10/575505 IAP9 Rec'dPCT/PTO 13 APR 2006

G1000PCT.ST25 SEQUENCE LISTING

<110> Gesellschaft für Biotechnologische Forschung mbH Ferrer, Manuel Chernikova, Tatjana 🕆 Golyshin, Peter Timmis, Kenneth Yakimov, Michail <120> Transgenic organisms with lower growth temperatures

<130> G1000PCT

11

EP 03023032.0 <150>

<151> 2003-10-13

<160> 28

<170> PatentIn version 3.1

<210> 1

<211> 97

<212> PRT

<213> artificial sequence

<220>

<223> Cpn10

<400> 1

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu
1 1 15

Glu Glu Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val Seite 1

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

55

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu 90 95

Ala

<210> 2

<211> 548

<212> PRT

<213> artificial sequence

<220>

<223> Cpn60

<400> 2

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 1 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn 100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg 145 150 160 Seite 2

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly 180 Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 210 215 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 250 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys 265 260 val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met **275** . Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu 290 **295** Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 315 310 Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala 330 325 Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu 340 Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg 355 val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 400 390 385 His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly 410 405 Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 425 420

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val 450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 485 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly 515 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Gly Met 530 540

Pro Gly Met Met 545

<210> 3

<211> 2783

<212> DNA

<213> Oleispira antarctica

<400> 3 60 atcaaaaaat gcagcaagga cagattcctg cccaagaatt agcagaaggt ttcttgttag 120 cactggccgg cgctttatta ttaacgccgg gttttgtcac tgatgcgctg ggttttacat 180 tactcgtccc cgcgacgcgt aaagcgttgg tccataaggt gattgcattt attacccctc gcatgatgac tgcaagcagc tttcaagcga cgggtagttt tcaggaaggc tcgtttaaag 240 300 atgtacattc gcacactgac tcgcaaagca gtcatgaaaa aatcacaatt gaaggcgaat 360 ataccaaaga cgataagtag gtatttttc ggctagccgt tgaaatccta gtaaaagccc 420 cgataaatta accatctatt tttcacagag gcaatttagc ctttgtttac cttattgatc 480 ctaatacttg ggatccaaca gttggagagt ctagcaaatg aaaatccgtc cattacatga 540 tcgtattgtt gttcgccgta aagaagaaga gaccgcaact gcgggtggta ttattttacc 600 gggcgctgcg gcagaaaaac caaatcaagg tgttgttatc tctgtgggta ctggccgtat 660 tcttgataat ggttcagtgc aagcgctggc ggttaacgaa ggcgatgttg tcgtttttgg 720 taaatactca ggtcaaaata ctatcgatat cgatggtgaa gaattattga ttttgaatga 780 aagtgatatc tacggcgttt tagaagctta attattacac tcactttttt atttaaccta Seite 4

caaaatttaa	ggaaagatca	tggctgctaa	agacgtatta	tttggtgata	gcgcacgcgc	840
aaaaatgttg	gtaggtgtaa	acattttagc	cgacgcagta	agagttacct	taggacctaa	900
aggtcgtaac	gttgttatag	aaaaatcatt	tggtgcaccg	atcatcacca	aagatggtgt	960
ttctgttgcg	cgtgaaatcg	aattgaaaga	caaattcgaa	aacatgggcg	cacagatggt	1020
taaggaagtt	gcttctcaag	ccaacgacca	agccggtgac	ggcacaacga	cagcgactgt	1080
actagcacag	gcgattatca	gcgaaggctt	gaaatctgtt	gcggctggca	tgaatccaat	1140
ggatcttaaa	cgtggtattg	ataaagctac	ggctgctgtt	gttgccgcca	ttaaagaaca	1200
agctcagcct	tgcttggata	caaaagcaat	cgctcaggta	gggacaatct	ctgccaatgc	1260
cgatgaaacg (gttggtcgtt	taattgctga	agcgatggaa	aaagtcggta	aagaaggtgt	1320
gattaccgtt	gaagaaggca	aaggccttga	agacgagctt	gatgttgtag	aaggcatgca	1380
gttcgatcgc	ggttacttgt	ctccgtactt	catcaacaac	caagaaaaaa	tgaccgtaga	1440
aatggaaaat	ccattaattc	tattggttga	taagaaaatt	gataaccttc	aagagctgtt	1500
gccaattctt	gaaaacgtcg	ctaaatcagg	tcgtccatta	ttgatcgttg	ctgaagatgt	1560
tgaaggccaa	gcactagcaa	cattggtagt	aaacaacttg	cgcggcacat	tcaaggttgc	1620
agcggttaaa	gcccctggtt	ttggcgatcg	tcgtaaagcg	atgttgcaag	atcttgccat	1680
cttgacgggt	ggtcaggtta	tttctgaaga	gctagggatg	tctttagaaa	ctgcggatcc	1740
ttcttctttg	ggtacggcaa	gcaaggttgt	tatcgataaa	gaaaacaccg	tgattgttga	1800
tggcgcaggt	actgaagcaa	gcgttaatac	tcgtgttgac	cagatccgtg	ctgaaatcga	1860
aagctcgact	tctgattacg	acatcgaaaa	gttacaagaa	cgcgttgcta	agcttgcggg	1920
cggcgttgcc	gtgattaagg	ttggtgcggg	ttctgaaatg	gaaatgaaag	agaagaaaga	1980
ccgtgttgac	gatgcacttc	atgcaactcg	cgcagcggtt	gaagaaggtg	ttgttgcggg	2040
tggtggtgtt	gctttgattc	gcgcactctc	ttcagtaacc	gttgttggtg	ataacgaaga	2100
tcaaaacgtc	ggtattgcat	tggcacttcg	tgcgatggaa	gctcctatcc	gtcaaatcgc	2160
gggtaacgca	ggtgctgaag	ggtcagtggt	tgttgataaa	gtgaaatctg	gcacaggtag	2220
ctttggtttt	aacgccagca	caggtgagta	tggcgatatg	attgcgatgg	gtattttaga	2280
ccctgcaaaa	gtcacgcgtt	catctctaca	agccgcggcg	tctatcgcag	gtttgatgat	2340
cacaaccgaa	gccatggttg	cggatgcgcc	tgttgaagaa	ggcgctggtg	gtatgcctga	2400
tatgggcggc	atgggtggaa	tgggcggtat	gcctggcatg	atgtaatcac	tttgtgattc	2460
attgtcctga	tctgcttacc	gtgtaaaaag	atcaggctca	aggctgtctc	tataaaaagc	2520
cgtatctttg	atgagtgttg	tctttctgct	gaaaacgaca	ttcttggagt	gcggcttttt	2580
ttgattttgg	tcataaaatt	cagaatattg	tgtaatttta	tgtaactagc	tggcctataa	2640
tgttgagttc	ctctgggtgg	catgatctca	tggtacttca	cttaagcctg	attcactgcg	2700
gctttaacag	taaaataata	acgcaacgta	gaaacataat	aagcgtatgg	cattaatgaa	2760
gacggctgca	tttaattcag	atc				2783

