

EFSPI & BBS "Small populations and level of evidence"

Bayesian analysis for small sample size trials using informative priors derived from historical data

Andreas KaiserBayer AG, Pharmaceuticals

27 Jun 2018

Introduction

Planning a trial in patients with Δ F508 mutation in cystic fibrosis at early clinical development

- // Cystic fibrosis is a multi-organ disorder
 - $/\!/$ Caused by gen mutations, cystic fibrosis transmembrane conductance regulator (CFTR) channels are affected; most frequent mutation is Δ F508
 - // Today survival depends on status of lung disease, median age of survival is 40 years
 - // Rare disease: Affects ≈1 out of 3000 newborns of Northern European ancestry, ≈30000 patients with CF in USA
- // At early clinical development, trials are conducted to evaluate the treatment potential of drug
 - // Desire to conduct trials with small sample sizes
 - # Large challenges in recruiting patients for trials in rare disease like cystic fibrosis
 - // Limit number of patients to be exposed to drug without proven clinical benefit
 - // Fast decision making to avoid delaying development of potential efficacious drug
 - // Utilize historical information by using Bayesian approach

Trial design and historical data

Early clinical development trial in patients with Δ F508 mutation in cystic fibrosis

- // Randomized, placebo-controlled, parallel group trial in cystic fibrosis patients with by △F508 mutation
- // Primary variable: Change of sweat chloride (CI) content from baseline
 - // Sweat Cl content is established diagnostic and biomarker for clinical trials for cystic fibrosis
- // Primary objective: Evaluate reduction of sweat CI content from baseline under treatment vs. placebo
- // Approach: Use historical data to reduce number of patient with Δ F508 mutation for placebo treatment
 - // Historical data for change from baseline of sweat CI content (mmol/L) in patients treated with placebo

Source	Gender	Age	FEV1 pred.	Genotype	Time	N	Mean	St. dev.
Clancy et.al., Thorax (2012)	F&M	18 - 54	>= 40%	F508del-CFTR, homozygote	Day 14	17	1.75	7.7
Flume et.al., Chest (2012)	F&M	12 - 52	>= 40%	F508del-CFTR, homozygote	Day 15	26	-0.04	8.1
Boyle et.al., Lancet (2014)	F&M	>= 18	>= 40%	F508del-CFTR, homozygote	Day 14	21	-1.7	8.7
Ramsey et.al., N Engl J Med (2011)	F & M	12 - 53	31.6 - 98.2	G551D-CFTR, homozygote	Day 15	74	-0.15	7.8

- # Selection of data based on external expert feedback (status of 2015)
 - // Similar changes for both genotypes for placebo
 - // Inclusion of recent articles to ensure comparable measurement procedure for sweat Cl
- // Between trial-variability for mean and potentially for standard deviation

Deriving prior distribution from historical data sources

Using meta-analytical prediction to deal with between-trial variability

- // Deriving prior distribution for placebo by simple pooling of historical data ignores between-trial variability
 - Would lead to overestimation of existing information
- Meta-analytical prediction (MAP) approach allows deriving of prior distribution while taking uncertainty due to between-trial variability into account [Neuenschwander et al. (2010), Schmidli et al. (2014)]

// Predicted posterior distribution for parameter θ^* in new trial reflects all information about this parameter

Modelling estimates for mean and variance for placebo in trials

MAP: Model for Bayesian random-effect meta analysis for sweat CI content

Mesponse y_{ij} , $i=1,...,n_j$ of patient i in trial j is normal distributed with unknown, trial-specific mean ϑ_j and variance σ_i^2

$$y_{ij}|\vartheta_j,\sigma_j^2 \sim N(\vartheta_j,\sigma_j^2)$$

// Observed mean response M_j of trial j follows a normal distribution

$$M_j | \vartheta_j, \sigma_j^2 \sim N\left(\vartheta_j, \frac{\sigma_j^2}{n_j}\right)$$

