CHEM 1032						
PRACTICE	NAME:					
UNIT ASSESSMENT 1						
	TUID:					
SECTION:						

Before the Unit Assessment begins, read the rest of this page, and follow the instructions.

!!! Do not turn this page until given the signal to begin !!!

Put away everything besides pencil(s) and a scientific calculator.

- Non-programmable (scientific) calculators are permitted. Graphing calculators **are not permitted** (such as these models: TI-83, TI-84, TI-89, Casio FX-9750).
- Any other electronic devices including cell phones, smart phones, and smart watches **are not permitted**. If you are not sure what is permitted, ask *before* the exam begins.

When you are told to begin work, open the booklet and read the directions.

A periodic table and other useful information can be found on the next page.

Grading. Each question is graded by your instructor using the scale below.

1 - Excellent

- The student demonstrates a deep understanding of concepts and problem-solving techniques.
- Calculations are clear and legibly written.
- Any mistakes are minor or careless errors that do not indicate a major conceptual misunderstanding.

0.5 - Fair

- The student demonstrates a partial understanding of concepts and techniques.
- Calculations are clear and legibly written but contain errors.
 - The student may have started out correctly but gone on a tangent or not finished the problem.
 - The student may have used pattern matching to answer a different, more familiar question instead.

0 - Unsatisfactory/Incomplete

- The student did not demonstrate an understanding of the problem or has minimal understanding.
- Calculations are unclear, missing, or incomplete.
 - The student may have written some appropriate formulas or diagrams, but nothing further.
 - o The student may have done something entirely wrong.
 - The student may have written almost nothing or nothing at all.

Unit Assessment Time: 50 minutes. It is to your advantage to answer every question.

!!! Do not turn this page until given the signal to begin !!!

Units:

amu *atomic mass unit* atm *atmosphere*

g gram

h hour J joule K kelvin

mmHg unit of pressure

M molarity
K kelvin
L liter
mol mole
s second

Symbols:

H enthalpy

v frequency

M molar mass

mol mole

P pressure

t time

T temperature

V volume

Constants:

 N_A Avogadro's number

R ideal gas constant

SI (Metric) Prefixes:

c centi-

d deci-

k kilo-

m milli-

Z 102	M 0	T :	© 8	Ö.	B K	Cm s	Am 85	P	ک 🛭	_ %	P 9	5	> 80
177	168.93	167.26	164.93	162.50	158.93	157.25(3)	151.96	150.36(2)	[144.91]	144.24	140.91	140.12	138.91
₹	Ħ	Ψ̈	ᆼ	Ų	Тb	Gd G	M C	Sm	P B	Z	Pr	က e	La
7	69	68	67	66	65	64	ස	62	61	60	59	58	57

T 87	55 CS	39.098 37 37 38.488	3 1 1 6.94 L. 3 22.990	1.008
₽ Ba	56 Ba	40.078(4) 38 Sr. 87.62	4 Be 9,0122 12 12 Mg 24,305	N
89-102 **	57-70 *			
Ç i	71 Lu 174.97	39 S C 21 21 21 21 21 21 21 21 21 21 21 21 21		ω
₽ ₫	72	47.867 40 91.224(2)		4
D 55	180.95 180.95	50.942 50.942 92.906(2)		Cī
Sg	74 183.84	51.996 42 42 95.95		o
B	75	35 54.938		7
H s	76 OS	26 55.845(2) 44 101.07(2)		ω
1 09	77 	58.933 4.5 102.91		ဖ
Ds io	78 195.08	58.893 106.42		10
₽₫	79 Au	63.546(3) 47 Ag 107.87		⇉
ဌာ က	80 Hg	30 SA 65.38(2) 48 Cd		12
A 11 3	81 204.38	31 Ga 69.723 49 In	10.81	13
≖	82	50 Sn 118.71	6 C 12.011	4
115 M C	208.98	33 AS 74.922 51 Sb	7 Z 14.007	15
116 L V	Po	34 Se 78.971(8) 52 Te 127.60(3)	% 6 15.999 32.06	16
1 17	At 85	79.904 79.904	9 18.998 35.45	17
Og Og	R _s	54 131.29	10 Ne 20.180 Ne 39.948	18 + 0026

Ethylene Glycol ((CH₂OH)₂ – 62.07 g/mol) is a liquid used in a series of real-world applications, like

- as a starting product in the synthesis of polymers.
- in ball point pens to help thicken the ink.
- to act as an antifreeze in cars.

