Date: 23/12/2012

#### L-1/T-1/EEE

Q. 2(a).

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-1/T-1 B. Sc. Engineering Examinations 2010-2011

Sub: **EEE 101** (Electrical Circuits I)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

#### SECTION - A

There are FOUR questions in this Section. Answer any THREE.

1. (a) Using mesh analysis, calculate the branch currents I<sub>1</sub>, I<sub>2</sub>, I<sub>3</sub>, I<sub>4</sub> and I<sub>5</sub> for the circuit



(b) Find I<sub>0</sub> using nodal analysis for the circuit shown in Fig. for Q. 1(b).



2. (a) Find the value of V<sub>o</sub> using principle of superposition for the circuit shown in Fig. for



Contd ...... P/2

(17)

(17)

(18)

### **EEE 101**

### Contd ... Q. No. 2

(b) Find the value of  $V_x$  using source transformations for the circuit shown in Fig. for Q 2(b). (18)

(a) Find the value of V<sub>0</sub> using Thevenin's theorem for the circuit shown in Fig. for Q. 3(a).



(b) The variable resistor (R<sub>o</sub>) in the circuit shown in Fig. for Q. 3(b) is adjusted until the power dissipated in the resistor (R<sub>o</sub>) is 250 W. Find the values of R<sub>o</sub> which satisfy this condition.



- 4. (a) Define the flux density, permeability and magnetizing force.
  - (b) Explain the Ampere's Circuital Law.
  - (c) Determine the value of current I required to establish a flux of  $\phi 1 = 1.8 \times 10^{-4}$  Wb in the air gap in Fig. for Q. 4(c).

Contd ...... P/3

(9)

(9)

(18)

(6)

(20)

## **EEE 101**

### SECTION - B

There are FOUR questions in this Section. Answer any THREE.

| Fig. for Q 5(a). Also calculate the power absorbed by each element and verify that the                  | <b>(2</b> 0)                           |
|---------------------------------------------------------------------------------------------------------|----------------------------------------|
| sum to zero.                                                                                            | (15)                                   |
| (b) Calculate R <sub>ab</sub> for each of the networks shown in Fig. for Q. 5(b).                       | •                                      |
|                                                                                                         | (15)                                   |
| 6. (a) For the circuit of Fig. for Q. 6(a)                                                              |                                        |
| (i) Determine the output voltage Vout and output current Iout.                                          |                                        |
| (ii) Determine the voltage gain  Vout/Vin .                                                             | (20)                                   |
| (b) Find R <sub>eq</sub> and I in the circuit of Fig. for Q. 6(b).                                      | (20)                                   |
|                                                                                                         |                                        |
| 7. (a) Obtain expressions for both $i_1(t)$ and $i_2(t)$ as labeled in Fig. for Q. 7(a) which are valid | (17)                                   |
| $f_{or} + > 0$                                                                                          | (17)                                   |
| (b) The switch in Fig. for Q. 7(b) has been closed for a long time before opening at $t = 0$ .          | (4.0)                                  |
| Find                                                                                                    | (18)                                   |
| (i) $i_L(t)$ , $t \ge 0$                                                                                |                                        |
| (ii) $v_L(t)$ , $t \ge 0^+$                                                                             |                                        |
|                                                                                                         | ·· · · · · · · · · · · · · · · · · · · |
| (iii) $v_1(t), t \ge 0^+$                                                                               |                                        |
| 8. (a) The current shown in Fig. for Q 8(a) is applied to a 0.5 $\mu F$ capacitor. The initial          |                                        |
|                                                                                                         | (15)                                   |
| voltage on the capacitor is zero.                                                                       |                                        |
| (i) Find the charge on the capacitor at $t = 15 \mu s$ .                                                |                                        |
| (ii) How much energy is stored in the capacitor by this current?                                        |                                        |
| (iii) Sketch v(t) over the interval $0 \le t \le 50 \mu s$ .                                            | (20)                                   |
| (b) Sketch the voltage $v_c(t)$ as shown in Fig. for Q. 8(b) for the interval $-0.5 \le t \le 40$ s.    | (20                                    |



<u>EEE 101</u> = 4=



Fig. for Q. A(c)

# UPLOADED BY



www.prokoushol.com



Fig. for Q. 5(a)



Fig. for Q. 5(b)



Fig. for Q. 6(a)





=6=



Fig. for Q. 7(b)



Fig. for Q. 8(a)



Fig. for Q. 8(b)

# www.prokoushol.com