Constraining Gaussian Processes by Variational Fourier Features

Arno Solin

Aalto University

Joint work with

Manon Kok

(and earlier work with Nicolas Durrande, James Hensman, and Simo Särkkä)

September 12, 2019

Outline

The idea

What?

- Gaussian processes (GPs) provide a powerful framework for extrapolation, interpolation, and noise removal in regression and classification
- We constrain GPs to arbitrarily-shaped domains with boundary conditions
- Applications in, e.g., imaging, spatial analysis, robotics, or general ML tasks

Why is this non-trivial?

GPs provide convenient ways for model specification and inference, but ...

- ► Issue #1: How to represent this prior?
- Issue #2: Limitations in scaling do large data sets
- ► Issue #3: Limitations in dealing with non-Gaussian likelihoods

Hilbert Space Methods for Reduced-Rank GPs

Problem formulation

Gaussian process (GP) regression problem:

$$f(\mathbf{x}) \sim \mathcal{GP}(0, \kappa(\mathbf{x}, \mathbf{x}')),$$

 $y_i = f(\mathbf{x}_i) + \varepsilon_i.$

- The GP-regression has cubic computational complexity $\mathcal{O}(n^3)$ in the number of measurements.
- This results from the inversion of an $n \times n$ matrix:

$$\mathbb{E}[f(\mathbf{x}_*)] = \kappa(\mathbf{x}_*, \mathbf{x}_{1:n}) \left(\kappa(\mathbf{x}_{1:n}, \mathbf{x}_{1:n}) + \sigma_n^2 \mathbf{I}\right)^{-1} \mathbf{y}$$

$$\mathbb{V}[f(\mathbf{x}_*)] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \kappa(\mathbf{x}_*, \mathbf{x}_{1:n}) \left(\kappa(\mathbf{x}_{1:n}, \mathbf{x}_{1:n}) + \sigma_n^2 \mathbf{I}\right)^{-1} \kappa(\mathbf{x}_{1:n}, \mathbf{x}_*).$$

Various sparse, reduced-rank, and related approximations have been developed for mitigating this problem.

Covariance operator

For covariance function $\kappa(\mathbf{x}, \mathbf{x}')$ we can define covariance operator:

$$\mathcal{K} \phi = \int \kappa(\cdot, \mathbf{x}') \, \phi(\mathbf{x}') \, d\mathbf{x}'.$$

For stationary covariance function $\kappa(\mathbf{x}, \mathbf{x}') \triangleq \kappa(\|\mathbf{r}\|)$; $\mathbf{r} = \mathbf{x} - \mathbf{x}'$ we get

$$S(\omega) = \int \kappa(\mathbf{r}) \, e^{-\mathrm{i} \; \omega^\mathsf{T} \mathbf{r}} \, \mathrm{d}\mathbf{r}.$$

lacktriangle The transfer function corresponding to the operator ${\cal K}$ is

$$S(\omega) = \mathscr{F}[\mathcal{K}].$$

The spectral density $S(\omega)$ also gives the approximate eigenvalues of the operator \mathcal{K} .

Laplacian operator series

▶ In isotropic case $S(\omega) \triangleq S(\|\omega\|)$, we can expand

$$S(\|\omega\|) = a_0 + a_1 \|\omega\|^2 + a_2 (\|\omega\|^2)^2 + a_3 (\|\omega\|^2)^3 + \cdots$$

► The Fourier transform of the Laplace operator ∇^2 is $-\|\omega\|^2$, *i.e.*,

$$\mathcal{K} = a_0 + a_1(-\nabla^2) + a_2(-\nabla^2)^2 + a_3(-\nabla^2)^3 + \cdots$$

- Defines a pseudo-differential operator as a series of differential operators.
- Let us now approximate the Laplacian operators with a Hilbert method...

Series expansions of GPs

Assume a covariance function $\kappa(\mathbf{x}, \mathbf{x}')$ and an inner product, say,

$$\langle f, g \rangle = \int_{\Omega} f(\mathbf{x}) g(\mathbf{x}) w(\mathbf{x}) d\mathbf{x}.$$

- The inner product induces a Hilbert-space of (random) functions.
- If we fix a basis $\{\phi_j(\mathbf{x})\}$, a Gaussian process $f(\mathbf{x})$ can be expanded into a series

$$f(\mathbf{x}) = \sum_{j=1}^{\infty} f_j \, \phi_j(\mathbf{x}),$$

where f_i are jointly Gaussian.

- If we select ϕ_j to be the eigenfunctions of $\kappa(\mathbf{x}, \mathbf{x}')$ w.r.t. $\langle \cdot, \cdot \rangle$, then this becomes a Karhunen–Loève series.
- In the Karhunen–Loève case the coefficients f_j are independent Gaussian.

