



## Clase 7. Descomposición en valores propios

- Introducción
- 2 Tema 1: Valores y vectores propios
- 3 Tema 2: PageRank
- 4 Tema 3: Iteración de potencia



# Introducción

### Introducción y motivación

Hemos visto como una matriz cuadrada A puede ser considered como un operator lineal, la cual transforma, como combinación de operaciones como rotaciones, reflexiones o escalamiento, vectores en vectores.

En esta clase veremos un tipo especial de transformaciones con matrices que llamaremos diagonalizables.

Además entenderemos la importancia de encontrar una representación de estas transformaciones. En particular, discutiremos la aplicación de esto para clasificar según importancia páginas web en algoritmos de búsqueda.



Tema 1: Valores y vectores propios

# Definición de valor y vector propio

Sea  $A \in \mathbb{R}^{n \times n}$ . Un número  $\lambda$  se dice **valor propio** de A si existe un vector llamado **vector propio**  $v \in \mathbb{R}^n \setminus \{0\}$  tal que:

$$Av = \lambda v$$

**Ejemplo:** Considere la siguiente matriz  $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ .

Entonces  $\lambda=2$  y  $v=\begin{bmatrix}1\\1\end{bmatrix}$ , en efecto

$$Av = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda v$$

#### Polinomio característico

**Definición**: Sea  $A=(A_{ij})\in\mathbb{R}^{n\times n}$  y sea  $A_{[i,j]}$  la matriz formada al quitar de A la fila i-ésima y la columna j-ésima. Entonces, el **determinante** de A, denotado por  $\det(A)$ , se define recursivamente por:

- **1** Si n=1, entonces  $det(A)=A_{11}$ , la única componente de A.

$$\det(A) = \sum_{i=1}^{n} (-1)^{(i+j)} A_{ij} \det(A_{[i,j]})$$

**Definición**: Sea  $A \in \mathbb{R}^{n \times n}$ . El **polinomio característico** asociado a A es el polinomio de grado n en  $\lambda$  dado por

$$p_A(\lambda) = \det(A - \lambda I), \quad \lambda \in \mathbb{C}.$$

#### **Teorema**

Un número  $\lambda$  es un valor propio de  $A \in \mathbb{R}^{n \times n}$  si y solo si la matriz  $(A - \lambda I)$  es singular, es decir,  $\dim(\mathbf{im}(A)) =: \operatorname{rank}(A) < n$ . Además,  $\lambda$  satisface la ecuación característica

$$p_A(\lambda) = \det(A - \lambda I) = 0.$$

# **Ejemplo**

Sea la siguiente matriz 
$$A = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

- $lue{}$  Compruebe que el polinomio característico es  $p_A(\lambda)=(\lambda-2)(\lambda-1)^2$ .
- $\Box$  Compruebe que el valor propio  $\lambda_1=2$  y el vector propio asociado es

$$v_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1 \end{bmatrix}.$$

 $lue{}$  Compruebe que el valor propio  $\lambda_2=1$  tiene dos vectores propios asociados es

$$v_2 = rac{1}{\sqrt{2}} egin{bmatrix} -1 \ 1 \ 0 \end{bmatrix} \quad \mathsf{y} \quad v_3 = rac{1}{\sqrt{2}} egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}.$$

### **Propiedades**

#### Sea $A \in \mathbb{R}^{n \times n}$

- $lue{}$  La matriz A possee al menos 1 y a lo más n valores propios, los cuales pueden ser complejos.
- $\square$  La matriz  $A^{\top}$  tiene los mismos valores propios que la matri A.
- $\square$  Si  $\lambda_1, ..., \lambda_k$  sin valores propios distintos de A entonces lo vectores propios correspondientes  $v_1, ..., v_k$  son linealmente independientes.
- $\square$  Si A tiene n valores propios distintos y reales entonces los vectores propios asociados forman una base de  $\mathbb{R}^n$ .
- $\square$  La matriz A es singular si y solo si  $\lambda = 0$  es valor propio de A.

## Matrices diagonalizables

**Definición**: Una matriz  $A \in \mathbb{R}^{n \times n}$  es **diagonalizable** si existe una matriz no singular V y una matriz diagonal  $\Lambda = \operatorname{diag}(\lambda_1,...,\lambda_n)$  tales que

$$A = V\Lambda V^{-1},$$

es decir, A es semejante a la matriz diagonal  $\Lambda$ .

