

SEQUENCE LISTING

<110> Gaudet, Daniel
 Rioux, John D.
 Arsenault, Steve
 Hudson, Thomas J.
 Daly, Mark J.

<120> Glycerol As A Predictor of Glucose
 Tolerance

<130> 2825.1022-003

<140> US 09/694,088

<141> 2000-10-20

<150> US 60/161,141

<151> 1999-10-22

<160> 23

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 60
<212> DNA
<213> Unknown

<220>

<223> Partial nucleic acid sequence of the GK gene
 comprising a polymorphic site at nucleotide
 position 13 of exon 3

<400> 1

atgccttctt ttgtcaaaga tgggtggAAC argaccctaa ggaaattctA cattctgtct 60

<210> 2
<211> 48
<212> DNA
<213> Unknown

<220>

<223> Partial nucleic acid sequence of the GK gene
 comprising a polymorphic site at nucleotide
 position 17 of intron 8

<400> 2

taatggtaaa aaacaaacaa amaaacaaaa aacacaccaa aaaaccaa

48

<210> 3
<211> 94
<212> DNA
<213> Unknown

<220>

<223> Partial nucleic acid sequence of the GK gene comprising a polymorphic site at nucleotide position 29 of exon 10

<400> 3

ttcattctcc cttcaaccat aggtatggaa caggatgttt cttactatgt ratacaggcc 60
ataagggttgg ttttaataa aaatgattaa gtca 94

<210> 4

<211> 58

<212> DNA

<213> Unknown

<220>

<223> Partial nucleic acid sequence of the GK gene comprising a polymorphic site at nucleotide position 22 of intron 12

<400> 4

gaaatttgtg agtgtgttct aacaaaagkt tagaaaatct gaaaaatgac acattca 58

<210> 5

<211> 8079

<212> DNA

<213> Unknown

<220>

<223> Glycerol kinase gene

<221> misc_feature

<222> 2214, 2215, 2216, 2217

<223> n = A,T,C or G

<400> 5

ggtcagcg ggccgcgcgg cctcggtctc tggactcgac acctgcacct cccccctcccg 60
ccgcgtcac ccaggaaacc ggccgcaatc gcccggac ctgaagctgg ttcatggca 120
gcctcaaaga aggcaatggggccattt gttggggcgg tggaccaggc caccagttcg 180
acgcgtttt tggtagcccc ggggtgacat gtgaagaggc gctgagctgt aaaacgacgg 240
ccagtcatcc ttgatatctg cctgcatttt tacattaata ttacaatata ttttcaggt 300
tttcaattca aaaacagctg aactacttag tcatacatcaa gttagaaataa aacaagagtt 360
ccaaagagaa gggatgttt ctaatttaa tatgtaaaga cacattatgt ttgttagtcc 420
atctcaccca acttgccccca atgccttctt ttgtcaaaaga tgggtggaaac argaccctaa 480
ggaaattcta cattctgtct atgagtgtat agagaaaaaca tgtgagaaac ttggacagct 540
caatattgtat atttccaaca taaaaggat ttttagtagaa tattttaccc acatgtaaaa 600
cgacggccag ttgagagctg tttcctgaa gtagttctt cttgttaaat ttttgacttc 660
cttctgttta actttctttaa taaagctatt ggtgtcagca accagaggaa aaccactgta 720
gtctggacaa agataactgg agaccccttc tacaatgtg tggtaagct gtcatgcatt 780
gatgtcaaat gtagggcctt tcttcacatt gcaatgtaaa acgacggcca gttccttgc 840
agtgatttca gtaagttctt attttttaa atgaagttt tcatgtatat tattttat 900
tggctatag tggcttga tctaagaacc cagtcattcg ttgagagct tagaaaaaga 960
attccaggaa ataataactt tgtcaaggta agaatttctt cagaagtata ctataagaat 1020
gtttctttt taaaaaaag ttgcagatt tcactagaaa gaagcatctt atggtacaat 1080
agttatttga tacaatttat agaatcttt tcccgataa ttgaggccctg taaaacgacg 1140
gccagtttct tttgttggt gttttgtt taaactgtta cactttcat ttgcttaactg 1200
aacttcacaa ctgccttttag tccaagacag gccttccact tagcacttac ttcaactgc 1260
tggaaacttcg ttggctcctt gacaatgtga gaaaagttca aaaggccgtt gaagaaaaac 1320
gagctctttt tggactatt gattcatggc ttatgggt atgttaaat ataatggata 1380
tatggagaat ttttcagaa atttttcta gactgcctt cctattgtt ctactagcag 1440

gtcagacttt ttaatttagca tgtaaaaacga cggccagttg tgctctgctg attatgaccc 1500
 ttaacaatat gtaaattaaa ttgccaataa gtacaaaattt aacctgattt ttttactctg 1560
 ccttagagttt gacaggagga gtcaatggag gtgtccactg tacagatgta acaaatgcaa 1620
 gtaggactat gctttcaac attcattctt tggaatggga taaacaactc tgcgagtaag 1680
 ttctgtttt ctctaaatat agitttccca atacactacc tatttataac cgaardctta 1740
 atatttcag atgtcagtgg agcatgtaaa acgacggcca gtacagtgtt aaataccaa 1800
 tcttcttgc tttcagattt ttggaattt caatggaaat tcttccaaat gtccggagtt 1860
 ctctcgagat ctatggccta atggtaaaaaa acaaacaam aaacaaaaaa cacacaaaaa 1920
 aaccaaaaaa caaacaaaaa aaaacctaattt aattaaagtt tttttattac aaaacaagtt 1980
 tactattcat aattcaaaaag tcaactgtgt tatgtttgt gacttaaaaa ctttacagtc 2040
 cttttacaa tggaaagctg gggccttggg aggtgtgcca atatctggg taagtttcat 2100
 caccaagtgt ctccccatcc ccacccttcc ccatgttatg gctttcctcc tcttagttca 2160
 tcagtgtgcc tctttttaaa cttagggaaaaa caagtaaaag ttgcaaaattt ggannnntct 2220
 tggcttaca tgtcatactg tggccattt agaatctttt gaataaatta attttaactc 2280
 tcccttccca tacctatttattt cttacatatt aacaaatggt attaacaat ggggaaaatg 2340
 gccaaatggg gaaaatgca gaaaaatagac agttcattct ttgataaaata aaaaatgaaa 2400
 aataaaatcct atggctcttc taaaaagaaa gttaaatacta ttgtatttagt cagtgttctt 2460
 tattgtcatt tatactttca gtgttaggg gaccagtctg ctgcatttgtt gggacaaatg 2520
 tgcttcaga ttggacaaggc caaaaatcacg tgagtttaag aaacagactt aaaaaccaat 2580
 gctgtttgt tttttctact tggtgctttt aataaggaaa agctttgaa gttcatccag 2640
 gatgaaaatc aatagcttaa tagctccat atgcatastat acacttttta ccattttttt 2700
 atatctttaa ataaaataca aaatgccata tatatgcaca ctgatgaagc ttataaagac 2760
 ctaaatttgc aggctggcg cggttattttt cttcaataa aattgtcttc tattcattct 2820
 cccttcaacc ataggtatgg aacaggatgt ttcttactat gtratacagg ccataagggtt 2880
 ggttttttaa ataaaaat tggattttttt gtcataagttc atctaaataa tgcttgaaca 2940
 taatttacta ttaaacaact tttagtctt agctttact taatctttt cagggtttaa 3000
 ttttagagctc aatacaaaaat ttgaatcggt ctaataagaa ccattttaga ctcttgaat 3060
 tttatatgtg tggtttttaat tggctgggg gggaaatctag actgagacct catcaaattc 3120
 ttaatgc当地 tctaatttga aacaagggaaat aaacttttta tacagcttaa atgtgttctt 3180
 aattctgatc gttttgactg taaggattt tttttttttt tggttttattt attgcattat 3240
 tttgtaccta tggattttta actttttttt aaagttctca tggattttttt tcattttcca 3300
 ctactgaaat ctttttttt tcttcttac agtgtgttactt ttctgatcat ggccttctca 3360
 ccacagtggc ttacaaactt ggcagagaca aaccagtata ttatgtttt gaaatgtt 3420
 ctttttaatc aatatggata atatgacaaa cattcaaagc taataaaaat cacagagttt 3480
 tctaaacactt ttctggtaaa tcttaataca gaggactcaa aaagttctgc tttttggca 3540
 tttgatttgc ttgaagggaaat ctgaaactga tctgggtgtc aggactcaca ggagaccttg 3600
 attagattgg ttcctcagtt cttatgccaat ttaatcatgt caccttaggc atattacttg 3660
 agagctctac aatgtgaggt tttttttttt tttatctcta aagtttaatc ggattaacgt 3720
 gctctctaacc atttcttca tcttggattt tataaataaa atgctccagt 3780
 gttccaaaga gaaaccctggg cacaatagg cagaacaact ctcttcaactt gtctcctcat 3840
 aaaaataaaat tttgttaac attttgat agaaaaagaaa ggcacgagat ttatgcccact 3900
 ttttctttag ggttctgttag ctatagctgg tgctgttattt cgctggctaa gagacaatct 3960
 aagcctatata ttttatttagt acttagataa aactatgtttt gtatttagaaag acctagttt 4020
 cataatttgc ggagtctcaa aatggaaact gaattctgtc catctgattt tgcatacac 4080
 agaatatgct caataaaaaac ctggatagt gataaaaatattt attctgtctt gaattccctt 4140
 ttttctttag ggttctgttag ctatagctgg tgctgttattt cgctggctaa gagacaatct 4200
 tggatttata aagaccttag aagaaattgg tgagttgtt ctaacaaaag kttagaaaat 4260
 ctgaaaaatg acacatttca gtatttttact tctgcaaaatgaaatatcgat gctttggccc 4320
 aaatgtgatc cagttgtgtt atttttgcattt tggattttttt taatgtttaga aaaacttgc 4380
 aaagaagtag gtacttctt tggctgtac ttcgtccctt cattttccgg gtaatatgca 4440
 ctttatttggg agcccagcgc aagagggtaa gtattggaaa tatggagttc tttttgggat 4500
 ctgttatttact tggtaaaaacga cggccagttg attatgttca attttcttctt cctggacatt 4560
 tctgtctacc aaatttgacc ttttcatattt tgagatattt caaaatttgcattt ggtttatattc 4620
 attctaatct gaaaatctt gtgcgttattt ttaggataat ctgtggactc actcagttca 4680
 ccaataaaatg ccatatttgc ttttgcattt tagaagtttgc ttgtttccaa actcgagagg 4740
 taacaaaat tggccctgttt tcttgcattt agttcattt tatctactttt aagttatgt 4800
 ttaacaccccg agatttttttgc agtactgaaa atgttagttaa tcaaataatc aggtgcctt 4860
 aatactaatac taaatataag cagggttttcccccatttttgc cagctgtcat taccttctaa 4920
 gttccctgttc cctgtcaggc actggaaat ttatgttgc gggaggctg agtggcacac 4980

ataggccaaa gaaaacagca caaacatagg catcaaggca gaaaaacagg gtgaaaata 5040
gagttgtata gcttagctga atatcaaggt gaatgcagag gtgtagttag agaaaaagtt 5100
ggctgtgacc agatcaaaga gggcttagaa gaccagaata agaagtctca atttattcca 5160
taggcttcttq gaagcttcttq agagttctg agtggaggat tgccatccc agagatgtta 5220
ctatgaaata gatttataac attaattgca ctgggttatt taagatttg gatgccatga 5280
atcgagactg tggaaattcca ctcagtcatt tgcaggtaga tggaggaatg accagcaaca 5340
aaattcttat gcagctacaa gcagacattc tgtatatacc agtaggttag taagtctca 5400
ttccctttaaa ctccccaggt aatgttctt gtggaaataac tagtctttg ggtgtaaaac 5460
gacggccagt tcccagagta atgttcttq tggaaataact agttctttgg gcatatgtaa 5520
ccacaaaagat attgatggaa ctctctctcc tcagtgaaac cctcaatgcc cgaaaactact 5580
gcactgggtg cgctatggc ggcagggct gcagaaggag tcggcgtatg gagtctcgaa 5640
cccgaggatt tgtctgccgt cacgatggag cgggttgaac ctcagattaa tgccggaggg 5700
acatttaaag aatgaaatgt tcagtgatatactgtgaaaac cgaccttagt gcatatgtaa 5760
tttgggggttcc tggtagtta aaagtaagg aaccaagtaa aatagtaaat ttatcatttgc 5820
cagattccgc tgccaagcat attggctt actgaataaa tgtgaatgag agaaatcggtt 5880
gcttatcaaa agaacttcta aaatcacattt taaaaatca tttgtaaaac gacggccagt 5940
agccctactg cagtttaatg tgtcaataat ttgtcaagaa tgggtttagtgc tccatataat 6000
ggtactaaga acatctcagc aaactacatt tcgttatgtg tttttctac cttctaaattc 6060
tagaaagtga aattcggttat tctacatgga agaaagctgt gatgaagtca atgggttggg 6120
ttacaactca atctccagaa agtggtaaaa atgtttttgt ttattattgt cacatttct 6180
tagtatatta aatagttatt taagtatcta ggcatttaca catagccagg ctgctctgaa 6240
gaaaagcatt atcatatgtc cagagattct gacatttga aaacacttta aagtctaaa 6300
cacaatgtt aattatcag gtggtaaaa acgacggcca gttggttgg tttgcttgc 6360
tggaaatctct tctgcttggg tgaccacagg tgaccctagt atcttctgtatg 6420
gggctttttt atagtgagta gcatgtaat gtaatcggaa gcaagggtaca tctcagggtt 6480
gttactctt aatttagaca actctattag ttagctttaa tgggttctgt tataacttag 6540
cagaaatttt tcagtgttt tcatttttc tgggtcttagg aagctggaaa atcaattaaa 6600
ggtctaatta gtttagaccaa ttaatctttg gggcagttt gaaagtaagaa ctgtgactct 6660
gcttaccctt tttaatatttt taatgtgatg acttctttaa gagggactac attctgtgt 6720
cagctgcagc aataagcaaa agtgaaaata ctaatattta aatgacaggaa ctttcagact 6780
gactgtgaa agttaaagta tactttaaa tactggctt aatgaaatgt atgcttctta 6840
ttctgtatgt tcccatgaaa gtgaaactta aaaaaaaaaat tcatgattttt ggttcatga 6900
aaaggccctt ttcttatgaa aattgagaca gtttgcattt ctctaaagctt aagatgggc 6960
tatgtgtcta gagtctttaga cttctaaaat gcatgtggc actatatgtt ggttatctct 7020
tcggtgacat acactgcaat ttgagagggc tggaaattttt ttgccttggg aaacgattag 7080
caacagtggc aatatttgtt aattttggaa ttggccctgt ttgtgcattt ttaattgtga 7140
ggcatgattt agaaatcata tggactttt agcttaataa atgattgaat catctgcatt 7200
gctttaactc ctgaatttgc tgcattgtt attgacatattt atgggtttttt tcccccattt 7260
caggtattcc ataaaaccta ccaactcatg gattcccaag atgtgagctt ttacataat 7320
gaaagaaccc agcaattctg tctcttaatg caatgacactt attcatagac tttgattttt 7380
tttataagcc acttgcgtca tgaccctcca agtagaccc tggctaaaaa taaagaaaat 7440
gcagaaaaaa gaatgtata gaaatatttg gtgggttttt tttttttaa acatccacag 7500
ttaaggttgg gccagctacc tttgggctg accccctca ttgcataac atccctgtcc 7560
attccctcta agatgttagga agaatttgcgaa tccttaccat tggaatcttc catcgacat 7620
actcaaaacac tttggacca ggatttgagt ctctgcattt catataactt ataaaaagg 7680
tattactaac ctgtttaaaaa tcagcagctc ttgcattttt agagacaccc taaaagtctt 7740
cttttctaca tagttgaaga cagcaacatc ttcaactgaat gtttgaatag aaacctctac 7800
taaatttattt aatagacat tttagtgcattt cacagcttgg atatttttctt gaaaagtat 7860
ttggccaaaac tggaaatcctt gatgtttt ccattggccc actaattata atgacttctt 7920
gtctgggtct tataggaaaaa gatactttt ttttcttcc atcttcctt tttatatttt 7980
ttactttgtt tgataacat acatgcctat atatttata cactgaggga gcccatttt 8040
aaataaaagag cacattatat tcagaagggtt ctaacaggq 8079

