

INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

KONTINUASJONSEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK -LF

Faglig kontakt: Peter Svensson (1–3.5) / Kjetil Svarstad (3.6–4)

Tlf.: 995 72 470 / 458 54 333

Eksamensdato: Lørdag 13. august 2016

Eksamenstid (fra - til): 0900–1300

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler er tillatt.

Bestemt, enkel kalkulator tillatt.

Annen informasjon: Maksimalt antall poeng for hver oppgave er gitt i parantes.

Maksimalt antall poeng oppnåelig totalt: 100.

Sensur faller innen 2. september 2016.

Målform: Bokmål

Antall nummererte sider: 20

Antall unummererte sider i vedlegg: 0

	Kontrollert av:
Dato	Sign

Tom side

Oppgave 1 (15%)

I kretsen vist i Figur 1 står bryteren i posisjon A frem til tiden t = 0, da den kobles over i posisjon B.

FIGUR 1 – Krets for oppgave 1

- a) (5%) Beregn de to tidskonstantene for:
 - Delen av kretsen som er til venstre, før tiden t = 0 (dvs med bryteren i posisjon A).
 - Delen av kretsen som er til høyre, etter tiden t=0 (dvs med bryteren i posisjon B).

LF:

Først kretsen til venstre, når bryteren er i posisjon A. Vi vil forenkle kretsen til en spenningskilde i serie med en motstand og en kondensator. De to kondensatorene kan enkelt erstattes med en ekvivalent kondensator:

$$C_{ekv} = 1\mu F + 2\mu F = 3\mu F$$

Så skal vi erstatte spenningskilden og de to motstandene med en Theveninekvivalent. Først R_{Th} : deaktiver spenningskilden (dvs erstatt med kortsluttning) og finn ekvivalent resistans sett fra C_{ekv} ,

$$R_{Th,venstre} = 20 \text{k}\Omega / /10 \text{k}\Omega = \frac{20 \cdot 10}{20 + 10} \text{k}\Omega = \frac{20}{3} \text{k}\Omega$$

Den første tidskonstanten blir da

$$\tau_{venstre} = \frac{20}{3} k\Omega \cdot 3\mu F = 20 ms$$

Vi trenger ikke v_{Th} for å finne τ men vi beregner den for neste deloppgave: det er spenningen over kondensatorterminalene når kondensatorn er frakoblet. Da har vi en enkel krets med 5V-kilden i serie med to motstand og vi kan bruke spenningsdeling:

$$v_{Th,venstre} = 5V \frac{10}{10 + 20} = \frac{5}{3}V$$

Så tar vi kretsen til høyre, når bryteren er i posisjon B. Samme ekvivalente kondensator, men så vil vi erstatte strømkilden med en spenningskilde. Det er en enkel kildetransformasjon, og vi får Thevenin-ekvivalenten som resultat:

$$v_{Th,hoevre} = 5k\Omega \cdot 3mA = 15V, R_{Th,hoevre} = 5k\Omega$$

Den andre tidskonstanten blir da

$$\tau_{hoeyre} = 5k\Omega \cdot 3\mu F = 15ms$$

b) (5%) Beregn spenningen $v_{C1}(t)$ for tiden $t \ge 0$ (dvs med bryteren i posisjon B)...

LF:

Vi kan observere at $v_{C1}(t)$ må være identisk med $v_{C2}(t)$, og de to spenningene må videre være identisk med $v_{C_{ekv}}(t)$, dvs spenningen over erstatningskondensatorn som vi beregnet i (a). Da har vi et klassisk RC-problem (spenningen over en kondensator, som sitter i serie med en motstand R, og en spenningskilde), og vi trenger start- og sluttspenningene:

$$v_{C_{ekv}}^{start}(t) = v_{Th,venstre} = \frac{5}{3}V$$

$$v_{C_{ekv}}^{slutt}(t) = v_{Th,hoeyre} = 15V$$

Tidskonstanten, $\tau_{hoeyere}$, kjenner vi, så da gis $v_{C_{ekv}}(t)$ av standardformelen, oppgitt i eksamensbladet:

$$v_{C_ekv}(t) = 15V + \left[\frac{5}{3}V - 15V\right]e^{-t/0,015} = 15 - \frac{40}{3}e^{-t/0,015}V$$

c) (5%) Beregn strømmen i for tiden $t \ge 0$ (dvs med bryteren i posisjon B)...

Vi kan enkelt finne strømmen (definert med pilen nedover slik at PFK blir oppfylt) gjennom den ekvivalente kondensatoren,

$$i_{C_{ekv}} = C_{ekv} \frac{dv_C}{dt} = 3 \cdot 10^{-6} \frac{40}{3} \frac{1}{0,015} e^{-t/0,015} = \frac{8}{3} e^{-t/0,015} \text{mA} \approx 2,67 e^{-t/0,015} \text{mA}$$

Hvis vi da inspiserer originalkretsen, med strømkilden, så ser vi at den strømmen som vi søker, *i*, gis av Kirchhoffs strømlov:

$$i = \left(3 - \frac{8}{3}e^{-t/0.015}\right) \text{mA} \approx \left(3 - 2.67e^{-t/0.015}\right) \text{mA}$$

Oppgave 2 (15 %)

FIGUR 2 – Krets for oppgave 2a

a) (5%) Beregn Thevenin-ekvivalenten for kretsen i Figur 2, sett fra klemmene A og B.

LF:

Som vanlig finner vi R_{Th} ved å deaktivere kildene, og så beregne den ekvivalente resistansen sett fra klemmene. 20V-kilden erstattes med en kortslutning og 5mA-kilden erstattes med et avbrudd. Da blir

$$R_{Th} = 4k\Omega//2k\Omega + 6k\Omega = \frac{4\cdot 2}{4+2}k\Omega + 6k\Omega = \frac{22}{3}k\Omega \approx 7,33k\Omega$$

Vi kan finne de to nodespenningen v_A og v_B med nodespenningsmetoden: vi innfører en referansenode lengst ned, og får da to ligninger, som går å løse direkte:

$$\frac{v_A - 20}{4000} + \frac{v_A}{2000} = 0 \Rightarrow v_A = \frac{20}{3} \text{V}$$
$$\frac{v_B}{6000} - 0.005 = 0 \Rightarrow v_B = 30 \text{V}$$

Så da er

$$v_{Th} = v_A - v_B = \frac{20}{3} - 30 = -\frac{70}{3} \approx -23{,}33V$$

b) (5%) Hvis vi lager en kortslutning mellom A og B, som i Figur 3, hva blir strømmen *i*?

LF:

Korslutningsstrømmen er enkel å finne når vi har Thevenin-ekvivalenten:

$$i_{kort} = \frac{v_{Th}}{R_{Th}} = -\frac{70 \cdot 3}{3 \cdot 22 \cdot 10^3} = -\frac{35}{11} \text{mA} \approx -3,18 \text{mA}$$

c) (5%) Med kortslutningen på plass, som i Figur 3, hva er effektene som leveres eller forbrukes av de to kildene?

FIGUR 3 – Krets for oppgave 2b og 2c

LF:

Vi trenger å finne strømmen gjennom spenningskilden, og spenningen over strømkilden. Vi bruker nodespenningsmetoden (NSM), med en eneste nodespenning som ukjent, v: den ved noden(e) over $2k\Omega$ - og $6k\Omega$ -motstandene. Da

gir NSM en ligning for *v*:

$$\frac{v - 20}{4000} + \frac{v}{2000} + \frac{v}{6000} - 0.005 = 0 \Rightarrow 3v - 60 + 6v + 2v = 60$$
$$\Rightarrow v = \frac{120}{11} \text{V} \approx 10.9 \text{V}$$

