HKCEE MATHS Paper II 1994

- If $f(x) = x^2 + 2x$, then f(x-1) =
 - A. x^2
 - B. $x^2 1$
- D. $x^2 + 2x 3$
- C. $x^2 + 2x 1$ E. $x^2 + 4x 1$
- If $y = \frac{2x-1}{x+2}$, then x =
 - A. $\frac{1+3y}{2}$
 - B. $\frac{1+2y}{2+y}$
- D. $\frac{1-2y}{2+y}$
- C. $\frac{1+2y}{2-y}$ E. $\frac{1-2y}{2-y}$
- The L.C.M. of $(x-1)^2$, x^2-1 and x^3-1 is
 - A. x-1
 - B. $(x-1)^4(x+1)(x^2+x+1)$
 - C. $(x-1)^2(x+1)(x^2+x+1)$
 - D. $(x-1)^2(x+1)(x^2-x+1)$
 - E. $(x-1)(x+1)(x^2+x+1)$
- If $a = \sqrt{3} + \sqrt{2}$, then $a \frac{1}{a} =$
 - A.
- D. $\sqrt{3} \sqrt{2}$
- E. $\frac{2\sqrt{3}}{2} + \frac{\sqrt{2}}{2}$
- In the figure, (x, y) is a point in the shaded region 5 (including the boundary) and x, y are integers.

Find the greatest value of 3x + y.

- 7 A.
- B. 8
- C. 9.2
- D. 10
- E. 10.5

- If x(x+1) < 5(x+1), then
 - A. x < 5
 - B. x < -5 or x > 1
 - C. x < -1 or x > 5
 - D. -5 < x < 1
 - E. -1 < x < 5
- Which of the following is/are an identity /identities?
 - I. $(x+2)(x-2) = x^2 4$
 - II. (x+2)(x-2)=0
 - III. $(x+2)^3 = x^3 + 8$
 - A. I only
 - B. II only
- D. I and III only
- C. III only
- II and III only
- If $\alpha \neq \beta$ and $\begin{cases} 3\alpha^2 h\alpha b = 0 \\ 3\beta^2 h\beta b = 0 \end{cases}$, then $\alpha + \beta = 0$
 - A. $-\frac{b}{3}$
 - B.

D. $-\frac{h}{3}$

C.

- E. $\frac{h}{2}$
- Mr. Chan bought a car for \$143 900. If the value of the car goes down by 10% each year, find its value at the end of the third year. (Give your answer correct to the nearest hundred dollars.)
 - \$94 400 A.
 - \$100 700 В.
 - \$104 900 C.
 - D. \$115 100

- E. \$116 600
- 10 A wholesaler sells an article to a retailer at a profit of 20%. The retailer sells it to a customer for \$3 600 at a profit of \$720. Find the original cost of the article to the wholesaler.
 - A. \$2 304
 - B. \$2 400
- D. \$3 000
- C. \$2 880
- E. \$3 456
- 11 The bearing of A from B is 075°. What is the bearing of B from A?
 - A. 015°
 - B. 075°
- D. 195°
- C. 105°

- E. 255°
- If the sum to infinity of a G.S. is $\frac{81}{4}$ and it second term is -9, the common ratio is
 - A. $-\frac{1}{3}$
 - B. $\frac{1}{3}$

D. $\frac{4}{3}$

C. $-\frac{4}{3}$

E. $-\frac{4}{9}$

13 In the figure, the paper cup in the form of a circular cone contains 10ml of water. How many ml of water must be added to fill up the paper

cup?

- D. 260
- E. 270

14 In the figure, *ABCD* is a rectangular field of length *p* metres and width *q* metres. The path around the field is of width 2 metres. Find the area of the path.

A.
$$(4p + 4q)$$
 m²

B.
$$(2p + 2q + 4)$$
m²

C.
$$(2p + 2q + 16)$$
m²

D.
$$(4p + 4q + 16)$$
m²

$$E.(pq + 4p + 4q + 16)m^2$$

- 15 In the figure, OACB is a sector of radius r.
 - If $\angle AOB = \frac{\pi}{3}$, find the area of the shaded part.

$$D. \left(\frac{\pi}{3} - \frac{1}{2}\right) r^2$$

E.
$$\frac{\pi}{3}r - \frac{\sqrt{3}}{4}r^2$$

$$\frac{\cos\theta}{\sin\theta+1} - \frac{\cos\theta}{\sin\theta-1} =$$

A.
$$\frac{2}{\cos\theta}$$

B.
$$-\frac{2}{\cos\theta}$$

D.
$$2 \tan \theta$$

E.
$$-2 \tan \theta$$

17 Which of the following figures shows the graph

of
$$v = 1 + \sin x$$
?

