DFSC 1316: digital forensic and information assurance fundamentals I

2. NUMBER SYSTEMS: BINARY, DECIMAL, AND HEXADECIMAL

Number System

- Set of numbers.
- One or more operations, e.g. addition, subtraction, multiplication, division, etc.
- Examples: natural numbers (1, 2, 3, ...), integers (..., -2, -1, 0, 1, 2, ...), decimal numbers, binary numbers, hexadecimal numbers, etc.

Decimal Numbers: Basic Idea

Decimal: contains 10 digits

$$0\ 1\ 2\ 3\ ...\ 8\ 9\ \rightarrow\ ?$$

Increment to the next digit, reset current:

Binary Numbers: Basic Idea

Binary: contains only 2 digits, 0 and 1

 $0 \quad 1 \quad \rightarrow \quad ?$

Increment to the next digit, reset current:

000 001 010 011 100 101 110 111

Hexadecimal Numbers: Basic Idea

Hex: contains 16 digits

• Increment to the next digit, reset current:

Decimal Numeral System

- Number set : (0, 1, 2, ..., 8, 9)
- Base 10 positional notation

```
- 1010 (D) = 1*10^3 + 0*10^2 + 1*10^1 + 0*10^0
= 1*1000 + 0*100 + 1*10 + 0*1
= 1010 (D)
```

Operations: addition, multiplication, etc.

Binary Numeral System

- Number set : (0 & 1)
- Base 2 <u>positional notation</u>

```
- 1010 (B) = 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0
= 1*8 + 0*4 + 1*2 + 0*1
= 10 (D)
```

- Operations: addition, multiplication, etc.
 - Addition: 1001 + 1100 = 10101
- Good for computer systems logical gates with only two different values or states.

Hexadecimal Numeral System

- Base 16 positional notation
 - 1010 (H) = 1*16³ + 0*16² + 1*16¹ + 0*16⁰ = 1 *4096 + 0* 256 + 1* 16 + 0 * 1 = 4112 (D)
- Number set: (0 ~ 9, A, B, C, D, E, F)
- Operations: addition, multiplication, etc.

Exercise

 Write the numbers from 0 - 16 (decimal) in binary and hex.

Why do we have Hex numbering system?

Decimal	Binary	Hexadecimal
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		

Operations

- The same operation rules apply also to binary and hex number.
- However, multiplication and division is not intuitive.
 - Exercise: 1001 + 101, calculate for decimal and binary.
 - Exercise: 1001 x 101, calculate for decimal and binary.
- More commonly, binary numbers are used for logical operations.

Conversion: Decimal to Binary

Same rule applies to Decimal to Hexadecimal.

Conversion: Binary to Decimal

Convert 100011 (B) to decimal.

$$1x2^{5} + 0x2^{4} + 0x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0}$$

$$= 32 + 0 + 0 + 0 + 2 + 1$$

$$= 35$$

- Same rule applies to Hex to Dec.
 - Exercise: convert EFF to decimal.

Binary ←→ Hexadecimal ←→ Decimal

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Exercise

• 19 (D) \rightarrow ? (B) \rightarrow ? (H)

• 73 (D) \rightarrow ? (B) \rightarrow ? (H)

• 101101 (B) \rightarrow ? (D) \rightarrow ? (H)

• 1A3 (H) \rightarrow ? (B) \rightarrow ? (D)

Addition (Binary and Hex)

• 11000111 (B) + 1101001 (B) = ? (D) and (H)

• C7 (H) + 69 (H) = ? (B) and (D)

Application

- Character encoding
 - ASCII -- American Standard Code for Information Interchange
 - 7 bits to represent all US characters.
 - http://www.asciitable.com/
 - Unicode
 - Uses variable length bits to represent characters in all languages.
 - http://unicode.org/charts/

Application

- Fingerprinting file types
 - Microsoft word has the file signature 50 4B (H)
 - .jpg file has the file signature FF D8 (H)
 - https://en.wikipedia.org/wiki/List of file signatures

Application

- Basic file analysis
 - For example, steganography, i.e., hiding information in other files (such as a figure).

Quiz

- 1. Convert the decimal value 55 to binary and hexadecimal number.
- 2. Convert the binary value 10110011010 to decimal and hexadecimal number.
- 3. What is the base 2 positional notation of 111001010?
- 4. What is the base 16 positional notation of AF190DE?
- 5. 11000111 (B) + C7 (H) = ? (D)

Quiz

4.