

SEQUENCE LISTING

1

<110> THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE WORLEY, Paul F. BRAKEMAN, Paul R.													
<120> SYNAPTIC ACTIVATION PROTEIN COMPOSITIONS AND METHOD													
<130> JHU1520-2													
<140> US 09/910,706 <141> 2001-07-20													
<150> US 09/042,428 <151> 1998-03-13													
<150> US 60/036,553 <151> 1997-03-14													
<160> 15													
<170> PatentIn version 3.0													
<210> 1 <211> 558 <212> DNA <213> Rattus norvegicus													
<220> <221> CDS <222> (1)(558)													
<pre><400> 1 atg ggg gaa caa cct atc ttc agc act cga gct cat gtc ttc cag atc Met Gly Glu Gln Pro Ile Phe Ser Thr Arg Ala His Val Phe Gln Ile 1 5 10 15</pre>													
gac cca aac aca aag aag aac tgg gta ccc acc agc aag cat gca gtt Asp Pro Asn Thr Lys Lys Asn Trp Val Pro Thr Ser Lys His Ala Val 20 25 30													
act gtg tot tat tto tat gar agr aca agg aat gtg tat agg ata atc Thr Val Ser Tyr Phe Tyr Asp Ser Thr Arg Asn Val Tyr Arg Ile Ile 35 40 45													
agt cta gac ggc tca aag gca ata ata aat agc acc atc act cca aac 192 Ser Leu Asp Gly Ser Lys Ala Ile Ile Asn Ser Thr Ile Thr Pro Asn 50 55 60													
atg aca ttt act aaa aca tct caa aag ttt ggc caa tgg gct gat agc Met Thr Phe Thr Lys Thr Ser Gln Lys Phe Gly Gln Trp Ala Asp Ser 70 75 80													
cgg gca aac act gtt tat gga ctg gga ttc tcc tct gag cat cat ctc Arg Ala Asn Thr Val Tyr Gly Leu Gly Phe Ser Ser Glu His His Leu 85 90 95													
tca aaa ttt gca gaa aag ttt sag gaa ttt aaa gaa gct gct cgg ctg 336 Ser Lys Phe Ala Glu Lys Phe Gln Glu Phe Lys Glu Ala Ala Arg Leu 100 105 110													

gca aag Ala Lys	gag Glu 115	aag Lys	tcg Ser	cag Gln	gag Glu	aag Lys 120	atg Met	gaa Glu	ctg Leu	acc Thr	agt Ser 125	acc Thr	cct Pro	tca Ser	384
cag gaa Gln Glu 130															432
atc aat Ile Asn 145															480
gag cca Glu Pro	agg Arg	gct Ala	gag Glu 165	cca Pro	gct Ala	cag Gln	aat Asn	gca Ala 170	ttg Leu	cca Pro	ttt Phe	tca Ser	cat His 175	agg Arg	528
tac aca Tyr Thr											•				558
<210> 2 <211> 186 <212> PRT <213> Rattus norvegicus															
Met Gly	Glu	Gln	Pro 5	Ilė	Phe	Ser	Thr	Arg 10	Ala	His	Val	Phe	Gln 15	Ile	
Asp Pro	Asn	Thr 20		Lys	Asn	Trp	Val 25		Thr	Ser	Lys	His 30	Ala	Val	
Thr Val	Ser		Phe	Tyr	Asp	Ser 40		Arg	Asn	Val	Tyr 45		Ile	Ile	
Ser Leu 50		Gly	Ser	Lys	Ala 55		Ile	Asn	Ser	Thr 60		Thr	Pro	Asn	
Met Thr	Phe	Thr	Lys	Thr 70	Ser	Gln	Lys	Phe	Gly 75	Gln	Trp	Ala	Asp	Ser 80	
Arg Ala	Asn	Thr	Val 85		Gly	Leu	Gly	Phe 90	Ser	Ser	Glu	His	His 95	Leu	
Ser Lys	Phe	Ala 100		Lys	Phe		Glu 105		Lys	Glu		Ala 110		Leu	
Ala Lys	Glu 115		Ser	Gln	Glu				Leu	Thr				Ser	
Gln Glu 130		Ala	Gly	Gly	Asp		Gln	Ser	Pro	Leu 140		Pro	Glu	Ser	
Ile Asn	Gly	Thr	Asp	Asp		Arg	Thr	Pro	Asp		Thr	Gln	Asn	Ser	
145		a 7	Q 3	150	7.7 -	C13	7	77 -	155	D~-	Dha	202	ui c	160 Arg	
Glu Pro			165					170	ьeu	PLO	rne	SEI	175	ALY	
Tyr Thr	Phe	Asn 180	Ser	Ala	Ile	Met	Ile 185	Lys							

