Surname	Other nar	nos
Surrianie	Other har	nies
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Core Math	nematics	s C4
Monday 27 January 2014 – Time: 1 hour 30 minutes	Morning	Paper Reference 6666A/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PMT

Leave blank

1. (a) Find the binomial expansion of

$$\frac{1}{\left(4+3x\right)^{3}}, \qquad \left|x\right| < \frac{4}{3}$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(6)

In the binomial expansion of

$$\frac{1}{\left(4-9x\right)^3}, \qquad \left|x\right| < \frac{4}{9}$$

the coefficient of x^2 is A.

(b) Using your answer to part (a), or otherwise, find the value of *A*. Give your answer as a simplified fraction.

(2)

Question 1 continued		blar
		Q1
	(Total 8 marks)	

Leave blank

2. (i) Find

$$\int x \cos\left(\frac{x}{2}\right) \mathrm{d}x$$

(3)

(ii) (a) Express $\frac{1}{x^2(1-3x)}$ in partial fractions.

(4)

(b) Hence find, for $0 < x < \frac{1}{3}$

$$\int \frac{1}{x^2(1-3x)} \, \mathrm{d}x$$

(3)

4

estion 2 continued		

nestion 2 continued	

Question 2 continued		blank
Question 2 continued		
		Q2
	(Total 10 marks)	

Leave blank

The number of bacteria, N, present in a liquid culture at time t hours after the start of a scientific study is modelled by the equation

$$N = 5000(1.04)^t, \quad t \geqslant 0$$

where N is a continuous function of t.

(a) Find the number of bacteria present at the start of the scientific study.

(1)

(b) Find the percentage increase in the number of bacteria present from t = 0 to t = 2

(2)

Given that N = 15000 when t = T,

(c) find the value of $\frac{dN}{dt}$ when t = T, giving your answer to 3 significant figures.

(4)

Leave blank

4.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{4e^{-x}}{3\sqrt{(1+3e^{-x})}}$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line $x = -3 \ln 2$ and the y-axis.

The table below shows corresponding values of x and y for $y = \frac{4e^{-x}}{3\sqrt{(1+3e^{-x})}}$

X	-3ln2	-2ln2	-ln2	0
у	2.1333		1.0079	0.6667

(a) Complete the table above by giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

(3)

(c) (i) Using the substitution $u = 1 + 3e^{-x}$, or otherwise, find

$$\int \frac{4e^{-x}}{3\sqrt{(1+3e^{-x})}} \mathrm{d}x$$

(5)

(ii) Hence find the value of the area of R.

(2)

estion 4 continued		

estion 4 continued	

Question 4 continued		blank
Ancount 4 continued		
		Q4
	(Total 11 marks)	

Leave blank

5. Given that y = 2 at $x = \frac{\pi}{8}$, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3y^2}{2\sin^2 2x}$$

giving your answer in the form y = f(x).

(6)

stion 5 continued		

estion 5 continued		

Question 5 continued		1
		Q
	(Total 6 marks)	

	Oil is leaking from a storage container onto a flat section of concrete at a rate of $0.48\mathrm{cm^3s^{-1}}$. The leaking oil spreads to form a pool with an increasing circular cross-section. The pool has a constant uniform thickness of 3 mm.		
	Find the rate at which the radius r of the pool of oil is increasing at the instant when $r = 5$ cm. Give your answer, in cm s ⁻¹ , to 3 significant figures. (5)		
_			
_			
_			
_			
_			
_			
_			
_			

stion 6 continued		

Leave blank

7. The curve C has parametric equations

$$x = 2\cos t$$
, $y = \sqrt{3}\cos 2t$, $0 \le t \le \pi$

where t is a parameter.

(a) Find an expression for $\frac{dy}{dx}$ in terms of t.

(2)

The point *P* lies on *C* where $t = \frac{2\pi}{3}$

The line l is a normal to C at P.

(b) Show that an equation for l is

$$2x - 2\sqrt{3}y - 1 = 0$$

(5)

The line l intersects the curve C again at the point Q.

(c) Find the exact coordinates of *Q*. You must show clearly how you obtained your answers.

(6)

stion 7 continued		

Question 7 continued		bl

Question 7 continued	b
	_

Leave blank

PMT

With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \qquad l_2: \mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ -2 \\ 5 \end{pmatrix}$$

PhysicsAndMathsTutor.com

where λ and μ are scalar parameters.

(a) Find, to the nearest 0.1° , the acute angle between l_1 and l_2

(3)

The point A has position vector $\begin{bmatrix} 0 \\ 1 \\ . \end{bmatrix}$.

(b) Show that A lies on l_1

(1)

The lines l_1 and l_2 intersect at the point X.

(c) Write down the coordinates of X.

(1)

(d) Find the exact value of the distance AX.

(2)

The distinct points B_1 and B_2 both lie on the line l_2

Given that $AX = XB_1 = XB_2$

(e) find the area of the triangle AB_1B_2 giving your answer to 3 significant figures.

(3)

Given that the x coordinate of B_1 is positive,

(f) find the exact coordinates of B_1 and the exact coordinates of B_2

(5)

uestion 8 continued	

estion 8 continued		
		_
		-
		_
		_
		-
		-
		_
		-
		_
		_
		-
		-
		-
		_
		-
		_
		_
		-
		-
		_
		-
		-
		_
		-

Question 8 continued		ł

(Total 15 marks)
(=3001 10 1100)