Московский государственный технический университет им.Н.Э.Баумана кафедра "Системы обработки информации и управления"

Постреляционные базы данных

к Домашнее задание 1

Домашнее задание «Построение постреляционных моделей баз данных» по дисциплине «Постреляционные базы данных»

Инструктор: Мария Валерьевна

Email:2623859464@qq.com

Студент: Ван Чаочао

группа ИУ5И-22М

2022/03/21

Цель работы:

Освоить технологии построения моделей базы данных: ER, объектной, объектно-реляционной и полуструктуруированных данных. Сравнить возможности этих моделей с возможностями реляционной модели.

Исходные данные для выполнения ДЗ:

Описание предметной области по варианту студента.

Пункты задания для выполнения:

1. На основе описания предметной области выделить сущности (от 4-х до 6-ти), их атрибуты и связи. Указать ключевые атрибуты и типы связей. Построить ER-модель. Продемонстрировать в модели связи один-ко-многим (1-М) и многие-ко-многим (М-М), связь типа ISA.

1.1сущности

User	Cars	Order	
<u>UserID</u>	Cars Number	Order Number	
Username	Car Name	User ID(FK)	
Password	Car Description	Consignee	
Real Name	Price	Conspnum	
Gender	Stock	shipping method	
Date of Birth	Sold	shipping address	
Email		total order amount	
Phone	order status		
City			
Address			

ShipAddr	Admin		
<u>User ID</u>	Admin ID		
Address	Password		
Postal Code	Permissions		
phonenumber	Contact Properties		

1.2ER-модель

фигура 1: Веб-сервис по продажам автомобилей ER

1.3 связь типа ISA.

2. На основе описания предметной области построить объектную модель БД на языке ODL. Привести описания классов, их свойств, методов и связей. Указать ключи и экстенты. Методы классов следует выделять так, чтобы их можно было использовать в типовых запросах вместо вложенных подзапросов. Продемонстрировать наследование, интерфейсы,

```
class Users()
attribute integer UserID;
attribute string Username;
attribute varchar(20) Password;
attribute string RealName;
attribute string Gender;
attribute Date DateOfBirth;
attribute enum Info {Email, Phone, City, Address} type;
relationship set<Admin> information by
   inverse Admin::information;
relationship set<Cars> collect
   inverse Cars::collect by;
relationship set<Cars> shop
   inverse Cars::shop by;
relationship set<Cars> comment
   inverse Cars::comment by;
relationship set<Order> booking
   inverse Order::booking by;
relationship set<ShipAddr> correspond2
   inverse ShipAddr::correspond2 by;
key(UserID)
};
class Cars()
attribute integer CarsID;
attribute string CarName;
attribute string CarDescription;
attribute integer Price;
attribute integer Stock;
attribute integer Sold;
relationship set<Users> collect by
   inverse Users::collect;
relationship set<Users> shop by
   inverse Users::shop;
relationship set<Users> comment by
   inverse Users::comment;
key(CarsID)
```

сложные типы данных (коллекции и структуры).

```
};
class Order()
attribute integer OrderNumber;
attribute integer UserID;
attribute string Consignee;
attribute varchar(11) conspnum;
attribute varchar(50) shipmethod;
attribute varchar(50) shipaddress;
attribute varchar(100) orderstatus;
relationship set<Users> booking by
   inverse Users::booking;
relationship set<ShipAddr> correspond2 by
   inverse ShipAddr::correspond2;
key(OrderNumber)
};
class ShipAddr()
attribute integer UserID;
attribute varchar(50) Address;
attribute varchar(11) phonenumber;
relationship set<Users> correspond2 by
   inverse Users::correspond2;
relationship set<Order> correspond2
   inverse Order::correspond2 by;
key(UserID)
};
class Admin()
attribute integer AdminID;
attribute varchar(20) Password;
attribute enum Permissions {AuditInfo, ManageOrders} type;
relationship set<Users> information
   inverse Users::information by;
key(AdminID)
};
```

3. На основе объектной модели построить реляционную модель. Привести перечень отношений с указанием их атрибутов и ключей. Составить на языке SQL описание схемы базы данных (создание таблиц, задание первичных и внешних ключей, ограничений и т.д.). Продемонстрировать реализацию отношения наследования тремя различными методами. create type Information as enum('Email','Phone','City','Address');

