Übungsblatt 1

Abgabe am 4. Oktober 16

Aufgabe 1. Sei \mathbb{F} ein Körper, der \mathbb{R} als einen Unterkörper enthält. Das heisst \mathbb{R} ist eine Teilmenge von \mathbb{F} , die abgeschlossen unter Addition und Multiplikation ist und so dass die Einschränkung dieser Operationen auf \mathbb{R} gerade die übliche Addition und Multiplikation von \mathbb{R} ist. Zeige:

- \bullet \mathbb{F} ist in natürlicher Weise ein \mathbb{R} -Vektorraum.
- Ist $\dim_{\mathbb{R}} \mathbb{F} = 2$, dann existiert ein \mathbb{R} -Vektorraumisomorphismus $\varphi : \mathbb{F} \longrightarrow \mathbb{C}$ so dass $\varphi(1) = 1$ und $\varphi(ab) = \varphi(a)\varphi(b)$ für $a, b \in \mathbb{F}$.

Aufgabe 2.

Bestimme sowohl mit den Cauchy-Riemann-Gleichungen als auch direkt mit der Definition, an welchen Stellen folgende Funktionen komplex differenzierbar sind und berechne gegebenenfalls die Ableitung:

- (i) $f(z) = z \operatorname{Re}(z)$
- (ii) f(x+iy) = ax + iby (für $a, b \in \mathbb{C}$)

Aufgabe 3. Sei $D \subset \mathbb{C}$ offen und $f: D \longrightarrow \mathbb{C}$ eine stetig differenzierbare Funktion, die in $z_0 \in D$ komplex differenzierbar ist. Sei $D^- = \{\overline{z} : z \in D\}$. Zeige, dass dann auch $g: D^- \longrightarrow \mathbb{C}$ mit $g(z) = \overline{f(\overline{z})}$ in $\overline{z_0}$ komplex differenzierbar ist. Was ist die Ableitung?

Aufgabe 4. (i) Wir betrachten die folgenden Matrizen:

$$I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \qquad \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \qquad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Zeige, dass $\mathbb{H} = \{a \operatorname{Id} + bI + cJ + dK \mid a, b, c, d \in \mathbb{R}\}$ ein Unterring von $M_2(\mathbb{C})$ mit den Relationen $I^2 = J^2 = K^2 = -1$ und IJ = K ist.

(ii) Für q = a + bI + cJ + dK nennen wir $\overline{q} = a - bI - cJ - dK$ die Konjugierte und $N(q) = q\overline{q}$ die Norm von q. Zeige:

$$N(q) = (a^2 + b^2 + c^2 + d^2)Id$$
 $\overline{q_1} \cdot \overline{q_2} = \overline{q_2}q_1$ $N(q_1q_2) = N(q_1)N(q_2)$

- (iii) Zeige, dass \mathbb{H} ein Schiefkörper ist (das heisst jedes Element $\neq 0$ ist invertierbar), aber nicht kommutativ ist.
- (iv) Zeige, dass die Gleichung $x^2 = -1$ unendlich viele Lösungen $x \in \mathbb{H}$ hat.
- \star (v) Die quaternionische Norm wird benutzt, um zu zeigen, dass jede natürliche Zahl als Summe von 4 Quadraten geschrieben werden kann (der berühmte 4 Quadrate-Satz von Lagrange), zum Beispiel $42 = 5^2 + 3^2 + 2^2 + 2^2$. Suche und studiere einen Beweis, der Quaternionen benutzt!

