AnimatedPopPyramid

February 12, 2021

1 POPULATION DATAFRAME FUNCTION

- 1.0.1 return a pandas df indexed by (region or country) & year Double Indexed
- 1.0.2 columns will be counts of people in Different Age/Sex groups

The World Bank maintains a large set of "World Development Indicators" (WDI), including information on population.

- API for WDI is available at https://datahelpdesk.worldbank.org/knowledgebase/ articles/889392-about-the-indicators-api-documentation
- A python module that uses the API is wbdata, written by Oliver Sherouse.
- Available at http://github.com/OliverSherouse/wbdata.
- Documented at https://wbdata.readthedocs.io.

We walk through the process of getting data from the WDI into a pandas DataFrame.

The wbdata module has several key functions we'll want to use:

- search_countries(): Returns code for different countries or regions.
- get_source(): Gives list of different data sources that can be accessed using the module; returns a numeric key;
- get_indicator(): Given a source, this returns a list of available variables (indicators).
- **get_dataframe():** Given a source and a list of indicators, this returns a dataframe populated with the requested data for whatever

Begin by importing the module:

```
[1]: ## If import fails with "ModuleNotFoundError"
## uncomment below & try again
!pip install wbdata

import wbdata
```

```
Requirement already satisfied: wbdata in /opt/conda/lib/python3.8/site-packages (0.3.0)

Requirement already satisfied: appdirs<2.0,>=1.4 in
/opt/conda/lib/python3.8/site-packages (from wbdata) (1.4.4)

Requirement already satisfied: tabulate>=0.8.5 in /opt/conda/lib/python3.8/site-packages (from wbdata) (0.8.7)
```

```
Requirement already satisfied: requests>=2.0 in /opt/conda/lib/python3.8/site-packages (from wbdata) (2.25.1)
Requirement already satisfied: decorator>=4.0 in /opt/conda/lib/python3.8/site-packages (from wbdata) (4.4.2)
Requirement already satisfied: chardet<5,>=3.0.2 in
/opt/conda/lib/python3.8/site-packages (from requests>=2.0->wbdata) (3.0.4)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in
/opt/conda/lib/python3.8/site-packages (from requests>=2.0->wbdata) (1.25.7)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.8/site-packages (from requests>=2.0->wbdata) (2.8)
Requirement already satisfied: certifi>=2017.4.17 in
/opt/conda/lib/python3.8/site-packages (from requests>=2.0->wbdata) (2019.11.28)
```

```
[2]: import pandas as pd import numpy as np
```

```
[3]: # Give variable for clarity
     variable_labels = {"SP.POP.TOTL":"Total Population",
                         "SP.POP.TOTL.FE.IN": "Female Population",
                         "SP.POP.TOTL.MA.IN": "Male Population",
                         "SP.POP.0014.FE.IN": "Females (0-14)",
                         "SP.POP.0014.MA.IN": "Males (0-14)",
                         "SP.POP.1564.FE.IN": "Females (15-64)",
                         "SP.POP.1564.MA.IN": "Males (15-64)",
                         "SP.POP.65UP.FE.IN": "Females (65+)",
                         "SP.POP.65UP.MA.IN": "Males (65+)",
                         "SP.POP.0004.FE": "Females (0-4)",
                         "SP.POP.0004.MA": "Males (0-4)",
                         "SP.POP.0509.FE": "Females (5-9)",
                         "SP.POP.0509.MA": "Males (5-9)",
                         "SP.POP.1014.FE": "Females (10-14)",
                         "SP.POP.1014.MA": "Males (10-14)",
                         "SP.POP.1519.FE": "Females (15-19)",
                         "SP.POP.1519.MA": "Males (15-19)",
                         "SP.POP.2024.FE": "Females (20-24)",
                         "SP.POP.2024.MA": "Males (20-24)",
                         "SP.POP.2529.FE": "Females (25-29)",
                         "SP.POP.2529.MA": "Males (25-29)",
```

```
"SP.POP.3034.FE": "Females (30-34)",
                   "SP.POP.3034.MA": "Males (30-34)",
                    "SP.POP.3539.FE": "Females (35-39)",
                   "SP.POP.3539.MA": "Males (35-39)",
                   "SP.POP.4044.FE": "Females (40-44)",
                   "SP.POP.4044.MA": "Males (40-44)",
                    "SP.POP.4549.FE": "Females (45-49)",
                    "SP.POP.4549.MA": "Males (45-49)",
                   "SP.POP.5054.FE": "Females (50-54)",
                   "SP.POP.5054.MA": "Males (50-54)",
                   "SP.POP.5559.FE": "Females (55-59)",
                   "SP.POP.5559.MA": "Males (55-59)",
                   "SP.POP.6064.FE": "Females (60-64)",
                   "SP.POP.6064.MA": "Males (60-64)",
                   "SP.POP.6569.FE": "Females (65-69)",
                   "SP.POP.6569.MA": "Males (65-69)",
                   "SP.POP.7074.FE": "Females (70-74)".
                   "SP.POP.7074.MA": "Males (70-74)",
                   "SP.POP.7579.FE": "Females (75-79)",
                   "SP.POP.7579.MA": "Males (75-79)",
                   "SP.POP.80UP.FE": "Females (80+)",
                   "SP.POP.80UP.MA": "Males (80+)"
                  }
world = wbdata.get_dataframe(variable_labels, country="")
world.head()
                  Total Population Female Population Male Population \
```

```
[3]:
     country
                 date
     Afghanistan 1960
                              8996973.0
                                                  4347397.0
                                                                    4649576.0
                 1961
                              9169410.0
                                                  4439158.0
                                                                   4730252.0
                 1962
                              9351441.0
                                                  4535392.0
                                                                   4816049.0
                 1963
                              9543205.0
                                                  4636172.0
                                                                   4907033.0
                 1964
                              9744781.0
                                                  4741531.0
                                                                   5003250.0
```

