Final Exam
Wednesday December 21 6-8 pm 9-140

3 problems 10 Tor F Review sheet

· Problems: Chapter 6-7-8-9-10

· TorF: All chapters + 1 Jump Processes

Chapter 11: Jump Processes

We already saw the Poisson process $(N_t, 67.0)$ with rate $\lambda>0$

- · No=0
- · increments are independent and $N_t N_s \sim Poisson (\lambda(t-s))$

Increasing 50 parts have bounded voision.

? Can the process jump by more than 1 at a given time?

$$\lim_{6\to0} \frac{\mathbb{P}\left(N_t=a\right)}{t} = \lim_{6\to0} \underbrace{\left(\lambda t\right)^a_{t} - \lambda t}_{t} = 0$$

TK: waiting time between the (K-1) and Kth jumps.

Why? A sam of K ID $Exp(\lambda)$ is distributed like a $Gamma(\lambda)$.

PDF of
$$\tau_{1}+...+\tau_{K}$$
 is $(\lambda t)^{k-1} e^{-\lambda t}$

Thus $P(N_{t} > k+1) = P(\tau_{1}+...+\tau_{k+1} \leq t)$

$$= \int_{0}^{t} \frac{(\lambda s)^{k} \lambda e^{-\lambda s}}{\Gamma(k+1)} ds \qquad \Gamma(k+1) = k \Gamma(k)$$

integration
$$= \frac{(\lambda s)^{k} e^{-\lambda s}}{\Gamma(k+1)} + \int_{0}^{t} \frac{(\lambda s)^{k-1} \lambda e^{-\lambda s}}{\Gamma(k+1)} ds$$

$$= \frac{(\lambda t)^{k} e^{-\lambda t}}{\Gamma(k+1)} + P(N_{t} > k)$$

$$= P(N_{t} = k) = (\lambda t)^{k} e^{-\lambda t} \quad \text{Possor } r, v.$$

For independence of increments, see notes. Use memory loss proporty.

Note that the Poisson process is Markov!

$$E\left[g\left(N_{t}\right)\right]\mathcal{J}_{S}\right]$$

$$=E\left[g\left(N_{t}+N_{t}-N_{s}\right)\right]\mathcal{J}_{S}=\sum_{k=0}^{\infty}\left(\frac{\lambda(t-s)^{k}e^{-\lambda(t-s)}}{k!}g\left(N_{s}+k\right)\right)$$
independs

Definition 8.1. A process $(X_t, t \ge 0)$ is called a Lévy process if it has independent and stationary increments, that is

- (1) for all n and all $0 \le t_1 < t_2 < \cdots \le t_n < \infty$ the increments $X_{t_{j+1}} X_{t_j}$ are independent;
- (2) the increment $X_{t+s} X_s$ has the same distribution as X_t for all $t, s \ge 0$.

The Lévy processes are completely classified

Lévy-Khinchine formula

Markar processes!

Essentially a kery process is a linear cambination of BM with drift and a compand Poisson process.

continuous part jump port

Campaind Poisson provess:

Let (Yx) he IID r.v.

Let (Nt) he a Poisson process of rak &.

Then define the compaind Poisson process

 $Q_{\varepsilon} = \sum_{k=1}^{N_{\varepsilon}} Y_{k}$

Lévy process.

Generalar? $A = \lambda \int_{\mathbb{R}} \left(f(x+y) - f(y) \right) g_{y}(y) dy$

Constructing martingales using Poisson Process

As for BM we can construct "easy mortherabe" Examples:

· N_t - \t

· Geometric: exp(aNt-Nex-1)F)

Do martingale transform to construct more morthqueles.

Stochastie Integrals and Doeblin-Itô's formula

Important remarks

- · Paths of (N_t) have bounded variation so we can define $\int_0^t X_s dN_s$ as usual
- · What strategy can we integrate? (XE) adapted However jumps are tricky...

Example. Consider
$$M_S = N_S - \lambda S$$

$$\int_0^t X_S dM_S = \int_0^t X_S dN_S - \lambda \int_0^t X_S dS$$

$$\int_0^t X_S dM_S = \int_0^t X_S dN_S - \lambda \int_0^t X_S dS$$

$$X_S = N_S - N_S - = \int_0^t 1 \text{ if jump at S}$$

$$0 \text{ else}$$
Wor lingular

Conclusion: We need the strategy to he (off-continues

We want Xs to he Js-- mble.

Definition 8.5. Let $(J_t, t \geq 0)$ be a pure jump process with only finitely many jumps on a finite interval of time a.s. We suppose that J_t is constant between jumps and that it is right-continuous with left limits \overrightarrow{CADLAG} .

