Primeira Avaliação - Tópicos III

Entrega: 30/05/2018

- 1. Implemente o esquema de criptografia RSA.
 - Aplicação de criptografia: O usuário entra com um texto (.txt) e uma chave pública. A aplicação devolve um texto (.txt) criptografado através do esquema de criptografia RSA.
 - Aplicação de decriptografia: O usuário entra com um texto (.txt criptografado) e sua chave privada. A aplicação devolve um texto (.txt) decriptografado.
- 2. Implemente a assinatura digital via RSA.
 - Aplicação de assinatura: O usuário entra com um texto (.txt) e com sua chave privada. A aplicação devolve a assinatura do usuário sobre o texto (outro .txt).
 - Aplicação de verificação da assinatura: O usuário entra com um texto (.txt), entra com uma assinatura sobre tal texto (.txt) e entra com a chave pública de quem assinou. A aplicação devolve SIM (a assinatura é válida) ou NÃO (a assinatura não é válida).
- 3. Implemente o esquema de distribuição de Diffie-Hellman. Vamos supondo que A deseja enviar uma "mensagem" m para B, e que exista uma chave pública (p,α) , onde p é um número primo grande e α é um gerador de \mathbb{Z}_p
 - Aplicação de criptografia: O usuário A entra com um texto (.txt) e entra com um segredo criptografado y_B de B (o usuário A entra com $y_B = \alpha^{x_B}$ que depende do segredo x_B de B). A aplicação devolve o par (c_1, c_2) , onde
 - * $c_1 \equiv \alpha^t \pmod{p}$, onde t é um número inteiro escolhido ao acaso em $\{0, 1, \dots, p-1\}$; e
 - $\star c_2 \equiv Km \pmod{p}$, onde $K \equiv (y_B)^t \pmod{p}$.
 - Aplicação de decriptografia: O usuário B entra com o par (c_1, c_2) e decriptografa a mensagem fazendo
 - $\star K \equiv c_1^{x_B} \pmod{p}$ (encontrando K); e
 - $\star m \equiv K^{-1}c_2 \pmod{p}$ (aplicando o inverso de K sobre m).