Capítulo 1

Matrizes

1.1 Apontamentos sobre Matrizes

1.1def (a) [produto cartesiano de dois conjuntos] Sejam A e B conjuntos. Chama-se produto cartesiano de A e B, que se representa por $A \times B$, ao conjunto

$$\{(a,b)|a\in A,b\in B\}.$$

(b) [produto cartesiano de um número finito de conjuntos] Sejam $n \in$ \mathbb{N} e os conjuntos A_1, A_2, \ldots, A_n . Chama-se produto cartesiano de A e B, que se representa por $A_1 \times A_2 \times \cdots \times A_n$, ao conjunto

$$\{(a_1, a_2, \dots, a_n) | a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n, \}.$$

(c) [[potência cartesiana de um conjunto]] Sejam $n \in \mathbb{N}$ e X um conjunto. Chama-se potência cartesiana de ordem n do conjunto X, que se representa por X^n , ao conjunto

$$\{(x_1, x_2, \dots, x_n) | x_1, x_2, \dots, x_n \in X\},\$$

identificando-se X^1 com X.

1.2exe Explicite \mathbb{R}^2 e \mathbb{C}^3 .

res
$$\mathbb{R}^2 = \{(x,y)|x,y \in \mathbb{R}\}.$$

$$\mathbb{C}^3 = \{(z_1,z_2,z_3)|z_1,z_2,z_3 \in \mathbb{C}\}.$$

- 1.3def (a) [matriz, tipo de uma matriz, matriz real, matriz complexa] Sejam $m, n \in \mathbb{N}$. Chama-se matriz do tipo $m \times n$ (lê-se "m por n") a uma função com domínio $\{(i,j) \in \mathbb{N}^2 | i=1,\ldots,m,j=1,\ldots,n\}$ e com conjunto de chegada \mathbb{R} ou \mathbb{C} , dizendo-se que é uma matriz real ou complexa, respectivamente.
 - (b) $[\![\mathcal{M}_{m\times n}(\mathbb{R})]\!]$ Representa-se por $\mathcal{M}_{m\times n}(\mathbb{R})$ o conjunto das matrizes reais do tipo $m\times n$.
 - (c) $[\![\mathcal{M}_{m\times n}(\mathbb{C})]\!]$ Representa-se por $\mathcal{M}_{m\times n}(\mathbb{C})$ o conjunto das matrizes complexas do tipo $m\times n$.
- 1.4obs (a) É possível considerar matrizes cujos elementos não são nem números reais, nem números complexos (e.g., polinómios), mas neste curso apenas aqueles casos são os com interesse.
 - (b) Quando não é relevante destinguir o conjunto dos números reais (\mathbb{R}) do conjunto dos números complexos (\mathbb{C}) , usa-se o símbolo \mathbb{K} , tendo-se a seguinte definição:
- 1.5def $[\mathcal{M}_{m \times n}(\mathbb{K})]$ Representa-se por $\mathcal{M}_{m \times n}(\mathbb{K})$ o conjunto das matrizes do tipo $m \times n$, independentemente de serem reais ou complexas.
- 1.6def [escalar] Chama-se escalar a um elemento de K.

1.7def Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K}), i \in \{1, \dots, m\} \text{ e } j \in \{1, \dots, n\}.$

- (a) [[elemento de uma matriz]] Chama-se elemento da linha i e da coluna j da matriz A, que se representa por $a_{i,j}$ ou $(A)_{i,j}$, a A(i,j). (Se não houver ambiguidade relativamente ao índice da linha e ao índice da coluna representa-se por a_{ij} ou $(A)_{ij}$.)
- (b) [linha de uma matriz] Chama-se linha i da matriz A, que se representa por $\ell_{i,A}$, a $(a_{i1}, a_{i2}, \ldots, a_{in})$. (Se não houver ambiguidade relativamente à matriz representa-se por ℓ_{i} .)
- (c) [[coluna de uma matriz]] Chama-se coluna j da matriz A, que se representa por $c_{j,A}$, a $(a_{1j}, a_{2j}, \ldots, a_{mj})$. (Se não houver ambiguidade relativamente à matriz representa-se por c_{j} .)

1.80bs (a) Regra geral usam-se letras maiúsculas para representar matrizes.

(b) Representa-se por $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ a matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

em que $a_{11}, a_{12}, \dots, a_{1n}, a_{21}, a_{22}, \dots, a_{2n}, a_{m1}, a_{m2}, \dots, a_{mn} \in \mathbb{K}$.

- (c) A letra "i" aparece neste curso quer como a unidade imaginária dos números complexos, quer como a letra usual para representar a linha de uma matriz. No entanto, o contexto será sempre suficiente para identificar o significado correcto.
- (d) Quando se está perante matrizes do conjunto $\mathcal{M}_{1\times 1}(\mathbb{K})$, o contexto será suficiente para distinguir se se está a fazer referência à matriz ou ao único elemento que a constitui.

1.9exe Dê um exemplo de uma matriz pertencente a $\mathcal{M}_{2\times 3}(\mathbb{R})$.

1.10exe Explicite a matriz $A = [a_{ij}] \in \mathcal{M}_{2\times 3}(\mathbb{R}), \ a_{ij} = j - i.$

res $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$.

1.11exe Considere a matriz $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$.

- (a) Indique o elemento que está na segunda linha e na terceira coluna da matriz A.
- (b) Indique a segunda linha da matriz A.
- (c) Indique a terceira coluna da matriz A.

res (a) $a_{23} = 7$.

- (b) $\ell_2 = (5, 6, 7, 8)$.
- (c) $c_3 = (3,7)$.

1.12def Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- (a) $[\![\text{matriz coluna}]\!]$ Diz-se que A é uma matriz coluna se n=1.
- (b) $[\![\text{matriz linha}]\!]$ Diz-se que A é uma matriz linha se m=1.
- 1.13obs É habitual representar matrizes linha e matrizes coluna por letras minúsculas e os seus elementos apenas com um índice. Assim, e usando esta notação, as formas da matriz coluna x com m linhas e da matriz linha y com n colunas são:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}, \quad y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}.$$

1.14exe

- (a) Dê um exemplo de uma matriz coluna complexa com 2 elementos.
- (b) Dê um exemplo de uma matriz linha real com 3 elementos.
- (c) Indique se a seguinte proposição é verdadeira ou falsa: "Há matrizes que são simultaneamente matrizes linha e matrizes coluna".

res

- (a) $p = \begin{bmatrix} 1+2i \\ 1 \end{bmatrix}$.
- (b) q = [04 1].
- (c) Proposição verdadeira pois as matrizes que pertencem ao conjunto $\mathcal{M}_{1\times 1}(\mathbb{K})$ são matrizes linha pois só têm uma coluna e são matrizes coluna pois só têm uma linha.

1.15def | Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- (a) $[\![\text{matriz rectangular}]\!]$ Diz-se que A é uma matriz rectangular se $m \neq n$.
- (b) [matriz quadrada, ordem de uma matriz] Diz-se que A é uma matriz quadrada se m = n, dizendo-se neste caso que A é uma matriz de ordem n.

1.16exe

- (a) Indique se a seguinte proposição é verdadeira ou falsa: "A = $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ é uma matriz rectangular."
- (b) Dê um exemplo de uma matriz real de ordem 2.

res

- (a) A proposição é verdadeira pois o número de linhas da matriz, que é 2, é diferente do número de colunas da matriz, que é 3.
- (b) $X = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$.

1.17def Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{K}).$

(a) [diagonal principal ou diagonal de uma matriz] Chama-se diagonal principal da matriz A ou diagonal da matriz A ao elemento $(a_{11}, a_{22}, \ldots, a_{nn})$ de \mathbb{K}^n .

- (b) [diagonal secundária de uma matriz] Chama-se diagonal secundária da matriz A ao elemento $(a_{1n}, a_{2,n-1}, \ldots, a_{n1})$ de \mathbb{K}^n .
- (c) [matriz diagonal] A diz-se uma matriz diagonal se $i \neq j \Rightarrow a_{ij} = 0$.
- (d) [matriz escalar] A diz-se uma matriz escalar se é uma matriz diagonal com $a_{11} = a_{22} = \ldots = a_{nn}$.
- (e) [matriz triangular superior] A diz-se uma matriz triangular superior se $i > j \Rightarrow a_{ij} = 0$.
- (f) [matriz triangular inferior] A diz-se uma matriz triangular inferior se $i < j \Rightarrow a_{ij} = 0$.

1.18obs (a) As definições anteriores só se aplicam a matrizes quadradas.

- (b) A é uma matriz diagonal se todos os elementos fora da diagonal são zeros.
- (c) A é uma matriz triangular superior se todos os elementos "abaixo" da diagonal são zeros.
- (d) A é uma matriz triangular inferior se todos os elementos "acima" da diagonal são zeros.

1.19exe (a) Dê um exemplo de uma matriz diagonal de ordem 4.

- (b) Dê um exemplo de uma matriz escalar de ordem 3.
- (c) Dê um exemplo de uma matriz triangular superior de ordem 2.

- (d) Dê um exemplo de uma matriz triangular inferior de ordem 3 e indique a sua diagonal principal e diagonal secundária.
- (e) Dê um exemplo de uma matriz simultaneamente triangular superior e triangular inferior de ordem 2.

(b)
$$B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

(c)
$$C = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
.

(d)
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & -1 & 2 \end{bmatrix}$$
.

(e)
$$E = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
.

1.20 def

- (a) $[\![\text{matriz nula}, 0_{m \times n}, \underline{0}]\!]$ Chama-se matriz nula a uma matriz cujos elementos são todos iguais a 0. Representa-se a matriz nula do tipo $m \times n$ por $0_{m \times n}$ ou por $\underline{0}$ se não houver ambuiguidade relativamente ao tipo.
- (b) $[\![\![\text{matriz identidade}, I_n, I]\!]\!]$ Chama-se matriz identidade à matriz escalar cujos elementos da diagonal são todos iguais a 1. Representa-se a matriz identidade de ordem n por I_n ou por Ise não houver ambuiguidade relativamente à ordem.

1.21exe

- (a) Indique a matriz nula do tipo 2×4 .
- (b) Indique a matriz identidade de ordem 3.

res

(a)
$$0_{2\times 4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

(b)
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

1.22def [matrizes iguais] Sejam as matrizes $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ e B = $[b_{ij}] \in \mathcal{M}_{p \times q}(\mathbb{K})$. Diz-se que A e B são matrizes iguais se m = p, $n = q \in a_{ij} = b_{ij}, \forall i \in \{1, \dots, m\}, \forall j \in \{1, \dots, n\}.$

1.23obs Usa-se esta definição em algumas demonstrações relativas a matrizes.

- 1.24def [soma de matrizes] Sejam as matrizes $A = [a_{ij}], B = [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K}).$ Chama-se soma das matrizes A e B à matriz $Z = [z_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K}),$ $z_{ij} = a_{ij} + b_{ij}$, escrevendo-se Z = A + B.
- 1.25def [produto de uma matriz por um escalar] Sejam a matriz $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ e o escalar $\alpha \in \mathbb{K}$. Chama-se produto da matriz A pelo escalar α à matriz $Z = [z_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$, $z_{ij} = \alpha a_{ij}$, escrevendo-se $Z = \alpha A$.
- 1.26 obs (a) Só se pode somar matrizes do mesmos tipo.
 - (b) É sempre possível multiplicar uma matriz por um escalar.
 - (c) Seja a matriz A. Então, em vez de (-1)A escreve-se -A.
 - (d) Sejam as matrizes A e B do mesmo tipo. Então, tendo em consideração a alínea anterior, em vez de A + (-B) escreve-se A B.
 - (e) A matriz nula é o elemento neutro da soma de matrizes.

1.27exe Sejam as matrizes $A = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}$.

- (a) Calcule A + B.
- (b) Calcule 2A.
- (c) Calcule $\frac{1}{2}A 3B$.

res (a)
$$A + B = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 3 \\ 1 & 0 & -2 \end{bmatrix}$$
.

(b)
$$2A = 2 \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix} = \begin{bmatrix} -2 & 4 & 2 \\ 0 & 2 & -8 \end{bmatrix}$$
.

(c)
$$\frac{1}{2}A - 3B = \frac{1}{2} \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix} - 3 \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -19/2 & 1 & -11/2 \\ -3 & 7/2 & -8 \end{bmatrix}$$
.

1.28teo

(a) $\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{K}) : A + B = B + A$.

(b) $\forall A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K}) : (A + B) + C = A + (B + C).$

(c) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : A + 0_{m \times n} = A$.

