

Product information presented is for internal use within AAT Inc. only. Details are subject to change without notice.

INTEGRATED TFT-LCD POWER SOLUTION

FEATURES

- Built-in 3A, 0.2Ω Switching NMOS
- VGH and VGL Charge Pumps
- V_{COM} Operational Amplifier
- Adjustable VGH Delay
- Open-Drain Reset Output for TCON
- 1.2MHz Fixed Switching Frequency
- Thermal Protection
- Low Dissipation Current : Typical 2.3mA in Operation
- VQFN24 4*4 Package Available

TYPICAL APPLICATION

GENERAL DESCRIPTION

The AAT11771 provides a step-up PWM controller, dual charge pumps, V_{COM} operational amplifier, and one open drain reset output for TFT LCD displays.

The PWM controller consists of an on-chip voltage reference, oscillator, error amplifier, current sense circuit, comparator, under-voltage lockout protection and soft-start control circuit. The thermal fault protection prevents excessive current from damaging internal circuit.

Integrated charge pump controllers regulate VGH and VGL. The power on sequence of AAT11771 is:

VGL → AVDD → VGH

(Please refer to the "Timing Chart" for more details.)

RST signal will keep high for 163ms and will pull low when the RSTIN falls below 1.25V after 163ms.

With the minimal external components, the AAT11771 offers a simple and economical solution for TFT LCD power management.

PIN CONFIGURATION

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

ORDERING INFORMATION

DEVICE TYPE	PART NUMBER	PACKAGE	PACKING	TEMP. RANGE	MARKING	MARKING DESCRIPTION
AAT11771	AAT11771-Q7-T	Q7:VQFN 24-4*4	T: Tape and Reel	–40 °C to +85 °C	AAT11771 XXXXX XXXX	Device Type Lot no. (6~9 Digits) Date Code (4 Digits)

Note: All AAT products are lead free and halogen free.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
VDD, RST to GND	V_{DD}	7	٧
VDD1, AVIN, AVDD, SW to GND	V _{H1}	20	٧
VOUT3 to GND	V _{H3}	36	٧
Input Voltage 1 (IN1, IN2, IN3, DLY, RSTIN)	V _{I1}	V _{DD} +0.3	V
Input Voltage 2 (VI+, VI-)	V _{I2}	V _{H1} +0.3	٧
Output Voltage 1 (EO, VREF)	V _{O1}	V _{DD} +0.3	V
Output Voltage 2 (VO, OUT2, OUT3)	V _{O2}	V _{H1} +0.3	٧
Operating Ambient Temperature Range	T _C	-40 to +85	°C
Operating Junction Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	T _{STORAGE}	-65 to +150	°C
Package Thermal Range	Θ_{JA}	36	°C
Power Dissipation @ $T_C = +25^{\circ}C$, $T_J = +125^{\circ}C$	P _d	2.78	W

Note: Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the devices. Exposure to ABSOLUTE MAXIMUM RATINGS conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.5V\ to\ 5.5V,\ T_{C}=-40\ ^{\circ}C\ to\ +85\ ^{\circ}C$, unless otherwise specified. Typical values are tested at +25 $^{\circ}C$ ambient temperature, $V_{DD}=3.3V,\ V_{DD1}=10V.)$

Operating Power

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
VDD Input Voltage Range	V _{DD}		2.5	-	5.5	V
VDD1 Input Voltage Range	V _{DD1}		6	-	18	V
VDD Under Voltage Lockout	\/	Falling	2.05	2.15	2.25	V
	V _{UVLO}	Rising	2.15	2.25	2.35	
VDD 0		V _{IN1} = 1.5V, Not Switching	-	0.4	0.8	mA
VDD Operating Current	I _{DD}	V _{IN1} = 1.2V, Switching	-	2.3	18 2.25 2.35	mA
VDD1 Operating Current	V _{DD1}	$V_{VI+} = 5V$	-	1.2	3.0	mA
VDD Operating Current	I _{DD}	V _{IN1} = 1.5V, Not Switching	-	0.4	0.8	mA

