Dokážeme nejdříve implikaci "K obsahuje přímku $\implies K^*$ neobsahuje n-tici LN vektorů":

K obsahuje přímku neboli existuje nenulový vektor $v \in K$ tž. $\forall \lambda \in \mathbb{R} : \lambda v \in K$, speciálně $-v, v \in K$. Mějme libovolnou n-tici vektorů $y_1, \ldots, y_n \in K^*$. Z definice K^* platí, že $\forall i : v^T y_i \geq 0 \land -(v^T y_i) \geq 0 \implies v^T y_i = 0$. Uvažujme matici

$$A = \begin{pmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_n^T \end{pmatrix} \implies Av = \begin{pmatrix} v^T y_1 \\ v^T y_2 \\ \vdots \\ v^T y_n \end{pmatrix}$$

Z lineární algebry víme, že matice A je singulární \iff existuje nenulový vektor x tž. Ax = 0. Tento vektor existuje a je to právě v. Dále víme, že A je singulární \iff řádky A jsou lineárně závislé. Takže y_1, \ldots, y_n je lineárně závislá posloupnost.

Nyní dokážeme implikaci "K neobsahuje n-tici LN vektorů $\implies K^*$ obsahuje přímku":

Pokud K neobsahuje n-tici LN vektorů, tak K je obsažen v podprostoru R^n menší dimenze než n (lineární obal K). Z toho plyne, že existuje vektor $v \in \mathbb{R}^n$ tž. je kolmý na daný podprostor (Gram-Schmidt), speciálně $\forall y \in K : v^T y = 0$. Z definice plyne $v \in K^*$ a také jeho libovolný násobek cv, kde $c \in R$, protože $\forall y \in K : (cv)^T y = c(v^T y) = c(0) = 0$.

Druhá implikace ze zadání (K^* neobsahuje n-tici LN vektorů $\implies K$ obsahuje přímku") plyne z přechozích dvou:

Předpokládáme, že K je uzavřená množina neboli $\overline{K} = K$ a díky faktu ze zadání tedy platí $(K^*)^* = K$. V předchozí implikaci tedy dosadíme místo K K^* a máme dokázanou zbývající implikaci.

2

m

3

Z Farskasova lemma plyne, že pokud dokážeme, že existuje $y \in \mathbf{R}^3: A^Ty \geq 0 \wedge b^Ty < 0$, kde $b^T = (3, -2, 0)$ a

$$A = \begin{pmatrix} 0 & 0 & 2 & -1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(Areprezentuje zadanou soustavu), tak daná soustava nemá řešení. Stačí zvolit $\boldsymbol{y}^T=(-1,0,2)$:

$$-1 \begin{pmatrix} 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ 2 \end{pmatrix} \ge 0, (3 -2 0) \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = -3 < 0$$

4

Dokážeme 2 inkluze: $int(S_+^n) \subseteq S_{++}^n$ a $S_{++}^n \subseteq int(S_+^n)$. Budeme uvažovat spektrální normu. První inkluze:

Zvolme $A \in int(S_+^n)$. Z definice tedy $\exists \epsilon > 0, \forall X \in S^n, \|A - X\| < \epsilon \implies X \in S_+^n$. Zvolme $0 < \delta < \epsilon$, položme $X \coloneqq A - \delta I_n$. Poté zřejmě $\|A - X\| = \|\delta I_n\| = \delta < \epsilon$. Takže $A - \delta I_n \in S_+^n$. Vlastní čísla matice $A - \delta I_n$ jsou právě $\lambda_i - \delta$, kde λ_i je vlastní číslo A. To platí z definice: nechť x vlastní vektor A příslušný vlastnímu číslu $\lambda_i \iff x$ je vlastní vektor $A - \delta I_n$ příslušný $\lambda_i - \delta$, protože:

$$\implies : (A - \delta I_n)x = Ax - \delta I_n x = \lambda_i x - \delta x = (\lambda_i - \delta)x$$

$$\iff : Ax - \delta x = (A - \delta I_n)x = (\lambda_i - \delta)x = \lambda_i x - \delta x \implies Ax = \lambda_i x$$

 $A-\delta I_n\in S^n_+\implies \lambda_i-\delta\geq 0,$ takže pro vlastní čísla Aplatí $\lambda_i\geq \delta>0.$ Takže $A\in S^n_{++}.$

Nyní druhá inkluze:

Zvolme $A \in S^n_{++}$. Položme λ jako nejmenší vlastní číslo A. A je pozitivně definitní, takže $\lambda > 0$. Uvažujme kouli $S \coloneqq \{X \in S^n : \|A - X\| < \frac{\lambda}{2}\}$. Dokážeme, že $S \subseteq S^n_+$ a tím bude platit druhá inkluze. Zvolme $X \in S$, z definice spektrální normy tedy plyne, že $\forall x \in R^n, \|x\| = 1$: