Épreuves orales des concours d'entrée aux grandes écoles

2021

Légende

\mathbf{C}	cours	α , β , γ	3 niveaux de difficulté
Δ	classique	ş	avec Python
AG	structures élémentaires, arithmétique	Pol	polynômes, fractions rationnelles, complexes
AL	algèbre linéaire de première année	Red	réduction
AQ	algèbre quadratique		
Top	topologie	\mathbf{F}	fonctions
IntS	intégration sur un segment	IntG	intégrale généralisée
Sn	suites et séries numériques	Sf	suites et séries de fonctions
SE	séries entières	\Pr	probabilités, dénombrement
ED	équations différentielles	CD	fonctions de plusieurs variables, calcul
			différentiel
GA	géométrie affine et euclidienne	GD	géométrie différentielle
$_{ m HP}$	Hors programme		

Centrale - MP - 2021

Algèbre

501 $Pr,Sn:\beta$

On appelle dérangement, une permutation de S_n qui ne possède aucun point fixe. On note π_n le nombre de dérangements de S_n . Donner un développement asymptotique à trois termes de π_n quand $n \to +\infty$.

502 AG : α

Soit G un groupe. On note \widehat{G} l'ensemble des morphismes de groupes de G dans (\mathbb{C}^*, \times) .

- (a) $\boxed{\mathrm{C}}$ Rappeler les définitions d'un groupe et d'un morphisme de groupes. Montrer que \widehat{G} est une groupe.
- (b) Déterminer \widehat{G} dans le cas où $G = \mathbb{Z}/n\mathbb{Z}$.

503 AG : β

Soit \mathbb{K} une \mathbb{R} -algèbre commutative intègre de dimension finie $n \ge 2$. En notant e son neutre multiplicatif, on assimile $\mathbb{R}e$ à \mathbb{R} et donc e à 1.

- (a) On fixe a non nul dans \mathbb{K} . Montrer que $\varphi_a: x \mapsto xa$ est un automorphisme d'espace vectoriel de \mathbb{K} . En déduire que a est inversible.
- (b) On fixe $a \in \mathbb{K} \setminus \mathbb{R}$. Montrer que la famille (1, a) est libre mais pas $(1, a, a^2)$.
- (c) Montrer que l'on peut trouver $i \in \mathbb{K}$ tel que $i^2 = -1$. En déduire que \mathbb{K} est isomorphe à \mathbb{C} .

504 Pol : β

- (a) \triangle Soit $P \in \mathbb{R}[X]$ scindé. Montrer que P' est scindé.
- (b) Soient des nombres réels (a_1, \ldots, a_n) distincts et (b_1, \ldots, b_n) distincts.

On suppose qu'il existe $c \in \mathbb{R}$ tel que, pour tout $i \in [1, n]$, $\prod_{j=1}^{n} (a_i + b_j) = c$.

Montrer qu'il existe $d \in \mathbb{R}$ tel que, pour tout $j \in [1, n]$, $\prod_{i=1}^{n} (a_i + b_j) = d$.

(c) Soient P et Q dans $\mathbb{C}[X]$. On suppose que P et Q ont les mêmes racines et de même pour P+a et Q+a, avec $a \in \mathbb{C}^*$. Montrer que P=Q.

505 Pol : α

Soit $(U_n)_{n\geqslant 0}$ la suite de polynômes de $\mathbb{R}[X]$ définie par

$$(U_0, U_1) = (1, 2X)$$
 et, pour $n \ge 2$, $U_n(X) = 2XU_{n-1}(X) - U_{n-2}(X)$.

- (a) Déterminer le degré et le coefficient dominant de U_n .
- (b) Montrer que, pour tout $\theta \in \mathbb{R}$, $\sin(\theta) U_n(\cos(\theta)) = \sin((n+1)\theta)$.
- (c) Soit $n \ge 2$. Montrer que U_n possède n racines distinctes et écrire U_n sous forme de produit d'irréductibles de $\mathbb{R}[X]$.
- (d) β Soit $n \ge 2$. Étudier les racines rationnelles de $V_n(X) = U_n\left(\frac{X}{2}\right)$.
- (e) Soient $k, n \in \mathbb{N}^*$. Étudier l'irrationnalité de $\cos\left(\frac{k\pi}{n+1}\right)$.

506 AL: α

Soit E un espace vectoriel de dimension finie.

- (a) $\overline{\mathbb{C}}$ Rappeler la définition d'un hyperplan de E.
- (b) Soit $a \in E \setminus \{0\}$. On appelle réflexion de a toute application $s \in \mathcal{GL}(E)$ telle que s(a) = -a et pour laquelle il existe un hyperplan H de E tel que $\forall x \in H$, s(x) = x. Soit R une partie génératrice finie de E. Montrer qu'il existe au plus une réflexion de a telle que s(R) = R.
- **507** AL,Red : α

Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente.

- (a) C On pose $d = \min\{p \in \mathbb{N}^*, M^p = 0\}$. Montrer que $d \leq n$.
- (b) Montrer que $I_n M$ est inversible et exprimer son inverse en fonction de M.

Algèbre 45

508 $AL: \alpha$

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$, $e = (e_1, \dots, e_n)$ une base de E, $f \in \mathcal{L}(E)$ et A la matrice de f dans e. Soit $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$. On pose $e_{\lambda} = (\lambda_1 e_1, \dots, \lambda_n e_n)$.

- (a) À quelle condition la famille e_{λ} est-elle une base de E?
- (b) On suppose cette condition vérifiée. Donner la matrice A_{λ} de f dans e_{λ} .

509 $AL: \alpha$

Soient $n \geq 3$ et $A \in \mathcal{M}_n(\mathbb{R})$.

- (a) C Montrer que $Com(A)^T A = det(A) I_n$.
- (b) \triangle Déterminer le rang de Com(A) en fonction de celui de A.
- (c) Résoudre Com(A) = A dans $\mathcal{M}_n(\mathbb{R})$.

510 Red : $\beta \Delta$

Soit E un \mathbb{C} -espace vectoriel de dimension finie n. Soient $u, v \in \mathcal{L}(E)^2$ tels que $u \circ v - v \circ u = \ln(2)u$.

- (a) Montrer que u est nilpotent. Ind. On pourra calculer $u^k \circ v v \circ u^k$.
- (b) Montrer qu'il existe une base de E dans laquelle les matrices de u et v sont toutes deux triangulaires supérieures.

511 AL,Red : α

Soient f, g, h des endomorphismes de \mathbb{C}^n vérifiant $f \circ g - g \circ f = -2f$, $f \circ h - h \circ f = 2f$ et $g \circ h - h \circ g = f$.

- (a) Montrer que f est nilpotent.
- (b) Montrer qu'il existe $x \neq 0$ et $\lambda \in \mathbb{C}$ tels que f(x) = 0 et $h(x) = \lambda x$.
- (c) On pose $x_k = \frac{g^k(x)}{k!}$ pour $k \in \mathbb{N}$. Calculer $f(x_k)$, $g(x_k)$ et $h(x_k)$ en fonction des termes de la suite (x_k) .

512 AL,Red : β

Soient $n \ge 2$ et $p \le n$. Soit V un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ dont toutes les matrices sont de rang inférieur ou égal à p.

- (a) α Donner un exemple d'un tel sous-espace vectoriel de dimension np.
- (b) Soit $r \in \mathbb{N}^*$. Soient $A \in \mathcal{M}_r(\mathbb{R}), L \in \mathcal{M}_{1,r}(\mathbb{R}), C \in \mathcal{M}_{r,1}(\mathbb{R}), \alpha \in \mathbb{R}$.

On considère
$$M: t \mapsto \begin{pmatrix} A - tI_r & C \\ L & \alpha \end{pmatrix}$$
 et on pose $u: t \mapsto \det M(t)$.

Montrer que u est polynomiale de degré inférieur ou égal à r et expliciter les coefficients devant t^r et t^{r-1} .

(c) γ Montrer que $\dim(V) \leqslant np$.

513 Red : α

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On considère la matrice par blocs $M = \begin{pmatrix} A & 4A \\ A & A \end{pmatrix}$.

- (a) Exprimer le déterminant de M en fonction de celui de A.
- (b) Montrer que M est diagonalisable si et seulement si la matrice $N = \begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$ est diagonalisable.
- (c) Montrer que M est diagonalisable si et seulement si A est diagonalisable.

514 Red : α

- (a) Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente. Justifier l'existence de $d = \min\{p \in \mathbb{N}, M^p = 0\}$ et l'inégalité $d \leq n$.
- (b) Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente. Montrer que $M^2 I_n$ est inversible et donner son inverse.
- (c) Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^4 + M^3 + M^2 + M + I_n = 0$. Montrer que $|\operatorname{Tr} M| \leq n$ et étudier les cas d'égalité.
- (d) Reprendre les questions (b) et (c) pour $M \in \mathcal{M}_n(\mathbb{R})$.

515 Red : α

Soit E un \mathbb{C} -espace vectoriel de dimension finie.

(a) Δ Soient F et G deux sous-espaces vectoriels de E tels que $F \cup G = E$.

 $\overline{\text{Montrer que }} F = E \text{ ou } G = E.$

On admet la généralisation : si F_1, \ldots, F_p sont des sous-espaces vectoriels de E tels que $F_1 \cup \cdots \cup F_p = E$, il existe $i \in \{1, \ldots, p\}$ tel que $E = F_i$.

- (b) β Soit $u \in \mathcal{L}(E)$. On suppose qu'il n'y a qu'un nombre fini de sous-espaces de E stables par u. Pour $x \in E$, on pose $F_x = \text{Vect}\{u^k(x), k \in \mathbb{N}\}$.
 - (i) Soit $x \in E$. Montrer que F_x est stable par u et que la dimension de F_x est égale au degré du polynôme minimal π_x de l'endomorphisme u_x induit par u sur F_x .
 - (ii) En déduire que $\pi_u = \chi_u$ et qu'il existe $x_0 \in E$ tel que $\pi_{x_0} = \chi_u$.

516 Red : β

Soient E un \mathbb{K} -espace vectoriel de dimension finie n, où \mathbb{K} est un sous-corps de \mathbb{C} et $u \in \mathcal{L}(E)$. L'objectif est de montrer que les facteurs irréductibles du polynôme caractéristique χ_u sont les même que ceux du polynôme minimal π_u . Soit P un facteur irréductible de π_u de degré d.

- (a) Montrer que $\operatorname{Ker} P(u)$ contient un vecteur $x \neq 0$.
- (b) Montrer que $(x, u(x), \dots, u^{d-1}(x))$ est une base de $F = \text{Vect}(u^k(x))_{k \in \mathbb{N}}$.
- (c) Calculer χ_{u_F} et en déduire que P est facteur de χ_u .
- (d) Montrer que χ_u divise π_u^n , et conclure.

517 AL,Red : $\beta \Delta$

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

On pose $k = \min \{ j \in \mathbb{N}^*, \operatorname{Ker}(u^j) = \operatorname{Ker}(u^{j+1}) \}.$

- (a) Montrer que k est bien défini et, que, pour $j \ge k$, $\operatorname{Ker}(u^j) = \operatorname{Ker}(u^k)$, $\operatorname{Im}(u^j) = \operatorname{Im}(u^k)$. On pose $K_u = \operatorname{Ker}(u^k)$, $I_u = \operatorname{Im}(u^k)$. On note u_I et u_K les endomorphismes induits par u sur I_u et sur K_u .
- (b) Montrer que u_K est nilpotente et que u_I est un automorphisme.
- (c) Montrer que $K_u \oplus I_u = E$
- (d) Si K et I sont des sous-espaces de E, on note Nil(K) l'ensemble des endomorphismes nilpotents de K, Aut(I) l'ensemble des automorphismes de I. Soit $\mathcal C$ l'ensemble des (K,I,v,w) avec (K,I) couple de sous-espaces supplémentaires de E, $v \in \text{Nil}(K)$, $w \in \text{Aut}(I)$.

Montrer que l'application $\Phi: u \in \mathcal{L}(E) \mapsto (K_u, I_u, u_K, u_I)$ est une bijection de $\mathcal{L}(E)$ sur \mathcal{C} .

(e) Montrer que k est la multiplicité de 0 comme que racine du polynôme minimal de u.

518 Red : $\beta \Delta$

Soit E un espace vectoriel de dimension n.

Soient $u_1, \ldots, u_n \in \mathcal{L}(E)$ non nuls tels que : $\forall i, j, u_i \circ u_j = \delta_{i,j} u_j$. Soit $v = u_1 + \cdots + u_n$.

