Kombinatorika

1. Pravilo zbrajanja i produktno pravilo (citirati i dokazati teorem).

Pravilo zbrajanja: Ako su A i B konačni disjunktni skupovi, onda vrijedi

$$|A \cup B| = |A| + |B|$$

Teorem (Produktno pravilo): Neka su A_1 , A_2 , ..., A_n neprazni konačni skupovi. Onda vrijedi:

$$|A_1 \times A_2 \times ... \times A_n| = |A_1| \cdot |A_2| \cdot ... \cdot |A_n|$$

ili kraće pisano:

$$\left| \prod_{i=1}^{n} A_i \right| = \prod_{k=1}^{n} |A_i| .$$

Dokaz: Rabimo matematičku indukciju.

Za n=1 tvradnja je istinita: $|A_1| = |A_1|$.

Pretpostavljamo da je za n=k: $\mid A_1\times A_2\times ...\times A_k\mid = |A_1|\cdot |A_2|\cdot ...\cdot |A_k|$

Za n = k +1 vrijedi: $|(A_1 \times A_2 \times ... \times A_k) \times A_{k+1}| = |A_1 \times A_2 \times ... \times A_k| \cdot |A_{k+1}|$

$$\Rightarrow \qquad |A_1 \times A_2 \times ... \times A_{k+1}| = |A_1| \cdot |A_2| \cdot ... \cdot |A_{k+1}|$$

2. Koliki su $|B^A|$ i $|2^X|$ za konačne skupove A, B i X? Dokazati.

Teorem: Neka su A i B neprazni konačni skupovi. Onda vrijedi $\left| \mathbf{B}^{\mathbf{A}} \right| = \left| \mathbf{B} \right|^{|\mathbf{A}|}$.

Dokaz: Neka je $A = \{a_1, a_2, ..., a_n\}$, onda je |A| = n. Skup $B^n = B \times B \times ... \times B$ ima $|B|^n = |B|^{|A|}$ elemenata.

Teorem: Neka je X neprazan konačan skup. Onda za partitivni skup 2^X vrijedi $\left|2^X\right|=2^{|X|}$.

Dokaz:

a) Neka je $X = \{x_1, x_2, ..., x_n\}$. Treba pokazati da postoji bijekcija iz partitivnog skupa 2^X na skup $\{0, 1\}^n$. Definirajmo $F: 2^X \to \{0, 1\}^n$ kodoranjem podskupa $A \in 2^X$. Ako je $A = \emptyset$ stavljamo F(A) = (0, 0, ..., 0). Ako je $A \neq 0$, onda neka je F(A) n-terac u kojem na k-tom mjestu dolazi jedinica onda i samo onda ako je $x_k \in A$, inače je nula. F(A) je n-terac koji predstavlja kod skupa A.

Funkcija F je očevidno injektivna, jer ako su A, B \in 2^X i F(A)=F(B) onda je A=B. Funkcija je surjektivna jer za svaki n-terac iz $\{0, 1\}^n$ možemo očitati A.

b) Budući da je $F: 2^X \rightarrow \{0, 1\}^n$ bijekcija, onda je:

$$|2^{X}| = |\{0,1\}^n| = 2^n = 2^{|X|}$$

3. Što su to varijacije bez ponavljanja i permutacije bez ponavljanja? Kako ih prebrojavamo?

Definicija: **Varijacijom bez ponavljanja** reda k konačnog skupa $A_n = \{a_1, a_2, ..., a_n\}$, $k \le n$, zovemo bilo koju uređenu k-torku različitih elmenata iz A_n . Ukupan broj varijacija bez ponavljanja reda k označavamo sa V_n^k .

Varijacije bez ponavljanja reda n nazivamo **permutacijama** n-članog skupa. Ukupan broj permutacija n-članog skupa označavamo sa P_n .

Teorem: Ukupan broj varijacija bez ponavljanja reda $k \le n$ skupa od n elemenata jednak je

$$V_n^k = n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!} = \binom{n}{k}k!$$

Ukupan broj permutacija bez ponavljanja n-članog skupa jednak je $P_n = n!$.

4. Što su to kombinacije bez ponavljanja i binomni koeficijenti? Koja su svojstva binomnih koeficijenata?

Definicija: Kombinacijom bez ponavljanja reda k konačnog skupa A_n ={ $a_1, a_2, ..., a_n$ }, zovemo bilo koji k-člani podskup od A_n . Ukupan broj kombinacija bez ponavljanja reda k označavamo sa C_n^k .

Teorem: Ukupan broj kombinacija bez ponavljanja reda $k \le n$ skupa od n elemenata jednak je:

$$C_n^k = {n \choose k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

 $Izraz \binom{n}{k}$ se zove binomni koeficijent.

