SECTION C — CHEMISTRY; METALLURGY

C07 ORGANIC CHEMISTRY

Note(s) [2, 4, 5, 2006.01, 2012.01]

- 1. In this class, the following term is used with the meaning indicated:
 - "preparation" covers purification, separation, stabilisation or use of additives, unless a separate place is provided therefor.
- 2. Biocidal, pest repellant, pest attractant or plant growth regulatory activity of compounds or preparations is further classified in subclass A01P.
- 3. In subclasses C07C-C07K, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary, and with the exception referred to below, a compound is classified in the last appropriate place. For example, 2-butyl-pyridine, which contains an acyclic chain and a heterocyclic ring, is classified only as a heterocyclic compound, in subclass C07D. In general, and in the absence of an indication to the contrary, such as mentioned in groups C07C 59/58, C07C 59/70, the terms "acyclic" and "aliphatic" are used to describe compounds in which there is no ring; and, if a ring were present, the compound would be taken by the "last place" rule to a later group for cycloaliphatic or aromatic compounds, if such a group exists. Where a compound or an entire group of compounds exists in tautomeric forms, it is classified as though existing in the form which is classified last in the system, unless the other form is specifically mentioned earlier in the system.
- 4. Chemical compounds and their preparation are classified in the groups for the type of compound prepared. The processes of preparation are also classified in places for the types of reaction employed, if of interest. Examples of such places outside this class are:
 - C12P......Fermentation or enzyme-using processes to synthesise a desired chemical compound or composition or to separate optical isomers from a racemic mixture
 - C25B 3/00.....Electrolytic production of organic compounds
 - C25B 7/00.....Electrophoretic production of compounds
- 5. General processes for the preparation of a class of compounds falling into more than one main group are classified in the groups for the processes employed, when such groups exist. The compounds prepared are also classified in the groups for the types of compound prepared, if of interest.
- 6. In this class, in the absence of an indication to the contrary, the compounds containing carboxyl or thiocarboxyl groups are classified as the relevant carboxylic or thiocarboxylic acids, unless the "last place rule" (see Note (3), above) dictates otherwise; a carboxyl group being a carbon atom having three bonds, and no more than three, to hetero atoms, other than nitrogen atoms of nitro or nitroso groups, with at least one multiple bond to the same hetero atom and a thiocarboxyl group being a carboxyl group having at least one bond to a sulfur atom, e.g. amides or nitriles of carboxylic acids, are classified with the corresponding acids.
- 7. Salts of a compound, unless specifically provided for, are classified as that compound, e.g. aniline hydrochloride is classified as containing carbon, hydrogen and nitrogen only in group C07C 211/46, sodium malonate is classified as malonic acid in C07C 55/08, and a mercaptide is classified as the mercaptan. Metal chelates are dealt with in the same way. Similarly, metal alcoholates and metal phenates are classified in subclass C07C and not in subclass C07F, the alcoholates for instance in groups C07C 31/28-C07C 31/32 and the phenates in group C07C 39/235 or C07C 39/44. Salts, adducts or complexes formed between two or more organic compounds are classified according to all compounds forming the salts, adducts or complexes.

C07B GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR (preparation of carboxylic acid esters by telomerisation C07C 67/47; processes for preparing macromolecular compounds, e.g. telomerisation C08F, C08G)

Note(s) [4, 2006.01]

- 1. In this subclass, a functional group which is already present in some residue being introduced and is not substantially involved in a chemical reaction, is not considered as the functional group which is formed or introduced as a result of the chemical reaction.
- 2. In this subclass, the following term is used with the meaning indicated:
 - "separation" means separation only for the purposes of recovering organic compounds.
- 3. When classifying in this subclass, classification is also made in group B01D 15/08 insofar as subject matter of general interest relating to chromatography is concerned.
- 4. In this subclass, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary, classification is made in the last appropriate place according to the type of reaction employed, noting the bond or the functional group which is formed or introduced as a result of the chemical reaction.

Subclass index

REDUCTION IN GENERAL	31/00
OXIDATION IN GENERAL	
REACTIONS WITHOUT FORMATION OR INTRODUCTION OF FUNCTIONAL GROUPS	
CONTAINING HETERO ATOMS	
Change of bond type between carbon atoms already directly linked	35/00
Formation of new or disconnection of existing carbon-to-carbon bonds	37/00

HETERC Halog Oxyg Nitrog Sulfu Other GRIGNA INTROD PRECED ASYMM RACEMI SEPARA' INTROD GENERA	ONS WITH FORMATION OR INTRODUCTION OF FUNCT ATOMS genation en-containing groups gen-containing groups groups groups UCTION OF PROTECTING OR ACTIVATING GROUPS NO ING GROUPS ETRIC SYNTHESES ESATION, INVERSION ION, PURIFICATION, STABILISATION, USE OF ADDITIVUCTION OF ISOTOPES ICTION OF ORGANIC FREE RADICALS GENERAL METHODS	OT COVERE	
31/00	Reduction in general [4, 2006.01]	43/00	Formation or introduction of functional groups
33/00	Oxidation in general [4, 2006.01]	43/02	containing nitrogen [4, 2006.01]
557 00	Omation in general [1, 200001]		• of nitro or nitroso groups [4, 2006.01]
		43/04	• of amino groups [4, 2006.01]
Reaction	s without formation or introduction of functional	43/06	 of amide groups [4, 2006.01]
	ontaining hetero atoms [4]	43/08	 of cyano groups [4, 2006.01]
		43/10	 of isocyanate groups [4, 2006.01]
35/00	Reactions without formation or introduction of		
	functional groups containing hetero atoms, involving	45/00	Formation or introduction of functional groups
	a change in the type of bonding between two carbon		containing sulfur [4, 2006.01]
	atoms already directly linked [4, 2006.01]	45/02	 of sulfo or sulfonyldioxy groups [4, 2006.01]
35/02	• Reduction [4, 2006.01]	45/04	 of sulfonyl or sulfinyl groups [4, 2006.01]
35/04	• Dehydrogenation [4, 2006.01]	45/06	• of mercapto or sulfide groups [4, 2006.01]
	• •	43/00	of mercapto of surfide groups [4, 2000.01]
35/06	Decomposition, e.g. elimination of halogens, water or	47/00	Formation or introduction of functional groups not
	hydrogen halides [4, 2006.01]	47700	provided for in groups C07B 39/00-
35/08	• Isomerisation [4, 2006.01]		C07B 45/00 [4, 2006.01]
37/00	Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms [4, 2006.01]	49/00 51/00	Grignard reactions [4, 2006.01] Introduction of protecting groups or activating groups, not provided for in groups C07B 31/00-
37/02	• Addition [4, 2006.01]		C07B 49/00 [4, 2006.01]
37/04	• Substitution [4, 2006.01]		
37/06	 Decomposition, e.g. elimination of carbon dioxide [4, 2006.01] 	53/00	Asymmetric syntheses [4, 2006.01]
37/08	• Isomerisation [4, 2006.01]	55/00	Racemisation; Complete or partial
37/10	• Cyclisation [4, 2006.01]		inversion [4, 2006.01]
37/12	• Diels-Alder reactions [4, 2006.01]	57/00	Separation of optically-active organic compounds [4, 2006.01]
	s with formation or introduction of functional groups ag hetero atoms [4]	59/00	Introduction of isotopes of elements into organic compounds [4, 2006.01]
39/00	Halogenation [4, 2006.01]	60/00	Generation of organic free radicals [2011.01]
41/00	Formation or introduction of functional groups containing oxygen [4, 2006.01]	61/00	Other general methods [4, 2006.01]
41/02	 of hydroxy or O-metal groups [4, 2006.01] 		
41/04	 of ether, acetal or ketal groups [4, 2006.01] 	Purificat	ion; Separation; Stabilisation [4]
41/06	• of carbonyl groups [4, 2006.01]		•
41/08	of carboxyl groups or salts, halides or anhydrides	63/00	Purification; Separation specially adapted for the
71/00	thereof [4, 2006.01]		purpose of recovering organic compounds (separation
41/10	 Salts, halides or anhydrides of carboxyl 		of optically-active organic compounds C07B 57/00); Stabilisation ; Use of additives [4, 2006.01]
, , ,	groups [4, 2006.01]		
41/12	• of carboxylic acid ester groups [4, 2006.01]		
41/14	• of peroxy or hydroperoxy groups [4, 2006.01]		

63/02 • by treatment giving rise to a chemical modification [4, 2006.01]

63/04 • Use of additives **[4, 2006.01]**

C07C ACYCLIC OR CARBOCYCLIC COMPOUNDS (macromolecular compounds C08; production of organic compounds by electrolysis or electrophoresis C25B 3/00, C25B 7/00)

Note(s) [3, 5, 7, 2006.01]

- 1. In this subclass, the following terms or expressions are used with the meanings indicated:
 - "bridged" means the presence of at least one fusion other than ortho, peri or spiro;
 - · two rings are "condensed" if they share at least one ring member, i.e. "spiro" and "bridged" are considered as condensed;
 - "condensed ring system" is a ring system in which all rings are condensed among themselves;
 - "number of rings" in a condensed ring system equals the number of scissions necessary to convert the ring system into one acyclic chain;
 - "quinones" are compounds derived from compounds containing a six-membered aromatic ring or a system comprising six-membered aromatic rings (which system may be condensed or not condensed) by replacing two or four CH groups of the six-membered aromatic rings by CH groups, and by removing one or two carbon-to-carbon double bonds, respectively, and rearranging the remaining carbon-to-carbon double bonds to give a ring or ring system with alternating double bonds, including the carbon-to-oxygen bonds; this means that acenaphthenequinone or camphorquinone are not considered as quinones.
- 2. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- 3. Therapeutic activity of compounds is further classified in subclass A61P.

COMPOUNDS CONTAINING CARBON AND HYDROGEN ONLY

- 4. When classifying in this subclass, classification is also made in group B01D 15/08 insofar as subject matter of general interest relating to chromatography is concerned.
- 5. In this subclass, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary, a process is classified in the last appropriate place.
- 6. In this subclass, in the absence of an indication to the contrary, "quaternary ammonium compounds" are classified with the corresponding "non-quaternised nitrogen compounds".
- 7. For the classification of compounds in groups C07C 1/00-C07C 71/00 and C07C 401/00-C07C 409/00:
 - a compound is classified considering the molecule as a whole (rule of the "whole molecule approach");
 - a compound is considered to be saturated if it does not contain carbon atoms bound to each other by multiple bonds;
 - a compound is considered to be unsaturated if it contains carbon atoms bound to each other by multiple bonds, which includes a sixmembered aromatic ring,

unless otherwise specified or implicitly derivable from the subdivision, as in group C07C 69/00, e.g. C07C 69/712.

- 8. For the classification of compounds in groups C07C 201/00-C07C 395/00, i.e. after the functional group has been determined according to the "last place rule", a compound is classified according to the following principles:
 - compounds are classified in accordance with the nature of the carbon atom to which the functional group is attached;
 - a carbon skeleton is a carbon atom, other than a carbon atom of a carboxyl group, or a chain of carbon atoms bound to each other; a carbon skeleton is considered to be terminated by every bond to an element other than carbon or to a carbon atom of a carboxyl group;
 - when the molecule contains several functional groups, only functional groups linked to the same carbon skeleton as the one first determined are considered;
 - a carbon skeleton is considered to be saturated if it does not contain carbon atoms bound to each other by multiple bonds;
 - a carbon skeleton is considered to be unsaturated if it contains carbon atoms bound to each other by multiple bonds, which includes a six-membered aromatic ring.

Subclass index

	WILDOWDS CONTINUING CARDON AND ITT DROGEN ONET	
	PreparationPurification, stabilisation	. 1/00, 2/00, 4/00, 5/00, 6/00
	Purification, separation, stabilisation	7/00
	Compounds	
	aliphatic	
	cycloaliphatic, aromatic	13/00, 15/00
CO	MPOUNDS CONTAINING CARBON AND HALOGENS, WITH OR WITHOUT HYDROGEN	
	Preparation	17/00
	Compounds	
	aliphatic	19/00, 21/00
	cycloaliphatic, aromatic	22/00, 23/00, 25/00
CO	MPOUNDS CONTAINING CARBON AND OXYGEN, WITH OR WITHOUT HYDROGEN OR	
HA	LOGENS	
	Preparation	
	simultaneous production of more than one class of oxygen- containing compounds	27/00
	of alcohols; of phenols	29/00, 37/00
	of ethers or acetals; of oxo compounds	41/00, 45/00
	of quinones	
	of carboxylic acids, their salts or anhydrides	51/00

of esters of carboxylic acids	67/00
of esters of carbonic or haloformic acids	68/00
with OH group(s): aliphatically bound	31/00, 33/00
cycloaliphatically bound	35/00
with OH group(s) aromatically bound	39/00
Ethers, acetals, orthoesters; aldehydes; ketones	43/00, 47/00, 49/00
Quinones	50/00
carboxylic acids	
acyclic	53/00, 55/00, 57/00, 59/00
cyclic	61/00, 62/00, 63/00, 65/00, 66/00
EstersOMPOUNDS CONTAINING CARBON AND NITROGEN, WITH OR WITHOUT HYDROG ALOGENS, OR OXYGEN	· ·
Preparation	
of amines	209/00
of hydroxy amines, aminoethers, or aminoesters	
of aminoaldehydes, aminoketones, aminoquinones	
of aminocarboxylic acids	
of amides of carboxylic acids	
of nitriles of carboxylic acids	
of derivatives of hydrazine	
of compounds containing carbon- to-nitrogen double bonds, e.g. imines, hydrazones, isoc	
of derivatives of carbamic acids	-
of urea or derivatives	
of guanidines or derivatives	277/00
of nitro or nitroso compounds, or esters of nitric or nitrous acids	201/00
having nitrogen bound to carbon or to carbon and hydrogen	
Amines	211/00
Hydroxy amines; Aminoethers; Aminoesters	215/00, 217/00, 219/00
Aminoaldehydes, aminoketones, aminoquinones	
Amino carboxylic acids	229/00
Amides of carboxylic acids	233/00, 235/00, 237/00
Compounds containing one or more carbon-to-nitrogen double bonds, e.g. imines	251/00
Nitriles of carboxylic acids	255/00
Amidines, imino-ethers	257/00
Hydroxamic acids	259/00
Derivatives of cyanic or isocyanic acid	261/00, 265/00
Carbodiimides	267/00
Carbamic acids	271/00
Ureas	275/00
Guanidines	279/00
having nitrogen bound to halogens	239/00
having nitrogen bound to oxygen	
Nitro or nitroso compounds	205/00, 207/00
Nitrites or nitrates	203/00
Hydroxylamines	239/00
Oximes	251/00
having nitrogen bound to another nitrogen	
Hydrazines, hydrazides	243/00
Semicarbazates, semicarbazides	281/00
Azo compounds, diazo compounds	245/00
Hydrazones, hydrazidines	251/00, 257/00
Semicarbazones	
N-nitro or N-nitroso compounds	243/00
containing chains of three nitrogen atoms bound together	
Triazenes	
Azides	247/00

Other compounds containing nitrogen	291/00	
COMPOUNDS CONTAINING CARBON, TOGETHER WITH SULFUR, SELENIUM, OR		
TELLURIUM, WITH OR WITHOUT HYDROGEN, HALOGENS, OXYGEN, OR NITROGEN		
Preparation	202/00	
of derivatives of sulfuric or sulfonic acids		
of mercaptans, thiophenols, sulfides, or polysulfides		
of sulfones or sulfoxides	315/00	
Compounds		
having sulfur bound to oxygen	201/00	205/00
Esters of sulfurous or sulfuric acids		305/00
Sulfonic acids or derivatives		
Sulfenic or sulfinic acids or derivatives		
Sulfones, sulfoxides	317/00	
having sulfur bound to carbon		
Mercaptans, thiophenols, sulfides or polysulfides		323/00
Thioaldehydes, thioketones		
Thiocarboxylic acids or derivatives		
Thiocarbonic acids or derivatives	329/00	
Thiocyanates, isothiocyanates		
Thiocarbamic acids or derivatives	333/00	
Thioureas	335/00	
Thiosemicarbazides or thiosemicarbazones	337/00	
having sulfur bound to nitrogen		
Sulfonamides	311/00	
Sulfenamides, sulfinamides, sulfenylcarbamates or sulfenylureas	313/00	
Amides of sulfuric acids	307/00	
Other compounds containing sulfur	381/00	
Compounds containing selenium	391/00	
Compounds containing tellurium	395/00	
IRRADIATION PRODUCTS OF CHOLESTEROL		
DERIVATIVES OF CYCLOHEXANE OR OF A CYCLOHEXENE HAVING AN UNSATURATED S		
CHAIN WITH AT LEAST FOUR CARBON ATOMSPROSTAGLANDINS OR DERIVATIVES		
PEROXIDES; PEROXYACIDS	405/00	
Preparation	407/00	
Compounds		

Hydrocarbons [3]

1/00	Preparation of hydrocarbons from one or more
	compounds, none of them being a
	hydrocarbon [1, 2006.01]

- from oxides of carbon (preparation of liquid hydrocarbon mixtures of undefined composition C10G 2/00; of synthetic natural gas C10L 3/06) [1, 5, 2006.01]
- 1/04 from carbon monoxide with hydrogen [1, 2006.01]
- 1/06 • in the presence of organic compounds, e.g. hydrocarbons [1, 2006.01]
- 1/08 • Isosyntheses [1, 2006.01]
- 1/10 from carbon monoxide with water vapour [1, 2006.01]
- 1/12 from carbon dioxide with hydrogen [1, 2006.01]
- starting from organic compounds containing only oxygen atoms as hetero atoms [1, 2006.01]
- 1/207 • from carbonyl compounds **[5, 2006.01]**
- 1/213 • by splitting of esters **[5, 2006.01]**
- 1/22 • by reduction **[1, 2006.01]**
- 1/24 • by elimination of water **[1, 2006.01]**
- 1/247 • by splitting of cyclic ethers **[3, 2006.01]**

- 1/26 starting from organic compounds containing only halogen atoms as hetero atoms [1, 2006.01]
- 1/28 • by ring closure [1, 2006.01]
- 1/30 by splitting-off the elements of hydrogen halide from a single molecule **[1, 2006.01]**
- starting from compounds containing hetero atoms other than, or in addition to, oxygen or halogen [3, 2006.01]
- 1/34 reacting phosphines with aldehydes or ketones, e.g. Wittig reaction [3, 2006.01]
- 1/36 by splitting of esters (C07C 1/213, C07C 1/30 take precedence) [3, 5, 2006.01]
- 2/00 Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms [3, 2006.01]
- 2/02 by addition between unsaturated hydrocarbons [3, 2006.01]
- 2/04 • by oligomerisation of well-defined unsaturated hydrocarbons without ring formation [3, 2006.01]
- 2/06 • of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond [3, 2006.01]
- 2/08 • • Catalytic processes **[3, 2006.01]**

6

2/10	• • • • with metal oxides [3, 2006.01]	4/00	Preparation of hydrocarbons from hydrocarbons
2/12	• • • • • with crystalline alumino-silicates, e.g. molecular sieves [3, 2006.01]		containing a larger number of carbon atoms [3, 2006.01]
2/14	• • • • with inorganic acids; with salts or anhydrides of acids [3, 2006.01]	4/02	 by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally
2/16	• • • • • Acids of sulfur; Salts thereof; Sulfur		gaseous hydrocarbon fraction [3, 2006.01]
	oxides [3, 2006.01]	4/04	 Thermal processes [3, 2006.01]
2/18	 • • • • Acids of phosphorus; Salts thereof; 	4/06	 Catalytic processes [3, 2006.01]
	Phosphorus oxides [3, 2006.01]	4/08	• by splitting-off an aliphatic or cycloaliphatic part
2/20	• • • • • • Acids of halogen; Salts	4/10	from the molecule [3, 2006.01]
2/22	thereof [3, 2006.01] • • • • • • Metal halides; Complexes thereof	4/10 4/12	from acyclic hydrocarbons [3, 2006.01]from hydrocarbons containing a six-membered
2122	with organic compounds [3, 2006.01]	4/12	aromatic ring, e.g. propyltoluene to vinyltoluene [3, 2006.01]
2/24	• • • • • with metals [3, 2006.01]	4/14	splitting taking place at an aromatic-aliphatic
2/26	• • • • with hydrides or organic compounds		bond [3, 2006.01]
	(C07C 2/22 takes	4/16	• • • • Thermal processes [3, 2006.01]
	precedence) [3, 2006.01]	4/18	• • • • Catalytic processes [3, 2006.01]
2/28	• • • • • with ion-exchange resins [3, 2006.01]	4/20	• • • Hydrogen being formed <u>in situ</u> , e.g. from
2/30	• • • • • containing a metal-to-carbon bond; Metal hydrides [3, 2006.01]	4/22	steam [3, 2006.01] • by depolymerisation to the original monomer, e.g.
2/32	• • • • • as complexes, e.g. acetyl-		dicyclopentadiene to cyclopentadiene [3, 2006.01]
	acetonates [3, 2006.01]	4/24	 by splitting polyarylsubstituted aliphatic compounds
2/34	• • • • • • Metal-hydrocarbon		at an aliphatic-aliphatic bond, e.g. 1,4-diphenylbutane
	complexes [3, 2006.01]		to styrene [3, 2006.01]
2/36	• • • • as phosphines, arsines, stilbines or	4/26	 by splitting polyaryl compounds at a bond between
0.400	bismuthines [3, 2006.01]		uncondensed six-membered aromatic rings, e.g.
2/38	• • • of dienes or alkynes [3, 2006.01]		biphenyl to benzene [3, 2006.01]
2/40	• • • of conjugated dienes [3, 2006.01]	5/00	Preparation of hydrocarbons from hydrocarbons
2/42	• • homo- or co-oligomerisation with ring formation,		containing the same number of carbon
2/44	not being a Diels-Alder conversion [3, 2006.01]		atoms [1, 2006.01]
2/44	• • • of conjugated dienes only [3, 2006.01]	5/02	 by hydrogenation [1, 2006.01]
2/46	• • • Catalytic processes [3, 2006.01]	5/03	 of non-aromatic carbon-to-carbon double
2/48	• • • of only hydrocarbons containing a carbon-to-		bonds [3, 2006.01]
2/50	carbon triple bond [3, 2006.01]	5/05	 Partial hydrogenation [3, 2006.01]
2/50	• Diels-Alder conversion [3, 2006.01]	5/08	• • of carbon-to-carbon triple bonds [1, 2006.01]
2/52 2/54	• Catalytic processes [3, 2006.01]• by addition of unsaturated hydrocarbons to saturated	5/09	• • to carbon-to-carbon double bonds [3, 2006.01]
2/34	hydrocarbons, or to hydrocarbons containing a six-	5/10	• • of aromatic six-membered rings [1, 2006.01]
	membered aromatic ring with no unsaturation outside	5/11	 Partial hydrogenation [3, 2006.01]
	the aromatic ring [3, 2006.01]	5/13	• • with simultaneous isomerisation [3, 2006.01]
2/56	 Addition to acyclic hydrocarbons [3, 2006.01] 	5/22	• by isomerisation (with simultaneous hydrogenation
2/58	• • • Catalytic processes [3, 2006.01]		C07C 5/13) [1, 2006.01]
2/60	• • • with halides [3, 2006.01]	5/23	• Rearrangement of carbon-to-carbon unsaturated
2/62	• • • • with acids [3, 2006.01]	F /2F	bonds [3, 2006.01]
2/64	 Addition to a carbon atom of a six-membered aromatic ring [3, 2006.01] 	5/25	 • Migration of carbon-to-carbon double bonds [3, 2006.01]
2/66	Catalytic processes [3, 2006.01]	5/27	 Rearrangement of carbon atoms in the
2/68	• • • • with halides [3, 2006.01]		hydrocarbon skeleton [3, 2006.01]
2/70	• • • • with acids [3, 2006.01]	5/29	• • • changing the number of carbon atoms in a ring
2/72	• Addition to a non-aromatic carbon atom of		while maintaining the number of
2112	hydrocarbons containing a six-membered aromatic	E /21	rings [3, 2006.01]
	ring [3, 2006.01]	5/31	• • changing the number of rings [3, 2006.01]
2/74	by addition with simultaneous	5/32	 by dehydrogenation with formation of free hydrogen [2, 2006.01]
	hydrogenation [3, 2006.01]	E/227	Formation of non-aromatic carbon-to-carbon
2/76	• by condensation of hydrocarbons with partial elimination of hydrogen [3, 2006.01]	5/327	double bonds only [3, 2006.01]
2/78	• • Processes with partial combustion [3, 2006.01]	5/333	• • • Catalytic processes [3, 2006.01]
2/80	Processes with the aid of electrical means [3, 2006.01]	5/35	 Formation of carbon-to-carbon triple bonds only [3, 2006.01]
2/82		5/367	• • Formation of an aromatic six-membered ring from
2/84	oxidative coupling [3, 2006.01]catalytic [3, 2006.01]		an existing six-membered ring, e.g.
2/84	by condensation between a hydrocarbon and a non-		dehydrogenation of ethylcyclohexane to
2/00	hydrocarbon [3, 2006.01]	E/373	ethylbenzene [3, 2006.01]
2/88	• • Growth and elimination reactions [3, 2006.01]	5/373	• • with simultaneous isomerisation [3, 2006.01]
55			

- 5/387 • of cyclic compounds containing no sixmembered ring to compounds containing a sixmembered aromatic ring [3, 2006.01]
- 5/393 • with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene [3, 2006.01]
- 5/41 • • Catalytic processes **[3, 2006.01]**
- by dehydrogenation with a hydrogen acceptor [2, 2006.01]

Note(s) [3]

- 1. In this group:
 - the catalyst is considered as forming part of the acceptor system in case of simultaneous catalyst reduction;
 - compounds added for binding the reduced acceptor system are not considered as belonging to the acceptor system.
- The acceptor system is classified according to the supplying substances in case of <u>in situ</u> formation of the acceptor system or of <u>in situ</u> regeneration of the reduced acceptor system.
- • with a halogen or a halogen-containing compound as an acceptor [2, 2006.01]
- • with sulfur or a sulfur-containing compound as an acceptor [2, 2006.01]
- 5/48 • with oxygen as an acceptor **[2, 2006.01]**
- 5/50 • with an organic compound as an acceptor [2, 2006.01]
- 5/52 • with a hydrocarbon as an acceptor, e.g. hydrocarbon disproportionation, i.e. $2 C_n H_p \rightarrow C_n H_{p+q} + C_n H_{p-q}$ [2, 2006.01]
- with an acceptor system containing at least two compounds provided for in more than one of groups C07C 5/44-C07C 5/50 [3, 2006.01]
- 5/56 • containing only oxygen and either halogens or halogen-containing compounds [3, 2006.01]

6/00 Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions [3, 2006.01]

- Metathesis reactions at an unsaturated carbon-tocarbon bond [3, 2006.01]
- 6/04 • at a carbon-to-carbon double bond **[3, 2006.01]**
- 6/06 • at a cyclic carbon-to-carbon double bond [3, 2006.01]
- 6/08 by conversion at a saturated carbon-to-carbon bond [3, 2006.01]
- 6/10 in hydrocarbons containing no six-membered aromatic rings [3, 2006.01]
- 6/12 of exclusively hydrocarbons containing a sixmembered aromatic ring [3, 2006.01]

7/00 Purification, separation or stabilisation of hydrocarbons; Use of additives [1, 5, 2006.01]

- 7/04 by distillation [1, 3, 2006.01]
- 7/05 with the aid of auxiliary compounds [3, 2006.01]
- 7/06 • by azeotropic distillation **[1, 2006.01]**
- 7/08 • by extractive distillation **[1, 2006.01]**
- 7/09 by fractional condensation **[3, 2006.01]**
- 7/10 by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids [1, 3, 2006.01]
- by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids [3, 2006.01]
- by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ionexchangers [1, 3, 2006.01]

- 7/13 • by molecular-sieve technique **[2, 3, 2006.01]**
- 7/135 by gas-chromatography [3, 2006.01]
- 7/14 by crystallisation; Purification or separation of the crystals [1, 3, 2006.01]
- 7/144 using membranes, e.g. selective permeation [3, 2006.01]
- 7/148 by treatment giving rise to a chemical modification of at least one compound [3, 2006.01]
- 7/152 • by forming adducts or complexes **[3, 2006.01]**
- 7/156 • with solutions of copper salts **[3, 2006.01]**
- 7/163 • by hydrogenation [3, 2006.01]
- 7/167 • for removal of compounds containing a triple carbon-to-carbon bond [3, 2006.01]
- 7/17 with acids or sulfur oxides **[3, 2006.01]**
- 7/171 • Sulfuric acid or oleum **[7, 2006.01]**
- 7/173 • with the aid of organo-metallic compounds [3, 2006.01]
- 7/177 • by selective oligomerisation or selective polymerisation of at least one compound of the mixture [3, 2006.01]
- 7/20 Use of additives, e.g. for stabilisation [3, 2006.01]

9/00 Acyclic saturated hydrocarbons [1, 2006.01]

- 9/02 with one to four carbon atoms [1, 5, 2006.01]
- 9/04 • Methane (production by treatment of sewage C02F 11/04) **[1, 5, 2006.01]**
- 9/06 • Ethane [1, 2006.01]
- 9/08 • Propane [1, 2006.01]
- 9/10 • with four carbon atoms **[1, 5, 2006.01]**
- 9/12 • Iso-butane [1, 2006.01]
- 9/14 with five to fifteen carbon atoms **[1, 2006.01]**
- 9/15 • Straight-chain hydrocarbons [3, 2006.01]
- 9/16 Branched-chain hydrocarbons **[1, 2006.01]**
- 9/18 • with five carbon atoms **[1, 5, 2006.01]**
- 9/21 • 2,2,4-Trimethylpentane **[3, 2006.01]**
- 9/22 with more than fifteen carbon atoms [1, 2006.01]

11/00 Acyclic unsaturated hydrocarbons [1, 2006.01]

- 11/02 Alkenes **[1, 2006.01]**
- 11/04 Ethene [1, 2006.01]
- 11/06 • Propene [1, 2006.01]
- 11/08 • with four carbon atoms [1, 5, 2006.01]
- 11/09 • Isobutene [3, 2006.01]
- 11/10 • with five carbon atoms **[1, 5, 2006.01]**
- 11/107 • with six carbon atoms **[5, 2006.01]**
- 11/113 • Methylpentenes [3, 2006.01]
- 11/12 Alkadienes [1, 2006.01]
- 11/14 • Allene [1, 2006.01]
- 11/16 • with four carbon atoms **[1, 2006.01]**
- 11/167 • 1,3-Butadiene [3, 2006.01]
- 11/173 • with five carbon atoms **[3, 2006.01]**
- 11/18 • Isoprene [1, 3, 2006.01]
- 11/20 • 1,3-Pentadiene **[1, 3, 2006.01]**
- Alkatrienes; Alkatetraenes; Other alkapolyenes [2, 3, 2006.01]
- containing carbon-to-carbon triple bonds [1, 2006.01]
- 11/24 • Acetylene (production of acetylene gas by wet methods C10H) [1, 5, 2006.01]
- containing carbon-to-carbon double bonds and carbon-to-carbon triple bonds [1, 2006.01]
- 11/30 • Butenyne [1, 2006.01]
- 13/00 Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings [1, 2006.01]

13/02			
	 Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof [1, 2006.01] 	13/547	• • • at least one ring not being six-membered, the other rings being at the most six-
17/04			membered [3, 2006.01]
13/04	• • with a three-membered ring [1, 2006.01]	12/552	
13/06	 with a four-membered ring [1, 2006.01] 	13/553	• • • • Indacenes; Completely or partially
13/08	 with a five-membered ring [1, 2006.01] 	10/505	hydrogenated indacenes [3, 2006.01]
13/10	• • • with a cyclopentane ring [1, 2006.01]	13/567	• • • • Fluorenes; Completely or partially
13/11	 • • substituted by unsaturated hydrocarbon 		hydrogenated fluorenes [3, 2006.01]
	groups [2, 2006.01]	13/573	• • • with three six-membered rings [3, 2006.01]
13/12	• • • with a cyclopentene ring [1, 2006.01]	13/58	 • • • • Completely or partially hydrogenated
13/15	• • • with a cyclopentadiene ring [3, 2006.01]		anthracenes [1, 3, 2006.01]
13/16	• • with a six-membered ring [1, 2006.01]	13/60	 • • • • Completely or partially hydrogenated
13/18	• • with a cyclohexane ring [1, 2006.01]		phenanthrenes [1, 3, 2006.01]
13/19	• • • substituted by unsaturated hydrocarbon	13/605	• • • with a bridged ring system [3, 2006.01]
15/15	groups [2, 2006.01]	13/61	• • • • Bridged indenes, e.g.
13/20	• • • with a cyclohexene ring [1, 2006.01]		dicyclopentadiene [3, 2006.01]
		13/615	• • • • • Adamantanes [3, 2006.01]
13/21	• • • Menthadienes [2, 2006.01]	13/62	 • with more than three condensed
13/23	• • with a cyclohexadiene ring [3, 2006.01]		rings [1, 2006.01]
13/24	• • with a seven-membered ring [1, 2006.01]	13/64	• • • • with a bridged ring system [3, 2006.01]
13/26	• • with an eight-membered ring [1, 2006.01]	13/66	• • • the condensed ring system contains only
13/263	• • with a cyclo-octene or cyclo-octadiene		four rings [3, 2006.01]
	ring [3, 2006.01]	13/68	• • • • • with a bridged ring system [3, 2006.01]
13/267	• • with a cyclo-octatriene or cyclo-octatetraene	13/70	 • with a condensed ring system consisting of at
	ring [3, 2006.01]		least two mutually uncondensed aromatic ring
13/271	• with a nine- to eleven-membered ring [3, 2006.01]		systems, linked by an annular structure formed
13/273	• • with a twelve-membered ring [3, 2006.01]		by carbon chains on non-adjacent positions of
13/275	• • • the twelve-membered ring being		the aromatic ring, e.g. cyclophanes [3, 2006.01]
40.40==	unsaturated [3, 2006.01]	13/72	• • • Spiro hydrocarbons [3, 2006.01]
13/277	• • • with a cyclododecatriene ring [3, 2006.01]	15/00	
13/28	Polycyclic hydrocarbons or acyclic hydrocarbon	15/00	Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic part [1, 2, 2006.01]
	derivatives thereof [1, 2006.01]	15/02	 Monocyclic hydrocarbons [1, 2006.01]
	<u>Note(s) [3]</u>		
	Ring systems consisting only of condensed six-	15/04	• • Benzene [1, 2006.01]
	membered rings with maximum number of non-	15/06	• • Toluene [1, 2006.01]
	cumulative double bonds are classified in group	15/067	• • C ₈ H ₁₀ hydrocarbons [3, 2006.01]
	C07C 15/00.	15/073	• • • Ethylbenzene [3, 2006.01]
13/32	• • with condensed rings [1, 2006.01]	15/08	• • • Xylenes [1, 3, 2006.01]
13/34	• • with a bicyclo ring system containing four	15/085	• • Isopropylbenzene [3, 2006.01]
	carbon atoms [1, 2006.01]	15/107	having a saturated side-chain containing at least
13/36	• • with a bicyclo ring system containing five		six carbon atoms, e.g. detergent alkylates [3, 2006.01]
	carbon atoms [1, 2006.01]	15/110	
13/38	 • with a bicyclo ring system containing six 	15/113	• • having at least two saturated side-chains, each
	carbon atoms [1, 2006.01]		
13/39	• • with a bicyclo ring system containing seven		containing at least six carbon
		15/10	atoms [3, 2006.01]
2.30	carbon atoms [3, 2006.01]	15/12	atoms [3, 2006.01] • Polycyclic non-condensed hydrocarbons [1, 2006.01]
13/40		15/12 15/14	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly
	carbon atoms [3, 2006.01]	15/14	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01]
	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring		 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by
13/40	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01]	15/14 15/16	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01]
13/40	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring	15/14	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01]	15/14 15/16	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01]
13/40 13/42	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic	15/14 15/16	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01]	15/14 15/16 15/18	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine	15/14 15/16 15/18 15/20	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01]	15/14 15/16 15/18 15/20 15/24	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula □ C-C- [1, 2006.01] Polycyclic condensed hydrocarbons [1, 2006.01] containing two rings [1, 2006.01] containing three rings [3, 2006.01] Anthracenes [1, 3, 2006.01]
13/40 13/42 13/43 13/44 13/45 13/465	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30	atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • with a bicyclo ring system containing ten	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45 13/465 13/47	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • with a bicyclo ring system containing ten carbon atoms [3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30	atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula □-C-C-[1, 2006.01] Polycyclic condensed hydrocarbons [1, 2006.01] containing two rings [1, 2006.01] containing three rings [3, 2006.01] Anthracenes [1, 3, 2006.01] Phenanthrenes [1, 3, 2006.01] containing four rings [3, 2006.01]
13/40 13/42 13/43 13/44 13/45 13/465	carbon atoms [3, 2006.01] • • • with a bicycloheptane ring structure [1, 3, 2006.01] • • • with a bicycloheptene ring structure [1, 3, 2006.01] • • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • with a bicyclo ring system containing ten carbon atoms [3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45 13/465 13/47 13/48	carbon atoms [3, 2006.01] • • with a bicycloheptane ring structure [1, 3, 2006.01] • • with a bicycloheptene ring structure [1, 3, 2006.01] • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • with a bicyclo ring system containing ten carbon atoms [3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38 15/40	atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45 13/465 13/47 13/48 13/50	carbon atoms [3, 2006.01] • • with a bicycloheptane ring structure [1, 3, 2006.01] • • with a bicycloheptene ring structure [1, 3, 2006.01] • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • Tindenes; Completely or partially hydrogenated indenes [3, 2006.01] • • Ompletely or partially hydrogenated naphthalenes [1, 3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38 15/40	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45 13/465 13/47 13/48	carbon atoms [3, 2006.01] • • with a bicycloheptane ring structure [1, 3, 2006.01] • • with a bicycloheptene ring structure [1, 3, 2006.01] • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • Ompletely or partially hydrogenated naphthalenes [1, 3, 2006.01] • • Decahydronaphthalenes [1, 3, 2006.01] • Azulenes; Completely or partially	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38 15/40	atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45 13/465 13/47 13/48 13/50 13/52	carbon atoms [3, 2006.01] • • with a bicycloheptane ring structure [1, 3, 2006.01] • • with a bicycloheptene ring structure [1, 3, 2006.01] • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • Ocompletely or partially hydrogenated naphthalenes [1, 3, 2006.01] • • Decahydronaphthalenes [1, 3, 2006.01] • Azulenes; Completely or partially hydrogenated azulenes [1, 3, 2006.01]	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38 15/40 15/42 15/44	 atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula
13/40 13/42 13/43 13/44 13/45 13/465 13/47 13/48 13/50	carbon atoms [3, 2006.01] • • with a bicycloheptane ring structure [1, 3, 2006.01] • • with a bicycloheptene ring structure [1, 3, 2006.01] • • substituted by unsaturated acyclic hydrocarbon groups [3, 2006.01] • with a bicyclo ring system containing eight carbon atoms [1, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • with a bicyclo ring system containing nine carbon atoms [3, 2006.01] • • Indenes; Completely or partially hydrogenated indenes [3, 2006.01] • • Ompletely or partially hydrogenated naphthalenes [1, 3, 2006.01] • • Decahydronaphthalenes [1, 3, 2006.01] • Azulenes; Completely or partially	15/14 15/16 15/18 15/20 15/24 15/27 15/28 15/30 15/38 15/40 15/42 15/44	atoms [3, 2006.01] Polycyclic non-condensed hydrocarbons [1, 2006.01] all phenyl groups being directly linked [1, 3, 2006.01] containing at least two phenyl groups linked by one single acyclic carbon atom [1, 2006.01] containing at least one group with formula

15/48	• • • the hydrocarbon substituent containing a	17/32	• • by introduction of halogenated alkyl groups into
15/50	carbon-to-carbon triple bond [3, 2006.01] • polycyclic non-condensed [3, 2006.01]	17/35	ring compounds [1, 2006.01] • by reactions not affecting the number of carbon or
15/52	containing a group with formula \(\sigma\)-C=C-\(\sigma\)		halogen atoms in the molecules [6, 2006.01]
15/52	[3. 2006.01]	17/354	• • by hydrogenation [6, 2006.01]
	[5, 2 000.01]	17/357	 by dehydrogenation [6, 2006.01]
15/54	[3, 2006.01] • • • containing a group with formula □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	17/358	• • by isomerisation [6, 2006.01]
15/56	[3, 2006.01] • polycyclic condensed [3, 2006.01]	17/361	 by reactions involving a decrease in the number of carbon atoms [6, 2006.01]
15/58	• • containing two rings [3, 2006.01]	17/363	 by elimination of carboxyl groups [6, 2006.01]
15/60	• • • containing three rings [3, 2006.01]	17/367	 by eminiation of Carboxyl groups [6, 2006.01] by depolymerisation [6, 2006.01]
15/62	• • • containing four rings [3, 2006.01]	17/37	by disproportionation of halogenated
			hydrocarbons [6, 2006.01]
Compour	nds containing carbon and halogens with or without	17/38	 Separation; Purification; Stabilisation; Use of additives [1, 2006.01]
<u>hydrogen</u>		17/383	• by distillation [6, 2006.01]
		17/386	• • • with auxiliary compounds [6, 2006.01]
17/00	Preparation of halogenated	17/389	 by adsorption on solids [6, 2006.01]
45/005	hydrocarbons [1, 2006.01]	17/392	 by crystallisation; Purification or separation of the
17/007	• from carbon or carbides and halogens [6, 2006.01]	177002	crystals [6, 2006.01]
17/013	• by addition of halogens [6, 2006.01]	17/395	by treatment giving rise to a chemical
17/02	• • to unsaturated hydrocarbons [1, 6, 2006.01]		modification of at least one
17/04	• to unsaturated halogenated hydrocarbons [1, 6, 2006.01]		compound [6, 2006.01]
17/06		17/42	 Use of additives, e.g. for
17/06	 combined with replacement of hydrogen atoms by halogens [1, 2006.01] 		stabilisation [1, 3, 6, 2006.01]
17/07	 by addition of hydrogen halides [6, 2006.01] 	10/00	Acyclic caturated compounds containing halogen
17/08	• to unsaturated hydrocarbons [1, 6, 2006.01]	19/00	Acyclic saturated compounds containing halogen atoms [1, 5, 2006.01]
17/087	to unsaturated halogenated	19/01	• containing chlorine [6, 2006.01]
177007	hydrocarbons [6, 2006.01]	19/03	• Chloromethanes [6, 2006.01]
17/093	• by replacement by halogens [6, 2006.01]	19/04	• • Chloroform [1, 6, 2006.01]
17/10	of hydrogen atoms (combined with addition of	19/041	• • Carbon tetrachloride [6, 2006.01]
	halogens to unsaturated hydrocarbons	19/043	• Chloroethanes [6, 2006.01]
	C07C 17/06) [1, 6, 2006.01]	19/045	 Dichloroethanes [3, 6, 2006.01]
17/12	• • in the ring of aromatic	19/05	• • Trichloroethanes [3, 6, 2006.01]
	compounds [1, 6, 2006.01]	19/055	• • Tetrachloroethanes [3, 6, 2006.01]
17/14	• • • in the side-chain of aromatic	19/07	• containing iodine [2, 2006.01]
45.45	compounds [1, 6, 2006.01]	19/075	• containing bromine [6, 2006.01]
17/15	• • with oxygen as auxiliary reagent, e.g.	19/08	• containing fluorine [1, 2006.01]
17/152	oxychlorination [2, 6, 2006.01] • • of hydrocarbons [3, 6, 2006.01]	19/10	• • and chlorine [6, 2006.01]
17/154	• • • of saturated hydrocarbons [3, 6, 2006.01]	19/12	• • • having two carbon atoms [6, 2006.01]
17/154	• • • of unsaturated hydrocarbons [3, 6, 2006.01]	19/14	• • and bromine [6, 2006.01]
17/158	• • • of halogenated hydrocarbons [3, 6, 2006.01]	19/16	• • and iodine [6, 2006.01]
17/16	• • of hydroxyl groups [1, 3, 6, 2006.01]		
17/18	 of nydroxyr groups (1, 3, 4, 2003) of oxygen atoms of carbonyl 	21/00	Acyclic unsaturated compounds containing halogen
17710	groups [1, 6, 2006.01]	24 /02	atoms [1, 5, 2006.01]
17/20	 of halogen atoms by other halogen 	21/02	 containing carbon-to-carbon double bonds [1, 2006.01]
18/01	atoms [1, 6, 2006.01]	21/04	• • Chloro-alkenes [1, 2006.01]
17/21	• • • with simultaneous increase of the number of	21/06	• • • Vinyl chloride [1, 2006.01]
17/23	halogen atoms [6, 2006.01] • by dehalogenation [6, 2006.01]	21/067	• • • Allyl chloride; Methallyl chloride [3, 2006.01]
17/25	 by deflatogenation [6, 2000.01] by splitting-off hydrogen halides from halogenated 	21/073	• • • Dichloro-alkenes [3, 2006.01]
1//23	hydrocarbons [6, 2006.01]	21/08	• • • Vinylidene chloride [1, 3, 2006.01]
17/26	 by reactions involving an increase in the number of 	21/09	• • • Dichloro-butenes [3, 2006.01]
17720	carbon atoms in the skeleton [1, 2006.01]	21/10	• • • Trichloro-ethylene [1, 2006.01]
17/263	• • by condensation reactions [6, 2006.01]	21/12	• • • Tetrachloro-ethylene [1, 2006.01]
17/266	• • of hydrocarbons and halogenated	21/14	• • containing bromine [1, 2006.01]
. = = =	hydrocarbons [6, 2006.01]	21/16	• • Crotyl bromide [1, 2006.01]
17/269	• • • of only halogenated hydrocarbons [6, 2006.01]	21/17	• • containing iodine [5, 2006.01]
17/272	• • by addition reactions [6, 2006.01]	21/18	• • containing fluorine [1, 2006.01]
17/275	of hydrocarbons and halogenated	21/185	• • • Tetrafluoroethene [5, 2006.01]
	hydrocarbons [6, 2006.01]	21/19	• • Halogenated dienes [3, 2006.01]
17/278	• • of only halogenated hydrocarbons [6, 2006.01]	21/20	• • • Halogenated butadienes [1, 3, 2006.01]
17/281	• • • of only one compound [6, 2006.01]	21/21	• • • Chloroprene [3, 2006.01]
17/30	 by a Diels-Alder synthesis [1, 2006.01] 		

17/30 • • by a Diels-Alder synthesis **[1, 2006.01]**

21/215	 Halogenated polyenes with more than two carbon- to-carbon double bonds [3, 2006.01] 	25/24	• Halogenated aromatic hydrocarbons with unsaturated side chains [1, 2006.01]
21/22	• containing carbon-to-carbon triple bonds [1, 2006.01]	25/28	• • Halogenated styrenes [1, 3, 2006.01]
22/00	Cyclic compounds containing halogen atoms bound to an acyclic carbon atom [5, 2006.01]	Compour	nds containing carbon and oxygen, with or without
22/02	 having unsaturation in the rings [5, 2006.01] 	<u>hydrogen</u>	or halogens [2]
22/04	containing six-membered aromatic		
	rings [5, 2006.01]	27/00	Processes involving the simultaneous production of
22/06	• • Trichloromethylbenzene [5, 2006.01]		more than one class of oxygen-containing
22/08	• • containing fluorine [5, 2006.01]		compounds [1, 2006.01]
		27/02	• Saponification of organic acid esters [1, 2006.01]
23/00	Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic	27/04	• by reduction of oxygen-containing compounds (C07C 29/14 takes precedence) [1, 2006.01]
	ring [1, 2006.01]	27/06	• • by hydrogenation of oxides of carbon [1, 2006.01]
23/02	 Monocyclic halogenated hydrocarbons [1, 2006.01] 	27/08	• • • with moving catalysts [1, 2006.01]
23/04	 with a three-membered ring [1, 2006.01] 	27/10	 by oxidation of hydrocarbons [1, 2006.01]
23/06	• • with a four-membered ring [1, 2006.01]	27/12	 with oxygen [1, 2006.01]
23/08	• • with a five-membered ring [1, 2006.01]	27/14	 • • wholly gaseous reactions [1, 2006.01]
23/10	• • with a six-membered ring [1, 2006.01]	27/16	 with other oxidising agents [1, 2006.01]
23/12	• • • Hexachlorocyclohexanes [1, 2006.01]	27/18	 by addition of alkynes to aldehydes, ketones, or
23/14	• • with a seven-membered ring [1, 2006.01]		alkylene oxides [1, 2006.01]
23/16	• • with an eight-membered ring [1, 2006.01]	27/20	 by oxo-reaction [1, 2006.01]
23/18	• Polycyclic halogenated hydrocarbons [1, 2006.01]	27/22	• • with the use of catalysts which are specific for this
23/20	 with condensed rings none of which is 		process [1, 2006.01]
23/20	aromatic [1, 2006.01]	27/24	• • with moving catalysts [1, 2006.01]
23/22	• with a bicyclo ring system containing four	27/26	• Purification; Separation; Stabilisation [1, 2006.01]
23/22	carbon atoms [1, 2006.01]	27/28	• • by distillation [1, 2006.01]
23/24	• with a bicyclo ring system containing five	27/30	• • • by azeotropic distillation [1, 2006.01]
23/24	carbon atoms [1, 2006.01]	27/32	• • • by extractive distillation [1, 2006.01]
23/26	• • • with a bicyclo ring system containing six carbon atoms [1, 2006.01]	27/34	• • by extraction [1, 2006.01]
23/27		29/00	Preparation of compounds having hydroxy or O-
23/2/	 • with a bicyclo ring system containing seven carbon atoms [5, 2006.01] 	23/00	metal groups bound to a carbon atom not belonging
22/20			to a six-membered aromatic ring [1, 2006.01]
23/28	• • • Saturated bicyclo ring system [1, 5, 2006.01]	29/03	 by addition of hydroxy groups to unsaturated carbon-
23/30	• • • Mono-unsaturated bicyclo ring	257 05	to-carbon bonds, e.g. with the aid of
22/22	system [1, 5, 2006.01]		H ₂ O ₂ [3, 2006.01]
23/32	• • with a bicyclo ring system containing eight	29/04	by hydration of carbon-to-carbon double
22/24	carbon atoms [1, 2006.01]		bonds [1, 2006.01]
23/34	 • Halogenated completely or partially hydrogenated indenes [1, 2006.01] 	29/05	• • with formation of absorption products in
22/20			mineral acids and their hydrolysis [3, 2006.01]
23/36	 • Halogenated completely or partially hydrogenated naphthalenes [1, 2006.01] 	29/06	• • • • the acid being sulfuric acid [1, 3, 2006.01]
22/20	• • • with three condensed rings [1, 2006.01]	29/08	• • • • the acid being phosphoric
23/38	<u> </u>	237 00	acid [1, 3, 2006.01]
23/40	• • • Halogenated completely or partially	29/09	 by hydrolysis (of esters of organic acids
22/42	hydrogenated fluorenes [1, 2006.01]	20,00	C07C 27/02) [3, 2006.01]
23/42	 • • • Halogenated completely or partially hydrogenated anthracenes [1, 2006.01] 	29/10	 of ethers, including cyclic ethers, e.g.
23/44			oxiranes [1, 2006.01]
23/44	 • • • Halogenated completely or partially hydrogenated phenanthrenes [1, 2006.01] 	29/12	• • of esters of mineral acids [1, 3, 2006.01]
22/46		29/124	• • • of halides [3, 2006.01]
23/46	• • • with more than 3 condensed rings [1, 2006.01]	29/128	by alcoholysis (of esters of organic acids
25/00	Compounds containing at least one halogen atom	25/120	C07C 27/02) [3, 2006.01]
25/00	bound to a six-membered aromatic ring [1, 2006.01]	29/132	 by reduction of an oxygen-containing functional
25/02	Monocyclic aromatic halogenated	23/132	group [3, 2006.01]
20/02	hydrocarbons [1, 2006.01]	29/136	• of C=O containing groups, e.g. —
25/06	 Monochloro-benzene [1, 3, 2006.01] 	23/130	COOH [3, 2006.01]
25/08	 Dichloro-benzenes [1, 3, 2006.01] 	29/14	• • • of a —CHO group [1, 3, 2006.01]
25/10	 Trichloro-benzenes [1, 3, 2006.01] 	29/141	• • • • with hydrogen or hydrogen-containing
		∠J/ 141	gases [5, 2006.01]
25/12	• Hexachloro-benzene [1, 3, 2006.01]	29/143	• • • of ketones [5, 2006.01]
25/125	• Halogenated xylenes [2, 3, 2006.01]	29/145	• • • with hydrogen or hydrogen-containing
25/13	• containing fluorine [2, 3, 2006.01]	29/145	gases [5, 2006.01]
25/18	Polycyclic aromatic halogenated Notes and are \$1, 2006 011.	29/147	• • • of carboxylic acids or derivatives
05/00	hydrocarbons [1, 2006.01]	23/14/	thereof [5, 2006.01]
25/20	• Dichloro-diphenyl-trichloro-ethane [1, 2006.01]		mercor [5, 2000,01]
25/22	 with condensed rings [1, 2006.01] 		

29/149	gases [5, 2006.01]	• • by addition of hypohalogenous acids, which may be formed <u>in situ</u> , to carbon-to-carbon unsaturated
29/15	 by reduction of oxides of carbon exclusively [3, 2006.01] 	bonds [3, 2006.01] 29/68 • Preparation of metal-alcoholates (C07C 29/42,
29/151		C07C 29/54 take precedence) [3, 2006.01] 29/70 • by converting hydroxy groups to O-metal
29/152	_	groups [3, 2006.01]
29/153		29/72 • • by oxidation of carbon-to-metal
29/154		bonds [3, 2006.01] 29/74 • Separation; Purification; Stabilisation; Use of
29/156	compounds thereof [5, 2006.01] containing iron group metals, platinum	additives [3, 2006.01]
25/150	group metals, or compounds	29/76 • • by physical treatment [3, 2006.01]
	thereof [5, 2006.01]	29/78 • • • by condensation or crystallisation [3, 2006.01]
29/157		29/80 • • • by distillation [3, 2006.01]
29/158	compounds thereof [5, 2006.01] B • • • • • containing rhodium or compounds	29/82 • • • • by azeotropic distillation [3, 2006.01]
23/130	thereof [5, 2006.01]	29/84 • • • by extractive distillation [3, 2006.01] 29/86 • • by liquid-liquid treatment [3, 2006.01]
29/159		29/88 • • by treatment giving rise to a chemical
	hydrogen-containing gases [5, 2006.01]	modification of at least one compound
29/16	by oxo-reaction combined with	(chemisorption C07C 29/76) [3, 2006.01]
20/17	reduction [1, 2006.01]	29/90 • • using hydrogen only [3, 2006.01]
29/17	 by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01] 	29/92 • • • by a consecutive conversion and reconstruction [3, 2006.01]
29/19	• in six-membered aromatic rings [3, 2006.01]	29/94 • • Use of additives, e.g. for stabilisation [3, 2006.01]
29/20	• • • in non-condensed rings substituted with	25/51 Ose of additives, e.g. for satisfication [5, 200001]
	hydroxy groups [1, 3, 2006.01]	31/00 Saturated compounds having hydroxy or O-metal
29/32	 increasing the number of carbon atoms by reactions without formation of hydroxy groups [3, 2006.01] 	groups bound to acyclic carbon atoms [1, 2006.01] 31/02 • Monohydroxylic acyclic alcohols [1, 2006.01]
29/34	 by condensation involving hydroxy groups or the 	31/04 • • Methanol [1, 2006.01]
25/54	mineral ester groups derived therefrom, e.g.	31/08 • • Ethanol [1, 2006.01]
	Guerbet reaction [3, 2006.01]	31/10 • • containing three carbon atoms [1, 2006.01]
29/36	• increasing the number of carbon atoms by reactions	31/12 • • containing four carbon atoms [1, 2006.01]
	with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy	31/125 • containing five to twenty-two carbon
	groups, e.g. O-metal [3, 2006.01]	atoms [3, 2006.01]
29/38	• • by reaction with aldehydes or ketones [3, 2006.01]	 Monohydroxylic alcohols containing saturated rings [2, 3, 2006.01]
29/40	• • • with compounds containing carbon-to-metal	31/133 • • monocyclic [3, 2006.01]
29/42	bonds [3, 2006.01]with compounds containing triple carbon-to-	31/135 • • • with five- or six-membered rings; Naphthenic
23742	carbon bonds, e.g. with metal-	alcohols [3, 2006.01]
	alkynes [3, 2006.01]	31/137 • • polycyclic with condensed ring systems [3, 2006.01]
29/44	increasing the number of carbon atoms by addition	31/18 • Polyhydroxylic acyclic alcohols [1, 2006.01]
	reactions, i.e. reactions involving at least one carbon- to-carbon double or triple bond (C07C 29/16 takes	31/20 • Dihydroxylic alcohols [1, 2006.01]
	precedence) [3, 2006.01]	31/22 • • Trihydroxylic alcohols, e.g.
29/46	• • by diene-synthesis [3, 2006.01]	glycerol [1, 3, 2006.01]
29/48	 by oxidation reactions with formation of hydroxy 	31/24 • • Tetrahydroxylic alcohols, e.g.
20/50	groups [3, 2006.01]	pentaerythritol [1, 3, 2006.01] 31/26 • Hexahydroxylic alcohols [1, 2006.01]
29/50	 with molecular oxygen only [3, 2006.01] in the presence of mineral boron compounds	31/27 • Polyhydroxylic alcohols containing saturated
29/52	with, when necessary, hydrolysis of the	rings [3, 2006.01]
	intermediate formed [3, 2006.01]	31/28 • Metal alcoholates [1, 2006.01]
29/54	• • starting from compounds containing carbon-to-	31/30 • • Alkali-metal or alkaline-earth-metal
	metal bonds and followed by conversion of the	alcoholates [1, 2006.01]
29/56	O-metal to hydroxy groups [3, 2006.01] • by isomerisation [3, 2006.01]	31/32 • • Aluminium alcoholates [1, 2006.01] 31/34 • Halogenated alcohols [1, 2006.01]
29/58	 by elimination of halogen, e.g. by hydrogenolysis, 	31/36 • the halogen not being fluorine [3, 2006.01]
	splitting-off (C07C 29/124 takes	31/38 • • containing only fluorine as halogen [3, 2006.01]
	precedence) [3, 2006.01]	31/40 • • perhalogenated [3, 2006.01]
29/60	 by elimination of hydroxy groups, e.g. by dehydration (C07C 29/34 takes 	31/42 • • Halogenated polyhydroxylic acyclic
	precedence) [3, 2006.01]	alcohols [3, 2006.01]
29/62	• by introduction of halogen; by substitution of halogen	 Halogenated alcohols containing saturated rings [3, 2006.01]
29/64	atoms by other halogen atoms [3, 2006.01]by simultaneous introduction of hydroxy groups and	33/00 Unsaturated compounds having hydroxy or O-metal
23/04	halogens [3, 2006.01]	groups bound to acyclic carbon atoms [1, 2006.01]

35/12

Note(s) [3] 35/14 with more than one hydroxy group bound to the ring [1, 2006.01] In this group, in condensed ring systems of six-35/16 • Inositol [1, 2006.01] membered aromatic rings and other rings, the double 35/17 with unsaturation only outside the bond belonging to a benzene ring is not considered as unsaturated for the non-aromatic ring condensed ring [3, 2006.01] thereon, e.g. the 1,2,3,4-tetrahydro- naphthalene ring is 35/18 with unsaturation at least in the considered to be saturated outside the aromatic ring. ring [1, 3, 2006.01] 33/02 Acyclic alcohols with carbon-to-carbon double containing seven- or eight-membered 35/20 bonds [1, 2006.01] rings [1, 2006.01] 33/025 with only one double bond [3, 2006.01] 35/205 containing nine- to twelve-membered rings, e.g. 33/03 in beta-position, e.g. allyl alcohol, methallyl cyclododecanols [3, 2006.01] polycyclic, at least one hydroxy group bound to a alcohol [3, 2006.01] 35/21 non-condensed ring **[2, 2006.01]** 33/035 Alkenediols [3, 2006.01] 35/22 polycyclic, at least one hydroxy group bound to a 33/04 Acyclic alcohols with carbon-to-carbon triple condensed ring system [1, 2, 2006.01] bonds [1, 2006.01] with a hydroxy group on a condensed ring system 35/23 33/042 with only one triple bond [3, 2006.01] having two rings [3, 2006.01] 33/044 • Alkynediols [3, 2006.01] the condensed ring system containing five 35/24 33/046 • • • Butynediols [3, 2006.01] carbon atoms [1, 3, 2006.01] 33/048 • • with double and triple bonds [3, 2006.01] 35/26 • Bicyclopentadienols [1, 3, 2006.01] 33/05 · Alcohols containing rings other than six-membered 35/27 the condensed ring system containing six aromatic rings [2, 2006.01] carbon atoms [3, 2006.01] • • containing five-membered rings [3, 2006.01] 33/12 35/28 the condensed ring system containing seven • • containing six-membered rings [3, 2006.01] 33/14 carbon atoms [1, 3, 2006.01] 33/16 containing rings with more than six ring 35/29 • being a [2.2.1] system [3, 2006.01] members [3, 2006.01] 35/30 • • • Borneol; Isoborneol [1, 3, 2006.01] 33/18 · Monohydroxylic alcohols containing only sixthe condensed ring system containing eight 35/31 membered aromatic rings as cyclic part [3, 2006.01] carbon atoms [3, 2006.01] monocyclic [3, 2006.01] 33/20 the condensed ring system being a [4.3.0] 35/32 33/22 Benzylalcohol; Phenylethyl system, e.g. indenols [1, 3, 2006.01] alcohol [3, 2006.01] 35/34 the condensed ring system being a [5.3.0] 33/24 polycyclic without condensed ring system, e.g. azulenols [1, 3, 2006.01] systems [3, 2006.01] 35/36 the condensed ring system being a [4.4.0] · Polyhydroxylic alcohols containing only six-33/26 system, e.g. hydrogenated membered aromatic rings as cyclic part [3, 2006.01] naphthols [1, 3, 2006.01] Alcohols containing only six-membered aromatic 33/28 35/37 with a hydroxy group on a condensed ring system rings as cyclic part with unsaturation outside the having three rings [3, 2006.01] aromatic rings [3, 2006.01] derived from the fluorene 35/38 33/30 monocyclic [3, 2006.01] skeleton [1, 3, 2006.01] • • • Cinnamyl alcohol [3, 2006.01] 33/32 derived from the anthracene 35/40 Monohydroxylic alcohols containing six-membered 33/34 skeleton [1, 3, 2006.01] aromatic rings and other rings [3, 2006.01] 35/42 derived from the phenanthrene Polyhydroxylic alcohols containing six-membered 33/36 skeleton [1, 3, 2006.01] aromatic rings and other rings [3, 2006.01] 35/44 with a hydroxy group on a condensed ring system 33/38 Alcohols containing six-membered aromatic rings having more than three rings [1, 2006.01] and other rings and having unsaturation outside the O-metal derivatives of the cyclically bound hydroxy 35/46 aromatic rings [3, 2006.01] groups [3, 2006.01] 33/40 Halogenated unsaturated alcohols [3, 2006.01] 35/48 Halogenated derivatives [3, 2006.01] 33/42 acyclic [3, 2006.01] 35/50 Alcohols with at least two rings [3, 2006.01] containing rings other than six-membered 33/44 35/52 Alcohols with a condensed ring aromatic rings [3, 2006.01] system [3, 2006.01] containing only six-membered aromatic rings as 33/46 cyclic part [3, 2006.01] 37/00 Preparation of compounds having hydroxy or O-33/48 with unsaturation outside the aromatic metal groups bound to a carbon atom of a sixrings [3, 2006.01] membered aromatic ring [1, 2006.01] 33/50 containing six-membered aromatic rings and other 37/01 by replacing functional groups bound to a sixrings [3, 2006.01] membered aromatic ring by hydroxy groups, e.g. by hydrolysis [3, 2006.01] 35/00 Compounds having at least one hydroxy or O-metal 37/02 by substitution of halogen [1, 3, 2006.01] group bound to a carbon atom of a ring other than a 37/04 by substitution of SO₃H groups or a derivative six-membered aromatic ring [1, 2, 2006.01] thereof [1, 3, 2006.01] 35/02 • monocyclic [1, 2006.01] 37/045 by substitution of a group bound to the ring by 35/04 containing three- or four-membered nitrogen [3, 2006.01] rings [1, 2006.01] 37/05 • by substitution of a NH₂ group [3, 2006.01] 35/06 containing five-membered rings [1, 2006.01] 37/055 by substitution of a group bound to the ring by 35/08 • • containing six-membered rings [1, 2006.01] oxygen, e.g. ether group [3, 2006.01] • • • Menthol [1, 2006.01]

				C07C
37/06	•	by conversion of non-aromatic six-membered rings		Note(s) [3]
		or of such rings formed <u>in situ</u> into aromatic six- membered rings, e.g. by dehydrogenation [1, 2006.01]		In this group, in condensed ring systems of six- membered aromatic rings and other rings, the double bond belonging to the benzene ring is not considered as
37/07	•	 with simultaneous reduction of C=O group in that ring [3, 2006.01] 		unsaturated for the non-aromatic ring condensed thereon.
37/08	•	by decomposition of hydroperoxides, e.g. cumene hydroperoxide [1, 2006.01]	39/02	 monocyclic with no unsaturation outside the aromatic ring [1, 2006.01]
37/11	•	by reactions increasing the number of carbon	39/04	• • Phenol [1, 2006.01]
DE /4.4		atoms [3, 2006.01]	39/06	 Alkylated phenols [1, 2006.01]
37/14	•	 by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond [1, 3, 2006.01] 	39/07	• • containing only methyl groups as alkyl groups, e.g. cresols, xylenols [3, 2006.01]
37/16	•	 by condensation involving hydroxy groups of 	39/08	 Dihydroxy benzenes; Alkylated derivatives thereof [1, 2006.01]
		phenols or alcohols or the ether or mineral ester group derived therefrom [1, 3, 2006.01]	39/10	 Polyhydroxy benzenes; Alkylated derivatives thereof (C07C 39/08 takes
37/18	•	 by condensation involving halogen atoms of halogenated compounds [1, 2006.01] 		precedence) [1, 2006.01]
37/20		• using aldehydes or ketones [1, 2006.01]	39/11	 Alkylated hydroxy benzenes containing also
37/48		by exchange of hydrocarbon groups which may be		acyclically bound hydroxy groups, e.g. saligenol [3, 2006.01]
		substituted, from other compounds, e.g. transalkylation [3, 2006.01]	39/12	• polycyclic with no unsaturation outside the aromatic
37/50		by reactions decreasing the number of carbon atoms	20/44	rings [1, 2006.01]
		(C07C 37/01, C07C 37/08, C07C 37/48 take precedence) [3, 2006.01]	39/14	 with at least one hydroxy group on a condensed ring system containing two rings [1, 3, 2006.01]
37/52	•	 by splitting polyaromatic compounds, e.g. 	39/15	 with all hydroxy groups on non-condensed rings [3, 2006.01]
37/54	•	 polyphenolalkanes [3, 2006.01] by hydrolysis of lignin or sulfite waste liquor [3, 2006.01] 	39/16	• • • Bis(hydroxy phenyl)alkanes; Tris(hydroxy phenyl)alkanes [1, 3, 2006.01]
37/56	•	by replacing a carboxyl or aldehyde group by a	39/17	 containing other rings in addition to the six- membered aromatic rings [2, 2006.01]
37/58	•	hydroxy group [3, 2006.01] by oxidation reactions introducing directly a hydroxy	39/18	 monocyclic with unsaturation outside the aromatic ring [1, 2006.01]
		group on a CH-group belonging to a six-membered aromatic ring with the aid of molecular	39/19	 containing carbon-to-carbon double bonds but no carbon-to-carbon triple bonds [3, 2006.01]
37/60		oxygen [3, 2006.01] by oxidation reactions introducing directly a hydroxy	39/20	• • • Hydroxy styrenes [1, 3, 2006.01]
37700		group on a CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than	39/205	 polycyclic, containing only six-membered aromatic rings as cyclic part, with unsaturation outside the rings [3, 2006.01]
		molecular oxygen or their mixtures with molecular	39/21	 with at least one hydroxy group on a non-
37/62	•	oxygen [3, 2006.01] by introduction of halogen; by substitution of halogen	33721	condensed ring [3, 2006.01]
37/64		atoms by other halogen atoms [3, 2006.01] Preparation of O-metal compounds with the O-metal	20/215	но-⟨>-ċ=ċ-⟨>-он
37704		group linked to a carbon atom belonging to a six- membered aromatic ring [3, 2006.01]	39/215	• • • containing the structure, e.g. diethylstilbestrol [3, 2006.01]
37/66	•	 by conversion of hydroxy groups to O-metal 	39/225	 with at least one hydroxy group on a condensed ring system [3, 2006.01]
37/68	•	groups [3, 2006.01] Separation; Purification; Stabilisation; Use of additives [3, 2006.01]	39/23	polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the proportion rings [2, 2006 01]
37/70	•	 by physical treatment [3, 2006.01] 	39/235	aromatic rings [3, 2006.01]Metal derivatives of a hydroxy group bound to a six-
37/72	•	• • by liquid-liquid treatment [3, 2006.01]	557 2 55	membered aromatic ring [3, 2006.01]
37/74	•	• • by distillation [3, 2006.01]	39/24	Halogenated derivatives [1, 2006.01]
37/76	•	• • • by steam distillation [3, 2006.01]	39/26	monocyclic monohydroxylic containing halogen
37/78	•	• • • by azeotropic distillation [3, 2006.01]		bound to ring carbon atoms [1, 2006.01]
37/80	•	• • • by extractive distillation [3, 2006.01]	39/27	 all halogen atoms being attached to the
37/82	•	 by solid-liquid treatment; by chemisorption [3, 2006.01] 	39/28	ring [1, 2006.01] • • • the halogen being one chlorine
37/84	•	• • by crystallisation [3, 2006.01]		atom [1, 2006.01]
37/86	•	by treatment giving rise to a chemical modification (by chemisorption	39/30	• • • the halogen being two chlorine atoms [1, 2006.01]
37/88		C07C 37/82) [3, 2006.01] • Use of additives, e.g. for stabilisation [3, 2006.01]	39/32	• • • the halogen being three chlorine atoms [1, 2006.01]
- ,			39/34	• • • the halogen being four chlorine

