Omega -> Coste mínimo O -> coste máximo

Teoremas de coste:

Teorema 1: $f(x) = a \cdot f(x - c) + b$, con $b \ge 1$

• si a=1,
$$f(x) \in \Theta(x)$$
;

• si a>1,
$$f(x) \in \Theta(a^{x/c})$$
;

Teorema 3: $f(x) = a \cdot f(x/c) + b$, con $b \ge 1$

• si a=1,
$$f(x) \in \Theta(\log_c x)$$
;

• si a>1,
$$f(x) \in \Theta(x^{\log_c a})$$
;

Teorema 2: $f(x) = a \cdot f(x - c) + b \cdot x + d$, con b y d≥1

• si a=1,
$$f(x) \in \Theta(x^2)$$
;

• si a>1,
$$f(x) \in \Theta(a^{x/c})$$
;

Teorema 4: $f(x) = a \cdot f(x/c) + b \cdot x + d$, con b y d ≥ 1

• si a=c,
$$f(x) \in \Theta(x \cdot \log_c x)$$
;

• si a>c,
$$f(x) \in \Theta(x^{\log a}_{c})$$
;

Teoremas maestros:

Teorema para recurrencia divisora: la solución a la ecuación $T(x) = a \cdot T(x/b) + \Theta(x^k)$, con a≥1 y b>1 es:

•
$$T(x) \in O(x^{\log_b a})$$
 si $a > b^k$;

•
$$T(x) \in O(x^k \cdot \log x)$$
 si $a=b^k$;

•
$$T(x) \in O(x^k)$$
 si $a < b^k$;

Teorema para recurrencia sustractora: la solución a la ecuación $T(x) = a \cdot T(x-c) + \Theta(x^k)$ es:

•
$$T(x) \in \Theta(x^k)$$
 si a<1;

•
$$T(x) \in \Theta(x^{k+1})$$
 si a=1;

•
$$T(x) \in \Theta$$
 $(a^{x/c})$ si a>1;