The livestream will begin shortly...

softwareunderground.org presents

Virtual Conference on the Digital Subsurface, 16–23 April

supported by

TRANSFORM 2021

Matt Hall
Dieter Werthmuller
& Transform 2021 organizers

Materials: http://bit.ly/transform-2021-slides

Slack: swu.ng/slack > #t21-tue-inversion-for-geologists

Inversion for geologists

Seogi Kang, Doug Oldenburg, Lindsey Heagy, Dominique Fournier, Joe Capriotti & the SimPEG team

?

Collaborators

Doug

Lindsey

Dom

Joe

hello (a bit about me)

Challenging geoscience problems that we faced ...

Increasing data volume and complexity

Airborne sensors

airborne geophysics

drone geophysics

Sentinel-2

Data are <u>publicly</u> available, but extracting <u>useful information</u> from these data are <u>challenging</u>

Airborne geophysics

Potential fields
 Magnetics
 Gravity

Electromagnetics

• (Ice) Radar

Increasing Resolution

Airborne geophysics

Potential fields Magnetics Gravity

• Electromagnetics

• (Ice) Radar

Kang et al. (2021)

Increasing Resolution

Airborne geophysics

Potential fields Magnetics Gravity

• Electromagnetics

• (Ice) Radar

Lindzey (2015)

Generic geophysical experiment?

All require ways to see into the earth without direct sampling

An overarching question today is ...

How do we find a subsurface model from the observed data in a data-driven way?

Outline

- Backgrounds: Magnetics
- Inversion Framework
- 1D Linear Inverse problem
- 3D Magnetic Inversion
- Including Geologic Information
- Summary

Python Packages that I am going to use today...

Numerical engine for geophysical simulation & inversion

Geologic modelling

3D visualization

My intention of this lecture

"Not for introducing how geophysical software packages work, But for providing fundamental concepts of the inversion"

Survey: Magnetics

к: Magnetic susceptibility

Magnetic susceptibility

Magnetic surveying

- Earth's magnetic field \vec{B}_0 is the source:
- Materials become magnetized

Magnetic
$$\vec{H}_0$$
 (magnetization) Susceptibility $\vec{H}_0 = \vec{B}_0/\mu_0$

Create anomalous magnetic field

Magnetic surveying

- Earth's magnetic field \vec{B}_0 is the source:
- Materials become magnetized

Magnetic
$$\vec{H}_0$$
 (magnetization) Susceptibility $\vec{H}_0 = \vec{B}_0/\mu_0$

- Create anomalous magnetic field
- Measure total magnetic field: $|\vec{B}| = |\vec{B}_0 + \vec{B}_A|$
- Total field anomaly: $\triangle \vec{B} = |\vec{B}_0 + \vec{B}_A| |\vec{B}_0|$ $\triangle \vec{B} \simeq \vec{B}_A \cdot \hat{B}_0$ where $\hat{B}_0 = \frac{\vec{B}_0}{|\vec{B}_0|}$

Magnetic data changes depending upon where you are

A prism in a homogeneous subsurface

Magnetic data changes depending upon where you are

Magnetic data changes depending upon where you are

Subsurface structure is complex

Measured magnetic data at I=90, D=0 (North pole)

Measured magnetic data at I=66, D=-6 (California)

Measured magnetic data at I=0, D=0 (Equator)

Measured magnetic data at I=20, D=0 (Equator)

motivating field example

Transform 2020: Lindsey Heagy (DC/IP methods)

Century Deposit: geology + physical properties

- Resistivity: structure, input to IP
- Chargeability: Associated with mineralization

Reproduce the historic geophysical inversion results which made a high impact to the mining community

ground-based geophysics

Raglan Deposit: geology + physical properties

Location map (Northern Quebec, Canada)

Geologic section

Physical properties

Grey rocks are host sediments. **Green rocks** are volcanics.

Seek for zones having a high susceptibility (~0.05 SI)

Pink rocks are ultramafics (susceptibility 0.03 - 0.07 S.I.).

Orange rocks are low grade massive ore (susceptibility 0.03 - 0.07 S.I).

Red rocks are the primary massive sulphide ore (susceptibility 0.03 - 0.07 S.I.).

Raglan Deposit: magnetic data

Raglan Deposit: magnetic data

Initial conceptual model

Geologic section

Magnetic data

Initial conceptual model: two ultramafic pipes

Can make impact on drilling location and mineral reserve

Recovered susceptibility model from inversion

Changed the conceptual model: the two pipes are "connected"

Can we reproduce this result?

Comparison

Model from 20 years ago (MAG3D)

The recovered model (SimPEG)

Our statement of the inverse problem

- Given observations: $d_j^{obs}, j = 1, \dots, N$
 - Uncertainties: ϵ_j
 - Ability for forward modelling: $\mathcal{F}[m] = d$

Find the earth model that gave rise to the data.

