

Smart Car Garage Using Verilog

Abdelrahman Magdy Ellithy(8)

Norhan Mohamed Emam(17)

Supervised by Dr. Fatma Saqr.

Table of Contents

1.	Project objective and scope	3
2.	Table of Inputs and Outputs	4
3.	How it works	5
4.	<i>FSM</i>	6
5.	Car garage icon,	7
6.	Care carage stracture	7
<i>7</i> .	Simulation results (test strategy)	8
8.	Simulation results (wave && simulation examples)	8

Project Objective

- Most of the time, the car garage is full, and the absence of evidence of that makes things sometimes worse. Therefore, the aim of the project is to help eliminate congestion .The detailed Specification of CAR SYSTEM is as follow:
- there's a button to open and close garage
- threre is a counter that increment when car enter garage and decrement when car leave garage
- the maximum number of cars can enter garage is 50
- if the existing cars greater than 50 then garage will not open and display GARAGE IS Full (F) otherwise car enter garage
- when garage not empty a message will appear that the GARAGE IS AVAILABLE (A)otherwise GARAGE IS EMPTY

Table of inputs && outputs

input	Pb_up	Increament when
		car enter garage
input	Pb_down	decrement when
		car enter garage
input	Reset	Open or close
		garage
output	1_st seven	Display The ones
	segment	digit place
output	2_nd seven	Display The tens
	segment	digit place
output	3_th seven	Display The
	segment	empty or full or
		AVAILABLE place
output	state	Display current
		state in binary

• How it works?

Car garage system is a group of submodules.

- 1. Module clock_gen
 - Outputs clk for clock divider.
- 2. Module clock div
 - Takes Input clk from clk generator.
 - Takes Input reset.
 - Outputs slowed_clk for clock divider.
- 3. Module FF

Takes input slowed_clock from clock divider and

- Takes input push button_up.
- Takes input push button_down.
- Outputs Debounced_push button_up from flip flop.
- Outputs Debounced_push button_down from flip flop.
- 4. Module BCD_Counter

Takes input Debounced_push button_down.

Takes input Debounced_push button_up

Takes input reset.

Output number of cars at garage.

Output current state.

- 5. Module seg_1e
 - Takes reminder 10 of number of cars in binary.
 - Display The ones digit place.
- 6. Module seg_2

Takes number of cars division by 10 in binary.

Display The Tens digit place.

7. Module flag_seg

Takes number of cars at garage.

Output flag (F) if number of cars in garage = 50.

Output flag (E) if number of cars in garage = 0.

Output flag (A) if

0< number of cars in garage <50.

• FSM

• State encoding

empty	3'b000
ир	3'b001
down	3'b010
remain	3'b011
full	3'b100

FSM diagram

Gar garage icon

Car garage structure

• Results test strategy.

```
{
  initial
    begin
    reset=1; #50;
    reset =0;
    Pb_up=1;
    Pb_down=0;
    end
    always
    begin
    #55 Pb_up <= ~Pb_up;
    end
    always
    begin
    #9446 Pb_down <= ~Pb_down;
    End.
}</pre>
```

First pb-up was pressed then released.

At first 50ps garage was reset then garage is open till the end.

Every 50 Ps pb-up was inverted to his current state.

Every 9446 Ps pb_down was inverted his current state.

• Results output example.

- At first garage was closed and number of cars is 0 and flag 7_seg display empty (E).
- When car entered garage the number of cars increment by 1 && flag 7_segment Display (A)Available.
- State was empty then become "up".

- When car leaves garage number of cars decrement by 1.
- State was up then become "down".

• Results output example.

- When both cars enter and leave the garage number of cars remain the same
- State become "Remain ".

Faculty of Computers & Artificial Intelligence, Benha University

• Results output example.

- when garage reaches his maximum capacity which is (50)
- no cars can enter garage && Flag 7_segment display (F) full
- state becomes full

