DS Practical

PRACTICAL 1

Aim: Introduction to Excel

- 1. Create a dataset
- 2. Sort Data
- 3. Apply Filter
- 4. Write Formula
- 5. Remove duplicates

Steps to Perform

1. Create a Dataset

- Open Microsoft Excel.
- In **Sheet1**, create a small dataset (example: Student data).

Name	Age	City	Marks
Ayesha	20	Delhi	85
Rahul	22	Mumbai	90
Neha	21	Delhi	78
Aman	22	Pune	85
Riya	20	Mumbai	90

• Make sure each column has a **header** (like Name, Age, etc.).

2. Sort Data

- Select the dataset (including headers).
- Go to Data → Sort.
- Choose the column to sort (e.g., Marks).

- Choose Ascending (A to Z / Smallest to Largest) or Descending (Z to A / Largest to Smallest).
- · Click OK.
 - ✓ Data will now appear in sorted order.

3. Apply Filter

- · Select your dataset.
- Go to Data → Filter.
- Small dropdown arrows will appear on each header.
- Click a dropdown → select or deselect values to display only specific data.

(Example: Filter City = Delhi)

4. Write a Formula

- Click an empty cell (e.g., next to Marks).
- Try some formulas like:
 - =AVERAGE(D2:D6) → Finds average marks
 - =MAX(D2:D6) → Finds highest marks
 - ■MIN(D2:D6) → Finds lowest marks
 - =COUNT(D2:D6) → Counts number of entries

5. Remove Duplicates

- Select your entire dataset.
- Go to Data → Remove Duplicates.
- Select the columns you want to check (e.g., Name, City, etc.).
- Click OK.
 - Excel will remove duplicate rows and show how many were deleted.

PRACTICAL 2

Aim: Data Validation in Excel

- 1. Create a dataset
- 2. Text to Column
- 3. Add Data using a Form tool
- 4. Transpose Data
- 5. Use VLOOKUP

💞 Steps to Perform

1. Create a Dataset

- Open Microsoft Excel.
- In Sheet1, enter a small dataset like this:

ID	Name	Department	Salary
101	Ayesha Khan	HR	40000
102	Rahul Mehta	IT	55000
103	Neha Sharma	Finance	48000
104	Aman Verma	IT	52000
105	Riya Patel	HR	40000

2. Text to Columns

- Suppose you have a column like Full Name (e.g., "Ayesha Khan").
- Select that column → Go to Data → Text to Columns.
- Choose Delimited → Next → Space → Finish.
 - ▼ The full name will split into two columns: First Name and Last Name.

3. Add Data Using the Form Tool

• Ensure your dataset has headers (ID, Name, Department, Salary).

- Go to File → Options → Customize Ribbon → Choose Commands Not in the Ribbon.
- Add Form to your Quick Access Toolbar.
- Select your data range → Click Form icon.
- A data entry form appears use it to easily **add, find, or delete** records.
 - ✓ New entries will automatically appear in your dataset.

4. Transpose Data

- Select the dataset → Copy it (Ctrl + C).
- Go to a blank area → Right-click → Paste Special → Transpose.
 - Rows become columns and columns become rows.

5. Use VLOOKUP

In a new cell, try a lookup formula to find salary by ID.

Example:

=VLOOKUP(103, A2:D6, 4, FALSE)

▼ This finds the salary of the employee with ID 103 from the dataset.

PRACTICAL 3

Aim: Data Validation in Excel

- 1. Specify a valid range of value for a cell
- 2. Specify a valid List of value for a cell
- 3. Specify a valid Birth of value for a cell

Steps to Perform

1. Specify a Valid Range of Values for a Cell

Select the cell(s) where you want to restrict input.

(Example: Cells in the "Marks" column.)

- Go to Data → Data Validation → Data Validation.
- In the **Settings** tab:
 - Choose **Allow:** Whole Number (or Decimal).
 - Choose **Data**: between.
 - Enter Minimum: 0 and Maximum: 100.
- Click OK.
 - Now, only numbers between 0 and 100 can be entered in those cells.

2. Specify a Valid List of Values for a Cell

- Select the target cell(s) (e.g., under "Department").
- Go to Data → Data Validation → Data Validation.
- In the Settings tab:
 - Choose Allow: List.
 - In **Source**, type:

HR, IT, Finance, Marketing

- · Click OK.
 - ▼ The cell now shows a dropdown menu only these listed values can be selected.

