CMOS SRAM

8K×8 Bit Static RAM

FEATURES

- Fast Access Time: 70,100,120 ns (max.)
- Low Power Dissipation Standby (CMOS): 10µW (typ.) L-Version 5µW (typ.) LL-Version

Operating: 220mW (max.)

- Single 5V ± 10% Power Supply
- TTL compatible inputs and outputs
- Fully Static Operation
- -No clock or refresh required
- Three State Output
- Low Data Retention Voltage: 2V (min.)
- JEDEC Standard pin Configuration KM6264A/AL/AL-L: 28-pin DIP (600 mil.) KM6264AG/ALG/ALG-L: 28-pln SOP (330 mll.)

GENERAL DESCRIPTION

42E D

The KM6264A/AL/AL-L is a 65,536-bit high-speed Static Random Access Memory organized as 8,192 words by

The device is fabricated using Samsung's advanced CMOS process.

The KM6264A/AL/AL-L has an output enable input for precise control of the data outputs. It also has chip select inputs for the minimum current power down

The KM6264A/AL/AL-L has been designed for high speed and low power applications. It is particularly well suited for battery back-up nonvolatile memory applications.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Pin Name	Pin Function
A ₀ -A ₁₂	Address Inputs
WE	Write Enable
CS1, CS2	Chip Select
ŌĒ	Output Enable
1/01-1/08	Data Inputs/Outputs
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No Connection

CMOS SRAM

T-46-23-12

ABSOLUTE MAXIMUM RATINGS*

ltem ·	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	V _{IN} , V _{OUT}	-0.5 to 7.0	٧
Voltage on V _{cc} Supply Relative to V _{ss}	V _{cc}	-0.5 to 7.0	V
Power Dissipation	Po	1.0	W
Storage Temperature	T _{etg}	-65 to +150	°C
Operating Temperature	TA	0 to 70	°C
Soldering Temperature and Time	. T _{solder}	260°C, 10 sec (Lead only)	_

^{*}Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (TA=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	٧ .
Input High Voltage	V _{IH}	2.2	_	V _∞ + 0.5	٧
Input Low Voltage	VIL	- 0.5*	-	0.8	V

^{*} V_{it}(min.) = -3.0V for ≤50ns pulse

DC AND OPERATING CHARACTERISTICS ($T_A=0$ to 70°C, $V_{CC}=5V\pm10\%$, unless otherwise specified.)

Parameter	Symbol	Test Conditions		Min	Тур*	Max	Unit
Input Leakage Current	lu	V _{IN} = V _{ss} to V _{CC}	-2		2	μΑ	
Output Leakage Current	l _{LO}	$\overline{CS1} = V_{IH}$ or $CS2 = V_{IL}$ or $\overline{WE} = V_{IVO} = V_{SS}$ to V_{CC}	-2		2	μΑ	
Operating Power Supply Current	I _{CC1}	V _{IN} =V _{IH} or V _{IL} CS1=V _{IL} , CS2=V _{IH} , I _{I/O} =0mA				40	mA
Average Operating Current	l _{CC2}	Min Cycle, 100% Duty CS1 = V _{IL} , CS2 = V _{IH} I _{I/O} =0mA		35	70	mA	
	Isa	CS1 = VIH or CS2 = VIL	,	-		3	mA
Standby Power						1	mA
Supply Current	I _{SB1}	CS1≥V _{cc} – 0.2V, CS2≤0.2V or CS2>V _{cc} – 0.2V	L		2	100	μΑ
•		0r C52≥V _{CC} ~ 0.2V			1	30	μΑ
Output Low Voltage	Vol	I _{oL} = 2.1mA				0.4	٧
Output High Voltage	V _{OH}	l _{oн} = − 1mA		2.4			٧

^{*} Typ.: $V_{CC} = 5V$, $T_A = 25$ °C

CMOS SRAM

CAPACITANCE (f = 1MHz, T_A = 25°C)

	 T-46-	2370
Min	Max	Unit

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	Cin	V _{IN} = 0V	_	6	pF
Input/Output Capacitance	C _{I/O}	$V_{VO} = 0V$		8	ρF

^{*} Note: Capacitance is sampled and not 100% tested.

AC CHARACTERISTICS

TEST CONDITIONS (Ta=0 to 70°C, Vcc=5V ± 10%, unless otherwise specified)

Parameter	Value
Input Pulse Level	0.8 to 2.4V
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	C _L =100*pF+1 TTL Load