Reference Voltage

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Reference Voltage	V_{REF}	$I_{VREF} = 100 \mu A$	1.238	1.250	1.262	V
Line Regulation		$I_{VREF} = 100 \mu A$ $V_{DD} = 2.5 V \sim 5.5 V$	-	2	5	%/V
Load Regulation		I _{VREF} = 0~100μA	-	1	5	%/mA

Oscillator

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Oscillation Frequency	f _{OSC}		1.0	1.2	1.4	MHz
Maximum Duty Cycle	D _{MAX}		86	90	94	%

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.5V\ to\ 5.5V,\ T_{C}=-40\ ^{\circ}C\ to\ +85\ ^{\circ}C$, unless otherwise specified. Typical values are tested at +25 $^{\circ}C$ ambient temperature, $V_{DD}=3.3V,\ V_{DD1}=10V.)$

Soft Start & Fault Detect & DLY

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
PWM Soft Start Time	t _{SS1}		-	10	-	ms
VGL Soft Start Time	t _{SS2}		-	3.4	-	ms
VGH Soft Start Time	t _{SS3}		-	3.4	-	ms
During Fault Protect Trigger Time	t _{FP}		-	55	-	ms
IN1 Fault Protection Voltage	V_{f1}		0.95	1.00	1.05	٧
IN2 Fault Protection Voltage	V_{f2}		0.40	0.45	0.50	٧
IN3 Fault Protection Voltage	V_{f3}		0.95	1.00	1.05	٧
IN1 Under Voltage Protect	V_{f4}		-	0.1	-	٧

Error Amplifier (Channel 1)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Feedback Voltage	V _{IN1}		1.238	1.250	1.262	٧
Input Bias Current	I _{B1}	V _{IN1} = 1V to 1.5V	-40	0	+40	nA
Feedback-Voltage Line Regulation		Level to Produce $V_{EO} = 1.25V$ $2.3V < V_{DD} < 5.5V$	-	0.05	0.15	%/V
Transconductance	G _m	$\Delta I = 5\mu A$	-	85	-	μS
Voltage Gain	A _V		-	1,500	-	V/V

Switching NMOS (Channel 1)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Current Limit	I _{LIM}		2.5	3.0	-	Α
On-Resistance	R _{ON1}	I _{SW} = 1.0A	-	0.2	-	Ω
Leakage Current	I _{SWOFF}	V _{SW} = 15V	-	0.01	20.00	μΑ

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.5V\ to\ 5.5V,\ T_{C}=-40\ ^{\circ}C\ to\ +85\ ^{\circ}C$, unless otherwise specified. Typical values are tested at +25 $^{\circ}C$ ambient temperature, $V_{DD}=3.3V,\ V_{DD1}=10V.)$

Charge Pump (Channel 2 and Channel 3)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
VDD1 Input Supply Range	V _H		6	-	18	V
VDD1 Over Voltage Protect	V _{OVP}		-	18	20	V
Charge Pump Frequency	f _{OSCP}		500	600	700	kHz
IN2 Threshold Voltage	V _{H2}		235	250	265	mV
IN3 Threshold Voltage	V _{H3}		1.23	1.25	1.27	V
IN2 Input Bias Current	I _{B2}	$V_{IN2} = -0.25V$ to 0.25V	-40	0	+40	nA
IN3 Input Bias Current	I _{B3}	V _{IN3} = 1V to 1.5V	-40	0	+40	nA
OUT2 Switch RON	R _{ONP2}		-	3	20	Ω
OUTZ SWILLIT HON	R _{ONP2}		-	3	20	Ω
OLITO O TILL DON	R _{ONP3}		-	3	20	Ω
OUT3 Switch RON	R _{ONP2}		-	3	20	Ω

Reset Output

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
RST Output Voltage	V_{RST}	I _{RST} = 1.2mA	-	-	0.2	V
RSTIN Threshold Voltage	V_{INR}	$H_{YS} = 50 \text{mV}$	-	1.25	-	٧
RSTIN Input Current	I _{B4}		-40	0	+40	nA
RST Blanking Time	t _{BLK}		146	163	180	ms

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.5V\ to\ 5.5V,\ T_{C}=-40\ ^{\circ}C\ to\ +85\ ^{\circ}C$, unless otherwise specified. Typical values are tested at +25 $^{\circ}C$ ambient temperature, $V_{DD}=3.3V,\ V_{DD1}=10V.)$

