DCA 0118 – Procesamento Digital de Sinais Tópico 4: Estruturas para representação de sistemas de tempo discreto

Tiago Barros ¹

1(tbarros@dca.ufrn.br)

Departamento de Engenharia de Computação e Automação (DCA) Centro de Tecnologia (CT) Universidade Federal do Rio Grande do Norte (UFRN)

2022.1

Diagramas de blocos Diagramas de fluxo de sinais Estruturas IIR Formas transpostas Estruturas FIR

Programa

Conteúdo

- Estruturas para sistemas de tempo discreto;
- Representação em diagramas de blocos de EDLCC;
- Representação em diagramas de fluxo de sinais de EDLCC;
- Estruturas básicas de rede para sistemas IIR;
- Formas transpostas;
- Estruturas básicas de rede para sistemas FIR;

truturas de TD Diagramas de blocos Diagramas de fluxo de sinais Estruturas IIR Formas transpostas Estruturas FIR

Bibliografia

Livro texto

Oppenheim, A.V. e Schafer, R.W., 2012. Processamento em tempo discreto de sinais. 3ª ed.-São Paulo: Pearson Education do Brasil.

- Capítulo 6:
 - Seções 6.0, 6.1, 6.2, 6.3, 6.4, 6.5

Estruturas para sistemas de TD

Descrições equivalentes da relação entre entradas e saídas de um SLIT de tempo discreto (TD), com função de sistema racional:

- Equação a diferenças;
- Resposta ao impulso;
- Função de sistema;

Implementação em *hardware* analógico ou digital ⇒ representação deve ser convertida em algoritmo ou estrutura que possa ser realizada na tecnologia desejada.

Estruturas para sistemas de TD

Um sistema pode ser representado de diferentes formas:

•
$$y[n] - ay[n-1] = b_0x[n] + b_1x[n-1], y[n] = 0$$
, para $n < 0$;

•
$$h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1];$$

•
$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a z^{-1}}, |z| > |a|;$$

Elementos básicos para implementação de SLIT em TD na forma de diagramas de blocos:

- Somadores, multiplicadores e memória para armazenar valores atrasados e coeficientes;
- Interconexão: diagramas de blocos com símbolos gráficos;

struturas de TD **Diagramas de blocos** Diagramas de fluxo de sinais Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de blocos

Implementação de atraso:

- Registrador de armazenamento para cada valor de atraso unitário (registrador de atraso);
- z^{-1} : atraso unitário;
- z^{-M} : atraso de M amostras (implementação: M atrasos de uma amostra em cascata);

Exemplo

Seja a EDLCC

$$y[n] = a_1y[n-1] + a_2y[n-2] + b_0x[n]$$

com função de sistema

$$H(z) = \frac{b_0}{1 - a_1 z^{-1} - a_2 z^{-2}}.$$

Seja EDLCC escrita na sua forma geral:

$$y[n] - \sum_{k=1}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

com função de sistema dada por

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}.$$

Fazendo

$$y[n] = \sum_{k=1}^N a_k y[n-k] + \sum_{k=0}^M b_k x[n-k],$$

podemos representar EDLCC em um diagrama de blocos, adotando

$$v[n] = \sum_{k=0}^{M} b_k x[n-k]$$

е

$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + v[n].$$

Tópico 4

struturas de TD **Diagramas de blocos** Diagramas de fluxo de sinais Estruturas IIR Formas transpostas Estruturas FI

Diagramas de blocos

Forma direta I (não canônica).

Tiago Barros Tópico 4 2022.1

11 / 58

Função de sistema pode ser escrita como

$$H(z) = H_2(z)H_1(z) = \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}\right) \left(\sum_{k=0}^{M} b_k z^{-k}\right)$$

e a saída, Y(z), do sistema para uma entrada, X(z), é dada por

$$\begin{cases} V(z) = H_1(z)X(z) = \left(\sum_{k=0}^{M} b_k z^{-k}\right)X(z) \\ Y(z) = H_2(z)V(z) = \left(\frac{1}{1-\sum_{k=1}^{N} a_k z^{-k}}\right)V(z) \end{cases}$$

ruturas de TD **Diagramas de blocos** Diagramas de fluxo de sinais Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de blocos

Forma direta I:

- Zeros de H(z) representados em $H_1(z)$ são implementados primeiro, seguidos pelos polos, representados em $H_2(z)$ (ordem da implementação influencia em implementações em precisão finita);
- (N + M) elementos de atraso;

Representação por diagramas de blocos:

- Diagramas podem ser organizados de diferentes maneiras;
- Diferentes reorganizações geram diferentes algoritmos de implementação para um mesmo sistema;

Podemos reorganizar a função de sistema como

$$H(z) = H_1(z)H_2(z) = \left(\sum_{k=0}^{M} b_k z^{-k}\right) \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}\right)$$

e a saída do sistema é obtida da forma

$$\begin{cases} W(z) = H_2(z)X(z) = \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}\right)X(z) \\ Y(z) = H_1(z)W(z) = \left(\sum_{k=0}^{M} b_k z^{-k}\right)W(z) \end{cases}$$

15 / 58

Diagramas de blocos

ou

$$\begin{cases} w[n] = \sum_{k=1}^{N} a_k w[n-k] + x[n] \\ y[n] = \sum_{k=0}^{M} b_k w[n-k] \end{cases}$$

Neste tipo de representação

- Polos são implementados primeiro, seguidos de zeros;
- (N + M) elementos de atraso, mas pode ser rearranjado;

Considerando N = M, obtemos o diagrama:

Podemos implementar o mesmo sistema com menor número de elementos de atraso

- Número mínimo de atrasos é igual a max(N, M);
- Implementação com número mínimo de atrasos é denominada forma canônica;

Considerando N = M, obtemos o diagrama:

Estruturas de TD **Diagramas de blocos** Diagramas de fluxo de sinais Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de blocos

Forma direta II ou forma direta canônica.

Exemplo

$$H(z) = \frac{1 + 2z^{-1}}{1 - 1,5z^{-1} + 0,9z^{-2}}$$

$$\begin{cases} b_0 = 1 \\ b_1 = 2 \end{cases}$$

$$\begin{cases} a_1 = 1, 5 \\ a_2 = -0, 9 \end{cases}$$

Forma direta I.

Forma direta II.

truturas de TD Diagramas de blocos **Diagramas de fluxo de sinais** Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de fluxo de sinais

Representações equivalentes para EDLCC:

- diagramas de blocos;
- diagramas de fluxo de sinais;

Diagrama de fluxo de sinais: rede de ramos orientados que se conectam em nós.

turas de TD Diagramas de blocos **Diagramas de fluxo de sinais** Estruturas IIR Formas transpostas Estrutu

Diagramas de fluxo de sinais

- \implies Nó k: cada nó possui uma variável associada $(w_k[n])$;
- \implies Ramo (j, k):
 - Começa no nó j e termina no nó k;
 - Direção do fluxo de j para k é indicada por uma flecha no ramo;
 - Possui um sinal de entrada e um sinal de saída;
 - Em representações de sistemas lineares, saída do ramo é transformação linear da entrada (operação indicada perto da flecha);

truturas de TD Diagramas de blocos **Diagramas de fluxo de sinais** Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de fluxo de sinais

- ⇒ Diagramas de blocos: símbolos especiais para somadores.
- ⇒ Diagramas de fluxo: nós representam ramificações e somadores.
- ⇒ Ponto de ramificação em diagramas de blocos: representado no diagrama de fluxo por um nó que tem apenas um ramo de entrada e um ou mais ramos de saída.
- ⇒ Somador no diagramas de blocos: representado no diagrama de fluxo por um nó com dois ou mais ramos de entrada (apenas duas entradas facilita implementação).

ruturas de TD Diagramas de blocos **Diagramas de fluxo de sinais** Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de fluxo de sinais

- ⇒ Nós de fonte:
 - Não possuem ramos de entrada;
 - Usados para representar injeções de entradas externas ou fontes de sinais em diagramas;
- → Nós de saída:
 - Possuem apenas ramos de entrada;
 - São usados para extrair saídas de um diagrama;

$$\begin{cases} w_1[n] = x[n] + aw_2[n] + bw_2[n] \\ w_2[n] = cw_1[n] \\ y[n] = dx[n] + ew_2[n] \end{cases}$$

Exemplo – sistema IIR

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a z^{-1}}.$$

 \implies Representa-se ramo de atraso por z^{-1} (abuso de notação).

Podemos reescrever as equações para representar atraso

$$\begin{cases} w_1[n] = aw_4[n] + x[n] \\ w_2[n] = w_1[n] \\ w_3[n] = b_0w_2[n] + b_1w_4[n] \\ w_4[n] = w_2[n-1] \\ y[n] = w_3[n] \end{cases}$$

Tópico 4

truturas de TD Diagramas de blocos **Diagramas de fluxo de sinais** Estruturas IIR Formas transpostas Estruturas FIR

Diagramas de fluxo de sinais

Exemplo

Determinar função de sistema a partir de diagrama de fluxo que não está na forma direta.

