900

960

WO²2005/047325

SEQUENCE LISTING

PCT/US2004/037241 1AP20 Rec'd FCT/FTO 0.5 MAY 2006

<110>	Ald She Jac Mor	EN INC. rich, Teri n, Wenyan obsen, Fred ris, Arvia en, Martin	erick W. E. (
<120>	Mon	key Immunog	lobulin Seq	uences			
<130>	A-9	51 (WO)					
<140> <141>		o be assign 4-11-04	ed				. •
<150> <151>		60/517,970 3-11-07					
<160>	86						
<170>	Pate	entIn versi	on 3.2				
	1 999 DNA Maca	aca fascicu	laris				
<400> gcctcca	1 acca	agggcccatc	ggtcttcccc	ctggcgccct	cctccaggag	cacctccgag	6
agcacag	gcgg	ccctgggctg	cctggtcaag	gactacttcc	ctgaacccgt	gaccgtgtcg	12
tggaact	cag	gctccctgac	cagcggcgtg	cacaccttcc	cggctgtcct	acagtectea	18
gggctct	act	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	24
tacgtct	gca	acgtaaacca	caagcccagc	aacaccaagg	tggacaagag	agttgagata	30
aaaacat	gtg	gtggtggcag	caaacctccc	acgtgcccac	cgtgcccagc	acctgaactc	360
ctggggg	gac	cgtcagtctt	cctcttcccc	ccaaaaccca	aggaçaccct	catgatetee	420
cggacco	ctg	aggtcacgtg	cgtggtggta	gacgtgagcc	aggaagaccc	cgatgtcaag	486
ttcaact	ggt	acgtaaatgg	cgcggaggtg	catcatgccc	agacgaagcc	acgggagacg	540
cagtaca	aca	gcacatatcg	tgtggtcagc	gtcctcaccg	tcacgcacca	ggactggctg	600
aacggca	agg	agtacacgtg	caaggtctcc	aacaaagccc	teceggeeee	catccagaaa	660
accatct	cca	aagacaaagg	gcagccccga	gagcctcagg	tgtacaccct	gccccgtcc	720
cgggagg	agc	tgaccaagaa	ccaggtcagc	ctgacctgcc	tggtcaaagg	cttctacccc	780
agcgaca	tcg	tcgtggagtg	ggagagcagc	gggcagccgg	agaacaccta	caagaccacc	840
ccgcccg	tgc	tggactccga	cggctcctac	ttcctctaca	gcaagctcac	cgtggacaag	900

agcaggtggc agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac

cactacaccc agaagagcct ctccctgtct ccgggtaaa

999

- <210> 2
- <211> 333
- <212> PRT
- <213> Macaca fascicularis

<400> 2 ·

- Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Arg

 5 10 15
- Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 25 30
- Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ser Leu Thr Ser 35 40 45
- Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
- Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80
- Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
- Arg Val Glu Ile Lys Thr Cys Gly Gly Gly Ser Lys Pro Pro Thr Cys 100 105 110
- Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 115 120 125
- Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135 140
- Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Asp Val Lys
 145 · 150 155 160
- Phe Asn Trp Tyr Val Asn Gly Ala Glu Val His His Ala Gln Thr Lys
 165 170 175
- Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190
- Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys
 195 200 205

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220

Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240

Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255

Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 260 265 270

Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
275 280 285

Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330

<210> 3

<211> 1581

<212> DNA

<213> Macaca fascicularis

<400> 60 gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag agcacagegg ecetgggetg cetggteaag gactaettee eegaaceegt gacegtgteg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cactcagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagac agttggtgag 300 aggccagcga gggaaggggg gtgtctgctg gaagccaggc tcggccctcc tgcctggaca 360 aactctggct gtgcagcccc agcccagggc agcagggcag gccccgtctg tcttctcacc 420 480 cagaggeete tgeecaceee acteatgete agggageeag tettetgget tittecacea 540 ggctctgagc aggcacaggc tggatgcccc taccccaggc cctgcacaca caggggcagg 600 tgctgggctc agacctgcca agagccatat ctgggaggac cctgccctga cctaagccca 660 ccccaaaggc caaactccac tccctcagct cagacacctt ctctcctccc acatcccagt

aactcccaat	cttctctctg	cagggctccc	atgtcgttcc	acgtgcccac	cgtgcccagg	720
•		cctccagete				780
	•	ccgggtgctg		•		840
aactcctggg	gggaccgtca	gtcttcctct	tececcaaa	acccaaggac	accctcatga	900
tttcccggac	ccctgaggtc	acgtgcgtgg	tggtagacgt	gagccaggaa	gaacccgatg	960
tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcacaa	tgcccagacg	aagccacggg	1020
aggagcagtt	caacagcacg	taccgcgtgg	tcagcgtcct	caccgtcaca	caccaggact	1080
ggctgaacgg	caaggagtac	acgtgcaagg	tctccaacaa	agccctcccg	gccccaaagc	1140
agaaaactgt	ctccaaaacc	aaaggtggga	cccgcggggc	acgagggcca	cgtggacaga	1200
ggccggctca	gcccaccctc	tgccctggga	gtgaccgctg	tgccaacctc	tgtccctaca	1260
gggcagcccc	gagagccaca	ggtgtacacc	ctgcccccgc	cccgggagga	gctgaccaag	1320
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgtcgtggag	1380
tgggcgagca	acgggcagcc	ggagaacacc	tacaagacca	cccgcccgt	gctggactcc	1440
gacggctcct	acttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1500
aacaccttct	catgeteegt	gatgcatgag	gctctgcaca	accactacac	ccagaagagc	1560
ctctccgtgt	ctccgggtaa	a				1581

<210> 4

<211> 326

<212> PRT

<213> Macaca fascicularis

<400> 4

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg 1 5 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 . 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

- Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys
 85 90 95
- Thr Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110
- Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125
- Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140
- Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly
 145 150 155 160
- Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175
- Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180 185 190
- Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro 195 200 205
- Ala Pro Lys Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220
- Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn 225 230 235 240
- Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255
- Val Val Glu Trp Ala Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270
- Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285
- Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300
- Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320

WO 2005/047325

PCT/US2004/037241

Ser Val Ser Pro Gly Lys 325

<210> 5
<211> 1579
<212> DNA
<213> Macaca fascicularis

<400> gcctccacca agggcccatc ggtcttcccc ctggcgtcct cctccaggag cacctccgag 60 agcacagegg ccctgggctg cctggtcaag gactacttcc ccgaacccgt gactgtgtcg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180 gggetetaet eeeteageag egtggtgaee gtgeeeteea geagettggg caeeeagaee 240 300 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag aggecagega gggagggga gtgtctgctg gaagccatgc teggecetec tgeetggaca 360 aaccetgget gtgcagecee ageceaggge ageagggeag geeeggtetg teteeteace 420 cagaggeete tgeceaecee acteatgete agggagaeag tettetgget ttttecaeca 480 gactecgage aggeacagge tggatgeece taccecagge tetgeacaca taggggetgg 540 600 tgctgggctc agacctgcca agagccatat ctgggaggac cctgctcctg acctaagccc accccaaagg ccaaactcca ctccctcagc tcggaaacct tctctcctac cagatcccag 660 taactcccaa tcttctctct gcagagttca cacccccatg cccaccatgc ccaggtaagc 720 cagcccaggc ctcgccctcc agctcaaggt gggacaagtg ccctagagtg gcctgtgtcc 780 agggacaggc cccgcctggg tgctgacatg cccacctcca tctcttcctc agcacctgaa 840 ctcctggggg gaccgtcagt cttcctcttc cccccaaaac ccaaggacac cctcatgatc 900 tcccggaccc ctgaggtcac atgcgtggtg gtggacgtga gccaggaaga ccccgaggtc 960 1020 cagttcaact ggtacgtgga cggcgtggag gtgcatcatg cccagacgaa gccacgggag 1080 aggcagttca acagcacgta ccgcgtggtc agcgtcctca ccgtcacaca ccaggactgg ctgaacggca aggagtacac gtgcaaggtc tccaacaaag gcctcccggc ccccatcgag 1140 aaaaccatct ccaaagccaa aggtgggacc cgcggggccc gagggccacg tggacagagg 1200 ccggctcagc ccaccctctg ccctgggagt gaccgctgtg ccaacctctg tccctacagg 1260 1320 gcagccccga gagccgcagg tgtacatcct gcccccgccc caggaggagc tgaccaagaa ccaggtcage ctgacctgec tggtcacagg cttctacccc agcgacatcg ccgtggagtg 1380 1440 ggagagcaac gggcagccgg agaacaccta caagaccacc ccgcccgtgc tggactccga 1500 cggctcctac ttcctctaca gcaagctcat cgtggacaag agcaggtggc agcaggggaa 1560 caccttctca tgctccgtga tgcatgaggc tctgcacaac cactacaccc agaagagcct