<210> 4

<211> 333

<212> PRT

<213> Oleispira antarctica

<400> 4

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr 20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 55 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser 65 70 75 80

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu 85 90 95

Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu 100 105 110

Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu 115 120 125

Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val 130 135 140

Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala 145 150 150

Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile 165 170 175

Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val 180 185 190

Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe 195 200 205

Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp 210 215 220

Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile 225 230 235 240

Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly 245 250 255

Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro 260 265 270

Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val 275 280 285

Ser Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His 290 295 300

Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu 305 310 315 320

Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys 325 330

<210> 5

<211> 3939

<212> DNA

<213> artificial sequence

<220>

<223> DNA fragment from plasmid pBK1Est coding for esterase of Oleispir a antarctica

<400> 5 60 acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaagggaa 120 caaaagctgg agctcgcgcg cctgcaggtc gacactagtg gatcaacggc gttcatggta 180 ctggctgagt tcagcgtcat aatgccgatg cgatactggc cgtcatgact gagtacttct 240 tctgctagca ccgatttttc taatagcgca gcttctttta tttctgaacg ggcaactgat 300 gtagtttttt tactaaccgg ctttttaggc atggtaaact cttcgatatt caaaattatt 360 actgttcata ttacaatcat agtacaggct agaggcccaa aattgcagct gatattcacc 420 tttattattc taagcattat tacactcatc gcggtgttat taattgtgct aaataaaaat 480 acceptageg gaaaaattea geaaatagee aaagaaaaeg attggeaata eeaagaatte 540 atcgattttg atgatgacat taagcaggca aactttggcc tattaaacta cagtcaaaat 600 gcaattttta gacatctcat tcaagcaact gacgaacact atggcttagc gtttaagacc 660 tttgactgtc gagcgttaga accttcaggt attcacaata gcagtcttat tttatttacc 720 ctcgcactaa agactgaatt caataaccta cacatttgct taagtcgaca tattcaagat aaagatgcct tcactgacat cagtcaccaa caatcaatca aacaccaata ccaatcgcaa 780 Seite 7

aaactcataa	aactagccga	tcaccaaatc	ccaaaagcgt	tcaaaaatga	aacgagcacg	840
tcacacaaaa	tcaatttata	cgctaacgaa	ccaggtcaaa	cttatcgttt	ttttgagcac	900
gtttgttcca	ctaatgaaag	agaaaagtcg	ttaattcact	ggcttttggc	gtatccgcac	960
cttcacatag	aaattagtaa	tggcatgcta	ctggccttta	aaaagaatca	gttaattgaa	1020
gaaacctcgc	ttatctcagc	cattaccgct	gtagccgaat	ttgcgcttat	cctcagccat	1080
gattaaactg	acgccaatta	atataagaca	tactaattaa	taactccctt	aattgagaag	1140
aataatgaaa	aacacactca	aatcctcatc	acgttttagt	ctgaaacaac	tcggcaccgg	1200
cgctctgatt	atctccagtt	tgttcttcgg	tggttgcacc	acaacacaac	aagataattt	1260
atacacaggg	gttatgtctc	ttgcgagaga	cagcgctggc	ctagaagtta	aaacagcctc	1320
tgccggtgac	gtcaatctta	cttatatgga	acgccaaggc	agtgacaaag	ataatgccga	1380
aagcgttatt	ttattacacg	gtttctctgc	tgataaagat	aactggattc	tttttaccaa	1440
agaattcgat	gaaaaatatc	atgttatcgc	tgtcgattta	gcgggacatg	gcgattcaga	1500
acaattatta	acgactgatt	acggtctcat	aaaacaagcc	gagcgtttag	atatcttctt	1560
atctggctta	ggggttaact	catttcacat	cgccggtaat	tcaatggggg	gggctatcag	1620
cgcaatctac	agtttgagtc	acccagagaa	agttaaaagt	cttacattga	tcgatgcagc	1680
aggtgtcgat	ggcgatactg	aaagcgaata	ctacaaagtt	ttggcagaag	gtaagaatcc	1740
tttaattgca	actgatgaag	caagttttga	ataccgcatg	ggtttcacca	tgactcagcc	1800
tcctttccta	ccttggccac	taagaccttc	tttattacgt	aaaacgctag	cccgtgccga	1860
gatcaataac	aaaatttttt	ccgatatgct	gaaaaccaaa	gaacgtttag	gaatgactaa	1920
ctttcaacag	aaaattgaag	tgaaaatggc	tcaacatcca	ttgccaacac	tgattatgtg	1980
gggcaaagaa	gatcgcgttc	ttgacgtatc	cgcagcagcg	gccttcaaaa	aaataattcc	2040
acaagcaact	gttcatattt	ttcctgaagt	aggccaccta	cctatggtag	aaattcctag	2100
tgaaagcgct	aaagtttatg	aagagtttt	gtcctctatt	aaataagagc	acataatcat	2160
gactgactta	taaacagcca	agcatttaaa	atgcttggct	gtttatttta	atggccaaat	2220
tattcaacga	ccaagctctg	cggtaaaatc	gcagtgggtt	tcttgttttc	atcaacagca	2280
acaaacgtga	aataccccgt	aatcgcattt	ttctgattat	caaaatacat	actttccacc	2340
agcatattaa	cttcaacttt	taaactcgtc	cgccctacct	ctataacact	ggcagtcaat	2400
tcgacaatgg	tacctgcggg	aacaggatgc	ttaaaatcga	ttcgatcact	gctgacggtt	2460
acgatgcttt	gtcgagaaaa	acgagtcgct	gcaataaaag	aaacctcatc	catccactgc	2520
attgcagtgc	caccgaataa	cgtatcatga	tgatttgttg	tctctggaaa	taccgcttta	2580
gaaatagtgg	tttttgatac	gcgctttcgc	tgcgcaataa	tatcttctct	gctaagagtt	2640
gcggatggca	tacataaact	cgcttgatta	agattaataa	taaatagtta	acagtatatt	2700
gaactgaggg	tctgaagaac	tctaatacct	ctgaagaact	ttgaggccgc	tagagagaaa	2760
agaccagtga	taatatttca	tcttgccatg	agagcttatc	atgaaagcct	gtgcttaaaa	2820

tcaatcatta	tatttattca	tctttaattg	aaataatacc	aatatatttc	atatataatt	2880
tcacactacc	cttatctcac	tagacttccc	gcgcataggc	gcaaacaatc	aacgcaagtt	2940
cacaataaag	cggttcgctg	caacacatgc	cctagcgtct	aaagtagcac	gcacaacact	3000
ggccagtcgt	actagcccct	ttgcgattcg	tgcagacgag	caacaagcgc	tattaaactt	3060
acctaaattt	ctaaccacca	ccattggttc	ttttccacaa	actcaaaaaa	ctcgtcaaat	3120
ccgcttgcaa	tttaaacgcg	atgacataga	tctaatcgat	tatcaaaccc	gcattcaagc	3180
gctcattaaa	aacgcaccac	tggcaagaag	ttctacctgc	actgaccaat	atgcaagcgg	3240
cggcggaaga	gctgcctttg	atcgatcaag	aagaagggag	cagcaaagag	gaaaacaatc	3300
aaaaagagga	gagcaatcaa	ataaaaacga	gttattgagg	attttaattt	taaaacaggt	3360
atattaatac	cctctctcgt	agtaaacaat	gactgtattt	acacaaaaat	aaatagaggt	3420
ataccatgtc	aaacatctgg	tttgaagtac	caaagattga	agtattaaac	cgtcaaatgg	3480
aaaatactgc	ctgcagcaac	ttaggcattc	aaattacaga	aattggcgat	gattatatca	3540
ctggcacaat	gccagcagat	gcacgtacct	tccagccaat	gggactgatt	catggcggct	3600
caaatgtatt	gctggcagaa	acactgggca	gcatggcagc	taactgctgt	attaatttgt	3660
ctcaagaata	ttgtgttggc	caagaaatta	acgccaacca	catacgcggt	gttcgttccg	3720
gcatagtgac	tggcacagca	acgctagtac	acaaaggaag	aacctcccag	atttgggaaa	3780
ttcgcatcgt	taacgatcca	aagaattcaa	aaagcttctc	gagagtactt	ctagagcggc	3840
cgcgggccca	tcgattttcc	acccgggtgg	ggtaccaggt	aagtgtaccc	aattcgccct	3900
atagtgagtc	gtattacaat	tcactggccg	tcgttttac			3939

<210> 6

<211> 97

<212> PRT

<213> artificial sequence

<220>

<223> cpn10

<400> 6

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu 10 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala 20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile 35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val 50 60 Seite 9

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu 85 90 95

Ala

<210> 7

<211> 548

<212> PRT

<213> artificial sequence

<220>

<223> Cpn10

<400> 7

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly 20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala 85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn 100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg 145 150 155 160

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly 180 185 Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln 195 200 Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 210 220 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val 225 230 235 Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 250 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys 260 265 val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met 280 275 Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu 290 295 300 Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 310 315 305 Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg 355 360 365 Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 380 370 Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 385 390 400 385 His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 425 420

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val 450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly 515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met 530 535 540

Pro Gly Met Met 545

<210> 8

<211> 333

<212> PRT

<213> Oleispira antarctica

<400> 8

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr 20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 55 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser 65 70 75 80

val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu 85 90 95

Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu Seite 12

110

100

Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu 115 120 125

Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val

Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala 145 150 155 160

Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile 165 170 175

Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val 180 185 190

Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe 195 200 205

Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp 210 220

Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile 235 230 235

Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly 245 250

Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro 260 265 270

Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val 275 280 285

Ser Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His 290 295 300

Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu 305 310 315

Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys 325 330

<210> 9

<211> 5373

<212> DNA

<213> artificial sequence

<223> fusion fo native chaperonin-coding fragments with esterase of Ole
ispira antarctica