(d) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : A + (-A) = 0_{m \times n}.$

(e) $\forall \alpha, \beta \in \mathbb{K}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : (\alpha \beta)A = \alpha(\beta A).$

(f) $\forall \alpha, \beta \in \mathbb{K}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : (\alpha + \beta)A = \alpha A + \beta A$.

(g) $\forall \alpha \in \mathbb{K}, \forall A, B \in \mathcal{M}_{m \times n}(\mathbb{K}) : \alpha(A+B) = \alpha A + \alpha B$.

(h) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : 1A = A$.

 dem

(a) Como, por definição de soma de matrizes, as matrizes A+B e B+A são do tipo $m\times n$ e como, para $i=1,\ldots,m$ e $j=1,\ldots,n$,

$$(A+B)_{ij}=(A)_{ij}+(B)_{ij}$$
 por definição de soma de matrizes
$$=(B)_{ij}+(A)_{ij}$$
 pela propriedade comutativa dos escalares
$$=(B+A)_{ij}$$
 por definição de soma de matrizes,

tem-se que as matrizes A + B e B + A são iguais.

(b) Como, por definição de soma de matrizes, as matrizes (A+B)+C e A+(B+C) são do tipo $m\times n$ e como, para $i=1,\ldots,m$ e $j=1,\ldots,n,$

$$((A+B)+C)_{ij}=(A+B)_{ij}+(C)_{ij}$$
 por definição de soma de matrizes
$$=((A)_{ij}+(B)_{ij})+(C)_{ij}$$
 por definição de soma de matrizes
$$=(A)_{ij}+((B)_{ij}+(C)_{ij})$$
 pela propriedade associativa dos escalares
$$=(A)_{ij}+(B+C)_{ij}$$
 por definição de soma de matrizes,

tem-se que as matrizes (A + B) + C e A + (B + C) são iguais.

(c) Como, por definição de soma de matrizes, as matrizes $A+0_{m\times n}$ e A são do tipo $m\times n$ e como, para $i=1,\ldots,m$ e $j=1,\ldots,n,$

$$(A+0)_{ij}=(A)_{ij}+(0_{m imes n})_{ij}$$
 por definição de soma de matrizes
$$=(A)_{ij}+0$$
 por definição de matriz nula
$$=(A)_{ij}$$
 0 é o elemento neutro da soma de escalares,

tem-se que as matrizes A+B e B+A são iguais.

(d) Como, por definição de soma de matrizes, as matrizes A+B e B+A são do tipo $m\times n$ e como, para $i=1,\ldots,m$ e $j=1,\ldots,n,$

$$(A+(-A))_{ij}=(A)_{ij}+(-A)_{ij}$$
 por definição de soma de matrizes
$$=(A)_{ij}-(A)_{ij}$$
 por 1.26obs (c)
$$=0$$
 pois são escalares simétricos,

tem-se que as matrizes A+(-A) e $0_{m\times n}$ são iguais.

- (e) Exercício.
- (f) Exercício.
- (g) Exercício.
- (h) Exercício.
- 1.29def [produto ou multiplicação de matrizes] Sejam as matrizes $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $B = [b_{ij}] \in \mathcal{M}_{n \times p}(\mathbb{K})$. Chama-se produto ou multiplicação da matriz A pela matriz B à matriz $Z = [z_{ij}] \in \mathcal{M}_{m \times p}(\mathbb{K})$, $z_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$, escrevendo-se Z = AB.
- 1.30 bs (a) Só se pode efectuar a multiplicação da matriz A pela matriz B se o número de colunas da matriz A for igual ao número de linhas

da matriz B. Neste caso, o número de linhas da matriz resultante é igual ao número de linhas da matriz A e o número de colunas da matriz resultante é igual ao número de colunas da matriz B. Em notação simplificada, tem-se: $A_{m \times n} B_{n \times p} = Z_{m \times p}$.

(b) Sejam as matrizes $A = [a_{ij}] \in \mathcal{M}_{3\times 2}(\mathbb{R})$ e $B = [b_{ij}] \in \mathcal{M}_{2\times 4}(\mathbb{R})$. Então, como o número de colunas da matriz A é igual ao número de linhas da matriz B, é possível efectuar a operação AB. Por exemplo o elemento $(AB)_{23}$ obtém-se considerando $\ell_{2,A}$ e $c_{2,B}$:

$$\begin{bmatrix} * & * \\ 2 & 1 \\ * & * \end{bmatrix} \begin{bmatrix} * & * & 4 \\ * & * & 5 \end{bmatrix} * = \begin{bmatrix} * & * & * & * \\ * & * & 9 \end{bmatrix} *$$

$$A = [a_{ij}] \in \mathcal{M}_{3 \times 2}(\mathbb{R}) \quad B = [b_{ij}] \in \mathcal{M}_{2 \times 4}(\mathbb{R})$$

$$A = [a_{ij}] \in \mathcal{M}_{3 \times 2}(\mathbb{R}) \quad B = [b_{ij}] \in \mathcal{M}_{2 \times 4}(\mathbb{R})$$

$$(AB)_{23} = \sum_{k=1}^{2} a_{2k}b_{k3} = a_{21}b_{13} + a_{22}b_{23} = 2 \times 4 + 1 \times 5 = 9.$$

1.31exe Considere as matrizes $A = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix}$. Efectue, se possível, as seguintes operações:

- (a) AB.
- (b) *BA*.
- (c) BI_3 .
- (d) I_2B .

res

(a) Como o número de colunas da matriz A é igual ao número de linhas da matriz B, é possível efectuar a operação AB, tendo-se

$$AB = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -3 & 3 \end{bmatrix}.$$

- (b) Como o número de colunas da matriz B, que é 3, é diferente do número de linhas da matriz A, que é 2, não é possível efectuar a operação BA.
- (c) Como o número de colunas da matriz B é igual ao número de linhas da matriz I_3 , é possível efectuar a operação BI_3 , tendo-se

$$BI_3 = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

(d) Como o número de colunas da matriz I_2 é igual ao número de linhas da matriz B, é possível efectuar a operação I_2B , tendo-se

$$I_2B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

1.32teo (a) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}), \forall B \in \mathcal{M}_{n \times p}(\mathbb{K}), \forall C \in \mathcal{M}_{p \times q}(\mathbb{K}) : (AB)C = A(BC).$

(b) $\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{K}), \forall C \in \mathcal{M}_{n \times p}(\mathbb{K}) : (A+B)C = AC + BC.$

(c) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}), \forall B, C \in \mathcal{M}_{n \times p}(\mathbb{K}) : A(B+C) = AB + AC.$

(d) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : I_m A = AI_n = A.$

(e) $\forall \alpha \in \mathbb{K}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{K}), \forall B \in \mathcal{M}_{n \times p}(\mathbb{K}) : \alpha(AB) = (\alpha A)B = A(\alpha B).$

dem Exercício.

