

Appunti di Basi Dati Modulo I

Colacel Alexandru Andrei

Disclaimer

INDICE

Indice

1	Lemma della Chiusura1.1 Dimostrazione \Rightarrow	2 2 2								
2		3 3 5								
3	Chiusura di X 3.1 Teorema: L'algoritmo computa X_F^+	6								
4	Lemma: Inclusione delle chiusure 4.1 Dimostrazione	8								
5 Chiusura di X in G										
6	Join senza perdita	10								
7 Assiomi di Armstrong										
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12								
9	Dimostrazione ρ preserva F	13								
10	Hash	14								
11	B-tree	15								
12	Chiusura di un insieme di attributi 12.1 Algoritmo	16 16								
13	3NF (per dipendenza transitiva)	17								
14	Chiusura di F e primo lemma	18								
15	Isam 15.1 Variante Isam con chiavi indice che hanno valore ultimo record	19								
	Altre definizioni da sapere 16.1 Chiave minimale	20 20 20								

1 Lemma della Chiusura

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R. Si ha che:

$$X \to Y \in F^A \Longleftrightarrow Y \subseteq X^+ \tag{1}$$

1.1 Dimostrazione \Rightarrow

Dato $X \to Y \in F^A$, per la regola della decomposizione, otteniamo:

$$X \to A \in F^A, \quad \forall A \in Y$$
 (2)

e quindi, per definizione di X^+ , otteniamo che:

$$A \in X^+, \quad \forall A \in Y$$
 (3)

che significa:

$$Y \subseteq X^+ \tag{4}$$

1.2 Dimostrazione \Leftarrow

Dato:

$$Y \subseteq X^+ \tag{5}$$

si ottiene che:

$$X \to A \in F^A \quad \forall A \in Y \tag{6}$$

che implica, per la regola dell'unione, che:

$$X \to Y \in F^A \tag{7}$$

2 Teorema $F^+ = F^A$

Dato uno schema R e un insieme F di dipendenze funzionali definite su R, si ha che:

$$F^{+} = F^{A} \tag{8}$$

2.1 Dimostrazione $F^A \subseteq F^+$

Prendiamo $X \to Y \in F^A$, noi dobbiamo provare che $X \to Y \in F^+$ per induzione con n numero di applicazioni degli assiomi di Armstrong.

• Caso base (n = 0): se $X \to Y \in F^A$ senza aver applicato alcun assioma di Armstrong, allora l'unica possibilità è che:

$$X \to Y \in F \subseteq F^+ \tag{9}$$

• Ipotesi induttiva forte: ogni dipendenza funzionale in F^A ottenuta da F applicando $k \le n$ assiomi di Armstrong è anche in F^+ :

$$X \to Y \in F^A$$
 tramite $k \le n$ assiomi $\Rightarrow X \to Y \in F^+$

• Passo induttivo: è necessario dimostrare che se $X \to Y \in F^A$ dopo aver applicato n+1 assiomi di Armstrong, allora $X \to Y \in F^+$.

È possibile ritrovarsi in uno dei seguenti tre casi:

1. Se l'(n+1)-esimo assioma applicato è l'assioma di **riflessività**, allora l'unica possibilità è che:

$$X \to Y \in F^A \Leftrightarrow Y \subseteq X \subseteq R \tag{10}$$

Dunque, poiché, $Y \subseteq X \subseteq R$, per ogni istanza legale di R si ha che:

$$\forall t_1, t_2 \in r_1, t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y] \tag{11}$$

da cui ne segue automaticamente che $X \to Y \in F^+$

2. Se l'(n+1)-esimo assioma applicato è l'assioma di **aumento**, allora è obbligatoriamente necessario che:

$$-\exists V, W \subseteq R \mid \exists V \to W \in F_A$$
, ottenuta applicando $j \leq n$ assiomi di Armstrong

$$- \ \exists Z \subseteq R \, | \, X := VZ, \, Y := WZ$$

Affinché si abbia che:

$$Z \subseteq R, V \to W \Rightarrow VZ \to WZ = X \to Y \in F^A$$
 (12)

Siccome per ipotesi induttiva si ha $V \to W \in F^A \Rightarrow V \to W \in F^+$ e siccome $Z \subseteq Z \Rightarrow Z \to Z \in F^+$, si vede facilmente che:

$$\begin{cases} V \to W \in F^+ \\ Z \to Z \in F^+ \end{cases} \implies \begin{cases} \forall t_1, t_2 \in r, t_1[V] = t_2[V] \implies t_1[W] = t_2[W] \\ \forall t_1, t_2 \in r, t_1[Z] = t_2[Z] \implies t_1[Z] = t_2[Z] \end{cases} \implies$$

$$\implies \forall t_1, t_2 \in r, t_1[VZ] = t_2[VZ] \implies t_1[WZ] = t_2[WZ] \implies$$

$$\implies \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y] \implies X \to Y \in F^+$$

3. Se l'(n+1)-esimo assioma applicato è l'assioma di **transitività**, allora è obbligatoriamente necessario che $\exists X \to Z, Z \to Y \in F^A$, ottenute con $k \le n$ assiomi di Armstrong, affinché si abbia che:

$$X \to Z \in F^A \lor Z \to Y \in F^A \Rightarrow X \to Y \in F^A \tag{13}$$

Siccome per ipotesi induttiva $X \to Z \in F^A \Rightarrow X \to Z \in F^+$ e $Z \to Y \in F^A \Rightarrow Z \to Y \in F^+$, si vede facilmente che:

$$\begin{cases} X \to Z \in F^+ \\ Z \to Y \in F^+ \end{cases} \Longrightarrow$$

$$\Longrightarrow \forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Z] = t_2[Z] \implies t_1[Y] = t_2[Y] \implies$$

$$\Longrightarrow X \to Y \in F^+$$

2.2 Dimostrazione $F^+ \subseteq F^A$

- Sia $X \subseteq R$ e sia r istanza di $R(X^+, R - X^+)$ tale che

X^+			$R-X^+$		
A_1	• • •	A_i	A_{j}		A_n
1		1	1		1
1		1	0		0

dunque tale che $\forall t_1, t_2 \in r$ si ha:

- * $t_1[X^+] = (1, \dots, 1) = t_2[X^+]$
- * $t_1[R-X^+] = (1,\ldots,1) \neq (0,\ldots,0) = t_2[R-X^+]$
- Notiamo che $\forall V, W \subseteq R \mid V \to W \in F$ si ha che:
 - * Se $V \cap R X^+ \neq \emptyset$ (dunque anche se $V \subseteq R X^+$) allora $t_1[V] \neq t_2[V]$, dunque r soddisfa $V \to W \in F$
 - * Se invece $V \subseteq X^+$, per il lemma precedentemente visto si ha che

$$V \subseteq X^+ \iff X \to V \in F^A$$

Siccome $V \to W \in F \implies V \to W \in F^A$, per transitività si ha che

$$X \to V \in F^A \land V \to W \in F^A \implies X \to W \in F^A \iff W \subseteq X^+$$

Dunque, siccome $V, W \subseteq X^+$, in definitiva si ha che

$$t_1, t_2 \in r, t_1[V] = (1, \dots, 1) = t_2[V] \land t_1[W] = (1, \dots, 1) = t_2[W]$$

e quindi r soddisfa ogni $V \to W \in F$

- Siccome in entrambi i casi r soddisfa ogni $V \to W \in F$, allora r è legale.
- A questo punto, una qualsiasi dipendenza $X \to Y \in F^+$ deve essere soddisfatta da qualsiasi istanza legale di R, inclusa r stessa
- Poiché $X \subseteq X^+$, ne segue che la dipendenza non può essere soddisfatta a vuoto poiché $t_1[X] = t_2[X]$. Dunque, l'unica possibilità affinché $X \to A \in F^+$ sia soddisfatta da r è che $Y \subseteq X^+$ in modo che si abbia $t_1[Y] = t_2[Y]$
- A questo punto, per il lemma si ha che $Y \subseteq X^+ \iff X \to Y \in F^A$
- Dunque, siccome $X \to Y \in F^+ \implies X \to Y \in F^A$, concludiamo che $F^A \subset F^+$

Nota

Poiché $F^+ = F^A$, per calcolare F^+ ci basta applicare gli assiomi di Armstrong sulle dipendenze in F in modo da trovare F^A .

Tuttavia, calcolare $F^+ = F^A$ richiede tempo esponenziale, quindi $O(2^{nk})$: considerando anche solo l'assioma di riflessività, siccome ogni possibile sottoinsieme di R genera una dipendenza e siccome i sottoinsiemi possibili di R sono $2^{|R|}$, allora ne segue che $|F^+| >> 2^{|R|}$.

3 Chiusura di X

Input:

- Relazione R
- \bullet Dipendenze Funzionali F
- Insieme $X \subseteq R$

Output: X^+

Algorithm 1 Closure Algorithm

```
1: Z \leftarrow X
```

2:
$$S \leftarrow \{A \mid \exists Y \rightarrow V \in F, A \in V \land Y \subseteq Z\}$$

3: while $S \not\subseteq Z$ do

4: $Z \leftarrow Z \cup S$

5:
$$S \leftarrow \{A \mid \exists Y \rightarrow V \in F, A \in V \land Y \subseteq Z\}$$

6: end while

7: return Z

Tale algoritmo viene eseguito in tempo polinomiale, ossia On^k

3.1 Teorema: L'algoritmo computa X_F^+

Il teorema calcola correttamente la chiusura di un insieme di attributi X rispetto ad un insieme F di dipendenze funzionali.

Dimostrazione:

Denotiamo:

$$Z_0, Z_1, \dots, Z_i, \dots \tag{14}$$

$$S_0, S_1, \dots, S_i, \dots \tag{15}$$

Indichiamo con Z_0 il valore iniiale di $Z(Z_0 = X)$ e con Z_i e S_i , $i \ge 1$ i valori di Z ed S dopo l'*i*-esima esecuzione del corpo del ciclo, infatti notiamo che $Z_i \subseteq Z_{i+1}$, per ogni i.

Sia j tale che $S_i \subseteq Z_i$ (cioè, Z_i è l'output di Z quando l'algoritmo termina); proveremo che:

$$A \in Z_i \Leftrightarrow A \in X^+ \tag{16}$$

- Dimostriamo per induzione su i che $Z_f \subseteq X^+$
 - Caso base dell'induzione: i = 0.

Alla 0-esima iterazione del while (ossia prima di esso) si ha $Z_0 = X$ e $X \subseteq X^+$

- Ipotesi induttiva: Per ogni $i \in \mathbb{N}$ si ha che $Z_i \subseteq X^+$
- Passo induttivo (i > 0): Dato $A \in Z_{i+1} = Z_i \cup S_i$, si ha che $A \in Z_i \vee A \in S_i$. Dunque, si possono verificare due casi:
 - * Se $A \in Z_i$, allora per ipotesi $A \in Z_i \subseteq X^+$.
 - * Se $A \in S_i$, allora $\exists Y \to V \in F$ tale che $A \in V \subseteq R, Y \subseteq Z_i$. Siccome per ipotesi $Z_i \subseteq X^+$ e $Y \subseteq Z_i$, allora $Y \subseteq Z_i \subseteq X^+ \iff X \to Y \in F^A$ e $Y \to V \in F \implies Y \to V \in F^A$, quindi per transitività si ha che:

$$X \to Y, Y \to V \in F^A \implies X \to V \in F^A \iff V \subseteq X^+.$$
 (17)

Dunque,si ha che $A \in V \subseteq X^+$

* Siccome in entrambi i casi $A \in Z_{i+1} \implies A \in X^+$, allora concludiamo che $Z_{i+1} \subseteq X^+$.

- Dimostriamo ora che $X^+ \subseteq Z_i$:
 - Sia $X \subseteq R$ e sia r istanza di $R(Z_i, R Z_i)$.

	Z_i			$R-Z_i$		
A_1		A_i	A_{j}		A_n	
1		1	1		1	
1		1	0		0	

dunque tale che per $t_1, t_2 \in r$ si ha:

- $* t_1[Z_i] = (1, \ldots, 1) = t_2[Z_i]$
- * $t_1[R Z_i] = (1, \dots, 1) \neq (0, \dots, 0) = t_2[R Z_i]$
- Notiamo che $\forall V, W \subseteq R V \to W \in F$ si ha che:
 - * Se $V \cap (R-Z_i) \neq \emptyset$ (quindi anche se $V \subseteq R-Z_i$) allora $t1[V] \neq t2[V]$, quindi r soddisfa $V \to W \in F$
 - * Se invece $V \subseteq Z_i$, allora $W \subseteq S_f$, poiché per come viene calcolato S_f , si ha che: $V \to W \in F$, $V \subseteq Z_i$, $B \in W \subseteq R \Rightarrow B \in S_f \Rightarrow W \subseteq S_f$ e quindi, siccome $S_f \subseteq Z_i$ è la condizione che termina l'algoritmo, allora $W \subseteq S_f \subseteq Z_i$
 - * Siccome $V,W\subseteq Z_i$, in definitiva si ha che $t1,t2\in r,\,t1[V]=(1,\ldots,1)=t2[V]$ e $t1[W]=(1,\ldots,1)=t2[W],$ e quindi r soddisfa $V\to W\in F$
- Siccome in entrambi i casi r soddisfa ogni $V \to W \in F$, allora r è legale.
- A questo punto, dato $A \in X^+$, si ha che $X \to A \in F^A = F^+$ deve essere soddisfatta da qualsiasi istanza legale di R, inclusa r stessa.
- Poiché $X=Z_0\subseteq Z_i$, ne segue che la dipendenza non può essere soddisfatta a vuoto poiché t1[X]=t2[X]. Dunque, l'unica possibilità affinché $X\to A\in F^+$ sia soddisfatta da r è $A\in Z_i$ in modo che si abbia t1[A]=t2[A].
- Dunque, siccome $A \in X^+ \Rightarrow A \in Z_i$, concludiamo che $X^+ \subseteq Z_i$.

4 Lemma: Inclusione delle chiusure

Dato uno schema R e due insiemi F e G di dipendenze funzionali su R, si ha che:

$$F \subseteq G^+ \Leftrightarrow F^+ \subseteq G^+ \tag{18}$$

4.1 Dimostrazione

- Denotiamo come $G \xrightarrow{A} F$ la possibilità di ottenere F partendo da G applicando una determinata quantità di assiomi di Armstrong.
- Ricordando che G^A è l'insieme di tutte le dipendenze funzionali ottenibile applicando assiomi di Armstrong su G, allora:

$$G \xrightarrow{A} F \Leftrightarrow \forall X \to Y \in F$$
, si ha $X \to Y \in G^A = G^+ \Leftrightarrow F \subseteq G^+$ (19)

• Siccome $F \subseteq G \Leftrightarrow G \xrightarrow{A} F$, per definizione di $F^A = F^+$ si ha che:

$$F \subseteq G^{+} \Rightarrow G \xrightarrow{A} F \xrightarrow{A} F^{A} = F^{+} \Rightarrow F^{+} \subseteq G^{+}$$
 (20)

• Viceversa, si ha che $F^+ \subseteq G^+ \Rightarrow F \subseteq F^+ \subseteq G^+$, quindi concludiamo che $F \subseteq G^+ \Leftrightarrow F^+ \subseteq G^+$

5 Chiusura di X in G

Dato uno schema R con decomposizione $\rho=R_1,...,R_k,$ dato un insieme F di dipendenze funzionali su R e posto:

$$G := \bigcap_{i=0}^k \pi_{R_i}(F)$$

preso $X \subseteq R$, il seguente algoritmo calcola X_G^+ tramite F:

$\overline{\mathbf{Algorithm}}$ 2 Calcolo di XG^+ tramite F

```
1: procedure CALCULATEXG(R, F, X)
          Z \leftarrow X
 2:
          S \leftarrow \emptyset
 3:
          \mathbf{for}\ i \leftarrow 1\ \mathrm{to}\ k\ \mathbf{do}
 4:
                S \leftarrow S \cup ((Z \cap R_i)_F^+ \cap R_i)
 5:
          end for
 6:
          while S \not\subseteq Z do
 7:
                Z \leftarrow Z \cup S
 8:
                for i \leftarrow 1 to k do
 9:
                     S \leftarrow S \cup ((Z \cap R_i)_F^+ \cap R_i)
10:
                end for
11:
          end while
12:
          X_G^+ \leftarrow Z return X_G^+
13:
14:
15: end procedure
```

6 Join senza perdita

7 Assiomi di Armstrong

8 Decomposizione che preserva F

- 8.1 Prima proprietà
- 8.2 Seconda proprietà
- 8.3 Terza proprietà
- 8.4 Definizione G

9 Dimostrazione ρ preserva F

10 Hash

11 B-tree

- 12 Chiusura di un insieme di attributi
- 12.1 Algoritmo
- 12.2 Dimostrazione correttezza

13 3NF (per dipendenza transitiva)

14 Chiusura di F e primo lemma

15 Isam

15.1 Variante Isam con chiavi indice che hanno valore ultimo record

- 16 Altre definizioni da sapere
- 16.1 Chiave minimale
- 16.2 Superchiave