22. Симетрични и ермитови матрици и оператори.

Александър Гуров 19 януари 2023 г.

Определение 22.1

Матрица $A \in M_{n \times n}(\mathbb{R})$ (съответно $A \in M_{n \times n}(\mathbb{C})$) е симетрична (ермитова), ако $\overline{A}^t = A$.

Твърдение 22.2

(і) Множеството

$$M_{n\times n}^{sym}(\mathbb{R}) = A \in M_{n\times n}(\mathbb{R})|\overline{A}^t = A$$

на симетричните матрици и множеството

$$M_{n\times n}^{Herm}(\mathbb{C}) = A \in M_{n\times n}(\mathbb{C})|\overline{A}^t = A$$

на ермитовите матрици са линейни пространства над полето $\mathbb R$ на реалните числа.

- (ii) Ако $A \in M_{n \times n}(\mathbb{R})$ (съответно $A \in M_{n \times n}(\mathbb{C})$) е обратима симетрична (ермитова) матрица, то обратната матрица A^{-1} е симетрична (ермитова).
- (ііі) Ако $A, B \in M_{n \times n}(\mathbb{R})$ (съответно $A, B \in M_{n \times n}(\mathbb{C})$) са симетрични (ермитови) матрици и AB = BA, то AB е симетрична (ермитова) матрица.

<u>Доказателство</u> (i) За произволни матрици $M,N\in M_{m\times n}(\mathbb{C})$ твърдим, че $\overline{(M+N)}=\overline{M}+\overline{N}.$ По-точно,

$$\overline{(M+N)}_{i,j} = \overline{(M+N)_{i,j}} = \overline{M_{i,j} + N_{i,j}} = \overline{M_{i,j}} + \overline{N_{i,j}} = \overline{M_{i,j}} + \overline{M_{i,j}} = \overline{M_{i,j}}$$

за всички $1\leq i\leq m, 1\leq j\leq n$, защото $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ за произволни комплексни числа $z_1,z_2\in\mathbb{C}$. За произволна матрица $M\in M_{m\times n}(\mathbb{C})$ и

произволно комплексно число $z\in\mathbb{C}$ имаме

$$\overline{(zM)}_{i,j} = \overline{(zM)_{i,j}} = \overline{(zM_{i,j})} = \overline{z}\overline{(M)_{i,j}} = \overline{z}\overline{(M)}_{i,j} = (\overline{z}\overline{M})_{i,j}$$

за всички $1\leq i\leq m, 1\leq j\leq n,$ защото $\overline{z_1z_2}=\overline{z_1z_2}$ за произволни комплексни числа $z_1,z_2\in\mathbb{C}.$ Ако $\overline{A}^t=A$ и $\overline{B}^t=B,$ то

$$\overline{(A+B)}^t = \overline{A}^t + \overline{B}^t = A+B,$$

така че A+B е симетрична (ермитова) матрица. За произволно $\lambda \in \mathbb{R}$ е в сила

$$\overline{(\lambda A)}^t = n\overline{\lambda}\overline{A}^t = \lambda A$$

и следователно λA е симетрична (ермитова) матрица и множеството на симетричните (ермитовите) матрици е линейно пространство над \mathbb{R} . Да забележим, че ако $A \in M_{n \times n}^{Herm}(\mathbb{C})$ $\mathbb{O}_{n \times n}$ е ненулева ермитова матрица и $z \in \mathbb{C} \setminus \mathbb{R}$ е комплексно нереално число, то $zA \notin M_{n \times n}^{Herm}(\mathbb{C})$ не е ермитова, защото

$$\overline{(zA)}^t = (\overline{z}\overline{A})^t = \overline{z}\overline{A}^t = \overline{z}A \neq zA$$

По-точно, за $A_{i,j} \neq 0$ имаме $\overline{z}A_{i,j} = \overline{(zA)}_{i,j} \neq (zA)_{i,j} = zA_{i,j}$ съгласно

$$A_{i,j}(z-\overline{z})\neq 0$$

(ii) Чрез комплексно спрягане и транспониране на равенството $AA^{-1}=E_n$ получаваме

$$E_n = \overline{E_n}^t = \overline{(AA^{-1})}^t = (\overline{AA^{-1}})^t = (\overline{A^{-1}})^t \overline{A}^t = (\overline{A^{-1}})^t A$$

съгласно $\overline{XY}=\overline{XY}$ за произволни матрици $X,Y\in M_{n\times n}(\mathbb{C})$. Единственото решение на матричното уравнение $ZA=E_n$ е A^{-1} , откъдето $(\overline{A^{-1}})^t=A^{-1}$ и A^{-1} е симетрична (ермитова) матрица. (iii) съгласно

$$\overline{(AB)}^t = (\overline{AB})^t = \overline{B}^t \overline{A}^t = BA = AB,$$

матрицата AB е симетрична (ермитова).

