EAW: BAL:mc N8140:R-72-0014

ENGINEERING OPERATIONS REPORT

COMMON RADIATION ANALYSIS MODEL

FOR 75,000 LB THRUST NERVA ENGINE (1137400E)

DRA

Project 110, Para. 6/

April 1972

N73-24668

(NASA-CR-132228) COMMON RADIATION
ANALYSIS MODEL FOR 75,000 POUND THRUST
NERVA ENGINE (1137460E) (Westinghouse
Astronuclear Lab., Pittsburgh) 174 P
410 75 174 P HC CSCL 21F

17716 G3/22

ager unclas ection:

Nuclear Science Section

Approved:

REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA 22161

\$10.75

K. Sato, Manager

Engineering Staff Department

CLASSIFICATION CATEGORY

EAW: BAL:mc N8140:R-72-0014

TABLE OF CONTENTS

- I. Introduction and Summary
- II. Technical Discussion
 - A. Non-Nuclear Components
 - 1. Geometrical Models
 - 2. Materials of Composition
 - 3. Sources of Radiation
 - 4. Methods of Analysis
 - B. Nuclear Subsystem WANL-DRM-54255
 - 1. Purpose
 - 2. Assumptions/Methods
 - 3. Conclusions
 - 4. Method of Analysis
 - 5. NSS Internal Radiation Source and Region Description (Includes Contents of the CRAM NSS Surface Radiation Source Data Tape)

l

I. INTRODUCTION AND SUMMARY

This report documents the mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine. It supersedes and replaces the last published Common Radiation Analysis Model (CRAM) document (ANSC Report - RN-S-0551, 6 March 1970).

The nuclear subsystem (NSS) and non-nuclear components are treated in two separate sections. The NSS section is as submitted by WANL for the R1 reactor with composite fuel. From the standpoint of neutron leakage which determines non-nuclear component secondary gamma sources, there is no essential difference between the graphite and composite core NSS configurations. In the forward direction the pressure vessel neutron leakage magnitudes were adjusted to be equal to the specification extreme leakages legislated in the engine specification. This then resulted in non-nuclear component sources which would not be exceeded with either candidate NSS design.

The geometrical model for the NSS is two dimensional as would be required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code.

The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernel programs and the COHORT Monte Carlo program.

The nuclear subsystem section also includes data pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data.

In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described in each section.

II. TECHNICAL DISCUSSION

A. Non-Nuclear Components

1. Geometrical Models

Figures 1 and 2 show two views of the 1137400E engine configuration components forward of the reactor including the upper portion of the pressure vessel assembly. Some of the major zones in the mathematical model description of these components are superimposed in these two figures. The basic mathematical model is essentially mass equivalent to the actual engine in that the mass of the engine between two engine station planes, which are a foot or more apart, is closely approximated by the mathematical model between these planes. The total math model description represents the actual engine mass within 1%. The mass distribution is approximated as closely as was possible within reasonable computer running times.

A total of 172 zones and boundaries were used to describe the components forward of the pressure vessel. The nozzle and nozzle extension were represented by zones and boundaries. The cylindrical portion of the pressure vessel was represented exactly as a single annular zone.

The non-nuclear components were originally described for the 1137400C engine configuration and only the engine station locations were changed in remodeling for the E engine design. It was decided that the model was sufficiently complicated and the analysis much too expensive to repeat for the changes in some of the components from the C to E engine designs.

Figure 3 depicts the model representing a conglomerate of small engine parts and the lower thrust structure (LTS). The gimbal actuator models are shown in Figure 4 and the gimbal regions in Figure 5. The upper thrust structure (UTS) region is shown in Figure 6. The few zone model of the turbopump assembly (TPA) is depicted in Figures 7 and 8. A much more detailed model of the TPA was used to compute radiation heating levels internal to the TPA, as reported in Engineering Operations Report N8140R:71-0005.

The pump inlet line, pump shutoff valve, turbine inlet line, turbine bypass line, turbine exhaust line, pump discharge line, and structural support cooldown line are depicted in Figures 9 through 14. These regions are based on the C engine configuration but present a fair representation of the mass distribution and secondary source magnitudes for the E engine.

Figures 15 through 24 depict the zones in the CRAM which are required to describe the void regions in the engine forward of the pressure vessel. These are extremely important from a radiation transport viewpoint and are required to complete the mathematical model without resorting to slab configurations.

Figures 25 and 26 depict the nozzle and nozzle extension models. The extension model shown here is for the Columbium alloy backup configuration. A simple model was required for the primary configuration employing a graphite material, as it was assumed that secondary gamma and inelastic scatter gamma sources would be minimal for such a design.

Appendix A is a computer listing of the FASTER geometry CRAM including zone and boundary descriptions in cm units with the origin of the model at 220 and R=O on the engine axis at the mating plane between the pressure vessel and nozzle flange. This corresponds to an engine station of 206.93 inches. The dimensions of all the figures in this report are keyed to this model zero location.

View of Forward Portion of 1137400E Engine
Configuration - Showing Line Routing ARound Disk Shield

NOTE: Sources in forward components are based on case with the disk shield removed.

Figure 2

IMS & Conglomerate

Figure 3

GA's

GIHB.

-9-

Figure 6

Turbopump Assembly

Zone	Weight (lbs)
10	81.89
11	627.97
12	0.07
13	48.10
14	1.97
15	26.9
Subtotal	786.9
16	81.89
17	627.97
18	0.07
19	48.10
. 20	1.97
21	. 26.9
Total	1573.80

Figure 8

PILEPSOV

Figure 9

Figure 10

Note: Midplane Z = 366.1 cm

Turbine Exhaust Line

TLL

Figure 12

Figure 14

Figure 16

Figure 18

-22-

-24-

-25-

Figure 22

Figure 23

2. Materials of Composition

Tables 1 and 2 presents the materials of composition for each of the regions of the non-nuclear component portions forward of and including the pressure vessel. Two identification numbering systems are used, one for the QAD Point Kernel model and another for the COHORT Monte Carlo model. The zones are as described in the appropriate figures and Appendix A.

Tables 3 and 4 present similar materials of composition information for the ARMCO nozzle and Columbium alloy backup nozzle extension models. The prime candidate graphite nozzle extension is represented by a single material composition of carbon.

٠.	DESCRIPTION	A1 6066	347 SST ·	Titanium	INC 718	A1 + SST 347	LH ₂ valves	GH ₂ valves	Vescomax 250	6066 Al in UTS	347 SST	LH2	GH ₂	PSOV	Shield	
	TOTAL DENSITIES	2.7	8.2	4.04	8.2	2.833	3.266	5.245	8.2	0.253	8.0	0.07	0.0084	1.31	!	
MATERIALS	PARTIAL DENSITIES (Gm/cm³)	Al 2.6317, Ti .0041, Cr .0095, Fe .0189, Ni .013, Cu .011	Cr 1.69, Nm .16, Fe 5.208, Ni 1.15, Mo .041, Cu .041	Al .234, Ti 3.6709, Nm .0040, Fe .0101, Sn .121	Al .C328, T1 .0739, Gr 1.642, Mn .0287, Fe 1.170, N1 4.5058, Nb .4105, Mo .245, Cu .0082, Co .0821	SST 0.5436, Al 2.1894	INC 2.3773, Cu 0.6444, LH2 0.0443	INC 4.4656, Cu 0.7789, GH ₂ 0.0005	C .0025, S1 .0082, Mn .0082, P .0008, N1 1.5580, Co .6970, Mo .4182, A1 .0123, T1 .041, B .0002, Zr .0016, Fe 5.452	Al .2477, Ti .0005, Gr .0009, Fe .0018, Ni .0012, Cu .0010	Cr 1.551, Mn .1561, Fe 5.081, N1 1.1220, Mo 0.04, Cu 0.04	0.07 32	0.0084 H ₂	H ₂ .0027, Al 1.2799, Ti .0020, Cr .0046, Fe .0092, Ni .0063, Cu .0053	Void	
	COMPOSITION BY WEIGHT (%w)	97.47% Al, 0.15% T1, .35% Cr, .7% Fe, .48% N1, .4% S1, .45% Cu	19.5% Cr, 2.0% Mn, 63.5% Fe, 14% N1, .5% Mo, .5% Cu	.58% A1, 96.07% T1, .1% Mn, .25% Fe, 3.0% Sn	0.4% Al, .9% Ti, 20% Cr, .35% Mn, 14.25% Fe, 55.9% Ni, 5% Nb, 3% Mo, .1% Cu, 1.0% Co	22.71% 347 SST + 77.29% A1	19.73% Cu, 78.91% INC, 1.36% LH2	14.86% Cu, 85.149% INC, .001% CH2	.03% C, .1% S1, .1% Mn, .01% S, .01% P, 19% N1, 8.5% Co, 5.1% Mo, .15% A1, .5% T1, .003% B, .02% Zr, 66.577% Fe	9.37% Al, rest void	Same as 16 but reduced	100% н ₂	100% H ₂	50% H ₂ + 50% A1	Void at the present	
	QAD	01	16	22	31	32	33	34	35	36	37	38	39	40	41	
	ID NO COHORT	rv.	9	7	co	6	10	11	12	13	14	9	4	, 15	0	

Page 2	DESCRIPTION	CA	T1 + LH2	SST + LH ₂	
-	TOTAL	12.1269	0.864	1.656	
MATER::ALS	PARTIAL DENSITIES (gm/cm ³)	Cu 4.9395, 347 SST 7.1874	Al .0468, T1 .7342, Mn .0008, Fe .002, Sn .0242, H2 .056	Cr .31::2, Mn .0312, Fe 1.0162, N1 .2244, Mo .008, H ₂ .056, Cu 0.008	
	COMPOSITION BY WEIGHT (24)	59.27% SST + 40.73% Cu	20% T1, 80% LH ₂	20% SST, 80% LH ₂ -	
ĺ	QAD	42	43	77	
	COHORT C	16	17	18	

	ZONE DESCRIPTION	LTS Barrel Section Above Shield	LTS + Bleed Line - Conglomerate .	Gimbal Actuator (Right)	Gimbal Actuator (Left)	Gimbal Inner Surface	Gimbal Outer Ring Shell	UTS	Right TPA Lower Closure Plate	Right TPA Outer Shell	Right TPA - Hot Gas Volume	Right TPA - Impellers	Right TPA - LH ₂ Volume	Right TPA - Shafting	Left TPA - Lower Closure Plate	Left TPA - Outer Shell	Left TPA - Hot Gas Volume	Left TPA - Impellers	Left TPA - LH ₂ Volume	Left TPA - Shafting	Inside of Right Propellant Inlet Line and Bellows	
WEIGHT	TES	69.34	880.72	396.10	395.10	221.05	81.60	193.85	81.89	627.97	0.07	48.10	1.97	26.90	81.89	627.97	0.07	43.10	1.97	26.90	2.73	
DENSITY	(gm/cm ³)	2.7	2.833	12.1269	12.1269	8.2	8.2	0.253	8.0	8.0	0.0084	4.04	0.07	4.04	8.0	8.0	0.0084	4.04	0.07	4.04	0.07	
VOLUME	cm ³	11,650	141,015	14,816	14,816	12,228	4,514	347,559	4,643	35,606	3,823	5,401	12,763	3,020	. 4,643	35,606	3,823	5,401	12,763	3,020	17,722	
L NUMBER	DESCRIPTION	Aluminum	Aluminum + SST	SST + Cu	SST + Cu	Vescomax 250	Vescomax 250	Low Density Al	SST - 347 /	SST - 347	GH ₂	Titanium	LH2	Titanium	SST+(= 8.0	SST-(= 8.0	сн ₂	Titanium	LH2	Titanium	LH2	
MATERIAL	άVD	10	32	42	42	35	35	36	37	37	39	22	38	22	37	37	39	22	38	22	38	
2	(сонокт)	۲n	σ.	16	16	12	12	13	14	14	4 	7		7	14	14	4	7	m	7	e .	
ZOME	A	ю	4	2	9	7	æ	6	10	11	12	13	14	15	16	11	18	19	20	21	22	

1	,				•																	
	ZONE DESCRIPTION	Right Propellant Inlet Line and Bellows	Right PSOV	Inside of Left Propellant Inlet Line and Bellows	Left PSOV	Left Propellant Inlet Line and Bellows	Vertical Portion of TIL - Shell	TIL (Portion - Shell)	TIL (Inside - Above)	TIL (Right - Shell)	TIL (Inside - Above)	Right BBB + TTV	IIL - Center Horizontal Section - Shell	TIL - Inside Above	TIL (Left Shell - See 31)	TIL - Inside Above	Left BBV + TTV	Inside Right Section of TBPL	Right Section of TBPL - Shell	Right TBV + TCV	Inside Middle Section of TBPL	
	VEIGHT 1bs	132.53	182.21	2.73	182.21	132.53	11.15	229.57	0.70	24.89	0.15	111.66	25.92	0.24	24.89	0.15	111.66	0.67	53.65	281.63	0.72	
	DENSITY (gm/cm ³)	8.2	1.31	0.07	1.31	8.20	2.70	8.2	0.0084	8.2	0.0084	5.245	2.7	0.0084	8.2	0.0084	5.245	0.0084	8.2	5.245	0.0084	
	VOLUME Cm ³	7,331	63,095	17,722	63,095	7,331	1,874	12,699	37,953	1,377	8,281	9,657	4,354	13,012	1,377	. 8,281	9,657	35,960	2,968	24,356	38,762	
	AL NUMBER DESCRIPTION	SST-6 = 8.2	A1 + LH ₂	LH2	A1 + LH2.	SST-(= 8.2	A1-6 - 2.7	INC - 718	GH ₂	INC - 718	GH ₂	GH ₂ Valve	A1-6 = 2.7	GH2	INC - 718	GH ₂	GH ₂ Valve	СН2	INC - 718	GH ₂ Valve	GH ₂	
	WATERIAL Q%D	16	07	38	70	16	10	31	39	31	39	34	10	39	31	39	34	39	31	34	39	
	(COHORT)	9	15	٣	15	v o	٧	∞	4	∞	7	11	٧.	4	80	4	11	4	∞	11	4	
	ZONE	23	24	25	92	27	78	29	30	33	32	33	. 34	35	35	37	38	39	07	41	42	

Page j

	20	MINDED	1050	NOV.	_	DENETTO	TUSTORE	
PTION cm ³	RIPTION	RIPTION	RIPTION	33.		(gm/cm ³)	Lbs.	ZONE DESCRIPTION
8 2,985	718		- 718	586		8.2	51.96	Shell of Middle Section TBPL
8 2,968	718		- 718	896		8.2	53.65	Left Section of TBPL - Shell
35,960	35,960	GH ₂ 35,960		960		0.0084	0.67	Inside Left Section of TBPL
e 24,356		GH ₂ Valve 24,356		356		5.245	28:.63	Left TBV + TCV
20,043	20,043	GH ₂ 20,043		043		0.0084	0.37	Inside Vertical Portion of TEL
	2.7		2.7	343		2.7	7.99	*Vertical Portion of TEL - Shell
.7 5,821	- 2.7	2.7	- 2.7	821		2.7	. 37.65	Center Horizontal Section - Shell
13,417			~ .	417		0.0084	0.25	Inside Above
63,467	63,467	GH ₂ 63,467		467		0.0084	1.17	Inside TEL Horizontal Connecting Section
8 9,780	- 718 9,780		- 718	780		8.2	176.80	Shell for Above - TEL
e 17,757		GH ₂ Valve 17,757		757		5.245	205.32	Right IDBV
8 222	718		- 718	222		8.2	4.01	Right IEL Section - Shell
1,442	1,442	GH ₂ 1,442		442		0.0084	0.03	Inside Above
e 17,757	•	GH ₂ Valve 17,757	Valve	757		5.245	205.32	Left TDBV
8 222		INC - 718 222	- 718	222		8.2	4.01	Left TEL Section - Shell
1,442	1,442	GH ₂ 1,442		442		0.0084	0.03	Inside Above
13,459	13,459	LH ₂ 13,459		429		0.07	2.08	Inside the Vertical Portion of PDL
.7 4,160	4,160	Al-6 = 2.7 4,160	۲= 2.7	160		2.7	24.76	Vertical Portion of PDL
es 35,024		LH ₂ Valves 35,024		024		3.266	252.18	All LH ₂ Valves Homogenized with Line
.7 2,740		Al-(= 2.7 2,740		740		2.7	16.31	Center Horizontal Section of PDL - Shell
								s'

Page 4

20'1E	3	MATERIAL	I. MIMBER	VOLUME	DENSTER	TUELCHE	
a	(COHORT)	avo	1	cm ³	(gm/cm ³)	1ts	ZONE DESCRIPTION
63	3	38	LH2	5,578	0.07	08.3	Inside Above
79	∞	31	INC - 718	2,571	8.2	46.48	Right Side Horizontal PDL Section - Shell
65	٣	38	LH ₂	3,582	0.07	0.55	Inside Above - PDL
99		38	LH2	3,582	0.07	0.55	Inside Left Horizontal PDL Section
29	80	.31	INC - 718.	2,571	8.2	46.48	Left Horizontal PDL Section - Shell
89	3	38	LH ₂	16,161	0.07	2.49	Inside the External Vertical Section of SSCL
69	80	31	INC - 718	4,919	8.2	88.92	External Vertical Section of SSCL - Shell
02	10	33	LH ₂ Valves	79,133	3.266	569.77	Diagonal Section of SSCL and Four Valves (SSCV, SSBV two each) Homogenized Together
72	•	31	INC - 718	1,460	8.2	26.39	Horizontal Section SSCL
11	Ю	38	LH2	3,541	0.07	0.55	Inside Above
73	4	39	GH ₂	28,141	0.0084	0.52	Inside Vertical Portion of TIL (Zone 28)
123	8	31	INC - 718	1,803	8.2	32.59	Internal Vertical Section of SSCL
126	m	38	LH ₂	743	0.07	0.11	Inside Internal Vertical Section SSCL (Zone 123)
. 127	٠,	.01	A1-(= 2.7	3,331	2.7	19.83	IIL - Below the Shield (Horizontal Section)
128	4	39	GH ₂	47,872	0.0084	0.89	Inside Above
129	'n	01	A1-6 = 2.7	1,771	2.7	10.54	TEL - Horizontal Section Below the Shield
130	4	39	GH ₂	40,301	0.0084	0.75	Inside Above
131	'n	10	A1-(= 2.7	2,001	2.7	11.91	TIL Vertical Section Below Shield
132	4	39	GH ₂	26,658	0.0084	0.49	Inside Above
133	'n	01	A1-6-2.7	579	2.7	3.45	TEL Vertical Section Below the Shield
134	4	39	GH ₂	8,644	0.0084	0.16	Inside Above
138	Ŋ	01	A1-(-2.7	4,228	2.7	25.17	TEL Side Half of LTS Below Shield
143	S	22	A1- (= 2.7	4,228	2.7	25.17	TIL Side Half of LTS Below Shield

