Signal Processing on Databases

Jeremy Kepner

Lecture 4: Analysis of Structured Data

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Introduction
 - Schema
 - Stats (Analytic 1)
- First Order Analytics
- Second Order Analytics
- Summary

Generic D4M Triple Store Schema

Accumulo Table: Ttranspose

Input Data

Time	Col1	Col2	Col3
2001-01-01	а		а
2001-01-02	b	b	
2001-01-03		С	С

	01-01- 2001	02-01- 2001	03-01- 2001
Col1 a	1		
Col1 b		1	
Col2 b		1	
Col2 c			1
Col3 a	1		
Col3 c			1

	Col1 a	Col1 b	Col2 b	Col2 c	Col3 a	Col3 c
01-01-2001	1				1	
02-01-2001		1	1			
02 04 2004				4		4

Accumulo Table: T

- Tabular data expanded to create many type/value columns
- Transpose pairs allows quick look up of either row or column
- Big endian time for parallel performance

Stats (Analytic 1) Diagram

Accum	nulo Table: T	ලි	(%)	Ç ON	>	ශ්	الى ما	is cold	پر من	Ď	S	૾ૢૺ૾ૺૢૺ	ું જ	% '	93/9	တ်	Al [®] Cc	ialo c	olal ^c ol	xid cold	No.
Row	Key				Ţ					T					Ī						
1	01-10-2001 01 01 00				ļ					1											• • • • • •
2	01-10-2001 01 02 00																				••••
3	01-10-2001 01 03 00			A	5 50	OC	at	ve	Α	rra	ıy:	A									••••
4	01-10-2001 01 04 00									ļ											••••
5	01-10-2001 01 05 00																				
6	01-10-2001 01 06 00																				

- Copy a set of rows from T into associative array A
- Perform the following statistical calculations on A
 - Column count: how many times each column appears in A
 - Column type count: how many times each column type appears in A
 - Column covariance: how many times each pair of columns in A appear in the same row together
 - Column covariance: how many times each pair of column types in A appear in the same row together
- Good for identifying column types, gaps, clutter, and correlations

Stats Implementation

Define a set of rows

 $r = '01-01-2001\ 01\ 02\ 00,01-01-2001\ 01\ 03\ 00,01-01-2001\ 01\ 04\ 00,$

Copy rows from table to associative array and convert '1' to 1

$$A = dblLogi(T(r,:))$$

Compute column counts

Compute column covariance

$$A' * A$$
 or $sqln(A)$

Compute column type counts and covariance by substituting

$$A = col2type(A,'|');$$

Outline

• Introduction

- First Order Analytics
 - Data Graph (Analytic 2)
 - Space (Analytic 3)
 - Convolution (Analytic 4)
- Second Order Analytics
- Summary

Data Graphs (Analytic 2) Diagram

- Define data graph inputs
 - Start columns c₀
 - Allowed column types C_t
 - Clutter columns c
- Get all columns c₁ in rows containing c₀ of type c_t and excluding columns c₁
 - The fundamental operation upon which all graphs are built
 - Perform recursively to grow graph from starting columns

Data Graph Implementation

Define start columns, allowed column types and clutter

Copy all columns from rows containing c0 into associative array

$$A = dblLogi(T(Row(T(:,c0)),:))$$

Reduce to allowed columns

$$A = A(:,ct)$$

Eliminate clutter columns and return column labels

$$c1 = Col(A - A(:,cl))$$

Look for new clutter

Data Graphs Example 1

- Limited by the natural topology of the data
- Star data is good for generating star data graphs

Data Graphs Example 2

- Limited by the natural topology of the data
- Star data is limiting for generating cycle data graphs

Space (Analytic 3) Diagram

A	ccum	ulo Table: T	C		C %	C V V V	>	ું ડું	ان کا	ڒ؈ٛ	ું _{જો}	٥,	40,	\$ 0,40 7,00	_	, 40°	%	70	S	S N	2 ⁷ / ₀	10°	ò
	Row	Key (time)					Ī																
	1	01-10-2001 01 01 00					<u> </u>																
	2	01-10-2001 01 02 00																					••••
r	3	01-10-2001 01 03 00	A	SS	OC	iat	ive	A	rra	ay:	Α												
	4	01-10-2001 01 04 00																					••••
	5	01-10-2001 01 05 00																					
	6	01-10-2001 01 06 00																					

- Select row range r and a space polygon s
- Copy a set of rows from T into associative array A
- Extract space coordinates from rows and determine if inside s
- Return columns c that satisfy these constraints
- Good for finding columns in a particular space window
- Can apply filter to space first is coordinates are "Mertonized"

Space Implementation

Define row range and space polygon

```
r='01-01-2001 00 02 00,:,01-01-2001 00 04 00,'
s=complex([11 15 15 11 11],[15 15 11 11 15])
```

Copy all rows within t into associative array

$$A = T(r,:)$$

Get coordinates

$$Axy = str2num(col2type(A(:,StartsWith('X|,Y|,')),'|'))$$

Select columns in rows in space polygon

Convolution (Analytic 4) Diagram

														C	C	C							
A	ccum	ulo Table: T	රි		(O)/	ري. ري.	>	රු	المي محا	, co?	ير دمر	8	46	to to	, to	, to	_	,	24 0	bo t	30 48	1/2 1/2	
	Row	Key					Ţ					ļ											ļ
	1	01-10-2001 01 01 00																					<u> </u>
	2	01-10-2001 01 02 00																					
	3	01-10-2001 01 03 00	A	SS	OC	iat	ive	• 🖊	rra	ay:	Α	ļ											
	4	01-10-2001 01 04 00															••••						
	5	01-10-2001 01 05 00																					
	6	01-10-2001 01 06 00																					

