Question 1.3.5

Verify that

$$(\mathbf{A} - \mathbf{H})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = 0 \tag{1}$$

Solution:

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{2}$$

$$\mathbf{B} = \begin{pmatrix} -4\\6 \end{pmatrix} \tag{3}$$

$$\mathbf{C} = \begin{pmatrix} -3\\ -5 \end{pmatrix} \tag{4}$$

$$\mathbf{H} = \begin{pmatrix} \frac{17}{6} \\ \frac{-5}{6} \end{pmatrix} \tag{5}$$

Substitute these values in the given expression

$$= \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} \frac{17}{6} \\ \frac{-5}{6} \end{pmatrix} \right)^{\mathsf{T}} \left(\begin{pmatrix} -4 \\ 6 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} \right) \tag{6}$$

$$= \left(\frac{-11}{6}\right)^{\mathsf{T}} \begin{pmatrix} -1\\11 \end{pmatrix} \tag{7}$$

$$= \left(\frac{-11}{6} \quad \frac{-1}{6}\right) \begin{pmatrix} -1\\11 \end{pmatrix} \tag{8}$$

$$=\frac{11}{6} - \frac{11}{6} \tag{9}$$

$$=0 \tag{10}$$

Hence verified.