UPPSALA UNIVERSITET Matematiska institutionen

Thomas Kragh

TENTAMEN i matematik 1MA024: Linjär algebra II

 $F,\,W,\,IT,\,L\ddot{a}rare$ 9 Januari 2020 klockan 14.00-19.00

Tillåtna hjälpmedel: skrivdon. Lösningarna skall vara försedda med motiveringar. Varje uppgift ger max. 5 poäng. För betygen 3, 4, 5 krävs minst 18, 25, respektive 32 poäng (får man minst 16 poäng på följande uppgifter räknas eventuella bonus poäng med).

- 1. Vilka av följande delmängder i \mathbb{R}^4 är delrum? För varje delrum ange dess dimension.
 - (a) $W_1 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0\}.$
 - (b) $W_2 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y = 0\}.$
 - (c) $W_3 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 = 0\}.$
 - (d) $W_4 = \{a(1,1,1,1) + b(2,1,2,1) \mid a,b \in \mathbb{R}\}.$
- **2.** Låt $W = \text{Span}\{(1, 2, 3, 4, 5), (3, 1, 3, 4, 5)\}.$
 - (a) Hitta den ortogonala projektionen av (5, 3, 3, 2, 1) på W.
 - (b) Hitta den ortogonala projektionen av (5,3,3,2,1) på W^{\perp} .
- 3. Lös följande system av differential ekvationer:

$$\begin{cases} x'(t) = 3x(t) + 2y(t) + z(t) \\ y'(t) = 3x(t) + 2y(t) + z(t) \\ z'(t) = 3x(t) + 2y(t) + z(t) \end{cases}$$

4. Låt $R: \mathbb{R}^2 \to \mathbb{R}^2$ vara rotation med vinkel $\frac{\pi}{6}$ radianer moturs runt origo. Låt $T: \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildning som uppfyller:

$$T(0,1) = (2,1)$$
 och $T(1,0) = (1,2)$

- (a) Hitta standardmatrisen [R] där du använder $\sin \frac{\pi}{6} = \frac{1}{2}$ till att skriva denna utan att använda varken cosinus eller sinus.
- (b) Hitta standardmatriserna [T], $[R \circ T]$, $[T \circ R]$, $[T \circ T]$ och $[R^6]$.

Ledning: Här betyder $R^6 = R \circ R \circ R \circ R \circ R \circ R$ (det vill säga R sammansatt med sig själv 6 gånger) och försök hitta ett effektivt sätt att lösa denna del av uppgiften.

Var god vänd!

5. Låt $T: P_4 \to P_2$ vara den linjära avbildning som deriverar två gånger. Alltså

$$(T(p))(x) = p''(x)$$

Låt också

$$B = (1 + x^2, 1 + x, x^2, x^2 + x^3, x + x^4) \quad \text{och}$$

$$B' = (1, 1 + x, 1 + x + x^2)$$

Hitta matrisen för T relativt baserna B och B' (skrives $[T]_{B',B}$).

6. Låt

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 5 & 7 \\ 2 & 4 & 8 & 11 \end{bmatrix}$$

- (a) Hitta baser för nollrummet, kolonnrummet och radrummet för matrisen A.
- (b) Låt $T_A: \mathbb{R}^4 \to \mathbb{R}^3$ vara den linjära avbildning med standardmatris A. Identifiera varje av de 3 delrummen från uppgift a) med ett av delrummen
 - Kärnan $\ker T_A$ av T_A .
 - Värderummet (också kallat bilden) $R(T_A)$ av T_A .
 - Kärnans ortogonala komplement (ker T_A) $^{\perp}$.
 - Värderummets ortogonala komplement $R(T_A)^{\perp}$
- 7. Volymen begränsad av en ellipsoid på formen $ax^2+by^2+cz^2=1, a>0, b>0, c>0$ är enligt en känd formel $\frac{4\pi}{3\sqrt{abc}}$. Visa att

$$3x^2 + 2y^2 + 3z^2 + xy + yz = 1$$

definierar en ellipsoid och hitta volymen begränsad av denna.

Ledning: Ett ON-bas byte bevarar volym.

8. Låt

$$F = \begin{bmatrix} 1 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & c \end{bmatrix}$$

beroende på $a,b,c\in\mathbb{R}$. För vilka värden på a,b och c är F diagonaliserbar?

Lycka till!

Lösningar till provet i 1MA024: Linjär algebra II 9 Januari 2020 klockan 14.00-19.00

Lösning till problem 1.