- (a) α Montrer que les Im u_i sont en somme directe. Déterminer v.
- (b) Soit $v \in \mathcal{L}(E)$. Montrer que v est diagonalisable si et seulement s'il existe u_1, \ldots, u_n dans $\mathcal{L}(E)$ non nuls vérifiant $\forall i, j, \ u_i \circ u_j = \delta_{i,j} u_j$ et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$ tels que $v = \sum_{i=1}^n \lambda_i u_i$.
- (c) Soit $v \in \mathcal{L}(E)$ ayant n valeurs propres distinctes. Montrer que les $u_1, \dots u_n$ précédents sont des polynômes en v.

519 AL : β

Soient $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice p et u l'endomorphisme de $E = \mathbb{C}^n$ qui lui est canoniquement associé.

- (a) Montrer qu'il existe $x \in \mathbb{C}^n$ tel que $\mathcal{B}_u(x) = (x, u(x), \dots, u^{p-1}(x))$ soit libre. On note $F = \text{Vect } \mathcal{B}_u(x)$. Montrer que $\mathcal{B}_u(x)$ est une base de F et que F est stable par u. Donner la matrice J_p , dans la base $\mathcal{B}_u(x)$, de l'endomorphisme induit par u sur F.
- (b) Montrer qu'il existe une forme linéaire φ sur E telle que $\varphi(u^{p-1}(x)) \neq 0$. Montrer que $(\varphi \circ u^k)_{0 \leqslant k \leqslant p-1}$ est libre.

On note $G = \bigcap_{0 \leqslant k \leqslant p-1} \operatorname{Ker}(\varphi \circ u^k)$. Montrer que G est stable par u et que $F \oplus G = E$.

(c) Montrer que N est semblable à une matrice diagonale par blocs de la forme J_r , puis que toute matrice de $\mathcal{M}_n(\mathbb{C})$ est semblable à une matrice diagonale par blocs avec des blocs diagonaux de la forme $\lambda I_r + J_r$.

Algèbre 47

520 AL,Red,AQ : γ

Soient
$$\alpha, \beta \in \mathbb{R}$$
 et, pour $n \in \mathbb{N}^*$, $A_n = \begin{pmatrix} \alpha\beta & 1 & 0 & \cdots & 0 \\ \alpha + \beta & \alpha\beta & 1 & \ddots & \vdots \\ 0 & \alpha + \beta & \alpha\beta & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \alpha + \beta & \alpha\beta \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

- (a) \triangle La matrice A_n est elle inversible?
- (b) À quelle condition est-elle diagonalisable?

521 Red : β

Soient E un \mathbb{C} -espace vectoriel de dimension finie n+1, où $n \in \mathbb{N}$.

Pour u et v dans $\mathcal{L}(E)$, on pose $[u, v] = u \circ v - v \circ u$.

Soient f, g, h trois éléments de $\mathcal{L}(E)$ tels que [f, h] = 2f, [g, h] = -2g, [f, g] = h.

- (a) Pour $k \in \mathbb{N}$, exprimer $[f^k, h]$ en fonction de f^k . En déduire que f est nilpotent.
- **(b)** Montrer qu'il existe $x \in \text{Ker}(f) \setminus \{0\}$ et $\lambda \in \mathbb{C}$ tels que $h(x) = \lambda x$.
- (c) On suppose que les seuls sous-espaces de E stables par f, g et h sont E et $\{0\}$.
 - Pour $k \in \mathbb{N}$, soit $x_k = \frac{g^k(x)}{k!}$. Calculer $g(x_k), h(x_k), f(x_k)$.
- (d) Montrer que (x_0, \ldots, x_n) est une base de E. Qu'a-t-on démontré?

522 AQ: α

On munit \mathbb{R}^n de sa structure euclidienne canonique. Soit \mathcal{F} une famille de vecteurs de \mathbb{R}^n .

- (a) Montrer qu'il existe $p \in \mathbb{N}$ et une sous-famille de p vecteurs de \mathcal{F} qui forme une base de $\operatorname{Vect}(\mathcal{F})$.
- (b) On nomme $(x_1, ..., x_p)$ une telle sous-famille et U sa matrice dans la base canonique. Montrer que U^TU est inversible.
- (c) Exprimer les coefficients de U^TU .
- (d) Exprimer U^TU en fonction de produits scalaires des vecteurs x_1, \ldots, x_p .

523 AQ : α

Soient (E, \langle , \rangle) un espace euclidien, x_1, \ldots, x_p des vecteurs unitaires de E. On note, pour $i \in [1; p[, \sigma_i]]$ la symétrie orthogonale par rapport à H_i , l'orthogonal de x_i . On pose $G = \langle \sigma_1, \ldots, \sigma_p \rangle$ le sous-groupe engendré par les σ_i .

- (a) Montrer l'équivalence entre $\bigcap_{f \in G} \operatorname{Ker}(f \operatorname{Id}) = \{0\}$ et $\operatorname{Vect}(x_1, \dots, x_p) = E$.
- (b) Pour $x \in E \setminus \{0\}$, on note σ_x la symétrie orthogonale par rapport à l'orthogonal de x. Montrer que $\Delta = \{x \in E : ||x|| = 1, \exists i \in \{1, \dots, p\}, f \in G, \sigma_x = f\sigma_i f^{-1}\}$ est stable par G.

524 AQ,SE : β

(a) Montrer qu'il existe une unique suite (H_n) de polynômes tels que :

$$\forall (x,t) \in \mathbb{R}^2, \exp\left(xt - \frac{t^2}{2}\right) = \sum_{n=0}^{+\infty} H_n(x) t^n.$$

- (b) Montrer que $H'_n = H_{n-1}$ et $(n+1)H_{n+1} = X H_n H_{n-1}$.
- (c) Montrer que les H_n forment une base orthogonale de $\mathbb{R}[X]$ pour le produit scalaire

$$(P,Q) \mapsto \int_{-\infty}^{+\infty} P(x) Q(x) e^{-x^2/2} dx.$$

525 AQ,Top : α

Soient $n \in \mathbb{N}^*$, N la norme sur $\mathcal{M}_n(\mathbb{R})$ subordonnée à la norme euclidienne canonique, G un sous-groupe de $\mathcal{GL}_n(\mathbb{R})$ tel que $\forall M \in G, N(M-I_n) \leq 1$.

- (a) Montrer que, si $M \in G$ et si $\lambda \in \mathbb{R}$ est valeur propre de M, alors $|\lambda 1| \leq 1$.
- (b) On admet que le résultat de la question précédente s'étend aux valeurs propres complexes de M. Montrer que, si $M \in G$, $M I_n$ est nilpotente.
- (c) Montrer que $G = \{I_n\}$.
- (d) β Démontrer la propriété admise plus haut.

526 $\overline{AQ:\beta}$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On dit que A est normale si et seulement si $AA^T = A^TA$.

- (a) Déterminer les matrices normales de $\mathcal{M}_2(\mathbb{R})$.
- (b) Montrer que toute matrice normale stabilise un sous espace de dimension 1 ou 2.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice normale. Montrer qu'il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que P^TAP soit diagonale par blocs avec des blocs diagonaux de la forme (a) avec $a \in \mathbb{R}$, $\begin{pmatrix} a & b \\ -b & c \end{pmatrix}$ avec $a, b, c \in \mathbb{R}$.

$\mathbf{527} \quad \mathbf{AQ} : \beta$

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. On munit \mathbb{R}^n et \mathbb{R}^p de leurs produits scalaires canoniques.

- (a) \triangle Montrer que Ker $A = \text{Ker } A^T A$. En déduire que $\text{rg } A = \text{rg } A^T A$ (noté r dans la suite).
- (b) Montrer qu'il existe une famille orthonormée (y_1, \ldots, y_r) dans \mathbb{R}^p telle que la matrice Y de colonnes y_1, \ldots, y_r vérifie $Y^T A^T A Y = D$, où D est une matrice diagonale à coefficients diagonaux strictement positifs.
- (c) Montrer qu'il existe U, V orthogonales et Λ diagonale, telles que $A = U\Lambda V$.

Analyse

528 Top,Sf : β

On note E le \mathbb{R} -espace vectoriel des suites réelles bornées.

Pour
$$u \in E$$
, on note $N_{\infty}(u) = \sup_{n \in \mathbb{N}} |u_n|$ et $N(u) = \sum_{n=0}^{+\infty} \frac{|u_n|}{2^n}$.

- (a) Montrer que N_{∞} et N sont des normes sur E. Sont-elles équivalentes? On munit désormais E de la norme N_{∞} .
- (b) Montrer que l'ensemble des suites nulles à partir d'un certain rang est d'intérieur vide. Quelle est son adhérence?
- (c) Déterminer l'intérieur et l'adhérence de l'ensemble des suites à valeurs strictement positives.

529 Top : β

Soit $(E, \| \|)$ un espace vectoriel normé. On dit qu'une suite (u_n) d'éléments de E est une suite de Cauchy si et seulement si : $\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n, p \geqslant N, \ \|u_n - u_p\| \leqslant \varepsilon$. Montrer l'équivalence entre les propriétés suivantes :

- (i) toute suite de Cauchy d'éléments de E converge;
- (ii) pour tout suite (u_n) d'éléments de E, la convergence de la série $\sum ||u_n||$ implique la convergence de la série $\sum u_n$.

530 Top : β

Soit E un espace vectoriel muni d'une norme $\|\ \|$ et de sa distance associée. On dit qu'une suite (x_n) de E vérifie (\mathcal{C}) lorsque : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \forall p \in \mathbb{N}, \ \|x_{n+p} - x_n\| \leqslant \varepsilon$.

- (a) Soient R et r deux réels strictement positifs ainsi que a et b deux points de E. Montrer que $B_f(a,r) \subset B_f(b,R)$ si et seulement si $d(a,b) \leq R-r$.
- (b) On suppose $E = \mathbb{R}$. Montrer que toute suite vérifiant (\mathcal{C}) est convergente. Réciproque?
- (c) On suppose que toute suite de E vérifiant (C) est convergente. Montrer que l'intersection de toute suite décroissante de boules fermées est une boule fermée.

531 Top : β

- (a) $\boxed{\mathbf{C}}$ Quels sont les compacts convexes de \mathbb{R} ?
- (b) Soit B un compact convexe non vide de \mathbb{R}^n et $u \in \mathcal{L}(\mathbb{R}^n)$ tel que $u(B) \subset B$. On pose $u_0 = \mathrm{Id}_{\mathbb{R}^n}$ et pour tout $p \in \mathbb{N}^*$, $u_p = \frac{1}{p} \sum_{0 \le k \le p-1} u^k$. On pose enfin $A = \bigcap_{p \in \mathbb{N}} u_p(B)$.
 - (i) Montrer que $A = \{x \in B, u(x) = x\}$.
 - (ii) Montrer que A n'est pas vide.

Analyse 49

532 Top,Red : β

Soient $n \in \mathbb{N}^*$ et $p \in \{0, ..., n\}$. On note R_p l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ de rang p.

(a) C Soient $M, N \in \mathcal{M}_n(\mathbb{C})$.

Montrer que M et N sont de même rang si et seulement s'il existe $P,Q \in \mathcal{GL}_n(\mathbb{C})$ telles que M=PNQ.

- (b) Soit F une partie finie de \mathbb{C} . Montrer que $\mathbb{C} \setminus F$ est connexe par arcs.
- (c) Montrer que R_p est connexe par arcs.
- (d) Déterminer l'adhérence et l'intérieur de R_p .

533 $\operatorname{Top}: \beta$

Soient f une fonction continue de \mathbb{R}^2 dans \mathbb{R} , $a \in \mathbb{R}$.

- (a) On suppose que $f^{-1}(\{a\})$ est un singleton. Montrer que a est un extremum global de f.
- (b) On suppose que $f^{-1}(\{a\})$ est un compact non vide de \mathbb{R}^2 . Montrer que f admet un extremum global sur \mathbb{R}^2 .
- (c) On suppose que, pour tout $y \in \mathbb{R}$, $f^{-1}(\{y\})$ est un compact de \mathbb{R}^2 . Montrer que f(x) admet une limite lorsque ||x|| tend vers $+\infty$.

534 Top,Red : $\beta \Delta$

Soit E un \mathbb{K} -espace vectoriel, avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\mathcal{C}(A) = \{P^{-1}AP, P \in \mathcal{GL}_n(\mathbb{K})\}$.

- (a) Soient (e_1, \ldots, e_n) une base de E et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$. Donner une condition nécessaire et suffisante pour que $(\lambda_1 e_1, \ldots, \lambda_n e_n)$ soit une base de E.
- (b) Soit T une matrice triangulaire supérieure. Montrer que, si $\mathcal{C}(T)$ est fermé, alors T est diagonalisable.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\mathcal{C}(T)$ est fermé si et seulement si T est diagonalisable. Que dire pour $A \in \mathcal{M}_n(\mathbb{R})$?

