Chapitre 17: Correction des tests

Test 1 (Voir solution.)

Justifier que la fonction $(x, y) \mapsto \frac{x^2 - y^2}{x^2 - 2xy + y^2 + 1}$ est continue sur \mathbb{R}^2 .

Test 2 (Voir solution.)

Justifier que les fonctions suivantes sont continues sur \mathbb{R}^2 .

- 1. La fonction $(x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$.
- 2. La fonction $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$.

Test 3 (Voir solution.)

Déterminer la dérivée partielle par rapport à la deuxième variable de la fonction f de l'exemple ci-dessus.

Test 4 (Voir solution.)

Déterminer les dérivées partielles des fonctions suivantes, définies sur \mathbb{R}^2 .

1.
$$\forall (x, y) \in \mathbb{R}^2$$
, $f(x, y) = e^{xy} \ln(1 + x^2 + y^2)$; 2. $\forall (x, y) \in \mathbb{R}^2$, $f(x, y) = (1 + xy)(2x - 2y + 1)$.

2.
$$\forall (x, y) \in \mathbb{R}^2$$
, $f(x, y) = (1 + xy)(2x - 2y + 1)$

Test 5 (Voir solution.)

 $\textit{Justifier que la fonction} \ (x,y) \mapsto \frac{x^2 - y^2}{x^2 - 2xy + y^2 + 1} \ \text{est de classe} \ \mathbf{C}^1 \ \text{sur} \ \mathbb{R}^2.$

Test 6 (Voir solution.)

Justifier que les fonctions suivantes sont de classe C^1 sur \mathbb{R}^2 . Déterminer les dérivées partielles.

- 1. La fonction $(x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$.
- 2. La fonction $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$.

Test 7 (Voir solution.)

Déterminer les dérivées partielles $\partial_{1,2}^2(f)$ et $\partial_{2,2}^2(f)$ de la fonction f de l'exemple ci-dessus. On pourra utiliser le test 3.

Test 8 (Voir solution.)

Justifier que les fonctions suivantes sont de classe C^2 sur \mathbb{R}^2 . Déterminer les dérivées partielles secondes.

1.
$$f_1: (x, y) \in \mathbb{R}^2 \mapsto e^{xy} \ln(1 + x^2 + y^2)$$
 3. $f_3: (x, y) \in \mathbb{R}^2 \mapsto (1 + xy)(2x - 2y + 1)$ 2. $f_2: (x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$. 4. $f_4: (x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1 + x^2}$.

3.
$$f_3: (x, y) \in \mathbb{R}^2 \mapsto (1 + xy)(2x - 2y + 1)$$

2.
$$f_2: (x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$$
.

4.
$$f_4: (x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$$

Test 9 (Voir solution.)

Représenter chaque sous-ensemble de \mathbb{R}^2 suivant et préciser s'il est ouvert, fermé, borné (ou non).

1.
$$U_1 = [0,1] \times \mathbb{R}$$

3.
$$U_3 = \{(x, y) \in \mathbb{R}^2 \mid y < x\}$$

1.
$$U_1 = [0,1] \times \mathbb{R}$$
,
2. $U_2 = \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 \le 1\}$,
3. $U_3 = \{(x,y) \in \mathbb{R}^2 \mid y < x\}$,
4. $U_4 = \{(x,y) \in \mathbb{R}^2 \mid y < x \text{ et } 0 \le x \le 2\}$.

4.
$$U_4 = \{(x, y) \in \mathbb{R}^2 \mid y < x \text{ et } 0 \le x \le 2\}.$$

Test 10 (Voir solution.)

Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x, y) \in \mathbb{R}^2, \quad f(x, y) = xy(x + y - 1).$$

1

- 1. Justifier que f est de classe \mathbb{C}^2 sur \mathbb{R}^2 .
- 2. Déterminer les points critiques de f.
- 3. Pour chaque point critique, déterminer s'il s'agit d'un extremum local ou d'un point selle.
- 4. Les extrema locaux trouvés sont-ils globaux?

Correction des tests 1

Correction du test 1 (Retour à l'énoncé.)

