

MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY

NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 U.P.

Sessional Examination -II (SET-B): Odd Semester 2022-23

Course/Branch: B Tech -I Years

Semester: I

Subject Name : Engg. Mathematics-I

Max. Marks :60

Subject Code : BAS-103

Sections:

(OP4, OP6, OP8, OP10, OP12, OC4, OC6, OC8, OC10)

Time: 120 min

CO-3: On completion of this course, the student will learn to deal with functions of several variables that is essential in optimizing the results of real life problems

CO-4: On completion of this course, the student will be able to apply integral calculus in various field of engineering and have a basic understanding of Beta and Gamma functions and application of Dirichlet's integral

Section - A (CO - 3) # Attempt both the questions # 30 Marks

Q.1: Attempt any SIX questions (Short Answer Type). Each question is of two marks. $(2 \times 6 = 12 \text{ Marks})$

a)		A balloon in the form of right circular cylinder of radius 1.5m and length 4m is	(BKL:K2
		surmounted by hemispherical ends. If the radius is increased by 0.01m find	Level)
1		the percentage change in the volume of the balloon.	
p)	If $f(x) = x^3 + 6x^2 + 9$ then find the value of $f\left(\frac{11}{10}\right)$ by Taylor's Theorem	(BKL:K2 Level)
1	c)	Find the stationary point of: $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	(BKL:K2 Level)
J.	d)	Calculate $\frac{\partial(u,v)}{\partial(x,y)}$ for , $x=e^u\cos v$ and $y=e^u\sin v$.	(BKL:K2 Level)
e,)	Are the functions: $u = xy + yz + zx$, $v = x^2 + y^2 + z^2$, $w = x + y + z$ functionally dependent?	(BKL:K2 Level)
f)	7	If $RI = E$ and possible error in E and I are 20% and 10% respectively, then	(BKL:K2
		find the error in R .	Level)
g)·	15	State the Maclaurin's Theorem for two variables.	(BKL:K1
			Level)

Q.2:Attempt any THREE questions (Medium Answer Type). Each question is of 6 marks. (3 \times 6 = 18 Marks)

a)	Expand $f(x,y) = x^y$ about (1, 1) upto second degree terms and hence evaluate (1.1) ^{1.02} .	(BKL:K3 Level)
b)	Find approximate value of: $f(x,y) = x^2 y^{\frac{1}{10}}$ when $x = 1.99$ and $y = 3.01$	(BKL:K3 Level)
c)	Find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$, if $x = \sqrt{vw}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ and $u = r\sin\theta\cos\phi$, $v = r\sin\theta\sin\phi$, $w = r\cos\theta$.	(BKL:K3 Level)
d)	Find the dimension of rectangular box of maximum capacity whose surface area is given when Box is closed.	(BKL:K3 Level)
e)	Find the minimum distance from point (1, 2,0) to the cone $x^2 + y^2 = z^2$.	(BKL:K3 Level)

Section - B (CO - 4) # Attempt both the questions # 30 Marks

Q.3: Attempt any SIX questions (Short Answer Type). Each question is of two marks. $(2 \times 6 = 12 \text{ Marks})$

a)	Calculate the volume of the solid bounded by the surface $x = 0, y =$	(BKL:K2 Level)
b)	$0, z = 0 \text{ and } x + y + z = 1$ Evaluate $\int_0^1 \sqrt{\frac{1-x}{x}} dx$	(BKL:K2 Level)
c)	Change the order of integration $\int_0^2 \int_{x^2}^{3-x} f(x,y) dy dx$	(BKL:K2 Level)
d)	Evaluate $\Gamma(3/4)\Gamma(1/4)$	(BKL:K2 Level)
e)	Find area bounded by $r = 2sin\theta$ and $r = 4sin\theta$.	(BKL:K2 Level)
f)	Evaluate $\int_0^\infty \frac{1}{1+x^4} dx$	(BKL:K2 Level)
g)	Evaluate $\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dx dy$	(BKL:K2 Level)

