Project Report Format

1. Introduction

- 1.1 Project Overview
- 1.2 Purpose

2. Ideation Phase

- 2.1 Problem statement
- 2.2 Empathy Map Canvas
- 2.3 BrainStorming

3. Requirement Analysis

- 3.1 Customer Journey Map
- 3.2 Solution Requirement
- 3.3 Data flow diagram
- 3.4 Technology stack

4. Project Design

- 4.1 Problem Solution Fit
- 4.2 Proposed Solution
- 4.3 Solution Architecture

5. Project Planning&Scheduling

5.1 Project Planning

6. Functional & Performance Testing

Performance Testing

7. Results

Upload Waste Image

Choose file | No file chosen

No file chosen

Classify

Prediction: recyclable

Try Another

8. Advantages & Disadvantages

Advantages of the Project

1. Efficient Waste Classification

➤ Automates the process of categorizing waste, reducing human error.

2. Time-Saving for Waste Management

➤ Faster classification using a trained model helps speed up waste segregation.

3. Transfer Learning Boosts Accuracy

➤ Pre-trained CNNs like MobileNetV2 provide higher accuracy even with a small dataset.

4. Lightweight and Scalable

➤ Can be deployed on low-resource machines and scaled to real-world waste sorting systems.

5. User-Friendly Interface

➤ Web app built with Flask allows easy image upload and instant predictions.

6. Environmental Impact

➤ Encourages better recycling habits and contributes to environmental sustainability.

7. Remote Accessibility

➤ Can be integrated into mobile/web apps for on-the-go waste identification.

Disadvantages of the Project

1. Limited Dataset

➤ A small or imbalanced dataset can affect model performance and generalization.

2. No Real-Time Object Detection

➤ Only classifies one image at a time; not suitable for real-time video feeds or conveyor belts.

3. Dependent on Image Quality

➤ Model accuracy drops if the image is blurry, poorly lit, or taken at odd angles.

4. Needs Internet for First Setup

➤ Pre-trained model weights are downloaded, requiring an internet connection initially.

5. Model May Struggle with Mixed Waste

➤ If an image contains multiple waste types, the prediction may be incorrect.

6. Basic UI

➤ Flask app is functional but lacks professional-level design or mobile responsiveness.

9. Conclusion

This project demonstrates the use of deep learning and web technologies in real-world waste classification. The system is accurate, fast, and easy to use. It can assist in promoting environmental sustainability.

10.Future Scope

- Add more waste categories (e-waste, hazardous)
- Use a larger dataset
- Deploy to cloud (AWS, GCP)

11.Appendix

Source Code

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras import layers, models import matplotlib.pyplot as plt

Dataset paths

```
train_dir = 'data_split/train'
val_dir = 'data_split/val'
```

Load and preprocess the image data

```
class_mode='categorical'
)
# Load MobileNetV2 as base model
base_model = MobileNetV2(include_top=False, input_shape=(224, 224, 3), weights='imagenet')
base_model.trainable = False
# Add custom layers
model = models.Sequential([
  base_model,
  layers.GlobalAveragePooling2D(),
  layers.Dense(128, activation='relu'),
  layers.Dropout(0.3),
  layers.Dense(3, activation='softmax') # 3 output classes
1)
# Compile model
model.compile(optimizer='adam',
        loss='categorical crossentropy',
        metrics=['accuracy'])
# Train model
history = model.fit(train_data, epochs=5, validation_data=val data)
# Save trained model
model.save("waste_model.h5")
# Plot accuracy
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()
plt.title("Model Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.show()
```