Véges determinisztikus automaták

Formális nyelvek, 9. gyakorlat

Célja: A véges determinisztikus és nem-determinisztikus automaták (VDA, VNDA) fogalmának gyakorlása és használatuk gyakorlati feladatok megoldására

Fogalmak: VDA, VNDA, automaták megadási módjai, 3. normálforma, automata-kör, összefüggő automata, mintafelismerés, szótár, lexikális analízis

Feladatok jellege: Példák automatákra, különböző megadási módokon. Konkrét 3. típusú nyelvtanból indulva normálformára hozás, átírás VNDA-vá, átírás VDA-vá (összefüggő rész). KMP automata egy konkrét mintára. Véges nyelvhez lehetőleg kis állapotszámú automata. Automata az azonosítókhoz, valós számokhoz, az alapszimbólumok összességéhez.

2005/06 II. félév

Formális nyelvek (9. gyakorlat)

2005/06 II. félév

Házi feladatok megoldása

1.a. feladat

aaabcc $\stackrel{?}{\in}$ L(G).

G szabályai: $S \rightarrow AB \mid BC$, $A \rightarrow XA \mid a$, $X \rightarrow a$, $C \rightarrow YC \mid c$, $Y \rightarrow c$, $B \rightarrow UV \mid VW$, $U \rightarrow XX$, $W \rightarrow YY$, $V \rightarrow ZZ$, $Z \rightarrow b$.

Megoldás:

Megoldas:
$$\emptyset$$
 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset $\{A,U\}$ $\{A,U\}$ \emptyset \emptyset \emptyset $\{C,W\}$ $\{A,X\}$ $\{A,X\}$ $\{A,X\}$ $\{A,X\}$ $\{A,X\}$ $\{A,X\}$ $\{C,X\}$ $\{C$

Mivel $S \notin H_{1.6}$, ezért *aaabcc* $\notin L(G)$

Formális nyelvek (9. gyakorlat)

2005/06 II. félév

Házi feladatok megoldása

1.b. feladat

 $abbccc \stackrel{?}{\in} L(G)$,

G szabályai: $S \rightarrow AB \mid BC, A \rightarrow XA \mid a, X \rightarrow a, C \rightarrow YC \mid c, Y \rightarrow c, B \rightarrow UV \mid VW$ $U \rightarrow XX, W \rightarrow YY, V \rightarrow ZZ, Z \rightarrow b.$

Megoldás:

Megoldas:
$$\emptyset$$
 $\{S\}$ $\{S\}$ $\{S\}$ \emptyset $\{B\}$ \emptyset $\{C\}$ \emptyset $\{V\}$ \emptyset $\{C,W\}$ $\{C,W\}$ $\{A,X\}$ $\{Z\}$ $\{Z\}$ $\{Y,C\}$ $\{Y,C\}$ $\{Y,C\}$ $\{Y,C\}$ $\{C,W\}$

Mivel $S \notin H_{1.6}$, ezért abbccc $\notin L(G)$

Házi feladatok megoldása

2. feladat

Adjunk VDA-t mely a legalább 4 hosszú szavakat fogadja el!

Megoldás:

$$T = \{a, b, c\}, A = \{q_0, q_1, q_2, q_3, q_4\}$$

 $A = \langle A, T, \delta, q_0, \{q_4\}\rangle$

VDA-k 2005/06 II. félév VDA-k 2005/06 II. félév Formális nyelvek (9. gyakorlat) Formális nyelvek (9. gyakorlat)

Házi feladatok megoldása

3. feladat

Adjunk VDA-t mely a 7-tel osztható számokat fogadja el!

