FOURTH ADVANCED SEMINAR ON FOUNDATIONS OF DECLARATIVE PROGRAMMING

Rule-Based Specifications And their Abstract Interpretation

Patrick COUSOT

DMI – École Normale Supérieure 45 rue d'Ulm, 75230 Paris cedex 05, France

cousot@dmi.ens.fr, http://www.dmi.ens.fr/~cousot

CONTENT

- Classical rule-based and fixpoint formal specifications methods;
- Generalization from set based to order-theoretic formal specification methods;
- Preservation of these various specification styles by abstract interpretation;
- Examples of formal/abstract semantic specifications.

CLASSICAL SET-BASED INDUCTIVE FORMAL SPECIFICATION METHODS [1]

Reference

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, *Handbook of Mathematical Logic*, volume 90 of *Studies in Logic and the Foundations of Mathematics*, pages 739–782. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1977.

FORMAL SPECIFICATION

- Objective: specify a subset S of a set U, called the *universe* (example: a programming language is a subset of the finite character strings);
- Methods:
 - Fixpoint specifications,
 - Inductive specifications by rule-based formal systems.
- The two methods (and many others) are equivalent.

FIXPOINT SPECIFICATION

The set S is specified as the smallest solution of an equation:

$$X = F(X)$$

where:

$$F \in \wp(U) \longmapsto \wp(U)$$

is upper-continuous on the complete lattice $(\wp(U),\subseteq,\emptyset,U,\cup,\cap)$, hence:

$$S = \operatorname{lfp} F$$

such that S = F(S) and if X = F(X) then $S \subseteq X$.

$$-5/77$$
 \blacktriangleleft \triangleleft \triangleright \triangleright

Example: Fixpoint Specification of the Even Natural Numbers

$$\mathbb{N} \stackrel{\text{def}}{=} \{0, 1, 2, 3, 4, 5, \ldots\}
\mathbb{E} \stackrel{\text{def}}{=} \{0, 2, 4, 6, \ldots\}
= lfp \(\lambda X \cdot \{0\} \cup \{n + 2 \ | n \in X\} \).$$

so that:

$$X^{0} = \emptyset$$

$$X^{1} = \{0\}$$

$$X^{2} = \{0, 2\}$$

$$\dots = \dots$$

$$X^{n} = \{0, 2, 4, \dots, 2n - 2\}$$

$$X^{n+1} = \{0\} \cup \{k + 2 \mid k \in \{0, 2, 4, \dots, 2n\}\}$$

$$= \{0, 2, 4, \dots, 2n - 2\}$$

$$\dots = \dots$$

$$\lim_{n \in \mathbb{N}} \lambda X \cdot \{0\} \cup \{n + 2 \mid n \in X\} = \bigcup_{n \in \mathbb{N}} X^{n} = \{0, 2, 4, \dots, 2n, \dots\}$$

Universe (natural numbers)

Even natural numbers

Rule-based Specification

S is the smallest subset of the universe U defined by:

- $axioms^1$:

$$a, \quad a \in U;$$

the element of U defined by the axioms belong to S;

- inference rules:

$$\frac{P}{c}$$
, $P \subseteq U \& c \in U$;

if all elements of the premiss P belong to S then the conclusion c belongs to E;

¹ The axioms a are particular cases of inference rules of the form $\frac{\emptyset}{a}$ where \emptyset is the empty set.

FORMAL PROOF

- S is the set of elements of U which are provable by a formal proof;
- A formal proof of $e \in U$ is a finite sequence:

$$e_1,\ldots,e_i,\ldots,e_n$$

such that 2,3:

$$\forall i \in [1, n], \exists \frac{P}{c} : P \subseteq \{e_1, \dots, e_{i-1}\} \land e_i = c$$

$$e_n = e$$

² The axioms a are assumed to be written as rules $\frac{\emptyset}{a}$.

³ For i = 1, $\{e_1, \ldots, e_{i-1}\} = \emptyset$ hence e_1 must be an axiom.

Example: Rule-based Specification of the Even Natural Numbers

$$0 \in \mathbb{E}, \qquad \frac{n \in \mathbb{E}}{n+2 \in \mathbb{E}}$$

with is an abridged notation for the formal system:

$$\frac{\emptyset}{0}(a) \quad \frac{\{0\}}{2}(b) \quad \frac{\{1\}}{3}(c) \quad \frac{\{2\}}{4}(d) \quad \frac{\{3\}}{5}(e) \quad \frac{\{4\}}{6}(f) \quad \dots$$

The proof that 6 is an even natural number is

(1)
$$0$$
 by (a)
(2) 2 by (1) and (b)
(3) 4 by (2) and (d)
(4) 6 by (3) and (f)

Generalization from set-theoretic to order-theoretic formal inductive specification methods [2], [3]

References

- [2] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Conf. Rec. 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 83–94, Albuquerque, New Mexico, 1992. ACM Press.
- [3] P. Cousot and R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic form, invited paper. In P. Wolper, editor, *Proc. 7th Int. Conf. on Computer Aided Verification, CAV '95, Liège, Belgium*, LNCS 939, pages 293–308. Springer-Verlag, 3–5 July 1995.

FORMAL SPECIFICATION

- We consider equivalent formal specifications of $S \in \mathcal{D}$ where $\langle \mathcal{D}, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ is a complete lattice;
- This is a generalization of the set-based formal specicifications where $\langle \mathcal{D}, \sqsubseteq \rangle = \langle \wp(U), \subseteq \rangle$ and U is the universe.

FIXPOINT SPECIFICATION

Given the monotonic operator:

$$F \in \mathcal{D} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}$$

S is defined as the least fixpoint 4:

$$S \stackrel{\text{def}}{=} \operatorname{lfp}^{\sqsubseteq} F$$

⁴ By Tarski's fixpoint theorem $\operatorname{lfp}^{\sqsubseteq} F$ exists since $\langle \mathcal{D}, \sqsubseteq \rangle$ is a complete lattice and F is monotonic.

EQUATIONAL SPECIFICATION

Given the monotonic operator:

$$F \in \mathcal{D} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}$$

S is defined as the \sqsubseteq -least element of \mathcal{D} which is a solution to the equation 5 :

$$X = F(X)$$

⁵ By Tarski's fixpoint theorem this \sqsubseteq -least solution exists and is precisely $\operatorname{lfp}^{\sqsubseteq} F = \sqcap \{X \mid X = F(X)\}.$

CONSTRAINT-BASED SPECIFICATION

Given the monotonic operator:

$$F \in \mathcal{D} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}$$

S is defined as the \sqsubseteq -least element of \mathcal{D} satisfying the constraint ⁶:

$$F(X) \sqsubseteq X$$

⁶ By Tarski's fixpoint theorem this \sqsubseteq -least solution exists and is precisely $\operatorname{lfp}^{\sqsubseteq} F = \sqcap \{X \mid F(X) \sqsubseteq X\}.$

CLOSURE-CONDITION SPECIFICATION

• Given a complete lattice $(\mathcal{D}, \sqsubseteq)$, a *closure-condition* is:

$$C \in \wp(\mathcal{D} \times \mathcal{D})$$

which is monotonic in its second component, that is, $\forall x, X, Y \in L$:

$$C(x,X) \wedge X \sqsubseteq Y \Rightarrow C(x,Y)$$

where C(x, X) is true if and only if $\langle x, X \rangle \in C$;

• A *closure-specification* has the form:

S is the \sqsubseteq -least element X of \mathcal{D} satisfying:

$$\forall x \in L : C(x, X) \Longrightarrow x \sqsubseteq X$$

Example: Informal Closure-Condition Specification of the Syntax of Regular Expressions

1. ϵ is a regular expression;

empty

2. If $a \in A$ then a is a regular expression;

letter

- 3. If ρ_1 and ρ_2 are regular expressions then:
 - $3.1 \ \rho_1 | \rho_2$

alternative

 $3.2 \rho_1 \rho_2$

concatenation

are regular expressions;

- 4. If ρ is a regular expression then:
 - 4.1 ρ^{*}
 - $4.2 (\rho)$

repetition, 0 or more times
parenthesized expression

are regular expressions.

