项目实现细节总览

本文档基于当前代码实现(model/train.py、layer.py、data_preprocess.py、utils.py、instantiation.py、main.py),系统说明以下内容,并给出工程级数据流、输入输出与参数细节。为聚焦核心实现,刻意排除了参数配置(parms_setting.py)、日志与可视化(log_output_manager.py、visualization.py)等非核心组件。

- 目录
 - 1. augment_mode 的实现原理、输入输出数据结构
 - 2. 对比学习 (contrastive learning) 的算法细节及在本项目中的应用
 - 3. 三种数据增强的具体实现: random_permute_features、attribute_mask、noise_then_mask
 - 4. 编码器 (encoder) 的完整架构说明: 网络结构、参数、前向过程、输入输出格式与维度
 - 5. 节点级对抗损失与监督学习实现(独立章节)
 - 6. 核心数据流图 (Mermaid)
 - 7. 解码器与融合模块的具体实现与 I/O (独立章节)

1. augment_mode 的实现原理、输入输出数据结构

实现位置:

- 参数开关: augment_mode (static/online)
- 静态增强: data_preprocess.py::load_data() 内构建 data_a (固定 random_permute_features)
- 在线增强: train.py::train_model() 的每个 batch 动态生成 data_a_aug

核心逻辑:

• 静态模式 (static)

```
# data_preprocess.py
aug_name = "random_permute_features"
features_a = apply_augmentation(aug_name, x_o, noise_std=noise_std,
mask_rate=mask_rate, seed=base_seed)
data_a = Data(x=features_a, y=y_a) # y_a: [N,2]
```

• 在线模式 (online)

```
# train.py
seed_batch = base_seed + epoch*1000 + iter
aug_x = apply_augmentation("random_permute_features", data_a.x,
noise_std=args.noise_std, mask_rate=args.mask_rate, seed=seed_batch)
data_a_aug = Data(x=aug_x.to(device), y=data_a.y,
edge_index=data_a.edge_index)
```

对抗训练与 augment_mode 交互:

• adv_mode='mgraph' 且到达 adv_warmup_end 后, _X_list = [data_o.x] + ([data_a_aug.x] if adv_on_moco else []),多视图分别维护 delta,支持共享/独立预算。

输入输出数据结构:

- 输入: x_o [N,D], edge_index_o [2,E]
- 输出(静态增强): data_o=Data(x_o, edge_index), data_a=Data(features_a, y_a)
- 输出 (在线增强) : data_a_aug=Data(aug_x, ...)

随机性与复现:

• 静态 base_seed,在线 seed_batch;对抗 derive_adv_seed(args, fold, epoch, iter)

2. 对比学习 (contrastive learning) 的算法细节与应用

实现位置:

- layer.py::MoCoV2MultiView
- 集成: layer.EM.forward() 调用 self.moco(q_embed=x2_o, k_embeds=[x2_o_a, x2_aug1, x2_aug2, ...])

关键流程:

- 多视图构造:第0视图用 x2_o_a;其余对 x_o 应用
 ["random_permute_features","attribute_mask","noise_then_mask"] 轮换增强后编码。
- MoCo 计算:
 - o q = normalize(q_proj(x2_o)); k_i = normalize(k_proj_i(k_embed_i))
 - logits_i = cat([q·k_i, q @ queue_i], dim=1) / T; targets_i = zeros(B)
 - loss2 = mean_i CrossEntropy(logits_i, targets_i)
- 队列与动量键:每视图独立队列与指针; k 编码器动量更新; queue_warmup_steps 控制是否用队列

3. 数据增强实现 (utils.py)

统一入口:

```
aug_x = apply_augmentation(name, X, noise_std=args.noise_std,
mask_rate=args.mask_rate, seed=seed_v)
```

• random_permute_features: 行置乱

```
idx = torch.randperm(N, generator=g); out = X.index_select(0, idx)
```

- attribute_mask: 按列掩蔽 k=int(mask_rate*D) 个特征列为 0
- noise_then_mask: 先 add_noise(std=noise_std), 再 attribute_mask

4. 编码器 (encoder) 架构 (layer.py::GATGTSerial)

网络结构:

GATConv(in_dim → hidden1*heads, heads=args.gat_heads, dropout=args.dropout) → PReLU

- Dropout(p=args.dropout)
- TransformerConv(hidden1*heads → hidden2, heads=1, concat=False, dropout=args.dropout)
 → PReLU

前向:

```
x1 = PReLU(GATConv(x, edge_index)); x1 = dropout(x1)
x2 = PReLU(TransformerConv(x1, edge_index))
return x2 # [N, hidden2]
```

输入/输出:

- 输入 x [N,D], edge_index [2,E]
- 输出 x2 [N, hidden2]

5. 节点级对抗损失与监督学习实现(独立章 节)

5.1 节点级对抗损失 (adv_loss)

定义与语义:

- EM.forward() 用 adv_head 对 x2_o、x2_o_a 线性映射并沿特征维求和,拼接得到 logits_adv [1,2N]
- 训练中用 BCEWithLogitsLoss(logits_adv, lbl2),其中 lbl2=[1×N, 0×N]
- 语义: 原图节点判为正、增强/扰动图节点判为负; 用于常规训练与对抗闭环目标

实现要点(代码级):

```
# layer.EM.forward()
sc_1 = self.adv_head(x2_o).sum(1).unsqueeze(0)  # [1,N]
sc_2 = self.adv_head(x2_o_a).sum(1).unsqueeze(0)  # [1,N]
logits_adv = torch.cat((sc_1, sc_2), dim=1)  # [1,2N]
```

```
# train.py / test()
n = data_o.x.size(0)
lbl2 = torch.cat((torch.ones(1,n,device=device),
torch.zeros(1,n,device=device)), dim=1)
l3 = BCEWithLogitsLoss()(logits_adv, lbl2.float())
```

总损失与对抗闭环:

```
# 总损失
loss = \alpha*ll + \beta*l2 + \gamma*l3
# 闭包用于PGD/FGSM

def _adv_loss_fn(X_list):
    out, cos, cos_a, _, lgts, _ = model(...)
    l1 = BCE(sigmoid(out), label)
    l2 = CE(cos, cos_a)
    l3 = BCEWithLogits(lgts, lbl2)
    return \alpha*ll + \beta*l2 + \gamma*l3

X_adv = adversarial_step_multi(_X_list, _adv_loss_fn, args)
```

PGD/FGSM 内核 (layer.py):

- 输入: X_list=[X_o,(X_a)], cfg: adv_norm(linf/l2), adv_eps, adv_alpha, adv_steps, adv_rand_init, adv_project, adv_budget(shared/independent), adv_clip_min/max
- 步骤:初始化 delta → 迭代前向/反传 → linf: d+=α·sign(g); l2: d+=α·g/||g|| → 投影到范数球 → 裁剪 → 得到 X_adv
- 数学式:
 - L_total = α ·BCE(sigmoid(output), y) + β ·CE(cla_os, cla_os_a) + γ ·BCEWithLogits(logits_adv, lbl2)
 - FGSM: $x_adv = clamp(x + eps \cdot sign(\nabla_x L_total))$
 - PGD: $d\{t+1\} = \Pi\{||\cdot|| \le eps\}(d_t + \alpha \cdot u(\nabla_d L_{total}))$

输入/输出数据结构:

- logits_adv: [1,2N]; lbl2: [1,2N]; l3: 标量
- adversarial_step_multi: 输入 X_list (每项[N,D]) , 输出同结构的 X_adv_list (裁剪到 [clip_min, clip max])

应用场景:

- 常规:未启用 PGD 或未过 warmup,直接计算 13
- 对抗: adv_mode='mgraph' 且 epoch≥adv_warmup_end, I3 同时参与对抗目标与最终训练目标
- 可同时扰动原图与 MoCo 视图(adv on moco),预算 shared/independent,支持 AMP

