Advanced Mathematics: Vector Algebra and Spatial Geometry

日期: 2025年2月28日

Wuhan University

Lai Wei

目录

1	向量积、混合积				
	1.1	向量积		. 1	
		1.1.1	定义	. 1	
		1.1.2	性质	. 1	
		1.1.3	运算规律	. 1	
		1.1.4	向量积的坐标表示	. 2	
	1.2	混合积		. 2	
		1.2.1	定义	. 2	
		1.2.2	坐标表示	. 2	
		1.2.3	几何意义	. 2	
		1.2.4	运算规律	. 3	
		1.2.5	例题	. 3	
2	平面及其方程				
	2.1	曲面方	程与空间曲线方程的概念	. 4	
		2.1.1	曲面方程	. 4	
		2.1.2	空间曲线方程	. 4	
	2.2	平面的	点法式方程	. 5	
	2.3	平面的	一般方程	. 5	
	2.4	平面的	截距式方程	. 5	
	2.5	两平面	的夹角	. 6	
		2.5.1	定义	. 6	
		2.5.2	结论	. 6	
	2.6	点到平	面的距离	. 6	

1 向量积、混合积

1.1 向量积

1.1.1 定义

设有向量 \overrightarrow{a} 、 \overrightarrow{b} , 其夹角为 θ 。定义新向量, 记作 \overrightarrow{a} × \overrightarrow{b} , 如下:

• 大小:

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta \tag{1.1}$$

• 方向: $\overrightarrow{a} \times \overrightarrow{b}$ 与 \overrightarrow{a} 、 \overrightarrow{b} 都垂直,其指向按右手螺旋定则,由 \overrightarrow{a} 沿着不大于 π 的角度 转向 \overrightarrow{b} 确定。

1.1.2 性质

- 1. $\overrightarrow{a} \times \overrightarrow{b} \perp \overrightarrow{a}$, $\overrightarrow{a} \times \overrightarrow{b} \perp \overrightarrow{b}$
- 2. 重要结论: $\overrightarrow{a} \times \overrightarrow{a} = \overrightarrow{0}$ 对非零向量 \overrightarrow{a} , \overrightarrow{b} , 有 \overrightarrow{a} // \overrightarrow{b} \leftrightarrow \overrightarrow{a} \times \overrightarrow{b} = $\overrightarrow{0}$
- 3. 几何意义(向量积的模):

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$$

$$= S \square$$
(1.2)

即 $|\overrightarrow{a} \times \overrightarrow{b}|$ 表示: 以 \overrightarrow{a} 、 \overrightarrow{b} 为邻边的平行四边形的面积。

1.1.3 运算规律

1. 反交换律:

$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a} \tag{1.3}$$

2. 分配律:

$$\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} \tag{1.4}$$

3. 结合律:

$$(\lambda \overrightarrow{a}) = \lambda \left(\overrightarrow{a} \times \overrightarrow{b} \right) = \overrightarrow{a} \times \left(\lambda \overrightarrow{b} \right) \tag{1.5}$$

1.1.4 向量积的坐标表示

设有向量 $\overrightarrow{a} = (x_1, y_1, z_1)$ 、 $\overrightarrow{b} = (x_2, y_2, z_2)$,则有

$$\overrightarrow{d} \times \overrightarrow{b} = \left(x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k}\right) \times \left(x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}\right)$$

$$= (y_1 z_2 - z_1 y_2) \cdot \overrightarrow{i} + (z_1 x_2 - x_1 z_2) \cdot \overrightarrow{j} + (x_1 y_2 - y_1 x_2) \cdot \overrightarrow{k}$$

$$= (y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2 x_1 y_2 - y_1 x_2)$$

$$= \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

$$(1.6)$$

同理,

$$\overrightarrow{b} imes \overrightarrow{a} = \left| egin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_2 & y_2 & z_2 \\ x_1 & y_1 & z_1 \end{array} \right|$$

1.2 混合积

1.2.1 定义

设有向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , 称数 $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$. \overrightarrow{c} 为向量 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 的混合积,记作 $\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right]$, 即

$$\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right] = \left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{c} \tag{1.7}$$

1.2.2 坐标表示

设有向量 $\overrightarrow{a} = (x_1, y_1, z_1)$ 、 $\overrightarrow{b} = (x_2, y_2, z_2)$ 、 $\overrightarrow{c} = (x_3, y_3, z_3)$,则有

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
 (1.8)

1.2.3 几何意义

$$\begin{split} &\left|\left[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}\right]\right|$$
表示以 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 为相邻三条棱的平行六面体的体积。因此, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 共线 \Leftrightarrow $\left[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}\right]=0$ 。

1.2.4 运算规律

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix}
= - \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} \end{bmatrix} = - \begin{bmatrix} \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{a} \end{bmatrix} = - \begin{bmatrix} \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \end{bmatrix}$$
(1.9)

即按照下图沿同一方向(顺时针或逆时针)旋转的混合积组合的值是相等的。

例题 1.2.5

已知
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 2$$
,求 $\left[(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c}) \right] \cdot (\overrightarrow{c} + \overrightarrow{a})$ 。
Solution

$$\begin{split} & \left[(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c}) \right] \cdot (\overrightarrow{c} + \overrightarrow{a}) \\ & = \left[\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} \right] \cdot (\overrightarrow{c} + \overrightarrow{a}) \end{split}$$

