Lecture 14

Multidimensional Scaling

Reading: Izenman Chapter 13 The main reference for these slides is from Dr. Markus Kalisch's Lecture Notes at

https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v4.1.pdf

DSA 8070 Multivariate Analysis November 28- December 2, 2022

> Whitney Huang Clemson University

Agenda

- Main Idea
- Classical Multidimensional Scaling
- Non-metric Multidimensional Scaling

Notes

Notes

_		
-		

Basic Idea of Multidimensional Scaling (MDS)

- Represent high-dimensional point cloud in low (usually 2) dimensional Euclidean space while preserving as well as possible the inter-point distances
- Classical/Metric MDS: Use a clever projection
- Non-metric MDS: Squeeze data on table

Source: Dr. Markus Kalisch's Lecture Notes on MDS

tidimensional Scaling	Notes
Idea	

Classical MDS (cMDS)

- **Goal**: Given pairwise distances among points, recover the position of the points!
- Example: Distance between 10 US major cities

```
| NewYork | SanFrancisco | SanFranci
```


Notes

Classical MDS: First Try

Notes

Classical MDS: Flip Axes

Notes			

Another Example: Air Pollution in US Cities

> summary(dat)

- Julillar y (auc)			
S02	temp	manu	popul
Min. : 8.00	Min. :43.50	Min. : 35.0	Min. : 71.0
1st Qu.: 13.00	1st Qu.:50.60	1st Qu.: 181.0	1st Qu.: 299.0
Median : 26.00	Median :54.60	Median : 347.0	Median : 515.0
Mean : 30.05	Mean :55.76	Mean : 463.1	Mean : 608.6
3rd Qu.: 35.00	3rd Qu.:59.30	3rd Qu.: 462.0	3rd Qu.: 717.0
Max. :110.00	Max. :75.50	Max. :3344.0	Max. :3369.0
wind	precip	predays	
Min. : 6.000	Min. : 7.05	Min. : 36.0	
1st Qu.: 8.700	1st Qu.:30.96	1st Qu.:103.0	
Median : 9.300	Median :38.74	Median :115.0	
Mean : 9.444	Mean :36.77	Mean :113.9	
3rd Qu.:10.600	3rd Qu.:43.11	3rd Qu.:128.0	
Max. :12.700	Max. :59.80	Max. :166.0	

- Range of manu and popul is much bigger than range of wind
- Need to standardize to give every variable equal weight

Notes

Air Pollution in US Cities Example

Multidimensional Scaling

CLEMS IN

Main Idea

Classical

Multidimensional

Scaling

Non-metric

Multidimensional

Scaling

Notes		
-		

Classical MDS: Technical Details

- Input: $D=\{d_{ij}\}_{i,j=1}^n$, the Euclidean distances between n objects in p dimensions
- \bullet Output: $\{X_i\}_{i=1}^n,$ the "position" of points up to rotation, reflection, shift
- Two steps:
 - $\bullet \ \, \text{Compute inner products matrix } \boldsymbol{B} = \boldsymbol{X}\boldsymbol{X}^T \text{ from distance}$

$$b_{ij} = -\frac{1}{2}(d_{ij}^2 - d_{i.}^2 - d_{.j}^2 + d_{.}^2)$$

 \bullet Perform spectral decomposition to compute positions from B (see next slide)

Scaling
CLEMS N
Classical Multidimensional Scaling

Notes			

Classical MDS: Technical Details

- ullet Since $B = XX^T$, we need the "square root" of B
- ullet Since $oldsymbol{B}$ is a symmetric and positive definite $n \times n$ $\mathsf{matrix} \Rightarrow B \mathsf{\ can\ be\ diagonalized:}$

$$\boldsymbol{B} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^T$$

 Λ is a diagnoal matrix with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ on diagonal

