Abstract Algebra I

Mario L. Gutierrez Abed

Practice Midterm

(1)

a) Suppose that * is an associative and commutative binary operation on a set X. Show that $H = \{a \in X : a * a = a\}$ is closed under *.

Solution:

Let $h, g \in H$, so that h = h * h and g = g * g for $h, g \in X$. Then

$$h * g = (h * h) * (g * g)$$

= $(h * (h * g) * g)$ (by associativity)
= $(h * (g * h) * g)$ (by commutativity)
= $(h * g) * (h * g)$ (by associativity)

This shows that H is closed under *.

b) Give an example of a cyclic group with one generator.

Solution:

 $\mathbb{Z}_2 = \{0, 1\}$ is such an example, where the generator is 1. That is, \mathbb{Z}_2 can be written in the form $\langle 1 \rangle = \{1^n : n \in \mathbb{Z}\} = \{n \cdot 1 : n \in \mathbb{Z}\}.$

c) Explain why $\langle \mathbb{Z}^*, + \rangle$ is not a group.

Solution:

It's not a group because it lacks an identity element. That is, there is no $e \in \mathbb{Z}^*$ such that x * e = e * x = x for $x \in \mathbb{Z}^*$.

d) What are the generators of \mathbb{Z}_6 ? How many proper nontivial subgroups does \mathbb{Z}_6 have?

Solution:

The generators of \mathbb{Z}_6 are the nonzero elements $a \in \mathbb{Z}_6$ such that gcd(a, 6) = 1. The only elements in \mathbb{Z}_6 that are relatively prime to 6 are 1 and 5, hence these are the generators.

Now to determine the proper nontivial subgroups of \mathbb{Z}_6 we invoke Lagrange's theorem, which says that if H is a subgroup of a finite group G, then the order of H is a divisor of the order of G. We want to use the converse of this theorem, which in fact holds if G (i.e. \mathbb{Z}_6 in this case) is abelian. Therefore since \mathbb{Z}_6 is abelian, for every divisor of the order of \mathbb{Z}_6 (i.e. 6) there is a subgroup of that order. The divisors of 6 are 1,2,3, and 6, so by the converse of Lagrange's theorem (which holds in this case since \mathbb{Z}_6 is abelian), we are guaranteed the existence of two nontrivial proper subgroups of order 2 and 3.

e) Explain why \mathbb{Z}_3 is not a subgroup of \mathbb{Z}_6 .

Solution:

In order for a subset H of a group G to be a subgroup of G, H would have to be closed under the same binary operation as G. Since \mathbb{Z}_3 is not closed under $+_6$, it follows that \mathbb{Z}_3 is not a subgroup of \mathbb{Z}_6 .

For instance, $1 +_6 2 = 3$ while $1 +_3 2 = 0$.

- (2) In each part give an example (with a brief explanation) that satisfies the given conditions or briefly explain why no such example exists:
- a) A group having the same order as $\mathbb{Z}_2 \times \mathbb{Z}_2$ but not isomorphic to it.

Solution:

 \mathbb{Z}_4 is such a group. It is a cyclic group whereas $\mathbb{Z}_2 \times \mathbb{Z}_2$, which is isomorphic to the Klein-4 group, is not cyclic. Therefore \mathbb{Z}_4 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, even though both groups have the same order. 🕸

b) A nonabelian group that is not cyclic.

Solution:

We have a theorem which states that every cyclic group must be abelian. Hence its contrapositive must hold, i.e. if we have a group that is nonabelian then it cannot possibly be cyclic. An example of such groups are the groups of symmetries on n elements S_n for $n \ge 3$.

c) A cyclic group G having a nonabelian subgroup H.

Solution:

No such example exists. We have a theorem which states that every subgroup of a cyclic group is cyclic. Then we have another theorem that tells us that every cyclic group must be abelian. Hence it follows from these two theorems that every subgroup H of a cyclic group G must be abelian.

d) A finite group having no proper nontrivial subgroups.

Solution:

An example of such groups is \mathbb{Z}_p for $2 \le p < \infty$ a prime. According to a corollary to Lagrange's theorem, every group of prime order is cyclic. By another theorem we know that every cyclic group must be abelian. Hence \mathbb{Z}_p is abelian and the converse of Lagrange's theorem guarantees the existence of subgroups of \mathbb{Z}_p of order that divides p. Since p is prime, only 1 and p itself divide p, hence \mathbb{Z}_p has no nontrivial subgroups. For instance, take \mathbb{Z}_7 ; the only divisors of 7 are itself and 1. Hence there are only two subgroups, one of order 7 and the other of order 1. Thus \mathbb{Z}_7 has no nontrivial subgroups.

e) A finite noncyclic group.

