COMP2270/6270 – Theory of Computation Fifth week

School of Electrical Engineering & Computing The University of Newcastle

Exercise 1) (Chapter 7 of Ref. [1]) Show a regular grammar for each of the following languages:

- a) $\{w \in \{a, b\}^* : w \text{ contains an odd number of a's and an odd number of b's} \}$.
- b) $\{w \in \{a, b\}^* : w \text{ does not end in aa}\}.$
- c) $\{w \in \{a, b\}^* : w \text{ contains the substring abb}\}.$

Note: Start by formally defining what a regular grammar is.

Exercise 2) (Exercise 2, of Chapter 7 of Ref. [1]) Consider the following regular grammar *G*:

```
S \rightarrow aT
```

 $T \rightarrow bT$

 $T \rightarrow a$

 $T \rightarrow aW$

 $W \rightarrow \varepsilon$

 $W \rightarrow aT$

- a) Write a regular expression that generates L(G).
- b) Use the procedure grammartofsm (see Theorem 7.1 in Chapter 7, of Ref. [1]), to generate a FSM M that accepts L(G).

Exercise 3) Is the following statement True or False: "For every FSM M there exists a regular grammar G that generates L(M)". Justify your answer.

Exercise 4) (Exercise 5, of Chapter 7 of Ref. [1]) Let $L = \{w \in \{a, b\}^* : \text{ every a in } w \text{ is immediately followed by at least one b}.$

- a) Write a regular expression that describes L.
- b) Write a regular grammar that generates L.
- c) Construct an FSM that accepts L.

Exercise 5) (Exercise 1, of Chapter 8 of Ref. [1]) For each of the following languages L, state whether or not L is regular. Prove your answer.

- a) $\{a^ib^j : i, j \ge 0 \text{ and } i+j=5\}.$
- b) $\{a^ib^j : i, j \ge 0 \text{ and } i j = 5\}.$
- c) $\{a^ib^j : i, j \ge 0 \text{ and } |i-j| \equiv_5 0\}.$
- d) $\{w \in \{0, 1, \#\}^* : w = x \# y, \text{ where } x, y \in \{0, 1\}^* \text{ and } |x| \cdot |y| \equiv_5 0\}$. (Let \cdot mean integer multiplication).

Exercise 6) Could the intersection of two infinite languages be a regular language? Justify your answer.

Exercise 7) When do we say that a binary relation R is closed under a property?

Exercise 8) Give five examples of the previous definition you have given in Exercise 7 (just above) as applied to languages. For instance: "The set of even length strings of a's and b's is closed under concatenation." Justify your answers.

Exercise 9) Are regular languages closed under intersection? Justify your answer.

Exercise 10) (Exercise 20, of Chapter 8 of Ref. [1]) Consider the language $L = \{x0^n y1^n z : n \ge 0, x \in P, y \in Q, z \in R\}$, where P, Q, and R are nonempty sets over the alphabet $\{0, 1\}$. Can you find regular languages P, Q, and R such that L is not regular? Can you find regular languages P, Q, and R such that L is regular?

Exercise 11) For the following examples describe informally the languages represented by the FSM and write down their regular expressions. You MUST use the algorithm *fsmtoregex* shown in class (page 142 of Ref[1]) and show your work.

a)

REFERENCES

[1] Elaine Rich, Automata Computatibility and Complexity: Theory and Applications, Pearson, Prentice Hall, 2008. ` $\,$

a