Inteligência Artificial para Robótica Móvel CT-213

Instituto Tecnológico de Aeronáutica

Relatório do Laboratório 7 - Imitation Learning com Keras

Leonardo Peres Dias

12 de maio de 2025

Instituto Tecnológico de Aeronáutica (ITA)

Sumário

1	Brev	ve Explicação em Alto Nível da Implementação	3
2	Figu	uras Comprovando Funcionamento do Código	4
	2.1	Função de Classificação sum_gt_zeros	4
		2.1.1 Sem regularização	4
		2.1.2 Com regularização	5
	2.2	Função de Classificação XOR	6
		2.2.1 Sem regularização	6
		2.2.2 Com regularização	7
	2.3	Imitation Learning	8
3	Disc	cussões	8
	3.1	Regularização	8
	3.2	Imitation Learning	8

1 Breve Explicação em Alto Nível da Implementação

A rede neural foi implementada utilizando a API Keras. Nesta implementação, foi utilizado um modelo feedforward composto por três camadas densas. A primeira camada possui 75 neurônios com ativação linear e recebe um vetor de entrada unidimensional. Em seguida, aplica-se a função de ativação Leaky ReLU com um parâmetro de inclinação de 0.01.

Posteriormente, a segunda camada densa, composta por 50 neurônios, também utiliza uma ativação linear seguida de uma camada Leaky ReLU. Por fim, a terceira camada densa, com 20 neurônios sem a aplicação de uma função de ativação adicional (ativação linear).

O modelo utiliza o otimizador Adam com o objetivo de minimizar a função de custo definida pelo erro quadrático médio (MSE). Durante o treinamento, o conjunto de dados é fornecido ao modelo em um único batch correspondentes ao tamanho total do dataset.

2 Figuras Comprovando Funcionamento do Código

2.1 Função de Classificação sum_gt_zeros

2.1.1 Sem regularização

Figura 1: Convergência do custo

Figura 2: Dataset

Figura 3: Tarefa de classificação

2.1.2 Com regularização

Figura 4: Convergência do custo

Figura 5: Dataset

Figura 6: Tarefa de classificação

2.2 Função de Classificação XOR

2.2.1 Sem regularização

Figura 7: Convergência do custo

Figura 8: Dataset

Figura 9: Tarefa de classificação

2.2.2 Com regularização

Figura 10: Convergência do custo

Figura 11: Dataset

Figura 12: Tarefa de classificação

2.3 Imitation Learning

Figura 13: Movimento das juntas do robô obtidas pela rede neural.

3 Discussões

3.1 Regularização

Nota-se que o emprego de regularização L2 na tarefa de classificação sum_gt_zeros não trouxe resultados relevantes, uma vez que o dataset é linearmente separável. No entanto, na tarefa de classificação XOR, a regularização L2 demonstrou um desempenho superior em comparação à ausência de regularização, visto que previniu a rede de realizar *overfitting* e, assim, perder poder de generalização.

3.2 Imitation Learning

A rede neural foi capaz de aprender o movimento, reproduzindo o movimento das juntas do robô. A comparação entre os movimentos reais e os previstos pela rede neural mostra que a rede conseguiu capturar o padrão de movimento desejado, embora com algumas variações.