МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 8304	Холковский К. В.
Преподаватель	Ефремов М. А.

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\rm pabh}=10$, СКО $s_{\rm pabh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\rm эксп} = s_{\rm эксп} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y >= 0, с параметром c = 8.0 и соответственно $m_{\rm pen} = c * sqrt(\pi/2),$ $s_{\rm pen} = c * sqrt(2 \pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B > n, оценить значения средних времен X_j , $j = n + 1, n + 2 \dots, n + k$ до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20] (см. Таблица 1).

Таблица 1 – Равномерное распределение при n = 30

i	1	2	3	4	5	6	7	8	9	10
X_i	0.725	0.726	1.189	1.217	4.302	4.770	5.696	6.760	6.915	7.163
i	11	12	13	14	15	16	17	18	19	20
X_i	9.379	9.400	9.985	10.882	11.199	11.226	11.351	11.752	12.955	14.029
i	21	22	23	24	25	26	27	28	29	30
X_i	14.514	17.088	17.948	18.388	18.611	19.347	19.424	19.475	19.497	19.663

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.245 > 15.5$$
 условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 2).

Таблица 2 – Значения функций для равномерного распределения при n = 30.

m	31	32	33	34	35	36
f	3.994	3.027	2.558	2.255	2.034	1.863
g	2.789	2.552	2.351	2.180	2.033	1.904
f-g	1.205	0.475	0.207	0.075	0.001	0.041

Минимум разности достигается при m=35. Первоначальное количество ошибок B=m-1=34. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00606$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2\dots, n+k. \text{ Результат представлен в таблице 3}.$

Таблица 3 — Время обнаружения следующих ошибок для равномерного распределения при n=30.

j	31	32	33	34
X_j	41.264	55.019	82.528	165.057

Было рассчитано время до завершения тестирования $t_k = 343.867$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 679.456$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 4).

i	1	2	3	4	5	6	7	8
X_i	1.560	1.713	1.736	2.535	3.062	3.412	3.713	4.423
i	9	10	11	12	13	14	15	16
X_i	4.557	4.825	4.980	5.543	7.397	9.267	10.607	11.045
i	17	18	19	20	21	22	23	24
X_i	13.172	14.349	16.240	16.600	16.957	17.873	19.013	19.455

Таблица 4 – Равномерное распределение, n = 24.

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.128 > 12.5$$
 — условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 5)

Таблица 5 – Расчёт значений функций для равномерного распределения n = 24.

m	25	26	27	28
f	3.775	2.815	2.354	2.058
g	3.048	2.705	2.431	2.207
f-g	0.727	0.110	0.077	0.149

Минимум разности достигается при m=27. Первоначальное количество ошибок B=m-1=26. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01135$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 6}.$

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения при n=24.

j	25	26
X_j	44.020	88.041

Было рассчитано время до завершения тестирования $t_k=132.062$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=346.106$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 7).

Таблица 7 — Равномерное распределение при n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	2.303	3.365	5.212	5.411	5.727	5.827	6.066	9.460	10.190
i	10	11	12	13	14	15	16	17	18
X_i	10.837	10.942	12.391	12.412	15.712	16.309	17.184	17.199	19.876

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.059 > 9.5$$
 условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 8)

Таблица 8 – Значения функций для равномерного распределения при n=18.

m	19	20	21	22	23
f	3.495	2.547	2.097	1.812	1.607
g	2.593	2.266	2.013	1.810	1.645
f-g	0.901	0.280	0.084	0.001	0.037

Минимум разности достигается при m=22. Первоначальное количество ошибок B=m-1=21. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00971$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 9.

Таблица 9 — Время обнаружения следующих ошибок для равномерного распределения при n=18.

j	19	20	21
X_j	34.317	51.476	102.953

Было рассчитано время до завершения тестирования $t_k=188.747$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=375.178$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: $Y = -\ln(t)/b$ (см Таблица 10).

Таблица 10 — Экспоненциальное распределение при n = 30

i	1	2	3	4	5	6	7	8	9	10
X_i	0.405	0.777	1.085	1.590	3.972	5.638	6.408	6.855	9.540	10.775
i	11	12	13	14	15	16	17	18	19	20
X_i	11.358	11.604	12.000	12.101	12.826	12.906	14.081	14.158	15.127	17.361
i	21	22	23	24	25	26	27	28	29	30
X_i	19.286	19.851	21.038	26.208	28.266	28.426	32.520	39.269	41.410	48.858

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 11).

Таблица 11 - 3начения функций для экспоненциального распределения при n = 30.

m	31	32	33	34
f	3.995	3.027	2.558	2.255
g	3.212	2.901	2.645	2.431
f-g	0.782	0.125	0.087	0.175

Минимум разности достигается при m=33. Первоначальное количество ошибок B=m-1=32. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00544$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1, n+2\dots, n+k$. Результат представлен в таблице 12.

Таблица 12 — Временя обнаружения следующих ошибок для экспоненциального распределения при n = 30.

	j	31	32
•	X_j	91.798	183.597

Было рассчитано время до завершения тестирования $t_k = 275.395$ дней.

Было рассчитано общее время тестирования $t_{
m oбщ} = 761.108$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b = 0.1 (см Таблица 13).

i	1	2	3	4	5	6	7	8
X_i	0.228	1.743	2.504	4.567	6.222	7.253	7.756	7.802
i	9	10	11	12	13	14	15	16
X_i	8.286	9.270	10.921	11.242	11.3165	11.952	12.772	12.793
i	17	18	19	20	21	22	23	24
X_i	12.930	13.009	13.292	19.548	20.486	23.111	24.135	36.034

Таблица 13 - Экспоненциальное распределение, <math>n = 24.