Corresponding Formal Definition

The closure-condition is $C \in \wp(A^{\vec{*}}) \times \wp(A^{\vec{*}}) \longmapsto \{tt, ff\}$

$$C(x, X) = (x = \{\epsilon\}) \lor$$

$$(x = \{a\} \land a \in A) \lor$$

$$(x = \{\rho_1 | \rho_2\} \land \rho_1 \in X \land \rho_2 \in X) \lor$$

$$(x = \{\rho_1 \rho_2\} \land \rho_1 \in X \land \rho_2 \in X) \lor$$

$$(x = \{\rho^*\} \land \rho \in X) \lor$$

$$(x = \{(\rho)\} \land \rho \in X)$$

Presentation of a Closure-condition in Fixpoint Form

The \sqsubseteq -least element X of \mathcal{D} satisfying:

$$\forall x \in \mathcal{D} : C(x, X) \Rightarrow x \sqsubseteq X$$

is:

$$\operatorname{lfp}^{\sqsubseteq} F$$

where:

$$F \stackrel{\text{def}}{=} \lambda X \cdot \bigsqcup \{ x \in \mathcal{D} \mid C(x, X) \}$$

Presentation of a Fixpoint Specification as a Closure-Specification

If

- \bullet $\langle \mathcal{D}, \sqsubseteq, \perp, \sqcup \rangle$ is a complete lattice, and
- $F \in \mathcal{D} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}$

then the closure-specification with condition

$$C(x,X) = x \sqsubseteq F(X)$$

defines

$$\operatorname{lfp}^{\sqsubseteq} F$$
.

PRINCIPLE OF THE GENERALIZATION OF RULE-BASED SPECIFICATIONS

Inference rules:

$$\frac{P}{c}$$
, $P \subseteq U \& c \in U$;

can also be written:

$$\frac{P}{\{c\}}$$
, $P \subseteq U \& \{c\} \subseteq U$.

Rule-Based Specification

• An element S of the complete lattice $\langle \mathcal{D}, \sqsubseteq \rangle$ can be defined by the rule instances:

$$R = \left\{ \frac{P_i}{C_i} \,\middle|\, i \in \Delta \right\}$$

such that for all $i \in \Delta$: $P_i \in \mathcal{D}$ and $C_i \in \mathcal{D}$;

• By definition, this denotes:

$$lfp^{\sqsubseteq}\Phi_R$$

where the R-operator Φ_R is 7 :

$$\Phi_R \stackrel{\text{def}}{=} \lambda X \cdot | \quad | \{ C_i \mid \exists i \in \Delta : P_i \sqsubseteq X \}$$

⁷ Φ_R is monotonic hence the rule-based specification is well-defined.

Rule-Based Presentation of a Fixpoint Specification

- Let $F \in L \xrightarrow{m} L$ be a monotonic map on the complete lattice $\langle L, \sqsubseteq, \perp, \sqcup \rangle$;
- lfp is defined by the rule instances:

$$R = \left\{ \frac{P}{C} \middle| C, P \in L \land C \sqsubseteq F(P) \right\} \tag{1}$$

DERIVATION⁸

• Let
$$R = \left\{ \frac{P_i}{C_i} \mid i \in \Delta \right\}$$

and $\Phi_R \stackrel{\text{def}}{=} \lambda X \cdot \bigsqcup \{ C_i \mid \exists i \in \Delta : P_i \sqsubseteq X \};$

- A *derivation* of an element x of the complete lattice $\langle \mathcal{D}, \sqsubseteq \rangle$ is a transfinite sequence $x_{\kappa}, \kappa \leq \lambda, \lambda \in \mathbb{O}$ such that:
 - $-x_0 = \bot$
 - $x_{\kappa} \sqsubseteq \Phi_R(\bigsqcup_{\beta < \kappa} x_{\beta})$
 - $-x_{\lambda}=x;$

for all $0 < \kappa \le \lambda$,

⁸ This generalizes the notion of proof in formal systems.

DERIVABLE ELEMENTS

- An element x of the complete lattice $\langle \mathcal{D}, \sqsubseteq \rangle$ is said to be derivable whenever it has a derivation;
- An element $x \in \mathcal{D}$ is derivable if and only if $x \sqsubseteq lfp^{\sqsubseteq} \Phi_R$;
- It follows that:

$$\operatorname{lfp}^{\sqsubseteq} \Phi_R = \left| \begin{array}{c} \{x \in \mathcal{D} \mid x \text{ is derivable} \} \end{array} \right|$$

GAME-THEORETIC SPECIFICATION

• Given a complete lattice $\langle L, \sqsubseteq \rangle$, a game is defined by rules $R \subseteq$ $L \times L$. The corresponding R-operator Φ is:

$$\Phi \stackrel{\text{def}}{=} \lambda X \cdot | \quad | \{C \mid \exists \langle C, P \rangle \in R : P \sqsubseteq X\}$$

- The game $\mathcal{G}(R, a)$ with rules R starting from initial position $a \in L$ is played by two players I and II.
- Player I must start by choosing $x_0 = a$.
- If player I chooses x_n in the *n*-th move, then player II must respond by $X_n \in \wp(L)$ such that $x_n \sqsubseteq \Phi(|X_n|)$.
- For the next move, player I must choose some $x_{n+1} \in X_n$.
- A player who is blocked has lost.
- If the game goes on forever then player II has lost.

Initial Winning Positions

• We define $\mathcal{W}(R)$ as the set of initial winning positions for player II:

$$\mathcal{W}(R) \stackrel{\text{def}}{=} \{ a \in L \mid \text{player II has a winning strategy} \text{ in game } \mathcal{G}(R, a) \}$$

• $\operatorname{lfp} \Phi = \coprod \mathcal{W}(R)$.

