Automatic Control Systems

alghoniemy@alexu.edu.eg

• Reading: chapter 9

- Sections 9.1, 9.2, 9.3
- Study **Table 9.6** on pages 704-711

Stability in the frequency domain

• Open loop system G(s)H(s)Characteristic equation of the Closed-loop system

$$F(s) = 1 + G(s)H(s)$$

- The Nyquist stability criterion, a graphical method, determines the stability
 of a closed-loop system from its open-loop system without determining the
 closed-loop poles.
- The Nyquist stability criterion relates the open-loop frequency response G(s)H(s) to the **number of zeros of the characteristic equation** that lies in the 1 + G(s)H(s) right-half plane
- The Nyquist stability criterion is based on Cauchy's theorem which is concerned with mapping contours in the s-plane

Contour Mapping

A contour map is a trajectory in one plane, s —plane, mapped into another plane, F(s) — plane, by a relation F(s). A **closed contour** in the s —plane produces a **closed contour** in the F(s)-plane

Mapping function

$$F(s)=2s+1$$

Change of variables

$$u + jv = F(\sigma + j\omega) = 2(\sigma + j\omega) + 1 = (2\sigma + 1) + j\omega$$

$$u=2\sigma+1, \qquad v=2\omega$$

Mapping function:

$$F(s) = \frac{(s+1)}{(s-1)}$$

$$F(s) = \frac{s}{(s+2)}$$

• Define the positive direction is the <u>clock-wise</u> direction and the enclosed area is <u>on the right</u> "CLOCK-WISE AND FACING RIGHT"

The contour in the F(s) -plane **encloses (encircles) the origin** of the F(s) -plane

$$F(s) = \frac{s}{(s+0.5)}$$

The contour in the F(s) -plane **does not enclose (encircle)** the origin of the F(s) -plane

Cauchy's Theorem

"Cauchy's Argument Principle"

"if a contour Γ_s in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) and the transversal is in the <u>clockwise direction</u> along the contour, the corresponding contour Γ_F in the F(s)-plane encircles the origin of the F(s)-plane N=Z-P times in the <u>clockwise</u> direction"

 Γ_F completes two clockwise encirclements of the origin in the

$$F(s)$$
 - plane

Copyright © 2011 Pearson Education, Inc. publishing as Prentice

(a)

The contour Γ_F encircles the <u>origin</u> in the F(s)-plane <u>once</u> in the <u>counterclockwise</u> direction

$$Z=0, P=1$$

$$N = Z - P = -1$$

9

$$F(s) = \frac{s}{(s+2)}$$

$$Z=1, P=0$$

$$\Longrightarrow$$

$$[N=Z-P=+1]$$

• The contour in the F(s) —plane encircles the origin of the F(s) —plane once in the clockwise direction

$$F(s) = \frac{s}{(s+0.5)}$$

$$Z = 1, P = 1$$

$$\Rightarrow \qquad N = Z - P = 0$$

$$\downarrow^{j\omega}$$

The contour in the F(s) —plane <u>does not encircle</u> the <u>origin</u> of the F(s) —plane

example
$$F(s) = \frac{(s+1)}{(s-1)} \int_{j2}^{j\omega} \int_{-j2}^{s \text{ Plane}} f(s) ds$$

$$P = 1, Z = 0$$

$$N=Z-P=-1$$

•
$$P=0,Z=1$$

$$N = Z - P = 1$$

•
$$P = 1, Z = 1$$

$$N=Z-P=0$$

•
$$P=0,Z=0$$

$$N=Z-P=0$$

- To ensure stability, we must ascertain that all the <u>zeros</u> of the characteristic equation F(s) = 1 + G(s)H(s) would lie in the **left-half-plane (LHP)** of the s-plane, i.e., the left of the $j\omega$ axis.
- Nyquist chose the contour Γ_s in the s-plane that **encloses the entire right-half s-plane (RHP)**.
- Use Cauchy's theorem to determine if there are any zeros of F(s) that would lie within Γ_s .
- Plot Γ_F in the F(s)-plane and determine the number of encirclements of the <u>origin</u> N
- Nyquist plot is a POLAR plot

• In order to determine the stability of a closed-loop system we must investigate the **characteristic equation** F(s) of the system

- \checkmark Z = number of zeros of 1 + G(s)H(s) in the *right-half s-plane*
- \triangleright P = number of poles of <math>1 + G(s)H(s) in the right-half s-plane!!
- N = number of *clockwise* encirclement of the origin in the F(s)-plane

- Then, the number of zeros of the **characteristic equation** F(s) in the **RHP** Z = N + P
- Note that, <u>P = the number of OPEN LOOP poles in the RHP</u>
 WHY?

