Álgebra Linear

Universidade do Minho Departamento de Matemática

2019/2020 LCC

Valores e vetores próprios

Exercícios

- 1. Considere a matriz $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$.
 - (a) Determine os valores próprios da matriz A.
 - (b) Determine o espaço próprio associado ao valor próprio de maior módulo da matriz A.
- 2. Considere a matriz $A = \begin{bmatrix} \alpha & 0 & 0 \\ 1 & \alpha & 0 \\ 1 & 1 & \alpha \end{bmatrix}, \alpha \in \mathbb{R}$. Calcule os valores próprios de A e os respetivos subespaços próprios.
- 3. Determine o espetro das seguintes matrizes, bem como os espaços próprios associados aos seus valores próprios:

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix},$$

$$D = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \end{bmatrix}, \quad F = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}.$$

- 4. Seja $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{K})$. Mostre que
 - (a) se $\mathbb{K} = \mathbb{R}$, então A não tem valores próprios; se $\mathbb{K} = \mathbb{C}$, então A tem dois valores próprios.
 - (b) as matrizes A e $B=\left[\begin{smallmatrix} -2 & -1 \\ 5 & 2 \end{smallmatrix}\right]$ têm o mesmo polinómio característico.
- 5. Seja $A = [a_{ij}] \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Mostre que o polinómio característico de A, na variável λ , se pode escrever na forma $p(\lambda) = \lambda^2 \operatorname{tr}(A)\lambda + \det(A).$

6. Seja $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que $\operatorname{tr}(A)=2$ e $\det(A)=0$. Determine os valores próprios de A. Sugestão: Use o resultado apresentado no exercício anterior.

- 7. Determine a e b de modo que (1,1) e (1,0) sejam vetores próprios da matriz $\begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix}$.
- 8. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e seja $B = A \alpha I$, sendo α um escalar real. Qual a relação entre os valores próprios de A e de B?

9. Seja A uma matriz de ordem 3 com valores próprios -1, 1 e 2. Indique os valores próprios de uma matriz B relacionada com A do seguinte modo:

(a) B = 2A.

(d) $B = A + pI_3, p \in \mathbb{R}$.

(g) $B = A^2$.

(b) B = -A.

(e) $B = A^{-1}$.

(h) $B = A^2 + A$.

(c) $B = A - I_3$.

(f) $B = A^T$.

(i) $B = A^4 - I_3$.

10. Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ diz-se idempotente se $A^2 = A$. Mostre que se λ é um valor próprio de uma matriz idempotente, então $\lambda = 0$ ou $\lambda = 1$.

1

- 11. Dê um exemplo de uma matriz triangular de ordem 5 com um valor próprio de multiplicidade algébrica dois e três valores próprios simples.
- 12. Considere as matrizes, apenas com o valor próprio α ,

$$A_{1} = \begin{bmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{bmatrix}, \quad A_{2} = \begin{bmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}, \quad A_{3} = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix} \in \mathcal{M}_{n \times n}(\mathbb{R}).$$

Mostre que em A_i se tem que a multiplicidade geométrica do valor próprio α é igual a i, i = 1, 2, 3.

13. Justifique que

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \in \mathcal{M}_{n \times 1}(\mathbb{R})$$

são vetores próprios de qualquer matriz diagonal $\mathcal{M}_{n\times n}(\mathbb{R})$ e indique os valores próprios correspondentes.

- 14. (a) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Mostre que A e A^T têm o mesmo polinómio característico e, portanto, os mesmos valores próprios.
 - (b) Considerando a matriz $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, mostre que os subespaços próprios, respetivamente, de A e A^T associados ao mesmo valor próprio, não são necessariamente iguais.
- 15. Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$. Dizemos que A é semelhante a B se existe $P \in \mathcal{M}_{n \times n}(\mathbb{R})$ invertível tal que

$$B = P^{-1}AP.$$

Justifique as afirmações seguintes.

- (a) Toda a matriz é semelhante a si própria.
- (b) Se A é semelhante a B, então B é semelhante a A. (Dizemos então que A e B são semelhantes.)
- (c) Se A é semelhante a B e B é semelhante a $C \in \mathcal{M}_{n \times n}(\mathbb{R})$, então A é semelhante a C.
- (d) Se x é um vetor próprio de A associado a um valor próprio λ , então $P^{-1}x$ é um vetor próprio de B associado ao mesmo valor próprio.
- (e) Se A é semelhante a B, então A e B têm os mesmos valores próprios.
- 16. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Dizemos que A é diagonalizável se A é semelhante a uma matriz diagonal, isto é, se existe uma matriz invertível $P \in \mathcal{M}_{n \times n}(\mathbb{R})$ e uma matriz diagonal D tais que

$$P^{-1}AP = D.$$

Nestas condições, diz-se que P é uma matriz diagonalizante de A.