<211> 50 <212> PRT <213> Homo sapiens

<400> 3

```
Met Gly Glu Gln Pro Ile Phe Thr Thr Arg Ala His Val Phe Gln Ile
              5
                          10
Asp Pro Asn Thr Lys Lys Asn Trp Met Pro Ala Ser Lys His Gly His
                              25
           20
Arg Phe Tyr Phe Tyr Asp Val Thr Arg Asn Ser Tyr Arg Ile Ile Ser
                          40
Val Asp
   50
<210 > 4
<211> 153
<212> PRT
<213 > Mus musculus
<400> 4
Tyr Phe Tyr Asp Val Thr Arg Asn Ser Tyr Arg Ile Ile Ser Val Asp
                       10
       E<sub>7</sub>
Gly Ala Lys Val Ile Ile Asn Ser Thr Ile Thr Pro Asn Met Thr Phe
           20
                              2.5
Thr Lys Thr Ser Gln Lys Phe Gly Gln Trp Ala Asp Ser Arg Ala Asn
                       40
                                          4.5
Thr Val Phe Gly Leu Gly Phe Ser Ser Glu Leu Gln Leu Thr Lys Phe
                      55
Ala Glu Lys Phe Gln Glu Val Arg Glu Ala Ala Arg Leu Ala Arg Asp
                                     75
                  70
Lys Ser Gln Glu Lys Thr Glu Thr Ser Ser Asn His Ser Gln Glu Ser
              85
                          90
Gly Cys Glu Thr Pro Ser Ser Thr Gln Ala Ser Ser Val Asn Gly Thr
       100 105
Asp Asp Glu Lys Ala Ser His Ala Ser Pro Ala Asp Thr His Leu Lys
               120 125
Ser Glu Asn Asp Lys Leu Lys Ile Ala Leu Thr Gln Ser Ala Ala Asn
               135
Val Lys Lys Trp Glu Met Glu Leu Gln
<210> 5
<0.11> 10
<212> PRT
<213> Artificial sequence
<223> C-terminal of metabotropic glutamate receptor,
    mGluR1-alpha.
<.100> 5
Arg Asp Tyr Lys Gln Ser Ser Ser Thr Leu
<310> 6
<211> 10
<212> PRT
<213> Artificial sequence
<223> C-terminal of metabotropic glutamate receptor,
     mGluR2.
```

<400> 6

```
Glu Val Val Asp'Ser Thr Thr Ser Ser Leu
               5
<210> 7
<111> 10
<2112> PRT
<213> Artificial sequence
<223> C-terminal of metabotropic glutamate receptor,
    mGluR3.
<400> 7
Glu Val Leu Asp Ser Thr Thr Ser Ser Leu
1 5
<210> 8
<211> 10
<212> PRT
<213> Artificial sequence
<223> C-terminal of metabotropic glutamate receptor,
    mGluR4.
<400> 8
Thr Tyr Val Thr Tyr Thr Asn His Ala Ile
1 5
<210> 9
<211> 10
<212> PRT
<213> Artificial sequence
<223> C-terminal of metabotropic glutamate receptor,
    mGluR5.
<400> 9
Arg Asp Tyr Thr Gln Ser Ser Ser Leu
<210> 10
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> peptide binding sequence
<400> 10
Ser Ser Thr Leu
<210> 11
<211> 4
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> peptide binding sequence
<:00> 11
Ser Ser Ser Leu
1
<210> 12
<111> 4
<212> PRT
<213> Rattus norvegicus
<220>
<221> VARIANT
<222> (0)...(0)
<223> position 31-34 of SEQ ID NO:2
<400> 12
Ala Val Thr Val
<110> 13
<211> 4
<212> PRT
<213> Homo sapiens / Mouse
<220>
<221> VARIANT
<222> (0)...(0)
<223> positions 31-34 of SEQ ID NO:3
<400> 13
Gly His Arg Phe
<210> 14
<211> 4
<212> PRT
<213> Artificial Sequence
<120>
<fi><fi13> PDZ-like domain
<400> 14
Gly Leu Gly Phe
1
<210> 15
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> C-terminal motif
<400> 15
```

Thr Ser Ser Leu