Modelling 2020 overall mortality

Carlo Giovanni Camarda Tim Riffe Simona Bignami Enrique Acosta

TAG Working Group I

July 9th, 2021

Data

Sources for overall deaths:

Source	# of populations	2020	
		Total # deaths	Mean $\#$ of age-groups
WHO	13	6.6	19
STMF	27	4.6	18
Statistical bureaus	7	4.0	78
Eurostat	9	1.3	19
UN PD	11	0.5	20
Totals	67	6.6	25

- Criteria for selecting sources/year:
 - 2020 must be available
 - 2015-2019 when coming from the same source
 - prioritize source coherence with respect to longer periods
 - preference for more detailed age-groups
- Sources for the exposures: UN WPP (single year of age)
- Age-range: 0-100
- Sexes combined

Model

- For each population over age x, we have two mortality patterns:
 - $\eta^{1}(x)$ for the overall pre-pandemic years (sum up data < 2020)
 - $\eta^2(x)$ for 2020
- We model data in 2020 as follows:

$$\eta^2(x) = \eta^1(x) + c + \delta(x)$$

- c scaling factor
- $\delta(x)$ age-dependent adjustment component $(\sum \delta(x) = 0)$
- Both $\eta^1(x)$ and $\delta(x)$ are assumed to be smooth
- The model is multiplicative at the force of mortality level:

$$e^{\eta^2(x)} = \mu^2(x) = e^{\eta^1(x)} e^c e^{\delta(x)} = \mu^1(x) e^c e^{\delta(x)}$$

• both e^c and $e^{\delta(x)}$ can be interpreted as relative risk factors

A schematic illustration: a relative risk perspective

Actual data illustration 1: France (mainly old ages)

Actual data illustration 1: France (mainly old ages)

Actual data illustration 2: Peru (middle-age hump)

Actual data illustration 2: Peru (middle-age hump)

Actual data illustration 3: Mongolia (clear data issues)

Actual data illustration 4: Ireland (a good 2020?)

World Map with e^c (relative risk scaling factor)

Parameter δ for all available data

Parameter δ for populations with clear data issue or peculiar patterns

Parameter δ for populations without clear data issue or peculiar patterns

Parameter δ for populations without clear data issue or peculiar patterns

Parameter e^{δ} for populations without clear data issue or peculiar patterns

12

12

15

20

21

23

35

