P1 Chapter 14: Logarithms

The Natural Base

$$y = e^{x}$$

Click

Function	Gradient	✓
$y = 1^x$	$\frac{dy}{dx} = 0$	>
$y = 1.5^{x}$	$\frac{dy}{dx} = 0.41 \times 1.5^x$	>
$y=2^x$	$\frac{dy}{dx} = 0.69 \times 2^x$	>
$y = 2.5^{x}$	$\frac{dy}{dx} = 0.92 \times 2.5^x$	>
$y = 3^x$	$\frac{dy}{dx} = 1.10 \times 3^x$	>
$y = 3.5^x$	$\frac{dy}{dx} = 1.25 \times 3.5^x$	>

Compare each exponential function against its respective gradient function. What do you notice?

Function	Gradient	
$y = 1^x$	$\frac{dy}{dx} = 0$	>
$y = 1.5^{x}$	$\frac{dy}{dx} = 0.41 \times 1.5^x$	>
$y=2^x$	$\frac{dy}{dx} = 0.69 \times 2^x$	>
$y = 2.5^{x}$	$\frac{dy}{dx} = 0.92 \times 2.5^x$	>
$y = 3^x$	$\frac{dy}{dx} = 1.10 \times 3^x$	>
$y = 3.5^{x}$	$\frac{dy}{dx} = 1.25 \times 3.5^x$	>

 $y = 2.5^x$ and $y = 3^x$ seem to be similar to their respective gradient functions. So is there a base between 2.5 and 3 where the **function is equal to its gradient function**?

 $e=2.71828 \dots$ is known as **Euler's Number.**

It is one of the five most fundamental constants in mathematics $(0, 1, i, e, \pi)$.

It has the property that:

$$y = e^x \qquad \rightarrow \qquad \frac{dy}{dx} = e^x$$

Although any function of the form $y=a^x$ is known as **an** exponential function, e^x is known as "**the**" exponential function.

You can find the exponential function on your calculator, to the right (above the "In" key)

Differentiating $y = ae^{kx}$

\mathscr{F} If $y=e^{kx}$, where k is a constant, then $\frac{dy}{dx}=ke^{kx}$

Different e^{5x} with respect to x.

3

Note: This is not a standalone rule but an application of something called the 'chain rule', which you will encounter in Year 2.

Different e^{-x} with respect to x.

?

Different $4e^{3x}$ with respect to x.

?

Note: In general, when you scale the function, you scale the derivative/integral.

Differentiating $y = ae^{kx}$

$$\mathscr{F}$$
 If $y=e^{kx}$, where k is a constant, then $\frac{dy}{dx}=ke^{kx}$

Different e^{5x} with respect to x.

$$\frac{dy}{dx} = 5e^{5x}$$

Different e^{-x} with respect to x.

$$y = e^{-1x} : \frac{dy}{dx} = -e^{-x}$$

Different $4e^{3x}$ with respect to x.

$$\frac{dy}{dx} = 12e^{3x}$$

Note: This is not a standalone rule but an application of something called the 'chain rule', which you will encounter in Year 2.

Note: In general, when you scale the function, you scale the derivative/integral.

More Graph Transformations

Sketch
$$y = 5e^{-x}$$

Sketch
$$y = 2 + e^{\frac{1}{3}x}$$

More Graph Transformations

Sketch
$$y = e^{3x}$$

Sketch
$$y = 5e^{-x}$$

Sketch
$$y = 2 + e^{\frac{1}{3}x}$$

We have a stretch on x-axis by scale factor 3, and a translation up by 2.

Important Note: Because the original **asymptote** was y = 0, it is now y = 2 and you must indicate this along with its equation.

Test Your Understanding

Test Your Understanding

Sketch
$$y = e^{-2x} - 1$$

Just for your interest...

Where does *e* come from, and why is it so important?

$$e = 2.71828...$$

is known as **Euler's Number**, and is considered one of the five fundamental constants in maths: $0, 1, \pi, e, \underline{i}$

Its value was originally encountered by Bernoulli who was solving the following problem:

You have £1. If you put it in a bank account with 100% interest, how much do you have a year later? If the interest is split into 2 instalments of 50% interest, how much will I have? What about 3 instalments of 33.3%? And so on...

