IAO2 : Résolution de problèmes et Programmation Logique

Logique propositionnelle : de la théorie à la résolution de problèmes

Sylvain Lagrue

sylvain.lagrue@hds.utc.fr

À propos

Information	Valeur		
Auteur	Sylvain Lagrue (<u>sylvain.lagrue@utc.fr</u>)		
Licence	Creative Common <u>CC</u> BY-SA 3.0		
Version document	1.5.5		

Sources/bibliographie

- Artificial Intelligence: A Modern Approach: Stuart Russell and Peter Norvig, I.S.B.N 0136042597, 2009
- Intelligence Artificielle et Informatique Théorique (2^e édition) : Jean-Marc Alliot, Pascal Brisset, Frederick Garcia, Thomas Schiex, I.S.B.N. 2854285786, 2002

Des coquilles?

sylvain.lagrue@utc.fr ou sur le forum du cours moodle

But de la logique

Formaliser mathématiquement le raisonnement humain pour :

Période classique (Aristote, Platon et les péripatéticiens...)

- Analyse des raisonnements et de l'argumentation (dialectique vs. rhétorique)
- 2 types de raisonnement fallacieux : le paralogisme et le sophisme
- Objectif : la recherche de la Vérité

Période moderne

- Donner un sens aux Mathématiques
- Établir leurs non-contradictions (2^e problème de Hilbert)
- Axiomatiser leurs diverses branches
- Mécaniser le raisonnement
- Formaliser certains concepts pour l'informatique théorique (décidabilité, finitude, complexité, etc.) et l'IA

Les trois formes de raisonnement¹

"

Les mêmes causes produisent les mêmes effets.

$A \rightarrow B$

- A est la cause, l'hypothèse, la prémisse
- B est la conséquence, la conclusion
- **Déduction** : à partir de la cause et de la règle, trouver les conséquences
- Abduction : à partir de la règle et des conséquences, trouver les causes
- Induction : à partir des causes et des conséquences, trouver la règle

Seule la déduction est **valide** : si les causes et les règles générales sont justes, les conséquences sont certaines

¹ Mais aussi raisonnement par cas, raisonnement plausible, raisonnement par analogie, etc.

Quelques exemples...

Les Ferrari sont des voitures rouges.

$$F \rightarrow R$$

Les voitures qui ne sont pas rouges ne sont pas des Ferrari?

$$\neg R \rightarrow \neg F$$

Est-ce que toutes les voitures rouges sont des Ferrari?

$$R \rightarrow F$$

Les voitures qui ne sont pas des Ferrari ne sont pas des voitures rouges ?

$$\neg F \rightarrow \neg R$$

Trouver un argument fallacieux...

$$ISF \rightarrow EF$$

Donc, pour ne plus avoir d'EF, il suffit de supprimer l'ISF...

L'ISF provoque de l'EF. Les PF provoquent de l'EF. **Donc** l'ISF est la cause des PF. Il faut supprimer l'ISF!

$$\begin{array}{c} \mathsf{ISF} \to \mathsf{EF} \\ \mathsf{PF} \to \mathsf{EF} \end{array}$$

$$ISF \rightarrow PF$$

Applications

- Conception et vérification de circuits
- Preuve de programmes
- Langage de programmation
- Base de données (déductive)
- Web sémantique
- Diagnostic/panne
- Aide à la décision
- Robotique
- Analyse de documents/traitement du langage naturel
- Démonstration automatique
- etc.

Exemple de preuve : bicoloration des triplets de Pythagore

"

Est-il possible de colorier chaque entier positif en bleu ou en rouge de telle manière qu'aucun triplet d'entiers a, b et c qui satisfait la fameuse équation de Pythagore $a^2 + b^2 = c^2$ ne soient pas tous de la même couleur ? Par exemple, pour le triplet 3, 4 et 5, si 3 et 5 sont coloriés en bleu, alors 4 doit être rouge.

- Problème ouvert depuis les années 1980 (possible jusqu'à 7824)
- Résolu informatiquement en 2016 https://
 lejournal.cnrs.fr/articles/laplus-grosse-preuve-delhistoire-des-mathematiques
- **200 To** de preuve...

La logique propositionnelle

- Fragment le plus simple de la logique mathématique
- Issue des travaux de Georges Boole (1815-1864) et d'Auguste de Morgan (1806-1871)
- Liens évidents avec l'électronique, la téléphonie et l'informatique...

- $V_S = \{a, b, \ldots, p, q, \ldots\}$ est un ensemble fini de variables propositionnelles
- $V_C=\{\neg,\land,\lor,\rightarrow,\leftrightarrow,\top,\bot\}$ est un ensemble de connecteurs (resp. d'arité 1, 2, 2, 2, 0, 0)

Remarque : les connecteurs \neg et \lor forment un système complet (tous les autres peuvent être définis à partir de ceux-ci)

Définition : formules propositionnelles (bien formées)

- 1. Tout élément de V_S est une formule ;
- 2. Si F est une formule, alors $(\neg F)$ est une formule ;
- 3. Si F et G sont des formules alors $(F \wedge G)$, $(F \vee G)$, $(F \to G)$ et $(F \leftrightarrow G)$ sont des formules ;
- 4. \top et \bot sont des formules ;
- 5. Toute formule s'obtient en appliquant un nombre fini de ces règles.

On notera F_{V_S} l'ensemble des formules bien formées basées sur V_S .

Priorité des opérateurs

Pour limiter les parenthèses, on peut utiliser les règles de priorité suivantes :

$$\neg > \land > \lor > \rightarrow, \leftrightarrow$$

Exemples:

- $\neg a \lor b \to c$ est équivalent à ?
- $eg a \lor b \to c \text{ est \'equivalent \`a} (((
 eg a) \lor b) \to c)$
- $\neg a \leftrightarrow b \rightarrow c$ est équivalent à ?
- $\neg a \leftrightarrow b \rightarrow c$ n'est pas une formule bien formée (pas de priorité droite/gauche) !

