

POLITEKNIK NEGERI SAMARINDA

Kode/No: Tanggal: Revisi: 0

FORMULIR
SISTEM PENJAMINAN MUTU INTERNAL
(SPMI)

Halaman: 1 dari ...

FORMULIR

RENCANA PEMBELAJARAN SEMESTER

Digunakan untuk melengkapi: Kode:.....

STANDAR PROSES PEMBELAJARAN

Proses	Penanggung Jawab					
	Nama	Jabatan Tanda Tar		Tanggal		
1. Perumusan	Sunu Pradana	Pengajar		18-Des- 2023		
2. Pemeriksaan						
3. Persetujuan						
4. Penetapan						
5. Pengendalian						

RENCANA PEMBELAJARAN SEMESTER (RPS)

PROGRAM STUDI : Teknik Listrik S1-Terapan

MATA KULIAH	Elektronika Daya I
KODE	PLT42527
SEMESTER	5 (Lima)
SKS	2
DOSEN PENGAMPU	Sunu Pradana
DESKRIPSI MATA KULIAH	Elektronika Daya I, mahasiswa belajar mengenai aspek rekayasa berkenaan AC/DC converter dan AC/AC converter dan komponen yang berkaitan. Mahasiswa diajak untuk mengenal dan menerapkan esensi ilmu engineering secara umum yang berbasis asas sains dalam proses belajar, termasuk tentang korelasi dan kausalitas.
CP PROGRM STUDI YANG DIBEBANKAN PADA MATA KULIAH	PP2 - Menguasai pengetahuan dasar matematika dan sains yang dapat digunakan sebagai pendekatan untuk memecahkan masalah pada bidang ketenagalistrikan.
	PP3 - Mempunyai wawasan mengenai perkembangan teknologi terkini dalam bidang ketenagalistrikan.
	KU1 - Mampu menyelesaikan pekerjaan pada bidang teknik listrik dan menganalisis data dengan beragam metode yang sesuai dengan bidang kelistrikan.
	KU3 - Mampu memecahkan masalah pekerjaan pada bidang teknik listrik yang didasarkan pada pemikiran logis, inovatif, dan bertanggungjawab atas hasilnya secara mandiri.
	KK6 - Mampu merancang, merealisasikan, dan mengevaluasi rangkaian kontrol penerangan, motor listrik, dan <i>system</i> ketenagalistrikan lainnya yang menggunakan teknologi elektronika, elektronika daya, dan perangkat terprogram seperti PLC dan <i>system</i> mikroprosesor.
	KK8 - Mampu mengikuti perkembangan teknologi dan isu terkini yang terkait dengan bidang ketenagalistrikan.
CAPAIAN PEMBELAJARAN MK	Mahasiswa mampu menerapkan, mengoperasikan, mendemonstrasikan, menjelaskan, menguraikan, merinci, menghitung, membandingkan, membedakan, melakukan simulasi,

