Kombinatorika 2 - zapiski s predavanj prof. Konvalinke

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

1	Osn	Osnove 1		
	1.1	Kako štejemo?	1	
	1.2	Osnovne Kombinatorične strukture	3	
	1.3	Osnovna načela preštevanja	6	
	1.4	Binomski koeficienti	8	
	1.5	Dvanajstera pot	12	
	1.6	Rekurzije	12	
	1.7	Načelo vklučitev in izključitev (NVI)	13	
	1.8	Polinomske enkosti	19	
2	Forr	nalne potenčne vrste	26	
	2.1	Uvod	26	
	2.2	Formalne potenčne vrste	27	
	2.3	Kompozitum	32	
	2.4	Reševanje linearnih rekurzivnih enačb ${\bf s}$ konstantnimi koeficienti	36	
	2.5	Nadaljevanje uporabe običajnih rodovnih funkcij	40	
	2.6	Uporaba eksponentnih rodovnih funkcij	46	
	2.7	Algebraične rodovne funkcije	50	
	2.8	Eulerjeva in eulerska števila	54	
	2.9	Izračun povprečij in variance	56	
	2.10	Lagrangeeva inverzija	57	
	9 11	Asimptotika koeficientov	60	

3	Inci	denčne algebre in Möbiusova inverzija	68
	3.1	Motivacija	68
	3.2	Delno urejene množice	69
	3.3	Incidenčna algebra	71
	3.4	Möbius funkcija in Möbiusova inverzija	74
	3.5	Mreže	77
	3.6	Reducirane incidenčne algebre in Dirichletove rodovne funkcije	81
4	Upo	odobitve grup in Polyeva teorija	88
	4.1	Permutacijske upodobitve	88
	4.2	Polyeva teorija	90

Seznam uporabljenih kratic

kratica	izraz		
NSTE	TE naslednje trditve so ekvivalentne		
\mathbf{orf}	običajna rodovna funkcija		
\mathbf{erf}	eksponentna rodovna funkcija		
fp	formalni polinom		
fpv	formalna potenčna vrsta		
dum	delno urejena množica		

Poglavje 1

Osnove

1.1 Kako štejemo?

Skončna množica, |S|=?

Pogosto $S_n, n \in \mathbb{N}$.

Preštevalno zaporedje $|S_0|, |S_1|, |S_2|...$

Kaj je odgovor?

(1) Formula.

$$[n] = \{1, 2 \dots n\}.$$

$$S_n = 2^{[n]} = P([n]).$$

$$|S_n| = 2^n.$$

 $S_n = \{\text{permutacije n elementov}\}.$

$$|S_n|=n!=1\cdot 2\cdots n$$
 "
n fakulteta" "n factorial".

$$S_n = \{\text{kompozicije n s členi 1 ali 2}\}, \text{ npr. } 5 = 1+2+1.$$

$$|S_5|=8.$$

 $1, 1, 2, 3, 5, 8 \dots$

 $\left|S_{n}\right|=F_{n}$ - Fibonaccijevo zaporedje.

(2) Asimptotska formula.

$$|S_n| \sim a_n$$
 (to pomeni $\lim_{n \to \infty} \frac{a_n}{|S_n|} = 1$).

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 - Stirlingova formula. $F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1}$.

(3) Z rekurzijo.

$$S_n = 2^{[n]}.$$

$$a_n = |S_n|, a_n = 2a_{n-1}; n \ge 1, a_0 = 1.$$

 $S_n = \{\text{kompozicije s členi 1 ali 2}\}.$

$$S_n = F_n, F_n = F_{n-1} + F_{n-2}; \ n \ge 2, \ F_0 = F_1 = 1.$$

 F_{n-1} - kompozicije, ki se končajo z 1, F_{n-2} - končajo z 2.

(4) Z rodovno funkcijo (generating function).

 $(a_n)_{n\in\mathbb{N}}$ zaporedje.

$$a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n = \sum_n a_n x^n$$
 običajna (ordinary) rodovna funkcija - ORF.

$$a_n = 2^n$$
, $\sum_{n=0}^{\infty} 2^n x^n = \frac{1}{1-2x}$.

$$\sum_n F_n x^n = \frac{1}{1 - x - x^2}.$$

$$\sum_{n} n! x^n //.$$

 $\sum_{n} \frac{a_n}{n!} x^n$ eksponentna rodovna funkcija.

$$\sum_{n} 2^n \frac{x^n}{n!} = e^{2x}.$$

$$\sum_{n} \frac{n!}{n!} x^n = \frac{1}{1-x}.$$

- (4) je najboljši način, da poznamo zaporedje.
 - Rodovna funkcija je velikokrat "lepa", tudi če ni lepe formule za zaporedje.

 $i_n \dots \#$ involucij z n elementi $(\pi^2 = id)$.

ni enostavnejše formule za i_n .

$$\sum_{n=0}^{\infty} \frac{i_n}{n!} x^n = e^{x + \frac{x^2}{2}}$$

 Do rodovne funkcije lahko pogosto pridemo neposredno s kombinatoričnim premislekom.

Involucija = permutacija s cikli dolžine 1 ali 2.

$$\sum F_n x^n = \frac{1}{1-x-x^2}; \ x$$
- cikli dolžine 1, x^2 - cikli dolžine 2.

– V rodovni funkciji so "skrite" (1)-(3).

1.2 Osnovne Kombinatorične strukture

```
\mathbb{N} = \{0, 1, 2 \dots \}.
[n] = \{1, 2 \dots n\}.
2^A = P(A) = \{B \subseteq A\}.
\binom{A}{k}=\{B\subseteq A:|B|=k\} "A nad k" (angl. "A choose k"). \binom{[4]}{2}=\{\{1,2\},\{1,3\}\dots\{3,4\}\}.
Y^X = \{f : X \to Y\}.
Statistika na množici S je preslikava S \to \mathbb{N}.
S = 2^{A}.
Moč je statistika.
S končna množica, f statistika na S.
Pogosto gledamo polinom \sum_{s \in S} x^{f(s)} (enumeration).
|.| na 2^{[3]}: 1 + 3x + 3x^2 + x^3 = (1+x)^3.
S_n = \{\text{permutacije } [n]\} = \{f : [n] \to [n] : f \text{ bijektivna}\}.
\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} - dvovrstična notacija.
2 1 3 - enovrstična notacija.
(1\ 2)(3) - produkt disjunktnih ciklov.
i, \pi(i), \pi^2(i) \dots
Gotovo \exists j_1 < j_2 : \pi^{j_1}(i) = \pi^{j_2}(i) \implies i = \pi^j(i); j > 0.
(i \pi(i) \dots \pi^{j-1}(i)) cikel.
38241765 = (1\ 3\ 2\ 8\ 5)(4)(6\ 7) = (4)(2\ 8\ 5\ 1\ 3)(7\ 6).
Množenje permutacij: kompozicije.
Nekomutativno za n > 2.
Disjunktni cikli komutirajo.
Zapis: enoličen do vrstnega reda ciklov in ciklične ureditve ciklov.
Cikel dolžine 1 = \text{negibna točka}.
Cikel dolžine 2 = \text{transpozicija}.
```

 $(S_n \cdot)$ simetrična grupa.

 π^{-1} inverz (kot preslikava).

 $e = id = 1 \ 2 \dots n.$

 $38241765^{-1} = 53148762.$

 $3 \ 1 \ 4 \ 2 \cdot 4 \ 2 \ 3 \ 1 = 2 \ 1 \ 4 \ 3$ - množimo z desne.

Statistika: # ciklov = $c(\pi)$ (štejemo tudi cikle dolžine 1).

$$n = 3: x^3 + 3x^2 + 2x = x(x+1)(x+2).$$

$$\sum_{\pi \in S_n} x^{c(\pi)} = \sum_k |\{\pi \in S_n : c(\pi) = n\}| x^k.$$

 $|\{\pi \in S_n : c(\pi) = n\}| =: c(n,k)$ - Stirlingovo število 1. vrste.

$$\sum_{B\subseteq[n]} x^{|B|} = \sum_{k} |\binom{[n]}{k}| x^{k}.$$

 $|\binom{[n]}{k}| =: \binom{n}{k}$ - binomski koeficient.

Inverzija $\pi \in S_n$ je (i,j), da je za $i < j \ \pi_i > \pi_j$.

 $inv(\pi) = \# \text{ inverzij } \pi.$

$$inv(4\ 1\ 6\ 2\ 5\ 3) = 7.$$

$$0 \le inv(\pi) \le \binom{n}{2}.$$

Signatura permutacije: $(-1)^{inv(\pi)}$.

 $sg\pi=1$ - soda permutacija: produkt sodo mnogo transpozicij.

 $sg\pi=-1$ - liha permutacija: produkt liho mnogo transpozicij.

$$det A = \sum_{\pi \in S_n} (-1)^{inv(\pi)} a_{1,\pi(1)} \cdots a_{n,\pi(n)}.$$

Izraz brez $(-1)^{inv(\pi)}$: permanenta.

n = 3:

$$1 + 2x + 2x^{2} + x^{3} = 1 + x^{2} + x^{3} + x + x^{2} + x^{3} = (1+x)(1+x^{2}).$$

$$\sum_{\pi i n S_n} x^{i n v(\pi)} = 1 \cdot (1+x)(1+x^2) \cdots (1+x^{n-1})$$
 - kasneje.

permutacij v S_n s k
 inverzijami: ni standardne oznake.

spust/padec (descent) $i: \pi_i > \pi_{i+1}$.

$$des(4\ 1\ 6\ 2\ 5\ 3) = 3.$$

$$0 \le des(\pi) \le n - 1.$$

permutacij v S_n s k-1spusti = A(n,k) - Eulersko število (k-1iz zgodovinskih razlogov).

$$\sum_k A(n,k) x^k = \sum_{\pi \in S_n} x^{1+des(\pi)} = A_n(x)$$
 - eulerski polinom.

$$n = 3$$
:

$$x + 4x^2 + x^3.$$

razdelitev/razbitje (angl. set partition) A je $\{B_1, B_2 \dots B_n\}$, davelja:

$$-B_i \neq \emptyset \ i=1\ldots k,$$

$$- B_i \cap B_j = \emptyset \ 1 \le i < j \le k,$$

$$- \cup_{i=1}^k B_i = A.$$

 B_i : bloki razdelitve,

blokov,

#razdelitev[n]s kbloki = $S(n,\!k)$ - Stirlingovo število druge vrste.

$$A = [3] \{\{1\}, \{2\}, \{3\}\}, \{\{1,2\}, \{3\}\}, \dots \{\{1,2,3\}\}.$$

 $x + 3x^2 + x^3$.

$$S(4,2) = 4 + 3 = 7.$$

Kompozicija # n je $\lambda = (\lambda_1 \dots \lambda_l), \lambda_i > 0$ člen kompozicije, $\lambda_i \in \mathbb{N}$,

$$\sum_{i=1}^{l} \lambda_i = n.$$

 $l(\lambda)$ # členov - dolžina.

 $\lambda \models n - \lambda$ je kompozicija n.

Razčlenitev # n je $\lambda = (\lambda_1 \dots \lambda_l), \lambda_i > 0, \lambda_i \in \mathbb{N}.$

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_l, \sum_{i=1}^l = n$$

(angl. integer partition).

p(n) - # razčlenitev n.

 $p_k(n)$ - # razčlenitev $n \le k$ členi.

n = 4:

4, 31, 22, 13, 211, 121, 112, 1111 - 8 kompozicij.

4, 31, 22, 221, 1111 - 5 razčlenitev.

$$p(4) = 5, p_2(4) = 2.$$

 $B(n) = \sum_{k} S(n,k)$ - # razčlenitev [n], Bellovo število.

B(3) = 5.

L(n,k) - razdelitev [n] na k linearno urejenih blokov.

$$L(4,2) = 4 \cdot 6 + 3 \cdot 2 \cdot 2 = 36$$
 - Lahovo število.

 $E_n = \#$ alternirajočih permutacij v S_n - Eulerjevo število (Euler number).

$$\pi_1 > \pi_2 < \pi_3 > \pi_4 \dots$$

Primerjaj: eulerska števila (eulerian number).

1, 1, 1, 2, 5.

