Appunti di Network Modeling

massimo.meneghello 93

June 2018

Contents

1	Cor		3
	1.1	Distribuzioni Importanti	3
		1.1.1 Distribuzione Esponenziale	3
2	Cot	ene di Markov	4
4			
	2.1		4
	2.2		5
	2.3	•	7
			7
		2.3.2 Passeggiata casuale unidimensionale	7
		2.3.3 Success Runs	7
	2.4	Tempi di primo passaggio	7
	2.5		8
	2.6	•	9
	_		9
			9
	2.7	Teorema Fondamentale delle Catene di Markov	
	2.1	Teorema Fondamentare dene Cavene di Markov	U
3	Pro	ocessi di Poisson	1
	3.1	Distribuzione di Poisson	1
	3.2	Processi di Poisson	
4	\mathbf{Pro}	ocessi di Rinnovamento	4
	4.1	Definizione di Processi di Rinnovamento e Concetti Correlati	4
	4.2	Processi di Poisson Come Processi di Rinnovamento	4
	4.3	Comportamento Asintotico dei Processi di Rinnovamento	4
	4.4	Equazioni di Rinnovamento	5
	4.5	Stopping Time	
	4.6	Teorema Elementare di Rinnovamento	
	1.0		
5	Alt	ri Concetti Utili all'Analisi 1	8
	5.1	Processi Semi-Markoviani	8
6	Ans	alisi di Code e Protocolli	g
	6.1	Coda M/G/1	
	6.2	Coda G/M/1	
	6.2	Esempi di Protocolli di Livello 2 e 4	
	0.5		
		6.3.2 Protocollo 2	J

			IA
7	Per	Esame	e
	7.1	Soluzio	oni Esercizi
		7.1.1	Compito 22 settembre 2005
		7.1.2	Compito 14 luglio 2006
		7.1.3	Compito 12 dicembre 2006
		7.1.4	Compito 09 luglio 2007
		7.1.5	Compito 09 luglio 2007
	7.2	Dimos	trazioni

1 Concetti di Probabilità

1.1 Distribuzioni Importanti

1.1.1 Distribuzione Esponenziale

Una variabile aleatoria non negativa T ha distribuzione esponenziale di parametro $\lambda>0$ se la funzione di densità di probabilità è

$$f_T = \begin{cases} \lambda e^{-\lambda t} & \text{per } t \ge 0\\ 0 & \text{per } t < 0 \end{cases}$$

e con funzione di distribuzione

$$F_T(t) = P[T < t] = \begin{cases} 1 - e^{-\lambda t} & \text{per } t \ge 0\\ 0 & \text{per } t < 0 \end{cases}$$

Valore atteso e varianza

$$E[T] = \frac{1}{\lambda}$$

$$Var(T) = \frac{1}{\lambda^2}$$

2 Catene di Markov

2.1 Processi di Markov

Definizione 2.1. Un processo di Markov $\{X_t\}$ è un processo aleatorio con la proprietà che, noto il valore di X_t , i valori di X_s per s > t non sono influenzati dai valori di X_u per u < t.

In termini formali la proprietà di Markov afferma che

$$P[X_{n+1} = j \mid X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i] = P[X_{n+1} = j \mid X_n = i]$$

Gli stati che un processo di Markov può assumere sono spesso indicati con gli interi positivi $0, 1, \ldots$ La probabilità di transizione ad un passo (cioè la probabilità che trovandosi in uno stato i all'istante n-esimo, all'istante successivo ci si trovi nello stato j) è definita come

$$P_{ij}^{n,n+1} = P[X_{n+1} = j \mid X_n = i] = P_{ij}$$

Considerando tutti le possibili probabilità di transizione ad un passo si ottiene la matrice di Markov relativa al processo

$$P = \begin{bmatrix} P_{00} & P_{01} & P_{02} & \dots \\ P_{10} & P_{11} & P_{12} & \dots \\ \vdots & \vdots & \vdots & \vdots \\ P_{i0} & P_{i1} & P_{i2} & \dots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

per la quale devono valere

$$P_{i,j} \ge 0$$
 $i, j = 0, 1, 2, \dots$ (1)

$$\sum_{j=0}^{\infty} P_{ij} = 1 \qquad i = 0, 1, 2, \dots$$
 (2)

Un processo di Markov è completamente definito dalla sua matrice. Sia $P[X_0 = i] = p_i$, allora, grazie alla proprità di Markov possiamo eseguire la seguente computazione

$$P[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = P[X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}] \cdot P[X_n = i_n \mid X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}]$$

$$= P[X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = I_{n-1}] \cdot P_{i_{n-1}i_n}$$

$$= p_i P_{i_0i_1} P_{i_1i_2} \dots P_{i_{n-1}i_n}$$

Analizziamo ora la probabilità di transizione compiendo n passi.

$$P_{ij}^{(n)} = P[X_{n+m} = j \mid X_m = i] = P[X_n = j \mid X_0 = i]$$

L'ultima uguaglienza deriva dalla proprietà di omogeneità dei processi di Markov.

Proposizione 2.1. La matrice di transizione a n passi soddisfa

$$P_{ij}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)}$$

dove

$$P_{ij}^{(0)} = \left\{ \begin{array}{ll} 1 & se \ i = j \\ 0 & altrimenti \end{array} \right.$$

Dimostrazione.

$$\begin{split} P_{ij}^{(n)} &= P[X_{n+m} = j \mid X_m = i] = P[X_n = j \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P[X_n = j, X_1 = k \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P[X_n = j \mid X_1 = k, X_0 = i] \cdot P[X_1 = k \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P[X_n = j \mid X_1 = k] \cdot P[X_1 = k \mid X_0 = i] \\ &= \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)} \end{split}$$

2.2 Analisi di Primo Passo

Consideriamo la seguente matrice di Markov

$$P = \left[\begin{array}{ccc} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{array} \right]$$

con α , β , $\gamma > 0$ e $\alpha + \beta + \gamma = 1$. Vogliamo trovare i valori di

$$u = P[X_T = 0 \mid X_0 = 1]$$

 $v = E[T \mid X_0 = 1]$

dove $T = \min\{n \geq 0 : X_n = 0, X_n = 2\}$, quindi vogliamo conoscere qual è la probabilità che il processo resti intrappolato nello stato 0 sapendo che lo stato iniziale è 1 e vogliamo anche conoscere quanto tempo dovremmo attendere affinché questo accada (valore atteso).

