Introduction to Linux

Jerry Ebalunode

Center for Advanced Computation and Data Systems (CACDS)

http://support.cacds.uh.edu

University of Houston Houston, TX

Overview

- Operating Systems and Linux
- Linux File System Hierarchy
- Basic Linux Commands
- Working with Files & Folders
- Text Editors
- I/O Redirection & Pipes
- Archiving
- File Permission Management
- Network File & Folder Transfer
- Open Lab and Homework

First Access Your Account

- Log into your accounts
 - Username or login = hpc_userX
 - Where x = sign in serial number 1 47
 - Password = cacds2014
 - Use your web browser
 - Firefox, Chromium or Google chrome
- Slides could be downloaded from URL below
 - http://129.7.249.171/workshops/intro2linux.pdf

The Role of an Operating System (OS)

oS=Software & data that manages computer hardware resources (e.g. processor, memory, storage)

Provides a <u>platform for</u> <u>running applications</u> on phones, tablets, desktops, servers, clusters.

HPC Cluster

What is Linux?

- Linux is an OS just like Windows or Mac OS X
 - Technically speaking, Linux is the kernel: the program in a system that allocates the computer/server hardware resources to the other programs. Linux is normally used in combination with the GNU operating system utilities: the whole system is basically GNU with Linux added, or GNU/Linux
- Under development since 1991, started by Linus Torvalds

Lightweight operating system

Why Create Linux

- Personal computers were becoming popular
- Microsoft's DOS was too limiting
- Commercial UNIX was expensive
- Needed compatibility with UNIX (IEEE POSIX)

Why Use Linux?

- General features of Linux:
 - Most distributions are <u>free</u>
 - Open-source (completely customizable)
 - Portable to nearly any hardware platform
 - cell phones, roku, steamOS devices, PS3, tablets, TVs, routers
 - Highly scalable to lots of cores, and or lots of memory
 - for instance: Blacklight supercomputer system at PSC
 - 4096 CPU cores
 - 32 TB main system memory
 - Highly efficient, therefore useful for computation
 - Robust and proven security model
 - Includes a complete development environment

Linux Distributions

- Today there over 100 different versions of the Linux OS
 - also called *distributions*

Scientific

• Each "distribution" offers a <u>unique combination of features</u> and applications to suit needs of different users.

Tracking Linux Distributions

Distrowatch

- Distrowatch.com
 provides news,
 comparisons,
 popularity ranking
 of various Linux
 distributions
 - Moto: put the fun back in computing...

Page Hit Ranking		
Data span:		
Last 6 months Refresh		
Rank	Distribution	H.P.D*
1	Mint	2828▲
2	<u>Ubuntu</u>	2098▼
3	<u>Fedora</u>	1686▼
4	openSUSE	1455▲
5	<u>Debian</u>	1316-
6	Arch	1214-
7	PCLinuxOS	1002▼
8	<u>CentOS</u>	963▲
9	Puppy	871▼
10	<u>Mandriva</u>	696▲
11	<u>Lubuntu</u>	650▲

*H.P.D = hits per day

Connecting to Linux Systems

- Most popular way: <u>Secure Shell (SSH) clients</u>
 - Assumption: SSH server application Installed and Running on server
- SSH client other functions
 - Provide security, encryption, performance.
- Popular clients
 - OpenSSH (Linux & Mac OSX)
 - Putty for windows

Transferring Data Between Linux and Windows

- USE winSCP
- http://winscp.net/eng/index.php

Command Line Interface (CLI)

- Most Linux desktop systems can be full-featured, userfriendly graphics
 - i.e. graphical user interfaces (GUIs) to access most utilities
- But in High Performance Computing (HPC) environment, the CLI is the most common way to access & use the OS.
 - Reason: performance is more important than eye candy
 - prefer to dedicate all CPU cycles to solving the computational problem
 - CLI is light weight
 - not CPU intensive
- Therefore, knowing how to complete tasks from the command line is very critical.

