

Description

Features	Application		
● 650V,16A	● Load Switch		
$R_{DS(ON)} < 0.54\Omega$ @ $V_{GS} = 10V$	 PWM Application 		
Fast Switching	Power management		
● Improved dv/dt Capability			
	100% UIS		
	100% ΔVds		
TO-220F	Schematic Diagram		

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	TUBE (PCS)	Inner Box (PCS)	Per Carton (PCS)
VSM16N65-TF	VSM16N65	TUBE	TO-220F	50	1,000	8,000

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V_{DSS}	Drain-Source Voltage		650	V
V_{GSS}	Gate-Source Voltage		±30	V
	In I Continuous Drain Current ⊢	T _C = 25°C	16	Α
ID		T _C = 100℃	10	Α
I_{DM}	Pulsed Drain Current note1		64	Α
E _{AS}	Single Pulsed Avalanche Energy note2		470	mJ
P_D	Power Dissipation	T _C = 25°C	98	W
$R_{ heta JC}$	Thermal Resistance, Junction to Case		1.27	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		62.5	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Characteristic							
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	650	-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 650V, V_{GS} = 0V,$ $T_{J} = 25^{\circ}C$	-	-	1	μΑ	
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 30V$	-	-	±100	nA	
On Charac	cteristics						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V	
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =8A	-	0.46	0.54	Ω	
Dynamic (Characteristics	•					
C _{iss}	Input Capacitance	251/1/ 21/	-	2200	-	рF	
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	-	213	-	pF	
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz	-	13.7	-	pF	
Qg	Total Gate Charge	\/ - 520\/ - 164	-	71	-	nC	
Q_{gs}	Gate-Source Charge	$V_{DD} = 520V, I_{D} = 16A,$ $V_{GS} = 10V$	-	10	-	nC	
Q_gd	Gate-Drain("Miller") Charge	VGS - 10V	-	32	-	nC	
Switching	Characteristics						
t _{d(on)}	Turn-on Delay Time		-	35	-	ns	
t _r	Turn-on Rise Time	$V_{DD} = 325V, I_D = 16A,$	-	50	-	ns	
t _{d(off)}	Turn-off Delay Time	$R_G = 25\Omega$	-	160	-	ns	
t _f	Turn-off Fall Time		-	65	-	ns	
Drain-Sou	rce Diode Characteristics and Maxim	num Ratings					
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	16	Α	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	64	Α	
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _{SD} =16A	-	-	1.4	V	
t _{rr}	Reverse Recovery Time	V _{GS} =0V, I _S =16A,	-	430	-	ns	
Q _{rr}	Reverse Recovery Charge	di/dt=100A/µs	-	6.5	-	μC	

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: T_J = 25°C, V_{DD} = 50V, VG=10V, L=10mH, I_{AS} =9.7A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤1%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms