Jun23

Xinyu Zhang

6/23/2020

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
av_AVQI_B <- read.csv("av_AVQI_B.csv")</pre>
av AVQI R <- read.csv("av AVQI R.csv")</pre>
#merging mean breahtiness and mean roughness into one table
av_AVQI_BR <-left_join(av_AVQI_B,av_AVQI_R, by = "dummy") %>%
  glimpse
```

```
## Rows: 106
## Columns: 21
## $ X.x
                 <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17...
                 <fct> S9 - P, S18 - Pre, S34 - Pre, S6 - P6mnd, S38 - Pre, S17 ...
## $ dummy
## $ BreathyMean <dbl> 235.0, 1000.0, 2.5, 940.5, 136.5, 806.5, 328.0, 345.5, 88...
## $ CPPS.x
                 <dbl> 7.02, 13.51, 2.75, 15.37, 6.86, 12.57, 8.55, 10.65, 13.47...
## $ HNR.x
                 <dbl> 7.80, 16.86, 4.58, 23.69, 7.07, 19.70, 9.68, 13.98, 15.28...
                 <dbl> 1.98, 0.91, NA, 0.40, 2.89, 0.93, 1.96, 0.89, 0.39, 1.13,...
## $ Jitter.x
## $ Shimmer.x
                 <dbl> 13.20, 7.40, 20.61, 3.84, 12.02, 5.23, 14.47, 6.59, 6.23,...
## $ ShdB.x
                 <dbl> 1.18, 0.70, 1.74, 0.39, 1.14, 0.53, 1.27, 0.61, 0.56, 0.4...
                 <dbl> -16.76, -22.19, -10.42, -21.07, -17.61, -26.12, -21.37, -...
## $ Slope.x
## $ Tilt.x
                 <dbl> -7.69, -12.10, -10.15, -12.43, -10.85, -11.68, -9.29, -9...
                 <dbl> 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03
## $ Version.x
## $ X.y
                 <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17...
## $ RoughMean
                 <dbl> 372.5, 941.0, 642.0, 967.0, 248.5, 890.5, 253.5, 267.0, 6...
## $ CPPS.y
                 <dbl> 7.02, 13.51, 2.75, 15.37, 6.86, 12.57, 8.55, 10.65, 13.47...
                 <dbl> 7.80, 16.86, 4.58, 23.69, 7.07, 19.70, 9.68, 13.98, 15.28...
## $ HNR.y
## $ Jitter.y
                 <dbl> 1.98, 0.91, NA, 0.40, 2.89, 0.93, 1.96, 0.89, 0.39, 1.13,...
                 <dbl> 13.20, 7.40, 20.61, 3.84, 12.02, 5.23, 14.47, 6.59, 6.23,...
## $ Shimmer.y
## $ ShdB.y
                 <dbl> 1.18, 0.70, 1.74, 0.39, 1.14, 0.53, 1.27, 0.61, 0.56, 0.4...
                 <dbl> -16.76, -22.19, -10.42, -21.07, -17.61, -26.12, -21.37, -...
## $ Slope.y
                 <dbl> -7.69, -12.10, -10.15, -12.43, -10.85, -11.68, -9.29, -9...
## $ Tilt.y
## $ Version.y
                 <dbl> 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03,
```

```
#plotting and fitting regression line
ggplot(data = av_AVQI_BR, aes(x = RoughMean, y = BreathyMean)) +
  geom_point() +
  geom_smooth(method = "lm")
```

```
## `geom_smooth()` using formula 'y ~ x'
```



```
#Comparing the above with the un-averaged data
merged <- read.csv("merged.csv")
library(ggplot2)
ggplot(data = merged, aes(x = Roughness, y = Breathiness, color = Subject)) +
  geom_point() +
  geom_smooth(method = "lm")</pre>
```

```
## `geom_smooth()` using formula 'y ~ x'
```


#ggsave("roughness-breathiness.pdf", plot = last_plot(), device = NULL)

```
#Only fitting one line over all points, regardless of subjects
merged <- read.csv("merged.csv")
library(ggplot2)
ggplot(data = merged, aes(x = Roughness, y = Breathiness)) +
geom_point(aes(color = Subject)) +
geom_smooth(method = "lm")</pre>
```

```
## `geom_smooth()` using formula 'y ~ x'
```


#ggsave("roughness-breathiness.pdf", plot = last_plot(), device = NULL)

```
#excluding the upper-right-most and lower-left-most squares
merged2 <- merged %>%
  filter(!(Roughness > 750 & Breathiness > 750) & !(Roughness < 250 & Breathiness <250))
%>%
  glimpse
```