Considere a matriz $A = \begin{bmatrix} 2 & -3 \\ 2 & -5 \end{bmatrix}$. Verifique que

- (a) $\boldsymbol{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ é um vetor próprio de A associado ao valor próprio $\lambda_1 = 1$ e o vetor $\boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ é um vetor próprio de A associado ao valor próprio $\lambda_2 = -4$.
- (b) a matriz $P = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ é uma matriz diagonalizante de A.
- 17. Considere a matriz $A = \begin{bmatrix} \frac{3}{-4} & \frac{2}{-3} & 0 \\ \frac{4}{4} & 2 & -1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$. Determine o espectro de A e uma base para cada um dos subespaços próprios de A e mostre que A é diagonalizável indicando uma matriz P invertível e uma matriz diagonal D tais que $P^{-1}AP = D$.

2

Soluções

1. (a) Os valores próprios de A são as soluções da equação $\det(A-\lambda I)=0,$ na variável $\lambda.$ Temos

$$\det(A - \lambda I) = \det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & -1 \\ 0 & 2 & 4 - \lambda \end{bmatrix} \end{pmatrix}$$
$$= (2 - \lambda) [(1 - \lambda)(4 - \lambda) + 2] = (2 - \lambda)(\lambda^2 - 5\lambda + 6).$$

Assim,

$$\det(A - \lambda I) = 0 \iff (2 - \lambda)(\lambda^2 - 5\lambda + 6) = 0 \iff 2 - \lambda = 0 \lor \lambda^2 - 5\lambda + 6 = 0$$
$$\iff \lambda = 2 \lor \lambda = 2 \lor \lambda = 3.$$

Ou seja, $\lambda(A) = \{2,3\}$, tendo o valor próprio $\lambda = 2$ multiplicidade algébrica igual a 2 e o valor próprio $\lambda = 3$ multiplicidade algébrica igual a 1.

(b) O subespaço próprio associado ao valor próprio $\lambda=3,\,E_3,\,$ é o espaço das soluções (vetores coluna) do sistema

$$(A-3I_3)\boldsymbol{x} = \boldsymbol{0} \Longleftrightarrow \begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Trata-se de um sistema possível e indeterminado com conjunto solução dado por

$$C.S. = \{(x_2, x_2, -2x_2) : x_2 \in \mathbb{R}\}.$$

Assim, $E_3 = \langle (1, 1, -2) \rangle$.

Nota: em rigor deveríamos escrever $E_3 = \left\langle \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \right\rangle$, quando se adota a definição de vetor próprio como sendo um vetor coluna $\boldsymbol{x} \neq \boldsymbol{0}$ tal que $A\boldsymbol{x} = \lambda \boldsymbol{x}$, para algum escalar λ .

2.

$$\det(A - \lambda I) = 0 \Longleftrightarrow \det\left(\begin{bmatrix} \alpha - \lambda & 0 & 0 \\ 1 & \alpha - \lambda & 0 \\ 1 & 1 & \alpha - \lambda \end{bmatrix}\right) = 0 \Longleftrightarrow (\alpha - \lambda)^3 = 0 \Longleftrightarrow \lambda = \alpha.$$

Ou seja, existe um único valor próprio $\lambda = \alpha$ (de multipliciade algébrica 3) e o subespaço próprio associado a este valor próprio é $E_{\alpha} = \langle (0,0,1) \rangle$ que é o conjunto solução do sistema

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

3.
$$\lambda(A) = \{-1, 5\}; \quad E_{-1} = \langle (-2, 1) \rangle; \quad E_{5} = \langle (1, 1) \rangle$$

$$\lambda(B) = \{0, 2\}; \quad E_{0} = \langle (-1, 1) \rangle; \quad E_{2} = \langle (1, 1) \rangle$$

$$\lambda(C) = \{-2, 1\}; \quad E_{-2} = \langle (0, 1, 1) \rangle; \quad E_{1} = \langle (0, 1, 2) \rangle$$

$$\lambda(D) = \{2, 4\}; \quad E_{2} = \langle (1, 0, 1), (0, 1, 0) \rangle; \quad E_{4} = \langle (-1, 0, 1) \rangle$$

$$\lambda(E) = \{0, 2\}; \quad E_{0} = \langle (1, -1, 1) \rangle; \quad E_{2} = \langle (1, 0, 1) \rangle$$

$$\lambda(F) = \{1, 2, 3\}; \quad E_{1} = \langle (0, 1, 0) \rangle; \quad E_{2} = \langle (-1, 2, 2) \rangle; \quad E_{3} = \langle (-1, 1, 1) \rangle$$

5.

$$p(\lambda) = \det(A - \lambda I) = \det\left(\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix}\right) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{21}a_{12}$$
$$= \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{21}a_{12} = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A).$$

6. Usando o resultado do exercício anterior, vem

$$\det(A - \lambda I) = 0 \iff \lambda^2 - 2\lambda = 0 \iff \lambda(\lambda - 2) = 0 \iff \lambda = 0 \lor \lambda = 2.$$

7. Temos

$$\begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ a+b \end{bmatrix} = 2 \begin{bmatrix} 1 \\ \frac{a+b}{2} \end{bmatrix} \quad \text{e} \quad \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ a \end{bmatrix}.$$

Para que o vetor $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ seja vetor próprio de A deve ser a=0 e teremos $\lambda=1$ como valor próprio correspondente. Se $\frac{a+b}{2}=1$, ou seja, se b=2-a, o vetor $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ é vetor próprio de A associado ao valor próprio $\lambda=2$. Assim, deve ser a=0 e b=2 para que os dois vetores sejam ambos vetores próprios de A.