1.33obs (a) A matriz identidade é o elemento neutro da multiplicação de matrizes.

- (b) Sejam A, B e C matrizes do mesmo tipo. Então, tem-se que a expressão A + B + C não resulta ambígua devido à propriedade associativa da soma de matrizes.
- (c) Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e $C \in \mathcal{M}_{p \times q}(\mathbb{K})$. Então, tem-se que a expressão ABC não resulta ambígua devido à propriedade associativa da multiplicação de matrizes, fazendo sentido a seguinte definição:
- 1.34def [potência de uma matriz] Sejam $p \in \mathbb{N}$ e A uma matriz quadrada. Chama-se p-ésima potência da matriz A, que se representa por A^p , a $\prod_{k=1}^p A$.
- 1.35 de multiplicação de matrizes não goza da propriedade comutativa. Faz, pois, sentido a seguinte definição:
- 1.36def [matrizes comutáveis] Sejam A e B matrizes da mesma ordem. Diz-se que as matrizes A e B são comutáveis se AB = BA.
- 1.37exe Sejam A e B matrizes quadradas da mesma ordem. Então, simplifique a expressão $(A+B)^2-(A-B)(A+B)-2B^2$.

res
$$(A+B)^2 - (A-B)(A+B) - 2B^2 = (A+B)(A+B) - (A-B)(A+B)$$

 $B) - 2B^2 = A^2 + AB + BA + B^2 - A^2 - AB + BA + B^2 - 2B^2 = 2BA.$

- 1.38exe Considere a matriz $A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$. Calcule A^3 .
- res Como A é uma matriz quadrada, é possível determinar A^3 , tendo-se

$$A^{3} = \left(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \right) \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 7 & 1 \end{bmatrix}.$$

Nota: como a multiplicação de matrizes é associativa, também se tem $A^3 = A(AA)$.

1.39 obs Não se define a operação "divisão de matrizes".

- 1.40def [matriz invertível ou não-singular, matriz não-invertível ou singular] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Diz-se que A é uma matriz invertível ou não-singular se existir uma matriz $Z \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que $AZ = ZA = I_n$. Caso contrário, diz-se que A é uma matriz não-invertível ou singular.
- 1.41teo Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que é uma matriz invertível. Então, existe uma e uma só matriz $Z \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que $ZA = AZ = I_n$.

dem | Sejam
$$X, Y \in \mathcal{M}_{n \times n}(\mathbb{K})$$
 tais que

$$AX = I_n \stackrel{\text{(1)}}{=} XA,$$

 $AY \stackrel{\text{(2)}}{=} I_n = YA.$

Então,

$$X=XI_n$$
 I é o elemento neutro da multiplicação de matrizes
$$=X(AY) \qquad \qquad \text{por (2)}$$

$$=(XA)Y \qquad \qquad \text{a multiplicação de matrizes é associativa}$$

$$=I_nY \qquad \qquad \text{por (1)}$$

$$=Y, \qquad \qquad I$$
 é o elemento neutro da multiplicação de matrizes,

i.e., existe uma única matriz que satisfaz a condição de invertibilidade.

- 1.42def [matriz inversa] Seja A uma matriz de ordem n invertível. Chama-se matriz inversa da matriz A, que se representa por A^{-1} , à única matriz Z tal que $AZ = ZA = I_n$.
- 1.43teo Sejam A e B duas matrizes quadrada da mesma ordem. Então, $AB = I \Rightarrow A^{-1} = B$.

1.44 obs

- (a) Se A é a matriz inversa da matriz B, então B é a matriz inversa da matriz A.
- (b) Sejam A e B duas matrizes quadrada da mesma ordem. Então, $AB=I\Leftrightarrow BA=I. \text{ Assim, basta verificar }AB=I \text{ ou }BA=I$ para se concluir que as matrizes A e B são invertíveis com $A^{-1}=B$ e $B^{-1}=A$.

1.45teo

- (a) Seja A uma matriz invertível. Então, A^{-1} também é uma matriz invertível e $(A^{-1})^{-1} = A$.
- (b) Sejam $A, B\mathcal{M}_{n\times n}(\mathbb{K})$ matrizes invertíveis. Então, AB também é uma matriz invertível e $(AB)^{-1} = B^{-1}A^{-1}$.

 dem

- (a) Como A é uma matriz invertível, tem-se que $AA^{-1}=A^{-1}A=I$. Logo, A^{-1} é invertível e $\left(A^{-1}\right)^{-1}=A$.
- (b) Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ matrizes invertíveis. Então, existem $A^{-1}, B^{-1} \in \mathcal{M}_{n \times n}(\mathbb{K})$ tais que

$$AA^{-1} \stackrel{(1)}{=} I_n = AA^{-1},$$

 $BB^{-1} = I_n \stackrel{(2)}{=} BB^{-1},$

pelo que

pelo que AB é invertível com $(AB)^{-1}=B^{-1}A^{-1}$ uma vez que a inversa de uma matriz é única.

- 1.46 obs (a) Há matrizes quadradas que não admitem inversa.
 - (b) Apresenta-se no final deste capítulo uma condição para caracterizar matrizes invertíveis e um método geral para cálcular inversas.

1.47exe Sejam as matrizes $A = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$.

- (a) Determine AB.
- (b) O que pode concluir da alínea anterior?
- (c) As matrizes A e B são comutáveis?

res (a) $AB = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

- (b) As matrizes são invertíveis com $A^{-1} = B$ e $B^{-1} = A$.
- (c) Sim, pois $AB = BA = I_2$.

1.48def [matriz transposta] Seja a matriz $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se transposta da matriz A à matriz $Z = [z_{ij}] \in \mathcal{M}_{n \times m}(\mathbb{K})$, $z_{ij} = a_{ji}$, escrevendo-se $Z = A^T$.

1.49obs (a) É sempre possível calcular a matriz transposta de uma matriz.

(b) Calcular a transposta de uma matriz corresponde a trocar linhas com colunas.