28 / 58

Diagramas de fluxo de sinais

Primeiro, determinamos as equações a partir do diagrama de fluxo de sinais

$$\begin{cases} w_1[n] = w_4[n] - x[n] \\ w_2[n] = \alpha w_1[n] \\ w_3[n] = w_2[n] + x[n] \\ w_4[n] = w_3[n-1] \\ y[n] = w_2[n] + w_4[n] \end{cases}$$

Calculando a transformada Z, obtemos

$$\left\{ \begin{array}{l} W_1(z) = W_4(z) - X(z) \\ W_2(z) = \alpha W_1(z) \\ W_3(z) = W_2(z) + X(z) \\ W_4(z) = z^{-1} W_3(z) \\ Y(z) = W_2(z) + W_4(z) \end{array} \right.$$

Podemos eliminar $W_1(z)$ e $W_3(z)$ desse conjunto de equações, obtendo

$$\begin{cases} W_2(z) = \alpha(W_4(z) - X(z)) \\ W_4(z) = z^{-1}(W_2(z) + X(z)) \\ Y(z) = W_2(z) + W_4(z) \end{cases}$$

De onde obtemos:

$$W_2(z) = \left[\frac{\alpha(z^{-1}-1)}{1-\alpha z^{-1}}\right] X(z)$$

е

$$W_4(z) = \left[\frac{z^{-1}(1-\alpha)}{1-\alpha z^{-1}}\right]X(z).$$

Resolvendo o sistema de equações, temos:

$$Y(z) = \left(\frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}\right) X(z)$$

A função de sistema é

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}.$$

Considerando que o sistema é linear, invariante ao tempo e causal (h[n] = 0 para n < 0), podemos calcular sua resposta ao impulso como

$$h[n] = \mathcal{Z}^{-1}\{H(z)\}$$

= $\alpha^{n-1}u[n-1] - \alpha^{n+1}u[n].$

Tópico 4

Este sistema pode ser implementado, de forma equivalente, pelo diagrama de fluxo de sinais na forma direta I, como

Estruturas básicas para sistemas IIR

Para qualquer função de sistema racional:

- Pode-se representar por diferentes conjuntos equivalentes de:
 - EDLCC;
- Estruturas de rede;

Uma consideração na escolha da representação é a complexidade computacional. É desejável que implementações possuam menor quantidade de:

- Multiplicadores por constantes (operação custosa em hardware, redução gera economia em velocidade);
- Ramos de atraso (registradores de atraso, redução gera economia de memória);

Dilemas da implementações em VLSI:

- Modularidade e transferência de dados;
- Organização de dados em registradores de comprimento finito;
- Estrutura de diagrama de fluxos de sinais influencia modo em que os cálculos são organizados;

Sistemas LIT IIR

Nesta seção, apresentamos várias das formas mais frequentemente usadas para implementar um sistema LIT IIR e obtemos suas representações em diagrama de fluxo.

SLIT IIR são representados por EDLCC

$$y[n] - \sum_{k=1}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

ou por função de sistema racional

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

Tópico 4

Formas diretas IIR

Para N = M, diagrama de fluxo de sinais:

Forma direta I.

Estruturas de TD Diagramas de blocos Diagramas de fluxo de sinais **Estruturas IIR** Formas transpostas Estruturas FIR

Formas diretas IIR

Forma direta II.

 Tiago Barros
 Tópico 4
 2022.1
 35 / 58

Formas diretas IIR

Exemplo

Considere o sistema

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0,75z^{-1} + 0,125z^{-2}}$$

Forma direta I.

Forma direta II.

Fatorando os polinômios do numerador e denominador de H(z), podemos escrever H(z) como:

$$H(z) = \frac{A \prod\limits_{k=1}^{M_1} (1-f_k z^{-1}) \prod\limits_{k=1}^{M_2} (1-g_k z^{-1}) (1-g_k^* z^{-1})}{\prod\limits_{k=1}^{N_1} (1-c_k z^{-1}) \prod\limits_{k=1}^{N_2} (1-d_k z^{-1}) (1-d_k^* z^{-1})}$$

sendo $M = M_1 + 2M_2$, $N = N_1 + 2N_2$.

Fatores de primeira ordem:

- f_k zeros reais;
- c_k polos reais;

Fatores de segunda ordem (pares complexos conjugados):

- Zeros g_k e g_k^* ;
- Polos d_k e d_k^* ;

Estruturas de TD Diagramas de blocos Diagramas de fluxo de sinais **Estruturas IIR** Formas transpostas Estruturas FIR

Forma em cascata

Forma em cascata:

- Representa fatoração mais geral de H(z) quando a_k 's e b_k 's são reais;
- Cascatas de sistemas de primeira e segunda ordem;
- Estrutura modular vantajosa combinação de pares de fatores reais e pares complexos conjugados em fatores de segunda ordem;

Tiago Barros Tópico 4 2022.1 38 / 58

Outra forma de representação em cascata:

$$H(z) = \prod_{k=1}^{N_s} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 - a_{1k}z^{-1} - a_{2k}z^{-2}}$$

onde $N_s = \lfloor (N+1)/2 \rfloor$ é o maior inteiro contido em (N+1)/2.

 \implies Nesta representação, assumimos que $M \le N$ e que os polos e os zeros reais foram combinados em pares.

- Se houver número ímpar de zeros reais, um dos coeficientes de b_{2k} será igual a zero;
- Se houver número ímpar de polos reais, um dos coeficientes de a_{2k} será igual a zero;

Tiago Barros Tópico 4 2022.1 39 / 58

Exemplo

Estrutura em cascata para um sistema de sexta ordem com polos de segunda ordem na forma direta II;

$$y_{0}[n] = x[n],$$

$$w_{k}[n] = a_{1k}w_{k}[n-1] + a_{2k}w_{k}[n-2] + y_{k-1}[n], k = 1, 2, \dots, N_{s},$$

$$y_{k}[n] = b_{0k}w_{k}[n] + b_{1k}w_{k}[n-1] + b_{2k}w_{k}[n-2], k = 1, 2, \dots, N_{s},$$

$$y[n] = y_{N_{s}}[n]$$

Exemplo

Considere o sistema

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0,75z^{-1} + 0,125z^{-2}}$$
$$= \frac{(1 + z^{-1})(1 + z^{-1})}{(1 - 0,5z^{-1})(1 - 0,25z^{-1})}$$

Número de multiplicadores:

- \implies Seja H(z) com N=M, N inteiro par $(N_s=N/2)$:
 - Estruturas na forma direta I e II:
 - 2N + 1 multiplicadores;
 - Sistemas de 6^a ordem: 13 multiplicadores;
 - Forma em cascata:
 - 5N/2 multiplicadores;
 - Sistemas de 6^a ordem: 15 multiplicadores;

Tiago Barros Tópico 4 2022.1 42 / 58

Outra definição para forma em cascata:

$$H(z) = b_0 \prod_{k=1}^{N_s} \frac{1 + \tilde{b}_{1k} z^{-1} \tilde{b}_{2k} z^{-2}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

- b₀: primeiro coeficiente do polinômio do numerador da estrutura em cascata;
- $\tilde{b}_{ik} = \frac{b_{ik}}{b_0}$, $i = 1, 2, k = 1, 2, \dots, N_s$;
- b₀ é constante global;
- Mesmo número de multiplicadores que a forma direta;
 - Porém com estrutura modular;

Tiago Barros Tópico 4 2022.1 43 / 58

Expandindo a função de sistema em frações parciais, podemos obter:

$$H(z) = \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_s} \frac{e_{0k} + e_{1k} z^{-1}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}$$

 $\implies N_s = |(N+1)/2|$ é o maior inteiro contido em (N+1)/2;

 $\implies N_p = M - N$ (se for negativo, primeira soma não estará presente);

Tópico 4

Exemplo

Estrutura na forma paralela, implementada usando a forma direta II, para um sistema de sexta ordem (N = M = 6);

$$w_{k}[n] = a_{1k}w_{k}[n-1] + a_{2k}w_{k}[n-2] + x[n], k = 1, 2, \dots, N_{s},$$

$$y_{k}[n] = e_{0k}w_{k}[n] + e_{1k}w_{k}[n-1], k = 1, 2, \dots, N_{s},$$

$$y[n] = \sum_{k=0}^{N_{p}} C_{k}x[n-k] + \sum_{k=1}^{N_{s}} y_{k}[n]$$

 \Longrightarrow Se $M \ge N$ primeiro somatório não é incluído;

Tópico 4 45 / 58

Tiago Barros Tópico 4 2022.1 46 / 58

Exemplo

Considere o sistema

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$
$$= 8 + \frac{-7 + 8z^{-1}}{1 - 0.75z^{-1} + 0.125z^{-2}}.$$

