COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

March 1, 2023

Lecture 18: Limitations of Context-Free Grammars

Chomsky normal form

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \to BC$$

$$A \rightarrow a$$

where $a \in T$, $A,B,C \in V$, neither B nor C is the start variable, i.e. start variable does not appear on the right of any rule. Moreover, epsilon does not appear on the right of any rule except as $S \to \epsilon$.

Lemma

Any context-free grammar G can be converted into another context-free grammar G' such that L(G) = L(G') and G' is in the Chomsky normal form.

Chomsky normal form

Definition

A context-free grammar is said to be in Chomsky normal form if every rule is of the form

$$A \to BC$$

$$A \rightarrow a$$

where $a \in T$, $A, B, C \in V$. Moreover, epsilon does not appear on the right of any rule except as $S \to \epsilon$.

Lemma

Any context-free grammar G can be converted into another context-free grammar G' such that L(G) = L(G') and G' is in the Chomsky normal form.

Let us start by considering CFG in CNF for $L_{a,b} = \{a^n b^n \mid n \ge 1\}$:

Let us start by considering CFG in CNF for $L_{a,b}$ = $\{a^nb^n \mid n \ge 1\}$:

$$S \to AC|AB, C \to SB, A \to a, B \to b$$

Let us start by considering CFG in CNF for $L_{a,b} = \{a^nb^n \mid n \ge 1\}$:

$$S \to AC|AB, C \to SB, A \to a, B \to b$$

Consider a parse tree for $a^5b^5 \in L_{a,b}$

Let us start by considering CFG in CNF for $L_{a,b} = \{a^nb^n \mid n \ge 1\}$:

$$S \to AC|AB, C \to SB, A \to a, B \to b$$

Consider a parse tree for $a^5b^5 \in L_{a,b}$

Theorem

For every context-free language L there exists a constant k (that depends on L) such that for every string $z \in L$ of length greater or equal to k, there is an infinite family of strings belonging to L.

Theorem

For every context-free language L there exists a constant k (that depends on L) such that for every string $z \in L$ of length greater or equal to k, there is an infinite family of strings belonging to L.

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that

- $|vwx| \le k$
- $vx \neq \epsilon$,
- For all $i \ge 0$ the string $uv^i wx^i y \in L$.

Theorem

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that i) $|vwx| \le k$ ii) $vx \ne \epsilon$, iii) For all $i \ge 0$ the string $uv^iwx^iy \in L$.

Theorem

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that i) $|vwx| \le k$ ii) $vx \ne \epsilon$, iii) For all $i \ge 0$ the string $uv^iwx^iy \in L$.

Proof.

Theorem

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that i) $|vwx| \le k$ ii) $vx \ne \epsilon$, iii) For all $i \ge 0$ the string $uv^iwx^iy \in L$.

Proof.

Let G be a CFG accepting L. Let b be an upper bound on the size of the RHS of any production rule of G.

• Upper bound on the length of strings in L with parse-tree of height $\ell+1=b^\ell$

Theorem

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that i) $|vwx| \le k$ ii) $vx \ne \epsilon$, iii) For all $i \ge 0$ the string $uv^iwx^iy \in L$.

Proof.

- ${\bf \blacktriangleright}$ Upper bound on the length of strings in L with parse-tree of height $\ell+1=b^\ell$
- Let N = |V| be the number of variables in G. What can we say about the strings z in L of size greater than b^N ?

Theorem

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that i) $|vwx| \le k$ ii) $vx \ne \epsilon$, iii) For all $i \ge 0$ the string $uv^iwx^iy \in L$.

Proof.

- ${\bf \blacktriangleright}$ Upper bound on the length of strings in L with parse-tree of height $\ell+1=b^\ell$
- Let N = |V| be the number of variables in G. What can we say about the strings z in L of size greater than b^N ?
- ▶ In every parse tree of z, there is a path where a variable repeats.