ctccctgtct ccgggtaaa

1579

- <210> 6
- <211> 325
- <212> PRT
- <213> Macaca fascicularis
- <400> 6
- Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Ser Ser Arg
 1 5 10 15
- Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
- Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
- Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
- Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80
- Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
- Arg Val Glu Phe Thr Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu 100 105 110
- Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 115 120 125
- Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 130 135 140
- Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 145 150 155 160
- Glu Val His His Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser 165 170 175
- Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 180 185 190
- Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 195 200 205

600

660

Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 210 215 220	
Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn Gln 225 230 235 240	
Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile Ala 245 250 255	
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 265 270	
Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 285	
Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 300	
Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 315 320	
Leu Ser Pro Gly Lys 325	
<210> 7 <211> 1579 <212> DNA <213> Macaca fascicularis	
<400> 7 gctagcacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctccgag 6	0
agcacagegg ecetgggetg cetggteaag gactacttee eegaaceegt gactgtgteg 12	0
tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 18	0
gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 24	0
tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag 300	0
aggccagcga gggagggga gtgtctgctg gaagccatgc tcggccctcc tgcctggaca 360	0
aaccetgget gtgcagecee ageceaggge ageagggeag geeeggtetg teteeteace 420	0
cagaggeete tgeecacece aeteatgete agggagacag tettetgget ttttecacea 480	C
gactccgagc aggcacaggc tggatgcccc taccccaggc tctgcacaca taggggctgg 540)

tgctgggctc agacctgcca agagccatat ctgggaggac cctgctcctg acctaagccc

accccaaagg ccaaactcca ctccctcagc tcggaaacct tctctcctac cagatcccag

	taactcccaa	tettetetet	gcagagttca	cacccccatg	cccaccatgc	ccaggtaagc	720
-	cagcccaggc	ctcgccctcc	agctcaaggt	gggacaagtg	ccctagagtg	gcctgtgtcc	780
	agggacaggc	ccçgcctggg	tgctgacatg	cccacctcca	tctcttcctc	agcacctgaa	840
	ctcctggggg	gaccgtcagt	cttcctcttc	ccccaaaac	ccaaggacac	cctcatgatc	900
	tcccggaccc	ctgaggtcac	atgcgtggtg	gtggacgtga	gccaggaaga	ccccgaggtc	960
	cagttcaact	ggtacgtgga	cggcgtggag	gtgcatcatg	cccagacgaa	gccacgggag	1020
	aggcagttca	açagcacgta	ccgcgtggtc	agcgtcctca	ccgtcacaca	ccaggactgg	1080
	ctgaacggca	aggagtacac	gtgcaaggtc	tccaacaaag	gcctcccggc	ccccatcgag	1140
	aaaaccatct	ccaaagccaa	aggtgggacc	cgcggggccc	gagggccacg	tggacagagg	1200
	ccggctcagc	ccaccctctg	ccctgggagt	gaccgctgtg	ccaacctctg	tccctacagg	1260
•	gcagccccga	gagccgcagg	tgtacatcct	gccccgccc	caggaggagc	tgaccaagaa	1320
•	ccaggtcagc	ctgacctgcc	tggtcacagg	cttctacccc	agcgacatcg	ccgtggagtg	1380
9	ggagagcaac	gggcagccgg	agaacaccta	caagaccacc	ccgcccgtgc	tggactccga	1440
•	eggeteetae	ttcctctaca	gcaagctcat	cgtggacaag	agcaggtggc	agcaggggaa	1500
(caccttctca	tgctccgtga	tgcatgaggc	tctgcacaac	cactacaccc	agaagagcct	1560
(ctccgtgtct	ccgggtaaa			•		1579

<210> 8

<211> 325

<212> PRT

<213> Macaca fascicularis

<400> 8

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg
1 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Glu Phe Thr Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu 100 105 110

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 115 120 125

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 130 135 140

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 145 150 155 160

Glu Val His His Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser 165 170 175

Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 180 185 190

Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 195 200 205

Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 210 215 220

Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn Gln 225 230 235 240

Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile Ala 245 250 255

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 265 270

Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 285

Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 300

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 315 320

WO 2005/047325

PCT/US2004/037241

Val Ser Pro Gly Lys 325

<210>

1579 DNA <213> Macaca fascicularis <400> gctagcacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag 60 agcacagegg ceetgggetg cetggtcaag gactaettee cegaaceegt gacegtgteg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cactcagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tcgacaagag agttggtgag 300 aggccagcga gggagggga gtgtctgctg gaagccatgc tcggccctcc tgcctggaca 360 aaccetgget gtgcageece ageecaggge ageagggeag geecggtetg tetecteace 420 cagaggeete tgeecaceee acteatgete agggagaeag tettetgget ttttecacea 480 gactccgagc aggcacaggc tggatgcccc taccccaggc tctgcacaca taggggctgg 540 tgctgggctc agacctgcca agagccatat ctgggaggac cctgctcctg acctaagccc 600 accccaaagg ccaaactcca ctccctcagc tcggaaacct tctctcctac cagatcccag 660 taactcccaa tettetetet geagagttea cacccccatg cccaccatge ccaggtaage 720 cagcccagge ctcgccctcc agctcaaggt gggacaagtg ccctagagtg gcctgtgtcc 780 agggacagge ecegeetggg tgetgacatg eceaeeteca tetetteete ageaeetgaa 840 ctcctggggg gaccgtcagt cttcctcttc cccccaaaac ccaaggacac cctcatgatc 900 teceggacee etgaggteae atgegtggtg gtggaegtga geeaggaaga eeeegaggte 960 cagttcaact ggtacgtgga cggcgtggag gtgcatcatg cccagacgaa gccacgggag 1020 aggcagttca acagcacgta ccgcgtggtc agcgtcctca ccgtcacaca ccaggactgg 1080 ctgaacggca aggagtacac gtgcaaggtc tccaacaaag gcctcccggc ccccatcgag 1140 aaaaccatct ccaaagccaa aggtgggacc cgcggggccc gagggccacg tggacagagg 1200 ccggctcagc ccaccctctg ccctgggagt gaccgctgtg ccaacctctg tccctacagg 1260 gcagccccga gagccgcagg tgtacatcct gcccccgccc caggaggagc tgaccaagaa 1320 ccaggtcagc ctgacctgcc tggtcacagg cttctacccc agcgacatcg ccgtggagtg 1380 ggagagcaac gggcagccgg agaacaccta caagaccacc ccgcccgtgc tggactccga 1440 cggctcctac ttcctctaca gcaagctcat cgtggacaag agcaggtggc agcaggggaa 1500 caccttctca tgctccgtga tgcatgaggc tctgcacaac cactacaccc agaagagcct 1560

ctccgtgtct ccgggtaaa

1579

- <210> 10
- <211> 325
- <212> PRT
- <213> Macaca fascicularis

<400> 10

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg
1 5 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Glu Phe Thr Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu 100 105 110

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 115 120 125

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 130 135 140

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 145 150 155 160

Glu Val His His Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser 165 170 175

Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 180 185 190

Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro Ala 195 200 205

Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 210 215 220 Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn Gln 225 230 235 Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile Ala 245 250 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 Val Ser Pro Gly Lys 325 <210> 11 <211> 1019 <212> DNA <213> Macaca fascicularis <400> 11 cgtctctagt gcctccacca agggcccatc ggtcttcccc ctggtgtcct gctccaggag 60 caccteegag ageacagegg ceetgggetg cetggteaag gactacttee eegaaceegt 120 gaccgtgtcg tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct 180 acagtectea gggetetact ceeteageag egtggtgace gtgeeeteea geagettggg 240 cacccagacc tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag 300 agttgagttc acacgcccat gtgatgacac aactccccca tgcccaccgt gcccagcacc

tgaactcctg gggggaccgt cagtcttcgt cttccccca aaacccaagg acaccctcat

gatctcccgg acccctgagg tcacgtgcgt ggtggtggac gtgagccagg aagaccccga

ggtccagttc aactggtacg tggacggcgt ggaggtgcac aatgcccaga cgaagccgcg

ggagaggcag ttcaacagca catatcgtgt ggtcagcgtc ctcaccgtca cgcaccagga

ctggctgaac ggcaaggagt acacgtgcaa ggtctccaac aaagccctcc cggcccccat

360

420

480

540

600

660

ccagaaaacc	atctccaaag	acaaagggca	gccccgagag	cctcaggtgt	acaccctgcc	720
cccgtcccgg	gaggagctga	ccaagaacca	ggtcagcctg	acctgcctgg	tcaaaggctt	780
ctaccccagc	gacatcgtcg	tggagtggga	gagcagcggg	cagccggaga	acacctacaa	840
gaccacgccg	cccgtgctgg	actccgacgg	ctcctacttc	ctctacagca	agctcaccgt	900
ggacaagagc	aggtggcagc	aggggaacgt	cttctcatgc	tccgtgatgc	atgaggctct	960
gcacaaccac	tacacccaga	agagcctctc	cctgtctccg	ggtaaatgag	tcgacatgc	1019

<210> 12

<211> 335

<212> PRT

<213> Macaca fascicularis

<400> 12

Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Val Ser 1 5 10 15

Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val 20 25 30

Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 35 40 45

Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 50 55 60

Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 70 75 80

Thr Gln Thr Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys 85 90 95

Val Asp Lys Arg Val Glu Phe Thr Arg Pro Cys Asp Asp Thr Thr Pro 100 105 110

Pro Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val 115 120 125

Phe Val Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 130 135 140

Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu 145 150 155 160

Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Arg Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> <211> <212> DNA Macaca fascicularis <213> <400> 13 cgtctctagt ccaccaaggg cccatcggtc ttccccctgg tgtcctgctc caggagcacc tccgagagca cagcggccct gggctgcctg gtcaaggact acttccccga acccgtgacc gtgtcgtgga actcaggcgc cctgaccagc ggcgtgcaca ccttcccggc tgtcctacag tcctcagggc tctactccct cagcagcgtg gtgaccgtgc cctccagcag cttgggcacc

cagacctacg tctgcaacgt cgttcatgag cccagcaaca ccaaggtgga caagagagtt

gagttcacac gcccatgtga tgacacaact cccccatgcc caccgtgccc agcacctgaa

ctcctggggg	gaccgtcagt	cttcgtcttc	CCCCCaaaac	ccaaggacac	cctcatgatc	420
tcccggaccc	ctgaggtcac	gtgcgtggtg	gtggacgtga	gccaggaaga	ccccgaggtc	480
·cagttcaact	ggtacgtgga	cggcgcggäg	gtgcatcatg	cccagacgaa	gccacgggag	540
acgcagtaca	acagcacata	tcgtgtggtc	agcgtcctca	ccgtcacgca	ccaggactgg	600
ctgaacggca	aggägtacac	gtgcaaggtc	tccaacaaag	ccctcccggc	cccatccag	660
aaaaccatct	ccaaagacaa ,	agggcagccc	cgagagcctc	aggtgtacac	cctgcccccg	720
tecegggagg	agctgaccaa	gaaccaggtc	agcctgacct	gcctggtcaa	aggcttctac	780
cccagcgaca	tcgtcgtgga	gtgggagagc	agcgggcagc	cggagaacac	ctacaagacc	840
acgccgcccg	tgctggactc	cgacggctcc	tacttcctct	acagcaagct	caccgtggac	900
aagagcaggt	ggcagcaggg	gaacgtcttc	tcatgctccg	tgatgcatga	ggctctgcac	960
aaccactaca	cccagaagag	cctctccctg	tctccgggta	aatgagtcga	catgc	1015

<210> 14

<211> 333

<212> PRT

<213> Macaca fascicularis

<400> 14

Arg Leu Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Val Ser Cys Ser 1 5 10 15

Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 20 25 30

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 35 40 45

Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 50 55 60

Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 65 70 75 80

Thr Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp 85 90 95

Lys Arg Val Glu Phe Thr Arg Pro Cys Asp Asp Thr Thr Pro Pro Cys 100 105 110

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Val 115 120 125

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
130 135 140

Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln 145 150 155 160

Phe Asn Trp Tyr Val Asp Gly Ala Glu Val His His Ala Gln Thr Lys
165 170 175

Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190

Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys 195 200 205

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220

Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240

Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255

Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln
260 265 270

Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280 285

Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330

<210> 15

<211> 1584

<212> DNA

<213> Macaca fascicularis

<400> 15

gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag

agcacagcg	g ccctgggct	g cctggtcaa	g gactacttc	c ccgaacccg	t gaccgtgtcg	120
tggaactca	g gcgccctga	c cagcggcgt	g cacaccttc	c aggctgtcc	t acagteetea	180
gggctctac	t ccctcagca	g cgtggtgac	c gtgccctcc	a gcagcttgg	g cactcagacc	240
tacgtctgc	a acgtcgttc	a tgagcccag	c aacaccaag	g tggacaaga	c agttggtgag	300
aggccagcg	a gggaagggg	g gtgtctgctg	g gaagccagg	c teggeeete	c tgcctggaca	360
aactctggc	t gtgcagccc	c agcccaggg	c agcagggca	gcccgtct	g tcttctcacc	420
					t ttttccacca	480
					a caggggcagg	540
tgctgggctd	agacctgcca	a agagccatat	ctgggaggac	cctgccctg	a cctaagccca	600
ccccaaaggo	caaactccac	tccctcagct	cagacacctt	ctctcctccc	acatcccagt	660
aactcccaat	cttctctctc	cagggeteec	atgtcgttcc	acgtgcccac	cgtgcccagg	720
taagccagco	: caggcctcac	cctccagctc	aaggtgggac	aagcgcccta	gagtggcctg	780
tgtccaggga	caggeeetge	ccgggtgctg	acacgtccac	ctccatctct	tectcagetg	840
aactcctggg	gggaccgtca	gtetteetet	tccccccaaa	acccaaggac	accctcatga	900
tttcccggac	ccctgaggtc	acgtgcgtgg	tggtagacgt	gagccaggaa	gaacccgatg	960
tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcacaa	tgcccagacg	aagccacggg	1020
aggagcagtt	caacagcacg	taccgcgtgg	tcagcgtcct	caccgtcaca	caccaggact	1080
ggctgaacgg	caaggagtac	acgtgcaagg	tctccaacaa	agccctcccg	gccccaaagc	1140
agaaaactgt	ctccaaaacc	aaaggtggga	cccgcggggc	acgagggcca	cgtggacaga	1200
ggccggctca	gcccaccctc	tgccctggga	gtgaccgctg	tgccaacctc	tgtccctaca	1260
gggcagcccc	gagagccaca	ggtgtacacc	ctgcccccgc	cccgggagga	gctgaccaag	1320
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgtcgtggag	1380
tgggagagca	gcgggcagcc	ggagaacacc	tacaagacca	cccgcccgt	gctggactcc	1440
gacggctcct	acttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1500
aacaccttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	ccagaagagc	1560
ctctccgtgt	ctccgggtaa	atga				1584

<210> 16 <211> 326 <212> PRT

<213> Macaca fascicularis

<400> 16

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg

1 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Thr Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140

Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly
145 150 155 160

Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180 185 190

Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro 195 200 205

Ala Pro Lys Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220

Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn 225 230 235 240

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 245 250 255

Val Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320

Ser Val Ser Pro Gly Lys 325

<210> 17

<211> 1584

<212> DNA

<213> Macaca fascicularis

<400> 17

gcctccacca agggcccatc ggtcttcccc ctggcgtcct gctccaggag cacctcccag 60 agcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaacccgt gaccgtgtcg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag 300 aggccagcga gggaaggggg gtgtctgctg gaagccaggc tcggccctcc tgcctggaca 360 aactctggct gtgcagcccc agcccagggc agcagggcag gccccgtctg tctcctcacc 420 cagaggeete tgeecaceee aeteatgete agggageeag tettetgget ttttecacea 480 ggctctgagc aggcacaggc tggatgcccc taccccaggc cctgcacaca caggggcagg 540 tgctgggctc agacctgcca agagccatat ctgggaggac cctgccctga cctaagccca 600 ccccaaaggc caaactccac tccctcagct cagacacctt ctctcctccc acatcccagt 660 aactcccaat cttctctctg cagggctccc atgtcgttcc acgtgcccac cgtgcccagg 720 taagccagcc caggcctcac cctccagctc aaggtgggac aagcgcccta gagtggcctg 780 tgtccaggga caggccctgc ccgggtgctg acacgtccac ctccatctct tcctcagctg 840 aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 900 tttcccggac ccctgaggtc acgtgcgtgg tggtagacgt gagccaggaa gaacccgatg 960

tcaagttcaa	ctggtacgtg	gacggcgtgg	aggtgcacaa	tgcccagacg	aagccacggg	1020
aggagcagtt	caacagcacg	taccgcgtgg	tcagcgtcct	caccgtcaca	caccaggact	. 1080
ggctgaacgg	caaggagtac	acgtgcaagg _.	tctccaacaa	agccctcccg	gccccaaagc	1140
agaaaactgt	ctccaaaacc	aaaggtggga	cccgcggggc	acgagggcca	cgtggacaga	1200
ggccggctca	gcccaccctc	tgccctggga	gtgaccgctg	tgccaacctc	tgtccctaca	1260
gggcagcccc	gagagccaca	ggtgtacacc	ctgcccccgc	cccgggagga	gctgaccaag	1320
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgtcgtggag	1380
tgggcgagca	acgggcagcc	ggagaacacc	tacaagacca	ccccgcccgt	gctggactcc	1440
gacggctcct	acttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1500
aacaccttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	ccagaagagc	1560
ctctccgtgt	ctccgggtaa	atga				1584

<210> 18

<211> 326

<212> PRT

<213> Macaca fascicularis

<400> 18

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg
1 5 10 15

Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 135

Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly 150 155 160

Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp 180

Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro 195 200 205

Ala Pro Lys Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 220

Pro Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn 225 235 240

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 250 255

Val Val Glu Trp Ala Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 315

Ser Val Ser Pro Gly Lys 325

<210> 19

<211> 978

<212> DNA

<213> Macaca fascicularis

<400> 19

tccaccaagg gcccatcggt cttcccctg gcgtcctgct ccaggagcac ctcccagagc 60

WO 2005/047325 . . . PCT/US2004/037241

acageggeee	tgggctgcct	ggtcaaggac	tacttccccg	aacccgtgac	cgtgtcgtgg	120
aactcaggcg	ccctgaccag	cggcgtgcac	accttcccgg	ctgtcctaca	gtcctcaggg	180
ctctactccc	tcagcagcgt	ggtgaccgtg	ccctccagca	gcttgggcac	ccagacctac	240
gtctgcaacg	tcgttcatga	gcccagcaac	accaaggtgg	acaagacagt	tgggctccca	300
tgtcgttcca	cgtgcccacc	gtgcccagct	gaactcctgg	ggggaccgtc	agtcttcctc	360
ttccccccaa	aacccaagga	caccctcatg	atttcccgga	cccctgaggt	cacgtgcgtg	420
gtggtggacg	tgagccagga	agaacccgat	gtcaagttca	actggtacgt	ggacggcgtg	480
gaggtgcaca	atgcccagac	aaagccgcgg	gaggagcagt	tcaacagcac	gtatcgcgtg	540
gtcagcgtcc	tcaccgtcac	acaccaggac	tggctgaacg	gcaaggagta	cacgtgcaag	600
gtctccaaca	aagccctccc	ggccccaagg	cagaaaactg	tctccaaaac	caaagggcag	660
ccccgagagc	cgcaggtgta	caccctgccc	ccgcccggg	aggagctgac	caagaaccag	720
gtcagcctga	cctgcctgat	caaaggcttc	taccccagcg	acatcgtcgt	ggagtgggcg	780
agcaacgggc	agccggagaa	cacctacaag	accacgccgc	ccgtgctgga	ctccgacggc	840
tcctacttcc	tctacagcaa	gctcaccgtg	gacaagagca	ggtggcagca	ggggaacacc	900
ttctcatgct	ccgtgatgca	tgaggctctg	cacaaccact	acacccagaa	gagcctctcc	960
ctgtctccgg	gtaaatga					978

<210> 20

<211> 325

<212> PRT

<213> Macaca fascicularis

<400> 20

Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg Ser 1 5 10 15

Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 20 25 30

Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 35 40 45

Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 50 55 60

Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr 65 70 75 80

Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys Thr 85 90 95

- Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu Leu 100 105 110
- Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr
 115 120 125
- Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 130 135 140
- Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly Val 145 150 155 160
- Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 165 170 175
- Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp Leu 180 185 190
- Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 195 200 205
- Pro Arg Gln Lys Thr Val Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro 210 215 220
- Gln Val Tyr Thr Leu Pro Pro Pro Arg Glu Glu Leu Thr Lys Asn Gln 225 230 235 240
- Val Ser Leu Thr Cys Leu Ile Lys Gly Phe Tyr Pro Ser Asp Ile Val 245 250 255
- Val Glu Trp Ala Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr Thr 260 265 270
- Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu 275 280 285,
- Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys Ser 290 295 300
- Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 305 310 315 320

Leu Ser Pro Gly Lys 325

<210> 21 1584 DMA

Macaca fascicularis

<400> 21 . geetecacea agggeecate ggtettecee etggegteet getecaggag caceteceag 60 agcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaacccgt gaccgtgtcg 120 tggaactcag gcgccctgac cagcggcgtg cacaccttcc aggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtcgttca tgagcccagc aacaccaagg tggacaagag agttggtgag 300 aggccagcga ggggaggggg gtgtctgctg gaagccaggc tcggccctcc tgcctggaca 360 aactetgget gtgeageece ageceaggge ageagggeag geceegtetg tetecteace 420 cagaggeete tgeecacece acteatgete agggageeag tettetgget ttttecacea 480 ggctctgagc aggcacaggc tggatgcccc taccccaggc cctgcacaca caggggcagg 540 tgctgggctc aggcctgcca agagccatat ctgggaggac cctgccctga cctaagccca 600 ccccaaaggc caaactccac tccctcagct cagacacctt ctctcctccc acatcccagt 660 aactcccaat cttctctctg cagggctccc atgtcgttcc acgtgcccac cgtgcccagg 720 taagccagcc caggcctcac cctccagctc aaggtgggac aagcgcccta gagtggcctg 780 tgtccaggga caggccctgc ccgggtgctg acacgtccac ctccatctct tcctcagctg 840 aacteetggg gggacegtea gtetteetet teeeceaaa acceaaggae acceteatga 900 tttcccggac ccctgaggtc acgtgcgtgg tggtagacgt gagccaggaa gaacccgatg 960 tcaagttcaa ctggtacgtg gacggcgtgg aggtgcacaa tgcccagacg aagccacggg 1020 aggagcagtt caacagcacg taccgcgtgg tcagcgtcct caccgtcaca caccaggact 1080 ggctgaacgg caaggagtac acgtgcaagg tctccaacaa aggcctcccg gcccccatcg 1140 agaaaaccat ctccaaagcc aaaggtggga cccgcggggc ccgagggcca cgtggacaga 1200 ggccggctca gcccaccctc tgccctggga gtgaccgctg tgccaacctc tgtccctaca 1260 gggcagecee gagageegea ggtgtacate etgeeceege eecaggagga getgaceaag 1320 aaccaggtca geetgaeetg eetggteaea ggettetaee eeagegaeat egeegtggag 1380 tgggagagca acgggcagcc ggagaacacc tacaagacca ccccgcccgt gctggactcc 1440 gacggctcct acttcctcta cagcaagctc atcgtggaca agagcaggtg gcagcagggg 1500 aacaccttct catgctccgt gatgcatgag gctctgcaca accactacac ccagaagagc

