Diffusion Processes on Complex Networks - Lab

Piotr Nyczka

March 2024

1 Assignment 1

1. Consider the undirected network defined by the following set of links: (Alice, Bob), (Bob, Gail), (Irene, Gail),

(Carl, Alice), (Gail, Harry), (Irene, Jen),

(Alice, David), (Harry, Jen), (Ernst, Frank),

(Alice, Ernst), (Jen, Gail), (David, Carl),

(Alice, Frank) (Harry, Irene) (Carl, Frank)

- (a) Draw the network by hand.
- (b) How many nodes are there?
- (c) What is the density of the network?
- (d) Calculate the degree of each node. Who is the most central node according to this measure?
- (e) Calculate the clustering of each node and the average clustering of the network.
- (f) Calculate the closeness centrality for each node. Who is the most central node according to this measure?
- (g) Calculate the betweenness centrality of each node. Who is the most central node according to this measure?
- 2. For the above network:
 - (a) prepare a CSV file with the edge list;
 - (b) visualize the network by making use of the Networkx
 - (c) calculate the basic network measures within Networkx.
- 3. An undirected unweighted network of size N may be represented through a symmetric adjacency matrix $A \in \mathbb{R}^{N \times N}$, which has $a_{ij} = 1$, if nodes i and j are connected, and $a_{ij} = 0$ otherwise. We assume that $a_{ii} = 1$, so there are no self-loops in the network. Let e be a column vector of N elements all equal to 1, i.e. $e = (1, 1, ..., 1)^T$, where the superscript T indicates the

transposition. Write expressions for or answer each of the following tasks by making use of the above quantities and the matrix formalism (no sum symbol \sum allowed!):

- (a) the vector k whose elements are the degrees k_i of the nodes i=1,2,3,...,N
- (b) the total number L of links in the network;
- (c) the matrix N whose element n_{ij} is equal to the number of common neighbors of nodes i and j;
- (d) the number T of triangles present in the network. A triangle is three vertices, each connected by edges to both of the others (hint: trace of a matrix);
- (e) how would you determine whether the network is connected only by looking at the adjacency matrix?