DS n°1 (le 17/09/2011)

Calculatrices non autorisées.

Ne PAS traiter les questions en gris.

EXERCICE

Dans tout l'exercice, on considère la fonction numérique f de variable réelle définie par :

pour tout x réel, $f(x) = -x^2 + 2x + 1$

et la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

 u_0 réel fixé et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

1. Étudier rapidement la fonction f, tracer sa courbe représentative (C) et préciser les points d'intersection de (C) avec la droite d'équation y = x.

Par la suite, on notera ℓ_1 et ℓ_2 les abscisses de ces points $(\ell_1 < \ell_2)$.

- 2. Dans cette question, on suppose : $u_0 < \ell_1$.
 - a) Démontrer que, pour tout entier naturel n, $u_n < \ell_1$.
 - **b**) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - c) La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente? Justifier la réponse.
- **3.** Dans cette question, on suppose : $u_0 \in]1, \ell_2[$.
 - a) Démontrer que $\ell_2 < u_1 < 2$.

Dans les questions qui suivent, on note $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ les suites définies, pour tout entier naturel n, par $v_n=u_{2n}$ et $w_n=u_{2n+1}$.

- **b)** Étudier le signe de $f \circ f(x) x$ pour x appartenant à l'intervalle]1,2[.
- c) Prouver que les suites $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont convergentes et préciser la limite de chacune d'entre elles.
- **d)** La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente? Justifier la réponse.
- **4.** Étudier la suite (u_n) pour les valeurs de u_0 qui n'ont pas été considérées dans les deux précédentes questions.

PROBLÈME I : Méthode de Newton (ENSI 1986, option TA, Maths appliquées, 2h30)

Préambule:

Soit f une fonction de classe \mathcal{C}^1 sur un intervalle I, admettant dans I un zéro et un seul et telle que la dérivée f' ne s'annule pas sur I.

On introduit la fonction F définie sur I par la relation

(*)
$$F(x) = x - \frac{f(x)}{f'(x)}$$

et on suppose que l'intervalle I est stable par F, i.e., $\forall x \in I$, $F(x) \in I$.

La <u>méthode de Newton</u> consiste alors à construire la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} x_0 & \text{donn\'e dans I} \\ x_{n+1} & = F(x_n) \end{cases}.$$

Définition:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite qui converge vers une limite finie ℓ . On suppose que, pour tout n, $x_n \neq \ell$. On dit que la convergence de la suite $(x_n)_{n\in\mathbb{N}}$ vers ℓ est quadratique si la suite $(y_n)_{n\in\mathbb{N}}$ définie par

$$y_n = \frac{|x_{n+1} - \ell|}{|x_n - \ell|^2}, \ n \in \mathbb{N}$$

converge vers une limite finie strictement positive.

Dans tout le problème, α désigne un nombre réel strictement positif.

Première partie

On considère ici la fonction f définie par $f(x) = x^2 - \alpha$.

- 1. Montrer que les hypothèses du préambule sont satisfaites sur l'intervalle $I =]0, +\infty[$.
- **2.** On considère la suite $(u_n)_{n\in\mathbb{N}}$, donnée par $u_0>0$ et par la méthode de Newton associée à la fonction f.
 - a) Pour tout $n \in \mathbb{N}^*$, calculer $\frac{u_n \sqrt{\alpha}}{u_n + \sqrt{\alpha}}$ en fonction de $\frac{u_0 \sqrt{\alpha}}{u_0 + \sqrt{\alpha}}$.
 - **b**) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge quel que soit $u_0 > 0$. Quelle est sa limite?
 - c) Montrer que pour $u_0 > 0$ et $u_0 \neq \alpha$, la convergence de la suite $(u_n)_{n \in \mathbb{N}}$ est quadratique.
- **3.** Soit $u_0 > 0$.
 - a) Montrer que pour tout $n \ge 2$: $0 \le u_{n-1} \sqrt{\alpha} \le 2(u_{n-1} u_n)$.
 - **b)** En déduire l'estimation de l'erreur à la *n*-ième itération :

$$0 \le u_n - \sqrt{\alpha} \le u_{n-1} - u_n, \qquad n \ge 2$$

Quel est l'intérêt pratique de cette estimation de l'erreur?

