Data Analysis for TechPointX Xbot Digital Assistant

Dante Razo 10/20/2018

Abstract

I've been tasked with analyzing app store data to assess its current state and predict the success of TechPointX's upcoming **Xbot** digital assistant. Due to the popularity of the company's OSXtern operating system, expectations are high for the app. I observed trends in the app store to help the team make the launch as impactful as possible. I used *RMarkdown*, *RStudio*, and the *DataExplorer* library for R to create this report.

Importing Data & Packages

First, I imported the data. The .csv has headers and entries are separated by commas, so I used read.csv()'s default settings.

```
require(DataExplorer) # package that provides additional visualization tools for data analysis
## Loading required package: DataExplorer
appStore <- read.csv(file = "AppStoreAssessmentDataScience.csv")
appStore.og <- appStore # store copy of the original before preprocessing</pre>
```

Data Preprocessing

Before any preprocessing is done, we can observe that *appStore* contains 7197 objects of 9-dimensions. There are no missing values, so imputation is not necessary.

```
dim(appStore)
## [1] 7197 9
sum(is.na(appStore)) # no missing values in dataset
## [1] 0
```

The first column of *appStore* is in numerical order, but only the first 18 entries match the column number. It's unknown why numbers are skipped over. This vector has a 99% correlation with column numbers, so I removed it from the dataset. It is stored under a new name in case it can be used later.

```
sum(appStore[1] == seq(1, nrow(appStore))) # checks if entry equals row number; 18 matches
## [1] 18
cor(appStore$X, seq(1, nrow(appStore))) # computes correlation between two vectors
## [1] 0.9936812
appStore.V1 <- appStore[1] # save first column as new variable
appStore <- appStore[, 2:9] # remove first column from dataset</pre>
```

The app_content_rating column contains integers with a "+" character appended to the end. I removed the pluses and converted the resulting strings to integers. This will allow me to take averages and analyze this vector if I need to.

```
appStore$app_content_rating <- as.numeric(gsub("\\+", "", appStore$app_content_rating))</pre>
```

It was at this point that I remembered to check for other types of missing values (such as zeroes where they don't make sense). Using the summary() function revealed that the last column of the dataset (app_total_supported_langs) contained 0's. It doesn't make sense for an app to have 0 supported languages, so these are effectively missing values. Due to the small number of affected entries, I elected to simply remove them.

```
summary(appStore$app_total_supported_langs)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
     0.000
                              5.435
             1.000
                      1.000
                                      8.000
                                             75.000
sum(appStore$app_total_supported_langs == 0)
## [1] 41
appStore$app_total_supported_langs[appStore$app_total_supported_langs == 0] <- NA # replace 0's
appStore <- na.omit(appStore)</pre>
```

Data Analysis

Now that the data has been processed, I can begin to make sense of it. I began by making density plots of every column in the dataset. The *DataExplorer* library makes it easy to view all plots at once.

I immediately noticed that appStore\$id is a a left-skewed bimodal distribution. The ID is simply a number and won't be useful in identifying trends in the App Store, so I moved on to other columns. The majority of apps on the market are less than 1000MB ($10^9 = 1,000,000,000$ bytes). Depending on how OSXtern and other supported platforms defines a gigabyte, you could say that most apps are less than 1GB as well.

DataExplorer's plot_correlation() function produced a nice correlation graph of every feature. I didn't learn anything new from it, but it confirmed that no high-correlation vector pairs remained. The only feature not pictured is app_genre because each entry is a string. It contains nominal data; usually, I'd assign numbers to each value before working with them, but DataExplorer has a visualization solution that negates the need to first quantify the genres.

Surprisingly, app price and size have a somewhat strong correlation with a correlation coefficient (r) of 0.18. $r^2 = 0.0324$, which means that only 3.24% of the variation is explained by r. Another strange observation is that r = 0.14 for app_content_rating and app_size_bytes. Less surprising and somewhat strong correlations include: app_rating_count vs. app_total_supported_langs (0.14) and app_rating vs. app_total_supported_langs (0.17). Finally, games tend to be bigger in size (bytes) and have higher ratings than other apps.

Frequency of App Genres in the App Store

The 'Games' category stands out as an outlier. The number of 'Games' apps (3832) is over 7 times greater than the number of 'Entertainment' apps (534). I created a separate dataset that contains everything but apps labeled 'Games' in case the outlier affects future observations.

```
numGames <- sum(grepl("Games", appStore$app_genre)) # most common genre
numEntertainment <- sum(grepl("Entertainment", appStore$app_genre)) # second most common genre
numGames/numEntertainment # ratio (7x increase)</pre>
```

```
## [1] 7.17603
```

```
appStore.noGames <- appStore # create copy of dataset
appStore.noGames$app_genre[grep1("Games", appStore.noGames$app_genre)] <- NA # replace games with NA
appStore.noGames <- na.omit(appStore) # remove games (now NA)
```

Xbot is an assistant, so it'd best fit in the 'Utilities' category. I compared this category to its nearest competitors below:

```
numPhoto <- sum(grepl("Photo & Video", appStore$app_genre))
numUtil <- sum(grepl("Utilities", appStore$app_genre))
numHealth <- sum(grepl("Health & Fitness", appStore$app_genre))
numUtil # number of utility apps</pre>
```

[1] 248

```
numPhoto - numUtil # distance to upper neighbor

## [1] 100
numUtil - numHealth # distance to lower neighbor
```

[1] 68

Unlike 'Games', 'Utilities' is reasonably close to its neighbors. It's a popular yet less-saturated genre with only 248 apps. **Xbot** has a higher chance of success than any new game that comes to the app store because it has less competition. If advertised properly, it could very easily top the charts.

Next, I focused on the price of the apps in the dataset (appStore\$app_price). Unsurprisingly, the majority (56%) were free. I must admit that I'm unsure what to make of this; the naive answer would be to make **Xbot** a free app too to achieve the same accessibility and popularity as the others. People are more likely to download and try a free app than pay for an app they may not enjoy using.

```
sum(appStore$app_price == 0)/nrow(appStore) # 56% of apps are free

## [1] 0.5627446

appStore.prices <- as.data.frame(table(appStore$app_price)) # store prices in new dataframe
names(appStore.prices)[1] <- "Price" # rename first dataframe vector</pre>
```

plot(appStore.prices) # plot distribution of prices

Conclusion

To make **Xbot** a success, TechPointX needs to list the app as a "Utility" and consider making the app free to incite downloads. App size and rating are positively correlated, but making an app less than 1GB is common and undoutebly expected by consumers. **Xbot** needs to have the lowest app content rating possible to increase the number of potential users. It would be beneficial to hire a localization team to ensure everyone can use the app no matter the locale. The more languages an app supports, the higher the rating according to the dataset.