Let
$$(\Phi_s)$$
 be a left-continuous adapted process for the filtration of (J_s) . Then
$$\int_0^t \Phi_s \, \mathrm{d}J_s = \sum_{0 \le s \le t} \Phi_s \Delta J_s$$

where $\Delta J_s = J_s - J_{s^-}$ is the size of the jumps at s. Note that the sum is well-defined as it is a finite sum!

Towards Tto's farmula

Definition 8.6. A semi-martingale (X_t) is a process of the form

$$X_t = X_0 + \int_0^t \Gamma_s \, \mathrm{d}B_s + \int_0^t \Theta_s \, \mathrm{d}s + J_t$$

where (J_t) is a jump process as above. We denote by X_t^c the continuous part of X_t , i.e. $dX_t^c = \Gamma_t dB_t + \Theta_t dt.$

We assume X_t^c is an Itô process.

Itô's formula (In fact Doeblin-Itô)

Theorem 8.9. Let $f \in \mathcal{C}^2(\mathbb{R})$ and (X_t) a semi-martingale as above. Then we have

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) \, dX_s^c + \frac{1}{2} \int_0^t f''(X_s) (\, dX_s^c \cdot \, dX_s^c) + \sum_{0 \le s \le t} \{f(X_s) - f(X_{s^-})\} \, .$$

Example:
$$S_{t} = S_{exp}(\alpha N_{t} - \lambda(e^{\alpha}-1)t)$$

Let's prove again that (S_{t}) is a marthycle

 $f(x) = e^{x}$
 $X_{t} = \alpha N_{t} - \lambda(e^{\alpha}-1)t$
 $(dX_{t}^{c}) = 0$
 $dX_{t}^{c} = -\lambda(e^{\alpha}-1)dt$
 $dS_{t} = e^{x}(-\lambda(e^{\alpha}-1))dt$

if jump at u
$$f(X_u) - f(X_{u-})$$

$$f(X_{\alpha}) = e^{\alpha(N_{\alpha}-+1) - \lambda(e^{\alpha}-1) \ln \alpha}$$

$$- \frac{f(X_{\alpha}) = e^{\alpha(N_{\alpha}-+1) - \lambda(e^{\alpha}-1) \ln \alpha}}{e^{\alpha(N_{\alpha}-+1) - \lambda(e^{\alpha}-1) \ln \alpha}} (e^{\alpha}-1)$$

$$\frac{e^{\alpha(N_{\alpha}-+1) - \lambda(e^{\alpha}-1) \ln \alpha}}{S_{\alpha}} (e^{\alpha}-1) = e^{\alpha(N_{\alpha}-+1) - \lambda(e^{\alpha}-1) \ln \alpha}} (e^{\alpha}-1)$$

$$S_{\xi} = S_{x} - \int_{0}^{1} \lambda(e^{\alpha}-1) \int_{0}^{1} \int_{0}$$

RN pricing for jump processes

Let (Ne) be a Poisson process with rate A.

Change of probability

- (c) Biasing a Poisson random variable. Let N be a Poisson random variable with parameter $\lambda > 0$.
 - (i) Show that the MGF of N is

$$\mathbf{E}[e^{aN}] = \exp(\lambda(e^a - 1)).$$

- (ii) Use the above to show that under the probability $\widetilde{\mathbf{P}}$ defined by $\widetilde{\mathbf{P}}(\mathcal{E}) = \mathbf{E}[M\mathbf{1}_{\mathcal{E}}]$, where $M = \frac{e^{aN}}{\mathbf{E}[e^{aN}]}$, the random variable N is also Poisson-distributed with parameter λe^a .
- (1) Exercise 9.3

Solutions. (a) Using the distribution of a Poisson variable, we have

$$\mathbf{E}[e^{aN}] = \sum_{k=0}^{\infty} e^{ak} \frac{\lambda^k}{k!} e^{-\lambda} = \exp(\lambda(e^a - 1)),$$

by the Taylor expansion of exponential.

(b) It suffices to compute the MGF under $\widetilde{\mathbf{P}}$. We get for $b \in \mathbb{R}$

$$\widetilde{\mathbf{E}}[e^{bN}] = \mathbf{E}\left[\frac{e^{aN}}{\mathbf{E}[e^{aN}]}e^{bN}\right] = \frac{\mathbf{E}[e^{(a+b)N}]}{\mathbf{E}[e^{aN}]} = \exp(\lambda e^a(e^b - 1)),$$

by the above. But this is the MGF of a Poisson variable of parameter λe^a .

Mare generally

Proposition 8.12. Let (X_t) be a semi-martingale. Consider the process

$$Z_t = \exp(X_t^c - \frac{1}{2} \int_0^t dX_t^c \cdot dX_t^c) \prod_{0 \le s \le t} (1 + \Delta X_s)$$
.