1560

ctctccgtgt ctccgggtaa atga

1584

- <210> 22
- <211> 326
- <212> PRT
- <213> Macaca fascicularis
- <400> 22
- Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Ser Cys Ser Arg

 1 10 15
- Ser Thr Ser Gln Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
- Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
- Gly Val His Thr Phe Gln Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
- Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80
- Tyr Val Cys Asn Val Val His Glu Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
- Arg Val Gly Leu Pro Cys Arg Ser Thr Cys Pro Pro Cys Pro Ala Glu 100 105 110
- Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125
- Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140
- Val Ser Gln Glu Glu Pro Asp Val Lys Phe Asn Trp Tyr Val Asp Gly
 145 150 155 160
- Val Glu Val His Asn Ala Gln Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175
- Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Thr His Gln Asp Trp
 180 185 190
- Leu Asn Gly Lys Glu Tyr Thr Cys Lys Val Ser Asn Lys Gly Leu Pro
 195 200 205

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 210 215 220

Pro Gln Val Tyr Ile Leu Pro Pro Pro Gln Glu Glu Leu Thr Lys Asn 225 230 235 240

Gln Val Ser Leu Thr Cys Leu Val Thr Gly Phe Tyr Pro Ser Asp Ile 245 250 255

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Thr Tyr Lys Thr 260 265 270

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Leu Tyr Ser Lys 275 280 285

Leu Ile Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Thr Phe Ser Cys 290 295 300

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 305 310 315 320

Ser Val Ser Pro Gly Lys 325

<210> 23

<211> 996

<212> DNA

<213> Macaca fascicularis

<400> 23

gcctccacca agggcccatc ggtcttcccc ctggcgccct cctccaggag cacctccgag 60 agcacagegg ccctgggctg cctggtcaag gactacttcc ctgaacccgt gaccgtgtcg 120 tggaactcag gctccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180 gggctctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240 tacgtctgca acgtaaacca caagcccagc aacaccaagg tggacaagag agttgagata 300 acatgtggtg gtggcagcaa acctcccacg tgcccaccgt gcccagcacc tgaactcctg 360 gggggaccgt cagtetteet ettececcca aaacccaagg acaccetcat gateteeegg 420 acccctgagg tcacgtgcgt ggtggtagac gtgagccagg aagaccccga tgtcaagttc 480 540 aactggtacg taaatggcgc ggaggtgcat catgcccaga cgaagccacg ggagacgcag tacaacagca catatcgtgt ggtcagcgtc ctcaccgtca cgcaccagga ctggctgaac 600 ggcaaggagt acacgtgcaa ggtctccaac aaagccctcc cggcccccat ccagaaaacc 660

atctccaaag acaaagggca gccccgagag cctcaggtgt acaccctgcc cccgtcccgg											
gaggagetga ccaagaacca ggtcageetg acetgeetgg tcaaaggett ctacccage											
gacatcgtcg tggagtggga gagcagcggg cagccggaga acacctacaa gaccaccccg											
cccgtgctgg actccgacgg ctcctacttc ctctacagca agctcaccgt ggacaagagc											
aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac											
tacacccaga agagcctctc cctgtctccg ggtaaa											
<210> 24 <211> 332 <212> PRT <213> Macaca fascicularis											
<400> 24											
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Arg 1 5 10 15											
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30											
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ser Leu Thr Ser 35 40 45											
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60											
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80											
Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95											
Arg Val Glu Ile Thr Cys Gly Gly Ser Lys Pro Pro Thr Cys Pro 100 105 110											
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe 115 120 125											
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 130 135 140											

Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Asp Val Lys Phe 145 150 155 160

•																
Asn Trp	Tyr	Val	Asn 165	Gly	Ala	Glu		His 170	His	Ala	Gln	Thr	Lys 175	Pro		
Arg Glu	Thr	Gln 180	Tyr	Asn	Ser	Thr	Tyr 185		Val	Val	Ser	Val 190	Leu	Thr	•	
Val Thr	His 195	Gln	Asp	Trp	Leu	Asn 200	Gly	Ĺys	Glu	Tyr	Thr 205	Cys	Lys	Val		
Ser Asn 210		Ala	Leu	Pro	Ala 215	Pro	Ile	Gln	Lys	Thr 220	Ile	Ser	Lys	Asp		
Lys Gly 225	Gln	Pro	Arg	Glu 230	Pro	Gln	Val	Tyr	Thr 235	Leu	Pro	Pro	Ser	Arg 240		
Glu Glu	Leu	Thr	Lys 245		Gln	Val	Ser	Leu 250		Cys	Leu	Val	Lys 255 '			
Phe Tyr	Pro	Ser 260		Ile	Val	Val	Glu 265	Trp	Glu	Ser	Ser	Gly 270	Gln	Pro		
Glu Asn	Thr 275		. Lys	Thr	Thr	Pro 280		Val	Leu	Asp	Ser 285	Asp	Gly	Ser		
Tyr Phe		Туг	Ser	Lys	Leu 295	Thr	· Val	. Asp) Lys	Ser 300	Arg	ı Trp	Glr	Gln		
Gly Asr 305	n Val	. Phe	e Ser	Cys 310		· Val	L Met	: His	315	ı Ala	ı Leı	ı His	s Ası	1 His 320		
Tyr Thi	r Glr	ı Lys	s Sei 325	r Leu	ı Sei	: Le	ı Sei	330	o Gly	, Lys	5					
<210> <211> <212> <213>	25 999 DNA Maca	aca :	fasc:	icula	aris											
<400>	25	200	מכככ	atc (aat.c	ttcc	cc c	taac	accci	t cc	tcca	ggag	cac	ctccgag		60
														cgtgtcg		.20
														gtcctca		.80
gggctc	tact	ccc	tcag	cag	cgtg	gtga	.cc g	tgcc	ctcc	a gc	agct	tggg	cac	ccagacc	2	240
tacgto	tgca	acg	taaa	cca	caag	ccca	.gc a	acac	caag	g tg	gaca	agag	agt	tgagata	3	300
aaaaca	tgtg	gtg	gtgg	cag	caaa	cctc	cc a	cgtg	ccca	c cg	tgcc	cagc	acc	tgaactc	3	360

ctggggggac cgtcag	gtett cetetteece	ccaaaaccca	aggacaccct	catgatetee	420
cggacccctg aggtca	acatg cgtggtggtg	gacgtgagcc	aggaagaccc	cgaggtccag	480
ttcaactggt acgta	aacgg cgcggaggtg	catcatgccc	agacgaagcc	acgggagacg	540
cagtacaaca gcacg	taccg cgtggtcagc	gtcctcaccg	tcacacacca	ggactggctg	. 600
aacggcaagg agtac	acgtg caaggtctcc	aacaaagccc	teceggeece	catccagaaa	660
accatctcca aagac	aaagg gcagccccga	gagcctcagg	tgtacaccct	gccccgtcc	720
cgggaggagc tgacc	aagaa ccaggtcagc	ctgacctgcc	tggtcaaagg	cttctacccc	780
agcgacatcg tcgtg	gagtg ggagagcagc	gggcagccgg	agaacaccta	caagaccacc	840
ccgcccgtgc tggac	tccga cggctcctac	ttcctctaca	gcaagctcac	cgtggacaag	900
agcaggtggc agcag	gggaa cgtcttctca	tgctccgtga	tgcatgaggc	tctgcacaac	960
cactacaccc agaag	ageet etecetgtet	ccgggtaaa		g	999

