ALTERNATIF PONDASI UNTUK MESIN DIGITAL PRINTING PONDASI STROUS

TINJAU PADA BEBAN 4,1 ton

- I. DATA DATA
 - ♣ Mutu Beton (fc') : 18.68 Mpa
 ♣ Mutu Baja (fy) : 390 Mpa
- II. TINJAU PADA BEBAN 4,1 ton

Penampang Tiang Bor Pile PONDASI SETEMPAT (POER)

$$\varnothing$$
 = 30.0 cm Berat total (Pu) = Reaksi kolom
A (luas) = 706.9 cm² Pu = 4100.00 kg
keliling = 94.2 cm = 4.10 ton

Cn (rata-rata) =
$$28 \text{ kg/cm}^2$$
 JHP (rata-rata) = 356 kg/cm
Safety Factor 1 = 3 Safety Factor 2 = 5

♣ Berdasarkan Kekuatan Bahan

$$P_{ijin} = \Phi \times Ag \times fc$$
 $P_{ijin} = 0.45 \times 70686 \times 22.5 = 715694.08 \text{ N} = 71569.41 \text{ Kg}$

♣ Berdasarkan Daya dukung Tekan Ijin

$$Q_{STROS} = \frac{\text{(A x CN)}}{\text{SF 1}} + \frac{\text{(Ø x JHP)}}{\text{SF2}}$$

$$= \frac{19792.03}{3.0} + \frac{33552.21}{5.0}$$

$$= 6597.34 + 6710.44 = 13307.79 \text{ kg} = 13.31 \text{ Ton}$$

III. PERHITUNGAN TIANG PONDASI POER

♣ Menentukan Jumlah Tiang

$$n = \frac{Pu}{QSTROS} = \frac{4100.00}{13308} = 0.31 = 1$$
 Buah

Dicoba diberi 1 bh titik bor

♣ Beban - beban yang bekerja pada kolom dasar

$$P_D$$
 = 4100.00 Kg
 M_X = -369.72 Kgm M_Y = -33.70 Kgm

♣ GAMBAR PONDASI TIANG PANCANG

Perhitungan Momen

$$\Sigma Yi^2 = 1 \times 0.00^2 = 0.000 \text{ m}^2$$

 $\Sigma Xi^2 = 1 \times 0.00^2 = 0.000 \text{ m}^2$

```
Ukuran = 0.80 	 x 	 0.80 	 x 	 0.3 	 m
p (panjang) = 0.800 	 m 	 t 	 (tebal) = 0.300 	 m
I (lebar) = 0.800 	 m
```

♣ Beban yang bekerja pada titik 0 (Titik berat susunan Tiang)

♣ Daya dukung 1 tiang dalam kelompok

$$E_{F} \eta = 1 - arctg \frac{D}{S} \left[\frac{(m-1)n + (n-1)m}{90 * m * n} \right]$$

$$= 1 - arctg \frac{30}{100} \left[\frac{1 - 1 \cdot 1 + 1 - 1 \cdot 1}{90 * 1 * 1} \right]$$

$$= 1 - arctg \frac{0.30}{100} \left[\frac{0 + 0}{90 * 1 * 1} \right]$$

$$= 1 - 16.70 \left[0.000 \right] = 1.00$$

$$P_{1 \text{ tiang dalam kelompok}}$$
 = $E_F \eta x Q_{PANCANG}$
= 1.00 x 13308
= 13307.79 Kg > $P_{1 \text{ TIANG}}$ = 4100.00 Kg (OK !!!)

PERENCANAAN PONDASI

TINJAU PADA BEBAN 4,1 ton

♣ Mutu Beton (fc') : 24.9 Mpa
 ♣ Mutu Baja (fy) : 390 Mpa

II. PRELIMINARY POER

Pembebanan

- Beban P max

III. PENULANGAN POER

Penulangan Arah X

$$P_{ux} = P1$$

= 4100.00
= 4100.00 kg

Asumsi Perletakan

♣ Tulangan Pondasi Poer

- Diamater Tulangan Utama : D 13 mm : D 13 mm

arah x
1000 mm

$$= \frac{fy}{(0.85 \times fc')} = \frac{390}{(0.85 \times 24.9)} = 18.43$$

$$\rho$$
 maks. = 0.75 x ρ balance = 0.75 x 0.02796 = **0.0210**

$$\rho \ \, \text{min} \qquad = \frac{1.4}{\text{fy}} = \frac{1.4}{390} = \ \, \textbf{0.0036} \\ \\ \bullet \ \, \text{Rn} \qquad = \frac{\frac{\text{Mux}}{\emptyset \times b \times \text{dx}^{-2}}}{\frac{20500000}{0.8 \times 1000 \times 244^{-2}}} = \frac{0.4322} \\ \\ \bullet \ \, \rho \ \, \text{perlu} = \frac{1}{m} \times \left(1 - \sqrt{1 - \frac{2 \times \text{Rn} \times \text{m}}{\text{fy}}} \right) \\ = \frac{1}{18.43} \times \left(1 - \sqrt{1 - \frac{2 \times 0.4321813 \times 18.43}{390}} \right) \\ \bullet \ \, \rho \ \, \text{pakai} \qquad = \frac{0.00112}{0.00146} \times \frac{\rho \ \, \text{min}}{\rho \ \, \text{min}} \quad (= \ \, 0.00359 \ \,) \\ \bullet \ \, \Lambda S = \frac{\rho \ \, \text{perlu}}{\rho \ \, \text{pakai}} \times \frac{b \times \text{d}}{\rho \ \, \text{min}} \quad (= \ \, 0.00359 \ \,) \\ \bullet \ \, \Lambda S = \frac{\rho \ \, \text{perlu}}{\rho \ \, \text{min}} \times \frac{b \times \text{d}}{\rho \ \, \text{min}} \quad (= \ \, 0.00359 \ \,) \\ \bullet \ \, \Lambda S = \frac{\rho \ \, \text{perlu}}{\rho \ \, \text{min}} \times \frac{b \times \text{d}}{\rho \ \, \text{min}} \quad (= \ \, 0.00146 \times 1000 \times 244 \times 1000 \times 244 \times 1000 \times 244 \times 1000 \times 10000 \times 1000 \times 10000 \times$$