<210> 6
<211> 41
<212> PRT.
<213> Unknown

<220>

<223> GK N288D mutant

<400> 6

<210> 7

<211> 41

<212> PRT

<213> Homo sapiens

<400> 7

Phe Gln Ile Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Cys Asn Thr Gly His Lys Cys Val Phe Ser Asp His Gly Leu Leu
 20 25 30
 Thr Thr Val Ala Tyr Lys Leu Gly Arg
 35 40

<210> 8

<211> 41

<212> PRT

<213> Unknown

<220>

<223> Rat

<400> 8

Phe	Gln	Asp	Gly	Gln	Ala	Lys	Asn	Thr	Tyr	Gly	Thr	Gly	Cys	Phe	Leu
1				5					10					15	
Leu	Cys	Asn	Thr	Gly	His	Lys	Cys	Val	Phe	Ser	Glu	His	Gly	Leu	Leu
							20			25				30	
Thr	Thr	Val	Ala	Tyr	Lys	Leu	Gly	Arg							
							35			40					

<210> 9

<211> 41

<212> PRT

<213> Unknown

<220>

<223> Mouse

<400> 9

Phe Gln Asp Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Cys Asn Thr Gly His Lys Cys Val Phe Ser Glu His Gly Leu Leu
 20 25 30
 Thr Thr Val Ala Tyr Lys Leu Gly Arg
 35 40

<210> 10

<211> 39

<212> PRT

<213> E. coli

<400> 10

Val	Lys	Glu	Gly	Met	Ala	Lys	Asn	Thr	Tyr	Gly	Thr	Gly	Cys	Phe	Met
1				5					10				15		
Leu	Met	Asn	Thr	Gly	Glu	Lys	Ala	Val	Lys	Ser	Glu	Asn	Gly	Leu	Leu
								20	25				30		
Thr	Thr	Ile	Ala	Cys	Gly	Pro									
							35								

<210> 11

<211> 39

<212> PRT

<213> Pseudomonas aeruginosa.

<400> 11

Val	Glu	Pro	Gly	Gln	Ala	Lys	Asn	Thr	Tyr	Gly	Thr	Gly	Cys	Phe	Leu
1					5				10				15		
Leu	Met	His	Thr	Gly	Asp	Lys	Ala	Val	Lys	Ser	Thr	His	Gly	Leu	Leu
					20			25				30			
Thr	Thr	Ile	Ala	Cys	Gly	Pro									
					35										

