Мониторинг, потоки данных, облачка, архитектура

Борисенко Глеб ФТиАД2021 Конечная :(

Что было в прошлый раз

- Версионирование моделей и данных
- DVC
- MLFlow

Сегодня на повестке

- Мониторинг
 - Grafana + VictoriaMetrics
- Потоки данных
 - Kafka
 - Flint
 - FeatureStore
- Облачные технологии
 - Пару слов о SberCloud, Heroku, AWS и т.п.
- Архитектура в новом свете

Мониторинг

- Мы вывели модельку в прод, ура!
- А как понять, что где-то появилась проблема?
- Ответ прост: Мониторинг!

Чем отличается мониторинг в ML от классики?

- Service health совпадает с мониторингом любого ИТ сервиса: проверяем, жив ли сервис, пайплайны, здоровы ли
- Model health проверка на то, что модель в проде делает полезные предсказания

Методики классического мониторинга

- USE method (Utilization, Saturation и Errors)
- RED method (Rate (Requests), Errors, Duration)
- The Four Golden Signals by Google (Latency, Traffic, Errors, Saturation)
- UCA method (Users, Conversions, Activity)
- Есть еще, вроде как, но менее популярные :)

А что по мониторингу ML Systems?

- Data monitoring
- Model monitoring

Data monitoring

- что-то изменили в схеме данных
- один из источников данных внезапно отвалился
- пришла только часть данных или неправильные данные
- Что можно проверить?
 - Совпадают ли типы данных?
 - Не изменилась ли доля пропусков в данных?
 - Значения признаков остались в "нормальном" диапазоне:
 - Появились ли новые категории?
 - Непрерывные признаки принимают значения, которые модель раньше не видела?
 - Изменились ли статистики по признакам, распределение признаков?

Model monitoring

- «Смещения» в окружении
- Изменения в поведении пользователей
- Что можно проверить?
 - Контролировать качество ML моделек
 - Сравнивать распределения предсказаний
 - Базовые статистики
 - Статистические тесты

Мини инсайты

- даже базовый мониторинг лучше чем его отсутствие
- думайте о своей задаче
- следите за блогами стартапов

Инструменты

- Grafana дашборды; лидер рынка
- Prometheus классика, старичок, и самый популярный
- VictoriaMetrics изначально замена стандартному хранилищу метрик в Prometheus; сейчас уже типа прометеуса, только лучше; относительно новый
- Бот в вашей сети или почтовая рассылка для алертов

Grafana

- позволяет легко делать дашборды
- комбинировать на них данные из разных источников (можно на графиках по метрикам из Prometheus нанести события из логов, собранных в Loki)
- совместима с множеством источников
- позволяет настраивать alerts

Grafana

Prometheus (это база)

Ways to gather metrics in Prometheus

Push vs Pull

Prometheus pull data every 10 seconds

Prometheus is active

Individual instances push data every 10 seconds

InfluxDB is passive

Экосистема Prometheus

Push mechanism

- На каждый объект, который нужно отслеживать (target) необходимо установить ПО которое будет отправлять push запросы
- Если необходимо отслеживать много микросервисов и каждый из них отправляет данные в систему мониторинга, может возникнуть высоконагруженный трафик и система мониторигна становится узким местом. (инфраструктура перегружена постоянными push запросами)
- Если мы перестали получать метрики от сервиса, это не может однозначно трактоваться как остановка сервиса (может что-то с сетью, или потерялся пакет, итд)

Pull mechanism

- нет неопределенности, которая возникает в push mechanism системах, если запрос не пришел
- мы можем регулировать нагрузку на сеть
- микросервисы для работы с Prometheus должны иметь endpoint, кроме того для многих решений есть готовые exporters
- если нам критична точность и мы хотим учитывать каждое значение метрики, pull mechanism не лучший выбор