Megoldás:

$$T=\{0,1,2,3,4,5,6,7,8,9\}, \quad A=\{q_0,q_1,q_2,q_3,q_4,q_5,q_6\}.$$

$$\mathcal{A} = \langle A, T, \delta, q_0, \{q_0\} \rangle$$

	0	1	2	3	4	5	6	7	8	9
$ ightleftarrows q_0$	q_0	q_1	q_2	q ₃	q_4	q 5	q 6	q_0	q_1	q_2
q_1	q ₃	q_4	q 5	q 6	q_0	q_1	q_2	q 3	q_4	q 5
q_2	q 6	q_0	q_1	q_2	q 3	q_4	q 5	q 6	q_0	q_1
q_3	q_2	q ₃	q_4	q 5	q 6	q_0	q_1	q_2	q ₃	q_4
q_4	q 5	q 6	q_0	q_1	q_2	q_3	q_4	q 5	q 6	q_0
q 5	q_1	q_2	q ₃	q_4	q 5	q 6	q_0	q_1	q_2	q 3
q 6	q_4	q 5	q 6	q_0	q_1	q_2	q 3	q_4	q 5	q 6

Formális nyelvek (9. gyakorlat)

VDA-k

2005/06 II. félév

2005/06 II. félév

Adott nyelvhez VDA konstruálása/1.

Feladatok

Feladatok:

$$L_1 = \{u; u \in \{a, b, c\}^* \land \ell(u) = 5\}$$

$$L_2 = \{a, ab, abb, c, cb, cab\}$$

$$L_3 = \{u; u \in \{a, b, c\}^* \land \ell_a(u) = 2 \land \ell_b(u) \le 3\}$$

$$L_4 = \{u; u \in \{a, b, c\}^* \land \text{k\'et } b \text{ k\"oz\"o\'tt legfeljebb h\'arom } a \text{ lehet}\}$$

$$L_5 = \{u; \ u \in \{0,1,2,3\}^* \land u \text{ (mint 4-es számrendszerbeli szám)}$$
 3-mal osztva 1 maradékot ad}

Formális nyelvek (9. gyakorlat)

VDA-k

2005/06 II. félév

Adott nyelvhez VDA konstruálása/1.

Megoldások

Megoldások:

VDA-k

Adott nyelvhez VDA konstruálása/1.

Megoldások

VDA-k2005/06 II. félév Formális nyelvek (9. gyakorlat)

Adott nyelvhez VDA konstruálása/1.

Megoldások

Megoldások:

L₄:

$$A = \langle \{q_S, q_0, q_1, q_2, q_3, q_{>4}, q_{zs}\}, \{a, b, c\}, \delta, q_S, \{q_S, q_0, q_1, q_2, q_3, q_{>4}\} \rangle$$

$$\delta(q_{\mathcal{S}},a):=q_{\mathcal{S}}$$

$$\delta(a',b) := q_0 \quad \forall a' \in A \setminus \{q_{>4},q_{zs}\}$$

$$\delta(q_i, a) := q_{i+1}$$
 $i=0, 1, 2$

$$\delta(q_{>4},b) := q_{zs}$$

$$\delta(q_3,a):=q_{>4}$$

$$\delta(q_{zs},b) := q_{zs}$$

$$\delta(q_3, a) := q_{\geq 4}$$

 $\delta(q_{>4}, a) := q_{>4}$

$$\delta(a',c) := a' \quad \forall a' \in A$$

$$\delta(q_{\mathrm{zs}},a):=q_{\mathrm{z}}$$

 $\delta(q_{zs}, a) := q_{zs}$

$\theta(\mathbf{q}_{\mathbf{z}\mathbf{s}},$	a)	

1	_ •
L	5.

	0	1	2	3
\rightarrow q_0	q_0	q_1	q_2	q_0
$\leftarrow q_1$	q_1	q_2	q_0	q_1
q_2	q_2	q_0	q_1	q ₂

Formális nyelvek (9. gyakorlat)

2005/06 II. félév

Adott nyelvhez VDA konstruálása/2.

