Bayesian statistics

Mô Hình Hồi Quy Bayesian

Khương Quỳnh Long Hà Nội, 08/2019

https://gitlab.com/LongKhuong/adhere-bayesian-statistics

Nội dung

So sánh sự khác biệt giữa "Classical model" và Bayesian model

Markov Chain Monte Carlo

▶ Hàm loss và decision making

▶ Một số phầm mềm sử dụng trong Bayesian

"Classical model"

Maximum Likelihood Estimation

- ▶ Tham số mô hình là cố định (point estimate)
- Dựa hoàn toàn vào likelihood của dữ liệu

Bayesian model

Markov Chain Monte Carlo

Likelihood

Độ khả dĩ của dữ liệu: Xác suất thu thập được dữ liệu dưới điều kiện giả thuyết H đúng (Đơn giản là dữ liệu thu thập)

Prior

Xác suất tiền định: Xác suất giả thuyết H mà chúng ta tin là xảy ra (đúng) trước khi thu thập dữ liệu

$$P(H|D) = \frac{P(D|H)*P(H)}{P(H)}$$

Posterior

Xác xuất hậu định: Cần tìm Xác suất giả thuyết H đúng cho bởi dữ liệu thu thập

Marginal likelihood (normalizing constant)

Hằng số: Xác suất của dữ liệu (tổng tất cả likelihood*prior của tất cả các giả thuyết có khả năng xảy ra)

MCMC

▶ Thuật toán dạng mô phỏng

▶ Có nhiều phương pháp sử dụng trong Bayesian: Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo (HMC), No-U Turn Sampler (NUTS)...

Metropolis—Hastings

Metropolis-Hastings

▶ Mô phỏng Monte Carlo "Random walk" Markov process Metropolis-Hastings algorithms P(O Data)

Monte Carlo

Trace plot

Draw $\theta_t \sim \text{Normal}(0.5, \sigma) = 0.549$

Source: https://www.youtube.com/watch?v=OTO1DygELpY&index=2&list=PLN5IskQdgXWktwVOxs3vAVkI4jpMX3plv

Markov process

Giá trị trung bình của phân phối ở vòng lặp sau chính bằng giá trị θ vừa lấy từ vòng lặp trước

Metropolis-Hastings algorithms

Step 1:
$$r(\theta_{new}, \theta_{t-1}) = \frac{Posterior(\theta_{new})}{Posterior(\theta_{t-1})} = \frac{Beta(1,1,0.767) \times Binomial(10,4,0.767)}{Beta(1,1,0.540) \times Binomial(10,4,0.540)} = 0.069$$

Step 2: Acceptance probability
$$\alpha(\theta_{\text{new}}, \theta_{\text{t-1}}) = \min\{r(\theta_{\text{new}}, \theta_{\text{t-1}}), 1\} = \min\{0.069, 1\} = 0.069$$

Step 3: Draw
$$u \sim Uniform(0,1) = 0.233$$

Step 4: If
$$u < \alpha(\theta_{\text{new}}, \theta_{\text{t-1}}) \rightarrow \text{If } 0.233 < 0.069$$
 Then $\theta_t = \theta_{\text{new}} = 0.767$ Otherwise $\theta_t = \theta_{\text{t-1}} = 0.540$

Burn-in (warm up)

Thinning

Khai thác thông tin từ phân phối hậu nghiệm

- ▶ Khai thác thông tin gì từ phân phối này?
- Point estimates (central tendency)
- ▶ 95%, 99% Credible interval hoặc Highest Density Interval (HDI)

Point estimate

Mean hay median hay mode?

- ▶ Hàm loss
- L₀: 0/1 loss
- L₁: linear loss
- L₂: squared loss

▶ Chọn chỉ số sao cho loss nhỏ nhất

L₀: 0/1 loss

$$L_{0}, i(g) = \begin{cases} 0 \text{ n\'eu } g = xi \\ 1 \text{ n\'eu } g \neq xi \end{cases}$$

```
(47, 33, 35, 32, 19, 33, 34, 36, 47, 32, 35, 41, 32, 29, 35,
25, 32, 36, 20, 47, 37, 32, 35, 25, 37, 40, 36, 38, 40, 35, 49,
23, 33, 35, 38, 28, 36, 4, 28, 45, 37, 39, 34, 41, 28, 33, 27,
26, 30, 34, 23)
# mean(x) = 33.45098
# median(x) = 34
# mode(x) = 35
```

→ L₀ nhỏ nhất khi g là mode của x

L₁: linear loss

$$L_1(g) = \sum |xi - g|$$

```
(47, 33, 35, 32, 19, 33, 34, 36, 47, 32, 35, 41, 32, 29, 35,
25, 32, 36, 20, 47, 37, 32, 35, 25, 37, 40, 36, 38, 40, 35, 49,
23, 33, 35, 38, 28, 36, 4, 28, 45, 37, 39, 34, 41, 28, 33, 27,
26, 30, 34, 23)
# mean(x) = 33.45098
# median(x) = 34
# mode(x) = 35
```

→ L₁ nhỏ nhất khi g là median của x

```
x \leftarrow c(47, 33, 35, 32, 19, 33, 34, 36, 47, 32, 35, 41, 32, 29, 35,
       25, 32, 36, 20, 47, 37, 32, 35, 25, 37, 40, 36, 38, 40, 35, 49,
       23, 33, 35, 38, 28, 36, 4, 28, 45, 37, 39, 34, 41, 28, 33, 27,
       26, 30, 34, 23)
j1 = rep(NA, length(x))
j2 = rep(NA, length(x))
for (i in 1:length(x)) {
    j1[i] = abs(x[i] - mean(x))
    j2[i] = abs(x[i] - median(x))
    loss mean = sum(j1)
    loss median = sum(j2)
loss mean
loss median
# 282
```