Solution:

The Klein-4 group $V = \{e, a, b, ab\}$ with the property $a^2 = b^2 = (ab)^2 = e$ is such an example. This group is not cyclic because there is no element $x \in V$ such that $V = \langle x \rangle = \{x^n : n \in \mathbb{Z}\}.$

f) A group having order 17 containing a subgroup of order 8.

Solution:

No such group can possibly exist. According to Lagrange's theorem, if G is a finite group and H is a

subgroup of G, then the order of H must be a divisor of the order of G. In this case we can see that 8 is clearly not a divisor of 17, which is a prime, therefore no such group can exist.

g) A group having order 8 containing a subgroup of order 4.

Solution:

Such an example is \mathbb{Z}_8 with subgroup $H = \{0, 2, 4, 6\}$. To show that H is a subgroup of \mathbb{Z}_8 , notice that H is closed under the binary operation of \mathbb{Z}_8 , namely $+_8$. Also the identity 0 of \mathbb{Z}_8 is in H and for any element $a \in H$, its inverse is also in H.

h) An abelian group that is not cyclic.

Solution:

The Klein-4 group $V = \{e, a, b, ab\}$ is such an example. We can see that it's abelian since it has the property $a \cdot a = b \cdot b = (ab) \cdot (ab) = e$. This group is not cyclic because there is no element $x \in V$ such that $V = \langle x \rangle = \{x^n : n \in \mathbb{Z}\}$.

- (3) Let $\tau = (2, 5)(3, 4, 7, 8, 9)$ and $\sigma = (1, 2, 5, 3)(4, 8, 7)$.
- a) Compute $\tau \sigma \tau^{-1}$.

Solution:

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 3 & 4 & 2 & 6 & 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 4 & 7 & 5 & 6 & 8 & 9 & 3 \end{pmatrix} \\
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 4 & 7 & 2 & 6 & 8 & 9 & 3 \end{pmatrix}$$

$$\tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 4 & 7 & 2 & 6 & 8 & 9 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 9 & 3 & 2 & 6 & 4 & 7 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 1 & 4 & 3 & 6 & 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 8 & 5 & 6 & 4 & 7 & 9 \end{pmatrix} \\
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 1 & 8 & 3 & 6 & 4 & 7 & 9 \end{pmatrix}$$

Hence,

$$\tau \sigma \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 4 & 7 & 2 & 6 & 8 & 9 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 1 & 8 & 3 & 6 & 4 & 7 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 9 & 3 & 2 & 6 & 4 & 7 & 8 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 4 & 7 & 2 & 6 & 8 & 9 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 9 & 1 & 5 & 6 & 8 & 4 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 4 & 3 & 1 & 2 & 6 & 9 & 7 & 8 \end{pmatrix}.$$

b) Express $\tau \sigma \tau^{-1}$ of part a) as a product of transpositions. From this result, determine whether $\tau \sigma \tau^{-1}$ is even or odd.

Solution:

$$\tau \sigma \tau^{-1} = (1, 5, 2, 4) (7, 9, 8)$$

= (1, 4) (1, 2) (1, 5) (7, 8) (7, 9).

Hence $\tau \sigma \tau^{-1}$ is odd.

a) Let $\phi: G \longrightarrow G'$ be a group homomorphism of G onto G'. Show that if G is abelian, then G' must also be abelian.

Proof:

Let G be abelian and let ϕ be a homomorphism of G onto G'. For a', $b' \in G'$, we want to show that a'b'=b'a'. Since ϕ is an onto homomorphism, there exists $a,b\in G$ such that $\phi(a)=a',\phi(b)=b'$, and $\phi(a b) = \phi(a) \phi(b) = a' b'$.

But then

$$a' b' = \phi(a) \phi(b) = \phi(a b)$$

= $\phi(b a)$ (since G is abelian)
= $\phi(b) \phi(a)$ (since ϕ is a homomorphism)
= $b' a'$.

