EN.553.732 Homework 1

Joseph High

September 19, 2017

1 Problem 1

Let $p(y_1, ..., y_6|\theta)$ denote the sampling model and $\pi(\theta)$ denote the prior distribution. It is given that $y_1, ..., y_6|\theta \sim U[\theta - \frac{1}{2}, \theta + \frac{1}{2}]$ and that $\theta \sim U[10, 20]$. We then have that

$$p(y_1, ..., y_6 | \theta) = \frac{1}{(\theta + \frac{1}{2}) - (\theta - \frac{1}{2})} = 1, \ y_i \in (\theta - \frac{1}{2}, \theta + \frac{1}{2}), \ i = 1, ..., 6$$

and
$$\pi(\theta) = \frac{1}{10}, \ \theta \in [10, 20]$$

Note that
$$\theta - \frac{1}{2} < y_i < \theta + \frac{1}{2} \implies |y - \theta| < \frac{1}{2} \implies |\theta - y_i| < \frac{1}{2} \implies y_i - \frac{1}{2} < \theta < y_i + \frac{1}{2}, \ i = 1, \dots, 6$$

Using the available data $y_i \in \{11.0, 11.5, 11.7, 11.1, 11.4, 10.9\}$, we can find updated bounds for θ .

Indeed, since the above inequality holds for all i=1,...,6, then $\max_i \{y_i\} - \frac{1}{2} < \theta < \min_i \{y_i\} + \frac{1}{2}$

$$\implies 11.7 - \frac{1}{2} < \theta < 10.9 + \frac{1}{2} \implies 11.2 < \theta < 11.4$$

The posterior distribution of θ is $p(\theta|y_1,...,y_6) \propto p(y_1,...,y_6|\theta)\pi(\theta)$, implying that the posterior distribution is also uniformly distributed. More precisely, by Bayes' rule

$$p(\theta|y_1,...,y_6) = \frac{p(y_1,...,y_6|\theta)\pi(\theta)}{p(y_1,...,y_6)} = \frac{(1/10)}{p(y_1,...,y_6)}, \quad 11.2 < \theta < 11.4$$

Now, $1 = \int_{11/2}^{11.4} p(\theta|y_1, ..., y_6) d\theta = \int_{11/2}^{11.4} \frac{(1/10)}{p(y_1, ..., y_6)} d\theta = \frac{1}{p(y_1, ..., y_6)} \int_{11/2}^{11.4} \frac{1}{10} d\theta = \frac{0.2/10}{p(y_1, ..., y_6)}$

$$\implies \frac{1}{p(y_1, ..., y_6)} = 50$$

Thus,

$$p(\theta|y_1, ..., y_6) = \frac{p(y_1, ..., y_6|\theta)\pi(\theta)}{p(y_1, ..., y_6)} = (\frac{1}{10})(50) = 5$$

Therefore, the posterior distribution of θ is $p(\theta|y_1,...,y_6) = 5$, $11.2 < \theta < 11.4$.

2 Problem 2

Let $p(y_1, ..., y_{20}|\theta)$ denote the sampling model and $\pi(\theta)$ denote the prior distribution. It is given that $y_1, ..., y_{20}|\theta \sim \text{Exponential}(\theta)$ and that $\theta \sim \text{Gamma}(\alpha, \beta)$ where $\text{E}[\theta] = 0.2$ and $\sigma[\theta] = 1$.

The liklihood function is then $L(\theta) = \theta^{20} e^{-(\sum_{i=1}^{20} y_i)\theta}$ and prior distribution is of the form $\pi(\theta) \propto \theta^{\alpha-1} e^{-\beta\theta}$, $\theta > 0$

The posterior of θ is of then of the form

$$p(\theta|y_1,...,y_{20}) \propto L(\theta)\pi(\theta) \propto \theta^{\alpha+19} e^{-(\sum_{i=1}^{20} y_i + \beta)\theta}, \quad \theta > 0$$

which is proportional to the pdf of a gamma distribution with parameters $\alpha + 20$ and $\beta + \sum_{i=1}^{20} y_i$

To determine the paramaters α and β we note that since $\theta \sim \text{Gamma}(\alpha, \beta)$, $E[\theta] = \frac{\alpha}{\beta}$

and
$$\sigma[\theta] = \sqrt{\frac{\alpha}{\beta^2}}$$

Then from the given information, we have that $\frac{\alpha}{\beta} = 0.2$ and $\sqrt{\frac{\alpha}{\beta^2}} = 1 \implies \alpha = 0.2\beta \implies \frac{0.2}{\beta} = 1 \implies \beta = 0.2 \implies \alpha = 0.04$.

