Exploiting Hierarchy in the Abstraction-Based Verification of Statecharts Using SMT Solvers

Bence Czipó¹, Ákos Hajdu¹,², Tamás Tóth¹, István Majzik¹

¹Department of Measurement and Information Systems, Budapest University of Technology and Economics

²MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary

FESCA 2017, Uppsala, Sweden, 22.04.2017.

Introduction

Formal modeling

- Hierarchical statecharts
 - Modeling state-based systems
 - High level
 - Formal semantics

Formal verification

- Proving correctness
- Model checking
 - State space explosion

We focus on reachability

Efficient model checking

Encoding states/transitions to logical formulas

Abstraction and refinement

Motivation

- Model checking of statechart models
 - Complex models, large number of state configurations
 - → Abstraction, bounded model checking

- Abstraction-based model checking
 - CEGAR: Counterexample-Guided Abstraction Refinement
 - Natural abstraction based on hierarchy and variables

- State space exploration and bounded model checking
 - Application of SAT/SMT solvers → encoding needed
 - Preserving hierarchy and parallelism for abstraction

Hierarchy preserving encoding

Encoding parallel regions

- Parallel regions
 - Each region gets its own segment
 - Can refer to individual states
 - Fill other segments with don't care bits
 - Can refer to a whole configuration

Encoding hierarchy

- State hierarchy
 - Each level gets its own segment
 - Can refer to composite states
 - Fill remaining bits with don't care bits
 - Can refer to simple states
 - Using segments of parent states

Other supported elements

- Variables of the statechart
 - Extra variables besides the encoding
- Transition expressions: SMT formulas
 - Guards
 - Assignments

$$\neg X \land \neg Y \land X' \land \neg Y' \land a = 2 \land a' = a + 1$$

Applying CEGAR

Abstraction of statecharts

Expand composite states up to a certain depth

Hide certain variables and expressions

- - Determine automatically: CEGAR

CEGAR

- Counterexample-Guided Abstraction Refinement
 - Start with a coarse abstraction
 - Refine until proper precision is reached
- CEGAR adapted to reachability in statecharts

Initial abstraction, model checking

- Initial abstraction
 - Only the top level is expanded
 - Variables
 - [x < 5] / y := y + 1 All visible (states only abstraction) All hidden (generic abstraction)
- Model checking
 - Using the encoding and an SMT solver
 - Bounded model checking (BMC)
 - Find counterexamples within a bound k
 - Systematic exploration
 - Explore abstract state space

Concretization, refinement

- Concretization
 - Abstract counterexample: sequence of abstract states
 - Find corresponding concrete sequence
 - Similar to bounded model checking
- Refinement (in case of spurious counterexample)
 - No concrete transitions
 - Expand hierarchy one level deeper
 - Transition not enabled
 - Due to hidden variables
 - Make variables visible

Evaluation

Implementation

- 2 abstractions
 - States-only (STT)
 - Generic (GEN)
- 4 model checkers
 - Bounded (BMC)
 - Systematic exploration
 - MON: basic implementation
 - MOP: uses push-pop functionality of solver
 - OAO: lazy exploration (one state at once)

Case study

- Evaluation: industrial control system
 - (Part of) the safety logic of a power plant
 - Parameterizable (size of state space)
 - 27 states (5 composite, 22 simple) in 9 regions (4 parallel)
 - 16 variables (3 int, 13 bool)
 - 27 transitions

Evaluation

Results for small parameter value

Evaluation

- Scalability with the increase of the parameter
 - Generic abstraction only

Conclusions

Conclusions

Results

- Adaptation of CEGAR to statecharts
 - Abstraction and refinement techniques
 - Exploiting hierarchy
- Based on hierarchy preserving encoding
 - Utilizing SMT solvers
- Evaluation
- Future work
 - Extending the supported elements
 - Further abstractions and refinements
 - Compare to other algorithms/tools

hajdua@mit.bme.hu inf.mit.bme.hu/en/members/hajdua

Encoding example

Abstraction example

Evaluation details

For small parameter value

Abstraction	Checker	Time (s)	Iterations	Max. configs.	Final configs.
STT	MON	Timeout	(2)	(8610)	(8610)
STT	MOP	1399	5	17036	2855
STT	OAO	1250	5	17036	2855
STT	ВМС	211	5		
GEN	MON	48	12	1484	1484
GEN	MOP	38	12	1484	1484
GEN	OAO	9	12	1484	1484
GEN	ВМС	77	12		

