Lecture 31: UMVUE: a necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very difficult to derive a UMVUE.

In some cases, the following result can be applied, if we have enough knowledge about unbiased estimators of 0.

Theorem 3.2. Let \mathcal{U} be the set of all unbiased estimators of 0 with finite variances and T be an unbiased estimator of ϑ with $E(T^2) < \infty$.

- (i) A necessary and sufficient condition for T(X) to be a UMVUE of ϑ is that E[T(X)U(X)] = 0 for any $U \in \mathcal{U}$ and any $P \in \mathcal{P}$.
- (ii) Suppose that $T = h(\tilde{T})$, where \tilde{T} is a sufficient statistic for $P \in \mathcal{P}$ and h is a Borel function.

Let $\mathcal{U}_{\tilde{T}}$ be the subset of \mathcal{U} consisting of Borel functions of \tilde{T} .

Then a necessary and sufficient condition for T to be a UMVUE of ϑ is that E[T(X)U(X)] = 0 for any $U \in \mathcal{U}_{\tilde{T}}$ and any $P \in \mathcal{P}$.

Proof. (i) Suppose that T is a UMVUE of ϑ .

Then $T_c = T + cU$, where $U \in \mathcal{U}$ and c is a fixed constant, is also unbiased for ϑ and, thus,

$$Var(T_c) \ge Var(T)$$
 $c \in \mathcal{R}, P \in \mathcal{P},$

which is the same as

$$c^2 \text{Var}(U) + 2c \text{Cov}(T, U) \ge 0$$
 $c \in \mathcal{R}, P \in \mathcal{P}.$

This is impossible unless Cov(T, U) = E(TU) = 0 for any $P \in \mathcal{P}$.

Suppose now E(TU) = 0 for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$.

Let T_0 be another unbiased estimator of ϑ with $Var(T_0) < \infty$.

Then $T - T_0 \in \mathcal{U}$ and, hence,

$$E[T(T-T_0)] = 0 \qquad P \in \mathcal{P},$$

which with the fact that $ET = ET_0$ implies that

$$Var(T) = Cov(T, T_0)$$
 $P \in \mathcal{P}$.

Note that $[Cov(T, T_0)]^2 \leq Var(T)Var(T_0)$.

Hence $Var(T) \leq Var(T_0)$ for any $P \in \mathcal{P}$.

(ii) It suffices to show that E(TU) = 0 for any $U \in \mathcal{U}_{\tilde{T}}$ and $P \in \mathcal{P}$ implies that E(TU) = 0 for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$.

Let $U \in \mathcal{U}$. Then $E(U|\tilde{T}) \in \mathcal{U}_{\tilde{T}}$ and the result follows from the fact that $T = h(\tilde{T})$ and

$$E(TU) = E[E(TU|\tilde{T})] = E[E(h(\tilde{T})U|\tilde{T})] = E[h(\tilde{T})E(U|\tilde{T})].$$

Theorem 3.2 can be used

to find a UMVUE,

to check whether a particular estimator is a UMVUE, and

to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell's theorem, we only need to focus on functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.

As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1. (i) Let T_j be a UMVUE of ϑ_j , j=1,...,k, where k is a fixed positive integer. Then $\sum_{j=1}^k c_j T_j$ is a UMVUE of $\vartheta = \sum_{j=1}^k c_j \vartheta_j$ for any constants $c_1,...,c_k$. (ii) Let T_1 and T_2 be two UMVUE's of ϑ . Then $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Example 3.7. Let $X_1, ..., X_n$ be i.i.d. from the uniform distribution on the interval $(0, \theta)$. In Example 3.1, $(1 + n^{-1})X_{(n)}$ is shown to be the UMVUE for θ when the parameter space is $\Theta = (0, \infty)$.

Suppose now that $\Theta = [1, \infty)$.

Then $X_{(n)}$ is not complete, although it is still sufficient for θ .

Thus, Theorem 3.1 does not apply to $X_{(n)}$.

We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of θ .

Let $U(X_{(n)})$ be an unbiased estimator of 0.

