EPONGE

Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic

EPONGE

Exercices et Problèmes Obscurs Nécessitant une Gamberge Excessive

~ Corrections ~

Sommaire

Chapitre I.	Algèbre	3
-	Algèbre générale	
Section 2:	Algèbre linéaire	5
Section 3:	Polynomes	6
Chapitre II.	Arithmétique	7
	Théorie des nombres	
Chapitre III	. Géométrie	9
	Géométrie du plan	
Section 2 :	Géométrie algébrique	11
Chapitre IV	. Probabilités	12
Section 1 :	Probabilités discrètes	13
Chapitre V.	Analyse	14
	Suites	
Section 2:	Equations fonctionnelles	16
Section 3:	Equations différentielles	17
Section 4:	Intégration	18
Section 5:	Série	19

Chapitre I. Algèbre

Section 1 : Algèbre générale

Exercice 1 - Un isomorphisme - 👶 - Correction

Exercice 2 - 42! - 🗿 - Correction

Exercice $3 - \cancel{\diamondsuit} + \cancel{\diamondsuit} = \infty - \cancel{\Diamond}$ - Correction

Exercice 4 - Deux espaces matriciels - 👶 🐒 - Correction

Exercice 5 - Crucialement radical - $\ensuremath{\upalpha}$ - Correction

Section 2 : Algèbre linéaire

Exercice 1 - Une leçon de vie importante - 🍫 - Correction

Exercice 2 - Déterminant et produit scalaire - Φ - Correction

Exercice 3 - Des pinaillages - 1 - Correction

Section 3 : Polynomes

Exercice 1 - NP - 👶 - Correction

Exercice 2 - Un joli automorphisme - Φ - Correction

EPONGE – Arithmétique	Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic	
Cha	apitre II. Arithmétique	

Section 1: Théorie des nombres

Exercice 1 - Une suite de PGCD - 🍫 - Correction

Exercice 2 - Not Five - 🍄 - Correction

Exercice 3 - Determinant arithmétique - 🦍 - Correction

2) On a que, pour $(i,j) \in [\![1,n]\!]^2$:

$$\begin{split} i \wedge j &= \sum_{d \mid (i \wedge j)} \varphi(d) \\ &= \sum_{d \mid i, d \mid j} \varphi(d) \\ &= \sum_{d = 1}^n \varphi(d) \delta_{d \mid i} \delta_{d \mid j} \end{split}$$

On considère deux matrices:

$$B = \left(\varphi(i)\delta_{i|j}\right)_{(i,j)\in [\![1,n]\!]^2}$$

$$A = \left(\delta_{j|i}\right)_{(i,j)\in [\![1,n]\!]^2}$$

On a donc que

$$(AB)_{i,j} = \sum_{k=1}^{n} \varphi(k) \delta_{k|j} \delta_{k|i} = i \wedge j$$

On a donc

EPONGE – Géométrie	Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic
	Chapitre III. Géométrie

Section 1 : Géométrie du plan

Exercice 1 - Des tiroirs de compétition - 3 - Correction

L'ensemble des couleurs présentes sur un cercle est une partie non vide de l'ensemble des couleurs. Un tel ensemble peut donc prendre au maximum $2^n - 1$ valeurs différentes.

On prend 2^n points distincts tels que les rayons de leurs cercles associés soient tous distincts et inférieurs à $\sqrt{2\pi}$.

Par le principe des tirroirs, il existe, parmi ces points, deux points X_1 et X_2 tels que $K(C(X_1)) = K(C(X_2))$.

On suppose sans perte de généralité que le rayon R_1 de $C(X_1)$ est strictement inférieur au rayon R_2 de $C(X_2)$.

On cherche un point Y appartenant au cercle $C(X_1)$ tel que $C(Y) = C(X_2)$.

Cela revient à résourdre

$$R_1 + \frac{\left(\overrightarrow{OA}, \overrightarrow{OY}\right)}{R_1} = R_2 \Longleftrightarrow \left(\overrightarrow{OA}, \overrightarrow{OY}\right) = R_1(R_2 - R_1)$$

Comme $R_1\leqslant \sqrt{2\pi},\,R_2\leqslant \sqrt{2\pi}$ et $R_1\neq R_2$, cette équation admet bien une solution Y avec $(\overrightarrow{OA},\overrightarrow{OY})\neq 0$.

On a
$$K(Y) \in K(C(X_1)) = K(C(X_2)) = K(C(Y))$$
 ok!