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.663 > 12.5$$
 — условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 14).

Таблица 14 – Значения функций для экспоненциального распределения при n = 24.

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.868	2.562	2.315	2.111
f-g	0.907	0.253	0.039	0.053

Минимум разности достигается при m=27. Первоначальное количество ошибок B=m-1=26. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00801$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1, n+2\dots, n+k$. Результат представлен в таблице 15.

Таблица 15 — Время обнаружения следующих ошибок для экспоненциального распределения при ${\rm n}=24$

j	25	26
X_j	62.457	124.914

Было рассчитано время до завершения тестирования $t_k=187.371$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=476.555$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 16).

Таблица 16 - Экспоненциальное распределение при <math>n = 18.

i	1	2	3	4	5	6	7	8	9
X_i	0.221	0.624	1.516	1.816	1.937	3.333	3.391	4.261	4.382
i	10	11	12	13	14	15	16	17	18
X_i	4.900	5.841	6.049	7.118	11.849	14.628	19.829	28.090	41.661

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 14.546 > 9.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 17).

Таблица 17 – Значения функций для экспоненциального распределения при n = 18

m	19	20
f	3.495	2.547
g	3.5485	2.9641
f-g	0.0535	0.4171

Минимум разности достигается при m=19. Первоначальное количество ошибок B=m-1=18. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.02503$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{
m oбщ} = 161.456$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)) (см Таблица 18).

Таблица 18 – Релеевское распределение при $n =$: 30.
---	-------

i	1	2	3	4	5	6	7	8	9	10
X_i	0.877	2.489	3.033	3.673	3.947	4.604	4.913	5.032	5.496	6.210
i	11	12	13	14	15	16	17	18	19	20
X_i	6.283	6.452	6.723	7.110	7.457	7.459	7.779	8.946	8.955	10.177
i	21	22	23	24	25	26	27	28	29	30
X_i	12.285	12.775	12.914	13.292	14.522	16.389	18.267	23.231	23.451	25.350

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.763 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 19).

Таблица 19 - 3начения функций для релеевского распределения при n = 30.

m	31	32	33	34	35
f	3.994	3.027	2.558	2.255	2.035
g	2.930	2.669	2.451	2.266	2.107
/f-g/	1.064	0.357	0.106	0.010	0.072

Минимум разности достигается при m=34. Первоначальное количество ошибок B=m-1=33. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00781$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 20.

Таблица 20 — Время обнаружения следующих ошибок для релеевского распределения при n=30.

j	31	32	33
X_j	42.667	64.001	128.002

Было рассчитано время до завершения тестирования $t_k = 234.670$ дней.

Было рассчитано общее время тестирования $t_{
m oбщ} = 524.776$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c = 8.0 (см Таблица 21).

Таблица 21 — Релеевское распределение при n = 24

i	1	2	3	4	5	6	7	8
X_i	1.754	1.930	2.130	4.046	4.098	4.172	4.959	5.747
i	9	10	11	12	13	14	15	16
X_i	6.016	6.471	7.676	7.703	8.082	8.311	11.313	11.672
i	17	18	19	20	21	22	23	24
X_i	13.061	13.223	13.632	14.591	14.870	18.423	18.466	21.240

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.507 > 12.5$$
 — условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 22).

Таблица 22 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29
f	3.776	2.816	2.354	2.058	1.844
g	2.826	2.528	2.287	2.088	1.921
f-g	0.949	0.287	0.067	0.030	0.077

Минимум разности достигается при m=28. Первоначальное количество ошибок B=m-1=27. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00933$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 23.

Таблица 23 — Время обнаружения следующих ошибок для релеевского распределения при n=24

j	25	26	27
X_j	35.690	53.535	107.07

Было рассчитано время до завершения тестирования $t_k = 196.295$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 419.894$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c = 8.0 (см Таблица 24).

Таблица 24 – Релеевское распределение при n = 18

i	1	2	3	4	5	6	7	8	9
X_i	2.687	4.182	4.514	5.325	5.932	6.880	8.879	10.410	10.559
i	10	11	12	13	14	15	16	17	18
X_i	10.560	11.429	13.249	13.567	13.598	13.888	14.372	16.268	26.663

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.966 > 9.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 25).

Таблица 25 – Значения функций для релеевского распределения при n = 18.

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.559	2.240	1.992	1.793	1.631
f-g	0.935	0.307	0.105	0.018	0.024

Минимум разности достигается при m=22. Первоначальное количество ошибок B=m-1=21. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00929$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j=rac{1}{K(B-j+1)},$ где $j=n+1,n+2\dots,n+k.$ Результат представлен в таблице 26.

Таблица 26 — Время обнаружения следующих ошибок для релеевского распределения при n=18

m	19	20	21
X_j	35.855	53.782	107.565

Было рассчитано время до завершения тестирования $t_k = 197.203$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 390.174$ дней.

4. Результаты расчетов.

В таблицах 27 и 28 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 27 – Оценка первоначального числа ошибок.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	34	32	33		
24	80	26	26	27		
18	60	21	18	21		

Таблица 28 – Оценка полного времени проведения тестирования.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	679.456	761.108	524.776		
24	80	346.106	476.555	419.894		
18	60	375.178	161.456	390.174		

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Релеевское и равномерное распределения показывают примерно одинаковые результаты.

Выводы.

В ходе выполнения работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.