Formale Grundlagen der Informatik I 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer Carsten Rösnick SS 2011 04.05.11

Minitest Lösung

Bestimmen Sie die korrekten Implikationen. Sei $L \subseteq \Sigma^*$ eine beliebige Sprache. Dann gilt:

L ist regulär

a) $\square \Rightarrow \boxtimes \Leftarrow L$ ist endlich

Begründung: Besteht L nur aus den endlich vielen Elementen w_1, \ldots, w_n , dann kann L durch den regulären Ausdruck $w_1 + w_2 + \cdots + w_n$ beschrieben werden. Umgekehrt ist Σ^* regulär, aber nicht endlich.

- b) $\boxtimes \Rightarrow \boxtimes \Leftarrow L$ wird von einem DFA akzeptiert Begründung: Satz von Kleene (Satz 2.3.1 im Skript).
- c) $\boxtimes \Rightarrow \boxtimes \Leftarrow L$ wird von einem NFA akzeptiert Begründung: Satz von Kleene (Satz 2.3.1 im Skript).
- d) $\boxtimes \Rightarrow \square \Leftarrow \begin{matrix} L \text{ enthält eine reguläre Sprache,} \\ \text{d.h. es gibt eine reguläre Sprache } L_1 \subseteq \Sigma^* \text{ mit } L_1 \subseteq L \end{matrix}$

Begründung: Hinrichtung ist klar mit $L=L_1$. Rückrichtung: Jede Sprache L enthält die reguläre Sprache \emptyset , aber nicht jede Sprache ist regulär.

e) $\boxtimes \Rightarrow \Box \Leftarrow \begin{matrix} L \text{ ist Teilmenge einer regulären Sprache,} \\ \text{d.h. es gibt eine reguläre Sprache } L_2 \subseteq \Sigma^* \text{ mit } L \subseteq L_2 \end{matrix}$

Begründung: Hinrichtung ist klar mit $L = L_2$. Rückrichtung: Wie d) aber mit Σ^* .

Gruppenübung

Aufgabe G1 (DFA Minimierung)

Betrachten Sie den folgenden DFA:

Gegeben ist die folgende unvollständige Tabelle für die Relation $\not\sim$. (Ein \times an der Stelle p,q in der Tabelle bedeutet, dass $p\not\sim q$.) Vervollständigen Sie die Tabelle und geben Sie ggf. ein Wort an, für das diese Unterscheidung notwendig ist, d.h. ein Wort w, das zu L_q gehört, aber nicht zu $L_{q'}$ (oder umgekehrt), wobei $L_q:=\{w\in\Sigma^*\mid \hat{\delta}(q,w)\in A\}$.

$\not\sim$	0	1	2	3	4	5	6	7
0			×	×	×			×
1			×	×	×			×
2	×	×		×		×	×	×
3	×	×	×		×	×	×	×
4	×	×		×		×	×	×
5			×	×	×		×	×
6			×	×	×	×		×
7	×	× × ×	×	×	×	×	×	

Aufgabe G2 (Umkehrung regulärer Sprachen)

Zeigen Sie, dass für jede reguläre Sprache L auch die Umkehrung $\operatorname{rev}(L)$ regulär ist, indem Sie zeigen, wie man aus einem regulären Ausdruck für die Sprache L einen regulären Ausdruck für $\operatorname{rev}(L)$ gewinnen kann. Zur Erinnerung: Die Sprache $\operatorname{rev}(L)$ ist definiert als

$$rev(L) := \{ w^{-1} \in \Sigma^* \mid w \in L \}.$$

Aufgabe G3 (NFA, DFA Vergleich)

Betrachten Sie den folgenden NFA \mathcal{A}_n :

$$\xrightarrow{a,b} 0 \xrightarrow{b} 1 \xrightarrow{a,b} 2 \xrightarrow{a,b} \cdots \xrightarrow{a,b} \boxed{n}$$

- (a) Bestimmen Sie $L(\mathcal{A}_n)$.
- (b) Zeigen Sie, dass es keinen äquivalenten DFA gibt mit weniger als 2^n Zuständen.

Hausübung

Aufgabe H1 (Minimalautomaten und Minimierung)

(4 Punkte)

Finden Sie einen äquivalenten DFA minimaler Größe für den folgenden DFA. Geben Sie im Zuge der Lösung auch die Relationen ϕ_i (für alle notwendigen i) explizit an.

Aufgabe H2 (Abgeschlossenheit der regulären Sprachen)

(4 Punkte)

Beweisen oder widerlegen Sie: Die Menge der regulären Sprachen ist abgeschlossen unter den folgenden Operationen:

- (a) In jedem Wort werden alle Buchstaben a durch b ersetzt und alle b durch a.
- (b) Jedes zweite Vorkommen des Buchstaben a wird durch das Wort aba ersetzt.

(Extra) Die Buchstaben in jedem Wort dürfen beliebig umsortiert werden, d.h. ist etwa das Wort *aaba* in der Sprache, so fügen wir auch die Wörter *aaab*, *abaa* und *baaa* hinzu.