<210> 26

<211> 333

<212> PRT

<213> Macaca fascicularis

<400> 26

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Arg 1 5 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Glu Ile Lys Thr Cys Gly Gly Gly Ser Lys Pro Pro Thr Cys 100 105 110

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 115 120 125 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135 140

Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln 145 150 155 160

Phe Asn Trp Tyr Val Asn Gly Ala Glu Val His His Ala Gln Thr Lys 165 170 175

Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190

Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys 195 200 205

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220

Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240

Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255

Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 260 265 270

Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280 285

Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330

<210> 27

<211> 999

<212> DNA

<213> Macaca fascicularis

<400> 27

gcctccacca agggcccatc ggtcttcccc ctggcgccct cctccaggag cacctccgag

		•					
ē	agcacagcgg	occtgggctg	r cctggtcaaq	gactacttco	: ctgaacccgt	gaccgtgtcg	120
t	ggaactcag	gegeeetgae	cageggegtg	cacaccttco	cggctgtcct	acagtcctca	180
ç	ggctctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	240
t	acgtctgca	acgtaaacca	caageccage	aacaccaagg	tggacaagag	agttgagata	300
а	aaacatgtg	gtggtggcag	caaacctccc	acgtgcccac	cgtgcccagc	acctgaactc	360
C	tggggggac	cgtcagtctt	cctcttcccc	ccaaaaccca	aggacaccct	catgatetee	420
С	ggacccctg	aggtcacatg	cgtggtggtg	gacgtgagcc	aggaagaccc	cgaggtccag	480
t	tcaactggt	acgtaaacgg	cgcggaggtg	catcatgccc	agacgaagcc	acgggagacg	540
С	agtacaaca	gcacgtaccg	cgtggtcagc	gtcctcaccg	tcacacacca	ggactggctg	600
a	acggcaagg	agtacacgtg	caaggtctcc	aacaaagccc	teceggeeee	catccagaaa	660
a	ccatctcca	aagacaaagg	gcagccccga	gagcctcagg	tgtacaccct	gcccccgtcc	720
C	gggaggagc	tgaccaagaa	ccaggtcagc	ctgacctgcc	tggtcaaagg	cttctacccc	780
a	gcgacatcg	tcgtggagtg	ggagagcagc	gggcagccgg	agaacaccta	caagaccacc	840
					gcaagctcac		900
aç	gcaggtggc	agcaggggaa	cgtcttctca	tgctccgtga	tgcatgaggc	tctgcacaac	960
Cā	ectacaccc	agaagagcct	ctccctgtct	ccgggtaaa	•		999

<210> 28

<211> 333

<212> PRT

<213> Macaca fascicularis

<400> 28

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Val Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95

Arg Val Glu Ile Lys Thr Cys Gly Gly Gly Ser Lys Pro Pro Thr Cys
100 105 110

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 115 120 125

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135

Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln 145 150 155 160

Phe Asn Trp Tyr Val Asn Gly Ala Glu Val His His Ala Gln Thr Lys
165 170 175

Pro Arg Glu Thr Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190

Thr Val Thr His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Thr Cys Lys 195 200 205

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Gln Lys Thr Ile Ser Lys 210 215 220

Asp Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240

Arg Glu Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255

Gly Phe Tyr Pro Ser Asp Ile Val Val Glu Trp Glu Ser Ser Gly Gln 260 265 270

Pro Glu Asn Thr Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280 285

Ser Tyr Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330

<210>	29	
<211>	324	
<212>	DNA	
<213>	Macaca fascicularis	
	29	•
cgcgctg	gtgg ctgcaccatc tgtcttcatc ttcccgccat ctgaggatca ggtgaaatct	60
ggaactg	ytct ctgttgtgtg cctgctgaat aacttctatc ccagagaggc cagcgtaaag	120
tagaage	Itaa ataatataat aaaaaaaaat aaataaaa	
cggaagg	gtgg atggtgtcct caaaacgggt aactcccagg agagtgtcac agagcaggac	180
agcaagg	gaca acacctacag cctgagcagc accctgacgc tgagcagcac agactaccag	240
	o vostanga modelegalega egageageae agactactag	240
agtcaca	aatg tetatgeetg egaagteace cateagggee tgagetegee egteaceaag	300
agcttca	aaca gaggagagtg ttag	324

<210> 30

<211> 107

<212> PRT

<213> Macaca fascicularis

<400> 30

Arg Ala Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Glu Asp 1 5 10 15

Gln Val Lys Ser Gly Thr Val Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30

Tyr Pro Arg Glu Ala Ser Val Lys Trp Lys Val Asp Gly Val Leu Lys 35 40 45

Thr Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Asn 50 55 60

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Ser Thr Asp Tyr Gln 65 70 75 80

Ser His Asn Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 105

<210> 31

<211> 20

<212> DNA

WO 2005/047325

PCT/US2004/037241

<213>	Artificial	Sequence	•					•
. •	•	•	•					
<220>			•			_		
<223>	Primer	•	-		• •			
				•				•
<400>			•			•		
gcctcc	acca agggcc	ctcg		•	.*		•	20
							•	
		•					•	
<210>	32							
<211>			-					
<212>						•		
<213>	Artificial	Sequence		•				
<220>								
<223>	Primer							
<400>	32							
tttacc	cgga gacagg	gaga g						21
<210>	33							
<211>								
<212>								
<213>	Artificial	Sequence						
<220>								
<223>	Primer							•
					-			
<400>	33							
gcctcc	acca agggcc	ctcg						20
.010.	2.4							
<210>								
<211>	21			1				
<212>		-						
<213>	Artificial	Sequence						
-220-								
<220> <223>	D							
<223>	Primer							
-400-	2.4							
<400>	34							21
tttacc	cgga gacagg	gaga g						21
				•				
<210>	35							
<210> <211>								
<211> <212>								
		Comionae						
<213>	Artificial	pedneuce						
<220>								
<223>	Primer							
-443/	TTTHET							
<400>	35							
	tggc accacc	tete t						21
50000								
<210>	36		•					
<211>								
<212>								
<213>		Sequence						•

<213> Artificial Sequence

<220>		· ·		. •	
<223>	Primer	•			
				•	••
<400>	36		•	• •	
ggtacg	tgcc aagcatcctc g			•	: 21
	· - ·				21
<210>		• •	•		
<211>	21				
<212>	DNA ·				
<213>	Artificial Sequence	•			
				•	
<220>	•				
<223>	Primer				
				•	
<400>	37				
ctggcg	tcct gctccaggag c				21
<210>	38				
<211>	21				
	DNA				
<213>	Artificial Sequence				
<220>					
<223>	Primer				
<400>	38				
gctcct	ggag caggacgcca g				21
	•				
040					
<210>					
	26				
<212>	DNA				
<213>	Artificial Sequence				
-2220 -					
<220>	Designation				
<223>	Primer				
<400>	20				
	39 acca agggcccatc ggtctt				- -
gctagc	acca agggeeeate ggtett				26
<210>	40				•
<211>	25			•	
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	Primer				
<400>	40				
	cttg tcgaccttgg tgttg				25
_					23
<210>	41				
<211>	25				
<212>	DNA				

PCT/US2004/037241

<220>	•			
<223>	Primer	•	•	
			· .	
<400>	41	·. •		
	caag gtcgacaaga gagtt	• •		٥-
Caacac	ouds. googucuugu gugee		•	25
	·			
.010-	40	•		
<210>	42			
<211>	30			
<212>	DNA		•	
<213>	Artificial Sequence			
	,			
<220>	· ·	•		
<223>	Primer			
	·			
<400>	42			
	gete atttaceegg agacaeggag			2.0
geggee	geee acceedy agacacygag			30
040	40			
<210>	43			
<211>	30			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Primer			
<400>	43		•	
				2.0
egtete	tagt gcctccacca agggcccatc			30
<210>	44			
<211>	34			
<212>	DNA			
<213>	Artificial Sequence			
<220>	•			
<223>	Primer			
<400>	44			
				24
gcatgt	cgac tcatttaccc ggagacaggg agag			34
.0.5.0	45			
<210>	45			
<211>	24			
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Primer			
<400>	45			
				~ 4
accada	cgag ctgtggctgc acca			24
<210>	46			
<211>				
<212>				
<213>	Artificial Sequence			
	-			
<220>	·			

