Luciano Rubio Romero	http://www.loociano.com	Chuletario CMDG (Comunicaciones Diai	itales) Febrero 2008
Luciano nubio nomero	TILLD.//WWW.IOUCIATIO.COTT	i Cituletario Civido (Corrunticaciones Diai	iluiesi i rebielo zooc

Chuletario de Comunicaciones Digitales

¿Te han servido estos apuntes?

Para sugerencias, agradecimientos o para comunicar erratas, escríbeme a: luciano@loociano.com

cc creative commons

Usted es libre de

copiar, distribuir y comunicar públicamente la obra

hacer obras derivadas

Bajo las condiciones siguientes

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra)

No comercial. No puede utilizar esta obra para fines comerciales

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta

בענומווט העטוט הטווופוט וונגף.//www.ioociano.com ן כחווופנמדוט כועווט *(בטווומוונעכוסוופג טועונוופ*ג) ן רפטופוט בטטל

Ejemplo de interés: Hallor regiones de decisión:

$$f(r_{1},r_{2}/s_{j}) = \left(\frac{1}{\sqrt{2\pi}\sigma_{ij}}\exp{-\frac{(r_{1}-\mu_{ij})^{2}}{2\sigma_{ij}^{2}}}\right)\left(\frac{1}{\sqrt{2\pi}\sigma_{ij}}\exp{-\frac{(r_{2}-\mu_{2i})^{2}}{2\sigma_{ij}^{2}}}\right) = \frac{1}{2\pi\sigma_{ij}\sigma_{2i}}\exp{\left[-\left(\frac{(r_{1}-\mu_{ij})^{2}}{2\sigma_{ij}^{2}} + \frac{(r_{2}-\mu_{2i})^{2}}{2\sigma_{2i}^{2}}\right)^{2}\right]}$$

decisión = argunax Pi f (
$$r_1, r_2/s$$
) = $\frac{Pi}{2\pi \sigma_{ij}} \sum_{z \neq j} exp \left[-\left(\frac{(r_1 - \mu_{ij})^2}{2\sigma_{ij}^2} + \frac{(r_2 - \mu_{ij})^2}{2\sigma_{ij}^2} \right) \right]$

$$P_{j} \cdot f (\overline{r_{1}}, \overline{r_{2}}/\overline{s_{j}}) = P_{kk} f (\overline{r_{1}}, \overline{r_{2}}/s_{k}) \Rightarrow lu \left(\frac{\sigma_{1k}\sigma_{2k}P_{j}}{\sigma_{1j}\sigma_{2j}P_{k}} \right) - \left[\frac{(\overline{r_{1}}-\mu_{1j})^{2}}{2\sigma_{2j}^{2}} + \frac{(\overline{r_{2}}-\mu_{2j})^{2}}{2\sigma_{2j}^{2}} \right] = - \left[\frac{(\overline{r_{1}}-\mu_{1k})^{2}}{2\sigma_{2k}^{2}} + \frac{(\overline{r_{2}}-\mu_{2k})^{2}}{2\sigma_{2k}^{2}} \right]$$