Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.437 INFERENCE AND INFORMATION

Spring 2015

Problem Set 8

Issued: Tuesday, April 28, 2015 Due: Tuesday, May 5, 2015

Problem 8.1 (practice)

Let x be a continuous random variable distributed according to a distribution $p(\cdot)$. Bob would like to estimate the probability

$$P(a) = \mathbb{P}(x \ge a) = \int_{y \ge a} p(y) \, dy.$$

when a is large. It turns out that $p(\cdot)$ is the normal Gaussian distribution with zero mean and unit variance, but Bob does not know this.

In this problem we use the notation $f(t) = e^{\lambda t^2}$ as $t \to \infty$ to mean that

$$\lim_{t \to \infty} \frac{\ln f(t)}{t^2} = \lambda,$$

and use the notation \succeq and \leq analogously.

Hint: In the following parts, you may find the following fact useful: when x is a standard normal random variable, $P(a) \doteq e^{-a^2/2}$ as $a \to \infty$.

(a) First, Bob considers a naïve Monte Carlo approach by generating N i.i.d. samples $\mathbf{x} = [x_1, \dots, x_N]$ from the distribution p and constructs an estimate of P(a) via

$$\hat{P}_1(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{x_i \ge a},$$

where $\mathbb{1}_{x\geq a}$ is equal to 1 if $x\geq a$ and is 0 otherwise.

(i) Show that for $N \leq 1/(2P(a))$,

$$\mathbb{P}\left(\hat{P}_1(\mathbf{x}) = 0\right) \ge \frac{1}{2},$$

and conclude that for such values of N

$$\mathbb{P}\left(|\hat{P}_1(\mathbf{x}) - P(a)| \ge P(a)\right) \ge \frac{1}{2},$$

i.e., with high probability the relative error in the estimate will be large. *Hint:* Use the inequality

$$(1-b)^c \ge 1 - cb$$
, for all $b \in [0,1]$ and $c \ge 1$.

(ii) From part (a)-i., we know that for $\hat{P}_1(\mathbf{x})$ to be a useful approximation of P(a), we need at least $N = N(a) \geq 1/(2P(a))$. Show that this implies $N(a) \geq e^{a^2/2}$ as $a \to \infty$, i.e., the number of samples must grow at least exponentially with a^2 if Bob uses a naïve Monte Carlo approach.

In order to estimate P(a) with fewer samples, Bob uses an importance-sampling approach instead of the naïve Monte Carlo method. In this alternative approach, N i.i.d. samples $\mathbf{y} = [y_1, \dots, y_N]$ generated from a mean a, unit variance Gaussian distribution q to construct an importance-sampling estimate of P(a) via

$$\hat{P}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{y_i \ge a} \frac{p(y_i)}{q(y_i)}.$$

(b) Show that

$$\mathbb{E}\big[\hat{P}(\mathbf{y})\big] = P(a),$$

and

$$\operatorname{var}[\hat{P}(\mathbf{y})] = \frac{1}{N} (\alpha F(a) + \beta P(a)^{2})$$

where

$$F(a) \triangleq \int_{y>a} \frac{p(y)^2}{q(y)} dy,$$

and α and β are constants that do not depend on a or N. Determine α and β .

- (c) Show that $F(a) \doteq e^{\gamma a^2}$ as $a \to \infty$ for a constant γ that does not depend on a, and determine γ .
- (d) By Chebyshev's inequality and using that $\hat{P}(\mathbf{y})$ is unbiased from part (a), we have that for any small constant $\delta > 0$,

$$\mathbb{P}\left(|\hat{P}(\mathbf{y}) - P(a)| \ge \delta P(a)\right) \le \frac{\operatorname{var}\left[\hat{P}(\mathbf{y})\right]}{\delta^2 P(a)^2}.$$

Show using parts (b) and (c) that when we choose N = N(a) such that

$$\frac{\operatorname{var}\left[\hat{P}(\mathbf{y})\right]}{\delta^2 P(a)^2} = \delta,$$

it follows that $N(a) \leq e^{\kappa a^2}$ where $\kappa = 0$.

The fact that $\kappa = 0$ shows that the number of samples needed for a reasonable estimate of P(a) using importance sampling grows at most subexponentially in a^2 .

