Chapter 3

One-layer & Fully Connected NNs

(Each neuron is connected to all neurons of the next layer)

One-layer NNs

A simple one-layer network with a M&P neuron

$$net = w_1x_1 + \dots + w_ix_i + \dots + w_nx_n$$

$$h = \begin{cases} 1 & net \ge \theta \\ 0 & (-1) & net < \theta \end{cases}$$

 θ : threshold

Remark

Because of simple structure of onelayer NNs, Such networks only include partitioning layers.

One can replace the threshold of the M&P neuron with "0" by adding as an extra input (bias term) as follows:

$$net = w_1 x_1 + \dots + w_i x_i + \dots + w_n x_n + b \qquad b = -\theta$$

$$h = \begin{cases} 1 & net \ge 0 \\ 0 & (-1) & net < 0 \end{cases}$$

Potential of one-layer NNs in classification

Each M&P neuron can partition the feature space into two regions through using an (n-1) dimensional hyper-plane in the input space.

Example: (n=2) net=
$$w_1x_1+w_2x_2+b$$
 b<0, $w_1>0,w_2>0$

$$h = \begin{cases} 1 & net \ge 0 \oplus \\ 0 \ (-1) & net < 0 \end{cases}$$

More simple Examples (feature points are separated by a line)

AND Logic

x1	x2	У
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

OR logic

x1	x2	У
1	1	1
1	-1	1
-1	1	1
-1	-1	-1

- 1. The separating line between feature points of two classes is determined in a learning process.
- 2. It is desired that the determined separating line makes enough big margins by boundary feature points of both classes.

x_1	x_2	у
0	0	1
0	1	1
1	0	1
1	1	0

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Table-4: Truth table

Fig -8: NAND Gate

IMPLIMENTATION OF MCCULLOCH PITTS MODEL:

Fig -9: Architecture of NAND Gate

Threshold value is 4
Net input is $y_{in}=x_1-x_2$.
Output activation function is $y=f(y_{in})=\begin{bmatrix} 1 & \text{if } y_{in} \ge 4 \\ 0 & \text{if } y_{in} \le 4. \end{bmatrix}$

Using one-layer NNs to classify more than two classes

For classifying two different classes, which are linearly separable, one M&P neuron is enough.

Assuming m (m >2) classes can be separated linearly through a simple one-layer NN, we want to classify each class with other ones by an independent output(one-hot outputs):

- 1- Exactly, m M&P neurons are required for classification purpose.
- 2- Each M&P neuron will separate a certain class from other ones by forming a hyper-plane in feature space.
- 3- By using such hyper planes, a convex hyper-polygon is appeared.

Example:

كدها

 https://drive.google.com/drive/folders/1NNbmx3vcXEzxr JWipYvsGF 2SH77 drP?usp=sharing

• https://github.com/MJAHMADEE/MachineLearning2023/tree/main/C hapter%203%20-%20Neural%20Networks/Codes/McCulloch Pitts

1461-1961

$$\hat{y} = \operatorname{step}\left(\sum_{i=0}^{m} w_i x_i\right) = \operatorname{step}(\mathbf{w}^T \mathbf{x})$$

پرسپترون Perceptron

Frank Rosenblatt 1948-1981

رگرسیون لجستیک

◄ همان نورون با تابع فعالساز سیگموید

رگرسیون خطے

◄ همان نورون با تابع فعالساز خطی

كدها

 https://drive.google.com/drive/folders/12ya4lKNgymCg7zhBqogC3cjz GzKh5igP?usp=sharing

 https://github.com/MJAHMADEE/MachineLearning2023/tree/main/C hapter%203%20-%20Neural%20Networks/Codes/Neuron%20Coding%20Using%20Class
 s

◄ آیا با نورون مصنوعی میتوان مساله XOR را حل کرد؟

شبکہ عصبے MLP

- ▲ مخفف عبارت Multi Layer Perceptron
 - 🔻 به فارسی پرسپترون چندلایه
- ◄ پرسپترون: همان نورون مدرن (با فعالساز دلخواه)
- الایه پرسپترون: یک مجموعه نورون (پرسپترون) موازی باهم
- **▼ پرسپترون چندلایه**: یک مجموعه لایه پرسپترون بهصورت متوالی

كدها

 https://drive.google.com/drive/folders/16sklImIrc6OwraVDXCoo3j1Yiksdl7D?usp=sharing

• https://github.com/MJAHMADEE/MachineLearning2023/tree/main/C hapter%203%20-%20Neural%20Networks/Codes/MLP

كدهاى Hopfield and Hamming سوال سوم تمرين

 https://drive.google.com/drive/folders/1 QLO5GERTkTkZcbDXGvN4ci DkpRmQlpf?usp=sharing

 https://github.com/MJAHMADEE/MachineLearning2023/tree/main/C hapter%203%20-

%20Neural%20Networks/Codes/Hopfield%20and%20Hamming