Andrea Mara Weber 2079852

Implementação de um conversor boost usando um gatedriver

Gatedriver

Simulamos um sinal PWM gerado por microcontrolador, mas usando um gerador de funções, considerando uma tensão de 3VPP, com frequência de 50KHz e offset de 1.5 VDC

O diodo usado para a implementação do gatedriver foi do modelo 1N4148, o opto usado foi um CN137.

$$Qg = 50 \, \, nC$$

$$\Delta t = 150 \ ns$$

$$\Delta t \coloneqq 150 \text{ ns}$$

$$Ig \coloneqq \frac{Qg}{\Delta t} = 0.333 \text{ A}$$

$$Ic2 := Ig = 0.333 A$$

$$Ib2 := \frac{Ic2}{10} = 0.033 \ A$$

$$Vcc \coloneqq 15 \ \mathbf{V}$$

$$Vg \coloneqq Vcc = 15 \ \mathbf{V}$$

$$Ic1 := Ib2 = 0.033 A$$

$$Vg := Vcc = 15$$
 V
 $Vpwm := 3$ V

$$Ipwm := 5 \, mA$$

$$Vbe = 0.7 V$$

$$Ib1 := Ipwm = 0.005 A$$

$$Rg = \frac{Vg}{Iq} = 45 \Omega$$

$$R2 \coloneqq \frac{Vcc}{Ic1} = 450 \ \Omega$$

$$R1 := \frac{\left(Vpwm - Vbe\right)}{Ib1} = 460 \ \Omega$$

Optoacoplador

$$\overline{Vpwm} := 3 V$$

$$Ild := 10 \ mA$$

$$Vld := 1.2 \ V$$

$$Rd := \frac{(Vpwm - Vld)}{Ild} = 180 \Omega$$

Implementação do Circuito

possível observar o comportamento do circuito. O canal 2 mede a tensão de saída do gate driver, que é a entrada do conversor boost. Já o canal 1 mede a saída do conversor boost. Para chegar nesse resultado variamos o dutty cicle entre d=0.5 e d=0.35.