	dan analisis untuk beberapa aspek elektronika daya sebagai berikut:
	 ruang lingkup elektronika daya sebagai ilmu rekayasa yang bersifat interdisipliner;
	- pemanfaatan ICT untuk mempelajari elektronika daya;
	- perangkat lunak untuk melakukan simulasi rangkaian;
	- komponen sakelar elektronik berupa diode, SCR, TRIAC;
	- rangkaian penyearah tanpa pengendali dan dengan pengendali,
	baik sistem satu fase maupun tiga fase.
KEMAMPUAN AKHIR	Mahasiswa mampu:
YANG DIHARAPKAN	 mempergunakan ICT secara efektif untuk mempelajari elektronika daya;
	2. mahasiswa mampu merinci dan menjelaskan tentang bagian-
	bagian dari ilmu elektronika daya beserta cara mempelajarinya
	secara efektif dan efisien;
	3. mahasiswa mampu melakukan instalasi dan mempergunakan
	simulator LTspice untuk simulasi rangkaian dasar elektronika; 4. mahasiswa mampu menyebutkan jenis-jenis diode, menjelaskan
	perbedaannya dan melakukan simulasi rangkaian dasar diode;
	5. mahasiswa mampu melakukan perhitungan daya dengan bantuan
	perangkat lunak;
	6. mahasiswa mampu menjelaskan, menghitung, melakukan
	simulasi rangkaian baku penyearah satu fase setengah gelombang tanpa pengendali;
	7. mahasiswa mampu membandingkan, menjelaskan, menghitung,
	melakukan simulasi rangkaian baku penyearah satu fase
	gelombang penuh tanpa pengendali;
	8. mahasiswa mampu membedakan, membandingkan, menjelaskan
	dan melakukan simulasi rangkaian baku penyearah tiga fase tanpa pengendali;
	9. mahasiswa mampu menjelaskan, melakukan simulasi rangkaian
	SCR sebagai sakelar elektronik;
	10. mahasiswa mampu menjelaskan, menghitung, melakukan
	simulasi rangkaian baku penyearah satu fase dengan pengendali;
	11. mahasiswa mampu menjelaskan, menghitung, melakukan
	simulasi rangkaian baku penyearah tiga fase dengan pengendali;
	12. mahasiswa mampu menjelaskan, melakukan simulasi rangkaian
	TRIAC sebagai sakelar elektronik;
METODE PENILAIAN	* Panduan Penilaian
DAN PEMBOBOTAN	
DAFTAR REFERENSI	1. W. Xiao, Power Electronics Step-by-Step: Design, Modeling,
	Simulation, and Control. New York [NY]: McGraw Hill, 2021.
	2. V. Jagannathan, Power Electronics: Devices and Circuits, 2nd Ed.
	PHI Learning Pvt. Ltd., 2011.
	3. S. K. Mandal, <i>Power Electronics</i> , 1st Ed. McGraw Hill Education

- (India), 2014.
- 4. A. Ahmed, *Power Electronics for Technology*. United States: Pearson Education (US), 1998.
- 5. M. J. Jacob, *Power Electronics: Principles and Applications*, 1st ed. Albany: Cengage Delmar Learning, 2001.
- 6. D. W. Hart, Power Electronics. New York: McGraw-Hill, 2011.
- 7. Dennis Fewson, *Introduction to Power Electronics*, Butterworth-Heinemann, 1998.
- 8. M. H. Rashid, Ed., *Power Electronics Handbook, Fourth Edition*. Butterworth-Heinemann, 2017.
- 9. P. Scherz and S. Monk, *Practical Electronics for Inventors*, Fourth Edition. New York: McGraw-Hill Education, 2016.
- 10. R. E. Thomas, A. J. Rosa, and G. J. Toussaint, *The Analysis and Design of Linear Circuits*, Tenth edition. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2023.
- 11. M. H. Rashid, Ed., *Alternative Energy in Power Electronics*. Elsevier/Butterworth-Heinemann, 2015.
- 12. A. Fekik, M. Ghanes, and H. Denoun, Eds., *Power Electronics Converters and their Control for Renewable Energy Applications*, 1st edition. London San Diego, CA: Academic Press, 2023.

JADUAL PEMBELAJARAN

MINGGU KE	KEMAMPUAN AKHIR YANG DIHARAPKAN	BAHAN KAJIAN (pokok bahasan)	METODE PEMBELAJ ARAN	WAKTU	PENGALAM AN BELAJAR	INDIKATOR/KR ITERIA PENILAIAN	BOBO T PENIL AIAN	REFE REN SI
1	Mahasiswa mampu mempergunakan ICT (Information and Communication Technology) secara efektif untuk menunjang kegiatan belajar.	Pengenalan sumber ilmu elektronika daya & literasi digital	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar - Membaca - Mencari - Bertanya - Menjawab - Mencoba	- Ketepatan dan kecepatan mahasiswa dalam memanfaatkan ICT untuk mencari, mengolah, membandingkan informasi mengenai elektronika daya.		1~ 12
2	Mahasiswa mampu merinci dan menjelaskan tentang bagian- bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif dan efisien	Peta ilmu dan metode belajar efektif untuk elektronika daya.	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x25" KM:2x70	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	Ketepatan mahasiswa dalam merinci dan menjelaskan tentang bagian- bagian dari ilmu elektronika daya beserta cara mempelajarinya secara efektif		1 ~ 12

