Lecture 1 Introduction to Management Science

1-1

What is Management Science?

- > Application of SCIENTIFIC METHOD
- ➤ Study of LARGE & COMPLEX SYSTEMS
- > Analysis of MANAGERIAL PROBLEMS
- > Finding OPTIMAL SOLUTION
- ➤ Use of MATHEMATICAL MODELS
- > Use of COMPUTERS & SPECIAL SW

1-3

What is Management Science -4

Solution

- > Feasible
- Optimal
- **➤** Infeasible

Model Interpretation

Model Validation

Sensitivity Analysis

Implementation

1-5

Business Usage of Management Science

- Some application areas:
 - Project Planning
 - Capital Budgeting
 - Inventory Analysis
 - Production Planning
 - Scheduling

Management Science Techniques

1-7

Management Science - Techniques

- **➤** Linear Programming
 - □ linear objective function min/max
 - □ linear constraints
- ➤ Integer LP, Binary LP, Mixed Integer LP
- ➤ Nonlinear Programming
 - nonlinear objective function and/or
 - nonlinear constraints

Management Science-Techniques

➤ Distribution Models

- special type of LP problems (special structure of model)
- □ transportation problem
- □ assignment problem

1-9

Management Science-Techniques

➤ Multiple Criteria Decision Making

- umultiple criteria
- compromise
- □ limited/unlimited number of alternatives
- □ goal programming

Management Science-Techniques

- ➤ Network Models
 - □ network nodes, arcs
 - evaluated network
 - minimal distance, maximal flow etc.
- > Project Management
 - planning, scheduling & controlling projects
 - □ CPM, PERT

1-11

What is Management Science-Techniques

- ➤ Inventory Models
 - □ how much to order?
 - □ when to order?
 - deterministic/probabilistic models
- Waiting Line Models (Queuing Models)
 - □ servers, customers
 - □ goal optimal number of servers
 - analytical approach, computer simulation

What is Management Science-Techniques

- ➤ Computer Simulation
 - computer experiments with models
 - complex systems
- ➤ Games Theory
 - 2 or more decision makers
 - possible strategies

1-13

How do we construct mathematical models?

Business Problem:

• Business firm makes and sells a steel product, determine the number of units to produce to make the most profit, given the limited amount of steel available.

Information and Data:

- Product costs \$5 to produce
- Product sells for \$20
- Product requires 4 pounds of steel to make
- Firm has 100 pounds of steel

How do we construct mathematical models? ...Contd.

Variables: x = # units to produce (decision variable)

Z = total profit (in \$)

Model: Z = \$20x - \$5x (objective function)

4x = 100 lb of steel (resource constraint)

Parameters: \$20, \$5, 4 lbs, 100 lbs (known values)

Formal Specification of Model:

maximize Z = \$20x - \$5x

subject to 4x = 100

1-15

How do we construct mathematical models? ...Contd.

Model Solution:

Solve the constraint equation:

$$4x = 100$$

 $(4x)/4 = (100)/4$
 $x = 25$ units

Substitute this value into the profit function:

$$Z = $20x - $5x$$

$$= (20)(25) - (5)(25)$$

$$= $375$$

(Produce 25 units, to yield a profit of \$375)

Model Building: Break-Even Analysis

- Used to determine the number of units of a product to sell or produce that will equate total revenue with total cost.
- The volume at which total revenue equals total cost is called the breakeven point.
- Profit at break-even point is zero.

Model Components

- Fixed Cost (c_f) costs that remain constant regardless of number of units produced.
- Variable Cost (c_v) unit production cost of product.
- Volume (v) the number of units produced or sold
- Total variable cost (vc_v) function of volume (v) and unit variable cost.

1-17

Model Building: Break-Even Analysis -2

Model Components

■ Total Cost (TC) - total fixed cost plus total variable cost.

$$TC = c_f + vc_v$$

■ **Profit (Z)** - difference between total revenue vp (p = unit price) and total cost, i.e. $Z = vp - c_f - vc_v$

Computing the Break-Even Point

The break-even point is that volume at which total revenue equals total cost and profit is zero:

$$vp - c_f - vc_v = 0$$
$$v(p - c_v) = c_f$$

The break-even point

$$v = \frac{c_f}{p - c_{..}}$$

Model Building: Break-Even Analysis-Example

Western Clothing Company

Fixed Costs: $c_f = 10000 Variable Costs: $c_v = 8 per pair Price: p = \$23 per pair

The Break-Even Point is:

$$v = (10,000)/(23 - 8)$$

= 666.7 pairs of jeans

1-19

Model Building: Break-Even Analysis-Graphical Representation

Break-even model

Model Building: Break-Even Analysis- Price Increase

Break-even model with an increase in price

1-21

Model Building: Break-Even Analysis-Variable Cost Increase

Break-even model with an increase in variable cost

Model Building: Break-Even Analysis- Fixed Cost Increase

Break-even model with a change in fixed cost

1-23

Break-Even Analysis: Excel Solution (1 of 4)

Break-Even Analysis: Excel QM Solution (2 of 4)

1-25

Break-Even Analysis: Excel QM Solution (3 of

Western Clothing Company in QM

Break-Even Analysis: QM Solution (4 of 4)

QM break-even graph for Western Clothing Company