Presentation on Scientific Methodology and N+N-1 Rule on Experimental Design (Harris-Stowe State Undergraduate Summer Workshop)

Scientific method and experimental design

BIO0403 (Harris-Stowe State University) **Undergraduate Summer Fellowship Lecture**

Jinsong Zhang

6/27/2014

2

Elements of scientific method (progressive stepwise process) . Observation (to gather some information about the question) Formulate a Hypothesis (to answer the question) 4. Test the hypothesis by performing an experiment 5. Analyze the results (from data collected) 6. Interpret the data and draw conclusions (that serve as a starting point for new 7. Communicate the Results (Present to the audience, Publish the results) Retest (frequently done by other scientists)

Hypothesis → Predictions → experiment • Hypothesis → Predictions

Competing hypotheses

(X-ray result)

Example:

· DNA is a triple helix

· DNA is a double helix · phosphate/sugar inside · phosphate/sugar outside

Outline

- · Scientific Method

Outline

- Hypothesis

· A body of techniques for acquiring new knowledge, or correcting/integrating previous knowledge;

What is Scientific Method?

- · Based on empirical and measurable evidence subject to scientific principles of reasoning;
- · Consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses (Oxford English Dictionary)

Formulate a hypothesis

- · A proposed explanation for a phenomenon
- · Based on previous observations that cannot satisfactorily be
- · Testable
- Hypothesis ≠ Theory Scientific Hypothesis: yet to be tested (may be true or false)
 - Scientific theory: already tested, generally accepted to be the accurate explanation behind an observation

3

Outline

- Scientific Method
- Hynothesis
- Experiment
- Common causes of experimental failure
 - Blind trust in authority
 - Notebooks
 - Intolerable margin of error
 - · Controls
 - N±(N-1) rule

10

- A successful experiment does not necessary generate data in support of the hypothesis.
- However, it must be reproducible and informative, because...

11

- Unproductive experimenters could not find the right way to solve the problem.
- They could not get the techniques to work reliably and predictably either.

X III X III

13

Outline

- · Scientific Method
- · Hypothesis
- Experiment
- Common causes of experimental failure
 - Blind trust in authority
 - Notebook
 - . Intolerable margin of error
 - Controls
 - N+(N-1) ru

14

Common causes of experimental failure

- · Blind (excessive) trust in authorities
- · Intolerable margin of error
- Key underlying causes of poor experimental design and failure

What or who are authorities (pre-existing knowledge)?

- What textbook, Scientific Journals, review articles, regular articles, thesis, meeting abstract, handbook, instrument manual, reagent data sheet, catalog, notebook......
- Who—Nobel prize winner, thesis advisor, other professors, senior students, fellow students, friends, relatives, salesmen, politicians, reporters,

16

Notebooks

Things to be recorded in a notebook should include everything related to this particular experiment:

- Date, purpose, background (reference, etc.), design (table, "N+(N-1)" rule), reagents/solutions (data sheet)
- protocol (flowchart, make remarks during the experiment)
- $\bullet \ results \ (numbers/pictures, printouts, statistic \ analysis) \\$
- · discussion.

17

Examples of blind trust:

- 1. Special mouse strain, cell line,....
- 2. Antibody specificity,....
- 3. Pipetman setting
- 4. Water purity
- 5. Plasmid maps6. pH meter readout.
- CO2 level in the incubator.
- Protocols from senior students
- 9. Ideas from meetings
- 10.

12 15 18

Appendix_E

Controls

- Always include controls in your experimental design.
- If positive controls do not work or not included, the negative results are absolutely meaningless.
- If negative controls do not work or not included, the positive results are absolutely meaningless.

25

Seeing is believing, doing is knowing

- To hear is to forget;
 Everything you have heard from lectures you'll forget soon.
- To see is to remember;
 Whatever you have learned by watching others doing you'll remember for a while.
- To do is to know!
 Carrying out a challenging task with your own efforts makes it unforgettable

How to optimize the conditions —the "N + (N-1)" rule

Independent variables	Range (margins)	N
Time (hr)	6, 12, 18, 24	4
pH	6.9, 7.4, 7.9	3
Ab(dilution)	1/500, 1/1000, 1/2000	3
FCS(%)	0.1, 0.5, 1, 2	4

The number of total experiments needed = 4 + (3-1) + (3-1) + (4-1) = 11

22

23

Conventional/thorough test would need 4X3x3x4= 144 assays

30X Z THE	'N+	(N-1	1) ru	le':	cons	truc	ting	a ta	ble	to ti	trate	ke	y co	mpo	nents
Reaction	En 1	zym 2	e A () 5*	ւց) 10	Mg(Cl ₂ (m 2*	M) 5	10	KCI 25*	(mM) 50	100	7	рН 8*	9	Result (cpm)
1			Π												30
2															60
3‡															65
4															68
5															50
6															60
7															75
8															50
9															40
10															62
11			Г												55

26

20

Common causes of experimental failure

- Blind (excessive) trust in authorities
- Intolerable margin of error
- Key underlying causes of poor experimental design and failure

21 24 27

Appendix_E

	• 'N+	Box 2 The 'N+(N-1) rule': constructing a table to titrate key components													
		•													
Reaction	Enzyme A (μg) 1 2 5* 10			MgCl ₂ (mM)				40	pH			Results			
	1	2	5^	10	1	2"	5	1	Z	5-	10	-/	8^	9	(cpm)
1															
2															
3‡															
4															
5															
6														-	
7															
8				1											
9		\vdash													
10		-												-	_
11		-	-	-								_	_	-	

28

Elements of scientific method (progressive stepwise process)

1. 2. 3. 4. 5. 6. 7. 8.

29

Thank you!

Questions?