// Observed variance of response S_j^2 of trial j follows a "scaled" χ^2 -distribution

$$S_j^2 | \sigma_j^2 \sim \chi^2(n_j - 1, \sigma_j^2)$$

i.e. $S_j^2/\sigma_j^2 \sim \chi^2(n_j-1)$ follows a χ^2 -distribution with n_j-1 degree of freedom

Modelling the unknown means of sweat CI content in trials

MAP: Model for Bayesian random-effect meta analysis for sweat CI content

For modelling the means ϑ_j of the trials, a normal distribution is used with unknown mean μ and variance τ^2 as hyper distribution

$$\vartheta_j | \mu, \tau^2 \sim N(\mu, \tau^2)$$

- Weak informative prior distributions for hyper distribution parameters are used
 - // Mean μ ~ Normal distribution
 - $/\!/$ mean = 0, variance = 5^2
 - // Variance τ^2 ~ Gamma distribution
 - $/\!/$ mean = 1.5², CV = 100%

- Use of informative priors to cope with small numbers of historical trials [Wandel et al. (2017), Friede et al. (2017)]
 - // Values were chosen to restrict μ and τ^2 on plausible values while avoiding "over domination"
 - # Evaluation of impact of informative priors in meta-analysis by sensitivity analysis

Modelling the unknown variance of sweat CI content in trials

MAP: Model for Bayesian random-effect meta analysis for sweat CI content

- $/\!/$ For modelling the variance σ_i^2 of the trials, an inverse-gamma distribution is used as hyper distribution
 - // To allow easier assessing of between-trial variability of variance, the inverse gamma distribution is reparametrized by the mean δ^2 and the coefficient of variation ε

$$\sigma_i^2 | \delta^2, \varepsilon \sim \text{Inv} - \Gamma(2 + 1/\varepsilon^2, \delta^2 (1 + 1/\varepsilon^2))$$

- Weak informative prior distributions for hyper distribution parameters are used
 - // Mean δ^2 ~ Gamma distribution
 - $/\!\!/$ mean = 82, CV = 100%
 - // Coefficient of variation ε ~ Gamma distribution
 - $/\!/$ mean = 20%, CV = 100%
- Memark: For common variance, $\sigma^2 = \sigma_j^2$, replace hyper-distribution by inverse-gamma distribution for σ^2 as prior distribution
 - # Affects mainly variance estimates of studies, small impact on marginal posterior for trial means

Results of Bayesian meta-analysis for sweat CI content for placebo

Results of first step of meta-analytical prediction

- Posterior distribution for parameter of hyper-distributions are derived by MCMC simulations
- // Assessment of posterior probabilities provide insight about "reproducibility" of endpoints
 - // Trial means ϑ_j
 - // Located around μ ≈ 0
 - // Small between-trial variability, τ ≈ 1
 - // Variance of trials σ_i^2
 - // Located around $\delta^2 \approx 8^2$
 - // Negligible between-trial variability, $\varepsilon \approx 4\%$
 - // Remark: Peaks in histogram for δ indicate convergence issues in MCMC simulation caused by limited information from data due to few studies → need for informative priors

Information about mean and variance of future trials

Results of prediction step of meta-analytical prediction

- # Knowledge about mean ϑ^* and variance σ^{*2} of a future trial is reflected by the hyper distributions taking uncertainties in for distribution parameters into account
 - $/\!/$ Predicted posterior distribution for ϑ^* and σ^{*2} is a representation for the available information
 - // MC samples for θ^* and σ^{*2} are derived from hyper distribution using MCMC parameter samples
- $^{\prime\prime}$ Marginal predicted posterior distribution for trial mean $artheta^*$ and standard deviation σ^*

Parameter	mean	sd	q1	median	q3	90%-range_low	90%-range_up
Mean of new trial 9*	-0.11	1.54	-0.98	-0.11	0.76	-2.58	2.37
Standard deviation of new trial σ^*	8.04	0.56	7.65	8.01	8.38	7.21	9.02