```
## Rows: 127
## Columns: 15
## $ X
                <int> 3, 7, 9, 10, 12, 13, 18, 19, 21, 24, 26, 27, 28, 31, 32, ...
                <int> 368, 136, 633, 282, 55, 382, 307, 398, 380, 280, 278, 310...
## $ Roughness
## $ Breathiness <int> 4, 423, 908, 614, 418, 885, 259, 616, 687, 218, 361, 304,...
                <fct> S34, S9, S10, S46, S1, S29, S38, S44, S25, S5, S10, S43, ...
## $ Speaker
## $ T.x
                <fct> Pre, Pre, P6mnd, P6mnd, Pre, Pre, P6mnd, Pre, Pre, Pre, P...
## $ Subject
                ## $ token
                <fct> S34 - Pre, S9 - Pre, S10 - P6mnd, S46 - P6mnd, S1 - Pre, ...
## $ AVQI
                <dbl> 7.67, 6.36, 3.36, 5.62, NA, 3.30, 7.11, 2.63, 4.23, 4.19,...
                <dbl> 2.75, 8.55, 13.47, 8.67, NA, 12.36, 7.13, 13.72, 11.60, 1...
## $ CPPS
                <dbl> 4.58, 9.68, 15.28, 10.80, NA, 20.41, 4.20, 19.08, 17.45, ...
## $ HNR
## $ Jitter
                <fct> --undefined--, 1.96, 0.39, 1.13, NA, 0.43, 1.21, 0.31, 0....
## $ Shimmer
                <dbl> 20.61, 14.47, 6.23, 4.70, NA, 4.17, 12.95, 3.84, 5.81, 5...
## $ ShdB
                <dbl> 1.74, 1.27, 0.56, 0.48, NA, 0.38, 1.19, 0.37, 0.56, 0.50,...
## $ Slope
                <dbl> -10.42, -21.37, -20.79, -19.10, NA, -25.90, -12.63, -21.1...
## $ Tilt
                <dbl> -10.15, -9.29, -11.42, -10.01, NA, -9.94, -9.92, -11.76, ...
```

`geom_smooth()` using formula 'y ~ x'


```
library(dplyr)
#reading in listening test results
listener1 <- read.csv("Results_AK.csv", header = TRUE, sep = ";")</pre>
listener2 <- read.csv("Results_KS.csv", header = TRUE, sep = ";")</pre>
#renaming the two answers, removing column "Num"
SLP1 <- listener1 %>%
  rename(Roughness = Answer1, Breathiness = Answer2)%>%
  dplyr::select(-Num)
SLP2 <- listener2 %>%
  rename(Roughness = Answer1, Breathiness = Answer2)%>%
  dplyr::select(-Num)
#inserting a column with Speaker and T merged together in the listening experiment resul
#SLP1$dummy <- paste(SLP1$Speaker, "-", SLP1$T)</pre>
#SLP2$dummy <- paste(SLP2$Speaker, "-", SLP2$T)</pre>
#as_tibble(SLP1)
#as_tibble(SLP2)
#join the two listening results tables by matching both Speaker and T
SLP <-rbind(SLP1,SLP2) %>%
  dplyr::select(-Z, -A) %>%
  filter(!(Roughness > 750 & Breathiness > 750) & !(Roughness < 250 & Breathiness < 250))
SLP$dummy <- paste(SLP$Speaker, "-", SLP$T)</pre>
str(SLP)
```

```
AVQI <- read.csv("AVQI_results_new.csv")
#create a dummy column as an identifier for each "Speaker-T" entry
AVQI$dummy <- paste(AVQI$Speaker, "-", AVQI$T)

SLPRough <- SLP %>%
   dplyr::select(Roughness, dummy)

#merging ("left-join" only appends AVQI entries that has SLP rating correspondents)
library(dplyr)
av_AVQI_R <-left_join(SLPRough,AVQI, by = "dummy")%>%
   dplyr::select(-Speaker, -T, -AVQI, -dummy)