Problem 8.2

Recall that the set of ϵ -typical sequences $\mathbf{x} = (x_1, \dots, x_N)$ with respect to the distribution p_x over alphabet \mathcal{X} is

$$\mathfrak{I}_{\mathsf{x}}(\epsilon) = \left\{ \mathbf{x} \in \mathfrak{X}^{N} : \left| \frac{1}{N} \log p_{\mathsf{x}}^{N}(\mathbf{x}) + H(\mathsf{x}) \right| \le \epsilon \right\}, \quad \text{with} \quad p_{\mathsf{x}}^{N}(\mathbf{x}) = \prod_{n=1}^{N} p_{\mathsf{x}}(x_{n}),$$

where H(x) is the entropy associated with the distribution p_x .

More generally, we say a pair of sequences $\mathbf{x} = (x_1, \dots, x_N)$ and $\mathbf{y} = (y_1, \dots, y_N)$ are ϵ -jointly-typical with respect to the joint distribution $p_{\mathbf{x},\mathbf{y}}$ if the super-symbol sequence $\mathbf{z} = (\mathbf{x}, \mathbf{y})$ is ϵ -typical with respect to $p_{\mathbf{z}} = p_{\mathbf{x},\mathbf{y}}$, and if \mathbf{x} and \mathbf{y} are each ϵ -typical with respect to the corresponding marginals $p_{\mathbf{x}}$ and $p_{\mathbf{y}}$. With a slight abuse of notation, we use $\mathcal{T}_{\mathbf{x},\mathbf{y}}(\epsilon)$ to denote the associated ϵ -jointly-typical set.

In this problem, H(x, y) denotes the joint entropy of x and y, and I(x; y) denotes the mutual information between x and y, where x and y follow a fixed joint distribution $p_{x,y}(x,y)$.

The ϵ -jointly-typical set and its sequences satisfy the following properties, which you may find useful:

- (i) If (\mathbf{x}, \mathbf{y}) is an i.i.d. sequence of length N with elements distributed according to $p_{x,y}$, then $\mathbb{P}((\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{x,y}(\epsilon)) \geq 1 \epsilon$, for N sufficiently large;
- (ii) For any $(\mathbf{x}, \mathbf{y}) \in \mathcal{T}_{x,y}(\epsilon)$ we have

$$2^{-N(H(\mathbf{x},\mathbf{y})+\epsilon)} \le p_{\mathbf{x},\mathbf{y}}^N(\mathbf{x},\mathbf{y}) \le 2^{-N(H(\mathbf{x},\mathbf{y})-\epsilon)}, \quad \text{with} \quad p_{\mathbf{x},\mathbf{y}}^N(\mathbf{x},\mathbf{y}) = \prod_{n=1}^N p_{\mathbf{x},\mathbf{y}}(x_n,y_n);$$

(iii) $(1 - \epsilon)2^{N(H(x,y)-\epsilon)} \le |\mathfrak{T}_{x,y}(\epsilon)| \le 2^{N(H(x,y)+\epsilon)}$, where the lower bound works for sufficiently large N and the upper bound is valid for all N.

Finally, the ϵ -conditionally-typical set $\mathcal{T}_{y|x}(\epsilon, \mathbf{x})$ corresponding to a sequence $\mathbf{x} \in \mathcal{T}_{x}(\epsilon)$, is defined as the subset of sequences in $\mathcal{T}_{y}(\epsilon)$ that are ϵ -jointly-typical with the sequence \mathbf{x} , i.e.,

$$\mathfrak{T}_{y|x}(\epsilon, \mathbf{x}) = \{ \mathbf{y} \in \mathfrak{T}_y(\epsilon) \colon (\mathbf{x}, \mathbf{y}) \in \mathfrak{T}_{x,y}(\epsilon) \}$$
.

(a) Determine a finite α (that is not a function of ϵ or N) such that for all sequences $\mathbf{y} \in \mathcal{T}_{v|x}(\epsilon, \mathbf{x})$ and any $\mathbf{x} \in \mathcal{T}_{x}(\epsilon)$,

$$\left|\frac{1}{N}\log p_{\mathbf{y}|\mathbf{x}}^N(\mathbf{y}|\mathbf{x}) + H(\mathbf{y}|\mathbf{x})\right| \leq \alpha\epsilon, \qquad \text{with} \quad p_{\mathbf{y}|\mathbf{x}}^N(\mathbf{y}|\mathbf{x}) = \frac{p_{\mathbf{x},\mathbf{y}}^N(\mathbf{x},\mathbf{y})}{p_{\mathbf{y}}^N(\mathbf{x})},$$

where H(y|x) denotes the conditional entropy of y given x.

