

有限元软件课程设计说明书

选题:题目3-02及题目4-02

 班
 级:
 2018级机械中德2班

 学
 号:
 1814070213

 设计人:
 苗衍康

 指导教师:
 张克明

 日
 期:
 2021.11

目录

	引言		1
第-	-章	钻孔法问题描述及力学模型分析	2
	1.1	问题描述	2
	1.2	力学模型分析	2
第二	章	题目 3-02 分析及处理	5
	2.1	有限元模型建立及后处理	5
	2.2	数据分析	6
	2.3	标定数据对比分析	7
第三	章	题目 4-02 分析及处理	9
	3.1	有限元模型建立及后处理	9
	3.2	数据分析	10
第四	單章	难点分析与软件使用体会	11
参表	学文南	t 状	14

引言

作为一种测量精度高、破坏性小的残余应力测量方法, 小孔法被广泛应用于测量各种各向同性的线弹性材料的残余应力, 并被美国材料试验协会认定为标准的残余应力测量方法. 同样地, 由于其问题的复杂性, 它也可以被用来锻炼有限元的使用能力.

在本文中,作者将从课程提供的题目中选取两个,即题目 3-02: 按非均匀应力场处理, type A 型 [1/16 in. nominal] 面平均 (0.05mm 增量步) 标定系数 \bar{a}_{ni} 和题目 4-02: 按非均匀立场处理,单位静水压力情况下 type A 型 [1/16 in. nominal] 面平均 (0.05mm 增量步) 释放应变数据及相关曲线图,并对其进行分析.

第一章 钻孔法问题描述及力学模型分析

1.1 问题描述

图1.1是使用 A 型应变花测量非均匀残余应力的原理图. 图中的阶梯形图形表示的是每一层上受到的应力, 根据位置不同分别为 $(\sigma_x)_i$, $(\sigma_y)_i$ 和 $(\tau_{xy})_i$. 其中, i 表示层数. 钻孔的几何中心与应变花的几何中心重合. 随着钻孔程序的进行, 残余应力被逐步释放. 应变片的具体摆放方法在图1.2中展示. 图中的D 和 D_0 分别表示应变花的直径和钻孔的直径.

图 1.1: 非均匀残余应力测量原理图

图 1.2: 应变片摆放方法

1.2 力学模型分析

对于我们要研究的非均匀应力场问题, 我们通常采用分步钻孔的方法对残余应力进行测量. 在经过n 步钻孔后, 应变花测量到的应变 ε_n 应为:

$$\varepsilon_n = \frac{1+v}{E} \sum_{i=1}^n \frac{(\sigma_x)_i + (\sigma_y)_i}{2} \bar{a}_{ni} + \frac{1}{E} \sum_{i=1}^n \frac{(\sigma_x)_i - s(\sigma_y)_i}{2} \bar{b}_{ni} \cos 2\theta + \frac{1}{E} \sum_{i=1}^n \bar{b}_{ni} (\tau_{xy})_i \sin 2\theta \qquad (1.2.1)$$

其中, v 为材料的泊松比, E 为材料的杨氏模量, \bar{a}_{ni} 和 \bar{b}_{ni} 分别为第 i 层的各向同性应力校准矩阵和第 i 层的剪应力校准矩阵, θ 为某组应变片与 x 轴间的角度.

 \bar{a}_{ni} 和 \bar{b}_{ni} 描述了经 n 步钻孔后的孔内由第 i 层内的单元应力引起的释放应变。图1.3便以一个

n=4 的钻孔的各向同性应力校准矩阵为例,直观展现了 \bar{a}_{ni} 的物理含义. 另外,如果我们假设钻孔的总步数为 m,则 \bar{a}_{ni} 和 \bar{b}_{ni} 可分别构成两个 m 维的矩阵 \bar{a}_{ni} 和 \bar{b}_{ni} .

$$\bar{a}_{11}$$
 \bar{a}_{21}
 \bar{a}_{32}
 \bar{a}_{33}
 \bar{a}_{33}
 \bar{a}_{34}
 \bar{a}_{44}
 \bar{a}_{44}

图 1.3: \bar{a}_{ni} 的物理含义^[6]

在经过 n 步钻孔后, 待测工件表面上附着的应变花能够测得三个位置上的应变, 我们用 ε_{n1} , ε_{n2} 和 ε_{n3} 表示, 三者分别对应第 1、2 和 3 组应变片测得的数据. 三者与 $(\sigma_x)_i$, $(\sigma_y)_i$ 和 $(\tau_{xy})_i$ 的关系为:

$$\begin{cases}
\varepsilon_{n1} &= \frac{1+v}{E} \sum_{i=1}^{n} \frac{(\sigma_{x})_{i} + (\sigma_{y})_{i}}{2} \bar{a}_{ni} + \frac{1}{E} \sum_{i=1}^{n} \frac{(\sigma_{x})_{i} - (\sigma_{y})_{i}}{2} \bar{b}_{ni} \\
\varepsilon_{n2} &= \frac{1+v}{E} \sum_{i=1}^{n} \frac{(\sigma_{x})_{i} + (\sigma_{y})_{i}}{2} \bar{a}_{ni} - \frac{1}{E} \sum_{i=1}^{n} \bar{b}_{ni} (\tau_{xy})_{i} \\
\varepsilon_{n3} &= \frac{1+v}{E} \sum_{i=1}^{n} \frac{(\sigma_{x})_{i} + (\sigma_{y})_{i}}{2} \bar{a}_{ni} - \frac{1}{E} \sum_{i=1}^{n} \frac{(\sigma_{x})_{i} - (\sigma_{y})_{i}}{2} \bar{b}_{ni}
\end{cases}$$
(1.2.2)

为了能够使用矩阵来表示应力和应变之间的关系, 我们先引入如下三个变量: 经 n 次钻孔后的联合各向同性应变 p_n 、经 n 次钻孔后的联合 45° 剪切应变 q_n 和经 n 次钻孔后的 x-y 剪切应变 t_n :

$$\begin{cases}
p_n = \frac{\varepsilon_{n3} + \varepsilon_{n1}}{2} \\
q_n = \frac{\varepsilon_{n3} - \varepsilon_{n1}}{2} \\
t_n = \frac{\varepsilon_{n3} + \varepsilon_{n1} - 2\varepsilon_{n2}}{2}
\end{cases}$$
(1.2.3)

每一层内的联合各向同性应变 P_i 、联合 45° 剪切应变 Q_i 和 x-y 剪切应变 T_i 为:

$$\begin{cases} P_i &= \frac{(\sigma_y)_i + (\sigma_x)_i}{2} \\ Q_i &= \frac{(\sigma_y)_i - (\sigma_x)_i}{2} \\ T_i &= (\tau_{xy})_i \end{cases}$$
(1.2.4)

则用矩阵表述联合各向同性应变 P、联合 45° 剪切应变 Q 和 x-y 剪切应变 T 为:

$$\begin{cases} \bar{a}_{ni} P = \frac{E}{1+v} p \\ \bar{b}_{ni} Q = E q \\ \bar{b}_{ni} T = E t \end{cases}$$
(1.2.5)

这里, p、q 和 t 分别代表由各层的 p_n 、 q_n 和 t_n 构造的矩阵.

于是, 如果我们逐步钻孔, 并记录下每一步钻孔后应变花测得的数据, 再结合式1.2.3和式1.2.5(假定 $\bar{\boldsymbol{a}}_{ni}$ 和 $\bar{\boldsymbol{b}}_{ni}$ 已知), 再通过式1.2.4即可得到每一层内的非均匀残余应力:

$$\begin{cases}
(\sigma_x)_i &= P_i - Q_i \\
(\sigma_y)_i &= P_i + Q_i \\
(\tau_{xy})_i &= T_i
\end{cases}$$
(1.2.6)

我们还可以在已知每一层内的非均匀残余应力的情况下反推 \bar{a}_{ni} 和 \bar{b}_{ni} 的大小. 我们将式1.2.2以矩阵的形式展开:

$$\begin{bmatrix} \varepsilon_{n1} \\ \varepsilon_{n2} \\ \varepsilon_{n3} \end{bmatrix} = \sum_{i=1}^{n} \begin{bmatrix} \frac{(1+v)\bar{a}_{n1} + \bar{b}_{n1}}{2E} & 0 & \frac{(1+v)\bar{a}_{n1} - \bar{b}_{n1}}{2E} \\ \frac{(1+v)\bar{a}_{n1}}{2E} & -\frac{\bar{b}_{n1}}{E} & \frac{(1+v)\bar{a}_{n1}}{2E} \\ \frac{(1+v)\bar{a}_{n1} - \bar{b}_{n1}}{2E} & 0 & \frac{(1+v)\bar{a}_{n1} + \bar{b}_{n1}}{2E} \end{bmatrix} \begin{bmatrix} (\sigma_x)_i \\ (\tau_{xy})_i \\ (\sigma_y)_i \end{bmatrix}$$
(1.2.7)