^{*} CL = 30pF for KM6264A/AL-7/7L

TEST CIRCUIT

* Including Scope and Jig Capacitance

READ CYCLE

Parameter	Symbol	KM6264A-7 KM6264AL-7 KM6264AL-7L		KM6264A-10 KM6264AL-10 KM6264AL-10L		KM6264A-12 KM6264AL-12 KM6264AL-12L		Unit
•		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	70		100		120		ns
Address Access Time	t _{AA}		70		100		120	ns
Chip Select to Output	tco1, tco2		70		100		120	ns
Output Enable to Valid Output	tos		35		50		60	ns
Chip Enable to Low-Z Output	t _{LZ1} , t _{LZ2}	5		10		10	<u> </u>	ns
Output Enable to Low-Z Output	toLZ	5	١	5		5		ns
Chip Disable to High-Z Output	tuzi, tuzz	0	.30	0	35	0	40	ns
Output Disable to High-Z Output	tонz	0	30	0	35	0	40	ns
Output Hold from Address Change	t _{он}	10		10		10		ns

CMOS SRAM

WRITE CYCLE

T-46-23-10	F.	46	23	-10
------------	-----------	----	----	-----

Parameter	Symbol	KM6264A-7 KM6264AL-7 KM6264AL-7L		KM6264A-10 KM6264AL-10 KM6264AL-10L		KM6264A-12 KM6264AL-12 KM6264AL-12L		Unit
		Min	Max	Min	Max -	Min	Max	1
Write Cycle Time	two	70		100		120		ns
Chip Select to End of Write	tcw	60		80		85		ns
Address Set-Up Time	tas	0		0		0		ns
Address Valid to End of Write	t _{AW}	60		80		85		ns
Write Pulse Width	twp	40		60		70		ns
Write Recovery Time	twn	0		0		0		ns
Write to Output High-Z	t _{WHZ}	0	30	0	30	0	30	ns
Data to Write Time Overlap	tow	30		40		. 50		กร
Data Hold from Write Time	t _{DH}	0		0		0		ns
End Write to Output Low-Z	tow	5		5		10		ns

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE NO. 1 $(\overline{CS1} = \overline{OE} = V_{IL}, \ CS2 = \overline{WE} = V_{IH})$

TIMING WAVEFORM OF READ CYCLE NO. 2 (WE=VH)

T-46-23-12

Note (READ CYCLE)

- 1. thz and tohz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to Voh o. Vol levels.
- At any given temperature and voltage condition, t_{HZ}(max) is less than t_{LZ}(min) both for a given device and from device to device.

TIMING WAVEFORM OF WRITE CYCLE (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE (CS2 Controlled)

CMOS SRAM

.46-2312

Notes (WRITE CYCLE)

- 1. A write occurs during the overlap of a low CS1, a high CS2 and a low WE. A write begins at the latest transition among CS1 going low, CS2 going high and WE going low: A write ends at the earlist transition among CS1 going high, CS2 going low and WE going high. two is measured from the beginning of write to the end of write.

 2. tow is measured from the later of CS1 going low or CS2 going high to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. two is measured from the end of write to the address change. two applied in case a write ends as CS1, or WE
- going high, twe applied in case a write ends at CS2 going low.

 5. If OE, CS2 and WE are in the Read Mode during this period, the I/O pins are in the output low Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 6. If CST goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance
- . 7. Dour is the read data of the new address.
- 8. When CS1 is low and CS2 is high; I/O pins are in the output state. The input signals in the opposite phase leading to the outputs should not be applied.

FUNCTIONAL DESCRIPTION

CS1	CS2	WE	ŌĒ	Mode	I/O Pin	V _{cc} Current
Н	Х	Х	Х	Power Down	High-Z	I _{SB}
X*	L	Х	Х	Power Down	High-Z	I _{SB}
L	Ή	Н	Н	Output Disable	High-Z	1 _{co}
L	Н	Н	L	Read	D _{out}	lcc
L	н	L	Х	Write	D _{IN}	Iço

^{*} Note: X means Don't Care.

CMOS SRAM

7-46-23-12

DATA RETENTION CHARACTERISTICS (TA = 0 to 70°C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
V _{cc} for Data Retention	Voe	CS1≥V _{CC} -0.2V ⁽¹⁾	2.0		- 5.5		
Data Retention Current	1	V _{cc} = 3V CS1≥V _{cc} - 0.2V,	L		1	50	μΑ
Data Retention Current	l _{DR}	CS2≥V _{CC} – 0.2V or CS2≤0.2V	LL		0.5	10(2)	μΑ
Data Retention Set-up Time	t _{SDR.}	See Data Retention Wave forms (below)		0			ņs
Recovery Time	t _{RDR}			t _{RC} (3)			ns

- (1) CS1≥Vcc-0.2V, CS2≥Vcc-0.2V (CS1 Controlled) or CS2≤0.2V (CS2 Controlled)
- (2) 1μA (max.) at 0°C~40°C
 (3) t_{RC}=Read cycle time

DATA RETENTION WAVEFORM (1) (CS1 Controlled)

DATA RETENTION WAVEFORM (2) (CS2 Controlled)

CMOS SRAM

0.600 (15.24)

TYP.

PACKAGE DIMENSIONS 128 PIN PLASTIC DUAL IN LINE PACKAGE

MIN

0.024 (0.61)

28 PIN PLASTIC SMALL OUT LINE PACKAGE

TYP.