39/00

IPC (2024.01), Section C

Compounds having at least one hydroxy or O-metal $\,$ group bound to a carbon atom of a six-membered

aromatic ring [1, 2006.01]

39/34

39/36

the halogen being four chlorine atoms [1, 2006.01]

Pentachlorophenol [1, 2006.01]

13

39/367	 polycyclic non-condensed, containing only six- membered aromatic rings, e.g. halogenated poly- (hydroxy-phenyl)alkanes [3, 2006.01] 	41/46 • • • Use of additives, e.g. for stabilisation [3, 2006.01]
39/373	with all hydroxy groups on non-condensed rings and with unsaturation outside the aromatic	• Preparation of compounds having CCO-C groups [3, 2006.01]
	rings [3, 2006.01]	Groups [3, 2000.01]
39/38	 with at least one hydroxy group on a condensed ring system containing two rings [1, 2006.01] 	41/50 • • by reactions producing >C<0- groups [3, 2006.01]
39/40	with at least one hydroxy group on a condensed	41/52 • • • by substitution of halogen only [3, 2006.01]
	ring system containing more than two	41/54 • • • by addition of compounds to unsaturated
	rings [3, 2006.01]	carbon-to-carbon bonds [3, 2006.01]
39/42	 containing six-membered aromatic rings and other rings [3, 2006.01] 	41/56 • • • by condensation of aldehydes, paraformaldehyde, or ketones [3, 2006.01]
39/44	 Metal derivatives of a hydroxy group bound to a 	41/58 • • Separation; Purification; Stabilisation; Use of
	carbon atom of a six-membered aromatic	additives [3, 2006.01]
	ring [3, 2006.01]	0-
41 /00	Preparation of ethers; Preparation of compounds	-C ₇ O-C
41/00	· · ·	41/60 • Preparation of compounds having O-C groups or
	0- C 0-C C 0-C C 0-C 0-C having 0-C groups or 0-C	n-
	υ_	_/\nc
	having $C \subset C = C \subset C$	C\0-C
	groups [1, 3, 2006.01]	0-C groups [3, 2006.01]
41/01	• Preparation of ethers [3, 2006.01]	groups [5, 2000.01]
41/01		^{,,C,} ,0-
	• • from oxiranes [1, 3, 2006.01]	43/00 Ethers; Compounds having Coups,
41/03	• • by reaction of an oxirane ring with a hydroxy group [3, 2006.01]	,0-
41/05	 by addition of compounds to unsaturated 	0- -C-0-C
71/03	compounds [3, 2006.01]	
41/06	• • by addition of organic compounds	O-C groups or O-C groups [1, 2006.01]
11700	only [1, 3, 2006.01]	43/02 • Ethers [1, 2006.01]
41/08	• • • to carbon-to-carbon triple	3. 8
	bonds [1, 3, 2006.01]	carbon atoms [3, 2006.01]
41/09	 by dehydration of compounds containing hydroxy 	43/04 • • • Saturated ethers [1, 3, 2006.01]
	groups [3, 2006.01]	43/06 • • • Diethyl ether [1, 3, 2006.01]
41/14	 by exchange of organic parts on the ether-oxygen 	43/10 • • • of polyhydroxy compounds [1, 3, 2006.01]
	for other organic parts, e.g. by transetherification [3, 2006.01]	43/11 • • • • Polyethers containing —O—(C—C—O —) _n units with $2 \le n \le 10$ [2, 3, 2006.01]
41/16	 by reaction of esters of mineral or organic acids 	43/115 • • • containing carbocyclic rings [3, 2006.01]
	with hydroxy or O-metal groups [3, 2006.01]	43/12 • • • containing halogen [1, 3, 2006.01]
41/18	• • by reactions not forming ether-oxygen bonds [3, 2006.01]	43/13 • • • containing hydroxy or O-metal groups (C07C 43/11 takes precedence) [3, 2006.01]
41/20	• • • by hydrogenation of carbon-to-carbon double	43/14 • • • Unsaturated ethers [1, 3, 2006.01]
41 /22	or triple bonds [3, 2006.01]	43/15 • • • • containing only non-aromatic carbon-to-
41/22	 • by introduction of halogen; by substitution of halogen atoms by other halogen 	carbon double bonds [3, 2006.01]
	atoms [3, 2006.01]	43/16 • • • • Vinyl ethers [1, 3, 2006.01]
41/24	by elimination of halogen, e.g. elimination of	43/162 • • • containing rings other than six-membered aromatic rings [3, 2006.01]
=: = :	HCl [3, 2006.01]	43/164 • • • containing six-membered aromatic
41/26	• • • by introduction of hydroxy or O-metal	rings [3, 2006.01]
	groups [3, 2006.01]	43/166 • • • having unsaturation outside the aromatic
41/28	• • • from acetals, e.g. by dealcoholysis [3, 2006.01]	rings [3, 2006.01]
41/30	 • by increasing the number of carbon atoms, e.g. 	43/168 • • • • containing six-membered aromatic rings
	by oligomerisation [3, 2006.01]	and other rings [3, 2006.01]
41/32	• • by isomerisation [3, 2006.01]	43/17 • • • containing halogen [2, 3, 2006.01]
41/34	Separation; Purification; Stabilisation; Use of	43/172 • • • containing rings other than six-membered
44 /5 =	additives [3, 2006.01]	aromatic rings [3, 2006.01]
41/36	• • • by solid-liquid treatment; by chemisorption [3, 2006.01]	43/174 • • • • containing six-membered aromatic rings [3, 2006.01]
41/38	• • • by liquid-liquid treatment [3, 2006.01]	43/176 • • • • having unsaturation outside the
41/40	• • by change of physical state, e.g. by	aromatic rings [3, 2006.01]
	crystallisation [3, 2006.01]	43/178 • • • containing hydroxy or O-metal
41/42	• • • by distillation [3, 2006.01]	groups [3, 2006.01]
41/44	• • by treatment giving rise to a chemical	• • having an ether-oxygen atom bound to a carbon
	modification (by chemisorption	atom of a ring other than a six-membered aromatic
	C07C 41/36) [3, 2006.01]	ring [1, 2006.01]

43/184	• • to a carbon atom of a non-condensed ring [3, 2006.01]	45/00	Preparation of compounds having >C=O groups bound only to carbon or hydrogen atoms;
43/188	• • Unsaturated ethers [3, 2006.01]		Preparation of chelates of such
	• • • containing halogen [3, 2006.01]		compounds [1, 2, 2006.01]
43/196	• • containing hydroxy or O-metal	45/26	 by hydration of carbon-to-carbon triple
45/130	groups [3, 2006.01]		bonds [3, 2006.01]
43/20	 having an ether-oxygen atom bound to a carbon 	45/27	• by oxidation [3, 2006.01]
43/20	atom of a six-membered aromatic	45/28	• • of —CH _x -moieties [3, 2006.01]
	ring [1, 2006.01]	45/29	• • of hydroxy groups [3, 2006.01]
43/205	• • the aromatic ring being a non-condensed	45/30	 with halogen containing compounds, e.g.
.57 = 05	ring [3, 2006.01]	137 30	hypohalogenation [3, 2006.01]
43/21	• • • containing rings other than six-membered aromatic rings [3, 2006.01]	45/31	with compounds containing mercury atoms, which may be regenerated <u>in situ</u> , e.g. by
43/215	 having unsaturation outside the six-membered 		oxygen [3, 2006.01]
	aromatic rings [3, 2006.01]	45/32	 with molecular oxygen [3, 2006.01]
43/225	• • containing halogen [3, 2006.01]	45/33	• • • of CH _x -moieties [3, 2006.01]
43/23	 containing hydroxy or O-metal 	45/34	• • • in unsaturated compounds [3, 2006.01]
	groups [3, 2006.01]	45/35	• • • • in propene or isobutene [3, 2006.01]
43/235	 having an ether-oxygen atom bound to a carbon 	45/36	• • • • in compounds containing six-membered
	atom of a six-membered aromatic ring and to a carbon atom of a ring, other than a six-membered	45 / 27	aromatic rings [3, 2006.01] • • • of C—O— functional groups to C=O
	aromatic ring [3, 2006.01]	45/37	groups [3, 2006.01]
43/243	 having unsaturation outside the six-membered 	45/38	• • • • being a primary hydroxy group [3, 2006.01]
	aromatic rings [3, 2006.01]	45/39	• • • being a secondary hydroxy
43/247	• • • containing halogen [3, 2006.01]	43/39	group [3, 2006.01]
43/253	• • containing hydroxy or O-metal	45/40	 by oxidation with ozone; by ozonolysis [3, 2006.01]
	groups [3, 2006.01]	45/41	 by oxidation with ozone, by ozonorysis [3, 2000.01] by hydrogenolysis or reduction of carboxylic groups
43/257	 having an ether-oxygen atom bound to carbon 	43/41	or functional derivatives thereof [3, 2006.01]
	atoms both belonging to six-membered aromatic	45/42	 by hydrolysis [3, 2006.01]
	rings [3, 2006.01]	45/43	 of XX₂ groups, X being halogen [3, 2006.01]
43/263	 the aromatic rings being non- 	45/43	 by reduction and hydrolysis of nitriles [3, 2006.01]
	condensed [3, 2006.01]	45/45	 by reduction and hydrorysis of infines [3, 2006.01] by condensation [3, 2006.01]
43/267	• • containing other rings [3, 2006.01]		
43/275	 having all ether-oxygen atoms bound to carbon 	45/46	• • Friedel-Crafts reactions [3, 2006.01]
	atoms of six-membered aromatic	45/47	• • using phosgene [3, 2006.01]
	rings [3, 2006.01]	45/48	• • involving decarboxylation [3, 2006.01]
43/285	• • having unsaturation outside the six-membered	45/49	• by reaction with carbon monoxide [3, 2006.01]
	aromatic rings [3, 2006.01]	45/50	• by oxo-reactions [3, 2006.01]
43/29	· · · containing halogen [3, 2006.01]	45/51	• by pyrolysis, rearrangement or
43/295	• • • containing hydroxy or O-metal	45 /50	decomposition [3, 2006.01]
	groups [3, 2006.01] • Compounds having CO-C groups [1, 2006.01]	45/52	 • by dehydration and rearrangement involving two hydroxy groups in the same molecule [3, 2006.01]
43/30	• Compounds having CO-C groups [1, 2006.01]	45/53	 of hydroperoxides [3, 2006.01]
	N - () [2]	45/54	 of compounds containing doubly bound oxygen
	Note(s) [3]		atoms, e.g. esters [3, 2006.01]
	In this group, the acetal carbon atom is the carbon of the CCC O-C group.	45/55	 of oligo- or polymeric oxo- compounds [3, 2006.01]
	°CO-C group.	45/56	• from heterocyclic compounds (C07C 45/55 takes
43/303	 having acetal carbon atoms bound to acyclic 		precedence) [3, 2006.01]
	carbon atoms [3, 2006.01]	45/57	• • with oxygen as the only hetero atom [3, 2006.01]
43/305	 having acetal carbon atoms as ring members or 	45/58	• • • in three-membered rings [3, 2006.01]
	bound to carbon atoms of rings other than six- membered aromatic rings [3, 2006.01]	45/59	• • • in five-membered rings (from ozonides
43/307	having acetal carbon atoms bound to carbon atoms	4F /60	C07C 45/40) [3, 2006.01]
45/50/	of six-membered aromatic rings [3, 2006.01]	45/60	• • • in six-membered rings [3, 2006.01]
43/313	• containing halogen [3, 2006.01]	45/61	 by reactions not involving the formation of C=O groups [3, 2006.01]
43/315	containing oxygen atoms singly bound to carbon	4F /6D	~ ·
.0, 010	atoms not being acetal carbon atoms [3, 2006.01]	45/62	 • by hydrogenation of carbon-to-carbon double or triple bonds [3, 2006.01]
	• • having C-X groups, X being hydrogen or	45/63	• • by introduction of halogen; by substitution of
43/317	• • having `O-C groups, X being hydrogen or metal [3, 2006.01]		halogen atoms by other halogen atoms [3, 2006.01]
	.0-	45/64	 by introduction of functional groups containing
	0- -c , 0-c -c,0-c		oxygen only in singly bound form [3, 2006.01]
	0- -C-0-C	45/65	 by splitting-off hydrogen atoms or functional
43/32	• Compounds having O-C groups or O-C		groups; by hydrogenolysis of functional
	groups [1, 2006.01]		groups [3, 2006.01]

45/66	• • • by dehydration [3, 2006.01]	47/058 • • • Separation; Purification; Stabilisation; Use of
45/67	 by isomerisation; by change of size of the carbon 	additives [3, 2006.01]
	skeleton [3, 2006.01]	47/06 • • Acetaldehyde [1, 2006.01]
45/68	 • by increase in the number of carbon 	47/07 • • • Preparation by oxidation [3, 2006.01]
	atoms [3, 2006.01]	47/09 • • • Separation; Purification; Stabilisation; Use of
45/69	 • • by addition to carbon-to-carbon double or 	additives [3, 2006.01]
	triple bonds [3, 2006.01]	47/105 • • containing rings [3, 2006.01]
45/70	 • • • by reaction with functional groups 	47/11 • • • monocyclic [3, 2006.01]
	containing oxygen only in singly bound	47/115 • • • containing condensed ring systems [3, 2006.01]
	form [3, 2006.01]	47/12 • • containing more than one —CHO
45/71	• • • • being hydroxy groups [3, 2006.01]	group [1, 2006.01]
45/72	• • • by reaction of compounds containing C=O	47/127 • • • Glyoxal [3, 2006.01]
	groups with the same or other compounds	47/133 • • • containing rings [3, 2006.01]
4= 4=0	containing C=O groups [3, 2006.01]	47/14 • • containing halogen [1, 2006.01]
45/73	• • • • combined with	47/16 • • • Trichloroacetaldehyde [1, 2006.01]
45 /74	hydrogenation [3, 2006.01]	47/17 • • • containing rings [3, 2006.01]
45/74	• • • • combined with dehydration [3, 2006.01]	47/19 • • containing hydroxy groups [2, 3, 2006.01]
45/75	• • • • Reactions with	47/192 • • • containing rings [3, 2006.01]
4F /7C	formaldehyde [3, 2006.01]	47/195 • • • containing halogen [3, 2006.01]
45/76	• • • with the aid of ketenes [3, 2006.01]	0-
45/77	Preparation of chelates of aldehydes or Preparation of chelates of aldehydes or	47/198 • • containing ether groups, ZLCO-C groups,
45 /70	ketones [3, 2006.01]	
45/78	 Separation; Purification; Stabilisation; Use of additives [3, 2006.01] 	.0-
4F /70	 by solid-liquid treatment; by 	-C , O-C
45/79	chemisorption [3, 2006.01]	`O-C groups, or
45/80	 by liquid-liquid treatment [3, 2006.01] 	47/20 • Unsaturated compounds having —CHO groups
45/81	 by inquid-inquid treatment [3, 2000.01] by change in the physical state, e.g. 	bound to acyclic carbon atoms [1, 2006.01]
45/01	crystallisation [3, 2006.01]	47/21 • with only carbon-to-carbon double bonds as
45/82	• • • by distillation [3, 2006.01]	unsaturation [3, 2006.01]
45/83	• • • by extractive distillation [3, 2006.01]	47/22 • • • Acrylaldehyde;
45/84	• • • • by azeotropic distillation [3, 2006.01]	Methacrylaldehyde [1, 3, 2006.01]
45/85	 by azeotropic distillation [3, 2000.01] by treatment giving rise to a chemical 	47/222 • with only carbon-to-carbon triple bonds as
43/03	modification [3, 2006.01]	unsaturation [3, 2006.01]
45/86	 Use of additives, e.g. for stabilisation [3, 2006.01] 	47/225 • • containing rings other than six-membered
45/87	Preparation of ketenes or dimeric	aromatic rings [3, 2006.01]
43/0/	ketenes [3, 2006.01]	47/228 • • containing six-membered aromatic rings, e.g.
45/88	• • from ketones [3, 2006.01]	phenylacetaldehyde [3, 2006.01]
45/89	 from carboxylic acids, their anhydrides, esters or 	47/23 • • • polycyclic [3, 2006.01]
45/05	halides [3, 2006.01]	47/232 • • having unsaturation outside the aromatic
45/90	Separation; Purification; Stabilisation; Use of	rings [3, 2006.01]
157 50	additives [3, 2006.01]	47/235 • • containing six-membered aromatic rings and other
		rings [3, 2006.01]
46/00	Preparation of quinones [3, 2006.01]	47/238 • • having unsaturation outside the aromatic
46/02	 by oxidation giving rise to quinoid 	rings [3, 2006.01]
	structures [3, 2006.01]	47/24 • • containing halogen [1, 2006.01]
46/04	 of unsubstituted ring carbon atoms in six- 	47/26 • • containing hydroxy groups [1, 3, 2006.01]
	membered aromatic rings [3, 2006.01]	47/263 • • • acyclic [3, 2006.01]
46/06	of at least one hydroxy group on a six-membered	47/267 • • • containing rings other than six-membered
	aromatic ring [3, 2006.01]	aromatic rings [3, 2006.01]
46/08	• • • with molecular oxygen [3, 2006.01]	47/27 • • • containing six-membered aromatic
46/10	Separation; Purification; Stabilisation; Use of	rings [3, 2006.01]
	additives [3, 2006.01]	47/273 • • • containing halogen [3, 2006.01]
47/00	Compounds having —CHO groups [1, 2006.01]	47/277 • • containing ether groups, CCO groups,
47/02	Saturated compounds having —CHO groups bound	47/277 • • containing ether groups,
7//04	to acyclic carbon atoms or to hydrogen [1, 2006.01]	n_ /n c
47/04	 Formaldehyde [1, 2006.01] 	-L-U-L C-\U-L C\0-r
47/042	• • • Preparation from carbon monoxide [3, 2006.01]	0- -C-0-C 0-C groups, or 0-C groups [3, 2006.01]
47/042	• • Preparation by depolymerisation [3, 2006.01]	
47/043	• • Preparation by oxidation of	• Saturated compounds having —CHO groups bound to carbon atoms of rings other than six-membered
4 //040	hydrocarbons [3, 2006.01]	aromatic rings [1, 2006.01]
47/052		47/293 • • with a three- or four-membered ring [3, 2006.01]
-//UJZ	methanol [3, 2006.01]	47/30 • • with a five-membered ring [1, 2006.01]
47/055	• • • using noble metals or compounds thereof as	47/32 • • with a six-membered ring [1, 2006.01]
.,, 555	catalysts [3, 2006.01]	77, 52 with a 31x-membered ring [1, 2000.01]
	•	

47/33	with a seven- to twelve-membered	49/115 • • containing condensed ring systems [3, 2006.01]
47/34	ring [3, 2006.01] • polycyclic [1, 2006.01]	49/12 • • Ketones containing more than one keto group [1, 2006.01]
47/347	• • having a —CHO group on a condensed ring	49/14 • • • Acetylacetone, i.e. 2,4-
	system [3, 2006.01]	pentanedione [1, 2006.01]
	• containing halogen [3, 2006.01]	49/15 • • • containing rings [3, 2006.01]
47/36	• • containing hydroxy groups [1, 2006.01]	49/16 • • containing halogen [1, 2006.01]
47/37	• • containing ether groups, $>C<0-C$ groups,	49/163 • • • containing rings [3, 2006.01] 49/167 • • • containing only fluorine as
4//3/	Ω	halogen [3, 2006.01]
	0- -C-0-C -C-0-C	49/17 • • containing hydroxy groups [2, 2006.01]
	0- -C-0-C	49/172 • • • containing rings [3, 2006.01]
47/38	O-C groups, or O-C groups [3, 2006.01] • Unsaturated compounds having —CHO groups	49/173 • • • containing halogen [3, 2006.01]
4//30	bound to carbon atoms of rings other than six-	49/175 • • containing ether groups, $C < 0-C$ groups,
	membered aromatic rings [1, 2006.01]	n
	• • with a three- or four-membered ring [3, 2006.01]	0- -C-0-C C C 0-C 0-C 0-C 0-C groups [2, 3, 2006.01]
47/40 47/42	• with a five-membered ring [1, 3, 2006.01]	0-0-0-0
47/42	with a six-membered ring [1, 3, 2006.01]with a seven- to twelve-membered	0-C groups, or 0-C groups [2, 3, 2006.01] 49/185 • • containing — CHO groups [3, 2006.01]
177 18	ring [3, 2006.01]	49/20 • Unsaturated compounds containing keto groups
47/44	• • polycyclic [1, 3, 2006.01]	bound to acyclic carbon atoms [1, 2006.01]
47/445	• • containing a condensed ring	49/203 • • with only carbon-to-carbon double bonds as
47/45	system [3, 2006.01] • having unsaturation outside the rings [2, 2006.01]	unsaturation [3, 2006.01] 49/205 • • • Methyl-vinyl ketone [3, 2006.01]
	 containing six-membered aromatic 	49/207 • • with only carbon-to-carbon triple bonds as
	rings [3, 2006.01]	unsaturation [3, 2006.01]
47/457	• containing halogen [3, 2006.01]	49/21 • containing rings other than six-membered
47/46	• • containing hydroxy groups [1, 2006.01]	aromatic rings [3, 2006.01] 49/213 • • containing six-membered aromatic
47/47	• • containing ether groups, >C< 0 - groups,	rings [3, 2006.01]
	lacksquare	49/215 • • • polycyclic [3, 2006.01]
	O- CO-C O-C O-C O-C groups, or O-C O-C groups [3, 2006.01] Compounds having —CHO groups bound to carbon	49/217 • • • having unsaturation outside the aromatic rings [3, 2006.01]
	0-C groups, or 0-C groups [3, 2006.01]	49/223 • • • • polycyclic [3, 2006.01]
47/52	Compounds having —CHO groups bound to carbon	49/225 • • containing six-membered aromatic rings and other
457.54	atoms of six-membered aromatic rings [1, 2006.01]	rings [3, 2006.01]
47/54 47/542	• Benzaldehyde [1, 2006.01]• Alkylated benzaldehydes [3, 2006.01]	49/227 • containing halogen [3, 2006.01] 49/23 • containing rings other than six-membered
	Diformyl-benzenes; Alkylated derivatives	aromatic rings [3, 2006.01]
	thereof [3, 2006.01]	49/233 • • • containing six-membered aromatic
	• • polycyclic [3, 2006.01]	rings [3, 2006.01] 49/235 • • • having unsaturation outside the aromatic
47/548	 having unsaturation outside the six-membered aromatic rings [3, 2006.01] 	rings [3, 2006.01]
47/55	• • containing halogen [2, 2006.01]	49/237 • • • containing six-membered aromatic rings and
47/56	• containing hydroxy groups [1, 2006.01]	other rings [3, 2006.01]
47/565	• • all hydroxy groups bound to the	49/24 • • containing hydroxy groups [1, 2006.01] 49/242 • • containing rings other than six-membered
47/57	ring [3, 2006.01] • • • polycyclic [3, 2006.01]	aromatic rings [3, 2006.01]
		49/245 • • • containing six-membered aromatic
47/575	• • containing ether groups, CCD-C groups,	rings [3, 2006.01] 49/248 • • • having unsaturation outside the aromatic
	0- 0-	rings [3, 2006.01]
	-c (0-c	49/252 • • • containing six-membered aromatic rings and
	0-C groups, or 0-C groups [3, 2006.01]	other rings [3, 2006.01]
47/58	0- 0- 0-C 0-C 0-C 0-C groups, or 0-C groups [3, 2006.01] • • • Vanillin [1, 2006.01]	49/255 • • containing ether groups,
49/00	Ketones; Ketenes; Dimeric ketenes; Ketonic	Π=
	chelates [1, 2006.01]	0- -C_0-C 0-C groups, or 0-C groups [3, 2006.01]
49/04	 Saturated compounds containing keto groups bound to acyclic carbon atoms [1, 2006.01] 	0-C groups, or 0-C groups [3, 2006.01]
49/08	 • Acetone [1, 3, 2006.01] 	49/258 • • containing —CHO groups [3, 2006.01]
49/10	 Methyl-ethyl ketone [1, 3, 2006.01] 	49/29 • Saturated compounds containing keto groups bound
49/105	• • containing rings [3, 2006.01]	to rings [3, 2006.01]
49/11	• • • monocyclic [3, 2006.01]	49/293 • • to a three- or four-membered ring [3, 2006.01]

40/207	40 / 527
49/297 • • to a five-membered ring [3, 2006.01]	49/527 • Unsaturated compounds containing keto groups
49/303 • • to a six-membered ring [3, 2006.01]	bound to rings other than six-membered aromatic
49/307 • • to a seven- to twelve-membered ring [3, 2006.01]	rings [3, 2006.01]
49/313 • • polycyclic [3, 2006.01]	49/533 • • to a three- or four-membered ring [3, 2006.01]
49/317 • • • both carbon atoms bound to the keto group	49/537 • • to a five-membered ring [3, 2006.01]
belonging to rings [3, 2006.01]	49/543 • • to a six-membered ring [3, 2006.01]
49/323 • • • having keto groups bound to condensed ring	49/547 • • to a seven- to twelve-membered ring [3, 2006.01]
systems [3, 2006.01]	49/553 • • polycyclic [3, 2006.01]
49/327 • • containing halogen [3, 2006.01]	49/557 • having unsaturation outside the rings [3, 2006.01]
49/333 • • • polycyclic [3, 2006.01]	49/563 • • containing six-membered aromatic
49/337 • • containing hydroxy groups [3, 2006.01]	rings [3, 2006.01]
49/345 • • • polycyclic [3, 2006.01]	49/567 • • containing halogen [3, 2006.01]
)(°0-	49/573 • • containing hydroxy groups [3, 2006.01]
49/35 • • containing ether groups, CCCD-C groups,	49/577 • • containing ether groups, $C<0-$ groups,
Π	49/577 • • containing ether groups, COC groups,
O- C/O-C	,0-
-C ´ O-C	,0- C /O-C
0- -C-0-C	-C / O-C
49/355 • • containing —CHO groups [3, 2006.01]	0- 0- -C-0-C
	49/583 • • containing —CHO groups [3, 2006.01]
• Saturated compounds containing a keto group being	49/587 • Unsaturated compounds containing a keto group
part of a ring [3, 2006.01]	
49/39 • • of a three- or four-membered ring [3, 2006.01]	being part of a ring [3, 2006.01]
49/395 • • of a five-membered ring [3, 2006.01]	49/593 • • of a three- or four-membered ring [3, 2006.01]
49/403 • • of a six-membered ring [3, 2006.01]	49/597 • • of a five-membered ring [3, 2006.01]
49/407 • • • Menthones [3, 2006.01]	49/603 • • of a six-membered ring [3, 2006.01]
49/413 • • of a seven- to twelve-membered ring [3, 2006.01]	49/607 • • of a seven- to twelve-membered ring [3, 2006.01]
49/417 • polycyclic [3, 2006.01]	49/613 • • polycyclic [3, 2006.01]
* * *	49/617 • • • a keto group being part of a condensed ring
8 1 81	system [3, 2006.01]
system [3, 2006.01]	49/623 • • • having two rings [3, 2006.01]
49/427 • • • having two rings [3, 2006.01]	
49/433 • • • • the condensed ring system containing	49/627 • • • • the condensed ring system containing
seven carbon atoms [3, 2006.01]	seven carbon atoms [3, 2006.01]
49/437 • • • • • Camphor; Fenchone [3, 2006.01]	49/633 • • • • the condensed ring system containing
49/443 • • • • the condensed ring system containing	eight or nine carbon atoms [3, 2006.01]
eight or nine carbon atoms [3, 2006.01]	49/637 • • • • the condensed ring system containing ten
49/447 • • • • the condensed ring system containing ten	carbon atoms [3, 2006.01]
carbon atoms [3, 2006.01]	49/643 • • • having three rings [3, 2006.01]
49/453 • • • having three rings [3, 2006.01]	49/647 • having unsaturation outside the ring [3, 2006.01]
49/457 • containing halogen [3, 2006.01]	49/653 • • • polycyclic [3, 2006.01]
	49/657 • • containing six-membered aromatic
49/463 • • • a keto group being part of a six-membered	rings [3, 2006.01]
ring [3, 2006.01]	49/665 • • • a keto group being part of a condensed ring
49/467 • • • polycyclic [3, 2006.01]	
49/473 • • • a keto group being part of a condensed ring	system [3, 2006.01]
system [3, 2006.01]	49/67 • • • having two rings, e.g. tetralones [3, 2006.01]
49/477 • • • • having two rings [3, 2006.01]	49/675 • • • having three rings [3, 2006.01]
49/483 • • • • having three rings [3, 2006.01]	49/683 • • • having unsaturation outside the aromatic
49/487 • • containing hydroxy groups [3, 2006.01]	rings [3, 2006.01]
49/493 • • • a keto group being part of a three- to five-	49/687 • • containing halogen [3, 2006.01]
membered ring [3, 2006.01]	49/693 • • • polycyclic [3, 2006.01]
49/497 • • • a keto group being part of a six-membered	49/697 • • • containing six-membered aromatic
ring [3, 2006.01]	rings [3, 2006.01]
	49/703 • • containing hydroxy groups [3, 2006.01]
49/503 • • • a keto group being part of a seven- to twelve-	
membered ring [3, 2006.01]	49/707 • • • a keto group being part of a three- to five-
49/507 • • • polycyclic [3, 2006.01]	membered ring [3, 2006.01]
49/513 • • • a keto group being part of a condensed ring	49/713 • • • a keto group being part of a six-membered
system [3, 2006.01]	ring [3, 2006.01]
>C<0-	49/717 • • • a keto group being part of a seven- to twelve-
49/517 • • containing ether groups, CO-C groups,	membered ring [3, 2006.01]
N-	49/723 • • • polycyclic [3, 2006.01]
.o/.ō-c	49/727 • • • a keto group being part of a condensed ring
-c ´ o-c	system [3, 2006.01]
0-C groups or 0-C groups 12 2006 011	49/733 • • • • having two rings [3, 2006.01]
0- -C-0-C	49/737 • • • • having three rings [3, 2006.01]
49/523 • • containing —CHO groups [3, 2006.01]	49/743 • • having unsaturation outside the rings, e.g.
	humulones, lupulones [3, 2006.01]
	numuiones, iupuiones [3, 2006.01]

49/747	 containing six-membered aromatic rings [3, 2006.01] 	• the quinoid structure being part of a condensed ring system containing two rings [3, 2006.01]
	1111gs [3, 2000.01]	50/12 • Naphthoquinones, i.e. C ₁₀ H ₆ O ₂ [3, 2006.01]
49/753	• • containing ether groups,	50/14 • with unsaturation outside the ring system, e.g. vitamin K_1 [3, 2006.01]
	0- -C-0-C	• the quinoid structure being part of a condensed ring
	1-1. groups or 1-1 groups [3, 2006 01]	system containing three rings [3, 2006.01] 50/18 • Anthraquinones, i.e. C ₁₄ H ₈ O ₂ [3, 2006.01]
49/755	• • • a keto group being part of a condensed ring	50/20 • with unsaturation outside the ring
- 3//33	system with two or three rings, at least one ring	system [3, 2006.01]
	being a six-membered aromatic ring [3, 2006.01]	• the quinoid structure being part of a condensed ring system containing four or more rings [3, 2006.01]
49/757	• • containing —CHO groups [3, 2006.01]	50/24 • containing halogen [3, 2006.01]
49/76	 Ketones containing a keto group bound to a six- 	50/26 • containing groups having oxygen atoms singly bound
	membered aromatic ring (compounds having a keto	to carbon atoms [3, 2006.01]
	group being part of a condensed ring system and being bound to a six-membered aromatic ring	50/28 • • with monocyclic quinoid structure [3, 2006.01]
	C07C 49/657-C07C 49/757) [1, 2006.01]	50/30 • • with polycyclic non-condensed quinoid structure [3, 2006.01]
49/78	• • Acetophenone [1, 2006.01]	50/32 • • the quinoid structure being part of a condensed
49/782	• • polycyclic [3, 2006.01]	ring system having two rings [3, 2006.01]
49/784	 • with all keto groups bound to a non-condensed ring [3, 2006.01] 	50/34 • • the quinoid structure being part of a condensed ring system having three rings [3, 2006.01]
49/786	• • • Benzophenone [3, 2006.01]	50/36 • • the quinoid structure being part of a condensed
49/788	• • • with keto groups bound to a condensed ring	ring system having four or more rings [3, 2006.01]
40 / 702	system [3, 2006.01]	50/38 • containing —CHO or non-quinoid keto
49/792	 containing rings other than six-membered aromatic rings [3, 2006.01] 	groups [3, 2006.01]
49/794	 having unsaturation outside an aromatic ring [3, 2006.01] 	51/00 Preparation of carboxylic acids or their salts, halides, or anhydrides [1, 2, 2006.01]
49/796	• • • polycyclic [3, 2006.01]	51/02 • from salts of carboxylic acids [1, 2006.01]
49/798	containing rings other than six-membered	• from carboxylic acid halides [1, 2006.01]
	aromatic rings [3, 2006.01]	51/06 • from carboxylic acid amides [1, 2006.01]
49/80	• • containing halogen [1, 2006.01]	51/08 • from nitriles [1, 2006.01]
49/807	• • all halogen atoms bound to the	51/083 • from carboxylic acid anhydrides [3, 2006.01]
49/813	ring [3, 2006.01] • • • polycyclic [3, 2006.01]	51/087 • • by hydrolysis [3, 2006.01]
49/813	• containing hydroxy groups [1, 3, 2006.01]	• from carboxylic acid esters or lactones (saponification of carboxylic acid esters
49/825	 all hydroxy groups bound to the 	C07C 27/02) [1, 2006.01]
49/83	ring [3, 2006.01] • • • polycyclic [3, 2006.01]	51/093 • by hydrolysis of —CX ₃ groups, X being halogen [3, 2006.01]
49/835	• having unsaturation outside an aromatic	51/097 • from or <u>via</u> nitro-substituted organic
457 000	ring [3, 2006.01]	compounds [3, 2006.01]
	• • containing ether groups, >C(0- 0-C groups,	51/10 • by reaction with carbon monoxide [1, 2006.01]
49/84		51/12 • • on an oxygen-containing group in organic
	0-	compounds, e.g. alcohols [1, 2006.01]
	0- -C-0-C	• • on a carbon-to-carbon unsaturated bond in organic compounds [1, 3, 2006.01]
	`O-C groups, or `O-C groups [2, 3, 2006.01]	51/145 • • with simultaneous oxidation [3, 2006.01]
49/86	 containing —CHO groups [3, 2006.01] 	• by reaction of organic compounds with carbon
49/88	receives, Dimeric necesses [5, 2000.01]	dioxide, e.g. Kolbe-Schmitt synthesis [2, 2006.01]
49/90	• Ketene, i.e. C ₂ H ₂ O [3, 2006.01]	51/16 • by oxidation (C07C 51/145 takes precedence) [1, 3, 2006.01]
49/92	• Ketonic chelates [3, 2006.01]	51/21 • with molecular oxygen [3, 2006.01]
50/00	Quinones (for quinone methides, see unsaturated	51/215 • • • of saturated hydrocarbyl groups [3, 2006.01]
	ketones with a keto group being part of a	51/225 • • • of paraffin waxes [3, 2006.01]
	ring) [3, 2006.01]	51/23 • • of oxygen-containing groups to carboxyl
	Note(s) [3]	groups [3, 2006.01]
	In this group, quinhydrones are classified according to	51/235 • • • • of —CHO groups or primary alcohol groups [3, 2006.01]
	their quinoid part.	51/245 • • • • of keto groups or secondary alcohol
50/02	• with monocyclic quinoid structure [3, 2006.01]	groups [3, 2006.01]
50/04 50/06	 Benzoquinones, i.e. C₆H₄O₂ [3, 2006.01] with unsaturation outside the quinoid 	51/25 • • • of unsaturated compounds containing no six- membered aromatic ring [3, 2006.01]
20,00	structure [3, 2006.01]	51/255 • • • of compounds containing six-membered
50/08	 with polycyclic non-condensed quinoid structure [3, 2006.01] 	aromatic rings without ring-
	ծոսշաւ [թ, ՀՍՍՍ.Ս]	splitting [3, 2006.01]

51/265	•	 having alkyl side chains which are oxidised to carboxyl groups [3, 2006.01] 	51/64	• • Separation; Purification; Stabilisation; Use of additives [3, 2006.01]
51/27	•	 with oxides of nitrogen or nitrogen-containing 	F2 /00	Saturated assessment backers and assessment
E4 (DEE		mineral acids [3, 2006.01]	53/00	Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or
51/275		• • of hydrocarbyl groups [3, 2006.01]		hydrogen [1, 2006.01]
51/285		• with peroxy-compounds [3, 2006.01]	53/02	• Formic acid [1, 2006.01]
51/29	•	• with halogen-containing compounds which may	53/04	• • Preparation from carbon monoxide [1, 2006.01]
51/295		be formed <u>in situ</u> [3, 2006.01] • with inorganic bases, e.g. by alkali	53/06	• • Salts thereof [1, 2006.01]
31/233	Ĭ	fusion [3, 2006.01]	53/08	• Acetic acid [1, 2006.01]
51/305		• with sulfur or sulfur-containing	53/10	• • Salts thereof [1, 2006.01]
02,000		compounds [3, 2006.01]	53/12	• Acetic anhydride (ketene C07C 49/90) [1, 2006.01]
51/31	•	of cyclic compounds with ring-	53/122	• Propionic acid [3, 2006.01]
		splitting [3, 2006.01]	53/124	• Acids containing four carbon atoms [3, 2006.01]
51/34	•	by oxidation with ozone; by hydrolysis of ozonides [1, 3, 2006.01]	53/126	 Acids containing more than four carbon atoms [3, 2006.01]
51/347	•	-5 5	53/128	• • the carboxyl group being bound to a carbon atom
		groups [3, 2006.01]		bound to at least two other carbon atoms, e.g. neo-
51/353	•	• by isomerisation; by change of size of the carbon	ED /4 DO	acids [3, 2006.01]
E1 /DC		skeleton [3, 2006.01]		• containing rings [3, 2006.01]
51/36	•	 by hydrogenation of carbon-to-carbon unsaturated bonds [1, 3, 2006.01] 		• • monocyclic [3, 2006.01]
51/363		 by introduction of halogen; by substitution of 	53/136	• • containing condensed ring systems [3, 2006.01]
31/303		halogen atoms by other halogen	53/138	 containing an adamantane ring system [3, 2006.01]
		atoms [3, 2006.01]	53/15	• containing halogen [3, 2006.01]
51/367	•	 by introduction of functional groups containing 	53/16	 Halogenated acetic acids [1, 3, 2006.01]
		oxygen only in singly bound form [3, 2006.01]	53/18	 containing fluorine [1, 3, 2006.01]
51/373	•	by introduction of functional groups containing	53/19	Acids containing three or more carbon
E4 (DEE		oxygen only in doubly bound form [3, 2006.01]		atoms [3, 2006.01]
51/377	•	• by splitting-off hydrogen or functional groups; by	53/21	• • • containing fluorine [3, 2006.01]
51/38		hydrogenolysis of functional groups [3, 2006.01]by decarboxylation [1, 3, 2006.01]	53/23	• • containing rings [3, 2006.01]
51/41		Preparation of salts of carboxylic acids by conversion	53/38	• Acyl halides [3, 2006.01]
31/41	-	of the acids or their salts into salts with the same	53/40	• • Acetyl halides [3, 2006.01]
		carboxylic acid part (preparation of soap	53/42	 of acids containing three or more carbon
		C11D) [3, 2006.01]		atoms [3, 2006.01]
51/42	•		53/44	• • containing rings [3, 2006.01]
		additives [1, 3, 2006.01]	53/46	 containing halogen outside the carbonyl halide group [3, 2006.01]
51/43	•	 by change of the physical state, e.g. crystallisation [3, 2006.01] 	53/48	• • Halogenated acetyl halides [3, 2006.01]
51/44		• by distillation [1, 3, 2006.01]	53/50	• • of acids containing three or more carbon
51/44		• • by azeotropic distillation [1, 3, 2006.01]	557 50	atoms [3, 2006.01]
51/47		• by solid-liquid treatment; by		
01/ ./		chemisorption [3, 2006.01]	55/00	Saturated compounds having more than one
51/48	•	• by liquid-liquid treatment [1, 2006.01]		carboxyl group bound to acyclic carbon atoms [1, 2, 2006.01]
51/487	•	 by treatment giving rise to chemical modification 	55/02	• Dicarboxylic acids [1, 2006.01]
		(by chemisorption C07C 51/47) [3, 2006.01]	55/06	• • Oxalic acid [1, 2006.01]
51/493	•	• whereby carboxylic acid esters are	55/07	• • • Salts thereof [3, 2006.01]
E4 /E0		formed [3, 2006.01]	55/08	 Malonic acid [1, 2006.01]
51/50	•	 Use of additives, e.g. for stabilisation [1, 3, 2006.01] 	55/10	• • Succinic acid [1, 2006.01]
51/54		Preparation of carboxylic acid anhydrides (by	55/12	• • Glutaric acid [1, 2006.01]
31/34		oxidation C07C 51/16) [1, 2006.01]	55/14	• • Adipic acid [1, 2006.01]
51/56	•	from organic acids, their salts, or their	55/16	• • Pimelic acid [1, 2006.01]
		esters [1, 2006.01]	55/18	 Azelaic acid [1, 2006.01]
51/567	•	 by reactions not involving the carboxylic acid 	55/20	• • Sebacic acid [1, 2006.01]
		anhydride group [3, 2006.01]	55/21	Dicarboxylic acids having twelve carbon
51/573	•	 Separation; Purification; Stabilisation; Use of additives [3, 2006.01] 	EE /22	atoms [3, 2006.01]
51/58		Preparation of carboxylic acid halides [1, 2006.01]	55/22 55/24	Tricarboxylic acids [1, 2006.01]containing more than three carboxyl
51/50		 by conversion of carboxylic acids or their 	24 /در	groups [1, 2006.01]
51/00	-	anhydrides into halides with the same carboxylic	55/26	• containing rings [3, 2006.01]
		acid part [3, 2006.01]	55/28	• monocyclic [3, 2006.01]
51/62	•	by reactions not involving the carboxylic acid	55/30	 containing condensed ring systems [3, 2006.01]
		halide group [3, 2006.01]	55/32	containing halogen [3, 2006.01]
			55/34	• • containing rings [3, 2006.01]

55/36		Acyl halides [3, 2006.01]	57/62	•	 containing six-membered aromatic rings and other
55/38		 containing rings [3, 2006.01] 			rings [3, 2006.01]
55/40	•	 containing halogen outside the carbonyl halide 	57/64		Acyl halides [3, 2006.01]
		group [3, 2006.01]	57/66	•	 with only carbon-to-carbon double bonds as unsaturation [3, 2006.01]
57/00		nsaturated compounds having carboxyl groups ound to acyclic carbon atoms [1, 2, 2006.01]	57/68	•	 with only carbon-to-carbon triple bonds as unsaturation [3, 2006.01]
57/02	•	with only carbon-to-carbon double bonds as unsaturation [1, 2006.01]	57/70	•	 containing rings other than six-membered aromatic rings [3, 2006.01]
57/03	•	 Monocarboxylic acids [3, 2006.01] 	57/72		• containing six-membered aromatic
57/04		Acrylic acid; Methacrylic acid [1, 3, 2006.01]	37772		rings [3, 2006.01]
57/045		• • • Preparation by oxidation in the liquid	57/74	•	• containing six-membered aromatic rings and other
57/05		phase [3, 2006.01] • • • Preparation by oxidation in the gaseous	57/76		rings [3, 2006.01] containing halogen outside the carbonyl halide
		phase [3, 2006.01]	37770		groups [3, 2006.01]
57/055	•	• • • starting from unsaturated aldehydes [3, 2006.01]	59/00		compounds having carboxyl groups bound to acyclic
57/065	•	 Preparation by splitting-off H—X, X being 		C	arbon atoms and containing any of the groups OH, \bigcap_{-}
		halogen, OR, or NR ₂ , R being hydrogen or a		•)-metal, —CHO, keto, ether, $^{\bigcirc C \setminus \bigcirc -C}$ groups,
		hydrocarbon group [3, 2006.01]		U	o-metal, —CHO, keto, ether, COOC groups,
57/07	•	Separation; Purification; Stabilisation; Use			0- -/n-c
		of additives [3, 2006.01]		_	C\0^C C\0^C
57/075	•	• • • Use of additives, e.g. for		_	0-0
		stabilisation [3, 2006.01]	E0 /01		O-C groups, or O-C groups [1, 2, 2006.01]
57/08	•	• • Crotonic acid [1, 3, 2006.01]	59/01	•	Saturated compounds having only one carboxyl
57/10		• • Sorbic acid [1, 3, 2006.01]			group and containing hydroxy or O-metal
57/12	•	 Straight chain carboxylic acids containing 	E0 /06	_	groups [3, 2006.01]
		eighteen carbon atoms [1, 3, 2006.01]	59/06		• Glycolic acid [1, 3, 2006.01]
57/13		 Dicarboxylic acids [3, 2006.01] 	59/08		• Lactic acid [1, 3, 2006.01]
57/145		• • Maleic acid [3, 2006.01]	59/10		• Polyhydroxy carboxylic acids [1, 2006.01]
57/15		• • Fumaric acid [3, 2006.01]	59/105	•	• • having five or more carbon atoms, e.g. aldonic
57/155		• • Citraconic acid [3, 2006.01]	FO/11	_	acids [3, 2006.01]
57/16	•	 Muconic acid [1, 3, 2006.01] 	59/11		• containing rings [3, 2006.01]
57/18	•	with only carbon-to-carbon triple bonds as unsaturation [1, 2006.01]	59/115 59/125		• containing halogen [3, 2006.01] Saturated compounds having only one carboxyl
57/20		• Propiolic acid [1, 2006.01])C(
57/22		Acetylene dicarboxylic acid [1, 2006.01]			group and containing ether groups, CCO-C groups,
57/24		Diacetylene or polyacetylene dicarboxylic			,0- ,0-
57/26		acids [1, 2006.01] containing rings other than six-membered aromatic			-C-O-C
		rings [3, 2006.01]	E0 /13		O-C groups, or O-C groups [3, 2006.01]
57/28	•	containing an adamantane ring	59/13		• containing rings [3, 2006.01]
		system [3, 2006.01]			• containing halogen [3, 2006.01]
57/30	•	containing six-membered aromatic rings [3, 2006.01]	59/147	•	Saturated compounds having only one carboxyl
57/32		• Phenylacetic acid [3, 2006.01]	F0 /1F2		group and containing —CHO groups [3, 2006.01]
57/34	•	 containing more than one carboxyl 			Glyoxylic acid [3, 2006.01] Saturated compounds having only one corporal
		group [3, 2006.01]	59/105	•	Saturated compounds having only one carboxyl group and containing keto groups [3, 2006.01]
57/36		 Phenylmalonic acid [3, 2006.01] 	59/19		 Pyruvic acid [3, 2006.01]
57/38		• polycyclic [3, 2006.01]			Acetoacetic acid [3, 2006.01]
57/40		• containing condensed ring systems [3, 2006.01]			• containing rings [3, 2006.01]
57/42		 having unsaturation outside the rings [3, 2006.01] 	59/205		• containing rings [3, 2006.01] • containing halogen [3, 2006.01]
57/44		 Cinnamic acid [3, 2006.01] 			
57/46	•	containing six-membered aromatic rings and other rings, e.g. cyclohexylphenylacetic acid [3, 2006.01]			 containing singly bound oxygen-containing groups [3, 2006.01]
57/48		 having unsaturation outside the aromatic 			 containing —CHO groups [3, 2006.01]
		rings [3, 2006.01]	59/235	•	Saturated compounds having more than one carboxyl group [3, 2006.01]
57/50		• containing condensed ring systems [3, 2006.01]	59/245		• containing hydroxy or O-metal
57/52		containing halogen [3, 2006.01]	<i>5512</i> 43		groups [3, 2006.01]
57/54	•	 Halogenated acrylic or methacrylic acids [3, 2006.01] 			• • Tartaric acid [3, 2006.01]
57/56	•	containing rings other than six-membered	59/265		• • Citric acid [3, 2006.01]
57/58		aromatic rings [3, 2006.01] containing six-membered aromatic	59/285	•	 Polyhydroxy dicarboxylic acids having five or more carbon atoms, e.g. saccharic
J//30		rings [3, 2006.01]	E0 /20		acids [3, 2006.01]
57/60	•	 having unsaturation outside the 	59/29		• containing rings [3, 2006.01]
		rings [3, 2006.01]	59/295	•	• containing halogen [3, 2006.01]

E0 /20E	• • containing ether groups, CCO-C groups,	61/04	• Saturated compounds having a carboxyl group bound
59/305	• • containing ether groups, O-	61/06	to a three- or four-membered ring [1, 3, 2006.01] • Saturated compounds having a carboxyl group bound
	0- c/0-C	G4 (00	to a five-membered ring [1, 3, 2006.01]
	0-C groups, or 0-C groups [3, 2006.01]	61/08	 Saturated compounds having a carboxyl group bound to a six-membered ring [1, 3, 2006.01]
59/31	• • • containing rings [3, 2006.01]	61/09	Completely hydrogenated benzenedicarboxylic
59/315	Containing halogen [5, 2000.01]	61/10	acids [2, 3, 2006.01]Saturated compounds having a carboxyl group bound
59/325 59/347	containing —CHO groups [3, 2006.01]containing keto groups [3, 2006.01]	01/10	to a seven- to twelve-membered ring [1, 3, 2006.01]
59/353	• • • containing rings [3, 2006.01]	61/12	• Saturated polycyclic compounds [1, 3, 2006.01]
59/40	• Unsaturated compounds [3, 2006.01]	61/125	 having a carboxyl group bound to a condensed ring system [3, 2006.01]
59/42	 containing hydroxy or O-metal groups [3, 2006.01] 	61/13	• • having two rings [3, 2006.01]
59/44	• • • Ricinoleic acid [3, 2006.01]	61/135	• • having three rings [3, 2006.01]
59/46	• • containing rings other than six-membered	61/15	 Saturated compounds containing halogen [3, 2006.01]
59/48	aromatic rings [3, 2006.01] • • containing six-membered aromatic	61/16	 Unsaturated compounds [1, 3, 2006.01]
337 40	rings [3, 2006.01]	61/20	having a carboxyl group bound to a five-
59/50	• • • • Mandelic acid [3, 2006.01]	61/22	membered ring [1, 3, 2006.01]having a carboxyl group bound to a six-membered
59/52	 a hydroxy or O-metal group being bound to a carbon atom of a six-membered aromatic 	01/22	ring [1, 3, 2006.01]
	ring [3, 2006.01]	61/24	Partially hydrogenated benzenedicarboxylic
59/54	• • • containing six-membered aromatic rings and	61/26	acids [1, 3, 2006.01]having a carboxyl group bound to a seven- to
59/56	other rings [3, 2006.01] • • containing halogen [3, 2006.01]	01/20	twelve-membered ring [1, 3, 2006.01]
55750	10-	61/28	• • polycyclic [1, 3, 2006.01]
59/58	• • containing ether groups,	61/29	 having a carboxyl group bound to a condensed ring system [3, 2006.01]
	0- -C , 0-C	61/35	• having unsaturation outside the rings [3, 2006.01]
	-C-O-C	61/37 61/39	 • Chrysanthemumic acid [3, 2006.01] • containing six-membered aromatic
59/60	`O-C groups, or `O-C groups [3, 2006.01] • • the non-carboxylic part of the ether being	01/33	rings [3, 2006.01]
557 00		C1 / 40	
F0 / CD	unsaturated [3, 2006.01]	61/40	• • containing halogen [3, 2006.01]
59/62	• • • containing rings other than six-membered	62/00	Compounds having carboxyl groups bound to
59/62 59/64	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic 		
	• • containing rings other than six-membered aromatic rings [3, 2006.01]		Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH,
59/64	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic 		Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered
59/64 59/66	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] 		Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH,
59/64	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered 		Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, O- C- O- O
59/64 59/66 59/68	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] 		Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C Groups, or O-C groups [3, 2006.01]
59/64 59/66	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic 	62/00 62/02	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C O-C O-C Groups, or O-C groups [3, 2006.01] • Saturated compounds containing hydroxy or O-metal groups [3, 2006.01]
59/64 59/66 59/68	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and 	62/00 62/02 62/04	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CCCO-C groups, O-CCO-C O-C groups, or O-C groups [3, 2006.01] • Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] • with a six-membered ring [3, 2006.01]
59/64 59/66 59/68 59/70 59/72	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] 	62/02 62/02 62/04 62/06	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CCOC groups, O-CCOC Groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] polycyclic [3, 2006.01]
59/64 59/66 59/68 59/70 59/72 59/74	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] 	62/00 62/02 62/04	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, O-C groups, O-CO-C G-C G-C G-C G-C G-C G-C G-C G-C G-C G
59/64 59/66 59/68 59/70 59/72	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered 	62/02 62/02 62/04 62/06	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, O-C groups, O-CO-C G-C G-C G-C G-C G-C G-C G-C G-C G-C G
59/64 59/66 59/68 59/70 59/72 59/74 59/76	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a 	62/02 62/02 62/04 62/06	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, O-C groups, O-CO-C G-C G-C G-C G-C G-C G-C G-C G-C G-C G
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] 	62/02 62/04 62/06 62/08	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C G-C G-C G-C G-C G-C G-C G-C G-C G-C G
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] 	62/02 62/04 62/06 62/08 62/10 62/12	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C O-C Groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] saturated compounds containing ether groups, O-CO-C Groups, O-C Groups, or O-C Groups [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01]
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic 	62/02 62/04 62/06 62/08 62/10 62/12 62/14	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CCOC groups, O-CCOC Groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] polycyclic [3, 2006.01] Saturated compounds containing ether groups, O-CCOC Groups, O-C groups, or O-CCOC O-C Groups [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] having a carboxyl group on a condensed ring system [3, 2006.01]
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82 59/84 59/86 59/88	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing halogen [3, 2006.01] 	62/02 62/04 62/06 62/08 62/10 62/12	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82 59/84 59/86	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing halogen [3, 2006.01] containing singly bound oxygen-containing 	62/02 62/04 62/06 62/08 62/10 62/12 62/14	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CCOC groups, O-CCOC Groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] polycyclic [3, 2006.01] Saturated compounds containing ether groups, O-CCOC Groups, O-C groups, or O-CCOC O-C Groups [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] having a carboxyl group on a condensed ring system [3, 2006.01]
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82 59/84 59/86 59/88	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing halogen [3, 2006.01] 	62/02 62/04 62/06 62/08 62/10 62/12 62/14 62/16 62/18	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C O-C groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] polycyclic [3, 2006.01] Saturated compounds containing ether groups, O-CO-C groups, or O-C groups, or O-C groups [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] suith a six-membered ring [3, 2006.01] suith a six-membered ring [3, 2006.01] suith a six-membered ring [3, 2006.01] Saturated compounds containing —CHO groups [3, 2006.01] Saturated compounds containing keto groups [3, 2006.01]
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82 59/84 59/86 59/88 59/90 59/92	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing singly bound oxygen-containing groups [3, 2006.01] containing —CHO groups [3, 2006.01] containing —CHO groups [3, 2006.01] 	62/02 62/04 62/06 62/08 62/10 62/12 62/14 62/16 62/18 62/20	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C O-C groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] polycyclic [3, 2006.01] Saturated compounds containing ether groups, O-CO-C groups, or O-C groups, or O-C groups [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] having a carboxyl group on a condensed ring system [3, 2006.01] Saturated compounds containing —CHO groups [3, 2006.01] Saturated compounds containing keto groups [3, 2006.01]
59/64 59/66 59/68 59/70 59/72 59/74 59/76 59/80 59/82 59/84 59/86 59/88 59/90	 containing rings other than six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] the non-carboxylic part of the ether containing six-membered aromatic rings [3, 2006.01] the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring [3, 2006.01] Ethers of hydroxy-acetic acid [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing —CHO groups [3, 2006.01] containing keto groups [3, 2006.01] containing rings other than six-membered aromatic rings [3, 2006.01] the keto group being part of a ring [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings [3, 2006.01] containing six-membered aromatic rings and other rings [3, 2006.01] containing halogen [3, 2006.01] containing singly bound oxygen-containing groups [3, 2006.01] 	62/02 62/04 62/06 62/08 62/10 62/12 62/14 62/16 62/18	Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings and containing any of the groups OH, O-metal, —CHO, keto, ether, CO-C groups, O-CO-C O-C groups, or O-C groups [3, 2006.01] Saturated compounds containing hydroxy or O-metal groups [3, 2006.01] with a six-membered ring [3, 2006.01] polycyclic [3, 2006.01] Saturated compounds containing ether groups, O-CO-C groups, or O-C groups, or O-C groups [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] with a six-membered ring [3, 2006.01] suith a six-membered ring [3, 2006.01] suith a six-membered ring [3, 2006.01] suith a six-membered ring [3, 2006.01] Saturated compounds containing —CHO groups [3, 2006.01] Saturated compounds containing keto groups [3, 2006.01]

62/26	 containing singly bound oxygen-containing 	63/70 • • Monocarboxylic acids [3, 2006.01]
	groups [3, 2006.01]	63/72 • • Polycyclic acids [3, 2006.01]
62/28	 containing —CHO groups [3, 2006.01] 	63/74 • • having unsaturation outside the aromatic
62/30	Unsaturated compounds [3, 2006.01]	rings [3, 2006.01]
62/32	• • containing hydroxy or O-metal	65/00 Compounds having carboxyl groups bound to
	groups [3, 2006.01]	carbon atoms of six-membered aromatic rings and
CD /D4	• • containing ether groups, CO-C groups,	containing any of the groups OH, O-metal, —CHO,
62/34	• • containing etner groups, o groups,	,0-
	n/n-c	O- -C-O-C keto, ether, CCO-C groups, O-C groups, or
	-c-c-c	keto, ether, $^{\circ}$ $^{\circ}$ groups, $^{\circ}$ groups, or
	0- -C-0-C	0- c/0-c
62/36	• • containing —CHO groups [3, 2006.01]	C)0 C
62/38	 containing keto groups [3, 2006.01] 	0-C groups [1, 2006.01]
		65/01 • containing hydroxy or O-metal groups [3, 2006.01]
63/00	Compounds having carboxyl groups bound to	65/03 • monocyclic and having all hydroxy or O-metal
	carbon atoms of six-membered aromatic rings [1, 2, 2006.01]	groups bound to the ring [3, 2006.01]
63/04	Monocyclic monocarboxylic acids [1, 2006.01]	65/05 • • • o-Hydroxy carboxylic acids [3, 2006.01]
63/06	Benzoic acid [1, 2006.01]	65/10 • • • • Salicylic acid [1, 3, 2006.01]
63/08	• • • Salts thereof [1, 2006.01]	65/105 • • polycyclic [3, 2006.01]
63/10	 Halides thereof [1, 2006.01] 	65/11 • • • with carboxyl groups on a condensed ring
63/14	Monocyclic dicarboxylic acids [1, 2006.01]	system containing two rings [3, 2006.01]
63/15	 all carboxyl groups bound to carbon atoms of the 	65/15 • • • with carboxyl groups on a condensed ring
	six-membered aromatic ring [3, 2006.01]	system containing more than two
63/16	• • • 1,2-Benzenedicarboxylic acid [1, 3, 2006.01]	rings [3, 2006.01]
63/20	• • • • Salts thereof [1, 3, 2006.01]	65/17 • • containing rings other than six-membered aromatic rings [3, 2006.01]
63/22	• • • • Halides thereof [1, 3, 2006.01]	65/19 • having unsaturation outside the aromatic
63/24	• • 1,3-Benzenedicarboxylic acid [1, 3, 2006.01]	ring [3, 2006.01]
63/26	• • 1,4-Benzenedicarboxylic acid [1, 3, 2006.01]	0
63/28	• • • Salts thereof [1, 3, 2006.01]	65/21 • containing ether groups, CCC groups, O-C
63/30	• • • Halides thereof [1, 3, 2006.01]	65/21 • containing ether groups, CO-C groups, O-C
63/307	Monocyclic tricarboxylic acids [3, 2006.01]	,0-
63/313	 Monocyclic acids containing more than three carboxyl groups [3, 2006.01] 	0- c/0-c \0-c
63/33	• Polycyclic acids [2, 3, 2006.01]	,0 0
63/331	 with all carboxyl groups bound to non-condensed 	
007001	rings [3, 2006.01]	65/24 • polycyclic [3, 2006.01]
63/333	• • • 4,4'-Diphenyldicarboxylic acids [2, 3, 2006.01]	65/26 • • • containing rings other than six-membered aromatic rings [3, 2006.01]
63/337	 with carboxyl groups bound to condensed ring 	65/28 • having unsaturation outside the aromatic
	systems [2, 3, 2006.01]	rings [3, 2006.01]
63/34	• • • containing two rings [1, 3, 2006.01]	65/30 • containing —CHO groups [3, 2006.01]
63/36	• • • • containing one carboxyl	65/32 • containing keto groups [3, 2006.01]
C2 /20	group [1, 3, 2006.01] • • • containing two carboxyl groups both bound	65/34 • • polycyclic [3, 2006.01]
63/38	to carbon atoms of the condensed ring	65/36 • • containing rings other than six-membered
	system [1, 3, 2006.01]	aromatic rings [3, 2006.01]
63/40	• • • containing three or more carboxyl groups all	• • having unsaturation outside the aromatic
	bound to carbon atoms of the condensed ring	rings [3, 2006.01]
	system [1, 3, 2006.01]	65/40 • • containing singly bound oxygen-containing groups [3, 2006.01]
63/42	• • containing three or more rings [1, 3, 2006.01]	65/42 • • containing —CHO groups [3, 2006.01]
63/44	• • • containing one carboxyl	05/42 Containing Circ groups [5, 2000.01]
CD / 4C	group [1, 3, 2006.01]	66/00 Quinone carboxylic acids [2, 2006.01]
63/46	• • • containing two carboxyl groups both bound to carbon atoms of the condensed ring	66/02 • Anthraquinone carboxylic acids [2, 2006.01]
	system [1, 3, 2006.01]	C7/00 P
63/48	• • • containing three or more carboxyl groups all	67/00 Preparation of carboxylic acid esters [1, 2006.01]
-	bound to carbon atoms of the condensed ring	Note(s) [3]
	system [1, 3, 2006.01]	In this group, lactones used as reactants are considered
63/49	• • containing rings other than six-membered	as being esters.
GD / = :	aromatic rings [3, 2006.01]	• by interreacting ester groups, i.e.
63/64	• Monocyclic acids with unsaturation outside the	transesterification [1, 2006.01]
63/66	aromatic ring [3, 2006.01]Polycyclic acids with unsaturation outside the	67/03 • by reacting an ester group with a hydroxy
05/00	aromatic rings [3, 2006.01]	group [2, 2006.01]
63/68	• containing halogen [3, 2006.01]	• by reacting carboxylic acids or symmetrical anhydrides with saturated hydrocarbons [3, 2006.01]

67/04					
0,,0.	•	by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon	67/343	•	• • by increase in the number of carbon atoms [3, 2006.01]
67/05		bonds [1, 2, 2006.01] • with oxidation [2, 3, 2006.01]	67/347	•	• • • by addition to unsaturated carbon-to-carbon bonds [3, 2006.01]
			67/26	_	
67/055		 in the presence of platinum group metals or their compounds [3, 2006.01] 	67/36	•	by reaction with carbon monoxide or formates (C07C 67/02, C07C 67/03, C07C 67/10 take
67/08	•	by reacting carboxylic acids or symmetrical			precedence) [2, 2006.01]
		anhydrides with the hydroxy or O-metal group of organic compounds [2, 2006.01]	67/37	•	 by reaction of ethers with carbon monoxide [2, 2006.01]
67/10		by reacting carboxylic acids or symmetrical	67/38		by addition to an unsaturated carbon-to-carbon
07710		anhydrides with ester groups or with a carbon-			bond [2, 2006.01]
a=		halogen bond [2, 2006.01]	67/39	•	by oxidation of groups which are precursors for the
67/11		 being mineral ester groups [3, 2006.01] 			acid moiety of the ester [3, 2006.01]
67/12	•	from asymmetrical anhydrides [2, 2006.01]	67/40	•	• by oxidation of primary alcohols [2, 3, 2006.01]
67/14	•	from carboxylic acid halides [2, 2006.01]	67/42	•	 by oxidation of secondary alcohols or
67/16		from carboxylic acids, esters or anhydrides wherein			ketones [2, 3, 2006.01]
		one oxygen atom has been replaced by a sulfur,	67/44	•	by oxidation-reduction of aldehydes, e.g. Tishchenko
		selenium or tellurium atom [2, 2006.01]			reaction [2, 2006.01]
67/18		by conversion of a group containing nitrogen into an	67/46		from ketenes or polyketenes [2, 2006.01]
0//10	•				
CE /DO		ester group [2, 2006.01]	67/465	•	by oligomerisation [3, 2006.01]
67/20		• from amides or lactams [2, 2006.01]	67/47	•	by telomerisation (macromolecular compounds
67/22		• from nitriles [2, 2006.01]			C08) [3, 2006.01]
67/24	•	by reacting carboxylic acids or derivatives thereof	67/475	•	by splitting of carbon-to-carbon bonds and
		with a carbon-to-oxygen ether bond, e.g. acetal,			redistribution, e.g. disproportionation or migration of
		tetrahydrofuran [2, 2006.01]			-coo¢-
67/26	•	 with an oxirane ring [2, 2006.01] 			groups between different
67/27		from ortho-esters [3, 2006.01]			molecules [3, 2006.01]
67/28		by modifying the hydroxylic moiety of the ester, such	67/48	•	Separation; Purification; Stabilisation; Use of
07720		modification not being an introduction of an ester			additives [2, 3, 2006.01]
		group [2, 2006.01]	67/52		 by change in the physical state, e.g.
67/283	_		07732		crystallisation [3, 2006.01]
0//203	٠	 by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] 	67/54		• by distillation [3, 2006.01]
C7/207					
67/287	•	by introduction of halogen; by substitution of	67/56	•	• by solid-liquid treatment; by
		halogen atoms by other halogen	c= /= c		chemisorption [3, 2006.01]
o= 100		atoms [3, 2006.01]	67/58	•	• by liquid-liquid treatment [3, 2006.01]
67/29	•	 by introduction of oxygen-containing functional groups [3, 2006.01] 	67/60	•	 by treatment giving rise to chemical modification (by chemisorption C07C 67/56) [3, 2006.01]
67/293					, , , , , , , , , , , , , , , , , , , ,
		• by icomorication: by change of cize of the carbon	C7/C2		. IIf -dd::: ft-b:::: [2 2000 01]
077233	•	 by isomerisation; by change of size of the carbon skeleton [3, 2006 01] 	67/62	•	• Use of additives, e.g. for stabilisation [3, 2006.01]
		skeleton [3, 2006.01]			
67/297		skeleton [3, 2006.01]by splitting-off hydrogen or functional groups; by	67/62 68/00	Pı	reparation of esters of carbonic or haloformic
67/297	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] 	68/00	Pi	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01]
	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such 	68/00 68/01	Pi ac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01]
67/297	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester 	68/00 68/01 68/02	Pi ac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01]
67/297 67/30	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] 	68/00 68/01	Pi ac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic
67/297	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon 	68/00 68/01 68/02 68/04	P1 ac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01]
67/297 67/30 67/303		 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06	Piac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01]
67/297 67/30		 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of 	68/00 68/01 68/02 68/04	Piac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01]
67/297 67/30 67/303		 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen 	68/00 68/01 68/02 68/04 68/06	P1 ac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01]
67/297 67/30 67/303	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065	P1 ac	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01]
67/297 67/30 67/303	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing 	68/00 68/01 68/02 68/04 68/06 68/065	Prace	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01]
67/297 67/30 67/303 67/307	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08	Prace	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01]
67/297 67/30 67/303 67/307	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing 	68/00 68/01 68/02 68/04 68/06 68/065 68/08	Practice of the second	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01]
67/297 67/30 67/303 67/307	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08	Practice of the second	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or
67/297 67/30 67/303 67/307	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen 	68/00 68/01 68/02 68/04 68/06 68/065 68/08	Practice of the second	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01]
67/297 67/30 67/303 67/307 67/31 67/313	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08	Pri acción de la constante de	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01]
67/297 67/30 67/303 67/307 67/31 67/313	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by 	68/00 68/01 68/02 68/04 68/06 68/065 68/08	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [tote(s) [5] Intention is drawn to Note (6) following the title of this abclass.
67/297 67/30 67/303 67/307 67/31 67/313	•	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] [ote(s) [5]]
67/297 67/30 67/303 67/307 67/31 67/313 67/317		 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] Intention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified
67/297 67/30 67/303 67/307 67/31 67/313		 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [tote(s) [5] Intention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
67/297 67/30 67/303 67/307 67/31 67/313 67/317 67/32 67/327	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [tote(s) [5] Litention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified
67/297 67/30 67/303 67/307 67/31 67/313 67/317	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] by isomerisation; by change of size of the carbon 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [tote(s) [5] Intention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon
67/297 67/30 67/303 67/307 67/31 67/313 67/317 67/32 67/327	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] by isomerisation; by change of size of the carbon skeleton (introduction or elimination of carboxyl 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/003	Practice of the state of the st	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] Ittention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
67/297 67/30 67/303 67/307 67/31 67/313 67/317 67/32 67/327	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] by isomerisation; by change of size of the carbon skeleton (introduction or elimination of carboxyl groups C07C 67/313, C07C 67/32) [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00 69/003	Production of the state of the	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] [attention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] • Vinyl esters [3, 2006.01]
67/297 67/30 67/303 67/307 67/31 67/313 67/317 67/32 67/327	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] by isomerisation; by change of size of the carbon skeleton (introduction or elimination of carboxyl groups C07C 67/313, C07C 67/32) [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/003	Production of the state of the	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] [attention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] • Vinyl esters [3, 2006.01] Esters of alcohols having the esterified hydroxy
67/297 67/30 67/303 67/307 67/31 67/313 67/317 67/32 67/327 67/333	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] by isomerisation; by change of size of the carbon skeleton (introduction or elimination of carboxyl groups C07C 67/313, C07C 67/32) [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00 69/003	Production of the state of the	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from phosgene or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] [attention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] • Vinyl esters [3, 2006.01] Esters of alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a
67/297 67/30 67/303 67/307 67/31 67/313 67/317 67/32 67/327	• • • • • • • • • • • • • • • • • • • •	 skeleton [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] by modifying the acid moiety of the ester, such modification not being an introduction of an ester group [2, 2006.01] by hydrogenation of unsaturated carbon-to-carbon bonds [3, 2006.01] by introduction of halogen; by substitution of halogen atoms by other halogen atoms [3, 2006.01] by introduction of functional groups containing oxygen only in singly bound form [3, 2006.01] by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups [3, 2006.01] by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups [3, 2006.01] Decarboxylation [2, 3, 2006.01] by elimination of functional groups containing oxygen only in singly bound form [3, 2006.01] by isomerisation; by change of size of the carbon skeleton (introduction or elimination of carboxyl groups C07C 67/313, C07C 67/32) [3, 2006.01] 	68/00 68/01 68/02 68/04 68/06 68/065 68/08 69/00 69/003	Production of the state of the	reparation of esters of carbonic or haloformic cids [2, 2006.01, 2020.01] from carbon monoxide and oxygen [2020.01] from phosgene or haloformates [2, 2006.01] from carbon dioxide or inorganic carbonates [2, 2006.01] from organic carbonates [2, 2006.01, 2020.01] • from alkylene carbonates [2020.01] Purification; Separation; Stabilisation [2, 2006.01] sters of carboxylic acids; Esters of carbonic or aloformic acids [1, 2006.01] [ote(s) [5] [attention is drawn to Note (6) following the title of this abclass. Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01] • Vinyl esters [3, 2006.01] Esters of alcohols having the esterified hydroxy

Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a sixmembered aromatic ring [3, 2006.01]

Note(s) [3]

Esters having a variably-specified acid moiety, i.e. covered by more than one of groups C07C 69/02, C07C 69/34, C07C 69/52, C07C 69/608, C07C 69/612, C07C 69/62, C07C 69/66, C07C 69/74, C07C 69/76, C07C 69/95, C07C 69/96, are covered by groups C07C 69/003-C07C 69/017 according to their hydroxylic moiety.