- (a) W_1 är ett delrum då det är nollrummet för matrisen $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$. Dess dimension är 3 (dimensionssatsen då matrisen har rang 1).
- (b) W_2 är ej delrum då (1,-1,0,0) men inte (-1,1,0,0) = -(1,-1,0,0) finns med i W_2 .
- (c) Ekvationen i definitionen av W_3 ger x=y=0 och därför består W_3 av vektorer på formen (0,0,z,w) for godtycklig $z,w\in\mathbb{R}$. Detta är ett delrum (om man ska vara väldigt noggran är det nollrummet för $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$, men det krävde vi inte). Dimensionen är 2 (rangen av matrisen är 2 eller alternativt: delrummet är öppenlyst isomorft med \mathbb{R}^2).
- (d) W_4 är spannet/det linjära höljet av (1,1,1,1) och (2,1,2,1) och därför ett delrum. Dimensionen är 2 (de två vektorer är linjärt oberoende och därför en bas).

Lösning till problem 2.

(a) Vi ser att de två vektorer är en bas för W och vi använder Gram-Schmidt. Först en ortogonal bas:

$$\vec{v}_1 = (1, 2, 3, 4, 5),$$

$$\vec{v}_2 = (3, 1, 3, 4, 5) - \frac{(1, 2, 3, 4, 5) \bullet (3, 1, 3, 4, 5)}{\|(1, 2, 3, 4, 5)\|^2} (1, 2, 3, 4, 5) = (2, -1, 0, 0, 0).$$

Sedan normera vi denna om till en ON-bas:

$$\vec{b}_1 = \frac{1}{\|\vec{v}_1\|}(\vec{v}_1) = \frac{1}{\sqrt{55}}(1, 2, 3, 4, 5)$$
$$\vec{b}_2 = \frac{1}{\|\vec{v}_2\|}(\vec{v}_2) = \frac{1}{\sqrt{5}}(2, -1, 0, 0, 0)$$

Så använder vi att den ortogonala projektionen i W nu kan beräknas enligt formeln:

$$\operatorname{proj}_{W}^{\perp}(\vec{x}) = (\vec{b}_{1} \bullet \vec{x})\vec{b}_{1} + (\vec{b}_{2} \bullet \vec{x})\vec{b}_{2}.$$

Så svaret blir:

$$(\vec{b}_1 \bullet (5,3,3,2,1))\vec{b}_1 + (\vec{b}_2 \bullet (5,3,3,2,1))\vec{b}_2 =$$

$$= \frac{33}{55}(1,2,3,4,5) + \frac{7}{5}(2,-1,0,0,0) = \frac{1}{5}(17,-1,9,12,15)$$

(b) Här används formeln $\vec{x} = \operatorname{proj}_{W}^{\perp}(\vec{x} = + \operatorname{proj}_{W^{\perp}}^{\perp}(\vec{x})$ som ger svaret:

$$(5,3,3,2,1) - \frac{1}{5}(17,-1,9,12,15) = \frac{1}{5}(8,16,6,-2,-10).$$

Lösning till problem 3.

Alternativ 1 (standard metod): Vi diagonaliserar koefficientmatrisen:

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

Först hittar vi egenvärden:

$$0 = \det \begin{bmatrix} 3 - \lambda & 2 & 1 \\ 3 & 2 - \lambda & 1 \\ 3 & 2 & 1 - \lambda \end{bmatrix} = -\lambda^3 + 6\lambda^2$$

Så egenvärdena är $\lambda = 0$ och $\lambda = 6$. Så hittar vi de motsvarande egenrum:

$$E_0 = N(C - 0I) = N(C) : \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Så nollrummet av matrisen består av vektorerna (parametriserat lite ovanligt för att undgå bråk):

$$(x, y, z) = t(-2, 3, 0) + s(-1, 0, 3), s, t \in \mathbb{R}.$$

Liknande är:

$$E_6 = N(C - 6I) : \begin{bmatrix} -3 & 2 & 1 \\ 3 & -4 & 1 \\ 3 & 2 & -5 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 1 \\ 0 & -2 & 2 \\ 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Så lösningarna är: (x, y, z) = t(1, 1, 1). Vi har alltså 3 linjärt oberoende egenvektorer som ger en inverterbar (basbytes) matris med dessa som kolonnor:

$$P = \begin{bmatrix} -2 & -1 & 1\\ 3 & 0 & 1\\ 0 & 3 & 1 \end{bmatrix}$$

Byter vi till koordinater (a, b, c) med dessa egenvektorer som bas får vi att det ursprungliga differentialekvationssystem är ekvivalent med det diagonala systemet:

$$\begin{cases} a(t) = 0 \\ b(t) = 0 \\ c(t) = 6 \end{cases}$$

som har generella lösningar $a(t) = k_1$, $b(t) = k_2$, och $c(t) = k_3 e^{6t}$. Lösningarna till den ursprungliga ekvationen blir då:

$$\begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = P \begin{bmatrix} a(t) \\ b(t) \\ c(t) \end{bmatrix} = \begin{bmatrix} -2 & -1 & 1 \\ 3 & 0 & 1 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 e^{6t} \end{bmatrix} = \begin{bmatrix} k_3 e^{6t} - 2k_1 - k_2 \\ k_3 e^{6t} + 3k_1 \\ k_3 e^{6t} + 3k_2 \end{bmatrix}$$

Alternativ 2 (smart, kort, men inte så generell): vi inser att x'(t) = y'(t) = z'(t) och att detta ger:

$$y(t) = x(t) + k_1,$$
 $z(t) = x(t) + k_2$

vilket direkt ger att

$$x'(t) = 3x(t) + 2y(t) + z(t) = 6x(t) + 2k_1 + k_2$$

som lösas generellt av $x(t)=k_3e^{6t}-\frac{1}{3}k_1-\frac{1}{6}k_2$, som i sin tur ger $y(t)=k_3e^{6t}+\frac{2}{3}k_1-\frac{1}{6}k_2$ och $z(t)=k_3e^{6t}-\frac{1}{3}k_1+\frac{5}{6}k_2$. Man kollar lätt att dessa är lösningar (och det följer också i princip direkt av metoden).

Observera: att lösningarna kan parametriseras på många olika sätt och detta är grunden till att svaren i de två alternativ inte ser helt lika ut.

Lösning till problem 4.

(a) Standardmatrisen för en rotation med vinkel θ (moturs) är gennerelt:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Vilket i detta fall ger:

$$[R] = \begin{bmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

(b) Enligt formel for standardmatrisen är

$$[T] = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Enligt räkneregler för standard matriser är:

$$[R \circ T] = [R][T] = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} - 1 & \sqrt{3} - \frac{1}{2} \\ \frac{1}{2} + \sqrt{3} & 1 + \frac{\sqrt{3}}{2} \end{bmatrix}$$
$$[T \circ R] = [T][R] = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} + 1 & \sqrt{3} - \frac{1}{2} \\ \sqrt{3} + \frac{1}{2} & \frac{\sqrt{3}}{2} - 1 \end{bmatrix}$$
$$[T \circ R] = [T][T] = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

Eftersom R är rotation med $\frac{\pi}{6}$ grader är R^6 rotation med π grader, denna har standard matris:

$$[R^6] = \begin{bmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

vilket ju är det samma som avbildningen som skickar (x, y) till -(x, y).

Lösning till problem 5. Vi har en formel för $[T]_{B',B}$ där den j:te kolonnen är given som T av den j:te basvektor i B skrivit i basen B'. Alltså:

De sista två kolonnerna är kanske inte helt uppenbara, men de linjära ekvationssystem som ska lösas är väldigt simpla.

Lösning till problem 6.

(a) Vi radreducerar matrisen:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 5 & 7 \\ 2 & 4 & 8 & 11 \end{bmatrix} \xrightarrow{-1 - 2} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Alla lösningar till det motsvarande homogena linjära ekvationenssystem (nollrummet) är:

$$(x, y, z, w) = (-2t + \frac{1}{2}s, t, -\frac{3}{2}s, s), s, t \in \mathbb{R}$$

och därför är

$$N(A) = \text{Span}\{(-2, 1, 0, 0), (\frac{1}{2}, 0, -\frac{3}{2}, 1)\}$$

där de två vektorer är linjärt oberoende och därför en bas. De två raderna $(1, 2, 0, -\frac{1}{2})$ och $(0, 0, 1, \frac{3}{2})$ är en bas för radrummet, och de två kolonnerna i A, som har ledande element i den radkanoniska matrisen radekvivalent med A,

$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \qquad \text{och} \qquad \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}$$

är en bas för kolonnrummet.

(b) Nollrummet av A är det samma som kärnan av T_A . Kolonrummet är det samma som R(A) (bilden av T_A). Radrummet är det samma som det ortogonala komplementet till kärnan av T_A skrivet som (ker T_A) $^{\perp}$. (den sista $R(A)^{\perp}$ är nollrummet av A^T och därför den som inte är med i uppgift a - se sats 4.8.9 i boken).

