

Università "Sapienza" di Roma Facoltà di Informatica

Calcolo delle Probabilità

Appunti integrati con il libro "The Probability Tutoring Book", Carol Ash

> Author Simone Bianco

Indice

0	Intr	roduzione	1
1	Insi	deme ambiente, Esiti ed Eventi	2
	1.1	Proprietà degli eventi	3
	1.2		7
2	Cal	colo standard della probabilità	11
	2.1	Probabilità di un evento	11
		2.1.1 Eventi complementari	14
	2.2		
		2.2.1 Figure della combinatoria	16
		2.2.2 Estrazioni da un'urna di palline	
3	Def	inizione assiomatica della probabilità	22
	3.1	Probabilità condizionata	24
	3.2	Probabilità indipendenti	
	3.3	Probabilità totale e Formula di Beyes	

Capitolo 0

Introduzione

Capitolo 1

Insieme ambiente, Esiti ed Eventi

Prima di poter parlare di probabilità, è necessario definire ciò di cui essa si occupa. Il calcolo di una probabilità corrisponde allo studio di un fenomeno osservabile esclusivamente dal punto di vista della possibilità o meno del suo verificarsi.

Consideriamo ad esempio il lancio di una moneta. Tale fenomeno può avere **solo due esiti**, ossia testa o croce. Possiamo rappresentare tale fenomeno sottoforma di insieme, dove i suoi elementi sono tutti gli esiti possibili:

$$S:\{T,C\}$$

Effettuando un esperimento su tale insieme, ossia un lancio, il risultato di tale esperimento rientrerà in un **numero finito di esiti**, rappresentabili tramite un insieme. Tale esperimento viene detto **aleatorio**, mentre l'insieme di tutti gli esiti possibili viene detto **insieme ambiente (o spazio campionario)**.

Consideriamo ora il lancio di un dado. Anche in questo caso, il numero di esiti risulta essere finito: può uscire solo una faccia avente da uno a sei pallini. **Enumeriamo** quindi tutti gli esiti possibili associando un numero ad ogni esito:

$$S: \{ \text{`, } \cdots \text{, } \} \quad \longrightarrow \quad S: \{1,2,3,4,5,6\}$$

Analogamente, possiamo enumerare gli esiti del lancio di una moneta:

$$S: \{T, C\} \longrightarrow S: \{0, 1\}$$

Consideriamo ora l'**insieme** A contenente le facce di un dado aventi un numero di pallini inferiore o uguale a tre. Possiamo rappresentare tale insieme in **tre modi**:

- Per enumerazione, ossia $A: \{1, 2, 3\}$
- Per proprietà descrittiva, ossia A: {facce di un dado il cui valore è massimo 3}
- Per notazione matematica, ossia $A : \{x \in S \mid x \leq 3\}$

Abbiamo quindi definito gli elementi di A come appartenenti ad S ($x \in S$), dove S è l'insieme ambiente contenente tutti gli esiti possibili del lancio di un dado. Dunque, ne segue che $A \subset S$ (dunque che $x \in B \implies x \in S$), ossia è un **sottoinsieme dell'insieme ambiente**, che definiamo come **evento**. L'insieme A, quindi, corrisponde all'evento in cui esce una faccia minore o uguale a tre.

Definition 1. Evento

Un evento corrisponde ad un sottoinsieme dell'insieme ambiente, ossia dell'insieme contenente tutti i possibili esiti di un fenomeno.

1.1 Proprietà degli eventi

Consideriamo l'evento in cui esce una faccia pari. Definiamo tale evento come:

$$A: \{x \in S \mid x\%2 = 0\}: \{2, 4, 6\}$$

Riprendiamo anche l'evento già visto in cui esce una faccia minore o uguale a 3:

$$B: \{x \in S \mid x \le 3\} : \{1, 2, 3\}$$

Definiti questi due eventi, possiamo prendere in considerazione l'**evento unione** tra i due, ossia l'evento in cui esce una faccia pari **oppure** minore o uguale a 3:

$$C: A \cup B: \{1, 2, 3, 4, 6\} \text{ dove } x \in A \cup B \iff x \in A \lor x \in B$$

Analogamente, possiamo prendere in considerazione l'evento intersezione tra i due, ossia l'evento in cui esce una faccia pari e anche minore o uguale a 3:

$$D: A \cap B: \{2\} \text{ dove } x \in A \cap B \iff x \in A \land x \in B$$

Notiamo come quest'ultimo evento corrisponda ad un **singleton** (o singoletto), ossia un insieme di un solo elemento. Tale evento viene detto **evento elementare**.

Immaginiamo ora di voler descrivere l'evento in cui esce una faccia dispari. Come sappiamo, un numero dispari non è altro che un numero non pari. Definiamo quindi tale evento come **evento complementare** dell'evento in cui escono facce pari:

$$A^c: \{x \in S \mid x \notin A\}$$

Attenzione: è necessario sottolineare come non basti definire l'evento delle facce dispari come l'evento contenente tutti gli esiti che non sono nell'evento delle facce pari (dunque $A^c \neq \{x \notin A\}$), poiché ciò includerebbe anche gli esiti esterni all'insieme ambiente. Dunque, quando si parla di **evento complementare**, tale evento deve sempre essere **rapportato all'insieme ambiente** (dunque $x \in A^c \implies x \in S$).

Ovviamente, da tale definizione di evento complementare ne segue che l'evento complementare dell'evento complementare di A sia l'evento A stesso:

$$(A^c)^c = A$$

Un ulteriore modo per poter definire un evento complementare è tramite l'**esclusione**: eliminando tutti gli esiti appartenenti all'evento A dall'insieme ambiente S, otteniamo l'evento complementare di A:

$$A^c: S \setminus A$$

Volendo rappresentare l'evento contenente le facce minori o uguali a tre e non pari, possiamo definire tale evento in **due modi**:

• L'intersezione tra l'evento delle facce minori o uguali a tre e l'evento delle facce dispari (ossia il complementare delle facce pari)

$$E:B\cap A^c$$

• L'evento contenente gli esiti minori o uguali a tre esclusi gli esiti contenuti nell'evento delle facce pari

$$E: B \setminus A$$

Dunque, ne traiamo che:

$$B \setminus A = B \cap A^c$$

Trattandosi sostanzialmente di insiemi, gli eventi godono anche delle altre proprietà ad essi legati:

• Proprietà disgiuntiva

$$A \cap A^c = \emptyset$$

• Proprietà associativa

$$(A \cup B) \cup C = A \cup (B \cup C)$$
 e $(A \cap B) \cap C = A \cap (B \cap C)$

• Proprietà distributiva

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 e $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

• Legge di De Morgan

$$(A \cup B)^c = A^c \cap B^c$$
 e $(A \cap B)^c = A^c \cup B^c$

Dimostrazione:

Ricordiamo che, nell'ambito dell'insiemistica, la notazione A=B indica che l'insieme A coincide esattamente con l'insieme B. Tale affermazione può essere ricondotta alla condizione $A \subseteq B \land B \subseteq A$, poiché l'unico caso possibili in cui A è sottoinsieme proprio di B e B è sottoinsieme proprio di A è quando A e B coincidono.

Dunque, per dimostrare che $(A \cup B)^c = A^c \cap B^c$, è sufficiente dimostrare che:

$$- (A \cup B)^c \subseteq A^c \cap B^c$$

$$-A^c \cap B^c \subseteq (A \cup B)^c$$

Consideriamo la seguente unione:

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

Se un elemento x appartiene al complementare di tale unione, allora ne segue che esso non appartenga all'unione in se

$$x \in \left(\bigcup_{i=1}^{n} A_i\right)^c \implies x \notin \bigcup_{i=1}^{n} A_i$$

A sua volta, ciò è possibile solo se l'elemento x appartenga al complementare di qualsiasi insieme appartenente a tale unione:

$$x \notin \bigcup_{i=1}^{n} A_i \iff \forall A_i \text{ si ha che } x \in (A_i)^c$$

Quest'ultima condizione, infine, implica che:

$$\forall A_i \text{ si ha che } x \in (A_i)^c \implies x \in \bigcap_{i=1}^n (A_i)^c$$

Dunque, concludiamo che:

$$\left(\bigcup_{i=1}^{n} A_i\right)^c \subseteq \bigcap_{i=1}^{n} (A_i)^c$$

La stessa condizione, tuttavia, implica che non esiste un indice i tale che l'elemento x possa essere in A_i

$$\forall A_i \text{ si ha che } x \in (A_i)^c \implies \nexists i \mid x \in A_i$$

Dunque, considerando l'unione di tutte gli A_i insiemi, l'elemento x non può trovarsi in essa, dunque esso sarà necessariamente situato nel complementare di tale unione:

$$\nexists i \mid x \in A_i \implies x \in \left(\bigcup_{i=1}^n A_i\right)^c$$

Dunque, concludiamo che:

$$\bigcap_{i=1}^{n} (A_i)^c \subseteq \left(\bigcup_{i=1}^{n} A_i\right)^c$$

Poiché entrambe le condizioni sono verificate, otteniamo che:

$$\left[\left(\bigcup_{i=1}^{n} A_i \right)^c \subseteq \bigcap_{i=1}^{n} (A_i)^c \right] \wedge \left[\bigcap_{i=1}^{n} (A_i)^c \subseteq \left(\bigcup_{i=1}^{n} A_i \right)^c \right] \Longleftrightarrow \left(\bigcup_{i=1}^{n} A_i \right)^c = \bigcap_{i=1}^{n} (A_i)^c$$

• Esclusione disgiuntiva (XOR)

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$

Dimostrazione:

$$(A \cup B) \setminus (A \cap B)$$

$$(A \cup B) \cap (A \cap B)^{c}$$

$$[(A \cap (A \cap B)^{c}] \cup [B \cap (A \cap B)^{c}]$$

$$[(A \cap (A^{c} \cup B^{c})] \cup [B \cap (A^{c} \cup B^{c})]$$

$$[(A \cap A^{c}) \cup (A \cap B^{c})] \cup [(B \cap A^{c}) \cup (B \cap B^{c})]$$

$$[\emptyset \cup (A \cap B^{c})] \cup [(B \cap A^{c}) \cup \emptyset]$$

$$[A \cap B^{c}] \cup [B \cap A^{c}]$$

$$[A \setminus B] \cup [B \setminus A]$$

1.2 Cardinalità e Funzioni indicatrici

Analogamente agli insiemi, con il termine **cardinalità** indichiamo il **numero di esiti contenuti in un evento**. Per essere numerabile, ovviamente, un evento deve possedere una **quantità finita di eventi**.

Indichiamo la cardinalità di un evento con la notazione:

$$|A| = n$$

dove A è l'evento e n è la sua cardinalità.

Dato un evento A, invece, definiamo come funzione indicatrice di A (indicata come I_A) la funzione che preso un elemento x in input restituisce 1 se l'elemento appartiene all'evento, oppure 0 altrimenti.

Definition 2. Funzione indicatrice

Dato un evento A, la sua **funzione indicatrice** corrisponde a

$$I_A: S \to \{0,1\}: x \mapsto I_A(x)$$

$$I_A(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \\ 0 & \text{altrimenti} \end{array} \right.$$

Da tale definizione, quindi, ne segue logicamente che:

$$I_A(x) = 1 \iff I_{A^c}(x) = 0$$

$$I_A(x) = 0 \iff I_{A^c}(x) = 1$$

Dunque, dato un qualsiasi evento, si ha che:

$$I_A(x) + I_{A^c}(x) = 1 \qquad \forall x \in S$$

Consideriamo ora le due funzioni indicatrici I_A e I_B . La funzione indicatrice dell'evento intersezione $A \cap B$ può essere definita come:

$$I_{A\cap B}(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \cap B \\ 0 & \text{altrimenti} \end{array} \right. = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \wedge x \in B \\ 0 & \text{altrimenti} \end{array} \right.$$

Poiché tale funzione deve valere 1 solo se $x \in A$ e $x \in B$, ne segue che ciò possa essere possibile solo se per lo stesso elemento x si ha che $I_A x = 1$ e $I_B(x) = 1$.

Possiamo quindi definire $I_{A\cap B}$ anche come il prodotto tra $I_A(x)$ e $I_B(x)$, poiché nel caso in cui una (o entrambe) delle due funzioni restituisca 0 allora anche la funzione indicatrice dell'unione restituirà 0.

$$I_{A\cap B}=I_A\cdot I_B$$

Vediamo ora la funzione indicatrice dell'evento unione $A \cup B$, definita come:

$$I_{A\cup B}(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \cup B \\ 0 & \text{altrimenti} \end{array} \right. = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \vee x \in B \\ 0 & \text{altrimenti} \end{array} \right.$$

Cerchiamo quindi un modo matematico per poter calcolare facilmente $I_{A\cup B}(x)$ tramite $I_A(x)$ e $I_B(x)$. Intuitivamente, si potrebbe pensare che la somma tra le due funzioni indicatrici di A e B corrisponda al valore dato da quella dell'unione. Tuttavia, notiamo che:

- Se $I_A(x) = 0$ e $I_B(x) = 0$, allora $I_A(x) + I_B(x) = 0$
- Se $I_A(x) = 1$ e $I_B(x) = 0$, allora $I_A(x) + I_B(x) = 1$
- Se $I_A(x) = 0$ e $I_B(x) = 1$, allora $I_A(x) + I_B(x) = 1$
- Se $I_A(x) = 1$ e $I_B(x) = 1$, allora $I_A(x) + I_B(x) = 2$

Notiamo quindi come l'ultimo caso dia un **risultato sbagliato** rispetto all'output che vorremmo (ossia 1). Il motivo di ciò può essere spiegato comodamente tramite l'**errore** di doppio conteggio degli insiemi:

- Consideriamo i due insiemi $A = \{1, 2, 3, 4\}, B = \{0, 2, 4, 5\}$
- L'unione tra i due insiemi risulterà essere $A \cup B = \{0, 1, 2, 3, 4, 5\}$
- Si ha quindi che $|A \cup B| \neq |A| + |B|$ (dunque che $6 \neq 4 + 4$). Ciò avviene poiché è stata **conteggiata due volte l'intersezione** $A \cap B$, poiché ogni elemento in tale intersezione (ossia $\{1,2\}$) è stato contato sia nella **cardinalità di** A sia nella **cardinalità di** B.
- Per ri-bilanciare il conto, quindi, è necessario sottrarre una volta tale intersezione, in modo da conteggiarla in una sola delle due cardinalità

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Analogamente, quindi, il calcolo esatto della funzione indicatrice unione sarà:

$$I_{A \cup B} = I_A + A_B - I_{A \cap B}$$

Notiamo quindi una stretta relazione tra cardinalità e funzione indicatrice. Difatti, potremmo usare quest'ultima per descrivere la prima come la somma di tutti i valori dati dalla funzione indicatrice dell'evento stesso per ogni elemento dell'insieme:

$$A = \{x_1, x_2, ..., x_n\}$$

$$|A| = \sum_{i=1}^{n} I_A(x_i)$$

Nel caso in cui gli eventi da trattare siano **più di due**, possiamo utilizzare la **proprietà** associativa di cui essi godono per calcolare la loro cardinalità.

• Vogliamo calcolare la **cardinalità dell'insieme** $A \cap B \cap C$. Tramite la proprietà associativa, sappiamo che:

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$
$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$

Dunque, ne traiamo che

$$|A \cap B \cap C| = |(A \cap B) \cap C| = |A \cap B| \cdot |C| = |A| \cdot |B| \cdot |C|$$

Poiché ne faremo uso frequentemente, per comodità riscriviamo il **prodotto delle** cardinalità come

$$|A \cap B \cap C| = |A| \cdot |B| \cdot |C| = |ABC|$$

• Per la cardinalità dell'insieme $A \cup B \cup C$, le cose risultano un po' più complesse. Anche in questo caso, procediamo con la proprietà associativa:

$$|A \cup B \cup C| = |(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C| =$$

$$= |A| + |B| - |A \cap B| + |C| - |(A \cup B) \cap C| =$$

$$= |A| + |B| + |C| - |A \cap B| - |(A \cap C) \cup (B \cap C)| =$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| + |B \cap C| - |A \cap B| \cap (B \cap C)| =$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| =$$

$$= |A| + |B| + |C| - |AB| - |AC| - |BC| + |ABC|$$

Notiamo come il risultato corrisponda ancora una volta al **ri-aggiustamento di un doppio conteggio**: sommando i tre insiemi contiamo 2 volte ognuna delle intersezioni a due, necessitando quindi che ognuno di essi venga sottratto una volta. In questo modo, però, abbiamo **aggiunto 3 volte** l'intersezione a tre (contando la somma tra i tre insiemi) e **sottratto 3 volte** la stessa intersezione (rimuovendo le tre intersezioni a due), necessitando quindi che essa venga **ri-conteggiata**

$$|A \cup B \cup C| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |ABC|$$

• Analogamente, la cardinalità dell'insieme $A \cup B \cup C \cup D$, corrisponderà a:

$$\begin{split} |A \cup B \cup C \cup D| &= |(A \cup B \cup C) \cup D| = \\ &= \dots = \\ &= |A| + |B| + |C| + |D| - |AB| - |AC| - |AD| - |BC| - |BD| - |CD| + \\ &+ |ABC| + |ABD| + |ACD| + |BCD| - |ABCD| \end{split}$$

Notiamo quindi la presenza di un certo **pattern** durante il calcolo della cardinalità di un'unione:

- Aggiungiamo gli n insiemi
- Sottraiamo tutte le intersezioni a due
- Aggiungiamo tutte le intersezioni a tre
- Sottraiamo tutte le intersezioni a quattro
- ...

Infatti, possiamo riscrivere la cardinalità delle due unioni viste precedentemente anche nel seguente modo compatto

$$|A \cup B \cup C| = \sum_{i=1}^{3} |A_i| - \sum_{1 \le 1 \le j \le 3} |A_i A_j| + \sum_{1 \le 1 \le j \le k \le 3} |A_i A_j A_k|$$

$$|A \cup B \cup C \cup D| = \sum_{i=1}^{4} |A_i| - \sum_{1 \le 1 < j \le 4} |A_i A_j| + \sum_{1 \le 1 < j < k \le 4} |A_i A_j A_k| + \sum_{1 \le 1 < j < k < h \le 4} |A_i A_j A_k A_h|$$

dove, ad esempio, la notazione $1 \le i < j \le 3$ sottostante alla prima sommatoria indica **tutte tuple di valori possibili** in un range di numeri che va da 1 a 3, dove 3 è il **numero degli insiemi nell'unione**. Analogamente, la notazione $1 \le i < j < k \le 3$ indica tutte le triple di valori possibili e così via.

Notiamo anche come il segno di tali sommatorie sia alternato. Difatti, **aggiungiamo** tutte le *m*-uple in cui *m* **è un numero dispari**, mentre **sottraiamo** tutte le *m*-uple in cui *m* **è un numero pari**. Possiamo quindi generalizzare l'intero concetto a *n* **insiemi**, utilizzando la seguente notazione iper-compatta:

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} \left((-1)^{k+1} \cdot \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cdot A_{i_2} \cdot \dots \cdot A_{i_k}| \right)$$

Alcune volte, però, è difficile calcolare l'esatta cardinalità di alcune unioni tra eventi. In questi casi si preferisce quindi un calcolo approssimativo, stabilendo un limite inferiore ed un limite inferiore, cercando di ridurre il più possibile la differenza tra di essi:

$$\underbrace{\sum_{i=0}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i A_j|}_{\text{Limite inferiore}} \le \left| \bigcup_{i=1}^{n} A_i \right| \le \underbrace{\sum_{i=0}^{n} |A_i|}_{\text{Limite superiore}}$$

Capitolo 2

Calcolo standard della probabilità

2.1 Probabilità di un evento

Considerato l'insieme ambiente "lancio di una moneta non truccata", definito come S: $\{T,C\}$, ci chiediamo quale sia la **probabilità** che si verifichi l'evento "Testa", dunque definito come A: $\{T\}$. Intuitivamente, concludiamo che la probabilità di tale evento sia 50%, dunque $\frac{1}{2}$, poiché tale evento può generare solo due risultati: T o C. Descriviamo quindi tale probabilità come:

$$P(T) = \frac{1}{2}$$

Analogamente, ci chiediamo quale sia la **probabilità** che si verifichi l'evento "faccia maggiore di 2", ossia $A: \{x \in S \mid x > 2\}$, nell'insieme ambiente "lancio di un dado", dunque $S: \{1, 2, 3, 4, 5, 6\}$. Anche in questo caso, il calcolo di tale probabilità risulta intuitivo, poiché vi sono 4 possibili esiti favorevoli rispetto ai 6 esiti totali:

$$P({\rm faccia\ maggiore\ di\ 2}=\frac{4}{6}=\frac{2}{3}$$

Potremmo quindi pensare alla seguente formula generica:

$$P(x) = \frac{\text{Casi favorevoli}}{\text{Casi totali}}$$

Tuttavia, **tale formula risulta incorretta**, poiché in alcuni casi essa da vita ad alcune incongruenze logiche:

• Consideriamo il lancio di due monete, avente **tre esiti**: due volte testa, due volte croce, una volta testa ed una volta croce