535 Sn : α

Trouver une suite (u_n) bornée telle que $\frac{1}{n}\sum_{k=1}^n u_k$ diverge.

536 F,Sn : α

Soit $n \ge 3$. On pose $F_n = X^n - nX + 1$.

- (a) Montrer que F_n admet exactement deux racines $x_n < y_n$ dans \mathbb{R}_+^* .
- (b) Montrer que (x_n) est décroissante, tend vers 0 et vérifie $x_n \sim 1/n$.
- (c) Donner un équivalent de $x_n 1/n$.

537 Sn,IntS : β

Soit a un réel strictement positif.

(a) Pour n dans \mathbb{N} , montrer que l'équation $\sum_{0 \le k \le n} \frac{1}{x-k} = a$ possède une unique solution dans $]n, +\infty[$.

On la notera x_n .

- (b) Étudier la monotonie de la suite $(x_n)_{n\in\mathbb{N}}$.
- (c) Trouver un équivalent simple de x_n .

538 Sn :
$$\alpha$$

Soit
$$F: x \mapsto \sum_{m,n \in \mathbb{N}^*} \frac{1}{mn(m+n+x)}$$
.

- (a) Montrer que F est définie sur $[0, +\infty[$ et que $F(x) \leqslant \frac{1}{2} \left(\sum_{k=1}^{+\infty} \frac{1}{k\sqrt{k+x/2}} \right)^2$.

 Ind. Montrer $\sqrt{ab} \leqslant \frac{a+b}{2}$.
- **(b)** Calculer F(0) en fonction de $H_k = \sum_{j=1}^k \frac{1}{j}$.

539 $F: \beta$

On admet que, pour toute famille (h_1, \ldots, h_n) libre de $\mathbb{R}^{\mathbb{R}}$, il existe $(a_1, \ldots, a_n) \in \mathbb{R}^n$ tel que la matrice $(h_i(a_j))_{1 \le i,j \le n}$ soit inversible.

Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. On pose, pour $a \in \mathbb{R}$, $\tau_a(f) : x \mapsto f(x+a)$.

On note $E_f = \text{Vect} \{ \tau_a(f), \ a \in \mathbb{R} \}.$

(a) Déterminer E_f pour $f: x \mapsto e^x$ et pour $f: x \mapsto \frac{1}{1+x^2}$.

Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. On suppose que E_f est de dimension finie n. On fixe une base (g_1, \ldots, g_n) de E_f . Pour $a \in \mathbb{R}$, il existe un unique $(\lambda_1(a), \ldots, \lambda_n(a))$ tel que $\tau_a(f) = \lambda_1(a)g_1 + \cdots + \lambda_n(a)g_n$.

- (b) Montrer que les λ_k sont continues, puis que les λ_k sont de classe \mathcal{C}^1 .
- (c) Montrer que f est de classe C^{∞} .
- (d) Montrer que f est solution d'une équation différentielle linéaire homogène. Conclure.

540 IntG,Sn : β

(a) Nature de
$$\int_0^{+\infty} \frac{\sin(\sqrt{t})}{t} dt$$
?

(b) Nature de $\sum_{n=0}^{\infty} \frac{\sin(\sqrt{n})}{n}$?

541 IntG : α

(a) Soit f continue par morceaux sur \mathbb{R} et T-périodique, avec T > 0.

Montrer que $\int_a^{a+T} f$ ne dépend pas de $a \in \mathbb{R}$.

Montre qu'il existe $\alpha \in \mathbb{R}$ tel que $x \mapsto \int_0^x f - \alpha x$ soit T-périodique.

- (b) Soit $f : \mathbb{R} \to \mathbb{C}$ continue et 1 périodique. Déterminer la nature de $\sum \int_{n}^{n+1} \frac{f(t)}{t} dt$.
- (c) Déterminer la nature de $\int_0^{+\infty} \frac{\left|\sin(\pi t)\right|}{t} dt$ et $\int_0^{+\infty} \frac{t \lfloor t \rfloor}{t} dt$.

542 IntG,F : β

Montrer la convergence de $I = \int_0^{+\infty} e^{-t} \ln(t) dt$ et déterminer son signe.

543 IntG : $\alpha \Delta$

Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$.

- (a) Montrer que si ff' admet une limite (éventuellement infinie) non nulle en $+\infty$, alors f^2 tend vers $+\infty$.
- (b) On suppose f^2 et f''^2 intégrables sur \mathbb{R} . Montrer que f'^2 l'est aussi et que l'on a

$$\left(\int_{\mathbb{R}} f'^2\right)^2 \leqslant \left(\int_{\mathbb{R}} f^2\right) \left(\int_{\mathbb{R}} f''^2\right).$$

 β Montrer que f est uniformément continue et tend vers 0 en $+\infty$ et en $-\infty$.

$\mathbf{544} \quad \boxed{\text{F,Sf} : \beta}$

Soient [a,b] un segment de \mathbb{R} avec a < b, $(f_n)_{n \ge 0}$ une suite de fonctions convexes définies sur [a,b]. On suppose que (f_n) converge simplement vers f sur [a,b].

- (a) α Montrer que f est convexe.
- (b) Soient $\alpha, \beta \in \mathbb{R}$ tels que $a < \alpha < \beta < b$. Montrer qu'il existe $K \geqslant 0$ tel que, pour tout $n \in \mathbb{N}$ et pour tous $x, y \in [\alpha, \beta], |f_n(x) f_n(y)| \leqslant K|x y|$.
- (c) En déduire que (f_n) converge uniformément sur $[\alpha, \beta]$. Y a-t-il convergence uniforme sur [a, b]?

545 SE : $\alpha \Delta$

- (a) C Rappeler et démontrer le théorème de la limite monotone.
- (b) On pose $a_0 \in]0, \pi[$ et $\forall n \in \mathbb{N}, \ a_{n+1} = \sin a_n$. Rayon de convergence de $\sum a_n x^n$?
- (c) β Déterminer la nature de la série aux bornes de l'intervalle de convergence.

Analyse 51

546 SE,Sf : α

On note R le rayon de convergence de $f(z) = \sum_{n=0}^{+\infty} a_n z^n$.

- (a) Calculer $\int_0^{2\pi} f(re^{it}) dt$, pour $0 \le r < R$.
- **(b)** Soit $r \in]0, R[$. On veut montrer : $\forall z \in B_o(0, r), \ f(z) = \frac{1}{2\pi} \int_0^{2\pi} r e^{it} \frac{f(re^{it})}{re^{it} z} dt.$
 - (i) Montrer la formule dans le cas $f: z \mapsto z^n$.
 - (ii) Montrer la formule dans le cas $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$.
- (c) Soit f continue sur $B_o(0,R)$. On suppose que $\forall r \in]0, R[, \forall z \in B_o(0,r), f(z) = \frac{1}{2\pi} \int_0^{2\pi} re^{it} \frac{f(re^{it})}{re^{it} z} dt$. Montrer que f est développable en série entière.

547 $SE: \beta$

- (a) Pour $n \in \mathbb{N}$, calculer $I_n = \int_0^1 x^n \exp(x) dx$.
- (b) Soit $(a_n)_{n\geqslant 0}\in \mathbb{R}^{\mathbb{N}}$ telle que, pour tout $n\in \mathbb{N}$, $\sum_{0\leqslant k\leqslant n}\binom{n}{k}a_k=n!$. Exprimer a_n en fonction de I_n . Ind. On pourra utiliser des séries entières.

548 SE : α

Soient R > 0 et E l'espace des fonctions $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ qui sont sommes d'une série entière de rayon supérieur ou égal à R. Soit $r \in]0, R[$.

(a) Pour $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ dans E, justifier l'existence de

$$N_1(f) = \sum_{k=0}^{+\infty} |a_k| r^k$$
 et de $N_{\infty}(f) = \max\{|f(z)| \; ; \; z \in \mathbb{C}, \; |z| = r\}$.

- **(b)** Comparer $N_1(f)$ et $N_{\infty}(f)$.
- **549** SE,Pol : α

Soient R > 0 et A_R l'ensemble des séries entières à coefficients réels de rayon de convergence $\geq R$.

- (a) Montrer que A_R est une \mathbb{R} -algèbre.
- (b) Trouver tous les morphismes d'algèbre φ de $\mathbb{R}[X]$ dans \mathcal{A}_R .
- (c) Une dérivation est une application linéaire δ de $\mathbb{R}[X]$ dans \mathcal{A}_R , telle que pour tous P,Q, $\delta(PQ) = \delta(P)\varphi(Q) + \delta(Q)\varphi(P)$. Trouver toutes les dérivations.

550 Top,SE : α

Soit $(a_n)_{n\geq 2}$ une suite réelle telle que $\sum a_n z^n$ soit de rayon de convergence supérieur ou égal à 1. Pour z appartenant au disque unité ouvert D, on pose $f(z)=z+\sum_{n=2}^{+\infty}a_n\,z^n$ et l'on suppose f injective sur D.

- (a) Montrer que, pour tout $z \in D$, on a $f(z) \in \mathbb{R} \iff z \in \mathbb{R}$.
- (b) Montrer que, pour tout $z \in D$, on a $\operatorname{Im} f(z) > 0 \iff \operatorname{Im} z > 0$.

551 SE,Sn : β

(a) Soit (u_n) une suite tendant vers 0. Montrer que $\lim_{N\to+\infty}\frac{1}{N}\sum_{n=0}^N u_n=0$.

On fixe une suite (a_n) et l'on note $S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$. On suppose que cette série entière a un rayon de convergence égal à 1 et que $\lim_{n \to \infty} S(x) = \ell \in \mathbb{R}$.

- (b) On suppose (a_n) positive. Montrer que $\sum_{n=0}^{+\infty} a_n = \ell$. Est-ce vrai sans l'hypothèse de positivité?
- (c) γ On suppose $a_n = o\left(\frac{1}{n}\right)$. Montrer que $\sum_{n=0}^{+\infty} a_n = \ell$.

552 IntG,Sf : β

(a) $\boxed{\mathrm{C}}$ Donner la définition d'une fonction continue par morceaux sur un intervalle quelconque de \mathbb{R} .

(b) α Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+$, on pose $f_n(x) = \frac{1}{n} \left(1 - \frac{x}{n}\right) 1_{0 \le x \le n}$. Tracer le graphe de f_n . Montrer que la suite (f_n) converge uniformément vers une fonction f à préciser.

suite
$$(f_n)$$
 converge uniformément vers une fonction f à préciser.
Est-il vrai que $\lim_{n\to\infty} \int_0^{+\infty} f_n = \int_0^{+\infty} f$?

(c) Énoncer le théorème de convergence dominée sur un intervalle I de \mathbb{R} .

Le démontrer sous l'hypothèse supplémentaire de convergence uniforme sur tout segment inclus dans I. On supposera sans perte de généralité que I=[a,b[avec $-\infty < a < b \leqslant +\infty$.

(d) Démonstration dans le cas discret. On suppose :

- $(f_n(k))_{n\geqslant 0}$ converge vers f(k) pour tout $k\in \mathbb{N}$;
- $\forall k \in \mathbb{N}, \forall n \in \mathbb{N}, |f_n(k)| \leq |\varphi(k)|$;
- $\big(\varphi(k)\big)_{k\in\mathbb{N}}$ est une famille sommable.

Montrer que $\sum f_n(k)$ existe pour tout n, que $\sum f(k)$ existe et que $\lim_{n \to +\infty} \sum_{k=0}^{+\infty} f_n(k) = \sum_{k=0}^{+\infty} f(k)$.

553 IntG,Sn : β

Soit, pour
$$n \in \mathbb{N}^*$$
, $I_n = \int_0^{+\infty} \frac{1}{(1+t^3)^n} dt$.

- (a) Justifier l'existence de I_n . Déterminer la limite de (I_n) .
- (b) Établir une relation entre I_{n+1} et I_n . Trouver un réel α tel que la suite $(\ln(n^{\alpha}I_n))$ converge.

554 ED,F: γ

Soit
$$f \in \mathcal{C}^1([1, +\infty[, \mathbb{R}_+^*) \text{ telle que } \lim_{x \to +\infty} f'(x) = \alpha > 0.$$

Soit $u \in \mathcal{C}^2([1, +\infty[, \mathbb{R})$ bornée et solution de l'équation différentielle $u'' - \frac{f'}{f}u' - \frac{u}{f^2} = 0$. On pose $h = \frac{u'}{f}$.

- (a) β Montrer que u'(x) = O(1/x) lorsque $x \to +\infty$.
- (b) Montrer que u^2 admet une limite ℓ en $+\infty$.
- (c) Montrer que $\ell = 0$.

555 CD : β

On munit \mathbb{R}^n de sa structure euclidienne canonique. Soit $f:\mathbb{R}^n \to \mathbb{R}$ de classe \mathbb{C}^2 .

- (a) Soit $u: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 . Montrer que $\Delta(u \circ f) = (u'' \circ f) \times \|\nabla f\|^2 + (u' \circ f)\Delta(f)$.
- (b) Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $f_M : x \mapsto f(Mx)$. Exprimer $\Delta(f_M)$.

Probabilités

556 $Pr: \beta$

- (a) On considère une urne contenant n boules blanches et n boules noires. On effectue des tirages sans remise d'une boule jusqu'à ce que les boules restant dans l'urne soient toutes de la même couleur. Soit X_n le nombre de boules restant après ces tirages. Donner la loi de X_n .
- (b) On considère maintenant deux urnes contenant chacune n boules. On effectue des tirages sans remise en choisissant à chaque fois l'une des deux urnes de manière équiprobable. On s'arrête si l'urne choisie est vide. Soit Y_n le nombre de boules restant à ce moment dans l'autre urne. Donner la loi de Y_n et un équivalent de son espérance.

557 $Pr,Sn,SE : \beta$

On lance un dé à N faces jusqu'à ce que l'on obtienne un nombre strictement inférieur au précédent.

- (a) Dénombrer les k-uplets strictement croissants à valeurs dans $[\![1,n]\!]$ puis les k-uplets croissants à valeurs dans $[\![1,n]\!]$.
- (b) On note X la variable aléatoire donnant le nombre de lancers effectués. Calculer $\mathbb{P}(X = +\infty)$.
- (c) On note $a_n = \mathbb{P}(X > n)$. Quel est le rayon de convergence de $\sum a_n t^n$? Calculer la somme.
- (d) Calculer l'espérance de X. La variable aléatoire X admet-elle un moment d'ordre 2?

Probabilités 53

558 $Pr: \beta$

(a) Soit (X,Y) un couple de variables aléatoires indépendantes suivant la loi géométrique de paramètre $p \in]0,1[$. On pose $V=\min\{X,Y\}$ et W=X-Y.

Donner la loi de (V, W). En déduire les lois de V et de W. Montrer que V et W sont indépendantes.

(b) Soient X,Y deux variables aléatoires à valeurs dans \mathbb{N}^* , indépendantes et de même loi. On suppose que, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X=n) \neq 0$, et que les variables $V = \min\{X,Y\}$ et W = X - Y sont indépendantes. Montrer que X et Y sont des variables géométriques.

559 $Pr,Sn:\beta$

- (a) C Démontrer l'inégalité de Bienaymé-Tchebycheff.
- (b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs positives sous-additive, c'est-à-dire telle que, pour tous $n,m\in\mathbb{N}$, $u_{n+m}\leqslant u_n+u_m$.

Montrer que la suite $(u_n/n)_{n\geqslant 1}$ converge vers le réel $L=\inf\{u_k/k,\ k\in\mathbb{N}^*\}$.

(c) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d et, pour n dans \mathbb{N}^* , $S_n=X_1+\cdots+X_n$. Soit a un réel strictement positif tel que $\mathbb{P}(X_1\geqslant a)>0$. Montrer que la suite $\left(\frac{1}{n}\ln(\mathbb{P}(S_n\geqslant na))\right)_{n\in\mathbb{N}^*}$ est convergente.

560 $\operatorname{Pr}: \alpha \Delta$

Soit X une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Si A est un événement non négligeable, on définit, sous réserve d'existence :

$$\mathbb{E}(X \mid A) = \sum_{x \in X(\Omega)} x \, \mathbb{P}(X = x \mid A).$$

- (a) Montrer que si X admet une espérance finie, alors $\mathbb{E}(X \mid A)$ est bien définie.
- (b) Si X suit la loi géométrique de paramètre $p \in]0,1[$, calculer $\mathbb{E}(X \mid X > m)$ pour $m \in \mathbb{N}$.
- (c) Montrer que si $(A_k)_{k\in\mathbb{N}}$ est un système complet d'événements et si X est d'espérance finie, alors $\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(A_k) \, \mathbb{E}(X \mid A_k)$.

561 Pr : $\beta \Delta$

Soit $(X_i)_{i \ge 0}$ une suite i.i.d. de variables de Rademacher.

On pose, pour $n \in \mathbb{N}^*$, $S_n = X_1 + \cdots + X_n$.

- (a) Montrer: $\forall t \in \mathbb{R}$, $\operatorname{ch} t \leqslant e^{t^2/2}$.
- (b) Soit s>0. Montrer que $\mathbb{P}(S_n\geqslant s)\leqslant \exp\left(\frac{nt^2}{2}-ts\right)$. En déduire une majoration de $\mathbb{P}(|S_n|\geqslant s)$. Optimiser cette majoration.
- (c) Soit $\alpha > 1/2$. Montrer que $\mathbb{P}\left(\bigcap_{n=1}^{+\infty}\bigcup_{k=n}^{+\infty}|S_k| \geqslant k^{\alpha}\right) = 0$.
- (d) Montrer que la suite (S_n/n) converge presque sûrement vers 0.

562 $Pr: \gamma$

On pose, pour $x \in \mathbb{R}$, $\gamma(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ et l'on admet que $\int_{\mathbb{R}} \gamma = 1$.

(a) α Montrer que l'intégrale est bien définie.

Soit $(X_k)_{k\geqslant 0}$ une suite i.i.d. de variables de Rademacher. On pose, pour $n\in\mathbb{N}^*$, $S_n=\frac{1}{\sqrt{n}}\sum_{k=1}^n X_k$.

- (b) α Soit $P = X^p$ avec p entier impair. Montrer que $\mathbb{E}(P(S_n)) = \int_{\mathbb{R}} P(t)\gamma(t)dt = 0$.
- (c) β Soit $m \in \mathbb{N}$. Calculer $\int_{\mathbb{R}} x^{2m} \gamma(x) dx$.
- (d) Soit $Q \in \mathbb{R}[X]$. Montrer que $\mathbb{E}(Q(S_n)) \underset{n \to +\infty}{\longrightarrow} \int_{\mathbb{R}} Q\gamma$.

564 $Pr,F: \alpha \Delta$

Soient X une variable aléatoire à valeurs dans \mathbb{N} et G sa fonction génératrice. On considère une famille $(X_{n,p})_{(n,v)\in\mathbb{N}^{*2}}$ de variables aléatoires indépendantes de même loi que X.

On définit une suite $(Y_n)_{n\in\mathbb{N}}$ de variables aléatoires par $Y_0=1$ et $\forall n\in\mathbb{N},\ Y_{n+1}=\sum\limits_{i=1}^{Y_n}X_{i,n}$. On note G_n la fonction génératrice de Y_n .

- (a) Montrer que G est croissante convexe et dérivable sur [0,1].
- **(b)** γ Montrer la relation $G_{n+1} = G_n \circ G$.

565 AQ,Red,SE : β

Soit $H \in \mathcal{S}_n(\mathbb{R})$.

- (a) Montrer qu'il existe une famille $(P_i)_{1 \leqslant i \leqslant k}$ de projecteurs orthogonaux et une famille $(\lambda_i)_{1 \leqslant i \leqslant k}$ de réels tels que $H = \sum_{i=1}^k \lambda_i P_i$, $\sum_{i=1}^k P_i = I_n$ et, pour tous $i \neq j$, $P_i P_j = 0$.
- (b) Soit $R \in \mathcal{S}_n^+(\mathbb{R})$ de trace 1. On pose $p_i = \text{Tr}(RP_i)$ pour tout $i \in [\![1,k]\!]$. Montrer que (p_i) représente une distribution de probabilités.
- (c) Soient f une fonction polynomiale et X une variable aléatoire à valeurs dans $\{\lambda_1, \ldots, \lambda_k\}$ telle que $\mathbb{P}(X = \lambda_i) = p_i$. Montrer que $\mathbb{E}(f(X)) = \text{Tr}(Rf(H))$. Généraliser à une fonction f développable en série entière.

566 Pr,Sf : α

Soit X une variable aléatoire à valeurs réelles. On suppose que $X(\Omega) = \{x_n, n \in \mathbb{N}\}$.

- (a) Montrer que $\varphi_X: t \mapsto \sum_{n=0}^{+\infty} e^{itx_n} \mathbb{P}(X=x_n)$ est définie et continue sur \mathbb{R} .
- (b) On suppose que X suit la loi de Poisson de paramètre $\lambda > 0$. Exprimer $\varphi_X(t)$.
- (c) On suppose que X possède un moment d'ordre 2. Montrer que φ_X est de classe \mathcal{C}^2 . Exprimer $\mathbb{E}(X)$ et $\mathbb{V}(X)$ à l'aide de φ_X .

Centrale Python - MP - 2021

Algèbre

Pr,SE $\mathbf{e}: \beta$ 601

On appelle permutation alternante une permutation $\sigma \in \mathcal{S}_n$ vérifiant

$$\forall i \in [1, n-1], (\sigma(i+1) - \sigma(i)) \times (-1)^{i+1} > 0.$$

- (a) Déterminer l'ensemble des permutations alternantes pour n=2, n=3, n=4.
- (b) Écrire une fonction alternante renvoyant, pour une permutation donnée, True si elle est alternante, False sinon.
- (c) Montrer la relation de récurrence $2A_{n+1} = \sum_{k=0}^{n} {n \choose k} A_k A_{n-k}$ pour tout $n \in \mathbb{N}^*$.

On pose $a_n = \frac{A_n}{n!}$ et $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

- (d) Que peut-on dire du rayon de convergence de la série entière définissant f?
- (e) Écrire une fonction calculant les premières valeurs de la suite (a_n) et conjecturer le rayon de convergence de la série $\sum a_n x^n$.
- (f) Calculer f. Cela confirme-t-il la conjecture?

On note S_n le groupe des permutations de [1, n]. Pour G un groupe fini, on pose $|\{y \in G, y\}|$

$$p_G = \frac{\left| \{ (x, y) \in G^2, \ xy = yx \} \right|}{|G \times G|} \quad \text{et, pour } x \in G, \qquad p_x = \frac{\left| \{ y \in G, \ xy = yx \} \right|}{|G|}.$$

On dit que x est conjugué à y dans G s'il existe $z \in G$ tel que $y = zxz^{-1}$. On admet que cela définit une relation d'équivalence sur G. On note N_G le nombre de classes d'équivalence pour cette relation.

- (a) Soit $c = (a_1 \cdots a_r)$ un r-cycle de [1, n]. Pour $\sigma \in \mathcal{S}_n$, montrer que $\sigma c \sigma^{-1}$ est un r-cycle que l'on déterminera.
- (b) Coder une fonction donnant une permutation aléatoire de [1, n].

Coder une fonction qui approxime p_{S_n} et tracer p_{S_n} pour $n \in [1, 5]$.

- (c) Justifier les valeurs de p_{S_1} , p_{S_2} et p_{S_3} .
- (d) (i) Soient x et y conjugués. Montrer que $p_x = p_y$.
 - (ii) Soient x et y conjugués. Montrer que $|\{s \in G, y = sxs^{-1}\}| = |\{t \in G, tx = xt\}|$
 - (iii) Montrer que $p_G = \frac{N_G}{|G|}$
- 603

Soit $n \in \mathbb{N}^*$. Pour $\sigma \in \mathcal{S}_n$, on note M_{σ} le nombre d'éléments $i \in [1, n]$ tels que $\sigma(i)$ soit strictement supérieur à tous les $\sigma(k)$, pour k < i.

Pour $i \in [1, n]$, on note M(i, n) le nombre de permutations de S_n telles que $M_{\sigma} = i$.

- (a) Écrire une fonction qui prend en argument une liste de réels distincts et qui retourne le nombre d'éléments de la liste strictement plus grands que tous les précédents.
- (b) Extrict une fonction qui retourne M(i,n).

On pourra utiliser la fonction itertools.permutations.

Comment pourrait-on estimer M(i, n) pour de grandes valeurs de n?

- (c) Soit $n \in \mathbb{N}^*$.
 - (i) Calculer M(1,n) et M(n,n).
 - (ii) Montrer que, pour tout $i \in [2, n-1]$, M(i, n) = M(i-1, n-1) + (n-1)M(i, n-1).

On admet que la quantité M(i,n) définie pour les permutations de [1,n] est inchangée si l'on considère les permutations d'une partie quelconque de \mathbb{N} de cardinal n.

Pour la suite, on pose M(0,0)=1 et M(0,n)=0 si $n\in\mathbb{N}^*$ de telle sorte que la relation (*) reste vraie pour tout $n \in \mathbb{N}^*$ et $i \in [1, n]$.

- (d) On définit la matrice $A = (a_{i,j})_{1 \leq i,j \leq n}$ par $a_{i,j} = (-1)^{j-i} M(j,i)$.
 - (i) Ecrire une fonction A(n) qui renvoie A de taille n. Afficher A(6).

