ОБЈЕКТНО ОРИЈЕНТИСАНО ПРОГРАМИРАЊЕ ПРОГРАМСКИ ЈЕЗИК ЈАВА – 1

Карактеристике програмског језика Јава

ИСТОРИЈАТ И РАЗВОЈ ЈАВЕ

- Јава обухвата програмски језик и платформу за извршавање и развој.
- Производ компаније Sun Microsystems, сада у власништву компаније Oracle.
- Значајни делови на располагању као софтвер отвореног кода.
- Претеча Јаве настала је 1991. године:
 - намењена мрежном кућном окружењу;
 - пројекат Oak, под руководством Џејмса Гослинга.
- Језик Јава је лансиран 1995. године, на SunWorld конференцији.
 - Моментални успех.
 - Netscape прегледач, IBM, Microsoft...

ЈАВА ДИСТРИБУЦИЈЕ 0-1

- 1997. Sun развија JDK 1.0 (Java Development Kit).
- 1997. појавио се **JDK** 1.1:
 - JavaBeans;
 - унутрашње класе;
 - JDBC;
 - RMI;
 - рефлексију;
 - AWT Abstract Window Toolkit;
 - подршку за интернационаизацију, тј. за Unicode знакове.

ЈАВА ДИСТРИБУЦИЈЕ 2-3

- 1998. **J2SE** 1.2:
 - нова номенклатура именовања (раздвајање SE и EE, standard edition, enterprise edition);
 - ME mobile edition;
 - Swing графичка библиотека;
 - JIT преводилац за JVM;
 - Jaвa IDL за CORBA;
 - колекције (лист, мапе, скупови).
- 2000. J2SE 1.3:
 - садржи подршку за рад у дистрибуисаном окружењу (више рачунара комуницирају) RMI;
 - рад са звуком JavaSound;
 - JNDI;
 - JPDA,;
 - синтетичке класе-заступници.

- 2002. J2SE 1.4:
 - assert;
 - уланчавање изузетака;
 - подршка за IPv6;
 - NIO;
 - logging API;
 - рад са сликама преко Image I/O API;
 - XML и XSLT процесор;
 - JAXP;
 - ЈСЕ криптографију;
 - и Java Web Start.

- 2004. **J2SE** 5.0 (промена у начину бројања):
 - подршка за генеричке типове;
 - сигурност типова за колекције;
 - анотације;
 - аутоматско паковање/распакивање типа;
 - набројиви (енумерисани) типови;
 - променљиви аргументи;
 - колекцијски for циклус;
 - статички увоз;
 - аутоматска подршка за удаљено позивање метода;
 - подршка за паралелно програмирање;
 - класе за парсирање улаза.
- Први пут настале значајније промене у самом језику.
- Изостанак подршке неким застарелим концептима.

- 2006. Java SE 6:
 - убрзање перформанси језгра и **Swing** графичке библиотеке;
 - побољшане веб сервисе коришћењем JAX-WS;
 - побољшан рад при повезивању са базама података подршка за JDBC 4.0;
 - укључен API за Јава превођење;
 - архитектура за **XML** повезивање (**JAXB**);
 - усавршен **GUI**;
 - побољшана JVM.
- 2006. велики део Jaве постаје слободан, отворен и доступан је под **GPL** лиценцом.

- Компанија **Oracle 2010.** године купује Јаву од од **Sun-**a.
- 2011. Java SE 7:
 - JVM подршка за динамичке језике;
 - компресовани 64-битни показивачи;
 - нова I/O библиотека са подршком за мета-податке;
 - XRender ток за Java 2D који убрзава цртање модерним GPU;
 - знаковне ниске као обележја у **switch** наредби;
 - аутоматско управљање ресурсима код try-catch;
 - простије декларисање метода са променљивим параметрима;
 - литерали који представљају бинарне бројеве;
 - подвлаке у нумеричким литералима;
 - симултано хватање више врста изузетака
 - и избацивање изузетака уз побољшану контролу типа.

ЈАВА ДИСТРИБУЦИЈЕ 8-9

• 2014. Java SE 8:

- подршка за рад са ламбда изразима (аспекти функционалног програмирања);
- побољшани рад са временом и календарима;
- ефикаснији Nashorn JavaScript модул;
- побољшања на пољу сигурности.

• 2017. Java SE 9:

- платформа система модула (позната и као пројекат **Jigsaw**);
- дата конфигурација може садржати један мањи скуп модула,
 а не мора садржавати целокупну Јава платформу као монолитни систем, као раније;
 - боље перформансе,
 - лакше одржавање
 - и сигурност Јава апликације.