Svojstva binomnih koeficijenata:

1)
$$\binom{n}{0} = \binom{n}{n} = 1$$

2)
$$\binom{n}{1} = \binom{n}{n-1} = n$$

3)
$$\binom{n}{k} = \binom{n}{n-k}$$

4)
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

5. Kako glasi binomna formula? Dokazati.

Propozicija: (Binomna formula) Za svaki $x, y \in R, n \in N$ vrijedi:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Dokaz: U izrazu:

$$(x+y)^n = (x+y)(x+y)\cdots(x+y)$$

nakon množenja opći član će imati oblik $c_k x^{n-k} y^k$, gdje je c_k konstantni koeficijent kojeg želimo odrediti. Produkt $x^{n-k} y^k$ može se ostvariti tako da uzmemo k elemena y od ukupno n elemenata y iz binoma (x+y). Tih k elemenata možemo odabrati na ukupno $\binom{n}{k}$ načina. Dakle, $c_k = \binom{n}{k}$.

6. Što su to permutacije i varijacije s ponavljanjem i kako ih prebrojavamo? (Citirati i dokazati teoreme o ukupnom broju permutacija s ponavljanjem i varijacija s ponavljanjem)

Definicija: Neka je zadan skup od k elemenata $A_k = \{a_1, a_2, ..., a_k\}$. Promatrajmo sve uređene n-torke elmenata iz A_k u kojima se element a_1 pojavljuje n_1 puta, element a_2 pojavljuje n_2 puta, ..., element a_k pojavljuje n_k puta, pri čemu je $n_1 + n_2 + ... + n_k = n$. Takve n-torke zovemo **permutacijama n-tog reda s ponavljanjem**, a njihov ukupni broj označavamo sa: $P_n^{n_1, n_2, \cdots, n_k}$.

Teorem: Ukupan broj permutacija n-tog reda s ponavljanjem skupa $A_k=\{a_1, a_2, ..., a_k\}$, u kojima se element a_i pojavljuje n_i puta, i=1, 2, ..., k jednak je:

$$P_n^{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$$
.

Dokaz: Vrijedi da je $P_n = n! = (n_1! n_2! \cdots n_k!) P_n^{n_1, n_2, \cdots, n_k}$, odakle slijedi tvrdnja.

Definicija: Neka je zadan skup od n elemenata $A_n = \{a_1, a_2, ..., a_n\}$. Uređene k-torke elmenata iz A_n , pri čemu se svaki element može i ponavljati, **zovemo varijacijama s ponavljanjem k-tog reda n-članog skupa**, a njihov ukupan broj označavamo s \overline{V}_n^K .

Teorem: Ukupan broj varijacija s ponavljanjem k-tog reda n-članog skupa je:

$$\overline{V}_n^k = n^k$$
.

Dokaz: Skup svih varijacija s ponavljanjem k-tog reda je Kartezijev produkt od k-skupova $A_n \times A_n \times \cdots \times A_n$. Vrijedi da je $|A_n \times A_n \times \cdots \times A_n| = |A_n|^k = n^k$.

7. Citiraj i dokaži multinomnu formulu.

Teorem (Multinomni teorem): Vrijedi da je:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{n_1 + n_2 + \dots + n_k = n} \frac{n!}{n_1! n_2! \cdots n_k!} x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$$

gdje u gornjoj sumi zbrajamo po svim k-torkama cijelih brojeva $n_1, n_2, ..., n_k \ge 0$ takvim da je $n_1+n_2+...+n_k=n$.

Dokaz: Ukupan broj načina na koji u potenciji

$$(x_1 + x_2 + \dots + x_k)^n$$

možemo odabrati n_i puta varijablu x_i ; i = 1, 2, ..., k; tako da je $n_1 + n_2 + ... + n_k = n$, jednak je ukupnom broju permutacija n-tog reda s ponavljanjem:

$$P_n^{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k!}$$

To je upravo multinomni koeficijent uz $x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$ u razvoju $(x_1+x_2+\cdots+x_k)^n$.

8. Što su to kombinacije s ponavljanjem i kako ih prebrojavamo?

Definicija: Neka je zadan skup od n elemenata $A_n = \{a_1, a_2, ..., a_n\}$. **Kombinacija s ponavljanjem k-tog reda** n-članog skupa je bilo koja neuređena k-torka elemenata iz A_n . Pri tom se svaki element k-torke može i ponavljati.