Getting Started

Use the terminal to download intro2linux.zip file to your home directory

Run the following commands

cd

cp /share/apps/tutorials/intro2linux.zip ~

unzip intro2linux.zip

cd intro2linux

Now, you can begin working with tutorial files on your terminal

Linux File System

- A file system is the way files are organized on the disk
 - the methods and data structures that an operating system uses to keep track of files on a disk or partition
 - Linux uses several types of file systems
 - Extended file systems: Ext2, Ext3, Ext4, fat, ntfs**
 - Read, write and execute operations possible on Ext2-4, fat
 - Read and Execute operations only for ntfs
- The operating system stores data (i.e, files and directories) in the file system in a <u>hierarchal</u> order

File System Hierarchy

File System Hierarchy

Full PATH to "Desktop" folder in Jerry's Account

/home/jerry/Desktop

Full PATH to fancy.jpg file /home/jerry/Pictures/fancy.jpg

Some Basic Linux Commands

pwd – prints your current working directory

Is – list the contents of the directory

cd — change directory (defaults to home directory)
 cp — copy file(s)
 example: cp file1.jpg file2.jpg

File System Hierarchy

Navigating around

Exercise 1: change directory to pixmaps folder

cd /usr/share/pixmaps pwd

Exercise2: copy "disks.png" file to /tmp directory

cp /usr/share/pixmaps/disks.png /tmp
cd /tmp
ls disks.png

Pop Quiz (1)

File System Hierarchy

write full PATH to flower.jpg

write a change directory command to go to the faces directory starting from root (/) write a copy command to copy flower.jpg to your home directory

write a copy command to copy flower.jpg to intro2linux folder

Basic Linux Commands

pwd – prints your current working directory

whoami – prints the name of the current user

who — prints a list of all users who are logged-in

Is – list the contents of the directory

cd – change directory (defaults to home directory)

clear -- clears printed content on terminal window/console

date – prints the current date and time

ps – prints snapshot of current shell processes

envlist all environment variables/settings

df – prints summary of disk usage

time -- print the execution time of an application

Linux Commands Accept Arguments

 Some commands accept "arguments" that change the behavior of the command, or tell the command exactly what to do.

Pop Quizz(2)

Give a command to identify logged in users

 How can you change your working directory to 4 levels/directories higher than your current working directory?

Pop Quizz(2)

Give a command to identify logged in users who

 How can you change your working directory to 4 levels/directories higher than your current working directory?

Working with Files

Here are some commands that are useful for working with files and folders:

```
create a copy of a file

cp file1 file5
                             move (or rename) a file
mv file3 new_name
                             – delete a file (rm -r [dir] for a folder)
   file4

    print the type of file

file file1
                             read a text file, one "page" at a time
more dictionary.txt

    print the first n lines of a file

head -n file1
                             - print the last n lines of a file
tail -n file1
                             print lines that match pattern "ing"
grep ing file1
cat file5

    print the contents of a file to the screen
```

Sorting Data

• We use the "sort" command to display the contents of a file or data stream in **order** by lines. Note it does not change the contents of the file

Examples

quickly check file content

head z-a.txt

sort z-a.txt

Reverse sort

sort -r a-z.txt

Many more options available

Pasting Files

"paste" command lets you merge two or more input streams side by side

```
cat serial.txt
output:
cat data.txt
               0.2
 output:
              -0.3
               1.2
paste
         serial.txt
                     data.txt
  output:
            1 0.2
            2 -0.3
```

3 1.5

Cutting files

- Use the "cut" command to print out selected sections from each line of an input stream or file
 - Assumes contents of file or input stream are "tab" delimited

cut -f 1,2 all.lanes.txt

Prints field(s) 1 and 2

cut -d '' -f 2- all.lanes2.txt

print all fields starting from field 2

Note the -d '' informs program that data is delimited with spaces rather than default tab.

