This IS an Algorithm: Adding Two Numbers

Input: Two numbers x and y (potentially very long), each consisting of n digits: $x = \overline{x_n x_{n-1} \dots x_1}$, $y = \overline{y_n y_{n-1} \dots y_1}$

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$z_i \leftarrow x_i + y_i + c$$
 if $z_i \geq 10$ then $c \leftarrow 1$, $z_i \leftarrow z_i - 10$ else $c \leftarrow 0$
$$z_{n+1} \leftarrow c$$

You've been running algorithms all your life!

1

This IS an Algorithm: Adding Two Numbers

Input: Two numbers x and y (potentially very long), each consisting of n digits: $x = \overline{x_n x_{n-1} \dots x_1}$, $y = \overline{y_n y_{n-1} \dots y_1}$

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$z_i \leftarrow x_i + y_i + c$$
 if $z_i \geq 10$ then $c \leftarrow 1$, $z_i \leftarrow z_i - 10$ else $c \leftarrow 0$
$$z_{n+1} \leftarrow c$$

$$c_1 \leftarrow 0$$
for $i \leftarrow 1$ to n

$$u_i \leftarrow x_i + y_i + c_i$$
if $u_i \geq 10$ then $c_{i+1} \leftarrow 1$, $z_i \leftarrow u_i - 10$
else $c_{i+1} \leftarrow 0$, $z_i \leftarrow u_i$

Slightly revised (but equivalent)

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
for $i \leftarrow 1$ to n

$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i										
u_i										
z_i										

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$
 if $u_i \geq 10$ then $c_{i+1} \leftarrow 1$, $z_i \leftarrow u_i - 10$ else $c_{i+1} \leftarrow 0$, $z_i \leftarrow u_i$

529501233	
+612345678	
1141846911	-

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i										0
u_i										11
z_i										

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i									1	0
u_i										11
z_i										1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$z_{n+1} \leftarrow c_{n+1}$$

529501233	
+612345678	
1141846911	

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i								1	1	0
u_i									11	11
z_i									1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$Z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i							0	1	1	0
u_i								9	11	11
z_i								9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$Z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i						0	0	1	1	0
u_i							6	9	11	11
z_i							6	9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$Z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i					0	0	0	1	1	0
u_i						4	6	9	11	11
z_i						4	6	9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i				0	0	0	0	1	1	0
u_i					8	4	6	9	11	11
z_i					8	4	6	9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$
 if $u_i \geq 10$ then $c_{i+1} \leftarrow 1$, $z_i \leftarrow u_i - 10$ else $c_{i+1} \leftarrow 0$, $z_i \leftarrow u_i$
$$z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i			1	0	0	0	0	1	1	0
u_i				11	8	4	6	9	11	11
z_i				1	8	4	6	9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$Z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i		0	1	0	0	0	0	1	1	0
u_i			3	11	8	4	6	9	11	11
z_i			4	1	8	4	6	9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$Z_{n+1} \leftarrow c_{n+1}$$

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i	1	0	1	0	0	0	0	1	1	0
u_i		11	3	11	8	4	6	9	11	11
z_i		1	4	1	8	4	6	9	1	1

Output: A number $z = \overline{z_{n+1}z_n \dots z_1}$, such that z = x + y.

$$c_1 \leftarrow 0$$
 for $i \leftarrow 1$ to n
$$u_i \leftarrow x_i + y_i + c_i$$

$$\text{if } u_i \geq 10 \text{ then } c_{i+1} \leftarrow 1, \ z_i \leftarrow u_i - 10$$

$$\text{else } c_{i+1} \leftarrow 0, \ z_i \leftarrow u_i$$

$$z_{n+1} \leftarrow c_{n+1}$$

529501233
+612345678
1141846911

i	10	9	8	7	6	5	4	3	2	1
x_i		5	2	9	5	0	1	2	3	3
y_i		6	1	2	3	4	5	6	7	8
c_i	1	0	1	0	0	0	0	1	1	0
u_i		11	3	11	8	4	6	9	11	11
z_i	1	1	4	1	8	4	6	9	1	1