Université de Lorraine Analyse complexe

TD 4: Intégration curviligne

Exercice 1. Soient $\gamma_1: [0,1] \to \mathbb{C}$, $t \mapsto t(1+i)$, $\gamma_2: [0,1] \to \mathbb{C}$, $t \mapsto t+it^2$, $\gamma_3: [0,1] \to \mathbb{C}$, $t \mapsto it$ et $\gamma_4: [0,1] \to \mathbb{C}$, $t \mapsto i+t$. Calculer $\int_{\gamma} z dz$, où γ désigne successivement γ_1 , γ_2 et $\gamma_3 \vee \gamma_4$.

(Autocorrection : on trouve i à chaque fois. Essayer ensuite avec $\int_{\gamma} \overline{z} dz$.)

Exercice 2. Soit $\gamma: [0, \pi/2] \to \mathbb{C}$, $t \mapsto (1+i)\sin(t)$. Calculer $\int_{\gamma} z^2 dz$.

Exercice 3. Soit r > 0 et γ_r le lacet $[0, 2\pi] \to \mathbb{C}$, $t \mapsto re^{it}$. Pour tout $n \in \mathbb{Z}$, calculer $\int_{\gamma_r} z^n dz$. (Autocorrection : on trouve $2i\pi$ si n = -1 et zéro sinon.)

Exercice 4. Soit $\gamma:[0,2\pi]\to\mathbb{C}, t\mapsto e^{it}$. Calculer $\int_{\gamma}\left(z+\frac{1}{z}\right)^{2n}\frac{dz}{z}$. En déduire les valeurs des intégrales de Wallis $W_{2n}:=\int_{0}^{\pi/2}\cos^{2n}tdt$.

* * * Longueur d'un arc * * *

Exercice 5. Montrer que l'arc de parabole $y=x^2$ compris entre les abscisses x=0 et x=1 a pour longueur $L=\frac{2\sqrt{5}+\ln(2+\sqrt{5})}{4}=\frac{2\sqrt{5}+\operatorname{argsh}(2)}{4}$. (Faire une intégration par parties.) Remarque culturelle : si l'on cherche à calculer les longueurs d'arcs d'ellipses, d'hyperboles ou de sinu-

Remarque culturelle : si l'on cherche à calculer les longueurs d'arcs d'ellipses, d'hyperboles ou de sinusoïdes, les calculs font apparaître des primitives ne pouvant s'exprimer à l'aide des fonctions usuelles : les « fonctions elliptiques de première et deuxième espèce »

 \star \star \star Limites d'intégrales curvilignes \star \star

Exercice 6. Soit r > 1, $\gamma_r : [0, \pi] \to \mathbb{C}$, $t \mapsto re^{it}$ le paramétrage standard du demi-cercle supérieur de rayon r, et $I(r) := \int_{Y} \frac{dz}{z^2 + 1}$. Montrer que $I(r) \xrightarrow[r \to +\infty]{} 0$. Généraliser à $\int_{Y} \frac{P(z)}{O(z)} dz$ où $P, Q \in \mathbb{C}[z]$ et $\deg Q \ge \deg P + 2$.

Exercice 7. Étudier la limite lorsque $r \to +\infty$ de $I(r) := \int_{\gamma_r} \frac{e^z}{z^2} dz$, où $\gamma_r : [\pi/2, 3\pi/2] \to \mathbb{C}$, $t \mapsto re^{it}$. Que peut-on dire si γ_r est cette fois le chemin $[-\pi/2, \pi/2] \to \mathbb{C}$, $t \mapsto re^{it}$?

Exercice 8. Soit $f \in C^0(\mathbb{C},\mathbb{C})$ avec $f(0) \neq 0$. Pour r > 0, on note $\gamma_r : [0,2\pi] \to \mathbb{C}$, $t \mapsto re^{it}$. Calculer la limite, lorsque r > 0 tend vers zéro, de $I(r) := \int_{\gamma_r} f(z) dz$ et de $J(r) := \int_{\gamma_r} \frac{f(z)}{z} dz$ Pour $0 < a < b < 2\pi$, en notant $\gamma_{r,a,b} : [a,b] \to \mathbb{C}$, $t \mapsto re^{it}$, calculer la limite, lorsque r > 0 tend vers zéro, de $I(r,a,b) := \int_{\gamma_{r,a,b}} f(z) dz$ et de $J(r,a,b) := \int_{\gamma_{r,a,b}} \frac{f(z)}{z} dz$.

Exercice 9. Soit T > 0 et $\gamma : [0, T] \to \mathbb{C}$, $t \mapsto t + i \sin(t)$ le paramétrage de l'arc de sinusoïde entre les abscisses x = 0 et x = T. Calculer $\int_{\gamma} z^2 dz$.

Exercice 10. Soit r > 0 et γ_r le lacet $[0, 2\pi] \to \mathbb{C}$, $t \mapsto re^{it}$.

- 1. Soit $a \in \mathbb{C}$ de module $\neq r$. Calculer $\int_{\gamma_r} (z-a)^n dz$ pour $n \in \mathbb{N}$, puis $n \in \mathbb{Z}$, $n \neq -1$, puis n = -1.
- 2. Si r est différent de 2 et 3, calculer $I(r) := \int_{\gamma_r} \frac{dz}{z^2 + z 6}$.
- 3. Plus généralement, si Q est une fraction rationnelle, calculer $\int_{\gamma_r} Q(z)dz$ pour tout r > 0 pour lequel cette intégrale est définie.

