	Sprawozdanie – WEAIIB, AiR
	Podstawy Automatyki 2
	Ćwiczenie 8: Zapasy stabilności
Czwartek, 14:30	Data wykonania: 11.05.2023
Roman Nowak	Data zaliczenia:
	Ocena:

Ćwiczenie ma celu przeanalizowanie wpływu paremetrów regulatora PID na stabilność układu wartości zapasów modułu i fazy

Analizę przeprowadzamy dla czterech obiektów o podanych niżej transmitancjach.

$$G(s) = \frac{1}{s^3 + 3s^2 + 3s + 1},$$

$$G(s) = \frac{1}{s^3 + 2s^2 + 2s + 1},$$

$$G(s) = \frac{1}{s^3 + 2s^2 + 2s + 1},$$

$$G(s) = \frac{2}{s^3 + 3s^2 + 2s + 1},$$

$$G(s) = \frac{1}{2s^3 + s^2 + s}.$$

```
G1 = tf([1], [1 3 3 1]);
G2 = tf([1], [1 2 2 1]);
G3 = tf([1], [1 3 2 1]);
G4 = tf([1], [2 1 1 0]);
```

```
k1 = 8.0011 / 2
```

k1 = 4.0006

```
zapasy(G1, k1, 0, 0);
```

Bode Diagram Gm = 6.02 dB (at 1.73 rad/s), Pm = 27.1 deg (at 1.23 rad/s)

zapas_modulu = 2.0000
zapas_fazy = 27.1360

k2 = 3 / 2

k2 = 1.5000

zapasy(G2, k2, 0, 0);

Bode Diagram Gm = 6.02 dB (at 1.41 rad/s), Pm = 39.7 deg (at 1.04 rad/s

zapas_modulu = 2.0000
zapas_fazy = 39.6836

k3 = 5.0029 / 2

k3 = 2.5015

zapasy(G3, k3, 0, 0);

Bode Diagram Gm = 6.02 dB (at 1.41 rad/s), Pm = 22.1 deg (at 1.05 rad/s

zapas_modulu = 2.0000
zapas_fazy = 22.0773

k4 = 0.5 / 2

k4 = 0.2500

zapasy(G4, k4, 0, 0);

Bode Diagram

Gm = 6.02 dB (at 0.707 rad/s), Pm = 71.5 deg (at 0.282 rad/

zapas_modulu = 2.0000
zapas_fazy = 71.4778

$$alfa = 0.1$$

alfa = 0.1000

zapasy(G1, k1, alfa, 0);

zapas_modulu = 1.9502
zapas_fazy = 25.9651

Bode Diagram Gm = 5.43 dB (at 1.38 rad/s), Pm = 35.8 deg (at 1.04 rad/s

zapas modulu = 1.8690 $zapas_fazy = 35.8373$

zapasy(G3, k3, alfa, 0);

Bode Diagram Gm = 5.48 dB (at 1.38 rad/s), Pm = 19.9 deg (at 1.05 rad/s

 $zapas_modulu = 1.8802$ $zapas_fazy = 19.8733$

Bode Diagram Gm = 1.58 dB (at 0.548 rad/s), Pm = 11.4 deg (at 0.448 rad/

 $zapas_fazy = 11.4055$

alfa = 1

alfa = 1

zapasy(G1, k1, alfa, 0);

Bode Diagram Gm = 3.62 dB (at 1.54 rad/s), Pm = 14.9 deg (at 1.25 rad/s

zapasy(G2, k2, alfa, 0);

Bode Diagram Gm = -0.412 dB (at 1.1 rad/s), Pm = -2.4 deg (at 1.13 rad/s

Warning: The closed-loop system is unstable.

zapas_modulu = 0.9537
zapas_fazy = -2.4014

zapasy(G3, k3, alfa, 0);

Bode Diagram Gm = -0.194 dB (at 1.07 rad/s), Pm = -0.613 deg (at 1.08 rad


```
Warning: The closed-loop system is unstable.
```

zapas_modulu = 0.9779
zapas_fazy = -0.6135

zapasy(G4, k4, alfa, 0);

Warning: The closed-loop system is unstable.

zapas_modulu = 0
zapas_fazy = -115.1196

beta = 0.5

beta = 0.5000

zapasy(G1, k1, 0, beta);

Bode Diagram

Gm = 10.1 dB (at 2.14 rad/s), Pm = 35.4 deg (at 1.24 rad/s)

zapasy(G2, k2, 0, beta);

Bode Diagram

Gm = 15.6 dB (at 2.24 rad/s), Pm = 54.5 deg (at 1.07 rad/s

zapas_modulu = 6.0002
zapas_fazy = 54.4706

zapasy(G3, k3, 0, beta);

Bode Diagram Gm = 14 dB (at 2.12 rad/s), Pm = 33.2 deg (at 1.06 rad/s)

zapasy(G4, k4, 0, beta);

zapasy(G1, k1, 0, beta);

zapas_modulu = 7.9956
zapas_fazy = 42.5031

zapasy(G2, k2, 0, beta);

zapas_modulu = Inf zapas_fazy = 60.5323

Zapas_razy - 42.4144

zapasy(G4, k4, 0, beta);

zapas_modulu = Inf zapas_fazy = 42.0872

```
alfa = 0.1
alfa = 0.1000
```

beta = 0.5

beta = 0.5000

zapasy(G1, k1, alfa, beta);

Bode Diagram Gm = 9.87 dB (at 2.12 rad/s), Pm = 34.4 deg (at 1.24 rad/s)

 $zapas_modulu = 3.1160$ $zapas_fazy = 34.3903$

zapasy(G2, k2, alfa, beta);

Bode Diagram Gm = 14.8 dB (at 2.15 rad/s), Pm = 52.6 deg (at 1.06 rad/s

 $zapas_fazy = 52.5602$

zapasy(G3, k3, alfa, beta);

Bode Diagram Gm = 13.4 dB (at 2.05 rad/s), Pm = 31.4 deg (at 1.06 rad/s

 $zapas_modulu = 4.6619$ $zapas_fazy = 31.3695$

zapasy(G4, k4, alfa, beta);

Bode Diagram Gm = Inf, Pm = 38.9 deg (at 0.334 rad/s)

zapas_modulu = 0
zapas_fazy = 38.8882

alfa = 1

alfa = 1

beta = 0.5

beta = 0.5000

zapasy(G1, k1, alfa, beta);

Bode Diagram Gm = 7.55 dB (at 1.87 rad/s), Pm = 24.3 deg (at 1.23 rad/s

 $zapas_modulu = 2.3852$ $zapas_fazy = 24.3104$

zapasy(G2, k2, alfa, beta);

Bode Diagram

Gm = 6.02 dB (at 1.41 rad/s), Pm = 21.3 deg (at 1.06 rad/s

zapas_modulu = 2.0000
zapas_fazy = 21.2510

zapasy(G3, k3, alfa, beta);

Bode Diagram Gm = 6.02 dB (at 1.41 rad/s), Pm = 12.1 deg (at 1.06 rad/s

 $zapas_modulu = 1.9989$ $zapas_fazy = 12.1106$

zapasy(G4, k4, alfa, beta);

Bode Diagram

Warning: The closed-loop system is unstable.

zapas_modulu = 0
zapas_fazy = -98.6901

beta = 1

beta = 1

zapasy(G1, k1, alfa, beta);

zapas_modulu = 7.7778
zapas_fazy = 41.6767

zapasy(G2, k2, alfa, beta);

zapas_modulu = Inf zapas_fazy = 60.0626

zapasy(G3, k3, alfa, beta);

zapasy(G4, k4, alfa, beta);

zapas_modulu = 0
zapas_fazy = 46.4855

alfa = 1

alfa = 1

beta = 1

beta = 1

zapasy(G1, k1, alfa, beta);

Bode Diagram Gm = 15.3 dB (at 2.85 rad/s), Pm = 33 deg (at 1.24 rad/s)

zapas_modulu = 5.8400
zapas_fazy = 32.9823

zapasy(G2, k2, alfa, beta);

zapasy(G3, k3, alfa, beta);

 10^{-1}

zapas_modulu = Inf zapas_fazy = 24.3700

 10^{-2}

zapasy(G4, k4, alfa, beta);

Bode Diagram

Gm = 15.6 dB (at 1.22 rad/s), Pm = -77.8 deg (at 0.764 rad/s

Frequency (rad/s)

10¹

Warning: The closed-loop system is unstable.

 $zapas_modulu = 6.0000$ $zapas_fazy = -77.7540$

function [] = zapasy(G, k, alfa, beta)

```
Gr = tf([k], [1]) + tf([0 alfa], [1 0]) + tf([beta 0], [0 1]);
margin(series(G, Gr))
[Gm, Pm] = margin(series(G, Gr));
zapas_modulu = Gm
zapas_fazy = Pm
end
```

Wnioski

Udało się przeanalizować wpływ parametrów regulatora PID na wartości zapasów stabilności fazy. Wzrost wzmocnienia pogarsza stabilność, wzrost stałej całkowania zazwyczaj pogarsza stabilność, wzrost stałej różniczkowania poprawia stabilność jeśli jest niewielkie, jednak stała równa 1 była zbyt duża.