- (ii) Montrer que A est inversible.
- (iii) Pour $k, p \leq n$, on définit la quantité $B(k, p) = \sum_{j=0}^{p} {p \choose k} k! (A^{-1})_{k,j}$. Conjecturer le comportement de B(k, p).
- (e) On définit $P_k = \sum_{j=0}^n a_{k,j} X^j$.
 - (i) Exprimer P_k en fonction de P_{k-1} et en déduire une expression factorisée de P_k .
 - (ii) Exprimer X^k à l'aide de P_0, \ldots, P_n et des coefficients de A^{-1} .
 - (iii) En déduire une démonstration de la conjecture sur B(k, p).
- (f) Montrer que le nombre moyen de M_{σ} , pour σ parcourant S_n est $m_n = \sum_{j=1}^n \frac{1}{j}$.

On pourra introduire P'_n .

604 AG **e** : β

Soit $\varphi : \mathbb{N} \to \mathbb{N}$ telle que $\varphi(0) = 0$, $\varphi(1) = 1$ et : $\forall n \in \mathbb{N}$, $\varphi(2n) = \varphi(n)$, $\varphi(2n+1) = \varphi(n) + \varphi(n+1)$.

- (a) Coder en python la fonction pgcd.
- **(b)** Coder la fonction φ .
- (c) Calculer à l'aide de python certaines valeurs de $\operatorname{pgcd}(\varphi(n), \varphi(n+1))$. Faire une conjecture et la démontrer. Soient $P = \{(a,b) \in \mathbb{N}^2, \operatorname{pgcd}(a,b) = 1\}$ et $\Phi : n \in \mathbb{N} \mapsto (\varphi(n), \varphi(n+1))$.
- (d) Montrer que $\Phi(\mathbb{N}) = P$.
- (e) Montrer que Φ est injective. En déduire une bijection entre \mathbb{Q}_+ et \mathbb{N} .
- (f) Coder la fonction réciproque de Φ , en complexité raisonnable. Tester pour 3^{100} .

605 AG **4** : β

Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$ et l'on note $H_n = \frac{A_n}{B_n}$, avec $A_n \wedge B_n = 1$.

On souhaite étudier la propriété (\mathcal{P}) : « pour tout p premier, on a $p^2 \mid A_{p-1}$. »

- (a) (i) Écrire une fonction pgcd qui renvoie le pgcd de deux entiers.
 - (ii) Déterminer, en fonction d'un pgcd et de A_{k-1}, B_{k-1} , les expressions de A_k et B_k .
 - (iii) Écrire une fonction qui calcule A_n pour un n donné. Calculer A_{16} .
 - (iv) Vérifier la propriété \mathcal{P} jusqu'à 500

On pourra utiliser sympy.primerange ou sympy.nextprime.

- (b) Montrer le théorème de Wilson : p est premier si et seulement si $(p-1)! \equiv -1$ [p]. On considère désormais un nombre premier $p \geqslant 5$.
- (c) Pour $k \in [1, p-1]$, on pose $a_k = \frac{(p-1)!}{k(p-k)}$

Exprimer $\sum_{k=1}^{p-1} a_k$ en fonction de H_{p-1} . En déduire que p divise A_{p-1} .

(d) Montrer que $k^2 a_k \equiv 1$ [p] pour tout $k \in [1, p-1]$. En déduire que p divise $\sum_{k=1}^{p-1} a_k$ et conclure.

606 AG **᠙** : β

On dit qu'un entier p vérifie la propriété (*) si p est un nombre premier impair tel que 2p+1 soit premier.

- (a) À l'aide de Python, afficher les 2021 plus petits entiers vérifiant la propriété (*).
- (b) On veut montrer que pour un entier p vérifiant la propriété (*), il n'existe pas de solution entière à l'équation $x^p + y^p + z^p = 0$ avec la condition $p \nmid xyz$. On suppose qu'il existe une telle solution. Justifier qu'il existe x, y, z premiers entre eux tels que $x^p + y^p + z^p = 0$ et $p \nmid xyz$.
- (c) Montrer que $x^p = (y+z) \sum_{k=0}^{p-1} (-1)^{k+1} y^k z^{p-1-k}$.
- (d) Montrer que y+z et $\sum_{k=0}^{p-1} (-1)^{k+1} y^k z^{p-1-k}$ sont premiers entre eux.
- (e) Justifier qu'il existe des entiers A et S tels que $y+z=A^p$ et $\sum\limits_{k=0}^{p-1}(-1)^{k+1}y^kz^{p-1-k}=S^p$. De même, montrer qu'il existe B et C dans $\mathbb Z$ tels que $x+z=B^p$ et $x+y=C^p$.
- (f) γ Conclure.

Algèbre 57

607 AG **?** : α

Pour $n \in \mathbb{N}^*$, soient v(n) la 2-valuation de n, s(n) la somme des chiffres de n en base 2.

- (a) Écrire deux programmes Python donnant v(n) et s(n).
- (b) Pour m et n dans \mathbb{N}^* , exprimer v(mn) en fonction de v(m) et v(n).
- (c) En utilisant Python, montrer que, si $2 \le n \le 10000$, v(n) = s(n-1) s(n) + 1.
- (d) Montrer que le résultat de la question précédente est vrai pour tout entier $n \ge 2$.
- (e) Pour $n \in \mathbb{N}^*$, exprimer v(n!) en fonction de s(n) et n.
- (f) Déterminer les entiers $n \ge 2$ tels que $\binom{n}{k}$ soit pair pour tout $k \in \{1, \dots, n-1\}$.

608 AG **\(\rightarrow** \): α

Pour tout $n \in \mathbb{N}^*$, on note D(n) l'ensemble des diviseurs positifs de n. On dit que $n \in \mathbb{N}^*$ est pratique si, pour tout $m \in \{1, 2, \dots, \sigma(n)\}$ où $\sigma(n) = \sum_{d \in D(n)} d$, il existe $A \subset D(n)$ tel que $m = \sum_{d \in A} d$.

- (a) (i) Écrire une fonction D(n) qui retourne la liste des diviseurs de n.
 - (ii) On admet le résultat suivant : si les diviseurs de n sont $1 = d_1 < \cdots < d_r = n$, alors n est pratique si et seulement si $\forall k \in [\![1,r-1]\!]$, $d_{k+1} \leqslant 1 + \sum\limits_{i=1}^k d_i$.

Écrire une fonction pratique(n) qui indique si n est pratique.

La tester avec $n \in \{10, 12, 2021\}$.

- (iii) Écrire une fonction qui retourne la liste des 20 premiers nombres pratiques.
- (b) Montrer que tout nombre pratique $n \ge 2$ est pair.
- (c) Montrer que 2^k est pratique pour tout $k \in \mathbb{N}$.
- (d) Montrer le résultat admis en (a)(ii).
- (e) Montrer que si n est pratique, alors $2n \leq 1 + \sigma(n)$.

609 AG **?** : β

Pour $n \in \mathbb{N}^*$, soient P(n) l'ensemble des nombres premiers inférieurs ou égaux à n, $\pi(n)$ leur cardinal, et p(n) leur produit.

- (a) (i) Coder une fonction qui donne $\binom{n}{k}$.
 - (ii) Coder une fonction qui donne P(n), une autre qui donne p(n).
- **(b)** (i) Montrer: $\forall n \geqslant 1, \ \frac{4^n}{2\sqrt{n}} \leqslant {2n \choose n} \leqslant 4^n$.
 - (ii) Montrer: $\forall n \geqslant 1, \binom{2n+1}{n} \leqslant 4^n$.
- (c) Montrer que $p(n) \leq 4^n$. Ind. Majorer p(2k+1) en fonction de p(k+1) et de k.
- (d) Montrer: $\forall n \geqslant 14, \ \pi(n) \leqslant \frac{n}{2} 1.$

610 AG **\(\rightarrow** \): α

Pour tout x > 0, on note $\pi(x)$ le nombre d'entiers premiers inférieurs ou égaux à x.

- (a) (i) Coder le crible d'Ératosthène : crible(n) retourne une liste L de taille n+1 telle que L[p] indique si $p \in [0, n]$ est premier.
 - (ii) Tracer le graphe de π et de $f: x \mapsto \frac{x}{3} + 2$ sur]0, 100]. Conjecture?
 - (iii) Montrer que tout nombre premier $p \ge 4$ est congru à 1 ou 5 modulo 6. Prouver la conjecture.
- (b) (i) Étudier les variations de $\binom{2n}{k}$ pour $k \in [0, 2n]$. Minimum? Maximum?
 - (ii) Montrer que $\forall n \in \mathbb{N}^*, \binom{2n}{n} \geqslant \frac{4^n}{2n}$.
- (c) Montrer que, pour tout $m \in \mathbb{N}^*$, on a $\prod_{\substack{m+1 \leqslant p \leqslant 2m+1 \\ n \text{ possible}}} p \leqslant {2m+1 \choose m} \leqslant 4^m$.
- (d) En déduire que $\pi(x) = O\left(\frac{x}{\ln x}\right)$.

611 AG **?** : β

On note, pour $n \in \mathbb{N}^*$, $\tau(n)$ le nombre de diviseurs de n, et $\sigma(n)$ leur somme.

Par exemple, $\sigma(6) = 1 + 2 + 3 + 6 = 12$ et $\tau(6) = 4$.

- (a) Coder en Python ces deux fonctions et vérifier les valeurs pour n = 2020.
- (b) Afficher tous les entiers naturels entre 1 et 1000 inclus tels que $\sigma(\tau(n)) = n$, puis $\tau(\sigma(n)) = n$.
- (c) Montrer que $\tau(n) \leq 2\sqrt{n}$.
- (d) Montrer que $\sigma(n) \leqslant n + \sum_{1 \leqslant k \leqslant n/2} k$ puis en déduire que $\sigma(n) \leqslant \frac{1}{8}(n^2 + 10n)$.
- (e) Trouver tous les entiers n tels que $\sigma(\tau(n)) = n$.
- (f) Trouver tous les entiers n tels que $\tau(\sigma(n)) = n$.
- (g) Soit P et Q deux polynômes à coefficients entiers relatifs et irréductibles dans $\mathbb{Q}[X]$.

Montrer que s'il existe un nombre premier p qui divise P(n)Q(n) pour tout $n \in \mathbb{N}$, alors l'ensemble des entiers naturels n tels que P(n) et Q(n) soient simultanément premiers est fini.

On admet la réciproque qui reste encore aujourd'hui une conjecture (hypothèse H de Schinzel affaiblie).

- (g) Montrer qu'il existe une infinité de nombres premiers p tels que $\frac{p^2+p+1}{3}$ est premier.
- (h) Soit J l'ensemble des n tels que $\sigma(\tau(n)) = \tau(\sigma(n))$. Montrer que J est infini.

612 Red,Pol \mathbf{e} : β

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On considère une matrice $A \in \mathcal{M}_n(\mathbb{K})$ dont le polynôme caractéristique χ_A est scindé. On pose $P = \frac{\chi_A}{\chi_A \wedge \chi_A'}$. On note $\lambda_1, \ldots, \lambda_r$ les valeurs propres distinctes de A. On définit enfin une suite de matrices par : $A_0 = A$ et pour tout $k \in \mathbb{N}$, $A_{k+1} = A_k - P(A_k)(P'(A_k))^{-1}$.

- (a) Montrer que $P = \prod_{k=1}^{r} (X \lambda_k)$ et que P(A) est nilpotente.
- **(b)** On pose $B = \begin{pmatrix} 1 & 3 & 6 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$.

Soit U une matrice à coefficients dans]0,1[choisie aléatoirement et $A=UBU^{-1}$.

- (i) Calculer P et P' manuellement.
- (ii) Avec Python, calculer les A_k pour $k \in \{0, ..., 4\}$. On pose $D = A_4$ et N = A D. Calculer N, N^2, N^3, ND, DN .
- (c) On revient au cas général. Vérifier rapidement que $\mathbb{K}[A] = \{Q(A), Q \in \mathbb{K}[X]\}$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$. Montrer que $\mathbb{K}[A] \cap \mathcal{GL}_n(\mathbb{K})$ est un sous-groupe de $\mathcal{GL}_n(\mathbb{K})$.
- (d) Soit $Q \in \mathbb{K}[X]$ et $M \in \mathcal{M}_n(\mathbb{K})$ une matrice telle que P'(M) soit inversible. Montrer qu'il existe une matrice $M_1 \in \mathbb{K}[M]$ qui vérifie :

$$Q(M - P(M)P'(M)^{-1}) = Q(M) - P(M)P'(M)^{-1}Q'(M) - (P(M)P'(M)^{-1})^{2}M_{1}.$$

- (e) Montrer que pour tout $k \in \mathbb{N}$, $P'(A_k)$ est inversible et qu'il existe $B_k \in \mathbb{K}[A]$ tel que $P(A_k) = P(A)^{2^k} B_k$.
- (f) Montrer qu'il existe une matrice diagonalisable D et une matrice nilpotente $N \in \mathcal{M}_n(\mathbb{K})$ telles que A = D + N et DN = ND.

