# Advanced Parsing Techniques

### Announcements

- Written Set 1 graded.
  - Hard copies available for pickup right now.
  - Electronic submissions: feedback returned later today.

### Where We Are

### Where We Are



### Parsing so Far

- We've explored five deterministic parsing algorithms:
  - LL(1)
  - LR(0)
  - SLR(1)
  - LALR(1)
  - LR(1)
- These algorithms all have their limitations.
- Can we parse arbitrary context-free grammars?

### Why Parse Arbitrary Grammars?

- They're easier to write.
  - Can leave operator precedence and associativity out of the grammar.
  - No worries about shift/reduce or FIRST/FOLLOW conflicts.
- If ambiguous, can filter out invalid trees at the end.
  - Generate candidate parse trees, then eliminate them when not needed.
- Practical concern for some languages.
  - We need to have C and C++ compilers!

## Questions for Today

- How do you go about parsing ambiguous grammars *efficiently*?
- How do you produce all possible parse trees?
- What else can we do with a general parser?

# The Earley Parser

### Motivation: The Limits of LR

- LR parsers use shift and reduce actions to reduce the input to the start symbol.
- LR parsers cannot deterministically handle shift/reduce or reduce/reduce conflicts.
- However, they can nondeterministically handle these conflicts by guessing which option to choose.
- What if we try all options and see if any of them work?

### The Earley Parser

- Maintain a collection of Earley items, which are LR(0) items annotated with a start position.
  - The item  $\mathbf{A} \to \alpha \cdot \omega$  @n means we are working on recognizing  $\mathbf{A} \to \alpha \omega$ , have seen  $\alpha$ , and the start position of the item was the **n**th token.
- Using techniques similar to LR parsing, try to scan across the input creating these items.
- We're done when we find an item  $S \to E \cdot @1$  at the very last position.

$$S \rightarrow E$$
 $E \rightarrow E + E$ 
 $E \rightarrow int$ 

int + int + int

$$S \rightarrow E$$
 $E \rightarrow E + E$ 
 $E \rightarrow int$ 

int + int + int

$$S \rightarrow E$$
 $E \rightarrow E + E$ 
 $E \rightarrow int$ 



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$egin{aligned} \mathbf{S} & 
ightarrow \mathbf{E} \ \mathbf{E} & 
ightarrow \mathbf{E} + \mathbf{E} \ \mathbf{E} & 
ightarrow \mathbf{int} \end{aligned}$$



$$S \rightarrow E$$
 $E \rightarrow E + E$ 
 $E \rightarrow int$ 

@1

#### Earley in Action SCAN int int int + + Items<sub>3</sub> Items<sub>4</sub> Items<sub>6</sub> Items, Items, Items<sub>5</sub> $S \rightarrow \cdot E$ E→int· @1 @1 E→·E+E @1 E→·int

$$S \rightarrow E$$
 $E \rightarrow E + E$ 
 $E \rightarrow int$ 

@1



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

#### Earley in Action SCAN int int int + + Items<sub>1</sub> Items, Items<sub>3</sub> Items<sub>4</sub> Items<sub>5</sub> Items<sub>6</sub> $S \rightarrow \cdot E$ E→int· E→E+·E @1 @1 @1 E→·E+E $S \rightarrow E$ @1 @1 E→·int E→E·+E @1 @1

$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$



$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

#### Earley in Action int int int + + PREDICT Items<sub>1</sub> Items, Items<sub>3</sub> Items<sub>4</sub> Items<sub>5</sub> Items<sub>6</sub> $S \rightarrow \cdot E$ E→int· E→E+·E @1 @1 @1 E→·E+E E→·E+E $S \rightarrow E$ @1 @1 @3 E→·int E→E·+E E→·int @3 @1 @1

$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

#### Earley in Action SCAN int int int + + Items, Items<sub>3</sub> Items<sub>4</sub> Items<sub>5</sub> Items<sub>6</sub> Items, $S \rightarrow \cdot E$ E→int· E→E+·E @1 @1 @1 E→·E+E E→·E+E $S \rightarrow E$ @1 @1 @3 E→·int E→E·+E E→·int @3 @1 @1

$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

#### Earley in Action SCAN int int int + + Items<sub>2</sub> Items<sub>3</sub> Items<sub>4</sub> Items, Items<sub>6</sub> Items, $S \rightarrow \cdot E$ E→int· E→E+·E E→int· @1 @1 @1 @3 E→·E+E $S \rightarrow E$ E→·E+E @1 @3 @1 E→·int E→E·+E E→·int @3 @1 @1

$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

#### Earley in Action COMPLETE int int int + + Items<sub>2</sub> Items<sub>4</sub> Items<sub>3</sub> Items, Items<sub>6</sub> Items, $S \rightarrow \cdot E$ E→int· E→E+·E E→int· @1 @1 @1 @3 E→·E+E $S \rightarrow E$ E→·E+E @1 @3 @1 E→·int E→E·+E E→·int @3 @1 @1

$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

#### Earley in Action COMPLETE int int + int + Items<sub>4</sub> Items<sub>3</sub> Items, Items<sub>6</sub> Items, Items, $S \rightarrow E$ E→E+·E E→int· E→int· @1 @1 @1 @3 E→·E+E E→E+E· $S \rightarrow E$ E→·E+E @1 @3 @1 @1 E→·int E→E·+E E→·int E→E·+E @3 @1 @1 @3

$$\begin{array}{l} \textbf{S} \rightarrow \textbf{E} \\ \textbf{E} \rightarrow \textbf{E} + \textbf{E} \\ \textbf{E} \rightarrow \textbf{int} \end{array}$$

COMPLETE

**PREDICT** 

int

+

int

+

int

Items,

Items<sub>e</sub>

Items<sub>1</sub>

S→·E @1

E→·E+E

@1

E→·int

@1

Items,

E→int·

@1

 $S{\to}E\cdot$ 

@1

 $E \rightarrow E \cdot + E$ 

@1

Items<sub>3</sub>

 $E {\rightarrow} E {+} {\cdot} E$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

E→int·

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

 $E {\rightarrow} E {\cdot} {+} E$ 

@1

 $\boldsymbol{S} \to \boldsymbol{E}$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

 $\mathbf{E} \rightarrow \mathtt{int}$ 

int

COMPLETE

PREDICT

Items<sub>6</sub>

Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int

@1

Items,

int

E→int·

@1

 $S {\rightarrow} E \cdot$ 

@1

E→E·+E

@1

Items<sub>3</sub>

+

 $E {\rightarrow} E {+} {\cdot} E$ 

@1

 $E \rightarrow \cdot E + E$ 

@3

E→·int

@3

Items<sub>4</sub>

+

int

Items,

 $E{\rightarrow} int{\cdot}$ 

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

 $E{\rightarrow}E{\cdot}{+}E$ 

@1

 $\mathbf{S} \to \mathbf{E}$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

 $\mathbf{E} \rightarrow \mathtt{int}$ 

int

SCAN

COMPLETE

**PRFDICT** 

### Items<sub>1</sub>

S→·E @1

E→·E+E

@1

E→·int

@1

### Items<sub>2</sub>

int

E→int·

@1

 $S{\to}E\cdot$ 

@1

 $E \rightarrow E \cdot + E$ 

@1

### Items<sub>3</sub>

+

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

### Items<sub>4</sub>

+

E→int·

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

 $E{\rightarrow}E{\cdot}{+}E$ 

@1

$$\mathbf{S} \to \mathbf{E}$$

$$\mathbf{E} \to \mathbf{E} + \mathbf{E}$$

$$\mathbf{E} \rightarrow \mathtt{int}$$

Items<sub>5</sub>

int

Items<sub>6</sub>

SCAN

COMPLETE

**PRFDICT** 

Items<sub>e</sub>

int

+

int

+

int

Items,

S→·E @1

E→·E+E @1

> E→·int @1

Items<sub>2</sub>

 $E{\rightarrow} int \cdot$ 

@1

 $S \rightarrow E$ 

@1

E→E·+E

@1

Items<sub>3</sub>

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

E→int·

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

 $E{\rightarrow}E{\cdot}{+}E$ 

@1

Items<sub>5</sub>

E→E+·E

@3

 $E \rightarrow E + \cdot E$ 

@1

 $S \rightarrow E$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

 $\mathbf{E} \to \mathtt{int}$ 

COMPLETE

**PREDICT** 

Items<sub>e</sub>

int

+

int

+

int

Items,

S→·E @1

E→·E+E @1

> E→·int @1

Items<sub>2</sub>

 $E{\rightarrow} int \cdot$ 

@1

S→E· @1

E→E·+E

@1

Items<sub>3</sub>

 $\mathsf{E} {\rightarrow} \mathsf{E} {+} {\cdot} \mathsf{E}$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