- 69/02 Esters of acvclic saturated monocarboxvlic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen [1, 2006.01]
- 69/025 esterified with unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
- 69/03 esterified with alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a six-membered aromatic ring [3, 2006.01]
- 69/035 esterified with a hydroxy compound having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring [3, 2006.01]
- 69/04 • • Formic acid esters [1, 2006.01]
- • of monohydroxylic compounds [1, 2006.01] 69/06
- 69/07 of unsaturated alcohols [2, 2006.01]
- 69/08 • • of dihydroxylic compounds [1, 2006.01]
- 69/10of trihydroxylic compounds [1, 2006.01]
- 69/12 Acetic acid esters [1, 2006.01]
- of monohydroxylic compounds [1, 2006.01] 69/14
- of unsaturated alcohols [2, 2006.01] 69/145
- Vinyl acetate [2, 2006.01] 69/15
- 69/155 • • • Allyl acetate [2, 2006.01]
- 69/157 containing six-membered aromatic rings [3, 2006.01]
- 69/16 • of dihydroxylic compounds [1, 2006.01]
- 69/18 of trihydroxylic compounds [1, 2006.01]
- 69/21 of hydroxy compounds with more than three hydroxy groups [2, 2006.01]
- 69/22 having three or more carbon atoms in the acid moiety [1, 2006.01]
- esterified with monohydroxylic 69/24 compounds [1, 2006.01]
- 69/26 Synthetic waxes [1, 2006.01]
- esterified with dihydroxylic 69/28 compounds [1, 2006.01]
- 69/30 esterified with trihydroxylic compounds [1, 2006.01]
- 69/33 esterified with hydroxy compounds having more than three hydroxy groups [2, 2006.01]
- Esters of acyclic saturated polycarboxylic acids 69/34 having an esterified carboxyl group bound to an acyclic carbon atom [1, 3, 2006.01]
- esterified with unsaturated alcohols having the 69/347 esterified hydroxy group bound to an acyclic carbon atom [3, 2006.01]
- 69/353 esterified with a hydroxy compound having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring [3, 2006.01]
- 69/36 Oxalic acid esters [1, 3, 2006.01]
- 69/38 Malonic acid esters [1, 3, 2006.01]
- 69/40 Succinic acid esters [1, 3, 2006.01]
- 69/42 Glutaric acid esters [1, 3, 2006.01]
- 69/44 • • Adipic acid esters [1, 3, 2006.01]

- 69/46 Pimelic acid esters [1, 3, 2006.01]
- 69/48 Azelaic acid esters [1, 3, 2006.01]
- 69/50 Sebacic acid esters [1, 3, 2006.01]
- Esters of acyclic unsaturated carboxylic acids having 69/52 the esterified carboxyl group bound to an acyclic carbon atom [1, 3, 2006.01]
- 69/527 of unsaturated hydroxy compounds [3, 2006.01]
- 69/533 Monocarboxylic acid esters having only one carbon-to-carbon double bond [3, 2006.01]
- 69/54 Acrylic acid esters; Methacrylic acid esters [1, 3, 2006.01]
- 69/56 Crotonic acid esters; Vinyl acetic acid esters [1, 3, 2006.01]
- 69/58 Esters of straight chain acids with eighteen carbon atoms in the acid moiety [1, 3, 2006.01]
- 69/587 Monocarboxylic acid esters having at least two carbon-to-carbon double bonds [3, 2006.01]
- 69/593 Dicarboxylic acid esters having only one carbonto-carbon double bond [3, 2006.01]
- 69/60 Maleic acid esters; Fumaric acid esters [1, 3, 2006.01]
- 69/602 Dicarboxylic acid esters having at least two carbon-to-carbon double bonds [3, 2006.01]
- 69/604 Polycarboxylic acid esters, the acid moiety containing more than two carboxyl groups [3, 2006.01]
- 69/606 having only carbon-to-carbon triple bonds as unsaturation in the carboxylic acid moiety [3, 2006.01]
- 69/608 Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a ring other than a six-membered aromatic ring in the acid moiety [3, 2006.01]
- 69/612 Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a sixmembered aromatic ring in the acid moiety [3, 2006.01]
- 69/614 • of phenylacetic acid [3, 2006.01]
- 69/616 polycyclic [3, 2006.01]
- having unsaturation outside the six-membered 69/618 aromatic ring [3, 2006.01]
- 69/62 • Halogen-containing esters [1, 2, 2006.01]
- 69/63 • • of saturated acids [2, 2006.01]
- • containing rings in the acid moiety [3, 2006.01] 69/635
- 69/65 of unsaturated acids [2, 2006.01]
- Acrylic acid esters; Methacrylic acid esters; 69/653 Haloacrylic acid esters; Halomethacrylic acid esters [3, 2006.01]
- Maleic acid esters; Fumaric acid esters; 69/657 Halomaleic acid esters; Halofumaric acid esters [3, 2006.01]
- 69/66 Esters of carboxylic acids having esterified carboxyl groups bound to acyclic carbon atoms and having any of the groups OH, O-metal, —CHO, keto, ether,

- 69/67 of saturated acids [2, 2006.01]
- 69/675 of saturated hydroxy-carboxylic
- acids [3, 2006.01] 69/68 Lactic acid esters **[1, 3, 2006.01]**
- 69/70
- Tartaric acid esters [1, 3, 2006.01]

69/704	• • • Citric acid esters [3, 2006.01]	Compou	nds containing carbon and nitrogen with or without
69/708	• • • Ethers [3, 2006.01]	<u>hydroger</u>	n, halogens or oxygen [5]
69/712	• • • • the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom	201/00	Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton [5, 2006.01]
	of a six-membered aromatic ring [3, 2006.01]	201/02	 Preparation of esters of nitric acid [5, 2006.01]
60/716	• • • Esters of keto-carboxylic acids [3, 2006.01]	201/04	• Preparation of esters of nitrous acid [5, 2006.01]
69/72		201/06	 Preparation of nitro compounds [5, 2006.01]
	• • • Acetoacetic acid esters [1, 3, 2006.01]	201/08	 by substitution of hydrogen atoms by nitro
69/73	• • of unsaturated acids [2, 2006.01]	201700	groups [5, 2006.01]
69/732	• • • of unsaturated hydroxy carboxylic acids [3, 2006.01]	201/10	 by substitution of functional groups by nitro groups [5, 2006.01]
69/734		201/12	 by reactions not involving the formation of nitro
69/736	• • • the hydroxy group of the ester being	201/12	groups [5, 2006.01]
	etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring [3, 2006.01]	201/14	 by formation of nitro groups together with reactions not involving the formation of nitro groups [5, 2006.01]
69/738	• • Esters of keto-carboxylic acids [3, 2006.01]	201/16	 Separation; Purification; Stabilisation; Use of
69/74	Esters of carboxylic acids having an esterified		additives [5, 2006.01]
	carboxyl group bound to a carbon atom of a ring	000/00	T. 6 1.1 1. 1.1 1. 1.1 1. 1.1 1.1 1.1 1.1
	other than a six-membered aromatic ring [1, 2006.01]	203/00	Esters of nitric or nitrous acid [5, 2006.01]
69/743	 of acids with a three-membered ring and with 	203/02	• Esters of nitric acid [5, 2006.01]
69/747	unsaturation outside the ring [3, 2006.01]• Chrysanthemumic acid esters [3, 2006.01]	203/04	 having nitrate groups bound to acyclic carbon atoms [5, 2006.01]
69/75	• of acids with a six-membered ring [3, 2006.01]	203/06	• • • Glycerol trinitrate [5, 2006.01]
69/753	• • of polycyclic acids [3, 2006.01]	203/08	 having nitrate groups bound to carbon atoms of
69/757	 having any of the groups OH, O-metal, —CHO, 		rings other than six-membered aromatic
007707	.O-	000/40	rings [5, 2006.01]
	keto, ether, acyloxy, $C<0-$ groups, $C<0-$	203/10	 having nitrate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
		205/00	Compounds containing nitro groups bound to a
	0- c\0-c c\0-c	203/00	carbon skeleton [5, 2006.01]
	C\0-C	205/01	 having nitro groups bound to acyclic carbon
	groups, or $0-C$ in the acid moiety [3, 2006.01]	203/01	atoms [5, 2006.01]
69/76	Esters of carboxylic acids having an esterified	205/02	 of a saturated carbon skeleton [5, 2006.01]
05/70	carboxyl group bound to a carbon atom of a six-	205/02	 of a saturated carbon skeleton [5, 2006.01] of an unsaturated carbon skeleton [5, 2006.01]
	membered aromatic ring [1, 2006.01]	205/03	• • containing six-membered aromatic
69/767	esterified with unsaturated alcohols having the	203/04	rings [5, 2006.01]
	esterified hydroxy group bound to an acyclic	205/05	 having nitro groups bound to carbon atoms of rings
	carbon atom [3, 2006.01]	200700	other than six-membered aromatic rings [5, 2006.01]
69/773	 esterified with a hydroxy compound having the 	205/06	 having nitro groups bound to carbon atoms of six-
	esterified hydroxy group bound to a carbon atom		membered aromatic rings [5, 2006.01]
	of a six-membered aromatic ring [3, 2006.01]	205/07	 the carbon skeleton being further substituted by
69/78	 Benzoic acid esters [1, 2006.01] 		halogen atoms [5, 2006.01]
69/80	 Phthalic acid esters [1, 2, 2006.01] 	205/08	 having nitro groups bound to acyclic carbon
69/82	• • Terephthalic acid esters [1, 2006.01]		atoms [5, 2006.01]
69/83	• • • of unsaturated alcohols [2, 2006.01]	205/09	• • of an unsaturated carbon skeleton [5, 2006.01]
69/84	 of monocyclic hydroxy carboxylic acids, the 	205/10	 having nitro groups bound to carbon atoms of
	hydroxy groups and the carboxyl groups of which		rings other than six-membered aromatic
	are bound to carbon atoms of a six-membered		rings [5, 2006.01]
CO / OC	aromatic ring [1, 2006.01]	205/11	 having nitro groups bound to carbon atoms of six-
69/86	• • • with esterified hydroxyl groups [1, 2006.01]	50 = / 45	membered aromatic rings [5, 2006.01]
69/88 69/90	• • with esterified carboxyl groups [1, 2006.01]• • with esterified hydroxyl and carboxyl	205/12	• • • the six-membered aromatic ring or a condensed
09/90	groups [1, 2006.01]		ring system containing that ring being substituted by halogen atoms [5, 2006.01]
69/92	• • • with etherified hydroxyl groups [1, 2, 2006.01]	205/13	the carbon skeleton being further substituted by
69/94	of polycyclic hydroxy carboxylic acids, the	205/15	hydroxy groups [5, 2006.01]
0 <i>5 3</i> 4	hydroxy groups and the carboxyl groups of which	205/14	 having nitro groups and hydroxy groups bound to
	are bound to carbon atoms of six-membered	200/1 4	acyclic carbon atoms [5, 2006.01]
	aromatic rings [1, 2, 2006.01]	205/15	• • • of a saturated carbon skeleton [5, 2006.01]
69/95	• Esters of quinone carboxylic acids [2, 2006.01]	205/16	• • • of a carbon skeleton containing six-membered
69/96	• Esters of carbonic or haloformic acids [2, 2006.01]	200/10	aromatic rings [5, 2006.01]
71/00	Esters of oxyacids of halogens [1, 2006.01]	205/17	 having nitro groups bound to acyclic carbon atoms and hydroxy groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01]

205/18 - having nitor groups or hydroxy groups bound carbon atoms of rings ofter than six-membered aromatic rings 15, 2006.011 205/20 - having nitor groups and hydroxy groups bound to acyclic carbon atoms of chemical power of the same more condensed six-membered aromatic rings of the carbon selection [5, 2006.01] 205/21 - having nitor groups and hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon selection [5, 2006.01] 205/22 - having nitor groups and hydroxy groups bound to acyclic carbon atoms of the same non-condensed six-membered aromatic rings of the carbon selection [5, 2006.01] 205/22 - having nitor groups bound to the ring [5, 2006.01] 205/23 - having nitor groups bound to the ring [5, 2006.01] 205/24 - having nitor groups bound to the ring [5, 2006.01] 205/25 - having nitor groups bound to the ring [5, 2006.01] 205/26 - having nitor groups bound to the ring [5, 2006.01] 205/27 - the carbon selection highly havings aromatic rings being part of general powers of the same aromatic rings being part of general powers of the same aromatic rings being part of general powers of the same aromatic rings being further substituted by effective aromatic rings being further substituted by early a substitute rings of the carbon selection file substituted by effective proving substituted by a further substituted by early a substitute rings of the carbon selection file substituted by early aromatic rings of the carbon selection file substituted by early aronated file substituted proving substituted by early aronated file substituted proving substituted by early				
205/19 Naving nitro groups bound to arbon atoms of sts- membered aromatic rings and hydroxy groups bound to 205/20 Naving nitro groups and hydroxy groups bound to 205/21 Naving nitro groups and hydroxy groups bound to 205/22 Naving nitro groups and hydroxy groups bound 10 carbon atoms of six-membered aromatic 205/22 Naving nitro groups bound to the 10 ning [5, 2066.01] 205/23 Naving nitro groups bound to the 10 ning [5, 2066.01] 205/24 Naving nitro groups bound to 205/25 Naving nitro groups bound to 205/26 Naving nitro groups bound to 205/27 Naving nitro groups bound to 205/28 Naving nitro groups bound to 205/29 Naving nitro groups bound to arbon atoms 205/29 Naving nitro groups bound to 205/20 Naving nitro groups bound to arbon atoms 205/20 Naving nitro groups bound to 205/20 Naving nitro groups bound to arbon atoms 205/21 Naving nitro groups bound to arbon 205/20 Naving nitro groups bound to arbon atoms 205/20 Naving nitro groups bound to arbon atoms 205/21 Naving nitro groups bound to arbon atoms 205/20 Naving nitro groups not described hydroxy groups 205/20 Naving nitro groups and reherrified hydroxy groups 205/20 Naving nitro groups and reherrified hydroxy groups 205/21 Naving nitro groups and reherrified hydroxy groups 205/22 Naving nitro groups and reherrified hydroxy groups 205/22 Naving nitro groups and reherrified hydroxy groups bound to arbon atoms 205/22 Naving nitro groups and reherrified hydroxy groups 205/22 Naving nitro groups on electron electron 205/23 Naving nitro groups on electron electron 205/24 Naving nitro groups on electron electron 205/25 Naving nitro groups on electron electron 205/26 Naving nitro groups on electron electron 205/27 Naving nitro groups on electron electron 205/27 Naving nitro groups on electron electron 205/28 Naving nitro groups on electron electron 205/29 Naving nitro groups on electron electron 205/29 Naving ni	205/18	carbon atoms of rings other than six-membered	205/40	bound to acyclic carbon atoms of the carbon
205/20 205/21 2066.011 205/22 205/23 205/23 205/24 2	205/19	 having nitro groups bound to carbon atoms of six- membered aromatic rings and hydroxy groups 	205/41	 having nitro groups or esterified hydroxy groups bound to carbon atoms of rings other than six-
205/21 • • • having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed six-membered aromatic ring IS, 2006.011 205/22 • • • having nitro groups bound to the ring IS, 2006.011 205/25 • • • having nitro groups bound to the ring IS, 2006.011 205/26 • • • having nitro groups bound to carbon atoms of six-membered aromatic rings system IS, 2006.011 205/27 • • • having nitro groups bound to carbon atoms of six-membered aromatic rings system IS, 2006.011 205/28 • • • having nitro groups bound to carbon atoms of six-membered aromatic rings system IS, 2006.011 205/29 • • • having nitro groups bound to earbon atoms of six-membered aromatic rings of the carbon skeleton being further substituted by a least one of the etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/30 • • • the carbon skeleton being further substituted by solution to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/31 • • the carbon skeleton being further substituted by solution to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton being further substituted by solution to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/32 • • the carbon skeleton Cings of the carbon skeleton IS, 2006.011 205/32 • the carbon skeleton IS, 2006.011 205/33 • having nitro groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/34 • having nitro groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/35 • having nitro groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/36 • having nitro groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.011 205/37 • having nitro groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton IS, 2006.0	205/20	 having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic 	205/42	skeleton [5, 2006.01]having nitro groups or esterified hydroxy groups
205/22 * * * * having nore nitrog group bound to the ring [5, 2006.01] 205/23 * * * * having rive nitrog groups bound to the ring [5, 2006.01] 205/24 * * * * having introg groups bound to carbon atoms of six-membered aromatic rings being part of a condensed ring gystem [5, 2006.01] 205/25 * * * having nitrog groups bound to carbon atoms of six-membered aromatic rings being part of a condensed ring gystem [5, 2006.01] 205/26 * * and being further substituted by halogen atoms [5, 2006.01] 205/27 * the carbon skeleron being gystem [5, 2006.01] 205/28 * having nitro groups and etherified hydroxy groups bound to acrbon skeleron being further substituted by bound to scyclic carbon atoms of skeleron being further substituted by bound to scyclic carbon atoms of skeleron being further substituted by bound to scyclic carbon atoms of skeleron being further substituted by bound to scyclic carbon atoms of skeleron being further substituted by selecting flag groups [5, 2006.01] 205/28 * having nitro groups and etherified hydroxy groups bound to acrbon skeleron being saturated [5, 2006.01] 205/30 * the carbon skeleron being saturated [5, 2006.01] 205/31 * having nitrog groups bound to acrbon atoms of six-membered aromatic ring [5, 2006.01] 205/32 * having nitrog groups bound to acrbon atoms of six-membered aromatic rings [5, 2006.01] 205/33 * having nitrog groups bound to acrbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 * having nitrog groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/35 * having nitrog groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/36 * having nitrog groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/37 * having nitrog groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/38 * having nitrog groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5,	205/21	 having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed 	205/43	rings of the carbon skeleton [5, 2006.01] • • to carbon atoms of the same non-condensed
205/24 having intro groups bound to carbon atoms of six-membered aromatic rings of earbon skeleton being further substituted by a cherified hydroxy groups being further substituted by cherified hydroxy groups pad etherified hydroxy groups being further substituted by cherified hydroxy groups being further substituted by cherified hydroxy groups pad etherified hydroxy groups being further substituted by cherified hydroxy groups being further substituted by singly-bound oxygen atoms fix 2006.011 205/32 the carbon skeleton being further substituted by cherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton is, 2006.011 205/34 the carbon skeleton is, 2006.011 205/35 having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton is, 2006.011 205/36 to carbon atoms of six-membered aromatic rings of the carbon skeleton is, 2006.011 205/37 the oxygen atom of at less tone of the etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton is, 2006.011 205/38 the carbon skeleton is, 2006.011 205/39 the carbon skeleton is a carbon atoms of six-membered aromatic rings of the carbon skeleton is, 2006.011 205/30 the carbon skeleton is proups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton is proups bound to carbon atoms of six-membered aromatic rings of the carbon skeleto	205/22	• • • having one nitro group bound to the ring [5, 2006.01]		of six-membered aromatic rings being part of the same condensed ring system [5, 2006.01]
Section Sect	205/23			CHO groups [5, 2006.01]
six-membered aromatic rings being part of a condensed ring system [5, 2006.01] 205/26 * and being further substituted by halogen atoms [5, 2006.01] 205/27 * the carbon skeleton being further substituted by etherified hydroxy groups bound to acyclic carbon atoms of the carbon skeleton being further substituted by shelf of the carbon skeleton being further substituted by should to acyclic carbon atoms of the carbon skeleton being further substituted by carboxyl groups [5, 2006.01] 205/28 * the carbon skeleton being saturated [5, 2006.01] 205/30 * the carbon skeleton being saturated [5, 2006.01] 205/31 * the carbon skeleton being saturated [5, 2006.01] 205/32 * the carbon skeleton ontaining six-membered aromatic rings [5, 2006.01] 205/33 * having nitro groups bound to acyclic carbon atoms and etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/33 * having nitro groups or etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/33 * having nitro groups or etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 * having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/35 * having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/36 * having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/37 * having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/38 * having nitro groups and etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/37 * having nitro groups and etherified hydroxy groups being further bound to an acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.		bound to the ring [5, 2006.01]	205/45	least one doubly-bound oxygen atom, not being part
205/27 the carbon skeleton being further substituted by erherified hydroxy groups [5, 2006.01]	205/25	six-membered aromatic rings being part of a	205/46	 the carbon skeleton containing carbon atoms of
etherified hydroxy groups [5, 2006.01] 205/28	205/26		205/47	
bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/20	205/27		205/48	
205/32 * . * . * . * the carbon skeleton being saturated [5, 2006.01] 205/30 * . * . * the carbon skeleton of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic rings [5, 2006.01] 205/31 * . * . * the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 205/32 * . * having nitro groups bound to acrbon atoms and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/33 * . * having nitro groups bound to carbon atoms and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/33 * . * having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 * . * having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/35 * . * having nitro groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and carboxyl groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and carboxyl groups bound to carbon atoms of six-membered aromatic rings and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/36 * . * to carbon atoms of six-membered aromatic ring so to carbon atoms of six-membered aromatic ring so the carbon skeleton [5, 2006.01] 205/37 * . * the carbon skeleton [5, 2006.01] 205/38 * . * to carbon atoms of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom of the etherified hydroxy groups being further bound to an acyclic carbon atom of the etherified hydroxy groups being further bound to an acyclic carbon atom of the etherified hydroxy groups being further substituted by etherified hydroxy groups	205/28	bound to acyclic carbon atoms of the carbon		carboxyl groups [5, 2006.01]
205/30	205/29	 the carbon skeleton being 	205/50	acyclic carbon atoms of the carbon
205/32 * the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 205/32 * having nitro groups bound to acyclic carbon atoms and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/33 * having nitro groups or etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 * having nitro groups or etherified hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 * having nitro groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of the carbon skeleton [5, 2006.01] 205/35 * having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings and etherified hydroxy groups being further substituted by singly-bound oxygen atoms [5, 2006.01] 205/36 * to carbon atoms of the same condensed ring system [5, 2006.01] 205/37 * the carbon skeleton being further substituted by etherified hydroxy groups being further bound to an acyclic carbon atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton being further substituted by etherified hydroxy groups being further substituted by singly-bound oxygen atoms [5, 2006.01] 205/38 * the carbon skeleton being further substituted by etherified hydroxy groups being further substituted by etherified	205/30	• • • the oxygen atom of at least one of the	205/51	• • • the carbon skeleton being
205/32 * the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 205/54 205/32 * having nitro groups bound to acyclic carbon atoms and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/55 * having nitro groups or etherified hydroxy groups bound to carbon atoms of rings of the carbon atoms of rings of the carbon atoms of rings other than six-membered aromatic rings and etherified hydroxy groups bound to acryclic carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acryclic carbon atoms of the carbon skeleton [5, 2006.01] 205/55 * having nitro groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acryclic carbon atoms of the carbon skeleton [5, 2006.01] 205/56 * having nitro groups bound to acryclic carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acryclic carbon atoms of the carbon skeleton [5, 2006.01] 205/57 * having nitro groups bound to acryclic carbon atoms of the carbon skeleton [5, 2006.01] 205/58 * having nitro groups bound to acryclic carbon atoms of the carbon skeleton [5, 2006.01] 205/58 * having nitro groups bound to acryclic carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acryclic carbon atoms of six-membered aromatic rings of the carbon atoms of six-membered aromatic rings			205/52	• • • • Nitro-acetic acids [5, 2006.01]
205/32 • having nitro groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/33 • having nitro groups or etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 • having nitro groups bound to carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/35 • having nitro groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/35 • having nitro groups bound to carbon atoms of six-membered aromatic rings and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/36 • having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/37 • having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/38 • • to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] 205/39 • • to carbon atoms of the same non-condensed six-membered aromatic rings of the carbon skeleton being further substituted by etherified hydroxy groups being further bound to an acyclic carbon atoms of the etherified hydroxy groups being further bound to an acyclic carbon atoms of the etherified hydroxy groups being further substituted by doubly-bound oxygen atoms [5, 2006.01] 205/39 • the carbon skeleton being further substituted by ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by ethers [5, 2006.01] 205/39 • the carbon skeleton being further	205/31	 the carbon skeleton containing six-membered 		aromatic rings [5, 2006.01]
205/33 * * * * * * * * * * * * * * * * * *	205/32	 having nitro groups bound to acyclic carbon atoms and etherified hydroxy groups bound to carbon 	205/54	and carboxyl groups bound to carbon atoms of six- membered aromatic rings of the carbon
bound to carbon atoms of rings other than six- membered aromatic rings of the carbon skeleton [5, 2006.01] 205/34 * having nitro groups bound to carbon atoms of six- membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/35 * having nitro groups bound to carbon atoms of six- membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/36 * having nitro groups bound to carbon atoms of the carbon skeleton [5, 2006.01] 205/37 * having nitro groups and carboxyl groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton skeleton [5, 2006.01] 205/37 * having nitro groups and carboxyl groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton skeleton [5, 2006.01] 205/37 * having nitro groups and carboxyl groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon skeleton skeleton [5, 2006.01] 205/37 * having nitro groups and carboxyl groups bound to acyclic carbon atoms of six-membered aromatic rings of the carbon storyl proups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/58 * the carbon skeleton being further substituted by either [5], 2006.01] 205/60 * the carbon skeleton being further substituted by either [5], 2006.01] 205/61 * the carbon skeleton being further bound to a carbon atom of a six-membered aromatic rings of the carbon atoms of six- membered aromatic rings and carboxyl groups bound to acyclic carbon atoms of six- membered aromatic rings of the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01] * the carbon skeleton being further substituted by either [5], 2006.01] 205/61 * the carbon skeleton being further bound to acyclic carbon atoms of six- membered aromatic rings of the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01] * the carbon skeleton being further substituted [5,			205/55	
skeleton [5, 2006.01] 1	205/33	bound to carbon atoms of rings other than six-		
membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 205/35 205/35 205/35 205/35 205/36 205/36 205/36 205/36 205/36 205/36 205/36 205/37 205/36 205/38 205/3	205/24	skeleton [5, 2006.01]	205/56	membered aromatic rings and carboxyl groups
carbon skeleton [5, 2006.01] 205/35	205/34	membered aromatic rings and etherified hydroxy	205/57	skeleton [5, 2006.01]
rings of the carbon skeleton [5, 2006.01] 205/36 * • to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system [5, 2006.01] 205/37 * • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom [5, 2006.01] 205/38 * • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 * the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01]	205/35	carbon skeleton [5, 2006.01]	203/3/	carbon atoms of six-membered aromatic rings of
six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system [5, 2006.01] 205/37 • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom [5, 2006.01] 205/38 • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/40 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01]			205/58	
the same condensed ring system [5, 2006.01] 205/37 • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom [5, 2006.01] 205/38 • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom [5, 2006.01] 205/38 • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39	205/36	six-membered aromatic ring or to carbon atoms	205/59	singly-bound oxygen atoms [5, 2006.01]
etherified hydroxy groups being further bound to an acyclic carbon atom [5, 2006.01] 205/38 • • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01]	00-10-	the same condensed ring system [5, 2006.01]	205/60	
205/38 • • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton feing further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton feing further substituted by esterified hydroxy groups [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01]	205/37	etherified hydroxy groups being further bound to an acyclic carbon	205/61	
bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 209/00 Preparation of compounds containing amino groups	205/38	• • • the oxygen atom of at least one of the	207/00	carbon skeleton [5, 2006.01]
ethers [5, 2006.01] 205/39 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] 209/00 • the carbon skeleton being further substituted by esterified hydroxy groups [5, 2006.01] * Preparation of compounds containing amino groups		bound to a carbon atom of a six-membered	207/02	
esterified hydroxy groups [5, 2006.01] 209/00 Preparation of compounds containing amino groups	20E /20	ethers [5, 2006.01]	207/04	
	203/33		209/00	

209/02	•	by substitution of hydrogen atoms by amino groups [5, 2006.01]	209/60	•	by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or
209/04	•	by substitution of functional groups by amino groups [5, 2006.01]			to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone
209/06		• by substitution of halogen atoms [5, 2006.01]			imines, or aziranes [5, 2006.01]
209/08		 with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	209/62	•	by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds (C07C 209/24 takes precedence) [5, 2006.01]
209/10	•	 with formation of amino groups bound to carbon atoms of six-membered aromatic rings 	209/64	•	by disproportionation [5, 2006.01]
		or from amines having nitrogen atoms bound to	209/66	•	from or <u>via</u> metallo-organic compounds [5, 2006.01]
		carbon atoms of six-membered aromatic rings [5, 2006.01]	209/68		from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines,
209/12	•	 with formation of quaternary ammonium compounds [5, 2006.01] 			aromatisation, or substitution of the carbon skeleton [5, 2006.01]
209/14	•	 by substitution of hydroxy groups or of etherified or esterified hydroxy groups [5, 2006.01] 	209/70 209/72		by reduction of unsaturated amines [5, 2006.01]by reduction of six-membered aromatic
209/16	•	 with formation of amino groups bound to 			rings [5, 2006.01]
		acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	209/74	•	 by halogenation, hydrohalogenation, dehalogenation, or dehydrohalogenation [5, 2006.01]
209/18	•	with formation of amino groups bound to	209/76	•	• by nitration [5, 2006.01]
		carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings [5, 2006.01]	209/78	•	from carbonyl compounds, e.g. from formaldehyde, and amines having amino groups bound to carbon atoms of six-membered aromatic
209/20		with formation of quaternary ammonium			rings, with formation of methylene-diarylamines [5, 2006.01]
209/22		compounds [5, 2006.01] • by substitution of other functional	209/80	•	
		groups [5, 2006.01]	209/82	•	Purification; Separation; Stabilisation; Use of
209/24	•	by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups,	209/84		additives [5, 2006.01] • Purification [5, 2006.01]
200/20		with carbonyl compounds [5, 2006.01]	209/86		• Separation [5, 2006.01]
209/26		• by reduction with hydrogen [5, 2006.01]	209/88		• • Separation of optical isomers [5, 2006.01]
209/28		• by reduction with other reducing agents [5, 2006.01]	209/90		• Stabilisation; Use of additives [5, 2006.01]
209/30		by reduction of nitrogen-to-oxygen or nitrogen-to- nitrogen bonds [5, 2006.01]	211/00	Cá	Compounds containing amino groups bound to a arbon skeleton [5, 2006.01]
209/32		• by reduction of nitro groups [5, 2006.01]	211/01	•	having amino groups bound to acyclic carbon
209/34	•	 by reduction of nitro groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	211/02	•	atoms [5, 2006.01]of an acyclic saturated carbon skeleton [5, 2006.01]
209/36	•	• • by reduction of nitro groups bound to carbon	211/03	•	 Monoamines [5, 2006.01]
		atoms of six-membered aromatic	211/04	•	• • • Mono-, di- or tri-methylamine [5, 2006.01]
		rings [5, 2006.01]	211/05	•	• • • Mono-, di- or tri-ethylamine [5, 2006.01]
209/38	•	• by reduction of nitroso groups [5, 2006.01]	211/06	•	 containing only n- or iso-propyl
209/40	•	 by reduction of hydroxylamino or oxyimino groups [5, 2006.01] by reduction of nitrogen-to-nitrogen 	211/07	•	groups [5, 2006.01] • • • containing one, two or three alkyl groups,
		bonds [5, 2006.01]			each having the same number of carbon atoms in excess of three [5, 2006.01]
209/44	•	by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-	211/08 211/09	•	 containing alkyl groups having a different number of carbon atoms [5, 2006.01] Diamines [5, 2006.01]
		ethers [5, 2006.01]	211/03		• • • Diaminoethanes [5, 2006.01]
209/46	•	• by reduction of carboxylic acids or esters thereof	211/10		• • • Diaminopropanes [5, 2006.01]
000::-		in presence of ammonia or amines [5, 2006.01]	211/11	•	• • • 1,6-Diaminohexanes [5, 2006.01]
209/48		• by reduction of nitriles [5, 2006.01]	211/13		Amines containing three or more amino groups
209/50		 by reduction of carboxylic acid amides [5, 2006.01] 	211/14		bound to the carbon skeleton [5, 2006.01] • Amines containing amino groups bound to at
209/52	•	• by reduction of imines or imino-ethers (C07C 209/24 takes precedence) [5, 2006.01]			least two aminoalkyl groups, e.g. diethylenetriamines [5, 2006.01]
209/54		by rearrangement reactions [5, 2006.01]	211/15		 the carbon skeleton being further substituted by
209/56	•	 from carboxylic acids involving a Hofmann, Curtius, Schmidt, or Lossen-type rearrangement [5, 2006.01] 	211, 10		halogen atoms or by nitro or nitroso groups [5, 2006.01]
200 / 50		from overio amides [E. 2006 01]			

209/58 • • from or <u>via</u> amides **[5, 2006.01]**

211/16	 of a saturated carbon skeleton containing rings other than six-membered aromatic 	211/49	 having at least two amino groups bound to the carbon skeleton [5, 2006.01]
211/17	rings [5, 2006.01] • • containing only non-condensed	211/50	• • • • with at least two amino groups bound to carbon atoms of six-membered aromatic
D44 /40	rings [5, 2006.01]	044/54	rings of the carbon skeleton [5, 2006.01]
211/18	 containing at least two amino groups bound to the carbon skeleton [5, 2006.01] 	211/51 211/52	• • • • Phenylenediamines [5, 2006.01]• • • the carbon skeleton being further substituted by
211/19	• • • containing condensed ring systems [5, 2006.01]	211/32	halogen atoms or by nitro or nitroso
211/20	of an acyclic unsaturated carbon		groups [5, 2006.01]
211/21	skeleton [5, 2006.01] • • • Monoamines [5, 2006.01]	211/53	 having the nitrogen atom of at least one of the amino groups further bound to a hydrocarbon
211/21	• • • containing at least two amino groups bound to		radical substituted by amino
	the carbon skeleton [5, 2006.01]	044/54	groups [5, 2006.01]
211/23	 the carbon skeleton containing carbon-to- carbon triple bonds [5, 2006.01] 	211/54	 having amino groups bound to two or three six- membered aromatic rings [5, 2006.01]
211/24	• • • the carbon skeleton being further substituted by	211/55	• • • Diphenylamines [5, 2006.01]
	halogen atoms or by nitro or nitroso	211/56	• • • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso
211/25	groups [5, 2006.01] • • of an unsaturated carbon skeleton containing rings		groups [5, 2006.01]
211725	other than six-membered aromatic	211/57	 having amino groups bound to carbon atoms of
D44 /D6	rings [5, 2006.01]		six-membered aromatic rings being part of condensed ring systems of the carbon
211/26	 of an unsaturated carbon skeleton containing at least one six-membered aromatic ring [5, 2006.01] 		skeleton [5, 2006.01]
211/27	 having amino groups linked to the six- 	211/58	• • Naphthylamines; N-substituted derivatives
	membered aromatic ring by saturated carbon	211/59	thereof [5, 2006.01] • • • the carbon skeleton being further substituted by
211/28	chains [5, 2006.01] • • • having amino groups linked to the six-	211/33	halogen atoms or by nitro or nitroso
	membered aromatic ring by unsaturated carbon	044460	groups [5, 2006.01]
211/20	chains [5, 2006.01]	211/60	• • • containing a ring other than a six-membered aromatic ring forming part of at least one of the
211/29	 the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso 		condensed ring systems [5, 2006.01]
	groups [5, 2006.01]	211/61	• • • with at least one of the condensed ring systems
211/30	 the six-membered aromatic ring being part of a condensed ring system formed by two 	211/62	formed by three or more rings [5, 2006.01] • Quaternary ammonium compounds [5, 2006.01]
	rings [5, 2006.01]	211/63	having quaternised nitrogen atoms bound to
211/31	• • • the six-membered aromatic ring being part of a	211/64	acyclic carbon atoms [5, 2006.01]
	condensed ring system formed by at least three rings [5, 2006.01]	211/64	 having quaternised nitrogen atoms bound to carbon atoms of six-membered aromatic
211/32	• • • containing dibenzocycloheptane or		rings [5, 2006.01]
	dibenzocycloheptene ring systems or condensed derivatives thereof [5, 2006.01]	211/65	• Metal complexes of amines [5, 2006.01]
211/33	 having amino groups bound to carbon atoms of rings 	213/00	Preparation of compounds containing amino and
	other than six-membered aromatic rings [5, 2006.01]		hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon
211/34 211/35	of a saturated carbon skeleton [5, 2006.01]containing only non-condensed		skeleton [5, 2006.01]
211/33	rings [5, 2006.01]	213/02	• by reactions involving the formation of amino groups
211/36	• • containing at least two amino groups bound to		from compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01]
211/37	the carbon skeleton [5, 2006.01] • • • being further substituted by halogen atoms or	213/04	• by reaction of ammonia or amines with olefin oxides
211/3/	by nitro or nitroso groups [5, 2006.01]	212 /00	or halohydrins [5, 2006.01]
211/38	• • containing condensed ring systems [5, 2006.01]	213/06	 from hydroxy amines by reactions involving the etherification or esterification of hydroxy
211/39 211/40	of an unsaturated carbon skeleton [5, 2006.01]containing only non-condensed		groups [5, 2006.01]
211/40	rings [5, 2006.01]	213/08	 by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified
211/41	• • containing condensed ring systems [5, 2006.01]		hydroxy groups [5, 2006.01]
211/42	 • • • with six-membered aromatic rings being part of the condensed ring systems [5, 2006.01] 	213/10	• Separation; Purification; Stabilisation; Use of
211/43	having amino groups bound to carbon atoms of six-		additives [5, 2006.01]
	membered aromatic rings of the carbon	215/00	Compounds containing amino and hydroxy groups
211/44	skeleton [5, 2006.01]having amino groups bound to only one six-	215/02	bound to the same carbon skeleton [5, 2006.01]having hydroxy groups and amino groups bound to
=11,77	membered aromatic ring [5, 2006.01]	_10/02	acyclic carbon atoms of the same carbon
211/45	• • • Monoamines [5, 2006.01]	215/04	skeleton [5, 2006.01]
211/46 211/47	• • • • Aniline [5, 2006.01]• • • • Toluidines; Homologues	215/04 215/06	the carbon skeleton being saturated [5, 2006.01]and acyclic [5, 2006.01]
<u> </u>	thereof [5, 2006.01]	213700	, [0,]
211/48	• • • N-alkylated amines [5, 2006.01]		

215/08	• • • • with only one hydroxy group and one amino group bound to the carbon skeleton [5, 2006.01]	215/52	 • Iinked by carbon chains having two carbon atoms between the amino groups and the six- membered aromatic ring or the condensed ring
215/10	 • • • with one amino group and at least two hydroxy groups bound to the carbon skeleton [5, 2006.01] 	215/54	 system containing that ring [5, 2006.01] • • linked by carbon chains having at least three carbon atoms between the amino groups and
215/12	• • • the nitrogen atom of the amino group being further bound to hydrocarbon groups		the six-membered aromatic ring or the condensed ring system containing that
215/14	 substituted by hydroxy groups [5, 2006.01] the nitrogen atom of the amino group being further bound to hydrocarbon groups 	215/56	ring [5, 2006.01] • • with amino groups linked to the six-membered aromatic ring, or to the condensed ring system
215/16	substituted by amino groups [5, 2006.01] • • • • the nitrogen atom of the amino group being	215/58	containing that ring, by carbon chains further substituted by hydroxy groups [5, 2006.01] • • • with hydroxy groups and the six-membered
215/18	further bound to carbon atoms of six- membered aromatic rings [5, 2006.01] • • • • with hydroxy groups and at least two amino	213/30	aromatic ring, or the condensed ring system containing that ring, bound to the same carbon
	groups bound to the carbon skeleton [5, 2006.01]	215/60	atom of the carbon chain [5, 2006.01]the chain having two carbon atoms between
215/20	• • • the carbon skeleton being saturated and containing rings [5, 2006.01]	2157 00	the amino groups and the six-membered aromatic ring or the condensed ring system
215/22	 the carbon skeleton being unsaturated [5, 2006.01] 		containing that ring [5, 2006.01]
215/24	• • • and acyclic [5, 2006.01]	215/62	• • • the chain having at least three carbon atoms
215/26	• • • and containing rings other than six-membered aromatic rings [5, 2006.01]		between the amino groups and the six- membered aromatic ring or the condensed ring system containing that ring [5, 2006.01]
215/28	 and containing six-membered aromatic rings [5, 2006.01] 	215/64	 with rings other than six-membered aromatic rings
215/30	• • • containing hydroxy groups and carbon atoms	215/66	being part of the carbon skeleton [5, 2006.01]with quaternised amino groups bound to the
	of six-membered aromatic rings bound to the same carbon atom of the carbon	215/68	carbon skeleton [5, 2006.01]
245 /22	skeleton [5, 2006.01]	215/00	 having amino groups bound to carbon atoms of six- membered aromatic rings and hydroxy groups bound
215/32	• • • • containing hydroxy groups and carbon atoms of two six-membered aromatic		to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same
	rings bound to the same carbon atom of the carbon skeleton [5, 2006.01]		carbon skeleton [5, 2006.01]
215/34	• • • containing hydroxy groups and carbon atoms	215/70	 with rings other than six-membered aromatic rings being part of the carbon skeleton [5, 2006.01]
	of six-membered aromatic rings bound to the same carbon atom of the carbon skeleton and	215/72	 with quaternised amino groups bound to the carbon skeleton [5, 2006.01]
	at least one hydroxy group bound to another carbon atom of the carbon skeleton [5, 2006.01]	215/74	having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the
215/36	• • • • 1-Aryl-2-amino-1,3-propane		same carbon skeleton [5, 2006.01]
215/38	diols [5, 2006.01] • • • with rings other than six-membered aromatic	215/76	 of the same non-condensed six-membered aromatic ring [5, 2006.01]
213/30	rings being part of the carbon skeleton [5, 2006.01]	215/78	• • • containing at least two hydroxy groups bound to the carbon skeleton [5, 2006.01]
215/40	 with quaternised nitrogen atoms bound to carbon atoms of the carbon skeleton [5, 2006.01] 	215/80	 containing at least two amino groups bound to the carbon skeleton [5, 2006.01]
215/42	having amino groups or hydroxy groups bound to	215/82	• • having the nitrogen atom of at least one of the
	carbon atoms of rings other than six-membered aromatic rings of the same carbon		amino groups further bound to a carbon atom of another six-membered aromatic ring [5, 2006.01]
215/44	skeleton [5, 2006.01] • • bound to carbon atoms of the same ring or	215/84	• having amino groups bound to carbon atoms of
	condensed ring system [5, 2006.01]		six-membered aromatic rings being part of condensed ring systems [5, 2006.01]
215/46	 having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino 	215/86	 being formed by two rings [5, 2006.01]
	groups bound to acyclic carbon atoms or to carbon	215/88	• • being formed by at least three
	atoms of rings other than six-membered aromatic		rings [5, 2006.01]
215/48	rings of the same carbon skeleton [5, 2006.01] • with amino groups linked to the six-membered	215/90	 with quaternised amino groups bound to the carbon skeleton [5, 2006.01]
	aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further	217/00	Compounds containing amino and etherified
	substituted by hydroxy groups [5, 2006.01]		hydroxy groups bound to the same carbon
215/50	• • with amino groups and the six-membered	217/02	skeleton [5, 2006.01]having etherified hydroxy groups and amino groups
	aromatic ring, or the condensed ring system containing that ring, bound to the same carbon	21//02	bound to acyclic carbon atoms of the same carbon skeleton [5, 2006.01]
	atom of the carbon chain [5, 2006.01]	217/04	the carbon skeleton being acyclic and
		=1,707	saturated [5, 2006.01]

217/06	 having only one etherified hydroxy group and one amino group bound to the carbon skeleton, 	217/46 • • the carbon skeleton being acyclic and unsaturated [5, 2006.01]
217/08	which is not further substituted [5, 2006.01] • • • the oxygen atom of the etherified hydroxy	• • the carbon skeleton being unsaturated and containing rings [5, 2006.01]
	group being further bound to an acyclic carbon atom [5, 2006.01]	217/50 • Ethers of hydroxy amines of undetermined structure, e.g. obtained by reactions of epoxides
217/10	• • • to an acyclic carbon atom of a	with hydroxy amines [5, 2006.01]
	hydrocarbon radical containing six-membered aromatic rings [5, 2006.01]	• having etherified hydroxy groups or amino groups bound to carbon atoms of rings other than six-
217/12	 • • • the oxygen atom of the etherified hydroxy group being further bound to a carbon atom 	membered aromatic rings of the same carbon skeleton [5, 2006.01]
	of a ring other than a six-membered aromatic ring [5, 2006.01]	• having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and
217/14	• • • the oxygen atom of the etherified hydroxy group being further bound to a carbon atom	amino groups bound to acyclic carbon atoms or to
	of a six-membered aromatic	carbon atoms of rings other than six-membered aromatic rings of the same carbon
217/16	ring [5, 2006.01] • • • • the six-membered aromatic ring or	skeleton [5, 2006.01] 217/56 • with amino groups linked to the six-membered
	condensed ring system containing that ring not being further substituted [5, 2006.01]	aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen
217/18	• • • • the six-membered aromatic ring or	atoms [5, 2006.01]
	condensed ring system containing that ring being further substituted [5, 2006.01]	217/58 • • • with amino groups and the six-membered aromatic ring, or the condensed ring system
217/20	• • • • • by halogen atoms, by trihalomethyl, nitro or nitroso groups, or by singly-	containing that ring, bound to the same carbon atom of the carbon chain [5, 2006.01]
217/22	bound oxygen atoms [5, 2006.01]by carbon atoms having at least two	217/60 • • • linked by carbon chains having two carbon atoms between the amino groups and the six-
	bonds to oxygen atoms [5, 2006.01]	membered aromatic ring or the condensed ring system containing that ring [5, 2006.01]
217/24	• • • • the six-membered aromatic ring being part of a condensed ring system	217/62 • • • linked by carbon chains having at least three
	containing rings other than six-membered aromatic rings [5, 2006.01]	carbon atoms between the amino groups and the six-membered aromatic ring or the
217/26	 having only one etherified hydroxy group and one amino group bound to the carbon skeleton, 	condensed ring system containing that ring [5, 2006.01]
	which is further substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]	• • with amino groups linked to the six-membered aromatic ring, or to the condensed ring system
217/28	 having one amino group and at least two 	containing that ring, by carbon chains further substituted by singly-bound oxygen
	singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group,	atoms [5, 2006.01]
	bound to the carbon skeleton, e.g. ethers of polyhydroxy amines [5, 2006.01]	217/66 • • • with singly-bound oxygen atoms and six- membered aromatic rings bound to the same
217/30	 • • having the oxygen atom of at least one of the etherified hydroxy groups further bound to a 	carbon atom of the carbon chain [5, 2006.01] 217/68 • • • with singly-bound oxygen atoms, six-
	carbon atom of a six-membered aromatic ring [5, 2006.01]	membered aromatic rings and amino groups bound to the same carbon atom of the carbon
217/32	• • • • the six-membered aromatic ring or	chain [5, 2006.01] 217/70 • • • • linked by carbon chains having two carbon
	condensed ring system containing that ring being further substituted [5, 2006.01]	atoms between the amino groups and the six-
217/34	• • • • • by halogen atoms, by trihalomethyl, nitro or nitroso groups, or by singly-	membered aromatic ring or the condensed ring system containing that ring [5, 2006.01]
217/36	bound oxygen atoms [5, 2006.01] • • • • • by carbon atoms having at least two	217/72 • • • • linked by carbon chains having at least three carbon atoms between the amino groups and
217/38	bonds to oxygen atoms [5, 2006.01] • • • • • the six-membered aromatic ring being	the six-membered aromatic ring or the condensed ring system containing that
217/30	part of a condensed ring system	ring [5, 2006.01] 217/74 • with rings other than six-membered aromatic rings
	containing rings other than six-membered aromatic rings [5, 2006.01]	being part of the carbon skeleton [5, 2006.01]
217/40	 • • having at least two singly-bound oxygen atoms, with at least one being part of an 	 having amino groups bound to carbon atoms of six- membered aromatic rings and etherified hydroxy
	etherified hydroxy group, bound to the same carbon atom of the carbon skeleton, e.g.	groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic
0.457.10	amino-ketals, ortho esters [5, 2006.01]	rings of the same carbon skeleton [5, 2006.01] 217/78 • having amino groups and etherified hydroxy groups
217/42	 having etherified hydroxy groups and at least two amino groups bound to the carbon 	bound to carbon atoms of six-membered aromatic
217/44	skeleton [5, 2006.01]the carbon skeleton being saturated and containing	rings of the same carbon skeleton [5, 2006.01] 217/80 • having amino groups and etherified hydroxy
	rings [5, 2006.01]	groups bound to carbon atoms of non-condensed six-membered aromatic rings [5, 2006.01]

217/82	 of the same non-condensed six-membered 		
	aromatic ring [5, 2006.01]	219/22	 • and containing six-membered aromatic rings [5, 2006.01]
217/84	• • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom [5, 2006.01]	219/24	 having esterified hydroxy groups or amino groups bound to carbon atoms of rings other than six- membered aromatic rings of the same carbon skeleton [5, 2006.01]
217/86	• • • • • to an acyclic carbon atom of a hydrocarbon radical containing six-membered aromatic rings [5, 2006.01]	219/26	 having esterified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to
217/88	 • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] 	219/28	 carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton [5, 2006.01] having amino groups bound to acyclic carbon
217/90	• • • • the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. aminodiphenylethers [5, 2006.01]	219/30	atoms of the carbon skeleton [5, 2006.01] • • with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen
217/92	 • • • the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] 	219/32	 having amino groups bound to carbon atoms of sixmembered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon
217/94	 having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and etherified hydroxy groups bound to carbon atoms of six-membered 	219/34	 atoms of rings other than six-membered aromatic rings of the same carbon skeleton [5, 2006.01] having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic
	aromatic rings of the same carbon skeleton [5, 2006.01]	224424	rings of the same carbon skeleton [5, 2006.01]
219/00	Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton [5, 2006.01]	221/00	Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton [5, 2006.01]
219/02	 having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon 	223/00	Compounds containing amino and —CHO groups bound to the same carbon skeleton [5, 2006.01]
219/04	skeleton [5, 2006.01]the carbon skeleton being acyclic and	223/02	 having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01]
219/06	 saturated [5, 2006.01] having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl 	223/04	 having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]
040/00	groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton [5, 2006.01]	223/06	 having amino groups bound to carbon atoms of six- membered aromatic rings of the carbon skeleton [5, 2006.01]
	had been at heart and a fight had a second		5.1c.1c.ton [5, 2000.01]
219/08	 having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] 	225/00	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino
219/08	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing	225/02 225/04	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] • having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] • the carbon skeleton being saturated [5, 2006.01]
219/10	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing rings [5, 2006.01]	225/02	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] • having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] • the carbon skeleton being saturated [5, 2006.01] • and acyclic [5, 2006.01]
	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing rings [5, 2006.01] • • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a ring other than a six-membered	225/02 225/04 225/06 225/08 225/10	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] • having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] • • the carbon skeleton being saturated [5, 2006.01] • • and acyclic [5, 2006.01] • • with doubly-bound oxygen atoms bound to carbon atoms not being part of rings [5, 2006.01]
219/10	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing rings [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the	225/02 225/04 225/06 225/08 225/10 225/12	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] • having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] • the carbon skeleton being saturated [5, 2006.01] • and acyclic [5, 2006.01] • and containing rings [5, 2006.01] • with doubly-bound oxygen atoms bound to carbon atoms not being part of rings [5, 2006.01] • with doubly-bound oxygen atoms bound to carbon atoms being part of rings [5, 2006.01]
219/10 219/12	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing rings [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] • • having at least one of the hydroxy groups	225/02 225/04 225/06 225/08 225/10	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] • having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] • the carbon skeleton being saturated [5, 2006.01] • and acyclic [5, 2006.01] • and containing rings [5, 2006.01] • with doubly-bound oxygen atoms bound to carbon atoms not being part of rings [5, 2006.01] • with doubly-bound oxygen atoms bound to carbon atoms being part of rings [5, 2006.01] • the carbon skeleton being unsaturated [5, 2006.01] • the carbon skeleton being unsaturated [5, 2006.01]
219/10 219/12 219/14 219/16	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing rings [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] • • having at least one of the hydroxy groups esterified by an inorganic acid or a derivative thereof [5, 2006.01]	225/02 225/04 225/06 225/08 225/10 225/12	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] the carbon skeleton being saturated [5, 2006.01] and acyclic [5, 2006.01] and containing rings [5, 2006.01] which doubly-bound oxygen atoms bound to carbon atoms not being part of rings [5, 2006.01] which doubly-bound oxygen atoms bound to carbon atoms being part of rings [5, 2006.01] the carbon skeleton being unsaturated [5, 2006.01] and containing six-membered aromatic rings [5, 2006.01]
219/10 219/12 219/14	esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of a carbon skeleton containing rings [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] • • having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] • • having at least one of the hydroxy groups esterified by an inorganic acid or a derivative	225/02 225/04 225/06 225/08 225/10 225/12 225/14 225/16	Compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly-bound oxygen atoms not being part of a —CHO group, e.g. amino ketones [5, 2006.01] having amino groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] the carbon skeleton being saturated [5, 2006.01] and acyclic [5, 2006.01] and containing rings [5, 2006.01] with doubly-bound oxygen atoms bound to carbon atoms not being part of rings [5, 2006.01] with doubly-bound oxygen atoms bound to carbon atoms being part of rings [5, 2006.01] the carbon skeleton being unsaturated [5, 2006.01] and containing six-membered aromatic rings [5, 2006.01]

225/22	 having amino groups bound to carbon atoms of six- membered aromatic rings of the carbon skeleton [5, 2006.01] 	• having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton [5, 2006.01]
225/24	 the carbon skeleton containing carbon atoms of quinone rings [5, 2006.01] 	229/04 • the carbon skeleton being acyclic and saturated [5, 2006.01]
225/26	 having amino groups bound to carbon atoms of quinone rings or of condensed ring systems 	229/06 • • having only one amino and one carboxyl group bound to the carbon skeleton [5, 2006.01]
	containing quinone rings [5, 2006.01]	229/08 • • • the nitrogen atom of the amino group being
225/28	• • • of non-condensed quinone rings [5, 2006.01]	further bound to hydrogen
225/30	• • • of condensed quinone ring systems formed by	atoms [5, 2006.01]
225 /22	two rings [5, 2006.01]	229/10 • • • • the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to
225/32	• • • of condensed quinone ring systems formed by at least three rings [5, 2006.01]	carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
225/34	• • • • Amino anthraquinones [5, 2006.01]	229/12 • • • • to carbon atoms of acyclic carbon
225/36	• • • the carbon skeleton being further substituted by singly-bound oxygen	skeletons [5, 2006.01]
	atoms [5, 2006.01]	229/14 • • • • to carbon atoms of carbon skeletons containing rings [5, 2006.01]
227/00	Preparation of compounds containing amino and	229/16 • • • • to carbon atoms of hydrocarbon radicals
	carboxyl groups bound to the same carbon	substituted by amino or carboxyl groups,
	skeleton [5, 2006.01]	e.g. ethylenediamine-tetra-acetic acid,
227/02	 Formation of carboxyl groups in compounds 	iminodiacetic acids [5, 2006.01]
	containing amino groups, e.g. by oxidation of amino	229/18 • • • the nitrogen atom of the amino group being
225.40.4	alcohols [5, 2006.01]	further bound to carbon atoms of six-
227/04	 Formation of amino groups in compounds containing carboxyl groups [5, 2006.01] 	membered aromatic rings [5, 2006.01]
227/06	 by addition or substitution reactions, without 	229/20 • • • the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso
227700	increasing the number of carbon atoms in the	groups [5, 2006.01]
	carbon skeleton of the acid [5, 2006.01]	229/22 • • • the carbon skeleton being further substituted by
227/08	• • • by reaction of ammonia or amines with acids	oxygen atoms [5, 2006.01]
	containing functional groups [5, 2006.01]	229/24 • • • having more than one carboxyl group bound to
227/10	 with simultaneously increasing the number of carbon atoms in the carbon skeleton [5, 2006.01] 	the carbon skeleton, e.g. aspartic acid [5, 2006.01]
227/12	• Formation of amino and carboxyl groups [5, 2006.01]	229/26 • • • having more than one amino group bound to
227/14	 from compounds containing already amino and carboxyl groups or derivatives thereof [5, 2006.01] 	the carbon skeleton, e.g. lysine [5, 2006.01] 229/28 • the carbon skeleton being saturated and containing
227/16	by reactions not involving the amino or carboxyl	rings [5, 2006.01]
22//10	groups [5, 2006.01]	229/30 • • the carbon skeleton being acyclic and
227/18	 by reactions involving amino or carboxyl groups, 	unsaturated [5, 2006.01]
	e.g. hydrolysis of esters or amides, by formation of	• • the carbon skeleton being unsaturated and
227/20	halides, salts or esters [5, 2006.01]	containing rings other than six-membered aromatic rings [5, 2006.01]
227/20	• • by hydrolysis of N-acylated amino acids or derivatives thereof, e.g. hydrolysis of	229/34 • the carbon skeleton containing six-membered
	carbamates [5, 2006.01]	aromatic rings [5, 2006.01]
227/22	• from lactams, cyclic ketones or cyclic oximes, e.g. by	229/36 • • • with at least one amino group and one carboxyl
	reaction involving Beckmann	group bound to the same carbon atom of the
225/24	rearrangement [5, 2006.01]	carbon skeleton [5, 2006.01]
227/24	• from hydantoins [5, 2006.01]	 having amino groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six-
227/26	 from compounds containing carboxyl groups by reaction with HCN, or a salt thereof, and amines, or 	membered aromatic rings of the same carbon
	from aminonitriles [5, 2006.01]	skeleton [5, 2006.01]
227/28	• from natural products [5, 2006.01]	• having amino groups bound to carbon atoms of at
227/30	• Preparation of optical isomers [5, 2006.01]	least one six-membered aromatic ring and carboxyl
227/32	• • by stereospecific synthesis [5, 2006.01]	groups bound to acyclic carbon atoms of the same carbon skeleton [5, 2006.01]
227/34	• • by separation of optical isomers [5, 2006.01]	229/42 • with carboxyl groups linked to the six-membered
227/36	• Racemisation of optical isomers [5, 2006.01]	aromatic ring, or to the condensed ring system
227/38	• Separation; Purification; Stabilisation; Use of	containing that ring, by saturated carbon
	additives (separation of optical isomers C07C 227/34) [5, 2006.01]	chains [5, 2006.01]
227/40	• • Separation; Purification [5, 2006.01]	• • with carboxyl groups linked to the six-membered
227/42	• • • Crystallisation [5, 2006.01]	aromatic ring, or to the condensed ring system containing that ring, by unsaturated carbon
227/44	• • Stabilisation; Use of additives [5, 2006.01]	chains [5, 2006.01]
		• having amino or carboxyl groups bound to carbon
229/00	Compounds containing amino and carboxyl groups bound to the same carbon skeleton [5, 2006.01]	atoms of rings other than six-membered aromatic rings of the same carbon skeleton [5, 2006.01]

229/48	 with amino groups and carboxyl groups bound to carbon atoms of the same non-condensed ring [5, 2006.01] 	• having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
229/50	 with amino groups and carboxyl groups bound to carbon atoms being part of the same condensed ring system [5, 2006.01] 	• • having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01]
229/52	 having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same 	233/03 • • • with carbon atoms of carboxamide groups bound to hydrogen atoms [5, 2006.01]
229/54	 • with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered 	233/04 • • • with carbon atoms of carboxamide groups bound to carbon atoms of an acyclic saturated carbon skeleton [5, 2006.01]
229/56	 aromatic ring [5, 2006.01] with amino and carboxyl groups bound in ortho- position [5, 2006.01] 	233/05 • • • having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon
229/58	 • having the nitrogen atom of at least one of the amino groups further bound to a carbon atom of a six-membered aromatic ring, e.g. N-phenyl-anthranilic acids [5, 2006.01] 	atoms [5, 2006.01] 233/06 • • • • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered
229/60	• • with amino and carboxyl groups bound in meta- or para- positions [5, 2006.01]	aromatic ring [5, 2006.01] 233/07 • • • having the nitrogen atom of at least one of
229/62	 • • with amino groups and at least two carboxyl groups bound to carbon atoms of the same sixmembered aromatic ring [5, 2006.01] 	the carboxamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
229/64	• • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	233/08 • • • with carbon atoms of carboxamide groups bound to acyclic carbon atoms of a saturated
229/66	• • • the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01]	carbon skeleton containing rings [5, 2006.01] 233/09 • • • with carbon atoms of carboxamide groups
229/68	with amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings being part	bound to carbon atoms of an acyclic unsaturated carbon skeleton [5, 2006.01]
220 /50	of the same condensed ring system [5, 2006.01]	233/10 • • • with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon
229/70	• • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	skeleton containing rings other than six- membered aromatic rings [5, 2006.01]
229/72	 the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01] 	233/11 • • • with carbon atoms of carboxamide groups
229/74	• • • • the condensed ring system being formed by at least three rings, e.g. amino anthraquinone	bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings [5, 2006.01]
229/76	carboxylic acids [5, 2006.01] • Metal complexes of amino carboxylic acids [5, 2006.01]	• having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms
231/00	Preparation of carboxylic acid amides [5, 2006.01]	or by nitro or nitroso groups [5, 2006.01]
231/02	 from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines [5, 2006.01] 	233/13 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
231/04	 from ketenes by reaction with ammonia or 	233/14 • • • with the substituted hydrocarbon radical bound
231/06	 amines [5, 2006.01] from nitriles by transformation of cyano groups into carboxamide groups [5, 2006.01] 	to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
231/08	 from amides by reaction at nitrogen atoms of carboxamide groups [5, 2006.01] 	233/15 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
231/10	• from compounds not provided for in groups C07C 231/02-C07C 231/08 [5, 2006.01]	by a carbon atom of a six-membered aromatic ring [5, 2006.01]
231/12	 by reactions not involving the formation of carboxamide groups [5, 2006.01] 	• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a
231/14	 by formation of carboxamide groups together with reactions not involving the carboxamide groups [5, 2006.01] 	hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01] 233/17 • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carbon radical group.
231/16	• Preparation of optical isomers [5, 2006.01]	to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]
231/18	• • by stereospecific synthesis [5, 2006.01]	233/18 • • • having the carbon atom of the carboxamide
231/20	• • by separation of optical isomers [5, 2006.01]	group bound to a hydrogen atom or to a
231/22	 Separation; Purification; Stabilisation; Use of additives (separation of optical isomers 	carbon atom of an acyclic saturated carbon skeleton [5, 2006.01]
	C07C 231/20) [5, 2006.01]	233/19 • • • having the carbon atom of the carboxamide
231/24	• • Separation; Purification [5, 2006.01]	group bound to an acyclic carbon atom of a saturated carbon skeleton containing
233/00	Carboxylic acid amides [5, 2006.01]	rings [5, 2006.01]

233/20	• •	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] 	233/37	•	•	•	having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing
233/21	• •	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic 	233/38	•	•	•	 rings [5, 2006.01] having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/22		 rings [5, 2006.01] having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered 	233/39	•	•	•	having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic
233/23		 aromatic rings [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01] 	233/40	•	•	•	 rings [5, 2006.01] having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]
233/24	• •	 with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01] 	233/41	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/25	• •	 having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon 	233/42	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic
233/26		 skeleton [5, 2006.01] having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01] 	233/43	•	•	•	 ring [5, 2006.01] having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton [5, 2006.01]
233/27	• •	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01] 	233/44	•	•	•	 having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton [5, 2006.01]
233/28	• •	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic 	233/45	•	•	ca hy	aving the nitrogen atom of at least one of the arboxamide groups bound to a carbon atom of a ydrocarbon radical substituted by carboxyl roups [5, 2006.01]
233/29		 rings [5, 2006.01] having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered 	233/46	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01] • having the carbon atom of the carboxamide
233/30		aromatic rings [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a	233/4/				group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01]
233/31		 hydrocarbon radical substituted by doubly-bound oxygen atoms [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group 	233/48	•	•	•	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a saturated carbon skeleton containing rings [5, 2006.01]
233/32		 by an acyclic carbon atom [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group 	233/49	•	•	•	 having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton [5, 2006.01]
233/33		 by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic 	233/50	•	•	•	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
233/34		ring [5, 2006.01] having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino	233/51	•	•	•	 having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings [5, 2006.01]
233/35		 groups [5, 2006.01] with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01] 	233/52	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/36	• •	 having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton [5, 2006.01] 	233/53	•	•	•	with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]

233/54 • • • having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton [5, 2006.01]	• • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a sixmembered aromatic ring [5, 2006.01]
233/55 • • • • having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton [5, 2006.01]	• • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic
 having carbon atoms of carboxamide groups bound to carbon atoms of carboxyl groups, e.g. oxamides [5, 2006.01] 	ring [5, 2006.01] 233/76 • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a
• having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	hydrocarbon radical substituted by doubly-bound oxygen atoms [5, 2006.01] 233/77 • having the nitrogen atom of at least one of the
233/58 • having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon	carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups [5, 2006.01]
atoms of unsubstituted hydrocarbon radicals [5, 2006.01] 233/59 • having the nitrogen atom of at least one of the	233/78 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]	by an acyclic carbon atom [5, 2006.01] 233/79 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group
233/60 • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound	by a carbon atom of a ring other than a six- membered aromatic ring [5, 2006.01] 233/80 • • • with the substituted hydrocarbon radical bound
oxygen atoms [5, 2006.01] 233/61 • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a	to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring [5, 2006.01]
hydrocarbon radical substituted by doubly-bound oxygen atoms [5, 2006.01]	233/81 • • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl
• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino	groups [5, 2006.01] 233/82 • • with the substituted hydrocarbon radical bound
groups [5, 2006.01] 233/63 • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a	to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01] 233/83 • • • of an acyclic saturated carbon
hydrocarbon radical substituted by carboxyl groups [5, 2006.01] 233/64 • having carbon atoms of carboxamide groups bound to	skeleton [5, 2006.01] 233/84 • • • of a saturated carbon skeleton containing rings [5, 2006.01]
carbon atoms of six-membered aromatic rings [5, 2006.01] 233/65 • having the nitrogen atoms of the carboxamide	233/85 • • • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals [5, 2006.01]	233/86 • • • • of an unsaturated carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
• • having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a	 • • • • of a carbon skeleton containing sixmembered aromatic rings [5, 2006.01] 233/88 • having nitrogen atoms of carboxamide groups bound
hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] 233/67 • having the nitrogen atom of at least one of the	to an acyclic carbon atom and to a carbon atom of a six-membered aromatic ring wherein at least one ortho-hydrogen atom has been replaced [5, 2006.01]
carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01]	 having nitrogen atoms of carboxamide groups quaternised [5, 2006.01] having nitrogen atoms of carboxamide groups further
233/68 • • • with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom [5, 2006.01]	acylated [5, 2006.01] 233/91 • with carbon atoms of the carboxamide groups
233/69 • • • • of an acyclic saturated carbon skeleton [5, 2006.01]	 bound to acyclic carbon atoms [5, 2006.01] with at least one carbon atom of the carboxamide groups bound to a carbon atom of a six-membered
233/70 • • • • of a saturated carbon skeleton containing rings [5, 2006.01] 233/71 • • • of an acyclic unsaturated carbon	aromatic ring [5, 2006.01] 235/00 Carboxylic acid amides, the carbon skeleton of the
skeleton [5, 2006.01] 233/72 • • • of an unsaturated carbon skeleton containing	acid part being further substituted by oxygen atoms [5, 2006.01]
rings other than six-membered aromatic rings [5, 2006.01] 233/73 • • • • of a carbon skeleton containing six-	 having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton [5, 2006.01]
membered aromatic rings [5, 2006.01]	235/04 • the carbon skeleton being acyclic and saturated [5, 2006.01]

235/06	 having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	• • with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered
235/08		aromatic ring [5, 2006.01]
255700	carboxamide groups bound to an acyclic carbon	235/46 • • • having the nitrogen atoms of the carboxamide
	atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01]	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
235/10		235/48 • • • having the nitrogen atom of at least one of the
255/10	carboxamide groups bound to an acyclic carbon	carboxamide groups bound to an acyclic carbon
	atom of a hydrocarbon radical substituted by	atom of a hydrocarbon radical substituted by
	nitrogen atoms not being part of nitro or nitroso	singly-bound oxygen atoms [5, 2006.01]
	groups [5, 2006.01]	235/50 • • • having the nitrogen atom of at least one of the
235/12		carboxamide groups bound to an acyclic carbon
255712	carboxamide groups bound to an acyclic carbon	atom of a hydrocarbon radical substituted by
	atom of a hydrocarbon radical substituted by	nitrogen atoms not being part of nitro or nitroso
	carboxyl groups [5, 2006.01]	groups [5, 2006.01]
235/14		235/52 • • • having the nitrogen atom of at least one of the
	carboxamide groups bound to a carbon atom of	carboxamide groups bound to an acyclic carbon
	a ring other than a six-membered aromatic	atom of a hydrocarbon radical substituted by
	ring [5, 2006.01]	carboxyl groups [5, 2006.01]
235/16	• • • having the nitrogen atom of at least one of the	235/54 • • • having the nitrogen atom of at least one of the
	carboxamide groups bound to a carbon atom of	carboxamide groups bound to a carbon atom of
	a six-membered aromatic ring [5, 2006.01]	a ring other than a six-membered aromatic
235/18	 • • • having at least one of the singly-bound oxygen 	ring [5, 2006.01]
	atoms further bound to a carbon atom of a six-	235/56 • • having the nitrogen atom of at least one of the
	membered aromatic ring, e.g.	carboxamide groups bound to a carbon atom of
	phenoxyacetamides [5, 2006.01]	a six-membered aromatic ring [5, 2006.01]
235/20	8 8	235/58 • • • with carbon atoms of carboxamide groups and
	carboxamide groups bound to hydrogen	singly-bound oxygen atoms, bound in ortho-
	atoms or to acyclic carbon atoms [5, 2006.01]	position to carbon atoms of the same non- condensed six-membered aromatic
235/22		ring [5, 2006.01]
233/22	the carboxamide groups bound to a carbon	235/60 • • • having the nitrogen atoms of the
	atom of a ring other than a six-membered	carboxamide groups bound to hydrogen
	aromatic ring [5, 2006.01]	atoms or to acyclic carbon
235/24		atoms [5, 2006.01]
255724	the carboxamide groups bound to a carbon	235/62 • • • having the nitrogen atom of at least one of
	atom of a six-membered aromatic	the carboxamide groups bound to a carbon
	ring [5, 2006.01]	atom of a ring other than a six-membered
235/26	• • the carbon skeleton being saturated and containing	aromatic ring [5, 2006.01]
	rings [5, 2006.01]	235/64 • • • having the nitrogen atom of at least one of
235/28		the carboxamide groups bound to a carbon
	unsaturated [5, 2006.01]	atom of a six-membered aromatic
235/30	· · · · · · · · · · · · · · · · · · ·	ring [5, 2006.01]
	containing rings other than six-membered	• • with carbon atoms of carboxamide groups bound
an= /na	aromatic rings [5, 2006.01]	to carbon atoms of six-membered aromatic rings being part of condensed ring systems and singly-
235/32	9	bound oxygen atoms, bound to the same carbon
225 /24	aromatic rings [5, 2006.01]	skeleton [5, 2006.01]
235/34	6 6	• having the nitrogen atom of at least one of the
	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]	carboxamide groups bound to an acyclic carbon atom
235/36		and to a carbon atom of a six-membered aromatic
255750	carboxamide groups bound to a carbon atom of	ring wherein at least one ortho-hydrogen atom has
	a ring other than a six-membered aromatic	been replaced [5, 2006.01]
	ring [5, 2006.01]	• having carbon atoms of carboxamide groups and
235/38		doubly-bound oxygen atoms bound to the same
	carboxamide groups bound to a carbon atom of	carbon skeleton [5, 2006.01]
	a six-membered aromatic ring [5, 2006.01]	• • with the carbon atoms of the carboxamide groups
235/40	0 1	bound to acyclic carbon atoms [5, 2006.01]
	carbon atoms of rings other than six-membered	235/74 • • • of a saturated carbon skeleton [5, 2006.01]
	aromatic rings and singly-bound oxygen atoms bound	235/76 • • • of an unsaturated carbon skeleton [5, 2006.01]
	to the same carbon skeleton [5, 2006.01]	235/78 • • • the carbon skeleton containing
235/42	8 1	rings [5, 2006.01]
	carbon atoms of six-membered aromatic rings and	235/80 • • • having carbon atoms of carboxamide groups
	singly-bound oxygen atoms bound to the same carbon skeleton [5, 2006.01]	and keto groups bound to the same carbon atom, e.g. acetoacetamides [5, 2006.01]
	Caroon Secreton [J, 2000.01]	atom, e.g. activactiannues [3, 2000.01]

235/82	 with the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] 	237/34	 having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso
235/84	• • with the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a	237/36	groups [5, 2006.01] • having the nitrogen atom of the carboxamide
235/86	six-membered aromatic ring [5, 2006.01] • having the nitrogen atom of at least one of the		group bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl
235/88	 carboxamide groups quaternised [5, 2006.01] having the nitrogen atom of at least one of the 	237/38	groups [5, 2006.01] • having the nitrogen atom of the carboxamide
	carboxamide groups further acylated [5, 2006.01]		group bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01]
237/00	Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups [5, 2006.01]	237/40	 having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
237/02	 having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 	237/42	 having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01]
237/04	 the carbon skeleton being acyclic and saturated [5, 2006.01] 	237/44	having carbon atoms of carboxamide groups, amino groups and singly-bound oxygen atoms
237/06	 having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] 	237/46	bound to carbon atoms of the same non-condensed six-membered aromatic ring [5, 2006.01] • having carbon atoms of carboxamide groups,
237/08	• • having the nitrogen atom of at least one of the	237740	amino groups and at least three atoms of bromine
	carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms [5, 2006.01]		or iodine, bound to carbon atoms of the same non- condensed six-membered aromatic ring [5, 2006.01]
237/10	 having the nitrogen atom of at least one of the 	237/48	 having the carbon atom of at least one of the
	carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by		carboxamide groups bound to a carbon atom of a six- membered aromatic ring being part of a condensed
	nitrogen atoms not being part of nitro or nitroso		ring system of the same carbon skeleton [5, 2006.01]
237/12	groups [5, 2006.01] • • having the nitrogen atom of at least one of the	237/50	 having the nitrogen atom of at least one of the carboxamide groups quaternised [5, 2006.01]
20,,12	carboxamide groups bound to an acyclic carbon	237/52	 having the nitrogen atom of at least one of the
	atom of a hydrocarbon radical substituted by carboxyl groups [5, 2006.01]		carboxamide groups further acylated [5, 2006.01]
237/14	 the carbon skeleton being saturated and containing rings [5, 2006.01] 	239/00	Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters
237/16	the carbon skeleton being acyclic and		thereof [5, 2006.01]
	unsaturated [5, 2006.01]	239/02	 Compounds containing nitrogen-to-halogen bonds [5, 2006.01]
237/18	 the carbon skeleton being unsaturated and containing rings other than six-membered 	239/04	 N-halogenated amines [5, 2006.01]
	aromatic rings [5, 2006.01]	239/06	N-halogenated carboxamides [5, 2006.01]
237/20	 the carbon skeleton containing six-membered aromatic rings [5, 2006.01] 	239/08	 Hydroxylamino compounds or their ethers or esters [5, 2006.01]
237/22	 having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated [5, 2006.01] 	239/10	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals
237/24	 having the carbon atom of at least one of the 		substituted by halogen atoms or by nitro or nitroso
	and accorded a success because the analysis atoms of a single		groupe 15, 2006 011
	carboxamide groups bound to a carbon atom of a ring	220/12	groups [5, 2006.01]
	other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01]	239/12	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon
237/26	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. 		 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01]
237/26	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] 	239/12	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen
	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a 		 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen
	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the 		 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups
	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton [5, 2006.01] having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic 	239/14	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being
237/28	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton [5, 2006.01] having the nitrogen atom of the carboxamide 	239/14	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups
237/28	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton [5, 2006.01] having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a 	239/14	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon
237/28	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton [5, 2006.01] having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] having the nitrogen atom of the carboxamide 	239/14 239/16 239/18	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by carboxyl groups [5, 2006.01]
237/28	 other than a six-membered aromatic ring of the carbon skeleton [5, 2006.01] of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline [5, 2006.01] having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton [5, 2006.01] having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a hydrocarbon radical substituted by oxygen 	239/14	 having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of hydrocarbon radicals substituted by carboxyl

239/22	 having oxygen atoms of hydroxylamino groups esterified [5, 2006.01] 	245/08	 • with the two nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene [5, 2006.01]
241/00	Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g.	245/10	• • with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings
	hydrazines, triazanes [5, 2006.01]		being part of condensed ring
241/02	 Preparation of hydrazines [5, 2006.01] 		systems [5, 2006.01]
241/04	• Preparation of hydrazides [5, 2006.01]	245/12	Diazo compounds, i.e. compounds having the free
243/00	Compounds containing chains of nitrogen atoms	243/12	valencies of >N2 groups attached to the same carbon
_ 137 00	singly-bound to each other, e.g. hydrazines,	0.45 /4.4	atom [5, 2006.01]
	triazanes [5, 2006.01]	245/14	having diazo groups bound to acyclic carbon
243/02	• N-nitro compounds [5, 2006.01]		atoms of a carbon skeleton [5, 2006.01]
		245/16	• • • Diazomethane [5, 2006.01]
243/04	• N-nitroso compounds [5, 2006.01]	245/18	 the carbon skeleton being further substituted by
243/06	• • N-nitroso-amines [5, 2006.01]		carboxyl groups [5, 2006.01]
243/08	 N-nitroso-carboxamides [5, 2006.01] 	245/20	 Diazonium compounds [5, 2006.01]
243/10	 Hydrazines [5, 2006.01] 	245/22	 containing chains of three or more nitrogen atoms
243/12	 having nitrogen atoms of hydrazine groups bound 		with one or more nitrogen-to-nitrogen double
	to acyclic carbon atoms [5, 2006.01]		bonds [5, 2006.01]
243/14	• • • of a saturated carbon skeleton [5, 2006.01]	245/24	 Chains of only three nitrogen atoms, e.g.
243/16	• • • of an unsaturated carbon skeleton [5, 2006.01]		diazoamines [5, 2006.01]
243/18	• • • • containing rings [5, 2006.01]		• ,
243/20	• having nitrogen atoms of hydrazine groups bound	247/00	Compounds containing azido groups [5, 2006.01]
243/20		247/02	 with azido groups bound to acyclic carbon atoms of a
	to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]		carbon skeleton [5, 2006.01]
242/22		247/04	• • being saturated [5, 2006.01]
243/22	having nitrogen atoms of hydrazine groups bound	247/06	• • • and containing rings [5, 2006.01]
	to carbon atoms of six-membered aromatic		
0.40.40.4	rings [5, 2006.01]	247/08	• • being unsaturated [5, 2006.01]
243/24	Hydrazines having nitrogen atoms of hydrazine The state of th	247/10	• • • and containing rings [5, 2006.01]
	groups acylated by carboxylic acids [5, 2006.01]	247/12	being further substituted by carboxyl
243/26	with acylating carboxyl groups bound to hydrogen		groups [5, 2006.01]
	atoms or to acyclic carbon atoms [5, 2006.01]	247/14	 with azido groups bound to carbon atoms of rings
243/28	 to hydrogen atoms or to carbon atoms of a 		other than six-membered aromatic rings [5, 2006.01]
	saturated carbon skeleton [5, 2006.01]	247/16	 with azido groups bound to carbon atoms of six-
243/30	 to carbon atoms of an unsaturated carbon 		membered aromatic rings of a carbon
	skeleton [5, 2006.01]		skeleton [5, 2006.01]
243/32	• • • the carbon skeleton containing rings [5, 2006.01]	247/18	 being further substituted by carboxyl groups [5, 2006.01]
243/34	• • • to carbon atoms of a carbon skeleton further	247/20	with azido groups acylated by carboxylic
243/34	substituted by nitrogen atoms [5, 2006.01]	217720	acids [5, 2006.01]
243/36	with acylating carboxyl groups bound to carbon	247/22	with the acylating carboxyl groups bound to
= 13733	atoms of rings other than six-membered aromatic		hydrogen atoms, to acyclic carbon atoms or to
	rings [5, 2006.01]		carbon atoms of rings other than six-membered
243/38	 with acylating carboxyl groups bound to carbon 		aromatic rings [5, 2006.01]
= 137 33	atoms of six-membered aromatic	247/24	 with at least one of the acylating carboxyl groups
	rings [5, 2006.01]		bound to a carbon atom of a six-membered
243/40	Hydrazines having nitrogen atoms of hydrazine		aromatic ring [5, 2006.01]
= 107 10	groups being quaternised [5, 2006.01]		5-1 -
243/42	 Hydrazines having nitrogen atoms of hydrazine 	249/00	Preparation of compounds containing nitrogen
2 107 12	groups further singly-bound to hetero		atoms doubly-bound to a carbon skeleton (of diazo
	atoms [5, 2006.01]		compounds C07C 245/12) [5, 2006.01]
		249/02	 of compounds containing imino groups [5, 2006.01]
245/00	Compounds containing chains of at least two	249/04	• of oximes [5, 2006.01]
	nitrogen atoms with at least one nitrogen-to-nitrogen	249/06	 by nitrosation of hydrocarbons or substituted
	multiple bond (azoxy compound		hydrocarbons [5, 2006.01]
	C07C 291/08) [5, 2006.01]	249/08	by reaction of hydroxylamines with carbonyl
245/02	 Azo compounds, i.e. compounds having the free 	,	compounds [5, 2006.01]
	valencies of —N=N— groups attached to different	249/10	 from nitro compounds or salts thereof [5, 2006.01]
	atoms, e.g. diazohydroxides [5, 2006.01]	249/12	 by reactions not involving the formation of
245/04	with nitrogen atoms of azo groups bound to	∠ 4 J/1∠	oxyimino groups [5, 2006.01]
-	acyclic carbon atoms or to carbon atoms of rings	240/14	
	other than six-membered aromatic	249/14	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01]
	rings [5, 2006.01]	240/16	
245/06	with nitrogen atoms of azo groups bound to	249/16	• of hydrazones [5, 2006.01]
	carbon atoms of six-membered aromatic	251/00	Compounds containing nitrogen atoms doubly-
	rings [5, 2006.01]	231/00	bound to a carbon skeleton (diazo compounds
			C07C 245/12) [5, 2006.01]

251/02	 containing imino groups [5, 2006.01] 	251/62	 having oxygen atoms of oxyimino groups
251/04	 having carbon atoms of imino groups bound to 	DE4 /64	esterified [5, 2006.01]
	hydrogen atoms or to acyclic carbon	251/64	• • • by carboxylic acids [5, 2006.01]
251/06	atoms [5, 2006.01]to carbon atoms of a saturated carbon	251/66	• • • • with the esterifying carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms
231/00	skeleton [5, 2006.01]		or to carbon atoms of rings other than six-
251/08	• • • being acyclic [5, 2006.01]		membered aromatic rings [5, 2006.01]
251/10	• • to carbon atoms of an unsaturated carbon	251/68	• • • with at least one of the esterifying carboxyl
201710	skeleton [5, 2006.01]		groups bound to a carbon atom of a six-
251/12	• • • being acyclic [5, 2006.01]		membered aromatic ring [5, 2006.01]
251/14	• • containing rings other than six-membered	251/70	 Metal complexes of oximes [5, 2006.01]
	aromatic rings [5, 2006.01]	251/72	 Hydrazones [5, 2006.01]
251/16	• • containing six-membered aromatic	251/74	 having doubly-bound carbon atoms of hydrazone
	rings [5, 2006.01]		groups bound to hydrogen atoms or to acyclic
251/18	 having carbon atoms of imino groups bound to 	251 /76	carbon atoms [5, 2006.01]
	carbon atoms of rings other than six-membered	251/76	 to carbon atoms of a saturated carbon skeleton [5, 2006.01]
251/20	aromatic rings [5, 2006.01]having carbon atoms of imino groups being part of	251/78	to carbon atoms of an unsaturated carbon
231/20	rings other than six-membered aromatic	201770	skeleton [5, 2006.01]
	rings [5, 2006.01]	251/80	• • • the carbon skeleton containing
251/22	• • • Quinone imines [5, 2006.01]		rings [5, 2006.01]
251/24	 having carbon atoms of imino groups bound to 	251/82	 having doubly-bound carbon atoms of hydrazone
	carbon atoms of six-membered aromatic		groups bound to carbon atoms of rings other than
	rings [5, 2006.01]	251/04	six-membered aromatic rings [5, 2006.01]
251/26	having nitrogen atoms of imino groups further have dealers at the second seco	251/84	 having doubly-bound carbon atoms of hydrazone groups being part of rings other than six-
251/28	bound to halogen atoms [5, 2006.01]having nitrogen atoms of imino groups		membered aromatic rings [5, 2006.01]
231/20	acylated [5, 2006.01]	251/86	 having doubly-bound carbon atoms of hydrazone
251/30	 having nitrogen atoms of imino groups 		groups bound to carbon atoms of six-membered
	quaternised [5, 2006.01]		aromatic rings [5, 2006.01]
251/32	• Oximes [5, 2006.01]	251/88	having also the other nitrogen atom doubly-bound
251/34	 with oxygen atoms of oxyimino groups bound to 		to a carbon atom, e.g. azines [5, 2006.01]
	hydrogen atoms or to carbon atoms of		
		253/00	Preparation of carboxylic acid nitriles (of cyanogen
251/20	unsubstituted hydrocarbon radicals [5, 2006.01]	253/00	Preparation of carboxylic acid nitriles (of cyanogen or compounds thereof C01C 3/00) [5, 2006.01]
251/36	unsubstituted hydrocarbon radicals [5, 2006.01]with the carbon atoms of the oxyimino groups	253/00 253/02	or compounds thereof C01C 3/00) [5, 2006.01] • by reaction of nitrogen oxide with organic
251/36	unsubstituted hydrocarbon radicals [5, 2006.01]	253/02	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01]
251/36 251/38	 unsubstituted hydrocarbon radicals [5, 2006.01] with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon 		 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with
	 unsubstituted hydrocarbon radicals [5, 2006.01] with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] 	253/02 253/04	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01]
	 unsubstituted hydrocarbon radicals [5, 2006.01] with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon 	253/02 253/04 253/06	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01]
251/38 251/40	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] 	253/02 253/04	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01]
251/38	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the 	253/02 253/04 253/06	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to
251/38 251/40	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a 	253/02 253/04 253/06 253/08	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01]
251/38 251/40	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the 	253/02 253/04 253/06 253/08	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple
251/38 251/40	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the 	253/02 253/04 253/06 253/08 253/10 253/12	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01]
251/38 251/40 251/42	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than 	253/02 253/04 253/06 253/08 253/10	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing
251/38 251/40 251/42 251/44	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by
251/38 251/40 251/42 251/44 251/46	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01]
251/38 251/40 251/42 251/44	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the 	253/02 253/04 253/06 253/08 253/10 253/12 253/14	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by
251/38 251/40 251/42 251/44 251/46	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a 	253/02 253/04 253/06 253/08 253/10 253/12 253/14	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01]
251/38 251/40 251/42 251/44 251/46 251/48	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12 253/14	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds
251/38 251/40 251/42 251/44 251/46	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other
251/38 251/40 251/42 251/44 251/46 251/48	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/18	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01]
251/38 251/40 251/42 251/44 251/46 251/48	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/18	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01]
251/38 251/40 251/42 251/44 251/46 251/48 251/50	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by singly- 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/18	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01]
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52 251/54	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/18	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01] by reaction of ammonia with carboxylic acids with
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] of hydrocarbon radicals substituted by doubly- 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/18	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01] by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups [5, 2006.01] by ammoxidation of hydrocarbons or substituted
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52 251/54	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] Quinone oximes [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by singly-bound oxygen atoms [5, 2006.01] of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/20 253/20 253/22	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01] by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups [5, 2006.01] by ammoxidation of hydrocarbons or substituted hydrocarbons [5, 2006.01]
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52 251/54 251/56	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/18 253/20 253/22	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01] by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups [5, 2006.01] by ammoxidation of hydrocarbons or substituted hydrocarbons [5, 2006.01] containing carbon-to-carbon multiple bonds, e.g.
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52 251/54 251/56 251/58	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01] 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/20 253/20 253/22 253/24 253/26	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01] by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups [5, 2006.01] by ammoxidation of hydrocarbons or substituted hydrocarbons [5, 2006.01] containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes [5, 2006.01]
251/38 251/40 251/42 251/44 251/46 251/48 251/50 251/52 251/54 251/56	 with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] to carbon atoms of a saturated carbon skeleton [5, 2006.01] to carbon atoms of an unsaturated carbon skeleton [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups being part of a ring other than a six-membered aromatic ring [5, 2006.01] with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01] having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals [5, 2006.01] of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01] of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01] of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso 	253/02 253/04 253/06 253/08 253/10 253/12 253/14 253/16 253/20 253/20 253/22	 or compounds thereof C01C 3/00) [5, 2006.01] by reaction of nitrogen oxide with organic compounds [5, 2006.01] by reaction of cyanogen halides, e.g. ClCN, with organic compounds [5, 2006.01] from N-formylated amino compounds [5, 2006.01] by addition of hydrogen cyanide or salts thereof to unsaturated compounds [5, 2006.01] to compounds containing carbon-to-carbon double bonds [5, 2006.01] to compounds containing carbon-to-carbon triple bonds [5, 2006.01] by reaction of cyanides with halogen-containing compounds with replacement of halogen atoms by cyano groups [5, 2006.01] by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups [5, 2006.01] by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings [5, 2006.01] by dehydratation of carboxylic acid amides [5, 2006.01] by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups [5, 2006.01] by ammoxidation of hydrocarbons or substituted hydrocarbons [5, 2006.01] containing carbon-to-carbon multiple bonds, e.g.

253/30	 by reactions not involving the formation of cyano groups [5, 2006.01] 	255/26 • • • containing cyano groups, amino groups and singly-bound oxygen atoms bound to the
253/32	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01] 	carbon skeleton [5, 2006.01] 255/27 • • • containing cyano groups, amino groups and
253/34	• • Separation; Purification [5, 2006.01]	doubly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01]
255/00	Carboxylic acid nitriles (cyanogen or compounds thereof C01C 3/00) [5, 2006.01]	255/28 • • • containing cyano groups, amino groups and carboxyl groups, other than cyano groups,
255/01	 having cyano groups bound to acyclic carbon atoms [5, 2006.01] 	bound to the carbon skeleton [5, 2006.01] 255/29 • • containing cyano groups and acylated amino
255/02	 of an acyclic and saturated carbon 	groups bound to the carbon
	skeleton [5, 2006.01]	skeleton [5, 2006.01]
255/03	• • • Mononitriles [5, 2006.01]	255/30 • • containing cyano groups and singly-bound
255/04	 containing two cyano groups bound to the carbon skeleton [5, 2006.01] 	nitrogen atoms, not being further bound to other hetero atoms, bound to the same unsaturated
255/05	 containing at least three cyano groups bound to the carbon skeleton [5, 2006.01] 	acyclic carbon skeleton [5, 2006.01] 255/31 • having cyano groups bound to acyclic carbon
255/06	 of an acyclic and unsaturated carbon skeleton [5, 2006.01] 	atoms of a carbon skeleton containing rings other than six-membered aromatic rings [5, 2006.01]
255/07	• • • Mononitriles [5, 2006.01]	255/32 • having cyano groups bound to acyclic carbon
		atoms of a carbon skeleton containing at least one
255/08	• • • • Acrylonitrile; Methacrylonitrile [5, 2006.01]	six-membered aromatic ring [5, 2006.01]
255/09	• • containing at least two cyano groups bound to	255/33 • • • with cyano groups linked to the six-membered
	the carbon skeleton [5, 2006.01]	aromatic ring, or to the condensed ring system
255/10	 containing cyano groups and halogen atoms, or nitro or nitroso groups, bound to the same acyclic 	containing that ring, by saturated carbon chains [5, 2006.01]
	carbon skeleton [5, 2006.01]	
255/11	 containing cyano groups and singly-bound oxygen 	J
	atoms bound to the same saturated acyclic carbon skeleton [5, 2006.01]	aromatic ring, or to the condensed ring system containing that ring, by unsaturated carbon
255/12	• • containing cyano groups and hydroxy groups	chains [5, 2006.01]
	bound to the carbon skeleton [5, 2006.01]	255/35 • • • the carbon skeleton being further substituted by
255/13	• • containing cyano groups and etherified hydroxy	halogen atoms, or by nitro or nitroso
255715	groups bound to the carbon	groups [5, 2006.01]
	skeleton [5, 2006.01]	255/36 • • • the carbon skeleton being further substituted by
255/14	containing cyano groups and esterified hydroxy	hydroxy groups [5, 2006.01]
255/14	groups bound to the carbon	• • • the carbon skeleton being further substituted by etherified hydroxy groups [5, 2006.01]
055/45	skeleton [5, 2006.01]	255/38 • • • the carbon skeleton being further substituted by
255/15	containing cyano groups and singly-bound oxygen	esterified hydroxy groups [5, 2006.01]
	atoms bound to the same unsaturated acyclic	255/39 • • • with hydroxy groups esterified by
	carbon skeleton [5, 2006.01]	derivatives of 2,2-dimethylcyclopropane
255/16	 containing cyano groups and singly-bound oxygen atoms bound to the same carbon atom of an 	carboxylic acids, e.g. chrysanthemumic acids [5, 2006.01]
	acyclic carbon skeleton [5, 2006.01]	
255/17	 containing cyano groups and doubly-bound 	255/40 • • • the carbon skeleton being further substituted by
	oxygen atoms bound to the same acyclic carbon	doubly-bound oxygen atoms [5, 2006.01]
	skeleton [5, 2006.01]	255/41 • • • the carbon skeleton being further substituted by
255/18	containing cyano groups bound to carbon atoms of	carboxyl groups, other than cyano
200710	carboxyl groups [5, 2006.01]	groups [5, 2006.01]
255/19	 containing cyano groups and carboxyl groups, 	255/42 • • the carbon skeleton being further substituted by
233/13	other than cyano groups, bound to the same	singly-bound nitrogen atoms, not being further
	saturated acyclic carbon skeleton [5, 2006.01]	bound to other hetero atoms [5, 2006.01]
255/20		255/43 • • • the carbon skeleton being further substituted
255/20	• • • the carbon skeleton being further substituted by	by singly-bound oxygen atoms [5, 2006.01]
	singly-bound oxygen atoms [5, 2006.01]	255/44 • • • at least one of the singly-bound nitrogen
255/21	• • • the carbon skeleton being further substituted by	atoms being acylated [5, 2006.01]
	doubly-bound oxygen atoms [5, 2006.01]	• having cyano groups bound to carbon atoms of rings
255/22	 containing cyano groups and at least two 	other than six-membered aromatic rings [5, 2006.01]
	carboxyl groups bound to the carbon	255/46 • to carbon atoms of non-condensed
	skeleton [5, 2006.01]	rings [5, 2006.01]
255/23	 containing cyano groups and carboxyl groups, 	
	other than cyano groups, bound to the same	255/47 • • to carbon atoms of rings being part of condensed
	unsaturated acyclic carbon skeleton [5, 2006.01]	ring systems [5, 2006.01]
255/24	containing cyano groups and singly-bound	255/48 • • to carbon atoms of 2,2-dimethylcyclopropane
	nitrogen atoms, not being further bound to other	rings, e.g. nitrile of chrysanthemumic
	hetero atoms, bound to the same saturated acyclic	acids [5, 2006.01]
	carbon skeleton [5, 2006.01]	• having cyano groups bound to carbon atoms of six-
255/25	• • • Aminoacetonitriles [5, 2006.01]	membered aromatic rings of a carbon
_55, 20		skeleton [5, 2006.01]

255/50	• • to carbon atoms of non-condensed six-membered	257/14	having carbon atoms of amidino groups bound to
255750	aromatic rings [5, 2006.01]	257714	acyclic carbon atoms [5, 2006.01]
255/51	 containing at least two cyano groups bound to the carbon skeleton [5, 2006.01] 	257/16	 having carbon atoms of amidino groups bound to carbon atoms of rings other than six-membered
255/52	• to carbon atoms of six-membered aromatic rings	257/10	aromatic rings [5, 2006.01]
255/53	 being part of condensed ring systems [5, 2006.01] containing cyano groups and hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/18	 having carbon atoms of amidino groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
255/54	 containing cyano groups and etherified hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/20	 having nitrogen atoms of amidino groups acylated [5, 2006.01]
255/55	 containing cyano groups and esterified hydroxy groups bound to the carbon skeleton [5, 2006.01] 	257/22	 having nitrogen atoms of amidino groups further bound to nitrogen atoms, e.g.
255/56	containing cyano groups and doubly-bound cyanger atoms bound to the carbon.		hydrazidines [5, 2006.01]
	oxygen atoms bound to the carbon skeleton [5, 2006.01]	259/00	Compounds containing carboxyl groups, an oxygen
255/57	 containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton [5, 2006.01] 		atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups [5, 2006.01]
255/58	 containing cyano groups and singly-bound nitrogen atoms, not being further bound to other 	259/02	 with replacement of the other oxygen atom of the
	hetero atoms, bound to the carbon skeleton [5, 2006.01]	259/04	 carboxyl group by halogen atoms [5, 2006.01] without replacement of the other oxygen atom of the
255/59	• • the carbon skeleton being further substituted by	259/06	carboxyl group, e.g. hydroxamic acids [5, 2006.01]having carbon atoms of hydroxamic groups bound
255/60	 singly-bound oxygen atoms [5, 2006.01] at least one of the singly-bound nitrogen atoms being acylated [5, 2006.01] 		to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
255/61	 containing cyano groups and nitrogen atoms being part of imino groups bound to the same carbon 	259/08	 having carbon atoms of hydroxamic groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
255/62	skeleton [5, 2006.01]containing cyano groups and oxygen atoms being	259/10	 having carbon atoms of hydroxamic groups bound
255/02	part of oxyimino groups bound to the same carbon skeleton [5, 2006.01]		to carbon atoms of six-membered aromatic rings [5, 2006.01]
255/63	containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms	259/12	 with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. N- hydroxyamidines [5, 2006.01]
	of nitro or nitroso groups, bound to the same carbon skeleton [5, 2006.01]	259/14	 having carbon atoms of hydroxyamidine groups
255/64	• • with the nitrogen atoms further bound to oxygen		bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
255/65	 atoms [5, 2006.01] with the nitrogen atoms further bound to nitrogen atoms [5, 2006.01] 	259/16	having carbon atoms of hydroxyamidine groups bound to carbon atoms of rings other than six-
255/66	having cyano groups and nitrogen atoms being part of hydrazine or hydrazone groups bound to	259/18	 membered aromatic rings [5, 2006.01] having carbon atoms of hydroxyamidine groups bound to carbon atoms of six-membered aromatic
255/67	the same carbon skeleton [5, 2006.01] • • having cyano groups and azido groups bound to	250/20	rings [5, 2006.01]
	the same carbon skeleton [5, 2006.01]	259/20	with at least one nitrogen atom of hydroxyamidine groups bound to another nitrogen atom 15, 2006 011
257/00	Compounds containing carboxyl groups, the doubly- bound oxygen atom of a carboxyl group being		atom [5, 2006.01]
	replaced by a doubly-bound nitrogen atom, this	261/00	Derivatives of cyanic acid [5, 2006.01]
	nitrogen atom not being further bound to an oxygen	261/02 261/04	 Cyanates [5, 2006.01] Cyanamides (unsubstituted cyanamide
257/02	atom, e.g. imino-ethers, amidines [5, 2006.01]with replacement of the other oxygen atom of the	201/01	C01C 3/16) [5, 2006.01]
	carboxyl group by halogen atoms, e.g. imino-	263/00	Preparation of derivatives of isocyanic
257/04	halides [5, 2006.01]without replacement of the other oxygen atom of the		acid [5, 2006.01]
	carboxyl group, e.g. imino-ethers [5, 2006.01]	263/02	 by reaction of halides with isocyanic acid or its derivatives [5, 2006.01]
257/06	 having carbon atoms of imino-carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms, or to carbon atoms of rings other than six- 	263/04	 from or <u>via</u> carbamates or carbamoyl halides [5, 2006.01]
	membered aromatic rings [5, 2006.01]	263/06	• from or <u>via</u> ureas [5, 2006.01]
257/08	having carbon atoms of imino-carboxyl groups bound to carbon atoms of six-membered aromatic groups [5, 2006 01].	263/08 263/10	 from or <u>via</u> heterocyclic compounds, e.g. pyrolysis of furoxans [5, 2006.01] by reaction of amines with carbonyl halides, e.g. with
257/10	rings [5, 2006.01] • with replacement of the other oxygen atom of the	203/10	phosgene [5, 2006.01]
_5//10	carboxyl group by nitrogen atoms, e.g. amidines [5, 2006.01]	263/12	• from or <u>via</u> nitrogen analogues of carboxylic acids, e.g. from hydroxamic acids, involving a Hofmann,
257/12	 having carbon atoms of amidino groups bound to hydrogen atoms [5, 2006.01] 		Curtius or Lossen-type rearrangement (C07C 209/56 takes precedence) [5, 2006.01]

263/14	 by catalytic reaction of nitro compounds with carbon monoxide [5, 2006.01] 	271/16 • • • to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen
263/16	• by reactions not involving the formation of	atoms [5, 2006.01]
263/18	 isocyanate groups [5, 2006.01] Separation; Purification; Stabilisation; Use of additives [5, 2006.01] 	271/18 • • • to carbon atoms of hydrocarbon radicals substituted by doubly-bound oxygen atoms [5, 2006.01]
263/20	• • Separation; Purification [5, 2006.01]	271/20 • • • to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part
265/00	Derivatives of isocyanic acid [5, 2006.01]	of nitro or nitroso groups [5, 2006.01]
265/02	having isocyanate groups bound to acyclic carbon	271/22 • • • to carbon atoms of hydrocarbon radicals
203702	atoms [5, 2006.01]	substituted by carboxyl groups [5, 2006.01]
265/04	 of a saturated carbon skeleton [5, 2006.01] 	271/24 • • • with the nitrogen atom of at least one of the
265/06	 of an unsaturated carbon skeleton [5, 2006.01] 	carbamate groups bound to a carbon atom of a
265/08	• • • the carbon skeleton containing	ring other than a six-membered aromatic ring [5, 2006.01]
0.05 /4.0	rings [5, 2006.01]	271/26 • • • with the nitrogen atom of at least one of the
265/10	 having isocyanate groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	carbamate groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
265/12	9 - 1	271/28 • • • to a carbon atom of a non-condensed six-
265/12	 having isocyanate groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01] 	membered aromatic ring [5, 2006.01]
265/14	 containing at least two isocyanate groups bound to 	271/30 • • • to a carbon atom of a six-membered
265/16	the same carbon skeleton [5, 2006.01] • having isocyanate groups acylated [5, 2006.01]	aromatic ring being part of a condensed ring system [5, 2006.01]
203/10	liaving isocyanate groups acytated [3, 2000.01]	271/32 • • having oxygen atoms of carbamate groups bound
267/00	Carbodiimides [5, 2006.01]	to carbon atoms of rings other than six-membered
200 (00		aromatic rings [5, 2006.01]
269/00	Preparation of derivatives of carbamic acid, i.e.	271/34 • • • with the nitrogen atoms of the carbamate
	compounds containing any of the groups	groups bound to hydrogen atoms or to acyclic
	0	carbon atoms [5, 2006.01]
	N-C-O-, $N-C-Hal$, $-N=C-O-$,	271/36 • • • with the nitrogen atom of at least one of the
	Q- Ḥal	carbamate groups bound to a carbon atom of a
		ring other than a six-membered aromatic
	the mtrogen atom	ring [5, 2006.01]
	not being part of nitro or nitroso groups [5, 2006.01]	271/38 • • • with the nitrogen atom of at least one of the
269/02	 from isocyanates with formation of carbamate 	carbamate groups bound to a carbon atom of a
	groups [5, 2006.01]	six-membered aromatic ring [5, 2006.01]
269/04	 from amines with formation of carbamate 	• • having oxygen atoms of carbamate groups bound
	groups [5, 2006.01]	to carbon atoms of six-membered aromatic
269/06	 by reactions not involving the formation of carbamate 	rings [5, 2006.01]
	groups [5, 2006.01]	271/42 • • • with the nitrogen atoms of the carbamate
269/08	 Separation; Purification; Stabilisation; Use of 	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]
	additives [5, 2006.01]	
271 /00	Deltador Carlo de Maria del Carro de Carlo	271/44 • • • • to hydrogen atoms or to carbon atoms of
271/00	Derivatives of carbamic acid, i.e. compounds	unsubstituted hydrocarbon radicals [5, 2006.01]
	containing any of the groups	
	0	271/46 • • • to carbon atoms of hydrocarbon radicals
	>N-L-U-, >N-L-Hal, -N=L-U-,	substituted by halogen atoms or by nitro or nitroso groups [5, 2006.01]
	O- Hal	
	-N=C-Hal or -N=C-Hal	271/48 • • • to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen
	not being part of nitro or nitroso groups [5, 2006.01]	atoms [5, 2006.01]
271 /02		271/50 • • • to carbon atoms of hydrocarbon radicals
271/02	Carbamic acids; Salts of carbamic acids (unsubstituted carbamic acid or salts thereof	substituted by doubly-bound oxygen
	C01B 21/12) [5, 2006.01]	atoms [5, 2006.01]
271/04	• Carbamic acid halides [5, 2006.01]	271/52 • • • to carbon atoms of hydrocarbon radicals
		substituted by nitrogen atoms not being part
271/06	• Esters of carbamic acids [5, 2006.01]	of nitro or nitroso groups [5, 2006.01]
271/08	having oxygen atoms of carbamate groups bound To appella such as atoms [5, 2006, 01].	271/54 • • • to carbon atoms of hydrocarbon radicals
074 /40	to acyclic carbon atoms [5, 2006.01]	substituted by carboxyl groups [5, 2006.01]
271/10	• • • with the nitrogen atoms of the carbamate	271/56 • • • with the nitrogen atom of at least one of the
	groups bound to hydrogen atoms or to acyclic	carbamate groups bound to a carbon atom of a
771/17	carbon atoms [5, 2006.01]	ring other than a six-membered aromatic
271/12	• • • • to hydrogen atoms or to carbon atoms of	ring [5, 2006.01]
	unsubstituted hydrocarbon radicals [5, 2006.01]	271/58 • • • with the nitrogen atom of at least one of the
271/14		carbamate groups bound to a carbon atom of a
271/14	• • • to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or	six-membered aromatic ring [5, 2006.01]
	nitroso groups [5, 2006.01]	• having oxygen atoms of carbamate groups bound to
	1111030 Stoups [3, 2000,01]	nitrogen atoms [5, 2006.01]
		•

271/62	 Compounds containing any of the groups 	275/26	 having nitrogen atoms of urea groups bound to
	O X O X -O-C-N-C Hal-C-N-C		carbon atoms of rings other than six-membered
	-O-C-N-C Hal-C-N-C		aromatic rings [5, 2006.01]
	Y	275/28	having nitrogen atoms of urea groups bound to
	O X O X -O-C-N=C or Hal-C-N=C		carbon atoms of six-membered aromatic rings of a carbon skeleton [5, 2006.01]
	-O-Ë-N=C´ or Hal-Ë-N=C´	275/30	 being further substituted by halogen atoms, or by
	Y X being a hetero	2/3/30	nitro or nitroso groups [5, 2006.01]
	atom, Y being any atom, e.g. N-	275/32	being further substituted by singly-bound oxygen
	acylcarbamates [5, 2006.01]		atoms [5, 2006.01]
271/64	• • Y being a hydrogen or a carbon atom, e.g.	275/34	 having nitrogen atoms of urea groups and
271/66	benzoylcarbamates [5, 2006.01]Y being a hetero atom [5, 2006.01]		singly-bound oxygen atoms bound to carbon
271/68			atoms of the same non-condensed six- membered aromatic ring [5, 2006.01]
271700	O- O- Hal	275/36	• • • with at least one of the oxygen atoms further
	-N=C' $-N=C'$ or $-N=C'$	275750	bound to a carbon atom of a six-membered
	- Compounds containing any of the groups O-		aromatic ring, e.g. N-
	[5, 2000.01]		aryloxyphenylureas [5, 2006.01]
273/00	Preparation of urea or its derivatives, i.e. compounds	275/38	• • being further substituted by doubly-bound oxygen
	containing any of the groups	275/40	atoms [5, 2006.01]being further substituted by nitrogen atoms not
	O N- N- N-C-NC N-C-O- or N-C-Hal the nitrogen atoms	2/3/40	being part of nitro or nitroso groups [5, 2006.01]
	the nitrogen atoms	275/42	 being further substituted by carboxyl
252 (02	not being part of nitro or nitroso groups [5, 2006.01]		groups [5, 2006.01]
273/02	 of urea, its salts, complexes or addition compounds [5, 2006.01] 	275/44	 having nitrogen atoms of urea groups doubly-bound
273/04	 from carbon dioxide and ammonia [5, 2006.01] 		to carbon atoms [5, 2006.01]
273/06	• from cyanamide or calcium	275/46	 containing any of the groups \(\sigma\)
, _,	cyanamide [5, 2006.01]		N-C-N-C or >N-C-N=C Y X being a betero
273/08	• • from ammoniacal liquor [5, 2006.01]		Y V haire a hataur
273/10	 combined with the synthesis of 		Y X being a hetero atom, Y being any atom, e.g. acylureas [5, 2006.01]
	ammonia [5, 2006.01]	275/48	 Y being a hydrogen or a carbon atom [5, 2006.01]
273/12	• • combined with the synthesis of	275/50	Y being a hydrogen or an acyclic carbon
273/14	melamine [5, 2006.01]• Separation; Purification; Stabilisation; Use of		atom [5, 2006.01]
2/3/14	additives [5, 2006.01]	275/52	• • Y being a carbon atom of a ring other than a
273/16	• • • Separation; Purification [5, 2006.01]	055 /5 4	six-membered aromatic ring [5, 2006.01]
273/18	• of substituted ureas [5, 2006.01]	275/54	 Y being a carbon atom of a six-membered aromatic ring, e.g. benzoylureas [5, 2006.01]
275 /00	Deltast and make an area along statement	275/56	• • • X being a nitrogen atom [5, 2006.01]
275/00	Derivatives of urea, i.e. compounds containing any of ∩ N- N-	275/58	 Y being a hetero atom [5, 2006.01]
	the groups N-C-N(N-C-0- or N-C-Hal the	275/60	Y being an oxygen atom, e.g. allophanic
	nitrogen atoms not being part of nitro or nitroso		acids [5, 2006.01]
	groups [5, 2006.01]	275/62	 Y being a nitrogen atom, e.g.
275/02	• Salts; Complexes; Addition compounds [5, 2006.01]	275 /64	biuret [5, 2006.01]
275/04	 having nitrogen atoms of urea groups bound to 	275/64	 having nitrogen atoms of urea groups singly-bound to oxygen atoms [5, 2006.01]
	acyclic carbon atoms [5, 2006.01]	275/66	 having nitrogen atoms of urea groups bound to
275/06	• • of an acyclic and saturated carbon		halogen atoms or to nitro or nitroso
275/08	skeleton [5, 2006.01] • • being further substituted by halogen atoms, or		groups [5, 2006.01]
2/3/00	by nitro or nitroso groups [5, 2006.01]	275/68	 N-nitroso ureas [5, 2006.01]
275/10	• • being further substituted by singly-bound	275/70	 Compounds containing any of the groups
	oxygen atoms [5, 2006.01]		N- N-
275/12	• • being further substituted by doubly-bound		-N=C or -N=C Hallog isources [5, 2006 01]
DEE /4.4	oxygen atoms [5, 2006.01]		O- Hal e.g. isoureas [5, 2006.01]
275/14	 • being further substituted by nitrogen atoms not being part of nitro or nitroso 	277/00	Preparation of guanidine or its derivatives, i.e.
	groups [5, 2006.01]	=///00	Ņ-
275/16	• • being further substituted by carboxyl		compounds containing the group $N-\ddot{C}-N$ the
	groups [5, 2006.01]		singly-bound nitrogen atoms not being part of nitro
275/18	of a saturated carbon skeleton containing		or nitroso groups [5, 2006.01]
275 /20	rings [5, 2006.01]	277/02	of guanidine from cyanamide, calcium cyanamide or dicyandiamides [5, 2006 01].
275/20 275/22	 of an unsaturated carbon skeleton [5, 2006.01] containing rings other than six-membered	277/04	dicyandiamides [5, 2006.01] of guanidine from ammonium
Z/J/ZZ	aromatic rings [5, 2006.01]	2///04	thiocyanate [5, 2006.01]
275/24	containing six-membered aromatic	277/06	• Purification or separation of guanidine [5, 2006.01]
	rings [5, 2006.01]	277/08	• of substituted guanidines [5, 2006.01]

250 /00		201 /00	
279/00	Derivatives of guanidine, i.e. compounds containing N-	281/08	 the other nitrogen atom being further doubly- bound to a carbon atom, e.g.
	the group N^{-1} the singly-bound nitrogen atoms		semicarbazones [5, 2006.01]
	not being part of nitro or nitroso groups [5, 2006.01]	281/10	 the carbon atom being further bound to an
279/02	Guanidine; Salts, complexes or addition compounds		acyclic carbon atom or to a carbon atom of a
	thereof [5, 2006.01]		ring other than a six-membered aromatic ring [5, 2006.01]
279/04	 having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon 	281/12	the carbon atom being part of a ring other than
	skeleton [5, 2006.01]		a six-membered aromatic ring [5, 2006.01]
279/06	 being further substituted by halogen atoms, or by 	281/14	• • • the carbon atom being further bound to a
	nitro or nitroso groups [5, 2006.01]		carbon atom of a six-membered aromatic
279/08	being further substituted by singly-bound oxygen To proceed the state of the	281/16	ring [5, 2006.01] • Compounds containing any of the groups
279/10	atoms [5, 2006.01]being further substituted by doubly-bound oxygen	201/10	NN-
2/3/10	atoms [5, 2006.01]		N-N-C-NK or >N-N=C-NK e.g.
279/12	 being further substituted by nitrogen atoms not 		aminoguanidine [5, 2006.01]
	being part of nitro or nitroso groups [5, 2006.01]	281/18	the other nitrogen atom being further doubly-
279/14	• • being further substituted by carboxyl		bound to a carbon atom, e.g. guanylhydrazones [5, 2006.01]
279/16	groups [5, 2006.01] • having nitrogen atoms of guanidine groups bound to	281/20	 the two nitrogen atoms of the functional groups being
2/3/10	carbon atoms of rings other than six-membered		doubly-bound to each other, e.g.
	aromatic rings [5, 2006.01]		azoformamide [5, 2006.01]
279/18	having nitrogen atoms of guanidine groups bound to	291/00	Compounds containing carbon and nitrogen and
	carbon atoms of six-membered aromatic rings [5, 2006.01]		having functional groups not covered by groups
279/20	 containing any of the groups 		C07C 201/00-C07C 281/00 [5, 2006.01]
2,3,20	>N N N N N N N N N N N N N N N N N N N	291/02	• containing nitrogen-oxide bonds [5, 2006.01]
	>n-1-n	291/04 291/06	containing amino-oxide bonds [5, 2006.01]Nitrile oxides [5, 2006.01]
	~N—	291/00	 Azoxy compounds [5, 2006.01]
	N heing a hetere	291/10	• Isocyanides [5, 2006.01]
	X being a hetero atom, Y being any atom, e.g.	291/12	• Fulminates [5, 2006.01]
	acylguanidines [5, 2006.01]	291/14	 containing at least one carbon atom bound to a nitro
279/22	 Y being a hydrogen or a carbon atom, e.g. 		or nitroso group and doubly-bound to a hetero
250 /24	benzoylguanidines [5, 2006.01]		atom [5, 2006.01]
279/24 279/26	Y being a hetero atom [5, 2006.01]X and Y being nitrogen atoms, i.e.		
273720	biguanides [5, 2006.01]		nds containing carbon together with sulfur, selenium or
279/28	 having nitrogen atoms of guanidine groups bound to 	<u>tenurium</u> nitrogen	ı, with or without hydrogen, halogens, oxygen or [5]
	cyano groups, e.g. cyanoguanidines,		<u>.=.</u>
279/30	dicyandiamides [5, 2006.01] • having nitrogen atoms of guanidine groups bound to	301/00	Esters of sulfurous acid [5, 2006.01]
2/3/30	nitro or nitroso groups [5, 2006.01]	301/02	 having sulfite groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01]
279/32	• • N-nitroguanidines [5, 2006.01]		membered aromatic rings [3, 2000.01]
279/34	• • • N-nitroguanidine [5, 2006.01]	303/00	Preparation of esters or amides of sulfuric acids;
279/36	• • • Substituted N-nitroguanidines [5, 2006.01]		Preparation of sulfonic acids or of their esters, halides, anhydrides or amides [5, 2006.01]
281/00	Derivatives of carbonic acid containing functional	303/02	• of sulfonic acids or halides thereof [5, 2006.01]
201700	groups covered by groups C07C 269/00-C07C 279/00	303/04	by substitution of hydrogen atoms by sulfo or
	in which at least one nitrogen atom of these		halosulfonyl groups [5, 2006.01]
	functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso	303/06	• • • by reaction with sulfuric acid or sulfur
	group [5, 2006.01]	303/08	trioxide [5, 2006.01] • • by reaction with halogenosulfonic
281/02	Compounds containing any of the groups	303700	acids [5, 2006.01]
	N-N-C-O- or N-N-C-O- e.g.	303/10	• • by reaction with sulfur dioxide and halogen or
			by reaction with sulfuryl halides [5, 2006.01]
201 /04	carbazates [5, 2006.01]	303/12	• • • by reaction with thionylhalides [5, 2006.01]
281/04	 the other nitrogen atom being further doubly- bound to a carbon atom [5, 2006.01] 	303/14	 by sulfoxidation, i.e. by reaction with sulfur dioxide and oxygen with formation of sulfo or
281/06	Compounds containing any of the groups		halosulfonyl groups [5, 2006.01]
		303/16	• • by oxidation of thiols, sulfides, hydropolysulfides,
)		or polysulfides with formation of sulfo or
	, 0 -	ว กว /10	halosulfonyl groups [5, 2006.01]
	0− or >N−N−C=N− e.g.	303/18	 by reaction of sulfides with compounds having functional groups with formation of sulfo or
	semicarbazides [5, 2006.01]		halosulfonyl groups [5, 2006.01]

303/20	 by addition of sulfurous acid or salts thereof to compounds having carbon-to-carbon multiple bonds [5, 2006.01] 	307/10	 having nitrogen atoms of the sulfamide groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
303/22	 from sulfonic acids by reactions not involving the 		0
303722	formation of sulfo or halosulfonyl groups [5, 2006.01]	309/00	Sulfonic acids; Halides, esters, or anhydrides thereof [5, 2006.01]
202/24		309/01	• Sulfonic acids [5, 2006.01]
303/24	• of esters of sulfuric acids [5, 2006.01]		
303/26 303/28	 of esters of sulfonic acids [5, 2006.01] by reaction of hydroxy compounds with sulfonic	309/02	 having sulfo groups bound to acyclic carbon atoms [5, 2006.01]
	acids or derivatives thereof [5, 2006.01]	309/03	• • • of an acyclic saturated carbon skeleton [5, 2006.01]
303/30	 by reactions not involving the formation of esterified sulfo groups [5, 2006.01] 	309/04	• • • containing only one sulfo group [5, 2006.01]
000 /00		309/05	• • • containing at least two sulfo groups bound to
303/32	 of salts of sulfonic acids [5, 2006.01] 	303/03	the carbon skeleton [5, 2006.01]
303/34	 of amides of sulfuric acids [5, 2006.01] 	200/06	
303/36	 of amides of sulfonic acids [5, 2006.01] 	309/06	• • • containing halogen atoms, or nitro or nitroso
303/38	 by reaction of ammonia or amines with sulfonic 		groups bound to the carbon
	acids, or with esters, anhydrides, or halides		skeleton [5, 2006.01]
	thereof [5, 2006.01]	309/07	 containing oxygen atoms bound to the
303/40	by reactions not involving the formation of		carbon skeleton [5, 2006.01]
3037 40	sulfonamide groups [5, 2006.01]	309/08	• • • • containing hydroxy groups bound to the
303/42	Separation; Purification; Stabilisation; Use of		carbon skeleton [5, 2006.01]
303/42	additives [5, 2006.01]	309/09	 • • • containing etherified hydroxy groups
303/44	• • Separation; Purification [5, 2006.01]		bound to the carbon skeleton [5, 2006.01]
	-	309/10	• • • • • with the oxygen atom of at least one of
303/46	• • • from by-products of refining mineral oils with		the etherified hydroxy groups further
	sulfuric acid [5, 2006.01]		bound to an acyclic carbon
205/00	Estave of sulfuris acids [E. 2006.01]		atom [5, 2006.01]
305/00	Esters of sulfuric acids [5, 2006.01]	309/11	• • • • • with the oxygen atom of at least one of
305/02	having oxygen atoms of sulfate groups bound to	505/11	the etherified hydroxy groups further
	acyclic carbon atoms of a carbon		bound to a carbon atom of a six-
	skeleton [5, 2006.01]		membered aromatic ring [5, 2006.01]
305/04	 being acyclic and saturated [5, 2006.01] 	309/12	• • • containing esterified hydroxy groups
305/06	• • • Hydrogenosulfates [5, 2006.01]	303/12	bound to the carbon skeleton [5, 2006.01]
305/08	 • Dialkylsulfates; Substituted 	200/12	
	dialkylsulfates [5, 2006.01]	309/13	• • • containing nitrogen atoms, not being part of
305/10	 • being further substituted by singly-bound 		nitro or nitroso groups, bound to the carbon
	oxygen atoms [5, 2006.01]	200//	skeleton [5, 2006.01]
305/12	 being saturated and containing rings [5, 2006.01] 	309/14	• • • • containing amino groups bound to the
305/14	 being acyclic and unsaturated [5, 2006.01] 		carbon skeleton [5, 2006.01]
		309/15	• • • • • the nitrogen atom of at least one of the
305/16	• • being unsaturated and containing		amino groups being part of any of the
DOF /40	rings [5, 2006.01]		X :N-C-Y or -N=C(
305/18	• • • containing six-membered aromatic		>N−C̈−Y or −N=Ć
005/00	rings [5, 2006.01]		groups Y X being
305/20	having oxygen atoms of sulfate groups bound to		a hetero atom, Y being any
	carbon atoms of rings other than six-membered		atom [5, 2006.01]
	aromatic rings [5, 2006.01]	200/16	
305/22	 having oxygen atoms of sulfate groups bound to 	309/16	• • • • containing doubly-bound nitrogen atoms bound to the carbon skeleton [5, 2006.01]
	carbon atoms of six-membered aromatic	200/45	
	rings [5, 2006.01]	309/17	• • • containing carboxyl groups bound to the
305/24	 of non-condensed six-membered aromatic 		carbon skeleton [5, 2006.01]
	rings [5, 2006.01]	309/18	• • • • containing amino groups bound to the
305/26	 Halogenosulfates, i.e. monoesters of halogenosulfuric 		same carbon skeleton [5, 2006.01]
	acids [5, 2006.01]	309/19	 of a saturated carbon skeleton containing
			rings [5, 2006.01]
307/00	Amides of sulfuric acids, i.e. compounds having	309/20	 of an acyclic unsaturated carbon
	singly-bound oxygen atoms of sulfate groups		skeleton [5, 2006.01]
	replaced by nitrogen atoms, not being part of nitro	309/21	 containing nitrogen atoms, not being part of
	or nitroso groups [5, 2006.01]		nitro or nitroso groups, bound to the carbon
307/02	 Monoamides of sulfuric acids or esters thereof, e.g. 		skeleton [5, 2006.01]
	sulfamic acids [5, 2006.01]	309/22	• • • containing carboxyl groups bound to the
307/04	 Diamides of sulfuric acids [5, 2006.01] 		carbon skeleton [5, 2006.01]
307/06	 having nitrogen atoms of the sulfamide groups 	309/23	• • of an unsaturated carbon skeleton containing
	bound to acyclic carbon atoms [5, 2006.01]		rings other than six-membered aromatic
307/08	 having nitrogen atoms of the sulfamide groups 		rings [5, 2006.01]
23.,00	bound to carbon atoms of rings other than six-	309/24	• • of a carbon skeleton containing six-membered
	membered aromatic rings [5, 2006.01]	JUJ/ 44	aromatic rings [5, 2006.01]
			aromane rings [5, 2000.01]

309/25	 having sulfo groups bound to carbon atoms of rings other than six-membered aromatic rings of a carbon skeleton [5, 2006.01] 	309/51 • • • • at least one of the nitrogen atoms being part X N-C or -N-C
309/26	containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon	of any of the groups
	skeleton [5, 2006.01]	X being a hetero atom, Y being any atom [5, 2006.01]
309/27	• • • containing carboxyl groups bound to the carbon skeleton [5, 2006.01]	309/52 • • • • the carbon skeleton being further substituted by doubly-bound oxygen atoms [5, 2006.01]
309/28	having sulfo groups bound to carbon atoms of six- membered aromatic rings of a carbon leaves 15, 2006, 011	309/53 • • • • the carbon skeleton containing carbon atoms of quinone rings [5, 2006.01]
309/29	skeleton [5, 2006.01]of non-condensed six-membered aromatic rings [5, 2006.01]	309/54 • • • • at least one of the nitrogen atoms being part of any of the groups
309/30	• • • of six-membered aromatic rings substituted	N-C or -N=C
309/31	by alkyl groups [5, 2006.01] • • • • by alkyl groups containing at least three	† X being a
309/32	carbon atoms [5, 2006.01] • • • • containing at least two non-condensed six-	hetero atom, Y being any atom [5, 2006.01]
303732	membered aromatic rings in the carbon skeleton [5, 2006.01]	309/55 • • • • • • Y being a hydrogen or a carbon atom [5, 2006.01]
309/33	• • of six-membered aromatic rings being part of	309/56 • • • • • • Y being a hetero atom [5, 2006.01]
303/33		309/57 • • • containing carboxyl groups bound to the carbon
200 /24	condensed ring systems [5, 2006.01]	skeleton [5, 2006.01]
309/34	• • • formed by two rings [5, 2006.01]	309/58 • • • • Carboxylic acid groups or esters
309/35	• • • • Naphthalene sulfonic acids [5, 2006.01]	thereof [5, 2006.01]
309/36	• • • • • substituted by alkyl groups [5, 2006.01]	309/59 • • • • Nitrogen analogues of carboxyl
309/37	• • • • • by alkyl groups containing at least	groups [5, 2006.01]
	three carbon atoms [5, 2006.01]	309/60 • • • • the carbon skeleton being further substituted
309/38	• • • formed by at least three rings [5, 2006.01]	by singly-bound oxygen atoms [5, 2006.01]
309/39	 containing halogen atoms bound to the carbon 	309/61 • • • the carbon skeleton being further substituted
	skeleton [5, 2006.01]	by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]
309/40	 containing nitro or nitroso groups bound to the carbon skeleton [5, 2006.01] 	309/62 • • Sulfonated fats, oils or waxes of undetermined constitution [5, 2006.01]
309/41	 containing singly-bound oxygen atoms bound 	309/63 • Esters of sulfonic acids [5, 2006.01]
	to the carbon skeleton [5, 2006.01]	
309/42	• • • having the sulfo groups bound to carbon atoms of non-condensed six-membered	309/64 • having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms [5, 2006.01]
	aromatic rings [5, 2006.01]	309/65 • • • of a saturated carbon skeleton [5, 2006.01]
309/43	 having at least one of the sulfo groups bound 	309/66 • • • • Methanesulfonates [5, 2006.01]
505745	to a carbon atom of a six-membered	309/67 • • • of an unsaturated carbon skeleton [5, 2006.01]
	aromatic ring being part of a condensed ring	309/68 • • • of a carbon skeleton substituted by singly-bound oxygen atoms [5, 2006.01]
200 / 44	system [5, 2006.01]containing doubly-bound oxygen atoms bound	309/69 • • • of a carbon skeleton substituted by nitrogen
309/44	to the carbon skeleton [5, 2006.01]	atoms, not being part of nitro or nitroso
309/45	• • • containing nitrogen atoms, not being part of	groups [5, 2006.01] 309/70 • • • of a carbon skeleton substituted by carboxyl
	nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]	groups [5, 2006.01]
309/46	 • • having the sulfo groups bound to carbon 	309/71 • having sulfur atoms of esterified sulfo groups
	atoms of non-condensed six-membered aromatic rings [5, 2006.01]	bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01]
309/47	 having at least one of the sulfo groups bound to a carbon atom of a six-membered 	309/72 • having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic
	aromatic ring being part of a condensed ring	rings of a carbon skeleton [5, 2006.01]
	system [5, 2006.01]	309/73 • • • to carbon atoms of non-condensed six-
309/48	• • • the carbon skeleton being further substituted	membered aromatic rings [5, 2006.01]
	by halogen atoms [5, 2006.01]	309/74 • • to carbon atoms of six-membered aromatic
309/49	• • • the carbon skeleton being further substituted by singly-bound oxygen atoms [5, 2006.01]	rings being part of condensed ring systems [5, 2006.01]
309/50	• • • • having at least one of the sulfo groups bound to a carbon atom of a six-	309/75 • • • containing singly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01]
	membered aromatic ring being part of a	309/76 • • containing nitrogen atoms, not being part of
	condensed ring system [5, 2006.01]	nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]
		309/77 • • containing carboxyl groups bound to the carbon
		skeleton [5, 2006.01] 309/78 • Halides of sulfonic acids [5, 2006.01]
		5031/0 - Handes of Suntonic actus [3, 2000.01]

309/79	 having halosulfonyl groups bound to acyclic carbon atoms [5, 2006.01] 	311/15	 Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered
309/80	• • • of a saturated carbon skeleton [5, 2006.01]		aromatic rings [5, 2006.01]
309/81	• • • of an unsaturated carbon skeleton [5, 2006.01]	311/16	 having the nitrogen atom of at least one of the
309/82	• • • of a carbon skeleton substituted by singly-bound oxygen atoms [5, 2006.01]		sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom [5, 2006.01]
200/02		311/17	• • to an acyclic carbon atom of a hydrocarbon
309/83	 • of a carbon skeleton substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01] 	011, 1,	radical substituted by singly-bound oxygen atoms [5, 2006.01]
200/94		311/18	 to an acyclic carbon atom of a hydrocarbon
309/84	• • • of a carbon skeleton substituted by carboxyl groups [5, 2006.01]	511, 10	radical substituted by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]
309/85	 having halosulfonyl groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 	311/19	• • to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl
309/86	 having halosulfonyl groups bound to carbon atoms of six-membered aromatic rings of a carbon 	311/20	groups [5, 2006.01] • having the nitrogen atom of at least one of the
	skeleton [5, 2006.01]		sulfonamide groups bound to a carbon atom of a
309/87	 containing singly-bound oxygen atoms bound to the carbon skeleton [5, 2006.01] 		ring other than a six-membered aromatic ring [5, 2006.01]
309/88	• • containing nitrogen atoms, not being part of	311/21	having the nitrogen atom of at least one of the
	nitro or nitroso groups, bound to the carbon skeleton [5, 2006.01]		sulfonamide groups bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
309/89	containing carboxyl groups bound to the carbon	311/22	 Sulfonamides, the carbon skeleton of the acid part
303703	skeleton [5, 2006.01]		being further substituted by singly-bound oxygen atoms [5, 2006.01]
311/00	Amides of sulfonic acids, i.e. compounds having	311/23	 having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms [5, 2006.01]
	singly-bound oxygen atoms of sulfo groups replaced	211/24	
	by nitrogen atoms, not being part of nitro or nitroso groups [5, 2006.01]	311/24	• • • of an acyclic saturated carbon skeleton [5, 2006.01]
311/01	• Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms [5, 2006.01]	311/25	• • of a saturated carbon skeleton containing rings [5, 2006.01]
311/02	• • of an acyclic saturated carbon skeleton [5, 2006.01]	311/26	• • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
311/03	• having the nitrogen atoms of the sulfonamide	311/27	of an unsaturated carbon skeleton containing
	groups bound to hydrogen atoms or to acyclic		rings [5, 2006.01]
244/04	carbon atoms [5, 2006.01]	311/28	having the sulfur atom of at least one of the
311/04	to acyclic carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen		sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic
	atoms [5, 2006.01]		ring [5, 2006.01]
311/05	to acyclic carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not	311/29	having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a given membered aromatic ring [5, 2006 01].
	being part of nitro or nitroso groups [5, 2006.01]	311/30	six-membered aromatic ring [5, 2006.01] • Sulfonamides, the carbon skeleton of the acid part
311/06	• • • to acyclic carbon atoms of hydrocarbon	311/30	being further substituted by singly-bound nitrogen
	radicals substituted by carboxyl groups [5, 2006.01]		atoms, not being part of nitro or nitroso
311/07	• • having the nitrogen atom of at least one of the	311/31	groups [5, 2006.01]having the sulfur atoms of the sulfonamide groups
311/0/	sulfonamide groups bound to a carbon atom of		bound to acyclic carbon atoms [5, 2006.01]
	a ring other than a six-membered aromatic ring [5, 2006.01]	311/32	• • • of an acyclic saturated carbon skeleton [5, 2006.01]
311/08	• • having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of	311/33	• • • of a saturated carbon skeleton containing rings [5, 2006.01]
	a six-membered aromatic ring [5, 2006.01]	311/34	• • of an acyclic unsaturated carbon
311/09	• • the carbon skeleton being further substituted by		skeleton [5, 2006.01]
311/10	at least two halogen atoms [5, 2006.01]of a saturated carbon skeleton containing	311/35	• • • of an unsaturated carbon skeleton containing
311/10	rings [5, 2006.01]	311/36	rings [5, 2006.01] • having the sulfur atom of at least one of the
311/11	• • of an acyclic unsaturated carbon skeleton [5, 2006.01]	311/00	sulfonamide groups bound to a carbon atom of a ring other than a six-membered aromatic
311/12	• • of an unsaturated carbon skeleton containing	011/05	ring [5, 2006.01]
311/13	rings [5, 2006.01] • • the carbon skeleton containing six-membered	311/37	 having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a
211, 10	aromatic rings [5, 2006.01]		six-membered aromatic ring [5, 2006.01]
311/14	 Sulfonamides having sulfur atoms of sulfonamide 	311/38	• • having sulfur atoms of sulfonamide groups and
	groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]		amino groups bound to carbon atoms of six- membered aromatic rings of the same carbon skeleton [5, 2006.01]

311/39	• • • having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen	311/61	• • • • having nitrogen atoms of the sulfonylurea groups further bound to another hetero
	atoms or to an acyclic carbon atom [5, 2006.01]	311/62	atom [5, 2006.01] • • • • having nitrogen atoms of the sulfonylurea
311/40	 • • • to an acyclic carbon atom of a 		groups further acylated [5, 2006.01]
	hydrocarbon radical substituted by singly-	311/63	• • • N-sulfonylisoureas [5, 2006.01]
311/41	bound oxygen atoms [5, 2006.01] • • • • • to an acyclic carbon atom of a	311/64	• • X and Y being nitrogen atoms, e.g. N-
311/41	hydrocarbon radical substituted by	211/65	sulfonylguanidine [5, 2006.01]
	nitrogen atoms, not being part of nitro or	311/65	• N-sulfonylisocyanates [5, 2006.01]
	nitroso groups [5, 2006.01]	313/00	Sulfinic acids; Sulfenic acids; Halides, esters or
311/42	• • • • to an acyclic carbon atom of a		anhydrides thereof; Amides of sulfinic or sulfenic
	hydrocarbon radical substituted by carboxyl groups [5, 2006.01]		acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by
311/43	• • • • having the nitrogen atom of at least one of		nitrogen atoms, not being part of nitro or nitroso
	the sulfonamide groups bound to a carbon		groups [5, 2006.01]
	atom of a ring other than a six-membered	313/02	• Sulfinic acids; Derivatives thereof [5, 2006.01]
311/44	aromatic ring [5, 2006.01]	313/04	• • Sulfinic acids; Esters thereof [5, 2006.01]
311/44	 • • having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon 	313/06	• • Sulfinamides [5, 2006.01]
	atom of a six-membered aromatic	313/08 313/10	Sulfenic acids; Derivatives thereof [5, 2006.01]Sulfenic acids; Esters thereof [5, 2006.01]
	ring [5, 2006.01]	313/10	 having sulfur atoms of sulfenic groups bound to
311/45	at least one of the singly-bound nitrogen atoms	313/12	acyclic carbon atoms [5, 2006.01]
	being part of any of the groups	313/14	• • • having sulfur atoms of sulfenic groups bound to
	>N-C or -N=C Y X being a hetero atom, Y		carbon atoms of rings other than six-membered
	Y X being a hetero atom, Y	313/16	aromatic rings [5, 2006.01]having sulfur atoms of sulfenic groups bound to
	being any atom, e.g. N-	313/10	carbon atoms of six-membered aromatic
	acylaminosulfonamides [5, 2006.01]		rings [5, 2006.01]
311/46	• • Y being a hydrogen or a carbon	313/18	• • Sulfenamides [5, 2006.01]
311/47	atom [5, 2006.01] • • • Y being a hetero atom [5, 2006.01]	313/20	• • having sulfur atoms of sulfenamide groups
311/48	 having nitrogen atoms of sulfonamide groups further 	313/22	bound to acyclic carbon atoms [5, 2006.01]having sulfur atoms of sulfenamide groups
	bound to another hetero atom [5, 2006.01]	3137 ==	bound to carbon atoms of rings other than six-
311/49	• to nitrogen atoms [5, 2006.01]		membered aromatic rings [5, 2006.01]
311/50	• Compounds containing any of the groups	313/24	 having sulfur atoms of sulfenamide groups bound to carbon atoms of six-membered
	\Rightarrow C-SO ₂ -N-C or \Rightarrow C-SO ₂ -N=C		aromatic rings [5, 2006.01]
	Y X being a	313/26	 Compounds containing any of the groups
	hetero atom, Y being any atom [5, 2006.01]		⇒C-S-N-C-Y or ⇒C-S-N=C-Y X being a
311/51	• • Y being a hydrogen or a carbon atom [5, 2006.01]		
311/52	• Y being a hetero atom [5, 2006.01]	313/28	hetero atom, Y being any atom [5, 2006.01]Y being a hydrogen or a carbon
311/53	 X and Y not being nitrogen atoms, e.g. N- sulfonylcarbamic acid [5, 2006.01] 	313/20	atom [5, 2006.01]
311/54	• • • either X or Y, but not both, being nitrogen	313/30	• • • Y being a hetero atom [5, 2006.01]
311,0.	atoms, e.g. N-sulfonylurea [5, 2006.01]	313/32	• • • • X and Y not being nitrogen atoms, e.g. N-
311/55	 • • having sulfur atoms of the sulfonylurea 	242/24	sulfenylcarbamic acid [5, 2006.01]
	groups bound to acyclic carbon atoms [5, 2006.01]	313/34	• • • • either X or Y, but not both, being nitrogen atoms, e.g. N-sulfenylureas [5, 2006.01]
311/56	• • • • having sulfur atoms of the sulfonylurea	313/36	 having nitrogen atoms of sulfenamide groups
0-17	groups bound to carbon atoms of rings other		further bound to other hetero
	than six-membered aromatic	242/20	atoms [5, 2006.01]
311/57	rings [5, 2006.01] • • • • having sulfur atoms of the sulfonylurea	313/38	• • • N-sulfenylisocyanates [5, 2006.01]
511/5/	groups bound to carbon atoms of six-	315/00	Preparation of sulfones; Preparation of
	membered aromatic rings [5, 2006.01]	245 (02	sulfoxides [5, 2006.01]
311/58	• • • • having nitrogen atoms of the sulfonylurea	315/02	 by formation of sulfone or sulfoxide groups by oxidation of sulfides, or by formation of sulfone
	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01]		groups by oxidation of sulfoxides [5, 2006.01]
311/59	• • • • having nitrogen atoms of the sulfonylurea	315/04	• by reactions not involving the formation of sulfone or
	groups bound to carbon atoms of rings	215/06	sulfoxide groups [5, 2006.01]
	other than six-membered aromatic rings [5, 2006.01]	315/06	 Separation; Purification; Stabilisation; Use of additives [5, 2006.01]
311/60	• • • • having nitrogen atoms of the sulfonylurea		
	groups bound to carbon atoms of six-	317/00	Sulfones; Sulfoxides [5, 2006.01]
	membered aromatic rings [5, 2006.01]	317/02	 having sulfone or sulfoxide groups bound to acyclic carbon atoms [5, 2006.01]

317/04		
	 • of an acyclic saturated carbon skeleton [5, 2006.01] 	317/50 • • at least one of the nitrogen atoms being part of
317/06	 • of a saturated carbon skeleton containing rings [5, 2006.01] 	N-C or -N=C
317/08	of an acyclic unsaturated carbon skeleton [5, 2006.01]	any of the groups Y Y X being a hetero atom, Y being any
317/10	of an unsaturated carbon skeleton containing rings [5, 2006.01]	atom [5, 2006.01] 319/00 Preparation of thiols, sulfides, hydropolysulfides or
317/12	 having sulfone or sulfoxide groups bound to carbon 	polysulfides [5, 2006.01]
	atoms of rings other than six-membered aromatic	319/02 • of thiols [5, 2006.01]
317/14	rings [5, 2006.01] • having sulfone or sulfoxide groups bound to carbon	 • by addition of hydrogen sulfide or its salts to unsaturated compounds [5, 2006.01]
217/16	atoms of six-membered aromatic rings [5, 2006.01]	319/06 • • from sulfides, hydropolysulfides or
317/16	 having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon 	polysulfides [5, 2006.01] 319/08 • • by replacement of hydroxy groups or etherified or
	skeleton [5, 2006.01]	esterified hydroxy groups [5, 2006.01]
317/18	 with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 	319/10 • • • by replacement of hydroxy groups or etherified or esterified hydroxy groups bound to carbon
317/20	 with sulfone or sulfoxide groups bound to carbon atoms of rings other than six-membered aromatic 	atoms of six-membered aromatic rings [5, 2006.01]
	rings of the carbon skeleton [5, 2006.01]	319/12 • • by reactions not involving the formation of
317/22	 with sulfone or sulfoxide groups bound to carbon 	mercapto groups [5, 2006.01]
	atoms of six-membered aromatic rings of the	319/14 • of sulfides [5, 2006.01]
	carbon skeleton [5, 2006.01]	319/16 • • by addition of hydrogen sulfide or its salts to
317/24	 having sulfone or sulfoxide groups and doubly-bound 	unsaturated compounds [5, 2006.01]
	oxygen atoms bound to the same carbon skeleton [5, 2006.01]	319/18 • • by addition of thiols to unsaturated compounds [5, 2006.01]
317/26	 having sulfone or sulfoxide groups and nitrogen 	319/20 • • by reactions not involving the formation of sulfide
	atoms, not being part of nitro or nitroso groups,	groups [5, 2006.01]
217/20	bound to the same carbon skeleton [5, 2006.01]	• of hydropolysulfides or polysulfides [5, 2006.01]
317/28	 with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton [5, 2006.01] 	319/24 • • by reactions involving the formation of sulfur-to-sulfur bonds [5, 2006.01]
317/30	with sulfone or sulfoxide groups bound to carbon atoms of rings other than give membered aromatic.	319/26 • Separation; Purification; Stabilisation; Use of
	atoms of rings other than six-membered aromatic rings of the carbon skeleton [5, 2006.01]	additives [5, 2006.01]
045/00		240/20 C .: D .C .: [F 2000 04]
317/37	with sulfage or sulfayide groups bound to carbon	319/28 • • Separation; Purification [5, 2006.01]
317/32	with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton [5, 2006 01]	319/30 • • Separation; Purification [5, 2006.01] 319/30 • • from the by-products of refining mineral oils [5, 2006.01]
	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]	319/30 • • • from the by-products of refining mineral oils [5, 2006.01]
317/32	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01]	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or
	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01]
	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01]
	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01]
317/34	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01]	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon
317/34	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon
317/34	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing
317/34	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01]
317/34	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/10 • • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon
317/34	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones [5, 2006.01] • • • • Y being a hydrogen or a carbon	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon
317/34 317/36 317/38	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones [5, 2006.01] • • • • Y being a hydrogen or a carbon atom [5, 2006.01]	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01]
317/34 317/36 317/38 317/40 317/42	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones [5, 2006.01] • • • • Y being a hydrogen or a carbon atom [5, 2006.01]	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01]
317/34 317/36 317/38	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones [5, 2006.01] • • • • Y being a hydrogen or a carbon atom [5, 2006.01] • having sulfone or sulfoxide groups and carboxyl	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton containing rings [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01]
317/34 317/36 317/38 317/40 317/42	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones [5, 2006.01] • • • • Y being a hydrogen or a carbon atom [5, 2006.01] • having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/10 • • of an acyclic unsaturated carbon skeleton containing rings [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton containing rings [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/18
317/34 317/36 317/38 317/40 317/42	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X X X X Being a hetero atom, Y being any atom, e.g. N-acylaminosulfones [5, 2006.01] • • • Y being a hydrogen or a carbon atom [5, 2006.01] • having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton [5, 2006.01] • the carbon skeleton being further substituted by	319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/10 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton containing rings [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/18 • • of an acyclic unsaturated carbon skeleton [5, 2006.01]
317/36 317/38 317/40 317/42 317/44 317/46	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X X X X X X X X X X X X X	321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/10 • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/18 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/20 • • of an unsaturated carbon skeleton containing rings [5, 2006.01]
317/36 317/38 317/40 317/42 317/44	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X X X X X X X X X	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/18 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/20 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/22 • Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of rings
317/36 317/38 317/40 317/42 317/44 317/46	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same noncondensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X X X X X X X X X	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/18 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/20 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/22 • Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]
317/36 317/38 317/40 317/42 317/44 317/46	atoms of six-membered aromatic rings of the carbon skeleton [5, 2006.01] • • having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring [5, 2006.01] • • • with the nitrogen atoms of the amino groups bound to hydrogen atoms or to carbon atoms [5, 2006.01] • • • with the nitrogen atom of at least one amino group being part of any of the groups X X X X X X X X X	 319/30 • • • from the by-products of refining mineral oils [5, 2006.01] 321/00 Thiols, sulfides, hydropolysulfides or polysulfides [5, 2006.01] 321/02 • Thiols having mercapto groups bound to acyclic carbon atoms [5, 2006.01] 321/04 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/06 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/08 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/10 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/12 • Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms [5, 2006.01] 321/14 • • of an acyclic saturated carbon skeleton [5, 2006.01] 321/16 • • of a saturated carbon skeleton containing rings [5, 2006.01] 321/18 • • of an acyclic unsaturated carbon skeleton [5, 2006.01] 321/20 • • of an unsaturated carbon skeleton containing rings [5, 2006.01] 321/22 • Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of rings

321/26	• • Thiols [5, 2006.01]	323/21 • • • with the sulfur atom of the thio group bound to
321/28	 Sulfides, hydropolysulfides, or polysulfides 	a carbon atom of a six-membered aromatic ring
521720	having thio groups bound to carbon atoms of six- membered aromatic rings [5, 2006.01]	being part of a condensed ring system [5, 2006.01]
321/30	• • • Sulfides having the sulfur atom of at least one	323/22 • containing thio groups and doubly-bound oxygen
	thio group bound to two carbon atoms of six-membered aromatic rings [5, 2006.01]	atoms bound to the same carbon skeleton [5, 2006.01]
	-	323/23 • containing thio groups and nitrogen atoms, not being
323/00	Thiols, sulfides, hydropolysulfides or polysulfides	part of nitro or nitroso groups, bound to the same
	substituted by halogen, oxygen or nitrogen atoms, or	carbon skeleton [5, 2006.01]
	by sulfur atoms not being part of thio groups [5, 2006.01]	• having the sulfur atoms of the thio groups bound
323/01	 containing thio groups and halogen atoms, or nitro or 	to acyclic carbon atoms of the carbon skeleton [5, 2006.01]
323701	nitroso groups bound to the same carbon	323/25 • • • the carbon skeleton being acyclic and
	skeleton [5, 2006.01]	saturated [5, 2006.01]
323/02	 having sulfur atoms of thio groups bound to 	323/26 • • • the carbon skeleton being saturated and
	acyclic carbon atoms of the carbon	containing rings [5, 2006.01]
222/02	skeleton [5, 2006.01]	323/27 • • • the carbon skeleton being acyclic and
323/03	 the carbon skeleton being acyclic and saturated [5, 2006.01] 	unsaturated [5, 2006.01]
323/04	• • • the carbon skeleton being saturated and	323/28 • • • the carbon skeleton being unsaturated and
020,01	containing rings [5, 2006.01]	containing rings other than six-membered aromatic rings [5, 2006.01]
323/05	 the carbon skeleton being acyclic and 	323/29 • • • the carbon skeleton containing six-membered
	unsaturated [5, 2006.01]	aromatic rings [5, 2006.01]
323/06	• • • the carbon skeleton being unsaturated and	323/30 • having the sulfur atom of at least one of the thio
	containing rings other than six-membered aromatic rings [5, 2006.01]	groups bound to a carbon atom of a ring other than
323/07	• • • the carbon skeleton containing six-membered	a six-membered aromatic ring of the carbon skeleton [5, 2006.01]
020,0,	aromatic rings [5, 2006.01]	323/31 • having the sulfur atom of at least one of the thio
323/08	 having sulfur atoms of thio groups bound to 	groups bound to a carbon atom of a six-membered
	carbon atoms of rings other than six-membered	aromatic ring of the carbon skeleton [5, 2006.01]
222/00	aromatic rings of the carbon skeleton [5, 2006.01]	323/32 • • having at least one of the nitrogen atoms bound
323/09	 having sulfur atoms of thio groups bound to carbon atoms of six-membered aromatic rings of 	to an acyclic carbon atom of the carbon skeleton [5, 2006.01]
	the carbon skeleton [5, 2006.01]	323/33 • • • having at least one of the nitrogen atoms bound
323/10	 containing thio groups and singly-bound oxygen 	to a carbon atom of the same non-condensed
	atoms bound to the same carbon	six-membered aromatic ring [5, 2006.01]
DDD /44	skeleton [5, 2006.01]	323/34 • • • the thio group being a mercapto
323/11	 having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon 	group [5, 2006.01]
	skeleton [5, 2006.01]	323/35 • • • • the thio group being a sulfide group [5, 2006.01]
323/12	• • the carbon skeleton being acyclic and	323/36 • • • • the sulfur atom of the sulfide group being
	saturated [5, 2006.01]	further bound to an acyclic carbon
323/13	• • • the carbon skeleton being saturated and	atom [5, 2006.01]
222/14	containing rings [5, 2006.01]	323/37 • • • • the sulfur atom of the sulfide group being
323/14	 • the carbon skeleton being acyclic and unsaturated [5, 2006.01] 	further bound to a carbon atom of a six-membered aromatic ring [5, 2006.01]
323/15	• • • the carbon skeleton being unsaturated and	323/38 • • • with the sulfur atom of the thio group bound to
	containing rings other than six-membered	a carbon atom of a six-membered aromatic ring
	aromatic rings [5, 2006.01]	being part of a condensed ring
323/16	• • • the carbon skeleton containing six-membered	system [5, 2006.01]
323/17	aromatic rings [5, 2006.01]having the sulfur atom of at least one of the thio	• • at least one of the nitrogen atoms being part of any
323/1/	groups bound to a carbon atom of a ring other than	X XN-C-Y or -N=C
	a six-membered aromatic ring of the carbon	
	skeleton [5, 2006.01]	of the groups X being a
323/18	having the sulfur atom of at least one of the thio	hetero atom, Y being any atom [5, 2006.01] 323/40 • • Y being a hydrogen or a carbon
	groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton [5, 2006.01]	atom [5, 2006.01]
323/19	• • with singly-bound oxygen atoms bound to	323/41 • • • Y being a hydrogen or an acyclic carbon
5_5, 15	acyclic carbon atoms of the carbon	atom [5, 2006.01]
	skeleton [5, 2006.01]	323/42 • • • Y being a carbon atom of a six-membered
323/20	• • with singly-bound oxygen atoms bound to	aromatic ring [5, 2006.01]
	carbon atoms of the same non-condensed six-	323/43 • • • Y being a hetero atom [5, 2006.01] 323/44 • • • X or Y being nitrogen atoms [5, 2006.01]
	membered aromatic ring [5, 2006.01]	323/44 • • • • • • A or Y being nitrogen atoms [5, 2006.01] 323/45 • having at least one of the nitrogen atoms doubly-
		bound to the carbon skeleton [5, 2006.01]
		• • •

323/46	 having at least one of the nitrogen atoms, not being part of nitro or nitroso groups, further bound 	327/10 • • • to carbon atoms of an acyclic unsaturated carbon skeleton [5, 2006.01]
323/47	to other hetero atoms [5, 2006.01] • • to oxygen atoms [5, 2006.01]	327/12 • • • to carbon atoms of an unsaturated carbon skeleton containing rings [5, 2006.01]
323/48	• • • to nitrogen atoms [5, 2006.01]	327/14 • having carbon atoms of thiocarboxyl groups bound to carbon atoms of rings other than six-
323/49	• • • to sulfur atoms [5, 2006.01]	membered aromatic rings [5, 2006.01]
323/50	 containing thio groups and carboxyl groups bound to the same carbon skeleton [5, 2006.01] 	327/16 • having carbon atoms of thiocarboxyl groups
323/51	 having the sulfur atoms of the thio groups bound 	bound to carbon atoms of six-membered aromatic
323/31	to acyclic carbon atoms of the carbon	rings [5, 2006.01]
	skeleton [5, 2006.01]	327/18 • Dithiocarboxylic acids [5, 2006.01]
323/52	the carbon skeleton being acyclic and	327/20 • Esters of monothiocarboxylic acids [5, 2006.01]
323/32	saturated [5, 2006.01]	327/22 • having carbon atoms of esterified thiocarboxyl
323/53	• • the carbon skeleton being saturated and	groups bound to hydrogen atoms or to acyclic
323733	containing rings [5, 2006.01]	carbon atoms [5, 2006.01]
323/54	• • the carbon skeleton being acyclic and	327/24 • • having carbon atoms of esterified thiocarboxyl
0_0,0	unsaturated [5, 2006.01]	groups bound to carbon atoms of rings other than
323/55	• • • the carbon skeleton being unsaturated and	six-membered aromatic rings [5, 2006.01]
	containing rings other than six-membered	327/26 • • having carbon atoms of esterified thiocarboxyl
	aromatic rings [5, 2006.01]	groups bound to carbon atoms of six-membered
323/56	• • • the carbon skeleton containing six-membered	aromatic rings [5, 2006.01]
	aromatic rings [5, 2006.01]	327/28 • having sulfur atoms of esterified thiocarboxyl
323/57	 the carbon skeleton being further substituted by 	groups bound to carbon atoms of hydrocarbon
	nitrogen atoms, not being part of nitro or	radicals substituted by singly-bound oxygen
	nitroso groups [5, 2006.01]	atoms [5, 2006.01]
323/58	 • • with amino groups bound to the carbon 	327/30 • having sulfur atoms of esterified thiocarboxyl
	skeleton [5, 2006.01]	groups bound to carbon atoms of hydrocarbon
323/59	 • • • with acylated amino groups bound to the 	radicals substituted by nitrogen atoms, not being
	carbon skeleton [5, 2006.01]	part of nitro or nitroso groups [5, 2006.01]
323/60	 • with the carbon atom of at least one of the 	327/32 • having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon
	carboxyl groups bound to nitrogen	radicals substituted by carboxyl
	atoms [5, 2006.01]	groups [5, 2006.01]
323/61	 having the sulfur atom of at least one of the thio 	327/34 • • • with amino groups bound to the same
	groups bound to a carbon atom of a ring other than	hydrocarbon radicals [5, 2006.01]
	a six-membered aromatic ring of the carbon	327/36 • Esters of dithiocarboxylic acids [5, 2006.01]
222/62	skeleton [5, 2006.01]	327/38 • Amides of thiocarboxylic acids [5, 2006.01]
323/62	 having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered 	327/40 • having carbon atoms of thiocarboxamide groups
	aromatic ring of the carbon skeleton [5, 2006.01]	bound to hydrogen atoms or to acyclic carbon
323/63	the carbon skeleton being further substituted by	atoms [5, 2006.01]
323703	nitrogen atoms, not being part of nitro or	327/42 • • • to hydrogen atoms or to carbon atoms of a
	nitroso groups [5, 2006.01]	saturated carbon skeleton [5, 2006.01]
323/64	 containing thio groups and sulfur atoms, not being 	327/44 • • • to carbon atoms of an unsaturated carbon
	part of thio groups, bound to the same carbon	skeleton [5, 2006.01]
	skeleton [5, 2006.01]	327/46 • • having carbon atoms of thiocarboxamide groups
323/65	 containing sulfur atoms of sulfone or sulfoxide 	bound to carbon atoms of rings other than six-
	groups bound to the carbon skeleton [5, 2006.01]	membered aromatic rings [5, 2006.01]
323/66	 containing sulfur atoms of sulfo, esterified sulfo or 	327/48 • • having carbon atoms of thiocarboxamide groups
	halosulfonyl groups, bound to the carbon	bound to carbon atoms of six-membered aromatic
	skeleton [5, 2006.01]	rings [5, 2006.01]
323/67	 containing sulfur atoms of sulfonamide groups, 	327/50 • • Compounds containing any of the groups
	bound to the carbon skeleton [5, 2006.01]	\$ X
225 /00	This ald about an This leaves on This going area. Onlides	-C-N-C-Y or $-C-N=C$
325/00	Thioaldehydes; Thioketones; Thioquinones; Oxides thereof [5, 2006.01]	Y X being a hetero
325/02	• Thioketones; Oxides thereof [5, 2006.01]	atom, Y being any atom [5, 2006.01]
		327/52 • • • Y being a hydrogen or a carbon
325/04	• Thioquinones; Oxides thereof [5, 2006.01]	atom [5, 2006.01]
327/00	Thiocarboxylic acids [5, 2006.01]	327/54 • • • Y being a hetero atom [5, 2006.01]
327/02	Monothiocarboxylic acids [5, 2006.01]	• • having nitrogen atoms of thiocarboxamide groups
327/04	having carbon atoms of thiocarboxyl groups	further bound to another hetero atom [5, 2006.01]
	bound to hydrogen atoms or to acyclic carbon	327/58 • Derivatives of thiocarboxylic acids, the doubly-
	atoms [5, 2006.01]	bound oxygen atoms being replaced by nitrogen
327/06	• • • to hydrogen atoms or to carbon atoms of an	atoms, e.g. imino-thio ethers [5, 2006.01]
	acyclic saturated carbon skeleton [5, 2006.01]	• Thiocarboxylic acids having sulfur atoms of
327/08	to carbon atoms of a saturated carbon skeleton	thiocarboxyl groups further doubly-bound to oxygen
	containing rings [5, 2006.01]	atoms [5 , 2006.01]

329/00	Thiocarbonic acids; Halides, esters or anhydrides thereof [5, 2006.01]	333/00	Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups
329/02	 Monothiocarbonic acids; Derivatives thereof [5, 2006.01] 		\$
329/04	• Esters of monothiocarbonic acids [5, 2006.01]		
329/06	 having sulfur atoms of thiocarbonic groups bound to acyclic carbon atoms [5, 2006.01] 		S S- O- >N-C-Hal, >N=C-S-, >N=C-S-
329/08	 having sulfur atoms of thiocarbonic groups bound to carbon atoms of rings other than six- membered aromatic rings [5, 2006.01] 		S- or N=C-Hal the nitrogen storm
329/10	• • having sulfur atoms of thiocarbonic groups		not being part of nitro or nitroso groups [5, 2006.01]
320710	bound to carbon atoms of six-membered aromatic rings [5, 2006.01]	333/02	 Monothiocarbamic acids; Derivatives thereof [5, 2006.01]
329/12	 Dithiocarbonic acids; Derivatives thereof [5, 2006.01] 	333/04	 having nitrogen atoms of thiocarbamic groups bound to hydrogen atoms or to acyclic carbon
329/14	• • Esters of dithiocarbonic acids [5, 2006.01]		atoms [5, 2006.01]
329/16	 having sulfur atoms of dithiocarbonic groups bound to acyclic carbon atoms [5, 2006.01] 	333/06	having nitrogen atoms of thiocarbamic groups bound to carbon atoms of rings other than six-
329/18	having sulfur atoms of dithiocarbonic groups	222/00	membered aromatic rings [5, 2006.01]
220 /20	bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]	333/08	 having nitrogen atoms of thiocarbamic groups bound to carbon atoms of six-membered aromatic rings [5, 2006.01]
329/20	 having sulfur atoms of dithiocarbonic groups bound to carbon atoms of six-membered 	333/10	• having nitrogen atoms of thiocarbamic groups
	aromatic rings [5, 2006.01]	333710	being part of any of the groups
331/00	Derivatives of thiocyanic acid or of isothiocyanic acid [5, 2006.01]		-s-Ċ-Ń-C
331/02	• Thiocyanates [5, 2006.01]		, , , ,
331/04	 having sulfur atoms of thiocyanate groups bound to acyclic carbon atoms [5, 2006.01] 		S
331/06	 having sulfur atoms of thiocyanate groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 		\$
331/08	 having sulfur atoms of thiocyanate groups bound to carbon atoms of six-membered aromatic 		Y X being a hetero atom, Y being any atom, e.g., N-acyl-
224 /40	rings [5, 2006.01]		thiocarbamates [5, 2006.01]
331/10	 having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen 	333/12	 having nitrogen atoms of thiocarbamic groups bound to other hetero atoms [5, 2006.01]
331/12	atoms [5, 2006.01] • having sulfur atoms of thiocyanate groups bound	333/14	 Dithiocarbamic acids; Derivatives thereof [5, 2006.01]
551/12	to carbon atoms of hydrocarbon radicals	333/16	• • Salts of dithiocarbamic acids [5, 2006.01]
	substituted by nitrogen atoms, not being part of	333/18	• Esters of dithiocarbamic acids [5, 2006.01]
	nitro or nitroso groups [5, 2006.01]	333/20	• • having nitrogen atoms of dithiocarbamate
331/14	having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals whatiated by such and groups [5] 2006 011.	333/22	groups bound to hydrogen atoms or to acyclic carbon atoms [5, 2006.01] • • having nitrogen atoms of dithiocarbamate
331/16	substituted by carboxyl groups [5, 2006.01] • Isothiocyanates [5, 2006.01]	333722	groups bound to carbon atoms of rings other
331/18	having isothiocyanate groups bound to acyclic		than six-membered aromatic rings [5, 2006.01]
551710	carbon atoms [5, 2006.01]	333/24	 having nitrogen atoms of dithiocarbamate
331/20	• • • of a saturated carbon skeleton [5, 2006.01]		groups bound to carbon atoms of six-membered
331/22	• • of an unsaturated carbon skeleton [5, 2006.01]	333/26	aromatic rings [5, 2006.01] • • containing any of the groups
331/24	• • • the carbon skeleton containing six- membered aromatic rings [5, 2006.01]	333/20	S X S X -S-C-N-C or -S-C-N=C
331/26	 having isothiocyanate groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 		Y X being a hetero atom, Y being any atom, e.g. N-
331/28	 having isothiocyanate groups bound to carbon 		acyldithiocarbamates [5, 2006.01]
	atoms of six-membered aromatic rings [5, 2006.01]	333/28	• • • having nitrogen atoms of dithiocarbamate groups bound to other hetero
331/30	 containing at least two isothiocyanate groups bound to the same carbon skeleton [5, 2006.01] 	333/30	atoms [5, 2006.01]having sulfur atoms of dithiocarbamic groups
331/32	 having isothiocyanate groups 		bound to other sulfur atoms [5, 2006.01]
	acylated [5, 2006.01]	333/32	• • • Thiuramsulfides; Thiurampolysulfides [5, 2006.01]

335/00	Thioureas, i.e. compounds containing any of the $S - S - S - S - S - S - S - S - S - S $	337/02	• Compounds containing any of the groups S N-N-C-S- N-N-C-S-
	groups the nitrogen atoms not being part of nitro or nitroso groups [5, 2006.01]		
335/02	• Thiourea [5, 2006.01]		S 0 >N-N-C-O-
335/04	• Derivatives of thiourea [5, 2006.01]		C
335/06	 having nitrogen atoms of thiourea groups bound to acyclic carbon atoms [5, 2006.01] 		or >N-N=C-O- e.g.
335/08	• • • of a saturated carbon skeleton [5, 2006.01]		thiocarbazates [5, 2006.01]
335/10	• • of an unsaturated carbon skeleton [5, 2006.01]	337/04	• • the other nitrogen atom being further doubly-
335/12	• • • the carbon skeleton containing six- membered aromatic rings [5, 2006.01]	337/06	 bound to a carbon atom [5, 2006.01] Compounds containing any of the groups
335/14	 having nitrogen atoms of thiourea groups bound to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01] 		S
335/16	 having nitrogen atoms of thiourea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton [5, 2006.01] 		or >N-N-C=N\ e.g. thiosemicarbazides [5, 2006.01]
335/18	being further substituted by singly-bound	337/08	 the other nitrogen atom being further doubly-
333/10	oxygen atoms [5, 2006.01]	337/00	bound to a carbon atom, e.g.
335/20	 being further substituted by nitrogen atoms, not 		thiosemicarbazones [5, 2006.01]
3337 20	being part of nitro or nitroso groups [5, 2006.01]	337/10	• the two nitrogen atoms of the functional group being doubly-bound to each other [5, 2006.01]
335/22	 • being further substituted by carboxyl 		
	groups [5, 2006.01]	381/00	Compounds containing carbon and sulfur and
335/24	containing any of the groups		having functional groups not covered by groups C07C 301/00-C07C 337/00 [5, 2006.01]
	N C X	381/02	• Thiosulfates [5, 2006.01]
	\$	381/04	• Thiosulfonates [5, 2006.01]
	Y X being a hetero	381/06	Compounds containing sulfur atoms only bound to
225 /26	atom, Y being any atom [5, 2006.01]		two nitrogen atoms [5, 2006.01]
335/26	• • Y being a hydrogen or a carbon atom, e.g. benzoylthioureas [5, 2006.01]	381/08	 having at least one of the nitrogen atoms acylated [5, 2006.01]
335/28	• • Y being a hetero atom, e.g. thiobiuret [5, 2006.01]	381/10	• Compounds containing sulfur atoms doubly-bound to nitrogen atoms [5, 2006.01]
335/30	• Isothioureas [5, 2006.01]	381/12	• Sulfonium compounds [5, 2006.01]
335/32	 having sulfur atoms of isothiourea groups bound to acyclic carbon atoms [5, 2006.01] 	381/14	 Compounds containing a carbon atom having four
335/34	 having sulfur atoms of isothiourea groups bound 		bonds to hetero atoms, with a double bond to one
333731	to carbon atoms of rings other than six-membered aromatic rings [5, 2006.01]		hetero atom and at least one bond to a sulfur atom further doubly-bound to oxygen atoms [5, 2006.01]
335/36	 having sulfur atoms of isothiourea groups bound 	391/00	Compounds containing selenium [5, 2006.01]
	to carbon atoms of six-membered aromatic rings [5, 2006.01]	391/02	 having selenium atoms bound to carbon atoms of six- membered aromatic rings [5, 2006.01]
335/38	containing any of the groups	20= /20	
	\$-	395/00	Compounds containing tellurium [5, 2006.01]
	S-X or $-N=C-N=C$	401/00	Irradiation products of cholesterol or its derivatives;
	or -N=C-N=C	401/00	Vitamin D derivatives, 9,10-seco
	X being a hetero		cyclopenta[a]phenanthrene or analogues obtained by
	atom, Y being any atom [5, 2006.01]		chemical preparation without irradiation [5, 2006.01]
335/40	having nitrogen atoms of thiourea or isothiourea	402 /00	Delegation of a delegation of a delegation
	groups further bound to other hetero	403/00	Derivatives of cyclohexane or of a cyclohexene, having a side-chain containing an acyclic
	atoms [5, 2006.01]		unsaturated part of at least four carbon atoms, this
335/42	Sulfonylthioureas;		part being directly attached to the cyclohexane or
DD= / · ·	Sulfonylisothioureas [5, 2006.01]		cyclohexene rings, e.g. vitamin A, beta-carotene,
335/44	• Sulfenylthioureas; Sulfenylticathioureas [5, 2006,01]		beta-ionone [5, 2006.01]
337/00	Sulfenylisothioureas [5, 2006.01] Derivatives of thiocarbonic acids containing	403/02	 having side-chains containing only carbon and hydrogen atoms [5, 2006.01]
33.700	functional groups covered by groups C07C 333/00 or	403/04	having side-chains substituted by halogen
	C07C 335/00 in which at least one nitrogen atom of	400 /00	atoms [5, 2006.01]
	these functional groups is further bound to another	403/06	 having side-chains substituted by singly-bound oxygen atoms [5, 2006.01]
	nitrogen atom not being part of a nitro or nitroso	403/08	• by hydroxy groups [5, 2006.01]
	group [5, 2006.01]	403/06	by hydroxy groups [5, 2006.01]by etherified hydroxy groups [5, 2006.01]
		-105/10	by careffice fryatoxy groups [5, 2000.01]

403/12 403/14 403/16 403/18	 by esterified hydroxy groups [5, 2006.01] having side-chains substituted by doubly-bound oxygen atoms [5, 2006.01] not being part of —CHO groups [5, 2006.01] having side-chains substituted by nitrogen atoms [5, 2006.01] 	 409/12 with two alpha,alpha-dialkylmethylhydroperoxy groups bound to carbon atoms of the same six-membered aromatic ring [5, 2006.01] the carbon atom belonging to a ring other than a six-membered aromatic ring [5, 2006.01]
403/20	 having side-chains substituted by carboxyl groups [5, 2006.01] 	• the —O—O— group being bound between two carbon atoms not further substituted by oxygen
403/22 403/24	 having side-chains substituted by sulfur atoms [5, 2006.01] having side-chains substituted by six-membered non-more than a property of the control of the	atoms, i.e. peroxides [5, 2006.01] 409/18 • at least one of the carbon atoms belonging to a ring other than a six-membered aromatic ring [5, 2006.01]
405/00	aromatic rings, e.g. beta-carotene [5, 2006.01] Compounds containing a five-membered ring having two side-chains in ortho position to each other, and	• the —O—O— group being bound to a carbon atom further substituted by singly-bound oxygen atoms [5, 2006.01]
	having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-	409/22 • having two —O—O— groups bound to the carbon atom [5, 2006.01]
	chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms	• the —O—O— group being bound between a C=O group and hydrogen, i.e. peroxy acids [5, 2006.01]
	with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins [5, 2006.01]	 409/26 • Peracetic acid [5, 2006.01] 409/28 • a C=O group being bound to a carbon atom of a ring other than a six-membered aromatic
407/00	Preparation of peroxy compounds [5, 2006.01]	ring [5, 2006.01] 409/30 • a >C=O group being bound to a carbon atom of a
409/00 409/02	 Peroxy compounds [5, 2006.01] the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides [5, 2006.01] 	six-membered aromatic ring [5, 2006.01] 409/32 • the —O—O— group being bound between two C=O groups [5, 2006.01] 409/34 • both belonging to carboxylic acids [5, 2006.01]
409/04	 the carbon atom being acyclic [5, 2006.01] 	409/36 • • • Diacetyl peroxide [5, 2006.01]
409/06	 Compounds containing rings other than six- membered aromatic rings [5, 2006.01] 	• the —O—O group being bound between a C=O group and a carbon atom, not further substituted by oxygen atoms, i.e. esters of peroxy acids [5, 2006.01]
409/08	 Compounds containing six-membered aromatic rings [5, 2006.01] 	409/40 • containing nitrogen atoms [5, 2006.01]
409/10	• • • Cumene hydroperoxide [5, 2006.01]	409/42 • containing sulfur atoms [5, 2006.01]
705/10	Camene nyaroperoxiae [3, 2000.01]	409/44 • with sulfur atoms directly bound to the —O—O—groups, e.g. persulfonic acids [5, 2006.01]

C07D HETEROCYCLIC COMPOUNDS (macromolecular compounds C08) [2]

Note(s) [2, 3, 7, 2006.01]

- 1. This subclass <u>does not cover</u> compounds containing saccharide radicals, as defined in Note (3) following the title of subclass C07H, which are covered by subclass C07H.
- 2. In this subclass, in compounds containing a hetero ring covered by group C07D 295/00 and at least one other hetero ring, the hetero ring covered by group C07D 295/00 is considered as an acyclic chain containing nitrogen atoms.
- 3. In this subclass, the following terms or expressions are used with the meanings indicated:
 - "hetero ring" is a ring having at least one halogen, nitrogen, oxygen, sulfur, selenium or tellurium atom as a ring member;
 - "bridged" means the presence of at least one fusion other than ortho, peri or spiro;
 - · two rings are "condensed" if they share at least one ring member, i.e. "spiro" and "bridged" are considered as condensed;
 - "condensed ring system" is a ring system in which all rings are condensed among themselves;
 - "number of relevant rings" in a condensed ring system equals the number of scissions necessary to convert the ring system into one acyclic chain;
 - "relevant rings" in a condensed ring system, i.e. the rings which taken together describe all the links between every atom of the ring system, are chosen according to the following criteria consecutively:
 - a. lowest number of ring members;
 - b. highest number of hetero atoms as ring members;
 - $c. \hspace{0.5cm} \hbox{lowest number of members shared with other rings;} \\$
 - d. last place in the classification scheme.
- 4. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- 5. Therapeutic activity of compounds is further classified in subclass A61P.
- 6. In this subclass, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary:
 - a. compounds having only one hetero ring are classified in the last appropriate place in one of the groups C07D 203/00-C07D 347/00. The same applies for compounds having more hetero rings covered by the same main group, neither condensed among themselves nor condensed with a common carbocyclic ring system;

- b. compounds having two or more hetero rings covered by different main groups neither condensed among themselves nor condensed with a common carbocyclic ring system are classified in the last appropriate place in one of the groups C07D 401/00-C07D 421/00;
- c. compounds having two or more relevant hetero rings, covered by the same or by different main groups, which are condensed among themselves or condensed with a common carbocyclic ring system, are classified in the last appropriate place in one of the groups C07D 451/00-C07D 519/00.

7. In this subclass:

- where a compound may exist in tautomeric forms, it is classified as though existing in the form which is classified last in the
 system. Therefore, double bonds between ring members and non-ring members and double bonds between ring members themselves
 are considered equivalent in determining the degree of hydrogenation of the ring. Formulae are considered to be written in Kekule
 form;
- hydrocarbon radicals containing a carbocyclic ring and an acyclic chain by which it is linked to the hetero ring and being substituted
 on both the carbocyclic ring and the acyclic chain by hetero atoms or by carbon atoms having three bonds to hetero atoms with at
 the most one bond to halogen, are classified according to the substituents on the acyclic chain. For example, the compound

is classified in groups C07D 233/24 and C07D 233/26, where X —NH₂, —NHCOCH₃, or —COOCH₃.

Subclass index

56

OMPOUNDS CONTAINING ONE HETERO RING HAVING NITROGEN AS RING HETERO ATOM	
only nitrogen atoms	
one nitrogen atom	
Polymethyleneimine	295/00
Preparation of lactams	
three-membered ring	
four-membered ring	205/00
five-membered ring	207/00, 209/00
six-membered ring	211/00, 213/00, 215/00, 217/00
	219/00, 221/00
seven-membered ring	
Other compounds	225/00, 227/00
two nitrogen atoms	
four-membered ring	229/00
five-membered ring	231/00, 233/00, 235/00
six-membered ring	237/00, 239/00, 241/00
Piperazine	295/00
seven-membered ring	243/00
Other compounds	245/00, 247/00
three nitrogen atoms	
five-membered ring	249/00
six-membered ring	251/00, 253/00
Other compounds	255/00
four or more nitrogen atoms	257/00, 259/00
nitrogen and oxygen atoms	
five-membered ring	261/00, 263/00, 271/00
six-membered ring	265/00, 273/00
morpholine	295/00
Other compounds	267/00, 269/00, 273/00
nitrogen and sulfur atoms	
five-membered ring	275/00, 277/00, 285/00
six-membered ring	279/00, 285/00
Thiomorpholine	295/00
Other compounds	281/00, 283/00, 285/00
nitrogen, oxygen, and sulfur atoms	291/00
only oxygen atoms	
one oxygen atom	
three-membered ring	301/00, 303/00
four-membered ring	·
five-membered ring	
six-membered ring	

Other compounds	313/00, 315/00
two oxygen atoms	
five-membered ring	317/00
six-membered ring	319/00
Other compounds	321/00
three or more oxygen atoms	323/00
Other compounds	325/00
oxygen and nitrogen atoms	
five-membered ring	261/00, 263/00, 271/00
six-membered ring	265/00, 273/00
Morpholine	295/00
Other compounds	267/00, 269/00, 273/00
oxygen and sulfur atoms	327/00
oxygen, nitrogen and sulfur atomsHAVING SULFUR AS RING HETERO ATOM	291/00
only sulfur atoms	
one sulfur atom	
five-membered ring	333/00
six-membered ring	335/00
Other compounds	331/00, 337/00
two or more sulfur atoms	339/00, 341/00
sulfur and nitrogen atoms	
five-membered ring	275/00, 277/00, 285/00
six-membered ring	279/00, 285/00
Thiomorpholine	295/00
Other compounds	281/00, 283/00, 285/00
sulfur and oxygen atoms	
sulfur, nitrogen, and oxygen atomsHAVING SELENIUM OR TELLURIUM AS RING HETERO ATOM	
only selenium or tellurium atoms	
together with nitrogen atoms	
together with oxygen atoms	
together with sulfur atoms	343/00 347/00
IN THE SAME RING SYSTEM HAVING NITROGEN AS RING HETERO ATOM	
only nitrogen	
at least one six-membered ring with one nitrogen atom	471/00
Tropane, granatane	
Quinine, quinuclidine, isoquinuclidine	
Emetine, berberine	
Lysergic acid, ergot alkaloids	
Yohimbine	
Vincamine	
Carbacephalosporins	463/00
Other compounds	
Purine	
Pteridine	475/00
Thienamycin	477/00
nitrogen and oxygen	491/00, 498/00, 507/00
Morphine	489/00
Oxapenicillins	
Oxacephalosporins	505/00
nitrogen and sulfur	507/00, 513/00
Penicillins	499/00
Cephalosporins	501/00
nitrogen evygen and culfur	507/00 515/00

HAVING OXYGEN AS RING HETERO ATOM HAVING SULFUR AS RING HETERO ATOM HAVING SELENIUM, TELLURIUM, OR HALOGEN AS RING HETERO ATOM.......517/00 IN DIFFERENT RING SYSTEMS, EACH CONTAINING ONLY ONE HETERO RING HAVING NITROGEN AS RING HETERO ATOM only nitrogen HAVING OXYGEN AS RING HETERO ATOM HAVING SULFUR AS RING HETERO ATOM sulfur and oxygen......411/00 HAVING SELENIUM, TELLURIUM, OR HALOGEN AS RING HETERO ATOM.......421/00 COMPOUNDS CONTAINING TWO OR MORE RING SYSTEMS, HAVING EACH TWO OR ALKALOIDS CEPHALOSPORIN......501/00 COMPOUNDS CONTAINING UNSPECIFIED HETERO RINGS.......521/00

Heterocy atom [2]	clic compounds having only nitrogen as ring hetero	205/095	• • • • and with a nitrogen atom directly attached in position 3 [5, 2006.01]
201/00	Preparation, separation, purification, or stabilisation of unsubstituted lactams [2, 2006.01]	205/10	 having two double bonds between ring members or between ring members and non-ring members [2, 2006.01]
201/02	• Preparation of lactams [2, 2006.01]	205/12	condensed with carbocyclic rings or ring
201/04	from or <u>via</u> oximes by Beckmann rearrangement [2, 2006.01]		systems [2, 2006.01]
201/06	• • • from ketones by simultaneous oxime formation and rearrangement [2, 2006.01]	207/00	Heterocyclic compounds containing five-membered rings not condensed with other rings, with one
201/08	 from carboxylic acids or derivatives thereof, e.g. hydroxy carboxylic acids, lactones, nitriles [2, 2006.01] 		nitrogen atom as the only ring hetero atom [2, 2006.01]
201/10	 from cycloaliphatic compounds by simultaneous nitrosylation and rearrangement [2, 2006.01] 		Note(s) [2] Pyrrolidines having only hydrogen atoms attached to
201/12	• • by depolymerising polyamides [2, 2006.01]		the ring carbon atoms are classified in group
201/14	Preparation of salts or adducts of	207/02	C07D 295/00.
	lactams [2, 2006.01]	207/02	 with only hydrogen or carbon atoms directly attached to the ring nitrogen atom [2, 2006.01]
201/16	• Separation or purification [2, 2006.01]	207/04	 having no double bonds between ring members or
201/18	• Stabilisation [2, 2006.01]	207704	between ring members and non-ring members [2, 2006.01]
203/00	Heterocyclic compounds containing three-membered rings with one nitrogen atom as the only ring hetero atom [2, 2006.01]	207/06	• • • with radicals, containing only hydrogen and carbon atoms, attached to ring carbon
203/02	 Preparation by ring-closure [2, 2006.01] 	207/08	atoms [2, 2006.01]with hydrocarbon radicals, substituted by
203/04	 not condensed with other rings [2, 2006.01] 	207700	hetero atoms, attached to ring carbon
203/06	having no double bonds between ring members or between ring members and non-ring	207/09	atoms [2, 2006.01] • • • Radicals substituted by nitrogen atoms not
203/08	members [2, 2006.01] • • with only hydrogen atoms, hydrocarbon or	207/10	forming part of a nitro radical [3, 2006.01] • • • with hetero atoms or with carbon atoms having
	substituted hydrocarbon radicals, directly attached to the ring nitrogen atom [2, 2006.01]	207,10	three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile
203/10	• • • Radicals substituted by singly bound oxygen atoms [2, 2006.01]		radicals, directly attached to ring carbon atoms [2, 2006.01]
203/12	• • • Radicals substituted by nitrogen atoms not forming part of a nitro radical [2, 2006.01]	207/12 207/14	• • • Oxygen or sulfur atoms [2, 2006.01]• • Nitrogen atoms not forming part of a nitro
203/14	• • • with carbocyclic rings directly attached to the ring nitrogen atom [2, 2006.01]	207/14	radical [2, 2006.01] • • • Carbon atoms having three bonds to hetero
203/16	• • with acylated ring nitrogen atoms [2, 2006.01]	20//10	atoms with at the most one bond to halogen,
203/18	 • • by carboxylic acids, or by sulfur or nitrogen analogues thereof [2, 2006.01] 	207/18	 e.g. ester or nitrile radicals [2, 2006.01] having one double bond between ring members or
203/20	 • • by carbonic acid, or by sulfur or nitrogen analogues thereof, e.g. 	20//10	between a ring member and a non-ring member [2, 2006.01]
	carbamates [2, 2006.01]	207/20	• • with only hydrogen atoms, hydrocarbon or
203/22	 • with hetero atoms directly attached to the ring nitrogen atom [2, 2006.01] 		substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01]
203/24	• • • • Sulfur atoms [2, 2006.01]	207/22	• • • with hetero atoms or with carbon atoms having
203/26	 condensed with carbocyclic rings or ring systems [2, 2006.01] 		three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon
205/00	Heterocyclic compounds containing four-membered		atoms [2, 2006.01]
	rings with one nitrogen atom as the only ring hetero	207/24	• • • • Oxygen or sulfur atoms [2, 2006.01]
205/22	atom [2, 2006.01]	207/26	• • • • 2-Pyrrolidones [2, 2006.01]
205/02	• not condensed with other rings [2, 2006.01]	207/263	• • • • with only hydrogen atoms or radicals
205/04	 having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 		containing only hydrogen and carbon atoms directly attached to other ring
205/06	 having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 	207/267	carbon atoms [3, 2006.01] • • • • • • with only hydrogen atoms or radicals containing only hydrogen
205/08	• • • with one oxygen atom directly attached in position 2, e.g. beta-lactams [2, 2006.01]		and carbon atoms directly attached to the ring nitrogen atom [3, 2006.01]
205/085	• • • with a nitrogen atom directly attached in position 3 [5, 2006.01]	207/27	• • • • • • with substituted hydrocarbon radicals directly attached to the ring
205/09	• • • • with a sulfur atom directly attached in position 4 [5, 2006.01]		nitrogen atom [3, 2006.01]

207/273	•	•	•	•	•	•		n hetero atoms or with carbon	207/42	•				• Nitro radicals [2, 2006.01]
								ns having three bonds to hetero	207/44	•	•			ring three double bonds between ring members
								ns with at the most one bond to						between ring members and non-ring
								ogen, e.g. ester or nitrile radicals,				m		mbers [2, 2006.01]
								ctly attached to other ring carbon	207/444	•	•	•		having two doubly-bound oxygen atoms
207/277								ns [3, 2006.01]						directly attached in positions 2 and
207/277	•	•	•	•	•	•		Carbon atoms having three bonds to					5	5 [3, 2006.01]
								netero atoms with at the most one bond to halogen, e.g. ester or nitrile	207/448	•	•	•	•	with only hydrogen drong of rudiculo
								adicals [3, 2006.01]						containing only hydrogen and carbon atoms
207/28								2-Pyrrolidone-5- carboxylic						directly attached to other ring carbon atoms,
207720								acids; Functional derivatives	207/452					e.g. maleimide [3, 2006.01]
								thereof, e.g. esters,	207/452	•	•	•	•	• • with hydrocarbon radicals, substituted by
								nitriles [2, 3, 2006.01]						hetero atoms, directly attached to the ring nitrogen atom [3, 2006.01]
207/30	•	•	ŀ	ıav	ing	į tv	vo doul	ble bonds between ring members	207/456					• with hetero atoms or with carbon atoms
					_	-		members and non-ring	2077 430					having three bonds to hetero atoms with at
			r	nei	nb	ers	[2, 20	06.01]						the most one bond to halogen, e.g. ester or
207/32	•	•	•					drogen atoms, hydrocarbon or						nitrile radicals, directly attached to other ring
								ydrocarbon radicals, directly						carbon atoms [3, 2006.01]
				ä	itta	che	ed to ri	ing carbon atoms [2, 2006.01]	207/46	•	W	ith	h	netero atoms directly attached to the ring
207/323	•	•	•	•			-	hydrogen atoms or radicals						en atom [2, 2006.01]
								g only hydrogen and carbon atoms	207/48	•	•	S	uli	fur atoms [2, 2006.01]
								ttached to the ring nitrogen	207/50					rogen atoms [2, 2006.01]
								2006.01]						
207/325	•	•	•	•				tituted hydrocarbon radicals	209/00					yclic compounds containing five-membered
								ttached to the ring nitrogen						ndensed with other rings, with one nitrogen
207/227					ć			2006.01]						the only ring hetero atom [2, 2006.01]
207/327	•	•	•	•	•			lls substituted by carbon atoms three bonds to hetero atoms with	209/02					nsed with one carbocyclic ring [2, 2006.01]
								nost one bond to halogen, e.g. ester	209/04	•				loles; Hydrogenated indoles [2, 2006.01]
								le radicals [3, 2006.01]	209/06	•	•	•		Preparation of indole from coal-tar [2, 2006.01]
207/33					, ,			tituted hydrocarbon radicals,	209/08	•	•	•		with only hydrogen atoms or radicals
207755								ttached to ring carbon						containing only hydrogen and carbon atoms,
								2006.01]						directly attached to carbon atoms of the hetero
207/333	•							lls substituted by oxygen or sulfur	200 /10					ring [2, 2006.01]
								[3, 2006.01]	209/10	•	•	•		with substituted hydrocarbon radicals attached
207/335	•	•						lls substituted by nitrogen atoms	200 /12					to carbon atoms of the hetero ring [2, 2006.01]
								ming part of a nitro	209/12	•	•	•	•	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
								[3, 2006.01]	200 /1 4					atoms [2, 2006.01]
207/337	•	•	•	•	•	·]	Radica	lls substituted by carbon atoms	209/14	•	·	٠	Ī	 Radicals substituted by nitrogen atoms, not forming part of a nitro radical [2, 2006.01]
								three bonds to hetero atoms with	209/16					 Tryptamines [2, 2006.01]
								nost one bond to halogen, e.g. ester	209/18			•		
								le radicals [3, 2006.01]	209/10	•	·	٠	•	three bonds to hetero atoms with at the most
207/34	•	•	•					atoms or with carbon atoms having						one bond to halogen, e.g. ester or nitrile
								to hetero atoms with at the most						radicals [2, 2006.01]
								halogen, e.g. ester or nitrile ectly attached to ring carbon	209/20	•	•			 substituted additionally by nitrogen
							[2, 200	-						atoms, e.g. tryptophane [2, 2006.01]
207/36								or sulfur atoms [2, 2006.01]	209/22	•	•	•		 with an aralkyl radical attached to the ring
207/38	-	-	•					olones [2, 2006.01]						nitrogen atom [2, 2006.01]
	•		•	•			-		209/24	•	•	•	•	with an alkyl or cycloalkyl radical
207/40	•	•	•	•			-	rrolidine-diones [2, 2006.01]						attached to the ring nitrogen
207/404	•	•	•	•	•	•		n only hydrogen atoms or radicals						atom [2, 2006.01]
								taining only hydrogen and carbon ns directly attached to other ring	209/26	•	•	•	•	 with an acyl radical attached to the ring
								oon atoms, e.g.						nitrogen atom [2, 2006.01]
								cinimide [3, 2006.01]	209/28	•	•	•	•	• • 1-(4-Chlorobenzoyl)-2-methyl-
207/408								Radicals containing only hydrogen						indolyl-3-acetic acid, substituted in
2077 100								and carbon atoms attached to ring						position 5 by an oxygen or nitrogen
								carbon atoms [3, 2006.01]						atom; Esters thereof [2, 2006.01]
207/412	•	•		•				Acyclic radicals containing more	209/30	•	•	•		with hetero atoms or with carbon atoms having
								than six carbon						three bonds to hetero atoms with at the most
								atoms [3, 2006.01]						one bond to halogen, directly attached to
207/416	•	•	•	•	•		with	n hetero atoms or with carbon	200/22	_	_		(carbon atoms of the hetero ring [2, 2006.01]
								ns having three bonds to hetero	209/32	•	•	•	•	• Oxygen atoms [2, 2006.01]
								ns with at the most one bond to	209/34	•	•	•	•	• • in position 2 [2, 2006.01]
								ogen, e.g. ester or nitrile radicals,	209/36	•	•	•	•	• • in position 3, e.g.
								ctly attached to other ring carbon						adrenochrome [2, 2006.01]
							aton	ns [3, 2006.01]						

209/38	1 , 0	211/00	Heterocyclic compounds containing hydrogenated
209/40	isatin [2, 2006.01]isatin [2, 2006.01]isatin [2, 2006.01]		pyridine rings, not condensed with other rings [2, 2006.01]
	radical, e.g. isatin semicarbazone [2, 2006.01]		Note(s) [2]
209/42	 Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01] 		 In this group, the following term is used with the meaning indicated: "hydrogenated" means having less than
209/43	 • with an —OCH₂CH(OH)CH₂NH₂ radical, which may be further substituted, attached in positions 4, 5, 6 or 7 [5, 2006.01] 		three double bonds between ring members or between ring members and non-ring members.
209/44	• • Iso-indoles; Hydrogenated iso-indoles [2, 2006.01]		 Piperidines having only hydrogen atoms attached to ring carbon atoms are classified in group C07D 295/00.
209/46 209/48		211/02	Preparation by ring-closure or
209/46	• • • with oxygen atoms in positions 1 and 3, e.g. phthalimide [2, 2006.01]	211/04	hydrogenation [2, 2006.01]with only hydrogen or carbon atoms directly attached
209/49	 • • • and having in the molecule an acyl radical containing a saturated three-membered ring, 		to the ring nitrogen atom [2, 2006.01]
	e.g. chrysanthemumic acid	211/06	having no double bonds between ring members or
	esters [5, 2006.01]		between ring members and non-ring members [2, 2006.01]
209/50	 • with oxygen and nitrogen atoms in positions 1 and 3 [2, 2006.01] 	211/08	• • • with hydrocarbon or substituted hydrocarbon
209/52	 condensed with a ring other than six- 		radicals directly attached to ring carbon atoms [2, 3, 2006.01]
209/54	membered [2, 2006.01] • • Spiro-condensed [2, 2006.01]	211/10	 • • • with radicals containing only carbon and
209/56	Ring systems containing three or more		hydrogen atoms attached to ring carbon atoms [2, 3, 2006.01]
200 /50	rings [2, 2006.01]	211/12	• • • • with only hydrogen atoms attached to the
209/58 209/60	• [b]- or [c]-condensed [2, 2006.01]• Naphtho [b] pyrroles; Hydrogenated naphtho	D11/14	ring nitrogen atom [2, 3, 2006.01]
	[b] pyrroles [2, 2006.01]	211/14	• • • • with hydrocarbon or substituted hydrocarbon radicals attached to the ring
209/62	 Naphtho [c] pyrroles; Hydrogenated naphtho [c] pyrroles [2, 2006.01] 	211/16	nitrogen atom [2, 2006.01] • • • • with acylated ring nitrogen
209/64	 • • • with an oxygen atom in position 1 [2, 2006.01] 		atom [2, 2006.01]
209/66	• • • with oxygen atoms in positions 1 and	211/18	• • • with substituted hydrocarbon radicals attached to ring carbon atoms [2, 2006.01]
209/68	3 [2, 2006.01] • • • • with oxygen and nitrogen atoms in positions	211/20	• • • • with hydrocarbon radicals, substituted by singly bound oxygen or sulfur
209/70	1 and 3 [2, 2006.01] • • • containing carbocyclic rings other than six-	211/22	atoms [2, 2006.01] • • • • • by oxygen atoms [2, 2006.01]
	membered [2, 2006.01]	211/24	• • • • • by sulfur atoms to which a second
209/72	• • 4,7-Endo-alkylene-iso-indoles [2, 2006.01]		hetero atom is attached [2, 2006.01]
209/74	 • • • with an oxygen atom in position 1 [2, 2006.01] 	211/26	• • • • with hydrocarbon radicals, substituted by nitrogen atoms [2, 2006.01]
209/76	• • • • with oxygen atoms in positions 1 and 3 [2, 2006.01]	211/28	• • • • • to which a second hetero atom is attached [2, 2006.01]
209/78	• • • • with oxygen and nitrogen atoms in positions 1 and 3 [2, 2006.01]	211/30	• • • • with hydrocarbon radicals, substituted by
209/80			doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly
209/82	• • Carbazoles; Hydrogenated		bound to the same carbon atom [2, 2006.01]
209/84	carbazoles [2, 2006.01] • • • Separation, e.g. from tar;	211/32	• • • • • by oxygen atoms [2, 2006.01]
	Purification [2, 2006.01]	211/34	• • • • with hydrocarbon radicals, substituted by
209/86	 • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system [2, 2006.01] 		carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01]
209/88	 • • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system [2, 2006.01] 	211/36	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]
209/90		211/38	• • • • Halogen atoms or nitro radicals [2, 2006.01]
209/92	indoles [2, 2006.01] • • • Naphthostyrils [2, 2006.01]	211/40 211/42	• • • Oxygen atoms [2, 2006.01]• • • attached in position 3 or 5 [2, 2006.01]
209/92	• •	211/42 211/44	• • • • attached in position 3 or 5 [2, 2006.01] • • • • attached in position 4 [2, 2006.01]
20 <i>31</i> 3 4	membered [4, 2006.01]	211/44	• • • • • having a hydrogen atom as the second
209/96			substituent in position 4 [2, 2006.01]

211/48	• • • • • having an acyclic carbon atom attached in position 4 [2, 2006.01]	213/06 • • • containing only hydrogen and carbon atoms in addition to the ring nitrogen atom [2, 2006.01]
211/50	• • • • • • Aroyl radical [2, 2006.01]	213/08 • • • • Preparation by ring-closure [2, 2006.01]
211/52	• • • • • having an aryl radical as the second substituent in position 4 [2, 2006.01]	213/09 • • • • • involving the use of ammonia, amines, amine salts, or nitriles [3, 2006.01]
211/54	• • • • Sulfur atoms [2, 2006.01]	213/10 • • • • • from acetaldehyde or cyclic polymers
211/56	Nitrogen atoms (nitro radicals	thereof [3, 2006.01]
	C07D 211/38) [2, 2006.01]	213/12 • • • • • from unsaturated
211/58	• • • • attached in position 4 [2, 2006.01]	compounds [3, 2006.01]
211/60	• • • Carbon atoms having three bonds to hetero	213/127 • • • Preparation from compounds containing pyridine rings [3, 2006.01]
	atoms with at the most one bond to halogen,	213/133 • • • • Preparation by dehydrogenation of
211/62	e.g. ester or nitrile radicals [2, 2006.01] • • • • attached in position 4 [2, 2006.01]	hydrogenated pyridine
211/62	• • • • • having an aryl radical as the second	compounds [3, 2006.01]
211/04	substituent in position 4 [2, 2006.01]	213/14 • • • • Preparation from compounds containing
211/66	• • • • having a hetero atom as the second	heterocyclic oxygen [2, 2006.01]
	substituent in position 4 [2, 2006.01]	213/16 • • • containing only one pyridine
211/68	 having one double bond between ring members or 	ring [2, 2006.01]
	between a ring member and a non-ring	213/18 • • • • Salts thereof [2, 2006.01]
5444 = 0	member [2, 2006.01]	213/20 • • • • • Quaternary compounds
211/70	• • • with only hydrogen atoms, hydrocarbon or	thereof [2, 2006.01]
	substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01]	213/22 • • • • containing two or more pyridine rings directly linked together, e.g.
211/72	 with hetero atoms or with carbon atoms having 	bipyridyl [2, 2006.01]
211//2	three bonds to hetero atoms, with at the most	213/24 • • • with substituted hydrocarbon radicals attached
	one bond to halogen, directly attached to ring	to ring carbon atoms [2, 2006.01]
	carbon atoms [2, 2006.01]	213/26 • • • • Radicals substituted by halogen atoms or
211/74	• • • • Oxygen atoms [2, 2006.01]	nitro radicals [2, 2006.01]
211/76	• • • • attached in position 2 or 6 [2, 2006.01]	213/28 • • • Radicals substituted by singly-bound oxygen
211/78	• • • Carbon atoms having three bonds to hetero	or sulfur atoms [2, 2006.01]
	atoms with at the most one bond to halogen [2, 2006.01]	213/30 • • • • • Oxygen atoms [2, 2006.01] 213/32 • • • • Sulfur atoms [2, 2006.01]
211/80	having two double bonds between ring members	213/32 • • • • Sulfur atoms [2, 2006.01] 213/34 • • • • to which a second hetero atom is
211/00	or between ring members and non-ring members [2, 2006.01]	attached [2, 2006.01]
211/82	• • with only hydrogen atoms, hydrocarbon or	213/36 • • • • Radicals substituted by singly-bound nitrogen atoms (nitro radicals
211/02	substituted hydrocarbon radicals, directly	C07D 213/26) [2, 2006.01]
	attached to ring carbon atoms [2, 2006.01]	213/38 • • • • having only hydrogen or hydrocarbon
211/84	 • with hetero atoms or with carbon atoms having 	radicals attached to the substituent
	three bonds to hetero atoms with at the most	nitrogen atom [2, 2006.01]
	one bond to halogen, directly attached to ring carbon atoms [2, 2006.01]	213/40 • • • • Acylated substituent nitrogen
211/86	• • • • Oxygen atoms [2, 2006.01]	atom [2, 2006.01]
211/88	• • • • attached in positions 2 and 6, e.g.	213/42 • • • • having hetero atoms attached to the substituent nitrogen atom (nitro radicals
	glutarimide [2, 2006.01]	C07D 213/26) [2, 2006.01]
211/90	• • • Carbon atoms having three bonds to hetero	213/44 • • • • Radicals substituted by doubly-bound
	atoms with at the most one bond to	oxygen, sulfur, or nitrogen atoms, or by two
211/92	halogen [2, 2006.01] • with a hetero atom directly attached to the ring	such atoms singly-bound to the same carbon atom [2, 2006.01]
211/32	nitrogen atom [2, 2006.01]	213/46 • • • • • Oxygen atoms [2, 2006.01]
211/94	Oxygen atom, e.g. piperidine N-oxide [2, 2006.01]	213/48 • • • • • • Aldehydo radicals [2, 2006.01]
211/96	• • Sulfur atom [2, 2006.01]	213/50 • • • • • Ketonic radicals [2, 2006.01]
211/98	• • Nitrogen atom [2, 2006.01]	213/51 • • • • • • Acetal radicals [2, 2006.01]
	-	213/52 • • • • Sulfur atoms [2, 2006.01]
213/00	Heterocyclic compounds containing six-membered	213/53 • • • • Nitrogen atoms [2, 2006.01]
	rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three	213/54 • • • • Radicals substituted by carbon atoms having
	or more double bonds between ring members or	three bonds to hetero atoms with at the most
	between ring members and non-ring members [2, 2006.01]	one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01]
213/02	 having three double bonds between ring members or 	213/55 • • • • • Acids; Esters [2, 2006.01]
210/02	between ring members and non-ring	213/56 • • • • • Amides [2, 2006.01]
	members [2, 2006.01]	213/57 • • • • Nitriles [2, 2006.01]
213/04	 having no bond between the ring nitrogen atom 	213/58 • • • • Amidines [2, 2006.01]
	and a non-ring member or having only hydrogen	213/59 • • • • with at least one of the bonds being to
	or carbon atoms directly attached to the ring	sulfur [2, 2006.01]
	nitrogen atom [2, 2006.01]	

213/60	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon	213/90	 having more than three double bonds between ring members or between ring members and non-ring members [2, 2006.01]
212/21	atoms [2, 2006.01]	215/00	Heterocyclic compounds containing quinoline or
213/61 213/62 213/63 213/64	 Halogen atoms or nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] One oxygen atom [2, 2006.01] attached in position 2 or 6 [2, 2006.01] 	215/02	 hydrogenated quinoline ring systems [2, 2006.01] having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom [2, 2006.01]
213/643 213/647	 • • • • • • • 2-Phenoxypyridines; Derivatives thereof [5, 2006.01] • • • • • • • and having in the molecule an acyl 	215/04	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms [2, 2006.01]
	radical containing a saturated three- membered ring, e.g. chrysanthemumic acid esters [5, 2006.01]	215/06	 having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom [2, 2006.01]
213/65	• • • • • attached in position 3 or 5 [2, 2006.01]	215/08	• • • with acylated ring nitrogen atom [2, 2006.01]
213/66	• • • • • having in position 3 an oxygen	215/10	• • • Quaternary compounds [2, 2006.01]
	atom and in each of the positions 4 and 5 a carbon atom bound to an	215/12	with substituted hydrocarbon radicals attached to ring carbon atoms [2, 2006.01] Dedicals substituted by assessed.
	oxygen, sulfur, or nitrogen atom, e.g. pyridoxal [2, 2006.01]	215/14	• • Radicals substituted by oxygen atoms [2, 2006.01]
213/67	• • • • • • • 2-Methyl-3-hydroxy-4,5-bis (hydroxy-methyl) pyridine, i.e.	215/16	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one
	pyridoxine [2, 2006.01]		bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]
213/68	• • • • • attached in position 4 [2, 2006.01]	215/18	 Halogen atoms or nitro radicals [2, 2006.01]
213/69	• • • • • Two or more oxygen atoms [2, 2006.01]	215/10	 Oxygen atoms [2, 2006.01]
213/70	• • • • Sulfur atoms [4, 2006.01]	215/20	• • • • attached in position 2 or 4 [2, 2006.01]
213/71	• • • • • to which a second hetero atom is attached [4, 2006.01]	215/227	• • • • only one oxygen atom which is attached in position 2 [5, 2006.01]
213/72	• • • Nitrogen atoms (nitro radicals C07D 213/61) [2, 2006.01]	215/233	• • • • only one oxygen atom which is attached
213/73	• • • • Unsubstituted amino or imino	215/24	in position 4 [5, 2006.01]
	radicals [2, 2006.01]	215/24	• • • • attached in position 8 [2, 2006.01]
213/74	 • • • • Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals [2, 2006.01] 	215/26 215/28	 • • • • Alcohols; Ethers thereof [2, 2006.01] • • • • with halogen atoms or nitro radicals in positions 5, 6 or 7 [2, 2006.01]
213/75	• • • • Amino or imino radicals, acylated by	215/30	• • • • • Metal salts; Chelates [2, 2006.01]
	carboxylic or carbonic acids, or by sulfur	215/32	• • • • • Esters [2, 2006.01]
	or nitrogen analogues thereof, e.g.	215/34	• • • • • • Carbamates [2, 2006.01]
	carbamates [2, 2006.01]	215/36	• • • Sulfur atoms (C07D 215/24 takes
213/76	• • • • to which a second hetero atom is attached (nitro radicals C07D 213/61) [2, 2006.01]	215/38	precedence) [2, 2006.01] • • Nitrogen atoms (nitro radicals
213/77	• • • • • Hydrazine radicals [2, 2006.01]		C07D 215/18) [2, 2006.01]
213/78	 Carbon atoms having three bonds to hetero 	215/40	• • • attached in position 8 [2, 2006.01]
	atoms, with at the most one bond to halogen,	215/42	• • • attached in position 4 [2, 2006.01]
2424=2	e.g. ester or nitrile radicals [2, 2006.01]	215/44	• • • • with aryl radicals attached to said
213/79	• • • • • Acids; Esters [2, 2006.01]		nitrogen atoms [2, 2006.01]
213/80	• • • • • in position 3 [2, 2006.01]	215/46	• • • • with hydrocarbon radicals, substituted by
213/803 213/807	• • • • • Processes of preparation [3, 2006.01]• • • • • by oxidation of pyridines or		nitrogen atoms, attached to said nitrogen atoms [2, 2006.01]
213/81	condensed pyridines [3, 2006.01] • • • • • Amides; Imides [2, 2006.01]	215/48	Carbon atoms having three bonds to hetero atoms with at the most one bond to
213/82	• • • • • in position 3 [2, 2006.01]		halogen [2, 2006.01]
213/83	• • • • Thioacids; Thioesters; Thioamides;	215/50	• • • • attached in position 4 [2, 2006.01]
213/84	Thioimides [2, 2006.01] • • • • Nitriles [2, 2006.01]	215/52	• • • • with aryl radicals attached in position 2 [2, 2006.01]
213/85	• • • • • in position 3 [2, 2006.01]	215/54	• • • • attached in position 3 [2, 2006.01]
213/86	 Hydrazides; Thio or imino analogues thereof [2, 2006.01] 	215/56	• • • • with oxygen atoms in position 4 [2, 2006.01]
213/87	• • • • • in position 3 [2, 2006.01]	215/58	with hetero atoms directly attached to the ring
213/88	• • • • Nicotinoylhydrazones [2, 2006.01]	-,	nitrogen atom [2, 2006.01]
213/89	 with hetero atoms directly attached to the ring 	215/60	• • N-oxides [2, 2006.01]
	nitrogen atom [2, 2006.01]	217/00	Hetevogradia composed acceptation to a to Pro-
		217/00	Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems [2, 2006.01]

