Chapter 3 Hilbert Spaces and Orthonomal Systems

Definition 3.2.13. (Orthogonal vectors)

Two vectors x and y in an inner product space are called orthogonal, denoted by $x \perp y$, if $\langle x, y \rangle = 0$.

If $x \perp y$, then $\langle y, x \rangle = \overline{\langle x, y \rangle} = 0$, and thus $y \perp x$. In other words, the relation \perp is symmetric.

The next theorem is another example of the geometric character of the norm defined by an inner product.

Theorem 3.2.14. (Pythagorean formula)

For any pair of orthogonal vectors, we have

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Proof: If $x \perp y$, then $\langle x, y \rangle = \langle y, x \rangle = 0$, and thus the equality follows immediately from (3.6).

In the definition of the inner product space we assume that E is a complex vector space. It is possible to define a real inner product space with the inner product of any two vectors being a real number. Then condition (b) in Definition 3.2.1 becomes $\langle x,y\rangle = \langle y,x\rangle$. All the preceding theorems hold in the real case. If, in Examples 3.2.2-3.2.7, the word complex is replaced by real and $\mathbb C$ by $\mathbb R$, we obtain a number of examples of real inner product spaces. A finite dimensional real inner product space is called a Euclidean space.

If $x = (x_1, ..., x_N)$ and $y = (y_1, ..., y_N)$ are vectors in \mathbb{R}^N , then the inner product $\langle x, y \rangle = \sum_{k=1}^N x_k y_k$ can be defined equivalently as $\langle x, y \rangle = ||x|| ||y|| \cos \theta$, where θ is the angle between vectors x and y. In this case, Schwarz's inequality follows from

$$\frac{|\langle x, y \rangle|}{\|x\| \|y\|} = |\cos \theta| \le 1, \quad x \ne 0, y \ne 0$$

Definition 3.3.1. (Hilbert space)

A complete inner product space is called a *Hilbert space*.

Example 3.3.2

Since \mathbb{C} is complete, is a Hilbert space, and so is \mathbb{C}^N .

Example 3.3.3

 l^2 is a Hilbert space. The completeness was proved in Section 1.4 (Example 1.4.6).

Example 3.3.4

The space E described in Example 3.2.5 is an inner product space, which is not a Hilbert space. It is not complete. The sequence

$$x_n = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots\right)$$

is a Cauchy sequence:

$$\lim_{n,m\to\infty} \|x_n - x_m\| = \lim_{n,m\to\infty} \left[\sum_{k=\min[m,n]+1}^{\max\{m,n]} \frac{1}{k^2} \right]^{1/2} = 0.$$

However, the sequence does not converge in E, because its limit $(1, \frac{1}{2}, \frac{1}{3}, \ldots)$ is not in E. (The sequence (x_n) converges in l^2 .)

Example 3.3.5

The space discussed in Example 3.2.6 is another example of an incomplete inner product space. In fact, consider the following sequence of functions in $\mathcal{C}([0,1])$, (see Figure 3.1):

$$f_n(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{2}, \\ 1 - 2n\left(x - \frac{1}{2}\right) & \text{if } \frac{1}{2} \le x \le \frac{1}{2n} + \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2n} + \frac{1}{2} \le x \le 1 \end{cases}$$

Evidently, f_n 's are continuous. Moreover,

$$||f_n - f_m|| \le \left(\frac{1}{n} + \frac{1}{m}\right)^{1/2} \to 0, \text{ as } m, n \to \infty.$$

Thus, (f_n) is a Cauchy sequence. It is easy to see that the sequence is pointwise convergent to the function

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

The limit function is not continuous and thus not an element of $\mathcal{C}([0,1])$. Therefore the sequence (f_n) is not convergent in $\mathcal{C}([0,1])$. Consequently, $\mathcal{C}([0,1])$ is not a Hilbert space.