

Diffusion MRI: preprocessing, model fitting and TBSS

Marta M. Correia
MRC Cognition and Brain Sciences Unit

Preprocessing

DWI denoising

- Denoising must be performed as the first step of the pipeline
- Exploits data redundancy in the patch-level PCA domain

Removal of Gibbs artefacts (optional)

- Removes Gibbs ringing artefacts from DWI images
- Designed for data acquired with full k-space
- May fail for data acquired with Partial Fourier always inspect the output

TOPUP: correction for EPI distortions

• EPI distortion due to B0 inhomogeneity depends on phase-encode direction

A>>P

P>>A

TOPUP: correction for EPI distortions

- EPI distortion due to B0 inhomogeneity depends on phase-encode direction
- Can it be corrected?

EDDY: correction for eddy currents and motion

- Eddy-current distortions occur due to the rapid switching of diffusion gradients.
- Depend on gradient magnitude and direction.
- They affect the diffusion weighted images (DWI) but not the b=0 image.
- Results in mismatching between b=0 and DWI volumes.

EDDY: correction for eddy currents and motion

- Motion artefacts occur due to involuntary head movements.
- Results in mismatching between DWI volumes.
- Can also result in signal changes due to coil sensitivity.

EDDY QC: quality control

For individual subjects: eddy_quad

Volume-to-volume motion

Average abs. motion (mm)	1.52
Average rel. motion (mm)	0.70
Average x translation (mm)	0.10
Average y translation (mm)	-0.90
Average z translation (mm)	0.98
Average x rotation (deg)	-0.02
Average y rotation (deg)	0.19
Average z rotation (deg)	-0.15

Outliers

Total outliers (%)	0.45
Outliers (b=700 s/mm²)	2.71
Outliers (b=1200 s/mm²)	0.00
Outliers (b=2800 s/mm²)	0.00
Outliers (PE dir=[0. 1. 0.])	0.42

SNR/CNR

Average SNR (b=0 s/mm ²)	17.57
Average CNR (b=700 s/mm²)	0.96
Average CNR (b=1200 s/mm ²)	1.33
Average CNR (b=2800 s/mm ²)	1.54

EDDY QC: quality control

Study-wise quality control: eddy_squad

Model fitting

DTI: diffusion tensor model fitting

.

MRC Cognition and Brain Sciences Unit

mrc-cbu.cam.ac.uk

DKI: diffusion kurtosis model fitting

.

Group Analysis: TBSS

1. Preparing FA data for TBSS:

- Rename files
- New folder structure
- Erode FA images to reduce brain-edge artefacts

2. Registering the FA data:

Register FA images to the FMRIB58_FA template using non-linear registration (FNIRT)

Subject-to-template registration using FNIRT

MRC Cognition and Brain Sciences Unit

mrc-cbu.cam.ac.uk

3. Post-registration processing:

- Average all registered FA images
- Create the mean FA skeleton

MRC Cognition and Brain Sciences Unit

4. Projecting each subject's FA map onto the skeleton:

FA images in template space

VBM using **FSL** tools

5. Statistical analysis:

- Create the design matrix
- Use **randomise** for non-parametric inference

Interpretation of results

- FA skeleton <u>does not</u> represent the center of a specific WM tract.
- Significance maps should be interpreted with care: post-registration misalignments and voxel misassignments may confound the FA values from structures in close proximity.
- Choice of parameters, e.g. the registration target, can lead to large variation in the FA skeleton and subsequently the statistical results.

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Methodological considerations on tract-based spatial statistics (TBSS)

Michael Bach ^{a,b}, Frederik B. Laun ^{a,b}, Alexander Leemans ^c, Chantal M.W. Tax ^c, Geert J. Biessels ^d, Bram Stieltjes ^a, Klaus H. Maier-Hein ^{a,e,*}

Questions?