Inverse problem

- Non-unique
- III-conditioned

The Inverse Problem is ill-posed

Any inversion approach must address these issues

Framework for the inverse problem

minimize $\phi(m) = \phi_d(m) + \beta \phi_m(m)$

 ϕ_d : data misfit

 ϕ_m : model norm

 β : trade-off parameter

Find a model fitting the data

Framework for the inverse problem

 ϕ_d : data misfit

 ϕ_m : model norm

 β : trade-off parameter

Find a model fitting the data

Find a model favoring prior knowledge

- drillers' logs
- geophysical logs (e.g., resistivity)
- spatial patterns
- average resistivity value of the region
- other geophysical data (e.g., seismic)

Constraining the inversion

What information is available?

- Geologic structure
- Geologic constraints
- Reference model
- Bounds
- Multiple data sets
- Physical property measurements

How do we achieve our goal?

Flow chart for the inverse problem

- Many components to achieving a quality result
- Success is in the details
- Evaluate each step in the box critically before going on

Starting up

- Survey and observations
- What processing has been done?
- Normalization of data
- Ability for forward model
- Assemble geologic, petrophysical information
- Build a reference model
- What is the question you want answered from the inversion?

Inversion model parameters

In the forward problem

$$d = \mathcal{F}[m]$$

 m is our sought function
(susceptibility, density,)

 Inverse problem: we have options (e.g., subsurface, parametric)

Inversion as an optimization problem

 Find a single "best" solution by solving optimization

minimize
$$\phi = \phi_d + \beta \phi_m$$

subject to $m_L \le m \le m_U$

 ϕ_d : data misfit

 ϕ_m : model norm

 β : trade-off parameter

 m_L, m_U : lower and upper bounds

Flow chart for the Inverse problem

Dealing with uncertainties

Observed datum

$$d_j^{obs} = F_j(m) + n_j$$

Noise n_j includes

- Modelling errors
 - dimensionality errors (1D v. 3D)
 - incomplete physics
 - discretization errors

- Noise on data
 - instrument / sensor noise
 - survey parameter errors
 - wind ...

True statistics of "noise" is complicated. In practice, assume errors are Gaussian $\mathcal{N}(0,\epsilon_i)$

Dealing with uncertainties

Consider random variable, $x_j \in \mathcal{N}(0,1)$

Define

$$\chi_N^2 = \sum_{j=1}^N x_j^2$$

Chi-squared statistic with N degrees of freedom

 $\begin{cases} \text{Expected value: } E(\chi_N^2) = N \\ \text{Variance: } \operatorname{Var}(\chi_N^2) = 2N \\ \text{Standard deviation: } \operatorname{std}(\chi_N^2) = \sqrt{2N} \end{cases}$

Misfit function

Crucial steps for any misfit:

- (1) Specify the metric used
- (2) Determine target misfit

We use L₂ norm (least squares statistic)

Define data misfit:
$$\phi_d = \sum_{j=1}^N \left(\frac{F_j(m) - d^{obs}}{\epsilon_j} \right)^2$$

Define
$$\mathbf{W}_d = \mathbf{diag}(1/\epsilon_1, \dots, 1/\epsilon_N)$$

$$\phi_d = \|\mathbf{W}_d(F[\mathbf{m}] - \mathbf{d}^{obs})\|_2^2$$

$$E[\phi_d] \simeq N$$

$$\phi_d$$
 is now a χ^2_N variable

Reality: we do not know uncertainties

<u>Try</u>:

$$\epsilon_j = \% |d_j^{obs}| + \text{floor}$$

Flow chart for the Inverse problem

Model norms

First define our model norms as functions and then discretize

$$\phi_m = \int (m - m_{ref})^2 dx$$

$$\phi_m = \int \left(\frac{dm}{dx}\right)^2 dx$$

$$\phi_m = \alpha_s \int (m - m_{ref})^2 dx + \alpha_x \int \left(\frac{dm}{dx}\right)^2 dx$$

$$\phi_m = \alpha_s \|\mathbf{W}_s(\mathbf{m} - \mathbf{m}_{ref})\|_2^2 + \alpha_x \|\mathbf{W}_x(\mathbf{m})\|_2^2$$

Flow chart for the Inverse problem

Role of beta

$$\phi(m) = \phi_d(m) + \beta \phi_m(m)$$

$$\beta \to 0$$
: $\phi \sim \phi_d$
 $\beta \to \infty$: $\phi \sim \phi_m$

$$\beta \to \infty: \quad \phi \sim \phi_m$$

Tikhonov Curve

- Desired misfit $\phi_d^* \simeq N$
- Choose eta such that $\phi_d(m)=\phi_d^*$

Demo: Linear Inversion App

Develop survey