Como todos os polos são reais, podemos obter uma realização alternativa na forma paralela expandindo H(z) como

$$H(z) = 8 + \frac{18}{1 - 0.5z^{-1}} - \frac{25}{1 - 0.25z^{-1}}.$$

Tópico 4

Estruturas de TD Diagramas de blocos Diagramas de fluxo de sinais **Estruturas IIR** Formas transpostas Estruturas FIR

Forma paralela

Tiago Barros Tópico 4 2022.1 48 / 58

Seja o sistema descrito por

$$y[n] = ay[n-1] + x[n],$$

Para a entrada $x[n] = \delta[n] \longrightarrow h[n] = a^n u[n]$ (comprimento infinito)

⇒ Resposta ao impulso infinita (IIR).

ruturas de TD Diagramas de blocos Diagramas de fluxo de sinais **Estruturas IIR** Formas transpostas Estruturas FIR

Realimentação em sistemas IIR

- 1) Se rede não tiver laços de realimentação:
 - A resposta ao impulso n\u00e3o \u00e9 mais longa do que o n\u00eamero total de elementos de atraso da rede;
 - Função de sistema tem apenas zeros (exceto pelos polos em z = 0);
 - Número de zeros não pode ser maior do que o número de elementos de atraso da rede;
- 2) Função de sistema com polos:
 - Diagrama de blocos e diagrama de fluxo de sinais ⇒ possuem realimentação;

Tiago Barros Tópico 4 2022.1 50 / 58

Realimentação em sistemas IIR

3) Polos na função de sistema e laços na rede podem não ser suficientes para tornar IIR;

Seja

$$H(z) = \frac{1 - a^2 z^{-2}}{1 - a z^{-1}} = \frac{(1 - a z^{-1})(1 + a z^{-1})}{1 - a z^{-1}}$$
$$= 1 + a z^{-1}$$

De onde obtém-se $h[n] = \delta[n] + a\delta[n-1] \Longrightarrow$ Sistema FIR (polo é cancelado por zero);

52 / 58

Realimentação em sistemas IIR

4) Rede não computável;

$$y[n] = ay[n] + x[n]$$

$$x[n]$$

$$y[n]$$

- \implies Equação pode ser resolvida: $y[n] = \frac{x[n]}{1-a}$;
- ⇒ Diagrama de fluxo não representa um conjunto de EDLCC que podem ser resolvidas sucessivamente para as variáveis dos nós;
- → Nos diagramas de fluxo todos os laços de realimentação devem conter pelo menos um elemento de atraso unitário;

struturas de TD Diagramas de blocos Diagramas de fluxo de sinais Estruturas IIR **Formas transpostas** Estruturas FIR

Formas transpostas

Teoria de diagramas de fluxo de sinais

 Transformar diagramas em diferentes forma mantendo função de sistema inalterada;

Diagrama de fluxo reverso ou transposição:

- Reversão dos sentidos de todos os ramos na rede;
- Mantém ganho dos ramos;
- Trocam papéis entre entrada e saída (nós fontes tornam-se saída e vice-versa);
- Útil para lidar com ruído e problemas com precisão finita;

Tiago Barros Tópico 4 2022.1 53 / 58

Formas transpostas

Exemplo

$$H(z) = \frac{1}{1 - az^{-1}}$$

Tiago Barros Tópico 4 2022.1 54 / 58

Exemplo

Seja sistema de segunda ordem descrito pelas EDLCCs

$$w[n] = a_1w[n-1] + a_2w[n-2] + x[n],$$

$$y[n] = b_0w[n] + b_1w[n-1] + b_2w[n-2]$$

Exemplo

Equações na forma transposta

$$v_0[n] = b_0x[n] + v_1[n-1],$$

$$y[n] = v_0[n],$$

$$v_1[n] = a_1y[n] + b_1x[n] + v_2[n-1],$$

$$v_2[n] = a_2y[n] + b_2x[n].$$

Estruturas FIR

Sistemas FIR causais

• H(z) tem apenas zeros (exceto para os polos em z = 0);

$$\implies$$
 EDLCC é $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

• Pode ser reconhecido como convolução entre x[n] e h[n], onde:

$$h[n] = \begin{cases} b_n, & n = 0, 1, \dots, M \\ 0, & \text{caso contrário.} \end{cases}$$

Tópico 4

Estruturas FIR

Forma direta:

• Estruturas de linhas de atraso com derivações (tapped delay line);

Forma transposta:

