

SOME ESTIMATES RELATED TO OH'S CONJECTURE FOR THE CLIFFORD TORI IN $\mathbb{C}P^n$

EDWARD GOLDSTEIN

ABSTRACT. This note is motivated by Y.G. Oh's conjecture that the Clifford torus L_n in $\mathbb{C}P^n$ minimizes volume in its Hamiltonian deformation class. We show that there exist explicit positive constants a_n depending on the dimension with $a_2 = 3/\pi$ such that for any Lagrangian torus L in the Hamiltonian class of L_n we have $\text{vol}(L) \geq a_n \text{vol}(L_n)$. The proof uses the recent work of C.H. Cho [Cho] on Floer homology of the Clifford tori. A formula from integral geometry enables us to derive the estimate. We wish to point out that a general lower bound on the volume of L exists from the work of C. Viterbo [Vit]. Our lower bound $a_2 = 3/\pi$ is the best one we know.

1. INTRODUCTION

The Clifford torus L_n in $\mathbb{C}P^n$ is given in homogeneous coordinates by

$$((z_1 : \dots : z_{n+1}) \mid |z_i| = |z_j|)$$

The Clifford torus is the only orbit of the diagonal torus action on $\mathbb{C}P^n$ which is a minimal Lagrangian submanifold, see [Gold1]. It is also the only orbit which is a monotone Lagrangian submanifold, see [CG]. Y.G. Oh has studied the second variation of volume of L_n with respect to Hamiltonian deformations, see [Oh]. He has shown that this variation is non-negative and conjectured that L_n minimizes volume in its Hamiltonian deformation class. This note constitutes an effort toward verifying this conjecture. Our main tool is the recent result of Cheol-Hyun Cho [Cho] which states that if L is Hamiltonian equivalent to L_n and if L and L_n intersect transversally then the number of intersection points of L and L_n

$$\#(L \cap L_n) \geq 2^n$$

We will use integral geometry to study the volume of such L - see also [IOS] for a similar usage of integral geometry for a product of two geodesics in $S^2 \times S^2$. Our main result is that

$$\text{vol}(L) \geq a_n \text{vol}(L_n)$$

with an explicit positive constant a_n and $a_2 = \frac{3}{\pi}$.

2. A FORMULA FROM INTEGRAL GEOMETRY

The presentation here follows R. Howard [How]. In our case the group $SU(n+1)$ acts on $\mathbb{C}P^n$ with a stabilizer $K \simeq U(n)$. Thus we view $\mathbb{C}P^n = SU(n+1)/K$ and the Fubini-Study metric is induced from the bi-invariant metric on $SU(n+1)$. Let P and Q be two Lagrangian submanifolds of $\mathbb{C}P^n$. For a point $p \in P$ and $q \in Q$ we define an angle $\sigma(p, q)$ between the tangent plane $T_p P$ and $T_q Q$ as follows: First we choose some elements g and h in $SU(n+1)$ which move p and q respectively to the same point $r \in \mathbb{C}P^n$. Now the tangent planes $g_* T_p P$ and $h_* T_q Q$ are in the

same tangent space $T_r \mathbb{C}P^n$ and we can define an angle between them as follows: take an orthonormal basis $u_1 \dots u_n$ for $g_* T_p P$ and an orthonormal basis $v_1 \dots v_n$ for $h_* T_q Q$ and define

$$\sigma(g_* T_p P, h_* T_q Q) = |u_1 \wedge \dots \wedge v_n|$$

The later quantity $\sigma(g_* T_p P, h_* T_q Q)$ depends on the choices g and h we made. To mend this will need to average this out by the stabilizer group K of the point r . Thus we define:

$$\sigma(p, q) = \int_K \sigma(g_* T_p P, k_* h_* T_q Q) dk$$

Since $SU(n+1)$ acts transitively on the Grassmannian of Lagrangian planes in $\mathbb{C}P^n$ we conclude that this angle is a constant depending just on n :

$$\sigma(p, q) = c_n$$

There is a following general formula due to R. Howard [How]:

$$\int_{SU(n+1)} \#(gP \cap Q) dg = \int_{P \times Q} \sigma(p, q) dp dq = c_n \text{vol}(P) \text{vol}(Q)$$

Thus

$$(1) \quad \text{vol}(P) \text{vol}(Q) = \frac{1}{c_n} \int_{SU(n+1)} \#(gP \cap Q) dg$$

The quantity of interest for us is the constant $\frac{\text{vol}(SU(n+1))}{c_n}$. We'll find it using $P = Q = \mathbb{R}P^n$.

