MID TERM EXAMINATION B.TECH PROGRAMMES (UNDER THE AEGIS OF USICT) 2nd Semester, May 2023

Paper Code: ES 114

Subject: Engineering Mechanics

Max. Marks: 30

Note: Attempt Q. No. 1 which is compulsory and any two more questions from remaining.

Q. No.	Question	Max. Marks	CO(s
1-	Write short notes on the following:	10	001
10	a) State Lami's theorem.	2.5	CO1
		2.5	CO2
	b) Perfect Truss assumptions c) State Varignon's theorem.	2.5	COL
	1: 0	2.5	CO2
2	Derive the expression for the ratio of tensions for a flat belt passing over a pulley when it is just on the point of slipping.	10	CO2
3	Determine the force in GH, GD and GF member of truss as shown. 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	10	CO2
4	Find the centroid of given shaded area as shown in figure. 30 mm 30 mm 45 mm	10	CO1

Class Test

B.Tech- 2nd semester Paper code: ES-114 Time: 1hr: 30 mins.

June 2023

Subject: Engineering Mechanics

Max.marks:30

Note: - Attempt Q. No.1 is compulsory. Attempt any two more questions from the rest.

Q1 Write short notes:

(a) Classify collision of elastic bodies.	(2)
(b) Explain the location of the Instantaneous Centre.	(2)
(c). Define D'Alembert's principle.	(2)
(d). Poplain the types of load and beam.	(2)
(e). Define the difference between the kinematic and kinetic of the particles.	(2)

- Q2. (a) From what height must a heavy elastic ball be dropped on a floor so that after rebounding thrice, it will reach a height of 10 m?

 Take the coefficient of restitution e = (0.5)
 - (b) A bar AB rests at the edge of a wall of some point C with its end A resting on a horizontal floor as shown in Fig.1 If the end A moves with a constant velocity V_a , setup an expression for the angular velocity of the bar in terms of h and θ . Proceed to calculate the angular velocity if $V_a = 2.5 \text{m/s}$; h=4m and $\theta = 30^\circ$. (5)
- (a) A particle moves with uniform acceleration along a straight line ABC. The speeds of the particles at positions A and C are f5m/s and 25m/s respectively as shown in Fig 2. If point B lies midway between A and C, what will be the ratio of time taken by the particle to travel distances AB and BC? (5)
 - (b). Draw the space diagram of a given beam as shown in Fig.3 (5)
- Q4. (a) Determine the reaction at Points A and B as shown in Fig 4. (5)
 - (b) A ball impinges directly on a similar ball at rest. Due to impact, the first ball comes to rest, and half of the initial kinetic energy gets lost. Determine the coefficient of restitution. (5)

