Mathematics for Economists Kapitel 1 – Lineær Algebra

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus University

Disposition Kapitel 1

- Ligningssystemer / Lineære uafhængighed
- Funktioner / Rangen af en matrix / Rangen og lineære ligningssystemer / Skalarprodukt
- Determinanter
- Egenværdier
- Symmetriske bilineære former

Definition

En **relation** R fra en mængde A til en mængde B er en delmængde af $A \times B = \{(a,b) | a \in A, b \in B\}$. For eksempel, " \leq " definerer en (binær) relation R fra \mathbb{R} til \mathbb{R} således at

$$(a, b) \in R \Rightarrow a \leq b$$
.

Definition

En **funktion** eller **afbildning** $f: X \to Y$ fra en mængde X til en mængde Y er en relation hvorved der til hvert element $x \in X$ knyttes et bestemt element $y \in Y$.

- lacktriangledown X kaldes definitionsmængde; Y kaldes dispositionsmængde af f.
- ② Det til et element $x \in X$ svarende element af Y betegnes f(x) og kaldes funktionsværdien eller billedet af x ved f.
- **3** For en vilkårlig delmængde $A \subset X$ udgør billederne $f(x) \in Y$, $x \in A$ en delmængde af Y der kaldes **billedet** af A **ved** f og betegnes

$$f(A) = \{f(x) | x \in A\}.$$

f(X) kaldes billedmængden for f eller værdimængden for f.

Definition

Lad $f: A \rightarrow B$ være en funktion.

- **1** Hvis det gælder for $a_1, a_2 \in A$ med $a_1 \neq a_2$ at $f(a_1) \neq f(a_2)$, såkaldes f for **injektiv**. Sagt anderledes, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- 2 Hvis f(A) = B, såkaldes f for surjektiv.
- **3** Hvis f er både injektiv og surjektiv, kaldes f for **bijektiv**. Med andre ord, ethvert $y \in Y$ er et billede af et og kun et $x \in X$.

f injektiv

f surjektiv

f bijektiv

1.3 Rangen af en Matrix

1.3 Rangen af en Matrix

Definition (p. 11)

Rangen r(A) af en matrix A er det maksimale antal af lineær uafhængige søjler i A. Vi sætter r(A) = 0 hvis A er den 0-matrix.

Sætning (1.3.2)

Rangen af en matrix A er lig med rangen af den transponerede matrix A': r(A) = r(A').

Transposition

For en givet $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

definerer vi den **transponerede** matrix A' som $n \times m$ matricen

$$A' = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.$$

Vi har altså

$$A = \left\{a_{ij}\right\} \begin{array}{l} i = 1, \ldots, m \\ j = 1, \ldots, n \end{array}, \qquad A' = \left\{a_{ji}\right\} \begin{array}{l} j = 1, \ldots, n \\ i = 1, \ldots, m \end{array}.$$

Transposition

Vektorer forstås sædvanligvis som søjler:

$$x = \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right].$$

Den transponerede vektor x' er derfor rækken

$$x' = (x_1, x_2, \ldots, x_n).$$

Rangbegrebet kan bruges til at klassificere lineære ligningssystemer.

Sætning

Lad Ax = b, hvor $A \in \mathbb{R}^{m \times n}$ og $b \in \mathbb{R}^m$, have en løsning $x \in \mathbb{R}^n$. Der er netop én løsning hvis og kun hvis

$$r(A) = n$$
.

I dette tilfælde har ligningen Ax = 0 kun den triviale løsning x = 0.

Sætning

Lad $A \in \mathbb{R}^{m \times n}$. Ax = b har mindst en løsning for hver $b \in \mathbb{R}^m$ hvis r(A) = m.

Betragt det lineære system med m ligninger og n ubekendte

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \text{eller } Ax = b \qquad (1)$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

hvor A er en $m \times n$ koefficientmatrix. Lad $A_b \in \mathbb{R}^{m \times n + 1}$ benævne totalmatricen (augmented matrix):

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \text{og} \quad A_b = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Teorem (1.4.1)

En nødvendig og tilstrækkelig betingelse for eksistensen af mindst en løsning er, at rangen af koefficientmatricen A er lig med rangen af totalmatricen A_b :

$$Ax = b$$
 har en løsning \iff $r(A) = r(A_b)$

Teorem (1.4.2)

Antag at system (1) har løsninger og at $r(A) = r(A_b) = k$.