Conoscendo la scomposizione vista in 2.1 osserviamo che

$$u = P[X_T = 0 \mid X_0 = 1] = P_{10}^{(T)}$$

$$= \sum_{k=0}^{2} P_{1k} P_{k0}^{(T-1)}$$

$$= P_{10} P_{00}^{(T-1)} + P_{11} P_{10}^{(T-1)} + P_{12} P_{20}^{(T-1)}$$

$$= \alpha (1) + \beta (u) + \gamma (0)$$

$$= \alpha + \beta u = \frac{\alpha}{1 - \beta} = \frac{\alpha}{\alpha + \gamma}$$

Abbiamo anche utilizzata l'uguaglianza $P_{ij}^{(T)}=P_{ij}^{(T-1)}$. Mentre per il valore atteso degli istanti impiegati abbiamo

$$v = 1 + \alpha (0) + \beta (v) + \gamma (0)$$
$$= 1 + \beta v$$
$$= \frac{1}{1 - \beta} = \frac{1}{\alpha + \gamma}$$

In generale possiamo avere matrici di Markov come la seguente, di dimensione $(N+1) \times (N+1)$:

$$P = \begin{bmatrix} \mathbf{Q} & \mathbf{R} \\ \mathbf{O} & \mathbf{I} \end{bmatrix} \tag{3}$$

dove \mathbf{O} è una matrice $(N-r+1) \times r$ di zeri e \mathbf{I} è una matrice identità $(N-r+1) \times (N-r+1)$. In questa matrice possiamo riconoscere due tipi di stati (le cui definizioni formali verrano fornite successivamente):

- transient, cioè gli stati da $0, \ldots, r-1$ per i quali vale $P_{ij}^{(n)} \to 0$ quando $n \to \infty$ per $0 \le i, j < r$;
- absorbing, gli stati da r, \ldots, N per i quali $P_{ii} = 1$ per $r \leq i \leq N$.

Otteniamo

$$u_i = U_{ik} = P[\text{Assorbimento in k} \mid X_0 = i]$$
 per $0 \le i < r$
= $P_{ik} + \sum_{j=0}^{r-1} P_{ij} U_{jk}$

mentre il tempo medio di assorbimento vale

$$v_i = 1 + \sum_{j=0}^{r-1} P_{ij} v_j$$
 per $0 \le i < r$

Dall'n-esima potenza della matrice di Markov è possibile calcolare

- ullet il numero medio di visite su uno stato j
- il tempo medio fino all'assorbimento della catena
- \bullet la probabilità di assorbimento in uno stato k.

Tutte questo dipende dallo stato iniziale $X_0 = i$. L'n-esima potenza della matrice 3 è facilmente ottenibile

$$P^{n} = \begin{bmatrix} \mathbf{Q}^{n} & (\mathbf{I} + \mathbf{Q} + \mathbf{Q}^{2} + \dots + \mathbf{Q}^{n-1})R \\ \mathbf{O} & \mathbf{I} \end{bmatrix}$$
 (4)

Forniamo un'interpretazione per P^n :

$$\begin{split} W_{ij}^{(n)} &= \text{numero medio di visite allo stato } j \text{ in } n \text{ passi partendo dallo stato } i \\ &= E\left[\sum_{l=0}^{n}\mathbf{1}\{X_{l}=j\} \mid X_{0}=i\right] \text{ ma poich\'e } E[\mathbf{1}\{X_{l}=j\} \mid X_{0}=i] = P_{ij}^{(l)} \\ &= \sum_{l=0}^{n} E[\mathbf{1}\{X_{l}=j\} \mid X_{0}=i] \\ &= \sum_{l=0}^{n} P_{ij}^{(n)} \end{split}$$

Abbiamo quindi trovato che

$$W^{(n)} = \mathbf{I} + \mathbf{Q} + \mathbf{Q}^2 + \dots + \mathbf{Q}^n$$
$$= \mathbf{I} + \mathbf{Q} (\mathbf{I} + \dots + \mathbf{Q}^{n-1})$$
$$= \mathbf{I} + \mathbf{Q} W^{(n-1)}$$

Passando al limite otteniamo

$$W_{ij} = \lim_{n \to \infty} W_{ij}^{(n)} = E[\text{visite totali a } j \mid X_0 = i] \quad 0 \le i, j < r$$

mentre in forma matriciale si ottiene

$$W = \mathbf{I} + \mathbf{Q} W$$

e quindi

$$W = (\mathbf{I} - \mathbf{Q})^{-1} \tag{5}$$

che è detta matrice fondamentale associata a Q.

2.3 Catene di Markov speciali

2.3.1 Catena di Markov a due stati

Sia data la matrice

$$P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} \quad \text{con} \quad 0 < a, b < 1$$

allora l' $n\text{-}\mathrm{esima}$ potenza di P vale

$$P^{(n)} = \frac{1}{a+b} \begin{bmatrix} b & a \\ b & a \end{bmatrix} + \frac{(1-a-b)^n}{a+b} \begin{bmatrix} a & -a \\ -b & b \end{bmatrix} \quad \text{per} \quad n \ge 0$$

che può essere facilmente dimostrato per induzione.

2.3.2 Passeggiata casuale unidimensionale

2.3.3 Success Runs

2.4 Tempi di primo passaggio

Si è interessati nel conoscere quanto tempo è necessario (in media) per raggiungere uno stato j partendo da uno stato i.

$$\theta_{ij}$$
 = numero di transizioni per raggiungere j da i per la prima volta $P[\theta_{ij} = n] = f_{ij}(n) = P[X_n = j, X_m \neq j, m = 1, ..., n - 1 \mid X_0 = i]$

Abbiamo la relazione ricorsiva

$$f_{ij}(n) = \begin{cases} P_{ij} & n = 1\\ \sum_{k \neq j} P_{ik} f_{kj} (n-1) & n > 1 \end{cases}$$

IMPORTANTE. Per calcolare la il valore atteso del tempo di primo passaggio tra 2 stati $i \in j$ usiamo

$$E[\theta_{ij}] = P_{ij} + \sum_{k \neq j} P_{ik} (1 + E[\theta_{kj}])$$
$$= 1 + \sum_{k \neq j} P_{ik} E[\theta_{kj}] \quad \forall i, j$$

Questo comporta la risoluzione di un sistema di equazioni. In particolar modo, se si vuole calcolare $E[\theta_{ii}]$ tutte le variabili nella parte destra non sono note. Tuttavia, come vi vedrà più avanti alla proposizione 2.7 abbiamo che

$$E[\theta_{ii}] = m_i = \lim_{n \to \infty} \frac{1}{P_{ii}^{(n)}} = \frac{1}{\pi_i}$$

Per calcolare il secondo momento (necessario per trovare la varianza) del tempo di primo passaggio usiamo

$$E[\theta_{ij}^{2}] = 2 E[\theta_{ij}] - 1 + \sum_{k \neq j} P_{ik} E[\theta_{kj}^{2}]$$
$$Var(\theta_{ij}) = E[(\theta_{ij} - E[\theta_{ij}])^{2}] = E[\theta_{ij}^{2}] - E[\theta_{ij}]^{2}$$

2.5 Comportamento asintotico delle catene di Markov

Definizione 2.2. Una catena di Markov si dice regolare se la k-esima potenza della matrice P associata alla catena ha tutti elementi strettamente positivi, quindi se

$$P_{ij}^{(k)} > 0 \quad \forall i, j$$

La caratteristica più importante di questa catena è l'esistenza di una distribuzione di probabilità al limite

$$\pi = (\pi_0, \dots, \pi_N) \text{ con } \pi_j > 0 \quad \forall j \in \sum_j \pi_j = 1$$

che è indipendente dallo stato iniziale della catena.

