Claims:

- 1 1. A translinear circuit implementing a piecewise-polynomial-continuous function containing a removable singularity in at least one segment thereof, comprising:
- a plurality of input transistors for receiving a respective plurality of input currents; and
- a circuit for providing a plurality of perturbation currents when said translinear circuit operates within said at least one segment containing a removable singularity;
- wherein said translinear circuit is configured to add said perturbation currents to those of said input currents received by said input transistors that are responsible for creating said removable singularity.
- 1 2. The circuit of claim 1 wherein said input currents are substantially proportional.
- 1 3. The circuit of claim 1 wherein said perturbation currents are substantially equal.
- 1 4. The circuit of claim 1 wherein said input transistors are bipolar transistors.
- 5. The circuit of claim 1 wherein said circuit for providing said perturbation currents comprises a Trafton-
- 2 Hastings clamp transistor connected to provide a collector current that indicates when said input currents
- 3 that are responsible for creating said removable singularity are substantially equal.
- 1 6. The circuit of claim 5 wherein said Trafton-Hastings clamp transistor is connected to produce a collector
- 2 current that substantially differs from zero when said input currents that are responsible for creating said
- 3 removable singularities are substantially equal.
- 1 7. The circuit of claim 6 wherein said perturbation currents are substantially proportional to said collector
- 2 current of said Trafton-Hastings clamp transistor.
- 1 8. The circuit of claim 5 wherein said circuit for providing said perturbation currents further comprises a
- 2 current mirror controlled by said Trafton-Hastings clamp transistor to supply said perturbation currents to
- 3 said input transistors.
- 1 9. The circuit of claim 5 wherein said Trafton-Hastings clamp transistor is connected to produce a collector
- 2 current that substantially equals zero when said input currents that are responsible for creating said
- 3 removable singularities are substantially proportional.
- 1 10. The circuit of claim 5 further comprising a current source and a control transistor, connected in series,
- 2 wherein a base of said Trafton-Hastings clamp transistor is connected to a node between said current source
- 3 and said control transistor, and wherein said plurality of perturbation currents are substantially proportional

- 4 to a difference between a current delivered by the current source and a current consumed by said control
- 5 transistor.
- 1 11. A method for operating a translinear circuit implementing a piecewise-polynomial-continuous function containing a removable singularity in at least one segment thereof, comprising:
- applying a plurality of input currents to a respective plurality of input transistors;
- generating a plurality of perturbation currents when said translinear circuit operates within said at least one segment containing a removable singularity;
- and allowing said translinear circuit to add said perturbation currents to those of said input currents received by said input transistors that are responsible for creating said removable singularities.
- 1 12. The method of claim 11 wherein said generating a plurality of perturbation currents comprises
- 2 generating a plurality of substantially equal perturbation currents.
- 1 13. The method of claim 11 wherein said providing said perturbation currents comprises connecting a
- 2 Trafton-Hastings clamp transistor to provide a collector current that indicates when said input currents that
- 3 are responsible for creating said removable singularities are substantially proportional.
- 1 14. The method of claim 13 wherein said connecting a Trafton-Hastings clamp transistor comprises
- 2 connecting a Trafton-Hastings clamp transistor to produce a collector current that substantially differs from
- 3 zero when said input currents that are responsible for creating said removable singularities are substantially
- 4 proportional.
- 1 15. The method of claim 14 wherein said providing said perturbation currents comprises providing
- 2 perturbation currents that are substantially proportional to said collector current of said Trafton-Hastings
- 3 clamp transistor.
- 1 16. The method of claim 13 wherein said providing said perturbation currents further comprises providing a
- 2 current mirror controlled by said Trafton-Hastings clamp transistor to supply said perturbation currents to
- 3 said input transistors.
- 1 17. The method of claim 13 wherein said connecting a Trafton-Hastings clamp transistor comprises
- 2 connecting a Trafton-Hastings clamp transistor to produce a collector current that substantially equals zero
- 3 when said input currents that are responsible for creating said removable singularities are substantially
- 4 proportional.