 $E{\rightarrow}E{\cdot}{+}E$ 

@1

Items<sub>5</sub>

E→E+·E

@3

 $E {\rightarrow} E {+} {\cdot} E$ 

@1

 $\mathbf{S} \to \mathbf{E}$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

COMPLETE

PREDICT

Items<sub>e</sub>

int

+

int

+

int

Items<sub>1</sub>

S→·E @1

E→·E+E @1

> E→·int @1

Items<sub>2</sub>

 $E{\rightarrow} int \cdot$ 

@1

S→E·

@1

E→E·+E

@1

Items<sub>3</sub>

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

 $E{\rightarrow} int{\cdot}$ 

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

 $E{\rightarrow}E{\cdot}{+}E$ 

@1

Items<sub>5</sub>

E→E+·E

@3

 $E{\rightarrow}E{+}{\cdot}E$ 

@1

 $\mathbf{S} \to \mathbf{E}$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

COMPLETE

PREDICT

Items<sub>e</sub>

int

+

int

+

int

Items<sub>1</sub>

S→·E @1

E→·E+E @1

> E→·int @1

Items<sub>2</sub>

E→int· @1

S→E·

@1

E→E·+E

@1

Items<sub>3</sub>

 $E{\to}E{+}{\cdot}E$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

E→int·

@3

E→E+E·

@1

E→E·+E

@3

 $S{\rightarrow} E \cdot$ 

@1

E→E·+E

@1

Items<sub>5</sub>

E→E+·E

@3

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@5

E→·int

@5

 $\mathbf{S} \to \mathbf{E}$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

SCAN

COMPLETE

**PRFDICT** 

Items<sub>e</sub>

int

+

int

+

int

S→·E @1

Items,

E→·E+E @1

E→·int

@1

Items,

 $E{\rightarrow} int \cdot$ 

@1

 $S \rightarrow E$ 

@1

E→E·+E

@1

Items<sub>3</sub>

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

E→int·

@3

E→E+E·

@1

E→E·+E

@3

 $S{\to}E\cdot$ 

@1

E→E·+E

@1

Items<sub>5</sub>

 $E \rightarrow E + \cdot E$ 

@3

E→E+·E

@1

E→·E+E

@5

E→·int

@5

 $\mathbf{S} \to \mathbf{E}$ 

 $\mathbf{E} \to \mathbf{E} + \mathbf{E}$ 

SCAN

COMPLETE

PREDICT

int + int +

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1

#### Items<sub>2</sub>

E→int· @1

S→E·

@1

E→E·+E

@1

#### Items<sub>3</sub>

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

#### Items<sub>4</sub>

E→int·

@3

E→E+E·

@1

E→E·+E

@3

 $S{\rightarrow} E \cdot$ 

@1

E→E·+E

@1

#### Items<sub>5</sub>

 $E \rightarrow E + \cdot E$ 

@3

E→E+·E

@1

E→·E+E

@5

E→·int

@5

#### Items<sub>6</sub>

E→int· @5

 $S \rightarrow E$   $E \rightarrow E + E$   $E \rightarrow int$ 

COMPLETE

COMPLETE

**PREDICT** 

int + int +

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1

#### Items<sub>2</sub>

 $E{\rightarrow} int \cdot$ 

@1

S→E· @1

E→E·+E

@1

#### Items<sub>3</sub>

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

#### Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

E→E·+E

@3

 $S{\rightarrow} E \cdot$ 

@1

E→E·+E

@1

#### Items<sub>5</sub>

int

 $E{\rightarrow}E{+}{\cdot}E$ 

@3

E→E+·E

@1

 $E \rightarrow \cdot E + E$ 

@5

E→·int

@5

#### Items<sub>6</sub>

E→int· @5

 $S \rightarrow E$   $E \rightarrow E + E$   $E \rightarrow int$ 

COMPLETE

COMPLETE

**PREDICT** 

int + int + int

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1

#### Items<sub>2</sub>

E→int· @1

 $S {\rightarrow} E \cdot$ 

@1

E→E·+E

@1

#### Items<sub>3</sub>

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@3

E→·int

@3

#### Items<sub>4</sub>

E→int·

@3

E→E+E·

@1

E→E·+E

@3

 $S{\rightarrow} E \cdot$ 

@1

E→E·+E @1 Items<sub>5</sub>

 $E {\rightarrow} E {+} {\cdot} E$ 

@3

E→E+·E

@1

E→·E+E

@5

E→·int

@5

Items<sub>6</sub>

 $E \rightarrow int$ 

@5

E→E+E·

@3

E→E+E·

@1

E→E·+E

@5

$$\mathbf{S} \to \mathbf{E}$$

$$\mathbf{E} \to \mathbf{E} + \mathbf{E}$$

$$\mathbf{E} \rightarrow \mathtt{int}$$

SOAN

COMPLETE

**PREDICT** 

int + int + int

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1

#### Items<sub>2</sub>

E→int· @1

S→E· @1

E→E·+E @1

#### Items<sub>3</sub>

E→E+·E

@1

E→·E+E @3

E→·int

@3

#### Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

 $E \rightarrow E \cdot + E$ 

@3

 $S {\rightarrow} E \cdot$ 

@1

E→E·+E @1

#### Items<sub>5</sub>

 $\mathsf{E} {\rightarrow} \mathsf{E} {+} {\cdot} \mathsf{E}$ 

@3

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@5

E→·int @5 Items<sub>6</sub>

E→int·

@5

E→E+E·

@3

E→E+E·

@1

E→E·+E

@5

E→E·+E

@3

$$\mathbf{S} \to \mathbf{E}$$

$$\mathbf{E} \to \mathbf{E} + \mathbf{E}$$

$$\mathbf{E} \rightarrow \mathtt{int}$$

SCAN

COMPLETE

PREDICT

Items<sub>e</sub>

E→int·

@5

E→E+E·

@3

int

+

int

+

int

Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1 Items<sub>2</sub>

E→int· @1

S→E· @1

E→E·+E

@1

Items<sub>3</sub>

E→E+·E

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

E→E·+E

@3

 $S{\rightarrow} E \cdot$ 

@1

E→E·+E @1 Items<sub>5</sub>

E→E+·E

@3

E→E+·E

@1

E→·E+E

@5

E→·int @5 E→E+E· @1

E→E·+E

@5

E→E·+E

@3

S→E·

@1

E→E·+E

@1

 $S \rightarrow E$   $E \rightarrow E + E$   $E \rightarrow int$ 

SCAN

COMPLETE

PREDICT

int

+

int

+

int

Items,

S→·E @1

E→·E+E @1

E→·int @1 Items<sub>2</sub>

E→int· @1

S→E· @1

E→E·+E @1 Items<sub>3</sub>

 $E{\to}E{+}{\cdot}E$ 

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

E→E·+E

@3

 $S{\to}E\cdot$ 

@1

E→E·+E @1 Items<sub>5</sub>

E→E+·E

@3

E→E+·E

@1

E→·E+E

@5

E→·int

@5

Items<sub>6</sub>

E→int·

@5

E→E+E·

@3

E→E+E·

@1

E→E·+E

@5

E→E·+E

@3

S→E·

@1

E→E·+E

@1

 $S \rightarrow E$   $E \rightarrow E + E$   $E \rightarrow int$ 

SCAN

COMPLETE

**PRFDICT** 

int

+

int

+

int

Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1 Items<sub>2</sub>

E→int· @1

S→E· @1

E→E·+E @1 Items<sub>3</sub>

E→E+·E

@1

E→·E+E

@3

E→·int

@3

Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

E→E·+E

@3

S→E·

@1

E→E·+E @1 Items<sub>5</sub>

 $E \rightarrow E + \cdot E$ 

@3

E→E+·E

@1

E→·E+E

@5

E→·int @5 Items<sub>6</sub>

E→int·

@5

E→E+E·

@3

E→E+E·

@1

E→E·+E

@5

E→E·+E

@3

 $S \rightarrow E$ 

@1

E→E·+E

@1

| S            | $\rightarrow$ | E                         |
|--------------|---------------|---------------------------|
| $\mathbf{E}$ | $\rightarrow$ | $\mathbf{E} + \mathbf{E}$ |
| $\mathbf{E}$ | $\rightarrow$ | int                       |

SCAN

COMPLETE

PREDICT

int + in

int

+

int

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·int @1

#### Items<sub>2</sub>

E→int· @1

S→E· @1

E→E·+E @1

#### Items<sub>3</sub>

E→E+·E

<u>@</u>1 E→·E+E

@3

E→·int @3

#### Items<sub>4</sub>

 $E{\rightarrow} int \cdot$ 

@3

E→E+E·

@1

 $E \rightarrow E \cdot + E$ 

@3

S→E·

@1

E→E·+E @1

#### Items<sub>5</sub>

 $\mathsf{E} {\rightarrow} \mathsf{E} {+} {\cdot} \mathsf{E}$ 

@3

 $E \rightarrow E + \cdot E$ 

@1

E→·E+E

@5

E→·int @5

#### Items<sub>6</sub>

 $E{\rightarrow} int \cdot$ 

@5

E→E+E·

@3

E→E+E·

@1

E→E·+E

@5

E→E·+E

@3

S→E·

@1

E→E·+E

@1

$$S \rightarrow E$$
 $E \rightarrow E + E$ 
 $E \rightarrow int$ 

## The Earley Algorithm

- For now, assume no  $\varepsilon$ -rules.
- Begin with the item  $S \rightarrow \cdot E$  @1 in the first item set.
- Apply a predict step:
  - For each item  $\mathbf{A} \to \alpha \cdot \mathbf{B} \omega$  @n in the *k*th item set, add the item  $\mathbf{B} \to \mathbf{y}$  @k to the *k*th item set for each production  $\mathbf{B} \to \mathbf{y}$ .
- Apply a scan step:
  - For each item  $\mathbf{A} \to \alpha \cdot \mathbf{t} \omega$  @n in the kth item set, if the kth token is t, add  $\mathbf{A} \to \alpha \mathbf{t} \cdot \omega$  @n to the (k + 1)st item set.
- Apply a **complete** step:
  - For each item  $A \to \gamma$  @n in the *kth* item set, for each item  $B \to \alpha \cdot A \omega$  @m in the nth item set, add  $B \to \alpha A \cdot \omega$  @m to the *kth* item set.