Theorem

Let L be a CFL. Then there exists a constant k such that if z is a string in L of length at least k, then we can write z = uvwxy such that i) $|vwx| \le k$ ii) $vx \ne \epsilon$, iii) For all $i \ge 0$ the string $uv^iwx^iy \in L$.

Proof.

- ${\bf \blacktriangleright}$ Upper bound on the length of strings in L with parse-tree of height $\ell+1=b^\ell$
- Let N = |V| be the number of variables in G. What can we say about the strings z in L of size greater than b^N ?
- ightharpoonup In every parse tree of z, there is a path where a variable repeats.
- ightharpoonup Consider a minimum size parse-tree generating z, and consider a path where at least a variable repeats, and consider the last such variable.

Theorem (Pumping Lemma for CFLs)

```
L \in \Sigma^* is a context-free language \Longrightarrow there exists k \geq 1 such that for all strings z \in L with |z| \geq k we have that there exists u, v, w, x, y \in \Sigma^* with z = uvwxy, |vx| > 0, |vwx| \leq k such that for all i \geq 0 we have that uv^iwx^iy \in L.
```

Theorem (Contrapositive of Pumping Lemma for CFLs)

For all $k \ge 1$ we have that there exists strings $z \in I$, with |z| > k such

there exists strings $z \in L$ with $|z| \ge k$ such that for all $u, v, w, x, y \in \Sigma^*$ with z = uvwxy, |vx| > 0, $|vwx| \le k$ we have that there exists $i \ge 0$ such that $uv^iwx^iy \notin L \Longrightarrow L \circ \Sigma^*$

 $L \in \Sigma^*$ is not a context-free language.

Games with the Demon

Games with the Demon

Theorem (Contrapositive of Pumping Lemma for CFLs)

For all $k \geq 1$ we have that there exists strings $z \in L$ with $|z| \geq k$ such that for all $u, v, w, x, y \in \Sigma^*$ with z = uvwxy, |vx| > 0, $|vwx| \leq k$ we have that there exists $i \geq 0$ such that $uv^iwx^iy \notin L \implies L \in \Sigma^*$ is not a context-free language.

Games with the Demon

Theorem (Contrapositive of Pumping Lemma for CFLs)

For all $k \geq 1$ we have that there exists strings $z \in L$ with $|z| \geq k$ such that for all $u, v, w, x, y \in \Sigma^*$ with z = uvwxy, |vx| > 0, $|vwx| \leq k$ we have that there exists $i \geq 0$ such that $uv^iwx^iy \notin L \Longrightarrow L \in \Sigma^*$ is not a context-free language.

- ▶ Demon picks $k \ge 0$.
- ▶ You pick $z \in L$ of length at least k.
- ▶ The demon picks strings u, v, w, x, y such that z = uvwry, |vr| > 0, and $|vwx| \le k$.
- ▶ You pick $i \ge 0$. If $uv^i wx^i y \notin L$ you win

Prove!

- $2 L = \{0^i 1^j 2^k : 0 \le i \le j \le k\}$

Prove!

- $2 L = \{0^i 1^j 2^k : 0 \le i \le j \le k\}$
- $L = \{ww : w \in \{0,1\}^*\}$

Prove!

- $L = \{0^n 1^n 2^n : n \ge 0\}$
- \bullet $L = \{ww : w \in \{0,1\}^*\}$
- $L = \{0^n : n \text{ is a prime number}\}$

Prove!

- $2 L = \{0^i 1^j 2^k : 0 \le i \le j \le k\}$

Prove!

- $2 L = \{0^i 1^j 2^k : 0 \le i \le j \le k\}$
- $L = \{ww : w \in \{0,1\}^*\}$

Prove!

