

Projekt: 3D Druck in der Mechanik

Die Handprothese

Gruppe C Kristina S. Leberer Sascha G. Thiede Jonte C. Fricke

Fakultät für Verkehrs- und Maschinensysteme Institut für Mechanik

Fachgebiet Stabilität und Versagen funktionsoptimierter Strukturen Prof. Dr. C. Völlmecke

Agenda

- Motivation
 - o Projektziel und Problemkontext
 - Projekte & Open-Source Community
- Vorgehen
 - Meilensteine
 - Iterative Herangehensweise
 - Optimierungsziele
- Ergebnisse
 - Optimierungen
 - Kosten & Material
- Fazit
 - Projektgestaltung und Umsetzung
 - o Bewertung der entstandenen Prothese
 - o Geplante Weiterentwicklungen und Unterstützung

Motivation

Projektziel

Erstellung und individuellen Handprothese

Anforderungen

- individuell anpassbar
- robust, funktional, zuverlässig
- bequem & optisch ansprechend
- kostengünstig herzustellen
- hygienisch & biokompatibel
- einfach herzustellen
- mitwachsend

Flexy-Hand by Gyrobot https://www.thingiverse.com/thing:380665

https://www.thingiverse.com/thing:4618922

e-NABLE (open-source Community)

Gegründet 2013

von Ivan Owen & Richard Van As – erste Open-Source-3D-Prothese

Mission

Günstige, passgenaue Prothesen zum Selberdrucken

Netzwerk

140+ Chapters in 60+ Ländern, 1 000+ Freiwillige

Tools

FDM-Druck (ABS/PLA) mit "Handomatic" für Größe/Form

Erfolg

FDM-Druck 10 000+ ausgelieferte Prothesen, Stückkosten < 100 USD; Einsatz in Humanitärem, Bildung & Forschung

Links: https://github.com/e-nable

Bild quelle: https://i0.wp.com/enablingthefuture.org/wp-content/uploads/2019/11/ec5.jpg?w=800&ssl=1

Weitere Communities

- Limbitless Solutions
- Open Bionics
- Robohand
- LimbForge

Vorgehen

Meilensteine

Recherche

- Recherche
- Modellauswahl
- Maßaufnahme
- Problemanalyse

Prototypenerstellung

- ausgewählte Modelle drucken
- Verarbeitungsverfahren testen
- Maßanpassung
- vertiefte Materialauswahl

Optimierung

- Analyse der Haftreibung
- Griffstärke und -geometrie optimieren

Abschluss

- Modell finalisieren
- Dokumentation
- Übergabe & Schulung

Methodische Herangehensweise (iterativ)

- Modellanalyse
 Bewertung existierender Open-Source-Prothesen
- II. Geometrie-Anpassung
 Parametrische Skalierung nach Patientendaten
- III. Kraftfluss-Optimierung
 Simulation & Feintuning der Seilführung
- IV. Prototypen-Fertigung Additiver Druck (PLA/TPU) & Kurzprüfung
- V. Nutzertest & Redesign
 Praxiserprobung → Feedback → Überarbeitung

Optimierungsziele

Ergonomie

Verbesserung von Tragekomfort und individueller Passform

Funktionalität

Sicheres Greifen alltäglicher Gegenstände mit möglichst wenig Kraftaufwand

Materialwahl

Leicht, robust, kostengünstig und für den Nachdruck geeignet

Befestigungsmechanismus

Stabiler Halt bei gleichzeitig einfacher Handhabung

Anpassbarkeit & Modularität

Möglichkeit zur schnellen Justierung und Erweiterung der Prothese

Ergebnisse

Zwei Modelle

Model von **Gyrobot** (1. Prototyp)

vor dem Projekt gebaut

Pro	Kontra
weniger Teile	Bänder liegen zu nah an der Haut
Tensoren der Bänder simple	Bänder gehen über die Kontaktflächen der Fingersitzen
	Glatte Gripflächen

Model von e-NABLE (finales Model)

im Projekt gebaut und optimiert

Pro	Kontra
Form der Handaussparung	mehr Teile
optisch ansprechender	Tensoren nicht justierbar
bessere Anleitung	schwieriger beim Zusammenbauen der Gelenke
fortschrittlicher	

HOME: https://www.gyrobot.co.uk

STL: https://www.thingiverse.com/thing:380665

HOME: https://enablingthefuture.org

STL: https://www.thingiverse.com/thing:4618922

Überblick: Optimierungsansätze

- Materialwahl Hand, Bänder
- Herstellung vereinfachte Verarbeitungsprozesse
- Grip-Flächen
 Material- und Oberflächenalternativen
- Gelenke TPU-Gelenke durch Schrumpfschlauch ersetzten
- Tensoren
 Bänderbefestigung mit einfacher
 Kalibrierungsmöglichkeit der Spannkraft
- Bänder Kraftverteilungsalternative
- Innere Flächen
 Bequemlichkeitsanpassung durch Handschuh