Littéral

- C'est une variable propositionnelle ou sa négation
- ullet p et $\neg p$ sont 2 littéraux
- ullet si $|V_S|=n$, alors il y a **?** littéraux
- ullet si $|V_S|=n$, alors il y a 2n littéraux

Représentation sous forme de graphes

On peut représenter toute formule sous forme d'arbre (ordonné) :

- chaque feuille de l'arbre correspond à une variable propositionnelle ;
- les autres nœuds correspondent à des connecteurs.

Exemple:

 $lacksquare \neg a \lor b
ightarrow c$

On peut représenter une formule sous forme de DAG (graphe dirigé acyclique) pour représenter une formule de façon plus concise/compacte...

Exemple:

$$ullet a \lor b
ightarrow c \land (a \lor b)$$

Objectif : donner des valeurs de vérité aux formules

Pour cela, on va considérer deux valeurs (principe du tiers exclu) :

- {vrai, faux}
- **•** {0, 1}
- {true, false}
- {T, F}
- **■** {⊤, ⊥}
- {blanc, noir}
- {vert, rouge}
- {V, F}
- **...**

Interprétation

Définition : une interprétation ω est une application de V_S dans $\{V,F\}$ qui associe à chaque proposition la valeur V ou F

On notera Ω l'ensemble des interprétations possibles définies sur le langage.

Si
$$n=|V_S|$$
, on a $|\Omega|=$?

Si
$$n=|V_S|$$
, on a $|\Omega|=2^n$

Exemple:

- $\bullet \ V_S = \{a,b,c\}$
- ullet $\omega_0(a)=F$
- ullet $\omega_0(b)=F$
- ullet $\omega_0(c)=F$

Valuation

Définition : Soit φ une formule bien formée et $\omega \in \Omega$, la valuation de φ pour ω (notée $Val(\varphi,\omega)$) est telle que :

- ullet si arphi est une variable propositionnelle, alors $Val(arphi,\omega)=\omega(arphi)$;
- $ullet \ Val(op,\omega)=V$ et $Val(ot,\omega)=F$;
- si φ est de la forme $\neg A$ (resp. $A \land B$, $A \lor B$, $A \to B$, $A \leftrightarrow B$), alors appliquer récursivement la table de vérité suivante.

Α	В	٦A	A∧B	AVB	A→B	A↔B
F	F	V	F	F	V	V
F	٧	V	F	V	V	F
V	F	F	F	V	F	F
V	٧	F	V	V	V	V

Remarque : on est sûr que la valuation se termine car à chaque étape un connecteur est résolu.

Exemple

- $\bullet \ \omega = \{a,b,\neg c\}$
- $ullet arphi = \lnot (a \lor (b
 ightarrow \lnot c))$
- $Val(arphi,\omega)=$?
- $Val(arphi,\omega)=F$

D'autres définitions...

- ω satisfait φ , noté $\omega \models \varphi$ ssi $Val(\varphi, \omega) = V$. On dit alors que ω est un modèle de φ .
- ullet L'ensemble des modèles de arphi est noté Mod(arphi), i.e. :

$$Mod(\varphi) = \{\omega \in \Omega : \omega \models \varphi\}$$

• ω falsifie φ , noté $\omega \nvDash \varphi$ ssi $Val(\varphi, \omega) = F$. On dit alors que ω est un contremodèle de φ .

Une formule propositionnelle φ est dite :

- valide (noté $\models \varphi$) ssi pour toute interprétation $\omega \in \Omega$ on a $\omega \models \varphi$. Dans ce cas φ est également appelé tautologie ;
- ullet contradictoire ssi pour toute interprétation $\omega\in\Omega$ on a $\omega
 ot\succeq \varphi$;
- satisfiable ssi elle n'est pas contradictoire;
- contingente ssi il existe $\omega \in \Omega$ tel que $\omega \models \varphi$ et il existe $\omega' \in \Omega$ tel que $\omega' \not\models \varphi$.

Calculer la validité d'une formule

3 méthodes:

- 1. en passant par des tables de vérité
- 2. par arbre sémantique/algorithme de Quine
- 3. par l'absurde

Exemples:

- $arphi_1 = \lnot(a \lor b) \leftrightarrow \lnot a \land \lnot b$ (règle de Morgan)
- $ullet arphi_2 =
 eg q \wedge (p
 ightarrow r)
 ightarrow (
 eg q ee r)$

Conséquence logique

Définition : une formule ψ est dite **conséquence logique** de φ (noté $\varphi \models \psi$) ssi quel que soit $\omega \in \Omega$, $\omega \models \varphi$ implique $\omega \models \psi$

En d'autres termes : $Mod(\varphi) \subseteq Mod(\psi)$

 $\begin{array}{l} \mathbf{Par\ extension:} \varphi_1, \dots, \varphi_n \models \psi \text{ ssi pour tout } \omega \in \Omega \text{ tel que quel que soit } \varphi_i \text{,} \\ \omega \models \varphi_i \text{, on a } \omega \models \psi \end{array}$

Exemples:

- $ullet a \models a \lor b$
- $\blacksquare \ a,a \to b \models b$
- $ullet \perp \models a
 ightarrow b ee c$

Remarques

- \bullet Équivalence logique $\varphi_1 \equiv \varphi_2$ ssi $\varphi_1 \models \varphi_2$ et $\varphi_2 \models \varphi_1$
- $ullet \models arphi$ est une écriture raccourcie de $\top \models arphi$
- On peut tout déduire de la contradiction...

Principe d'explosion : ex falso quodlibet.