- (b) Determine a finite β (that is not a function of ϵ or N) such that for any $\mathbf{x} \in \mathcal{T}_{\mathbf{x}}(\epsilon)$, $\left|\mathcal{T}_{\mathbf{y}|\mathbf{x}}(\epsilon,\mathbf{x})\right| \leq 2^{N(H(\mathbf{y}|\mathbf{x})+\beta\epsilon)}.$
- (c) Let $\tilde{\mathbf{x}} = (\tilde{x}_1, \dots, \tilde{x}_N)$ and $\tilde{\mathbf{y}} = (\tilde{y}_1, \dots, \tilde{y}_N)$ be realizations of independent sequences each generated i.i.d. according to marginals p_x and p_y , respectively, i.e., realizations $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ from the joint distribution that is i.i.d. with

$$p_{\tilde{\mathbf{x}},\tilde{\mathbf{y}}}(\tilde{x},\tilde{y}) = p_{\mathbf{x}}(\tilde{x}) p_{\mathbf{y}}(\tilde{y}), \qquad \tilde{x} \in \mathfrak{X}, \ \tilde{y} \in \mathfrak{Y}.$$

Determine a finite γ (that is not a function of ϵ or N) such that

$$\mathbb{P}\left((\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \in \mathfrak{T}_{\mathbf{x}, \mathbf{y}}(\epsilon)\right) \leq 2^{-N(I(\mathbf{x}; \mathbf{y}) - \gamma \epsilon)},$$

where I(x; y) denotes the mutual information associated with $p_{x,y}(x, y)$. Hint: Please recall carefully the exact definition of ϵ -jointly-typical sequences.

In the remainder of the problem, consider a classification problem with m classes. Each class H_i is defined by a feature vector $\mathbf{x}^{(i)} \triangleq (x_1^{(i)}, \dots, x_N^{(i)}) \in \mathcal{X}^N$. The m feature vectors can be modeled as being independently drawn at random (with replacement) from \mathcal{X}^N according to the same distribution $p_{\mathbf{x}}^N(\mathbf{x}^{(i)}) = \prod_{n=1}^N p_{\mathbf{x}}\left(x_n^{(i)}\right)$. The prior over the m classes is governed by the distribution $p_H(\cdot)$, where $p_H(H_i)$ denotes the probability that the true class $H = H_i$. The true class H is independent with all feature vectors $\mathbf{x}^{(i)}$.

Under the condition that the unknown true class $H = H_i$, the observation $\mathbf{y} = (y_1, \dots, y_N)$ will be generated by the feature vector $\mathbf{x}^{(i)}$ according to

$$p_{\mathbf{y}|\mathbf{x},H}\left(\mathbf{y}|\mathbf{x}^{(i)},H_i\right) = \prod_{n=1}^{N} p_{\mathbf{y}|\mathbf{x}}(y_n|x_n^{(i)}).$$

With the observation \mathbf{y} (and the feature vectors $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$) we decide which class is being observed using the rule

$$\hat{H}(\mathbf{y}) = H_i \quad \text{if} \quad (\mathbf{x}^{(i)}, \mathbf{y}) \in \mathfrak{T}_{\mathsf{x}, \mathsf{y}}(\epsilon),$$

where $i \in \{1, ..., m\}$.

The decision device declares an error if the observed sequence \mathbf{y} is ϵ -jointly-typical either with more than one feature vector, or with no feature vectors.

(d) Determine a finite δ (that is not a function of ϵ or N) such that for sufficiently large N,

$$\mathbb{P}\left(\text{error }\mid H=H_1\right) \leq (m-1)2^{-N(I(x;y)-\delta\epsilon)} + \epsilon.$$

Hint: You may find useful the union bound $\mathbb{P}(\bigcup_{i=1}^n \mathcal{A}_i) \leq \sum_{i=1}^n \mathbb{P}(\mathcal{A}_i)$ for arbitrary collections of events $\mathcal{A}_1, \ldots, \mathcal{A}_n$. In addition, you may find useful the independence between \mathbf{y} and $\mathbf{x}^{(i)}$ conditioned on $\mathbf{H} = H_1$, where $i \geq 2$.

(e) Assume I(x;y) > 0. Show that the largest number of classes that can be distinguished with vanishing probability of an error grows exponentially with N. In other words, it is possible to distinguish $m = 2^{NR}$ classes where R > 0 is a constant, and $\mathbb{P}(\text{error}) \to 0$ as $\epsilon \to 0$ and $N \to \infty$.

Problem 8.3

Let y_1, y_2, \ldots be i.i.d. random variables drawn according to the geometric distribution

$$\mathbb{P}(y=k) = p^{k-1}(1-p), \quad k = 1, 2, \dots$$

Find good estimates (to first order in the exponent) of:

(a)
$$\mathbb{P}\left((1/N) \cdot \sum_{n=1}^{N} y_n \ge \alpha\right)$$
, where $\alpha > 1/(1-p)$.

- (b) $\mathbb{P}\left(y_1 = k \mid (1/N) \cdot \sum_{n=1}^N y_n \ge \alpha\right)$, where $\alpha > 1/(1-p)$.

 Hint: Please feel free to apply the conditional limit theorem to this problem, even if the size of the alphabet is infinite here.
- (c) Evaluate parts (a) and (b) for p = 1/2, $\alpha = 4$.

Problem 8.4

Let $\mathbf{y} = [y_1, \dots, y_N]^T$ be a vector of N i.i.d. binary variables distributed according to a Bernoulli distribution with a known parameter $x \in [0, 1]$, i.e., $\mathbb{P}(y_n = 1) = x$. Let $\gamma \in (0, 1)$ be a known constant.

(a) Find all values of x for which

$$\mathbb{P}\left(\frac{1}{N}\sum_{n=1}^{N}y_{n}\geq\gamma\right)\doteq1.$$

We now model the parameter of the Bernoulli distribution as a random variable x distributed uniformly over the unit interval [0,1]. Note that while y_1, \ldots, y_N are conditionally independent given x, this change in the model makes y_1, \ldots, y_N dependent.

(b) Determine the exponent $\beta(\gamma)$ such that

$$\mathbb{P}\left(\frac{1}{N}\sum_{n=1}^{N}y_{n}\geq\gamma\right)\doteq e^{-N\beta(\gamma)}.$$

(c) Does your answer to part (b) depend on the prior distribution on x? Explain.

Problem 8.5 (practice)

Suppose that $y_1, y_2, ..., y_N$ are i.i.d. Poisson random variables with parameter x > 0, so that each y_i has distribution

$$p_{y_i}(y;x) = \frac{x^y e^{-x}}{y!}$$
 $y = 0, 1, 2, \dots$

Recall that a Poisson random variable with parameter x has mean x and variance x.

(a) One estimator for x is the sample mean:

$$\hat{x}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} y_i.$$

The asymptotic efficiency in probability of \hat{x} can be expressed via

$$\delta(\epsilon, x) = \mathbb{P}(|\hat{x} - x| > \epsilon x) \doteq e^{-Nx\xi(\epsilon)},$$

where $0 < \epsilon < 1$. Determine $\xi(\epsilon)$, and show that $\xi(\epsilon) \approx \epsilon^2/2$ for small ϵ .

(b) Suppose that x is known to be one of two equally likely values, a or ae, where a is a known real positive number. The best achievable error probability for deciding the correct value is, asymptotically to first order in the exponent, $P_e \doteq e^{-Na\kappa}$. Determine the constant κ . Show that $\kappa < 1$.

Problem 8.6

Let y_1, \ldots, y_N be a sequence of i.i.d. discrete random variables. Consider the following binary hypothesis testing framework, where $0 < \epsilon < 1$ and $\epsilon \neq 1/2$.

$$H_0: \quad p_{y_i}(y_i) = p_0(y_i) = \begin{cases} \epsilon & y_i = 1\\ 1 - \epsilon & y_i = 0 \end{cases} \quad \text{for each } i$$

$$H_1: \quad p_{y_i}(y_i) = p_1(y_i) = \begin{cases} 1 - \epsilon & y_i = 1\\ \epsilon & y_i = 0 \end{cases} \quad \text{for each } i$$

- (a) If we constrain the detection probability $P_{\rm D} \geq 0.99$ and want to minimize the false-alarm probability $P_{\rm F}$, determine the exponent that governs the asymptotic decay of $P_{\rm F}$ with N.
- (b) Suppose instead that we fix $P_{\rm F} \leq 0.01$ and want to maximize $P_{\rm D}$. What is the exponent governing the rate at which $P_{\rm D} \to 1$?

- (c) Consider the Bayesian case where there are non-zero priors on the two hypotheses. Asymptotically the probability of error $P_{\rm e}$ can be made to decay exponentially. Determine the largest achievable exponent, as a function of ϵ .
- (d) How do the normalized exponents (divide by $(1 2\epsilon)^2$) compare in parts (a), (b), and (c) in the limit as $\epsilon \to 1/2$?