- (a) Hvis k < m, dvs. at rangen k er mindre end antallet af ligningerne m, så er m-k ligninger overflødige. Hvis vi betragter en løsning til et subsystem af k lineært uafhængige rækker, så vil de resterende m-k ligninger være automatisk opfyldt.
- (b) Hvis rangen er mindre end antallet af ubekendte, k < n, så er der n k variable der kan vælges frie, og de resterende k variable bestemmes ved disse n k frie variable. Systemet har n k frihedsgrader.

Eksempel

Vi indfører konceptet af **længden** af en vektor i \mathbb{R}^2

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} x_1 \\ 0 \end{array} \right] + \left[\begin{array}{c} 0 \\ x_2 \end{array} \right].$$

Intuitivt tyr vi til Pythagoras og definerer $||x|| := \sqrt{x_1^2 + x_2^2}$.

Eksempel

Når idéen om længden er sådan defineret, så er konceptet af en **ret vinkel** impliceret. Lad $x=(x_1,\,x_2)^T$ and $y=(y_1,\,y_2)^T$. Vektorerne x og y er retvinklede (eller **ortogonale**, skrives $x\perp y$) hvis

$$||x + y|| = ||x - y||$$
, eller $x_1y_1 + x_2y_2 = 0$.

Definition

I \mathbb{R}^2 kaldes tallet $x_1y_1 + x_2y_2$ et **skalarprodukt** (eller det **indre produkt** af x og y. Notation: $\langle x, y \rangle$ eller $x \cdot y$.

Definition (Indre produkt)

Lad $V \subset \mathbb{R}^n$ være et vektorrum. Skalarproduktet er en funktion

$$V \times V \to \mathbb{R}$$

som knytter et tal $\langle x,y\rangle\in\mathbb{R}$ til hvert par $x,y\in V$ af vektorer, således at den resulterende afbildning er

(i) bilineær: for x, y, $z \in V$, r, $s \in \mathbb{R}$,

$$\langle rx + sy, z \rangle = r \langle x, z \rangle + s \langle y, z \rangle$$

 $\langle x, ry + sz \rangle = r \langle x, y \rangle + s \langle x, z \rangle$,

- (ii) symmetrisk: $\langle x, y \rangle = \langle y, x \rangle$,
- (iii) **positivt definit:** $\langle x, x \rangle \geq 0$, "=" hvis og kun hvis x = 0.

Eksempel (Pythagoras' Theorem)

$$c^{2} = a^{2} + b^{2}$$

$$= \left\langle \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \right\rangle$$

Lad
$$x = (a, 0)^T$$
 og $y = (0, b)^T$, så fås

$$c^2 = ||x + y||^2 = a^2 + b^2.$$

Da x og y er ortogonale, $\langle x, y \rangle = 0$.

Eksempel

Standard skalarprodukt i \mathbb{R}^n :

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i = x^T y.$$

Definition (Norm)

Det reelle tal $||x|| := \sqrt{\langle x, x \rangle}$ kaldes (den Euklidiske) **norm** af en vektor.

Definition (Ortogonalitet)

To vektorer x, y kaldes for **ortogonale** hvis $\langle x, y \rangle = 0$. Notation: $x \perp y$.

Teorem (Cauchy-Schwarz Uligheden, Lgn. (38))

For $x,y \in V$, V reelt vektorrum, gælder

$$|\langle x,y\rangle| \leq ||x|| \, ||y||.$$

Ligheden holder hvis x og y er lineært afhængige.

Vi vender tilbage til Pythagoras Teoremet, og ved hjælp af Cauchy-Schwarz uligheden får vi **trekantsuligheden** (Eqn. 39):

$$||x + y|| \le ||x|| + ||y||$$

Definition

Et system af vektorer (v_1, v_2, \ldots, v_n) kaldes et **ortogonalsæt** hvis $v_i \neq 0$ and $v_i \perp v_j$ for $i \neq j$ (indbyrdes ortogonale). Hvis $||v_i|| = 1$ for alle i, kaldes systemet et **ortonormalsæt**.

Sætning

Ortogonalsæt er lineært uafhængige.

Definition

En basis der er et ortogonalsæt kaldes for **ortogonalbasis**. (Analogt defineres **ortonormalbasis**.)

Eksempel

Standardbasen (e_1, e_2, \ldots, e_n) i \mathbb{R}^n er en ortonormalbasis.