Démontrons rapidement que $n \mid (2^n + 1)$ dès que $n = 3^k$ par récurrence sur $k \in \mathbb{N}^*$ car le cas k = 0 est trivial.

Initialisation pour k = 1.

Clairement, $3 \mid (2^3 + 1)$.

Étape de récurrence.

On a les implications logiques suivantes.

$$(3^{k}) \mid \left(2^{\left(3^{k}\right)} + 1\right)$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[2^{\left(3^{k}\right)} + 1 = m \cdot 3^{k}\right]$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[2^{\left(3^{k}\right)} = -1 + m \cdot 3^{k}\right]$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[\left(2^{\left(3^{k}\right)}\right)^{3} = \left(-1 + m \cdot 3^{k}\right)^{3}\right]$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[2^{\left(3^{k+1}\right)} = -1 + 3 \cdot m \cdot 3^{k} - 3 \cdot \left(m \cdot 3^{k}\right)^{2} + \left(m \cdot 3^{k}\right)^{3}\right]$$

$$\Rightarrow 2^{\left(3^{k+1}\right)} \equiv -1 \mod \left(3^{k+1}\right)$$
En résumé, $(3^{k}) \mid \left(2^{\left(3^{k}\right)} + 1\right)$ implique $(3^{k+1}) \mid \left(2^{\left(3^{k+1}\right)} + 1\right)$.

Conclusion: ...

Seul truc intéressant dans cette affaire de niveau TS de l'ancien temps : calcul d'une limite de suite dans l'anneau des entiers 3-adique.

La preuve passe en fait à l'échelle pour démontrer que si $d \mid (2^d + 1)$ alors $d^k \mid (2^{(d^k)} + 1)$ pour $k \in \mathbb{N}^*$, et aussi que si $a \mid (2^a + 1)$ et $b \mid (2^b + 1)$ alors $a^k \cdot b \mid (2^{(a^k \cdot b)} + 1)$ pour $k \in \mathbb{N}^*$.

Une recherche brutale de solutions du type $p_1 \cdot p_2 \cdot p_3$, avec p_i premier, nous donne les solutions suivantes.