Nazwisko i imie	Nr albumu	Kierunek studiów	Rok studiów		Data egzaminu	A	
EGZAMIN ZE WSTĘPU DO MATEMATYKI							
D. 11 .//1.11 // 1.1.1.					D 1 1		

EGZAMIN ZE WSTĘPU DO MATEMATYKI
Prawdziwość każdego stwierdzenia zaznacz znakiem ⊞, a jego fałszywość znakiem ⊟. Brak odpowiedzi potraktujemy tak samo, jak błędną odpowiedź. Tam gdzie trzeba, przedstawić stosowny dowód.
1. Jeśli $A = \{2, 10, 8, 4, 6\}$ i $B = \{3, 4, 6, 9, 10\}$, to spośród równości (1) $A \cup B = \{2, 3, 4, 5, 6, 8, 9, 10\}$, (2) $A \cap B = \{4, 6, 10\}$, (3) $A - B = \{2, 8, 6\}$ prawdziwe są: (a) tylko (1) i (2) \square ; (b) tylko (2) \square ; (c) tylko (3) \square ; (d) tylko (2) \square .
2. Dane są podzbiory A , B i C zbioru X , gdzie $C = A - B$. Wtedy: (a) $C \subseteq A$ \square ; (b) $C \subseteq B$ \square ; (c) $C \cap B = \emptyset$ \square ; (d) $A \cap C \cap B' = \emptyset$ \square ; (e) $A \cap B' \cap C = C$ \square .
3. Dane są zbiory $A = \{(x, y) \in R^2 : x^2 + y^2 = 17\}$ i $B = \{(x, y) \in R^2 : x + y = 5\}$. Wtedy zbiorem $A \cap B$ jest: (a) $\{4\}$ $[]$; (b) $\{1, 4\}$ $[]$; (c) $\{(1, 4)\}$ $[]$; (d) $\{(4, 1)\}$ $[]$; (e) $\{(1, 4), (4, 1)\}$ $[]$.
 4. Zdanie (p∨ ~q∨r) ∧ (~p∨q∨r) ∧ (p∨ ~q∨~r) jest fałszywe, gdy: (a) p jest fałszywe, q fałszywe i r fałszywe ; (b) p jest prawdziwe, q fałszywe i r fałszywe ; (c) p jest prawdziwe, q prawdziwe i r fałszywe ; (c) p jest prawdziwe, q prawdziwe i r prawdziwe .
5. Zaciemniona część diagramu Venna reprezentuje zbiór: $(a) \ (A' \cap B') \cup (B' \cap C') \cup (C' \cap A') \ \square;$ $(b) \ A' \cup B' \cup C' \ \square;$ $(c) \ A' \cap B' \cap C' \ \square;$ $(d) \ (A \cap B') \cup (B \cap C') \cup (C \cap A') \ \square;$ $(e) \ (A' \cap C') \cup (B' \cap C') \ \square.$
6. Spośród tablic wartości logicznych
prawdziwe są: (a) (1), (2) i (3) \sqsubseteq ; (b) tylko (2) \sqsubseteq ; (c) tylko (1) i (2) \sqsubseteq ; (d) tylko (1) i (3) \sqsubseteq .

7. Spośród 16 możliwych układów wartości logicznych zdań p, q, r i s, zdanie $(p \lor q) \Rightarrow (r \land s)$ jest prawdziwe dla dokładnie: (a) 6 układów \square ; (b) 7 układów \square ; (c) 8 układów \square ; (d) 12 układów \square .

8. Sprawdzić, czy schemat $\frac{p \Rightarrow (\sim q), \ r \Rightarrow q, \ r}{\sim p}$ jest regułą wnioskowania? Uzasadnić swoje stwierdzenie.

9. Wykazać, że jeśli $\mathcal{A} = \{A_0, A_1, A_2, \ldots\}$ i $A_i = \{i, i+1, i+2, \ldots\}$ dla $i \in \mathbb{N}$, to $\bigcup_{i \in \mathbb{N}} A_i = \mathbb{N}$ i $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$.
10. Indukcyjnie wykazać, że liczba $10^{3n+1} + 3(-1)^n$ jest podzielna przez 13 dla każdej liczby $n \in \mathbb{N}$.
11. Dane są funkcje $f, g: \mathbb{N}_+ \to \mathbb{N}_+$, gdzie $\{(1,2), (2,5), (3,5), (4,4), (5,3)\} \subseteq f$ i $g(x) = 2x$ dla każdego $x \in \mathbb{N}_+$. Wtedy (a) g jest surjekcją \square ; (b) g jest injekcją \square ; (c) f jest injekcja \square ; (d) $\exists_{x \in \mathbb{N}_+} f(x) = g(x)$ \square ; (e) $\forall_{x \in \mathbb{N}_+} \exists_{y \in \mathbb{N}_+} f(x) \in g(y)$ \square .
12. Dane są zbiory $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ i $C = \{x, y, \}$ oraz relacje $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$ $S = \{(b, x), (b, z), (c, y), (d, z)\}$. Wtedy: (a) $S \circ R =$ (b) $R^{-1} \circ S^{-1} =$ (c) $R \circ R^{-1} =$
13. Wykazać, że dla funkcji $f: X \to Y$ oraz podzbiorów A_1 i A_2 zbioru X mamy $f(A_1) - f(A_2) \subseteq f(A_1 - A_2)$. Poda przykład funkcji f oraz zbiorów A_1 i A_2 pokazujących, że może być $f(A_1) - f(A_2) \neq f(A_1 - A_2)$.
14. Wykazać, że zbiór wszystkich parzystych liczb naturalnych $\{0,2,4,\ldots\}$ jest równoliczny ze zbiorem wszystkic nieparzystych liczb całkowitych $\{\ldots,-3,-1,1,5,\ldots\}$.