Causal Inference 2: Directed Acyclic Graphs

Ian Lundberg¹ & Kristin Liao²

SICSS UCLA 25 June 2024

¹Assistant Professor, Information Science, Cornell, ilundberg@cornell.edu

²PhD Student, Sociology, UCLA, ktliao@g.ucla.edu

Learning goals for today

- ► fork structures
- ► collider structures
- ► causal reasoning and statistical independence

People who like exercise

People who don't like exercise

People who like exercise

People who don't like exercise

Treatment

75% assigned an exercise coach for $1\ month$

Treatment

25% assigned an exercise coach for 1 month

People	who	like	exercise
. copic	*****		C/(C/ C/SC

People who don't like exercise

Treatment

75% assigned an exercise coach for 1 month

Treatment

25% assigned an exercise coach for 1 month

Outcome: How many pull-ups can they do?

		1 - 1	
People	who	like	exercise
i copic	*****	11110	CACICISC

People who don't like exercise

Treatment

75% assigned an exercise coach for 1 month

Treatment

25% assigned an exercise coach for 1 month

Outcome: How many pull-ups can they do?

Question for you:

Give 2 reasons why those assigned a coach can do more pull-ups

Nodes are random variables. **Edges** (\rightarrow) are causal relations

Nodes are random variables. **Edges** (\rightarrow) are causal relations The graph links causal assumptions to statistical dependence

Nodes are random variables. **Edges** (\rightarrow) are causal relations The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically dependent because of two open paths:

Nodes are random variables. **Edges** (\rightarrow) are causal relations The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically dependent because of two open paths:

- lacktriangle (Assigned a Coach) ightarrow (Pull-Ups)
 - ► a causal path: all arrows go one direction

Nodes are random variables. **Edges** (\rightarrow) are causal relations The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically dependent because of two open paths:

- lacktriangle (Assigned a Coach) ightarrow (Pull-Ups)
 - ► a causal path: all arrows go one direction
- ▶ (Assigned a Coach) \leftarrow (Likes Exercise) \rightarrow (Pull-Ups)
 - ► a backdoor path containing a fork

How to study the causal effect (Assigned a Coach) \rightarrow (Pull-Ups)?

split into two subgroups: likes exercise and don't

- ► split into two subgroups: likes exercise and don't
- we have a simple randomized experiment within each subgroup

- split into two subgroups: likes exercise and don't
- we have a simple randomized experiment within each subgroup
- estimate within each subgroup

- ► split into two subgroups: likes exercise and don't
- ▶ we have a simple randomized experiment within each subgroup
- estimate within each subgroup
- ▶ pool the two estimates for an average causal effect estimate

How to study the causal effect (Assigned a Coach) \rightarrow (Pull-Ups)?

- ▶ split into two subgroups: likes exercise and don't
- ▶ we have a simple randomized experiment within each subgroup
- estimate within each subgroup
- ▶ pool the two estimates for an average causal effect estimate

Terminology: Identify by conditioning on (Likes Exercise)

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

► I set my sprinklers to turn on at random times

- ► I set my sprinklers to turn on at random times
- ► It rains at random times

- ► I set my sprinklers to turn on at random times
- ► It rains at random times
- ► (Sprinklers) or (Rain) can make the grass wet

- ► I set my sprinklers to turn on at random times
- ► It rains at random times
- ► (Sprinklers) or (Rain) can make the grass wet

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

- ► I set my sprinklers to turn on at random times
- ► It rains at random times
- ► (Sprinklers) or (Rain) can make the grass wet

Questions for you:

- ► Are (Sprinklers On) and (Raining) statistically dependent?
- ► Are (Sprinklers On) and (Raining) statistically dependent once I restrict to times when the (Grass Wet = TRUE)?

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Sprinklers On \longrightarrow Grass Wet

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

► (Grass Wet) is a **collider**

 $(\mathsf{arrows}\;\mathsf{collide}\to\leftarrow)$

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

► (Grass Wet) is a **collider**

(arrows collide $\rightarrow\leftarrow$)

- ► A collider blocks a path
 - ► marginal independence of (Sprinklers On) and (Raining)

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

► (Grass Wet) is a collider

(arrows collide $\rightarrow \leftarrow$)

- ► A collider blocks a path
 - ► marginal independence of (Sprinklers On) and (Raining)
- ► Conditioning on a collider opens the path
 - ► conditional dependence of (Sprinklers On) and (Raining) when restricting to times when (Grass Wet = True)

come by tee to facility causal effects. Came plan	Using DAGs to	identify	causal	effects:	Game plan	
---	---------------	----------	--------	----------	-----------	--

1. Draw a DAG

- 1. Draw a DAG
 - ► Create nodes for treatment and outcome

- 1. Draw a DAG
 - ► Create nodes for treatment and outcome
 - ► Add other nodes

- 1. Draw a DAG
 - Create nodes for treatment and outcome
 - ► Add other nodes
 - anything causally related to any two nodes in the graph

1. Draw a DAG

- Create nodes for treatment and outcome
- ► Add other nodes
 - anything causally related to any two nodes in the graph
 - also add the causal edges

- 1. Draw a DAG
 - Create nodes for treatment and outcome
 - ► Add other nodes
 - anything causally related to any two nodes in the graph
 - also add the causal edges
- 2. List all paths between treatment and outcome

- 1. Draw a DAG
 - ► Create nodes for treatment and outcome
 - ► Add other nodes
 - anything causally related to any two nodes in the graph
 - also add the causal edges
- 2. List all paths between treatment and outcome
- Choose a sufficient adjustment set: variables that jointly block all non-causal paths

- 1. Draw a DAG
 - Create nodes for treatment and outcome
 - ► Add other nodes
 - anything causally related to any two nodes in the graph
 - also add the causal edges
- 2. List all paths between treatment and outcome
- Choose a sufficient adjustment set: variables that jointly block all non-causal paths
 - a path is blocked if it contains an adjusted non-collider

- 1. Draw a DAG
 - Create nodes for treatment and outcome
 - ► Add other nodes
 - ► anything causally related to any two nodes in the graph
 - also add the causal edges
- 2. List all paths between treatment and outcome
- 3. Choose a sufficient adjustment set: variables that jointly block all non-causal paths
 - ▶ a path is blocked if it contains an adjusted non-collider
 - a path is blocked if it contains an unadjusted collider (and no descendant of that collider is adjusted)

- 1. Draw a DAG
 - Create nodes for treatment and outcome
 - ► Add other nodes
 - anything causally related to any two nodes in the graph
 - also add the causal edges
- 2. List all paths between treatment and outcome
- 3. Choose a sufficient adjustment set: variables that jointly block all non-causal paths
 - ▶ a path is blocked if it contains an adjusted non-collider
 - a path is blocked if it contains an unadjusted collider (and no descendant of that collider is adjusted)
 - ► otherwise unblocked

Practice

To what extent does completing a 4-year college degree affect a person's future earnings?

1) Draw a DAG

1) Draw a DAG

degree

earnings

1) Draw a DAG

degree → earnings

1) Draw a DAG

1) Draw a DAG

2) List all paths between the treatment and outcome

2) List all paths between the treatment and outcome

2) List all paths between the treatment and outcome

Causal paths

```
(degree) \rightarrow (earnings)
```

Backdoor paths

```
(\mathsf{degree}) \leftarrow (\mathsf{high} \; \mathsf{school} \; \mathsf{performance}) \rightarrow (\mathsf{earnings}) \ (\mathsf{degree}) \leftarrow (\mathsf{parents'} \; \mathsf{education}) \rightarrow (\mathsf{earnings})
```

 $(\mathsf{degree}) \leftarrow (\mathsf{high} \; \mathsf{school} \; \mathsf{performance}) \leftarrow (\mathsf{parents'} \; \mathsf{education}) \rightarrow (\mathsf{earnings})$

3) Choose a sufficient adjustment set {high school performance, parents' education}

Causal paths

 $(\mathsf{degree}) \to (\mathsf{earnings})$

Backdoor paths

DAGs: A promising path

- DAGs connect causal theories to statistical dependence
- ► Statistical dependence arises through causal paths
- ▶ Paths may contain two key structures
 - ► forks: $A \leftarrow B \rightarrow C$ (A and C dependent if B unadjusted)
 - ► colliders: $A \rightarrow B \leftarrow C$ (A and C dependent if B adjusted)
- Causal identification goal: choose a sufficient adjustment set so only the causal path of interest remains open
- Experimental analog:
 Among units who are identical on the sufficient adjustment set, we have a simple randomized experiment

Inference is only valid to the degree that the DAG holds

Inference is only valid to the degree that the DAG holds

► Your claim:

If this is the DAG, then adjusting for \vec{X} identifies the effect

Inference is only valid to the degree that the DAG holds

► Your claim: If this is the DAG, then adjusting for \vec{X} identifies the effect

Inference is only valid to the degree that the DAG holds

► Your claim: If this is the DAG, then adjusting for \vec{X} identifies the effect

Inference is only valid to the degree that the DAG holds

► Your claim: If this is the DAG, then adjusting for \vec{X} identifies the effect

Inference is only valid to the degree that the DAG holds

► Your claim: If this is the DAG, then adjusting for \vec{X} identifies the effect

Inference is only valid to the degree that the DAG holds

► Your claim: If this is the DAG, then adjusting for \vec{X} identifies the effect

Resources to learn more

- Hernán, M.A., & J.M. Robins. 2020. Causal Inference: What If? Boca Raton: Chapman & Hall / CRC.
- ▶ Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. Basic Books.
- Pearl, J., Glymour, M., & Jewell, N. P. (2016).
 Causal Inference in Statistics: A Primer.
 John Wiley & Sons.
- Pearl, J. (2000).Causality.Cambridge University Press.