Compte Rendu TP 1

Analyse spectrale d'un signal Transformée de Fourier discrète

Réalisé par : Hamdaoui Khalil

Encadré par : Alae Ammour

Introduction

Dans ce premier Tp on va faire la représentation temporelle et fréquentielle en utilisant la transformée de fourrier discrète sous le logiciel Matlab.

On va ensuite essayer de filtrer idéalement un signal bruité. (filtre passe-bas)

N.B:

- Dans le traitement du signal, la transformée de Fourier est utilisée pour analyser et comprendre le contenu en fréquence d'un signal.
- Le filtre passe-bas idéal supprime les fréquences supérieures à une certaine fréquence de coupure tandis que le filtre passe-haut idéal supprime les fréquences inférieures à une certaine fréquence de coupure.

Représentation temporelle et fréquentielle

Considérons un signal périodique x(t) constitué d'une somme de trois sinusoïdes de fréquences 440Hz, 550Hz, 2500Hz.

 $x(t) = 1.2\cos(2pi440t + 1.2) + 3\cos(2pi550t) + 0.6\cos(2pi2500t)$

On génére un signal de 5000 échantillons

On applique la TFD qui nous génère un spectre qui est une fonction complexe qui contient une partie imaginaire et une partie réelle

On injecte un bruit dans le signal

On intensifie le bruit dans le signal en eugmentant le coefficient

L'information est perdue il est donc difficile de faire une operation de filttrage

Réalisation un filtrage ideal fréquentiel

Conception du filtre pass bas

Application du filtre pass bas

On peut remarquer que les piques superieur à la fréquence de coupure ont été éliminés

La difference entre le signal filté et le signal sans le cosinus de frequence 2500

Conclusion

A travers ce premier TP j'ai appris comment représenter des signaux et leur TFD, et appliquer un filtrage idéal