3. THE CASE OF $\mathbb{R}P^n$

Let P be $\mathbb{R}P^n$ and let Q be Hamiltonian equivalent to P . It is known that if P and Q intersect transversally then $\#(P \cap Q) \geq n+1$ - see [Giv] and also [FOOO] for a more general treatment of fixed point sets of antisymplectic involutions. On the other hand if g is a unitary matrix then linear algebra shows that $\#(gP \cap P) = n+1$ (again assuming transversality). Thus there is a proposition due to B. Kleiner:

Proposition 1. *(Kleiner) $\mathbb{R}P^n$ minimizes volume in its Hamiltonian isotopy class*

For our purposes we are interested in plugging the formula 1 with $P = Q = \mathbb{R}P^n$. We conclude that

$$(2) \quad \frac{\text{vol}(SU(n+1))}{c_n} = \frac{\text{vol}(\mathbb{R}P^n)^2}{n+1}$$

Let us work out the case $n = 2$. The metric on $\mathbb{C}P^2$ is the quotient of the metric on S^5 by S^1 -action. We have $\text{vol}(\mathbb{R}P^2) = \text{vol}(S^2)/2 = 2\pi$. So

$$\frac{\text{vol}(SU(3))}{c_2} = 4\pi^2/3$$

4. THE ESTIMATE FOR THE CLIFFORD TORUS

Let $L_n \subset \mathbb{C}P^n$ be the Clifford torus. There is a torus $T^{n+1} \subset \mathbb{C}^{n+1}$ given by

$$T^{n+1} = \{(z_1, \dots, z_{n+1}) \mid |z_i| = 1/\sqrt{n+1}\}$$

We have that L_n is the quotient of T^{n+1} by the S^1 action. Thus

$$\text{vol}(L_n) = \text{vol}(T^{n+1})/2\pi = (2\pi/\sqrt{n+1})^{n+1}/2\pi$$

For $n = 2$ we have

$$\text{vol}(L_2) = 4\pi^2/3\sqrt{3}$$

Let P be Hamiltonian equivalent to L_n . From [Cho] we have that for a unitary matrix g : $\#(gP \cap P) \geq 2^n$. Thus from equations 1 and 2 we conclude that

$$\text{vol}(P)^2 \geq 2^n \frac{\text{vol}(SU(n+1))}{c_n} = 2^n \frac{\text{vol}(\mathbb{R}P^n)^2}{n+1}$$

Let us specialize to the case $n = 2$. We have

$$\text{vol}(P)^2 \geq 4 \cdot 4\pi^2/3 = (4\pi)^2/3$$

Thus

$$\text{vol}(P) \geq 4\pi/\sqrt{3} = \frac{3}{\pi} \text{vol}(L_2)$$

REFERENCES

- [CG] Kai Cieliebak, Edward Goldstein: A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions, math.DG/0310046
- [Cho] Cheol-Hyun Cho: Holomorphic disc, spin structures and Floer cohomology of the Clifford torus, math.SG/0308224
- [FOOO] K. Fukaya, Y.G. Oh, H. Ohta and K. Ono: Lagrangian intersection Floer theory - anomaly and obstruction, Kyoto University Preprint, 2000.
- [Giv] A. Givental: The Nonlinear Maslov index, London Mathematical Society Lecture Note Series 15 (1990), 35-43
- [Gold1] E. Goldstein, *A construction of new families of minimal Lagrangian submanifolds via torus actions*, J. Diff. Geom. **58**, 233-261 (2001).
- [How] Howard, Ralph: The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc. 106 (1993), no. 509, vi+69 pp.
- [IOS] Hiroshi Iriyeh, Hajime Ono, Takashi Sakai: Integral Geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in $S^2 \times S^2$
- [Oh] Y.-G. Oh: Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds, Math. Z. **216**, 471-482 (1994).
- [Vit] C. Viterbo: Metric and isoperimetric problems in symplectic geometry. J. Amer. Math. Soc. 13 (2000), no. 2, 411-431

E-mail: egold@math.stanford.edu