Poti:

npr. poti od (0,0) do (n,m) s korakom (1,0) (vzhod) in (0,1) (sever);

npr. poti od (0,0) do (2n,0) s korakoma (1,1) in (1,-1);

npr. poti od (0,0) do (2n,0) s korakoma (1,1) in (1,-1), nikoli pod x osjo - Dyckove poti;

 $c_n=\#$ Dyckovih poti dolžine n (konec v(2n,0)) - Catalanova števila. $1,1,2,5,14,42\dots$

Drevesa (povezani aciklični grafi).

označenih dreves na n vozliščih.

Cayleyev izrek: n^{n-2} .

Ravninska drevesa.

(Vrstni red pomemben).

Dvojiška drevesa: vsako vozlišče ima 2 ali 0 naslednikov.

1.3 Osnovna načela preštevanja

Načelo vsote: $A \cap B = \emptyset \implies |A \cap B| = |A| + |B|$.

 $i \neq j : A_i \cap A_j = \emptyset \implies |\bigcup_{i=1}^n A_i| = \sum_{i=1}^n |A_i|.$

Načelo produkta: $|A \times B| = |A| \cdot |B|, |\prod_{i=1}^n A_i| = \prod_{i=1}^n |A_i|.$

Kombinatorično:

2 možnosti, izberemo eno ali drugo (ne pa obe) \implies # načinov je vsota # načinov,

dvakrat izbiramo, izbiri sta neodvisni \implies # načinov je produkt # načinov.

Trditev 1.3.1. $|2^A| = 2^{|A|}$.

Dokaz 1.3.2. Za vsak element se odločimo, ali ga damo v podmnožico ali ne. 2 izbiri, izbiramo |A|-krat, izbire so neodvisne $2 \cdot 2 \cdot \cdot \cdot 2 = 2^{|A|}$.

$$\phi: 2^A \to \{0,1\}^{|A|}, A = \{a_1, a_2 \dots a_n\}.$$

$$\phi(B) = (\epsilon_1 \dots \epsilon_n), \epsilon_i = \begin{cases} 1 \ a_i \in B \\ 0 \ \text{sicer} \end{cases}$$

$$\begin{split} \psi: \{0,1\}^{|A|} &\to 2^A. \\ \psi(\epsilon_1 \dots \epsilon_n) &= \{a_i : \epsilon_i = 1\}. \\ \psi \circ \phi, \phi \circ \psi \text{ identiteti.} \\ |\{0,1\}|^{|A|} &= 2^{|A|}. \end{split}$$

Trditev 1.3.3.

- 1. $|K^N| = |K|^{|N|}$.
- 2. $|\{f \in K^n \text{ injektivna}\}| = |K|(|K|-1)\dots(|K|-|N|+1).$
- 3. $|S_n| = n(n-1) \dots 1 = n!$

oznake:

$$n^{\underline{k}}=n(n-1)\dots(n-k+1)$$
: n na k padajoče. $n^{\overline{k}}=n(n+1)\dots(n+k-1)$: n na k naraščajoče.

Opomba. Pri 2. in 3. smo uporabili varianto načela produkta: izbire sicer niso neodvisne, je pa neodvisno število izbir.

Dirichletov princip (pigeon-hole principle):

$$\phi: X \to Y$$
 injektivna $\Longrightarrow |X| \le |Y|$.

Če damo n kroglic v k škatel, n > k, sta v vsaj eni škatli vsaj 2 kroglici.

Primer.

- (1) n ljudi, med njimi sta dva, ki poznata enako mnogo ljudi. X = ljudje, f = # znanstev. n kroglic, n škatel, ampak škatli 0 in n-1 ne moreta biti obe neprazni.
- (2) $X \subseteq [2n], |X| = n + 1.$ Obstajata $x, y \in X, x \neq y, x | y.$ $x = 2^k \cdot l, k \geq 0, k \text{ lih.}$ $Y = \{i \in [2n] \text{ liho}\}.$ $x \mapsto l.$

Binomski koeficienti 1.4

 $\binom{n}{k} = \left| \binom{[n]}{k} \right| =$ število k-elementnih podmnoživ v [n] =število izbir k elementov izmed n elementov.

mentov is med
$$n$$
 elementov.
$$\binom{4}{2} = 6, \binom{5}{0} = 1, \binom{8}{-2} = 0, \binom{8}{9} = 0.$$

$$\binom{n}{0} = 1, \binom{n}{n} = 1, \binom{n}{1} = n.$$

$$\binom{n}{n-k} = \binom{n}{k}.$$

$$\phi : \binom{[n]}{n-k} \to \binom{[n]}{k}.$$

$$\phi(A) = A^c.$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

$$\binom{n-1}{k-1}: \text{ izberemo } n.$$

$$\binom{n-1}{k}: \text{ ne izberemo } n\text{-ja.}$$

Pascalov trikotnik: n = 0

$$n = 1$$
 1
 $n = 2$ 1 1
 $n = 3$ 1 2 1
 $n = 4$ 1 3 3 1
 $n = 5$ 1 4 6 4 1
1 5 10 10 5 1

Trditev 1.4.1.
$$\binom{n}{k} = \frac{n!}{k!} = \begin{cases} \frac{n!}{n!(n-k)!} & 0 \le k \le 0 \\ 0 & k > n \end{cases}$$

Dokaz 1.4.2. Izberemo 1 element na n načinov, 2 na $n-1\cdots \implies n^{\underline{k}}$ načinov, vsak izbor smo šteli k!-krat.

Ali: preštejemo urejene izbire k različnih elementov iz [n]; $n^{\underline{k}} = \binom{n}{k} \cdot k!.$

 $\binom{n}{k}$: najprej izberemo k elementov.

k: nato jih uredimo.

Izrek 1.4.3 (Binomski izrek). $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$; $a,b \in K$ komutativni kolobar, $n \in \mathbb{N}$.

Dokaz 1.4.4.

D1. Indukcija po n:

$$n = 0$$
: $1 = 1$
 $n - 1 \to n$:

$$(a+b)^{n} = (a+b)^{n-1}(a+b) =$$

$$\stackrel{\text{IP}}{=} \sum_{k=0}^{n-1} \binom{n-1}{k} a^{k} b^{n-1-k} (a+b) =$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} a^{k+1} b^{n-1-k} + \sum_{k=0}^{n-1} \binom{n-1}{k} a^{k} b^{n-k} =$$

$$= \sum_{k=1}^{n-1} \binom{n-1}{k-1} a^{k} b^{n-k} + \sum_{k=1}^{n-1} \binom{n-1}{k} a^{k} b^{n-k} =$$

$$= \sum_{k=0}^{n} \binom{n-1}{k-1} a^{k} b^{n-k} + \sum_{k=1}^{n} \binom{n-1}{k} a^{k} b^{n-k} =$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}.$$

D2.
$$(a+b)^n = \sum_k \binom{n}{k} a^k b^{n-k}$$
 DN.

D3.
$$(a+b)\dots(a+b) = \sum_{\text{izbira } a \text{ ali } b} \text{produkt izbranih} = \sum_{k} \binom{n}{k} a^k b^{n-k}$$
.

a izberemo k-krat.

Izberemo k oklepajev, pri katerih izberemo a.

$$\binom{10}{3} = \frac{10.9 \cdot 8}{3 \cdot 2} = 120.$$

$$\binom{12}{10} = \binom{12}{2} = \frac{12 \cdot 11}{2} = 66.$$

Izbori: n kroglic, k izberemo.

	s ponavljanjem	brez ponavljanja	
vrstni red pomemben	n^k	$n^{\underline{k}}$	variacije
ni pomemben	$\binom{n+k-1}{k}$	$\binom{n}{k}$	kombinacije

$$1 \le i_1 \le i_2 \le \dots \le i_k \le n.$$

$$j_1 = i_1, j_2 = i_2 + 1 \dots j_k = i_k + k - 1.$$

$$1 \le j_1 < j_2 < \dots < j_k \le n + k - 1.$$

Trditev 1.4.5. Število kompozicij n je 2^{n-1} $(n \ge 1)$, število kompozicij s k členi je $\binom{n-1}{k-1}$ $(n \ge 1)$.

Dokaz 1.4.6. *n* kroglic $\circ | \circ \circ \circ | \circ \circ : 6 = 1 + 3 + 2$.

k-1 pregrad, n-1 mest za pregrade.

Kompozicije: 2^{n-1} , $\binom{n-1}{k-1}$.

Šibka kompozicija: $(\lambda_1 \dots \lambda_l)$; $\lambda_i \geq 0$, $\lambda_1 + \dots + \lambda_l = n$.

 $3:12,3,21,102,300,0102\dots$

Število šibkih kompozicij $n \le k$ členi.

n+k-1objektov, premešamo na $\binom{n+k-1}{k-1}$ oz. $\binom{n+k-1}{n}$ načinov.

Še en dokaz:

$$\lambda_1 + \dots + \lambda_l = n, \ \lambda_i \ge 0.$$

$$\mu_i = \lambda_i + 1 \ \mu_i \ge 1.$$

$$\mu_1 + \dots + \mu_l = n + k \implies \binom{n+k-1}{n-1}.$$

Primerjaj z: kombinacije s ponavljanjem.

n kroglic, k-krat izbiram.

 λ_i : kolikokrat izberemo *i*-to kroglico.

$$\lambda_1 + \dots + \lambda_n = k, \ \lambda_i \ge 0.$$

Šibke kompozicije k z n členi: $\binom{k+n-1}{k}$.

Trditev 1.4.7.

$$L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}.$$

Dokaz 1.4.8. Koliko je urejenih razdelitev na linearno urejene bloke:

$$k! \cdot L(n,k) = n! \cdot \binom{n-1}{k-1}.$$

Tukaj predstavljajo

• L(n,k): urejene bloke,

- k!: njihov vrstni red,
- n!: permutacije,
- $\binom{n-1}{k-1}$: šibke kompozicije.

Poti iz (0,0) v (n,m), premikamo se gor ali desno.

n-krat gor, m-krat desno: $\binom{n+m}{m}$ možnosti.

Poti iz (0,0) v (2n,0), desno-gor ali desno-dol.

n-krat gor, n-krat dol: $\binom{2n}{n}$.

Dyckove poti: isto kot prej, se ne spustimo pod x-os.

Pot je slaba, če gre pod x-os:

Od tam naprej, kjer 1. doseže y = -1, prezrcalimo pot preko y = -1.

Konča se v y = -2.

Število slabih poti = število poti od (0,0) do (2n, -2).

Teh je $\binom{2n}{n-1}$: (n-1)-krat gor, (n+1)-krat dol.

$$C_n$$
 = število Dyckovih poti doižine $n = \binom{2n}{n} - \binom{2n}{n-1}$
= $\frac{(2n!)}{n!n!} - \frac{(2n)!}{(n-1)!(n+1)!} = \binom{2n}{n}(1 - \frac{n}{n+1}) = \frac{1}{n+1}\binom{2n}{n}$.

Multinomski koeficienti:

 $\alpha_1 \times 1, \alpha_2 \times 2 \dots \alpha_k \times k : 11..12..2..k.$

Na koliko načinov lahko premešamo:

$$\begin{pmatrix} \alpha_1 + \dots + \alpha_k \\ \alpha_1 \end{pmatrix} \begin{pmatrix} \alpha_2 + \dots + \alpha_k \\ \alpha_2 \end{pmatrix} \dots \begin{pmatrix} \alpha_k \\ \alpha_k \end{pmatrix} = \frac{(\alpha_1 + \dots + \alpha_k)!}{\alpha_1! \dots \alpha_k!}.$$

Definiramo

$$\begin{pmatrix} \alpha_1 + \dots + \alpha_k \\ \alpha_1, \alpha_2 \dots \alpha_k \end{pmatrix} := \frac{(\alpha_1 + \dots + \alpha_k)!}{\alpha_1! \dots \alpha_k!}.$$
 (1.1)

Izrazu 1.1 pravimo multinomski simbol.

Figure v 1. vrsti pri šahu: $\frac{8!}{1!1!2!2!} = 7!$.

i-jem damo indekse $\alpha_1 \dots \alpha_k : 1_1 \dots 1_{\alpha_1} 2_1 \dots k_{\alpha_k}$

Premešamo na $(\alpha_1 + \cdots + \alpha_k)!$ načinov.

Eno permutacijo dobimo $(\alpha_1! \dots \alpha_k!)$ -krat.

Multimnožica M je množica, v kateri se elementi lahko ponavljajo.

$$M = \{1, 1, 1, 2, 2, 3, 3, 3, 3\} = \{1^3, 2^2, 3^4\}.$$

Število permutacij multimnožice je multinomski simbol.

Formalno je multimnožica (S,f), kjer je S množica, $f:S\to\mathbb{N}$ šteje kolikokrat se posamezen element ponovi.

1.5 Dvanajstera pot

n kroglic, k škatel; na koliko načinov lahko damo kroglice v škatle.

$N \setminus K$	vse	injekcije	surjekcije	
LL	k^n	$k^{\underline{n}}$	k!S(n,k)	
ΝL	$\binom{n+k-1}{k-1}$	$\binom{k}{n}$	$\binom{n-1}{k-1}$	"kompozicije"
LN	$\sum_{i} S(n,i)$	$\begin{cases} 1 & k \ge n \\ 0 & \text{sicer} \end{cases}$	S(n,k)	razdelitve
N N	$\overline{p_k(n)}$	$\begin{cases} 1 & k \ge n \\ 0 & \text{sicer} \end{cases}$	$p_k(n)$	razčlenitve

Vpeljemo ekvivalenčne relacije

- $f \sim_N q$: $\exists \pi \in S_n$: $f \circ \pi = q$
- $f \sim_K g$: $\exists \sigma \in S_k : \sigma \circ f = g$
- $f \sim_{N,k} q : \exists \pi \in S_n, \sigma \in S_k : \sigma \circ f \circ \pi = q$.

1.6 Rekurzije

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k);$$

$$c(n-1,k-1): n \text{ negibna}, (n-1): \text{ za kateri element vstavimo}.$$

$$S(n,k) = S(n-1,k-1) + kS(n-1,k);$$

S(n-1,k-1): n v svojem bloku, k: v kateri blok vstavimo.

$$L(n,k) = L(n-1,k-1) + (n+k-1)L(n-1,k);$$

 $L(n-1,\!k-1)\!\colon n$ v svojem bloku, $(n+k-1)\!\colon$ kam vstavimo.

$$B(n+1) = \sum_{k=0}^{n} {n \choose k} B(n-k) = \sum_{k=0}^{n} {n \choose k} B(k);$$

odstranimo blok, v katerem je $n+1,\ k$: število elementov v bloku skupaj

z n+1, $\binom{n}{k}$: kateri elementi v bloku skupaj z n+1, B(n-k): razdelimo ostale.

$$p_k(n) = p_{k-1}(n-1) + p_k(n-k);$$

 $p_{k-1}(n-1)$: $\lambda_l=1, p_k(n-k)$: $\lambda_l\geq 2$ (odstranimo 1. stolpec v Ferrersovem diagramu).

A(n,k) = (n+1-k)A(n-1,k-1) + kA(n-1,k). ostranimo n, k: n damo na konec ali za spust, (n+1-k): n damo na začetek ali za vzpon. V S_n velja še: števio spustov + število vzponov = n-1.

$$2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k} \ n \ge 1;$$

k: koliko elementov je pred n+1, število obratno alternirajočih = število alternirajočih ($i \to n+1-i$), E_k : pred n+1, E_{n-k} : za n+1, štejemo in alternirajoče in obratno alternirajoče permutacije.

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k};$$

k: ko 1. pridemo v y = 0: pred in za tem sta Dyckovi poti.

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - \dots$$

Eulerjev petkotniški izrek (dokaz kasneje) (pentagonal).

1.7 Načelo vklučitev in izključitev (NVI)

(Principle of inclusion and exclusion).

$$|A\cup B|=|A|+|B|-|A\cap B|.$$

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|.$$

Izrek 1.7.1 (NVI).

$$| \cup_{i=1}^{n} A_{i} | = |A_{1}| + |A_{2}| + \dots + |A_{n}|$$

$$- |A_{1} \cap A_{2}| - \dots - |A_{n-1} \cap A_{n}|$$

$$+ |A_{1} \cap A_{2} \cap A_{3}| + \dots + |A_{n-2} \cap A_{n-1} \cap A_{n}|$$

$$- \dots$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \leq j_{1} < \dots < j_{k} \leq n} |A_{j_{1}} \cap \dots \cap A_{j_{k}}|$$

$$= \sum_{\emptyset \neq S \subseteq [n]} (-1)^{|S|-1} |A_{S}|,$$

 $kjer je A_S := \cap_{i \in S} A_i.$

Dokaz 1.7.2.

$$x \in \bigcup_{i=1}^n A_i$$
.

Trdimo, da x prispeva 1 k vsoti na desni.

Recimo, da je x v natanko m množicah A_i $(1 \le m \le n)$:

$$m - {m \choose 2} + {m \choose 3} - \dots + (-1)^m {m \choose m}$$

$$= 1 - {m \choose 0} - {m \choose 1} + {m \choose 2} - \dots + (-1)^{m-1} {m \choose m}$$

$$= 1 - (1 - 1)^m = 1.$$

Trditev 1.7.3 (NVI, 2. verzija).

$$\left| \cap_{i=1}^n A_i^C \right| = \sum_{S \subset [n]} |A_S|.$$

Dokaz 1.7.4.

$$\left| \bigcap_{i=1}^{n} A_i^C \right| = \left| (\bigcup_{i=1}^{n} A_i)^C \right|$$

$$= |A| - |\bigcup_{i=1}^{n} A_i|$$

$$= |A| + \sum_{\emptyset \neq S \subseteq [n]} (-1)^{|S|} |A_S|$$

$$= \sum_{S \subseteq [n]} |A_S|,$$

kjer velja še $A_{\emptyset} = A$.

Primer.

(1) Koliko je k-elementnih antiverig v B_n ? $B_n = (2^{[n]}, \subseteq)$ Boolova algebra, antiveriga - množica neprimerljivih elementov.

 $k=1: 2^n$ (vsi elementi).

k=2:

$$S = \{(A,B) : A, B \subseteq [n]\}$$

$$S_1 = \{(A,B) : A \subseteq B\}$$

$$S_2 = \{(A,B) : B \subseteq A\}$$

$$|S_1^C \cap S_2^C| = |S| - |S_1| - |S_2| + |S_1 \cap S_2| = 4^n - 2 \cdot 3^n + 2^n;$$

 4^n : vse možnosti $x \in \emptyset A, B, 3^n$: vse razen $x \in A, \notin B \dots$ $\implies \frac{1}{2}(4^n - 2 \cdot 3^n + 2^n).$

k=3:

$$S = \{(A,B,C) : A,B,C \in 2^{[n]}\}$$

$$S_1 : A \subseteq B, S_2 : B \subseteq A, S_3 : A \subseteq C, S_4 : C \subseteq A$$

$$S_5 : B \subseteq C, S_6 : C \subseteq B.$$

$$| \cap_{i=1}^6 S_i^C | = 8^n - 6 \cdot 6^n + 3 \cdot 4^n + 6 \cdot 5^n - 6 \cdot 4^n - \stackrel{\text{DN}}{\dots}$$

 $6^n: S_i, 4^n: \text{npr. } S_1 \cap S_2, 5^n: \text{npr. } S_1 \cap S_3, 4^n: \text{npr. } S_1 \cap S_4.$

(2) i_n : število premestitev v S_n = število permutacij v S_n brez negibne

točke (dearangement).

$$A = S_n$$

$$A_i = \{ \pi \in S_n : \pi_i = i \}$$

$$|A_I| = (n - |I|)!$$

$$i_n = \sum_{I \subseteq [n]} (-1)^{|I|} (n - |I|)!$$

$$= \sum_{k=0}^n \binom{n}{k} (-1)^k (n - k)!$$

$$= n! \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

 $P(\text{\'stevilo premestitev}) = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \stackrel{n \to \infty}{\to} e^{-1}.$

(3) Število surjekcij iz [n] v [k].

$$A = [k]^{[n]}$$

$$A_i = ([k] \setminus \{i\})^{[n]}$$

$$\left| \cap_{i=1}^n A_i^C \right| = \sum_{I \subseteq [n]} (-1)^{|I|} (k - |I|)^n$$

$$= \sum_{k=1}^n \binom{k}{i} (-1)^i (k - i)^n$$

$$\stackrel{i=k-i}{=} \sum_{j=1}^k (-1)^{k-j} \binom{k}{j} j^n$$

$$= k! S(n,k);$$

surjekcija je urejena razdelitev;

$$S(n,k) = \sum_{j=0}^{n} \frac{(-1)^{k-j} j^{n}}{j!(k-j)!}.$$

(4) Eulerjev petkotniški izrek:

$$p(n) = p(n-1) + p(n-2) - p(n-5) - \dots$$

$$A = \{\text{raz\'elenitve } n\}$$

$$A_i = \{\text{raz\'elenitve } n, \text{ ki vsebujejo } i \text{ za \'elen} \} i = 1, 2 \dots n$$

$$|A_i| = p(n-i)$$

$$|A_i \cap A_j| = p(n-k-j)$$

$$|A_I| = p(n-\sum_{i \in I} i)$$

$$p(n) = p(n-1) + p(n-2) + p(n-3) + \dots$$

$$-p(n-1-2) - p(n-1-3) - p(n-2-3) - \dots$$

$$+p(n-1-2-3) - \dots$$

$$= p(n-1) + p(n-2) - p(n-5) - p(n-7) + \dots$$

Franklinova bijekcija:

 $p(n) = \sum_{m=1}^{\infty} (\alpha(m) - \beta(m)) p(n-m)$; m - razčlenitve z različnimi členi, $\alpha(m) =$ število razčlenitev m z liho mnogo različnimi členi, $\beta(m) =$ število razčlenitev m z sodo mnogo različnimi členi, Bijekcija

 Φ : {razčlenitev m z liho mnogo različnimi členi}(\{...}) \rightarrow {razčlenitev m z sodo mnogo različnimi členi}(\{...}).

$$f(\lambda) = \max\{i : \lambda_i = \lambda_1 - i + 1\}$$
 - bok,
 $g(\lambda) = \lambda_{l(\lambda)}$ - najmanjši člen,

a)
$$f(\lambda) \ge g(\lambda)$$
: min \to bok,

b)
$$f(\lambda) < g(\lambda)$$
: bok $\to \min$,

- a) ne dela (število členov se ohrani),
- b) ne dela (2 člena enako dolga),
- a) ne dela, ko:

b) ne dela, ko:

$$f(\lambda) = g(\lambda) = l(\lambda)$$

$$m = k + (k+1) + \dots + (2k-1) = \frac{2k(2k-1)}{2} - \frac{k(k-1)}{2} = \frac{k(3k-1)}{2}$$

$$(\alpha(m) - \beta(m)) = (-1)^{k-1} \text{ (k lih ali sod)}.$$

$$f(\lambda) = g(\lambda) - 1 = l(\lambda)$$

$$m = (k+1) + (k+2) + \dots + (2k) = \dots = \frac{k(3k+1)}{2}$$

$$(\alpha(m) - \beta(m)) = (-1)^{k-1}.$$

Eulerjev petkotniški izrek:

$$p(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \left(p \left(n - \frac{k(3k-1)}{2} \right) + p \left(n - \frac{k(3k+1)}{2} \right) \right)$$
oz.
$$\sum_{k \in \mathbb{Z}} (-1)^k p \left(n - \frac{k(3k+1)}{2} \right) = 0.$$

Tukaj smo upoštevali ko vstavimo -k: $\frac{-k(-3k-1)}{2} = \frac{k(3k+1)}{2}$ in p(0) = 0.

Izrek 1.7.5 ("NVI").