Q.4: Attempt any THREE questions (Medium Answer Type). Each question is of 6 marks. (3 x 6 = 18 Marks)

	trans questions (interioris 177-)	Same and the same and
a)	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by changing into polar coordinates.	(BKL:K3
•	Hence evaluate $\int_0^\infty e^{-x^2} dx$	Level)
b)	Evaluate $\iiint x^2yz \ dxdydz$ through out the volume bounded by the planes	(BKL:K3
	$x = 0, y = 0, z = 0 \text{ and } \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$	Level)
c)	Show that $\iiint \frac{dxdydz}{dxdydz} = \frac{1}{2} \log 2 - \frac{5}{4}$	(BKL:K3
		Level)
	x = 0, y = 0, z = 0 and $x + y + z = 1$	
d)	Using transformation $x + y = u, y = uv$,	(BKL:K3
-,		Level)
e)	Evaluate the following integral by changing the order of integration	(BKL:K3
	$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$	Level)
	a) b) c)	 a) Evaluate ∫₀[∞] ∫₀[∞] e^{-(x²+y²)} dxdy by changing into polar coordinates. Hence evaluate ∫₀[∞] e^{-x²} dx b) Evaluate ∫∫∫ x²yz dxdydz through out the volume bounded by the planes x = 0, y = 0, z = 0 and x/a + y/b + z/c = 1 c) Show that ∫∫∫ . dxdydz/((x+y+z+1)³) . = 1/2 log 2 - 1/16 the integral being taken throughout the volume bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1 d) Using transformation x + y = u, y = uv, Evaluate ∫₀¹ ∫₀^{1-x} e^{y/(x+y)} dy dx e) Evaluate the following integral by changing the order of integration

MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY

NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 U.P.

Sessional Examination -I (SET-B) :Odd Semester 2022-23

Course/Branch: B Tech -I Years

Max. Marks

Semester: ISubject Name

:Engg. Mathematics-I

Subject Code : BAS-103(OP4,OP6,OP8, COP10, OP10,OP12,OC4,OC6,OC8,OC10, COP2) Time: 120 min

002

CO-1 : On completion of this course, the student will learn the essential tools of matrices, Eigen values and its application in a comprehensive manner.

CO-2 : On completion of this course, the student will be able to apply the knowledge of differential calculus in the field of engineering

Section - A (CO - 1) # Attempt both the questions # 30 Marks

 $(2 \times 6 = 12 \text{ Marks})$ Q.1: Attempt any SIX questions (Short Answer Type). Each question is of two marks.

a)	Show that the matrix $\begin{bmatrix} \alpha + iy & -\beta + i\delta \\ \beta + i\delta & \alpha - iy \end{bmatrix}$ is unitary if $\alpha^2 + \beta^2 + y^2 + \delta^2 = 1$.	(BKL:K2 Level)
,b)	The Eigen values of a matrix A are 2,3,1 then find the Eigen values of $A^{-1} + A^2$	(BKL:K2 Level)
c)	State Rank-Nullity theorem.	(BKL:K1 Level)
d)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ in to the normal form and find its rank.	(BKL:K2 Level)
e) f	Find the value of 'b' so that the rank of $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & b \end{bmatrix}$ is 2.	(BKL:K2 Level)
f)	Let A be a 3×3 matrix with real entries such that $\det(A) = 6$ and the trace of A is 0. If $ A + I = 0$ where I denotes the 3×3 identity matrix then find the eigen values of A.	(BKL:K2 Level)
g)	If the Eigen values of the matrix A are 1, 1, 1 then find the Eigen values of A ² +2A+3I.	(BKL:K2 Level)

Q.2:Attempt any THRI E questions (Medium Answer Type). Each question is of 6 marks. (3 x 6 = 18 Marks)

2)	For what values of λ and μ, the system of linear equations:	(BKL:K3
a)	x + y + z = 6, $x + 2y + 5z = 10 and$	Level)
	$2x+3y+\lambda z=\mu,$	
Į.	has: (i) a unique solution (ii) no solution and (iii) Infinite solution. Also find the solution for $\lambda = 2$ and $\mu = 8$.	<u>.</u> =
b)	Find non-singular matrices P and Q such that PAQ is in Normal form of the matrix and hence find the rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$.	(BKL:K3 Level)
c)	Find the eigen values and eigen vectors of matrix	(BKL:K3
	$A = \begin{bmatrix} -2! & 2 & -3 \\ 2 & 1 & -6 \end{bmatrix}$	Level)