The synthesis of the ethylene glycol can occur according to the reaction below...

Part I – Multiple Choice Questions (1 pt each)

Excellent Answer = 1 pt

Fair Answer = 0.5 pts

 $Unsatisfactory\ Answer = 0\ pts$

- 1. Which molecule in the reaction above would you expect to have the highest viscosity?
 - A. ethylene oxide
 - B. water
 - C. ethylene glycol
 - D. All three molecules have similar viscosity
- 2. Compounds are considered hygroscopic if they absorb water from the air. Using intermolecular forces hypothesize if ethylene glycol is hygroscopic.
 - A. Ethylene glycol is hygroscopic, the IMF between ethylene glycol and water are similar.
 - B. Ethylene glycol is not hygroscopic, the IMF between ethylene glycol and water are too different.
 - C. Ethylene glycol is hygroscopic, the dispersion forces will pull in water from the air.
 - D. Ethylene glycol is not hygroscopic, the dispersion forces will repel water.
- 3. Some pen inks are made from ethylene glycol and alcohol. Assuming an ideal solution, what is the vapor pressure of a solution that contains 52.3 g of ethylene glycol dissolved in 500.0 g of methanol (CH₃OH)? The vapor pressure of pure methanol is 97.68 mmHg at 20 °C.
 - A. 0.05 mmHg
 - B. 0.949 mmHg
 - C. 92.69 mmHg
 - D. 102.67 mmHg

4. The normal boiling point o kJ/mol. If an ethylene glycol sample		and the enthalpy of vaporization is 65.6 apparatus at 105 °C, what is true?
A. The temperature is slightly highB. The temperature is significantlyC. The pressure is slightly lower inD. The pressure is significantly low	higher in the apparatus. the apparatus.	
5. Ethylene glycol is used in the other reagents. Which compound w	• •	nds, where it needs to be mixed with <u>sible</u> in ethylene glycol?
 A. Ethanol – CH₃CH₂OH. B. Methyl amine – CH₃NH₂. C. Acetic Acid – CH₃COOH. D. Butane – CH₃CH₂CH₂CH₃. 		
Part II – Open Answer Questions – See A Excellent Answer = 1 pt	Page 1 for full grading detail Fair Answer = 0.5 pts	Unsatisfactory Answer = 0 pts
	rporating the boiling point (19'	r industrial chemists working with the 7 °C), freezing point (-12.9 °C), enthalpy nol) into your plot. Be sure to label all
Show your work in this box.		

enthalpy of solution, label the sign (+ or –) for each.	eze in cars. Write the components that contribute to the Hypothesize the sign for the enthalpy of solution, explain
your answer.	
Show your work in this box.	
8. Determine the mass of ethylene glycol present in 100	0.0 g of water if the antifreeze works until -15.0 °C.
Show your work in this box.	
ANSWER IN THIS BOX →	Write mass of Ethylene Glycol here.
from a gas to a liquid. Indicate whether heat is enteri	es on the molecular level of ethylene glycol transitioning ng or exiting the system.
Draw diagram here	

10. Sodium chloride (NaCl) can be added to solvents to increase 36.09 g NaCl can dissolve in 100 g of water but only 7.09 g Using intermolecular forces, explain why this is observed.	
Explain here	
END OF EXA	A M
!!! DON'T FORGET TO CHEC	
Useful information:	
1 atm = 760 mmHg = 101.3 kPa $R =$	$8.314 \frac{J}{mol \cdot K} = 0.08206 \frac{L \cdot atm}{mol \cdot K}$
$0 ^{\circ}\text{C} = 273 \text{K}$	
$\ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	
$S_{gas} = k_{ m H} P_{gas}$	
$X_{\text{solvent}} + iX_{\text{solute}} = 1$	
$P_{solution} = X_{solvent} P^{o}_{solvent}$	
$\Delta T_f = (i)(m)(K_f)$ $\Delta T_b = (i)(m)(K_b)$	

 $K_f H_2 O = 1.84 \text{ °C/m}$ $K_b H_2 O = 0.512 \text{ °C/m}$