 $f, g: B_n \to K, K$ komutativni kolobar.

$$f(T) = \sum_{S \subseteq T} g(S)(\forall T \in B_n) \iff g(T) = \sum_{S \subseteq T} (-1)^{|T \setminus S|} f(S)(\forall T \in B_n).$$

$$\begin{split} &Zgled.\\ &des(\pi) = |\{i: \pi(i) > \pi(i+1)\}|\\ &D(\pi) = \{i: \pi(i) > \pi(i+1)\}\\ &D(1\ 4\ 2\ 6\ 5\ 3) = \{2,4,5\}\\ &f_n(T) = |\{\pi \in S_n: D(\pi) = T\}|\\ &\text{npr. } n = 8, T = \{1,5\}\\ &g_n(T) = |\{\pi \in S_n: D(\pi) \subseteq T\}|\\ &T = \{t_1, t_2 \dots t_k\}\\ &g_n(T) = \binom{n}{t_1}\binom{n-t_1}{t_2-t_1}\binom{n-t_1-\dots-t_{k-1}}{t_k} = \binom{n}{t_1,t_2-t_1\dots t_k-t_{k-1},n-t_k}\\ &_ < _ < \underbrace{-} < \underbrace{-} < \underbrace{t_i} \lessgtr _: \text{zaradi} \subseteq: \text{tam lahko spust ali pa ne.}\\ // \text{ če lastnosti točno določene: težko } (f_n(T)), \text{ če "vsebovano" } (g_n(T)): \text{ lažje}\\ &g_n(T) = \sum_{S \subseteq T} f_n(S) \end{split}$$

$$f_n(T) = \sum_{S \subseteq T} (-1)^{|T \setminus S|} g_n(S)$$

$$= \sum_{S \subseteq T} (-1)^{|T \setminus S|} \binom{n}{s_1, s_2 - s_1 \dots n - s_k}$$

$$\stackrel{\text{vaje}}{=} \det \left[\binom{n - t_i}{t_{j+1} - t_j} \right]_{i,j=0}^{|T|}.$$

npr. $n = 8, T = \{1,5\}, t_0 = 0, t_{|T|} = n + 1 = 9$

$$f_8(\{1,5\}) = \begin{vmatrix} \binom{8}{1} & \binom{8}{5} & \binom{8}{8} \\ \binom{7}{0} & \binom{7}{1} & \binom{7}{7} \\ \binom{3}{-4} & \binom{3}{0} & \binom{3}{3} \end{vmatrix} = 217.$$

Dokaz 1.7.6.

 (\Longrightarrow) :

$$\begin{split} \sum_{S \subseteq T} (-1)^{|T \setminus S|} f(S) &= \sum_{S \subseteq T} (-1)^{|T \setminus S|} f(S) \sum_{U \subseteq S} g(U) \\ &= \sum_{U \subseteq T} \left(\sum_{U \subseteq S \subseteq T} (-1)^{|T \setminus S|} \right) g(U) \\ &\stackrel{k = |S \subseteq U|}{=} \sum_{U \subseteq T} \sum_{k = 0}^{|U|} \binom{|T \setminus U|}{k} (-1)^{|T \setminus U| - k} g(U) \\ &= g(T). \end{split}$$

Na notranji vsoti uporabimo binomski izrek za -1 in 1:

$$(1-1)^{|T\setminus S|} = \begin{cases} 1: U = T \\ 0: U \subset T \end{cases}$$

1.8 Polinomske enkosti

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Izrek 1.8.1.

- (a) $\sum_{k} c(n,k) x^{k} = x^{\overline{n}}$
- (b) $\sum_{k} (-1)^{n-k} c(n,k) x^k = x^n$
- (c) $\sum_{k} S(n,k) x^{\underline{k}} = x^n$
- (d) $\sum_{k} (-1)^{n-k} S(n,k) x^{\overline{k}} = x^n$
- (e) $\sum_{k} L(n,k) x^{\underline{k}} = x^{\overline{n}}$
- (f) $\sum_{k} (-1)^{n-k} L(n,k) x^{\overline{k}} = x^{\underline{n}}$

 $Opomba.\ K[x]=\{ {
m polinomi\ v\ }x\}$ vektorski prostor (celo algebra), K komutativen obseg.

 $\{x^n\}, \{x^{\underline{n}}\}, \{x^{\overline{n}}\}$ naravne baze.

Dokaz 1.8.2.

(a) Indukcija (na vajah drugače):

$$n = 0$$
: 1=1

$$n-1 \rightarrow n$$
:

$$x^{\overline{n}} = x^{\overline{n-1}}(x+n-1) \stackrel{\text{IP}}{=} (x+n-1) \sum_{k} c(n-1,k) x^{k}$$
$$= \sum_{k} c(n-1,k-1) x^{k} + (n-1) \sum_{k} c(n-1,k) x^{k} = \sum_{k} c(n,k) x^{k},$$

- (b) $x \to -x \text{ v (a)},$
- (c) Preslikava = razdelitev + injekcija, število preslikav iz [n] v $[k]=\sum_k S(n,k)x^{\underline{k}}$, kjer predstavljajo
 - k: število blokov,
 - S(n,k): razdelimo [n] na k blokov,
 - $x^{\underline{k}}$: injekcija $[k] \to [x]$.

Dokazali smo za $x \in \mathbb{N} \implies$ polinoma sta enaka (ujemanje v ∞ točkah).

(e) Z indukcijo DN.

$$\pi = 425163$$

$$inv(\pi) = 7$$

$$I(\pi) = \{(1,2), (1,4), (1,6) \dots \}$$

 $TI(\pi) = (a_1 \dots a_n); \ a_k = \{(i,j) : \pi_i > \pi_j = k\}$ ("desna stran") - tabela inverzij.

$$TI(\pi) = (3,1,3,0,0,0)$$

 $0 \le a_i \le n - i$, a_i : koliko levo od i večjih od i.

Trditev 1.8.3.

$$TI: S_n \to [0, n-1] \times [0, n-2] \times \cdots \times [0, 0]$$
 je bijekcija.

Posledica 1.8.4.

$$\sum_{\pi \in S_n} q^{inv(\pi)} = \underline{n!} = (1+q)(1+q+q^2)\dots(1+q+\dots+q^{n-1}).$$

$$\pi = 417396285$$
,

$$TI(\pi) = (1, 5, 2, 0, 4, 2, 0, 1, 0),$$

inverz:
$$9 \rightarrow 9 \ 8 \rightarrow 7 \ 9 \ 8 \rightarrow 7 \ 9 \ 6 \ 8 \rightarrow 7 \ 9 \ 6 \ 8 \ 5 \rightarrow 4 \ 7 \ 9 \ 6 \ 8 \ 5 \rightarrow 4 \ 7 \ 3 \ 9 \ 6 \ 2 \ 8 \ 5 \rightarrow 4 \ 1 \ 7 \ 3 \ 9 \ 6 \ 2 \ 8 \ 5.$$

Dokaz 1.8.5. trditve.

Skonstruiramo inverz:

$$(a_1 \dots a_n), \ 0 \le a_i \le n - i.$$

Vpisujemo n, n-1...1: i pišemo za a_i elementi.

Dokaz 1.8.6. posledice.

 $\sum_{\pi \in S_n} q^{inv(\pi)} = n!_q = \underline{n!} = \underline{n}(\underline{n-1}) \dots 1 - q \text{ fakulteta, } \underline{i} = 1 + q + \dots + q^{i-1}$ - polinom, q-naravno število (q-integer).

$$D = (1 + q + \dots + q^{n-1})(1 + q + \dots + q^{n-2}) \dots 1$$

$$= \sum_{0 \le a_i \le n-i} q^{a_1} q^{a_2} \dots q^{a_n}$$

$$\stackrel{\text{trditev}}{=} \sum_{\pi \in S_n} q^{inv(\pi)}.$$

 $Opomba. \ maj(\pi) = \sum_{i \text{ spust } \pi} i \text{ oz. } \sum_{i \in D(\pi)} i \text{ - majorski indeks}$ $maj(4\ 2\ 5\ 1\ 3) = 1 + 3 = 4$ $\sum_{\pi \in S_n} q^{maj(\pi)} = \sum_{\pi \in S_n} q^{inv(\pi)} = \underline{n!}.$

Definicija 1.8.7 (q-binomski koeficient).

$$\left(\frac{\underline{n}}{\underline{k}}\right) = \binom{n}{k}_q = \frac{\underline{n!}}{\underline{k!}(n-k)!}.$$

Trditev 1.8.8.

$$\left(\frac{n}{\underline{k}}\right) = q^{n-k} \left(\frac{n-1}{\underline{k-1}}\right) + \left(\frac{n-1}{\underline{k}}\right) = \left(\frac{n-1}{\underline{k-1}}\right) + q^k \left(\frac{n-1}{\underline{k}}\right).$$

Dokaz 1.8.9.

$$q^{n-1} \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{(k)!(n-1-k)!}$$

$$= \frac{\underline{n!}}{\underline{k!}(n-k)!} (q^{n-k}\underline{k!} + \underline{n-k})$$

$$= \frac{\underline{n!}}{\underline{k!}(n-k)!}$$

$$= \left(\frac{\underline{n}}{\underline{k}}\right),$$

kjer je

$$q^{n-k}\underline{k!} + \underline{n-k} = q^{n-k} + \dots + q^n + 1 + \dots + q^{n-k-1} = 1 + q + \dots + q^n.$$

Posledica 1.8.10. $\binom{n}{k}$ je polinom v q.

Trditev 1.8.11.

$$\prod_{i=1}^{n} (1 + q^{i-1}x) = \sum_{k=0}^{n} \left(\frac{\underline{n}}{\underline{k}}\right) x^{k}.$$

Dokaz 1.8.12. Indukcija:

$$n = 0: 1 = 1$$
$$n - 1 \rightarrow n:$$

$$\begin{split} \prod_{i=1}^{n} (1+q^{i-1}x) &= \left(\sum_{k=0}^{n} \left(\frac{n-1}{\underline{k}}\right) x^{k}\right) \cdot (1+q^{n-1}x) \\ &= \sum_{k} q^{\binom{k}{2}} \left(\frac{\mathbf{n}-1}{\underline{k}}\right) x^{k} + \sum_{k} q^{\binom{k-1}{2}+n-1} \left(\frac{n-1}{\underline{k-1}}\right) x^{k} \\ &= \sum_{k} q^{\binom{k}{2}} \left(\left(\frac{n-1}{k}\right) + q^{\binom{k-1}{2}+n-1-\binom{k}{2}} \left(\frac{n-1}{\underline{k-1}}\right)\right) x^{k}. \end{split}$$

Upoštevali smo $\binom{k-1}{2} - \binom{k}{2} = -\binom{k-1}{1}$.

 \mathbb{Z}_p, p praštevilo končen obseg.

Izrek 1.8.13. Obseg moči $n \in \mathbb{N}$ obstaja $\iff n = p^k \ p$ praštevilo. Obseg je do izomorfizma natančno določen. \mathbb{F}_q - oznaka.

Izrek 1.8.14. V \mathbb{F}_q^n je $\left(\frac{n}{k}\right)$ k-dimenzionalnih podprostorov.

Primer.
$$q = 4, n = 4, k = 2$$
: $(1+4^2) + (1+4+4^2) = 38$.

Dokaz 1.8.15. Spomnimo se: [n] ima $\binom{n}{k}$ k-podmnožic, štejemo urejene k-terice različnih števil: $k!\binom{n}{k}=n^{\underline{k}}$.

Štejemo k-terice linearno neodvisnih vektorjev v \mathbb{F}_q^n :

$$(q^k - 1)(q^k - q)\dots(q^k - q^{k-1})X = (q^n - 1)(q^n - q)\dots(q^n - q^{n-1});$$

 q^k-q^i : vsi v podprostoru brez linearnih kombinacij že vzetih, q^n-q^i : vsi brez linearnih kombinacij že vzetih.

X: število izbir podprostora.

$$X = \frac{q^{\binom{k}{2}}(q-1)^k \underline{n}(n-1) \dots (n-k+1)}{q^{\binom{k}{2}}(q-1)^k k!} = \left(\frac{\underline{n}}{\underline{k}}\right).$$

Definicija 1.8.16 (q-multinomski koeficient).

$$\left(\frac{a_1 + \dots + a_k}{\underline{a_1}, \underline{a_2} \dots \underline{a_k}}\right) = \frac{(a_1 + \dots + a_k)!}{\underline{a_1! \dots a_k!}}$$

$$= \left(\frac{a_1 + \dots + a_k}{\underline{a_1}}\right) \left(\frac{a_2 + \dots + a_k}{\underline{a_2}}\right) \dots \left(\frac{a_k}{\underline{a_k}}\right).$$

⇒ je polinom (produkt polinomov).

 $x_1 \dots x_n$ permutacija multimnožice $\{1^{a_1}, 2^{a_2} \dots n^{a_n}\}$

inverzija: (i,j): $i < j, x_i > x_j$

inv: število inverzij

 $inv(1\ 2\ 1\ 1\ 2\ 3) = 2.$

Izrek 1.8.17. $M = \{1^{a_1}, 2^{a_2} \dots n^{a_n}\}$

$$\sum_{\pi \in S(M)} q^{inv(\pi)} = \left(\frac{a_1 + \dots + a_n}{\underline{a_1} \dots \underline{a_n}}\right).$$

Primer.

$$q=1:|S(M)|=\binom{a_1+\cdots+a_n}{a_1\cdots a_n}$$

 $a_1=\cdots=a_n=1:\sum_{\pi\in S_n}q^{inv(\pi)}=n!$ - posplošitev formul za multinomske

koeficiente in Stirlingova števila 1. vrste.