613 AQ **?** : β

Soit E un espace euclidien. On dit qu'une famille $(x_1, \ldots, x_n) \in E^n$ vérifie la propriété P si :

$$\forall k \in [1, n], ||x_k|| = 1$$
 et $\forall (i, j) \in [1, n]^2, i \neq j \Rightarrow ||x_i - x_j|| = 1.$

- (a) On suppose E de dimension n.
 - Si l'on dispose d'un (n-1)-uplet de E vérifiant P, comment obtenir un n-uplet vérifiant P?
- (b) Écrire une fonction f(v,liste) qui prend en arguments un vecteur v de taille n et une liste de n-1 vecteurs v_1, \ldots, v_{n-1} de taille n et qui renvoie la liste (S_0, \ldots, S_{n-1}) définie par :

$$s_0 = ||v||^2 - 1$$
 et $\forall k \in [1, n-1], \ s_k = ||v - v_k||^2 - 1.$

(c) Écrire une fonction solution(n) qui renvoie un n-uplet de vecteurs de \mathbb{R}^n vérifiant P.

Ind. Avec une liste de n-1 vecteurs vérifiant P, introduire la fonction $g:v\mapsto f(v,liste)$ et résoudre l'équation g(v)=0 à l'aide de scipy.optimize.fsolve.

Algèbre 59

(d) Soient $U \in \mathcal{M}_{n,1}(\mathbb{R})$ ne contenant que des 1 et $A = I_n + UU^T$. Résoudre AX = U (on pourra s'aider d'une conjecture avec Python).

- (e) Soit $(x,y) \in E^2$. Exprimer $\langle x,y \rangle$ en fonction de ||x||, ||y|| et ||x-y||.
- (f) Montrer que toute famille qui vérifie P est libre.
- (g) On suppose dim E=n>k et l'on considère une famille (x_1,\ldots,x_k) vérifiant P. Montrer l'existence de x_0 tel que (x_0,\ldots,x_k) vérifie P.
- (h) Écrire une fonction donnant une famille de n vecteurs de \mathbb{R}^n vérifiant P.

614 Red,F **?** : β

Soit, pour
$$n \ge 2$$
 et $t \in \mathbb{R}$, $M_n(t) = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ \vdots & & & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & & \ddots & \vdots \\ 1 & 0 & \cdots & 0 & t \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

- (a) Justifier la diagonalisabilité de $M_n(t)$. Écrire une fonction renvoyant les valeurs propres de $M_n(t)$ rangées dans l'ordre croissant. Écrire une fonction donnant le déterminant de $M_n(t)$.
- (b) Pour n=3, on note $\alpha(t) \leq \beta(t) \leq \gamma(t)$ les valeurs propres de $M_3(t)$. Tracer les graphes de α, β, γ . Conjectures sur la monotonie et les limites?
- (c) Prouver ces conjectures.

615 AQ,Red $\mathbf{e} : \beta$

Soit
$$A = \begin{pmatrix} 0 & 2 & 1 & -1 \\ 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 0 & -1 & 1 \end{pmatrix}$$
.

- (a) Avec Python.
 - (i) Calculer les valeurs propres et les vecteurs propres de A; donner une base orthonormée de vecteurs propres de A
 - (ii) On pose $V=(1\ 1\ 1\ 1)^T$. Pour U_1 vecteur propre de A, calculer $\langle U_1,V\rangle$ puis les valeurs propres de $A+U_1\,V^T$. Commenter.
 - (iii) Calculer les valeurs propres et les vecteurs propres de $A + 3VV^T$. Commenter.
- (b) Montrer que $M \in \mathcal{M}_n(\mathbb{R})$ est de rang 1 si et seulement s'il existe U et V non nuls dans \mathbb{R}^n tels que $M = UV^T$.
- (c) Montrer que $\det(I_n + XY^T) = 1 + X^TY$ pour tous X et Y dans \mathbb{R}^n .
- (d) Montrer que la matrice A du début d'énoncé est diagonalisable.

On suppose maintenant que $A \in \mathcal{M}_n(\mathbb{R})$ a des valeurs propres distinctes $\lambda_1 < \cdots < \lambda_n$, de vecteurs propres associés U_1, \ldots, U_n .

- (e) Soit $\lambda \in \mathbb{R}$ non valeur propre de A. Montrer que $U_k = (\lambda_k \lambda)(A \lambda I_n)^{-1} U_k$.
- (f) Déterminer les valeurs propres de A+M, avec $M=U_k(1 \cdots 1)$.

616 AQ **?**: β

Soit f l'application qui à $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{O}_n(\mathbb{R})$ associe $\sum_{1 \leq i,j \leq n} |a_{i,j}|$.

- (a) Montrer que f est bornée et atteint ses bornes.
- (b) $\lceil \gamma \rceil$ Avec Python, conjecturer les valeurs du minimum m et du maximum M de f sur $\mathcal{O}_n(\mathbb{R})$.
- (c) Trouver m et les matrices $A \in \mathcal{O}_n(\mathbb{R})$ telles que f(A) = m.
- (d) Montrer que $M \leq n\sqrt{n}$.

Soit B_n l'ensemble des matrices A de $\mathcal{O}_n(\mathbb{R})$ à coefficients dans $\{-1,1\}$ et telles que $A^TA = nI_n$. Montrer que $M = n\sqrt{n}$ si et seulement si B_n est non vide.

(e) Quels sont les ensembles non vides parmi B_2, B_3, B_4, B_5 ?

617 AQ **?** : α

On munit $\mathbb{R}^n = \mathcal{M}_{n,1}(\mathbb{R})$ de sa structure euclidienne canonique. Pour $X \in \mathbb{R}^n$, on pose $H_X = I_n - \frac{2}{\|X\|^2} X X^T$ si $X \neq 0$ et $H_0 = I_n$.

- (a) (i) Coder une fonction H qui calcule H_X .
 - (ii) Pour $X = (1, 1, 1, 1)^T \in \mathbb{R}^4$, calculer $H_X H_X^T$ et déterminer le spectre de H_X .
 - (iii) Pour $X \neq 0$, montrer que H_X est la matrice de la symétrie orthogonale par rapport à l'hyperplan X^{\perp} .
- (b) (i) Soient Y et Z dans \mathbb{R}^n de norme 1. Montrer qu'il existe $X \in \mathbb{R}^n$ tel que $H_XY = Z$. Ind. Faire un dessin!
 - (ii) Coder une fonction qui donne $X \in \mathbb{R}^n$ tel que $H_X Y = ||Y|| E_1$, où $E_1 = (1 \ 0 \ \cdots \ 0)^T$.
- (c) Soit $A \in \mathcal{GL}_n(\mathbb{R})$. On note C_1 sa première colonne et $X \in \mathbb{R}^n$ tel que $H_XC_1 = ||C_1|| E_1$. Expliciter au maximum H_XA .
- (d) Soit $A \in \mathcal{GL}_n(\mathbb{R})$. Montrer qu'il existe $Q \in \mathcal{O}_n(\mathbb{R})$ et T triangulaire supérieure à coefficients diagonaux strictement positifs tels que A = QT. Cette décomposition est-elle unique?
- (e) Donner un algorithme permettant d'obtenir une telle décomposition QR.

618 AQ,AG **4** : β

Soient $0 \le \lambda_1 \le \cdots \le \lambda_n$ et $(x_1, \dots, x_n) \in (\mathbb{N}^*)^n$.

On pose $M = (\min(\lambda_i, \lambda_j))_{1 \le i, j \le n}$ et $D = (x_i \land x_j)_{1 \le i, j \le n}$.

(a) Coder matmin(L) et matpgcd(L) qui retournent respectivement les matrices :

$$\left(\min(\mathtt{L[i]},\mathtt{L[j]})\right)_{1\leqslant i,j\leqslant n} \quad \text{ et } \quad \left(\mathtt{L[i]}\wedge\mathtt{L[j]}\right)_{1\leqslant i,j\leqslant n}.$$

Montrer qu'elles sont dans $\mathcal{S}_n^+(\mathbb{R})$ pour diverses listes L.

- (b) Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$ si et seulement si $\forall X \in \mathbb{R}^n, X^T A X \geq 0$.
- (c) Montrer que toute combinaison linéaire à coefficients positifs d'éléments de $\mathcal{S}_n^+(\mathbb{R})$ est encore dans $\mathcal{S}_n^+(\mathbb{R})$.
- (d) Montrer que la matrice M correspondant aux suites $(0, \ldots, 0, 1, \ldots, 1)$ est dans $\mathcal{S}_n^+(\mathbb{R})$. En déduire qu'il en est de même pour toutes les suites $(\lambda_1, \ldots, \lambda_n)$.
- (e) Si $A = (a_{i,j})_{1 \leq i,j \leq n}$ et $B = (b_{i,j})_{1 \leq i,j \leq n}$ sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, on note A * B la matrice $(a_{i,j}b_{i,j})_{1 \leq i,j \leq n}$.

Exprimer la matrice D en fonction des matrices $E^{(p)} = \left(p^{\min(v_p(x_i),v_p(x_j))}\right)_{1\leqslant i,j\leqslant n}$, où p parcourt l'ensemble des nombres premiers diviseurs d'au moins un des x_i .

(f) Montrer que $D \in \mathcal{S}_n^+(\mathbb{R})$.

Analyse

619 Top,Sf ***** : β

Soit $n \in \mathbb{N}^*$. On note P_n l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ n'ayant pas de valeur propre réelle négative.

On pose : $f: A \mapsto (A - I_n) \int_0^1 (s(A - I_n) + I_n)^{-1} ds$.

- (a) Montrer que f est bien définie sur P_n .
- (b) Coder l'exponentielle matricielle via une somme partielle de 100 termes.

Coder f. On pourra approcher f(A) par la méthode des rectangles.

- (c) Pour une matrice A aléatoire de taille 5, calculer $f(\exp A)$ et $\exp f(A)$ lorsque c'est possible. Conjecture?
- (d) Montrer que $M \mapsto ||M|| = \sqrt{\text{Tr}(M^T M)}$ est une norme sous-multiplicative.
- (e) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $||A I_n|| < 1$.
 - (i) Montrer que $A \in P_n$.
 - (ii) Écrire f(A) comme la somme d'une série.
 - (iii) Montrer que $\exp f(A) = A$.

Analyse 61

620 Sn,Sf ***** : β

Soit $(u_n) \in [0,1]^{\mathbb{N}^*}$.

On pose, pour $t \in [0,1]$ et $N \in \mathbb{N}^*$, $F_N(t) = \frac{1}{N} \operatorname{card} \{n \in [1,N], u_n \leq t\}$. On suppose que (F_N) converge simplement vers une fonction F appelée fonction de répartition asymptotique (FRA).

- (a) (i) Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{n}{\pi} \lfloor \frac{n}{\pi} \rfloor$. Coder en Python la fonction $F(t, \mathbb{N})$. Tracer $t \mapsto F(t, 100)$. Faire une conjecture sur F. On admet ce résultat pour la suite.
 - (ii) γ On considère maintenant la suite (v_n) telle que, pour $n \in \mathbb{N}^*$, $v_n = |\cos(n)|$. Tracer la FRA associée à (v_n) . Tracer le graphe de $t \mapsto 1 \frac{2\arccos(t)}{\pi}$. Faire une conjecture et la démontrer.

621 Sn **4** : α

Pour $x \in \mathbb{R}$, on pose $\{x\} = x - \lfloor x \rfloor$. On dit qu'une suite $(u_n)_{n \geqslant 1}$ est équirépartie modulo 1 si, pour tout couple $(a,b) \in \mathbb{R}^2$ avec $0 \leqslant a < b < 1$, on a $\lim_{n \to +\infty} \frac{1}{n} \operatorname{card} \left\{ k \in \llbracket 1,n \rrbracket, \; \{u_k\} \in [a,b] \right\} = b-a$.

- (a) (i) Définir une fonction c(u,n,a,b) qui calcule : $C_n(a,b) = \operatorname{card} \{k \in [1,n] : \{u_k\} \in [a,b]\}$.
 - (ii) Afficher les 500 premiers termes de $C_n(a,b)$ lorsque $u_n = \sqrt{n}$ pour a = 0 et b = 1/2, puis pour d'autres couples (a,b). Faire une conjecture.
 - (iii) Idem avec $u_n = \ln n$, puis avec $u_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$.
- (b) On prend $u_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$. Trouver v tendant vers 0 telles que u+v soit à valeurs entières. En déduire que u n'est pas équirépartie modulo 1.
- (c) On pose $u_n = \sqrt{n}$.
 - (i) Soit $k \in [1, n]$.

