Vectors

Table of Contents

- 1 Write the Component Form of a Vector and Find Its Magnitude
- 2 Perform Arithmetic Operations with Vectors
- Solve Vector Equations
- 4 Find Unit Vectors
- 5 Find Magnitude and Direction from Component Form and Vice Versa

Intro

A **vector** is a mathematical object with both magnitude (length) and direction.

It is represented geometrically by a directed line segment.

Intro

The following shows an example of a vector $\vec{v} = \overrightarrow{PQ}$.

P is the initial point and Q is the terminal point.

Magnitude

The magnitude of a vector (denoted $\|\vec{v}\|$ or $|\vec{v}|$) is the distance between P and Q.

Think Pythagorean Theorem.

Component Form

If we connect the point P to point Q we get the following diagram:

Component Form

If we connect the point P to point Q we get the following diagram:

This can be represented by $\vec{v} = \langle 3, 4 \rangle$

Component Form

To find the component form for $P(x_0, y_0)$ and $Q(x_1, y_1)$, just take the difference in coordinates:

$$\vec{v} = \overrightarrow{PQ} = \langle x_1 - x_0, y_1 - y_0 \rangle$$

(a)
$$A(2,-1)$$
 $B(-5,3)$

(a)
$$A(2,-1)$$
 $B(-5,3)$
$$= \langle -5-2, 3-(-1) \rangle$$

(a)
$$A(2,-1)$$
 $B(-5,3)$
$$= \langle -5-2,3-(-1)\rangle$$

$$= \langle -7,4\rangle$$

(a)
$$A(2,-1)$$
 $B(-5,3)$
$$= \langle -5-2, 3-(-1) \rangle$$

$$= \langle -7, 4 \rangle$$

$$\|\overrightarrow{AB}\| = \sqrt{7^2 + 4^2}$$

(a)
$$A(2,-1)$$
 $B(-5,3)$
 $= \langle -5-2, 3-(-1) \rangle$
 $= \langle -7, 4 \rangle$
 $\|\overrightarrow{AB}\| = \sqrt{7^2 + 4^2}$
 $= \sqrt{49 + 16}$

(a)
$$A(2,-1)$$
 $B(-5,3)$

$$= \langle -5-2, 3-(-1) \rangle$$

$$= \langle -7, 4 \rangle$$

$$\|\overrightarrow{AB}\| = \sqrt{7^2 + 4^2}$$

$$= \sqrt{49 + 16}$$

$$= \sqrt{65}$$

(b)
$$A(-3,2)$$
 $B(0,1)$

(b)
$$A(-3,2)$$
 $B(0,1)$
$$= \langle 0 - (-3), 1 - 2 \rangle$$

(b)
$$A(-3,2)$$
 $B(0,1)$
$$= \langle 0 - (-3), 1 - 2 \rangle$$

$$= \langle 3, -1 \rangle$$

(b)
$$A(-3,2)$$
 $B(0,1)$
$$= \langle 0 - (-3), 1 - 2 \rangle$$

$$= \langle 3, -1 \rangle$$

$$\|\overrightarrow{AB}\| = \sqrt{3^2 + 1^2}$$

(b)
$$A(-3,2)$$
 $B(0,1)$
$$= \langle 0 - (-3), 1 - 2 \rangle$$

$$= \langle 3, -1 \rangle$$

$$\|\overrightarrow{AB}\| = \sqrt{3^2 + 1^2}$$

$$= \sqrt{10}$$

Table of Contents

- 1 Write the Component Form of a Vector and Find Its Magnitude
- Perform Arithmetic Operations with Vectors
- Solve Vector Equations
- Find Unit Vectors
- 5 Find Magnitude and Direction from Component Form and Vice Versa

•
$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$$

•
$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$$

$$\bullet \ \vec{v} - \vec{w} = \langle v_1 - w_1, v_2 - w_2 \rangle$$

- $\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$
- $\vec{v} \vec{w} = \langle v_1 w_1, v_2 w_2 \rangle$
- $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ (Commutative Prop.)