Dokaz 1.8.18.

$$\sum_{\pi \in S(M)} q^{inv(\pi)} \underline{a_1!} \dots \underline{a_n!} = \underline{(a_1 + \dots + a_n)!}$$

$$\sum_{\pi_0 \in S(M)} q^{inv(\pi_0)} \cdot \sum_{\pi_1 \in S_{a_1}} q^{inv(\pi_1)} \dots \sum_{\pi_n \in S_{a_n}} q^{inv(\pi_n)} = \sum_{\pi \in S_{a_1 + \dots + a_n}} q^{inv(\pi)}.$$

Iščemo bijekcijo

$$\Phi: (\pi_0 \pi_1 \dots \pi_n) \to \pi$$
$$S(M) S_{a_1} \dots S_{a_n} \mapsto S_{a_1 + \dots + a_n}.$$

$$M = \{1^4, 2^2, 3^3\}$$
(1 2 2 1 3 1 3 3 1, 2 4 1 3, 2 1, 1 3 2)

 $\mapsto 2\; 6\; 5\; 4\; 7\; 1\; 9\; 8\; 3.$

V π_0 enke spremenimo v $1\dots a_1$ v vrstnem redu, ki ga določa π_1 , v π_0 dvojke spremenimo v $a_1+1\dots a_2$ v vrstnem redu, ki ga določa π_2 , itn.

$$inv(\pi_0) + \cdots + inv(\pi_n) = inv(\Phi(\pi_0 \dots \pi_n)).$$

Vsaka inverzija $\Phi(\pi_0 \dots \pi_n)$ prihaja bodisi od inverzije π_i bodisi od inverzije π_0 (glede na "indeks" v π_0) \Longrightarrow vsota enaka.

Poglavje 2

Formalne potenčne vrste

2.1 Uvod

$$\sum_{k} c(n,k) x^{k} = x^{\overline{n}}$$

 $\sum_n S(n,k) x^n$ neskončna vsota.

V analizi: potenčne vrste:

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Konvergira za |x| < R - konvergenčni polmer:

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \stackrel{\text{\'e obstaja}}{=} \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \in [0, \infty].$$

Primer.
$$\sum_{n=0}^{\infty} x^n : R = 1$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} : R = \lim_{n \to \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \frac{(n+1)!}{n!} = \infty$$

$$\sum_{n=0}^{\infty} n! x^n : R = 0$$

 $\sum_{n=0}^{\infty} n!^2 x^n = \sum_{n=0}^{\infty} n! x^n$ - definirana samo v 0, obe z vrednostjo 1 tam.

$$F(x) = \begin{cases} e^{-\frac{1}{x^2}} x \neq 0 \\ 0 \ x = 0 \end{cases} : \mathbb{R} \to \mathbb{R}$$

$$F^{(n)}(0) = 0 \ \forall n \ge 0 \implies F(x) = 0 + 0x + 0x^2 + \dots$$

Potenčne vrste niso "najboljše" za študij zaporedij.

2.2 Formalne potenčne vrste

K komutativni obseg s karakteristiko $0: 1+1+\cdots+1 \neq 0 \ \forall n \geq 1.$

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

 $\frac{1}{n!}$ je definirano

 $K[[x]] = \{(a_n)_n : a_n \in K\} = K^{\mathbb{N}}$ - množica formalnih potenčnih vrst (FPV) = zaporedje

 $K[x] = \{(a_n)_n : a_n \in K, a_n = 0 \forall n \geq n_0\}$ - množica polinomov.

V K[[x]] vpeljemo operacije:

$$(a_n)_n + (b_n)_n = (a_n + b_n)_n,$$

$$\lambda(a_n)_n = (\lambda a_n)_n,$$

$$((a_n)_n\cdot (b_n)_n)=(c_n)_n;\ c_n=\sum_{k=0}^n a_k b_{n-k}$$
 - konvolucijsko množenje.

K[[x]] algebra formalnih potenčnih vrst: komutativna, (1,0,0,0...) enota za množenje: $\sum_{k=0}^{n} a_k \cdot \delta_{n-k,0} = a_n$.

Oznake:

 $(a_n)_n \leftrightarrow \sum_n a_n x^n$: ni vsota (samo oznaka), x je ločilo (ni spremenljivka, ne "vstavljamo"),

$$(a_0 + a_1x + \dots)(b_0 + b_1x + \dots) = a_0b_0 + (a_1b_0 + a_0b_1)x + \dots,$$

$$1 + 0x + 0x^2 + \dots = 1,$$

$$[x^n]F(x) := a_n$$
 - "koeficient pred x^n ",

$$F(0) := [x^0]F(x).$$

Trditev 2.2.1. F(x) ima inverz $\iff F(0) \neq 0$.

Dokaz 2.2.2.

 (\Longrightarrow) :

$$F(x)G(x) = 1$$

$$F(0)G(0) = 1 \implies F(0) = 0$$

 (\Longleftrightarrow) :

$$F(x) = a_0 + a_1 x + a_2 x^2 + \dots, a_0 \neq 0$$

$$G(x) = b_0 + b_1 x + b_2 x^2 + \dots$$

$$F(x)G(x) = 1$$

$$a_0 b_0 = 1 \implies b_0 = \frac{1}{a_0}$$

$$a_0 b_1 + a_1 b_0 = 0 \implies b_1 = \frac{-a_1 b_0}{a_0}$$

$$a_0 b_2 + a_1 b_1 + a_2 b_0 = 0 \implies b_2 = \frac{-a_1 b_1 - a_2 b_0}{a_0}$$

$$\vdots$$

Opomba. K komutativen kolobar s karakteristiko 0. F(x) ima inverz $\iff F(0)$ ima inverz v K.

$$v(F(x)) = \begin{cases} \min n : [x^n]F(x) \neq 0 & F(x) \neq 0 \\ \infty & F(x) = 0 \end{cases} \text{- valuacija.}$$

$$v(F(x)G(x)) = v(F(x))v(G(x)) \; (\implies \text{ni deliteljev niča})$$

$$v(F(X) + G(x)) \geq \min\{v(F(x)), v(G(x))\}$$

$$v(\lambda F(x)) = \begin{cases} v(F(x)) \; \lambda \neq 0 \\ \infty \; \lambda = 0 \end{cases}$$

$$d(F(x), G(x)) = 2^{-v(F(x) - G(x))} \text{- metrika}$$

$$d(F(x), G(x)) = 2^{-k} \iff [x^n]F(x) = [x^n]G(x) \; \forall n \leq k.$$

Trditev 2.2.3. (K[[x]], d) je poln metrični prostor.

Dokaz 2.2.4.

$$\begin{split} d &\geq 0, d = 0 \iff F = G \\ d(F(x), G(x)) &= d(G(x), F(x)) \\ d(F(x), H(x)) &= 2^{-v(F(x) - H(x))} \\ &= 2^{-v(F(x) - G(x) + G(x) - H(x))} \\ &\leq \max\{2^{-v(F(x) - G(x))}, 2^{-v(G(x) - H(x))}\} \\ &= \max\{d(F(x), G(x)), d(G(x), H(x))\} \\ &\leq d(F(x), G(x)) + d(G(x), H(x)). \end{split}$$

$$F_m(x) = \sum_n a_n^{(m)} x^n$$
 Cauchyjevo zaporedje
 $\forall k \exists M : M_1, M_2 \geq M \implies d(F_{M_1}(x), F_{M_2}(x)) < 2^{-k}$
oz. $[x^n] F_{M_1}(x) = [x^n] F_{M_2}(x) \ \forall n \leq k$.

Torej za vsak $[x^n]F_n(x)$ konstantni od nekod naprej in enaki npr. a_n . $F(x) = \sum_n a_n x^n$ je limita $(F_n(x))_m$.

Primer.

$$(\sum_{n} x^{n})(1-x) = 1$$

$$c_{n} = 1 \cdot (-1) + 1 \cdot 1 = 0 \ \forall n \ge 1$$

$$c_{0} = 1. \text{ Torej } \sum_{n} x^{n} = \frac{1}{1-x} \implies 1-x \text{ inverz od } \sum_{n} x^{n}.$$

$$\lim_{N \to \infty} \sum_{n=0}^{N} x^{n} = \frac{1}{1-x}.$$

Opomba. $(F_m(x))_m$ konvergira v K[[x]], če je $([x^n]F_m(x))_m$ od nekod naprej konstantno, npr a_n ; v tem primeru je $\lim_{m\to\infty} F_m(x) = \sum_n a_n x^n$.

Odvajanje:

$$\begin{split} F'(x) &= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}. \\ \text{Za } K[[x]] : \\ [x^n] F'(x) &:= (n+1)[x^{n+1}] F(x) \\ (\sum_n a_n x^n)' &= F(x)' G(x) + F(x) G(x)'. \\ \text{Dokaz: DN.} \\ \left(\frac{F(x)}{G(x)}\right)' &= \frac{F(x)' G(x) - F(x) G(x)'}{G(x)^2}; \ G(0) \neq 0 \end{split}$$

Primer.

$$F'(x) = F(x)$$

$$(n+1)a_{n+1} = a_n$$

$$na_n = a_{n-1}$$

 a_0 poljubno

$$a_n = \frac{a_0}{n!}$$
.

$$e^{\lambda x} := \sum_{n} \frac{\lambda^n}{n!} x^n$$

$$e^{\lambda x} \cdot e^{\mu x} = e^{(\lambda + \mu)x}$$

$$L = \sum_{k=0}^n \tfrac{\lambda^k}{k!} \tfrac{\mu^{n-k}}{(n-k)!} \overset{?}{=} \tfrac{(\lambda+\mu)^n}{n!} = D.$$

Binomski izrek v K: enakost velja.

$$F'(x) = \frac{1}{1-x}, \ F(0) = 0$$

$$(n+1)a_{n+1} = 1$$

$$a_n = \frac{a_0}{n}$$

$$\log \frac{1}{1-x} := \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$e^{\log \frac{1}{1-x}} \stackrel{?}{=} \frac{1}{1-x}.$$

$$e^{\log \frac{1}{1-x}} \stackrel{?}{=} \frac{1}{1-x}$$

Najprej definicija kompozituma, dokaz enakosti kasneje.

Bolj splošno:

$$F(0) = 1$$

$$\log(F(x)G(x)) = \log F(x) + \log G(x)$$
: DN.

Binomska vrsta:

 $\lambda \in K, n \in \mathbb{N}, \; {\lambda \choose n} := \frac{\lambda^n}{n!}$ posplošen binomski koeficient.

$$B_{\lambda}(x) = \sum_{n=0}^{\infty} {\lambda \choose n} x^n$$

$$n \in \mathbb{N}: B_n(x) = \sum_{k=0}^{\infty} {n \choose k} x^n = (1+x)^n.$$

Trditev 2.2.5.

$$B_{\lambda}(x) \cdot B_{\mu}(x) = B_{\lambda+\mu}(x).$$

Dokaz 2.2.6.

$$\begin{split} D &= \frac{(\lambda + \mu)^{\underline{n}}}{n!} = \sum_{k=0}^{n} \frac{\lambda^{\underline{k}}}{k!} \frac{\mu^{\underline{n-k}}}{(n-k)!} = L \\ \sum_{k=0}^{n} \binom{n}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}} &= (\lambda + \mu)^{\underline{n}}. \end{split}$$

Indukcija: DN.

$$B_{\lambda}(x) := (1+x)^{\lambda}$$

$$n \in \mathbb{N} : B_n(x) \cdot B_{-n}(x) = 1$$

$$(1+x)^{-n} = \frac{1}{(1+x)^n}$$

$$(1+x)^{-n} = \sum_k {n \choose k} x^n$$

$$\binom{-n}{k} = \frac{(-n)(-n-1)\dots(-n-k+1)}{k!}$$

$$= \frac{(-1)^k (n+k-1)\dots n}{k!} \cdot \frac{(n-1)!}{(n-1)!}$$

$$= (-1)^k \binom{n+k-1}{k-1}$$

$$(1-x)^{-k} = \frac{1}{1-x} \cdots \frac{1}{1-x}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{n_i \ge 0, \sum n_i = k} 1 \right) x^n$$

$$= \sum_n (\text{število šibkih kompozicij } n \le k \text{ členi}) x^n$$

$$= \sum_n \binom{n+k-1}{k-1} x^n$$

$$F(x)G(x)H(x) = \sum_{n=0}^{\infty} \left(\sum_{n_1, n_2, n_3 \ge 0, n_1 + n_2 + n_3 = n} a_{n_1} b_{n_2} c_{n_3} \right) x^n$$

$$\binom{-1}{n} = (-1)^n \binom{n}{0} = (-1)^n$$

$$(1+x)^{\frac{1}{2}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{2n-1}} \binom{2n-2}{n-1} x^n$$

$$\binom{\frac{1}{2}}{n} = \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\cdot\left(\frac{1}{2}-n+1\right)}{n!}$$

$$= \frac{(-1)^{n-1}(2n-3)!!}{2^n\cdot n!}\cdot\frac{(2n-2)!!}{(2n-2)!!}$$

$$= \frac{(-1)^{n-1}(2n-2)!}{2^n\cdot n!\cdot 2^{n-1}\cdot(n-1)!}$$

$$= \frac{(-1)^{n-1}}{2^{2n-1}n}\binom{2n-2}{n-1}n \ge 1.$$

2.3 Kompozitum

$$F(x) = \sum_{n} a_n x^n$$

$$G(x) = \sum_{n} b_n x^n$$

$$F \circ G(x) = F(G(x)) = ?$$

$$(F \circ G)(x) = a_0 + a_1 G(x) + a_2 G^2(x) + \dots = \lim_{N \to \infty} \sum_{n=0}^{N} a_n G^n(x).$$
Kdaj ta limita obstaja?

