SEL 329 – CONVERSÃO ELETROMECÂNICA DE ENERGIA

Aula 04

Tópicos desta Aula

- Excitação por corrente alternada
- Indutância
- Energia armazenada

Campo magnético variável no tempo - tensão induzida

Para 1 espira, temos: $e_2(t) = \frac{d\phi(t)}{dt}$

Para N espiras, temos:
$$e_2(t) = N_2 \frac{d\phi(t)}{dt} = \frac{dN_2\phi(t)}{dt} = \frac{d\lambda_2(t)}{dt}$$

em que $\lambda_2(t)$ é o fluxo total enlaçado pela bobina 2, o qual é chamado de **fluxo concatenado** pela bobina 2 [Wb.esp].

• Se uma carga for conectada ao lado do secundário haverá uma corrente elétrica variável no tempo $i_2(t)$.

Excitação em corrente alternada

Admitindo fluxo magnético senoidal $\rightarrow \phi = \phi_{max} \operatorname{sen}(\omega t)$

 i_{ϕ} é a corrente de excitação necessária para produzir o campo magnético no núcleo (esta corrente também é denominada **corrente de magnetização**). Temos:

$$e = \frac{d\lambda}{dt} = \frac{dN\phi}{dt} = \frac{Nd\phi}{dt} = \frac{Nd\phi_{\text{max}} \operatorname{sen}(\omega t)}{dt} = N\phi_{\text{max}}\omega \cos(\omega t)$$

 ω é a frequência da fonte CA em rad/s ($\omega = 2\pi J$)

$$e = E_{\text{max}} \cos(\omega t)$$

onde $E_{max}=\omega N\phi_{max}=2\pi fN\phi_{max}$ é o valor de pico da tensão induzida nos terminais da bobina.

Excitação em corrente alternada

A operação em corrente alternada em regime permanente é usualmente descrita com valores eficazes de tensão e corrente. Assim:

$$E_{rms} = \frac{E_{\text{max}}}{\sqrt{2}} = \frac{2\pi f N}{\sqrt{2}} \phi_{\text{max}} = 4,44 f N \phi_{\text{max}} = 4,44 f N A_n B_{\text{max}}$$

se a resistência da bobina (fio) for desprezível (R = 0), temos:

$$v = e$$
 e $V = E$

Indica que quando uma diferença de potencial senoidal é aplicada a um bobina, um fluxo senoidal é estabelecido no núcleo, induzindo uma fem igual à tensão aplicada. (R=0)

Excitação em corrente alternada

R diferente de 0:

Nesse caso a tensão aplicada e a tensão induzida nos terminais das bobinas são diferentes

Indutância

Enrolamentos com núcleo ferromagnético são frequentemente utilizados em circuitos elétricos. Este dispositivo pode ser representado por um elemento **ideal** no circuito chamado **indutância**, a qual é definida pela razão entre o fluxo concatenado pelo enrolamento e a corrente que o percorre.

$$L = \lambda/i = N\phi/i \rightarrow indutância$$
 [H]

sendo:

 $\lambda = N\phi \rightarrow \text{fluxo concatenado pela bobina [Wb.esp]}$

Indutância

Considerando o circuito abaixo, temos:

Portanto, a indutância só depende da geometria do circuito e do material do núcleo, não dependendo do valor da corrente que a percorre.

$$L = \frac{N^2}{\frac{l}{\mu A}} = \frac{N^2}{\Re}$$

Indutância na presença de entreferro

Considere o sistema:

O fluxo magnético é dado por:

$$\phi = \frac{Ni}{\Re_T} = \frac{Ni}{\Re_c + \Re_g} = \frac{Ni}{\frac{l_c}{\mu_c A_c} + \frac{g}{\mu_0 A_g}}$$

desprezando o espraiamento $(A_c = A_g = A)$, temos:

$$\phi = \frac{NA}{\frac{l_c}{\mu_c} + \frac{g}{\mu_0}}i$$

Indutância na presença de entreferro

e portanto:

$$\lambda = N\phi = \frac{N^2 A}{\frac{l_c}{\mu_c} + \frac{g}{\mu_0}}i$$

para um circuito magnético em que a relação *B-H* é linear, devido a uma permeabilidade constante do material, pode-se definir a indutância L, como sendo:

$$L = \frac{\lambda}{i}$$
 (fluxo concatenado por unidade de corrente da bobina)

