Exercise 10.1. Let $K, E, F \subseteq L$ be fields, E: K, F: K be finite extensions. Prove

- (a) if E: K is separable, then EF: F is separable;
- (b) if E: K and F: K are both separable, then EF: K and $E \cap F: K$ are both separable;
- (c) if E: K is Galois, then EF: F is Galois;
- (d) if E:K and F:K are both Galois, then EF:K and $E\cap F:K$ are both Galois.
- (a) Solution. Suppose E: K is separable. We are given that E: K and F: K are finite, so we can write $E = K(\alpha_1, \ldots, \alpha_n)$ and $F = K(\beta_1, \ldots, \beta_m)$ for $\alpha_i \in E$ and $\beta_j \in F$. Then the composite field EF becomes

$$EF = K(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m)$$

= $F(\alpha_1, \dots, \alpha_n)$.

Since E:K is finite it is also algebraic, hence the minimum polynomial for each element of E is well defined over K, and similarly for EF:F. For any $b\in F$, the minimal polynomial over F is x-b, which has distinct roots, so b is separable over F. Hence it is enough to show that $\alpha_1, \ldots, \alpha_n$ is separable over F.

We have that μ_{α}^{K} is separable by hypothesis for all $\alpha \in \{\alpha_{1}, \ldots, \alpha_{n}\}$. Then $\mu_{\alpha}^{K}(x) \in K[x] \subseteq F[x]$ so μ_{α}^{F} divides μ_{α}^{K} and thus μ_{α}^{F} is thus also separable, whence EF : F is separable.

(b) Solution. Suppose E: K and F: K are both separable. Similarly to part (a), we can write

$$EF = K(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m),$$

for $\alpha_i \in E$ and $\beta_j \in F$. By definition, a is separable over K for all $a \in E$, and similarly for $b \in F$. Then each $\alpha_1, \ldots, \alpha_n \in E$, $\beta_1, \ldots, \beta_m \in F$ is separable over K. By theorem an extension $K(\gamma_1, \ldots, \gamma_k) : K$ is separable iff each γ_i is separable over K. Thus EF : K is separable. Furthermore, we know E : K is separable and $E \cap F \subseteq E$, so $E \cap F : K$ is separable by definition.

- (c) Solution. Suppose E: K is Galois. Then E: K is normal and separable by definition. Since E: K and F: K are both finite and E: K is normal, we have by lemma that EF: F is normal and by part (a), EF: F is separable. Thus EF: F is Galois.
- (d) Solution. Suppose E:K and F:K are both Galois. Then E:K and F:K are both normal and separable by definition. Since E:K and F:K are both finite and normal, we have by lemma that EF:K and $E\cap F:K$ are both normal and by part (b), EF:K and $E\cap F:K$ are both separable. Thus EF:K and $E\cap F:K$ are both Galois.

Exercise 10.2. (a) Find the splitting field L of the polynomial $f(t) = t^4 - 4t^2 + 5$.

- (b) Prove that $[L:\mathbb{Q}]$ is either 4 or 8.
- (c) Find 10 intermediate fields of the extension $L:\mathbb{Q}$ and their degrees.
- (d) (for enthusiasts) Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(f)$.
- (a) Solution. Notice if we set $t^4-4t^2+5=0$, then we can subtract 1 to see $t^4-4t^2+4=(t^2-2)^2=-1$. Hence $t^2-2=\pm i$ and $t\in \{\pm\sqrt{2\pm i}\}$. We note that if $w=\sqrt{a+bi}$ then $w^2=a+bi$ and $\overline{w}^2=\overline{w}^2=a-bi$, whence $\overline{w}=\sqrt{a-bi}$. That is, the square roots of complex conjugates are themselves complex conjugates. So it is enough to construct L by adjoining $\sqrt{2+i}$ to $\mathbb Q$ and thus $L=\mathbb Q(\sqrt{2+i})$.

(b) Solution. Set $x = \sqrt{2+i}$. Then

$$x^{2} = 2 + i$$

$$x^{2} - 2 = i$$

$$x^{4} - 4x + 4 = -1$$

$$x^{4} - 4x + 5 = 0$$

Hence the minimum polynomial for $\sqrt{2+i}$ is $\mu_{\sqrt{2+i}}^{\mathbb{Q}}(x) = x^4 - 4x + 5 = f(x)$ and $[L:\mathbb{Q}] = 4$.

(c) Solution. \Box

(d) Solution. \Box

Exercise 10.3. Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{Q}}(t^6+3)$. *Hint*: Use the calculations (and the notation, if you like) from Lecture 18.

Solution. \Box