- $L = \{0^n 1^n 2^n : n \ge 0\}$
- \bullet $L = \{ww : w \in \{0,1\}^*\}$

$$L = \{0^n1^n2^n \mid n \in \mathbb{N}\}$$

For each n, choose $z = uvwxy = 0^n1^n2^n \in L$.

$$L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

- For each n, choose $z = uvwxy = 0^n1^n2^n \in L$.
- ▶ Consider all subwords vwx of $0^n1^n2^n$ such that $|vwx| \le n$.

$$L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n \in L$.
- ▶ Consider all subwords vwx of $0^n1^n2^n$ such that $|vwx| \le n$.
- vwx cannot have both 0 and $2_{why?}$. WLOG, assume vwx has no 2.

$$L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n \in L$.
- ▶ Consider all subwords vwx of $0^n1^n2^n$ such that $|vwx| \le n$.
- vwx cannot have both 0 and $2_{why?}$. WLOG, assume vwx has no 2.

$$L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n \in L$.
- ▶ Consider all subwords vwx of $0^n1^n2^n$ such that $|vwx| \le n$.
- vwx cannot have both 0 and $2_{why?}$. WLOG, assume vwx has no 2.

$$\underbrace{0 \dots }_{u} \underbrace{\dots 01 \dots }_{vwx} \underbrace{\dots 12 \dots 2}_{y}$$

• Consider all splits of vwx such that |vx| > 0.

$$L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n \in L$.
- ▶ Consider all subwords vwx of $0^n1^n2^n$ such that $|vwx| \le n$.
- vwx cannot have both 0 and $2_{why?}$. WLOG, assume vwx has no 2.

$$\underbrace{0 \dots \underbrace{01 \dots 12 \dots 2}_{vwx} \dots 12 \dots 2}_{y}$$

- Consider all splits of vwx such that |vx| > 0.
- ▶ In all splits, the length of either 0's or 1's will not be n in uwy. why?

$$L = \{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n \in L$.
- ▶ Consider all subwords vwx of $0^n1^n2^n$ such that $|vwx| \le n$.
- vwx cannot have both 0 and $2_{why?}$. WLOG, assume vwx has no 2.

$$\underbrace{0 \dots \underbrace{01 \dots 12 \dots 2}_{vwx}}_{} \underbrace{12 \dots 2}_{y}$$

- Consider all splits of vwx such that |vx| > 0.
- ▶ In all splits, the length of either 0's or 1's will not be n in uwy. why?
- ▶ Therefore, $uwy \notin L$. why?

Therefore L is not a CFL.

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

For each n, choose $z = uvwxy = 0^n1^n2^n3^n \in L$.

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

- For each n, choose $z = uvwxy = 0^n1^n2^n3^n \in L$.
- consider all the subwords vwx of $0^n1^n2^n3^n$ such that $|vwx| \le n$.

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

- For each n, choose $z = uvwxy = 0^n1^n2^n3^n \in L$.
- consider all the subwords vwx of $0^n1^n2^n3^n$ such that $|vwx| \le n$.
- vwx can not have more than two symbols.

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

- For each n, choose $z = uvwxy = 0^n1^n2^n3^n \in L$.
- consider all the subwords vwx of $0^n1^n2^n3^n$ such that $|vwx| \le n$.
- ightharpoonup vwx can not have more than two symbols.
- There are three cases

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n 3^n \in L$.
- consider all the subwords vwx of $0^n1^n2^n3^n$ such that $|vwx| \le n$.
- ightharpoonup vwx can not have more than two symbols.
- ► There are three cases

$$\underbrace{0 \dots \underbrace{01 \dots 12 \dots 23 \dots 3}_{vwx}}_{u} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx}_{y}$$

$$L = \{0^n 1^m 2^n 3^m \mid n \ge 1\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 2^n 3^n \in L$.
- consider all the subwords vwx of $0^n1^n2^n3^n$ such that $|vwx| \le n$.
- ightharpoonup vwx can not have more than two symbols.
- ▶ There are three cases

$$\underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{u} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 01 \dots 12 \dots 23 \dots 3}_{vwx} \underbrace{0 \dots 01 \dots 01 \dots 01}_{vwx} \underbrace{0 \dots 01 \dots 01 \dots 01}_{vwx} \underbrace{0 \dots 01}_{vwx} \underbrace{0 \dots 01 \dots 01}_{vwx} \underbrace{0 \dots 01}_{vwx} \underbrace{0$$

Now consider all splits of vwx such that |vx| > 0.

