实验7

STM32数据采集与控制

定时器使用及AD采样

实验目的

熟悉与掌握

- ■AD采样,串行通信,DMA
- ■定时器中断的使用方法
- ■定时器的PWM波形输出配置方法
- **■**SPWM

实验内容

- AD采样
- 定时器中断
- ✓ 以定时器中断方式通过GPIO输出
- PWM波形输出
- ✔ 单通道输出
- ✓ 互补输出
- ✔ 死区设置
- ✓ SPWM

STM32G4的ADC

- ■不同的型号所含ADC模块数量不同,最多有5个ADC(ADC1~5);但也并非完全 独立,其中ADC1和ADC2是一对,ADC3和ADC4是一对,ADC5可独立控制。
- ■每个ADC都包含一个12位逐次比较型模拟数字转换器。
- ■每个ADC有最多至19个通道,不同的通道具有单次、连续和扫描或断续等采样模式。

STM32G4的ADC

ADC采样频率

Serial Transmission Using UARTs

- UART: Universal Asynchronous Receiver Transmitter
 - Takes parallel data and transmits serially
 - Receives serial data and converts to parallel
- Parity: extra bit for simple error checking
- Start bit, stop bit
- Baud rate
 - signal changes per second
 - bit rate usually higher

STM32G4的串口

- USART1, USART2, USART3
- UART4, UART5
- LPUART1

USART block diagram

ReqD ReqM . CPU DMA Bus (Bus Master) (Bus Master) Arbiter ✓ AckM AckD Address ReadyS ReadyD Controls From Decoder Source RDataS Memory **RData RDataD** Destination Memory

DMA

DMAMUX: DMA request multiplexer

STM32G4的定时器

类型	定时器	计数器精 度	计数器类型	预分频因子	DMA请求产 生	捕捉/比 较通道	互补输 出
高精度定 时器	HRTIM	16位	Up	/1/2/4(x2 x4 x8 x16 x32,带DLL)	是	12	有
高级控制	TIM1, TIM8,TIM20	16位	Up, down, Up/down	1~65536之间的整数	是	4	4
通用	TIM2,TIM5	32位	Up, down, Up/down	1~65536之间的整数	是	4	无
通用	TIM3,TIM4	16位	Up, down, Up/down	1~65536之间的整数	是	4	无
通用	TIM15	16位	Up	1~65536之间的整数	是	2	1
通用	TIM16,TIM17	16位	Up	1~65536之间的整数	是	1	1
基本	TIM6,TIM7	16位	Up	1~65536之间的整数	是	0	无

PWM Time-Base Count Modes

PWM Count Up-Down Symmetric Waveform

配置定时器TIM3

- 在模式 (Mode) 栏,将时钟源 (Clock Source)选择为Internal Clock
- ■把Parameter Settings中的预分频因子(Prescaler)和计数器周期(Counter Period)分别设置为999和16999
- ■把Counter Mode设置为升模式(Up)

配置中断

■ 在TIM3的配置界面中,选中NVIC设置(NVIC Settings),使能TIM3的全局中断

Configuration								
Reset Configuration								
Parameter Settings	User Constants		ttings	DMA Settings				
NVIC Interru	Enabled	Preemption Priority		Sub Priority				
TIM3 global interrupt	✓	0		0				

■返回到System Core中的NVIC配置界面,将优先级组(Priority Group)选择4bits for pre-emption priority 0 bits for subpriority。同时,还会看到,TIM3 global interrupt已出现在中断表中,并且已使能;将它的抢占式优先级设为1,响应优先级为0。

使能定时器中断

HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim);

- ■放到main函数中,位于while(1)循环前面的注释对中
- ■TIM3初始化函数MX_TIM3_Init()的后面

```
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim3);
/* USER CODE END 2 */
```

定时器的中断服务函数

■开启TIM3的中断后,当条件满足时,就会执行定时器中断服务函数

```
TIM3_IRQHandler() stm32g4xx_it.c
```

```
TIM3_IRQHandler() → HAL_TIM_IRQHandler() → HAL_TIM_PeriodElapsedCallback()
```

弱函数

重定义定时器回调函数

■ 在main.c中重新定义回调函数HAL_TIM_PeriodElapsedCallback(),使PA5的输出 状态翻转

```
/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
     HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);
}
/* USER CODE END 4 */
```

- ■定时器的预分频因子和计数器周期分别设置为999和16999,系统时钟频率为170MHz,最终TIM3中断的周期为:
 - 1000*17000/170MHz=0.1s,即10Hz
- ■编译工程,并下载到硬件中运行; LD2闪烁频率是多少?

