Universidade Federal de Viçosa - campus Florestal Meta-Heurística Trabalho prático - 1

Isabella Ramos - 3474 Ricardo Spínola - 3471 Roniel Barbosa - 3464

14 de julho de 2022

Sumário

Sumário		2
1	Introdução	3
2	Problemas propostos	3
	2.1 Minimização de função com duas variáveis e duas restrições	3
	2.2 Problema de despacho econômico	4
3	Desenvolvimento	4
	3.1 Implementação Evolução Diferencial	4
	3.1.1 Decisões Importantes	5
4	Resultados	5
	4.1 Problema com função objetivo 1	6
	4.2 Problema com função objetivo 2	7
5	Conclusão	11
6	Referências	11

1 Introdução

O presente trabalho tem como objetivo, apresentar a resolução de dois problemas propostos utilizando Evolução Diferencial (ED). O algoritmo de ED foi escolhido para propor a solução, sendo implementado com a linguagem Python. Em ambiente de sala de aula, foi decidido a utilização do método de restrição epsilon constrained method, para aplicação aos problemas em questão.

2 Problemas propostos

Nesta seção, serão explorados os problemas propostos a serem solucionados com a meta heurística da Evolução Diferencial.

2.1 Minimização de função com duas variáveis e duas restrições

O primeiro problema contém duas variáveis de decisão, x1 e x2, e duas variáveis de restrição.

• Minimize

$$f(x) = -\sin^3(2\pi x_1)\sin(2\pi x_2)/x_1^3(x_1 + x_2)$$

• Subject

$$g_1(x) = x_1^2 - x_2 + 1 \le 0$$

 $g_2(x) = 1 - x_1 + (x_2 - 4)^2 \le 0$

2.2 Problema de despacho econômico

O segundo problema proposto é um problema do despacho econômico com efeito do ponto de válvula para o sistema com 40 unidades geradoras. Com o objetivo de minimizar o custo de objetivo de combustível, através da função abaixo:

Minimize

$$F_i(P_i) = a_i P_i^2 + b_i P_i + c_i |e_i sin(f_i(P_i^{min} - P_i))|$$

Subject

$$\sum_{i=1}^{n} P_i - P_l - P_d = 0$$

$$P_i^{min} \le P_i \le P_i^{max}$$

3 Desenvolvimento

Como objetivo principal do Trabalho Prático(TP) em questão, foi necessário escolher um algoritmo entre os 3 apresentados na especificação técnica do TP. Como supracitado foi escolhido a meta-heurística da Evolução Diferencial, assim seguiu sua implementação utilizando a linguagem Python. Outra escolha a ser feita foi o método de restrição, onde por meio de sorteio ficamos com a epsilon constrained method.

3.1 Implementação Evolução Diferencial

Na implementação da Evolução Diferencial, foi seguido seu fluxo de funcionamento explicado no ambiente de sala de aula, tendo em si a aplicação em seu interior da restrição epsilon constrained method. Abaixo vemos o trecho principal para funcionamento do ED.

Figura 1 – Trecho do código para ED.

Como se trata de um algoritmo já discutido em ambiente de sala de aula. Temos que será explicado somente os pontos mais importantes na implementação e escolhas realizadas.

3.1.1 Decisões Importantes

A implementação para o primeiro problema, tem como ponto importante a escolha realizada para definir os limites de x por y. Pois, em primeiro execução após implementação tínhamos a geração de muitas populações infactível. Sendo resolvido com o tratamento dos valores a partir de condições de desvio, analisando a imagem das funções de restrições. Onde também foi feito, manipulação matemática a fim de facilitar o tratamento das restrições como podemos ver abaixo.

$$1 - (x_2 - 4)^2 \le x_1 \le \sqrt{x_2 - 1}$$

Em relação, a aplicação da meta heurística para o segundo problema. Temos o primeiro impasse a ser solucionado, a geração da população inicial das máquinas. Pois mesmo que definido o Pi máximo de cada máquina, o mesmo deveria ser limitado para satisfazer o mínimo das máquinas restantes.

A primeira máquina não deve pegar o seu máximo definido, pois assim não sobraria PD para as demais máquinas restantes. O máximo deve ser definido como PD restante menos a soma do mínimo de todas as outras máquinas. A Fim de exemplificar, temos a imagem abaixo:

```
PD = 300

P1 = 50,300 MAX(300-100) = 200 P1.random(50,200) = 70

P2 = 50,300 MAX(230-50) = 180 P2.random(50,180) = 180

P3 = 50,300 MAX(50-0) = 200 P3.random(50,50) = 50

P1 + P2 + P3 = 300
```

Figura 2 – Exemplo de configuração.

Para realizar tal procedimento foi feita a seguinte função abaixo, que realiza o processo citado anteriormente.

```
pi_max = pd_restante - sum(*pi_min)
```

Figura 3 – Fórmula de exemplo para o cálculo.

Há casos que sobrará PD para distribuir, fazendo com que seja necessário executar os passos novamente.

4 Resultados

Este tópico aborda os resultados obtidos de cada algoritmo de modo independente para cada função objetivo utilizando configurações diferentes para cada. A forma de mostrar

os resultados foi em formato de tabela onde seus atributos abrange o mínimo, máximo, média e desvio-padrão considerando as interações realizadas. Assim, em mesma forma para a configuração foi utilizado o formato de tabela, que tem como informações os seguintes atributos:

- F: Está variável é o fator de ponderação para a geração do "vetor doador";
- Cr: Está variável é a "crossover rate" em tradução direta, "taxa de cruzamento";
- NP: Está variável é o "tamanho da população";
- GENERATIONS: Está variável marca a "quantidade máxima de gerações";
- ITERATIONS: Está variável marca a quantidade de "iterações".

