Assignment 6

Deadline: 18th February, 11:59pm

Instructions:

- 1) This assignment consists of 4 problems. All problems are compulsory.
- 2) Mention all assumptions while answering the questions.
- 3) Be clear in your arguments. Vague arguments shall not be given full credit.
- 4) Only Handwritten Submissions are allowed. Scan and upload it on moodle.

Problems:

- 1. Let m and n be positive integers and let F be a field. Suppose W is a subspace of F^n and $\dim W \leq m$. Then there is precisely one $m \times n$ row-reduced echelon matrix over F which has W as its row space. Prove it.
- 2. Consider the vector space P_4 , which consists of all polynomials of degree 4 or less with real number coefficients. W be the subspace of P_4 given by

$$W = \{p(x) \in P_4 \mid p(1) + p(-1) = 0 \text{ and } p(2) + p(-2) = 0\}.$$

Our task is twofold:

- (a) Find a basis for the subspace W.
- (b) Determine the dimension of W.
- 3. Suppose that a set of vectors $S_1 = \{v_1, v_2, v_3\}$ is a spanning set of a subspace V in \mathbb{R}^5 . If v_4 is another vector in V, then is the set

$$S_2 = \{v_1, v_2, v_3, v_4\}$$

still a spanning set for V? If so, prove it. Otherwise, give a counterexample.

- 4. Let V and W be subspaces of \mathbb{R}^n such that $V \cap W = \{0\}$ and $\dim(V) + \dim(W) = n$.
 - (a) If v + w = 0, where $v \in V$ and $w \in W$, then show that v = 0 and w = 0.
 - (b) If B_1 is a basis for the subspace V and B_2 is a basis for the subspace W, then show that the union $B_1 \cup B_2$ is a basis for R^n .
 - (c) If x is in \mathbb{R}^n , then show that x can be written in the form x = v + w, where $v \in V$ and $w \in W$.
 - (d) Show that the representation obtained in part (c) is unique.