V_{COM} Buffer

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Input Offset Voltage	V _{OS}	$V_{VI+} = 5V$	-	2	15	mV
Input Bias Current	I _{B5}	$V_{VI+/} = 5V$	-40	0	+40	nA
	\/	$I_{VO} = -50 \text{mA}, \ V_{VI+} = 5 V$	-	5.03	5.06	
Output Swing	V _{OH}	$I_{VO} = 5mA, V_{VI+} = 10V$	9.85	9.92	5.06 - -	V
Output Swing	V	$I_{VO} = 50 \text{mA}, \ V_{VI+} = 5 V$	4.94	4.97	-	
	V _{OL}	$I_{VO} = -5mA, \ V_{VI+} = 0V$	-	0.08	0.15	
Short Circuit Current	I _{SHORT}	Measure I _{VO}	-	±200	-	mA
Slew Rate	SR	$V_{VI+} = 2V \text{ to } 8V,$ $V_{VI+} = 8V \text{ to } 2V, 20\% \text{ to } 80\%$	-	40	-	V/µs
Settling Time	t _S	$V_{VI+} = 4.5V \text{ to } 5.5V, 90\%$	-	5	-	μs

High Voltage Switch Controller

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DLY Source Current	I _{DLY}		4	5	6	μΑ
DLY Threshold Voltage	V _{DLY}		1.22	1.25	1.28	٧
DLY Discharge RON	R _{DLY}		-	8	-	Ω
CTL Input Low Voltage	V _{IL}		-	-	0.5	٧
CTL Input High Voltage	V _{IH}		2	-	-	٧
CTL Input Bias Current	I _{B4}	$V_{CTL} = 0$ to V_{DD}	-40	0	+40	nA
Propagation Delay CTL to VGH	t _{PP}	OUT3 = 25V	-	100	-	ns
VOUT3 to VGH Switch RON	R _{ONSC}	$V_{DLY} = 1.5V, V_{CTL} = V_{DD}$	-	15	30	Ω
ADJ to VGH Switch RON	R _{ONDC}	$V_{DLY} = 1.5V, V_{CTL} = GND$	-	30	60	Ω
VGH to GND1 Switch RON	R _{ONCG}	V _{DLY} = 1V	1.5	2.5	3.5	kΩ

TYPICAL OPERATING CHARACTERISTICS

(V_{IN} = 5.0 V, V_{DD1} = 13 V, V_{GL} = -7 V, V_{OUT3} = 30 V, T_C = +25 $^{\circ}$ C unless otherwise noted.)

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

TYPICAL OPERATING CHARACTERISTICS

(V_{IN} = 5.0 V, V_{DD1} = 13 V, V_{GL} = -7 V, V_{OUT3} = 30 V, T_C = +25 $^{\circ}$ C unless otherwise noted.)

TYPICAL OPERATING CHARACTERISTICS

 $(V_{IN} = 5.0 \text{ V}, V_{DD1} = 13 \text{ V}, V_{GL} = -7 \text{V}, V_{OUT3} = 30 \text{ V}, T_{C} = +25 ^{\circ}\text{C}$ unless otherwise noted.)

⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

TYPICAL OPERATING CHARACTERISTICS

 $(V_{IN} = 5.0 \text{ V}, V_{DD1} = 13 \text{ V}, V_{GL} = -7 \text{ V}, V_{OUT3} = 30 \text{ V}, T_C = +25 ^{\circ}\text{C}$ unless otherwise noted.)

⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

TYPICAL OPERATING CHARACTERISTICS

 $(V_{IN} = 5.0 \text{ V}, V_{DD1} = 13 \text{ V}, V_{GL} = -7 \text{ V}, V_{OUT3} = 30 \text{ V}, T_C = +25 ^{\circ}\text{C}$ unless otherwise noted.)

⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

PIN DESCRIPTION

PIN NO.	NAME	I/O	DESCRIPTION	
1	VI+	I	V _{COM} Buffer Positive Input	
2	VI–	I	V _{COM} Buffer Negative Input	
3	VO	0	V _{COM} Buffer Output	
4	GND2	-	V _{COM} Buffer Ground	
5	VDD1	I	V _{COM} Buffer and Charge Pump Power Supply	
6	OUT3	0	Positive Charge Pump Output Pin	
7	OUT2	0	Negative Charge Pump Output Pin	
8	CTL	I	High Voltage Switch Control Pin	
9	RST	0	Reset Signal Open Drain Output	
10	IN3	I	Positive Charge Pump Feedback Pin	
11	IN2	I	Negative Charge Pump Feedback Pin	
12	VREF	0	Internal Reference Voltage Output	
13	VDD		Main PWM Power Supply	
14	GND	ı	Analog Ground	
15	RSTIN	I	Reset Comparator Input	
16	EO	0	Main PWM Error Amplifier Output	
17	IN1	I	Main PWM Feedback Pin	
18	GND1	-	SW MOS Ground	
19	GND1	-	SW MOS Ground	
20	SW	-	Main PWM Switching Pin	
21	ADJ	0	Gate High Voltage Fall Time Setting Pin	
22	VGH	0	Switching Gate High Voltage for TFT	
23	VOUT3	-	Gate High Voltage Input	
24	DLY	I	VGH Delay Adjust Pin	

FUNCTION BLOCK DIAGRAM

AAT11771

⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

TYPICAL APPLICATION CIRCUIT

TABLE COMPONENT LIST

DESIGNATION	DESCRIPTION		
C1, C2, C3, C4, C5	10µF ±20%, 16V X5R Ceramic capacitors (0805) TAIYO YUDEN (EMK212BJ106MG-T)		
D1	3A, 40V Schottky barrier rectifier (SMA) DIODES (B340LA)		
L1	10μH, 1.7A DC Inductor TAIYO YUDEN (NR6020)		

DESIGN PROCEDURE

Boost Regulator

The Boost regulator includes current mode pulse width modulation control with a fixed frequency and cycle-by-cycle current limit. Capacitance connected to EO pin can compensate internal error amplifier, and will help system-designers to get tailor-made compensation for different applications. An external Schottky rectifier is always required.

Reference Voltage (V_{REF})

The reference output is 1.250V (typ.) and can source at least 100 μ A. Bypass V_{REF} with a 0.22 μ F ceramic capacitor connected between V_{REF} and GND.

Under Voltage Lockout (UVLO)

To avoid misoperation at low input voltage, the AAT11771 shuts down all functions when input voltage is lower than UVLO falling threshold (2.15V, typ.). The AAT11771 begins to startup when input voltage exceeds the UVLO rising threshold (2.25V, typ.).

Power on Sequence and Soft Start

The soft start of each regulator is controlled by an internal 7-bit digital controller output to minimize the inrush current. The controller output has 128 steps from zero to feedback voltage threshold for step-up regulator and VGH charge pump; and from reference voltage to feedback voltage threshold for VGL charge pump.

During start-up, a frequency-fixed clock will be inputted to the digital controller to control the soft start time, the PWM soft start time is 10ms (typ.); VGL and VGH soft start time is 3.4ms (typ.).

The startup delay of high voltage switch control block is controlled by a capacitor connected between DLY and GND. When the input voltage exceeds the UVLO rising threshold and the soft start for each regulator and charge pump is implemented and no fault feedback threshold is detected, a $5\mu A$ constant current starts to charge the capacitor. The high voltage switch control block is activated after the capacitor voltage exceeds 1.25V (typ.).

The power on sequence of AAT11771 is:

 $V_{GL} \rightarrow V_{DD1} \rightarrow V_{GH}$

(Please refer to Figure 1.)

Input Capacitor

The input capacitor has two important functions. It is the power source of the soft start process and can also filter the noise from converter or other circuit. A RC low pass filter is often added to decrease interference from noise.

Output Capacitor

Changes in output capacitor current will induce output voltage ripple. When ripple current is small, ripple voltage will also be small. The actual simplified circuit model of the capacitor is serial connection consisted of ESL, capacitor, and ESR. Many circuits require the usage of aluminum electron capacitor or a tantalum capacitor with low ESR. But due to the drastic increase of the electron capacitor under low temperature,

electron capacitor is not recommended when temperature is lower than -25 °C. Tantalum capacitor is often used in a low temp because it has a better ESR performance. However, ceramic capacitors are often used for their environment friendly nature. Capacitor with small ESR or multiple capacitors in parallel connection can improve voltage ripple.

Figure 1. Power on Sequence and Soft Start

Figure 2. Using Resistive Divider to Set Output Voltage

Output Voltage Selection

The output voltage is set using the feedback pin, IN1, IN2, and IN3. Connect resistive divider from the output to feedback pin to analog ground or reference voltage (V_{REF}) as shown in Figure 2.

$$V_{DD1} = IN1 \times \left(1 + \frac{R1}{R2}\right)$$

IN1 range is 1.250V±12mV

Negative Charge Pump

The negative charge pump is typically used to generate the negative supply rail for the TFT LCD gate driver ICs. The output voltage is set with external resistor ladder from its output to V_{REF} pin with the center tap connected to IN2 pin. The negative charge pump provides a regulated output voltage set by the external resistor divider see in Figure 2.

$$\begin{split} &V_{GL} = \{[\text{IN2}\times(\text{R3}+\text{R4})] - (\text{VREF}\times\text{R3})\} \div \text{R4} \\ &\text{IN2 range is } 0.250\text{V}\pm15\text{mV} \\ &V_{REF} \text{ range is } 1.250\text{V}\pm12\text{mV} \end{split}$$

Positive Charge Pump

The positive charge pump is typically used to generate the positive supply rail for the TFT LCD gate driver ICs. The output voltage is set with external resistor ladder from its output to GND with the center tap connected to IN3 pin. The positive charge pump provides a regulated output voltage set by the external resistor divider. (See in Figure 2.)

$$V_{OUT3} = IN3 \times \left(1 + \frac{R5}{R6}\right)$$

IN3 range is 1.250V±20mV

CTL and DLY Function

When power on, the high voltage switch controlled by CTL will latch until V_{DLY} reaches 1.25V.

If
$$CTL = "Low"$$
, $V_{GH} = ADJ$

If CTL = "High",
$$V_{GH} = V_{OUT3}$$

DLY pin connects a capacitor, C_{DLY} , to analog ground to set delay time.

Delay time = $(V_{DLY} \times C_{DLY}) / I_{DLY}$

Diode Selection

The diode voltage rating must be greater than output voltage and the current rating must exceed the inductor peak current

 $I_{L(PEAK)}$. The lower forward voltage, V_{F} , will increase to efficiency.

Example:

$$\begin{split} &V_{\text{IN}} = 5.0 V, \ V_{\text{OUT}} = 13 V, \ I_{\text{OUT}} = 300 \text{mA}, \ f_{\text{OSC}} = 1.2 \text{MHz}, \\ &V_{\text{FB}} = 1.24 V, \ Gm = 85 \mu S, \ R_{\text{S}} = 0.2 V/A, \ r_{\text{DS}} = 0.2 \Omega, \\ &R_{\text{F}} = 0.333 \Omega. \end{split}$$

Inductor Selection

Where
$$D = 1 - \frac{V_{IN}}{V_{OUT}}$$
 D is duty cycle

$$L_{min} > \frac{V_{OUT}}{2I_{OUT} \times f_{OSC}} \times D \times (1 - D)^2$$

$$I_{IN} = \frac{I_{OUT}}{1 - D}$$

$$I_{L(peak)} = I_{IN} + \frac{V_{IN} \times D}{2 \times L \times f_{OSC}}$$

The inductor current rating must be greater than $I_{L(peak)}$

...We select L = 10 μ H, I $_{L(peak)}$ = 0.907A, r $_{L}$ = 125m Ω . r $_{L}$ is the inductor equivalent series resistance.

Output Capacitor Selection

 V_O = 1%x V_{OUT} = 1%×13V = 130mV V_O is ripple voltage of V_{OUT} , and C is output filter capacitor.

Where
$$C_{min}(\mu F) > \frac{I_{OUT} \times D}{V_O \times f_{OSC}}$$

... We select $C = 10\mu F$, that $r_C = 10m\Omega$. r_C is the capacitor equivalent series resistance.