- $\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$
- $\bullet \vec{v} \vec{w} = \langle v_1 w_1, v_2 w_2 \rangle$
- $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ (Commutative Prop.)
- $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Associative Prop.)

•
$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$$

•
$$\vec{v} - \vec{w} = \langle v_1 - w_1, v_2 - w_2 \rangle$$

•
$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$
 (Commutative Prop.)

•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (Associative Prop.)

•
$$\vec{v} + \vec{0} = \vec{v}$$
 (Identity Property)

•
$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$$

$$\bullet \ \vec{v} - \vec{w} = \langle v_1 - w_1, v_2 - w_2 \rangle$$

•
$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$
 (Commutative Prop.)

•
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (Associative Prop.)

•
$$\vec{v} + \vec{0} = \vec{v}$$
 (Identity Property)

•
$$\vec{v} + (-\vec{v}) = 0$$
 (Inverse Prop.)

Let $\vec{v} = \langle 3, 4 \rangle$ and suppose $w = \overrightarrow{PQ}$ where P(-3, 7) and Q(-2, 5). Find $\vec{v} + \vec{w}$ and interpret the result geometrically.

Let $\vec{v}=\langle 3,4\rangle$ and suppose $w=\overrightarrow{PQ}$ where P(-3,7) and Q(-2,5). Find $\vec{v}+\vec{w}$ and interpret the result geometrically.

$$\vec{w} = \langle -2 - (-3), 5 - 7 \rangle$$

Let $\vec{v}=\langle 3,4\rangle$ and suppose $w=\overrightarrow{PQ}$ where P(-3,7) and Q(-2,5). Find $\vec{v}+\vec{w}$ and interpret the result geometrically.

$$\vec{w} = \langle -2 - (-3), 5 - 7 \rangle$$

$$= \langle 1, -2 \rangle$$

Let $\vec{v}=\langle 3,4\rangle$ and suppose $w=\overrightarrow{PQ}$ where P(-3,7) and Q(-2,5). Find $\vec{v}+\vec{w}$ and interpret the result geometrically.

$$\vec{w} = \langle -2 - (-3), 5 - 7 \rangle$$
$$= \langle 1, -2 \rangle$$
$$\vec{v} + \vec{w} = \langle 3 + 1, 4 - 2 \rangle$$

Let $\vec{v} = \langle 3, 4 \rangle$ and suppose $w = \overrightarrow{PQ}$ where P(-3, 7) and Q(-2, 5). Find $\vec{v} + \vec{w}$ and interpret the result geometrically.

$$\vec{w} = \langle -2 - (-3), 5 - 7 \rangle$$

$$= \langle 1, -2 \rangle$$

$$\vec{v} + \vec{w} = \langle 3 + 1, 4 - 2 \rangle$$

$$= \langle 4, 2 \rangle$$

Geometrically, $\vec{v} + \vec{w}$ is as follows:

Scalar Multiplication

If we multiply our vector by a real number (a scalar), we get a new vector.

Scalar Multiplication

If we multiply our vector by a real number (a scalar), we get a new vector.

Scalar Multiplication

If we multiply our vector by a real number (a scalar), we get a new vector.

Scalar Multiplication

If we multiply our vector by a real number (a scalar), we get a new vector.

Thus, $k\vec{v} = k\langle v_1, v_2 \rangle = \langle kv_1, kv_2 \rangle$ for all real numbers k.

Vector Subtraction

Vector subtraction $\vec{v} - \vec{w}$ can be thought of as $\vec{v} + (-\vec{w})$ and is illustrated below:

•
$$(kr)\vec{v} = k(r\vec{v})$$
 (Associative Prop.)

- $(kr)\vec{v} = k(r\vec{v})$ (Associative Prop.)
- $1\vec{v} = \vec{v}$ (Identity Prop.)

- $(kr)\vec{v} = k(r\vec{v})$ (Associative Prop.)
- $1\vec{v} = \vec{v}$ (Identity Prop.)
- $-\vec{v} = -1\vec{v}$ (Additive Inverse Prop.)

