FOSSGIS 2020

IMIS3

Open Source GIS-Komponenten im radiologischen Notfall-Informationssystem des Bundes

Dr. Marco Lechner Bundesamt für Strahlenschutz RN1 Koordination Notfallschutzsysteme

Bundesamt für Strahlenschutz

- selbstständige wissenschaftlich-technische Bundesoberbehörde im Geschäftsbereich des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU)
- bündelt Kompetenzen im Bereich des Strahlenschutzes
 - Wirkungen und Risiken von ionisierender und nicht-ionisierender Strahlung
 - Radiologischen Notfallschutz
 - Überwachung der Umweltradioaktivität
 - Medizinischer und beruflicher Strahlenschutz
- gegründet 1989 als Konsequenz des Reaktorunfalls 1986 in Tschernobyl
- ~ 500 Beschäftigte an 6 (7) Standorten

Gesetzlicher Auftrag

- 2017: Strahlenschutzgesetz (StrlSchG)
 - §106 Einrichtung eines Radiologischen Lagezentrums
 - §107 Aufgaben der Länder (zu übermittelnde Daten und Informationen)
 - §108 Erstellung eines Radiologischen Lagebildes
 - §161-163
 - Eigene Daten erheben
 - Daten der Länder (s.o.) sammeln, erfassen, verarbeiten und bewerten
 - "Das Bundesamt für Strahlenschutz als Zentralstelle des Bundes für die Überwachung der Umweltradioaktivität betreibt ein integriertes Mess- und Informationssystem für die Überwachung der Umweltradioaktivität …"
 - "Die im integrierten Mess- und Informationssystem [IMIS] zusammengefassten Daten stehen den zuständigen Landesbehörden direkt zur Verfügung"

Entwicklungsgrundsätze

- Nutzung etablierter Open Soure Software-Komponenten
- Verwendung offener Standards
 - OGC-Standards
 - IAEA IRIX-Standard
- Erweiterung und Ergänzung bestehender freier Software vor Eigenentwicklung
- Entwicklung eigener Softwarekomponentne unter freien Lizenzen
- Abstimmung der eigenen Release-Zyklen mit externen Projekten
- aktive Veröffentlichung (GPL auf Gitub)
 https://www.bfs.de/SharedDocs/Kurzmeldungen/BfS/DE/2017/0102-bfs-open-source.html

IMIS

DA FTP HTTP

DB PostgreSQL PostGIS

Labore LADA

GIS WebGIS PRINT
Dokumentenerzeugung

CMS
Elektronische
Lagedarstellung

OSM Maps Geocoding Routing

SOS Scheduling

Status

- IMIS3 ist seit Jahresbeginn im Vollbetrieb
- IMIS2 wird nur noch intern betrieben, um Restmigrationen durchzuführen
- Öffentlich: Geoportal (https://www.imis.bfs.de/geoportal/)
- PM Besserer Datenaustausch im radiologischen Notfallschutz https://www.bfs.de/SharedDocs/Pressemitteilungen/BfS/DE/2020/003.html

IMIS3 (GIS-)Komponenten

GIS-Komponenten

— WebGIS

- Bibliotheken: OpenLayers, ExtJS, GeoExt, BasiGX, D3.js, proj4js, ...
- Funktionalität: GIS, Tools (Permalink, Zeichenwerkzeuge, Vektorlayer, Print, Suchen: Themen, Objekte, Orte, ...)
- https://github.com/OpenBfS/gis-client
- GeoServer
 - OGC-Dienste: WMS, WFS, SLD
 - Attribut- und Zeitfilter
 - Zeitreihendaten
 - Attributdaten
- Geonetwork opensource
 - ISO19139, INSPIRE
 - ISO19139.bfs → clientspezifische Konfigurationen

Thesen

- —IMIS3 WebGIS ist generischer WebGIS Klient
- Geonetwork opensource kann zur generischen Speicherung von layerspezifischen Metadaten verwendet werden
- Entwicklungsstrategie des BfS ist erfolgreich
 - Voraussetzungen
 - Finanzierung
 - Nachhaltigkeit

GIS on load

- appContext.json (account-specific, main-configuration)
- layerset.json (layertree, layer-uuids only)
- <uuid>.json (Metadaten initialer Layer)

FOSSGIS 2020 11.-14.03.2020, Freiburg

IMIS3 – Open Source GIS im radiologischen Notfallschutz

GIS on load - appContext.json

```
"data":{
 "merge":{
  "backgroundLayers":[
   {"thumb":"topplus_thumb.png", "uuid":"c87f4f53-9f92-4e4d-9021-c4f9be2a824c"}
   {"thumb":"osm_thumb.png", "uuid":"8bc03d7b-ac22-4e85-a4ca-b2cd477e82ae"}
  "mapConfig":{"projection":"EPSG:3857", "zoom":6}
  "spatialSearchTypeName":"opendata:vg 250",
  "urls":{
   "geoserver-base-url":"/ogc",
   "layerset":"/gis_client_configs/layerset.json",
   "metadata-search":"/ogc/catalog/srv/ger/csw?",
   "metadata-xml2json":"/ogc/catalog/srv/api/0.1/records/",
   "spatial-search":"/ogc/opendata/ows",
```

