Функция распределения

Def. Функция распределения $F_{\xi}(x)$ случайной величины ξ называется функция $F_{\xi}(x) = P(\xi < x)$ F(x) - вероятность попадания в этот интервал

Ex.
$$\xi \in B_p$$
 $\frac{\xi \mid 0 \mid 1}{p \mid 1-p \mid p}$ $F_{\xi}(x) = \begin{cases} 0 & x \le 0, \\ 1-p & 0 < x \le 1, \\ 1 & x > 1 \end{cases}$

Свойства функции распределения

- 1) F(x) ограничена $0 \le F(x) \le 1$
- 2) F(x) неубывающая функция: $x_1 < x_2 \Longrightarrow F(x_1) \le F(x_2)$

$$x_1 < x_2 \Longrightarrow \{\xi < x_1\} \subset \{\xi < x_2\} \Longrightarrow p(\xi < x_1) \le p(\xi < x_2)$$
, то есть $F(x_1) \le F(x_2)$

3) $p(\alpha \le \xi < \beta) = F(\beta) - F(\alpha)$

$$p(\xi < \beta) = p(\xi < \alpha) + p(\alpha \le \xi < \beta) \Longrightarrow F(\beta) = F(\alpha) + p(\alpha \le \xi < \beta)$$

Nota. Функция распределения F(x) - вероятность попадания в интервал $(-\infty; x)$. Так как Борелевская σ -алгебра порождается такими интервалами, то распределение полностью задается этой функцией

4)
$$\lim_{x \to -\infty} F(x) = 0$$
; $\lim_{x \to +\infty} F(x) = 1$

Так как F(x) монотонна и ограничена, то эти пределы существуют. Поэтому достаточно доказать эти пределы для некоторой последовательности $x_n \to \pm \infty$

$$\exists A_n = \{n-1 \leq \xi < n, n \in v\}$$
 - несовместные события, так как $\mathbb{R} = \bigcup_{n=-\infty}^{\infty} A_n$, то по аксиоме

счетной аддитивности, вероятность
$$p(\xi \in \mathbb{R}) = 1 = \sum_{n=-\infty}^{\infty} P(A_n) = \lim_{N \to \infty} \sum_{n=-N}^{N} p(n-1 \le \xi < n) =$$

$$\lim_{N\to\infty}\sum_{n=-N}^{N}\left(F(n)-F(n-1)\right)=\lim_{N\to\infty}\left(F(N)-F(-N-1)\right)=\lim_{N\to\infty}F(N)-\lim_{N\to\infty}F(N)=1$$

$$\Longrightarrow\lim_{N\to\infty}F(N)=1+\lim_{N\to\infty}F(N)$$
 Tak kak $\lim_{N\to\infty}F(N)\leq 1$ is $\lim_{N\to\infty}F(N)\geq 0$, to $\lim_{N\to\infty}F(N)=1$ is $\lim_{N\to\infty}F(N)=0$

$$\Longrightarrow \lim_{N \to \infty} F(N) = 1 + \lim_{N \to -\infty} F(N)$$

Так как
$$\lim_{N\to\infty} F(N) \le 1$$
 и $\lim_{N\to-\infty} F(N) \ge 0$, то $\lim_{N\to\infty} F(N) = 1$ и $\lim_{N\to-\infty} = 0$

5) F(x) непрерывна слева: $F(x_0 - 0) = F(x_0)$

Этот предел существует в силу монотонности и ограниченности функции, поэтому рассмотрим последовательность событий $B_n = \{x_0 - \frac{1}{n} \le \xi < x_0, n \in \mathbf{Z}\}$

Так как
$$B_1\supset B_2\supset\cdots\supset B_n\supset\ldots$$
 и $\bigcap_{n=1}^\infty B_n=\varnothing$ То по аксиоме непрерывности $p(B_n)\to 0$ $P(B_n)=F(x_0)-F(x_0-\frac{1}{n})\to 0$ $F(x_0-\frac{1}{n})\to F(x_0)$ $\lim_{x\to x_0-0}F(x)=F(x_0)$

6) Скачок в точке x_0 равен вероятности попадания в данную точку: $F(x_0+0)-F(x_0)=p(\xi=x_0)$ или $F(x_0+0)=p(\xi=x_0)+p(\xi< x_0)=p(\xi\leq x_0)$

Этот предел существует в силу монотонности и ограниченности функции, поэтому рассмотрим последовательность событий $C_n = \{x_0 \le \xi < x_0 + \frac{1}{n}, n \in \mathbf{Z}\}$

Так как
$$C_1 \supset C_2 \supset \cdots \supset C_n \supset \ldots$$
 и $\bigcap_{n=1}^{\infty} C_n = \emptyset$

To по аксиоме непрерывности $p(C_n) \to 0$

$$P(C_n) = F(x_0 + \frac{1}{n}) - F(x_0) \to 0$$

$$p(x_0 \le \xi < x_0 + \frac{1}{n}) + p(\xi = x_0) \to p(\xi = x_0)$$

$$F(x_0 + \frac{1}{n}) - F(x_0) \to p(\xi = x_0)$$

$$F(x_0 + 0) - F(x_0) \to p(\xi = x_0)$$

- 7) Если функция распределения непрерывна в точка $x = x_0$, то очевидно, что вероятность попадания в эту точка $p(\xi = x_0) = 0$ (следствие из 6 пункта)
- 8) Если F(x) непрерывна $\forall x \in \mathbb{R}$, то $p(\alpha \le \xi < \beta) = p(\alpha < \xi \le \beta) = p(\alpha \le \xi \le \beta) = p(\alpha < \xi \le \beta) = F(\beta) F(\alpha)$