FIXPOINT SPECIFICATION IN EQUIVALENT GAME-THEORETIC FORM

- Let $\langle L, \sqsubseteq \rangle$ be a cpo and $F \in L \xrightarrow{\mathrm{m}} L$ be monotonic;
- Ifp $F = \coprod \mathcal{W}(R)$

for the game with rules:

$$R = \{ \langle C, P \rangle \mid P \in L \land C \sqsubseteq F(P) \}.$$

Example: <u>Trace Semantic</u> specification

MAXIMAL EXECUTION TRACE SEMANTICS

$$\bullet \ \langle \Sigma, \tau \rangle$$

$$\bullet \ \tau^{\check{\vec{+}}} = \bigcup_{n>0} \tau^{\check{\vec{n}}}$$

- n>0• $\tau^{\vec{\omega}}$ $\tau^{\vec{\infty}}=\tau^{\check{+}}\cup\tau^{\vec{\omega}}$

transition system

partial traces of length n > 0

maximal traces of length n > 0

maximal non-empty finitary trace semantics

infinitary trace semantics

maximal bifinitary trace semantics

Example (Prolog): Σ : set of subgoals with substitutions, τ : replacement of a subgoal in the set by a resolvent for a clause selected in the program.

Junction of State Sequences

• Joinable nonempty finite state sequences:

$$\alpha_0 \dots \alpha_{\ell-1}$$
? $\beta_0 \dots \beta_{m-1}$ iff $\alpha_{\ell-1} = \beta_0$

• Their join is:

$$\alpha_0 \dots \alpha_{\ell-1}$$

$$=$$

$$\beta_0 \quad \beta_1 \dots \beta_{m-1}$$

$$\alpha_0 \dots \alpha_{\ell-1} \cap \beta_0 \dots \beta_{m-1} \stackrel{\text{def}}{=} \alpha_0 \dots \alpha_{\ell-1} \beta_1 \dots \beta_{m-1}$$

• Joinable infinite state sequences:

$$\alpha_0 \dots \alpha_{\ell} \dots ? \beta_0 \dots \beta_{m-1}$$
 is true $\alpha_0 \dots \alpha_{\ell} \dots ? \beta_0 \dots \beta_m \dots$ is true $\alpha_0 \dots \alpha_{\ell-1} ? \beta_0 \dots \beta_m \dots$ iff $\alpha_{\ell-1} = \beta_0$

• Their join is:

$$\alpha_{0} \dots \alpha_{\ell} \dots \widehat{\beta_{0}} \dots \beta_{m-1} \stackrel{\text{def}}{=} \alpha_{0} \dots \alpha_{\ell} \dots$$

$$\alpha_{0} \dots \alpha_{\ell} \dots \widehat{\beta_{0}} \dots \beta_{m} \dots \stackrel{\text{def}}{=} \alpha_{0} \dots \alpha_{\ell} \dots$$

$$\alpha_{0} \dots \alpha_{\ell-1} =$$

$$=$$

$$\beta_{0} \quad \beta_{1} \dots \beta_{m} \dots$$

$$\alpha_{0} \dots \alpha_{\ell-1} \beta_{1} \dots \beta_{m} \dots$$

JUNCTION OF SETS OF BIFINITARY STATE SEQUENCES

• For sets A and $B \in \wp(\mathcal{A}^{\vec{\alpha}})$ of sequences, we have:

$$A \cap B \stackrel{\text{def}}{=} \{ \alpha \cap \beta \mid \alpha \in A \land \beta \in B \land \alpha ? \beta \}$$
 set junction

FIXPOINT SPECIFICATION OF THE MAXIMAL FINITARY TRACE SEMANTICS OF TRANSITION SYSTEMS

$$\tau^{\check{+}} = \operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}} = \operatorname{gfp}_{\Sigma^{\check{+}}}^{\subseteq} F^{\check{+}}$$
 (2)

where the set of finite traces transformer $F^{\mathring{+}}$ is:

$$F^{\check{+}}(X) \stackrel{\mathrm{def}}{=} \tau^{\check{1}} \cup \tau^{\check{2}} \cap X$$

Sketch of Proof

$$\tau^{\tilde{+}} = \bigcup_{i \in \mathbb{N}} \tau^{\tilde{i}} = \operatorname{lfp}_{\emptyset}^{\subseteq} F^{\tilde{+}} \qquad F^{\tilde{+}}(X) \stackrel{\text{def}}{=} \tau^{\tilde{1}} \cup \tau^{\tilde{2}} \cap X \\
X^{0} = \emptyset \\
X^{1} = \{\emptyset\} \\
X^{2} = \{\emptyset, \quad t \\
X^{3} = \{\emptyset, \quad t \\
X^{n} = \{\emptyset, \quad t$$

FIXPOINT SPECIFICATION OF MAXIMAL INFINITARY TRACE SEMANTICS OF TRANSITION SYSTEMS

$$\tau^{\vec{\omega}} = \operatorname{gfp}_{\Sigma^{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}} \tag{3}$$

where the set of infinite traces transformer $F^{\vec{\omega}}$ is:

$$F^{\vec{\omega}}(X) \stackrel{\mathrm{def}}{=} au^{\dot{\vec{2}}} \cap X$$

Sketch of Proof

Coalesced PowerProduct

• If

-
$$\{L^+, L^-\}$$
 is a *partition* of L (i.e. $L = L^+ \cup L^-$ and $L^+ \cap L^- = \emptyset$);

-
$$\langle \wp(L^+), \sqsubseteq^+, \perp^+, \top^+, \sqcup^+, \sqcap^+ \rangle$$
 and $\langle \wp(L^-), \sqsubseteq^-, \perp^-, \top^-, \sqcup^-, \sqcap^- \rangle$ are posets (respectively cpos, complete lattices);

then the *coalesced powerproduct* $\langle \wp(L), \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ is a poset (respectively a cpo, a complete lattice), where:

-
$$X^+ \stackrel{\text{def}}{=} X \cap L^+$$
 and $X^- \stackrel{\text{def}}{=} X \cap L^-$ projections
- $X \sqsubseteq Y$ iff $X^+ \sqsubseteq^+ Y^+ \wedge X^- \sqsubseteq^- Y^-$ ordering
- $\bot \stackrel{\text{def}}{=} \bot^+ \cup \bot^-$ infimum
- $\bot \stackrel{\text{def}}{=} \bot^+ \cup \top^-$ supremum
- $\bigsqcup_i X_i \stackrel{\text{def}}{=} \bigsqcup_i^+ (X_i)^+ \cup \bigsqcup_i^- (X_i)^-$ join
- $\bigsqcup_i X_i \stackrel{\text{def}}{=} \bigsqcup_i^+ (X_i)^+ \cup \bigsqcup_i^- (X_i)^-$ meet

COALESCED FIXPOINTS THEOREM

• If

- $\langle \wp(L), \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ is the coalesced powerproduct of $\langle \wp(L^+), \sqsubseteq^+, \bot^+, \top^+, \sqcup^+, \sqcap^+ \rangle$ and $\langle \wp(L^-), \sqsubseteq^-, \bot^-, \top^-, \sqcup^-, \sqcap^- \rangle$
- $F^+ \in L^+ \longrightarrow L^+$ and $F^- \in L^- \longmapsto L^-$ are monotonic (resp. upper-continuous, a complete join morphism)

then the coalesced fixpoint is defined by:

- $F \in L \longrightarrow L$ where

$$F(X) \stackrel{\text{def}}{=} F^+(X^+) \cup F^-(X^-)$$

is monotonic (resp. upper-continuous, a complete join morphism);

$$-\operatorname{lfp}^{\sqsubseteq} F = \operatorname{lfp}^{\sqsubseteq^{+}} F^{+} \cup \operatorname{lfp}^{\sqsubseteq^{-}} F^{-}. \tag{4}$$