221/18	• • • Ring systems of four or more rings [2, 2006.01]		
221/16	• • • containing carbocyclic rings other than six- membered [2, 2006.01]		
	naphthalimide [2, 2006.01]		rings [2, 2006.01]
221/14	• • • • Aza-phenalenes, e.g. 1,8-	225/08	 condensed with two six-membered
221/12	• • • • • Phenanthridines [2, 2006.01]		ring [2, 2006.01]
221/10	• • • • Aza-phenanthrenes [2, 2006.01]	225/06	 condensed with one six-membered
221/08	• • • • Aza-anthracenes [2, 2006.01]		systems [2, 2006.01]
221/06	• • Ring systems of three rings [2, 2006.01]	225/04	 condensed with carbocyclic rings or ring
441/U 4	systems [2, 2006.01]	225/02	 not condensed with other rings [2, 2006.01]
221/02	systems [2, 2006.01] • Ortho- or peri-condensed ring		and having only hydrogen atoms attached to the ring carbon atoms are classified in group C07D 295/00.
221/02	• condensed with carbocyclic rings or ring		Polymethyleneimines with at least five ring members
	hetero atom, not provided for by groups C07D 211/00-C07D 219/00 [2, 2006.01]		Note(s) [3]
	rings having one nitrogen atom as the only ring		only ring hetero atom [2, 2006.01]
221/00	Heterocyclic compounds containing six-membered		than seven members having one nitrogen atom as the
		225/00	Heterocyclic compounds containing rings of more
	attached to the ring nitrogen atom [2, 2006.01]		
219/16	 with acyl radicals, substituted by nitrogen atoms, 	<i>عد ادع</i> ے	membered [2, 2006.01]
_13/17	atoms, attached to the ring nitrogen atom [2, 2006.01]	223/32	 containing carbocyclic rings other than six-
219/14	with hydrocarbon radicals, substituted by nitrogen	223/30	• • • • with hetero atoms directly attached to the ring nitrogen atom [2, 2006.01]
Z13/1Z	position 9 [2, 2006.01]	<u> </u>	10 and 11 [2, 2006.01]
219/10 219/12	 • attached in position 9 [2, 2006.01] • • Aminoalkyl-amino radicals attached in	223/28	• • • • having a single bond between positions
219/08	• Nitrogen atoms [2, 2006.01]		10 and 11 [2, 2006.01]
219/06	• • Oxygen atoms [2, 2006.01]	223/26	• • • • having a double bond between positions
210/00	to carbon atoms of the ring system [2, 2006.01]		atom [2, 2006.01]
	halogen, e.g. ester or nitrile radicals, directly attached	- · - ·	nitrogen atoms, attached to the ring nitrogen
	bonds to hetero atoms with at the most one bond to	223/24	• • • with hydrocarbon radicals, substituted by
219/04	• with hetero atoms or with carbon atoms having three		[b, f] azepines [2, 2006.01]
	atoms of the ring system [2, 2006.01]	223/22	 Dibenz [b, f] azepines; Hydrogenated dibenz
	hydrocarbon radicals, directly attached to carbon		[b, e] azepines [2, 2006.01]
219/02	• with only hydrogen, hydrocarbon or substituted	223/20	Dibenz [b, e] azepines; Hydrogenated dibenz
219/00	Heterocyclic compounds containing acridine or hydrogenated acridine ring systems [2, 2006.01]	223/18	 Dibenzazepines; Hydrogenated dibenzazepines [2, 2006.01]
240 /22	_		benzazepines [2, 2006.01]
-	with at the most one bond to halogen [2, 2006.01]	223/16	Benzazepines; Hydrogenated
217/26	Carbon atoms having three bonds to hetero atoms		systems [2, 2006.01]
217/24	• • Oxygen atoms [2, 2006.01]	223/14	condensed with carbocyclic rings or ring
	ring [2, 2006.01]	44J/14	radical [2, 2006.01]
	to carbon atoms of the nitrogen-containing	223/10	Nitrogen atoms not forming part of a nitro
	bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached	223/10	• • • • attached in position 2 [2, 2006.01]
217/22	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to	223/08	• • • Oxygen atoms [2, 2006.01]
217/22	papaverine [2, 2006.01]		atoms C07D 223/04) [2, 2006.01]
	aromatic ring of said aralkyl radical, e.g.		directly attached to ring carbon atoms (halogen
217/20	• • • with oxygen atoms directly attached to the		three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals,
217/18	• • Aralkyl radicals [2, 2006.01]	223/06	with hetero atoms or with carbon atoms having three bonds to bettere atoms with at the most one
217/16	• • • substituted by oxygen atoms [2, 2006.01]	000 /00	directly attached to ring carbon atoms [2, 2006.01]
217/14	• • other than aralkyl radicals [2, 2006.01]		hydrocarbon or substituted hydrocarbon radicals,
	ring [2, 2006.01]	223/04	 with only hydrogen atoms, halogen atoms,
	carbon atoms of the nitrogen-containing	223/02	 not condensed with other rings [2, 2006.01]
217/12	with radicals, substituted by hetero atoms, attached to		atoms, are classified in group C07D 295/00.
217/10	• • Quaternary compounds [2, 2006.01]		having only hydrogen atoms attached to the ring carbon
	nitrogen atom [2, 2006.01]		Hexamethylene imines or 3-azabicyclo [3.2.2] nonanes,
217/08	with a hetero atom directly attached to the ring		<u>Note(s) [2]</u>
	analogues thereof, e.g. carbamates [2, 2006.01]		
	or carbonic acids, or with sulfur or nitrogen		hetero atom [2, 2006.01]
217/06	with the ring nitrogen atom acylated by carboxylic	443/UU	rings having one nitrogen atom as the only ring
	atom [2, 2006.01]	223/00	Heterocyclic compounds containing seven-membered
41//U 4	radicals attached to the ring nitrogen	221/28	• • • Morphinans [2, 2006.01]
217/04	with hydrocarbon or substituted hydrocarbon	221/26	• • Benzomorphans [2, 2006.01]
	carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines [2, 2006.01]	221/24	• • Camphidines [2, 2006.01]
	carbon and hydrogen atoms, directly attached to	221/22	• • Bridged ring systems [2, 2006.01]
217/02	with only hydrogen atoms or radicals containing only	221/20	• • Spiro-condensed ring systems [2, 2006.01]

227/00	Heterocyclic compounds containing rings having one nitrogen atom as the only ring hetero atom, according to more than one of groups C07D 203/00-	231/26 • • • • • • 1-Phenyl-3-methyl-5- pyrazolones, unsubstituted or substituted on the phenyl ring [2, 2006.01]
	C07D 225/00 [2, 2006.01]	231/28 • • • • Two oxygen or sulfur atoms [2, 2006.01]
	Note(s) [3]	231/30 • • • • attached in position 3 and 5 [2, 2006.01]
		231/32 • • • • • Oxygen atoms [2, 2006.01]
227/02	Polymethyleneimines with at least five ring members and having only hydrogen atoms attached to the ring carbon atoms are classified in group C07D 295/00. • with only hydrogen or carbon atoms directly attached	231/34 • • • • • • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached in position 4 [2, 2006.01]
227/04	to the ring nitrogen atom [2, 2006.01]with only hydrogen atoms, hydrocarbon or	231/36 • • • • • • with hydrocarbon radicals, substituted by hetero atoms,
	substituted hydrocarbon radicals, attached to ring carbon atoms [2, 2006.01]	attached in position 4 [2, 2006.01] 231/38 • • • • Nitrogen atoms (nitro radicals
227/06	 with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one 	C07D 231/16) [2, 2006.01] 231/40 • • • • Acylated on said nitrogen
	bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]	atom [2, 2006.01]
227/08	• • • Oxygen atoms [2, 2006.01]	231/42 • • • • Benzene-sulfonamido pyrazoles [2, 2006.01]
227/087	• • • One doubly-bound oxygen atom in position 2, e.g. lactams [3, 2006.01]	231/44 • • • • Oxygen and nitrogen or sulfur and nitrogen atoms [2, 2006.01]
227/093	• • • • Two doubly-bound oxygen atoms attached to the carbon atoms adjacent to the ring	231/46 • • • • • • Oxygen atom in position 3 or 5 and nitrogen atom in position 4 [2, 2006.01]
	nitrogen atom, e.g. dicarboxylic acid imides [3, 2006.01]	231/48 • • • • • with hydrocarbon radicals attached to said nitrogen atom [2, 2006.01]
227/10	 Nitrogen atoms not forming part of a nitro radical [2, 2006.01] 	231/50 • • • • • • • • Acylated on said nitrogen atom [2, 2006.01]
227/12	 with hetero atoms directly attached to the ring nitrogen atom [2, 2006.01] 	231/52 • • • • • Oxygen atom in position 3 and nitrogen atom in position 5, or <u>vice-</u>
229/00	Heterocyclic compounds containing rings of less than five members having two nitrogen atoms as the only	versa [2, 2006.01] 231/54 • condensed with carbocyclic rings or ring systems [2, 2006.01]
229/02	ring hetero atoms [2, 2006.01]containing three-membered rings [3, 2006.01]	231/56 • Benzopyrazoles; Hydrogenated benzopyrazoles [2, 2006.01]
		Denzonvrazoles 12, 2006,011
231/00	Heterocyclic compounds containing 1.2-diazole or	50m26pj/m26105 [=) =000101j
231/00 231/02	Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings [2, 2006.01] • not condensed with other rings [2, 2006.01]	233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with
		233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01]
231/02	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring
231/02	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or
231/02 231/04	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01]
231/02 231/04 231/06	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached
231/02 231/04 231/06 231/08 231/10	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/08 • • with alkyl radicals, containing more than four
231/02 231/04 231/06 231/08	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/08 • • with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms [2, 2006.01]
231/02 231/04 231/06 231/08 231/10	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/08 • • with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon
231/02 231/04 231/06 231/08 231/10 231/12	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile 	 233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 • having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 • having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/08 • • with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/10 • • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms,
231/02 231/04 231/06 231/08 231/10 231/12 231/14	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] 	 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] with alkyl radicals, containing more than four carbon atoms [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen atoms or radicals containing only hydrogen atoms [2, 2006.01] with only hydrogen and carbon atoms, directly attached to ring nitrogen atoms [2, 2006.01] with substituted hydrocarbon radicals attached to ring nitrogen atoms [2, 2006.01]
231/02 231/04 231/06 231/08 231/10 231/12 231/14	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms or nitro radicals [2, 2006.01] 	 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] with alkyl radicals, containing more than four carbon atoms [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen atoms or radicals containing only hydrogen atoms [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring nitrogen atoms [2, 2006.01] with substituted hydrocarbon radicals attached to ring nitrogen atoms [2, 2006.01] Radicals substituted by oxygen
231/02 231/04 231/06 231/08 231/10 231/12 231/14	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms or nitro radicals [2, 2006.01] One oxygen or sulfur atom [2, 2006.01] One oxygen atom attached in position 3 	 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] with alkyl radicals, containing more than four carbon atoms [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen atoms or radicals containing only hydrogen atoms [2, 2006.01] with only hydrogen and carbon atoms, directly attached to ring nitrogen atoms [2, 2006.01] with substituted hydrocarbon radicals attached to ring nitrogen atoms [2, 2006.01]
231/02 231/04 231/06 231/08 231/10 231/12 231/14 231/16 231/18	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms or nitro radicals [2, 2006.01] One oxygen or sulfur atom [2, 2006.01] One oxygen atom attached in position 3 or 5 [2, 2006.01] with aryl radicals attached to ring 	233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/08 with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/10 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring nitrogen atoms [2, 2006.01] 233/12 with substituted hydrocarbon radicals attached to ring nitrogen atoms [2, 2006.01] 233/14 with substituted by oxygen atoms [2, 2006.01] 233/16 Radicals substituted by nitrogen atoms [2, 2006.01] 233/18 Radicals substituted by carbon atoms having three bonds to hetero atoms with
231/02 231/04 231/06 231/10 231/12 231/14 231/14 231/18 231/20	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms or nitro radicals [2, 2006.01] One oxygen or sulfur atom [2, 2006.01] One oxygen atom attached in position 3 or 5 [2, 2006.01] having sulfone or sulfonic acid 	 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring nitrogen atoms [2, 2006.01] with substituted hydrocarbon radicals attached to ring nitrogen atoms [2, 2006.01] Radicals substituted by oxygen atoms [2, 2006.01] Radicals substituted by nitrogen atoms [2, 2006.01] Radicals substituted by carbon atoms Radicals substituted by carbon atoms
231/02 231/04 231/06 231/08 231/10 231/12 231/14 231/14 231/18 231/20 231/22	 hydrogenated 1,2-diazole rings [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] with oxygen or sulfur atoms directly attached to ring carbon atoms [2, 2006.01] having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms or nitro radicals [2, 2006.01] One oxygen or sulfur atom [2, 2006.01] One oxygen atom attached in position 3 or 5 [2, 2006.01] with aryl radicals attached to ring nitrogen atoms [2, 2006.01] 	233/00 Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings [2, 2006.01] 233/02 having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 233/04 having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01] 233/06 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/08 with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms [2, 2006.01] 233/10 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring nitrogen atoms [2, 2006.01] 233/12 with substituted hydrocarbon radicals attached to ring nitrogen atoms [2, 2006.01] 233/14 with substituted by oxygen atoms [2, 2006.01] 233/16 Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester

233/24	 Radicals substituted by nitrogen atoms not 	233/82	• • • • Halogen atoms [2, 2006.01]
	forming part of a nitro radical [2, 2006.01]	233/84	• • • Sulfur atoms [2, 2006.01]
233/26	 Radicals substituted by carbon atoms having three bonds to hetero atoms [2, 2006.01] 	233/86	• • • Oxygen and sulfur atoms, e.g. thiohydantoin [2, 2006.01]
233/28	 with hetero atoms or with carbon atoms having 	233/88	• • • Nitrogen atoms, e.g. allantoin [2, 2006.01]
	three bonds to hetero atoms with at the most one	233/90	Carbon atoms having three bonds to hetero
	bond to halogen, e.g. ester or nitrile radicals,	233730	atoms with at the most one bond to halogen,
	directly attached to ring carbon atoms [2, 2006.01]		e.g. ester or nitrile radicals [2, 2006.01]
233/30	 • • • Oxygen or sulfur atoms [2, 2006.01] 	233/91	• • • Nitro radicals [2, 2006.01]
233/32	• • • • One oxygen atom [2, 2006.01]	233/92	• • • attached in position 4 or 5 [2, 2006.01]
233/34	• • • • Ethylene-urea [2, 2006.01]	233/93	• • • • with hydrocarbon radicals, substituted by
233/36	• • • • with hydrocarbon radicals, substituted by	233733	halogen atoms, attached to other ring
	nitrogen atoms, attached to ring nitrogen atoms [2, 2006.01]	000 /04	members [2, 2006.01]
233/38	• • • • with acyl radicals or hetero atoms directly	233/94	• • • • with hydrocarbon radicals, substituted by
233/30	attached to ring nitrogen		oxygen or sulfur atoms, attached to other
	atoms [2, 2006.01]	233/95	ring members [2, 2006.01] • • • • with hydrocarbon radicals, substituted by
233/40	• • • • Two or more oxygen atoms [2, 2006.01]	233/33	nitrogen atoms, attached to other ring
233/42	• • • • Sulfur atoms [2, 2006.01]		members [2, 2006.01]
233/44	Nitrogen atoms not forming part of a nitro	233/96	having three double bonds between ring members or
	radical [2, 2006.01]	233/30	between ring members and non-ring
233/46	 • • • with only hydrogen atoms attached to said nitrogen atoms [2, 2006.01] 		members [2, 2006.01]
233/48	• • • with acyclic hydrocarbon or substituted	235/00	Heterocyclic compounds containing 1,3-diazole or
	acyclic hydrocarbon radicals, attached to		hydrogenated 1,3-diazole rings, condensed with other
	said nitrogen atoms [2, 2006.01]		rings [2, 2006.01]
233/50	• • • with carbocyclic radicals directly attached to	235/02	condensed with carbocyclic rings or ring
	said nitrogen atoms [2, 2006.01]		systems [2, 2006.01]
233/52	• • • with hetero atoms directly attached to said nitrogen atoms [2, 2006.01]	235/04	 Benzimidazoles; Hydrogenated benzimidazoles [2, 2006.01]
233/54	 having two double bonds between ring members or 	235/06	• • • with only hydrogen atoms, hydrocarbon or
233/34	between ring members and non-ring		substituted hydrocarbon radicals, directly
	members [2, 2006.01]		attached in position 2 [2, 2006.01]
233/56	with only hydrogen atoms or radicals containing	235/08	 Radicals containing only hydrogen and
233730	only hydrogen and carbon atoms, attached to ring		carbon atoms [2, 2006.01]
	carbon atoms [2, 2006.01]	235/10	 Radicals substituted by halogen atoms or
233/58	• • with only hydrogen atoms or radicals		nitro radicals [2, 2006.01]
	containing only hydrogen and carbon atoms,	235/12	Radicals substituted by oxygen
	attached to ring nitrogen atoms [2, 2006.01]		atoms [2, 2006.01]
233/60	 • with hydrocarbon radicals, substituted by 	235/14	• • • Radicals substituted by nitrogen atoms (by
	oxygen or sulfur atoms, attached to ring	005 /46	nitro radicals C07D 235/10) [2, 2006.01]
	nitrogen atoms [2, 2006.01]	235/16	• • • Radicals substituted by carbon atoms having
233/61	• • • with hydrocarbon radicals, substituted by		three bonds to hetero atoms with at the most
	nitrogen atoms not forming part of a nitro		one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01]
	radical, attached to ring nitrogen	235/18	
000/60	atoms [3, 2006.01]	233/10	• • with aryl radicals directly attached in position 2 [2, 2006.01]
233/62	 • with triarylmethyl radicals attached to ring nitrogen atoms [2, 2006.01] 	235/20	• • Two benzimidazolyl-2 radicals linked together
222/64	~	233720	directly or <u>via</u> a hydrocarbon or substituted
233/64	 with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine [2, 2006.01] 		hydrocarbon radical [2, 2006.01]
233/66		235/22	• • with hetero atoms directly attached to ring
233/00	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one		nitrogen atoms (C07D 235/10 takes
	bond to halogen, e.g. ester or nitrile radicals,		precedence) [2, 2006.01]
	directly attached to ring carbon atoms [2, 2006.01]	235/24	 • with hetero atoms or with carbon atoms having
233/68	 Halogen atoms [2, 2006.01] 		three bonds to hetero atoms with at the most
233/70	• • • One oxygen atom [2, 2006.01]		one bond to halogen, e.g. ester or nitrile
233/72	 • • • Two oxygen atoms, e.g. hydantoin [2, 2006.01] 		radicals, directly attached in position
233/74	• • • with only hydrogen atoms or radicals		2 [2, 2006.01]
_55//7	containing only hydrogen and carbon atoms,	235/26	• • • • Oxygen atoms [2, 2006.01]
	attached to other ring members [2, 2006.01]	235/28	• • • • Sulfur atoms [2, 2006.01]
233/76	• • • with substituted hydrocarbon radicals	235/30	• • • Nitrogen atoms not forming part of a nitro
22.73	attached to the third ring carbon		radical [2, 2006.01]
	atom [2, 2006.01]	235/32	• • • • Benzimidazole-2-carbamic acids,
233/78	Radicals substituted by oxygen		unsubstituted or substituted; Esters
	atoms [2, 2006.01]		thereof; Thio-analogues
233/80	 • • with hetero atoms or acyl radicals directly 		thereof [2, 2006.01]
	attached to ring nitrogen atoms [2, 2006.01]		

237/00	Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings [2, 2006.01]	• • having three or more double bonds between ring members or between ring members and non-ring
237/02	 not condensed with other rings [2, 2006.01] 	members [2, 2006.01]
237/04	 having less than three double bonds between ring members or between ring members and non-ring members [2, 2006.01] 	239/26 • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01]
237/06	having three double bonds between ring members or between ring members and non-ring 2000 011	• • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring
237/08	members [2, 2006.01]	carbon atoms [2, 2006.01]
23//00	 • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly 	239/30 • • • • Halogen atoms or nitro radicals [2, 2006.01]
	attached to ring carbon atoms [2, 2006.01]	239/32 • • • One oxygen, sulfur or nitrogen
237/10	 • with hetero atoms or with carbon atoms having 	atom [2, 2006.01]
	three bonds to hetero atoms with at the most	239/34 • • • • One oxygen atom [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]	239/36 • • • • • as doubly bound oxygen atom or as unsubstituted hydroxy
237/12	• • • Halogen atoms or nitro radicals [2, 2006.01]	radical [2, 2006.01]
237/12	• • • • Oxygen atoms [2, 2006.01]	239/38 • • • • • One sulfur atom [2, 2006.01]
237/14	• • • • • Two oxygen atoms [2, 2006.01]	239/40 • • • • • as doubly bound sulfur atom or as unsubstituted mercapto
237/18	• • • Sulfur atoms [2, 2006.01]	radical [2, 2006.01]
237/10	Nitrogen atoms (nitro radicals	239/42 • • • • One nitrogen atom (nitro radicals
23//20	C07D 237/12) [2, 2006.01]	C07D 239/30) [2, 2006.01]
237/22	• • • • Nitrogen and oxygen atoms [2, 2006.01]	239/46 • • • • Two or more oxygen, sulfur or nitrogen
237/24	 Carbon atoms having three bonds to hetero 	atoms [2, 2006.01]
	atoms with at the most one bond to halogen [2, 2006.01]	239/47 • • • • • One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine [3, 2006.01]
237/26	condensed with carbocyclic rings or ring	239/48 • • • • Two nitrogen atoms [2, 2006.01]
	systems [2, 2006.01]	239/49 • • • • with an aralkyl radical, or substituted
237/28	• • Cinnolines [2, 2006.01]	aralkyl radical, attached in position 5,
237/30	• • Phthalazines [2, 2006.01]	e.g. trimethoprim [3, 2006.01]
237/32	 • with oxygen atoms directly attached to carbon 	239/50 • • • • • Three nitrogen atoms [2, 2006.01]
	atoms of the nitrogen-containing	239/52 • • • • • Two oxygen atoms [2, 2006.01]
237/34	 ring [2, 2006.01] with nitrogen atoms directly attached to carbon atoms of the nitrogen-containing ring, e.g. 	239/54 • • • • • as doubly bound oxygen atoms or as unsubstituted hydroxy radicals [2, 2006.01]
	hydrazine radicals [2, 2006.01]	239/545 • • • • • with other hetero atoms or with
237/36	• • Benzo-cinnolines [2, 2006.01]	carbon atoms having three bonds to hetero atoms with at the most one
239/00	Heterocyclic compounds containing 1,3-diazine or	bond to halogen, directly attached
	hydrogenated 1,3-diazine rings [2, 2006.01]	to ring carbon atoms [5, 2006.01]
239/02	• not condensed with other rings [2, 2006.01]	239/553 • • • • • • with halogen atoms or nitro
239/04	 having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] 	radicals directly attached to ring carbon atoms, e.g. fluorouracil [5, 2006.01]
239/06	 having one double bond between ring members or 	239/557 • • • • • • with carbon atoms having three
2337 00	between a ring member and a non-ring member [2, 2006.01]	bonds to hetero atoms with at the most one bond to halogen,
239/08	• • • with hetero atoms directly attached in position 2 [2, 2006.01]	directly attached to ring carbon atoms, e.g. orotic acid [5, 2006.01]
239/10	• • • • Oxygen or sulfur atoms [2, 2006.01]	239/56 • • • • One oxygen atom and one sulfur
239/12	• • • Nitrogen atoms not forming part of a nitro radical [2, 2006.01]	atom [2, 2006.01] 239/58 • • • • • Two sulfur atoms [2, 2006.01]
239/14	• • • • with only hydrogen atoms, hydrocarbon	239/60 • • • • • Three or more oxygen or sulfur
	or substituted hydrocarbon radicals, attached to said nitrogen	atoms [2, 2006.01] 239/62 • • • • • Barbituric acids [2, 2006.01]
220/16	atoms [2, 2006.01]	239/64 • • • • • • • Salts of organic bases; Organic
239/16	• • • • acylated on said nitrogen atoms [2, 2006.01]	double compounds [2, 2006.01] 239/66 • • • • • • Thiobarbituric acids [2, 2006.01]
239/18	• • • • with hetero atoms attached to said	239/68 • • • • • • • Salts of organic bases; Organic
	nitrogen atoms, except nitro radicals, e.g. hydrazine radicals [2, 2006.01]	double compounds [2, 2006.01]
239/20	 having two double bonds between ring members 	239/69 • • • • Benzenesulfonamido-pyrimidines [3, 2006.0
	or between ring members and non-ring	1]
	members [2, 2006.01]	239/70 • condensed with carbocyclic rings or ring
239/22	• • • with hetero atoms directly attached to ring carbon atoms [2, 2006.01]	systems [2, 2006.01]

239/72	Quinazolines; Hydrogenated	241/28	• • • • • in which said hetero-bound carbon
220/74	quinazolines [2, 2006.01]		atoms have double bonds to oxygen,
239/74	 • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to 		sulfur or nitrogen atoms [2, 5, 2006.01]
	ring carbon atoms of the hetero	241/30	• • • • • in which said hetero-bound carbon
	ring [2, 2006.01]		atoms are part of a substructure —
239/76	• • • N-oxides [2, 2006.01]		C(=X)— X — $C(=X)$ — X — in which
239/78	 • with hetero atoms directly attached in position 		X is an oxygen or sulfur atom or an imino radical, e.g.
220 (00	2 [2, 2006.01]		imidoylguanidines [2, 5, 2006.01]
239/80	• • • • Oxygen atoms [2, 2006.01]	241/32	• • • • • • (Amino-pyrazinoyl)
239/82	• • • • with an aryl radical attached in position 4 [2, 2006.01]		guanidines [2, 5, 2006.01]
239/84	• • • • Nitrogen atoms [2, 2006.01]	241/34	• • • • • • (Amino-pyrazine carbonamido)
239/86	 with hetero atoms directly attached in position 	244/22	guanidines [2, 5, 2006.01]
	4 [2, 2006.01]	241/36	 condensed with carbocyclic rings or ring systems [2, 2006.01]
239/88	• • • • Oxygen atoms [2, 2006.01]	241/38	 with only hydrogen or carbon atoms directly
239/90	• • • • with acyclic radicals attached in position	241/50	attached to the ring nitrogen atoms [2, 2006.01]
220 /01	2 or 3 [2, 2006.01]	241/40	• • • Benzopyrazines [2, 2006.01]
239/91	• • • • with aryl or aralkyl radicals attached in position 2 or 3 [2, 2006.01]	241/42	• • • with only hydrogen atoms, hydrocarbon or
239/92	• • • • • with hetero atoms directly attached to		substituted hydrocarbon radicals, directly
	nitrogen atoms of the hetero		attached to carbon atoms of the hetero ring [2, 2006.01]
	ring [2, 2006.01]	241/44	• • • • with hetero atoms or with carbon atoms
239/93	• • • Sulfur atoms [2, 2006.01]	271/77	having three bonds to hetero atoms with at
239/94	• • • Nitrogen atoms [2, 2006.01]		the most one bond to halogen, e.g. ester or
239/95	• • with hetero atoms directly attached in positions 2 and 4 [2, 2006.01]		nitrile radicals, directly attached to carbon
239/96	• • • • Two oxygen atoms [2, 2006.01]	241/46	atoms of the hetero ring [2, 2006.01] • • • Phenazines [2, 2006.01]
200,00	1 110 011/gen atomo [=) 2000102]	241/48	• • • • with hydrocarbon radicals, substituted by
241/00	Heterocyclic compounds containing 1,4-diazine or	241/40	nitrogen atoms, directly attached to the ring
	hydrogenated 1,4-diazine rings [2, 2006.01]		nitrogen atoms [2, 2006.01]
	<u>Note(s) [2]</u>	241/50	 with hetero atoms directly attached to ring
	Piperazines with only hydrogen atoms directly attached	0.44 /50	nitrogen atoms [2, 2006.01]
	to ring carbon atoms are classified in group	241/52	• • • Oxygen atoms [2, 2006.01]
	C07D 295/00.	241/54	• • • Nitrogen atoms [2, 2006.01]
241/02	C07D 295/00. • not condensed with other rings [2, 2006.01]		• • • Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered
241/02 241/04	 C07D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or 	241/54	 • Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring
	 C07D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring 	241/54 243/00	 • Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01]
	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring 	241/54	 • Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] • having the nitrogen atoms in positions 1 and
241/04	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring 	241/54 243/00 243/02	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01]
241/04 241/06	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] 	241/54 243/00	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and
241/04	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring 	241/54 243/00 243/02	 • • • Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] • having the nitrogen atoms in positions 1 and 2 [2, 2006.01] • having the nitrogen atoms in positions 1 and 3 [2, 2006.01] • having the nitrogen atoms in positions 1 and
241/04 241/06 241/08	 co7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] 	243/00 243/02 243/04 243/06	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01]
241/04 241/06	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01]
241/04 241/06 241/08 241/10	 co7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] 	243/00 243/02 243/04 243/06	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring
241/04 241/06 241/08	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or 	243/00 243/02 243/04 243/06 243/08 243/10	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01]
241/04 241/06 241/08 241/10	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly 	243/00 243/02 243/04 243/06 243/08	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring
241/04 241/06 241/08 241/10 241/12	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08 243/10	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-
241/04 241/06 241/08 241/10	 CO7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01]
241/04 241/06 241/08 241/10 241/12	 co7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile 	243/00 243/02 243/04 243/06 243/08 243/10 243/12	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl
241/04 241/06 241/08 241/10 241/12	 co7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14 243/16	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01]
241/04 241/06 241/08 241/10 241/12 241/14	 co7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen,
241/04 241/06 241/08 241/10 241/12 241/14	 co7D 295/00. not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14 243/16	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01]
241/04 241/06 241/08 241/10 241/12 241/14	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14 243/16 243/18	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01]
241/04 241/06 241/08 241/10 241/12 241/14 241/16 241/18	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14 243/16 243/18 243/20	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Oxygen atoms [2, 2006.01]
241/04 241/06 241/08 241/10 241/12 241/14 241/16 241/18	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms (nitro radicals C07D 241/16) [2, 2006.01] Benzenesulfonamido 	243/00 243/02 243/04 243/06 243/08 243/10 243/12 243/14 243/16 243/18 243/20 243/22	Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines [2, 2006.01] 2, substituted in position 5 by aryl radicals [2, 2006.01] 2, substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] 2, Nitrogen atoms [2, 2006.01] 2, Sulfur atoms [2, 2006.01] 2, Oxygen atoms [2, 2006.01]
241/04 241/06 241/08 241/10 241/12 241/14 241/16 241/18 241/20 241/22	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms (nitro radicals C07D 241/16) [2, 2006.01] Benzenesulfonamido pyrazines [2, 2006.01] 	241/54 243/00 243/02 243/04 243/06 243/10 243/12 243/14 243/16 243/18 243/20 243/22 243/24	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Oxygen atoms [2, 2006.01] Preparation from compounds already containing the
241/04 241/06 241/08 241/10 241/12 241/14 241/14 241/18 241/20	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms (nitro radicals C07D 241/16) [2, 2006.01] Benzenesulfonamido pyrazines [2, 2006.01] Carbon atoms having three bonds to hetero 	241/54 243/00 243/02 243/04 243/06 243/10 243/12 243/14 243/16 243/18 243/20 243/22 243/24	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Preparation from compounds already containing the benzodiazepine
241/04 241/06 241/08 241/10 241/12 241/14 241/16 241/18 241/20 241/22	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms (nitro radicals C07D 241/16) [2, 2006.01] Benzenesulfonamido pyrazines [2, 2006.01] Garbon atoms having three bonds to hetero atoms with at the most one bond to halogen, 	241/54 243/00 243/02 243/04 243/06 243/10 243/12 243/14 243/16 243/18 243/20 243/22 243/24	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Oxygen atoms [2, 2006.01] Preparation from compounds already containing the
241/04 241/06 241/08 241/10 241/12 241/14 241/16 241/18 241/20 241/22	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms (nitro radicals C07D 241/16) [2, 2006.01] Benzenesulfonamido pyrazines [2, 2006.01] Carbon atoms having three bonds to hetero 	241/54 243/00 243/02 243/04 243/06 243/10 243/12 243/14 243/16 243/18 243/20 243/22 243/24	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Preparation from compounds already containing the benzodiazepine
241/04 241/06 241/08 241/10 241/12 241/14 241/16 241/18 241/20 241/22 241/24	 not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] having one or two double bonds between ring members or between ring members and non-ring members [2, 2006.01] with oxygen atoms directly attached to ring carbon atoms [2, 2006.01] having three double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01] Halogen atoms; Nitro radicals [2, 2006.01] Oxygen or sulfur atoms [2, 2006.01] Nitrogen atoms (nitro radicals C07D 241/16) [2, 2006.01] Benzenesulfonamido pyrazines [2, 2006.01] Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01] 	241/54 243/00 243/02 243/04 243/06 243/10 243/12 243/14 243/16 243/18 243/20 243/22 243/24	 Nitrogen atoms [2, 2006.01] Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms [2, 2006.01] having the nitrogen atoms in positions 1 and 2 [2, 2006.01] having the nitrogen atoms in positions 1 and 3 [2, 2006.01] having the nitrogen atoms in positions 1 and 4 [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] 1,5-Benzodiazepines; Hydrogenated 1,5-benzodiazepines [2, 2006.01] 1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines [2, 2006.01] substituted in position 5 by aryl radicals [2, 2006.01] substituted in position 2 by nitrogen, oxygen or sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Sulfur atoms [2, 2006.01] Preparation from compounds already containing the benzodiazepine

243/28	• • • • • • Preparation including building-up the benzodiazepine skeleton from	251/06 • • • with hetero atoms directly attached to ring nitrogen atoms [2, 2006.01]	5
0.40.400	compounds containing no hetero rings [2, 2006.01]	251/08 • having one double bond between ring member between a ring member and a non-ring	ers or
243/30	• • • • • • Preparation including building-up	member [2, 2006.01]	
	the benzodiazepine skeleton from compounds already containing hetero rings [2, 2006.01]	 251/10 • having two double bonds between ring members and non-ring members [2, 2006.01] 	oers
243/32	• • • • • • containing a phthalimide or	251/12 • having three double bonds between ring men	abore
575_	hydrogenated phthalimide ring system [2, 2006.01]	or between ring members and non-ring members [2, 2006.01]	ibers
243/34	• • • • • • containing a quinazoline or	251/14 • • • with hydrogen or carbon atoms directly	
	hydrogenated quinazoline ring system [2, 2006.01]	attached to at least one ring carbon atom [2, 2006.01]	
243/36	• • • • • • containing an indole or	251/16 • • • to only one ring carbon atom [2, 2006.0	01]
	hydrogenated indole ring	251/18 • • • • with nitrogen atoms directly attached	
	system [2, 2006.01]	the two other ring carbon atoms, e.g	
243/38	• • • [b, e]- or [b, f]-condensed with six-membered	guanamines [2, 2006.01]	
	rings [2, 2006.01]	251/20 • • • • with no nitrogen atoms directly attac	ched
245/00	Heterocyclic compounds containing rings of more	to a ring carbon atom [2, 2006.01]	
245/00	than seven members having two nitrogen atoms as	251/22 • • • to two ring carbon atoms [2, 2006.01]	
	the only ring hetero atoms [2, 2006.01]	251/24 • • • to three ring carbon atoms [2, 2006.01]	
245/02	 not condensed with other rings [2, 2006.01] 	251/26 • • with only hetero atoms directly attached to	o ring
245/04	condensed with carbocyclic rings or ring	carbon atoms [2, 2006.01]	
	systems [2, 2006.01]	251/28 • • • Only halogen atoms, e.g. cyanuric	
245/06	 condensed with one six-membered 	chloride [2, 2006.01]	
	ring [2, 2006.01]	251/30 • • • • Only oxygen atoms [2, 2006.01]	
		251/32 • • • • • Cyanuric acid; Isocyanuric	
247/00	Heterocyclic compounds containing rings having two	acid [2, 2006.01]	
	nitrogen atoms as the only ring hetero atoms,	251/34 • • • • • Cyanuric or isocyanuric esters [2, 2006.01]	
	according to more than one of groups C07D 229/00- C07D 245/00 [2, 2006.01]		and to
247/02	 having the nitrogen atoms in positions 1 and 	251/36 • • • • having halogen atoms directly attach ring nitrogen atoms [2, 2006.01]	ieu to
247702	3 [2, 2006.01]	251/38 • • • • Sulfur atoms [2, 2006.01]	
	5 [-, -000101]	251/40 • • • Nitrogen atoms [2, 2006.01]	
249/00	Heterocyclic compounds containing five-membered	251/42 • • • • One nitrogen atom [2, 2006.01]	
	rings having three nitrogen atoms as the only ring	251/44 • • • • • with halogen atoms attached to the	ne two
240402	hetero atoms [2, 2006.01]	other ring carbon atoms [2, 2006.	
249/02	• not condensed with other rings [2, 2006.01]	251/46 • • • • • with oxygen or sulfur atoms attac	
249/04	 1,2,3-Triazoles; Hydrogenated 1,2,3- triazoles [2, 2006.01] 	to the two other ring carbon	
249/06	• • with aryl radicals directly attached to ring	atoms [2, 2006.01]	
243700	atoms [2, 2006.01]	251/48 • • • • Two nitrogen atoms [2, 2006.01]	
249/08	• • 1,2,4-Triazoles; Hydrogenated 1,2,4-	251/50 • • • • • with a halogen atom attached to t third ring carbon atom [2, 2006.0	
	triazoles [2, 2006.01]	251/52 • • • • • with an oxygen or sulfur atom att	
249/10	 • with hetero atoms or with carbon atoms having 	to the third ring carbon	acrica
	three bonds to hetero atoms with at the most	atom [2, 2006.01]	
	one bond to halogen, e.g. ester or nitrile	251/54 • • • • Three nitrogen atoms [2, 2006.01]	
	radicals, directly attached to ring carbon atoms [2, 2006.01]	251/56 • • • • • • Preparation of melamine [2, 2006	5.01]
249/12	• • • • Oxygen or sulfur atoms [2, 2006.01]	251/58 • • • • • from cyanamide, dicyanamide	
249/14	• • • • Nitrogen atoms [2, 2006.01]	calcium cyanamide [2, 2006.0	
249/16	condensed with carbocyclic rings or ring	251/60 • • • • • from urea or from carbon diox	ide
2 137 10	systems [2, 2006.01]	and ammonia [2, 2006.01]	
249/18	• • Benzotriazoles [2, 2006.01]	251/62 • • • • • Purification of melamine [2, 2006]	
249/20	• • • with aryl radicals directly attached in position	251/64 • • • • • Condensation products of melam	
	2 [2, 2006.01]	with aldehydes; Derivatives there (polycondensation products	10:
249/22	• • Naphthotriazoles [2, 2006.01]	C08G) [2, 2006.01]	
249/24	• • with stilbene radicals directly attached in	251/66 • • • • • Derivatives of melamine in which	n a
	position 2 [2, 2006.01]	hetero atom is directly attached to	
251/00	Heterocyclic compounds containing 1,3,5-triazine	nitrogen atom of	
_31,00	rings [2, 2006.01]	melamine [2, 2006.01]	
251/02	 not condensed with other rings [2, 2006.01] 	251/68 • • • • • Triazinylamino stilbenes [2, 2006]	5.01]
251/04	 having no double bonds between ring members or 	251/70 • • • • • Other substituted	
	between ring members and non-ring	melamines [2, 2006.01]	
	members [2, 2006.01]	• condensed with carbocyclic rings or ring systems [2, 2006.01]	
		5y5tcm5 [2, 2000,01]	

253/00	Heterocyclic compounds containing six-membered	261/12	• • • • Oxygen atoms [2, 2006.01]
	rings having three nitrogen atoms as the only ring	261/14	• • • • Nitrogen atoms [2, 2006.01]
	hetero atoms, not provided for by group C07D 251/00 [2, 2006.01]	261/16	• • • • Benzene-sulfonamido isoxazoles [2, 2006.01]
253/02	 not condensed with other rings [2, 2006.01] 	261/18	 Carbon atoms having three bonds to hetero
253/04	• • 1,2,3-Triazines [2, 2006.01]		atoms, with at the most one bond to
253/06	• • 1,2,4-Triazines [2, 2006.01]		halogen [2, 2006.01]
253/065	• • having three double bonds between ring members or between ring members and non-	261/20	 condensed with carbocyclic rings or ring systems [2, 2006.01]
253/07	ring members [5, 2006.01] • • • with hetero atoms, or with carbon atoms	263/00	Heterocyclic compounds containing 1,3-oxazole or
233/07	having three bonds to hetero atoms with at	203700	hydrogenated 1,3-oxazole rings [2, 2006.01]
	the most one bond to halogen, e.g. ester or	263/02	• not condensed with other rings [2, 2006.01]
	nitrile radicals, directly attached to ring	263/04	 having no double bonds between ring members or
	carbon atoms [5, 2006.01]		between ring members and non-ring
253/075	• • • • Two hetero atoms, in positions 3 and		members [2, 2006.01]
	5 [5, 2006.01]	263/06	• • • with hydrocarbon radicals, substituted by
253/08	condensed with carbocyclic rings or ring		oxygen atoms, attached to ring carbon
050/40	systems [2, 2006.01]	262/00	atoms [2, 2006.01]
253/10	 Condensed 1,2,4-triazines; Hydrogenated condensed 1,2,4-triazines [5, 2006.01] 	263/08	 having one double bond between ring members or between a ring member and a non-ring member [2, 2006.01]
255/00	Heterocyclic compounds containing rings having	263/10	• • with only hydrogen atoms, hydrocarbon or
233700	three nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D 249/00-	203/10	substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01]
	C07D 253/00 [2, 2006.01]	263/12	• • • • with radicals containing only hydrogen and
255/02	• not condensed with other rings [2, 2006.01]	203/12	carbon atoms [2, 2006.01]
255/04	 condensed with carbocyclic rings or ring systems [2, 2006.01] 	263/14	• • • • with radicals substituted by oxygen atoms [2, 2006.01]
		263/16	 with hetero atoms or with carbon atoms having
257/00	Heterocyclic compounds containing rings having	203/10	three bonds to hetero atoms with at the most
	four nitrogen atoms as the only ring hetero		one bond to halogen, e.g. ester or nitrile
	atoms [2, 2006.01]		radicals, directly attached to ring carbon
257/02	 not condensed with other rings [2, 2006.01] 		atoms [2, 2006.01]
257/04	 Five-membered rings [2, 2006.01] 	263/18	• • • • Oxygen atoms [2, 2006.01]
257/06	 • with nitrogen atoms directly attached to the ring 	263/20	• • • • attached in position 2 [2, 2006.01]
	carbon atom [2, 2006.01]	263/22	• • • • • with only hydrogen atoms or radicals
257/08	• • Six-membered rings [2, 2006.01]		containing only hydrogen and carbon
257/10	 condensed with carbocyclic rings or ring systems [2, 2006.01] 		atoms, directly attached to other ring carbon atoms [2, 2006.01]
257/12	 Six-membered rings having four nitrogen 	263/24	• • • • • with hydrocarbon radicals, substituted
250/00	atoms [2, 2006.01]		by oxygen atoms, attached to other ring carbon atoms [2, 2006.01]
259/00	Heterocyclic compounds containing rings having more than four nitrogen atoms as the only ring hetero atoms [2, 2006.01]	263/26	• • • • • • with hetero atoms or acyl radicals directly attached to the ring nitrogen
	necero atomo [2, 2000.01]		atom [2, 2006.01]
Uotorocy	clic compounds having nitrogen and oxygen as the	263/28	 • • Nitrogen atoms not forming part of a nitro radical [2, 2006.01]
	hetero atoms [2]	263/30	 having two or three double bonds between ring
<u> </u>	neter o atomo [=]		members or between ring members and non-ring
261/00	Heterocyclic compounds containing 1,2-oxazole or		members [2, 2006.01]
	hydrogenated 1,2-oxazole rings [2, 2006.01]	263/32	 with only hydrogen atoms, hydrocarbon or
261/02	 not condensed with other rings [2, 2006.01] 		substituted hydrocarbon radicals, directly
261/04	 having one double bond between ring members or 	0.60 /0.4	attached to ring carbon atoms [2, 2006.01]
	between a ring member and a non-ring member [2, 2006.01]	263/34	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most
261/06	 having two or more double bonds between ring 		one bond to halogen, e.g. ester or nitrile
	members or between ring members and non-ring		radicals, directly attached to ring carbon
	members [2, 2006.01]	262/2 <i>6</i>	atoms [2, 2006.01]
261/08	• • with only hydrogen atoms, hydrocarbon or	263/36	• • • • One oxygen atom [2, 2006.01]
	substituted hydrocarbon radicals, directly	263/38	• • • • attached in position 2 [2, 2006.01]
	attached to ring carbon atoms [2, 2006.01]	263/40	• • • • attached in position 4 [2, 2006.01]
261/10	• • • with hetero atoms or with carbon atoms having	263/42	• • • • attached in position 5 [2, 2006.01]
	three bonds to hetero atoms with at the most	263/44	• • • • Two oxygen atoms [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile	263/46	• • • Sulfur atoms [2, 2006.01]
	radicals, directly attached to ring carbon atoms [2, 2006.01]	263/48	• • • Nitrogen atoms not forming part of a nitro
	utoma [2, 2000.01]		radical [2, 2006.01]

263/50	• • • • Benzene-sulfonamido oxazoles [2, 2006.01]	265/38	• • • [b, e]-condensed with two six-membered rings [2, 2006.01]
263/52	condensed with carbocyclic rings or ring	267/00	Heterocyclic compounds containing rings of more
263/54	systems [2, 2006.01] • Benzoxazoles; Hydrogenated	207700	than six members having one nitrogen atom and one
203/34	benzoxazoles [2, 2006.01]		oxygen atom as the only ring hetero
263/56	• • • with only hydrogen atoms, hydrocarbon or	0.67.400	atoms [2, 2006.01]
	substituted hydrocarbon radicals, directly	267/02 267/04	 Seven-membered rings [2, 2006.01] having the hetero atoms in positions 1 and
26275	attached in position 2 [2, 2006.01]	20//04	2 [2, 2006.01]
263/57 263/58	• • • Aryl or substituted aryl radicals [5, 2006.01]• • with hetero atoms or with carbon atoms having	267/06	 having the hetero atoms in positions 1 and
203/30	three bonds to hetero atoms with at the most		3 [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile	267/08	• • having the hetero atoms in positions 1 and
	radicals, directly attached in position	267/10	4 [2, 2006.01]
262/60	2 [2, 2006.01]	267/10 267/12	not condensed with other rings [2, 2006.01]condensed with carbocyclic rings or ring
263/60	 Naphthoxazoles; Hydrogenated naphthoxazoles [2, 2006.01] 	20//12	systems [2, 2006.01]
263/62	having two or more ring systems containing	267/14	• • • condensed with one six-membered
	condensed 1,3-oxazole rings [2, 2006.01]		ring [2, 2006.01]
263/64	• • • linked in positions 2 and 2' by chains	267/16	• • • condensed with two six-membered
	containing six-membered aromatic rings or ring systems containing such rings [5, 2006.01]	267/18	rings [2, 2006.01] • • • • [b, e]-condensed [2, 2006.01]
	systems containing such rings [3, 2000.01]	267/10	• • • • • [b, f]-condensed [2, 2006.01]
265/00	Heterocyclic compounds containing six-membered	267/22	• Eight-membered rings [2, 2006.01]
	rings having one nitrogen atom and one oxygen atom		
	as the only ring hetero atoms [2, 2006.01]	269/00	Heterocyclic compounds containing rings having one
	Note(s) [2]		nitrogen atom and one oxygen atom as the only ring hetero atoms according to more than one of groups
	Morpholines having only hydrogen atoms attached to		C07D 261/00-C07D 267/00 [2, 2006.01]
	the ring carbon atoms are classified in group C07D 295/00.	269/02	 having the hetero atoms in positions 1 and
265/02	• 1,2-Oxazines; Hydrogenated 1,2-		3 [2, 2006.01]
	oxazines [2, 2006.01]	271/00	Heterocyclic compounds containing five-membered
265/04	• 1,3-Oxazines; Hydrogenated 1,3-		rings having two nitrogen atoms and one oxygen
0.0= /0.0	oxazines [2, 2006.01]	0=4 /00	atom as the only ring hetero atoms [2, 2006.01]
265/06	not condensed with other rings [2, 2006.01]having one double bond between ring members	271/02	 not condensed with other rings [2, 2006.01] 1,2,3-Oxadiazoles; Hydrogenated 1,2,3-
265/08	or between a ring member and a non-ring	271/04	oxadiazoles [2, 2006.01]
	member [2, 2006.01]	271/06	• • 1,2,4-Oxadiazoles; Hydrogenated 1,2,4-
265/10	• • • with oxygen atoms directly attached to ring		oxadiazoles [2, 2006.01]
265/12	carbon atoms [2, 2006.01] • condensed with carbocyclic rings or ring	271/07	 with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen
203/12	systems [2, 2006.01]		atoms not forming part of a nitro
265/14	• • • condensed with one six-membered		radical [5, 2006.01]
	ring [2, 2006.01]	271/08	• • 1,2,5-Oxadiazoles; Hydrogenated 1,2,5-
265/16	• • • with only hydrogen or carbon atoms directly attached in positions 2 and 4 [2, 2006.01]	271/10	oxadiazoles [2, 2006.01] • 1,3,4-Oxadiazoles; Hydrogenated 1,3,4-
265/18	• • • with hetero atoms directly attached in	2/1/10	oxadiazoles [2, 2006.01]
200710	position 2 [2, 2006.01]	271/107	• • • with two aryl or substituted aryl radicals
265/20	• • • with hetero atoms directly attached in		attached in positions 2 and 5 [5, 2006.01]
205 /22	position 4 [2, 2006.01]	271/113	 with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen
265/22 265/24	• • • • Oxygen atoms [2, 2006.01]• • • with hetero atoms directly attached in		attached to fing carbon atoms, the introgen
203/24	positions 2 and 4 [2, 2006.01]		radical [5, 2006.01]
265/26	• • • • Two oxygen atoms, e.g. isatoic	271/12	• condensed with carbocyclic rings or ring
205 (20	anhydride [2, 2006.01]		systems [2, 2006.01]
265/28	 1,4-Oxazines; Hydrogenated 1,4- oxazines [2, 2006.01] 	273/00	Heterocyclic compounds containing rings having
265/30	 not condensed with other rings [2, 2006.01] 		nitrogen and oxygen atoms as the only ring hetero
265/32	• • with oxygen atoms directly attached to ring		atoms, not provided for by groups C07D 261/00- C07D 271/00 [2, 2006.01]
	carbon atoms [2, 2006.01]	273/01	 having one nitrogen atom [3, 2006.01]
265/33	• • • • Two oxygen atoms, in positions 3 and	273/02	 having two nitrogen atoms and only one oxygen
265/34	5 [5, 2006.01] • • condensed with carbocyclic rings [2, 2006.01]		atom [2, 2006.01]
265/36	• • condensed with one six-membered	273/04	• Six-membered rings [2, 2006.01]
22.00	ring [2, 2006.01]	273/06 273/08	 • Seven-membered rings [2, 2006.01] • having two nitrogen atoms and more than one oxygen
		2/3/00	atom [3, 2006.01]

Heterocyclic con ring hetero aton	npounds having nitrogen and sulfur as the only ns [2]	277/44	• • • • • Acylated amino or imino radicals [2, 2006.01]
hydro	rocyclic compounds containing 1, 2-thiazole or ogenated 1,2-thiazole rings [2, 2006.01]	277/46	• • • • • by carboxylic acids, or sulfur or nitrogen analogues thereof [2, 2006.01]
	t condensed with other rings [2, 2006.01]	277/48	• • • • by radicals derived from carbonic acid,
	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals,	277/50	or sulfur or nitrogen analogues thereof, e.g. carbonylguanidines [2, 2006.01] • • • • • Nitrogen atoms bound to hetero
	directly attached to ring carbon atoms [5, 2006.01] ndensed with carbocyclic rings or ring	/	atoms [2, 2006.01]
sys	stems [2, 2006.01] with hetero atoms directly attached to the ring	277/52	• • • • • to sulfur atoms, e.g. sulfonamides [2, 2006.01]
	sulfur atom [2, 2006.01]	277/54	Nitrogen and either oxygen or sulfur atoms [2, 2006.01]
hydro	rocyclic compounds containing 1,3-thiazole or ogenated 1,3-thiazole rings [2, 2006.01]	277/56	 • • • Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen [2, 2006.01]
	t condensed with other rings [2, 2006.01]	277/58	• • • Nitro radicals [2, 2006.01]
	having no double bonds between ring members or between ring members and non-ring members [2, 2006.01]	277/587	• • • with aliphatic hydrocarbon radicals substituted by carbon atoms having three bonds to hetero
277/06 • •			atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms, said aliphatic radicals being substituted in the alpha-position to the ring by a
277/08 • •	having one double bond between ring members or		+-N +
	between a ring member and a non-ring member [2, 2006.01]		hetero atom, e.g. $\stackrel{5}{Z}$ with $m \ge 0$, Z being a singly or a doubly bound hetero atom [5, 2006.01]
277/10 • •	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01] 	277/593	• • • Z being doubly bound oxygen or doubly bound nitrogen, which nitrogen is part of a
277/12 • •	 with hetero atoms or with carbon atoms having 		possibly substituted oximino radical [5, 2006.01]
	three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon	277/60	 condensed with carbocyclic rings or ring systems [2, 2006.01]
	atoms [2, 2006.01]	277/62	• • Benzothiazoles [2, 2006.01]
277/14 • •	• • Oxygen atoms [2, 2006.01]	277/64	• • • with only hydrocarbon or substituted
277/16 • •	• • Sulfur atoms [2, 2006.01]		hydrocarbon radicals attached in position 2 [2, 2006.01]
277/18 • •	• • Nitrogen atoms [2, 2006.01]	277/66	• • • with aromatic rings or ring systems directly
	having two or three double bonds between ring members or between ring members and non-ring members [2, 2006.01]	277/68	attached in position 2 [2, 2006.01] • • • with hetero atoms or with carbon atoms having
	 with only hydrogen atoms, hydrocarbon or 		three bonds to hetero atoms with at the most
	substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01]		one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2 [2, 2006.01]
277/24 • •	 Radicals substituted by oxygen atoms [2, 2006.01] 	277/70	• • • • Sulfur atoms [2, 2006.01]
277/26 • •	 Radicals substituted by sulfur 	277/72	• • • • 2-Mercaptobenzothiazole [2, 2006.01]
277/28 • •	atoms [2, 2006.01] Radicals substituted by nitrogen	277/74	• • • • • Sulfur atoms substituted by carbon atoms [2, 2006.01]
277/30 • •	atoms [2, 2006.01] Radicals substituted by carbon atoms having	277/76	• • • • • Sulfur atoms attached to a second hetero atom [2, 2006.01]
	three bonds to hetero atoms with at the most	277/78	• • • • • to a second sulfur atom [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile	277/80	• • • • • to a nitrogen atom [2, 2006.01]
277/32 • •	radicals [2, 2006.01] • with hetero atoms or with carbon atoms having	277/82 277/84	• • • Nitrogen atoms [2, 2006.01]• Naphthothiazoles [2, 2006.01]
277732	three bonds to hetero atoms with at the most		•
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]	279/00	Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms [2, 2006.01]
277/34 • •	• • Oxygen atoms [2, 2006.01]		Note(s) [2]
277/36 • •	• • Sulfur atoms [2, 2006.01]		Thiomorpholines having only hydrogen atoms attached
277/38 • •	• Nitrogen atoms [2, 2006.01]		to the ring carbon atoms are classified in group
277/40 • •	 Unsubstituted amino or imino radicals [2, 2006.01] 		C07D 295/00.
277/42 • •	 Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals [2, 2006.01] 	279/02	• 1,2-Thiazines; Hydrogenated 1,2-thiazines [2, 2006.01]

279/04	• 1,3-Thiazines; Hydrogenated 1,3-thiazines [2, 2006.01]	285/06	• • • 1,2,3-Thiadiazoles; Hydrogenated 1,2,3-thiadiazoles [2, 5, 2006.01]
279/06	• not condensed with other rings [2, 2006.01]	285/08	• • • 1,2,4-Thiadiazoles; Hydrogenated 1,2,4-
279/08	 condensed with carbocyclic rings or ring systems [2, 2006.01] 	285/10	thiadiazoles [2, 5, 2006.01] • • • • 1,2,5-Thiadiazoles; Hydrogenated 1,2,5-
279/10	• 1,4-Thiazines; Hydrogenated 1,4-thiazines [2, 2006.01]	285/12	thiadiazoles [2, 5, 2006.01] • • • • 1,3,4-Thiadiazoles; Hydrogenated 1,3,4-
279/12	 not condensed with other rings [2, 2006.01] 	203/12	thiadiazoles [2, 5, 2006.01]
279/14	 condensed with carbocyclic rings or ring systems [2, 2006.01] 	285/125	• • • • • with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the
279/16	• • condensed with one six-membered ring [2, 2006.01]		nitrogen atoms not forming part of a nitro radical [5, 2006.01]
279/18	• • • [b, e]-condensed with two six-membered	285/13	• • • • • Oxygen atoms [5, 2006.01]
270 /20	rings [2, 2006.01] • • • with hydrogen atoms directly attached to the	285/135 285/14	• • • • • Nitrogen atoms [5, 2006.01]• • condensed with carbocyclic rings or ring
279/20	ring nitrogen atom [2, 2006.01]		systems [2, 5, 2006.01]
279/22	• • • with carbon atoms directly attached to the ring nitrogen atom [2, 2006.01]	285/15 285/16	Six-membered rings [5, 2006.01]Thiadiazines; Hydrogenated
279/24	• • • • with hydrocarbon radicals, substituted by	203/10	thiadiazines [2, 5, 2006.01]
	amino radicals, attached to the ring nitrogen atom [2, 2006.01]	285/18	• • 1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines [2, 5, 2006.01]
279/26	• • • • • without other substituents attached to	285/20	• • • condensed with carbocyclic rings or ring
279/28	the ring system [2, 2006.01] • • • • • with other substituents attached to the	285/22	systems [2, 5, 2006.01] • • • • condensed with one six-membered
	ring system [2, 2006.01]		ring [2, 5, 2006.01]
279/30	• • • • with acyl radicals attached to the ring nitrogen atom [2, 2006.01]	285/24	• • • • • • with oxygen atoms directly attached to the ring sulfur atom [2, 5, 2006.01]
279/32	• • • with hetero atoms directly attached to the ring nitrogen atom [2, 2006.01]	285/26	• • • • • • substituted in position 6 or 7 by sulfamoyl or substituted sulfamoyl
279/34	• • • with hetero atoms directly attached to the	205 /20	radicals [2, 5, 2006.01]
279/36	ring sulfur atom [2, 2006.01] • • [b, e]-condensed, at least one with a further condensed benzene ring [2, 2006.01]	285/28	• • • • • • • • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached in position
281/00	Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one	285/30	3 [2, 5, 2006.01] • • • • • • • with hydrocarbon radicals,
	sulfur atom as the only ring hetero atoms [2, 2006.01]		substituted by hetero atoms,
281/02 281/04	Seven-membered rings [2, 2006.01]having the hetero atoms in positions 1 and		attached in position 3 [2, 5, 2006.01]
2017 04	4 [2, 2006.01]	285/32	• • • • • • with hetero atoms or with carbon
281/06	• • • not condensed with other rings [2, 2006.01]		atoms having three bonds to hetero atoms with at the most
281/08	 condensed with carbocyclic rings or ring systems [2, 2006.01] 		one bond to halogen, e.g. ester or
281/10	• • • condensed with one six-membered ring [2, 2006.01]		nitrile radicals, directly attached in position 3 [2, 5, 2006.01]
281/12	• • • condensed with two six-membered	285/34	• • • 1,3,5-Thiadiazines; Hydrogenated 1,3,5-thiadiazines [2, 5, 2006.01]
281/14	rings [2, 2006.01] • • • • [b, e]-condensed [2, 2006.01]	285/36	• Seven-membered rings [2, 2006.01]
281/16	• • • • • [b, f]-condensed [2, 2006.01]	285/38	• Eight-membered rings [2, 2006.01]
281/18	• Eight-membered rings [2, 2006.01]		
283/00	Heterocyclic compounds containing rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms, according to more than one of groups	291/00	Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms [2, 2006.01]
283/02	C07D 275/00-C07D 281/00 [2, 2006.01] • having the hetero atoms in positions 1 and	291/02	 not condensed with other rings [2, 2006.01]
203/02	3 [2, 2006.01]	291/04	• • Five-membered rings [2, 2006.01]
285/00	Heterocyclic compounds containing rings having	291/06 291/08	 Six-membered rings [2, 2006.01] condensed with carbocyclic rings or ring
263/00	nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D 275/00-	291/00	systems [2, 2006.01]
	C07D 283/00 [2, 2006.01]	293/00	Heterocyclic compounds containing rings having
285/01	• Five-membered rings [5, 2006.01]		nitrogen and selenium or nitrogen and tellurium, with or without oxygen or sulfur atoms, as the ring
285/02	 Thiadiazoles; Hydrogenated thiadiazoles [2, 5, 2006.01] 		hetero atoms [2, 2006.01]
285/04	• • not condensed with other rings [2, 5, 2006.01]	293/02 293/04	not condensed with other rings [2, 2006.01]Five-membered rings [2, 2006.01]

293/06	 • • Selenazoles; Hydrogenated selenazoles [2, 2006.01] 	295/125 • • • with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon
293/08	• • Six-membered rings [2, 2006.01]	chain, which is not interrupted by carbocyclic
293/10	 condensed with carbocyclic rings or ring 	rings [5, 2006.01]
	systems [2, 2006.01]	295/13 • • • • to an acyclic saturated chain [5, 2006.01]
293/12 295/00	 Selenazoles; Hydrogenated selenazoles [2, 2006.01] Heterocyclic compounds containing polymethylene- 	 with the ring nitrogen atoms and the substituent nitrogen atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings [5, 2006.01]
2557 00	imine rings with at least five ring members, 3- azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms	• • substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to
	directly attached to the ring carbon	halogen, e.g. ester or nitrile radicals [2, 2006.01]
	atoms [2, 2006.01]	295/145 • • • with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms
295/02	 containing only hydrogen and carbon atoms in addition to the ring hetero elements [2, 2006.01] 	attached to the same carbon chain, which is not interrupted by carbocyclic rings [5, 2006.01]
295/023	Preparation; Separation; Stabilisation; Use of	295/15 • • • to an acyclic saturated chain [5, 2006.01]
	additives [5, 2006.01]	295/155 • • • with the ring nitrogen atoms and the carbon
295/027	• containing only one hetero ring [5, 2006.01]	atoms with three bonds to hetero atoms
295/03	• • with the ring nitrogen atoms directly attached to acyclic carbon atoms [5, 2006.01]	separated by carbocyclic rings or by carbon chains interrupted by carbocyclic
295/033	• • with the ring nitrogen atoms directly attached to	rings [5, 2006.01]
	carbocyclic rings [5, 2006.01]	295/16 • acylated on ring nitrogen atoms [2, 2006.01]
295/037 295/04	with quaternary ring nitrogen atoms [5, 2006.01]with substituted hydrocarbon radicals attached to ring	 by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof [2, 2006.01]
295/06	nitrogen atoms [2, 2006.01] • substituted by halogen atoms or nitro	295/182 • • • Radicals derived from carboxylic acids [5, 2006.01]
	radicals [2, 2006.01]	295/185 • • • from aliphatic carboxylic acids [5, 2006.01]
295/067	 • with the ring nitrogen atoms and the 	295/192 • • • from aromatic carboxylic acids [5, 2006.01]
	substituents attached to the same carbon chain,	295/194 • • • Radicals derived from thio- or thiono
	which is not interrupted by carbocyclic	carboxylic acids [5, 2006.01]
295/073	rings [5, 2006.01] • • with the ring nitrogen atoms and the	295/195 • • • Radicals derived from nitrogen analogues of carboxylic acids [5, 2006.01]
	substituents separated by carbocyclic rings or by carbon chains interrupted by carbocyclic	 by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof [2, 2006.01]
295/08	rings [5, 2006.01] • substituted by singly bound oxygen or sulfur	295/205 • • • Radicals derived from carbonic acid [5, 2006.01]
295/084	atoms [2, 2006.01] • • with the ring nitrogen atoms and the oxygen or	295/21 • • • Radicals derived from sulfur analogues of carbonic acid [5, 2006.01]
	sulfur atoms attached to the same carbon chain,	295/215 • • • Radicals derived from nitrogen analogues of
	which is not interrupted by carbocyclic rings [5, 2006.01]	carbonic acid [5, 2006.01] 295/22 • with hetero atoms directly attached to ring nitrogen
295/088	• • • to an acyclic saturated chain [5, 2006.01]	atoms [2, 2006.01]
295/092	• • • with aromatic radicals attached to the	295/24 • • Oxygen atoms [5, 2006.01]
	chain [5, 2006.01]	295/26 • • Sulfur atoms [5, 2006.01]
295/096	• • • with the ring nitrogen atoms and the oxygen or	295/28 • • Nitrogen atoms [5, 2006.01]
	sulfur atoms separated by carbocyclic rings or	295/30 • • • non-acylated [5, 2006.01]
	by carbon chains interrupted by carbocyclic rings [5, 2006.01]	295/32 • • • acylated with carboxylic or carbonic acids, or
295/10	 substituted by doubly bound oxygen or sulfur atoms [2, 2006.01] 	their nitrogen or sulfur analogues [5, 2006.01]
295/104	• • with the ring nitrogen atoms and the doubly	
2337 10 1	bound oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by	Heterocyclic compounds having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as ring hetero atoms [2]
	carbocyclic rings [5, 2006.01]	301/00 Preparation of oxiranes [2, 2006.01]
295/108	• • • to an acyclic saturated chain [5, 2006.01]	301/02 • Synthesis of the oxirane ring [2, 2006.01]
295/112	 • with the ring nitrogen atoms and the doubly 	301/03 • by oxidation of unsaturated compounds, or of
	bound oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains	mixtures of unsaturated and saturated compounds [3, 2006.01]
	interrupted by carbocyclic rings [5, 2006.01]	301/04 • • • with air or molecular oxygen [2, 3, 2006.01]
295/116	• • • with the doubly bound oxygen or sulfur	301/06 • • • • in the liquid phase [2, 3, 2006.01]
	atoms directly attached to a carbocyclic	301/08 • • • in the gaseous phase [2, 3, 2006.01]
295/12	ring [5, 2006.01] • • substituted by singly or doubly bound nitrogen	301/10 • • • • with catalysts containing silver or
2JJ/ 12	atoms (nitro radicals C07D 295/06) [2, 2006.01]	gold [2, 3, 2006.01]
		301/12 • • • with hydrogen peroxide or inorganic peroxides or peracids [2, 3, 2006.01]