在经 n 步钻孔后, 若我们单独对第 i 层施加 $(\sigma_x)_i$ 和 $(\sigma_y)_i$, 并进行静应力计算, 则应变花测得的释放应变 $(\varepsilon_{n1})_i$ 和 $(\varepsilon_{n3})_i$ 为:

$$\begin{cases} (\varepsilon_{n1})_{i} &= \frac{(1+v)\bar{a}_{ni} + \bar{b}_{ni}}{2E} (\sigma_{x})_{i} + \frac{(1+v)\bar{a}_{ni} - \bar{b}_{ni}}{2E} (\sigma_{y})_{i} \\ (\varepsilon_{n3})_{i} &= \frac{(1+v)\bar{a}_{ni} - \bar{b}_{ni}}{2E} (\sigma_{x})_{i} + \frac{(1+v)\bar{a}_{ni} + \bar{b}_{ni}}{2E} (\sigma_{y})_{i} \end{cases}$$

$$(1.2.8)$$

式1.2.8中除 \bar{a}_{ni} 和 \bar{b}_{ni} 外均为已知数, 故解得:

$$\begin{cases}
\bar{a}_{ni} = \frac{(\varepsilon_{n3})_i + (\varepsilon_{n1})_i}{(\sigma_y)_i + (\sigma_x)_i} \frac{E}{1+v} \\
\bar{b}_{ni} = \frac{(\varepsilon_{n3})_i - (\varepsilon_{n1})_i}{(\sigma_y)_i - (\sigma_x)_i} E
\end{cases}$$
(1.2.9)

借此, 我们可以计算出矩阵 $ar{a}_{ni}$ 和 $ar{b}_{ni}$ 中的每一个系数.

以上便是我们本次大作业所需的力学模型的分析, 也是我们完成大作业的思路.

整个建模、计算和后处理过程所用的 APDL 代码均可在我的 github 仓库中查看.

第二章 题目 3-02 分析及处理

2.1 有限元模型建立及后处理

根据题目要求,模型中的各系数如下:

\overline{D}	5.13mm	D_0	2.565mm	R_1	1.77mm
R_2	$3.36 \mathrm{mm}$	GL	$1.59 \mathrm{mm}$	GW	$1.59 \mathrm{mm}$
H	$6.17 \mathrm{mm}$	h	$1 \mathrm{mm}$	Δh	$0.05 \mathrm{mm}$
\overline{l}	102.6mm	$(\sigma_x)_i$	100MPa	$(\sigma_y)_i$	100MPa
\overline{v}	0.3			E	$2.1 \times 10^5 \mathrm{MPa}$

图 2.1: 题目 3-02 中模型的系数

其中, H 为工件厚度; h 为钻孔深度; Δh 为每步钻孔的深度; l 为工件的边长.

为了更好地进行计算,我们使用映射网格划分,并利用 vdrag 命令建立整个的有限元模型. 使用单元类型为 SOLID186.^[8]. 为了模拟钻孔的过程,我们为钻孔深度内的模型单独划分单元,最终结果如图2.2所示. 为了展示清晰,在图2.3中,我们将孔和周边区域放大展示.

图 2.2: 建立的有限元模型

图 2.3: 局部放大

之后, 我们在工件中心处建立柱坐标系, 其 ρ 轴和 z 轴分别与原坐标系的 x 轴和 z 轴平行. 这样的柱坐标系有利于我们选择钻孔区域内的单元. 在选取需要的单元后, 我们根据"优先选择 z 轴坐标大的单元, 其次选择 x 轴坐标小的, 再选择 y 轴坐标小的"的原则对单元进行排序, 以便更好地模拟钻孔时

的情况. 由于利用 APDL 编写的排序程序运行过慢, 所以我们将排序用的数组输出为.dat 文件, 并将其导入 Matlab 中进行排序. 待排序完成后, 我们再将结果导出, 并用 APDL 读取即可.