<400> 9 60 acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaagggaa 120 caaaagctgg agctcctaat acttgggatc caacagttgg agagtctagc aaatgaaaat 180 ccgtccatta catgatcgta ttgttgttcg ccgtaaagaa gaagagaccg caactgcggg 240 tggtattatt ttaccgggcg ctgcggcaga aaaaccaaat caaggtgttg ttatctctgt 300 gggtactggc cgtattcttg ataatggttc agtgcaagcg ctggcggtta acgaaggcga 360 tgttgtcgtt tttggtaaat actcaggtca aaatactatc gatatcgatg gtgaagaatt 420 attgattttg aatgaaagtg atatctacgg cgttttagaa gcttaattat tacactcact 480 tttttattta acctacaaaa tttaaggaaa gatcatggct gctaaagacg tattatttgg 540 tgatagcgca cgcgcaaaaa tgttggtagg tgtaaacatt ttagccgacg cagtaagagt 600 taccttagga cctaaaggtc gtaacgttgt tatagaaaaa tcatttggtg caccgatcat 660 caccaaagat ggtgtttctg ttgcgcgtga aatcgaattg aaagacaaat tcgaaaacat 720 gggcgcacag atggttaagg aagttgcttc tcaagccaac gaccaagccg gtgacggcac 780 aacgacagcg actgtactag cacaggcgat tatcagcgaa ggcttgaaat ctgttgcggc 840 tggcatgaat ccaatggatc ttaaacgtgg tattgataaa gctacggctg ctgttgttgc 900 cgccattaaa gaacaagctc agccttgctt ggatacaaaa gcaatcgctc aggtagggac 960 aatctctgcc aatgccgatg aaacggttgg tcgtttaatt gctgaagcga tggaaaaagt 1020 cggtaaagaa ggtgtgatta ccgttgaaga aggcaaaggc cttgaagacg agcttgatgt tgtagaaggc atgcagttcg atcgcggtta cttgtctccg tacttcatca acaaccaaga 1080 1140 aaaaatgacc gtagaaatgg aaaatccatt aattctattg gttgataaga aaattgataa 1200 ccttcaagag ctgttgccaa ttcttgaaaa cgtcgctaaa tcaggtcgtc cattattgat 1260 cgttgctgaa gatgttgaag gccaagcact agcaacattg gtagtaaaca acttgcgcgg 1320 cacattcaag gttgcagcgg ttaaagcccc tggttttggc gatcgtcgta aagcgatgtt 1380 gcaagatctt gccatcttga cgggtggtca ggttatttct gaagagctag ggatgtcttt 1440 agaaactgcg gatccttctt ctttgggtac ggcaagcaag gttgttatcg ataaagaaaa 1500 caccgtgatt gttgatggcg caggtactga agcaagcgtt aatactcgtg ttgaccagat 1560 ccgtgctgaa atcgaaagct cgacttctga ttacgacatc gaaaagttac aagaacgcgt 1620 tgctaagctt gcgggcggcg ttgccgtgat taaggttggt gcgggttctg aaatggaaat 1680 gaaagagaag aaagaccgtg ttgacgatgc acttcatgca actcgcgcag cggttgaaga 1740 aggtgttgtt gcgggtggtg gtgttgcttt gattcgcgca ctctcttcag taaccgttgt 1800 tggtgataac gaagatcaaa acgtcggtat tgcattggca cttcgtgcga tggaagctcc 1860 tatccgtcaa atcgcgggta acgcaggtgc tgaagggtca gtggttgttg ataaagtgaa 1920 atctggcaca ggtagctttg gttttaacgc cagcacaggt gagtatggcg atatgattgc Seite 14