<223> I	Primer	
	16	
caggtggg	ggg cacttetece t	21
<210> 4	17	
_	345	
	NNA	
	artificial Sequence	
<220> <223> A	antibody variable demain and	
	antibody variable domain sequences that recognize anti IL-4R	
	.7 .gc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	
		60
	ag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaaa	ag gtctggagtg ggtatcaggt attggtactg gtggtgccac aaactatgca	180
gactccgt	ga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaa	ca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tactttga	ct actggggcca gggaaccctg gtcaccgtct cctca	345
<210> 4° <211> 3°	8 4 5	
	NA	
<213> A:	rtificial Sequence	
<220>		
<223> Ai	ntibody variable domain sequences that recognize anti IL-4R	
<400> 48	-	
gaggttcag	ge tggtgeagte tggggggge ttggtacate etggggggte eetgagaete	60
tcctgtgca	ag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaaaa	ag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtg	ga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaac	ca gcctgagtgc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
	CC actrograces grant acts at the second	345
		343
<210> 49		
<211> 34		
<212> DN <213> Ar	NA Stificial Sequence	
<220> <223> An	tibody variable demain	
-20° M	tibody variable domain sequences that recognize anti IL-4R	
<400> 49		
gaggttcag	c tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60

teetgtgeag getetggatt cacetteagt agaaatgeta tgttetgggt tegecagget	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tggtacaaca actggggcca gggaaccctg gtcaccgtct cctcaca	347
<210> 50 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 50	
gaggttcagt tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
teetgtgeag getetggatt eacetteagt agaaatgeta tgttetgggt tegeeagget	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aaactatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca geetgagage egaggacatg getgtgtatt aetgtgeaag agggaggtae	300
tacttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 51 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 51 gaggttcagc tggtgcagtc tgggggggc ttggtacatc ctggggggtc cctgagactc	60

tectgtgeag getetggatt cacetteagt agaaatgeta tgttetgggt tegecagget

ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aaactatgca

gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt

caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac

tacttcacga ggtggggcca gggaaccctg gtcaccgtct cctca

120

180

240

300

345

<220>

<210> 52 <211> 345

<212> DNA

<213> Artificial Sequence

<223> Ant	ibody varia	ble domain	sequences t	hat recogni	ze anti IL-4R	
<400> 52				٠.		
gaggttcagt	tggtgcagtc	tgggggaggc	ttggtacatc	ctggggggtc	cctgagactc	60
tcctgtgcag	gctctggátt	caccttcagt	agaaatgcta	tgttctgggt	tcgccaggct	120
ccaggaaaag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aaactatgca	180
gactccgtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatgaaca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tggtacccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345
<210> 53 <211> 345 <212> DNA <213> Art	ificial Sequ	uence				
<220> <223> Ant:	ibody varia	ble domain :	sequences tl	hat recomi	ze anti IL-4R	
	-			Loogii.	oc ancı in an	
<400> 53 gaggttcagc	tggtgcagtc	tgggggaggc	ttggtacatc	ctggggggtc	cctgagactc	60
tcctgtgcag	gctctggatt	caccttcagt	agaaatgcta	tgttctgggt	tcgccaggct	120
ccaggaaaag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aagctatgca	180
gactccgtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatgaaca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tggtacccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345
<210> 54 <211> 345 <212> DNA <213> Art:	ificial Sequ	lence;				
<220>						
<223> Ant:	ibody varial	ole domain s	sequences tl	nat recogni:	ze anti IL-4R	
<400> 54						
gaggttcagt	tggtgcagtc	tgggggaggc	ttggtacatc	ctggggggtc	cctgagactc	60
tcctgtgcag	gctctggatt	caccttcagt	agaaatgcta	tgttctgggt	tcgccaggct	120
ccaggaaaag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aaactatgca	180
gactccgtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatgaaca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tggttcccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345

<211> <212>	345 DNA	firing a		.·			
<213>	AFC1	ficial Sequ	ience				
<22 0> <223>	Anti	body varial	ole domain s	sequences th	nat recogniz	ze anti IL-4R	
<400>	55	•				•	
gaggtto	cagc	tggtgcagtc	tgggggaggc	ttggtacatc	ctggggggtc	cctgagactc	60
tcctgtg	gcag	gctctggatt	caccttcagt	agaaatgcta	tgttctgggt	tcgccaggct	120
ccaggaa	aaag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aagctatgca	180
gactccc	gtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatga	aaca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tggttcc	ccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345
<210> <211> <212> <213>	56 345 DNA Arti	lficial Sequ	ıence	٠.		• ; •	
<220> <223>	Anti	body varial	ole domain :	sequences th	nat recogniz	ze anti IL-4R	
<400> gaggtto	56 cagt	tggtgcagtc	tgggggaggc	ttggtacatc	ctggggggtc	cctgagactc	60
tcctgtg	gcag	gctctggatt	caccttcagt	agaaatgcta	tgttctgggt	tegecagget	120
ccaggaa	aaag	gtctggagtg	ggtatcaggt	attggtactg	gtggtgccac	aaactatgca	180
gactccg	gtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatga	aaca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300
tggtaco	ccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345
<210><211><212><212><213>	57 345 DNA Art:	ificial Sequ	uence				
<220> <223>	Ant:	ibody varial	ble domain :	sequences tl	hat recogni:	ze anti IL-4R	
<400> gaggtte	57 cagc	tggtgcagtc	tgggggaggc	ttggtacatc	ctggggggtc	cctgagactc	60
tcctgtg	gcag	gctctggatt	caccttcagt	agaaatgcta	tgttctgggt	tcgccaggct	120
					gtggtgccac		180
					ccaagaactc		240
caaatga	aaca	gcctgagagc	cgaggacatg	gctgtgtatt	actgtgcaag	agggaggtac	300

tggtacccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 58 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-4R	٠
<400> 58 gaggttcagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
teetgtgeag getetggatt eacetteagt agaaatgeta tgttetgggt tegeeagget	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagagc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tacttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 59 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 59 gaggttcagc tggtgcagtc tgggggaggc ttggtacatc ctggggggtc cctgagactc	60
tcctgtgcag gctctggatt caccttcagt agaaatgcta tgttctgggt tcgccaggct	120
ccaggaaaag gtctggagtg ggtatcaggt attggtactg gtggtgccac aagctatgca	180
gactccgtga agggccgatt caccatctcc agagacaatg ccaagaactc cttgtatctt	240
caaatgaaca gcctgagtgc cgaggacatg gctgtgtatt actgtgcaag agggaggtac	300
tacttcccgt ggtggggcca gggaaccctg gtcaccgtct cctca	345
<210> 60 <211> 345 <212> DNA <213> Artificial Sequence	
<220> <223> Antibody variable domain sequences that recognize anti IL-4R	
<400> 60 gaggttcagt tggtggagtc tgggggggc ttggtacagc ctggggggtc cctgagactc	60
tectgtgeag cetetggatt cacetteagt agaaatgeta tgttetgggt tegecagget	120

ccaggaaaag	gtctggagtg	ggtatcaggt	attggtactg.	gtggtgccac	aagctatgca	180
gactccgtga	agggccgatt	caccatctcc	agagacaatg	ccaagaactc	cttgtatctt	240
caaatgaaca	gcctgagagc	cgaggacacg	gctgtgtatt	actgtgcaag	agggaggtac	300
tacttcccgt	ggtggggcca	gggaaccctg	gtcaccgtct	cctca		345

