5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, $i = 1, \dots, m$ $h_i(x) = 0$, $i = 1, \dots, p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\operatorname{\mathbf{dom}} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

$$f(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , u

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$\begin{array}{ll} \text{minimize} & x^T x \\ \text{subject to} & Ax = b \end{array}$$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- ullet to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T AA^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b, \quad x \succeq 0 \\ \end{array}$$

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

 \bullet L is affine in x, hence

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \left\{ \begin{array}{ll} -b^T\nu & A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{array} \right.$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property: $p^{\star} \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Equality constrained norm minimization

$$\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{array}$$

dual function

$$g(\nu) = \inf_{x}(\|x\| - \nu^T A x + b^T \nu) = \begin{cases} b^T \nu & \|A^T \nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

where $||v||_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

proof: follows from $\inf_x(\|x\|-y^Tx)=0$ if $\|y\|_*\leq 1$, $-\infty$ otherwise

- if $||y||_* \le 1$, then $||x|| y^T x \ge 0$ for all x, with equality if x = 0
- if $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $u^T y = ||y||_* > 1$:

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

lower bound property: $p^* \geq b^T \nu$ if $||A^T \nu||_* \leq 1$

Two-way partitioning

minimize
$$x^T W x$$
 subject to $x_i^2 = 1, \dots, n$

- \bullet a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$g(\nu) = \inf_{x} (x^T W x + \sum_{i} \nu_i (x_i^2 - 1)) = \inf_{x} x^T (W + \mathbf{diag}(\nu)) x - \mathbf{1}^T \nu$$
$$= \begin{cases} -\mathbf{1}^T \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

lower bound property: $p^* \geq -\mathbf{1}^T \nu$ if $W + \mathbf{diag}(\nu) \succeq 0$

example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $p^{\star} \geq n\lambda_{\min}(W)$

非平凡下界

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \leq b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \mathbf{dom} \ f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Example 'min
$$f(x) + g(y)$$

set $Ax - y = 0$
f at $Ax - y = 0$
f xy $Ax - y = 0$
 $h(y) = \inf_{x,y} \{f(x) + g(y) + \langle y, Ax - y \rangle\}$
 $= \inf_{x,y} \{f(x) + g(y) + \langle y, Ax - y \rangle\}$
 $= \inf_{x,y} \{f(x) + \langle A^{T}y, x \rangle\} + \inf_{y} \{g(y) - \langle y, y \rangle\}$
 $= -f^{*}(-A^{T}y) - g^{*}(y)$
用 发轮 函数 写 出其 对偶

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- finds best lower bound on p^* , obtained from Lagrange dual function
- ullet a convex optimization problem; optimal value denoted d^\star
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- ullet often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5–5)

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T\nu + c \succeq 0 \\ & x \succ 0 & \end{array}$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- (always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \nu \\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array}$$

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: $d^* = p^*$ 之目标 寻找相学科

of hold in general $(x, \lambda, v) = (x, \lambda$

- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called $(X, X, V) \rightarrow L(XX, V)$ constraint qualifications

约束规范

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $Ax = b$

if it is strictly feasible, i.e.,

$$\exists x \in \mathbf{int} \, \mathcal{D} : \qquad f_i(x) < 0, \quad i = 1, \dots, m, \qquad \underline{Ax = b}$$

- ullet also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)
- can be sharpened: e.g., can replace $int \mathcal{D}$ with $relint \mathcal{D}$ (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \quad \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- ullet in fact, $p^\star=d^\star$ except when primal and dual are infeasible

Quadratic program

primal problem (assume
$$P \in \mathbf{S}^n_{++}$$
) $P \not\vdash \mathbb{Z}$
minimize $x^T P x$
subject to $Ax \leq b$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (Ax - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

$$\begin{array}{ll} \text{maximize} & -(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- ullet in fact, $p^\star=d^\star$ always