5.2 监督学习实现

数据预处理与折分(data_preprocess.load_data):

- 正/负样本构建与 5 折; 训练折重算相似度 → 异构邻接 → 拉普拉斯归一化
- edge_index = adj.nonzero(); features_o 按 feature_type 生成并 normalize
- 增强视图:静态 random_permute_features 或训练期在线增强
- 输出: data_o=Data(x_o, edge_index), data_a=Data(features_a, y_a); DataLoader 产出 (label, (entity1, entity2))

模型结构 (layer.EM):

- 编码器: $GATConv \rightarrow Dropout \rightarrow TransformerConv \rightarrow PReLU$
- 图读出: AvgReadout + MLP (输出 log1 辅助)
- MoCo:第0视图 x2_o_a,其余原图增强视图;输出对比 logits/targets

- 融合解码:两 token 注意力+前馈 → 线性输出主任务 log
- 节点级对抗: adv_head → sum → logits_adv [1,2N]
- forward 返回: (log, cla_os, cla_os_a, x2_o, logits_adv, log1)

训练流程 (train.train_model):

- 每 batch: 可选在线增强 → 可选对抗生成 → 前向
 - I1 = BCE(sigmoid(output), label)
 - o I2 = CE(cla_os, cla_os_a) (多视图取均值)
 - I3 = BCEWithLogits(logits_adv, lbl2)
 - o loss = α l1 + β l2 + γ l3 → backward/step
- 验证: test() 评估 val_loss/val_auroc,写入 CSV
- 测试:输出 y_true/pred/logit、阈值扫描、温度缩放等

输入/输出张量形状:

- Data.x: [N,D]; edge_index: [2,E]
- Batch: label [B], inp=(i_idx, i_idx)
- forward: log [B,1], cla_os Tensor|List[Tensor], x2_o [N,H], logits_adv [1,2N], log1 [B,decoder1]
- 损失: I1/I2/I3 标量; loss 标量

6. 核心数据流图 (Mermaid)

下图基于当前代码实现,覆盖核心路径:数据加载/增强、训练循环、可选对抗、编码与多视图 MoCo、融合解码与三项损失。严格排除参数/日志/绘图模块。

6.1 总体数据流 (从数据到三损失与优化)

说明:

- H=hidden2; V=num_views (由 args.num_views, 默认≥1)。
- targets_i 恒为 0 (正样本为第0列,即 q·k_i)。
- Ibl2=[1×N, 0×N] (原/增强节点二分类标签)。

6.2 模型内部前向细化 (编码→MoCo→解码→对抗分支)

6.3 MoCo 视图与队列机制细化

注:

- P=proj_dim (args.proj_dim, 若未设默认为 H)。
- queue_warmup_steps>global_step 时使用同批内相似度构造负样本;否则使用队列。
- 目标 targets 恒为 0, 匹配 logits 第0列的正样本位置。

6.4 对抗生成 (PGD/FGSM) 内核细化

闭包 _adv_loss_fn 接口(与 train.py 一致):

- 接收按视图顺序排列的扰动后特征列表,构造 Data(x, edge_index) 送入 model
- 计算:
 - I1 = BCE(sigmoid(log), label)
 - I2 = CE(cla_os, cla_os_a) (若开启)

```
• I3 = BCEWithLogits(logits_adv, lbl2)
```

```
\circ L = \alphaI1 + \betaI2 + \gammaI3
```

7. 解码器与融合模块的具体实现与 I/O(layer.py)

本节详细说明 GraphTransformerStyleFusion 与 FusionDecoder 的内部结构、前向计算以及输入/输出数据格式。

7.1 GraphTransformerStyleFusion (两-token 注意力融合)

实现位置: layer.py::GraphTransformerStyleFusion

结构组成:

- MultiheadAttention: embed_dim=hidden_dim, num_heads=heads (默认4), dropout
- 前馈网络 FFN: Linear(hidden_dim → 4×hidden_dim) → ReLU → Dropout → Linear(4×hidden_dim → hidden_dim)
- 残差与归一化: LayerNorm 两次,配合 Dropout 形成两段残差
- 输出展平:将长度为2的序列在通道维拼接,得到[B,2H]

