CHM 213

(Analytical Chemistry)

Topic: Gravimetric Analysis

Dr. O.A. Ibigbami

Practical procedure for gravimetric analysis

- 1. Sample preparation
- 2. Precipitation
- 3. Digestion of precipitate
- 4. Filtration
- 5. Drying and ignition
- 6. Weighing
- 7. Calculation

Calculations involving Gravimetric factor

- The weight of the element or ion to be determined is calculated from the weight of the precipitate with the aid of a gravimetric factor (GF).

GF= Formula wt. (Subs. sought)

Formula wt. (Subs. Weighed)

The expression for a gravimetric factor may be derived from simple proportion.

For, sulphur to barium sulphate,

S (grams) = S (form wt)

BaSO₄(grams) BaSO₄ (form wt)

If BaSO4 (grams) is known and wish to calculate S (grams), solving this equation gives

 $S (grams) = BaSO_4 (grams) X \underline{S (form wt.)}$

BaSO₄ (form wt.)

Example 1: Derive an expression for the gravimetric factor required to calculate the weight of magnesium in a precipitate of magnesium pyrophosphate Mg₂P₂O₇.

Solution:
$$\underline{Mg (grams)} = \underline{Mg (form wt)}$$

 $\underline{Mg_2P_2O_7(grams)} = \underline{Mg (form wt)}$
 $\underline{Mg_2P_2O_7(form wt)}$

Solving for the weight of Mg

$$Mg ext{ (grams)} = Mg_2P_2O_7 ext{ (grams)} ext{ X} ext{ } ext{ } ext{2Mg (form wt)} ext{ } ext{ }$$

GF = Formula weight of sub. Sought for X no of moles of sub. Sought for

Formula weight of the substance weighed no of moles of sub. Weighed

OR

GF = Formula weight of Analyte X no of moles of Analyte

Formula weight of precipitate no of moles of precipitate

% of Analyte = G.F X Mass of ppt

Mass of Sample

Example 2: A 0.5656g sample contains a bromide salts is treated with excess AgNO₃, the AgBr formed is filtered and weighed, yielding 0.7624g of precipitate. Calculate the % bromide in the sample.

Solution:

Applying the formula

$$\frac{\text{Br }(grams)}{\text{AgBr }(grams)} = \frac{\text{Br }(form \ wt)}{\text{AgBr }(form \ wt)}$$

$$Br(grams) = AgBr(grams) X \underline{Br(form wt)}$$

$$AgBr(form wt)$$

Substituting the values

Classwork

1. Attempt the question on page 36 of CHM 213 material

2. A 0.703g sample of a commercial detergent was ignited at red heat to destroy the organic matter. The residue was taken up in hot HCl which converted the phosphorus to phosphoric acid H₃PO₄. T_{he} phosphate was precipitated as MgNH₄PO₄.6H₂O by addition of Mg²⁺ followed by aqueous ammonium (NH₄). After being filtered and washed the precipitate was converted to Mg₂P₂O₇ by ignition at 100°C. The residue weighed 0,274g. Calculate the % phosphorus in the sample.

Contamination of precipitates

It involves simultaneous precipitation of materials other than the desired analyte species constitute impurities.

The impurities sets into precipitate in two general ways

- 1. Co-precipitation
- 2. Post-precipitation

Types of Co-precipitation

- 1. Isomorphous Inclusion:
- Compounds with the same type of formula crystallizing in similar geometric forms are said to be isomorphous.
- Lattice dimensions of two isomorphous compounds are about the same, one compound can replace part of the other in the crystal.
- This result in the formation of mixed crystals.
- E.g. MgNH₄PO₄ MgKPO₄ are isomorphous, the ionic radii of K⁺ and NH₄⁺ are the same.

20cclusion:

- Mechanical entrapment of impurities within the growing crystals.
- The impurities are distributed merely through the ppt, mostly occupying places where the crystal structure of the ppt is imperfect.

Occlusion can be removed by

- i. Aging
- ii. Recrystallization
- iii. Precipitation

3. Surface Adsorption

- Surface phenomenon and is important for ppt with large surface area.

Correction or minimization of surface adsorption

- i. Washing of ppt
- ii. Reprecipitation or recrystallization
- iii. Precipitation from homogenous solution
- iv. Digestion of the ppt.