3. Specify a Valid Birth Date Range for a Cell

- Select the cell(s) for Date of Birth entries.
- Go to Data → Data Validation → Data Validation.
- In Settings:

• Choose **Allow**: Date.

• Choose **Data**: between.

• Enter a valid date range, for example:

• Start Date: 1/1/1990

• End Date: 12/31/2010

• Click OK.

✓ Users can only enter birth dates within that specific range.

PRACTICAL 4

1.Excel Program to plot Bar Chart

2.Excel Program to plot Histogram :-

· .		
Name	Math	Science
Om	45	39
Adit	26	45
Siddhi	36	39
Manasi	37	46
Yash	29	26
Komal	45	34

Student	Marks
A	12
В	18
С	22
D	25
Е	29
F	33
G	35
Н	37
I	41
J	55
K	57
L	60
M	63
N	65

- 3.Excel Program to plot pie Chart
- 4.Boxplot

1. Excel Program to Plot a Bar Chart

Dataset:

Name	Math	Science
Om	45	39
Adit	26	45
Siddhi	36	39
Manasi	37	46
Yash	29	26
Komal	45	34

Steps:

- 1. Enter the above data in Excel.
- 2. Select the entire dataset (A1:C7).

- 3. Go to Insert → Charts → Bar Chart → Clustered Bar.
- 4. Excel will display a **bar chart** comparing Math and Science marks for each student.
- 5. Add chart elements:
 - Click Chart Elements (+) → add Chart Title → type "Comparison of Math and Science Marks".
 - Add Data Labels if needed for clarity.
- **▼ Result:** A Bar Chart showing each student's performance in Math and Science.

2. Excel Program to Plot a Histogram

Dataset:

Student	Marks
Α	12
В	18
С	22
D	25
E	29
F	33
G	35
Н	37
1	41
J	55
K	57
L	60
М	63
N	65

Steps:

1. Enter the above data in Excel.

- 2. Select the **Marks** column (B2:B15).
- 3. Go to Insert → Charts → Insert Statistic Chart → Histogram.
- 4. Excel automatically groups marks into "bins" (ranges like 10-20, 20-30, etc.).
- 5. Adjust bins if needed:
 - Right-click the X-axis → Format Axis → Bin width → set a custom width (e.g., 10).
- **▼ Result:** A Histogram showing the frequency distribution of students' marks.

3. Excel Program to Plot a Pie Chart

Dataset:

Student	Marks
Α	12
В	18
С	22
D	25
E	29
F	33
G	35
Н	37
1	41
J	55
K	57
L	60
М	63
N	65

Steps:

1. Open Excel and enter the above dataset.

- 2. Select both columns (A1:B15).
- 3. Go to Insert \rightarrow Charts \rightarrow Pie Chart \rightarrow 2-D Pie.
- 4. A Pie Chart will appear showing each student's contribution to the total marks.
- 5. Add details:
 - Click the chart → Add Chart Element → Data Labels → Percentage.
 - Add a **Chart Title** → e.g., "Distribution of Marks among Students".
- Result: A Pie Chart that visualizes how each student's marks compare as a percentage of the total.

4. Excel Program to Plot a Boxplot (Box & Whisker Chart)

Dataset (same as above):

Student	Marks
Α	12
В	18
С	22
D	25
Е	29
F	33
G	35
Н	37
I	41
J	55
K	57
L	60
M	63
N	65

Steps:

- 1. Select only the Marks column (B1:B15).
- 2. Go to Insert → Charts → Statistical Chart → Box & Whisker.
- 3. Excel generates a **Boxplot** showing:
 - Median (middle mark)
 - Quartiles (Q1 & Q3)
 - Minimum and Maximum values
 - Outliers, if any
- 4. Add a **Chart Title** → "Boxplot of Student Marks".
- 5. Optionally format the chart for clarity (right-click \rightarrow Format Data Series).

▼ Result: A **Boxplot** representing the spread and variation of marks — showing how students are distributed across the score range.

Final Result Summary

Chart Type	Purpose	Visualization
Pie Chart	To show percentage contribution of each student's marks	Circular chart divided into slices
Boxplot	To show the data spread, median, and outliers	Box with whiskers representing quartiles

PRACTICAL 5

Aim: Measure of Central Tendency Calculate Mean, Median and Mode for the following data

- a. 15,16,18,19,20,24
- b. 45,48,47,43,42
- c. 100,105,115,115,106

To calculate the Mean, Median, and Mode for the given datasets using Microsoft Excel.

