ニューラルネットワーク (ISBN 4-254-11612-8) 自習 ノート

目次

1	==	ューラルネットワークとは何か	5
	1.1 生物	勿に学ぶ	5
	1.1.1	蚊と蟻とサッカーロボット	5
	1.1.2	神経細胞の構造と機能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	1.2 神糸	圣細胞のモデル	5
	1.3 シラ	ナプスの可塑性	5
	1.4 ===	ューラルネットワークの分類	5
	1.4.1	階層型ニューラルネットワーク	5
	1.4.2	相互結合型ニューラルネットワーク	5
	1.5 ==	ューラルネットワークの特徴	5
	1.5.1	並列分散処理	5
	1.5.2	学習と自己組織化	5
2	階層	層型ニューラルネットワークの情報処理	5
	2.1 パー	ーセプトロン	5
	2.1.1	単純パーセプトロン	5
	2.1.2	単純パーセプトロンの学習	5
	2.2	ックプロパゲーション	5
	2.2.1	一般化デルタ則	5
	2.2.2	バックプロパゲーション	5
	2.2.3	応用例	5
	2.2.4	ニューラルネットワークの構造とパラメータの与え方	5

2.2.5	バックプロパゲーションの改良	5
3 相互	豆結合型ニューラルネットワークの情報処理	5
3.1 相互	互結合型ニューラルネットワークの形態	5
3.2 連想	思記憶	5
3.3 ホッ	ップフィールドモデル	5
3.3.1	2 値ホップフィールドモデル	5
3.3.2	連想記憶へのおう	5
3.3.3	連続値ホップフィールドモデル	5
3.3.4	最適化問題への応用	5
3.3.5	連続値ホップフィールドモデルの改良	5
3.4 ボバ	レツマンマシン	5
3.4.1	ボルツマンマシンの動作	5
3.4.2	ボルツマンマシンの学習	5
3.4.3	ボルツマンマシンの特徴	5
***		_
	合学習型ニューラルネットワークの方法処理	5
		5
	本のトポロジカルマッピングのモデル	5
	ホーネンのモデル	5
4.3.1	予備実験	5
4.3.2	特徴抽出細胞の形成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
4.3.3	コホーネンの学習則	5
4.3.4	コホーネンの自己組織化特徴マップのアルゴリズムとシミュレーション.	5
4.3.5	応用例	5
5 ==	ューラルネットワーク研究の意義	5
5.1 特得	数を生かす	5
5.1.1	研究の歴史	5
5.1.2	生物内のニューラルネットワークと人工ニューラルネットワーク	5
5.1.3	シナプスの可塑性と脳・神経系の可塑性	5
5.1.4	教師あり学習と教師なし学習	5
5.1.5	ニューロンコンピュータ	5
5.1.6	融合化技術	5
<i>5</i> 0 🖶 🛭	п	_

5.2.	1	応用されてきた分野	5
5.2.	2	事例の完備性と適用有効範囲	5
5.2.	3	ブラックボックスモデルの利用環境への適合性	5
5.3	脳科	4学への貢献	5

1 ニューラルネットワークとは何か

- 1.1 生物に学ぶ
- 1.1.1 蚊と蟻とサッカーロボット
- 1.1.2 神経細胞の構造と機能
- 1.2 神経細胞のモデル
- 1.3 シナプスの可塑性
- 1.4 ニューラルネットワークの分類
- 1.4.1 階層型ニューラルネットワーク
- 1.4.2 相互結合型ニューラルネットワーク
- 1.5 ニューラルネットワークの特徴
- 1.5.1 並列分散処理
- 1.5.2 学習と自己組織化
- 2 階層型ニューラルネットワークの情報処理
- 2.1 パーセプトロン
- 2.1.1 単純パーセプトロン
- 2.1.2 単純パーセプトロンの学習
- 2.2 バックプロパゲーション
- 2.2.1 一般化デルタ則
- 2.2.2 バックプロパゲーション
- 2.2.3 応用例
- 2.2.4 ニューラルネットワークの構造とパラメータの与え方
- 2.2.5 バックプロパゲーションの改良
- 3 相互結合型ニューラルネットワークの情報処理
- 3.1 相互結合型ニューラルネットワークの形態
- 3.2 連想記憶
- 3.3 ホップフィールドモデル
- 3.3.1 2値ホップフィールドモデル
- 3.3.2 連想記憶へのおう
- 3.3.3 連続値ホップフィールドモデル
- 3.3.4 最適化問題への応用
- 3.3.5 連続値ホップフィールドモデルの改良
- 3.4 ボルツマンマシン

5