Montrer que $\{u_k\} \in [a,b]$ si et seulement s'il existe un entier p tel que $(p+a)^2 \leqslant k \leqslant (p+b)^2$.

- (ii) En déduire un encadrement de $C_n(a,b)$ à l'aide de $\sum_{n=1}^{\lfloor \sqrt{n} \rfloor} (b^2 a^2 + 2p(b-a))$.
- (iii) Montrer que (u_n) est équirépartie modulo 1.
- (d) La suite $(\ln n)$ est-elle équirépartie modulo 1?

622 F,Sn **\(\bigsigma \)**: β

Pour t > 0, on considère $f_t : x \in \mathbb{R} \to e^{-tx} \in \mathbb{R}$.

On note $\Gamma_t = \{(x, f_t(x)), x \in \mathbb{R}\}$. Soit le point $P = (\frac{1}{2}, 0)$. On note u_t l'abscisse pour laquelle la distance entre le point P et la courbe Γ_t est minimale.

- (a) Montrer l'existence et l'unicité de u_t .
- (b) Représenter les u_k pour k entier compris entre 1 et 20. Conjecture?
- (c) Montrer que, pour tout t > 0, $\frac{1}{2} \le u_t \le 1$.
- (d) Montrer que $(u_k)_{k\in\mathbb{N}}$ est monotone et qu'elle converge vers une limite ℓ .
- (e) Comment déterminer avec python le comportement de $\sum (u_n \ell)$?
- (f) Montrer la convergence de $\sum (u_n \ell)$.

623 IntS,F $\ \ \, \theta$: β

Soit f une fonction continue de [0,1] dans \mathbb{R} . Pour $n \in \mathbb{N}^*$, soient

$$S_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \qquad U_n(f) = n\left(S_n(f) - \int_0^1 f\right) \qquad \text{et} \qquad V_n(f) = (n+1)S_{n+1}(f) - nS_n(f).$$

- (a) C Étudier la convergence de la suite $(S_n(f))_{n\geqslant 1}$.
- (b) Représenter $V_n(f)$ pour $1 \le n \le 20$ si f est la fonction racine carrée, puis si f est la fonction cube. Que peut-on conjecturer?
- (c) On suppose f de classe C^1 . On pose, pour $n \in \mathbb{N}^*$,

$$g_n: x \in [0,1] \mapsto \frac{1}{n} \sum_{k=0}^{n-1} \left(f\left(\frac{k+x}{n}\right) - f\left(\frac{k}{n}\right) \right)$$
 et $I_n(f) = \int_0^1 g_n(x) dx$.

Montrer que $(I_n(f))_{n\geqslant 1}$ converge vers 0. Exprimer $I_n(f)$ en fonction de f(0), f(1) et $U_n(f)$. En déduire les limites de $(U_n(f))_{n\geqslant 1}$ et $(V_n(f))_{n\geqslant 1}$.

(d) On pose $f: x \mapsto \sum_{n=1}^{+\infty} \frac{\cos(2\pi n! x)}{n^{3/2}}$. Montrer que f est définie et continue sur \mathbb{R} . Étudier la suite $(U_n(f))_{n\geqslant 1}$.

624 Sn,SE \mathbf{e} : β

On note, pour $(a, b) \in \mathbb{N} \times \mathbb{N}^*$, $a \mod b$ et $a \operatorname{div} b$ le reste et le quotient de la division de a par b. Soit A un entier supérieur ou égal à 3.

On considère la suite u définie par : $\forall n \in \mathbb{N}^*, \ u_n = \left(A^{n^2+n} \mod \left(A^{2n} - A^n - 1\right)\right) \mod A^n$.

On note (F_n) la suite de Fibonacci définie par $F_0=0\,,\ F_1=1$ et $F_{n+2}=F_{n+1}+F_n\,.$

- (a) Écrire une fonction en Python qui affiche les termes d'indices 1 à 20 des suites (F_n) et (u_n) . Conjecture?
- (b) Montrer que u est bien définie en montrant que $A^{2n} A^n 1 \in \mathbb{N}^*$ pour tout $n \in \mathbb{N}^*$.
- (c) Calculer u_1 .
- (d) Déterminer le rayon de convergence R de la série entière $S(x) = \sum_{n=1}^{+\infty} F_n x^n$.
- (e) Calculer S(x) pour $x \in]-R, R[$.
- (f) Soit $n \in \mathbb{N}^*$. Montrer que $u_n = (A^{n^2+n} \operatorname{div} (A^{2n} A^n 1)) \operatorname{mod} A^n$.
- (g) Montrer que $F_n \leqslant A^{n-1}$ pour tout $n \in \mathbb{N}$.
- (h) Démontrer la conjecture.

625 Pr **\(\beta \)**: β

Pour $n \ge 2$, on considère n points répartis sur un cercle et l'on note M_n le nombre façons de relier ces points par des cordes ne se coupant pas. Par exemple $M_4 = 9$:

On convient que $M_0 = M_1 = 1$ et l'on note $G(x) = \sum_{n=0}^{+\infty} M_n x^n$ lorsque la série converge.

- (a) Quelle est la valeur de M_5 ?
- **(b)** Montrer: $\forall n \in \mathbb{N}^*$, $M_{n+1} = M_n + \sum_{k=0}^{n-1} M_k M_{n-1-k}$.
- (c) (i) Écrire une fonction qui calcule M_n .
 - (ii) Vérifier avec Python que $M_n \leq 3^n$. Que peut-on en déduire sur le rayon de convergence de $\sum M_n x^n$?
 - (iii) Comparer (M_n) et la suite définie par :

$$u_0 = u_1 = 1$$
 et $\forall n \ge 2$, $3(n-1)u_{n-2} + (2n+1)u_{n-1} - (n+2)u_n = 0$.

- (d) Montrer que $G(x) = 1 + x G(x) + x^2 G(x)^2$.
- (e) En déduire G(x) en fonction de x puis le rayon de convergence de $\sum M_n x^n$.
- (f) Résoudre l'équation différentielle (E): $x(1+x)(3x-1)y'-(2-3x-3x^2)y=-2$ sur]0,1/3[. Montrer que G est solution de (E).
- (g) Montrer que $\forall n \in \mathbb{N}, M_n \leq 3^n$.

626 IntG,Pol \mathbf{e} : β

On pose
$$I = \int_0^{+\infty} \frac{dx}{1 + x^4}, J = \int_0^{+\infty} \frac{x^2}{1 + x^4} dx, K = \int_0^{+\infty} e^{ix^2} dx.$$

- (a) Calculer des valeurs approchées de $I, J, 2\sqrt{2}I, 2\sqrt{2}J$. Conjecturer.
- (b) Montrer la convergence de I et J.
- (c) Décomposer $F = \frac{X^2+1}{X^4+1}$ en éléments simples.
- (d) Montrer que I = J et calculer I et J.
- (e) Pour $x \in \mathbb{R}$, soit $f(x) = \int_0^{+\infty} \frac{e^{-(u^2+i)x^2}}{u^2+i} du$.

Donner des valeurs approchées de f(x) pour x = 10, 100, 1000.

- (f) Montrer que f est continue sur \mathbb{R} , trouver sa limite en $+\infty$.
- (g) Montrer que f est de classe C^1 sur \mathbb{R} , calculer f'(x) puis f(x). En déduire K.

63 Analyse

IntG $\mathbf{e}: \beta \Delta$

On pose $f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$, $g(x) = \int_0^{+\infty} \frac{\sin t}{x+t} dt$ et l'on considère l'équation

- (a) Déterminer les ensembles de définition de f et g.
- (b) Avec Python.
 - (i) Tracer la courbe de f.
 - (ii) Tracer la courbe de q en expliquant pourquoi la méthode naïve ne convient pas. Faire une conjecture concernant f et g.
 - (iii) Soient φ de classe \mathcal{C}^2 sur un intervalle I ouvert et $x_0 \in I$. À l'aide du développement limité de φ , exprimer $\varphi''(x_0)$ comme limite d'une expression faisant intervenir $\varphi(x_0+h)$ et $\varphi(x_0-h)$.
 - (iv) En admettant que f soit de classe C^2 , montrer numériquement qu'elle vérifie (E).
- (c) (i) Montrer que f est de classe C^2 sur \mathbb{R}_+^* .
 - (ii) Montrer que g est de classe \mathcal{C}^2 sur \mathbb{R}_+^* .
 - (iii) Montrer que g est continue en 0.
 - (iv) Montrer que f et g vérifient (E) puis que f = g et enfin calculer $I = \int_{-\infty}^{+\infty} \frac{\sin t}{t} dt$.

628

- (a) Pour $r \in [0,1[$ et $\theta \in \mathbb{R}$, montrer que la famille $(r^{|n|}e^{in\theta})_{n \in \mathbb{Z}}$ est sommable et calculer sa somme. On note $P_r(\theta) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} r^{|n|} e^{in\theta}$.
- **(b)** Calculer $\int_{-\pi}^{\pi} P_r(\theta) d\theta$.
- (c) Tracer les graphes de P_r sur $[-\pi, \pi]$, pour $r \in \{(2k+1)/10, k \in [0, 4]\}$.
- (d) Soit $\delta \in]0, \pi[$. Quelles sont les limites de $\int_{\delta}^{\pi} P_r(\theta) d\theta$ et $\int_{-\pi}^{-\delta} P_r(\theta) d\theta$ quand $r \to 1^-$?
- (e) Montrer qu'une fonction continue 2π -périodique sur \mathbb{R} est bornée et uniformément continue.
- (f) Soit f continue et 2π -périodique.

Montrer que la fonction $f_r: x \mapsto \int_{-\pi}^{\pi} f(x-\theta) P_r(\theta) d\theta$ est continue 2π -périodique et bornée.

- (g) Dans le cas où f est la fonction 2π -périodique telle que $f(t) = t^2$, pour tout $t \in [-\pi, \pi]$, tracer les graphes de f et f_r sur le segment $[-4\pi, 4\pi]$.
- (h) Montrer que $\lim_{r\to 1^-} \sup_{\mathbb{R}} |f f_r| = 0$.

629

ED \bullet : α Soit $\omega \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, x et y dans $\mathcal{C}^1(\mathbb{R}, \mathbb{R})$ solutions du système d'équations différentielles suivant :

$$\begin{cases} x'(t) = -\omega(t)y(t) \\ y'(t) = \omega(t)x(t) \end{cases} \text{ avec } x(0) = 1 \text{ et } y(0) = 1.$$

- (a) Représenter graphiquement les solutions pour $\omega=1,\ \omega=\pi,\ \omega:t\mapsto t,\ \omega:t\mapsto\sin(t)+k$ où $k=1,e^{-1},\sqrt{2}$. Dans quels cas les solutions sont-elles périodiques?
- (b) Résoudre le système dans le cas ω constant.

On pose $U: t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$, on suppose U périodique de période T > 0 et ω non constante.

On pose
$$U_0 = U(0)$$
 et $\Omega(t) = \int_0^t \omega(u) du$. Soit $\alpha \in \mathbb{C}$, $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- (c) Calculer $e^{\alpha J}$.
- (d) Exprimer U(t) à l'aide de Ω , puis montrer que ||U|| est constant.
- (e) Calculer xy' x'y; en déduire que ω est périodique.
- (f) Montrer l'existence d'une plus petite période $\tau > 0$ pour U. Montrer que T est un multiple de τ .
- (g) Montrer que $\Omega(\tau) = r\pi$ avec $r \in \mathbb{Q}$.
- (h) Étudier la réciproque.

630 ED,Red \mathbf{e} : β

Soit $A \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_2(\mathbb{R}))$. On considère les solutions $X \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_2(\mathbb{R}))$ de l'équation différentielle (\mathcal{L}) suivante : X' = A(t)X - XA(t).

- (a) On suppose que, pour tout t, $A(t) = \begin{pmatrix} 1 & t \\ -t & 1 \end{pmatrix}$, et que $X(0) = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}$.
 - (i) Justifier rapidement que le schéma d'Euler correspondant à cette équation peut s'écrire

$$X_{k+1} = X_k + h(A(t_k)X_k - X_kA(t_k))$$
 $t_{k+1} = t_k + h$

où l'on précisera ce que sont X_k et t_k .

- (ii) Écrire une fonction qui exécute cette méthode pour $h = \frac{1}{100}$ et $t \in [0,2]$.
- (iii) Tracer sur un même graphe les fonctions $t \mapsto \text{Tr}(X(t)), t \mapsto \text{Tr}(X(t)^2)$ et $t \mapsto \text{Tr}(X(t)^3)$. Que remarque-t-on?
- (iv) On note $\lambda_1(t)$ et $\lambda_2(t)$ les valeurs propres de X(t).