A nonconvex problem with strong duality

minimize
$$x^TAx + 2b^Tx$$
 \\
subject to $x^Tx \leq 1$

 $A \not\succeq 0$, hence nonconvex $A \in S_n$

$$A \in S_n$$

dual function:
$$g(\lambda) = \inf_x (x^T(A + \lambda I)x + 2b^Tx - \lambda)$$

- minimized by $x=-(A+\lambda I)^{\dagger}b$ otherwise: $g(\lambda)=-b^T(A+\lambda I)^{\dagger}b-\lambda$

dual problem and equivalent SDP:

$$\begin{array}{ll} \text{maximize} & -b^T (A + \lambda I)^\dagger b - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 \\ b \in \mathcal{R}(A + \lambda I) \end{array} \qquad \text{maximize} \quad -t - \lambda \\ \text{subject to} & \begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0 \end{array}$$

strong duality although primal problem is not convex (not easy to show)

Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \leq 0$

interpretation of dual function:

$$g(\lambda) = \inf_{(u,t)\in\mathcal{G}} (t + \lambda u), \quad \text{where} \quad \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to $\mathcal G$
- hyperplane intersects t-axis at $t = g(\lambda)$

类似 考虑 min $f_0(x)$. Sit. $f(x) \leq 0$, h(x) = 0 $77G = \{f(x), h(x), f_0(x) \in \mathbb{R}^M \times \mathbb{R}^P \times \mathbb{R} \mid x \in D\}$ $g(\lambda, \mu) = \inf L(x, \lambda, \mu) = f_0(x) + \lambda^7 f(x) + \mu^7 f_0(x)$ $= (\lambda \mu, i) (u, v, t) (u, v, t) \in G$ $\Rightarrow (\lambda, \mu, 1)' (u, v, t) \geq g(\lambda, \mu) \quad \forall (u, v, t) \in G$ 定义) RMXRXR中 G 的一个支撑超平面的方向 P p*: in + {t | (u, v, t) ∈ 9. U. ∈ 0, V = 0] $= \inf \left\{ (\lambda, \mu, \iota)^T (u, v, t) \mid (u, v, t) \in G, u \leq 0, v \geq 0 \right\}$ $\left\{ (u, v, t) \in G \right\} = g(x, y)$ > inf >

epigraph variation: same interpretation if \mathcal{G} is replaced with

 $\mathcal{A} = \{(u,t) \mid f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\}$ $= \mathcal{G} + (\mathbb{R}_+ \times \mathbb{R}_t)$ $\lambda u + t = g(\lambda)$

 $g(\lambda)$

u

- holds (if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- for convex problem, $\mathcal A$ is convex, hence has supp. hyperplane at $(0,p^\star)$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

类似考虑 $A = G + [R_+^m \times \{0\} \times R_+)$ = $\{(u,v,t) \mid \exists x \in D \mid s,t \mid f(x) \leq u, h(x) = v. \mid f_o(x) \leq t\}$ 刚 A为B唐f,h,fo为13) $P^* = \{ + | (o, o, t) \in A \}$ The $\lambda > 0$ $\chi^{7}f(x) + \mu^{7}h(x) + tf(0) + \chi^{7}\mu + ts$ $\Rightarrow (\lambda, \mu, I)'(u, v, t) \geq g(\lambda, \mu) \quad \forall (u, v, t) \in A.$ It min fox Proof (SCQ) 老田 X e int D.
Yank (A)=P s.t. $f(x) \leq 0$ Ax=b,A = IRPXN 考虑 B= (0,0,5) | S<p*) B R) ANB=¢ にヨ(入,び,ル) #0及2. 使 Y(U, v, t) EA 有 文TU+ TV+H+ Zd. * $\forall (U, v, t) \in \beta \neq \emptyset$ 由图 (12) 入301 H30 再由 @ 知 Ht≤ ~ bt < p* ⇒ Hp* ≤ ~.

