Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 10

- 1. Пусть $z=\frac{\sqrt{3}}{2}+\frac{i}{2}$. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{\sqrt{3}-i}$ имеет аргумент $\frac{19\pi}{12}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(11-10i) + y(-8-12i) = -53 - 33i \\ x(9+3i) + y(6-5i) = -17 + 9i \end{cases}$$

- 3. Найти корни многочлена $-3x^6 33x^5 267x^4 1125x^3 3642x^2 6222x 3468$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -1 4i, \, x_2 = -3 + 5i, \, x_3 = -2$.
- 4. Даны 3 комплексных числа: 9-24i, 6-26i, -8+13i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\sqrt{2} \sqrt{2}i$, $z_2 = \sqrt{2} \sqrt{2}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 2 + 2i| < 3\\ |arg(z + 5 + 3i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (9, -5, -10), b = (-1, -9, -9), c = (-2, -1, 0). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(5,8,14) и плоскость P: -8x + 8y + 12z 56 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-6,9,-11), $M_1(1,0,0)$, $M_2(4,-3,0)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -3x - 4y - 26z - 315 = 0 \\ -5x + 11y - 14z - 8 = 0 \end{cases} \qquad L_2: \begin{cases} 2x - 15y - 12z + 1931 = 0 \\ -13x + y - 18z + 928 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .