New. 11

## 5. Пример неустойчивого метода.

Запишем для точного решения  $y=y\left(t\right)$  непрерывной задачи Коши

(\*) 
$$\dot{y} = f(t, y), \quad y(0) = y_0$$

два приближённых соотношения:

$$\frac{y(t_{n+1}) - y(t_{n-1})}{2h} = \dot{y}(t_n) + O(h^2) = f(t_n, y(t_n)) + O(h^2)$$

$$u(t_n) - y(t_{n-1})$$

$$\frac{y(t_n) - y(t_{n-1})}{h} = \frac{1}{2} \left[ f(t_n, y(t_n)) + f(t_{n-1}, y(t_{n-1})) \right] + O(h^2).$$

(1) uz4

Первое соотношение получается заменой  $\dot{y}$  на центральную разностную производную, а второе вытекает из формулы трапеций.

Сложим эти соотношения с коэффициентами  $\frac{2}{3}$  и  $\frac{1}{3}$ :

$$\frac{2}{3} \frac{y(t_{n+1}) - y(t_{n-1})}{2h} + \frac{1}{3} \frac{y(t_n) - y(t_{n-1})}{h} =$$

$$= \frac{5}{6} f(t_n, y(t_n)) + \frac{1}{6} f(t_{n-1}, y(t_{n-1})) + O(h^2).$$

Отсюда следует, что метод

$$\frac{y_{n+1} + y_n - 2y_{n-1}}{3h} = \frac{5}{6} f_n + \frac{1}{6} f_{n-1}$$

имеет второй порядок аппроксимации.

Здесь 
$$\alpha_0 = \frac{1}{3}$$
,  $\alpha_1 = \frac{1}{3}$ ,  $\alpha_2 = -\frac{2}{3}$ .

Метод – явный и двухшаговый.

Выясним теперь, как работает данный метод.

Перепишем разностное уравнение метода в виде

(1) 
$$y_{n+1} + y_n - 2 y_{n-1} = h \left( \frac{5}{2} f_n + \frac{1}{2} f_{n-1} \right).$$

Применим данный метод к задаче Коши

$$\dot{y} = 2t, \qquad y(0) = 0;$$

её решение  $y(t) = t^2$ .

В точках сетки:

$$y(t_n) = t_n^2 = n^2 h^2,$$
  
 $f(t_n, y(t_n)) = 2t_n = 2nh.$ 

Покажем, что сеточная функция со значениями  $y_n = n^2 h^2$  является *точным* решением дискретной задачи Коши

(2) 
$$y_{n+1} + y_n - 2 y_{n-1} = h \left( 5 t_n + t_{n-1} \right),$$
$$y_0 = 0, \quad y_1 = h^2.$$

Во-первых, замечаем:

Стартовые значения удовлетворяют формуле  $y_n = n^2 h^2$ .

Напомню, что эта формула есть решение непрерывной задачи Коши, которое рассматривается только в узлах сетки.



А далее будем рассуждать по индукции: убедимся, что если значения  $y_{n-1}$  и  $y_n$  удовлетворяют этой формуле, то и найденное из разностного уравнения (2) очередное значение  $y_{n+1}$  будет ей удовлетворять.

Рассуждая по индукции, получаем:

$$y_{n+1} = 2 y_{n-1} - y_n + h \left( 5 t_n + t_{n-1} \right) =$$

$$= 2 (n-1)^2 h^2 - n^2 h^2 + h \left( 5 n h + (n-1) h \right) =$$

$$= h^2 (2n^2 - 4n + 2 - n^2 + 6n - 1) =$$

$$= h^2 (n^2 + 2n + 1) = (n+1)^2 h^2.$$

Итак,  $y_n = n^2 h^2$  — точное решение.

Таким образом, результат пока — не просто хороший, а превосходный. Решение исходной задачи, рассматриваемое в узлах сетки, в точности совпадает с решением дискретной задачи Коши.

Но мы собираемся исследовать устойчивость дискретной задачи, а для этого нужно рассматривать возмущённую задачу.

Переходя к возмущённой задаче, ограничимся возмущением стартовых значений:

(3) 
$$y_0^* = y_0 + \varepsilon_0 \equiv \varepsilon_0, y_1^* = y_1 + \varepsilon_1 \equiv h^2 + \varepsilon_1, \qquad \psi_2^* = \dots = \psi_n^* = 0.$$

Чтобы понять, что получится в результате, нам потребуется общее решение разностного уравнения.

Разностное уравнение (2) — линейное неоднородное разностное уравнение с постоянными коэффициентами. Как и в случае дифференциальных уравнений, общее решение есть сумма общего решения однородного уравнения и частного решения неоднородного уравнения:  $y_n^{\text{общ}} = y_n^{\text{одл}} + y_n$ .

Частное решение у нас уже есть.

Частное решение:  $y_n = n^2 h^2$ .

Решение однородного уравнения  $y_{n+1} + y_n - 2 y_{n-1} = 0$  ищем в виде  $0^n$ .

Здесь — полная аналогия с решением линейных дифференциальных уравнений: и там, и здесь решения ищем в виде экспоненты.

Подставляем:

$$\theta^{n+1} + \theta^n - 2\theta^{n-1} = 0;$$
  
 $\theta^2 + \theta - 2 = 0;$   
 $\theta_1 = 1, \quad \theta_2 = -2.$ 



Общее решение однородного уравнения:

$$y_n^{\text{одн}} = A \theta_1^n + B \theta_2^n = A + B (-2)^n$$
.

Общее решение уравнения (2):

$$y_n^{\text{06m}} = A + B(-2)^n + n^2h^2.$$

В частности, при  $t_n = T$ :

$$y_N^{\text{ofm}} = A + B(-2)^N + T^2;$$

h мало  $\Leftrightarrow$  N велико.

В самом деле, h получается делением T на число шагов N.

Константы А и В нетрудно выразить через стартовые значения.

Найдём А и В для стартовых значений (3):

$$\begin{cases} y_0^* \equiv \varepsilon_0 = A + B \\ y_1^* \equiv h^2 + \varepsilon_1 = A - 2B + h^2 \end{cases} \Rightarrow \begin{cases} A = \frac{2\varepsilon_0 + \varepsilon_1}{3}, \\ B = \frac{\varepsilon_0 - \varepsilon_1}{3}. \end{cases}$$

Заметим теперь, что слагаемое, содержащее  $(-2)^N$ , присутствует в решении, если  $B \neq 0$ . Когда это бывает?

$$B \neq 0 \Leftrightarrow \varepsilon_0 \neq \varepsilon_1$$
.

Теперь ситуация с устойчивостью становится очевидной.

Следовательно, для сколь угодно малых  $\varepsilon_0$  и  $\varepsilon_1$ ,  $\varepsilon_0 \neq \varepsilon_1$ , найдётся столь малое h, что слагаемое  $B(-2)^N$ , а вместе с ним и разность  $y_N^* - y_N$ , будут по модулю сколь угодно велики.

Иными словами, мы не в состоянии задать такую константу  $C_T$ , не зависящую от шага, чтобы произведение этой константы на норму возмущения ограничивало бы сверху норму разности решений исходной и возмущённой дискретных задач Коши.

Вывод: рассмотренный нами метод неустойчив.

Обсудим, чем вызвано такое поведение данного метода.

(Y) cus 4.