**Teorema.** Sea  $A \in \mathbb{R}^{n \times n}$ . Si los valores propios  $\lambda_1,...,\lambda_n$  de A son todos distintos, entonces los vectores propios asociados  $v_1,...,v_n$  son linealmente indpendientes y la matriz A es diagonalizable

$$A = V\Lambda V^{-1} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \operatorname{diag}(\lambda_1, \dots, \lambda_n) \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^{-1}$$

# Matrices diagonalizables

**Teorema.** Sea  $A \in \mathbb{R}^{n \times n}$  una matriz simétrica  $(A = A^{\top})$ . Entonces A existe una matriz Q ortogonal y una matriz diagonal  $\Lambda = \operatorname{diag}(\lambda_1,...,\lambda_n)$  tales que

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^{\top}.$$

**Propiedad.** Si  $\lambda$  y v son valor y vector propio de una matriz  $A \in \mathbb{R}^{n \times n}$ , entonces,  $\lambda^2$  y v sin valor y vector propio de  $A^2 = AA$ .

$$Av = \lambda v \implies A^2v = A(Av) = A(\lambda v) = \lambda Av = \lambda \lambda v = \lambda^2 v.$$



Tema 2: PageRank

### Descripción del problema

Nos interesa una web d n-páginas, donde cada página está indexada con  $1 \le k \le n$ . Denotamos por  $x_k$  el puntaje de relevancia de la página k en la web. Así si para dos paginas i y j tenemos que  $x_j > x_i$  entonces concluímos que la página j es mas relevante que la página i.



## Descripción del problema

Nos interesa una web d n-páginas, donde cada página está indexada con  $1 \le k \le n$ . Denotamos por  $x_k$  el puntaje de relevancia de la página k en la web. Así si para dos paginas i y j tenemos que  $x_j > x_i$  entonces concluímos que la página j es mas relevante que la página i.



Matriz de conectividad

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

## Descripción del problema

Nos interesa una web d n-páginas, donde cada página está indexada con  $1 \le k \le n$ . Denotamos por  $x_k$  el puntaje de relevancia de la página k en la web. Así si para dos paginas i y j tenemos que  $x_j > x_i$  entonces concluímos que la página j es mas relevante que la página i.



Matriz de conectividad

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Vector de relevancia

$$x = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix}$$

#### **Problema**

La solución anterior solo considera el número de páginas que llegan a una determinada, sin considerar la relevancia de estas.

### **Problema**

La solución anterior solo considera el número de páginas que llegan a una determinada, sin considerar la relevancia de estas.

Cómo incluir la relevancia de las páginas?

#### **Problema**

La solución anterior solo considera el número de páginas que llegan a una determinada, sin considerar la relevancia de estas.

#### Cómo incluir la relevancia de las páginas?

Bryan, K., & Leise, T. (2006). The \$25,000,000,000 eigenvector: The linear algebra behind Google. *SIAM review*, 48(3), 569-581.

Calcularemos el puntaje de relevancia de la página j como la suma de los puntajes de relevancia de las páginas que tienen link a j, es decir:

$$x_1 = x_3 + x_4$$
,  $x_2 = x_1$ ,  $x_3 = x_1 + x_2 + x_4$ ,  $x_4 = x_1 + x_2$ 

Pero obviamente  $x_3$  y  $x_4$  dependen de  $x_1$ .

Si la página j contiene  $n_j$  links, uno de ellos a k, entonces el puntaje  $x_k$  se incrementará por  $x_j/n_j$ .

**Ejemplo**: El nodo 1 apunta a los nodos 2, 3, 4, entonces contiene 3 links, así aportará acada uno  $x_1/3$ .

Calcularemos el puntaje de relevancia de la página j como la suma de los puntajes de relevancia de las páginas que tienen link a j, es decir:

$$x_1 = x_3 + x_4$$
,  $x_2 = x_1$ ,  $x_3 = x_1 + x_2 + x_4$ ,  $x_4 = x_1 + x_2$ 

Pero obviamente  $x_3$  y  $x_4$  dependen de  $x_1$ .

Si la página j contiene  $n_j$  links, uno de ellos a k, entonces el puntaje  $x_k$  se incrementará por  $x_j/n_j$ .

**Ejemplo**: El nodo 1 apunta a los nodos 2, 3, 4, entonces contiene 3 links, así aportará acada uno  $x_1/3$ .



$$A = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Buscamos Ax = x



#### Matriz link

$$A = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$
Buscamos  $Ax = x$ 

Solución es el vector:

$$x = \begin{bmatrix} 12/31 \\ 4/31 \\ 9/31 \\ 6/31 \end{bmatrix}$$

Como calculamos este vector?



Tema 3: Iteración de potencia

# Algoritmos para el cálculo de valores propios

**Iteración de potencia:** genera una aproximación del vector propio correspondiente al valor propio de mayor magnitud de A.

Inicializar 
$$x_0 : ||x_0||_1 = 1$$
,

iteración 
$$k$$
:  $x^{(k)} = Ax^{(k-1)}$ 

Ejemplo: Considere la matriz de link:

$$x^{(0)} = \frac{1}{8} \begin{bmatrix} 2\\1\\3\\2 \end{bmatrix}, \quad x^{(1)} = \frac{1}{8} \begin{bmatrix} 0 & 0 & 1 & 1/2\\1/3 & 0 & 0 & 0\\1/3 & 1/2 & 0 & 1/2\\1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2\\1\\3\\2 \end{bmatrix} = \begin{bmatrix} 1/2\\1/12\\13/48\\7/48 \end{bmatrix}, \quad x^{(2)} = \begin{bmatrix} 11/32\\1/6\\9/32\\5/24 \end{bmatrix}$$