1.50exe Sejam as matrizes $A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$ e $u = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- (a) Calcule A^T .
- (b) Calcule $\frac{AA^T}{u^Tu}$.

res (a) $A^T = \begin{bmatrix} 1 & 0 \\ -2 & 2 \\ 0 & 1 \end{bmatrix}$.

(b) $\frac{AA^T}{u^T u} = \frac{\begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 \end{bmatrix}} = \frac{1}{2} \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} = \begin{bmatrix} 5/2 & -2 \\ -2 & 5/2 \end{bmatrix}.$ Nota: relembrar $\begin{bmatrix} 1.8 \text{ obs} \end{bmatrix}$ (d).

1.51teo

(a)
$$\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : (A^T)^T = A$$
.

(b)
$$\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{K}) : (A+B)^T = A^T + B^T$$
.

(c)
$$\forall \alpha \in \mathbb{K}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{K}) : (\alpha A)^T = \alpha A^T$$
.

(d)
$$\forall A \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K}) : (AB)^T = B^T A^T.$$

(e)
$$\forall A \in \mathcal{M}_{n \times n}(\mathbb{K}) : (A^T)^{-1} = (A^{-1})^T$$
.

 dem

- (a) Exercício.
- (b) Exercício.
- (c) Exercício.
- (d) Como, por definição da transposta de uma matriz e da multiplicação de matrizes, as matrizes $(AB)^T$ e B^TA^T são do tipo $p \times m$ e como, para $i=1,\ldots,m$ e $j=1,\ldots,n$,

$$\begin{split} \left((AB)^T\right)_{ij} &= (AB)_{ji} & \text{pela definição de matriz transposta} \\ &= \sum_{k=1}^n (A)_{jk}(B)_{ki} & \text{pela definição de produto de matrizes} \\ &= \sum_{k=1}^n (B)_{ki}(A)_{jk} & \text{pela propriedade comutativa dos escalares} \\ &= \sum_{k=1}^n (B^T)_{ik}(A^T)_{kj} & \text{pela definição de matriz transposta} \\ &= (B^TA^T)_{ij}, & \text{pela definição de produto de matrizes}, \end{split}$$

tem-se que as matrizes $(AB)^T$ e B^TA^T são iguais.

- (e) Exercício.
- 1.52def [matriz simétrica] Seja A uma matriz quadrada. Diz-se que A é uma matriz simétrica se $A=A^T$.

1.53exe Dê um exemplo de uma matriz simétrica de ordem 3.

res
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 10 & -3 \\ 2 & -3 & 1 \end{bmatrix}$$
.

- 1.54def [matriz ortogonal] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Diz-se que A é uma matriz ortogonal se $AA^T = A^TA = I_n$.
- 1.55obs Se A é uma matriz ortogonal, então A é uma matriz invertível e $A^{-1} = A^{T}.$
- 1.56exe Verifique que a matriz $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \alpha \in \mathbb{R}$, é ortogonal.

res Como

$$AA^{T} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \alpha + \sin^{2} \alpha & \cos \alpha \sin \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha - \cos \alpha \sin \alpha & \sin^{2} \alpha + \cos^{2} \alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

i.e., $AA^T = I_2$, tem-se que A é uma matriz ortogonal.

- 1.57obs Recorde: seja $z=a+bi\in\mathbb{C}$. Chama-se conjugado de z, que se representa por \overline{z} , a $a-bi\in\mathbb{C}$.
- 1.58def Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{C}).$
 - (a) [matriz conjugada] Chama-se matriz conjugada de A à matriz $Z = [z_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{C}), z_{ij} = \overline{a}_{ij}$, escrevendo-se $Z = \overline{A}$.
 - (b) [matriz transconjugada] Chama-se matriz transconjugada de A à matriz $Z = [z_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{C}), \ z_{ij} = \overline{a}_{ji}$ (onde \overline{a}_{ji} representa o conjugado de a_{ji}), escrevendo-se $Z = A^H$.

1.59obs (a) É sempre possível calcular a matriz conjugada e a matriz transconjugada de uma matriz.

(b) Calcular a matriz conjugada de uma matriz corresponde a conjugar os seus elementos.

(c) Calcular a matriz transconjugada de uma matriz corresponde a conjugar os seus elementos e a trocar depois linhas com colunas.

1.60exe Seja a matriz $A = \begin{bmatrix} 0 & 2-i & i \\ 1 & 0 & 1 \end{bmatrix}$. Então, determine A^T , \overline{A} e A^H .

1.61teo (a) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{C}) : (A^H)^H = A.$

(b) $\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{C}) : (A+B)^H = A^H + B^H$.

(c) $\forall \alpha \in \mathbb{C}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{C}) : (\alpha A)^H = \overline{\alpha} A^H$.

(d) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{C}), \forall B \in \mathcal{M}_{n \times p}(\mathbb{C}) : (AB)^H = B^H A^H.$

(e) $\forall A \in \mathcal{M}_{n \times n}(\mathbb{C}) : (A^H)^{-1} = (A^{-1})^H$.

dem Exercício.

1.62def [matriz hermítica] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Diz-se que A é uma matriz hermítica se $A = A^H$.

1.63exe Dê um exemplo de uma matriz hermítica de ordem 3.

res $A = \begin{bmatrix} 0 & 1-i & 2\\ 1+i & 2 & 3+2i\\ 2 & 3-2i & 1 \end{bmatrix}$.

1.64def [matriz unitária] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Diz-se que A é uma matriz unitária se $AA^H = A^H A = I_n$.

1.65 obs Se A é uma matriz unitária, então A é uma matriz invertível e $A^{-1} = A^{H}$.

1.66exe Verifique que a matriz $A = \frac{1}{2} \begin{bmatrix} -i & \sqrt{3} \\ \sqrt{3} & -i \end{bmatrix}$ é unitária.

res Como

$$AA^{H} = \frac{1}{4} \begin{bmatrix} -i & \sqrt{3} \\ \sqrt{3} & -i \end{bmatrix} \begin{bmatrix} i & \sqrt{3} \\ \sqrt{3} & i \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

i.e., $AA^H = I_2$, tem-se que A é uma matriz unitária.