Crossover Frequency Selection

$$f_{CI} = \left[\frac{1}{10} \sim \frac{1}{60}\right] \times f_{OSC}$$
 ... We select $f_{CI} = 20 \text{kHz}$

$$R_{EO} = \frac{V_{OUT}}{V_{FB}} \times \frac{2\pi \times f_{CI} \times Rs}{gm} \times \frac{\left[(R_L) + (2 \times r_C) \right]}{\left[(1-D) \times R_L - \frac{r}{1-D} \right]}$$

$$r = r_L + (Dxr_{DS}) + (1-D) x R_F$$

∴We select $R_{EO} = 84.91k\Omega$

R_L is the converter load resistance

Compensator Capacitor Selection

The output filter capacitor is then chosen So C R_L pole cancels R_{EO} C_{EO} zero

$$R_{EO} \times C_{EO} = \frac{C}{\epsilon} \times \left[\frac{RL}{2} + r_C \right]$$
, and

$$C_{EO} = \frac{C}{\varepsilon \times R_{EO}} \times \left[\frac{R_L}{2} + r_C \right]$$

$$\varepsilon$$
 = (1~3)

∴We select C_{EO} = 850pF

Reset Output (RST)

The AAT11771 has an internal reset circuit to monitor the RSTIN voltage. When RSTIN voltage is lower than the threshold voltage 1.25V (typ.), RST voltage will be pulled low to GND. RST is an open-drain output that needs a pull-up resistor connected between V_{IN} and RST.

Operational Amplifier

The AAT11771 has one operational amplifier to drive the LCD backplane (V_{COM}) or the gamma-correction divider string. The operational amplifier features rail-to-rail input and output, $\pm 200 \text{mA}$ output short-circuit current, and $40 \text{V}/\mu \text{s}$ slew rate.

Fault Protection

The AAT11771 activates an internal fault timer when any of the regulator or charge pump output voltage is detected under the fault feedback threshold. After counting 55ms (typ.), the AAT11771 will shutdown all the output except reference voltage.

LAYOUT CONSIDERATION

The system's performances including switching noise, transient response, and PWM feedback loop stability are greatly affected by the PC board layout and grounding. There are some general guidelines for layout:

Inductor

Always try to use a low EMI inductor with a ferrite core.

Filter Capacitors

Place low ESR ceramics filter capacitors (between $0.1\mu F$ and $0.22\mu F$) close to VDD and VREF pins. This will eliminate as much trace inductance effects as possible and give the internal IC rail a cleaner voltage supply. The ground connection of the VDD and VREF bypass capacitor should be connected to the analog ground pin (GND) with a wide trace.

Output Capacitors

Place output capacitors as close as possible to the IC. Minimize the length and maximize the width of traces to get the best transient response and reduce the ripple noise. We choose $10\mu\text{F}$ ceramics capacitor to reduce the ripple voltage, and use $0.1\mu\text{F}$ ceramics capacitor to reduce the ripple noise.

Feedback

If external compensation components are needed for stability, they should also be placed close to the IC. Take care to avoid the feedback voltage-divider resistors trace near the SW. Minimize feedback track lengths to avoid the digital signal noise of TFT control board.

Ground Plane

The grounds of the IC, input capacitors, and output capacitors should be connected close to a ground plane. It would be a good design rule to have a ground plane on the PCB. This will reduce noise and ground loop errors as well as absorb more of the EMI radiated by the inductor. For boards with more than two layers, a ground plane can be used to separate the power plane and the signal plane for improved performance.

PC Board Layout

Figure 3. TOP Layer

Figure 5. Midlayer2 (Power Plane)

Figure 4. Midlayer1 (Ground Plane)

Figure 6. Bottom Layer

POWER ON AND POWER OFF TIMING CHART

AAT11771

⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

PACKAGE DIMENSION

VQFN24-4*4

Cumbal	Dimensions In Millimeters				
Symbol	MIN	TYP	MAX		
Α	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
b	0.18	0.23	0.30		
С	0.19	0.20	0.25		
D	3.90	4.00	4.10		
D2	2.70	2.80	2.90		
Е	3.90	4.00	4.10		
E2	2.70	2.80	2.90		
е		0.50			
L	0.30	0.40	0.50		
٧	0.00		0.076		