

Student Satellite Project Indian Institute of Technology, Bombay Powai, Mumbai - 400076, INDIA

Website: www.aero.iitb.ac.in/satlab

README - LQR Controller

Guidance, Navigation and Controls Subsystem

linear_dynamics ()

Code author: Ronit Created on: 15/07/2022 Last modified: 15/07/2022

Reviewed by: NA Description:

Computes the derivative of state using linearized attitude dynamics. It has not been used in the code so far and only included for completeness.

Formula & References:

 $x=\begin{bmatrix}q_1 & q_2 & q_3 & \omega_1 & \omega_2 & \omega_2\end{bmatrix}^T$ Here q_1,q_2,q_3 represent the vector components of a quaternion. $\omega_1,\omega_2,\omega_3$ represent components of angular velocity in body frame. u denotes control torque

$$\dot{x} = Ax + Bu$$

I is moment of inertia matrix of satellite in body frame and O_3 is the 3×3 zero matrix.

Input parameters:

1. time: (float) - Time at which derivative is computed. seconds

2. state: (numpy array) - State at which derivative is computed. SI units for all

Output:

It returns the \dot{x} value mentioned earlier as a numpy array.

nonlinear_dynamics ()

Code author: Ronit Created on: 15/07/2022 Last modified: 15/07/2022 Reviwed by: NA

Description:

Computes the derivative of state using nonlinear attitude dynamics. It has been used for conducting the simulations.

Formula & References:

$$\dot{q} = -\frac{1}{2}\omega \times q + \frac{1}{2}q_0\omega$$
$$\dot{\omega} = \mathbf{I}^{-1}u$$

Here q represents vector part of quaternion, q_0 represents scalar part of quaternion, ω represents angular velocity in body frame, I represents inertia matrix of satellite in body frame.

Input parameters:

1. time: (float) - Time at which derivative is computed. seconds

2. state: (numpy array) - State at which derivative is computed. SI units for all

Output:

It returns the \dot{x} value mentioned earlier as a numpy array.

initialize_gain ()

Code author: Ronit Created on: 15/07/2022 Last modified: 15/07/2022

Reviwed by: NA **Description:**

Computes the gain matrix for finding control.

Formula & References: The cost function that will be minimized by the controller is given by

$$\frac{1}{2} \int_0^\infty [x^T Q x + u^T R u] dt$$

Gain matrix is given by

$$K = -R^{-1}B^T F$$

here B is the defined in the linear_dynamics description, $Q = \begin{bmatrix} Q_1 & \mathbf{O_3} \\ \mathbf{O_3} & Q_2 \end{bmatrix}$, $F = \begin{bmatrix} F_{11} & F_{12} \\ F_{12}^T & F_{22} \end{bmatrix}$

$$\begin{split} F_{11} &= \mathbf{I} R^{1/2} \left(Q_1 + \frac{1}{2} (\mathbf{I} R^{1/2} Q_2^{1/2} + Q_2^{1/2} R^{1/2} \mathbf{I}) \right)^{1/2} \\ F_{12}^T &= \mathbf{I} R^{1/2} Q_2^{1/2} \\ F_{22}^T &= 2 Q_2^{1/2} (Q_1 + \mathbf{I} R^{1/2} Q_2^{1/2})^{1/2} \end{split}$$

For further details here is the link to the paper being referred.

Input parameters:

This function has no input parameters. However it uses certain constants relevant to controller that have been defined in the constants file.

Output:

It returns the 3×6 gain matrix as a numpy array.

control_law ()

Code author: Ronit Created on: 15/07/2022 Last modified: 15/07/2022

Reviewed by: NA **Description:**

Computes the control torque that needs to be applied at each state.

Formula & References:

$$u = Kx$$

here K is the gain matrix described in the previous function.

Input parameters:

1. state: (numpy array) - State at which control is computed. SI units for all

Output:

It returns the control torque that needs to be applied as a numpy array.