Given Data

Dataset	Values
(a)	15, 16, 18, 19, 20, 24
(b)	45, 48, 47, 43, 42
(c)	100, 105, 115, 115, 106

Steps to Perform in Excel

11 Enter Data

- Open Microsoft Excel.
- In Column A, enter data as follows:

Α	В
a)	15
	16
	18
	19
	20
	24
b)	45
	48
	47
	43
	42
c)	100
	105
	115

Α	В
	115
	106

2 Use Excel Formulas

For each dataset, apply these formulas in separate cells:

Measure	Meaning Meaning	
Mean	=AVERAGE(range)	Finds the arithmetic average
Median	=MEDIAN(range)	Finds the middle value
Mode	=MODE.SNGL(range)	Finds the most frequent value

Final Results Summary

Dataset	Mean	Median	Mode
(a)	18.67	18.5	None
(b)	45	45	None
(c)	108.2	115	115

2. Find Mean

@* Aim:

To calculate the **Mean** for the given **Class Interval and Frequency** data using Microsoft Excel.

Given Data

Class Interval	Frequency	
1	100	
2	104	
3	106	
4	107	
5	101	

Class Interval	Frequency	
6	103	
7	105	

Steps to Perform in Excel

Step 1: Enter the Data

Open Excel and type the data as shown:

A (Class Interval)	B (Frequency)
1	100
2	104
3	106
4	107
5	101
6	103
7	105

Step 2: Compute fxxf \times xfxx

- In Column C, type this header: fx.
- In cell **C2**, enter the formula:

• Drag it down till the last row.

You'll get:

Class Interval (x)	Frequency (f)	fx
1	100	100
2	104	208

Class Interval (x)	Frequency (f)	fx
3	106	318
4	107	428
5	101	505
6	103	618
7	105	735

Step 3: Find Σf and Σfx

At the bottom of the Frequency and fx columns:

• In **B9**: $=SUM(B2:B8) \rightarrow gives \Sigma f = 726$

• In C9: $=SUM(C2:C8) \rightarrow gives \Sigma fx = 2912$

Step 4: Calculate Mean

In a new cell (say E2), enter the formula:

=SUM(C2:C8)/SUM(B2:B8)

 \checkmark Mean = Σfx / Σf = 2912 / 726 = 4.01

Result

Measure	Formula	Result
Mean	Σfx / Σf	4.01

V Final Answer

Mean = 4.01

3. Find Mean or Median

Given Data

Class Interval	Frequency (f)	
0 – 100	13	
100 – 200	18	
200 – 300	27	
300 – 400	34	
400 – 500	23	
500 – 600	17	
600 – 700	10	

1) Sheet layout (enter these headings and values)

Put these headings in row 1 and the values in rows 2–8:

A1: Class

B1: Frequency

C1: Lower

D1: Upper

E1: Midpoint

F1: f*x

G1: CumFreq

Fill rows 2-8 like this:

A2: 0-100 B2: 13 C2: 0 D2: 100

A3: 100-200 B3: 18 C3: 100 D3: 200

A4: 200-300 B4: 27 C4: 200 D4: 300

A5: 300-400 B5: 34 C5: 300 D5: 400

A6: 400-500 B6: 23 C6: 400 D6: 500

A7: 500-600 B7: 17 C7: 500 D7: 600

A8: 600-700 B8: 10 C8: 600 D8: 700

2) Calculate Midpoint and $f \times x$ (drag formulas down row $2 \rightarrow 8$)

E2 (Midpoint): =(C2+D2)/2Drag E2 down to E8. F2 (f*x): =B2*E2 Drag F2 down to F8. G2 (Cumulative frequency): =SUM(\$B\$2:B2) Drag G2 down to G8. 3) Totals (put below the table, e.g. row 9) B9 (Σf): =SUM(B2:B8) F9 (Σ f*x): =SUM(F2:F8)

4) Mean (grouped data formula)

Put Mean in a cell, e.g. B11:

```
=F9/B9
```

This computes Mean = $\Sigma(fx) / \Sigma f$.

(With this dataset you should get about **339.44**.)