#converting jitter into a factor
av_AVQI_R$Jitter <- as.numeric(levels(av_AVQI_R$Jitter))[av_AVQI_R$Jitter]</pre>
```

Warning: NAs introduced by coercion

#have a look at the whole table
av_AVQI_R

##		Doughnogg	CDDC	IIND	Tittor	Shimmer	Chan	Clono	m:1±	Vorgion
##		Roughness 368		4.58	NA			-10.42		Version 2.03
##		136	8.55	9.68	1.96			-21.37		
##			13.47			6.23				
##		282		10.80	1.13			-19 . 10		
##		55	NA	NA	NA		NA	-13.10 NA	NA	
##			12.36		0.43			-25.90		
##		307	7.13	4.20	1.21	12.95				
##			13.72		0.31			-21.13		
##			11.60					-26.57		
##			10.82					-21.40		
##		278		12.74	2.35			-23.62		
##		310		13.40	0.80			-24.35		
##			10.91					-26.53		
##			10.64		2.40			-21.52		
##		339	6.77		0.86			-23.67		2.03
##			13.83		0.74			-21.75		
##			11.34					-27.35		
##		240		12.42				-21.09		
##			14.21		0.36			-22.40		
##		373	8.48	9.31	0.94			-17.35		
##		420		12.09	2.06			-23.14		
##			10.96		0.51			-17.86		
##	23	381	NA	NA	NA	NA	NA	NA	NA	
##	24	376	4.90	7.15	5.53	12.56	1.12	-21.02	-11.21	2.03
##	25	906	11.53	13.62	1.10	7.89	0.73	-21.34	-11.02	2.03
##	26	341	13.36	8.50	9.34	8.93	0.84	-15.28	-12.11	2.03
##	27	590	11.39	13.74	0.73	10.19	0.93	-18.97	-10.41	2.03
##	28	382	12.37	16.70	1.84	6.14	0.46	-21.10	-11.60	2.03
##	29	346	10.63	12.23	1.86	8.37	0.76	-22.18	-9.16	2.03
##	30	435	12.80	15.17	1.26	5.94	0.58	-20.81	-11.41	2.03
##	31	343	12.22	17.04	0.44	6.48	0.62	-20.48	-10.76	2.03
##	32	274	6.92	7.82	1.69	12.48	1.14	-18.10	-7.54	2.03
##	33	364	7.09	12.26	2.35	13.23	1.25	-25.91	-9.08	2.03
##	34	382	8.70	15.85	1.73	6.84	0.70	-28.16	-10.81	2.03
##	35	496	10.49		1.05	6.17	0.54	-21.57	-9.57	2.03
##	36	289	8.68	12.31	1.46	9.48	0.88	-19.44	-9.95	2.03
##	37	147	11.76	15.80	0.56			-23.56		2.03
##		353	8.15	13.58	1.14	9.80	0.86	-22.64	-9.95	2.03
##	39	205	9.39	6.81	0.98	10.43	0.96	-14.51	-6.15	2.03
##	40	407	7.84	11.42	2.16	9.78	1.08	-22.61	-8.92	2.03
##		324	9.82	11.33	1.72	12.41	1.09	-20.43	-11.45	2.03
##		722	11.89	15.34	0.46	7.85	0.65	-24.24	-10.10	2.03
##			10.89		0.82			-23.62		2.03
##			14.47		0.37			-22.96		2.03
##			14.64		0.37			-23.00		
##			13.37		0.63			-18.32		2.03
##			11.63		0.80			-19.86		2.03
##			8.44		0.62			-23.33		2.03
##			15.41		0.40			-17.80		2.03
##			14.21		0.36			-22.40		2.03
##			9.09		1.29			-19.10		2.03
##	52	371	8.55	9.68	1.96	14.47	1.27	-21.37	-9.29	2.03

##	53	685	4.61	5.29	8.92	17.93	1.54	-25.90	-9.06	2.03
##	54	952	11.34	20.85	0.55	4.73	0.43	-27.35	-11.09	2.03
##	55	416	7.09	12.26	2.35	13.23	1.25	-25.91	-9.08	2.03
##	56	628	8.15	13.58	1.14	9.80	0.86	-22.64	-9.95	2.03
##	57	402	3.53	4.70	5.72	17.84	1.47	-14.64	-8.65	2.03
##	58	835	8.58	10.45	1.75	8.30	0.86	-19.23	-9.46	2.03
##	59	205	10.96	10.00	0.51	6.87	0.68	-17.86	-6.89	2.03
##	60	966	11.65	18.49	0.64	6.05	0.55	-23.53	-11.80	2.03
##	61	966	11.65	18.49	0.64	6.05	0.55	-23.53	-11.80	2.03
##	62	1000	9.73	18.07	1.22	5.10	0.51	-27.15	-10.18	2.03
##	63	570	10.14	6.24	1.36	13.16	1.11	-13.57	-9.87	2.03
##	64	916	2.75	4.58	NA	20.61	1.74	-10.42	-10.15	2.03
##	65	232	7.71	11.76	2.70	7.67	0.68	-25.92	-10.15	2.03
##	66	409	8.44	14.65	0.62	7.62	0.64	-23.33	-9.75	2.03
##	67	738	10.89	17.73	0.82	6.15	0.65	-23.62	-9.26	2.03
##	68	936	6.92	7.82	1.69	12.48	1.14	-18.10	-7.54	2.03
##	69	394	17.09	17.57	0.84	5.38	0.48	-17.83	-12.84	2.03
##	70	258	7.13	4.20	1.21	12.95	1.19	-12.63	-9.92	2.03
##	71	399	9.81	12.74	2.35	10.02	0.91	-23.62	-11.35	2.03
##	72	692	8.27	12.42	1.05	9.93	0.77	-21.09	-10.61	2.03
##	73	927	14.39	19.61	0.58	4.95	0.40	-21.27	-11.54	2.03
##	74	677	13.47	15.28	0.39	6.23	0.56	-20.79	-11.42	2.03
##	75	780	11.39	13.74	0.73	10.19	0.93	-18.97	-10.41	2.03
##	76	706	7.02	7.80	1.98	13.20	1.18	-16.76	-7.69	2.03
##	77	653	7.81	12.09	2.06	10.63	0.93	-23.14	-8.36	2.03
##	78	706	11.76	15.80	0.56	6.20	0.55	-23.56	-10.44	2.03
##	79	853	8.68	12.31	1.46	9.48	0.88	-19.44	-9.95	2.03
##	80	773	11.53	13.62	1.10	7.89	0.73	-21.34	-11.02	2.03
##	81	908	10.49	13.82	1.05	6.17	0.54	-21.57	-9.57	2.03
##	82	412	12.37	16.70	1.84	6.14	0.46	-21.10	-11.60	2.03
##	83	861	13.66	16.61	0.74	7.26	0.69	-20.72	-11.59	2.03
##	84	277	6.77	12.02	0.86	11.24	0.96	-23.67	-9.98	2.03
##	85	642	2.95	4.75	0.44	18.66	1.70	-10.46	-8.10	2.03
##	86	588	15.21	18.40	0.88	5.67	0.47	-20.39	-11.93	2.03
##	87	905	9.69	13.93	3.04	5.96	0.51	-24.23	-11.66	2.03
##	88	905	9.77	14.09	3.04				-11.24	
##	89	797	13.76	16.38	0.38	5.18	0.46	-19.18	-9.63	2.03
	90			14.50		7.48	0.67	-21.64	-11.34	2.03
##	91			10.80					-10.01	
	92				0.83				-10.35	
	93				0.93					
	94				0.42		0.32	-21.44	-11.31	2.03
	95	709	14.47	20.21	0.37				-11.72	
	96	709	14.64	20.71					-11.67	
	97			18.66			0.48	-26.53	-11.17	2.03
	98			8.50			0.84	-15.28	-12.11	2.03
	99				0.46				-10.10	
	100				1.73					
	101				2.16					
	102				2.40					
	103			11.83					-10.54	
	104				0.93				-10.32	
	105				1.26					
##	106	377	11.63	15.32	0.80	8.17	0.68	-19.86	-10.66	2.03

