Übung 12 - Asynchronmaschine 2

Eine Kurzschlussläufer-Asynchronmaschine mit der Polpaarzahl 2 wird mit einem Schlupf von 4% betrieben. Sie entnimmt dem 50 Hz Netz eine elektrische Wirkleistung von 10 kW. Die Verluste im Eisen und in den Statorwicklungen können vernachlässigt werden.

- 1. Welche mechanische Leistung gibt die Maschine ab?
- 2. Wie hoch sind die Verluste im Rotor?
- 3. Wie gross ist der Wirkungsgrad im Betriebspunkt?
- 4. Geben Sie die aktuelle Drehzahl an.
- 5. Wie gross ist das Drehmoment?

Eine Asynchronmaschine wird mit folgenden drei Schlupfwerten betrieben: $s_1 = 2 \%$, $s_2 = -2 \%$, $s_3 = 102 \%$. Die Statorleistung beträgt immer +/- 100 %.

- 1. In welchem Betriebszustand befindet sich die Maschine jeweils?
- 2. Geben Sie die Leistungsaufteilung zwischen der Statorleistung P_1 (+/- 100 %), der Rotorleistung P_2 sowie der mechanischen Leistung P_m an.

Ersatzschaltung und Herleitung der Drehmomentgleichung:

- 1. Zeichnen Sie das T-Ersatzschaltbild für eine Kurzschlussläufer-Asynchronmaschine im stationären Betrieb. (inkl. R_1 , $L_{1\sigma}$, L_{1h} , R_{Fe} , $L_{2\sigma}$ ', R_2 ', R_3 ').
- 2. Vereinfachen Sie diese Ersatzschaltung, indem Sie den Statorwiderstand wegstreichen sowie den Magnetisierungsstrom (L_{1h} , R_{Fe}) vernachlässigen.
- 3. Ersetzten Sie R_2 ' und R_S ' durch $k^* R_2$ ' (k ist eine Funktion des Schlupfes).
- 4. Berechnen Sie formell den Strom, den die Maschine aufnimmt.
- 5. Leiten Sie die Formel her für die von der Maschine mechanisch abgegebene Wirkleistung. (Die mechanische Leistung entspricht der in R_S ' umgesetzten Leistung. $P_m = 3^* R_S'^* I_2^2$.)
- 6. Berechnen Sie aus der Leistung die Fromel für das Drehmoment. Ersetzten Sie dabei ω_m durch ω_1 sowie R_S ' durch R_2 '.
- 7. Vergleichen Sie das Resultat mit der Fromel im Skript.