Thus we have proven that G' is abelian.

b) Let G be a group. Let H be a subset of G consisting of all the elements h of G such that h com-

mutes with every element of G; that is, $H = \{h \in G : hg = gh \ \forall \ g \in G\}$. Prove that H is a subgroup of G.

Proof:

• We first show that H is closed under the binary operation of G. For any two elements $h_1, h_2 \in H$, we must then show that $h_1 h_2 \in H$. So let $g \in G$, then we have

$$(h_1 h_2) g = h_1(h_2 g)$$
 (by associativity of G).
 $= h_1(g h_2)$ (by commutative property of H)
 $= (h_1 g) h_2$ (by associativity of G)
 $= (g h_1) h_2$ (by commutative property of H)
 $= g(h_1 h_2)$ (by associativity of G).

Since $(h_1 h_2) g = g(h_1 h_2)$, by the definition of H we have $h_1 h_2 \in H$.

- ▶ Now we show that the identity e is in H. Observe that, $\forall g \in G$, we have e g = g e. Thus e satisfies the property $\{e \in G : e g = g e \ \forall g \in G\}$. Hence $e \in H$.
- ▶ Lastly, we need to show that for $h_1 \in H$, its inverse h_1^{-1} is also in H. For any element $h_1 \in H$, we have $h_1 g = g h_1$. Now let us show that $h_1^{-1} g = g h_1^{-1}$:

$$h_1 g = g h_1$$

$$\implies h_1^{-1} h_1 g = h_1^{-1} g h_1 \quad \text{(multiplying on the left by } h_1^{-1}\text{)}$$

$$\implies g = h_1^{-1} g h_1 \quad (*)$$

Now, multipliying (*) by h_1^{-1} on the right, we get $g h_1^{-1} = h_1^{-1} g$. This shows that $h_1^{-1} \in H$.

We have proven that H is a subgroup of G, as desired.

- (5) Any of the following will be chosen:
- a) Prove Cayley's theorem: Every group is isomorphic to a group of permutations.

Proof:

Let G be a group. We show that G is isomorphic to a subgroup of S_G . By a previous lemma, we need only define an injective function $\phi: G \longrightarrow S_G$ such that $\phi(x, y) = \phi(x) \phi(y) \ \forall x, y \in G$ (this function will be an isomorphism from G to its image $\phi[G] \subseteq S_G$.

For $x \in G$, let $\lambda_x : G \longrightarrow G$ be defined by $\lambda_x(g) = x g \ \forall g \in G$ (we think of λ_x as performing left multiplication by x). The equation

$$\lambda_x(x^{-1} c) = x(x^{-1} c) \quad \forall c \in G$$

shows that λ_x maps G onto G.

Now

$$\lambda_x(a) = \lambda_x(b) \Longrightarrow x \ a = x \ b \Longrightarrow a = b$$
 (by cancellation).

Thus λ_x is also injective, and it's a permutation of G.

We now define $\phi: G \longrightarrow S_G$ by defining $\phi(x) = \lambda_x$ for all $x \in G$. To show that ϕ is injective, suppose that $\phi(x) = \phi(y)$. Then $\lambda_x = \lambda_y$ as functions mapping G into G. In particular,

$$\lambda_x(e) = \lambda_y(e) \Longrightarrow x e = y e \Longrightarrow x = y$$
 (by cancellation).

Thus ϕ is injective.

We only need to show that $\phi(x \ y) = \phi(x) \ \phi(y)$, that is $\lambda_{xy} = \lambda_x \ \lambda_y$. Now, for any $g \in G$, we have $\lambda_{xy}(g) = (x \ y) \ g$. Permutation multiplication is function composition, so

$$(\lambda_x \lambda_y)(g) = \lambda_x(\lambda_y(g)) = \lambda_x(yg) = x(yg) = (xy)g = \lambda_{xy}.$$

Thus we have that $\lambda_{xy} = \lambda_x \lambda_y$, which is the desired homomorphic property, and we have thus proven that every group is isomorphic to a group of permutations.

b) Let G be a group and let a be a fixed element of G.

Then,

i) Show that the map $\lambda_a: G \longrightarrow G$, given by $\lambda_a(g) = ag$ for $g \in G$, is a permutation of the set G.

