#### **ONDAS**

#### Método e recomendacións

#### Ecuación e características das ondas

- 1. Unha onda transmítese ao longo dunha corda. O punto situado en x = 0 oscila segundo a ecuación  $y = 0.1 \cos(10 \pi t)$  e outro punto situado en x = 0.03 m oscila segundo a ecuación  $y = 0.1 \cos(10 \pi t \pi / 4)$ . Calcula:
  - a) A amplitude, a lonxitude de onda, o número de onda k, o período, a frecuencia e pulsación  $\omega$  da onda.
  - b) A velocidade de propagación da onda e indica en que sentido se propaga.
  - c) O tempo que ha de transcorrer para que a onda percorra unha distancia igual a 2  $\lambda$ .
  - d) Escribe a ecuación de onda.
  - e) A velocidade de oscilación dun punto da corda e a súa aceleración en función do tempo.
  - f) A elongación, velocidade e aceleración dun punto situado en x = 0.03 m no instante t = 0.05 s.
  - g) Os valores máximos da velocidade e aceleración das partículas da corda.
  - h) Os valores do tempo para os que y(x, t) é máxima na posición x = 0.03 m.
  - i) Os valores do tempo para os que un punto situado en x = 0.03 m ten velocidade máxima.
  - j) A distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2  $\pi/3$ .
  - k) A diferenza de fase entre dous puntos separados 15 cm.
  - A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 0,05 s.
  - m) Para un tempo fixo t, que puntos da onda están en fase co punto que se atopa en x = 0.03 m?
  - n) Para unha posición fixa x, para que tempos o estado de vibración dese punto está en fase coa vibración para t = 0.05 s?

Problema modelo basado en P.A.U. Xuño 06

```
Rta.: a) A = 0,100 m; \lambda = 0,240 m; k = 26,2 rad/m; f = 5,00 Hz; \omega = 31,4 rad/s. b) \nu_p = 1,20 m/s; c) t_2 = 0,400 s; d) y = 0,100 \cdot \cos(31,4 \cdot t - 26,2 \cdot x) [m]; e) v = -3,14 \cdot \sin(31,4 \cdot t - 26,2 \cdot x) [m/s]; a = -98,7 \cdot \cos(31,4 \cdot t - 26,2 \cdot x) [m/s²]; f) y_3 = 0,0707 m; v_3 = 2,22 m/s; a_3 = -69,8 m/s²; g) v_m = 3,14 m/s; a_m = 98,7 m/s²; h) t_{my} = 0,0750 + 0,100 n (s); i) t_{mv} = 0,0250 + 0,100 n (s); j) \Delta x = 0,0800 + 0,240 \cdot n [m]; k) \Delta \varphi_x = 3,93 rad; l) \Delta \varphi_t = 1,57 rad; m) x_3 = 0,0300 + 0,240 n [m]; n) t_3 = 0,0500 + 0,200 n [s], n = 0,1,2...
```

| Datos                                                             | Cifras significativas: 3                                         |
|-------------------------------------------------------------------|------------------------------------------------------------------|
| Ecuación de oscilación na orixe $x = 0$                           | $y = 0.100 \cdot \cos(10.0 \cdot \pi \cdot t) \text{ [m]}$       |
| Ecuación de oscilación en $x = 0.03$ m                            | $y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t - \pi / 4.00)$ [m] |
| Incógnitas                                                        |                                                                  |
| Amplitude                                                         | A                                                                |
| Lonxitude de onda                                                 | λ                                                                |
| Número de onda                                                    | k                                                                |
| Período                                                           | T                                                                |
| Frecuencia                                                        | f                                                                |
| Pulsación                                                         | $\omega$                                                         |
| Velocidade de propagación                                         | $ u_{ m p}$                                                      |
| Tempo para que a onda percorra unha distancia igual a 2 $\lambda$ | $t_2$                                                            |
| Ecuación de onda                                                  | y(x, t)                                                          |
| Velocidade da partícula nun punto en función do tempo             | ν                                                                |
| Aceleración da partícula nun punto en función do tempo            | a                                                                |
| Elongación en $x = 0.03$ m en $t = 0.05$ s.                       | $y_3$                                                            |
| Velocidade en $x = 0.03$ m en $t = 0.05$ s.                       | $v_3$                                                            |
| Aceleración en $x = 0.03$ m en $t = 0.05$ s.                      | $a_3$                                                            |
| Velocidade máxima das partículas                                  | $ u_{ m m}$                                                      |
| Aceleración máxima das partículas                                 | $a_{ m m}$                                                       |
| Os valores do tempo para os que $y$ é máxima en $x$ = 0,03 m      | $t_{ m my}$                                                      |
| Os valores do tempo para os que $v$ é máxima en $x$ = 0,03 m      | $t_{\mathrm m v}$                                                |
| A distancia entre dous puntos cuxa diferencia de fase nun instan- | $\Delta x$                                                       |
| te dado é 2 $\pi/3$ .                                             | $\Delta \lambda$                                                 |

f

#### Incógnitas

| G G G G G G G G G G G G G G G G G G G                             |                            |
|-------------------------------------------------------------------|----------------------------|
| A diferenza de fase entre dous puntos separados 15 cm.            | $\Delta \varphi$           |
| A diferenza de fase entre dous estados de vibración da mesma      | $\Delta arphi_{t}$         |
| partícula cando o intervalo de tempo transcorrido é de 0,05 s     | $\Delta \psi_{\mathrm{t}}$ |
| Puntos da onda que están en fase co punto $en x = 0.03 \text{ m}$ | $\chi_3$                   |
| En que tempos o estado de vibración dese punto está en fase coa   | _                          |
| vibración para $t = 0.05 \text{ s}$                               | $t_3$                      |
| Outros símbolos                                                   |                            |
| Posición do punto (distancia ao foco)                             | X                          |
| Amplitude                                                         | A                          |
|                                                                   |                            |

