Note

 Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [1]: # Dependencies and Setup
    import pandas as pd
    import numpy as np
    import pandas.io.formats.style

# File to Load (Remember to Change These)
    file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
    purchase_data_df = pd.read_csv(file_to_load)
```

Player Count

· Display the total number of players

```
In [2]: #Print first 5 records of the csv data
purchase_data_df.head()
```

Out[2]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44

```
In [3]: #Display the total number of players
    screen_name = purchase_data_df["SN"].value_counts().count()
    #screen_name
    total_players = pd.DataFrame({"Total Players": screen_name}, index=[0])
    total_players
```

Out[3]:

```
Total Players

0 576
```

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- · Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [4]: #Show the data types of the columns in the data
         purchase_data_df.dtypes
Out[4]: Purchase ID
                          int64
                         object
        SN
        Age
                          int64
                         object
        Gender
        Item ID
                         int64
        Item Name
                         object
        Price
                        float64
        dtype: object
In [5]: | #Calculation to obtain the total number of records in the
         total_count = purchase_data_df["SN"].count()
         #Calculate the total revenue
         total_revenue = purchase_data_df["Price"].sum()
         #Calculate the number of unique items
         total unique = len(purchase data df["Item Name"].unique())
         #Calculate the average price
         avg price = total revenue / total count
In [6]: #Create a summary and give the columns different names by putting the values i
         n a dictionary (Key/Value Pairs)
         summary df = pd.DataFrame({"Number of Unique Items": [total unique],
                                        "Average Price": avg_price,
                                        "Number of Purchase": total count,
                                        "Total Revenue": total revenue})
         #Format 2 of the columns in the summary so they are showing as $
         summary df.style.format({'Average Price':"${:,.2f}",
                                   'Total Revenue': '${:,.2f}'})
Out[6]:
            Number of Unique Items  Average Price  Number of Purchase  Total Revenue
         0
                            179
                                       $3.05
                                                          780
                                                                  $2,379.77
```

Gender Demographics

- Percentage and Count of Male Players
- Percentage and Count of Female Players
- · Percentage and Count of Other / Non-Disclosed

Out[7]:

Total Count Percentage of Players

Gender		
Male	484	84.03%
Female	81	14.06%
Other / Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [8]: #Get purchase value count of all Genders even if duplicate purchases
        purchase_count = purchase_data_df["Gender"].value_counts()
        #Calculate average purchase price for each Gender regardless of duplicates
        avg_purchase_df = round(purchase_data_df.groupby("Gender").Price.mean(),2)
        #Calculate the total sum of the purchase price for each gender
        total gender purch df = round(purchase data df.groupby("Gender").Price.sum(),2
        #Calculate the total average purchase price for each gender excluding duplicat
        total_avg_purchase_df = round((total_gender_purch_df / unique_SN_df),2)
        #Create a summary and give the columns different names by putting the values i
        n a dictionary (Key/Value Pairs)
        gender_purchasing_df = pd.DataFrame({"Purchase Count": purchase_count,
                                       "Average Purchase Price": avg_purchase_df,
                                       "Total Purchase Value": total_gender_purch_df,
                                       "Avg Total Purchase per Person": total avg purch
        ase_df})
        #Sort the dataframe by purchase count
        gender_purchasing_df = gender_purchasing_df.sort_values(by="Purchase Count", a
        scending=False)
        #Format 3 of the columns in the summary so they are showing as $
        gender_purchasing_df.style.format({"Average Purchase Price":"${:,.2f}",
                                            "Total Purchase Value": "${:,.2f}",
                                            "Avg Total Purchase per Person": "${:,.2f}"
        })
```

Out[8]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Male	652	\$3.02	\$1,967.64	\$4.07
Female	113	\$3.20	\$361.94	\$4.47
Other / Non- Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [9]: # Establish bins for ages and create labels
        demo_bins = [0, 9.90, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999]
        groups = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"]
        # slice the data using pd.cut and Categorize the existing players based on ag
        e bins
        purchase data df["Age Ranges"] = pd.cut(purchase data df["Age"],demo bins, lab
        els=groups)
        #group dataframe by Age Ranges
        age_group_df = purchase_data_df.groupby("Age Ranges")
        #Calculate the unique screen names and get the number of gender for each so on
        ly 1 value for every screen name is tallied
        unique_age_df = age_group_df["SN"].nunique()
        #Calculate the average player percentage for each age range
        age_percentage_df = round((unique_age_df / screen_name)*100,2).map("{0:,.2f}%"
        .format)
        #Create the age range dataframe summary
        age summary df = pd.DataFrame({"Total Count": unique age df,
                                        "Percentage of Players": age percentage df})
        age_summary_df
```

Out[9]:

Total Count Percentage of Players

Age Ranges		
<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

Purchasing Analysis (Age)

