AVL Bäume

- AVL-Bäume sind höhenbalancierte Bäume
- Sei bal(v) = h(v.left) h(v.right) die Balance von v
- Ein AVL-Baum ist ein binärer Baum falls für alle Knoten v $bal(v) \in \{-1, 0, 1\}$
- Die H\u00f6he eines AVL-Baums is begrenzt mit h(T) < 1.44 log₂(n+2)

Rebalancierung von AVL Bäume

- Einfügen und Insertieren führt zu unbalancierten Bäumen
- Nach jeder Insertion oder Deletion wird der Baum re-balanciert.
- Insertion und Deletion führt schlimmstenfalls zu eine Node mit $bal(v)=\pm 2$
- Es muss also nur eine kleine lokale Dis-balance ausgeglichen werden
- Dies erfolgt durch "Rotations" Operationen

 \rightarrow Tafel

Summary AVL Bäume

- Rotationsoperationen kosten O(1) Zeit meist ist nur eine, höchstens aber log n Rotationen notwendig
- Insertionen und Deletionen im AVL Baum kosten $\mathcal{O}(\log n)$ Zeit
- Auch Suchen, Minimum, Maximum, Successor, Predecessor brauchen je $\mathcal{O}(\log n)$ Zeit

B-trees and B*-trees

B-Bäume sind effizienter im Speicherzugriff, v.a. wenn die Daten nicht mehr im Hauptspeicher (RAM) gehalten werden können.

- Alle Blätter auf gleicher Tiefe
- Höchstens m Kinder pro Knoten
- mindestens $\lceil \frac{m}{2} \rceil$ Kinder
- Knoten mit I + 1 Kindern hat I Schlüssel
- B* Baum: Daten in Blättern (auf Festplatte), nur Schlüssel in internen Knoten

Hashing

- Ein Hash speichert Daten in einer Tabelle der Grösse N
- N sollte grösser sein als die Anzahl der Daten N > n
- Hash function h bildet Schlüssel auf Positionen in der Tabelle ab
- Hash collisions treten auf wenn $h(k_1) = h(k_2)$

Ohne Kollisionen kann in $\mathcal{O}(1)$ gesucht werden!

Die Hash Funktion

- Die Hash Funktion soll Schlüssel quasi-zufällig auf das Intervall [0...N-1] abbilden
- ähnliche Schlüssel sollen nicht ähnliche hashes ergeben
- Hash Funktion sollte schnell zu berechnen sein
- Beispiel Divisions-Rest-Methode: $h(k) = k \mod N$ Funktioniert gut mit N Primzahl, schlecht falls $N = 2^k$
- Multiplikationsmethode:

$$h(k) = |N(k \cdot A - |k \cdot A|)|$$

Gut mit A irrationale Zahl, z.b. goldene Schnitt $A = \frac{\sqrt{5}-1}{2}$

Ohne Kollisionen kann in $\mathcal{O}(1)$ gesucht werden!

Hash Collisions

- Unterschiedliche Schlüssel können auf diegleiche Addresse abgebildet werden, i.e. $h(k_1) = h(k_2)$
- Einfachste Lösung: Jede Zelle der Hashtabelle ist der Anfang eine linked list (→ Tafel)
- Solange N > n sind diese linked lists kurz und kein Problem für die Performance
- Wird n ≫ N sind die Listen lang wächst der Suchaufwand von O(1) auf O(n)
- Ein zu voller Hash kann nicht einfach vergössert werden.
 Daten müssen in einen neuen grösseren Hash übertragen werden

Facit: Hash Tabellen sind schneller als Suchbäume, wenn die Grösse von vorneherein bekannt ist oder kaum schwankt.

Suchen in Zeichenketten

Brute Force - Algorithmus

Naïver Ansatz:

	A B C A A B C D A B A C A D B A
1.	ABACA
2.	A B A C A
3.	ABACA
4.	ABACA
5.	ABACA
6.	ABACA
7.	A B A C A
8.	A B A C A
9.	ABACA

Brute Force - Algorithmus

Algorithm 7 Finde ein gesuchtes Muster pat der Länge m in einem Text text der Länge n (BruteForce)

```
for i=0 \rightarrow n-m do j \leftarrow 0 while j < m \land pat[j] = text[i+j] do j \leftarrow j+1 end while if j \geq m then return i end if end for return -1
```

Zeitkomplexität: $\mathcal{O}(n \cdot m)$ Beispiel: 10GB Text, 1MB Pattern, 4GHz Rechner, 1 Vergleich pro Takt \rightarrow 2500000 $s = 694.4h \approx 30d$

