Interpreted Interactive Scientific Programming Languages Selective and Incomplete Reference Card

Start	Python	\mathbf{R}	IDL	Matlab/Octave
Start session	ipython -pylab	RStudio	idl	octave -q
Run code from file	<pre>execfile('file.py')</pre>	<pre>source('file.R')</pre>	file.pro or .run	file
	or run file.py		file.pro	
Command history	hist -n	history()	help,/rec	history
Save command history		<pre>savehistory(file=)</pre>	journal,'file'	$oldsymbol{ ext{diary on and}}$
End session	Ctrl-D or sys.exit()	q()	exit or Ctrl-D	exit or quit
Install packages	pip install	install.package()		•
Show/Set working path	sys	<pre>getwd() / setwd()</pre>	cd,,current=curr	
Comment sign	#	#	;	
Help	Python	R	IDL	Matlab/Octave
Interactive	help()	help.start()	?	doc
Help on function f	help(f) or ?f or ??f	help(f) or ?f	?f	help f
Demonstration examples		demo() or	demo	
		example(plot)		
Search more help		help.search('plot')		lookfor plot
Locate function	holm(mlo+)	<pre>or apropos('plot') find(plot)</pre>		which wlot
List methods	help(plot) dir()	find(plot)		which plot
Others	uii()	<pre>methods(plot) str()</pre>		
Others Data Summary		<pre>describe(),</pre>		
Dava Dunimary		•		
		summary()		
Syntax	Python	R	IDL	Matlab/Octave
Assignment	a=1; b=1	a<-1; b<-2	a=1 & b=2	a=1; b=2;
Procedure				
Function		(loot -t-t 4)		aa aasi J
Return value	return x	x (last statement)	return, x	as assigned
Object Method	£()			
Operator Precedence	<pre>func(); x[ind:ind];</pre>			
	x[ind]; x.attr;			
	**; *,/,%; +,-; <,>,<=,>=,!=,==;			
	in, not in;			
	not, and, or			
Terminal Output Terminal Input	print()	<pre>print()</pre>	print,	
In place: $a=a+b$	a+=b		a+=b	a+=b
In place ops.			+= *= /= #= ##= &&= .	
Variables/Types Basic types	Python	R	IDL	Matlab/Octave
Dasic Types	int, long, float,	character, numeric,	int, long, float,	
Basic types				
Danie types	complex, bool, str,	integer, complex,	complex, string,	
	<pre>complex, bool, str, tuple, list, dict</pre>	<pre>integer, complex, logical</pre>	double, byte,	
Conversion	complex, bool, str,	<pre>integer, complex, logical as.list,</pre>		
Conversion Type Checks	<pre>complex, bool, str, tuple, list, dict int(), float()</pre>	<pre>integer, complex, logical as.list, is.na(x)</pre>	<pre>double, byte, fix(), float(),</pre>	v. v.
Conversion Type Checks Not a number	<pre>complex, bool, str, tuple, list, dict int(), float() nan</pre>	<pre>integer, complex, logical as.list,</pre>	<pre>double, byte, fix(), float(), !values.f_nan</pre>	NaN
Conversion Type Checks Not a number Infinity	<pre>complex, bool, str, tuple, list, dict int(), float() nan inf, plus_inf</pre>	<pre>integer, complex, logical as.list, is.na(x) NaN, NA</pre>	<pre>double, byte, fix(), float(), !values.f_nan !values.f_infinity</pre>	Inf
Conversion Type Checks Not a number Infinity Complex number 2+i	<pre>complex, bool, str, tuple, list, dict int(), float() nan inf, plus_inf 2+1j</pre>	<pre>integer, complex, logical as.list, is.na(x) NaN, NA</pre>	<pre>double, byte, fix(), float(), !values.f_nan !values.f_infinity complex(2,1)</pre>	Inf 2+i
Conversion Type Checks Not a number Infinity Complex number 2+i Real/Imaginary	<pre>complex, bool, str, tuple, list, dict int(), float() nan inf, plus_inf</pre>	<pre>integer, complex, logical as.list, is.na(x) NaN, NA</pre>	<pre>double, byte, fix(), float(), !values.f_nan !values.f_infinity</pre>	Inf
Conversion Type Checks Not a number Infinity Complex number 2+i	<pre>complex, bool, str, tuple, list, dict int(), float() nan inf, plus_inf 2+1j np.real(z), z.real,</pre>	<pre>integer, complex, logical as.list, is.na(x) NaN, NA</pre>	<pre>double, byte, fix(), float(), !values.f_nan !values.f_infinity complex(2,1) real_part(z), imagi-</pre>	Inf 2+i

