6.1 EXERCISES

Compute the quantities in Exercises 1–8 using the vectors

$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$$

1.
$$\mathbf{u} \cdot \mathbf{u}, \mathbf{v} \cdot \mathbf{u}, \text{ and } \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$$

1.
$$\mathbf{u} \cdot \mathbf{u}$$
, $\mathbf{v} \cdot \mathbf{u}$, and $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ 2. $\mathbf{w} \cdot \mathbf{w}$, $\mathbf{x} \cdot \mathbf{w}$, and $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

$$3. \ \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$$

4.
$$\frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

5.
$$\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$$

6.
$$\left(\frac{\mathbf{x}\cdot\mathbf{w}}{\mathbf{x}\cdot\mathbf{x}}\right)\mathbf{x}$$

In Exercises 9–12, find a unit vector in the direction of the given vector.

9.
$$\begin{bmatrix} -30 \\ 40 \end{bmatrix}$$

10.
$$\begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$$

11.
$$\begin{bmatrix} 7/4 \\ 1/2 \\ 1 \end{bmatrix}$$

12.
$$\begin{bmatrix} 8/3 \\ 2 \end{bmatrix}$$

13. Find the distance between
$$\mathbf{x} = \begin{bmatrix} 10 \\ -3 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$.

14. Find the distance between
$$\mathbf{u} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$$
 and $\mathbf{z} = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$.

Determine which pairs of vectors in Exercises 15–18 are orthogonal.

15.
$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$
 16. \mathbf{u}

15.
$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$
 16. $\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$

17.
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -5 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -4 \\ 1 \\ -2 \\ 6 \end{bmatrix}$$
 18. $\mathbf{y} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$

In Exercises 19 and 20, all vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

19. a.
$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$
.

- b. For any scalar c, $\mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- c. If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal.
- d. For a square matrix A, vectors in Col A are orthogonal to vectors in Nul A.

- e. If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_j for $j = 1, \dots, p$, then \mathbf{x} is in W^{\perp} .
- 20. a. $\mathbf{u} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{u} = 0$.

Theorem.

- b. For any scalar c, $||c\mathbf{v}|| = c||\mathbf{v}||$.
- c. If \mathbf{x} is orthogonal to every vector in a subspace W, then \mathbf{x}
- d. If $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal.
- e. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
- 21. Use the transpose definition of the inner product to verify parts (b) and (c) of Theorem 1. Mention the appropriate facts from Chapter 2.
- 22. Let $\mathbf{u} = (u_1, u_2, u_3)$. Explain why $\mathbf{u} \cdot \mathbf{u} \ge 0$. When is $\mathbf{u} \cdot \mathbf{u} = 0$?
- 23. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -7 \\ -4 \\ 6 \end{bmatrix}$. Compute and compare $u\!\cdot\! v,\,\|u\|^2,\,\|v\|^2,$ and $\|u+v\|^2.$ Do not use the Pythagorean
- **24.** Verify the *parallelogram law* for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n : $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$
- 25. Let $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$. Describe the set H of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ that are orthogonal to \mathbf{v} . [Hint: Consider $\mathbf{v} = \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.]
- 26. Let $\mathbf{u} = \begin{bmatrix} 5 \\ -6 \\ 7 \end{bmatrix}$, and let W be the set of all \mathbf{x} in \mathbb{R}^3 such that

 $\mathbf{u} \cdot \mathbf{x} = 0$. What theorem in Chapter 4 can be used to show that W is a subspace of \mathbb{R}^3 ? Describe W in geometric language.

- 27. Suppose a vector y is orthogonal to vectors u and v. Show that y is orthogonal to the vector $\mathbf{u} + \mathbf{v}$.
- 28. Suppose y is orthogonal to u and v. Show that y is orthogonal to every \mathbf{w} in Span $\{\mathbf{u}, \mathbf{v}\}$. [Hint: An arbitrary \mathbf{w} in Span $\{\mathbf{u}, \mathbf{v}\}$ has the form $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$. Show that \mathbf{y} is orthogonal to such a vector w.]

29. Let $W = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Show that if \mathbf{x} is orthogonal to each \mathbf{v}_j , for $1 \le j \le p$, then \mathbf{x} is orthogonal to every vector \cdot in W.

- **30.** Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.
 - a. Take \mathbf{z} in W^{\perp} , and let \mathbf{u} represent any element of W. Then $\mathbf{z} \cdot \mathbf{u} = 0$. Take any scalar c and show that $c\mathbf{z}$ is orthogonal to **u**. (Since **u** was an arbitrary element of W, this will show that $c\mathbf{z}$ is in W^{\perp} .)
 - b. Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to **u**. What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?
 - c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^n .
- 31. Show that if x is in both W and W^{\perp} , then x = 0.
- 32. [M] Construct a pair \mathbf{u} , \mathbf{v} of random vectors in \mathbb{R}^4 , and let

$$A = \begin{bmatrix} .5 & .5 & .5 & .5 \\ .5 & .5 & -.5 & -.5 \\ .5 & -.5 & .5 & -.5 \\ .5 & -.5 & -.5 & .5 \end{bmatrix}$$

- a. Denote the columns of A by a_1, \ldots, a_4 . Compute the length of each column, and compute $\mathbf{a}_1 \cdot \mathbf{a}_2$, $\mathbf{a}_1 \cdot \mathbf{a}_3$, $\mathbf{a}_1 \cdot \mathbf{a}_4$, $\mathbf{a}_2 \cdot \mathbf{a}_3$, $\mathbf{a}_2 \cdot \mathbf{a}_4$, and $\mathbf{a}_3 \cdot \mathbf{a}_4$.
- b. Compute and compare the lengths of **u**, A**u**, **v**, and A**v**.
- c. Use equation (2) in this section to compute the cosine of the angle between **u** and **v**. Compare this with the cosine of the angle between Au and Av.
- d. Repeat parts (b) and (c) for two other pairs of random vectors. What do you conjecture about the effect of A on vectors?
- 33. [M] Generate random vectors \mathbf{x} , \mathbf{y} , and \mathbf{v} in \mathbb{R}^4 with integer entries (and $\mathbf{v} \neq \mathbf{0}$), and compute the quantities

$$\left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}, \left(\frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}, \frac{(\mathbf{x} + \mathbf{y}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}, \frac{(10\mathbf{x}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$

Repeat the computations with new random vectors \mathbf{x} and y. What do you conjecture about the mapping $x \mapsto T(x) =$ $\left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$ (for $\mathbf{v} \neq \mathbf{0}$)? Verify your conjecture algebraically.

34. [M] Let
$$A = \begin{bmatrix} -6 & 3 & -27 & -33 & -13 \\ 6 & -5 & 25 & 28 & 14 \\ 8 & -6 & 34 & 38 & 18 \\ 12 & -10 & 50 & 41 & 23 \\ 14 & -21 & 49 & 29 & 33 \end{bmatrix}$$
. Construct

construct a matrix R whose rows form a basis for Row A (see Section 4.6 for details). Perform a matrix computation with N and R that illustrates a fact from Theorem 3.

356

SOLUTIONS TO PRACTICE PROBLEMS

1.
$$\mathbf{a} \cdot \mathbf{b} = 7$$
, $\mathbf{a} \cdot \mathbf{a} = 5$. Hence $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} = \frac{7}{5}$, and $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} = \frac{7}{5} \mathbf{a} = \begin{bmatrix} -14/5 \\ 7/5 \end{bmatrix}$.

2. a. Scale c, multiplying by 3 to get
$$\mathbf{y} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$$
. Compute $\|\mathbf{y}\|^2 = 29$ and $\|\mathbf{y}\| = \sqrt{29}$.

The unit vector in the direction of both **c** and **y** is $\mathbf{u} = \frac{1}{\|\mathbf{y}\|} \mathbf{y} = \begin{bmatrix} 4/\sqrt{29} \\ -3/\sqrt{29} \end{bmatrix}$.

b. **d** is orthogonal to **c**, because

$$\mathbf{d \cdot c} = \begin{bmatrix} 5 \\ 6 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 4/3 \\ -1 \\ 2/3 \end{bmatrix} = \frac{20}{3} - 6 - \frac{2}{3} = 0$$

c. **d** is orthogonal to **u**, because **u** has the form $k\mathbf{c}$ for some k, and

$$\mathbf{d} \cdot \mathbf{u} = \mathbf{d} \cdot (k\mathbf{c}) = k(\mathbf{d} \cdot \mathbf{c}) = k(0) = 0$$

3. If $W \neq \{0\}$, let $\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ be a basis for W, where $1 \leq p \leq n$. Let A be the $p \times n$ matrix having rows $\mathbf{b}_1^T, \dots, \mathbf{b}_p^T$. It follows that W is the row space of A. Theorem 3 implies that $W^{\perp} = (\text{Row } A)^{\perp} = \text{Nul } A$ and hence dim $W^{\perp} = \text{dim Nul } A$. Thus, $\dim W + \dim W^{\perp} = \dim \operatorname{Row} A + \dim \operatorname{Nul} A = \operatorname{rank} A + \dim \operatorname{Nul} A = n$, by the Rank Theorem. If $W = \{0\}$, then $W^{\perp} = \mathbb{R}^n$, and the result follows.