1.67def Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K}).$

- (a) [linha nula] Diz-se que ℓ_i é uma linha nula da matriz A se $a_{i1}=a_{i2}=\cdots=a_{in}=0$.
- (b) [[coluna nula]] Diz-se que c_j é uma coluna nula da matriz A se $a_{1j}=a_{2j}=\cdots=a_{mj}=0.$
- (c) [pivô] Chama-se pivô ao elemento diferente de zero mais à esquerda de uma linha não-nula.
- (d) [coluna pivô] Chama-se coluna pivô a uma coluna da matriz se existe um elemento pivô nessa coluna.

1.68exe Considere a matriz $A = [a_{ij} \in \mathcal{M}_{3\times 5}(\mathbb{R}) \text{ dada por } A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 4 & 0 \end{bmatrix}$. Identifique os pivôs e colunas pivô da matriz A.

res Pivôs: a_{15} , a_{22} e a_{32} .

Colunas pivô: c_2 e c_5 .

1.69def Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K}).$

- (a) [matriz em escada] Diz-se que A é uma matriz em escada se o número de elementos nulos que precedem o pivô aumenta de linha para linha até que, possivelmente, sobrem apenas linhas nulas.
- (b) $[\![\text{matriz em escada reduzida}]\!]$ Diz-se que A é uma matriz em escada reduzida se é uma matriz em escada, se todos os pivôs são iguais a um e se estes são os únicos elementos não-nulos nas colunas pivô.

1.70exe Indique quais das seguintes matrizes são matrizes em escada e em escada reduzida:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, H = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

res Matrizes em escada: A, B, C, F, G, H, u.

Matrizes em escada reduzida: A, C, F, H, u.

1.71def Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K}), i \in \{1, ..., m\}, j \in \{1, ..., n\}, \alpha \in \mathbb{K} \setminus \{0\}$ e $\beta \in \mathbb{K}$.

- (a) [[operação elementar do tipo I nas linhas de uma matriz]] Dá-se o nome de operação elementar do tipo I nas linhas da matriz A, que se representa por $\ell_i \leftrightarrow \ell_j$, à troca de duas linhas.
- (b) [operação elementar do tipo II nas linhas de uma matriz] Dá-se o nome de operação elementar do tipo II nas linhas da matriz A, que se representa por $\ell_i \leftarrow \alpha \ell_i$, à substituição de uma linha por um seu múltiplo não-nulo.
- (c) [operação elementar do tipo III nas linhas de uma matriz] Dá-se o nome de operação elementar do tipo III nas linhas da matriz A, que se representa por $\ell_i \leftarrow \ell_i + \beta \ell_j$, à substituição de uma linha pela sua soma com um múltiplo de outra linha.
- 1.72 definição anterior apenas se consideram operações sobre linhas, apesar de também ser possível definir operações sobre colunas. Fazendo este curso apenas faz referência a operações elementares sobre linhas, estas passarão a ser referenciadas apenas por "operações elementares".
- 1.73def [matrizes equivalentes, $A \longleftrightarrow B$] Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Diz-se que A e B são matrizes equivalentes, escrevendo-se $A \longleftrightarrow B$, se se pode obter uma a partir da outra através duma sequência (finita) de operações elementares com linhas.

1.74exe Seja a matriz $A = \begin{bmatrix} 0 & 2 & 4 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 5 \end{bmatrix}$. Efectue a seguinte sequência de operações na matriz A: $\ell_1 \leftrightarrow \ell_2$, $\ell_3 \leftarrow \ell_3 - 2\ell_1$, $\ell_1 \leftarrow \ell_1 - 2\ell_3$, $\ell_2 \leftarrow \frac{1}{2}\ell_2$ e $\ell_1 \leftarrow \ell_1 - \ell_2$.

res

$$\begin{bmatrix} 0 & 2 & 4 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 5 \end{bmatrix} \leftarrow \begin{matrix} \longleftarrow & \begin{matrix} 1 & 1 & 0 & 2 \\ \ell_1 \leftrightarrow \ell_2 & 0 & 2 & 4 & 0 \\ 2 & 2 & 0 & 5 \end{matrix}$$

$$\begin{array}{ccccc} \ell_1 \leftarrow \ell_1 - 2\ell_3 & \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$$

$$\begin{array}{c} \ell_2 \leftarrow \frac{1}{2}\ell_2 \\ \longleftarrow \end{array} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|ccccc} \ell_1 \leftarrow \ell_1 - \ell_2 & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1.75teo Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então, existe uma única matriz em escada reduzida que é equivalente à matriz A.

1.76obs Seja A uma matriz não-nula. Então, existe uma infinidade de matrizes em escada que são equivalentes à matriz A.

1.77 def Seja A uma matriz.

- (a) $\llbracket \mathbf{fe}(A) \rrbracket$ Representa-se por $\mathbf{fe}(A)$ o conjunto das matrizes em escada que são equivalentes à matriz A.
- (b) $\llbracket \text{fer}(A) \rrbracket$ Representa-se por fer(A) a única matriz em escada reduzida que é equivalente à matriz A.

1.78obs | Seja A uma matriz.

- (a) Note-se que fe(A) é um conjunto de matrizes e que fer(A) é uma matriz.
- (b) Em $\boxed{1.79 \text{obs}}$ apresenta-se um algoritmo para determinar um elemento de fe(A) e em $\boxed{1.80 \text{obs}}$ apresenta-se um algoritmo para determinar fer(A).

1.79obs Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então, o seguinte algoritmo determina um elemento de fe(A):

Passo 1 [inicializar o algoritmo]

 $i \leftarrow 1$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A

Passo 2 [seleccionar elemento pivô]

se
$$a_{ij} = 0$$
 então

$$k \leftarrow \min\{q \in \{i+1,\dots,m\} | a_{qj} \neq 0\}$$

$$\ell_i \leftrightarrow \ell_k$$

fimse

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i + 1$$
 até m fazer

$$\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ij}} \ell_i$$

fimpara

Passo 4 [terminar?]

se já se obteve uma matriz em escada então

terminar

senão

$$i \leftarrow i+1$$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\dots,ℓ_{i-1}

ir para o Passo 2

fimse

1.80obs Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então, o seguinte algoritmo determina fer(A):

Passo 1 [inicializar o algoritmo]

determinar $A' = [a'_{ij}] \in fe(A)$

 $i \leftarrow$ índice da última linha não-nula da matriz A'

 $j \leftarrow$ índice da coluna pivô da linha i

Passo 2 [colocar elemento pivô a um]

se $a'_{ij} \neq 1$ então

$$\ell_i' \leftarrow \frac{1}{a_{ij}'} \ell_i'$$

fimse

Passo 3 [anular os elementos acima do pivô]

para $p \leftarrow 1$ até i-1 fazer

$$\ell_p' \leftarrow \ell_p' - a_{pj}' \ell_i'$$

fimpara

Passo 4 [terminar?]