8. Seja λ um valor próprio de uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, isto é, por definição, seja λ tal que $A\mathbf{x} = \lambda \mathbf{x}, \ \mathbf{x} \neq \mathbf{0}$. Assim,

$$Bx = (A - \alpha I)x = Ax - \alpha x = \lambda x - \alpha x = (\lambda - \alpha)x, \quad x \neq 0.$$

Isto é, se λ é valor próprio de A, então $\lambda - \alpha$ é valor próprio de B e os vetores próprios associados são os mesmos.

9. (a)
$$\lambda(B) = \{-2, 2, 4\}.$$

(f)
$$\lambda(B) = \{-1, 1, 2\}.$$

(b)
$$\lambda(B) = \{-1, 1, -2\}.$$

(g)
$$\lambda(B) = \{1, 4\}.$$

(c)
$$\lambda(B) = \{-2, 0, 1\}.$$

$$(8)$$
 (2) $(1,1)$

(d)
$$\lambda(B) = \{-1+p, 1+p, 2+p\}.$$

(h)
$$\lambda(B) = \{0, 2, 6\}.$$

(e)
$$\lambda(B) = \{-1, 1, \frac{1}{2}\}.$$

(i)
$$\lambda(B) = \{0, 15\}.$$

10. Seja λ um valor próprio de uma matriz idempotente A. Então, por definição, $Ax = \lambda x, x \neq 0$. Como $A = A^2$, equivale a dizer que

$$A^2 \mathbf{x} = \lambda \mathbf{x}, \ \mathbf{x} \neq \mathbf{0}.$$

Uma vez que, para qualquer matriz A,

$$A^{2}x = A(Ax) = A(\lambda x) = \lambda Ax = \lambda^{2}x,$$

vem

$$\lambda x = \lambda^2 x \iff (\lambda - \lambda^2) x = 0, \quad x \neq 0.$$

Como $x \neq 0$, deve ser $\lambda - \lambda^2 = 0$, ou seja, $\lambda = 0$ ou $\lambda = 1$.

11. Por exemplo, a matriz triangular inferior

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 2 & 0 & 0 \\ 4 & 3 & 2 & 3 & 0 \\ 5 & 4 & 3 & 2 & 4 \end{bmatrix}$$

tem espetro $\lambda(A) = \{1, 2, 3, 4\}$, sendo o valor próprio $\lambda = 1$ de multipliciade algébrica 2 e os restantes valores próprios de multiplicidade algébrica 1.

- 14. (a) $p_A(\lambda) = \det(A \lambda I_n) = \det((A \lambda I_n)^T) = \det(A^T \lambda I_n) = p_{AT}(\lambda)$.
- 14. (a) Tomando $P = I_n$, $A = P^{-1}AP = I_nAI_n = A$, para qualquer matriz A.
 - (b) $B = P^{-1}AP \Longrightarrow PBP^{-1} = PP^{-1}APP^{-1} \Longrightarrow PBP^{-1} = I_nAI_n \Longrightarrow PBP^{-1} = A.$
 - (c) Se $B = P_1^{-1}AP_1$ e $C = P_2^{-1}BP_2$, então $C = P_2^{-1}P_1^{-1}AP_1P_2 = (P_1P_2)^{-1}A(P_1P_2)$.
 - (d) $A\mathbf{x} = \lambda \mathbf{x} \Longrightarrow P^{-1}A\mathbf{x} = \lambda P^{-1}\mathbf{x} \Longrightarrow P^{-1}AI_n\mathbf{x} = \lambda P^{-1}\mathbf{x} \Longrightarrow$ $\Longrightarrow P^{-1}A(PP^{-1})\mathbf{x} = \lambda P^{-1}\mathbf{x} \Longrightarrow (P^{-1}AP)(P^{-1})\mathbf{x} = \lambda P^{-1}\mathbf{x} \Longrightarrow$ $\Longrightarrow B(P^{-1}\mathbf{x}) = \lambda(P^{-1}\mathbf{x}).$
 - (e) De forma análogo à alínea anterior, provamos que se λ é um valor próprio de B com vetor próprio \boldsymbol{x} , então λ também é valor próprio de A com vetor próprio $P\boldsymbol{x}$.
- 17. $\lambda(A) = \{-1, 1\}$. (O valor próprio -1 tem multiplicidade algébrica 2 e o valor próprio 1 tem multiplicidade algébrica 1.)

Por exemplo, $E_{-1} = \langle (1, -2, 0), (0, 0, 1) \rangle$ e $E_1 = \langle (1, -1, 1) \rangle$.

Por exemplo, $P = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ e $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$