川口康平・澤田真行『因果推論の計量経済学』

(日本評論社, 2024 年刊)

正誤情報一覧

2024.11.11 ver.2.1

本書にて、下記の通り補足説明と訂正がございます。ここにお詫びして訂正いたします。また、ご指摘をいただいた皆さまには深く御礼申し上げます。

第 1 版版第 2 刷 (2024 年 11 月 25 日発行) 時点の訂正 (第 1 刷には、第 2 刷り時の訂正も必要です)

ページ等	誤	正
55ページ、	$\widehat{\mathbb{V}}_{hetero} = \frac{\sum_{i=1}^{n} \bar{\epsilon}_{i}^{2} (Z_{i} - \bar{Z})^{2}}{n^{2} \bar{Z}^{2} (1 - \bar{Z})^{2}}$	$\widehat{\mathbb{V}}_{hetero} = \frac{\sum_{i=1}^{n} \bar{\epsilon}_{i}^{2} (Z_{i} - \bar{Z})^{2}}{[n(n-2)]^{2} \bar{Z}^{2} (1 - \bar{Z})^{2}}$
(2.7) 式	$n^2 \bar{Z}^2 (1-\bar{Z})^2$	$\frac{\sqrt{netero} - [n(n-2)]^2 \bar{Z}^2 (1-\bar{Z})^2}{[n(n-2)]^2 \bar{Z}^2 (1-\bar{Z})^2}$
55ページ、	2.2	2 2
(2.7) 式から	$n^2 \bar{Z}^2 (1 - \bar{Z})^2 = \frac{n_1^2 n_0^2}{n^2}$	$[n(n-2)]^2 \bar{Z}^2 (1-\bar{Z})^2 = \frac{n_1^2 n_0^2}{n^2}$
3行下の式	,	·
58ページ、	$\hat{\beta}_{ols} = \frac{\sum_{i=1}^{n} Z_i Y_i - \sum_{i=1}^{n} Z_i \sum_{i=1}^{n} Y_i}{(\sum_{i=1}^{n} Z_i)(1 - \sum_{i=1}^{n} Z_i)}$	$\hat{\beta}_{ols} = \frac{n^{-1} \sum_{i=1}^{n} Z_i Y_i - n^{-1} \sum_{i=1}^{n} Z_i n^{-1} \sum_{i=1}^{n} Y_i}{(n^{-1} \sum_{i=1}^{n} Z_i)(1 - n^{-1} \sum_{i=1}^{n} Z_i)}$
1~4行目	$\sum_{i=1}^{n} Z_i (1 - \sum_{i=1}^{n} Z_i)$	$ (n^{-1} \sum_{i=1}^{n} Z_i) (1 - n^{-1} \sum_{i=1}^{n} Z_i) $
	$-\frac{\sum_{i=1}^n Z_i \mathbf{W}_i' \hat{\mathbf{y}}_{ols} - \sum_{i=1}^n Z_i \sum_{i=1}^n \mathbf{W}_i' \hat{\mathbf{y}}_{ols}}{(\sum_{i=1}^n Z_i)(1 - \sum_{i=1}^n Z_i)}$	$-\frac{n^{-1}\sum_{i=1}^{n}Z_{i}\mathbf{W}_{i}'\hat{\mathbf{y}}_{ols}-n^{-1}\sum_{i=1}^{n}Z_{i}n^{-1}\sum_{i=1}^{n}\mathbf{W}_{i}'\hat{\mathbf{y}}_{ols}}{(n^{-1}\sum_{i=1}^{n}Z_{i})(1-n^{-1}\sum_{i=1}^{n}Z_{i})}$
	$\left(\sum_{i=1}^n Z_i\right) \left(1 - \sum_{i=1}^n Z_i\right)$	$(n^{-1}\sum_{i=1}^{n}Z_i)(1-n^{-1}\sum_{i=1}^{n}Z_i)$
