(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 December 2002 (19.12.2002)

PCT

(10) International Publication Number WO 02/100820 A1

(51) International Patent Classification⁷: C07C 237/20, A61K 31/16, A61P 25/28

(21) International Application Number: PCT/US02/19067

(22) International Filing Date: 11 June 2002 (11.06.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/297,420 11 June 2001 (11.06.2001)

(71) Applicants (for all designated States except US): ELAN PHARMACEUTICALS, INC. [US/US]; 800 Gateway Boulevard, South San Francisco, CA 94080 (US). PHARMACIA & UPJOHN COMPANY [US/US]; 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MAILLARD, Michel [US/US]; 219 Shorebird Circle, Redwood Shores, CA 94065 (US). TUCKER, John, Alan [US/US]; 37 Creekridge Court, San Mateo, CA 94402 (US).

(74) Agent: TULLY, Paul, S.; McDonnell Boehnen Hulbert & Berghoff, Suite 3200, South Wacker Drive 300, Chicago, IL 60606 (US). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

${\sf G}$ (54) ${\sf Title}$: SUBSTITUTED AMINOALCOHOLS USEFUL IN TREATMENT OF ALZHEIMER'S DISEASE

(57) Abstract: The invention provides compounds of formula (I): useful in treating Alzheimer's disease and other similar diseases. These compounds include inhibitors of the beta-secretase enzyme that are useful in the treatment of Alzheimer's disease and other diseases characterized by deposition of A beta peptide in a mammal. The compounds of the invention are useful in pharmaceutical compositions and methods of treatment to reduce A beta peptide formation.

SUBSTITUTED AMINOALCOHOLS USEFUL IN TREATMENT OF ALZHEIMER'S DISEASE

(MBHB 02-376-A)

This application claim priority to U.S. Provisional Application Ser. No. 60/297,420 filed June 11, 2001

Background of the Invention

10 <u>Field of the Invention</u>

15

20

25

30

The invention is relates to substituted aminoalcohols and to such compounds that are useful in treatment of Alzheimer's disease and similar diseases, more specifically it relates to such compounds that inhibit β -secretase, an enzyme that cleaves amyloid precursor protein to produce $A\beta$ peptide, a major component of the amyloid plaques found in the brains of Alzheimer's sufferers.

Description of the Related Art

Alzheimer's disease (AD) is a progressive degenerative disease of the brain primarily associated with aging. Clinical presentation of AD is characterized by loss of memory, cognition, reasoning, judgement, and orientation. As the disease progresses, motor, sensory, and linguistic abilities are also affected until there is global impairment of multiple cognitive functions. These cognitive losses occur gradually, but typically lead to severe impairment and eventual death in the range of four to twelve years.

Alzheimer's disease is characterized by two major pathologic observations in the brain: neurofibrillary tangles and beta amyloid (or neuritic) plaques, comprised predominantly of an aggregate of a peptide fragment know as A beta. Individuals with AD exhibit characteristic beta-amyloid deposits in the brain (beta amyloid plaques) and in cerebral blood vessels (beta amyloid angiopathy) as well as neurofibrillary tangles. Neurofibrillary tangles occur not only in Alzheimer's disease but also in other dementia-inducing disorders. On autopsy, large numbers of these lesions are generally found in areas of the human brain important for memory and cognition.

Smaller numbers of these lesions in a more restricted anatomical distribution are found in the brains of most aged humans who do not have clinical AD.

Amyloidogenic plaques and vascular amyloid angiopathy also characterize the brains of individuals with Trisomy 21 (Down's Syndrome), Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type (HCHWA-D), and other neurogenerative

disorders. Beta-amyloid is a defining feature of AD, now believed to be a causative precursor or factor in the development of disease. Deposition of A beta in areas of the brain responsible for cognitive activities is a major factor in the development of AD. Beta-amyloid plaques are predominantly composed of amyloid beta peptide (A beta, also sometimes designated betaA4). A beta peptide is derived by proteolysis of the amyloid precursor protein (APP) and is comprised of 39-42 amino acids. Several proteases called secretases are involved in the processing of APP.

Cleavage of APP at the N-terminus of the A beta peptide by beta-secretase and at the C-terminus by one or more gamma-secretases constitutes the beta-amyloidogenic pathway, i.e. the pathway by which A beta is formed. Cleavage of APP by alpha-secretase produces alpha-sAPP, a secreted form of APP that does not result in beta-amyloid plaque formation. This alternate pathway precludes the formation of A beta peptide. A description of the proteolytic processing fragments of APP is found, for example, in U.S. Patent Nos. 5,441,870; 5,721,130; and 5,942,400.

An aspartyl protease has been identified as the enzyme responsible for processing of APP at the beta-secretase cleavage site. The beta-secretase enzyme has been disclosed using varied nomenclature, including BACE, Asp, am Mamepsin. See, for example, Sindha et.al., 1999, *Nature* 402:537-554 (p501) and published PCT application WO00/17369.

Several lines of evidence indicate that progressive cerebral deposition of beta-amyloid peptide (A beta) plays a seminal role in the pathogenesis of AD and can precede cognitive symptoms by years or decades. See, for example, Selkoe, 1991, *Neuron* 6:487. Release of A beta from neuronal cells grown in culture and the presence of A beta in cerebrospinal fluid (CSF) of both normal individuals and AD patients has been demonstrated. See, for example, Seubert et al., 1992, *Nature* 359:325-327.

It has been proposed that A beta peptide accumulates as a result of APP processing by beta-secretase, thus inhibition of this enzyme's activity is desirable for the treatement of AD. In vivo processing of APP at the beta-secretase cleavage site is thought to be a rate-limiting step in A beta production, and is thus a therapeutic target for the treatment of AD. See for example, Sabbagh, M., et al., 1997, Alz. Dis. Rev. 3, 1-19.

BACE1 knockout mice fail to produce A beta, and present a normal phenotype. When crossed with transgenic mice that overexpress APP, the progeny

5

10

15

20

25

show reduced amounts of A beta in brain extracts as compared with control animals (Luo et.al., 2001 *Nature Neuroscience* 4:231-232). This evidence further supports the proposal that inhibition of beta-secretase activity and reduction of A beta in the brain provides a therapeutic method for the treatment of AD and other beta amyloid disorders.

Published PCT application WO00/47618 entitled "Beta-Secretase Enzyme Compositions and Methods" identifies the beta-secretase enzyme and methods of its use. This publication also discloses oligopeptide inhibitors that bind the enzyme's active site and are useful in affinity column purification of the enzyme. In addition, WO00/77030 discloses tetrapeptide inhibitors of beta-secretase activity that are based on a statine molecule

Various pharmaceutical agents have been proposed for the treatment of Alzheimer's disease but without any real success. US Patent 5,175,281 discloses 21-aminosteroids as being useful for treating Alzheimer's disease. US Patent 5,502,187 discloses bicyclic heterocyclic amines as being useful for treating Alzheimer's disease.

The hydroxyethylamine "nucleus" or isostere, of which the compounds of the invention is a truncated analog, has been used with success in the area of HIV protease inhibition. Many of these hydroxyethylamine compounds are known as well as how to make them. See for example, *J. Am. Chem. Soc.*, 93, 288-291 (1993), *Tetrahedron Letters*, 28(45) 5569-5572 (1987), *J. Med. Chem.*, 38(4), 581-584 (1994), *Tetrahedron Letters*, 38(4), 619-620 (1997). European Patents, numbers 702 004, 678 503, 678 514, 678 503 and 716077 by Maibaum, et al. are directed to similar isosteric strategies directed at renin inhibition. See also, U.S. Pat. Nos. 5,606,078 and 5,559,111, both to Goschke, et. al.; 5,719,141, to Rasetti, et. al.; and 5,641,778, to Maibaum, et. al.

At present there are no effective treatments for halting, preventing, or reversing the progression of Alzheimer's disease. Therefore, there is an urgent need for pharmaceutical agents capable of slowing the progression of Alzheimer's disease and/or preventing it in the first place.

Compounds that are effective inhibitors of beta-secretase, that inhibit beta-secretase-mediated cleavage of APP, that are effective inhibitors of A beta production, and/or are effective to reduce amyloid beta deposits or plaques, are needed for the treatment and prevention of disease characterized by amyloid beta deposits or plaques, such as AD.

5

10

15

20

25

Summary of the Invention

In a broad aspect, the invention provides substituted aminoalcohols of formula (I):

$$R_{1}$$
 R_{20}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{3}

5

15

20

or pharmaceutically acceptable salts or esters thereof, wherein B is H, C_1 - C_{10} straight or branched chain alkyl; wherein R_{20} is H or C_{1-6} alkyl or alkenyl wherein n is 0 or 1;

10 wherein R_1 is:

(I) C_1 - C_6 alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, -OC \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II)
$$-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$$
,

(III)
$$-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$$

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C \equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) -(CH₂)_{n1}-(R_{1-aryl}) where n₁ is zero or one and where R_{1-aryl} is phenyl,
 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C_1 - C_3 alkoxy,

- (B) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
- (C) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (D) -F, Cl, -Br and -I,
 - (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
 - (G) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
- 15 (H) –OH,
 - (I) -C≡N,
 - (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 20 (K) $-\text{CO-}(C_1-C_4 \text{ alkyl}),$
 - (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (M) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) – SO_2 - $(C_1$ - C_4 alkyl),
 - (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_1 .
- 25 heteroaryl is selected from the group consisting of:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (F) benzothienyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pryidazinyl,
 - (J) pyrazinyl,

	(K) isoindolyl,
	(L) isoquinolyl,
	(M) quinazolinyl,
	(N) quinoxalinyl,
5	(O) phthalazinyl,
	(P) imidazolyl,
	(Q) isoxazolyl,
	(R) pyrazolyl,
	(S) oxazolyl,
10	(T) thiazolyl,
	(U) indolizinyl,
	(V) indazolyl,
	(W) benzothiazolyl,
	(X) benzimidazolyl,
15	(Y) benzofuranyl,
	(Z) furanyl,
	(AA) thienyl,
	(BB) pyrrolyl,
	(CC) oxadiazolyl,
20	(DD) thiadiazolyl,
	(EE) triazolyl,
	(FF) tetrazolyl,
•	(II) oxazolopyridinyl,
	(JJ) imidazopyridinyl,
25	(KK) isothiazolyl,
	(LL) naphthyridinyl,
	(MM) cinnolinyl,
	(NN) carbazolyl,
	(OO) beta-carbolinyl,
30	(PP) isochromanyl,
	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl
	(TT) isoindolinyl,

	(UU) isobenzotetrahydrofuranyl,		
	(VV) isobenzotetrahydrothienyl,		
	(WW) isobenzothienyl,		
	(XX) benzoxazolyl,		
5	(YY) pyridopyridinyl,		
	(ZZ) benzotetrahydrofuranyl,		
	(AAA) benzotetrahydrothienyl,		
	(BBB) purinyl,		
	(CCC) benzodioxolyl,		
10	(DDD) triazinyl,		
	(EEE) phenoxazinyl,		
	(FFF) phenothiazinyl,		
	(GGG) pteridinyl,		
	(HHH) benzothiazolyl,		
15	(III) imidazopyridinyl,		
	(JJJ) imidazothiazolyl,		
	(KKK) dihydrobenzisoxazinyl,		
	(LLL) benzisoxazinyl,		
	(MMM) benzoxazinyl,		
20	(NNN) dihydrobenzisothiazinyl,		
	(OOO)benzopyranyl,		
	(PPP) benzothiopyranyl,		
	(QQQ) coumarinyl,		
	(RRR) isocoumarinyl,		
25	(SSS) chromonyl,		
	(TTT) chromanonyl, and		
	(UUU) pyridinyl-N-oxide,		
	where the $R_{1-heteroaryl}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent R_{N-}		
	heteroaryl group substituted by hydrogen such that the new bond to the R _{1-heteroaryl} group		
30	replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted w		
	one, two, three or four of:		

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,

- (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

10

5

- (4) -F, Cl, -Br and -I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,
- (9) -C≡N,
- 15 (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

25

20

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,

5

- (J) piperidinyl,
- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
- (M) homopiperidinyl,
- (N) homomorpholinyl,
- (O) homothiomorpholinyl,
- (P) homomorpholinyl S-oxide,
- (Q) homothiomorpholinyl S,S-dioxide, and
- (R) oxazolidinonyl,
- where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:
- (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy,
 - (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 25

- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- 30 (8) –OH,
 - (9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) -CO- $(C_1$ - C_4 alkyl),

(12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (14) –SO₂- $(C_1$ - C_4 alkyl), or

(15) =0, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen; or

(IX) G-L-A-W-

where A is:

(I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl,

- dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally substituted with one or two of the following substituents on the ring:
 - (A) -NO₂,
 - (B) -C≡N,
 - (C) -N(R)CO(R') R, R'defined below
- 20 (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting of:
 - (a) C_1 - C_6 alkyl, and
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (E) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
 - (F) -O-(C_2 - C_6 alkyl)-COOH,
 - (G) –NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- 30 (I) -CH₂OH,
 - (J) $-CO-(C_1-C_6)$ alkyl,
 - (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl,- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,

5

10

(L) $-SO_2NRR'$ where R, R' are H, C_1-C_6 alkyl, (M)-COOH, (N) - C_1 - C_6 alkyl, (O) -C2-C6 alkenyl with one or two double bonds, or 5 (P) $-C_2-C_6$ alkynyl with one or two triple bonds, wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent; (II) $R_{1-heteroaryl}$ as defined above, where the $R_{1-heteroaryl}$ group bonds to the subsistent W by a ring carbon atom, and where R 1-heteroaryl is optionally substituted 10 with one, two, three, or four substituents independently chosen from the group consisting of: $(A) - NO_2$, (B) -C≡N, 15 (C) -N(R)CO(R') where R, R' are defined below, (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C_1 - C_6 alkyl, and (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above, 20 (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above, (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$, (G) -NRR' where R, R' are independently H, C1-C6 alkyl, and-(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above, (H) -SR where R and R_{1-aryl} are as defined above, 25 (I) -CH₂OH, (J) -CO- $(C_1$ - $C_6)$ alkyl, (K) -CONRR' where R, R' and R_{1-aryl} are as defined above, (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,

(O) -C2-C6 alkenyl with one or two double bonds, and

(P) -C₂-C₆ alkynyl with one or two triple bonds.

(M) -COOH,

(N) - C_1 - C_6 alkyl,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedendly chosen from the group consisting of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent, or

5

(III) R_{1-heterocycle} as defined above:

where the R_{1-heterocycle} group bonds to the subsistent W by a ring carbon atom, and where R_{1-heteroaryl} is optionally substituted with one to two substituents independently chosen from the group consisting of

$$(1) = 0,$$

10

- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br or -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O- CF_3$,

15

20

- $(7) NH_2,$
- (8) -OH, and
- (9) -C≡N,

and provided that G, L and W may not all be absent.

where W is -S(O)₀₋₂-, -O-, -N-, or absent, and N is optionally substituted with C₁-C₄ alkyl;

where L is $-CO_{-}$, $-S(O)_{1-2-}$, $-O_{-}$, $-C(Ra)(Rb)O_{-}$, $-OC(Ra)(Rb)_{-}$, $-N(Ra)_{-}$, -CON(Ra)-, -N(Ra)CO-, -C(Ra)(Rb)-,-C(OH)Ra-, -SO₂NRa-, -N(Ra)SO₂-, -N(Ra)CON(Rb)-, N(Ra)CSN(Rb)-, -OCOO-, -NCOO-, OCON(Ra)-, a bond, or L is absent when G is absent, and where Ra and Rb are independently H, C1-C4 alkyl which are optionally substituted. with OH, C1-C4 alkoxy, and up to five -F;

25

where G is:

(I)-C₁-C₁₀ alkyl optionally substituted with one substituent selected from the group consisting of:

(A) -COOH,

- (B) $-CO-O-(C_1-C_4 \text{ alkyl})$,
- (C) C_1 - C_6 alkoxy,
- (D) -OH,
- (E) -NH₂,

(F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, (I) -C₂-C₁₀ alkynyl with one or two triple bonds, 5 (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) -R_{1-aryl} where R_{1-aryl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of: 10 (A) -COOH, (B) -CO-O-(C_1 - C_4 alkyl), (C) C_1 - C_6 alkoxy, (D) -OH, 15 (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, (I) -C₂-C₁₀ alkynyl with one or two triple bonds, 20 (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) -R_{1-aryl} where R_{1-aryl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (III) -(CR'R")0-4-R1-aryl where R', R" and R1-aryl are as defined above, 25 (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of: (A) -H,30 (B) $-C_1-C_6$ alkyl, (C) -(C₀-C₄ alkyl)- R_{1-aryl} , wherein R_{1-aryl} is as defined above, (D) -(C_0 - C_4 alkyl)- $R_{1\text{-heteroaryl}}$, wherein $R_{1\text{-heteroaryl}}$ is as defined above,

(E) -(C_0 - C_4 alkyl)- R_1 -heterocycle, wherein R_1 -heterocycle is as defined above,

- $(F) (CH_2)_{1-4} OH,$
- (G) -(CH₂)₁₋₄- R_{C-4} -(CH₂)₁₋₄- $R_{C'-aryl}$ where R_{C-4} is -O-, -S- or
- (H) $-NR_{C-5}$ where R_{C-5} is or C_1 - C_6 alkyl, and where $R_{C'-aryl}$ is

defined above, and

 $(I) - (CH_2)_{1-4} - R_{C-4} - (CH_2)_{1-4} - R_{C-heteroaryl} \ where \ R_{C-4} \ and \ R_{C-heteroaryl} \ are$ as defined above,

wherein in (C), (D) and (E) C_0 is merely a bond, and where R_{C-3} is:

10

15

5

- (a) -H,
- (b) $-C_1-C_6$ alkyl,
- (c) -(C_0 - C_4 alkyl)- R_{1-aryl} where R_{1-aryl} is as defined above,
- (d) -(C_0 - C_4 alkyl)- R_1 -heteroaryl where R_1 -heteroaryl is as defined above,
- (e) -(C_0 - C_4 alkyl)- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,

(VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted with one, two or three of:

20

25

- (A) C_1 - C_6 alkyl,
- (B) – CF_3 ,
- (C) -F, Cl, -Br and -I,
- (D) C_1 - C_3 alkoxy,
- (E) -OCF₃,
- (F) -NH₂,
- (G) -OH,
- (H) -C≡N,
- (I) -NO₂
- (J) -CO-OH,

30

(K) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

- (a) C_1 - C_6 alkyl, and
- (b) -(C₀-C₂ alkyl)-(R_{1-aryl}) where R_{1-aryl} is as defined above,

(L) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,

- (M) -O-(C2-C5 alkyl)-COOH, or
- (N) -OR where R is as defined above,
- (O)-NR-R' where R and R' are as defined above,
- (P) -SR where R is as defined above,
- (Q) - CF_{3}
- (R) -OCF₃.
- (S) -N(R)COR' where R, R' are as defined above,
- (T) -NRR' where R, R' are as defined above,
- (U) -SR where R is as defined above,
- (V) -CH₂OH,
- (W) $-CO-(C_1-C_6)$ alkyl,
- (X) -CONRR' where R, R' are as defined above, or
- (Y) -SO₂NRR' where R is as defined above, or

15 $(VIII) - (CH_2)_2 - O - (CH_2)_2 - OH;$

wherein R₂ is selected from the group consisting of:

(I)-H,

(II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,

20 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -

SH, $-C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or 30 three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl; wherein R₃ is selected from the group consisting of:

(I)-H,

5

10

(II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,

- -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-arvl} or $R_{1-heteroarvl}$ where R_{1-arvl} and R_{1-arvl}
- 5 heteroarvi are as defined above;
 - (IV) C₂-C₆ alkenyl with one or two double bonds,
 - (V) C₂-C₆ alkynyl with one or two triple bonds, and
 - (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃,
- 10 C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and where R₂ and R₃ are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six and seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, - NR_{N-2} , where R_{N-2} is as defined below; and
- 15 wherein R_C is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , $-OC=O NR_{235}R_{240}$, $-S(=O)_{0.2} R_{235}$, $-NR_{235}C=O NR_{235}R_{240}$, $-C=O NR_{235}R_{240}$, and $-S(=O)_2$ NR₂₃₅R₂₄₀; $-(CH_2)_{0-3}$ - $-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group 20 consisting of R_{205} , - CO_2H , and - CO_2 -(C_1 - C_4 alkyl); -($CR_{245}R_{250}$)₀₋₄-aryl; $-(CR_{245}R_{250})_{0-4}$ -heteroaryl, $-(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl; $-(CR_{245}R_{250})_{0-4}$ -arylheteroaryl; $-(CR_{245}R_{250})_{0-4}$ -aryl-heterocycloalkyl; $-(CR_{245}R_{250})_{0-4}$ -aryl-aryl; $-(CR_{245}R_{250})_{0.4}$ -heteroaryl-aryl; $-(CR_{245}R_{250})_{0.4}$ -heteroaryl-heterocycloalkyl;
 - -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; - $(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl-heterocycloalkyl; - $(CR_{245}R_{250})_{0-4}$ heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $(R_{255})_2$; $-CH(aryl)_2$;
- -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally 30 replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups

that are independently R_{205} , =O, -CO-NR₂₃₅ R_{240} , or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀

alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl

optionally substituted with 1, 2, or 3 R_{205} groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)- $(CH_2)_{0-1}$ -aryl; - $(CH_2)_{0-1}$ -CH $((CH_2)_{0-6}$ -OH $-(CH_2)_{0-1}$ -heteroaryl; -CH(-aryl or heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)-phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)_{2;} -H; and -(CH₂)₀₋₆-5 $C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-10 C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; $-CO_2H$; $C\equiv N$; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12})_{0-4}$ alkyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl); -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-COheteroaryl; -(CH₂)₀₋₄-CO-heterocycloalkyl; -(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-15 $SO_2-NR_{220}R_{225}$; -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})₂; -(CH₂)₀₋₄-N-CS-N(R_{215})₂; -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀; -(CH₂)₀₋₄-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); $-(CH_2)_{0-4}$ -O-P(O)- $(OR_{240})_2$; $-(CH_2)_{0-4}$ -O-CO-N(R₂₁₅)₂; $-(CH_2)_{0-4}$ -O-20 $CS-N(R_{215})_2$; - $(CH_2)_{0-4}$ -O- (R_{215}) ; - $(CH_2)_{0-4}$ -O- (R_{215}) -COOH; - $(CH_2)_{0-4}$ -S- (R_{215}) ; - $(CH_2)_{0-4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C2-C6 alkynyl optionally substituted with 1 or 2 R205 groups; - $(CH_2)_{0-4}$ -N(H or R_{215})-SO₂- R_{220} ; and - $(CH_2)_{0-4}$ - C₃-C₇ cycloalkyl: wherein each aryl group at each occurrence is optionally substituted with 25 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein each heterocycloalkyl group at each occurrence is optionally 30 substituted with 1, 2, or 3 groups that are independently R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6

alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

- R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);
- R_{210} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; halogen; C_1 - C_6 alkoxy; C_1 - C_6 haloalkoxy; -NR₂₂₀R₂₂₅; OH; $C \equiv N$; C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -CO- $(C_1$ - C_4 alkyl); .SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂- $(C_1$ - C_4 alkyl); and =O;
- R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and -(CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;
 - R_{220} and R_{225} at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;
 - wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;
 - wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

5

10

15

20

25

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-;

R₂₅₅ and R₂₆₀ at each occurrence are independently selected from the group consisting of H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; (CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀,

each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} . The invention also provides a method for making a compound of formula (I)

$$R_1$$
 OH R_2 R_3

or a pharmaceutically acceptable salt or ester thereof, wherein B, R₂₀, R₂, R₃, n and Rc are as defined above or below.

5

10

15

20

The invention also includes a method of treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment which comprises administration of a therapeutically effective amount of a compound of

formula (I), where B, R₂₀, n, R₁, R₂, R₃, and R_C are as defined herein, or pharmaceutically acceptable salts and esters thereof.

The invention also includes methods for inhibiting beta-secretase activity, for inhibiting cleavage of amyloid precursor protein (APP), in a reaction mixture, at a site between Met596 and Asp597, numbered for the APP-695 amino acid isotype; or at a corresponding site of an isotype or mutant thereof, for inhibiting production of amyloid beta peptide (A beta) in a cell, for inhibiting the production of beta-amyloid plaque in an animal, and for treating or preventing a disease characterized by beta-amyloid deposits in the brain which comprise administration of a therapeutically effective amount of a compound of formula (I), where B, R₂₀, n, R₁, R₂, R₃, and R_C are as defined herein, or pharmaceutically acceptable salts and esters thereof.

The invention also includes a pharmaceutical composition that comprises a compound of formula (I), where B, R₂₀, n, R₁, R₂, R₃, and R_C are as defined herein, or pharmaceutically acceptable salts and esters thereof, and one or more pharmaceutically acceptable inert carriers.

The invention also includes the use of a substituted aminoalcohol of formula (I), where B, R₂₀, n, R₁, R₂, R₃, and R_C are as defined herein, or pharmaceutically acceptable salts and esters thereof, for the manufacture of a medicament for use in treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the

5

10

20

25

group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment.

The invention provides compounds, compositions, kits, and methods for inhibiting beta-secretase-mediated cleavage of amyloid precursor protein (APP). More particularly, the compounds, compositions, and methods of the invention are effective to inhibit the production of A beta peptide and to treat or prevent any human or veterinary disease or condition associated with a pathological form of A beta peptide.

The compounds, compositions, and methods of the invention are useful for treating humans who have Alzheimer's Disease (AD), for helping prevent or delay the onset of AD, for treating patients with mild cognitive impairment (MCI), and preventing or delaying the onset of AD in those patients who would otherwise be expected to progress from MCI to AD, for treating Down's syndrome, for treating Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch Type, for treating cerebral beta-amyloid angiopathy and preventing its potential consequences such as single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, for treating dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, and diffuse Lewy body type AD.

The invention also provides intermediates and methods useful for preparing the compounds of Formula I.

5

10

15

20

The compounds of the invention possess beta-secretase inhibitory activity. The inhibitory activities of the compounds of the invention are readily demonstrated, for example, using one or more of the assays described herein or known in the art.

5 <u>Detailed Description of the Invention</u>

As noted above, a broad aspect of the invention is directed to compounds of (I), or pharmaceutically acceptable salts or esters thereof, wherein where B, R_{20} , n, R_1 , R_2 , R_3 , and R_C are as defined as above.

In a preferred embodiment, R₁ is G-L-A-E-W-, wherin

10 E is a bond or C_1 - C_3 alkylene;

A is:

(I) aryl or cycloalkyl where each aryl or cycloalkyl is optionally substituted with one, two or three independently selected R_{100} groups, where R_{100} is

(A) -NO₂,

15 (B) -C≡N,

(C) -N(R)CO(R')R, where R and R' are independently hydrogen, C_1 - C_6 alkyl, or -(CH₂)₀₋₂-aryl or -(CH₂)₀₋₂-cycloalkyl, where each aryl or cycloalkyl is optionally substituted with halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino, mono(C_1 - C_6)alkylamino, or di(C_1 - C_6)alkylamino,

20

(D) -CO₂-R₂₅, where R₂₅ is selected from the group consisting of:

(a) C_1 - C_6 alkyl,

(b) -(CH₂)₀₋₂-cycloalkyl,

(c) -(CH₂)₀₋₂-aryl, where the aryl is optionally substituted with halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino, mono(C_1 - C_6)alkylamino, or di(C_1 - C_6)alkylamino, and

(d) hydrogen,

(E) $-NH-CO_2-R_{25}$,

(F) $-O-(C_2-C_6 \text{ alkyl})-CO_2H$,

(G) -NRR',

(H) -SR,

(I) $-CH_2OH$,

 $(J) -C(O)-(C_1-C_6)$ alkyl,

(K) - C(O)NRR',

22

25

(L) -SO₂NRR'

(M) - CO_2H ,

(N) C_1 - C_6 alkyl, C_1 - C_6 alkenyl with one or two double bonds, - C_1 - C_6 alkynyl with one or two triple bonds, - CF_3 , -F, -CI, -Br, -I, C_1 - C_3 alkoxy, - OCF_3 , - NH_2 , -OH, or -CN,

- (O) halogen, and
- $(P) (CH_2)_{0-2} O (CH_2)_{0-2} OH;$
- (II) heteroaryl, provided that, when E is a bond, the heteroaryl group is bonded through one of its carbon atoms to W, and where the heteroaryl is optionally substituted with one or two independently selected R₁₀₀ groups;
 - (III) heterocycle, provided that, when E is a bond, the heterocycle group is bonded through one of its carbon atoms to W, where the heterocycle is optionally substituted with one or two independently selected R_{200} groups, where R_{200} is

(1) = 0,

15

10

5

- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) –OCF₃,

20

- $(7) NH_2,$
- (8) -OH, or
- (9) -C≡N;

W is a bond, -S-, -S(O)-, -SO₂-, -O-, -N(R)- where R is hydrogen or C_1 - C_4 alkyl; L is a bond or absent when G is absent, or L is -C(O)-, -S(O)-, -SO₂-, -O-, -

25 $C(R_{110})(R_{112})O$ -, $-OC(R_{110})(R_{112})$ -, $-N(R_{110})$ -, $-CON(R_{110})$ -, $-N(R_{110})CO$ -, $-C(R_{110})(R')$ -, $-C(OH)R_{110}$ -, $-SO_2NR_{110}$ -, $-N(R_{110})SO_2$ -, $-N(R_{110})CON(R_{112})$ -, $N(R_{110})CSN(R_{112})$ -, $-C(CO_2$ -, $-NCO_2$ -, or $-OCON(R_{110})$ -, where R_{110} and R_{112} are independently hydrogen, or C_1 - C_4 alkyl, where C_1 - C_4 alkyl is optionally substituted with OH, C_1 - C_4 alkoxy, or one to five F;

30 G is absent or:

(I) C_1 - C_{10} alkyl, optionally substituted with up to three groups independently selected from

(A) - CO_2H ,

(B) $-CO_2(C_1-C_4 \text{ alkyl})$, (C) C_1 - C_6 alkoxy, (D) -OH, (E) -NRR', 5 (F) $-C_1-C_6$ haloalkyl, (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) -C₁-C₁₀ alkenyl with one or two double bonds, (I) $-C_1-C_{10}$ alkynyl with one or two triple bonds, (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond, 10 (K) aryl optionally substituted with R₁₀₀, (L) heteroaryl optionally substituted with R_{100} , (M) C_1 - C_6 alkyl, (II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl is optionally substituted with one, two or three substituents selected from the group consisting of: 15 $(A) - CO_2H$, (B) $-CO_2$ -(C_1 - C_4 alkyl), (C) C_1 - C_6 alkoxy, (D) -OH, (E) -NH₂, 20 (F) -C₁-C₆ haloalkyl, (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) -C₁-C₁₀ alkenyl with one or two double bonds, (I) $-C_1-C_{10}$ alkynyl with one or two triple bonds, (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond, 25 (K) aryl optionally substituted with R₁₀₀, (L) heteroaryl optionally substituted with R₁₀₀, (m) $mono(C_1-C_6 \text{ alkyl})amino, and$ (n) di(C₁-C₆ alkyl) amino, (o) C_1 - C_6 alkyl, 30 (III) -(CRR)₀₋₄-aryl where aryl is optionally substituted with R₁₀₀, (IV) -(CH₂)₀₋₄-heteroaryl where the heteroaryl is optionally substituted

with one, two, or three independently selected R₁₀₀ groups,

(V) -(CH₂)₀₋₄-heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,

$$(VI)$$
 -C(R₁₀)(R₁₂)-CO-NH-R₁₄ where

 R_{10} and R_{12} are the same or different and are selected from the group consisting of:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- (C) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- 10 (D) -(C₁-C₄ alkyl)- heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R₁₀₀ groups,
 - (E) -(C_1 - C_4 alkyl)- heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
- (F) heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (G) heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - $(H) (CH_2)_{1-4} OH$
 - (I) $-(CH_2)_{1-4}-Y-(CH_2)_{1-4}$ -aryl where Y is $-O_{-}$, $-S_{-}$ or
- 20 -NR_{C-5}- where R₁₆ is hydrogen or C₁-C₆ alkyl, and where the aryl is optionally substituted with one, two, or three independently selected R₁₀₀ groups,
 - (J) - $(CH_2)_{1-4}$ -Y- $(CH_2)_{1-4}$ heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups, and
- (K) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups, and

R₁₄ is:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- (C) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R₁₀₀ groups,
 - (D) -heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,

(E) -heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,

- (F) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (G) -(C_1 - C_4 alkyl)-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (H) -(C_1 - C_4 alkyl)-heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups, or
- (I) $-(CH_2)_{0-2}$ -O- $(CH_2)_{0-2}$ -OH; R_4 and R_5 are independently hydrogen, halogen, C_1 - C_6 alkoxy or C_1 - C_4 alkyl.