Strømkilden har spenningen 10,9 V over seg, og passive fortegnskonvensjonen (PFK) er ikke oppfylt, så da er

$$p_{forbrukt,5mA} = -10.9 \cdot 0.005W \approx -54.5$$
mW

For spenningskilden så innfører vi strømmen i_{20V} som går inn ved -terminalen på 20V-kilden. Da kan vi bruke Kirchhoffs spenningslov i venstre sløyfen. Spenningen over 2 $k\Omega$ -motstanden er jo lik nodespenningen v, så da får vi:

$$-20 + 4000 \cdot i_{20V} + v = 0 \Rightarrow i_{20V} = \frac{20 - v}{4000} \approx 2.27 \text{mA}$$

PFK er heller ikke oppfylt for 20V-kilden, så

$$p_{forbrukt,5mA} = -20 \cdot 0.00227 \approx -45.5 \text{mW}$$

De to kildene produserer/genererer altså sammen 100 mW.

Oppgave 3 (40%)

Nedenfor er gitt 10 spørsmål i form av 3 påstander eller svaralternativer A, B eller C. Bare en av påstandene er riktig. Kryss av for riktig svar A, B eller C i tabellen bak i oppgavesettet.

OBS! Tabellsiden må leveres inn som en del av besvarelsen!

Riktig svar gir 4 poeng, manglede svar gir 0 poeng, og galt svar gir -2 poeng. Flere svar på samme spørsmål regnes som manglende svar og gir 0 poeng. Ved feil utfyllt svar, fyll den feilsvarte ruten helt, og sett kryss i riktig rute.

3-1 Kretsen i Figur 4 består av fire uavhengige kilder der noen av kildene er forbrukere og noen er leverandører. Total levert effekt i denne kretsen er

A.
$$P = 480 \text{ W}$$

B.
$$P = 720 \text{ W}$$

C.
$$P = 960 \text{ W}$$

FIGUR 4 – Krets for oppgave 3-1

Effekt i hver enkelt kilde blir:

 $8A - kilde: P = 8 \times 60 = 480 \text{ W (forbruker)}$

 $60V - kilde: P = 4 \times 60 = 240 \text{ W (forbruker)}$

 $20V - kilde: P = -20 \times 12 = -240 W (leverandør)$

 $12A - kilde: P = -12 \times 40 = -480 \text{ W (leverandør)}$

Total effekt levert blir 240 W + 480 W = 720 W

3-2 I kretsen vist i Figur 5 skal effekten omsatt i 5Ω -motstanden beregnes. Denne effekten er

FIGUR 5 – Krets for oppgave 3-2

A. 80 W

B. 120 W

C. 320 W

LF:

Motstandsnettverket sett fra spg-kilden: $R_{ekv} = ((2+8+5)\|10)\|6 = 3\Omega$

Spenning over strømkilden: $V = 20 \text{ A} \cdot 3\Omega = 60 \text{ V}$

Strømmen gjennom 5 Ω -motstanden : $I = \frac{60 \text{ V}}{(2+8+5) \Omega} = 4 \text{ A}$

Dermed blir omsatt effekt i 5 Ω -motstanden: $P = 5\Omega \cdot (4 \text{ A})^2 = 80 \text{ W}$.

FIGUR 6 – Krets for oppgave 3-3

- 3-3 I kretsen vist i Figur 6 kan du gjerne bruke nodespenningsmetoden for å vise at spenningen v blir
 - A. 9 V
 - B. 12 V
 - C. 15 V

Benytter nodespenningsmetoden og finner spenningen i node 1 og node 2:

Node 1:
$$-4.5 + \frac{V_1}{1} + \frac{V_1 - V_2}{8} = 0$$

Node 2:
$$\frac{V_2 - V_1}{8} + \frac{V_2}{12} + \frac{V_2 - 30}{4} = 0$$

Dette gir $V_1=6$ V og $V_2=18$ V og dermed strømmen i (6 Ω + 2 Ω)-grenen: $I=\frac{18-6}{8}=1,5$ A

