11. Multiple quantifiers

- 1. Multiple quantifiers
- 1.1 Two quantifiers
- 1.2 Using quantifiers to express properties
- 1.3 Multiple determiners
- 1.4 Quantifier scope ambiguity
- 1.5 Donkey sentences

a. Two quantifiers

11. Multiple quantifiers

Formulas expressing relations

- ightharpoonup A formula Ax with one free variable expresses a **property**
- ightharpoonup A formula $\mathcal{B}xy$ with two free variables expresses a **relation**
- ▶ $(\forall x)(\forall y) \mathcal{B}xy$ is a sentence:
- ▶ It's true iff every pair of objects α , β stand in the relation expressed by $\mathcal{B}xy$.
- ▶ $(\exists x)(\exists y) \mathcal{B}xy$ is a sentence:
- ▶ It's true iff at least one pair of objects α , β stand in the relation expressed by $\mathcal{B}xy$.

Multiple uses of a single quantifier: \forall

- ightharpoonup Axy: x admires y.
- \blacktriangleright $(\forall x)(\forall y)$ Axy: for every pair $\langle \alpha, \beta \rangle$, α admires β .
- ► In other words: everyone admires everyone.
- ▶ Note: "every pair" includes pairs $\langle \alpha, \alpha \rangle$, i.e.,
- ▶ $(\forall x)(\forall y)$ Axy is true only if all pairs $\langle \alpha, \alpha \rangle$ satisfy Axy.
- ► That means, everyone admires themselves, in addition to everyone else.
- ► So: $(\forall x)(\forall y)$ Axy does **not** symbolize "everyone admires everyone **else.**" (To handle that, we'll need identity!)

Multiple uses of single quantifier: \exists

- ▶ $(\exists x)(\exists y) Axy$: for at least one pair $\langle \alpha, \beta \rangle$, α admires β .
- ▶ In other words: at least one person admires at least one person.
- ▶ Note: includes pairs $\langle \alpha, \alpha \rangle$, i.e.,
- ▶ $(\exists x)(\exists y) \ Axy$ is already true if a single pair $\langle \alpha, \alpha \rangle$ satisfies Axy.
- ▶ That means, we could just have one person admiring themselves.
- ► So: $(\exists x)(\exists y)$ Axy does **not** symbolize "someone admires someone **else**." (again, for that, we'll need the identity predicate)

Alternating quantifiers

- 1. $(\forall x)(\exists y) Axy$ Everyone admires someone (possibly themselves)
- 2. $(\forall y)(\exists x) Axy$ Everyone is admired by someone (not necessarily the same person)
- 3. $(\exists x)(\forall y) Axy$ Someone admires everyone (including themselves)
- 4. $(\exists y)(\forall x) Axy$ Someone is admired by everyone (including themselves)

Convergence vs. uniform convergence

► A function f is point-wise continuous if

$$(\forall \epsilon)(\forall x)(\forall y)(\exists \delta)(|x-y|<\delta\supset |f(x)-f(y)|<\epsilon)$$

► A function f is uniformly continuous if

$$(\forall \epsilon)(\exists \delta)(\forall x)(\forall y)(|x-y|<\delta\supset |f(x)-f(y)|<\epsilon)$$

11. Multiple quantifiers

properties

b. Using quantifiers to express

Our symbolization key

Domain:	people alive in 2022 and items of clothing
a:	Autumn
g:	Greta
Px:	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Lx:	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Ex:	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Rxy:	_x wears _y
Hx:	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Ix:	inspires
Yxy:	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Axy:	admiresy
Oxy:	owns

Expressing properties, revisited

► One-place predicates express properties, e.g.,

Hx expresses property "being a hero"

 Combinations of predicates (with connectives, names) can express derived properties, e.g.,

Axg expresses "x admires Greta"

Hx & Cx expresses "x is a hero who wears a cape"

 Using quantifiers, we can express even more complex properties, e.g.,

 $(\exists y)(Py \& Axy)$ expresses "x admires someone"

Finding, using properties expressed

- ightharpoonup If you can say it for Greta, you can say it for x.
 - Greta admires a hero.

```
(\exists y)(Hy \& Agy)
```

x admires a hero.

$$(\exists y)(Hy \& Axy)$$

- ightharpoonup If you can say it for x, you can say it for Greta.
 - x wears a cape.

$$(\exists y)(Ey \& Rxy)$$

Greta wears a cape.