### Supporting ε-Rules

- Simple modification to the **predict** step:
  - If there is an item  $\mathbf{A} \to \alpha \cdot \mathbf{B} \omega$  @n in the kth item set, where  $\mathbf{\varepsilon} \in \text{FIRST}(\mathbf{B})$ , add the item  $\mathbf{A} \to \alpha \mathbf{B} \cdot \omega$  @n to the kth item set.
- Intuition: One prediction is that **B** ends up expanding out to nothing.

• How many LR(0) items are possible in a grammar G?

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?
  - One for each triple of (LR(0) item, start position, end position).
  - $O(|G|n^2)$

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?
  - One for each triple of (LR(0) item, start position, end position).
  - $O(|G|n^2)$
- How many times can each item be generated?

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?
  - One for each triple of (LR(0) item, start position, end position).
  - $O(|G|n^2)$
- How many times can each item be generated?
  - Item at position k could be added from positions 1, 2, ..., k 1
  - O(n)

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?
  - One for each triple of (LR(0) item, start position, end position).
  - $O(|G|n^2)$
- How many times can each item be generated?
  - Item at position k could be added from positions 1, 2, ..., k 1
  - O(n)
- Overall complexity is  $O(|G|n^3)$

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?
  - One for each triple of (LR(0) item, start position, end position).
  - $O(|G|n^2)$
- How many times can each item be generated?
  - Item at position k could be added from positions 1, 2, ..., k 1
  - O(n)
- Overall complexity is  $O(|G|n^3)$
- For a fixed grammar, parse time is  $O(n^3)$ .

- How many LR(0) items are possible in a grammar G?
  - One for each possible position in any production.
  - O(|G|)
- How many Earley items can there be?
  - One for each triple of (LR(0) item, start position, end position).
  - $O(|G|n^2)$
- How many times can each item be generated?
  - Item at position k could be added from positions 1, 2, ..., k 1
  - O(n)
- Overall complexity is  $O(|G|n^3)$
- For a fixed grammar, parse time is  $O(n^3)$ .
- For a fixed grammar, memory usage always  $O(n^2)$ .

### Interesting Results

- The Earley parser always runs in O(n²) on unambiguous grammars.
  - Intuition: Never generates the same item twice.
- If we add k tokens of lookahead before applying productions or reductions, the Earley parser can parse any LR(k) grammar in time O(n).
  - Intuition: We never need to backtrack, so each item generated ends up being used.

### Recognizers and Parsers

- We have just discussed the Earley recognizer, not the Earley parser.
- Right now, we can only detect whether a string is valid by seeing if  $S \to E$ . @1 is in the last item set.
- We need to discuss how to upgrade our recognizer into a parser.
- If the grammar is ambiguous, how do we hand back multiple parse trees?

 $X \rightarrow XX$  $X \rightarrow a$ 

$$\begin{array}{c} X \to XX \\ X \to a \end{array}$$

a a a a a

$$\begin{matrix} X \to XX \\ X \to a \end{matrix}$$



$$\begin{matrix} X \to XX \\ X \to a \end{matrix}$$



$$X \rightarrow XX$$
  
 $X \rightarrow a$ 





 $\mathsf{X} \to \mathsf{X}$ 

 $\mathsf{X} \to \mathsf{X}$ 

 $\mathsf{X} \to \mathsf{X}$ 



 $\mathsf{X} \to \mathsf{X}$ 



$$\mathsf{X} \to \mathsf{X}$$

$$X \rightarrow a$$



Given that there can be **infinitely many parse trees**, how could we possibly list all of them?

## CHALLENGE ACCEPTED







$$E \rightarrow T$$
 $E \rightarrow T + E$ 
 $T \rightarrow int$ 
 $T \rightarrow (E)$ 

$$S \rightarrow E_{1-8}$$





### A Simple Parse Tree



5















 $\mathsf{E} \to \mathtt{int}$ 





 $\mathsf{E} \to \mathtt{int}$ 

E -> E + E | Several Parse Trees





$$E \rightarrow E + E$$
  
 $E \rightarrow int$ 

 $S \rightarrow E_{1-6}$ 





$$E \rightarrow E + E$$
  
 $E \rightarrow int$ 







A parse-forest grammar is a context-free grammar for parse trees.

### An Infinitely Ambiguous Grammar

$$X \rightarrow X$$
  
 $X \rightarrow a$ 



### An Infinitely Ambiguous Grammar

$$X \to X$$
  
 $X \to a$ 

$$S \rightarrow X_{1-2}$$

$$X_{1-2} \rightarrow X_{1-2}$$

$$X_{1-2} \rightarrow a_{1-2}$$



## A Highly Ambiguous Grammar

$$\begin{matrix} X \to XX \\ X \to a \end{matrix}$$



### A Highly Ambiguous Grammar

$$X \rightarrow XX$$
  
 $X \rightarrow a$ 

$$S \rightarrow X_{1-2} X_{2-6}$$
  
 $S \rightarrow X_{1-3} X_{3-6}$   
 $S \rightarrow X_{1-4} X_{4-6}$   
 $S \rightarrow X_{1-5} X_{5-6}$   
 $X_{1-2} \rightarrow a_{1-2}$   
 $X_{2-3} \rightarrow a_{2-3}$   
 $X_{3-4} \rightarrow a_{3-4}$   
 $X_{4-5} \rightarrow a_{4-5}$   
 $X_{5-6} \rightarrow a_{5-6}$ 

$$X_{1-3} \rightarrow X_{1-2} X_{2-3}$$
 $X_{2-4} \rightarrow X_{2-3} X_{3-4}$ 
 $X_{3-5} \rightarrow X_{3-4} X_{4-5}$ 
 $X_{4-6} \rightarrow X_{4-5} X_{5-6}$ 
 $X_{1-4} \rightarrow X_{1-2} X_{2-4}$ 
 $X_{1-4} \rightarrow X_{1-3} X_{3-4}$ 
 $X_{2-5} \rightarrow X_{2-3} X_{3-5}$ 
 $X_{2-5} \rightarrow X_{2-4} X_{4-5}$ 
 $X_{3-6} \rightarrow X_{3-4} X_{4-6}$ 
 $X_{3-6} \rightarrow X_{3-5} X_{5-6}$ 

$$\begin{array}{c} X_{1-5} \longrightarrow X_{1-2} X_{2-5} \\ X_{1-5} \longrightarrow X_{1-3} X_{3-5} \\ X_{1-5} \longrightarrow X_{1-4} X_{4-5} \\ X_{2-6} \longrightarrow X_{2-3} X_{3-6} \\ X_{2-6} \longrightarrow X_{2-4} X_{4-6} \\ X_{2-6} \longrightarrow X_{2-5} X_{5-6} \end{array}$$



#### Parse Forest Grammars

- Compact framework for encoding (potentially infinitely many!) parse trees.
- Output of most (but not all) ambiguous grammar parsers.
- Size not guaranteed to be a polynomial in the size of the grammar.
  - May have every possible partition of every production in the parse tree.
- This is not a problem in practice.
  - Real grammars rarely trigger this behavior.
  - Techniques exist to obtain worst-case O(n<sup>3</sup>) size.

### Building an Earley Parser

- **Idea**: Build up a parse-forest grammar as we compute item sets.
- Whenever we complete an item, add it to the resulting grammar.
- This will introduce unnecessary rules; we'll fix this later on.
- Some details are tricky; see Grune and Jacobs Ch. 13 for some of the finer points.

 $A \rightarrow Ba$ 

 $A \to Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing

 $A \rightarrow Ba$ 

 $\mathsf{A} \to \mathsf{Bb}$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing

a a d

 $A \rightarrow Ba$ 

 $\mathsf{A} \to \mathsf{Bb}$ 

 $\mathsf{A} \to \mathsf{Cab}$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing

a

a

d

 $S \rightarrow A$   $A \rightarrow Ba$   $A \rightarrow Bb$   $A \rightarrow Cab$   $A \rightarrow Ad$   $B \rightarrow a$   $C \rightarrow a$ 

## Earley Parsing



 $S \rightarrow A$   $A \rightarrow Ba$   $A \rightarrow Bb$   $A \rightarrow Cab$   $A \rightarrow Ad$   $B \rightarrow a$   $C \rightarrow a$ 

## Earley Parsing



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing

SCAN
COMPLETE
PREDICT



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing





 $S \rightarrow A$ 

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing





 $S \rightarrow A$ 

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

## Earley Parsing

A→·Bb @1

A→·Cab@1

A → · Ad @1

B→·a @1





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \to a \,$ 

# Earley Parsing

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \to a \,$ 





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# Earley Parsing



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 

### Earley Parsing



Items<sub>4</sub>



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 





 $A \rightarrow Ba$ 

 $A \to Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

#### Earley Parsing





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# Earley Parsing





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 







 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

### Earley Parsing





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

#### Earley Parsing





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

### Earley Parsing





$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2} a_{2-3}$ 
 $S_{1-3} \rightarrow A_{1-3}$ 
 $A_{1-4} \rightarrow A_{1-3} d_{3-4}$ 
 $S_{1-4} \rightarrow A_{1-4}$ 
 $S \rightarrow S_{1-4}$ 

$$\begin{split} B_{_{1\text{-}2}} &\to a_{_{1\text{-}2}} \\ C_{_{1\text{-}2}} &\to a_{_{1\text{-}2}} \\ A_{_{1\text{-}3}} &\to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ S_{_{1\text{-}3}} &\to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ A_{_{1\text{-}4}} &\to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ S_{_{1\text{-}4}} &\to A_{_{1\text{-}4}} \\ S &\to S_{_{1\text{-}4}} \end{split}$$