Spenningen V blir da: $V = 18 - 2 \cdot 1,5 = 15 \text{ V}$

3-4 Spenning og strøm for kretsen vist i Figur 7 er gitt ved

$$v = 100 e^{-80t}$$
V, for $t \ge 0$ og $i = 4 e^{-80t}$ A, for $t \ge 0$

Induktansen for spolen må da være

FIGUR 7 – Krets for oppgave 3-4

- A. 0,5 mH
- B. 312,5 mH
- C. 2 H

Vi har at
$$R = \frac{v}{i} = \frac{100e^{-80t}}{4e^{-80t}} = 25\Omega \det \tau = \frac{1}{80} = 12,5 \text{ ms}$$

Dermed: $\tau = \frac{L}{R} = 12,5$ ms slik at $L = \tau \cdot R = 312,5$ mH

3-5 Kretsen vist i Figur 8 har startbetingelser som vist. Når bryteren lukkes ved tiden t = 0 vil spenningen v_0 over motstanden bli

FIGUR 8 – Krets for oppgave 3-5

A.
$$v_0(t) = 50 e^{-9.4t} V$$

B.
$$v_0(t) = 50 e^{-50t} V$$

C.
$$v_0(t) = 70 e^{-50t} V$$

LF:

Ekvivalent kapasitans for de tre kondensatorene er $C_{ekv} = \frac{(0.4 + 0.6) \cdot 4}{(0.4 + 0.6) + 4} = 0.8 \mu F$

Startspenning på ekvivalent kondensator blir: $v_{C}\left(0\right)=\left(60-10\right)=50~\mathrm{V}$

Tidskonstanten blir: $\tau = R \cdot C_{ekv} = 20 \text{ ms}$

Dermed:
$$v_0(t) = v_C = V_f + (v_C(0) - V_f) e^{\frac{-t}{\tau}} = 50e^{-50t}$$

- 3-6 Hvilken type logisk port («gate») realiserer transistorkoblingen i figur 9?
 - A. OR-port
 - B. AND-port
 - C. NAND-port

FIGUR 9 – Krets for oppgave 3-6

De fire transistorene til venstre danner en NAND-port. Dette etterfølges av en inverter, hvilket til sammen gir en AND-port.

3-7 Gitt to 2's-komplement tall $A=01010_2$ og $B=10010_2$. Hvilket alternativ gjengir svaret av addisjonen A + B?

A. -4_{10}

B. -12_{10}

C. $+28_{10}$

LF:

Siden vi opererer med 2's-komplement kan vi direkte legge samme tallene uten å tenke på hva som er fortegnsbit og tallverdibit. Det gir

10010

+ 01010

= 11100

Som vi ser er dette et negativt tall. Vi kan finne det tilsvarende positive tallet ved å invertere hvert enkelt bit og legge til 1. Det gir

00011

+ 00001

= 00100

Resultatet av addisjonen er altså -4_{10} .

- **3-8** Gitt Karnughdiagrammet i figur 10. Hvilken av følgende påstander er IKKE korrekt?
 - A. Funksjonen har en (og bare en) essensiell primimplikant
 - B. Dersom en løsning inneholder alle de tre leddene BCD, ABC og $AC\bar{D}$, så inneholder løsningen redundans
 - C. $\frac{\bar{A}\bar{B}\bar{D} + A\bar{D}(C + \bar{B}) + (A + B)CD}{\text{form}}$ er en minimal løsning på ikke-standard

FIGUR 10 – Boolsk funksjon representert ved Karnaughdiagram

LF:

I Karnaughdiagrammet over er funksjonens primimplikanter tenget inn. Som vi ser er det bare to mintermer, 0 og 8, som bare er dekket av en primimplikant. De andre er dekket av to. Dermed er det bare primimplikanten bestående av de fire hjørnene, dvs. $\bar{B}\bar{D}$ som er essensiell. Følgelig er påstand A korrekt.

De tre leddene i påstand B svarer til den grønne, oransje og grå primimplikanten i Karnaugdiagrammet. Dersom alle disse tre leddene er med i løsningen dekker ikke den orange (BCD) noen mintermer som ikke også er dekket av en av de to andre. Følgelig er BCD redundant og påstand B er korrekt.