4. On écrit α sous la forme $\alpha = 2^p \beta$ où p est un entier et β un réel tel que $1/2 \le \beta < 1$.

On considère la suite (u_n) construite à partir de la valeur initiale $u_0 = 2^{\mathrm{E}(p/2)}$ où $\mathrm{E}(p/2)$ désigne la partie entière de p/2.

a) Montrer que $\left| \frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}} \right| < (\sqrt{2} - 1)^2$

(On pourra distinguer les 2 cas : p entier pair, p entier impair).

b) En remarquant que $(\sqrt{2}-1)^2 < \frac{1}{5}$, montrer qu'on a l'estimation de l'erreur suivante :

$$0 \le u_n - \sqrt{\alpha} \le 2u_1 \left(\frac{1}{5}\right)^{2^n}, \quad n \ge 1$$

- c) Quel intérêt supplémentaire offre cette estimation de l'erreur par rapport à celle obtenue à la question 3?
- 5. Application numérique :

Appliquer les résultats précédents au calcul de $\sqrt{5}$ en exigeant des précisions de plus en plus grandes.

Est-il réaliste d'envisager une « grande » précision lorsqu'on utilise une calculatrice manuelle ? D'où vient la difficulté ?

Seconde partie

On considère ici la fonction f définie sur $]0,+\infty[$ par $f(x)=\frac{1}{x}-\alpha$ et on lui associe la fonction F définie par la relation (*).

- **6.** a) Montrer que $]0,\frac{2}{\alpha}[$ est le plus grand intervalle contenu dans $]0,+\infty[$ et stable par F.
 - **b)** Montrer que les hypothèses du préambule sont satisfaites sur $]0, \frac{2}{\alpha}[$.
- 7. On considère la suite $(v_n)_{n\in\mathbb{N}}$ donnée par la méthode de Newton et associée à la fonction f.
 - a) Montrer que si la valeur initiale v_0 est choisie dans l'intervalle $]0,\frac{2}{\alpha}[$ alors la suite $(v_n)_{n\in\mathbb{N}}$ converge.
 - **b)** Quelle est sa limite?
 - c) Montrer que pour $v_0 \in]0, \frac{2}{\alpha}[$ et $v_0 \neq \frac{1}{\alpha}$ la convergence de la suite $(v_n)_{n \in \mathbb{N}}$ est quadratique.
- **8.** Montrer comment on peut utiliser la partie II pour améliorer la précision de l'algorithme décrit à la partie I. On reprendra en particulier l'application numérique de la question 5.

Troisième partie

Soit k un entier naturel strictement supérieur à 1 et soit $a \in \mathbb{R}_+^*$.

On considère la suite $(w_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} w_0 &= a \\ w_{n+1} &= \mathrm{F}(w_n) \end{cases}$ où F est la fonction définie sur $]0,+\infty[$ par

$$F(x) = \frac{1}{k} \left[(k-1)x + \frac{a}{x^{k-1}} \right]$$

- 9. a) En étudiant les variations de la fonction F sur $]0,+\infty[$ montrer que la suite $(w_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite.
 - **b)** Montrer que pour tout $n \ge 2$

$$0 \le w_{n-1} - a^{1/k} \le k(w_{n-1} - w_n)$$

En déduire que pour tout $n \ge 2$

$$0 \le w_n - a^{1/k} \le (k-1)(w_{n-1} - w_n)$$

c) Montrer que la suite $(w_n)_{n\in\mathbb{N}}$ est la suite donnée par la méthode de Newton pour une certaine fonction f que l'on précisera.

PROBLÈME II : Accélération de convergence (ENSAE 1998, Maths appliquées, 2h)

Les trois premières parties sont très largement indépendantes. Les candidats pourront admettre un résultat qu'ils n'auraient pas démontré à condition de le préciser explicitement.

