DS n°8 : Fiche de calculs

	Durée: 60 minutes	, calculatrices et	documents	interdits
--	-------------------	--------------------	-----------	-----------

Nom et prénom :					Note:		
Porter d	lirecteme	nt les réponse	s sur la fe	uille, san	s justifica	ation.	
Analyse asympto	otique						
Soit $g: x \mapsto \sqrt[3]{x^2(x)}$	(-1). Alor	s, en $-\infty$, le gra	phe de g est	asymptot	e à la droi	te d'équati	ion
							(1)
et il s	se trouve			de cette	e asymptot	e.	(2)
Déterminer les DL s	uivants (DI	$ u_n(a) $ pour à l'or	dre n et au	voisinage d	lu point a .)	
$\mathrm{DL}_6(0)$ de $\sin(\sin(\sin(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos$	(x)):						(3)
$\mathrm{DL}_4(0)$ de $\cos($	$(x)^x$:						(4)
$DL_2(1) \text{ de } \frac{1+x-1}{2+x}$	$\frac{-x^3}{x^2}$:						(5)
Algèbre linéaire							
On se place dans \mathbb{R}_2	[X]. Détern	niner une base d	$e F = \{ P \in$	$\mathbb{R}_2[X] \mid P$	P(1) = P(-	-1) }.	
							(6)
Un supplémentaire d	le F dans \mathbb{I}	$\mathbb{R}_2[X]$ est					
							(7)

On considère l'endomorphisme de $\mathbb{R}^3 \ \varphi : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 3x & +5y & +z \\ -2x & +y & +8z \\ x & -y & -5z \end{pmatrix}$.

Donner une représentation cartésienne de chacun des sev de \mathbb{R}^3 suivants.

$$\operatorname{Ker}(\varphi)$$
: (8)

$$\operatorname{Im}(\varphi)$$
: (9)

Donner une base de chacun des sev de \mathbb{R}^3 suivants.

$$\operatorname{Ker}(\varphi)$$
: (10)

$$\operatorname{Im}(\varphi)$$
: (11)

Est-ce que $\mathbb{R}^3 = \operatorname{Im}(\varphi) \oplus \operatorname{Ker}(\varphi)$ (répondre OUI ou NON) : (12)

Soit $s \in \mathcal{L}(\mathbb{R}^3)$ la symétrie par rapport à $\{(x,y,z) \in \mathbb{R}^3 \mid x-y=z\}$ et parallèlement à Vect(0,1,1). Alors

$$s: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \boxed{ \tag{13}}$$

Intégration

Calculer les intégrales suivantes.

$$\int_0^{\pi/4} \frac{\sin(x)}{\cos^4(x)} \, \mathrm{d}x = \tag{14}$$

$$\int_0^1 (2x^2 - x + 1)e^{2x+1} dx =$$
 (15)

$$\int_0^{1/2} \operatorname{Arcsin}(x) \, \mathrm{d}x = \tag{16}$$

$$\int_0^1 \frac{1}{3e^{-x} + e^x} \, \mathrm{d}x =$$
 (17)

- FIN -