Exercice 2 - Beaucoup trop de cercles - 🍄 - Correction

Section 2 : Géométrie algébrique

Exercice 1 - Où sont les cônes ? - 🍫 - Correction

Exercice 2 - Une feuille dans \mathbb{F}_p - $\ensuremath{ \mbox{\ ans} }$ $\ensuremath{ \mbox{\ \ }}_p$ - Correction

EPONGE – Probabilités	Stéphanovic, Piotrovicovic, Patrickovic, Danielovic, Xavierovic
Ch	anitra IV Drobabilitás
CII	apitre IV. Probabilités

Section 1 : Probabilités discrètes

Exercice 1 - Polynômes aléatoires - 🚑 - Correction

Exercice 2 - Duel - 🍄 - Correction

Exercice 3 - Truel - 🍄 - Correction

Exercice 4 - Dédé - 🚑 - Correction

Exercice 5 - \mathfrak{S}_n Probabilisé - \mathfrak{S}_n - Correction

Exercice 6 - Le quart de ce qu'on ne vous souhaite pas - 🍄 - Correction

Exercice 7 - Zeta ?!? - 2 - Correction

Exercice 8 - Une séquence préférée - 🍫 - Correction

Exercice 9 - - \langle - Correction

Exercice 10 - - 🍄 - Correction

On remarque que, par linéarité de l'espérence, pour tout polynôme P de $\mathbb{R}[X]$, $\mathbb{E}(P(X)) = \mathbb{E}(P(Y))$

En prenant $A = X(\Omega) \cup Y(\Omega)$, on a:

$$\mathbb{E}(P(X)) = \sum_{x \in A} P(x) \mathbb{P}(X = x) \quad \text{ et } \quad \mathbb{E}(P(Y)) = \sum_{y \in A} P(y) \mathbb{P}(Y = y)$$

Pour un certain $x\in\Omega$, on prend, par interpolation de Lagrange, P comme étant un polynôme qui s'annule sur $\Omega\setminus\{x\}$ et tel que P(x)=1

Alors,
$$\mathbb{P}(X = x) = \mathbb{E}(P(X)) = \mathbb{E}(P(Y)) = \mathbb{P}(Y = x)$$
.

Ceci étant vrai pour tout $x \in A$, X et Y suivent la même loi.

Section 1: Suites

Exercice 1 - Private Joke - 🍄 🐒 - Correction

Section 2 : Equations fonctionnelles

Exercice 1 - Pour bien commencer - 🍫 - Correction

Exercice 2 - Fonctionellement dense (?) - 🍄 - Correction

(1) Par analyse synthèse:

Analyse

On commence par évaluer en (x,y)=(0,0) ce qui nous donne f(0)=0. On peut étudier l'équation pour y=0 et on trouve l'équation :

$$f(x) = 2f(-x^2) \qquad (*)$$

De cela, on peut conclure que f est paire, et en évaluant en x=1 on obtient f(1)=0 (donc f(-1)=0).

En évaluant l'équation initiale en (x,y)=(-1,1) on a f(-2)=0=f(2).

Par récurrence, si, pour $n \in \mathbb{N}$, f(-n) = 0 alors l'évaluation en (x, y) = (-1, n) nous donne f(-n-1) = 0. Dès lors, $f(\mathbb{Z}) = \{0\}$.

On en déduit alors grâce à (*) que $f(\lbrace \sqrt[2^k]{n} \mid k \in \mathbb{N}^*, n \in \mathbb{N} * \rbrace) = \lbrace 0 \rbrace$.

Par densité dans $[1, +\infty[$,

$$f(]-\infty,-1]\cup\{0\}\cup[1,+\infty[)=\{0\}$$

Enfin, pour tout $x \in]0,1[$

$$f(x) = 2f(x^2)$$

Donc

$$f(x) = 2^k f(x^{2k})$$

Avec
$$x^{2k} \xrightarrow[x \to 0]{} 0$$

Donc par continuité de f:

$$\forall x \in \mathbb{R}, f(x) = 0$$

Synthèse ok

Exercice 3 - Une équation symétrique ? - 🍄 - Correction

Section 3 : Equations différentielles

Exercice 1 - CMP - 🝫 - Correction

Exercice 2 - Dérivée absolue - 🍫 - Correction

Section 4 : Intégration

Exercice 1 - Une intégrale de Fresnel ? - Φ - Correction

Exercice 2 - Des parties entières - 🍫 - Correction

Exercice 3 - Un calcul de E-M - 🔨 - Correction

Exercice 4 - Des parties fractionnaires - $\stackrel{4}{\rightleftharpoons}$ - Correction

Exercice 5 - Sympathique résultat - 🍄 - Correction

Section 5 : Série

Exercice 1 - Merci Euler! - 🍫 - Correction

Exercice 2 - De la réciprocité - 🔨 - Correction

Exercice 3 - Un peu de trigo - 🍫 - Correction

Exercice 4 - Fibo ? - \(\) - Correction

Exercice 5 - Une petite odeur de Cesàro - 🍄 - Correction

Exercice 6 - Casse-tête normalien - 🚑 - Correction

Exercice 7 - Que pensez-vous des DÉS ? - 🔨 - Correction

Exercice 8 - Bertrand pour sûr - ? - Correction

Exercice 9 - Double somme ? - 🍄 - Correction

Exercice 10 - Utile contre-exemple - \(\square \) - Correction