Областная олимпиада по математике, 2000 год, 11 класс

- **1.** Для положительных чисел $a,\ b,\ c$ верно равенство abc=1. Докажите неравенство: $a^{b+c}\cdot b^{c+a}\cdot c^{a+b}\leq 1$.
- **2.** Множество X состоит из шести элементов. Каждое из множеств A_1 , A_2 , A_3 , A_4 , A_5 , A_6 трехэлементные подмножества множества X. Докажите, что можно раскрасить элементы множества X в два цвета так, что не все элементы каждого из множеств A_1 , A_2 , A_3 , A_4 , A_5 , A_6 будут одинакового цвета.
- **3.** Точка O центр описанной окружности остроугольного треугольника ABC. Точки P и K середины отрезков AO и BC соответственно. Известно, что $\angle CBA = 4\angle OPK$ и $\angle ACB = 6\angle OPK$. Найдите угол $\angle OPK$
- 4. Основанием пирамиды служит правильный девятиугольник. Каждая из диагоналей основания и каждая из боковых сторон красятся в один из двух цветов красный или синий (стороны основания не закрашиваются). Докажите, что найдутся три закрашенных отрезка одинакового цвета, составляющие треугольник.
- **5.** Найдите все пары (a,b) действительных чисел, удовлетворяющих следующей системе уравнений:

$$\begin{cases} 2^{a^4+b^2} + 2^{a^2+b^4} = 8, \\ a+b = 2. \end{cases}$$

- **6.** Дан остроугольный треугольник ABC. Точка D основание высоты, опущенной из вершины A. Через точку D проводится прямая α , отличная от BC. На прямой α выбраны две точки E и F такие, что углы AEB и AFC прямые. L середина EF, M середина BC. Найдите угол ALM.
- 7. На шахматной доске $n \times n$ расставлены 2n пешек (пешка ставится в центр клетки). Докажите, что найдутся четыре пешки, которые находятся в вершинах некоторого параллелограмма.

8. Найдите все функции $f:(1;+\infty) \to (-\infty;+\infty)$ такие, что для всех действительных чисел x>1 и y>1 справедливо равенство

$$f(x) - f(y) = (y - x)f(xy).$$