MTH-245 Final project Part 2 Fall 2022

Name:

- 1 Part 1: Abstract
- 2 Part 2: Introduction
- 3 Part 3: Exploratory Data Analysis
- a. Graphically summarize the variables in your dataset.

```
violin.BirthWeight <- ggplot(dat.births, aes(x=BirthWeightGm, y=""))+</pre>
  geom_violin(fill = "lightblue",
              trim = FALSE)+
  geom_boxplot(width = .3,
               fill = "white") +
  theme_bw()+
  xlab("Birth Weights")+
  ylab(" ")+
  ggtitle("Distribution of Birth Weights",
          subtitle = "NCBirths Data")
violin.GestationPeriod <- ggplot(dat.births, aes(x=Weeks, y=""))+
  geom_violin(fill = "lightblue",
             trim = FALSE)+
  geom_boxplot(width = .3,
               fill = "white") +
  theme_bw()+
  xlab("Weeks")+
  ylab(" ")+
  ggtitle("Distribution of Gestation Period",
          subtitle = "NCBirths Data")
violin.MomAge <- ggplot(dat.births, aes(x=MomAge, y=""))+</pre>
  geom_violin(fill = "lightblue",
              trim = FALSE)+
  geom_boxplot(width = .3,
               fill = "white") +
  theme_bw()+
  xlab("Age (years)")+
```

```
ggtitle("Distribution of Mothers' Ages",
            subtitle = "NCBirths Data")
 violin.Race <- ggplot(dat.births, aes(x=BirthWeightGm, y=MomRace))+</pre>
    geom_violin(fill = "lightblue",
               trim = FALSE) +
    geom_boxplot(width = .3,
                 fill = "white") +
   theme_bw()+
   xlab("Birth Weight")+
   ylab("Races")+
   ggtitle("Distribution of Birth Weights by Mothers' Race",
            subtitle = "NCBirths Data")
  violin.Sex <- ggplot(dat.births, aes(x=BirthWeightGm, y=SexCat))+</pre>
    geom_violin(fill = "lightblue",
               trim = FALSE)+
    geom_boxplot(width = .3,
                fill = "white") +
   theme_bw()+
   xlab("Birth Weight")+
   ylab("Sex")+
    ggtitle("Distribution of Birth Weights by Childrens' Sex",
            subtitle = "NCBirths Data")
 violin.Smoke <- ggplot(dat.births, aes(x=BirthWeightGm, y=SmokeCat))+</pre>
    geom_violin(fill = "lightblue",
               trim = FALSE)+
   geom_boxplot(width = .3,
                 fill = "white") +
   theme_bw()+
   xlab("Birth Weights")+
   ylab("Smokes (yes or no")+
   ggtitle("Distribution of Birth Weights by Mothers Who Smoke",
            subtitle = "NCBirths Data")
 violin.BirthWeight + violin.GestationPeriod + violin.MomAge /
 violin.Race + violin.Sex + violin.Smoke
## Error in ggplot(dat.births, aes(x = BirthWeightGm, y = "")): object 'dat.births' not found
   ## Error in ggplot(dat.births, aes(x = Weeks, y = "")): object 'dat.births' not found
   ## Error in ggplot(dat.births, aes(x = MomAge, y = "")): object 'dat.births' not found
## Error in ggplot(dat.births, aes(x = BirthWeightGm, y = MomRace)): object 'dat.births' not
                                             found
 ## Error in ggplot(dat.births, aes(x = BirthWeightGm, y = SexCat)): object 'dat.births' not
                                             found
## Error in ggplot(dat.births, aes(x = BirthWeightGm, y = SmokeCat)): object 'dat.births' not
```

vlab(" ")+

Figure 1: Violin plots of each variable.

found
Error in eval(expr, envir, enclos): object 'violin.BirthWeight' not found

the shape of the distribution of each variable any unusual looking observations

From 1 we can see that there is variability in almost all of the variables have and many odd observations.

```
histogram.BirthWeight<- ggplot(dat.births, aes(x=BirthWeightGm))+
  geom_histogram(fill = "lightblue",
                 color = "black",
                 bins = 5) +
  theme_bw() +
  xlab("Birth Weights")+
  vlab("Count of Weight(gm)")+
  ggtitle("Frequencies of Birth Weights")
histogram.Gestation <- ggplot(dat.births, aes(x=Weeks))+
  geom_histogram(fill = "lightblue",
                color = "black",
                 bins = 5) +
  theme_bw() +
  xlab("Gestation Period")+
  vlab("Count of Weeks")+
  ggtitle("Frequencies of Gestation Periods")
histogram.MomAge <- ggplot(dat.births, aes(x=MomAge))+
  geom_histogram(fill = "lightblue",
                 color = "black",
                 bins = 5) +
  theme_bw() +
  xlab("Ages of Mothers(years)")+
  ylab("Count of Ages")+
  ggtitle("Frequencies of Ages")
histogram.BirthWeight + histogram.Gestation + histogram.MomAge
  ## Error in ggplot(dat.births, aes(x = BirthWeightGm)): object 'dat.births' not found
      ## Error in ggplot(dat.births, aes(x = Weeks)): object 'dat.births' not found
```

```
## Error in ggplot(dat.births, aes(x = MomAge)): object 'dat.births' not found
## Error in eval(expr, envir, enclos): object 'histogram.BirthWeight' not found
```

Figure 2: Grid of histograms for the quantitative variables.

2 shows that the quantitative variables do not follow normal distributions and are all skewed.

b. Numerically summarize the variables in your dataset.

```
sumstats <- dat.births %>% summarize(mean=mean(diff.happ),
                                    variance=var(diff.happ),
                                    sample_size = n())
## Error in summarize(., mean = mean(diff.happ), variance = var(diff.happ), : object 'dat.births'
```

c. Create a scatterplot matrix and table of correlations.

```
library(GGally)
correlationsmatrix \leftarrow ggpairs(dat.births, columns = c(1,2, 4:7))
correlationsmatrix
```

```
## Error in library(GGally): there is no package called 'GGally'
## Error in ggpairs(dat.births, columns = c(1, 2, 4:7)): could not find function "ggpairs"
## Error in eval(expr, envir, enclos): object 'correlationsmatrix' not found
```

Figure 3: Matrix of ScatterPlots and Correlations for the variables.

d. Other interesting plots.

Plot significant correlations - weeks and birth weight

e. Comment on...

the shape of the distribution of each variable
the relationship between the response and the quantitative predictors
any unusual looking observations
any other interesting takeaways