

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

<u>Help</u>

Unit 0: Overview

- Entrance
 Survey
- Unit 1: Probability models and axioms
- ▼ Unit 2: Conditioning and independence

Unit overview

Lec. 2: Conditioning and Bayes' rule

Exercises 2 due Feb 2, 2017 20:59 ART

Lec. 3: Independence

Exercises 3 due Feb 2, 2017 20:59 ART

Solved problems

Problem Set 2
Problem Set 2 due Feb
2, 2017 20:59 ART

Unit 3: Counting Unit 2: Conditioning and independence > Lec. 3: Independence > Exercise: Independence of two events - II

Exercise: Independence of two events - II

☐ Bookmark this page

Exercise: Independence of two events - II

0/1 point (graded)

Let $m{A}$ be an event, a subset of the sample space $m{\Omega}$. Are $m{A}$ and $m{\Omega}$ independent?

No, they are dependent

X Answer: Yes, they are independent

Answer:

Yes, because $\mathbf{P}(A \cap \Omega) = \mathbf{P}(A) = \mathbf{P}(A) \cdot 1 = \mathbf{P}(A) \cdot \mathbf{P}(\Omega)$.

Intuitively, $\mathbf{P}(A)$ represents our beliefs about the likelihood that A will occur. If we are told that Ω occurred, this does not give us any new information; we already knew that Ω is certain to occur. For this reason, $\mathbf{P}(A \mid \Omega) = \mathbf{P}(A)$.

Submit

You have used 1 of 1 attempt

★ Incorrect (0/1 point)

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

