Closest Pair and Linear Time Selection

The Kiss by Brancusi

Closest Pair

- Problem definition:
 - -We are given n points $p_i = (x_i, y_i)$, i = 1,..., n.
 - -How far apart are the closest pair of points?
 - We need the *i* and *j* values that minimize the Euclidean distance:

$$\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

- Then return this distance.
- -Brute force: compute distances for all n(n-1)/2 pairs and find the minimum.
 - This algorithm runs in time $\Theta(n^2)$.

Closest Pair by Divide and Conquer

- Sort by *x*-coordinate, then:
- · Divide:
 - Find vertical line splitting points in half.
- Conquer:
 - Recursively find closest pairs in each half.
- Combine:
 - Check vertices near the border to see if any pair straddling the border is closer together than the minimum seen so far.
- Our goal:
 - $-\Theta(n)$ overhead so that the total run time is $\Theta(n \log n)$.

Implementation Details

- Input: a set of points P sorted with respect to the x coordinate.
- Initially, P = all points, and we pay $\Theta(n \log n)$ to sort them before making the first call to the recursive subroutine.
- Given the sorted points, it is easy to find the dividing line.
 - Let P_L be points to the left of the dividing line.
 - Let P_R be points to the right of the dividing line.

Closest Pair Implementation Details

- Recursively:
 - Find closest pair in P_L : Let δ_L be their separation distance
 - Similarly find closest pair in P_R , with separation distance δ_R .
 - Clever observation: If the closest pair straddles the dividing line, then each point of the pair must be within $\delta = \min\{\delta_L, \delta_R\}$ of the dividing line.
 - This will usually specify a fairly narrow band for our "straddling" search.

Implementation Details

- Suppose p and q, $d(p,q)=\delta$ are candidate closest points, with p on the left and q on the right of the dividing line.
 - q **not** to the right of δ band.
 - if p = (x, y) then with y coords interval $[y \delta, y + \delta]$ can be successfully paired with p.
 - So, we need only look at points within δ above and below a horizontal line through p.
 - Since the points in this rectangle must be separated by at least δ we have **at most** 6 points to investigate. (Diagram shows this "worst case" situation).

Closest Pair Pseudocode

- Let P be a global array storing all the points with P_R and P_L defined as described earlier.
- Let \mathbf{QL} be the subset of points in P_L that are at most δ (delta in the code) to the left of the dividing line.
- Let QR be the subset of points in P_R that are at most δ to the right of the dividing line.

```
//----- main -----
// P contains all the points
sort P by x-coordinate;
return closest_pair(1, n);
```

Closest Pair Pseudocode

```
function closest_pair(1,r)
  // Find the closest pair in P[l..r] (sorted by x-coordinate)
  if size(P) < 2 then return infinity;
 mid := (1 + r)/2; midx := P[mid].x;
 dl := closest_pair(1, mid);
  dr := closest_pair(mid + 1, r);
  // Side effect: P[l..mid] and P[mid+1..r] are now sorted
  // wrt the y-coordinate
  delta := min(dl, dr);
  QL := select_candidates(1, mid, delta, midx);
  QR := select_candidates(mid + 1, r, delta, midx);
  dm := delta_m(QL, QR, delta);
  // Use merge to make P[l..r] sorted by y-coordinate
  Merge(l, mid, r);
                             // Merge as in MergeSort
  return min(dm, dl, dr);
```

Closest Pair Pseudocode

```
function select_candidates(1,r,delta,midx)
  // From P[1..r] select all points which are
  // at most delta from midx line
  create empty array Q;
  for i := 1 to r do
      if (abs(P[i].x - midx) <= delta)
            add P[i] to Q;
  return Q;</pre>
```

Closest Pair Pseudocode

```
function delta_m(QL,QR,delta)
  // Are there two points p in QL, q in QR such that
  // d(p,q)<=delta? Return distance of closest pair.
  // Assume QL and QR are sorted by the y coordinate.
  j := 1; dm := delta;
  for i := 1 to size(QL) do
     p := QL[i];
      // find the bottom-most candidate from QR
      while (j <= size(QR) and QR[j].y < p.y-delta) do
            j := j+1;
      // check all candidates from QR starting with j
      k := j;
      while (k <= size(QR) and QR[k].y <= p.y + delta) do
            dm := min(dm, distance(p, QR[k]));
            k := k+1;
  return dm;
```

Closest Pair Analysis

- Let T(n) be the time required to solve the problem for n points:

• Divide: Θ(1)

• Conquer: 2*T* (*n*/2)

• Combine: $\Theta(n)$

- The precise form of the recurrence is:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$$

which we can approximate by:

$$T(n) = 2T(n/2) + \Theta(n)$$

– Solution: $\Theta(n \log n)$.

Linear-Time Selection

- Problem statement:
 - Given an array A of n numbers A[1..n] and a number i $(1 \le i \le n)$, find ith smallest number in A.
 - Definition: Median of A is the $\lceil n/2 \rceil^{th}$ element in A.
 - Example: If A = (7, 4, 8, 2, 4); then |A| = 5 and the 3^{rd} smallest element (and median) is 4.
 - Trivial solutions for our problem:
 - \bullet Sort the array and find the \emph{I}^{h} element.
 - Execution time: $\Theta(n \log n)$
 - If i is small we can find i using a linear scan similar to finding a minimum or maximum in the array.
 Idea: keep current top i rather than current max only.