Lösning till problem 7.

Den kvadratiska formen (VL) kan skrivas som:

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 3 & \frac{1}{2} & 0 \\ \frac{1}{2} & 2 & \frac{1}{2} \\ 0 & \frac{1}{2} & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Då matrisen är symmetrisk kan den ortogonalt diagonaliseras. Så, vi kan hitta en ON-bas (vars koordinater vi kallar (u,v,w)) som transformera ekvationen till en på formen $au^2+bv^2+cw^2=1$ där a,b och c är egenvärdena för vår symmetriska matris. Det vill säga att det är nog att visa att egenvärdena är positiva och hitta produkten abc av dessa egenvärde och sätta denna in i formeln för volymen. Vi behöver alltså inte hitta koordinatbytet det är nog att veta det existerar och hur ekvationen kommer att se ut.

Så vi hittar egenvärdena:

$$0 = \begin{vmatrix} 3 - \lambda & \frac{1}{2} & 0\\ \frac{1}{2} & 2 - \lambda & \frac{1}{2}\\ 0 & \frac{1}{2} & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 (2 - \lambda) - (\frac{1}{4}(3 - \lambda) + \frac{1}{4}(3 - \lambda)) =$$
$$= (3 - \lambda)((3 - \lambda)(2 - \lambda) - \frac{1}{2}) = (3 - \lambda)(\lambda^2 - 5\lambda + \frac{11}{2})$$

Rötterna i den sista faktorn är

$$\lambda = \frac{5 \pm \sqrt{3}}{2}$$

vilka båda är positiva (eftersom $\sqrt{3} < 5$). Dessa två rötters produkt är konstant termen $\frac{11}{2}$ (enligt $(\lambda - r_1)(\lambda - r_2) = \lambda^2 - (r_1 + r_2)\lambda + r_1r_2$). Så produkten av de tre egenvärden blir $\frac{33}{2}$ och därför blir volymen:

$$\frac{4\pi}{3\sqrt{\frac{33}{2}}} = \frac{8\pi}{3\sqrt{66}}$$

Lösning till problem 8. Att kunna diagonaliserar F är ekvivalent med att kunna hitta en bas av egenvektorer och det är också ekvivalent med att summan av de geometriska multipliciteter är 3 (för 3×3 matriser). Så vi hittar alla egenvärden:

$$0 = \det \begin{bmatrix} 1 - \lambda & 0 & a \\ 0 & 2 - \lambda & b \\ 0 & 0 & c - \lambda \end{bmatrix} = (1 - \lambda)(2 - \lambda)(c - \lambda)$$

så vi ser att vi har två eller tre olika egenvärden beroende på vad c är. Om $c \neq 1$ och $c \neq 2$ då har vi tre egenvärden och en sats som då säger att matrisen är diagonaliserbar (beviset för satsen i detta fall är: varje av de 3 geometriska multipliciteter är minst 1 och summan högst 3 - alltså är alla precis 1 och summan är precis 3). Vi har därför två fall kvar.

Fall 1: c=1. I detta fall har vi algebraiska multiplicitet 2 för egenvärdet $\lambda=1$. Så det är enbart detta egenvärde som kan göra att matrisen inte är diagonaliserbar. Så vi beräknar geometriskt multiplicitet:

$$E_1(F) = N(F - I) : \begin{bmatrix} 0 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}$$

Vi ser att om a=0 är rangen 1 och därför är dim $E_1=3-1=2$ (diagonaliserbar), men om $a\neq 0$ är rangen 2 och dim $E_1=1$ (ej diagonaliserbar).

Fall 2: c=2.I detta fall har vi algebraiska multiplicitet 2 för egenvärdet $\lambda=2$. Så det är enbart detta egenvärde som kan göra att matrisen inte är diagonaliserbar. Så vi beräknar geometriskt multiplicitet:

$$E_2(F) = N(F - 2I) : \begin{bmatrix} -1 & 0 & a \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}$$

Vi ser att om b=0 är rangen 1 och därför är dim $E_2=3-1=2$ (diagonaliserbar), men om $b\neq 0$ är rangen 2 och dim $E_2=1$ (ej diagonaliserbar).

Slutsats: F är diagonaliserbar omm: $(c \neq 1 \text{ och } c \neq 2)$ eller (c = 1 och a = 0) eller (c = 2 och b = 0).