S

$$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, a_{_{2\text{-}3}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & S_{_{1\text{-}4}} \to A_{_{1\text{-}4}} \\ & S \to S_{_{1\text{-}4}} \end{split}$$



$$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, a_{_{2\text{-}3}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & S_{_{1\text{-}4}} \to A_{_{1\text{-}4}} \\ & S \to S_{_{1\text{-}4}} \end{split}$$



$$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, a_{_{2\text{-}3}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & S_{_{1\text{-}4}} \to A_{_{1\text{-}4}} \\ & S \to S_{_{1\text{-}4}} \end{split}$$



$$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, a_{_{2\text{-}3}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & S_{_{1\text{-}4}} \to A_{_{1\text{-}4}} \\ & S \to S_{_{1\text{-}4}} \end{split}$$



$$\begin{split} B_{_{1\text{-}2}} &\to a_{_{1\text{-}2}} \\ C_{_{1\text{-}2}} &\to a_{_{1\text{-}2}} \\ A_{_{1\text{-}3}} &\to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ S_{_{1\text{-}3}} &\to A_{_{1\text{-}3}} \, a_{_{3\text{-}4}} \\ A_{_{1\text{-}4}} &\to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ S_{_{1\text{-}4}} &\to A_{_{1\text{-}4}} \\ S &\to S_{_{1\text{-}4}} \end{split}$$



$$\begin{split} & B_{\text{1-2}} \to a_{\text{1-2}} \\ & C_{\text{1-2}} \to a_{\text{1-2}} \\ & A_{\text{1-3}} \to B_{\text{1-2}} \ a_{\text{2-3}} \\ & S_{\text{1-3}} \to A_{\text{1-3}} \ a_{\text{3-4}} \\ & A_{\text{1-4}} \to A_{\text{1-3}} \ d_{\text{3-4}} \\ & S_{\text{1-4}} \to A_{\text{1-4}} \end{split}$$



$$B_{1-2} \to a_{1-2}$$

$$A_{1-3} \to B_{1-2} a_{2-3}$$

$$\begin{aligned} &\mathsf{A}_{\mathsf{1-4}} \to \mathsf{A}_{\mathsf{1-3}} \; \mathsf{d}_{\mathsf{3-4}} \\ &\mathsf{S}_{\mathsf{1-4}} \to \mathsf{A}_{\mathsf{1-4}} \\ &\mathsf{S} \to \mathsf{S}_{\mathsf{1-4}} \end{aligned}$$



$$B_{1-2} \rightarrow a_{1-2}$$

$$A_{1-3} \to B_{1-2} a_{2-3}$$

$$\begin{aligned} &\mathsf{A}_{\scriptscriptstyle{1\text{-}4}} \to \mathsf{A}_{\scriptscriptstyle{1\text{-}3}} \; \mathsf{d}_{\scriptscriptstyle{3\text{-}4}} \\ &\mathsf{S}_{\scriptscriptstyle{1\text{-}4}} \to \mathsf{A}_{\scriptscriptstyle{1\text{-}4}} \\ &\mathsf{S} \to \mathsf{S}_{\scriptscriptstyle{1\text{-}4}} \end{aligned}$$



#### Cleaning a Parse Forest Grammar

- Remove all productions that can't be reached from the start symbol.
- Algorithm: (yet another) fixed-point iteration.
  - Set REACH =  $\{S\}$
  - For each  $A \in REACH$ , and for each nonterminal B where  $A \rightarrow \alpha B \omega$ , add B to REACH.
- Remove all productions whose left-hand side is not in REACH.
- Can be made to run in time linear in the size of the grammar by encoding as a graph and doing a DFS.

# Summary of Earley Parsing

- Parsing algorithm for arbitrary CFGs that, for any fixed grammar, runs quickly:
  - O(n) for LR(k) grammars (after adding lookahead)
  - $O(n^2)$  for any unambiguous grammar.
  - $O(n^3)$  for any ambiguous grammar.
- Outputs a parse forest grammar of all possible parse trees.

# Intersection Parsing

 $A \rightarrow Ba$ 

 $\mathsf{A} \to \mathsf{Bb}$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

 $A \rightarrow Ba$ 

 $\mathsf{A} \to \mathsf{Bb}$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation

a a d

 $A \rightarrow Ba$ 

 $\mathsf{A} \to \mathsf{Bb}$ 

 $\mathsf{A} \to \mathsf{Cab}$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation

a

a

d

 $A \rightarrow Ba$ 

 $A \to Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 



 $S \to \mathsf{A}$ 

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation





S→·A @1

A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation





S→·A @1

A → · Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation





S→·A @1

A→·Ba @1

A → · Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation

SCAN
COMPLETE
PREDICT



S→·A @1

A → · Ba @1

A → · Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation

SCAN
COMPLETE
PREDICT



A→·Ba @1
A→·Bb @1
A→·Cab@1
A→·Ad @1
B→·a @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# An Observation

A→·Cab@1

A→·Ad @1

B→·a @1





 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$\begin{array}{l} B_{_{1\text{-}2}} \rightarrow a_{_{1\text{-}2}} \\ C_{_{1\text{-}2}} \rightarrow a_{_{1\text{-}2}} \end{array}$$

# An Observation

COMPLETE



S→·A @1

A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C→a· @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{_{1-2}} \rightarrow a_{_{1-2}}$$
 $C_{_{1-2}} \rightarrow a_{_{1-2}}$ 

# An Observation

SCAN

COMPLETE

PREDICT



S→·A @1

A → · Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C → a · @1

A→B·a @1

A→B·b @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 

# An Observation

**PREDICT** 



S→·A @1

A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C→a· @1

A→B·a @1

A→B·b @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \to a_{1-2}$$
 $C_{1-2} \to a_{1-2}$ 

# An Observation

SCAN



A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C→a· @1

A→B·a @1

A→B·b @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{_{1-2}} \rightarrow a_{_{1-2}}$$
 $C_{_{1-2}} \rightarrow a_{_{1-2}}$ 

# An Observation

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

SCAN
COMPLETE
PREDICT



A→B·a @1

A→B·b @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \longrightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 

# An Observation

SCAN

COMPLETE

PREDICT



A → · Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

C→a· @1

A→B·a @1

A→B·b @1

A→C·ab@1

A→Ca·b@1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2}$ 

# An Observation





S→·A @1

A→ Ba @1

A → · Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B → a· @1

C→a· @1

A→B·a @1

A→B·b @1

A→C·ab@1

A → Ba · @1

A→Ca·b@1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2} a_{2-3}$ 

# An Observation

COMPLETE



S→·A @1

A→ Ba @1

A → · Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C→a· @1

A→B·a @1

A→B·b @1

A→C·ab@1

A → Ba · @1

A→Ca·b@1

S→A·@1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2}$ 
 $a_{2-3}$ 
 $a_{1-3} \rightarrow A_{1-3}$ 

# An Observation

SCAN

COMPLETE

PREDICT



S→·A @1

A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C→a· @1

A→B·a @1

A→B·b @1

A→C·ab@1

A → Ba · @1

A→Ca·b@1

S→A·@1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2}$ 
 $a_{2-3}$ 
 $a_{1-3} \rightarrow A_{1-3}$ 

# An Observation

SCAN
COMPLETE
PREDICT



## S ... \ @'

S→·A @1

A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C → a · @1

A→B·a @1

A→B·b @1

A→C·ab@1

A→Ba· @1

A→Ca·b@1

S→A·@1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2}$ 
 $a_{2-3}$ 
 $a_{1-3} \rightarrow A_{1-3}$ 

# An Observation

SCAN
COMPLETE
PREDICT



S→·A @1

A→·Ba @1

A→·Bb @1

A→·Cab@1

A→·Ad @1

B→·a @1

C→·a @1

B→a· @1

C→a· @1

A→B·a @1

A→B·b @1

A→C·ab@1

A→Ba· @1

A→Ca·b@1

S→A·@1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2}$ 
 $a_{2-3}$ 
 $a_{1-3} \rightarrow A_{1-3}$ 

# An Observation

B→·a @1

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

$$B_{1-2} \rightarrow a_{1-2}$$
 $C_{1-2} \rightarrow a_{1-2}$ 
 $A_{1-3} \rightarrow B_{1-2}$ 
 $a_{2-3}$ 
 $a_{1-3} \rightarrow A_{1-3}$ 

# An Observation

SCAN

COMPLETE

PREDICT



A→C·ab@1

A→·Ad @1

B→·a @1

 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $B_{1-2} \rightarrow a_{1-2}$ $C_{1-2} \rightarrow a_{1-2}$ $A_{1-3} \rightarrow B_{1-2} a_{2-3}$ $S_{1-3} \rightarrow A_{1-3}$ $A_{1-4} \rightarrow A_{1-3} d_{3-4}$

# An Observation

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $B_{1-2} \rightarrow a_{1-2}$ $C_{1-2} \rightarrow a_{1-2}$ $A_{1-3} \rightarrow B_{1-2} a_{2-3}$ $S_{1-3} \rightarrow A_{1-3}$ $A_{1-4} \rightarrow A_{1-3} d_{3-4}$