Os resultados para o problema de despacho econômico com 40 máquinas tiveram discordância com os resultados obtidos pelo artigo. Provavelmente por erro de digitação envolvendo a tabela 9, já que utilizando a Evolução Diferencial para resolver o problema com 3 máquinas, gerou resultado semelhante ao artigo neste caso.

4.1 Problema com função objetivo 1

As configurações e os resultados obtidos na resolução do problema com a função objetivo 1 estão disponíveis a seguir:

Configurações/ Variáveis	\boldsymbol{F}	Cr	NP	GERATIONS	ITERATIONS
$oldsymbol{A}$	0.8	0.9	30	50	30
${f B}$	0.5	0.7	50	50	30

Resultados obtidos com as configurações acima:

Evolução Diferencial	Mínimo	Máximo	Média	Desvio-padrão
Configuração A	-0.09583	-0.00297	-0.06795	0.03482
Configuração B	-0.09583	-0.02246	-0.08903	0.02037

$$X = 1.227971$$

$$Y = 4.245373$$

O resultado de forma gráfica está presente nos bloxplots abaixo:

Figura 4 – Resultado - Configuração A.

Figura 5 – Resultado - Configuração B.

4.2 Problema com função objetivo 2

Em ponto de partida, foi decidido realizar um teste com os valores obtidos através da solução apresentada pela implementação realizada, e os valores disponibilizados pelo

artigo para o problema de 3 máquinas. Tendo como objetivo, averiguar algum desacerto entre os valores obtidos no problema de despacho econômico com 40 máquinas.

técnica	técnica tempo cust		custo	desvio padrão	custo
	médio (s)	mínimo (\$/h)	médio (\$/h)	do custo (\$/h)	máximo (\$/h)
QN	0,05	8234,584	8448,123	159,870	9050,271
CES	0,23	8255,084	8407,921	77,361	8550,491
CES-QN(1)	0,69	8234,074	8318,197	84,108	8512,424
CES-QN(2)	1,55	8234,074	8318,197	84,108	8512,424
CES-QN(3)	0,28	8241,390	8396,927	81,815	8550,492

Figura 6 – Resultados obtidos pelo artigo para o problema de 3 máquinas.

Abaixo estão os resultados obtidos pelo grupo para o problema de 3 máquinas

Evolução Diferencial	Mínimo	Máximo	Média	Desvio-padrão
Problema com 3 máquinas	8234,072	8443,79624	8319,75753	67,63265

PI	Valor
0	300,26613
1	400,0
2	149,73387
Total	850,00

Com isso, os seguintes testes terão como base o valor encontrado dada a melhor solução fornecida pelo artigo para o problema de 40 máquinas como sendo:

267238.71134

As configurações e os resultados obtidos na resolução do problema com a função objetivo 2 estão disponíveis a seguir:

Configurações/ Variáveis	$oldsymbol{F}$	Cr	NP	GERATIONS	ITERATIONS
$oldsymbol{A}$	0.8	0.6	30	10	100
${f B}$	0.5	0.9	20	10	100

Resultados obtidos com as configurações acima:

Evolução Diferencial	Mínimo	Máximo	Média	Desvio-padrão
Configuração A	229477.35858	316758.41380	285276.61723	19655.75325
Configuração B	223131.64870	315356.55775	284523.82589	19988.33088

Tempo de execução médio: 35.0355(s)

Base (Artigo): **267238.71134**

PI	Valor
0	71,66476
1	98,34701
2	119,89028
3	111,69995
4	91,74880
5	140,00000
6	300,00000
7	283,52965
8	285,37093
9	280,46436
10	203,96841
11	369,75344
12	353,05826
13	500,00000
14	170,21492
15	$444,\!13092$
16	406,17165
17	$465,\!87761$
18	550,00000
19	406,24968
20	550,00000
21	388,61180
22	526,15925
23	546,36635
24	418,62149
25	337,39372
26	42,09139
27	68,87160
28	120,20832
29	97,00000
30	133,26390
31	163,64089
32	184,81188
33 34	189,20490
	173,69492
35 36	172,01088
30 37	110,00000 70,61270
38	110,00000
39	445,29538
o9 Total	10.500
rotar	10.000

O resultado de forma gráfica está presente nos boxplots abaixo:

Figura7 – Resultado Problema 2 - Configuração A.

Figura8 – Resultado Problema 2 - Configuração B.

5 Conclusão

Com o desfecho do trabalho podemos constatar que houve êxito na implementação da Evolução Diferencial para o problema 1 e 2 apresentados. Tivemos consistência nos resultados encontrados para o problema 1, apresentando um baixo desvio padrão.

No problema 2, obtivemos resultados melhores utilizando R3 base sendo randômico (random), diferente do problema 1. Além disso, o fator de ponderação sendo randômico também auxilia a achar melhores resultados. Já que a solução não deve evoluir para cada membro de maneira constante, e sim, mutar com alto grau de aleatoriedade.

6 Referências

[1] COELHO, L. S.; MARIANI, V. C. Otimização de despacho econômico com ponto de válvula usando a estratégia evolutiva Quase-Newton. Learning and nonlinear models - Revista da Sociedade Brasileira de Redes Neurais: (SBRN), Vol. 4, No. 1, pp. -1-12, 2006 http://abricom.org.br/wp-content/uploads/sites/4/2016/07/vol4-no1-art1.pdf