進捗報告

1 やったこと

- シードを変えてパラメータの変化の確認
- 学習率を揃えて学習
- Ties-Merging の重みの処理

2 シードを変えた場合のパラメータの変化の確認

シードを変えて大きくパラメータの変化にずれが発生していれば、解析の意味が無くなってしまうためシードを変えてノルムを再計算した。シードの設定には transformers の set_seed() メソッドを用いている。表 1 に学習方法が同一でデータセットが異なる 2 モデル間のシードが異なる場合の L1, L2 ノルムの値を示す。

表 1: 学習方法が同一でデータセットが異なる 2 モデル間の L1 ノルム, L2 ノルム

モデル	L1 ノルム (seed = 42)	L2 ノルム (seed = 42)	L1 ノルム (seed = 100)	L2 ノルム (seed = 100)
$M_{\rm SFT_{D_0}},M_{\rm SFT_{D_1}}$	1073358.0	16.658565739582745	2859111.0	45.28603753158914
$M_{\rm DPO_{D0}}, M_{\rm DPO_{D1}}$	283154.5	2.7612353904133857	280975.25	2.695570339088263

実験で SFT の初期学習率が 1e-4, DPO は 1e-5 と学習率の違いがあるとはいえ, DPO は大きな差が見られなかった一方で、SFT はシードによって大きくノルムの値が変わっている結果となった.

そのため, SFT の初期学習率を DPO と同じ 1e-5 にそろえて学習しなおし, 異なるシード間での値の差を確かめた. 表 2 に結果を示す.

表 2: 学習方法が同一でデータセットが異なる 2 モデル間の L1 ノルム, L2 ノルム (SFT の初期学習率 1e-5)

モデル	L1 ノルム	L2 ノルム
$M_{\rm SFT_{D0}}, M_{\rm SFT_{D1}} \text{ (seed = 42)}$	277361.125	2.20031771804024
$M_{\rm SFT_{D0}}, M_{\rm SFT_{D1}} \text{ (seed = 100)}$	278791.25	2.217655637326153

初期学習率を DPO と同じにすることで SFT においてもシードによる値の大きな変動が無くなった. 重みの大小の比較のためにも学習率を揃えた方が都合が良いため, 上記の結果をうけ SFT の初期学習率を 1e-5 とすることにした.

3 学習率を揃えて学習

考察のため、ベースのモデルに加え以下の条件でモデルを学習させる. 学習したモデルの重みは huggingface 上で保存している.

M_{base} ベースモデル (elyza/Llama-3-ELYZA-JP-8B)

 $M_{\rm SFTpo}$ $M_{\rm base}$ に対して D_0 を用いて SFT を適用したモデル ¹

 $M_{\rm SFT_{D1}}$ $M_{\rm base}$ に対して D_1 を用いて SFT を適用したモデル 2

 $M_{\rm DPO_{Do}}$ $M_{\rm base}$ に対して D_0 を用いて DPO を適用したモデル 3

 $M_{
m DPO_{D1}}$ $M_{
m base}$ に対して D_1 を用いて DPO を適用したモデル 4

 $M_{
m SFTp_2}$ $M_{
m base}$ に対して D_2 を用いて SFT を適用したモデル 5

 $M_{
m DPO_{
m D_0}(M_{
m SFT_{
m D_2}})}$ $M_{
m SFT_{
m D_2}}$ に対して D_0 を chosen として DPO を適用したモデル 6

 $M_{
m DPO_{D1}(M_{SFT_{Dc}2})}$ $M_{
m SFT_{D2}}$ に対して D_1 を chosen として DPO を適用したモデル 7

 $M_{
m DPO_{
m D0}(M_{
m SFT_{
m D1}})}$ $M_{
m SFT_{
m D1}}$ に対して D_0 を chosen として DPO を適用したモデル 8

 $M_{\mathrm{DPO_{D_0}(M_{\mathrm{SFT_{D_1}}})}}$ $M_{\mathrm{SFT_{D_1}}}$ に対して D_1 を chosen として DPO を適用したモデル https://huggingface.co/Nisk36/DPO_ojousan また, elyza/Llama-3-ELYZA-JP-8B と異なるアーキテクチャのモデルでもデータを取りたいと考えた. 試したモデルは以下の通り. Llama 系統とは異なるアーキテクチャであることを重要視しモデルを選んだ.

- tokyotech-llm/Swallow-MS-7b-instruct-v0.19
 Mistral-7B-v0.1 派生のモデル
- stabilityai/japanese-stablelm-instruct-alpha-7b-v2 ¹⁰
 アーキテクチャが GPT-NeoX のモデル
- \bullet google/gemma-2-9b-it 11
- google/gemma-2-2b-jpn-it ¹²
- Qwen/Qwen2.5-7B-Instruct ¹³

上記の中で、google/gemma-2-9b-it は GPU の VRAM で Cuda のエラーとなった.

また tokyotech-llm/Swallow-MS-7b-instruct-v0.1, stabilityai/japanese-stablelm-instruct-alpha-7b-v2, google/gemma-2-9b-it, google/gemma-2-2b-jpn-it は学習したモデルの出力が日本語として成立していない, 出力上限まで出力を続けてしまうといった問題が発生した. 学習に用いたコードは同じのためおそらく元の LLM の性能が結果を左右していると考えられる.

Qwen/Qwen2.5-7B-Instruct は学習後の出力も簡単なテストでは安定していたため、上記の elyza/Llama-3-ELYZA-JP-8B と同様の条件下で学習した。表 3, 4, 5 に実験のパラメータを示す。

4 Ties-Merging のパラメータの処理実装

タスクベクトルのノルムの解析の際に、これまですべての差分の値でノルムを計算していた。Ties-Merging により忠実に上位 n% の値のみで計算できるように実装した。

¹https://huggingface.co/Nisk36/SFT_normal_lr5

²https://huggingface.co/Nisk36/SFT_ojousama_lr5

 $^{^3} https://hugging face.co/Nisk 36/DPO_normal chosen_lr5$

⁴https://huggingface.co/Nisk36/DPO_ojousamachosen_lr5

⁵https://huggingface.co/Nisk36/SFT_both_lr5

 $^{^6} https://hugging face.co/Nisk 36/DPO_normal chosen_after SFTB oth_lr5$

https://huggingface.co/Nisk36/DPO_ojousamachosen_afterSFTBoth_lr5

⁸https://huggingface.co/Nisk36/DPO_normalchosen_afterSFT_lr5

 $^{^9 \}rm https://hugging face.co/tokyotech-llm/Swallow-MS-7b-instruct-v0.1$

 $^{^{10} \}rm https://hugging face.co/stabilityai/japanese-stablelm-instruct-alpha-7b-v2$

¹¹https://huggingface.co/google/gemma-2-9b-it

¹²https://huggingface.co/google/gemma-2-2b-jpn-it

¹³https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

表 3: QLoRA パラメータ

パラメータ	値	
量子化サイズ	4 ビット	
r	8	
lora_alpha	128	
target_modules	モデル内の線形層全て	
lora_dropout	0.05	

表 4: SFTTrainer パラメータ

パラメータ	値
epoch 数	3
バッチサイズ	2
最適化手法	Adam
初期学習率	1e-5
学習率スケジューラ	cosine

参考文献

表 5: DPOTrainer パラメータ

パラメータ	値
epoch 数	3
バッチサイズ	2
最適化手法	Adam
初期学習率	1e-5
学習率スケジューラ	cosine
beta	0.3