se já se obteve uma matriz em escada reduzida então

terminar

senão

 $i \leftarrow$ índice da linha anterior com elemento pivô

 $j \leftarrow$ índice da coluna pivô da linha i

ir para o Passo 2

fimse

1.81exe Seja a matriz $A = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \end{bmatrix}$. Determine um elemento de fe(A) e fer(A).

res

$$\begin{bmatrix}
0 & 0 & 0 & 3 \\
0 & 1 & 1 & 2 \\
0 & 2 & 2 & 1
\end{bmatrix}$$

$$\leftarrow \ell_1 \leftrightarrow \ell_2$$

$$\begin{bmatrix}
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 3 \\
0 & 2 & 2 & 1
\end{bmatrix}$$

$$\leftarrow \longrightarrow \underbrace{ \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & -3 \end{bmatrix} }_{A' \in \text{fe}(A)}$$

$$\begin{array}{c} \longleftarrow & \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \ell_3 \leftarrow -\frac{1}{3}\ell_3 & \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$$

$$\ell_{1} \leftarrow \ell_{1} - 2\ell_{3} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\leftarrow \qquad \qquad \leftarrow \qquad \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

$$\xrightarrow{\text{fer}(A)}$$

1.82def [matriz elementar] Seja $E \in \mathcal{M}_{n \times n}(\mathbb{K})$. Diz-se que E é uma matriz elementar se se pode obter através de uma operação elementar sobre a matriz I_n .

1.83exe A partir de I_4 , determine as matrizes elementares obtidas através das seguintes operações elementares:

- (a) $\ell_2 \leftrightarrow \ell_4$.
- (b) $\ell_3 \leftarrow 2\ell_3$.
- (c) $\ell_3 \leftarrow \ell_3 2\ell_1$.

res (a)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

(b)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(c)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- 1.84teo As matrizes elementares são invertíveis e as suas inversas são matrizes elementares.
- 1.85teo Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ tais que $A \longleftrightarrow B$. Então, existe um número finito de matrizes elementares E_1, E_2, \dots, E_k , tais que $B = E_1 E_2 \cdots E_k A$.
- 1.86teo Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então, existe um número finito de matrizes elementares E_1, E_2, \dots, E_k , tais que $\text{fer}(A) = E_1 E_2 \cdots E_k A$.
- 1.87teo Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Então, A é invertível se e só se A é o produto de matrizes elementares.
- 1.88obs (a) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Então, A é invertível se e só se fer $(A) = I_n$.
 - (b) Sejam $k \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz invertível. Então, existem matrizes elementares E_1, E_2, \dots, E_k tais que

$$I_n = E_k \cdots E_2 E_1 A$$
,

pelo que

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} I_n,$$

ou ainda

$$A^{-1} = I_n (E_k^{-1})^{-1} \cdots (E_2^{-1})^{-1} (E_1^{-1})^{-1}$$
$$= E_k \cdots E_2 E_1 I_n,$$

i.e., A^{-1} obtém-se a partir de I_n através das mesmas operações elementares que transformam A em I_n .

1.89exe Verifique que a matriz $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & 2 & 5 \end{bmatrix}$ é invertível e determine a sua inversa.

res

$$\underbrace{\begin{bmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
2 & 2 & 5 & 0 & 0 & 1
\end{bmatrix}}_{A|I_3}
\longleftrightarrow
\underbrace{\begin{bmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 0 & 1
\end{bmatrix}}_{\ell_3 \leftarrow \ell_3 - 2\ell_1}$$

Assim, A é uma matriz invertível pois fer $(A) = I_3$ com $A^{-1} = \begin{bmatrix} 5 & -1 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$. Calcule-se, apenas para efeito de verificação, que $AA^{-1} = I_3$:

$$AA^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 5 & -1 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

1.2 Exercícios sobre Matrizes

1.1exe | Considere as matrizes

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & -1 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, c = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{bmatrix},$$

$$e = \begin{bmatrix} i & 1 & 0 & i \end{bmatrix}, F = \begin{bmatrix} 2+i & 1 \\ 0 & 1-2i \end{bmatrix}, g = \begin{bmatrix} 1 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

- (a) Indique as matrizes rectangulares e o seu tipo.
- (b) Indique as matrizes quadradas e a sua ordem.
- (c) Indique as matrizes linha.
- (d) Indique as matrizes coluna.
- (e) Indique as matrizes diagonais.
- (f) Indique as matrizes escalares.
- (g) Indique as matrizes triangulares superiores.
- (h) Indique as matrizes triangulares inferiores.

1.2exe | Considere as matrizes

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}, B = [b_{ij}] \in \mathcal{M}_{2\times 3}(\mathbb{R}), b_{ij} = i - j,$$

$$C = [c_{ij}] \in \mathcal{M}_{2 \times 2}(\mathbb{R}), c_{ij} = \begin{cases} 0 & \text{se } i < j, \\ (-1)^{i+1} & \text{se } i = j, u = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

Indique se estão bem definidas as seguintes expressões, efectuando as operações nesses casos:

(a)
$$A + 2B$$
.

(f)
$$\frac{AB^T + BA^T}{2}.$$

(b)
$$A - C$$
.

(g)
$$(CBA^TC)^2$$
.

(c)
$$AC$$
.

(h)
$$uu^T$$
.

(d)
$$CA$$
.

(i)
$$u^T u$$
.

(e)
$$C^3$$
.

(j)
$$u^T A^T B u$$
.

1.3exe Determine os valores $a, b, c \in \mathbb{C}$, para que a matriz $S = \begin{bmatrix} 1 & a & b \\ 1 & 2 & 3 \\ 2 & c & 3 \end{bmatrix}$ seja simétrica.

1.4exe Indique quais das seguintes matrizes são ortogonais:

$$A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}, B = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}, C = \begin{bmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{bmatrix}.$$

1.5exe Determine os valores $a, b, c \in \mathbb{C}$, para que a matriz $T = \begin{bmatrix} 0 & a & b \\ 1 & c & i \\ 2i & -i & 3 \end{bmatrix}$ seja hermítica.

1.6exe Mostre que $B = \frac{1}{5} \begin{bmatrix} 3 & 4i \\ -4 & 3i \end{bmatrix}$ é uma matriz unitária.