⚠ & Avant de chercher à déduire quoi que se soit d'un ensemble de formules, il faut toujours vérifier préalablement leur cohérence (c.-à-d. prouver l'existence d'au moins un modèle)!

Théorème et corollaires...

Théorème de la déduction :

$$\varphi_1, \dots, \varphi_n \models \psi \text{ ssi } \varphi_1, \dots, \varphi_{n-1} \models \varphi_n \to \psi$$

Corollaire 1:

$$\varphi \models \psi \text{ ssi } \models \varphi \rightarrow \psi$$

L'implication matérielle et la conséquence logique coïncident!

Corollaire 2:

$$\varphi_1, \ldots, \varphi_n \models \psi \text{ ssi } \varphi_1 \wedge \ldots \wedge \varphi_n \models \psi$$

En particulier si les φ_i sont des littéraux...

Corollaire 3:

$$\varphi_1, \dots, \varphi_n \models \psi \text{ ssi } \varphi_1, \dots, \varphi_n, \neg \psi \models \bot$$

C'est le raisonnement par l'absurde : la conséquence logique peut se ramener à un simple test de satisfiabilité !

Complexité...

- Tester si une formule est satisfiable est NP-complet.
- Tester si une formule est une conséquence logique d'une autre est CoNPcomplet.

Illustration avec le Wumpus...

- Règle 1 : Il n'y a pas de puits en 1,1
- Règle 2 : Autour de chaque puits, il y a de la brise
- Règle 3 : Autour du Wumpus il y a une odeur fétide

Application au Wumpus...

Base de connaissance propositionnelle (concernant les puits)

$$R_1: \neg P_{1,1}$$

$$R_2:B_{1,1}\leftrightarrow P_{1,2}\vee P_{2,1}$$

$$R_3: B_{2,1} \leftrightarrow P_{1,1} \lor P_{2,2} \lor P_{3,1}$$

•••

Faits

Le héros est en (1,1) et il ne perçoit rien

$$F_1:
eg B_{1,1}$$

Le héros décide d'aller en (2,1) et il perçoit une brise

$$F_2: B_{2,1}$$

Peut-on déduire qu'il n'y a pas de puits en (1,2)?

Peut-on déduire qu'il n'y a pas de puits en (2,2) ?

$$lpha_2:
eg P_{2,2}$$

$$KB \models lpha_2$$
 ?

Objectif: apporter des axiomes et une règle d'inférence permettant de modéliser le raisonnement en se basant uniquement sur la syntaxe

On introduit pour cela un nouveau symbole de déduction syntaxique : \vdash

Définition: la déduction (ou preuve, ou démonstration) d'une formule A à partir d'hypothèses H_1, \ldots, H_m (notée $H_1, \ldots, H_m \vdash A$) est une liste finie de formules (A_1, \ldots, A_n) tel que :

- \bullet $A_n = A$
- ullet pour $i=1,\ldots,n$ la formule A_i est :
 - soit un axiome (avec éventuelles substitutions)
 - ullet soit égale à une des hypothèses H_j
 - ullet soit obtenue par application d'une règle d'inférence à des prémisses précédant A_i dans la liste

Un théorème est une formule toujours vraie (notée $\vdash A$), c.-à.-d. une formule déductible sans hypothèse.

Un système hilbertien

De David Hilbert (1862-1943), mathématicien allemand et auteur de ses célèbres 23 problèmes.

Schéma d'axiomes

- $A1: \vdash A \rightarrow (B \rightarrow A)$
- $\bullet \ A2: \ \vdash (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $A3: \vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$

Règle d'inférence

Modus Ponens:

$$\frac{\vdash A, \; \vdash A \to B}{\vdash B}$$

Règle de substitution

ullet Les A,B et C peuvent être remplacés par n'importe quelle formule bien formée

Remarque: il s'agit du plus petit schéma d'axiomes connu à ce jour...

Exemple

 $\mathsf{Montrons} : \vdash A \to A$

Étape 1 :
$$\vdash (A
ightarrow (B
ightarrow C))
ightarrow ((A
ightarrow B)
ightarrow (A
ightarrow C))$$
 (Axiome 2)

Étape 2 : en substituant A o A à B et A à C on obtient

$$dash (A
ightarrow ((A
ightarrow A)
ightarrow A))
ightarrow ((A
ightarrow (A
ightarrow A))
ightarrow (A
ightarrow A))$$

Étape 3 : $\vdash A o (B o A)$ (Axiome 1)

Étape 4 : en substituant A o A à B dans 3 on obtient

$$\vdash A
ightarrow ((A
ightarrow A)
ightarrow A)$$

Étape 5 : modus ponens entre 4 et 2 permet d'obtenir

$$\vdash (A
ightarrow (A
ightarrow A))
ightarrow (A
ightarrow A)$$

Étape 6 : en substituant A à B dans l'axiome 1 on obtient :

$$\vdash A \rightarrow (A \rightarrow A)$$

Étape 7 : modus ponens entre 5 et 6

$$\vdash A \rightarrow A$$

Autre schéma d'axiomes hilbertien

$$\blacksquare \vdash A \rightarrow (B \rightarrow A)$$

$$ullet (A o B) o ((A o (B o C)) o (A o C))$$

$$ullet$$
 $\vdash A
ightarrow (B
ightarrow A \wedge B)$

$$ullet \vdash (A \land B)
ightarrow A$$

$$ullet \vdash (A \land B)
ightarrow B$$

$$ullet \vdash A
ightarrow A \lor B$$

$$ullet \ ullet B
ightarrow A ee B$$

$$ullet$$
 \vdash $(A
ightarrow C)
ightarrow ((B
ightarrow C)
ightarrow (A ee B
ightarrow C))$

$$\bullet \vdash (A \to B) \to ((A \to \neg B) \to \neg A)$$

$$\blacksquare \vdash \neg \neg A \rightarrow A$$

Propriétés fondamentales

Propriété 1. (de complétude) Le calcul propositionnel est fortement complet, c'està-dire :

si
$$E \models A$$
 alors $E \vdash A$

Corollaire. Le calcul propositionnel est faiblement complet :

$$\mathsf{si} \models A \ \mathsf{alors} \vdash A$$

Proposition 2. (d'adéquation) Le calcul propositionnel est fortement adéquat :

si
$$E \vdash A$$
 alors $E \models A$

Corollaire. Le calcul propositionnel est faiblement adéquat :

$$\mathsf{si} \vdash A \mathsf{ alors} \models A$$

Propriétés fondamentales

Proposition 3. (de consistance) Le calcul propositionnel est consistant :

il n'existe pas de formule A telle que $\vdash A$ et $\vdash \neg A$

C'est une absence de paradoxe.