gatgggtatt	ttagaccctg	caaaagtcac	gcgttcatct	ctacaagccg	cggcgtctat	1980
cgcaggtttg	atgatcacaa	ccgaagccat	ggttgcggat	gcgcctgttg	aagaaggcgc	2040
tggtggtatg	cctgatatgg	gcggcatggg	tggaatgggc	ggtatgcctg	gcatgatgta	2100
atcactttgt	gattcattgt	cctgatctgc	ttaccgtgtc	gacatattca	agataaagat	2160
gccttcactg	acatcagtca	ccaacaatca	atcaaacacc	aataccaatc	gcaaaaactc	2220
ataaaactag	ccgatcacca	aatcccaaaa	gcgttcaaaa	atgaaacgag	cacgtcacac	2280
aaaatcaatt	tatacgctaa	cgaaccaggt	caaacttatc	gttttttga	gcacgtttgt	2340
tccactaatg	aaagagaaaa	gtcgttaatt	cactggcttt	tggcgtatcc	gcaccttcac	2400
atagaaatta	gtaatggcat	gctactggcc	tttaaaaaga	atcagttaat	tgaagaaacc	2460
tcgcttatct	cagccattac	cgctgtagcc	gaatttgcgc	ttatcctcag	ccatgattaa	2520
actgacgcca	attaatataa	gacatactaa	ttaataactc	ccttaattga	gaagaataat	2580
gaaaaacaca	ctcaaatcct	catcacgttt	tagtctgaaa	caactcggca	ccggcgctct	2640
gattatctcc	agtttgttct	tcggtggttg	caccacaaca	caacaagata	atttatacac	2700
aggggttatg	tctcttgcga	gagacagcgc	tggcctagaa	gttaaaacag	cctctgccgg	2760
tgacgtcaat	cttacttata	tggaacgcca	aggcagtgac	aaagataatg	ccgaaagcgt	2820
tattttatta	cacggtttct	ctgctgataa	agataactgg	attcttttta	ccaaagaatt	2880
cgatgaaaaa	tatcatgtta	tcgctgtcga	tttagcggga	catggcgatt	cagaacaatt	2940
attaacgact	gattacggtc	tcataaaaca	agccgagcgt	ttagatatct	tcttatctgg	3000
cttaggggtt	aactcatttc	acatcgccgg	taattcaatg	gggggggcta	tcagcgcaat	3060
ctacagtttg	agtcacccag	agaaagttaa	aagtcttaca	ttgatcgatg	cagcaggtgt	3120
cgatggcgat	actgaaagcg	aatactacaa	agttttggca	gaaggtaaga	atcctttaat	3180
tgcaactgat	gaagcaagtt	ttgaataccg	catgggtttc	accatgactc	agcctccttt	3240
cctaccttgg	ccactaagac	cttctttatt	acgtaaaacg	ctagcccgtg	ccgagatcaa	3300
taacaaaatt	ttttccgata	tgctgaaaac	caaagaacgt	ttaggaatga	ctaactttca	3360
acagaaaatt	gaagtgaaaa	tggctcaaca	tccattgcca	acactgatta	tgtggggcaa	3420
agaagatcgc	gttcttgacg	tatccgcagc	agcggccttc	aaaaaaataa	ttccacaagc	3480
aactgttcat	atttttcctg	aagtaggcca	cctacctatg	gtagaaattc	ctagtgaaag	3540
cgctaaagtt	tatgaagagt	ttttgtcctc	tattaaataa	gagcacataa	tcatgactga	3600
cttataaaca	gccaagcatt	taaaatgctt	ggctgtttat	tttaatggcc	aaattattca	3660
acgaccaagc	tctgcggtaa	aatcgcagtg	ggtttcttgt	tttcatcaac	agcaacaaac	3720
gtgaaatacc	ccgtaatcgc	atttttctga	ttatcaaaat	acatactttc	caccagcata	3780
ttaacttcaa	cttttaaact	cgtccgccct	acctctataa	cactggcagt	caattcgaca	3840
atggtacctg	cgggaacagg	atgcttaaaa	tcgattcgat	cactgctgac	ggttacgatg	3900
ctttgtcgag	aaaaacgagt	cgctgcaata	aaagaaacct	catccatcca	ctgcattgca	3960

```
G1000PCT.ST25
                                                                     4020
gtgccaccga ataacgtatc atgatgattt gttgtctctg gaaataccgc tttagaaata
                                                                     4080
gtggtttttg atacgcgctt tcgctgcgca ataatatctt ctctgctaag agttgcggat
                                                                     4140
ggcatacata aactcgcttg attaagatta ataataaata gttaacagta tattgaactg
                                                                     4200
agggtctgaa gaactctaat acctctgaag aactttgagg ccgctagaga gaaaagacca
                                                                     4260
gtgataatat ttcatcttgc catgagagct tatcatgaaa gcctgtgctt aaaatcaatc
                                                                     4320
attatattta ttcatcttta attgaaataa taccaatata tttcatatat aatttcacac
                                                                     4380
tacccttatc tcactagact tcccgcgcat aggcgcaaac aatcaacgca agttcacaat
                                                                     4440
aaagcggttc gctgcaacac atgccctagc gtctaaagta gcacgcacaa cactggccag
                                                                     4500
tcgtactagc ccctttgcga ttcgtgcaga cgagcaacaa gcgctattaa acttacctaa
                                                                     4560
atttctaacc accaccattg gttcttttcc acaaactcaa aaaactcgtc aaatccgctt
                                                                     4620
gcaatttaaa cgcgatgaca tagatctaat cgattatcaa acccgcattc aagcgctcat
                                                                     4680
taaaaacgca ccactggcaa gaagttctac ctgcactgac caatatgcaa gcggcggcgg
                                                                     4740
aagagctgcc tttgatcgat caagaagaag ggagcagcaa agaggaaaac aatcaaaaag
                                                                     4800
aggagagcaa tcaaataaaa acgagttatt gaggatttta attttaaaac aggtatatta
                                                                     4860
ataccctctc tcgtagtaaa caatgactgt atttacacaa aaataaatag aggtatacca
                                                                     4920
tgtcaaacat ctggtttgaa gtaccaaaga ttgaagtatt aaaccgtcaa atggaaaata
                                                                     4980
ctgcctgcag caacttaggc attcaaatta cagaaattgg cgatgattat atcactggca
                                                                     5040
caatgccagc agatgcacgt accttccagc caatgggact gattcatggc ggctcaaatg
                                                                     5100
tattgctggc agaaacactg ggcagcatgg cagctaactg ctgtattaat ttgtctcaag
                                                                     5160
aatattgtgt tggccaagaa attaacgcca accacatacg cggtgttcgt tccggcatag
                                                                     5220
tgactggcac agcaacgcta gtacacaaag gaagaacctc ccagatttgg gaaattcgca
tcgttaacga tccaaagaat tcaaaaagct tctcgagagt acttctagag cggccgcggg
                                                                     5280
                                                                     5340
cccatcgatt ttccacccgg gtggggtacc aggtaagtgt acccaattcg ccctatagtg
                                                                     5373
agtcgtatta caattcactg gccgtcgttt tac
<210> 10
<211> 97
<212> PRT
<213> artificial sequence
<220>
<223> fusion protein
<400> 10
Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu
10 15
```

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu

Ala

<210> 11

<211> 548

<212> **PRT**

artificial sequence <213>

<220>

mutant protein <223>

<400> 11

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly 20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val Seite 17

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu Seite 18

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 405 410 415

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 425 430

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Ala Gly Ala Ala Val 450 455 460

val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly 515 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Gly Met 530 540

Pro Gly Met Met 545

<210> 12

<211> 333

<212> PRT

<213> Oleispira antarctica

<400> 12

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr 20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg 35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn 50 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu 105 Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu 115 120 Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val 130 135 140 Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala 150 145 Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile 170 175 165 Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val 185 180 Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe 200 195 Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp 210 215 220 Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile 225 Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly 245 Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro 260 Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val 275 Ser Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His 290 295 300 290 Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu 310 315 320 305 Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys 325

<210> 13

<211> 5373

<212> DNA <213> artificial sequence <220> <223> expression cassette for fusion protein <400> 60 acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaagggaa 120 caaaagctgg agctcctaat acttgggatc caacagttgg agagtctagc aaatgaaaat 180 ccgtccatta catgatcgta ttgttgttcg ccgtaaagaa gaagagaccg caactgcggg 240 tggtattatt ttaccgggcg ctgcggcaga aaaaccaaat caaggtgttg ttatctctgt 300 gggtactggc cgtattcttg ataatggttc agtgcaagcg ctggcggtta acgaaggcga 360 tgttgtcgtt tttggtaaat actcaggtca aaatactatc gatatcgatg gtgaagaatt 420 attgattttg aatgaaagtg atatctacgg cgttttagaa gcttaattat tacactcact 480 tttttattta acctacaaaa tttaaggaaa gatcatggct gctaaagacg tattatttgg 540 tgatagcgca cgcgcaaaaa tgttggtagg tgtaaacatt ttagccgacg cagtaagagt 600 taccttagga cctaaaggtc gtaacgttgt tatagaaaaa tcatttggtg caccgatcat 660 caccaaagat ggtgtttctg ttgcgcgtga aatcgaattg aaagacaaat tcgaaaacat 720 gggcgcacag atggttaagg aagttgcttc tcaagccaac gaccaagccg gtgacggcac 780 aacgacagcg actgtactag cacaggcgat tatcagcgaa ggcttgaaat ctgttgcggc 840 tggcatgaat ccaatggatc ttaaacgtgg tattgataaa gctacggctg ctgttgttgc 900 cgccattaaa gaacaagctc agccttgctt ggatacaaaa gcaatcgctc aggtagggac 960 aatctctgcc aatgccgatg aaacggttgg tcgtttaatt gctgaagcga tggaaaaagt 1020 cggtaaagaa ggtgtgatta ccgttgaaga aggcaaaggc cttgaagacg agcttgatgt 1080 tgtagaaggc atgcagttcg atcgcggtta cttgtctccg tacttcatca acaaccaaga aaaaatgacc gtagaaatgg aaaatccatt aattctattg gttgataaga aaattgataa 1140 1200 ccttcaagag ctgttgccaa ttcttgaaaa cgtcgctaaa tcaggtcgtc cattattgat 1260 cgttgctgaa gatgttgaag gccaagcact agcaacattg gtagtaaaca acttgcgcgg 1320 cacattcaag gttgcagcgg ttaaagcccc tggttttggc gatcgtcgta aagcgatgtt 1380 gcaagatctt gccatcttga cgggtggtca ggttatttct gaagagctag ggatgtcttt 1440 agaaactgcg gatccttctt ctttgggtac ggcaagcaag gttgttatcg ataaagaaaa 1500 caccgtgatt gttgatggcg caggtactga agcaagcgtt aatactcgtg ttgaccagat 1560 ccgtgctgaa atcgaaagct cgacttctga ttacgacatc gaaaagttac aagaacgcgt 1620 tgctaagctt gcgggcggcg ttgccgtgat taaggttggt gcgggttctg aaatggaaat

gaaagagaag	aaagaccgtg	ttgacgatgc	acttcataca		cggttgaaga	1680
		gtgttgcttt				1740
		acgtcggtat				1800
	_	acgcaggtgc				1860
		gttttaacgc				1920
						1980
		caaaagtcac				2040
		ccgaagccat				
		gcggcatggg				2100
		cctgatctgc				2160
gccttcactg	acatcagtca	ccaacaatca	atcaaacacc	aataccaatc	gcaaaaactc	2220
ataaaactag	ccgatcacca	aatcccaaaa	gcgttcaaaa	atgaaacgag	cacgtcacac	2280
aaaatcaatt	tatacgctaa	cgaaccaggt	caaacttatc	gttttttga	gcacgtttgt	2340
tccactaatg	aaagagaaaa	gtcgttaatt	cactggcttt	tggcgtatcc	gcaccttcac	2400
atagaaatta	gtaatggcat	gctactggcc	tttaaaaaga	atcagttaat	tgaagaaacc	2460
tcgcttatct	cagccattac	cgctgtagcc	gaatttgcgc	ttatcctcag	ccatgattaa	2520
actgacgcca	attaatataa	gacatactaa	ttaataactc	ccttaattga	gaagaataat	2580
gaaaaacaca	ctcaaatcct	catcacgttt	tagtctgaaa	caactcggca	ccggcgctct	2640
gattatctcc	agtttgttct	tcggtggttg	caccacaaca	caacaagata	atttatacac	2700
aggggttatg	tctcttgcga	gagacagcgc	tggcctagaa	gttaaaacag	cctctgccgg	2760
tgacgtcaat	cttacttata	tggaacgcca	aggcagtgac	aaagataatg	ccgaaagcgt	2820
tattttatta	cacggtttct	ctgctgataa	agataactgg	attcttttta	ccaaagaatt	2880
cgatgaaaaa	tatcatgtta	tcgctgtcga	tttagcggga	catggcgatt	cagaacaatt	2940
attaacgact	gattacggtc	tcataaaaca	agccgagcgt	ttagatatct	tcttatctgg	3000
cttaggggtt	aactcatttc	acatcgccgg	taattcaatg	gggggggcta	tcagcgcaat	3060
		agaaagttaa				3120
		aatactacaa				3180
		ttgaataccg				3240
		cttctttatt				3300
		tgctgaaaac				3360
		tggctcaaca				3420
		tatccgcagc				3480
		aagtaggcca				3540
						3600
		ttttgtcctc				3660
		taaaatgctt				3720
acyaccaagc	tetgeggtaa	aatcgcagtg	Seite 2		aycaacaaac	3120

gtgaaatacc	ccgtaatcgc	atttttctga	ttatcaaaat	acatactttc	caccagcata	3780
ttaacttcaa	cttttaaact	cgtccgccct	acctctataa	cactggcagt	caattcgaca	3840
atggtacctg	cgggaacagg	atgcttaaaa	tcgattcgat	cactgctgac	ggttacgatg	3900
ctttgtcgag	aaaaacgagt	cgctgcaata	aaagaaacct	catccatcca	ctgcattgca	3960
gtgccaccga	ataacgtatc	atgatgattt	gttgtctctg	gaaataccgc	tttagaaata	4020
gtggtttttg	atacgcgctt	tcgctgcgca	ataatatctt	ctctgctaag	agttgcggat	4080
ggcatacata	aactcgcttg	attaagatta	ataataaata	gttaacagta	tattgaactg	4140
agggtctgaa	gaactctaat	acctctgaag	aactttgagg	ccgctagaga	gaaaagacca	4200
gtgataatat	ttcatcttgc	catgagagct	tatcatgaaa	gcctgtgctt	aaaatcaatc	4260
attatattta	ttcatcttta	attgaaataa	taccaatata	tttcatatat	aatttcacac	4320
tacccttatc	tcactagact	tcccgcgcat	aggcgcaaac	aatcaacgca	agttcacaat	4380
aaagcggttc	gctgcaacac	atgccctagc	gtctaaagta	gcacgcacaa	cactggccag	4440
tcgtactagc	ccctttgcga	ttcgtgcaga	cgagcaacaa	gcgctattaa	acttacctaa	4500
atttctaacc	accaccattg	gttcttttcc	acaaactcaa	aaaactcgtc	aaatccgctt	4560
gcaatttaaa	cgcgatgaca	tagatctaat	cgattatcaa	acccgcattc	aagcgctcat	4620
taaaaacgca	ccactggcaa	gaagttctac	ctgcactgac	caatatgcaa	gcggcggcgg	4680
aagagctgcc	tttgatcgat	caagaagaag	ggagcagcaa	agaggaaaac	aatcaaaaag	4740
aggagagcaa	tcaaataaaa.	acgagttatt	gaggatttta	attttaaaac	aggtatatta	4800
ataccctctc	tcgtagtaaa	caatgactgt	atttacacaa	aaataaatag	aggtatacca	4860
tgtcaaacat	ctggtttgaa	gtaccaaaga	ttgaagtatt	aaaccgtcaa	atggaaaata	4920
ctgcctgcag	caacttaggc	attcaaatta	cagaaattgg	cgatgattat	atcactggca	4980
caatgccagc	agatgcacgt	accttccagc	caatgggact	gattcatggc	ggctcaaatg	5040
tattgctggc	agaaacactg	ggcagcatgg	cagctaactg	ctgtattaat	ttgtctcaag	5100
aatattgtgt	tggccaagaa	attaacgcca	accacatacg	cggtgttcgt	tccggcatag	5160
tgactggcac	agcaacgcta	gtacacaaag	gaagaacctc	ccagatttgg	gaaattcgca	5220
tcgttaacga	tccaaagaat	tcaaaaagct	tctcgagagt	acttctagag	cggccgcggg	5280
cccatcgatt	ttccacccgg	gtggggtacc	aggtaagtgt	acccaattcg	ccctatagtg	5340
agtcgtatta	caattcactg	gccgtcgttt	tac			5373

<210> 14

<211> 97

<212> PRT

<213> artificial sequence

<223> Cpn10, nucleotides 458 - 751

<400> 14

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu 1 5 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala 20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile 35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val 50 55 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly 65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu 85 90 95

Ala

<210> 15

<211> 548

<212> PRT

<213> artificial sequence

<220>

<223> Cpn60, nucleotides 458 - 751

<400> 15

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met 1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile 35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp 50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln 65 70 75 80

G1000PCT.ST25 Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val 120 Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile 135 130 Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg 150 145 Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr 170 165 Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln 195 200 Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp 220 210 215 Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val 240 235 230 Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly 250 Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala 305 Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala 330 325 Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg Seite 25

360 365

Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly 370 375 380

Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu 385 390 400

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly 415

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn 420 425 430

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala 435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Ala Gly Ala Ala Val 450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser 465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu 500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly 515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Gly Met 530 540

Pro Gly Met Met 545

<210> 16

<211> 2783

<212> DNA

<213> artificial sequence

<220>

<223> mutant protein

tactcgtccc	cgcgacgcgt	aaagcgttgg	tccataaggt	gattgcattt	attacccctc	180
gcatgatgac	tgcaagcagc	tttcaagcga	cgggtagttt	tcaggaaggc	tcgtttaaag	240
atgtacattc	gcacactgac	tcgcaaagca	gtcatgaaaa	aatcacaatt	gaaggcgaat	300
ataccaaaga	cgataagtag	gtatttttc	ggctagccgt	tgaaatccta	gtaaaagccc	360
cgataaatta	accatctatt	tttcacagag	gcaatttagc	ctttgtttac	cttattgatc	420
ctaatacttg	ggatccaaca	gttggagagt	ctagcaaatg	aaaatccgtc	cattacatga	480
tcgtattgtt	gttcgccgta	aagaagaaga	gaccgcaact	gcgggtggta	ttattttacc	540
gggcgctgcg	gcagaaaaac	caaatcaagg	tgttgttatc	tctgtgggta	ctggccgtat	600
tcttgataat	ggttcagtgc	aagcgctggc	ggttaacgaa	ggcgatgttg	tcgtttttgg	660
taaatactca	ggtcaaaata	ctatcgatat	cgatggtgaa	gaattattga	ttttgaatga	720
aagtgatatc	tacggcgttt	tagaagctta	attattacac	tcactttttt	atttaaccta	780
caaaatttaa	ggaaagatca	tggctgctaa	agacgtatta	tttggtgata	gcgcacgcgc	840
aaaaatgttg	gtaggtgtaa	acattttagc	cgacgcagta	agagttacct	taggacctaa	900
aggtcgtaac	gttgttatag	aaaaatcatt	tggtgcaccg	atcatcacca	aagatggtgt	960
ttctgttgcg	cgtgaaatcg	aattgaaaga	caaattcgaa	aacatgggcg	cacagatggt	1020
taaggaagtt	gcttctcaag	ccaacgacca	agccggtgac	ggcacaacga	cagcgactgt	1080
actagcacag	gcgattatca	gcgaaggctt	gaaatctgtt	gcggctggca	tgaatccaat	1140
ggatcttaaa	cgtggtattg	ataaagctac	ggctgctgtt	gttgccgcca	ttaaagaaca	1200
agctcagcct	tgcttggata	caaaagcaat	cgctcaggta	gggacaatct	ctgccaatgc	1260
cgatgaaacg	gttggtcgtt	taattgctga	agcgatggaa	aaagtcggta	aagaaggtgt	1320
gattaccgtt	gaagaaggca	aaggccttga	agacgagctt	gatgttgtag	aaggcatgca	1380
gttcgatcgc	ggttacttgt	ctccgtactt	catcaacaac	caagaaaaaa	tgaccgtaga	1440
aatggaaaat	ccattaattc	tattggttga	taagaaaatt	gataaccttc	aagagctgtt	1500
gccaattctt	gaaaacgtcg	ctaaatcagg	tcgtccatta	ttgatcgttg	ctgaagatgt	1560
tgaaggccaa	gcactagcaa	cattggtagt	aaacaacttg	cgcggcacat	tcaaggttgc	1620
agcggttaaa	gcccctggtt	ttggcgatcg	tcgtaaagcg	atgttgcaag	atcttgccat	1680
cttgacgggt	ggtcaggtta	tttctgaaga	gctagggatg	tctttagaaa	ctgcggatcc	1740
ttcttctttg	ggtacggcaa	gcaaggttgt	tatcgataaa	gaaaacaccg	tgattgttga	1800
tggcgcaggt	actgaagcaa	gcgttaatac	tcgtgttgac	cagatccgtg	ctgaaatcga	1860
aagctcgact	tctgattacg	acatcgaaaa	gttacaagaa	cgcgttgcta	agcttgcggg	1920
cggcgttgcc	gtgattaagg	ttggtgcggg	ttctgaaatg	gaaatgaaag	agaagaaaga	1980
ccgtgttgac	gatgcacttc	atgcaactcg	cgcagcggtt	gaagaaggtg	ttgttgcggg	2040
tggtggtgtt	gctttgattc	gcgcactctc	ttcagtaacc	gttgttggtg	ataacgaaga	2100
tcaaaacgtc	ggtattgcat	tggcacttcg	tgcgatggaa	gctcctatcc	gtcaaatcgc	2160

C1000DCT CT25	
G1000PCT.ST25 gggtaacgca ggtgctgcag gggcagcggt tgttgataaa gtgaaatctg gcacaggtag	2220
ctttggtttt aacgccagca caggtgagta tggcgatatg attgcgatgg gtattttaga	2280
ccctgcaaaa gtcacgcgtt catctctaca agccgcggcg tctatcgcag gtttgatgat	2340
cacaaccgaa gccatggttg cggatgcgcc tgttgaagaa ggcgctggtg gtatgcctga	2400
tatgggcggc atgggtggaa tgggcggtat gcctggcatg atgtaatcac tttgtgattc	2460
attgtcctga tctgcttacc gtgtaaaaag atcaggctca aggctgtctc tataaaaagc	2520
cgtatctttg atgagtgttg tctttctgct gaaaacgaca ttcttggagt gcggcttttt	2580
ttgattttgg tcataaaatt cagaatattg tgtaatttta tgtaactagc tggcctataa	2640
tgttgagttc ctctgggtgg catgatctca tggtacttca cttaagcctg attcactgcg	2700
gctttaacag taaaataata acgcaacgta gaaacataat aagcgtatgg cattaatgaa	2760
gacggctgca tttaattcag atc	2783
.210. 17	
<210> 17	
<211> 22	
<212> DNA	
<213> artificial sequence	
-220-	
<220> <223> Forward Primer	
<220>	
<221> misc_feature	
<222> (1)(22)	
<223> "n" defines inosine	
(22)) If defines mostile	
<400> 17	
gcngcnggna tgaayccnat gg	22
<210> 18	
<211> 23	
<212> DNA	
<213> artificial sequence	
<220>	
<223> Reverse Primer	
<220>	
· 	

Seite 28

<221> misc_feature

```
G1000PCT.ST25
<222> (1)..(23)
<223> residue "n" designates inosine
<400> 18
                                                                       23
conconcong chachachec ytc
<210> 19
<211> 13
<212> PRT
<213> Oleispira antarctica
<400> 19
Ser Val Ala Ala Gly Met Asn Pro Met Asp Leu Gln Arg
1 10
<210> 20
<211> 16
<212> PRT
<213> Oleispira antarctica
<400> 20
Val Glu Glu Gly Val Val Ala Gly Gly Gly Val Ala Ala Leu Leu Arg
1 5 10 15
<210> 21
<211> 42
<212> DNA
<213> artificial sequence
<220>
<223> Oligonucleotide
<400> 21
                                                                       42
ggtggtcagt ggttgttgtt gatacagtga aatctggcac ag
<210> 22
```

<211> 37

<212> DNA

<213> artificial sequence

Seite 29

<220>		
<223>	Oligonucleotide	
<400> cctgtg	22 ccag atttcactgt atcaacaacc actgacc	37
<210>	23	
<211>	30	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Oligonucleotide	
<400> ggtgata	23 aaag tgaaaggtgg cacaggtagc	30
<210>	24	
<211>	30	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Oligonucleotide	
<400> gctacct	24 tgtg ccacctttca ctttatcaac	30
<210>	25	
<211>	46	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Oligonucleotide	
<400> ggtcag	25 tggt tgttgataca gtgaaaggtg gcacaggtag ctttgg	46
<210>	26	
<211>	46	
<212>	DNA	

Seite 30

<213>	artificial sequence	
<220>		
<223>	Oligonucleotide	
<400> ccaaag	26 ctac ctgtgccacc tttcactgta tcaacaacca ctgacc	46
<210>	27	
<211>	42	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Oligonucleotide	
<400> cctaac	27 gcag gtgctgcagg ggcagcggtt gttgataaag tg	42
<210>	28	
<211>	42	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Oligonucleotide	
<400> ctcttt	28 atca acaaccgctg cccctgcagc acctgcgtta cc	42