Relax Data Science Write Up

By: Wasinee Siewsrichol

I first started by cleaning up the dataset from the takehome_user_engagement.csv which had all of the user_id with the time they logged in. I then defined an "adopted user" as a user who logged into the product on 3 separate days in at least a 7 day period by using a function with timedelta from datetime. There were 1656 adopted users out of 8823 users.

Then I moved onto cleaning the second dataframe from takehome_users.csv which had 12,000 users who signed up within the past 2 years. There were some null values from last_session_creation_time and invited_by_user_id. I decided to drop the latter column since it had too many null values, and kept the first one to do further investigation. I also dropped name, email, and org_id which I deemed irrelevant to the target which is finding out which feature most affects if the user is adopted or not. I created a column named history which is the number of days the account has been accessed since its creation and then dropped the columns: creation_time' and 'last_session_creation_time'. I created a dummy variable for the categorical column and created a correlation heatmap using seaborn.

As you can see above, there is some sort of correlation between adopted user and history. More investigation needed to be done and so I did a train test split with a test size of 20%. I fitted the training datasets to the Random Forest Classifier and predicted the adopted user. The accuracy test and classification report is below.

Accuracy of test set was 0.9580736543909348				
	precision	recall	f1-score	support
	0 0.97	0.98	0.97	1417
	1 0.92	0.87	0.89	348
accurac	:y		0.96	1765
macro av	g 0.94	0.92	0.93	1765
weighted av	/g 0.96	0.96	0.96	1765

As you can see, the Random Forest had a pretty high accuracy score of 96% with most scores hovering over the 90%. I also wanted to see the features which are most important below.

	feature	importance
3	history	0.886496
0	user_id	0.093253
1	opted_in_to_mailing_list	0.004379
2	enabled_for_marketing_drip	0.003403
4	creation_source_GUEST_INVITE	0.002983
5	creation_source_ORG_INVITE	0.002776
7	creation_source_SIGNUP	0.002408
8	${\tt creation_source_SIGNUP_GOOGLE_AUTH}$	0.002241
6	creation_source_PERSONAL_PROJECTS	0.002061

The highest feature importance is history, followed by user_id and the rest are pretty unimportant. These results do not surprise me but it is nice to see that the Random Forest did a pretty good job in predicting adopted users. For future improvements, I would like to do some hyperparameter tuning and use other types of models to fit the data to see which model works best. Since I was trying to fit everything in about a 2 hour time frame as recommended by the prompt.

Github Jupyter Notebook Link:

https://github.com/WasineeSi/Springboard/blob/a349621e6da08463b9cbbb6fd1dcec25a75b0c9b/relax challenge/relax%20challenge.ipynb