- Почев од верзије 9, компанија Oracle дистрибуира OpenJDK.
 - Софтвер отвореног кода (слично као Линукс).
 - Идеја је да оба производа: Oracle JDK и OpenJDK могу да замене један другог.
 - Раздвајање комерцијалне и некомерцијалне употребе.
- Март 2018. Јава 10 (мало новина због нове политика брзих дистрибуција):
 - подршка за одређивање типа локалне променљиве;
 - унапређење скупљача отпадака;
 - Java EE почиње да се развија независно под називом Jacarta EE (Eclipse Foundation).

- Септембар 2018. Jaва 11 LTS.
 - Прва верзија Јаве после верзије 8 са дурогочном подршком (енг. long term support).
 - Нови скупљач отпадака, тзв. Epsilon garbage collector.
 - Промењен формат датотека са бајт кодом.
 - Уклоњени су Java EE и CORBA модули из Java SE платформе и из JDK.
 - JavaFX је постао софтвер отвореног кода, који се испоручује као самостална библиотека.
- Мења се начин појаве нових верзија Јаве одлучено је да ће:
 - појава нових верзија бити чешћа,
 - а само неке међу њима ће бити дугорочно подржане (LTS),
 - док ће остале верзије бити подржаване само до изласка нове верзије.

ЈАВА ДИСТРИБУЦИЈЕ 12-14

- Март 2019. Jава 12:
 - експериментални скупљач отпадака са кратком паузом;
 - switch наредба добија могућност да чини део израза;
 - унапређење процеса компилације **JDK**, итд.
- Септембар 2019. Jава 13:
 - веће измене заправо биле поправке претходне верзије;
 - уведени су текстуални блокови који омогућавају лакши рад са вишелинијским текстом при писању кода.
- Март 2020. Јава 14 је донела доста унапређења и поправки:
 - интеграција регуларних израза у instanceof наредбу;
 - нови алат за паковање (Incubator);
 - информативнији изузеци у случају реферисања **null** референце;
 - прилагођавање **ZGC** скупљача отпадака за рад у macOS и Windows оперативним системима.

ЈАВА ДИСТРИБУЦИЈЕ 15-17

- Септембар 2020. Jава 15:
 - увођење запечаћених (**sealed**) класа и интерфејса, које постављају ограничења на то које друге класе или интерфејси их могу наслеђивати.
- Март 2021. Jава 16:
 - Vector API за унапређена векторска израчунавања;
 - миграција OpenJDK пројекта на Git систем.
- Септембар 2021. Jaва 17 LTS:
 - друга по реду LTS верзија после верзије 11 из септембра 2018. године;
 - побољшани рад са генераторима псеудослучјаних бројева;
 - ојачавање енкапсулације интерних **JDK** библиотека;
 - запечаћене класе (енг. sealed classes);
 - подршка за рад са регуларним изразима у оквиру **switch** наредбе итд.

ЦИЉЕВИ ПРИ РАЗВОЈУ ЈАВЕ

- Једноставност, објектна оријентисаност, фамилијарност
 - Садржи готове библиотеке за најразличитије намене.
 - Објектно орјентисан од самог почетка.
 - По синтакси сличан С/С++.
- Робусност и сигурност
 - Омогућава креирање веома поузданог софтвера:
 - интензивна провера током компилације,
 - провера током извршавања програма.
 - Модел управљања меморијом једноставан:
 - нема показивача,
 - нити показивачке аритметике.

Џејмс Гослинг, вођа тима који је креирао Јаву

ЦИЉЕВИ ПРИ РАЗВОЈУ ЈАВЕ (2)

• Архитектонска неутралност и преносивост

- Садржи компајлер који преводи до нивоа бајт-кода:
 - бајт-код није исто што и машински код,
 - међуформат који је архитектонски неутралан,
 - машински код није архитектонски неутралан, зависи од процесора,
 - преносив на различите врсте процесора и оперативних система.
- Стриктно се дефинише основни језик:
 - величине простих типова увек исте без обзира на оперативни систем и архитектуру процесора на пример, тип за запис означеног целог броја је увек 4 бајта (у С-у ово не важи).
- Има исто извршавање на свакој платформи:
 - за дате улазне податке даје исте излазне податке, што не важи за програмски језик С.