IMPORTANTE. Questi concetti sono utili per conoscere come evolve una catena di Markov all'infinito, quindi per sapere dove in che stato potremmo trovarla.

Proposizione 2.2. Sia P una matrice di probabilità di transizione regolare con stati 0, 1, ..., N. Allora la distribuzione limite $\vec{\pi} = (\pi_0, ..., \pi_N)$ è l'unica soluzione non negativa del sistema

$$\begin{cases} \pi_{j} = \sum_{k=0}^{N} \pi_{k} P_{kj} & j = 0, \dots, N \\ \sum_{k=0}^{N} \pi_{k} = 1 \end{cases}$$

 $con \ \pi_k = \lim_{n \to \infty} P_{ik}^{(n-1)}.$

Risolvendo questo sistema di N+1 incognite e N+2 equazioni (un'equazione è ridondante e può essere rimossa)otteniamo il vettore $\vec{\pi}$ che ci permette di conoscere

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \pi_0 & \pi_1 & \dots & \pi_N \\ \pi_0 & \pi_1 & \dots & \pi_N \\ \vdots & \vdots & & \vdots \\ \pi_0 & \pi_1 & \dots & \pi_N \end{bmatrix}$$

2.6 La classificazione degli stati

Lo stato j è detto raggiungibile dallo stato i $(i \to j)$ se $P_{ij}^{(n)} > 0$ per qualche $n \ge 0$. Due stati sono detti comunicanti $(i \leftrightarrow j)$ se i è raggiungibile da j e viceversa.

Proposizione 2.3. Il concetto di comunicazione è una relazione di equivalenza.

Dimostrazione. Si dimostrano le proprietà di una relazione di equivalenza.

- 1. proprietà riflessiva, $i \leftrightarrow i$ vale perché $P_{ii}^{(0)} = 1$
- 2. proprietà simmetrica, $i \leftrightarrow j \Rightarrow j \leftrightarrow i$
- 3. **proprietà transitiva**, $i \leftrightarrow k$ e $k \leftrightarrow j \Rightarrow i \leftrightarrow j$, infatti se $i \leftrightarrow k$ e $k \leftrightarrow j$ allora esitono n, m tali che $P_{ik}^{(n)} > 0$ e $P_{kj}^{(m)} > 0$, quindi $P_{ij}^{(n+m)} = \sum_{r=0}^{\infty} P_{ir}^{(n)} P_{rj}^{(m)} \ge P_{ik}^{(n)} P_{kj}^{(m)} > 0$

Una catena di Markov è detta *irriducibile* se tutti gli stati comunicano tra di loro (quindi se tutti gli stati appartendono a un'unica classe di equivalenza).

2.6.1 Periodicità di una catena di Markov

Proposizione 2.4. Se $i \leftrightarrow j$ allora d(i) = d(j) (il periodo è una proprietà di classe).

Dimostrazione. Sia $S_i = \{s > 0 : P_{ii}^{(s)} > 0\}$. Allora esistono m, n tali che

$$P_{ij}^{(m)} > 0, \quad P_{ji}^{(n)} > 0$$

$$\forall s \in S_i, P_{ii}^{(s)} > 0$$

$$P_{jj}^{(n+s+m)} = \sum_{h,k} P_{jh}^{(n)} P_{hk}^{(s)} P_{kj}^{(m)} \ge P_{ji}^{(n)} P_{ii}^{(s)} P_{ij}^{(m)} > 0$$

Se $s \in S_i$ allora $n+s+m \in S_j$. Analogamente $P_{ii}^{(2s)} \ge (P_{ii}^{(s)})^2 > 0$. Quindi $n+2s+m \in S_j$ e di conseguenza n+s+m è multiplo intero di n+2s+m.

$$n+2s+m-n-s-m=s\in S_i$$

Se $s \in S_i$ allora è multiplo di d(j). Quindi d(j) è divisore comune di S_i , d(i) è MCD di S_i . Ma allora d(i) è multiplo di d(j). Per simmetria d(j) multiplo di d(i) quindi d(i) = d(j).

2.6.2 Stati ricorrenti e stati transitori

Proposizione 2.5.

$$i \ ricorrente \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$$
 $i \ transitorio \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$

Proposizione 2.6. Se $i \leftrightarrow j$ e i ricorrente, allora anche j è ricorrente.

Dimostrazione. Dall'ipotesi $i \leftrightarrow j$ sappiamo che esistono $m, n \ge 1$ tali che

$$P_{ij}^{(n)} > 0, \quad P_{ji}^{(m)} > 0$$

 $Sia\ l > 0$. $Sapendo\ che$

$$P_{jj}^{(m+n+l)} = \sum_{h,k} P_{jh}^{(m)} P_{hk}^{(l)} P_{kj}^{(n)} \ge P_{ji}^{(m)} P_{ii}^{(l)} P_{ij}^{(n)}$$

 $Sommando\ otteniamo$

$$\sum_{n=1}^{\infty} P_{jj}^{(n)} \geq \sum_{l=1}^{\infty} P_{jj}^{(m+n+l)} \geq P_{ji}^{(m)} \, P_{ij}^{(n)} \, \sum_{l=1}^{\infty} P_{ii}^{(l)} = \infty$$

(La sommatoria diverge perché i è ricorrente)

2.7 Teorema Fondamentale delle Catene di Markov

Ricordiamo che

$$f_{ii}^{(n)} = P[X_n = i, X_m \neq i, m = 1, \dots, n-1 \mid X_0 = i]$$

= $P[R_i = n \mid X_0 = i]$ con $R_i = \min\{n \ge 1; X_n = i\}$

La durata media tra due visite è quindi definita come

$$m_i = E[R_i \mid X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$
 (6)

Definizione 2.3. Se $m_i < \infty$ allora i si dice ricorrente positivo $(\pi_i > 0)$ mentre se $m_i = \infty$ allora i si rice ricorrente nullo $(\pi_i = 0)$.

