Exercise Set 1

1. Let $M \subset \mathbb{R}^n$ and let $\lambda > 0$. Show that

$$\mathcal{H}^s(\lambda M) = \lambda^s \mathcal{H}^s(M),$$

where $\lambda M := \{\lambda x : x \in M\}.$

- 2. Let $M \subset \mathbb{R}^n$. Show that $\mathcal{H}^0(M)$ is the number of points in M.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Show that

$$\dim_H f(M) \leq \dim_H M$$
,

for any set $M \subset \mathbb{R}$.

4. (This problem requires some basic measure theory.) Let $M \subset \mathbb{R}^n$ and let μ be a finite measure with $\mu(M) > 0$. Suppose there exist numbers $s \geq 0$, c > 0, and $\epsilon_0 > 0$ such that

$$\mu(U) \le c |U|^s$$
,

for all sets $U \subset \mathbb{R}$ with diameter $|U| \leq \epsilon_0$. Show that $\mathcal{H}^s(M) \geq \mu(M)/c$.

5. Show that the function $d_{\mathcal{H}}: \mathcal{H}(X) \times \mathcal{H}(X) \to \mathbb{R}$ defined by

$$d_{\mathcal{H}}(A,B) := \max \left\{ \max_{a \in A} \min_{b \in B} d(a,b), \max_{b \in B} \min_{a \in A} d(b,a) \right\}$$

is a metric on $\mathcal{H}(X)$.

- 6. Show that the metric space $(\mathcal{H}(X), d_{\mathcal{H}})$ is complete.
- 7. Find an IFS that generates the so-called $Koch\ curve\ \mathfrak{K}$ shown on the right-hand side of the figure below:

(The vertices of the generator triangle are $(\frac{1}{3},0)$, $(\frac{1}{2},\frac{\sqrt{3}}{6})$, and $(\frac{2}{3},0)$.

- 8. Consider the IFS $(\mathbb{R}; \{\frac{1}{2}x, \frac{1}{4}x + \frac{1}{4}, \frac{1}{4}x + \frac{3}{4}\})$. Describe the fractal set \mathfrak{F} generated by this IFS. How does \mathfrak{F} differ from the Cantor set?
- 9. Consider the IFS

$$\left(\mathbb{R}^2; \left\{ \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \right\} \right).$$

Let $A_0 := \{(\frac{1}{2}, y) : 0 \le y \le 1\}$ and let F be the set-valued map associated with this IFS.

- (a) Compute and plot $A_n := F^n(A_0)$ for n = 1, 2, 3.
- (b) Show that the attractor $A = \lim_{n \to \infty} F^n(A_0)$ is given by

$$A = \{(x, y) : y = x, 0 \le x \le 1\}.$$