 $S: \{ \text{Due teste}, \text{Due croci}, \text{Una testa ed una croce} \}$

• Se volessimo calcolare la probabilità dell'evento "Una volta testa ed una volta croce", otterremmo il seguente risultato:

$$P({\tt Una \ testa \ ed \ una \ croce}) = \frac{{\tt Casi \ favorevoli}}{{\tt Casi \ totali}} = \frac{1}{3}$$

• Tuttavia, tale calcolo risulta inesatto, poiché a livello intuitivo la probabilità dovrebbe essere più alta, poiché abbiamo due modi di verificare tale evento:

Primo Lancio: T - Secondo Lancio: C

- Primo Lancio: C - Secondo Lancio: T

• Difatti, definendo l'insieme ambiente corrispondente al lancio di due monete, otteniamo 4 reali esiti possibili:

$$S: \{TT, CC, TC, CT\}$$

• Analogamente, definendo rigorosamente l'evento "Una volta testa ed una volta croce", otteniamo 2 esiti possibili:

$$A: \{TC, CT\}$$

• Dunque, il reale calcolo della probabilità richiesta corrisponderà a:

$$P(\text{Una testa ed una croce}) = \frac{|\text{Una testa ed una croce}|}{|\text{Lancio di due monete}|} = \frac{|A|}{|S|} = \frac{2}{4} = \frac{1}{2}$$

Definition 3. Calcolo standard di una Probabilità

Dato un insieme ambiente S ed un evento A, dove $A \subseteq S$, la **probabilità** di tale evento corrisponde al **rapporto tra la cardinalità dell'evento e la cardinalità dell'insieme ambiente**:

$$P(A) = \frac{|A|}{|S|}$$

Esempi:

Considerando un mazzo di carte standard (52 carte), vogliamo calcolare la probabilità dell'evento "Pesco un asso o una carta con seme picche".

• Definiamo la situazione in modo rigoroso:

 $S: \{ Mazzo di carte standard \}$

 $A: \{ Carta asso \} dove A \subseteq S$

 $B: \{ \mathsf{Carta\ picche} \} \ \mathsf{dove} \ B \subseteq S$

 $A \cup B$: {Carta asso o picche}

• Applichiamo la formula del modello standard della probabilità:

$$P(A \cup B) = \frac{|A \cup B|}{|S|} = \frac{|A| + |B| - |A \cap B|}{|S|}$$

- In un mazzo standard sono presenti 4 assi (uno per ogni seme) e 13 carte per ogni seme (dunque 13 picche). Ovviamente, questo implica che solo uno dei 4 assi sia un asso di picche.
- Il calcolo richiesto, quindi, si riconduce a:

$$P(A \cup B) = \frac{|A| + |B| - |A \cap B|}{|S|} = \frac{4 + 13 - 1}{52} = \frac{16}{52} = \frac{4}{13}$$

Consideriamo ora l'insieme ambiente "Lancio di due dadi", i cui elementi sono denotati come coppie XY, dove X è il primo lancio e Y il secondo:

- 1. Calcolare la probabilità dell'evento "Somma dei lanci uguale a 5"
 - Definiamo l'evento come:

$$A: \{XY \in S \,|\, X+Y=5\}$$

• Analizzando tutti gli esiti possibili dell'insieme ambiente, gli esiti appartenenti all'evento corrispondono a:

• La probabilità dell'evento, quindi corrisponde a:

$$P(A) = \frac{|A|}{|S|} = \frac{4}{36} = \frac{1}{9}$$

- 2. Calcolare la probabilità dell'evento "Secondo lancio maggiore del primo"
 - Definiamo l'evento come:

$$A:\{XY\in S\,|\,Y>X\}$$

• Analizzando tutti gli esiti possibili dell'insieme ambiente, gli esiti appartenenti all'evento corrispondono a:

• La probabilità dell'evento, quindi corrisponde a:

$$P(A) = \frac{|A|}{|S|} = \frac{15}{36} = \frac{5}{12}$$

2.1.1 Eventi complementari

Vogliamo calcolare la probabilità dell'evento "Lanci tutti diversi tra loro" effettuato su "Cinque lanci di dadi". A differenza degli esempi della sezione precedente, risulterebbe estremamente lungo elencare ed analizzare tutti gli esiti contenuti nell'insieme ambiente poiché esso contiene 6⁵ esiti possibili.

Possiamo definire quindi tale insieme come il **prodotto cartesiano ripetuto 5 volte** sull'insieme "Un lancio di dado"

$$I:\{1,2,3,4,5,6\}$$

$$S:(I\times I\times I\times I)\to (a,b,c,d,e):\{\text{Cinque lanci di dadi}\}$$

Di conseguenza, definiamo l'evento "Lanci tutti diversi tra loro" come:

$$A: \{(a, b, c, d, e) \in S \mid a \neq b \neq c \neq d \neq e\}$$

Ovviamente, calcolare la **cardinalità dell'evento A** in modo diretto risulta complesso (ricordiamo che $|S| = 6^5$). Scegliamo quindi un **approccio più semplice**: per definizione stessa di **insieme complementare**, si ha che

$$|A^c| = |S| - |A| \Longleftrightarrow |A| = |S| - |A^c|$$

Quindi, possiamo riscrivere il calcolo della probabilità dell'evento A come:

$$P(A) = \frac{|A|}{|s|} = \frac{|S| - |A^c|}{|S|} = 1 - \frac{|A^c|}{|S|}$$

A questo punto, ci basta calcolare la **cardinalità dell'evento complementare di A** (ossia l'evento "Lanci tutti uguali tra loro"), il quale possiede solo 6 esiti possibili:

$$A^c = \{11111, 22222, 33333, 44444, 55555, 66666\}$$

Dunque, la probabilità dell'evento A corrisponde a:

$$P(A) = 1 - \frac{|A^c|}{|S|} = 1 - \frac{6}{6^5} \approx 99.92\%$$

Theorem 1. Passaggio al complemento

Dato un insieme ambiente S ed un evento A, dove $A \subseteq S$, la probabilità dell'evento corrisponde a $1 - P(A^c)$, dove A^c è l'evento complementare ad A su S:

$$P(A) = \frac{|A|}{|S|} = 1 - \frac{|A^c|}{|S|} = 1 - P(A^c)$$

Esempio:

Considerando l'insieme ambiente "Tutte le coppie (carta rossa, carta blu)", vogliamo sapere la probabilità dell'evento "almeno un asso".

Definiamo quindi l'insieme ambiente come:

$$A: \{ \texttt{Carte rosse} \} \longrightarrow |A| = 52$$

$$B: \{ \texttt{Carte blu} \} \longrightarrow |B| = 52$$

$$S: \{ \texttt{Coppie rosso-blu} \} : A \times B \longrightarrow |S| = 52 \cdot 52$$

Successivamente, definiamo l'evento "almeno un asso" come:

$$E: \{ \text{coppie con asso rosso} \} \longrightarrow |E| = 4 \cdot 52$$

$$F: \{ \text{coppie con asso blu} \} \longrightarrow |F| = 4 \cdot 52$$

$$C: \{ \text{coppie con almeno un asso} \} : E \cup F \longrightarrow |C| = |E| + |F| - |E \cap F|$$

$$E \cap F: \{ \text{coppie con entrambi gli assi} \} \longrightarrow |E \cap F| = 4 \cdot 4$$

La probabilità dell'evento, quindi, corrisponde a:

$$P(C) = \frac{|C|}{|S|} = \frac{|E| + |F| - |E \cap F|}{|S|} = \frac{4 \cdot 52 + 4 \cdot 52 - 4 \cdot 4}{52 \cdot 52} = \frac{400}{2704}$$

Di contraltare, il calcolo tramite il **passaggio al complemento** risulta **immediato** rispetto al precedente:

$$C^c = \{ \text{coppie senza assi} \} \longrightarrow |C^c| = 48 \cdot 48$$

$$P(C) = 1 - P(C^c) = 1 - \frac{2304}{2704} = \frac{400}{2704}$$

2.2 Analisi combinatoria

2.2.1 Figure della combinatoria

Nella sezione precedente (e in quelle successive) abbiamo utilizzato le **figure della combinatoria** più comuni (disposizioni, anagrammi e combinazioni) per calcolare le cardinalità.

Di seguito, viene fornito un **breve ripasso** di tali figure. Per **approfondimenti**, si consiglia la sezione omonima degli appunti del corso di "Metodi Matematici per l'Informatica".

Definition 4. Figure della Combinatoria

Definiamo come disposizione con ripetizione di ordine k di n oggetti una sequenza ordinata $(x_1, x_2, ..., x_k)$ di k oggetti scelti tra gli n totali

$$D'_{n,k} = n \cdot n \cdot n \cdot \dots \cdot n = n^k$$

Sia $1 \le k \le n$. Definiamo come **disposizione semplice di ordine** k **di** n **oggetti** una sequenza ordinata $(x_1, x_2, ..., x_k)$ di k oggetti distinti tra loro scelti tra gli n totali. Una disposizione semplice in cui k = n viene detta **permutazione**.

$$D_{n,k} = n \cdot (n-1) \cdot \dots \cdot (n-(k-1)) = \frac{n!}{(n-k)!}$$

Gli anagrammi (o permutazioni con ripetizione) di un insieme di n lettere, in cui compaiono k gruppi di $n_1, n_2, ..., n_k$ lettere ripetute, corrispondono a

$$\#A = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$$

Una **combinazione** è un raggruppamento di k elementi, presi in qualsiasi ordine, formato a partire da n elementi distinti. Si distinguono in combinazioni **senza ripetizione**

$$C_{n,k} = \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

e con ripetizione

$$C'_{n,k} = \binom{n+k-1}{k} = \frac{(n+k-1)!}{(n+k-1-k)! \cdot k!} = \frac{(n+k-1)!}{(n-1)! \cdot k!}$$

Esempi:

• Dato un insieme di valori possibili $A : \{1, 2, 3, B, C, D\}$, le targhe da tre elementi possibili sono:

$$D_{6,3}' = 6 \cdot 6 \cdot 6 = 6^3$$

• Gli anagrammi della parola MISSISSIPPI sono:

$$\#A = \frac{11!}{4! \cdot 4! \cdot 2!}$$

• I modi di scegliere una mano di poker da 5 carte con un mazzo standard da 52 carte sono:

$$C_{52,5} = {52 \choose 5} = \frac{52!}{47! \cdot 5!} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5!}$$

 \bullet I sottoinsiemi possibili di un insieme di n elementi sono:

$$P = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} = \sum_{i=0}^{n} \binom{n}{i}$$

2.2.2 Estrazioni da un'urna di palline

Estrazioni con reinserimento

Immaginiamo di avere due tipologie di palline, alcune di **colore rosso** (la cui quantità viene indicata con R) ed altre di **colore bianco** (indicate con B). Considerando la somma N di tali palline, otteniamo che le rispettive **probabilità di estrazione** di ogni pallina, nel caso in cui esse vengano **reinserite nell'urna**, corrispondono a:

$$P(R) = \frac{R}{N} = 1 - P(B)$$

$$P(B) = \frac{B}{N} = 1 - P(R)$$

Poiché ad ogni estrazione le palline vengono reinserite nell'urna, la probabilità d'estrazione di ogni pallina rimane uguale. Dunque, la probabilità di estrarre k volte una pallina dello stesso colore corrisponde a:

$$P(\text{k volte pallina rossa}) = P\left(\bigcap_{i=1}^k R\right) = \frac{R}{N} \cdot \frac{R}{N} \cdot \ldots \cdot \frac{R}{N} = \left(\frac{R}{N}\right)^k$$

$$P(\text{k volte pallina bianca}) = P\left(\bigcap_{i=1}^k B\right) = \frac{B}{N} \cdot \frac{B}{N} \cdot \ldots \cdot \frac{B}{N} = \left(\frac{B}{N}\right)^k$$

Ad esempio, l'evento in cui viene estratta la sequenza BBRRBBR corrisponderà a:

$$P(BBRRRBRR) = P(B)^{3} \cdot P(R)^{3} \cdot P(B) \cdot P(R)^{2} = P(R)^{5} \cdot P(B)^{3} = \left(\frac{R}{N}\right)^{5} \cdot \left(\frac{B}{N}\right)^{3} = \frac{R^{5} \cdot B^{3}}{N^{8}}$$

Analogamente, la probabilità della sequenza BRBRRBBB corrisponderà a:

$$P(BRBRRBBB) = P(B) \cdot P(R) \cdot P(B) \cdot P(R)^2 \cdot P(B)^3 = \left(\frac{R}{N}\right)^5 \cdot \left(\frac{B}{N}\right)^3 = \frac{R^5 \cdot B^3}{N^8}$$

Notiamo dunque come, effettuando n estrazioni, la probabilità di estrarre una determinata sequenza ordinata contenente k elementi di un tipo e n-k elementi di un altro, corrisponde a:

$$P(\text{Seq. ord, con n estr. su 2 tipi}) = P(E_1)^k \cdot P(E_2)^{n-k}$$

Nel caso in cui, invece, **non ci interessi l'ordine** effettivo delle estrazioni, dunque qualsiasi sequenza di k elementi di un tipo e n-k elementi di un altro, allora sarà necessario moltiplicare tale probabilità per il numero di **anagrammi di** n **elementi contenenti** k**e** n-k **ripetizioni**, in modo da poter considerare tutte le sequenze possibili:

$$P(\text{k elem. 1, n-k elem. 2}) = \frac{n!}{(n-k)! \cdot k!} \cdot P(E_1)^k \cdot P(E_2)^{n-k}$$

Tuttavia, notiamo come il calcolo di tali anagrammi corrisponda ad una scelta di k elementi su n:

$$P(\text{k elem. 1, n-k elem. 2}) = \frac{n!}{(n-k)! \cdot k!} \cdot P(E_1)^k \cdot P(E_2)^{n-k} = \binom{n}{k} \cdot P(E_1)^k \cdot P(E_2)^{n-k}$$

Considerando la somma di tutte le possibili k estrazioni non ordinate di elementi di un tipo, dunque con k = 0, 1, ..., n, otteniamo la seguente sommatoria:

P al variare di K
$$=\sum_{k=0}^n \binom{n}{k} \cdot P(E_1)^k \cdot P(E_2)]^{n-k}$$

Notiamo inoltre sommatoria corrisponde ad un **Binomio di Newton**, il cui teorema generale afferma che:

$$\sum_{k=0}^{n} \binom{n}{k} \cdot a^k \cdot b^{n-k} = (a+b)^n$$

Dunque, nel nostro caso otteniamo che:

P al variare di K =
$$\sum_{k=0}^n \binom{n}{k} \cdot P(E_1)^k \cdot P(E_2)^{n-k} =$$
 = $[P(E_1) + P(E_2)]^n = [P(E_1) + (1 - P(E_1))]^n = 1^n = 1$

Estrazioni senza reinserimento

Vediamo ora il caso in cui le palline estratte vengano rimosse dall'urna, diminuendo quindi il numero di palline totali.