Assim:

$$L = \frac{N^2 A}{\frac{l_c}{\mu_c} + \frac{g}{\mu_0}}$$

Indutância na presença de entreferro

ou:

$$L = \frac{N^2 A \mu_0}{\frac{\mu_0}{\mu_c} l_c + g}$$

Obs: para $\mu_c >> \mu_0$

$$\rightarrow$$
 $g >> (\mu_0/\mu_c)l_c$

Portanto:

$$L = \frac{\mu_0 N^2 A}{g} = \frac{N^2}{\frac{g}{\mu_0 A}} = \frac{N^2}{\Re_g}$$

(A indutância, neste caso, é determinada pelas dimensões do entreferro)

A utilização da indutância como parâmetro (não como variável) depende da suposição de que a relação entre fluxo e fmm (B-H) seja linear. Neste caso, a *fem* pode ser escrita por:

$$e = \frac{d\lambda}{dt} = \frac{d(Li)}{dt} = L\frac{di}{dt}$$

Indutância mútua

- i_1 e i_2 produzem fluxo na mesma direção
- a *fmm* total é:

$$F = N_1 i_1 + N_2 i_2 = \Re \phi = \left(\frac{l_c}{\mu_c A_c} + \frac{l_g}{\mu_0 A_g}\right) \phi \approx \Re_g \phi$$

Accim.

$$\phi = (N_1 i_1 + N_2 i_2) \mu_0 A_g / l_g$$

é o fluxo resultante no núcleo produzido pela ação simultânea das duas fimms.

Indutância mútua

O fluxo concatenado pela bobina 1 (λ_l) é dado por:

$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_g}{g} i_1 + N_1 N_2 \frac{\mu_0 A_g}{g} i_2$$

como: $\lambda = Li$, temos: $\lambda_1 = L_{11}i_1 + L_{12}i_2$

onde: $L_{II} = N_I^2 \mu_0 A_g / g$ \rightarrow indutância própria da bobina 1

 $L_{12} = N_1 N_2 \mu_0 A_g / g$ \rightarrow indutância mútua entre as bobinas 1 e 2

 $L_{II}i_I \rightarrow$ fluxo concatenando a bobina 1 devido à corrente i_I que circula na própria bobina.

 $L_{12}i_2 \rightarrow$ fluxo concatenando a bobina 1 devido à corrente i_2 que circula na outra bobina.

De forma similar, para a bobina 2, temos:

 $\lambda_2 = N_2 \phi = N_1 N_2 \frac{\mu_0 A_g}{g} i_1 + N_2^2 \frac{\mu_0 A_g}{g} i_2$

 $\lambda_2 = L_{21}i_1 + L_{22}i_2$

onde: L_{22} \rightarrow indutância própria da bobina 2

 $L_{21} = L_{12}$ \rightarrow indutância mútuas entre as bobinas 1 e 2

Indutância mútua

Na forma matricial, temos:

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

Obs: é importante salientar que o desenvolvimento do fluxo concatenado resultante nas componentes produzidas por i_1 e i_2 é baseado na superposição de efeitos individuais e , desta forma, admite-se uma característica fluxo-fmm (B-H) linear (i.e., permeabilidade constante).

Energia armazenada

A potência nos terminais do enrolamento do circuito magnético é a medida da taxa do fluxo de energia que entra no circuito:

$$p = ei = i \, d\lambda/dt$$
 [W]

A variação da energia armazenada ΔW no circuito magnético em um intervalo de tempo t_1 a t_2 será:

$$\Delta W = \int_{t_1}^{t_2} p dt = \int_{t_1}^{t_2} i \frac{d\lambda}{dt} dt = \int_{\lambda_1}^{\lambda_2} i d\lambda$$

para L = cte (linearidade magnética)

$$\rightarrow L = \lambda / i \qquad \rightarrow i = \lambda / L$$

$$\Delta W = \int_{\lambda_I}^{\lambda_2} i d\lambda = \int_{\lambda_I}^{\lambda_2} \frac{\lambda}{L} d\lambda = \frac{I}{2L} \lambda^2 \Big|_{\lambda_I}^{\lambda_2} = \frac{I}{2L} \left(\lambda_2^2 - \lambda_I^2 \right)$$

Energia armazenada

A energia total armazenada para um dado valor de λ pode ser determinada fazendo-se $\lambda_j = 0$.