# An Observation

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \end{split}$$

# An Observation

B→·a @1

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $$\begin{split} & B_{1\text{-}2} \to a_{1\text{-}2} \\ & C_{1\text{-}2} \to a_{1\text{-}2} \\ & A_{1\text{-}3} \to B_{1\text{-}2} \ a_{2\text{-}3} \\ & S_{1\text{-}3} \to A_{1\text{-}3} \\ & A_{1\text{-}4} \to A_{1\text{-}3} \ d_{3\text{-}4} \\ & S_{1\text{-}4} \to A_{1\text{-}4} \end{split}$$

# An Observation

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $$\begin{split} & B_{1\text{-}2} \to a_{1\text{-}2} \\ & C_{1\text{-}2} \to a_{1\text{-}2} \\ & A_{1\text{-}3} \to B_{1\text{-}2} \ a_{2\text{-}3} \\ & S_{1\text{-}3} \to A_{1\text{-}3} \\ & A_{1\text{-}4} \to A_{1\text{-}3} \ d_{3\text{-}4} \\ & S_{1\text{-}4} \to A_{1\text{-}4} \end{split}$$

# An Observation

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & S_{_{1\text{-}4}} \to A_{_{1\text{-}4}} \end{split}$$

# An Observation

C→·a @1



 $A \rightarrow Ba$ 

 $A \rightarrow Bb$ 

 $A \rightarrow Cab$ 

 $A \rightarrow Ad$ 

 $B \rightarrow a$ 

 $C \rightarrow a$ 

# $$\begin{split} & B_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & C_{_{1\text{-}2}} \to a_{_{1\text{-}2}} \\ & A_{_{1\text{-}3}} \to B_{_{1\text{-}2}} \, a_{_{2\text{-}3}} \\ & S_{_{1\text{-}3}} \to A_{_{1\text{-}3}} \, a_{_{2\text{-}3}} \\ & A_{_{1\text{-}4}} \to A_{_{1\text{-}3}} \, d_{_{3\text{-}4}} \\ & S_{_{1\text{-}4}} \to A_{_{1\text{-}4}} \\ & S \to S_{_{1\text{-}4}} \end{split}$$

# An Observation

C→·a @1



### What Just Happened?

- The input to the Earley parser is a context-free grammar and a string.
- We can think of that string as a **finite automaton** rather than a string.
- The output of the Earley parser is context-free grammar describing all valid ways of parsing the string.
- We can think of this as a context-free grammar for the subset of the input grammar that is accepted by the automaton.
- What happens when we supply an arbitrary automaton?

### Parsing as Intersection

- We can think of parsing as computing the intersection of a context-free language and a regular language.
- Result from formal language theory: This intersection is always a context-free language.
- Earley parsing is a *constructive* algorithm for finding this intersection!

### Interpreting the Intersection

- As a parse forest grammar.
  - The output grammar describes all possible parse trees that would be accepted by the automaton.
- As a filtered grammar.
  - The output grammar is the input grammar "filtered" to just those strings matched by the automaton.





```
public class identifier {    .* }
```

Parsing as intersection immediately provides polynomial-time algorithms for tasks that would seem problematic otherwise [...] without imposing restrictions on the CF grammar used in the parsing. Although its basic component is old, it is a relatively new and little-studied subject[.]

- Grune and Jacobs, pg 441

### What Needs to Change?

- Completer and predictor steps are both fine.
- **Scanner** step needs to work across transitions, not from character-to-character.
- More formally:
  - For each item  $\mathbf{A} \to \alpha \cdot \mathbf{t} \omega$  @n in the kth item set, if there is a transition on t from state k to state j, add  $\mathbf{A} \to \alpha \mathbf{t} \cdot \omega$  @n to the jth item set.
- Additionally, accept if *any accepting state* has the item  $S \to \mathbf{E} \cdot \mathbf{@1}$ .
- Cannot scan from left-to-right; must consider all sets on each iteration.

### A Simple Question

Given the (ambiguous) grammar

```
S \rightarrow E
E \rightarrow E + E
E \rightarrow int
E \rightarrow (E)
```

• Determine whether there is some string generated by the grammar that has the form (??), where ? represents any symbol in the grammar.

### Our Automaton

















E→·(E) @1

E → · int @1



E→·(E) @1

E → · int @1



E→·(E) @1

E→·int @1



E→·(E) @1

E→·int @1



E→·(E) @1

E→·int @1



E→·(E) @1

E → · int @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 



E→·(E) @1

E → · int @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 



SCAN



### Items<sub>1</sub>

E → · int @1

### Items,

$$E \rightarrow int @2$$

### Items<sub>3</sub>

### Items<sub>4</sub>



SCAN

COMPLETE



### Items,

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items,

E→(·E) @2

E→int· @2

Items<sub>₄</sub>



SCAN

COMPLETE



### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

Items<sub>4</sub> Items<sub>5</sub>



PREDICT



### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2



SCAN
COMPLETE
PREDICT



### Items<sub>1</sub>

E → · int @1

### Items,

$$E \rightarrow int @2$$

### Items<sub>3</sub>

Items<sub>₄</sub> It

 $S \rightarrow E$  $E \rightarrow E + E$  $\mathsf{E} \to \mathtt{int}$  $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

SCAN



### Items,

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

 $E \rightarrow int @3$ 

 $S \rightarrow E$ 

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

Σ

SCAN

COMPLETE

PREDICT

Items<sub>5</sub>

### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E:+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→**int**·@3

E→E+·E @2

 $S \rightarrow E$  $E \rightarrow E + E$  $\mathsf{E} \to \mathtt{int}$  $\mathsf{E} \to (\mathsf{E})$ 

### Earley on DFAs

COMPLETE



#### Items,

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

 $E \rightarrow int @3$ 

#### Items<sub>4</sub>

E→(E)· @1

 $E \rightarrow (\cdot E) @3$ 

E→int·@3

E→E+·E @2

 $S \rightarrow E$ 

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

### Earley on DFAs

SCAN

COMPLETE

PREDICT



### Items,

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→**int**·@3

E→E+·E @2

S→E·@1

E→E·+E @1

 $\mathsf{S}\to\mathsf{E}$ 

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

### Earley on DFAs

Σ

SCAN

COMPLETE

**PREDICT** 

### Items<sub>1</sub>

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E:+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E·@1

E→E·+E @1

E→(E·) @2

E→E·+E @3

 $\mathsf{S}\to\mathsf{E}$ 

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

### Earley on DFAs

Σ

SCAN

COMPLETE

**PREDICT** 

### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E:+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→**int**·@3

E→E+·E @2

S→E· @1

E→E·+E @1

E→(E·) @2

E→E·+E @3

 $S \rightarrow E$   $E \rightarrow E + E$   $E \rightarrow int$  $E \rightarrow (E)$ 

## Earley on DFAs

SCAN
COMPLETE
PREDICT

 $\Sigma$   $\Sigma$   $\Sigma$ 

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

E→·int @2

#### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E· @1

E→E·+E @1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E→·int @4

 $S \rightarrow E$ 

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

Σ

SCAN

COMPLETE

PREDICT

#### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

E→·int @2

#### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E· @1

E→E·+E @1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E→·int @4

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

Σ

SCAN

COMPLETE

**PREDICT** 

#### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E→·int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

#### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E· @1

E→E·+E @1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E→·int @4

#### Items<sub>5</sub>

E→(E)· @2

 $S \rightarrow E$ 

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

Σ

SCAN

COMPLETE

PREDICT

#### Items<sub>1</sub>

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

#### Items<sub>3</sub>

E→(·E) @2

E→int· @2

E→(E·) @1

E→E:+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E· @1

E→E·+E @1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E → · int @4

Items<sub>5</sub>

E→(E)· @2

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

SCAN

COMPLETE

PREDICT

#### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

#### Items,

E→(·E) @2

E→int· @2

E→(E·) @1

E→E·+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

 $E \rightarrow (\cdot E) @3$ 

E→int·@3

E→E+·E @2

S→E· @1

E→E:+E@1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E→·int @4

#### Items<sub>5</sub>

E→(E)· @2

E→(E·) @1

E→E·+E @2

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

SCAN

COMPLETE

PREDICT

#### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

#### Items,

E→(·E) @2

E→int· @2

E→(E·) @1

E→E:+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E· @1

E→E:+E@1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E→·int @4

#### Items<sub>5</sub>

E→(E)· @2

E→(E·) @1

E→E·+E @2

 $E \rightarrow E + E$ 

 $\mathsf{E} \to \mathtt{int}$ 

 $\mathsf{E} \to (\mathsf{E})$ 

## Earley on DFAs

SCAN

COMPLETE

**PREDICT** 

#### Items,

start.

