

Language Evolution and Diachrony Generation Research Project Report Matthieu Boyer

Laboratoire Lattice

CNRS — ENS-PSL — Université Sorbonne Nouvelle

Under supervision of Mathieu Dehouck

Introduction

Few database available in diachrony:

- ► The Index Diachronica [ind]
- ▶ The \mathcal{E} vosem [FKD $^+$ 25]

There is a need for less localized data.

Plan

Idea

One Language Evolution

Two Language Evolution

Results

Evolution as Random Trees I

Consider a language L_0 , which we will call our base language.

Evolution as Random Trees II

Algorithm One Language Evolution

```
\begin{array}{l} \mathit{leaves} \leftarrow \{L_0\} \\ \mathcal{T} \leftarrow \mathrm{Tree}\left(L_0,\varnothing\right) \\ \text{for } n \leq \mathrm{Epochs} \ \mathbf{do} \\ \text{for } l \in \mathrm{Leaves} \, \mathcal{T} \ \mathbf{do} \\ S \leftarrow \mathrm{Evolve} \, l \\ l \leftarrow \mathrm{Tree}\left(l,S\right) \\ \text{return } \, \mathcal{T} \end{array}
```

 \triangleright Here $\mathcal T$ is modified in place.

Specification of Evolve I

We want to choose between *evolution types* $(\varphi, \sigma, \tau, \lambda)$ at computation :

Specification of Evolve II

We want Evolve to be easily revertible:

$$\mathbb{P}\left(\text{Evolve}\left(l_{1}\right)=l_{2}\right)\neq0\Leftrightarrow\mathbb{P}\left(\text{Evolve}\left(l_{2}\right)=l_{1}\right)\neq0$$

Plan

Idea

One Language Evolution

Two Language Evolution

Results

Collision Hypothesis I

We assume language interacting create evolutions :

Collision Hypothesis II

Algorithm Two Language Evolution

```
\mathcal{T} \leftarrow \text{Tree}\left(L_0,\varnothing\right)
for n \leq \text{Epochs do}
       for l \in \text{Leaves } \mathcal{T} \text{ do}
               S \leftarrow \text{Evolve} l
               Push (Stack, l \leftarrow l \cup \text{Tree}(l, S))
       for l \in \text{Leaves } \mathcal{T} \text{ do}
               l^{\dagger} \leftarrow \mathcal{P}_l \left( \text{Leaves } \mathcal{T} \right)
               S \leftarrow \text{Collision}(l, l^{\dagger})
               Push (Stack, l \leftarrow l \cup \text{Tree}(l, S))
       Apply(Stack)
return \mathcal{T}
```

Specification of Collision

Collision should:

be easily revertible.

Specification of Collision

Collision should:

- be easily revertible.
- provide a way to choose collision type, for each parent.

Specification of Collision

Collision should:

- be *easily revertible*.
- provide a way to choose collision type, for each parent.
- take linguistic proximity of the parents into account.

Specification of Collision

Collision should:

- be *easily revertible*.
- provide a way to choose collision type, for each parent.
- take linguistic proximity of the parents into account.
- ▶ take the probability distribution P as the strength of the collisions.

A Manifold of Languages I

 \mathcal{P}_l models the probability of interaction with l. Defining a geographical embedding gives :

$$\mathcal{P}_{l} \propto \frac{1}{d_{l}\left(x\right)}$$

A Manifold of Languages II

- ▶ The simplex, that is, $d_l(x) = 1$ for all l, x.
- $ightharpoonup \mathbb{R}^3$, with the ℓ^2 distance.
- ▶ The 2-sphere \S^1 where each language is a pair λ, φ :

$$d_{(\theta_1,\lambda_1)}(\theta_2,\lambda_2) = \arccos\left(\sin\left(\varphi_1\right)\sin\left(\varphi_2\right) + \cos\left(\varphi_1\right)\cos\left(\varphi_2\right)\cos\left(\lambda_2\right)\right)$$

A Manifold of Languages III

We suppose a language only interacts with languages from the same epoch, for now. We could add a new dimension to the manifold to modelize time.

Moreover, we are not required to use a metric but simply a positive separated function.

Implemented I

We worked using a modular structure :

- A tree generation module
- ► A *linguistical* observable
- A geographical observable

We have implemented all 3 previously defined *geographical* observable.

Implemented II

We only have a lexicon observable :

Implemented III

For our probabilities, we set thresholds :

- ightharpoonup 1-lpha representing our random evolution probability;
- lacksquare 1-eta representing our collision generation probability.

Our problem is then to find *optimal* parameters $\alpha, \beta, \text{Evolve}, \text{Collision}$ and distribution \mathcal{P} .

Performance Checking I

We use the \mathcal{E} vosem project [FKD⁺25] as a lexical bank :

- Our base languages are two proto-families, Germanic and Indo-European which derived in modern French, German, English, Dutch, Spanish, Italian and Danish.
- Accuracy is computed by the ℓ^2 distance between subsets of the dialexification matrices.
- ▶ Limitation of randomness is done by repetition of the experiments, though there are $\mathcal{O}\left(3^{7d}\right)$ submatrices.

Performance Checking II

However, our algorithm is quite slow. Assuming :

- Evolve is done in constant time (false for phonetics, for example).
- Collision is done in constant time.
- ▶ Computing d(x,y) is done in constant time.
- Loss computation is in constant time.

we get a complexity in $\mathcal{O}\left(3^{2d}k\right)$ for d epochs and k base languages, to multiply by the number of repetitions and parameters.

Results I

We take for base languages for the euclidean space :

$$\left(\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right)$$

and for the sphere \S^1 we take the GPS coordinates of Paris and Berlin.

Results II

References

Alexandre François, Siva Kalyan, Mathieu Dehouck, Martial Pastor, and David Kletz.

Evosem: A database of dialexification across language families.

Online database., 2025.

Index diachronica.

https://chridd.nfshost.com/diachronica/.