Entropic Forces in Brownian Motion

Phys 160 Journal Article Report James Saslow

Link to video presentation:

https://www.youtube.com/watch?v=hjmek4pmBJ4&list=PLITM2LUMMTGrnFzYMk5mpvfbSER_krg7l&index=2

Random Walks

Brownian Motion

(Drift, continuous process)

Yellow particle submerged in a fluid

Random Walks

Simplification

(No drift, discrete process)

A drunk person making equal steps in random directions

Random Walks In 1D

A Single Random Walk

- Not very interesting

Several Random Walks

Very Interesting behavior... <u>Normal</u>
<u>Distribution</u>

Time Evolution of Random Walk Distribution

Diffusion Equation

$$\frac{\partial f(\mathbf{r},t)}{\partial t} = D\nabla^2 f(\mathbf{r},t)$$

Probability Distribution

$$f(x,t) = \frac{1}{\sqrt{2\pi[\sigma(t)]^2}} e^{-\frac{x^2}{2[\sigma(t)]^2}}$$

RMS Displacement as Function of Time

$$< x > \propto t^{1/2}$$

- Concavity in x(t) implies non-zero acceleration
- F=ma ... there must be a force

 It's as if there is a macroscopic force pulling the random walkers away from the starting point

Entropic Force

$$< F > = -mD^2/ < x^3 >$$

Entropic Forces

 The entropic force pulls drunkards away from the origin in order to maximize entropy (Diffusive equilibrium)

Conclusion

- Use entropic force/entropy maximization approach to solve other Brownian motion problems
- We don't need the Central Limit Theorem anymore!

Figure 6: Entropy as a function of time for 200 Random Walks