Как это выглядит

```
→ C W
                (i) localhost:3000/metrics
# TYPE http server requests total counter
# HELP http server requests total The total number of HTTP requests handled by the Rack application.
http server requests total{code="200",method="get",path="/"} 1.0
# TYPE http server request duration seconds histogram
# HELP http server request duration seconds The HTTP response duration of the Rack application.
http server request duration seconds bucket{method="get",path="/",le="0.005"} 0.0
http server request duration seconds bucket{method="get",path="/",le="0.01"} 0.0
http server request duration seconds bucket{method="get",path="/",le="0.025"} 0.0
http server request duration seconds bucket{method="get",path="/",le="0.05"} 0.0
http server request duration seconds bucket{method="get",path="/",le="0.1"} 0.0
http server request duration seconds bucket{method="get",path="/",le="0.25"} 0.0
http server request duration seconds bucket{method="get",path="/",le="0.5"} 1.0
http server request duration seconds bucket{method="get",path="/",le="1"} 1.0
http server request duration seconds bucket{method="get",path="/",le="2.5"} 1.0
http server request duration seconds bucket{method="get",path="/",le="5"} 1.0
http server request duration seconds bucket{method="get",path="/",le="10"} 1.0
http server request duration seconds bucket{method="get",path="/",le="+Inf"} 1.0
http server request duration seconds sum{method="get",path="/"} 0.251396
http server request duration seconds count{method="get",path="/"} 1.0
# TYPE http server exceptions total counter
# HELP http server exceptions total The total number of exceptions raised by the Rack application.
```

А можно подробнее, что это?

1 Prometheus Data Model

Типы метрик

- counter счетчики (the number of requests served, tasks completed, or errors)
- gauge число которое может увеличиваться или уменьшаться (temperatures, current memory usage, but also "counts" that can go up and down, like the number of concurrent requests)
- Histogram histograms, quantiles are calculated on the Prometheus server(request durations or response sizes)
- Summary (сводка, xex) extended histograms, quantiles are calculated on the application server

Как это может выглядеть в питоне

```
from prometheus_client import Counter
c = Counter('my_failures', 'Description of counter')
c.inc()  # Increment by 1
c.inc(1.6)  # Increment by given value
```

```
@c.count_exceptions()
def f():
    pass

with c.count_exceptions():
    pass

# Count only one type of exception
with c.count_exceptions(ValueError):
    pass
```

A как получать данные из Prometheus? Ecть PromQL!

- Это свой язык для получения метрик из Prometheus
- Выглядит так же, как метрики, например:
- http_requests_total{host="10.2.0.4", path="/api"} offset 1d
- Есть в том числе получение метрик за определенный период, агрегации, свои функции

А как же алерты? Есть свой Alertmanager!

Alerting with Prometheus

Важный моментик

- Записи в Prometheus хранятся (по дефолту) два месяца
- Да и в принципе Prometheus не long-term хранилище

Так, отлично, а при чем тут вообще VictoriaMetrics?

- Почти то же самое, но быстрее и требует меньше оперативки
- И есть еще свои фичи

Есть свои:

- vmagent (на клиентах)
- vmalert (замена Alertmanager)
- vmanomaly (дял детекции аномалий)
- vmgateway (Pushgateway)
- И еще есть свои сервисы

Grafana Loki

Итак

- Теперь мы знаем, как работает мониторинг
- Можем (с гайдами, конечно) прикрутить его сами
- Мы молодцы

Потоки данных

- В случае online моделек и преобразований данных нам нужно уметь потоково работать с данными
- А как?

Вот тут мы узнаем:

- Что такое брокер сообщений и конкретно kafka
- Потоки данных в Apache Flink
- Есть еще SparkStreaming, тот же спарк, только все время работающий с «потоком» (там микробатчи на самом деле), но возможно там есть еще свои нюансы

Брокер сообщений

- Это та штука, которые обеспечивает доставку сообщений от одного узла до другого (или группы узлов)
- Зачем?
 - Для организации связи между отдельными службами, даже если какая-то из них не работает в данный момент
 - За счёт асинхронной обработки задач можно увеличить производительность системы в целом
 - Для обеспечения надёжности доставки сообщений
 - Все, в общем то
- Самые популярные:
 - Kafka
 - RabbitMQ

Сообщение отправляется напрямую от отправителя к получателю

Схема публикации/подписки

БРОКЕР СООБЩЕНИЙ Тема Подписчик Тема Подписчик

Kafka

- Приложения (продюсеры, producers) посылают сообщения на узел Kafka (брокер), и указанные сообщения обрабатываются другими приложениями, так называемыми консьюмерами (consumer).
- Указанные сообщения сохраняются в топике, а потребители подписываются на тему для получения новых сообщений.