GIS on load – layerset.json

```
"children":[
  {"leaf":true,"text":"ODL 1h","uuid":"0790a4e9-7d76-4c37-9843-6be28f80b916"},
  {"leaf":true,"text":"ODL 1h Fl\u00e4che","uuid":"f11e365a-6d80-4942-aa65-7607c637438a"},
  {"leaf":true,"text":"ODL Sonden","uuid":"28a9e30c-3217-4db8-8f7f-58dc457aa08c"}
 "text": "Ortsdosisleistung (ODL)",
 "thumb":"layer sets/odl01 thumb.jpg"
},
 "children":[...],
 "text":"Niederschlag",
 "thumb": "layer sets/regen thumb.jpg"
```



```
.../ogc/catalog/srv/api/0.1/records/0790a4e9-7d76-4c37-9843-6be28f80b916
 "gmd:fileIdentifier": {"gco:CharacterString": {...
  "#text": "0790a4e9-7d76-4c37-9843-6be28f80b916"
 }},
 "gmd:identificationInfo": {"gmd:MD_DataIdentification": {
  "gmd:citation": {"gmd:Cl Citation":
   "gmd:title": {"gco:CharacterString":
    "#text": "ODL brutto 1 h (OpenData)"
   }},
   "gmd:date": {"gmd:Cl Date":
    "gmd:date": {"gco:DateTime":
     "#text": "2015-01-30T00:00:00"
         }},
  "gmd:abstract": {"gco:CharacterString":
   "#text": "Die Daten zeigen die Ergebnisse des Bundesamtes für Strahlenschutz (BfS) zur Überwachung der
Gamma-Ortsdosisleistung (ODL) im Rahmen des Integrierten Mess- und Informationssystems (IMIS) ..."
  }},
  "gmd:pointOfContact": {"gmd:Cl ResponsibleParty":
   "gmd:individualName": {"gco:CharacterString":
    "#text": "Ansprechpartner für Geodaten"
   }},
   "gmd:organisationName": {"gco:CharacterString":
    "#text": "Bundesamt für Strahlenschutz"
   }},
```

.../ogc/catalog/srv/api/0.1/records/0790a4e9-7d76-4c37-9843-6be28f80b916 bfs:layerInformation \rightarrow bfs:MD_Layer

```
"bfs:layerInformation": {"bfs:MD_Layer": {
    "bfs:legendTitle": {"#text": "ODL brutto 1 h" ...
    "bfs:printTitle": {"#text": "ODL brutto 1 h" ...
    "bfs:layerType": {"bfs:MD_WMSLayerType":{"bfs:URL":{
        "bfs:host": {"#text": "https://www.imis.bfs.de"
        "bfs:path": {"#text": "/ogc/opendata/wms?"
        "bfs:layer": {"#text": "opendata:odl_brutto_1h"
        "bfs:transparent": {"#text": "true"
        "bfs:styles": null
        "bfs:wfs": {...},
        "bfs:download": {...},
```


.../ogc/catalog/srv/api/0.1/records/0790a4e9-7d76-4c37-9843-6be28f80b916

```
ODL 1h
bfs:layerInformation \rightarrow bfs:MD Layer \rightarrow bfs:filter
                                                                                                14 $ 00 $
                                                                   Zeitpunkt:
                                                                             08.03.2020
  "bfs:filter":[{
    "bfs:MD TimeRangeFilter": ...
                                                                                    BfS
    "bfs:MD PointInTimeFilter": {
                                                                   Messnetz:
     "bfs:paramName": {"#text": "end_measure"
                                                                                    EURDEP
     "bfs:interval": {"#text": "1"
     "bfs:unit": {"#text": "hours"
                                                                  Automatisch aktualisieren:
     "bfs:minDate": {
                                                                  Aktualisierungsintervall:
       "bfs:TimeFormat": {"#text": "Y-m-d H:i:s"
                                                                   Ausgewählten Layer hinzufügen
       "bfs:TimeInstant": {"#text": "2015-01-01 00:00:00"
     "bfs:maxDate": {
       "bfs:TimeFormat": {"#text": "Y-m-d H:i:s"
       "bfs:TimeInstant": {"#text": "2020-03-08 13:00:00"
     "bfs:defaultValue": {...},
    "bfs:MD_ValueFilter": {
     "bfs:paramName": {"#text": "source"
     "bfs:paramAlias": {"#text": "Messnetz"
     "bfs:defaultValue": {"#text": "'BfS""
     "bfs:allowedValues": [{"val": "'BfS"", "dsp": "BfS"}, {"val": "'EURDEP"", "dsp": "EURDEP"}]
     "bfs:operator": {"#text": "="
 "bfs:allowMultipleSelect": {"#text": "true" ... ],
FOSSGIS 2020 11.-14.03.2020, Freiburg IMIS3 – Open Source GIS im radiologischen Notfallschutz
                                                                                          15
```