TABLE 3

MATERIALS OF COMPOSITION FOR AFT PRESSURE VESSEL FLANGE AND ARMCO NOZZLE

PARTIAL DENSITIES (gm/cm ³)	TOTAL	DESCRIPTION
A1 2.7	2.7	Aluminum
Cv 1.750, Fe 4.496, N1 .985, C .030, Mn .395, Nb .016, Mo .175	7.896	ARMCO
н.01	.01	Hydrogen
н.07	.07	Hydrogen
Nb 7.459, W 1.947, Zr .057, T1 .001, C .002, 0.003, N1 .029	9.498	Columbium WC-129Y
н 1.51-6	151-6	Hydrogen
н 2.59-6	2.59-6	Hydrogen
н 5.86-6	5.86-6	Hydrogen
Н 1.67-5	1.67-5	Hydrogen
Н 1.673-4	1.673-4	Hydrogen
н 3.01-4	3.012-4	Hydrogen
H .018, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043	1.428	ARMCO No. 2 Coolant
H .029, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043	1.438	ARMCO No. 2 Coolant
H.037, Cr.254, Fe.652, N1.201, C.004, Mn.057, Nb.002, Au.196, Mo.043	1.446	ARMCO No. 2 Coolant
H.047, Cr.254, Fe.652, NI.201, C.004, Mn.057, Nb.002, Au.196, Mo.043	1.456	ARMCO No. 2 Coolant
H .064, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043	1.473	ARMCO No. 2 Coolant
	A1 2.7 Cv 1.750, Fe 4.496, N1 .985, C .030, Mn .395, Nb .016, Mo .175 H.01 H.07 Nb 7.459, W 1.947, Zr .057, T1 .001, C .002, 0.003, N1 .029 H 1.51-6 H 2.59-6 H 3.86-6 H 1.673-4 H .018, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043 H .029, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043 H .037, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043 H .047, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043 H .047, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043 H .064, Cr .254, Fe .652, N1 .201, C .004, Mn .057, Nb .002, Au .196, Mo .043	

TABLE 4

MATERIALS OF COMPOSITION - ARMCO NOZZLE AND COLUMBIUM EXTENSION

	*		1	
NO. Z ZONE	MAT. NO.	MATERIAL	VOLUME DENSITY (gm/cm ³)	DESCRIPTION
2	11	Hydrogen	1.603 +5 1.8-4	Propellant
3	10	Hydrogen	9.458 +3 1.0-4	Propellant
4	9	Hydrogen	- 1.0-5	Propellant
5	8	Hydrogen	- 3.5-6	Propellant
6	12		5.769 +3	Core support coolant
7	13		1.156 +4	Convergent nozzle coolant
8	14		1.199 +3	Throat coolant
· 9	15		5.968 +3	Divergent nozzle coolant
10	16	٠,	8.609 +3	Divergent nozzle coolant
11 .	2	ARMCO	1.668 +4 7.896	Core support
12	2	ARMCO	1.903 +4 7.896	Convergent nozzle
13	2	ARMCO	1.054 +3 7.896	Throat .
14	2	ARMCO	4.386 +3 7.896	Divergent nozzle
15	2	ARMCO	1.746 +4 7.896	Divergent nozzle
16	3	Hydrogen	4.631 +4 6.0-3	LH ₂ plenum
17	3	Hydrogen	2.857 +4 6.0-3	LH ₂ plenum
18	1	Aluminum	1.908 +4	Pressure vessel
19	1	Aluminum	1.313 +4	Pressure vessel aft flange
20	2 .	ARMCO	2.227 +4 7.896	Nozzle
21	2	ARMCO	2.579 +3 7.896	Torus
22	2	ARMCO	2.658 +3 7.896	Torus
23	4	Hydrogen	1.239 +4 4.18-2	Torus
24	2	ARMCO	1.878 +3 7.896	Torus
25	5	Columbium	2.040 +2 9.498	Nozzle extension
26	6	Columbium	2.226 +2 9.498	Nozzle extension
27	5	Columbium	2.570 +2 9.498	Nozzle extension
28	5	Columbium	2.944 +2 9.498	Nozzle extension
29	5	Columbium	3.156 +2 9.498	Nozzle extension
30	5	Columbium	3.356 +2 9.498	Nozzle extension
31	5	Columbium	3.442 +2 9.498	Nozzle extension
32	5	Columbium	5.271 +2 9.498	Nozzle extension
33	5	Columbium	1.483 +3 9.498	Nozzle extension
34	5	Columbium	2.607 +3 9.498	Fore flange
35	5	Columbium	2.067 +3 9.498	Fore flange
			1 .	

3. Sources of Radiation

The computer printout listed in Table 5 presents the secondary gamma sources for the combinations of regions grouped into thirteen equivalent sources. The \$ and Z locations of these effective sources are the second and third vertical columns for lines 000004, 10, 17, 24, 31, 38, 52, 59, 66, 73, 80 and 87. The sources are given in units of mev/in per energy group in descending order. The energy group structure is listed on the second page of this table.

Table 6 is a computer listing of the capture gamma, inelastic scatter gamma and total gamma sources in the 45 regions used to describe the ARMCO nozzle and Columbium nozzle extension. As was discussed earlier, sources are not available for the graphite nozzle extension, as these are considered to be negligibly small.

RGY - 13 GROUPS 31 0101 *NEW Lower Thrust Structure 1 0102 **-1 1 1.15 45 +14 1LTS 1	1LTS 3 0101 2LTSC6 +14 2LTSC6 2LTSC6 2LTSC6	3 010 010 010 36M +13 36K	10 010 010 4024 4034 6084	3 0101 Upper Thrust Structure 0102 surs 1 +13 5075 1	COUNT Turbopump Assembly 3 0101 Turbopump Assembly . 0102 6TPA 1 6TPA 1 6TPA 2	3 910 910 977 977 + 14 5	3 010 010 010 010 014 013 891
IN DESCENDING ENE PVARA WITH COMPLEX PUMP 3 52 1 32 3 210 2 +132,150 +149,706 +133,091 +141,00	1.582 +143.557 +12 50M1.593 13 52 11 32 3 210 1.0 5.145 +143.764 +142.758 +141.518. 5.895 +143.133 +13 50M4.040	1.0 1.0 7.53	-Y70 PVARA WITH COMPLEX 13 F2 11 32 3 1.0 1.846 +141.356 +141.282 9.692 +137.431 +12	JILY70 PYARA WITH CONPLEY PURP -68 13 52 11 32 3 210 1.0 +121.076 +131.393 +141.590 +132.418 +111.581 +132.163 +135.560 +11 SUM2.268 +14	JULY70 PVARA WITH CORPLEX PUMP -60 13 52 11 32 3 210 1.0 +144.965 +142.050 +141.376 +141.434 +141.111 +143.535 +143.176 +13 SUM4.487 +15	JULY70 PVAPA WITH COMPLEX PUNP -6P 13 52 11 32 3 210 1.0 +141.032 +142.769 +141.73A +141.529 +131.14 +132.413 +141.755 +13 SUM2.554 +15	JHLY70 PVARA WITH COMPLEX PURP -6A 13 52 11 32 3 210 1.0 +132.611 +131.807 +133.A97 +121.011 +131.51 +127.511 +134.446 +12 SUK5.274 +14
/COMPLX.1.710811, 56360 1 LTS POINT SOURCE 1 L 0 0 24 36 0 0.0 306.		03 GAULAC PULLIT SOUNCE UND 1 0 0 24 35 -68 1 0 0 4 36 -68 1,469 +141.254 +14	\$008000 24 36 - 432. +142.463 + +132.764 +	0.0 0.0 470. 0.0 0.0 470. 0.0 0.0 470. 0.336.4122.529.412.	06 TPA POLNT SOUNCE JUN 1 0 0 24 36 -63 89.9 0.0 383. 2.044 +153.425 +14 3.658 +132.949 +141.493 +14	000092 07 TPA POINT SOURCE JUN 000093 1 0 0 24 36 -68 000094 -50.9 0.0 383. 383. 1956,97 1958,984 131.582 1448.762 1131 000053	00-05-9 00-05-0 1 0 0 24 36 -68 00-05-1 00-05-1 00-05-2 00-05-2 00-05-3 00-05-413 00-05-4 00-05-4

	Turbine Block Valve	Turbine Exhaust Line	Pump Discharge Line	Structural Support co Coolant Line Coolant Line COO	90	6:07:08-772	•			
3 52 11 32 3 210 3 0101 0102 977L 5 +152,147 +152,609 +154,365 +143,446 +14 977L 1 9 +153,334 +14 SUM2.879 +16	PVARA WITH COMPLEX PUMP 1 52 11 32 3 210 10102 10102 1153.157 +153.250 +151.057 +151.305 +1510TPL 1154. 12 +14 20003	MITH COMPLEX PUMP 11 32 3 210 0102 117EL 117EL 3 331 +14 117EL 3 0401 117EL 117EL 3 0401 117EL 117EL 117EL 117EL 117EL 117EL	PVARA WITH COMPLEX PUMP 52 11 32 3 210 3 0101 0102 12PDL +155.2R4 +147.457 +141.021 +141.617 +1412PDL +146.751 +13 SUM1.269 +16 12PDL 2	، ایسان کا ا		OTON ENERGY GROUP STRUCTURE	7.5 - 1	i	3.0 - 4.0 2.6 - 3.0 1.8 - 2.2	35 -
1 0 24 36 -68 13 0.0 -66. 374. 1.0 1.347 +163.964 +152.095 4.518 +141.007 +154.913 +141.99	10 THL POINT SOURCE JULY70 1 0 0 24 36 -68 13 0.0 -E5. 336. 1.0 2.850 +169.216 +155.810 9.158 +141. 3 +151.290 +153.838	70147 SOUPCL JULY70 0 24 36 68 1 41. 345. 1.0 1.746 +165.302 >152.42 141.484 +159.562 +141.91	D.0 24 36 -68 13 0.0 73. 367. 1.0 4.605 +152.501 +141.463 +142.684	13 55CL PUINT SOURCE JULY70 1 0 0 24 36 -6A 13 -4189. 177. 1.0 8.203 +153.220 +152.035 2.172 +154.253 +143.153 +147.634		ENGINE / POI	1	3	9	10

											-	'ABI	E 6				÷				
e	.6304+15	.7304+15	.1110+16	.1364+16	110011.	.1355+16	.1308+16	.3630+16	.55h7+1K	.3460+16	.4456+16	.2470415	.1728+16	.26nn+17	•						
4	-1715+17	.2013+17	.3038+17	.3715+17	-3260+17	.3613417	.3556+17	.0008+17	.1536+38	.9431+17	.1213+1A	.7244+16	. 4847+17	•7431+1B							
٤	14060+16	49358+16	.1420+17	.1749+17	1533+17	.1652+17	1672+17	.4641+17	.7217+17	. 4425+17	.569A+17	.3330+16	.2237+17	. 3477+1A							
٣	• 0000	0000.	0000	• 0000	0000	.4713+12	0000	0000	0000	0000	• 1000	0000	0000	.4713+12					-		
<i>z</i>	0000•	0000	• נוטיטי	0000	• 0000	.1074+13	0000	• 0000	•000	0000•	• 0000	0000	• מיייח	1974413							
CAPTURE SOURCE	. 0000	ისეს.	, 1000.		. 0000	.6455+13	0600.	0000	•000.		, , , , , , ,	0000.	• 1000	.6456+13						-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CAPTUI	0000•	0000	• 0000	0000.	0000	.9607+15	0000	0000	0000	•000	, 0000.	0000	. 0000	.8607+15	,	_				· ·	
. 1	. 0000	0000	.0000	0000	0000	0000	0000	0000.	0000.	0000	. 0030.	0000.	0000	0000			•	•			
V2.	00+00+•	900 100	+135+01	.180+01	.220+01.	1040521	.300+01	.430401	.580+01	.690+01	.70401	.750+91	20+60 (* 40	יניואר							

D

:		• • • • •											TAB	LE	6 (0	ONTI	NUED)							
		-				•	•					٠.									•			
		æ	. B114+1n	.1238+16	.3756+15	.6235+15	11+1115.	.3527+15	4443544	-20A0+15	.6753+14	.3P60+14	.5192+13	.2356+13	E \$48988.	3005+16								
	PAGE 60		.1431+16	.2538+17	.5205+16	.8379+16	. KAOU+15	.4500+16	.5A31+14	.2674+14	•8643+15	. 4963+15	11+9295.	.3029+14	.4326+14	.5045+17			•					
•	DATE 09 WAP 72	Æ	.7204+15	.1300+17	.2755+16	.4327+16	.3399415	.2294+16	.2862+15	.1312+16	.4262+15	.2436+15	.3277+14	.1477+14	.2123+14	.2577+17								
	OLUVATURA EYTENSTON	r	• 1000	0000	.0000	0006.	£000°	0000	0000.	0000	0000	0000	0000	0000	0000	0000					•.			
,	IN COLUVATIF	e	0000	.000	0000	0000	0000	. nnnn	0000°	0000	.0000		0000	0000	0000	0000						•		
	EXECUTE UDAP FOR SECONDARY SOURCE IN C	INELASTIC SOURCE 3		0660.	0000	0000	იგეი.	• 0000	•0000	יטטטי•	• 0000	0000	6006.	- nnn	• 0000	. 6000				•	٠.			
	AP FOR SECON	INEL	•0000	0000*	• 6000	000៥•	0000	•000	• 0000	0000	0000	0000.	7 0000	ບຄຄບ•	0000	0000.			3					
	EXFCUTE UD		00110	0000.	. 0600	0000.	0000	0000	0000	0000	0000	.0000	. 0000	0000	0000	0))ព្					٠		·	
·		SEV	00+00%*	.960+90	135+01	.180+01	.220+01.	.250+01	.300+01	.400+01	10+006.	.100401	.700+01	19+652.	*100+05	TOTAL								

											TA	ABL:	E 6	CONT	TNUEL					
ec	.7115+15	.1968+16	.1493+16	.1998+16	11252+16	.1708+16	.1353+16	91+8585.	.5714+16	.3499+16	.4461+16	.2603+15	.1731+16	.2008+17						
,	.1858+17	44551+17	.3559+17	.4553+17	1329417	.4073+17	.3615+17	.1018+18	.1544+19	.9481+17	.1213+10	.7274+14	.4852+17	.7A35+1a						-
·	.8781+16	.2235+17	.1704+17	.2178+17	-1567+17	.1882+17	.1701+17	4777417	.7260+17	.444444	.5701+17	.3353+16	.2239+17	.3690+12			,			
ĸ	0000-	0000	• 1000	0006.	0000	.4713-12	0000	0000.	• 000	0000	0000	0000	0000	.4713+12						
æ	ບບວນ•	•0000•	•000•	•6119	0000	.1970+13	0000	vaca.	• 0000	• מטטט	• 6990	0600	• 0 0 0 0	1970+13			,			
TOTAL SOURCE	. 0000	. 3800	• 0000	6000	, naga.	. 6855+13	6000°	0000		• 0000	้บบับบ•	. 0000	• 9000	£1+55v9.						
TOTAL.	0000	0000	0000*	0000.	0000*	.2607+15	0000	6000*	. 9000	• 0000	0000	0000.	0000	. 7607+15						
. 1	0000	0000	9000.	0000	9000	00:10	0000	00:30	0000	60u0°	0000	0000	0000.	0.000						
MEV	00+004.	00+006.	135+01	.180+01	.220+01	.260+111	.300+01	10+004.	.500+01	+500+01	.703+91	.750+01	.100+02	retal						

