HORNSBY GIRLS' HIGH SCHOOL

2007 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- o Reading Time 5 minutes
- Working Time 3 hours
- Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-8
- o All questions are of equal value

Total Marks - 120

Attempt Questions 1-8

All Questions are of equal value
Begin each question on a NEW SHEET of paper, writing your student number and question number
at the top of the page. Extra paper is available.

Qı	uestion 1 (15 marks) Use a SEPARATE sheet of paper.	Marks
(a)	Use the technique of integration by parts to find:	
	(i) $\int \ln x \ dx$	2
	(ii) $\int e^x \cos x \ dx$	3
(b)	$\int 4x^2-1$	2
(c)	Find $\int \frac{dx}{x^2 + 2x + 4}$	2
(d)	Find $\int \sqrt{\frac{x-1}{x+1}} \ dx$	2
(e)	By using the substitution $t = \tan(\frac{x}{2})$ and partial fractions evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{4\sin x + 3\cos x}$	4
Que	estion 2 (15 marks) Use a SEPARATE sheet of paper.	Marks
(a)	Given that P and Q represent the complex numbers $5 + 2\sqrt{6}i$ and $1 - \sqrt{3}i$ respectively, find:	
	(i) $\frac{P}{Q}$ in the form $x + iy$	2
	(ii) $\overline{P} \times \overline{Q}$	2
	(iii) \sqrt{P} in the form $x+iy$	2
	(iv) The modulus and argument of Q	2
	(v) The complex number R in the form $x + iy$, given that $\arg R = 2 \arg Q$	
	and $ R = 2 Q $	2
(b)	On an Argand diagram sketch the region defined by $-2 \le \text{Re}(Z) < 1$	1
(c)	Draw a sketch in the complex plane of the locus of Z given by the equations	
	(i) $\arg(Z-3+2i) = \frac{\pi}{4}$	2
	(ii) $arg(Z-1) - arg(Z+1) = \frac{\pi}{2}$	2

Que	estion 3	(15 marks)	Use a SEPARATE sheet of paper.	Marks
(a)			w large (half page), separate, neat and accurate sketches of owing clearly all the intercepts and asymptotes:	
	(i) <i>y</i>	= f(x)		2
	(ii) y :	1- , -:		2
	(iii) y	$=\frac{1}{f(x)}$		2
	(iv) y^2			2
(b)			e curve $y = x^2 - 4x + 4$ and the x and y axes is rotated and the volume of the solid of revolution.	4
(c)	An ellip	se has equation $\frac{x}{4}$	$\frac{x^2}{4} + \frac{y^2}{9} = 1$. Find the eccentricity, co-ordinates of the	
	foci S a	and S' and the eq	uations of the directrices.	3
Oues	ation 4	(15 marks)	Lice a SEPARATE cheet of namer	Morks

(b) (i) Show that a reduction formula for,
$$I_n = \int x^n \cos x \ dx$$
, is
$$I_n = x^n \sin x + nx^{n-1} \cos x - n(n-1)I_{n-2}.$$
 3
(ii) Hence, or otherwise, evaluate
$$\int_0^{\pi/2} x^4 \cos x \ dx$$
 3

Que	estion 5	(15 marks)	Use a SEPARATE sheet of paper.	Marks
(a)	pend	lulum with angular	end of a string 0.8 metres long, is rotating as a conical velocity 3π radians per second. Use $g = 10m/s^2$ and the string makes with the vertical.	
	(i)	Draw a diagram	showing all the forces acting on the mass	1
	(ii)	By resolving for	rces, find the tension in the string	2
	(iii)	Find θ correct t	to the nearest degree	1
(b)	A par At tir	ne t seconds its he	om rest at a height h metres above the ground. Eight above the ground is given by	
		$x = h + \frac{gt}{k} + \frac{ge^{-}}{k^2}$	$-\frac{g}{k^2}$	
	(i)	Show that $x = g$	v - kv where the velocity of the particle is $v m/s$	2
	(ii)	What forces are a	acting on this particle? Explain carefully.	1
	(iii)	If it takes T secon	nds for the particle to reach half its terminal velocity,	
		find the value of	$oldsymbol{e}^{ extit{kT}}$.	2
(c)	in 55 i	metres when it is tra	e braking force required to stop a truck of mass $4800 kg$ aveling at $40 km/h$ down an incline of angle 5^0 to the ind resistance and use $g = 10 m/s^2$)	3
(d)	Prove	the identity $\frac{\cos y}{}$	$\frac{-\cos(y+2x)}{2\sin x} = \sin(y+x)$	3

5

(a)

A mould for a section of concrete piping is made by rotating the region bounded by the curve $y = \frac{6}{\sqrt{4-x^2}}$ and the x-axis between the lines x = 0 and x = 1 through one complete revolution about the line x = 3. All measurements are in metres.

- (i) By considering strips of width δx parallel to the axis of rotation, show that the volume Vm^3 of the concrete used in the piping is given by $V = 12\pi \int_0^1 \frac{3-x}{\sqrt{4-x^2}} dx$
- (ii) Hence, or otherwise, find the volume of the concrete used in the piping, giving your answer correct to the nearest cubic metre.
- (b) (i) Sketch the graph of the curve $y = x + e^{-x}$ showing clearly the coordinates of any turning points and the equations of any asymptotes. 2
 - (ii) The region in the first quadrant between the curve $y = x + e^{-x}$ and the line y = x and bounded by the lines x = 0 and x = 1 is rotated through one complete revolution about the y-axis. Use the method of cylindrical shells to find the volume of the solid.
- (c) The expression $\sqrt{12 + \sqrt{12 + \sqrt{12 + \sqrt{12 + \sqrt{\dots}}}}}$ has a limit L. Find the exact value of L.

Question 7 (15 marks) Use a SEPARATE sheet of paper.

Marks

- (a) The roots of $px^3 + qx^2 + rx + s = 0$ form a geometric series. Prove that $pr^3 = q^3s$
- (b) If i is a root of $z^4 + 2z^3 2z^2 + 2z 3 = 0$, find the other three roots.
- (c) Given that $Q(x) = x^4 5x^3 + 4x^2 + 3x + 9$ has a zero of multiplicity 2, solve the equation Q(x) = 0 over the complex field.
- (d) Given the function $f(x) = \sqrt{2 \sqrt{x}}$
 - (i) What is the domain of f(x)?
 - (ii) Show that f(x) is a decreasing function and deduce the range of f(x).
 - (iii) By considering the graph of y = f(x), or otherwise, evaluate $\int_{0}^{4} \sqrt{2 \sqrt{x}} dx$ 3

Use a SEPARATE sheet of paper.

Marks

2

5

- (a) Consider the rectangular hyperbola xy = 4
 - (i) Show that the gradient of the tangent at the point $P\left(2p, \frac{2}{p}\right)$ is $\frac{-1}{p^2}$
 - (ii) Show that the equation of the normal at P is given by $p^3x py = 2(p^4 1)$
 - (iii) This normal meets the hyperbola again at $Q\left(2q, \frac{2}{q}\right)$. Prove that $p^3q = -1$.
 - (iv) Hence, or otherwise, find the equation of the chord that is a normal at both ends of the chord.
- (b) The line 3y = 5x + 1 is the equation of the diagonal of a square. One of the square's vertices is (3,11). Find the coordinates of the other vertices.
- (c) A solid of height 10 metres stands on horizontal ground. The base of the solid is an ellipse with semi-axes 20 metres and 10 metres.
 Horizontal cross-sections taken parallel to the base and at height h metres above the base are ellipses with semi-axes x metres and \(\frac{1}{2}\) metres.

The centres of these elliptical cross-sections and the base lie on a vertical straight line, and the extremities of their semi-axes lie on sloping straight lines as shown in the diagram. The top of the solid is an ellipse with semi-axes 10 metres and 5 metres.

Find the volume of the solid correct to the nearest cubic metre.

(you may assume that the area contained by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab).