Trditev 2.3.1. $(F_n(x))_n$.

$$\lim_{N\to\infty} F_n(x)$$
 obstaja \iff $\lim_{n\to\infty} v(F_n(x)) = \infty$.

Dokaz 2.3.2.

 (\Longrightarrow) :

$$\left(\sum_{n=0}^{N} F_n(x)\right)_N \text{ je Cauchyjevo :}$$

$$\forall x \ \exists N_0 \ \forall N, M \ge N_0 : d\left(\sum_{n=0}^{N} F_n(x), \sum_{m=0}^{M} F_m(x)\right) \le 2^{-k}$$

$$M = N - 1 : v\left(F_N(x)\right) \ge k.$$

 (\Longleftrightarrow) :

$$\forall k \exists N_0 \ \forall N \ge N_0 : v\left(F_n(x)\right) \ge k \ (\text{predpostavka})$$

$$N > M \ge N_0 : d\left(\sum_{n=0}^N F_n(x), \sum_{m=0}^M F_m(x)\right)$$

$$= 2^{-v(F_{M+1}(x) + \dots + F_N(x))}$$

$$\le \max\{2^{-v(F_{M+1}(x))} \dots 2^{-v(F_N(x))}\}$$

$$\le 2^{-k}.$$

$$F\circ G(x)$$
 obstaja $\iff \lim_{n\to\infty}v\left(a_nG^n(x)\right)=\infty$ $\iff v(G(x))>0$ ali $a_n=0$ od nekod naprej $\iff F$ polinom ali $G(0)=0$.

Velja
$$v\left(a_nG^n(x)\right) = \begin{cases} n \cdot v(G(x)) \ a_n \neq 0 \\ \infty \qquad a_n = 0 \end{cases}$$

Primer.

$$F(x) = x^2 - 3x + 1$$

$$G(x) = e^x$$

$$(F \circ G)(x) = e^{2x} - 3e^x + 1 - ok$$

$$F(x) = G(x) = e^x$$
 - ni ok

$$F(x) = e^x$$

$$G(x) = e^x - 1$$

$$e^{e^x-1}$$
 - ok.

Opomba.

$$F(x) = \sum_{n} a_n x^n$$

$$G(x) = \sum_{n} b_n x^n \ b_0 = 0$$

$$a_0 + a_1(b_1x + b_2x^2 + \dots) + a_2(b_1x + b_2x^2 + \dots)^2 + \dots$$

Za izračun koeficienta pri x^5 izračunamo končno vsoto.

Enota za kompozitum: $x = 0 + 1 \cdot x + 0 \cdot x^2 + \dots$

$$F \circ x = a_0 + a_1 x + a_2 x^2 + \dots = F = x \circ F = 1 \cdot (a_0 + a_1 x + \dots)$$

Izrek 2.3.3.

 $F \in K[[x]]$ ima inverz za kompozitum $\iff F(x) = a_0 + a_1 x; \ a_1 \neq 0$ ali v(F(x)) = 1.

Primer.

 $x - x^2$ ima inverz,

 $e^x - 1$ ima inverz,

 x^2 nima inverza.

 $F^{<-1>}$ - inverz za kompozitum.

Dokaz 2.3.4.

 (\Longrightarrow) :

$$F(x) = \sum_{n} a_{n}x^{n}$$

$$G(x) = \sum_{n} b_{n}x^{n} \text{ inverz od } F$$

$$a_{0} = 0 \iff b_{0} = 0$$

$$(\iff) : F \circ G = a_{0} + a_{1}(b_{1}x + \dots) + a_{2}(\dots)^{2} + \dots$$

$$[x^{0}]F(G(x)) = a_{0} = [x^{0}]x = 0$$

$$(\implies) : \text{ isto?}$$

$$1.a_{0} \neq 0, b_{0} \neq 0$$

$$\implies F,G \text{ polinoma, } deg(F \circ g) = deg(F) \cdot deg(G) = 1$$

$$\implies deg(F) = deg(G) = 1$$

$$2.a_{0} = b_{0} = 0$$

$$v(F \circ G) = v(F) \cdot v(G) = 1$$

$$\implies v(F) = v(G) = 1$$

$$\implies F(x) = a_{1}x + a_{2}x^{2} + \dots \ a_{1} \neq 0.$$

(⇐=):

$$F(x) = a_0 + a_1 x \ a_1 \neq 0$$

$$a_0 + a_1 y = x \implies y = \dots$$

$$F^{<-1>}(x) = -\frac{a_0}{a_1} + \frac{x}{a_1}$$

$$F(x) = a_1 x + a_2 x^2 + \dots a_1 \neq 0$$
levi inverz: $G_1(x) = b_0 + b_1 x + \dots$

$$G_1 \circ F = x$$

$$b_0 + b_1 (a_1 x + \dots) + b_2 (a_1 x + \dots)^2 + \dots = x$$

$$[x^0] : b_0 = 0$$

$$[x^1] : a_1 b_1 = 0 \implies b_1 = \frac{1}{a_1}$$

$$[x^2] : b_1 a_2 + b_1 a_1^2 = 0 \implies b_2 = -\frac{b_1 a_2}{a_1^2}$$

$$[x^3] : b_1 a_3 + 2b_2 a_1 a_2 + b_3 a_1^3 = 0 \implies b_3 = \dots \frac{a_1^3}{a_1^3}$$

$$[x^n] : \dots + b_n a_1^n = 0 \ n \geq 1$$

$$b_n = \dots \text{ rekurzivno}$$
desni inverz: $G_2(x) = c_0 + c_1 x + \dots, c_0 = 0$

$$F \circ G_2 = x$$

$$a_1(c_1 x + \dots) + a_2(c_1 x + \dots)^2 + \dots = x$$

$$[x^0] : 0 = 0$$

$$[x^1] : a_1 c_1 = 1 \implies c_1 = \frac{1}{a_1}$$

$$[x^2] : a_1 c_2 + a_2 c_1^2 = 0 \implies c_2 = -\frac{a_2 c_1^2}{a_1}$$

$$[x^3] : a_1 c_3 + 2a_2 c_1 c_2 + a_3 c_1^3 = 0 \implies c_3 = \frac{\dots}{a_1}$$

$$[x^n] : a_1 c_n + \dots = 0 \implies c_n = \frac{\dots}{a_1}.$$

$$(G_1 \circ F) \circ G_2 = G_2$$

$$G_1 \circ (F \circ G_2) = G_1.$$

Iz asociativnosti (ki je nismo dokazali) sledi $G_1 = G_2 = F^{<-1>}$.

Trditev 2.3.5.

$$F_n(0) = 0$$

$$\lim_{N\to\infty} \prod_{n=1}^N (1+F_n(x))$$
 obstaja $\iff \lim_{n\to\infty} v(F_n(x)) = \infty$.

Dokaz DN.

Primer.

$$(1+x)(1+x)(1+x)\dots$$
 - ni ok,
 $(1+x)(1+x^2)(1+x^3)\dots$ - ok.

Opomba.

$$K[[x,y]] = K^{\mathbb{N} \times \mathbb{N}}$$

 $\sum a_{n,m}x^ny^m$ bivariantna potenčna vrsta.

$$\sum_{k,m} \binom{n}{k} x^k y^m = \sum_{m} (1+x)^m y^m = \frac{1}{1-(1+x)y}.$$

$$K[[x_1, x_2 \dots]]$$

$$x_1 x_2^2 x_3 + x_2 x_3 + \dots$$
 - ok

$$x_1x_2x_3x_4\cdots$$
 - ni ok.

2.4 Reševanje linearnih rekurzivnih enačb s konstantnimi koeficienti

(1)
$$a_n = 2a_{n-1} + 1$$
 $n \ge 1, a_0 = 1$
1, 3, 7, 15...

$$F(x) = \sum_n a_n x^n$$
 rodovna funkcija (angl. generating function) zapo-

redja.

$$F(x) - 1 = \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} (2a_{n-1} + 1)x^n = 2xF(x) + \frac{x}{1-x}$$

$$F(x)(1-2x) = 1 + \frac{x}{1-x} = \frac{1}{1-x}$$

$$F(x) = \frac{1}{(1-x)(1-2x)}.$$

Ekvivalentno:

$$a_n = 2a_{n-1} + 1 \quad / \cdot x^n \sum_{n=1}^{\infty}$$

$$F(x) - 1 = \frac{x}{1-x} + 2xF(x)$$

$$F(x) = \frac{1}{(1-x)(1-2x)} = \frac{A}{1-x} + \frac{B}{1-2x} = \frac{A(1-2x) + B(1-x)}{(1-x)(1-2x)}$$

$$/ \cdot (1-x), x = 1$$

$$\frac{1}{-1} = A \implies A = -1$$

$$/ \cdot (1-2x), x = \frac{1}{2}$$

$$B = 2$$

$$a_n = -1 + 2^{n+1}$$
.

(2)
$$F_n = F_{n-1} + F_{n-2} \ n \ge 2, F_0 = F_1 = 1 \quad / \cdot x^n \sum_{n=2}^{\infty} F_n x^n$$

$$F(x) = \sum_n F_n x^n$$

$$F(x) - 1 - x = x(F(x) - 1) + x^2 F(x)$$

$$F(x) = \frac{1}{1 - x - x^2} = \frac{1}{(1 - y_1 x)(1 - y_2 x)}.$$
Ničli $1 - x - x^2$ sta $\frac{1}{y_1}, \frac{1}{y_2}$

$$y_1, y_2 \text{ sta ničli } y^2 - y - 1 \text{ (obrnjen polinom), torej } x_1, x_2 = \frac{-1 \pm \sqrt{5}}{2}.$$

V splošnem:

$$p(x) = c_0 + c_1 x + \dots + c_d x^d; \ c_d \neq 0$$

ima ničle $\lambda_1 \dots \lambda_d$, ima $p^{\text{obr}}(x) = c_0 x^d + c_1 x^{d-1} + \dots + x_d \text{ (obrnjeni polinom) ničle } \frac{1}{\lambda_1} \dots \frac{1}{\lambda_d}$:

$$p^{\text{obr}}\left(\frac{1}{\lambda_i}\right) = c_0 \cdot \frac{1}{\lambda_i^d} + c_1 \cdot \frac{1}{\lambda_i^{d-1}} + \dots + c_d$$
$$= \frac{c_0 + c_1 \lambda_i + \dots + c_d \lambda_i^d}{\lambda_i^d} = 0$$

$$F(x) = \frac{1}{1 - x - x^2}$$

$$= \frac{1}{(1 - y_1 x)(1 - y_2 x)}$$

$$= \frac{\frac{1}{1 - \frac{y_2}{y_1}}}{1 - y_1 x} + \frac{\frac{1}{1 - \frac{y_1}{y_2}}}{1 - y_2 x}$$

$$= \frac{1}{y_1 - y_2} \left(\frac{y_1}{1 - y_1 x} - \frac{y_2}{1 - y_2 x} \right)$$

$$y_1 - y_2 = 5$$

$$\implies F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right).$$

Izrek 2.4.1. NSTE (naslednje trditve so ekvivalentne) za $(a_n)_n, a_n \in \mathbb{C}$:

(1)
$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_n a_{n-d} = 0$$
, $n \ge d$, $c_0, c_d \ne 0$,

(2)
$$F(x) = \sum_{n} a_n x^n = \frac{P(x)}{c_d + \dots + c_0 x^d}, \text{ deg } P < d,$$

(3) $a_n = \sum_{i=1}^k p_i(n) \lambda_i^n$, $\lambda_1 \dots \lambda_k$ ničle $c_d y^d + \dots + c_0$ (karakteristični polinom) s kratnostmi $\alpha_1 \dots \alpha_k$, $deg \ p_i < \alpha_i$.