	1		٠.			•							-		}						
. 0000	0000	• 0000	0000	0000	•6176+1R	• 0000	• 0000	• 0000	• 0000	• 0000	. 0000	• 0000	.6076+16								
.1182+15	-4587+15	.1774+15	.3844+15	.20pA+15	-2450+15	*2368415	.641445	.7435+15	.8404+15	.1009+16	.6155+15	\$1+03£h•	11008+17		,						
.2895+15	1213+16	.4303+15	• ARB7+15	.5070+15	.6772+15	.5700+15	.1A96+1A	.1932+16	.2234+16	.2462+16	.1400+16	.1017+17	•246A+17		*						
.1823+15	.7614+15	.2711+15	.5595+15	-3197+15	.4282+15	.3590+15	.1205+16	.1222+16	.1405+16	.1539+16	. AA26+15	.6291+16	.1542+17								
.7784+16	.3307+17	.1156+17	71+0452	1367+17	.1919+17	1524+17	.53R3417	.5277+17	.6046+37	11+1539+	.369417	.2654+18	.6558+18								
.9017+16	1,16,00+17	.1347417	.2807+17	.1587+17	.2145417	17:11:17	.5702+17	.5950+17	.4880+17	21+vos2.	. 4433+17	.3123+18	.7605+18								
.2040+15	.2184+15	.3632+15	\$1+65£4.	.3690+15	.4658+15	.4243+15	111,4116	1831+16	.1106+16	.1436+16	.6775+14	.4418+15	.3541+16								
.2442+15	.3132+15	.4300+15	.5421+15	.4(27+15	.6639415	.5057+15	.1390+16	.2151+16	.1361+16	1749+16	.1580+15	.1117+16	.1163417				-				
•400+00	00+006.	135101	.180+01	.22u+01.	.250+01	.300+01	•4pe0+01	.500 101	.600+01	.700+61	.750+01	.100+02	Total					-			
	.2442+15 .2040+15 .7784+16 .1823+15 .2895+15 .1182+19	.2135-15 .2040+15 .9017+16 .7784+16 .1823+15 .2895+15 .1182+19 .3135+15 .2184+15 .3507+17 .7514+15 .1213+16 .4587+15	.2135-15 .2040+15 .9017+16 .7784+16 .1823+15 .2895+15 .1182+15 .3135-15 .21384+15 .3507+17 .7514+15 .1213+16 .4587+15 .45000+15 .3637+15 .1347+17 .1154+17 .2711+15 .4303+15 .1774+15	.2442+15 .2040+15 .9017+16 .7784+16 .1823+15 .2895+15 .1182+15 .31304+15 .2184+15 .3567+17 .3207+17 .7514+15 .4303+15 .4774+15 .45000+15 .3632+15 .1347+17 .1156+17 .2711+15 .4303+15 .1774+15 .5421+15 .4399+15 .2807+17 .2349+17 .5595+15 .3844+15	**************************************	.2442+15 .2040+15 .1784+16 .1823+15 .28955+15 .1182+15 .3130+15 .3107+17 .7514+15 .4587+15 .4587+15 .4500+15 .3537+15 .1156+17 .2711+15 .4303+15 .1774+15 .5421+15 .43901+15 .2340+17 .5595+15 .38401+15 .36901+15 .4653+15 .4653+15 .1547+17 .1141+17 .4653+15 .2045+15	.2442+15 .2040+15 .7784+16 .1823+15 .28955+15 .1182+15 .3430+15 .3567+15 .3567+17 .7514+15 .4567+15 .4587+15 .5421+15 .3637+15 .1347+17 .2349+17 .2711+15 .4303+15 .1744+15 .5421+15 .4620+15 .1547+17 .1354+17 .3197+15 .5676+15 .2456+15 .6639+15 .4658+15 .2145+17 .1416+17 .4262+15 .2356+15	**************************************	.8442+15 .2895+15 .1823+15 .1823+15 .1823+15 .1823+15 .1823+15 .4587+15 .3130+15 .350+15 .3507+17 .7514+15 .4587+15 .4587+15 .5421+15 .3630+15 .1347+17 .1154+17 .5595+15 .3844+15 .5421+15 .3630+15 .1547+17 .3197+15 .5770+15 .5775+15 .6639+15 .4658+15 .2145+17 .1524+17 .3590+15 .5700+15 .2350+15 .5657+15 .1591+17 .1528+16 .1505+16 .1541+15 .5364+15	.3130+15 .2184+15 .7844+16 .7844+16 .1213+15 .2895+15 .4837+15 .4837+15 .4837+15 .4837+15 .4837+15 .4837+15 .7174+15 .4303+15 .1774+15 .4303+15 .7774+15 .4303+15 .7774+15 .4303+15 .7774+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .78421+15 .8863+15 .8863+15 .8863+15 .8863+15 .115421+15 .1262+16 .1262+16 .1866+17 .83431+15 .83431+15 .8363+15 .13614+16 .1166+16 .86431+17 .85424+16 .1465+16 .1166+16 .86431+17 .8646+16 .1465+16 .1166+16 .86431+17 .8646+17 .1465+16 .1262+16 .1465+15 .8840+15 .1361+15	.28422+15 .28442+15 .28442+15 .28451+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .4557+15 .7577+15 .5774+15 .5704+15 .5704+15 .5704+15 .5707+15 .5777+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15 .5767+15	• 400+00 • 2040+15 • 9017+16 • 7784+16 • 1234+15 • 1213+16 • 1182+15 • 900+00 • 3350+15 • 3507+17 • 7514+15 • 4303+15 • 4587+15 • 120+01 • 1300+15 • 1300+17 • 1367+17 • 2711+15 • 4303+15 • 1774+15 • 120+01 • 1300+15 • 1307+17 • 1367+17 • 2711+15 • 4303+15 • 1774+15 • 220+01 • 1300+15 • 1507+17 • 1367+17 • 1367+15 • 5070+15 • 2060+15 • 260+01 • 1639+15 • 1684+15 • 1701+17 • 1360+15 • 5760+15 • 2060+15 • 1701+17 • 1205+16 • 1705+15 • 2060+15 • 1000+01 • 1500+16 • 1106+16 • 5767+17 • 1205+16 • 1606+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 • 1006+16 <t< td=""><td>.3130+15 .2180+15 .7780+15 .7510+15 .2895+15 .1213+16 .4587+15 .3130+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .75</td><td>• 400+00 .2442+15 .2040+15 .7784+16 .7784+16 .7784+16 .1213+15 .2895+15 .1213+16 .4557+15 • 900+00 .3130+15 .2340+17 .3577+17 .7514+15 .4567+15 .4567+15 • 120+01 .620+15 .3037+17 .2340+17 .5505+15 .4303+15 .3744+17 • 120+01 .5421+15 .4050+15 .2807+17 .2340+17 .5507+15 .5074+15 .5777+15 • 220+01 .6039+15 .4050+15 .1547+17 .1364+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 <t< td=""><td>.909-00</td><td>.909+00</td><td>.909+00</td><td>. 1904-00</td><td> . 1990-101 . 1970-115 . 1970-117 . 1970-117 . 1970-117 . 1970-119 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117</td><td>- 400400 - 2014215 - 1217415 - 1747077 - 1741415 - 1721415 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 17470</td><td>- 400409 - 2244245</td></t<></td></t<>	.3130+15 .2180+15 .7780+15 .7510+15 .2895+15 .1213+16 .4587+15 .3130+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .7510+15 .75	• 400+00 .2442+15 .2040+15 .7784+16 .7784+16 .7784+16 .1213+15 .2895+15 .1213+16 .4557+15 • 900+00 .3130+15 .2340+17 .3577+17 .7514+15 .4567+15 .4567+15 • 120+01 .620+15 .3037+17 .2340+17 .5505+15 .4303+15 .3744+17 • 120+01 .5421+15 .4050+15 .2807+17 .2340+17 .5507+15 .5074+15 .5777+15 • 220+01 .6039+15 .4050+15 .1547+17 .1364+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .5777+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 .7774+15 <t< td=""><td>.909-00</td><td>.909+00</td><td>.909+00</td><td>. 1904-00</td><td> . 1990-101 . 1970-115 . 1970-117 . 1970-117 . 1970-117 . 1970-119 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117</td><td>- 400400 - 2014215 - 1217415 - 1747077 - 1741415 - 1721415 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 17470</td><td>- 400409 - 2244245</td></t<>	.909-00	.909+00	.909+00	. 1904-00	 . 1990-101 . 1970-115 . 1970-117 . 1970-117 . 1970-117 . 1970-119 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117 . 1970-117	- 400400 - 2014215 - 1217415 - 1747077 - 1741415 - 1721415 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 1747071 - 17470	- 400409 - 2244245

	-										TAI	BLE	6 (CONTI	NUED)					
16	0000	ינוטוי	6000	0600	00000	. 0000	. 0000	0000	.000	0000	0000	• 00,00	0000	0000						
19	.1812+15	91+c59n°	.770A+15	.1338+16	.724n+14	.A754+15	#1+0877.	.40n1+15	1652+15	.1003+15	1334+14	.6108+13	. 4891+13	.8760+16						
14	.8289+15	.2156+17	.3721+16	.6103+16	. 3153+15	.3842+14	. 3358+15	2140116.	.7121+15	.4323+15	.5753+14	.2634+14	.3833+14	.4013+17						
	.2265+15	.5321+16	.1229+16	.1709+16	.7109+14	.9114+15	.7173+14	.4583+15	-1521+15	49233+14	1229+14	.5626+13	. 8188+13	•1027+17					-	
12	91+22660.	v1+11b112.	44260+17	.7000417	.3624+16	£1+nch4.	.3062+16	-2470+17	.8191+16	.4972+16	51+4199•	•3020±15	•ំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ	•4621+19		-				
TC SAURCE	.7569+16	91+6461.	.3263+17	.5285+17	12603+16	. 3297+17	•2860+16	-10501·	.6065+16	.3581+16	\$14006h.	.2243+15	•3265+15	.3590+19						
THELASTIC SOURCE 15 15 15 15 15	गान्तेगाः.	.2069415	.3747+14	41.46094	.5138+13	.3406+14	.4354+13	119661.	, 6483+13	.3706+13	.4985+12	.2262+12	.3230+12	.3916+15						
6	.5623+14	. 9356+15	.1639415	.2988+15	.2556+14	.1664+15	.2124+14	+4739+14	.3163+14	.1808+14	.2432413	.1103+13	.1575+13	.13/1+16						
٠ کان	00+394•	00+005*	.135+01	.180+01	.220+01.	.200+01	.300+01	.400+01	.300+01	•630+01	.703101	.75u+01	.100+02	TOTAL						

÷.	-		1				-		7.	-			-	 ·	1	1	1			T-1.	1		2: "	Ī	Ϊ.
											3	rabi	LE	5 (C	ONTIN	WED)							•		
																				•			,		
	16	0000	• กกุกก	.0000	• 0000	• 0000	.6076+16	0000	• 0000	• 0000	• 0000	• ທຸກຸກ	. 0000	• • • • • • • • • • • • • • • • • • • •	.6076+16			-	· ·						
PAGE 64		.2094+15	.5111+16	.9971+19	.1723+16	-2912+15	.1161+16	.3147+15	1140+14	• 9087+15	*9A0A+14	.1022+16	. 5216+19	41729+16	•19A5+17					•					-
DATE NO WAR 72 P	1 1	.1118+16	.2277+17	.4152+16	41+2669+	.8222+15	.4526+14	*905A+15	•4043+16	.2644+16	.2666+16	.2519+16	.1434+16	.1021+17	• 6481+17		<u> </u>		•					3	
	·	.4088+15	.6083+16	.1500+16	.2268+16	.3903+15	.1349+16	.4307+15	.1663+16	.1374+16	.1497+16	.1551+16	. 9862+15	.6299+16	.2569+17										
EXECUTE UDAP FOR SECONDARY SOURCE IN COLUMNITY EXTENSION	1.9	1172+17	.2814119	.5425417	49359+17	11726+17	-6042+17	.1011+17	.7053+17	6116+17	46543+17	.6603+17	.3717+17	.2639+18	.1113+19										
RY SOURCE IN	Source 11	.1560+17	.2301+19	.4610+17	- Agos+17	.1056+17	.5442+17	.2057+17	.7531+17	-6557+17	. 7248427 .	-7547+17	.4455+17	.3126+18	.1114+19										
FOIL SECONDA	TOTAL SOURCE 10 11	.2150+15	.4253+15	.41,07+15	.5009+15	.3942+15	\$1+6664.	.4286+15	.1174+16	.1837+16	.1110+16	.1437+16	.6798+14	.4421+15	. 1932+16										
EXECUTE UDA	6	.29u4+15	.1297416	.0139+15	.8409+15	4478415	.7703+15	.5269+15	.1487+10	.2183+16	.1380+16	.1752+16	.1597+15	.1119+16	.1201+17					•					
	MEV	*400+00	00+006-	135+01	.180+01	.220+01.	*26J+01	.300+01	107501.	.500+01	.600+01	.700+01	.750+01	.100+02	וסואר										
														_45.	i .										

TABLE 6 (CONTINUED) Ġ · 4205+13 .3765+13 .2290+13 + 4.740+14 1704+13 -6451+13 .1129417 . 20105. .27611+13 5411413 • R357+13 .0704+13 •6n71+13 #1+hoL6. .1041+16 1011116 ับบบบ .0000 .0000 . 0000 .0000 0000 . חחחח. 0000. • טטטט יחחחם. 0000 DV0 DATE SO WAR 72 .1070+15 2347415 .275n+19 .1737+15 .121A+16 1199419 .4211+14 . 7839+14 6513+14 151515 1934+15 .3197+14 5684+14 .2753+16 2 1390+15 .1686+15 2011+15 2301-15 .9993+15 .1053+15 •8564*14 .5380+14 .1472+15 2675+14 .3997+14 4722+14 6395+14 2309+16 LXFCUTE GOAP FOR SECONDARY SOUPCE IN COLUMPTUM EXTENSION 214055110 9149416 .7190+16 5196+16 **71+0606.** 3049+16 .1292+17 5320+16 .2353+17 .2537117 71411150 -200m+17 .1029+17 2525+19 200 .0000 וניטט .0000 .000 0000 0000 . 0000 .000 .0000 .0000 6000 .0000 CAPTURE SOURCE 0000 0000 .0000. 0000 .0000 0000 0000 .0000 .0000 .000 0000. 0000 0000 0000 0000. 0000 .3309+16 .0000 . 1000 0000. 00.16. 0010 .. 3660 . 0000 .0000 0000 0000 00110. 0000 .500+01 .220+01 .300+01 .100+02 .400+00 .260 t 01 10+004. .000+01 .750+01 901000 135+01 .180+01 101007. NE. TU! AL

	-										TAB	LE	6	(CON	TINUE	D)			1 .				
								•															
	ħζ	41+6401•	-2255+15	. 5950+14	.1259+15	A161+13	. o54n+1u	.9077+13	•5806+1n	.1025+14	.1168+14	•1555+17	51,10+12	.1036+13	.6251+15			÷.					
האקד הא	23	0000	0000	,000	0000	0000		.000	0000.	. 0000	• 0000	0000	. 0000	0000	0000								
NATE NO "AR 72	22	.4413+14	\$1+69no*	*2350+1F	.4712+15	.2907+14	.3424+15	.3201+14	.2047+15	.6798+14	.4120+14	.5480+13	.2510+13	.3654+13	.2426+16								
		.6949+14	.1713+16	.3171+15	.5665+15	.3185+14	.3922+15	.3452+14	.2208+15	••7321+1u	. 444444	.5915+13	.2707413	.3941+13	.3465+16							·	
EXECUTE UNA! FOR SICORDARY SOURCE IN COLUMNIA EXTENSION	20	.3000+16	.1143414	.1640+17	.2521+17	.12051.	11,96+17	.1261+1.6	• HB54+16	.2674+16	.1623+16	-2140415-	ալ+սրոբ.	-1430+15	•1001+1R							-	
ARY SOUNCE IN	INELASTIC SOURCE	0000	0000	• 1000	.0000	บบบบัง	• 0000	, 000	• 0000	• 0000	• 0000	, 0000	• 0000	,000·	0000.								
ALL FOR SITCOLD	THEU.A	" 000.	0000*	noon.	0000.	0000.	0000•	u00ù•	0000	. 011011		/ unnu-	. 0000	•0000	0000•							·	
EXECUTE UN	17	ขอลก•	9000	0000	. 0000	nono.	ຸນຄຄູນ	0000.	0000.	. 0000	00110	0000	0000	. 01.00	0000								
	V.18.5	00+00+	001+006*	135+01	.180+01	.22n+91.	.260+01	.300+01	.,,60,401	.500+01	.600+01	.760+61	.750+01	.100+02	TUTAL								
		٠													-47-								

-										•	TAI	BLE	6 (сои	TIN	ÚED)						.			•	
24	.1162+14	\$1+hbcc.	.6070+14	*1297+15	.1017+14	.0216+34	.1137+1u	+6357+14	.2610+14	.2004+14	.1 135+14	.6793+13	ង ៖ + € អក្កដ់ •	-7230+15									•			
23	. 1000	0000.	.0000	0000	00000	.1041+14	.	.0000	• 0000	0000	0000	• 0000	• 1000	.1041+16						: •						
ď.	.7610+14	.1065+16	.2840+15	.5780+15	. 8587+14	P1+40C4.	.9714+14	.3562+15	.2613+15	.2755+15	.2805+15	.1762+15	.1222+16	.51A0+16				٠,							ĭ° .	
21	.9624+14	.1318416	.3571+15	.4532+15	.7907+14	.4462+15	. AB33+14	.3690+15	.2418+15	.2455+15	.2360+15	.1417:15	.1003+16	.5774+16						•						
5.0	.6040+16	11273+11	.2100417	-3436+17	A:+550.	.2215+17	.7157+16	. 2040+17	.2341+17	.2515+17	-25550+17	.11,70+17	£\$+##c6.	nt+7c44.												
TOTAL SOUNCE	• 0000	• 6300	יטרטי	6000	•000	-000u	ขับชีบ•	0000	• 0000	000U* ;	•000u	0000.	6000.	9690.							•			,		
101	0000.	0000	. 9009	0000	. 0000	0000	0000	0000	0000.	• 0000	, 0900.	0000.	6000.	0000.											٠	
17	.0010	0000	0000	0000.	0956.	.3308+16	0000	901.0	• 0000	0 000.	0000	00.00	. 6600	.5300+16		·			• •							
XEV	001004.	•900+006•	135+01	.189+01	.220+01.	.260+01	.300+01	.400+91	.500+01	•600401	.70000	.750+01	.100+02	70101-4	***************************************	-					-		•			

	.6585+13	4013+13		•			•		1		,	- 1	-	}	1	j ·	- 1		1	j		J
	.6585+13	13+13																				
		.40	.3510+13	.3047+13	.2222+13	.1531+13	.2074+13	.5474+14	.2963+14	#1+06#Z*	. AA25+13	1104+13		.1415+15								
16	.4889+13	+1+h400°	.2608+13	.2258+13	.1647+13	.1135417	-1537+13	.4057+14	.2106+14	.1945+14	51+hpo5.	61+91164.	0000	*10no+15								
30	.5506+13	.3355+13	£1+6h66.	.2547+13	.1854+13	1200+13	1734+13	41+7724.	.2470+14	.2082+14	.6711+13	. 99pn+12	• 0000	.1183+15							•	
62	.6030+13	.4223+13	.7703+13	.3206+13	.2339+13	.1611+13	.2183+13	. 5761+14	.3118+14	.2620+14	. A446+13	.1256+13	• 0000	.1489+15								
66	•5358+13	.3570+13	.3131413	.2719413	1142701.	.1362+13	*1104413	11+11/611.	11+2596.	.2215+14	.714n413	116591.	•000	.1259+15				-				
CAPTIRE SOURCE	.7044+13	. 4202 F13	. 3764+13	.3259+13	.2377413	•153A+13	.2219113	.5855+11	.3170+14	, .266n+1n	. 9585+13	.1277113	0000	.1513+15								
CAPT'RE	.5101+13	.510A+13	.2726+13	.2360+13	.1721+13	.1186+13	.1607+13	+1+0424·	.2295+14	1929114	.6216413	.0245+12	0000.	.1096+15								
8.28	.0231+13	.5391+15	.4719+13	.4036+13	.2980+13	.2053+13	.2782+13	.7341+19	.3974+14	.3339+14	.10701.	.1641+13	• 0000	.1897+15								
rev	00+n0#•	4290490	.135+01	.180+01	.229+01.	.260+01	.300+01	.403701	.500+61	.600+01	.700+01	.750+01	.100+02	TOTAL								

		USAP FOR SECONDARY SOURCE IN COLUMITUR EXTENSION	COLUMITUR EX		77 HVM 60 31 VI	PAGE 649		
25	THELA	THELASTIC SOUNCE	c č	·	30		€£	
.9750+12	.4299+12	.7460+12	.5097+12	.1656+13	.3287+12	.2619412	61+1900.	
.1765+14	.1561+14	.1714+14	.1273+14	.3153+14	.1821+14	1595+14	•185A+14	
.3621+14	# # 55 G + 1 H	.3306+14	.1356+1"	.5962+14	.3077+14	######################################	41+1704.	
.1616+14	.5010+13	.1206+14	+8180+13	.2749+14	.4213+13	.3191+13	.1657+14	
.1558419	.5793+13	.1163+14	.7085+13	.2649+14	.4062+13	.3066+13	•15an+14	,
.1025+14	.3628+13	.7583+13	.5211+13	.1750+14	.2684+13	.2026+13	.1056+14	
.9382+13	.349n+13	.7004+13	6150413	.1595+14	.244413	.1947+13	.9623+13	
.1202114	.4471413	.8974+13	£1+5009·	.2044+14	.3135+13	.2366+13	.1233+14	
.3169+13	.1179+13	.2366+13	.1504413	.5389+13	. 4264+12	-6239+12	.3250+13	
.1403+13	.5218+12	.1047+13	.7102+12	.2386+13	.3658+12	.2762+12	.1439+13	TAE
. ne45+12	.3217+12	.6456+12	-437A+12	.1477413	. 2255412	\$1+cu21.	. AR70+12	IE
. 3602+12	.1340+12	. 26.00+12	. 1924+12	.6126+12	.9394+11	11+2607.	.3695+12	6 (
2086+12	.7758+11	.1547+12	.1056+12	.3547+12	.5430+11	.4106+11	.2139+12	CON
.1253+15	41+3059	1936+15	. •5706+14	•2119415	• 7642+14	1456414	1205+15	LINU
								ED)
-			•					
			,					
	·							

TABLE 6 (CONTINUED) 9139+12 .7581+13 .1563+13 4145655. +1045+14 .1170+1u .32AA+14 .2634+14 41+6566 +140cu1+ .1209+14 +6707+14 . R913+13 .2620+15 .3161+13 .51u2+13 4700+14 .4204+1A .2259+14 .1973+14 5439+13 1713+13 .3384+13 .6118+13 •9545+12 5 1146911 .4106+11 .1791+15 NATE DO MAR 72 PAGE .5835+13 4272+14 .3964+13 .4181+13 .2560+14 .2110+14 6761+13 5920+13 44491+14 .6936+13 .1002+13 .5439+11 2156+14 1947+15 .95A6+13 .3657+14 .2859+14 3916+13 .1969+13 .3547+12 6332+14 3068+14 .1914+14 .7805+14 19:1+14 .3575+14 .29n2+14 -359A+15 EXECUTE UPAP FOR SECONDARY SOURCE IN COLUMBIUM EXTENSION ž *636A+! 4 6595413 .2236+14 .1056+12 .2170+14 .1997+14 657.1413 .5478+113 .2777+14 . 12444121. . 9963+13 .757A+13 1630+14 1920415 . 1763+111 .2768+19 .7790+13 .2148419 +1532+14 .9321+13 •6753+14 ·3405+14 . 9231+13 .1557+12 .9223+13 114111114 1546+13 .2540+15 TOTAL SALIPCE .7758+11 .5530+13 .5131+19 .19H1+14 .105A+13 .0370+13 5014+53 .5096+13 6539+13 42192+14 .7515+13 .4687+14 2413+14 .2032+15 3 9506+13 41003+14 .2024+14 .3479+14 .1961+13 .2086+12 .1534+14 .1816+14 4543414 4291+14 1163+14 2403414 .1856+14 3159115 .180+01 500+01 .150+02 06+004. 220401 600+01 00+006. •260+01 .300+01 132+01 .700+01 .750+01 .40040 14EV TOTAL -51-

·	-									T	ABLE	6	(cc	NTI	MUED)				•				
				-			<i>*</i>					.		٠									
			.								ı										-		
	Çi #	. 0600	. 0000	.000	0000	0000	• 0000	• 0000	0000	. 0000	• 0000	. 0000	. nnnn	. 0040.	• ທິດທິດ		-: .						
-	3	٠	C.		•	٥	٠	c.	•	e e		6	٠	e .	Uu•								
بية ج 1	6 t	0000	. 0000		0000	• ທຸກທຸກ	• 0000	. 0000	• 0000	0000	. 0000	•000•	0000	0000	บบ				i				
72 PAGE	•	6.		O ·	•	•	5		٠	6	c,	6.		ē.	• • • •								
14 A.	7.	יטטט.	. 3000	. 0000	•0000•	• 0000	0000	. 0000	սմնս•	0000	0000	.000	.0000	,000v	ر ن								
NATE 09	F .	•	6.	6.	G•.		6.	0.	•	0	c.	0.	•	c.	0000				•				
20	4	0000	0000	•0000	. 6000	0000	• 0000	0606.	0000	0000	0000	6000	.000	0000	0.0								
EXECUTE UDAP FOR SECUMPARY SOURCE IN COLUMBIUM EXTENSION	37	Ċ.	0.	c	c.	0.	-		e.	6		C	9	Ē.	0000								
VRTUM_E	v	iuli0•	0000	0000	- 0.30u	•0000•	• 0000	0000	0000	• 000	0000	•000	0000	• 0000	96								
א כארה	36	٠	0.	Ü	0	٠	0	:	6	0	c.	0.	0	0.	ນບບດ•		.	ŀ	-		•		
NIRCE 1	انا د خ	1785+13	.1988+13	.9537+12	.8257+12	-6123+12	.4140+12	.5622+12	11444410	.4031+13	.6749+13	-2175+13	-3235+12	•000•	•3835+1.4								
אַער אַ	CAPTURE SKURCE	-	•	Ċ.	.83	9.	=	, 7,	-	6	•		.3	0.	£.								
NOSECON	CAPTU	.3521+14	.2146+14	1642+14	.1629+14	111181+14	.F.1117+13	.1100+14	.2927415	.1585+15	.1332+15	41+262h	-5382+13	• 6000	.7566+15								
DAP FOL	\$2.	8	.2	Ž.	.16	F.	1.7		.2	1	¥	, i	5	าอ•	.754	_					•		
CUTE		.1432+14	.8728413	.7054+13	.6627+13	4634+13	.3330+13	.4512+13	.1191+15	6445+14	.5416+14	1746411	2590+15	90	7115					•			
E X	35	.14	ra.	32.	• 06	319.	.33	Str.	1	1,5	. 54	(1.	2	0000	.3077115		·			,			
		0.0	0.0	01	10	91	0.1	0.1	10	0.1	01	0.1	0.1	20					-				
	1:50	•400+00	00+006.	.135+U1	.189+01	.220+01	.260+01	.500+01	105 504.	.300+01	.500+01	.700101	.750+01	.100+02	r. ral							٠	

-				-					7	rabl	‡ 6	(ONT	[NUED]	}						
																					1
				•		.											.				
												.			,						
c a	0000	0000	0000	0000	0000	0000	0000	0000	0000	• • • • •	• נוטטט	0000	0000	• 0000							
a	٠	٠		٠			٠	•		•			•	0.							
							_						_								
39	•0000	0000.	0000	• 000	6600.	nuu	• درون	υὐύυ•	•000•	• 0000	0000	.000	• חחחח	0000) 			•			
1													,	ľ							
38	ć.	C U	υG	, noon	vu.	• 0000	,,,,,,	• 000	.0000	, ngen	0000	2000	.0000	ē.							
38	,000·	יטטטי.	0000.	٠.	.000.	00.	٠.	00.	• 00	, 10.	JU•	2.		0000				•		<u> </u>	
47	• 0000	0000.	0000	.000	0000.	0000	•0000	0000	0000	0000	0000	0000	0000	0000		İ					
	•	ľ		•			•			•			•	•							
	Ē	Q	<u>-</u>	ç	C	5	Ē	و	=	٤	0.	5	ڃ								
36	. 0000	0000	600.	.000	0000	0000	0000•	יטטט.	0000	00000	0000	.000	0110	•0000				•		,	
L.	53	F	1.5	ž	2	5	· =		=		1.3	<u> </u>	۲,					•			
33 34 14ELASTIC SOURCE 3A 37	.5631+13	1030+15	.1910+15	•9380+14	.9043+14	.5975+14	.5747+14	.5979+14	.1040114	.9145+13	.5021+13	.2001+13	1211+13	.7045+15							
'STIC				•			•	•		•	•		•	7.		-		•			
INEL	5+13	3+15	0+15	1+14	7+14	41.14	2+14	7+14	7+14	.6071+13	.4113+13	1713413	.9918+12	115					, i		
#	.4735+13	.1080+15	.2020+15	.7684+14	.7+07+14	41.4964.	.4462+14	.5717+14	1507+14	Lay•	.4111	171	166.	.6450+15							
	m	±	-5	ŧ		4	Ŧ.	3	3	6	3	23	æ								
33	.1462+13	. uH24+14	1049415	.2216+14	.2136+14	1012+14	.1287+14	41469414	.4347+13	.1924413	.1186+13	4941+12	.2%61+12	-2499415							
	۲.	3.	1	∾.	1	7		1	-	7	-	7.	₹.	12.				.•			
												-	_,								
ر اقا ا	00+004-	001006.	135+01	100+01	.220+01	.250+01	. 300+01	100101	.500+01	.600+01	.700,01	756+01	.100+62	ب							
-	±		1.	• 1	7:	?	٠.	-	5	9.		7-		TOTAL							
													-53-		<u> </u>						

									FAE	LE 6		1	INUI							
·			•				•													
																	•.			
a 0	0000	้ากกกา	יוייטי	0000.	0000	ייייי	0000	•000	• 0000	• 0000	0000	0000	. 0000.	• 0000			•			
	•			•			•		•	•	•		•••	0						
	ç	u u	c		uu	C	ڎ	υυ	20	c c	00	0000	٤	c ·	1		-			
. 99	.0000	יטטטי•	0000	.0000	0000	0000	.000	ייטטטי.	0000	. 1000	0000	20	• 100.	0000					1	
	_			_			_			_			_		ŀ		• .			
ม	1000.	enino.	. 1000	.000.	. nnn	. nnn	• 9000	0000.	. 0000	0000 •	000u• .	. 1000	.000.	0000						
,							•						•							
7.5	0000.	0006.	. nong	•0000•	0000	.0000	.000	0000	0000	0000	0000	0000	0006.	0000						
36	. 0.000	•0000	ניטוטי	•0010	.0000	ບບບົບ•	.000	0000	• 0000	• 0000	0000	.000	0000.	0000					.	
	•			٠			;	-		٠			•	0						
L!	16+13	1050115	1029+19	. on 63+1 a	. 9103+14	.6017414	5503+14	. A463+14	.2643+19	.1449+14	.7196+13	2415413	.1211+13	7420+15						
TOTAL SOURCE	.7416	i.	• •	ijο.	. 41	.60	. 55	. A.	.24	.14	.71	. 2ª	.12	, 74.2		.				
TOTAL	3995+14	.1295+15	8+15	.9313+14	11.456544	34.14	.5571+14	.3409+15	1738+15	1398+15	41703+14	.8096+13	.9918+12	+16			•			
200	ό6£•	129	.208+15	.931	924.	.5713+14	.557	340	173	•139	041	900	ľót.	.1402+16						
	+14	+14	+15	+14	+14	#1	+14	514	+14	+14	+14	+13	+12	15						
33	.1579+14	. 5n97+1a	.1126+15	.20.79+14	.2620+14	.1745+14	.1738+14	1355+15	.6880+14	.5600+14	. 156.4+14	.3090+13	.2561+12	.5176415						
·	•																			
	00+004	001006.	135+01	.160+01	220101	.2/n+01	300+01	.410.401	.500+01	.600+01	.700+01	.750+01	.100+02			.				
Žį.	040		.13	.16	.22	•26	.30	1.	00.	ůů.	.70	.7.	.10	TOTAL						

,*

										TAI	SLE	6	(COV	TIN	JEI)						
							•		•			•										
																				-		
				•			•											-, -				
		-		٠		.	:															
74		ŀ											. •									
PAGE	-									Ī		. F		-								
4AR 72																	-					
PATE 99 "AR 72																,				•		
		[6		_	6	0	. 0											
FNSION	0000.	0000	0000	0000	0000	9000	0 0 0 0 0 •	0000	. 3000	.0000	0000	. 0000	0υυύ•	0000.								
IN EXT						ļ																
COLUMBIUM EXTENSION		6000.	0000.		0000	0000	.000	. 0000	0000	nr00•	.0000	• 0000	0000.	• 0000								
			•						İ			·										
Solings Solings	. 0000	.000	บงถับ•	•000•	00000	0000	.0000	.0000	• 0000	. ეიიი	00000	יוטטט	• 0000	0000					 - 			
SECOMPARY SOURCE CAPTURE SOURCE										~ .												
EXECUTE UNAP FOR SECOMMARY SOURCE IN CAPTURE SOURCE 41		0000	กกกา	.0000	9000	0000	0000	0000	0000	0000	0000	.000	0000	9005.								
Орля											-											
XFCUTE 4.1	0000.	0000	0000	0000	0000	. (10,01)	00000	0000	. 01.10	00000	0000.	• មភភព	0000	0000								
П	•			•		•	•						•	3								
	00+0	na+1	1401	.180+01	.220+01.	101	.360+01	1+01	1101	.600+01	.700+01	104	701									
1. 1. V	.40+00	00+6n5•	135+01	.180	.220	.269401	306.	1000401	.500+01	•600	.700	.759+01	.100+02	TOTAL								

	•						. }			•	FABL	.E 6	5 (0	ONT	NUEL			•							
													1.5							-					
	. !							- 																	
							-							i								. :			
	. · i					-	٠.	 																	
4																									
PAGE				·	 			<u>[</u>									1					. •			
NAR 72					ĺ																	•			
5	ļ			4							ļ ! .							·							
na te										-	· 					-									
STON	R.S.	0000	0000	0000	0000•	.0000	0000	• 9980	0000	0000	•9000	0000	0000	0000•	0000		Ì								
EXTEN		i 													•										
OLUMPTIM EXTENSION		•0000	0000	0000	0000	0000	.0000	0000	0000	.000	.000	•0000•	• 0000	• 0000	00000										
1N COL				•	-	•		·	•			•		•	Č.								-		
EXECUTE UNAP FOR SECONDARY STURGE IN C	Source	. 0000	יייניי	יחורוו.	0000.	ისმს	• חיזונים	- 0 m	.0000	.0000	•0000•	• 0000	• 0000	•0000	UC.			•							
DARY S	INELASTIC SOURCE	6.	Û.		•	6.			c.	i	``.	٠.	·0•	•		Ì			-					·	
SFCON	1	0.0	0:3	99	00	0.0	00	. 00	0.0	υD	00	, 00	υu	00				<i>:</i> .							
NO FOR	4,2	• 0000	0000	conc.	. nuoo	0000.	0000.	• 0000	0000.	. 00un	.0000	0000.	0000	• 0000	0000										-
UTE UM		•			٠,		- 1				5													-	
EXC	13	0000°	0000.	0000	• 6006	00000	0000	0040.	0000	0000	.0000	10000	.0000	0000	0000	-			•						
		÷																,							
	E V	00+094•	00+006	135-51	.160+01	.22J+01	.260+01	.390+01	164009	.560+01	.600+01	10+007.	.750+01	•100+0Z	يا										1
	115.4	1+004.)+f:05•	.1354	.16∪+(+527+	.200+	.390+(. 15 (1U F.	1005	•609•	. 700+	.750+(.10Ú+í	707AL										1

ľ	-					1					T	ABL	E 6	(cc	NTI	NU	ED)	.							
										.]	٠.	-													
		*			•			•																	
	٠.																			:					
		• . •							1																
	. [٠		• [1.	•					
										.				••											
	.	•							:				İ			٠									
7										:						.					-				.
PAGE						-								•			•								
1								•								ĺ			1						
										·								-	٠						
2) VV 50																.									
0 2 6								٠				-				İ	٠.					•			
3	Ì																						٠.		
		õ	0	0	9	0	و	0(9	5	60	و	٤	00					.						
1	45	0000.	0660.	0000	• 0000	0000	• 0000	• 0000	0000	0000	. 2000	0000	0000	. 0000	0000							-			
												.												<u> </u>	
İ						Ì																			
	5	0000	uuda.	0.10n	.000	n660•	.000	0000•	0000	• 0000	• 0000	0000	บบบา	. 0.900	0600									_	
-		•	•		•				•		•	-		•	i.										
		•									•											·			
3	L!	.0000	60	5	u o	0.0	6	č	0	٤	6	ان	ن	c (r	C										
	0URC 113	ē.	,	יטרטי	• 9900	• 11300	0000	• 0000	.000	0000	•000•	. non	.0000	•0300	0000.	ļ						.			
	TOTAL SOURCE									-	٠.														
3	101	-	2			_	_	c			c	,								•					
	رن در	0000.	0000	9.700	.0000	• กษยก	nunu	. 9000	.000	บกกษ	.0960	0000.	กบบก	0000.	9000			.			·			5 -	
					-						·			·	•	1							٠		
LATEUIL COMP FOR SECURIMINE SUPPLIE									:																
	-	ວລນດ•	00:00	0000	0000.	0000	00:10	0040.	0000	3000	0000.	0000.	0000	.0000	00			ŀ					-		
	4.1	٥.	3.	٦	0	3.	=	÷	3.	?	•	3	٦	0	0000						,				
												.										-			
		ā	2	-	<u>~</u>	-	-	=	-	.500+01	=	-	=												
	.1EV	0000000	001000	135+01	.180+01	10+027.	.200+01	.300+01	10:261.	0.0	.600+01	.700101	.750+01	.100+02	-1			}							
		.	15:	7	• 1	17	2	•)	-		3		-	•	אנסנ)	
	1													-57-				1							

NOTE: Prime candidate graphite nozzle extension model not shown as sources are negligible in graphite.

4. Methods of Analysis

The non-nuclear components are described in three dimensional terms in the FASTER geometry routine suitable for direct use with the ANSC versions of the QAD and GGG Point Kernel codes or the COHORT Monte Carlo code.

The secondary gamma source strengths in the forward direction were computed for the model of the 1137400C engine configuration. It was not deemed economically feasible to repeat the analysis for the 1137400E configuration. The neutron angular and energy leakage data from WANL was inputed into the DASH code and normalized in magnitude to be equal to the specification extreme levels, as reported in the engine specification. The COHORT model of the components and propellant tank bottom was used to compute the neutron transport and subsequent secondary gamma sources. The UDAP code was used to categorize the secondary sources by groups of regions, reducing the number of sources to 13.

A similar DOT/DASH/COHORT/UDAP coupling was used to compute the sources in the nozzle and nozzle extension. The cylindrical portion of the pressure vessel source was taken from the WANL-DOT model. The curved portions of the pressure vessel were estimated from DASH and Point Kernel data. These data were used to back extrapolate to the pressure vessel closure dome and curved bottom near the nozzle flange.

The neutron flux was treated as follows: The sixteen group structure from the DOT leakage tape was used as input to the COHORT Monte Carlo analysis through the DASH code by reformating into sixteen source energy groups. Particle histories were generated in the HO1 procedure in COHORT and neutrons were followed in twenty two groups. These twenty two group fluxes were then analyzed with the AO2 and AO3 analysis routines. Since these are Monte Carlo procedures, based on particle history information, the identification with the original energy group structure is only indirect.

Table 7 lists the neutron and photon energy group structures used in these analysis.

The neutron sources for any other analyses can be obtained from the WANL-DOT analyses reported in this document.

Each of the computer codes used in the ANSC analyses is described in Engineering Operations Report N8140:R-72-0015. Users Manuals and sample problems are included in that report along with description material on each method of analysis.