Определение 22.3

Линеен оператор $\varphi:V\to V$ в еклидово(унитарно) пространство V е симетричен (съответно, ермитов), ако

$$\langle \varphi(u), v \rangle = \langle v, \varphi(u) \rangle$$
, за произвони вектори $u, v \in V$

Твърдение 22.4

Следните условия са еквивалентни за линеен оператор $\varphi: V \to V$ в n-мерно евклидово (унитарно) пространство V :

(i) φ е симетричен (ермитов) оператор; (ii) произволен базис $b_1,...,b_n$ на V изпълнява равенствата

$$\langle \varphi(b_i), b_j \rangle = \langle b_i, \varphi(b_j) \rangle$$
 за всички $1 \leq i, j \leq n$;

(iii) произволен ортонормиран базис $e_1,...,e_n$ на ${\bf V}$ изпълнява равенствата

$$\langle \varphi(e_i), e_j \rangle = \langle e_i, \varphi(e_j) \rangle$$
 за всички $1 \leq i, j \leq n$;

(iv) матрицата A на φ спрямо ортонормиран базис $e_1,...,e_n$ на V е симетрична (ермитова).

Доказателство Ясно е, че $(i) \Rightarrow (ii) \Rightarrow (iii)$. $(iii) \Leftrightarrow (iv)$ Нека $e = (e_1, ..., e_n)$ е ортонормиран базис на V и $A = (A_{ij})_{i,j=1}^n \in M_{n \times n}(\mathbb{R})$ или $A = (A_{ij})_{i,j=1}^n \in M_{n \times n}(\mathbb{C})$ е матрицата на φ спрямо базиса e. Координатите на $\varphi(e_i)$ спрямо базиса e на V са разположени в i-тия стълб на A, така че

$$\langle \varphi(e_i), e_j \rangle = \langle \sum_{s=1}^n A_{si} e_s, e_j \rangle = \sum_{s=1}^n A_{si} \langle e_s, e_j \rangle = A_{ji} \langle e_j, e_j \rangle = A_{ji}$$

Аналогично,

$$\langle e_i, \varphi(e_j) \rangle = \langle e_i, \sum_{s=1}^n A_{sj} e_s \rangle = \sum_{s=1}^n \overline{A_{sj}} \langle e_i, e_s \rangle = \overline{A_{ij}} \langle e_i, e_i \rangle = \overline{A_{ij}}$$

Затова условие (iii) е еквивалентно над

$$A_{ji}=\langle \varphi(e_i),e_j \rangle = \langle e_i, \varphi(e_j) \rangle = \overline{A_{ij}}$$
 за всички $1 \leq i,j \leq n.$

По определение, матрицата A е симетрична (ермитова) ако $\overline{A}^t=A$. Знаейки $(\overline{A}^t)_{ji}=(\overline{A})_{ij}=\overline{A_{ij}}$ за всички $1\leq i,j\leq n$, стигаме до извода, че () е еквивалентно на $A_{j,i}=(\overline{A}^t)_{ji}$ за всички $1\leq i,j\leq n$, което се свежда към $A=\overline{A}^t$, т.е. към условие (iv). За $(iii)\Rightarrow (i)$ да предположим, че $e_1,...,e_n$ е ортонормиран базис на V с $\langle \varphi(e_i),e_j\rangle=\langle e_i,\varphi(e_j)\rangle$ за всички $1\leq i,j\leq n$. Тогава произволни вектори $u=\sum_{i=1}^n x_ie_i$ и $v=\sum_{j=1}^n y_je_j$ от V изпълняват

равенствата

$$\langle \varphi(u), v \rangle = \langle \varphi\left(\sum_{i=1}^{n} x_{i} e_{i}\right), \sum_{j=1}^{n} y_{j} e_{j} \rangle = \langle \sum_{i=1}^{n} x_{i} \varphi(e_{i}), \sum_{j=1}^{n} y_{j} e_{j} \rangle =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \overline{y_{j}} \langle \varphi(e_{i}), e_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \overline{y_{j}} \langle e_{i}, \varphi(e_{j}) \rangle =$$

$$= \langle \sum_{i=1}^{n} x_{i} e_{i}, \sum_{j=1}^{n} y_{j} \varphi(e_{j}) \rangle = \langle \sum_{i=1}^{n} x_{i} e_{i}, \varphi\left(\sum_{j=1}^{n} y_{j} e_{j}\right) \rangle = \langle u, \varphi(v) \rangle$$

така че $\varphi: V \to V$ е симетричен (ермитов) оператор.