3.1 : Создать таблицу

```
create type Information as enum('Email','Phone','City','Address');
CREATE TABLE Users (
    UserID integer primary key,
    Username varchar(20) not null,
    Passwordd varchar(20) not null,
    RealName varchar(20) not null,
    Gender varchar(10) not null,
    DateOfBirth Date,
    Info Information
);
CREATE TABLE Cars (
    CarsID integer primary key,
    CarName varchar(20) not null,
    CarDescription varchar(20) not null,
    Price integer not null,
    Stock integer not null,
    Sold integer not null
);
CREATE TABLE Orderr (
    OrderNumber integer primary key,
    UserID integer not null,
    Consignee varchar(20) not null,
    conspnum varchar(11) not null,
    shipmethod varchar(50) not null,
    shipaddress varchar(50) not null,
    orderstatus varchar(100) not null
);
CREATE TABLE ShipAddr (
    UserID integer primary key,
    Address varchar(50) not null,
    phonenumber varchar(11) not null
);
create type Per as enum('AuditInfo', 'ManageOrders');
CREATE TABLE Adminn (
    AdminID integer primary key,
    Passwordd varchar(50) not null,
    Permissions Per
);
```

Входные данные

Отношение booking: Users - Orders 1-М

userid	ordernumber		
2	1		
3	2		
1	3		

Отношение collect, shop, comment: users-cars M-M

userid	CarsID		
1	2		
2	3		
3	1		
2	3		

Отношение correspond1: orders-shipping address M-1

ordernumber	shipaddress	
1	bamstu	
2	bamstu	
3	квадрат	

Для преобразования связи **ISA** на модели сущность—связь к реляционной модели может быть использован один из трех подходов: сущностный, объектный, пустых значений.

1- При сущностном подходе каждую сущность преобразуют в отношение, содержащее собственные атрибуты и ключи базовой сущности.

User(<u>User ID</u> Username Password Real Name Gender DateOfBirth info)

Order(<u>OrderID</u> User ID (FK) Consignee Conspnum shipmethod shipaddress

order status)

2. При объектном подходе для каждой производной сущности введем отношение, включающее все атрибуты как базовой сущности, так и ее

собственные. Тогда получим схему отношений:

User(User ID Username Password Real Name Gender DateOfBirth info) Order(OrderID User ID (FK) Consignee Conspnum shipmethod shipaddress order status)

3. При подходе пустых значений создадим одну сущность, содержащую атрибуты базовой и всех производных сущностей. Если при заполнении таблицы данными атрибут сущности отсутствует, запишем вместо его значения пустое значение NULL

Admin(adminID password minissons)

4. На основе описания предметной области построить объектно-реляционную модель. Привести описания типов данных UDT с указанием их свойств и методов. На основе пользовательских типов составить схемы отношения. Для каждого отношения указать ключи, ссылочный атрибут, ограничения и т.д. Задать связи между отношениями. Для любых двух пользовательских типов задать правила сравнения: 1) на равенство и полное, 2) по-элементное и через функцию. Привести описание функций сравнения. Продемонстрировать наследование, ссылки и сложные типы данных. Принцип определения