# Frecuencia *Ecuacións*

Ecuación dunha onda harmónica unidimensional  $y = A \cdot \cos (\omega \cdot t \pm k \cdot x)$ Número de onda  $k = 2 \pi / \lambda$ Relación entre a frecuencia angular e a frecuencia  $\omega = 2 \pi \cdot f$ Relación entre o período e a frecuencia f = 1 / TRelación entre a lonxitude de onda e a velocidade de propagación  $v_p = \lambda \cdot f$ 

#### Solución:

a) Calcúlase a amplitude e a frecuencia angular comparando a ecuación dunha onda harmónica unidimensional coa ecuación de vibración na orixe:

Ecuación xeral dunha onda harmónica:  $y = A \cdot \cos (\omega \cdot t \pm k \cdot x)$ Ecuación da onda harmónica na orixe (x = 0):  $y = 0,100 \cdot \cos (10,0 \cdot \pi \cdot t)$  [m] Amplitude: A = 0,100 m Frecuencia angular:  $\omega = 10,0 \cdot \pi$  [rad/s] = 31,4 rad/s

Calcúlase o número de onda comparando a ecuación da onda harmónica unidimensional, na que se substituíron a amplitude e a frecuencia angular, coa ecuación de vibración en o punto x = 0,0300 m:

Ecuación da onda harmónica:

$$y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t \pm k \cdot x) [m]$$

Ecuación da onda harmónica no punto x = 0,0300 m:  $y = 0,100 \cdot \cos(10,0 \cdot \pi \cdot t - \pi/4,00) \text{ [m]}$ 

$$k \cdot x = \pi / 4,00 \implies k = \frac{\pi}{4,00 \cdot x} = \frac{3,14 \text{ [rad]}}{4,00 \cdot 0,030 \text{ [gm]}} = 26,2 \text{ rad/m}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = 2 \pi / \lambda \Rightarrow \lambda = \frac{2 \pi}{k} = \frac{2 \cdot 3.14 \text{ [rad]}}{26.2 \text{ [rad/m]}} = 0.240 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2 \pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{10.0 \cdot \pi}{2\pi} = 5,00 \text{ s}^{-1}$$

Calcúlase o período a partir da frecuencia:

$$f = 1 / T \implies T = \frac{1}{f} = \frac{1}{5,00 \text{ s}^{-1}} = 0,200 \text{ s}$$

b) Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.240 \text{ [m]} \cdot 5.00 \text{ [s}^{-1}] = 1.20 \text{ m/s}$$

Como a onda no punto x = 0,0300 m está atrasada en  $\pi$  / 4,00 rad porque na ecuación aparece o signo «-», a onda desprázase no sentido positivo do eixo X.

c) Calcúlase o tempo que tarda en percorrer unha distancia igual a  $\Delta x = 2 \cdot \lambda = 2 \cdot 0,240$  [m] = 0,480 m a partir da velocidade de propagación constante da onda

$$v_{\rm p} = \frac{\Delta x}{\Delta t} \implies t_{\rm 3} = \frac{\Delta x}{v_{\rm p}} = \frac{0.480 \,[{\rm m}\,]}{1.20 \,[{\rm m/s}\,]} = 0.400 \,{\rm s}$$

Análise: Pódese definir o período como o tempo que tarda unha onda en percorrer unha distancia igual á lonxitude de onda. Por tanto o tempo necesario para que a onda percorra unha distancia igual a  $2 \cdot \lambda$ , será o dobre do período:  $t_2 = 2 \cdot T = 2 \cdot 0.200$  [s] = 0,400 s.

d) A ecuación de movemento obtense substituíndo os valores de k e  $\omega$ :

$$y = A \cdot \cos(\omega \cdot t - k \cdot x) = 0,100 \cdot \cos(10,0 \cdot \pi \cdot t - \pi / 0,120 \cdot x) = 0,100 \cdot \cos(31,4 \cdot t - 26,2 \cdot x)$$
 [m]

Análise: Pódese comprobar que esta ecuación dá as ecuacións para x = 0,  $y = 0.100 \cdot \cos(31.4 \cdot t)$  e para x = 0.03 m,  $y = 0.100 \cdot \cos(31.4 \cdot t - 0.786) = 0.100 \cdot \cos(31.4 \cdot t - \pi / 4)$ 

e) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo :

$$v = \frac{dy}{dt} = \frac{d[0,100 \cdot \cos(31,4 \cdot t - 26,2 \cdot x)]}{dt} = -0,100 \cdot 31,4 \cdot \sin(31,4 \cdot t - 26,2 \cdot x) [\text{m/s}]$$

$$v = -3.14 \cdot \text{sen}(31.4 \cdot t - 26.2 \cdot x) \text{ [m/s]}$$

A aceleración obtense derivando a ecuación da velocidade con respecto ao tempo:

$$a = \frac{dv}{dt} = \frac{d\left[-3.14 \cdot \sin(31.4 \cdot t - 26.2 \cdot x)\right]}{dt} = -3.14 \cdot 31.4 \cdot \cos(31.4 \cdot t - 26.2 \cdot x) \left[\text{m/s}^2\right]$$

$$a = -98.7 \cdot \cos(31.4 \cdot t - 26.2 \cdot x) \text{ [m/s}^2\text{]}$$

f) Substitúense nas ecuacións os valores da posición x = 0.03 m e o tempo t = 0.05 s.

