Introduction to Analysis II

Sungchan Yi

Fall 2022

Introduction & Notice

- 7, 8장 나가고 중간고사, 11장 나가고 기말고사
- 연습 시간이 있는 수업 (목 $6:30 \sim 8:20)^1$
- 오늘 연습 시간: 지난학기 배운 내용 중 필요한 내용 복습

¹가능하면 1시간 반 안에 끝내라고 하심 ㅋㅋ

Chapter 7

Sequences and Series of Functions

September 1st, 2022

기본적으로 수열에 관련된 내용, real/complex-valued 수열이 아니라 함수가 주어졌을 때. 함수들을 모은 'sequence of functions'의 극한을 생각하는 것.

Suppose E is a set¹, and let $f_n: E \to \mathbb{C}$. Then

$$(f_n)_{n=1}^{\infty}$$

is a sequence of (complex-valued) function.

Definition 7.1. $(f_n)_{n=1}^{\infty}$ converges **pointwise** on E, if for each $x \in E$ the sequence $(f_n(x))_{n=1}^{\infty}$ converges in \mathbb{C} .

In other words, $\forall x \in E, \exists a_x \in \mathbb{C}$ and

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \implies |f_n(x) - a_x| < \epsilon.$$

Definition. If (f_n) converges pointwise, we can define a function f by

$$f(x) = \lim_{n \to \infty} f_n(x) \quad (x \in E)$$

We say that

- f is the *limit* or *limit function* of f_n .
- (f_n) to f pointwise on E.

¹사실은 metric space 이다.

Definition. If $\sum f_n(x)$ converges (pointwise) for every $x \in E$, we define

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (x \in E)$$

and the function f is called the *sum* of the series $\sum f_n$.

Recall. $f:(E,d)\to\mathbb{C}$ is continuous on $E\iff f$ is continuous at all $x\in E$.

Recall. (Theorem 4.6) If $p \in E$ and p is a limit point of E,

$$f$$
 is continuous at $p \iff \lim_{x\to p} f(x) = f(p)$

Question. Suppose (f_n) is a sequence of continuous functions that converges pointwise on E. Is f continuous? No...

If p is a limit point, does the following hold?

$$\lim_{x \to p} \lim_{n \to \infty} f_n(x) \stackrel{?}{=} \lim_{n \to \infty} \lim_{x \to p} f_n(x)$$

Example. $a_{m,n} = \frac{m}{m+n}, a_{m,n} \to 1 \text{ as } m \to \infty \text{ and then } n \to \infty.$ But, as $n \to \infty$ $a_{m,n} = 0$

Example. Define

$$f_n(x) = \begin{cases} 0 & (1/n \le x \le 1) \\ -nx + 1 & (0 \le x < 1/n) \end{cases}$$

then we can easily see that

$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0 & (0 < x \le 1) \\ 1 & (x = 0) \end{cases}$$

, thus f is not continuous at x = 0.

Example. Define $f_n : \mathbb{R} \to \mathbb{R}$.

$$f_n(x) = \frac{x^2}{(1+x^2)^n}$$
 $(n = 0, 1, ...)$

by direct calculation,

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n} = 1 + x^2 \qquad (x \neq 0)$$

If x = 0, f(x) = 0. Thus f is not continuous.

Question. Suppose (f_n) is a sequence of **Riemann integrable** functions that converges pointwise. Is f **Riemann integrable**? Also **No...**

Example. For $m = 1, 2, \ldots$, define

$$f_m(x) = \lim_{n \to \infty} (\cos m! \pi x)^{2n}$$
$$= \begin{cases} 1 & (m! x \in \mathbb{Z}) \\ 0 & (m! x \notin \mathbb{Z}) \end{cases}$$

Note that $f_m(x) \in \mathcal{R}[a,b]$

Claim.

$$f(x) = \lim_{m \to \infty} f_m(x) = \begin{cases} 1 & (x \in Q) \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

and f(x) is nowhere continuous thus not Riemann integrable.

Proof. Suppose $x = p/q \in \mathbb{Q}$. $(p, q \in \mathbb{Z})$ If we take $m \geq q$, we see that $m!x \in \mathbb{Z}$. Thus $f_m(x) = 1$.

If
$$x \notin \mathbb{Q}$$
, $m!x$ can never be in \mathbb{Z} and $f_m(x) = 0$.

계속 예제...

Question. Uniform continuity를 할 때 uniform이 어디서 나오죠? 해석학에서 그 점에서 뭐가 성립한다, 그러면 그 점과 그 근방에서만 확인하면 됐었죠. Continuity는 local property죠. 그런데 uniform continuity는 전체가 다 uniform하게 성립한다.

Recall. $f:(X,d)\to (Y,d)$ is uniformly continuous on X^2 if

$$\forall \epsilon > 0, \exists \delta > 0, d_X(q, p) < \delta \implies d_Y(f(p), f(q)) < \epsilon$$

모든 점에서 똑같이 잡을 수 있다!

Fact. If X is compact and f is continuous on X, then f is uniformly continuous on X. (Theorem 4.19)³

지금 나오는 uniform convergence는 sequence에 관한 것입니다!

Definition Uniform Convergence. Suppose $f_n : E \to \mathbb{C}$ is a sequence of functions.

 $(f_n)_{n=1}^{\infty}$ converges uniformly on E to a function f if

$$\forall \epsilon > 0, \exists N : \forall x \in E, n \ge N, |(|f_n(x) - f(x)|) \le \epsilon$$

²Subspace of metric space is also a metric space

³갑자기 왜 uniform continuity 얘기를 하냐, 헷갈리지 말고 기억하시라고!

$$\forall \epsilon > 0, \sup_{x \in E} |f_n(x) - f(x)| \le \epsilon, \forall n \ge N$$

$$\sum_{n=1}^{\infty} f_n$$

converges uniformly on E: $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges pointwise and $\sum_{k=1}^{n} f_k(x)$ converges uniformly to f.

^a등호를 붙이는 것이 극한 잡기 편하다???

[똑같은 ϵ -띠를 둘러서 y=f(x) 의 근방 안에 $f_n(x)$ $(n\geq N)$ 가 모두 들어가 있어야 한다]는 의미에서 uniform 이다.

Notation. $f_n \to f$ uniformly on $E \iff f_n \stackrel{u}{\to} f$ on E.

7.8에 나와있는 내용이 Cauchy sequence...

Recall. Cauchy sequence converges!

Theorem. (7.8) $f_n \stackrel{u}{\rightarrow} f$ on $E \iff$

$$\forall \epsilon > 0, \exists N : \sup_{x \in E} |f_n(x) - f_m(x)| \le \epsilon, \forall n, \forall m \ge N$$

^aUniform Cauchy

Proof. (\Longrightarrow) For given $\epsilon > 0...$

Fix $x \in E$,

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for $n, m \geq N$.

(\iff) Uniform Cauchy property implies that (f_n) is a Cauchy sequence in \mathbb{C} . By the completeness of C, the limit function f(x) exists. Now we show that this convergence is uniform.

For given $\epsilon > 0$ choose N such that

$$\sup_{x \in E} |f_n(x) - f_m(x)| \le \epsilon$$

, for all $n, m \geq N$. Then

$$|f_n(x) - f(x)| \le ||f_n(x) - f_m(x)| - |f_n(x) - f(x)|| + |f_n(x) - f_m(x)| \le |f_m(x) - f(x)| + \epsilon$$

 $^{^4}$ 책에서는 나중에 $\|f_n(x)-f(x)\|_\infty \to 0$ 으로 적었던 것 같은데...

Fix $n \geq N$ and let $m \to \infty$. Observe that the first term converges to 0 due to pointwise convergence.

$$\therefore |f_n(x) - f(x)| \le \epsilon, \forall n \ge N, \forall x \in E$$