$$\frac{18}{\cos(90^\circ - \theta)} = \frac{\sin(180^\circ + \theta)}{\cos(90^\circ - \theta)} = \frac{18}{\cos(90^\circ - \theta)}$$

A.
$$tan \theta$$

19 In the figure, ABCD is a cyclic quadrilateral with AB = 5, BC = 2 and $\angle ADC = 120^{\circ}$. Find AC.

D

C.
$$2\sqrt{6}$$

D.
$$\sqrt{34}$$

E. $\sqrt{39}$ 20 In the figure, *PC* is a vertical pole standing on the horizontal plane *ABC*. If $\angle ABC = 90^{\circ}$, $\angle BAC = 30^{\circ}$, AC = 6 and PC = 5, find $\tan \theta$.

A.
$$\frac{3}{5}$$

B.
$$\frac{5}{6}$$

C.
$$\frac{5}{3}$$

$$D. \quad \frac{3\sqrt{3}}{5}$$

E.
$$\frac{5\sqrt{3}}{9}$$

In the figure, O is the center of the circle. If AC=3 and $\angle BAC=\frac{\pi}{6}$, find the diameter AB.

J 30°

$$C. \quad \frac{3\sqrt{3}}{2}$$

D.
$$2\sqrt{3}$$

E.
$$3\sqrt{3}$$

22 In the figure, PA is tangent to the circle at A, $\angle CAP = 28^{\circ}$ and BA = BC. Find x.

23 In the figure, O is the center of the inscribed circle of $\triangle ABC$. If $\angle OAC=30^{\circ}$ and $\angle OCA=25^{\circ}$, find $\angle ABC$.

24 In the figure, AB=AD and BC=CD. If $\angle BAD=80^{\circ}$ and $\angle ADC=65^{\circ}$, then $\angle BCD=$

25 In the figure, x, y and z are the exterior angles of $\triangle ABC$. If x: y: z=4:5:6, then $\angle BAC=$

26 The points A(4,-1), B(-2, 3) and C(x, 5) lie on a straight line. Find x.

27 In the figure, the shaded part is bounded by the axes, the lines x = 3 and x + y = 5. Find its area.

28 AB is a diameter of the circle

$$x^{2} + y^{2} - 2x - 2y - 18 = 0$$
. If A is (3,5), then B is

A.
$$(2,3)$$

- (1,-1)
- D. (-5, -7)
- C. (-1, -3)
- E. (-7, -9)
- The equations of two circles

$$\operatorname{are} \begin{cases} x^2 + y^2 - 4x - 6y = 0 \\ x^2 + y^2 + 4x + 6y = 0 \end{cases}$$

Which of the following is/are true?

- I. The two circles have the same center.
- II. The two circles have equal radii.
- III. The two circles pass through the origin.
- I only A.
- B. II only
- D. I and III only
- C. III only
- E. II and III only
- 30 In the figure, the pie chart shows the monthly expenditure of a family. If the family spends \$4800 monthly on rent, what is the monthly expenditure on entertainment?

- B. \$600
- C. \$720
- D. \$1 800
- E. \$12 000

31 A box contains 5 eggs, 2 of which are rotten. If 2 eggs are chosen at random, find the probability that exactly one of them is rotten.

A.
$$\frac{2}{5}$$

- B.
- D.

32 The mean, standard deviation and interquartile range of n numbers are m, s and q respectively. If 3 is added to each of the *n* numbers, what will be standard deviation their new mean, interquartile range?

		Standard	Interquartile	
	Mean	Deviation	Range	
A.	m	S	q	
B.	m	s + 3	q + 3	
C.	m+3	S	q	
D.	m+3	S	q + 3	
E.	m+3	s+3	q + 3	
$(3^x)^2 =$				

 $3^{(x^2)}$

33

- 3^{x+2} B.
- 6 ^x D.
- 3^{2x}
- 9^{2x} E.
- 34 If $\log 2 = a$ and $\log 9 = b$, then $\log 12 =$
 - A. $2a + \frac{b}{3}$
- B. $2a + \frac{b}{2}$ D. $a^2 + b^{\frac{1}{2}}$ C. $\frac{2}{3}a + \frac{2}{3}b$ E. $a^2b^{\frac{1}{2}}$
- 35 Factorize $a^2 2ab + b^2 a + b$.
 - A. (a-b)(a-b-1)
 - B. (a-b)(a-b+1)

C.
$$(a-b)(a+b-1)$$

D.
$$(a+b)(a-b+1)$$

E.
$$(a-b-1)^2$$

$$\frac{2}{x} - \frac{1}{y} = \frac{4y}{x} - \frac{x}{y} = \frac{1}{x}$$

A.
$$2y - x$$

B.
$$2y + x$$

$$D. \quad \frac{1}{2y+x}$$

$$C. \quad \frac{1}{2y-x}$$

E.
$$\frac{1}{4y-x}$$

37 P(x) is a polynomial. When P(x) is divided by (5x-2), the remainder is R. If P(x) is divided by (2-5x), then the remainder is

B.
$$-R$$

D.
$$\frac{2}{5}$$

C.
$$\frac{2}{5}R$$

E.
$$-\frac{2}{5}$$

In the figure, the line y = mx + k cuts the curve $y = x^2 + bx + c$ at $x = \alpha$ and $x = \beta$. Find the value of $\alpha\beta$.