Les fonctions $(x, y) \mapsto x^2 - y^2$ et $(x, y) \mapsto x^2 - 2xy + y^2 + 1$ sont polynomiales donc continues sur \mathbb{R}^2 . De plus, pour tout $(x, y) \in \mathbb{R}^2$ on a :

$$x^{2} - 2xy + y^{2} + 1 = (x - y)^{2} + 1 > 0.$$

Ainsi la fonction $(x, y) \mapsto x^2 - 2xy + y^2 + 1$ ne s'annule pas sur \mathbb{R}^2 . Donc la fonction $(x, y) \mapsto \frac{x^2 - y^2}{x^2 - 2xy + y^2 + 1}$ est continue sur \mathbb{R}^2 en tant que quotient de fonctions continues sur \mathbb{R}^2 dont le dénominateur ne s'annule pas sur \mathbb{R}^2 .

Correction du test 2 (Retour à l'énoncé.)

- 1. La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ est polynomiale donc continue $\sup \mathbb{R}^2$. La fonction $(x, y) \mapsto e^y$ est continue $\sup \mathbb{R}^2$ \mathbb{R}^2 par composition. Donc, par somme, $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2 + e^y$ est continue sur \mathbb{R}^2 et à valeurs dans $[1, +\infty[$. La fonction logarithme est continue sur $[1, +\infty[$. Par composition, la fonction $(x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$ est
- 2. Les fonctions $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy$ et $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ sont polynomiales donc continues sur \mathbb{R}^2 . La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ ne s'annule pas sur \mathbb{R}^2 donc, par quotient, $(x, y) \in \mathbb{R}^2 \mapsto \frac{1}{1 + x^2}$ est continue sur

Enfin, $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$ est continue sur \mathbb{R}^2 en tant que somme de fonctions continues sur \mathbb{R}^2 .

Correction du test 3 (Retour à l'énoncé.)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par :

$$\forall (x, y) \in \mathbb{R}^2, \quad f(x, y) = y^3 - 2xy^2 + 3x^2y^2 + 1.$$

Soit $x \in \mathbb{R}$. La fonction $f_x : y \mapsto y^3 - 2xy^2 + 3x^2y^2 + 1$ est polynomiale donc dérivable sur \mathbb{R} . Ainsi, pour tout $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $\partial_2(f)(x, y)$ existe et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = 3y^2 - 4xy + 6x^2y.$$

Correction du test 4 (Retour à l'énoncé.)

Pour montrer que les dérivées partielles d'ordre 1 existent, on va utiliser les résultats sur les fonctions de classe C¹ (c'est ainsi que l'on procédera toujours désormais).

- 1. Les fonctions $(x, y) \mapsto xy$ et $(x, y) \mapsto 1 + x^2 + y^2$ sont polynomiales donc de classe \mathbb{C}^1 sur \mathbb{R}^2 .
 - La fonction exponentielle est de classe C^1 sur \mathbb{R} donc par composition, $(x,y) \mapsto e^{xy}$ est de classe C^1 sur \mathbb{R}^2 .
 - La fonction $(x, y) \mapsto 1 + x^2 + y^2$ est de classe C^1 à valeurs dans \mathbb{R}_+^* et la fonction logarithme est de classe C^1 sur \mathbb{R}^*_+ donc par composition, $(x, y) \mapsto \ln(1 + x^2 + y^2)$ est de classe C^1 sur \mathbb{R}^2 .

Par produit, la fonction f est donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . En particulier, elle possède des dérivées partielles d'ordre 1 en tout point de \mathbb{R}^2 . De plus, on a :

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_1(f)(x,y) = ye^{xy}\ln(1+x^2+y^2) + e^{xy}\frac{2x}{1+x^2+y^2}$$

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_2(f)(x,y) = xe^{xy}\ln(1+x^2+y^2) + e^{xy}\frac{2y}{1+x^2+y^2}.$$

2. La fonction f est polynomiale donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . En particulier, elle possède des dérivées partielles d'ordre 1 en tout point de \mathbb{R}^2 . De plus, on a :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f)(x, y) = y(2x - 2y + 1) + 2(1 + xy)$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = x(2x - 2y + 1) - 2(1 + xy).$$

2

Correction du test 5 (Retour à l'énoncé.)