In another embodiment, R1 is

 $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}), \text{ or }$

- C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C \equiv N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino, -OC(=O)-amino, -amino-C(=O)O-, and -OC(=O)-mono- or dialkylamino, or C_1 - C_{10} alkyl optionally substituted -C₁-C₃ alkoxy, or
- C₂-C₆ alkenyl or C₂-C₆ alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, and mono- or dialkylamino, or

. /

- aryl, heteroaryl, heterocyclyl, -C₁-C₆ alkyl-aryl, -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C≡N, -NR₇R'₇, -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO₂-(C₁-C₄) alkyl, or
 - -C₁-C₆ alkoxy optionally substituted with 1, 2, or 3 groups which are independently a halogen, or
 - C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_3$ alkoxy, amino, -C $_1$ -C $_6$ alkyl and mono- or dialkylamino, or
 - C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino and -C₁-C₃ alkyl, or

5

15

20

25

C₂-C₆ alkenyl, alk(di)enyl, C₂-C₆ alkynyl or alk(di)ynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

In a preferred embodiment [non-difluorobenzyl embodiment; removal of multiple inactive compounds], R_1 is:

(I) C_1 - C_6 alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, $-C\equiv NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, -C=N, $-CF_3$, C_1 - C_3 alkoxy,

(B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

5

10

15

20

25

5

20

25

30

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (D) -Cl, -Br and -I,
- (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
- (G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (H) OH,
- (I) -C≡N,
- (J) C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃
 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (K) $-CO-(C_1-C_4 \text{ alkyl})$,
 - (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (M) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) $-SO_2$ -(C₁-C₄ alkyl),
- (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-heteroaryl} is selected from the group consisting of:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (F) benzothienyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pryidazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,

	(T) thiazolyl,
	(U) indolizinyl,
	(V) indazolyl,
	(W) benzothiazolyl,
5	(X) benzimidazolyl,
	(Y) benzofuranyl,
	(Z) furanyl,
	(AA) thienyl,
	(BB) pyrrolyl,
10	(CC) oxadiazolyl,
	(DD) thiadiazolyl,
	(EE) triazolyl,
	(FF) tetrazolyl,
	(II) oxazolopyridinyl,
15	(JJ) imidazopyridinyl,
	(KK) isothiazolyl,
	(LL) naphthyridinyl,
	(MM) cinnolinyl,
	(NN) carbazolyl,
20	(OO) beta-carbolinyl,
	(PP) isochromanyl,
•	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
	(TT) isoindolinyl,
25	(UU) isobenzotetrahydrofuranyl,
	(VV) isobenzotetrahydrothienyl,
	(WW) isobenzothienyl,
	(XX) benzoxazolyi,
	(YY) pyridopyridinyl,
30	(ZZ) benzotetrahydrofuranyl,
	(AAA) benzotetrahydrothienyl,
	(BBB) purinyl,
•	(CCC) henzodiovolul

		(DDD) triazinyl,
		(EEE) phenoxazinyl,
		(FFF) phenothiazinyl,
		(GGG) pteridinyl,
5		(HHH) benzothiazolyl,
		(III) imidazopyridinyl,
	·	(JJJ) imidazothiazolyl,
		(KKK) dihydrobenzisoxazinyl,
		(LLL) benzisoxazinyl,
10		(MMM) benzoxazinyl,
		(NNN) dihydrobenzisothiazinyl,
		(OOO)benzopyranyl,
		(PPP) benzothiopyranyl,
		(QQQ) coumarinyl,
15		(RRR) isocoumarinyl,
		(SSS) chromonyl,
		(TTT) chromanonyl, and
		(UUU) pyridinyl-N-oxide,
	whom the D	

where the R_{1-heteroaryl} group is bonded to –(CH₂)_{n1}- by any ring atom of the parent R_N.

20 heteroaryl group substituted by hydrogen such that the new bond to the R_{1-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

30 (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (4) -F, Cl, -Br and -I,
- (6) $-C_1-C_6$ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) –OH,
- (9) -C≡N,

5

- (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) -CO-(C₁-C₄ alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, or
- (14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 heteroaryl is not bonded to the carbon chain by nitrogen,
- (VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} 15 is selected from the group consisting of:
 - (A) morpholinyl,
 - (B) thiomorpholinyl,
 - (C) thiomorpholinyl S-oxide,
 - (D) thiomorpholinyl S,S-dioxide,
- 20 (E) piperazinyl,
 - (F) homopiperazinyl,
 - (G) pyrrolidinyl,
 - (H) pyrrolinyl,
 - (I) tetrahydropyranyl,
- 25 (J) piperidinyl,
 - (K) tetrahydrofuranyl,
 - (L) tetrahydrothienyl,
 - (M) homopiperidinyl,
 - (N) homomorpholinyl,
- 30 (O) homothiomorpholinyl,
 - (P) homomorpholinyl S-oxide,
 - (Q) homothiomorpholinyl S,S-dioxide, and
 - (R) oxazolidinonyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:

5

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy,

(2) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C1, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,

20

30

15

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,
- (9) -C≡N,

(10) C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃,
 C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (11) –CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (14) –SO₂-(C₁-C₄ alkyl), or
 - (15) =0, with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen; or

(IX) G-L-A-W-

where A is:

(I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally substituted with one or two of the following substituents on the ring:

- (A) -NO₂,
- (B) -C≡N,
- (C) -N(R)CO(R') R, R'defined below
- (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting

10 of:

5

- (a) C₁-C₆ alkyl, and
- (b) $-(CH_2)_{0-2}-(R_{1-arv})$ where R_{1-arv} is as defined above,
- (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (F) -O-(C2-C6 alkyl)-COOH,
- 15 (G) –NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (I) -CH₂OH,

20

- (J) –CO- $(C_1$ - $C_6)$ alkyl,
- (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl,- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
 - (M) -COOH,

25

30

- (N) $-C_1-C_6$ alkyl,
- (O) -C₂-C₆ alkenyl with one or two double bonds, or
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent;

(II) R _{1-heteroaryl} as defined above, where the $R_{1-heteroaryl}$ group bonds to the subsistent W by a ring carbon atom, and where R _{1-heteroaryl} is optionally substituted

with one, two, three, or four substituents independently chosen from the group consisting of:

- (A) NO₂
- (B) -C≡N,
- (C) -N(R)CO(R') where R, R' are defined below,
- (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting

of:

5

10

- (a) C₁-C₆ alkyl, and
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,

(E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,

- (F) -O- $(C_2$ - C_6 alkyl)-COOH,
- (G) –NRR' where R, R' are independently H, C_1 - C_6 alkyl, and- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) -SR where R and R_{1-aryl} are as defined above,

15 (I) - CH_2OH ,

- (J) -CO- $(C_1$ - $C_6)$ alkyl,
- (K) -CONRR' where R, R' and R_{1-aryl} are as defined above,
- (L) $-SO_2NRR'$ where R, R' are H, C_1-C_6 alkyl,
- (M) -COOH,

20 (N) $-C_1-C_6$ alkyl,

- (O) -C₂-C₆ alkenyl with one or two double bonds, and
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedently chosen from the group consisting of -CF₃, -

25 F, -Cl, -Br, -I, C_1 - C_3 alkyoxy, -OCF₃, -NH₂, -OH, and-CN,

and provided that G, L and W may not all be absent, or

(III) $R_{1-heterocycle}$ as defined above:

where the $R_{1\text{-heterocycle}}$ group bonds to the subsistent W by a ring carbon atom, and where R _{1-heteroaryl} is optionally substituted with one to two substituents independently chosen from the group consisting of

- (1) = 0,
- (2) C1-C3 alkyl,
- $(3) CF_3$,

```
(4) -F, Cl, -Br or -I,
```

- (5) C_1 - C_3 alkoxy,
- (6) -O-CF₃,
- $(7) NH_2$
- (8) -OH, and
- (9) -C≡N,

and provided that G, L and W may not all be absent,

where W is $-S(O)_{0-2}$ -, -O-, -N-, or absent, and N is optionally substituted with C_1 - C_4 alkyl;

where L is -CO-, --S(O)₁₋₂-, -O-, -C(Ra)(Rb)O-, -OC(Ra)(Rb)-, -N(Ra)-, -CON(Ra)-, -N(Ra)CO-, -C(Ra)(Rb)-,-C(OH)Ra-, -SO₂NRa-, -N(Ra)SO₂-, -N(Ra)CON(Rb)-, N(Ra)CSN(Rb)-, -OCOO-, -NCOO-, OCON(Ra)-, a bond, or L is absent when G is absent, and where Ra and Rb are independently H, C₁-C₄ alkyl which are optionally substituted. with OH, C₁-C₄ alkoxy, and up to five -F;

where G is:

5

20

25

30

(I)- C_1 - C_{10} alkyl optionally substituted with one substituent selected from the group consisting of:

- (A) -COOH,
- (B) $-CO-O-(C_1-C_4 \text{ alkyl})$,
- (C) C_1 - C_6 alkoxy,
 - (D) -OH,
 - (E) -NH₂,
 - (F) -C₁-C₆ alkyl optionally substituted with one to five -F
 - (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$,

(H) -C₂-C₁₀ alkenyl with one or two double bonds,

- (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds,
- (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple

bond,

(K) $-R_{1-aryl}$ where R_{1-aryl} is as defined above,

(L) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of:

(A)-COOH,

(B) $-CO-O-(C_1-C_4 \text{ alkyl})$,

- (C) C_1 - C_6 alkoxy,
- (D) -OH,
- (E) -NH₂,
- (F) -C₁-C₆ alkyl optionally substituted with one to five -F
- (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (H) -C₂-C₁₀ alkenyl with one or two double bonds,
- (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds,
- (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple

10 bond,

5

15

25

- (K) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (III) -(CR'R")₀₋₄-R_{1-aryl} where R', R" and R_{1-aryl} are as defined above,
- (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above.
- (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,
- (VI) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of:
 - (A) -H,
 - (B) $-C_1-C_6$ alkyl,
- (C) -(C_0 - C_4 alkyl)- R_{1-aryl} , wherein R_{1-aryl} is as defined above,
 - (D) -(C_0 - C_4 alkyl)- $R_{1\text{-heteroaryl}}$, wherein $R_{1\text{-heteroaryl}}$ is as defined
 - above,
- (E) -(C₀-C₄ alkyl)- $R_{1\text{-heterocycle}}$, wherein $R_{1\text{-heterocycle}}$ is as defined

above,

- $(F) (CH_2)_{1-4} OH,$
 - (G) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C'-arvl}$ where R_{C-4} is -O-, -S- or
 - (H) $-NR_{C-5}$ where R_{C-5} is or C_1 C_6 alkyl, and where $R_{C'-aryl}$ is

defined above, and

- (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are
- 30 as defined above,

wherein in (C), (D) and (E) C₀ is merely a bond, and where R_{C-3} is:

- (a) -H,
- (b) $-C_1-C_6$ alkyl,

(c) -(C_0 - C_4 alkyl)- R_{1-aryl} where R_{1-aryl} is as defined above,

(d) -(C₀-C₄ alkyl)-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (e) -(C_0 - C_4 alkyl)- R_1 -heterocycle where R_1 -heterocycle is as 5 defined above, (VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted with one, two or three of: (B) C_1 - C_6 alkyl, 10 (B) – CF_3 , (C) -F, Cl, -Br and -I, (D) C_1 - C_3 alkoxy, (E) -OCF₃, (F) -NH₂, 15 (G) -OH, (H) -C≡N, (I) -NO₂(J) -CO-OH, (K) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting 20 of: (a) C_1 - C_6 alkyl, and (b) -(C_0 - C_2 alkyl)-($R_{1\text{-aryl}}$) where $R_{1\text{-aryl}}$ is as defined above, (L) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above, (M) -O-(C_2 - C_5 alkyl)-COOH, or 25 (N) -OR where R is as defined above, (O)-NR-R' where R and R' are as defined above, (P) -SR where R is as defined above, (Q) - CF_{3} (R) -OCF_{3.}

(T) -NRR' where R, R' are as defined above,

(U) -SR where R is as defined above,

(V) -CH₂OH,

(S) -N(R)COR' where R, R' are as defined above,

(W) -CO-(C₁-C₆) alkyl,
(X) -CONRR' where R, R' are as defined above, or
(Y) -SO₂NRR' where R is as defined above, or
(VIII) -(CH₂)₂-O-(CH₂)₂-OH.

5 In yet another preferred embodiment [non-phenyl embodiment; removal of multiple inactive compounds], Rc is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -OC=O $NR_{235}R_{240}$, -S(=O)₀₋₂ R_{235} , -NR₂₃₅C=O $NR_{235}R_{240}$, -C=O $NR_{235}R_{240}$, and $-S(=O)_2 NR_{235}R_{240}$; $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group 10 consisting of R_{205} , -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₁₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl; - $(CR_{245}R_{250})_{0-4}$ -aryl-heterocycloalkyl; $-(CR_{245}R_{250})_{0-4}$ -aryl-aryl; $-(CR_{245}R_{250})_{0-4}$ -heteroaryl-heteroarylaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -15 $(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl-heteroaryl; $-(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl-heteroaryl; heterocycloalkyl; $-(CR_{245}R_{250})_{0.4}$ -heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $-(R_{255})_{2}$; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or 20 cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R₂₀₅, =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; $-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-aryl; -(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-6}-OH$ 25 heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)_{2:} -H; and $-(CH_2)_{0-6}-C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; 30 each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀;

R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; – CO₂H; C≡N; -(CH₂)₀₋₄-CO-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-CO-(C₁-C₁₂-C₁₂ alkyl); -(CH₂)₀₋₄-CO-(C₁-C₁₂-C₁₂-CO-(C₁-C₁₂-CO-(C

CO-(C₂-C₁₂ alkenyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl); -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-CO-heteroaryl; -(CH₂)₀₋₄-CO-heterocycloalkyl; -(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-N-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀; -(CH₂)₀₋₄-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-(R₂₁₅); -(CH₂)₀₋₄-O-(R₂₁₅)-COOH; -(CH₂)₀₋₄-S-(R₂₁₅); -(CH₂)₀₋₄-O-(C₁-C₆ alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)-SO₂-R₂₂₀; and -(CH₂)₀₋₄-C₃-C₇ cycloalkyl;

wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

R₂₁₀ at each occurrence is independently selected from the group consisting of C₁-C₆

25 alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; -NR₂₂₀R₂₂₅; OH; C≡N; C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C₁-C₄ alkyl); .SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C₁-C₄ alkyl); and =O;

R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and - (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently

5

10

15

 R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

wherein the aryl group at each occurrence is optionally substituted

with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-; R_{255} and R_{260} at each occurrence are independently selected from the group consisting of

H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heteroaryl; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heteroaryl; and; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein

R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-;

30

15

20

each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

In a further preferred embodiment [non-CH₂-phenyl embodiment; removal of multiple inactive compounds], Rc is selected from the group consisting of C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O

- NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₂₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl-heteroaryl-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl-he
- aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; (CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkylheterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-aryl; -[C(R₂₅₅)(R₂₆₀)]₁₋₃-CO-N-(R₂₅₅)₂;
 -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl);
 - cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or $S(=O)_{0-2}$, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R₂₀₅, =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted
- with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅
 25 groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)-phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂; -H; and -(CH₂)₀₋₆-C(=NR₂₃₅)(NR₂₃₅R₂₄₀); wherein
 - each aryl is optionally substituted with 1, 2, or 3 R₂₀₀;
- each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀;
 each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀;
 R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆

alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; -

5

 CO_2H ; C = N; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$; $-(CH_2)_{0-4}-CO-(C_1-C_1-C_1)$ CO-(C_2 - C_{12} alkenyl); -(CH_2)₀₋₄-CO-(C_2 - C_{12} alkynyl); -(CH_2)₀₋₄-CO-(C_3 - C_7 cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-CO-heteroaryl; -(CH₂)₀₋₄-COheterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO-5 $(C_1-C_8 \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl}); -(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl});$ $(CH_2)_{0-4}$ -N(H or R_{215})-CO-O- R_{215} ; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})2; - $(CH_2)_{0-4}$ -N-CS-N(R_{215})₂; -(CH₂)₀₋₄-N(-H or R_{215})-CO- R_{220} ; -(CH₂)₀₋₄-NR₂₂₀ R_{225} ; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂: - $(CH_2)_{0-4}$ -O-CS-N $(R_{215})_2$; - $(CH_2)_{0-4}$ -O- (R_{215}) ; - $(CH_2)_{0-4}$ -O- (R_{215}) -COOH; - $(CH_2)_{0-4}$ -O- $(R_2)_{0-4}$ -O- $(R_2)_{$ 10 S- (R_{215}) ; - $(CH_2)_{0-4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C_3 -C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)- SO_2 - R_{220} ; and -(CH₂)₀₋₄- C_3 - C_7 cycloalkyl; wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3

wherein each aryl group at each occurrence is optionally substituted with 1, 2, or groups that are independently R_{205} , R_{210} or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

25 R₂₁₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; -NR₂₂₀R₂₂₅; OH; C≡N; C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C₁-C₄ alkyl); SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C₁-C₄ alkyl); and =O;

R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and - (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each

15

occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

5

 R_{220} and R_{225} at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

10

wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally

substituted with 1, 2, or 3 R₂₁₀;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

15

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

20

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-;

25

 R_{255} and R_{260} at each occurrence are independently selected from the group consisting of H; C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; -(C_1 - C_1 - C_2 - C_1 - C_2 - C_3 - C_4 - C_3 - C_7 - C_4 - C_3 - C_7 - C_4 -alkyl)-atyl; -(C_1 - C_4 -alkyl)-heteroaryl; -(C_1 - C_4 - C_1 -C

 $(CH_2)_{0-4}$ -aryl; - $(CH_2)_{1-4}$ - R_{265} - $(CH_2)_{0-4}$ -heteroaryl; and; - $(CH_2)_{1-4}$ - R_{265} -

30

43

(CH₂)₀₋₄-heterocycloalkyl; wherein

R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

In a preferred embodiment, the invention encompasses a compound of formula (I), or a pharmaceutically acceptable salt or ester thereof, wherein B is H or C_1 - C_{10} straight or branched chain alkyl; R_{20} , R_2 and R_3 are H; n is 0; R_1 is 3,5-difluorophenyl; and R_2 is

5

10

15

20

25

where R in this preferred embodiment is C₁-C₄ straight or branched chain alkyl, optionally substituted with -OB or -SO₂B.

The invention encompasses a method of treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment which comprises administration of a therapeutically effective amount of a compound selected from the group consisting of a substituted aminoalcohol of the formula (I):

$$R_1$$
 R_2 R_3 R_2 R_3 R_3 R_4 R_5 R_5

or pharmaceutically acceptable salt or ester thereof, wherein B is H, C_1 - C_{10} straight or branched chain alkyl; wherein R_{20} is H or C_{1-6} alkyl or alkenyl wherein n is 0 or 1; wherein R_1 is:

(I) C₁-C₆ alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C₁-C₃ alkyl, C₁-C₇ alkyl (optionally substituted with C₁-C₃ alkyl and C₁-C₃ alkoxy), -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -

20 C=N, $-CF_3$, C_1-C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,

(VI)- $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,

(B) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

5

15

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (D) -F, Cl, -Br and -I,
 - (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
 - (G) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
- 10 (H) –OH,

5

- (I) -C≡N,
- (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 15 (K) –CO- $(C_1$ - C_4 alkyl),
 - (L) -SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) – SO_2 - $(C_1$ - C_4 alkyl),
 - (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R₁₋
- 20 heteroaryl is selected from the group consisting of:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (F) benzothienyl,
- 25 (G) indolyl,
 - (H) indolinyl,
 - (I) pryidazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,

	(P) imidazolyl,
	(Q) isoxazolyl,
	(R) pyrazolyl,
	(S) oxazolyl,
5	(T) thiazolyl,
	(U) indolizinyl,
	(V) indazolyl,
	(W) benzothiazolyl,
	(X) benzimidazolyl,
10	(Y) benzofuranyl,
	(Z) furanyl,
	(AA) thienyl,
	(BB) pyrrolyl,
	(CC) oxadiazolyl,
15	(DD) thiadiazolyl,
	(EE) triazolyl,
	(FF) tetrazolyl,
	(II) oxazolopyridinyl,
	(JJ) imidazopyridinyl,
20	(KK) isothiazolyl,
	(LL) naphthyridinyl,
	(MM) cinnolinyl,
	(NN) carbazolyl,
	(OO) beta-carbolinyl,
25	(PP) isochromanyl,
	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
,	(TT) isoindolinyl,
	(UU) isobenzotetrahydrofuranyl,
30	(VV) isobenzotetrahydrothienyl,
	(WW) isobenzothienyl,
	(XX) benzoxazolyl,
	(YY) pyridopyridinyl,

(ZZ) benzotetrahydrofuranyl, (AAA) benzotetrahydrothienyl, (BBB) purinyl, (CCC) benzodioxolyl, 5 (DDD) triazinyl, (EEE) phenoxazinyl, (FFF) phenothiazinyl, (GGG) pteridinyl, (HHH) benzothiazolyl, 10 (III) imidazopyridinyl, (JJJ) imidazothiazolyl, (KKK) dihydrobenzisoxazinyl, (LLL) benzisoxazinyl, (MMM) benzoxazinyl, 15 (NNN) dihydrobenzisothiazinyl, (OOO)benzopyranyl, (PPP) benzothiopyranyl, (QQQ) coumarinyl, (RRR) isocoumarinyl, 20 (SSS) chromonyl, (TTT) chromanonyl, and (UUU) pyridinyl-N-oxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{N-heteroaryl}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

25

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 - C_2 , -CH, -CH, -CH, -CH, -CF, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

5

- (4) -F, Cl, -Br and -I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,
- (9) -C≡N,

10

- (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
- (14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 .

 heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

20

15

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,

25

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,

- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
- (M) homopiperidinyl,
- (N) homomorpholinyl,

- (O) homothiomorpholinyl,
- (P) homomorpholinyl S-oxide,
- (Q) homothiomorpholinyl S,S-dioxide, and
- (R) oxazolidinonyl,

where the R_{1-heterocycle} group is bonded by any atom of the parent R_{1-heterocycle} group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:

(1) C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C≡N, -CF₃, C₁-C₃ alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

20

15

- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

25

- (8) -OH,
- (9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (11) –CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $(14) - SO_2 - (C_1 - C_4 \text{ alkyl})$, or (15) =0, with the proviso that when n_1 is zero $R_{1-heterocycle}$ is 5 not bonded to the carbon chain by nitrogen; or (IX) G-L-A-Wwhere A is: (I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally 10 substituted with one or two of the following substituents on the ring: (A) -NO₂, (B) -C≡N, (C) -N(R)CO(R') R, R'defined below (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting 15 of: (a) C₁-C₆ alkyl, and (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above, (E) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above, (F) -O-(C2-C6 alkyl)-COOH, 20 (G) -NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above, (H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above, (I) -CH₂OH, 25 (J) $-CO-(C_1-C_6)$ alkyl, (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl, $-(CH_2)_{0-2}$ - (R_{1-arvl}) where R_{1-aryl} is as defined above, (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl, (M) -COOH,

(O) -C₂-C₆ alkenyl with one or two double bonds, or

(P) -C2-C6 alkynyl with one or two triple bonds,

(N) $-C_1-C_6$ alkyl,

wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent;

(II) R 1-heteroaryl as defined above, where the R1-heteroaryl group bonds to the subsistent W by a ring carbon atom, and where R 1-heteroaryl is optionally substituted with one, two, three, or four substituents independently chosen from the group consisting of:

- (A) -NO₂,
- (B) -C≡N,
- 10 (C) -N(R)CO(R') where R, R' are defined below,
 - (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

- (a) C₁-C₆ alkyl, and
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

15

- (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$,
- (G) –NRR' where R, R' are independently H, C_1 - C_6 alkyl, and- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) -SR where R and R_{1-aryl} are as defined above,

20

- (I) -CH₂OH,
- (J) –CO- $(C_1$ - $C_6)$ alkyl,
- (K) -CONRR' where R, R' and R_{1-aryl} are as defined above,
- (L) $-SO_2NRR'$ where R, R' are H, C_1-C_6 alkyl,
- (M)-COOH,

25

- (N) - C_1 - C_6 alkyl,
- (O) -C2-C6 alkenyl with one or two double bonds, and
- (P) $-C_2-C_6$ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedently chosen from the group consisting of -CF₃, -

F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN,

and provided that G, L and W may not all be absent, or

(III) R_{1-heterocycle} as defined above:

where the $R_{1\text{-heterocycle}}$ group bonds to the subsistent W by a ring carbon atom, and where R $_{1\text{-heteroaryl}}$ is optionally substituted with one to two substituents independently chosen from the group consisting of

$$(1) = 0,$$

5

- (2) C_1 - C_3 alkyl,
- $(3) CF_3$
- (4) -F, Cl, -Br or -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O CF_3$,

10

- $(7) NH_2,$
- (8) -OH, and
- (9) -C≡N,

and provided that G, L and W may not all be absent,

where W is $-S(O)_{0-2}$, -O-, -N-, or absent, and N is optionally substituted with C_1 -

15 C_4 alkyl;

where L is -CO-, $-S(O)_{1-2}$ -, -O-, -C(Ra)(Rb)O-, -OC(Ra)(Rb)-, -N(Ra)-, -C(CRa)(Rb)-, -C(CRa)(Rb)-, -C(CRa)(Rb)-, -C(CRa)(Ra)-, -C(CRa)

where G is:

(I)-C₁-C₁₀ alkyl optionally substituted with one substituent selected from the group consisting of:

(A) -COOH,

25

20

- (B) $-CO-O-(C_1-C_4 \text{ alkyl})$,
- (C) C_1 - C_6 alkoxy,
- (D) -OH,
- (E) -NH₂,
- (F) -C₁-C₆ alkyl optionally substituted with one to five -F

- (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$,
- (H) -C₂-C₁₀ alkenyl with one or two double bonds,
- (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds,

(J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) -R_{1-arvl} where R_{1-arvl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be optionally 5 substituted with one, two or three substituents selected from the group consisting of: (A) -COOH, (B) $-CO-O-(C_1-C_4 \text{ alkyl})$, (C) C_1 - C_6 alkoxy, (D) -OH, 10 (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five –F (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) -C₂-C₁₀ alkenyl with one or two double bonds, (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, 15 (J) $-C_4-C_{10}$ hydrocarbyl chain with one double bond and one triple bond, (K) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (III) -(CR'R")₀₋₄-R_{1-aryl} where R', R" and R_{1-aryl} are as defined above, 20 (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of: 25 (A) -H,(B) $-C_1-C_6$ alkyl, (C) -(C_0 - C_4 alkyl)- R_{1-aryl} , wherein R_{1-aryl} is as defined above, (D) -(C₀-C₄ alkyl)-R_{1-heteroaryl,} wherein R_{1-heteroaryl} is as defined above, 30 (E) -(C₀-C₄ alkyl)-R_{1-heterocycle}, wherein R_{1-heterocycle} is as defined above, $(F) - (CH_2)_{1-4} - OH$ (G) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C'-aryl}$ where R_{C-4} is -O-, -S- or

(H) $-NR_{C-5}$ where R_{C-5} is - or C_1 - C_6 alkyl, and where $R_{C'-aryl}$ is defined above, and (I) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C-heteroaryl}$ where R_{C-4} and $R_{C-heteroaryl}$ are as defined above, 5 wherein in (C), (D) and (E) C_0 is merely a bond, and where R_{C-3} is: (a) -H, (b) $-C_1-C_6$ alkyl, (c) -(C_0 - C_4 alkyl)- R_{1-aryl} where R_{1-aryl} is as defined above, (d) -(C₀-C₄ alkyl)-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined 10 above, (e) -(C₀-C₄ alkyl)-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted 15 with one, two or three of: (C) C_1 - C_6 alkyl, (B) – CF_3 , (C) -F, Cl, -Br and -I, (D) C_1 - C_3 alkoxy, 20 (E) -OCF₃, (F) -NH₂, (G) -OH, (H) -C≡N, (I) - NO₂25 (J) -CO-OH, (K) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C_1 - C_6 alkyl, and (b) -(C_0 - C_2 alkyl)-(R_{1-aryl}) where R_{1-aryl} is as defined above, 30 (L) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above, (M) -O-(C2-C5 alkyl)-COOH, or (N) -OR where R is as defined above, (O)-NR-R' where R and R' are as defined above,

(P) -SR where R is as defined above,

- (Q) - CF_3
- (R) -OCF₃.
- (S) -N(R)COR' where R, R' are as defined above,
- (T) –NRR' where R, R' are as defined above,
- (U) -SR where R is as defined above,
- (V) -CH₂OH,
- (W) $-CO-(C_1-C_6)$ alkyl,
- (X) -CONRR' where R, R' are as defined above, or
- (Y) -SO₂NRR' where R is as defined above, or

 $(VIII) - (CH_2)_2 - O - (CH_2)_2 - OH;$

wherein R₂ is selected from the group consisting of:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - C_8 N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl; wherein R₃ is selected from the group consisting of:

(I)-H,

30 (II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

5

10

15

20

(III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above;

- (IV) C2-C6 alkenyl with one or two double bonds,
- (V) C2-C6 alkynyl with one or two triple bonds, and

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, and where R₂ and R₃ are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six and seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, -NR_{N-2}-, where R_{N-2} is as defined below; and

wherein R_C is selected from the group consisting of C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -OC=O $NR_{235}R_{240}$, -S(=O)₀₋₂ R_{235} , -NR₂₃₅C=O $NR_{235}R_{240}$, -C=O $NR_{235}R_{240}$, and -S(=O)₂ $NR_{235}R_{240}$; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₀₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl;

-(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-

heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $(R_{255})_2$; $-CH(aryl)_2$; $-CH(heteroaryl)_2$; $-CH(heterocycloalkyl)_2$; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R_{205} , =O, $-CO-NR_{235}R_{240}$, or $-SO_2-(C_1-C_4$ alkyl); C_2-C_{10}

cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R_{205} , =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-heteroaryl; -CH(-aryl or heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)-phenyl-NO₂; (C₁-C₆

5

10

25

alkyl)-O-(C1-C6 alkyl)-OH; -CH2-NH-CH2-CH(-O-CH2-CH3)2; -H; and -(CH2)0-6- $C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; 5 each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; $-CO_2H$; $C\equiv N$; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12})_{0-4}$ alkyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl); -10 (CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-COheteroaryl; -(CH₂)₀₋₄-CO-heterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄- $SO_2-NR_{220}R_{225};$ -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})₂; - $(CH_2)_{0-4}$ -N-CS-N(R_{215})₂; - $(CH_2)_{0-4}$ -15 $N(-H \text{ or } R_{215})-CO-R_{220}; -(CH_2)_{0-4}-NR_{220}R_{225}; -(CH_2)_{0-4}-O-CO-(C_1-C_6)$ alkyl); $-(CH_2)_{0.4}$ -O-P(O)- $(OR_{240})_2$; $-(CH_2)_{0.4}$ -O-CO-N(R₂₁₅)₂. $-(CH_2)_{0.4}$ -O- $CS-N(R_{215})_2$; - $(CH_2)_{0-4}$ -O- (R_{215}) ; - $(CH_2)_{0-4}$ -O- (R_{215}) -COOH; - $(CH_2)_{0-4}$ -S- (R_{215}) ; - $(CH_2)_{0-4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ 20 groups; C2-C6 alkynyl optionally substituted with 1 or 2 R205 groups; - $(CH_2)_{0-4}$ -N(H or R_{215})-SO₂- R_{220} ; and - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl; wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or 25 R_{210} ; wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ 30 alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

 R_{210} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; halogen; C_1 - C_6 alkoxy; C_1 - C_6 haloalkoxy; $-NR_{220}R_{225}$; OH; $C \equiv N$; C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -CO- $(C_1$ - C_4 alkyl); $-SO_2$ - $NR_{235}R_{240}$; -CO- $NR_{235}R_{240}$; $-SO_2$ - $(C_1$ - C_4 alkyl); and =O;

R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and -(CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl; wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or $3 R_{210}$;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;
R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄

5

10

15

20

25

hydroxyalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, -(CH₂)₀₋₄- C_3 - C_7 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and - NR₂₂₀-;

R₂₅₅ and R₂₆₀ at each occurrence are independently selected from the group consisting of H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; 10 C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; $(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}$ -aryl; $(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}$ -heteroaryl; and; 15 -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein R_{265} at each occurrence is independently -O-, -S- or -N(C_1 - C_6 alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; 20

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} . In an alternative method embodiment R_1 is G-L-A-E-W-, wherein

E is a bond or C₁-C₃ alkylene;

A is:

(I) aryl or cycloalkyl where each aryl or cycloalkyl is optionally substituted with one, two or three independently selected R_{100} groups, where R_{100} is

- (A) NO₂
- (B) -C≡N,
- (C) -N(R)CO(R')R, where R and R' are independently hydrogen,

 C₁-C₆ alkyl, or -(CH₂)₀₋₂-aryl or -(CH₂)₀₋₂-cycloalkyl, where each aryl or cycloalkyl is optionally substituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkyl, amino, mono(C₁-C₆)alkylamino, or di(C₁-C₆)alkylamino,
 - (D) -CO₂-R₂₅, where R₂₅ is selected from the group consisting of:

25

(a) C₁-C₆ alkyl,

(b) $-(CH_2)_{0-2}$ -cycloalkyl,

(c) -(CH₂)₀₋₂-aryl, where the aryl is optionally substituted with halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino, mono(C_1 - C_6)alkylamino, or di(C_1 - C_6)alkylamino, and

(d) hydrogen,

(E) -NH-CO₂-R₂₅,

(F) $-O-(C_2-C_6 \text{ alkyl})-CO_2H$,

(G) -NRR',

10

5

(H) -SR,

(I) -CH₂OH,

(J) –C(O)- $(C_1$ - $C_6)$ alkyl,

(K) - C(O)NRR',

(L) -SO₂NRR'

15

(M) - CO_2H ,

(N) C_1 - C_6 alkyl, C_1 - C_6 alkenyl with one or two double bonds, - C_1 - C_6 alkynyl with one or two triple bonds, - CF_3 , -F, -CI, -Br, -I, C_1 - C_3 alkoxy, - OCF_3 , - NH_2 , -OH, or -CN,

(O) halogen, and

20

(P) – $(CH_2)_{0-2}$ -O- $(CH_2)_{0-2}$ -OH;

- (II) heteroaryl, provided that, when E is a bond, the heteroaryl group is bonded through one of its carbon atoms to W, and where the heteroaryl is optionally substituted with one or two independently selected R_{100} groups;
- (III) heterocycle, provided that, when E is a bond, the heterocycle group is bonded through one of its carbon atoms to W, where the heterocycle is optionally substituted with one or two independently selected R₂₀₀ groups, where R₂₀₀ is
 - (1) = 0,
 - (2) C_1 - C_3 alkyl,
 - $(3) CF_3$,

- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) –OCF₃,
- $(7) NH_2,$

(8) -OH, or

(9) -C≡N;

W is a bond, -S-, -S(O)-, -SO₂-, -O-, -N(R)- where R is hydrogen or C_1 - C_4 alkyl; L is a bond or absent when G is absent, or L is -C(O)-, -S(O)-, -SO₂-, -O-, -

5 $C(R_{110})(R_{112})O$ -, $-OC(R_{110})(R_{112})$ -, $-N(R_{110})$ -, $-CON(R_{110})$ -, $-N(R_{110})CO$ -, $-C(R_{110})(R')$ -, $-C(OH)R_{110}$ -, $-SO_2NR_{110}$ -, $-N(R_{110})SO_2$ -, $-N(R_{110})CON(R_{112})$ -, $N(R_{110})CSN(R_{112})$ -, $-COCO_2$ -, $-NCO_2$ -, or $-OCON(R_{110})$ -, where R_{110} and R_{112} are independently hydrogen, or C_1 - C_4 alkyl, where C_1 - C_4 alkyl is optionally substituted with OH, C_1 - C_4 alkoxy, or one to five F;

10 G is absent or:

- (I) C_1 - C_{10} alkyl, optionally substituted with up to three groups independently selected from
 - (A) - $CO_2H_{,\cdot}$
 - (B) $-CO_2(C_1-C_4 \text{ alkyl})$,
- $(C) C_1-C_6$ alkoxy,
 - (D) -OH,
 - (E) -NRR',
 - (F) -C₁-C₆ haloalkyl,
 - (G) -(C_1 - C_{10} alkyl)-O-(C_1 - C_3 alkyl),
 - (H) $-C_1-C_{10}$ alkenyl with one or two double bonds,
 - (I) -C₁-C₁₀ alkynyl with one or two triple bonds,
 - (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond,
 - (K) aryl optionally substituted with R_{100} ,
 - (L) heteroaryl optionally substituted with R₁₀₀,

 $(M) C_1-C_6$ alkyl,

(II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl is optionally substituted with one, two or three substituents selected from the group consisting of:

- (A) – CO_2H ,
- (B) $-CO_2$ -(C_1 - C_4 alkyl),
- $(C) C_1-C_6 \text{ alkoxy},$
 - (D) -OH,
 - (E) -NH₂,
 - (F) $-C_1-C_6$ haloalkyl,

5

15

25

30

- (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$,
- (H) $-C_1-C_{10}$ alkenyl with one or two double bonds,
- (I) $-C_1-C_{10}$ alkynyl with one or two triple bonds,
- (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond,
- (K) aryl optionally substituted with R₁₀₀,
- (L) heteroaryl optionally substituted with R₁₀₀,
- (m) mono(C₁-C₆ alkyl)amino, and
- (n) di(C₁-C₆ alkyl) amino,
- (o) C₁-C₆ alkyl,

10 (III) -(CRR)₀₋₄-aryl where aryl is optionally substituted with R_{100} ,

(IV) -(CH₂)₀₋₄-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,

(V) -(CH₂)₀₋₄-heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,

(VI) -C(R₁₀)(R₁₂)-CO-NH-R₁₄ where

 R_{10} and R_{12} are the same or different and are selected from the group consisting of:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- 20 (C) -(C₁-C₄ alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R₁₀₀ groups,
 - (D) -(C_1 - C_4 alkyl)- heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (E) -(C_1 - C_4 alkyl)- heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - (F) heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (G) heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - $(H) (CH_2)_{1-4} OH,$
 - (I) $-(CH_2)_{1-4}$ -Y- $(CH_2)_{1-4}$ -aryl where Y is -O-, -S- or
 - $-NR_{C-5}$ where R_{16} is hydrogen or C_1 - C_6 alkyl, and where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,

(J) -(CH₂)₁₋₄-Y-(CH₂)₁₋₄- heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R₁₀₀ groups, and (K) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R₁₀₀ groups, and

5

20

25

R₁₄ is:

- (A) H,
- (B) $-C_1-C_6$ alkyl,
- (C) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- 10 (D) -heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (E) -heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
- (F) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (G) -(C_1 - C_4 alkyl)-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (H) -(C_1 - C_4 alkyl)-heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups, or
 - (I) –(CH₂)₀₋₂-O-(CH₂)₀₋₂-OH; R_4 and R_5 are independently hydrogen, halogen, C_1 - C_6 alkoxy or C_1 - C_4 alkyl.

In yet another method embodiement, R₁ is -(CH₂)₁-2-S(O)₀-2-(C₁-C₆ alkyl), or C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C≡N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino, -OC(=O)-amino, -amino-C(=O)O-, and -OC(=O)-mono- or dialkylamino, or C₁-C₁₀ alkyl optionally substituted -C₁-C₃ alkoxy, or

- C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, amino, and mono- or dialkylamino, or
- aryl, heteroaryl, heterocyclyl, -C₁-C₆ alkyl-aryl, -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C≡N, -NR₇R'₇, -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono

or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO₂-(C₁-C₄) alkyl, or

- -C₁-C₆ alkoxy optionally substituted with 1, 2, or 3 groups which are independently a halogen, or
- C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino, or
- C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino and -C₁-C₃ alkyl, or
- C₂-C₆ alkenyl, alk(di)enyl, C₂-C₆ alkynyl or alk(di)ynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

In another preferred method embodiment [non-difluorobenzyl embodiment; removal of multiple inactive compounds], R₁ is:

(I) C_1 - C_6 alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, -OC \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

- (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- 25 (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (V) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -
- 30 $C\equiv N$, $-CF_3$, C_1-C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,

5

10

15

(VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

- (A) C₁-C₆ alkyl optionally substituted with one, two or three
 substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH,
 -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C≡N, -CF₃, C₁-C₃ alkoxy,
 - (B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C1, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

15

10

- (D) -Cl, -Br and -I,
- (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
- (G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (H) -OH,
- (I) -C≡N,

20

25

- (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (K) -CO- $(C_1$ - C_4 alkyl),
 - (L) -SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) – SO_2 - $(C_1$ - C_4 alkyl),
- (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-heteroaryl} is selected from the group consisting of:
 - (A) pyridinyl,

- (B) pyrimidinyl,
- (C) quinolinyl,
- (F) benzothienyl,
- (G) indolyl,

	(H) indolinyl,
	(I) pryidazinyl,
	(J) pyrazinyl,
	(K) isoindolyl,
5	(L) isoquinolyl,
	(M) quinazolinyl,
	(N) quinoxalinyl,
	(O) phthalazinyl,
	(P) imidazolyl,
10	(Q) isoxazolyl,
	(R) pyrazolyl,
	(S) oxazolyl,
	(T) thiazolyl,
	(U) indolizinyl,
15	(V) indazolyl,
	(W) benzothiazolyl,
	(X) benzimidazolyl,
	(Y) benzofuranyl,
	(Z) furanyl,
20	(AA) thienyl,
•	(BB) pyrrolyl,
	(CC) oxadiazolyl,
	(DD) thiadiazolyl,
	(EE) triazolyl,
25	(FF) tetrazolyl,
	(II) oxazolopyridinyl,
	(JJ) imidazopyridinyl,
	(KK) isothiazolyl,
	(LL) naphthyridinyl,
30	(MM) cinnolinyl,
	(NN) carbazolyl,
	(OO) beta-carbolinyl,
	(PP) isochromanyl,

	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
	(TT) isoindolinyl,
	(UU) isobenzotetrahydrofuranyl,
5	(VV) isobenzotetrahydrothienyl,
	(WW) isobenzothienyl,
	(XX) benzoxazolyl,
	(YY) pyridopyridinyl,
	(ZZ) benzotetrahydrofuranyl,
10	(AAA) benzotetrahydrothienyl,
	(BBB) purinyl,
	(CCC) benzodioxolyl,
	(DDD) triazinyl,
	(EEE) phenoxazinyl,
15	(FFF) phenothiazinyl,
	(GGG) pteridinyl,
	(HHH) benzothiazolyl,
	(III) imidazopyridinyl,
	(JJJ) imidazothiazolyl,
20	(KKK) dihydrobenzisoxazinyl,
	(LLL) benzisoxazinyl,
	(MMM) benzoxazinyl,
	(NNN) dihydrobenzisothiazinyl,
	(OOO)benzopyranyl,
25	(PPP) benzothiopyranyl,
	(QQQ) coumarinyl,
	(RRR) isocoumarinyl,
	(SSS) chromonyl,
	(TTT) chromanonyl, and
30	(UUU) pyridinyl-N-oxide,
	where the $R_{1-heteroaryl}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent R_{N-}

 $_{\text{heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{\text{1-heteroaryl}}$ group

replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

- (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,
- (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (4) -F, Cl, -Br and -I,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,

(7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(8) -OH,

(9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

(12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

(A) morpholinyl,

(B) thiomorpholinyl,

(C) thiomorpholinyl S-oxide,

(D) thiomorpholinyl S,S-dioxide,

(E) piperazinyl,

69

5

15

20

25

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
- (M) homopiperidinyl,
- (N) homomorpholinyl,
- (O) homothiomorpholinyl,
 - (P) homomorpholinyl S-oxide,
 - (Q) homothiomorpholinyl S,S-dioxide, and
 - (R) oxazolidinonyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- 25 (3) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (4) -F, Cl, -Br and -I,
 - (5) C_1 - C_6 alkoxy,
 - (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
 - (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

70

30

5

10

15

- (8) -OH,
- (9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (11) –CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (14) –SO₂-(C₁-C₄ alkyl), or
- (15) =0, with the proviso that when n_1 is zero $R_{1-\text{heterocycle}}$ is not bonded to the carbon chain by nitrogen; or

(IX) G-L-A-W-

where A is:

(I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally substituted with one or two of the following substituents on the ring:

(A) -NO₂,

20

5

10

- (B) -C≡N,
- (C) -N(R)CO(R') R, R'defined below
- (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

(a) C_1 - C_6 alkyl, and

25

- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (E) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$,
- (G) –NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

30 (H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above.

- (I) -CH₂OH,
- (J) –CO- $(C_1$ - $C_6)$ alkyl,

(K) -CONRR' where R, R' are H, C_1 - C_6 alkyl,- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,

- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M) -COOH,
- (N) $-C_1-C_6$ alkyl,
- (O) -C₂-C₆ alkenyl with one or two double bonds, or
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent;

(II) R _{1-heteroaryl} as defined above, where the $R_{1-heteroaryl}$ group bonds to the subsistent W by a ring carbon atom, and where R _{1-heteroaryl} is optionally substituted with one, two, three, or four substituents independently chosen from the group consisting of:

15

20

10

5

- (A) -NO₂
- (B) -C≡N,
- (C) -N(R)CO(R') where R, R' are defined below,
- (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

- (a) C₁-C₆ alkyl, and
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (E) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$,
- (G) -NRR' where R, R' are independently H, C1-C6 alkyl, and-

25 $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,

- (H) –SR where R and R_{1-aryl} are as defined above,
- (I) -CH₂OH,
- (J) –CO- $(C_1$ - $C_6)$ alkyl,
- (K) -CONRR' where R, R' and R_{1-aryl} are as defined above,

- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M) -COOH,
- (N) $-C_1-C_6$ alkyl,
- (O) -C2-C6 alkenyl with one or two double bonds, and

(P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedently chosen from the group consisting of - CF_3 , -F, -Cl, -Br, -I, C_1 - C_3 alkyoxy, - OCF_3 , - NH_2 , -OH, and -CN,

and provided that G, L and W may not all be absent, or

(III) R_{1-heterocycle} as defined above:

where the $R_{1\text{-heterocycle}}$ group bonds to the subsistent W by a ring carbon atom, and where R $_{1\text{-heteroaryl}}$ is optionally substituted with one to two substituents independently chosen from the group consisting of

10

5

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br or -I,
- (5) C₁-C₃ alkoxy,

15

- (6) -O-CF₃,
- $(7) NH_2$
- (8) -OH, and
- (9) -C \equiv N,

and provided that G, L and W may not all be absent,

where W is -S(O)₀₋₂-, -O-, -N-, or absent, and N is optionally substituted with C_1 - C_4 alkyl;

where L is -CO-, --S(O)₁₋₂-, -O-, -C(Ra)(Rb)O-, -OC(Ra)(Rb)-, -N(Ra)-, -CON(Ra)-, -N(Ra)CO-, -C(Ra)(Rb)-,-C(OH)Ra-, -SO₂NRa-, -N(Ra)SO₂-, -

N(Ra)CON(Rb)-, N(Ra)CSN(Rb)-, -OCOO-, -NCOO-, OCON(Ra)-, a bond, or L is

absent when G is absent, and where Ra and Rb are independently H, C₁-C₄ alkyl which are optionally substituted. with OH, C₁-C₄ alkoxy, and up to five -F;

where G is:

(I)- C_1 - C_{10} alkyl optionally substituted with one substituent selected from the group consisting of:

- (A) -COOH,
- (B) -CO-O-(C_1 - C_4 alkyl),
- (C) C₁-C₆ alkoxy,
- (D) -OH,

(E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five –F (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, 5 (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, (L) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above, 10 (II) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of: (A) -COOH, (B) $-CO-O-(C_1-C_4 \text{ alkyl})$, (C) C_1 - C_6 alkoxy, 15 (D) -OH, (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, (H) -C₂-C₁₀ alkenyl with one or two double bonds, 20 (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) -R_{1-aryl} where R_{1-aryl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, 25 (III) -(CR'R")₀₋₄-R_{1-aryl} where R', R" and R_{1-aryl} are as defined above, (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of: 30 (A) -H,(B) $-C_1-C_6$ alkyl,

(C) -(C_0 - C_4 alkyl)- R_{1-aryl} , wherein R_{1-aryl} is as defined above,

(D) -(C0-C4 alkyl)-R1-heteroaryl, wherein R1-heteroaryl is as defined above, (E) -(C₀-C₄ alkyl)-R_{1-heterocycle}, wherein R_{1-heterocycle} is as defined above, 5 $(F) - (CH_2)_{1-4} - OH,$ (G) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C'-arvl}$ where R_{C-4} is $-O_-$, -S- or (H) –NR_{C-5}- where R_{C-5} is – or C_1 - C_6 alkyl, and where $R_{C'\text{-aryl}}$ is defined above, and (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and $R_{C-heteroaryl}$ are 10 as defined above. wherein in (C), (D) and (E) C₀ is merely a bond, and where R_{C-3} is: (a) -H, (b) $-C_1-C_6$ alkyl, (c) -(C_0 - C_4 alkyl)- $R_{1\text{-aryl}}$ where $R_{1\text{-aryl}}$ is as defined above, 15 (d) -(C_0 - C_4 alkyl)- R_1 -heteroaryl where R_1 -heteroaryl is as defined above, (e) -(C_0 - C_4 alkyl)- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above, (VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted 20 with one, two or three of: (D) C_1 - C_6 alkyl, (B) – CF_3 , (C) -F, Cl, -Br and -I, 25 (D) C_1 - C_3 alkoxy, (E) -OCF₃, (F) -NH₂, (G) -OH, (H) -C≡N, 30 (I) -NO₂(J) -CO-OH, (K) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

(a) C_1 - C_6 alkyl, and

(b) $-(C_0-C_2 \text{ alkyl})-(R_{1-\text{aryl}})$ where $R_{1-\text{aryl}}$ is as defined above,

(L) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,

(M) -O-(C_2 - C_5 alkyl)-COOH, or

(N) -OR where R is as defined above,

(O)-NR-R' where R and R' are as defined above,

(P) -SR where R is as defined above,

(Q) -CF₃,

(R) -OCF₃,

(S) -N(R)COR' where R, R' are as defined above,

(T)-NRR' where R, R' are as defined above,

(U) -SR where R is as defined above,

(V) -CH₂OH,

(W) –CO- $(C_1$ - $C_6)$ alkyl,

(X) -CONRR' where R, R' are as defined above, or

(Y) -SO₂NRR' where R is as defined above, or

(VIII) – $(CH_2)_2$ -O- $(CH_2)_2$ -OH.

In yet another preferred method embodiment [non-phenyl embodiment; removal of multiple inactive compounds], Rc is selected from the group consisting of C1-C10 alkyl 20 optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -OC=O $NR_{235}R_{240}$, -S(=O)₀₋₂ R_{235} , - $NR_{235}C$ =O $NR_{235}R_{240}$, -C=O $NR_{235}R_{240}$, and $-S(=O)_2$ $NR_{235}R_{240}$; $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₁₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-25 heteroaryl, - $(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl; - $(CR_{245}R_{250})_{0-4}$ -aryl-heteroaryl; - $(CR_{245}R_{250})_{0-4}$ -aryl-heterocycloalkyl; - $(CR_{245}R_{250})_{0-4}$ -aryl-aryl; - $(CR_{245}R_{250})_{0-4}$ -heteroarylaryl; -($CR_{245}R_{250}$)₀₋₄-heteroaryl-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄-heteroaryl-heteroaryl; - $(CR_{245}R_{250})_{0\text{-}4}\text{-}heterocycloalkyl-heteroaryl; -}(CR_{245}R_{250})_{0\text{-}4}\text{-}heterocycloalkyl-heteroaryl; -}(CR_{245}R_{250}$ heterocycloalkyl; $-(CR_{245}R_{250})_{0.4}$ -heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $(R_{255})_2$; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); 30 cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or

5

10

cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R₂₀₅, =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-5 heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)-phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂; -H; and -(CH₂)₀₋₆-C(=NR₂₃₅)(NR₂₃₅R₂₄₀); wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; 10 each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; -CO₂H; C≡N; -(CH₂)₀₋₄-CO-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkyl); -(CH₂)₀₋₄-CO-(C₂-C

CO-(C₂-C₁₂ alkenyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl); -(CH₂)₀₋₄-CO-(C₃-C₇

cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-CO-heteroaryl; -(CH₂)₀₋₄-COheterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); (CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-N-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀; -(CH₂)₀₋₄-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; (CH₂)₀₋₄-O-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-(R₂₁₅); -(CH₂)₀₋₄-O-(R₂₁₅)-COOH; -(CH₂)₀₋₄-S-(R₂₁₅); -(CH₂)₀₋₄-O-(C₁-C₆ alkyl) optionally substituted with 1, 2, 3, or 5 -F); C₃-

 C_7 cycloalkyl; C_2 - C_6 alkenyl optionally substituted with 1 or 2 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1 or 2 R_{205} groups; -(CH_2)₀₋₄- $N(H \text{ or } R_{215})$ - SO_2 - R_{220} ; and -(CH_2)₀₋₄- C_3 - C_7 cycloalkyl;

wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

25

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C=N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

- R₂₁₀ at each occurrence is independently selected from the group consisting of C₁-C₆

 3 alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; -NR₂₂₀R₂₂₅; OH; C≡N; C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C₁-C₄ alkyl); _SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C₁-C₄ alkyl); and =O;
- 10 R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl; wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

20

25

BNSDQCID: <WO

_02100820A1_l_>

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-; R_{255} and R_{260} at each occurrence are independently selected from the group consisting of

H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; and; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein

 R_{265} at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 -C₆ alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

In a further preferred method embodiment [non-CH₂-phenyl embodiment;

removal of multiple inactive compounds], Rc is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group

consisting of R₂₀₅, -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₂₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl; -

(CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-

heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-aryl; -[C(R₂₅₅)(R₂₆₀)]₁₋₃-CO-N-(R₂₅₅)₂; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced

5

10

with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R_{205} , =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-CH((

- groups; $-(CH_2)_{0-1}$ -CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; $-(CH_2)_{0-1}$ -CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); $-CH(-CH_2\text{-OH})$ -CH(OH)-phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; $-CH_2$ -NH-CH₂-CH(-O-CH₂-CH₃)₂; -H; and $-(CH_2)_{0-6}$ -C(=NR₂₃₅)(NR₂₃₅R₂₄₀); wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀;
- each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} ; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} ;
- R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; CO_2H ; $C\equiv N$; - $(CH_2)_{0.4}$ -CO- $NR_{220}R_{225}$; - $(CH_2)_{0.4}$ -CO- $(C_1$ -C₁₂ alkyl); - $(CH_2)_{0.4}$ -CO- $(C_2$ -C₁₂ alkynyl); - $(CH_2)_{0.4}$ -CO- $(C_3$ -C₇ cycloalkyl); - $(CH_2)_{0.4}$ -CO-aryl; - $(CH_2)_{0.4}$ -CO-heteroaryl; - $(CH_2)_{0.4}$ -CO-heterocycloalkyl;- $(CH_2)_{0.4}$ -CO- $(C_1$ -C₁₅; - $(CH_2)_{0.4}$ -SO₂- $(C_1$ -C₁₂ alkyl); - $(CH_2)_{0.4}$ -SO₂- $(C_3$ -C₇ cycloalkyl); - $(CH_2)_{0.4}$ -SO₂- $(C_3$ -C₁-C₁₂ alkyl); - $(CH_2)_{0.4}$ -SO₂- $(C_3$ -C₁-C₁₂ cycloalkyl); - $(CH_2)_{0.4}$ -SO₂- $(C_3$ -C₁-C₁₂ alkyl); - $(CH_2)_{0.4}$ -SO₂- $(C_3$ -C₁-C₁₂ alkyl); - $(CH_2)_{0.4}$ -SO₂- $(C_3$ -C₁₂-C₁₂- $(C_3$ - $(C_3$ -(C
- (CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-20 N-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀; -(CH₂)₀₋₄-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-(R₂₁₅); -(CH₂)₀₋₄-O-(C₁-C₆ alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-
- C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆
 25 alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)SO₂-R₂₂₀; and -(CH₂)₀₋₄- C₃-C₇ cycloalkyl;
 - wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;
- wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₁₀;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

- R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);
- R_{210} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; halogen; C_1 - C_6 alkoxy; C_1 - C_6 haloalkoxy; -NR $_{220}$ R $_{225}$; OH; C_1 - C_2 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -CO- $(C_1$ - C_4 alkyl); C_1 - C_2 - C_3 - C_4 - C_4 - C_4 - C_5 - C_5 - C_5 - C_5 - C_6 -
- R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

30

5

10

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

R₂₄₅ and R₂₅₀ are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-; R₂₅₅ and R₂₆₀ at each occurrence are independently selected from the group consisting of

H; C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; -(CH_2)₁₋₂-S(O)₀₋₂-(C_1 - C_6 alkyl); -(CH_2)₀₋₄- C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -(C_1 - C_4 alkyl)-aryl; -(C_1 - C_4 alkyl)-heteroaryl; -(C_1 - C_4 alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; -(CH_2)₁₋₄- R_{265} -(CH_2)₀₋₄-heterocycloalkyl; and; -(CH_2)₁₋₄- R_{265} -(CH_2)₀₋₄-heterocycloalkyl; wherein

R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

In a preferred embodiment, the invention encompasses a method of treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal

10

15

20

25

degeneration, diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment which comprises administration of a therapeutically effective amount of a compound selected from the group consisting of a substituted aminoalcohol of the formula (I):

5

$$R_{1}$$
 R_{2} R_{3} R_{2} R_{3}

or a pharmaceutically acceptable salt or ester thereof, wherein B is H or C_1 - C_{10} straight or branched chain alkyl; R_{20} , R_2 and R_3 are H; n is 0; R_1 is 3,5-difluorophenyl; and Rc is

10

15

where R is a C₁-C₄ straight or branched chain alkyl group, optionally substituted with – OB or –SO₂B.

The invention provides compounds of formula (I) that are useful in treating and preventing Alzheimer's disease. The anti-Alzheimer's compounds of formula (I) are made by methods well known to those skilled in the art from starting compounds known to those skilled in the art. The process chemistry is well known to those skilled in the art. The compounds of formula (I) or portions thereof may be prepared the a variety synthetic pathways. The most general process to prepare the compounds of formula (I) is set forth in Scheme I below.

Scheme I: Preparation of substituted aminoalcohols

The chemistry is straight forward and in summary involves the steps of N-protecting an amino acid (I) starting material to produce the corresponding protected amino acid, coupling of the protected amino acid with methoxymethylamine using an amide-bond-forming coupling agent such as EDC, followed by reaction of the resulting activated amide, known as a Weinreb amide, with a Grignard reagent to form the protected amino ketone. Reduction of the protected aminoketone to the corresponding alcohol via a hydride reduction, using a mild reducing agent such as NaBH₄ (sodium borohydride), One skilled in the art will appreciate that these are all well-known reactions in organic chemistry. A chemist skilled in the art, knowing the chemical structure of the biologically active substituted aminoalcohol end product (I) of the invention would be able to prepare them by known methods from known starting materials without any additional information.

Scheme I sets forth a general method used in the invention to prepare the compounds of formula (I). The anti-Alzheimer compounds of formula (I) are prepared by starting with the appropriately selected amino acid having the desired alpha substituent. The amino acids are well known to those skilled in the art and/or can be readily prepared

5

10

ż

from known compounds by methods well known to those skilled in the art. Natural amino acids (and having the L configuration) are available in abundance, and a great array of non-naturally occurring amino acids have been prepared by techniques well known to those skilled in the art of organic synthesis or are available commercially. Roberts and Vellaccio provide a comprehensive listing of non-natural amino acids, and techniques for the synthesis of many variations thereof in *The Peptides*, Vol. 5: Analysis, Synthesis, Biology; Academic Press, NY 1983. A more recent description of additional routes to chirally pure non-natural amino acids is in: *Asymmetric synthesis of α-amino acids from carbohydrates as chiral templates*; Cintas, P., *Tetrahedron*, 47 (32), 6079-111 (1991). Thus one skilled in the art can synthesize the amino acid precursors used in the preparation of the compounds of the invention by a judicious selection of one or more of the methods outlined above, which articles are hereby incorporated by reference. Alternatively, many amino acid derived compounds may advantageously be purchased commercially. Such amino acid derivatives are available having a wide variety of alpha substituents. Such derivatives are available, by way of example from Synthetech, Inc.

