Conditional Probability Voting Algorithm Based on Heterogeneity of Mimic Defense System

V Rahul

IITH

July 2, 2021

About the paper

Authors

- Shuai Wei
- Huihua Zhang
- Wenjian Zhang
- Hong Yu

Institute

- PLA Strategic Support Force Information Engineering University
- Wuxi Xinwu Confidential Technology Service Center

Date of Publishing

October 15, 2020

Abstract

- In recent years network attacks have been increasing rapidly, and it is difficult to defend against these attacks, especially attacks at unknown vulnerabilities or backdoors.
- As a novel method, Mimic defense architecture has been proposed to solve these cyberspace security problems by using the principle of dynamic heterogeneous redundant variants.
- Choosing appropriate variants and voting algorithm according to heterogeneities of these variants become the key issue of designing mimic defense architecture.
- This paper analyzes the system failure probability and scalability of 3 different voting algorithms- MHA, MVA, CPVA, and decide which one is the best.

Variants

Mimic defense system can be considered a restrict version of N-variant systems, because it adopts the basic idea of running multiple variants of the same program in parallel.

- Variants are usually composed of a series of components, such as CPU, operating system, middleware, application, etc.
- Each component is composed of several modules. For example, the application can be divided into module 1, module 2,..., module M, etc.
- A module is atomic, and its implementations are different from each other.
- **3** Each variant can be represented by a module implementation vector $z^i = (g_1{}^i g_2{}^i ... g_N{}^i)$, where N is the number of modules contained in a variant and each module may have several implementations.

Variants

Figure: A typical mimic defense instance

Variants

The mimic defense system shown in above figure can be described by a matrix as shown below.

$$\begin{pmatrix} z^1 \\ z^2 \\ z^3 \\ z^4 \\ z^5 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_3 & d_3 \\ a_2 & b_2 & c_2 & d_1 \\ a_1 & b_2 & c_1 & d_2 \\ a_2 & b_1 & c_2 & d_2 \\ a_3 & b_3 & c_1 & d_1 \end{pmatrix}$$

6/20

Heterogeneous Variants

- Mimic defense system requires the variants to be heterogeneous to each other, not just applications, but also including CPU, OS, middleware and so on.
- For a large system which is common in mimic defense system, it is hard to realize totally heterogeneous.

There are mainly three kinds of algorithms to choose variants:

- maximum heterogeneous algorithm (MHA)
- optimal mean distance algorithm (OMDA)
- 3 random seeds scheduling method

Heterogeneous Variants

2-level similarity

Suppose there are three variants (1, 2, 3), the 2-level similarities are referred to the similarities for 1&2,1&3,1&2. The sum of similarities is lower, the system is considered to be safer.

- As the number of working variants grows, 2-level similarity become less important.
- Heterogeneity will reach max when there are 3 variants in the mimic system, and the heterogeneity will drop as variants number increase more than 3.

Classic Model

Figure: Classic model of mimic defense architecture

Assumptions

- Input agent, Scheduler, and Feedback controller are safe from network attacks.
- Each vulnerability/backdoor of the system have the same probability being attacked.
- Oifferent implementations of each module have the same attacking probability.
- Only one vulnerability / back door can be attacked at a time, and the attacked variant will be cleaned in a short time.

The probability of successfully attacking each module is β_i , which should satisfy $\sum_i \sum_{\psi_i} \beta_i = 1$, ψ_i is the number of implementations for module i.

Binary Division Vectors

Module diversity ψ_i

The implementation number of the module g_i , which can be calculated by formula $|\bigcup_i g_k{}^i|$. Implementation set is $(a_1a_1a_1a_2a_3)^T$, then union the contents and get the set $\{a_1a_2a_3\}$, which contain 3 elements, so the diversity of module a is 3.

Binary division vector η_i^k

- In a module, divide the same implementations into one group and other implementations into another group, and use a vector to represent. Assign corresponding values in the vector of the same implementations to 1 and others to 0.
- ② For example, the implementation of g_1 is $(a_1a_1a_1a_2a_3)^T$, then there are 3 binary division vectors for module g_1 , the binary division vector of a_2 is $(00010)^T$, a_3 is $(00001)^T$, a_1 is $(11100)^T$.

