, где d_i — это -1, если путей между x и i нет, и минимальное расстояние между x и i в противном случае.

В. Числа

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Витя хочет придумать новую игру с числами. В этой игре от игроков требуется преобразовывать четырехзначные числа не содержащие нулей при помощи следующего разрешенного набора действий:

- 1. Можно увеличить первую цифру числа на 1, если она не равна 9.
- 2. Можно уменьшить последнюю цифру на 1, если она не равна 1.
- 3. Можно циклически сдвинуть все цифры на одну вправо.
- 4. Можно циклически сдвинуть все цифры на одну влево.

Например, применяя эти правила к числу 1234 можно получить числа 2234, 1233, 4123 и 2341 соответственно. Точные правила игры Витя пока не придумал, но пока его интересует вопрос, как получить из одного числа другое за минимальное количество операций.

Входные данные

Во входном файле содержится два различных четырехзначных числа, каждое из которых не содержит нулей.

Выходные данные

Программа должна вывести последовательность четырехзначных чисел, не содержащих нулей. Последовательность должна начинаться первым из данных чисел и заканчиваться вторым из данных чисел, каждое последующее число в последовательности должно быть получено из предыдущего числа применением одного из правил. Количество чисел в последовательности должно быть минимально возможным.

С. Флойд

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в графе нет циклов отрицательного веса.

Входные данные

В первой строке вводится единственное число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках по N чисел задается матрица смежности графа (j-ое число в i-ой строке — вес ребра из вершины i в вершину j). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Выходные данные

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где j-ое число в i-ой строке равно весу кратчайшего пути из вершины i в j.

Е. Кратчайшие пути

ограничение по времени на тест: 4 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вам дан взвешенный ориентированный граф и вершина s в нём. Для каждой вершины графа u выведите длину кратчайшего пути от вершины s до вершины u.

Если решаете на питоне, рекомендуется использовать РуРу.

Входные данные

Первая строка входного файла содержит три целых числа n, m, s — количество вершин и ребёр в графе и номер начальной вершины соответственно ($2 < n < 2\,000, 1 < m < 5\,000$).

Следующие m строчек описывают рёбра графа. Каждое ребро задаётся тремя числами — начальной вершиной, конечной вершиной и весом ребра соответственно. Вес ребра — целое число, не превосходящее 10^{15} по абсолютной величине. В графе могут быть кратные рёбра и петли.

Выходные данные

Выведите n строчек — для каждой вершины u выведите длину кратчайшего пути из s в u. Если не существует пути между s и u, выведите «*». Если не существует кратчайшего пути между s и u, выведите «*».

F. Флойд существование

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дан ориентированный взвешенный граф. По его матрице смежности нужно для каждой пары его вершин определить, существует ли кратчайший путь между ними или нет.

Комментарий: кратчайший путь может не существовать если нет ни одного пути или есть путь сколь угодно маленького веса.

Входные данные

В первой строке входного файла число n ($1 \le n \le 100$) — количество вершин графа. В следующих n строчках по n чисел — матрица смежности графа (0 — отсутствие ребра, длины рёбер по модулю не превосходят 100).

Выходные данные

Выведите n строк по n чисел. j-е число в i-й должно соответствовать кратчайшему пути из вершины i в j. 0 — пути нет, 1 — кратчайший путь существует, 2 — есть путь сколь угодно маленького веса.