 $\overrightarrow{b} \times \overrightarrow{b} = 0$, \overrightarrow{b}

$$\begin{split} & \left[(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c}) \right] \cdot (\overrightarrow{c} + \overrightarrow{a}) \\ & = \left[\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} \right] \cdot (\overrightarrow{c} + \overrightarrow{a}) \\ & = \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] + \left[\overrightarrow{a} \overrightarrow{c} \overrightarrow{c} \right] + \left[\overrightarrow{b} \overrightarrow{c} \overrightarrow{c} \right] + \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{a} \right] + \left[\overrightarrow{a} \overrightarrow{c} \overrightarrow{c} \overrightarrow{a} \right] + \left[\overrightarrow{b} \overrightarrow{c} \overrightarrow{c} \overrightarrow{a} \right] \end{split}$$

显然, 当混合积中只有不同的两个向量时(可认为这三个向量共面), 该混合积值为0。 于是

$$\begin{bmatrix} (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c}) \end{bmatrix} \times (\overrightarrow{c} + \overrightarrow{a}) \\
= \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} + \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$$

由于

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

而

$$\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = \begin{vmatrix} b_x & b_y & b_z \\ c_x & c_y & c_z \\ a_x & a_y & a_z \end{vmatrix}$$

所以

$$\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right] = \left[\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{a}\right]$$

于是

$$\left[(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c}) \right] \times (\overrightarrow{c} + \overrightarrow{a}) = 2 \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right]$$

2 平面及其方程

2.1 曲面方程与空间曲线方程的概念

2.1.1 曲面方程

设有曲面S: F(x, y, z) = 0,满足

- 1. 曲面S上任一点都满足方程;
- 2. 不在曲面S上的点的坐标不满足方程。

2.1.2 空间曲线方程

设有曲面 $S_1: F_1(x,y,z) = 0$ 和设有曲面 $S_2: F_2(x,y,z) = 0$,联立两方程:

$$\begin{cases} F_1(x, y, z) = 0, \\ F_2(x, y, z) = 0. \end{cases}$$

满足

- 1. 曲面S上任一点都满足方程;
- 2. 不在曲面S上的点的坐标不满足方程。

2.2平面的点法式方程

设平面 Π 上有一点 $M_0(x_0, y_0, z_0)$,其法向量为 $\overrightarrow{n} = (A, B, C)$ 。(注意: 平面的法向量 不唯一。)

设M(x,y,z), 则 $\overrightarrow{M_0M} \perp \overrightarrow{n}$, 则 $\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$, 而 $\overrightarrow{M_0M} = (x-x_0,y-y_0,z-z_0)$ 。 于是

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
(2.1)

即为平面Ⅱ的点法式方程。

平面的一般方程 2.3

$$Ax + By + Cz + D = 0 (2.2)$$

即为平面的一般方程。

任一三元一次方程的图形总是一个平面,方程2.2中x、y、z的系数就是该平面的一个 法向量 \overrightarrow{n} 的坐标,即 $\overrightarrow{n} = (A, B, C)$ 。

特殊情况:

- 1. D=0 ⇔平面通过原点;
- 2. A = 0 ⇔平面平行于(或包含) x轴;

B=0⇔平面平行于(或包含)y轴;

C = 0 ⇔平面平行于(或包含) z轴;

3. $A = B = 0 \Leftrightarrow$ 平面平行于(或重合于)xOy平面;

 $B = C = 0 \Leftrightarrow \text{平面平行于 (或重合于)} yOz\text{平面};$

 $A = C = 0 \Leftrightarrow$ 平面平行于(或重合于)xOz平面;

4. A = D = 0 ⇔平面包含x轴:

 $B = D = 0 \Leftrightarrow$ 平面包含y轴;

 $C = D = 0 \Leftrightarrow$ 平面包含z轴:

5. $A = B = D = 0 \Leftrightarrow z = 0 \ (xOy + m)$;

 $B = C = D = 0 \Leftrightarrow x = 0 \ (yOz = \overline{m});$

 $A = C = D = 0 \Leftrightarrow y = 0 \ (xOz + \overline{m});$

2.4 平面的截距式方程

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{2.3}$$

即为平面的截距式方程。方程2.3中a, b, c即分别为平面在x, y, z 轴上的截距。

2.5 两平面的夹角

2.5.1 定义

两平面的法线向量的夹角(通常指锐角或直角)称为两平面的夹角。因此 $\cos\theta = \left|\cos\left(\overrightarrow{n_1}, \overrightarrow{n_2}\right)\right|$ 。

设平面 Π_1 和 Π_2 的法线向量依次为 $\overrightarrow{n_1}=(A_1,B_1,C_1)$, $\overrightarrow{n_2}=(A_2,B_2,C_2)$ 。按两向量夹 角的余弦的坐标表示式平面 Π_1 和 Π_2 的夹角 θ 可由

$$\cos \theta = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$
(2.4)

来确定。

2.5.2结论

- 1. Π_1 和 Π_2 相互垂直相当于 $A_1A_2 + B_1B_2 + C_1C_2 = 0$
- 2. Π_1 和 Π_2 相互平行相当于 $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

2.6 点到平面的距离

设点 $P_0(x_0, y_0, z_0)$ 是平面Ax + By + Cz + D = 0外一点,则 P_0 到该平面的距离为

$$d = \frac{|Ax_0 + By_0 + Cz_0|}{\sqrt{A^2 + B^2 + C^2}}$$
 (2.5)

设有两平行平面 $\Pi_1: Ax + By + Cz + D_1 = 0$ 和 $\Pi_1: Ax + By + Cz + D_2 = 0$,则两平 面间的距离为

$$d = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}} \tag{2.6}$$