ЦИЉЕВИ ПРИ РАЗВОЈУ ЈАВЕ (3)

• Перформансе

- Програм се компајлира до бајт-кода, а потом интерпретира.
- Интерпретер ради пуном брзином, јер су сигурносне провере обављене раније.
- Постоји аутоматски скупљач отпадака, па програмер не мора да ослобађа меморију.
- Секције са интензивним рачунањем могу да се извезу директно у машински код.

• Интерпретираност, вишенитност и динамичност

- Интерпретатор извршава бајт-код на било ком рачунару где постоји систем за извршавање.
- Подржава вишенитно извршавање:
 - нпр. веб прегледач, мора "истовремено" да: освежава графичке компоненте, учитава страницу и преузима датотеку.
- Динамички учитава класе у току извршавања
 - класе се повезују (линкују) само када је то потребно.

ТИПОВИ ЈАВА АПЛИКАЦИЈА ДЕСКТОП АПЛИКАЦИЈЕ

- Развој преносивих апликација са графичким корисничким интерфејсом (енг. Graphical User Interface) ГУИ.
- Најпопуларније библиотеке су:
 - AWT,
 - Swing,
 - SWT
 - и Java FX.
- Поједини произвођачи софтвера су креирали сопствене Јава ГУИ библиотеке
 - Нпр. **IBM** Јава програмерима понудио **swt** библиотеку.

ТИПОВИ ЈАВА АПЛИКАЦИЈА апликације из командне линије

- Апликације из командне линије не користе графичке компоненте.
- То, међутим, не нарушава изражајност саме апликације.
- Унос и испис се врше путем командне линије уместо путем текстуалних поља, лабела итд.

ТИПОВИ ЈАВА АПЛИКАЦИЈА АПЛИКАЦИЈЕ ЗА МОБИЛНЕ УРЕЂАЈЕ

- Може се рећи да је Јава званичан језик за развој Android софтвера.
 - Јава има највећу подршку од стране произвођача **Android** система (компаније **Google**)
 - и највећи број апликација, које се налазе на Google Play Store, креиран коришћењем Јаве.
- Наравно, за писање апликација за **Android** уређаје је, поред језика Јаве, потребно:
 - познавати и друге елементе развојно окружење (нпр. Android Studio),
 - библиотеке, тј. алат за развој **Android SDK**,
 - алат Gradle,
 - структуру датотека Android Manifest и језика за означавање XML.

ТИПОВИ ЈАВА АПЛИКАЦИЈА АПЛЕТИ

- Јава аплети представљају пример тзв. веб програмирања на клијентској стран.
- У овом моменту застарела технологија и ретко се користи.
- Програм, аплет се, дакле, преузме са сервера, а потом се извршава на клијенту (прегледачу).

ТИПОВИ ЈАВА АПЛИКАЦИЈА СЕРВЛЕТИ И ЈАВА СЕРВЕРСКЕ СТРАНИЦЕ

- За разлику од аплета овде је у питању Јава извршавање на страни сервера.
- Сценарио је следећи:
 - захтев стиже од клијента,
 - на веб серверу се извршавају наредбе,
 - потом веб сервер генерише одговор и пошаље га клијенту.

ТИПОВИ ЈАВА АПЛИКАЦИЈА ВЕБ СЕРВИСИ

- Веб сервиси омогућавају комуникацију између апликација које се извршавају на разноврсним платформама (помоћу **HTTP(S)** протокола).
- Описи веб сервиса су задати најчешће као **XML** датотека.
 - Ово омогућава њихову проширивост и динамичност.
- Обично се граде хијерархије веб сервиса.
 - Они софистициранији користе услуге једноставнијих.
- Основна предност веб сервиса је интероперабилност.
 - Тј. повезивање разноврсних (хетерогених) софтверских система на елегантан начин.

ТИПОВИ ЈАВА АПЛИКАЦИЈА БИБЛИОТЕКЕ КЛАСА

- Има смисла правити библиотеку од компоненти:
 - које ће се више пута користити у различитим програмима,
 - а које одређују неку функционалност.
- Програмер те компоненте може:
 - спаковати у своју библиотеку
 - и касније их користити у новим пројектима.
- Библиотека обично садржи већи број сродних функционалности, нпр.:
 - библиотека за рад са текстом,
 - библиотека за везу према базама података и слично.