Proposizione 2.7. Consideriamo una catena di Markov aperiodica, irriducibile, ricorrente. Sia $P_{ii}^{(n)}$ la probabilità di essere nello stato i alla transizione n-esima per $n=0,1,2,\ldots$ e sia dato lo stato iniziale $X_0=i$ (per convenzione si assume $P_{ii}^{(0)}=1$). Sia $f_{ii}^{(n)}$ la probabilità di primo ritorno allo stato i nella stansizione n-esima, dove $f_{ii}^{(0)}=0$. Allora

$$\lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\sum_{n=0}^{\infty} n f_{ii}^{(n)}} = \frac{1}{m_i}$$
 (7)

Sotto le medesime condizioni abbiamo anche che

$$\lim_{n \to \infty} P_{ji}^{(n)} = \lim_{n \to \infty} P_{ii}^{(n)} \quad \forall j$$
 (8)

Proposizione 2.8. In una catena di Markov con un numero finito di stati deve esserci almeno uno stato ricorrente positivo.

Dimostrazione. (Per assurdo) Supponiamo che tutti gli stati siano transitori o ricorrenti nulli, quindi

$$1 = \sum_{j=0}^{N} P_{ij}^{(n)} \quad \forall n, i$$

Per $n \to \infty$:

$$1 = \lim_{n \to \infty} \sum_{j=0}^{N} P_{ij}^{(n)} = \sum_{j=0}^{N} \lim_{n \to \infty} P_{ij}^{n} = 0$$

Assurdo.

3 Processi di Poisson

3.1 Distribuzione di Poisson

La distribuzione di Poisson con parametro $\mu>0$ è data da

$$p_k = e^{-\mu} \frac{\mu^k}{k!}$$
 per $k = 0, 1, \dots$ (9)

Media e varianza di una variabile aleatoria di Poisson sono date da

$$E[X] = \mu$$

$$E[X^2] = \mu^2 + \mu$$

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2 = \mu$$

Proposizione 3.1. Siano X e Y due variabili aleatorie (indipendenti) con distribuzione di Poisson, rispettivamente di parametro μ e λ . Allora Z=X+Y è una variabile aleatoria di Poisson con con parametro $\mu+\lambda$.

Dimostrazione.

$$\begin{split} P[X+Y=n] &= \sum_{k=0}^{n} P[X=k, Y=n-k] \\ &= \sum_{k=0}^{n} P[X=k] \, P[Y=n-k] \\ &= \sum_{k=0}^{n} e^{-\mu} \frac{\mu^{k}}{k!} \, e^{-\lambda} \frac{\lambda^{n-k}}{(n-k)!} \\ &= e^{-(\mu+\lambda)} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \mu^{k} \lambda^{n-k} \\ &= e^{-(\mu+\lambda)} \, \frac{(\mu+\lambda)^{n}}{n!} \end{split}$$

3.2 Processi di Poisson

Definizione 3.1. Un processo di Poisson di intensità $\lambda > 0$ è un processo stocastico a valori interi $\{X(t); t \geq 0\}$ per il quale

1. per ogni valore di tempo $t_0 = 0 < t_1 < \ldots < t_n$, il gli incrementi del processo

$$X(t_1) - X(t_0), \dots, X(t_n) - X(t_{n-1})$$

sono variabili aleatorie indipendenti;

2. $per s \ge 0$ e t > 0 la variabile aleatoria X(s+t) - X(s) ha distribuzione di Poisson

$$P[X(s+t) - X(s) = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
 per $k = 0, 1, ...$

3. X(0) = 0

Proposizione 3.2. In un processo di Poisson di parametro λ i tempi di interarrivo sono variabili aleatorie indipendenti con distribuzione esponenziale e valore atteso $\frac{1}{\lambda}$.

Dimostrazione. Sia

$$P[s_0 > t] = P[$$
 nessun arrivo in $(0, t]] = e^{-\lambda t}$
 $P[s_1 > t \mid s_0 = s] = \frac{P[s_1 > t, s_0 = s]}{P[s_0 = s]} = P[s_1 > t] = e^{-\lambda t}$

Quindi possiamo generalizzare il procedimento per qualunque s_i .

Proposizione 3.3. Siano W_1, W_2 , i tempi di occorrenza in un processo di Poisson con $\lambda > 0$. Dato N(t) = n, la densità congiunta delle variabili W_1, W_2, W_n è

$$f_{W_1, W_2, \dots, W_n}(w_1, w_2, \dots, w_n) = \frac{n!}{t^n}$$
 con $0 < w_1 < w_2 < \dots < w_n \le t$

Proposizione 3.4. Sia X(t) un processo di Poisson con $\lambda > 0$. Allora

$$P[X(u) = k \mid X(t) = n] = \frac{n!}{k! (n-k)!} \left(\frac{u}{t}\right)^k \left(1 - \frac{u}{t}\right)^{n-k}$$
(10)

 $con \ 0 < u < t \ e \ 0 \le k \le n.$

Dimostrazione. Conseguenza diretta della proposizione 3.3. Essendo nota l'informazione X(t) = n, il modo in cui gli n eventi possono distribuirsi nell'intervallo [0,t] è equivalente ad un esperimento ripetuto n volte, con probabilità di successo $\frac{u}{t}$ (cioè che l'evento accada nell'intervallo di lunghezza u incluso in t). Vogliamo conoscere con che probabilità questo esperimento si ha esito positivo k volte. Questo giustifica l'uso della densità binomiale.

Una proprietà significativa

$$P[X_1(t) = k \mid X_1(t) + X_2(t) = n] = \frac{n!}{k!(n-k)!} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$
(11)

IMPORTANTE. Supponiamo di fornire un servizio al quale arrivano richeste secondo una distribuzione di Poisson con parametro λ . Ogni richiesta ha durata Y_1, Y_2, \ldots , variabili aleatorie con funzione di distribuzione comune $G(y) = P[Y_k \leq y]$. Gli arrivi sono invece regolati dalle variabili W_1, W_2, \ldots che possiamo far diventare variabili aleatorie uniformi.

Sia M(t) una variabile che conta le richieste attive in un dato istante t con M(0) = 0 e sia X(t) il numero totale di richieste arrivate fino all'istante t. Allora

$$M(t) = \sum_{k=1}^{X(t)} \mathbf{1}\{W_k + Y_k \ge t\}$$

Sia

$$p = P[U_k + Y_k \ge t] = \frac{1}{t} \int_0^t P[Y_k \ge t - u] du$$
$$= \frac{1}{t} \int_0^t [1 - G(t - u)] du = \frac{1}{t} \int_0^t [1 - G(z)] dz$$

Conoscendo il numero n di richieste totali fino all'istante t, la probabilità condizionata fornisce

$$P[M(t) = m \mid X(t) = n] = \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m}$$

mentre

$$P[M(t) = m] = e^{-\lambda p t} \frac{(\lambda p t)^m}{m!}$$

Il numero di richieste esistenti al tempo t è un processo di Poisson con media

$$E[M(t)] = \lambda p t$$
$$= \lambda \int_0^t [1 - G(z)] dz$$

4 Processi di Rinnovamento

4.1 Definizione di Processi di Rinnovamento e Concetti Correlati

Definizione 4.1. Uno processo contatore (di rinnovamento) è un processo stocastico non negativo a valori interi denominato con N(t), $t \ge 0$. Il processo registra le occorrenze successive di un evento nell'intervallo temporale (0,t], dove i tempi tra eventi consecutivi sono variabili aleatorie i.i.d positive.