$$y_3 = 0.100 \cdot \cos (31.4 \cdot 0.0500 - 26.2 \cdot 0.0300) = 0.0707 \text{ m}$$

$$v_3 = -3.14 \cdot \text{sen} (31.4 \cdot 0.0500 - 26.2 \cdot 0.0300) = 2.22 \text{ m/s}$$

$$a_3 = -98.7 \cdot \cos(31.4 \cdot 0.0500 - 26.2 \cdot 0.0300) = -69.8 \text{ m/s}^2$$

g) A velocidade é máxima cando o seno da fase vale -1:

$$v_{\rm m} = -3.14 \cdot (-1) = 3.14 \text{ m/s}$$

A aceleración é máxima cando o coseno da fase vale -1:

$$a_{\rm m} = -98.7 \cdot (-1) = 98.7 \text{ m/s}^2$$

h) Para obter os valores do tempo para os que y é máxima en x = 0,03 m, imponse a condición de que o coseno da fase nese punto valla 1, o que corresponde a unha fase de 0 rad:

$$\cos(31.4 \cdot t_{mv} - 26.2 \cdot 0.03) = 1$$

$$31,4 \cdot t_{\rm my} - 26,2 \cdot 0,03 = 0$$

$$t_{\rm my} = \frac{26,2 \cdot 0,030}{31.4} = 0,025 \text{ (s)}$$

Esta situación volve repetirse transcorridos un número n de semiperíodos, se só nos atemos a que o valor da elongación sexa máxima.

$$t_{\rm mv} = 0.0250 + 0.100 \ n$$
 (s);  $n = 0, 1, 2...$ 

Se entendemos que máximo se refire tamén ao signo, entón repítese cada n períodos:

$$t_{\text{my}} = 0.0250 + 0.200 \ n \ (\text{s}); \ n = 0, 1, 2...$$

i) De forma análoga, a velocidade será máxima cando o seno da fase nese punto valla 1, o que corresponde a unha fase de  $\pi$  / 2 rad:

$$sen(31.4 \cdot t_m - 26.2 \cdot 0.0300) = 1$$

$$31.4 \cdot t_{\rm m} - 26.2 \cdot 0.0300 = \pi / 2$$

$$t_{\rm m} = \frac{26,2 \cdot 0,030 + 3,14/2}{31.4} = 0,075 \text{ ((s))}$$

Esta situación volve repetirse transcorridos un número n de semiperíodos, se só nos atemos a que o valor da velocidade sexa máxima.

$$t_{\rm mv} = 0.0750 + 0.100 \ n$$
 (s);  $n = 0, 1, 2...$ 

Se entendemos que máximo se refire tamén ao signo, entón repítese cada *n* períodos:

$$t_{mv} = 0.0750 + 0.200 \ n$$
 (s);  $n = 0, 1, 2...$ 

j) A distancia entre dous puntos cuxa diferencia de fase nun instante dado é  $2 \pi/3$  obtense restando as expresións das fases de ambos os puntos e igualando o resultado a  $2 \pi/3$ .

$$(31,4 \cdot t - 26,2 \cdot x_2) - (31,4 \cdot t - 26,2 \cdot x_1) = 2 \pi/3$$

$$26.2 \cdot (x_1 - x_2) = 2 \pi/3$$

$$\Delta x = x_1 - x_2 = \frac{2 \cdot 3,14/3}{26.2} = 0,080 \text{ o(m)}$$

Se a diferenza de fase fose de  $2 \pi$  rad, a distancia entre os puntos sería unha lonxitude de onda  $\lambda$ . A unha diferenza de fase de  $2 \pi/3$  rad correspóndelle unha distancia de  $\lambda/3 = 0,240 \text{ [m]}/3 = 0,0800 \text{ m}$ 

Todos os puntos que disten un múltiplo n de lonxitudes de onda do máis próximo, tamén terán unha diferenza de fase de  $2 \pi/3$  co punto de referencia.

$$\Delta x = 0.0800 + 0.240 \cdot n$$
 [m]

k) A diferenza de fase entre dous puntos que disten 15 cm obtense restando as expresións das fases de ambos os puntos

$$\Delta \varphi_{x} = (31.4 \cdot t - 26.2 \cdot x_{2}) - (31.4 \cdot t - 26.2 \cdot x_{1})$$

$$\Delta \varphi_{x} = 26.2 \cdot (x_{1} - x_{2}) = 26.2 \cdot 0.150 = 3.93 \text{ rad}$$

l) A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 0,05 s obtense restando as expresións das fases de ambos os puntos

$$\Delta \varphi_{\rm t} = (31.4 \cdot t_2 - 26.2 \cdot x) - (31.4 \cdot t_1 - 26.2 \cdot x)$$

$$\Delta \varphi_{t} = 31.4 \cdot (t_2 - t_1) = 31.4 \cdot 0.0500 = 1.57 \text{ rad}$$

m) Todos os puntos que disten un múltiplo n de lonxitudes de onda  $\lambda$  do punto en x = 0,03 m estarán en fase con el:

$$x_3 = 0.0300 + 0.240 \ n \ [m], \ n = 0, 1, 2...$$

m) En todos os tempos que disten un múltiplo n de períodos T do tempo en t = 0,05 s, o estado de vibración estará en fase con ese instante:

$$t_3 = 0.0500 + 0.200 n$$
 [s],  $n = 0, 1, 2...$ 

As respostas poden calcularse coa folla de cálculo Fisica (gal).

As instrucións para o manexo desta folla de cálculo poden verse na ligazón instrucións.

Para ir á folla para resolver un problema de ondas pode elixir unha destas opcións:

- Prema sobre a icona ▶, do grupo | ◄ ◄ ▶ | situado na parte inferior esquerda, varias veces ata que vexa a pestana
   Ondas. Logo prema sobre esa pestana.
- No índice, pulse a tecla [Ctrl] mentres preme sobre a cela Ondas do capítulo Vibracións e ondas.

