Sai Satya Charan Malladi

2371 Lancashire Dr TB, Ann Arbor, Michigan, 48105

<table-of-contents> saicharanmalladi@gmail.com | 🕿 (734) 450-3302 | 🖸 scm-codes | 🛅 Sai Charan Malladi | 🌐 scm-codes.github.io

Education

University of Michigan Ann Arbor

Ann Arbor, MI

MSE Aerospace | Focus: Autonomous Systems and Controls [CGPA: 3.9/4]

Aug 2021-Apr 2023

Graduate Student Instructor: Physics 151 Lab | Grader: Data-Driven and Reduced Order Modeling

Courses: Inference, Estimation & Learning | Machine Learning | Model Predictive Control | Reinforcement Learning |

Avionics, Navigation & Guidance | Experimental Unmanned Aerial Vehicles | Cubesat Laboratory

Indian Institute of Technology (IIT) Madras

Chennai, India

B.Tech Aerospace Engineering | Minor in Control Systems [CGPA: 8.76/10]

Aug 2016-July 2020

Courses: Process Optimization | Aerospace System Estimation and Control | Modern Control Theory | Non-Linear Control Systems | Numerical Methods and Scientific Computing | Introduction to Robotics

Experience

Computational AeroSciences Laboratory | Ford Motors

Ann Arbor, Michigan

Research Associate under Prof. Karthik Duraisamy

Sept 2022-Present

- Worked on Multi-Fidelity Modeling and Experimental Design to build cost effective surrogate models.
- Utilised auto regressive Gaussian process framework for modeling and developed an active learning algorithm leveraging uncertainty to recommend next best design simulations.
- Used active subspace and reversible neural network to deal with the curse of dimensionality.
- Collaborated with Ford Motors to integrate code into their work flow and reduce development time by 60 %.

Odys Aviation Long Beach, California

Flight Controls Intern under Alex Jedinger

May 2022-Aug 2022, Jan 2023-Aug 2023

- Worked with the GNC team for state estimation and control algorithm development.
- Performed extensive trim manifold exploration to understand the behaviour of the developed aerodynamics model.
- Developed a system identification tool set to estimate aerodynamic parameters from flight test data.
- Assisted and participated in flight test campaigns for the sub-scale prototype at Mojave.
- Developed familiarity with FAA Part 23 certification guidelines and means of compliance for VTOL aircrafts.
- Researched and designed experimental mass properties estimation methods for the sub-scale aircraft.
- Supported data analysis, Simulink flight dynamics model development and model in the loop simulations.
- Authored MATLAB and Python scripts to automate data processing.

Intelligent Robotics and Autonomy Lab

Ann Arbor, Michigan

Directed Study with Prof. Vasileios Tzoumas

Jan 2022-Apr 2022

- Explored map predictive motion planning, PAC Bayes framework, and probabilistic program induction.
- Learned several concepts and worked on projects pertinent to visual navigation including SLAM.

Autonomous Vehicles Laboratory, Indian Institute of Science

Bangalore, India

Project Assistant under Prof. Ashwini Ratnoo

Oct 2020-Aug 2021

- Worked on range and reachability analysis for hypersonic re-entry type vehicles.
- Developed a MATLAB trajectory optimization solver using pseudospectral collocation methods.
- Studied the effect of discretization nodes and allied inputs on iterations, accuracy, and convergence to the solution.

Rotorcraft and Advanced Flight Technologies Laboratory, IIT Madras

Chennai, India

Undergraduate Project Student under Prof. Ranjith Mohan

Dec 2018-Jun 2020

- Explored Optimal Control using the two satellite rendezvous dynamics with thrust minimization objective.
- Tested Floquet theory, Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG), and Model Predictive Control (MPC) techniques for close-range maneuvers.
- Compared direct collocation and differential flatness-based trajectory optimization techniques for sizeable initial separation of satellites.

Skills

Languages: Python, MATLAB, C/C++

Software & Tools: Linux, Git, PyTorch, ROS, Simulink, Octave, LaTeX, XFLR5

Projects

Autonomous Quadcopter

- Built an autonomous quadcopter that could traverse way points using state information from motion capture.
- Tested and deployed LQR attitude control in place of existing PID inner loop on Beaglebone Blue.
- Deployed Semi-Direct Visual Odometry (SVO) algorithm on the companion flight computer Rasberry Pi and compared the results to motion capture trajectory.
- Integrated time of flight lidar sensor to remove the initial scale ambiguity while running SVO.

Bayesian Inference & Estimation

- Developed scripts on variance reduction methods like Multi-Level Monte-Carlo (MLMC) and Control Variates.
- Coded and compared state estimation algorithms Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Ensemble Kalman Filter (EnKF), and Particle Filter.
- Implemented sampling algorithms Metropolis Hastings, Adaptive Metropolis, Delayed Rejection Adaptive Metropolis for system identification.

Gaussian Process Dimension Reduction Methods for Human Motion

- Replicated and validated key findings from the paper, Gaussian Process Dynamic Models (GPDM), using the CMU Human Motion Capture data set.
- Compared the performance of GPDM to Gaussian process latent variable method.
- Generated new motion sequences using mean prediction in latent space.

Reinforcement Learning

- Reproduced the results from the paper, FORK: A Forward-Looking Actor For Model-Free Reinforcement Learning, using OpenAI Gym's BipedalWalkerHardcore continuous control task.
- Implemented the AlphaZero algorithm to play the Othello board game.
- Used the DQN algorithm to play the Atari-Breakout game.

Convergent Block Coordinate Descent for DNNs

- Reproduced the results from the paper, Convergent Block Coordinate Descent (BCD) for Training Tikhonov Regularized Deep Neural Networks, that addresses the vanishing gradient problem.
- Compared the performance to Proximal BCD and SGD with dropout using MNIST and MNIST Fashion data sets.

CubeSat

- Developed a Multiplicative Extended Kalman Filter (MEKF) to fuse sensor data for attitude estimation.
- Conceptualised the design for gravity vector pointing camera with 2-axis control which is the primary payload.

Optimal Control

- Generated a fuel-optimal rocket landing trajectory similar to SpaceX's Starship landing maneuver using the direct transcription trajectory optimization method.
- Employed Nonlinear Model Predictive Control (NMPC) to ensure stability and off-set free trajectory tracking.

Navigation & Guidance

- Employed Kalman filter for position fixing using noisy bearing measurements.
- Implemented and compared direct pursuit, constant bearing pursuit, and proportional navigation guidance for different pursuer-evader engagement scenarios.

Design of Hybrid VTOL UAV

- Worked on airfoil selection, coefficients estimation, weight calculation and component selection for the preliminary design of a Hybrid VTOL Flying Wing UAV for a given mission profile.
- Performed 6 DOF flight simulation in XFLR5 to obtain derivatives to check for stability of different modes.

RC glider

- Designed and built a remote-controlled glider using balsa wood, carbon fiber, and coroplast material.
- Did essential aerodynamic, weight & mechanics calculations and conducted tests to ensure well-controlled flight.

Academic Achievements

- Branch Rank 4 of graduating batch of 2020 in the Aerospace Department at IIT Madras.
- All India Rank 54 (out of 4000) in the Graduate Aptitude Test in Engineering (Aerospace) 2020.
- All India Rank 3238 (out of 150,000) in the Joint Entrance Examination (Advanced) 2016