- $F(x) = P[X_k \le x]$, distribuzione delle variabili aleatorie X_k .
- $W_n = X_1 + X_2 + \ldots + X_n$, tempo di attesa per l'evento n-esimo.

Nella teoria dei processi di rinnovamento è fondamentale derivare proprietà di alcuni variabili aleatorie associate a N(t) e W_n conoscendo la distribuzione F. Ad esempio

$$E[N(t)] = M(t)$$

che è detta funzione di rinnovamento.

$$P[W_n \le x] = F_n(x) = \int_0^\infty F_{n-1}(x - y) dF(y)$$

$$P[N(t) = k] = F_k(t) - F_{k+1}(t)$$

$$M(t) = E[N(t)] = \sum_{k=1}^\infty P[W_k \le t] = \sum_{k=1}^\infty F_k(t)$$

Tre variabili risultano di particolare interesse:

- $\gamma_t = W_{N(t)+1} t$, vita residua;
- $\delta_t = t W_{N(t)}$, vita corrent;
- $\beta_t = \gamma_t + \delta_t$, vita totale.

4.2 Processi di Poisson Come Processi di Rinnovamento

$$P[N(t) = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
$$M(t) = E[N(t)] = \lambda t$$

Vita totale media:

$$E[\beta_t] = E[\gamma_t] + E[\delta_t]$$

$$= \frac{1}{\lambda} + \int_0^\infty P[\delta_t > y] \, dy$$

$$= \frac{1}{\lambda} + \frac{1}{\lambda} (1 - e^{-\lambda t}) \to \frac{2}{\lambda} \text{ per } t \gg \frac{1}{\lambda}$$

4.3 Comportamento Asintotico dei Processi di Rinnovamento

Proposizione 4.1. Con probabilità pari a 1 vale

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{\mu} \tag{12}$$

Dimostrazione.

$$\begin{split} S_{N(t)} & \leq t < S_{N(t)+1} \\ \frac{S_{N(t)}}{N(t)} & \leq \frac{t}{N(t)} < \frac{S_{N(t)+1}}{N(t)} \\ \frac{S_{N(t)}}{N(t)} & \leq \frac{t}{N(t)} < \frac{S_{N(t)+1}}{N(t)+1} \cdot \frac{N(t)+1}{N(t)} \\ E[X] & \leq \lim_{t \to \infty} \frac{t}{N(t)} < E[X] \cdot 1 \ con \ E[X] = \mu \end{split}$$

4.4 Equazioni di Rinnovamento

Definizione 4.2. Sia a(t) una funzione nota, F(t) funzione di distribuzione della variabile aleatoria X. Allora

$$A(t) = a(t) + \int_0^t A(t-x) dF(x)$$

è detta equazione di rinnovamento.

Proposizione 4.2. Sia a(t) una funzione limitata. Allora

$$A(t) = a(t) + \int_0^t A(t-x) dF(x)$$

ha un'unica soluzione A limitata su un intervallo finito e questa è

$$A(t) = a(t) + \int_0^t a(t-x) dM(x)$$

con $M(t) = \sum_{k=1}^{\infty} F_k(t)$ è la funzione di rinnovamento.

Grazie al risultato della proposizione 4.2 possiamo dimostrare questa importante relazione

$$E[S_{N(t)+1}] = E[X_1 + X_2 + \dots + X_{N(t)+1}]$$

$$= E[\sum_{i=1}^{N(t)+1} X_i]$$

$$\vdots$$

$$= \mu E[M(t) + 1] \quad \text{con } \mu = E[X_1]$$

dove le X_1, X_2, \ldots sono variabili aleatorie indipendenti e identicamente distribuite mentre N è un valore

casuale. Usando l'argomento di rinnovamento possiamo infatti scrivere

$$\begin{split} A(t) &= E[S_{N(t)+1}] \\ &= \int_0^\infty E[S_{N(t)+1}] \mid X_1 = x] \, dF(x) \\ &= \int_0^t [x + A(t-x)] \, dF(x) + \int_t^\infty x \, dF(x) \\ &= \int_t^\infty x \, dF(x) + \int_0^t A(t-x) \, dF(x) \\ &= E[X_1] + \int_0^t A(t-x) \, dF(x) \\ &= E[X_1] + \int_0^t E[X_1] \, dM(t) \quad \text{per il teorema 4.2} \\ &= E[X_1][M(t) + 1] \end{split}$$

4.5 Stopping Time

Proposizione 4.3 (Equazione di Wald). Siano X_1, X_2, \ldots variabili aleatorie i.i.d. con valore atteso finito $(E[X_i] < \infty)$ e sia N uno stopping time per X_1, X_2, \ldots allora

$$E[\sum_{n=1}^{N} X_n] = E[N] E[X]$$

4.6 Teorema Elementare di Rinnovamento

Proposizione 4.4 (Teorema Elementare di Rinnovamento). Sia X_i un processo di rinnovamento con $\mu = E[X_i] < \infty$. Allora

$$\lim_{t \to \infty} \frac{M(t)}{t} = \frac{1}{u} \tag{13}$$

 $\textbf{Dimostrazione.} \ \ Sappiamo \ \ che \ t < S_{N(t)+1}, \ \ usando \ E[S_{N(t)+1}] = E[X_1] \cdot [M(t)+1] \ \ otteniamo$

$$\frac{M(t)}{t} > \frac{1}{u} - \frac{1}{t} \Rightarrow \lim_{t \to \infty} \frac{M(t)}{t} \ge \frac{1}{u}$$

Sia

$$X_i^c = \begin{cases} X_i & se \ X_i \le c \\ 0 & se \ X_i > c \end{cases}$$

(Stuff).

$$X_i^c \le X_i \Rightarrow N^c(t) \ge N(t) \Rightarrow M^c(t) \ge M(t)$$

(Avendo X_i^c vita più breve di X_i , nello stesso periodo temporale (0,t] si registrano più avvenimenti).

$$t + c \ge \mu_c \left(1 + M(t) \right) \Rightarrow \frac{M(t)}{t} \le \frac{1}{\mu_c} + \frac{1}{t} \left(\frac{c}{\mu_c} - 1 \right)$$

e questo porta al limite superiore

$$\lim_{t \to \infty} \frac{M(t)}{t} \le \frac{1}{\mu_c} \quad \forall \, c$$

Non resta che verificare che μ_c tende a μ . Abbiamo che (con grafico di X_i^c si capisce meglio)

$$\lim_{c \to \infty} \mu_c = E[X_i^c]$$

$$= \lim_{c \to \infty} \int_0^c P[X_i^c > c] dx$$

$$= \int_0^\infty [1 - F(x)] dx$$

$$= \mu$$

5 Altri Concetti Utili all'Analisi

5.1 Processi Semi-Markoviani

Un processo semi-markoviano cambia stato in accordo ad una catena di Markov ma la transizione da uno stato i ad uno stato j richiede una quantità casuale di tempo.

