Data Analysis for Molecular Biology and Biochemistry

MBB 110

Introductory data analysis focusing on molecular biology data sets and examples and including basic programming skills using Python and basic statistics skills using R. Prerequisite: MATH 12 or equivalent is recommended. Students with credit for MBB 243 may not take this course for further credit. CMPT 120 will be accepted in lieu of MBB 110.

Topics

- Flavours of data in molecular biology and biochemistry
- Genomic data
- Fundamentals of R and Python
- Regular expressions and patterns
- Quantitative DNA/RNA sequence analysis
- Exploratory data analysis in the Tidyverse
- Generic visualization methods using ggplot2
- · Advanced visualizations for molecular biology

INSTRUCTOR:

Sophie Sneddon

15000

sort sorts its input

\$ sort names.txt

the default sort is alphabetical.

sort-n		
numeric sort		
'sort' order	'sort -n'	order
12	12	
15000	48	\mathbb{D}
,, 48	96	IJ
6020	6020	

96

Sort -h: human sort

'sort -n' order | 'sort -h' order

156 | 45 K

130 M | 30 M | 156

145 K | 156 | 156

2006 | 2006

Useful example:

du-sh * | sort -h

Uniq removes duplicates

a notice there
b are still 2
b 'a's! uniq
a only uniquifies
c adjacent
matching lines

Group Data

dplyr::group_by(iris, Species)

Group data into rows with the same value of Species.

dplyr::ungroup(iris)

Remove grouping information from data frame.

iris %>% group_by(Species) %>% summarise(...)

Compute separate summary row for each group.

iris %>% group_by(Species) %>% mutate(...)
Compute new variables by group.

