

Inspire...Educate...Transform.

Foundations of Statistics and Probability for Data Science

Basic Probability Concepts, Probability Distributions

Prof Anuradha Sharma
8 December,2018

MATERIAL CONTENT FROM Dr. SRIDHAR PAPPU

\$50.7 BILLION SPENT FOR DEFENCE DEVEL-**OPMENT IN 2016** PLACES INDIA **AMONG WORLD'S** TOP FIVE DEFENCE **SPENDERS**

INDIA IS ahead of Saudi Arabia and Russia's expenditure

THE US, China and the UK remain the top three defence spenders ahead of India's fourth place

INDIA SPENT \$46.6 \$46.6 billion bn last year, as per a report released on Monday

THE REPORT said that India is set to overtake UK's budget by 2018

\$1.6

The worldwide outlook shows that global defence spending rose trillion by 1 per cent to \$1.6 trillion this year, against 0.6 per cent in 2015.

DEFENCE EXPENDITURE

\$191.7 bn

\$48.68bn

\$48.44 bn

Over the next three years, India will re-emerge as a key growth market for defence suppliers Craig Caffrey, principal analyst for Asia-Pacific at 'IHS Janes'

38/35 in math, physics: In Bihar, some students score more than total

Faryal Rumi | TNN | Updated: Jun 9, 2018, 16:33 IST

HIGHLIGHTS

- The Bihar School Examination Board was again in the limelight when some class XII students claimed that they scored higher marks than the total.
- Some others complained that they received marks in papers they never appeared for.

Students checking their results on mobile phones after BSEB release of Intermediate results on website in Patn... Read More

PATNA: Two years after the infamous topper scam, the Bihar School Examination

Data Types – Recent Interview Question

A sample of 400 Bangalore households is selected and several variables are recorded. Which of the following statements is correct?

- Socioeconomic status (recorded as "low income", "middle income", or "high income") is nominal level data
- The number of people living in a household is a discrete variable
- The primary language spoken in the household is ordinal level data (recorded as "Kannada", "Tamil", etc)

The Central Tendencies

Identify where the MODE, MEDIAN and MEAN lie in the below distributions.

The spread of the data in a dataset could be studied using

- Interquartile range
- Variance
- Standard Deviation
- Range (max-min)
- All of the above

Given the numbers are 68, 83, 58, 84, 100, 64, the second quartile is:

- 74.5
- 75.5
- 75
- 74

Which of the following plot is used to analyze interquartile range

- Scatterplot
- Histogram
- Lineplot
- Boxplot
- All of the above

What term would best describe the shape of the given boxplot?

- Symmetric
- Skewed with right tail
- Skewed with left tail
- All the above

Measures of Spread (Dispersion)

Just as Quartiles divide data into 4 equal parts, Deciles divide it into 10 equal parts and Percentiles into 100 equal parts.

Given the above, find the 25th, 50th, 75th and the 90th percentiles for the top 16 global marketing sectors for advertising spending for a recent year according to *Advertising Age*. Also, find Q2, 5th decile and IQR. Data in next slide.

Sector	Ad spending (in \$ million)
Automotive	22195
Personal Care	19526
Entertainment and Media	9538
Food	7793
Drugs	7707
Electronics	4023
Soft Drinks	3916
Retail	3576
Restaurants	3553
Cleaners	3571
Computers	3247
Telephone	2448
Financial	2433
Beer, Wine and Liquor	2050
Candy	1137
Toys	699

Measures of Spread (Dispersion)

ivieasures of Spi	ivieasures of Spread (Dispersion)									
Sector	Ad spending (in \$ million)	25 th Percentile = 25*(n+1)/100 25 th Percentile = 25*(16+1)/100								
Automotive	22195	25 th Percentile = 4.25 (Between Financial								
Personal Care	19526	& Telephone) 25 th Percentile = (2433+2448)/2								
Entertainment and Media	9538	25 th Percentile (Q1) = 2440.5								
Food	7793	50 th Percentile = 50*(n+1)/100								
Drugs	7707	50 th Percentile = 50*(16+1)/100 50 th Percentile = 8.5 (Cleaners & Retail)								
Electronics	4023	50th Percentile = 6.5 (Cleaners & Retail) 50th Percentile = (3571+3576)/2								
Soft Drinks	3916	50 th Percentile (MEDIAN/Q2) = 3573.5								
Retail	3576	75 th Percentile (Q3) = 7750								
Cleaners	3571	75 Percentile (\(\mathbb{Q}\)5) = 7750								
Restaurants	3553	90 th Percentile = 20860.5								
Computers	3247	5 th Decile(Median/Q2)=5*(n+1)/10=3573.								
Telephone	2448	5 Declie(Median/Q2)=3 (11+1)/10=33/3.								
Financial	2433									
Beer, Wine and Liquor	2050	IQR = Q3-Q1 = 7750 - 2440.5 = 5309.5								
Candy	1137	13 http://www.insofe.edu.in								

PROBABILITY BASICS

- Joint Probability
 - -P(A and B) = P(A)*P(B)
- Union Probability
 - P (A or B) = P(A) + P(B) P(A and B)
- Marginal Probability Probability of a Single Attribute
 - -Only one P(A), P(B)
- Conditional Probability

Conditional Probability

			Age			
		Young	Middle-aged	Old	Total	
Loan	No	0.225	0.586	0.005	0.816	
Default	Yes	0.077	0.104	0.003	0.184	
	Total	0.302	0.690	0.008	1.000	

Probability of A occurring given that B has occurred.

The sample space is restricted to a single row or column.

This makes rest of the sample space irrelevant.

Conditional Probability

		Young	Middle-aged	Old	Total
Loan					
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

What is the probability that a person will not default on the loan payment **given** she is middle-aged?

			Age				
		Young	Middle-aged	Old	Total		
Loan Default	No	10,503	27,368	259	38,130		
	Yes	3,586	4,851	120	8,557		
	Total	14,089	32,219	379	46,687		

P(No | Middle-Aged) = ?

The best place for students to learn Applied Engineering

Conditional Probability =
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

		Young	Middle-aged	Old	Total
Loan					
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

		Age			
		Young	Middle-aged	Old	Total
Loan	No	10,503	27,368	259	38,130
Default	Yes	3,586	4,851	120	8,557
	Total	14,089	32,219	379	46,687

Note that this is the ratio of Joint Probability to Marginal Probability

P(No | Middle-Aged) =
$$\frac{P(Middle \ aged \ and \ NO)}{P(Middle)} = \frac{0.586}{0.690} = 0.85$$

P(No | Middle Aged) =
$$\frac{P(Middle \ aged \ and \ NO)}{P(Middle)} = \frac{27368/46687}{32219/46687} = 0.85$$

http://www.insofe.edu.in

18

Conditional Probability – Order Matters

			Age				
		Young	Young Middle-aged Old				
Loan Default	No						
	Yes	0.077		0.104		0.003	0.184
	Total	0.302		0.690		0.008	1.000

P(No | Middle-Aged) = 0.586/0.690 = 0.85

What is the probability that a person is middle-aged given she has not defaulted on the loan payment?

P(Middle-Aged | No) = 0.586/0.816 = 0.72 (<u>Order Matters</u>) P(Middle-Aged | No) = 27368/38130 = 0.72 (<u>Order Matters</u>)

Conditional Probability – Visualizing using Probability Tables and Venn Diagrams

			Age					
		Young	Middle-aged	Old	Total			
Loan	No	10,503	27,368	259	38,130			
Default	Yes	3,586	4,851	120	8,557			
	Total	14,089	32,219	379	46,687			

			Age		
		Young	Middle-aged	Old	Total
Loan	No	0.225	0.586	0.005	0.816
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

Conditional Probability – Visualizing using Probability Trees

Conditional Probability – Visualizing using Probability Trees

- <u> 38</u>130 Old 38130 Loan = 0.007Default 3586 Young = 0.419
 - 8557 8557 4851 Yes 46687 = 0.184

The best place for students to learn Applied Engineering

Middle-aged = 0.5678557 120 = 0.014Old

- P(No and Young)
- P(Young) = P(No) P(Young/No) + P(Yes) *P(Young/Yes)
- P(No)
- P(Young | No)
- P(No | Young)

http://www.insofe.edu.in

Attention Check

Identify the type of probability in each of the below cases:

- 1. P(Old and Yes)
- 2. P(Yes and Old)
- 3. P(Old)
- 4. P(Yes)
- 5. P(Old | Yes)
- 6. P(Yes | Old)
- 7. P(Young | No)
- 8. P(Middle-aged or No)
- 9. P(Old or Young)

9: Union

		· ·			
		Young	Middle-aged	Old	Total
Loan Default	No	0.225	0.586	0.005	0.816
	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

Conditional Probability

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} \Rightarrow P(A \text{ and } B) = P(B) * P(A|B)$$

Similarly

What happens when A and B are INDEPENDENT?