- 1. Se i è lo stato corrente, lo stato successivo sarà j con probabilità P_{ij} .
- 2. Sapendo che lo stato corrente è i e il prossimo stato sarà j, il tempo necessario alla transizione ha distribuzione $F_{ij}(t)$.

Sia quindi Z(t) lo stato all'istante t, $\{Z(t), t \geq 0\}$ è un processo semi-markoviano mentre $\{X_n, n \geq 0\}$ è detta catena inclusa nel processo (embedded chain).

Distribuzione del tempo associato alla visita dello stato i-esimo.

$$H_i(t) = \sum_{j} = P_{ij}F_{ij}(t) \tag{14}$$

Tempo medio che trascorro nello stato i-esimo prima della transizione.

$$\mu_i = \int_0^\infty x \, dH_i(x) \tag{15}$$

Sia T_{ii} il tempo tra due passaggi nello stato *i*-esimo, allora $\mu_{ii} = E[T_{ii}]$.

Proposizione 5.1. Se il processo Z è irriducibile e $E[T_{ii}] < \infty$ allora

$$P_{i} = \lim_{t \to \infty} P[Z(t) = i \mid Z(0) = j] = \frac{\mu_{i}}{\mu_{ii}}$$
(16)

Proposizione 5.2. Con probabilità 1 vale

$$\lim_{t \to \infty} \frac{tempo \ speso \ in \ i \ durante \ [0, t]}{t} = \frac{\mu_i}{\mu_{ii}}$$
 (17)

Proposizione 5.3. Se la catena inclusa nel processo è ricorrente positiva, allora

$$P_j = \frac{\pi_j \mu_j}{\sum_i \pi_i \mu_i} \tag{18}$$

dove π è la distribuzione asintotica della catena inclusa.

IMPORTANTE. Sia P la matrice della catena di markov inclusa e T la matrice dei tempi medi associati alle transizioni (T_{ij} è il tempo medio che il processo impiega per andare dallo stato i allo stato j). Allora i tempi medi di permanenza sono dati da

$$\mu_i = \sum_i P_{ij} T_{ij}$$

6 Analisi di Code e Protocolli

$6.1 \quad \text{Coda M/G/1}$

- \bullet M, la distribuzione degli arrivi è esponenziale, quindi gli arrivi sono un processo di Poisson;
- G, i server hanno distribuzione generica G;
- 1, ho un solo server.

Non si tratta di un processo di Markov, è necessario adottare delle ipotesi semplificatrici. Sia X_n la variabile che conta il numero di elementi in coda nell'n-esimo slot di tempo e sia Y_n la variabile che indica il numero di arrivi durante il tempo di servizio tra t_n e t_{n+1} , allora

$$X_{n+1} = \begin{cases} X_n - 1 + Y_n & \text{se } X_n > 0 \\ Y_n & \text{se } X_n = 0 \end{cases}$$

Essendo gli arrivi un processo di Poisson sono tra loro indipendenti, la probabilità che in uno slot temporale di durata x arrivino j nuovi pacchetti è

$$a_{j} = P[Y_{n} = j]$$

$$= E[P[Y_{n} = j \mid \text{tempo di servizio } = x]]$$

$$= E[e^{-\lambda x} \frac{(\lambda x)^{j}}{j!}]$$

$$= \int_{0}^{\infty} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} dG(x)$$

Da questa probabilità si possono derivare le probabilità di transizione di X

$$P_{ij} = P[Y_n = j - i + 1] = \begin{cases} \int_0^\infty e^{-\lambda x} \frac{(\lambda x)^j}{j!} dG(x) & i \ge 1, \ j \ge i - 1 \\ 0 & j < i - 1 \end{cases}$$

La matrice del processo sarà quindi

$$P = \begin{bmatrix} a_0 & a_1 & a_2 & \dots \\ a_0 & a_1 & a_2 & \dots \\ 0 & a_0 & a_1 & \dots \\ 0 & 0 & a_0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$6.2 \quad \text{Coda G/M/1}$

6.3 Esempi di Protocolli di Livello 2 e 4

6.3.1 Protocollo 1

All'inizio di ogni slot temporale trasmetto il contenuto del buffer fino ad un massimo di M pacchetti.

$$X_{n+1} = \begin{cases} Y_n & \text{se } X_n \le M \\ X_n - M + Y_n & \text{se } X_n > M \end{cases}$$

6.3.2 Protocollo 2

All'inizio di ogni slot temporale trasmetto il contenuto del buffer solo se sono presenti almeno m pacchetti. Ho due casi:

• trasmetto tutto il contenuto del buffer

$$X_{n+1} = \left\{ \begin{array}{ll} Y_n & \text{se } X_n \ge m \\ X_n + Y_n & \text{se } X_n < m \end{array} \right.$$

 $\bullet\,$ trasmetto fino ad un massimo di $M \geq m$ pacchetti

$$X_{n+1} = \begin{cases} X_n + Y_n & \text{se } X_n < m \\ Y_n & \text{se } m \le X_n \le M \\ X_n - M + Y_n & \text{se } X_n > M \end{cases}$$

6.4 ALOHA

6.5 Go-Back-N

Si tratta di un protocollo di livello 2 che si impegna a ritrasmettere i pacchetti corrotti. Il canale di trasmissione può assumere due stati:

- good, indicato con 0 o con **G**;
- bad, indicato con 1 o con **B**.

Quando una trasmisione non è buona (**B**) si ritrasmette lo stesso pacchetto dopo m-1 slot temporali. m è il tempo di round-trip.

Siamo interessati a calcolare il throughput

throughput =
$$\frac{\text{\# slot buoni}}{\text{\# totale di slot}} = \lim_{t \to \infty} \frac{N(t)}{t}$$

Si tratta di un canale con memoria. Metrica del tempo:

- 1 per stato **G** (durata 1 se esco dallo stato buono);
- m per stato B (durata m se esco dallo stato non buono).

