Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. S. Karthik, IT Analyst, Tata Consultancy	Dr. Neelanarayanan,, Professor, School of Computer Science and Engineering, VIT	Dr.P.Muthulakshmi
Services	Chennai	Dr.S.P.Angelin Clartet

Course	UMS20G03T	Course	STATISTICAL	METHODS	Cours	e	G	- L-	G	ener	ic Fl	ectiv	e Co	urse				L	1	г	P	C	:
Code	01113200031	Name	STATISTICAL.		Catego	ry	J		1	34				u, 50				3	1	1	0	4	
Pre- requisit Course	te <i>Nil</i>		Co-requisite Courses			100	gres	Λ	lil	1				7									
Course O Departmo		Mathematic	es and Statistics	Data Book / Codes/Standa	rds	Gra	ph si	heet i	neede	d; t,	F an	d x²	table	e is n	eea	led							
Course Le	earning Rational	The purpose of learning this course is to:				Le	earni	ing			_	Prog	gran	n Lea	rnir	ng O	utco	ome	s (P	LO)			
CLR-1:	To provide foun	dations in Bio S	tatistics	7 TEA	RN-1	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	To provide a str presentation.	ong foundation	s of organizi <mark>ng the dat</mark>	a, diagrammatic an	d graphical	La	LL		di.	11	7										2.		
CLR-3:	To apply Statisti	ical techniques j	for biological probl <mark>ems</mark>				5					ch			ability								
CLR-4:	To understand t	he characterist	ics of biological probler	ns.		(Bloom)	(%)	(%)			T L	earc			inal		Work		ce				
CLR-5:	To provide the d	pplication of co	rrelation and regressio	on in <mark>biological scie</mark> i	nces.	(Blo	ncy	ent	dab		me	Res	ge		Sustain				an	D0			
CLR-6:		lyze the sample data in order to estimate or predict characteristics of the large tion from which the sample is drawn.				Thinking	Proficiency	Attainment	Knowle	Analysis	Development	Design, I	ool Usage	Ę	Š		& Team	ation	Ø	earning			
						of Th	0	0	833	•	Ø		-	/8 (nme			unic	t Mgt.		1	_	3
Course Le (CLO):	earning Outcome	At the end o	f this course, learners	will be able to:		Level	Expecte	Expecte	Scientific	Problem	Design	Analysis,	Modern	Society	Environment	Ethics	Individual	Communication	Project	Life Long	PSO - 1	7	PSO -

To understand the statistical modeling and its limitations, and have skill in description, interpretation and exploratory analysis of data by graphical and other means:	3	85	80
To calculate and apply measures of central tendency - grouped and ungrouped data cases.	3	80	75
To understand and apply measures of dispersion - grouped and ungrouped data cases.	3	85	80
Find the relationship between two or more variables using correlation and regression.	3	85	80
Perform Test of Hypothesis for small sample. Learn non-parametric test such as the Chi- Square test for Independence and Goodness of Fit.	3	85	80
Perform the Analysis of Variance - One way Classifications.	3	75	80
	interpretation and exploratory analysis of data by graphical and other means; To calculate and apply measures of central tendency - grouped and ungrouped data cases. To understand and apply measures of dispersion - grouped and ungrouped data cases. Find the relationship between two or more variables using correlation and regression. Perform Test of Hypothesis for small sample. Learn non-parametric test such as the Chi-Square test for Independence and Goodness of Fit.	interpretation and exploratory analysis of data by graphical and other means; To calculate and apply measures of central tendency - grouped and ungrouped data cases. To understand and apply measures of dispersion - grouped and ungrouped data cases. Find the relationship between two or more variables using correlation and regression. Perform Test of Hypothesis for small sample. Learn non-parametric test such as the Chi-Square test for Independence and Goodness of Fit.	interpretation and exploratory analysis of data by graphical and other means; To calculate and apply measures of central tendency - grouped and ungrouped data cases. To understand and apply measures of dispersion - grouped and ungrouped data cases. 3 85 Find the relationship between two or more variables using correlation and regression. Perform Test of Hypothesis for small sample. Learn non-parametric test such as the Chi-Square test for Independence and Goodness of Fit.

L	L	L	М	L	-	-	12	L	М	Н	М	-	-	
М	М	М	М	М	>=/	-	-	М	М	Н	М	-	-	,
Н	Н	М	Н	М	-	-	-	М	М	Н	Н	856	-	
М	Н	М	Н	М	-	-	-	М	М	Н	Н	2	-2	
Н	Н	М	Н	Н	-	-	-	М	м	Н	м	-	-	
Н	Н	М	Н	М	-	-	-	М	М	Н	м	1.70	-	

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
10000	ration our)	12	12	12	12	12
S-1	SLO-1	Nature and scope of statistical methods Definition of statistics Numerical Data	Measures of Central tendency i Definition ii.Functions of average iii.Characteristics of a typical average	Measures of Dispersion,	Correlation Analysis: Correlation - Definition and uses Types of correlation	Testing of Hypotheses -Testing Procedures
	SLO-2	Nature of statistics	Arithmetic mean Individual series	Range –Individual, Discrete series and Continuous series	Methods for Finding Correlation Coefficient, Properties of correlation coefficient	Definition of test statistic t and its uses
	SLO-1	Importance of statistics	Arithmetic mean Discrete series	Quartile Deviation - Individual and Discrete series	Karl Pearson's Correlation Co- efficient	t-test Small Sample tests
S-2	SLO-2	Functions of statistics	Arithmetic mean Continuous series	Quartile Deviation - Individual and Discrete series	Karl Pearson's Correlation Co- efficient	Testing Procedure
S-3	SLO-1	Limitations	Arithmetic mean Continuous series	Quartile Deviation - Continuous series	Spearman's Rank Correlation Coefficient with non-repeated Ranks	t-test - Test for Single Mean

