Discrete Maths: 1 Workshop Unit 1: Sets

SCC120 Fundamentals of Computer Science

Exercise 1

Determine whether each of the following pairs of sets is equal

- a) $\{1, 3, 5\}$ and $\{5, 3, 1\}$
- b) (1, 3, 5) and {5, 1, 6}

Exercise 2

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find

- a) $A \cap B$
- b) $A \cup B$
- c) A B
- d) B-A

Exercise 3

Let $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find

- a) $A \cap B \cap C$
- b) $A \cup B \cup C$
- c) $(A \cup B) \cap C$
- d) $(A \cap B) \cup C$

Exercise 4

If $A = \{a, b, c, y\}$, $B = \{a, b, c, d, e\}$, $C = \{x, y\}$ evaluate:

- a) $A \cup (B \cap C)$
- b) $(A \cup B) \cap C$
- c) C-A
- d) (A-B)-C
- e) A-(B-C)
- f) $(A \cap C) \cup B$
- g) $A \cap (C \cup B)$

Exercise 5

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets, in English.

- a) $A \cap B$
- b) $A \cup B$
- c) A B
- d) B-A

Exercise 6

Let $A = \{a, b, c\}$ and $B = \{y, z\}$. Find

- a) AxB
- b) BxA

Exercise 7

How many different elements does A x B have if A has m elements and B has n elements?

Exercise 8

List the members of the following sets

- a) $\{x \mid x \text{ is a positive integer less than } 12\}$
- b) $\{x \mid x \text{ is the square of an integer and } x < 100\}$

Exercise 9

For each of the following sets, determine if 2 is an element of that set

- a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$
- b) $\{x \in R \mid x \text{ is the square of an integer}\}$

Discrete Maths: 1

Workshop Unit 2: Relations and Functions

SCC120 Fundamentals of Computer Science

Part 1. Relations

For the exercises in this part, we have the following relations on $A = \{1, 2, 3, 4\}$:

Exercise 1

Draw diagraphs of the 3 relations, using this as your starting point.

Exercise 2

Which of these relations are reflexive? The ones that are not reflexive – why are they not reflexive?

Exercise 3

Which of these relations are symmetric?

Exercise 4

Which of these relations are transitive? What makes the non-transitive ones non-transitive?

Part 2. Functions

Exercise 1

Let
$$A = \{a, b, c, d, e\}$$
 and $B = \{1, 2, 3, 4\}$ with $f(a) = 2$, $f(b) = 1$, $f(c) = 4$, $f(d) = 1$ and $f(e) = 1$.

- (a) What is the domain of this function?
- (b) What is the co-domain?
- (c) What is the range of this function?

Exercise 2

Let f_1 and f_2 be two functions from A to B such that

$$f_1(x) = x^2$$
 and $f_2(x) = x - x^2$.

- a) What is the function $f_1 + f_2$?
- b) What is the function $f_1x f_2$?

Exercise 3

Let f and g be two functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x)=3x + 2

- a) What is the composition of f and g?
- b) What is the composition of g and f?

Exercise 4

Let $f(x) = x^2 + 1$ and g(x) = x + 2 be two functions from A to B. Find the following functions

- a) f + g
- b) fg (or $f \times g$)
- c) f ° g
- d) g ° f

Exercise 5

Let the function f(x) = ax + 5. Find its inverse

Exercise 6

Find the inverse function of $f(x) = x^3 + 1$, where $x \in N$.

Exercise 7

For each of the following relations defined on the positive integers:

$$>$$
, $<$, $=$, \geq , \leq

justify whether the relation is: (a) reflexive (b) symmetric (c) transitive

Hint

Build the 5 sets required where $R \subseteq A \times A$ and $A = \{1, 2, 3, 4, 5\}$.

E for equal, L for less than, G for greater than, LE for less than or equal, GE for greater than or equal.

Then test each set for the 3 qualities.

Discrete Maths Workshop Unit 3 : Recursion

SCC120 Fundamentals of Computer Science

Recursive Functions

Exercise 1: use recursive function

Suppose that f is defined recursively by

$$f(0) = 3$$

 $f(n) = 2 f(n-1) + 3$

Find f(1), f(2), f(3), and f(4).

Exercise 2 : define the following function recursively, using the formula f(n) = f(n-1) + B: f(n) = 3n - 4.

Solve using algebra rather than numerically. Also, work out the value of the base clause, f(0).