Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики" Московский институт электроники и математики им. А.Н. Тихонова

Департамент прикладной математики

УДК _____ УТВЕРЖДАЮ
№ госрегистрации ____
Инв. №____ головной исполнитель

МЕЖДИСЦИПЛИНАРНАЯ КУРСОВАЯ РАБОТА

«____» _____ 2022 г.

Тема работы

по теме:

Исследование вопросов оптимизации методов анализа некоторых схем шифрования сохраняющих формат (промежуточный)

Руководитель курсовой работы	Д.Б. Фомин
Академический руководитель	
образовательной программы	А.Б. Лось

СПИСОК ИСПОЛНИТЕЛЕЙ

Выполнил студент	 Щеглова П.Н.

СОДЕРЖАНИЕ

Введение	4
1 Шифрование с сохранением формата	5
1.1 Описание концепции	5
1.2 Действующие стандарты	6
1.2.1 FEA-1	7
1.3 Линейный метод	8
1.3.1 Их идеи	9
1.3.1.1 Теорема	11
1.3.1.2 Применение	11

ВВЕДЕНИЕ

С ускорением глобальной информатизации все острее встает вопрос о защите данных, в частности персональных данных. Несмотря на то, что существуют законы, регламентирующие порядок хранения и обработки персональных данных, возлагающие ответственность за их сохранность на операторов персональных данных, в большинстве случаев эти данные хранятся в базах в открытом виде, и несанкционированный доступ к ним не требует больших усилий от злоумышленника. В связи с тем, что последствия реализации данного типа угроз могут быть достаточно серьезными, остро встает задача безопасного хранения. Для информации персонального типа наиболее подходящим способ защиты является шифрование с сохранение формата (format-preserving encryption, FPE), так как оно лучше подходит для хранения в базах данных, чем традиционные механизмы с использованием симметричного шифрования. Однако несмотря на исследования вокруг существующих алгоритмов и их постоянную модернизацию, находятся способы показать их практическую нестойкость с помощью известных криптографических методов, таких как линейный криптоанализ, который с небольшими доработками и уточнениями может позволить дешифровать данные. В данной курсовой работе демонстрируются: описание линейного метода анализа схем FPE с настройками на основе сети Фейстеля, а именно стандарта FEA-1; применение линейного метода в российской традиции и его сравнение с подходом, представленным в анализируемой статье; а также результаты эксперимента по нахождению линейного статистического аналога для входных и выходных последовательностей шифропреобразования.

1 Шифрование с сохранением формата

1.1 Описание концепции

Format-preserving encryption, сокращенно FPE, - тип шифрования, который подразумевает сохранение формата открытого текста в шифртексте, или более формально отображение из множества открытых текстов в то же самое множество. Примеры отображений: шифрование 16-значного номера банковской карты 16-значным числом; шифрование одного английского слова другим английским словом; шифрование n-битного числа n-битным числом (совпадает с определением n-битного блочного шифра).

Для конечных множеств данный тип шифрования эквивалентен перестановке перенумерованных элементов множества. Истинно случайная перестановка является идеальным шифром FPE, однако для больших множеств невозможно предварительно сгенерировать и запомнить такую перестановку. Таким образом, проблема FPE состоит в том, чтобы сгенерировать псевдослучайную перестановку из секретного ключа таким образом, чтобы время вычисления для одного значения было небольшим (в идеале постоянным, но, что наиболее важно, меньшим, чем O(N), где N - размер входных данных).

Алгоритм FPE можно реализовать с использованием сети Фейстеля. Сеть Фейстеля нуждается в источнике псевдослучайных значений для раундовых ключей, выходные данные алгоритма AES могут использоваться в качестве этих псевдослучайных значений.

Чтобы реализовать алгоритм FPE с использованием AES и сети Фейстеля, можно использовать столько битов вывода AES, сколько необходимо, чтобы получить последовательность с длиной равной длине левой или правой половины сети Фейстеля. Если, например, в качестве раундового ключа требуется 24-битное значение, можно использовать 24 младших бита вывода AES.

При данном подходе выходные данные сети Фейстеля не обязательно сохранят формат входных данных, поэтому итерации сети Фейстеля

повторяются с помощью cycle-walking до тех пор пока формат не совпадет. Поскольку размер входов в сеть Фейстеля настраеваем, можно сделать наиболее вероятным, что эта итерация завершится в среднем достаточно быстро. В случае номеров кредитных карт, например, существует 10^{15} возможных 16-значных номеров кредитных карт (с учетом избыточной контрольной цифры), а поскольку $10^{15} \approx 2^{49,8}$, с использованием 50-битной сети Фейстеля и cycle-walking можно создать алгоритм FPE, который в среднем зашифровывает довольно быстро.