- Now consider all splits of vwx such that |vx| > 0.
- ▶ In all splits, the length of one of

will not be n in uwy and the length of the counterpart

$$2s,3s,0s,or1s\\$$

will be n respectively.

- Now consider all splits of vwx such that |vx| > 0.
- ▶ In all splits, the length of one of

will not be n in uwy and the length of the counterpart

will be n respectively.

► Therefore $uv^0wx^0y \notin L$.

Therefore L is not a CFL.

- Now consider all splits of vwx such that |vx| > 0.
- ▶ In all splits, the length of one of

will not be n in uwy and the length of the counterpart

will be n respectively.

► Therefore $uv^0wx^0y \notin L$.

Therefore L is not a CFL.

Exercise: Is $\{0^n1^n2^m3^m\mid n\geq 1\}$ a CFL?

$$L = \{ww \mid w \in \{0,1\}^*\}$$

- For each n, choose $z = uvwxy = 0^n 1^n 0^n 1^n \in L$.
- consider subwords vwx of $0^n1^n0^n1^n$ such that $|vwx| \le n$ and |vx| > 0.
- There are three cases (v and x can be from the same block or neighboring blocks):

$$L = \{ww \mid w \in \{0,1\}^*\}$$

- For each n, choose $z = uvwxy = 0^n1^n0^n1^n \in L$.
- consider subwords vwx of $0^n1^n0^n1^n$ such that $|vwx| \le n$ and |vx| > 0.
- There are three cases (v and x can be from the same block or neighboring blocks):

$$\underbrace{0 \dots \underbrace{0 \dots 01 \dots 10 \dots 01 \dots 1}_{u \quad vwx}}_{u \quad vwx} \underbrace{0 \dots 01 \dots 1}_{vwx}$$

$$L = \{ww \mid w \in \{0,1\}^*\}$$

- For each n, choose $z = uvwxy = 0^n1^n0^n1^n \in L$.
- consider subwords vwx of $0^n1^n0^n1^n$ such that $|vwx| \le n$ and |vx| > 0.
- ► There are three cases (v and x can be from the same block or neighboring blocks):

$$\underbrace{0 \dots 01 \dots 10 \dots 01 \dots 1}_{u} \underbrace{0 \dots 01 \dots 10 \dots 01 \dots 1}_{vwx} \underbrace{0 \dots 01 \dots 10 \dots \dots 01 \dots 1}_{vwx} \underbrace{0 \dots 01 \dots 10 \dots \dots 01 \dots 1}_{vwx} \underbrace{0 \dots 01 \dots 10 \dots \dots 01 \dots 1}_{y}$$

$$L = \{ww \mid w \in \{0,1\}^*\}$$

- For each n, choose $z = uvwxy = 0^n1^n0^n1^n \in L$.
- consider subwords vwx of $0^n1^n0^n1^n$ such that $|vwx| \le n$ and |vx| > 0.
- ► There are three cases (v and x can be from the same block or neighboring blocks):

$$\underbrace{0 \dots 01 \dots 10 \dots 01 \dots 1}_{u} \underbrace{0 \dots 01 \dots 10 \dots 01 \dots 1}_{vwx} \underbrace{0 \dots 01 \dots 10 \dots \dots 01 \dots 1}_{vwx} \underbrace{0 \dots 01 \dots 10 \dots \dots 01 \dots 1}_{vwx} \underbrace{0 \dots 01 \dots 10 \dots \dots 01 \dots 1}_{y}$$

Equivalence of NPDAs and CFGs

Theorem

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof (\Rightarrow).$

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Rightarrow).$

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Rightarrow).$

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

e.g. $A \to BC \mid DE$ then non-deterministically choose either BC or DE and depending on the choice, say it is BC, push the string BC on the stack with B on the top of the stack.