Les fonctions $(x, y) \mapsto x^2 - y^2$ et $(x, y) \mapsto x^2 - 2xy + y^2 + 1$ sont polynomiales donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . De plus, pour tout $(x, y) \in \mathbb{R}^2$, on a :

$$x^{2} - 2xy + y^{2} + 1 = (x - y)^{2} + 1 > 0.$$

Donc la fonction $(x, y) \mapsto x^2 - 2xy + y^2 + 1$ ne s'annule pas $\sup \mathbb{R}^2$. Ainsi, la fonction $(x, y) \mapsto \frac{x^2 - y^2}{x^2 - 2xy + y^2 + 1}$ est de classe \mathbb{C}^1 sur \mathbb{R}^2 en tant que quotient de fonctions de classe \mathbb{C}^1 sur \mathbb{R}^2 dont le dénominateur ne s'annule pas sur \mathbb{R}^2 .

Correction du test 6 (Retour à l'énoncé.)

1. La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ est polynomiale donc de classe C^1 sur \mathbb{R}^2 . La fonction $(x, y) \mapsto e^y$ est de classe C^1 sur \mathbb{R}^2 par composition. Donc, par somme, $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2 + e^y$ est de classe C^1 sur \mathbb{R}^2 et à valeur dans $[1, +\infty[$. La fonction logarithme est de classe C^1 sur $[1, +\infty[$. Par composition, la fonction $(x, y) \in$ $\mathbb{R}^2 \mapsto \ln(1+x^2+e^y)$ est donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . De plus on a :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f)(x, y) = \frac{2x}{1 + x^2 + e^y}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = \frac{e^y}{1 + x^2 + e^y}$$

2. Les fonctions $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy$ et $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ sont polynomiales donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ ne s'annule pas sur \mathbb{R}^2 donc, par quotient, $(x, y) \in \mathbb{R}^2 \mapsto \frac{1}{1 + x^2}$ est de classe C^1

Enfin, $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$ est de classe \mathbb{C}^1 sur \mathbb{R}^2 en tant que somme de fonctions de classe \mathbb{C}^1 sur \mathbb{R}^2 . De plus on a :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f)(x, y) = 1 + 2y - \frac{2x}{(1 + x^2)^2}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = 2x.$$

Correction du test 7 (Retour à l'énoncé.)

D'après le test 3, on sait :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = 3y^2 - 4xy + 6x^2y.$$

La fonction $\partial_2(f)$ est polynomiale donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . En particulier, les dérivées partielles d'ordre 2 $\partial_{1,2}^2(f)$ et $\partial_{2,2}^2(f)$ sont définies sur \mathbb{R}^2 . De plus on a :

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{1,2}^2(f)(x,y) = \partial_1(\partial_2(f))(x,y) = -4y + 12xy$$

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{2,2}^2(f)(x,y) = \partial_2(\partial_2(f))(x,y) = 6y - 4x + 6x^2.$$

Correction du test 8 (Retour à l'énoncé.)

- 1. Les fonctions $(x, y) \mapsto xy$ et $(x, y) \mapsto 1 + x^2 + y^2$ sont polynomiales donc de classe \mathbb{C}^2 sur \mathbb{R}^2 .
 - La fonction exponentielle est de classe C^2 sur \mathbb{R} donc par composition, $(x, y) \mapsto e^{xy}$ est de classe C^2 sur
 - La fonction $(x, y) \mapsto 1 + x^2 + y^2$ est de classe \mathbb{C}^2 à valeurs dans \mathbb{R}_+^* et la fonction logarithme est de classe $C^2 \operatorname{sur} \mathbb{R}_+^* \operatorname{donc} \operatorname{par} \operatorname{composition}, (x, y) \mapsto \ln(1 + x^2 + y^2) \operatorname{est} \operatorname{de} \operatorname{classe} C^1 \operatorname{sur} \mathbb{R}^2.$

Par produit, la fonction f_1 est donc de classe \mathbb{C}^2 sur \mathbb{R}^2 . De plus, d'après le test 4 on a :

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_1(f_1)(x,y) = ye^{xy} \ln(1+x^2+y^2) + e^{xy} \frac{2x}{1+x^2+y^2}$$

3

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_2(f_1)(x,y) = xe^{xy}\ln(1+x^2+y^2) + e^{xy}\frac{2y}{1+x^2+y^2}.$$

