Deep Learning for Segmentation and Detection

Ayush Thakur

Chair, IEEE EDS Student Branch Chapter CTO, The Code Foundation

Talk Overview

- 1) Overview on Standard CNN
- 2) Image Classification Task
- 3) Beyond Classification Task
- 4) Localization Task
- 5) Segmentation Task
- 6) Fully Convolutional Network
- 7) Detection Task

Overview on Standard CNN

- Input Volume = 5
- Padding = 0
- Stride = 2
- Kernel size = 3

- Input Volume = 6
- Padding = 1
- Stride = 2
- Kernel size = 4

$$(\frac{n+2p-f}{s} + 1, \frac{n+2p-f}{s} + 1, n_c)$$

Where,

n = Input Volume

p = Padding

s = Stride

f = Kernel Size

 n_c = Number of channels in input volume

Image Classification

Beyond Image Classification

Limitations:

- 1) Mostly on centered images.
- 2) Not enough for real world scenarios.
- 3) Not getting much insights needed for autonomous systems.
- 4) Not utilizing the real power of convolution.

So what's more can we achieve?

Beyond Image Classification Contd.

Classification

Classification + Localization

Beyond Image Classification Contd.

Object Detection

Multiple Objects

Semantic Segmentation

Instance Segmentation

Localisation

- Single object per image
- Predict bounding box (x, y, h, w)
- Evaluate via IoU
- Treat localisation as a Regression problem

Localisation

Human Pose Estimation

- Human body can be represented with 14 joints.
- Instead of four outputs of the bounding box.
- The regression layer will output 14 coordinates.
- L2 loss

Human Pose Estimation

L2 Loss

Semantic Segmentation

- Label each pixel in the image with a category label.
- Don't differentiate instances, but care about pixels.
- Labels: Building, vehicles, lamp posts, road, pavement, etc.
- Output a class map for each pixels.

Semantic Segmentation

Fully Convolutional Network

FCN Contd.

Upsampling/Unpooling

		1	1	2	2
1	2	1	1	2	2
3	4	 3	3	4	4
		3	3	4	4

		1	0	2	0
1	2	0	0	0	0
3	4	3	0	4	0
		0	0	0	0

Nearest Neighbour

Bell of Nails

Max Unpooling

Max Pooling

1	2	4	2
5	3	1	0
2	4	2	0
3	1	3	1

..Rest of the N/W..

1	2
3	4

Max Unpooling

0	0	2	0
1	0	0	0
0	3	0	0
0	0	4	0

Various Architecture

- 1. FCN
- 2. SegNet
- 3. Dilated Convolutions
- 4. DeepLab (v1 & v2)
- 5. RefineNet
- 6. PSPNet
- 7. Large Kernel Matters
- 8. DeepLab v3

Object Detection

- One of the core problem in computer vision.
- Classical methods used something like Haar Cascade.
- Task is to draw a bounding box to every category which appears in an input image.
- Unlike classification + Localisation, have no idea about the number of objects in an image.

Object Detection as Regression?

DOG: (x, y, h, w)

Car1: (x1, y1, h1, w1)

Car2: (x2, y2, h2, w2)

•

•

Truck1: (x', y', h', w')

Object Detection as Sliding Window

Apply CNN to different crops of image.

DOG? Yes Background? No

- So many crops.
- Computationally expensive
- What will be the size of crop?

Region Proposals

- Find image regions that are likely to contain objects.
- Number of regions as output can be set as a parameter.
- Classical image processing techniques used.
- Faster than sliding window approach.

R-CNN

Going Ahead

- Mask R-CNN
- Fast R-CNN
- Faster R-CNN
- YOLO You Only Look Once
- SSD Single Shot Detector

- Faster R-CNN is slower but accurate.
- SSD is insanely fast but not so accurate.

Thank You

Mail to: mein2work@gmail.com

Connect: Linkedin

Find slide on github: <u>ayulockin/talks</u>