Gewöhnliche Differentialgleichungen - Übungsblatt 6

Wintersemester 2021/22

Prof. Dr. Anna Marciniak-Czochra, Christian Düll

Abgabe: 3. Dezember, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 6.1 4 Punkte Sei $A \in M(n, \mathbb{R})$ und $y^* = 0$ der Fixpunkt der DGL Y' = AY. Zeigen Sie die folgenden

Aussagen.

a) Ist y^* lokal stabil, dann gibt es eine Konstante c>0, sodass $||e^{At}||\leq c$ für alle $t\geq 0$.

b) y^* heißt lokal exponentiell stabil, wenn es eine offene Umgebung $U(y^*)$ und Konstanten $c, \sigma > 0$ gibt, sodass

$$\|\phi(t, y_0) - y^*\| \le Ce^{-\sigma t} \|y_0 - y^*\| \quad \forall t \ge 0 \text{ und alle } y_0 \in U(y^*).$$

Zeigen Sie: Ist y^* lokal exponentiell stabil, so gilt $||e^{At}|| \le ce^{-\sigma t}$ für alle $t \ge 0$.

c) Falls ein T>0 existiert, sodass $||e^{AT}||<1$, so ist y^* global exponentiell stabil, d.h. $U(y^*)=\mathbb{R}^n$.

Aufgabe 6.2 4 Punkte

Betrachten Sie die Differentialgleichung

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y + \cos(x) \tag{1}$$

- a) Bestimmen Sie den Fluss dieser Gleichung.
- b) Beweisen Sie, dass es eine eindeutige periodische Lösung zu (1) gibt. Hinweis: Wenn Sie den Fluss gefunden haben, setzen Sie ihn in die rechte Seite ein und betrachten die Monotonie.

Aufgabe 6.3 5 Punkte

Betrachten Sie folgendes System

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 2x - 1 \\ (x - \frac{1}{2})^3 - 2y \end{pmatrix}, \qquad \forall t > 0.$$
 (2)

- a) Finden Sie die allgemeine Lösung von (2) mit Anfangswert $\begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$.
- b) Nutzen Sie Ihre Lösung aus a), um für alle Anfangswerte $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$ die Omegaund Alpha Limesmengen von (2) zu bestimmen. Geben Sie auch alle Fixpunkte an.
- c) Für alle Fixpunkte x, bestimmen Sie die stabilen und instabilen Mengen $W^{\pm}(\mathbf{x})$.

Aufgabe 6.4 3 Punkte

Sei (ϕ, M) ein kontinuierliches dynamisches System. Zeigen Sie die alternative Darstellung der Omega Limesmenge aus Satz 3.7, d.h

$$\omega(x) = \bigcap_{\rho \geq 0} \overline{\{\phi(t,x) \, | t \geq \rho\}}.$$