FIXPOINT SPECIFICATION OF THE MAXIMAL BIFINITARY TRACE SEMANTICS OF TRANSITION SYSTEMS

• The fixpoint characterization of the bifinitary maximal trace semantics of a transition system $\langle \Sigma, \tau \rangle$ is:

$$\tau^{\check{\tilde{\infty}}} = \operatorname{lfp}^{\sqsubseteq} F^{\check{\tilde{\infty}}} = \operatorname{gfp}_{\Sigma^{\check{\tilde{\infty}}}}^{\subseteq} F^{\check{\tilde{\infty}}}$$

$$F^{\check{\tilde{\infty}}} = \lambda X \cdot \tau^{\check{1}} \cup \tau^{\check{2}} \cap X$$

$$X \sqsubseteq Y \stackrel{\operatorname{def}}{=} (X \cap \Sigma^{\vec{*}} \subseteq Y \cap \Sigma^{\vec{*}}) \wedge (X \cap \Sigma^{\vec{\omega}} \supseteq Y \cap \Sigma^{\vec{\omega}})$$

$$(5)$$

Proof

• $\tau^{\check{\otimes}} \stackrel{\text{def}}{=} \tau^{\check{+}} \cup \tau^{\vec{\omega}} = \operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}} \cup \operatorname{gfp}_{\Sigma^{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}} = \operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}} \cup \operatorname{lfp}_{\Sigma^{\vec{\omega}}}^{\supseteq} F^{\vec{\omega}} = \operatorname{lfp}^{\sqsubseteq} F^{\check{\otimes}}$ by (2), (3), (4) and:

$$\begin{split} F^{\overset{\circ}{+}}(X) &= F^{\overset{\circ}{+}}(X \cap \Sigma^{\overset{\circ}{+}}) \cup F^{\overrightarrow{\omega}}(X \cap \Sigma^{\overrightarrow{\omega}}) \\ &= (\tau^{\overset{\circ}{1}} \cup \tau^{\overset{\circ}{2}} \cap (X \cap \Sigma^{\overset{\circ}{+}})) \cup (\tau^{\overset{\circ}{2}} \cap (X \cap \Sigma^{\overset{\circ}{\omega}})) \\ &= \tau^{\overset{\circ}{1}} \cup \tau^{\overset{\circ}{2}} \cap ((X \cap \Sigma^{\overset{\circ}{+}}) \cup (X \cap \Sigma^{\overset{\circ}{\omega}})) \\ &= \tau^{\overset{\circ}{1}} \cup \tau^{\overset{\circ}{2}} \cap X \end{split}$$

• $\tau^{\check{\infty}} \stackrel{\text{def}}{=} \tau^{\check{+}} \cup \tau^{\vec{\omega}} = \operatorname{gfp}_{\Sigma^{\check{+}}}^{\subseteq} F^{\check{+}} \cup \operatorname{gfp}_{\Sigma^{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}} = \operatorname{gfp}_{\Sigma^{\check{\infty}}}^{\subseteq} F^{\check{\infty}} \text{ by (2), (3) and the dual of (4).}$

Rule-based Specification of the Maximal Bifinitary Trace Semantics of Transition Systems

• By the equivalence (1) of fixpoint and rule-based definitions, we can define an element S of:

$$\langle \wp(\Sigma^{\vec{\infty}}), \sqsubseteq, \Sigma^{\vec{\omega}}, \Sigma^{\vec{+}}, \sqcup, \sqcap \rangle$$

where $X \sqsubseteq Y \stackrel{\text{def}}{=} (X \cap \Sigma^{\vec{+}} \subseteq Y \cap \Sigma^{\vec{+}}) \wedge (X \cap \Sigma^{\vec{\omega}} \supseteq Y \cap \Sigma^{\vec{\omega}})$ by rule-instances:

$$\left\{ \frac{P_i}{C_i} \sqsubseteq \mid i \in \Delta \right\}$$

where P_i , $C_i \subseteq \Sigma^{\infty}$, such that:

$$S \stackrel{\text{def}}{=} \operatorname{lfp}^{\sqsubseteq} F$$
 with $F \stackrel{\text{def}}{=} \lambda X \cdot \bigsqcup \{C_i | i \in \Delta \land P_i \sqsubseteq X\}$

SET OF TRACES RULE-BASED SPECIFICATION OF THE MAXIMAL BIFINITARY TRACE SEMANTICS OF TRANSITION SYSTEMS

$$\frac{\bot}{\bot\bot\bot\check{\tau}} \sqsubseteq \qquad \text{where } \bot \stackrel{\text{def}}{=} \Sigma^{\vec{\omega}} \tag{6}$$

$$\frac{T}{\tau^{\frac{1}{2}} \cap T} \sqsubseteq \qquad \text{where } T \subseteq \Sigma^{\infty} \tag{7}$$

Proof

$$\Phi = \lambda X \cdot \bigsqcup \{C \mid \exists \frac{P}{C} : P \sqsubseteq X\}$$

$$= \lambda X \cdot \bigsqcup \{\bot \cup \check{\tau} \mid \bot \sqsubseteq X\} \sqcup \bigsqcup \{\tau^{\dot{\bar{Z}}} \cap T \mid T \sqsubseteq X\}$$

$$= \lambda X \cdot (\bot \cup \check{\tau}) \sqcup \tau^{\dot{\bar{Z}}} \cap X$$

$$= \lambda X \cdot ((\bot \cup \check{\tau}) \cap \Sigma^{\vec{+}}) \cup (\tau^{\dot{\bar{Z}}} \cap X \cap \Sigma^{\vec{+}}) \cup ((\bot \cup \check{\tau}) \cap \Sigma^{\vec{\omega}}) \cap (\tau^{\dot{\bar{Z}}} \cap X \cap \Sigma^{\vec{\omega}})$$

$$= \lambda X \cdot \check{\tau} \cup (\tau^{\dot{\bar{Z}}} \cap X \cap \Sigma^{\vec{+}}) \cup (\tau^{\dot{\bar{Z}}} \cap X \cap \Sigma^{\vec{\omega}})$$

$$= \lambda X \cdot \check{\tau} \cup \tau^{\dot{\bar{Z}}} \cap X$$

TRACE RULE-BASED SPECIFICATION

- It is more intuitive to reason on a single trace;
- We can define an element S of:

$$\langle \wp(\Sigma^{\vec{\infty}}), \sqsubseteq, \Sigma^{\vec{\omega}}, \Sigma^{\vec{+}}, \sqcup, \sqcap \rangle$$

where: $X \sqsubseteq Y \stackrel{\text{def}}{=} (X \cap \Sigma^{\vec{+}} \subseteq Y \cap \Sigma^{\vec{+}}) \wedge (X \cap \Sigma^{\vec{\omega}} \supseteq Y \cap \Sigma^{\vec{\omega}})$

by rule-schemata:

$$\left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}$$

where $P_i \subseteq \Sigma^{\vec{\infty}}$, $c_i \in \Sigma^{\vec{\infty}}$, with rule-instances:

$$\left\{ \frac{P}{\left\{ c_i \mid i \in \Delta \land P_i \subseteq P \right\}} \sqsubseteq \mid P \subseteq \Sigma^{\vec{\infty}} \right\}$$

