# 04/20/2016

## Clustering w/Multiple Eigenvectors

• For k clusters, compute first k eigenvectors  $v_1 = 1, v_2, \dots, v_k$  of generalized eigensystem  $Lv = \lambda Mv$ .



• Normalize each row  $V_i$  to unit length.



 $\bullet\,$  k-means cluster these vectors.



### Latent Factor Analysis

- Suppose X is a term document matrix: row i represents document i; column j represents term j.
- $X_{ij} =$ occurrences of term j in doc i? better: log(1+occurrences).
- Recall SVD  $X = UDV^T = \sum_{i=1}^d \delta_i u_i u_i^T$ , Suppose  $\delta_i \leq \delta_j$  for  $i \geq j$ .
- For greatest  $\delta_i$ ,
  - each  $v_i$  lists terms in a genre/cluster of documents.
  - each  $u_i$  documents using similar/relater terms.
- $\bullet$  e.g.  $u_1$  might have large components for the romance novels,  $v_i$  might have large components for terms "passion," "ravish," "bodice."
- Like clustering, but clusters overlap: if  $u_1$  picks out romances and  $u_2$  picks out histories, they both pick out historical romances.
- Application in market research: identifying consumer types (hipsters, soccer mom) and items bought together.
- Truncated sum  $X' = \sum_{i=1}^{r} \delta_i u_i v_i^T$  is low-rank approximation(rank r) of X.



X' is the rank-r matrix that minimizes Frobenium norm  $||X - X'||_F^2 = \sum_{i,j} (X_{ij} - X'_{ij})^2$ 

- Applications:
  - Fuzzy search.
  - Denoising.
  - Collaborative filtering: fills in unknown values, e.g. user ratings.

#### Nearest Neighbor Classification

- Idea: Given guery point v, find the k input points nearest v. Distance metric of your choice.
- ullet Regression: Return average value of the k points.
- Classification: Return class with most votes from the k points or return histogram of class probabilities.
- Theorem (Cover and Hart, 1967): As  $n \to \infty$ , the 1-NN error rate is  $\langle B(2-B) \rangle$  where B=Bayes rate, if only 2 classes,  $\langle 2B(1-B) \rangle$ .
- Theorem (Fix and Hodges, 1951): As  $n \to \infty, k \to \infty, \frac{k}{n} \to 0$ , k-NN error rate converges to B.

#### The Geometry of High-Dimensional Spaces

• Consider unit ball  $B=\{p\in\mathbb{R}^d:|p|\leq 1\}$  and hypercube  $H=\{p\in\mathbb{R}^d:|p_i|\leq 1\}$ 



• Consider a shell of the sphere



- e.g. if  $\frac{\epsilon}{r} = 0.1$  and d=100, inner ball has 0.0027% of volume.
- Random points from (uniform Gaussian) distribution in ball: nearly all are in outer shell.

#### Exhaustive k-NN algorithm

- Given query point v:
  - Scan through all n input points, computing (squared) distances to v.
  - Maintain max-heap with the k shortest distances seen so far.
- $\bullet$  Time to construct the classifier:  ${\mathcal O}$
- Query time:  $\mathcal{O}(nd + n \log k)$  expected  $\mathcal{O}(nd + k \log^2 k)$  if random point order.

#### Speeding up NN

- Can we preprocess the training points to obtain sub-linear query time?
- Very low dimensions: Voronoi diagrams.
- Medium dim (up to  $\sim 30$ ): k-d trees.
- Larger dim: locality sensitive hashing.
- Largest dim: no.
- Usually resort to approximate NN as d gets large.
- Can use PCA or other dimensionality reduction as preprocess.
- PCA: Row i of UD gives the coordinates of sample point  $X_i$  in principal components space (i.e.  $X_i \cdot v_j$  for each j). So we don't need to project the input points onto that space; the SVD does it for us.