	SLO-2	Distrust of Statistics Arithmetic mean Cumulative series		Quartile Deviation - Continuous series	Spearman's Rank Correlation Coefficient with non-repeated Ranks	t-test - Test for Single Mean	
S 4	SLO-1	Classification i) Meanings ii)Objects iii) Rules of classification Arithmetic mean Meritsand Demerits		Objects Rules of Arithmetic mean Individual Series		t-test -Test for two Sample Means	
	SLO-2	Classification i. Types of classification ii. Characteristics of good classification	Median Individual series	Mean Deviation about Mean – Discrete series	Spearman's Rank Correlation Coefficient with repeated Ranks	t-test -Test for two Sample Means	
S-5	SLO-1	Tabulation: Median		Mean Deviation about Mean – Continuous series	Spearman's Rank Correlation Co-efficient	t-test - t Test Statistic, when sample standard deviations are not known, but Population Standard Deviations are known	
3-3	SLO-2	Types of tables Objective of Tabulation	Median Continuous series	Mean Deviation about Median – Individual series	Problems on finding the best pair of judgements	t-test - t Test Statistic, when sample standard deviations are not known, but Population Standard Deviations are known	
S-6	SLO-1	Components of Good Table Rules of construction of the table. Median Continuous se		Mean Deviation about Median – Discrete series	Bivariate Distribution	Chi-Square distribution - Definition and its Uses	
	SLO-2	-2 Difference between classification and tabulation. Merits and Demerits Median—		Mean Deviation about Median— Continuous series	Bivariate Distribution	Chi-Square test - Testing Procedure	
S -7	SLO-1	Diagrammatic representation Standard Deviation – of various types of statistical Mode Individual and Discre		Individual and Discrete	Regression Analysis: Regression - Definition and Uses	Test based on Goodness of fit	

	SLO-2	Types of Bar diagram	Mode Discrete series	Standard Deviation – Individual and Discrete Series	Regression Coefficients	Test based on Goodness of fit
	SLO-1	One dimensional Diagrams	Mode Continuous Series	Standard Deviation- Continuous Series	Regression Equations	Testing the Independence of Attributes using Chi-Square
S -8	SLO-2	Two dimensional Diagrams	Mode Continuous Series	Standard Deviation- Continuous Series	Types of Regression Equations	Testing the Independence of Attributes using Chi-Square
	SLO-1	Pie chart	Mode Continuous series	Coefficient of Variation	Regression Equation of X on Y and Regression Equation of Y on X	F-test - Test Statistic of F-test
S-9	SLO-2	Histogram	Mode Meritsand Demerits	Coefficient of Variation	Regression Equation of X on Y and Regression Equation of Y on X	Uses and testing Procedures
		Frequency Polygon		Graphical solution of Dispersion Lorenz curve	Regression Equation of X on Y and Regression Equation of Y on X	Testing the equality of variance using F distribution
S-10		Frequency Curve		Graphical solution of Dispersion Lorenz curve	Regression Equation of X on Y and Regression Equation of Y on X	Testing the equality of variance using F distribution
C 11	C0049 ECTO 201909	Less than O gives	Low Comment	Skewness Bowley's coefficient of Skewness	Relationship between Correlation and Regression Coefficients	Analysis of Variance – Definition and Uses
S-11	6455685565	More than O gives	Graphical solution of Median	Skewness Bowley's coefficient of Skewness	Problems on the Relationship between the Coefficients	Analysis of Variance – testing procedure
S-12	SLO-1	Lorenz Curve	Graphical solution of Mode	Concept of Kurtosis	Finding the corrected Correlation Coefficient values by correcting the wrongly entered inputs	ANOVA - One Way Classification

SLO-2	Lorenz Curve	Graphical solution of Mode	Concept of Kurtosis	Finding the corrected Correlation Coefficient values by correcting the wrongly entered inputs	ANOVA - One Way Classification
-------	--------------	----------------------------	---------------------	--	-----------------------------------

	Theory:
	1. Pillai, R.S.N, Bagavathi, V. (2009), Statistics, Theory and Practice, 7 th Edition, S. Chand Ltd, New Delhi.
earning	2. Gupta, S.P. (2012), Statistical Methods, 4 th Edition, Sultan Chand & Sons, New Delhi.
Resources	3. Khan and Khanum, (2008), Fundamentals of Bio Statistics, 3 rd Edition, Ukaaz Publications, Hyderabad.
	4. Ken Black, (2013), Business Statistics for Contemporary Decision Making, 7th Edition, John Wiley Publications

Learning A	ssessment			37.7	0.375 7	45	理图诗	A COLUMN				
Bloom's				Continou	s Learning Asse		Final Examination (50%					
Level	of Thinking	CLA - 1 (10%)		CLA - 1 (10%) CLA - 2 (10%)		CLA - 3 (20%)		CLA - 4# (10%)		weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	200/		30%		30%		30%		30%		
	Understand	30%		30%		30%		30%		30%		
Level 2	Apply	400/		400/		400/		400/	Y 15	409/		
	Analyze	40%		40%		40%		40%		40%		
Level 3	Evaluate	200/		30%	- 17	30%		30%		30%		
	Create	30%		30%	TEAK	30%	ID ro	30%		30%		
	Total	10	0 %	100 %		100 %		10	0 %	100%		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers	
Experts from Academic	Internal Experts
Dr.M.A.Baskar, Professor & Head, Dept. Of Mathematics, Loyola college, Chennai	S. Suruthi, Assistant Professor, Dept. Mathematics and Statistics, FSH,
Dr.P.Dhanavanthan, Professor & Head, Dept. Of statistics, Pondicherry University	SRMIST