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Rightarrow).$

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

e.g. $A \to BC \mid DE$ then non-deterministically choose either BC or DE and depending on the choice, say it is BC, push the string BC on the stack with B on the top of the stack.

- If the the top is a terminal, then match it off with the input bit,
- ▶ If the top of the stack is ⊥ then accept else make that the new current variable.

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Rightarrow).$

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- ▶ Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

e.g. $A \to BC \mid DE$ then non-deterministically choose either BC or DE and depending on the choice, say it is BC, push the string BC on the stack with B on the top of the stack.

- If the the top is a terminal, then match it off with the input bit,
- ▶ If the top of the stack is ⊥ then accept else make that the new current variable.

Repeat the above procedure. (It will either accept or loop forever.)

Theorem

Theorem

Let
$$G = (V, T, P, S)$$

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

Let G = (V, T, P, S) then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where $Q = \{q\} = q_0$ (Single state)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- ▶ $\Sigma = T$ (Input Alphabet is set of terminals)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- ▶ $\Sigma = T$ (Input Alphabet is set of terminals)
- Γ = $V \cup T$ (Stack alphabet is terminals and non-terminals)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- ▶ $\Sigma = T$ (Input Alphabet is set of terminals)
- $\Gamma = V \cup T$ (Stack alphabet is terminals and non-terminals)
- ▶ \bot = S (stack bottom is start symbol of CFG)
- ► $F = \emptyset$ (Acceptance by empty stack)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- $\Sigma = T$ (Input Alphabet is set of terminals)
- ▶ $\Gamma = V \cup T$ (Stack alphabet is terminals and non-terminals)
- ▶ \bot = S (stack bottom is start symbol of CFG)
- F = Ø (Acceptance by empty stack)
- $ightharpoonup \delta$ is defined as:

$$\delta(q, \epsilon, B) \coloneqq \{(q, \beta) \mid B \to \beta \text{ in } P\}$$
$$\delta(q, a, a) \coloneqq \{(q, \epsilon)\}$$

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- $\Sigma = T$ (Input Alphabet is set of terminals)
- ▶ $\Gamma = V \cup T$ (Stack alphabet is terminals and non-terminals)
- ▶ \bot = S (stack bottom is start symbol of CFG)
- F = Ø (Acceptance by empty stack)
- $ightharpoonup \delta$ is defined as:

$$\delta(q, \epsilon, B) \coloneqq \{(q, \beta) \mid B \to \beta \text{ in } P\}$$
$$\delta(q, a, a) \coloneqq \{(q, \epsilon)\}$$

Guess production rule and push on to the stack and verify guess while popping.

Theorem

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof\ (\Leftarrow).$

• Want: Given PDA P need CFG G_P that generates all strings P accepts

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Leftarrow).$

- Want: Given PDA P need CFG G_P that generates all strings P accepts
- G should generate a string if that string causes PDA to go from start to accept state.

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Leftarrow).$

- lacktriangle Want: Given PDA P need CFG G_P that generates all strings P accepts
- G should generate a string if that string causes PDA to go from start to accept state.
- ▶ Idea: Design a CFG that for each pair of states p,q in P, have a variable $A_{p,q}$ which generates all strings that can take P from p (with empty stack) to q (with empty stack).

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

$Proof \ (\Leftarrow).$

- lacktriangle Want: Given PDA P need CFG G_P that generates all strings P accepts
- lacktriangledown G should generate a string if that string causes PDA to go from start to accept state.
- ▶ Idea: Design a CFG that for each pair of states p,q in P, have a variable $A_{p,q}$ which generates all strings that can take P from p (with empty stack) to q (with empty stack).
- Modify P so that
 - It has single accept state.
 - It empties its stack before accepting.
 - ► Each transition either pushes a symbol or pops a symbol (not both).