 $\bullet \ \, \text{Assuming the rank of } {\pmb B} = p \text{, so that the last } n-p \text{ of }$ its eigenvalues will be zero \Rightarrow B can be written as

$$\boldsymbol{B} = \boldsymbol{V}_1 \boldsymbol{\Lambda}_1 \boldsymbol{V}_1^T,$$

where $\emph{\textbf{V}}_1$ contains the first p eigenvectors and Λ_1 the p non-zero eigenvalues. Take "square root": $oldsymbol{X} = oldsymbol{V}_1 oldsymbol{\Lambda}_1^{-\frac{1}{2}}$

$$X = V_1 \Lambda_1^{-\frac{1}{2}}$$

Notes

Notes

Classical MDS: Low-Dimensional Representation

- Keep only few (e.g. 2) largest eigenvalues and corresponding eigenvectors
- ullet The resulting X will be the low-dimensional representation we were looking for
- ullet "Goodness of fit" (GOF) if we reduce to mdimensions:

$$GOF = \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{n} \lambda_i}$$

• Finds "optimal" low-dim representation: Minimizes

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(d_{ij}^{2} - (d_{ij}^{m})^{2} \right)^{2}$$

Multidimensional Scaling
CLEMS N
Classical Multidimensional

Classical MDS: Pros and Cons

- + Optimal for Euclidean input data
- + Still optimal, if B has non-negative eigenvalues
- + Very fast to compute
- ullet There is no guarantee it will be optimal if B has negative eigenvalues

Multidimensional Scaling
CLEMSON VIEW STATE
Classical Multidimensional Scaling

-		
NI I		
Notes		

Non-metric MDS: Idea

- Sometimes, there is no well-defined metric on original points
- Absolute values are not that meaningful, but the ranking is important
- Non-metric MDS finds a low-dimensional representation, which respects the ranking of distances

Notes

14 12

Non-metric MDS: Theory

- \bullet δ_{ij} is the true dissimilarity, d_{ij} is the distance of representation
- Minimize STRESS:

$$S = \frac{\sum_{i < j} \left(\theta(\delta_{ij}) - d_{ij}\right)^2}{\sum_{i < j} d_{ij}^2},$$

where $\theta(\cdot)$ is an increasing function

- \bullet Optimize over both position of points and θ
- ullet $\hat{d}_{ij} = heta(\delta_{ij})$ is called "disparity"
- Solved numerically (isotonic regression); Classical MDS as starting value; very time consuming

Notes

....

Non-metric MDS: Pros andn Cons

- +: Fulfills a clear objective (minimize STRESS) without many assumptions
- +: Results don't change with rescaling or monotonic variable transformation
- +: Works even if you only have rank information
- -: computation can be slow in "large" problems
- -: Usually only local (not global) optimum found
- -: Only gets ranks of distances right

Multidimensional Scaling
CLEMS N
Non-metric Multidimensional Scaling

Notes			

House of Representatives Voting Data

Romesburg (1984) gives a set of data that shows the number of times 15 congressmen from New Jersey voted differently in the House of Representatives on 19 environmental bills

> voting[1:6, 1:6]

	Hunt(R)	Sandman(R)	Howard(D)	Thompson(D)	Freylinghuysen(R)	Forsythe(R)
Hunt(R)	0	8	15	15	10	9
Sandman(R)	8	Θ	17	12	13	13
Howard(D)	15	17	Θ	9	16	12
Thompson(D)	15	12	9	Θ	14	12
Freylinghuysen(R)	10	13	16	14	0	8
Forsythe(R)	9	13	12	12	8	Θ

Question: Do people in the same party vote alike?

Notes		

Non-metric MDS: Voting Example

Notes			

Summary

Classical MDS:

- Finds low-dim projection that respects distances
- Optimal for euclidean distances
- No clear guarantees for other distances
- Fast to compute (can use cmdscale in R)

Non-metric MDS:

- Squeezes data points on table
- respects only rankings of distances
- (locally) solves clear objective
- \bullet Computation can be slow (can use <code>isoMDS</code> from the R package "MASS")

Multidimensional Scaling CLEMS N V ERSITY
Non-metric Multidimensional Scaling

Notes			