HW1

Chan Ya-Jun 詹雅鈞 H24101303 2024-09-16

Table of contents

查看資料筆數與變數名稱

```
library(palmerpenguins)
  data(package = 'palmerpenguins')
  colnames(penguins)
[1] "species"
                        "island"
                                             "bill_length_mm"
[4] "bill_depth_mm"
                        "flipper_length_mm" "body_mass_g"
[7] "sex"
                        "year"
  nrow(penguins)
[1] 344
  head(penguins)
# A tibble: 6 x 8
 species island
                    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
                             <dbl>
                                            <dbl>
  <fct>
         <fct>
                                                              <int>
                                                                           <int>
1 Adelie Torgersen
                              39.1
                                             18.7
                                                                181
                                                                            3750
                                             17.4
2 Adelie Torgersen
                              39.5
                                                                 186
                                                                            3800
3 Adelie Torgersen
                              40.3
                                             18
                                                                195
                                                                            3250
```

```
      4 Adelie
      Torgersen
      NA
      NA
      NA
      NA

      5 Adelie
      Torgersen
      36.7
      19.3
      193
      3450

      6 Adelie
      Torgersen
      39.3
      20.6
      190
      3650
```

i 2 more variables: sex <fct>, year <int>

summary(penguins)

species	island	bill_length_mm	m bill_depth_mm
Adelie :152	Biscoe :168	Min. :32.10	Min. :13.10
Chinstrap: 68	Dream :124	1st Qu.:39.23	1st Qu.:15.60
Gentoo :124	Torgersen: 52	Median :44.45	Median :17.30
	-	Mean :43.92	Mean :17.15
		3rd Qu.:48.50	3rd Qu.:18.70
		Max. :59.60	Max. :21.50
		NA's :2	NA's :2
flipper_lengt	n_mm body_mass_g	sex	year
Min. :172.0	Min. :2700	female:165	Min. :2007
1st Qu.:190.0	1st Qu.:3550	male :168	1st Qu.:2007
Median :197.0	Median:4050	NA's : 11	Median :2008
Mean :200.9	Mean :4202		Mean :2008
3rd Qu.:213.0	3rd Qu.:4750		3rd Qu.:2009
Max. :231.0	Max. :6300		Max. :2009
NA's :2	NA's :2		

刪除資料的缺失值

```
penguins<-na.omit(penguins)
nrow(penguins)</pre>
```

[1] 333

類別變數contingency table

```
table( penguins$species, penguins$island)
```

	Biscoe	Dream	Torgersen
Adelie	44	55	47
Chinstrap	0	68	0
Gentoo	119	0	0

table(penguins\$species, penguins\$sex)

```
female male
Adelie 73 73
Chinstrap 34 34
Gentoo 58 61
```

連續變數相關係數+heatmap

```
library(ggplot2)
round(cor(penguins[,3:6]),3)
```

```
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
bill_length_mm
                          1.000
                                       -0.229
                                                           0.653
                                                                       0.589
bill_depth_mm
                         -0.229
                                        1.000
                                                          -0.578
                                                                      -0.472
                          0.653
                                        -0.578
                                                          1.000
                                                                       0.873
flipper_length_mm
body_mass_g
                          0.589
                                        -0.472
                                                           0.873
                                                                       1.000
```


不同類別的連續變數分布

```
library(patchwork)
p1 <- ggplot(penguins, aes(x = body_mass_g, fill = species)) +</pre>
  geom_histogram(bins = 30, color = "black", alpha = 0.5, position = "identity") +
  labs(title = "Body mass Distribution",
       x = "Body Mass (g)",
       y = "Count") +
  theme_minimal()
p2 <- ggplot(penguins, aes(x = bill_length_mm , fill = species)) +</pre>
  geom_histogram(bins = 30, color = "black", alpha = 0.5, position = "identity") +
  labs(title = "Bill length Distribution",
       x = "Bill length(mm)",
       y = "Count") +
  theme_minimal()
p3 \leftarrow ggplot(penguins, aes(x = bill_depth_mm), fill = species)) +
  geom_histogram(bins = 30, color = "black", alpha = 0.5, position = "identity") +
  labs(title = "Bill depth Distribution",
       x = "Bill depth(mm)",
```


Box plot

```
p1<-ggplot(penguins, aes(x = factor(species), y = bill_length_mm )) +
    geom_boxplot() +
    geom_jitter(width = 0.2, height = 0, alpha = 0.1) +
    theme_minimal()

p2<-ggplot(penguins, aes(x = factor(species), y = bill_depth_mm )) +
    geom_boxplot() +</pre>
```


(p3|p4)

檢定不同性別的體重是否存在顯著差異

```
ggplot(penguins, aes(x = factor(sex), y = body_mass_g )) +
  geom_boxplot() +
  geom_jitter(width = 0.2, height = 0, alpha = 0.1) +
  theme_minimal()
```



```
t.test(body_mass_g ~ sex, data = penguins)
```

Welch Two Sample t-test

data: body_mass_g by sex

t = -8.5545, df = 323.9, p-value = 4.794e-16

alternative hypothesis: true difference in means between group female and group male is not 95 percent confidence interval:

-840.5783 -526.2453

sample estimates:

mean in group female mean in group male 3862.273 4545.685

Scatterplot+Im

library(cowplot)

Attaching package: 'cowplot'

The following object is masked from 'package:patchwork': align_plots $p1 < -ggplot(penguins, aes(x = bill_length_mm , y = bill_depth_mm , color = species)) +$ geom_point(size = 1) + geom_smooth(method = "lm", se = FALSE) + theme_minimal()+theme(legend.key.width = unit(1, "lines") ,legend.position = "bottom") $p2 < -ggplot(penguins, aes(x = bill_length_mm , y = flipper_length_mm , color = species)) +$ geom_point(size = 1) + geom_smooth(method = "lm", se = FALSE) + theme_minimal() +theme(legend.key.width = unit(1, "lines") ,legend.position = "none") p3<-ggplot(penguins, aes(x = bill_length_mm , y = body_mass_g , color = species)) + geom_point(size = 1) + geom_smooth(method = "lm", se = FALSE) + theme_minimal() +theme(legend.position = "bottom") p4<-ggplot(penguins, aes(x = bill_depth_mm , y = flipper_length_mm , color = species)) + geom_point(size = 1) + geom_smooth(method = "lm", se = FALSE) + theme_minimal()+theme(legend.position = "none") $p5 \leftarrow gplot(penguins, aes(x = bill_depth_mm , y = body_mass_g , color = species)) +$ geom_point(size = 1) + geom_smooth(method = "lm", se = FALSE) + theme_minimal()+theme(legend.position = "bottom") $p6 < -ggplot(penguins, aes(x = flipper_length_mm), y = body_mass_g , color = species)) +$ geom_point(size = 1) + geom_smooth(method = "lm", se = FALSE) + theme_minimal()+theme(legend.position = "none") p1|p2

```
`geom_smooth()` using formula = 'y ~ x'
```

[`]geom_smooth()` using formula = 'y ~ x'

p3|p4

```
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
```


p5|p6

```
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
```

