Exercises Week 11

- 1. Find the DTFT of the signal $\{1, 1, 0, 0\}$, considering it is surrounded with infinitely-long zeros on both sides.
 - Discussion: What is the relation of this DTFT with the DFT of exercise 5 from last week?
- 2. A signal x[n] has a Z transform with one pole $p_1 = -0.5$ and one zero $z_1 = 0.9$. It is known that at $\omega = \pi$, the modulus of the Fourier transform is $|X(\omega = \pi)| = 1$.
 - a. Find the signals's Z transform X(z)
 - b. Compute the expression of $|X(\omega)|$ and $\angle X(\omega)$
 - c. Find the values $|X(\frac{\pi}{2})|$, $|X(\frac{-\pi}{2})|$ and |X(0)|
 - d. Sketch $|X(\omega)|$
- 4. Design the pole-zero plot of a signal with:
 - low frequency content
 - frequency content around the frequency $\omega = \frac{\pi}{2}$