Escriba os datos nas celas de cor branca con bordo azul.

Para escribir o símbolo  $\pi$ , teclee :pi:

Pode escribir =  $10^*$ PI() en vez de  $10 \pi$  ou = PI()/4 en vez de  $\pi$  / 4

Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:



Para ver os resultados, faga clic nas celas de cor laranxa e elixa as opcións como se mostra:



Facendo clic nas celas de cor laranxa de «Período» e «Lonxitude de onda», podemos obter outros resultados elixindo

| a)    | Frecuencia         | f=         | 5,00 Hz    |
|-------|--------------------|------------|------------|
| a)    | Número de onda k   | <i>k</i> = | 26,2 rad/m |
| E tan | nén                |            |            |
| a)    | Frecuencia angular | ω =        | 31,4 rad/s |

Para o apartado c (o tempo para percorrer unha distancia igual a  $2 \cdot \lambda$ ) a folla non lle vai dar a solución. Pode escribir unha fórmula sinxela nunha das celas baixo «OUTROS CÁLCULOS»

| OUTROS CÁLCULOS |  |           |  |  |  |
|-----------------|--|-----------|--|--|--|
| Etiqueta:       |  | Tempo 2 λ |  |  |  |
| Fórmula:        |  | 0,400     |  |  |  |

A fórmula pode ser

=2\*0,24/1,2

poñendo os valores obtidos.

Pode escribir tamén =2\*AVALOR(

e facer clic na cela que contén «0,240» á dereita de « $\lambda$  =». Agora verase: =2\*AVALOR(H19

Siga escribindo =2\*AVALOR(H19)/AVALOR(

Faga clic na cela que contén «1,20» á dereita de «v =» e escriba a paréntese final

=2\*AVALOR(H18)/AVALOR(H20)

As ecuacións da velocidade e aceleración obtéñense facendo clic en «Elongación» baixo «Ecuación» e elixindo

e) Velocidade v = -3.14 sen(31.4 t - 26.2 x) (m/s)E facendo clic na mesma cela, elixa e) Aceleración  $a = -98.7 \cos(31.4 \text{ t} - 26.2 \text{ x}) \text{ (m/s}^2)$ 

Para obter os valores da elongación, velocidade e aceleración nun tempo e posición concretos, temos que cambiar algúns dos datos, poñendo por exemplo o valor da lonxitude de onda. Temos que cambiar  $\Delta x$  por x, e escribir o valor do tempo xunto a t, e borrar o valor da «Diferenza de fase»

Ecuación  $y = A \frac{\cos(\omega t \pm k x + \varphi_0)}{\cos(\omega t \pm k x + \varphi_0)}$ 

| Amplitude          | <i>A</i> =      | 0,1  | m     |
|--------------------|-----------------|------|-------|
| Frecuencia angular | ω =             | 10 π | rad/s |
| Lonxitude de onda  | λ =             | 0,24 | m     |
| Posición do punto  | <i>x</i> =      | 0,03 | m     |
| no instante        | <i>t</i> =      | 0,05 | s     |
| Diferenza de fase  | $\Delta \phi =$ |      | rad   |

Facendo clic na cela de cor laranxa baixo «Valor» eliximos

|        | Valor                        |         | Máximo         | En $x = 0.03$ m aos | 0,05 s                |
|--------|------------------------------|---------|----------------|---------------------|-----------------------|
| f)     | Elongación                   | $y_m =$ | 0,100 m        | <i>y</i> =          | 0,0707 m              |
| Na me  | sma cela,                    |         |                |                     |                       |
| f), g) | Velocidade                   | $v_m =$ | 3,14 m/s       | v =                 | -2,22  m/s            |
| Vense  | tamén os valores máximos. Fa | cendo ( | clic outra vez | na mesma cela:      |                       |
| f), g) | Aceleración                  | $a_m =$ | 98,7 m/s       | a = a               | $-69.8 \text{ m/s}^2$ |

Obtemos os valores do tempo para os que y(x, t) é máxima na posición x = 0,03 m, borrando o valor do tempo nos datos

no instante t = s e facendo clic na cela de cor laranxa baixo «Velocidade de propagación» elixindo h) Tempo de elongación máxima, t = 0.0250 + 0.100 n (s) Facendo clic na mesma cela, podemos ver i) Tempo de velocidade máxima, t = 0.0750 + 0.100 n (s)

Para ver a distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2  $\pi/3$ , só haberá que es-

cribir nos datos:

Diferenza de fase  $\Delta \phi = 2 \pi / 3$  rad

Aparecerá na última liña dos resultados:

j) Distancia entre puntos  $\Delta x = 0.0800 \text{ m se} \quad \Delta \varphi = 2.09 \text{ rad}$ 

Para o apartado seguinte, cambiamos nos datos x por  $\Delta x$ , escribimos a distancia, eliximos a unidade e borramos o valor da «Diferenza de fase»

Distancia entre puntos  $\Delta x = 15$  cm no instante t = s Diferenza de fase  $\Delta \phi =$  rad

A última liña de RESULTADOS mostrará:

k) Diferenza de fase  $\Delta \varphi = 3,93 \text{ rad se} \Delta x = 15 \text{ cm}$ Podemos facer clic na cela de cor laranxa, para que a diferencia de fase apareza en función de  $\pi$ . k) Diferenza de fase  $\Delta \varphi = 5 \pi/4 \text{ rad se} \Delta x = 15 \text{ cm} \pi$ 

Para ver a diferenza de fase cando o intervalo de tempo transcorrido é de 0,05 s, esta folla non lle dá o resultado.