						dan efisien.	
3	Mahasiswa mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika.	Simulasi komponen dan rangkaian elektronika daya menggunak an LTspice.	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	Ketepatan mahasiswa untuk mampu melakukan instalasi dan mempergunakan simulator LTspice untuk simulasi rangkaian dasar elektronika daya.	1~10
4	Mahasiswa mampu menyebutkan jenis-jenis diode, menjelaskan perbedaannya dan melakukan simulasi rangkaian dasar diode.	Karakterisi k diode dan simulasi rangkaian dasar diode.	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x25" KM:2x70	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	- Ketepatan dalam membedakan tipe-tipe diode Ketepatan dalam membandingkan diode dengan sakelar ideal Ketepatan dalam penggunaan model diode di LTspice Kecepatan melakukan simulasi rangkian dasar diode dengan tepat.	1~ 12
5	Mahasiswa mampu melakukan perhitungan daya dengan bantuan perangkat lunak.	Komputasi daya menggunak an perangkat lunak.	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	- Ketepatan mahasiswa dalam melakukan simulasi dan perhitungan daya berdasarkan bentuk gelombang listrik.	1 ~ 12
6, 7	Mahasiswa mampu menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian baku penyearah satu fase setengah gelombang tanpa	Penyearah satu fase setengah gelombang tanpa pengendali.	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	Ketepatan mahasiswa dalam menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian baku penyearah satu fase setengah	1 ~ 12

	pengendali.					gelombang tanpa pengendali.	
8	Mahasiswa mampu menyelesaikan soal dengan baik sesuai dengan teori dan simulasi.	UTS berdasarka n materi pertemuan terdahulu.	Berbasis masalah.	TM:2x75" PT:2x25" KM:2x70	- Mendengar kan - Menjawab	Ketepatan dalam menjawab soal secara baik dengan benar dalam waktu yang ditentukan.	1 ~ 12
9. 10	Mahasiswa mampu membandingkan, membedakan, menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian baku penyearah satu fase dan tiga fase gelombang penuh tanpa pengendali.	Penyearah satu fase gelombang penuh tanpa pengendali.	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	- Ketepatan mahasiswa dalam membandingkan, membedakan, menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian baku penyearah satu fase dan tiga fase gelombang penuh tanpa pengendali.	1 ~ 12
11, 12, 13	- Mahasiswa mampu menjelaskan, melakukan simulasi rangkaian SCR sebagai sakelar elektronik Mahasiswa mampu menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian baku penyearah satu fase dan tiga fase dengan pengendali.	SCR	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	- Ketepatan mahasiswa dalam menjelaskan, menghitung, melakukan simulasi, dan menganalisis rangkaian dengan komponen SCR.	1 ~ 12
14, 15	Mahasiswa mampu menjelaskan, melakukan simulasi, dan menganalisis rangkaian TRIAC sebagai sakelar	TRIAC	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba	- Ketepatan mahasiswa dalam menjelaskan, dan melakukan simulasi, dan menganalisis rangkaian TRIAC.	1 ~ 12

	elektronik.				- Ketepatan dalam menjelaskan SSR dan penerapannya.	
16	UAS	Ekspositori (ceramah), inkuiri, berbasis masalah.	TM:2x75" PT:2x70" KM:2x25	- Mendengar kan - Membaca - Mencari - Bertanya - Menjawab - Mencoba		1~ 12

TUGAS-TUGAS YANG HARUS DISELESAIKAN MAHASISWA:

1. Tugas kelompok

Mengetahui Ketua Jurusan	Ketua Program Studi	Samarinda 18 Desember 2023 Penanggung Jawab MK
Khairuddin Karim, ST., MT.	Verra Aullia, S.T., M.T.	Sunu Pradana
NIP. 196809231995121001	NIP. 197804132002122001	NIP. 197801082006041002

CATATAN:

- (1) Proses pembelajaran harus dilaksanakan secara interaktif, inspiratif, menyenangkan, menantang, dan memotivasi mahasiswa untuk berpartisipasi aktif, serta memberikan kesempatan atas prakarsa, kreativitas, dan kemandirian sesuai dengan bakat, minat, dan perkembangan fisik serta psikologis mahasiswa, termasuk mahasiswa berkebutuhan khusus.
- (2) Proses pembelajaran secara umum dilaksanakan dengan urutan:
 - a. Kegiatan pendahuluan, merupakan pemberian informasi yang komprehensif tentang rencana pembelajaran beserta tahapan pelaksanaannya, serta informasi hasil asesmen dan umpan balik proses pembelajaran sebelumnya;
 - b. Kegiatan inti, merupakan kegiatan belajar dengan penggunaan metode pembelajaran yang menjamin tercapainya kemampuan tertentu yang telah dirancang sesuai dengan kurikulum;
 - c. Kegiatan penutup, merupakan kegiatan refleksi atas suasana dan capaian pembelajaran yang telah dihasilkan, serta informasi tahapan pembelajaran berikutnya.

PANDUAN PENILAIAN:

Pada dasarnya proses perkuliahan dan pembelajaran dilakukan mengacu pada sasaran untuk tingkat *engineering technologist* dalam Sydney Accord sebagaimana yang diserap dalam beberapa acuan nasional. Atas dasar tersebut, penilaian dalam mata kuliah ini dilakukan berdasarkan sejumlah acuan tersebut, tetapi penempatan nilai akhirnya disesuaikan dengan format pengaturan yang ada di Politeknik Negeri Samarinda.

Dengan pemahaman bahwa keterampilan (skill) relatif lebih mudah untuk diajarkan daripada sikap (attitude), maka dalam proses belajar aspek sikap merupakan hal penting yang masuk ke dalam semua unsur penilaian. Pengamatan antara lain meliputi kemauan untuk mengerjakan tugas, kemauan untuk mencari informasi, kemauan untuk mencatat, kemampuan untuk menjaga suasana belajar yang kondusif, kemampuan untuk bersikap yang sesuai dengan lingkup bidang pekerjaan sebagai engineering technologist.

Beberapa indikator umum yang dipakai untuk melakukan penilaian baik secara individu maupun kelompok, baik dilakukan untuk seluruh mahasiswa pada saat yang sama maupun dilakukan dengan uji petik adalah sebagai berikut:

- kemampuan mengelola kekondusifan dinamika belajar di kelas;
- keaktifan dalam merespons pertanyaan dengan jawaban yang logis;
- kecepatan pencarian informasi dengan hasil yang tepat;
- ketepatan cara membandingkan informasi yang diperoleh;
- ketepatan catatan dari kuliah terdahulu:
- ketepatan pengutipan kembali isi materi kuliah terdahulu.

Pembelajaran menekankan pada prinsip mengutamakan penguasaan yang baik akan dasar-dasar pemahaman yang diperlukan untuk layak menjadi lulusan jenjang S1-Terapan dalam bidang teknik elektro untuk masing-masing individu mahasiswa. Penekanan diutamakan kepada pengembangan kemampuan belajar yang riil sebagai individu pembelajar yang mau dan mampu untuk terus menerus belajar sepanjang hayat melalui berbagai metode. Penguasaan isi materi merupakan salah satu indikator, wujud dari sikap belajar yang baik.

Aspek teoritis yang bisa diperoleh dari *body of knowledge* yang tercantum dalam sejumlah buku rujukan disesuaikan dan dibatasi untuk jenjang S1-Terapan perguruan tinggi vokasi, yaitu sampai pada konsep teoritis secara umum dengan beberapa bagian dengan lingkup khusus. Cakupan luas dan kedalaman bahasan disesuaikan dengan sejumlah aspek seperti keperluan kemampuan untuk menyelesaikan masalah praktis yang sudah terdefinisi secara umum, kemampuan awal pemahaman mahasiswa, daya dukung untuk proses pembelajaran. Dengan demikian penilaian unjuk kerja mahasiswa disesuaikan dengan sejumlah pembatasan sebagaimana yang telah disebutkan, baik mengenai kedalaman maupun luas cakupan.

No	Aspek	Komponen Penilaian	Teknik Penilaian	Bobot
				(%)
1	Aktivitas	Kehadiran	Presensi	5
2	Pengetahuan	a. Penugasan mandiri	Penilaian manual	20
		b. Ujian Tengah semester	Google Form <i>grading</i>	30
		c. Ujian Akhir Semester	Google Form grading	45
Total				100