7) Copy-friendly summary (paste into Excel comments or notes)

- 1. Enter classes in A2:A8 and frequencies in B2:B8.
- 2. Put Lower/Upper limits in C2:D8.
- 3. E2 = $\frac{(C2+D2)/2}{}$ \rightarrow drag down (midpoints).
- 4. $F2 = B2*E2 \rightarrow drag down (f \times x)$.
- 5. $G2 = SUM(\$B\$2:B2) \rightarrow drag down (cum freq).$
- 6. B9 = SUM(B2:B8) (N).
- 7. F9 = SUM(F2:F8) (Σfx).
- 8. Mean = = F9/B9.
- 9. B12 = =B9/2.
- 10. B13 = = MATCH(TRUE,INDEX(G2:G8>=B12,0),0) (median class index) or = MATCH(B12,G2:G8,1)+1.
- 11. L = ||INDEX(C2:C8,B13)||; $|Cf_prev|| = ||IF(B13=1,0,INDEX(G2:G8,B13-1))||$; $|f_med|| = ||INDEX(B2:B8,B13)||$; $|f_med|| = ||INDEX(D2:D8,B13)||$.
- 12. Median = $= L + ((B12 cf_prev) / f_med) * h$.

PRACTICAL 6

Aim:

To calculate **Range, Interquartile Range (IQR), Variance, Standard Deviation, Skewness, and Kurtosis** of the given datasets.

Step 1: Enter Data

Dataset 1: Student Marks

Δ	D
Α	В
Student	Marks
Α	45
В	52
С	50
D	60
Е	65
F	70
G	75
Н	80
1	85
J	90
K	78
L	65
М	95
N	65
0	46
Р	59
Q	84
R	61
S	95
Т	86

Dataset 2: List of Things

D	Е
Item	Price
Book	58
Pen	65
Pencil	48
Calculator	52
Highlighter	43
Eraser	62
Scissors	45

(Enter this from cell D1:E8)

Step 2: Calculate in Excel (Formulas)

Measure	Excel Formula	Example (Marks in B2:B21)	Example (Prices in E2:E8)
Range	=MAX(range)- MIN(range)	=MAX(B2:B21)- MIN(B2:B21)	=MAX(E2:E8)- MIN(E2:E8)
Q1 (First Quartile)	=QUARTILE.INC(range,1)	=QUARTILE.INC(B2:B21,1)	=QUARTILE.INC(E2:E8,1)
Q3 (Third Quartile)	=QUARTILE.INC(range,3)	=QUARTILE.INC(B2:B21,3)	=QUARTILE.INC(E2:E8,3)
IQR (Interquartile Range)	=Q3-Q1	=QUARTILE.INC(B2:B21,3)-QUARTILE.INC(B2:B21,1)	=QUARTILE.INC(E2:E8,3)-QUARTILE.INC(E2:E8,1)
Mean	=AVERAGE(range)	=AVERAGE(B2:B21)	=AVERAGE(E2:E8)
Variance	=VAR.P(range) (for population) or =VAR.S(range) (for sample)	=VAR.P(B2:B21)	=VAR.P(E2:E8)

Measure	Excel Formula	Example (Marks in B2:B21)	Example (Prices in E2:E8)
Standard Deviation	=STDEV.P(range) (for population) or =STDEV.S(range) (for sample)	=STDEV.P(B2:B21)	=STDEV.P(E2:E8)
Skewness	=SKEW(range)	=SKEW(B2:B21)	=SKEW(E2:E8)
Kurtosis	=KURT(range)	=KURT(B2:B21)	=KURT(E2:E8)

Step 3: Format Your Output Table

Make a small result table below your data, like this:

Measure	Formula Used	Result
Range	=MAX(B2:B21)-MIN(B2:B21)	
IQR	=QUARTILE.INC(B2:B21,3)-QUARTILE.INC(B2:B21,1)	
Mean	=AVERAGE(B2:B21)	
Variance	=VAR.P(B2:B21)	
SD	=STDEV.P(B2:B21)	
Skewness	=SKEW(B2:B21)	
Kurtosis	=KURT(B2:B21)	

Then repeat for the second dataset (Prices).

🔽 Step 4: Interpret Results

After typing each formula:

- Press **Enter** to see the calculated value.
- You can adjust decimal points using **Home** → **Increase/Decrease Decimal**.
- Add titles and borders for a neat practical report.

Optional: Visual Representation

To visualize dispersion:

- 1. Select your data.
- 2. Go to Insert → Chart → Box & Whisker.

• It automatically shows **median**, **quartiles**, and **outliers**.