301/14	• • • with organic peracids, or salts, anhydrides or esters thereof [2, 3, 2006.01]	303/30	• • • • Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals
301/16	• • • formed <u>in situ</u> , e.g. from carboxylic acids and hydrogen peroxide [2, 3, 2006.01]		are etherified with oxirane-containing hydroxy compounds [2, 2006.01]
301/18	• • • • from polybasic carboxylic acids [2, 3, 2006.01]	303/31	• • • in which the oxirane rings are condensed with a carbocyclic ring system having three
301/19	• • • with organic hydroperoxides [3, 2006.01]		or more relevant rings [3, 2006.01]
301/22	 by oxidation of saturated compounds with air or 	303/32	• • • by aldehydo- or ketonic radicals [2, 2006.01]
501722	molecular oxygen (of mixtures of unsaturated and saturated compounds C07D 301/04) [2, 2006.01]	303/34	 with hydrocarbon radicals, substituted by sulfur, selenium, or tellurium atoms [2, 2006.01]
301/24	 • by splitting-off Hal—Y from compounds containing the radical Hal—C—C— 	303/36	• • with hydrocarbon radicals, substituted by nitrogen atoms (nitro, nitroso radicals
204/20	OY [2, 2006.01]	202/20	C07D 303/08) [2, 2006.01]
301/26	• • Y being hydrogen [2, 2006.01]	303/38	 with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at
301/27	Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms (magraphalogylar compounds COO) 12, 2006 011		the most one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01]
201 /20	(macromolecular compounds C08) [3, 2006.01]	303/40	• • • by ester radicals [2, 2006.01]
301/28	• • by reaction with hydroxyl radicals [2, 3, 2006.01]	303/42	• • • • Acyclic compounds having a chain of seven
301/30	• • by reaction with carboxyl radicals [2, 3, 2006.01]	3037 42	or more carbon atoms, e.g. epoxidised
301/32	• Separation; Purification [2, 2006.01]		fats [2, 2006.01]
301/36	• Use of additives, e.g. for stabilisation [3, 2006.01]	303/44	• • • Esterified with oxirane-containing hydroxy
303/00	Compounds containing three-membered rings		compounds [2, 2006.01]
505700	having one oxygen atom as the only ring hetero	303/46	• • • by amide or nitrile radicals [2, 2006.01]
	atom [2, 2006.01]	303/48	 with hetero atoms or with carbon atoms having
303/02	 Compounds containing oxirane rings [2, 2006.01] 		three bonds to hetero atoms with at the most one
303/04	containing only hydrogen and carbon atoms in		bond to halogen, directly attached to ring carbon
	addition to the ring oxygen atoms [2, 2006.01]		atoms, e.g. ester or nitrile radicals [3, 2006.01]
303/06	• • • in which the oxirane rings are condensed with a	305/00	Hetavaguelic compounds containing four membered
	carbocyclic ring system having three or more	303/00	Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero
	relevant rings [2, 2006.01]		atoms [2, 2006.01]
303/08	 with hydrocarbon radicals, substituted by halogen 	305/02	 not condensed with other rings [2, 2006.01]
	atoms, nitro radicals or nitroso	305/04	 having no double bonds between ring members or
202/10	radicals [2, 2006.01]	3037 04	between ring members and non-ring
303/10	• • in which the oxirane rings are condensed with a		members [2, 2006.01]
	carbocyclic ring system having three or more	305/06	• • • with only hydrogen atoms, hydrocarbon or
303/12	relevant rings [2, 2006.01] • with hydrocarbon radicals, substituted by singly or		substituted hydrocarbon radicals, directly
303/12	doubly bound oxygen atoms [2, 2006.01]		attached to the ring atoms [2, 2006.01]
303/14	• • • by free hydroxyl radicals [2, 2006.01]	305/08	• • with hetero atoms or with carbon atoms having
303/16	• • • by esterified hydroxyl radicals [2, 2006.01]		three bonds to hetero atoms with at the most
303/17	• • • containing oxirane rings condensed with		one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring
505/1/	carbocyclic ring systems having three or		atoms [2, 2006.01]
	more relevant rings [3, 2006.01]	305/10	 having one or more double bonds between ring
303/18	• • • by etherified hydroxyl radicals [2, 2006.01]	505/10	members or between ring members and non-ring
303/20	• • • Ethers with hydroxy compounds containing		members [2, 2006.01]
	no oxirane rings [2, 2006.01]	305/12	• • • Beta-lactones [2, 2006.01]
202/22	• • • • with monohydroxy	005/44	
303/22		305/14	 condensed with carbocyclic rings or ring
	compounds [2, 2006.01]	305/14	 condensed with carbocyclic rings or ring systems [2, 2006.01]
303/22	compounds [2, 2006.01] • • • • • • Oxiranylmethyl ethers of compounds		systems [2, 2006.01]
	compounds [2, 2006.01] • • • • • • Oxiranylmethyl ethers of compounds having one hydroxy group bound to a	305/14	systems [2, 2006.01] Heterocyclic compounds containing five-membered
	compounds [2, 2006.01] • • • • • • • • Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the		systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero
	compounds [2, 2006.01] • • • • • • • Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being	307/00	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01]
	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e.	307/00 307/02	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] • not condensed with other rings [2, 2006.01]
	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl	307/00	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or
303/23	compounds [2, 2006.01] • • • • • • Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01]	307/00 307/02	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] • not condensed with other rings [2, 2006.01]
	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01]	307/00 307/02	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] • not condensed with other rings [2, 2006.01] • having no double bonds between ring members or between ring members and non-ring
303/23	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01] With polyhydroxy compounds [2, 2006.01]	307/00 307/02 307/04	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms,
303/23	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01]	307/00 307/02 307/04	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon
303/23	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01] With polyhydroxy compounds [2, 2006.01] having one or more free hydroxyl radicals [2, 2006.01]	307/00 307/02 307/04 307/06	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01]
303/23 303/24 303/26	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01] With polyhydroxy compounds [2, 2006.01]	307/00 307/02 307/04 307/06	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] Preparation of tetrahydrofuran [2, 2006.01]
303/23 303/24 303/26	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01] With polyhydroxy compounds [2, 2006.01] having one or more free hydroxyl radicals [2, 2006.01] having all hydroxyl radicals etherified with oxirane containing compounds [3, 2006.01]	307/00 307/02 307/04 307/06	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] Preparation of tetrahydrofuran [2, 2006.01] with substituted hydrocarbon radicals attached
303/23 303/24 303/26	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01] With polyhydroxy compounds [2, 2006.01] Above the having one or more free hydroxyl radicals [2, 2006.01] Above the having all hydroxyl radicals etherified with oxirane containing compounds [3, 2006.01] Ethers with hydroxy compounds containing	307/00 307/02 307/04 307/06 307/08 307/10	 systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] Preparation of tetrahydrofuran [2, 2006.01] with substituted hydrocarbon radicals attached to ring carbon atoms [2, 2006.01]
303/24 303/26 303/27	compounds [2, 2006.01] Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH2-CH-CH2-O-Aryl [5, 2006.01] With polyhydroxy compounds [2, 2006.01] having one or more free hydroxyl radicals [2, 2006.01] having all hydroxyl radicals etherified with oxirane containing compounds [3, 2006.01]	307/00 307/02 307/04 307/06	systems [2, 2006.01] Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom [2, 2006.01] not condensed with other rings [2, 2006.01] having no double bonds between ring members or between ring members and non-ring members [2, 2006.01] with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms [2, 2006.01] Preparation of tetrahydrofuran [2, 2006.01] with substituted hydrocarbon radicals attached

307/14	 • • • Radicals substituted by nitrogen atoms not forming part of a nitro radical [2, 2006.01] 	307/60 • • • • Two oxygen atoms, e.g. succinic anhydride [2, 2006.01]
307/16	• • • • Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most	307/62 • • • • Three oxygen atoms, e.g. ascorbic acid [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile	307/64 • • • • Sulfur atoms [2, 2006.01]
	radicals [2, 2006.01]	307/66 • • • • Nitrogen atoms [2, 2006.01]
307/18	 • with hetero atoms or with carbon atoms having 	307/68 • • • • Carbon atoms having three bonds to hetero
	three bonds to hetero atoms with at the most	atoms with at the most one bond to
	one bond to halogen, e.g. ester or nitrile	halogen [2, 2006.01]
	radicals, directly attached to ring carbon	307/70 • • • • Nitro radicals [2, 2006.01]
205/20	atoms [2, 2006.01]	307/71 • • • • attached in position 5 [2, 2006.01]
307/20	• • • • Oxygen atoms [2, 2006.01]	307/72 • • • • with hydrocarbon radicals, substituted
307/22	• • • Nitrogen atoms not forming part of a nitro radical [2, 2006.01]	by nitrogen-containing radicals, attached in position 2 [2, 2006.01]
307/24	• • • Carbon atoms having three bonds to hetero	307/73 • • • • • by amino or imino, or substituted
	atoms with at the most one bond to halogen [2, 2006.01]	amino or imino radicals [2, 2006.01]
307/26	 having one double bond between ring members or 	307/74 • • • • • by hydrazino or hydrazono or such
	between a ring member and a non-ring member [2, 2006.01]	substituted radicals [2, 2006.01]
307/28	• • with only hydrogen atoms, hydrocarbon or	307/75 • • • • • having carboxylic acyl radicals
	substituted hydrocarbon radicals, directly	or their thio or nitrogen analogues directly attached to the
	attached to ring carbon atoms [2, 2006.01]	hydrazino or hydrazono radical,
307/30	 • with hetero atoms or with carbon atoms having 	e.g. hydrazides [2, 2006.01]
	three bonds to hetero atoms with at the most	307/76 • • • • • • having carbonic acyl radicals or
	one bond to halogen, e.g. ester or nitrile	their thio or nitrogen analogues
	radicals, directly attached to ring carbon atoms [2, 2006.01]	directly attached to the hydrazino
307/32	• • • • Oxygen atoms [2, 2006.01]	or hydrazono radical, e.g.
307/33	• • • • in position 2, the oxygen atom being in its	semicarbazides [2, 3, 2006.01]
307733	keto or unsubstituted enol	• ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01]
307/34	form [5, 2006.01] • • having two or three double bonds between ring	307/78 • • Benzo [b] furans; Hydrogenated benzo [b]
307/34	members or between ring members and non-ring	furans [2, 2006.01]
	members [2, 2006.01]	307/79 • • • with only hydrogen atoms, hydrocarbon or
307/36	• • with only hydrogen atoms or radicals	substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero
	containing only hydrogen and carbon atoms,	ring [2, 2006.01]
	directly attached to ring carbon	307/80 • • • Radicals substituted by oxygen
	atoms [2, 2006.01]	atoms [2, 2006.01]
307/38	• • with substituted hydrocarbon radicals attached	307/81 • • • • Radicals substituted by nitrogen atoms not
207/40	to ring carbon atoms [2, 2006.01]	forming part of a nitro radical [2, 2006.01]
307/40	• • • Radicals substituted by oxygen atoms [2, 2006.01]	307/82 • • • with hetero atoms or with carbon atoms having
307/42	• • • • • Singly bound oxygen atoms [2, 2006.01]	three bonds to hetero atoms with at the most
307/44	• • • • • Furfuryl alcohol [2, 2006.01]	one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of
307/45	• • • • • Oxygen atoms acylated by a	the hetero ring [2, 2006.01]
307743	cyclopropane containing carboxylic	307/83 • • • • Oxygen atoms [2, 2006.01]
	acyl radical, e.g.	307/84 • • • Carbon atoms having three bonds to hetero
	chrysanthemumates [3, 2006.01]	atoms with at the most one bond to
307/46	 • • • • Doubly bound oxygen atoms, or two 	halogen [2, 2006.01]
	oxygen atoms singly bound to the same	307/85 • • • • attached in position 2 [2, 2006.01]
207/40	carbon atom [2, 2006.01]	307/86 • • • with an oxygen atom directly attached in
307/48	• • • • • Furfural [2, 2006.01]	position 7 [2, 2006.01]
307/50	• • • • • • • Preparation from natural products [2, 2006.01]	307/87 • • Benzo [c] furans; Hydrogenated benzo [c] furans [2, 2006.01]
307/52	 • • • Radicals substituted by nitrogen atoms not forming part of a nitro radical [2, 2006.01] 	307/88 • • • with one oxygen atom directly attached in position 1 or 3 [2, 2006.01]
307/54	Radicals substituted by carbon atoms having	307/885 • • • • 3,3-Diphenylphthalides [5, 2006.01]
	three bonds to hetero atoms with at the most	307/89 • • • with two oxygen atoms directly attached in
	one bond to halogen, e.g. ester or nitrile	positions 1 and 3 [2, 2006.01]
	radicals [2, 2006.01]	307/90 • • • with an oxygen atom in position 1 and a
307/56	• • • with hetero atoms or with carbon atoms having	nitrogen atom in position 3, or vice
	three bonds to hetero atoms with at the most	<u>versa</u> [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon	307/91 • • Dibenzofurans; Hydrogenated
	atoms [2, 2006.01]	dibenzofurans [2, 2006.01]
307/58	• • • One oxygen atom, e.g.	307/92 • • Naphthofurans; Hydrogenated
	butenolide [2, 2006.01]	naphthofurans [2, 2006.01]
	- · · -	

307/93	 condensed with a ring other than six- membered [2, 2006.01] 		b] pyrans, not hydrogenated in the clic ring [2, 2006.01]
307/935	 Not further condensed cyclopenta [b] furans or hydrogenated cyclopenta [b] 		oxygen or sulfur atoms directly attached in ion 2 [2, 2006.01]
307/937	furans [3, 2006.01] • • • with hydrocarbon or substituted hydrocarbon		t hydrogenated in the hetero
	radicals directly attached in position 2, e.g.		unsubstituted [2, 2006.01]
307/94	prostacyclins [5, 2006.01]spiro-condensed with carbocyclic rings or ring	311/12 • • • •	substituted in position 3 and unsubstituted in position 7 [2, 2006.01]
	systems, e.g. griseofulvins [2, 2006.01]	311/14 • • • •	substituted in position 6 and unsubstituted in position 7 [2, 2006.01]
309/00	Heterocyclic compounds containing six-membered		substituted in position 7 [2, 2006.01]
	rings having one oxygen atom as the only ring hetero atom, not condensed with other rings [2, 2006.01]		substituted otherwise than in position 3 or
309/02	 having no double bonds between ring members or 	211/20 hv	7 [2, 2006.01]
	between ring members and non-ring		drogenated in the hetero ring [2, 2006.01]
	members [2, 2006.01]		oxygen or sulfur atoms directly attached in ion 4 [2, 2006.01]
309/04	with only hydrogen atoms, hydrocarbon or	-	th carbon atoms having three bonds to
	substituted hydrocarbon radicals, directly attached to ring carbon atoms [2, 2006.01]	he	tero atoms with at the most one bond to
309/06	• • Radicals substituted by oxygen atoms [2, 2006.01]	att	logen, e.g. ester or nitrile radicals, directly ached in position 2 [2, 2006.01]
309/08	 with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one 		th aromatic rings attached in position 2 or [2, 2006.01]
	bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]	311/28 • • • •	with aromatic rings attached in position 2 only [2, 2006.01]
309/10	• • • Oxygen atoms [2, 2006.01]	311/30 • • • •	 not hydrogenated in the hetero ring, e.g. flavones [2, 2006.01]
309/12	 only hydrogen atoms and one oxygen atom directly attached to ring carbon atoms, e.g. 	311/32 • • • •	• 2, 3-Dihydro derivatives, e.g.
309/14	tetrahydropyranyl ethers [2, 2006.01] • • Nitrogen atoms not forming part of a nitro	311/34 • • • •	flavanones [2, 2006.01] with aromatic rings attached in position 3
	radical [2, 2006.01]		only [2, 2006.01]
309/16	 having one double bond between ring members or between a ring member and a non-ring 	311/36 • • • •	e.g. isoflavones [2, 2006.01]
309/18	member [2, 2006.01]containing only hydrogen and carbon atoms in	311/38 • • • •	• 2, 3-Dihydro derivatives, e.g. isoflavanones [2, 2006.01]
309/20	addition to the ring hetero atom [2, 2006.01]with hydrogen atoms and substituted hydrocarbon	311/40 • • • •	Separation, e.g. from natural material; Purification [2, 2006.01]
303720	radicals directly attached to ring carbon atoms [2, 2006.01]		oxygen or sulfur atoms in positions 2 and 2006.01]
309/22	Radicals substituted by oxygen atoms [2, 2006.01]	311/44 • • • wi	th one hydrogen atom in position [2, 2006.01]
309/24	• • • • Methylol radicals [2, 2006.01]		unsubstituted in the carbocyclic
309/26	• • • Carboxaldehyde radicals [2, 2006.01]		ring [2, 2006.01]
309/28	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one hand to helegon, a greater or pitrile and isolar.	311/48 • • • • •	 with two such benzopyran radicals linked together by a carbon chain [2, 2006.01]
	bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms [2, 2006.01]	311/50 • • • •	• with elements other than carbon and
309/30	Oxygen atoms, e.g. delta-lactones [2, 2006.01] having two double bonds between ring members or	311/52 • • • •	hydrogen in position 3 [2, 2006.01]Enol-esters or -ethers, or sulfur
309/32	 having two double bonds between ring members or between ring members and non-ring 		analogues thereof [2, 2006.01]
309/34	members [2, 2006.01]having three or more double bonds between ring		substituted in the carbocyclic ring [2, 2006.01]
	members or between ring members and non-ring members [2, 2006.01]		thout hydrogen atoms in position [2, 2006.01]
309/36	with oxygen atoms directly attached to ring carbon atoms [2, 2006.01]	311/58 • • • other	than with oxygen or sulfur atoms in ion 2 or 4 [2, 2006.01]
309/38	• • one oxygen atom in position 2 or 4, e.g. pyrones [2, 2006.01]	311/60 • • • wi	th aryl radicals attached in position [2, 2006.01]
309/40	 • • Oxygen atoms attached in positions 3 and 4, e.g. maltol [2, 2006.01] 	-	with oxygen atoms directly attached in position 3, e.g.
311/00	Heterocyclic compounds containing six-membered	211/64 '	anthocyanidins [2, 2006.01]
211/00	rings having one oxygen atom as the only hetero	po	th oxygen atoms directly attached in sition 8 [2, 2006.01]
211/02	atom, condensed with other rings [2, 2006.01]		th carbon atoms having three bonds to
311/02	 ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 	ha	tero atoms with at the most one bond to logen, e.g. ester or nitrile radicals, directly ached in position 2 [2, 2006.01]

311/68	• • • with nitrogen atoms directly attached in position 4 [2, 2006.01]	317/08 • having the hetero atoms in positions 1 and 3 [2, 2006.01]
311/70	• • • • with two hydrocarbon radicals attached in	317/10 • not condensed with other rings [2, 2006.01]
311770	position 2 and elements other than carbon	317/12 • • • with only hydrogen atoms or radicals
	and hydrogen in position 6 [2, 2006.01]	containing only hydrogen and carbon atoms,
311/72	• • • • 3, 4-Dihydro derivatives having in	directly attached to ring carbon
	position 2 at least one methyl radical and	atoms [2, 2006.01]
	in position 6 one oxygen atom, e.g.	317/14 • • • with substituted hydrocarbon radicals attached
	tocopherols [2, 2006.01]	to ring carbon atoms [2, 2006.01]
311/74	 Benzo [b] pyrans, hydrogenated in the carbocyclic 	317/16 • • • • Radicals substituted by halogen atoms or
	ring [2, 2006.01]	nitro radicals [2, 2006.01]
311/76	• • Benzo [c] pyrans [2, 2006.01]	317/18 • • • Radicals substituted by singly bound oxygen
311/78	 Ring systems having three or more relevant 	or sulfur atoms [2, 2006.01]
	rings [2, 2006.01]	317/20 • • • • Free hydroxyl or mercaptan [2, 2006.01]
311/80	 • • Dibenzopyrans; Hydrogenated 	317/22 • • • • etherified [2, 2006.01]
	dibenzopyrans [2, 2006.01]	317/24 • • • • esterified [2, 2006.01]
311/82	• • • Xanthenes [2, 2006.01]	317/26 • • • • Radicals substituted by doubly bound
311/84	 • • • with hetero atoms or with carbon atoms 	oxygen or sulfur atoms or by two such atoms
	having three bonds to hetero atoms with	singly bound to the same carbon
	at the most one bond to halogen, e.g. ester	atom [2, 2006.01]
	or nitrile radicals, directly attached in	317/28 • • • Radicals substituted by nitrogen atoms (nitro
	position 9 [2, 2006.01]	radicals C07D 317/16) [2, 2006.01]
311/86	• • • • • • Oxygen atoms, e.g.	317/30 • • • Radicals substituted by carbon atoms having
244400	xanthones [2, 2006.01]	three bonds to hetero atoms with at the most
311/88	• • • • • Nitrogen atoms [2, 2006.01]	one bond to halogen, e.g. ester or nitrile
311/90	• • • • with hydrocarbon radicals, substituted by	radicals [2, 2006.01]
	amino radicals, directly attached in	317/32 • • • with hetero atoms or with carbon atoms having
211/02	position 9 [2, 2006.01]	three bonds to hetero atoms with at the most
311/92	• • Naphthopyrans; Hydrogenated naphthopyrans [2, 2006.01]	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon
311/94	condensed with rings other than six-membered or	atoms [2, 2006.01]
J11/J 4		atomo [=, =000to1]
	with ring systems containing such	317/34 • • • • Oxygen atoms [2, 2006.01]
	with ring systems containing such rings [2, 5, 2006.01]	317/34 • • • • Oxygen atoms [2, 2006.01]
311/96	rings [2, 5, 2006.01]	317/36 • • • • Alkylene carbonates; Substituted alkylene
311/96	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01]
311/96	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01]
311/96 313/00	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • • Vinylene carbonate; Substituted vinylene
	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01]
313/00	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01]
313/00 313/02	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01]
313/00 313/02 313/04	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or
313/00 313/02	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01]
313/00 313/02 313/04 313/06	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • • condensed with one six-membered
313/00 313/02 313/04	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on
313/00 313/02 313/04 313/06 313/08	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01]
313/00 313/02 313/04 313/06	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • with only hydrogen atoms, hydrocarbon
313/00 313/02 313/04 313/06 313/08 313/10	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals,
313/00 313/02 313/04 313/06 313/08 313/10 313/12	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • • [b, e]-condensed [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 • • • • Radicals substituted by halogen atoms
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • [b, e]-condensed [2, 2006.01] • [b, f]-condensed [2, 2006.01] • inot condensed with other rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 • • • • Radicals substituted by halogen atoms or nitro radicals [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • old place of the six of the spiral six of the spira	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 • • • • Radicals substituted by halogen atoms or nitro radicals [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • [b, e]-condensed [2, 2006.01] • [b, f]-condensed [2, 2006.01] • inot condensed with other rings [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 • • • • Radicals substituted by halogen atoms or nitro radicals [2, 2006.01] 317/54 • • • • Radicals substituted by oxygen atoms [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • old place of the six of the spiral six of the spira	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 • • • • • Radicals substituted by halogen atoms or nitro radicals [2, 2006.01] 317/54 • • • • • Radicals substituted by oxygen atoms [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18 313/20	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • [b, e]-condensed [2, 2006.01] • [b, f]-condensed [2, 2006.01] • not condensed with other rings [2, 2006.01] • not condensed with carbocyclic rings or ring systems [2, 2006.01]	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/54 • • • • Radicals substituted by halogen atoms or nitro radicals [2, 2006.01] 317/56 • • • • • Radicals substituted by oxygen atoms [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18 313/20	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • old place of the place of t	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Lithylene carbonate [2, 2006.01] 317/40 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/44 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/44 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/44 Lithylene carbonate; Substituted vinylene carbonates; Substituted on the hetero ring; S
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18 313/20	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • old place of the place of t	317/36 • • • • • Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 • • • • • Ethylene carbonate [2, 2006.01] 317/40 • • • Vinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 • • • Halogen atoms or nitro radicals [2, 2006.01] 317/44 • • ortho- or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 • • condensed with one six-membered ring [2, 2006.01] 317/48 • • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 • • • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/54 • • • • Radicals substituted by halogen atoms or nitro radicals [2, 2006.01] 317/56 • • • • • Radicals substituted by oxygen atoms [2, 2006.01]
313/00 313/02 313/04 313/06 313/10 313/12 313/14 313/16 313/18 313/20 315/00	rings [2, 5, 2006.01] spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] Seven-membered rings [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] condensed with one six-membered ring [2, 2006.01] condensed with two six-membered rings [2, 2006.01] condensed with two six-membered rings [2, 2006.01] not condensed with other rings [2, 2006.01] not condensed with other rings [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D 303/00-C07D 313/00 [2, 2006.01]	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Lithylene carbonate [2, 2006.01] 317/40 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/44 Lithylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/44 Lithylene or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 Lithylene or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/48 Lithylene or peri-condensed with carbocyclic rings or ring [2, 2006.01] 317/48 Lithylene or peri-condensed with carbocyclic rings or ring [2, 2006.01] 317/48 Lithylene or peri-condensed with carbocyclic rings or ring [2, 2006.01] 317/50 Lithylene or peri-condensed with carbocyclic rings or ring [2, 2006.01] 317/50 Lithylene or peri-condensed with carbocyclic rings or ring [2, 2006.01] 317/50 Lithylene or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/50 Lithylene or peri-condensed with carbocyclic rings or phydrogenated methylenedioxybenzenes or hydrogenated methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 Lithylene or peri-condensed with carbocyclic rings or rings o
313/00 313/02 313/04 313/06 313/10 313/10 313/12 313/14 313/16 313/18 313/20	rings [2, 5, 2006.01] spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] Seven-membered rings [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] condensed with one six-membered ring [2, 2006.01] condensed with two six-membered rings [2, 2006.01] condensed with two six-membered rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] not condensed with other rings [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D 303/00-C07D 313/00 [2, 2006.01]	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Let You Ethylene carbonate [2, 2006.01] 317/40 Let Yinylene carbonate; Substituted vinylene carbonates [2, 2006.01] 317/42 Let You Halogen atoms or nitro radicals [2, 2006.01] 317/44 Let You or peri-condensed with carbocyclic rings or ring systems [2, 2006.01] 317/46 Let You condensed with one six-membered ring [2, 2006.01] 317/48 Let You Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 Let You With only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/54 Let You With only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/56 Let You With only hydrogen atoms, hydrocarbon or nitro radicals [2, 2006.01] 317/56 Let You With only hydrogen atoms, hydrocarbon or substituted by allogen atoms or nitro radicals [2, 2006.01] 317/56 Let You With only hydrogen atoms, hydrocarbon or substituted by oxygen atoms [2, 2006.01] 317/56 Let You With only hydrogen atoms yellogen atoms (2, 2006.01) 317/56 Let You With only hydrogen atoms, hydrocarbon or substituted by oxygen atoms [2, 2006.01] 317/56 Let You With only hydrogen atoms yellogen atoms (2, 2006.01)
313/00 313/02 313/04 313/06 313/10 313/12 313/14 313/16 313/18 313/20 315/00	rings [2, 5, 2006.01] spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] seven-membered rings [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] condensed with one six-membered ring [2, 2006.01] condensed with two six-membered rings [2, 2006.01] condensed with two six-membered rings [2, 2006.01] condensed with other rings [2, 2006.01] not condensed rings [2, 2006.01] not condensed with other rings [2, 2006.01] condensed with carbocyclic rings or ring systems [2, 2006.01] heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D 303/00-C07D 313/00 [2, 2006.01] Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Let Palogen atoms or nitro radicals [2, 2006.01] 317/40 Halogen atoms or nitro radicals [2, 2006.01] 317/44 Halogen atoms or nitro radicals [2, 2006.01] 317/45 Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 Methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 Radicals substituted by halogen atoms or nitro radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/54 Radicals substituted by oxygen atoms [2, 2006.01] 317/56 Radicals substituted by sulfur atoms [2, 2006.01] 317/58 Radicals substituted by nitrogen atoms (nitro radicals CO7D 317/52) [2, 2006.01] 317/60 Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen,
313/00 313/02 313/04 313/06 313/10 313/12 313/14 313/16 313/18 313/20 315/00	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • one condensed with other rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D 303/00-C07D 313/00 [2, 2006.01] Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms [2, 2006.01]	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Physical Substituted vinylene carbonates [2, 2006.01] 317/40 Physical Substituted vinylene carbonates [2, 2006.01] 317/42 Physical Substituted vinylene carbonates [2, 2006.01] 317/44 Physical Substituted vinylene carbonates [2, 2006.01] 317/45 Physical Substituted with carbocyclic rings or ring systems [2, 2006.01] 317/46 Physical Substituted on the heteroring [2, 2006.01] 317/50 Physical Substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 Physical Substituted by halogen atoms or nitro radicals [2, 2006.01] 317/54 Physical Substituted by oxygen atoms [2, 2006.01] 317/56 Physical Substituted by sulfur atoms [2, 2006.01] 317/58 Physical Substituted by nitrogen atoms (nitro radicals CO7D 317/52) [2, 2006.01] 317/60 Physical Substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile
313/00 313/02 313/04 313/06 313/10 313/12 313/14 313/16 313/18 313/20 315/00	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • old place in the place in t	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Let Palogen atoms or nitro radicals [2, 2006.01] 317/40 Halogen atoms or nitro radicals [2, 2006.01] 317/44 Halogen atoms or nitro radicals [2, 2006.01] 317/45 Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 Methylenedioxybenzenes, unsubstituted on the hetero ring [2, 2006.01] 317/50 Radicals substituted by halogen atoms or nitro radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/54 Radicals substituted by oxygen atoms [2, 2006.01] 317/56 Radicals substituted by sulfur atoms [2, 2006.01] 317/58 Radicals substituted by nitrogen atoms (nitro radicals CO7D 317/52) [2, 2006.01] 317/60 Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen,
313/00 313/02 313/04 313/06 313/10 313/12 313/14 313/16 313/18 313/20 315/00	rings [2, 5, 2006.01] • spiro-condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom [2, 2006.01] • Seven-membered rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] • condensed with one six-membered ring [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • condensed with two six-membered rings [2, 2006.01] • one condensed with other rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • not condensed with other rings [2, 2006.01] • condensed with carbocyclic rings or ring systems [2, 2006.01] Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D 303/00-C07D 313/00 [2, 2006.01] Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms [2, 2006.01]	317/36 Alkylene carbonates; Substituted alkylene carbonates [2, 2006.01] 317/38 Physical Substituted vinylene carbonates [2, 2006.01] 317/40 Physical Substituted vinylene carbonates [2, 2006.01] 317/42 Physical Substituted vinylene carbonates [2, 2006.01] 317/44 Physical Substituted vinylene carbonates [2, 2006.01] 317/45 Physical Substituted with carbocyclic rings or ring systems [2, 2006.01] 317/46 Physical Substituted on the heteroring [2, 2006.01] 317/50 Physical Substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring [2, 2006.01] 317/52 Physical Substituted by halogen atoms or nitro radicals [2, 2006.01] 317/54 Physical Substituted by oxygen atoms [2, 2006.01] 317/56 Physical Substituted by sulfur atoms [2, 2006.01] 317/58 Physical Substituted by nitrogen atoms (nitro radicals CO7D 317/52) [2, 2006.01] 317/60 Physical Substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile

• • condensed with carbocyclic rings or ring

systems **[2, 2006.01]**

317/06

317/62	• • • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester	327/00	Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms [2, 2006.01]
	or nitrile radicals, directly attached to	327/02	 one oxygen atom and one sulfur atom [2, 2006.01]
	atoms of the carbocyclic ring [2, 2006.01]	327/04	 Five-membered rings [2, 2006.01]
317/64	• • • • • • Oxygen atoms [2, 2006.01]	327/06	 Six-membered rings [2, 2006.01]
317/66	• • • • • Nitrogen atoms not forming part of a nitro radical [2, 2006.01]	327/08	• • • [b, e]-condensed with two six-membered carbocyclic rings [2, 2006.01]
317/68	• • • • • Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen [2, 2006.01]	327/10	 two oxygen atoms and one sulfur atom, e.g. cyclic sulfates [2, 2006.01]
317/70	 condensed with ring systems containing two or more relevant rings [2, 2006.01] 	329/00	Heterocyclic compounds containing rings having oxygen and selenium or oxygen and tellurium atoms
317/72	 spiro-condensed with carbocyclic rings [2, 2006.01] 		as the only ring hetero atoms [2, 2006.01]
319/00	Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms [2, 2006.01]		clic compounds having sulfur, selenium, or tellurium the only ring hetero atoms [2]
319/02	• 1,2-Dioxanes; Hydrogenated 1,2-dioxanes [2, 2006.01]	331/00	Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only
319/04	• 1,3-Dioxanes; Hydrogenated 1,3-	DD4 /00	ring hetero atom [2, 2006.01]
	dioxanes [2, 2006.01]	331/02	• Three-membered rings [2, 2006.01]
319/06	 not condensed with other rings [2, 2006.01] 	331/04	• Four-membered rings [2, 2006.01]
319/08	 condensed with carbocyclic rings or ring systems [2, 2006.01] 	333/00	Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero
319/10	• 1,4-Dioxanes; Hydrogenated 1,4-		atom [2, 2006.01]
	dioxanes [2, 2006.01]	333/02	 not condensed with other rings [2, 2006.01]
319/12	• • not condensed with other rings [2, 2006.01]	333/04	 not substituted on the ring sulfur
319/14	 condensed with carbocyclic rings or ring systems [2, 2006.01] 	333/06	atom [2, 2006.01] • • with only hydrogen atoms, hydrocarbon or
319/16	• • • condensed with one six-membered ring [2, 2006.01]	555700	substituted hydrocarbon radicals, directly attached to the ring carbon atoms [2, 2006.01]
319/18	• • • Ethylenedioxybenzenes, not substituted on the hetero ring [2, 2006.01]	333/08	 • • • Hydrogen atoms or radicals containing only hydrogen and carbon atoms [2, 2006.01]
319/20	• • • with substituents attached to the hetero ring [2, 2006.01]	333/10	• • • • Thiophene [2, 2006.01]
319/22	condensed with one naphthalene or hydrogenated naphthalene ring	333/12	• • • • Radicals substituted by halogen atoms or nitro or nitroso radicals [2, 2006.01]
319/24	system [2, 2006.01]	333/14	 • • • Radicals substituted by singly bound hetero atoms other than halogen [2, 2006.01]
319/24	• • • [b, e]-condensed with two six-membered rings [2, 2006.01]	333/16 333/18	• • • • by oxygen atoms [2, 2006.01]
224 /00	The same of the sa	333/20	• • • • by sulfur atoms [2, 2006.01]• • • by nitrogen atoms (nitro, nitroso radicals
321/00	Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not		C07D 333/12) [2, 2006.01]
	provided for by groups C07D 317/00- C07D 319/00 [2, 2006.01]	333/22	• • • Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than
321/02	• Seven-membered rings [2, 2006.01]		halogen singly bound to the same carbon
321/04	 not condensed with other rings [2, 2006.01] 		atom [2, 2006.01]
321/06	• • • 1, 3-Dioxepines; Hydrogenated 1,3-dioxepines [2, 2006.01]	333/24	• • • • Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most
321/08	• • 1, 4-Dioxepines; Hydrogenated 1,4-dioxepines [2, 2006.01]		one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01]
321/10	 condensed with carbocyclic rings or ring systems [2, 2006.01] 	333/26	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most
321/12	• Eight-membered rings [2, 2006.01]		one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon
323/00	Heterocyclic compounds containing more than two		atoms [2, 2006.01]
	oxygen atoms as the only ring hetero	333/28	• • • Halogen atoms [2, 2006.01]
	atoms [2, 2006.01]	333/30	• • • Hetero atoms other than
323/02	• Five-membered rings [2, 2006.01]	000 (00	halogen [2, 2006.01]
323/04	• Six-membered rings [2, 2006.01]	333/32	• • • • • Oxygen atoms [2, 2006.01]
323/06	• • Trioxane [2, 2006.01]	333/34	• • • • Sulfur atoms [2, 2006.01]
DDE /00	Transition of the second of th	333/36	• • • • Nitrogen atoms [2, 2006.01]
325/00	Heterocyclic compounds containing rings having oxygen as the only ring hetero atom according to	333/38	• • • Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen,
	more than one of groups C07D 303/00- C07D 323/00 [2, 2006.01]	333/40	e.g. ester or nitrile radicals [2, 2006.01]• • • • Thiophene-2-carboxylic acid [2, 2006.01]

333/42	• • • with nitro or nitroso radicals directly attached to ring carbon atoms [2, 2006.01]	337/00	Heterocyclic compounds containing rings of more than six members having one sulfur atom as the only
333/44	• • • • • attached in position 5 [2, 2006.01]		ring hetero atom [2, 2006.01]
333/46	• • substituted on the ring sulfur atom [2, 2006.01]	337/02	• Seven-membered rings [2, 2006.01]
333/48	• • • by oxygen atoms [2, 2006.01]	337/04	 not condensed with other rings [2, 2006.01]
333/50	 condensed with carbocyclic rings or ring 	337/06	 condensed with carbocyclic rings or ring
333/52	systems [2, 2006.01]Benzo [b] thiophenes; Hydrogenated benzo [b]	337/08	systems [2, 2006.01] • condensed with one six-membered
333/54	thiophenes [2, 2006.01] • • with only hydrogen atoms, hydrocarbon or	337/10	ring [2, 2006.01] • • condensed with two six-membered
	substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero	337/12	rings [2, 2006.01] • • • [b, e]-condensed [2, 2006.01]
	ring [2, 2006.01]	337/14	• • • • [b, f]-condensed [2, 2006.01]
333/56	• • • Radicals substituted by oxygen atoms [2, 2006.01]	337/14	• Eight-membered rings [2, 2006.01]
333/58	Radicals substituted by nitrogen	339/00	Heterocyclic compounds containing rings having two
333/60	atoms [2, 2006.01] • • • • Radicals substituted by carbon atoms having		sulfur atoms as the only ring hetero atoms [2, 2006.01]
	three bonds to hetero atoms with at the most	339/02	 Five-membered rings [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile radicals [2, 2006.01]	339/04	 having the hetero atoms in positions 1 and 2, e.g. lipoic acid [2, 2006.01]
333/62	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most	339/06	 having the hetero atoms in positions 1 and 3, e.g. cyclic dithiocarbonates [2, 2006.01]
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of	339/08	• Six-membered rings [2, 2006.01]
222/64	the hetero ring [2, 2006.01]	341/00	Heterocyclic compounds containing rings having
333/64	• • • • Oxygen atoms [2, 2006.01]		three or more sulfur atoms as the only ring hetero atoms [2, 2006.01]
333/66	• • • • Nitrogen atoms not forming part of a nitro radical [2, 2006.01]	242/00	
333/68	 Carbon atoms having three bonds to hetero 	343/00	Heterocyclic compounds containing rings having sulfur and selenium or sulfur and tellurium atoms as
	atoms with at the most one bond to halogen [2, 2006.01]		the only ring hetero atoms [2, 2006.01]
333/70	• • • • attached in position 2 [2, 2006.01]	345/00	Heterocyclic compounds containing rings having
333/72	 Benzo [c] thiophenes; Hydrogenated benzo [c] thiophenes [2, 2006.01] 	343/00	selenium or tellurium atoms as the only ring hetero atoms [2, 2006.01]
333/74	• • Naphthothiophenes [2, 2006.01]		atoms [2, 2000.01]
333/76	• • Dibenzothiophenes [2, 2006.01]		
333/78	 condensed with rings other than six-membered or 		
	with ring systems containing such rings [2, 5, 2006.01]	347/00	Heterocyclic compounds containing rings having halogen atoms as ring hetero atoms [2, 2006.01]
333/80	• • • Seven-membered rings [2, 2006.01]		
335/00	Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom [2, 2006.01]	Heterocy rings [2]	clic compounds containing two or more hetero
335/02	• not condensed with other rings [2, 2006.01]		<u>Note(s) [2]</u>
	condensed with carbocyclic rings or ring		Groups C07D 401/00-C07D 421/00 <u>cover</u> compounds
335/04	systems [2, 2006.01]		containing two or more relevant hetero rings at least two of which are covered by different main groups of
335/06	 Benzothiopyrans; Hydrogenated benzothiopyrans [2, 2006.01] 		groups C07D 203/00-C07D 347/00, neither condensed among themselves nor condensed with a common
335/08	 Naphthothiopyrans; Hydrogenated naphthothiopyrans [2, 2006.01] 		carbocyclic ring or ring system.
335/10	 Dibenzothiopyrans; Hydrogenated dibenzothiopyrans [2, 2006.01] 	401/00	Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring
335/12	• • • Thioxanthenes [2, 2006.01]		hetero atoms, at least one ring being a six-membered
335/14	• • • with hetero atoms or with carbon atoms		ring with only one nitrogen atom [2, 2006.01]
333/14	having three bonds to hetero atoms with at	401/02	 containing two hetero rings [2, 2006.01]
	the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position	401/04	• • directly linked by a ring-member-to-ring- member
225/40	9 [2, 2006.01]	401/06	 bond [2, 2006.01] linked by a carbon chain containing only aliphatic
335/16	• • • • • • Oxygen atoms, e.g. thioxanthones [2, 2006.01]	401/08	carbon atoms [2, 2006.01]linked by a carbon chain containing alicyclic
335/18 335/20	• • • • Nitrogen atoms [2, 2006.01]• • • with hydrocarbon radicals, substituted by	401/10	rings [2, 2006.01] • linked by a carbon chain containing aromatic
200, 20	amino radicals, directly attached in position 9 [2, 2006.01]		rings [2, 2006.01]
	o (=) =000/01/	401/12	 linked by a chain containing hetero atoms as chain links [2, 2006.01]

401/14	• containing three or more hetero rings [2, 2006.01]	411/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and
403/00	Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring		sulfur atoms as the only ring hetero atoms [2, 2006.01]
	hetero atoms, not provided for by group	411/02	 containing two hetero rings [2, 2006.01]
	C07D 401/00 [2, 2006.01]	411/02	directly linked by a ring-member-to-ring- member
403/02	 containing two hetero rings [2, 2006.01] 	411/04	bond [2, 2006.01]
403/04	directly linked by a ring-member-to-ring- member	411/06	 linked by a carbon chain containing only aliphatic
	bond [2, 2006.01]	1117 00	carbon atoms [2, 2006.01]
403/06	 linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] 	411/08	 linked by a carbon chain containing alicyclic rings [2, 2006.01]
403/08	 linked by a carbon chain containing alicyclic rings [2, 2006.01] 	411/10	 linked by a carbon chain containing aromatic rings [2, 2006.01]
403/10	 linked by a carbon chain containing aromatic rings [2, 2006.01] 	411/12	• • linked by a chain containing hetero atoms as chain links [2, 2006.01]
403/12	 linked by a chain containing hetero atoms as chain links [2, 2006.01] 	411/14	• containing three or more hetero rings [2, 2006.01]
403/14	• containing three or more hetero rings [2, 2006.01]	413/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and
405/00	Heterocyclic compounds containing both one or		oxygen atoms as the only ring hetero
	more hetero rings having oxygen atoms as the only		atoms [2, 2006.01]
	ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom [2, 2006.01]	413/02	 containing two hetero rings [2, 2006.01]
40E /02		413/04	directly linked by a ring-member-to-ring- member
405/02	containing two hetero rings [2, 2006.01]directly linked by a ring-member-to-ring- member		bond [2, 2006.01]
405/04	bond [2, 2006.01]	413/06	 linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01]
405/06	linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] Containing the carbon chain containing only aliphatic carbon atoms [2, 2006.01]	413/08	 linked by a carbon chain containing alicyclic rings [2, 2006.01]
405/08	• • linked by a carbon chain containing alicyclic rings [2, 2006.01]	413/10	 linked by a carbon chain containing aromatic rings [2, 2006.01]
405/10	• • linked by a carbon chain containing aromatic rings [2, 2006.01]	413/12	 linked by a chain containing hetero atoms as chain links [2, 2006.01]
405/12	 linked by a chain containing hetero atoms as chain links [2, 2006.01] 	413/14	• containing three or more hetero rings [2, 2006.01]
405 /4 4		44 = 400	TT
405/14	• containing three or more hetero rings [2, 2006.01]	415/00	Heterocyclic compounds containing the thiamine skeleton [2, 2006.01]
405/14 407/00	Heterocyclic compounds containing two or more	415/00	Heterocyclic compounds containing the thiamine skeleton [2, 2006.01]
	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by	415/00 417/00	skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and
407/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01]		skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not
407/00 407/02	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] • containing two hetero rings [2, 2006.01]	417/00	skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01]
407/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] • containing two hetero rings [2, 2006.01] • directly linked by a ring-member-to-ring- member	417/00 417/02	skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] • containing two hetero rings [2, 2006.01]
407/00 407/02	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] • containing two hetero rings [2, 2006.01] • directly linked by a ring-member-to-ring- member bond [2, 2006.01] • linked by a carbon chain containing only aliphatic	417/00 417/02 417/04	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01]
407/00 407/02 407/04	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] • containing two hetero rings [2, 2006.01] • directly linked by a ring-member-to-ring- member bond [2, 2006.01]	417/00 417/02	skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] • containing two hetero rings [2, 2006.01] • directly linked by a ring-member-to-ring- member
407/00 407/02 407/04 407/06	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] 	417/00 417/02 417/04	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic
407/00 407/02 407/04 407/06 407/08 407/10	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] 	417/00 417/02 417/04 417/06	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic
407/00 407/02 407/04 407/06 407/08 407/10 407/12	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] 	417/00 417/02 417/04 417/06 417/08	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain
407/00 407/02 407/04 407/06 407/08 407/10	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain 	417/00 417/02 417/04 417/06 417/08 417/10 417/12	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] 	417/00 417/02 417/04 417/06 417/08 417/10	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] 	417/00 417/02 417/04 417/06 417/08 417/10 417/12	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen,
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14 409/00	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms [2, 2006.01] 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14 419/00	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] cinked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14 409/00 409/02 409/04	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14 419/00	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] containing three or more hetero rings [2, 2006.01] tecontaining three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14 409/00 409/02 409/04 409/06	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14 419/00 419/02 419/04	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] containing three or more hetero rings [2, 2006.01] containing three or more hetero rings [2, 2006.01] teterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14 409/00 409/02 409/04	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] teontaining two hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14 419/00	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14 409/00 409/02 409/04 409/06	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14 419/00 419/02 419/04	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01]
407/00 407/02 407/04 407/06 407/08 407/10 407/12 407/14 409/00 409/06 409/06 409/08	 Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D 405/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic 	417/00 417/02 417/04 417/06 417/08 417/10 417/12 417/14 419/00 419/06	 skeleton [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D 415/00 [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain links [2, 2006.01] containing three or more hetero rings [2, 2006.01] Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms [2, 2006.01] containing two hetero rings [2, 2006.01] directly linked by a ring-member-to-ring- member bond [2, 2006.01] linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] linked by a carbon chain containing alicyclic

C07D			
419/12	 • linked by a chain containing hetero atoms as chain links [2, 2006.01] 	451/10	• • • acylated by aliphatic or araliphatic carboxylic acids, e.g. atropine,
419/14	• containing three or more hetero rings [2, 2006.01]	451/12	scopolamine [2, 2006.01] • • • • acylated by aromatic or heteroaromatic
421/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms [2, 2006.01]	451/14	carboxylic acids, e.g. cocaine [2, 2006.01] • containing 9-azabicyclo [3.3.1] nonane ring systems, e.g. granatane, 2-aza-adamantane; Cyclic acetals thereof [2, 2006.01]
421/02	 containing two hetero rings [2, 2006.01] 	.==	
421/04	directly linked by a ring-member-to-ring- member bond [2, 2006.01] Color Col	453/00	Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids [2, 2006.01]
421/06	linked by a carbon chain containing only aliphatic carbon atoms [2, 2006.01] Containing the containing only aliphatic carbon atoms [2, 2006.01]	453/02	 containing not further condensed quinuclidine ring systems [2, 2006.01]
421/08	linked by a carbon chain containing alicyclic rings [2, 2006.01] linked by a carbon chain containing augustic	453/04	having a quinolyl-4, a substituted quinolyl-4 or a alkylenedioxy-quinolyl-4 radical linked through
421/10 421/12	 linked by a carbon chain containing aromatic rings [2, 2006.01] linked by a chain containing hetero atoms as chain 		only one carbon atom, attached in position 2, e.g. quinine [2, 2006.01]
	links [2, 2006.01]	453/06	• containing iso-quinuclidine ring systems [2, 2006.01]
421/14	containing three or more hetero rings [2, 2006.01]	455/00	Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine;
Heterocy systems [clic compounds containing condensed hetero ring 2]	455 /00	Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine [2, 2006.01]
	Note(s) [2, 3, 5]	455/02	 containing not further condensed quinolizine ring systems [2, 2006.01]
	Groups C07D 451/00-C07D 517/00 <u>cover</u> compounds containing one system of two or more relevant hetero rings condensed among themselves or condensed with a common	455/03	• containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g.
	carbocyclic ring system, with or without other non-condensed hetero rings. 2. For the purpose of classification in groups C07D 451/00-C07D 519/00, the degree of hydrogenation of the ring system is not taken into	455/04 455/06	 berberine [3, 2006.01] containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine [2, 3, 2006.01] containing benzo [a] quinolizine ring
	consideration.		systems [2, 3, 2006.01]
	3. For the purpose of classification in groups C07D 451/00-C07D 463/00, C07D 473/00-C07D 477/00, C07D 489/00, C07D 499/00-C07D 507/00, the wording of the groups has to be understood, in the absence of an indication to the contrary, as including ring systems further condensed with carbocyclic rings or ring systems,	455/08 457/00	 having an isoquinolyl-1, a substituted isoquinolyl-1 or an alkylenedioxyisoquinolyl-1 radical linked through only one carbon atom, attached in position 2, e.g. emetine [2, 3, 2006.01] Heterocyclic compounds containing indolo [4, 3-f, g]
	but excluding ring systems further condensed with other hetero rings, either directly or through a common carbocyclic ring system, e.g. sparteine is classified in group C07D 471/22, not in group C07D 455/02. In groups C07D 471/00, C07D 487/00, C07D 491/00-C07D 498/00 or C07D 513/00-C07D 517/00, the subdivision is based on the number of relevant hetero rings.	137700	quinoline ring systems, e.g. derivatives of ergoline, of the formula: HN / 2, e.g. lysergic acid (compounds of the cyclic peptide type derived from ergotamane C07D 519/02) [2, 2006.01] Note(s) [5] The numbering may be different according to the RING
451/00	Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.02,4] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof [2, 2006.01]	457/02	INDEX and given by the formula: • with hydrocarbon or substituted hydrocarbon
451/02	• containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.02,4] nonane ring systems, e.g. tropane; Cyclic acetals thereof [2, 2006.01]	457/04	 radicals, attached in position 8 [2, 2006.01] with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position
451/04	• with hetero atoms directly attached in position 3 of the 8-azabicyclo [3.2.1] octane or in position 7 of the 3-oxa-9-azatricyclo [3.3.1.02,4] nonane ring system [2, 2006.01]	457/06 457/08	 8 [2, 2006.01] Lysergic acid amides [2, 2006.01] in which the amide nitrogen is a member of a heterocyclic ring [2, 2006.01]
451/06 451/08	• • • Oxygen atoms [2, 2006.01]• • • Diarylmethoxy radicals [2, 2006.01]	457/10	 with hetero atoms directly attached in position 8 [2, 2006.01]

457/12	• • Nitrogen atoms [2, 2006.01]	471/12	• in which the condensed system contains three hetero
457/14	• containing indolo [4, 3-f, g] quinoline ring systems	454 /4 4	rings [2, 2006.01]
	condensed with carbocyclic rings or ring	471/14	• • Ortho-condensed systems [2, 2006.01]
	systems [3, 2006.01]	471/16	• • Peri-condensed systems [2, 2006.01]
459/00	Heterocyclic compounds containing benz [g] indolo	471/18	• • Bridged systems [2, 2006.01]
	[2, 3-a] quinolizine ring systems, e.g. yohimbine; 16,	471/20	• • Spiro-condensed systems [2, 2006.01]
	18-lactones thereof, e.g. reserpic acid	471/22	• in which the condensed systems contains four or
	lactone [2, 2006.01]		more hetero rings [2, 2006.01]
	"	473/00	Heterocyclic compounds containing purine ring
461/00	Heterocyclic compounds containing indolo [3, 2, 1-d,	475700	systems [2, 2006.01]
	e] pyrido [3, 2, 1-i, j] [1, 5]-naphthyridine ring systems, e.g. vincamine (dimeric indolo alkaloids	473/02	 with oxygen, sulfur, or nitrogen atoms directly
	C07D 519/04) [3, 2006.01]		attached in positions 2 and 6 [2, 2006.01]
	307 D 31370 1) [3, 2000101]	473/04	• • two oxygen atoms [2, 2006.01]
463/00	Heterocyclic compounds containing 1-azabicyclo	473/06	• • with radicals containing only hydrogen and
	[4.2.0] octane ring systems, i.e. compounds		carbon atoms, attached in position 1 or
	r_r_ ⁵ _r		3 [2, 2006.01]
	$\begin{bmatrix} 7 & 6 & 4 \\ 8 & 1 & 3 \end{bmatrix}$	473/08	• • • with methyl radicals in positions 1 and 3,
	containing a ring system of the formula:		e.g. theophylline [2, 2006.01]
	, e.g. carbacephalosporins; Such ring systems being	473/10	• • • with methyl radicals in positions 3 and 7,
	further condensed, e.g. 2,3-condensed with an		e.g. theobromine [2, 2006.01]
	oxygen-, nitrogen- or sulfur-containing hetero	473/12	• • • with methyl radicals in positions 1, 3, and 7,
	ring [5, 2006.01]	450 /4 4	e.g. caffeine [2, 2006.01]
463/02	Preparation (by microbiological processes C12D 17(10) IC 2006 011	473/14	• • • with two methyl radicals in positions 1 and 3 and two methyl radicals in positions 7, 8, or
460 (0.4	C12P 17/18) [6, 2006.01]		9 [2, 2006.01]
463/04	 by forming the ring or condensed ring systems [6, 2006.01] 	473/16	• • two nitrogen atoms [2, 2006.01]
463/06	• from compounds already containing the ring or	473/18	one oxygen and one nitrogen atom, e.g.
403700	condensed ring systems, e.g. by dehydrogenation		guanine [2, 2006.01]
	of the ring, by introduction, elimination or	473/20	 two sulfur atoms [2, 2006.01]
	modification of substituents [6, 2006.01]	473/22	 one oxygen and one sulfur atom [2, 2006.01]
463/08	 • • Modification of a carboxyl group directly 	473/24	• • one nitrogen and one sulfur atom [2, 2006.01]
	attached in position 2, e.g.	473/26	 with an oxygen, sulfur, or nitrogen atom directly
400 / 40	esterification [6, 2006.01]		attached in position 2 or 6, but not in
463/10	 with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an 		both [2, 2006.01]
	ester or nitrile radical, directly attached in position	473/28	• • Oxygen atom [2, 2006.01]
	2 [6, 2006.01]	473/30	• • attached in position 6, e.g. hypoxanthine [2, 2006.01]
463/12	 with hydrogen atoms, hydrocarbon or substituted 	473/32	• • Nitrogen atom [2, 2006.01]
	hydrocarbon radicals attached in position	473/32	_
	7 [6, 2006.01]	473/34	 • attached in position 6, e.g. adenine [2, 2006.01]• Sulfur atom [2, 2006.01]
463/14	 with hetero atoms directly attached in position 	473/38	 • attached in position 6 [2, 2006.01]
	7 [6, 2006.01]	473/30	with halogen atoms or perhalogeno-alkyl radicals
463/16	• • • Nitrogen atoms [6, 2006.01]	4/3/40	directly attached in position 2 or 6 [2, 2006.01]
463/18	• • • further acylated by radicals derived from		ancelly attached in position 2 of 5 (2, 2000)01,
	carboxylic acids or by nitrogen or sulfur analogues thereof [6, 2006.01]	475/00	Heterocyclic compounds containing pteridine ring
463/20	• • • • • with the acylating radicals further		systems [2, 2006.01]
403/20	substituted by hetero atoms or by carbon	475/02	with an oxygen atom directly attached in position
	atoms having three bonds to hetero atoms		4 [2, 2006.01]
	with at the most one bond to	475/04	• • with a nitrogen atom directly attached in position
	halogen [6, 2006.01]	475 /06	2 [2, 2006.01]
463/22	• • • • • further substituted by nitrogen	475/06	 with a nitrogen atom directly attached in position 4 [2, 2006.01]
	atoms [6, 2006.01]	475/08	 with a nitrogen atom directly attached in position
471/00	Heterocyclic compounds containing nitrogen atoms	., 5, 55	2 [2, 2006.01]
171700	as the only ring hetero atoms in the condensed	475/10	 with an aromatic or hetero-aromatic ring directly
	system, at least one ring being a six-membered ring		attached in position 2 [2, 2006.01]
	with one nitrogen atom, not provided for by groups	475/12	 containing pteridine ring systems condensed with
.=	C07D 451/00-C07D 463/00 [2, 5, 2006.01]		carbocyclic rings or ring systems [3, 2006.01]
471/02	• in which the condensed system contains two hetero	475/14	 Benz [g] pteridines, e.g. riboflavin [3, 2006.01]
471 /04	rings [2, 2006.01]		
471/04	• • Ortho-condensed systems [2, 5, 2006.01]		
471/06 471/08	• Peri-condensed systems [2, 2006.01]		
471/08 471/10	 Bridged systems [2, 2006.01] Spiro-condensed systems [2, 2006.01]		
4/1/10	• • Spiro-condensed systems [2, 2006.01]		

477/00 Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds

containing a ring system of the formula: e.g. carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [5, 2006.01]

- 477/02 · Preparation (by microbiological processes C12P 17/18) [6, 2006.01]
- 477/04 by forming the ring or condensed ring systems [6, 2006.01]
- from compounds already containing the ring or 477/06 condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01]
- Modification of a carboxyl group directly 477/08 attached in position 2, e.g. esterification **[6, 2006.01]**
- 477/10 with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 **[6, 2006.01]**
- 477/12 with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached in position 6 **[6, 2006.01]**
- 477/14 with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached in position 3 [6, 2006.01]
- 477/16 with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 3 [6, 2006.01]
- 477/18 • Oxygen atoms [6, 2006.01]
- 477/20 Sulfur atoms [6, 2006.01]
- 477/22 Nitrogen atoms [6, 2006.01]
- 477/24 with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 6 [6, 2006.01]
- 477/26 with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 4 [6, 2006.01]

487/00 Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D 451/00-C07D 477/00 [2, 5, 2006.01]

- 487/02 · in which the condensed system contains two hetero rings [2, 2006.01]
- 487/04 Ortho-condensed systems [2, 5, 2006.01]
- • Peri-condensed systems [2, 2006.01] 487/06
- 487/08 Bridged systems [2, 2006.01]
- Spiro-condensed systems [2, 2006.01] 487/10
- 487/12 in which the condensed system contains three hetero rings [2, 2006.01]
- 487/14 Ortho-condensed systems [2, 2006.01]
- 487/16 Peri-condensed systems [2, 2006.01]
- 487/18 Bridged systems [2, 2006.01]
- 487/20 Spiro-condensed systems [2, 2006.01]
- 487/22 · in which the condensed system contains four or more hetero rings [2, 2006.01]

489/00 Heterocyclic compounds containing 4aH-8, 9 c-Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of

the formula: Note(s) [5]

The numbering may be different according to the RING

INDEX and given by the formula:

- with oxygen atoms attached in positions 3 and 6, e.g. 489/02 morphine, morphinone [2, 2006.01]
- 489/04 Salts; Organic complexes [2, 2006.01]
- with a hetero atom directly attached in position 489/06 14 [2, 2006.01]
- 489/08 • Oxygen atom [2, 2006.01]
- containing 4aH-8, 9 c-Iminoethano- phenanthro [4, 5-489/09 b, c, d] furan ring systems condensed with carbocyclic rings or ring systems [3, 2006.01]
- 489/10 with a bridge between positions 6 and 14 [2, 3, 2006.01]
- 489/12 • the bridge containing only two carbon atoms [2, 3, 2006.01]
- 491/00 Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D 451/00-C07D 459/00, C07D 463/00, C07D 477/00 or C07D 489/00 [2, 2006.01]
- 491/02 in which the condensed system contains two hetero rings [2, 2006.01]
- 491/04 • Ortho-condensed systems [2, 2006.01]
- 491/044 with only one oxygen atom as ring hetero atom in the oxygen-containing ring [3, 2006.01]
- the oxygen-containing ring being five-491/048 membered [3, 2006.01]
- 491/052 the oxygen-containing ring being sixmembered [3, 2006.01]
- 491/056 with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring [3, 2006.01]
- 491/06 • • Peri-condensed systems [2, 2006.01]
- 491/08 • • Bridged systems [2, 2006.01]
- 491/10 Spiro-condensed systems [2, 2006.01]
- 491/107 with only one oxygen atom as ring hetero atom in the oxygen-containing ring [3, 2006.01]
- 491/113 with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring [3, 2006.01]
- in which the condensed system contains three hetero 491/12 rings [2, 2006.01]
- • Ortho-condensed systems [2, 2006.01] 491/14
- the condensed system containing one ring with 491/147 oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom [3, 2006.01]
- the condensed system containing two rings with 491/153 oxygen as ring hetero atom and one ring with nitrogen as ring hetero atom [3, 2006.01]

101110	7		
491/16	• • Peri-condensed systems [2, 2006.01]	498/00	Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and
491/18	• • Bridged systems [2, 2006.01]		oxygen atoms as the only ring hetero atoms (4-oxa-1-
491/20	• • Spiro-condensed systems [2, 2006.01]		azabicyclo [3.2.0] heptanes, e.g. oxapenicillins
491/22	 in which the condensed system contains four or more hetero rings [2, 2006.01] 		C07D 503/00; 5-oxa-1-azabicyclo [4.2.0] octanes, e.g. oxacephalosporins C07D 505/00; analogues thereof
493/00	Heterocyclic compounds containing oxygen atoms as		having ring oxygen atoms in other position
100,00	the only ring hetero atoms in the condensed		C07D 507/00) [2, 6, 2006.01]
493/02	system [2, 2006.01]in which the condensed system contains two hetero	498/02	 in which the condensed system contains two hetero rings [2, 2006.01]
	rings [2, 2006.01]	498/04	 Ortho-condensed systems [2, 2006.01]
493/04	 Ortho-condensed systems [2, 2006.01] 	498/06	• • Peri-condensed systems [2, 2006.01]
493/06	 Peri-condensed systems [2, 2006.01] 	498/08	• • Bridged systems [2, 2006.01]
493/08	• • Bridged systems [2, 2006.01]	498/10	• • Spiro-condensed systems [2, 2006.01]
493/10	• • Spiro-condensed systems [2, 2006.01]	498/12	 in which the condensed system contains three hetero rings [2, 2006.01]
493/12	• in which the condensed system contains three hetero	498/14	 Ortho-condensed systems [2, 2006.01]
493/14	rings [2, 2006.01]	498/16	 Peri-condensed systems [2, 2006.01]
493/14	Ortho-condensed systems [2, 2006.01]Peri-condensed systems [2, 2006.01]	498/18	 Bridged systems [2, 2006.01]
493/18	 • Bridged systems [2, 2006.01] 	498/20	 Spiro-condensed systems [2, 2006.01]
493/20	 Spiro-condensed systems [2, 2006.01] 	498/22	 in which the condensed system contains four or more
493/22	• in which the condensed system contains four or more		hetero rings [2, 2006.01]
433/22	hetero rings [2, 2006.01]		
	-	499/00	Heterocyclic compounds containing 4-thia-1-
495/00	Heterocyclic compounds containing in the condensed		azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:
	system at least one hetero ring having sulfur atoms as the only ring hetero atoms [2, 2006.01]		
495/02	 in which the condensed system contains two hetero 		
433/02	rings [2, 2006.01]		$C^{\frac{7}{2}}N^{\frac{1}{2}}C^{\frac{2}{2}}$, e.g. penicillins, penems; Such ring
495/04	 Ortho-condensed systems [2, 2006.01] 		systems being further condensed, e.g. 2,3-condensed
495/06	• • Peri-condensed systems [2, 2006.01]		with an oxygen-, nitrogen- or sulfur-containing
495/08	• • Bridged systems [2, 2006.01]		hetero ring [2, 2006.01]
495/10	 Spiro-condensed systems [2, 2006.01] 	499/04	• Preparation [2, 6, 2006.01]
495/12	 in which the condensed system contains three hetero 	499/06	• • by forming the ring or condensed ring systems (by
	rings [2, 2006.01]		microbiological processes C12P 37/00) [2, 6, 2006.01]
495/14	 Ortho-condensed systems [2, 2006.01] 	499/08	 Modification of a carboxyl radical directly
495/16	 Peri-condensed systems [2, 2006.01] 	.55, 55	attached in position 2, e.g.
495/18	• • Bridged systems [2, 2006.01]		esterification [2, 6, 2006.01]
495/20	• • Spiro-condensed systems [2, 2006.01]	499/10	• • Modification of an amino radical directly attached
495/22	• in which the condensed system contains four or more		in position 6 [2, 6, 2006.01]
	hetero rings [2, 2006.01]	499/12	• • • Acylation [2, 6, 2006.01]
497/00	Heterocyclic compounds containing in the condensed	499/14	• • Preparation of salts [2, 6, 2006.01]
	system at least one hetero ring having oxygen and	499/16	• • of alkali or alkaline earth metals [2, 6, 2006.01]
	sulfur atoms as the only ring hetero	499/18	• • Separation; Purification [2, 6, 2006.01]
40= 400	atoms [2, 2006.01]	499/20	• • • <u>via</u> salts with organic bases [2, 6, 2006.01]
497/02	• in which the condensed system contains two hetero	499/21	 with a nitrogen atom directly attached in position 6 and a carbon atom having three bonds to hetero
497/04	rings [2, 2006.01] • Ortho-condensed systems [2, 2006.01]		atoms with at the most one bond to halogen, e.g. an
497/06	 Peri-condensed systems [2, 2006.01] 		ester or nitrile radical, directly attached in position
497/08	 Bridged systems [2, 2006.01] 		2 [6, 2006.01]
497/10	 Spiro-condensed systems [2, 2006.01] 	499/22	• • Salts with organic bases; Complexes with organic
497/12	• in which the condensed system contains three hetero	100 /0.4	compounds [2, 2006.01]
497/14	rings [2, 2006.01] • Ortho-condensed systems [2, 2006.01]	499/24	 • • with acyclic or carbocyclic compounds containing amino radicals [2, 2006.01]
497/14	• Peri-condensed systems [2, 2006.01]	499/26	• • • with heterocyclic compounds [2, 2006.01]
497/18	 Peri-condensed systems [2, 2006.01] Bridged systems [2, 2006.01] 	499/28	• with modified 2-carboxyl group [2, 2006.01]
497/10	 Spiro-condensed systems [2, 2006.01] 	499/30	• • • Acid anhydride [2, 2006.01]
497/20	 in which the condensed system contains four or more 	499/32	• • • Esters [2, 2006.01]
10,722	hetero rings [2, 2006.01]	499/34	• • • Thio-acid; Esters thereof [2, 2006.01]
	○ ★	499/36	• • • <u>O</u> -esters [2, 2006.01]
		499/38	• • • <u>S</u> -esters [2, 2006.01]
		499/40	• • Amides; Hydrazides; Azides [2, 2006.01]
		499/42	 Compounds with a free primary amino radical attached in position 6 [2, 2006.01]
			auacheu in position o [2, 2000.01]

499/44	•	•	Compounds with an amino radical acylated by carboxylic acids, attached in position 6 [2, 2006.01]	499/881	 with a hydrogen atom or an unsubstituted hydrocarbon radical, attached in position 3 [6, 2006.01]
499/46	•	•	radicals substituted by carbocyclic or	499/883	• • with a substituted hydrocarbon radical attached in position 3 [6, 2006.01]
499/48	•	•	 radical [2, 2006.01] with a carbon chain, substituted by hetero atoms or by carbon atoms having three bonds to 	499/887	 with a hetero atom or a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 3 [6, 2006.01]
			halogen, e.g. ester or nitrile radicals, attached to	499/893 499/897	 with a hetero ring or a condensed hetero ring system, directly attached in position 3 [6, 2006.01] Compounds with substituents other than a carbon
499/50	•	•	• • substituted in beta-position to the carboxamido radical [2, 2006.01]	1557 657	atom having three bonds to hetero atoms with at the most one bond to halogen, directly attached in
499/52 499/54	:	•	• • by oxygen or sulfur atoms [2, 2006.01]• • by nitrogen atoms [2, 2006.01]	499/90	position 2 [6, 2006.01] • further condensed with carbocyclic rings or ring
499/56			 • • by carbon atoms having three bonds to 	+33/30	systems [5, 2006.01]
433730			hetero atoms with at the most one bond to		
			halogen [2, 2006.01]	501/00	Heterocyclic compounds containing 5-thia-1-
499/58	•	•	• • substituted in alpha-position to the		azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:
100/00			carboxamido radical [2, 2006.01]		S S S
499/60	•	•	• • • by oxygen atoms [2, 2006.01]		
499/62	•	•	• • • by sulfur atoms [2, 2006.01]		$\dot{C}^{3}\dot{N}^{\prime}$ $\dot{C}^{3}\dot{C}$
499/64 499/66	•	•	by nitrogen atoms [2, 2006.01]with alicyclic rings as additional		, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an
433700			substituents on the carbon chain [2, 2006.01]		oxygen-, nitrogen- or sulfur-containing hetero ring [2, 2006.01]
499/68	•	•	• • • with aromatic rings as additional	501/02	• Preparation [2, 2006.01]
			substituents on the carbon 5 chain [2, 2006.01]	501/04	 from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation
499/70	•	•	• • • • with hetero rings as additional substituents on the carbon		of the ring, by introduction, elimination or modification of substituents [2, 2006.01]
499/72			chain [2, 2006.01] • • • by carbon atoms having three bonds to	501/06	 • • Acylation of 7-aminocephalosporanic acid [2, 2006.01]
			-	501/08	• • by forming the ring or condensed ring systems (by
499/74	•	•	 with carbocyclic rings directly attached to the carboxamido radical [2, 2006.01] 		microbiological processes C12P 35/00) [2, 2006.01]
499/76	•	•	carboxamido radical [2, 2006.01]	501/10	• • • from compounds containing the penicillin ring system [2, 2006.01]
499/78	•	•		501/12	• Separation; Purification [2, 2006.01]
400 400			thereof, attached in position 6 [2, 2006.01]	501/14	 Compounds having a nitrogen atom directly attached in position 7 [2, 2006.01]
499/80	•	•	ring, attached with the ring nitrogen atom in	501/16	• with a double bond between positions 2 and 3 [2, 2006.01]
499/86		W	position 6 [2, 2006.01] th only atoms other than nitrogen atoms directly	501/18	 • 7-Aminocephalosporanic or substituted 7- aminocephalosporanic acids [2, 2006.01]
				501/20	• • 7-Acylaminocephalosporanic or substituted 7-
		h	nds to hetero atoms with at the most one bond to logen, e.g. an ester or nitrile radical, directly ached in position 2 [5, 6, 2006.01]		acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic
499/861				501/22	acids [2, 2006.01]• • with radicals containing only hydrogen and
.557 001			hydrocarbon radical, directly attached in position 6 [6, 2006.01]	301/22	carbon atoms, attached in position 3 [2, 2006.01]
499/865	•	•		501/24	• • • with hydrocarbon radicals, substituted by
			three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical,		hetero atoms or hetero rings, attached in position 3 [2, 2006.01]
		_		501/26	• • • • Methylene radicals, substituted by oxygen
499/87	•	sι	ompounds being unsubstituted in position 3 or with bstituents other than only two methyl radicals		atoms; Lactones thereof with the 2-carboxyl group [2, 2006.01]
			ached in position 3, and with a carbon atom having	501/28	• • • • • with the 7-amino radical acylated by
		b	ree bonds to hetero atoms with at the most one nd to halogen, e.g. an ester or nitrile radical, rectly attached in position 2 [6, 2006.01]		an aliphatic carboxylic acid, which is substituted by hetero
499/88	•		ampounds with a double hand between positions 2	501/30	atoms [2, 2006.01] • • • • • with the 7-amino-radical acylated by
		aı at	d 3 and a carbon atom having three bonds to hetero oms with at the most one bond to halogen, e.g. an ter or nitrile radical, directly attached in position	501/50	an araliphatic carboxylic acid [2, 2006.01]
		2	5, 6, 2006.01]		

