Introduction to Markov State Models

Drug Computing — Mobley Lab — UCI

Markov processes describe the dynamics of systems that have no "long term memory"

Markov State Models (MSMs) reveal kinetics of configurational transitions

Highly Disordered Trajectory

Markov State Models (MSMs) reveal kinetics of configurational transitions

Building a Markov State Model

- (1) Identify Configuration Microstates
 - Dimensionality Reduction
 - Free Energy
 - PCA, TICA, etc.
- (2) Construct Transition Matrix Between States

(3) Test for Self-Consistency

Building a Markov State Model

(1) Identify Configuration Microstates from basins in the Free Energy Landscape

Dimensionality Reduction

Dimensionality Reduction: Principle Component Analysis (PCA) and Time-independent Component Analysis (TICA)

Huge Amount of Data ==> A Few Dimensions of Variance

Brute Force Method From Trajectory:

- Transition Matrix between states defined by positions of every atom
- N atoms, T time steps —> 3NT columns
- **Ex:**
 - 2500 atoms, 50,000,000 time steps
 - = 375 billion elements

Dimensionality Reduction: Principle Component Analysis (PCA) and Time-independent Component Analysis (TICA)

PCA finds the direction of maximum variance in the data

TICA identifies the slowest reaction coordinates (maximum autocorrelation)

Testing the dimensionality reduction: Implied Timescales

Perfectly Markovian Process

$$t_i(k\tau_0) = t_i = -\frac{\tau_0}{\ln \lambda_i(\tau_0)}$$

http://docs.markovmodel.org/lecture implied timescales.html

Imperfect Markov Model

$$t_i(k\tau_0) = -\frac{k\tau_0}{\ln \lambda_i(k\tau_0)}$$

Choose a time scale at which the model appears to start behaving Markovian

Using the dimension reduction to identify macrostates of the system

PCCA and K-means Clustering

K-means Clustering:

 Identifies clusters based on distance in TICA space

Using the dimension reduction to identify macrostates of the system

1.5

1.0

0.5

0.0

-0.5

-1.0

PCCA and K-means Clustering

PCCA: Perron-Cluster Cluster Analysis

Uses the eigenvector-eigenvalue decomposition to identify meta-stable states

 Splits the available conformational state space in order of longest relaxation time

TIC 1

Testing the Markov Model: Chapman-Kolmogorov test

How well do the interconversions between the course-grained macro-states of the model compare to the real trajectory?

Once we have a MSM, what can we do with it?

Identify Dominant Binding Modes of Ligands

Once we have a MSM, what can we do with it?

Identify Dominant Protein Folding Pathways

