

CSE322 The Chomsky Hierarchy

Lecture #16

Definitions

- Language: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols."
- Grammar: "A grammar can be regarded as a device that enumerates the sentences of a language."
- A grammar of L can be regarded as a function whose range is exactly L

Noam Chomsky, On Certain Formal Properties of Grammars, Information and Control, Vol 2, 1959

Formal grammar

- ▶ A formal grammar is a quad-tuple $G = (N, \Sigma, P, S)$ where
 - N is a finite set of non-terminals
 - lacksquare Σ is a finite set of terminals and is disjoint from N
 - □ P is a finite set of production rules of the form w ∈ (N ∪ Σ)* → w ∈ (N ∪ Σ)*
 - $S \in N$ is the start symbol

The hierarchy

A containment hierarchy (strictly nested sets) of classes of formal grammars

The hierarchy

Grammars	Languages	Automaton
Unrestricted	Recursively enumerable (Turing-recognizable)	Turing machine
Context-sensitive	Context-sensitive	Linear-bounded
Context-free	Context-free	Pushdown
Regular	Regular	Finite
	Unrestricted Context-sensitive Context-free	Unrestricted Recursively enumerable (Turing-recognizable) Context-sensitive Context-sensitive Context-free Context-free

The hierarchy

Unrestricted none	Recursively enumerable (Turing-recognizable) Recursive (Turing-decidable)	Turing machine Decider
none		Decider
Context-sensitive	Context-sensitive	Linear-bounded
Context-free	Context-free	Pushdown
Regular	Regular	Finite
	Context-free	Context-free Context-free

Applications of Automata

- TM- Real Life Implementation ,Software Implementation
- · LBA- Generic Programming, Parse Trees
- PDA-Online Tracking processing system, Top Down Parsing in LL Grammer
- FA-Finite State Programming, UML State Diagrams, Acceptors and Recoganizers, Lexical Analyzer

4.4 RECURSIVE AND RECURSIVELY ENUMERABLE SETS

The results given in this section will be used to prove $\mathcal{L}_{cs1} \subset_{\neq} \mathcal{L}_0$ in Section 9.7. For defining recursive sets, we need the definition of a procedure and an algorithm.

A procedure for solving a problem is a finite sequence of instructions which can be mechanically carried out given any input.

An algorithm is a procedure that terminates after a finite number of steps for any input.

Definition 4.14 A set X is recursive if we have an algorithm to determine whether a given element belongs to X or not.

Definition 4.15 A recursively enumerable set is a set X for which we have a procedure to determine whether a given element belongs to X or not.

Linear-Bounded Automata:

Same as Turing Machines with one difference:

the input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

All computation is done between end markers

Open Problem:

NonDeterministic LBA's have same power as Deterministic LBA's?

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\} \qquad L = \{a^{n!}\}$$

LBA's have more power than PDA's (pushdown automata)

LBA's have less power than Turing Machines

Unrestricted Grammars:

Productions

String of variables and terminals

String of variables and terminals

Example unrestricted grammar:

$$S \rightarrow aBc$$

$$aB \rightarrow cA$$

$$Ac \rightarrow d$$

Theorem:

A language $\,L\,$ is Turing-Acceptable if and only if $\,L\,$ is generated by an unrestricted grammar

Context-Sensitive Grammars:

Productions

String of variables and terminals

String of variables and terminals

and: $|u| \leq |v|$

P U

The language $\{a^nb^nc^n\}$

is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Theorem:

A language L is context sensistive if and only if it is accepted by a Linear-Bounded automaton

Observation:

There is a language which is context-sensitive but not decidable

The Chomsky Hierarchy

Non Turing-Acceptable

Turing-Acceptable

decidable

Context-sensitive

Context-free

Regular

LANGUAGES AND AUTOMATON

Questions

EXAMPLE 4.2

If $G = (\{S\}, \{0, 1\}, \{S \to 0S1, S \to \Lambda\}, S)$, find L(G).

EXAMPLE 4.3

If $G = (\{S\}, \{a\}, \{S \to SS\}, S)$, find the language generated by G.

EXAMPLE 4.4

Let $G = (\{S, C\}, \{a, b\}, P, S)$, where P consists of $S \to aCa$, $C \to aCa \mid b$. Find L(G).

EXAMPLE 4.5

If G is $S \to aS \mid bS \mid a \mid b$, find L(G).

Construct a grammar generating $L = \{wcw^T | w \in \{a, b\}^*\}$.

EXAMPLE 4.9

Find a grammar generating $\{a^jb^nc^n \mid n \ge 1, j \ge 0\}$.

EXAMPLE 4.8

EXAMPLE 4.10

Let $G = (\{S, A_1\}, \{0, 1, 2\}, P, S)$, where P consists of $S \to 0SA_12$, $S \to 012$, $2A_1 \to A_12$, $1A_1 \to 11$. Show that

$$L(G) = \{0^n 1^n 2^n \mid n \ge 1\}$$

Prove it as anbncn

$$S \rightarrow aSBC \mid aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc$$
 $S \Rightarrow aBC \Rightarrow abC \Rightarrow abc$

Thur

If the grammar G is given by the productions $S \to aSa \mid bSb \mid aa \mid bb \mid \Lambda$, show that (i) L(G) has no strings of odd length, (ii) any string in L(G) is of length 2n, $n \ge 0$, and (iii) the number of strings of length 2n is 2^n .

Let $G = (\{S, A_1, A_2\}, \{a, b\}, P, S)$, where P consists of $S \to aA_1A_2a$, $A_1 \to baA_1A_2b$, $A_2 \to A_1ab$, $aA_1 \to baa$, $bA_2b \to abab$ Test whether w = baabbabaaabbaba is in L(G).

Find the highest type number which can be applied to the following productions:

- (a) $S \to Aa$, $A \to c \mid Ba$, $B \to abc$
- (b) $S \rightarrow ASB \mid d$, $A \rightarrow aA$
- (c) $S \rightarrow aS \mid ab$

Construct a context-free grammar generating

(a)
$$L_1 = \{a^n b^{2n} \mid n \ge 1\}$$

(b)
$$L_2 = \{a^m b^n \mid m > n, m, n \ge 1\}$$

(c)
$$L_3 = \{a^m b^n \mid m < n, m, n, \ge 1\}$$

Left Linear Grammer vs Right Linear Grammer

```
Left Linear and Right Linear Grammax
```

Left Linear Gramman: In a gramman if all productions are in the form $A \rightarrow B \propto \alpha A \rightarrow \alpha$, where $A, B \in V_N$ and $\alpha \in \Sigma^*$ then the grammar is called Left Linear Grammar. Example - A - Aa Bb b

Right Linear Grammar: In a grammar if all productions are in the form A - or B or A - ox, where A, B & Vn and d & Z* then the grammare is called Right Linear Gramman. Example - A - a A | bB | b.

Left Linear Grammer vs Right Linear Grammer

- Regular language works on right linear
- Whereas CFG and CSG can work on left linear