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)} \Rightarrow P(A \text{ and } B) = P(A) * P(B|A)$$

Equating, we get

$$P(A|B) * P(B) = P(A) * P(B|A)$$

$$\therefore P(A|B) = \frac{P(A) * P(B|A)}{P(B)}$$

http://www.insofe.edu.in

Conditional Probability – Visualizing using Probability Trees

$$P(A|B) = \frac{P(A) * P(B \lor A)}{P(B)}$$

Now find

P(No | Young)

=

 $\frac{P(No) * P(Young|No)}{P(Young)}$

=

0.816 *0.275

(0.275*0.816)+(0.419*0.184)

=0.744

Monty Hall Problem - Intuitive

Monty Hall Problem – Probability Tree

http://www.insofe.edu.in

Conditional Probability -> Bayes' Theorem

Note B' means "not B"

$$P(B|A) = \frac{P(B) * P(A|B)}{P(A)} = \frac{P(A|B) * P(B)}{P(A|B) * P(B) + P(A|not B) * P(not B)}$$

Bayes' Theorem allows you to find reverse probabilities, and to allow **revision** of original probabilities with new information.

Case – Clinical trials

Epidemiologists claim that probability of breast cancer among Caucasian women in their mid-50s is 0.005. An established test identified people who had breast cancer and those that were healthy. A new mammography test in clinical trials has a probability of 0.85 for detecting cancer correctly. In women without breast cancer, it has a chance of 0.925 for a negative result. If a 55-year-old Caucasian woman tests positive for breast cancer, what is the probability that she in fact has breast cancer?

P(Cancer) = 0.005
P(Test positive | Cancer) = 0.85
P(Test negative | No cancer) = 0.925
P(Cancer | Test positive) = ?

Case – Clinical trials

```
P(Cancer) = 0.005 (aka Prior Probability)

P(Test positive | Cancer) = 0.85 (aka Likelihood)

P(Test negative | No cancer) = 0.925

P(Cancer | Test positive) = ? (aka Posterior or Revised Probability)

P(Test Positive) aka Evidence
```

$$Posterior\ Probability = \frac{Prior\ Probability * Likelihood}{Evidence}$$

Cancer Detection – Bayes Theorem

Let us assume 1000 women in the mid 50

P(Cancer) = 0.005 or 5/1000. So for every 1000 women in their mid 50s, 5 get breast cancer

P(test –ve / No cancer) = 0.925 = 92.5% of 995 = 920.375

P(test +ve / No cancer) =
$$74.625$$
 (995 – 920.375)

P(Test +ve) = P(test +ve /Cancer) + P(test +ve/No Cancer) 0.85*5 + 74.625 = 78.875

Case – Clinical trials

```
P(Cancer) = 0.005 (aka Prior Probability)
```

P(Test positive | Cancer) = 0.85 (aka Likelihood)

P(Test negative | No cancer) = 0.925

P(Cancer | Test positive) = ? (aka Posterior or Revised Probability)

P(Test Positive) aka Evidence

$$P(Cancer|Test +) = \frac{P(Cancer) * P(Test + | Cancer)}{P(Test +)}$$

$$P(Cancer|Test +) = \frac{P(Cancer) * P(Test + | Cancer)}{P(Test + | Cancer) * P(Cancer) + P(Test + | No cancer) * P(No cancer)}$$

$$= \frac{0.005 * 0.85}{0.85 * 0.005 + 0.075 * 0.995} = \frac{0.00425}{0.078875} = 0.054$$

Homework

Draw a Probability Table and a Probability Tree for the above case.

http://www.insofe.edu.in

Case – Spam filtering

Apache SpamAssassin'

Latest News

2015-04-30: SpamAssassin 3.4.1 has been released! Highlights include:

- improved automation to help combat spammers that are abusing new top level do
- tweaks to the SPF support to block more spoofed emails;
- increased character set normalization to make rules easier to develop and stop sp
- continued refinement to the native IPv6 support; and
- improved Bayesian classification with better debugging and attachment hashing.

SpamAssassin works by having users train the system. It looks for patterns in the words in emails marked as spam by the user. For example, it may have learned that the word "free" appears in 20% of the mails marked as spam, i.e., P(Free | Spam) = 0.20. Assuming 0.1% of non-spam mail includes the word "free" and 50% of all mails received by the user are spam, find the probability that a mail is spam if the word "free" appears in it.

Case – Spam filtering

$$P(Spam|Free) = \frac{P(Spam) * P(Free|Spam)}{P(Free)}$$

$$P(Spam|Free) = \frac{P(Spam) * P(Free|Spam)}{P(Free|Spam) * P(Spam) + P(Free|No spam) * P(No spam)}$$
$$= \frac{0.5 * 0.2}{0.2 * 0.5 + 0.001 * 0.5} = \frac{0.1}{0.1005} = 0.995$$

This helps the spam filter automatically classify the messages as spam.

HOW GOOD IS YOUR CLASSIFICATION?

Spam filtering		Predicted		Total
		Positive	Negative	
Actual	Positive	952	526	1478
Negative		167	3025	3192
То	Total		3551	4670

		Pred	icted	METRICS
		Positive	Negative	
Actual	Positive	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	Negative	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

Confusion Matrix - Metrics

		Pred	icted	
		Positive	Negative	
Actual	Positive	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	Negative	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

Recall (Sensitivity) =
$$\frac{\text{True+ve}}{\text{Actual+ve}}$$
Recall (Sensitivity) =
$$\frac{\text{True+ve}}{\text{True+ve} + \text{False-ve}}$$

Specificity =
$$\frac{\text{True} - \text{ve}}{\text{Actual} - \text{ve}}$$
Specificity =
$$\frac{\text{True} - \text{ve}}{\text{False+ve + True} - \text{ve}}$$

$$Precision = \frac{True + ve}{Predicted + ve}$$

$$Precision = \frac{True + ve}{True + ve + False + ve}$$

$$Accuracy = \frac{True + ve + True - ve}{Total}$$

$$Accuracy = \frac{True + ve + True - ve}{True + ve + False - ve + False + ve + True - ve}$$

$$F_1$$
 Score = 2* $\frac{Precision * Recall}{Precision + Recall}$

Spam filtering		Predicted		Total	
		Positive	Negative		
Actual	Positive	952	526	1478	Recall(Sensitivity)
	Negative	167	3025	3192	Specificity
Total		1119	3551	4670	
$Recall(Sensitivity) = \frac{952}{1478} =$		Precision 0.644			Accuracy, F1 Score

$$Specificity = \frac{3025}{3025 + 167} = \frac{3025}{3192} = 0.948$$
 $Precision = \frac{952}{1119} = 0.851$

$$Precision = \frac{952}{1119} = 0.851$$

$$Accuracy = \frac{952 + 3025}{952 + 3025 + 526 + 167} = \frac{3977}{4670} = 0.852$$
 more important?

Which measure(s) is/are

$$F1 = 2 * \frac{Precision * Recall}{Precision + Recall} = \frac{2 * 0.851 * 0.644}{0.851 + 0.644} = \frac{1.096}{1.495} = 0.733$$

Court System –		Ver	dict	
Death Se	ntence	Guilty	Not Guilty	
Actual	Guilty	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	Not Guilty	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

Breast cancer		Pred	Predicted		
detection		Positive	Negative		
Actual	Positive	852	126	978	
Negative		67	1025	1092	
Total		919	1151	2070	

Recall (Sensitivity) =
$$\frac{852}{978}$$
 = 0.871 Which measure(s) is/are more important?

Precision = $\frac{852}{919}$ = 0.927

Accuracy = $\frac{852 + 1025}{852 + 1025 + 126 + 67}$ = $\frac{1877}{2070}$ = 0.907

Specificity = $\frac{1025}{1025 + 67}$ = $\frac{1025}{1092}$ = 0.939

 $F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}$ = $\frac{2 * 0.871 * 0.927}{0.871 + 0.927}$ = $\frac{1.615}{1.798}$ = 0.898

Anti Virus Detection		Dete	ction	
		Virus	No Virus	
Actual	Virus	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	No Virus	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

Organ Matching from Donors		Pred	icted	
		Match	No Match	
Actual	Match	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	No Match	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

Credit Card Fraud		Dete	ction	
Detection	n	Fraud	No Fraud	
Actual	Fraud	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	No Fraud	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

Image Text		Predicte	ed Word	
Classifica	tion	CAT	DOG	
Actual Word	CAT	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
	DOG	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

HYDERABAD

2nd Floor, Jyothi Imperial, Vamsiram Builders, Old Mumbai Highway, Gachibowli, Hyderabad - 500 032 +91-9701685511 (Individuals) +91-9618483483 (Corporates)

BENGALURU

Floors 1-3, L77, 15th Cross Road, 3A Main Road, Sector 6, HSR Layout, Bengaluru – 560 102 +91-9502334561 (Individuals) +91-9502799088 (Corporates)

Social Media

Web:	http://www.insofe.edu.in
Facebook:	https://www.facebook.com/insofe
Twitter:	https://twitter.com/Insofeedu
YouTube:	http://www.youtube.com/InsofeVideos
SlideShare:	http://www.slideshare.net/INSOFE
LinkedIn:	http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.