Module 5. Linear programming problems (LPP)

* General Linear programming problem:

Maximize (minimize)
$$Z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$
 — (1)

Subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1m}x_n \le b_1 (\geqslant b_1)$
 $a_{21}x_1 + a_{21}x_2 + \cdots + a_{2n}x_n \le b_2 (\geqslant b_2)$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m (\geqslant b_m)$

x, x2, -- xn >0 (or Unristricted)

Note that * 1) is called objective function

- * @ aire called constraints
 - * 3 are called Non-negativity restrictions.
- * solution of Linear programming problem (LPP)

Amy set of values $x_1, x_2, \dots x_n$ which satisfy the all constraints is called a solution of Lpp.

* Feasible solution of LPP:

Any solution which satisfy—the given non-negativity restriction is called feasible solution

* optimal solution of Lpp:

Any feasible solution which satisfy the objective

-function is called optimal solution of LPP.

* slack Vaniable:

If the constraints of Lpp are of less than or equal to type (<) then we can add new non-negative variables 80 that the constraints can be expressed as equalities.

therefore that new non-negative variables are called as slack variables.

For ex. ① Suppose $\chi_1 + 2\chi_2 + \chi_3 \leq 5$ Then we add s_1 ($s_1 > 0$) we get $\chi_1 + 2\chi_2 + \chi_3 + s_1 = 5$ * Surplus Vaniable:

If the constraints of LPP are of greater than or equal to type (>0) then we an substract new non-negative variable so that the constraints can be expressed as equalities.

therefore, that new non-negative vaniable are eatled as surplus vaniables.

For ex. 1) suppose, $\chi_1 - 2\chi_2 + 4\chi_3 > 7$ then we substract $s_1(s, 7_0)$ we get $34 - 2\chi_2 + 4\chi_3 - s_1 = 7$

- WITH A NOT

* canonical and standard form of LPP:-A general LPP Maximise Z = C1 x1 + C2 x2 + ... + Cn xn a11 21 + a12 ×2 + ···· + ain 2n ≤ b1 subject to azi x + azz xz + ... + azn xn < b2 am, x + am2 x2 + ... + amn xn < bm with $x_i \geq 0$, $i = 1, 2, \dots, h$ is colled canonical -form And If we indroduce slack variables then the LPP Maximise Z = C1x1+C22++++ Cnxn+ OS1+OS2++++OSm a11 x + 912 x2+... + 91 xn + S1 + 052+... + 05m = b, subject to a21 x4 + 922 x2+ + + 42n xn+ os, + s2+ os, + + + 65m = 62 ami out amidzt - + amn 2n+ OSit ---+ + osm-1+ sm = bm with 21, 12, 20, \$1,82, 5m ≥0 called standard form for examples.

EX. 1 convert the following LPP in the standard form. maximise Z = 3x+5x2 subject to 34+2×2 ≤ 15 24 + 582 7.12 xy, x2 ≥0

sol" we introduce slack variable s, and surplus vaniable so then the problem can be converted to standard from as

Maximise $Z = 9x_1 + 5x_2 + 0s_1 + 0s_2$ Subject to $3x_1 + 2x_2 + s_1 + 0s_2 = 15$ $2x_1 + 5x_2 + 0s_1 - s_2 = 12$

x1, x2, 31, 52 >0

EX. Convert the following LPP to the standard form

Maximise Z = 3x1+2x2+5x3

Subject to $2x_1 - 3x_2 \le 3$ $x_1 + 2x_2 + 3x_3 > 5$ $3x_1 + 2x_3 \le 2$ $x_1 + 2x_2 > 0$

solution: we introduce stack vaniable s1, s3 and susplus variable s2

Also here, x3 is unrestricted

: we put $x_3 = x_3' - x_3''$ and $x_3', x_3'' > 0$: The standard form of LPP is

Maximize $Z = 3x_1 + 2x_2 + 5x_3' - 5x_3' + 0s_1 + 0s_2 + 0s_3$ gubject to $2x_1 - 3x_2 + 0x_3' - 0x_3'' + s_1 + 0s_2 + 0s_3 = 3$ $x_1 + 2x_2 + 3x_3' - 3x_3'' + 0s_1 - s_2 + 0s_3 = 5$ $3x_1 + 0x_2 + 2x_3' - 2x_3'' + 0s_1 + 0s_2 + s_3 = 2$ with $x_1, x_2, x_3', x_3'', s_1, s_2, s_3 \ge 0$

- * Simplex Method:-
- types of solution:
- Basic solution: A solution obtained by

 Setting any n variables out of m+n variables
 equal to zero and solving for remaining
 m variable, provided the obsterminant of the
 coefficient of these in variables is non zero
 fs called a basic solution

 Such in variable are called basic variables
 and the remaining in zero-valued variables
 are called non-basic variables
- 2) Basic feasible solution:

 A basic solution which also satisfies nonnegativity restrictions is called basic feasible solution.
- Note that: In the basic feasible solution obtained
 - i) All m values of basic variables are possible then it is non-degenerate basic F.s
 - ii) one or more values of m basic variable are zero then it is degenerate basic F.S.

Given that

Maximise
$$Z = 24 + 3x_2 + 3x_3$$

Subject to $24 + 2x_2 + 3x_3 = 4$
 $24 + 3x_2 + 5x_3 = 7$

find all basic solutions to the above problem. which of them are basic feasible, non-degenerate, infeasible basic and optimal basic feasible solution? solution!

						16	
No. of	Non-basic	Basic	Equations And	' - ' ' -	is the	youne	Is the
Basic	variables	variables	the values of	solution	solution	of	solution
solutions	= 0		the basic	feasible?	degenerate	Z	optimal ?
١.	~ ^	~. ~	x1 + 2x2 = 4	1100	No.	243(1)+0	
٧.	23=0	×1, ×2	224+32=7	yes	, ,,		yes
	, ,	•	$\Rightarrow \alpha = 2, \alpha = 1$			- 5	* 1
0 + 1	9	_{de} '		~ ×,*	1. T	Sagar Ja	_
2.	22=0	×4 , ×2	21+326=4	yes	No	1+3(6) +3(1)	No
	~2		$2x_1 + 5x_3 = 7$ $\Rightarrow x_1 = 1, x_2 = 1$	1-		= 4	
		e e	- ~ ~ · · · · · · · · · · · · · · · · ·			_ ' '	1100
	, ·		2×2+3×3=4	. 1	N	e	1.8
3.	χ =0	χ_2, χ_3	322 +573 = 7	No	No	_	-
To have			⇒ x2=-1, x3=2	Art. Sri.		W.A.	,
				the state of the s	,	······	<u> </u>

Note that! In the second solution, χ_2 is the outgoing vaniable and χ_3 is incoming vaniable similarly, in the third solution χ_4 is outgoing and χ_2 is incoming vaniable

consider the following problem maximise
$$z=2x_1-2x_2+4x_3-5x_4$$
 subject to $x_1+4x_2-2x_3+8x_4\leq 2$ $-x_1+2x_2+3x_3+4x_4\leq 1$ $x_1,x_2,x_3,x_4\geqslant 0$

determine i> All basic solution

ii> All feasible basic solution,

iii> optimal feasible basic solution.

solution:

	, ,			K 2			
No. of	Non-basic	I BOLLIC.	Equations f	Is the	Is the	value of	is the
baric solutions.	vanables	vanable	the values of	Solution	Solution	Z	Solution
700,1019	=0		basic variables	feasible	degenerate		optimals
1	X3=0 X4=0	24, 22	$24+4x_2=2$ $-x_1+2x_2=1$ $\Rightarrow x_4=0, x_2=\frac{1}{2}$	yes	yes	$2(0) - 2(\frac{1}{2}) + 4(0) - 5(0) = -1.5$	No
2	72=0 74=0	outgoing no	74 - 273 = 2 -74 + 370 = 1 $\Rightarrow 74 = 8, 73 = 3$	yes	No	2(8) - 2(0) +4(3) - 5(0) = 28	yes
3.	Z1 = 0 X4 = 0	_	$4 \chi_{2} - 2 \chi_{3} = 2$ $2 \chi_{2} + 3 \chi_{3} = 1$ $\Rightarrow \chi_{2} = \frac{1}{2} , \chi_{3} = 0$	yes	Yes	$2(0) - 2(\frac{1}{2}) + 4(0) - 5(0) = -1$	110
4.		outgoing x2	$x_1 + 8x_4 = 2$ $-x_1 + 4x_4 = 1$ $\Rightarrow x_1 = 0, x_4 = \frac{1}{4}$	yes	yes	2(0) - 2(0) +4(0) - 5(4) = -1·25	1 100
5.	% = 0 %3 = 0	x_2 x_4 outgoing x_1 incoming x_2			_	_	
6.	X2=0	23,24 outgoing 22 incoming 23	$-2x_3 + 8x_4 = 2$ $3x_3 + x_4 = 12$ $x_3 = 0, x_4 = \frac{1}{4}$	yes	yes	-12.5	N0