Assignment 01

Learning from Data, Related Challenges, Linear Models for Regression

submitted for

EN3150 - Pattern Recognition

Department of Electronic and Telecommunication Engineering University of Moratuwa

> Udugamasooriya P. H. J. 220658U

> > 12 August 2025

1 Impact of Outliers on Linear Regression

Question 02 We start by representing the independent in a matrix

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix},$$

and the dependent variables in a vector

$$\mathbf{y} = \begin{pmatrix} y_1 & \cdots & y_n \end{pmatrix}^\top,$$

and look for a vector of weights $\mathbf{w}_{\text{OLS}} = \begin{pmatrix} w_0 & w_1 \end{pmatrix}^{ op}$ such that

$$\mathbf{w}_{OLS} = \operatorname*{arg\,min}_{\mathbf{w}} \left(\mathbf{y} - \mathbf{X} \mathbf{w}\right)^2.$$

We directly use the result that

$$\mathbf{w}_{OLS} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

We implement exactly what is described above in code, and obtain the following result:

Ordinary Least Squares Weights (w): [3.91672727 -3.55727273]

Hence

$$\mathbf{w}_{\text{OLS}} = \begin{pmatrix} 3.91672727 \\ -3.55727273 \end{pmatrix},$$

and the predicted linear model is

$$y = 3.91672727 - 3.55727273x.$$

A plot of the given data points against the predicted values is shown in Figure 1.

Figure 1: abc

Question 04 abc

Question 05 pqr

Question 06 xyz

Question 07 def

Question 08 ghi

2 Loss Functions

Question 01 We calculate the squared error

$$SE(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

and binary cross entropy

$$BCE(\hat{y}_i, y_i) = -y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

of each predicted value \hat{y}_i against the given corresponding target value y_i .

True Value (y_i)	Predicted Value (\hat{y}_i)	$SE(\hat{y}_i, y_i)$	$\mathrm{BCE}(\hat{y}_i, y_i)$
1	0.005	0.9900	5.2983
1	0.010	0.9801	4.6052
1	0.050	0.9025	2.9957
1	0.100	0.8100	2.3026
1	0.200	0.6400	1.6094
1	0.300	0.4900	1.2040
1	0.400	0.3600	0.9163
1	0.500	0.2500	0.6931
1	0.600	0.1600	0.5108
1	0.700	0.0900	0.3567
1	0.800	0.0400	0.2231
1	0.900	0.0100	0.1054
1	1.000	0.0000	0.0000
	Mean	0.4402	1.4407

A plot of the different losses against the predicted values is shown in Figure 2.

Figure 2: abc

Question 02

3 Data Pre-Processing

Question 01