CINÉTICA QUÍMICA

AULA 1 - CONCEITOS GERAIS

A cinética química tem por finalidade caracterizar a lentidão ou a rapidez das reações químicas, ou seja, verificar a **velocidade** com que as reações irão ocorrer.

Cinética química é o estudo da velocidade das reações químicas e dos fatores que influem nessa velocidade.

Chamamos de **velocidade média** de uma reação química a relação entre a variação da quantidade de reagente consumida ou de produto formado pelo intervalo de tempo gasto nesta variação.

Para uma reação química genérica, temos:

$$A + B \longrightarrow C$$

Velocidade de Consumo do Reagente A

$$v = \frac{\text{quantidade consumida do reagente A}}{\Delta t}$$

Velocidade de Consumo do Reagente B

$$v = \frac{\text{quantidade consumida do reagente B}}{\Delta t}$$

Velocidade de Formação do Produto C

$$v = \frac{\text{quantidade formada do produto C}}{\Delta t}$$

Dependendo das grandezas utilizadas, a velocidade pode ser expressa como variação da concentração pelo tempo (mol/L · tempo), variação da quantidade (mol/tempo), da massa (g/tempo), e assim por diante.

Vamos considerar agora um exemplo prático de como calcular a velocidade média de reagentes e produtos e também a velocidade média da reação química.

Exemplo

Na reação entre nitrogênio e hidrogênio observou-se a formação de 20mol/L de amônia nos primeiros 5 minutos. Calcule a velocidade média de formação de amônia, bem como a de consumo dos reagentes.

De acordo com a reação devidamente balanceada, temos:

$$\underbrace{\frac{1 \text{ N}_2(g)}{\text{1mol}}}_{\text{1mol}} + \underbrace{\frac{3 \text{ H}_2(g)}{\text{3mol}}}_{\text{3mol}} \underbrace{\frac{2 \text{ NH}_3(g)}{\text{2mol}}}_{\text{20 mol}/L}$$

$$\underbrace{1 \text{ N}_2(g)}_{\text{3mol}} + \underbrace{\frac{3 \text{ H}_2(g)}{\text{2mol}}}_{\text{20 mol}/L}$$

Cálculo das velocidades médias:

em relação ao
$$N_2$$
: v $(N_2) = \frac{10 \text{ mol/L}}{5 \text{ min}} = 2 \text{ mol/L} \cdot \text{min}$

em relação ao
$$H_2$$
: v (H_2) = $\frac{30 \text{ mol/L}}{5 \text{ min}}$ = 6 mol/L·min

em relação ao NH
$$_3$$
: v (NH $_3$) = $\frac{20 \text{ mol/L}}{5 \text{ min}}$ = 4 mol/L·min

Para obtermos a velocidade média da reação química a partir da velocidade média de consumo ou formação dos componentes, basta dividirmos estes valores pelo coeficiente estequiométrico da equação balanceada.

$$v (Reação) = -\frac{v (N_2)}{1} = -\frac{v (H_2)}{3} = +\frac{v (NH_3)}{3}$$

$$v \; (\text{Reação}) = - \; \frac{\left(2 \; \text{mol/L} \; \cdot \; \text{min}\right)}{1} \; = - \; \frac{\left(6 \; \text{mol/L} \; \cdot \; \text{min}\right)}{3} \; = + \; \frac{\left(4 \; \text{mol/L} \; \cdot \; \text{min}\right)}{2}$$

Note que na equação para o cálculo da velocidade da reação existem sinais positivos e negativos. Convencionou-se desta forma que para os reagentes temos sinais negativos e para produtos, sinais positivos.

Graficamente podemos representar a variação da quantidade de reagentes e produtos em função do tempo:

Agora que sabemos como calcular a velocidade média de reação, podemos entender um pouco melhor como as reações ocorrem.