Paradoxe de Russell : l'ensemble des ensembles n'appartenant pas à euxmêmes appartient-il à lui-même ?

Propriétés fondamentales

Proposition 4. (de décidabilité) Le calcul des propositions est décidable, c'est-à-dire qu'il existe une procédure mécanique permettant d'établir en un temps **fini** si une formule est un théorème ou n'est pas un théorème.

Exemple : tables de vérité...

Proposition 5. Le calcul des propositions n'est pas syntaxiquement complet, c'est-à-dire qu'il peut exister des formules φ tel qu'on ait ni $\vdash \varphi$, ni $\vdash \neg \varphi$.

Règles de déductions à partir de faits

Un système incomplet mais utilisable

- Modus Ponens : $\frac{A \rightarrow B, A}{B}$
- Élimination de la conjonction : $\frac{A \wedge B}{A}$
- Élimination de l'équivalence : $\frac{A \leftrightarrow B}{(A \rightarrow B) \land (B \rightarrow A)}$
- Apparition de l'équivalence : $\frac{(A \rightarrow B) \land (B \rightarrow A)}{A \leftrightarrow B}$
- Contraposée : $\frac{A \rightarrow B}{\neg B \rightarrow \neg A}$
- Règles de Morgan : $\frac{\neg (A \lor B)}{\neg A \land \neg B}$
- Règles de Morgan : $\frac{\neg (A \land B)}{\neg A \lor \neg B}$
- Double négation : $\frac{\neg(\neg A)}{A}$

On supposera acquise l'associativité du \wedge et du \vee

Wumpus II: le retour

$$\blacksquare R_1 : \neg P_{1,1}$$

$$ullet R_2: B_{1,1} \leftrightarrow P_{1,2} \lor P_{2,1}$$

$$ullet R_3: B_{2,1} \leftrightarrow P_{1,1} \lor P_{2,2} \lor P_{3,1}$$

- $F_1 : \neg B_{1,1}$
- $-F_2:B_{2,1}$

Soit $KB = \{R_1, R_2, R_3, F_1, F_2\}$, montrons que $KB \vdash \neg P_{1,2}$

- $lacksquare R_2$ + élimination de l'équivalence donne $R_6:(B_{1,1} o P_{1,2}ee P_{2,1})\wedge (P_{1,2}ee P_{2,1} o B_{1,1})$
- ullet R_6 + élimination de la conjonction donne $R_7:P_{1,2}ee P_{2,1} o B_{1,1}$
- $lacksquare R_7$ + contraposée donne $R_8:
 eg B_{1,1}
 ightarrow
 eg (P_{1,2} ee P_{2,1})$
- ullet F_1 + R_8 + Modus Ponens donne $R_9:
 eg(P_{1,2} ee P_{2,1})$
- ullet R_9 + de Morgan donne $R_{10}:
 eg P_{1,2} \wedge
 eg P_{2,1}$
- ullet R_{10} + élimination de la conjonction donne $R_{11}:
 eg P_{1,2}$

Formes normales disjonctives

Définition : un **cube** est une conjonction de littéraux

Exemple : $a \wedge b \wedge \neg c$

Définition: une forme normale disjonctive (DNF) est une disjonction de cubes.

Exemples:

 $(a \land b) \lor (\neg a \land \neg a) \lor (a \land b \land \neg c)$ est une forme disjonctive (mais pas normale, elle contient des cubes non purs)

$$(a \wedge b) \vee (\lnot a \wedge b) \vee (a \wedge b \wedge \lnot c)$$
 est une DNF

Remarque 1 : pour vérifier si une DNF est valide, il suffit de vérifier un à un ses cubes

Remarque 2 : une DNF peut être de taille exponentielle, par exemple \top

Remarque 3 : les cubes sont dits purs si une variable n'apparaît qu'une seule fois

Formes normales conjonctives

Définition : une **clause** est une disjonction de littéraux. Une clause est pure si chaque variable n'apparaît au plus qu'une seule fois

Exemple : $a \lor b \lor \neg c$

Définition : une **forme normale conjonctive** (CNF) est une conjonction de clauses pures

Exemple : $(a \lor b) \land (\neg a \lor b) \land (a \lor b \lor \neg c)$ est une CNF

Remarque 1 : la taille d'une CNF peut également être exponentielle

Remarque 2 : cette forme est souvent plus utile pour représenter des connaissances

Remarque 3 : ... mais la recherche de validité n'est plus immédiate

Autres écritures

Écriture implicative

- $ullet \
 eg a ee b$ peut s'écrire a o b
- ullet $\neg a ee \neg b ee c$ peut s'écrire $a \wedge b o c$, voire a,b o c
- ullet $\neg a \lor b \lor c$ peut s'écrire $a o b \lor c$, voire a o b, c
- ullet $\neg a ee \neg b ee c ee d$ peut s'écrire $a \wedge b o c ee d$, voire a,b o c,d
- ullet a peut s'écrire op a ou op a
- ullet $\neg a$ peut s'écrire a
 ightarrow ot ou a
 ightarrow