1.7exe Considere a matriz $D = \begin{bmatrix} i & 0 & 2i \\ 2 & -1 & 0 \end{bmatrix}$. Mostre que está bem definida a expressão $\overline{D}D^HDD^T$ e determine o seu valor.

1.8exe Mostre que o produto de uma matriz pela sua transposta é uma matriz simétrica.

1.9exe | Mostre que se A e B são matrizes comutáveis e B é uma matriz invertível, então $AB^{-1} = B^{-1}A$.

[1.10exe] Sejam A e B matrizes comutáveis e invertíveis. Então, mostre que $(AB)^{-1} = A^{-1}B^{-1}.$

- 1.11exe Uma matriz real e quadrada A diz-se anti-simétrica se $A^T = -A$.

 Mostre que, dada qualquer matriz real e quadrada B, a matriz $B B^T$ é anti-simétrica.
- 1.12exe Mostre que o produto de duas matrizes ortogonais ainda é uma matriz ortogonal.
- 1.13exe Seja A uma matriz quadrada tal que $A^p = \underline{0}$ para algum $p \in \mathbb{N}$. Então, mostre que $(I A)^{-1} = I + \sum_{k=1}^{p-1} A^k$.
- 1.14exe Determine, para cada uma das seguintes matrizes, uma matriz equivalente que seja uma matriz em escada e a matriz equivalente que seja uma matriz em escada reduzida.

(a)
$$A = \begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}$$
.

(b)
$$B = \begin{bmatrix} 6 & 3 & -4 \\ -4 & 1 & -6 \\ 1 & 2 & -5 \end{bmatrix}$$
.

(c)
$$C = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 2 \end{bmatrix}$$
.

(d)
$$D = \begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{bmatrix}$$
.

(e)
$$E = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$$
.

(f)
$$F = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 2 & 4 & 1 & -2 & 3 \\ 3 & 6 & 2 & -6 & 5 \end{bmatrix}$$
.

(g)
$$G = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

(h)
$$x = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$
.

1.15exe Calcule, se possível, as matrizes inversas das seguintes matrizes:

(a)
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}$$
.

(b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
.

(c)
$$C = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix}$$
.

(d)
$$D = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
.

1.16exe Sabendo que as matrizes $A, B, C \in \mathcal{M}_{n \times n}(\mathbb{K})$ são invertíveis, resolva em ordem a X a equação matricial $C^{-1}(A+X)B^{-1} = I_n$.

1.3 Soluções dos Exercícios sobre Matrizes

- 1.1sol (a) $A_{2\times 3}, c_{3\times 1}, D_{3\times 2}, E_{1\times 4}$.
 - (b) B ordem 2, F ordem 2, g ordem 1, H ordem 2.
 - (c) e, g.
 - (d) c, g.
 - (e) B, g, H.
 - (f) g, H.
 - (g) B, F, g, H.
 - (h) B, g, H.
- 1.2sol (a) $A + 2B = \begin{bmatrix} -1 & -1 & -4 \\ 4 & -1 & -1 \end{bmatrix}$.
 - (b) a expressão A-C não está bem definida.
 - (c) a expressão AC não está bem definida.
 - (d) $CA = \begin{bmatrix} -1 & 1 & 0 \\ -3 & 2 & -1 \end{bmatrix}$.
 - (e) $C^3 = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$.
 - $(\mathbf{f}) \ \frac{AB^T + BA^T}{2} = \left[\begin{smallmatrix} -1 & -1 \\ -1 & 1 \end{smallmatrix} \right].$
 - (g) $(CBA^TC)^2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
 - (h) $uu^T = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
 - (i) $u^T u = [5].$
 - $(j) u^T A^T B u = [-2].$
- 1.3sol a = 1, b = 2, c = 3.
- 1.4sol $A \in C$.
- 1.5sol $a = 1, b = -2i, c \in \mathbb{R}.$

$$1.7\text{sol} \ \overline{D}D^HDD^T = \begin{bmatrix} 29 & -20i \\ 20i & 29 \end{bmatrix}.$$

1.14sol Nota: associada a cada matriz não-nula, existe uma infinidade de matrizes que lhe são equivalentes e que estão na forma em escada. As soluções que a seguir se apresentam, resultam da aplicação do algoritmo apresentado em 1.79obs.

(a)
$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \in fe(A), fer(A) = \begin{bmatrix} 1 & 1 & 0 & 0 & -10 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

(b)
$$\begin{bmatrix} 6 & 3 & -4 \\ 0 & 3 & -\frac{26}{3} \\ 0 & 0 & 0 \end{bmatrix} \in fe(B), fer(B) = \begin{bmatrix} 1 & 0 & \frac{7}{9} \\ 0 & 1 & -\frac{26}{9} \\ 0 & 0 & 0 \end{bmatrix}.$$

(c)
$$\begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \in \text{fe}(C), \text{fer}(C) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

(d)
$$\begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -4 & 4 \\ 0 & 0 & \frac{7}{3} & -\frac{10}{3} \end{bmatrix} \in \text{fe}(D), \text{fer}(D) = \begin{bmatrix} 1 & 0 & 0 & \frac{15}{7} \\ 0 & 1 & 0 & -\frac{4}{7} \\ 0 & 0 & 1 & -\frac{10}{7} \end{bmatrix}.$$

(e)
$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in \text{fe}(E), \text{fer}(E) = \begin{bmatrix} 1 & 0 & \frac{4}{11} & \frac{13}{11} \\ 0 & 1 & -\frac{5}{11} & \frac{31}{11} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(f)
$$\begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 0 & 0 & 3 & -6 & 1 \\ 0 & 0 & 0 & -2 & \frac{1}{3} \end{bmatrix} \in \text{fe}(F), \text{fer}(F) = \begin{bmatrix} 1 & 2 & 0 & 0 & \frac{4}{3} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{bmatrix}.$$

(g)
$$G \in \text{fe}(G), \text{fer}(G) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(h)
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} \in \text{fe}(x), \text{fer}(x) = \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$$

1.15sol (a)
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \\ -1 & \frac{1}{2} & 0 \end{bmatrix}$$
.

(b) A matriz B é singular.

(c)
$$C^{-1} = \begin{bmatrix} -5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5 \end{bmatrix}$$
.

(d)
$$D^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$
.

$$1.16 sol \quad X = CB - A.$$