Task Introduction

Getting comfortable with kubectl and docker

During this course the student will be required to use the CLI tools cloudctl and kubectl.

Tasks will describe a challenge. The student must execute the appropriate command(s) to obtain the needed information. Be sure to review the Step-by-Step instructions and press the button to mark the task complete.

If at any time you are needing assistance press the **Hint** button. If you are still needing assistance use the **Step-by-Step** button to get detailed instructions for the task.

- The instructor will provide the IP address of target IBM Cloud Environment (ICP) environment along with the credentials to authenticate.
- Using the cloudctl CLI authenticate to the ICP environment with the instructor provided credentials:

```
cloudctl login -a https://<IP Address>:8443 -u admin -n <team> --skip-ssl-validation
```

```
<IP Address> - replace with instructor provided information <team> - replace with team name
```

Hint Introduction

No hint necessary for the introduction.

Step-by-Step Introduction

No step-by-step necessary for the introduction. Once done reading the introduction select another task to begin.

Task T01

What are the node names in the cluster? Use both the kubectl and cloudctl CLIs to get this informaiton.

Hint T01

kubectl get nodes -o wide (use the -o wide parameter to get more information)

cloudctl cm nodes

Step-by-Step T01

kubectl example:

```
Command:
   kubectl get nodes -o wide (OR) kubectl get nodes
Example output:
NAME
        STATUS
                      ROLES
                                   AGE
                                             VERSION
                                                         INTERNAL-IP
                                                                       EXTERNAL-IP
                                                                                    OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME
                                             v1.11.5+icp 10.135.8.195
10.135.8.195 Ready
                      worker
                                   20h
                                                                                    Ubuntu
                                                                       <none>
```

16.04.5 LTS	4.4.0-135-generic	docker://18.	3.1				
10.135.8.213	Ready worker	20h	v1.11.5+icp	10.135.8.213	<none></none>	Ubuntu	
16.04.5 LTS	4.4.0-135-generic	docker://18.	3.1				
10.135.8.214	Ready worker	20h	v1.11.5+icp	10.135.8.214	<none></none>	Ubuntu	
16.04.5 LTS	4.4.0-135-generic docker://18.3.1						
10.135.8.232	Ready etcd, ma	ster 20h	v1.11.5+icp	10.135.8.232	<none></none>	Ubuntu	
16.04.5 LTS	4.4.0-140-generic	docker://18.	3.1				
10.135.8.233	Ready managem	ent 20h	v1.11.5+icp	10.135.8.233	<none></none>	Ubuntu	
16.04.5 LTS	4.4.0-135-generic	docker://18.	3.1				
10.135.8.244	Ready proxy	20h	v1.11.5+icp	10.135.8.244	<none></none>	Ubuntu	
16.04.5 LTS	4.4.0-135-generic	docker://18.	3.1				
10.135.8.248	Ready worker	20h	v1.11.5+icp	10.135.8.248	<none></none>	Ubuntu	
16.04.5 LTS	4.4.0-135-generic	docker://18.	3.1				

cloudctl example:

Command: cloudctl	cm nodes					
Example outpu	t:					
ID	Type	Private IP	Public IP	Machine Type	State	K8s Status
faststart-m1	master	10.135.8.232	_	_	deployed	Ready
faststart-p1	proxy	10.135.8.244	_	-	deployed	Ready
faststart-w1	worker	10.135.8.195	_	-	deployed	Ready
faststart-w2	worker	10.135.8.213	_	-	deployed	Ready
faststart-w3	worker	10.135.8.214	_	_	deployed	Ready
faststart-w4	worker	10.135.8.248	-	-	deployed	Ready

Confirm T01 complete

Press to mark completed

Task T02

What is the Allocatable CPU count for the master node?

Hint T02

Describe the master node using the name from previous results.

```
Command:
   kubectl describe node <master node name>

View output section Allocatable, and find cpu. Example:
```

```
Allocatable:

cpu: 16

...

pods: 160
...
```

Confirm T02 complete

Press to mark completed

Task T03

Display the top CPU and Memory for all nodes and display the top pods

Hint T03

kubectl top

Step-by-Step T03

```
Command:
  kubectl top nodes
Example output:
      CPU(cores) CPU%
NAME
                             MEMORY(bytes) MEMORY%
10.186.56.74 812m
                     5%
                              12278Mi
10765Mi
                                           38%
10.186.56.76 839m 10%
                                           67%
10.186.56.85 109m
                     0%
                              2453Mi
                                           7%
10.187.230.157 108m
                               2608Mi
```

Confirm T03 complete

Press to mark completed

Task T04

Display the status of the cluster components.

Hint T04

Command contains the componentstatuses as a parameter.

```
Command:
kubectl get componentstatuses
```

Example output:

NAME STATUS MESSAGE ERROR

controller-manager Healthy ok scheduler Healthy ok

etcd-0 Healthy {"health": "true"}

Confirm T04 complete

Press to mark completed

Task T05

What taints are defined for management and worker nodes?

Hint T05

Use node names from kubectl get nodes results.

Step-by-Step T05

Command:

kubectl describe node <name of management node>
kubectl describe node <name of worker node>

Example output:

Mgmt - Taints: dedicated=infra:NoSchedule

Worker - Taints: <none>

Confirm T05 complete

Press to mark completed

Task T06

How many pods in the kube-system namespace begin with auth?

Hint T06

Think at the pod level

Step-by-Step T06

Command:

kubectl get pods -n kube-system (consider using grep to reduce the volume of output)

Example output:					
auth-apikeys-h2lzz	1/1	Running	0	8d	
auth-idp-5ghjh	4/4	Running	0	8d	
auth-pap-72xhq	2/2	Running	0	8d	
auth-pdp-9pjzd	2/2	Running	0	8d	

Confirm T06 complete

Press to mark completed

Task T07

Set the default namespace to kube-system using the kubectl config set-context capability.

Hint T07

Be sure to include: faststart-context --namespace=kube-system

Step-by-Step T07

```
Command:
    kubectl config set-context faststart-context --namespace=kube-system

Example output:

Context "faststart-context" modified.
```

Confirm T07 complete

Press to mark completed

Task T08

What are the container names in the pod that begins with auth-pap?

Hint T08

Full pod name will be similar to: auth-pap-72xhq

```
Command:
    kubectl describe pod auth-pap-72xhq (or)
    kubectl get pod -l component=auth-pap -o=jsonpath='{.items[*].spec.containers[*].name}'

Example output:
```

```
- describe output: search for section Containers: and then view each container name:

Containers:
    icp-audit-service:
        . . .
        auth-pdp

- get pod output: (each container name is listed with a space seperator)

icp-audit-service auth-pap
```

Confirm T08 complete

Press to mark completed

Task T09

What is the first message in the container log for pod that begins with unified-router? The pod is in the kube-system namespace. The full pod name will be similar to: unified-router-k768f

Hint T09

kubectl logs

```
Command:
   kubectl get pods -n kube-system
Example output:
NAME
                                                          READY
                                                                    STATUS RESTARTS
                                                                                         AGE
audit-logging-fluentd-ds-7v5br
                                                                   Running 0
                                                          1/1
                                                                                         20h
              . . . data truncated . . .
tiller-deploy-5d8494fb8-sjmbn
                                                          1/1
                                                                   Running 0
                                                                                         21h
                                                          1/1
unified-router-4ltff
                                                                    Running 0
                                                                                         20h
web-terminal-f77dc4d7d-stzgj
                                                          1/1
                                                                    Running 0
                                                                                         20h
Command:
   kubectl logs unified-router-????? <=== use the pod name from the previous output
Example output:
2018/12/21 00:00:39 Using HTTP port: 9090
```

Confirm T09 complete

Press to mark completed

Task T10

Exec into pod mariadb-0 and using the command: Is -la /sys list the contents for the directory. To lose the prompt enter the exit command.

Hint T10

Don't forget the -it parameter.Don't forget the command follows double dashes e.g. -- /bin/bashTry the sh or /bin/bash for the entrypoint of the pod

Step-by-Step T10

```
Command:

kubectl exec -it mariadb-0 -- sh (or) kubectl exec -it mariadb-0 -- /bin/bash

Example output:

dr-xr-xr-x 13 root root 0 Dec 29 18:22 .
drwxr-xr-x 1 root root 4096 Dec 20 23:50 ..
drwxr-xr-x 2 root root 0 Dec 29 18:25 block
. . .
drwxr-xr-x 2 root root 0 Dec 29 18:25 power
```

Confirm T10 complete

Press to mark completed

Task T11

Without using an interactive shell prompt, list the /etc/hosts file of the mariadb-0 pod.

Hint T11

'cat' the /etc/hosts file.

```
Command:
   kubectl exec mariadb-0 -- sh -c 'cat /etc/hosts'

Example output:

# Kubernetes-managed hosts file (host network).

10.186.56.85 faststart-worker-1

10.187.230.157 faststart-worker-2
```

```
10.186.56.74 faststart-master-1
10.186.56.74 faststart-master-1
10.186.56.76 faststart-mgmt-1
127.0.0.1 localhost
. . .
```

Confirm T11 complete

Press to mark completed

Task T12

12 - How many builtin services are running in the cluster.

Hint T12

This is cluster information.

Step-by-Step T12

```
Command:
             kubectl cluster-info
Answer: count the items shown in the output
Example output:
Kubernetes master is running at https://169.62.194.213:8001
catalog-ui is running at https://169.62.194.213:8001/api/v1/namespaces/kube-system/services/catalog-
ui:catalog-ui/proxy
Heapster is running at https://169.62.194.213:8001/api/v1/namespaces/kube-
system/services/heapster/proxy
image-manager is running at \ https://169.62.194.213:8001/api/v1/namespaces/kube-system/services/image-manager is running at https://169.62.194.213:8001/api/v1/namespaces/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system/services/kube-system
manager:image-manager/proxy
CoreDNS is running at https://169.62.194.213:8001/api/v1/namespaces/kube-system/services/kube-
dns:dns/proxy
metrics-server is running at https://169.62.194.213:8001/api/v1/namespaces/kube-
system/services/https:metrics-server:/proxy
platform-ui is running at https://169.62.194.213:8001/api/v1/namespaces/kube-
system/services/platform-ui:platform-ui/proxy
```

Confirm T12 complete

Press to mark completed