# CAD/VLSI Circuit Design 期末報告

7109064300 范文軒 電機丁組(數位)

### (一)、動機

搜尋演算法是近些年科技中很重要的基石,而字串比對演算法(string matching algorithm)也是其中之一。像這樣的比對方式會被使用至 DNA 序列的比對、資料庫的查詢(query)等。而如今資料庫系統中的資料量越來越大。為了某個特徵比對,可能會使用到多次的比對查詢。因此加速這個過程,就顯得重要的。若使用暴力破解的方式,必須一個字元依次比較,而因為沒有辦法加速,時間複雜度會為 O(m\*n) (in worst case)。如今不同新的演算法也不斷推出,像是近年最多人使用的演算法之一:KMP 演算法[1],優化了最原始的方式,使得無意義的比較可以跳過,帶來更多速度上的優勢,而時間複雜度減至 O(m+n) (in worst case)。而本次構想希望參考可平行化運算 KMP 演算法[2],並且利用硬體亦可平行化的優勢,實做出有平行化的 KMP 演算法的 SME(string matching engine)。

## (二)、主要概念與預想[2]

#### a、 構想概要

### (1). KMP Algorithm<sub>[1]</sub>

KMP 演算法相較於暴力破解,多增加了前處理(preprocessing)的部分,在 此演算法即所謂的 Failure Function。增加了一個關於 Pattern 的表格去紀 錄若判別失敗該跳去哪一個位置。

## (2). 可平行化 KMP Algorithm<sub>[2]</sub>

而在參考[2]中,使用了平行化技巧,將比對時分切成 4 個特殊大小的字串 同時比對,進而減少時間的損耗。

参考演算法概念後,在設計中設計以下分割之作業: Idle、String 與 Pattern 輸入、Failure Function 建立、比對環節以及輸出結果。並打算在比對環節中設計4 的 PE(Process Engine)同時運作於比對環節中進而實驗平行化。

#### b、 KMP 演算法

#### (1). Failure Function

Failure Function 是用來計算 Pattern 比對失敗時可以跳去哪一個 Pattern 位置繼續比較。算法主要概念為「前綴(suffix)要位移幾位可以和目前的字串相同」。

(舉例)



圖一、Failure Function 概念舉例

但通常如果用此定義算通常會計算非常久,所以後來大多都使用 Dynamic Programming 的方式加速 Failure Function 的算法。

$$f(j) = \begin{cases} -1 & \text{if } j = 0\\ f^m(j-1) + 1 & \text{where } m \text{ is the least integer}\\ & k \text{ for which } p_{f^k(j-1)+1} = p_j\\ -1 & \text{if there is no } k \text{ satisfying the above} \end{cases}$$

$$f^1(j) = f(j) \text{ and } f^m(j) = f(f^{m-1}(j))$$

圖二、Failure Function with Dynamic Programming

### (2). KMP Matching Operation

由上述的 Failure Function 完成計算後,生成的 Failure Table 可以紀錄比對失敗時 Pattern 該從 Failure Function 的值加一的位置,與 String 比對失敗的地方繼續比較下去,依此類推。



### (三)、主要架構



圖一、SME 系統架構圖

#### c、 SME 概要

此次設計的 SME 使用多模組的方式建構 ( 可參考上圖 ),主要有 Shared Memory、Control Unit 以及 KMP Compare PE(Process Engine)。而 Shared Memory 內部為了要計算 KMP 演算法中的前處理部分,多設計了專門計算 Failure Function 的模組 — Failure Function Calculator —併放在 Shared Memory 內部,來使用特殊方式將 Shared Memory 實作出來(將在三、c 部分 說明)。

資料將從外部傳入 Shared Memory·Shared Memory 將接收並且儲存在內部。等待資料全部載入完成,將會啟動 Failure Function Calculator 計算該Pattern 的 Failure Function 後一併將輸入的資料分享到每一個 PE 中,而Control Unit 將會把需要做的長度告訴各個 PE,而各個 PE 會依照 KMP 演算法的方式計算出各分段結果並傳給 Control Unit,最後,Control Unit 會將結果輸出。

# **b** · Shared Memory

因字串的長度需要相對應大小的暫存器,因此利用 Shared Memory 來增大暫存器的使用率,同時間也減少不必要 PE 裡的暫存器。

#### c . Failure Function Calculator

Failure Function 部分會將 Shared Memory 的 Pattern 資料傳入,進而計算。而此次設計計算 Failure Function 的方式是利用,Dynamic Programming 的演算法實作,利用上一筆的結果來繼續計算下一筆的,使得比起重新計算更加有效率。

### d · KMP Compare Process Engine(PE)

利用 Sharing Memory 的輸出得到資料、Failure Function 進而比對,與先前的 KMP 演算法無異,唯有不同之處為可以彈性調整字串比較的長短來做比較,也是為了做到平行化的前提。