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

#### Items,

E→(·E) @2

E→int· @2

E→(E·) @1

E→E:+E @2

E→·E+E @3

E→·(E) @3

E→·int @3

#### Items<sub>4</sub>

E→(E)· @1

E→(·E) @3

E→int·@3

E→E+·E @2

S→E· @1

E→E:+E@1

E→(E·) @2

E→E·+E @3

E→·E+E @4

E→·(E) @4

E→·int @4

#### Items<sub>5</sub>

E→(E)· @2

E→(E·) @1

E→E·+E @2

### Parsing DFAs

- Similar logic to parsing strings: build a parse forest grammar.
- Intuitively, filters grammar through DFA to produce a new grammar.
- Example: Filter grammar for expressions to only allow one pair of parentheses:



$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 

start 
$$\Sigma$$
 - (  $\Sigma$  - ) - (

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 



Items<sub>2</sub>





SCAN
COMPLETE
PREDICT

Items<sub>1</sub>

Items<sub>2</sub>





SCAN

COMPLETE

PREDICT

Items<sub>1</sub>

S→·E @1

Items<sub>2</sub>







S→·E @1

Items<sub>2</sub>







Items<sub>2</sub>







S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

Items<sub>2</sub>

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





S→·E @1

E→·E+E @1

E→·(E) @1

 $E \rightarrow int @1$ 

Items<sub>2</sub>

E→(·E) @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

#### Items<sub>2</sub>

E→(·E) @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

#### Items<sub>2</sub>

E→(·E) @1







$$\mathsf{E}_{\scriptscriptstyle 1-1} \to \mathtt{int}_{\scriptscriptstyle 1-1}$$



S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

#### Items<sub>2</sub>

E→(·E) @1







$$\mathsf{E}_{\scriptscriptstyle 1-1} \to \mathtt{int}_{\scriptscriptstyle 1-1}$$



S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

S→E·@1

E→E·+E @1

#### Items<sub>2</sub>

E→(·E) @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\mathsf{E}_{1\text{--}1} \to \mathtt{int}_{1\text{--}1}$$

$$\mathsf{S}_{1\text{--}1} \to \mathsf{E}_{1\text{--}1}$$

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

S→E·@1

E→E·+E @1

#### Items<sub>2</sub>

E→(·E) @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\mathsf{E}_{1\text{--}1} \to \mathtt{int}_{1\text{--}1}$$

$$\mathsf{S}_{1\text{--}1} \to \mathsf{E}_{1\text{--}1}$$



S→·E @1

E→·E+E @1

E→·(E) @1

E→·int@1

E → int · @1

S→E·@1

E→E·+E @1

#### Items<sub>2</sub>

E→(·E) @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\mathsf{E}_{1\text{-}1} \to \mathtt{int}_{1\text{-}1}$$

$$\mathsf{S}_{1\text{-}1} \to \mathsf{E}_{1\text{-}1}$$



- S→·E @1
- E→-E+E @1
- E→·(E) @1
- E → · int @1
- $E \rightarrow int \cdot @1$ 
  - S→E·@1
- E→E·+E @1

#### Items,

- E→(·E) @1
- E→·E+E @2
- E→·(E) @2
- E → · int @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\mathsf{E}_{1-1} \to \mathtt{int}_{1-1}$$

$$\mathsf{S}_{1-1} \to \mathsf{E}_{1-1}$$

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

E → int · @1

S→E·@1

E→E·+E @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

E→·int @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 



SCAN
COMPLETE
PREDICT

$$\mathsf{E}_{1-1} \to \mathtt{int}_{1-1}$$
$$\mathsf{S}_{1-1} \to \mathsf{E}_{1-1}$$

#### Items<sub>1</sub>

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

E → int · @1

S→E· @1

E→E·+E @1

E→E+·E @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\mathsf{E}_{1-1} \to \mathtt{int}_{1-1}$$

$$\mathsf{S}_{1-1} \to \mathsf{E}_{1-1}$$

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

E → **int** · @1

S→E· @1

E→E·+E @1

E→E+·E @1

#### Items,

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

E→int · @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\mathsf{E}_{1\text{--}1} \to \mathtt{int}_{1\text{--}1}$$
$$\mathsf{S}_{1\text{--}1} \to \mathsf{E}_{1\text{--}1}$$

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

E → **int** · @1

S→E· @1

E→E·+E @1

E→E+·E @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

 $E \rightarrow int @2$ 

E→int · @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{aligned} &\mathsf{E}_{\scriptscriptstyle{1\text{-}1}} \to \mathtt{int}_{\scriptscriptstyle{1\text{-}1}} \\ &\mathsf{S}_{\scriptscriptstyle{1\text{-}1}} \to \mathsf{E}_{\scriptscriptstyle{1\text{-}1}} \\ &\mathsf{E}_{\scriptscriptstyle{2\text{-}2}} \to \mathtt{int}_{\scriptscriptstyle{2\text{-}2}} \end{aligned}$$

# Items<sub>1</sub> $S \rightarrow E @ 1$ $E \rightarrow E + E @ 1$ $E \rightarrow (E) @ 1$ $E \rightarrow int @ 1$

E → int · @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

E → · int @2

E→int · @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & \boldsymbol{\mathsf{E}_{\mathsf{1-1}}} \rightarrow \boldsymbol{\mathsf{int}_{\mathsf{1-1}}} \\ & \boldsymbol{\mathsf{S}_{\mathsf{1-1}}} \rightarrow \boldsymbol{\mathsf{E}_{\mathsf{1-1}}} \\ & \boldsymbol{\mathsf{E}_{\mathsf{2-2}}} \rightarrow \boldsymbol{\mathsf{int}_{\mathsf{2-2}}} \end{split}$$

- S→·E @1
- E→·E+E @1
- E→·(E) @1
- E→·int @1
- E → int · @1
  - S→E·@1
- E→E·+E @1
- E→E+·E @1

#### Items<sub>2</sub>

- E→(·E) @1
- E→·E+E @2
- E→·(E) @2
- $E \rightarrow int @2$
- E→int · @2
- E→(E·) @1
- E→E:+E @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{aligned} &\mathsf{E}_{\scriptscriptstyle{1\text{-}1}} \to \mathtt{int}_{\scriptscriptstyle{1\text{-}1}} \\ &\mathsf{S}_{\scriptscriptstyle{1\text{-}1}} \to \mathsf{E}_{\scriptscriptstyle{1\text{-}1}} \\ &\mathsf{E}_{\scriptscriptstyle{2\text{-}2}} \to \mathtt{int}_{\scriptscriptstyle{2\text{-}2}} \end{aligned}$$

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

E → int · @1

S→E·@1

E→E·+E @1

E→E+·E @1

E→E+E· @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

E → · int @2

E→int · @2

E→(E·) @1

E→E·+E @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$
 $S_{1-1} \rightarrow E_{1-1}$ 
 $E_{2-2} \rightarrow int_{2-2}$ 
 $E_{1-1} \rightarrow E_{1-1} + E_{1-1}$ 

#### Items₁ Items, S→·E @1 E→(·E) @1 E→·E+E @1 E→·E+E @2 E→·(E) @2 E→·(E) @1 E → · int @1 $E \rightarrow int @2$ $E \rightarrow int \cdot @1$ E→int · @2 S→E·@1 E→(E·) @1 E→E·+E @1 E→E·+E @2 E→E+·E @1

E→E+E· @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$
 $S_{1-1} \rightarrow E_{1-1}$ 
 $E_{2-2} \rightarrow int_{2-2}$ 
 $E_{1-1} \rightarrow E_{1-1} + E_{1-1}$ 

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

S→E·@1

E→E·+E @1

E→E+·E @1

E→E+E· @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

E → · int @2

E→int · @2

E→(E·) @1

E→E·+E @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$
 $S_{1-1} \rightarrow E_{1-1}$ 
 $E_{2-2} \rightarrow int_{2-2}$ 
 $E_{1-1} \rightarrow E_{1-1} + E_{1-1}$ 

#### Items, Items₁ S→·E @1 E→(·E) @1 E→·E+E @1 E→·E+E @2 E→·(E) @2 E→·(E) @1 E → · int @1 $E \rightarrow int @2$ $E \rightarrow int \cdot @1$ E→int · @2 S→E·@1 E→(E·) @1 E→E·+E @1 E→E·+E @2 E→E+·E @1

E→E+E· @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$
 $S_{1-1} \rightarrow E_{1-1}$ 
 $E_{2-2} \rightarrow int_{2-2}$ 
 $E_{1-1} \rightarrow E_{1-1} + E_{1-1}$ 

S→·E @1

E→·E+E @1

E→·(E) @1

E → · int @1

 $E \rightarrow int \cdot @1$ 

S→E·@1

E→E·+E @1

E→E+·E @1

E→E+E· @1

#### Items<sub>2</sub>

E→(·E) @1

E→·E+E @2

E→·(E) @2

E → · int @2

E→int · @2

E→(E·) @1

E→E:+E @2

#### Items<sub>3</sub>

E→(E)· @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$
 $S_{1-1} \rightarrow E_{1-1}$ 
 $E_{2-2} \rightarrow int_{2-2}$ 
 $E_{1-1} \rightarrow E_{1-1} + E_{1-1}$ 

#### Items₁ Items, S→·E @1 E→(·E) @1 E→·E+E @1 E→·E+E @2 E→·(E) @1 E→·(E) @2 E → · int @1 $E \rightarrow int @2$ $E \rightarrow int \cdot @1$ E→int · @2 S→E·@1 E→(E·) @1 E→E·+E @1 E→E·+E @2 E→E+·E @2 E→E+·E @1

E→E+E· @1

## Items<sub>3</sub> E→(E)· @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$
 $S_{1-1} \rightarrow E_{1-1}$ 
 $E_{2-2} \rightarrow int_{2-2}$ 
 $E_{1-1} \rightarrow E_{1-1} + E_{1-1}$ 

#### Items₁ Items, E→(·E) @1 S→·E @1 E→·E+E @1 E→·E+E @2 E→·(E) @1 E→·(E) @2 E → · int @1 $E \rightarrow int @2$ $E \rightarrow int \cdot @1$ E→int · @2 S→E·@1 E→(E·) @1 E→E·+E @1 E→E·+E @2 E→E+·E @2 E→E+·E @1