Females (0-14) Males (0-14) Females (15-64) \setminus

country	date										
Afghanistan	1960	188	39085.0	190	2314.0		234255	7.0			
•	1961	193	38162.0	195	4539.0		2382132	2.0			
	1962	198	30414.0	200	6726.0		2433192	2.0			
	1963	20:	19727.0	205	9859.0		2492014	1.0			
	1964	200	61674.0	211	4431.0		2553216	3.0			
		Males (15-64)	Females	(65+)	Males	(65+)	Femal	.es	(0-4)	\
country	date										
Afghanistan	1960	261	1254.0	11	5755.0	13	36008.0		7609	938.0	
1961		263	11	118864.0		138633.0		795378.0			
	1962	2668	12	121786.0		140446.0		818678.0			
	1963	270	5711.0	12	4431.0	14	1463.0		834	934.0	
	1964	274	7068.0	12	6641.0	14	1751.0		850	992.0	
		Fema	les (60-	64) Ma	les (6	0-64)	Females	(65-6	9)	\	
country	date										
Afghanistan	1960		8137	8.0	93	053.0		56624	.0		
	1961		8226	1.0	93	359.0		57393	.0		
	1962	•••	8348	7.0	94	140.0		58326	.0		
	1963		8501	2.0	95	186.0		59399	.0		
	1964		8674	7.0	96	187.0		60569	.0		
		Males (65-69)	Females	(70-7	4) Mal	es (70-7	74) \			
country	date										
Afghanistan	1960	6	7283.0		34655	.0	40748	3.0			
	1961	6	7330.0		35363	.0	41520	0.0			
	1962	6	7197.0		36055	.0	42186	5.0			
	1963	6	7052.0		36757	.0	42704	1.0			
	1964	6	7117.0		37461	.0	4298	7.0			
		Females	(75-79)	Males	(75-7	9) Fem	nales (80)+) M	ale	s (80+	+)
<i>J</i>	date										
Afghanistan			16990.0		19683		7486	5.0		8294	.0
	1961		17750.0		20500		8358			9283	
	1962		18364.0		21050	.0	904:	1.0		10013	.0
	1963		18819.0		21331		9456			10376	
	1964		19098.0		21378	.0	9513	3.0		10269	.0
- -		-									

