0.1 V0 Selection

 Λ ($\bar{\Lambda}$) and K_S^0 are neutral particles which cannot be directly detected, but must instead be reconstructed through detection of their decay products, or daughters. This process is illustrated in Figure 1. In general, particles which are topologically reconstructed in this fashion are called V0 particles. The class AliFemtoV0TrackCutNSigmaFilter (which is an extension of AliFemtoV0TrackCut) is used to reconstruct the V0s.

Fig. 1: V0 Reconstruction

0.1.1 A Reconstruction

The following cuts were used to select good Λ ($\bar{\Lambda}$) candidates:

- 1. Cuts Common to Both Daughters
 - (a) $|\eta| < 0.8$
 - (b) SetTPCnclsDaughters(80)
 - (c) SetStatusDaughters(AliESDtrack::kTPCrefic)
 - (d) SetMaxDcaV0Daughters(0.4)
- 2. Pion Specific Daughter Cuts
 - (a) $p_T > 0.16$
 - (b) DCA to prim vertex > 0.3
- 3. Proton Specific Daughter Cuts
 - (a) $p_T > -0.5 (p)$

$$-0.3(\bar{p})$$

- (b) DCA to prim vertex > 0.1
- 4. Lambda Cuts
 - (a) $|\eta| < 0.8$
 - (b) $p_T > 0.4$
 - (c) $|m_{inv} m_{PDG}| < 3.8 \text{ MeV}$
 - (d) Cosine of pointing angle > 0.9993
 - (e) OnFlyStatus = false
 - (f) Decay Length < 60 cm

Fig. 2: Mass assuming K_S^0 -hypothesis for V0 candidates passing all Λ ($\bar{\Lambda}$) cuts, i.e. assume the daughters are $\pi^+\pi^-$ instead of $p^+\pi^-$ ($\pi^+\bar{p}^-$). The slight peak around $m_{inv}=0.5$ GeV/c² likely contains misidentified K_S^0 particles in our Λ collection. If one simply cuts out the entire peak, good Λ particles will be lost. Ideally, the Λ selection and K_S^0 misidentification cuts are selected such that the peak is removed from this plot while leaving the distribution continuous.

0.1.2 K_S^0 Reconstruction

The following cuts were used to select good K_S^0 candidates:

- 1. Pion Daughter Cuts
 - (a) $|\eta| < 0.8$
 - (b) SetTPCnclsDaughters(80)
 - (c) SetStatusDaughters(AliESDtrack::kTPCrefic)
 - (d) SetMaxDcaV0Daughters(0.3)
 - (e) $p_T > 0.15$
 - (f) DCA to prim vertex > 0.3
- 2. K_S^0 Cuts
 - (a) $|\eta| < 0.8$
 - (b) $p_T > 0.2$
 - (c) $m_{PDG} 13.677 \text{ MeV} < m_{inv} < m_{PDG} + 2.0323 \text{ MeV}$

Fig. 3: Mass assuming K_S^0 -hypothesis for V0 candidates passing all Λ cuts, i.e. assume the daughters are $\pi^+\pi^-$ instead of $p^+\pi^-$. The slight peak around $m_{inv}=0.5~{\rm GeV/c^2}$ likely contains misidentified K_S^0 particles in our Λ collection. If one simply cuts out the entire peak, good Λ particles will be lost. Ideally, the Λ selection and K_S^0 misidentification cuts are selected such that the peak is removed from this plot while leaving the distribution continuous.

Fig. 4: Mass assuming K_S^0 -hypothesis for V0 candidates passing all $\bar{\Lambda}$ cuts, i.e. assume the daughters are $\pi^+\pi^-$ instead of $\pi^+\bar{p}^-$. Similar to Figure 3

- (d) Cosine of pointing angle > 0.9993
- (e) OnFlyStatus = false
- (f) Decay Length < 30 cm

As can be seen in Figures 6 and 7, some misidentified Λ and $\bar{\Lambda}$ particles contaminate our K_S^0 sample. Figure 6 shows the mass assuming Λ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$. Figure 7 is similar, but shows the mass assuming $\bar{\Lambda}$ hypothesis for the same K_S^0 collection, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$. The Λ contamination can be seen in Figure 6, and the $\bar{\Lambda}$ contamination in Figure 7, in the peaks around $m_{inv}=1.115~{\rm GeV/c^2}$. Additionally, the $\bar{\Lambda}$ contamination is visible in Figure 6, and the Λ contamination visible in Figure 7, in the region of excess around $1.65 < m_{inv} < 2.1~{\rm GeV/c^2}$. This is confirmed as the number of misidenti-

Fig. 5: Λ Purity

Fig. 6: Mass assuming Λ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $p^+\pi^-$ instead of $\pi^+\pi^-$. The peak around $m_{inv}=1.115~{\rm GeV/c^2}$ contains misidentified Λ particles in our K_S^0 collection. If one simply cuts out the entire peak, some good K_S^0 particles will be lost. Ideally, the K_S^0 selection and $\Lambda(\bar{\Lambda})$ misidentification cuts can be selected such that the peak is removed from this plot while leaving the distribution continuous. Also note, the excess around $1.65 < m_{inv} < 2.1~{\rm GeV/c^2}$ shows misidified $\bar{\Lambda}$ particles in our K_S^0 collection.

fied Λ particles in the sharp peak of Figure 6 (misidentified $\bar{\Lambda}$ particles in the sharp peak of Figure 7) approximately equals the excess found in the 1.65 $< m_{inv} < 2.1 \text{ GeV/c}^2$ region of Figure 7 (Figure 6).

The peak around $m_{inv} = 1.115 \text{ GeV/c}^2$ in Figure 6 (Figure 7)contains both misidentified Λ ($\bar{\Lambda}$) particles and good K_S^0 . If one simply cuts out the entire peak, some good K_S^0 particles will be lost. Ideally, the K_S^0 selection and $\Lambda(\bar{\Lambda})$ misidentification cuts can be selected such that the peak is removed from this plot while leaving the distribution continuous. To attempt to remove these Λ and $\bar{\Lambda}$ contaminations without throwing away good K_S^0 particles, the following misidentification cuts are imposed; a K_S^0 candidate is rejected if all of the following criteria are satisfied:

- $-\ |m_{inv,\ \Lambda(\bar{\Lambda})\ Hypothesis} m_{PDG,\ \Lambda(\bar{\Lambda})}| < 9.0\ {\rm MeV/c^2}$
- Positive daughter passes $p^+(\pi^+)$ daughter cut implemented for $\Lambda(\bar{\Lambda})$ reconstruction

Fig. 7: Mass assuming $\bar{\Lambda}$ -hypothesis for V0 candidates passing all K_S^0 cuts, i.e. assume the daughters are $\pi^+\bar{p}^-$ instead of $\pi^+\pi^-$. Similar to Figure 6

– Negative daughter passes $\pi^-(\bar{p}^-)$ daughter cut implemented by $\Lambda(\bar{\Lambda})$ reconstruction

Fig. 8: K_S^0 Purity