$$(\exists y)(Ey \& Rgy)$$

Ex: _____x is a cape Rxy: _____x wears _____y

Examples

- \blacktriangleright x wears a cape. $(\exists v)(Ev \& Rxv)$
- \triangleright x is admired by everyone.

```
(\forall y)(Py\supset Ayx)
```

- \triangleright x admires a hero.
 - $(\exists y)(Hy \& Axy)$
- \triangleright x admires only heroes.

$$(\forall y)(Axy\supset Hy)$$

 \triangleright x is unclothed (i.e. naked).

$$\sim (\exists y)(Ly \& Rxy)$$

$$(\forall y)(Ly\supset \sim Rxy)$$

Px ______x is a person Lx ______x is an item of clothing Ex _____x is a cape Rxy _____x wears ____y

11. Multiple quantifiers

c. Multiple determiners

"Determiner phrases" say what?

- ► Determiners: quantifiers and indefinite or definite articles (also possessives and demonstratives)
- ▶ e.g. many, some, a, the, his, their, this, that
- Determiner phrases: combine a determiner with a (possibily modified) noun:
- ► 'all heroes'; 'a cape'
- 'some woman'; 'the donkey'

Symbolizing multiple determiners

- ▶ What if your sentence contains more than one determiner phrase?
- ▶ Deal with each determiner separately!
- ► Think of determiner phrase as replaced with name or variable—result has one less determiner.
- ► When you're down to one determiner, apply known methods for single quantifiers.
- ► This results in formulas that express properties or relations, but themselves contain quantifiers.

Two separate determiner phrases

- ► All heroes wear a cape
- ► All heroes satisfy "x wears a cape"

$$(\forall x)(Hx\supset "x \text{ wears a cape"})$$

► x wears a cape

$$(\exists y)(Ey \& Rxy)$$

► Together:

$$(\forall x)(Hx\supset (\exists y)(Ey \& Rxy))$$

Determiner within determiner phrase

- ► All heroes who wear a cape admire Greta.
- ► All things that satisfy "x is a hero who wears a cape" admire Greta.

$$(\forall x)$$
 ("x is a hero who wears a cape" $\supset Axg$)

► x is a hero who wears a cape

$$Hx \& (\exists y) (Ey \& Rxy)$$

► Together:

$$(\forall x)((Hx \& (\exists y)(Ey \& Rxy)) \supset Axg)$$

Mary Astell, 1666-1731

- ► British political philosopher
- ► Some Reflections upon Marriage (1700)
- ► In preface to 3rd ed. 1706 reacts to William Nicholls' claim (in The Duty of Inferiors towards their Superiors, in Five Practical Discourses (London 1701), Discourse IV: The Duty of Wives to their Husbands), that women are naturally inferior to men.

Astell TL;DR

- What can Nicholls possibly mean by "women are naturally inferior to men"?
- ► It can't be that some woman is inferior to some man, since that's "no great discovery."
- ► After all, surely some men are inferior to some women.
- ► The obviously intended meaning must be: all women are inferior to all men.
- ▶ But that can't be right, for then "the greatest Queen ought not to command but to obey her Footman."
- ► It can't even be just: **all** women are inferior to **some** men.
- Since "had they been pleased to remember their Oaths of Allegiance and Supremacy, they might have known that One Woman is superior to All the Men in these Nations."

11.c.6

Symbolizing Astell

- ► Some woman is superior to every man
- ► Some woman satisfies "x is superior to every man"

$$(\exists x)(Wx \& "x \text{ is superior to every man"})$$

► *x* is superior to every man

$$(\forall y)(My\supset Sxy)$$

► Together:

$$(\exists x)(Wx \& (\forall y)(My \supset Sxy))$$

Formalizing Astell

► Some woman is superior to some man.

$$(\exists x)(Wx \& (\exists y)(My \& Sxy))$$

► Every woman is superior to every man.

$$(\forall x)(Wx\supset (\forall y)(My\supset Sxy))$$

Every woman is superior to some man.

$$(\forall x)(Wx\supset (\exists y)(My \& Sxy))$$

► Some woman is superior to every man.