- $(kr)\vec{v} = k(r\vec{v})$ (Associative Prop.)
- $1\vec{v} = \vec{v}$ (Identity Prop.)
- $-\vec{v} = -1\vec{v}$ (Additive Inverse Prop.)
- $(k+r)\vec{v} = k\vec{v} + r\vec{v}$ (Distributive Prop. over Scalar Addition)

- $(kr)\vec{v} = k(r\vec{v})$ (Associative Prop.)
- $1\vec{v} = \vec{v}$ (Identity Prop.)
- $-\vec{v} = -1\vec{v}$ (Additive Inverse Prop.)
- $(k+r)\vec{v} = k\vec{v} + r\vec{v}$ (Distributive Prop. over Scalar Addition)
- $k(\vec{v} + \vec{w}) = k\vec{v} + k\vec{w}$ (Distributive Prop. over Vector Addition)

- $(kr)\vec{v} = k(r\vec{v})$ (Associative Prop.)
- $1\vec{v} = \vec{v}$ (Identity Prop.)
- $-\vec{v} = -1\vec{v}$ (Additive Inverse Prop.)
- $(k+r)\vec{v} = k\vec{v} + r\vec{v}$ (Distributive Prop. over Scalar Addition)
- $k(\vec{v} + \vec{w}) = k\vec{v} + k\vec{w}$ (Distributive Prop. over Vector Addition)
- $k\vec{v} = 0$ if and only if k = 0 or $\vec{v} = 0$ (Zero Product Prop.)

Table of Contents

- 1 Write the Component Form of a Vector and Find Its Magnitude
- 2 Perform Arithmetic Operations with Vectors
- Solve Vector Equations
- 4 Find Unit Vectors
- 5 Find Magnitude and Direction from Component Form and Vice Versa

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .

Solve
$$5\vec{v}-2(\vec{v}+\langle 1,-2\rangle)=\vec{0}$$
 for \vec{v} .
$$5\vec{v}-2(\vec{v}+\langle 1,-2\rangle)=\langle 0,0\rangle$$

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$
$$5\langle x, y \rangle - 2(\langle x, y \rangle + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$
$$5\langle x, y \rangle - 2(\langle x, y \rangle + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$
$$\langle 5x, 5y \rangle - 2\langle x + 1, y - 2 \rangle = \langle 0, 0 \rangle$$

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .

$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$5\langle x, y \rangle - 2(\langle x, y \rangle + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - 2\langle x + 1, y - 2 \rangle = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - \langle 2x + 2, 2y - 4 \rangle = \langle 0, 0 \rangle$$

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .

$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$5\langle x, y \rangle - 2(\langle x, y \rangle + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - 2\langle x + 1, y - 2 \rangle = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - \langle 2x + 2, 2y - 4 \rangle = \langle 0, 0 \rangle$$

$$\langle 3x - 2, 3y + 4 \rangle = \langle 0, 0 \rangle$$

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .

$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$5\langle x, y \rangle - 2(\langle x, y \rangle + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - 2\langle x + 1, y - 2 \rangle = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - \langle 2x + 2, 2y - 4 \rangle = \langle 0, 0 \rangle$$

$$\langle 3x - 2, 3y + 4 \rangle = \langle 0, 0 \rangle$$

$$3x - 2 = 0 \quad 3y + 4 = 0$$

Solve
$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \vec{0}$$
 for \vec{v} .

$$5\vec{v} - 2(\vec{v} + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$5\langle x, y \rangle - 2(\langle x, y \rangle + \langle 1, -2 \rangle) = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - 2\langle x + 1, y - 2 \rangle = \langle 0, 0 \rangle$$

$$\langle 5x, 5y \rangle - \langle 2x + 2, 2y - 4 \rangle = \langle 0, 0 \rangle$$

$$\langle 3x - 2, 3y + 4 \rangle = \langle 0, 0 \rangle$$

$$3x - 2 = 0 \quad 3y + 4 = 0$$

$$x = \frac{2}{3} \quad y = -\frac{4}{3} \longrightarrow \left\langle \frac{2}{3}, -\frac{4}{3} \right\rangle$$

Table of Contents

- 1 Write the Component Form of a Vector and Find Its Magnitude
- 2 Perform Arithmetic Operations with Vectors
- Solve Vector Equations
- 4 Find Unit Vectors
- 5 Find Magnitude and Direction from Component Form and Vice Versa

Unit Vectors

A unit vector, \hat{v} , is a vector that has a magnitude of 1.