图 2.4: 钻孔区域内的单元

随后是施加载荷以及检测应变的环节.本文的仿真过程所采用的原理如图2.5^[5] 所示:图 (a) 表示构件钻孔前的构件应力状态,图 (b) 表示在孔壁上施加与图 (a) 中孔壁上的应力相平衡的应力,而图 (c) 表示钻孔后构件的应力状态.从图中可以看出,图 (b) 对应图 (c) 与图 (a) 的差值,故以图 (b) 的状态加载所测得的应变便是钻孔前后的释放应变.

图 2.5: 模拟原理图

为了简化计算过程, 本文选择在双向等值应力场中, 即在 $(\sigma_x)_i = (\sigma_y)_i$ 的情况下, 对校准矩阵的系数进行计算. 为了确定将要施加在孔壁上的载荷的大小, 我们需要将直角坐标系中的应力分量转化到极坐标系中. 极坐标转换公式如下:

$$\begin{cases} \sigma_{\rho} &= \sigma_{x} \cos^{2} \phi + \sigma_{y} \sin^{2} \phi + \tau_{xy} \sin 2\phi \\ \sigma_{\phi} &= \sigma_{x} \sin^{2} \phi + \sigma_{y} \cos^{2} \phi - \tau_{xy} \sin 2\phi \\ \tau_{\rho\phi} &= (\sigma_{x} - \sigma_{y}) \sin \phi \cos \phi + \tau_{xy} \cos 2\phi \end{cases}$$

$$(2.1.1)$$

由上式可知, 当 $(\sigma_x)_i = (\sigma_y)_i = 100$ MPa 时, 我们需要在孔径上施加沿孔径方向的、大小为 100MPa 的应力. 在给工件底面四个顶点施加约束后, 便可进行计算.

2.2 数据分析

在得到各应变片的数据后,我们再利用式1.2.9便可解得校准系数矩阵 \bar{a}_{ni} . 出于运行速度的考虑,我们在处理数据时将采用与排序类似的方法,即将结果导出为.dat 文件,用 Matlab 读取并计算,最后导

出结果如下所示:

载荷步/mm										
孔深/mm	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
0.05	-0.01221	0	0	0	0	0	0	0	0	0
0.10	-0.01474	-0.01296	0	0	0	0	0	0	0	0
0.15	-0.01694	-0.01545	-0.01307	0	0	0	0	0	0	0
0.20	-0.01894	-0.01742	-0.01554	-0.01273	0	0	0	0	0	0
0.25	-0.02072	-0.01918	-0.01736	-0.01516	-0.01209	0	0	0	0	0
0.30	-0.02231	-0.02073	-0.01893	-0.01684	-0.01444	-0.01124	0	0	0	0
0.35	-0.02371	-0.02208	-0.02028	-0.01825	-0.01599	-0.01349	-0.01029	0	0	0
0.40	-0.02492	-0.02326	-0.02144	-0.01943	-0.01725	-0.01491	-0.0124	-0.00928	0	0
0.45	-0.02597	-0.02429	-0.02245	-0.02044	-0.01829	-0.01604	-0.01369	-0.01126	-0.00828	0
0.50	-0.02687	-0.02517	-0.02331	-0.0213	-0.01917	-0.01695	-0.01471	-0.01243	-0.01011	-0.00731
0.55	-0.02704	-0.02559	-0.0239	-0.02203	-0.02002	-0.01793	-0.01581	-0.01368	-0.01154	-0.00913
0.60	-0.02733	-0.02589	-0.02423	-0.02238	-0.02039	-0.01834	-0.01627	-0.01421	-0.01217	-0.00997
0.65	-0.02759	-0.02616	-0.02451	-0.02267	-0.0207	-0.01867	-0.01663	-0.01461	-0.01263	-0.01055
0.70	-0.02781	-0.02639	-0.02475	-0.02291	-0.02095	-0.01894	-0.01691	-0.01492	-0.01298	-0.01097
0.75	-0.02799	-0.02658	-0.02494	-0.02311	-0.02116	-0.01916	-0.01715	-0.01517	-0.01326	-0.01129
0.80	-0.02815	-0.02674	-0.0251	-0.02328	-0.02134	-0.01934	-0.01734	-0.01537	-0.01348	-0.01154
0.85	-0.02828	-0.02687	-0.02524	-0.02342	-0.02148	-0.01948	-0.01749	-0.01553	-0.01365	-0.01174
0.90	-0.02838	-0.02698	-0.02535	-0.02353	-0.02159	-0.0196	-0.01761	-0.01566	-0.01379	-0.01189
0.95	-0.02846	-0.02706	-0.02543	-0.02361	-0.02168	-0.01969	-0.0177	-0.01576	-0.01389	-0.0120
1.00	-0.02852	-0.02712	-0.02549	-0.02367	-0.02173	-0.01974	-0.01776	-0.01582	-0.01395	-0.01207
				幸	浅荷步/mm					
孔深/mm	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
0.55	-0.00647	0	0	0	0	0	0	0	0	0
0.60	-0.0076	-0.00556	0	0	0	0	0	0	0	0
0.65	-0.00863	-0.00659	-0.00478	0	0	0	0	0	0	0
0.70	-0.00912	-0.00741	-0.00561	-0.00401	0	0	0	0	0	0
0.75	-0.00966	-0.00808	-0.00647	-0.00473	-0.00332	0	0	0	0	0
0.80	-0.00986	-0.00829	-0.00684	-0.00546	-0.00405	-0.00274	0	0	0	0
0.85	-0.00998	-0.00847	-0.00695	-0.0059	-0.00476	-0.00328	-0.00223	0	0	0
0.90	-0.01004	-0.00836	-0.00739	-0.00609	-0.00498	-0.00389	-0.00278	-0.00179	0	0
0.95	-0.01043	-0.00885	-0.00753	-0.00623	-0.00517	-0.00413	-0.00313	-0.00221	-0.00139	0
1.00	-0.01038	-0.00894	-0.008	-0.00671	-0.00563	-0.00459	-0.00356	-0.00262	-0.00181	-0.00105

图 2.6: 校准系数矩阵 $ar{a}_{ni}$

2.3 标定数据对比分析

由于本文在仿真时使用的孔径 $D_0=2.565$ mm,与标准文件中的孔径并不一致,故需要在标准所提供的校准系数矩阵的基础上乘以 $(\frac{D_0}{2})^2=(\frac{2.565}{2})^2=1.64480625$. 实际用于对比分析的校准系数矩阵见附件:标准校准矩阵,在此不列出.

计算得到的校准系数与标准提供的校准系数之间的误差如下:

				幸	战荷步/mm					
孔深/mm	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
0.05	9.30%	0	0	0	0	0	0	0	0	0
0.10	9.94%	10.38%	0	0	0	0	0	0	0	0
0.15	9.90%	11.26%	8.25%	0	0	0	0	0	0	0
0.20	10.06%	10.35%	10.11%	4.74%	0	0	0	0	0	0
0.25	10.43%	9.71%	9.05%	7.68%	0.95%	0	0	0	0	0
0.30	10.92%	9.38%	8.16%	6.67%	4.63%	-2.48%	0	0	0	0
0.35	11.64%	9.42%	7.48%	5.66%	3.85%	1.74%	-5.09%	0	0	0
0.40	11.40%	9.90%	8.01%	4.36%	3.32%	1.48%	-0.65%	-8.23%	0	0
0.45	11.50%	9.86%	7.98%	4.96%	2.77%	0.51%	-1.59%	-3.87%	-11.23%	0
0.50	11.66%	9.92%	8.04%	5.90%	2.76%	-0.03%	-2.50%	-4.71%	-6.47%	-13.06%
0.55	9.01%	8.48%	7.33%	5.45%	3.75%	1.69%	-1.60%	-2.59%	-3.85%	-7.49%
0.60	7.54%	7.02%	5.91%	4.17%	2.38%	0.18%	-2.36%	-4.66%	-6.46%	-9.49%
0.65	6.29%	5.84%	4.80%	2.85%	1.25%	-0.95%	-3.63%	-5.33%	-8.82%	-11.16%
0.70	5.27%	4.81%	3.76%	1.97%	0.23%	-2.01%	-4.60%	-6.48%	-9.19%	-12.81%
0.75	4.47%	4.00%	2.95%	1.10%	-0.57%	-2.86%	-5.40%	-7.40%	-9.65%	-13.65%
0.80	3.78%	3.30%	2.23%	0.38%	-1.21%	-3.41%	-6.15%	-8.20%	-10.85%	-13.91%
0.85	3.25%	2.76%	1.62%	-0.16%	-1.83%	-4.02%	-6.58%	-8.85%	-11.53%	-14.65%
0.90	2.77%	2.27%	1.19%	-0.74%	-2.34%	-4.54%	-7.00%	-9.24%	-12.24%	-15.18%
0.95	2.27%	1.76%	0.66%	-1.13%	-2.89%	-5.09%	-7.55%	-9.88%	-12.68%	-15.76%
1.00	1.74%	1.27%	0.09%	-1.78%	-3.43%	-5.65%	-8.20%	-10.47%	-13.28%	-16.34%
				载	战荷步/mm					
孔深/mm	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
0.55	-15.17%	0	0	0	0	0	0	0	0	0
0.60	-14.85%	-17.70%	0	0	0	0	0	0	0	0
0.65	-13.13%	-17.37%	-20.23%	0	0	0	0	0	0	0
0.70	-15.31%	-17.19%	-20.87%	-22.75%	0	0	0	0	0	0
0.75	-15.25%	-16.60%	-18.77%	-23.95%	-25.28%	0	0	0	0	0
0.80	-16.26%	-19.26%	-20.61%	-21.89%	-24.96%	-27.81%	0	0	0	0
0.85	-17.75%	-20.01%	-23.92%	-22.67%	-22.38%	-29.49%	-30.34%	0	0	0
0.90	-19.14%	-23.54%	-21.71%	-24.75%	-25.35%	-26.76%	-29.80%	-32.86%	0	0
0.95	-17.67%	-20.76%	-22.72%	-25.45%	-27.17%	-28.95%	-31.34%	-33.95%	-35.39%	0
1.00	-19.19%	-21.20%	-19.62%	-21.65%	-23.58%	-25.40%	-28.67%	-31.83%	-34.03%	-37.92%

图 2.7: 误差

我们可以看到, 误差大致按照从上到下、从左到右的顺序逐渐减小, 在载荷步 i>0.50 时甚至出现了 -37.92% 的误差, 这可能是由于网格划分得不够合理导致的.

第三章 题目 4-02 分析及处理

3.1 有限元模型建立及后处理

根据题目要求, 我们使用 T700 碳纤维作为我们使用的正交各向异性材料, 另根据题目调整工件厚度. 更改后的各系数如下:

\overline{D}	5.13mm	D_0	2.565mm	R_1	1.77mm
R_2	3.36mm	GL	1.59mm	GW	1.59mm
\overline{H}	7.00mm	h	1.00mm	Δh	$0.05 \mathrm{mm}$
l	$102.6 \mathrm{mm}$	$(\sigma_x)_i$	100MPa	$(\sigma_y)_i$	100MPa
E_x	230GPa	E_y	15GPa	E_z	15GPa
G_{xy}	24GPa	G_{yz}	5.03GPa	G_{xz}	24GPa
v_{xy}	0.2	v_{yz}	0.25	v_{xz}	0.2

图 3.1: 题目 4-02 中模型的系数

图 3.2: 各层材料方向

在定义完材料属性后,我们根据图3.2中所展示的方式进行材料的铺设. 具体实现方法是选中指定高度内的单元,再利用 EMODIF 命令更改单元的材料. 加载方式也由题目 3-02 中的逐层加载变为在整个孔壁上加载.