Dokaz 2.4.2.

$$(1) \Longrightarrow (2)$$
:

$$c_{d}a_{n} + c_{d-1}a_{n-1} + \dots + c_{n}a_{n-d} = 0 \qquad / \cdot x^{n} \sum_{n=d}^{\infty}$$

$$c_{d}(F(x) - a_{0} - \dots - a_{d-1}x^{d-1})$$

$$+c_{d-1}(F(x) - a_{0} - \dots - a_{d-2}x^{d-2})$$

$$+ \dots + c_{0}x^{d}F(x) = 0$$

$$F(x) = (c_{d} + c_{d-1}x + c_{d-2}x^{2} + \dots + c_{0}x^{d}) = P(x) \quad degP < d.$$

$$(2) \Longrightarrow (1)$$
:

$$(c_d + c_{d-1}x + \dots + c_0x^d) \cdot \sum_n a_n x^n = P(x)$$

 $n \ge d : [x^n] : c_d a_n + \dots + c_0 a_{n-d} = 0.$

$$(2) \Longrightarrow (3)$$
:

$$\sum_{n} a_{n} x^{n} = \frac{P(x)}{c_{d} (1 - \lambda_{1} x)^{\alpha_{1}} \dots (1 - \lambda_{m} x)^{\lambda_{m}}}$$

$$\stackrel{\text{parc}}{=} \sum_{i=1}^{k} \sum_{j=1}^{\alpha_{i}} \frac{A_{ij}}{(1 - \lambda_{i} x)^{j}}$$

$$\frac{1}{(1 - x)^{d}} = \sum_{n} \binom{n + d - 1}{d - 1} x^{n}$$

$$a_{n} = \sum_{i=1}^{k} \left(\sum_{j=1}^{\alpha_{i}} A_{ij} \cdot \binom{n + j - 1}{j - 1}\right) \lambda_{i}^{n},$$

$$\binom{n + j - 1}{j - 1} \text{ binom v } n \text{ stopnje } j - 1 < \alpha_{i}.$$

$$(3) \Longrightarrow (2)$$
: podobno: $p_i(n)$ zapišemo v bazi $\binom{n+j-1}{j-1}$.

$$a_n - 7a_{n-1} + 18a_{n-2} - 12a_{n-3} = 0$$
, a_0, a_1, a_2 dani.
 $y^3 - 7y^2 + 18y - 12 = (y - 2)^2(y - 3)$
 $\implies a_n = 2^n(An + B) + 3^n \cdot C$.
 A,B,C dobimo iz a_0, a_1, a_2 (vstavimo, dobimo sistem).

Opomba.

$$\sum_{n} a_{n} x^{n} = \frac{P(x)}{Q(x)}, \ degP \ge degQ \iff c_{d} a_{n} + \dots + c_{n} a_{n-d} = 0 \text{ za } n \ge N$$
 (dovolj velik).

Opomba.

$$c_d a_n + \dots + c_0 a_{n-d} = r(n) \cdot \lambda^n, \ deg \ r = \alpha.$$

Homogena + partikularna

$$\sum_{n} r(n) \lambda^{n} x^{n} = \frac{R(x)}{(1 - \lambda x)^{\alpha}}.$$

Če $\lambda \alpha_i$ -kratna ničla karakterističnega polinoma: $\sum_{j=1}^{\alpha+\alpha_i} \dots$

Nastavek: $n^{\alpha_i}q(n)\lambda^n$, $deg q = \alpha_i - 1$.

Primer.

$$a_n - 4a_{n-1} + 4a_{n-2} = n \cdot 2^n, \ n \ge 2.$$

Partikularna: $n^2 \cdot (An + B)2^n$.

2.5 Nadaljevanje uporabe običajnih rodovnih funkcij

$$F(x) = \sum_{n} a_{n} x^{n}$$

$$F(x) \stackrel{\text{orf}}{\longleftrightarrow} (a_{n})_{n}$$

$$F'(x) \stackrel{\text{orf}}{\longleftrightarrow} ((n+1)a_{n+1})_{n}$$

$$xF'(x) \stackrel{\text{orf}}{\longleftrightarrow} (na_{n})_{n}$$

$$DF(x) := F'(x), D: \text{ operator odvajanja.}$$

$$(xD)^{2}F(x) \stackrel{\text{orf}}{\longleftrightarrow} (n^{2}a_{n})_{n}$$

$$p(xD)F(x) \stackrel{\text{orf}}{\longleftrightarrow} (p(n)a_{n})_{n}, \quad p \text{ polinom.}$$

$$\begin{split} &\sum_{j} j^{2} \\ &\xrightarrow{\frac{1}{1-x}} \overset{\text{orf}}{\longleftrightarrow} (1)_{n} \\ &(xD)^{2} \xrightarrow{\frac{1}{1-x}} \overset{\text{orf}}{\longleftrightarrow} \left(\sum_{j=0}^{n} a_{j}\right)_{n} \\ &x \cdot \left(\frac{x}{(1-x)^{2}}\right)' = \cdots = \frac{x(1+x)}{(1-x)^{3}} \text{ - samo členi. } F(x) \overset{\text{orf}}{\longleftrightarrow} (a_{n})_{n} \\ &F(x) \cdot \xrightarrow{\frac{1}{1-x}} \overset{\text{orf}}{\longleftrightarrow} \left(\sum_{j=0}^{n} a_{j}\right)_{n} \text{ - konvolucija z } (1)_{n}. \end{split}$$

$$[X^n] \left(F(x) \cdot \frac{1}{1-x} \right) = [x^n] \left(\frac{x^2}{(1-x)^4} + \frac{x^2}{(1-x)^4} \right)$$
$$= \binom{n+2}{3} + \binom{n+1}{3}$$
$$= \frac{n(n+1)(2n+1)}{6}.$$

$$F(x) \cdot G(x) = \sum_{n} a_{n} x^{n} \cdot \sum_{n} b_{n} x^{n} = \sum_{n} \left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}$$
.
Naj bo 1. del struktura $A((a_{n})_{n})$ preštevalno zaporedje), naj bo 2. del struktura $B((b_{n})_{n})$ preštevalno zaporedje): $\sum_{k=0}^{n} a_{k} b_{n-k}$.

Primer.

(1) m kroglic, rdeče, črne, zelene, zelenih kroglic sodo in so na koncu. $1, 2, 5, 10 \dots$

 $A\colon \mathrm{rde\check{c}e} \ / \ \check{\mathrm{c}}\mathrm{rne} \ \mathrm{kroglice} \colon \, 2^n \to \frac{1}{1-2x}$

 $B\colon \text{sodo mnogo zelenih kroglic: } 1,0,1,0,1\cdots \to \frac{1}{1-x^2}$

$$\frac{1}{1-2x} \cdot \frac{1}{1-x^2} = \frac{\frac{4}{3}}{1-2x} + \frac{-\frac{1}{2}}{1-x} + \frac{\frac{1}{6}}{1+x}$$
$$a_n = \frac{4}{3} \cdot 2^n - \frac{1}{2} + \frac{1}{6}(-1)^n.$$

(2) Kompozicije s k členi

A: neničelno število: $0,1,1,1,1\cdots \to \frac{x}{1-x}$

$$\left(\frac{x}{1-x}\right)^k = \sum_n \binom{n+k-1}{k-1} x^{n+k} = \sum_n \binom{n-1}{k-1} x^n,$$

šibke kompozicije:

$$\left(\frac{1}{1-x}\right)^k$$
,

kompozicije z lihimi členi: $0, 1, 0, 1, 0, 1 \cdots \rightarrow \frac{x}{1-x^2}$

$$\left(\frac{x}{1-x^2}\right)^k$$
.

(3) S(n,k)

$$n = 7, k = 3: \{\{1, 4, 5\}, \{2, 7\}, \{3, 6\}\}\$$

$$\sum_{n} S(n,k)x^{n} = ?$$

Vrstni red določimo: 1 v 1. bloku, v 2. bloku najmanjše število, ki ni v

1. bloku ...

 \rightarrow 1 2 3 1 1 3 2 (primer od prej).

Dobimo: zaporedje n števil v [k], vsa od 1 do k se pojavijo, 1. pojavitev i je pred 1. pojavitvijo i+1

$$1 (1 \dots 1) 2 (1/2 \dots 1/2) 3 (\dots) \dots$$

$$x \cdot \frac{1}{1-x} \cdot x \cdot \frac{1}{1-2x} \dots$$

$$\sum_{n} \frac{1-x}{S(n,k)} x^{n} = \frac{x^{k}}{(1-x)(1-2x)...(1-kx)}.$$

Ekvivalentno: $(1 - kx) \sum_{n} S(n,k)x^{n} = \sum_{n} S(n-1,k-1)x^{n}$

$$[x^n]: S(n,k) - kS(n-1,k) = S(n-1,k-1)$$

$$\frac{x^k}{(1-x)\dots(1-kx)} = \frac{(-1)^k}{k!} + \sum_{j=1}^k \frac{A_j}{1-jx} \stackrel{DN}{=} \dots$$

(4) Razčlenitve

 $\overline{p_k}(n) \stackrel{\text{konjugiranje}}{=}$ število razčlenitevns členi $\leq k$

$$\frac{1}{1-x} \cdot \frac{1}{1-x^2} \dots \frac{1}{1-x^k}
= \sum_{n} \overline{p_k}(n) x^n
= (1+x+x^2+\dots)(1+x^2+x^4+\dots)(1+x^3+\dots)\dots(1+x^k+\dots)$$

$$[x^n]: x^n = x^{m_1} \cdot x^{2m_2} \dots x^{km_k}$$

$$n = m_1 + 2m_2 + \dots + km_k$$

$$k \dots k \dots 32 \dots 21 \dots 1$$

$$\sum_{n} p_{n}(n)x^{n} = \lim_{k \to \infty} \sum_{n} \overline{p_{k}}(n)$$

$$= \lim_{n \to \infty} \frac{1}{\prod_{j=1}^{n}}$$

$$= \prod_{i=1}^{\infty} \frac{1}{1 - x^{i}}.$$

d(n): število razčlenitev n z različnimi členi

$$\sum_{n} d(n)x^{n} = \prod_{i=1}^{\infty} (1 - x^{i})$$
 (0 ali 1-krat vedno)

o(n) =število razčlenitev n z lihimi členi

$$\sum_{n} o(n) x^{n} = \prod_{i=0}^{\infty} \frac{1}{1 - x^{2i+1}}$$

$$\prod_{i} (1+x^{i}) \cdot \frac{1-x^{i}}{1+x^{i}} = \prod_{i} \frac{1-1^{2i}}{1-x} = \prod_{i} \frac{1}{1-x^{2i+1}}$$

$$\implies o(n) = d(n).$$

DN: bijekcija.