Binary Division Vectors

Complement binary division vector $\sim \eta_i^{\ k}$

which is reversing every element in the binary division vector. Based on the binary division vector $(11100)^T$ of module implementation a_1 , reverse all the elements in it, and its complement vector will be $(00011)^T$.

Isomorphic number of binary division vector $\lambda_i^{\ k}$

The number of elements whose value is equal to 1. There are three 1 in the binary division vector of module implementation a_1 , which is $(11100)^T$, then there are three a_1 , and Isomorphic number of $(11100)^T$ is 3.

Important Property

- **1** Assuming that there are T executions in the mimic defense system, there will be at most 1 implementation whose isomorphic number is not less than $\left|\frac{T+1}{2}\right|$.
- ② If the diversity of a module is 2, there must be one implementation whose isomorphic number is not less than $\lfloor \frac{T+1}{2} \rfloor$.

The following conditions are generally required in order to reduce the failure probability of mimic defense system :

- ① Do not add the same implementation of a module so that its Isomorphic number exceeds $\lfloor \frac{T+1}{2} \rfloor$.
- ② Add different implementation of a module or balance the same implementation of a module so that its maximum implementation is less than $\left|\frac{T+1}{2}\right|$.

Majority voting algorithm

- ① Divide the variants by their results, put variants with the same result into a group G_k . According to the hypothesis only one vulnerability/backdoor is attacked at a time, so there are usually 2 groups, suppose they are G_1 and G_2 .
- ② If $|G_1| > |G_2|$, then select the result of G1 as the final output; otherwise, select the result of G2 as the final output.
- 3 Clean the variants which have been arbitrated to be abnormal.

Majority voting algorithm

- $\mathbf{0} V_g = \mathsf{NULL}$
- \bigcirc for i = 1: N
- \bullet for k = 1: ψ_i
- If $(\lambda_i^k \geq \lfloor \frac{T+1}{2} \rfloor)$
- \odot add i in V_g
- endfor
- endfor
- \odot for each index in U_g
- $\mathbf{0}$ msum = msum + β_k
- endfor

Conditional probability voting algorithm

- **1** The variants which generated the same results are divided into one group G_k , generally there are only two groups, assumed as G_1 and G_2 .
- ② Calculation β_{G_1} and β_{G_2} , $\beta_{G_1} = \sum_k \beta_k$, if $k \in \bigcap_{i \subset G_1} (z^i \bigcap_{j \subset G_2} z^j)$, $\beta_{G_2} = \sum_k \beta_k$, if $k \in \bigcap_{j \in G_2} (z^j \bigcap_{j \in G_2} z^j)$
 - $= \sum_{k} \beta_{k}, \text{ if } k \in \bigcap_{i \subset G_{2}} (z^{i} \bigcap_{j \subset G_{1}} z^{j}).$
- **3** If $\beta_{G_1} > \beta_{G_2}$, the result of G_2 shall be used, otherwise, the result of G_1 shall be used.
- Olean the abnormal variants which have generated wrong result.

Conditional probability voting algorithm

 $\mathbf{0}$ $G_{u} = \mathsf{NULL}$

 \odot add i in G_L

csum=csum+lsum

 \bigcirc for i=1: N

- else if($\sim vctorl = = \eta_i^k$)
- else

3 for k = 1: ψ_i

- add i in G_S
- csum=csum+ssum

endif

endif

- $G_u = \operatorname{union}(G_u, \eta_i^k)$
- endforendfor

endfor

endifendfor

endfor

 \circ csum = 0

- endfor for each k in G_S
- for each vctorl in G_u for i = 1: N
- \mathfrak{S} ssum = ssum + β_k

- endfor
- if Isum < ssum
 </p>

Results for 3-variants experiment

Figure: System failure probabilities of MHA, MVA and CPVA when N=100 M=10 $\,$

July 2, 2021

Results for 5-variants experiment

Figure: System failure probabilities of MHA, MVA and CPVA when N=100 M=10

Results for scalability experiment

Figure: System failure probabilities of CPVA and MVA with variants increase