.../ogc/catalog/srv/api/0.1/records/0790a4e9-7d76-4c37-9843-6be28f80b916 bfs:layerInformation → bfs:MD Layer → bfs:olProperty "bfs:olProperty": ["bfs:MD Property": { "bfs:propertyName": {"#text": "hoverTpl" "bfs:propertyValue": {"#text": "[[locality_name]]
[[end_measure]]
Messwert ([[unit]]):[[value]]
" "bfs:MD Property": "bfs:propertyName": {"#text": "legendUrl" "bfs:propertyValue": {"#text": "https://www.... "bfs:MD Property": "bfs:propertyName": {"#text": "allowHover" "bfs:propertyValue": {"#text": "true" "#text": "allowDownload" "#text": "allowOpacityChange" "#text": "hasLegend" "#text": "hoverStyle" "#text": "showCartoWindow" "#text": "enableLegendCount" "#text": "allowClone"

.../ogc/catalog/srv/api/0.1/records/0790a4e9-7d76-4c37-9843-6be28f80b916

bfs:layerInformation \rightarrow bfs:MD_Layer \rightarrow bfs:olProperty \rightarrow bfs:timeSeriesChartProperty

```
"#text": "dataFeatureType", "#text": "opendata:odl_brutto_1h_timeseries"
"#text": "shapeType", "#text": "line"
"#text": "curveType", "#text": "curveStepBefore"
"#text": "xAxisAttribute", "#text": "end measure"
"#text": "vAxisAttribute", "#text": "value"
"#text": "xAxisScale", "#text": "time"
"#text": "duration", "#text": "P3DT"
"#text": "yAxisScale", "#text": "linear"
"#text": "yAxisMin", "#text": "0.03"
"#text": "yAxisMax", "#text": "0.4"
"#text": "colorSequence"
"#text": "titleTpl"
"#text": "seriesTitleTpl"
"#text": "tooltipTpl", "#text": "<b>[[locality_name]]<\/b><br>Datum: [[end_measure]]<br>Messwert
in [[unit]]: [[value]]"
"#text": "yAxis grid"
"#text": "allowZoom"
"#text": "showGrid"
"#text": "backgroundColor"
```

.../ogc/catalog/srv/api/0.1/records/0790a4e9-7d76-4c37-9843-6be28f80b916
bfs:layerInformation → bfs:MD_Layer → bfs:olProperty → bfs:timeSeriesChartProperty

"gridStrokeColor", "gridStrokeWidth", "gridStrokeOpacity", "labelColor", "labelPadding", "yAxisFormat", "chartMargin", "labelSize", "legendEntryMaxLength", "tickPadding", "tickSize", "strokeWidth", "strokeOpacity", "titleColor", "titlePadding", "titleSize", "xAxisLabel", "rotateXAxisLabel", "yAxisLabel" -> "#text": "[[unit]]", "xAxisMax", "yAxisTicks", "showTimeseriesGrid", ...

- => hohe Individualität erfordert hohen Pflegeaufwand
- => mehr Flexibilität erhöht Abhängigkeit von Bibliotheken (D3.js, OpenLayers, ...)
- => Verwendung von Geonetwork opensource mit eigenem Schema ist nur eine Option, um die Layermetadaten zu verwalten

=>

Thesen

- IMIS3 WebGIS ist generischer WebGIS Klient
- —Geonetwork opensource kann zur generischen Speicherung von layerspezifischen Metadaten verwendet werden
- Entwicklungsstrategie des BfS ist erfolgreich
 - Voraussetzungen
 - Finanzierung
 - Nachhaltigkeit

BfS WebGIS mit Grundwasserdaten des LUBW

- Open Source GIS Projekt (Kurs WS2019/2020)
- Int. Master Geomatics, Hochschule Karlsruhe
- https://github.com/HsKA-OSGIS
- KEINE Verwendung von Geonetwork opensource

IMIS3 Komponenten

CMS OSM DB DA PRINT GIS SOS Labore Elektronische Maps FTP **PostgreSQL** Dokumenten-LADA WebGIS Geocoding Scheduling Lage-HTTP **PostGIS** erzeugung darstellung Routing