```
## 107
            633 13.35 15.94
                               0.79
                                      5.35 0.49 -17.24 -11.88
                                                                 2.03
## 108
            461 8.48 9.31
                               0.94
                                      9.80 0.89 -17.35 -10.47
                                                                 2.03
                                      5.57 0.50 -21.40 -9.66
## 109
            413 10.82 15.73
                                                                 2.03
                               0.44
            689 13.01 16.18
                                      6.94 \ 0.62 \ -23.59 \ -10.79
## 110
                               1.13
                                                                 2.03
            370 10.63 12.23
                               1.86
                                    8.37 0.76 -22.18 -9.16
                                                                 2.03
## 111
## 112
            402 3.38 1.93
                               3.65
                                    15.24 1.26 -8.31 -9.04
                                                                 2.03
## 113
            797 13.01 18.92
                               0.33
                                      4.23 0.44 -22.42 -10.85
                                                                 2.03
                                    12.56 1.12 -21.02 -11.21
## 114
            340 4.90 7.15
                               5.53
                                                                 2.03
## 115
            661 9.82 11.33
                               1.72
                                    12.41 1.09 -20.43 -11.45
                                                                 2.03
## 116
            540 8.59 13.40
                                    8.73 0.80 -24.35 -9.33
                               0.80
                                                                 2.03
## 117
            459 10.65 13.98
                               0.89
                                      6.59 0.61 -19.32 -9.93
                                                                 2.03
## 118
            707
                   NA
                                NA
                                        NA
                                             NA
                                                    NA
                                                                   NA
                         NA
                                                           NA
## 119
            619 10.70 15.94
                               0.93
                                      7.31 0.62 -23.53 -11.14
                                                                 2.03
## 120
            465 7.17 11.74
                               2.10
                                    10.44 0.87 -22.14 -9.08
                                                                 2.03
## 121
            402 13.88 17.34
                               0.68
                                      5.95 0.47 -19.37 -12.44
                                                                 2.03
## 122
            302 12.22 17.04
                                      6.48 0.62 -20.48 -10.76
                               0.44
                                                                 2.03
## 123
            658 13.29 18.86
                               0.26
                                      4.03 0.39 -24.82 -11.00
                                                                 2.03
## 124
            378 6.86 7.07
                                     12.02 1.14 -17.61 -10.85
                               2.89
                                                                 2.03
                                    10.43 0.96 -14.51 -6.15
## 125
            706 9.39 6.81
                               0.98
                                                                 2.03
## 126
            290 13.83 16.65
                               0.74
                                      6.40 0.48 -21.75 -11.60
                                                                 2.03
            726
## 127
                   NA
                                NA
                                        NA
                                             NA
                                                    NA
                                                           NA
                                                                   NA
                         NA
```

