

Universidade Federal do Paraná Departamento de Química

QUÍMICA ANALÍTICA FUNDAMENTAL

Estatística básica

Prof. Dr. Patricio Peralta-Zamora Profa. Dra. Noemi Nagata Prof. Dr. Dênio E. Pires Souto

SITUAÇÃO PROBLEMA

NÚMEROS NA QUÍMICA ANALÍTICA

Algarismos Significativos

QUÍMICA ANALÍTICA

ciência eminentemente quantitativa

MEDIDAS

Concentração, constante de equilíbrio, velocidade de reações, etc.

O verdadeiro valor de uma propriedade não pode ser exatamente determinado

Confiabilidade do instrumento de medida

Fig. 1

3,7

3,72

0,01 g

0,001 g

0,0001 g

10,0 mL

10,00 mL

10 mL

Regras

1. Os zeros posicionados à esquerda do número não são contados como algarismos significativos.

0,0011 Kg ou 1,1 g (2 algarismos significativos)

2. Os zeros posicionados à direita ou no meio de outros dígitos são significativos desde que sejam representativos da incerteza da medida.

Balança analítica – m = 0,1000 g (4 algarismos significativos)

3. Para medidas usando log, o número de algarismos significativos é igual ao número de dígitos após a vírgula (casas decimais).

pH = 2,45 (2 algarismos significativos)

Regras

4. Números exatos (coeficientes estequiométricos, fatores de conversão) tem número infinito de algarismos significativos.

CaCl₂ (1 mol Ca para 2 mols de Cl)

5. Quando se utiliza uma medição em um cálculo, o resultado nunca pode ter uma certeza maior do que a certeza da medição.

Regras

Adição e Subtração

O resultado deve conter tantas casas decimais quantas existirem no fator com menor número de casas decimais.

135,621	3 casas decimais
0,33	2 casas decimais
21,2163	4 casas decimais
157,1673	Resultado deve ter2 casas decimais

157,17

Cálculos

Multiplicação e Divisão

O resultado deve conter tantos algarismos significativos quantos estiverem expressos no fator com menor número de algarismos significativos.

$$\begin{array}{rcl}
22,91 \times 0,152 & = & 0,21361 \\
\hline
16,302 & & & \\
\end{array}$$

4 algarismos significativos x 3 algarismos significativos 5 algarismos significativos

Resultado deve ter
= 3 algarismos
significativos

Exceção a regra geral

Considera-se duas medidas que possuem incerteza de cerca de 1%

101 Ë 1 99 Ë 1

A incerteza relativa na resposta final também deve ser cerca de 1%

$$101 / 99 = 1.02$$

Pelas regras gerais o resultado deveria ser expresso como 1,0 (2 algarismos significativos), mas isso implica uma incerteza relativa de 10%.

1,0 Ë 0,1

1,02 Ë 0,01

Arredondamento

Existem várias maneiras para realizar o arredondamento de dados proveniente de cálculos.

- 1. Elimine-se a tendência de arrendondar em uma única direção
- 2. Utilize sempre o mesmo critério
- 3. Faça o arredondamento somente na resposta final

Ao arredondar números: < 5, manter o último dígito

Ex. Arredondar para 2 algarismos significativos: 61,4593... 61

Ao arredondar números: > 5, somar 1 ao último dígito

Ex. Arredondar para 4 algarismos significativos: 61,4593... 61,46

Ao arredondar o número 5, arredondar para o número par mais próximo

Ex. Arredondar para 3 algarismos significativos: 61,4593... 61,5

TIPOS DE ERROS

Erros Determinados (ou Sistemáticos)

- Causa identificável;
- Geram um viés na mesma direção negativo ou positivo;
- Afetam a exatidão dos resultados ;
- Decorrentes de Erros Instrumentais, Erros de Método e Erros Pessoais.

Erros Indeterminados (ou Aleatórios)

- Provocados por variáveis incontroláveis de qq análise ;
- Não pode ser claramente identificada ;
- Afetam a precisão dos resultados ;
- Distribuição dos dados é aleatória.