定时器中断

课堂练习:

(1)参照上面的例子,用定时器中断,控制LD2以0.5Hz频率

闪烁; (2) 用定时器TIM3中断, 使PC2/PC3输出互补的两路

方波信号,输出频率为<u>50Hz</u>;输出波形占空比设置为<u>20%</u>(3)

配置两路ADC,实现对上述两路输出的采样,并通过串口送

至PC,在PC上显示测量波形。

Dead-time generator

配置定时器TIM1

配置定时器TIM1

TIM1 Mode and Configuration

PWM Generation Channel 1

Mode PWM mode 1

Pulse (16 bits value) 2125

Output compare preload Enable

Fast Mode Disable

CH Polarity High

CH Idle State Reset

启动TIM1的PWM

■ 启动PWM

HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);

输出2路PWM波形

TIM1 Mode and Configuration

TIM1_CH2

Counter Settings

Prescaler (PSC - 16 bits ... 999
Counter Mode Up
Dithering Disable
Counter Period (AutoRelo... 8499

PWM Generation Channel 1

Fast Mode

<u> Mode</u>	PWM mode 1					
Pulse (16 bits value)	2125					
Output compare preload	Enable					
Fast Mode	Disable					
CH Polarity	High					
CH Idle State	Reset					
∨ PWM Generation Channel 2						
Mode	PWM mode 1					
Pulse (16 bits value)	4250					
Output compare preload	Enable					

Disable

输出2路PWM波形

■ 启动PWM

HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);

互补型PWM输出

- 互补型的PWM输出: 两路输出是完全互补的,某时刻一路输出高电平, 另外一路就输出低电平
- 并非所有定时器都有互补型输出: TIM3没有, TIM1有
- TIM1有4个PWM输出及其互补输出:
- \checkmark TIM1_CH1 <-> TIM1_CH1N
- \checkmark TIM1_CH2 <->TIM1_CH2N
- ✓ TIM1_CH3 <-> TIM1_CH3N
- ✓ TIM1_CH4 <-> TIM1_CH4N
- 由于引脚复用,这些PWM信号可通过配置,从不同的引脚输出

互补型PWM输出

- TIM1的4个PWM输出通道对应的引脚如下所示(详细内容可以查看 STM32G474RE的文档):
- ✓ TIM1_CH1-PA8/PC0, TIM1_CH1N-PA7/PA11/PB13/PC13
- ✓ TIM1_CH2-PA9/PC1, TIM1_CH2N-PA12/PB0/PB14
- ✓ TIM1 CH3-PA10/PC2, TIM1 CH3N-PB1/PB9/PB15
- ✓ TIM1_CH4-PA11/PC3, TIM1_CH4N-PC5
- 以TIM1_CH1和TIM1_CH1N这对互补型PWM为例,介绍互补型PWM的配置过程

配置TIM1

配置TIM1

配置TIM1

启动定时器及PWM输出

- 启动定时器: HAL_TIM_Base_Start()
- 启动TIM1的PWM1通道输出: HAL_TIM_PWM_Start()
- 启动互补PWM通道输出: HAL_TIMEx_PWMN_Start()

```
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start(&htim1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_1);
/* USER CODE END 2 */
```


死区参数的作用

练习7: PWM输出与AD采样

任务7.1: 用定时器实现PWM输出,并用ADC采集输出波形

ADC,实现对上述两路输出的采样,并通过串口送至PC,在PC上显示测量波形。

(1)参照上面的步骤,配置TIM1的互补PWM输出,设置PWM输出频率为<u>学号的后三位</u>(如果小于100,取乘以10之后的数字);(2)修改死区时间参数,查看输出波形的变化;(3)配置两路

DTG: Dead-time generator

改变PWM输出波形占空比

- 改变占空比,需要调整PWM产生通道(PWM Generation Channel)参数中的脉冲数(Pulse)
- 该参数对应的是TIM的捕捉/比较寄存器CCRx
- TIM1 有 6 个 CCR 寄 存 器 (只有 4 个 PWM 输 出 通 道): TIM1_CCR1、TIM1_CCR2、.....,分别对应TIM1_CH1、TIM1_CH2......PWM输出通道的脉冲数(Pulse)值。
- 可在代码中给这些寄存器赋值

双脉冲测试

$$i_L(t) = \frac{1}{L} \cdot \int_0^{t_{\rm p1}} U_{\rm HV} \, \mathrm{d}t$$

练习7: PWM输出

- 任务7.2: 用定时器实现双脉冲输出
- ✓ 输出波形参数(t_1 、 t_2 和 t_3)可调,数值由主机模型设定
- ✓ 用示波器测试输出波形

单次、非连续

THE END