Nella **prima estrazione**, la probabilità di estrarre una pallina rossa e la probabilità di estrarre una pallina bianca rimangono invariate:

$$P_1(R) = \frac{R}{N} = 1 - P_1 B$$

$$P_1(B) = \frac{B}{N} = 1 - P_1(R)$$

Immaginiamo che nella prima estrazione sia stata estratta una pallina bianca. Di conseguenza, il numero delle palline bianche e delle palline totali viene ridotto di uno. Le nuove probabilità di estrazione sono:

$$P_2(R) = \frac{R}{N-1}$$

$$P_2(B) = \frac{B-1}{N-1}$$

Dunque, volendo calcolare la probabilità dell'estrazione di due palline bianche di seguito, otterremmo:

$$P(BB) = P_1(B) \cdot P_2(B) = \frac{B(B-1)}{N(N-1)}$$

E se l'estrazione delle due palline bianche avvenisse in contemporanea? Possiamo calcolare tale probabilità come il rapporto tra una scelta di 2 palline sulle B totali e una scelta di 2 palline sulle N totali:

$$\begin{split} &P(\text{BB contemp}) = \frac{\binom{B}{2}}{\binom{N}{2}} = \frac{B!}{(B-2)! \cdot 2!} \cdot \frac{(N-2)! \cdot 2!}{N!} = \\ &= \frac{B(B-1)(B-2)!}{(B-2)!} \cdot \frac{(N-2)!}{N(N-1)(N-2)!} = \frac{B(B-1)}{N(N-1)} \end{split}$$

Notiamo quindi come la probabilità di un'estrazione in contemporanea sia identica a quella di un'estrazione sequenziale.

In linea più generale, quindi, possiamo dire che, se **non conta l'ordine** degli elementi estratti e se **non si hanno reinserimenti**, la probabilità di effettuare k estrazioni di un tipo e n-k di un altro su un totale di n estrazioni corrisponde a:

$$P(\text{k estr. 1, n-k estr. 2}) = \frac{\binom{E_1}{k} \cdot \binom{E_2}{n-k}}{\binom{N}{n}}$$

Tale modello di calcolo viene detto **modello ipergeometrico**.

Method 1. Probabilità di n estrazioni da un'urna

Effettuando n estrazioni su un insieme di N elementi suddivisi in t tipologie ($\forall T_i$ dove $i \in [1, t]$), dove vengono estratti k_i elementi (dove $i \in [1, t]$) per ogni tipologia $(k_1 + k_2 + ... + k_t = n)$ si ha:

• Probabilità di estrarre una sequenza di ordine fissato (con reinserimenti):

$$P(\mathsf{Seq. ord. fisso}) = \left(\frac{T_1}{N}\right)^{k_1} \cdot \left(\frac{T_2}{N}\right)^{k_2} \cdot \ldots \cdot \left(\frac{T_t}{N}\right)^{k_t} = \prod_{i=1}^t \left(\frac{T_i}{N}\right)^{k_i}$$

• Probabilità di estrarre una sequenza di ordine casuale (con reinserimenti):

$$P(\mathsf{Seq. ord. casuale}) = \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_t!} \cdot P(\mathsf{Seq. ord. fisso})$$

• Probabilità di estrarre una sequenza di ordine casuale (senza reinserimenti):

$$P(\text{Seq. ord. cas. con rein.}) = \frac{\binom{T_1}{k_1} \cdot \binom{T_2}{k_1 2} \cdot \ldots \cdot \binom{T_t}{k_t}}{\binom{N}{n}} = \frac{1}{\binom{N}{n}} \cdot \prod_{i=1}^t \binom{T_i}{k_i}$$

Capitolo 3

Definizione assiomatica della probabilità

Avendo sperimentato con alcune modalità di calcolo di alcune probabilità, possiamo ora dare una definizione assiomatica di essa.

Dato uno spazio campionario S, la probabilità che si verifichi un esito appartenente a tale spazio campionario corrisponde alla somma delle probabilità di tutti gli eventi disgiunti E di S (dove ricordiamo $E \subseteq S$).

$$P(S) = P(E_1) + P(E_2) + \dots + P(E_n)$$

Dunque, possiamo definire la **probabilità di un evento** come una funzione del tipo

$$P: P(S) \to [0, 1]$$

Da tale definizione di probabilità possiamo ricavare una serie di assiomi:

Definition 5. Assiomi della probabilità

• La probabilità di un evento E in S deve essere compresa tra 0 ed 1

$$0 < P(E) < 1, \forall E \subset S$$

ullet La probabilità di S è sempre 1

$$P(S) = 1$$

• Se $E_1, E_2, ..., E_n$ sono **eventi disgiunti due a due o mutualmente esclusivi** (ossia che $\forall i, j \in [0, n]$ dove $i \neq j$ si ha $A_i \cap A_j = \emptyset$), allora si ha che

$$P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$$

Tramite tali assiomi, possiamo inoltre ricavare alcune **proprietà di calcolo delle pro-**babilità:

• La probabilità dell'**evento impossibile** è $P(\emptyset) = 0$:

$$1 = P(S)$$

$$1 = P(S \cup \emptyset)$$

$$1 = P(S) + P(\emptyset)$$

$$1 = 1 + P(\emptyset)$$

$$0 = P(\emptyset)$$

• La probabilità dell'evento complementare all'evento A è $P(A^c) = 1 - P(A)$:

$$1 = P(S)$$
$$1 = P(A \cup A^c)$$
$$1 = P(A) + P(A^c)$$
$$1 - P(A) = P(A^c)$$

• Se $A \subseteq B$, allora $P(A) \le P(B)$:

$$B = A \cup (A^c \cap B)$$
$$P(B) = P(A) + P(A^c \cap B)$$

• La probabilità dell'evento unione $A \cup B$ è $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$A \cup B = A \cup (A^c \cap B)$$

$$P(A \cup B) = P(A \cup (A^c \cap B))$$

$$P(A \cup B) = P(A) + P(A^c \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Chiarimento: l'ultimo passaggio è dovuto a:

$$B = (A \cap B) \cup (A^c \cap B)$$

$$P(B) = P((A \cap B) \cup (A^c \cap B))$$

$$P(B) = P(A \cap B) + P(A^c \cap B)$$

$$P(B) - P(A \cap B) = P(A^c \cap B)$$

• In via generica, si ha che la probabilità dell'**unione di** *n* **eventi** corrisponde a (dimostrazione ricavabile tramite la precedente e le proprietà delle cardinalità mostrate nella sezione 1.2)

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \left((-1)^{k+1} \cdot \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} P(A_{i_{1}} \cdot A_{i_{2}} \cdot \dots \cdot A_{i_{k}}) \right)$$

3.1 Probabilità condizionata

Fino ad ora, abbiamo visto solo casi in cui la probabilità di un evento non è influenzata dalla presenza o meno di un altro evento appartenente allo stesso insieme ambiente.

Definiamo quindi la **probabilità di** A **dato** B come il **rapporto** tra la cardinalità dell'evento in cui l'evento A si verifichi in contemporanea all'evento B (dunque $|A \cap B|$) e la cardinalità totale dell'evento B:

$$P(A \mid B) = \frac{|A \cap B|}{|B|}$$

Possiamo, inoltre, riscrivere tale probabilità come:

$$P(A \mid B) = \frac{|A \cap B|}{|B|} \cdot \frac{|S|}{|S|} = \frac{|A \cap B|}{|S|} \cdot \frac{|S|}{|B|} = \frac{P(A \cap B)}{P(B)}$$

Definition 6. Probabilità di A dato B

Dati due eventi $A, B \subseteq S$, la probabilità dell'evento A dato l'evento B corrisponde a:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \text{ con } P(B) \neq 0$$

Esempi:

• Calcolare la probabilità che in una mano di poker da 5 carte utilizzando un mazzo standard da 52 carte escano 2 re sapendo che essa contiene un asso.

$$P(1A) = \frac{\binom{4}{1} \cdot \binom{48}{4}}{\binom{52}{5}}$$
$$P(2Re \cap 1A) = \frac{\binom{4}{1} \cdot \binom{4}{2} \cdot \binom{44}{2}}{\binom{52}{5}}$$

$$P(2Re \cap 1A \mid 1A) = \frac{P(2Re \cap 1A)}{P(1A)} = \frac{\binom{4}{2} \cdot \binom{4}{2} \cdot \binom{44}{2}}{\binom{52}{5}} \cdot \frac{\binom{52}{5}}{\binom{4}{1} \cdot \binom{48}{4}} = \frac{\binom{4}{2} \cdot \binom{44}{2}}{\binom{48}{4}} = \frac{473}{16215}$$

• Vengono lanciati due dadi equilibrati a sei facce. Calcolare la probabilità che la somma dei risultati sia uguale a 6 sapendo che uno dei due dadi abbia come risultato 2.

$$P({\rm almeno~un~2} = 1 - P({\rm nessun~2}) = 1 - \frac{5^2}{6^2} = \frac{11}{36}$$

$$P(\text{somma 6} \ \cap \ \text{almeno un 2}) = \frac{2}{36}$$

$$P(\text{somma 6} \mid \text{almeno un 2}) = \frac{P(\text{somma 6} \cap \text{almeno un 2})}{P(\text{almeno un 2})} = \frac{2 \cdot 36}{36 \cdot 11} = \frac{2}{11}$$

3.2 Probabilità indipendenti

Consideriamo il lancio di due monete. Vogliamo sapere qual è la probabilità che al secondo lancio esca testa sapendo che al primo lancio è uscita testa.

$$P(\mathbf{2} ° \mathsf{T} \mid \mathbf{1} ° \mathsf{T}) = \frac{P(\mathbf{2} ° \mathsf{T} \cap \mathbf{1} ° \mathsf{T})}{P(\mathbf{1} ° \mathsf{T})} = \frac{1 \cdot 2}{4 \cdot 1} = \frac{1}{2}$$

Proviamo ora invece a calcolare direttamente la probabilità che al secondo lancio esca testa, senza tener conto del primo risultato:

$$P(2^{\circ} T) = \frac{2}{4} = \frac{1}{2}$$

Notiamo quindi come la probabilità che al secondo lancio esca testa risulti essere **indipendente dal risultato del primo lancio**. A livello logico, ciò risulta intuitivo, poiché il lancio di una moneta equilibrata non ha alcun modo di poter influenzare un lancio successivo.

Affermiamo quindi che se la probabilità di un evento A dato un evento B equivale alla probabilità dell'evento A stesso, allora i due eventi sono indipendenti tra loro:

$$P(A \mid B) = P(A) \implies$$
 A e B sono indipendenti tra loro

Tuttavia, tale definizione di indipendenza presenta alcune **problematiche**, come ad esempio la stretta necessità che la **probabilità dell'evento B debba essere diversa da zero**, poiché:

$$P(A \mid B) = P(A) \implies \frac{P(A \cap B)}{P(B)} = P(A)$$

Possiamo quindi **riscrivere** tale definizione nel seguente modo, eliminando il vincolo richiesto:

$$P(A \cap B) = P(A) \cdot P(B)$$

Definition 7. Probabilità indipendenti

Considerati due eventi A e B, diciamo che tali eventi sono indipendenti l'uno dall'altro se e solo se si verifica che:

$$P(A \cap B) = P(A) \cdot P(B)$$

Osservazioni:

• Tale definizione implica che l'evento impossibile \emptyset sia indipendente da qualsiasi evento, poiché si ha sempre che $\emptyset \cap B = \emptyset$ e che $P(\emptyset) = 0$:

$$P(\emptyset \cap B) = P(\emptyset) \cdot P(B)$$
$$0 = 0 \cdot P(B)$$
$$0 = 0$$

• Analogamente, anche l'insieme ambiente S è indipendente da qualsiasi evento, poiché si ha sempre che $S \cap B = B$ e che P(S) = 1:

$$P(S \cap B) = P(S) \cdot P(B)$$
$$P(B) = 1 \cdot P(B)$$
$$P(B) = P(B)$$

• Se gli eventi **A** e **B** sono indipendenti tra loro, allora anche **A**^c e **B** sono indipendenti tra loro.

Dimostrazione:

- Per ipotesi, diamo per assunto che A e B siano indipendenti tra loro, dunque che valga $P(A \cap B) = P(A) \cdot P(B)$
- Dimostriamo quindi che anche A^c e B sono indipendenti tra loro:

$$P(S \cap B) = P(S) \cdot P(B)$$

$$P([A \cup A^c] \cap B) = 1 \cdot P(B)$$

$$P([A \cap B] \cup [A^c \cap B]) = 1 \cdot P(B)$$

$$P(A \cap B) + P(A^c \cap B) - P([A \cap B] \cup [A^c \cap B]) = 1 \cdot P(B)$$

$$P(A \cap B) + P(A^c \cap B) - 0 = 1 \cdot P(B)$$

– Siccome A e B sono disgiunti, sappiamo che $P(A \cap B) = P(A) \cdot P(B)$, dunque abbiamo che:

$$P(A) \cdot P(B) + P(A^c \cap B) - 0 = 1 \cdot P(B)$$

$$P(A^c \cap B) = 1 \cdot P(B) - P(A) \cdot P(B)$$

$$P(A^c \cap B) = (1 - P(A)) \cdot P(B)$$

$$P(A^c \cap B) = P(A^c) \cdot P(B)$$

 $-\,$ Dunque, concludiamo che anche A^c e B
 sono indipendenti tra loro

Esempio:

Dato il lancio di due gettoni aventi come facce (+1) e (-1), consideriamo i seguenti tre eventi:

$$A: \{ \texttt{1° gettone \`e (+1)} \} \implies P(A) = \frac{1}{2}$$

$$B: \{ \texttt{2° gettone \`e (+1)} \} \implies P(B) = \frac{1}{2}$$

$$C: \{ \texttt{il prodotto dei due risultati \`e +1} \} \implies P(C) = \frac{2}{4} = \frac{1}{2}$$

Affinché i tre eventi siano indipendenti tra di loro, è necessario che:

$$P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$$

$$\frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{1}{4} = \frac{1}{8}$$

Dunque, concludiamo che i tre eventi non siano indipendenti tra di loro. Difatti, strutturando il problema utilizzando la logica proposizionale, abbiamo che il verificarsi degli eventi A e B implichi anche il verificarsi dell'evento C $(A \land B \implies C)$, rendendo quindi l'evento C dipendente anche dagli eventi A e B.