Proof:

Let G be a group and fix $a \in G$. Then the map λ_a is given by $\lambda_a(g) = \{a \ g : g \in G\}$. We need to show that this map is bijective:

Showing that the map is injective is trivial; if we pick two images $\lambda_a(g_1) = a g_1$ and $\lambda_a(g_2) = a g_2$ such that $a g_1 = a g_2$, we have that $g_1 = g_2$ by the cancellation law, where $g_1, g_2 \in G$. Hence λ_a is injective. This map is obviously surjective as well, since by definition for each image $a g \in G$ we have a preimage $g \in G$.

Since λ_a is bijection from the group G onto itself, we have that λ_a is a permutation on G.

ii) Show that $H = \{\lambda_a : a \in G\}$ is a subgroup of S_G .

Proof:

To show that H is a subgroup of S_G , we need to show that the identity element and inverse element of S_G are in H, and we also need to show that H is closed under the binary operation defined on G (permutation multiplication):

▶ To show closure, let $\lambda_a(g)$, $\lambda_b(g) \in H$, where $a, b, g \in G$. Then,

$$\lambda_a \circ \lambda_b(g) = \lambda_a(\lambda_b(g)) = \lambda_a(b g) = a b g = \lambda_{ab}(g) \in H$$

Hence *H* is closed under permutation multiplication.

- ▶ Since *G* is a group, for any $a \in G \exists a^{-1} \in G$. Thus the map $\lambda_{aa^{-1}} = \lambda_e$ represents our identity on *H*, since $\lambda_e(g) = e g = g$.
- ▶ For a, a^{-1} , $g \in G$ and $\lambda_a \in H$, we have

$$\lambda_a \circ \lambda_{a^{-1}}(g) = \lambda_a(\lambda_{a^{-1}}(g)) = \lambda_a(a^{-1} g) = a a^{-1} g = e g = \lambda_e(g).$$

Hence $\lambda_{a^{-1}}$ is the inverse element of H.

Since H is closed under the binary operation defined on S_G , and it contains the identity and inverse elements of S_G , we have that H is a subgroup of S_G .

c) Show that any infinite cyclic group G is isomorphic to the group $\langle \mathbb{Z}, + \rangle$.

Proof:

For all positive integers m, we have that $a^m \neq e$. We claim that no two distinct exponents h and k can give equal elements a^h and a^k of G.

Suppose that $a^h = a^k$ and say h > k. Then

$$a^h a^{-k} = a^{h-k} = e$$

contrary to our assumption that $a^m \neq e$ for all positive integers m. Hence every element of G can be expressed as a^m for a unique $m \in \mathbb{Z}$. This indicates that the map $\phi: G \longrightarrow \mathbb{Z}$ given by $\phi(a^i) = i$ is thus well defined and is bijective.

Also,

$$\phi(a^i a^j) = \phi(a^{i+j}) = i + j = \phi(a^i) + \phi(a^j).$$

So the homomorphism property is satisfied and ϕ is an isomorphism.

- d) Let $\phi: G \longrightarrow G'$ be a group homomorphism of G into G'. If e is the identity element in G and e'denotes the identity element in G', show
- $\phi(e) = e'$.
- ii) $\phi(x^{-1}) = \phi(x)^{-1}$, for all $x \in G$.

Proof:

To prove i), let $x \in G$, $\phi(x) \in G'$. Since ϕ is a homomorphism and e is the identity element in G, we have the following:

$$\phi(x e) = \phi(x) \phi(e)$$

$$\Rightarrow \phi(x) = \phi(x) \phi(e)$$

$$\Rightarrow \phi(x) e' = \phi(x) \phi(e)$$

$$\Rightarrow e' = \phi(e) \text{ (by the left cancellation law)} \checkmark$$

To prove ii), note that since ϕ is a homomorphism, we have $\phi(x)$ $\phi(x^{-1}) = \phi(x x^{-1}) = \phi(e)$. But by part i), we have that $\phi(e) = e'$.

Hence it follows that $\phi(x^{-1})$ is the inverse element in G', i.e. $\phi(x^{-1}) = \phi(x)^{-1}$.

e) Prove that a group is abelian if every element except the identity has order 2.

Proof:

We are assuming that $a^2 = a \cdot a = 1$ for every element $a \neq 1 \in G$.

For any two elements $a, b \in G$, we must show that ab = ba.