在计算完毕后, 我们将结果导出为.dat 文件, 并将其导入 Matlab 绘制曲线. 绘图代码如下:

```
p = plot(x, EP1, "r-o", x, EP3, "b--o");
clear
                                      p(1).LineWidth = 1;
clc
                                      p(2).LineWidth = 1;
x = 0.05:0.05:1;
                                      xlim([0 1.05]);
                                      xticks(0.05:0.05:1);
fid_EP1 = fopen('EP1.dat','r');
                                      xlabel('Hole Depth / mm');
EP1 = fscanf(fid_EP1,'%f');
                                      ylabel('Relieved Strain');
fid_EP3 = fopen('EP3.dat','r');
                                      txt = legend({'$\varepsilon_1$','$\varepsilon_
EP3 = fscanf(fid_EP3,'%f');
                                      set(txt, 'Interpreter', 'latex');
fclose('all'); % 关闭所有文件
                                      legend('boxoff');
```

3.2 数据分析

解得应变数据如表3.3所示:

	孔深/mm										
应变	0.05	0.10	0.15	0.20	0.25						
ε_1	-6.4056E-09	-3.0312E-09	2.6945E-09	4.7314E-09	9.6589E-09						
ε_3	4.6852E-09	7.6839 E-09	8.3739 E-09	1.3283E-08	1.3522 E-08						
	孔深/mm										
应变	0.30	0.35	0.40	0.45	0.50						
ε_1	1.1377E-08	1.4949E-08	1.6453E-08	1.8824E-08	2.0128E-08						
$arepsilon_3$	1.7140E-08	1.6721E-08	1.9057E-08	1.8079 E-08	1.9496E-08						
		孔	深/mm								
应变	0.55	0.55 0.60		0.70	0.75						
ε_1	2.1597E-08	2.2719E-08	2.3572E-08	2.4552E-08	2.5012E-08						
$arepsilon_3$	1.8176E-08	1.8978E- 08	1.7501E-08	1.7914E-08	1.6404 E-08						
		孔	深/mm								
应变	0.80	0.85	0.90	0.95	1.00						
ε_1	2.5872E-08 2.6096E-08		2.6853E-08	2.6941E-08	2.7607E-08						
ε_3	1.6562E-08	1.5097 E-08	1.5094 E-08	1.3721E-08	1.3619E-08						

图 3.3: 各应变片测得释放应变

应变曲线如3.4所示:

图 3.4: 释放应变曲线

第四章 难点分析与软件使用体会

在完成本次大作业后, 我认为, 本次大作业的难点有如下几点:

- 1. 对原标准文件的理解;
- 2. 相关资料的查询;
- 3. 为曲面施加载荷的方法;
- 4. 生死单元法的使用;
- 5. 多载荷步的设置.

通过完成本次大作业, 我得以意识到自己有限元软件使用水平的欠缺, 认识到学习之路是永无尽头的. 但我也同样认识到了查询资料的重要性. 在完成本次大作业的过程中, ANSYS 自带的 HELP 文件就帮了大忙. 此外, 各类工具书也为我解决了很多问题, 不论是理论上的还是实践上的.

