Module2 - R Markdown Document 1

Hugo Antonio Fernández

2022-10-29

Problema 1

- Sea $X_1, X_2, ..., X_n$ una m.a. con $X \sim Poison(\lambda)$
 - Demostrar que
 - \ast (a) X es una función de distribución.
 - * (b) La $E(X) = \lambda$
 - * (c) La $V(X) = \lambda$
 - Obtener
 - * (a) La función de verosimilitud de la m.a.

Problema 2

- 1. Sea $X_1, X_2, ..., X_n$ una m.a. con $X \sim Poison(\lambda)$
 - a. Demostrar que
 - i. X es una función de distribución.
 - ii. La $E(X) = \lambda$
 - iii. La $V(X) = \lambda$
 - b. Obtener
 - i. La función de verosimilitud de la m.a.

Problema 3

- 1. Sea $X_1, X_2, ..., X_n$ una m.a. con $X \sim Poison(\lambda)$
 - a. Demostrar que
 - i. X es una función de distribución.
 - ii. La $E(X) = \lambda$
 - iii. La $V(X) = \lambda$
 - b. Obtener
 - i. La función de verosimilitud de la m.a.

Problema 4

- 1. Sea $X_1, X_2, ..., X_n$ una m.a. con $X \sim Poison(\lambda)$
 - a. Demostrar que
 - i. X es una función de distribución.
 - ii. La $E(X) = \lambda$

iii. La
$$V(X) = \lambda$$
b. Obtener

i. El estimador de máxima verosimilitud \$X\$

Prueba el siguiente código:

```
2+2
mean(c(1,2,3,4,5))
```

Libros

- Annete, D. (2008). An Introductión to Generalized Linear Models. Disponible en https://aulamex-my.sharepoint.com/:b:/g/personal/hugo_antonio623_aulamexiquense_mx/EVn-r_yCgrhBhsfthjFprtYBhr3M5K9VdyIRtekMBChKiQ?e=56uSXB
- Annete, D. (2008). An Introductión to Generalized Linear Models. Disponible aquí