EXPLORING CRYPTOGRAPHY PROTOCOLS

WITH LIMITED EMPHASIS ON MATHEMATICS ©

ATTENTION

THESE SLIDES HAVE BEEN CRAFTED USING THE FOUNDATION OF MY MSC COURSE IN CRYPTOGRAPHY PROTOCOLS AT THE UNIVERSITY OF ISFAHAN.

I'VE MADE ADJUSTMENTS TO THE CONTENT TO ALIGN WITH THE SPECIFIC OBJECTIVES OF THIS PRESENTATION.

ALSO, MY INTENTION HAS BEEN TO MINIMIZE THE USE OF MATHEMATICAL CONCEPTS, WHICH MAY RESULT IN SOME CONCEPTS BEING SIMPLIFIED OR LESS PRECISE.

Agenda

- 1. Identification and Entity Authentications Protocols
- 2. Zero Knowledge Protocols
- 3. Key Establishment Protocols
- 4. Threshold Cryptography and Secret Sharing Protocols
- 5. Types of Digital Signatures
- 6. Special Purpose Protocols (like simultaneous contract signing, mental poker, fair exchange)
- 7. Identity Based Cryptography
- 8. Secure Auctions and Elections Protocols
- 9. Cryptocurrency
- 10. Secure Multiparty Computations

Agenda

- 1. Identification and Entity Authentications Protocols
- 2. Zero Knowledge Protocols
- 3. Key Establishment Protocols
- 4. Threshold Cryptography and Secret Sharing Protocols
- 5. Types of Digital Signatures
- 6. Special Purpose Protocols (like simultaneous contract signing, mental poker, fair exchange)
- 7. Identity Based Cryptography
- 8. Secure Auctions and Elections Protocols
- 9. Cryptocurrency
- 10. Secure Multiparty Computations

Levels of Authentications

Weak Authentication (based on password)

• Strong Authentication (based on challenge and response)

• Extremely Strong Authentication (based on zero knowledge)

Protocol #1

My password is PW_A

Alice	PW_A
 /	

Eavesdropping and Replay Attack

Unauthorized Access to DB

Dictionary Attack

Bob Knows Alice's Password

Protocol #2

I don't say who I am, but

My password is PW_A

Alice	h(PW _A)
//	

Map Hash of Password to a User with Complexity of n/2Birthday Attack to Find each PW

Protocol #3

I don't say who I am, but

My password is PW_A

Alice	h(PW _A salt _A)	salt _A
///	,	//

Lamport

user	next challenge	hash
Alice	n	h ⁿ (PW _A)

Lamport

user

Alice

n-1

Lamport (Small n Attack)

user	hash
Alice	h ¹⁰⁰⁰ (PW _A)

 $h^1(PW_A)$

Alice

 $h^{998}(PW_A) ... h^1(PW_A)$

Alice must store the latest value of "n"

Infinite Length Hash Chain (ILHC)

user	hash
Alice	A ^x (s,d)

A -> Algorithm

d -> Private Key

e -> Public Key

s -> Paintext

c -> Ciphertext

$$s$$
 , $A(s,d)$, $A^2(s,d)$, ... , $A^n(s,d)$, ...

Strong Authentications Types of Strong Authentications:

- - Based on symmetric encryption

Protocol #1

 $MAC_{K}(.)$

request for authentication

a big random r

 $MAC_{K}(r)$

 $MAC_{K}(.)$

in role of

Alice

Strong Authentication

Parallel Session Attack

Suppose both Alice and Bob could be authenticator and could be authenticated as well

Protocol #2

 $MAC_{K}(.)$

request for authentication

a big random r

 $MAC_{K}(A \mid r)$

 $MAC_{K}(.)$

Mutual Authentication or Bilateral Authentication

Both Alice and Bob can authenticate each other

- Two conditions of scheme:
 - Completeness: If both Alice and Bob are honest and the enemy is passive, the result of session must be pass by both.
 - Soundness: If the enemy got involved in just a flow or more, the result of session must be fail by both.

Protocol #4

 $MAC_{K}(.)$

Parallel Session Attack

Protocol #5

 $MAC_{K}(.)$

Asymmetric Encryption

TA	Trusted Authority
CA	Certificate Authority
PK _A	A's Public Key
PR_A	A's Private Key
sig _A (x)	Encrypt x by A's Private Key
$ver_A(x, y)$	Decrypt y by A's Public Key and Verify $x == y$
cert _A	$ID_A \mid PK_A \mid sig_{CA}(ID_A \mid PK_A)$

Protocol #6

Protocol #7

Parallel Session Attack

r₁, cert_B initiator

 r_3 , $sig_B(ID_A \mid r_2 \mid r_3)$

r₂, cert_A

$$r_3$$
, $sig_B(ID_A | r_2 |$

Ref

- 1. Cryptography Protocols Course, Dr. Hamid Mala, University of Isfahan
- 2. https://datatracker.ietf.org/doc/html/rfc8235
- 3. https://blog.goodaudience.com/understanding-zero-knowledge-proofs-through-simple-examples-df673f796d99
- 4. https://en.wikipedia.org/wiki/Zero-knowledge_proof#Definition
- 5. https://www.iconfinder.com/UsersInsights
- 6. https://www.iconfinder.com/Chanut-is

