

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 1. (Currently amended) A router, comprising:
2 a content addressable memory which stores Internet Protocol address
3 prefixes in an order independent of lengths of the Internet Protocol address
4 | prefixes, wherein new entries are stored in the content addressable memory in
5 | random order; and
6 an encoder coupled to the content addressable memory which stores a
7 plurality of codes corresponding to the Internet Protocol address prefixes in the
8 content addressable memory, and compares the codes corresponding to matching
9 Internet Protocol address prefixes to find a longest matching Internet Protocol
10 address prefix.

1 2. (Original) The router of claim 1, further comprising:
2 a memory coupled to the encoder, the memory for storing a port number
3 corresponding to each Internet Protocol address prefix in the content addressable
4 memory and other information for routing an incoming Internet Protocol packet.

1 3. (Original) The router for claim 1, wherein the encoder includes circuitry
2 for finding one of the plurality of codes.

1 4. (Original) The router for claim 1, wherein the encoder includes circuitry
2 for deleting one of the plurality of codes.

1 5. (Original) The router of claim 1, wherein each of the plurality of codes
2 indicates a number of relevant bits in the corresponding Internet Protocol address
3 prefix.

1 6. (Original) The router of claim 5, wherein among the codes
2 corresponding to matching Internet Protocol address prefixes, a code indicating a
3 highest number of relevant bits indicates the longest matching Internet Protocol
4 address prefix.

1 7. (Original) The router of claim 5, wherein the code indicates up to 32
2 relevant bits in the corresponding Internet Protocol address prefix.

1 8. (Original) The router of claim 5, wherein the code indicates up to 128
2 relevant bits in the corresponding Internet Protocol address prefix.

1 9. (Currently amended) A method for finding a longest matching prefix for
2 an Internet Protocol address, comprising:

3 storing Internet Protocol address prefixed in a content addressable memory
4 in an order independent of lengths of the Internet Protocol address prefixes,
5 wherein new entries are stored in the content addressable memory in random
6 order; and

7 comparing codes corresponding to matching Internet Protocol address
8 prefixes in an encoder to find a longest matching Internet Protocol address prefix.

1 10. (Original) The method of claim 9, wherein the codes indicate numbers
2 of relevant bits in the corresponding Internet Protocol address prefixes.

1 11. (Original) The method of claim 10, wherein among the codes
2 corresponding to matching Internet Protocol addresses prefixes, the code
3 indicating a highest number of relevant bits indicates the longest matching
4 Internet Protocol address prefix.

1 12-25 (Canceled).

1 26. (Currently amended) A method of operating a router, comprising:
2 receiving Internet Protocol address prefixes, wherein the Internet Protocol
3 address prefixes are stored within a content addressable memory in random order;
4 generating codes corresponding to a number of relevant bits in the Internet
5 Protocol address prefix
6 receiving a packet with a destination Internet Protocol address;
7 comparing the destination Internet Protocol address to the Internet
8 Protocol address prefixes to find the Internet Protocol address prefixes that match
9 the destination Internet Protocol address;
10 comparing the codes corresponding to the matching Internet Protocol
11 address prefixes to find a longest matching Internet Protocol address prefix; and
12 sending the packet to a port corresponding to the longest matching Internet
13 Protocol address prefix.

1 27-30 (Canceled).