END OF PAPER

	_
	`
1 1	
\ I	

, Ext 2 Trial 2007 Solutions	_	
a)i) Inxdx let u= lnx v=x	(Ale) 4 six + 3 con	
x lnx - /x dx du dy dv	(ale) Jane 3con	L= tan(2)
= x lnx - 1 dx	2dt	six = 2+ cox = 1-+2
= x lnx -x (+c)	$\int_{0}^{2} \frac{2dt}{1+t^{2}} \frac{2dt}{1+t^{2}}$	
	1+t2 T+t2	dt = 1/2 sec2(1) = 1(1++a2(1))
1) I= le cosx dx let u= cosx v.ex	_ (dx 2
I, e cox - Je six du du six du e du	$= \int_0^\infty \frac{2 dt}{3+8t-3t^2}$	x=0, t=0 x=1, t=1
L. excor - Jexswada du - six du ex excor + Jexswada du - six du ex du six du ex du six du ex	= (' 2 dt	X=0, +=0 X=3, +=
# cosx dy ex	$\int_{0}^{1} \frac{2 dt}{(3-t)(1+3t)}$	v v
= E cosx + E surx -) e cosx du		
= ex (cosx + sixx) - I	let 2 A B	
: 2I=ex (cosx+six)	$\frac{1et \ 2}{(3-t)(1+3t)} = \frac{A}{3-t} \frac{B}{1+3t}$	
I . ex (100x + sixx)	.', 2 = A(1+3t) + B(3-t)	
4 4 A	let t=3, 2 = 10A	
) let $\frac{4}{2x^{2}-1} \cdot \frac{4}{(2x-1)(2x+1)} \cdot \frac{A}{2x-1} + \frac{B}{2x+1}$	A: 5	
A : A(2n+1) + B(2n-1)	t13 2.10B	
	B = 33	
let x = -1/2 , 4 = -2B	7 3 df 7 / 1	3
let 11. 1/2 4. 2A	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	+ <u>5</u> (1+3+) d+
A = 2		
	In(3	-t) + t [(1+3t)]
$\int \frac{4}{4x^2-1} dx = \int \left(\frac{2}{2x-1} - \frac{2}{2x+1}\right) dx$: ± [In(!	+3+17
$-\ln(2x-1) - \ln(2x+1) (+C)$		
$= \ln \left(\frac{2^{\kappa-1}}{2^{\kappa+1}} \right) (+C)$	- + + (\frac{1}{2})	- h (\frac{1}{2})
	= \$ In 6	
	<u>> 110</u>	
The state of the s	02a) i) P 5+2/6i 14/6:	
$= \frac{1}{\sqrt{3}} + \tan^{-1}\left(\frac{\chi_{+}}{\sqrt{3}}\right)$	Q2a) i) P = 5+26 i x 1+15i	
the state of the s	6 5 + 5/3i +2/Ei - 2/	is.
$\int \sqrt{\frac{x-1}{x+1}} dx = \int \frac{x-1}{\sqrt{x^2-1}} dx$	A1 000 00 00 00 00 00 00 00 00 00 00 00 0	
	5-652 + i (553+2	<u>sc)</u>
$\frac{1}{2} \int \frac{2x}{\sqrt{x^2-1}} dx - \int \frac{dx}{\sqrt{x^2-1}}$		
The second secon	") Px Q = (5-25i)(1+5i)	
$= \sqrt{\chi^2 - 1} - \ln \left(\chi + \sqrt{\chi^2 - 1} \right)$. 5 + 5/3i - 2/6i + 3	
	5+65 +1(55-	

b)
$$V = \lim_{\Delta x \to 0} \sum_{0}^{2} (\pi R^{2} - \pi r^{2}) \Delta R$$

$$= \pi \int_{0}^{2} (1 + (x - 1)^{2} - 1) (1 + (x - 1)^{2} + 1) dx$$

$$= \pi \int_{0}^{2} (x - 2)^{2} (2 + (x - 2)^{2}) dn$$

$$= \pi \int_{0}^{2} 2(x - 2)^{2} + (x - 2)^{4} dn$$

$$= \pi \int_{0}^{2} \frac{2(x - 2)^{2}}{3} + \frac{(x - 2)^{5}}{5} \int_{0}^{2}$$

JUESTION 4

2) i)
$$I = \int \sin^3 n \cdot (\cos^5 x \, dx \cdot \frac{\pi}{2}) \int \sin^3 n \cdot (1 - \sin^2 n)^2 \cdot (\cos n \, dx \cdot \frac{\pi}{2}) \int \sin^3 x \cdot (1 - 2\sin^2 x + \sin^2 n) \int \cos x \, dx \cdot \frac{\pi}{2} \int (\sin^3 x - 2\sin^5 x + \sin^7 n) \int \cos n \, dx \cdot \frac{\pi}{2} \int (\cos x \, dx \cdot \frac{\pi}{2}) \int (\cos^5 x - \cos^5 x) \int (\cos^5 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^5 x - \cos^7 x) \int (\cos^5 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^5 x) \int (\cos^5 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^5 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x - \cos^7 x) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot \sin x \cdot \sin x \cdot \frac{\pi}{2}) \int (\cos^7 x \cdot \sin x \, dx \cdot \sin x \cdot$$