Thus:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

are considered to be equivalent*.

e therefore tends to arise in problems involving limits, and also therefore crops up all the time in anything involving differentiation and integration. Let's see some applications...

No. Instalments	Money after a year
1	$1 \times 2^1 = £2$
2	$1 \times 1.5^2 = £2.25$
3	$1 \times 1.\dot{3}^3 = £2.37$
4	$1 \times 1.25^4 = £2.44$
n	$\left(1+\frac{1}{n}\right)^n$

As n becomes larger, the amount after a year approaches £2.71..., i.e. e!

^{*}You can find a full proof here in my Graph Sketching/Limits slides: http://www.drfrostmaths.com/resources/resource.php?rid=163

Exercise 14.2

Pearson Pure Mathematics Year 1/AS Page 114

Homework Exercise

1 Use a calculator to find the value of e^x to 4 decimal places when

$$\mathbf{a} \quad x = 1$$

b
$$x = 4$$

c
$$x = -10$$

d
$$x = 0.2$$

2 a Draw an accurate graph of $y = e^x$ for $-4 \le x \le 4$.

b By drawing appropriate tangent lines, estimate the gradient at x = 1 and x = 3.

c Compare your answers to the actual values of e and e³.

3 Sketch the graphs of:

a
$$y = e^{x+1}$$

b
$$y = 4e^{-2x}$$

c
$$y = 2e^x - 3$$

d
$$y = 4 - e^x$$

$$y = 6 + 10e^{\frac{1}{2}x}$$

d
$$y = 4 - e^x$$
 e $y = 6 + 10e^{\frac{1}{2}x}$ **f** $y = 100e^{-x} + 10$

4 Each of the sketch graphs below is of the form $y = Ae^{bx} + C$, where A, b and C are constants. Find the values of A and C for each graph, and state whether b is positive or negative.

Hint] You do not have enough information to work out the value of b, so simply state whether it is positive or negative.

5 Rearrange $f(x) = e^{3x+2}$ into the form $f(x) = Ae^{bx}$, where A and b are constants whose values are to be found. Hence, or otherwise, sketch the graph of y = f(x).

Hint
$$e^{m+n} = e^m \times e^n$$

Homework Exercise

6 Differentiate the following with respect to x.

 $\mathbf{a} \ \mathbf{e}^{6x}$

b $e^{-\frac{1}{3}x}$

c $7e^{2x}$

d $5e^{0.4x}$

e $e^{3x} + 2e^x$ f $e^x(e^x + 1)$

Hint For part **f**, start by expanding the bracket.

7 Find the gradient of the curve with equation $y = e^{3x}$ at the point where

$$\mathbf{a} \quad x = 2$$

b
$$x = 0$$

c
$$x = -0.5$$

8 The function f is defined as $f(x) = e^{0.2x}$, $x \in \mathbb{R}$. Show that the tangent to the curve at the point (5, e) goes through the origin.

Homework Answers

- 1 a 2.71828 b 54.59815 c 0.00004 d 1.22140
- 2 a

- b Student's own answers
- c e = 2.71828...
 - $e^3 = 20.08553...$
- 3 a

b

3 c

d

 \mathbf{e}

f

- **4 a** A = 1, C = 5, b is positive
 - **b** A = 4, C = 0, b is negative
 - \mathbf{c} A = 6, C = 2, b is positive

Homework Answers

5
$$A = e^2, b = 3$$

- 6 a 6e6x
- ${\bm b} = -\frac{1}{3}e^{-\frac{1}{3}r}$
- c 14e2x

- d 2e0.4x
- $e 3e^{3x} + 2e^x$
- $f = 2e^{2x} + e^x$

7 a 3e6

b 3

c 3e-1.5

8 $f'(x) = 0.2e^{0.2x}$

The gradient of the tangent when x = 5 is

$$f'(5) = 0.2e^1 = 0.2e$$
.

The equation of the tangent is therefore y = (0.2e)x + c.

At (5, e),
$$e = 0.2e \times 5 + c$$
, so $c = 0$ and when $x = 0$, $y = 0$.