Thursday, January 24, 2019 11:09 PM

BASIC SWITCH FORWARDING METHODS AND CONSIDERATIONS

LAN switches: Provides connection point for end users into network: Control of info in LAN environment Routers: Facilitate movement of info between LAN's: Unaware of individual hosts Switches function to provide:

Voice/Video data transfer | Security

Elements of a Converged Network: Collaboration w/voice/IP phones/gateways/video/conferencing Converged support may include features like:

- 1. Call Control: Telephone/call processing/caller ID/call transfer/hold/conference
- 2. Voice messaging: Voicemail
- 3. Mobility: Receive important calls wherever
- 4. Automated Attendant: Serve customers by routing calls directly to department/individual

Benefits	○ 1 physical network to install/manage: Substantial savings
	 No need for separate installation/management for voice/video/data networks
	o Integrates IT management: Provides PC softphone support/point-to-point video

Cisco Borderless Network: A network that can connect anyone/anytime/anywhere on any device securely/seamlessly

- Designed to address IT/business challenges/work patterns
- · Hierarchical infrastructure of HW that is scalable/resilient & policy-based SW solutions

2 Primary sets of services: Network Services || User/Endpoint Services

Borderless network quidelines built upon the following:

- 1. Hierarchical: Understand role of each device/every tier (deployment/operation/management)
- 2. Modularity: Seamless expansion/integrated services/on-demand basis
- 3. **Resiliency:** Satisfy user expectations (network always on)
- 4. Flexibility: Intelligent traffic sharing
- 3 Critical Layers within Tiered Designs: Core || Distribution || Access

Core	 Backbone: Connectivity between distribution switches Fault isolation/high-speed switching Can be combined with distribution (collapsed design)
Distributio n	 Flow control: Allows data flow: Interfaces w/backbone Provides intelligent switching/routing/security Redundancy: Works between access/core layers to provide functions Layer 2 broadcast domains/Layer 3 routing boundaries Differentiated services to various classes of service apps & edge of network
Access	 Where traffic enters/exists network (end devices connect) Access to user Access switches connect to distribution switches: Implement foundation (routing/QoS/security) Helps apps operate on switched network safely/securely

Bigger network: More layers matter

Flat network: Every device shares BW: Typical w/hubs, which are bad/cause collisions

Role of switched networks:

- QoS/filtered traffic
- 2. Additional security
- 3. Wireless networking/connectivity support
- 4. Support for new tech such as IP telephony/mobility services

When selecting a switch: Modular/stackable/non-stackable configuration/thickness (rack units)

Fixed	 Doesn't support features/options beyond what it comes with (model determines) Example: A 24 port gigabit fixed switch can't support additional ports/configs
Modular	 More flexibility in config: Comes w/different sized chassis Allows for installation of different modular line cards Example: A 24 port line card can be added to modular switch giving it 48 ports
Stackable	 Can be interconnected using cable: Provides high BW between switches Cisco StackWise tech allows interconnection of up to 9 switches Can be stacked: Operates as 1 larger switch Desirable where fault tolerance/BW are critical (modular costly) Recovers quickly if single switch fails Special port for interconnections Cisco stackable supports StackPower tech (power sharing among stack members)

Business considerations when selecting switches:

- Cost
- 1. Port Density: Must support appropriate devices
- 2. Power: Phones/IP phones/compact switches over PoE/chassis support/redundant power supplies
- 3. Reliability: Continuous access to the network
- 4. Port speed: Primary concern to end-users
- 5. Frame buffers: Ability to store frames when congested ports to servers/other areas of network
- 6. Scalability: Opportunity for growth

General Concept of Switching in Networks:

- Switching/forwarding frames universal in networking/telecommunications
- Various types used in LANs/WANs/PTSN (Public Switched Telephone Network)

A device makes a decision based on 2 criteria:

- 1. Ingress port
- 2. Destination address
- LAN switch maintains table to determine how to find traffic

Ingress port: Used to describe where frame enters device on a port

Egress port: Where a frame is leaving device from a port

How it works:

- 1. Message enters ingress port 1 & destination is EA (on MAC/CAM table we'll pretend it's port 4)
 - 2. Switch forwards traffic out of port 4

Only 1 master switching table: Strict association between addresses/ports

Message w/given destination address always exits same egress

Cisco switches forward Ethernet frames based on destination MAC of frames

• Made up of integrated circuits/accompanying SW that controls data passing through

To know which port to use to transmit frame: Must learn which devices exist on each port

As it learns relationship of ports/devices: It builds MAC address/CAM table

CAM Table: Content Addressable Table: CAM is a special type of memory used in high-speed switching apps

- Switches determine how to handle incoming data frames by maintaining MAC table
- · Built by recording MAC address of each connected device to ports
- Uses info in MAC table to send frames for specific device out of designated port
- Switch populates MAC table on SOURCE MAC addresses