= \ u7 - u5 du

 $= \frac{u^8 - u^6}{4} + c$

 $=\frac{\cos^{8}x-\cos^{6}x+c}{2}$

let u = cas x

(i)
$$I = \int \frac{dn}{x^{3}\sqrt{x^{2}+4}}$$
(if $x = 2 \le x = 0$

$$dn = 2 \le x = 0$$

$$dn = 2 \le x = 0$$

$$dn = 2 \le x = 0$$

$$8 \le x^{2} = 0$$

$$9 = cos^{-1}(\frac{2}{x})$$

$$1 = \int (0 + \frac{1}{2} \le x) d0$$

$$1 = \int (0 + \frac{1}{2} \le x) d0$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0 + \frac{1}{2} \le x) dx$$

$$1 = \int (0$$

) i) In = \(\int x^{\chi} \cos x \ dx \).

Let $u = x^n$ $dv = \cos x \, dx$ $du = nx^{n-1} dx \quad V = \sin x$

 $I_n = x^n s_{mx} - n \int x^{n-1} s_{mn} \, dn.$

Let $u = x^{n-1}$ $dv = S_n x dx$ $du = (n-1)x^{n-2}dx$ V = -los x

 $I_{n} = x^{n} \sin x - n \left(-x^{n-1} \cos x + \int_{n-1}^{\infty} x^{n-2} \cos x \, dx \right)$ $= x^{n} \sin x + h x^{n-1} (\cos x - n(n-1)) \int_{n-2}^{\infty} x^{n-2} (\cos x \, dx)$ $= x^{n} \sin x + x^{n-1} \cos x - n(n-1) \int_{n-2}^{\infty} x^{n-2} (\cos x \, dx)$

ii) let I = /x + cos x dx.

 $I_0 = \int \cos x \, dx$ $= \sin x$

I2 = 1(Sin x+2x cosx - 2 Sin x .

I4 = X4 Sinx+4x3 cosx - 12 (x2 Sinx+2x cosx - 2 Sinx) = X4 Sinx+4x3 cosx - 12x2 Sinx + 24x cosx + 245 cnx.

 $\int x^{4} \cos x \, dx = \left[x^{4} \sin x + 4x^{3} \cos x - 12x^{3} \sin x + 24x \cos x + 24 \sin x + 24 \sin x \right]$

$$= \left(\frac{\pi}{2}\right)^4 - 12\left(\frac{\pi}{2}\right)^2 + 24$$

$$= \pi^4 - 3\pi^2 + 24 + 3\pi^2 + 3\pi$$

$$= \frac{\pi}{16}^4 - 3\pi^2 + 24 \#$$

QUESTION 5

a) i)

T

 $TSMO = MW^{2}R$ $TSMO = 3 \times 97^{2} \times 0.00$ $T = 21.67^{2}$ = 213 N

iii) $T \cos \theta = 3c$ $\cos \theta = \frac{3c}{T}$ = 0.114 $\theta = 82^{\circ}$

b) $x = h + gt + ge^{-kt} - gt$ $V = \dot{x} = g - ge^{-kt}$ $\dot{x} = ge^{-kt}$

now $V = \frac{q}{k} - \frac{qe^{-kt}}{h}$

 $kv = g - ge^{-kt}$ $ge^{-kt} = g - kv$

ii) F = ma
= mg - mkv
gravity and
resistance & to velocity

 $g = kV_T$ $V_T = \frac{q}{k}$ $V_T = \frac{q}{2k}$ $\frac{q}{2k} = \frac{q}{k} - \frac{qe^{-kT}}{k}$ $\frac{d}{dt} = 1 - e^{-kT}$

 $e^{RT} = 2$

+ve .

$$40 \text{ km/h} = \frac{40000}{3600}$$

$$= \frac{100}{9} \text{ m/s}.$$

$$\frac{d(\hat{x}^{V})}{dn} = a$$

$$\hat{x}^{V} = ax + C$$

$$V^{L} = dan + 2C$$

$$\omega lan x = 0, V = -\frac{100}{9}$$

$$2C = \frac{10000}{81}$$

: v = 2ax + 10000

d) L.H.S. = Cosy - Cos (y+2n) 25in x = Cosy - Cosy(cos 2x + Sony Sin 2x 25in x

- t.p. when x=0, y=1.