Metrica di successo:

- $R_G = 1$ per stato **G**;
- $R_B = 0$ per stato **B**.

Matrice della catena di Markov inclusa:

$$P = \left[\begin{array}{cc} p_{00} & p_{01} \\ p_{10}(m) & p_{11}(m) \end{array} \right]$$

Quindi le distribuzioni asintotiche dei due stati risultano essere

$$\pi_G = \frac{p_{10}(m)}{p_{01} + p_{10}(m)}$$
 $\pi_B = \frac{p_{01}}{p_{01} + p_{10}(m)}$

mentre il throughput vale

throughput =
$$\frac{\pi_G R_G + \pi_B R_B}{\pi_G T_G + \pi_B T_B}$$
$$= \frac{p_{10}(m)}{p_{10}(m) + m p_{01}}$$

Supponiamo ora che esista un canale di ritorno per fornire un feedback, con probabilità di errore δ . Con i nuovi stati G_0 , G_1 , \mathbf{B} la matrice di transizione diventa

$$P = \begin{bmatrix} (1 - \delta) p_{00} & \delta p_{00} & p_{01} \\ (1 - \delta) p_{00}(m) & \delta p_{00}(m) & p_{01}(m) \\ (1 - \delta) p_{10}(m) & \delta p_{10}(m) & p_{11}(m) \end{bmatrix}$$

Ora le probabilità stazionarie valgono

$$\pi_{G_1} = \pi_{G_0} \frac{\delta}{1 - \delta} \quad \pi_B = 1 - \frac{\pi_{G_0}}{1 - \delta} \quad \pi_{G_0} = \frac{(1 - \delta) \, p_{10}(m)}{(1 - \delta) \, p_{01} + \delta \, p_{01}(m) + p_{10}(m)}$$

mentre il throughput

throughput =
$$\frac{\pi_{G_0}}{\pi_{G_0} + m\left(1 - \pi_{G_0}\right)}$$

7 Per Esame

7.1 Soluzioni Esercizi

7.1.1 Compite 22 settembre 2005

- 1. a) $\vec{\pi} = (\frac{40}{72}, \frac{15}{72}, \frac{17}{72})$
 - b) $m_{31} = 1, v_{31} = 0$
 - c) $m_{13} = \frac{55}{17}$, $v_{13} = \frac{1490}{289}$
 - d) $P[X_1 = 1, X_3 = 1 \mid X_2 = 2] = \frac{1}{5}, P[X_2 = 2 \mid X_1 = 1, X_3 = 1] = \frac{2}{17}$
- 2. Risoluzione come processo semi-markoviano. Le matrici incluse e dei tempi sono rispettivamente:

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \alpha & 0 & 1 - \alpha \\ 1 & 0 & 0 \end{bmatrix} \quad T = \begin{bmatrix} - & 1/\lambda & - \\ 2 & - & \beta \\ 0 & - & - \end{bmatrix}$$

dove $\alpha = P[X(2) = 0]$ è la probabilità che non arrivi alcun pacchetto entro 2 secondi, mentre β è il tempo medio che il secondo pacchetto impiega per arrivare, essendo noto che questo arrivi, quindi

 $\beta = E[$ tempo arrivo pacchetto | il pacchetto arriva]

$$= \frac{1}{1 - e^{-2\lambda}} \int_0^2 x \lambda e^{x\lambda} dx$$
$$= \frac{1 - 3e^{-2\lambda}}{1 - e^{-2\lambda}}$$

- a) La frazione di tempo in cui la coda è vuota vale $\frac{\mu_0}{\mu_0+\mu_1+\mu_2}=\frac{1}{2-e^{-2}}$
- b) E[ritardo]P[coda piena] = 1 $\frac{1}{2-e^{-2}}$ = $\frac{1-e^{-2}}{2-e^{-2}}.$
- 3. a) $E[X(\frac{1}{10})] = 10(1-e^{-1}), E[X(\frac{1}{6})] = 10(1-e^{-5/3}), \lim_{t\to\infty} E[X(t)] = 10,$
 - b) $P[X(\frac{1}{10}) = 10] = e^{-r} \frac{r^{10}}{10!} = 0.05$, con $r = 10(1 e^{-1})$, $\lim_{t \to \infty} P[X(t) = 10] = e^{\lambda/\mu} \frac{(\lambda/\mu)^{10}}{10!} = 0.125$.
 - c`

$$\lambda pt = \begin{cases} \lambda t & t < 2\\ \lambda \int_2^t \left(1 - \frac{z - 2}{8}\right) dz & 2 \le t \le 10\\ 6\lambda & t > 10 \end{cases}$$

Quindi $E[X(6)]=2\lambda+\lambda\int_2^6\left(1-\frac{z-2}{8}\right)\,dz=5\lambda,$ mentre $E[X(10)]=2\lambda+\lambda\int_2^{10}\left(1-\frac{z-2}{8}\right)\,dz=6\lambda.$ Per l'ultimo punto abbiamo invece P[X(t)=10] per $t=6,\infty,$ quindi $\lambda pt=25/3,$ P[X(6)=10]=0.107 e $\lambda pt=10$ per $\lim_{t\to\infty}P[X(t)=10]=0.125.$

- 4. Canale markoviano con $p_{00} = 0.99$ e $p_{10} = 0.1$:
 - a) thp = $\frac{p_{10}(2)}{p_{10}(2) + m p_{01}} = \frac{189}{209} = 0.904$
 - b) thp = $\frac{\pi_{G_0}}{\pi_{G_0} + m(1 \pi_{G_0})} = 0.74$

7.1.2 Compito 14 luglio 2006

1. a) La distribuzione di probabilità di X_1 corrisponde alla prima riga della matrice P, la distribuzione di X_2 corrisponde alla prima riga di P^2 mentre la distribuzione di X_{500} corrisponde al vettore $\vec{\pi} = (\frac{10}{27}, \frac{12}{27}, \frac{5}{27})$.