Erros Grosseiros

- Ocorrem de forma ocasional ;
- Levam a ocorrência de valores anômalos.

UM POUCO DE ESTATÍSTICA

com quantos grãos se faz uma feijoada?

Situação problema:

com quantos grãos se faz uma feijoada?

Definir a situação: Feijoada para 20 pessoas = 1 Kg de feijão

Pergunta: Quantos grãos tem em 1 Kg de feijão?

Alternativa 1:

Contar grão por grão do pacote de 1 Kg de feijão

Alternativa 2:

Pesar um grão de feijão (em g) e dividir 1.000 g por este valor

Caso 1: 0,1188 g È 8.418 grãos

Caso 2: 0,2673 g È 3.741 grãos

Método inadequado: variação imprevisível

Alternativa 3:

Utilizar o peso médio real....pesar grão por grão do pacote

Posteriormente, dividir 1.000 g pelo peso médio real

Método inviável: estaca zero

Alternativa 4:

Colher e pesar amostra representativa da população (amostragem aleatória)

Proposta: pesar 140 grãos de feijão

Alternativa 4:

Maior: 0,3043 g

Maior te

Menor: 0,1188 g

endência: 0,2 g	
or: 0 1100 a	

0,1188	0,2673	0,1795 0,1860	0,2045
0,1795	0,1910	0,14090,1965	0,2326
0,2382	0,2091	0,26600,2058	0,1666
0,2505	0,1823	0,15900,1985	0,1769
0,1810	0,2126	0,15960,3043	0,1683
0,2327	0,2137	0,1793 0,1968	0,2433
0,2311	0,1902	0,1970 0,1421	0,1202
0,2459	0,2098	0,1817 0,2200	0,2025
0,1996	0,1995	0,1732 0,1708	0,2465
		·	
0,1848	0,2184	0,2254 0,2262	0,1950
0,1965	0,177,3	0,1340 0,1463	0,1917
0,2593	0,1799	0,2585 0,1629	0,1875
0,2657	0,2666	0,2535 0,2266	0,2143
0,1399	0,2790	0,1988 0,2186	0,1606

Para melhor visualização organiza-se um gráfico de freqüências

Intervalo	Grãos	Freqüência*
0,11-0,12 0,12-0,13 0,13-0,14 0,14-0,15 0,15-0,16 - 0,19-0,20 0,20-0,21 0,21-0,22 0,22-0,23	Graos 1 1 3 7 4 - 20 17 9 8	0,07 0,07 0,021 0,050 0,029 - 0,143 0,121 0,064 0,057
0,23-0,24 - 0,28-0,29 0,29-0,30 0,30-0,31	10 - 1 0 1	0,071 - 0,07 0,00 0,07

^{*} Número de grãos no intervalo dividido pelo total de grãos (140)

HISTOGRAMA

DISTRIBUIÇÃO NORMAL OU GAUSSIANA

Formato de sino (unimodal)

- •Distribuição contínua
- •Perfeitamente simétrica em torno da média.
- •Com o valor de densidade máximo na média, caindo rapidamente quando se afasta dela, sendo que com 3s a densidade é praticamente zero

DISTRIBUIÇÃO DE STUDENT

William Sealy Gosset (Student) (Inglaterra, 1876-1937)

DISTRIBUIÇÃO DE STUDENT

							-		
GL		0,5	0,4	0,3	0,2	0,1	0,05	0,02	0,01
	1	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,656
	2	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925
	3	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841
	4	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604
	5	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032
	6	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707
	7	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499
	8	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355
	9	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250
	10	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169
	11	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106
	12	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055
	13	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012
	14	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977
	15	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947
	16	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921
	17	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898
	18	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878
	19	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861
	20	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845

PARÂMETROS ESTATÍSTICOS

MÉDIA (tendência central dos dados) DESVIO (dispersão dos dados – média)

$$\overline{X} = {\sum_{i=1}^{n} X_i \over n}$$

$$d = Xi - X$$

VARIÂNCIA

$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

DESVIO PADRÃO

INTERVALO DE CONFIANÇA DA MÉDIA

$$s = \sqrt{s^2}$$

$$X = \overline{X} \pm ts$$
 \sqrt{n}

P/ Pergunta: Quantos grãos tem em 1 Kg de feijão?

$$X = 0.2024 g$$

$$S = 0.0363 g$$

$$t(95\%, n=140) = 1,96$$

$$0.1964 g < \overline{X} < 0.2084 g$$

4798 < grãos < 5092 (95% de confiança) 4755 < grãos < 5141 (99% de confiança)

EXATIDÃO VS PRECISÃO

ERRO

Precisão
Coerência entre resultados

CORRELACIONANDO COM QUÍMICA ANALÍTICA

Em geral, ensaios envolvendo replicatas (sem ocorrência de erros grosseiros e determinados)

Geram distribuição dos resultados que se aproximam da curva gaussiana (distribuição normal)

Fato que possibilita o julgamento da confiabilidade de dados e aplicação de testes de hipótese

TESTES ESTATÍSTICOS

Detecção de Erros Grosseiros (Amostras Anômalas) TESTE Q

TESTES DE HIPÓTESES

Comparação entre Precisões (Duas metodologias)

TESTE F

Comparação entre Resultados - Média (Duas metodologias)
TESTE t (médias experimentais ou média conhecida)
TESTE t PAREADO

TESTE Q Detecção de erros

Etapa 1: colocar os resultados em ordem crescente

Etapa 2: calcular a faixa (F: diferença entre maior e menor valor)

Etapa 3: calcular a diferença entre o menor valor e o seu vizinho (D)

Etapa 4

Calcular Q_{exp.} dividindo D1 por F

Comparar com Q_{crítico} (tabelado)

Se $Q_{exp.} > Q_{crítico}$ Rejeitar

Continua.....

TESTE Q Detecção de erros

	$Q_{\rm crit}$ (Rejeitar se $Q > Q_{\rm crit}$)							
Número de Observações	90% de Confiança	95% de Confiança	99% de Confiança					
3	0,941	0,970	0,994					
4	0,765	0,829	0,926					
5	0,642	0,710	0,821					
6	0,560	0,625	0,740					
7	0,507	0,568	0,680					
8	0,468	0,526	0,634					
9	0,437	0,493	0,598					
10	0,412	0,466	0,568					

^{*}Reimpresso com permissão de D. B. Rorabacher, Anal. Chem., 1991, v. 63, p. 139. Copyright 1991 American Chemical Society.

TESTE F

Comparação entre Precisões (Duas metodologias)

$$F_{calc} = \frac{s_x^2}{s_y^2}$$

Dados de F_{calc} devem ser sempre maiores que 1,0 Portanto dados "x" devem ser os de maior variância

$$F_{calc} < F_{tab} \dots$$

Precisão entre as metodologias <u>NÃO DIFEREM</u> entre si no nível de confiança desejado

$$F_{calc} > F_{tab} \dots$$

Precisão entre as metodologias <u>DIFEREM</u> entre si no nível de confiança desejado

TESTE F

Table A.4 Critical values of F for a two-tailed test (P = 0.05)

V2	V1 (N-1)											
	1	2	3	4	5	6	7	8	9	10	12	15	20
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	976.7	984.9	993.
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43	39.45
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25	14.17
4	12.22	10.65	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.844	8.751	8.657	8.560
5	10.01	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.525	6.428	6.329
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.366	5.269	5.168
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.666	4.568	4.467
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.295	4.200	4.101	3.999
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.868	3.769	3.66
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.621	3.522	3.419
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.664	3.588	3.526	3.430	3.330	3.226
12	6.554	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.277	3.177	3.07
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.153	3.053	2.948
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	3.050	2.949	2.844
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	2.963	2.862	2.756
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.889	2.788	2.68
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.825	2.723	2.616
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.769	2.667	2.559
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.720	2.617	2.509
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.676	2.573	2.46

 v_1 = number of degrees of freedom of the numerator; v_2 = number of degrees of freedom of the denominator.