Para ver que puntos da onda están en fase co punto que se atopa en x = 0.03 m, volvemos cambiar nos datos  $\Delta x$  por x, escribimos a posición e eliximos a unidade.

Posición do punto  $x = 0.03 \frac{\text{m}}{\text{m}}$ 

Facendo clic na cela de cor laranxa baixo «Velocidade de propagación» e elixindo

m) Posicións de puntos en fase, x = 0,0300 + 0,240 n (m)

Para ver en que tempos o estado de vibración de ese punto está en fase coa vibración para t = 0.05 s, borramos os datos de x, e escribimos o tempo.



Facemos clic na cela de cor laranxa baixo «Velocidade de propagación» elixindo

- n) Tempos de puntos en fase, t = 0.0500 + 0.200 n (s)
- 2. Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm, propágase por unha corda no sentido positivo do eixe X. No intre t = 0, a elongación no punto x = 0 é y = 2,83 cm.
  - a) Expresa matematicamente a onda e represéntaa graficamente en (t = 0; 0 < x < 40 cm).
  - b) Calcula a velocidade de propagación da onda e determina, en función do tempo, a velocidade de oscilación transversal da partícula situada en *x* = 5 cm.

(A.B.A.U. Xul. 21)

**Rta.:** a)  $y = 0.0400 \text{ sen}(4 \pi t - 10 \pi x + \pi / 4) \text{ [m]}$ ; b)  $v_p = 0.400 \text{ m/s}$ ;  $v = 0.503 \cos(4 \pi t - \pi / 4) \text{ [m/s]}$ 

| Datos                                                            | Cifras significativas: 3                                                   |
|------------------------------------------------------------------|----------------------------------------------------------------------------|
| Frecuencia                                                       | $f = 2,00 \text{ Hz} = 2,00 \text{ s}^{-1}$                                |
| Lonxitude de onda                                                | $\lambda = 20,0 \text{ cm} = 0,200 \text{ m}$                              |
| Amplitude                                                        | A = 0.0400  m = 0.0400  m                                                  |
| Elongación en $x = 0$ para $t = 0$                               | y = 2.83  cm = 0.0283  m                                                   |
| Incógnitas                                                       |                                                                            |
| Ecuación da onda (frecuencia angular e número de onda)           | $\omega$ , $k$                                                             |
| Velocidade de propagación                                        | $ u_{ m p}$                                                                |
| Velocidade da partícula en $x = 5$ cm en función do tempo        | ν                                                                          |
| Outros símbolos                                                  |                                                                            |
| Posición do punto (distancia ao foco)                            | $\boldsymbol{x}$                                                           |
| Período                                                          | T                                                                          |
| Ecuacións                                                        |                                                                            |
| Ecuación dunha onda harmónica unidimensional                     | $y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$ |
| Número de onda                                                   | $k = 2 \pi / \lambda$                                                      |
| Frecuencia angular                                               | $\omega$ = 2 $\pi \cdot f$                                                 |
| Relación entre a lonxitude de onda e a velocidade de propagación | $v_{\rm p} = \lambda \cdot f$                                              |

#### Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 2.00 \text{ [s}^{-1}] = 4.00 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}] = 12.6 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0,200 \text{ [m]}} = 10\pi \text{ rad/m} = 31,4 \text{ rad/m}$$

Calcúlase a fase inicial a partir da elongación en x = 0 para t = 0.

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + \varphi_0) \text{ [m]}$$
  
 $0.0283 \text{ [m]} = 0.0400 \cdot \text{sen}(12.6 \cdot 0 - 31.4 \cdot 0 + \varphi_0) \text{ [m]} = 0.0400 \cdot \text{sen}(\varphi_0)$   
 $\text{sen}(\varphi_0) = 0.0283 / 0.0400 = 0.721$   
 $\varphi_0 = \text{arcsen } 0.721 = 0.786 \text{ rad} = \pi / 4 \text{ rad}$ 

A ecuación de onda queda:

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + 0.786) \text{ [m]} = 0.0400 \cdot \text{sen}(4 \pi \cdot t - 10 \pi \cdot x + \pi / 4) \text{ [m]}$$

A representación gráfica é a da figura:

b) Calcúlase a velocidade de propagación a partir da lonxitude de onda e a frecuencia:

$$v_p = \lambda \cdot f = 0,200 \text{ [m]} \cdot 2,00 \text{ [s}^{-1}] = 0,400 \text{ m/s}$$

A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:



$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[0,040 \ \theta sen\left(12,6 \cdot t - 31,4 \cdot x + 0,786\right)\right]}{\mathrm{d}t} = 0,040 \ \theta 12,6 \cos\left(12,6 \cdot t - 31,4 \cdot x + 0,786\right) \left[ \text{m/s} \right]$$

$$v = 0.503 \cdot \cos(12.6 \cdot t - 31.4 \cdot x + 0.786)$$
 [m/s]

Para x = 5 cm (=0,05 m), a expresión queda:

$$v = 0.503 \cdot \cos(12.6 \cdot t - 31.4 \cdot 0.0500 + 0.786) = 0.503 \cdot \cos(12.6 \cdot t - 0.786) = 0.503 \cdot \cos(4 \pi \cdot t - \pi / 4) \text{ [m/s]}$$

A respostas poden calcularse coa folla de cálculo Fisica (gal).

As instrucións para o manexo desta folla de cálculo poden verse na ligazón instrucións.

Para ir á folla para resolver un problema de ondas pode elixir unha destas opcións:

- Prema sobre a icona ▶, do grupo |◀ ◀ ▶ ▶| situado na parte inferior esquerda, varias veces ata que vexa a pestana ∩ Ondas. Logo prema sobre esa pestana.
- No índice, pulse a tecla [Ctrl] mentres preme sobre a cela Ondas do capítulo Vibracións e ondas.

Escriba os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. Para este problema debería ser:



Para ver os resultados, faga clic nas celas de cor laranxa e elixa as opcións como se mostra:



Máis abaixo verá:

Velocidade de propagación v = 0,400 m/s

Para a representación gráfica elixa «Tempo (s)» na cela de cor laranxa e teclee os datos do tempo e as posicións inicial e final.



A gráfica será como a seguinte:

Para ver os resultados de apartado b) cambie «xeral» por «en x = 5 cm» e «Elongación» por «Velocidade»

Ecuación en x = 5 cm

Velocidade 
$$v = 0,503 \cos(4 \pi t - \pi/2) \text{ (m/s)}$$



### Dioptrio plano

- 1. Un raio de luz de frecuencia 5·10<sup>14</sup> Hz incide cun ángulo de incidencia de 30° sobre unha lámina de vidro de caras plano-paralelas de espesor 10 cm. Sabendo que o índice de refracción do vidro é 1,50 e o do aire 1,00:
  - a) Enuncia as leis da refracción e debuxa a marcha dos raios no aire e no interior da lámina de vidro.
  - b) Calcula a lonxitude de onda da luz no aire e no vidro, e a lonxitude percorrida polo raio no interior da lámina.
  - c) Acha o ángulo que forma o raio de luz coa normal cando emerxe de novo ao aire.

Dato:  $c = 3,00 \cdot 10^8 \text{ m/s}$  (P.A.U. Set. 14)

**Rta.**: b)  $\lambda(aire) = 600 \text{ nm}$ ;  $\lambda(vidro) = 400 \text{ nm}$ ; L = 10.6 cm; c)  $\theta_{r2} = 30^{\circ}$ 

#### Datos

Frecuencia do raio de luz Ángulo de incidencia Espesor da lámina de vidro Índice de refracción do vidro Índice de refracción do aire Velocidade da luz no baleiro

#### Incógnitas

Lonxitude de onda de luz no aire e no vidro Lonxitude percorrida polo raio de luz no interior da lámina Ángulo de desviación do raio ao saír da lámina

#### **Ecuacións**

Índice de refracción dun medio  $_{\rm i}$  no que a luz se despraza á velocidade  $v_{\rm i}$ 

Relación entre a velocidade v, a lonxitude de onda  $\lambda$  e a frecuencia f Lei de Snell da refracción

#### Cifras significativas: 3

 $f = 5,00 \cdot 10^{14} \text{ Hz}$   $\theta_{i1} = 30,0^{\circ}$  e = 10,0 cm = 0,100 m  $n_{v} = 1,50$   $n_{a} = 1,00$  $c = 3,00 \cdot 10^{8} \text{ m/s}$ 

 $\lambda_{\rm a}, \, \lambda_{\rm v}$  L  $\theta_{\rm r2}$ 

 $n_{i} = \frac{c}{v_{i}}$   $v = \lambda \cdot f$   $n_{i} \cdot \text{sen } \theta_{i} = n_{r} \cdot \text{sen } \theta_{r}$ 

#### Solución:

- a) As leis de Snell da refracción son:
- 1.ª O raio incidente, o raio refractado e a normal están no mesmo plano.
- 2.ª A relación matemática entre os índices de refracción  $n_i$  e  $n_r$  dos medios incidente e refractado e os ángulos de incidencia e refracción  $\theta_i$  e  $\theta_r$ , é:

$$n_i \cdot \text{sen } \theta_i = n_r \cdot \text{sen } \theta_r$$

Represéntase a traxectoria da luz. O raio incidente no punto A cun ángulo de incidencia  $\theta_{i1}$  = 30° pasa do aire ao vidro dando un raio refractado que forma o primeiro ángulo de refracción  $\theta_{r1}$  e o segundo ángulo de incidencia  $\theta_{i2}$  entre o vidro e o aire. Finalmente sae da lámina de vidro polo punto B co segundo ángulo de refracción  $\theta_{r2}$ .

b) A velocidade da luz no aire é:



$$v_a = \frac{c}{n_a} = \frac{3,00 \cdot 10^8 \text{ m/s}}{1,00} = 3,00 \cdot 10^8 \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no aire é:

$$\lambda_a = \frac{v_a}{f} = \frac{3,00 \cdot 10^8 \text{ m/s}}{5,00 \cdot 10^{14} \text{ s}^{-1}} = 6,00 \cdot 10^{-7} \text{ m} = 600 \text{ nm}$$

A velocidade da luz no vidro é:

$$v_{v} = \frac{c}{n_{v}} = \frac{3,00 \cdot 10^{8} \text{ m/s}}{1,50} = 2,00 \cdot 10^{8} \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no vidro é:

$$\lambda_{\rm v} = \frac{v_{\rm v}}{f} = \frac{2,00 \cdot 10^8 \text{ m/s}}{5.00 \cdot 10^{14} \text{ s}^{-1}} = 4,00 \cdot 10^{-7} \text{ m} = 400 \text{ nm}$$