Teorem: Ukupan broj kombinacija s ponavljanjem k-tog reda n-članog skupa jedanak je:

$$\overline{C}_n^k = \begin{pmatrix} n+k-1 \\ k \end{pmatrix}$$

9. Kako glasi formula uključivanja i isključivanja (Sylvesterova formula)? Dokazati formulu.

Teorem (Formula uključivanja i isključivanja ili Sylvesterova formula): Neka su A₁, A₂, ..., A_n konačni skupovi sadržani u univerzalnom skupu X. Onda vrijedi:

a)
$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| +$$

 $+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - ... + (-1)^{n-1} |A_1 \cap A_2 \cap ... \cap A_n|$

b)
$$|\overline{A}_1 \cap \overline{A}_2 \cap ... \cap \overline{A}_n| = |X| - |A_1 \cup A_2 \cup ... \cup A_n|$$

Dokaz:

a) Rabi se matematička indukcija. Lako se vidi da za n=2 vrijedi tvrdnja izrečena teoremom: $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$.

Pretpostavimo da tvrdnja vrijedi za n konačnih skupova, a treba dokazati da onda tvrdnja vrijedi za n + 1 konačnih skupova.

$$\begin{split} &|A_1 \cup \dots \cup A_n \cup A_{n+1}| = \left| (A_1 \cup \dots \cup A_n) \cup A_{n+1} \right| \\ &= \left| A_1 \cup \dots \cup A_n \right| + \left| A_{n+1} \right| - \left| (A_1 \cup \dots \cup A_n) \cap A_{n+1} \right| \\ &= \left| A_1 \cup \dots \cup A_n \right| + \left| A_{n+1} \right| - \left| (A_1 \cap A_{n+1}) \cup \dots \cup (A_n \cap A_{n+1}) \right| \\ &= \left| A_1 \cup \dots \cup A_n \right| + \left| A_{n+1} \right| - \sum_{i=1}^n \left| A_i \cap A_{n+1} \right| \\ &+ \sum_{1 \leq i < j < k \leq n} \left| A_i \cap A_j \cap A_{n+1} \right| - \dots - (-1)^{n-1} \left| A_1 \cap A_2 \cap \dots \cap A_{n+1} \right| \\ &= \sum_{i=1}^{n+1} \left| A_i \right| - \sum_{1 \leq i < j \leq n+1} \left| A_i \cap A_j \cap A_k \right| + \\ &+ \sum_{1 \leq i < j < k \leq n+1} \left| A_i \cap A_j \cap A_k \right| - \dots + (-1)^n \left| A_1 \cap A_2 \cap \dots \cap A_{n+1} \right| \end{split}$$

b) Iz DeMorganove formule slijedi da je:

$$|\overline{A}_1 \cap \overline{A}_2 \cap ... \cap \overline{A}_n| = |\overline{A_1 \cup A_2 \cup ... \cup A_n}| = |X| - |A_1 \cup A_2 \cup ... \cup A_n|$$

10. Izvedi formulu za ukupan broj deranžmana u skupu svih permutacija bez ponavljanja reda n.

Koliko ima permutacija bez ponavljanja f skupa $\{1, 2, ..., n\}$ takvih da je $f(k) \neq k$ za sve k = 1, 2, ..., n? Takve permutacije kod kojih niti jedan element nije na svom mjestu nazivamo **neredima ili deranžmanima**.

Ukupan broj deranžmana d_n se računa po formuli:

$$d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!} \right) .$$

Izvod formule:

Neka je X skup svih permutacija skupa $\{1, 2, ..., n\}$, a $A_i = \{f \in X : f(i) = i\}$.

Tada je ukupan broj deranžmana: $d_n = |\overline{A}_1 \cap \overline{A}_2 \cap ... \cap \overline{A}_n|$.

Prema Sylvestrovoj formuli:

$$\left|\overline{A}_{1} \cap \overline{A}_{2} \cap ... \cap \overline{A}_{n}\right| = \left|\overline{A}_{1} \cup \overline{A}_{2} \cup ... \cup \overline{A}_{n}\right| = \left|X\right| - \left|A_{1} \cup \overline{A}_{2} \cup ... \cup \overline{A}_{n}\right|$$

odnosno:

$$\begin{aligned} d_{n} &= \left| X \right| - \sum_{i=1}^{n} \left| A_{i} \right| + \sum_{1 \leq i < j \leq n} \left| A_{i} \cap A_{j} \right| - \sum_{1 \leq i < j < k \leq n} \left| A_{i} \cap A_{j} \cap A_{k} \right| + \\ &+ \dots + (-1)^{n} \left| A_{1} \cap A_{2} \cap \dots \cap A_{n} \right| \end{aligned}$$

Ako imamo k fiksiranih elemenata skupa {1, 2, ..., n}, onda variramo ostalih (n-k) elemenata. Ukupan broj varijacija bez ponavljanja (n-k)-tog reda od n elemenata iznosi:

$$V_n^{n-k} = \binom{n}{n-k} (n-k)! = \frac{n!}{k!}$$

Dakle,

$$d_n = \frac{n!}{0!} - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!} = n! \sum_{k=0}^n \frac{(-1)^k}{k!} .$$