Traces Rule-based Specification of the Maximal Bifinitary Trace Semantics of Transition Systems

• The rule schemata:

$$\frac{\emptyset}{\sigma^1}$$
, $\sigma^1 \in \check{\tau}$ $\frac{\{\sigma\}}{\sigma^2 \cap \sigma}$, $\sigma^2 \in \check{\tau^2}$, $\sigma \in \Sigma^{\check{\infty}}$

stand for the rule-instances:

$$\left\{ \frac{P}{\{\sigma^{1} \mid \sigma^{1} \in \check{\tau}\} \cup \{\sigma^{2} \cap \sigma \mid \sigma^{2} \in \check{\tau^{2}} \land \{\sigma\} \subseteq P\}} \mid \sigma^{2} \in \check{\tau^{2}} \land \right\} \\
= \left\{ \frac{P}{\check{\tau} \cup \sigma^{2} \cap P} \mid \sigma^{2} \in \check{\tau^{2}} \land P \subseteq \Sigma^{\check{\varpi}} \right\}$$

• The rule schemata specify:

$$lfp^{\sqsubseteq}\Psi = \tau^{\check{\bar{\infty}}}$$

since:

$$\Psi = \lambda X \cdot \bigsqcup \{ \check{\tau} \cup \sigma^2 \cap P \mid \sigma^2 \in \tau^{\vec{2}} \land P \sqsubseteq X \}$$
$$= \lambda X \cdot \check{\tau} \cup \tau^{\dot{\vec{2}}} \cap X \qquad \text{by } \sqsubseteq \text{-monotonicity}$$

Abstract interpretation of order-theoretic formal inductive specifications

Principle of Abstract Interpretation

- Establish a correspondance $\langle \alpha, \gamma \rangle$ between a concrete/exact/refined semantics and an abstract/approximate semantics:
 - Abstract semantics = α (concrete semantics) or
 - Concrete semantics = γ (abstract semantics)
- Derive a specification of the abstract semantics from the given specification of the concrete semantics (or inversely).

KLEENIAN FIXPOINT ABSTRACTION

If $\langle \mathcal{D}^{\natural}, \sqsubseteq^{\natural}, \perp^{\natural}, \perp^{\natural} \rangle$ is a cpo, $\langle \mathcal{D}^{\sharp}, \sqsubseteq^{\sharp} \rangle$ is a poset, $F^{\natural} \in \mathcal{D}^{\natural} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}^{\natural}$, $F^{\sharp} \in \mathcal{D}^{\sharp} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}^{\sharp}$, and

$$F^{\sharp} \circ \alpha = \alpha \circ F^{\sharp}$$

$$\langle \mathcal{D}^{\natural}, \sqsubseteq^{\natural} \rangle \xrightarrow{\alpha} \langle \mathcal{D}^{\sharp}, \sqsubseteq^{\sharp} \rangle$$

then

$$\alpha(\operatorname{lfp}^{\sqsubseteq^{\natural}} F^{\natural}) = \operatorname{lfp}^{\sqsubseteq^{\sharp}} F^{\sharp} \tag{8}$$

Tarskian Fixpoint Abstraction

If $\langle \mathcal{D}^{\natural}, \sqsubseteq^{\natural}, \perp^{\natural}, \sqcup^{\natural} \rangle$ and $\langle \mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}, \perp^{\sharp}, \sqcup^{\sharp} \rangle$ are complete lattices, $F^{\natural} \in \mathcal{D}^{\natural} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}^{\natural}$, $F^{\sharp} \in \mathcal{D}^{\sharp} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}^{\sharp}$ are monotonic and

$$-\alpha$$
 is a complete \square -morphism (a)

$$-F^{\sharp} \circ \alpha \sqsubseteq^{\sharp} \alpha \circ F^{\natural}$$
 (b)

$$-\forall y \in \mathcal{D}^{\sharp} : F^{\sharp}(y) \sqsubseteq^{\sharp} y \Longrightarrow \exists x \in \mathcal{D}^{\natural} : \alpha(x) = y \land F^{\natural}(x) \sqsubseteq^{\natural} x \qquad (c)$$

then

$$\alpha(\operatorname{lfp}^{\sqsubseteq^{\natural}} F^{\natural}) = \operatorname{lfp}^{\sqsubseteq^{\sharp}} F^{\sharp} \tag{9}$$

EXAMPLE: RELATIONAL AND DENOTATIONAL SEMANTIC SPECIFICATIONS

FINITARY RELATIONAL ABSTRACTION

Replace finite execution traces $\sigma_0 \sigma_1 \dots \sigma_{n-1}$ by their initial/final states $\langle \sigma_0, \sigma_{n-1} \rangle$:

•
$$\mathbf{0}^{+} \in \Sigma^{\vec{+}} \longmapsto (\Sigma \times \Sigma)$$

 $\mathbf{0}^{+}(\sigma) \stackrel{\text{def}}{=} \langle \sigma_{0}, \sigma_{n-1} \rangle,$
 $n \in \mathbb{N}_{+}, \sigma \in \Sigma^{\vec{n}}$

•
$$\alpha^+(X) \stackrel{\text{def}}{=} \{ \mathbf{0}^+(\sigma) \mid \sigma \in X \}$$

 $\gamma^+(Y) \stackrel{\text{def}}{=} \{ \sigma \mid \mathbf{0}^+(\sigma) \in Y \}$

$$\bullet \ \langle \wp(\Sigma^{\vec{+}}), \subseteq \rangle \xrightarrow{\alpha^+} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle$$

Galois connection

Maximal <u>Finitary</u>/Angelic <u>Relational</u>/Big-step <u>Semantics</u> of a Transition System

- Transition system $\langle \Sigma, \tau \rangle$
- Fixpoint specification:

$$\tau^{\check{+}} \stackrel{\text{def}}{=} \alpha^{+}(\tau^{\check{+}}) = \alpha^{+}(\operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}})$$

• By the Kleenian fixpoint abstraction th. (8) 9, we get the fixpoint specification:

$$\tau^{\check{+}} = \operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}} \qquad F^{\check{+}}(X) \stackrel{\operatorname{def}}{=} \check{\tau} \cup \tau \circ X$$

$$\check{\tau} \stackrel{\operatorname{def}}{=} \{ \langle s, s \rangle \in \Sigma \mid \forall s' \in \Sigma : \neg (s \tau s') \}$$

$$(10)$$

 $^{^{9}}$ the Tarskian fixpoint abstraction does not apply since α^{+} is not co-continuous

Infinitary Relational Abstraction

Replace infinite execution traces $\sigma_0 \sigma_1 \dots \sigma_n \dots$ by their initial state $\langle \sigma_0, \perp \rangle$, marking nontermination by Scott's \perp :

•
$$\mathbf{0}^{\omega} \in \Sigma^{\vec{\omega}} \longmapsto \Sigma \times \{\bot\}^{10}$$

$$\bot \not\in \Sigma$$

$$\mathbf{0}^{\omega} (-) \stackrel{\text{def}}{=} (-) \longrightarrow \Sigma \times \{\bot\}^{10}$$

$$\mathbf{0}^{\omega}(\sigma) \stackrel{\text{def}}{=} \langle \sigma_0, \perp \rangle, \, \sigma \in \Sigma^{\vec{\omega}}$$

$$\bullet \quad \alpha^{\omega}(X) \stackrel{\text{def}}{=} \{ \mathbf{0}^{\omega}(\sigma) \mid \sigma \in X \}$$
$$\gamma^{\omega}(Y) \stackrel{\text{def}}{=} \{ \sigma \mid \mathbf{0}^{\omega}(\sigma) \in Y \}$$

$$\bullet \ \langle \wp(\Sigma^{\vec{\omega}}), \subseteq \rangle \xrightarrow{\gamma^{\omega}} \langle \wp(\Sigma \times \{\bot\}), \subseteq \rangle$$

Galois connection

¹⁰ or isomorphically $\alpha^{\omega} \in \wp(\Sigma^{\vec{\omega}}) \longmapsto \wp(\Sigma)$.

Infinitary Relational Semantics of a Transition System

- Transition system $\langle \Sigma, \tau \rangle$
- Infinitary relational semantics:

$$\tau^{\omega} \stackrel{\text{def}}{=} \alpha^{\omega}(\tau^{\vec{\omega}}) = \alpha^{\omega}(\operatorname{gfp}_{\Sigma^{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}}) = \alpha^{\omega}(\operatorname{lfp}_{\Sigma^{\vec{\omega}}}^{\supseteq} F^{\vec{\omega}})$$

• By the Tarskian fixpoint abstraction th. (9), we get the fixpoint specification ¹¹:

$$\tau^{\omega} = \operatorname{lfp}_{\Sigma \times \{\bot\}}^{\supseteq} F^{\omega} = \operatorname{gfp}_{\Sigma \times \{\bot\}}^{\subseteq} F^{\omega}$$

$$F^{\omega}(X) = \tau \circ X$$

$$(11)$$

The Kleene fixpoint abstraction th. (8) does not apply since α^{ω} is <u>not</u> co-continuous.

BIFINITARY/NATURAL RELATIONAL ABSTRACTION

•
$$\alpha^{\infty} \in \wp(\Sigma^{\vec{\alpha}}) \longmapsto \wp(\Sigma \times \Sigma_{\perp}), \qquad \Sigma_{\perp} \stackrel{\text{def}}{=} \Sigma \cup \{\bot\}$$

 $\alpha^{\infty}(X) \stackrel{\text{def}}{=} \alpha^{+}(X^{\vec{+}}) \cup \alpha^{\omega}(X^{\vec{\omega}})$

•
$$X^+ = X \cap (\Sigma \times \Sigma)$$

 $X^\omega = X \cap (\Sigma \times \{\bot\})$

finitary projection infinitary projection

Maximal Bifinitary/Natural Relational Semantics

$$\begin{array}{l}
\bullet \quad \tau^{\check{\otimes}} \\
\stackrel{\text{def}}{=} \alpha^{\check{\otimes}}(\tau^{\check{\otimes}}) \\
&= \alpha^{+}((\tau^{\check{\otimes}})^{+}) \cup \alpha^{\omega}((\tau^{\check{\otimes}})^{\vec{\omega}}) \\
&= \alpha^{+}(\tau^{+}) \cup \alpha^{\omega}(\tau^{\vec{\omega}}) \\
&= \tau^{+} \cup \tau^{\omega} \\
&= \{\langle s, s' \rangle \mid s \xrightarrow{\star} s' \wedge s' \not\longrightarrow \} \cup \{\langle s, \perp \rangle \mid s \xrightarrow{\omega} \}
\end{array}$$

where:

$$s \xrightarrow{\star} s' \stackrel{\text{def}}{=} \exists n \in \mathbb{N}_{+} : \exists \sigma \in \Sigma^{\vec{n}} : s = \sigma_{0} \land \forall i < n - 1 : \sigma_{i} \tau \sigma_{i+1} \\ \land s' = \sigma_{n-1} \\ s \xrightarrow{\omega} \stackrel{\text{def}}{=} \forall s' \in \Sigma : \neg(s \tau s') \\ s \xrightarrow{\omega} \stackrel{\text{def}}{=} \exists \sigma \in \Sigma^{\vec{\omega}} : s = \sigma_{0} \land \forall i \in \mathbb{N} : \sigma_{i} \tau \sigma_{i+1}$$

FIXPOINT MAXIMAL BIFINITARY/NATURAL RELATIONAL SEMANTICS OF A TRANSITION SYSTEM

• Transition system $\langle \Sigma, \tau \rangle$

fixpoint specification (by the coalesced fixpoints th. (4)):

$$F^{\check{\infty}}(X) \stackrel{\text{def}}{=} \lambda X \cdot \check{\tau} \cup \tau \circ X^{+} \cup \tau \circ X^{\omega}$$
$$= \lambda X \cdot \check{\tau} \cup \tau \circ (X^{+} \cup X^{\omega})$$
$$= \lambda X \cdot \check{\tau} \cup \tau \circ X$$

We have the bifinitary relational transformer:

$$F^{\check{\infty}} \in \wp(\Sigma \times \Sigma_{\perp}) \xrightarrow{\mathrm{m}} \wp(\Sigma \times \Sigma_{\perp})$$

where the semantic domain:

$$\langle \wp(\Sigma \times \Sigma_{\perp}), \sqsubseteq^{\check{\infty}}, \perp^{\check{\infty}}, \sqcup^{\check{\infty}} \rangle$$

is a complete lattice, with

$$\bullet \ X \sqsubseteq^{\check{\infty}} Y \stackrel{\text{def}}{=} X^+ \subseteq Y^+ \ \land \ X^\omega \supseteq Y^\omega$$

ordering

$$\bullet \perp^{\check{\infty}} = \Sigma \times \{\bot\}$$

$$\bullet \bigsqcup_{i}^{\infty} X_{i} \stackrel{\text{def}}{=} \bigcup_{i} X_{i}^{+} \cup \bigcap_{i} X_{i}^{\omega}$$

Abstraction by Parts

$$\tau^{\check{\infty}} = \alpha^{\infty} (\operatorname{lfp}_{\perp^{\overset{\sim}{\alpha}}} F^{\overset{\smile}{\tilde{\infty}}}) = \operatorname{lfp}_{\perp^{\overset{\smile}{\alpha}}} F^{\overset{\smile}{\tilde{\alpha}}}$$

- The finitary part transfers through α^+ by the Kleenian fixpoint abstraction theorem (8) (but the Tarskian one (9) is not applicable);
- The infinitary part transfers through α^{ω} by the Tarskian fixpoint abstraction theorem (9) (but the Kleenian one (8) is not applicable);
- The whole transfers through α^{∞} by parts using the coalesced fixpoints theorem (4) (although none of the Kleenian (8) and Tarskian (9) fixpoint abstraction theorems is applicable).