Notice the unit vector \hat{v} is parallel to \vec{v} .

Unit Vectors

We get \hat{v} by dividing the magnitude of \vec{v} by itself:

$$\hat{\mathbf{v}} = \frac{\vec{\mathbf{v}}}{\|\mathbf{v}\|}$$

Unit Vectors

We get \hat{v} by dividing the magnitude of \vec{v} by itself:

$$\hat{\mathbf{v}} = \frac{\vec{\mathbf{v}}}{\|\mathbf{v}\|}$$

Since we are dividing the vector (the hypotenuse) by the magnitude, we also divide the x and y components as well:

$$\hat{\mathbf{v}} = \left\langle \frac{\mathbf{x}}{\|\mathbf{v}\|}, \frac{\mathbf{y}}{\|\mathbf{v}\|} \right\rangle$$

Given $\vec{v}=\langle 3,4\rangle$ and $\vec{w}=\langle 1,-2\rangle$, find each of the following.

(a) *û*

Given $\vec{v}=\langle 3,4\rangle$ and $\vec{w}=\langle 1,-2\rangle$, find each of the following.

$$|\vec{v}| = \sqrt{3^2 + 4^2}$$

Given $\vec{v}=\langle 3,4\rangle$ and $\vec{w}=\langle 1,-2\rangle$, find each of the following.

$$|\vec{v}| = \sqrt{3^2 + 4^2}$$
$$= 5$$

Given $\vec{v}=\langle 3,4\rangle$ and $\vec{w}=\langle 1,-2\rangle$, find each of the following.

(a)
$$\hat{v}$$

$$|\vec{v}| = \sqrt{3^2 + 4^2}$$

$$= 5$$

$$\hat{v} = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$$

(b)
$$\|\vec{v}\| - 2\|\vec{w}\|$$

(b)
$$\|\vec{v}\| - 2\|\vec{w}\|$$

$$\|\vec{v}\| = 5$$

(b)
$$\|\vec{v}\| - 2\|\vec{w}\|$$

$$\|\vec{v}\| = 5$$

 $\|\vec{w}\| = \sqrt{1^2 + 2^2} = \sqrt{5}$

(b)
$$\|\vec{v}\| - 2\|\vec{w}\|$$

$$\|\vec{v}\| = 5$$

 $\|\vec{w}\| = \sqrt{1^2 + 2^2} = \sqrt{5}$
 $\|\vec{v}\| - 2\|\vec{w}\| = 5 - 2\sqrt{5}$

(c)
$$\|\vec{v} - 2\vec{w}\|$$

(c)
$$\|\vec{v} - 2\vec{w}\|$$

$$\|\vec{v} - 2\vec{w}\| = \|\langle 3, 4 \rangle - 2\langle 1, -2 \rangle\|$$

(c)
$$\|\vec{v} - 2\vec{w}\|$$

$$\|\vec{v} - 2\vec{w}\| = \|\langle 3, 4 \rangle - 2\langle 1, -2 \rangle\|$$

$$= \|\langle 3, 4 \rangle - \langle 2, -4 \rangle\|$$

(c)
$$\|\vec{v} - 2\vec{w}\|$$

 $\|\vec{v} - 2\vec{w}\| = \|\langle 3, 4 \rangle - 2\langle 1, -2 \rangle\|$
 $= \|\langle 3, 4 \rangle - \langle 2, -4 \rangle\|$
 $= \|\langle 1, 8 \rangle\|$