子是 ブルナシャナル+ 3 × 3 × P*

一般用第法时用门子。以一引入、川台全作为终止条件

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*) \Rightarrow \sqrt{\lambda} L(x^*, \lambda^*, \nu^*) = 0$ ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \qquad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

强对偶不最优别KKT

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$

hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$
 $+ k \in T$ $\Rightarrow \mathbb{R}^{\mathcal{U}}$

if **Slater's condition** is satisfied:

x is optimal if and only if there exist λ , ν that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- ullet generalizes optimality condition $abla f_0(x) = 0$ for unconstrained problem

example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$
 subject to $x \succeq 0$, $\mathbf{1}^T x = 1$

x is optimal iff $x \succeq 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbf{R}^n$, $\nu \in \mathbf{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

- ullet n patches; level of patch i is at height α_i
- flood area with unit amount of water
- ullet resulting level is $1/
 u^\star$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda, \nu)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ subject to $\lambda \geq 0$ $h_i(x) = 0, \quad i=1,\ldots,p$

perturbed problem and its dual

$$\begin{array}{lll} & \text{min.} & f_0(x) & \text{max.} & g(\lambda,\nu) - u^T\lambda - v^T\nu \\ & \text{s.t.} & f_i(x) \leq u_i, & i = 1,\dots,m & \text{s.t.} & \lambda \succeq 0 \\ & h_i(x) = v_i, & i = 1,\dots,p & \\ & & & & & & \\ & & & & & \\ \bullet & x \text{ is primal variable; } u, v \text{ are parameters} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

- $p^{\star}(u,v)$ is optimal value as a function of u, v
- ullet we are interested in information about $p^\star(u,v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ^* , ν^* are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star},\nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

sensitivity interpretation

- if λ_i^{\star} large: p^{\star} increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^{\star} small: p^{\star} does not decrease much if we loosen constraint i ($u_i > 0$)
- if ν_i^{\star} large and positive: p^{\star} increases greatly if we take $v_i < 0$; if ν_i^{\star} large and negative: p^{\star} increases greatly if we take $v_i > 0$
- if ν_i^{\star} small and positive: p^{\star} does not decrease much if we take $v_i > 0$; if ν_i^{\star} small and negative: p^{\star} does not decrease much if we take $v_i < 0$

local sensitivity: if (in addition) $p^*(u,v)$ is differentiable at (0,0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for λ_i^{\star}): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \ge -\lambda_i^{\star}$$

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \le -\lambda_i^{\star}$$

hence, equality

 $p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize
$$f_0(Ax+b)$$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize
$$f_0(y)$$
 maximize $b^T \nu - f_0^*(\nu)$ subject to $Ax + b - y = 0$ subject to $A^T \nu = 0$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$

$$= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

norm approximation problem: minimize ||Ax - b||

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

$$= \begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

(see page 5-4)

dual of norm approximation problem

maximize
$$b^T \nu$$
 subject to $A^T \nu = 0, \quad \|\nu\|_* \leq 1$

Implicit constraints

LP with box constraints: primal and dual problem

minimize
$$c^Tx$$
 maximize $-b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2$ subject to $Ax = b$ subject to $c + A^T\nu + \lambda_1 - \lambda_2 = 0$ $\lambda_1 \succeq 0, \quad \lambda_2 \succeq 0$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -1 \leq x \leq 1 \\ \infty & \text{otherwise} \end{cases}$$
 subject to $Ax = b$

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$
$$= -b^T \nu - ||A^T \nu + c||_1$$

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Problems with generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

 \preceq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbf{R}^n \times \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \dots, \lambda_m, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_i^*} 0$, then

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \dots, \lambda_m, \nu)$

dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_m, \nu)$$

subject to $\lambda_i \succeq_{K_i^*} 0, \quad i = 1, \ldots, m$

- weak duality: $p^* \ge d^*$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $(F_i, G \in S^k)$

minimize
$$c^T x$$

subject to $x_1 F_1 + \cdots + x_n F_n \leq G$

• Lagrange multiplier is matrix $Z \in \mathbf{S}^k$

- Lagrangian $L(x,Z) = c^T x + \mathbf{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(F_i Z) + c_i = 0, & i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)