Tracer les fonctions $t \mapsto \lambda_1(t)$ et $t \mapsto \lambda_2(t)$ sur un même graphe. Que remarque-t-on?

- (b) On revient au cas général.
 - (i) Montrer, pour tout $k \in \mathbb{N}^*$, : $(X^k)'(t) = \sum_{i=0}^{k-1} [X(t)]^i X'(t) [X(t)]^{k-i-1}$.
 - (ii) Montrer que, pour $k \in \mathbb{N}^*$, la fonction $t \mapsto \text{Tr}(X(t)^k)$ est constante.
 - (iii) Montrer que le spectre (complexe) de X(t) ne dépend pas de t.
 - (iv) Montrer que, pour tout t, X(t) est semblable à X(0).

631 CD,Pr **?**: β

Soit $n \in \mathbb{N}^*$. On note $U = (\mathbb{R}_+^*)^n$. On pose :

et $f = g \circ N$.

Si X est une variable aléatoire à valeurs dans [1, n], on note $H(X) = g(p_1, \dots, p_n)$, où $p_i = \mathbb{P}(X = i)$. Dans ce qui suit, on prend $p_i = 2^{-i}$ pour i < n et $p_n = 2^{-n+1}$.

- (a) Montrer que $H(X) = \ln 2 \left(\mathbb{E}(X) \frac{1}{2^{n-1}} \right)$
- (b) Tracer le graphe de f pour n=2 et $0 < x_1, x_2 \le 4$. Conjecture sur les extrema de f?
- (c) Justifier que U est un ouvert de \mathbb{R}^n . Expliquer brièvement pourquoi N, f et g sont de classe \mathcal{C}^{∞} . Calculer les matrices jacobiennes de N, f et g et trouver les points critiques de f.

Géométrie

632 GD **\(\bigsige \(\bigsige \)** : β

On considère l'arc paramétré $x(t) = \frac{\cos t}{\cos^3(t/3)}$; $y(t) = \frac{\sin t}{\cos^3(t/3)}$

- (a) Déterminer le domaine de définition de l'arc, préciser un intervalle suffisant pour faire une étude complète.
- (b) Tracer la courbe et déterminer ses symétries.
- (c) Déterminer le nombre de points d'intersection avec une droite quelconque du plan, différente des axes.

633 Pol **?** : α

Soit $J: \mathbb{C}^* \to \mathbb{C}$ définie par $J(z) = z + \frac{1}{z}$.

- (a) Tracer la courbe C_{α} paramétrée par : $x(t) = \left(t + \frac{1}{t}\right) \cos \alpha$ et $y(t) = \left(t \frac{1}{t}\right) \sin \alpha$ pour $\alpha \in \left\{0, \frac{\pi}{4}, \frac{\pi}{3}\right\}$.
- (b) On pose $D_{\alpha} = \{t e^{i\alpha}, t \in \mathbb{R}_{+}^{*}\}$. Tracer $J(D_{\alpha})$, pour $\alpha \in \{0, \frac{\pi}{4}, \frac{\pi}{3}\}$, et $J(t\mathbb{U})$ pour différentes valeurs de t > 0
- (c) Dans chacun des cas $A = \mathbb{C}^*$, $A = B_o(0,1)$ et $A = \mathbb{C} \setminus B_o(0,1)$, étudier J(A) et l'injectivité de J sur A.

Probabilités 65

Probabilités

634 Pr : α

On considère n personnes à un point de départ D qui veulent arriver en A, point d'arrivée. Les points A et D sont séparés par un pont constitué de q piliers, susceptibles de tomber. On lance un dés à 6 faces et on suppose :

- si on tombe sur 1 ou 6, un des piliers tombe;
- si on tombe sur 2 ou 5, une des personnes restantes en D passe sur le pont;
- si on tombe sur 3 ou 4, une des personnes sur le pont, s'il y en a une, passe en A.

On considère qu'on a un échec si tous les piliers tombent avant que l'ensemble des personnes arrivent en A, un succès sinon. On note $p_{n,q}$, la probabilité d'avoir un succès.

- (a) Coder la fonction Jeu(n,q) qui renvoie False si on a un échec et True sinon.
- (b) Estimer $p_{4,6}$ à l'aide de la fonction Jeu.
- (c) On appelle état (x,y) tout couple de \mathbb{N}^2 tel qu'on ait x personnes en D et y personnes sur le pont. Calculer le cardinal de $E_n = \{(x,y) \in \mathbb{N}^2, (x,y) \text{ est un état}\}$ sachant qu'il y a n personnes en D au début. Dessiner E_4 .
- (d) Calculer le cardinal de $\{(k_1,\ldots,k_r)\in\mathbb{N}^r, k_1+\cdots+k_r=k\}$.
- (e) Soit r pièces. On lance une pièce jusqu'à obtenir pile. Puis on fait de même avec la suivante, s'il reste des pièces. Montrer que le processus est presque sûrement fini. Trouver la loi du nombre de faces obtenues.

635 Pr,Sn **4** : β

On fait des lancers indépendants de pièces différentes, la probabilité d'obtenir pile au k-ième lancer étant p_k . On note X_n le nombre de piles sur les n premiers lancers et π_n la probabilité pour que X_n soit pair.

- (a) Simuler l'expérience pour estimer en programmant une fonction pi(n,p) où p est la fonction $k \mapsto p_k$. On utilisera 1000 essais.
- (b) Tracer π_n en fonction de n pour $1 \le n \le 100$ avec :
 - (i) $p_n = \frac{1}{2(n+1)^2}$;
 - (ii) $p_n = \frac{1}{2(n+1)}$;
 - (iii) $p_n = \frac{1}{2\sqrt{n+1}}$
- (c) Montrer que $\pi_n \frac{1}{2} = \frac{1}{2} \prod_{k=1}^n (1 2p_k)$.
- (d) Quel est le comportement asymptotique de π_n pour $p_n = \frac{1}{2(n+1)^2}$?
- (e) On suppose que, pour tout $n \in \mathbb{N}^*$, $p_n < 1/2$. Montrer que la suite (π_n) converge vers un élément $\ell \in [1/2, 1]$.
- (f) Montrer que $\ell = 1/2$ si et seulement si $\sum p_n$ converge.

636 Pr,SE **?** : β

On considère un pion qui se déplace d'un nombre strictement positif de cases alignées numérotées dans l'ordre croissant à chaque étape. On note Y_i la variable aléatoire qui donne le nombre de cases parcourues à l'instant i. On suppose la suite $(Y_i)_{i\geqslant 1}$ i.i.d. On note, pour $n\in\mathbb{N}^*$, $S_n=Y_1+\cdots+Y_n$. On pose, pour $j,k\in\mathbb{N}$, $f_j=\mathbf{P}(Y_1=j)$, $u_k=\mathbf{P}(E_k)$ où E_k est l'événement « le pion atteint la case $k\gg$. On a $u_0=1$.

- (a) (i) On suppose que $Y_1 1$ suit la loi de Bernoulli de paramètre p. Écrire une fonction qui renvoie True si la case k est atteinte, et False sinon.
 - (ii) Écrire une fonction qui renvoie une approximation de $\mathbb{P}(E_k)$. La comparer avec $\frac{1}{\mathbf{E}(Y_1)}$.
 - (iii) Même chose si Y_1 suit une loi géométrique de paramètre $\frac{1}{2}$.
- (b) Exprimer E_k à l'aide des S_n .
- (c) Exprimer $\mathbf{P}(E_k \cap (Y_1 = j))$.
- (d) En déduire que, pour $k \geqslant 1$, $u_k = \sum_{j=1}^k u_{k-j} f_j$.

Soient
$$u: t \mapsto \sum_{k=0}^{+\infty} u_k t^k$$
 et $f: t \mapsto \sum_{j=0}^{+\infty} f_j t^j$.

(e) Montrer que u et f sont définies sur [0,1[et que, pour $t \in [0,1[$, $u(t)=\frac{1}{1-f(t)}$.

- (f) En déduire les u_k lorsque $Y_1 1$ suit la loi de Bernoulli de paramètre p, puis lorsque Y_1 suit la loi géométrique de paramètre 1/2.
- (g) γ On suppose que Y_1 ne prend qu'un nombre fini de valeurs, et que les $k \in \mathbb{N}^*$ tels que $\mathbb{P}(Y_1 = k) \neq 0$ sont premiers entre eux dans leur ensemble. Montrer que $u_k \longrightarrow \frac{1}{\mathbf{E}(Y_1)}$

\Pr **e** : α

Soient $A = (X_{i,j})_{1 \leq i,j \leq n}$ une matrice dont les coefficients sont des variables aléatoires indépendantes et $D = \det A$.

- (a) Avec Python, estimer les valeurs de $\mathbb{E}(D)$ et $\mathbb{V}(D)$ pour différentes valeurs de n lorsque les $X_{i,j}$ sont à valeurs dans $\{-1,1\}$ avec $\mathbb{P}(X_{i,j}=-1)=\mathbb{P}(X_{i,j}=1)=1/2$. Conjectures?
- (b) Montrer les conjectures dans le cas n = 1 puis n = 2.
- (c) Montrer que $\mathbb{E}(D) = \det(\mathbb{E}(X_{i,j}))_{1 \leq i,j \leq n}$.
- (d) Soit $x \in \mathbb{R}$. Calculer $\mathbb{E}(\chi_A(x))$ dans le cas où les $X_{i,j}$ ont la même loi.
- (e) On suppose les $X_{i,j}$ centrées réduites.
 - (i) Soient σ et τ deux permutations de [1, n]. Montrer que :

$$\operatorname{Cov}\left(\prod_{i=1}^{n} X_{\sigma(i),i}, \prod_{i=1}^{n} X_{\tau(i),i}\right) = \begin{cases} 1 & \text{si } \sigma = \tau \\ 0 & \text{sinon.} \end{cases}$$

(ii) Que vaut $\mathbb{V}(D)$?

Pr,F $\mathbf{e}: \beta$

Soit $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et identiquement distribuées.

On pose $S_n = X_1 + \cdots + X_n$.

- (a) On suppose que les X_k suivent la loi de Bernoulli de paramètre $p \in]0,1[$. Dans les calculs avecPython, on prendra p = 0.25 et n = 100.
 - (i) Quelle loi suit S_n ?
 - (ii) Pour tout $t \in \mathbb{R}_+^*$, on note $u(t) = \mathbb{P}(\left|S_n \mathbb{E}(S_n)\right| \geqslant t\sqrt{n})$, ainsi que $\varphi_1(t) = \frac{1}{4t^2}$ et $\varphi_2(t) = 2e^{-2t^2}$. Coder une fonction qui calcule u et tracer sur une même figure les graphes de u, φ_1 et φ_2 sur [0,3]. Conjecture?
- (b) Soit $s \in \mathbb{R}_{+}^{*}$.
 - (i) Soient c < d et $y \in [c,d]$. Montrer que $e^{sy} \leqslant \frac{y-c}{d-c} e^{sd} + \frac{d-y}{d-c} e^{sc}$.

Montrer que $\ln\left(\frac{d}{d-c}e^{sc} - \frac{c}{d-c}e^{sd}\right) \leqslant \frac{s^2(d-c)^2}{8}$.

(ii) Soit Y une variable aléatoire centrée à valeurs dans [c,d].

Montrer que $\ln(\mathbb{E}(e^{sY})) \leqslant \frac{s^2(d-c)^2}{8}$. (c) Soit $\varepsilon > 0$. On suppose les X_k à valeurs dans [a,b].

- - (i) Montrer que $\mathbb{P}(S_n \mathbb{E}(S_n) \geqslant \varepsilon) \leqslant e^{-s\varepsilon} \prod_{k=1}^n \mathbb{E}\left(e^{s(X_k \mathbb{E}(X_k))}\right)$.
 - (ii) Montrer que $\mathbb{P}(S_n \mathbb{E}(S_n) \ge \varepsilon) \le \exp\left(-s\varepsilon + n\frac{s^2(b-a)^2}{8}\right)$.
 - (iii) Montrer que $\mathbb{P}(S_n \mathbb{E}(S_n) \ge \varepsilon) \le \exp\left(-\frac{2\varepsilon^2}{n(b-a)^2}\right)$ puis que :

$$\mathbb{P}(S_n - \mathbb{E}(S_n) \ge t\sqrt{n}) \le \exp\left(-\frac{2t^2}{(b-a)^2}\right).$$

(d) On revient au cas particulier de la première question. Donner une inégalité entre u et φ_2 . Comment obtenir une inégalité entre u et φ_1 . Laquelle de ces deux inégalités est la meilleure?