|ii) $\Delta V = \pi(R^{2} - r^{2})h$ $= \pi((x+ax)^{2} - x^{2})(x+e^{-x} - x)$ $= \pi(x^{2} + 2xax + ax^{2} - x^{2})e^{-x}$ $= \pi(2xax)e^{-x}$ $\therefore V = 2\pi\int_{-\infty}^{\infty} xe^{-x} dx$

(et u = x $dv = e^{-x} dx$ du = dx $V = -e^{-x}$ $V = 2\pi \left[-xe^{-x} + \int e^{-x} dx \right]_0^x$ $= 2\pi \left[-xe^{-x} - e^{-x} \right]_0^x$ $= 2\pi \left(-e^{-t} - e^{-t} - 0 + 1 \right)$ $= 2\pi \left(i - \frac{\pi}{e} \right)$ = 1.66

c) $12+L = L^{2}$ $L^{2}-L-12 = 0$ (L-4)(L+3) = 0 $L = -3.4^{2}$ L = 4 as limit > 0

QUESTION 7) let mets be 'x, xk xk"

- $(z-i)(2+i) = z^2+1$ 22+22-3 22+1) 24+ 223- 222+22-3 100 22+22-3 = (2+3)(2-1) 1. other routs are -1,1,-3
-) $Q(x) = x^4 5x^3 + 4x^2 + 3x + 9$ $Q'(x) = 4x^3 - 15x^2 + 8x + 3$ Q'(3)=0 Q(3) = 0 x = 3 double root $(x-3)^{L} = x^{L} - 6x + 9$ 1-6x+9) x4-5x3+4x2+3x+9
 - x = 3 1 + 1 13
- 1) i) 05x 54 ii) f'(x) = -14 (2-1x) <0

R O SY & JI

$$y = \sqrt{2-\sqrt{2}}$$

$$x = (2-y^{2})^{2}$$

$$= 4 - 44y^{2} + y^{4}$$

$$A = \int 4 - 44y^{2} + y^{4} dy$$

$$= \left[4y + \frac{44y^{3}}{3} + \frac{45}{5}\right]_{0}^{52}$$

$$= \frac{32\sqrt{2}}{15}$$

\$8c) x = mh + b when h = 0 , x = 20 6=20 when h = 10, x = 10 1. 10 = 10h + 20 h = -1 : x = 20 - h A = TX x x = # (20-1)2 $V = \frac{\pi}{2} / (20 - h)^2 dh$ = -# [(20-h)3710 = 3665 m3

QUESTION 8

a) i)
$$xy = 4x^{-1}$$

$$\frac{dy}{dx} = -\frac{4}{x^{2}}$$
when $x = 2p$.

$$\frac{dy}{dx} = \frac{-4}{4\rho^2}$$

$$= \frac{-1}{\rho^2}$$

ii)
$$y - \frac{1}{p} = p^{2}(x - 2p)$$

 $yp - 2 = p^{3}x - 2p^{4}$
 $p^{3}x - py = 2p^{4} - 2$
 $p^{3}x - py = 2(p^{4} - 1)$

iii) subst (29, 3) into $\rho^{3}(2q) - \frac{2p}{q} = 2(\rho^{4} - 1)$ $2\rho^{3}q^{2} - 2\rho = 2\rho^{4}q - 2q$ 2pg - 2pg = 2p-2q $2\rho^{3}q(q-p)=2(p-q)$ p39 = e-9 9-p p3g = -1 OR. p3x-py = 2(p*-1) -0 y = \(\frac{1}{2} \) subst (into (= p3x-49 = 2p4-2 $p^3x^2 - 4p = 2p^4x - 2n$ p3x2+x(2-2p4)-4p=0 now product of rosts $2p \times 2q = \frac{-Hp}{43}$ P9 = -£

iv) to be normal at P+Q p=q= 1. q= +p substinto pty =-1 p =- 1 and p = 1 subst into eyn of normal ush p=1 , p3x-py = 2(p4-1) x-4 = 0 y = x when p=-1, p3x-py = 2(p*-1) b) y= 3 + 3 - 0. grad other diagonal = 3/5 eyn ding $\Rightarrow y = \frac{3x}{5} + b$ subst (3,11) into eyn of ding 11=-8+6 b = 64 ig= -34 + 64 - 2 Solving (PAC) Simultaneously 왕, 늘 = 광+ 발 25x + 5 = -9x + 192x = 51 } middle of square by symmetry (8,8) (7,12) (4,7)

8(0)