Musterlösung zum Übungsblatt 10 der Vorlesung " Grundbegriffe der Informatik"

Aufgabe 10.1

Hinweis Leider wurde in der Aufgabenstellung der Anfangszustand nicht konkret angegeben. Dieser sollte der Zustand 0 sein.

a)

b)
$$8 \to 1000, 9 \to 1001, 12 \to 1100, 16 \to 10000$$

	Eingabe	1000	1001	1100	10000
	Anfangszustand	0	0	0	0
c)	Erste Ausgabe / Zweiter Zustand	0/1	0/1	0/1	0/1
	Zweite Ausgabe / Dritter Zustand	0/2	0/2	1 /0	0/2
	Dritte Ausgabe / Vierter Zustand	1 /1	1 /1	0 /0	1 /1
	Vierte Ausgabe / Fünfter Zustand	0 /2	1 /0	0 /0	0/2
	Fünfte Ausgabe / Sechster Zustand	-	-	-	1 /1

Die Ausgaben sind somit:

Eingabe				
Ausgabe	0010	0011	0100	00101

d) Für $w \in X^+$ ist die Ausgabe des Automaten die Binärdarstellung der Zahl $Num_2(w)$ div 3, welche die gleiche Länge wie w hat.

Aufgabe 10.2

a) Grundstruktur:

Der Automat "merkt" sich also immer die letzten drei eingelesenen Zeichen und gibt eine 1 genau dann aus, wenn das drittletzte der letzten eingelesenen Zeichen eine 1 ist.

Indem man nun den Startzustand mit z_0 bezeichnet, erhält man den geforderten Automaten.

b) Die angegebene Sprache ist die Menge aller Wörter w, für die gilt: $2|w|_a - |w|_b$ mod 5 = 0.

(Hinweis: Der aktuelle Zustand, in dem man sich nach Einlesen eines Wortes w befindet, ist gerade der Wert $2|w|_a - |w|_b \mod 5$.)

Aufgabe 10.3

Die Codierung sieht somit wie folgt aus:

a	b	С	d	е
000	001	01	10	11

b)