1.2 Действующие стандарты

Существует множество реализованных алгоритмов типа FPE, к актуальным можно отнести разработанные в США FF1 и FF3-1, а также южно-корейские FEA-1 и FEA-2. Алгоритм FEA, представленный институтом исследований национальной безопасности (NSR), использует сети Фейстеля, аналогичные стандартам NIST, FF1 и FF3-1. Однако алгоритмы FF1 и FF3-1 используют блочные шифры как F-функции, в то время как FEA использует свои собственные специализированные функции. Эта особенность позволяет использовать более высокоскоростное шифрование по сравнению с другими алгоритмами, предназначенными для шифрования с сохранением формата. FEA может быть подходящим выбором, при шифровании конфиденциальной персональной информации, которая, как правило, имеет небольшой объем.

Разница между этими двумя алгоритмами состоит в том, что FEA-1 имеет размер настройки 128-n бит (где n - размер входной последовательности), каждый с 12, 14 и 16 раундами при длине двоичного ключа 128, 192 и 256 соответственно. FEA-2 имеет фиксированный размер параметра настройки в 128 бит с 18, 21 и 24 раундами при длинах ключей 128, 192 и 256 соответственно.

1.2.1 FEA-1

Опишем подробнее стандарт, который анализируется в данной работе, а именно FEA-1:

Рисунок 1—Структура итерации FEA, на основе сети Фейстеля

На вход алгоритму подаются последовательности чисел из конечного множества, мощностью от 2^8 до 2^{128} , размер двоичного ключа K составляет \in [128, 192, 256]. Алгоритм представляет собой последовательное применение итераций сети Фейстеля, ее общая схема представлена в левой части Рисунка 1. Входная последовательность итерации X делится на две равные части X_a и X_b , X_b передается на вход специализированной F-функции, общая схема которой обозначена в правой части Рисунка 1. T_a и T_b - левая и правая половины нстройки, принцип формирования которой будет описан далее, RK_a и RK_b - левая и правая половины раундового ключа, S - блок подстановки (в данной схеме применяются идентичные S-блоки), \mathcal{M} - блок умножения на заданную матрицу.

Выбор настройки для каждой итерации происходит по следующему алгоритму: настройка T (битовый вектор длины 128-n) делится на две под-настройки $T_L=T_{[0:64-n_2-1]}$ и $T_R=T_{[64-n_2:128-n-1]}$ длины $64-n_2$ и $64-n_1$, соответственно. Полагаем $T_a^i=0$ для каждой итерации и T_b^i для i-ой итерации, как:

$$T_b^i = \begin{cases} T_L & \frac{i}{2} \in N \\ T_R & \frac{i+1}{2} \in N \end{cases}$$

1.3 Линейный метод

Линейный метод криптографического анализа состоит из двух этапов:

- а) Нахождение линейного статистического аналога для части исходного блочного шифра, это линейное соотношение связывает входные и выходные значения выбранной части алгоритма. Оно должно выполняться с вероятностью заметно отличающейся от случайной для возможности отличения этих двух вариантов событий.
- б) Отбрасывание ложных ключей с использованием найденного вероятностного соотношения.

Рисунок 2—Схема разбиения алгоритма на два блока для проведения линейного криптографического анализа

Перейдем к описанию метода:

Пусть схема шифропреобразования с общим ключом K разбита на две последовательные части F_{K_1} и F_{K_2} , как показано на Рисунке 2. В первой из них используется небольшая часть исходного ключа K_1 , во второй, соответсвенно, большая K_2 (при этом K_1 может частично

совпадать с K_2). Пусть также найдено линейное соотношение

$$c_{1}^{(i)}L_{1}^{'} + \dots + c_{N}^{(i)}L_{N}^{'} \simeq b_{1}^{(i)}L_{1}^{''} + \dots + b_{N}^{(i)}L_{N}^{''}, \tag{1}$$

которое, **независимо от значения** K_2 , выполняется с вероятностью $P=\frac{1+\delta}{2}$, где $\delta \neq 0$.

Булевы величины $L_j^{'}$ и $L_s^{''}, j,s\in\overline{1,N}$ (маска найденного линейного соотношения) известны; $c_1^{(i)},...,c_N^{(i)}$ - промежуточный шифртекст, между двумя блоками шифропреобрахования; $b_1^{(i)},...,b_N^{(i)}$ - известный итоговый шифртекст, $a_1^{(i)},...,a_N^{(i)}$ - известный открытый текст, $i\in\overline{1,T}$, где T - количество материала.

