Assignment 1 - Homework Exercises on Approximation Algorithms

Pattarawat Chormai, Duy Pham, Maciej Wikowski September 13, 2015

A.I-1

We will show that the approximation ratio of the *GreedySchedulingAlgorithm* is at least $2 - \frac{1}{m}$ by showing an example as follow.

Let's consider this setting:

- 3 machines: M1, M2, M3
- 7 jobs: 1, 1, 1, 2, 1, 1, 2

GreedySchedulingAlgorithm will come up with this scheduling:

- M1: 1 2 2
- M2: 1 1
- M3: 1 1

Thus ALG = makespan = 1 + 2 + 2 = 5

We know that:

$$OPT \ge Average_{load}$$
 (1)

Where $Average_{load} = \frac{1}{m} \sum_{i=1}^{n} j_i = \frac{9}{3} = 3$ Here we can find a solution with makespan = 3. That is:

- M1: 12
- M2: 1 2

• M3: 1 1 1

Therefore, OPT = 3

Thus, the approximation ratio is:

$$\rho = \frac{ALG}{OPT} = \frac{5}{3} \tag{2}$$

According to the theorem, the estimated ratio is:

$$\rho_{estimated} = 2 - \frac{1}{m} = 2 - \frac{1}{3} = \frac{5}{3} \tag{3}$$

From 2 and 3, we have $\rho_{estimated} = \rho$. Therefore, this bound is tight.

A.I-2

From the question, we know that

$$m = 10$$

$$\sum_{j=1}^{n} t_j \ge 1000$$

$$t_j \in [1, 20]; for all i \le j \le n$$

Let T'_{i^*} denote the load of M_i before t^*_j , last job, is assigned to the machine. Thus T^*_i , which represents makespan of the assignment, equals to

$$T_i^* = T_{i^*}' + t_j^*$$

Because T'_{i^*} is the minimum load among all machines, so that we can derive

$$T'_{i^*} \le \frac{1}{m} \sum_{i=1}^m T'_i = \sum_{j=1}^{j^*} t_j \le \frac{1}{m} \left[\sum_{j=1}^n t_j - t_j^* \right] \le LB$$

Then we can derive

$$\begin{split} T_i^* &= T_{i^*}' + t_j^* \\ &\leq \frac{1}{m} \left[\sum_{j=1}^n t_j - t_j^* \right] + t_j^* \\ &\leq \frac{1}{m} \sum_{j=1}^n t_j + (1 - \frac{1}{m}) t_j^* \\ &\leq 100 + (1 - \frac{1}{10}) 20 \\ &\leq 118 \end{split}$$

According Algorithm Greedy Scheduling and the question, we know

$$\max\left(\frac{1}{m}\sum_{j=1}^{n}t_{j}, \max_{1\leq j\leq n}(t_{j})\right) \leq LB \leq OPT$$

$$\max_{1\leq j\leq n}(t_{j}) = 20$$

Then we can derive

$$max\left(\frac{1}{m}\sum_{j=1}^{n}t_{j},20\right)\leq LB$$

Since $\frac{1}{m} \sum_{j=1}^{n} t_j \ge 1000$, thus

$$100 \le LB < OPT$$

Therefore, approximation-ratio(ρ) equals to

$$T_i^* \le \rho \, OPT$$

$$\frac{118}{100} \le \rho$$

$$1.18 \le \rho$$

For this particular setting, $Algorithm\,Greedy\,Scheduling$ is 1.18 approximation algorithm.

AI-3-i)

Assume we have the optimal solution, which has n squares

Lemma 1. Each unit square in the grid can overlap at most 4 cells. Let n_s be the number of square in the integer grid solution. Thus

$$n_s < 4n < 4OPT$$

A.I-3-ii

We propose the algorithm as follow.

```
Algorithm 1 Finding minimum row square cover

Require: Set of Points P

Ensure: Min Square Cover min

Operation:

set currentCoveringPosition = 0

QuickSortAscending(S)

for all Point p in P do

if p.x \le currentCoveringPosition then

create square s = (p.x, 1, p.x + 1, 0);

add s to S

set currentCoveringPosition = p.x + 1

end if

set min = sizeofS

return min

end for
```

This algorithm is correct because:

- Every point in p will be covered by a square
- There are no intersections between the squares because we traverse in one direction

This algorithm consists of 2 parts: QuickSort and Traversing the Point to create squares. Let t be the run time of this algorithm, $t_{quicksort}$ be the time for quick-sort, and t_{assign} be the time for creating the squares. We have:

$$t = t_{quicksort} + t_{assign} \le n \log n + n = O(n \log n) \tag{4}$$

Thus the runtime of this algorithm is $O(n \log n)$.