- Bin the purchase data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- · Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [10]: | purchase data df["Age Ranges"] = pd.cut(purchase data df["Age"],demo bins, lab
         els=groups)
         #Group dataframe by Age Ranges
         age_group_df = purchase_data_df.groupby("Age Ranges")
         #Calculate the unique screen names and get the number of gender for each so on
         ly 1 value for every screen name is tallied
         unique_agegroup_df = age_group_df["SN"].nunique()
         #Calculate average purchase price for each Age Range
         age_avg_purchase = round(purchase_data_df.groupby("Age Ranges").Price.mean(),2
         #Calculate the total sum of the purchase price for each Age Range
         total_age_purch_df = round(purchase_data_df.groupby("Age Ranges").Price.sum(),
         2)
         #Calculate the total average purchase price for each Age Range excluding dupli
         total age avg purchase = round((total age purch df / unique agegroup df),2)
         #Create the dataframe summary purchasing analysis by age range
         age_purchasing_summary = pd.DataFrame({"Purchase Count": unique_agegroup_df,
                                         "Average Purchase Price": age_avg_purchase,
                                         "Total Purchase Value": total_age_purch_df,
                                         "Avg Total Purchase per Person": total_age_avg_
         purchase})
         #Format the columns so the data has cleaner formatting
         age_purchasing_summary.style.format({"Average Purchase Price":"${:,.2f}",
                                             "Total Purchase Value": "${:,.2f}",
                                             "Avg Total Purchase per Person": "${:,.2f}"
         })
```

Out[10]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Age Ranges				
<10	17	\$3.35	\$77.13	\$4.54
10-14	22	\$2.96	\$82.78	\$3.76
15-19	107	\$3.04	\$412.89	\$3.86
20-24	258	\$3.05	\$1,114.06	\$4.32
25-29	77	\$2.90	\$293.00	\$3.81
30-34	52	\$2.93	\$214.00	\$4.12
35-39	31	\$3.60	\$147.67	\$4.76
40+	12	\$2.94	\$38.24	\$3.19

Top Spenders

- Run basic calculations to obtain the results in the table below
- · Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- · Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [11]:
         #Group the dataframe by SN column
         SN_df = purchase_data_df.groupby("SN")
         #Count the unique values of the SN column
         unique SN df = SN df["SN"].count()
         #Calculate the average price of the unique values in the SN column
         age_avg_purchase = round(SN_df["Price"].mean(),2)
         #Calculate the sum price of the unique values in the SN column
         total age purch df = round(SN df["Price"].sum(),2)
         #Top spenders summary dataframe
         gender_purchasing_df = pd.DataFrame({"Purchase Count": unique_SN_df,
                                        "Average Purchase Price": age avg purchase,
                                        "Total Purchase Value": total_age_purch_df})
         #Top spenders summary dataframe sorted and styled
         gender purchasing df.sort values(by="Total Purchase Value", ascending=False).h
         ead().style.format({"Average Purchase Price":"${:,.2f}",
                                             "Total Purchase Value": "${:,.2f}"})
```

Purchase Count Average Purchase Price Total Purchase Value

Out[11]:

SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
lskadarya95	3	\$4.37	\$13.10

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, average item price, and total purchase value
- Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [12]:
         #Retrieve the Item ID, Item Name, and Item Price columns
         popular_items_df = purchase_data_df[["Item ID", "Item Name","Price"]]
         #Group by Item ID and Item Name
         popular_items_grouped = popular_items_df.groupby(["Item ID", "Item Name"])
         #Perform calculations to obtain purchase count, average item price, and total
          purchase value
         most popular count = popular items grouped["Item Name"].count()
         avg_most_popular = popular_items_grouped["Price"].mean()
         total_most_popular = popular_items_grouped["Price"].sum()
         #Most popular items summary dataframe
         most_popular_summary = pd.DataFrame({"Purchase Count": most_popular_count,
                                        "Average Purchase Price": avg_most_popular,
                                        "Total Purchase Value": total most popular})
         #Most popular items summary dataframe sorted by purchase count and formatted
         most_popular_summary.sort_values(by="Purchase Count", ascending=False).head().
         style.format({"Average Purchase Price":"${:,.2f}",
                                             "Total Purchase Value": "${:,.2f}"})
```

Out[12]:

		Purchase Count	Average Purchase Price	Total Purchase Value
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
132	Persuasion	9	\$3.22	\$28.99
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

Most Profitable Items

- · Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- · Display a preview of the data frame

```
In [13]: #Most popular items summary dataframe sorted by total purchase value and forma
         most_popular_summary.sort_values(by="Total Purchase Value", ascending=False).h
         ead().style.format({"Average Purchase Price":"${:,.2f}",
                                            "Total Purchase Value": "${:,.2f}"})
```

Out[13]:

		Purchase Count	Average Purchase Price	Total Purchase Value
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
103	Singed Scalpel	8	\$4.35	\$34.80