Como o espesor da lámina é de 10 cm, a lonxitude percorrida polo raio é a hipotenusa L do triángulo ABC. O primeiro ángulo de refracción  $\theta_{r1}$  pódese calcular aplicando a lei de Snell

$$1,00 \cdot \text{sen } 30^{\circ} = 1,50 \cdot \text{sen } \theta_{\text{r1}}$$

$$\sin \theta_{\rm rl} = \frac{1,00 \cdot \sin 30^{\circ}}{1.50} = 0,333$$

$$\theta_{\rm r1}$$
 = arcsen 0,333 = 19,5°

Por tanto a hipotenusa *L* vale:

$$L = \frac{e}{\cos \theta_{rl}} = \frac{10.0 \text{ [cm]}}{\cos 19.5^{\circ}} = 10.6 \text{ cm}$$

c) Como a lámina de vidro é de caras paralelas, o segundo ángulo de incidencia ai2 é igual ao primeiro ángulo de refracción:

$$\theta_{i2} = \theta_{r1} = 19.5^{\circ}$$

Para calcular o ángulo co que sae da lámina, vólvese a aplicar a lei de Snell entre o vidro (que agora é o medio incidente) e o aire (que é o medio refractado):

$$1,50 \cdot \text{sen } 19,5^{\circ} = 1,00 \cdot \text{sen } \theta_{r2}$$

$$\sin \theta_{\rm r2} = \frac{1,50 \cdot \sin 19,5^{\circ}}{1,00} = 0,500$$

$$\theta_{\rm r2} = {\rm arcsen} \ 0.500 = 30.0^{\circ}$$

Análise: Este resultado é correcto porque o raio sae paralelo ao raio incidente orixinal.

- Un raio de luz pasa da auga (índice de refracción n = 4/3) ao aire (n = 1). Calcula:
  - a) O ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si.
  - b) O ángulo límite.
  - c) Hai ángulo límite se a luz incide do aire á auga?

(P.A.U. Xuño 13)

**Rta.**: a)  $\theta_i = 36.9^\circ$ ; b)  $\lambda = 48.6^\circ$ 

Datos

Índice de refracción do aire Índice de refracción da auga Ángulo entre o raio refractado e o reflectido

Incógnitas

Ángulo de incidencia

Cifras significativas: 3

n = 1,00 $n_a = 4 / 3 = 1,33$  $\Delta\theta_{\rm rr} = 90.0^{\circ}$ 

 $\theta_{\rm i}$ 

#### **Datos**

Ángulo límite

#### **Ecuacións**

Lei de Snell da refracción

## Cifras significativas: 3

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$ 

#### Solución:

a) Aplicando a lei de Snell da refracción:

$$1,33 \cdot \text{sen } \theta_i = 1,00 \cdot \text{sen } \theta_r$$

Á vista do debuxo debe cumprirse que

$$\theta_{\rm r}$$
 + 90° +  $\theta_{\rm rx}$  = 180°

Como o ángulo de reflexión  $\theta_{rx}$  é igual ao ángulo de incidencia  $\theta_{i}$ , a ecuación anterior convértese en:



É dicir, que o ángulo de incidencia  $\theta_i$  e o de refracción  $\theta_r$  son complementarios.

O seno dun ángulo é igual ao coseno do seu complementario. Entón a primeira ecuación queda:

$$1,33 \cdot \text{sen } \theta_i = \text{sen } \theta_r = \cos \theta_i$$

$$\tan \% itheta_i = \frac{1}{1,33} = 0,75$$

$$\theta_{\rm i} = \arctan 0.75 = 36.9^{\circ}$$

b) Ángulo límite  $\lambda$  é o ángulo de incidencia que produce un ángulo de refracción de 90°

$$1,33 \cdot \text{sen } \lambda = 1,00 \cdot \text{sen } 90,0^{\circ}$$

sen 
$$\lambda = 1.00 / 1.33 = 0.75$$

$$\lambda = \arcsin 0.75 = 48.6^{\circ}$$

c) Non. Cando a luz pasa do aire á auga, o ángulo de refracción é menor que o de incidencia. Para conseguir un ángulo de refracción de 90° o ángulo de incidencia tería que ser maior que 90° e non estaría no aire. Tamén pode deducirse da lei de Snell.

$$1,00 \cdot \text{sen } \lambda_1 = 1,33 \cdot \text{sen } 90^\circ$$

sen 
$$\lambda_1$$
 = 1,33 / 1,00 > 1

É imposible. O seno dun ángulo non pode ser maior que uno.

Sobre un prisma equilátero de ángulo 60° (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50° coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC:



- b) Determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue o raio.
- c) Explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non, dentro e fóra do prisma.

Dato: 
$$n(aire) = 1$$

(P.A.U. Set. 11)

**Rta.**: a)  $n_p = 1.5$ ; b)  $\theta_{r2} = 50^{\circ}$ 

#### **Datos**

Ángulos do triángulo equilátero Ángulo de incidencia Índice de refracción do aire

#### Cifras significativas: 2

 $\theta = 60^{\circ}$  $\theta_{\rm i}$  = 50°

 $n_{\rm a} = 1.0$ 



#### Incógnitas

Índice de refracción do prisma

Ángulo de desviación do raio ao saír do prisma

#### **Ecuacións**

Lei de Snell da refracción

$$n_{
m p}$$
  $heta_{
m r2}$ 

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$ 

#### Solución:

a) Na lei de Snell da refracción

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

 $n_{\rm i}$  e  $n_{\rm r}$  representan os índices de refracción dos medios incidente e refractado

 $\theta_i$  e  $\theta_r$  representan os ángulos de incidencia e refracción que forma cada raio coa normal á superficie de separación entre os dous medios.

O primeiro ángulo de refracción  $\theta_{r1}$ , que forma o raio de luz refractado paralelo á base do prisma, vale 30°, xa que é o complementario ao de 60° do triángulo equilátero.

$$n_{\rm p} = n_{\rm r} = \frac{n_{\rm i} \cdot \sin \theta_{\rm i1}}{\sin \theta_{\rm r1}} = \frac{1,0 \cdot \sin 50^{\circ}}{\sin 30^{\circ}} = 1,5$$

b) Cando o raio sae do prisma, o ángulo de incidencia  $\theta_{i2}$  do raio coa normal ao lado BC vale 30°. Volvendo aplicar a lei de Snell

$$\theta_{\rm r2}$$
 = arcsen 0,77 = 50°



A lonxitude de onda  $\lambda$  está relacionada con ela por

$$c = \lambda \cdot f$$

A velocidade da luz nun medio transparente é sempre menor que no baleiro. O índice de refracción do medio é o cociente entre ambas as velocidades.

$$n=\frac{c}{v}$$

A velocidade da luz no aire é practicamente igual á do baleiro, mentres que no prisma é 1,5 veces menor. Como a frecuencia é a mesma, a lonxitude de onda (que é inversamente proporcional á frecuencia) no prisma é 1,5 veces menor que no aire.



Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 26/09/24





## Sumario

### **ONDAS**

| Есиас | ción e características das ondas1                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Unha onda transmítese ao longo dunha corda. O punto situado en $x = 0$ oscila segundo a ecuación                                                                                                                                                                                      |
|       | $y = 0.1 \cos(10 \pi t)$ e outro punto situado en $x = 0.03$ m oscila segundo a ecuación                                                                                                                                                                                              |
|       | $y = 0.1 \cos(10 \pi t - \pi / 4)$ . Calcula:                                                                                                                                                                                                                                         |
|       | a) A amplitude, a lonxitude de onda, o número de onda k, o período, a frecuencia e pulsación ω da onda                                                                                                                                                                                |
|       | b) A velocidade de propagación da onda e indica en que sentido se propaga                                                                                                                                                                                                             |
|       | c) O tempo que ha de transcorrer para que a onda percorra unha distancia igual a 2 λ                                                                                                                                                                                                  |
|       | d) Escribe a ecuación de onda                                                                                                                                                                                                                                                         |
|       | e) A velocidade de oscilación dun punto da corda e a súa aceleración en función do tempo                                                                                                                                                                                              |
|       | f) A elongación, velocidade e aceleración dun punto situado en x = 0,03 m no instante t = 0,05 s                                                                                                                                                                                      |
|       | g) Os valores máximos da velocidade e aceleración das partículas da corda                                                                                                                                                                                                             |
|       | h) Os valores do tempo para os que $y(x, t)$ é máxima na posición $x = 0.03$ m                                                                                                                                                                                                        |
|       | i) Os valores do tempo para os que un punto situado en $x = 0.03$ m ten velocidade máxima                                                                                                                                                                                             |
|       | j) A distancia entre dous puntos cuxa diferencia de fase nun instante dado é $2 \pi/3$                                                                                                                                                                                                |
|       | k) A diferenza de fase entre dous puntos separados 15 cm                                                                                                                                                                                                                              |
|       | l) A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de                                                                                                                                                                                        |
|       | tempo transcorrido é de 0,05 s                                                                                                                                                                                                                                                        |
|       | m) Para un tempo fixo t, que puntos da onda están en fase co punto que se atopa en x $= 0.03$ m?                                                                                                                                                                                      |
|       | n) Para unha posición fixa x, para que tempos o estado de vibración dese punto está en fase coa vibración para $t=0.05\ s$ ?                                                                                                                                                          |
| 2.    | Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm,                                                                                                                                                                                         |
|       | propágase por unha corda no sentido positivo do eixe $X$ . No intre $t=0$ , a elongación no punto $x=0$                                                                                                                                                                               |
|       | é y = 2,83 cm7                                                                                                                                                                                                                                                                        |
|       | <ul> <li>a) Expresa matematicamente a onda e represéntaa graficamente en (t = 0; 0 &lt; x &lt; 40 cm)</li> <li>b) Calcula a velocidade de propagación da onda e determina, en función do tempo, a velocidade de accidación transportante da portícula situada en x = 5 cm.</li> </ul> |
| Diont | oscilación transversal da partícula situada en x = 5 cm                                                                                                                                                                                                                               |
|       | Un raio de luz de frecuencia 5·10¹⁴ Hz incide cun ángulo de incidencia de 30° sobre unha lámina de                                                                                                                                                                                    |
|       | vidro de caras plano-paralelas de espesor 10 cm. Sabendo que o índice de refracción do vidro é 1,50                                                                                                                                                                                   |
|       | e o do aire 1,00:9                                                                                                                                                                                                                                                                    |
|       | a) Enuncia as leis da refracción e debuxa a marcha dos raios no aire e no interior da lámina de vi-                                                                                                                                                                                   |
|       | drodro                                                                                                                                                                                                                                                                                |
|       | b) Calcula a lonxitude de onda da luz no aire e no vidro, e a lonxitude percorrida polo raio no interior da lámina                                                                                                                                                                    |
|       | c) Acha o ángulo que forma o raio de luz coa normal cando emerxe de novo ao aire                                                                                                                                                                                                      |
| 2     | Un raio de luz pasa da auga (índice de refracción n = 4/3) ao aire (n = 1). Calcula:10                                                                                                                                                                                                |
| 2.    | a) O ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si                                                                                                                                                                                            |
|       | b) O ángulo límite                                                                                                                                                                                                                                                                    |
|       | c) Hai ángulo límite se a luz incide do aire á auga?                                                                                                                                                                                                                                  |
| 3     | Sobre un prisma equilátero de ángulo 60° (ver figura), incide un raio luminoso monocromático que                                                                                                                                                                                      |
|       | forma un ángulo de 50° coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo                                                                                                                                                                                      |
|       | á base AC:                                                                                                                                                                                                                                                                            |
|       | a) Calcula o índice de refracción do prisma                                                                                                                                                                                                                                           |
|       | b) Determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue                                                                                                                                                                                      |
|       | o raio                                                                                                                                                                                                                                                                                |
|       | c) Explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou                                                                                                                                                                                   |
|       | non, dentro e fóra do prisma                                                                                                                                                                                                                                                          |