[5 rows x 43 columns]

[4]: world['Total Population']

[4]: country date Afghanistan 1960 8996973.0 1961 9169410.0 1962 9351441.0

```
1963 9543205.0
1964 9744781.0
...
Zimbabwe 2016 14030390.0
2017 14236745.0
2018 14439018.0
2019 14645468.0
2020 NaN
```

Name: Total Population, Length: 16104, dtype: float64

[5]: world.loc["China", "1970"]

[5]:	Total Population	818315000.0
	Female Population	398315770.0
	Male Population	419999230.0
	Females (0-14)	161012345.0
	Males (0-14)	169646014.0
	Females (15-64)	219622356.0
	Males (15-64)	237363620.0
	Females (65+)	17681069.0
	Males (65+)	12989596.0
	Females (0-4)	65584375.0
	Males (0-4)	68624211.0
	Females (5-9)	52485537.0
	Males (5-9)	55526358.0
	Females (10-14)	42942434.0
	Males (10-14)	45495445.0
	Females (15-19)	44782029.0
	Males (15-19)	47319220.0
	Females (20-24)	31775811.0
	Males (20-24)	33714434.0
	Females (25-29)	24134106.0
	Males (25-29)	27033426.0
	Females (30-34)	22745491.0
	Males (30-34)	26094031.0
	Females (35-39)	21498047.0
	Males (35-39)	24307928.0
	Females (40-44)	18429006.0
	Males (40-44)	21171912.0
	Females (45-49)	16535607.0
	Males (45-49)	17999527.0
	Females (50-54)	15644010.0
	Males (50-54)	16761329.0
	Females (55-59)	13422847.0
	Males (55-59)	13448064.0
	Females (60-64)	10655401.0
	Males (60-64)	9513748.0
		3010, 10.0

```
Females (65-69)
                       8213500.0
Males (65-69)
                       6568845.0
Females (70-74)
                       5042650.0
Males (70-74)
                       3775367.0
Females (75-79)
                       2883120.0
Males (75-79)
                       1887193.0
Females (80+)
                       1541799.0
Males (80+)
                        758191.0
Name: (China, 1970), dtype: float64
```

[6]: world.iloc[2]

Γ <i>6</i>].	Total Danulation	9351441.0
[0]:	Total Population Female Population	4535392.0
	Male Population	4816049.0
	Females (0-14)	1980414.0
	Males (0-14)	2006726.0
	Females (15-64)	2433192.0
	Males (15-64)	2668877.0
	Females (65+)	121786.0
	Males (65+)	140446.0
	Females (0-4)	818678.0
	Males (0-4)	831163.0
	Females (5-9)	611717.0
	Males (5-9)	637537.0
	Females (10-14)	550019.0
	Males (10-14)	538026.0
	Females (15-19)	477029.0
	Males (15-19)	485476.0
	Females (20-24)	394896.0
	Males (20-24)	429297.0
	Females (25-29)	337367.0
	Males (25-29)	369574.0
	Females (30-34)	285151.0
	Males (30-34)	324628.0
	Females (35-39)	239468.0
	Males (35-39)	277057.0
	Females (40-44)	200415.0
	Males (40-44)	228662.0
	Females (45-49)	167294.0
	Males (45-49)	187610.0
	Females (50-54)	137894.0
	Males (50-54)	150506.0
	Females (55-59)	110191.0
	Males (55-59)	121928.0
	Females (60-64)	83487.0
	Males (60-64)	94140.0

```
Females (65-69)
                       58326.0
Males (65-69)
                       67197.0
Females (70-74)
                       36055.0
Males (70-74)
                       42186.0
Females (75-79)
                       18364.0
Males (75-79)
                       21050.0
Females (80+)
                       9041.0
Males (80+)
                       10013.0
```

Name: (Afghanistan, 1962), dtype: float64

[7]: world.loc['Afghanistan', '1960']