Dersom vi setter inn mintermene for $\bar{A}\bar{B}\bar{D} + A\bar{D}(C+\bar{B}) + (A+B)CD$ i Karnaughdiagrammet så vil vi se at minterm 3 mangler mens vi istedenfor har en med minterm 11. Dette er følgelig ikke en løsning på funksjonen og påstand C er ikke korrekt.

3-9 Simulering for test av funksjonaliteten til kretsen i figur 11 har avdekket en feil. Utgangen F skal alltid være 0 dersom det påtrykkes 0 både på A-inngangen og

B-inngangen. Resten av funksjonaliteten er korrekt og skal beholdes som den er. Hvilket alternativ angir en Boolsk funksjon der feilen er rettet og som forøvrig har beholdt den opprinnelige funksjonaliteten?

A. $F = AB\bar{C}D + \bar{A}B\bar{C} + CD$

B. $F = BD + \bar{A}B + ACD$

C. $F = BD + \bar{A}B\bar{C} + A\bar{B}CD$

FIGUR 11 – Krets for oppgave 3-9

LF:

Vi starter med å finne funksjonen F fra figuren. Den er $F = \bar{A}\bar{B}\bar{C}\bar{D} + AB\bar{C}D + \bar{A}B\bar{C} + CD$

Vi setter så opp en sannhetstabell for denne funksjonen (se tabell 1), som vi kaller F_{feil} . Her ser vi at det er to tilfeller der F er 1 mens både A-inngangen og B-inngangen er 0. Det er tilfelle for minterm 0 og minterm 3. Vi endrer disse til 0 i vår nye korrigerte funksjon F_{rettet} . I samme sannhetstabell setter vi også inn for de tre alternative funksjonene. Vi ser da at det er funksjonen fra alternativ C, F_C , som er korrekt. Sammenliknet med F_{rettet} har F_A og F_B en ekstra 1 hver, henholdsvis minterm 4 og 7.

3-10 Anta at begge inngangene (A og B) på kretsen i figur 12 er lave (0) og at utgangen OUT er stabil på en verdi V som enten er høy eller lav (1 eller 0). I god tid før neste flanke på klokkesignalet CLK settes så både A og B høye (til 1). Hva blir resulterende verdi på utgangen OUT i etterkant av klokkeflanken?

Minterm	A	В	С	D	F_{feil}	Frettet	F_A	F_B	F_C
0	0	0	0	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0
3	0	0	1	1	1	0	1	0	0
4	0	1	0	0	1	1	1	1	1
5	0	1	0	1	1	1	1	1	1
6	0	1	1	0	0	0	0	1	0
7	0	1	1	1	1	1	1	1	1
8	1	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	0
10	1	0	1	0	0	0	0	0	0
11	1	0	1	1	1	1	1	1	1
12	1	1	0	0	0	0	0	0	0
13	1	1	0	1	1	1	1	1	1
14	1	1	1	0	0	0	0	0	0
15	1	1	1	1	1	1	1	1	1

TABELL 1 – Sannhetstabell for krets i oppgave 3-9.

- A. OUT = 0
- B. OUT = 1
- C. OUT = V (beholder verdien som sto på utgangen fra før).

FIGUR 12 – Krets for oppgave 3-10

Dette er en SR-vippe. Når begge inngangene (A og B) er høye ser vi at vippeinngang S er høy og vippeinngang R er lav (siden den er resultat av en XOR-operasjon mellom to høye signaler). SR-vippen vil da bli satt høy etter klokkeflanken (OUT = 1), og alternativ B er korrekt.

Oppgave 4 (30%)

a) (10%) Bruk tabellmetoden til å finne en irredundant dekning for følgende logiske funksjon:

$$F(A,B,C,D) = \sum (0,1,2,6,7,8,9,14)$$

LF: Finner først primimplikantene:

Subkube	Gruppe	Minterm	A	В	С	D	Dekket
1	G_0	(0)	0	0	0	0	✓
	G_1	(1)	0	0	0	1	\checkmark
		(2)	0	0	1	0	\checkmark
		(8)	1	0	0	0	✓
	G_2	(6)	0	1	1	0	\checkmark
		(9)	1	0	0	1	✓
	G_3	(7)	1	1	1	1	✓
		(14)	1	1	1	0	\checkmark
2	G_0	(0,1)	0	0	0	-	✓
		(0,2)	0	0	-	0	Nei
		(0,8)	_	0	0	0	✓
	G_1	(1,9)	_	0	0	1	\checkmark
		(2,6)	0	-	1	0	Nei
		(8,9)	1	0	0	-	\checkmark
	G_2	(6,7)	0	1	1	-	Nei
		(6,14)	-	1	1	0	Nei
3	G_0	(0,1,8,9)	-	0	0	-	Nei

Finner så minimal dekning med disse 5 primimplikantene:

			0	1	2	6	7	8	9	14
P_1	ĀĒŌ	(0,2)	Х		X					
P_2	ĀCŌ	(2,6)			X	X				
P_3	ĀВС	(6,7)				X	X			
P_4	$BCar{D}$	(6,14)				X				X
P_5	Β̄C̄	(0,1,8,9)	x	X				X	X	
			0	1		6	7	8	9	14

 $ar{A}BC+BCar{D}+ar{B}ar{C}$ er de essentielle primimplikantene. I tillegg må man velge en av de andre for å få dekket minterm 2, dvs. enten $ar{A}BC+BCar{D}+ar{B}ar{C}+ar{A}ar{B}ar{D}$ eller $ar{A}BC+BCar{D}+ar{B}ar{C}+ar{A}Car{D}$, begge er like gode som minimale (irredundante) dekninger.

(B) Krets for teller med 1-bit moduler

(A) 1-bit teller-modul

C_{i}	Qi	C_{i+1}	Di
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(C) Halvadderer sannhetstabell

FIGUR 13 – 4-bit teller

b) (10%)

Figur 13b viser en 4-bit teller basert på 1-bit modulen vist i Figur 13a). Denne modulen realiserer sannhetstabellen for en halvadderer som vist i Figur 13c), og når signalet CNT er 1 vil dette inkrementere verdien i telleren hver klokke siden CNT er mente inn (C_0) for halvadderer-kjeden.

Du skal modifisere telleren i Figur 13 til en 4-bit opp/ned-teller som styres av signalet UD som når det er 0 betyr oppover-telling og 1 nedover-telling. Telleren har klokke-signal CLK, og reset-signal RST. RST er nå endret slik at når UD er 0 setter telleren til 0000 (RESET) og når UD er 1 setter telleren til 1111 (PRESET). Du kan gå ut fra at hvert bit er lagret i en D-vippe DFF som har CLK-inngang, D-inngang, RESET-inngang og i tillegg til den brukt i opp-telleren en ekstra PRESET-inngang. Signalene RST, RESET og PRESET er alle aktivt høye. Det vil si at reset/preset skal skje når de tar verdien 1. Vippa har utganger Q (lagret bit) og i tillegg QB (invertert av lagret bit) hvis nødvendig. Utgangene Q_i for i=0 til 3 skal til enhver tid representere verdien på telleren som før.

Merk at CNT-signalet ikke skal brukes lenger, men at signalet UD erstatter dette med å styre henholdsvis opp eller ned-telling.

Du skal nå realisere opp/ned-telleren ved først å implementere nedover-telling:

• Lag sannhetstabell for nedovertelling med signalene C_{i+1} og D_i som en funksjon av Q_i og C_i for en enkelt bit-modul.