Since $X_{(n)}$ has the Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$,

$$0 = \int_0^1 U(x)x^{n-1}dx + \int_1^{\theta} U(x)x^{n-1}dx$$

for all $\theta \geq 1$.

This implies that U(x) = 0 a.e. Lebesgue measure on $[1, \infty)$ and

$$\int_0^1 U(x)x^{n-1}dx = 0.$$

Consider $T = h(X_{(n)})$.

To have E(TU) = 0, we must have

$$\int_0^1 h(x)U(x)x^{n-1}dx = 0.$$

Thus, we may consider the following function:

$$h(x) = \begin{cases} c & 0 \le x \le 1\\ bx & x > 1, \end{cases}$$

where c and b are some constants.

From the previous discussion,

$$E[h(X_{(n)})U(X_{(n)})] = 0, \qquad \theta \ge 1.$$

Since $E[h(X_{(n)})] = \theta$, we obtain that

$$\theta = cP(X_{(n)} \le 1) + bE[X_{(n)}I_{(1,\infty)}(X_{(n)})]$$

= $c\theta^{-n} + [bn/(n+1)](\theta - \theta^{-n}).$

Thus, c = 1 and b = (n+1)/n. The UMVUE of θ is then

$$h(X_{(n)}) = \begin{cases} 1 & 0 \le X_{(n)} \le 1\\ (1+n^{-1})X_{(n)} & X_{(n)} > 1. \end{cases}$$

This estimator is better than $(1 + n^{-1})X_{(n)}$, which is the UMVUE when $\Theta = (0, \infty)$ and does not make use of the information about $\theta \geq 1$.

In fact, $h(X_{(n)})$ is complete and sufficient for θ .

It suffices to show that

$$g(X_{(n)}) = \begin{cases} 1 & 0 \le X_{(n)} \le 1 \\ X_{(n)} & X_{(n)} > 1. \end{cases}$$

is complete and sufficient for θ .

The sufficiency follows from the fact that the joint p.d.f. of $X_1, ..., X_n$ is

$$\frac{1}{\theta^n} I_{(0,\theta)}(X_{(n)}) = \frac{1}{\theta^n} I_{(0,\theta)}(g(X_{(n)})).$$

If $E[f(g(X_{(n)})] = 0$ for all $\theta > 1$, then

$$0 = \int_0^{\theta} f(g(x))x^{n-1}dx = \int_0^1 f(1)x^{n-1}dx + \int_1^{\theta} f(x)x^{n-1}dx$$

for all $\theta > 1$.

Letting $\theta \to 1$ we obtain that f(1) = 0. Then

$$0 = \int_{1}^{\theta} f(x)x^{n-1}dx$$

for all $\theta > 1$, which implies f(x) = 0 a.e. for x > 1.

Hence, $g(X_{(n)})$ is complete.

Example 3.8. Let X be a sample (of size 1) from the uniform distribution $U(\theta - \frac{1}{2}, \theta + \frac{1}{2})$, $\theta \in \mathcal{R}$.

We now apply Theorem 3.2 to show that there is no UMVUE of $\vartheta = g(\theta)$ for any nonconstant function g.

Note that an unbiased estimator U(X) of 0 must satisfy

$$\int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} U(x) dx = 0 \quad \text{for all } \theta \in \mathcal{R}.$$

Differentiating both sizes of the previous equation and applying the result of differentiation of an integral lead to U(x) = U(x+1) a.e. m, where m is the Lebesgue measure on \mathcal{R} . If T is a UMVUE of $g(\theta)$, then T(X)U(X) is unbiased for 0 and, hence, T(x)U(x) = T(x+1)U(x+1) a.e. m, where U(X) is any unbiased estimator of 0. Since this is true for all U, T(x) = T(x+1) a.e. m. Since T is unbiased for $g(\theta)$,

$$g(\theta) = \int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} T(x) dx$$
 for all $\theta \in \mathcal{R}$.

Differentiating both sizes of the previous equation and applying the result of differentiation of an integral, we obtain that

$$g'(\theta) = T\left(\theta + \frac{1}{2}\right) - T\left(\theta - \frac{1}{2}\right) = 0$$
 a.e. m .