AI HACKATHON DOCUMENTATION

This guide provides essential information to help you get started with resources and tools you might need or use throughout the hackathon.

Puhti Project invitation: https://my.csc.fi/projects/invitation/a154ee53-03e8-413c-9d8a-9ff8e4aee243 Important Guidelines:

- Do **not** use any internal, sensitive, or non-public CSC data during the hackathon. This includes confidential documents, internal policies, and personal information
- Do **not** use the home directory for heavy I/O operations. Avoid using it for intensive computation or large file storage.
- Do **not** store critical data long-term in the scratch directory, as it may be purged regularly.
- Run heavy computational jobs from the scratch directory to optimize I/O performance.
- Backup essential results to the project directory. (Will be deleted on the expiry of the Project)

We have two themes from which you can choose and build your project

1. On boarding Assistant

An AI onboarding assistant that can provide personalized, accessible, and efficient support to new employees during their initial weeks at the company

Data and starter code: https://github.com/ngnmai02/onboarding-template.git

2. Smart meeting assistant

A chatbot-like AI agent that can automatically listen to meetings, transcribe audio to text, and generate concise, accurate summaries

Data and starter code: https://github.com/CSCfi/smart-meeting-agent/tree/master

Platforms and Resources

1. MyCSC Portal

Access and Registration:

- URL: https://my.csc.fi
- Sign in with your (HAKA login) or CSC credentials.
- After logging in, connect to the Hackathon project (Project_2014873) and log in to Puhti

2. Puhti

Access Puhti:

- SSH login or
- Login through OoD: https://www.puhti.csc.fi/

File System:

- Home directory: /users/username
- Project directory: /projappl/project_2014873
 Shared space for project data and results. Good for collaboration and medium-to-large datasets.
- Scratch directory: /scratch/project_2014873

 High-performance, temporary storage. Not backed up. Best used for large intermediate data or temporary files created during computations.

3. Aitta Al Inference Platforms

For experimenting with different AI models, the **Aitta AI inference** platform provides those opportunities. The CSC AI Test bed is accessible at https://staging-aitta.2.rahtiapp.fi/page/client_guide where you can test with different listed AI models. To understand how to use the platform, refer to the Client Guide, which walks you through the setup and usage.

Additionally, a hands-on example and exercise using Aitta for LLM inference is also available at https://github.com/csc-training/llm-inference-using-aitta/blob/main/material/03 aitta.ipynb, which demonstrates configurations and how to send requests to the inference endpoint.

Slurm Job Scheduler

It efficiently allocates and manages computational resources, schedules tasks, and monitors resource utilization. With Slurm, you will submit, monitor, and manage batch jobs across a distributed computing environment.

Capabilities of Slurm:

- Allocate resources like CPUs, GPUs, memory, and nodes.
- Schedule jobs with detailed parameters (e.g., time limits, priority, resource specifications).
- Automate execution of complex workflows.
- Enable parallel job execution for optimal performance.

Sample Job Script:

```
#!/bin/bash

#SBATCH --account=project_2014873

#SBATCH --partition=gputest

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=10

#SBATCH --mem=32G

#SBATCH --time=15

#SBATCH --gres=gpu:v100:1,nvme:10
```

module purge module load pytorch

tar xf /scratch/project_2001234/cifar-10-python.tar.gz -C \$LOCAL_SCRATCH srun python3 cifar10_cnn.py --data_path=\$LOCAL_SCRATCH/cifar-10-batches-py

Submitting a Job:

sbatch myjob.sh

Monitoring Jobs:

- List your jobs: squeue -u username
- Cancel a job: scancel JOB_ID

Important links

Slurm job documentation: Puhti: Puhti example scripts - Docs CSC

Getting started with Machine learning: https://docs.csc.fi/support/tutorials/ml-starting/

Machine learning guide: https://docs.csc.fi/support/tutorials/ml-guide/

Python guide https: https://docs.csc.fi/support/tutorials/python-usage-guide/

Virtual Environments and Wrappers

Some reasons to use Virtual Environments:

- Avoid conflicts between project dependencies.
- Ensure reproducibility of your software environment.
- Easily manage and switch between different setups.

Python Virtual Environments (venv)

• Create environment: python -m venv myenv

• Activate environment: source myenv/bin/activate

• Install dependencies: pip install -r requirements.txt

Wrappers (Singularity)

Wrappers (containers) like Singularity - Apptainer, encapsulate software and its dependencies into a self-contained environment. They provide a standardized way to package software, making it portable and ensuring consistent execution across various platforms (Puhti).

Reasons to use Wrappers:

- Facilitate software portability and reproducibility.
- Easily deploy software across different computing environments.
- Manage complex dependencies within a single container.

Documentation on Puhti: Containers - Docs CSC

Further Support

For support and troubleshooting:

Visit: https://docs.csc.fi