- 1 18. The method of claim 13 further comprising providing a current source in series with a control transistor,
- 2 connecting a base of said Trafton-Hastings clamp transistor to a node between said current source and said
- 3 control transistor, wherein said plurality of perturbation currents are substantially proportional to a
- 4 difference between a current delivered by the current source and a current consumed by said control
- 5 transistor.
- 1 19. A method for perturbing a removable singularity in a piecewise-polynomial-continuous transfer
- 2 function of a translinear circuit incorporating a Trafton-Hastings clamp, comprising:
- detecting a region of operation wherein a removable singularity exists within a transfer function of said translinear circuit;
- determining a plurality of input currents to the translinear circuit whose magnitude substantially equals zero at the removable singularity;
- 7 defining a plurality of substantially equal perturbation currents;
- and within the region of operation adding a respective one of said plurality of perturbation currents to each of said input currents.
- 1 20. The method of claim 19 wherein said detecting a region of operation comprises detecting when a
- 2 collector current of said Trafton-Hastings clamp transistor substantially differs from zero.
- 1 21. The method of claim 20 wherein said defining a plurality of substantially equal perturbation currents
- 2 comprises defining said perturbation currents to be substantially proportional to said collector current of
- 3 said Trafton-Hastings clamp transistor.
- 1 22. The method of claim 19 wherein said detecting a region of operation comprises detecting when a
- 2 collector current of said Trafton-Hastings clamp transistor substantially equals zero.
- 1 23. The method of claim 19 further comprising connecting a base of said Trafton-Hastings clamp transistor
- 2 to a node between a current source and a control transistor, wherein the plurality of perturbation currents
- 3 are substantially proportional to a difference between a current delivered by said current source and a
- 4 current consumed by said control transistor.
- 1 24. A translinear circuit, comprising:
- a pair of translinear loops, including a respective plurality of bipolar input transistors each receiving a respective input current;
- 4 a current mirror having a plurality of outputs each connecting to a respective one of said bipolar
- 5 input transistors; and

6	a Trafton-Hastings clamp transistor having a collector current coupled to control said outputs of
7	said current mirror, said Trafton-Hastings clamp transistor being coupled to said translinear loops and
8	operating to produce said collector current when said input currents cause said translinear circuit to operate
9	in a segment of a piecewise-polynomial- continuous characteristic function having a removable singularity;
10	wherein said outputs from said current mirror add to said input currents in said bipolar input
11	transistors.
1	25. A translinear circuit having two translinear loops, comprising:
2	a plurality of bipolar input transistors;
3	a current mirror having a plurality of output currents to add to currents in said bipolar
4	input transistors;
5	a current source;
6	a control transistor;
7	a Trafton-Hastings clamp transistor having a base coupled to said current source and to a
8	collector of said control transistor, a difference between a current delivered by said current source and a
9	current consumed by said control transistor being coupled to said current mirror to be mirrored to said
10	output currents.
1	26. A circuit comprising:
2	a reference limb, a control limb, and an output limb,
3	said reference limb comprising:
4	a first bipolar transistor having an emitter coupled to a voltage rail, and
5	a second bipolar transistor having an emitter coupled to a base of said first bipolar
6	transistor;
7	said control limb comprising:
8	a third bipolar transistor having an emitter coupled to a voltage rail, and
9	a fourth bipolar transistor having an emitter coupled to a base of said third bipolar
10	transistor;
11	said output limb comprising:
12	a fifth bipolar transistor having an emitter coupled to a voltage rail, and
13	a sixth bipolar transistor having an emitter coupled to a base of said fifth bipolar
14	transistor;
15	said second, fourth, and sixth bipolar transistors having bases coupled to a collector of said first
16	bipolar transistor;
17	a first constant current source coupled to said collector of said first bipolar transistor;
18	a second constant current source coupled to said emitter of said second bipolar transistor;
10	a third constant current source counled to a collector of said third hindler transistor

20	a first input coupled to said emitter of said fourth bipolar transistor;
21	a second input coupled to said emitter of said sixth bipolar transistor;
22	a current mirror having outputs coupled to said emitters of said fourth and sixth bipolar transistors;
23	a Traston-Hastings clamp bipolar transistor, having a base coupled to said collector of said third
24	bipolar transistor, an emitter coupled to said collector of said first bipolar transistor, and a collector coupled
25	to an input of said current mirror; and
26	and a circuit output coupled to a collector of said fifth bipolar transistor.

27. The circuit of claim 26, wherein a first current is passed through said first input and a second current is passed through said second input, and wherein said first and second currents are substantially equal.

- 18 -