Moreover, we are given that the average time to serve a customer from a sample of 20 customers is 3.8 minutes. That is, $\bar{y} = \frac{1}{20} \sum_{i=1}^{20} y_i = 3.8 \implies \sum_{i=1}^{20} y_i = 76$.

Thus, we have that the parameters of the posterior distribution are $\alpha + 20 = 20.04$ and $\beta + \sum_{i=1}^{20} y_i = 76.2$ Therefore, $\theta|y_1,...,y_{20} \sim \text{Gamma}(20.04, 76.2)$.

3 Problem 3

Proof. It is given that the sampling model, $f(y_1, ..., y_n | p)$, has the negative binomial distribution with unknown parameter p (and known r) and the prior distribution, $\pi(p)$, is the beta distribution with parameters α and β . That is,

$$L(p) = \prod_{i=1}^{n} f(y_i \mid p) = \prod_{i=1}^{n} {y_i + r - 1 \choose y_i} (1 - p)^r p^{y_i} \implies L(p) \propto (1 - p)^{nr} p^{\sum_{i=1}^{n} y_i}$$

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \implies \pi(p) \propto p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Therefore, the posterior distribution is of the form

$$f(p \mid y_1, ..., y_n) \propto L(p)\pi(p) \propto p^{\alpha + \sum_{i=1}^{n} y_i - 1} (1-p)^{\beta + nr - 1} \longrightarrow \text{Beta}(\alpha + \sum_{i=1}^{n} y_i, \beta + nr)$$

Thus, the posterior distribution, again, follows a beta distribution with parameters $\alpha + \sum_{i}^{n} y_{i}$ and $\beta + nr$ Therefore, the family of beta distributions is a conjugate family of prior distributions for samples from a negative binomial distribution with one unknown parameter.

4 Problem 4

Rough Draft (To Be input into LaTeX).

Problem 4:

Since \i binary random variables.

Thun, with the assumption of conditional independence of the Yi on O, we have

Pr(Y=y,,..., Y100=y100 | 0) = | Pr(Y=yi 0)

= TT 09i (1-0) 1-yi

= 8 i=1 yi (1-8) i=1 yi

Then Pr (Yi = y 10) is the probability that the sum

of the binary random varrables is equal to y, where the sum of y of 100 binary random varrables can be achieved in (100) distinct ways.

Thus, $Pr(\sum_{i=1}^{100} y_i = y_i \theta) = (100) \theta^y (1-\theta)^{100-y}$.

2) (Problem 4)

182	×	Comput	e Pr	()	4:	dimer.	57	0)	for	each	0	Para 1	
										100			

A Refer to R Code for computation of Pr (2/i=57/8)

for each 8.
- From part 1 we know that Pr (Zy:=57(0) = (57) 057(1-8)43

9	Pr(Z41=57/0)
, , , , , , , , , , , , , , , , , , , ,	<i>i</i> =1
0.0	0.00
0.1	4.107157 × 10-31
0.2	3.738459 x 10-16
0.3	1.306895 × 10-8
0.4	Z.285792 x 10-4
0.5	3.006864 x 10 ⁻²
0.6	6.67289 × 10-2
0.7	1.853172 × 10-3
0-8	1.003535 × 10-7
0.9	9.395858 × 10-18
1.0	0.000
and the collection of the coll	

Plot B attached at end of document

(3) Since
$$Pr(\delta=0.0) = Pr(\delta=0.1) = \cdots = Pr(\delta=1.0)$$

Thus $Pr(\delta=0.0) = \cdots = Pr(\delta=1.0) = \frac{1}{11}$

Since $\delta \sim Discrete$

Pr($\frac{5}{57}$): $\frac{1}{57}$: $\frac{$

(4) See Plot and R Code. Here, $p(0|2/i=57) = (57)0^{37}(1-0)^{43} \times (1)$ Pr (5 4: =57) for 0 < 0 < 1. Plot attached to document. (5) Posterior Distribution de Beta (58,44) Here, there is no normalizing constant since it Beta (58, 44) 18 the proportional distribution to the posterior. See plot and R code attacked Relationship: The plot for the sampling model in Part (2)
the discrete type; indeed, it is a discrete distribution. In Part (3) our prior was discrete, and our posterior was also discrete and was proportional to the distribution of the sampling model.