[7]:	•	8996973.0
	Female Population	4347397.0
	Male Population	4649576.0
	Females (0-14)	1889085.0
	Males (0-14)	1902314.0
	Females (15-64)	2342557.0
	Males (15-64)	2611254.0
	Females (65+)	115755.0
	Males (65+)	136008.0
	Females (0-4)	760938.0
	Males (0-4)	780471.0
	Females (5-9)	583953.0
	Males (5-9)	598721.0
	Females (10-14)	544194.0
	Males (10-14)	523122.0
	Females (15-19)	447872.0
	Males (15-19)	478075.0
	Females (20-24)	382542.0
	Males (20-24)	415970.0
	Females (25-29)	325664.0
	Males (25-29)	361150.0
	Females (30-34)	275401.0
	Males (30-34)	319216.0
	Females (35-39)	231431.0
	Males (35-39)	267882.0
	Females (40-44)	194047.0
	Males (40-44)	222625.0
	Females (45-49)	162562.0
	Males (45-49)	183174.0
	Females (50-54)	134240.0
	Males (50-54)	147801.0
	Females (55-59)	107418.0
	Males (55-59)	122306.0
	Females (60-64)	81378.0
	Males (60-64)	93053.0

```
Females (65-69)
                           56624.0
     Males (65-69)
                           67283.0
     Females (70-74)
                           34655.0
     Males (70-74)
                           40748.0
     Females (75-79)
                           16990.0
     Males (75-79)
                           19683.0
     Females (80+)
                            7486.0
     Males (80+)
                            8294.0
     Name: (Afghanistan, 1960), dtype: float64
[8]: import pandas as pd
     example =pd.DataFrame({'Age':_
      'Male': [-49228000, -61283000, -64391000, -52437000, _
      →-42955000, -44667000, -31570000, -23887000, -22390000, -20971000, -17685000, ⊔
      \hookrightarrow -15450000, -13932000, -11020000, -7611000, -4653000, -1952000, -625000, \sqcup
      \rightarrow-116000, -14000, -1000],
                         'Female': [52367000, 64959000, 67161000, 55388000, ___
      45448000, 47129000, 33436000, 26710000, 25627000, 23612000, 20075000, 11
      →16368000, 14220000, 10125000, 5984000, 3131000, 1151000, 312000, 49000, U
      4000, 0]
     example.head()
[8]:
          Age
                  Male
                          Female
          0-4 -49228000 52367000
          5-9 -61283000 64959000
     1
     2 10-14 -64391000 67161000
     3 15-19 -52437000 55388000
     4 20-24 -42955000 45448000
[9]: trial = pd.DataFrame({'Category': world.loc["China", "1970"].index,
                          'Population': world.loc["China", "1970"]})
     trial.filter(regex = 'Female').values
[9]: array([], shape=(43, 0), dtype=float64)
[10]: male_df = pd.DataFrame({'Category' : world.loc["China", "1970"].filter(regex = []
      →'Male').index,
                          'Population' : world.loc["China", "1970"].filter(regex =
      male_df = male_df.loc[1:]
     female_df = pd.DataFrame({'Category' : world.loc["China", "1970"].filter(regex

      →= 'Female').index,
                          'Population' : world.loc["China", "1970"].filter(regex =
      female df = female df.loc[1:]
```

```
#combine male and female dataframes
       combined df = pd.DataFrame({'Age' : ['0-14', '15-64', '65+', '0-4', '5-9', __
       \hookrightarrow '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', \Box
       \Rightarrow '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80+'],
                                   'Male' : male df['Population'] * -1,
                                   'Female': female df['Population']})
       combined df = combined df.loc[4:]
       combined_df.index = np.arange(1, len(combined_df) + 1)
       combined_df
Γ10]:
                                  Female
            Age
                        Male
             0-4 -68624211.0 65584375.0
       2
            5-9 -55526358.0 52485537.0
       3 10-14 -45495445.0 42942434.0
          15-19 -47319220.0 44782029.0
       5
          20-24 -33714434.0 31775811.0
       6
          25-29 -27033426.0 24134106.0
       7
          30-34 -26094031.0 22745491.0
          35-39 -24307928.0 21498047.0
       8
       9 40-44 -21171912.0 18429006.0
       10 45-49 -17999527.0 16535607.0
       11 50-54 -16761329.0 15644010.0
       12 55-59 -13448064.0 13422847.0
       13 60-64 -9513748.0 10655401.0
       14 65-69 -6568845.0 8213500.0
       15 70-74 -3775367.0 5042650.0
       16 75-79 -1887193.0 2883120.0
       17
            80+ -758191.0 1541799.0
[341]: def population pyramid(country, date):
           #create male and female dataframes with info we want
           male_df = pd.DataFrame({'Category' : world.loc[country, date].filter(regex_
        →= 'Male').index,
                             'Population' : world.loc[country, date].filter(regex =__
       male_df = male_df.loc[1:]
           female_df = pd.DataFrame({'Category' : world.loc[country, date].

→filter(regex = 'Female').index,
                             'Population' : world.loc[country, date].filter(regex =__
       → 'Female').values})
           female_df = female_df.loc[1:]
           #combine male and female dataframes
           combined_df = pd.DataFrame({'Age' : ['0-14', '15-64', '65+', '0-4', '5-9', _
       \hookrightarrow '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', \Box
        \hookrightarrow '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80+'],
```

```
'Male' : male_df['Population'] * -1,
                            'Female': female_df['Population']})
    combined_df = combined_df.loc[4:]
    combined_df.index = np.arange(1, len(combined_df) + 1)
    #make a population pyramid using sns
   AgeClass =
\rightarrow ['80+','75-79','70-74','65-69','60-64','55-59','50-54','45-49','40-44','35-39','30-34','25-59']
   labels = ['8M', '6M', '4M', '2M', '0', '2M', '4M', '6M', '8M']
   bar_plot = sns.barplot(x='Male', y='Age', data=combined_df, order=AgeClass,_u

color='Salmon', lw=0)
   bar_plot = sns.barplot(x='Female', y='Age', data=combined_df,__
→order=AgeClass, color='Green', lw=0)
   bar_plot.set(xlabel="Population by sex", ylabel="Age-Group")
   bar_plot.set_xticklabels(labels)
   bar_plot.text(18000000 , 1, "Female Population", color = "Green", weight =_{\sqcup}
bar_plot.text(-60000000 ,1, "Male Population", color = "Salmon", weight =
plt.title("Population Pyramid of %s in %d" % (country, int(date)))
   return bar_plot
population_pyramid("China", "2000")
```