Hilbert-space approximation of the Laplacian

Consider the eigenvalue problem for the Laplacian operators:

$$\begin{cases} -\nabla^2 \phi_j(\mathbf{x}) = \lambda_j^2 \, \phi_j(\mathbf{x}), & \mathbf{x} \in \Omega, \\ \phi_j(\mathbf{x}) = 0, & \mathbf{x} \in \partial \Omega. \end{cases}$$

▶ The eigenfunctions $\phi_i(\cdot)$ are orthonormal w.r.t. inner product

$$\langle f,g
angle = \int_{\Omega} f(\mathbf{x}) \, g(\mathbf{x}) \, d\mathbf{x},$$

$$\int_{\Omega} \phi_i(\mathbf{x}) \, \phi_j(\mathbf{x}) \, d\mathbf{x} = \delta_{ij}.$$

The negative Laplacian has the formal kernel

$$\ell(\mathbf{x}, \mathbf{x}') = \sum_{j} \lambda_{j}^{2} \phi_{j}(\mathbf{x}) \phi_{j}(\mathbf{x}')$$

in the sense that

$$-\nabla^2 f(\mathbf{x}) = \int \ell(\mathbf{x}, \mathbf{x}') \, f(\mathbf{x}') \, d\mathbf{x}'.$$

Approximation of the covariance function

Recall that we have the expansion

$$\mathcal{K} = a_0 + a_1(-\nabla^2) + a_2(-\nabla^2)^2 + a_3(-\nabla^2)^3 + \cdots$$

Substituting the formal kernel gives

$$\kappa(\mathbf{x}, \mathbf{x}') \approx a_0 + a_1 \,\ell^1(\mathbf{x}, \mathbf{x}') + a_2 \,\ell^2(\mathbf{x}, \mathbf{x}') + a_3 \,\ell^3(\mathbf{x}, \mathbf{x}') + \cdots$$
$$= \sum_j \left[a_0 + a_1 \,\lambda_j^2 + a_2 \,\lambda_j^4 + a_3 \,\lambda_j^6 + \cdots \right] \phi_j(\mathbf{x}) \,\phi_j(\mathbf{x}').$$

• Evaluating the spectral density series at $\|\omega\|^2 = \lambda_j^2$ gives

$$S(\lambda_j) = a_0 + a_1 \lambda_j^2 + a_2 \lambda_j^4 + a_3 \lambda_j^6 + \cdots$$

This leads to the final approximation

$$\kappa(\mathbf{x}, \mathbf{x}') \approx \sum_{j} S(\lambda_{j}) \, \phi_{j}(\mathbf{x}) \, \phi_{j}(\mathbf{x}').$$

Accuracy of the approximation

Approximations to covariance functions of the Matérn class of various degrees of smoothness; $\nu = 1/2$ corresponds to the exponential Ornstein-Uhlenbeck covariance function, and $\nu \to \infty$ to the squared exponential (exponentiated quadratic) covariance function.

Gaussian processes on a sphere

Easy to apply in simple domains (hyper-spheres, hyper-cubes, ...)

Reduced-rank method for GP regression

Recall the GP-regression problem

$$f(\mathbf{x}) \sim \mathcal{GP}(0, \kappa(\mathbf{x}, \mathbf{x}'))$$

 $y_i = f(\mathbf{x}_i) + \varepsilon_i.$

Let us now approximate

$$f(\mathbf{x}) \approx \sum_{j=1}^{m} f_j \, \phi_j(\mathbf{x}),$$

where $f_j \sim N(0, S(\lambda_j))$.

Via the matrix inversion lemma we then get

$$\mathbb{E}[f(\mathbf{x}_*)] \approx \phi_*^{\mathsf{T}} (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} + \sigma_{\mathsf{n}}^2 \mathbf{\Lambda}^{-1})^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{y},$$

$$\mathbb{V}[f(\mathbf{x}_*)] \approx \sigma_{\mathsf{n}}^2 \phi_*^{\mathsf{T}} (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} + \sigma_{\mathsf{n}}^2 \mathbf{\Lambda}^{-1})^{-1} \phi_*.$$

Computational complexity

- ▶ The computation of $\Phi^T\Phi$ takes $\mathcal{O}(nm^2)$ operations.
- The covariance function parameters do not enter Φ and we need to evaluate $\Phi^T\Phi$ only once (nice in parameter estimation).
- ➤ The scaling in input dimensionality can be quite bad—but depends on the chosen domain.

Airline delay example

- ▶ Every commercial flight in the US for 2008 ($n \approx 6$ M).
- Inputs, x: Age of the aircraft, route distance, airtime, departure time, arrival time, day of the week, day of the month, and month.
- Target, y: Delay at landing (in minutes).
- Additive model:

$$\begin{split} f(\mathbf{x}) &\sim \mathcal{GP}(0, \sum_{d=1}^8 \kappa_{\text{se}}(x_d, x_d')) \\ y_i &= f(\mathbf{x}_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma_\mathsf{n}^2) \end{split}$$

Airline delay example

- Every com
- ► Inputs, x: Age of the arrival time
- Target, y: Delay at la
- Additive m

 $n \approx 6 \text{ M}$).

eparture time, th, and month.