(d)	Compute the inverse of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ by employing elementary row transformations.	(BKL:K3 Level)
e)	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, find A^{-1} and A^{1} using Cayley-Hamilton's theorem. Also show that for every integer $n \ge 3$, $A^{n} = A^{n-2} + A^{2} - 1$.	(BKL:K3 Level)

Section - B (CO - 2) # Agreempt both the questions # 30 Marks

Q.3: Attempt any SIX questions (Short Answer Type). Each question is of two marks. (2 x 6 = 12 Marks)

a)	If $I_n = \frac{a^n}{dx^n}(x^n \log x)$ then show that $I_n = n I_{n-1} + (n-1)!$	(BKL:K2 Level)
b)	If $x^2 = au + bv$, $y^2 = au - bv$. Evaluate $\left(\frac{\partial u}{\partial x}\right)_v \left(\frac{\partial x}{\partial u}\right)_v$.	(BKL:K2 Level)
c)	Find $\frac{du}{dt}$ if $u = x^3 + y^3$, $x = a \cos t$, $y = b \sin t$.	(BKL:K2 Level)
d)	Find the n^{th} derivative of $y = x^2 sinx$.	(BKL:K2 Level)
e)	If $u = \left(x^{\frac{1}{4}} + y^{\frac{1}{4}}\right)\left(x^{\frac{1}{5}} + y^{\frac{1}{5}}\right)$, then find $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = ?$	(BKL:K2 Level)
F)	If $V = f(2x - 3y, 3y - 4z, 4z - 2x)$, prove that $\frac{\partial V}{\partial x} + 4\frac{\partial V}{\partial y} + 3\frac{\partial V}{\partial z} = 0.$	(BKL:K2 Level)
3)	Find n th derivative of $y = \sin 2x \sin 3x$.	(BKL:K2 Level)

Q.4: Attempt any THREE questions (Medium Answer Type). Each question is of 6 marks. (3 x 6 = 18 Marks)

7.	littern	ipt any TITE desirens (interior 1.3ps).	101/1-1/2
	a)	If $y = \left(\frac{1+x}{1-x}\right)^{1/2}$ then prove that	(BKL:K3 Level)
		$(1-x^2)y_n - [2(n-1)x+1]y_{n-1} - (n-1)(n-2)y_{n-2} = 0.$	
Ì	b)	If $y = \sin(nx) + \cos(nx)$ prove that	(BKL:K3
		$y_r = n^r [1 + (-1)^r \sin 2nx]^{1/2}$, where y_r is the r^{th} differential	Level)
1	c)	coefficient of y with respect to x. If $w = \sqrt{x^2 + y^2 + z^2} & = u \cos v, y = u \sin v, z = uv$, then prove that	(BKL:K3 Level)
		$\left[u\frac{\partial w}{\partial u} - v\frac{\partial w}{\partial \nu}\right] = \frac{u}{\sqrt{1 + \nu^2}}.$	
6	1) 1	If $u = cos_{C}c^{-1}\left(\frac{x^{\frac{1}{2}}+y^{\frac{1}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{3}}}\right)^{1/2}$, $Find\left(x^{2}\frac{\partial^{2}u}{\partial x^{2}}+2xy\frac{\partial^{2}u}{\partial x\partial y}+y^{\frac{1}{2}}\frac{\partial u}{\partial y}\right)$	(BKL:K3 Level)
6	2)	If $y = \log(x + \sqrt{(x^2 + a^2)})$, Prove that $(a^2 + x^2)y_2 + xy_1 = 0$. Differentiate this differential equation n times and prove that	(BKL:K3 Level)
L		$\lim_{x \to 0} \frac{y_{n+2}}{y_n} = -\frac{n^2}{a^2}.$	1/00

18 m