Donc on obtient, pour tout $(x, y) \in \mathbb{R}^2$:

$$\hat{o}_{1,2}^2(f_1)(x,y) = \hat{o}_{2,1}^2(f_1)(x,y) = e^{xy} \left((1+xy) \ln{(1+x^2+y^2)} + \frac{2y^2}{1+x^2+y^2} + \frac{2x^2}{1+x^2+y^2} - \frac{4xy}{(1+x^2+y^2)^2} \right)$$

$$\hat{c}_{1,1}^2(f_1)(x,y) = e^{xy} \left(y^2 \ln{(1+x^2+y^2)} + \frac{4xy}{1+x^2+y^2} + \frac{2-2x^2+2y^2}{(1+x^2+y^2)^2} \right)$$

et

$$\hat{c}_{2,2}^2(f_1)(x,y) = e^{xy} \left(x^2 \ln{(1+x^2+y^2)} + \frac{4xy}{1+x^2+y^2} + \frac{2-2y^2+2x^2}{(1+x^2+y^2)^2} \right).$$

2. La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ est polynomiale donc de classe C^2 sur \mathbb{R}^2 . La fonction $(x, y) \mapsto e^y$ est de classe C^2 sur \mathbb{R}^2 par composition. Donc, par somme, $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2 + e^y$ est de classe C^2 sur \mathbb{R}^2 et à valeur dans $[1, +\infty[$. La fonction logarithme est de classe C^2 sur $[1, +\infty[$. Par composition, la fonction $(x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$ est donc de classe C^2 sur \mathbb{R}^2 . De plus, d'après le test 6, on a :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f_2)(x, y) = \frac{2x}{1 + x^2 + e^y}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f_2)(x, y) = \frac{e^y}{1 + x^2 + e^y}.$$

Donc on obtient, pour tout $(x, y) \in \mathbb{R}^2$:

$$\hat{c}_{2,1}^2(f_2)(x,y) = \hat{c}_{1,2}^2(f_2)(x,y) = -\frac{2xe^y}{(1+x^2+e^y)^2}$$

$$\partial_{2,2}^2(f_2)(x,y) = \frac{e^y(1+x^2+e^y) - e^{2y}}{(1+x^2+e^y)^2} = \frac{e^y(1+x^2)}{(1+x^2+e^y)^2}$$

et

$$\partial_{1,1}^2(f_2)(x,y) = \frac{2(1+x^2+e^y)-4x^2}{(1+x^2+e^y)^2} = \frac{2(1-x^2+e^y)}{(1+x^2+e^y)^2}$$

3. La fonction f_3 est polynomiale donc de classe \mathbb{C}^2 sur \mathbb{R}^2 . De plus, d'après le test 4 :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f_3)(x, y) = y(2x - 2y + 1) + 2(1 + xy)$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f_3)(x, y) = x(2x - 2y + 1) - 2(1 + xy).$$

Donc on obtient, pour tout $(x, y) \in \mathbb{R}^2$:

$$\partial_{2,1}^2(f_3)(x,y) = \partial_{1,2}^2(f_3)(x,y) = 4x - 4y + 1$$

$$\partial_{1,1}^2(f_3)(x,y) = 4y$$
 et $\partial_{2,2}^2(f_3)(x,y) = -4x$.

4. Les fonctions $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy$ et $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ sont polynomiales donc de classe \mathbb{C}^2 sur \mathbb{R}^2 . La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ ne s'annule pas sur \mathbb{R}^2 donc, par quotient, $(x, y) \in \mathbb{R}^2 \mapsto \frac{1}{1+x^2}$ est de classe \mathbb{C}^2 sur \mathbb{R}^2 .

Enfin, f_4 est de classe \mathbb{C}^2 sur \mathbb{R}^2 en tant que somme de fonctions de classe \mathbb{C}^2 sur \mathbb{R}^2 . De plus, d'après le test 6:

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f_4)(x, y) = 1 + 2y - \frac{2x}{(1 + x^2)^2}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f_4)(x, y) = 2x.$$

Donc on obtient, pour tout $(x, y) \in \mathbb{R}^2$:

$$\partial_{1,2}^2(f_4)(x,y) = \partial_{2,1}^2(f_4)(x,y) = 2$$

$$\partial_{1,1}^2(f_4)(x,y) = \frac{2(1-3x^2)}{(1+x^2)^3}$$
 et $\partial_{2,2}^2(f_4)(x,y) = 0$.

Correction du test 9 (Retour à l'énoncé.)

1. L'ensemble $[0,1] \times \mathbb{R}$ est fermé et non borné.

2. L'ensemble U₂ est fermé et bornée.

3. L'ensemble U₃, est ouvert et non borné.

4. L'ensemble U₄ est non borné, ni ouvert ni fermé.

Correction du test 10 (Retour à l'énoncé.)