Th. Случайная величина ξ имеет дискретное распределение тогда и только тогда, когда ее функция распределения имеет ступенчатый вид

Абсолютно непрерывное распределение

Def. Случайная величина ξ имеет абсолютно непрерывное распределение, если существует $f_{\xi}(x)$ такая, что $\forall B \in \mathcal{B}(\mathbb{R})$ $p(\xi \in B) = \int_{B} f_{\xi}(x) dx$

Функция f_{ξ} называется плотностью распределения случайной величины

(в определении использует интеграл Лебега, так как B может быть не просто интервалом на \mathbb{R})

Свойства плотности и функции распределения абсолютно непрерывного распределения

- 1) Вероятносто-геометрический смысл плотности: $p(\alpha \le \xi \beta) = \int_{\alpha}^{\beta} f_{\xi}(x) dx$
- 2) Условие нормировки: $\int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1$

Док-во: из определения, если $B = \mathbb{R}$

3)
$$F_{\xi}(x) = \int_{B} f_{\xi}(x) dx$$

Док-во, если $B=(-\infty;x)$, то $F_{\xi}(x)=p(\xi\in(-\infty;x))=\int_{-\infty}^{x}f_{\xi}(x)dx$

- 4) $F_{\xi}(x)$ непрерывна (из свойства непрерывности интеграла с верхним переменным пределом)
- 5) $F_{\xi}(x)$ дифференцируема почти везде и $f_{\xi}(x) = F'_{\xi}(x)$ для почти всех x (по теореме Барроу)
- 6) $f_{\xi}(x) \leq 0$ по определению и как производная неубывающей $F_{\xi}(x)$
- 7) $p(\xi=x)=0 \ \forall x \in \mathbb{R}$ так как $F_{\xi}(x)$ непрерывна
- 8) $p(\alpha \le \xi < \beta) = p(\alpha < \xi < \beta) = p(\alpha \le \xi \le \beta) = p(\alpha < \xi \le \beta) = F(\beta) F(\alpha)$
- 9) **Th.** Если $f(x) \le 0$ и $\int_{-\infty}^{\infty} f(x) dx$ (выполнены свойства 2 и 6), то f(x) плотность некоторого распределения

Числовые характеристики

Def. Математическим ожиданием $E\xi$ случайной абсолютно непрерывной величины ξ называется величина $E\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$ при условии, что данный интеграл сходится абсолютно, то есть $\int_{-\infty}^{\infty} |x| f_{\xi}(x) dx < \infty$

Def. Дисперсией $D\xi$ случайной величины ξ называется величина $D\xi = E(\xi - E\xi)^2 = \int_{-\infty}^{\infty} (x - E\xi)^2 f_{\xi}(x) dx$ при условии, что данный интеграл сходится Nota. Вычислять удобно по формуле $D\xi = E\xi^2 - (E\xi)^2 = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx - (E\xi)^2$

Def. Среднее квадратическое отклонение $\sigma_{\xi} = \sqrt{D\xi}$ определяется, как корень дисперсии Смысл этих величин такой же, как и при дискретном распределении. Также свойства аналогичны тем, что и при дискретном распределении

Другие числовые характеристики

$$m_k=E\xi^k=\int_{-\infty}^{\infty}x^kf_{\xi}(x)dx$$
 - момент k -ого порядка
$$\mu_k=E(\xi-E\xi)^k=\int_{-\infty}^{\infty}(x-E\xi)^kf_{\xi}(x)dx$$
 - центральный момент k -ого порядка

Def. Медианой Me абсолютно непрерывной случайной величины ξ называется значение случайной величины ξ , такое что $p(\xi < Me) = p(\xi > Me) = \frac{1}{2}$

 $\mathbf{Def.}$ Модой Mo случайной величины ξ называется точка локального максимума плотности

Сингулярное распределение

Def. Случайная величина ξ имеет случайное распределение, если $\exists B$ - Борелевское множество с нулевой мерой Лебега $\lambda(B)=0$, такое что $p(\xi\in B)\in 1$, но $P(\xi=x)=0 \ \forall x\in B$

Nota. Такое Борелевское множество состоит из несчетного множества точек, так как в протичном случае по аксиоме счетной аддитивности $p(\xi \in B) = 0$. То есть при сингулярном распределении случайная величина ξ распределена на несчетном множестве меры 0 *Nota.* Так как $p(\xi = x) = 0 \ \forall x, F_{\xi}$ непрерывна.

Ex. Сингулярное распределение получим, если возьмем случайную величину, функция распределения которой - лестница Кантора

$$F_{\xi}(x) = \begin{cases} 0 & x \le 0, \\ \frac{1}{2}F(3x) & 0 < x \le \frac{1}{3}, \\ \frac{1}{2} & \frac{1}{3} < x \le \frac{2}{3}, \\ \frac{1}{2} + \frac{1}{2}F(3x - 2) & \frac{2}{3} < x \le 1, \\ 1 & x > 1 \end{cases}$$

Th. Лебега.

 $\Box F_{\xi}(x)$ - функция распределения ξ . Тогда $F_{\xi}(x)=p_1F_1(x)+p_2F_2(x)+p_3F_3(x)$, где $p_1+p_2+p_3=1$

 F_1 - функция дискретного распределения

 ${\it F}_2$ - функция абсолютно непрерывного распределения

 F_3 - функция сингулярного распределения

То есть существуют только дискретное, абсолютно непрерывное, сингулярное распределения и их смеси