Math	Python	R	IDL	Matlab/Octave	
Basic	+ - * / or //	+ - * / or %/%	+ - * /	+ - * / or .* ./	
Power a^b	a**b	a^b	a^b	a.^b	
Modulo	np.mod(a,b)	a%b	a mod b	rem(a,b)	
Factorial a!	m.factorial(a)	factorial(a)	factorial(a)		
Round	<pre>np.round(), np.ceil(),</pre>	<pre>round(), ceil(),</pre>	round(), ceil(),	<pre>round(), ceil(),</pre>	
	np.floor()	floor()	floor()	floor()	
Round towards zero	np.fix()		fix()	fix()	
Trigonometry	<pre>sin(), cos(), tan(), asin() or arcsin(), acos() or arccos(), atan() or arctan() or atan2()</pre>				
Hyperbolic	<pre>sinh(), cosh(), tanh()</pre>				
Others	<pre>np.sqrt(), np.log(),</pre>	<pre>sqrt(), log(), exp()</pre>	<pre>sqrt(), alog(),</pre>	<pre>sqrt(), log(), exp()</pre>	
	np.exp()		exp()		
Constants	m.pi, m.e	pi, exp(1)	!pi, exp(1)	pi, exp(1)	
Relational					
Basic	== < > <= >= !=	== < > <= >= !=	eq lt gt le ge ne	== < > <= >= ~=	
Logical					
Single-elem	and or	&&	&&	&&	
Element-wise	and or	&	and or	&	
XOR		xor(a,b)	a xor b	xor(a,b)	
NOT	not a	!a	~a	~a !a	
True if any nonzero				any(a)	
True if all nonzero				all(a)	
Vectors and Matrices	Python	R	IDL	Matlab/Octave	
Vector 1,3,-4,10	np.array([1,3,- 4,10])	c(1,3,-4,10)	[1,3,-4,10]	[1; 3; -4; 10]	