#### e、資料與 Pattern

圖一為此次設計的架構,左方的 Host 為 Testbench 的部分,會將需要比對的資料傳送至右方的設計中 (SME),為了模擬 DNA 的比對情況,將會傳送內容為 DNA 的序列 ( $A \times T \times C \times G$ )的字串序列。

#### e、彈性化

因為為了使此 SME 更加有彈性,設置了多個參數可供調整,可自行決定 String 與 Pattern 的最大長度,同時也可以自由擴大 PE 數目。

# (四)、合成與結果

```
== String 6 "ACACGGAAGCTTTGTAACT"
 -- Pattern 1 "TTCAC"
      cycle 7c2, expect(0,--) , get(0,--) >> Pass
 -- Pattern 2 "ATGCACA"
      cycle 7eb, \mathsf{expect}(0, \text{--}) , \mathsf{get}(0, \text{--}) >\!\! > \mathsf{Pass}
 -- Pattern 3 "ACG"
      cycle 80f, expect(1,02), get(1,02) >> Pass
 -- Pattern 4 "G"
      cycle 82c, expect(1,04) , get(1,04) >> Pass
 -- Pattern 5 "CG"
      cycle 84c, expect(1,03), get(1,03) >> Pass
 -- Pattern 6 "GG"
      cycle 86c, \mathsf{expect}(1,04) , \mathsf{get}(1,04) >> \mathsf{Pass}
 -- Pattern 7 "C"
      cycle 888, expect(1,01) , get(1,01) >> Pass
 -- Pattern 8 "TCCCAT"
      cycle 8ae, \mathsf{expect}(0, \text{--}) , \mathsf{get}(0, \text{--}) >\!\! > \mathsf{Pass}
 -- Pattern 9 "TTCATG"
      cycle 8d4, expect(0,--) , get(0,--) >> Pass
 -- Pattern a "TGT"
      cycle 8f8, expect(1,0c) , get(1,0c) >> Pass
-----
- Simulation finish, ALL PASS --
- cycle =2297 , Score =122
finish called at time: 22970 ns: File "C:/Users/Alan/Desktop/git/SME_parallel/test_bench/sme_tb.sv" Line 201
```

# 圖二、Simulation 結果(Vivado)

(Max String Length: 32, Max Pattern Length: 8, no.PE: 4)



圖三、合成結果(Design Vision)

(Process: TSMC 90nm · Clock Constrain: 200Mhz, no.PE: 4)

```
- Pattern 2 "ATGCACA
       cycle 7eb, expect(0,--), get(0,--) >> Pass
   - Pattern 3 "ACG
       cycle 80f, expect(1,02) , get(1,02) >> Pass
   - Pattern 4 "G
       cycle 82c, expect(1,04) , get(1,04) >> Pass
   - Pattern 5 "CG
       cycle 84c, expect(1,03) , get(1,03) >> Pass
   - Pattern 6 "GG
       cycle 86c, expect(1,04) , get(1,04) >> Pass
 -- Pattern 7 "C
       cycle 888, expect(1,01) , get(1,01) >> Pass
 - Pattern 8 "TCCCAT
       cycle 8ae, expect(0,--) , get(0,--) >> Pass
   - Pattern 9 "TTCATG
       cycle 8d4, expect(0,--) , get(0,--) >> Pass
 - Pattern a "TGT
       cycle 8f8, expect(1,0c) , get(1,0c) >> Pass
-- Simulation finish, ALL PASS
-- cycle =2297 . Score =122
Simulation complete via $finish(1) at time 11485 NS + 0
./sme_tb.sv:203
                                    Sfinish;
```

### 圖四、Pre-Simulation(Ncverilog)

(Run Clock Rate: 200Mhz, Max String Length: 32) (Max Pattern Length: 8, no.PE: 4)

```
******************
Report : area
Design : SME
Wersion: K-2015.06-SP1
Library(s) Used:
    slow (File: /usr/cad/DesignKit/CBDK_TSMC90GUTM_Arm_f1.0/CIC/SynopsysDC/db/slow.db)
Number of ports:
                                        2034
                                        5617
Number of nets:
Number of cells:
Number of combinational cells:
                                        3551
                                        3025
Number of sequential cells:
                                         519
Number of macros/black boxes:
Number of buf/inv:
                                         855
Number of references:
                                26857.252930
Combinational area:
Buf/Inv area:
                                 8329.607940
Noncombinational area:
                                10964.318250
                                    0.000000
Macro/Black Box area:
                              2239778.279861
Net Interconnect area:
Total cell area:
                                37821.571180
                              2277599.851042
Total area:
```