Il sera tenu le plus grand compte de la rigueur et de la clarté du raisonnement.

Dans tout le problème a et b désignent deux réels tels que a < b et f une fonction de [a,b] dans [a,b], de classe \mathscr{C}^1 (c'est à dire dérivable sur [a,b] et de dérivée continue).

Partie préliminaire

Justifier l'existence de $\sup_{y \in [a,b]} |f'(y)|$, que l'on notera K dans la suite du problème, et montrer que

 $\forall x \in [a,b], |f(x)-f(x')| \leq K|x-x'|$. (On invoquera de façon précise les théorèmes du cours utilisés).

On supposera dans toute la suite du problème que K < 1.

Partie I : Théorème du point fixe

- **1.** Montrer qu'il existe un et un seul $c \in [a,b]$ tel que f(c) = c et que l'itération définie par : $x_0 \in [a,b]$; $x_{n+1} = f(x_n)$ converge vers c.
- **2.** On définit l'erreur à la *n*-ième itération par : $e_n = x_n c$. Montrer que :

$$|e_n| \le \frac{K^n}{1 - K} |x_1 - x_0|$$

Partie II: Procédure diagonale d'Aitken.

On suppose dans toute la suite du problème que $\forall x \in [a, b], |f'(x)| > 0$.

- **1.** Montrer que si $e_0 \neq 0$, alors $\forall n \in \mathbb{N}, e_n \neq 0$. Que peut on dire si $e_0 = 0$? On supposera, dans la suite de cette partie, que $e_0 \neq 0$.
- **2.** Montrer que $\forall n \in \mathbb{N}, x_{n+1} x_n \neq 0$.
- 3. Montrer que $\frac{e_{n+1}}{e_n}$ tend vers f'(c) lorsque n tend vers $+\infty$.
- **4.** Pour tout entier n, on pose :

$$x'_n = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

Justifier l'existence de x'_n et montrer que :

$$\lim_{n\to\infty} \frac{x_n'-c}{x_n-c} = 0$$

Commenter ce résultat.

Partie III: Méthode de Steffenson.

Dans cette partie, g est une fonction de $[a, +\infty[$ dans $[a, +\infty[$, de classe \mathscr{C}^1 , telle que g' est croissante et strictement négative. On notera : N(x) = g(g(x)) - 2g(x) + x.

- **1.** Montrer qu'il existe un et un seul $d \in [a, +\infty[$ tel que g(d) = d.
- **2.** Soit $x \in [a, +\infty[$. Montrer qu'il existe y_1 et y_2 dans $[a, +\infty[$ tels que :

$$g(x) - x = (g'(y_1 - 1)(x - d))$$
 et

$$N(x) = [(g'(y_1) - 1)^2 + (g'(y_2) - g'(y_1))g'(y_1)](x - d)$$

- **3.** Montrer que N(x) = 0 si et seulement si x = d.
- **4.** On pose, pour $x \in [a, +\infty[$,

$$G(x) = \begin{cases} x - \frac{(g(x) - x)^2}{N(x)} & \text{si } x \neq d \\ d & \text{si } x = d. \end{cases}$$

Montrer que G est une fonction continue de $[a, +\infty]$ dans $[a, +\infty]$.

5. On définit la suite $(x_n'')_{n\in\mathbb{N}}$ par : $x''_0 \in [a, +\infty[$ et $x''_{n+1} = G(x''_n)$. Montrer que cette suite converge vers d.

Partie IV: Application.

On cherche à estimer numériquement la solution de l'équation $\exp(-x) = x$. Montrer que l'on peut mettre en œuvre les trois algorithmes étudiés dans le problème. En prenant $x_0 = x''_0 = 0,5$ calculer la solution de l'équation à 10^{-6} près. Donner le nombre d'itérations nécessaires permettant de parvenir à la précision souhaitée pour chacun des algorithmes.