```
5.21
```

- (a) (e^{-x})"= (-e^{-x})'= e^{-x}>0,目标函数是凸的面f(x)+1=x²y为二次-线性分式函数,是凸的故这是一个凸优化问题, p*=1
- (b) $L(x, y, \lambda) = e^{-x} + \lambda x^2/y$

$$g(\lambda) = \inf_{x,y>0} L(x,y,\lambda) = \begin{cases} 0, \lambda \geq 0 \\ -\infty, \lambda < 0 \end{cases}$$

对调问题为: max o

\$\$d*=0. 1*20. p*-d*=1

(c) 不成立

可见当 U > O 时, p*(u) > p*(o) - 1* u 不恒成主, 得证

5.22

(a)
$$L(x,\lambda) = x + \lambda(x^2-1)$$
 $g(\lambda) = \inf_{x} L(x,\lambda) = \begin{cases} -(\frac{1}{4\lambda} + \lambda), & \lambda > 0 \\ -\infty, & \lambda \leq 0 \end{cases}$

放对锅间题为 max - (有+2) s.t. 2>0

 $X^*=-1$, $p^*=-1$, $q^*=-1$, $d^*=-1$, 优化问题是凸问题. Slater条件成立. 强对偶好成立

(b)
$$L(x,\lambda) = x + \lambda x^2$$
 $g(\lambda) = \inf_{x} L(x,\lambda) = \begin{cases} -\frac{1}{4}, \lambda > 0 \\ -\infty, \lambda \leq 0 \end{cases}$ 又打锅的题为 $\max_{x} -\frac{1}{4}$ Sitize 0

x*=0, p*=0 d*=0. 彻心问题是凸问题 Slater条件不成立.强对偶性成立

(c) 此问题与(b)等价。

(d)
$$S(1-\lambda) \times + 2\lambda$$
, $X \ge 1$
 $L(X,\lambda) = \begin{cases} (1-\lambda) \times + 2\lambda \end{cases}$, $X \ge 1$
 $(1-\lambda) \times - 2\lambda$, $X \le -1$
 $(1-\lambda) \times - 2\lambda$, $X \le -1$
 $(1-\lambda) \times - 2\lambda$, $X \le -1$

对偶问题为max-2 st.7=1

 $X^*=1$, $p^*=1$. $1^*=1$. $1^*=1$. 优化问题不是凸问题. 强对偶性成立

(e)
$$L(x,\lambda) = x^3 + \lambda(-x+1) = x^3 - \lambda x + 1$$

 $g(\lambda) = \inf_{x} L(x,\lambda) = -\infty$

X*=1, p*= 1. d*=-∞. 优化问题不是凸问题,强对偶性不成主

(f) 由(e)有g(
$$\lambda$$
)= inf L(X , λ)= $\{1-\frac{3}{5}$ 原, $\lambda > 0$
XéR+ 1 , $\lambda < 0$
双個的題为 max $1-\frac{3}{5}$ $\{5,t\}$ $\{2,0\}$

 $X^*=1$, $P^*=1$, $P^*=0$, $Q^*=1$, 优化问题是凸问题 Slater条件成立强对偶好成立

```
5-24
① 花 Z.W=中、Sup inf f(wiz)=-∞ ≤ ∞= inf sup f(wiz) wew zez
回名W≠中、双于YWEW、YZEZ, 有inf f(w,z) = f(w,z) => sup inf f(w,z) ≤ sup f(w,z)
                                 weW
                                                         zeZ weW
⇒ sup inf f(w,z) ≤ inf supf(w,z)

zez wew wew zez

③ 花 Z ≠ Ф, XJ F Y Z EZ, Y w ∈ W, 有 f(w,ž) ≤ supf(w,z) ⇒ inf f(w,ž) ≤ inf supf(w,z)
                                               ミヒヌ
                                                                          WEW ZEZ
> supinf fluiz) = inf supfluiz)
  ZEZ WŁW WŁW ZEZ
```