Журнал

- У каждого топика в Kafka есть свой журнал.
- Продюсеры, отправляющие сообщения в Kafka, дописывают в этот журнал, а консюмеры читают из журнала с помощью указателей, которые постоянно перемещаются вперед
- Периодически Kafka удаляет самые старые части журнала
- Брокер не заботится о том, прочитаны ли сообщения или нет это ответственность клиента.

Partitions

Anatomy of a Topic

Partitions

Partitions

Лидер и репликация

Zookeeper

• Zookeeper — это распределенное хранилище ключей и значений. Оно сильно оптимизировано для считывания, но записи в нем происходят медленнее. Чаще всего Zookeeper применяется для хранения метаданных и обработки механизмов кластеризации

Kafka Streams и KSQL

- Есть особая штука для работы с потоковыми данными kafka streams.
- По сути, дают возможность данные из топика обрабатывать потоково через KSQL SQL язык для преобразования данных
- В мире ML (да и вообще) такое особо не видел, но решил, что как минимум сказать точно стоит.

Flink

• Kafka дает нам передавать потоково сообщения, a Flink — их потоково

(и эффективно) обрабатывать

• Ультра сложная и прикольная штука

Основы

- Здесь используется трушная стриминговая обработка по сообщениям
- Обработка состоит из операторов, которые легко параллелизируются
- У оператора может быть стейт по сути, его локальное хранилище, которые контролируется Flink-ом
- Стримы могут распространяться по ключам для эффективности
- Есть таймеры и обработка событий по таймерам

Параллелизация

Стейт по ключу и потоки по ключам

Чекпоинты

- Есть механизм чекпоинтов
- Это когда каждые N секунд или сообщений происходит снапшот запись всех стейтов в базу
- Есть механизмы синхронизации чекпоинтов по операторам
- Хранение самих стейтов конфигурируется. Есть два стула:
 - Hashmap в памяти
 - RocksDB

Таймеры

- Есть два таймера:
 - Process time текущее время по часам на стене
 - Event time время события.
- Wattermark(t) флаг, показывающий, что все сообщения со временем события меньше t уже обработаны. Используется для синхронизации потоков по event time. Оч важная штука для системы
- Можно регистрировать свои таймеры и по их окончании выполнять какое-то действие
- Есть механизмы обработки окон

Time To Live

- Для стейта можно определять ttl время после определенного события, после которого нужно что-то сделать
- Чаще всего, это используют для очистки стейта от опоздавших ивентов после определенной обработки

Process function

- По сути, главный строительный блок потоковой обработки
- Process function функция, которая применяется для каждого сообщения в потоке
- Есть вариант этой функции на двух потоков (для их совместной обработки)

•

Python API

- Есть PythonAPI для работы как со стримами, так и с таблицами (батчами стримов)
- Сама работа с данными (преобразования) очень похожа на спарк
- Все понятия, что были до этого, так же определяются наследованием от нужных классов или используя объекты из пакета
- Есть некоторые штуки, которые еще не реализованы для PythonAPI

Пример

```
from pyflink.common.typeinfo import Types
from pyflink.datastream import StreamExecutionEnvironment, FlatMapFunction, RuntimeContext
from pyflink.datastream.state import ValueStateDescriptor
class CountWindowAverage(FlatMapFunction):
   def __init__(self):
       self.sum = None
   def open(self, runtime_context: RuntimeContext):
        descriptor = ValueStateDescriptor(
           "average", # the state name
           Types.PICKLED_BYTE_ARRAY() # type information
       self.sum = runtime_context.get_state(descriptor)
   def flat_map(self, value):
        # access the state value
       current_sum = self.sum.value()
       if current_sum is None:
           current_sum = (0, 0)
       # update the count
       current_sum = (current_sum[0] + 1, current_sum[1] + value[1])
       # update the state
       self.sum.update(current_sum)
        # if the count reaches 2, emit the average and clear the state
       if current_sum[0] >= 2:
           self.sum.clear()
           yield value[0], int(current_sum[1] / current_sum[0])
env = StreamExecutionEnvironment.get_execution_environment()
env.from_collection([(1, 3), (1, 5), (1, 7), (1, 4), (1, 2)])
   .key_by(lambda row: row[0]) \
   .flat_map(CountWindowAverage()) \
    .print()
env.execute()
# the printed output will be (1,4) and (1,5)
```

Еще пример

```
class CountWithTimeoutFunction(KeyedProcessFunction):
   def __init__(self):
       self.state = None
   def open(self, runtime_context: RuntimeContext):
       self.state = runtime_context.get_state(ValueStateDescriptor())
           "my_state", Types.PICKLED_BYTE_ARRAY()))
   def process_element(self, value, ctx: 'KeyedProcessFunction.Context'):
       # retrieve the current count
       current = self.state.value()
       if current is None:
           current = Row(value.f1, 0, 0)
       # update the state's count
       current[1] += 1
       # set the state's timestamp to the record's assigned event time timestamp
       current[2] = ctx.timestamp()
       # write the state back
       self.state.update(current)
       # schedule the next timer 60 seconds from the current event time
       ctx.timer_service().register_event_time_timer(current[2] + 60000)
   def on_timer(self, timestamp: int, ctx: 'KeyedProcessFunction.OnTimerContext'):
       # get the state for the key that scheduled the timer
       result = self.state.value()
       # check if this is an outdated timer or the latest timer
       if timestamp == result[2] + 60000:
           # emit the state on timeout
           yield result[0], result[1]
```

Flink: и так далее

- Основные концепты я показал
- Штука очень эффективная для потоковой обработки
- Работает (архитектурно) практически как спарк
- Есть больше нюансов, моментов в доке, но смысла в этом для нас всех мало, пока не столкнемся в плотную
- Знание концептов позволит быстро разобраться подробнее
- Но очень маловероятно, что придется писать сложный код на Flink самим

Feature Store

- Feature Store по сути API для удобной работы с фичами, их преобразованиями, их каталогизацией.
- Короче говоря, удобный инструмент для работы с фичами командно в компании
- Есть разные готовые варианты, один из лучших бесплатных (open source) это Hopwsworks

Подробнее (оч круто написано, советую) по ссылке ниже:

https://habr.com/ru/company/glowbyte/blog/581458/

Облачка и облачные сервисы

- Для деплоя ваших приложений могут испольваться облачные сервисы
- Они бывают очень разные, от предоставления тупого железа до автоматического выделения мощностей для ваших функций

В чем разница одной картинкой

Traditional On-Premises IT, Collocation

• Плюсы

- Управляем всей инфраструктурой (или большей частью)
- Можем оптимизировать стоимость, если наши запросы очень велики (нам требуются сотни машин, купить GPU для исследований может быть дешевле, чем арендовать)

• Минусы

- Требуется отдельный штат специалистов, занимающихся поддержкой инфраструктуры (сеть, питание, вентиляция, обслуживание помещений)
- Слишком сложно и дорого для небольших компаний

Hosting - аренда физических серверов

• Плюсы

- Полноценная удаленная машина
- Обслуживанием железа занимается хостер
- Отсутствие виртуализации
 - необходимость для некоторого софта
 - нулевой оверхед

• Минусы

- Все ещё сложно поддерживать (с программной стороны) требуется DevOps
- При небольшой нагрузке возникает соблазн поддерживать самому, что приводит к росту технического долга.

Infrastructure-as-a-Service (IaaS) - AWS EC2, GCE

- Плюсы
 - Виртуализированные машинки
 - Можно быстро "накатывать" требуемые образы
 - Более гибко, чем Hosting, часть машин можно временно отключить и сэкономить
 - Можно легко масштабировать мощности
 - Часто дефолтный варинат для компаний
- Минусы
 - Машины все еще остаются независимым машинами
 - Требует выстраивания процессов деплоя и мониторинга

PS: виртуализацию полезно представлять как некоторую абстракцию на реальным железом

Platform-as-a-Service (PaaS)

- Плюсы
 - Не нужно думать о инфраструктуре, обычно задача лишь в том, чтобы поместить приложение в контейнер,
 - Легче масштабировать, адаптируясь к нагрузке
- Минусы
 - Обычно дороже, чем аренда серверов