附件

标准校准矩阵

载荷步/mm										
孔深/mm	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
0.05	-0.01117	0	0	0	0	0	0	0	0	0
0.10	-0.01341	-0.01174	0	0	0	0	0	0	0	0
0.15	-0.01541	-0.01388	-0.01207	0	0	0	0	0	0	0
0.20	-0.0172	-0.01579	-0.01411	-0.01216	0	0	0	0	0	0
0.25	-0.01877	-0.01748	-0.01592	-0.01408	-0.01197	0	0	0	0	0
0.30	-0.02012	-0.01895	-0.0175	-0.01579	-0.0138	-0.01153	0	0	0	0
0.35	-0.02123	-0.02018	-0.01887	-0.01727	-0.0154	-0.01326	-0.01084	0	0	0
0.40	-0.02237	-0.02117	-0.01985	-0.01862	-0.01669	-0.01469	-0.01248	-0.01012	0	0
0.45	-0.02329	-0.02211	-0.02079	-0.01947	-0.0178	-0.01595	-0.01392	-0.01171	-0.00933	0
0.50	-0.02406	-0.0229	-0.02158	-0.02012	-0.01865	-0.01696	-0.01508	-0.01304	-0.01081	-0.0084
0.55	-0.0248	-0.02359	-0.02227	-0.02089	-0.01929	-0.01763	-0.01607	-0.01405	-0.01201	-0.00987
0.60	-0.02541	-0.0242	-0.02288	-0.02148	-0.01992	-0.01831	-0.01666	-0.0149	-0.01301	-0.01102
0.65	-0.02596	-0.02472	-0.02339	-0.02204	-0.02044	-0.01885	-0.01725	-0.01543	-0.01385	-0.01188
0.70	-0.02642	-0.02518	-0.02385	-0.02247	-0.02091	-0.01933	-0.01773	-0.01595	-0.01429	-0.01258
0.75	-0.02679	-0.02556	-0.02423	-0.02286	-0.02128	-0.01972	-0.01813	-0.01638	-0.01467	-0.01308
0.80	-0.02712	-0.02589	-0.02456	-0.02319	-0.0216	-0.02002	-0.01847	-0.01674	-0.01512	-0.01341
0.85	-0.02739	-0.02615	-0.02484	-0.02345	-0.02188	-0.0203	-0.01872	-0.01704	-0.01543	-0.01375
0.90	-0.02762	-0.02638	-0.02505	-0.0237	-0.02211	-0.02053	-0.01893	-0.01725	-0.01571	-0.01401
0.95	-0.02783	-0.0266	-0.02526	-0.02388	-0.02232	-0.02074	-0.01915	-0.01748	-0.01591	-0.01424
1.00	-0.02803	-0.02678	-0.02546	-0.0241	-0.0225	-0.02092	-0.01934	-0.01767	-0.01609	-0.01442
				幸	或荷步/mm					
孔深/mm	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
0.55	-0.00763	0	0	0	0	0	0	0	0	0
0.60	-0.00893	-0.00676	0	0	0	0	0	0	0	0
0.65	-0.00993	-0.00798	-0.00599	0	0	0	0	0	0	0
0.70	-0.01077	-0.00895	-0.00709	-0.0052	0	0	0	0	0	0
0.75	-0.0114	-0.00969	-0.00796	-0.00622	-0.00444	0	0	0	0	0
0.80	-0.01178	-0.01026	-0.00862	-0.00699	-0.00539	-0.0038	0	0	0	0
0.85	-0.01214	-0.01059	-0.00913	-0.00763	-0.00614	-0.00465	-0.00321	0	0	0
0.90	-0.01242	-0.01094	-0.00944	-0.00809	-0.00668	-0.00531	-0.00396	-0.00266	0	0
0.95	-0.01267	-0.01117	-0.00974	-0.00836	-0.00711	-0.00581	-0.00456	-0.00334	-0.00215	0
1.00	-0.01285	-0.01135	-0.00995	-0.00857	-0.00737	-0.00615	-0.00498	-0.00385	-0.00275	-0.00169

参考文献

- [1] 郑建毅, 庄明凤, 郑高峰, 等. 用逐层钻孔的小孔法测量非均匀残余应力[J]. 振动. 测试与诊断, 2014, 34(3):6.
- [2] ZHANG K, YUAN M, CHEN J. General calibration formulas for incremental hole drilling optical measurement[J]. Experimental Techniques, 2017, 41(1):1-8.
- [3] SCHAJER G S. Application of Finite Element Calculations to Residual Stress Measurements [J/OL]. Journal of Engineering Materials and Technology, 1981, 103(2):157-163. https://doi.org/10.1115/1.3224988.
- [4] 贺赟晖. 盲孔法中弹性阶段释放系数的数值计算方法研究[J]. 合肥工业大学报, 2006(5):23-25.
- [5] 薛满泉, 梁校. 非均匀残余应力释放系数矩阵的模拟标定法及误差分析[J]. 中国水运: 下半月, 2017 (7):97-100.
- [6] 美国材料实验协会. Standard Test Method for Determining Residual Stresses by the Hole-Drilling strain-Gage Method: ASTM E837-20[S/OL]. 2013. http://www.astm.org/cgi-bin/resolver.cgi?E8 37-20.
- [7] 全国钢标准化技术委员会. 金属材料 残余应力测定 钻孔应变法: GB/T 31310-2014[S]. 北京: 中国标准出版社, 2014.
- [8] 王新敏, 李义强, 许宏伟. ANSYS 结构分析单元与应用[M]. 北京: 人民交通出版社, 2011.
- [9] 龚曙光, 谢桂兰, 黄云清. ANSYS 参数化编程与命令手册[M]. 北京: 机械工业出版社, 2009.
- [10] 曹渊. ANSYS18.0 有限元分析从入门到精通: 升级版[M]. 北京: 电子工业出版社, 2018.