ПРОЦЕС ПРЕВОЂЕЊА И ИЗВРШАВАЊА (прави преводилац)

ПРОЦЕС ПРЕВОЂЕЊА И ИЗВРШАВАЊА (ЈАВА)

ПРОЦЕС ПРЕВОЂЕЊА И ИЗВРШАВАЊА ДЕТАЉИ (ЈАВА)

ЈАВА БАЈТ (МЕЂУ) КОД

- По нивоу апстракције близак асемблерским језицима.
- Јава је "више" компајлира него што је интерпретиран.
- Већи део пута од изворног језика (Јаве) до циљног (машинског) се пређе у компилацији.
 - Боља ефикасност.

```
SwitchIf.class 23
                   SwitchIfTest.java
public class SwitchIf (
     private int i;
     public SwitchIf() {
          0 aload 0;
                                                                     1 invokespecial 1;
                                    /* java.lang.Object() */
         4 aload 0;
          5 iconst 0;
          6 putfield 2;
                                    /* .i */
         9 iconst 0;
          10 istore 1;
          11 aload 0;
          12 getfield 2;
                                    /* .i */
          15 iload 1;
          16 if icmpne 32;
          19 aload 0;
          20 dwp;
          21 getfield 2;
                                    /* .i */
          24 iconst 1;
          25 iadd;
                                    /* .i */
          26 putfield 2;
          29 goto 35;
          32 iinc 1 -1;
          35 return;
          /* LineNumberTable not available */
Bytecode Sourcecode
```

JIT JABA ПРЕВОДИЛАЦ

- И поред тога што је ближа компајлираним језицима,
 Јавина преносивост ипак изазива одређени губитак перформанси.
 - У процесу интерпретирања бајт-кода превођење у машинске инструкције за конкретну платформу врши се више пута.
- Минимална јединица превођења је метод, односно његов придружени бајт-код.
 - Позивање метода више пута (нарочито код рекурзије) захтева поновну интерпретацију.
- JIT је попут других компилатора који производе машински језик на излазу.
 - Међутим, превођење се одвија тек по потреби, а не унапред.
 - Друга разлика је томе што је овде на улазу бајт-код, а не полазни изворни код.
- Приликом превођења бајт-кода до машинског језика за конкретну платформу, JIT преводилац може да врши разне компилаторске оптимизације над методама.
 - Ниво оптимизације треба да буде усаглашен са "значајем" метода, динамички ради JIT.
 - Када се неки метод преведе помоћу ЈІТ, машински код се се памти, тј. уписује у својеврсни кеш.

JIT ЈАВА ПРЕВОДИЛАЦ (2)

ЈАВА ВИРТУАЛНА МАШИНА

- Језгро Јаве је Јава виртуелна машина (eng. Java Virtual Machine JVM).
- Виртуални рачунар који постоји само у меморији.
- JVM допушта да програми буду извршавани на разним платформама (портабилност).
 - Потребно је да JVM буде имплементирана на тој платформи.
- JVM је врло мала када се имплементира у RAM-у:
 - Таква мала величина **JVM** омогућава да се Јава користи у разноврсним уређајима.
 - Цео језик Јава је оригинално развијан тако да се на уму има и кућна електроника.
 - Увођењем платформе система модула, почев од Јава 9, величина окружења може додатно да се смањи, тако да буду обухваћени само они модули који ће стварно бити коришћени.
- JVM чита ток бајт-кодова из .class датотеке као секвенцу машинских инструкција.
- Извршавање бајт-кода унутар **JVM** опонаша извршавање машинских инструкција.
 - Код процесора на улазу машинске инструкције, а на излазу је микрокод (контролни сигнали).
 - Код **JVM** на улазу бајт-код, а на излазу машински језик за конкретну платформу.
 - JVM чисто софтверски док је процесор, наравно, хардвер.

АРХИТЕКТУРА JVM

- Архитектура JVM одсликава архитектуру конкретног рачунарског система.
- Свака од инструкција JVM је слична асемблерској инструкцији.
 - Једнобајтни операциони код.
 - И нула, један или више операнада.
- JVM садржи:
 - систем за учитавање класа,
 - систем за извршавање,
 - област за податке приликом извршавања,
 - скупљач отпадака
 - и Јава нити.

АРХИТЕКТУРА JVM

МЕМОРИЈА JVM

ЈАВА АЛАТИ ЗА РАЗВОЈ - **ЈДК**

JABA API

- Јава интерфејс за програмирање апликација (енг. Java Application Programming Interface) тј. Јава API.
 - Скуп класа које је развио Sun (а надоградио Oracle), за коришћење у језику Јава.
- Класе унутар Јава АРІ су груписане у пакете (као директоријуми).
- Саме класе одговарају датотекама унутар тих директоријума.

JABA API (2)

ЈАВА МОДУЛИ

- Омогућавају елегантнију организацију Јава апликација.
- У оквиру Јава модула се може дефинисати:
 - који од Јава пакета, од којих се састоји аликација, могу бити виљиви другим модулима;
 - и који Јава модули су за извршавање Јава апликације.
- Предности:
 - величина испорученог бајт-кода;
 - учауривање интерних пакета (сакривени пакети, недоступни изван припадајућег модула);
 - детекција недостајућих модула при покретању.
 - (Пре Јаве 9, недостајући програмски код детектован тек при покушају употребе у току извршавања.)

СТРУКТУРА ЈДК

НЕКИ **ЈДК** МОДУЛИ

Модул	Кратак опис
jdk.charsets	Подршка за карактерске скупове који нису у java.base (најчешће карактери дужине два бајта и IBM карактерски скупови).
jdk.dynalink	Дефинише API за динамичко везивање операција високог нивоа над објектима.
jdk.javadoc	Дефинише имплементацију алата за генерисање документације и његовог конзолног еквивалента, наредба <i>javadoc</i> .
jdk.jcmd	Дефинише алате за дијагностику и решавање проблема у JVM, као што су <i>jcmd</i> , <i>jp</i> s, и <i>jstat</i> алати.
jdk.jdi	Дефинише интерфејс за дебаговање.
jdk.net	Дефинише API за мрежно програмирање.
jdk.security.auth	Имплементације сигурносних интерфејса и разноврсних модула за аутентификацију.

ЦЕНТРАЛНИ ЈАВА АРІ

- java.lang састоји се од класа које су централне за језик Јава.
- java.io стандардна улазно/излазна Јава библиотека.
- java.util садржи већи број корисних:
 - за рад са датумима,
 - за структурисање података, као што су Stack и Vector,
 - као и класе које омогућавају парсирање улазног тока података.
- java.net овај пакет чини језик Јава мрежно заснованим језиком.
- java.awt назив означава скраћеницу за Abstract Window Toolkit.
 - Стандардна библиотека за прављење ГУИ-ја, са графичким компонентама попут **Button**, **TextField** итд.
- javax.swing напреднија ГУИ библиотека, садржи класе као што су JButton, JTextField итд.
- java.applet овај пакет је најмањи пакет у Јава API, и данас се ретко користи.
 - У њему је дефинисана класа **Applet**, која омогућује рад са Јава аплетима.

ДОДАТНИ ЈАВА АРІ

- Овде ће бити побројано неколико **API** који се налазе ван централног:
 - Enterprise API (укључује JDBC, Java IDL и Java RMI),
 - Server API,
 - Security API итд.
- Ови **API**-ји су се до верзије Јава 8, налазили у оквиру пословног издања Јаве, тј. **J2EE**.
- Почев од верзије Јава 9, **J2EE** се више не испоручује у оквиру Јаве.
 - Већ је, под именом **Jakarta EE**, као софтвер отвореног кода.
 - Доступна од стране Eclipse Foundation организације.

JABA ENTERPRISE API

- Коришћењем овог API развијају се сложене дистрибуиране, клијент/сервер и друге апликације у Јави.
- Најважнији делови Java Enterprise API су:
 - Java Database Connectivity, или JDBC.
 - Јава RMI омогућава удаљену комуникацију између Јава програма.
 - Библиотека **Jini** је напреднија верзија **RMI**:
 - она ради слично као и RMI, али уз побољшану сигурност, могућност проналажења удаљених објеката итд.

JABA SERVER API

ПИТАЊА И ЗАДАЦИ

- У којој верзија Јаве (по њеним творцима) су направљене значајније промене?
 Које су то промене?
- Шта се подразумева под платформом система модула која је уведена у Java SE 9?
- Које су захтеве за програмски језик Јава су поставили креатори овог језика на почетку развоја?
- Који типови апликација се могу креирати програмским језиком Јава?
- Упоредити процес превођења изворног кода који је написан у програмском језику Јава у извршни код и процес превођења изворног кода написаног у програмском језику С у извршни код.
- Предности и недостаци употребе JIT Јава преводиоца.
- Објаснити организацију и архитектуру Јава виртуелне машине.
- Шта је Јава АРІ и за шта се користи?
- Шта су Јава модули и која је предност употребе система модула?
- Упоредити структуру JDК директоријума за Јава 8 и Јава 9.
- Истражити и упоредити различита издања Јава окружења.