(c)
$$\|\vec{v} - 2\vec{w}\|$$

 $\|\vec{v} - 2\vec{w}\| = \|\langle 3, 4 \rangle - 2\langle 1, -2 \rangle\|$
 $= \|\langle 3, 4 \rangle - \langle 2, -4 \rangle\|$
 $= \|\langle 1, 8 \rangle\|$
 $= \sqrt{1^2 + 8^2} = \sqrt{65}$

Example 4d

(d) $\|\hat{w}\|$

Example 4d

(d) $\|\hat{w}\|$

 $\|\hat{w}\|=1$ (magnitude of any unit vector is 1)

Table of Contents

- 1 Write the Component Form of a Vector and Find Its Magnitude
- 2 Perform Arithmetic Operations with Vectors
- Solve Vector Equations
- 4 Find Unit Vectors
- Find Magnitude and Direction from Component Form and Vice Versa

Magnitude and Direction

If we place a vector $\langle x, y \rangle$ in the coordinate plane, we can put the initial point at the origin and the terminal point at (x, y).

Magnitude and Direction

From Trig Functions of Any Angle (or Polar Coordinates),

$$x = \|\vec{v}\| \cos \theta$$
 and $y = \|\vec{v}\| \sin \theta$

.

Magnitude and Direction

From Trig Functions of Any Angle (or Polar Coordinates),

$$x = \|\vec{v}\| \cos \theta$$
 and $y = \|\vec{v}\| \sin \theta$

. Thus,

$$\langle x, y \rangle = \langle \| \vec{v} \| \cos \theta, \| \vec{v} \| \sin \theta \rangle = \| \vec{v} \| \langle \cos \theta, \sin \theta \rangle$$

Find the component form of the vector with $\|\vec{v}\| = 5$, with \vec{v} in Quadrant II and makes a 60° angle with the negative *x*-axis.

Find the component form of the vector with $\|\vec{v}\| = 5$, with \vec{v} in Quadrant II and makes a 60° angle with the negative x-axis.

If the angle makes a 60° with the negative x-axis in quadrant II, then the total amount rotated must be $180^{\circ}-60^{\circ}=120^{\circ}$.

Find the component form of the vector with $\|\vec{v}\| = 5$, with \vec{v} in Quadrant II and makes a 60° angle with the negative x-axis.

If the angle makes a 60° with the negative x-axis in quadrant II, then the total amount rotated must be $180^\circ-60^\circ=120^\circ$.

Find the component form of the vector with $\|\vec{v}\| = 5$, with \vec{v} in Quadrant II and makes a 60° angle with the negative x-axis.

If the angle makes a 60° with the negative x-axis in quadrant II, then the total amount rotated must be $180^{\circ}-60^{\circ}=120^{\circ}$.

Find the component form of the vector with $\|\vec{v}\| = 5$, with \vec{v} in Quadrant II and makes a 60° angle with the negative x-axis.

If the angle makes a 60° with the negative x-axis in quadrant II, then the total amount rotated must be $180^{\circ}-60^{\circ}=120^{\circ}$.

$$\|\vec{v}\| = \sqrt{3^2 + (3\sqrt{3})^2}$$

$$\|\vec{v}\| = \sqrt{3^2 + (3\sqrt{3})^2}$$
$$= \sqrt{36} = 6$$

$$\theta' = \tan^{-1} \left| \frac{-3\sqrt{3}}{3} \right|$$

$$\theta' = \tan^{-1} \left| \frac{-3\sqrt{3}}{3} \right|$$

$$\theta' = \frac{\pi}{3}$$

$$\theta' = \tan^{-1} \left| \frac{-3\sqrt{3}}{3} \right|$$

$$\theta' = \frac{\pi}{3}$$

$$\theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

$$\theta' = \tan^{-1} \left| \frac{-3\sqrt{3}}{3} \right|$$

$$\theta' = \frac{\pi}{3}$$

$$\theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

$$6\left\langle\cos\left(\frac{5\pi}{3}\right),\sin\left(\frac{5\pi}{3}\right)\right
angle$$