	$=\frac{(1-\sum_{i=1}^{n}Z_{i})\sum_{i=1}^{n}Z_{i}Y_{i}-\sum_{i=1}^{n}Z_{i}\sum_{i=1}^{n}(1=Z_{i})Y_{i}}{(\sum_{i=1}^{n}Z_{i})(1-\sum_{i=1}^{n}Z_{i})}$	$=\frac{(1-n^{-1}\sum_{i=1}^{n}Z_{i})n^{-1}\sum_{i=1}^{n}Z_{i}Y_{i}-n^{-1}\sum_{i=1}^{n}Z_{i}n^{-1}\sum_{i=1}^{n}(1-Z_{i})Y_{i}}{(n^{-1}\sum_{i=1}^{n}Z_{i})(1-n^{-1}\sum_{i=1}^{n}Z_{i})}$
	$\left(\sum_{i=1}^n Z_i\right) \left(1 - \sum_{i=1}^n Z_i\right)$	$ (n^{-1} \sum_{i=1}^{n} Z_i) (1 - n^{-1} \sum_{i=1}^{n} Z_i) $
	$-\frac{(1-\sum_{i=1}^{n}Z_i)(\sum_{i=1}^{n}Z_i\mathbf{W}_i'\hat{\mathbf{\gamma}}_{ols}-\sum_{i=1}^{n}Z_i\sum_{i=1}^{n}(1-Z_i)\mathbf{W}_i'\hat{\mathbf{\gamma}}_{ols})}{(\sum_{i=1}^{n}Z_i)(1-\sum_{i=1}^{n}Z_i)}$	$-\frac{(1-n^{-1}\sum_{i=1}^{n}Z_{i})(n^{-1}\sum_{i=1}^{n}Z_{i}\mathbf{W}_{i}'\hat{\mathbf{\gamma}}_{ols}-n^{-1}\sum_{i=1}^{n}Z_{i}\mathbf{n}^{-1}\sum_{i=1}^{n}(1-Z_{i})\mathbf{W}_{i}'\hat{\mathbf{\gamma}}_{ols})}{(n^{-1}\sum_{i=1}^{n}Z_{i})(1-n^{-1}\sum_{i=1}^{n}Z_{i})}$
	$(\sum_{i=1}^{n} Z_i)(1 - \sum_{i=1}^{n} Z_i)$	
		(*上式中の全ての Σ 記号の前に n^{-1} が入ります)
59ページ、	$\frac{\sum_{i=1}^{n} (Z_i - \bar{Z}) \left(Y_i - \hat{\alpha}_{ols} - \hat{\beta}_{ols} Z_i - \mathbf{W}_i' \hat{\gamma}^* \right)^2}{n[n-2 - \dim(\mathbf{W}_i)] \bar{Z}^2 (1 - \bar{Z})^2}$	$\frac{\sum_{i=1}^{n} (Z_i - \bar{Z})^2 \left(Y_i - \hat{\alpha}_{ols} - \hat{\beta}_{ols} Z_i - \mathbf{W}_i' \hat{\gamma}^* \right)^2}{n[n-2 - \dim(\mathbf{W}_i)] \bar{Z}^2 (1 - \bar{Z})^2}$
(2.8) 式	$n[n-2-\dim(\mathbf{W}_i)]\bar{Z}^2(1-\bar{Z})^2$	$n[n-2-\dim(\mathbf{W}_i)]\bar{Z}^2(1-\bar{Z})^2$
70ページ、	大きく異なるだろう (MacKinnon, 2016)¹)。	大きく異なるだろう (MacKinnon, 2016; MacKinnon et al.,
上から 9~		2023)¹¹。
10 行目		
70ページ、	1) よりシンプルな、均一分散の分散推定量との比較	1) よりシンプルな、均一分散 <mark>における</mark> 比較が Moulton (1986) に