KMP - Algorithmus¹

- 1977 von Donald Ervin Knuth und Vaughan Ronald Pratt + unabhängig von James Hiram Morris entwickelt
- Ausnutzen von vorangegangenen Vergleichen bei Nichtübereinstimmung
- Verschieben des Suchmusters pat um mehr als eine Position, da pat[i...j − 1] = text[i...i + j − 1]
- Verschieben des Textzeigers i nicht notwendig
- Anzahl an Positionen die das Suchmuster verschoben wird ist nur vom Suchmuster abhängig
- · 2-Schritt Verfahren:
 - Suchmusteranalyse: Bestimmung wie viele Positionen zurückgegangen werden muss, wenn an Position j im Muster ein Vergleich fehlschlägt (N[j])
 - Suche des Musters im eigentlichen Text

¹siehe z.B.

Idee des KMP Algorithmus

```
Beispiel:

i i

Text: ... BBABB??? Text: ... BBABB???

Query: BBABA Query: ...BBABA
i i
```

- Kann es einen match geben, wenn wir die query um eins nach rechts schieben?
- Nein. Nächster möglicher match verschiebt query um 3!
- Warum? Letzter match endet auf BB, query beginnt mit BB

ABCAABCDABABADBA
ABABA
ABABA
ABABA
ABABA
ABABA
ABABA
ABABA
ABABA

Algorithm 8 Finde ein gesuchtes Muster *pat* der Länge *m* in einem Text *text* der Länge *n* (KMP)

```
j \leftarrow 0
for i = 0 \rightarrow n - 1 do
while j \ge 0 \land pat[j] \ne text[i] do
j \leftarrow N[j]
end while
j \leftarrow j + 1
if j = m then
return i - m
end if
end for
return -1
```

Zeitkomplexität: $\mathcal{O}(n)$ Es fehlt: Berechnung von $N[0 \dots m]$

Die Suchmusteranalyse:

Algorithm 9 Erstelle Tabelle N (border/failure function) die für jede Position j die Verschiebedistanz bei einem Fehlschlag enthält

```
\begin{array}{l} i \leftarrow 0 \\ j \leftarrow -1 \\ N[i] \leftarrow j \\ \text{while } i < m \text{ do} \\ \text{while } j \geq 0 \land pat[j] \neq pat[i] \text{ do} \\ j \leftarrow N[j] \\ \text{end while} \\ i \leftarrow i+1 \\ j \leftarrow j+1 \\ N[i] \leftarrow j \\ \text{end while} \end{array}
```

Zeitkomplexität: $\mathcal{O}(m)$ Speicherkomplexität: $\mathcal{O}(m)$

Gesamte Zeitkomplexität: $\mathcal{O}(n+m)$ Gesamte Speicherkomplexität: $\mathcal{O}(m)$

wieder Beispiel: 10GB Text, 1MB Pattern, 4GHz Rechner, 1 Vergleich pro Takt $\rightarrow \approx 2.5s$

- 'trie' stammt aus dem Begriff 'Information Retrieval'
- Spezieller Suchbaum für Strings
- Alle Nachkommen eines Knoten haben das gleiche Prefix
- Blätter stehen für Wortende und können zusätzliche Daten speichern
- Einfügen/Löschen/Suchen kostet (fast) gleichviel Zeit $\mathcal{O}(m)$
- · Sehr Speichereffizient
- Kein Balancieren des Baums notwendig nach Einfügeoperationen

Anwendungen:

- Predictive Text (Autocomplete Dictionary)
- Rechtschreibüberprüfung
- Datenstruktur f
 ür verschiedene (ungenaue) Suchalgorithmen,
 z.B. Radix sort, Burst sort, etc.
- Ersetzung anderer Datenstrukturen, z.B. Hashes, Binäre Bäume

Beispielbild: Tafel

Trie als Ersatz für Hash

- Geordnete Iteration (z.B. alphabetisch durch Pre-order traversal) über seine Elemente
- Suche von ähnlichen Suchmustern
- Schnelles Einfügen (keine hash tables)
- Schneller Zugriff bei kleinen Schlüsseln (keine hash function)
- Keine Kollisionen

Nachteile:

- Langsamer Zugriff wenn trie nicht in den Hauptspeicher passt
- Lange (unnütze) Pfade bei Verwendung von Schlüsseln die nicht natürlichsprachig sind (z.B. Zahlen, bits o. ä.)

