Tout savoir sur l'ACP

Partie 1 : La théorie

Présenté par **Morgan Gautherot**

L'objectif de l'ACP

	Longueur pétale	Largeur pétale	Longueur sepal	Largeur sepal	Longueur tige	
Fleur_1	11	2	12			
Fleur_2	15	5	11			
Fleur_3	16	2	14			
Fleur_4	3	10	8			
Fleur_5	5	9	9			
Fleur_6	4	12	0			•••

PC 1

Centrer les données

Centrer les données

Comment trouver la meilleure droite?

Comment trouver la meilleure droite?

Si b^2 devient plus grand c^2 devient plus petit Si c^2 devient plus grand b^2 devient plus petit

Largeur pétale

Selon le théorème de Pythagore

Longueur pétale

Minimiser la distance entre les observations et la droite Revient à

Maximiser la distance entre les projections des observations et l'origine

La distance entre l'observation et l'origine est fixe

$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2$$

 $l_4 \implies SS_4(distances)$

-argeur pétale

 PC_1 est une combinaison linéaire de :

4 part de Longueur de pétale

-1 part de Largeur de pétale

 $l_5 \rightarrow SS_5(distances)$ Trouver la droite qui maximise SS(distances)

Cette droite est appelée composante principales 1 ou PC1

Coefficient directeur de -0.25

Calcul de PC1

 PC_1 est une combinaison linéaire de :

- 4 part de Longueur de pétale
- 1 part de Largeur de pétale

Largeur pétale

$$a^{2} = b^{2} + c^{2}$$

$$a^{2} = 4^{2} + 1^{2}$$

$$a = \sqrt{4^{2} + 1^{2}}$$

$$a = 4.12$$

Longueur pétale

Lorsque l'on applique l'ACP on veut que la longueur de PC_1 soit égale à 1

Calcul de PC1

 PC_1 est une combinaison linéaire de :

4 part de Longueur de pétale

-1 part de Largeur de pétale

Largeur pétale

4.12

Longueur pétale

Calcul de PC1

 PC_1 est une combinaison linéaire de :

4 part de Longueur de pétale

-1 part de Largeur de pétale

 PC_1 est une combinaison linéaire de :

0.97 part de Longueur de pétale

-0.242 part de Largeur de pétale

$$\frac{4}{4.12} = 0.97$$
 Longueur pétale $\frac{-1}{4.12} = 0.242$ $\frac{4.12}{4.12} = 1$

Largeur pétale

Vecteur propre

 $\frac{SS (distances for PC_1)}{n-1} = \text{valeur propre de } PC_1$ $\sqrt{SS (distances for PC_1)} = \text{valeur singulière de } PC_1$

Largeur pétale

5

 PC_1 est une combinaison linéaire de :

0.97 part de Longueur de pétale

-0.242 part de Largeur de pétale

Loading scores

Vecteur propre de PC₁

2) L

Longueur pétale

)

Comment trouver PC2?

Comment trouver PC2?

Les valeurs propres

$$\frac{SS (distances for PC_2)}{n-1} = \text{Valeum proper} \text{ dec}_2^p C_2$$

*PC*₂ (17%)

Par exemple :

Variation pour $PC_1=15$ 15/18=0.83 Variation pour $PC_2=3$ 3/18=0.17

Variation total = $PC_1 + PC_2 = 15 + 3 = 18$

PCA in three dimension

	Longueur pétale	Largeur pétale	Longueur sepal
Fleur_1	11	2	12
Fleur_2	15	5	11
Fleur 3	16	2	14
Fleur_4	3	10	8
Fleur_5	5	9	9
Fleur_6	4	12	0

Centrer les données

Déterminer les composantes principales

PC3 est la meilleure ligne qui passe par l'origine et qui est perpendiculaire à PC1 et PC2

Passer deux trois à deux dimensions

Passer deux trois à deux dimensions

De N à deux dimensions

	Longueur pétale	Largeur pétale	Longueur sepal	Largeur sepal	Longueur tige	
Fleur_1	11	2	12			
Fleur_2	15	5	11	•••		
Fleur_3	16	2	14	•••	***	•••
Fleur_4	3	10	8			•••
Fleur_5	5	9	9	•••	***	•••
Fleur_6	4	12	0			
	•••				***	•••

De N à deux dimensions