[341]: <AxesSubplot:title={'center':'Population Pyramid of China in 2000'}, xlabel='Population by sex', ylabel='Age-Group'>

1.0.3 Here's my best try yet

[22]: !pip install celluloid

Requirement already satisfied: celluloid in /opt/conda/lib/python3.8/site-packages (0.2.0)

Requirement already satisfied: matplotlib in /opt/conda/lib/python3.8/site-packages (from celluloid) (3.3.3)

Requirement already satisfied: python-dateutil>=2.1 in

/opt/conda/lib/python3.8/site-packages (from matplotlib->celluloid) (2.8.1)

Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.8/site-packages (from matplotlib->celluloid) (8.1.0)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in

/opt/conda/lib/python3.8/site-packages (from matplotlib->celluloid) (2.4.7)

Requirement already satisfied: kiwisolver>=1.0.1 in

/opt/conda/lib/python3.8/site-packages (from matplotlib->celluloid) (1.3.1)

Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.8/site-packages (from matplotlib->celluloid) (0.10.0)

Requirement already satisfied: numpy>=1.15 in /opt/conda/lib/python3.8/site-packages (from matplotlib->celluloid) (1.19.5)

Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.8/site-packages (from python-dateutil>=2.1->matplotlib->celluloid) (1.15.0)

```
[188]: from matplotlib import pyplot as plt
from celluloid import Camera
from IPython.display import HTML
def animate():
    fig = plt.figure()
    camera = Camera(fig)
    for i in range(10):
        plt.plot([i] * 10)
        camera.snap()
    animation = camera.animate()
    return HTML(animation.to_html5_video())

#HTML(animation.to_html5_video())
animate()
```