Serverless (AWS Lambda, Google Cloud Function)

- Плюсы
 - Не нужно думать о инфраструктуре,
 - На лету адаптируются к меняющейся нагрузке (autoscaling)
- Минусы
 - Нужно подстраиваться под ограничения на среду исполнения
 - Неудобно делать inference на GPU прогоняются по одному примеру вместо батча.
 - Оплата не за время использования вычислительных мощностей, а за количество вызовов
 - Становится очень дорого на масштабе

Интересные облачные сервисы

- Heroku (paas)
- AWS (Bcë)
- Google Cloud (всё)
- Azure (Bcë)
- Selectel (сервер)
- Hetzner (сервер)
- VastAl (гпу)

РО ССИ ЯЯЯ:

- Sbercloud (всё)
- Yandexcloud (всё)
- VK Cloud (всё)

Архитектура

Все это вместе образует Систему.

Архитектура - это устройство таких систем.

Зачем нам думать об этом?

- 0. Архитектура описывает конечный предмет, который мы должны построить
- 1. Выбор архитектуры диктует слабые и сильные стороны решения и пути его модификации в будущем
- 2. Плохая архитектура породит технический долг и приведет к проблемам в её работе, поддержке, и доработке
- 3. Для эффективной работы в команде нужно общее понимание, как именно устроена ваша система

Best Practices for ML Engineering by Martin Zinkevich

• To make great products: do machine learning like the great engineer you are, not like the great machine learning expert you aren't.

От требований к архитектуре

- Требования к расчету фичей
 - на лету или предварительно?
 - с помощью каких программных средств?
- Требования к обучению
 - как часто?
 - на каких ресурсах?
- Требования к выдаче прогнозов
 - каким способом?
 - как быстро?
 - минимальное допустимое качество?
- Tradeoff скорость/надежность разработки
- Требования к автономности
- Требования к доступной кастомизации
- Требования к обработке приватных данных

И прочее, прочее, прочее

Препроцессинг фичей

- Обычно есть два подхода:
 - Считаем фичи в режиме реального времени
 - Требуется рассчитывать некоторые фичи заранее
- Использование имеющихся источников порождает задачи интеграции и накладывает на них ограничения например, по времени ответа.
- Feature Store здесь очень помогает

Обучение

- Наиболее распространено переобучение по расписанию запускаем код с помощью cronjob, планировщиков задач
- Еще вариант обучение на лету (например, с помощью Kafka, Flint)

Выдача прогнозов - сервис

- Как сервис:
 - Просто: Пишем REST API обертку на питоне
 - Быстро: Переписываем код на Go/C++, используем gRPC
- Как зависимость
- C Precompution-om
- По требованию (через брокер и очереди)

Когда ML - дополнение

- Часто ML-системы возникают не на пустом месте, а поверх уже
- существующей инфраструктуры:
 - 1. Уже есть Data Warehouse
 - 2. Уже есть бэкенд и устоявшиеся подходы к разработке
- В таком случае типично использование имеющихся инструментов и подходов.
- Пример использование Airflow для запуска пайплайнов по обучению моделей, когда он используется в компании для ETL.
- Или деплой на AWS Sagemaker/OpenShift/Heroku, когда они используются разработчиками, и так далее.
- Это может быть как плохо (бывают неудобные инструменты), так и хорошо (не нужно возводить все с нуля).

Итак

- Архитектура это описание и устройство программных систем
- Начинать разговор об архитектуре удобно с набора требований к системе. Одни из основных ML-специфичных это требования к расчету фичей, к обучению моделей и к выдаче прогнозов.

Архитектура (назад в прошлое)

MLOps level 0: Manual process

MLOps Level 1: автоматизация ML пайплайна

MLOps Level 2: автоматизация CI/CD пайплайна

Спасибо вам за ваше внимание и интерес на курсе :)

- Спасибо, что слушали :3
- Домашки обязательно тщательно допроверяю в ближайшее время, что у вас было достаточно времени для их правки
- Знаю, что семинары были плохие (мягко говоря), простите :(Обещаю исправиться
- Ооочень жду комментариев, критики, оценки от вас (можно и желательно в личку в телеге, не стесняйтесь писать правду :D)
- Еще раз спасибо, вы лапки :3