TABLE 7

NEUTRON AND PHOTON ENERGY GROUPS STRUCTURE

	eutron DT/DASH		eutron te Carlo	Phot Secondar	on ry Sources
GROUP	ENERGY, Mev	GROUP	ENERGY, Mev	GROUP	ENERGY, Mev
1	3.0 - 10.0	1	9.0 - 10.	1	7.5 - 10.0
2	1.4 - 3.0	2	8.0 - 9.0	2	7.0 - 7.5
3	0.9 - 1.4	3	7.0 - 8.0	3	6.0 - 7.0
4	0.4 - 0.9	4	6.0 - 7.0	4	5.0 - 6.0
5	0.1 - 0.4	5 .	5.0 - 6.0	5	4.0 - 5.0
6	1.7(-2) - 1.0(-1)	6	4.0 - 5.0	6	3.0 - 4.0
7	3.0(-3) - 1.7(-2)	7	3.0 - 4.0	7	2.6 - 3.0
8	5.5(-4) - 3.0(-3)	8	1.4 - 3.0	8	2.2 - 2.6
9	1.0(-4) - 5.5(-4)	9	0.9 - 1.4	9	1.8 - 2.2
10	3.0(-5) - 1.0(-4)	10	0.4 - 0.9	10	1.35 - 1.8
11	1.0(-5) - 3.0(-5)	11	0.1 - 0.4	11	0.9 - 1.35
12	3.0(-6) - 1.0(-5)	12	1.7(-2) - 1.0(-1)	12	0.4 - 0.9
13	1.0(-6) - 3.0(-6)	13	3.0(-3) - 1.7(-2)	13	0 - 0.4
14	4.0(-7) - 1.0(-6)	14	5.5(-4) - 3.0(-3)		
15	1.0(-7) - 4.0(-7)	15	1.0(-4) - 5.5(-4)		
16	0 - 1.0(-7)	16	3.0(-5) - 1.0(-4)		
		17	1.0(-5) - 3.0(-5)		•
		18	3.0(-6) - 1.0(-5)		
		19	1.0(-6) - 3.0(-6)		
		20	4.0(-7) - 1.0(-6)		
		21	2.5(-8) - 4.0(-7)		
		22	0 - 2,5(-8)		

B. Nuclear Subsystem

WANL-DRM-54255

:CONFIDENTIAL RESTRICTED DATA

ATOMIC ENERGY ACT OF 1954

Westinghouse Electric Corporation

Industry & Defense Products

Astronuclear Laboratory

Box 10864, Pittsburgh, Pa. 15236

Telephone: 892-5600

NA-71-90

Mr. J. L. Dooling
Manager, Subcontracts
NERVA Rocket Operations
Aerojet Nuclear Systems Company
Post Office Box 13070
Sacramento, California 95813

SEP 30 1971

WHEN SEPARATED FROM ENCLOSURES. HANDLE THIS

UNCLASSIFIED

INSERT PROPER CLASSIFICATION)

Attention:

Mr. E. A. Warman

Subject:

Transmittal of the September, 1971 Common Radiation Analysis

Model (U)

Gentlemen:

Transmitted herewith are copies of the following document: DRM No. 54266, "Common Radiation Analysis Model (CRAM) for the R-1 Reactor Design Employing Composite Fuel and a Shaped Internal Shield". Transmittal of this document completes IED No. 016. The September, 1971 CRAM was updated under Project 712, Work Statement f.52.

This document contains: (1) a geometric model and material description of the Nuclear Subsystem for use in radiation analysis, (2) radiation source strengths and distributions in each geometric region of the Nuclear Subsystem, and (3) a description of the neutron and photon angular leakage fluxes at the surface of the Nuclear Subsystem.

The physical data tapes, containing the angular surface leakage data will be transmitted under separate cover.

Respectfully,

ORIGINAL SIGNED BY

R. F. Dickson Manager

Program Management

NERVA Nuclear Subsystem

WPK/tak

Enclosures

cc:

Mr. R. W. Schroeder, SNSO-C, w/o encl.

Mr. M. R. Fleishman, SNSO-C, w/encl.

Mr. H. H. Hoffman, SNSO-C Resident at WANL, w/o encl.

CONFIDENTIAL RESTRICTED DAT

ATOMIC ENERGY ACT OF 1954

This Page Is Unclassified

SECURITY CLASS				DA	ATA I	RELEASE M	EMOF	RANE	DUM		DRM NO		REV (1)
COMMENT	TAL	·	14.	loctin	abai	ico Actioni	مامه	- I A	hamatami		54266		L
proification	P. 7	<u>6</u> -	VV	estin	•	use Astroni			boratory		DRM TYPE ((13)	
ATCHICENERRY ACT OF	1954 C;	-1			+	CODE IDENT N	O. 1468	•	, ,	00	Analysis		
			<u> </u>					St	EET OF 1		DEPARTMEN		
SUBJECT (120)	14710	NI ANI	IA I VC	IC MO	DEI	(CD 4 44) T (CD	T 115 1		FACTOR		Nuclear A		
COMMON RAD DESIGN EMPLO										l)	DATE (6)	RE	ACTOR
2231011 2711 20	,					NO A SHALL	7 11 11	LI(14)	7E 3111E ED	ч	092771	L R	R-1
PARA NO	CEI	PARA	МО		CEI	PARA NO		CEI	TEST SCOPE	NO	DATA	ITEA	٧.
1.	55							!			1.	2.	
2.	! !			! !!				<u> </u>			3.	4.	
3.	! 1	<u> </u>						! !			5.	6.	
				1	DOCU	MENT REFERENCE	ES						
·	(DWG	NO/PA	RT NO/	COMPL	JTER C	ODES/DRMS/M	ILS SPE	cs/cc	RRESPONDEN	VCE))		
1. DRM 54313	2.	TME-	2774	3	DR	M 53360	4. D	RM 5	4264	5.	DRM 5413	33_	
6.	7.			8	3.		9.			10.			
1. PURPOSE	2. AS	SUMPTIO	ONS/M	ETHODS		3. CONCL	ISIONS	(USE	CONTINUATI	ЮИ	SHEET IF N	CES	SARY)
shield. This do for use in radia region of the N CRAM data tap 2. ASSUMPTI	cumention a 1SS, an es. (1	t cont nalysis nd (3) This wo	ains: s, (2) r a desc ork wa	(1) a gradiation of the control of t	geom on so n of t mplis	urce strength he radiation hed under Pr	terial s and leaka	desci distri ge fl	iption of the butions in ux data con	he eac ntai	NSS suital th geometri ined on the	ble ric	i i
the follow	ing we	ere em	ployed	d to de	velo	the CRAM:				•			į
(a) The co			e weig	ghts, di	imens	ions, and ato	m der	nsitie:	s were obto	ine	d from		
(b) The Pl were e					(Refe	rence 2) for a	all EC	C's,	except the	int	ernal shie	ld	
(c) The "s	haped	" inte	rnal sh	nield g	eome	try is based o	on WA	NL [Orawing 94	0J5	311.		
					GR	OUP 1	•						·
APPROVALS	for	2.10	Exclud			itomatic Dow lassification	ngrad	ing					
F. S. Frantz(.) (R. V. Rittenberg M.A. Capo mg			ney 7/47/	COI		ON CATEGORY ENTIAL - RE			SECURI	TY	CLASS	T G	
W. P. Kovacik	خابيددا	4/2	1/71			avacal	9/2	7/71				***	7.1
APPROVED BY		D	ATE			CLASSIFIER		DATE	aten	io e.	CHEYEST OF 1	.554 (Cp-1

101190

WANL FORM NO. 59919A

c	t	_	11	D	1	T	v	C	1 A	c	C
D	C	L	u	7	ı	ı	1		\sim	J	J

CONFIDENTIAL ESPICIOS DATA ATOMIC ENERGY ACT OF 1954 Op-1

DATA RELEASE MEMORANDUM CONTINUATION SHEET

DRM NO	5.	
54266	,	
REV		
L		
	2	100

A detailed discussion of the method of analysis is given in the body of this DRM.

3. CONCLUSIONS

The geometric model of the R-1 Nuclear Subsystem is shown in Figure 1 as a cross-sectional view of the reactor taken in the R-Z plane. The model shown in Figure 1 is referenced to the intersection of the reactor axis with the pressure vessel-nozzle mating plane and all dimensions are given in centimeters. The material composition of each of the 36 geometric regions shown in Figure 1 is given in Table 1.

The gamma ray source strengths for each of the zones depicted in Figure 1 are given in Table 2; and are presented in the standard WISDM 13 energy group structure. These data represent the total gamma ray energy release rate (Mev/Sec) in each region for maximum gamma activity during operation. This condition occurs at the end of an assumed 60 minute reactor burn at a power level of 1515 megawatts (Thermal).

The spatial variation of the source strength in each geometric region is presented in Figures 2 through 73. These are two figures for each region. The first figure depicts the radial distribution of source strength within the region, whereas the second figure gives the axial variation.

The envelope which defines the leakage surface of the NSS is the external surface of the NSS analytical model employed in the DOT-IIW calculations.

This leakage surface is subdivided according to the dimensions shown in Table 3 and 4. The CRAM data tapes contain the leakage fluxes from each interval defined on the surface and for each discrete direction.

The angular quadrature data corresponding to the discrete direction fluxes are listed in Tables 5 and 6. The contents of the CRAM data tapes are described in Tables 7 and 8.

METHOD OF ANALYSIS

The development of the CRAM NSS radiation sources involves the use of the DOT-IIW⁽³⁾ and NAGS⁽⁵⁾ codes to produce the NSS internal radiation source description and the NSS surface radiation source description. Development of each type of data is described below.

AYLINDERS VALLET OF 1854 CE.

SECURITY CLASS

DATA RELEASE MEMORANDUM CONTINUATION SHEET

DRM N 542		
REV		
	2	100

Two coupled neutron DOT-IIW calculations were performed to compute 16 group neutron fluxes throughout a reactor model (4) similar to that shown in Figure 1. The first was a neutron fixed source calculations on that part of the reactor which extends from Z = 23.04 to an axial plane located a short distance into the BATH central shield. From this fixed source problem, the neutron flux distributions throughout the aft portion of the analytical model were obtained. In addition, an angular and energy dependent boundary source, based on the angular flux distributions near the forward face of the core support plate, was generated. Using this boundary source as a coupling mechanism, a second DOT-IIW calculation was employed to obtain neutron flux distributions throughout the forward portions of the analytical model.

The neutron problem on the aft portion of the reactor utilized 4160 spatial mesh cells arranged in an array of 52 radial by 80 axial mesh cells. The boundary source calculation contained 5420 spatial mesh cells in a 52 radial by 85 axial array. Both calculations employed 16 group, P_O-transport corrected neutron cross sections and an S₈ order of angular quadrature.

The neutron fluxes obtained from the two DOT-IIW calculations were input to the NAGS⁽⁵⁾ data processing code which combines neutron flux data together with neutron reaction cross sections (i.e., neutron radiative capture, fission, and inelastic scatter) and photon production data to produce a spatial and energy dependent photon source in each spatial mesh cell of the analytical model.

This NAGS photon source data by mesh cell is used in photon DOT-IIW calculations to compute 13 group photon flux distributions through the reactor $model^{(4)}$ similar to that shown in Figure 1. The photon DOT-IIW problems are: (1) a coupled calculation of two DOT-IIW problems to analyze the photon transport due to the photon sources in the first neutron problem (i.e., the portion of the NSS extending from Z = 23.04 to an axial position located a short distance into the BATH shield), and (2) a DOT-IIW calculation to analyze the photon transport due to the photon sources in the second neutron problem (i.e., the portion of the NSS from the forward face of the support plate to the pressure vessel). The coupled calculation involves the use of the NAGS calculated fixed photon source distribution in the first portion of the reactor to obtain the flux distribution and an energy and angular dependent boundary source as a coupling mechanism to obtain the photon flux distribution throughout the forward portion of the analytical model.

The photon problem on the aft portion of the reactor utilized 2808 spatial mesh cells arranged in an array of 52 radial by 54 axial mesh intervals. The boundary source and fixed

ı	C	F	C	1	D.	17	r٧	1	\sim		٨	c	(
,	J	_	_	u	۱۱ ۷		, ,		_	٠.	~	J	

SECURITY CLASS

DATA RELEASE MEMORANDUM CONTINUATION SHEET

DRM NO.	
54266	
RE∨	
	100

source calculations in the forward portion of the reactor utilized 52 radial by 46 axial mesh intervals. All three calculations employed 13 group P_I photon cross sections and an asymmetric angular quadrature containing 124 angles.

The use of the DOT-IIW and NAGS output in developing the CRAM radiative sources is described in following sections.

NSS INTERNAL RADIATION SOURCE

The photon source data by spatial mesh cell is used in NAGS to provide the internal radiation source description. These data are integrated by NAGS to provide the radial, axial, and energy distribution of photon source in each geometric zone of the analytical model depicted in Figure 1. The data for each geometric zone are summarized in Table 2 and Figures 2 through 73. The data in Table 2 and Figures 2 through 73 assume that the radial, axial, and energy distribution of the radiation source in each zone is separable into three distributions. Data in Table 2 are the total gamma ray energy release (Mev/Sec) in each zone. The radial source distributions in Figures 2 through 73 are plotted such that:

$$\frac{\int R f(R) dR}{\int R dR} = 1.0$$

and, the axial source distributions are plotted such that:

$$\frac{\int f(Z) dZ}{\int dZ} = 1.0$$

These data comprise the NSS internal radiation source description.

. NSS SURFACE RADIATION SOURCE

The NSS surface angular fluxes which define the NSS surface radiation source on the CRAM data tapes are obtained from DOT-IIW calculations of the neutron transport and photon transport in the NSS.

SECURITY CLASS

S	ΕŒ		UR	ITY	CL	ASS
---	----	--	----	-----	----	-----

CONTIDENTIAL

RECTRICTED DATA

ATOMO EREBOY ACT OF 1954 GA-1

DATA RELEASE MEMORANDUM CONTINUATION SHEET

DRM NO. 54266	
REV ·	
SHEET 5	OF 100

The neutron leakage flux data are obtained from the DOT-IIW calculations as described previously. The DOT-IIW output data tapes are linked using the CAFT (6) code to produce a single data tape describing the leakage angular fluxes from the NSS surface envelope. The merging of the DOT-IIW output tapes for neutrons results in a single data tape for an analytical model with a total of 6188 spatial mesh cells arranged in an array of 52 radial by 119 axial mesh cells. The 119 axial mesh intervals result from data for the 85 axial mesh for the boundary source DOT-IIW calculation and 34 of 80 axial mesh for the fixed source (aft portion) DOT-IIW calculation. The radial and axial mesh lines describing the 52 radial and 119 axial mesh intervals are listed in Table 3.

The neutron leakage angular flux tape contains sixteen group data with a total of 48 angular flux values for each surface mesh interval. The 48 angular directions are defined by the quadrature data given in Table 5. The contents of the magnetic tape for the CRAM NSS surface radiation source for neutrons is described in Table 7. The neutron group structure is given in Table 9.

The photon leakage flux data are obtained from the DOT-IIW calculations as described previously. DOT-IIW data tapes are added and linked using the CAFT code to produce a single data tape describing the leakage angular fluxes from the NSS surface envelope. This merging of the DOT-IIW output tapes for photons results in a single data tape for an analytical model with a total of 4160 spatial mesh cells arranged in an array of 52 radial by 80 axial mesh cells. The 80 axial mesh intervals result from data for the 47 axial mesh intervals of the boundary source DOT-IIW calculation and 33 of 54 axial mesh intervals from the fixed source (aft portion) DOT-IIW calculation. The radial and axial mesh lines describing the 52 radial and 80 axial mesh intervals are listed in Table 4.

The photon leakage angular flux tape contains thirteen group data with a total of 124 angular flux values for each surface mesh interval. The 124 angular directions are defined by the quadrature data given in Table 6. The contents of the magnetic tape for the CRAM NSS surface radiation source for photons is described in Table 8.

A computer code to assist in conversion of CRAM data tapes at the users computer facility is listed in Table 10. The CRAM data tapes are written at 800 bpi density on 7 track tape with a maximum of 3960 BCD characters per record. Each set of 3960 characters contain 240 data words written with the FORTRAN format (30 (8E15.8, 12X)) such that each line of 132 characters contains 8 data words each represented as fifteen characters. The neutron and photon tape contents are described in Tables 7 and 8.

SECURITY CLASS

TABLE 2
PRESSURE VESSEL AND REACTOR ASSEMBLY SOURCE STRENGTHS

				Gamma So	Gamma Source Strenath (Mev/Sec	(Mev/Sec)			
Photon	Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Region 7	Region 8	Region 9
Group	Hot End Hardware	Reactor	Core	Support	Structure	Reflector	Vessel -	Nozzle	Aft Reflector
7 5-10 0	5 30/14)	2 48(18)	1 15(17)		2 54/10)	7 40/10	1 07/17		17170 6
0.01-0.	(01)/55.5	7.00(10)	(/1)61.1	?	(01)00.7	(81)00.	4.07(17)	0.	3.80(10)
7.0-7.5	3.46(16)	1.50(18)	5.19(16)	0.0	3.12(17)	1.04(18)	5.03(16)	0.0	1,58(16)
6.0-7.0	1.81(17)	1.13(19)	6.16(17)	0.0	7.24(17)	2.66(17)	1.14(17)	0.0	1.29(16)
5.0-6.0	2.18(17)	1.52(19)	(5.53(17)	0.0	5.00(17)	1.30(18)	7.50(16)	0.0	1,35(16)
4.0-5.0	2.62(17)	4.17(19)	1.05(18)	2.66(17)	1.14(18)	1.20(18)	2.37(17)	0.0	1.25(16)
3.0-4.0	3.65(17)	(61)11.8	1.09(18)	9.25(15)	8.57(17)	1.20(18)	1.66(17)	0.0	9.71(15)
2.6-3.0	1.94(17)	4.90(19)	5.43(17)	0.0	4.37(17)	3.94(17)	7.83(16)	0.0	3,99(15)
2.2-2.6	2.27(17)	6.75(19)	5.71(17)	1.92(16)	5.29(17)	7.04(17)	7.92(16)	2.99(13)	7.95(15)
1.8-2.2	2.41(17)	8.68(19)	6.49(17)	0.0	4.19(17)	3.43(17)	5.46(16)	0.0	4.57(15)
1,35-1.8	2.00(17)	1.15(20)	5.11(17)	0.0	5.38(17)	5.05(17)	5.70(16)	0.0	5.40(15)
0.9-1.35	2.31(17)	1.50(20)	3.28(17)	2.91(15)	6.20(17)	2.77(17)	6.16(16)	0.0	4.75(15)
0.4-0.9	1.95(17)	2.00(20)	3.16(17)	0.0	2.19(17)	3.46(17)	2.29(16)	0.0	2.57(15)
0-0.4	6.71(16)	9.19(19)	3.83(16)	0.0	6.83(16)	8.76(16)	1,09(16)	0.0	9.31(14)
TOTAL	2.47(18)	9.14(20)	6.44(18)	2.98(17)	8.95(18)	1.77(19)	1,41(18)	2.99(13)	1.33(17)

NOTE: Numbers in parentheses refer to powers of ten.