Given a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \bot, q_F)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q, a, X)$ contains either (q_0, YX) or (q_0, ϵ) .

Given a PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,\bot,q_F)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q,a,X)$ contains either (q_0,YX) or (q_0,ϵ) . Consider the grammar $G_p=(V,T,P,S)$ such that

 $V = \{A_{p,q} : p, q \in Q\}$

- $V = \{A_{p,q} : p, q \in Q\}$
- $ightharpoonup T = \Sigma$

- $V = \{A_{p,q} : p, q \in Q\}$
- $ightharpoonup T = \Sigma$
- $\blacktriangleright \ S = A_{q_0,q_F}$

- $\blacktriangleright \ V = \{A_{p,q}: p,q \in Q\}$
- $T = \Sigma$
- P has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;

- $\blacktriangleright \ V = \{A_{p,q} : p, q \in Q\}$
- $T = \Sigma$
- P has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;
 - $\qquad \qquad A_{p,q} \to A_{p,r} A_{r,q} \text{ for all } p,q,r \in Q,$

- $\blacktriangleright \ V = \{A_{p,q}: p,q \in Q\}$
- $T = \Sigma$
- ▶ *P* has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;
 - $\qquad \qquad A_{p,q} \to A_{p,r} A_{r,q} \text{ for all } p,q,r \in Q,$
 - $A_{p,q} \to aA_{r,s}b$ if $\delta(p,a,\epsilon)$ contains (r,X) and $\delta(s,b,X)$ contains (q,ϵ) .

Given a PDA P = $(Q, \Sigma, \Gamma, \delta, q_0, \bot, q_F)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q, a, X)$ contains either (q_0, YX) or (q_0, ϵ) . Consider the grammar G_p = (V, T, P, S) such that

- $V = \{A_{p,q} : p, q \in Q\}$
- $ightharpoonup T = \Sigma$
- P has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;
 - $\qquad \qquad A_{p,q} \to A_{p,r} A_{r,q} \text{ for all } p,q,r \in Q,$
 - $A_{p,q} \to aA_{r,s}b$ if $\delta(p,a,\epsilon)$ contains (r,X) and $\delta(s,b,X)$ contains (q,ϵ) .

Lemma

$$L(G_p) = L(P).$$

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

▶ Base case. If $A_{p,q} \Longrightarrow^* x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p,p} \to \epsilon$.

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

- ▶ Base case. If $A_{p,q} \Longrightarrow^* x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p,p} \to \epsilon$.
- ▶ Inductive step. If $A_{p,q} \Longrightarrow^* x$ in n+1 steps. The first step in the derivation must be $A_{p,q} \to A_{p,r} A_{r,q}$ or $A_{p,q} \to a A_{r,s} b$.

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

- ▶ Base case. If $A_{p,q} \Longrightarrow^* x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p,p} \to \epsilon$.
- ▶ **Inductive step.** If $A_{p,q} \Longrightarrow^* x$ in n+1 steps. The first step in the derivation must be $A_{p,q} \to A_{p,r} A_{r,q}$ or $A_{p,q} \to a A_{r,s} b$.
 - ▶ If it is $A_{p,q} \to A_{p,r} A_{r,q}$, then the string x can be broken into two parts x_1x_2 such that $A_{p,r} \Longrightarrow^* x_1$ and $A_{r,q} \Longrightarrow^* x_2$ in at most n steps. The claim easily follows in this case.
 - ▶ If it is $A_{p,q} \to aA_{r,s}b$, then the string x can be broken as ayb such that $A_{r,s} \Longrightarrow^* y$ in n steps. Notice that from p on reading a the PDA pushes a symbol X to stack, while it pops X in state s and goes to q.