When it receives an incoming frame with a destination MAC NOT found in the table:

- Switch forwards frames to all ports (flooding) except ingress
- When destination device responds: Switch adds SOURCE MAC address of frame/port received to the table

Interconnected switches: MAC table contains multiple MAC addresses for a single port connected to other switches

Building	1. Switch receives frame from PC 1 on port 1
MAC Table	2. Switch examines source MAC address: Compares it to table
	o If address NOT in table: Associates source MAC of PC 1 w/ingress port 1 on table
	1. If MAC table had entry for source: Resets aging timer (entries kept for 5 min)
	2. Switch records source address info: Switch examines destination MAC address

of destination address NOT in NAAC table, on broadcast address.
If destination address NOT in MAC table, or broadcast address:
1. Switch floods frame to all ports except ingress
2. Destination device replies to frame w/unicast frame to PC 1
3. Switch enters source MAC of PC 3 & port number of ingress to table. Destination
add. of frame & associated egress port is found in table
4. Switch can now forward frames between source/destination devices w/out
flooding b/c it has entries in table

Switch Forwarding Methods:

Store-and- Forward	■ Receives entire frame: Computes CRC ■ If CRC is valid: Switch looks up destination which determines outgoing interface ■ Frame is forwarded out of correct port Cisco's primary switch method drops frames that don't pass FCS checks 2 distinguished differences of cut-through: 1. Error checking 2. Automatic buffering
Cut-Through	■ Forwards frame before entirely received ■ At minimum: Destination address of frame must be read before frame can be forwarded ■ Advantage: Ability of switch to start finding a frame faster/earlier 2 primary characteristics: 1. Rapid frame forwarding 2. Fragment free

Error Checking: Performs check after receiving frame on ingress port

- Switch compares FCS (Frame Check Sequence) value in last field of datagram against own FCF calculations
- IF error free: Forwards frame
- IF NOT error free: Frame is dropped

Automatic buffering:

- Buffering provides flexibility to support any mix of Ethernet speeds
- Any mismatch in speeds between ingress/egress ports & switch stores entire frame in a buffer
- It computes FCS check: Forwards it to egress port buffer: Sends it

Rapid Frame Forwarding	 Makes forwarding decision as soon as it's looked up destination MAC of frame in MAC table Switch doesn't have to wait for whole frame to enter ingress before making forwarding decision Switch (w/ASIC bytes perform functions relative to IPv4 layers 3/4) Doesn't drop most invalid frames Frames w/errors forwarded to other segments on network Can have negative impact on BW Can analyze first 14 bytes (source MAC/destination MAC/other type fields) & examine up to 4
Fragment Free	 Switch waits for collision window (64 bytes) to pass before forwarding frame Each frame checked into data field to ensure no fragmentation Provides better error checking then cut-through w/no increase in latency Low latency: Appropriate for HPC (high-performance computing) apps: Require latencies of 10ms/less

Collision Domains:

Broadcast domain: Collection of interconnected switches forms single broadcast domain **MAC broadcast domain:** ALL devices on LAN that receive broadcast frames from a host

Collision Domains	 Shared network BW/medium where we have collision: Devices compete for the medium (must take turns)
Domains	 Collision: when 2 electrical signals collide (hubs)
	 Segments share same BW (unidirectional)

	 When 2 or more devices w/in segment try to communicate at same time: may have collisions Every port on a switch is its own collision domain Full duplex
Broadcast	 Switches forward broadcasts out each port except ingress
Domains	 Layer 3 device require to separate broadcast domains (router)
	 Routers used to segment collision/broadcast domains
	 A frame with destination MAC is received by all devices in broadcast
	 Layer 2 broadcast domain: AKA MAC broadcast domain
	 While switches filter frames based on MAC: They don't filter broadcast frames
	 May be necessary for locating other devices/network services
	May reduce network efficiency
	 When switches are connected, domain is increased

How do switches help?

High ort density: Low cost High speed/internal switching Large frame buffers Separate collision domains

Alleviating Network Congestion:

- Switches allow segmentation of LAN into separate collision domains
- Each port of switch represents separate collision domain & provides full BW to device(s) connected
- Provide full-duplex communication between devices
- Interconnect LAN segments (collision domains), use table of MAC addresses to determine segment to which frame is set
- Lessen/eliminate collisions

High port density	 24/48 port switches are often 1 rack unit (1.75 inches) in height Operate at speeds of 100Mb/s, 1Gb/s & 10Gb/s Large switches may support hundreds of ports
Large frame buffers	 Ability to store more received frames before having to start dropping them
Port speed	 May be possible to support mixture of speeds
Fast internal switching	 High performance May be fast internal bus/shared memory, which affects performance
Low per-port cost	 Provide high-port density at lower cost Accommodate designs featuring fewer users per segment; therefore increasing average BW per user