A.
$$-b$$

C.
$$m-b$$

D.
$$k-c$$

E.
$$c-k$$

39 If x = 3, y = 2 satisfy the simultaneous equations $\begin{cases} ax + by = 2 \\ bx - ay = 3 \end{cases}$, find the values of a and b.

A.
$$a = 0$$
, $b = 1$

B.
$$a = 0$$
, $b = -1$

C.
$$a = \frac{5}{6}$$
, $b = -\frac{1}{4}$

D.
$$a = -\frac{1}{13}$$
, $b = \frac{37}{39}$

E.
$$a = -\frac{12}{13}$$
, $b = \frac{5}{13}$

40 From the table, which of the following intervals must contain a root of f(x)-x=0?

x	f(x)
-2	1.2
-1	0.8
0	0.7
1	0.2
2	-0.1
3	0.8

A.
$$-2 < x < -1$$

B
$$-1 < x < 0$$

B.
$$-1 < x < 0$$
 D. $1 < x < 2$

C.
$$0 < x < 1$$

E.
$$2 < x < 3$$

- 41 If the product of the first *n* terms of the sequence 10, 10^2 , 10^3 , ..., 10^n exceeds 10^{55} , find the minimum value of n.
 - 9 A.

- 42 If a:b=2:3, a:c=3:4 and a:d=4:5, then b:c:d=
 - A. 2:3:4
 - B. 3:4:5
- D. 18:16:15
- C. 3:6:10
- E. 40:45:48
- Let x vary inversely as \sqrt{y} . If y is increased by 69%, then x will be
 - A. increased by 23.1%(3 sig. fig.)
 - B. increased by 30%
 - C. decreased by 23.1%(3 sig. fig.)
 - D. decreased by 30%
 - E. decreased by 76.9%(3 sig. Fig)
- 44 In the figure, *CDEF* is a sector of a circle which touches *AB* at *E*. If *AB*=25 and *BC*=15, find the radius of the sector.

- A. 9
- B. 10
- D. 12
- C. 11.25
- E. 12.5
- 45 In the figure, AD : DB = 1 : 2, AE : EC = 3 : 2.

Area of $\triangle BDE$: Area of $\triangle ABC$ =

- A. 1:3
- B. 2:5
- D. 4:25
- C. 3:4
- E. 36:65
- In the figure, area of $\triangle ABC$: area of square

BCDE = 2: 1. Find $PO \cdot PO$

- A. 1:2
- B. 1:3
- C. 1:4
- D. 2:3
- E. 3:4
- 47 For $0^{\circ} \le x \le 360^{\circ}$, how many roots does the equation $\sin x(\cos x + 2) = 0$ have ?
 - A. 0
 - B. 1
- D. 3
- C. 2
- E. 4
- 48 The largest value of $(3\cos 2\theta 1)^2 + 1$ is
 - A. 2

- B. 5
- D. 26
- C. 17
- E. 50
- 49 In the figure, $\sin A : \sin B : \sin C = 4 : 5 : 6$. If AB=8, find AC.
 - A. $5\frac{1}{3}$
- 8 C
- C. $9\frac{3}{5}$
- D. 10
- E. 12
- 50 In the figure, AB=p, $\angle ACB=\theta$. Find CD.

E. $\frac{p\cos^2\theta}{\sin\theta}$

51 In the figure, ABCD is a semi-circle, CDE and BAE are straight lines. If $\angle CBD=30^{\circ}$ and $\angle DEA=22^{\circ}$, find x.

- 52 In the figure, OABCD is a sector of a circle. If $\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CD}$, then x =
 - A. 105°
 - B. 120°
 - C. 135°
 - D. 144°
 - E. 150°

53 In the figure, AB//DC and $\angle DAB = \angle DBC$. Which of the following is/are true?

- I. $\frac{AB}{BD} = \frac{BD}{DC}$
- II. $\frac{AB}{BD} = \frac{AD}{BC}$
- III. $\frac{AD}{BD} = \frac{BD}{CD}$
- A. I only
- B. II only
- D. I and II only
- C. III only
- E. II and III only