22

- b) $m_{00} = \frac{1}{\pi_0} = \frac{27}{10}, m_{01} = \frac{5}{2}, m_{02} = \frac{9}{2}.$
- c) $W^3 = I + P + P^2 + P^3$ la prima riga vale (1.964, 1.284, 0.752), $W = (I P)^{-1}$.
- 2. a)
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. Canale markoviano con $p_{00} = 0.98$ e $p_{10} = 0.1$:

 - a) thp = $\frac{p_{10}(2)}{p_{10}(2)+m\,p_{01}} = \frac{705}{874} = 0.806$ b) thp = $\frac{\pi_{G_0}}{\pi_{G_0}+m\,(1-\pi_{G_0})} = \frac{403}{597} = 0.675$

7.1.3 Compito 12 dicembre 2006

- a) Le classi in cui la catena si scompone sono $C_1 = \{0, 4\}$ periodica di periodo 1, $C_2 = \{2\}$ transitoria 1. e $C_3 = \{1, 3, 5\}$ ricorrente.
 - b) Per la classe C_1 abbiamo $\vec{\pi} = (1/2, 1/2)$ mentre per C_3 (essendo la sottomatrice di questa classe doppiamente stocastica) $\vec{\pi} = (1/3, 1/3, 1/3)$. Partendo dallo stato 2 la probabilità di andare in C_1 è 2/5 mentre di andare in C_3 è 3/5. Abbiamo quindi:

$$\lim_{n \to \infty} P^n = \begin{bmatrix} - & 0 & 0 & 0 & - & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ - & 1/5 & 0 & 1/5 & - & 1/5 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ - & 0 & 0 & 0 & - & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \end{bmatrix}$$

c) Con la media temporale possiamo inserire i valori che non hanno un limite definito:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P^{i} = \begin{bmatrix} 1/2 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 1/5 & 1/5 & 0 & 1/5 & 1/5 & 1/5 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 1/2 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \end{bmatrix}$$

- d) $P[X_4 = 5, X_2 = 3 \mid X_3 = 1, X_1 = 3] = P_{15} \cdot P_{31} \cdot P_{33} / P_{31}^{(2)} = 0.122.$
- 2. a)
 - b)
- a) $P[X_1(3) = 1 \mid X_1(3) + X_2(3) = 3] = {3 \choose 1} 0.5^4 = 0.1875, P[X_1(3) + X_2(3) = 3 \mid X_1(3) = 1] = P[X_2(3) = 2] = 0.112.$
 - b) $P[X_1(2) = 1 \mid X_1(3) = 3] = 2/9 = 0.222, P[X_1(3) = 3 \mid X_1(2) = 1] = P[X_1(1) = 2] = 0.251.$
- 4. a)
 - b)
 - c)

7.1.4 Compito 09 luglio 2007

- 1. a) Conoscendo lo stato iniziale $X_0=0$, la distribuzione di probabilità per X_1 corrisponde alla prima riga della matrice di transizione P, la distribuzione di X_2 corrisponde alla prima riga della matrice P^2 mentre la distribuzione per X_{500} abbiamo $P^{500}\approx P^{\infty}$, quindi è necessario calcolarsi $\vec{\pi}=(0.5,0.25,0.25)$ con le tecniche note.
 - b) Calcolare i tempi medi di primo passaggio è lungo ma non difficile (si veda l'apposita sezione), abbiamo $m_{02}=3, m_{12}=2, m_{22}=4.$
 - c) Ottenere il risultato può essere un po' lungo ma bassa applicare la proprietà di Markov e la formula di Bayes, $P[X_1=1,X_3=1\mid X_2=1]=\frac{1}{15},$ $P[X_2=1\mid X_1=1,X_3=1]=\frac{1}{3}.$
- 2. a) $\frac{\beta^2}{(\alpha+\beta)^2} = 0.01$, $\frac{1}{2\beta} = 1.5$ giorni.
 - b) $24 \cdot \frac{\alpha^2}{(\alpha+\beta)^2} + 12 \cdot \frac{2\alpha\beta}{(\alpha+\beta)^2} = 21.6$
 - c) $30 \cdot \frac{\alpha^2}{(\alpha+\beta)^2} + 12 \cdot \frac{2\alpha\beta}{(\alpha+\beta)^2} = 26.46$
- 3. Processo semi-markoviano.

a)

$$P = \left[\begin{array}{cccc} 0 & 1 & 0 \\ 1 - \alpha & 0 & \alpha \\ 1 & 0 & 0 \end{array} \right]$$

b)

$$T = \begin{bmatrix} - & T & - \\ \beta T & - & \frac{\beta T}{2} \\ \gamma T & - & - \end{bmatrix}$$

- 4. Processi di Poisson, facile andandosi a vedere le formule.
 - a) $P[X(0.1) = 0] = e^{-2} = 0.1353$
 - b) $P[X(0.1) = 0 \mid X(0.5) = 10] = 0.8^{10}$

7.1.5 Compito 09 luglio 2007

- 1. a)
 - b)
 - c)
- 2. a) Il traffico smaltito vale 2000/E[tempo ciclo]=2000/(E[coda vuota]+E[1 coda piena]+E[tempo trasmissione $])=2000/(\frac{1}{2\lambda}+\frac{1}{\lambda}+10^{-3})=0.5$ Mbps che è un quarto della capacità massima del nodo.
 - b)
 - c)
- 3. a)
 - b)
 - c)
- 4. a)
 - b)

7.2 Dimostrazioni

- Dimostrare che il periodo è una proprietà di classe: vedi proposizione 2.4.
- Dimostrare che se $i \leftrightarrow j$ e i ricorrente, allora anche j è ricorrente: vedi proposizione 2.6.
- Si consideri una passeggiata casuale sugli interi non negativi con le seguenti probabilità di transizione: $P_{01} = 1$, $P_{i,i+1} = p$, $P_{i,i-1} = q$ con i > 0 e p+q=1. Se ne studi il comportamento, caratterizzandone in particolare la ricorrenza o transitorietà e ricavandone la distribuzione stazionaria:
- Dare la definizione di stato riconente e dimostrare che uno stato i è riconente se e solo se $\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$:
- Dimostrare che in una catena di Markov con un numero finito di stati non possono esserci stati ricorrenti nulli:

Dimostrazione. Suppongo che esista uno stato ricorrente nullo. Allora deve esistere una classe ricorrente nulla con un numero finito di stati ma questo è impossibile per il teorema 2.8.

- Dimostrare che se X e Y sono due variabili aleatorie con distribuzione di Poisson, rispettivamente di parametri μ e λ allora X+Y è una variabile di Poisson con parametro $\mu+\lambda$: vedi proposizione 3.1.
- Si dimostri che per un processo di Poisson X(t) la statistica X(s) condizionata a X(t), con s < t, è binomiale e si fornisca l'espressione di $P[X(s) = k \mid X(t) = n]$: vedi proposizione 3.4.
- Dimostrare che $E[S_{N(t)+1}] = E[X_k][M(t)+1]$ con $E[X_1] = \mu$: la dimostrazione è resa possibile dalla proposizione 4.2 e segue la dimostrazione del teorema.
- Enunciare e dimostrare il teorema elementare di rinnovamento: vedi proposizione 4.4.
- Dimostrare che per un processo di rinnovamento $M(t) < \infty$ per ogni t intero. (Sugg.: si ricordi che $M(t) = \sum_{k=1}^{\infty} F_k(t)$):