```
SLPBreathy <- SLP %>%
   dplyr::select(Breathiness, dummy)

#merging ("left-join" only appends AVQI entries that has SLP rating correspondents)
library(dplyr)
av_AVQI_B <-left_join(SLPBreathy,AVQI, by = "dummy")%>%
   dplyr::select(-Speaker, -T, -AVQI, -dummy)

#converting jitter into a factor
av_AVQI_B$Jitter <- as.numeric(levels(av_AVQI_B$Jitter))[av_AVQI_B$Jitter]</pre>
```

```
## Warning: NAs introduced by coercion
```

av_AVQI_B

##		Breathiness	CPPS	HNR	Jitter	Shimmer	ShdB	Slope	Tilt	Version
##	1	4	2.75	4.58	NA	20.61	1.74	-10.42	-10.15	2.03
##	2	423	8.55	9.68	1.96	14.47	1.27	-21.37	-9.29	2.03
##	3	908	13.47	15.28	0.39	6.23	0.56	-20.79	-11.42	2.03
##	4	614	8.67	10.80	1.13	4.70	0.48	-19.10	-10.01	2.03
##	5	418	NA	NA	NA	NA	NA	NA	NA	NA
##	6	885	12.36	20.41	0.43	4.17	0.38	-25.90	-9.94	2.03
##	7	259	7.13	4.20	1.21	12.95	1.19	-12.63	-9.92	2.03
##	8	616	13.72	19.08	0.31	3.84	0.37	-21.13	-11.76	2.03
##	9	687	11.60	17.45	0.93	5.81	0.56	-26.57	-10.32	2.03
##	10	218	10.82	15.73	0.44	5.57	0.50	-21.40	-9.66	2.03
##	11	361	9.81	12.74	2.35	10.02	0.91	-23.62	-11.35	2.03
##	12	304	8.59	13.40	0.80	8.73	0.80	-24.35	-9.33	2.03
##	13	410	10.91	18.66	0.78	5.44	0.48	-26.53	-11.17	2.03
##	14	568	10.64	12.66	2.40	8.93	0.81	-21.52	-9.37	2.03
##	15	687	6.77	12.02	0.86	11.24	0.96	-23.67	-9.98	2.03
##	16	945	13.83	16.65	0.74	6.40	0.48	-21.75	-11.60	2.03
##	17	691	11.34	20.85	0.55	4.73	0.43	-27.35	-11.09	2.03
##	18	323	8.27	12.42	1.05	9.93	0.77	-21.09	-10.61	2.03
##	19	605	14.21	20.79	0.36	4.64	0.49	-22.40	-11.31	2.03
##	20	424	8.48	9.31	0.94	9.80	0.89	-17.35	-10.47	2.03
##	21	264	7.81	12.09	2.06	10.63	0.93	-23.14	-8.36	2.03
##	22	722	10.96	10.00	0.51	6.87	0.68	-17.86	-6.89	2.03
##	23	547	NA	NA	NA			NA		
##	24	363	4.90	7.15	5.53	12.56	1.12	-21.02	-11.21	2.03
##	25	445	11.53	13.62	1.10	7.89				
##		808	13.36	8.50	9.34	8.93	0.84	-15.28	-12.11	2.03
##			11.39		0.73				-10.41	
##			12.37		1.84					
##			10.63		1.86					
##			12.80		1.26					
##			12.22		0.44					2.03
##		16		7.82	1.69			-18.10		2.03
##		287		12.26	2.35			-25.91		2.03
##		214		15.85	1.73				-10.81	
##			10.49		1.05				-9.57	
##		225		12.31	1.46			-19.44		2.03
##			11.76		0.56					
##			8.15		1.14				-9.95	
##			9.39		0.98			-14.51		2.03
##		341		11.42	2.16				-8.92	
##		489		11.33	1.72				-11.45	
##			11.89		0.46				-10.10	
##			10.89		0.82			-23.62		2.03
##			14.47		0.37				-11.72	
##			14.64		0.37				-11.67	
##			13.37		0.63				-11.13	
##			11.63		0.80				-10.66	
##			8.44		0.62				-9.75	
##			15.41		0.40				-12.51	
##			14.21		0.36				-11.31	
##			9.09		1.29				-10.10	
##	32	233	0.55	9.68	1.96	14.4/	1.2/	-21.37	-9.29	2.03

##	53	372	4.61	5.29	8.92	17.93	1.54	-25.90	-9.06	2.03
##	54	716	11.34	20.85	0.55	4.73	0.43	-27.35	-11.09	2.03
##	55	97	7.09	12.26	2.35	13.23	1.25	-25.91	-9.08	2.03
##	56	85	8.15	13.58	