Then Z_t satisfies

$$Z_t = 1 + \int_0^t Z_{s^-} \, \mathrm{d}X_s \; .$$

In particular, if (X_t) is a martingale then so is Z_t (under the assumption of Theorem 8.8).

Pricing

Cansider a market model with

· Risky asset:
$$S_{\xi} = S_0 \exp(\alpha N_{\xi} - \lambda t(e^{\alpha} - 1) + \mu t)$$

Existence of the RNP?

$$= (e^{\alpha}-1)\tilde{S}_{t} - (dN_{t} - (\lambda + r-\mu) dt)$$
We want (N_{t}) to be a Poisson process with

which a?
$$\tilde{\lambda} = \lambda e^{\alpha} = \alpha = \log \tilde{\lambda}$$

$$M_{T} = \frac{e^{\alpha N_{T}}}{E[e^{\alpha N_{T}}]}$$

$$\lambda = \lambda + \frac{r - \mu}{e^{\alpha} - 1}$$
condition
$$\lambda + \frac{r - \mu}{e^{\alpha} - 1} > 0$$

We need 200 for existence of RNP

Pricing of European options Price of a Call?

$$O_{t} = e^{-r(T-c)} \stackrel{\sim}{E} \left[O_{T} \middle| \mathcal{F}_{t} \right]$$

$$O_{t} = e^{-v(T-c)} \stackrel{\sim}{E} \left[\left(S_{T} - K \right)^{t} \middle| \mathcal{F}_{c} \right]$$

Explicit formula

$$O_{t} = e^{-r(T-t)} \tilde{E} \left[\left(e^{rT} \tilde{S}_{T} - K \right)^{t} \middle| \tilde{J}_{t} \right]$$

$$Under \quad \tilde{P} \quad \tilde{S}_{t} = S_{0} \exp \left(\alpha \tilde{N}_{t} - \tilde{\lambda} (e^{\alpha} - 1) (t + 1) \right)$$

$$\tilde{S}_{T} = \tilde{S}_{t} \exp \left(\alpha \left(\tilde{N}_{T} - \tilde{N}_{e} \right) - \tilde{\lambda} (e^{\alpha} - 1) (T-t) \right)$$

$$= e^{-r(T-t)} \tilde{E} \left[\left(e^{r(T-t)} S_{t} e^{\alpha \tilde{N}_{T} - \tilde{N}_{e}} \right) - \tilde{\lambda} (e^{\alpha} - 1) (T-t) \middle| \tilde{J}_{t} \right]$$

$$O_{t} = \tilde{\sum}_{j=0}^{\infty} \left(S_{t} e^{\alpha j} - \tilde{\lambda} (e^{\alpha} - 1) (T-t) - ke^{-r(T-t)} \right)^{t} \left(\tilde{\lambda} \frac{(T-t)}{j!} e^{-\tilde{\lambda} (T-t)} \right)^{j}$$

PDE formula

$$dS_{\xi} = (e^{\alpha}-1)S_{\xi}-d\widetilde{H}_{\xi} + rS_{\xi}-dt$$
Use Itô - Doeldin

Assume
$$O_t = f(b, S_t)$$

 $d(e^{-rt}f(t,S_t)) = -re^{-rt}f_{+}\partial_{e}f_{-r}dt_{+}\partial_{f}f_{+}dS_{+}^{c} + \frac{1}{2}\partial_{i}f_{+}(S_t)$
 $+ e^{-rt}(f(b,S_t) - f(t,S_{t-1}))$

$$dS_{\ell} = (e^{\alpha} - 1) S_{\ell} - d\tilde{N}_{\ell} + (rS_{\ell} - \tilde{\lambda}(e^{\alpha} - 1)S_{\ell}) dt$$

$$e^{-rt} \left\{ -rf + \partial_{0}f_{+} \partial_{i}f(rS_{\epsilon} - \lambda(e^{-i})S_{\epsilon}) \right\} dt$$

$$+ e^{-rt} \left(f(\xi_{i}S_{\epsilon}) - f(S_{\epsilon}) \right)$$

=
$$\sum_{\text{ofust}} \left(f(u, e^{\alpha}S_{u-}) - f(u, S_{u-}) \right) \Delta \widetilde{N}_{u}$$

= $\int_{0}^{t} f(u, e^{\alpha}S_{u-}) - f(u, S_{u-}) d\widetilde{N}_{u}$

+ $\int_{0}^{t} \widetilde{\lambda} \left(f(u, e^{\alpha}S_{u-}) - f(u, S_{u-}) \right) dt$.

at.

$$-rf_{+}\partial_{s}f_{+}\partial_{t}f(rS_{\epsilon}-\lambda(e^{-t})S_{\epsilon})+\lambda(f(t,e^{a}S_{t-})-f(t,S_{\epsilon}-1))$$

$$+(t,x)$$