L₂: Squared loss

$$L_2(g) = \sum (xi - g)2$$

```
(47, 33, 35, 32, 19, 33, 34, 36, 47, 32, 35, 41, 32, 29, 35,
  25, 32, 36, 20, 47, 37, 32, 35, 25, 37, 40, 36, 38, 40, 35, 49,
  23, 33, 35, 38, 28, 36, 4, 28, 45, 37, 39, 34, 41, 28, 33, 27,
  26, 30, 34, 23)
# mean(x) = 33.45098
# median(x) = 34
# mode(x) = 35
```

→ L₂ nhỏ nhất khi g là mean của x

```
x \leftarrow c(47, 33, 35, 32, 19, 33, 34, 36, 47, 32, 35, 41, 32, 29, 35,
       25, 32, 36, 20, 47, 37, 32, 35, 25, 37, 40, 36, 38, 40, 35, 49,
       23, 33, 35, 38, 28, 36, 4, 28, 45, 37, 39, 34, 41, 28, 33, 27,
       26, 30, 34, 23)
j1 = rep(NA, length(x))
j2 = rep(NA, length(x))
for (i in 1:length(x)) {
    j1[i] = (x[i] - mean(x))^2
    j2[i] = (x[i] - median(x))^2
    loss mean = sum(j1)
    loss median = sum(j2)
loss mean
# 3124.627
loss median
```

Interval

Equal-tailed Credible Interval (CI)

Hay

Highest Density Interval (HDI)

Equal-tailed Credible Interval

Highest Density Interval

ETI vs. HDI

Kiểm định giả thuyết

Kiểm định giả thuyết

- ▶ Bộ 3:
- Comp value (ngưỡng so sánh)
- ROPE (Region of Practical Equivalent)
- Bayes Factor

- CompVal chia phân phối hậu nghiệm là 2 phần: lớn hơn và bé hơn
- Ví dụ: phân phối hậu nghiệm của θ_1 θ_2 có 95% HDI = -0.223 0.545)
- > 79.6% phân phối hậu nghiệm nằm trên ngưỡng 0

- Vùng "vô hiệu" được giới hạn bởi 2 ngưỡng trên-dưới, chia pp hậu nghiệm làm 3 vùng: vùng trong ROPE, vùng lớn hơn, vùng nhỏ hơn
- ▶ 95%HDI nằm hoàn toàn trong ROPE được coi như vô hiệu (không có khác biệt, không có hiệu quả...)
- ▶ 95%HDI nằm hoàn toàn ngoài ROPE → có hiệu ứng

- ▶ 95% HDI của θ_1 - θ_2 = 0.491 0.509 nằm hoàn toàn trong ROPE → sự khác biệt không có ý nghĩa trong thực hành
- ▶ 98% pp hậu nghiệm của θ_3 - θ_4 nằm hoàn toàn ngoài ROPE → θ_3 lớn hơn θ_4 có ý nghĩa trong thực hành

ROPE

- ▶ Tùy thuộc vào lĩnh vực, giả thuyết ...
- ▶ ROPE lấy từ đâu?
- Bằng chứng từ y văn
- Ý kiến chuyên gia
- Kinh nghiệm thực hành
- •

Bayes Factor

- ▶ H₁ vs. H₂
- ▶ Giả thuyết nào có khả năng hơn?

Posterior odds = Bayes factor × Prior odds
$$PO (H1:H2) = \frac{P(H_1 | data)}{P(H_2 | data)}$$

$$= \frac{P(data | H_1) * P(H_1) / P(data)}{P(data | H_2) * P(H_2) / P(data)}$$

$$= \frac{P(data | H_1) * P(H_1)}{P(data | H_2) * P(H_2)}$$
Bayes factor Prior odds
$$= \frac{P(data | H_1)}{P(data | H_2) * P(H_2)} * \frac{P(H_1)}{P(H_2)}$$

Bayes Factor

Kass and Raftery (1995)

BF(H ₁ :H ₂)	2log[BF(H ₁ :H ₂)]	Bằng chứng chống lại H ₂
1 - 3	0 - 2	Bare mention
3 - 20	2 - 6	Positive
20 - 150	6 - 10	Strong
> 150	> 10	Very strong

$$H_1$$
: $\theta_1 - \theta_2 > 0$

$$H_2$$
: $\theta_1 - \theta_2 < 0$

- ▶ Posterior odds = $P(H_1|data) / P(H_2|data) = 79.6/20.4 = 3.9$
- ▶ Prior odds = $P(H_1) / P(H_2) \sim 1$
- ▶ Bayes Factor = Posterior odds / Prior odds = 3.9
- → có bằng chứng cho thấy H₁ có khả năng xảy ra hơn

Một số phần mềm sử dụng trong Bayesian

MCMC sampler

- Dự án BUGS (Bayesian inference Using Gibbs Sampling) bắt đầu vào 1989
 ở MRC Biostatistics Unit, Cambridge
- ✓ WinBUGS (1997)
- ✓ OpenBUGS
- ✓ MultiBUGS
- JAGS (Just another Gibbs sampler) Martyn Plummer, 2007 2017
- Stan Stan Development Team (đặt theo tên của Stanislaw Ulam), 2012 –
 2017. Stan sử dụng HMC và NUTS
- Greta (Nick Golding, 2018) được đặt tên theo nhà toán học Grete Hermann (1901 – 1984). Greta sử dụng TensorFlow backend

Phần mềm thống kê

- \circ R
- Python (PyStan, PyMC3)
- o SAS
- o AMOS
- Mplus
- o Stata
- 0

Thank you!