E→E+E· @1

## Items<sub>3</sub> E→(E)· @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \to \mathbf{int}_{1-1} 
S_{1-1} \to E_{1-1} 
E_{2-2} \to \mathbf{int}_{2-2} 
E_{1-1} \to E_{1-1} +_{1-1} E_{1-1} 
E_{1-3} \to (_{1-2} E_{2-2})_{2-3}$$

#### Items<sub>1</sub> S→·E @1

#### Items<sub>2</sub>

$$E \rightarrow int @2$$

#### Items<sub>3</sub>

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \to \mathbf{int}_{1-1} 
S_{1-1} \to E_{1-1} 
E_{2-2} \to \mathbf{int}_{2-2} 
E_{1-1} \to E_{1-1} +_{1-1} E_{1-1} 
E_{1-3} \to (_{1-2} E_{2-2})_{2-3}$$

#### Items₁ S→·E @1 E→·E+E @1 E→·(E) @1 E → · int @1 E → int · @1 S→E·@1 E→E·+E @1 E→E+·E @1

E→E+E· @1

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 $E \rightarrow int @2$ E→int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & \mathsf{E_{1-1}} \to \mathbf{int_{1-1}} \\ & \mathsf{S_{1-1}} \to \mathsf{E_{1-1}} \\ & \mathsf{E_{2-2}} \to \mathbf{int_{2-2}} \\ & \mathsf{E_{1-1}} \to \mathsf{E_{1-1}} +_{1-1} \mathsf{E_{1-1}} \\ & \mathsf{E_{1-3}} \to (_{1-2} \, \mathsf{E_{2-2}} \, )_{2-3} \\ & \mathsf{S_{1-3}} \to \mathsf{E_{1-3}} \end{split}$$



E→E+·E @1

E→E+E· @1

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E → int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \to \mathbf{int}_{1-1} 
S_{1-1} \to E_{1-1} 
E_{2-2} \to \mathbf{int}_{2-2} 
E_{1-1} \to E_{1-1} +_{1-1} E_{1-1} 
E_{1-3} \to (_{1-2} E_{2-2})_{2-3} 
S_{1-3} \to E_{1-3} 
E_{1-3} \to E_{1-1} +_{1-1} E_{1-3}$$

#### Items₁ Items, S→·E @1 E→(·E) @1 E→·E+E @1 E→·E+E @2 E→·(E) @2 E→·(E) @1 E → · int @1 E→·int @2 $E \rightarrow int \cdot @1$ E → int · @2 S→E· @1 E→(E·) @1 E→E·+E @1 E→E·+E @2 E→E+·E @1 E→E+·E @2

E→E+E·@1

# Items<sub>3</sub> $E \rightarrow (E) \cdot @1$ $S \rightarrow E \cdot @1$ $E \rightarrow E \cdot + E \cdot @1$ $E \rightarrow E + E \cdot @1$

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 $E \rightarrow int @2$ E → int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2 E→E+E· @2

# Items<sub>3</sub> E→(E)· @1 S→E· @1 E→E·+E @1 E→E+E· @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$



$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$



#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2 E→E+E· @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2 E→E+E· @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$

E→E+E· @1

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 $E \rightarrow (E \cdot) @1$ E→E·+E @2 E→E+·E @2 E→E+E· @2

### Items, E→(E)· @1 S→E·@1 E→E·+E @1 E→E+E· @1 E→E+·E @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 $E \rightarrow (E \cdot) @1$ E→E·+E @2 E→E+·E @2 E→E+E· @2

# Items<sub>3</sub> $E \rightarrow (E) \cdot @1$ $S \rightarrow E \cdot @1$ $E \rightarrow E \cdot + E \cdot @1$ $E \rightarrow E + E \cdot @1$ $E \rightarrow E + E \cdot @1$

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

#### Items₁ Items, S→·E @1 E→(·E) @1 E→·E+E @1 E→·E+E @2 E→·(E) @1 E→·(E) @2 E → · int @1 E→·int @2 $E \rightarrow int \cdot @1$ E→int · @2 S→E· @1 $E \rightarrow (E \cdot) @1$ E→E·+E @1 E→E·+E @2 E→E+·E @1 E→E+·E @2 E→E+E· @1 E→E+E· @2

### Items, E→(E)· @1 S→E·@1 E→E·+E @1 E→E+E· @1 E→E+·E @1

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$

#### Items, Items, E→(·E) @1 E→(E)· @1 S→E·@1 E→·E+E @2 E→·(E) @2 E→E·+E @1 E→·int @2 E→E+E· @1 E→int · @2 E→E+·E @1 E→(E·) @1 E→·E+E @3 E→E·+E @2 E→·(E) @3 $E \rightarrow int @3$ E→E+·E @2 E→E+E· @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & E_{1-1} \rightarrow \textbf{int}_{1-1} \\ & S_{1-1} \rightarrow E_{1-1} \\ & E_{2-2} \rightarrow \textbf{int}_{2-2} \\ & E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1} \\ & E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3} \\ & S_{1-3} \rightarrow E_{1-3} \\ & E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3} \\ & E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2} \end{split}$$

#### Items, Items, E→(·E) @1 E→(E)· @1 S→E·@1 E→·E+E @2 E→·(E) @2 E→E·+E @1 E→·int @2 E→E+E· @1 E→int · @2 E→E+·E @1 E→(E·) @1 E→·E+E @3 E→E·+E @2 E→·(E) @3 $E \rightarrow int @3$ E→E+·E @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

#### Items, Items, E→(·E) @1 E→(E)· @1 S→E·@1 E→·E+E @2 E→·(E) @2 E→E·+E @1 E→·int @2 E→E+E· @1 E→int · @2 E→E+·E @1 E→(E·) @1 E→·E+E @3 E→E·+E @2 E→·(E) @3 $E \rightarrow int @3$ E→E+·E @2 E→int· @3 E→E+E· @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$



#### Items, Items, E→(·E) @1 E→(E)· @1 S→E·@1 E→·E+E @2 E→·(E) @2 E→E·+E @1 E→·int @2 E→E+E· @1 E→int · @2 E→E+·E @1 E→(E·) @1 E→·E+E @3 E→E·+E @2 E→·(E) @3 $E \rightarrow int @3$ E→E+·E @2 E→int· @3 E→E+E· @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 

start 
$$\Sigma$$
 - (  $\Sigma$  - ) - (  $\Sigma$  - ) - (



$$\begin{split} & \mathsf{E}_{1\text{-}1} \to \mathbf{int}_{1\text{-}1} \\ & \mathsf{S}_{1\text{-}1} \to \mathsf{E}_{1\text{-}1} \\ & \mathsf{E}_{2\text{-}2} \to \mathbf{int}_{2\text{-}2} \\ & \mathsf{E}_{1\text{-}1} \to \mathsf{E}_{1\text{-}1} +_{1\text{-}1} \mathsf{E}_{1\text{-}1} \\ & \mathsf{E}_{1\text{-}3} \to (_{1\text{-}2} \, \mathsf{E}_{2\text{-}2} \,)_{2\text{-}3} \\ & \mathsf{S}_{1\text{-}3} \to \mathsf{E}_{1\text{-}3} \\ & \mathsf{E}_{1\text{-}3} \to \mathsf{E}_{1\text{-}1} +_{1\text{-}1} \mathsf{E}_{1\text{-}3} \\ & \mathsf{E}_{2\text{-}2} \to \mathsf{E}_{2\text{-}2} +_{2\text{-}2} \mathsf{E}_{2\text{-}2} \\ & \mathsf{E}_{3\text{-}3} \to \mathbf{int}_{3\text{-}3} \end{split}$$

# E→E+E· @1

#### Items, Items, E→(·E) @1 E→(E)· @1 S→E·@1 E→·E+E @2 E→·(E) @2 E→E·+E @1 E→·int @2 E→E+E· @1 E → int · @2 E→E+·E @1 E→·E+E @3 E→(E·) @1 E→E·+E @2 E→·(E) @3 $E \rightarrow int @3$ E→E+·E @2 E→int· @3 E→E+E· @2

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$\begin{split} & \mathsf{E}_{1\text{-}1} \to \mathbf{int}_{1\text{-}1} \\ & \mathsf{S}_{1\text{-}1} \to \mathsf{E}_{1\text{-}1} \\ & \mathsf{E}_{2\text{-}2} \to \mathbf{int}_{2\text{-}2} \\ & \mathsf{E}_{1\text{-}1} \to \mathsf{E}_{1\text{-}1} +_{1\text{-}1} \mathsf{E}_{1\text{-}1} \\ & \mathsf{E}_{1\text{-}3} \to (_{1\text{-}2} \, \mathsf{E}_{2\text{-}2} \,)_{2\text{-}3} \\ & \mathsf{S}_{1\text{-}3} \to \mathsf{E}_{1\text{-}3} \\ & \mathsf{E}_{1\text{-}3} \to \mathsf{E}_{1\text{-}1} +_{1\text{-}1} \mathsf{E}_{1\text{-}3} \\ & \mathsf{E}_{2\text{-}2} \to \mathsf{E}_{2\text{-}2} +_{2\text{-}2} \mathsf{E}_{2\text{-}2} \\ & \mathsf{E}_{3\text{-}3} \to \mathbf{int}_{3\text{-}3} \end{split}$$

# E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2

$$E \rightarrow (E \cdot) @1$$
 $E \rightarrow E \cdot + E @2$ 
 $E \rightarrow E + \cdot E @2$ 
 $E \rightarrow E + E \cdot @2$ 