TABLE 2 (Cont)

				Gamma Sour	Gamma Source Strength (Mev/Sec)	(Mev/Sec)		
Photon	Region 10	Region 11	Region 12	Region 13	Region 14	Region 15	Region 16	Region 17
Group	Core	Support	Support	Reflector	Plate	Aft Central	Instrumentation	Reflector
(Mev)	Plenum	Forward	Plate	Hardware	Plenum	Shield Plate	Ring	Hardware II
7.5-10.0	1.14(18)	3.77(17)	3.06(18)	6.25(17)	3.74(17)	5.81(16)	6.28(16)	6.24(16)
7.0-7.5	3.43(17)	5.62(16)	5.69(17)	1.37(17)	7.61(16)	5.49(15)	7.01(15)	9.13(15)
6.0-7.0	7.57(17)	1,04(17)	7.31(17)	1.63(17)	8.53(16)	1.62(16)	1.68(16)	1.56(16)
5.0-6.0	8.50(17)	(91)82.9	6.07(17)	1.33(17)	7.43(16)	1.13(16)	1.08(16)	1.03(16)
4.0-5.0	1.03(18)	5.03(16)	6.22(17)	9.26(16)	4.32(16)	3.95(16)	2.52(16)	6.16(15)
3.0-4.0	1,29(18)	4,84(16)	4.99(17)	7.72(16)	3.96(16)	2.70(16)	1.66(16)	5.62(15)
2.6-3.0	6.69(17)	2.00(16)	2.03(17)	2.68(16)	1.28(16)	1.35(16)	7.63(15)	1.89(15)
2.2-2.6	6.54(17)	2,77(16)	3.41(17)	8.41(16)	2,72(16)	1,53(16)	9.50(15)	1.27(15)
1.8-2.2	6.59(17)	2.04(16)	1.83(17)	2,56(16)	1.19(16)	1.14(16)	5.42(15)	1,75(15)
1.35-1.8	6.51(17)	3.83(16)	2.57(17)	3,57(16)	1,91(16)	1.36(16)	6.28(15)	2.99(15)
0.9-1.35	3.03(17)	2.27(16)	2.21(17)	1,77(16)	9.69(15)	1.74(16)	5.99(15)	1.12(15)
0.4-0.9	8.69(17)	2.24(16)	1.67(17)	2.51(16)	1.68(16)	5.22(15)	2.91(15)	2.26(15)
0-0*4	4,76(16)	5.78(15)	4.96(16)	7,77(15)	4.66(15)	1.86(15)	1.08(15)	6.13(14)
TOTAL	9.27(18)	8.61(17)	(2,51(18)	1,45(18) 7,94(17)	7.94(17)	2.36(17)	1,78(17)	1,32(17)

NOTE: Numbers in parentheses refer to powers of ten.

TABLE 2 (Cont

				Gamma	Gamma Source Strenath (Mex/Sec	th (Mev/Sec)			
Photon	Region 18	Region 19	Region 20	Region 21	Region 22	Region 23	Region 24	Region 25	Region 26
Group	Central	Flow	Reflector	Reflector	Reflector	Reflector	Peripheral	Peripheral	Peripheral
(Mev)	Shield	Baffle 1	Plenum I	Plenum II	Plenum III	Plenum IV	Shield I	Shield II	Shield III
7.5-10.0	1,37(16)	1,70(16)	1,42(15)	1.36(14)	5.57(16)	2.11(14)	4.03(14)	4.69(14)	1.97(15)
7.0-7.5	1.87(16)	1.94(15)	1,33(14)	2.48(13)	8.19(15)	1.96(13)	5.40(13)	6.37(13)	4.31(14)
0.7-0.6	1.40(17)	4.61(15)	3.87(14)	3.06(13)	1.39(16)	5.69(13)	3.98(15)	4.69(15)	4.91(15)
2.0-6.0	7.63(15)	3.00(15)	2.62(14)	2.55(13)	9.22(15)	3.89(13)	2.08(14)	2.62(14)	6.40(14)
4.0-5.0	2.66(16)	6.78(15)	9.40(14)	1.87(13)	5.52(15)	1.41(14)	7.34(14)	9.08(14)	1.16(15)
3.0-4.0	2.12(16)	4.60(15)	6.04(14)	1.55(13)	5.06(15)	8.78(13)	5.86(14)	7.32(14)	1.03(15)
2.6-3.0	8.07(15)	2.17(15)	2.86(14)	5.33(12)	1,71(15)	4.28(13)	2.17(14)	2.85(14)	4.26(14)
2.2-2.6	1.84(16)	2.27(15)	4.28(15)	3.34(15)	5.34(15)	2.52(15)	5.13(14)	6.41(14)	8.11(14)
1.8-2.2	1,18(16)	1,74(15)	1.81(14)	4.33(12)	1,58(15)	3.10(13)	2.94(14)	4.14(14)	5.79(14)
1,35-1,8	4.32(16)	2.08(15)	1,75(14)	6.36(12)	2.69(15)	3.33(13)	1.13(15)	1.44(15)	1.75(15)
0.9-1.35	4.21(16)	2.09(15)	1.78(14)	3.07(12)	1.04(15)	3.87(13)	8.55(14)	1.31(15)	1.68(15)
0.4-0.9	7.84(17)	9.26(14)	6.56(13)	5.17(12)	2.05(15)	1.23(13)	2.33(16)	2.71(16)	2.58(16)
0-0.4	3.51(15)	3.21(14)	3.03(13)	1,48(12)	5.54(14)	5.17(12)	9.21(13)	1.15(14)	1.65(14)
TOTAL	1.12(18)	4.96(16)	8.94(15)	3.62(15)	1.13(17)	3.24(15)	3,24(16)	3.84(16)	4.13(16)

NOTE: Numbers in parentheses refer to powers of ten.

TABLE 2 (Cont)

				Ē	mma Source	Gamma Source Strength (Mev/Sec)	//Sec)			
Photon	Region 27	Region 28	Region 29	Region 30	Region 31	Region 32	Region 33	Region 34	Region 35	Region 36
Energy		Pressure	Lead			Central	Peripheral	Peripheral	Peripheral	Pressure
Group	Peripheral	Vessel -	Central	Shield	Flow	Dome	Dome	Shield	Dome	Vessel
(Mev)	Shield IV	Side B	Shield	Plenum	Baffle II	Plenum	Plenum l	Plate	Plenum 11	Ооте
7.5-10.0	. 7.51(14)	1,56(16)	2.19(12)	1.61(14)	1.81(15)	0.0	2.35(14)	4.18(14)	8.51(14)	7.16(14)
7.0-7.5	1.19(14)	1.93(15)	1.08(14)	1.66(13)	1.09(14)	0.0	2.19(13)	5.63(13)	1.49(14)	8.74(13)
6.0-7.0	3.56(15)	4.39(15)	9.89(12)	4.31(13)	3.17(14)	0.0	6.35(13)	1.21(14)	1.99(14)	1.99(14)
5.0-6.0	3.08(14)	2.98(15)	3.56(12)	3.09(13)	2.18(14)	0.0	4.27(13)	9.74(13)	1.58(14)	1.38(14)
4.0-5.0	8.39(14)	9.38(15)	2.34(13)	1.01(14)	7.92(14)	. 0.0	1,55(14)	2.17(14)	1.11(14)	4.38(14)
3.0-4.0	7,22(14)	6.64(15)	2.71(13)	6.52(13)	4.88(14)	0.0	9.67(13)	1.88(14)	1.02(14)	3.00(14)
2.6-3.0	3.19(14)	3.32(15)	6.19(13)	3.32(13)	2.41(14)	0.0	4.57(13)	1.12(14)	3.89(13)	1,57(14)
2.2-2.6	6.88(14)	3.95(15)	1.92(13)	4.25(14)	2.37(14)	1.87(14)	1,61(15)	1.97(14)	1,10(15)	1.81(14)
1.8-2.2	4.86(14)	2.83(15)	1.41(13)	2.88(13)	1,77(14)	0.0	2.71(13)	1.58(14)	3.61(13)	1.46(14)
1,35-1.8	1.38(15)	3.15(15)	2.12(13)	3.09(13)	1,77(14)	0.0	2.39(13)	2.10(14)	5.73(13)	1.56(14)
0.9-1.35	1,58(15)	3,53(15)	3.21(13)	3,49(13)	1,89(14)	0.0	2.11(13)	2,58(14)	3.54(13)	1.66(14)
0.4-0.9	1.97(16)	1.17(15)	6.27(13)	1,10(13)	6.19(13)	0.0	8.59(12)	7,74(14)	4.25(13)	5.22(13)
0-0.4	1.16(14)	4.89(14)	4.07(11)	4.19(12)	2.72(13)	0.0	4.49(12)	2.16(13)	1.18(13)	2.21(13)
TOTAL	3.06(16)	5.94(16)	3.86(14)	9.86(14)	4.21(15)	1.87(14)	2,35(15)	2.13(15)	2.89(15)	2.76(15)

NOTE: Numbers in parentheses refer to powers of ten.

BLE 3. MESH DES	MESH DESCRIPTION FOR THE	HE NEUTRON CRAM NSS S
Mesh Line No.	Radius* (cm)	Height** (cm)
€		3.040
?		23.5300
か		6.655
4	8.0330	8.453
'n		9.395
9		1.005
~	00.9	3.005
ၹ	7.85	7.005
5	000.6	5.635
10	0.084	4.245
11	1.500	2.865
7.7	2.633	1.475
13	4.000	0.095
	5.344	8.705
	6.300	97.325
	7.519	05.665
	7.737	14.555
	9.431	23.165
	1.000	31.785
	2.568	40.395
	00	49.005
	6.400	53.005
	8.000	57.005
	6.903	59.092
	0.5.0	0.533
	1.518	63.495
	2.000	66.465
	2.757	9.423
	4.000	1.605
	5.032	3.785
1 O M	<u>ه</u> ح	777.0
	A 7 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	
	9.469	2.485
35	4	4.663
36	.083	6.355
37	3.632	8.041
38	6.1	0.040
62	6.42	1.978
4.0	7.50	2.357
∓ 7	00.6	.735
24 .	4.	3.114
4 ·	59.5000	193.4920
4	9.6	.87

	Height** (cm)	94.250	194.6280	95.007	95.386	92.16	96.14	96.52	96.90	97.27	769.16	98.036	98.414	98.793	99.172	99.550	99.959	00.307	00.686	01.065	01.443	01.822	02.201	02.579	02.958	03.556	03.715	4	04.472	04.851	05.529	05.608	05.987	06.365	06.744	07.123	07.525	07.906	U8.287	08.668	09.049	09.43	09.81	10.19	₩
TABLE 3 (Cont)	Radius (cm)	59.7290	60.0080	1.000	3.000	4.465	000.	8.580	0.0	0.841						-	` .	-	*																					٠					
	Mesh Line No.	42	46		4 6	64	bς	51	25	5.3	5 4	55	56	7,5	58	50	09	61	79	6.5	6 4	4 9	99	67	ρ9	69	. n/	7.1	7.5	7.5	74	72	9/	11	7.9	7.6.2	08	. 18	82	83		62	36	8 /	89

ont)	
ŭ	
3	
BE	
TAB	

Height** (cm)	11.335	12.897	12,859	13.621	14.383	15.018	15.653	16.288	17.025	17.761	18,497	19.234	19.602	19.970	20.358	20.706	21.074	21.442	21.842	22.077	225.5060	28.935	32,364	35.793	37.216	38.650	41.997	45.356	48.715	52.074	53.284	54.513
Mesh Line No.	7 80	no	41	26	56	40	66	95	97	900	₹	\Rightarrow	0	0	\supset	0	0	0	\Rightarrow	\supset	109	4	H	4~1	~	44	**	4	Н	₩.	-	120

*Radial mesh lines define the surface mesh intervals at the top (H = 254.513) and bottom (H = 23.04) surfaces.

**Axial mesh lines define the surface mesh intervals at the right (R = 70.84) surface.

Height** (cm)

Rádius* (cm)

Mesh Line No.

2 0 7 0) 	3.530	6.655	8.453	9.395	1,005	3.005	7.005	5.635	4.245	2.865	1.475	0.095	8.705	7.325	05.665	14.555	23.165	131.7850	40.395	49.005	53.005	57.005	59.005	60.533	63.495	66.465	69.423	71.605	73.785	75.955	78.135	80.315	82.485	84.663	86.355	88.041	90.040	91:978	92.357	93.492	94.628	95.764	97.0 70	0/7./6
9		000.	.000	.033	1.000	4.058	6.000	7.850	9.000	0.084	1.500	2.633	4.000	5.344	6.300	7.519	7.737	9.431	31.0000	2.368	4.000	6.400	8.000	9.903	0.500	1.318	2.000	2.757	4.000	5.032	00009	7.388	8.456	9.469	9.784	2.083	3.632	6.147	6.426	7.500	9.000	9.464	9.500		000.
-	4 -	V	~	4	.v.	9	1	70	5										19																								5.4) 4	r

	TABLE 4 (Cont)	•
Mesh Line No.	Radius* (cm)	Height** (cm)
.U.	9.729	98.414
45	0.008	99.929
47	61.0000	201,0650
. 6	3.000	02.201
64	4.465	03.336
50	7.000	03.715
51	8.580	04.094
25	0.00.0	05.229
. 53	0.841	06.365
54		07.123
55		08.287
5.6		09.811
. 57		11,335
94		13.621
20		14.383
0.9		15.018
61	-	15.653
62	•	16.238
88		17.761
49		19.234
c9 .		19.970
9		20.708
/9		21.442
89		21.842
69		22.077
. 02		25.506
7.1		28.935
. 72		32.364
7.3		35.793
74		37.216
7.5		38.650
. 92		41.997
7.7		45.356
78		48.715
. 62	-	52.074
9.0		53.294
81		54.513

20 2v 🛅	0860671 1821790 1821790 1721340 1721340 1821790 1821790 1735026	5118972 5118972 5118972 5118972 6679579 8679579 8679579 7735026	3024691 3024691 3024691 3024691 3026691 2266918 2266918 2266918 2266918
0 10 2 4 7 0 C 8 0 D 1 0 2 4 0 2 4	7735026 1821790 1821790 7735026 7735026 7590007 7735026 1821790 1821790 7735026	7735026 7735026 7735026 7735026 7735026 1821790 1821790 1821790 1821790 1821790	2214814 2268518 2268518 2268518 30268518 30268518 30266518 30266518 30266518 30266518
1000000000000000000000000000000000000	308606714 218217900 218217900 617213403 577350269 218217900 577350269 577350269 577350269 577350269 577350269 577350269 577350269 577350269 577350269	.951189727 .951189727 .951189727 .786795790 .786795790 .786795790 .786795790 .577350269 .577350269 .577350269 .577350269 .577350269 .577350269 .577350269 .577350269	.030246915 .030246915 .030246915 .022685185 .022685185 .022685185 .022685185 .022685185 .022685185 .022685185 .022685185 .022685185 .022685185 .022685185

		≥	.030246915	.022685185	.022685185	.030246915
5 (Cont)	•	=	.218217900	,218217900	.218217900	.218217900
TABLE 5		ᆈ	.218217900	,577350269	,786795790	.951189727
	Discrete	Direction No.	4	46	41	10.4

TABLE 6. ANGULAR QUADRATURE DESCRIPTION FOR THE PHOTON CRAM NSS SURFACE RADIATION SOURCE

Discret				
Direction No.	a	=	≥	
н	124900	247000	0000000	
~	3861900	3247000	4283110	
×	61900	47000	283110	
4	5020100	120900	0000000	
'n	6120900	6120900	5523870	
•	61900	20900	3495170	
~	3861900	6120900	3495170	
70	6120900	6120900	523870	
Ф	7111300	3861900	0000000	
10	47000	3861900	283110	
	6120900	3861900	3495170	
12	861900	38619	39195	
13	3861900	3861900	3919560	
14	6120900	3861900	3495170	
1,5	32470.00	3861900	4283110	
-	2491777	9968950	0000000	
	2491398	9968950	0000442	
18	2376450	0568966	006197	
	1245888	0568966	0013279	
	1245888	0568966	0013279	
	2376450	0668966	0006197	
	2491398	9968950	0000442	
	5717143	9836437	0000000	
	5716272	9836437	0001030	
	5452536	9836437	014419	
	858571	9836437	0030899	
	2858571	9836437	030899	
	5452536	9836437	0014419	
	16272	9836437	0001030	
	955539	9598184	000000	•
	954175	9598184	0001617	
32	541049	9818	0022639	
	47/769	9598184	0048512	
48	477769	9598184	048512	
	541049	9598184	0022639	
	954175	9598184	0001617	
	88768	9254390	0000000	
	86911	9254390	0002202	
<u>ښ</u>	1624634	9254390	030835	
4 0	094384	254390	00066075	
41	4384	9254390	066075	
. 4	24634	254390	03083	
\$ 4	869		.000022025	
			: :	

_
-
_
0
Ŭ
\sim
9
ч
=
9
⋖
\vdash

Discrete			•
Direction No	ᆈ	E	>
4 V	.15408377	8805412	0002785
_	697469	8805412	0038999
74	05362	8805412	0083570
	705362	8805412	0083570
	697469	8805412	0038999
	408377	8805412	0002785
	617150	8251726	0000000
	614314	6251726	0003365
	755491	6251726	0047122
	308575	8251726	0100975
	308575	8251726	0100975
	7755491	8251726	0047122
	.18614314	8251/26	0003365
	K18046951 - 218000742	. 9/29391/4 07502017A	000000000
	20705125	7593917	0000346
	10902147	7593917	0118774
	0902147	7593917	0118274
	795125	7593917	0055194
	1800974	7593917	0003942
	4968611	6832682	0000000
	4964808	6832682	0004514
	3812987	6832682	0063209
	2484305	6832682	0135447
	2484305	6832682	0135447
	812987	6832682	0063209
	4964808	6832682	0004514
	.28106651	5968829	0000000
	.28102370	6288964	0005082
	6805789	5968829	0071156
	4053325	5968829	0152477
	405050	2968829	01524//
	000000000000000000000000000000000000000	200000000000000000000000000000000000000	000000000000000000000000000000000000000
	1215070	500000	200000
	121022	70007	0000000
	9770307	5003271	00200
	607517	5003271	0169345
	607517	5003271	0169346
	770307	0032/1	0079028
	210279	5003271	05644
	290430	937034	0000000
	285208	3937034	0006410
	703365	3937034	0089752

Direction No.	ᆈ	티	>
	7145215	3937034	0192327
	7145215	3937034	0192327
91	.327033651	.939370340	.000897526
	4285208	3937034	0006410
	0166300	6506300	0000000
	3339500	6506300	2444190
	4887400	6506300	1292090
	4887400	6506300	1292090
	3339500	6506300	2444190
	3375900	7941000	0000000
	7941000	7941000	2701110
Ö	3339500	7941000	0854983
0	4887400	7941000	1921060
0	4887400	7941000	1921060
0	3339500	7941000	0854983
0	7941000	7941000	2701110
0	0120400	3339500	0000000
0	6506300	3339500	2444190
0	7941000	3339500	0854983
	3339500	3339500	2746830
0	4887400	3339500	0685661
₩	4887400	3339500	0685661
7	3339500	3339500	2746850
	7941000	3339500	0854983
44	6506300	3339500	2444190
-	8885600	4887400	0000000
با	7390700	4887400	1666780
4	6506300	4887400	1292090
\leftarrow	7941000	4887400	1921060
- -1	3339500	4887400	0685661
71	4887400	4887400	1822510
\sim	4887400	4887400	1822510
2	3339500	4887400	0685661
N	7941000	4887400	1921060
Ò	6506300	4887400	1292090
Ò	7390700	4887400	1666780

TABLE 7

CONTENTS OF THE CRAM NSS SURFACE RADIATION SOURCE DATA TAPE

The CRAM neutron data tape contains:

- 1. A total of 560 physical records of BCD information written at a density of 800 bpi on 7 tracks.
- 2. Each physical record contains a maximum of 3960 characters with a total of 240 data words per record. The 3960 characters were placed on tape with the FORTRAN format (30(8E15.8, 12X)). This results in thirty (30) lines of data with 120 (8 x 15) characters of BCD character information to represent 8 words. Twelve (12) blank characters fill out each line to a total of 132 characters.
- 3. The 560 physical records result from a total of 16 sets of 35 records, one set for each group of the neutron flux solution. The first 34 records of each 35 records are complete records and the 35th of each set contains 792 BCD characters.
- 4. Data on the CRAM neutron tape are the left-right boundary surface angular fluxes and top-bottom surface angular fluxes for each of 16 groups. These data are in the following order:

$$((\phi_{mi}, m = 1,48), j = 1,119), ((\phi_{mi}, m = 1,48), j = 1,52)$$

where;

omi is the angular flux for angle number m and left or right surface mesh interval j,

 ϕ_{mi} is the angular flux for angle m and top or bottom surface mesh interval i.

