SIMULTANEOUS EQUATION MODELS: 2SLS Example 2

Consider the following system:

$$Y_{1t} = \beta_{10} + \beta_{11}Y_{2t} + \gamma_{11}X_{1t} + \gamma_{12}X_{2t} + u_{1t}$$

$$Y_{2t} = \beta_{20} + \beta_{21}Y_{1t} + u_{2t}$$

with Y_1 (Income) and Y_2 (Stock of money) endogenous and X_1 (Investment) and X_2 (Government expenditure) exogenous variables.

(a) Identification

Order condition:

Equation 1: K-k = 2-2 = 0; m-1 = 2-1=1; thus equation not identified

Equation 2: K-k = 2-0=2; m-1 = 2-1=1; thus equation is overidentified

Rank condition: Equation 2: $A = (-\gamma_{11} - \gamma_{12})$ having at least one non zero determinant of dimension 1x1.

(b) Estimate the system using 2SLS.

The REG Procedure Model: MODEL1 Dependent Variable: Y1

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	66688105	33344053	2560.94	<.0001
Error	27	351546	13020		
Corrected Total	29	67039651			
Root MSE		114.10624	R-Square	0.9948	
Dependent Me	an	5794.51667	Adj R-Sq	0.9944	
Coeff Var		1.96921			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	2587.35143	72.00106	35.93	<.0001
X1	1	1.67073	0.16462	10.15	<.0001
X2	1	1.96933	0.09837	20.02	<.0001

The REG Procedure Model: MODEL1 Dependent Variable: Y2

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	41788588	41788588	1159.42	<.0001
Error	28	1009198	36043		
Corrected Total	29	42797786			
Root MSE		189.84939	R-Square	0.9764	
Dependent Me	an	2388.63000	Adj R-Sq	0.9756	
Coeff Var		7.94805			

Parameter Estimates

			Parameter	Standard	
Variable	Label	DF	Estimate	Error	t Value
Intercept	Intercept	1	-2198.29750	139.09857	-15.80
y1p	Predicted Value of Y1	1	0.79160	0.02325	34.05

3

The estimated structural form of the Money supply function is:

$$\hat{Y}_{2t} = -2198.2975 + 0.7916 \quad \hat{Y}_{1t}$$
 $se = (139.0986) \quad (0.0233)$
 $t = (-15.8038) \quad (34.0502)$