Eigenschaften:

- Höhe des trie durch längsten Schlüssel bestimmt
- Keine leeren Knoten
- Gestalt des tries nur abhängig von Schlüsselmenge
- Viele Einweg-Verzweigungen nahe der Blätter
- Dünne Besetung bei grossen Alphabeten

Komprimierung:

- Möglich bei statischen tries (nur Suche erlaubt)
- Knoten von denen nur eine Kante ausgeht werden speziell (im Vaterknoten) gespeichert (Kollabieren von Kanten)
- Kindknoten Vektor kann auf tatsächlich existente Verzweigungen beschränkt werden

PATRICIA Tree (Prefix-/ Radix-Baum)

- Practical Algorithm to Retrieve Information Coded in Alphanumeric
- Jeder Knoten mit nur einem Kindknoten wird mit dem Kindknoten verschmolzen
- Kanten können mehr als ein Zeichen darstellen
- Knoten speichert das gemeinsame Präfix seiner Kindknoten
- Nichtexistente Ausgangskanten benötigen keinen extra Speicher (werden übersprungen)
- Binärer Baum aber auch alphanumerisch möglich
- Sehr Speichereffizient
- Aufwendige Einfüge-/Lösch-/Such-Operationen
- Schneller Suchabbruch bei nichtexistentem Schlüssel

PATRICIA Tree (Prefix-/ Radix-Baum)

Beispiel: {bear, bell, bid, bull, buy, sell, stock, stop}

Standard Trie:

Compressed Trie:

- Spezialfall eines Trie (PATRICIA Tree)
- Speichert alle Suffixes einer Zeichenkette
- Jeder Pfad von der Wurzel zu einem Blatt ist ein Suffix
- Kann in linearer Zeit mit linearem Speicher aufgebaut werden
- Naïver Ansatz: O(n²)
- Schnelles Auffinden von Teilzeichenketten (genaue, ungenaue Suche und reguläre Ausdrücke)
- · Grosser Speicherplatzbedarf

Geschichte

- Morrison (1968): PATRICIA Tree
- Weiner (1973): Konstruktion mit linearer Laufzeit
- McCreight (1976): Speichereffizientere Algorithmus
- Ukkonen (1995): Einfacherer Algorithmus mit $\mathcal{O}(n)$ Laufzeit und Speicher, ermöglicht on-line Konstruktion
- Farach (1997): Optimal für alle Alphabete

Suffix trie for "mississippi"

Suffix tree (compressed)

Suffix Tree Properties

A suffix tree can be stored in $\mathcal{O}(n)$ space

- There are exactly n leafs
- Each interior node has > 2 children
- $\Longrightarrow \mathcal{O}(n)$ nodes
- With short edge labels only 2 numbers per edge
- In practice at least 20n bytes

Suffix trees can be constructed in $\mathcal{O}(n)$ time

- e.g. Ukkonen (1995)
- from suffix array (Kärkkäinen & Sanders, 2003)

Searching in suffix tree

Search string of length *m* in text of length *n*

- build suffix tree of T in time $\mathcal{O}(n)$
- follow path from root through matching characters in $\mathcal{O}(m)$
- all occurrences are gicen by the leafs below the end point of the search
- suffix tree has to be buit only once r searches in $\mathcal{O}(n+r\cdot m)$ time

Search Method comparison:

	Preprocess query	Preprocess text	Added Space	Time
Brute force			$\mathcal{O}(1)$	$\mathcal{O}(nm)$
KMP	$\mathcal{O}(m)$		$\mathcal{O}(m)$	$\mathcal{O}(n)$
Suffix trie		$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(m)$

Longest repeated substring

Find the longest string that occurs at least twice in T

- build suffix tree of T in time $\mathcal{O}(n)$
- traverse tree, find branch node with greatest string depth
- traversal takes $\mathcal{O}(n)$ time

Longest common substring

Find the longest common string LCS that occurs in both S_1 and S_2

- build suffix tree for S = S₁#S₂\$
- traverse tree find common branch node with greatest string depth
- common branch node has descendant leafs from S₁ and S₂
- takes $\mathcal{O}(|S_1| + |S_2|)$ time

Suffix Arrays

- Space efficient alternative to suffix trees
- Imagine all suffixes of a text sorted alphabetically
- Array S of numbers $1 \dots n$, such that S[i] = k implies the kth suffix $(x_{k \dots n})$ appears at position i in the sorted list
- Typically needs 4n bytes space

Suffix Array Example

1:	mississippi	11:	i
2:	ississippi	8:	ippi
3:	ssissippi	5:	issippi
4:	sissippi	2:	ississppi
5:	issippi	1:	mississippi
6:	ssippi	10:	pi
7:	sippi	9:	ppi
8:	ippi	7:	sippi
9:	ppi	4:	sissippi
10:	pi	6:	ssippi
11:	İ	3:	ssissippi

 $\boldsymbol{\mathcal{S}} = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]$