A.I.3.iii

The idea of our algorithm is that, we put all the points in to a coordinate system, then we divide the coordinate system into a set of unit rows (i.e. rows with height 1). For each row, we use algorithm 1 to find the minimum size square-cover. The global min-square-cover is the sum of all row-square-cover.

```
Algorithm 2 Finding global minimum square cover
```

```
Input: Set of points P
Output: Min Square Cover min
Operation:
    currentMin = 0;
    for all Row r in the space do
        currentMin += FindRowMinSquare()
    end for
    set min = currentMin
    return min
```

Theorem. FindingGlobalMinimumSC is 2 - approximation

Proof. Suppose we have the optimal solution with n squares. Then $OPT \ge n$, thus LB = n. We know that each unit square in the coordinate system can overlap with at most 2 unit rows.

Let *min* be our algorithm solution, then:

$$min \le 2n = 2.LB \le 2.OPT \tag{5}$$

Therefore, this algorithm is 2 - approximation.

AII.1

(i)

We prove this statement by contradiction.

- Suppose that $V \setminus C$ is not an independent set of G. Then there exists a pair of vertices (u, v) in $V \setminus CC$ which are connected by an edge $e \in E$. Thus, both u and v are not in C. Therefore, C is not the vertex cover of G anymore.
- Suppose C is not the vertex cover of G, then there exists a pair of vertices (u, v) that are connected by an edge $e \in E$ but are not in C. Thus, $u \in (V \setminus C)$ and $u \in (V \setminus C)$. Therefore, $(V \setminus C)$ is not the vertex cover of G anymore.

From the reasoning above, we can state that: C is the vertex cover of Gif and only if $V \setminus C$ is an independent set of G.

(ii)

We prove that ApproxMaxIndependentSet is not a 2-approximation algorithm by showing a counter example. That is, consider a complete graph, for example, a graph G = (V, E) where $V = x_1, x_2$ and $E = (x_1, x_2)$.

Applying the ApproxMinVertexCover(G), we get $C = x_1, x_2$ (picking both vertices from the edge).

Now we take the approx max independent set $ALG = V \setminus C = \emptyset$.

The optimal solution now is OPT = 1 (picking x_1 or x_2).

The approximation ratio is $\rho = \frac{OPT}{ALG} = \infty \neq 2$. So the approximation ratio is not 2.

AII.2

(i)

Considering the input we can define the best possible scenario for the solution as being a CNF formula where a single element picked from the first clause can be found in all other clasues. The algorithm then would remove all other clauses. This leads us to the assumption that the optimal value OPT in our case is equal to OPT = 1

Since no assigned method is specified as to which element of the clause we should choose, we assume a random pick. This leads us to the worst possible choice scenario of a variable existing in all the clauses of the CNF and algorithm always picking the wrong one for the search.

$$(x_1 \lor x_4 \lor x_5) \land (x_3 \lor x_1 \lor x_6) \land (x_2 \lor x_1 \lor x_7)$$

If the algorithm picked in the first clause x_4 as the variable to look for and x_3 too look for in the second clause it would return a value of one element in each clause until the last clause leaving us with an $ALG = \frac{n}{3} - 1$. Since all elements are different but they share one element in all clauses we pick 1 element in each clause meaning $\frac{1}{3}$ of all used elements with exclusion of the first clause. This would however vary greatly from the most optimal solution of OPT = 1 as described previously.

That leads to the approximation ratio of:

$$1 \le \rho \le \frac{n}{3} - 1$$