Écriture ensembliste

 $C_1 \wedge C_2 \wedge \ldots \wedge C_n$ peut s'écrire sous forme ensembliste : $N=\{C_1,C_2,\ldots,C_n\}$ voire sous forme d'ensembles d'ensembles

Exemple : $(a \lor b) \land (\neg a \lor b) \land (a \lor b \lor \neg c)$ peut s'écrire :

$$\{\{a,b\},\{\neg a,b\},\{a,b,\neg c\}\}$$

Le problème d'existence de modèle (problème de satisfiabilité) devient :

66

Il existe $\omega \in \Omega$ tel que quel que soit $C \in N$, il existe $l \in C$ tel que $\omega \models l$

Théorème de normalisation

Théorème. Toute formule peut se mettre sous forme CNF (resp. DNF)

Pour cela, on utilise les règles suivantes :

- 1. tous les $A \leftrightarrow B$ se réécrivent en $(A \to B) \wedge (B \to A)$
- 2. tous les A o B se réécrivent en $\neg A \lor B$
- 3. on utilise les règles de Morgan :
 - ullet $\neg (A \lor B)$ se réécrit $\neg A \land \neg B$
 - $\neg (A \land B)$ se réécrit $\neg A \lor \neg B$
- 4. $\neg \neg A$ se réécrit A
- 5. on utilise la distributivité du \wedge et du \vee :
 - ullet $A ee (B \wedge C)$ se réécrit $(A ee B) \wedge (A ee C)$
 - $A \wedge (B \vee C)$ se réécrit $(A \wedge B) \vee (A \wedge C)$

Remarque : La conjonction de 2 CNF est une CNF ⇒ application récursive des règles de transformation quand on a une conjonction entre 2 formules quelconques

Exemple

Mettre sous forme CNF la formule $(p
ightarrow (q
ightarrow r))
ightarrow (p \wedge s
ightarrow r)$

- ullet Suppression des implications : $eg(
 eg p \lor (
 eg q \lor r)) \lor (
 eg(p \land s) \lor r)$
- ullet Règle de Morgan : $eg(
 eg p \lor
 eg q \lor r) \lor ((
 eg p \lor
 eg s) \lor r)$
- ullet Règle de Morgan : $(p \wedge q \wedge
 eg r) ee (
 eg p ee
 eg s ee r)$
- Distribution : $(p \lor \neg p \lor \neg s \lor r) \land (q \lor \neg p \lor \neg s \lor r) \land (\neg r \lor \neg p \lor \neg s \lor r)$
- Associativité du \vee : $(p \lor \neg p \lor \neg s \lor r) \land (q \lor \neg p \lor \neg s \lor r) \land (\neg r \lor r \lor \neg p \lor \neg s)$
- Tautologies... : $(\top \lor \neg s \lor r) \land (q \lor \neg p \lor \neg s \lor r) \land (\top \lor \neg p \lor \neg s)$
- ullet Tautologies et $ee : op \wedge (q ee
 eg p ee
 eg s ee r) \wedge op$
- ullet Tautologies et \wedge : $q \vee \neg p \vee \neg s \vee r$
- ullet Au final : $eg p \lor q \lor r \lor
 eg s$

Wumpus III le retour

Mettre les règles du Wumpus sous forme de clauses...

- $\blacksquare R_1 : \neg P_{1,1}$
- ullet $R_2:B_{1,1}\leftrightarrow P_{1,2}\lor P_{2,1}$
- $ullet R_3: B_{2,1} \leftrightarrow P_{1,1} \lor P_{2,2} \lor P_{3,1}$
- $F_1 : \neg B_{1,1}$
- $-F_2:B_{2,1}$

OK pour R_1 , F_1 et F_2

Pour R_2 ...

- $R_2: B_{1,1} \leftrightarrow P_{1,2} \lor P_{2,1}$
- 1. Suppression des équivalences :

$$(B_{1,1} o P_{1,2}ee P_{2,1})\wedge (P_{1,2}ee P_{2,1} o B_{1,1})$$

2. Suppression des implications :

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

- 3. De Morgan : $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Distributivité du ∨ :

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

En exercice : R_3 ...

Principe de résolution

Théorème. Soit N une forme normale conjonctive et C_1 et C_2 deux clauses de N. Soit p un atome tel que $p \in C_1$ et $\neg p \in C_2$. Soit la clause

$$R = (C_1 \smallsetminus \{p\}) \cup (C_2 \smallsetminus \{\neg p\})$$

alors les CNF N et $N \cup \{R\}$ sont équivalentes.

Ou encore sous forme de règle de réécriture :

$$rac{Aee B,\
eg Bee C}{Aee C}$$

Preuve : il suffit de montrer que $A \lor B, \neg B \lor C \models A \lor C$

■ Pour montrer qu'un ensemble de clauses est incohérent, on montre que l'on peut déduire la clause vide (autrement dit ⊥)

Exemple

$$(\lnot p \lor r) \land (\lnot q \lor r) \land (p \lor q) \land \lnot r$$

Version ensembliste:

$$\{ \{\neg p, r\}, \{\neg q, r\}, \{p, q\}, \{\neg r\} \}$$

$$\{ \{\neg p, r\}, \{\neg \mathbf{q}, \mathbf{r}\}, \{p, q\}, \{\neg \mathbf{r}\} \}$$

$$\{ \{\neg \mathbf{p}, \mathbf{r}\}, \{\neg q, r\}, \{p, q\}, \{\neg \mathbf{r}\}, \{\neg q\} \}$$

$$\{ \{\neg p, r\}, \{\neg q, r\}, \{\mathbf{p}, \mathbf{q}\}, \{\neg r\}, \{\neg q\}, \{\neg \mathbf{p}\} \}$$

$$\{ \{\neg p, r\}, \{\neg q, r\}, \{p, q\}, \{\neg r\}, \{\neg q\}, \{\neg p\}, \{\mathbf{q}\} \}$$

$$\{ \{\neg p, r\}, \{\neg q, r\}, \{p, q\}, \{\neg r\}, \{\neg q\}, \{\neg p\}, \{q\}, \emptyset \}$$