<210> 12

<211> 39

<212> PRT

<213> Enterococcus casseliflavus

<400> 12

Phe	Glu	Lys	Gly	Met	Ile	Lys	Asn	Thr	Tyr	Gly	Thr	Gly	Ala	Phe	Ile
1					5				10				15		
Val	Met	Asn	Thr	Gly	Glu	Glu	Pro	Gln	Leu	Ser	Asp	Asn	Asp	Leu	Leu
					20			25				30			
Thr	Thr	Ile	Gly	Tyr	Gly	Ile									
					35										

<210> 13

<211> 41

<212> PRT

<213> Haemophilus influenzae

<400> 13

Val	His	Ala	Gly	Gln	Ala	Lys	Asn	Thr	Tyr	Gly	Thr	Gly	Cys	Phe	Met
1						5			10				15		
Leu	Leu	His	Thr	Gly	Asn	Lys	Ala	Ile	Thr	Ser	Lys	Asn	Gly	Leu	Leu
								20	25			30			
Thr	Thr	Ile	Ala	Cys	Asn	Ala	Lys	Gly							
					35		40								

<210> 14

<211> 39

<212> PRT

<213> *Bacillus subtilis*

<400> 14
 Phe Glu Glu Gly Met Gly Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met
 1 5 10 15
 Leu Met Asn Thr Gly Glu Lys Ala Ile Lys Ser Glu His Gly Leu Leu
 20 25 30
 Thr Thr Ile Ala Trp Gly Ile
 35

<210> 15

<211> 41

<212> PRT

<213> *Saccharomyces cerevisiae*

<400> 15
 Tyr Lys Pro Gly Ala Ala Lys Cys Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Tyr Asn Thr Gly Thr Lys Lys Leu Ile Ser Gln His Gly Ala Leu
 20 25 30
 Thr Thr Leu Ala Phe Trp Phe Pro His
 35 40

<210> 16

<211> 41

<212> PRT

<213> *Mycoplasma genitalium*

<400> 16
 Thr Glu Pro Gly Met Val Lys Asn Thr Tyr Gly Thr Gly Cys Phe Val
 1 5 10 15
 Leu Met Asn Ile Gly Asp Lys Pro Thr Leu Ser Lys His Asn Leu Leu
 20 25 30
 Thr Thr Val Ala Trp Gln Leu Glu Asn
 35 40

<210> 17

<211> 39

<212> PRT

<213> *Enterococcus faecalis*

<400> 17
 Phe Glu Pro Gly Met Val Lys Asn Thr Tyr Gly Thr Gly Ser Phe Ile
 1 5 10 15
 Val Met Asn Thr Gly Glu Glu Pro Gln Leu Ser Lys Asn Asn Leu Leu
 20 25 30
 Thr Thr Ile Gly Tyr Gly Ile
 35

<210> 18

<211> 41

<212> PRT

<213> *Mycoplasma pneumoniae*

<400> 18
 Val Glu Pro Ala Met Val Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met
 1 5 10 15
 Leu Met Asn Ile Gly Asn Glu Leu Lys Tyr Ser Gln His Asn Leu Leu
 20 25 30
 Thr Thr Val Ala Trp Gln Leu Glu Asn
 35 40

<210> 19
<211> 41
<212> PRT
<213> Synechocystis PCC6803

<400> 19
Asp Arg Pro Gly Leu Leu Lys Cys Thr Tyr Gly Thr Gly Ala Phe Leu
 1 5 10 15
 Val Ala Asn Thr Gly Gln Thr Val Thr Arg Ser Gln His Arg Leu Leu
 20 25 30
 Ser Thr Val Ala Trp Thr Gln Thr Asn
 35 40

<210> 20
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> GK gene polymorphism

<400> 20
ggacargacc ct 12

<210> 21
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> GK gene polymorphism

<400> 21
aaacaaaahaa acaaaaa 16

<210> 22
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> GK gene polymorphism

<400> 22
actatgtrat aca 13

<210> 23
<211> 16
<212> DNA

9/9

<213> Artificial Sequence

<220>

<223> GK gene polymorphism

<400> 23

aacaaaagkt tagaaa

16