$$(\exists x)(Wx \& (\forall y)(My \supset Sxy))$$

"Any": sometimes existential

► Any (every) cape is worn by a hero:

$$(\forall x)(Ex\supset (\exists y)(Hy \& Ryx))$$

► No hero wears any cape:

$$(\forall x)(Hx \supset \sim (\exists y)(Ey \& Rxy))$$

$$\sim (\exists x)(Hx \& (\exists y)(Ey \& Rxy))$$

► No hero wears every cape:

$$(\forall x)(Hx \supset \sim(\forall y)(Ey \supset Rxy))$$

$$\sim(\exists x)(Hx \& (\forall y)(Ey \supset Rxy))$$

11. Multiple quantifiers

d. Quantifier scope ambiguity

More scope ambiguity

- ► "Autumn and Greta admire Isra or Luisa."
- ► Two logically distinct, natural readings:
- 1) Autumn admires Isra or Luisa, and so does Greta.

$$(Aai \lor Aal) \& (Agi \lor Agl)$$

2) Autumn and Greta both admire Isra, or they both admire Luisa.

```
(Aai & Agi)∨
(Aal & Agl)
```

Negation and the quantifiers

- ► "All heroes don't inspire"
 - Denial of "all heroes inspire". Ask: "Do all heroes inspire (Answer: No, it's not the case that all heroes inspire")

$$\sim (\forall x)(Hx \supset Ix)$$
$$(\exists x)(Hx \& \sim Ix)$$

All heroes are not inspiring, i.e.,
 No heroes inspire

$$(\forall x)(Hx\supset\sim Ix)$$
$$\sim (\exists x)(Hx \& Ix)$$

Multiple quantifiers and ambiguity

- "All heroes wear a cape"
 - "A cape" in the scope of "all heroes", i.e., "For every hero, there is a cape they wear"

$$(\forall x)(Hx \supset (\exists y)(Ey \& Rxy))$$
$$(\forall x)(\exists y)(Hx \supset (Ey \& Rxy))$$

"All heroes" in scope of "a cape", i.e.,
 "There is a cape which every hero wears"

$$(\exists y)(Ey \& (\forall x)(Hx \supset Rxy))$$
$$(\exists y)(\forall x)(Ey \& (Hx \supset Rxy))$$

► A (probably bad) joke: ""Every day, a tourist is mugged on the streets of New York. He's going through a lot of wallets."

11. Multiple quantifiers

e. Donkey sentences

Happy farmers

"Every farmer who owns a donkey is happy"

- ► Step-by-step symbolization: "All As are Bs"
- \triangleright x is a farmer who owns a donkey ...

$$Fx \& (\exists y)(Dy \& Oxy)$$

Every farmer who owns a donkey is happy

$$(\forall x)((Fx \& (\exists y)(Dy \& Oxy))\supset Hx)$$

Notice how 'a donkey' is bound by an existential here

Unhappy donkeys:(

"Every farmer who owns a donkey beats it"

- ► Step-by-step symbolization: "All As are Bs"
- \triangleright x is a farmer who owns a donkey ...

$$Fx \& (\exists y)(Dy \& Oxy)$$

Every farmer who owns a donkey beats it:

$$(\forall x)((Fx \& (\exists y)(Dy \& Oxy))\supset Bxy)$$

► PROBLEM: 'y' is unbound! So this is not a QL sentence. Gasp!

Save the donkeys: a failed attempt

► This was our problem: a donkey lay beaten and unbound:

$$(\forall x)((Fx \& (\exists y)(Dy \& Oxy))\supset Bxy)$$

► Can we simply extend the scope of the existential?

$$(\forall x)(\exists y)((Fx \& (Dy \& Oxy)) \supset Bxy)$$

- ▶ 'y' is now bound, but alas, this sentence is trivially true:
- Provided at least one thing in our UD is not a donkey, that thing makes the antecedent of the conditional false, making the conditional trivially true, for any x.

In particular, our farmer is not a donkey.

But he still sounds like kind of a jack@\$\$!

Symbolizing donkey sentences

"Every farmer who owns a donkey beats it"

When is it false that every farmer who owns a donkey beats it? If there's a farmer who owns a donkey but doesn't beat it. Deny that!

$$\sim (\exists x)(Fx \& (\exists y)(Dy \& Oxy \& \sim Bxy))$$

► For every farmer and every donkey they own: the farmer beats the donkey.

$$(\forall x)(\forall y)((Fx \& (Dy \& Oxy)) \supset Bxy)$$

Every farmer beats every donkey they own.

$$(\forall x)(Fx\supset (\forall y)((Dy \& Oxy)\supset Bxy))$$

► But what about the case where at least one farmer with a donkey beats only one of his donkeys? #Quitting