Teoria das Colisões

Observe a reação entre hidrogênio e iodo em estado gasoso:

$$H_2$$
 (g) + I_2 (g) $\xrightarrow{450^{\circ}C}$ 2 HI (g)

1

Etapas da reação:

CINÉTICA QUÍMICA

Uma molécula de H₂ se aproxima com velocidade de uma molécula de I₂

Reagentes

Complexo Ativado

Moléculoas de HI produzidas se afastam rapidamente

De acordo com a teoria das colisões, para uma reação química ocorrer, são necessárias três condições básicas:

- 1. Deve <u>haver colisões entre as moléculas</u> dos reagentes;
- A colisão deve ser efetiva para a <u>formação do</u> <u>complexo ativado;</u>
- A colisão deve ocorrer com energia igual ou superior à energia de ativação.

Energia de Ativação e Complexo Ativado

- Complexo Ativado: é uma estrutura intermediária entre os reagentes e os produtos. Nele temos ligações químicas intermediárias (sendo rompidas e formadas).
- <u>Energia de ativação (E_a)</u>: é a mínima energia que as moléculas dos reagentes devem possuir para a formação do **Complexo Ativado**.

Graficamente, temos:

Algo interessante a se notar é que, para reações que ocorrem sob mesmas condições:

- quanto maior a energia de ativação, menor a velocidade;
- quanto menor a energia de ativação, maior a velocidade.

AULA 2 – FATORES QUE INFLUENCIAM A VELOCIDADE DE REAÇÕES

Alguns fatores externos podem tornar as reações químicas mais rápidas ou mais lentas. Podemos elencar quatro fatores que têm influência direta na velocidade das reações químicas:

- 1. Temperatura
- 2. Concentração
- 3. Superfície de Contato
- 4. Catalisador

Temperatura

De acordo com a **regra de van't Hoff**, a elevação em 10°C na temperatura dobra a velocidade de uma dada reação.

CINÉTICA QUÍMICA

Concentração

O aumento da concentração dos reagentes aumenta o número de colisões entre as moléculas e consequentemente temos um aumento na velocidade.

Superfície de Contato

Para reagentes que estejam no estado sólido, verifica-se experimentalmente que quanto mais finamente dividido (maior superfície de contato), maior será o número de colisões entre ele e o outro reagente. Consequentemente teremos maior velocidade de reação.

Catalisador

Catalisadores sempre aceleram uma reação química. Fazem isso através da **diminuição da energia de ativação** (E_a) dos processos químicos.

AULA 3 - LEI DA VELOCIDADE / LEI DA CINÉTICA

A lei da velocidade é calculada sempre da mesma maneira:

v = velocidade k = constante da velocidade [] = concentração em mol/L

x = ordem

Para reações elementares, ou seja, aquelas que ocorrem numa etapa única, a lei da velocidade é expressa considerando os coeficientes estequiométricos da reação balanceada como sendo as ordens dos reagentes. Observe o exemplo para uma reação elementar:

$$1 N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$$

$$V = k \cdot [N_2]^1 [H_2]^3$$

Nesta reação, dizemos que o nitrogênio tem ordem 1 e o hidrogênio tem ordem 3. Podemos dizer também que a reação como um todo possui ordem igual a 4.

Para reações que ocorrem em duas ou mais etapas, devemos verificar a lei da velocidade através de experimentos.

Exemplo

Considere a seguinte reação:

2 NO (g) +
$$H_2$$
(g) \longrightarrow N_2 O (g) + H_2 O (g)

A uma dada temperatura constante, três experimentos foram realizados. Os resultados estão contidos na tabela abaixo que utilizaremos para expressar a lei da velocidade correta para esta reacão:

Experimento	[NO] em mol/L	[H ₂] em mol/L	Velocidade em mol/L·s
1	0,1	0,1	1,2 . 10-4
2	0,1	0,2	2,4 . 10 ⁻⁴
3	0,2	0,2	9,6 . 10 ⁻⁴

Pelos resultados mostrados na tabela, percebemos que a velocidade é proporcional à concentração de H_2 e proporcional ao quadrado da concentração de NO. Sendo assim, a lei da velocidade pode ser escrita da seguinte maneira:

$$v = k \cdot [NO]^2 [H_2]$$

O que chamamos de **mecanismo de reação** é o conjunto das reações elementares pelas quais temos uma reação chamada de **global**.

<u>Atenção</u>: é importante notar que a velocidade da reação é determinada sempre pela **etapa lenta** das reações, ou seja, a etapa que possui a major energia de ativação.