3.3 Probabilità totale e Formula di Beyes

Immaginiamo di avere un'urna, contenente 2 palline bianche e 3 palline nere, e due mazzi di carte, uno a cui sono state levate tutte le carte con seme cuori (dunque contenente un seme rosso e due semi neri) ed uno a cui sono state levate tutte le picche (dunque contenenti due semi rossi e un seme nero). Le condizioni delle estrazioni sono le seguenti:

- Se la pallina estratta è bianca allora peschiamo una carta dal mazzo senza cuori
- Se la pallina estratta è nera allora peschiamo una carta dal mazzo senza picche

Vogliamo sapere qual è la **probabilità totale di pescare una carta rossa**. Definiamo quindi i tre eventi:

$$B: \{ \text{pesco pallina bianca} \} \implies P(B) = \frac{2}{5}$$

$$N: \{ \text{pesco pallina nera} \} \implies P(N) = \frac{3}{5}$$

$$R: \{ \text{pesco carta rossa} \} : (R \cap B) \cup (R \cap N)$$

Tuttavia, ci risulta difficile calcolare in modo diretto la probabilità di R. Cerchiamo quindi **un altro approccio**: sapendo che $R = S \cap R$ e che $S = B \cup N$, poiché $N = B^c$ (dunque sono mutualmente esclusivi), abbiamo che:

$$P(R) = P(S \cap R)$$

$$P(R) = P([B \cup N] \cap R)$$

$$P(R) = P([(R \cap N) \cup (R \cap N)])$$

$$P(R) = P(B \cap R) + P(N \cap R)$$

Tramite la formula della probabilità condizionata ricaviamo che:

$$P(X \mid Y) = \frac{P(X \cap Y)}{P(Y)} \implies P(X \mid Y) \cdot P(Y) = P(X \cap Y)$$

Dunque, riscriviamo la **probabilità totale di R** come:

$$P(R) = P(R \mid B) \cdot P(B) + P(R \mid B) \cdot P(N)$$

Poiché estraendo una pallina bianca peschiamo dal mazzo senza cuori, la probabilità di pescare una carta rossa data l'estrazione di una pallina bianca corrisponde a:

$$P(R \mid B) = \frac{13}{39} = \frac{1}{3}$$

Analogamente, la probabilità di pescare una carta rossa data l'estrazione di una pallina nera corrisponde a:

$$P(R \mid N) = \frac{26}{39} = \frac{2}{3}$$

Dunque, concludiamo che la **probabilità totale di** ${\bf R}$ è:

$$P(R) = P(R \mid B) \cdot P(B) + P(R \mid B) \cdot P(N) = \frac{1}{3} \cdot \frac{2}{5} + \frac{2}{3} \cdot \frac{3}{5} = \frac{8}{15}$$

Definition 8. Probabilità totale

Dato un insieme ambiente S e un evento $A \subseteq S$, dove l'insieme S è partizionabile in n partizioni, ossia si ha:

$$S = \bigcup_{i=1}^{n} B_i$$

tali che ogni partizione è disgiunta l'una dall'altra:

$$\forall i, j \in [1, n] \mid i \neq j \implies B_i \cap B_j = \emptyset$$

Allora possiamo scrivere la probabilità totale di A come:

$$P(A) = \sum_{i=1}^{n} [P(A | B_i) \cdot P(B_i)]$$

Dimostrazione:

$$P(A) = P(A \cap S) = P\left(A \cap \bigcup_{i=1}^{n} B_i\right) = P\left(\bigcup_{i=1}^{n} (A \cap B_i)\right) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} [P(A \mid B_i) \cdot P(B_i)]$$

Considerando gli stessi dati del problema precedente, ci chiediamo quale sia la **probabilità** che, avendo pescato una **carta rossa**, la pallina pescata sia **bianca**.

$$P(B \mid R) = \frac{P(B \cap R)}{P(R)}$$

Analogamente all'esempio visto precedentemente, poniamo $P(B \cap R) = P(R \mid B) \cdot P(B)$:

$$P(B \mid R) = \frac{P(R \mid B) \cdot P(B)}{P(R)} = \frac{\frac{1}{3} \cdot \frac{2}{5}}{\frac{8}{15}} = \frac{1 \cdot 2 \cdot 15}{3 \cdot 5 \cdot 8} = \frac{1}{4}$$

Definition 9. Formula di Bayes

Dati due eventi A e B, la probabilità di A su B equivale a:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Esempio:

Abbiamo 10 confezioni di lampadine, ciascuna contenente 12 lampadine. Delle 10 totali, 9 contengono 10 lampadine funzionanti e 2 rotte, mentre la scatola rimanente contiene 2 lampadine funzionanti e 10 rotte. Ci chiediamo quale sia la probabilità di pescare due lampadine guaste da una qualsiasi scatola.

Definiamo gli eventi:

 $G: \{ peschiamo due guaste \}$

$$B:\{\text{peschiamo dalla confezione buona}\} \implies P(B)=rac{9}{10}$$

Calcoliamo quindi le due probabilità richieste:

$$P(G \mid B) = \frac{P(G \cap B)}{P(B)} = \frac{\binom{2}{2}}{\binom{12}{2}} = \frac{1}{\binom{12}{2}} = \frac{10! \cdot 2!}{12!} = \frac{2}{12 \cdot 11} = \frac{1}{66}$$

$$P(G \mid B^c) = \frac{P(G \cap B^c)}{P(B^c)} = \frac{\binom{10}{2}}{\binom{12}{2}} = \frac{10!}{8! \cdot 2!} \cdot \frac{10! \cdot 2!}{12!} = \frac{10 \cdot 9}{12 \cdot 11} = \frac{15}{22}$$

$$P(G) = P(G \mid B) \cdot P(B) + P(G \mid B^c) \cdot P(B^c) = \frac{1}{66} \cdot \frac{9}{10} + \frac{15}{22} \cdot \frac{1}{9} = \frac{9}{110}$$

Ci chiediamo ora invece quale sia la probabilità che, avendo pescato due lampadine guaste, la scatola da cui abbiamo pescato sia la scatola contenente le 10 lampadine guaste, ossia $P(B^c | G)$. Usando la formula di Bayes, scriviamo tale probabilità come:

$$P(B^c \mid G) = \frac{P(G \mid B^c) \cdot P(B^c)}{P(G)} = \frac{15 \cdot 1 \cdot 100}{22 \cdot 10 \cdot 9} = \frac{5}{6}$$