Linear-Time Selection (page 2)

- Strategy: Partition-based (divide and conquer) selection
 - Choose one element p from array A (pivot element)
 - Split input into three sets:
 - LESS: elements from A that are smaller than p
 - EQUAL: elements from A that are equal to p
 - MORE: elements from A that are greater than p
 - We then have three cases:
 - $i \le |LESS|$: implies the element we are looking for is also the i^{th} smallest number in LESS,
 - |LESS| < i ≤ |LESS| + |EQUAL| : implies the element we are looking for is p,
 - |LESS| + |EQUAL| < i: implies the element we are looking for is also the (i - |LESS| - |EQUAL|)th smallest element in MORE.

Linear-Time Selection

```
function SELECT(A, i)
  // find i-th element in array A
  p := choose_pivot(A);
  // partition A into LESS, EQUAL, MORE
  create new arrays LESS, EQUAL, MORE;
  for i := 1 to size(A) do
     if A[i] < p then add A[i] to LESS;
     if A[i] = p then add A[i] to EQUAL;
     if A[i] > p then add A[i] to MORE;
  // decide which case to pursue
  if(size(LESS) >= i) then
     return SELECT(LESS, i);
  else if(size(LESS) + size(EQUAL) >= i) then
                  // No recursive call
  else
     return SELECT(MORE, i - size(LESS) - size(EQUAL));
```

Linear-Time Selection

- Choice of pivot:
 - Option 1: Choose an arbitrary element (for example, the first element).
 - If array is already sorted array and we are looking for the n^{th} smallest element, then execution time = $\Omega(n^2)$.
 - Option 2: Choose a random element.
 - This is better and gives us a "randomized" algorithm.
 - In this case the *expected* running time is $\Theta(n)$, while worst-case running time is still $\Theta(n^2)$.
 - See [CLRS, 9.2], if interested.

Linear-Time Selection

- Another choice of pivot:
 - Option 3: Use "grouping by fives" to select the pivot:
 - 1. Split the array A[1..n] into n/5 groups each with 5 elements.
 - 2. From each group select the third smallest element (i.e., take median of each of the groups).
 - Denote the set of these elements as MEDIANS.
 - Recursively call SELECT to obtain the median of MEDIANS.
 - (i.e.: the $\lceil n/2 \rceil^m$ smallest element of *MEDIANS*).
 - 4. Take the resulting element as pivot *p*.

Running Time

Lemma:

-At least 1/4 of the elements in A are smaller than or equal to p (so $|MORE| \le 3n/4$).

• Proof:

- Sort elements in each of the groups from smallest to largest and ordering groups by their median.
- Represent the whole set A by a table where each group is depicted as a single column and the columns are ordered by their medians.
- Then the following figure demonstrates the claim (for the case where n is a multiple of 5):

Running Time

element.

medians

9

Running Time

- Similar lemma:
 - At least 1/4 of the elements in A are greater than or equal to p (so $|LESS| \le 3n/4$).
- In summary:
 - If we use p as pivot in SELECT, then arrays LESS and MORE each have at most 3n/4 elements.

Running Time

- Run time analysis:
 - Running time *T*(*n*) of SELECT using "group by fives":
 - Divide phase: $\Theta(n)$
 - Conquer phase:
 - To select "median of medians" we need time: $T(\lceil n/5 \rceil)$
 - To run selection on one of the arrays: *LESS* or *MORE*, we need time: $\leq T(|3n/4|)$.
 - Combine phase: There is no combine work.
 - Thus we have: $T(n) = T(\lceil n/5 \rceil) + T(\lfloor 3n/4 \rfloor) + \Theta(n)$ with $T(1) \in \Theta(1)$.

Running Time

Claim Running time of the SELECT algorithm

is T(n) < cn = O(n) (constant c to be determined later).

- Proof by induction on *n* (substitution method):
 - · Base case:
 - For n < 40, claim holds as long as c is large enough.
 - Induction step:
 - Assume that $n \ge 40$ and that for all $n_0 < n$, $T(n_0) \le cn_0$. Then:

$$T(n) \le T\left(\left\lceil\frac{n}{5}\right\rceil\right) + T\left(\left\lfloor\frac{3n}{4}\right\rfloor\right) + kn$$

$$\le c\left(\frac{n}{5} + 1\right) + \frac{3cn}{4} + kn \le \frac{cn}{5} + \frac{cn}{40} + \frac{3cn}{4} + kn \quad \text{Note: } c \le \frac{cn}{40} \quad \text{if } n \ge 40.$$

$$\le \frac{39cn}{40} + kn \le cn \quad \text{as long as } k \le c/40, \quad \text{i.e. } c \ge 40k.$$

Quick Sort Revisited

- Recall QuickSort:
 - 1. Select pivot element *p*.
 - 2. Split the array into two parts: elements smaller than p and elements larger than p.
 - 3. These can be sorted separately.
 - If lucky we get sub-arrays of approximately the same size to achieve $\Theta(n \log n)$ running time.
 - However, if we are unlucky, we get $\Omega(n^2)$ running time.
 - Idea: What if we use our SELECT algorithm to select pivot p to be the median?
 - Then every time we split, we guarantee "almost equal" splits thus having $\Theta(n \log n)$ worst-case running time.
 - Quite slow in practice (constant in O(...) is too large).
 - Better to just select a random element (it can be proven that then we get $\Theta(n \log n)$ expected running time).

Making Divide and Conquer Faster

• In practice:

- Divide and conquer algorithms often have too much overhead (for recursion, etc.) → slower for small size data sets than naïve algorithm.
- Running time of a divide and conquer algorithm can be reduced if we abort the recursion at some point and solve small subproblems using the naïve algorithms.
- When to "divide" and when to use the trivial algorithm needs to be determined on a case by case basis (via experiment or analysis).

An Example

```
function SELECT(A,i)
* if size(A)<100 then
* sort elements of A;
* return A[i];
else
    // find i-th element in array A:
    (The same code we studied earlier).</pre>
```