LF: Sannhetstabell for nedovertelling:

C_{i}	Qi	C_{i+1}	Di
0	0	0	0
0	1	0	1
1	0	1	1
1	1	0	0

TABELL 2 – Sannhetstabell for «halv-subtraherer»

• Finn et logisk uttrykk for C_{i+1} og D_i og forenkle disse hvis mulig.

```
LF: Fra sannhetstabell over får vi at D_i = C_i \oplus Q_i uansett verdi på UD, mens C_{i+1} = C_i Q_i når UD er 0 og C_{i+1} = C_i \bar{Q}_i når UD er 1, dvs. C_{i+1} = C_i Q_i \bar{U} \bar{U} + C_i \bar{Q}_i \bar{U} \bar{U} = C_i (Q_i \oplus \bar{U} \bar{U}).
```

• Lag og tegn skjema for en enkelt bit-modul og vis hvordan denne skal kobles sammen med signalene CLK, RST og C_i. Modulen skal inneholde både oppover-telling som i Figur 13 og nedovertelling. Bruk signalet UD til å velge opp- eller ned-telling. Komponenter for bruk finnes i Tabell 4. Prøv å finne en effektiv bruk av komponenter mhp. antall komponenter og forsinkelse i kretsen.

FIGUR 14 – Skjema for opp/ned-teller

Figur 14a viser realisering av den nye C_{i+1} -funksjonen med UD som opp/nedstyresignal. I tillegg er RST-signalet koblet til både Reset og Preset-inngangene på DFF-vippa slik at den resettes ved UD=0 og presettes ved UD=1.

I Figur 14b vises hvordan man setter 1-bit moduler sammen til en 4-bit opp/nedteller. Legg merke til at C_{in} på LSB er koblet til logisk 1 for å tvinge telling til enhver tid, enten opp eller ned som styrt av UD.

c) (5%)

Opp/ned-telleren fra forrige deloppgave skal nå utvides til å kunne telle bare oddetall eller partall styrt av signalene O og E. Hvis O=E=0 telles det vanlig som i forrige oppgave, hvis O=1 telles det bare oddetall, mens hvis E=1 telles bare partall. Du kan gå ut fra at tilfellet O=E=1 aldri skal kunne forefinnes, og du kan dermed forenkle de logiske uttrykkene basert på disse ved å betrakte dette som en «dont-care»-betingelse.

• Lag sannhetstabell for signalene C_{i+1} og D_i som en funksjon av UD, Q_i og C_i , og ta nå hensyn til verdien på signalene O og E. Det kan være lurt å betrakte i=0 for seg som et tilfelle, og i=1 til 3 som et annet.

HINT: For i=0 er mente inn (C_0) alltid 1. For i=1 til 3 kan du tenke over hvor stor endring det blir fra oppgave 4 b).

LF:

Når UD=0 og O=E=0 er sannhetstabellen som den gitt i Figur 13c, dvs. normal oppovertelling for alle 4 bit.

Når UD=1 og O=E=0 er sannhetstabellen som den gitt i Tabell 2, dvs. normal nedovertelling for alle 4 bit.

Når UD=0, O=1 og E=0 har vi oppovertelling for de tre mest signifikante bit (dvs. bit 1 til 3 teller som en 3-bit oppoverteller), mens bit 0 er fast «1».

Når UD=1, O=1 og E=0 har vi nedovertelling for de tre mest signifikante bit (dvs. bit 1 til 3 teller som en 3-bit nedoverteller), mens bit 0 er fast «1».

Når UD=0, O=0 og E=1 har vi oppovertelling for de tre mest signifikante bit (dvs. bit 1 til 3 teller som en 3-bit oppoverteller), mens bit 0 er fast «0».

Når UD=1, O=0 og E=1 har vi nedovertelling for de tre mest signifikante bit (dvs. bit 1 til 3 teller som en 3-bit nedoverteller), mens bit 0 er fast «0».

Sannhetstabellen er i Tabell 3, har her benyttet kunnskapen om de nødvendige logiske funksjoner vi allerede kjenner til å forenkle tabellen.

• Finn et logisk uttrykk for C_{i+1} og D_i og forenkle disse hvis mulig, gjerne i=0 for seg.

О	Е	UD	C_{i}	Qi	$C_{i+1(4-2)}$	$C_{i+1(1)}$	$D_{i(3-1)}$	$D_{i(0)}$
0	0	0	X	X	C_iQ_i $C_i\oplus Q_i$			Q_i
0	0	1	X	X	C_i	$\bar{\mathbb{Q}}_i$	$C_i \oplus$	Q_i
0	1	0	X	X	C_iQ_i	1	$C_i \oplus Q_i$	0
0	1	1	X	X	$C_i \bar{Q}_i$	1	$C_i \oplus Q_i$	0
1	0	0	X	X	C_iQ_i	1	$C_i \oplus Q_i$	1
1	0	1	X	X	$C_i \bar{Q}_i$	1	$C_i \oplus Q_i$	1
1	1	Χ	X	X	X	X	X	X

TABELL 3 – O/E og UD modifisert sannhetstabell

Fra forrige finner vi at for de tre msb'ene trenger vi bare å supplere C_1 slik at den alltid er 1 når O eller E er 1, ellers skal den være den samme som tidligere. For bit 0 kan vi supplere utgangen slik at den blir fast 0 hvis E=1 og fast 1 hvis O=1, og samme som før hvis O=E=0. Siden O=E=1 aldri skal skje, så kan vi bruke (O+E) uten problem. Oppsummert:

$$C'_1 = \bar{O}\bar{E}C_1 + (O+E) = \overline{(O+E)}C_1 + (O+E)$$

 $Q'_0 = \bar{O}\bar{E}Q_0 + (O+\bar{E}) = \overline{(O+E)}Q_0 + (O+\bar{E})$

- Lag og tegn skjema for bit 0-modulen og en av de andre bit-modulene og vis hvordan disse skal kobles sammen med signalene CLK, RST og C_i. Komponenter for bruk finnes i Tabell 4. Prøv å finne en effektiv bruk av komponenter mhp. antall komponenter og forsinkelse i kretsen.
- Tegn hele telleren der den enkelte bit-modul er en boks med inn- og utganger men uten «innmat». Vis hvordan modulene kobles sammen med hverandre og med signalene CLK og RST.

LF:

Figur 15 viser hvordan kretsen kan inkludere O/E-funksjonaliteten basert på ligningene over. Her er det vist som modifikasjon av Q_0 og C_i . En annen mulighet er selvsagt å legge disse delene inn i kretsen for LSB. Resultatet blir det samme. Legg merke til at signalene X og X' er innført for å slippe å tegne inn for mange ledninger på kryss og tvers.

d) (5%)

Finn kritisk sti for hele telleren i oppgave 4c), og beregn forsinkelse i denne. Hvis du ikke har fått gjort 4c) kan du ta utgangspunkt i 4b) i stedet.

FIGUR 15 – 4-bit opp/ned-teller med odde/partall-funksjon

Funksjon	Navn	Innganger	Utganger	Forsinkelse i nS
Bit-komplement	INV	1	1	1,2
OG-funksjon	AND2	2	1	3,6
Komplementert OG-funksjon	NAND2	2	1	2,4
ELLER-funksjon	OR2	2	1	3,6
Komplementert ELLER-funksjon	NOR2	2	1	2,4
Eksklusiv ELLER-funksjon	XOR2	2	1	4,6
Multiplekser 2:1	MUX2	2	1	4,8
Multiplekser 4:1	MUX4	4	1	9,6
D-vippe	DFF	4	2	4,4

TABELL 4 – Tilgjengelige komponenter. DFF har både D, CLK, RESET og PRESET inn, og Q samt QB (Q invertert) ut.

Kritisk sti fra DFF-utgang til DFF-inngang blir fra Q_0 , C_1 , C_1 , C_2 , C_3 , og inn til D_3 . Dette blir en forsinkelse gjennom 3 AND2, 1 OR2, og 2 XOR2. Da blir $T_{PD_{kritisk}} = 23,6$ ns, og maksimal klokkefrekvens blir:

$$f_{max} = \frac{1}{T_{PD_{kritisk}} + T_{PD_{DFF}} + T_{setup_{DFF}}} = \frac{1}{23,6 \text{ ns} + 4,4 \text{ ns} + ??} \le \frac{1}{28,0 \text{ ns}} = 35,7 \text{ MHz}$$

Verdien på $T_{setup_{DFF}}$ var dessverre falt ut av oppgavesettet, så der godtar vi alt.