Let $a, b \in G$. So

$$a^{2} = 1$$

$$\Rightarrow a^{-1} a^{2} = a^{-1} 1 \qquad \text{and} \qquad \Rightarrow \qquad b^{2} = 1$$

$$\Rightarrow a = a^{-1} \qquad \Rightarrow \qquad b^{-1} b^{2} = b^{-1} \cdot 1$$

$$\Rightarrow b = b^{-1}$$

Since a and b are distinct elements of G and G is a group, we have that $a b \in G$, hence $(a b)^2 = 1$.

Then, by the above argument we have

$$a b = (a b)^{-1}$$

 $a b = b^{-1} a^{-1}$
 $a b = b a$ (since $b^{-1} = b$ and $a^{-1} = a$).

Thus G is abelian.

f) Prove that every cyclic group is abelian.

Proof:

Let G be a cyclic group and let a be a generator for G so that $G = \langle a \rangle = \{a^n : n \in \mathbb{Z}\}$. If g_1 and g_2 are any two elements of G, there exist integers r and s such that $g_1 = a^r$ and $g_2 = a^s$. Then,

$$g_1 g_2 = a^r a^s = a^{r+s} = a^{s+r} = a^s a^r = g_2 g_1.$$

Thus we have proven that G is abelian.

g) Show that \mathbb{R} under addition is isomorphic to \mathbb{R}^+ under multiplication.

Proof:

We define $\phi: \mathbb{R} \longrightarrow \mathbb{R}^+$ by $\phi(x) = e^x$ for $x \in \mathbb{R}$. Notice that $e^x > 0$ for all $x \in \mathbb{R}$, so indeed we have $\phi(x) \in \mathbb{R}^+$. Now we need to show that ϕ is an isomorphism:

▶ Notice that

$$\phi(x) = \phi(y)$$

$$\Rightarrow e^x = e^y$$

$$\Rightarrow \log(e^x) = \log(e^y)$$

$$\Rightarrow x = y.$$

Hence ϕ is injective. \checkmark

- Now if $r \in \mathbb{R}^+$, then $\log(r) \in \mathbb{R}$ and $\phi(\log(r)) = e^{\log(r)} = r$. Thus ϕ is surjective. \checkmark
- For $x, y \in \mathbb{R}$, we have $\phi(x + y) = e^{x+y} = e^x e^y = \phi(x) \cdot \phi(y)$. Thus ϕ is homomorphic.

Since ϕ is a bijective homomorphism, it is an isomorphism. Therefore $\langle \mathbb{R}, + \rangle$ is isomorphic to $\langle \mathbb{R}^+, \cdot \rangle$, as we set out to prove.

h) Prove that for $n \geq 3$, S_n is nonabelian.

Proof:

Let α , $\beta \in S_n$ be defined by

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & \dots \\ 1 & 3 & 2 & \dots \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & \dots \\ 3 & 2 & 1 & \dots \end{pmatrix}.$$

That is, we "permute" the first three elements of both α and β and fix the rest. Then we have

$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 1 & 3 & 2 & \cdots \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 3 & 2 & 1 & \cdots \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 2 & 3 & 1 & \cdots \end{pmatrix}$$

while

$$\beta \alpha = \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 3 & 2 & 1 & \cdots \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 1 & 3 & 2 & \cdots \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & \cdots \\ 3 & 1 & 2 & \cdots \end{pmatrix}.$$

We can see that $\alpha\beta \neq \beta\alpha$, and this shows that S_n is nonabelian for $n \geq 3$.

i) Let H be a subgroup of a group G. Let the relation \sim_R be defined on G by $a \sim_R b$ iff $ab^{-1} \in H$. Show that \sim_R is an equivalence relation on G.

Proof:

We want to show that \sim_R is an equivalence relation. In order to do this we just need to show that \sim_R satisfies the following three conditions:

- ▶ Let $a \in G$. Then $a a^{-1} = e$ and $e \in H$ since H is a subgroup. Thus $a \sim_R a$. (Reflexive)
- ▶ Suppose $a \sim_R b$. Then $a b^{-1} \in H$. Since H is a subgroup, $(a b^{-1})^{-1} = b a^{-1}$ is in H. This shows that $b \sim_R a$. (Symmetric)
- ▶ Let $a \sim_R b$ and $b \sim_R c$. Then $a b^{-1} \in H$ and $b c^{-1} \in H$. Since H is a subgroup, $(a b^{-1}) (b c^{-1}) = a c^{-1}$ is in H, hence $a \sim_R c$. (Transitive)