$$F(s) = 1 + G(s)H(s)$$

$$G(s)H(s) = \frac{N(s)}{D(s)}$$

$$F(s) = 1 + \frac{N(s)}{D(s)} = \frac{D(s) + N(s)}{D(s)}$$

- P: OPEN-LOOP POLES (poles of G(s)H(s))
 - Case 1: $P = 0 \Rightarrow Z = N$
 - Case 2: $P \neq 0 \Rightarrow Z = N + P$
- Z: CHARACTERISTIC EQUATION ZEROS (roots of 1 + G(s)H(s))

• Because G(s)H(s) is typically available in factored form, consider

Mapping function	Plane	Encirclement
F(s) = 1 + G(s)H(s)	1+G(s)H(s)	(0 , 0)
F(s) - 1 = G(s)H(s)	G(s)H(s)	(-1, 0)

• The number of **clockwise encirclements** of the **origin** of the F(s)-plane becomes the number of **clockwise encirclements** of the (-1,0) point in the G(s)H(S)-plane.

17

Case 1

L(S) = G(s)H(s) has no open-loop poles in the RHP, (P = 0)

"A feedback system is stable <u>if and only if</u> the contour Γ_L in the G(s)H(s)-plane <u>DOES NOT</u> encircle the (-1,0) point when the number of poles of L(s) in the RHP is zero (P=0)"

$$Z = N + P = N$$

$$\therefore Z = 0$$

$$\Rightarrow N = 0$$

• For no zeros of the characteristic equation on the RHP, then there should be <u>no encirclement</u> of the point -1 in the L(s) plane

$$L(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)} = \frac{100}{(s+1)(0.1s+1)}$$

ω	0	0.1	0.76	1	2	10	20	100	∞
$ L(j\omega) \over /L(j\omega)$ (degrees)	100 0	96 -5.7	79.6 -41.5	70.7 -50.7	50.2 -74.7	6.8 -129.3	2.24 -150.5	0.10 -173.7	0 -180
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall									

P = 0, N = 0 $\Rightarrow Z = 0$

jω

• The system is always stable for all values of $K \gtrsim 0$, (why?)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Ha

$$G(s) = 10/(s+5)$$

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	+2
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 90^{o}$

$$P = 0, N = 0 \implies Z = 0$$
(stable)

G(s) = 10/(s+10)(s+5)

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	+0.2
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 180^{o}$

 $P = 0, N = 0 \implies$ System is always stable

$$G(s) = 10/s(s+5)$$

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	∞∠ −90°
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 180^{o}$

$$G(s) = 10(s+2)/s(s+1)$$

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	∞∠ −90°
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 90^{o}$

• $N = 0, P = 0 \Rightarrow Stable$

$$G(s) = K/s(s+2)(s+4)$$

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	∞∠ −90°
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 270^{o}$

$$K = 10 \Rightarrow N = 0, P = 0 \Rightarrow Z = 0(Stable)$$

$$K = 70 \Rightarrow N = 2, P = 0 \Rightarrow Z = 2 (unstable)$$

$$GH(s) = K/(s+1)(s+10)$$

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	K/10
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 180^{o}$

Imaginary Axis

Real Axis (seconds-1)

System is always stable for all values of K

$$GH(s) = \frac{K(s-2)}{(s+1)(s+10)}$$

jω	$GH(j\omega)$
$\lim_{j\omega\to 0+} GH(s)$	-0.2K
$\lim_{j\omega\to+\infty}GH(s)$	$0 \angle - 90^{o}$

$$K = 1 \Rightarrow N = 0, P = 0 \Rightarrow Z = 0(stable)$$

$$K = 6 \Rightarrow N = 1, P = 0 \Rightarrow Z = 1(ustable)$$

ω	$GH(j\omega)$		
$j\omega \to 0_+$	∞ \angle $ 180^o$		
$j\omega \to +\infty$	$0 \angle -270^o$		

The system is **always unstable**

$$K = 10 \Rightarrow N = 2, P = 0 \Rightarrow Z = 2(unstable)$$

$$K = 100 \Rightarrow N = 2, P = 0 \Rightarrow Z = 2(unstable)$$

adding a differentiator

$$GH(s) = K(s+1)/s^2(s+4)$$

ω	$GH(j\omega)$	
$j\omega \rightarrow 0_+$	∞ \angle $-\pi$	
$j\omega \to +\infty$	$0 \angle - \pi$	

The system is always stable

-5.0

-2.5

5.0

2.5

2.5

5.0

10 (5+1) s2 (s+4)

100 (5+1) s² (s+4)

Nyquist plot examples

Equivalent root locus plots