$$W = \frac{1}{2L} \lambda^2 = \frac{1}{2L} (Li)^2 = \frac{1}{2} Li^2$$

Em termos de *B* e *H*, temos:

$$\lambda = N\phi = NBA$$

$$e = \frac{d\lambda}{dt} = NA\frac{dB}{dt}$$

$$v = Ri + e = Ri + \frac{d\lambda}{dt} = Ri + NA\frac{dB}{dt}$$

$$p(t) = vi = \underbrace{Ri^2}_{\text{energia dissipada}} + \underbrace{NAi\frac{dB}{dt}}_{\text{energia armazenada}}$$

O fluxo de energia que se armazena no campo magnético da bobina é:

$$p_B = NAi \frac{dB}{dt}$$

Energia armazenada

como H = Ni/l, temos

$$p_B = AlH \frac{dB}{dt}$$

 $p_B > 0$ \rightarrow o campo magnético está absorvendo energia da fonte.

 $p_B < 0 \longrightarrow$ a energia está sendo liberada pelo campo magnético.

- Seja W_B a energia no campo magnético $(B = 0 \Rightarrow W_B = 0)$
- Conforme B aumenta, W_B pode ser expressa como:

$$W_B = \int p_B dt = \int_0^B AlH dB = \int_0^B \frac{Al}{\mu_0} BdB = \frac{Al}{2\mu_0} B^2$$

Al é o volume do espaço englobado pela bobina. Então

$$\frac{W_B}{\text{volume}} = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{1}{2} \mu_0 H^2$$
 [J/m³]

Energia armazenada

$$\frac{W_B}{\text{volume}} = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{1}{2} \mu_0 H^2$$
 [J/m³]

é a densidade de energia armazenada no campo magnético interno à bobina

incluindo um núcleo ferromagnético, a densidade de energia é dada por:

$$\frac{W_B}{\text{volume}} = \frac{1}{2} \mu H^2 = \frac{1}{2} \mu_r \mu_0 H^2$$
 [J/m³]

Ou seja, podemos armazenar a mesma energia em um volume muito menor do núcleo.

Energia armazenada: campo elétrico x campo magnético

A densidade de energia armazenada no campo elétrico é dada por:

$$\frac{W_E}{\text{volume}} = \frac{1}{2} \varepsilon_0 E^2 \qquad [J/m^3]$$

onde ε_0 é a permissividade do ar = 8.85×10^{-12} [F/m].

Assim:

$$\frac{W_E}{\text{volume}} = \frac{1}{2} \varepsilon_0 E^2$$
 [J/m³]
$$\frac{W_B}{\text{volume}} = \frac{1}{2} \frac{B^2}{\mu_0}$$
 [J/m³]

Valores característicos:

Campo elétrico:

 $\varepsilon_0 = 8.85 \times 10^{-12}$

 $E_{\rm max}=3\times10^6\,{
m V/m}\,$ (máximo campo elétrico que o ar pode suportar à pressão atmosférica sem ruptura elétrica)

Energia armazenada: campo elétrico x campo magnético

Assim, a densidade de energia máxima que pode ser armazenada no campo elétrico é:

$$\frac{W_E}{\text{volume}} = 39,82 \qquad [J/\text{m}^3]$$

Campo magnético:

Com correntes elevadas consegue-se B de até 0.2 Wb/m^2 para uma bobina com núcleo não magnético. Com núcleo de material magnético, pode-se chegar até a 2.0 Wb/m^2 .

Considerando:

 $B = 1.0 \text{ Wb/m}^2$ (valor usual no entreferro das máquinas elétricas)

$$\mu_0 = 4\pi \times 10^{-7}$$

Temos:

$$\frac{W_B}{\text{volume}} = 397.890$$
 [J/m³]

Isto demonstra que os dispositivos magnéticos exigem um volume muito menor para armazenar a mesma quantidade de energia

Exercício

No eletroímã da figura ao lado, tem-se:

N = 400 espiras

 $l_{c} = 50 \text{ cm}$

 $l_g = 1 \text{ mm}$

 $A_c = A_g = 15 \text{ cm}^2$

 $\mu_r = 3000$

i = 1 A.

Pede-se:

- (a) O fluxo e a densidade de fluxo magnético no entreferro (0,6463×10⁻³ Wb e 0,4309 T)
- (b) A indutância da bobina (0,259 H)

Próxima Aula

- Perdas em circuitos magnéticos:
 - ✓ perdas por histerese
 - ✓ perdas por correntes parasitas (correntes de Foucault)