DEDP Exam 2019-2020

Exercises (17p)

- 1. Let A be a continuous r.v. with distribution $\mathcal{U}[-4,4]$
 - a. (1p) Draw the probability density of A (including its height)
 - b. (1p) Compute the probability that A is positive
 - c. (1p) Compute the variance σ^2 of A
 - d. (1p) We define a new random variable B as B=A+2. What is the distribution of B?
- 2. Consider detection between two possible constant signals, $s_0(t) = -2$ and $s_1(t) = 2$. The signals are affected by AWGN with distribution \mathcal{N} ($\mu = 0, \sigma^2 = 3$). The probabilities of the two hypotheses are $P(H_0) = 3/4$, $P(H_1) = 1/4$. The receiver takes one sample, at time $t_0 = 1$, and the obtained value is r = 0.5.
 - a. (1p) Sketch the two conditional distributions
 - b. (1p) What are the decision regions R_0 and R_1 for the Minimum Probability of Error criterion? Justify.
 - c. (2p) Compute the probability of miss, in case of the Maximum Likelihood criterion.
 - d. (2p) Johnny uses his own special criterion. If we know that for Johnny the probability $P(D_0|H_0) = \frac{1}{2}$, find Johnny's decision regions R'_0 and R'_1 .
- 3. Consider receiving a signal which can be either $s_1(t) = \sin(\pi t)$ (hypothesis H_1) or $s_0(t) = -1$ (hypothesis H_0). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 4)$. The receiver samples the signal at times $t_0 = 0.5$, $t_1 = 1.5$ and $t_2 = 2.5$, and reads the values $r_0 = 0$, $r_1 = -0.6$ and $r_2 = 0.5$.
 - a. (2p) What is the decision according to Maximum Likelihood criterion?
 - b. (1p) If we want to take decisions using only 2 samples (not 3), which are the best 2 sample times to keep from t_1 , t_2 , t_3 ? (pick best 2 out of 3)
- 4. (4p) Consider the received signal $r(t) = \underbrace{At^2 1}_{s_{\Theta}(t)} + noise$, which is sampled at time moments
 - $t_i = [0, 2, 4]$, and the values are $r_i = [-0.9, -5.1, -16.6]$. The noise has normal distribution $\mathcal{N}(0, \sigma^2 = 3)$. Estimate the unknown parameter A using Maximum Likelihood estimation.

Theory (16p)

- 1. (2p) What is the difference between a **discrete** random variable and a **continuous** random variable?
- 2. (2p) Let A be a random variable with any distribution $w_A(r)$. Define a new random variable B as B = A + 4. Answer the following questions:
 - a. Do A and B have the same average value?
 - b. Do A and B have the same variance?
 - c. Do A and B have the same average squared value?

Justify.

(*Hint*: take $w_A(r)$ as a uniform or a normal distribution, for example).

3. (4p) Deduce the Minimum Probability of Error criterion: prove that minimizing the total probability of error (false alarms + miss) leads to the formula

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\ge}} \frac{p(H_0)}{p(H_1)}$$

- 4. (2p) If the **noise** added to a signal is **reduced to a half** ("înjumătățit"), how does the Signal-to-Noise Ratio (SNR) change (explain in words why):
 - a. SNR increases
 - b. SNR decreases
 - c. SNR remains the same
- 5. (2p) Consider receiving a signal which can be either $s_1(t) = 5$ (hypothesis H_1) or $s_0(t) = 0$ (hypothesis H_0). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2)$. The receiver takes some samples and then takes a decision, using the Maximum Likelihood criterion.

If we double the number of samples, will the decision be improved?

- a. If we double the number of samples, the decision will be improved
- b. If we double the number of samples, the decision will be worse
- c. If we double the number of samples, the decision will be the same

Justify.

6. (3p) Prove that the quadratic cost function $C(\epsilon)$ leads to the formula of the MMSE estimator:

$$\hat{\Theta}_{MMSE} = \int_{-\infty}^{\infty} \Theta w(\Theta|r) d\Theta$$

Starting point: it is known that the expected cost is $C = \int_{-\infty}^{\infty} C(\epsilon)w(\Theta|r)d\Theta$

7. (1p) Write the mathematical definitions of the Maximum Likelihood (ML) and Maximum A Posteriori (MAP) estimators

Notes: 33p total, solve 30p for grade 10. 3p are awarded from start. Time available: 2h