Megoldások

Megoldások:

$$A = \langle \{q_i; 0 < i < p-1\}, \{0, 1, \dots, r-1\}, \delta, q_0, \{q_k\} \rangle$$

$$\delta(q_i, j) := q_{ri+j \pmod{p}} \quad \forall 0 \le i \le p-1, 0 \le j \le r-1$$

Illetve, ha nem fogadunk el 0-val kezdődő szavakat, legyen továbbá

$$\delta(q_{\mathcal{S}}, j) := q_{j \pmod{p}} \quad \forall 1 \leq j \leq r-1,$$

$$\delta(q_S,0):=q_N,$$

Formális nyelvek (9. gyakorlat)

$$\delta(q_N,j) := q_{zs} \quad \forall 0 \leq j \leq r-1,$$

$$\delta(q_{zs}, j) := q_{zs} \quad \forall 0 < j < r-1,$$

ahol itt most q_S a kezdőállapot, q_N és q_{zs} további állapotok, és $q_N := F$, ha k=0.

VDA-k

Adott nyelvhez VDA konstruálása/2.

Feladatok

Feladatok:

$$L_6 = \{u; \ u \in \{0, 1, \dots r-1\}^* \land u \text{ (mint } r\text{-es számrendszerbeli szám)} p\text{-vel osztva } k \text{ maradékot ad} \}$$

$$L_7 = \{u; \ \ell_a(u) \ \text{páros}, \ell_b(u) \ \text{3-mal osztva 1 maradékot ad}, \ell_c(u) \leq 2\}$$

$$L_8 = \{u; u \in \{a, b, c\}^* \land ab, bc, ca \text{ nem részszava } u\text{-nak}\}$$

$$L_9 = \{u; u \in \{a, b, c\}^* \land aa, bb \text{ nem részszava}, cc \text{ részszava } u\text{-nak}\}$$

$$L_{10} = \{a, b, c\}^* ababb\{a, b, c\}^*$$

Formális nyelvek (9. gyakorlat)

VDA-k

2005/06 II. félév

Adott nyelvhez VDA konstruálása/2.

Megoldások

L₈:

Megoldások:

*L*₇:
$$\mathcal{A} = \langle \{q_{xyz}; x \in \{0, 1\}, y \in \{0, 1, 2\}, z \in \{0, 1, 2, 3\}\}, \{a, b, c\}, \delta, q_{000}, \{q_{010}, q_{011}, q_{012}\} \rangle$$

$$\delta(q_{xyz}, a) = q_{(x+1)_{(2)}yz}, \ \delta(q_{xyz}, b) = q_{x(y+1)_{(3)}z},$$
 $\delta(q_{xyz}, c) = \begin{cases} q_{xy(z+1)} & z \neq 3, \\ q_{xy3} & z = 3. \end{cases}$

2005/06 II. félév VDA-k 2005/06 II. félév 12/15 Formális nyelvek (9. gyakorlat)

Adott nyelvhez VDA konstruálása/2.

Megoldások

Megoldások:

Házi feladat

Formális nyelvek (9. gyakorlat)

1. Készítsünk VDA-t, mely épp az $L = a(b \cup c(ba)^*ca)^*b \cup b$ nyelv szavait fogadja el! $(T = \{a, b, c\})$

VDA-k

2005/06 II. félév

2. Melyik nyelvet fogadja el a következő automata?

	а	b	С
\rightarrow q_0	q_1	q_2	q ₃
q_1	q_4	q_2	q_4
q_2	q_0	q_4	q ₃
<i>← q</i> ₃	q_4	q ₃	q_4
q_4	q_4	q_4	q_4

3. Készítsünk KMP automatát a következő mintához! babbcabc $(T = \{a, b, c\})$

Formális nyelvek (9. gyakorlat) VDA-k 2005/06 II. félév 15/15

Adott nyelvhez VDA konstruálása/2.

Megoldások

Megoldások:

L₁₀: KMP (Knuth-Morris-Pratt) automata

Általában: Legyen M a felismerendő minta, az állapotok halmaza legyen $\{q_u \mid u \in \operatorname{Pre}(M)\}$, a kezdőállapot q_{ε} , az egyetlen elfogadó állapot q_M . Egy tetszőleges $t \in T$ betűre pedig $\delta(q_u, t)$ legyen q_v , ahol v a $\operatorname{Suf}(ut) \cap \operatorname{Pre}(M)$ halmaz leghosszabb szava.

Formális nyelvek (9. gyakorlat) VDA-k 2005/06 II. félév