методов UDT соответствует принципам определения методов класса.

```
создавать пользовательские типы данных
CREATE TYPE Carssales AS
stock Integer,
sold Integer
method getCarssales() RETURNS VARCHAR(100);
CREATE method getCarssales () RETURNS VARCHAR (100)
FOR Carssales
BEGIN
RETURN "sto:"||SELF. stock||"sol:"||SELF.sold
CREATE TYPE Info AS
Email VARCHAR (100);
Address VARCHAR (100)
method getInfo() RETURNS VARCHAR(250);
CREATE method getInfo () RETURNS VARCHAR(100)
FOR Info
BEGIN
RETURN "Ema:"||SELF. Email|| "Adr:"|| SELF. Address
END;
Для любых двух пользовательских типов задать правила сравнения:
1) на равенство и полное,
2) по-элементное и через функцию. Привести описание функций сравнения.
Сначала создадим поэлементное сравнение на равенство для объектов типа
booking:
CREATE ORDERING FOR Carssales EQUALS ONLY BY STATE
booking:
CREATE OREDERING Carssales ORDER FULL BY RELATIVE WITH fun1
CREATE FUNCTION Fun1 (IN c1 Carssales, IN c2 Carssales)
RETURNS integer
IF C1.length() < C2. length() THEN RETURN (-1)</pre>
ELSEIF C1.length()>C2.length() THEN RETURN (1)
ELSEIF C1.stock() < C2. stock () THEN RETURN (-1)
ELSEIF C1.stock()>C2. stock () THEN RETURN (1)
ELSEIF C1.sold() < C2. sold () THEN RETURN (-1)
```

```
ELSEIF C1. result ()>C2. result () THEN RETURN (1)
ELSE RETURN(0)
ENDIF;
Info:
CREATE ORDERING FOR INFO EQUALS ONLY BY STATE
Info:
CREATE OREDERING Info ORDER FULL BY RELATIVE WITH fun2
CREATE FUNCTION Fun2 (IN F1 Info, IN F2 Info)
RETURNS integer
IF F1.length() < F2. length() THEN RETURN (-1)</pre>
ELSEIF F1.length()>F2.length() THEN RETURN (1)
ELSEIF F1.Email.length()<F2. Email.length()THEN RETURN (-1)
ELSEIF F1. Email.length()>F2. Email.length() THEN RETURN (1)
ELSEIF F1. Address.length() < F2. Address.length() THEN RETURN (-1)
ELSEIF F1. Address.length ()>F2. Address.length() THEN RETURN (1)
ELSE RETURN(0)
ENDIF;
Продемонстрировать наследование, ссылки и сложные типы данных. Принцип
определения методов UDT соответствует принципам определения методов
класса.
CREATE TYPE user AS
userID Integer,
userName varchar(100),
Phone Integer,
info varchar(100)
);
CREATE TYPE order AS
orderID Integer,
userID Integer,
Name varchar(100),
Address varchar(100)
Phone Integer,
inf REF(Info) SCOPE inf
```

);

```
CREATE TYPE Admin AS
(
Id Integer,
W ID Integer,
Name varchar(100),
Phone Integer,
inf REF(Info) SCOPE inf
);
создавать типы, наследуются от них
CREATE TYPE unregisteruser under user AS
(
Id Integer,
Name varchar(100),
Phone Integer,
Date varchar(100)
)
```

5.На основе описания предметной области построить модель полуструктурированных данных. Привести пример графа полуструктурированных данных, соответствующий ему XML-документ и DTD-определение.

Граф полуструктурированных данных

XML-документ

```
<?xml version="1.0"?>
- <r>
   - <user>
        <UserID>1</UserID>
        <Username>chaochao </Username>
        <Phone>18801035010</Phone>
      - <cars>
           <CarsID>3</CarsID>
           <CarName>Bentley </CarName>
        </cars>
     </user>
   - <user>
        <UserID>2</UserID>
        <Username>wei </Username>
        <Phone>79269565693</Phone>
      - <cars>
           <CarsID>1</CarsID>
           <CarName>BMW </CarName>
    </user>
   - <user>
        <UserID>3</UserID>
        <Username>cat </Username>
        <Phone city="lendon">79269815682</Phone>
      - <cars>
           <CarsID>2</CarsID>
           <CarName>Geely </CarName>
        </cars>
    </user>
   - <user>
        <UserID>4</UserID>
        <Username>flower </Username>
        <Phone city="moc">79279853569</Phone>
      - <cars>
           <CarsID>4</CarsID>
           <CarName>JEEP </CarName>
        </cars>
     </user>
 </r>
```

Методическая литература:

- 1. Постреляционные модели данных и языки запросов / Виноградов В.И., Виноградова М.В. М.: Изд-во МГТУ им. Н. Э. Баумана, 2017. [100] с. Режим доступа: http://ebooks.bmstu.ru/catalog/254/book1615.html (дата обращения: 08.12.2017). ISBN 978-5-7038-4283-6.
- 2. Гарсиа-Молина Г., Ульман Д., Уидом Д. Системы баз данных. Полный курс: Пер. с англ. М.: Издательский дом «Вильямс», 2004 г. 1088 с.