前向流程(关键代码):

```
def forward(self, e1, e2):
    B, H = e1.size(0), e1.size(1)
    x = torch.stack([e1, e2], dim=1) # [B,2,H]
    attn_out, _ = self.mha(x, x, x) # 自注意力 [B,2,H]
    x = self.norm1(x + self.dropout(attn_out))
    ffn_out = self.ffn(x) # [B,2,H]
    x = self.norm2(x + self.dropout(ffn_out)) # [B,2,H]
    x = x.reshape(B, 2 * H) # 展平为 [B,2H]
    return x
```

输入/输出:

- 输入 e1, e2: 两实体的节点级表示,形状 [B, H] (H=hidden2)
 - 来源: EM.forward 内根据 task_type 从 x2_o 索引得到 entity1/2
- 输出: 融合后的向量 [B, 2H], 用于解码器后续线性层

注意:

- heads 与 dropout 由 FusionDecoder 的构造入参传入(默认 heads=4, dropout=模型全局 dropout)
- 使用 batch_first=True 的 MHA,输入序列维在 dim=1

7.2 FusionDecoder (融合 + 解码为主任务 logit)

实现位置: layer.py::FusionDecoder

结构组成:

- strategy: GraphTransformerStyleFusion(hidden_dim, heads, dropout)
- proj4h: Linear(2H → 4H), 升维以增强表达

- fc1: Linear(4H → decoder1), 中间层 log1 (激活 ReLU)
- fc2: Linear(decoder1 → 1), 输出二分类 logit (未 Sigmoid)

前向流程 (关键代码):

```
def forward(self, e1, e2):
    feat2h = self.strategy(e1, e2)  # [B,2H]
    fused4h = self.proj4h(feat2h)  # [B,4H]
    log1 = F.relu(self.fc1(fused4h))  # [B,decoder1]
    log = self.fc2(log1)  # [B,1]
    return log, log1
```

输入/输出:

- 输入 e1, e2: [B, H], 分别为两实体在共享编码器后的表示(见 7.3)
- 输出:
 - log: [B, 1], 主任务二分类的未归一化 logit, 训练中用 Sigmoid 后计算 BCE
 - o log1: [B, decoder1],中间特征,仅作为辅助表征返回,不直接参与损失

7.3 解码器输入的构造 (实体索引选择)

实现位置: layer.py::EM.forward (实体抽取段)

根据任务类型(args.task_type)对 x2_o 的行索引进行偏移,得到两实体 embedding:

```
if args.task_type == 'LDA':
    entity1 = x2_o[idx[0]]
    entity2 = x2_o[idx[1] + 240]
elif args.task_type == 'MDA':
    entity1 = x2_o[idx[0] + 645]
    entity2 = x2_o[idx[1] + 240]
elif args.task_type == 'LMT':
    entity1 = x2_o[idx[0]]
    entity2 = x2_o[idx[1] + 645]
else:
    entity1 = x2_o[idx[0]]
    entity2 = x2_o[idx[1]]
```

- idx 为 DataLoader 提供的 (i_idx, j_idx)
- 偏移常数(如 240、645)对应不同实体类型在拼接图中的起始位置
- 输出 entity1、entity2 形状均为 [B, H]

7.4 解码器在训练与损失中的位置关系

• 解码器输出 log 被 Sigmoid 后与 batch 标签 label 计算主任务损失 I1:

```
log = torch.squeeze(Sigmoid(output)) # output □ log
ll = BCELoss()(log, label.float())
```

• FusionDecoder 的 log1 不直接参与损失,但被返回用于可视化或调试

• 解码器与其输入的融合模块共同构成主任务预测路径,与 MoCo 对比学习与节点级对抗损失并行, 最终以

loss_total =
$$\alpha*11 + \beta*12 + \gamma*13$$

融合反传与优化