Procédure automatique : Davis et Putnam (1960)

Entrée: une CNF N

- 1. Si $N=\emptyset$ alors N est cohérente
- 2. Si $\emptyset \in N$ alors N est incohérente sinon
 - 1. Choisir un atome p
 - 2. $N_p = \{\text{clauses contenant } p\}$
 - 3. $N_{\neg p} = \{ \text{clauses contenant } \neg p \}$
 - 4. $N_c = N \smallsetminus (N_p \cup N_{\lnot p})$
 - 5. Calculer $N_p' = \{N_p, \; \mathrm{sans} \; p\}$ /* cas ou on ajoute ¬p (p faux) */
 - 6. Calculer $N'_{\lnot p} = \{N_{\lnot p}, \; \mathrm{sans} \; \lnot p\}$ /* cas ou on ajoute p (p vrai) */
 - 7. N est incohérent si $N_p' \cup N_c$ et $N_{\neg p}' \cup N_c$ le sont également

Remarques

- L'algorithme termine toujours et est complet (on balaie l'ensemble des littéraux possibles)
- Dans le pire des cas, l'algorithme est exponentiel...

Améliorations possibles

- Commencer par les clauses unitaires, puis les propager
- Élimination des clauses contenant des littéraux purs (tous positifs ou tous négatifs dans les clauses) (algorithme DPLL)
- Backtrack intelligent + apprentissage de clauses conflictuelles (Conflict-Driven Clause Learning, algorithme CDCL))
- Trouver des symétries
- etc.

Algorithme de Davis, Putnam, Logemann et Loveland (1962)

```
Algorithm DPLL
     Input: A set of clauses N
     Output: A truth value indicating whether N is satisfiable
 function DPLL(N):
     // unit propagation:
     while there is a unit clause {l} in N do
         N = unit-propagate(l, N)
     // pure literal elimination
     while there is a literal I that occurs pure in N do
         N = pure-literal-assign(l, N)
     // stopping conditions
     if N is empty then
         return true
     if N contains an empty clause then
         return false
     // DPLL procedure
     l = choose-literal(N)
     return DPLL(N ∧ {l}) or DPLL(N ∪ {¬l})
Exemple (1)
                           (x \lor y \lor z) \land (x \lor \neg y \lor \neg z)
```

Exemple (2)

$$egin{aligned} &(x_1ee
eg x_2ee y_1ee
eg y_2ee
eg z_2ee
eg z_4) \ & \wedge (x_2ee y_1)\wedge (x_2ee y_1ee y_2ee z_1ee z_4)\wedge (x_2ee
eg y_2ee z_1ee
eg z_2) \ & \wedge (x_2ee
eg y_1ee z_3ee
eg z_4)\wedge (x_2ee
eg z_2ee
eg z_3)\wedge (
eg x_2ee
eg y_1) \ & \wedge (
eg x_2ee
eg y_1ee
eg z_2ee
eg z_3)\wedge (
eg x_2ee
eg z_1)\wedge (
eg x_2ee
eg z_1ee z_2) \ & \wedge (
eg x_2ee
eg z_1)\wedge (
eg x_2ee
eg z_1ee z_2) \ & \wedge (
eg x_2ee
eg z_1)\wedge (
eg x_2ee
eg z_1ee z_2) \ & \wedge (
eg x_2ee
eg z_1)\wedge (
eg x_2ee
eg z_1ee z_2) \ & \wedge (
eg x_2ee
eg z_1)\wedge (
eg x_2ee
eg z_1ee z_2) \ & \wedge (
eg x_2ee
eg z_1)\wedge (
eg x_2ee
eg z_1ee z_2) \ & \wedge (
eg x_2ee
eg z_1ee
eg z_1ee
eg z_2ee
eg z$$

En théorie

Théorème de Cook-Levin (1971)

Sous l'hypothèse que P ≠ NP, le problème de satisfiabilité d'une CNF est NP-complet.

NB: un problème est dans *NP* s'il est décidable par une machine de Turing *non déterministe* en temps polynomial.

Un problème est dans la classe *P* s'il est décidable par une machine de Turing déterministe en temps polynomial.

En pratique

Les formulations issues de vrais problèmes peuvent être résolues très rapidement. Les *solvers* modernes peuvent gérer des millions de clauses et des dizaines de milliers de variables.

Quelques solvers opensources:

- Glucose http://www.labri.fr/perso/lsimon/glucose/, issu de minisat http://minisat.se/ en C++
- SAT4J http://www.sat4j.org/ en Java
- gophersat https://github.com/crillab/gophersat en Go
- pysat https://github.com/pysathq/pysat en Python

Transition de phase

Les problèmes les plus difficiles sont générés aléatoirement et ont un rapport #clauses/#variables d'environ 4.3

Les clauses de Horn

Idée : puisqu'il ne semble pas exister d'algorithme toujours efficace, on peut se concentrer sur des fragments de la logique propositionnelle pour résoudre le problème SAT.

Exemples: 2-SAT (mais pas 3-SAT!), Horn, Horn renommable, etc.

Définition. Une clause de Horn est une clause où apparaît au plus un littéral positif

Exemples:

- ullet clause de Horn stricte : $a \lor \lnot b \lor \lnot c \lor \lnot d \lor \lnot e$
- ullet clause de Horn négative : $eg a \lor
 eg b \lor
 eg c$
- ullet clause de Horn positive : a

Question: et sous forme implicative?

Les clauses de Horn

Définition. Une clause sous-sommée (subsumée) est une clause pouvant être déduite par une autre clause de la base de clauses

Exemple : $a \lor \neg b \lor \neg c$ est sous-sommée par $a \lor \neg b$

Remarque : Lors de la recherche de modèles, on peut supprimer toutes les clauses sous-sommées.

Les clauses de Horn

Application aux clauses de Horn:

Une clause positive p permet :

- d'enlever toutes les clauses qui contiennent p
- de réduire les clauses qui contiennent $\neg p$ (propagation unitaire)

Exemple

- $\bullet \ \{a \lor \neg b \lor \neg c, \neg a \lor b, \ a\}$
- $\{\neg a \lor b, a\}$
- **■** {*b*, *a*}

Une clause unitaire négative $\neg p$ permet :

- d'enlever toutes les clauses qui contiennent $\neg p$
- de réduire les clauses qui contiennent p (propagation unitaire)

Les clauses de Horn

Algorithme

- 1. On applique toutes les propagations unitaires
- 2. On supprime toutes les clauses sous-sommées
- 3. Si on obtient la clause vide, l'ensemble est inconsistant
- 4. Sinon, on peut exhiber un modèle

Exercice:

- 1. $\{ \neg a \lor \neg b, \neg c \lor d, a, \neg a \lor \neg d \}$
- 2. $\{\neg p \lor r, \neg r \lor s, p, \neg r\}$

Objectif

 Utiliser la logique propositionnelle pour modéliser un problème et utiliser un solveur SAT pour le résoudre

Méthode/démarche systématique

- Étape 1 : Choix du vocabulaire
- Étape 2 : Modélisation du problème/de la base de connaissance KB en logique propositionnelle
- Étape 3 : Mise sous forme clausale
- Étape 4 : Vérifier la cohérence de KB (via SAT)
- Étape 5 : Encoder une requête en se ramenant à un problème SAT

Étape 1 : Choix du vocabulaire

- Il peut être utile de détecter que deux variables sont synonymes/équivalentes $(petit_lutin_bleu \leftrightarrow Schtroumpf)$ ou antonymes/contraires $(sorcier_competent \leftrightarrow \neg gargamel)$
- Problème des variables qui comprennent plus de 2 valeurs (exemple des couleurs)
- Il pourra être nécessaire de renommer certains atomes afin de mettre des clauses sous forme de Horn

Étape 2 : Modélisation du problème/de la base de connaissance KB en logique propositionnelle

- Problème d'ambiguïté du langage
- C'est l'étape faisant le plus intervenir de savoir-faire et d'intelligence humaine !

Étape 3 : Mise sous forme clausale

- On reprend la méthode mécanique présentée précédemment
- On peut avoir besoin d'un programme pour générer entièrement le problème

Étape 4 : Vérifier la cohérence de KB (via SAT)

- ÉTAPE ABSOLUMENT NÉCESSAIRE
- En cas d'incohérence, on pourra tout déduire et son contraire

Étape 5 : Encoder une requête en se ramenant à un problème SAT

- Test de satisfiabilité (SAT)
- Trouver une conséquence
- Trouver une conséquence conditionnelle
- Compter les modèles

...

Différentes requêtes possibles

Satisfiabilité

- Découverte d'au moins 1 modèle, c.-à-d. une assignation solution du problème modélisé
- Absolument nécessaire avant de lancer des requêtes depui une KB
- Difficilement faisable à la main sur un problème réel
- ⇒ On utilisera des solveurs SAT dédiés

Trouver une conséquence logique

- $KB \models C$?
- $KB \cup \{\neg C\} \models \bot$
- $\blacksquare \ KB \cup \{\neg C\} \vdash \bot$

Remarque 1 : $\neg C$ doit être mise sous forme clausale

Remarque 2 : on peut inférer (déduire) C, $\neg C$ ou ni l'un ni l'autre

Remarque 3 : on peut toujours ajouter une conséquence à la base de départ, cela peut aider le solveur (surtout dans le cas de clauses unitaires)

Trouver une conséquence conditionnelle

- ullet Si H est vrai, puis-je déduire C ?
- ullet Objets conditionnels de type C|H
- $KB \models H \rightarrow C$?
- $KB \cup \{\neg(H \rightarrow C)\} \vdash \bot$
- $KB \cup \{\neg(\neg H \lor C)\} \vdash \bot$
- $KB \cup \{(H \land \neg C)\} \vdash \bot$
- $\blacksquare \ KB \cup \{H, \neg C\} \vdash \bot$
- ullet Ce qui revient à $KB \cup \{H\} \vdash C$!

Compter les modèles/avoir l'ensemble des modèles

- Si KB est cohérente (satisfiable), le solveur renvoie une interprétation
- Une interprétation peut être vu comme une conjonction de littéraux, ex. : $a \wedge \neg b \wedge c$
- Pour avoir l'ensemble des modèles on ajoute la négation de la conjonction à KB, ex. :
 - $\neg (a \land \neg b \land c)$
 - $\neg a \lor b \lor \neg c$ (c'est une clause !)
- On recommence jusqu'à tomber sur l'incohérence...

■ Un **graphe** est un ensemble de nœuds/sommets et d'arêtes/arcs.

• Réprésentation informatique : matrice d'adjacence, liste de sommets adjacents, listes des sommes et des arcs...

- Problème de coloration d'un graphe : 2 sommets adjacents (reliés par un arc) ne peuvent pas avoir la même couleur.
- Dualement, on peut colorier les arcs...

• Question : comment encoder le problème de coloration à 3 couleurs du graphe suivant ?