Results

The model

In terms of a GP prior and a likelihood, this can be written as

$$\begin{cases} f(\mathbf{x}) \sim \mathsf{GP}(0, \kappa(\mathbf{x}, \mathbf{x}')), & \mathbf{x} \in \Omega \\ \mathsf{s.t.} \ f(\mathbf{x}) = 0, & \mathbf{x} \in \partial\Omega \end{cases}$$
$$\mathbf{y} \mid \mathbf{f} \sim \prod_{i=1}^{n} p(y_i \mid f(\mathbf{x}_i))$$

where (\mathbf{x}_i, y_i) are the *n* input–output pairs

< □ →

Why is this non-trivial?

GPs provide convenient ways for model specification and inference, but ...

- ► Issue #1: How to represent this prior?
- Issue #2: Limitations in scaling do large data sets
- ► Issue #3: Limitations in dealing with non-Gaussian likelihoods

Addressing the three issues

- As a pre-processing step, we solve a Fourier-like generalised harmonic feature representation of the GP prior in the domain of interest
- Both constrains the GP and attains a low-rank representation that is used for speeding up inference
- ► The method scales as $\mathcal{O}(nm^2)$ in prediction and $\mathcal{O}(m^3)$ in hyperparameter learning (n number of data, m features)
- A variational approach to allow the method to deal with non-Gaussian likelihoods

Low-rank representation

▶ Given a domain $\Omega \subset \mathbb{R}^d$ (d typically 1–3), we project the GP onto the eigenbasis of the Laplace operator, ∇^2 , that solves the eigenvalue problem:

$$\begin{cases} -\nabla^2 \phi_j(\mathbf{x}) = \lambda_j^2 \phi_j(\mathbf{x}), & \mathbf{x} \in \Omega, \\ \phi_j(\mathbf{x}) = 0, & \mathbf{x} \in \partial \Omega. \end{cases}$$

The approximate eigenvalues and eigenfunctions of the Laplacian in Ω (s.t. the the boundary conditions) can be solved numerically

Domain and discrete Laplacian

Finite difference approximation of the operator in a discrete grid of the image.

Harmonic basis functions

24/35

Representation of the GP prior

- We require the covariance function $\kappa(\cdot,\cdot)$ to be stationary
- Leverage the link between stationary covariance functions and the Laplacian for approximating the covariance function by the eigendecomposition and the spectral density function:

$$\kappa(\mathbf{x}, \mathbf{x}') \approx \sum_{j=1}^{m} S(\lambda_j) \phi_j(\mathbf{x}) \phi_j(\mathbf{x}') = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^\mathsf{T},$$

where $s(\cdot)$ is the spectral density function of $\kappa(\cdot, \cdot)$

As Φ does not depend on the hyperparameters and Λ is diagonal, we also get a computational boost

Samples from the GP prior

26/35

Non-Gaussian likelihoods

- For non-Gaussian likelihoods, we set up a variational approach and maximize the ELBO
- In practice, we form a Gaussian approximation to the posterior q(u), for the set of m harmonic basis functions
- Optimise the ELBO with respect to the mean and variance of the approximation

Regression example

Alternative approaches: Zero-noise measurements along the boundary for constraining the GP, and applying general-purpose approximations

28/35

Regression example

- Naive full GP (baseline)
- Our method
- Fully independent training conditional (FITC)
- Variational Fourier features (VFF)

Banana classification example

- The outermost decision boundary comes form the prior (know boundary of uncertainty)
- The posterior improves with the number of harmonic basis functions

Modelling tick density in the Netherlands

- 9 months of tick bites from https://tekenradar.nl
- 4,446 data points
- A log-Gaussian Cox process model (Poisson likelihood)
- Modelling the log intensity as a GP with boundary conditions

Simultaneous localisation and mapping (SLAM)

View on YouTube: https://youtu.be/pbwWLoh6mvI

Kok and Solin. Scalable Magnetic Field SLAM in 3D Using Gaussian Process Maps. FUSION'18.

32/35

Recap

- Constraining GPs to arbitrarily-shaped domains with boundary conditions
- Utilizes the link between the stationary covariance functions and the Laplace operator
- Applications in, e.g., imaging, spatial analysis, robotics, or general ML tasks

Bibliography

- A. Solin and M. Kok (2019). Know your boundaries: Constraining Gaussian processes by variational harmonic features. Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR 89:2193–2202.
- A. Solin and S. Särkkä (2019). Hilbert space methods for reduced-rank Gaussian process regression. Statistics and Computing.
- J. Hensman, N. Durrande, and A. Solin (2018). Variational Fourier features for Gaussian processes. Journal of Machine Learning Research (JMLR), 18(151):1–52.
- M. Kok and A. Solin (2018). Scalable magnetic field SLAM in 3D using Gaussian process maps. Proceedings of the International Conference on Information Fusion (FUSION), pages 1353–1360.

Homepage: http://arno.solin.fi

Twitter:

@arnosolin