Paralelizácia databázových dotazov v aplikácii MedSavant

Miroslav Cupák

Diplomová práca

10. 2. 2014

Problém

Úvod

- aplikácia: vyhľadávač nad genetickými variáciami (MedSavant)
- problém: jednovláknové spracovanie dotazov v databáze (Infobright Community Edition)
- riešenie: paralelizácia spracovania databázových dotazov na úrovni aplikácie (sharding)
- cieľ: vyšší výkon a škálovateľnosť
- spolupráca: Centre for Computational Medicine (SickKids Research Institute) a Computational Biology Lab (University of Toronto)

MedSavant

MedSavant

MedSavant

Sharding

- z angl. rozlomenie, rozbitie
- SHAReD-nothING architektúra
- horizontálne rozdelenie množiny dát na nezávislé servery
- distribúcia dotazov a agregácia výsledkov
- sharding stratégia

Požiadavky

- vyšší výkon pri spracovaní pomalých dotazov
- lepšia škálovateľnosť
- plná podpora ICE
- využitie viacerých výpočetných jednotiek zariadenia
- podpora dát rozložených na distribuované servery
- integrácia so serverom
- objektovo orientovaný prístup
- jednoduchá migrácia
- dobre merateľný a reprodukovateľný výkon

Modul

2 časti

- všeobecný sharding rámec
- sharding logika špecifická pre MedSavant

čítanie/zápis

- rovnaký dotaz na všetky uzly/dotaz pre konkrétny uzol
- 1 logická databáza/prístup ku konkrétnym uzlom
- fázy spracovania dotazu
 - vygenerovanie pôvodného dotazu v SQL
 - transformácia dotazu do distribuovaného prostredia
 - zaslanie dotazu na databázové servery
 - prijatie čiastkových výsledkov a ich agregácia
 - úprava výsledkov pre potreby aplikácie
- 2 sharding stratégie založené na pozícii v chromozóme
- ďalšie úlohy
 - správa spojení, konfigurácia, udržovanie mapovania...

Merania

- 2 aspekty
 - zlepšenie výkonu
 - úspech sharding stratégie
- 2 databázy
 - DB₁: 134 958 340 variácií
 - DB₂: 1 378 423 987 variácií
- 2 konfigurácie
 - C₁: žiadna paralelizácia (1 databáza, pôvodná implementácia)
 - C₂: paralelizácia v rámci 1 stroja (1 server, 8 shards)
 - C₃: paralelizácia v distribuovanom prostredí (8 serverov, 8 shards)
- 14 základných dotazov (Q₁-Q₁₄)

Čas spracovania (DB_2)

Zrýchlenie (DB₂)

Distribúcia dát (DB₂)

relatívna smerodajná odchýlka 65.44+%, resp. 4.71+%

Zhrnutie

- vytvorenie sharding rámca, návrh sharding stratégie pre genetické dáta, plná integrácia s MedSavant
- riešenie spĺňa všetky požiadavky, predovšetkým:
 - vyšší výkon pri spracovaní pomalých dotazov (75+%)
 - dobrá škálovateľnosť (lineárna až superlineárna)
- od odovzdania práce:
 - spätná väzba od CCM
 - demo tento týždeň
 - plány na zaradenie funkcionality do produktu
 - vedecký článok
 - súvisiaci projekt: sharding in the cloud

Ďakujem. Otázky?

Otázka 1

Úvod

- Vzhledem k dostupnému hardwaru bych očekával rovněž distribuovaný experiment, kde poběží na jednotlivých počítačích více než jedna část databáze (tzv. shard). Vysvětlete, proč jste tento experiment neprovedl a uveďte a zdůvodněte jaký byste očekával výsledek.
- pripomenutie: porovnali sme C₁ (neparalelizované), C₂ (paralelizácia na 1 stroji), C₃ (paralelizácia na 8 strojoch)
- C₂ má viac častí na jednom serveri
- počet 8 zvolený ako počet jadier na produkčnom serveri
- C₂ a C₃ zvolené ako okrajové prípady maximalizujúce využitie zdrojov (procesor, disk)
- výsledok závisí na konkrétnej konfigurácii, napr.:
 - 8 shards (4x2): výkon medzi C₂ a C₃ (disk)
 - 32 shards (8x4): výkon > C₃ (procesor), ale < 32x1 (disk)
- celé série experimentov pre d'alšie počty shardov určite zaujímavé (4, 16, 32...)

Otázka 2

- Pro většinu databázových dotazů distribuovaná architektura dosahuje lepší výsledky než architektura se sdílenou pamětí (při použití stejného počtu procesorů a dostatečném množství operační paměti). Můžete pro toto chování podat podrobnější vysvětlení než je uvedeno v práci?
- C_3 viac diskov než C_2 , ale nie je to model zdieľanej pamäte
- zdieľaná pamäť vs. zasielanie správ
- shared-nothing prístup vs. synchronizácia + komunikácia