Vectors and Matrices	Python	R	IDL	Matlab/Octave
Vector 1,3,-4,10	np.array([1,3,- 4,10])	c(1,3,-4,10)	[1,3,-4,10]	[1; 3; -4; 10]
Sequence 1,2,,10	range(1,11),	1:10, seq(1,10)	indgen(10)+1	1:10
	np.arange(1,11)			
1,4,7,10	np.arange(1,11,3)	seq(1,10,3)	indgen(4)*3+1	1:3:10
Linearly spaced	<pre>np.linspace(1,10,7)</pre>	seq(1,10,len=7)		linspace(1,10,7)
$\operatorname{Zeros} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	np.zeros((2,4))	matrix(0,2,4)	fltarr(4,2)	zeros(2,4)
Ones $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}$	np.ones((2,4))	matrix(1,2,4)	fltarr(4,2)+1	ones(2,4)
Identity matrix	np.identity(3)	diag(3)	identity(3)	eye(3)
Diagonal matrix	np.diag([3,4,5])	diag(c(3,4,5))	<pre>diag_matrix([3,4,5])</pre>	diag([3 4 5])
Reverse	a[::-1]	rev(a)	reverse(a)	reverse(a)
Transpose	a.T	t(a)	transpose(a)	a.'
Conjugate transpose	a.T.conj()	Conj(t(a))	<pre>conj(transpose(a))</pre>	a'
Flatten to 1D	np.ravel(a)		a[*]	
Flatten by rows	a.flatten()	as.vector(t(a))		a'(:)
Flatten by columns	a.flatten(1)	as.vector(a)	<pre>(transpose(a))[*]</pre>	a(:)
Flatten upper triang.		$a[row(a) \le col(a)]$		vech(a)
Reshape by rows	<pre>a.reshape(2,-1) or a.setshape(2,3)</pre>	<pre>matrix(a,nrow=3, byrow=T)</pre>	reform(a,[2,3])	reshape $(a,3,2)$ '
Reshape by columns	a.reshape(-1,2).T	<pre>matrix(a,nrow=2)</pre>	reform(transpose(a),[2,	3deshape(a,2,3)
Flip left-right (mirror horiz)	np.fliplr(a) or a[:,::-1]	a[,4:1]	reverse(a)	fliplr(a)
Flip up-down (mirror vert)	<pre>np.flipud(a) or a[::-1,]</pre>	a[3:1,]	reverse(a,2)	flipud(a)
Rotate 90 deg	np.rot90(a)		rotate(a,1)	rot90(a)
Repeat matrix	np.kron(np.ones((2,3))	,akronecker(matrix(1,2,3)	,a)	repmat(a,2,3)
Upper/lower triangular	np.triu(), np.tril()	<pre>a[lower.tri(a)], a[upper.tri(a)]</pre>		triu(), tril()
Assign to all	a.fill(3), a[:]=3		a[*]=3	a(:)=3
Concatenate	np.concatenate((a,b))	c(a,b)	[a,b]	a b
Repeat $[1,2,1,2,1,2]$	np.concatenate((a,a,a)	rep(a,imes=3)	<pre>[a,a,a], repli- cate(a,3)</pre>	[a a a]
Repeat $[1,1,1,2,2,2]$	np.repeat(a,3)	rep(a,each=3)		
Max/Min	<pre>np.max(a), np.min(a)</pre>	<pre>max(a), min(a)</pre>	<pre>max(a), min(a)</pre>	<pre>max(a), min(a)</pre>
Max/Min position	np.argmax(a)	which.max(a)	v = max(a,pos=i)	[v,i] = max(a)

Vectors and Matrices	Python	R	IDL	Matlab/Octave
Sum (over 1th dim)	np.sum(a,axis=0)	colSum(a)	total(a,1)	sum(a)
Sum (all elems)	np.sum(a)	sum(a)	total(a)	<pre>sum(sum(a))</pre>
Cumulative sum	np.cumsum(a)	cumsum(a)	total(a,/cum)	cumsum(a)
Dimensions	a.shape	dim(a)	size(a)	size(a)
Specific dimensions	a.ndim, a.nbytes,	ncol(a), ob-	n_elements(a)	<pre>length(a), ndims(a)</pre>
	len(a)	ject.size(a)		
Matrices	Python	R	IDL	Matlab/Octave
Input $\begin{bmatrix} 2 & 3 \\ 4 & 4 \end{bmatrix}$	np.array([[2,3], [4,5]])	array(c(2,3,4,5), c(2,2))	[[2,3],[4,5]]	[2 3; 4 5]
Bind rows	np.vstack((a,b))	rbind(a,b)	[[a],[b]]	[a; b]
Bind columns	np.hstack((a,b))	cbind(a,b)	[a,b]	[a, b]
Bind slices(3d)	np.dstack((a,b))		[[[a]],[[b]]]	
Create single vector	<pre>np.concatenate(a,b, axis=None)</pre>		[a[*],b[*]]	[a(:),b(:)]
Elementwise operatoins	* / + -	* / + -	* / + -	.* ./
Matrix multiplication	matrixmultipy(a,b)	a%*%b	a#b a##b	a*b
Cross product			will II M	~ ~
Kronecker product	np.kron(a,b)	kronecker(a,b)		kron(a,b)
Solve linear equations	linalg.solve(a,b)	solve(a,b)	cramer(a,b)	a\b
Indexing	Python	R	IDL	Matlab/Octave
First row	a[0,]	a[1,]	a[*,0]	a(1,:)
Element 2,3 (row, col)	a[1,2]	a[2,3]	a[2,1]	a(2,3)
Array indices	a[1,2]	a[2,0]	a[[0,3],[0,2]]	a([1 3],[1 4])
Selection	a[2:]	a[-1]	a[1:*]	a(2:end)
Last element	a[-1]	α[1]	a[n_elements(a)-1]	a(end)
Last 3 rows	a[-3:,:]		a[*,n_elements(a)-	a(end-2:end,:)
Last 9 10ws	a[J.,.]		3:*]	a(end 2.end,.)
Every k-th row	a[::k,:]		a[ind,*]	a(1:2:end,:)
k-th in last dim	a[,k]		u[ina,·]	u(1.2.cha,.)
All except row 2, col 3	u[,n]	a[-2,-3]		
Diagonal elems	a.diagonal()	ul 2, 0j	diag_matrix(a)	
Clipping	(a>90).choose(a,90)	a[a>90]<-90	a<90	a(a>90)=90
Cubbung	a.clip(min=2,max=90)	a[a 00] · 00	2>a<90	a(a, 00) 00
Mathematical indexing: ro	ow-number × column-numb	per: $M_{3\times 4} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$	$\begin{bmatrix} 1_{13} & a_{14} \\ 2_{23} & a_{24} \end{bmatrix}$	
0		$\begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}$		
Sorting	Python	\mathbf{R}	IDL	Matlab/Octave
Sorted values	np.sort(a)	sort(a)	a[sort(a)]	sort(a)
Sorted indices	np.argsort(a)	order(a)	sort(a)	
Linear Algebra	Python	R	IDL	Matlab/Octave
Element-wise multipl.	a*b	a*b	a*b	a.*b
Scalar product $\mathbf{a} \cdot \mathbf{b}$	np.dot(a,b)		transpose(a)#b	dot(a,b)
Cross product $\mathbf{a} \times \mathbf{b}$	np.dot(a,b)		crossp(a,b)	
Find	Duthon	R	IDL	Motlob/Ostaria
Nonzero indices	Python np.nonzero(a)[0] or	which(a!=0,arr.ind=T)	where(a ne 0)	Matlab/Octave [i j]=find(a)
INORIZETO INGICES	np.nonzero(a)[0] or np.where(a!=0)[0]	which(a:-0,arr.ind=1)	where(a he O)	r ll-rrmg(g)
	Th. MITET = (4: -0)[0]		a[where(a gt 5)]	find(a>5)
Return values	a.compress((a>5).flat)	which(a>5)	afmuere (a gr 3)]	IIIa (a) O)
	•			
Random Numbers	Python	R	IDL	Matlab/Octave
	•			