[188]: <IPython.core.display.HTML object>

2 ANIMATED POP PYRAMID USING PLOTLY

```
[343]: from matplotlib import pyplot as plt
from celluloid import Camera
import plotly.express as px
import warnings
```

```
warnings.filterwarnings(action = 'ignore')
def anim_pop(country, start, end):
    fig, axes = plt.subplots(ncols=2, sharey=True)
    camera = Camera(fig)
    axes[0].invert xaxis()
    i = 0
    while start != end:
        date = str(start)
        #create male and female dataframes with info we want
        male_df = pd.DataFrame({'Category' : world.loc[country, date].

→filter(regex = 'Male').index,
                                 'Population' : world.loc[country, date].
→filter(regex = 'Male').values})
        male_df = male_df.loc[1:]
        female_df = pd.DataFrame({'Category' : world.loc[country, date].
→filter(regex = 'Female').index,
                                   'Population' : world.loc[country, date].
→filter(regex = 'Female').values})
        female_df = female_df.loc[1:]
        #combine male and female dataframes
        combined df = pd.DataFrame({'Age' : ['0-14', '15-64', '65+', '0-4', \]
_{\hookrightarrow} '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', _{\sqcup}
_{\hookrightarrow} '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80+'],
                                      'Male' : male_df['Population'] * -1,
                                      'Female': female_df['Population']})
        combined df = combined df.loc[4:]
        combined_df.index = np.arange(1, len(combined_df) + 1)
        #make a population pyramid using sns
        #AgeClass =
→['80+','75-79','70-74','65-69','60-64','55-59','50-54','45-49','40-44','35-39','30-34','25-
        #labels = ['8M', '6M', '4M', '2M', '0', '2M', '4M', '6M', '8M']
        cd = combined_df.reset_index()
        index = cd["index"]
        Male = cd["Male"] * - 1
        Female = cd["Female"]
        ages = cd["Age"]
```

```
axes[0].barh(index, Male, color = "cyan")
       axes[0].set(title='Males in %s' % (country))
       axes[1].barh(index, Female, align='center', color='magenta', zorder=10)
       axes[1].set(title='Females in %s' % (country))
       axes[0].set(yticks=y, yticklabels=[])
       for yloc, age in zip(y, ages):
           axes[0].annotate(age, (0.52, yloc + 0.5), xycoords=('figure_

→fraction', 'data'),
                    ha='center', va = "bottom")
       axes[0].yaxis.tick_right()
       axes[0].annotate(start, (0.48, 18.5), xycoords = ("figure fraction", ___

¬"data"), size = 'x-large', color = "Blue")
       for ax in axes.flat:
           ax.margins(0.03)
           ax.grid(True)
      fig.tight_layout()
       fig.subplots_adjust(wspace=0.21)
       axes[0].set_xlabel("Millions of People")
       axes[1].set_xlabel("Millions of People")
       axes[0].set_ylabel("Age Group")
      start += 1
       camera.snap()
  animation = camera.animate()
  return HTML(animation.to_html5_video())
```

```
[344]: anim_pop("China", 1960, 2018)
```

[344]: <IPython.core.display.HTML object>


```
[334]: from matplotlib import pyplot as plt
      fig, axes = plt.subplots(ncols=2, sharey=True)
      axes[0].barh(index, Male)
      axes[0].set(title='Males in population')
      axes[1].barh(index, Female, align='center', color='pink', zorder=10)
      axes[1].set(title='Females in population')
      axes[0].invert_xaxis()
      axes[0].set(yticks=y, yticklabels=[])
      for yloc, age in zip(y, ages):
          axes[0].annotate(age, (0.52, yloc + 0.5), xycoords=('figure fraction', u
       ha='center', va = "bottom")
      axes[0].yaxis.tick_right()
      axes[0].annotate("1970", (0.46, 18.5), xycoords = ("figure fraction", "data"), \Box
       ⇔size = 'x-large', color = "Blue")
      axes[0].set_xlabel("Millions of People")
      axes[1].set_xlabel("Millions of People")
      axes[0].set_ylabel("Age Group")
      for ax in axes.flat:
          ax.margins(0.03)
          ax.grid(True)
      fig.tight_layout()
```

fig.subplots_adjust(wspace=0.21)
fig.show()