<210> 61

<211> 115

<212>. PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 61

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 62

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 62

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Ser Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Thr His Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 63

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 63

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Asn Asn Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 64

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 64

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Pro Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 65

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

223> Antibody variable domain sequences that recognize anti IL-4R

<400> 65

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Thr Arg Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 66

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 66

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser

<210> 67

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 67

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 68 <211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 68

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Phe Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 69

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 69

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly

1 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Phe Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 70

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 70

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Asn Tyr Ala Asp Ser Val Lys
50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115 <210> 71

<211> 115 <212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 71

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Trp Tyr Pro Trp Gly Gln Gly Thr Leu Val Thr
100 105 110

Val Ser Ser 115

<210> 72

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 72

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Arg Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 73

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 73

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val His Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Arg Asn 20 25 30

Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 60

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 65 70 75 80

Gln Met Asn Ser Leu Ser Ala Glu Asp Met Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Gly Arg Tyr Tyr Phe Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115 <210> 74 <211> 115 <212> PRT <213> Artificial Sequence <220> Antibody variable domain sequences that recognize anti IL-4R <223> <400> 74 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg Asn 30 Ala Met Phe Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 40 Ser Gly Ile Gly Thr Gly Gly Ala Thr Ser Tyr Ala Asp Ser Val Lys 50 55 Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu 70 75 Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 95 Arg Gly Arg Tyr Tyr Phe Pro Trp Trp Gly Gln Gly Thr Leu Val Thr 100 Val Ser Ser 115 <210> 75 <211> 327 <212> DNA <213> Artificial Sequence <220>

<223> Antibody variable domain sequences that recognize anti IL-4R
<400> 75
gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc 60
ctctcctgca gggccagtca gagtgttagc agcagctact tagcctggta ccagcagaaa 120

cctggccagg (ctcccaggct	cctcatcttt	ggtgcatcca	gcagggccac	tggcatccca	180
gacaggttca (gtggcagtgg	gtctgggaca	gacttcactc	tcaccatcag	cagactggag	240
cctgaagatt	ttgcagtgta	ttactgtcag	cagtatggta	gctcacctcc	gtggacgttc	300
ggccaaggga	ccaaggtgga	aatcaaa				327
<210> 76 <211> 327 <212> DNA <213> Arti	ficial Sequ	ience				
<220> <223> Antil	body variab	ole domain s	sequences th	nat recogniz	ze anti IL-4R	
<400> 76 gaaattgtgt	tgacgcagtc	tccaggcacc	ctgtctttgt	ctccagggga	aagagccacc	60
ctctcctgca	gggccagtca	gagtgttagc	aacagctact	tagcctggta	ccagcagaaa	120
cctggccagg	ctcccaggct	cctcatctat	ggtgcatcca	gcagggcccc	tggcatccca	180
gacaggttca	gtggcagtgg	gtctgggaca	gacttcactc	tcaccatcag	cagactggag	240
cctgaagatt	ttgcagtgta	ttactgtcag	cagtatgatc	actcagcagg	gtggacgttc	300
ggccaaggga	ccaaggtgga	gatcaaa				327
<210> 77 <211> 327 <212> DNA <213> Arti	ficial Sequ	ience				
<223> Anti	body varial	ole domain	sequences t	hat recogni	ze anti IL-4R	
<400> 77 gaaattgtgt	tgacgcagtc	tccaggcacc	ctgtctttgt	ctccggggga	aagagccacc	60
ctctcctgca	gggccagtca	gactgttaac	agcgactact	tagcctggta	ccagcagaaa	120
ccgggccagg	ctcccaggct	cctcatctat	ggtgcatcca	gcagggccac	tggcatccca	180
gacaggttca	gtggcagtgg	gtctgggaca	gacttcactc	tcaccatcag	cagactggag	240
cctgaagatt	ttgcagtcta	ttactgtcag	cagtatggta	ggtcacctcc	gtggacgttc	300
ggccaaggga	ccaaagtgga	tatcaaa				327
<210> 78 <211> 327 <212> DNA <213> Arti <220>	ficial Seq	uence	٠			
	body varial	ble domain	sequences t	hat recogni	ze anti IL-4R	

WO 2005/047325

PCT/US2004/037241

<400> 78 gaaattgtga	tgacgcagtc	tccaggcacc	ctgtctttgt	ctccagggga	aagagccacc	60
•					ccagcagaaa	120
•					tggcatccca	180
gacaggttca	gtggcagtgg	gtttgggaca	gacttcactc	tcaccatcag	cagactggag	240
cctgaagatt	ttgcaatata	ttactgtcag	cagtatggta	gctcacctcc	gtggacgttc	300
ggccaaggga	ccaaggtgga	aatcaaa				327
<210> 79 <211> 327 <212> DNA <213> Arts	ificial Sequ	uence	·	· ·		
<220> <223> Anti	body variab	ole domain s	sequences th	nat recogni:	ze anti IL-4R	
<400> 79 gatattgtgc	tgacccagtc	tccagccacc	ctgtctttgt	ctccagggga	aagagccacc	60
ctctcctgca	gggccagtca	gagtgttaac	agcaactact	tagcctggta	ccagcagaaa	120
cctggccagg	ctcccaggct	cctcatctat	ggtacatcct	acagggccac	tggcatccca	180
gacaggttca	gtggcagtgg	gtctgggaca	gacttcactc	tcaccatcac	cagactggag	240
cctgaagatt	ttgcagtgta	ttactgtcag	cagtatggta	gctcaccacc	gtggacgttc	300
ggccaaggga	cacgactgga	gattaaa				327
<210> 80 <211> 327 <212> DNA <213> Arti	ficial Sequ	ience				
<220> <223> Anti	body variab	ole domain s	sequences th	nat recogniz	ze anti IL-4R	
<400> 80 gatattgtgc	tgacgcagac	tccagccacc	ctgtctttgt	ctccagggga	aagagccacc	60
ctctcctgca	gggccagtca	gagtgttggc	agcagctact	tagcctggta	ccagcagaga	120
cctggccagg	ctcccaggct	cctcatctat	ggtgcatcca	gcagggccac	tggcatcccg	180
gacaggttca	gtggcagtgg	gtctgggaca	gacttcactc	tcacgatcag	cagactggag	240
cctgaagatt	ttgcagtgta	ttattgtcag	cagtatggaa	gttcacctcc	gtggatgttc	300
ggccaaggga	ccaaggtgga	gatcaaa				327

<210> 81 <211> 109

<212> PRT

- <213> Artificial Sequence
- <220>
- <223> Antibody variable domain sequences that recognize anti IL-4R
- <400> 81
- Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
 1 5 10 15
- Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30
- Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
- Ile Phe Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60
- Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80
- Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95
- Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105
- <210> 82
- <211> 109
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Antibody variable domain sequences that recognize anti IL-4R
- <400> 82
- Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
 1 10 15
- Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Asn Ser 20 25 30
- Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45
- Ile Tyr Gly Ala Ser Ser Arg Ala Pro Gly Ile Pro Asp Arg Phe Ser 50 55 60

WO 2005/047325

PCT/US2004/037241

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asp His Ser Ala 85 90 95

Gly Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 83

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 83

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Thr Val Asn Ser Asp 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg Ser Pro 85 90 95

Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Asp Ile Lys 100 105

<210> 84

<211> 109

<212> PRT .

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 84

Glu Ile Val Met Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

GIu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Asp 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 .45

Ile Tyr Gly Ala Ser Ser Arg Ala Ser Gly Ile Pro Asp Arg Phe Ser
50 ' 55 60

Gly Ser Gly Phe Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Ile Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95

Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 85

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 85

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Asn Ser Asn 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Thr Ser Tyr Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Thr Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro

Pro Trp Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys
100 105

<210> 86

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> Antibody variable domain sequences that recognize anti IL-4R

<400> 86

Asp Ile Val Leu Thr Gln Thr Pro Ala Thr Leu Ser Leu Ser Pro Gly 1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Gly Ser Ser
20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Arg Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95

Pro Trp Met Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105