501/32	• • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is	• Preparation (by microbiological processes
	substituted on the aliphatic radical by hetero atoms [2, 2006.01]	C12P 17/18) [6, 2006.01] 503/04 • by forming the ring or condensed ring
501/34	• • • • • with the 7-amino radical acylated by	systems [6, 2006.01] 503/06 • • from compounds already containing the ring or
301/34	carboxylic acids containing hetero rings [2, 2006.01]	 from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or
501/36	• • • • Methylene radicals, substituted by sulfur	modification of substituents [6, 2006.01]
501/38	atoms [2, 2006.01] • • • • Methylene radicals, substituted by	503/08 • • • Modification of a carboxyl group directly attached in position 2, e.g.
	nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals	esterification [6, 2006.01]
	substituted by nitrogen-containing hetero	• with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an
	rings attached by the ring nitrogen atom;	ester or nitrile radical, directly attached in position
	Quaternary compounds	2 [6, 2006.01]
	thereof [2, 2006.01]	503/12 • • unsubstituted in position 6 [6, 2006.01]
501/40	• • • • • with the 7-amino radical acylated by	503/14 • • • with hydrogen atoms, hydrocarbon or
	an aliphatic carboxylic acid, which is substituted by hetero	substituted hydrocarbon radicals, other than a
	atoms [2, 2006.01]	carbon atom having three bonds to hetero atoms
501/42	• • • • • with the 7-amino radical acylated by	with at the most one bond to halogen, attached in position 3 [6, 2006.01]
3017 . =	an araliphatic carboxylic	503/16 • • • Radicals substituted by hetero atoms or by
	acid [2, 2006.01]	carbon atoms having three bonds to hetero
501/44	• • • • • with the 7-amino radical acylated by	atoms with at the most one bond to halogen,
	an araliphatic carboxylic acid, which is	e.g. an ester or nitrile radical [6, 2006.01]
	substituted on the aliphatic radical by	503/18 • • • • by oxygen atoms [6, 2006.01]
501/46	hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by	503/20 • • • • by sulfur atoms [6, 2006.01]
301/40	carboxylic acids containing hetero	503/22 • • • • by nitrogen atoms [6, 2006.01]
	rings [2, 2006.01]	505/00 Heterocyclic compounds containing 5-oxa-1-
501/48	• • • • Methylene radicals, substituted by hetero	azabicyclo [4.2.0] octane ring systems, i.e.
	rings (C07D 501/38-C07D 501/46 take	compounds containing a ring system of the formula:
E04 /E0	precedence) [2, 2006.01]	$C - C \stackrel{\circ}{\sim} C$
501/50	• • • • • with the 7-amino radical acylated by an aliphatic carboxylic acid, which is	$\begin{bmatrix} 7 & 5 & 4 \\ 8 & 1 & 3 \end{bmatrix}$
	substituted by hetero	, e.g. oxacephalosporins; Such ring
	substituted by hetero atoms [2, 2006.01]	e.g. oxacephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed
501/52	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing
501/52	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01]
	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes
501/52 501/54	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01]
	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01]
501/54	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or
	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation
501/54	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or
501/54 501/56	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01]
501/54	atoms [2, 2006.01] • • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g.
501/54 501/56	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01]
501/54 501/56 501/57 501/58	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero
501/54 501/56 501/57	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an
501/54 501/56 501/57 501/58 501/59	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero
501/54 501/56 501/57 501/58	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • with a double bond between positions 3 and	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position
501/54 501/56 501/57 501/58 501/59 501/60	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • with a double bond between positions 3 and 4 [2, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • substituted in position 7 [6, 2006.01] 505/14 • with hetero atoms directly attached in position
501/54 501/56 501/57 501/58 501/59	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • with a double bond between positions 3 and	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • • substituted in position 7 [6, 2006.01] 505/14 • • with hetero atoms directly attached in position 7 [6, 2006.01]
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01]	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • • substituted in position 7 [6, 2006.01] 505/16 • • • Nitrogen atoms [6, 2006.01]
501/54 501/56 501/57 501/58 501/59 501/60	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01]	 systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • • substituted in position 7 [6, 2006.01] 505/14 • • • with hetero atoms directly attached in position 7 [6, 2006.01] 505/16 • • • Nitrogen atoms [6, 2006.01] 505/18 • • • further acylated by radicals derived from
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e.	 systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • • substituted in position 7 [6, 2006.01] 505/14 • • • with hetero atoms directly attached in position 7 [6, 2006.01] 505/16 • • • Nitrogen atoms [6, 2006.01] 505/18 • • • further acylated by radicals derived from carboxylic acids or by nitrogen or sulfur
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:	with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • substituted in position 7 [6, 2006.01] 505/14 • with hetero atoms directly attached in position 7 [6, 2006.01] 505/16 • Nitrogen atoms [6, 2006.01] 505/18 • • Introduction, elimination or automous directly attached in position 7 [6, 2006.01]
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:	 systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] Preparation (by microbiological processes C12P 17/18) [6, 2006.01] by forming the ring or condensed ring systems [6, 2006.01] from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] substituted in position 7 [6, 2006.01] with hetero atoms directly attached in position 7 [6, 2006.01] with hetero atoms [6, 2006.01] hitrogen atoms [6, 2006.01] further acylated by radicals derived from carboxylic acids or by nitrogen or sulfur analogues thereof [6, 2006.01] with the acylating radicals further substituted by hetero atoms or by
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:	 systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] Preparation (by microbiological processes C12P 17/18) [6, 2006.01] by forming the ring or condensed ring systems [6, 2006.01] from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] substituted in position 7 [6, 2006.01] with hetero atoms directly attached in position 7 [6, 2006.01] with hetero atoms [6, 2006.01] with eacylated by radicals derived from carboxylic acids or by nitrogen or sulfur analogues thereof [6, 2006.01] with the acylating radicals further substituted by hetero atoms or by carbon atoms having three bonds to
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula: Compounds containing a ring system of the formula: Compounds containing a ring system of the formula:	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • substituted in position 7 [6, 2006.01] 505/14 • with hetero atoms directly attached in position 7 [6, 2006.01] 505/16 • Nitrogen atoms [6, 2006.01] 505/18 • • Mitrogen atoms [6, 2006.01] 505/20 • • • With the acylated by radicals derived from carboxylic acids or by nitrogen or sulfur analogues thereof [6, 2006.01]
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula: \[\begin{align*} \begi	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • substituted in position 7 [6, 2006.01] 505/14 • • with hetero atoms directly attached in position 7 [6, 2006.01] 505/16 • • • Nitrogen atoms [6, 2006.01] 505/18 • • • further acylated by radicals derived from carboxylic acids or by nitrogen or sulfur analogues thereof [6, 2006.01] 505/20 • • • • with the acylating radicals further substituted by hetero atoms or by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen [6, 2006.01]
501/54 501/56 501/57 501/58 501/59 501/60 501/62	atoms [2, 2006.01] • • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid [2, 2006.01] • • • • with the 7-amino radical acylated by an araliphatic carboxylic acid, which is substituted on the aliphatic radical by hetero atoms [2, 2006.01] • • • • with the 7-amino radical acylated by carboxylic acids containing hetero rings [2, 2006.01] • • • with a further substituent in position 7, e.g. cephamycines [3, 2006.01] • • with a nitrogen atom, which is a member of a hetero ring, attached in position 7 [2, 2006.01] • • with hetero atoms directly attached in position 3 [3, 2006.01] • • with a double bond between positions 3 and 4 [2, 2006.01] • Compounds further condensed with a carbocyclic ring or ring system [3, 2006.01] Heterocyclic compounds containing 4-oxa-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula: Compounds containing a ring system of the formula: Compounds containing a ring system of the formula:	systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring [6, 2006.01] 505/02 • Preparation (by microbiological processes C12P 17/18) [6, 2006.01] 505/04 • by forming the ring or condensed ring systems [6, 2006.01] 505/06 • from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents [6, 2006.01] 505/08 • Modification of a carboxyl group directly attached in position 2, e.g. esterification [6, 2006.01] 505/10 • with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 [6, 2006.01] 505/12 • substituted in position 7 [6, 2006.01] 505/14 • with hetero atoms directly attached in position 7 [6, 2006.01] 505/16 • Nitrogen atoms [6, 2006.01] 505/18 • • Mitrogen atoms [6, 2006.01] 505/20 • • • With the acylated by radicals derived from carboxylic acids or by nitrogen or sulfur analogues thereof [6, 2006.01]

505/24	• • • • • • further substituted by doubly-bound	515/14	 Ortho-condensed systems [2, 2006.01]
	nitrogen atoms [6, 2006.01]	515/16	 Peri-condensed systems [2, 2006.01]
E07/00	Heterografic compounds containing a condensed	515/18	 Bridged systems [2, 2006.01]
507/00	Heterocyclic compounds containing a condensed beta-lactam ring system, not provided for by groups	515/20	 Spiro-condensed systems [2, 2006.01]
	C07D 463/00, C07D 477/00 or C07D 499/00-	515/22	 in which the condensed system contains four or more
	C07D 505/00; Such ring systems being further		hetero rings [2, 2006.01]
	condensed [6, 2006.01]	-1- /00	***
507/02	• containing 3-oxa-1-azabicyclo [3.2.0] heptane ring	517/00	Heterocyclic compounds containing in the condensed
	systems [6, 2006.01]		system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero
507/04	 containing 2-oxa-1-azabicyclo [4.2.0] octane ring 		atoms [2, 2006.01]
	systems [6, 2006.01]	517/02	 in which the condensed system contains two hetero
507/06	 containing 3-oxa-1-azabicyclo [4.2.0] octane ring 	517702	rings [2, 2006.01]
	systems [6, 2006.01]	517/04	 Ortho-condensed systems [2, 2006.01]
507/08	 containing 4-oxa-1-azabicyclo [4.2.0] octane ring 	517/06	 Peri-condensed systems [2, 2006.01]
	systems [6, 2006.01]	517/08	 Bridged systems [2, 2006.01]
E12/00	III.	517/10	 Spiro-condensed systems [2, 2006.01]
513/00	Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and	517/12	• in which the condensed system contains three hetero
	sulfur atoms as the only ring hetero atoms, not	017712	rings [2, 2006.01]
	provided for in groups C07D 463/00, C07D 477/00 or	517/14	 Ortho-condensed systems [2, 2006.01]
	C07D 499/00-C07D 507/00 [2, 6, 2006.01]	517/16	• • Peri-condensed systems [2, 2006.01]
513/02	 in which the condensed system contains two hetero 	517/18	• • Bridged systems [2, 2006.01]
	rings [2, 2006.01]	517/20	• • Spiro-condensed systems [2, 2006.01]
513/04	 Ortho-condensed systems [2, 2006.01] 	517/22	 in which the condensed system contains four or more
513/06	 Peri-condensed systems [2, 2006.01] 		hetero rings [2, 2006.01]
513/08	 Bridged systems [2, 2006.01] 		
513/10	 Spiro-condensed systems [2, 2006.01] 	519/00	Heterocyclic compounds containing more than one
513/12	• in which the condensed system contains three hetero		system of two or more relevant hetero rings condensed among themselves or condensed with a
F19/14	rings [2, 2006.01]		common carbocyclic ring system not provided for in
513/14 513/16	• Ortho-condensed systems [2, 2006.01]• Peri-condensed systems [2, 2006.01]		groups C07D 453/00 or C07D 455/00 [2, 2006.01]
513/18	 • Bridged systems [2, 2006.01] 	519/02	• Ergot alkaloids of the cyclic peptide type [2, 2006.01]
513/10	 Spiro-condensed systems [2, 2006.01] 	519/04	 Dimeric indole alkaloids, e.g.
513/20	• in which the condensed system contains four or more		vincaleucoblastine [2, 2006.01]
313/22	hetero rings [2, 2006.01]	519/06	containing at least one condensed beta-lactam ring
	netero 111165 [2, 2000.01]		system, provided for by groups C07D 463/00,
515/00	Heterocyclic compounds containing in the condensed		C07D 477/00 or C07D 499/00-C07D 507/00, e.g. a
	system at least one hetero ring having nitrogen,		penem or a cepham system [6, 2006.01]
	oxygen, and sulfur atoms as the only ring hetero		
	atoms, not provided for in groups C07D 463/00,		
	C07D 477/00 or C07D 499/00- C07D 507/00 [2, 2006.01]	521/00	Heterocyclic compounds containing unspecified
515/02	• in which the condensed system contains two hetero		hetero rings [2, 2006.01]
313/02	rings [2, 2006.01]		Note(s) [2009.01]
515/04	 Ortho-condensed systems [2, 2006.01] 		
515/04	Peri-condensed systems [2, 2006.01]		This group is only used for the classification of heterocyclic compounds the chemical structure of which
2-3,00			increase year compounds the chemical structure of which

C07F ACYCLIC, CARBOCYCLIC, OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM (metal-containing porphyrins C07D 487/22; macromolecular compounds C08)

Note(s) [2, 7, 2006.01, 2010.01]

- Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- Attention is drawn to Note (6) following the title of class C07. 2.

Bridged systems [2, 2006.01]

rings [2, 2006.01]

• • Spiro-condensed systems [2, 2006.01]

• in which the condensed system contains three hetero

- Therapeutic activity of compounds is further classified in subclass A61P. 3.
- In this subclass, organic acid salts, alcoholates, phenates, chelates or mercaptides are classified as the parent compounds. 4.

1/00 Compounds containing elements of Groups 1 or 11 of the Periodic Table [1, 2006.01]

1/02 • Lithium compounds [1, 2006.01]

are not specified, i.e. only in those cases where the

groups C07D 201/00-C07D 519/00.

heterocyclic compounds cannot be classified in any of

1/04 • Sodium compounds [1, 2006.01]

515/08

515/10

515/12

1/06	• Potassium compounds [1, 2006.01]	9/117	•	•	•	• • with cycloaliphatic alcohols [2, 2006.01]
1/08	• Copper compounds [1, 2006.01]	9/12	•	•	•	with hydroxyaryl
1/10	• Silver compounds [1, 2006.01]					compounds [1, 2, 2006.01]
1/12	• Gold compounds [1, 2006.01]	9/14	•	•	•	 containing P-halide groups [1, 2, 2006.01]
3/00	Compounds containing elements of Groups 2 or 12 of	9/141	•	•	•	• Esters of phosphorous acids [2, 2006.01]
	the Periodic Table [1, 2006.01]	9/142	•	•	•	• • with hydroxyalkyl compounds without
3/02	Magnesium compounds [1, 2006.01]					further substituents on alkyl [2, 2006.01]
3/04	• Calcium compounds [1, 2006.01]	9/143	•	•	•	with unsaturated acyclic
3/06	• Zinc compounds [1, 2006.01]	0/1/4				alcohols [2, 2006.01]
3/08	• Cadmium compounds [1, 2006.01]	9/144	•	•	•	• • with cycloaliphatic alcohols [2, 2006.01]
3/10	• Mercury compounds [1, 2006.01]	9/145	•	•	•	• • with hydroxyaryl compounds [2, 2006.01]
3/12	Aromatic substances containing moreover, [1, 2006, 01]	9/146				 compounds [2, 2006.01] containing P-halide groups [2, 2006.01]
3/14	mercury [1, 2006.01] • Heterocyclic substances containing	9/16	•	•		Esters of thiophosphoric acids or
	mercury [1, 2006.01]					thiophosphorous acids [1, 2006.01]
5/00	Compounds containing elements of Groups 3 or 13 of	9/165				• Esters of thiophosphoric acids [2, 2006.01]
	the Periodic Table [1, 2006.01]	9/17	•	•	•	 with hydroxyalkyl compounds without further substituents on alkyl [2, 2006.01]
5/02	• Boron compounds [1, 2006.01]	9/173	•	•	•	 with unsaturated acyclic
5/04	• Esters of boric acids [1, 2006.01]					alcohols [2, 2006.01]
5/05	Cyclic compounds having at least one ring containing boron but no carbon in the	9/177	•	•	•	• • with cycloaliphatic alcohols [2, 2006.01]
	containing boron but no carbon in the ring [2, 2006.01]	9/18	•	•	•	• • with hydroxyaryl
5/06	• Aluminium compounds [1, 2006.01]					compounds [1, 2, 2006.01]
3/00	Adminium compounds [1, 2000.01]	9/20	•	•	•	• • containing P-halide
7/00	Compounds containing elements of Groups 4 or 14 of	0/201				groups [1, 2, 2006.01]
	the Periodic Table [1, 2006.01]	9/201	•	•		• Esters of thiophosphorous acids [2, 2006.01
7/02	• Silicon compounds [1, 2006.01]	9/202	•	•	•	 with hydroxyalkyl compounds without further substituents on alkyl [2, 2006.01]
7/04	• • Esters of silicic acids [1, 2006.01]	9/203				 with unsaturated acyclic
7/06	• • with hydroxyaryl compounds [1, 2006.01]	3/203				alcohols [2, 2006.01]
7/07	• • • Cyclic esters [2, 2006.01]	9/204				• • with cycloaliphatic alcohols [2, 2006.01]
7/08	 Compounds having one or more C—Si 	9/205				• • with hydroxyaryl
	linkages [1, 2006.01]					compounds [2, 2006.01]
7/10	• • containing nitrogen [1, 2006.01]	9/206	•	•	•	• • containing P-halide groups [2, 2006.01]
7/12	• • • Organo silicon halides [1, 2006.01]	9/22	•	•	•	Amides of acids of phosphorus [1, 2006.01]
7/14	 • • • Preparation thereof from halogenated silanes and hydrocarbons [1, 2006.01] 	9/24	•	•	•	• Esteramides [1, 2006.01]
7/16	• • • Preparation thereof from silicon and	9/26	•	•	•	• containing P-halide groups [1, 2006.01]
//10	halogenated hydrocarbons [1, 2006.01]	9/28	•	•	W	rith one or more P—C bonds [1, 2006.01]
7/18	Compounds having one or more C—Si linkages	9/30	•	•	•	Phosphinic acids [R ₂ =P(:O)OH];
7710	as well as one or more C—O—Si					Thiophosphinic acids [1, 2006.01]
	linkages [1, 2006.01]	9/32	•	•	•	• Esters thereof [1, 2006.01]
7/20	• • • Purification; Separation [1, 2006.01]	9/34	•	•		• Halides thereof [1, 2006.01]
7/21	 Cyclic compounds having at least one ring 	9/36	•	•		• Amides thereof [1, 2006.01]
	containing silicon but no carbon in the	9/38	•	•	•	Phosphonic acids [R—P(:O)(OH) ₂];
	ring [2, 2006.01]	0/40		_	_	Thiophosphonic acids [1, 2006.01] • Esters thereof [1, 2006.01]
7/22	• Tin compounds [1, 2006.01]	9/40 9/42	•	•	•	 Esters thereof [1, 2006.01] Halides thereof [1, 2006.01]
7/24	• Lead compounds [1, 2006.01]	9/42 9/44	•	•	•	 Handes thereof [1, 2006.01] Amides thereof [1, 2006.01]
7/26	• Tetra-alkyl lead compounds [1, 2006.01]		•	•	•	_ :
7/28	• Titanium compounds [1, 2006.01]	9/46	•	٠	•	Phosphinous acids [R₂=P—OH]; Thiophosphinous acids [1, 2006.01]
7/30	• Germanium compounds [2, 2006.01]	9/48				Phosphonous acids [R—P (OH) ₂];
9/00	Compounds containing elements of Groups 5 or 15 of	37 40				Thiophosphonous acids [1, 2006.01]
-,	the Periodic Table [1, 2006.01]	9/50	•	•	•	Organo-phosphines [1, 2006.01]
9/02	 Phosphorus compounds [1, 2, 2006.01] 	9/52	•	•	•	 Halophosphines [1, 2006.01]
9/04	 Reaction products of phosphorus sulfur compounds with hydrocarbons [1, 2006.01] 	9/53	•	•	•	 Organo-phosphine oxides; Organo- phosphine sulfides [2, 2006.01]
9/06	• • without P—C bonds [1, 2006.01]	9/535				Organo-phosphoranes [3, 2006.01]
9/08	• • Esters of oxyacids of phosphorus [1, 2006.01]	9/54	•	•	•	Quaternary phosphonium
9/09	• • • Esters of phosphoric acids [2, 2006.01]	•				compounds [1, 2006.01]
9/10	• • • • • Phosphatides, e.g. lecithin [1, 2006.01]	9/547	•	•	Н	leterocyclic compounds, e.g. containing
9/11	• • • • with hydroxyalkyl compounds without					hosphorus as a ring hetero atom [5, 2006.01]
	further substituents on alkyl [2, 2006.01]	9/553	•	•	•	having one nitrogen atom as the only ring
9/113	• • • • with unsaturated acyclic					hetero atom [5, 2006.01]
	alcohols [2, 2006.01]	9/564	•	•	•	 Three-membered rings [5, 2006.01]

	• Four-membered rings [5, 2006.01]	9/6571	• • • having phosphorus and oxygen atoms as the
	• Five-membered rings [5, 2006.01]		only ring hetero atoms [5, 2006.01]
	• Six-membered rings [5, 2006.01]	9/6574	• • • • Esters of oxyacids of
	• • Pyridine rings [1, 5, 2006.01]	0./6550	phosphorus [5, 2006.01]
	 Hydrogenated pyridine rings [5, 2006.01] 	9/65/8	3 • • • having phosphorus and sulfur atoms with or
9/60 • • •	Quinoline or hydrogenated quinoline ring		without oxygen atoms, as ring hetero atoms [5, 2006.01]
9/62 • • •	systems [1, 5, 2006.01] • Isoquinoline or hydrogenated	9/6581	• • • having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring
9/64 • • •	isoquinoline ring systems [1, 5, 2006.01]Acridine or hydrogenated acridine ring		hetero atoms [5, 2006.01]
	systems [1, 5, 2006.01]	9/6584	hetero atom [5, 2006.01]
9/645 • • •	having two nitrogen atoms as the only ring hetero atoms [5, 2006.01]	9/6587	· · · · having two phosphorus atoms as ring
9/6503 • • •	• Five-membered rings [5, 2006.01]		hetero atoms [5, 2006.01]
	 having the nitrogen atoms in positions 1 	9/659	• • • • having three phosphorus atoms as ring
0,0000	and 3 [5, 2006.01]	0./6500	hetero atoms [5, 2006.01]
9/6509 • • •	• Six-membered rings [5, 2006.01]	9/6593	3 • • • • • 1,3,5-Triaza-2,4,6-triphosphorines [5, 2006.01]
9/6512 • • •	• • having the nitrogen atoms in positions 1	0/6506	5 • • having atoms other than oxygen, sulfur,
	and 3 [5, 2006.01]	3/0330	selenium, tellurium, nitrogen or phosphorus as
9/6515 • • •	having three nitrogen atoms as the only ring		ring hetero atoms [5, 2006.01]
	hetero atoms [5, 2006.01]	9/66	• Arsenic compounds [1, 2006.01]
	• Five-membered rings [5, 2006.01]	9/68	• • without As—C bonds [1, 2006.01]
	• Six-membered rings [5, 2006.01]	9/70	• • Organo-arsenic compounds [1, 2006.01]
9/6524 • • •	having four or more nitrogen atoms as the only	9/72	• • • Aliphatic compounds [1, 2006.01]
0./0527	ring hetero atoms [5, 2006.01]	9/74	• • • Aromatic compounds [1, 2006.01]
9/652/ • • •	having nitrogen and oxygen atoms as the only ring hetero atoms [5, 2006.01]	9/76	• • • containing hydroxyl groups [1, 2006.01]
9/653 • • •	• Five-membered rings [5, 2006.01]	9/78	• • • containing amino groups [1, 2006.01]
	• Six-membered rings [5, 2006.01]	9/80	• • • Heterocyclic compounds [1, 2006.01]
	having nitrogen and sulfur atoms with or	9/82	• • • Arsenic compounds containing one or more
37 0000	without oxygen atoms, as the only ring hetero		pyridine rings [1, 2006.01]
	atoms [5, 2006.01]	9/84	Arsenic compounds containing one or more
9/6539 • • •	• Five-membered rings [5, 2006.01]	0.406	quinoline ring systems [1, 2006.01]
9/6541 • • •	 condensed with carbocyclic rings or ring systems [5, 2006.01] 	9/86	• • • Arsenic compounds containing one or more isoquinoline ring systems [1, 2006.01]
9/6544 • • •	• Six-membered rings [5, 2006.01]	9/88	• • • • Arsenic compounds containing one or more
9/6547 • • •	 condensed with carbocyclic rings or ring 	9/90	acridine ring systems [1, 2006.01] • Antimony compounds [1, 2006.01]
	systems [5, 2006.01]	9/92	 Animiony compounds [1, 2006.01] Aromatic compounds [1, 2006.01]
9/655 • • •	having oxygen atoms, with or without sulfur,	9/94	• Bismuth compounds [1, 2006.01]
	selenium, or tellurium atoms, as the only ring	37 3 4	Districtin Compounds [1, 2000.01]
9/6553 • • •	hetero atoms [5, 2006.01] having sulfur atoms, with or without selenium	11/00	Compounds containing elements of Groups 6 or 16 of
	or tellurium atoms, as the only ring hetero		the Periodic Table [1, 2006.01]
	atoms [5, 2006.01]	13/00	Compounds containing elements of Groups 7 or 17 of
9/6558 • • •	containing at least two different or differently substituted hetero rings neither condensed		the Periodic Table [1, 2006.01]
	among themselves nor condensed with a common carbocyclic ring or ring	15/00	Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table [1, 2006.01]
	system [5, 2006.01]	15/02	• Iron compounds [1, 2006.01]
9/6561 • • •	0 1	15/03	• • Sideramines; The corresponding desferri
	hetero rings condensed among themselves or condensed with a common carbocyclic ring or		compounds [1, 2006.01]
	ring system, with or without other non-	15/04	• Nickel compounds [1, 2006.01]
	condensed hetero rings [5, 2006.01]	15/06	• Cobalt compounds [1, 2006.01]
9/6564 • • •	having phosphorus atoms, with or without	17/00	Metallocenes [2, 2006.01]
	nitrogen, oxygen, sulfur, selenium or tellurium	17/02	• of metals of Groups 8, 9 or 10 of the Periodic
0.405	atoms, as ring hetero atoms [5, 2006.01]	1.,02	Table [2, 2006.01]
9/6568 • • •	• having phosphorus atoms as the only ring		
	hetero atoms [5, 2006.01]	19/00	Metal compounds according to more than one of main groups C07F 1/00-C07F 17/00 [5, 2006.01]

Note(s) [4, 7, 2006.01]

- 1. This subclass <u>does not cover</u> peptides or proteins, of unknown constitution, which are covered by subclass C07K.
- Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K
 and within these subclasses.
- 3. Therapeutic activity of compounds is further classified in subclass A61P.

1/00	Low-molecular-weight derivatives of lignin (high-molecular-weight derivatives of lignin	11/00	Antibiotics [1, 2006.01]
	C08H 7/00) [1, 2006.01, 2011.01]	13/00	Vitamins of unknown constitution [1, 2006.01]
3/00	Glycosides [1, 2006.01]	15/00	Hormones [1, 2006.01]
5/00	Alkaloids [1, 2006.01]	99/00	Subject matter not provided for in other groups of this subclass [2009.01]
9/00	Ammonium bituminosulfonate, e.g.		
	Ichthyol [1, 2006.01]		

C07H SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS (derivatives of aldonic or saccharic acids C07C, C07D; aldonic acids, saccharic acids C07C 59/105, C07C 59/285; cyanohydrins C07C 255/16; glycals C07D; compounds of unknown constitution C07G; polysaccharides, derivatives thereof C08B; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification C12N 15/00; sugar industry C13) [2]

Note(s) [4, 7, 2006.01]

- 1. This subclass <u>covers</u> compounds containing saccharide radicals (see the definitions in Note (3) below).
- 2. This subclass <u>does not cover</u> polysaccharides which for the purpose of this subclass are defined as having more than five saccharide radicals attached to each other by glycosidic linkages.
- 3. In this subclass, the following expressions are used with the meanings indicated:
 - "saccharide radical" which is derived from acyclic polyhydroxy-aldehydes or acyclic polyhydroxy-ketones, or from their cyclic tautomers, by removing hydrogen atoms or by replacing hetero bonds to oxygen by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium, in accordance with either of the following definitions:
 - a. It
 - i. consists of an uninterrupted carbon skeleton and oxygen atoms directly attached thereto, and
 - ii. is considered to be terminated by every bond to a carbon atom of a cyclic structure and by every bond to a carbon atom having three bonds to hetero atoms, e.g. ester or nitrile radicals, and
 - iii. contains within the carbon skeleton an unbranched sequence of at the most six carbon atoms in which at least three carbon atoms at least two in the case of a skeleton having only four carbon atoms have one single bond to an oxygen atom as the only hetero bond, and
 - A. in a cyclic or acyclic sequence, at least one other carbon atom has two single bonds to oxygen atoms as the only hetero bonds, or
 - B. in an acyclic sequence, at least one other carbon atom has one double bond to an oxygen atom as the only hetero bond,

the said sequence containing at the most one double bond, i.e. C=C or possibly ketalised C(=O), in addition to the hetero bonds mentioned above under (A) or (B), e.g. the compounds

```
 \begin{array}{c} \text{CHO} \\ \text{[CHOH]}_4\\ \text{CHOH} \\ \text{[CHOH]}_n\\ \text{CH}_2\text{OH} \\ \text{an unbranched sequence of at the most six carbon atoms, having bonds to oxygen as defined in this Note} \\ \text{CHO} \\ \text{[CHOH]}_4\\ \text{CHOH} \\ \text{[CH}_2\text{]}_n\\ \text{CH}_3\\ \end{array}
```

n being an integer, are classified in group C07H 3/02;

- It is also a radical derived from a radical as defined in (a) above by replacing at the most four of the specified hetero bonds to oxygen by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium;
- "heterocyclic radical" or "hetero ring" is considered to exclude saccharide radicals as defined above.
- 4. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- 5. Therapeutic activity of compounds is further classified in subclass A61P.

$\underline{Subclass\ index}$

Subclass	<u>muex</u>		
GENERA COMPOU	L PROCESSES		1/00
	arides, deoxysugars, anhydrosugars, osones		3/00
	osugars, aza-, thio-, seleno-, telluro-analogues		
	esters		
sugar	ethers, glycosides		15/00, 17/00
	acetals		
	osides		
	otides		,
	ntives containing acyclic radicals		
	atives containing carbocyclic radicals		
	ntives containing heterocyclic radicals		
			21/00
deriva	atives containing boron, silicon or a metal		23/00
SORIECI	F MATTER NOT PROVIDED FOR IN OTHER GROUPS OF	THIS SUBC.	LASS99/00
1/00	Processes for the preparation of sugar	9/04	• • Cyclic acetals [2, 2006.01]
1 /00	derivatives [2, 2006.01]	9/06	the hetero ring containing nitrogen as ring hetero the hetero ring containing nitrogen as ring hetero
1/02	• Phosphorylation [2, 2006.01]		atoms [2, 2006.01]
1/04	• Introducing polyphosphoric acid radicals [2, 2006.01]	11/00	Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof (halo-sugars
1/06	• Separation; Purification [2, 2006.01]		C07H 5/02; thio-, seleno-, or telluro-sugars
1/08	• • from natural products [2, 2006.01]		C07H 5/08) [2, 2006.01]
3/00	Compounds containing only hydrogen atoms and	11/02	• Nitrates; Nitrites [2, 2006.01]
3700	saccharide radicals having only carbon, hydrogen, and oxygen atoms (preparation by hydrolysis of di-or	11/04	• Phosphates; Phosphites; Polyphosphates [2, 2006.01]
	polysaccharides C13; separation or purification of	13/00	Compounds containing saccharide radicals esterified
	sucrose, glucose, fructose, lactose or maltose		by carbonic acid or derivatives thereof, or by organic
	C13) [2, 2006.01]		acids, e.g. phosphonic acids [2, 2006.01]
3/02	 Monosaccharides [2, 2006.01] 	13/02	• by carboxylic acids [2, 2006.01]
3/04	• Disaccharides [2, 2006.01]	13/04	having the esterifying carboxyl radicals attached
3/06	 Oligosaccharides, i.e. having three to five saccharide 	40.400	to acyclic carbon atoms [2, 2006.01]
	radicals attached to each other by glycosidic	13/06	• • • Fatty acids [2, 2006.01]
3/08	linkages [2, 2006.01] • Deoxysugars; Unsaturated sugars (1,2-dideoxy-1-	13/08	 having the esterifying carboxyl radicals directly attached to carbocyclic rings [2, 2006.01]
2/10	enoses C07D); Osones [2, 2006.01]	13/10	 having the esterifying carboxyl radicals directly attached to heterocyclic rings [2, 2006.01]
3/10	• Anhydrosugars, e.g. epoxides [2, 2006.01]	13/12	 by acids having the group —X—C (=X)—X—, or
5/00	Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium [2, 2006.01]		halides thereof, in which X means nitrogen, oxygen, sulfur, selenium, or tellurium, e.g. carbonic acid, carbamic acid [2, 2006.01]
5/02	• to halogen [2, 2006.01]	15/00	Compounds containing hydrocarbon or substituted
5/04	• to nitrogen [2, 2006.01]		hydrocarbon radicals directly attached to hetero
5/06	• • Aminosugars [2, 2006.01]		atoms of saccharide radicals [2, 2006.01]
5/08	 to sulfur, selenium, or tellurium [2, 2006.01] 		<u>Note(s) [4]</u>
5/10	• • to sulfur [2, 2006.01]		In this group, acyl radicals directly attached to hetero
5 /00			atoms of the saccharide radicals are not considered as
7/00	Compounds containing non-saccharide radicals		substituted hydrocarbon radicals.
	linked to saccharide radicals by a carbon-to-carbon bond [2, 2006.01]	15/02	 Acyclic radicals, not substituted by cyclic
7/02	• Acyclic radicals [2, 2006.01]		structures [2, 2006.01]
7/027	Keto-aldonic acids [4, 2006.01]	15/04	 attached to an oxygen atom of a saccharide
7/027	Veno-acids [4, 2006.01] Vronic acids [4, 2006.01]		radical [2, 2006.01]
7/033	• Carbocyclic radicals [2, 2006.01]	15/06	• • • being a hydroxyalkyl group esterified by a fatty
7/04	Heterocyclic radicals [2, 2006.01]		acid [4, 2006.01]
//00	- Heterocyclic radicals [2, 2000.01]	15/08	• • • Polyoxyalkylene derivatives [2, 2006.01]
9/00	Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide	15/10	• • • containing unsaturated carbon-to-carbon bonds [2, 2006.01]
	radical [2, 2006.01]	15/12	• • attached to a nitrogen atom of a saccharide
9/02	• the hetero ring containing only oxygen as ring hetero	15/1/	radical [2, 2006.01] • attached to a sulfur selenium or tellurium atom of
	atoms [2, 2006.01]	15/14	 attached to a sulfur, selenium or tellurium atom of a saccharide radical [2, 2006.01]

15/20 • Carbocyclic rings	[2, 2006 01]		Nucleosides; Mononucleotides; Anhydro derivatives thereof [2, 4, 2006.01]
	bocyclic rings other than	19/01	 sharing oxygen [4, 2006.01]
	gs; Bicyclic carbocyclic ring	19/02	• sharing nitrogen [2, 2006.01]
systems [4, 200		19/04	Heterocyclic radicals containing only nitrogen as
	ngs not substituted by nitrogen		ring hetero atom [2, 2006.01]
atoms, e.g. kası	igamycins [4, 2006.01]	19/044	• • • Pyrrole radicals [4, 2006.01]
15/22 • • Cyclohexane rin	ngs, substituted by nitrogen	19/048	• • • Pyridine radicals [4, 2006.01]
atoms [4, 2006.	01]	19/052	• • • Imidazole radicals [4, 2006.01]
	rings, substituted by at least two	19/056	• • • Triazole or tetrazole radicals [4, 2006.01]
	ns [4, 2006.01]	19/06	• • • Pyrimidine radicals [2, 2006.01]
	one saccharide radical directly othe cyclohexane rings, e.g.	19/067	• • • with ribosyl as the saccharide radical [4, 2006.01]
	in, fortimicin, 4, 2006.01]	19/073	• • • with 2-deoxyribosyl as the saccharide
	ast two saccharide radicals directly		radical [4, 2006.01]
	o the cyclohexane	19/09	• • • with arabinosyl as the saccharide radical [4, 2006.01]
	ed to adjacent ring-carbon atoms of	19/10	 • • with the saccharide radical being esterified
the cyc	clohexane rings [4, 2006.01]		by phosphoric or polyphosphoric acids [2, 2006.01]
	n only two saccharide radicals in	19/11	• • • • containing cyclic phosphate [4, 2006.01]
	molecule, e.g. ambutyrosin, vrosin, xylostatin,	19/12	• • • Triazine radicals [2, 2006.01]
	stamycin [4, 2006.01]	19/14	• • • Pyrrolo-pyrimidine radicals [2, 2006.01]
	at least three saccharide radicals	19/16	• • • Purine radicals [2, 2006.01]
in tl	ne molecule, e.g. lividomycin,	19/167	• • • with ribosyl as the saccharide
	mycin, paromomycin [4, 2006.01]	10/172	radical [4, 2006.01]
	ed to non-adjacent ring carbon	19/173	• • • with 2-deoxyribosyl as the saccharide radical [4, 2006.01]
	of the cyclohexane rings, e.g. ycins, tobramycin, nebramycin,	19/19	• • • with arabinosyl as the saccharide
	nicin A ₂ [4, 2006.01]		radical [4, 2006.01]
15/236 • • • • a sa	ccharide radical being substituted in alkylamino radical in position 3	19/20	• • • with the saccharide radical being esterified by phosphoric or polyphosphoric
	by two substituents different from		acids [2, 2006.01]
com	rogen in position 4, e.g. gentamicin plex, sisomicin,	19/207	• • • • the phosphoric or polyphosphoric acids being esterified by a further hydroxylic
	lamicin [4, 2006.01]		compound, e.g. flavine-adenine
radicals, e.g.	rings substituted by two guanidine streptomycins [4, 2006.01]		dinucleotide or nicotinamide-adenine dinucleotide [4, 2006.01]
	systems having three or more	19/213	• • • • containing cyclic phosphate [4, 2006.01]
rings [2, 2006.0		19/22	• • • Pteridine radicals [2, 2006.01]
15/244 • • • Anthraquino sennosides [19/23	 Heterocyclic radicals containing two or more heterocyclic rings condensed among
15/248 • • • Colchicine ra			themselves or condensed with a common
	s [4, 2006.01]		carbocyclic ring system, not provided for in
	e radicals, e.g. daunomycins,	10/24	groups C07H 19/14-C07H 19/22 [4, 2006.01]
adriamycins 15/256 • • • Polyterpene		19/24	 Heterocyclic radicals containing oxygen or sulfur as ring hetero atom [2, 2006.01]
,	velic radicals, substituted by hetero		uo 11119 netero utom (=) =0001011
rings [2, 2006.01]	che fadicais, substituted by fietero	21/00	Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate
17/00 Compounds contain	ing heterocyclic radicals directly		groups linked by saccharide radicals of nucleoside
attached to hetero a			groups, e.g. nucleic acids [2, 2006.01]
radicals [2, 2006.01]		21/02	• with ribosyl as saccharide radical [2, 2006.01]
• Heterocyclic radic hetero atoms [2, 2)	als containing only nitrogen as ring 006.01]	21/04	• with deoxyribosyl as saccharide radical [2, 2006.01]
	als containing only oxygen as ring	23/00	Compounds containing boron, silicon, or a metal, e.g.
hetero atoms [2, 2			chelates, vitamin B ₁₂ (esters with inorganic acids C07H 11/00; metal salts, <u>see</u> parent
17/06 • • Benzopyran rad			compounds) [2, 2006.01]
17/065 • • • Benzo[b]pyr			
	oyran-4-ones [4, 2006.01]	99/00	Subject matter not provided for in other groups of
-	oyran-2-ones [4, 2006.01]		this subclass [2006.01]
_	ntaining eight or more ring rythromycins [2, 2006.01]		

C07J STEROIDS (seco-steroids C07C) [2]

Note(s) [4, 7, 2006.01]

- 1. This subclass <u>covers</u> compounds containing a cyclopenta[a]hydrophenanthrene skeleton or a ring structure derived therefrom:
 - by contraction or expansion of one ring by one or two atoms,
 - by contraction or expansion of two rings each by one atom,
 - by contraction of one ring by one atom and expansion of one ring by one atom,
 - by substitution of one or two carbon atoms of the cyclopenta[a]hydrophenanthrene skeleton, which are not shared by rings, by hetero atoms, in combination with the above defined contraction or expansion or not, or
 - by condensation with carbocyclic or heterocyclic rings in combination with one or more of the foregoing alterations or not.
- 2. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07Kand within these subclasses.
- 3. Therapeutic activity of compounds is further classified in subclass A61P.

Subclass index

NORMAL STEROIDS containing halogen or oxygen	
oxygen other than as ring hetero atom	1/00, 3/00, 5/00, 7/00, 9/00, 11/00,
	13/00, 15/00
oxygen as ring hetero atom	17/00, 19/00, 21/00
containing sulfur	31/00, 33/00
containing nitrogenother steroids	41/00, 43/00
other steroids	51/00
STEROIDS WITH MODIFIED SKELETON	
retrosteroids	15/00
nor-, homosteroids	
condensed with carbocyclic rings	53/00
condensed with carbocyclic rings	71/00, 73/00
PREPARATION OF STEROIDS IN GENERAL	75/00

Normal steroids, i.e. cyclopenta[a]hydrophenanthrenes, containing carbon, hydrogen, halogen, or oxygen [2]

- 1/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, not substituted in position 17 beta by a carbon atom, e.g. oestrane, androstane [2, 2006.01]
- 3/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, substituted in position 17 beta by one carbon atom [2, 2006.01]
- 5/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, and substituted in position 21 by only one singly bound oxygen atom [2, 2006.01]
- 7/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, substituted in position 17 beta by a chain of two carbon atoms (C07J 5/00 takes precedence) [2, 2006.01]
- 9/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane [2, 2006.01]
- 11/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, not substituted in position 3 [2, 2006.01]
- 13/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, having a carbon-to-carbon double bond from or to position 17 [2, 2006.01]

- 15/00 Stereochemically pure steroids containing carbon, hydrogen, halogen, or oxygen, having a partially or totally inverted skeleton, e.g. retrosteroids, Lisomers [2, 2006.01]
- 17/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta[a]hydrophenanthrene skeleton [2, 2006.01]
- 19/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, substituted in position 17 by a lactone ring [2, 2006.01]
- 21/00 Normal steroids containing carbon, hydrogen, halogen, or oxygen, having an oxygen-containing hetero ring spiro-condensed with the cyclopenta[a]hydrophenanthrene skeleton [2, 2006.01]

Normal steroids, i.e. cyclopenta[a]hydrophenanthrenes, containing sulfur [2]

- 31/00 Normal steroids containing one or more sulfur atoms not belonging to a hetero ring [2, 2006.01]
- 33/00 Normal steroids having a sulfur-containing hetero ring spiro-condensed or not condensed with the cyclopenta[a]hydrophenanthrene skeleton [2, 2006.01]

Normal steroids, i.e. cyclopenta[a]hydrophenanthrenes, containing nitrogen [2]

- 41/00 Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring [2, 2006.01]
- 43/00 Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta[a]hydrophenanthrene skeleton [2, 2006.01]
- 51/00 Normal steroids with unmodified cyclopenta[a]hydrophenanthrene skeleton not provided for in groups C07J 1/00-C07J 43/00 [2, 2006.01]
- 53/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by condensation with carbocyclic rings or by formation of an additional ring by means of a direct link between two ring carbon atoms [2, 2006.01]

Nor- or homosteroids [2]

61/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by contraction of only one ring by one or two atoms [2, 2006.01]

- 63/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by expansion of only one ring by one or two atoms [2, 2006.01]
- 65/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by contraction of two rings, each by one atom [2, 2006.01]
- 67/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by expansion of two rings, each by one atom [2, 2006.01]
- 69/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by contraction of only one ring by one atom and expansion of only one ring by one atom [2, 2006.01]
- 71/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton is condensed with a heterocyclic ring (spiro-condensed heterocyclic rings C07J 21/00, C07J 33/00, C07J 43/00) [2, 2006.01]
- 73/00 Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by substitution of one or two carbon atoms by hetero atoms [2, 2006.01]
- 75/00 Processes for the preparation of steroids, in general [4, 2006.01]

C07K PEPTIDES (peptides containing β-lactam rings C07D; cyclic dipeptides not having in their molecule any other peptide link than those which form their ring, e.g. piperazine-2,5-diones, C07D; ergot alkaloids of the cyclic peptide type C07D 519/02; single cell proteins, enzymes C12N; genetic engineering processes for obtaining peptides C12N 15/00) [4]

Note(s) [4, 6, 7, 2006.01]

- 1. In this subclass, the following terms or expressions are used with the meanings indicated:
 - "amino acids" are compounds in which at least one amino group and at least one carboxyl group are bound to the same carbon skeleton and the nitrogen atom of the amino group may form part of a ring;
 - "normal peptide link" is one between an alpha-amino group of an amino acid and the carboxyl group in position 1 of another alpha-amino acid;
 - "abnormal peptide link" is a link where at least one of the linked amino acids is not an alpha-amino acid or a link formed by at least one carboxyl or amino group being part of the side chain of an alpha-amino acid;
 - "peptides" are compounds containing at least two amino acid units, which are bound through at least one normal peptide link, including oligopeptides, polypeptides and proteins, where
 - i. "linear peptides" may comprise rings formed through S—S bridges, or through an hydroxy or a mercapto group of an hydroxy- or a mercapto-amino acid and the carboxyl group of another amino acid (e.g. peptide lactones) but do not comprise rings which are formed only through peptide links;
 - ii. "cyclic peptides" are peptides comprising at least one ring formed only through peptide links; the cyclisation may occur only through normal peptide links or through abnormal peptide links, e.g. through the 4-amino group of 2,4-diamino-butanoic acid. Thus, cyclic compounds in which at least one link in the ring is a non-peptide link are considered as "linear peptides";
 - iii. "depsipeptides" are compounds containing a sequence of at least two alpha-amino acids and at least one alpha-hydroxy carboxylic acid, which are bound through at least one normal peptide link and ester links, derived from the hydroxy carboxylic acids, where
 - a. "linear depsipeptides" may comprise rings formed through S—S bridges, or through an hydroxy or a mercapto group of an hydroxy-, or mercapto-amino acid and the carboxyl group of another amino- or hydroxy-acid but do not comprise rings formed only through peptide or ester links derived from hydroxy carboxylic acids, e.g. Gly-Ala-Gly—OCH₂CO₂H and Gly—OCH₂CO-Ala-Gly are considered as "linear depsipeptides", but HOCH₂CO-Gly-Ala-Gly does not contain an ester link, and is thus a derivative of Gly-Ala-Gly which is covered by C07K 5/08;
 - b. "cyclic depsipeptides" are peptides containing at least one ring formed only through peptide or ester links derived from hydroxy carboxylic acids —, e.g. [6](+Ala-G)(-OCH,CO);
 - iv. "hybrid peptides" are peptides produced through fusion or covalent binding of two or more heterologous peptides.

- 2. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.
- 3. Therapeutic activity of compounds is further classified in subclass A61P.
- 4. When classifying in this subclass, classification is also made in group B01D 15/08 insofar as subject matter of general interest relating to chromatography is concerned.
- 5. Fragments of peptides or peptides modified by removal or addition of amino acids, by substitution of amino acids by others, or by combination of these modifications are classified as the parent peptides. However, fragments of peptides having only four or less amino acids are also classified in group C07K 5/00.
- 6. Peptides prepared by chemical processes and having an amino acid sequence derived from naturally occurring peptides are classified with the natural one.
- Peptides prepared by recombinant DNA technology are not classified according to the host, but according to the original peptide expressed, e.g. HIV peptide expressed in E. coli is classified with HIV peptides.

Subclass index

PEPTIDES

Preparation	1/00
of undefined number of amino acids	2/00
Having up to 20 amino acids in an undefined or only partially defined sequence	4/00
Having up to 20 amino acids in a fully defined sequence	5/00-9/00
Depsipeptides having up to 20 amino acids in a fully defined sequence	
Having more than 20 amino acids	
Immunoglobulins	
Carrier-bound or immobilised peptides	
Hybrid peptides	
5 - 1-1	

1/00	General processes for the preparation of
	peptides [4, 2006.01]

- 1/02 in solution **[4, 2006.01]**
- 1/04 on carriers **[4, 2006.01]**
- 1/06 using protecting groups or activating agents [4, 2006.01]
- 1/08 • using activating agents **[4, 2006.01]**
- 1/10 using coupling agents **[4, 2006.01]**
- 1/107 by chemical modification of precursor peptides [6, 2006.01]
- 1/113 • without change of the primary structure [6, 2006.01]
- 1/12 by hydrolysis **[4, 2006.01]**
- 1/13 Labelling of peptides **[6, 2006.01]**
- 1/14 Extraction; Separation; Purification [4, 6, 2006.01]
- 1/16 • by chromatography **[6, 2006.01]**
- 1/18 • Ion-exchange chromatography **[6, 2006.01]**
- 1/20 • Partition-, reverse-phase or hydrophobic interaction chromatography **[6, 2006.01]**
- 1/22 • Affinity chromatography or related techniques based upon selective absorption processes [6, 2006.01]
- 1/24 • by electrochemical means **[6, 2006.01]**
- 1/26 • Electrophoresis **[6, 2006.01]**
- 1/28 • • Isoelectric focusing **[6, 2006.01]**
- 1/30 • by precipitation **[6, 2006.01]**
- 1/32 • as complexes **[6, 2006.01]**
- 1/34 by filtration, ultrafiltration or reverse osmosis [6, 2006.01]
- 1/36 • by a combination of two or more processes of different types **[6, 2006.01]**

2/00 Peptides of undefined number of amino acids; Derivatives thereof [6, 2006.01]

4/00 Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof [6, 2006.01]

- 4/02 from viruses **[6, 2006.01]**
- 4/04 from bacteria **[6, 2006.01]**

- 4/06 from fungi **[6, 2006.01]**
- 4/08 from algae; from lichens **[6, 2006.01]**
- 4/10 from plants **[6, 2006.01]**
- 4/12 from animals; from humans **[6, 2006.01]**

5/00 Peptides having up to four amino acids in a fully defined sequence; Derivatives thereof [4, 2006.01]

Note(s) [6]

In this group, the following expression is used with the meaning indicated:

- "first amino acid" means the first amino acid from the left side, i.e. the N-terminal amino acid, of the peptide sequence.
- 5/02 containing at least one abnormal peptide link [4, 2006.01]
- 5/023 in which at least a beta-amino acid is involved **[6, 2006.01]**
- 5/027 in which at least a gamma-amino acid is involved, e.g. statine [6, 2006.01]
- in which at least a delta-amino acid is involved, e.g. isosteres [6, 2006.01]
- 5/033 • in which at least an epsilon- or zeta-amino acid is involved **[6, 2006.01]**
- the abnormal link being formed by the side chain of an alpha-amino acid, e.g. gamma-Glu, epsilon-Lys, glutathione [6, 2006.01]
- containing only normal peptide links [4, 2006.01]
- 5/06 • Dipeptides [4, 2006.01]
- 5/062 • the side chain of the first amino acid being acyclic, e.g. Gly, Ala [6, 2006.01]
- 5/065 • the side chain of the first amino acid containing carbocyclic rings, e.g. Phe, Tyr **[6, 2006.01]**
- 5/068 • the side chain of the first amino acid containing more amino groups than carboxyl groups, or derivatives thereof, e.g. Lys, Arg [6, 2006.01]
- 5/072 • the side chain of the first amino acid containing more carboxyl groups than amino groups, or derivatives thereof, e.g. Asp, Glu, Asn [6, 2006.01]

5/075	• • • Asp-Phe; Derivatives thereof, e.g. aspartame [6, 2006.01]	7/64	 Cyclic peptides containing only normal peptide links [4, 2006.01]
5/078	• • the first amino acid being heterocyclic, e.g. Pro, His, Trp [6, 2006.01]	7/66	• • Gramicidins S, C; Tyrocidins A, B, C; Related peptides [4, 2006.01]
5/08	• • Tripeptides [4, 2006.01]	0.400	D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5/083	• • • the side chain of the first amino acid being acyclic, e.g. Gly, Ala [6, 2006.01]	9/00	Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof [4, 6, 2006.01]
5/087	• • the side chain of the first amino acid containing		sequence, berruttives thereof [4, 0, 2000.01]
F /00	carbocyclic rings, e.g. Phe, Tyr [6, 2006.01]	11/00	Depsipeptides having up to 20 amino acids in a fully
5/09	 the side chain of the first amino acid containing more amino groups than carboxyl groups, or derivatives thereof, e.g. Lys, Arg [6, 2006.01] 	11/02	defined sequence; Derivatives thereof [4, 6, 2006.01]cyclic, e.g. valinomycins [4, 2006.01]
5/093	the side chain of the first amino acid containing	14/00	Dentides having move than 20 amine acide. Castwins
37033	more carboxyl groups than amino groups, or derivatives thereof, e.g. Asp, Glu,	14/00	Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof [6, 2006.01]
	Asn [6, 2006.01]	14/005	• from viruses [6, 2006.01]
5/097	• • • the first amino acid being heterocyclic, e.g. Pro,	14/003	• • DNA viruses [6, 2006.01]
	His, Trp, e.g. thyroliberin,	14/01	Parvoviridae, e.g. feline panleukopenia virus,
	melanostatin [6, 2006.01]	14/013	human parvovirus [6, 2006.01]
5/10	 Tetrapeptides [4, 2006.01] 	14/02	Hepadnaviridae, e.g. hepatitis B
5/103	 the side chain of the first amino acid being 	, -	virus [6, 2006.01]
	acyclic, e.g. Gly, Ala [6, 2006.01]	14/025	Papovaviridae, e.g. papillomavirus,
5/107	• • the side chain of the first amino acid containing		polyomavirus, SV40, BK virus, JC
E /4.4	carbocyclic rings, e.g. Phe, Tyr [6, 2006.01]		virus [6, 2006.01]
5/11	 the side chain of the first amino acid containing more amino groups than carboxyl groups, or 	14/03	 Herpetoviridae, e.g. pseudorabies virus [6, 2006.01]
	derivatives thereof, e.g. Lys, Arg [6, 2006.01]	14/035	• • • • Herpes simplex virus I or II [6, 2006.01]
5/113	• • • the side chain of the first amino acid containing	14/04	• • • • Varicella-zoster virus [6, 2006.01]
	more carboxyl groups than amino groups, or	14/045	• • • • Cytomegalovirus [6, 2006.01]
	derivatives thereof, e.g. Asp, Glu,	14/05	• • • • Epstein-Barr virus [6, 2006.01]
5/117	Asn [6, 2006.01] • • the first amino acid being heterocyclic, e.g. Pro,	14/055	• • • • Marek's disease virus [6, 2006.01]
3/11/	His, Trp [6, 2006.01]	14/06	• • • Infectious bovine rhinotracheitis
5/12	• • Cyclic peptides [4, 2006.01]		virus [6, 2006.01]
5, 1 2	Cyclic peptides [1, 200002]	14/065	• • • Poxviridae, e.g. avipoxvirus [6, 2006.01]
7/00	Peptides having 5 to 20 amino acids in a fully defined	14/07	• • • Vaccinia virus; Variola virus [6, 2006.01]
	sequence; Derivatives thereof [4, 6, 2006.01]	14/075	• • • Adenoviridae [6, 2006.01]
7/02	Linear peptides containing at least one abnormal	14/08	• • RNA viruses [6, 2006.01]
7/04	peptide link [4, 2006.01]	14/085	• • • Picornaviridae, e.g. coxsackie virus, echovirus,
7/04	 Linear peptides containing only normal peptide links [4, 2006.01] 		enterovirus [6, 2006.01]
7/06	 having 5 to 11 amino acids [4, 2006.01] 	14/09	• • • Foot-and-mouth disease virus [6, 2006.01]
7/08	 having 3 to 11 animo acids [4, 2006.01] having 12 to 20 amino acids [4, 6, 2006.01] 	14/095	• • • Rhinovirus [6, 2006.01]
7/14	Angiotensins; Related peptides [4, 2006.01]	14/10	• • • Hepatitis A virus [6, 2006.01]
7/16	Oxytocins; Vasopressins; Related	14/105	• • • Poliovirus [6, 2006.01]
,,10	peptides [4, 2006.01]	14/11	• • Orthomyxoviridae, e.g. influenza virus [6, 2006.01]
7/18	Kallidins; Bradykinins; Related	14/115	Paramyxoviridae, e.g. parainfluenza
	peptides [4, 2006.01]	14/113	virus [6, 2006.01]
7/22	• • Eledoisins; Related peptides [4, 2006.01]	14/12	• • • • Mumps virus; Measles virus [6, 2006.01]
7/23	Luteinising hormone-releasing hormone [LHRH];	14/125	• • • • Newcastle disease virus [6, 2006.01]
	Related peptides [6, 2006.01]	14/13	• • • • Canine distemper virus [6, 2006.01]
7/28	• • Gramicidins A, B, D; Related	14/135	• • • • Respiratory syncytial virus [6, 2006.01]
7/50	peptides [4, 2006.01]Cyclic peptides containing at least one abnormal	14/14	• • • Reoviridae, e.g. rotavirus, bluetongue virus,
	peptide link [4, 2006.01]	14/145	Colorado tick fever virus [6, 2006.01] • • • Rhabdoviridae, e.g. rabies virus, Duvenhage
7/52	 with only normal peptide links in the ring [4, 2006.01] 	14/143	virus, Mokola virus or vesicular stomatitis
7/54	 with at least one abnormal peptide link in the 		virus [6, 2006.01]
7754	ring [4, 2006.01]	14/15	Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus, human T-cell
7/56	• • • the cyclisation not occurring through 2,4-diamino-butanoic acid [4, 2006.01]		leukaemia-lymphoma virus [6, 2006.01]
7/58	Bacitracins; Related peptides [4, 2006.01]	14/155	• • • Lentiviridae, e.g. human immunodeficiency
7/60	the cyclisation occurring through the 4-amino		virus [HIV], visna-maedi virus or equine
, , 50	group of 2,4-diamino-butanoic	14/16	infectious anaemia virus [6, 2006.01]
	acid [4, 2006.01]	14/16 14/165	HIV-1 [6, 2006.01]Coronaviridae, e.g. avian infectious bronchitis
7/62	• • • Polymyxins; Related peptides [4, 2006.01]	14/100	virus [6, 2006.01]

14/17	• • • Porcine transmissible gastroenteritis	14/395 • • • from Saccharomyces [6, 2006.01]
4.4.485	virus [6, 2006.01]	14/40 • • • from Candida [6, 2006.01]
14/175	Bunyaviridae, e.g. California encephalitis virus, Bift valley fover virus, Henton	14/405 • from algae [6, 2006.01]
	Rift valley fever virus, Hantaan virus [6, 2006.01]	14/41 • from lichens [6, 2006.01]
14/18	Togaviridae, e.g. flavivirus, pestivirus, yellow	14/415 • from plants [6, 2006.01]
14/10	fever virus, hepatitis C virus, japanese	14/42 • Lectins, e.g. concanavalin,
	encephalitis virus [6, 2006.01]	phytohaemagglutinin [6, 2006.01] 14/425 • Zeins [6, 2006.01]
14/185	• • • Hog cholera virus [6, 2006.01]	14/423 • Eenis [6, 2006.01] 14/43 • Thaumatin [6, 2006.01]
14/19	• • • • Rubella virus [6, 2006.01]	14/435 • from animals; from humans [6, 2006.01]
14/195	• from bacteria [6, 2006.01]	14/44 • • from protozoa [6, 2006.01]
	Note(s) [6]	14/445 • • • Plasmodium [6, 2006.01]
		14/45 • • • Toxoplasma [6, 2006.01]
	In groups C07K 14/20-C07K 14/365, where appropriate, after the bacteria terminology, the	14/455 • • • Eimeria [6, 2006.01]
	indication of the order (O), family (F) or genus (G) of	14/46 • • from vertebrates [6, 2006.01]
	the bacteria is given in brackets.	14/465 • • • from birds [6, 2006.01]
14/20	• • from Spirochaetales (O), e.g. Treponema,	14/47 • • • from mammals [6, 2006.01]
	Leptospira [6, 2006.01]	14/475 • • Growth factors; Growth regulators [6, 2006.01]
14/205	• • from Campylobacter (G) [6, 2006.01]	14/48 • • • Nerve growth factor [NGF] [6, 2006.01]
14/21	• • from Pseudomonadaceae (F) [6, 2006.01]	14/485 • • • Epidermal growth factor [EGF], i.e.
14/215	• • from Halobacteriaceae (F) [6, 2006.01]	urogastrone [6, 2006.01]
14/22	• • from Neisseriaceae (F), e.g.	14/49 • • • Platelet-derived growth factor
14/225	Acinetobacter [6, 2006.01]	[PDGF] [6, 2006.01]
14/225	• from Alcaligenes (G) [6, 2006.01]	14/495 • • • Transforming growth factor [TGF] [6, 2006.01]
14/23	• • from Brucella (G) [6, 2006.01]	14/50 • • • Fibroblast growth factor [FGF] [6, 2006.01]
14/235 14/24	 from Bordetella (G) [6, 2006.01] from Enterobacteriaceae (F), e.g. Citrobacter, 	14/505 • • • Erythropoietin [EPO] [6, 2006.01]
14/24	Serratia, Proteus, Providencia, Morganella,	14/51 • • • Bone morphogenic factor; Osteogenin; Osteogenic factor; Bone-inducing
	Yersinia [6, 2006.01]	factor [6, 2006.01]
14/245	• • • Escherichia (G) [6, 2006.01]	14/515 • • • Angiogenic factor; Angiogenin [6, 2006.01]
14/25	• • • Shigella (G) [6, 2006.01]	14/52 • Cytokines; Lymphokines; Interferons [6, 2006.01]
14/255	• • • Salmonella (G) [6, 2006.01]	14/525 • • • Tumour necrosis factor [TNF] [6, 2006.01]
14/26	• • • Klebsiella (G) [6, 2006.01]	14/53 • • • Colony-stimulating factor [CSF] [6, 2006.01]
14/265	• • • Enterobacter (G) [6, 2006.01]	14/535 • • • Granulocyte CSF; Granulocyte-macrophage
14/27	• • • Erwinia (G) [6, 2006.01]	CSF [6, 2006.01]
14/275	• • • Hafnia (G) [6, 2006.01]	14/54 • • • Interleukins [IL] [6, 2006.01]
14/28	• • from Vibrionaceae (F) [6, 2006.01]	14/545 • • • • IL-1 [6, 2006.01]
14/285	 from Pasteurellaceae (F), e.g. Haemophilus influenza [6, 2006.01] 	14/55 • • • • IL-2 [6, 2006.01]
14/29	• from Richettsiales (O) [6, 2006.01]	14/555 • • • Interferons [IFN] [6, 2006.01]
14/295	• from Chlamydiales (O) [6, 2006.01]	14/56 • • • • IFN-alpha [6, 2006.01]
14/203	• • from Mycoplasmatales, e.g. Pleuropneumonia-like	14/565 • • • • IFN-beta [6 , 2006.01] 14/57 • • • • IFN-gamma [6 , 2006.01]
14/50	organisms [PPLO] [6, 2006.01]	14/575 • • Hormones [6, 2006.01]
14/305	• • from Micrococcaceae (F) [6, 2006.01]	14/58 • • • Atrial natriuretic factor complex; Atriopeptin;
14/31	• • • from Staphylococcus (G) [6, 2006.01]	Atrial natriuretic peptide [ANP]; Cardionatrin;
14/315	• • from Streptococcus (G), e.g.	Cardiodilatin [6, 2006.01]
	Enterococci [6, 2006.01]	14/585 • • • Calcitonins [6, 2006.01]
14/32	• • from Bacillus (G) [6, 2006.01]	14/59 • • • Follicle-stimulating hormone [FSH]; Chorionic
14/325	Bacillus thuringiensis crystal peptides, i.e.	gonadotropins, e.g. hCG [human chorionic
14/22	delta-endotoxins [6, 2006.01]	gonadotropin]; Luteinising hormone [LH]; Thyroid-stimulating hormone
14/33	• from Clostridium (G) [6, 2006.01]	[TSH] [6, 2006.01]
14/335	• • from Lactobacillus (G) [6, 2006.01]	14/595 • • • Gastrins; Cholecystokinins [CCK] [6, 2006.01]
14/34 14/345	from Corynebacterium (G) [6, 2006.01]from Brevibacterium (G) [6, 2006.01]	14/60 • • • Growth hormone-releasing factor [GH-RF], i.e.
14/345	• from Mycobacteriaceae (F) [6, 2006.01]	somatoliberin [6, 2006.01]
14/355	• • from Nocardia (G) [6, 2006.01]	14/605 • • • Glucagons [6, 2006.01]
14/36	• • from Actinomyces; from Streptomyces	14/61 • • • Growth hormone [GH], i.e.
11,00	(G) [6, 2006.01]	somatotropin [6, 2006.01]
14/365	• • from Actinoplanes (G) [6, 2006.01]	14/615 • • • Extraction from natural sources [6, 2006.01]
14/37	• from fungi [6, 2006.01]	14/62 • • • Insulins [6, 2006.01]
14/375	• • from Basidiomycetes [6, 2006.01]	14/625 • • • • Extraction from natural sources [6, 2006.01]
14/38	• • from Aspergillus [6, 2006.01]	14/63 • • • Motilins [6, 2006.01]
14/385	• • from Penicillium [6, 2006.01]	
14/39	from yeasts [6, 2006.01]	

14/39 • • from yeasts **[6, 2006.01]**

14/635			Parathyroid hormone, i.e. parathormone;	14/82	Translation products from oncogenes [6, 2006.01]
14/033		•	Parathyroid hormone-related	14/825	 Metallothioneins [6, 2006.01]
			peptides [6, 2006.01]	1 ., 020	[0, 2000 [0]
14/64	•	•		16/00	Immunoglobulins, e.g. monoclonal or polyclonal
14/645		•		16/02	antibodies [6 , 2006.01] • from eggs [6 , 2006.01]
14/65	•	•	• Insulin-like growth factors, i.e. somatomedins,	16/02	• from milk [6, 2006.01]
14/655	_		e.g. IGF-1, IGF-2 [6, 2006.01]	16/04	• from serum [6, 2006.01]
14/655 14/66		•	Somatostatins [6, 2006.01]Thymopoietins [6, 2006.01]	16/08	• against material from viruses [6, 2006.01]
14/665			derived from pro-opiomelanocortin, pro-	16/10	• from RNA viruses [6, 2006.01]
14/003	•		enkephalin or pro-dynorphin [6, 2006.01]	16/12	• against material from bacteria [6, 2006.01]
14/67	•		Lipotropins, e.g. beta- or gamma-	16/14	against material from fungi, algae or
			lipotropin [6, 2006.01]		lichens [6, 2006.01]
14/675			• Beta-endorphins [6, 2006.01]	16/16	• against material from plants [6, 2006.01]
14/68	•	•	Melanocyte-stimulating hormone Melanocyte-stimulating hormone	16/18	• against material from animals or humans [6, 2006.01]
14/005			[MSH] [6, 2006.01]	16/20	• • from protozoa [6, 2006.01]
14/685 14/69			• • Alpha-melanotropin [6, 2006.01]	16/22	• • against growth factors [6, 2006.01]
14/695			• Beta-melanotropin [6, 2006.01]• Corticotropin [ACTH] [6, 2006.01]	16/24	 against cytokines, lymphokines or interferons [6, 2006.01]
14/093			• Enkephalins [6, 2006.01]	16/26	• • against hormones [6, 2006.01]
14/705			Receptors; Cell surface antigens; Cell surface	16/28	 against normones [6, 2000.01] against receptors, cell surface antigens or cell
			determinants [6, 2006.01]	10/20	surface determinants [6, 2006.01]
14/71	•	•	• for growth factors; for growth	16/30	• • • from tumour cells [6, 2006.01]
14/715			regulators [6, 2006.01]	16/32	against translation products from
14/715	•	•	 for cytokines; for lymphokines; for interferons [6, 2006.01] 	16/04	oncogenes [6, 2006.01]
14/72			• for hormones [6, 2006.01]	16/34	• • against blood group antigens [6, 2006.01]
14/725			• T-cell receptors [6, 2006.01]	16/36	• • against blood coagulation factors [6, 2006.01]
14/73			• • CD4 [6, 2006.01]	16/38	 against protease inhibitors of peptide structure [6, 2006.01]
14/735			• Fc receptors [6, 2006.01]	16/40	• against enzymes [6, 2006.01]
14/74			 Major histocompatibility complex 	16/42	against immunoglobulins (anti-idiotypic
			[MHC] [6, 2006.01]		antibodies) [6, 2006.01]
14/745	•		Blood coagulation or fibrinolysis	16/44	 against material not provided for
			factors [6, 2006.01]		elsewhere [6, 2006.01]
14/75			• Fibrinogen [6, 2006.01]	16/46	Hybrid immunoglobulins (hybrids of an
14/755			• Factors VIII [6, 2006.01]		immunoglobulin with a peptide not being an
14/76			Albumins [6, 2006.01]		immunoglobulin C07K 19/00) [6, 2006.01]
14/765			• Serum albumin, e.g. HSA [6, 2006.01]	17/00	Carrier-bound or immobilised peptides; Preparation
14/77			• Ovalbumin [6, 2006.01]		thereof [4, 2006.01]
			Apolipopeptides [6, 2006.01]	17/02	 Peptides being immobilised on, or in, an organic
14/78	•		Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble		carrier [4, 2006.01]
			globulin [CIG] [6, 2006.01]	17/04	• • entrapped within the carrier, e.g. gel, hollow
14/785	•		Alveolar surfactant peptides; Pulmonary surfactant	17/06	fibre [4, 2006.01]
			peptides [6, 2006.01]	17/06	 attached to the carrier <u>via</u> a bridging agent [4, 2006.01]
14/79	•		Transferrins, e.g. lactoferrins,	17/08	• the carrier being a synthetic polymer [4, 2006.01]
			ovotransferrins [6, 2006.01]	17/10	• the carrier being a carbohydrate [4, 2006.01]
14/795	•		rphyrin- or corrin-ring-containing	17/12	• • Cellulose or derivatives thereof [4, 2006.01]
14/00			otides [6, 2006.01]	17/14	Peptides being immobilised on, or in, an inorganic
14/80			Cytochromes [6, 2006.01]		carrier [4, 2006.01]
14/805			Haemoglobins; Myoglobins [6, 2006.01]	40/00	TILL 11 (1) (1)
14/81			otease inhibitors [6, 2006.01]	19/00	Hybrid peptides (hybrid immunoglobulins
14/815	•	•	from leeches, e.g. hirudin, eglin [6, 2006.01]		composed solely of immunoglobulins C07K 16/46) [6, 2006.01]