- 1. La fonction f est polynomiale donc de classe C^2 sur \mathbb{R}^2 .
- 2. Pour déterminer les points critiques, il faut calculer le gradient. Or pour tout $(x, y) \in \mathbb{R}^2$, on a

$$\partial_1(f)(x, y) = 2xy + y^2 - y$$
 et $\partial_2(f)(x, y) = 2xy + x^2 - x$.

On en déduit donc: $\forall (x, y) \in \mathbb{R}^2$, $\nabla (f)(x, y) = \begin{pmatrix} 2xy + y^2 - y \\ 2xy + x^2 - x \end{pmatrix}$. Or, pour tout $(x, y) \in \mathbb{R}^2$ on a:

$$\nabla(f)(x,y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} 2xy + y^2 - y &= 0 \\ 2xy + x^2 - x &= 0 \end{cases} \iff \begin{cases} 2xy + y^2 - y &= 0 \\ x^2 - y^2 - x + y &= 0 \end{cases} \quad (L_2 \leftarrow L_2 - L_1)$$

$$\iff \begin{cases} 2xy + y^2 - y &= 0 \\ (x - y)(x + y - 1) &= 0 \end{cases} \quad \text{ou} \quad \begin{cases} 2xy + y^2 - y &= 0 \\ x &= y \end{cases} \quad \text{ou} \quad \begin{cases} 2xy + y^2 - y &= 0 \\ x &= 1 - y \end{cases}$$

$$\iff \begin{cases} 3y^2 - y &= 0 \\ x &= y \end{cases} \quad \text{ou} \quad \begin{cases} 2(1 - y)y + y^2 - y &= 0 \\ x &= 1 - y \end{cases}$$

$$\iff \begin{cases} y(3y - 1) &= 0 \\ x &= y \end{cases} \quad \text{ou} \quad \begin{cases} y(1 - y) &= 0 \\ x &= 1 - y \end{cases}$$

$$\iff (x, y) = (0, 0) \text{ ou} (x, y) = (1/3, 1/3) \text{ ou} (x, y) = (1, 0) \text{ ou} (x, y) = (0, 1).$$

Les points critiques de f sont donc (0,0), (1/3,1/3), (1,0) et (0,1).

3. On va étudier la hessienne en chaque point critique. Commençons par calculer les dérivées partielles d'ordre 2. On a, pour tout $(x, y) \in \mathbb{R}^2$:

$$\hat{c}_{1,1}^2(f) = 2y \quad ; \quad \hat{c}_{2,2}^2(f)(x,y) = 2x \quad ; \quad \hat{c}_{1,2}^2(f)(x,y) = \hat{c}_{2,1}^2(f)(x,y) = 2x + 2y - 1.$$

(a) Étude en (0,0). On a

$$\nabla^2(f)(0,0) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

On vérifie les valeurs propres de $\nabla^2(f)(0,0)$ sont 1 et -1. Ainsi, (0,0) est une point selle.

(b) Étude en (1,0). On a

$$\nabla^2(f)(1,0) = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}.$$

On vérifie que les valeurs propres de $\nabla^2(f)(1,0)$ sont $1+\sqrt{2}>0$ et $1-\sqrt{2}<0$. Ainsi, (1,0) est une point selle.

(c) Étude en (0,1). On a

$$\nabla^2(f)(0,1) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}.$$

On vérifie que les valeurs propres de $\nabla^2(f)(0,1)$ sont $1+\sqrt{2}>0$ et $1-\sqrt{2}<0$. Ainsi, (0,1) est une point selle.

(d) Étude en $(\frac{1}{3}, \frac{1}{3})$. On a

$$\nabla^2(f) \begin{pmatrix} \frac{1}{3}, \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

On vérifie que les valeurs propres de $\nabla^2(f)\left(\frac{1}{3},\frac{1}{3}\right)$ sont 1 et $\frac{1}{3}$.

Ainsi $(\frac{1}{3}, \frac{1}{3})$ est un minimum local.

4. Le seul extremum local est $(\frac{1}{3}, \frac{1}{3})$ qui est un minimum. Or $f(\frac{1}{3}, \frac{1}{3}) = -\frac{1}{27}$ et pour tout $y \in \mathbb{R}$ on a

$$f(y, y) = y^2(2y - 1).$$

Ainsi, $\lim_{y\to-\infty} f(y,y) = -\infty$ et donc le minimum n'est pas global.