圖五、Area Report(Design Vision)

```
Operating Conditions: slow Library: slow
Wire Load Model Mode: top
                       Wire Load Model
                                                                    Library
SME
                                      tsmc090_w150
Global Operating Voltage = 0.9
Power-specific unit information:
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units = 1nW
Leakage Power Units = 1pW
                                                       (derived from V,C,T units)
   Cell Internal Power = 2.2494 mW
Net Switching Power = 1.1377 mW
                                                                  (66\%)
                                     = 3.3871 mW (100%)
 Total Dynamic Power
 Cell Leakage Power
                                      = 242.9314 uW
                             Internal
                                                         Switching
                                                                                           Leakage
                                                                                                                           Total
                                                                                          Power
Power Group
                                                         Power
                                                                                                                                      ( % ) Attrs
                            Power
                                                                                                                          Power
                                                                                                                           0.0000
0.0000
0.0000
                                                                                                                                               0.00%)
0.00%)
0.00%)
                         0.0000
0.0000
0.0000
0.0000
2.0995
1.4887e-04
                                                                                      0.0000
0.0000
0.0000
0.0000
5.4301e+07
5.1239e+05
                                                              0.0000
0.0000
 io_pad
memory
black_box
clock_network
                                                       0.0000
0.0000
0.0000
9.0558e-02
5.0023e-04
                                                                                                                    0.0000
2.2443
1.1615e-03
1.3845
                                                                                                                                             0.00%)
61.83%)
0.03%)
register
sequential
                                                                                                                                             38.14%)
 combinational
                                0.1498
                                                              1.0466
                                                                                      1.8812e+08
Total
                                2.2494 mW
                                                              1.1377 m₩
                                                                                      2.4293e+08 p₩
                                                                                                                           3.6300 mW
```

圖六、Power Report(Design Vision)

| ire Load Mode<br>Startpoint:<br>Endpoint: s1                                                                                                                                                                                                     | reset (input port clocke<br>/dpl/o_fail_func_reg[9]<br>ising edge-triggered fli                                                                                                                                      | ed by clk) | by clk)                                      |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|----------------------------|
| Des/Clust/Po                                                                                                                                                                                                                                     | rt Wire Load Model                                                                                                                                                                                                   | Library    |                                              |                            |
| SME                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      |            |                                              |                            |
| Point                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |            | Incr                                         |                            |
| input extern reset (in) s1/reset (sh s1/U456/Y (B s1/U482/Y (B s1/U572/Y (C s1/dp1/reset s1/dp1/U205/s1/dp1/U108/s1/dp1/U104/Y s1/dp1/U74/Y s1/dp1/U35/Y s1/dp1/U91/Y s1/dp1/U4/Y s1/dp1/U4/Y s1/dp1/U4/Y s1/dp1/U21/Y s1/dp1/U21/Y s1/dp1/U21/Y | k delay (ideal) al delay ared_memory) UFX14) UFX20) LKBUFX40) (DP_FailFunc) Y (CLKBUFX40) Y (BUFX20) Y (CLKINVX40) Y (AND3X8) (NAND2X6) (INVX20) (NAND2X8) (AOI2BBIX4) (BUFX12) (OAI2BBIX4) 1 func_reg[9]/D (DFFHOX8 | 8)         | 0.08<br>0.09<br>0.14<br>0.00<br>0.15<br>0.10 | 3.36 f<br>3.36 f<br>3.51 f |
| clock uncert                                                                                                                                                                                                                                     | k delay (ideal)<br>ainty<br>1_func_reg[9]/CK (DFFHQ)<br>p time                                                                                                                                                       | X8)        | 5.00<br>0.50<br>-0.10<br>0.00<br>-0.12       | 5.50<br>5.40               |
| data require<br>data arrival                                                                                                                                                                                                                     |                                                                                                                                                                                                                      |            |                                              | 5.28<br>-5.28              |
| slack (MET)                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |            |                                              | 0.00                       |

圖七、Timing Report(Design Vision)

# (四)、規格

| Hardware          |                  |  |  |  |
|-------------------|------------------|--|--|--|
| Synthesis Process | TSMC 90 nm       |  |  |  |
| CLK Cycle         | 200Mhz           |  |  |  |
| Throughput        | 5.2 M Match /Sec |  |  |  |

[備註]: 此 Throughput 之情況為原始設計目標最大 String 長度 32Bytes,最大 Pattern 長度 8 Bytes,SME 中共有 4 個比對 PE,於 200Mhz 下筆對了 60 筆得到 2297 Cycle(即 11485 ns),由此推估 Throughput 可達 5.2M Match/Sec。

# (五)、參考

[1] D. E. Knuth, J. H. Morris and V. R. Pratt, "Fast Pattern Matching in Strings," *SIAM J. COMPUT*, Vol.6, No.2, June *1977*.

[2] U. S. Alzoabi, N. M. Alosaimi, A. S. Bedaiwi and A. M. Alabdullatif, "Parallelization of KMP String Matching Algorithm," *2013 World Congress on Computer and Information Technology (WCCIT)*, pp. 1-3, 2013.

[備註]所有的 Code 皆放在我個人的 github 上面: https://github.com/vanwanTaiwan/SME\_parallel