Étape 1 : choix des variables

- On considère 3 couleurs (R, G, B).
- Problème : les variables booléennes ne peuvent prendre que 2 valeurs...
- ullet Couleurs du sommet 1 : S1R, S1G, S1B
- ullet Couleurs du sommet 2 : S2R, S2G, S2B
- Couleurs du sommet 3 : S3R, S3G, S3B

Étape 2 : modélisation du problème

Chaque sommet doit être colorié par au moins une couleur (contrainte at least 1)

$$S1R \vee S1G \vee S1B$$

$$S2R \lor S2G \lor S2B$$

$$S3R \lor S3G \lor S3B$$

 Chaque sommet ne peut être colorié avec au plus une seule couleur (contrainte at most 1)

$$S1R
ightarrow
eg S1G \wedge
eg S1B$$

$$S1G
ightarrow
eg S1R \wedge
eg S1B$$

$$S1B \rightarrow \neg S1R \wedge \neg S1G$$

. . .

$$S3B
ightarrow
eg S3R \wedge
eg S3G$$

• Chaque sommet a une couleur différente des sommets adjacents :

$$egin{aligned} S1R &
ightarrow
eg S2R \wedge
eg S3R \ S1G &
ightarrow
eg S2G \wedge
eg S3G \ S1B &
ightarrow
eg S2B \wedge
eg S3B \ \end{aligned}$$

. . .

$$S3B
ightarrow
eg S1B \wedge
eg S2B$$

Étape 3 : Mise sous forme clausale

$$S1R \lor S1G \lor S1B$$

$$S1R
ightarrow
abla S1G \wedge
abla S1B \ (
abla S1R ee (
abla S1G \wedge
abla S1B)) \ (
abla S1R ee
abla S1G) \wedge (
abla S1R ee
abla S1B)$$

$$S1R \lor S1G \lor S1B$$
 $\neg S1R \lor \neg S1G$
 $\neg S1R \lor \neg S1B$
 $\neg S1G \lor \neg S1B$
 $S2R \lor S2G \lor S2B$
 $\neg S2R \lor \neg S2B$
 $\neg S2G \lor \neg S2B$
 $\neg S2G \lor \neg S2B$
 $S3R \lor S3G \lor S3B$
 $\neg S3R \lor \neg S3B$

 $\neg S3G \lor \neg S3B$

 $\neg S3G \lor \neg S3R$

$$S1R
ightarrow
eg S2R \wedge
eg S3R$$
 $eg S1R ee (
eg S2R \wedge
eg S3R)$
 $eg S1R ee
eg S2R \wedge
eg S3R)$

. . .

$$\neg S1R \lor \neg S2R$$

$$\neg S1R \lor \neg S3R$$

$$\neg S2R \lor \neg S3R$$

$$\neg S1G \lor \neg S2G$$

$$\neg S1G \lor \neg S3G$$

$$\neg S2G \lor \neg S3G$$

$$\neg S1B \lor \neg S2B$$

$$\neg S1B \lor \neg S3B$$

$$\neg S2B \lor \neg S3B$$

La base de clause entière

$S1R \lor S1G \lor S1B$	$\neg S1R \vee \neg S2R$
$\neg S1R \vee \neg S1B$	$\neg S1R \vee \neg S3R$
$\neg S1G \vee \neg S1B$	$\neg S2R \vee \neg S3R$
$\neg S1G \vee \neg S1R$	
$S2R \lor S2G \lor S2B$	$\neg S1G \vee \neg S2G$
$\neg S2R \vee \neg S2B$	$ eg S1G \lor eg S3G$
$\neg S2G \vee \neg S2B$	$\neg S2G \vee \neg S3G$
$\neg S2G \vee \neg S2R$	
$S3R \lor S3G \lor S3B$	$\neg S1B \vee \neg S2B$
$\neg S3R \vee \neg S3B$	$\neg S1B \vee \neg S3B$
$\neg S3G \vee \neg S3B$	$\neg S2B \vee \neg S3B$
$\neg S3G \vee \neg S3R$	

Les requêtes possibles

- Existe-t-il une solution ?
- Existe-t-il une solution en coloriant le sommet 1 en bleu ?
- Combien existe-t-il de colorations différentes ?
- Donner toutes les solutions possibles

Exercice conclusif

Encoder entièrement le problème du Wumpus.

4	SSTSS Stench S		Breeze	PIT
3	10 g 5 7	SSSSS Stench S	PIT	Breeze
2	SSTSS Stench S		-Breeze	
1	START	Breeze	PIT	Breeze
	1	2	3	4

VII. Conclusion/synthèse

Définition de la logique propositionnelle

- Définition formelle du langage propositionnel
- ullet Définition de l'ensemble des formules valides à partir des modèles/interprétations et des tables de vérité $\models \varphi$
- \blacksquare Définition de l'ensemble des théorèmes à partir d'axiomes et du $\it Modus$ $\it Ponens$ $\vdash \varphi$
- Équivalence des 2 approches, complétude et adéquation de la logique propositionnelle

Définition de la conséquence logique à partir d'un ensemble de faits/ d'hypothèses

- Définition d'une conséquence logique sémantique basée sur les interprétations $H_1, H_2, \ldots, H_n \models C$
- Définition d'une conséquence logique syntaxique basée sur des règles de réécriture $H_1, H_2, \ldots, H_n \vdash C$
- Équivalence des 2 approches

VII. Conclusion/synthèse

Calcul clausal et modélisation de problème

- Toute formule peut s'écrire sous la forme d'une CNF
- À partir de cette forme, seuls le principe de résolution et la sous-sommation sont utiles
- Les clauses de Horn permettent de résoudre le problème en temps polynomial
- On peut utiliser des solveurs SAT pour résoudre le problème de satisfiabilité ainsi que pour répondre à d'autres requêtes

Quelques limites

- Explosion du nombre de clauses, de variables et problème de lisibilité...
- On ne peut pas encoder des règles du type :

Tous les humains sont mortels. Socrate est un humain. Donc Socrate est mortel.

To be continued