Deriving prior distribution for sweat CI content for Bayesian analysis

Use predicted posterior distribution for future trial from MAP to derive prior information

- // The predicted posterior distribution for θ^* and σ^{*2} reflects all prior information for mean and variance
 - // Use predicted posterior distribution as prior distribution for placebo
- // Derive analytical form for prior distribution by fitting a Normal Inv- χ^2 distribution to MC samples of predicted posterior distribution

$$\theta_{placebo}$$
, $\sigma_{placebo}^2$ ~ Normal – Inv– χ^2 (mean = -0.1, kappa = 27.8, dof = 106.3, sd² = 8²)

- - $\# \approx 20\%$ of total sample size in historical trials (N=138)
 - → information reduction caused by between-trial variability
- - $\# \cong 80\%$ of total sample size
 - → small information reduction due to negligible between-trial variability
- // Remark: To cope with long tails and/or shape deviations from standard distribution, deflate prior distribution (information loss) or use approximation by mixture distribution [Schmidli et al. (2014)]

Evaluation of treatment potential of drug using Bayesian approach

Assessment of treatment potential by Bayesian analysis: Evaluate difference in mean change of sweat CI content from baseline between drug and placebo $\vartheta_{drug} - \vartheta_{placbo}$

- // Marginal posterior probability for mean change of sweat CI from baseline for placebo ϑ_{placbo}
 - // Incorporate prior information for placebo derived by MAP procedure
 - # Based on expert feedback, no further deflation of prior despite potential domination over data
- # Marginal posterior probability for mean change of sweat CI from baseline for drug $artheta_{drug}$
 - // Vague prior information
- // Posterior distribution for mean difference $\vartheta_{drug} \vartheta_{placbo}$
 - // MC sampling from marginal posterior distributions for ϑ_{placbo} and ϑ_{drug}
 - # Take differences of MC samples for drug and placebo

Operational characteristic of assessment of treatment potential

- // Capability of planned trial to detect treatment potential is evaluated by trial simulations
 - $/\!/$ Assess probability for detecting treatment potential for fixed difference in means $\vartheta_{drug} \vartheta_{placbo}$
 - $^{/\!/}$ Coping with uncertainty about ϑ_{placbo} and σ_{placbo}^2 : Sample parameters and averaging probability using prior distribution derived by MAP [Walley et.al. (2015)]; for drug higher variability is assumed

 $\sigma_{drug} = 1.1 \cdot \sigma_{placbo}$

- // Sample size determination
 - // 2:1 randomization
 - $/\!/ n_{drug} = 10$ and $n_{placebo} = 5$
 - $/\!/ \vartheta_{drug} \vartheta_{placbo} = -8 \text{ mmol/L}$
 - → ≈ 90% probability for detecting treatment potential on average

- // Incorporation of prior information increases probability to detect treatment potential
 - // Allows designing trial with smaller sample sizes and unbalanced randomization

Summary and conclusions

- // Trials with small sample sizes are desired in rare disease, in particular at early stage of development
- // Incorporation of historical information might allow reduction of patient numbers
 - # Bayesian approach provides formal framework for incorporation of prior information in trial analysis
 - # Relevant sample size reduction can be achieved for small trials allowing imbalanced designs
- // Selection of historical data is a crucial step when deriving prior information for Bayesian analysis
 - // Close interaction with clinicians and experts is essential
 - // Meta-analytical prediction is a useful approach to derive prior distributions from historical source
 - // Cope with between-trial variability, thus prevents overestimation of information
 - // Usually effective sample size of derived prior distribution is much smaller than total sample size
 - // Provides additional insight about e.g. mean and variance of treatment response
 - // Meta-analysis on few historical trials is feasible when incorporating (weak) informative priors
 - Evaluate impact of incorporating informative prior by sensitivity analysis
 - // Domination of prior information in analysis and deflation of prior distribution needs to be considered

Thank you!

Bye-Bye