The compounds of formula (I) have at least two enantiomeric centers which give four enantiomers. The first of these enantiomeric centers derives from the amino acid starting material (I). It is preferred to commercially obtain or produce the desired enantiomer (S) rather than produce an enantiomerically impure mixture and then have to separate out the desired enantiomer (S). It is preferred to start the process with enantiomerically pure (S)-amino acid of the same configuration as that of the substituted aminoalcohol (I) product.

(1290 Industrial Way, P. O. Box 646, Albany, OR 97321 USA), which publishes catalogs

The first step of the process is to protect the free amino group of the (S)-amino acid (I) with an amino protecting group to produce the (S)-protected amino acid (II) by methods well known to those skilled in the art. Amino protecting groups are well known to those skilled in the art. See for example, "Protecting Groups in Organic Synthesis", John Wiley and sons, New York, N.Y., 1981, Chapter 7; "Protecting Groups in Organic Chemistry", Plenum Press, New York, N.Y., 1973, Chapter 2. The function of the amino protecting group is to protect the free amino functionality (-NH₂) during subsequent reactions on the (S)-amino acid (I) which would not proceed well either because the amino group would react and be functionalized in a way that is

5

10

15

20

25

30

of available compounds.

inconsistent with its need to be free for subsequent reactions or the free amino group would interfere in the reaction. When the amino protecting group is no longer needed, it is removed by methods well known to those skilled in the art. By definition the amino protecting group must be readily removable as is known to those skilled in the art by methods well known to those skilled in the art. Suitable amino protecting group is selected from the group consisting of t-butoxycarbonyl, benzyloxycarbonyl, formyl, trityl, acetyl, trichloroacetyl, dichloroacetyl, chloroacetyl, trifluoroacetyl, difluoroacetyl, fluoroacetyl, 4-phenylbenzyloxycarbonyl, 2-methylbenzyloxycarbonyl, 4ethoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4-chlorobenzyloxycarbonyl, 3chlorobenzyloxycarbonyl, 2,4-dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4cyanobenzyloxycarbonyl, 2-(4-xenyl)isopropoxycarbonyl, 1.1-diphenyleth-1yloxycarbonyl, 1,1-diphenylprop-1-yloxycarbonyl, 2-phenylprop-2-yloxycarbonyl, 2-(ptoluyl)prop-2-yloxycarbonyl, cyclopentanyloxycarbonyl, 1methylcyclopentanyloxycarbonyl, cyclohexanyloxycarbonyl, 1methylcyclohexanyloxycabonyl, 2-methylcyclohexanyloxycarbonyl, 2-(4toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphino)ethoxycarbonyl, fluorenylmethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4-acetoxybenzyloxycarbonyl, 2,2,2trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, 4-(decyloxyl)benzyloxycarbonyl, isobornyloxycarbonyl and 1-piperidyloxycarbonyl, 9-

fluorenylmethyl carbonate,

-CH-CH=CH₂ and phenyl-C(=N-)-H. It is preferred that the protecting group be t
butoxycarbonyl (BOC) and benzyloxycarbony (CBZ), it is more preferred that the
protecting group be t-butoxycarbonyl. One skilled in the art will understand the preferred
methods of introducing a t-butoxycarbonyl or benzyloxycarbonyl protecting group and
may additionally consult T.W. Green and P.G.M. Wuts in "Protective Groups in Organic
Chemistry," John Wiley and Sons, 1991 for guidance.

Suitable means for removal of the amine protecting group depends on the nature of the protecting group. Those skilled in the art, knowing the nature of a specific protecting group, know which reagent is preferable for its removal. For example, it is preferred to remove the preferred protecting group, BOC, by dissolving the (S,R)-

5

10

15

20

ź

protected alcohol (VII) in a trifluoroacetic acid/dichloromethane mixture. When complete, the solvents are removed under reduced pressure to give the corresponding (S,R)-amine (as the corresponding salt, i.e. trifluoroacetic acid salt) which is used without further purification. However, if desired, the (S,R)-amine can be purified further by means well known to those skilled in the art, such as for example, recrystallization, or by HPLC purification optionally using chiral-selective solid supports. Further, if the non-salt form is desired that also can be obtained by means known to those skilled in the art, such as for example, preparing the free base amine via treatment of the salt with mild basic conditions. Additional BOC deprotection conditions and deprotection conditions for other protecting groups can be found in T.W. Green and P.G.M. Wuts in "Protective Groups in Organic Chemistry," John Wiley and Sons, 1991, p. 309. Typical chemically suitable salts include trifluoroacetate, and the anion of mineral acids such as chloride, sulfate, phosphate; preferred is trifluoroacetate and chloride.

Many Grignard reagents are available for purchase; others are prepared by methods known to those skilled in the art. The Grignard reagents are then applied in the method for preparing the amino ketone intermediates by preparation of the Weinreb amide, either from the acid directly as depicted in Scheme I or by way of acid halide followed by treatment with N,O-dimethylhydroxylamine to give Weinreb amide and then treating the Weinreb amide with the Grignard reagent, by methods known to those skilled in the art.

The compounds of the invention may contain geometric or optical isomers as well as tautomers. Thus, the invention includes all tautomers and pure geometric isomers, such as the E and Z geometric isomers, as well as mixtures thereof. Futhermore, the invention includes pure enantiomers and diasteriomers as well as mixtures thereof, including racemic mixtures. The individual geometric isomers, enantiomers, or diasteriomers may be prepared or isolated by methods known in the art.

The (S,R)-substituted aminoalcohol (I) is an amine and as such form salts when reacted with acids. Pharmaceutically acceptable salts are preferred over the corresponding substituted aminoalcoholds (I) since they produce compounds which are more water soluble, stable and/or more crystalline. Pharmaceutically acceptable salts are any salt which retains the activity of the parent compound and does not impart any deleterious or undesirable effect on the subject to whom it is administered and in the context in which it is administered. Pharmaceutically acceptable salts include salts of both inorganic and

5

10

15

20

25

organic acids. The preferred pharmaceutically acceptable salts include salts of the following acids acetic, aspartic, benzenesulfonic, benzoic, bicarbonic, bisulfuric, bitartaric, butyric, calcium edetate, camsylic, carbonic, chlorobenzoic, citric, edetic, edisylic, estolic, esyl, esylic, formic, fumaric, gluceptic, gluconic, glutamic, glycollylarsanilic, hexamic, hexylresorcinoic, hydrabamic, hydrobromic, hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, maleic, malic, malonic, mandelic, methanesulfonic, methylnitric, methylsulfuric, mucic, muconic, napsylic, nitric, oxalic, p-nitromethanesulfonic, pamoic, pantothenic, phosphoric, monohydrogen phosphoric, dihydrogen phosphoric, phthalic, polygalactouronic, propionic, salicylic, stearic, succinic, succinic, sulfamic, sulfamilic, sulfonic, sulfuric, tannic, tartaric, teoclic and toluenesulfonic. For other acceptable salts, see *Int. J. Pharm.*, 33, 201-217 (1986) and *J.Pharm.Sci.*, 66(1), 1, (1977).

The compounds of formula (I), and key portions thereof, such as the C-terminus of the compounds, may be prepared by the synthetic descriptions of U.S. Pat. Nos. 5,606,078 and 5,559,111, both to Goschke, et. al.; 5,719,141, to Rasetti, et. al.; and 5,641,778, to Maibaum, et. al., all incorporated herein by reference.

Synthetic Schemes AA – EE below further illustrate how to make substituted amino acids which are useful in parparing the compounds of Formula (I).

20

5

10

15

25

WO 02/100820

SCHEME AA

5 ·

10

15

SCHEME BB

SCHEME CC

91

SCHEME DD

SCHEME EE

As set forth in SCHEME AA, alcohol A, a protected form of serine, is converted to halide B by the methods, for example, of Bajgrowicz et al., *Tetrahedron Letters*, 2759 (1984) and Bajgrowicz et al., *Tetrahedron Letters*, 1833 (1985), or by treatment of alcohol A with thionyl bromide or thionyl chloride in the presence of a catalytic amount of DMF and in non-reactive solvents such as THF, dichloromethane, and cyclohexane. Other methods for the conversion of alcohol A to halide B include contact with carbon tetrabromide and triphenylphosphine in a non-reactive solvent such as dichloromethane.

10

Other halogenating reagents include, but are not limited to, trimethylsilylchloride, trimethylsilylbromide, and trimethylsilyliodide, and tosyl chloride followed by NaI. Halide B then may be allowed to react with various amines, alcohols, and thiols in the presence of bases such as, but not limited to, alkaline earth metal carbonates, alkali metal hydrides (preferably sodium or potassium hydride), alkaline earth metal hydrides, alkali metal dialkylamides (preferably litium diisopropylamide), alkali metal bis(trialkylsilyl)amides, trialkyl amines (preferably triethylamine and diisopropylethylamine) or aromatic amines (preferably pyridine), in non-reactive solvents such as acetonitrile, THF, DMF, dichloromethane and the like to give amide D.

In SCHEME AA, PG is PROTECTING GROUP as described above; A and W are as described above; R_1 is C_1 - C_4 alkyl or benzyl; halo is Cl, Br, or I. In place of halo can be any suitable leaving group, such as, -O-tosylate, -O-mesylate, or -O-triflate.

Treatment of halide B with base in non-reactive solvents such as THF or acetonitrile gives acrylate C. Acrylate C may be prepared directly from alcohol A by converting the alcohol to a leaving group with reagents such as haloacetyl chlorides, mesyl chlorides, oxalyl chloride, diethyl chloridophosphate, N-phenylditriflamide, and CDI, DCC, and the like in the presence of a copper halide, followed by a base such as, but not limited to, alkaline earth metal carbonates, alkali metal hydroxides, alkali metal hydrides (preferably sodium or potassium hydride), alkali metal alkoxides (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably litium diisopropylamide), alkali metal bis(trialkylsilyl)amides, trialkyl amines (preferably triethylamine and diisopropylethylamine) or aromatic amines (preferably pyridine).

Alternatively, alcohol A may be treated under Mitsunobu conditions with dialkyl azodicarboxylate, preferably diethyl diazodicarboxylate and triphenyl phosphine in solvents such as THF to give cyclic amine B*, which is then treated in situ with amines, alcohols, and thiols in the presence of bases such as, but not limited to, alkaline earth metal carbonates, alkali metal hydroxides, alkali metal hydrides (preferably sodium or potassium hydride), alkaline earth metal hydrides, alkali metal dialkylamides (preferably litium diisopropylamide), alkali metal bis(trialkylsilyl)amides, trialkyl amines (preferably triethylamine and diisopropylethylamine) or aromatic amines (preferably pyridine) give amide D.

5

10

15

20

25

Acrylate C is also an item of commerce. It is well known to those versed in the art how to add or remove or exchange one protecting group for another as may be necessary depending upon the particular reaction intended. Treatment of acrylate C or halide B with amines, alcohols, and thiols in the presence of bases such as, but not limited to, alkaline earth metal carbonates, alkali metal hydroxides, alkali metal hydrides (preferably sodium or potassium hydride), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium diisopropylamide), alkali metal bis(trialkylsilyl)amides, trialkyl amines (preferably triethylamine and diisopropylethylamine) or aromatic amines (preferably pyridine) in solvents such as THF or DMF at temperatures ranging from room temperature to reflux temperature of the solvent give amide D.

Amide D is hydrolyzed, preferably using alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or potassium hydroxide, followed by acidification, to give acid D-1, compounds of formula (II).

As set forth in SCHEME BB, the treatment of amide D with bromoiodobenzene (E) under conditions of the Heck reaction by means well-known to those versed in the art such as a palladium catalyst (preferably palladium acetate), an alkyl ammonium halide such as tetra-n-butylammonium chloride, aq. base (preferably sodium bicarbonate or sodium carbonate), and solvents such as DMF, N-methylpyrrolidinone, Nmethylacetamide, and the like at temperatures ranging from room temperature to the boiling point of the solvent, to give styrene F. Styrene F is further treated with alkene G under conditions of the Heck reaction by means well-known to those versed in the art. One such example of Heck reaction conditions are a palladium catalyst (preferably palladium acetate), an alkyl ammonium halide such as tetra-n-butylammonium chloride, aq. base (preferably sodium bicarbonate or sodium carbonate), and solvents such as DMF, N-methylpyrrolidinone, N-methylacetamide, and the like at temperatures ranging from room temperature to the boiling point of the solvent, to give dialkene H. Dialkene H is then reduced with hydrogen to alkane I using various catalysts and chiral ligands well known to those versed in the art to give the desired protected (S) amino acid I. One such catalyst and ligand is (but is not limited to) Rh(COD)[(S,S)-Et-DuPHOS] OTf. In SCHEME BB, PG is PROTECTING GROUP as described above; G is as described above; R₁ is C₁-C₄ alkyl or benzyl.

5

10

15

20

25

Protected amino acid (I) is hydrolyzed, preferably using alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or potassium hydroxide, followed by acidification, to give acid I-1, compounds of formula (II).

As set forth in SCHEME CC, Aryl halide J, which is available as an item of commerce, is reacted with borane reagents under conditions of the Suzuki reaction by methods well known to those versed in the art. In SCHEME CC, PG is PROTECTING GROUP as described above; G is as described above; R₁ is C₁-C₄ alkyl or benzyl.

Thus aryl halide J is treated with borane reagents K, L, and M where R' and R" are, for example, OH, or OR where R is a lower alkyl, or where R' and R" are C₁-C₈ alkyl or when taken together are C₈ cycloalkyl, in the presence of a metal catalyst such as the salts or phosphine complexes of Cu, Pd, and Ni. Preferred are palladium catalysts such as PdCl₂(PPh₃)₂, PdCl₂(dppf), and Pd(OAc)₂ with or without added base, in solvents such as THF, acetone, acetonitrile, dialkyl ethers, DMF, NMP, N,N-dialkylacetamides, and so forth, from about 50 degrees C to reflux temperature, to afford biphenyl N, benzylphenyl O, and alkyl phenyl P. A wide range of organoborane reagents can be made for use in this derivatization by the hydroboration of alkenes with 9-BBN (*J. Am. Chem. Soc.*, 314 (1989)), or by the methods described in *Tetrahedron*, 50, 979 (1994).

Biphenyl N, benzylphenyl O, and alkyl phenyl P are hydrolyzed, preferably using alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or potassium hydroxide, followed by acidification, to give acids N-1, O-1, and P-1, compounds of formula (II).

As set forth in SCHEME DD, halobenzene S is prepared from commercially available benzene Q, a base, and alkyl halide G using methods well known to those versed in the art. When G is desired to be aryl, then aryl iodides are reacted with phenol Q or thiophenol Q using palladium catalysts as described in J. Am. Chem. Soc., 4369 (1999) and J. Am. Chem. Soc., 10539 (1997). Another method is combining thiophenol Q and aryl iodide R in the presence of a palladium catalyst such as Pd(PPh₃)₄ and sodium tert-butoxide and ethanol give halobenzene S. When X is desired to be nitrogen, aniline Q is reacted with iodobenzene R in the presence of potassium or sodium tert-butoxide, Pd₂(dba)₃, BINAP, and toluene to give halobenzene S. In SCHEME DD, PG is PROTECTING GROUP as described above; G is as described above; R₁ is C₁-C₄ alkyl or benzyl.

5

10

15

20

25

The Heck reaction for the addition of halobenzene S to amide D to give alkene T is as described in SCHEME BB. Reduction of alkene T as described in SCHEME BB gives amine U. When X is sulfur, it may be desired to oxidize the sulfur to sulfone using m-chloroperoxybenzoic acid or hydrogen peroxide or other oxidizing agents, using methods well known to those versed in the art, to give sulfone V.

Amine U and sulfone V are hydrolyzed, preferably using alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or potassium hydroxide, followed by acidification, to give acids U-1 and V-1, compounds of the formula (II).

SCHEME EE, Scheme E sets forth a route for the preparation of benzophenone AA and benzyl alcohol BB. In SCHEME EE, PG is PROTECTING GROUP as described above; G is as described above; R_1 is C_1 - C_4 alkyl or benzyl.

Acetophenone Y is prepared from acid halide W (which, if not commercially available, is prepared by numerous methods well known to those skilled in the art, using commercially available benzoic acids). Acid halide W is reacted with a Grignard reagent (which is commercially available or prepared from available alkyl and aryl halides by 15 methods well known to those versed in the art) in solvents such as THF and at temperatures ranging from -78 degrees C to room temperature to produce acetophenone Y. Alternatively, contacting HN(Me)(OMe) with acid halide W in neutral solvents such as THF, acetonitrile, or dichloromethane in the presence of a base gives Weinreb amide X, which upon addition of a Grignard reagent in solvents such as THF at temperatures 20 ranging from -78 degrees C to room temperature to give acetophone Y. Acetophenone Y and amide D are then reacted under the conditions of the Heck reaction discussed in SCHEME BB to give alkene Z. Alkene Z is reduced to ketone AA and benzyl alcohol BB using H₂ and metal catalysts such as palladium on carbon in solvents such as alcohols, preferably C1-C4 alcohols, or RuCl2 in the presence of a phosphine ligand and potassium 25 tert-butoxide in solvents such as isopropanol, or using conditions of the Heck reaction as described in SCHEME BB. Benzyl alcohol BB may be oxidized using oxidizing agents well known to those versed in the art, for example with activated manganese dioxide in non-reactive solvents such as chloroform to give ketone AA. Alternatively, ketone AA may be produced by reacting aryl halide J with a palladium catalyst, preferably 30 PdCl₂(PPh₃)₂, carbon monoxide, Ph(n-butyl)₃Sn, and DMF according to the method of Bioorg. Med. Chem. Lett., 10, 1815 (2000).

5

Ketone AA and alcohol BB are hydrolyzed, preferably using alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or potassium hydroxide, followed by acidification, to give acids AA-1 and BB-1, compounds of the formula (II).

Synthesis of Boc-3,5-difluorophenylalanine *threo* epoxide starting material was adapted from the procedure of Luly, JR, et al. *J. Org. Chem.* **1987**, *52*, 1487-1492 for the synthesis of Boc-phenylalanine *threo* epoxide (Scheme II). The starting material utilized in the preparation of Boc-3,5-difluorophenylalanine *threo* epoxide was Boc protected *l*-3,5-difluorophenylalanine available from Synthetech, Inc. (1290 Industrial Way, P. O. Box 646, Albany, OR 97321 USA). *Tetrahedron Lett.*, 38, 3175 (1997) further discloses a process for the preparation of N-BOC protected epoxides from protected amino acid esters.

The invention provides compounds, compositions, kits, and methods for inhibiting beta-secretase enzyme activity and A beta peptide production. Inhibition of beta-secretase enzyme activity halts or reduces the production of A beta from APP and reduces or eliminates the formation of beta-amyloid deposits in the brain.

5

10

Methods of the Invention

The compounds of the invention, and pharmaceutically acceptable salts thereof, are useful for treating humans or animals suffering from a condition characterized by a pathological form of beta-amyloid peptide, such as beta-amyloid plaques, and for helping 5 to prevent or delay the onset of such a condition. For example, the compounds are useful for treating Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with MCI (mild cognitive impairment) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral 10 Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobal hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal 15 degeneration, and diffuse Lewy body type Alzheimer's disease. The compounds and compositions of the invention are particularly useful for treating or preventing Alzheimer's disease. When treating or preventing these diseases, the compounds of the invention can either be used individually or in combination, as is best for the patient.

As used herein, the term "treating" means that the compounds of the invention can be used in humans with at least a tentative diagnosis of disease. The compounds of the invention will delay or slow the progression of the disease thereby giving the individual a more useful life span.

The term "preventing" means that the compounds of the invention are useful when administered to a patient who has not been diagnosed as possibly having the disease at the time of administration, but who would normally be expected to develop the disease or be at increased risk for the disease. The compounds of the invention will slow the development of disease symptoms, delay the onset of the disease, or prevent the individual from developing the disease at all. Preventing also includes administration of the compounds of the invention to those individuals thought to be predisposed to the disease due to age, familial history, genetic or chromosomal abnormalities, and/or due to the presence of one or more biological markers for the disease, such as a known genetic mutation of APP or APP cleavage products in brain tissues or fluids.

20

25

In treating or preventing the above diseases, the compounds of the invention are administered in a therapeutically effective amount. The therapeutically effective amount will vary depending on the particular compound used and the route of administration, as is known to those skilled in the art.

In treating a patient displaying any of the diagnosed above conditions a physician may administer a compound of the invention immediately and continue administration indefinitely, as needed. In treating patients who are not diagnosed as having Alzheimer's disease, but who are believed to be at substantial risk for Alzheimer's disease, the physician should preferably start treatment when the patient first experiences early pre-Alzheimer's symptoms such as, memory or cognitive problems associated with aging. In addition, there are some patients who may be determined to be at risk for developing Alzheimer's through the detection of a genetic marker such as APOE4 or other biological indicators that are predictive for Alzheimer's disease. In these situations, even though the patient does not have symptoms of the disease, administration of the compounds of the invention may be started before symptoms appear, and treatment may be continued indefinitely to prevent or delay the outset of the disease.

Dosage Forms and Amounts

The compounds of the invention can be administered orally, parenternally, (IV, IM, depo-IM, SQ, and depo SQ), sublingually, intranasally (inhalation), intrathecally, topically, or rectally. Dosage forms known to those of skill in the art are suitable for delivery of the compounds of the invention.

Compositions are provided that contain therapeutically effective amounts of the compounds of the invention. The compounds are preferably formulated into suitable pharmaceutical preparations such as tablets, capsules, or elixirs for oral administration or in sterile solutions or suspensions for parenternal administration. Typically the compounds described above are formulated into pharmaceutical compositions using techniques and procedures well known in the art.

About 1 to 500 mg of a compound or mixture of compounds of the invention or a physiologically acceptable salt or ester is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, flavor, etc., in a unit dosage form as called for by accepted pharmaceutical practice. The amount of active substance in those compositions or preparations is such that a suitable dosage in the range indicated is obtained. The compositions are preferably formulated in a unit dosage form, each

5

10

15

20

25

dosage containing from about 2 to about 100 mg, more preferably about 10 to about 30 mg of the active ingredient. The term "unit dosage from" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.

To prepare compositions, one or more compounds of the invention are mixed with a suitable pharmaceutically acceptable carrier. Upon mixing or addition of the compound(s), the resulting mixture may be a solution, suspension, emulsion, or the like. Liposomal suspensions may also be suitable as pharmaceutically acceptable carriers.

These may be prepared according to methods known to those skilled in the art. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. The effective concentration is sufficient for lessening or ameliorating at least one symptom of the disease, disorder, or condition treated and may be empirically determined.

Pharmaceutical carriers or vehicles suitable for administration of the compounds provided herein include any such carriers known to those skilled in the art to be suitable for the particular mode of administration. In addition, the active materials can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, or have another action. The compounds may be formulated as the sole pharmaceutically active ingredient in the composition or may be combined with other active ingredients.

Where the compounds exhibit insufficient solubility, methods for solubilizing may be used. Such methods are known and include, but are not limited to, using cosolvents such as dimethylsulfoxide (DMSO), using surfactants such as Tween®, and dissolution in aqueous sodium bicarbonate. Derivatives of the compounds, such as salts or prodrugs may also be used in formulating effective pharmaceutical compositions.

The concentration of the compound is effective for delivery of an amount upon administration that lessens or ameliorates at least one symptom of the disorder for which the compound is administered. Typically, the compositions are formulated for single dosage administration.

The compounds of the invention may be prepared with carriers that protect them against rapid elimination from the body, such as time-release formulations or coatings.

5

20

25

Such carriers include controlled release formulations, such as, but not limited to, microencapsulated delivery systems. The active compound is included in the pharmaceutically acceptable carrier in an amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on the patient treated. The therapeutically effective concentration may be determined empirically by testing the compounds in known *in vitro* and *in vivo* model systems for the treated disorder.

The compounds and compositions of the invention can be enclosed in multiple or single dose containers. The enclosed compounds and compositions can be provided in kits, for example, including component parts that can be assembled for use. For example, a compound inhibitor in lyophilized form and a suitable diluent may be provided as separated components for combination prior to use. A kit may include a compound inhibitor and a second therapeutic agent for co-administration. The inhibitor and second therapeutic agent may be provided as separate component parts. A kit may include a plurality of containers, each container holding one or more unit dose of the compound of the invention. The containers are preferably adapted for the desired mode of administration, including, but not limited to tablets, gel capsules, sustained-release capsules, and the like for oral administration; depot products, pre-filled syringes, ampules, vials, and the like for parenternal administration; and patches, medipads, creams, and the like for topical administration.

The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the active compound, the dosage schedule, and amount administered as well as other factors known to those of skill in the art.

The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and may be determined empirically using known testing protocols or by extrapolation from *in vivo* or *in vitro* test data. It is to be noted that concentrations and dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed compositions.

5

10

15

20

25

If oral administration is desired, the compound should be provided in a composition that protects it from the acidic environment of the stomach. For example, the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active compound in the intestine. The composition may also be formulated in combination with an antacid or other such ingredient.

Oral compositions will generally include an inert diluent or an edible carrier and may be compressed into tablets or enclosed in gelatin capsules. For the purpose of oral therapeutic administration, the active compound or compounds can be incorporated with excipients and used in the form of tablets, capsules, or troches. Pharmaceutically compatible binding agents and adjuvant materials can be included as part of the composition.

The tablets, pills, capsules, troches, and the like can contain any of the following ingredients or compounds of a similar nature: a binder such as, but not limited to, gum tragacanth, acacia, corn starch, or gelatin; an excipient such as microcrystalline cellulose, starch, or lactose; a disintegrating agent such as, but not limited to, alginic acid and corn starch; a lubricant such as, but not limited to, magnesium stearate; a gildant, such as, but not limited to, colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; and a flavoring agent such as peppermint, methyl salicylate, or fruit flavoring.

When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials, which modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents. The compounds can also be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings, and flavors.

The active materials can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action.

Solutions or suspensions used for parenternal, intradermal, subcutaneous, or topical application can include any of the following components: a sterile diluent such as water for injection, saline solution, fixed oil, a naturally occurring vegetable oil such as sesame oil, coconut oil, peanut oil, cottonseed oil, and the like, or a synthetic fatty vehicle such as ethyl oleate, and the like, polyethylene glycol, glycerine, propylene glycol, or other synthetic solvent; antimicrobial agents such as benzyl alcohol and methyl parabens;

5

10

15

20

25

antioxidants such as ascorbic acid and sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates, and phosphates; and agents for the adjustment of tonicity such as sodium chloride and dextrose. Parenternal preparations can be enclosed in ampoules, disposable syringes, or multiple dose vials made of glass, plastic, or other suitable material. Buffers, preservatives, antioxidants, and the like can be incorporated as required.

Where administered intravenously, suitable carriers include physiological saline, phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents such as glucose, polyethylene glycol, polypropyleneglycol, and mixtures thereof. Liposomal suspensions including tissue-targeted liposomes may also be suitable as pharmaceutically acceptable carriers. These may be prepared according to methods known for example, as described in U.S. Patent No. 4,522,811.

The active compounds may be prepared with carriers that protect the compound against rapid elimination from the body, such as time-release formulations or coatings. Such carriers include controlled release formulations, such as, but not limited to, implants and microencapsulated delivery systems, and biodegradable, biocompatible polymers such as collagen, ethylene vinyl acetate, polyanhydrides, polyglycolic acid, polyorthoesters, polylactic acid, and the like. Methods for preparation of such formulations are known to those skilled in the art.

The compounds of the invention can be administered orally, parenternally (IV, IM, depo-IM, SQ, and depo-SQ), sublingually, intranasally (inhalation), intrathecally, topically, or rectally. Dosage forms known to those skilled in the art are suitable for delivery of the compounds of the invention.

Compounds of the invention may be administered enterally or parenterally. When administered orally, compounds of the invention can be administered in usual dosage forms for oral administration as is well known to those skilled in the art. These dosage forms include the usual solid unit dosage forms of tablets and capsules as well as liquid dosage forms such as solutions, suspensions, and elixirs. When the solid dosage forms are used, it is preferred that they be of the sustained release type so that the compounds of the invention need to be administered only once or twice daily.

The oral dosage forms are administered to the patient 1, 2, 3, or 4 times daily. It is preferred that the compounds of the invention be administered either three or fewer times, more preferably once or twice daily. Hence, it is preferred that the compounds of the

5

10

15

20

25

invention be administered in oral dosage form. It is preferred that whatever oral dosage form is used, that it be designed so as to protect the compounds of the invention from the acidic environment of the stomach. Enteric coated tablets are well known to those skilled in the art. In addition, capsules filled with small spheres each coated to protect from the acidic stomach, are also well known to those skilled in the art.

When administered orally, an administered amount therapeutically effective to inhibit beta-secretase activity, to inhibit A beta production, to inhibit A beta deposition, or to treat or prevent AD is from about 0.1 mg/day to about 1,000 mg/day. It is preferred that the oral dosage is from about 1 mg/day to about 100 mg/day. It is more preferred that the oral dosage is from about 5 mg/day to about 50 mg/day. It is understood that while a patient may be started at one dose, that dose may be varied over time as the patient's condition changes.

Compounds of the invention may also be advantageously delivered in a nano crystal dispersion formulation. Preparation of such formulations is described, for example, in U.S. Patent 5,145,684. Nano crystalline dispersions of HIV protease inhibitors and their method of use are described in US 6,045,829. The nano crystalline formulations typically afford greater bioavailability of drug compounds.

The compounds of the invention can be administered parenterally, for example, by IV, IM, depo-IM, SC, or depo-SC. When administered parenterally, a therapeutically effective amount of about 0.5 to about 100 mg/day, preferably from about 5 to about 50 mg daily should be delivered. When a depot formulation is used for injection once a month or once every two weeks, the dose should be about 0.5 mg/day to about 50 mg/day, or a monthly dose of from about 15 mg to about 1,500 mg. In part because of the forgetfulness of the patients with Alzheimer's disease, it is preferred that the parenteral dosage form be a depo formulation.

The compounds of the invention can be administered sublingually. When given sublingually, the compounds of the invention should be given one to four times daily in the amounts described above for IM administration.

The compounds of the invention can be administered intranasally. When given by this route, the appropriate dosage forms are a nasal spray or dry powder, as is known to those skilled in the art. The dosage of the compounds of the invention for intranasal administration is the amount described above for IM administration.

5

10

15

20

25

The compounds of the invention can be administered intrathecally. When given by this route the appropriate dosage form can be a parenternal dosage form as is known to those skilled in the art. The dosage of the compounds of the invention for intrathecal administration is the amount described above for IM administration.

The compounds of the invention can be administered topically. When given by this route, the appropriate dosage form is a cream, ointment, or patch. Because of the amount of the compounds of the invention to be administered, the patch is preferred. When administered topically, the dosage is from about 0.5 mg/day to about 200 mg/day. Because the amount that can be delivered by a patch is limited, two or more patches may be used. The number and size of the patch is not important, what is important is that a therapeutically effective amount of the compounds of the invention be delivered as is known to those skilled in the art. The compounds of the invention can be administered rectally by suppository as is known to those skilled in the art. When administered by suppository, the therapeutically effective amount is from about 0.5 mg to about 500 mg.

The compounds of the invention can be administered by implants as is known to those skilled in the art. When administering a compound of the invention by implant, the therapeutically effective amount is the amount described above for depot administration.

The invention here is the new compounds of the invention and new methods of using the compounds of the invention. Given a particular compound of the invention and a desired dosage form, one skilled in the art would know how to prepare and administer the appropriate dosage form.

The compounds of the invention are used in the same manner, by the same routes of administration, using the same pharmaceutical dosage forms, and at the same dosing schedule as described above, for preventing disease or treating patients with MCI (mild cognitive impairment) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating or preventing Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, and diffuse Lewy body type of Alzheimer's disease.

5

10

15

20

25

The compounds of the invention can be used in combination, with each other or with other therapeutic agents or approaches used to treat or prevent the conditions listed above. Such agents or approaches include: acetylcholine esterase inhibitors such as tacrine (tetrahydroaminoacridine, marketed as COGNEX®), donepezil hydrochloride, (marketed as Aricept® and rivastigmine (marketed as Exelon®); gamma-secretase inhibitors; anti-inflammatory agents such as cyclooxygenase II inhibitors; anti-oxidants such as Vitamin E and ginkolides; immunological approaches, such as, for example, immunization with A beta peptide or administration of anti-A beta peptide antibodies; statins; and direct or indirect neurotropic agents such as Cerebrolysin®, AIT-082 (Emilieu, 2000, Arch. Neurol. 57:454), and other neurotropic agents of the future.

It should be apparent to one skilled in the art that the exact dosage and frequency of administration will depend on the particular compounds of the invention administered, the particular condition being treated, the severity of the condition being treated, the age, weight, general physical condition of the particular patient, and other medication the individual may be taking as is well known to administering physicians who are skilled in this art.

Inhibition of APP Cleavage

Asp596 numbered for the APP695 isoform, or a mutant thereof, or at a corresponding site of a different isoform, such as APP751 or APP770, or a mutant thereof (sometimes referred to as the "beta secretase site"). While not wishing to be bound by a particular theory, inhibition of beta-secretase activity is thought to inhibit production of beta amyloid peptide (A beta). Inhibitory activity is demonstrated in one of a variety of inhibition assays, whereby cleavage of an APP substrate in the presence of a beta-secretase enzyme is analyzed in the presence of the inhibitory compound, under conditions normally sufficient to result in cleavage at the beta-secretase cleavage site. Reduction of APP cleavage at the beta-secretase cleavage site compared with an untreated or inactive control is correlated with inhibitory activity. Assay systems that can be used to demonstrate efficacy of the compound inhibitors of the invention are known. Representative assay systems are described, for example, in U.S. Patents No. 5,942,400,

5,744,346, as well as in the Examples below.

The enzymatic activity of beta-secretase and the production of A beta can be analyzed in vitro or in vivo, using natural, mutated, and/or synthetic APP substrates,

5

10

15

20

25

natural, mutated, and/or synthetic enzyme, and the test compound. The analysis may involve primary or secondary cells expressing native, mutant, and/or synthetic APP and enzyme, animal models expressing native APP and enzyme, or may utilize transgenic animal models expressing the substrate and enzyme. Detection of enzymatic activity can be by analysis of one or more of the cleavage products, for example, by immunoassay, flurometric or chromogenic assay, HPLC, or other means of detection. Inhibitory compounds are determined as those having the ability to decrease the amount of beta-secretase cleavage product produced in comparison to a control, where beta-secretase mediated cleavage in the reaction system is observed and measured in the absence of inhibitory compounds.

Beta-secretase

5

10

15

20

25

30

Various forms of beta-secretase enzyme are known, and are available and useful for assay of enzyme activity and inhibition of enzyme activity. These include native, recombinant, and synthetic forms of the enzyme. Human beta-secretase is known as Beta Site APP Cleaving Enzyme (BACE), Asp2, and memapsin 2, and has been characterized, for example, in U.S. Patent No. 5,744,346 and published PCT patent applications WO98/22597, WO00/03819, WO01/23533, and WO00/17369, as well as in literature publications (Hussain et.al., 1999, *Mol.Cell.Neurosci.* 14:419-427; Vassar et.al., 1999, *Science* 286:735-741; Yan et.al., 1999, *Nature* 402:533-537; Sinha et.al., 1999, *Nature* 40:537-540; and Lin et.al., 2000, *PNAS USA* 97:1456-1460). Synthetic forms of the enzyme have also been described (WO98/22597 and WO00/17369). Beta-secretase can be extracted and purified from human brain tissue and can be produced in cells, for example mammalian cells expressing recombinant enzyme.

Preferred compounds are effective to inhibit 50% of beta-secretase enzymatic activity at a concentration of less than about 50 micromolar, preferably at a concentration of less than about 10 micromolar, more preferably less than about 1 micromolar, and most preferably less than about 10 nanomolar.

APP Substrate

Assays that demonstrate inhibition of beta-secretase-mediated cleavage of APP can utilize any of the known forms of APP, including the 695 amino acid "normal" isotype described by Kang et.al., 1987, *Nature* 325:733-6, the 770 amino acid isotype described by Kitaguchi et. al., 1981, *Nature* 331:530-532, and variants such as the Swedish Mutation (KM670-1NL) (APP-SW), the London Mutation (V7176F), and

others. See, for example, U.S. Patent No. 5,766,846 and also Hardy, 1992, Nature Genet. 1:233-234, for a review of known variant mutations. Additional useful substrates include the dibasic amino acid modification, APP-KK disclosed, for example, in WO 00/17369, fragments of APP, and synthetic peptides containing the beta-secretase cleavage site, wild type (WT) or mutated form, e.g., SW, as described, for example, in U.S. Patent No 5,942,400 and WO00/03819.

The APP substrate contains the beta-secretase cleavage site of APP (KM-DA or NL-DA) for example, a complete APP peptide or variant, an APP fragment, a recombinant or synthetic APP, or a fusion peptide. Preferably, the fusion peptide includes the beta-secretase cleavage site fused to a peptide having a moiety useful for enzymatic assay, for example, having isolation and/or detection properties. A useful moiety may be an antigenic epitope for antibody binding, a label or other detection moiety, a binding substrate, and the like.

Antibodies

5

10

Products characteristic of APP cleavage can be measured by immunoassay using 15 various antibodies, as described, for example, in Pirttila et.al., 1999, Neuro.Lett. 249:21-4, and in U.S. Patent No. 5,612,486. Useful antibodies to detect A beta include, for example, the monoclonal antibody 6E10 (Senetek, St. Louis, MO) that specifically recognizes an epitope on amino acids 1-16 of the A beta peptide; antibodies 162 and 164 (New York State Institute for Basic Research, Staten Island, NY) that are specific for 20 human A beta 1-40 and 1-42, respectively; and antibodies that recognize the junction region of beta-amyloid peptide, the site between residues 16 and 17, as described in U.S. Patent No. 5,593,846. Antibodies raised against a synthetic peptide of residues 591 to 596 of APP and SW192 antibody raised against 590-596 of the Swedish mutation are also useful in immunoassay of APP and its cleavage products, as described in U.S. Patent Nos. 5,604,102 and 5,721,130.

Assay Systems

Assays for determining APP cleavage at the beta-secretase cleavage site are well known in the art. Exemplary assays, are described, for example, in U.S. Patent Nos. 5,744,346 and 5,942,400, and described in the Examples below.

Cell Free Assays

Exemplary assays that can be used to demonstrate the inhibitory activity of the compounds of the invention are described, for example, in WO00/17369, WO 00/03819,

25

and U.S. Patents No. 5,942,400 and 5,744,346. Such assays can be performed in cell-free incubations or in cellular incubations using cells expressing a beta-secretase and an APP substrate having a beta-secretase cleavage site.

An APP substrate containing the beat-secretase cleavage site of APP, for example, a complete APP or variant, an APP fragment, or a recombinant or synthetic APP substrate containing the amino acid sequence: KM-DA or NL-DA, is incubated in the presence of beta-secretase enzyme, a fragment thereof, or a synthetic or recombinant polypeptide variant having beta-secretase activity and effective to cleave the beta-secretase cleavage site of APP, under incubation conditions suitable for the cleavage activity of the enzyme. Suitable substrates optionally include derivatives that may be fusion proteins or peptides that contain the substrate peptide and a modification useful to facilitate the purification or detection of the peptide or its beta-secretase cleavage products. Useful modifications include the insertion of a known antigenic epitope for antibody binding; the linking of a label or detectable moiety, the linking of a binding substrate, and the like.

Suitable incubation conditions for a cell-free *in vitro* assay include, for example: approximately 200 nanomolar to 10 micromolar substrate, approximately 10 to 200 picomolar enzyme, and approximately 0.1 nanomolar to 10 micromolar inhibitor compound, in aqueous solution, at an approximate pH of 4 -7, at approximately 37 degrees C, for a time period of approximately 10 minutes to 3 hours. These incubation conditions are exemplary only, and can be varied as required for the particular assay components and/or desired measurement system. Optimization of the incubation conditions for the particular assay components should account for the specific beta-secretase enzyme used and its pH optimum, any additional enzymes and/or markers that might be used in the assay, and the like. Such optimization is routine and will not require undue experimentation.

One useful assay utilizes a fusion peptide having maltose binding protein (MBP) fused to the C-terminal 125 amino acids of APP-SW. The MBP portion is captured on an assay substrate by anti-MBP capture antibody. Incubation of the captured fusion protein in the presence of beta-secretase results in cleavage of the substrate at the beta-secretase cleavage site. Analysis of the cleavage activity can be, for example, by immunoassay of cleavage products. One such immunoassay detects a unique epitope exposed at the carboxy terminus of the cleaved fusion protein, for example, using the antibody SW192. This assay is described, for example, in U.S. Patent No 5,942,400.

5

10

15

20

25

Cellular Assay

5

10

15

20

25

30

Numerous cell-based assays can be used to analyze beta-secretase activity and/or processing of APP to release A beta. Contact of an APP substrate with a beta-secretase enzyme within the cell and in the presence or absence of a compound inhibitor of the invention can be used to demonstrate beta-secretase inhibitory activity of the compound. Preferably, assay in the presence of a useful inhibitory compound provides at least about 30%, most preferably at least about 50% inhibition of the enzymatic activity, as compared with a non-inhibited control.

In one embodiment, cells that naturally express beta-secretase are used. Alternatively, cells are modified to express a recombinant beta-secretase or synthetic variant enzyme as discussed above. The APP substrate may be added to the culture medium and is preferably expressed in the cells. Cells that naturally express APP, variant or mutant forms of APP, or cells transformed to express an isoform of APP, mutant or variant APP, recombinant or synthetic APP, APP fragment, or synthetic APP peptide or fusion protein containing the beta-secretase APP cleavage site can be used, provided that the expressed APP is permitted to contact the enzyme and enzymatic cleavage activity can be analyzed.

Human cell lines that normally process A beta from APP provide a useful means to assay inhibitory activities of the compounds of the invention. Production and release of A beta and/or other cleavage products into the culture medium can be measured, for example by immunoassay, such as Western blot or enzyme-linked immunoassay (EIA) such as by ELISA.

Cells expressing an APP substrate and an active beta-secretase can be incubated in the presence of a compound inhibitor to demonstrate inhibition of enzymatic activity as compared with a control. Activity of beta-secretase can be measured by analysis of one or more cleavage products of the APP substrate. For example, inhibition of beta-secretase activity against the substrate APP would be expected to decrease release of specific beta-secretase induced APP cleavage products such as A beta.

Although both neural and non-neural cells process and release A beta, levels of endogenous beta-secretase activity are low and often difficult to detect by EIA. The use of cell types known to have enhanced beta-secretase activity, enhanced processing of APP to A beta, and/or enhanced production of A beta are therefore preferred. For example, transfection of cells with the Swedish Mutant form of APP (APP-SW); with

APP-KK; or with APP-SW-KK provides cells having enhanced beta-secretase activity and producing amounts of A beta that can be readily measured.

In such assays, for example, the cells expressing APP and beta-secretase are incubated in a culture medium under conditions suitable for beta-secretase enzymatic activity at its cleavage site on the APP substrate. On exposure of the cells to the compound inhibitor, the amount of A beta released into the medium and/or the amount of CTF99 fragments of APP in the cell lysates is reduced as compared with the control. The cleavage products of APP can be analyzed, for example, by immune reactions with specific antibodies, as discussed above.

Preferred cells for analysis of beta-secretase activity include primary human neuronal cells, primary transgenic animal neuronal cells where the transgene is APP, and other cells such as those of a stable 293 cell line expressing APP, for example, APP-SW.

In Vivo Assays: Animal Models

Various animal models can be used to analyze beta-secretase activity and /or processing of APP to release A beta, as described above. For example, transgenic animals expressing APP substrate and beta-secretase enzyme can be used to demonstrate inhibitory activity of the compounds of the invention. Certain transgenic animal models have been described, for example, in U.S. Patent Nos: 5,877,399; 5,612,486; 5,387,742; 5,720,936; 5,850,003; 5,877,015,, and 5,811,633, and in Ganes et.al., 1995, *Nature* 373:523. Preferred are animals that exhibit characteristics associated with the pathophysiology of AD. Administration of the compound inhibitors of the invention to the transgenic mice described herein provides an alternative method for demonstrating the inhibitory activity of the compounds. Administration of the compounds in a pharmaceutically effective carrier and via an administrative route that reaches the target tissue in an appropriate therapeutic amount is also preferred.

Inhibition of beta-secretase mediated cleavage of APP at the beta-secretase cleavage site and of A beta release can be analyzed in these animals by measure of cleavage fragments in the animal's body fluids such as cerebral fluid or tissues. Analysis of brain tissues for A beta deposits or plaques is preferred.

On contacting an APP substrate with a beta-secretase enzyme in the presence of an inhibitory compound of the invention and under conditions sufficient to permit enzymatic mediated cleavage of APP and/or release of A beta from the substrate, the compounds of the invention are effective to reduce beta-secretase-mediated cleavage of

5

10

15

20

25

APP at the beta-secretase cleavage site and/or effective to reduce released amounts of A beta. Where such contacting is the administration of the inhibitory compounds of the invention to an animal model, for example, as described above, the compounds are effective to reduce A beta deposition in brain tissues of the animal, and to reduce the number and/or size of beta amyloid plaques. Where such administration is to a human subject, the compounds are effective to inhibit or slow the progression of disease characterized by enhanced amounts of A beta, to slow the progression of AD in the, and/or to prevent onset or development of AD in a patient at risk for the disease.

Unless defined otherwise, all scientific and technical terms used herein have the same meaning as commonly understood by one of skill in the art to which this invention belongs. All patents and publications referred to herein are hereby incorporated by reference for all purposes.

Definitions and Conventions

The definitions and explanations below are for the terms as used throughout this entire document including both the specification and the claims.

Definitions

5

10

All temperatures are in degrees Celsius.

TLC refers to thin-layer chromatography.

psi refers to pounds/in².

20 HPLC refers to high pressure liquid chromatography.

THF refers to tetrahydrofuran.

DMF refers to dimethylformamide.

EDC refers to ethyl-1-(3-dimethylaminopropyl)carbodiimide or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride.

25 HOBt refers to 1-hydroxy benzotriazole hydrate.

NMM refers to N-methylmorpholine.

NBS refers to N-bromosuccinimide.

TEA refers to triethylamine.

BOC refers to 1,1-dimethylethoxy carbonyl or t-butoxycarbonyl,

represented schematically as-CO-O-C(CH₃)₃.

CBZ refers to benzyloxycarbonyl, -CO-O-CH₂-φ.

FMOC refers to 9-fluorenylmethyl carbonate.

TFA refers to trifluoracetic acid, CF₃-COOH.

CDI refers to 1,1'-carbonyldiimidazole.

Saline refers to an aqueous saturated sodium chloride solution.

Chromatography (column and flash chromatography) refers to purification/separation of compounds expressed as (support, eluent). It is understood that the appropriate fractions are pooled and concentrated to give the desired compound(s).

CMR refers to C-13 magnetic resonance spectroscopy, chemical shifts are reported in ppm (δ) downfield from TMS.

NMR refers to nuclear (proton) magnetic resonance spectroscopy, chemical shifts are reported in ppm (d) downfield from TMS.

IR refers to infrared spectroscopy.

-phenyl refers to phenyl (C_6H_5).

MS refers to mass spectrometry expressed as m/e, m/z or mass/charge unit. MH⁺ refers to the positive ion of a parent plus a hydrogen atom. EI refers to electron impact. CI refers to chemical ionization. FAB refers to fast atom bombardment.

HRMS refers to high resolution mass spectrometry.

Ether refers to diethyl ether.

Pharmaceutically acceptable refers to those properties and/or substances which are acceptable to the patient from a pharmacological/toxicological point of view and to the manufacturing pharmaceutical chemist from a physical/chemical point of view regarding composition, formulation, stability, patient acceptance and bioavailability.

When solvent pairs are used, the ratios of solvents used are volume/volume (v/v).

When the solubility of a solid in a solvent is used the ratio of the solid to the solvent is weight/volume (wt/v).

BOP refers to benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate.

TBDMSCl refers to t-butyldimethylsilyl chloride.

TBDMSOTf refers to t-butyldimethylsilyl trifluosulfonic acid ester.

Trisomy 21 refers to Down's Syndrome.

APP, amyloid precursor protein, is defined as any APP polypeptide, including
APP variants, mutations, and isoforms, for example, as disclosed in U.S. Patent No.
5,766,846.

A beta, amyloid beta peptide, is defined as any peptide resulting from betasecretase mediated cleavage of APP, including peptides of 39, 40, 41, 42, and 43 amino

5

10

15

20

acids, and extending from the beta-secretase cleavage site to amino acids 39, 40, 41, 42, or 43.

Beta-secretase (BACE1, Asp2, Memapsin 2) is an aspartyl protease that mediates cleavage of APP at the amino-terminal edge of A beta. Human beta-secretase is described, for example, in WO00/17369.

"Pharmaceutically acceptable" refers to those properties and/or substances that are acceptable to the patient from a pharmacological/toxicological point of view and to the manufacturing pharmaceutical chemist from a physical/chemical point of view regarding composition, formulation, stability, patient acceptance and bioavailability.

A therapeutically effective amount is defined as an amount effective to reduce or lessen at least one symptom of the disease being treated or to reduce or delay onset of one or more clinical markers or symptoms of the disease.

BIOLOGY EXAMPLES

15 Example A

5

10

20

25

30

Enzyme Inhibition Assay

The compounds of the invention are analyzed for inhibitory activity by use of the MBP-C125 assay. This assay determines the relative inhibition of beta-secretase cleavage of a model APP substrate, MBP-C125SW, by the compounds assayed as compared with an untreated control. A detailed description of the assay parameters can be found, for example, in U.S. Patent No. 5,942,400. Briefly, the substrate is a fusion peptide formed of maltose binding protein (MBP) and the carboxy terminal 125 amino acids of APP-SW, the Swedish mutation. The beta-secretase enzyme is derived from human brain tissue as described in Sinha et.al, 1999, *Nature* 40:537-540) or recombinantly produced as the full-length enzyme (amino acids 1-501), and can be prepared, for example, from 293 cells expressing the recombinant cDNA, as described in WO00/47618. Human brain β-Secretase from concentrated HiQ pool prepared 7/16/97 in 0.20% Triton was used in the assay.

Inhibition of the enzyme is analyzed, for example, by immunoassay of the enzyme's cleavage products. One exemplary ELISA uses an anti-MBP capture antibody that is deposited on precoated and blocked 96-well high binding plates, followed by incubation with diluted enzyme reaction supernatant, incubation with a specific reporter antibody, for example, biotinylated anti-SW192 reporter antibody, and further incubation with

streptavidin/alkaline phosphatase. In the assay, cleavage of the intact MBP-C125SW fusion protein results in the generation of a truncated amino-terminal fragment, exposing a new SW-192 antibody-positive epitope at the carboxy terminus. Detection is effected by a fluorescent substrate signal on cleavage by the phosphatase. ELISA only detects cleavage following Leu 596 at the substrate's APP-SW 751 mutation site.

Specific Assay Procedure:

5

10

15

20

25

Compounds are diluted in a 1:1 dilution series to a six-point concentration curve (two wells per concentration) in one 96-plate row per compound tested. Each of the test compounds is prepared in DMSO to make up a 10 millimolar stock solution. The stock solution is serially diluted in DMSO to obtain a final compound concentration of 200 micromolar at the high point of a 6-point dilution curve. Ten (10) microliters of each dilution is added to each of two wells on row C of a corresponding V-bottom plate to which 190 microliters of 52 millimolar NaOAc, 7.9% DMSO, pH 4.5 are pre-added. The NaOAc diluted compound plate is spun down to pellet precipitant and 20 microliters/well is transferred to a corresponding flat-bottom plate to which 30 microliters of ice-cold enzyme-substrate mixture (2.5 microliters MBP-C125SW substrate, 0.03 microliters enzyme and 24.5 microliters ice cold 0.09% TX100 per 30 microliters) is added. The final reaction mixture of 200 micromolar compound at the highest curve point is in 5% DMSO, 20 millimolar NaAc, 0.06% TX100, at pH 4.5.

Warming the plates to 37 degrees C starts the enzyme reaction. After 90 minutes at 37 degrees C, 200 microliters/well cold specimen diluent is added to stop the reaction and 20 microliters/well was transferred to a corresponding anti-MBP antibody coated ELISA plate for capture, containing 80 microliters/well specimen diluent. This reaction is incubated overnight at 4 degrees C and the ELISA is developed the next day after a 2 hour incubation with anti-192SW antibody, followed by Streptavidin-AP conjugate and fluorescent substrate. The signal is read on a fluorescent plate reader.

Relative compound inhibition potency is determined by calculating the concentration of compound that showed a fifty percent reduction in detected signal (IC₅₀) compared to the enzyme reaction signal in the control wells with no added compound.

30 Example B

Cell Free Inhibition Assay Utilizing a Synthetic APP Substrate

A synthetic APP substrate that can be cleaved by beta-secretase and having N-terminal biotin and made fluorescent by the covalent attachment of Oregon green at the Cys

residue is used to assay beta-secretase activity in the presence or absence of the inhibitory compounds of the invention. Useful substrates include the following:

	Biotin-SEVNL-DAEFR[Oregon green]KK	[SEQ ID NO: 1]
5	Biotin-SEVKM-DAEFR[Oregon green]KK	[SEQ ID NO: 2]
	Biotin-GLNIKTEEISEISY-EVEFRC[Oregon green]KK	[SEQ ID NO: 3]
	Biotin-ADRGLTTRPGSGLTNIKTEEISEVNL-DAEF [Oregon green]KK	[SEQ ID NO:4]
10	Biotin-FVNQHLCoxGSHLVEALY- LVCoxGERGFFYTPKA[Oregon green]KK	[SEQ ID NO: 5]

The enzyme (0.1 nanomolar) and test compounds (0.001 - 100 micromolar) are incubated in pre-blocked, low affinity, black plates (384 well) at 37 degrees for 30 minutes. The reaction is initiated by addition of 150 millimolar substrate to a final volume of 30 microliter per well. The final assay conditions are: 0.001 - 100 micromolar compound inhibitor; 0.1 molar sodium acetate (pH 4.5); 150 nanomolar substrate; 0.1 nanomolar soluble beta-secretase; 0.001% Tween 20, and 2% DMSO. The assay mixture is incubated for 3 hours at 37 degrees C, and the reaction is terminated by the addition of a saturating concentration of immunopure streptavidin. After incubation with streptavidin at room temperature for 15 minutes, fluorescence polarization is measured, for example, using a LJL Acqurest (Ex485 nm/ Em530 nm). The activity of the beta-secretase enzyme is detected by changes in the fluorescence polarization that occur when the substrate is cleaved by the enzyme. Incubation in the presence or absence of compound inhibitor demonstrates specific inhibition of beta-secretase enzymatic cleavage of its synthetic APP substrate.

Example C

15

20

25

30

Beta-Secretase Inhibition: P26-P4'SW Assay

Synthetic substrates containing the beta-secretase cleavage site of APP are used to assay beta-secretase activity, using the methods described, for example, in published PCT application WO00/47618. The P26-P4'SW substrate is a peptide of the sequence:

(biotin)CGGADRGLTTRPGSGLTNIKTEEISEVNLDAEF [SEQ ID NO: 6]
The P26-P1 standard has the sequence:
(biotin)CGGADRGLTTRPGSGLTNIKTEEISEVNL [SEQ ID NO: 7].

Briefly, the biotin-coupled synthetic substrates are incubated at a concentration of from about 0 to about 200 micromolar in this assay. When testing inhibitory compounds, a substrate concentration of about 1.0 micromolar is preferred. Test compounds diluted in DMSO are added to the reaction mixture, with a final DMSO concentration of 5%. Controls also contain a final DMSO concentration of 5%. The concentration of beta secretase enzyme in the reaction is varied, to give product concentrations with the linear range of the ELISA assay, about 125 to 2000 picomolar, after dilution.

The reaction mixture also includes 20 millimolar sodium acetate, pH 4.5, 0.06% Triton X100, and is incubated at 37 degrees C for about 1 to 3 hours. Samples are then diluted in assay buffer (for example, 145.4 nanomolar sodium chloride, 9.51 millimolar sodium phosphate, 7.7 millimolar sodium azide, 0.05% Triton X405, 6g/liter bovine serum albumin, pH 7.4) to quench the reaction, then diluted further for immunoassay of the cleavage products.

Cleavage products can be assayed by ELISA. Diluted samples and standards are incubated in assay plates coated with capture antibody, for example, SW192, for about 24 hours at 4 degrees C. After washing in TTBS buffer (150 millimolar sodium chloride, 25 millimolar Tris, 0.05% Tween 20, pH 7.5), the samples are incubated with streptavidin-AP according to the manufacturer's instructions. After a one hour incubation at room temperature, the samples are washed in TTBS and incubated with fluorescent substrate solution A (31.2 g/liter 2-amino-2-methyl-1-propanol, 30 mg/liter, pH 9.5). Reaction with streptavidin-alkaline phosphate permits detection by fluorescence. Compounds that are effective inhibitors of beta-secretase activity demonstrate reduced cleavage of the substrate as compared to a control.

Example D

5

10

15

20

30

25 Assays using Synthetic Oligopeptide-Substrates

Synthetic oligopeptides are prepared that incorporate the known cleavage site of beta-secretase, and optionally detectable tags, such as fluorescent or chromogenic moieties. Examples of such peptides, as well as their production and detection methods are described in U.S. Patent No: 5,942,400, herein incorporated by reference. Cleavage products can be detected using high performance liquid chromatography, or fluorescent or chromogenic detection methods appropriate to the peptide to be detected, according to methods well known in the art.

By way of example, one such peptide has the sequence SEVNL-DAEF [SEQ ID NO: 8], and the cleavage site is between residues 5 and 6. Another preferred substrate has the sequence ADRGLTTRPGSGLTNIKTEEISEVNL-DAEF [SEQ ID NO: 9], and the cleavage site is between residues 26 and 27.

These synthetic APP substrates are incubated in the presence of beta-secretase under conditions sufficient to result in beta-secretase mediated cleavage of the substrate. Comparison of the cleavage results in the presence of the compound inhibitor to control results provides a measure of the compound's inhibitory activity.

Example E

5

15

20

10 <u>Inhibition of Beta-Secretase Activity - Cellular Assay</u>

An exemplary assay for the analysis of inhibition of beta-secretase activity utilizes the human embryonic kidney cell line HEKp293 (ATCC Accession No. CRL-1573) transfected with APP751 containing the naturally occurring double mutation Lys651Met52 to Asn651Leu652 (numbered for APP751), commonly called the Swedish mutation and shown to overproduce A beta (Citron et.al., 1992, *Nature* 360:672-674), as described in USPN 5,604,102.

The cells are incubated in the presence/absence of the inhibitory compound (diluted in DMSO) at the desired concentration, generally up to 10 micrograms/ml. At the end of the treatment period, conditioned media is analyzed for beta-secretase activity, for example, by analysis of cleavage fragments. A beta can be analyzed by immunoassay, using specific detection antibodies. The enzymatic activity is measured in the presence and absence of the compound inhibitors to demonstrate specific inhibition of beta-secretase mediated cleavage of APP substrate.

Example F

25 <u>Inhibition of Beta-Secretase in Animal Models of AD</u>

Various animal models can be used to screen for inhibition of beta-secretase activity. Examples of animal models useful in the invention include, but are not limited to, mouse, guinea pig, dog, and the like. The animals used can be wild type, transgenic, or knockout models. In addition, mammalian models can express mutations in APP, such as APP695-SW and the like described herein. Examples of transgenic non-human mammalian models are described in U.S. Patent Nos. 5,604,102, 5,912,410 and 5,811,633.

PDAPP mice, prepared as described in Games et.al., 1995, *Nature* 373:523-527 are useful to analyze *in vivo* suppression of A beta release in the presence of putative inhibitory compounds. As described in USPN 6,191,166, 4 month old PDAPP mice are administered compound formulated in vehicle, such as corn oil. The mice are dosed with compound (1-30 mg/ml; preferably 1-10 mg/ml). After time, e.g., 3-10 hours, the animals are sacrificed, and brains removed for analysis.

Transgenic animals are administered an amount of the compound inhibitor formulated in a carrier suitable for the chosen mode of administration. Control animals are untreated, treated with vehicle, or treated with an inactive compound. Administration can be acute, i.e., single dose or multiple doses in one day, or can be chronic, i.e., dosing is repeated daily for a period of days. Beginning at time 0, brain tissue or cerebral fluid is obtained from selected animals and analyzed for the presence of APP cleavage peptides, including A beta, for example, by immunoassay using specific antibodies for A beta detection. At the end of the test period, animals are sacrificed and brain tissue or cerebral fluid is analyzed for the presence of A beta and/or beta-amyloid plaques. The tissue is also analyzed for necrosis.

Animals administered the compound inhibitors of the invention are expected to demonstrate reduced A beta in brain tissues or cerebral fluids and reduced beta amyloid plaques in brain tissue, as compared with non-treated controls.

20 Example G

5

10

15

Inhibition of A Beta Production in Human Patients

Patients suffering from Alzheimer's Disease (AD) demonstrate an increased amount of A beta in the brain. AD patients are administered an amount of the compound inhibitor formulated in a carrier suitable for the chosen mode of administration.

Administration is repeated daily for the duration of the test period. Beginning on day 0, cognitive and memory tests are performed, for example, once per month.

Patients administered the compound inhibitors are expected to demonstrate slowing or stabilization of disease progression as analyzed by changes in one or more of the following disease parameters: A beta present in CSF or plasma; brain or hippocampal volume; A beta deposits in the brain; amyloid plaque in the brain; and scores for cognitive and memory function, as compared with control, non-treated patients.

Example H

Prevention of A Beta Production in Patients at Risk for AD

Patients predisposed or at risk for developing AD are identified either by recognition of a familial inheritance pattern, for example, presence of the Swedish Mutation, and/or by monitoring diagnostic parameters. Patients identified as predisposed or at risk for developing AD are administered an amount of the compound inhibitor formulated in a carrier suitable for the chosen mode of administration. Administration is repeated daily for the duration of the test period. Beginning on day 0, cognitive and memory tests are performed, for example, once per month.

Patients administered the compound inhibitors are expected to demonstrate slowing or stabilization of disease progression as analyzed by changes in one or more of the following disease parameters: A beta present in CSF or plasma; brain or hippocampal volume; amyloid plaque in the brain; and scores for cognitive and memory function, as compared with control, non-treated patients.

It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.

Unless defined otherwise, all scientific and technical terms used herein have the same meaning as commonly understood by one of skill in the art to which this invention belongs.

All patents and publications referred to herein are hereby incorporated by reference for all purposes.

The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

5

10

15

WHAT IS CLAIMED IS:

1. A substituted aminoalcohol of formula (I):

$$R_1$$
 R_2 R_3 R_3 R_4 R_5 R_5 R_6 R_7 R_8

5

or pharmaceutically acceptable salt or ester thereof, wherein B is H, C_1 - C_{10} straight or branched chain alkyl; wherein R_{20} is H or C_{1-6} alkyl or alkenyl

wherein n is 0 or 1;

wherein R₁ is:

(I) C_1 - C_6 alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C \equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) -(CH₂)_{n1}-(R_{1-aryl}) where n₁ is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy,

- (B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (C) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (D) -F, Cl, -Br and -I,
 - (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
 - (G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- 15 (H) –OH,
 - (I) -C≡N,
 - (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 20 (K) -CO-(C₁-C₄ alkyl),
 - (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) -SO₂- $(C_1$ - C_4 alkyl),
 - (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_1 -
- 25 heteroaryl is selected from the group consisting of:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (F) benzothienyl,
- 30 (G) indolyl,
 - (H) indolinyl,
 - (I) pryidazinyl,
 - (J) pyrazinyl,

	(K) isoindolyl,
	(L) isoquinolyl,
	(M) quinazolinyl,
	(N) quinoxalinyl,
5	(O) phthalazinyl,
	(P) imidazolyl,
	(Q) isoxazolyl,
	(R) pyrazolyl,
	(S) oxazolyl,
10	(T) thiazolyl,
	(U) indolizinyl,
	(V) indazolyl,
	(W) benzothiazolyl,
	(X) benzimidazolyl,
15	(Y) benzofuranyl,
	(Z) furanyl,
	(AA) thienyl,
	(BB) pyrrolyi,
	(CC) oxadiazolyl,
20	(DD) thiadiazolyl,
	(EE) triazolyl,
	(FF) tetrazolyl,
	(II) oxazolopyridinyl,
	(JJ) imidazopyridinyl,
25	(KK) isothiazolyl,
	(LL) naphthyridinyl,
	(MM) cinnolinyl,
	(NN) carbazolyl,
	(OO) beta-carbolinyl,
30	(PP) isochromanyl,
	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
	(TT) isoindolinyl,

	(UU) isobenzotetrahydrofuranyl,
	(VV) isobenzotetrahydrothienyl,
	(WW) isobenzothienyl,
	(XX) benzoxazolyl,
5	(YY) pyridopyridinyl,
	(ZZ) benzotetrahydrofuranyl,
	(AAA) benzotetrahydrothienyl,
	(BBB) purinyl,
	(CCC) benzodioxolyl,
10	(DDD) triazinyl,
	(EEE) phenoxazinyl,
	(FFF) phenothiazinyl,
	(GGG) pteridinyl,
	(HHH) benzothiazolyl,
15	(III) imidazopyridinyl,
	(JJJ) imidazothiazolyl,
	(KKK) dihydrobenzisoxazinyl,
	(LLL) benzisoxazinyl,
	(MMM) benzoxazinyl,
20	(NNN) dihydrobenzisothiazinyl,
	(OOO)benzopyranyl,
	(PPP) benzothiopyranyl,
	(QQQ) coumarinyl,
	(RRR) isocoumarinyl,
25	(SSS) chromonyl,
	(TTT) chromanonyl, and
	(UUU) pyridinyl-N-oxide,
	where the $R_{1-heteroaryl}$ group is bonded to $-(CH_2)_{n1}$ - by any ring a
	harman a group current total by by dro con good that the annual

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{N\text{-}}$ heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

10

5

- (4) -F, Cl, -Br and –I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,
- (9) -C≡N,

15 (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (11) –CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, or
- (14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

25

20

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S.S-dioxide.
- (E) piperazinyl,

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,

5

- (J) piperidinyl,
- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
- (M) homopiperidinyl,
- (N) homomorpholinyl,
- (O) homothiomorpholinyl,
- (P) homomorpholinyl S-oxide,
- (Q) homothiomorpholinyl S,S-dioxide, and
- (R) oxazolidinonyl,
- where the R_{1-heterocycle} group is bonded by any atom of the parent R_{1-heterocycle} group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:
- (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy,
 - (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 25

20

- (4) -F, Cl, -Br and -I.
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
- (8) –OH,
- (9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO-(C₁-C₄ alkyl),

5

- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (14) –SO₂-(C₁-C₄ alkyl), or

10

(15) =0, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen; or

(IX) G-L-A-W-

where A is:

(I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl,

- dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally substituted with one or two of the following substituents on the ring:
 - (A) -NO₂,
 - (B) -C≡N,
 - (C) -N(R)CO(R') R, R'defined below

20

(D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

- (a) C₁-C₆ alkyl, and
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (E) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,

25

- (F) -O-(C2-C6 alkyl)-COOH,
- (G) –NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

- (I) -CH₂OH,
- (J) $-CO-(C_1-C_6)$ alkyl,
- (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl,- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,

- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M) -COOH,
- (N) - C_1 - C_6 alkyl,
- (O) -C₂-C₆ alkenyl with one or two double bonds, or
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent;

- (II) R _{1-heteroaryl} as defined above, where the R_{1-heteroaryl} group bonds to the subsistent W by a ring carbon atom, and where R _{1-heteroaryl} is optionally substituted with one, two, three, or four substituents independently chosen from the group consisting of:
 - (A) -NO₂,
 - (B) -C≡N,
- 15 (C) -N(R)CO(R') where R, R' are defined below,
 - (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting

of:

- (a) C₁-C₆ alkyl, and
- (b) -(CH_2)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

20

5

- (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (F) -O-(C2-C6 alkyl)-COOH,
- (G) –NRR' where R, R' are independently H, C_1 - C_6 alkyl, and- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) -SR where R and R_{1-aryl} are as defined above,

25

- (I) -CH₂OH,
- (J) –CO- $(C_1$ - $C_6)$ alkyl,
- (K) -CONRR' where R, R' and R_{1-aryl} are as defined above,
- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M) -COOH,

- (N) $-C_1-C_6$ alkyl,
- (O) -C2-C6 alkenyl with one or two double bonds, and
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedently chosen from the group consisting of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent, or

5

(III) R_{1-heterocycle} as defined above:

where the $R_{1\text{-heterocycle}}$ group bonds to the subsistent W by a ring carbon atom, and where R _{1-heteroaryl} is optionally substituted with one to two substituents independently chosen from the group consisting of

(1) = 0,

10

- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br or -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O CF_3$,

15

20

25

30

- $(7) NH_2,$
- (8) -OH, and
- (9) -C≡N,

and provided that G, L and W may not all be absent,

where W is $-S(O)_{0-2}$, -O-, -N-, or absent, and N is optionally substituted with C_1 - C_4 alkyl;

where L is -CO-, --S(O)₁₋₂-, -O-, -C(Ra)(Rb)O-, -OC(Ra)(Rb)-, -N(Ra)-, -CON(Ra)-, -N(Ra)CO-, -C(Ra)(Rb)-, -C(OH)Ra-, -SO₂NRa-, -N(Ra)SO₂-, -N(Ra)CON(Rb)-, N(Ra)CSN(Rb)-, -OCOO-, -NCOO-, OCON(Ra)-, a bond, or L is absent when G is absent, and where Ra and Rb are independently H, C₁-C₄ alkyl which are optionally substituted. with OH, C₁-C₄ alkoxy, and up to five -F;

where G is:

(I)-C₁-C₁₀ alkyl optionally substituted with one substituent selected from the group consisting of:

- (A) -COOH,
- (B) -CO-O-(C₁-C₄ alkyl),
 - (C) C_1 - C_6 alkoxy,
 - (D) -OH,
 - (E) -NH₂,

(F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, 5 (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) -R_{1-aryl} where R_{1-aryl} is as defined above, (L) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above, (II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be optionally 10 substituted with one, two or three substituents selected from the group consisting of: (A) -COOH, (B) $-CO-O-(C_1-C_4 \text{ alkyl})$, (C) C_1 - C_6 alkoxy, (D) -OH, 15 (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, (I) -C2-C10 alkynyl with one or two triple bonds, 20 (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) $-R_{1-aryl}$ where R_{1-aryl} is as defined above. (L) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above, (III) -(CR'R")0-4-R1-aryl where R', R" and R1-aryl are as defined above, 25 (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of: (A) -H,30 (B) $-C_1-C_6$ alkyl, (C) -(C_0 - C_4 alkyl)- R_{1-aryl} , wherein R_{1-aryl} is as defined above, (D) -(C0-C4 alkyl)-R1-heteroaryl, wherein $R_{1\text{-heteroaryl}}$ is as defined above,

(E) -(C₀-C₄ alkyl)-R_{1-heterocycle}, wherein R_{1-heterocycle} is as defined above, $(F) - (CH_2)_{1-4} - OH$ (G) -(CH₂)₁₋₄- R_{C-4} -(CH₂)₁₋₄- $R_{C'-aryl}$ where R_{C-4} is -O-, -S- or 5 (H) -NR_{C-5}- where R_{C-5} is - or C₁-C₆ alkyl, and where R_{C'-aryl} is defined above, and (I) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C-heteroaryl}$ where R_{C-4} and $R_{C-heteroaryl}$ are as defined above, wherein in (C), (D) and (E) C_0 is merely a bond, and where R_{C-3} is: 10 (a) -H, (b) $-C_1-C_6$ alkyl, (c) -(C_0 - C_4 alkyl)- $R_{1\text{-aryl}}$ where $R_{1\text{-aryl}}$ is as defined above, (d) -(C₀-C₄ alkyl)-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, 15 (e) -(C_0 - C_4 alkyl)- R_{1 -heterocycle where R_{1 -heterocycle is as defined above, (VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted with one, two or three of: 20 (E) C_1 - C_6 alkyl, (B) – CF_3 , (C) -F, Cl, -Br and -I, (D) C_1 - C_3 alkoxy, (E) -OCF₃, 25 (F) -NH₂, (G) -OH, (H) -C≡N, (I) -NO₂(J) -CO-OH, 30 (K) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C₁-C₆ alkyl, and

(b) -(C_0 - C_2 alkyl)-(R_{1-aryl}) where R_{1-aryl} is as defined above,

5

10

- (L) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (M) -O-(C₂-C₅ alkyl)-COOH, or
- (N) -OR where R is as defined above,
- (O)-NR-R' where R and R' are as defined above,
- (P) -SR where R is as defined above,
- (Q) - CF_{3}
- (R) -OCF₃.
- (S) -N(R)COR' where R, R' are as defined above,
- (T)-NRR' where R, R' are as defined above,
- (U) -SR where R is as defined above,
- (V) -CH₂OH,
- (W) –CO- $(C_1$ - $C_6)$ alkyl,
- (X) -CONRR' where R, R' are as defined above, or
- (Y) -SO₂NRR' where R is as defined above, or

15 $(VIII) - (CH_2)_2 - O - (CH_2)_2 - OH;$

wherein R₂ is selected from the group consisting of:

(I)-H,

- (II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,
- -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above;
 - (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -
- SH, $-C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,
 - (V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $C \equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and
- (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or
 three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃,
 C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;
 wherein R₃ is selected from the group consisting of:

(I)-H

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

- -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R₁₋
- 5 heteroaryl are as defined above;
 - (IV) C2-C6 alkenyl with one or two double bonds,
 - (V) C₂-C₆ alkynyl with one or two triple bonds, and
 - $(VI) (CH_2)_{0-4} C_3 C_7 \ cycloalkyl, \ optionally \ substituted \ with \ one, \ two \ or$ three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃,
- 10 C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, and where R₂ and R₃ are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six and seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, -NR_{N-2}-, where R_{N-2} is as defined below; and
- 15 wherein R_C is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and $-S(=O)_2$ NR₂₃₅R₂₄₀; $-(CH_2)_{0-3}$ - $-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group 20 consisting of R_{205} , - CO_2H , and - CO_2 -(C_1 - C_4 alkyl); -($CR_{245}R_{250}$)₀₋₄-aryl; $-(CR_{245}R_{250})_{0-4}$ -heteroaryl, $-(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl; $-(CR_{245}R_{250})_{0-4}$ -arylheteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; 25 -($CR_{245}R_{250}$)₀₋₄-heterocycloalkyl-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $(R_{255})_2$; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl,
 - cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R₂₀₅, =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl

optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)- $(CH_2)_{0-1}$ -aryl; - $(CH_2)_{0-1}$ -CH $((CH_2)_{0-6}$ -OH- $(CH_2)_{0-1}$ -heteroaryl; -CH(-aryl or heteroaryl)-CO-O(C_1 - C_4 alkyl); -CH(-CH₂-OH)-CH(OH)-phenyl-NO₂; (C_1 - C_6 alkyl)-O-(C_1 - C_6 alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)_{2;} -H; and -(CH₂)₀₋₆-5 $C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-10 C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; $-CO_2H$; $C\equiv N$; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12})_{0-4}$ alkyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl); - $(CH_2)_{0-4}$ -CO- $(C_3$ -C7 cycloalkyl); - $(CH_2)_{0-4}$ -CO-aryl; - $(CH_2)_{0-4}$ -COheteroaryl; -(CH₂)₀₋₄-CO-heterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-CO-O-CO-R₂₁₅; -(CH₂)₀₋₄-CO-O-CO-R₂ 15 $SO_2-NR_{220}R_{225};$ -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})₂; -(CH_2)₀₋₄-N-CS-N(R_{215})₂; -(CH_2)₀₋₄-N(-H or R_{215})-CO- R_{220} ; -(CH₂)₀₋₄-NR₂₂₀ R_{225} ; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₂ 20 ${\rm CS-N}(R_{215})_2; \ -({\rm CH_2})_{0\text{-}4} - {\rm O-}(R_{215}); \ -({\rm CH_2})_{0\text{-}4} - {\rm O-}(R_{215}) - {\rm COOH}; \ -({\rm CH_2})_{0\text{-}4} - {\rm S-}({\rm CH_2})_{0\text{-}4} - {\rm O-}(R_{215}) - {\rm COOH}; \ -({\rm CH_2})_{0\text{-}4} - {$ (R₂₁₅); -(CH₂)₀₋₄-O-(C₁-C₆ alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C2-C6 alkynyl optionally substituted with 1 or 2 R205 groups; - $(CH_2)_{0-4}$ -N(H or R_{215})-SO₂- R_{220} ; and - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl; 25 wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R_{210} ; wherein each heterocycloalkyl group at each occurrence is optionally 30 substituted with 1, 2, or 3 groups that are independently R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted

with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6

alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

 R_{210} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; halogen; C_1 - C_6 alkoxy; C_1 - C_6 haloalkoxy; -NR₂₂₀R₂₂₅; OH; $C \equiv N$; C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -CO-(C_1 - C_4 alkyl); C_1 - C_5 alkyl); C_2 - C_5 - C_7 -

R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and -(CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

136

BNSDOCID: <WO____

_02100820A1_t_>

5

10

15

20

25

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

R₂₄₅ and R₂₅₀ are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-;

 R_{255} and R_{260} at each occurrence are independently selected from the group 10 consisting of H; C1-C6 alkyl optionally substituted with 1, 2, or 3 R205 groups; C2-C6 alkenyl optionally substituted with 1, 2, or 3 R205 groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; -(CH₂)₁₋₂- $S(O)_{0-2}$ - $(C_1$ - C_6 alkyl); - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; 15 -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; $_{-}(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}$ -aryl; $_{-}(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}$ -heteroaryl; and; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein R_{265} at each occurrence is independently -O-, -S- or -N(C_1 - C_6 alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are 20 independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

2. A compound according to claim 1, wherein R₁ is G-L-A-E-W-, wherein E is a bond or C₁-C₃ alkylene;
A is:

(I) aryl or cycloalkyl where each aryl or cycloalkyl is optionally substituted with one, two or three independently selected R_{100} groups, where R_{100} is (A)-NO₂,

(B) -C≡N.

(C) -N(R)CO(R')R, where R and R' are independently hydrogen, C_1 - C_6 alkyl, or -(CH₂)₀₋₂-aryl or -(CH₂)₀₋₂-cycloalkyl, where each aryl or cycloalkyl is

optionally substituted with halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino, mono(C_1 - C_6)alkylamino, or di(C_1 - C_6)alkylamino,

(D) -CO₂-R₂₅, where R₂₅ is selected from the group consisting of:

(a) C₁-C₆ alkyl,

(b) -(CH₂)₀₋₂-cycloalkyl,

(c) -(CH₂)₀₋₂-aryl, where the aryl is optionally substituted with halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, amino, mono(C_1 - C_6)alkylamino, or di(C_1 - C_6)alkylamino, and

(d) hydrogen,

10

5

- (E) $-NH-CO_2-R_{25}$,
- (F) $-O-(C_2-C_6 \text{ alkyl})-CO_2H$,
- (G) -NRR',
- (H)-SR,
- (I) -CH₂OH,

15

- $(J) C(O) (C_1 C_6)$ alkyl,
- (K)-C(O)NRR',
- (L) -SO2NRR'
- (M) - CO_2H ,

(N) C₁-C₆ alkyl, C₁-C₆ alkenyl with one or two double bonds, -C₁-

C₆ alkynyl with one or two triple bonds, -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkoxy, -OCF₃, -NH₂, -OH, or -CN,

- (O) halogen, and
- $(P) (CH_2)_{0-2} O (CH_2)_{0-2} OH;$

(II) heteroaryl, provided that, when E is a bond, the heteroaryl group is bonded through one of its carbon atoms to W, and where the heteroaryl is optionally substituted with one or two independently selected R₁₀₀ groups;

(III) heterocycle, provided that, when E is a bond, the heterocycle group is bonded through one of its carbon atoms to W, where the heterocycle is optionally substituted with one or two independently selected R_{200} groups, where R_{200} is

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,

```
(5) C_1-C_3 alkoxy,
```

- (6) –OCF₃,
- $(7) NH_2,$
- (8) -OH, or

(9) -C≡N;

5

W is a bond, -S-, -S(O)-, -SO₂-, -O-, -N(R)- where R is hydrogen or C_1 - C_4 alkyl; L is a bond or absent when G is absent, or L is -C(O)-, -S(O)-, -SO₂-, -O-, -C(R₁₁₀)(R₁₁₂)O-, -OC(R₁₁₀)(R₁₁₂)-, -N(R₁₁₀)-, -CON(R₁₁₀)-, -N(R₁₁₀)CO-, -C(R₁₁₀)(R')-, -C(OH)R₁₁₀-, -SO₂NR₁₁₀-, -N(R₁₁₀)SO₂-, -N(R₁₁₀)CON(R₁₁₂)-, N(R₁₁₀)CSN(R₁₁₂)-, -

OCO₂-, -NCO₂-, or -OCON(R₁₁₀)-, where R₁₁₀ and R₁₁₂ are independently hydrogen, or C₁-C₄ alkyl, where C₁-C₄ alkyl is optionally substituted with OH, C₁-C₄ alkoxy, or one to five F;

G is absent or:

(I) C₁-C₁₀ alkyl, optionally substituted with up to three groups independently selected from

- (A) - CO_2H ,
- (B) $-CO_2(C_1-C_4 \text{ alkyl})$,
- (C) C_1 - C_6 alkoxy,
- (D) -OH,

20

25

30

15

- (E) -NRR',
- (F) - C_1 - C_6 haloalkyl,
- (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (H) $-C_1-C_{10}$ alkenyl with one or two double bonds,
- (I) $-C_1-C_{10}$ alkynyl with one or two triple bonds,
- (J) $-C_1-C_{10}$ alkyl chain with one double bond and one triple bond,
 - (K) aryl optionally substituted with R_{100} ,
 - (L) heteroaryl optionally substituted with R_{100} ,
 - (M) C_1 - C_6 alkyl,

(II) - $(CH_2)_{0-3}$ - (C_3-C_7) cycloalkyl where cycloalkyl is optionally substituted with one, two or three substituents selected from the group consisting of:

- (A) – CO_2H ,
- (B) $-CO_2$ -(C_1 - C_4 alkyl),
- (C) C₁-C₆ alkoxy,

- (D) -OH,
- (E) -NH₂,
- (F) -C₁-C₆ haloalkyl,
- (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$,
- (H) $-C_1-C_{10}$ alkenyl with one or two double bonds,
- (I) -C₁-C₁₀ alkynyl with one or two triple bonds,
- (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond,
- (K) aryl optionally substituted with R_{100} ,
- (L) heteroaryl optionally substituted with R₁₀₀,
- (m) mono(C₁-C₆ alkyl)amino, and
 - (n) di(C₁-C₆ alkyl) amino,
 - (o) C₁-C₆ alkyl,
- (III) -(CRR)₀₋₄-aryl where aryl is optionally substituted with R₁₀₀,
- (IV) -(CH_2)₀₋₄-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (V) - $(CH_2)_{0-4}$ -heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - (VI) -C(R₁₀)(R₁₂)-CO-NH-R₁₄ where

 R_{10} and R_{12} are the same or different and are selected from the

20 group consisting of:

5

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- (C) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- 25 (D) -(C_1 - C_4 alkyl)- heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (E) -(C_1 - C_4 alkyl)- heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
- (F) heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (G) heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - (H) – $(CH_2)_{1-4}$ -OH,

5

20

25

(I) $-(CH_2)_{1-4}-Y-(CH_2)_{1-4}$ -aryl where Y is $-O_{-}$, $-S_{-}$ or

 $-NR_{C-5}$ - where R_{16} is hydrogen or C_1 - C_6 alkyl, and where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,

(J) - $(CH_2)_{1-4}$ -Y- $(CH_2)_{1-4}$ - heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups, and

(K) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups, and

R₁₄ is:

(A) -H,

10 (B) $-C_1-C_6$ alkyl,

- (C) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (D) -heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (E) -heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - (F) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (G) -(C_1 - C_4 alkyl)-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (H) -(C_1 - C_4 alkyl)-heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups, or
 - (I) –(CH₂)₀₋₂-O-(CH₂)₀₋₂-OH; R_4 and R_5 are independently hydrogen, halogen, C_1 - C_6 alkoxy or C_1 - C_4 alkyl.

3. A compound according to claim 1, wherein R_1 is -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl), or

C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C≡N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino, -OC(=O)-amino, -amino-C(=O)O-, and -OC(=O)-mono- or dialkylamino, or C₁-C₁₀ alkyl optionally substituted -C₁-C₃ alkoxy, or

 C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, amino, and mono- or dialkylamino, or

- aryl, heteroaryl, heterocyclyl, -C₁-C₆ alkyl-aryl, -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, -C≡N, -NR₇R'₇, -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO₂-(C₁-C₄) alkyl, or
- -C₁-C₆ alkoxy optionally substituted with 1, 2, or 3 groups which are independently a halogen, or
 - C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino, or
- 15 C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C \equiv N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino and -C₁-C₃ alkyl, or
 - C₂-C₆ alkenyl, alk(di)enyl, C₂-C₆ alkynyl or alk(di)ynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.
 - 4. A compound according to claim 1, wherein R_1 is:
- 25 (I) C₁-C₆ alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C₁-C₃ alkyl, C₁-C₇ alkyl (optionally substituted with C₁-C₃ alkyl and C₁-C₃ alkoxy), −F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 30 (II) -CH₂-S(O)₀₋₂-(C₁-C₆ alkyl), (III) -CH₂-CH₂-S(O)₀₋₂-(C₁-C₆ alkyl),

5

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C \equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) -(CH₂)_{n1}-(R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

- (A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy,
- (B) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (D) -C1, -Br and -I,
 - (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
 - (G) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
 - (H) -OH,
- 25 (I) -C≡N,
 - (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (K) $-CO-(C_1-C_4 \text{ alkyl})$,
 - (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) $-SO_2$ -(C₁-C₄ alkyl),

30

5

5

 $\label{eq:charge} \mbox{(VII) -(CH$_2$)$_{n1}$-(R$_{1$-heteroaryl}) where n_1 is as defined above and where R_{1$-heteroaryl}$ is selected from the group consisting of:$

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
 - (F) benzothienyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pryidazinyl,
- 10 (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
- (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,
- 20 (T) thiazolyl,
 - (U) indolizinyl,
 - (V) indazolyl,
 - (W) benzothiazolyl,
 - (X) benzimidazolyl,
- 25 (Y) benzofuranyl,
 - (Z) furanyl,
 - (AA) thienyl,
 - (BB) pyrrolyl,
 - (CC) oxadiazolyl,
- 30 (DD) thiadiazolyl,
 - (EE) triazolyl,
 - (FF) tetrazolyl,
 - (II) oxazolopyridinyl,

	(JJ) imidazopyridinyl,
	(KK) isothiazolyl,
	(LL) naphthyridinyl,
	(MM) cinnolinyl,
5	(NN) carbazolyl,
	(OO) beta-carbolinyl,
	(PP) isochromanyl,
	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
10 ,	(TT) isoindolinyl,
	(UU) isobenzotetrahydrofuranyl,
	(VV) isobenzotetrahydrothienyl,
	(WW) isobenzothienyl,
	(XX) benzoxazolyl,
15	(YY) pyridopyridinyl,
	(ZZ) benzotetrahydrofuranyl,
	(AAA) benzotetrahydrothienyl,
	(BBB) purinyl,
	(CCC) benzodioxolyl,
20	(DDD) triazinyl,
	(EEE) phenoxazinyl,
	(FFF) phenothiazinyl,
	(GGG) pteridinyl,
	(HHH) benzothiazolyl,
25	(III) imidazopyridinyl,
	(JJJ) imidazothiazolyl,
	(KKK) dihydrobenzisoxazinyl,
	(LLL) benzisoxazinyl,
	(MMM) benzoxazinyl,
30	(NNN) dihydrobenzisothiazinyl,
	(OOO)benzopyranyl,
	(PPP) benzothiopyranyl,
	(QQQ) coumarinyl,

(RRR) isocoumarinyl,

(SSS) chromonyl,

(TTT) chromanonyl, and

(UUU) pyridinyl-N-oxide,

where the R_{1-heteroaryl} group is bonded to -(CH₂)_{n1}- by any ring atom of the parent R_{N-heteroaryl} group substituted by hydrogen such that the new bond to the R_{1-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C₁-C₆ alkyl optionally substituted with one, two or three
 substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
 -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C≡N, -CF₃, C₁-C₃ alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 - C_2 - C_3 - C_4 - C_5 - C_6

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

20

15

- (4) -F, Cl, -Br and -I,
- (6) $-C_1-C_6$ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,
- (9) -C≡N,

25

30

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (11) –CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
- (14) $-SO_2$ -(C₁-C₄ alkyl), with the proviso that when n_1 is zero R_1 .

heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- 10 (H) pyrrolinyl,

5

15

- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
- (M) homopiperidinyl,
- (N) homomorpholinyl,
- (O) homothiomorpholinyl,
- (P) homomorpholinyl S-oxide,
- (Q) homothiomorpholinyl S,S-dioxide, and
- 20 (R) oxazolidinonyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:

25 (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) –OH,
- (9) -C≡N,
- 10 (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (14) –SO₂-(C₁-C₄ alkyl), or
 - (15) =0, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen; or

(IX) G-L-A-W-

where A is:

(I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally substituted with one or two of the following substituents on the ring:

- (A) -NO₂,
- (B) -C≡N,
- (C) -N(R)CO(R') R, R'defined below
- (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting

30 of:

5

15

20

25

- (a) C₁-C₆ alkyl, and
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,
- (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,

(F) -O-(C₂-C₆ alkyl)-COOH,

(G) –NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

- (H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (I) -CH₂OH,
 - (J) –CO- $(C_1$ - $C_6)$ alkyl,
- (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl,- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,

10 (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,

(M) -COOH,

(N) $-C_1-C_6$ alkyl,

- (O) -C₂-C₆ alkenyl with one or two double bonds, or
- (P) -C₂-C₆ alkynyl with one or two triple bonds,
- wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent;
 - (II) R_{1-heteroaryl} as defined above, where the R_{1-heteroaryl} group bonds to the subsistent W by a ring carbon atom, and where R_{1-heteroaryl} is optionally substituted with one, two, three, or four substituents independently chosen from the group consisting of:
 - (A) -NO₂,
 - (B) -C≡N,
 - (C) -N(R)CO(R') where R, R' are defined below,
- 25 (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting of:
 - (a) C_1 - C_6 alkyl, and
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,
 - (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- 30 (F) -O-(C₂-C₆ alkyl)-COOH,
 - (G) –NRR' where R, R' are independently H, C_1 - C_6 alkyl, and- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) –SR where R and R_{1-aryl} are as defined above,

5

- (I) -CH₂OH,
- (J) $-CO-(C_1-C_6)$ alkyl,
- (K) -CONRR' where R, R' and R_{1-arvl} are as defined above,
- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M)-COOH,
- (N) $-C_1-C_6$ alkyl,
- (O) -C2-C6 alkenyl with one or two double bonds, and
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by

one to three substituent indepedently chosen from the group consisting of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent, or

(III) $R_{1-heterocycle}$ as defined above:

where the R_{1-heterocycle} group bonds to the subsistent W by a ring carbon atom, and
where R _{1-heteroaryl} is optionally substituted with one to two substituents independently
chosen from the group consisting of

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br or -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O-CF_3$,
- $(7) NH_2$
- (8) -OH, and

25 (9) -C≡N,

and provided that G, L and W may not all be absent,

where W is $-S(O)_{0-2}$ -, -O-, -N-, or absent, and N is optionally substituted with C_1 - C_4 alkyl;

where L is -CO-, --S(O)₁₋₂-, -O-, -C(Ra)(Rb)O-, -OC(Ra)(Rb)-, -N(Ra)-, -

CON(Ra)-, -N(Ra)CO-, -C(Ra)(Rb)-,-C(OH)Ra-, -SO₂NRa-, -N(Ra)SO₂-, -N(Ra)CON(Rb)-, N(Ra)CSN(Rb)-, -OCOO-, -NCOO-, OCON(Ra)-, a bond, or L is absent when G is absent, and where Ra and Rb are independently H, C₁-C₄ alkyl which are optionally substituted. with OH, C₁-C₄ alkoxy, and up to five -F;

5

where G is:

(I)- C_1 - C_{10} alkyl optionally substituted with one substituent selected from the group consisting of:

(A) -COOH,

5

- (B) -CO-O-(C_1 - C_4 alkyl),
- (C) C_1 - C_6 alkoxy,
- (D) -OH,
- (E) -NH₂,
- (F) -C₁-C₆ alkyl optionally substituted with one to five -F

10

- (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$,
- (H) -C₂-C₁₀ alkenyl with one or two double bonds,
- (I) -C₂-C₁₀ alkynyl with one or two triple bonds,
- (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple

bond,

- (K) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (L) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of:

(A) -COOH,

20

15

- (B) -CO-O-(C_1 - C_4 alkyl),
- (C) C_1 - C_6 alkoxy,
- (D) -OH,
- (E) -NH₂,
- (F) -C₁-C₆ alkyl optionally substituted with one to five -F

25

- (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (H) -C2-C10 alkenyl with one or two double bonds,
- (I) -C₂-C₁₀ alkynyl with one or two triple bonds,
- (J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple

bond,

- (K) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (III) -(CR'R")₀₋₄-R_{1-aryl} where R', R" and R_{1-aryl} are as defined above,
- (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,

(V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of:

(A) - H,

5

20

- (B) $-C_1-C_6$ alkyl,
- (C) -(C_0 - C_4 alkyl)- R_{1 -aryl, wherein R_{1} -aryl is as defined above,
- (D) -(C₀-C₄ alkyl)-R_{1-heteroaryl,} wherein R_{1-heteroaryl} is as defined

above,

(E) -(C₀-C₄ alkyl)-R_{1-heterocycle}, wherein R_{1-heterocycle} is as defined

10 above,

- $(F) (CH_2)_{1-4} OH,$
- (G) -(CH₂)₁₋₄- R_{C-4} -(CH₂)₁₋₄- $R_{C'-aryl}$ where R_{C-4} is -O-, -S- or
- (H) $-NR_{C-5}$ where R_{C-5} is or C_1 - C_6 alkyl, and where $R_{C'-aryl}$ is

defined above, and

15

(I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are

as defined above, wherein in (C), (D) and (E) C_0 is merely a bond, and where R_{C-3} is:

- (a) -H,
- (b) $-C_1-C_6$ alkyl,

(b) -C1-C6 aikyi,

- (c) -(C_0 - C_4 alkyl)- R_{1-aryl} where R_{1-aryl} is as defined above,
- (d) -(C_0 - C_4 alkyl)- R_1 -heteroaryl where R_1 -heteroaryl is as defined above,
- (e) -(C_0 - C_4 alkyl)- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,

(VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted with one, two or three of:

- (F) C₁-C₆ alkyl,
- (B) – CF_3 ,

(C) -F, Cl, -Br and -I,

- (D) C_1 - C_3 alkoxy,
- (E) -OCF₃,
- (F) -NH₂,

152

- (G) -OH, (H) -C≡N, (I) -NO₂(J) -CO-OH, 5 (K) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C₁-C₆ alkyl, and (b) $-(C_0-C_2 \text{ alkyl})-(R_{1-\text{aryl}})$ where $R_{1-\text{aryl}}$ is as defined above, (L) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above, 10 (M) -O- $(C_2$ - C_5 alkyl)-COOH, or (N) -OR where R is as defined above, (O)-NR-R' where R and R' are as defined above, (P) -SR where R is as defined above. (Q) - CF_{3} 15 (R) -OCF₃ (S) -N(R)COR' where R, R' are as defined above, (T) -NRR' where R, R' are as defined above, (U) -SR where R is as defined above, (V) -CH₂OH, 20 (W) $-CO-(C_1-C_6)$ alkyl, (X) -CONRR' where R, R' are as defined above, or (Y) -SO2NRR' where R is as defined above, or
- 5. A compound according to claim 1, wherein Rc is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₁₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄

 $(VIII) - (CH_2)_2 - O - (CH_2)_2 - OH$

heterocycloalkyl; $-(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $(R_{255})_2$; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced 5 with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R_{205} , =0, -CO-NR₂₃₅ R_{240} , or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; $-(CH_2)_{0-1}$ -CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; $-(CH_2)_{0-1}$ -CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-10 heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)phenyl-NO₂; (C_1 - C_6 alkyl)-O-(C_1 - C_6 alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂: -H; and $-(CH_2)_{0-6}-C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; 15 R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; - CO_2H ; C = N; $-(CH_2)_{0-4}$ $-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}$ $-CO-(C_1-C_{12} \text{ alkyl})$; $-(CH_2)_{0-4}$ CO-(C2-C12 alkenyl); -(CH2)0-4-CO-(C2-C12 alkynyl); -(CH2)0-4-CO-(C3-C7 20 cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-CO-heteroaryl; -(CH₂)₀₋₄-COheterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO- $(C_1-C_8 \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl}); (CH_2)_{0-4}$ -N(H or R_{215})-CO-O- R_{215} ; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})₂; - $(CH_2)_{0-4}$ -N-CS-N(R_{215})₂; -(CH₂)₀₋₄-N(-H or R_{215})-CO- R_{220} ; -(CH₂)₀₋₄-NR₂₂₀ R_{225} ; -(CH₂)₀₋₄-25 O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; - $(CH_2)_{0-4}$ -O-CS-N(R₂₁₅)₂; - $(CH_2)_{0-4}$ -O-(R₂₁₅); - $(CH_2)_{0-4}$ -O-(R₂₁₅)-COOH; - $(CH_2)_{0-4}$ -S- (R_{215}) ; - $(CH_2)_{0-4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C_3 -C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)-30 SO_2 - R_{220} ; and -(CH₂)₀₋₄- C_3 - C_7 cycloalkyl; wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1,

2, or 3 groups that are independently R_{205} or R_{210} ;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₁₀;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

R₂₁₀ at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C_1 - C_6 alkoxy; C_1 - C_6 haloalkoxy; -NR₂₂₀R₂₂₅; OH; C_1 - C_2 cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C_1 - C_4 alkyl); C_1 - C_2 - C_3 - C_4 - C_4 - C_5 - C_5 - C_5 - C_5 - C_6 - C_6 - C_7 - $C_$

15 R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and - (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

 R_{220} and R_{225} at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

30

25

5

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-; R_{255} and R_{260} at each occurrence are independently selected from the group consisting of

H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; and; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein

R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

6. A compound according to claim 1, wherein Rc is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₂₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-

5

10

15

20

25

heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkylheterocycloalkyl; $-(CR_{245}R_{250})_{0-4}$ -heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $-(R_{255})_{2}$; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl 5 wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R_{205} , =0, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ 10 groups; $-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-aryl; -(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-6}-OH-(CH_2)_{0-6}-O$ heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂: -H; and -(CH₂)₀₋₆-C(=NR₂₃₅)(NR₂₃₅R₂₄₀); wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; 15 each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; - CO_2H ; $C\equiv N$; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$; $-(CH_2)_{0-4}-CO-(C_1-C_1 \text{$ 20 $CO-(C_2-C_{12} \text{ alkenyl}); -(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkynyl}); -(CH_2)_{0-4}-CO-(C_3-C_7)$ cycloalkyl); $-(CH_2)_{0-4}$ -CO-aryl; $-(CH_2)_{0-4}$ -CO-heteroaryl; $-(CH_2)_{0-4}$ -COheterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO- $(C_1-C_8 \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl}); -(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl});$ $(CH_2)_{0-4}$ -N(H or R_{215})-CO-O- R_{215} ; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})2; - $(CH_2)_{0-4}$ -25 N-CS-N(R_{215})₂; -(CH₂)₀₋₄-N(-H or R_{215})-CO- R_{220} ; -(CH₂)₀₋₄-NR₂₂₀ R_{225} : -(CH₂)₀₋₄-O-CO-(C_1 - C_6 alkyl); -(CH_2)₀₋₄-O-P(O)-(OR_{240})₂; -(CH_2)₀₋₄-O-CO-N(R_{215})₂: - $(CH_2)_{0-4}$ -O-CS-N(R₂₁₅)₂; - $(CH_2)_{0-4}$ -O-(R₂₁₅); - $(CH_2)_{0-4}$ -O-(R₂₁₅)-COOH; - $(CH_2)_{0-4}$ -S- (R_{215}) ; - $(CH_2)_{0-4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C_3 -C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆ 30 alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)- SO_2-R_{220} ; and $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl;

wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

R₂₁₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; -NR₂₂₀R₂₂₅; OH; C≡N; C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C₁-C₄ alkyl); _SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C₁-C₄ alkyl); and =O;

R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃.C₇ cycloalkyl, and - (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

 R_{220} and R_{225} at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl; wherein the aryl group at each occurrence is optionally substituted

with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

30

25

5

10

15

wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

- R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;
 R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or
- R₂₄₅ and R₂₅₀ are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-; R₂₅₅ and R₂₆₀ at each occurrence are independently selected from the group consisting of

H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-aryl; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-;

each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

7. A substituted aminoalcohol of formula (I):

30

15

20

$$R_{1}$$
 R_{20}
 R_{1}
 R_{2}
 R_{3}

or a pharmaceutically acceptable salt or ester thereof, wherein B is H or C_1 - C_{10} straight or branched chain alkyl; R_{20} , R_2 and R_3 are H; n is 0; R_1 is 3,5-difluorophenyl; and Rc is

5

where R is a C₁-C₄ straight or branched chain alkyl group, optionally substituted with – OB or –SO₂B.

8. A method of treating a patient who has, or in preventing a patient from 10 getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the 15 Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of 20 Alzheimer's disease and who is in need of such treatment which comprises administration of a therapeutically effective amount of a compound selected from the group consisting of a substituted aminoalcohol of the formula (I):

or pharmaceutically acceptable salt or ester thereof, wherein B is H, C₁-C₁₀ straight or branched chain alkyl;

5 wherein R_{20} is H or C_{1-6} alkyl or alkenyl wherein n is 0 or 1; wherein R_1 is:

(I) C₁-C₆ alkyl, optionally substituted with one, two or three substit uents selected from the group consisting of C₁-C₃ alkyl, C₁-C₇ alkyl (optionally substituted with C₁-C₃ alkyl and C₁-C₃ alkoxy), -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, -OC≡O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(TV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy,

(B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

15

20

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (D) -F, Cl, -Br and -I,
 - (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
 - (G) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
- 10 (H) –OH,

- (I) -C≡N,
- (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
- 15 (K) –CO- $(C_1$ - C_4 alkyl),
 - (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
 - (N) – SO_2 - $(C_1$ - C_4 alkyl),
 - (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-}
- 20 heteroaryl is selected from the group consisting of:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (F) benzothienyl,
- 25 (G) indolyl,
 - (H) indolinyl,
 - (I) pryidazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
- 30 (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,

	(P) imidazolyl,
	(Q) isoxazolyl,
	(R) pyrazolyl,
	(S) oxazolyl,
5	(T) thiazolyl,
	(U) indolizinyl,
	(V) indazolyl,
	(W) benzothiazolyl,
	(X) benzimidazolyl,
10	(Y) benzofuranyl,
	(Z) furanyl,
	(AA) thienyl,
	(BB) pyrrolyl,
	(CC) oxadiazolyl,
15	(DD) thiadiazolyl,
	(EE) triazolyl,
	(FF) tetrazolyl,
	(II) oxazolopyridinyl,
	(JJ) imidazopyridinyl,
20	(KK) isothiazolyl,
	(LL) naphthyridinyl,
	(MM) cinnolinyl,
	(NN) carbazolyl,
	(OO) beta-carbolinyl,
25	(PP) isochromanyl,
	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
	(TT) isoindolinyl,
	(UU) isobenzotetrahydrofuranyl,
30	(VV) isobenzotetrahydrothienyl,
	(WW) isobenzothienyl,
	(XX) benzoxazolyl,
	(YY) pyridopyridinyl,

(ZZ) benzotetrahydrofuranyl, (AAA) benzotetrahydrothienyl, (BBB) purinyl, (CCC) benzodioxolyl, 5 (DDD) triazinyl, (EEE) phenoxazinyl, (FFF) phenothiazinyl, (GGG) pteridinyl, (HHH) benzothiazolyl, 10 (III) imidazopyridinyl, (JJJ) imidazothiazolyl, (KKK) dihydrobenzisoxazinyl, (LLL) benzisoxazinyl, (MMM) benzoxazinyl, 15 (NNN) dihydrobenzisothiazinyl, (OOO)benzopyranyl, (PPP) benzothiopyranyl, (QQQ) coumarinyl, (RRR) isocoumarinyl, 20 (SSS) chromonyl, (TTT) chromanonyl, and (UUU) pyridinyl-N-oxide, 25 one, two, three or four of:

where the $R_{1-heteroaryl}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent R_{N-} heteroaryl group substituted by hydrogen such that the new bond to the R_{1-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with

(1) C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,

(2) C2-C6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

5

- (4) -F, Cl, -Br and -I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,
- (9) -C≡N,

10

- (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
- (14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 .

 heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

20

15

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,

25

- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,

- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
- (M) homopiperidinyl,
- (N) homomorpholinyl,

- (O) homothiomorpholinyl,
- (P) homomorpholinyl S-oxide,
- (Q) homothiomorpholinyl S,S-dioxide, and
- (R) oxazolidinonyl,
- where the R_{1-heterocycle} group is bonded by any atom of the parent R_{1-heterocycle} group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four of:
- (1) C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C≡N, -CF₃, C₁-C₃ alkoxy,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

20

15

- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

25

- (8) –OH,
- (9) -C≡N,
- (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (11) –CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, (14) –SO₂- $(C_1$ - C_4 alkyl), or (15) =0, with the proviso that when n_1 is zero $R_{1-heterocycle}$ is 5 not bonded to the carbon chain by nitrogen; or (IX) G-L-A-Wwhere A is: (I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally 10 substituted with one or two of the following substituents on the ring: (A) -NO₂(B) -C≡N, (C) -N(R)CO(R') R, R'defined below (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting 15 of: (a) C₁-C₆ alkyl, and (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above, (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above, (F) -O-(C2-C6 alkyl)-COOH, 20 (G) -NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above, (H) -SR where R is H, C_1 - C_6 alkyl, $-(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above, (I) -CH₂OH, 25 (J) –CO- $(C_1$ - $C_6)$ alkyl, (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl, $-(CH_2)_{0-2}$ - (R_{1-arvl})

- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M) -COOH,

where R_{1-aryl} is as defined above,

- 30 (N) $-C_1-C_6$ alkyl,
 - (O) -C₂-C₆ alkenyl with one or two double bonds, or
 - (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN, and provided that G, L and W may not all be absent;

(II) R 1-heteroaryl as defined above, where the R1-heteroaryl group bonds to the subsistent W by a ring carbon atom, and where R 1-heteroaryl is optionally substituted with one, two, three, or four substituents independently chosen from the group consisting of:

- (A) -NO₂,
- (B) -C≡N,
- 10 (C) -N(R)CO(R') where R, R' are defined below,
 - (D) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting

of:

- (a) C₁-C₆ alkyl, and
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,

15

- (E) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$,
- (G) -NRR' where R, R' are independently H, C_1 - C_6 alkyl, and $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
 - (H) -SR where R and R_{1-aryl} are as defined above,

20

- (I) -CH₂OH,
- (J) $-CO-(C_1-C_6)$ alkyl,
- (K) -CONRR' where R, R' and R_{1-aryl} are as defined above,
- (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,
- (M) -COOH,

25

- (N) $-C_1-C_6$ alkyl,
- (O) $-C_2-C_6$ alkenyl with one or two double bonds, and
- (P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedently chosen from the group consisting of -CF₃, -

F, -Cl, -Br, -I, C_1 - C_3 alkyoxy, -OCF₃, -NH₂, -OH, and-CN,

and provided that G, L and W may not all be absent, or

(III) R_{1-heterocycle} as defined above:

where the $R_{1\text{-heterocycle}}$ group bonds to the subsistent W by a ring carbon atom, and where R _{1-heteroaryl} is optionally substituted with one to two substituents independently chosen from the group consisting of

$$(1) = 0,$$

5

- (2) C₁-C₃ alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br or -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O CF_3$,

10

- $(7) NH_2$
- (8) -OH, and
- (9) -C≡N,

and provided that G, L and W may not all be absent,

where W is -S(O)₀₋₂-, -O-, -N-, or absent, and N is optionally substituted with C₁-

15 C₄ alkyl;

where L is
$$-CO$$
-, $--S(O)_{1-2^-}$, $-O$ -, $-C(Ra)(Rb)O$ -, $-OC(Ra)(Rb)$ -, $-N(Ra)$ -, $-N(Ra)$ -, $-C(Ra)(Rb)$ -, $-C(OH)Ra$ -, $-SO_2NRa$ -, $-N(Ra)SO_2$ -, $-N(Ra)CON(Rb)$ -, $N(Ra)CSN(Rb)$ -, $-OCOO$ -, $-NCOO$ -, $OCON(Ra)$ -, a bond, or L is absent when G is absent, and where Ra and Rb are independently H, C_1 - C_4 alkyl which are optionally substituted. with OH, C_1 - C_4 alkoxy, and up to five $-F$;

where G is:

(I)- C_1 - C_{10} alkyl optionally substituted with one substituent selected from the group consisting of:

(A) -COOH,

25

20

- (B) $-CO-O-(C_1-C_4 \text{ alkyl})$,
- (C) C_1 - C_6 alkoxy,
- (D) -OH,
- (E) -NH₂,
- (F) -C₁-C₆ alkyl optionally substituted with one to five -F

- (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (H) $-C_2-C_{10}$ alkenyl with one or two double bonds,
- (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds,

(J) -C₄-C₁₀ hydrocarbyl chain with one double bond and one triple bond, (K) $-R_{1-arvl}$ where R_{1-arvl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, 5 (II) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of: (A) -COOH, (B) $-CO-O-(C_1-C_4 \text{ alkyl})$, (C) C_1 - C_6 alkoxy, 10 (D) -OH, (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, 15 (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, (J) $-C_4-C_{10}$ hydrocarbyl chain with one double bond and one triple bond, (K) -R_{1-aryl} where R_{1-aryl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, 20 (III) -(CR'R")₀₋₄-R_{1-aryl} where R', R" and R_{1-aryl} are as defined above, (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3} where R_{C-1} and R_{C-2} are independently selected from the group consisting of: 25 (A) -H,(B) $-C_1-C_6$ alkyl, (C) -(C₀-C₄ alkyl)- R_{1-aryl}, wherein R_{1-aryl} is as defined above, (D) -(C₀-C₄ alkyl)-R_{1-heteroaryl}, wherein R_{1-heteroaryl} is as defined above, 30 (E) -(C₀-C₄ alkyl)-R_{1-heterocycle}, wherein R_{1-heterocycle} is as defined above, $(F) - (CH_2)_{1-4} - OH,$ (G) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S- or

170

BNSDOCID: <WO

_02100820A1_l_>

(H) $-NR_{C-5}$ where R_{C-5} is - or C_1 - C_6 alkyl, and where $R_{C'-aryl}$ is defined above, and (I) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C-heteroaryl}$ where R_{C-4} and $R_{C-heteroaryl}$ are as defined above, 5 wherein in (C), (D) and (E) C₀ is merely a bond, and where R_{C-3} is: (a) -H, (b) $-C_1-C_6$ alkyl, (c) -(C_0 - C_4 alkyl)- R_{1-aryl} where R_{1-aryl} is as defined above, (d) -(C₀-C₄ alkyl)-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined 10 above, (e) -(C_0 - C_4 alkyl)- R_1 -heterocycle where R_1 -heterocycle is as defined above, (VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted 15 with one, two or three of: (G) C_1 - C_6 alkyl, (B) – CF_3 , (C) -F, Cl, -Br and -I, (D) C_1 - C_3 alkoxy, 20 (E) -OCF₃, (F) -NH₂, (G) -OH, (H) -C≡N, (I) -NO₂25 (J) -CO-OH, (K) -CO-O- R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C_1 - C_6 alkyl, and (b) -(C_0 - C_2 alkyl)-(R_{1-aryl}) where R_{1-aryl} is as defined above, (L) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above, 30 (M) -O-(C2-C5 alkyl)-COOH, or (N) -OR where R is as defined above, (O)-NR-R' where R and R' are as defined above,

(P) -SR where R is as defined above,

- (Q) - CF_{3}
- (R) -OCF₃.
- (S) -N(R)COR' where R, R' are as defined above,
- (T) -NRR' where R, R' are as defined above,
- (U) -SR where R is as defined above,
- (V) -CH₂OH,
- (W) $-CO-(C_1-C_6)$ alkyl,
- (X) -CONRR' where R, R' are as defined above, or
- (Y) -SO₂NRR' where R is as defined above, or

 $(VIII) - (CH_2)_2 - O - (CH_2)_2 - OH;$

wherein R₂ is selected from the group consisting of:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C = N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl; wherein R₃ is selected from the group consisting of:

(T)-H,

(II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
 -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR₁-aR₁-b where R₁-a and R₁-b are as defined above,

5

10

15

20

(III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above;

- (IV) C2-C6 alkenyl with one or two double bonds,
- (V) C2-C6 alkynyl with one or two triple bonds, and

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, and where R₂ and R₃ are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six and seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, -NR_{N-2}-, where R_{N-2} is as defined below; and

wherein R_C is selected from the group consisting of C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group

consisting of R_{205} , - CO_2H , and - CO_2 -(C_1 - C_4 alkyl); -($CR_{245}R_{250}$)₀₋₄-aryl; -($CR_{245}R_{250}$)₀₋₄-heteroaryl, -($CR_{245}R_{250}$)₀₋₄-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄-aryl-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄-aryl-aryl;

-($CR_{245}R_{250}$)₀₋₄-heteroaryl-aryl; -($CR_{245}R_{250}$)₀₋₄-heteroaryl-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄-heteroaryl-heteroaryl; -($CR_{245}R_{250}$)₀₋₄-heterocycloalkyl-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄-heterocycloalkyl-heterocycloalkyl; -($CR_{245}R_{250}$)₀₋₄-

heterocycloalkyl-aryl; $-[C(R_{255})(R_{260})]_{1-3}$ -CO-N- $(R_{255})_2$; $-CH(aryl)_2$; $-CH(heterocycloalkyl)_2$; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl

wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(\equiv O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently R₂₀₅, \equiv O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀

alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_{10} alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; -(CH₂)₀₋₁-CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁-heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)-phenyl-NO₂; (C₁-C₆

5

10

15

25

alkyl)-O-(C1-C6 alkyl)-OH; -CH2-NH-CH2-CH(-O-CH2-CH3)2; -H; and -(CH2)0-6- $C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} ; 5 each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; $-CO_2H$; $C \equiv N$; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12})$ alkyl); $-(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkenyl})$; $-(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkynyl})$; -10 (CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-COheteroaryl; -(CH₂)₀₋₄-CO-heterocycloalkyl; -(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄- $SO_2-NR_{220}R_{225}$; -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅; - $(CH_2)_{0.4}$ -N(H or R_{215})-CO-N(R_{215})₂; -(CH₂)_{0.4}-N-CS-N(R_{215})₂; -(CH₂)_{0.4}-15 N(-H or R_{215})-CO- R_{220} ; -(CH₂)₀₋₄-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O- $CS-N(R_{215})_2$; $-(CH_2)_{0-4}-O-(R_{215})$; $-(CH_2)_{0-4}-O-(R_{215})-COOH$; $-(CH_2)_{0-4}-S (R_{215})$; - $(CH_2)_{0.4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ 20 groups; C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; - $(CH_2)_{0-4}$ -N(H or R_{215})-SO₂- R_{220} ; and - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl; wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or 25 R_{210} ; wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ 30 alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

 R_{210} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; halogen; C_1 - C_6 alkoxy; C_1 - C_6 haloalkoxy; -NR₂₂₀R₂₂₅; OH; $C \equiv N$; C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -CO-(C_1 - C_4 alkyl); SO_2 -NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C_1 - C_4 alkyl); and =O;

R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and -(CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

 R_{220} and R_{225} at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;
R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄

10

5

15

20

25

hydroxyalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, -(CH_2)₀₋₄- C_3 - C_7 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-;

R₂₅₅ and R₂₆₀ at each occurrence are independently selected from the group consisting of H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; 10 C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂- $S(O)_{0-2}$ - $(C_1$ - C_6 alkyl); - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl optionally substituted with 1, 2, or 3 R_{205} groups; -(C_1 - C_4 alkyl)-aryl; -(C_1 - C_4 alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; $(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-aryl;$ $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-heteroaryl;$ and; 15 -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein R_{265} at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; 20 each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀, each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀.

9. A method according to claim 5, wherein R_1 is is G-L-A-E-W-, wherein E is a bond or C_1 - C_3 alkylene;

25 A is:

5

(I) aryl or cycloalkyl where each aryl or cycloalkyl is optionally substituted with one, two or three independently selected R_{100} groups, where R_{100} is

- (A) -NO₂,
- (B) -C≡N,
- (C) -N(R)CO(R')R, where R and R' are independently hydrogen, C₁-C₆ alkyl, or -(CH₂)₀₋₂-aryl or -(CH₂)₀₋₂-cycloalkyl, where each aryl or cycloalkyl is optionally substituted with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkyl, amino, mono(C₁-C₆)alkylamino, or di(C₁-C₆)alkylamino,

(D) $-CO_2-R_{25}$, where R_{25} is selected from the group consisting of:

(a)
$$C_1$$
- C_6 alkyl,

- (b) $-(CH_2)_{0-2}$ -cycloalkyl,
- (c) -(CH₂)₀₋₂-aryl, where the aryl is optionally substituted

with halogen, hydroxy, C₁-C₆ alkyl, C₁-C₆ alkyl, amino, mono(C₁-C₆)alkylamino, or di(C₁-C₆)alkylamino, and

(d) hydrogen,

(E) -NH-CO₂-R₂₅,

(F) $-O-(C_2-C_6 \text{ alkyl})-CO_2H$,

(G) -NRR',

(H) -SR,

(I) -CH₂OH,

 $(J) - C(O) - (C_1 - C_6)$ alkyl,

(K) –C(O)NRR',

(L) -SO₂NRR'

(M) - CO_2H ,

(N) C_1 - C_6 alkyl, C_1 - C_6 alkenyl with one or two double bonds, - C_1 - C_6 alkynyl with one or two triple bonds, - CF_3 , -F, -Cl, -Br, -I, C_1 - C_3 alkoxy, - OCF_3 , - NH_2 , -OH, or -CN,

20

10

15

- (O) halogen, and
- (P) $-(CH_2)_{0-2}$ -O- $(CH_2)_{0-2}$ -OH;
- (II) heteroaryl, provided that, when E is a bond, the heteroaryl group is bonded through one of its carbon atoms to W, and where the heteroaryl is optionally substituted with one or two independently selected R_{100} groups;

25 (III) heterocycle, provided that, when E is a bond, the heterocycle group is bonded through one of its carbon atoms to W, where the heterocycle is optionally substituted with one or two independently selected R₂₀₀ groups, where R₂₀₀ is

(1) = 0,

(2) C_1 - C_3 alkyl,

- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) –OCF₃,

- $(7) NH_2,$
- (8) -OH, or
- (9) -C≡N;

W is a bond, -S-, -S(O)-, -SO₂-, -O-, -N(R)- where R is hydrogen or C₁-C₄ alkyl;

L is a bond or absent when G is absent, or L is -C(O)-, -S(O)-, -SO₂-, -O-,
C(R₁₁₀)(R₁₁₂)O-, -OC(R₁₁₀)(R₁₁₂)-, -N(R₁₁₀)-, -CON(R₁₁₀)-, -N(R₁₁₀)CO-, -C(R₁₁₀)(R')-,
C(OH)R₁₁₀-, -SO₂NR₁₁₀-, -N(R₁₁₀)SO₂-, -N(R₁₁₀)CON(R₁₁₂)-, N(R₁₁₀)CSN(R₁₁₂)-,
OCO₂-, -NCO₂-, or -OCON(R₁₁₀)-, where R₁₁₀ and R₁₁₂ are independently hydrogen, or

C₁-C₄ alkyl, where C₁-C₄ alkyl is optionally substituted with OH, C₁-C₄ alkoxy, or one to

five F;

G is absent or:

(I) C_1 - C_{10} alkyl, optionally substituted with up to three groups independently selected from

- (A) - CO_2H ,
- (B) $-CO_2(C_1-C_4 \text{ alkyl})$,
 - (C) C_1 - C_6 alkoxy,
 - (D) -OH,
 - (E) -NRR',
 - (F) $-C_1-C_6$ haloalkyl,
- (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl}),$
 - (H) -C₁-C₁₀ alkenyl with one or two double bonds,
 - (I) -C₁-C₁₀ alkynyl with one or two triple bonds,
 - (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond,
 - (K) aryl optionally substituted with R₁₀₀,
 - (L) heteroaryl optionally substituted with R₁₀₀,
 - (M) C₁-C₆ alkyl,

(II) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl is optionally substituted with one, two or three substituents selected from the group consisting of:

- (A) – CO_2H ,
- (B) $-CO_2$ -(C_1 - C_4 alkyl),
 - (C) C_1 - C_6 alkoxy,
 - (D) -OH,
 - (E) -NH₂,

178

15

25

- (F) -C₁-C₆ haloalkyl,
- (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (H) $-C_1-C_{10}$ alkenyl with one or two double bonds,
- (I) -C₁-C₁₀ alkynyl with one or two triple bonds,
- (J) -C₁-C₁₀ alkyl chain with one double bond and one triple bond,
- (K) aryl optionally substituted with R₁₀₀,
- (L) heteroaryl optionally substituted with R_{100} ,
- (m) mono(C₁-C₆ alkyl)amino, and
- (n) di(C₁-C₆ alkyl) amino,

10

5

- (o) C₁-C₆ alkyl,
- (III) -(CRR)₀₋₄-aryl where aryl is optionally substituted with R₁₀₀,
- (IV) -(CH₂)₀₋₄-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (V) -(CH₂)₀₋₄-heterocycle, where the heterocycle is optionally substituted with one or two R₂₀₀ groups,
 - (VI) $-C(R_{10})(R_{12})-CO-NH-R_{14}$ where

 $$R_{10}$$ and $$R_{12}$$ are the same or different and are selected from the group consisting of:

(A) -H,

- (B) $-C_1-C_6$ alkyl,
- (C) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (D) -(C_1 - C_4 alkyl)- heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- 25 (E) -(C₁-C₄ alkyl)- heterocycle, where the heterocycle is optionally substituted with one or two R₂₀₀ groups,
 - (F) heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (G) heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups,
 - (H) $-(CH_2)_{1-4}$ -OH,
 - (I) $-(CH_2)_{1-4}$ -Y- $(CH_2)_{1-4}$ -aryl where Y is -O-, -S- or

 $-NR_{C-5}$ - where R_{16} is hydrogen or C_1 - C_6 alkyl, and where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,

- (J) - $(CH_2)_{1-4}$ -Y- $(CH_2)_{1-4}$ heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups, and
- (K) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups, and

R₁₄ is:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- 10 (C) -aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (D) -heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- (E) -heterocycle, where the heterocycle is optionally substituted R_{200} groups,
 - (F) -(C_1 - C_4 alkyl)-aryl, where the aryl is optionally substituted with one, two, or three independently selected R_{100} groups,
 - (G) -(C_1 - C_4 alkyl)-heteroaryl where the heteroaryl is optionally substituted with one, two, or three independently selected R_{100} groups,
- 20 (H) -(C_1 - C_4 alkyl)-heterocycle, where the heterocycle is optionally substituted with one or two R_{200} groups, or
 - (I) –(CH₂)₀₋₂-O-(CH₂)₀₋₂-OH; R_4 and R_5 are independently hydrogen, halogen, C_1 - C_6 alkoxy or C_1 - C_4 alkyl.
- 25 10. A compound according to claim 5, wherein R_1 is is -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl), or
 - C_1 - C_6 alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C=N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino, -OC(=O)-amino, -amino-C(=O)O-, and -OC(=O)-mono- or dialkylamino, or C_1 - C_{10} alkyl optionally substituted - C_1 - C_3 alkoxy, or
 - C₂-C₆ alkenyl or C₂-C₆ alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, and mono- or dialkylamino, or

30

aryl, heteroaryl, heterocyclyl, $-C_1-C_6$ alkyl-aryl, $-C_1-C_6$ alkyl-heteroaryl, or $-C_1-C_6$ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, - OH, -SH, $-C\equiv N$, $-NR_7R'_7$, $-C(\equiv O)-(C_1-C_4)$ alkyl, $-SO_2$ -amino, $-SO_2$ -mono or dialkylamino, $-C(\equiv O)$ -amino, $-C(\equiv O)$ -mono or dialkylamino, $-SO_2-(C_1-C_4)$ alkyl, or

- -C₁-C₆ alkoxy optionally substituted with 1, 2, or 3 groups which are independently a halogen, or
- C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino, or
- C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino and -C₁-C₃ alkyl, or
- 15 C₂-C₆ alkenyl, alk(di)enyl, C₂-C₆ alkynyl or alk(di)ynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

20

5

- 11. A method according to claim 8, wherein R₁ is:
- (I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH,
- 25 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
 - (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C \equiv N$, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (VI) -(CH₂)_{n1}-(R_{1-aryl}) where n₁ is zero or one and where R_{1-aryl} is phenyl,
 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:
 - (A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,
- (B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (C) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (D) -Cl, -Br and -I,
 - (F) -C₁-C₆ alkoxy optionally substituted with one, two or three F,
 - (G) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
 - (H) -OH,
 - (I) -C≡N,
 - (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (K) $-CO-(C_1-C_4 \text{ alkyl})$,
 - (L) -SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (M) $-CO-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, or
 - (N) –SO₂- $(C_1$ - C_4 alkyl),
 - (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R₁heteroaryl is selected from the group consisting of:
 - (A) pyridinyl,

20

25

	(B) pyrimidinyl,
	(C) quinolinyl,
	(F) benzothienyl,
	(G) indolyl,
5	(H) indolinyl,
	(I) pryidazinyl,
	(J) pyrazinyl,
	(K) isoindolyl,
	(L) isoquinolyl,
10	(M) quinazolinyl,
	(N) quinoxalinyl,
	(O) phthalazinyl,
	(P) imidazolyl,
	(Q) isoxazolyl,
15	(R) pyrazolyl,
	(S) oxazolyl,
	(T) thiazolyl,
	(U) indolizinyl,
	(V) indazolyl,
20	(W) benzothiazolyl,
	(X) benzimidazolyl,
	(Y) benzofuranyl,
	(Z) furanyl,
	(AA) thienyl,
25	(BB) pyrrolyl,
	(CC) oxadiazolyl,
	(DD) thiadiazolyl,
	(EE) triazolyl,
	(FF) tetrazolyl,
30	(II) oxazolopyridinyl,
	(JJ) imidazopyridinyl,
	(KK) isothiazolyl,
	(LL) naphthyridinyl,

	(MM) cinnolinyl,
	(NN) carbazolyl,
	(OO) beta-carbolinyl,
	(PP) isochromanyl,
5	(QQ) chromanyl,
	(SS) tetrahydroisoquinolinyl,
	(TT) isoindolinyl,
	(UU) isobenzotetrahydrofuranyl,
	(VV) isobenzotetrahydrothienyl,
10	(WW) isobenzothienyl,
	(XX) benzoxazolyl,
	(YY) pyridopyridinyl,
	(ZZ) benzotetrahydrofuranyl,
	(AAA) benzotetrahydrothienyl,
15	(BBB) purinyl,
	(CCC) benzodioxolyl,
	(DDD) triazinyl,
	(EEE) phenoxazinyl,
	(FFF) phenothiazinyl,
20	(GGG) pteridinyl,
	(HHH) benzothiazolyl,
	(III) imidazopyridinyl,
	(JJJ) imidazothiazolyl,
	(KKK) dihydrobenzisoxazinyl,
25	(LLL) benzisoxazinyl,
	(MMM) benzoxazinyl,
	(NNN) dihydrobenzisothiazinyl,
	(OOO)benzopyranyl,
	(PPP) benzothiopyranyl,
30	(QQQ) coumarinyl,
	(RRR) isocoumarinyl,
	(SSS) chromonyl,
	(TTT) chromanonyl, and

(UUU) pyridinyl-N-oxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent R_{N-} heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

- (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv N, -CF₃, C₁-C₃ alkoxy,
- (2) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
- (3) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C1, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (4) -F, Cl, -Br and -I,
 - (6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F,
 - (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- 20 (8) –OH,
 - (9) -C = N,
 - (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 25 (11) –CO-(C₁-C₄ alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, or
 - (14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero R_1 heteroaryl is not bonded to the carbon chain by nitrogen,

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

- (A) morpholinyl,
- (B) thiomorpholinyl,

185

30

(C) thiomorpholinyl S-oxide,

- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl,
- (L) tetrahydrothienyl,
 - (M) homopiperidinyl,
 - (N) homomorpholinyl,
 - (O) homothiomorpholinyl,
 - (P) homomorpholinyl S-oxide,
 - (Q) homothiomorpholinyl S,S-dioxide, and
 - (R) oxazolidinonyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two,

20 three or four of:

5

10

15

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy,

(2) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (4) -F, Cl, -Br and --I,
- (5) C_1 - C_6 alkoxy,

186

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or three -F, (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below, (8) –OH, 5 (9) -C≡N, (10) C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C_1 - C_3 alkoxy, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, (11) –CO- $(C_1$ - C_4 alkyl), 10 (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, (13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, (14) –SO₂-(C₁-C₄ alkyl), or 15 (15) =0, with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen; or (IX) G-L-A-Wwhere A is: (I) phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, 20 dihydronaphthalyl, tetralinyl, cyclopentyl, cyclohexyl, and cycloheptyl optionally substituted with one or two of the following substituents on the ring: (A) -NO₂, (B) -C≡N, (C) -N(R)CO(R') R, R'defined below 25 (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C_1 - C_6 alkyl, and (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above, (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above, 30 (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$, (G) –NRR' where R, R' are H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

(H) –SR where R is H, C_1 - C_6 alkyl, -(CH₂)₀₋₂-(R_{1-arvl}) where R_{1-arvl} is as defined above, (I) -CH₂OH, (J) –CO- $(C_1$ - $C_6)$ alkyl, 5 (K) -CONRR' where R, R' are H, C_1 - C_6 alkyl,- $(CH_2)_{0-2}$ - (R_{1-arvl}) where R_{1-aryl} is as defined above, (L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl, (M) -COOH, (N) $-C_1-C_6$ alkyl, 10 (O) -C₂-C₆ alkenyl with one or two double bonds, or (P) -C₂-C₆ alkynyl with one or two triple bonds, wherein each of (N), (O) and (P) may be optionally substituted by one to three of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and -CN, and provided that G, L and W may not all be absent; 15 (II) R_{1-heteroaryl} as defined above, where the R_{1-heteroaryl} group bonds to the subsistent W by a ring carbon atom, and where R 1-heteroaryl is optionally substituted with one, two, three, or four substituents independently chosen from the group consisting of: (A) -NO₂, 20 (B) -C≅N, (C) -N(R)CO(R') where R, R' are defined below, (D) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of: (a) C₁-C₆ alkyl, and 25 (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above, (E) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above, (F) $-O-(C_2-C_6 \text{ alkyl})-COOH$, (G) -NRR' where R, R' are independently H, C₁-C₆ alkyl, and- $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above, 30 (H) -SR where R and R_{1-arvl} are as defined above, (I) -CH₂OH, (J) –CO- $(C_1$ - $C_6)$ alkyl, (K) -CONRR' where R, R' and R_{1-aryl} are as defined above,

(L) -SO₂NRR' where R, R' are H, C₁-C₆ alkyl,

- (M) -COOH,
- (N) - C_1 - C_6 alkyl,
- (O) -C₂-C₆ alkenyl with one or two double bonds, and

(P) -C₂-C₆ alkynyl with one or two triple bonds,

wherein each of (N), (O) and (P) may be optionally substituted by one to three substituent indepedently chosen from the group consisting of -CF₃, -F, -Cl, -Br, -I, C₁-C₃ alkyoxy, -OCF₃, -NH₂, -OH, and-CN,

and provided that G, L and W may not all be absent, or

10 (III) $R_{1-\text{heterocycle}}$ as defined above:

where the $R_{1\text{-heterocycle}}$ group bonds to the subsistent W by a ring carbon atom, and where $R_{1\text{-heteroaryl}}$ is optionally substituted with one to two substituents independently chosen from the group consisting of

- (1) = 0,
- (2) C_1 - C_3 alkyl,
 - $(3) CF_3$,
 - (4) -F, Cl, -Br or -I,
 - (5) C_1 - C_3 alkoxy,
 - $(6) O-CF_3$
 - $(7) NH_2$
 - (8) -OH, and
 - (9) -C≡N,

and provided that G, L and W may not all be absent,

where W is $-S(O)_{0-2}$ -, -O-, -N-, or absent, and N is optionally substituted with C_1 -

25 C₄ alkyl;

5

15

20

where L is -CO-, --S(O)₁₋₂-, -O-, -C(Ra)(Rb)O-, -OC(Ra)(Rb)-, -N(Ra)-, -CON(Ra)-, -N(Ra)CO-, -C(Ra)(Rb)-, -C(OH)Ra-, -SO₂NRa-, -N(Ra)SO₂-, -N(Ra)CON(Rb)-, N(Ra)CSN(Rb)-, -OCOO-, -NCOO-, OCON(Ra)-, a bond, or L is absent when G is absent, and where Ra and Rb are independently H, C₁-C₄ alkyl which are optionally substituted. with OH, C₁-C₄ alkoxy, and up to five -F;

where G is:

(I)- C_1 - C_{10} alkyl optionally substituted with one substituent selected from the group consisting of:

(A) -COOH, (B) $-CO-O-(C_1-C_4 \text{ alkyl})$, (C) C_1 - C_6 alkoxy, (D) -OH, 5 (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) $-(C_1-C_{10} \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, (H) $-C_2-C_{10}$ alkenyl with one or two double bonds, (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, 10 (J) $-C_4-C_{10}$ hydrocarbyl chain with one double bond and one triple bond, (K) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, (L) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, (II) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can be optionally 15 substituted with one, two or three substituents selected from the group consisting of: (A) -COOH, (B) $-CO-O-(C_1-C_4 \text{ alkyl})$, (C) C₁-C₆ alkoxy, (D) -OH, 20 (E) -NH₂, (F) -C₁-C₆ alkyl optionally substituted with one to five -F (G) - $(C_1-C_{10} \text{ alkyl})$ -O- $(C_1-C_3 \text{ alkyl})$, (H) -C₂-C₁₀ alkenyl with one or two double bonds, (I) $-C_2-C_{10}$ alkynyl with one or two triple bonds, 25 (J) $-C_4-C_{10}$ hydrocarbyl chain with one double bond and one triple bond, (K) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, (L) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above, (III) -(CR'R")₀₋₄-R_{1-aryl} where R', R" and R_{1-aryl} are as defined above, (IV) -(CH₂)₀₋₄-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above, 30 (V) -(CH₂)₀₋₄-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (VI) -C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3} where R_{C-1} and R_{C-2} are independently

selected from the group consisting of:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- (C) -(C_0 - C_4 alkyl)- R_{1-aryl} , wherein R_{1-aryl} is as defined above,
- (D) -(C₀-C₄ alkyl)-R_{1-heteroaryl,} wherein R_{1-heteroaryl} is as defined

5 above,

(E) -(C_0 - C_4 alkyl)- R_1 -heterocycle, wherein R_1 -heterocycle is as defined

above,

- $(F) (CH_2)_{1-4} OH,$
- (G) -(CH₂)₁₋₄- R_{C-4} -(CH₂)₁₋₄- $R_{C'-aryl}$ where R_{C-4} is -O-, -S- or
- (H) $-NR_{C-5}$ where R_{C-5} is or C_1 - C_6 alkyl, and where R_{C' -aryl is

defined above, and

(I) $-(CH_2)_{1-4}-R_{C-4}-(CH_2)_{1-4}-R_{C-heteroaryl}$ where R_{C-4} and $R_{C-heteroaryl}$ are

as defined above,

wherein in (C), (D) and (E) C₀ is merely a bond, and where R_{C-3} is:

15

10

- (a) -H,
- (b) $-C_1-C_6$ alkyl,
- (c) -(C_0 - C_4 alkyl)- R_{1-aryl} where R_{1-aryl} is as defined above,
- (d) -(C_0 - C_4 alkyl)- R_1 -heteroaryl where R_1 -heteroaryl is as defined above,

20

(e) -(C_0 - C_4 alkyl)- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,

(VII) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are optionally substituted with one, two or three of:

25

- (H) C_1 - C_6 alkyl,
- (B) – CF_3 ,
- (C) -F, Cl, -Br and -I,
- (D) C₁-C₃ alkoxy,
- (E) -OCF₃,

- (F) NH₂
- (G) -OH,
- (H) -C≡N,
- (I) -NO₂

(J) -CO-OH,

(K) -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting

of:

(a) C_1 - C_6 alkyl, and

5

10

15

(b) $-(C_0-C_2 \text{ alkyl})-(R_{1-\text{aryl}})$ where $R_{1-\text{aryl}}$ is as defined above,

(L) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,

(M) -O-(C2-C5 alkyl)-COOH, or

(N) -OR where R is as defined above,

(O)-NR-R' where R and R' are as defined above,

(P) -SR where R is as defined above,

(Q) - CF_3

(R) -OCF₃,

(S) -N(R)COR' where R, R' are as defined above,

(T) -NRR' where R, R' are as defined above,

(U) -SR where R is as defined above,

(V)-CH₂OH,

(W) –CO- $(C_1$ - $C_6)$ alkyl,

(X) -CONRR' where R, R' are as defined above, or

(Y) -SO₂NRR' where R is as defined above, or

20 (VIII) $-(CH_2)_2$ -O- $(CH_2)_2$ -OH.

12. A method according to claim 8, wherein Rc is selected from the group consisting of C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₁₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-aryl; -(CR₂₅₅)(R₂₆₀)₁₋₃-CO-N-(R₂₅₅)₂; -CH(aryl)₂; -CH(heteroaryl)₂; -CH(heteroaryl)₂; -CH(heteroaryl); -CH(heteroaryl);

cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently 5 R_{205} , =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R_{205} groups; C_2 - C_{10} alkynyl optionally substituted with 1, 2, or 3 R_{205} groups; $-(CH_2)_{0-1}$ -CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl; $-(CH_2)_{0-1}$ -CH((CH₂)₀₋₆-OH-(CH₂)₀₋₁heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)_{2:} -H; 10 and $-(CH_2)_{0-6}-C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} ; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀; R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆ 15 alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; -

alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; — CO₂H; C≡N; -(CH₂)₀₋₄-CO-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl); -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-CO-heteroaryl; -(CH₂)₀₋₄-CO-heterocycloalkyl; -(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl); -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl); -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl); -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-N-CS-N(R₂₁₅)₂; -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀; -(CH₂)₀₋₄-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl); -(CH₂)₀₋₄-O-P(O)-(OR₂₄₀)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂; -(CH₂)₀₋₄-O-CO-C₁-C₆ alkyl optionally substituted with 1, 2, 3, or 5 -F); C₃-C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)-SO₂-R₂₂₀; and -(CH₂)₀₋₄-C₃-C₇ cycloalkyl;

wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;

20

25

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} ;

- R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);
- R₂₁₀ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; -NR₂₂₀R₂₂₅; OH; C≡N; C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C₁-C₄ alkyl); .SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C₁-C₄ alkyl); and =O;
- R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl;

wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

30

5

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

R₂₄₅ and R₂₅₀ are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-;

R₂₅₅ and R₂₆₀ at each occurrence are independently selected from the group consisting of

H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; and; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein

R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-; each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

13. A method according to claim 8, wherein Rc is selected from the group consisting of C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -OC=O NR₂₃₅R₂₄₀, -S(=O)₀₋₂ R₂₃₅, -NR₂₃₅C=O NR₂₃₅R₂₄₀, -C=O NR₂₃₅R₂₄₀, and -S(=O)₂ NR₂₃₅R₂₄₀; -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R_{205} , -CO₂H, and -CO₂-(C₁-C₄ alkyl); -(CR₂₄₅R₂₅₀)₂₋₄-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl-heterocycloalkyl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl-aryl; -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-aryl; -(CR₂₅₅)(R₂₆₀)]₁₋₃-CO-N-(R₂₅₅)₂;

10

15

20

25

-CH(aryl)₂; -CH(heteroaryl)₂; -CH(heterocycloalkyl)₂; -CH(aryl)(heteroaryl); cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocycloalkyl wherein one carbon of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with one or two NH, NR₂₁₅, O, or S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with 1 or 2 groups that are independently 5 R_{205} , =O, -CO-NR₂₃₅ R_{240} , or -SO₂-(C₁-C₄ alkyl); C₂-C₁₀ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₁₀ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; $-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH)-(CH_2)_{0-1}-aryl; -(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-6}-O$ heteroaryl; -CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl); -CH(-CH₂-OH)-CH(OH)-10 phenyl-NO₂; (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂; -H; and $-(CH_2)_{0-6}$ - $C(=NR_{235})(NR_{235}R_{240})$; wherein each aryl is optionally substituted with 1, 2, or 3 R₂₀₀; each heteroaryl is optionally substituted with 1, 2, 3, or 4 R₂₀₀; each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R₂₁₀;

- R₂₀₀ at each occurrence is independently selected from the group consisting of C₁-C₆. 15 alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; OH; -NO₂; halogen; - CO_2H ; $C\equiv N$; $-(CH_2)_{0-4}-CO-NR_{220}R_{225}$; $-(CH_2)_{0-4}-CO-(C_1-C_{12} \text{ alkyl})$; $-(CH_2)_{0-4}-CO-(C_1-C_1)$ $CO-(C_2-C_{12} \text{ alkenyl}); -(CH_2)_{0-4}-CO-(C_2-C_{12} \text{ alkynyl}); -(CH_2)_{0-4}-CO-(C_3-C_7)$ cycloalkyl); -(CH₂)₀₋₄-CO-aryl; -(CH₂)₀₋₄-CO-heteroaryl; -(CH₂)₀₋₄-CO-20 heterocycloalkyl;-(CH₂)₀₋₄-CO-O-R₂₁₅; -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅; -(CH₂)₀₋₄-SO- $(C_1-C_8 \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_1-C_{12} \text{ alkyl}); -(CH_2)_{0-4}-SO_2-(C_3-C_7 \text{ cycloalkyl}); -(CH_2)_{0-4}-(CH_2)_{0-4}-(CH_2)_{0-4}-(CH_2$ $(CH_2)_{0-4}$ -N(H or R_{215})-CO-O- R_{215} ; - $(CH_2)_{0-4}$ -N(H or R_{215})-CO-N(R_{215})2; - $(CH_2)_{0-4}$ -N-CS-N(R_{215})₂; -(CH₂)₀₋₄-N(-H or R_{215})-CO- R_{220} ; -(CH₂)₀₋₄-NR₂₂₀ R_{225} ; -(CH₂)₀₋₄- $O-CO-(C_1-C_6 \text{ alkyl}); -(CH_2)_{0-4}-O-P(O)-(OR_{240})_2; -(CH_2)_{0-4}-O-CO-N(R_{215})_2; -(CH_2)_2; -(CH_2)_2; -(CH_2)_2; -(CH_2)_2; -(CH_2)_2; -(CH_2)_2; -(C$ 25 $(CH_2)_{0.4}$ -O-CS-N $(R_{215})_2$; - $(CH_2)_{0.4}$ -O- (R_{215}) ; - $(CH_2)_{0.4}$ -O- (R_{215}) -COOH; - $(CH_2)_{0.4}$ -S- (R_{215}) ; - $(CH_2)_{0.4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with 1, 2, 3, or 5 -F); C_3 -C₇ cycloalkyl; C₂-C₆ alkenyl optionally substituted with 1 or 2 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1 or 2 R₂₀₅ groups; -(CH₂)₀₋₄-N(H or R₂₁₅)- SO_2-R_{220} ; and $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl;
- wherein each aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀ or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

 R_{205} at each occurrence is independently selected from the group consisting of C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, NH₂, NH(C_1 - C_6 alkyl), and N-(C_1 - C_6 alkyl)(C_1 - C_6 alkyl);

R₂₁₀ at each occurrence is independently selected from the group consisting of C₁-C₆

10 alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; halogen; C₁-C₆ alkoxy; C₁-C₆ haloalkoxy; -NR₂₂₀R₂₂₅; OH; C≡N; C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -CO-(C₁-C₄ alkyl); .SO₂-NR₂₃₅R₂₄₀; -CO-NR₂₃₅R₂₄₀; -SO₂-(C₁-C₄ alkyl); and =O;

15 R₂₁₅ at each occurrence is independently selected from the group consisting of C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and - (CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocycloalkyl); wherein the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀; wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or 3 R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from the group consisting of -H, -C₁-C₆ alkyl, hydroxy C₁-C₆ alkyl, amino C₁-C₆ alkyl; halo C₁-C₆ alkyl; -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocycloalkyl; wherein the aryl group at each occurrence is optionally substituted

with 1, 2, or 3 groups that are independently R_{205} or R_{210} ; wherein the heterocycloalkyl group at each occurrence is optionally substituted with 1, 2, or 3 R_{210} ;

wherein each heteroaryl group at each occurrence is optionally substituted with 1, 2, or $3 R_{210}$;

25

5

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

R₂₄₅ and R₂₅₀ at each occurrence are independently selected from the group consisting of H, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

 R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR₂₂₀-; R_{255} and R_{260} at each occurrence are independently selected from the group consisting of

H; C₁-C₆ alkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; C₂-C₆ alkynyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl); -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -(C₁-C₄ alkyl)-aryl; -(C₁-C₄ alkyl)-heteroaryl; -(C₁-C₄ alkyl)-heterocycloalkyl; -aryl; -heteroaryl; -heterocycloalkyl; $_{-}$ (CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; and; -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocycloalkyl; wherein

R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆ alkyl)-;
each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅, R₂₁₀, or C₁-C₆ alkyl substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀;

each heteroaryl is optionally substituted with 1, 2, 3, or 4 R_{200} , each heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 R_{210} .

14. A method of treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia

5

10

15

20

25

5

associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment which comprises administration of a therapeutically effective amount of a compound selected from the group consisting of a substituted aminoalcohol of the formula (I):

$$R_1$$
 R_2 R_3 R_2 R_3

or a pharmaceutically acceptable salt or ester thereof, wherein B is H or C₁-C₁₀ straight or 10 branched chain alkyl; R₂₀, R₂ and R₃ are H; n is 0; R₁ is 3,5-difluorophenyl; and Rc is

where R is a C₁-C₄ straight or branched chain alkyl group, optionally substituted with – OB or –SO₂B.

15. A method for making a compound of formula (I)

$$R_1$$
 R_2 R_3 R_2 R_3

or a pharmaceutically acceptable salt or ester thereof, wherein B, R₂₀, R₂, R₃, n and Rc are as defined in claim 1.

Interna Application No PCT/US 02/19067

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07C237/20 A61K31/16 A61P25/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ CO7C$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data

Category °	:NTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Challott of document, with indication, where appropriate, of the relevant passages	nelevani to ciaim No.
X	US 5 559 111 A (GÖSCHKE ET. AL.) 24 September 1996 (1996-09-24) cited in the application column 12, line 36 -column 14, line 6; claims; examples	2,4-6
A	EP 1 106 609 A (SEIKAGAKU CORPORATION) 13 June 2001 (2001-06-13) page 2, line 12 - line 50; claims; examples	1-15
Α	WO 01 00665 A (OKLAHOMA MEDICAL RESEARCH FOUNDATION) 4 January 2001 (2001-01-04) page 1 -page 5; claims; examples -/	1–15
V Furt	per documents are listed in the continuation of boy C	ore are listed in anney

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filling date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the International filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 2 October 2002	Date of mailing of the international search report 17/10/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Helps, I

Form PCT/ISA/210 (second sheet) (July 1992)

International application No. PCT/US 02/19067

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 8,9, 11-14 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X Claims Nos.: 1-6,8-15 (part) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-6,8-15 (part)

The scope of the claims is so broad that a complete search cannot be carried out within a reasonable time limit. Since there are no reported examples of synthesised compounds in the description, it is not clear which embodiments of the invention have actually been investigated. The search for compounds per se was concentrated on the more limited definition of homostatine analogues in claim 7, as well as for the use of homostatine analogues for the treatment of Alzheimers disease (see Guidelines, B-III, 3.7).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Internal Application No
PCT/US 02/19067

	INTERNATIONAL SEARCH REPORT	PCT/US 02/19067
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
А	US 5 719 141 A (RASETTI ET. AL.) 17 February 1998 (1998-02-17) column 12, line 40 -column 13, line 41; claims; examples	1-15
A	S. ATSUUMI ET. AL.: "Renin Inhibitors. I. Synthesis and Structure-ACtivity Relationships of Transition-State Inhibitors containing Homostatine Analogues at the Scissile Bond." CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 40, no. 2, 1992, pages 364-70, XP001106508 chart 3 compound 16, Table 1	

harmation on patent family members

PCT/US 02/19067

				101783	02/19067
Patent document . cited in search report		Publication date		Patent family member(s)	Publication date
US 5559111 A	A	24-09-1996	AT	183997 T	15-09-1999
			ΑÜ	1642095 A	26-10-1995
			AU	699616 B2	10-12-1998
			AU	1642195 A	26-10-1995
			ΑŬ	1642395 A	26-10-1995
			BR	1100656 A3	06-06-2000
				2147044 A1	19-10-1995
			CA		
			CA	2147052 A1	19-10-1995
			CA	2147056 A1	19-10-1995
			CN	1117960 A	06-03-1996
			CZ	9500976 A3	15-11-1995
			DE	59506707 D1	07-10-1999
			DK	678503 T3	20-03-2000
			EP	0678503 A1	25-10-1995
			ĒΡ	0678514 A1	25-10-1995
			EP	0678500 A1	25-10-1995
			ËS	2137478 T3	16-12-1999
			FI	951771 A	19-10-1995
			FI	951771 A 951772 A	19-10-1995
				951772 A 951773 A	
			FI		19-10-1995
			GR	3031997 T3	31-03-2000
			HU	74074 A2	28-10-1996
			HU	72110 A2	28-03-1996
			HU	71701 A2	29-01-1996
			IL	113403 A	24-07-2001
			JP	8053434 A	27-02-1996
			JP	3240322 B2	17-12-2001
			JP	8081430 A	26-03-1996
			ĴΡ	8027079 A	30-01-1996
			NO	951441 A	19-10-1995
			NO	951442 A	19-10-1995
			NO	951442 A 951443 A	19-10-1995
			NZ	270936 A	24-06-1997
			NZ	270938 A	26-11-1996
			NZ	270939 A	20-12-1996
			TW	402582 B	21-08-2000
			US	5606078 A	25-02-1997
			US	5659065 A	19-08-1997
		•	US	5654445 A	05-08-1997
			US	5646143 A	08-07-1997
			US	5627182 A	06-05-1997
			ÜS	5705658 A	06-01-1998
•			ZA	9503050 A	08-11-1995
			ZA	9503050 A	18-10-1995
			ZA	9503051 A	18-10-1995
			4A 		10 10 1995
			ΕP	1106609 A2	13-06-2001
EP 1106609	Α	13-06-2001		0001000000	21-08-2001
EP 1106609	Α	13-06-2001	JР	2001226362 A	
EP 1106609	A	13-06-2001	JP US	2001226362 A 2001003741 A1	14-06-2001
			US 	2001003741 A1	14-06-2001
EP 1106609 WO 0100665	A A	13-06-2001 04-01-2001	US AU	2001003741 A1 5771500 A	14-06-2001 31-01-2001
			US AU AU	2001003741 A1 5771500 A 5773500 A	14-06-2001 31-01-2001 31-01-2001
			US AU AU EP	2001003741 A1 5771500 A 5773500 A 1196609 A2	14-06-2001 31-01-2001 31-01-2001 17-04-2002
			US AU AU EP EP	2001003741 A1 5771500 A 5773500 A 1196609 A2 1194449 A2	14-06-2001 31-01-2001 31-01-2001 17-04-2002 10-04-2002
			US AU AU EP EP WO	2001003741 A1 5771500 A 5773500 A 1196609 A2 1194449 A2 0100663 A2	14-06-2001 31-01-2001 31-01-2001 17-04-2002 10-04-2002 04-01-2001
			US AU AU EP EP	5771500 A 5773500 A 1196609 A2 1194449 A2 0100663 A2 0100665 A2	31-01-2001 31-01-2001 31-04-2002 10-04-2002 04-01-2001 04-01-2001
			US AU AU EP EP WO	2001003741 A1 5771500 A 5773500 A 1196609 A2 1194449 A2 0100663 A2	14-06-2001 31-01-2001 31-01-2001 17-04-2002 10-04-2002 04-01-2001

Form PCT/ISA/210 (patent family annex) (July 1992)

information on patent family members

Internation Application No PCT/US 02/19067

				l l	· · · ·	,
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0100665	Α		AU WO US	2464901 0155174 2001044521	A2	07-08-2001 02-08-2001 22-11-2001
US 5719141	А	17-02-1998	AU CA CN CZ EP FI HUP NO NZ ZA	3053495 2158227 1169986 9502365 0702004 954255 74453 8176087 953629 272999	A1 A3 A2 A A2 A A	28-03-1996 16-03-1996 14-01-1998 15-05-1996 20-03-1996 16-03-1996 30-12-1996 09-07-1996 18-03-1996 27-07-1997 15-03-1996

Form PCT/ISA/210 (patent family annex) (July 1992)