5. The right boundary surface fluxes are those flux values with a positive direction cosine μ in Table 5. The top boundary surface fluxes are those flux values with a positive direction cosine η in Table 5 and the bottom boundary surface fluxes are those flux values with a negative direction cosine η in Table 5.

TABLE 8

CONTENTS OF THE CRAM NSS SURFACE RADIATION SOURCE DATA TAPE

The CRAM photon data tape contains:

- A total of 897 physical records of BCD information written at a density of 800 bpi on 7 tracks.
- 2. Each physical record contains a maximum of 3960 characters with a total of 240 data words per record. The 3960 characters were placed on tape with the FORTRAN format (30 (8E15.8, 12X)). This results in thirty (30) lines of data with 120 (8 x 15) characters of BCD character information to represent 8 words. Twelve (12) blank characters fill out each line to a total of 132 characters.
- 3. The 897 physical records result from a total of 13 sets of 69 records, one set for each group of the photon flux solution. The first 68 records of each 69 records are complete records and the 69th of each set contains 792 BCD characters.
- 4. Data on the CRAM photon tape are the left-right boundary surface angular fluxes and top-bottom surface angular fluxes for each of 13 groups. These data are in the following order:

$$((\phi_{mi}, m = 1, 124), j = 1,80), ((\phi_{mi}, = 1,124), j = 1,52)$$

where;

- φ_{mj} is the angular flux for angle number m and left or right surface mesh interval j,
- ϕ_{mi} is the angular flux for angle m and top or bottom surface mesh interval i.
- 5. The right boundary surface fluxes are those flux values with a positive direction cosine μ in Table 6. The top boundary surface fluxes are those flux values with a positive direction cosine η in Table 6 and the bottom boundary surface fluxes are those flux values with a negative direction cosine η in Table 6.

SECURITY CLASS

DATA RELEASE MEMORANDUM CONTINUATION SHEET

	DRM NO.
	54266
i	REV

SHEET 23 OF 100

TABLE 9

NEUTRON ENERGY GROUP STRUCTURE FOR THE NSS CRAM

Group Number	Energy Bounds (ev)
1	2.87(6) to 1.0(7)*
2	1.35(6) to 2.87(6)
3	8.21(5) to 1.35(6)
4	3.88(5) to 8.21(5)
5 .	1.11(5) to 3.88(5)
6	1.50(4) to 1.11(5)
7	5.53(3) to 1.50(4)
8	5.83(2) to 5.53(3)
9	7.89(1) to 5.83(2)
10	1.068(1) to 7.89(1)
11	1.86(0) to 1.068(1)
12	3.0(-1) to 1.86(0)
13	1.2(-1) to 3.0(-1)
14	6.0(-2) to 1.2(-1)
15	2.0(-2) to 6.0(-2)
16	0.0 to 2.0 (-2)

^{*}Numbers in parentheses refer to powers of ten..

SECURITY CLASS

TABLE 10. FORTRAN LISTING OF COMPUTER CODE TO CONVERT CRAM BCD TRANSMITTAL TAPE

```
- OUTPU! TAPE OPTION - 0/GENERATE A BCD TAPE FOR TRANSMITTAL
PROGRAM DOTMAP(INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT, TAPE1, TAPE2,
                                                                                                                                                                                                                                                     1/GENERATE MAP INPUT TAPE FROM BCD
                                                                                                                                                                                                                                                                                             2/GENERATE A DASH INPUT TAPE FROM
                                                                                                                                             NO. OF OF AXIAL MESH INTERVALS IN DOT PROBLEM
                                                                                                                                                                                                                                                                                                                BCD TRANSMITTAL TAPE
                                                                                                                                                                                      DISCRETE DIRECTIONS (ANGLES) IN DOT PROBLEM
                                                                                                                       IM - NU. OF RADIAL MESH INTERVALS IN DOT PROBLEM
                                                                                                                                                                                                                                                                        THANSMITTAL TAPE
                                                                                                                                                                                                           P(L) SCATTERING APPROXIMATION IN DOT PROBLEM
                                                         IM, UM, NGP, MM, NPL, MMIM, MMUM, IMUM, NOMA,
                                                                                                                                                                                                                                                                                                                                                                              DOY-IIW PRODUCED BINARY TAPE
                                                                                                                                                                                                                                                                                                                                                         INSTRUCTIONS ARE AS FOLLOWS
                                                                                                                                                                                                                                                                                                                                                                                                   CRAM HCD TRANSMITTAL TAPE
                                                                                                                                                                                                                                                                                                                                                                                                                      MAP OR DASH INPUT TAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FLUX(A(LN2), A(LB2), A(LB4), KEY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     REAU(5,100) IM,JM,NGP,MM,NPL,KEY
                                                                                                                                                               OF GROUPS IN DOT PROBLEM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F(LST.LE.SUU00) GO TO 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NOMA = NPL * (NPL + 3) * IMJM/2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      B2=LNZ+MAXD(IMJM, NOMA)
                                                                                                  DATA DESCRIPTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FINAL HO.U. NOMA=1
                                                                              A (30000)
                                     COMMON DUM, NO.
                                                                                                                                                                                                                                                                                                                                                                                 보
                                                                                                                                                                                                                                                                                                                                                                                                   H
                                                                                                                                                                                                                                                                                                                                                                                                                         HL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FURMAT (6112)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LB2=LN2+1MJM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LST=LB4+MMIM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LB4=LB2+MMJM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MUKIINWUK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MI * WW = WI WW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MU WANTHAUKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       KEWIND S
                                                                                                                                                                                      NO . OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   REMIND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ストにしてし
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               STOP 1
                                                                                                    INPUI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N2=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL
STOP
                                                                                                                                                                   .
20.
                                                                                                                                                                                                                                                                                                                                                                                                                      IAPE
                                                                                                                                                                                                                                                                                                                                                                                                    IAPE
                                                                                                                                                                                                                                                                                                                                                                                 TAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   No=6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ŗ,
                                                                                                                                                                                                                                                                                                                                                                                            <del>-</del>87-
```

```
SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                          THE FOLLOWING READ STATEMENT REQUIRES THAT THE COMPUTER BE CAPABLE
                                                                                                                                                                                                                                                    READ(1) (N2(1), I=1, IMJM), (N2(I), I=1, NOMA), (B2(I), I=1, MMJM), (B4(I),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1241]E(3)(N2(1),1=1,1MJM),(N2(1),1=1,NOMA),(B2(1),1=1,MMJM),(B4(1),
                                                                                                                                                                                FURMAT 200 REGULNES THAT THE COMPUTER BE CAPABLE OF PRODUCING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ON SOME MACHINES THIS MAY HAVE TO BE REPLACED BY A SPECIAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             300 FORMAT (35H1 SURFACE ANGULAR FLUXES FOR GROUP ,13/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               READING BUD RECORDS CONTAING 3960 CHARACTERS
                                                                                                                                                                                                                                                                                                   HRIJE(2,200) (82(1), I=1, MMJM), (84(1), I=1, MMIM).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           READ (2,200) (82(]), I=1, MMJM), (84(]), I=1, MMIM)
                                             IM, UM, NGP, MM, NPL, MMIM, MMCM, IMCM, NOMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1MRITE(3)(82(1), 1=1, MMJM), (84(1), 1=1, MMIM)
                                                                                                                                                                                                       HCD RECORDS CONTAINING 3960 CHARACTERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CALL MOI(B2, JM, MM, 1, 4HANG., 4HMNO., 4H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CALL WOI (B4, IM, MM, 1, 4HANG., 4HMNO., 4H
                                                                                                                                                                                                                                                                                                                                                                                                                    GENERATE A MAP OR DASH INPUT TAPE
                                                                                                                                                             GENERATE A BCD TRANSMITTAL TAPE
SUBROUTINE FLUX(N2, B2, B4, KEY)
                                                                  DIMENSION N2(1),82(1),84(1)
                                                                                                                                                                                                                                                                                                                        FORMAT(30(8E15.5,12X))
                                                                                                               IF (KEY.GE.1) GU TO 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ENDFILE
ENDFILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        #RITE(6,300) K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            WRITE(6,300) K
                      COMMON DOM NO.
                                                                                       00 10 K=1,NGP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF (KEY.EQ.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (KEY.EU.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (KEY. E0.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (KEY.E0.2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             21=1, MMIM)
                                                                                                                                                                                                                                                                               11=1,MM1M)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GU CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINCE
                                                                                                                                                                                                                                                                                                                                                   60 TO 30
                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             と下して とい
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALL
                                                                                                                                                                                                                                                                                                                          200
                                                                                                                                                                                                                                                                                                                                                                          15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -88-
                                                                                                                                                                                                                                                                                                                                                                                                 00000
```

TABLE 10 (Cont)

<i>3</i>)	SUBROUTINE WOT(X,NCOL,LTBL,LG,10P1,T0P2,F0P3)	10 3 10 3	0010
J	COMMON DUM, NO	- - -) J
		WOT	4
_	DIMENSION X(LIBL, NCOL, 1)	¥0	
		E O M	90
*	** OUTPUT WRITES 1,2, OR 3-D ARRAYS	F 0 3	0 7
		WOT	0080
a	10 45 L=1,LG	MOT	60
		¥04	0
	U3=(NCUL+7)/8	FO.	11
		FOX.	3
v	1,2X,A6,1	MO M	13
_		MOT	4
		MOT	15
		WOT	0160
	50)	F O M	17
_	. 18L	MO T	18
_		MOT	19
	.,102	MOT	20
	+(x(K,J,L),NE.X(K-1,J,L))GU TO 25	F 0 F	21
70		F04	22
	F(KE.EU.KS)60 TO 15	MOT	23
.		MOT	24
	F(K.EG.LTBL)G0 T0 25	MOT	25
		FOR	56
15	F (K.EU.LTBL)G0 T0 30	FOX	27
	102	¥04	28
	F(X(K,J,L).NE.X(K+1,J,L)) GO TO 30	FOT	59
ر 20	CONTINUE	FOX	30
	חודרות.	F 0 3	31
		FO3	32
25.	360 TO 30	¥01	33.3
-	0) TOP1,KS,TOP1,KE	MO T	34
	L.AND.KE.EQ.K)GO TO 35	¥0.4	35
30	5) K, (X(K, J, L	FOX	36
ж.	S=K+1	FOM	37
	(m=KS)	¥03	38
S	CONTINUE	MOT	39
· 🗀	ON FINUE	XO1	40
4 7		WOT	41
⊃	10,46,1	¥0	$^{\circ}$
'n), 8 E13.5)		43
_		0	4

TABLE 10 (Cont)

REGION DESCRIPTION OF THE RT REFERENCE DESIGN EMPLOYING COMPOSITE FUEL

DRM No. 54266 Page 29 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 1
CHESH

DRM No. 54266 Page 30 of 100 W58932-1

DRM No. 54266 Page 32 of 100

DRM No. 54266 Page 34 of 100

DRM No. 54266 Page 35 of 100

DRM No. 54266 Page 36 of 100

DRM No. 54266 Page 37 of 100

DRM No. 54266 Page 40 of 100

RELATIVE SOURCE STRENGTH

FIGURE 15

DRM No. 54266 Page 42 of 100

DRM No. 54266 Page 44 of 100

DRM No. 54266 Page 45 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 10 CORE PLENUM

AXIAL DISTANCE FROM CRAM MODEL "0" (CM) RELATIVE SOURCE STRENGTH

FIGURE 22
RELATIVE RADIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 11
LATERAL SUPPORT FORWARD

FIGURE 23
RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 11
LATERAL SUPPORT FORWARD

9

RELATIVE RADIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 12 SUPPORT PLATE 2 9 8 RELATIVE SOURCE STRENGTH

¥59932-1

DRM No. 54266 Page 55 of 100

AXIAL DISTANCE FROM CRAM MODEL "0" (CM)

FIGURE 31 RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 15

RELATIVE SOURCE STRENGTH

DRM No. 54266 Page 58 of 100

FIGURE 36
RELATIVE RADIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 18
BATH CENTRAL SHIELD

DRM No. 54266 Page 63 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 18
BATH CENTRAL SHIELD

DRM No. 54266 Page 64 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 19 FLOW BAFFLE I

DRM No. 54266 Page 66 of 100

DRM No. 54266 Page 67 of 100

AXIAL DISTANCE FROM CRAM MODEL "0" (CM)

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 20 FORWARD REFLECTOR PLENUM I

FIGURE 41

-131-

DRM No. 54266 Page 68 of 100

RELATIVE RADIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 21
FORV/ARD REFLECTOR PLENUM II

DRM No. 54266 Page 69 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURVE IN REGION 21 FORWARD REFLECTOR PLENUM II

-133-

DRM No. 54266 Page 70 of 100

DRM No. 54266 Page 71 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 22 FORWARD REFLECTOR PLENUM III

DRM No. 54266 Page 72 of 100

2.2

DRM No. 54266 Page 73 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 23 FORWARD REFLECTOR PLENUM IV

-137-

DRM No. 54266 Page 74 of 100

DRM No. 54266 Page 75 of 100

Astronuclear Laboratory

class location

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 24
PERIPHERAL SHIELD I

FIGURE 49 -139-

DRM No. 54266 Page 76 of 100

DRM No. 54266 Page 77 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 25
PERIPHERAL SHIELD II

FIGURE 51 -141-

DRM No. 54266 Page 78 of 100

DRM No. 54266 Page 79 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 26
PERIPHERAL SHIELD III

FIGURE 53 -143-

DRM No. 54266 Page 80 of 100

RELATIVE SOURCE STRENGTH

DRM No. 54266 Page 81 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 27
PERIPHERAL SHIELD IV

FIGURE 55

DRM No. 54266 Page 82 of 100

W58932-1

DRM No. 54266 Page 83 of 100

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 28
PRESSURE VESSEL SIDE-B

FIGURE 57

DRM No. 54266 Page 84 of 100

-148-

DRM No. 54266 Page 85 of 100

AXIAL DISTANCE FROM CRAM MODEL "0" (CM)

RELATIVE AXIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 29
LEAD CENTRAL SHIELD FIGURE 59 RELATIVE SOURCE STRENGTH

DRM No. 54266 Page 86 of 100

DRM No. 54266 Page 87 of 100

-151-

#58932-1

20

DRM No. 54266 Page 89 of 100

DRM No. 54266 Page 91 of 100

DRM No. 54266 Page 92 of 100

DRM No. 54266 Page 93 of 100 ¥58832-1

FIGURE 68
RELATIVE RADIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 34
PERIPHERAL SHIELD PLATE

DRM No. 54266 Page 95 of 100

FIGURE 70 RELATIVE RADIAL DISTRIBUTION OF PHOTON SOURCE IN REGION 35 PERIPHERAL DOME PLENUM II

DRM No. 54266 Page 97 of 100

DRM No. 54266 Page 98 of 100

DRM No. 54266 Page 100 of 100

EAW:BAL:mc N8140:R-72-0014

APPENDIX A

FASTER GEOMETRY DESCRIPTIONS
FOR NON NUCLEAR COMPONENTS

POUNDARY DESCRIPTIONS POR FORMARD NON-NUCLEAR COMPONENTS

Coefficients for Boundary Equations

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styles

Styl

•		:		-	
33.		-	TABLE A.1. (CONTINUED)		- ··
1.5855 3.5855	13.59	13,59			
63			Reproduced from best available copy.		
69	525 -170.2	9.525			
	404.3	9.21			
44	525 404 5 245 404 3 255 407 3	0.52 0.52 0.52 0.53 0.53			
88.9 -688.9	525 404 525 404	8.82].
) - - - - - -	† 2			
90	16 366. 765 366. 16 366.	- C			
ູ່ທີ່	.765 366. 0.16 366.	10.16			
72.	9.4 142. 142. 75 375.4				
		. 0.0.			
630.48 -132.0 132.0	· · · · · · · · · · · · · · · · · · ·	1			
	9.4 375.41 9.4 375.41	9.4 8.75 9.4			
	8,75_375,4	8.75			
165.112 25.4 25.4	6.35 138. 5.55 138.	6,35			
	5.2 417.3 5.2 417.3 6.5 417.1	်ီး ကို			
83.9 88.9		6.35 4.845 6.35			
	4.845 417.32	4.845			
	5.35 -138.2 5.56 -138.2	6.35 5.56			
474.59	-39.4 25.14	-:17.2			

:	
Reproduced from best available	

			- }			- {			١		•	١		
:		•	1			Ì		•						
:			- [-			١		
٠.			1			1						Ì		
			١						ļ					
:			١			Į			·					
			ı											
			1			1						1		
			١			- 1						١		
:		•	-1			i								
			-			Į			- 1					
			١			١								
į			ŀ	•		İ								
:			- [- 1					•			
:			-											
:							ı							
			١											
												į		
			1											
:			-											•
			1											
			1			٠								
			i						i	i		i	ĺ	
			ı											
•			- 1							•				
;			١											
				٠						Ì				
						-			- 1					
_	_	'n	ĺ							İ				
	8	'n	j							1				
3	1.83									١			1.891	
ï													3	E)
:-										1				••
•	1.891 388.3													
		F											-39	39
	38	388	i							l			í	ï
٠.	-4	'n					١.							
•	3	'n											1.891	
2	÷		. !							1			8	ທຸ
													4	N)
٠.	0	0	<u></u>	}				_		١.				
	=	¥,	'n	'n	Š	S	2	8	នូ	σ	Ġ.		•	:
c	ĩ	ĩ	38	55	2	38	Š	22	Š	63	80,	5	9	39
			384.31	m	~	Ä	7	-	7	ĩ	~	•	į	-
ے	-	11	m	'n	٥	ત્ય	2	Ų.	'n] •=	~	N	12	Ŋ
		-1					ĺ			ŀ			1	-
-:	4	59	1.50	31	23	ن	3,5	Ę	36	;	,3	65	40	-
• `	1	-1	-4		••	-1	Ī	-,	• 1	ī	1	-		-

-167-

TABLE A.2.

REGION DESCRIPTIONS FOR

FORWARD NON-NUCLEAR COMPONENTS

Coordinates of Point in Region

Boundaries X

Material Number

Region Number

X Y X

404.36 356.29 366.1 366.1 -113.55 40.0 40.0 -113.60 142.28 -06-40.0 -113.6 49.53 88.9 88.9 5 88 9 5 88 9 5 88 9 6 88 9 6 88 9 7 7 9 8 8 8 9 27.8 731 1361 82 0 Property and a

75.41 TABLE A.2. (CONTINUED)	375.41 375.41	βη•ηϑ	375.41 300.		11.92 12.92		17	7	3	44.53.8 46.2.8	386.31	300	300.		365.	365.	3655. 3655.	365.	365.	355	9000	388.	*000°	400. 414.	000	•00#	400.	*00#	400°	400•	•004	0,044	400° 400° 256°	256.	550°	45¢.
0.057 0.057 0.08 0.08 0.08	88.9 5.0	.9 5.0	88.9 5.0 25.4 138.6	135	100.	6	3.9 50.	2.9	138.0	6.7 -136.6 6.7 -88.9		-170.21			40. 140.	40135.	•	-130.	.9 -100.	0	200.		-200-	-20125. -120.		•06	-100.	200.	140.	' :	-140. 8C.		200° -170.21	142.24	-40.	
0.00 0.00 0.00 0.00	0 04102105106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3103105104106 0 0 0 0	0 04104105106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 10 93130112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5108110111112133135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 8112113114118135 0 0 0	0 03112114118135 0 0 0 0	0 0112115116118135 0 0 0	0 05 25121120 0 0 0.0 0	0 10121122123124127126 0 0	3135125141126	0 04 27 67 74 0 0 0 0	0 0 1 2 3 73 92108119 49 0 0131130 AB A6106 A3 4 2 8 2	0 0 3131 4 73 92108119 49 0	0 0105132 95130 92 59100131 =1 96 0 0 0 0 0 0 0 0	0 0131130 85 73119 49	0 0130131 83106 88103 29 4	31 0 0130131 85 90 86 68 28 4106 0 0 0 0 0 0 0	0 0130131 85 88106 29 49	83 0 0130131106 85 65 49 2	0 0130131132108 92 49	0 18130 412512913 0 0 67117 73	0 0 18117:34 73 49	0 0 1811713	75 0 0 18117 81 72 70137 4		0 0 16117 79138 70 72 49 0 0 16117 70118 46 4 6914	0 0 18117118 70 43 4 49 39	0 0 1911/118135100 49	93 0 0 181:711813510011	69 0 0 15117135133 99 49	61 0 0 18117100133135 49	0 0 73 50 27 25	114 0 0 92 52 27 25	15 0 6 7 8 4 10 0 7121 4611	0121 22127124126 49

- +		-		-¦ -		. 1		- 1			-		+ -	_	t		<u> </u>		-		l -		 -	-	 					- †		-		_
																			.					٠										
		ŀ										٠				٠,								-	-									
	٠										·							• • •												1				
												٠.	ļ ·].					•			·										ļ	
.								ĺ				. •.	ŀ	٠.		٠				. •										-				
						1						: .	ĺ					•		<u>.</u> .	٠] .							
5		ĺ	•																					•		. •								
•	• .					•																	'									ļ		
	٠.																					•				•								
(CONTINUED)								1																									Ì	
N																																1		
NO																		•		٠.								•						
				İ									l																				ĺ	
1.2																																		
E																			1	٠.														
TABLE A.2.						1						•								•													Ì	
-							-		•															•									İ	
		ļ													Ì	-	1																ļ	
İ		İ		Ì		į																•					!]			1	Ì	
																	2							-										
420.	454.	454	454		0	ء او	<u>်</u>		530.		ا ع ا	430.	9		1	. 75		000	260		စ္တို့	8 8 8 8	8		မ္သ		00000	-600					Ì	
5 5	3 3	1	ar 2	1	3	#60°	2 2	5.	เห) .	3 1	າ້ 🕏	in i	() ¥	287	277	36	2.2	186	นี้ ถึง	ائة ة ا	7	્રે (~ ~	i i	ง ค		300	i İ					
	0			•								٠.												•				_						
- 6C	-100.0	-50.	2			į	100				j }	100	200	200	8	99.6	•	19.0	50	0	611	133.	80			. 65.		500.0	!					
	7	1	'	i i									'		ľ	7 6	ြိ	-	1	ì	7 :	.; &	1	¢ 0,	64	ĭ	İ	ũ				İ	-	
	0:			!		ا		•																										
60	-100.0	-10	200	9	20	-20		200			3	-150		-64.																				
	ŧ					İ				,				•	-						İ					•								
																													İ	j	•		j	
																													<u> </u>					
57	6.4			61	•					0	0								-							31							1	
# S	14			6			64			0	0		6								2		l		35	63130131				-		1		
117	6	61		61		6	65			C	<u>'</u>		ói l								9				0	83								
43119117141 14 43 9 10	21 22127124126 49 21 22123127126 43	1	9	1		7	10	40			0	T	7311							25	20	60		25	52	135	,			۱ ا				
1 4	126	94	124	126	1	65	0	61	40	0	0:	725	3	1	42			_		59	1	52	119	59	- 6	95)							
3 46	124	07.5	40	127	5	01	61	65	9 -	0	0	7,00	141	901. -	0.7	2 5	47	26.	5 26	ر ال	7.25	,	745	52	7.25	103	•	0						
80 g	122	2126	127	123	127	2126	, <u>†</u>	, 17	2 63	5 12	37	121	1139	130	100	4 C	1-40	2.00	27.0	ง ซึ่ง	2115	, C	54.5	- 5 - 5 - 0	1100	1101		5 7 7						
7121	22.22	1-22	22.2	1.22	2122		4 E)	3 16		12	11.	1141	3130	3151	51	นัก เก็ก	3.04	ກັດ ການ		งเก็ งเก	9.45	3 56	13	กัน อาก	14.6	200	1	a						
91-	0121	012	220	i ăi	20	מיר מיר	0122	7 0	∓ % o c	20	0	100		37.75	5	ភ្លាំ ភ្លាំ	ກີເກີ	ນັດນ ∈ດ	່ເກັບ	n j r o	iñ O	ານ ຄະເ	0	n #	0 5	กอ	5	งณ์ ၁၀						
6,7		1	6	1	0			i	00		l		ĺ.			- •	Ī							_			. 0				i			
,				!	13	- 1		.			l		-	<u> </u>		96	ا	ر د د	[];	¥ ស៊	ا کّرا	3 3	ا	2 =1	2	? <u> </u>	5	5 ℃						
500												^ .	~1 /	V O.	Ω1 i	N O	ım	മെ		1 63		. ~					7 .	# #		- 1			,	

REGION DESCRIPTIONS: FOR NOZZLE AND NOZZLE EXTENSION MODEL

	٠.		Region			
	Ħ		ty In		• .	; ,
Number	qun 1		Denst			
egion N	iter1a]		Irogen		Dimension o	
&	¥	Region Boundary Numbers	Hyd.	Х	. Y	Z

	15 16	0	9 9	0.0000	ტ.ერია ტ.ერია	5.6497+01 5.6697+01	-3.0500+00 -6.7200+00	1.7577+01	-3.9505+61 -3.9505+01	0.0000 0.000	
		-		-3.9565+61	0.0200	0.0000	0.0000	0.0000	0.0000	0,0000	
	13	ŭ	12	0.0000	1.5474401	0.0000	1.5474401	กะกกกก	0.0000	0.0000	
	19	ŭ	12	0.6660	1.6426+01	0.000	1.6425+01	0.0000	0.0000_	0.000	
1	20	Ü	12	0.0000	1.7219+01	9.6660	1.7219+01	ი.ღეიე	0.000	0,000	
5	21	ŏ	3	-5.2070+61	0.0000	0.000	4.0000	0.0000	0.000	0.0000	
÷	22	<u> </u>	5_	-3.0009+02	0.0000	0.5000	-2.2263+01	1.0000+00	1.0000+00	-3.0074-01	
•	23	— <u>\</u>	ŏ	-2.9240+02	0.0000	0.0000	-2.1662+01	1.0000+00	1.0000+00	-3.9074-01	
	24	ő	ŏ	-2.5671+02	0.0000	2.0000	-2.0339+01	1.0000+00	1.0100+00		• *
	25	ŭ	3	-1.1138+02	0.000	0.0000	0.0000	0.0000	0.0000	0.000	
	20	5	ō	2.0000+03	0.0000	n.onnn .	4.2000+01	1.0000+00	1.0000+00	0.0000	
	27	5	ě	1.9850+03	0.0200	2.0000	4.3300+01	1.0000+00	1.0000+00	0.0000	
	24	- 5	ō	149250403	0.0000	0.000	0.3700+01	1.0000+00	1.0000+00	0.0000	
_	29	5 -	3	-1.0000+02	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	ີ່ 30	č	12	0.000.0	7.6910+01	0.5000	7.2018+01	0.0000	0.0000	0.0000	
•	<u> 31</u>	ñ	12	0.0000	7.9426+01	0.0000	7.9426+01	1.0000	0.0000	0.0000	
	_ 32 _	0	<u> </u>	-1.49"8+02	0.0060	0.6110		7.0200		0.0000	
	33	·U	3	-1.4999+02	0.0000	6.0000 0.0000	0.0900 0.0900	1.0000	^_D^BB	0.0000	
	34_	õ	3	-1.5949+02	0.0000	9.0000					
<u></u>	35		<u>.</u>				<u> </u>	2.0000	0.0000	0.0000	
		õ		-1.0171+02	0.6000	0.0000	0.0000	0.0000	0.000	0.0000	
	35	0	12	0.0000	7.3501+01	0.0000	7+3501+01	0.0000	0.000	0.0000	-
	_37	<u>.</u>	12	<u>0.000</u>	7.6073+D1	0.0000	7-6073+01	0.0000	0.0000	0.0000	
	38	5	Ü	3-1503+03	4-9030	0.0000	4 • 6404+07	1.0000+00	1.6000+00	0.0000	•
	39	5	Ú	3-1260+03	0.0000	0.0000	5.0015+01	1.0000+00	1.0000+00	0.0000	
	4()	5	<u> </u>	<u> </u>	0.8000	0.0000	5.5200+01	<u>1.0000+00</u>	1.0000+00	<u> </u>	
	41	Ü	. 3	-1 - 11706+112	0.0000	0.0000	0.0000	0.0000	0.000	0.000 0.	
	42	0	3	-2.1466+62	0.6000	0.0000	0.0000	0.0000	0.0000	0.000	
	43	<u> </u>	—રૂ–	-2-4313+02	0.0000	0.0000	<u> </u>	0.0000	0.0000	0.0000	
	4/1	.0	3	-2.7313+02	0.0000	0.0000	N+600.3	a. 0000	0.0000	U•U0UÛ	
	45	G	3	-3.6313+02	0.0000	0.0000	0.0003	0.0000	0.0 000	0.0000	• •
	40	ຍ	3_	<u>-3.3313+02</u>	<u> </u>	0.0000	0.000)	0.0000	0.0000	<u>0.0000</u>	
	47	. U	3	-3.0530+05	0.0000	0.0000	0.000)	0.0000	U* DUUU	0.000	
	43	. 0	3	-4.9400+02	0.0000	0.0000	0.0000	0.000	0.0000	0.000	
	44	0	3_	-4.6230+02	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
•	50	Ü	3	-5.1400+02	9.0000	9.0000	0.000)	0.0000	0.000	0.000	
	51	5	O	-5.7040+03	0.0000	a. 0000	2.8000+01	1.0009+09	1.0900+09	0.0000	
	52_	5_	U	-5.7050+03	0.0000	0.0000	2.001 5+01	1.0000+00	1.0000+00	0.0000	
	53	. 5	v	-7.3620+03	0.0000	. 0.0000	3.0707+01	1.0000+00	1.0000+00	0.0000	
	1	0	C	1 2 3	0 - 0 = 0	n () n	a. 0003	0.000	0.000	2.3000+01	
	7_	U	11	2 4 14	17 0 0	<u>0 0 0</u>	0.0003	1.0000	0.0000	0.0000	_
	3	0	111	17 16 22	C O C	0 0	0.0000	0.0000	0.0000	-4.50n0+n1 .	
	4	O	4	21 22 25	0 0 0	n 0 n	0.0000	r.nnnn	ი. ციეი	-7.5000+01	
	5	Ö	6	25 26 29	0 0 C	n 0 n	0.0000	0.0000	0.0000	-1.2500+02	
		Ü	12	2 4 5	15 17 0	0 0 0	0.0063	0.0000	5.4000+01	0.0000	
	7	a	13	4 14 15	17 1) 0	0 0 0	0.0000	0.0000	1.7000+01	-3.9500+01	
	À	Ü	14	17 16 19	21 0 0	n n	0.0000	0.0000	1-6000+01	-4.5000+01	
_	9	- 6	15	21 22 23	25 0 0	0 0 0	0.0000	0.0000	1.5690+01	-5.2090+01	
	10	ŏ	ló	25 26 27	29 0 0	0 0 0	6.0000	0.0000	6.9770+01	-1.5000+02	
•	ii	Ö	ž	2 6 5	13 0 0	9 0 0	0.000	0.0000	5.5000+01	0.0000	
-	— <u>;;;</u> -		<u></u> -	5 15 16	17 0 0	0 0 0	0.0000	0.0010	1.8000+01	-3.9500+01	
	13	Ū	2	17 19 20	21 0 0:	0 0 0	0.000	0.0200	1.7000+01	-4.5000+01	
	14	Ü	2	21 23 24	25 0 0	9 0 0	0.0000	0.0000	1.6300+01	-5.2000+01	
_	15	;-	- =	·25 27 26	29 0 0			1.0000		-1.50nn+n2	
		0				-	0.000		7.0406+01		
	16		3		11 0 0	0 0 0	0.0000	0.0000	6.0000+01	1.5000+01	
	1.7_	· <u>v</u>	_3_	2 7 9	11 0 0	<u> </u>	0.00.0	0.0000	<u> </u>	<u> 2.2000+01</u> .	
	18	Ö	1	2 7 9	10 0 0	() () N	0.0000	0.0000	6.3700+01	5.0000+00	
	19	0	1	6 7 11	12 0 0	ח הַ ח	0.0000	ก.คฤกฤ	5.0110+11	\$.0000+0D	
	ںج	Ü	2	6 h 12	13 0 0	n n 'n	0.0000	1.0000	6.0000+01	-2.0000+00	

TABLE A.3. (CONTINUED)
1- 17723 MEUTS.101320 COLL DATE 01 MAP 72 PAGE -2. 2000,000 -2. 4013+02 -3. 413+02 -3. 477+02 -4. 335+02 -4. 8030+02 -1.5500+02 -1.5970+02 -1.5970+02 -1.7383+02 -2.0115+02 -4.3335+02 -1.6050+02 -1.6050+02 -1.7303+02 -2.0116+02 -1.5500+02 -1.6100+02 -3.6000+02 -5.0000+02 -5.0000+92 -3.9000+01 1.0000+91 -2.5013+02 -2.8013+02 -3.1813+02 -1.5500+01 -5.5000+02 -3.9335+02 -7. nnnn+nn -t...5000+01 -2.0000+01 A.0100+01 A.8100+01 9.6001+01 1.2400+02 9.1190+01 2.3000+02 1.0100+02 7.5000+01 1.2500+02 3000+02 . nonna+n2 1.1304+02 1.1041+02 1.33400+02 7.3400+01 1.0400+02 1.1100+02 1.3200+02 1.0000+02 1.5500+02 **.**6000+02 1.9900402 9.8990+01 1,0520+02 7.4100+01 20+0050.1 . 9010+UP 7.99000+01 7.8000+01 7.4590+01 ...25551.02 5.0000000 4.5990+01 .000 0.0000 0.0000 0.0000. 0.000. 0.0000. 0.0000. 0.000.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000.0 0.0000 0.000.0 , 00000° 0.000. 0.000 0.000 บันย์บัน 0000:0 0.000.0 0.000 0.000.0 0,000,0 0.0000 0.000.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000.0 0.000.0 0.00.0 0.00.0 0.000.0 0.000.0 נויטיני 0.000 PARI cc 000000 ccccc AND FLUX WITPUT END LEAKAGE CC 222223 000 500 cccC C C 200 ---. C C C C C C C C C C C 'C C C C 000 ------C C C 250 C. C C **ccc** S 0 C ccc c e e 000 ccdccc ------000 coc 000 000 000 ccd ~ ~ ~ -00 000 SAME TO SE 35 3 5 3 5 0 c 4 to 50 2 کے ہ 2 x x x 2 2 2 3 25 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4 5 5 5 5 5 5 5 등로만등로 2557 52 22.2 200 ٽ ت 36.3 20°C, သက္လုံဝဇ္ဇ 0000000 ಬಾಬಾ N W N 305 'o = = 22222 000,000 222222200 22300 300 *a a a*la a ala a ± ± 0.7 38.5 200 5 2 5 5 C 82262 2 35 コロロ 3 ·172†