Pecali. New cram pater:

02/23 · Exam #1

03/20 · Exam #2

Announce worksup on 02/27.

Recall: we discussed inner products last time:

- · (n,v) = (v,n)
- 4 (antho, w) = a(n, w) + b(v, w)
- · (n,n) 20 and (u, u)=0 only if u=0

Goals:

- · L' inner Product
- 12 orthogonal functions (exemple)
- · Orthonormality of a set of vertors
- . I mer products and geometry:
 - Dot product longth, angle
 - general inner product length, angle
 - Dot product projection (example in 20)
 - general inner product projection
- · Define the general projection operator

L' inner Produce:

ONE can snow that if we consider the vactor space C[a, b] of continuous functions then:

- · (f,g) = Jofg dx in an inner product on CIAIB]

 fix is called the L2 inner product.
- The associated norm is called the L^2 norm and is given by: $||f||_{L^2} = (f, f)^{1/2} = \sqrt{\int_a^6 f^2} dx$

Ex: f= x(1-x) in ctorid then 11f112= \(\int_0 x^2 (1-x)^2 ax & 0.1824

in \mathbb{R}^d we say two vectors are close if their environment distance in Small. e.g. if $|\vec{x}-\vec{y}|$ is small. In general we say two vectors in an inner product space are Close if $||\vec{f}-\vec{g}|| = (\vec{f}-\vec{g}, \vec{f}-\vec{g})^{1/2}$ is Small.

Ex: with f as above and $g(x) = \frac{8}{118} \sin(412)$ we have: $||f-g||_{L^{2}} = \sqrt{\int_{0}^{1} (x(1-x) - \frac{8}{118} \sin(412))^{2}} \approx 0.006940$

Wote: that 11f-511,2 is also called "the mean square error" of f and g.

Recall: we defined the general notion of arthogonality of two vactors in an inner product space to be (fig)=0.

Consider the functions for Sind (217) 20) and g = cost (217) 20) on [01] then one can snow that

(f,g)= /3 sint (277 20) cos (ET) 20) dx= - cos (472)/1 = 0.

In general we can also snow that for $f = Sin(n(2\pi)x)$ and $g_m = Cos(m(2\pi)x)$ the following is true:

 $\left(f_{n_1}, f_{n_2} \right) = \int_0^1 \sin \left(n_1 \left(2\pi n_2 \right) \sin \left(n_2 \left(2\pi n_2 \right) \right) \right)$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi \left(n_1 + n_2 \right) \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi \left(n_1 + n_2 \right) \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin \left(2\pi n_2 \right) - \sin \left(2\pi n_2 \right)}{n_1 + n_2} \right]_0^1$ $= \frac{1}{4\pi} \left[\frac{\sin$

if $\eta_1 = \eta_2$ then: $(f_n, f_n) = 1/2$.

Libewise one can show that $(g_{m_1}, g_{m_2}) = 0$ for $m_1 \neq m_2$ and that $(g_{m_1}, g_{m_2}) = 1/2$.

We also have: [1

(fn, gm) = Jo Sinlnx7 cosemx7 dx = o far any n, m.

It we define $f_n = \frac{1}{12}f_n$ and $g_m = \frac{1}{12}g_m$ then $\{f_n, g_m \mid n = 1, 2, \dots m = 1, 2, \dots \}$ are an orinonword Set of functions.

Hence if $N = \sum_{i=1}^{\infty} d_i \hat{f}_i + \sum_{i=1}^{\infty} \beta_i \hat{g}_i^*$ then we can find $d_i k$ (or $\beta_i k$)

by computing $(N, \hat{f}_k) = (\sum_{i=1}^{\infty} d_i \hat{f}_i + \sum_{j=1}^{\infty} \beta_j \hat{g}_j^*, \hat{f}_k)$ $= \sum_{i=1}^{\infty} d_i (\hat{f}_i, \hat{f}_k) + p_i \sum_{j=1}^{\infty} (\hat{g}_j^*, \hat{f}_k)$ $= d_i k$

Note: This is true for any attonormal set of vectors $\{V_1, V_2, \dots, V_j\}$.

If $\chi = \sum_i \lambda_m V_m$ then $\lambda_m = (\chi, V_m)$ by orthonormality.

Projections:

Recell in TR2:

The projection of $\vec{\chi}$ onto \vec{q} is intitively the "Snadow" $\vec{\chi}$ "costs" on \vec{q} .

X A Y

· Diopping a Lavizontel down to y

Cos(0) = 1 _x] = aljacant

11 x11 hyporenuse

so that Lx = cos(0) 11x11

Recall that 200y = 11x11 11y11 coscos so that

• $L_x = \cos(\theta) \sin x = x \cdot y$

So the Vector with length Lx in the direction of g is

\(\frac{x \cdot y}{\text{light}} \) . If \(\frac{y}{\text{light}} \) . The length \(\text{Limit vector in direction y} \) g.

· Wice equals (204) g

Now Recall that Noy is an example of an inner product

then we can generalize this idea of projections to inner

poducts.

D Let (=, =) v be an inner product on V and define the "Gueralized anyle" to be

$$Cos("D") = \frac{(f,g)}{(f,g)}$$

Then

Suppose we do this. Notice that the vertous of and g may not be orthogonal to begin with. That is $(f,g) \neq 0$.

However if we define: $\hat{f} = f - \text{proj}_g(x) = f - \frac{(f,g)}{(g,g)}g$ then $(\hat{f}, g) = (\hat{f} - \frac{(f_1 g)}{(g_1 g)}, g) = (f_1 g) - \frac{(f_1 g)}{(g_1 g)} (g_1 g) = 0$

This is exactly like what happens in The?

Notice that in \mathbb{R}^2 the vector $\operatorname{proj}_{\mathfrak{A}}(\mathfrak{A})$ is the "closest" vector to \mathfrak{A} that lies on \mathfrak{g} .

Another way to say this is that if we let \widetilde{w} be any vector lying on $\widetilde{\mathfrak{g}}$ then $11\widetilde{\mathfrak{A}} - \operatorname{proj}_{\mathfrak{A}}(\mathfrak{A})11 \leq 11\widetilde{\mathfrak{A}} - \widetilde{w}11$ for all such \widetilde{w} .

This idea is captured generally by the projection theorem.