- Dokumentenerzeugung (Kartendokumente über MapFish Print 3)
- OpenStreetMap Aktualisierung des OSM stacks im Rahmen der kommenden Weiterentwicklung

IMIS3 Komponenten

DA FTP HTTP DB PostgreSQL PostGIS

Labore

GIS WebGIS PRINT
Dokumentenerzeugung

CMS
Elektronische
Lagedarstellung

OSM Maps Geocoding Routing

SOS Scheduling

Thesen

- IMIS3 WebGIS ist generischer WebGIS Klient
- Geonetwork opensource kann zur generischen Speicherung von layerspezifischen Metadaten verwendet werden
- —Entwicklungsstrategie des BfS ist erfolgreich
 - Voraussetzungen
 - Finanzierung
 - Nachhaltigkeit

IMIS3 Entwicklungsstrategie Voraussetzungen

- Personelle Ausstattung
- Erfahrung im Projektmanagement / Softwareentwicklung
- Kenntnisse in WebGIS-Standards (OGC, W3C, ...)
- Ausschreibung als Entwicklungsdienstleistung
 - gute und schnelle Entwickler (wie bei Angebotsbewertung vorgehen?)
 - Vertrauensverhältnis zwischen AG und AN hilfreich
 - kleinere Entwicklungspakete nach Abschätzung als Einzelbeauftragungen
- Bereitschaft noch nicht vorhandenes Wissen aufzubauen / Wissenstransfer von AN zu AG
 - regelmäßige Workshops zum Wissenstransfer
 - Inhaltlicher Input von AN ausdrücklich erwünscht
- Entwicklungsstrategie in eigener Behörde festlegen

IMIS3 Entwicklungsstrategie Finanzierung

- Bilanzierung schwierig (insbes. eigener Personalbestand)
- Direkter Vergleich mit alternativer Strategie nicht möglich
- Generelle Kosten einer Neuimplementierung mit Migration alter Prozesse in gewachsenem Umfeld
- Neuentwicklung von IMIS3 finanziell in der Größenordnung der vorherigen proprietären Wartungs- und Supportverträge
- In den nächsten 5 Jahren sukzessive Reduktion der (externen)
 Entwicklungsaktivitäten (mittelfr. Haushaltsplanung)

IMIS3 Entwicklungsstrategie Nachhaltigkeit

- Technisch robuste Web-Anwendungen
- Standardisierte Komponenten und Schnittstellen
- Modular austauschbar
- [So einfach wie möglich (KISS)]
- Quelloffene Produkte und Eigenentwicklungen
- Standortunabhängiger Betrieb (externer Betrieb öffentl. Portale)
- Betrieb in Netze des Bundes (NdB)
- Umsetzung Georedundanz
- Kommende Anforderungen des RLZ

Mit IMIS 3 stellen wir langfristig sicher, dass in einem radiologischen Notfall alle beteiligten Akteure schnell und auf einer einheitlichen Informationsgrundlage handeln können. Zugleich machen wir uns unabhängig von einzelnen Software-Firmen und Produktlizenzen. So sparen wir Kosten, gewinnen Flexibilität und machen einen großen Schritt hin zu mehr digitaler Nachhaltigkeit [...] Auch werden alle beim BfS entwickelten Software-Codes veröffentlicht und können von Behörden und anderen Interessierten für eigene Anwendungen genutzt werden.

BfS-Präsidentin Inge Paulini

Vielen Dank für die Aufmerksamkeit!

We hire !!

Sie übernehmen Verantwortung für Mensch und Umwelt. Bewerben Sie sich beim Bundesamt für Strahlenschutz als

Wissenschaftlicher Referent (m/w/d)

in der Abteilung "Radiologischer Notfallschutz"

Das Bundesamt für Strahlenschutz (BfS) arbeitet für die Sicherheit und den Schutz der Menschen und der Umwelt vor Schäden durch Strahlung. Als wissenschaftlich-technische Bundesoberbehörde gehört das BfS zum Geschäftsbereich des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU).

Ihre Aufgaben:

— Mit IMIS 3 stellen wir langfristig sicher, dass in einem radiologischen Notfall alle beteiligten Akteure schnell und auf einer einheitlichen Informationsgrundlage handeln können. Zugleich machen wir uns unabhängig von einzelnen Software-Firmen und Produktlizenzen. So sparen wir Kosten, gewinnen Flexibilität und machen einen großen Schritt hin zu mehr digitaler Nachhaltigkeit [...] Auch werden alle beim BfS entwickelten Software-Codes veröffentlicht und können von Behörden und anderen Interessierten für eigene Anwendungen genutzt werden.

BfS-Präsidentin Inge Paulini

Vielen Dank für die Aufmerksamkeit!