Пусть K_1' - доля ключа K_1 , от которой зависит левая часть в соотношении 1. Если при опробовании K_1' выполнимость соотношения с вероятностью $P=\frac{1+\delta}{2}$ не подтверждается, то соответствующее значение K_1' отбраковывается. Чем больше при этом T и $|\delta|$, тем большая доля значений K_1' будет отбракована, вплоть до однозначного определения K_1'

1.3.1 Их идеи

Линейный криптоанализ основан на вероятностных линейных соотношениях или линейных приближениях. Пусть $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ - функция, возможно зависящая от ключа. Линейные различители строятся на основе линейных приближений с большой абсолютной корреляцией. Линейное приближение для F определяется двумя масками $(u_1,u_2) \in \mathbb{F}_2^n \oplus \mathbb{F}_2^m$, и их корреляция равна:

$$C_{u_1,u_2}^F = 2 \cdot P\left(u_1^\top F(x) = u_2^\top x\right) - 1 = \frac{1}{2^n} \sum_{x \in F_n^n} (-1)^{u_1^\top F(x) + u_2^\top x},$$

где вероятность считается от равновероятно распределенного $x \in \mathbb{F}_2^n$. Если $u_1 \neq 0$, то математическое ожидание корреляции равновероятно распределенной функции равно нулю, а стандартное отклонение $\sigma = 2^{-n/2}$. Следовательно, если корреляция C значительно превосходит $2^{-n/2}$, то различителем можно считать вычисление корреляции для $q = \Theta(1/c^2)$ пар масок и сравнение получившего значения с некоторым заданным пороговым значением.

На первый взгляд стандарты FEA-1 и FEA-2 кажутся стойкими к линейному криптоанализу, особенно когда их раундовые функции F заменены на равновероятные случайные функции. Основное замечение, которое можно эксплуатировать в атаках на такие шифры, состоит в том, что шифр оказывается нестойким, если настройка (его часть) считается частью входных данных.

Рисунок 3 — Две итерации FEA-1

Рассмотрим испытание двух итераций FEA-1 (Рисунок 3), настройка T_L - произвольная постоянная, а T_R считается переменной входа. Если это не так, то для проведения атаки T_R должна быть известной. Идея состоит в том, что абсолютная корреляция линейного приближения раундовой функции F_i превышает $1/\sqrt{N}=2^{-m/2}$ с достаточно большой вероятностью, что важно, когда настройка включается во входные данные, потому что область определения функции, которая отображает настройку и открытый текст в шифртекст, велика. В самом деле, математическое ожидание корреляции линейных приближений над случайной функцией с тем же размером входа (включая T_R размера 64-m), что и в FEA-1, равно нулю, а стандартное отклонение $2^{-32-m/2}$.

1.3.1.1 Теорема

Пусть C - корреляция нетривиального линейного приближения равновероятно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$. Случайная величина $2^{n-1}(C+1)$ имеет биномиальное распределение с математическим ожиданием 2^{n-1} и дисперсией 2^{n-2} . В частности, при $n \to \infty$ распределение $2^{n/2}C$ сходится к стандартному нормальному распределению $\mathcal{N}(0,1)$.

1.3.1.2 Применение

Пусть $r \geqslant 2$ - четное целое число. По принципу набегания знаков, корреляция испытания r раундов равна $C = \prod_{i=1}^{r/2} C_i$, где $C_i \sim \mathcal{N}(0,1/N)$ по Теореме 1.3.1.1. Случайные переменнные C_i будем считать независимыми, что следует из предположения о независимости раундовых функций $F_1, F_3, ..., F_{r-1}$. Можно проверить, что другие испытания для FEA-1 имеют корреляцию пренебрежимо малую.

Как упоминалось ранее, объем материала (или степень нелинейности???) для линейного различителя, основанного на приближении, с корреляцией C равен $\Theta(1/C^2)$. В таком случае, значение корреляции сильно варьируется в зависимости от ключа, поэтому полученный результат нельзя напрямую использовать для вычисления объема материала. Эвристически вычислимо, что для FEA-1

$$1/\mathbb{E}(c^2) = N^{r/2},\tag{2}$$

где $\mathbb{E}(c^2)$ - средне-квадратичная корреляция для равномерно распределенного случайного ключа. При этом, если правая часть открытого текста фиксирована проивользной константой, то после двух раундов левая половина промежуточного шифртекста равна левой половине открытого текста с точностью до константы. Следовательно, первые два раунда можно эффективно пропустить. Такая возможность, уменьшает степень нелинейности выхода в N раз до $N^{r/2-1}$.