Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2022-23

Πράξεις με δυαδικούς αριθμούς

(αριθμητικές πράξεις)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

• Δυαδικοί Αριθμοί

- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις
 - Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits (bytes ή πολλαπλάσιά τους)

Το Byte ως δυαδικός αριθμός

• Δυαδικοί αριθμοί

128	64	32	16	8	4	2	1
2^7	2^6	2^5	2^4	2^3	2^2	21	2^{0}
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

το περισσότερο σημαντικό bit το λιγότερο σημαντικό bit

Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2

Μετατροπή από το δυαδικό στο δεκαδικό σύστημα

Μετατροπή δεκαδικού σε δυαδικό

Δεκαεξαδικό Σύστημα

Δυαδικοί αριθμοί

- 16 ψηφία
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Αντιστοιχία με τους δεκαδικούς 0 έως 15
- Σε δυνάμεις του 16
 - 16ⁿ ...16⁴ 16³ 16² 16¹ 16⁰
 - $\Pi.\chi$. $16F(hex) = 1x16^2 + 6x16^1 + 15x16^0$
 - = 256 + 96 + 15 = 367 (δεκαδικό)
- Χρήσιμο μόνο ως «συντομογραφία» δυαδικών αριθμών

Δεκαεξαδικό Σύστημα

• Δυαδικοί αριθμοί

• Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό ψηφίο

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	C
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Παράδειγμα στο δεκαεξαδικό σύστημα

 Δυαδικοί αριθμοί

Παράδειγμα: 1100100110010100
 1100 1001 1001 0100

C 9 9 4 = C994(hex)

- Παράδειγμα: 10000101011110
0010 0001 0101 1110

2 1 5 E = 215E (hex)

- Συμπλήρωση με 0 στα αριστερά
- Δεν αλλάζει τον αριθμό, όπως ακριβώς και στο δεκαδικό σύστημα

Δεκαεξαδικό Σύστημα

• Δυαδικοί αριθμοί

• Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό ψηφίο

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	C
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Φυσικοί αριθμοί (χωρίς πρόσημο)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί

Με κίτρινο φαίνεται ο ελάχιστος αριθμός bits που απαιτείται

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
••••	•••

- Με *n* bits περιγράφονται
 - Οι φυσικοί αριθμοί από θ έως και 2ⁿ-1

Χρήση των φυσικών αριθμών

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Για αναπαράσταση
 - Διαφορετικών «πραγμάτων»
 - Συνήθως χωρίς αριθμητική έννοια
- Απαρίθμηση
 - Παρέχοντας μοναδικούς αναγνωριστικούς αριθμούς
 - Παραδείγματα
 - Οι ξεχωριστές διευθύνσεις μνήμης
 - Οι χαρακτήρες σε ένα αλφάβητο
- Ξανά: με *n* bits απαριθμούνται έως και 2ⁿ διαφορετικά «πράγματα»

Ακέραιοι αριθμοί (με πρόσημο - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Πώς θα αναπαρασταθούν οι αρνητικοί;
 - Για να γίνονται εύκολα οι πράξεις
- Όχι καλή ιδέα:
 - Ξεχωριστό bit πρόσημου

Αριθμός (N bits)

± (0/1)

Μέγεθος (N-1 bits)

Πρόσημο (1 bit)

- Διάστημα τιμών για αριθμούς με *n* bits

$$-(2^{n-1}-1) \dot{\epsilon}\omega\varsigma + (2^{n-1}-1) \quad (\gamma\iota\alpha n=8, -127 \dots +127)$$

- ένα χρήσιμο bit λιγότερο
- δυσκολία στις πράξεις
- 2 αναπαραστάσεις του 0;

Ακέραιοι αριθμοί (με πρόσημο - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Επίσης όχι καλή ιδέα:
 - Συμπλήρωμα ως προς 1
 - Αντιστροφή όλων των bits του αριθμού
 - Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Διάστημα τιμών για αριθμούς με n bits

$$-(2^{n-1}-1) \cos \zeta + (2^{n-1}-1) (\gamma \iota \alpha \tau i;)$$

Τα ίδια προβλήματα με την χρήση ξεχωριστού bit πρόσημου

Ακέραιοι αριθμοί (με πρόσημο - signed)

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Καλή ιδέα!
 - Οι αρνητικοί αριθμοί είναι οι «συμπληρωμένοι ως προς 2» θετικοί
- Συμπλήρωμα ως προς 2
 - Τι σημαίνει «συμπλήρωμα ως προς 2»;
 - Πώς υπολογίζεται;

Συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

- Τσο με το «συμπλήρωμα ως προς 1» + 1
- Εμπειρικός κανόνας:
 - Αντιστροφή όλων των bits εκτός από τα δεξιότερα συνεχόμενα 0 και το πρώτο 1 αριστερά από αυτά
- Συμπλήρωμα ως προς 2: παραδείγματα
 001011100 ⇒ 110100100
 011111111 ⇒ 10000001
- Προσοχή στο 0000...00 και στο 1000...00

Ακέραιοι σε συμπλήρωμα ως προς 2

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι

• Διάστημα τιμών για αριθμούς με *n* bits

$$-(2^{n-1}) \acute{\epsilon}\omega\varsigma + (2^{n-1}-1)$$
 ($\gamma\iota\alpha n=8, -128 ... +127$)

- Μόνο το +(2ⁿ⁻¹) δεν μπορεί να αναπαρασταθεί
- Ευκολία στις πράξεις
 - αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2
 - Μία και μοναδική αναπαράσταση του 0
- Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Δεν είναι όμως bit προσήμου!

Αριθμητικές πράξεις

- Οι βασικές πράξεις
 - Πρόσθεση
 - Αφαίρεση
- Άλλες πράξεις
 - Πολλαπλασιασμός
 - Διαίρεση
 - Επίσης:
 - Τετραγωνική ρίζα, τριγωνομετρικές συναρτήσεις, εκθετικά, λογάριθμοι κλπ..
 - Υλοποίηση σε υλικό με διάφορες τεχνικές
 - Π.χ με πολυώνυμα

Προσθέτοντας 2 bits

bits	άθροισμα	κρατούμενο
0+0	0	0
0 + 1	1	0
1 + 0	1	0
1+1	0	1

Ημιαθροιστής (half-adder)

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Προσθέτοντας δυαδικούς αριθμούς (μη προσημασμένους)

Κρατούμενο		,1	,1	1				
Α' Αριθμός (119)	0	1	1	1	0	1	1	1
Β' Αριθμός (88)	0	1	0	1	1	0	0	0
Άθροισμα (207)	1	1	0	0	1	1	1	1

- 1. Αριθμοί με ίδιο μήκος (ίσος αριθμός bits)
- 2. Αρχίζοντας από το λιγότερο σημαντικό bit (το δεξιότερο)
- 3. Προσθέτουμε ζεύγη bits και μεταφέρουμε το κρατούμενο (αν υπάρχει) προς τα αριστερά
 - Το προσθέτουμε στο επόμενο ζεύγος bits

Πλήρης αθροιστής (full-adder)

Πρόσθεση αριθμών με πλήρεις αθροιστές

- Πολλαπλά τμήματα πλήρη αθροιστή
 - Όμως: πόσο γρήγορα διαδίδεται το κρατούμενο; (ripple carry)
 - Τεχνικές πρόβλεψης κρατουμένου (carry lookahead)

Προσθέτοντας δυαδικούς αριθμούς

(μη προσημασμένους)

- Υπερχείλιση
 - Στον υπολογιστή το πλήθος των bits ανά αριθμό είναι προκαθορισμένο
 - Το αποτέλεσμα της πρόσθεσης θα πρέπει να χωρά στα διαθέσιμα bits ενός καταχωρητή
 - Μη προσημασμένοι αριθμοί:
 - αριθμός με N bits \Rightarrow πεδίο τιμών [0 ... 2^N 1]
 - π.χ. για αριθμούς με 8 bits, από 0 έως 255

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Προσημασμένοι ακέραιοι

- Συμπλήρωμα ως προς 2
 - Το περισσότερο σημαντικό bit υποδηλώνει το πρόσημο
 - 0=θετικός, 1=αρνητικός
- αριθμός με N bits ⇒ πεδίο τιμών [-2^{N-1} ...0... +2^{N-1} 1]
 - π .χ. για αριθμούς με 8 bits, από -128 έως +127

• Πρόσθεση

- Όπως σε μη προσημασμένους
- Τελικό κρατούμενο αγνοείται
 - Πώς γίνεται τώρα ο έλεγχος υπερχείλισης;
- Αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2 του αφαιρετέου
 - A B = A + (-B)
 - 🔹 χωρίς πρόσθετα κυκλώματα για την αφαίρεση!

