Lecture 15

Normal Distribiutions II

Text: Chapter 4

STAT 8010 Statistical Methods I September 23, 2019 Normal Distribiutions

Random Variables

Normal approximation of Binomial Distribution

Sampling Distribution and Central Limit Theorem (CLT)

Whitney Huang Clemson University

Normal approximation of Binomial Distribution

Sums of Normal Random Variables

Sums of Normal Random Variables

Normal Distribiutions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Sampling Distribution and Central Limit Theorem (CLT)

If X_i $1 \leq i \leq n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

Sampling Distribution and Central Limit Theorem (CLT)

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

Sampling Distribution and Central Limit Theorem (CLT)

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

- Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
- This can be applied for any integer n

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k = 1, 2, and 3 respectively. Find the following distributions:

- $\bigcirc \sum_{i=1}^3 X_i$
- (2) $X_1 + 2X_2 3X_3$

$$\bigcirc \sum_{i=1}^3 X_i$$

$$\bigcirc \sum_{i=1}^3 X_i$$

$$\bigcirc \sum_{i=1}^3 X_i$$

$$\sum_{i=1}^{N} A_i$$

$$\sum_{i=1}^{3} X_i \sim N(\mu = 3 + 6 + 9 = 15, \sigma^2 = 1^2 + 2^2 + 3^2 = 14)$$

$$2X_1 + 2X_2 - 3X_3$$

$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$

$$\bigcirc \sum_{i=1}^3 X_i$$

$$\sum_{i=1}^{N} A_i$$

$$\sum_{i=1}^{3} X_i \sim N(\mu = 3 + 6 + 9 = 15, \sigma^2 = 1^2 + 2^2 + 3^2 = 14)$$

$$2X_1 + 2X_2 - 3X_3$$

$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$

- $\bigcirc \sum_{i=1}^3 X_i$
 - $\sum_{i=1}^{3} X_i \sim N(\mu = 3 + 6 + 9 = 15, \sigma^2 = 1^2 + 2^2 + 3^2 = 14)$
- (2) $X_1 + 2X_2 3X_3$

$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$

- - $X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$

Normal approximation of Binomial Distribution

 We can use a Normal Distribution to approximate a Binomial Distribution if n is large Normal Distribiutions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Normal approximation of Binomial Distribution

 We can use a Normal Distribution to approximate a Binomial Distribution if n is large Normal Distribiutions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Normal approximation

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5

Normal approximation

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5

Normal approximation of Binomial Distribution

and Central Limit
Theorem (CLT)

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n, p)$ with np > 5 and n(1 p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1 p))$ to approximate X

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n, p)$ with np > 5 and n(1 p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1 p))$ to approximate X

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

and Central Limit
Theorem (CLT)

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n, p)$ with np > 5 and n(1 p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1 p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $\mathbb{P}(X^* = x) = 0 \ \forall x$

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

and Central Limit
Theorem (CLT)

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n, p)$ with np > 5 and n(1 p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1 p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $\mathbb{P}(X^* = x) = 0 \ \forall x$

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $\mathbb{P}(X^* = x) = 0 \ \forall x$
- Continuity correction: we use $\mathbb{P}(x 0.5 \le X^* \le x + 0.5)$ to approximate $\mathbb{P}(X = x)$

- Find the probability that X is between 370 and 373 inclusive
- Is an approximation appropriate for the number of students that finish the course?
- If so, what is this distribution and what are the parameter(s)?
- Find the probability that is between 370 and 373 inclusive by using the approximation (if an approximation appropriate)

Random Variables

of Binomial Distribution

Sampling distribution: the probability distribution of a given random-sample-based statistic

CLT

The sampling distribution of the mean will become approximately normally distributed as the sample size becomes larger, irrespective of the shape of the population distribution!

Let $X_1, X_2, \dots, X_n \stackrel{i.i.d.}{\sim} F$ with $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \text{Var}[X_i]$. Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{d} \mathsf{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Normal Distribiutions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

CLT: Sample Size (n) and the Normal Approximation

Normal Distribiutions

Random Variables

- In many cases, we would like to make statistical inference about the population mean μ
 - The sample mean \bar{X}_n is a sensible estimator for the population mean
 - CLT tells us the distribution of our estimator $\Rightarrow \bar{X}_n \sim N(\mu, \frac{\sigma^2}{\pi})$
- Applications: Hypothesis testing, confidence interval