Relational to Denotational Semantics Abstraction

The maximal bifinitary/natural relational to denotational semantics abstraction is the right image isomorphism:

•
$$\langle \wp(\mathcal{D} \times \mathcal{E}), \leqslant \rangle$$

 $\bullet \ \langle \wp(\mathcal{D} \times \mathcal{E}), \leqslant \rangle \xrightarrow{\varphi} \langle \mathcal{D} \longmapsto \wp(\mathcal{E}), \stackrel{\cdot}{\leqslant} \rangle$

semantic domain

right-image

Galois isomorphism

where:

$$\alpha^{\triangleright}(R) \stackrel{\text{def}}{=} R^{\triangleright} = \lambda x \cdot \{y \mid \langle x, y \rangle \in R\}$$

$$\gamma^{\triangleright}(f) \stackrel{\text{def}}{=} \{\langle x, y \rangle \mid y \in f(x)\}$$

$$f \stackrel{\text{def}}{\leqslant} g \stackrel{\text{def}}{=} \gamma^{\triangleright}(f) \leqslant \gamma^{\triangleright}(g)$$

FIXPOINT SPECIFICATION OF THE NATURAL DENOTATIONAL SEMANTICS

•
$$\tau^{\natural} \stackrel{\text{def}}{=} \alpha^{\blacktriangleright}(\tau^{\infty})$$

right-image abstraction of the bifinitary relational semantics

$$= \operatorname{lfp}_{\natural \natural}^{\dot{\sqsubseteq}^{\natural}} F^{\natural} \tag{13}$$

where

$$- \dot{\check{\tau}} \stackrel{\text{def}}{=} \lambda s \cdot \{s \mid \forall s' \in \Sigma : \neg (s \tau s')\}$$

$$-f^{\triangleright} \stackrel{\text{def}}{=} \lambda P \cdot \{f(s) \mid s \in P\}$$

$$- \tau^{\bullet} \stackrel{\text{def}}{=} \lambda s \cdot \{s' \mid s \tau s'\}$$

$$-F^{\natural} \in \dot{D}^{\natural} \stackrel{\mathrm{m}}{\longmapsto} \dot{D}^{\natural}, \qquad F^{\natural}(f) \stackrel{\mathrm{def}}{=} \dot{\check{\tau}} \ \dot{\cup} \ \dot{\bigcup} f^{\blacktriangleright} \circ \tau^{\blacktriangleright}$$

is a $\stackrel{\dot{}}{\sqsubseteq}$ -monotone map on the complete lattice

$$\langle \dot{D}^{\natural}, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq}^{\natural}, \stackrel{\dot{\bot}}{\downarrow}^{\natural}, \stackrel{\dot{\top}}{\downarrow}^{\natural}, \stackrel{\dot{\Box}}{\downarrow}^{\natural}, \stackrel{\dot{\Box}}{\sqcap}^{\flat} \rangle \quad \text{where} \quad \dot{D}^{\natural} \stackrel{\text{def}}{=} \Sigma \longmapsto \wp(\Sigma_{\perp})$$

Rule-based Specification of the <u>Natural</u> Denotational Semantics

• The natural denotational semantics

$$\operatorname{lfp}_{\underline{\downarrow}
atural}^{\dot{\sqsubseteq}^{
atural}}F^{
atural}$$

where

$$F^
atural}(f) \stackrel{\mathrm{def}}{=} \dot{\check{ au}} \ \dot{\cup} \ \dot{igcup} f^igtharpoonup \circ au^igtharpoonup$$

is also defined by the following rules:

$$s' \in \dot{\tau}(s) \qquad s\tau s', \quad s'' \in f(s') \qquad s\tau s', \quad \bot \in f(s')$$
$$s' \in f(s) \qquad \qquad \bot \in f(s)$$

EXAMPLE: RULE-BASED SPECFICATION OF A NONDETERMINISTIC DENOTATIONAL SEMANTICS

Syntax of a Nondeterministic Imperative Expression LANGUAGE

$$\begin{array}{c} \bullet \ \ \mathsf{p} \in \mathsf{P} \\ \\ \mathsf{p} \to \mathsf{n} \mid \mathsf{v} \mid ? \mid \mathsf{p}_1 - \mathsf{p}_2 \mid \mathsf{v} := \mathsf{p} \mid \mathsf{if} \ \mathsf{p}_1 \ \mathsf{then} \ \mathsf{p}_2 \ \mathsf{else} \ \mathsf{p}_3 \mid \\ \\ \mathsf{p}_1 \ ; \ \mathsf{p}_2 \mid \mathsf{repeat} \ \mathsf{p}_1 \ \mathsf{until} \ \mathsf{p}_2 \end{array}$$

SEMANTIC DOMAIN

$$\bullet x \in \mathbb{Z}_{\Omega}$$

•
$$\rho \in \mathcal{E} \stackrel{\mathrm{def}}{=} \mathsf{V} \longmapsto \mathbb{Z}_{\Omega}$$

•
$$\langle x, \rho \rangle \in \Sigma \stackrel{\text{def}}{=} \mathbb{Z}_{\Omega} \times \mathcal{E}$$

•
$$\bot \not\in \Sigma$$
, $\Sigma_{\bot} \stackrel{\text{def}}{=} \Sigma \cup \{\bot\}$

•
$$\dot{D}^{\natural} \stackrel{\text{def}}{=} \mathcal{E} \longmapsto \wp(\Sigma_{\perp})$$

$$ullet$$
 $\langle \dot{D}^
atural}, \ \dot{\sqsubseteq}^
atural}, \ \dot{\bot}^
atural}, \ \dot{\top}^
atural}, \ \dot{\Box}^
atural}, \ \dot{\Box}^
atural}, \ \dot{\Box}^
atural}, \ \dot{\Box}^
atural}$

•
$$\mathcal{S}^{\natural}[\![\mathbf{p}]\!] \in \mathcal{E} \longmapsto \wp(\Sigma_{\perp})$$

values

environments

states

non-termination

semantic domain

complete lattice

bifinitary nondeterministic denotational semantics

Numbers $\mathcal{S}^{ atural}[n]$

$$\bullet \ \mathcal{N}\llbracket \mathbf{0} \rrbracket \stackrel{\text{def}}{=} 0$$

• . .

$$\bullet \mathcal{N}[9] \stackrel{\text{def}}{=} 9$$

$$\bullet \ \mathcal{N}[\![\mathsf{nd}]\!] \stackrel{\mathrm{def}}{=} (10 \times \mathcal{N}[\![\mathsf{n}]\!]) + \mathcal{N}[\![\mathsf{d}]\!]$$

tt

$$oxed{\langle \mathcal{N} \llbracket \mathsf{n}
rbracket}, \,
ho
angle \, \in \, \mathcal{S}^{
atural} \llbracket \mathsf{n}
rbracket}
ho$$

Variables
$$\mathcal{S}^{
atural}[v]$$

$$\frac{\mathrm{tt}}{\langle \rho(\mathbf{v}), \; \rho \rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{v} \rrbracket \rho}$$

Random S^{\natural} ?

$$ullet \ rac{i \in \mathbb{Z}}{\langle i, \,
ho
angle \, \in \, \mathcal{S}^{
atural} [\![?]\!]
ho}$$