Man Pages & History

 Nearly all commands available for use on a particular system have an accompanying "manual page":

```
man cp
man ls
```

- Note: To exit the manual page (man page) viewer
 - simply type the letter Q
 - —
 or "up" arrow to scroll through commands you've used.
- You can view the entire history of commands you have used by executing

history

Text Editors

- Nearly all Linux distributions come with a variety of text editors for writing and editing files or scripts.
- Some of the most common are nano, gedit, vi, vim, and emacs.
- We will be using nano for this session
 - Example:
 - nano hello.txt opens a file called hello.txt for editing
 - [write something]
 - CTRL+o or (^o) to save
 - note you might be prompted to rename the file, but you don't have to.
 Just hit enter key when prompted to save with same name
 - CTRL+x or (^x) to exit nano

I/O Redirection

- By default, command line programs print to "stdout" (standard out = the computer monitor).
- I/O redirection is a way of manipulating the input/output of Linux programs, allowing you to capture the output in a file, or send it to another program.
- Example: Get the first 9 lines from the dictionary:

```
head -n 9 dictionary.txt

head -n 9 dictionary.txt > temp.txt

more temp.txt

wc -l temp.txt

-counts the number of lines in a file
```

 The ">" character performs a "redirect," taking the output of the head command and putting it into the file temp.txt.

I/O Redirection: Append

 Use ">>" to append to a file without overwriting:

```
echo "Right now it's Friday" >> temp.txt cat temp.txt
```

I/O Redirection: Pipes

 Another useful technique is to redirect one program's output (stdout) into another program's input (stdin). This is done using a "pipe" character.

```
cat z-a.txt | sort

cat dictionary.txt

cat dictionary.txt | grep ing

cat dictionary.txt | grep ing | grep un
```

Pattern Matching with grep

grep ing dictionary.txt

searches the file for lines containing "ing" and prints them to stdout

grep -v ing dictionary.txt

searches the file for lines that do NOT contain pattern "ing" and prints them to stdout

grep -f items2searchFor.txt dictionary.txt

Reads a database of patterns from file "item2searchFor.txt" searches file "dictionary.txt" for lines that matches any of the patterns and prints them to stdout

grep -f items2searchFor.txt theraven.txt

Pop Quizz (3)

 Give an examples of using the "grep" command for the following

With only output redirected

Within a pipeline

Also Good to Know

```
top -will list processes/tasks running on your system ...
similar to task manager on windows
    q or CTRL-c can help you get "unstuck"
    -translate or delete characters
    echo linux | tr 'a-z' 'A-Z'
    echo 'world}}}' | tr '}' '!'
TAB - used for command completion
Find a file:
    find ./ -name "name.of.my.file.txt"
    locate name.of.my.file.txt
To close your shell.
exit
```

File Permissions by User Types

cd intro.linux

ls -l

- -rwxr-xr-x 1 jebalunode public 622783 2010-12-03 09:15 dictionary.txt
- -rwxr-xr-x 1 jebalunode public 8262 2010-12-03 09:15 icb.txt
- -rwxr-xr-x 1 jebalunode public 891777 2010-12-03 09:15 personnel.txt
- -rwxr-xr-x 1 jebalunode public 6599 2010-12-03 09:15 theraven.txt

Three user types associated with Linux files
 Owner(u) Group(g) Other/ world (o)

rwx r-x jebalunode public theraven.txt

File & Directory Permissions

- Control access to files & directories by setting permissions
- Setting permissions using read /write or executable :
 - chmod ug+r file0 --makes a file readable by owner (u) and group (g)
 - chmod ug+w file0 –writes to the file are permitted
 - chmod ug+x file0 --makes a file executable
 - chmod ug+rwx file0 --makes a file executable, writable and readable
- chmod ugo+r file0 --makes a file readable by owner (u) and group (g) and world(o)
- For directories you apply the recursive "R"
 - chmod -R u+rx directory --makes a directory readable
 intro.linux
 -I
 - -rwxr-xr-x 1 jebalunode public 622783 2010-12-03 09:15 dictionary.txt
 - -rwxr-xr-x 1 jebalunode public 8262 2010-12-03 09:15 icb.txt
 - -rwxr-xr-x 1 jebalunode public 891777 2010-12-03 09:15 personnel.txt
 - -rwxr-xr-x 1 jebalunode public 6599 2010-12-03 09:15 theraven.txt