Exercice 11. Soit Log_0 la détermination principale du logarithme et $\gamma: [-\pi/2, \pi/2] \to \mathbb{C}, t \mapsto e^{it}$. Calculer $\int_{\gamma} \operatorname{Log}_0(z) dz$.

Exercice 12. Soit $U \subset \mathbb{C}$ un ouvert. Soit $f,g:U \to \mathbb{C}$ des fonctions holomorphes. Soit $z_0, z_0 \in U$ et soit γ un chemin \mathscr{C}^1 par morceaux dans U allant de z_0 à z_1 . Montrer que l'on a l'analogue suivant de la formule d'intégration par partie :

$$\int_{\gamma} f(z)g'(z)dz = f(z_1)g(z_1) - f(z_0)g(z_0) - \int_{\gamma} f'(z)g(z)dz.$$

Exercice 13. Soit γ un chemin \mathscr{C}^1 par morceaux de $\mathbb C$ allant de 0 à i. Calculer $\int_{\gamma} f(z)dz$ avec :

1.
$$f(z) = z^2 \sin z$$

2.
$$f(z) = ze^{iz}$$
.

Solutions des exercices

Correction de l'exercice 1. Faire le calcul en revenant à la définition, sans utiliser de primitive holomorphe, pour commencer.

Correction de l'exercice 2. On peut :

- 1. Appliquer la définition. On se retrouve à intégrer du $\sin^2(t)\cos(t)$, de la forme $u'u^2$ qui se primitive en $u^3/3$.
- 2. On dessine le chemin et on voit qu'on peut reparamétrer le chemin à vitesse constante par γ_2 : $[0,1] \rightarrow \mathbb{C}$, $t \mapsto t(1+i)$. Le calcul est plus simple, on intègre du t^2 en $t^3/3$, même résultat.
- 3. On utilise la primitive holomorphe $z^3/3$. Attention, toutes les fonctions n'ont pas de primitive holomorphe. Mêmes les fonctions holomorphes.

Correction de l'exercice 4. On développe $\left(z+\frac{1}{z}\right)^{2n}$ avec le binôme de Newton et on obtient une somme

finie de termes en z^k , avec $-2n \le k \le 2n$. Le monôme de degré nul est $\binom{2n}{n}$. C'est le seul qui, une fois divisé par z, va avoir une intégrale sur le cercle non nulle, d'après l'exercice précédent.

On en déduit que la première intégrale vaut $\binom{2n}{n} \int_{\gamma}^{1} z^{-1} dz = 2i\pi \binom{2n}{n}$.

D'autre part, on a

$$\begin{split} \int_{\gamma} \left(z + \frac{1}{z} \right)^{2n} \frac{dz}{z} &= \int_{0}^{2\pi} (e^{it} + e^{-it})^{2n} \frac{ie^{it}dt}{e^{it}} \\ &= i2^{2n} \int_{0}^{2\pi} \cos(t)^{2n} dt \\ &= 4i2^{2n} \int_{0}^{\pi/2} \cos(t)^{2n} dt \\ &= i2^{2n+2} W_{2n}. \end{split}$$

D'où
$$W_{2n} = \frac{\pi}{2^{2n+1}} \binom{2n}{n}$$
.

Correction de l'exercice 5. On commence par écrire que $L = \int_0^1 |\gamma'(t)| dt = \int_0^1 \sqrt{1+4t^2} dt = \frac{1}{2} \int_0^2 \sqrt{1+u^2} du$. Ensuite, on cherche une primitive de $u \mapsto \sqrt{1+u^2}$. On fait une IPP et on trouve :

$$\int \sqrt{1+u^2} \, du = u\sqrt{1+u^2} - \int \sqrt{1+u^2} \, du + \int \frac{du}{\sqrt{1+u^2}}, \text{ donc}:$$

$$\int \sqrt{1+u^2} \, du = \frac{1}{2} \left(u\sqrt{1+u^2} + \operatorname{argsh}(u) \right)$$

Correction de l'exercice 9. On utilise la primitive $z \mapsto z^3/3$ et le résultat est donc $\frac{(T+i\sin(T))^3}{3}$. **Correction de l'exercice 10.** Pour $n \ne -1$ on a des primitives.

Pour n=-1, on introduit, pour $\epsilon \geq 0$, le chemin $\gamma_{\epsilon}: [-\pi+\epsilon,\pi-\epsilon], t\mapsto re^{it}$. Son support est entièrement dans l'ouvert $U=\mathbb{C}\setminus\mathbb{R}_{-}$ et donc on peut calculer I_{ϵ} en primitivant avec la détermination principale du logarithme (en ouvrant légèrement le chemin d'intégration, on évite la coupure).

Ensuite, on montre que $I_{\epsilon} \xrightarrow[\epsilon \to 0]{} I$, par exemple en majorant la différence par la longueur de la différence

d'arc, qui tend vers zéro, grâce à la formule du cours $\left| \int_{\gamma} f(z) dz \right| \leq long(\gamma) ||f||_{\infty}$.

Correction de l'exercice 11. Primitive classique $z \operatorname{Log}_0(z) - z$. Dériver et vérifier... On peut la retrouver en faisant une IPP (au sens complexe, voir exo suivant).

De toute façon on peut calculer l'intégrale à la main car le $Log_0(e^{it})$ se simplifie, après on peut faire une IPP réelle, à l'ancienne. La primitive complexe permet bien sûr de calculer sur n'importe quel chemin.