Python

- 1. concatenate at 1th, 2nd, 3rd dimensions: np.hstack((a,b)), np.vstack((a,b)), np.dstack((a,b))
- 2. stats: scipy.stats.binned_statistic moving/rolling stats
- 3. mutable/non-mutable objects: assignment with copy (deepcopy)
- 4. Bitwise operations: <<, >>, &, |, ~,
- 5. Functions:
 - bin(N) number to binary (base 2) digits string
 - ord(C) integer code of character (unicode or ascii)
 - chr(N) unicode code number to character string
 - hex(N) number to hexadecimal (base 16) digits string
 - oct(N) number to octal (base 8) digits string
 - int(S,n) base-n digits string to number (e.g. int('0011',2))
- 6. Numpy
 - For multidimensional data, use np.array (not np.matrix); and then use .dot(), .conj(), and .T methods and attributes.
 - Slicing doesn't return a new array, but a view of of the original. That is, changing b=a[:,1] with b[0]=x will change a as well.
 - C-like index order: M[i,j], where j changes fastest $\to M[0,:]$ is printed first, as row, M[1,:] is printed next, etc.
 - Selecting a dimension in array will always reduce the rank, leading e.g. from 2-d to 1-d (or rank) matrix. Transpose doesn't do anything on 1-d array.
 - Array can treat rank-1 arrays as either row or column vectors. For example, dot(A,v) treats v as a column vector, while dot(v,A) treats v as a row vector.
 - The usual mathematical column vector has shape (n,1). To generate, use e.g.: c_{x} or x.reshape((n,1)) or x[:,newaxis].
 - Fast array creation: r_[:10] or r_[:10.] or r_[:10:2]. Both, r_[] and c_[] actually createy arrays by stacking numbers along a row or a column, and *allow* using the ":" range slicing operator.
 - Submatrix indexing possible, e.g. with ix_[(ind,ind)] form.
 - Linear indexing is not straightforward. First, reshape to a linear sequence, then perform the operations, and then reshape to original size.
 - For array operations along one dimension, use the *axis*= keyword. It starts with 0: axis=0 for operating on each column, axis=1 for operating on each row.
 - Indexing keyword (e.g. meshgrid): 'ij' = matrix, 'xy' = cartesian (default). Ideally, use indexing='ij' explicitly: A=meshgrid(:M,:N,:P) => A.shape==(M,M,P); meshgrid(:M,:N,:P,indexing='ij') => A.shape==(M,N,P)
 - Attributes: ndim, shape, size, dtype, itemsize, T.
 - Creation functions: array(), zeros(), ones(), eye(), arange(), linspace(), logspace(), empty(), random.random(), copy(), identity(), mgrid(), ogrid(), r() (they usually take tuples for shape).
 - Shape-changing methods: reshape(), ravel(), transpose(), T, resize(). If a -1 is given in a reshaping operation, the other dimensions are automatically calculated! Others: atleast_2d(), mat(), newaxis.
 - Concatenating: vstack, hstack, column_stack, row_stack, concatenate.
 - Questions: all, any, nonzero, where.
 - Ordering: argmax, argmin, argsort, max, min, ptp, searchsorted, sort.
 - Operations: choose, compress, cumprod, cumsum, inner, fill, imag, real, prod, put, putmask, sum.
 - Statistics: cov, mean, std, var.
 - Linear algebra: dot, cross, outer, svd, vdot.
 - Others: *histogram()* (similar to IDL)
 - More on fancy indexing and more tricks see/click: NumPy Tutorial or NumPy for Matlab Users.
- 7. Pylab / Matplotlib
 - figsize(x,y) e.g. figsize(13,4)
 - subplot(yxn) e.g. subplot(121)
- 8. My conventions:
 - Multi-dimensional data: [az, rg, pol-channels], if channels should be closer together (for block processing along azimuth).

\mathbf{R}

- 1. loop functions: map; apply, sapply, ...
- 2. modules: ?modname, install.packages, library(psych)
- 3. info on data set: str(data), summary(data), head(data), psych.describe(data)
- 4. accessing list elements: use double square brackets! e.g L[[1]] (using single brackets will give you back a list again)
- 5. smoothScatter(x,y) great function!!!! 2-d histogram with densities!
- 6. plot(x,y,col=rgb(0,0,0,0.2),pch=19) if many points, adding transparency helps to see where there more and where less points!

Additional Notes

- 1. Lexical scope: Python, R Dynamic scope: IDL, Matlab.
- 2. Array/matrix indexing:
 - Zero-based: Python, IDL, C/C++
 - One-based: R, Matlab
 - Column-major format (data in memory column-by-colum), which is the standard mathematical matrix notation: Python, C/C++. This C-like index order changes the last axis index fastest.

The fastest-changing axis/dimension is read/written/printed to screen first, therefore, a print command in column-major format will print first a[0,:] on first line, then a[1,:] on second line, etc. If characterizing indices with i,j as in a[i,j], then for the print, x=j, y=i.

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} \\ a_{1,0} & a_{1,1} & a_{1,2} \end{bmatrix}$$
(1)
• Row-major format (row-by-row, useful in image processing): IDL, Fortran. This *Fortran-like* index order changes the first

axis index fastest.

$$\begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} \tag{2}$$

3. Python, Matlab, R case sensitive, while IDL is case insensitive.