Твърдение 22.5

Всички характеристични корени на симетричен (ермитов) оператор $\varphi:V\to V$ в ненулево крайномерно евклидово (унитарно) пространство V са реални числа.

Доказателство Първо ще проверим, че произволна собствена стойност λ на ермитов оператор $\varphi:V\to V$ е реално число. За целта забелзваме, че произволен собствен вектор $v\in V\setminus \vec{\mathcal{O}}_V$, отговарящ на собствена стойност $lambda\in \mathbb{C}$ изпълнява равенствата

$$\overline{\lambda}||v||2 = \langle v, \lambda v \rangle = \langle v, \varphi(v) \rangle = \langle \varphi(v), v \rangle = \langle \lambda v, v \rangle = \lambda ||v||^2.$$

Следователно $(\overline{\lambda} - \lambda)||v||^2 = \overline{\lambda}||v||^2 - \lambda||v||^2 = 0$ с $||v||^2 \in R^{>0}$, откъдето $\overline{\lambda} = \lambda \in \mathbb{R}$ е реално число. Следващата стъпка в доказателството установява, че всички характеристични корени на ермитов оператор $\varphi: V \to V$ в ненулево крайномерно унитарно пространство V са реални числа. По определение, характеристичният полином $f_{\varphi}(x) \in \mathbb{C}[x] \setminus \mathbb{C}$ на φ ще има комплексни коефициенти. Съгласно Основната теорема на алгебрата, всички корени на $f_{\varphi}(x) = 0$ са комплексни числа. Знаем, че всички характеристични корени λ на φ са собствени стойности. По първата стъпка на доказателството получаваме, че $\varphi \in \mathbb{R}$ са реални числа. Всяка ермитова матрица A се реализира като матрица на ермитов оператор спрямо ортонормиран базис. По-точно, ако $e = (e_1, ..., e_n)$ е ортонормиран базис на п-мерно унитарно пространство и $\varphi: V \to V$ е линейният оператор с матрица A спрямо е, то φ е унитарен оператор. Характеристичните корени на φ съвпадат с характеристичните корени на φ съвпадат с характеристичните корени на ермитова матрица φ са реални числа.

корени на ермитова матрица A са реални числа. Всяка симетрична матрица $A\in M^{sym}_{n\times n}(\mathbb{R})\subset M^{Herm}_{n\times n}(\mathbb{C})$ е ермитова. Затова характеристичните корени на матрицата A са реални числа. В резултат, характеристичните корени на симетричен оператор $\varphi:V\to V$ в крайномерно евклидово пространство V са реални числа, защото матрицата на φ спрямо ортонормиран базис е симетрична.

Твърдение 22.6

Нека $\varphi:V\to V$ е симетричен (ермитов) оператор в евклидово (унитарно) пространство V . Тогава:

- (i) собствени вектори u,v, отговарящи на различни собствени стойности λ,μ са ортогонални помежду си;
- (ii) ортогоналното допълнение U^{\perp} на φ -инвариантно подпространство U на V е φ -инвариантно.

В частост, ако $e_1,...,e_k$ е ортонормиран базис на U и $e_{k+1},...,e_n$ е ортонормиран базис на U^\perp , то $e_1,...,e_k,e_{k+1},...,e_n$ е ортонормиран базис на V , в който матрицата на $\lambda:U\oplus U^\perp\to U\oplus U^\perp$ е

$$A = \left(\begin{array}{cc} A_1 & \mathbb{O}_{k \times (n-k)} \\ \mathbb{O}_{(n-k) \times k} & A_2 \end{array}\right)$$

за матрицата A_1 на $\varphi:U\to U$ спрямо базиса $e_1,...,e_k$ на U и матрицата A_2 на $\varphi:U^\perp\to U^\perp$ спрямо базиса $e_{k+1},...,e_n$ на $U^\perp.$