脚注 1)	が Moulton (1986) によって行われており、クラス	よって行われており、誤差項と(他の変数を統制した後の)共変
	ター頑健分散と均一分散を比較した比は「Moulton	量がそれぞれクラスター内で同じ相関を持っているときの、OLS
	ファクター (Moulton factor)」と呼ばれている。	推定量の真の(クラスター相関している)分散とクラスター分散
		のない分散を比較した比は「Moulton ファクター(Moulton
		factor)」と呼ばれている (MacKinnon et al., 2023)。
220 ページ、	1) このうち後者の制約を、潜在結果の定義に織り込	1) 前者の制約を織り込んだ潜在結果モデルに対し、後者を潜在結
注1)の1	む代わりに明示的な制約とする場合がある。	果モデルに織り込まない明示的な制約とする場合がある
文目		(Wooldridge, 2021 など)。

第1版版第1刷(2024年9月20日発行)時点の訂正

ページ等	誤	正
16ページ、	$Y_i = \sum_{z \in Z} 1\{Z_i = z\} Y_i^*(Z_i)$	$Y_i = \sum_{z \in \mathcal{Z}} 1\{Z_i = z\} Y_i^*(\mathbf{z})$
(1.1)式および	$\sum_{z\in Z} -(-1)^{-1} (-1)^z$	$z \in Z$
19ページ、		
下から8行目		
の式		
19ページ、	SUTVA (stable unit treatment value)	SUTVA (stable unit treatment value assumption)
上から5行目		
および 303 ペ		
ージ (索引)		
72 ページ、	このとき、中間点の定理より	このとき、 <mark>平均値</mark> の定理より
下から5行目		
91ページ、	【下から9行目】この場合、統制群には…	【下から9行目】この場合、 <mark>処置群</mark> には…
下から9行	【下から8行目】すると、統制群の患者から…	【下から8行目】すると、 <mark>処置群</mark> の患者から…
目、8 行目、4	【下から4行目】観測できるなら、統制群の中で…	【下から4行目】観測できるなら、処置群の中で…
行目		
105 ページ、	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,0) - Y_i^*(0,0))$	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,1) - Y_i^*(0,1))$
下から2行目	$n_{at} \sum_{G_i=at}^{C_i} (r_i - r_i)^{-1} (r_i - r_i)^{-1}$	$n_{at} \sum_{G_i = at} (1 (1 - i))^{-1}$
106ページ、	$\frac{1}{n_{nt}} \sum_{G:=nt} (Y_i^*(1,1) - Y_i^*(0,1))$	$\frac{1}{n_{nt}} \sum_{G_i = nt} \left(Y_i^*(1,0) - Y_i^*(0,0) \right)$
上から2行目	$n_{nt} \sum_{G_i=nt}^{C_i} (r_i(z)z)^{-1} r_i(z)z$	$n_{nt} \sum_{G_i=nt}^{C_i} (1 (2)^{i})^{i}$
109ページ、	$\mathbb{E}[D_i v_i \mid Z_i = 1] = $ (中略) $\mathbb{P}[D_i^*(Z_i) = 1]$	$\mathbb{E}[D_i v_i \mid Z_i = 1] = \frac{\text{(中略)}}{\text{[P[D_i^*(1) = 1]}}$
上から 5 行目		
109 ページ、	$\pi_1 = $	$\pi_1 = \frac{\text{(中略)}}{\text{(中略)}} = \mathbb{E}[D_i^* \mid Z_i = 1]$
下から6行目		
122 ページ、	統制群を途中で	標本を途中で
上から2行目		
134 ページ、	処置受取は第4章で	処置割当は第4章で

下から2行目		
152 ページ、	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i + \cdots$	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i^2 + \cdots$
上から3行目		
159 ページ、		【青字の「正の」をトル】
上から2段落	次に、図 6.4 (b) はサポートの端点の近傍における	次に、図 6.4 (b) はサポートの端点の近傍における
目	推定を図示している。このとき、カーネル推定(グ	推定を図示している。このとき、カーネル推定(グ
	レーの点線)は真の関数に対して、正のバイアスが	レーの点線)は真の関数に対して、バイアスが生じ
	生じる片側s≥0の観測のみを用いることになって	る片側s≥0の観測のみを用いることになってい
	いる。図 6.4 (a) の場合と異なり、正のバイアスを	る。図 6.4 (a) の場合と異なり、バイアスを打ち消
	打ち消す相手であるs < 0側の観測が存在しない。	す相手であるs < 0側の観測が存在しない。その結
	その結果、 正の バイアスが打ち消されずに残って	果、バイアスが打ち消されずに残ってしまう。この
	しまう。この図 6.4 (b) のように打ち消す相手とな	図 6.4 (b) のように打ち消す相手となる観測がな
	る観測がない場合には、関数の傾きを捉えられて	い場合には、関数の傾きを捉えられていないこと
	いないことに起因するバイアスが生じており、こ	に起因するバイアスが生じており、このバイアス
	のバイアスはhに応じて線形増加する。	はれに応じて線形増加する。
179 ページ、	【上から 12 行目】	【上から 12 行目】
上から 12 行目	$= \lim_{\epsilon \uparrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = co\} \mid S = \epsilon]$	$= \lim_{\epsilon \uparrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = at\} \mid S = \epsilon]$
189 ページ、	$CI^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$	$I^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} + cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$
下から 14 行目		$I = \begin{bmatrix} \iota & \iota \nu_{1-\alpha} \wedge \sqrt{N_h}, \iota & \iota \nu_{1-\alpha} \wedge \sqrt{N_h} \end{bmatrix}$
269 ページ、	統制群は当然、2000~2010年に	処置群は当然、2000~2010 年に
下から1行目		
270 ページ、	合併を経験した通勤圏も統制群に含め、	合併を経験した通勤圏も <mark>処置</mark> 群に含め、
上から4行目		