14/1 4 11/66					
vvnat diffe	erence does a	component's	tolerance ma	ke?	
2a.1 • TECH	NICAL ASPECTS • F	Fundamental theo	ry • RzYcCfgi		
What doe	s a 10MHz cry	vetal with 10n	nm tolerance	mean?	
vviiat doc	s a Tolvil iz Cry	Star With Top	pili tolerance	mean:	

2a.1 • TECHNICAL ASPECTS • Fundamental theory • PoFykgkR
What do the colours brown, red, gold and silver mean on a resistor as the
last band, in terms of tolerance?
2a.1 • TECHNICAL ASPECTS • Fundamental theory • Bb7MwMw9
Think about some of the ways that the effects of tolerance can be adjusted.

2d.1 • TECHNICAL ASPECTS • Reactive components • kEyJnElw
What factors influence the capacitance of a capacitor, and what is the formula?
2d.1 • TECHNICAL ASPECTS • Reactive components • WUxQUz1C
What happens to capacitance if distance between plates doubles?

2d.1 • TECHNICAL ASPECTS • Reactive components • iOXUtAs9
What happens to capacitance if plate area doubles?
2d.1 • TECHNICAL ASPECTS • Reactive components • snGJZdyD
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how

2d.1 • TECHNICAL ASPECTS • Reactive components • erA72lhb

What is the unit for the quantity of electricity called, and how is it defined?

2d.1 • TECHNICAL ASPECTS • Reactive components • PzSmDiD6

What is the formula for stored charge on a capacitor?

2d.2 • TECHNICAL ASPECTS • Reactive components • jP8liNpC
What sort of materials are used to make dielectrics, which ones tend to be lossy, and what causes losses to increase?
1035y, and what causes 1035es to increase:
2d.2 • TECHNICAL ASPECTS • Reactive components • 8t67KqZJ
Which capacitors are low-loss, stable and good for RF, normally around
the low pf range?

What happ	ens to a capacitor w	∕hen its safe wo	rking voltage, or l	oreakdown
voltage, is	exceeded?			
2d.3 • TECHN	ICAL ASPECTS • Reactive of	components • xLlq4	u_V	
How do yo	ou identify the safe w	orking voltage c	of a capacitor?	
-	·		·	

2d.3 • TECHNICAL ASPECTS • Reactive components • E2bs6PI2

	_	what it does, wha
CAL ASPECTS • Readers elf inductance		F?

2d.4 • TECHNICAL ASPECTS • Reactive components • FOUzLyD4

In what direction are the magnetic force when current flows through a wire?
2d.7 • TECHNICAL ASPECTS • Reactive components • PDGB_68f Why is there a time constant for inductors and capacitors

2d.7 • TECHNICAL ASPECTS • Reactive components • DGnw4qzj
What happens after one time constant has elapsed in an RL circuit, and
also 5 time constants?
2d.7 • TECHNICAL ASPECTS • Reactive components • jJL0xDVW
What happens after one time constant has elapsed in an RC circuit, and
also 5 time constants?

From the intermediate course, we know that in circuits with pure Capacitance or pure Inductance, there is a 90 degree phase difference between voltage and current. Now we need to know which leads which...

2e.3 • TECHNICAL ASPECTS • AC theory • UHcSkdol

What is the phasor diagram for voltage in an AC series circuit consisting of a resistor, an inductor and a capacitor?

EX309?

2e.3 • TECHNICAL ASPECTS • AC theory • BCHjk6FS
How do you get 'pi' to appear on your calculator?
2e.3 • TECHNICAL ASPECTS • AC theory • 5IC4HSSk
Calculator practice: calculate the INDUCTIVE REACTANCE of a $10\mu H$ inductor at 7MHz. Hint: use the REPLAY button and its arrows to check the numbers have been entered properly.

2e.3 • TECHNICAL ASPECTS • AC theory • t7V6D5iL
Calculator practice: calculate the CAPACITIVE REACTANCE of a 22pF capacitor at 10MHz. Hint: use the brackets!
2e.3 • TECHNICAL ASPECTS • AC theory • MIZ9XKFh
If the CAPACITIVE REACTANCE of a 22pF capacitor is x, what is the frequency?

How are capacitors being used in this diagram? Hint: look at the arrows. It won't have the description or the arrows on the real thing.

2e.4 • TECHNICAL ASPECTS • AC theory • GBtkMjhk

What is happening in this diagram?

What is RF bypass?

2e.4 • TECHNICAL ASPECTS • AC theory • V3fn3Qol

Why do we use multiple bypass capacitors on a power supply? Values like $1\mu F$, 100nF, 10nF and 1nF are common and actually 3-4 may be used to take signals down to earth.

Here is a small piece of circuit with the capacitor connected between a 12V DC power supply and earth. Why would it be here?

2e.5 • TECHNICAL ASPECTS • AC theory • x8Fj1aqF

How are inductors used in this diagram?

2e.5 • TECHNICAL ASPECTS • AC theory • -ybShg7h

How are inductors used in this diagram?

2e.6 • TECHNICAL ASPECTS • AC theory • 7YKuHqny

How is Impedance calculated in an RC or RL circuit?

2e.6 • TECHNICAL ASPECTS • AC theory • Kd_v9eaD

What is the visual representation of Impedance calculated in an RC or RL circuit?

2e.6 • TECHNICAL ASPECTS • AC theory • WM6LX6G-

What is the impedance of the circuit in the diagram?

2e.6 • TECHNICAL ASPECTS • AC theory • D gymJnT

What is the impedance of the circuit in the diagram?

2e.6 • TECHNICAL ASPECTS • AC theory • nODdsBIO

Really nasty question

Really nasty question gives you component values and supply voltage – what is V across C

- Need to work out X
- Use X and R to work out Z
- Use Z to work out I
- Use I and X to work out V
- Worked example in Weekly Instructions

Recap on tuned circuits. What do you remember? Which is the acceptor circuit, and which is the rejector circuit? I always remember PARALLEL for PEAK Z.

2h.1 • TECHNICAL ASPECTS • Tuned circuits & resonance • 80kswhtQ

What is the resonant frequency formula that applies to both series and parallel tuned circuits?

How do you	transpose the	resonant freque	ency formula to	solve for C or L?
2h.1 • TECHNIC	AL ASPECTS • Tune	d circuits & resonan	ice • YIWQ4xfJ	
Calculate re	sonant fregenc	v of 22nf canad	citor with $10 \mu H$ i	inductor
Odiodiato 10		y 01 22p1 0apac		induotoi

Summarise	what you kn	ow about cr	ystals and h	ow they're us	ed.
h.2 • TECHNIC	CAL ASPECTS • T	uned circuits &	resonance • 0S	0usOAm	
dentify a cir	cuit with crys	stals in it			

What does the specification of a crystal's performance look like?

2h.4 • TECHNICAL ASPECTS • Tuned circuits & resonance • hQ5vWwHT

In this circuit the resonant frequency is 5.3MHz and there is an RF supply of just 2mV across the series circuit. Q MAGNIFICATION hinges on the fact that when a series tuned circuit is at resonance, the reactances X_L and X_C are equal and opposite, so they cancel each other.

2h.4 • TECHNICAL ASPECTS • Tuned circuits & resonance • TuDkF5TC
voltages and circulating currents in tuned circuits can be very high
2h.4 • TECHNICAL ASPECTS • Tuned circuits & resonance • bSZoHasf Apply the formula for Q factor given circuit component values

2h.4 • TECHNICAL ASPECTS • Tuned circuits & resonance • ck-ql2VL
Recall the definition of the half power point of resonance curves
2h.4 • TECHNICAL ASPECTS • Tuned circuits & resonance • pnYosChc
Apply the equation for Q given the resonant frequency and the half power points on the resonance curve

2h.5 • TECHNICAL ASPECTS • Tuned circuits & resonance • gsL6QJgR

Understand the meaning of dynamic resistance, $\mathcal{R}_{\mathcal{D}}$...

7a.1 • OPERATING PRACTICES • Good operating practices • szDTJzZf

What is working split?

	S THE LICETICE	say about t	esung your r	adio equipme	nt?
'b.1 • OPERA	ATING PRACTICE	S • Band plans •	NxaFs7Fw		
Which bar	nd plans do y	ou need to b	oe familiar w	ith for the Full	exam?

7b.1 • OPERATING PRACTICES • Band plans • YDDrv0Rc
Are you familiar with the 5MHz (60m) band plan?
7b.1 • OPERATING PRACTICES • Band plans • 6b_9-GFQ
Are you familiar with the 5MHz (60m) notes to the band plan?

۸ ده ۷۵۷ ۱	omiliar with t	00 479kU= /6	200m) band	nlan?	
Are you i	amiliar with t	ne 472kHZ (t	ouum) band	pian ?	
7b.1 • OPE	RATING PRACTIC	ES • Band plans •	ZR857NP1		
Are vou f	amiliar with t	ne 472kHz (6	600m) notes	to the band pla	an?
,		•	,	•	

Are you fami	iliar with the 472kHz (600m) notes to the band plan?
7b.1 • OPERATIN	NG PRACTICES • Band plans • Ma9Ws_fK
Are you fami	iliar with part one of the notes to the band plans?
	Notes to the bandplans

7b.1 • OPERATING PRACTICES • Band plans • undefined

7b.1 • OPERATING PRACTICES • Band plans • 7Ny8NuJE
Are you familiar with part two of the notes to the band plans?
Notes to the bandplans