Strategy Representation by Decision Trees with Linear Classifiers

<u>Pranav Ashok</u>¹, Tomáš Brázdil², Krishnendu Chatterjee³, Jan Křetínský¹, Christoph H. Lampert³, and Viktor Toman³

¹Technical University of Munich, Munich, Germany

²Masaryk University, Brno, Czech Republic

³IST Austria, Klosterneuburg, Austria

Strategy

System:

S: state space

A: action space

Positional Strategy: resolve choices

 σ : **S** \square **A** or

 σ : S x A \square {tt, ff}

Focus: Synthesis of controllers

Model Checking Approach

Model Checking Approach

Model Checking Approach

Lookup table

Binary Decision Diagram (BDD)

Model Checking Approach

Reactive Synthesis Approach

Model Checking Approach

Reactive Synthesis Approach

Model Checking Approach

Reactive Synthesis Approach

Pitfalls of current implementations

Large
Uninterpretable

Difficult to implement
Difficult to debug
Mistrust in methods

Decision trees

(from Machine Learning)

Decision trees

(from Machine Learning)

temp = 100 F wind = 5 mph pres = 32 inHg

Decision trees in formal methods

Garg et. al. POPL'16

- Program invariants from implication counterexamples

Neider et. al. (ACM TOCL, May 2018)

- Piece-Wise Functions against logical specifications

Brazdil et. al. (CAV 2015)

- Counter-example representation using dec. trees

Brazdil et. al. (TACAS 2018)

- Dec. trees vs BDDs in reactive synthesis

Contribution: DT with linear classifiers

Contribution: DT with linear classifiers

No such algorithm from ML?

- Want exact data representation
- No algorithm with LC + exact data reprst.
- Focus in ML on generalizing to data
- Not ideal for strategies

Why linear classifiers?

- Each point state
- Two actions: circle/triangle

Why linear classifiers?

Standard DT: Only axis-parallel predicates

Why linear classifiers?

Any linear predicate

Step 1: Check if dataset is linearly separable (If yes, we are done)

Step 2: Try out each axis-parallel split...

$$x_1 \ge 1$$
 $x_1 \ge 2$ $x_1 \ge 3$ $x_1 \ge b_0$

$$x_2 \ge 1$$
 $x_2 \ge 2$ $x_2 \ge 3$

Step 2: Try out each axis-parallel split...
until the best split is found!

Step 3: for each child, continue from step 1.

Step 3: for each child, continue from step 1.

Summary of algorithm

- 1. Check if linearly separable (if yes, we are done)
- 2. Find find best axis-parallel split
- 3. For each children, go to step 1

Finding best split

Common measures used in ML

- Information gain
- Gini index

Finding best split: Information Gain

Information gain = entropy(parent) - (entropy(left) + entropy(right))

Finding best split: something better?

Area under receiver operator characteristics (AUROC)

- Devised during WWII
- Now used in machine learning

Finding best split: AUROC

Area under ROC

```
Given: dataset and family of classifiers wx \ge b
```

```
for each b:
```

```
TPR = % actual +ve identified as +ve
FPR = % actual -ve identified as -ve
plot (TPR, FPR)
```


Finding best split: AUROC

Area under ROC

Given: dataset and family of classifiers wx ≥ b

Intuition

Point above 45 deg line - good Point below 45 deg line - bad

Area under ROC curve = 1 (perfect)

Area under ROC curve = 0.5 (average)

Area under ROC curve = 0 (predicts exact opposite!)

Finding best split: AUROC

Experiments

Reactive synthesis

- 1. Scheduling of washing cycles (SYNTCOMP 2015)
- 2. LTL synthesis
- 3. LTL synthesis with randomized environment

Model checking

4. PCTL on MDPs

Experiments: Washing Cycle (SYNTCOMP)

Mean

LC-entropy is 59% of NoLC LC-auc is 33% of NoLC

Experiments: LTL synthesis

Mean LC-ent is 51% of NoLC LC-auc is 36% of NoLC

Experiments: LTL synthesis with randomized env.

Mean LC-ent is 58% of NoLC LC-auc is 38% of NoLC

Experiments: MDP

Model	# Train	# Dim	NoLC	LC+Entropy	LC+AUROC
coin-5	451204	13	2572	1626	566
csma-2-4	79580	13	54	41	59
firewire-5	90389	12	102	85	72
leader-4	38016	22	152	92	45
mer-30	1408932	19	1373	1332	126
wlan-2	275140	14	288	206	353
zeroconf	268326	24	413	330	376

Summary

- Representing strategies using DT with linear classifiers
- New splitting measure (AUROC)

Future work

- Representing AIGER circuits as DT
- Linear predicates in all nodes?
- More complex predicates?