In parts (4) and (5) our prior was continuous

proportional to the sampling model.

resulting in a continuous posterior, but remained

Problem 5: See R Code. According to Hoff page to, Chapter I. The contour plot suggests that lower values

of no are generally 90% or more certain

that 0>0.5. - Reference: A First Course in Moth, Chapter 1.

Problem 4, Part 2 R Code and Plot

```
> theta<-c(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
> Y<-rep(1,11)
> for(i in 1:11)
+ Y[i]<-choose(100,57)*(theta[i]^57)*(1-theta[i])^43
> print(Y)
[1] 0.000000e+00 4.107157e-31 3.738459e-16 1.306895e-08 2.285792e-04 3.006864e-02
[7] 6.672895e-02 1.853172e-03 1.003535e-07 9.395858e-18 0.000000e+00 >
> plot(theta, Y, type = "h", main = "Problem 4, Part 2", xlab = expression(paste(theta)),
+ ylab="Pr(Y=57 | theta)")
```

Problem 4, Part 2

Problem 4, Part 3 R Code and Plot

```
> x<-rep(1,11)
> x1<-rep(1,11)
> for(i in 1:11)
+    x[i]<-(choose(100,57)*(theta[i]^57)*(1-theta[i])^43)*(1/11)
> NormConstant<-1/(sum(x))
> x1<-x*NormConstant
> print(x1)
[1] 0.000000e+00 4.153701e-30 3.780824e-15 1.321705e-07 2.311695e-03 3.040939e-01
[7] 6.748515e-01 1.874172e-02 1.014907e-06 9.502335e-17 0.000000e+00 >
> plot(theta, x1, type = "h", main = "Problem 4 Part 3", xlab = expression(paste(theta)),
+    ylab = "Posterior")
```


Problem 4, Part 4 R Code and Plot

 $f<-curve(choose(100,57)*x^57*((1-x)^43), from = 0, to = 1, main = "Problem 4, Part 4",$

xlab = expression(paste(theta)), ylab = "posterior")

Problem 4, Part 4

Problem 4, Part 5 R Code and Plot

v<-seq(0, 1, length = 200)
z<-dbeta(v, 58, 44)
plot(v, z, type = "l", main = "Problem 4. Pa</pre>

Problem 4, Part 5 Beta(58,44) Distribution

Problem 5 R Code and Plot

```
theta 0 < -c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
n 0 < -c(1,2,8,16,32)
a<-matrix(0L, nrow =length(theta 0), ncol =length(n 0))</pre>
b<-matrix(0L, nrow =length(theta 0), ncol =length(n 0))
for (i in 1:length(theta 0))
{for (j in 1:length(n 0))
{a[i,j]=theta_0[i]*n_0[j]
b[i,j]=(1-theta_0[i])*n_0[j]
}
Pr<-matrix(0L, nrow =length(theta 0), ncol =length(n 0))</pre>
for (i in 1:length(theta_0))
{for (j in 1:length(n_0))
{
  f <- function(x)</pre>
    \{choose(100,57)*(x^57)*((1-
x)^{43} (gamma(a[i,j]+b[i,j])/(gamma(a[i,j])*gamma(b[i,j])))*(x^{(a[i,j]-b[i,j]}
1))*(1-x)^(b[i,j]-1)
  bot<-integrate(f,0, 1, rel.tol=1e-10)$value</pre>
  top<-integrate(f,0.5, 1, rel.tol=1e-10)$value
  Pr[i,j]<-top/bot</pre>
}
}
contour(theta_0, n_0, Pr,main = "Problem 5 Countour Plot",
xlab=expression(paste(theta)),
        ylab='n 0')
```

Problem 5 Countour Plot

