Introduction to Digital Signals and Digital Communication

Notes				

Chapter Contents

What is a Signal?
Phase
Phasors and Complex Numbers

A Digital Signal Processing System

Basic Communication System

Notes

What is a Signal?

A simple example.

Notes			

What is a Signal?

Can contain information for

- Communication
- Storage
- Calculation

Notes

Example of What is a Signal?

Information is carried in

the

- amplitude, "a";
- period, "T";
- \blacksquare frequency, "f = 1/T";
- \blacksquare and phase, " ϕ ".

Equation for a sine wave:

$$y(x) = a\sin(2\pi f x + \phi)$$

where "x" is time in seconds for this example. Amplitude "a=1" controls the height of the wave.

Notes

Frequency and Period

Equation for a sine wave:

$$y(x) = a \sin(2\pi f x + \phi)$$

- lacksquare f is the frequency
- Measured in Hertz or Hz
- Here period, T=0.002s
- $\begin{tabular}{ll} \hline & f = 1/T \mbox{ Hz, therefore} \\ f = 1/0.002 = 500 \mbox{Hz.} \\ \end{tabular}$

Notes

Phase

Equation for a sine wave:

$$y(x) = a\sin(2\pi f x + \phi)$$

- $lack \phi$ is the phase
- Here $\phi = 0$

Therefore here

$$y(x) = y(x, \phi = 0) = a \sin(2\pi f x).$$

	1.50	_	A sir	mple s	ignal:	sinus	oidal v	vave (sine w	ave)	
y (arbitrary amplitude units)		· 🦟	period	•	Winds.	A	Juan	\(\)	Sille W	Ave,	
	0.0	000	0.	002	0.0	x (sec		006	0.0	08	0.010

Notes

Phase examples

Notes

Phase examples cont'd

Notes

Cosine Vs Sine

Cosine and Sine functions are equivalent except for a phase shift $(1/4 \times \text{period})$.

- lacktriangledown $\cos(2\pi fx) = \sin(2\pi fx + \phi)$ where $\phi = \pi/2$.
- $= \sin(2\pi fx) = \cos(2\pi fx + \phi)$ where $\phi = -\pi/2.$

Notes

Angular Frequency

$$\blacksquare \ \, \mathsf{Frequency}, \, f = 1/T$$

$$\begin{tabular}{ll} $\bf 1$ period or cycle $=2\pi$ \\ radians \end{tabular}$$

 $\qquad \text{Angular frequency,} \\ \omega = 2\pi f$

$$y(x) = \sin(2\pi f x + \phi)$$
$$= \sin(\omega x + \phi)$$

Notes

Complex Numbers

The square root of minus one is not defined so a symbol, j is used (sometimes i):

$$j=\sqrt{-1}.$$

Powers:

- $j^2 = -1$
- $j^{-1} = 1/j = -j$

If z=x+jy (rectangular form) then alternative representations are:

- ${\color{red} \blacksquare} \ \, \mathsf{Polar} \ \, \mathsf{form} \colon \, z = a \angle \phi$
- $\begin{tabular}{l} {\bf Exponential form:} \\ z = a \exp(j\phi) \\ \end{tabular}$

where $a = \sqrt{x^2 + y^2}$	and
$\phi = \tan^{-1}(y/x).$	

Notes			

Properties of Complex Numbers

If z=x+jy, $z_1=x_1+jy_1$ and $z_2=x_2+jy_2$ then

Addition:

$$z_1 + z_2 = x_1 + x_2 + j(y_1 + y_2)$$

Subtraction:

$$z_1 - z_2 = x_1 - x_2 + j(y_1 - y_2)$$

Multiplication: $z_1 z_2 = a_1 a_2 \angle (\phi_1 + \phi_2)$

Division:
$$z_1/z_2 = a_1/a_2 \angle (\phi_1 - \phi_2)$$

Reciprocal: $1/z = 1/a\angle(-\phi)$

 \blacksquare Square root: $\sqrt{z} = \sqrt{a} \angle (\phi/2)$

■ Complex conjugate:

$$z^* = x - jy = a \angle - \phi$$

The polar form simplifies some operations such as multiplication and division of complex numbers.

Complex Exponentials, Sines and Cosines

Civen

 $y_1(x) = b \exp(j\omega x) = b \cos(\omega x) + jb \sin(\omega x)$

$$y_2(x) = b \exp(-j\omega x) = b \cos(\omega x) + jb \sin(-\omega x)$$

 $\cos(-\omega x) = \cos(\omega x)$ (even function) $\sin(-\omega x) = -\sin(\omega x)$ (odd function)

Then

$$y_1(x) + y_2(x) = 2b\cos(\omega x).$$

So that

$$b\cos(\omega x) = \frac{a}{2}\exp(j\omega x) + \frac{a}{2}\exp(-j\omega x).$$

A similar approach can be used to derive a sine function.