File Permissions cont. Using Octal Notation

```
0
        no permission
1
        --x execute
        -w- write
3
        -wx write and execute
4
        r-- read
5
        r-x read and execute
6
        rw- read and write
        rwx read, write, execute
"-rwxr-xr-x" = 755
"-rw-rw-r--" = 664
"-r-x-----" = 500
```

you can change permission with octal notation

```
chmod 755 dictionary.txt chmod -R 755 ../intro2linux/
```

Pop Quizz (4)

 write a command to make the file called dictionary.txt to be only readable by you

Accessing Remote Linux Servers

- use ssh to login to remote system
 - syntax:

ssh username@server_hostname_or_ip_address

- ssh jebalunode@compute-0-0
- ssh compute-0-0
- ssh jebalunode@10.1.1.1

Archiving your Work Pack and Unpack

- creating an archive
 - option (-cvzf)== create a compressed file archive in verbose mode

```
tar -cvzf my_compressed_archive.tar.gz my_directory/"tars" (like "zipping") a directory into a single compressed file
```

- unpacking/extracting an archive
 - option (-xvzf) ==extract a compressed file archive in verbose mode

```
tar -xvzf my_compressed_archive.tar.gz
```

"tar -xvzf" (like "unzipping") a compressed file, which may contain a folder

Data Transfer in Linux systems Sending Data to a Remote Location

- use scp for file and folder transfers
 syntax:
 scp filename username@server:path_to_destination
 - scp dictionary.txt jerry@cusco.hpcc.uh.edu:/home/jerry/
- useful for directory or folder transfers. note -r option
 scp -r my_directory username@server:path_to_destination
- scp => Secure Copy. Used to copy a file or folder or directory to another computer where you have a user account.

More on SCP Copying Data from a Remote Location

syntax:
 scp username@server:path to remote file path to destination file

Example
 scp jerry@cusco.hpcc.uh.edu:/home/jerry/dictionary.txt mycopy.txt

For directories include "-r" or recursive option

scp -r username@server:path_to_remote_dir path_to_destination_dir

Open Lab

- Take a few minutes to try some of the commands you've learned.
 Perhaps try combining commands to give you very specific results.
- If you have not done so already, use your web browser to copy intro2linux.zip where you can begin working with it: then

```
cd
mv intro2linux intro2linux.old ###Cleanup
cp /share/apps/tutorials/intro2linux.zip ~
## to get tutorial package
unzip intro2linux.zip
cd intro2linux
```

execute the commands you learnt

Open Lab

Exercise

- Give a command to
 - Redirect standard output from a "sort" command to a file named "phone_list", using the file named "numbers" as input.
 - Translate all occurrences of the characters [and { to the character (, and all occurrences of the characters] and } to the character), in the file add.c . (Hint: Refer to tr)
 - Create a file named book.txt that contains the contents of two other files: part1.txt and part2.txt

Recommended Literature

- The Linux Command Line: A Complete Introduction Paperback by Shotts
- Practical Guide to Linux Commands, Editors, and Shell Programming by Sobell
- Learning the bash Shell: Unix Shell Programming (In a Nutshell (O'Reilly))
- Free Ebooks
 - Advanced Bash-Scripting Guide
 - http://tldp.org/LDP/abs/html/
 - Bash Guide for Beginners
 - http://tldp.org/LDP/Bash-Beginners-Guide/html/

Acknowledgements

- Center for Advanced Computation and Data Services
 - Barbara Chapman
 - Tony Curtis