1.14	9.80	0.86	-22.64	-9.95	2.03
##	57	74	3.53	4.70	5.72	17.84	1.47	-14.64	-8.65	2.03
##	58	16	8.58	10.45	1.75	8.30	0.86	-19.23	-9.46	2.03
##	59	794	10.96	10.00	0.51	6.87	0.68	-17.86	-6.89	2.03
##	60	656	11.65	18.49	0.64	6.05	0.55	-23.53	-11.80	2.03
##	61	656	11.65	18.49	0.64	6.05	0.55	-23.53	-11.80	2.03
##	62	197	9.73	18.07	1.22	5.10	0.51	-27.15	-10.18	2.03
##	63	1000	10.14	6.24	1.36	13.16	1.11	-13.57	-9.87	2.03
##	64	1	2.75	4.58	NA	20.61	1.74	-10.42	-10.15	2.03
##	65	456	7.71	11.76	2.70	7.67	0.68	-25.92	-10.15	2.03
##	66	102	8.44	14.65	0.62	7.62	0.64	-23.33	-9.75	2.03
##	67	393	10.89	17.73	0.82	6.15	0.65	-23.62	-9.26	2.03
##	68	52	6.92	7.82	1.69	12.48	1.14	-18.10	-7.54	2.03
##	69	1000	17.09	17.57	0.84	5.38	0.48	-17.83	-12.84	2.03
##	70	808	7.13	4.20	1.21	12.95	1.19	-12.63	-9.92	2.03
##	71	614	9.81	12.74	2.35	10.02	0.91	-23.62	-11.35	2.03
##	72	238	8.27	12.42	1.05	9.93	0.77	-21.09	-10.61	2.03
##	73	643	14.39	19.61	0.58	4.95	0.40	-21.27	-11.54	2.03
##	74	853	13.47	15.28	0.39	6.23	0.56	-20.79	-11.42	2.03
##	75	358	11.39	13.74	0.73	10.19	0.93	-18.97	-10.41	2.03
##	76	241	7.02	7.80	1.98	13.20	1.18	-16.76	-7.69	2.03
##	77	872	7.81	12.09	2.06	10.63	0.93	-23.14	-8.36	2.03
##	78	356	11.76	15.80	0.56	6.20	0.55	-23.56	-10.44	2.03
##	79	423	8.68	12.31	1.46	9.48	0.88	-19.44	-9.95	2.03
##	80	491	11.53	13.62	1.10	7.89	0.73	-21.34	-11.02	2.03
##	81	543	10.49	13.82	1.05	6.17	0.54	-21.57	-9.57	2.03
##	82	970	12.37	16.70	1.84	6.14	0.46	-21.10	-11.60	2.03
##	83	610	13.66	16.61	0.74	7.26	0.69	-20.72	-11.59	2.03
##	84	638	6.77	12.02	0.86	11.24	0.96	-23.67	-9.98	2.03
##	85	13	2.95	4.75	0.44	18.66	1.70	-10.46	-8.10	2.03
##	86	999	15.21	18.40	0.88	5.67	0.47	-20.39	-11.93	2.03
##	87	618	9.69	13.93	3.04	5.96	0.51	-24.23	-11.66	2.03
##	88	618	9.77	14.09	3.04	5.75	0.51	-24.06	-11.24	2.03
##	89	613	13.76	16.38	0.38	5.18	0.46	-19.18	-9.63	2.03
##	90	892	13.75	14.50	2.68	7.48	0.67	-21.64	-11.34	2.03
##	91	935	8.67	10.80	1.13	4.70	0.48	-19.10	-10.01	2.03
##	92	812	12.14	13.39	0.83	9.94	0.83	-20.05	-10.35	2.03
##	93	742	12.57	19.70	0.93	5.23	0.53	-26.12	-11.68	2.03
##	94	862	14.27	19.85	0.42	4.47	0.32	-21.44	-11.31	2.03
##	95	870	14.47	20.21	0.37	3.65	0.30	-22.96	-11.72	2.03
##	96	870	14.64	20.71	0.37	3.73	0.32	-23.00	-11.67	2.03
##	97	213	10.91	18.66	0.78	5.44	0.48	-26.53	-11.17	2.03
##	98	809	13.36	8.50	9.34	8.93	0.84	-15.28	-12.11	2.03
##	99	835	11.89	15.34	0.46	7.85	0.65	-24.24	-10.10	2.03
##	100	418	8.70	15.85	1.73	6.84	0.70	-28.16	-10.81	2.03
##	101	835	7.84	11.42	2.16	9.78	1.08	-22.61	-8.92	2.03
##	102	759	10.64	12.66	2.40	8.93	0.81	-21.52	-9.37	2.03
##	103	373	7.36	11.83	1.41	9.14	0.82	-17.20	-10.54	2.03
##	104	553	11.60	17.45	0.93	5.81	0.56	-26.57	-10.32	2.03
##	105	542	12.80	15.17	1.26	5.94	0.58	-20.81	-11.41	2.03
##	106	757	11.63	15.32	0.80	8.17	0.68	-19.86	-10.66	2.03