Notes

Notes

A Typical Digital Signal Processing System

 Input Analog Filter (antialiasing):
 Limits frequency range

 Analog to Digital Converter Converts signal to digital samples

 Digital Signal Processor Storage, Communication and or Calculations

 Digital to Analog Converter Convert to continuous signal

Output Analog Filter
 Removes sharp transitions

Notes	
140162	

Analog to Digital Converter

- Real world is typically analog (continuous)
- Digital signal approximates analog signal with discrete quantised samples
- ADC converts an analog signal to a digital signal
- Signal is digitised in two ways:
 - Signal is sampled at a sampling rate or frequency: Information is collected about the signal at regular intervals.
 The continuous or analog signal is then quantised: i.e. put into
 - digital form, where only a finite set of numbers are represented.

Notes				

Quantisation using Truncation

- Signal can be quantised using e.g. truncation where numbers following specified position are removed.
- Examples:
 - 5.7 truncated to integer is 5
 - 5.11 truncated to 1 decimal place is 5.1
- Negative numbers are truncated in the same way (note different to the common floor function in matlab), e.g.
 - -5.78 truncated to integer is -5
 - -5.135 truncated to 2 decimal places is -5.13

Notes			

Truncation Quantisation examples

■ Errors can be seen between the sampled and the sampled and quantized signals.

Notes			

Quantisation using Rounding

- Rounding can be a quantization method associated with smaller errors, e.g.
 - lacksquare 5.7 rounded to nearest integer is 6
 - 5.11 rounded to 1 decimal place is 5.1
 - -5.78 rounded to nearest integer is -6
 - -5.135 rounded to 2 decimal places is -5.14

Notes

Rounding Quantisation examples

 Errors can be seen between the sampled and the sampled and quantized signals.

Notes			

Sampling

- Sampling also affects the quality of the digitised signal.
- Higher sampling rate reduces error and enables better representation of the original analog signal in digital form.

Sampling 1.5	frequency=6.0x origi	inal signal frequency
19		Original signal —— Reconstructed signal ——
x (auptrary units) (aup		
-1.5	0.002 0 X (seconds	.003 0.004 0.0)

Notes			

Sampling examples

Notes			

Sampling examples cont'd

Notes			

Input Analog Filter: Antialiasing Filter

- Analog to Digital Converter (ADC) requires signal below a particular frequency (Nyquist Frequency)
- \blacksquare .: Limit frequency range to below Nyquist frequency ($f_s/2$) before Analog to Digital Conversion.

- Otherwise next stage produces frequency errors (i.e. aliasing)
- Sampling produces copies of signal at multiples of sampling frequency
- Aliasing occurs when copies of signal overlap each other

Votes		

Basic Communication System

How to perform electronic communication?

- Coding can be analogue or digital
- Coding prepares the signal for transmission or storage.

Coding

Analogue coding can include:

- Modulation / Demodulation e.g.

 - Amplitude Modulation (AM),Frequency Modulation (FM)

Digital coding can include:

- Cryptography
- Compression
- Channel coding:
 - Error correction coding (adding redundancy)

IV	0.	tes	5

Notes

Frequency Response

 ${\sf Bandwidth} =$

■ range of frequencies with response above -3dB.

Low Pass Filter or Baseband System

Notes	

Frequency Response

 ${\sf Bandwidth} =$

■ range of frequencies with response above -3dB.

Bandpass Filter or Bandpass System

Ν	otes
---	------

Audio

	Frequency Range		Dynamic Range
	min	max	
Human Hearing	20Hz 20kHz		∼140dB
CD	2Hz 22.05kHz		96dB
Telephone	300Hz	3.4kHz	<48dB
Speech	300Hz 8kHz		<70dB
Woofer	<10kHz		> 061B
Tweeter	>2kHz		>96dB

Notes

Digital Dynamic Range (DNR) affected by **Quantisation Noise**: e.g. CD records with Q=16 bit signal:

$$\mathsf{DNR} = 20 \times \log_{10}(2^Q) = 96.3 \mathrm{dB}$$

Analogue DNR dependent on minimum and maximum measurable signal values. e.g. if $V_{\rm min}=100{\rm mV}$ and $V_{\rm max}=4.5{\rm V}$ then:

$$\mathsf{DNR} = 20 \times \log_{10} \left(\frac{V_{\mathrm{max}}}{V_{\mathrm{min}}} \right) = 33.1 \mathrm{dB}$$

Notes

Summary

- \blacksquare Description of a sinusoidal signal
- Cosine and Sine functions
- Complex numbers and alternative representations
- A typical digital signal processing system
- A typical digital communication system

Notes