<u>Доказателство</u> (i) От определението за симетричност (ермитовост) на $\varphi: U \to U$, приложено към собствените вектори $u,v \in V \setminus \vec{\mathcal{O}}_V$ получаваме

$$\mu\langle u,v\rangle = i\langle u,v\rangle = \langle u,\mu v\rangle = \langle u,\mu(v)\rangle = \langle \varphi(u),v\rangle = \langle \lambda u,v\rangle = \lambda\langle u,v\rangle,$$

вземайки предвид, че собствените стойности на ермитов оператор са реални числа. Следователно $(\lambda-\mu)\langle u,v\rangle=\lambda\langle u,v\rangle-\mu\langle u,v\rangle=0$ с $\lambda\neq\mu$, така че $\langle u,v\rangle=0$ и векторите u,v са ортогонални помежду си.

(ii) За произволни вектори $u \in U$ и $v \in U^{\perp}$ е в сила

$$\langle u, \varphi(v) \rangle = \langle \varphi(u), v \rangle = 0,$$

съгласно $\varphi(u)\in U$. Следователно $\varphi(v)\in U^\perp$ и U^\perp е φ -инварианатно подпространство на V.

Твърдение 22.7

За произволен симетричен (ермитов) оператор $\varphi: V \to V$ в п-мерно евклидово (унитарно) пространство V съществува ортонормиран базис $e_1,...,e_n$ на V, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix} \in M_{n \times n}(\mathbb{R})$$

на φ е диагонална.

Доказателство С индукция по n=dimV, за n=1 няма какво да се доказва. В общия случай, $\varphi:V\to V$ има собствен вектор $v_1\in V\setminus\{\vec{\mathcal{O}}_V\}$. За ермитов оператор $\varphi:V\to V$ в крайномерно унитарно пространство V това е в сила поради наличието на собствен вектор за произволен линеен оператор в крайномерно пространство над полето С на комплексните числа. За симетричен оператор φ използваме, че всички характеристични корени на φ са реални числа, а оттам и собствени стойности на φ , така че съществува собствен вектор $v_1\in V\setminus\{\vec{\mathcal{O}}_V\}$, отговарящ на собствената стойност $\lambda_1\in\mathbb{R}$. Заменяме v_1 с единичен вектор $e1=\frac{1}{||v1||}v_1\in l(v_1)$ и забелязваме, че $U:=l(e_1)=l(v_1)$ е 1-мерно φ -инвариантно подпространство на V, върху което действието на φ се свежда до умножение със собствената стойност λ_1 , отговаряща на v_1 . Ортогоналното допълнение U^\perp на U е (n-1)-мерно φ -инвариантно подпространство на V . По индукционно предположение съществува ортонормиран базис $e_2,...,e_n$ на U^\perp , в който матрицата

$$D' = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 \\ 0 & \lambda_3 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

на симетричния оператор $\varphi:U^\perp\to U^\perp$ е диагонална. Сега $e_1,e_2,...,e_n$ е ортонормиран базис на $V=U\oplus U^\perp$, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & \mathbb{O}_{1 \times (n-1)} \\ \mathbb{O}_{(n-1) \times 1} & D' \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

на $\varphi:V\longrightarrow U\oplus U^\perp=v$ е диагонална.

Следствие 22.8

За произволна симетрична (ермитова) матрица $A \in M_{n \times n}(\mathbb{R})$ (съответно, $A \in M_{n \times n}(\mathbb{C})$) съществува ортогонална (унитарна) матрица $T \in M_{n \times n}(\mathbb{R})$ (съответно, $T \in M_{n \times n}(\mathbb{C})$), така че

$$D = T^{-1}AT = \overline{T}^t AT = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix} \in M_{n \times n}(\mathbb{R})$$

е диагонална матрица.

<u>Доказателство</u> Фиксираме ортонормиран базис $f = (f_1, ..., f_n)$ в п-мерно евклидово (унитарно) пространство V и разглеждаме линейния оператор

 $\varphi:V o V$ с матрица A спрямо f. Операторът φ е симетричен (ермитов) и съществува ортонормиран базис $e=(e_1,...,e_n)$ на V , в който матрицата D на φ е диагонална. Матрицата на прехода T от ортонормирания базис f на V към ортонормирания базис е на V е ортогонална (унитарна) и $D=T^{-1}AT=\overline{T}^tAT$.