Problem 8.7 (practice)

Consider the binary hypothesis testing problem, with observations y_1, \ldots, y_N :

$$H_0: (\mathbf{y}_1, \dots, \mathbf{y}_N) \overset{\text{i.i.d.}}{\sim} p_0, \qquad H_1: (\mathbf{y}_1, \dots, \mathbf{y}_N) \overset{\text{i.i.d.}}{\sim} p_1,$$

for $p_0, p_1 \in \mathcal{P}(\mathcal{Y})$ with $2 \leq |\mathcal{Y}| < \infty$. Define the decision region

$$\mathcal{R}_N \triangleq \{ \mathbf{y} \in \mathcal{Y}^N : \hat{H}(\mathbf{y}) = H_1 \},$$

i.e., $\mathbf{y} = (y_1, \dots, y_N) \in \mathcal{R}_N$ results in deciding H_1 . Similarly, define the complement

$$\mathcal{Y}^N \setminus \mathcal{R}_N \triangleq \{ \mathbf{y} \in \mathcal{Y}^N : \hat{H}(\mathbf{y}) = H_0 \}.$$

Hence, the probabilities of false alarm and missed detection are, respectively,

$$P_{\mathrm{F}} = P_0\{\mathcal{R}_N\} \triangleq \sum_{\mathbf{y} \in \mathcal{R}_N} p_0^N(\mathbf{y}), \qquad P_{\mathrm{M}} = P_1\{\mathcal{Y}^N \setminus \mathcal{R}_N\} \triangleq \sum_{\mathbf{y} \in \mathcal{Y}^N \setminus \mathcal{R}_N} p_1^N(\mathbf{y}).$$

In this problem, we analyze and apply the *Hoeffding Test* defined by

$$\mathcal{R}_N^* \triangleq \left\{ \mathbf{y} \in \mathcal{Y}^N : D(\hat{q}(\cdot; \mathbf{y}) \parallel p_0(\cdot)) \ge \lambda \right\},\,$$

where $\hat{q}(\cdot; \mathbf{y})$ is the type (empirical distribution) of \mathbf{y} and $\lambda > 0$ is a constant.

(a) Show that under the Hoeffding test, $P_{\rm F}$ decays exponentially with the rate satisfying

$$P_{\mathcal{F}} \stackrel{\cdot}{\leq} \exp\left(-N\lambda\right). \tag{1}$$

- (b) Let the decision region $\tilde{\mathcal{R}}_N$ correspond to any test such that (1) is satisfied. In addition, $\tilde{\mathcal{R}}_N$ satisfies that if $\mathbf{y} \in \tilde{\mathcal{R}}_N$, then all observations in the type class $T(\hat{q}(\cdot;\mathbf{y}))$ also belongs to $\tilde{\mathcal{R}}_N$. Show $P_1\{\mathcal{Y}^N \setminus \mathcal{R}_N^*\} \leq P_1\{\mathcal{Y}^N \setminus \tilde{\mathcal{R}}_N\}$.
 - *Hint:* Show that for any $\epsilon > 0$, we have $D(\hat{q}(\cdot; \mathbf{y}) \parallel p_0(\cdot)) \geq (\lambda \epsilon)$ for $\mathbf{y} \in \tilde{\mathcal{R}}_N$ with a sufficiently large N.
- (c) The Hoeffding test satisfies

$$P_{\mathcal{M}} = P_1\{\mathcal{Y}^N \setminus \mathcal{R}_N^*\} \stackrel{\cdot}{\leq} \exp(-NJ(\lambda)). \tag{2}$$

for some $J(\lambda) > 0$. Express $J(\lambda)$ as an I-projection.

(d) In this part, we apply the Hoeffding test to an anomaly detection problem. Suppose we have $M = \lfloor \exp(NR) \rfloor$ sequences each of length N, denoted as $\mathbf{y}_1, \ldots, \mathbf{y}_M$. For some unknown $a \in \{1, \ldots, M\}$ each element in \mathbf{y}_a is drawn from p_0 , while all elements in $\mathbf{y}_1, \ldots, \mathbf{y}_{a-1}, \mathbf{y}_{a+1}, \ldots, \mathbf{y}_M$ are drawn from p_1 with each draw made independently. We estimate a from $\mathbf{y}_1, \ldots, \mathbf{y}_M$ using the following rule:

If there exists a unique $a \in \{1, ..., M\}$ such that $D(\hat{q}(\cdot; \mathbf{y}_a) || p_0(\cdot)) < \lambda$, set $\hat{a} = a$. If no such unique a exists, set $\hat{a} = 0$.

For this decision rule, determine an R > 0 in terms of λ such that $\mathbb{P}(\hat{a} \neq a) \to 0$ as $N \to \infty$. For simplicity assume that a = 1 in your analysis. Hint: Decompose the error event, use the union bound $\mathbb{P}(\cup_{i=1}^L \mathcal{B}_i) \leq \sum_{i=1}^L \mathbb{P}(\mathcal{B}_i)$, and use (1) and (2).