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο				,1				
Α' Αριθμός (+17)	0	0	0	1	0	0	0	1
Β' Αριθμός (+22)	0	0	0	1	0	1	1	0
Άθροισμα (+39)	0	0	1	0	0	1	1	1

Προσθέτοντας δυαδικούς αριθμούς (προσημασμένους)

Κρατούμενο	× ₀ ,	,1	1	,1	1			
Α' Αριθμός (+24)	0	0	0	1	1	0	0	0
Β' Αριθμός (-17)	1	1	1	0	1	1	1	1
Άθροισμα (+7)	0	0	0	0	0	1	1	1

• το κρατούμενο αγνοείται

Υπερχείλιση σε προσημασμένους αριθμούς

Υπερχείλιση σε προσημασμένους αριθμούς

Κρατούμενο		/ 1	,1	,1	,1	_1	, 1
Α' Αριθμός (+127)	0 1	1	1	1	1	1	1
Β' Αριθμός (+3)	0 0	0	0	0	0	1	1
Άθροισμα (-126;)	1 0	0	0	0	0	1	0

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο
 - στην αντίθετη περίπτωση: υπερχείλιση

Υπερχείλιση σε προσημασμένους αριθμούς

Κρατούμενο	×1				/1	
Α' Αριθμός (-126)	1 0 0	0	0	0	1	0
Β' Αριθμός (-5)	1 1 1	1	1	0	1	0
Άθροισμα (+124;)	0 1 1	1	1	1	0	0

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο
 - στην αντίθετη περίπτωση: υπερχείλιση

Κλασματικοί αριθμοί

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί

• Θεωρητικά

- Θα μπορούσαμε να επεξεργαζόμαστε ξεχωριστά το ακέραιο και το κλασματικό μέρος
- Αλλά
 - Αδυναμία αναπαράστασης πολύ μεγάλων και πολύ μικρών αριθμών
- Η λύση
 - Αριθμοί κινητής υποδιαστολής (floating point)
 - Εύκολη αναπαράσταση τόσο του1.000.000.000.000 όσο και του0,0000000000000001

Αριθμοί κινητής υποδιαστολής

- Δυαδικοί αριθμοί
- Φυσικοί αριθμοί
- Ακέραιοι
- Κλασματικοί

Το πρότυπο που περιγράφεται (ΙΕΕΕ 754) δεν είναι το μόνο. Στις εφαρμογές ΑΙ χρησιμοποιούνται και μορφές με λιγότερα bits

- 3 μέρη
 - Πρόσημο (Π) (1 bit)
 - $| \bullet | 0 = + 1 = -$
 - Εκθέτης (Ε) (8 ή 11 bits)
 - Η βάση είναι το 2 (εννοείται)
 - Θετικοί και αρνητικοί εκθέτες με πλεόνασμα 127 ή 1023
 (π.χ. αντί -55, Ε= -55+127 = 72!)
 - **Σημαινόμενο τμήμα** (Σ) (23 ή 52 bits)
 - Κανονικοποίηση: μορφή 1,xxxxxxxxxxxxx...
 - Το '1,' εννοείται και δεν αποθηκεύεται
- Τελικός αριθμός: -1^Π x 1.Σ x 2^{E-127} (ή 2^{E-1023)}
 - Ειδικοί αριθμοί: $0, \infty$, NaN (Not a Number)

Πράξεις με αριθμούς κινητής υποδιαστολής

- Σύνθετη διαδικασία
- Η γενική μορφή της πρόσθεσης:
 - 1. Σύγκριση προσήμων
 - αν είναι ίδια ⇒ πρόσθεση
 - αλλιώς ⇒ αφαίρεση
 - 2. Εξίσωση εκθετών
 - μετακίνηση υποδιαστολής
 - 3. Πρόσθεση ή αφαίρεση σημαινόμενων τμημάτων
 - ακέραιο και κλασματικό μέρος
 - 4. Κανονικοποίηση αποτελέσματος
 - 5. Έλεγχος για υπερχείλιση

Πράξεις με αριθμούς κινητής υποδιαστολής

```
132
                        Α' αριθμός:
              2^{132-127} \times 1,1011
                                  (+2^5 \times 1,1011)
                    130
Β' αριθμός:
                        2^{130-127} \times 1,011 (+2^3 \times 1,011)
                             1,10110
                 +25
                             0,01011
+ B
                 +25
                       X
                            10,00001
                 +25
 X
                             1,000001
κανονικοποίηση
                 +26
                       X
```