- Copy a set of rows from T into associative array A
- Select a numeric column type and convolve with a filter

Standard signal processing technique for finding groups

Convolution Implementation

Define a set of rows and a filter of width 4

```
r = 01-01-2001 01 02 00,01-01-2001 01 03 00,01-01-2001 01 04 00,

f = ones(1,4)
```

Copy rows from table to associative array and convert '1' to 1

$$A = dblLogi(T(r,:))$$

Create vector of numeric type rows

Convolve with filter and find columns > 1

$$c = Col(conv(Av,f) > 1)$$

Outline

- Introduction
- First Order Analytics

- Second Order Analytics
 - Type Pair (Analytic 5)
 - Data Pair (Analytic 6)
 - Semantic Extension (Analytic 7)
 - Semantic Pair (Analytic 8)
- Summary

Type Pair (Analytic 5) Diagram

cumul			_											C					C		C	
	lo Table: T	လိ		(S)()		•	လိ	No O	ڒ؈؆	ير مي	,	40	o to	to,	* to	Ó	78	10 19	12 12	2, TO	10,00	8
Row K	Cey					Ţ										••••						I "
1 0 ⁻	1-10-2001 01 01 00																					ľ
2 0	1-10-2001 01 02 00					ļ										••••						•
3 0′	1-10-2001 01 03 00	A	SS	OC	iat	ive	}	\rra	ay:	Α						••••						ľ
4 0	1-10-2001 01 04 00					Ť										••••						ľ
5 0′	1-10-2001 01 05 00					ļ										• • • • •						ľ
6 0 ⁻	1-10-2001 01 06 00					1															П	1

- Copy a set of rows from T into associative array A
- Find rows in A that contain both pair types c_{t1} and c_{t2}
- Find columns of each type are paired with more than one column of the other type
- Good for tracking columns that occur in pairs

Type Pair Implementation

Define row range and type pair

- Copy rows from table to associative array and convert '1' to 1
 A = dblLogi(T(r,:))
- Find rows containing both column types in the pair

$$r = Row(sum(A(Row(sum(A(:,ct1),2)==1),[ct1 ct2]),2)==2);$$

Get columns in order for creating a pair mapping matrix

$$[tmp c1 tmp] = A(r,ct1)$$

 $[tmp c2 tmp] = A(r,ct2)$
 $A12 = Assoc(c1,c2,1)$

Find ct1 with more than one ct2 and vice versa

$$sum(A12,1) > 1$$
 $sum(A12,2) > 1$

Data Pair (Analytic 6) Diagram

				C.	C.	1 C ₁							$\mathbf{C_2}$	$\mathbf{C_2}$	C ₂							
A	ccum	ulo Table: T	ď	51 ¹ 201	(S)()	د کاره	>	colli	COLL	Sollic (<i>Solald</i>	ď	93% CO	¹³⁰ Co.	ي ن ک	13/0	رما	No Coli	نی	JAIC OLA	COLA	,
	Row	Key (time)									—											••••
	1	01-10-2001 01 01 00					••••															••••
r ₁₂	2	01-10-2001 01 02 00																				
	3	01-10-2001 01 03 00																				
	4	01-10-2001 01 04 00																				
	5	01-10-2001 01 05 00																				
	6	01-10-2001 01 06 00																				

- Define column pair sets c₁ and c₂
- Get all columns c₁ and c₂
- Find rows r₁₂ that have one entry in c₁ and c₂

Checks to see if data pairs are present in the same row

Data Pair Implementation

Define column pair sets

Create pair mapping matrices

$$A1p = Assoc(c1,c12,1) \qquad A2p = Assoc(c2,c12,1)$$

Get columns from T

$$A1 = dblLogi(T(:,c1))$$

 $A2 = dblLogi(T(:,c2))$

Find pairs

$$((A1*A1p) + (A2*A2p)) > 1)$$

Semantic Extension (Analytic 7)

 Column types may have several types of semantic relationships which can be used to extend pairs

Pair reversal

Example: pair 'Col1|a;Col3|b' implies'Col3|b;Col1|a'

Type extension.

Example: column 'Col1|a' implies'Col2|a'

Data graph extension.

Example: column 'Col1|a' implies'Col2|b'if 'Col1|a' and Col2|b'appear in the same row

 Allows additional semantic data to be used to greatly increase the number columns that can be matched in a table

Semantic Pair (Analytic 8) Diagram

- Define column pair sets c₁ and c₂
- Extend all columns via semantic information
- Get all columns c₁ and c₂
- Find rows r₁₂ that have one entry in c₁ and c₂
- Checks to see if semantic pairs are present in the same row

Summary

Exploded Schema allows rapid access to both rows and column

 Graph analytics can be implemented as a sequence of row and column queries

Complex analytics can be implemented via matrix multiply

Example Code & Assignment

- Example Code (end of Lecture 3 and start of lecture 4)
 - d4m_api/examples/2Apps/1EntityAnalysis
 - d4m_api/examples/2Apps/2TrackAnalysis

- Assignment 3
 - For your associative arrays in Assignment 1 compute three different cross correlations using matrix multiply
 - Explain the meaning of each cross-correlation

MIT OpenCourseWare https://ocw.mit.edu

RES.LL-005 Mathematics of Big Data and Machine Learning IAP 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.