×

Exploring precision and recall

14 试题

1 point

1.

Are you using GraphLab Create? Please make sure that

1. You are using version 1.8.3 of GraphLab Create. Verify the version of GraphLab Create by running

graphlab.version

inside the notebook. If your GraphLab version is incorrect, see this post (https://www.coursera.org/learn/ml-classification/supplement/LgZ3I/installing-correct-version-of-graphlab-create) to install version 1.8.3. **This assignment is not guaranteed to work with other versions of GraphLab Create.**

2. You are using the IPython notebook named module-9-precision-recall-assignment-blank.ipynb obtained from the associated reading.

This question is ungraded. Check one of the three options to confirm.

- I confirm that I am using the right version of GraphLab Create and the right IPython notebook.
- O I am using scikit-learn.
- I am using tools other than GraphLab or scikit-learn, and I understand that I may not be able to complete some of the quiz questions.

1 point

Exploring precision and recall | Coursera 2. Consider the logistic regression model trained on amazon_baby.gl using GraphLab Create. Using accuracy as the evaluation metric, was our logistic regression model better than the majority class classifier? Yes No 1 point 3. How many predicted values in the **test set** are **false positives**? 1443 1

point

4.

Consider the scenario where each false positive costs \$100 and each false negative \$1.

Given the stipulation, what is the cost associated with the logistic regression classifier's performance on the test set?

Between \$0 and \$100,000 Between \$100,000 and \$200,000 Between \$200,000 and \$300,000 Above \$300,000

point

5.

Out of all reviews in the **test set** that are predicted to be positive, what fraction of them are **false positives**? (Round to the second decimal place e.g. 0.25)

0.05

1 point

6.

Based on what we learned in lecture, if we wanted to reduce this fraction of false positives to be below 3.5%, we would:

- O Discard a sufficient number of positive predictions
- O Discard a sufficient number of negative predictions
- Increase threshold for predicting the positive class (y_hat = +1)
- Decrease threshold for predicting the positive class (y_hat = +1)

1 point

7.

What fraction of the positive reviews in the **test_set** were correctly predicted as positive by the classifier? Round your answer to 2 decimal places.

0.95

1 point

8.

What is the recall value for a classifier that predicts **+1** for all data points in the **test_data**?

1

1 point

9.

What happens to the number of positive predicted reviews as the threshold increased from 0.5 to 0.9?

O More reviews are predicted to be positive.

Fewer reviews are predicted to be positive.

1 point

10.

Consider the metrics obtained from setting the threshold to 0.5 and to 0.9.

Does the **recall** increase with a higher threshold?

0

Yes

0

No

1 point

11.

Among all the threshold values tried, what is the **smallest** threshold value that achieves a precision of 96.5% or better? Round your answer to 3 decimal places.

0.838

1 point 12.

Using threshold = 0.98, how many **false negatives** do we get on the **test_data**? (**Hint**: You may use the graphlab evaluation confusion matrix function implemented in

graphlab.evaluation.confusion_matrix function implemented in GraphLab Create.)

5826

1 point

13.

Questions 13 and 14 are concerned with the reviews that contain the word **baby**.

Among all the threshold values tried, what is the **smallest** threshold value that achieves a precision of 96.5% or better for the reviews of data in **baby_reviews**? Round your answer to 3 decimal places.

0.864

1 point

14.

Questions 13 and 14 are concerned with the reviews that contain the word **baby**.

Is this threshold value smaller or larger than the threshold used for the entire dataset to achieve the same specified precision of 96.5%?

Carger

Smaller

提交测试

