GEOMETRY

Chapter 5

VERANO
SAN MARCOS 2021

PROPORCIONALIDAD y
SEMEJANZA DE
TRIANGULOS

PROPORCIONALIDAD Y SEMEJANZA

PROPORCIONALIDAD

Teorema de Tales

Corolario

Toda recta paralela a un lado de un triángulo divide interna o externamente a los otros lados en segmentos proporcionales.

De la figura:

Si
$$\overrightarrow{\mathcal{Z}_1}/\!/\overrightarrow{\mathcal{Z}_2}/\!/\overrightarrow{\mathcal{Z}_3}/\!/.../\!/\overrightarrow{\mathcal{Z}_n}$$
 y, $\overrightarrow{\mathcal{Z}_1}$ y $\overrightarrow{\mathcal{Z}_2}$ son secantes de dichas rectas.

Primer caso

A \overline{DE} \overline{AC} , entonces

$$\frac{BD}{DA} = \frac{BE}{EC}$$

$$\frac{AB}{BD} = \frac{BC}{BE}$$

Segundo caso

Primeros teoremas de la bisectriz

En la figura 1, BD es bisectriz interior, luego se cumple que

Figura 1

$$\frac{AB}{BC} = \frac{AD}{DC}$$

En la figura 2, \overrightarrow{BE} es bisectriz exterior y se verifica

$$\frac{AB}{BC} = \frac{AE}{CE}$$

Teorema del incentro

En la figura, I es el incentro del triángulo ABC y BD es una bisectriz interior de él, de modo que se visualizan los segmentos BI e ID, verificándose la siguiente proporción:

$$\frac{BI}{ID} = \frac{AB + BC}{AC}$$

$$\frac{\mathrm{BD}}{\mathrm{ID}} = \frac{2p_{\mathrm{ABC}}}{\mathrm{AC}}$$

Teorema de Menelao

En la figura, la línea \mathscr{L} es una recta secante al triángulo ABC; donde P, Q y R son puntos de intersección de \mathscr{L} con \overline{AB} , \overline{BC} y la prolongación de \overline{AC} respectivamente; luego según el teorema se cumplirá que

Teorema de Ceva

Sean las cevianas concurrentes AN, BL y CM trazadas en el triángulo ABC. Entonces se verifica la siguiente relación:

Primer caso

Segundo caso

TRIÁNGULOS SEMEJANTES

Definición

Dos triángulos son semejantes si tienen tres pares de ángulos congruentes y sus lados homólogos respectivamente proporcionales.

Se denomina lados homólogos a los lados que en triángulos semejantes se oponen a ángulos congruentes.

$$\frac{AB}{MN} = \frac{BC}{NL} = \frac{AC}{ML} = \frac{BH}{NQ} = \frac{2p_{ABC}}{2p_{MNL}} = \dots = k$$

donde k se denomina razón de semejanza.

Los radios de la circunferencia inscrita, circunscrita y exinscrita también son proporcionales.

Teoremas fundamentales de semejanza

Existen tres formas de reconocer cuando dos triángulos son semejantes, denominados casos de semejanza.

Caso AAA

Dos triángulos son semejantes si tienen dos pares de ángulos congruentes.

Caso LAL

Dos triángulos son semejantes si tienen un par de lados proporcionales y el ángulo comprendido entre dichos lados es el mismo.

Caso LLL

Dos triángulos son semejantes si tienen sus tres lados respectivamente proporcionales.

1) En la figura, $\overrightarrow{L_1}$ // $\overrightarrow{L_2}$ // $\overrightarrow{L_3}$. Halle el valor de x.

Resolución:

Piden el valor de x

Trazamos BC (BC $\perp \overrightarrow{L}_3$)

Por teorema de Thales de Mileto:

$$\frac{x}{9} = \frac{4}{x} \implies x^2 = 36$$

$$x = 6$$

2) En la figura, BD = 2(DA), DE = EC. Halle el valor de x.

Resolución:

Piden el valor de x

Por teorema de Tales de Mileto:

$$\frac{2a}{a} = \frac{4}{b} \implies b = 2$$

Del gráfico:

 $x = 30^{\circ}$

3) En la figura, DC = AE. Halle el valor de x.

Resolución:

Piden el valor de x

Por teorema de la bisectriz interior:

$$\frac{4}{6} = \frac{2}{DC} \Rightarrow DC = 3$$

Entonces:

$$x = 37^{\circ}$$

4) En un triángulo ABC, se traza la altura \overline{BD} , D en \overline{AC} . Halle DC, Si AB = 5, BD = 3, m \angle ABD = 2 α y m \angle DBC = 90° - α .

Resolución:

Piden el valor de DC

Por teorema de la bisectriz exterior

$$\frac{5}{3} = \frac{4 + x}{x}$$

$$5x = 12 + 3x$$

$$2x = 12$$

$$x = 6$$

5) Halle el valor de x si I es incentro triángulo ABC y BI = 2(ID).

Resolución:

Piden el valor de x

* Por teorema del incentro

$$\frac{6+a+3}{2a} = \frac{2b}{b}$$

$$\frac{9+a}{2a} = \frac{2b}{b}$$

$$9 + a = 4a$$

$$3 = a$$

Entonces:

$$BC = 6$$
, $AC = 6$

* En el gráfico:

$$x = 60^{\circ}$$

6) En un triángulo ABC, en \overline{AB} se ubica el punto M y en \overline{BC} se ubica el punto N, de modo que \overline{MN} // \overline{AC} , BN = 6 y 5(MN) = 3(AC). Halle NC.

Resolución:

Del dato: MN = 3b , AC = 5b

Piden el valor de x

Δ MBN ~ Δ ABC

$$\frac{3b}{5b} = \frac{6}{6+x}$$

$$18+3x = 30$$

$$3x = 12$$

$$x = 4$$

7) En triángulo ABC, en la prolongación de \overline{AB} se ubica el punto N y en la prolongación de \overline{CB} se ubica el punto M, de modo que \overline{MN} // \overline{AC} . Halle BN si AN = 15 y 3(MN) = 2(AC).

Resolución:

* Prolongamos AB y BC hasta N y M respectivamente

Tal que: MN // AC

Piden el valor de x

Entonces: ΔMBN ~ ΔABC

$$\frac{2a}{3a} = \frac{x}{15 - x} \Rightarrow 30 - 2x = 3x$$
$$30 = 5x$$

$$x = 6$$

8) En un triángulo ABC, en AB se ubica el punto P y en BC el punto Q, de modo que la m ∢BPQ = m∢ACQ. Si AP = 2, PB = 8, BQ = 5. Halle QC.

Resolución:

Piden el valor de QC

Entonces:

$$\frac{5}{10} = \frac{8}{5+3}$$

$$5 + x = 16$$

.: x = 11

9) En la figura, Halle CD.

Resolución:

Piden el valor de CD

$$\frac{2}{6} = \frac{3}{X}$$

$$2x = 18$$

10) Los lados de un triángulo miden 3u, 4u, 6u. Halle la longitud del mayor lado de un triángulo semejante, cuyo perímetro es igual a 39.

Resolución:

Piden la longitud del lado mayor del triángulo PQR

$$2p_{\Delta^{PQR}}$$
:
 $3n + 4n + 6n = 39$
 $13n = 39$
 $n = 3$

entonces:

Lado mayor = 6(3)

: el lado mayor mide 18 u