```
## 107
               256 13.35 15.94
                                  0.79
                                          5.35 0.49 -17.24 -11.88
                                                                      2.03
## 108
               357 8.48 9.31
                                  0.94
                                          9.80 0.89 -17.35 -10.47
                                                                      2.03
               240 10.82 15.73
## 109
                                  0.44
                                          5.57 0.50 -21.40 -9.66
                                                                      2.03
## 110
               383 13.01 16.18
                                  1.13
                                          6.94 \ 0.62 \ -23.59 \ -10.79
                                                                      2.03
                                          8.37 0.76 -22.18 -9.16
## 111
               590 10.63 12.23
                                  1.86
                                                                      2.03
               176 3.38 1.93
                                  3.65
                                        15.24 1.26 -8.31 -9.04
## 112
                                                                      2.03
## 113
               562 13.01 18.92
                                  0.33
                                          4.23 0.44 -22.42 -10.85
                                                                      2.03
## 114
               433 4.90 7.15
                                  5.53
                                         12.56 1.12 -21.02 -11.21
                                                                      2.03
               556 9.82 11.33
                                         12.41 1.09 -20.43 -11.45
## 115
                                  1.72
                                                                      2.03
## 116
               391 8.59 13.40
                                  0.80
                                        8.73 0.80 -24.35 -9.33
                                                                      2.03
               571 10.65 13.98
                                  0.89
                                          6.59 0.61 -19.32 -9.93
## 117
                                                                      2.03
## 118
               241
                      NA
                            NA
                                    NA
                                            NA
                                                 NA
                                                        NA
                                                                        NA
                                                                NA
                                  0.93
## 119
               382 10.70 15.94
                                          7.31 0.62 -23.53 -11.14
                                                                      2.03
## 120
               253 7.17 11.74
                                  2.10
                                         10.44 0.87 -22.14 -9.08
                                                                      2.03
## 121
               847 13.88 17.34
                                  0.68
                                         5.95 0.47 -19.37 -12.44
                                                                      2.03
## 122
               647 12.22 17.04
                                  0.44
                                          6.48 \ 0.62 \ -20.48 \ -10.76
                                                                      2.03
## 123
               765 13.29 18.86
                                  0.26
                                         4.03 0.39 -24.82 -11.00
                                                                      2.03
## 124
               156 6.86
                          7.07
                                  2.89
                                         12.02 1.14 -17.61 -10.85
                                                                      2.03
## 125
               829 9.39
                          6.81
                                  0.98
                                         10.43 0.96 -14.51 -6.15
                                                                      2.03
                                  0.74
                                          6.40 0.48 -21.75 -11.60
## 126
               713 13.83 16.65
                                                                      2.03
## 127
               847
                      NA
                            NA
                                    NA
                                            NA
                                                        NA
                                                                NA
                                                                        NA
                                                 NA
```

##Re-training the roughness tree

Partitioning:

```
#setting seed for reproducibility
set.seed(1606)

#deviding the data into three parts

#setting proportions, 70% for training, devide the remainder into two halves
assignment <- sample(1:3, size = nrow(av_AVQI_R), prob = c(0.7, 0.15, 0.15), replace = T
RUE)

#subsetting the data to training indices
roughness_train <- av_AVQI_R[assignment == 1, ]

#subsetting the data to validation indices
roughness_valid <- av_AVQI_R[assignment == 2, ]

#subsetting the data to test indices
roughness_test <- av_AVQI_R[assignment == 3, ]</pre>
```

Training the model:

```
## n=81 (4 observations deleted due to missingness)
##
## node), split, n, deviance, yval
##
         * denotes terminal node
##
##
    1) root 81 3172902.00 524.7284
##
      2) Shimmer>=5.78 67 2355928.00 498.5672
        4) HNR< 13.065 36 1349211.00 461.9722
##
##
          8) Shimmer< 13.055 27 934259.20 428.7407
##
           16) Tilt< -9.69 16 247554.90 381.0625 *
##
           17) Tilt>=-9.69 11 597428.90 498.0909 *
##
          9) Shimmer>=13.055 9 295684.00 561.6667 *
##
        5) HNR>=13.065 31 902519.90 541.0645
##
         10) CPPS< 9.595 7
                             77817.71 427.5714 *
##
         11) CPPS>=9.595 24 708239.30 574.1667
##
           22) Shimmer< 6.16 8 103955.50 440.2500 *
           23) Shimmer>=6.16 16 389079.80 641.1250 *
##
##
      3) Shimmer< 5.78 14 551666.90 649.9286 *
```

Plotting the tree:

```
library(rpart.plot)
rpart.plot(x = roughness_model, yesno = 2, type = 0, extra = 0)
```


[1] 244.7803

Tuning the model:

#plot the Complexity Parameter table
plotcp(roughness_model)

size of tree

#print the "CP Table"
print(roughness_model\$cptable)

```
#retreaving the optimal cp value based on cross-validation error
opt_index <- which.min(roughness_model$cptable[, "xerror"])
cp_opt <- roughness_model$cptable[opt_index, "CP"]

#prune the tree to optimazed cp value
roughness_model_opt <- prune(tree = roughness_model, cp = cp_opt)

#plot the optimized model
#rpart.plot(x = roughness_model_opt, yesno = 2, type = 0)
#^not plottable

#trying this:
rpart.plot(x = roughness_model_opt, type = 0)</pre>
```

525 100%

:/

Grid search:

Creating a grid of possible models:

```
#establishing a list of possible values for minsplit and maxdepth
splits <- seq(1, 5, 1)
depths <- seq(1, 5, 1)

#creating a data frame containing all combinations
hyper_grid <- expand.grid(minsplit = splits, maxdepth = depths)

#checking out the grid
head(hyper_grid)</pre>
```

```
##
    minsplit maxdepth
## 1
            1
## 2
            2
                     1
## 3
            3
                     1
## 4
            4
                     1
            5
## 5
                     1
            1
                     2
## 6
```

```
#printing the number of grid combinations
nrow(hyper_grid)
```

```
## [1] 25
```

```
#number of potential models in the grid
num models <- nrow(hyper grid)</pre>
#creating an empty list to store models
roughness models <- list()</pre>
#a for loop to loop over the rows of hyper grid to train the grid of models
for (i in 1:num models) {
  #getting minsplit, maxdepth values at row i
 minsplit <- hyper grid$minsplit[i]</pre>
 maxdepth <- hyper grid$maxdepth[i]</pre>
 #training a model and storing it in the list
  roughness_models[[i]] <- rpart(formula = Roughness ~ .,</pre>
                              data = roughness valid,
                              method = "anova",
                              minsplit = minsplit,
                              maxdepth = maxdepth)
}
```

Evaluating the grid:

Warning in 1:num_models: numerical expression has 25 elements: only the first
used

```
#idenetifying the model with smallest validation set RMSE
best_model <- roughness_models[[which.min(rmse_values)]]

#printing the parameters of the best model
best_model$control</pre>
```

```
## $minsplit
## [1] 2
##
## $minbucket
## [1] 1
##
## $cp
## [1] 0.01
##
## $maxcompete
## [1] 4
##
## $maxsurrogate
## [1] 5
##
## $usesurrogate
## [1] 2
##
## $surrogatestyle
## [1] 0
##
## $maxdepth
## [1] 3
##
## $xval
## [1] 10
```

```
## [1] 284.1058
```

Plotting the new best model

```
rpart.plot(best_model)
```


Training a bagged tree model:

```
##
## Bagging regression trees with 25 bootstrap replications
##
## Call: bagging.data.frame(formula = Roughness ~ ., data = roughness_train,
## coob = TRUE)
##
## Out-of-bag estimate of root mean squared error: 220.4213
```

Assessing the bagged trees:

```
#assess 10-25 bagged trees
ntree <- 10:50
#create empty vector to store out of bag RMSE values
rmse <- vector(mode = "numeric", length = length(ntree))</pre>
for (i in seq_along(ntree)) {
  #set seed for reproducibility
  set.seed(1555)
  #perform bagged model
  model <- bagging(</pre>
    formula = Roughness ~ .,
    data = roughness_train,
    coob = TRUE,
    nbagg = ntree[i]
  )
  #get out of bag error
  rmse[i] <- model$err</pre>
}
plot(ntree, rmse, type = '1', lwd = 2)
abline(v = 45, col = "blue", lty = "dashed")
```


^the lowest rmse appeared when the number of trees is 45.

importance = TRUE,

na.action = na.pass #ignore N/A's

```
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following objects are masked from 'package:Metrics':
##
       precision, recall
##
#specify a 10-fold cross validation
ctrl <- trainControl(method = "cv", number = 10)</pre>
#cross-validation bagged model
bagged_cv <- train(</pre>
 Roughness ~ .,
  data = roughness_train,
 method = "treebag",
 trControl = ctrl,
 mtry = 45, #according to the above step
```

```
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
```

```
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
```

```
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
```

```
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
```

```
## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length

## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length

## Warning in cprob[tindx] + pred: longer object length is not a multiple of
## shorter object length
```

plot(varImp(bagged_cv), 8)

