SDS 387, Fall 2024 Homework 2

Due October 3, by midnight on Canvas.

1. Show that it X_n and Y_n are independent for all n and $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$, then

$$\left[\begin{array}{c} X_n \\ Y_n \end{array}\right] \stackrel{d}{\to} \left[\begin{array}{c} X \\ Y \end{array}\right].$$

2. In class we showed that, if $X_n \xrightarrow{d} X$ and $Y_n - x_n \xrightarrow{d} 0$ then $Y_n \xrightarrow{d} X$. Use this result to prove that, if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$ for some constant, then

$$\left[\begin{array}{c} X_n \\ Y_n \end{array}\right] \stackrel{d}{\to} \left[\begin{array}{c} X \\ c \end{array}\right].$$

Note that X_n and Y_n are not necessarily independent.

3. Consider the settings of the above problem. Prove the following results, known together as Slutsky's theorem:

$$X_n Y_n \xrightarrow{d} Xc$$
 and $X_n + Y_n \xrightarrow{d} X + c$.

4. **Polya's Theorem**. Let $\{X_n\}$ be a sequence of random variables in \mathbb{R} converging to X, a random variable with a continuos c.d.f. F_X . Show that

$$\lim_{n} \sup_{x \in \mathbb{R}} |F_{X_n}(x) - F_X(x)| = 0,$$

where F_{X_n} is the c.d.f of X_n . The above result says that if X is continuous, then the convergence of the c.d.f.'s is uniform over \mathbb{R} , not just point-wise. You may (though you do not need to) proceed as follows.

- (a) Let $\epsilon \in (0,1)$ be arbitrary (small). Next, let $-\infty = x_0 < x_1 < \dots, x_k < x_{k+1} = \infty$ be such that $F(x_i) F(x_{i-1}) \le \epsilon$ for all $i = 1, \dots, k$. This is possible. Why?
- (b) For any $x \in \mathbb{R}$ there exists one $i \in \{1, ..., k\}$ such that $x \in [x_{i-1}, x_i]$. Show that $F_{X_n}(x) F_X(x) \le F_{X_n}(x_i) F_X(x_i) + \epsilon$ and that $F_{X_n}(x) F_X(x) \ge F_{X_n}(x_{i-1}) \epsilon$. Conclude that

1

$$\sup_{x \in \mathbb{R}} |F_{X_n}(x) - F_X(x)| \le \max_{i=0,\dots,k} |F_{X_n}(x_i) - F_X(x_i)| + \epsilon.$$

- (c) Deduce the result from the inequality above.
- 5. Some O_P and o_P calculus.

- (a) Show that $O_p(1) + O_p(1) = O_P(1)$.
- (b) Show that $o_p(1) + o_p(1) = o_P(1)$.
- (c) Show that $O_P(o_p(1)) = o_P(O_P(1)) = o_p(1)$.
- (d) If $X_n = o_p(1)$, can we conclude that $X_n = O_P(1)$? Explain.
- (e) What can you say about the asymptotic behavior of the stochastic quantity $\frac{1}{O_P(1)}$?
- 6. Give an example of a sequence of independent, centered random variables X_1, X_2, \ldots , all with unit variances, such that $\sqrt{nX_n}$ does not converge in distribution to N(0,1). Hint: Construct a sequence of independent centered random variables such that the probability that $X_n = 0$ converges to 1 exponentially.
- 7. Let $Y_1, Y_2, ...$ be i.i.d. with mean zero and unit variance and let $X_k = \sigma^k Y_k$. Show that the LF condition in this case reduces to

$$\lim_{n} \frac{\max_{k=1,\dots,n} \sigma_k^2}{\sum_{i=1}^n \sigma^2} = 0$$

- 8. Read the proofs of Theorem 1 and 2 in the paper Variable selection via nonconcave penalized likelihood and its oracle properties, by J. Fan and R. Li, Journal of American Statistical Association, 2001, 96, 1348-1360. This will show you how O_P and o_P notation is useful. Available here.
- 9. **Optional reading assignment.** In class, we saw an example of why the triangular array setup is desirable for proving CLTs when the data-generating distribution is not fixed and may change with n. Here is an example from the literature: Lemma 6 of the paper Hypothesis Testing For Densities and High-Dimensional Multinomials: Sharp Local Minimax Rates by S. Balakrishnan and L. Wasserman.