TESTE t

(entre médias experimentais independentes)

$$t_{calc} = \frac{\overline{x}_{x} - \overline{x}_{y}}{s_{a} (1/n_{x} + 1/n_{y})^{1/2}}$$

$$s_{a} = \left(\frac{(n_{x} - 1) s_{x}^{2} + (n_{y} - 1) s_{y}^{2}}{n_{x} + n_{y} - 2}\right)^{1/2}$$

 s_a ... Estimativa do desvio padrão agregado v ... Graus de liberdade agregado = n_x + n_y -2

 $t_{calc} < t_{tab}$ As médias <u>NÃO DIFEREM</u> entre si no nível de confiança desejado

 $t_{calc} > t_{tab}$ As médias <u>DIFEREM</u> entre si no nível de confiança desejado

TESTE t

(entre média experimental e valor conhecido)

$$t_{calc} = \overline{x} - \mu$$

$$s / (n)^{1/2}$$

$$t_{calc} < t_{tab} \dots$$

Média experimental e o valor conhecido <u>NÃO DIFEREM</u> entre si no nível de confiança desejado

$$t_{calc} > t_{tab} \dots$$

Média experimental e o valor conhecido <u>DIFEREM</u> entre si no nível de confiança desejado

LEMBRTETES

ERROS I NDETERMI NADOS

DESVIOS $(Xi-\overline{X})$

LEMBRTETES

DUSTRIBUIÇÃO NORMAL

Análise química

EXERCÍCIO 1A

Faça a leitura do comprimento abaixo, estimando o melhor valor e sua incerteza.

Valor: 9, 8

Incerteza: 0, 5 cm

Resultado 9.8 ± 0.5 cm

EXERCÍCIO 1B

Faça a leitura do volume abaixo, estimando o melhor valor e sua incerteza.

Valor: 40,15

Incerteza: 0, 05 cm

Resultado 40,15 ± 0,05 cm

EXERCÍCIO 2A

Calcule a concentração molar de uma solução que resulta da dissolução de 0,4000 g de NaOH (MM: 40 g mol⁻¹) em um balão volumétrico de 100,00 mL.

Massa (g)

Massa Molar (g mol⁻¹)

As?

$$0,4000 \text{ g de NaOH} \over 40 \text{ g mol}^{-1}} = 0,01 \text{ mol} = 0,0100 \text{ mol}$$

As?

As?

 $0,0100 \text{ mol} \longrightarrow 100,00 \text{ mL}$

X mol

X mol

 $0,0100 \text{ ml} (1 \text{ L})$

$$X = 0.0100 \text{ mol x } 1000 \text{ mL}$$

= 0.1 mol = 0.1 mol L⁻¹ = 0.1000 mol L⁻¹

EXERCÍCIO 2B

Calcule a concentração molar de uma solução que resulta da dissolução de 0,4000 g de NaOH (MM: 40 g mol⁻¹) em uma proveta de 100 mL.

$$\frac{0,4000 \text{ g de NaOH}}{40 \text{ g mol}^{-1}} = 0,01 \text{ mol} = 0,0100 \text{ mol}$$

$$AS? \qquad AS?$$

$$0,0100 \text{ mol} \longrightarrow 100 \text{ mL}$$

$$X \text{ mol} \longrightarrow 1000 \text{ mL (1 L)}$$

$$X = \frac{0,0100 \text{ mol x } 1000 \text{ mL}}{100 \text{ mL}} = 0,1 \text{ mol = 0,1 mol L}^{-1} = 0,100 \text{ mol L}^{-1}$$

Calcular a média e o desvio padrão a partir da sequência de resultados apresentados a seguir:

VARIÂNCIA $\sum_{i=1}^{n} (X_i - X)^2$ $s^2 = \frac{1}{n-1}$	Medidas 1 2 3 4 5 6 7	Resultados 446 450 554 547 486 498 440 560	Desvio (Xi-X) 446-500=54 450-500=50 554-500=54 547-500=47 486-500=14 498-500=2 440-500=60 560-500=60	(Desvio) ² 2916 2500 2916 2209 196 4 3600 3600
	_	560	560-500=60	3600
	9 10	451 568	451-500=49 568-500=68	2401 4624
_	_	X = 500		d = 24966

$$S^2 = 24966/9 = 2774$$
 \Rightarrow $S = \tilde{0}2774 = 52,66877633$

$$S = 52,7$$

INTERVALO DE CONFIANÇA DA MÉDIA

$$X = \overline{X} \pm ts$$
 $X = 500 \pm 2,262 \times 52,7$

$$X = 500 \pm 37.7$$

			Di	stribu	ição t	-Stud	ent: v	alore	tc ta	is que	P(-tc	≤t≤
р►	90%	80%	70%	60%	50%	40%	30%	20%	10%	8%	6%	5%
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	7,916	10,579	12,706
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	3,320	3,896	4,303
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	2,605	2,951	3,182
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,333	2,601	2,776
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,191	2,422	2,571
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,104	2,313	2,447
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,046	2,241	2,365
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,004	2,189	2,306
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	1,973	2,150	2,262
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	1,948	2,120	2,228
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	1,928	2,096	2,201
12	0.128	0.259	0.395	0.539	0.695	0.873	1.083	1 356	1 782	1 912	2.076	2 179

Uma análise de latão, envolvendo dez determinações, resultou nos seguintes valores porcentuais de cobre (% m/m):

15,42 15,51 15,52 15,53 15,68 15,52 15,56 15,53 15,54 15,56

EXISTEM RESULTADOS ANÔMALOS NESTE CONJUNTO?

TESTE Q

FXFRCÍCIO 4

Etapa 1: colocar os resultados em ordem crescente

15,42 15,51 15,52 15,52 15,53 15,53 15,54 15,56 15,56 15,68

Etapa 2: calcular a faixa (diferença entre maior e menor valor)

$$15,68-15,42 = 0,26 (F)$$

Etapa 3: calcular a diferença entre o menor valor e o seu vizinho

Etapa 4: calcular Q_{exp.} Dividindo D1 por F 0,09/0,26 = 0,346

$$Q_{crítico}$$
 (n=10, 90% de Conf.) = 0,412)
Se $Q_{exp.} < Q_{crítico}$ Mantém

Continua

A determinação de cromo em centeio foi realizada através da técnica de absorção atômica em uma propriedade de cultivo deste grão. Amostras de duas localidades desta propriedade foram coletadas, digeridas e analisadas, gerando os seguintes resultados em (mg Kg-1 Cr):

Próximo ao rio (fundos da propriedade)

$$X = 2,33 \text{ mg Kg}^{-1}$$
 $s = 0,31 \text{ mg Kg}^{-1}$ $n = 5 \text{ amostras}$

$$s = 0.31 \text{ mg Kg}^{-1}$$

$$n = 5$$
 amostras

Início da propriedade

$$X = 1,48 \text{ mg Kg}^{-1}$$
 $s = 0,28 \text{ mg Kg}^{-1}$ $n = 5 \text{ amostras}$

$$s = 0.28 \text{ mg Kg}^{-1}$$

$$n = 5$$
 amostras

Existe diferença significativa com 95% de confiança entre os teores de cromo encontrado nessas áreas diferentes de cultivo?

TESTE t

(entre médias experimentais independentes)

$$t_{calc} = \frac{\overline{x_x} - \overline{x_y}}{s_a (1/n_x + 1/n_y)^{1/2}} \qquad s_a = \left((n_x - 1) s_x^2 + (n_y - 1) s_y^2 \right)^{1/2}$$

Tcalc =
$$\frac{2,33-1,48}{0,295(1/5+1/5)^{1/2}}$$
 = 4,56 > $t_{(8,95\%)}$ = 2,306

Os resultados são diferentes

Próximo ao rio: X = 2,33 mg Kg^{-1} , s = 0,31 mg Kg^{-1} , n = 5 amostras

Início da propriedade: $X = 1,48 \text{ mg Kg}^{-1}$, $s = 0,28 \text{ mg Kg}^{-1}$, n = 5 amostras