Items,

#### Items<sub>3</sub> E→(E)· @1 S→E·@1 E→E·+E @1 E→E+E· @1 E→E+·E @1 E→·E+E @3 E→·(E) @3 E → · int @3 E→int·@3

E→E+E· @1

E→E·+E @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2 E→E+E· @2



$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2 E→E+E· @2

#### Items, E→(E)· @1 S→E· @1 E→E·+E @1 E→E+E·@1 E→E+·E @1 E→·E+E @3 E→·(E) @3 E → · int @3 E→int·@3 E→E+E·@1

E→E·+E @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 

start 
$$\Sigma$$
 - (  $\Sigma$  - ) - (



$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

# E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2

$$E\rightarrow int \cdot @2$$
 $E\rightarrow (E\cdot) @1$ 
 $E\rightarrow E\cdot +E @2$ 
 $E\rightarrow E+\cdot E @2$ 
 $E\rightarrow E+E\cdot @2$ 

Items,

#### Items<sub>3</sub> E→(E)· @1 S→E·@1 E→E·+E @1 E→E+E·@1 E→E+·E @1 E→·E+E @3 E→·(E) @3 E → · int @3 E→int·@3

E→E+E·@1

E→E·+E @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

# Items, E→(·E) @1

$$E \rightarrow \cdot E + E @ 2$$

$$E \rightarrow \cdot (E) @ 2$$

$$E \rightarrow \cdot int @ 2$$

$$E \rightarrow int \cdot @ 2$$

$$E \rightarrow (E \cdot) @ 1$$

$$E \rightarrow E \cdot + E @ 2$$

$$E \rightarrow E + E @ 3$$

#### Items, E→(E)· @1 S→E· @1 E→E·+E @1 E→E+E· @1 E→E+·E @1 E→·E+E @3 E→·(E) @3 E→·int @3 E→int· @3 E→E+E·@1 E→E·+E @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 

start 
$$\Sigma$$
 - (  $\Sigma$  - ) - (  $\Sigma$  - ) - (



$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

E→E+E· @1

#### Items, Items, E→(E)· @1 E→(·E) @1 S→E· @1 E→·E+E @2 E→E·+E @1 E→·(E) @2 E→E+E· @1 E→·int @2 E→E+·E @1 E→int · @2 E→·E+E @3 E→(E·) @1 E→·(E) @3 E→E·+E @2 E→·int @3 E→E+·E @2 E→int· @3 E→E+E· @2 E→E+E·@1

E→E·+E @3

E→E+·E @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 





$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

#### Items, Items<sub>3</sub> E→(E)· @1 E→(·E) @1 S→E· @1 E→·E+E @2 E→E·+E @1 E→·(E) @2 E→E+E· @1 E→·int @2 E→E+·E @1 E→int · @2 E→·E+E @3 E→·(E) @3 E→(E·) @1 E → · int @3 E→E·+E @2 E→int· @3 E→E+·E @2 E→E+E·@1 E→E+E· @2 E→E·+E @3

E→E+·E @3

E→E+E·@3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 

start 
$$\Sigma$$
 - (  $\Sigma$  - ) - (  $\Sigma$  - ) - (



$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

$$E_{3-3} \rightarrow E_{3-3} +_{3-3} E_{3-3}$$

#### Items<sub>3</sub> Items, E→(E)· @1 E→(·E) @1 S→E· @1 E→·E+E @2 E→E·+E @1 E→·(E) @2 E→E+E· @1 $E \rightarrow int @2$ E→E+·E @1 E→int · @2 E→·E+E @3 E→(E·) @1 E→·(E) @3 $E \rightarrow int @3$ E→E·+E @2 E→int· @3 E→E+·E @2 E→E+E· @1 E→E+E· @2 E→E·+E @3

E→E+·E @3

E→E+E· @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 



SCAN
COMPLETE
PREDICT

$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

$$E_{3-3} \rightarrow E_{3-3} +_{3-3} E_{3-3}$$

#### Items₁ S→·E @1 E→·E+E @1 E→·(E) @1 $E\rightarrow int@1$ $E \rightarrow int \cdot @1$ S→E·@1 E→E·+E @1 E→E+·E @1 E→E+E· @1

#### Items, E→(·E) @1 E→·E+E @2 E→·(E) @2 $E \rightarrow int @2$ E→int · @2 E→(E·) @1 E→E·+E @2 E→E+·E @2 E→E+E· @2

#### Items<sub>3</sub> E→(E)· @1 S→E· @1 E→E·+E @1 E→E+E· @1 E→E+·E @1 E→·E+E @3 E→·(E) @3 E → · int @3 E→int· @3 E→E+E· @1 E→E·+E @3 E→E+·E @3 E→E+E· @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 

start 
$$\Sigma$$
 - (  $\Sigma$  - ) - (  $\Sigma$  - ) - (

SCAN
COMPLETE
PREDICT

$$E_{1-1} \rightarrow int_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$$

$$E_{3-3} \rightarrow int_{3-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

$$E_{3-3} \rightarrow E_{3-3} +_{3-3} E_{3-3}$$

#### Items₁ S→·E @1 E→·E+E @1 E→·(E) @1 E → · int @1 $E \rightarrow int \cdot @1$ S→E·@1 E→E·+E @1 E→E+·E @1 E→E+E· @1

#### Items, Items<sub>3</sub> E→(E)· @1 E→(·E) @1 S→E· @1 E→·E+E @2 E→E·+E @1 E→·(E) @2 E→E+E· @1 $E \rightarrow int @2$ E→E+·E @1 E→int · @2 E→·E+E @3 E→(E·) @1 E→·(E) @3 $E \rightarrow int @3$ E→E·+E @2 E→int· @3 E→E+·E @2 E→E+E· @1 E→E+E· @2 E→E·+E @3

E→E+·E @3

E→E+E· @3

$$S \rightarrow E$$
  
 $E \rightarrow E + E$   
 $E \rightarrow int$   
 $E \rightarrow (E)$ 



| $S \rightarrow S_{1-1} \mid S_{1-3}$                                                |
|-------------------------------------------------------------------------------------|
| $E_{\scriptscriptstyle 1\text{-}1} 	o \mathtt{int}_{\scriptscriptstyle 1\text{-}1}$ |
| $S_{1-1} \to E_{1-1}$                                                               |
| $E_{	t 2	ext{-}2} 	o \mathtt{int}_{	t 2	ext{-}2}$                                   |
| $E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$                                       |
| $E_{\text{1-3}} \to (_{1-2} \; E_{\text{2-2}} \;)_{\text{2-3}}$                     |
| $S_{1-3} \to E_{1-3}$                                                               |
| $E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$                                       |
| $E_{2-2} \rightarrow E_{2-2} +_{2-2} E_{2-2}$                                       |
| $E_{	exttt{3-3}} 	o \mathtt{int}_{	exttt{3-3}}$                                     |
| $E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$                                       |
|                                                                                     |

 $\vdash_{3-3} \rightarrow \vdash_{3-3} +_{3-3} \vdash_{3-3}$ 

#### Items₁ S→·E @1 E→·E+E @1 E→·(E) @1 E → · int @1 E → int · @1 S→E·@1 E→E·+E @1 E→E+·E @1 E→E+E· @1

## E→(·E) @1 E→·E+E @2 E→·(E) @2 E→·int @2 E→int · @2 E→E+E·@2

$$E \rightarrow (E \cdot) @1$$
 $E \rightarrow E \cdot + E @2$ 
 $E \rightarrow E + \cdot E @2$ 

Items,

#### Items, E→(E)· @1 S→E· @1 E→E·+E @1 E→E+E· @1 E→E+·E @1 E→·E+E @3 E→·(E) @3 $E \rightarrow int @3$ E→int· @3 E→E+E·@1 E→E·+E @3 E→E+·E @3 E→E+E·@3

#### Analyzing the Result



$$S \rightarrow S_{1-1}$$

$$S_{1-1} \rightarrow E_{1-1}$$

$$E_{1-1} \rightarrow int_{1-1}$$

$$E_{1-1} \rightarrow E_{1-1} +_{1-1} E_{1-1}$$

$$S \rightarrow S_{1-3}$$

$$S_{1-3} \rightarrow E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-1} +_{1-1} E_{1-3}$$

$$E_{1-3} \rightarrow E_{1-3} +_{1-3} E_{3-3}$$

$$E_{1-3} \rightarrow (_{1-2} E_{2-2})_{2-3}$$

$$E_{2-2} \rightarrow int_{2-2}$$

$$E_{2-2} \rightarrow int_{3-3}$$

$$E_{3-3} \rightarrow E_{3-3} +_{3-3} E_{3-3}$$

#### Summary

- The **Earley algorithm** can be used to efficiently parse arbitrary CFGs.
- A parse forest grammar is a CFG encoding a (possibly infinite) family of parse trees.
- **Intersection parsing** treats parsing as the intersection of a CFG and a regular language.
- The Earley-on-DFA algorithm can be used to filter CFGs through a DFA to produce a new CFG.

#### Where to Go from Here

- GLR Parsing
  - Generalized LR
  - Conceptually similar to Earley, except based on an LR(0) automaton.
  - (Optionally) used by bison.
- Fast Earley Parsers
  - Many research papers discuss how to speed up Earley parsers; many are quite good.

#### Next Time

#### Semantic Analysis

- Overview of semantic analysis.
- Scoping and symbol tables.
- Introduction to types and type-checking.