Substraction
$$\mathcal{S}^{\natural} \llbracket \mathbf{e}_1 - \mathbf{e}_2 \rrbracket$$

$$\begin{array}{c} \bullet & \frac{\langle \Omega,\, \rho' \rangle \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho}{\langle \Omega,\, \rho' \rangle \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} - \mathsf{p}_{2} \rrbracket \rho} \\ \bullet & \frac{\langle i,\, \rho' \rangle \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \langle \Omega,\, \rho'' \rangle \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{2} \rrbracket \rho, \quad i \in \mathbb{Z}}{\langle \Omega,\, \rho'' \rangle \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} - \mathsf{p}_{2} \rrbracket \rho} \\ \bullet & \frac{\langle i,\, \rho' \rangle \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \langle j,\, \rho'' \rangle \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{2} \rrbracket \rho', \quad i,j \in \mathbb{Z}}{\langle i-j,\, \rho'' \rangle \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} - \mathsf{p}_{2} \rrbracket \rho} \\ \bullet & \frac{\bot \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho}{\bot \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \bot \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{2} \rrbracket \rho', \quad i \in \mathbb{Z}}{\bot \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} - \mathsf{p}_{2} \rrbracket \rho} \\ \bullet & \frac{\bot \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} - \mathsf{p}_{2} \rrbracket \rho}{\bot \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} - \mathsf{p}_{2} \rrbracket \rho} \end{array}$$

Assignment
$$\mathcal{S}^{
atural}[v:=e]$$

$$\begin{array}{c} \langle \Omega, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{p} \rrbracket \rho \\ \\ \langle \Omega, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{v} := \mathbf{p} \rrbracket \rho \\ \\ \bullet \quad & \\ \langle i, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{p} \rrbracket \rho, \quad i \in \mathbb{Z} \\ \\ \langle i, \, \rho' [\mathbf{v} := i] \rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{v} := \mathbf{p} \rrbracket \rho \\ \\ \bullet \quad & \\ \bot \in \mathcal{S}^{\natural} \llbracket \mathbf{v} := \mathbf{p} \rrbracket \rho \\ \\ \bullet \quad & \\ \bot \in \mathcal{S}^{\natural} \llbracket \mathbf{v} := \mathbf{p} \rrbracket \rho \\ \end{array}$$

CONDITIONAL S^{\sharp} [if e_1 then p_2 else p_3]

Sequential Composition $\mathcal{S}^{\natural}\llbracket \mathbf{e}_1 \; ; \; \mathbf{p}_2 \rrbracket$

$$\begin{array}{c} \bullet & \frac{\langle \Omega, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho}{\langle \Omega, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \; ; \; \mathsf{p}_{2} \rrbracket \rho} \\ \bullet & \frac{\langle i, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \sigma_{2} \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{2} \rrbracket \rho', \quad i \, \in \, \mathbb{Z}}{\sigma_{2} \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \; ; \; \mathsf{p}_{2} \rrbracket \rho} \\ \bullet & \frac{\bot \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \rrbracket \rho}{\bot \, \in \, \mathcal{S}^{\natural} \llbracket \mathsf{p}_{1} \; ; \; \mathsf{p}_{2} \rrbracket \rho} \end{array}$$

REPETITION $\mathcal{S}^{ atural}$ [repeat p_1 until p_2]

$$\begin{array}{c} \bullet^{12} & \bot \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{1} \rrbracket \rho \\ \\ \bot \in \mathcal{S}^{\natural}\llbracket \mathsf{repeat} \; \mathsf{p}_{1} \; \mathsf{until} \; \mathsf{p}_{2} \rrbracket \rho \\ \\ \bullet^{13} & \frac{\langle \Omega, \, \rho' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{1} \rrbracket \rho}{\langle \Omega, \, \rho' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{repeat} \; \mathsf{p}_{1} \; \mathsf{until} \; \mathsf{p}_{2} \rrbracket \rho} \\ \\ \bullet^{14} & \frac{\langle i, \, \rho' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \bot \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{2} \rrbracket \rho'}{\bot \in \mathcal{S}^{\natural}\llbracket \mathsf{repeat} \; \mathsf{p}_{1} \; \mathsf{until} \; \mathsf{p}_{2} \rrbracket \rho} \\ \\ \bullet^{15} & \frac{\langle i, \, \rho' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \langle \Omega, \, \rho'' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{2} \rrbracket \rho'}{\langle \Omega, \, \rho'' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{2} \rrbracket \rho} \\ \\ \bullet^{15} & \frac{\langle i, \, \rho' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{1} \rrbracket \rho, \quad \langle \Omega, \, \rho'' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{2} \rrbracket \rho'}{\langle \Omega, \, \rho'' \rangle \in \mathcal{S}^{\natural}\llbracket \mathsf{p}_{2} \rrbracket \rho'} \\ \\ \end{array}$$

¹² Body does not terminate.

¹³ Body is erroneous, return error.

¹⁴ Body terminates but test does not.

¹⁵ Body terminates, test is erroneous, return error.

• 16 $\frac{\langle i, \, \rho' \rangle \in \mathcal{S}^{\natural} \llbracket \mathsf{p}_1 \rrbracket \rho, \quad \langle 0, \, \rho'' \rangle \in \mathcal{S}^{\natural} \llbracket \mathsf{p}_2 \rrbracket \rho'}{\langle i, \, \rho'' \rangle \in \mathcal{S}^{\natural} \llbracket \mathsf{repeat} \, \mathsf{p}_1 \, \mathsf{until} \, \mathsf{p}_2 \rrbracket \rho}$

$$\langle i, \,
ho'
angle \in \mathcal{S}^{
atural} \llbracket \mathsf{p}_1
rbracket
ho, \ \langle j, \,
ho''
angle \in \mathcal{S}^{
atural} \llbracket \mathsf{p}_2
rbracket
ho', \quad j \in \mathbb{Z} - \{0\}, \ \sigma_3 \in \mathcal{S}^{
atural} \llbracket \mathsf{repeat} \ \mathsf{p}_1 \ \mathsf{until} \ \mathsf{p}_2
rbracket
ho'' \ \sigma_3 \in \mathcal{S}^{
atural} \llbracket \mathsf{repeat} \ \mathsf{p}_1 \ \mathsf{until} \ \mathsf{p}_2
rbracket
ho$$

Body terminates, test is true, return value of the last iteration.

¹⁷ Body terminates, test is false, repeat.

Abstraction to: Natural/Big Step Structured Operational Semantics

• This abstraction, which forgets about nontermination, is:

$$\alpha \in (\mathcal{E} \longmapsto \wp(\Sigma_{\perp})) \longmapsto (\mathcal{E} \longmapsto \wp(\Sigma))$$

$$\alpha(S)\rho \stackrel{\text{def}}{=} S(\rho) - \{\bot\}$$

- To get the rule-based specification:
 - Eliminate the infinitary rules (involving \perp);
 - Classical interpretation of the rules (for \subseteq).

CONCLUSION

- Declarative specification methods are fundamental in computer science;
- Set-theoretic rule-based specifications are commonly used (syntax, semantics, typing, program static analysis, etc.);
- Order-theoretic rule-based specifications are a useful generalization;
 ⇒ e.g. denotational semantics in rule-based style!