Material Hand

	PC-ABS	ABS	Nylon	PCTG	PLA/PLA	PETG
Robust?						
Hygienisch?						
Leicht druckbar?						
Verfügbar?						
Kostengünstig?						
EIGNUNG	X	X	X			

Optimierung Seilzüge

EIGNUNG

Angelschnur Nylonschnur

Kevlar

(geflochten)

Dyneema

0,05 € m

0,03 € m

$$0,12\frac{6}{n}$$

Optimierung Gelenke

Standardgelenk

Flexibles Gelenk

Schrumpfschlauch-Gelenk

Anatomische Passformoptimierung

Skalierungsmöglichkeiten

Verzehrte Skalierung:

- Problematisch bei der Banddurchführung
- Verzehrte Gelenke und Finger machen die Skalierung umständlicher und unproportional

Einfache Skalierung:

- Simple Umsetzung
- Druckbar ohne Stützstruktur

Befestigungsalternativen der Bänder

Empfohlen von e-NABLE

- Mit Kleber fixieren
- TPU-Tensor -> dehnbar

Neuer Tensor

- Backentensor
- nicht dehnbar
- Fixierung mit Druckkraft
- einfache Justierung:
 - 1. Länge einstellen
 - 2. Schraube festziehen
 - Solle einhändig möglich sein

Gripelemente und Ideen

Empfohlen von e-NABLE

→ Silikoneinsätze in gedruckte Formen gießen

Spritzguss mit

Heißkleber

Bandführungsalternativen

Model eines Fingers mit mehreren Befestigungspunkten

- 1. Ausgangspunkt (Standardmodell)
- 2. Standardmodell passt sich gut an Oberfläche an
 - Halten von z.B. einem Türgriff
- 3. Finger öffnet sich wobei sich Spitze schließt

Neue modellierte Finger

- Ausgangspunkt (Standardmodell)
- Standardmodell passt sich gut an Oberfläche an
- Halten von z.B. einem Türgriff
- Finger öffnet sich wobei sich Spitze schließt
- Idee: Individueller Seilzug pro Fingerglied mit Bowden-artiger Leitung der Züge
- Nachteil: Ist Starr, passt sich schlecht einer Oberfläche an

Projektionsmethode:

Seite 20

Kosten und Materialen

Finger Plate		52 g PETG	0,83 € - 1,14 €
Hinge Plate		17g TPU	0,31 € - 0,43 €
Gauntlet		66g PETG	1,05 € - 1,45 €
Grip Plate	0000	7g TPU	0,13€- 0,18€

Gauntlet Cover	13g PETG	0,20€- 0,27€
Palm	90g PETG	1,44 € - 1,98 €
Palm Cover	15g TPU	0,27€- 0,38€

PETG: 16 - 22 €/kg

TPU: 18 - 25 €/kg

(Stand 2025-07)

Gedruckte Teile: 4,23 - 5,38 €

Fazit

Fazit:

Projektgestaltung und Umsetzung

- Erste Prothese basierend auf Open-Source-Daten gebaut
- Anatomische Anpassungen nach ersten Treffen mit Antonio
- Kompletter Neuaufbau zur Verbesserung von Passform und Komfort
- Erste **Krafttests** und **Alltagserprobung** durch Antonio
- Nachjustierung der Feinmotorik basierend auf Nutzererfahrung
- Ergänzungen durch Antonios Mutter

Fazit:

berlin

Bewertung der Prothese zum Projektabschluss

- Passform und Komfort deutlich verbessert
- Funktionalität im Alltag ausreichend für grundlegende Greifbewegung
- Nutzerfeedback positiv: intuitive Handhabung nach kurzer Eingewöhnung
- Materialwahl: PETG statt PLA (empfohlen) für höhere Belastbarkeit und Temperaturbeständigkeit
- Reproduzierbarkeit: Design dient als Basis für weitere Exemplare (z.B. Ersatzprothese)

• Gewicht: 181g

Seite 24

Fazit:

berlin

Weiterentwicklungen und zukünftige Unterstützung

- Neue Fingerkuppen aus hochreibungsfähigem Material zur Verbesserung des Grips geplant
- Langfristige Unterstützung durch Sascha bei Wartung, Reparatur & Nachdruck
- Weitere Handschuhe in Arbeit individuell angepasst durch die Mutter des Nutzers
- Ersatzprothese wird zeitnah auf Basis des optimierten Designs gefertigt
- Wissensaustausch: Optimierungserkenntnisse werden an die Open-Source-Community zurückgespielt
- Langfristige Perspektive: mögliche Integration von EMG-Sensorik zur aktiven Steuerung

Danke.

Ein großen Dank an Frau Prof. Dr. C. Völlmecke, die es uns ermöglicht hat, dieses Projekt mit kompetenter Beratung durchzuführen. Wir bedanken uns auch bei Yating Ou (M.Sc.) und Narges Panjalipoursangari (M.Sc.) für die stetige Unterstützung. Unser Dank geht auch an alle anderen Beteiligten, für ihr Ideenreichtum und ihren Rat.