μ and σ are functions of x[1]

Last Meeting

We construct the mean vector by evaluating a mean function μ_0 at each x_n . We construct the covariance matrix by evaluating a covariance function or kernel Σ_0 at each pair of points x_i, x_j . The kernel is chosen so that points x_i, x_j that are closer in the input space have a large positive correlation, encoding the belief that they should have more similar function values than points that are far apart. The resulting prior distribution on $[f(x_1), ..., f(x_n)]$ is

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_m) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_m) \end{bmatrix} \middle| \begin{bmatrix} \mu_0(x_1) \\ \mu_0(x_2) \\ \vdots \\ \mu_0(x_m) \end{bmatrix}, \begin{bmatrix} \Sigma_0(x_1, x_1) \dots \Sigma_0(x_1, x_N) \\ \Sigma_0(x_2, x_1) \dots \Sigma_0(x_2, x_N) \\ \vdots \\ \Sigma_0(x_N, x_1) \dots \Sigma_0(x_N, x_N) \end{bmatrix} \right)$$

$$oldsymbol{f}_N \sim \mathcal{N}(oldsymbol{f}_N | oldsymbol{\mu}_N, oldsymbol{\Sigma}_N)$$

Suppose we observe f_N without noise for some N and we wish to infer the value of f(x) at some new point x. To do so, we have the prior over $[f_N, f(x)]$ is given by above equation. We can compute the conditional posterior of f(x) using Bayes' rule and we get

$$f(x)|\mathbf{f}_{N} \sim \mathcal{N}\left(f(x)|\mu(x), \sigma^{2}(x)\right)$$

$$\mu(x) = \mathbf{\Sigma}_{*}\mathbf{\Sigma}_{N}^{-1}(\mathbf{f}_{N} - \boldsymbol{\mu}_{0}) + \mu_{0}(x)$$

$$\sigma^{2}(x) = \Sigma_{0}(x, x) - \mathbf{\Sigma}_{*}\mathbf{\Sigma}_{N}^{-1}\mathbf{\Sigma}_{*}^{\top}$$

$$\mathbf{\Sigma}_{*} = \left[\Sigma_{0}(x, x_{1}) \Sigma_{0}(x, x_{2}) \dots \Sigma_{0}(x, x_{N})\right]$$

Bayesian Optimization Plots

References

[1] Eric Brochu, Vlad M Cora, and Nando De Freitas. "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning". In: arXiv preprint arXiv:1012.2599 (2010).