(5) c_n : Dyckove poti dolžine n

$$c_{n+1} = \prod_{k=0}^{n} c_k \cdot c_{n-k} \qquad / \cdot x^{n+1} \sum_{n} F(x) - 1 = x \cdot \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} c_k c_n - k \right) x^n = x \cdot F^2(x)$$

$$F(x) = 1 + xF^2(x):$$

1: prazna, $xF^2(x)$: dolžine n, 2n korakov

Motzkinova pot: v smeri (1,1), (1,-1), (1,0)

$$M(x) = 1 + xM(x) + x^2M^2(x)$$
:

1: prazna, xM(x): naravnost, $x^2M^2(x)$: desno-gor

$$xF^{2} - F + 1 = 0$$

$$F = \frac{-1 \pm \sqrt{1 - 4x}}{2x}$$

$$\sqrt{1 - 4x} = 1 - \sum_{n=1}^{\infty} \frac{1}{n} {2n-2 \choose n-1} \cdot \frac{(-1)^n}{2^{2n-1}} (-4x)^n = 1 - \sum_{n=1}^{\infty} \frac{2}{n} {2n-2 \choose n-1} x^n$$

$$\frac{1 + \sqrt{1 - 4x}}{2x} - \text{ne, ker } \frac{2 + \dots}{2x}$$

$$\frac{1 - \sqrt{1 - 4x}}{2x} = \sum_{n=0}^{\infty} \frac{1}{n+1} {2n \choose n} x^n.$$

Druga utemeljitev:

$$4x^{2}F^{2} - 4xF + 4x = 0$$

$$(2xF - \left(1 - \sqrt{1 - 4x}\right))(2xF - \left(1 + \sqrt{1 - 4x}\right)) = 0 \text{ v } K[[x]].$$

$$2xF - \left(1 + \sqrt{1 - 4x}\right) \neq 0 \text{ (konstantni koeficient nima 0)}$$

$$\implies 2xF = 1 - \sqrt{1 - 4x}.$$

 ${\cal F}^k(x)$: razdelimo na kdelov, vsakemu damo strukturo ${\cal F}.$

 $\sum_{k=0}^{\infty}F^k(x)=\frac{1}{1-F^k(x)}$: razdelimo na poljubno mnogo delov, vsakemu F.

Primer.

(1) Kompozicije n.

$$\frac{1}{1 - \frac{x}{1 - x}} = \frac{1 - x}{1 - 2x} = \begin{cases} 2^{n - 1} & n > 0\\ 0 & n = 0 \end{cases}$$

kompozicije s členi 1 in 2

$$\frac{1}{1-(x+x^2)}.$$

(2) $2 \times n$ plošča, domine 2×1 .

Primitivni tlakovanji

$$\frac{1}{1-x-x^2}$$

Domini 1×1 in 2×1

n = 1: 1 možnost,

$$n = 2: 3,$$

$$n = 3: 2,$$

$$n = 4: 2,$$

:

$$\frac{1}{1 - (2x + 3x^2 + 2x^3 + \dots)} = \frac{1}{1 - x^2 - \frac{2x}{1 - x}} = \frac{1 - x}{1 - 3x - x^2 + x^3}.$$

(3) Primitivna Dyckova pot: se ne dotakne x osi.

$$F(x) = \frac{1}{1 - xF(x)},$$

$$M(x) = \frac{1}{1 - x - x^2 F(x)}.$$

Levi faktor Dyckove poti: $L(x) = \frac{F(x^2)}{1-x-x^2F(x)} = \cdots = \frac{2}{1-2x+\sqrt{1-4x^2}}$

 $F(x^2)$: Dyckova pot (na začetku), $xF(x^2)$: korak + Dyckova pot

DN:
$$L_n = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$
, namig: $\frac{1}{\sqrt{1-4x}} = ?$

 $(F \circ G)(x) = a_0 + a_1 G(x) + a_2 G^2(x) + \dots$: razdelimo na poljubno delov, vsakemu delu damo strukturo G, delom da strukturo F.

Primer.

Število kompozicij s sodo mnogo lihimi členi.

$$n = 0:1$$

$$n = 1:0$$

$$n = 2:1$$

$$n = 3 : 0$$

$$n = 4:3$$

$$n = 5:0$$

$$n = 6:8$$

$$n = 7:0$$

$$n = 8:21$$

$$G(x) = \frac{x}{1-x^2}$$
 - lihi

 $F(x) = \frac{1}{1-x^2}$ - sodo mnogo.

$$(F \circ G)(x) = \frac{1}{1 - \left(\frac{x}{1 - x^2}\right)^2}$$

$$= \frac{(1 - x^2)^2}{(1 - x - x^2)(1 + x - x^2)}$$

$$= \dots$$

$$= 1 + \frac{x}{2} \left(\frac{1}{1 - x - x^2} - \frac{1}{1 + x - x^2}\right)$$

$$= \sum_{n \text{ lih}} F_n x^n$$

kjer se, ko razpišemo $\left(\frac{1}{1-x-x^2}-\frac{1}{1+x-x^2}\right)$ sodi odštejejo, lihi štejejo 2-krat, to delimo z 2.

Primer (Dobri Will Hunting).

- (1) Matrika sosednosti: $A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$.
- (2) Matrika, ki opisuje sprehode dolžine $3:A^3=\begin{bmatrix}2&7&2&3\\7&2&12&7\\2&12&0&2\\3&7&2&2\end{bmatrix}$.
- (3) Poišči rodovno funkcijo za sprehode $i \to j$

$$\sum_{k=0}^{\infty} A^k x^k = (I - Ax)^{-1} = \frac{1}{\det(I - Ax)} \left[\dots \right]$$

(4)
$$1 \to 3$$
:

$$\frac{2x^2 + 2x^3}{1 - 7x^2 - 2x^3 + 4x^4}.$$

2.6 Uporaba eksponentnih rodovnih funkcij

$$F(x) = \sum_{n} \frac{a_n}{n!} x^n$$

$$F(x) \stackrel{\text{erf}}{\longleftrightarrow} (a_n)_n$$

$$\left[\frac{x^n}{n!}\right] F(x) = a_n$$

$$\left[\frac{x^n}{n!}\right] F(x) = n! [x^n] F(x)$$

$$F'(x) \stackrel{\text{erf}}{\longleftrightarrow} (a_{n+1})_n$$

$$xF'(x) \stackrel{\text{erf}}{\longleftrightarrow} (n \cdot a_n)_n$$

$$p(xD) F(x) \stackrel{\text{erf}}{\longleftrightarrow} (p(n)a_n)_n.$$

(1)
$$F_{n+2} = F_{n+1} + F_n$$
; $n \ge 0$
 $F(x) = \sum_n \frac{F_n}{n!} x^n$
 $F''(x) - F'(x) - F(x) = 0$
 $\lambda^2 - \lambda - 1 = 0 \implies \lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$
 $F(x) = Ae^{\frac{1 + \sqrt{5}}{2}x} + Be^{\frac{1 - \sqrt{5}}{2}x}$
 $F_n = \left[\frac{x^n}{n!}\right] F(x) = A\left(\frac{1 + \sqrt{5}}{2}\right)^n + B\left(\frac{1 - \sqrt{5}}{2}\right)^n$.

(2)
$$i_n$$
: število involucij v S_n ($\pi^2 = id$).
 $i_n = i_{n-1} + (n-1)i_{n-2}$; $n \ge 2$:
 i_{n-1} : n fiksna točka
 i_{n-2} : n v transpoziciji z enim od $n-1$ ostalih.
 $I(x) = \sum_n \frac{i_n}{n!} x^n$
 $I'' - I' - (xI' + I) = 0$
 $I'' - (x + 1)I' - I = 0$
 $(I' - (x + 1)I')' = 0$
 $I' - (x + 1)I = c$
 $x = 0: 1 - 1 = 0 = c$
 $I' = (x + 1)I$
 $\int \frac{dI}{I} = \int (x + 1) dx$
 $\ln I = \frac{x^2}{2} + x + \log D$

$$I = De^{x + \frac{x^2}{2}} \stackrel{x=0}{\Longrightarrow} D = 1$$

$$I(x) = e^{x + \frac{x^2}{2}}.$$

$$\begin{split} F(x) &= \sum_n \frac{a_n}{n!} x^n \\ G(x) &= \sum_n \frac{b_n}{n!} x^n \\ F(x) G(x) &= \sum_n \left(\sum_{k=0}^n \frac{a_k}{k!} \frac{b_{n-k}}{(n-k)!} \right) x^n = \sum_n \left(\sum_{k=0}^n \binom{n}{k} a_k b_{n-k} \right) \frac{x^n}{n!} \\ \sum_{k=0}^n \binom{n}{k} a_k b_{n-k} \text{: binomska konvolucija.} \\ \text{orf: neoznačene strukture,} \end{split}$$

erf: označene strukture.

Primer.

 d_n : premestitve v S_n (dearangement) - permutacije brez negibne točke.

$$D(x) = \sum_{n} \frac{d_n}{n!} x^n$$
.

Permutacija = premestitev + množica negibnih točk.

$$(152) (3) (487) (6)$$

$$\frac{1}{1-x} = D(x) \cdot e^{x}$$

$$D(x) = \frac{e^{-x}}{1-x}$$

$$e^{-x} = \sum_{n} \frac{(-1)^{n}}{n!} x^{n}$$

$$\frac{e^{-x}}{1-x} = \sum_{n} \left(\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right) x^{n}$$

$$d_{n} = n! \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}.$$

$$F(x)G(x) = \sum_{n} \left(\sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k} \right) \frac{x^n}{n!}$$

$$= \sum_{n} \left(\sum_{(S_1, S_2), S_1 \cap S_2 = \emptyset, S_1 \cup S_2 = [n]} a_{|S_1|} b_{|S_2|} \right) \frac{x^n}{n!}$$

$$F^{k}(x) = \sum_{n} \left(\sum_{(i_{1}...i_{k}), i_{j} \geq 0, i_{1}+\cdots+i_{k}=n} \binom{n}{i_{1}...i_{k}} a_{i_{1}}...a_{i_{k}} \right) \frac{x^{n}}{n!}.$$

Predpostavimo F(0) = 0!!

$$F^{k}(x) = \sum_{n} \left(\sum_{(S_{1} \dots S_{k}), S_{i} \neq \emptyset, S_{i} \cap S_{j} = \emptyset, S_{1} \cup \dots \cup S_{k} = n} a_{|S_{1}|} \dots a_{|S_{k}|} \right) \frac{x^{n}}{n!}$$

$$= k! \sum_{n} \left(\sum_{(B_{1} \dots B_{k}) \text{razdelitev } [n]} a_{|B_{1}|} \dots a_{|B_{k}|} \right) \frac{x^{n}}{n!}.$$

Izrek 2.6.1.

$$F(0) = 0.$$

 $\frac{1}{k!}F^k(x)$ je erf za strukturo: izberemo razdelitev in vsakemu bloku damo strukturo F.

Primer.

$$\sum_{n} S(n,k) \frac{x^{n}}{n!} = \frac{1}{k!} (e^{k} - 1)^{k}$$

F: neprazna množica: $0,1,1\ldots \stackrel{\text{erf}}{\Longrightarrow} e^x - 1$.

Binomski izrek $(e^x - 1)k = e^{-kx} - \dots$ nam da formulo za S(n,k).

$$\sum_{n} c(n,k) \frac{x^n}{n!} = \frac{1}{k!} \left(\log \frac{1}{1-x} \right)^k$$

$$F$$
: cikel: $a_n = (n-1)!$ za $n \ge 1 \stackrel{\text{erf}}{\Longrightarrow} \log \frac{1}{1-x}$

$$\sum_{n} L(n,k) \frac{x^n}{n!} = \frac{1}{k!} \left(\frac{x}{1-x} \right)^k$$

F: neprazna linearno urejena množica: $a_n = (n)!$ za $n \ge 1 \stackrel{\text{erf}}{\Longrightarrow} \log \frac{1}{1-x}$.

Izrek 2.6.2 (Eksponentna formula).

$$F(0) = 0.$$

 $e^{F(x)}$ je erf za strukturo: izberemo razdelitev, vsakemu (bloku) damo strukturo ${\cal F}.$

Dokaz 2.6.3.
$$\sum_{k=0}^{\infty} \frac{1}{k!} F^k(x) = e^{F(x)}$$
.

Primer.

(1) Permutacija = množica disjunktnih ciklov. $\frac{1}{1-x} = e^{\log \frac{1}{1-x}}.$

DN: direktno.

(2) Involucija = množica ciklov dolžine 1 in 2: (0,1,1,0,0...) $\sum_{n} \frac{i_{n}}{n!} = e^{x + \frac{x^{2}}{2}}$ $a_{n} = |\{\pi \in S_{n} : \pi^{6} = id\}|$ $\sum_{n} \frac{a_{n}}{n!} x^{n} = e^{x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \frac{x^{6}}{6}}$ $\sum_{n} \frac{d_{n}}{n!} x^{n} = e^{\sum_{n \geq 2} \frac{x^{n}}{n}} = e^{\log \frac{1}{1-x} - x} = \frac{e^{-x}}{1-x}.$

(3)
$$\sum_{n} \frac{B(n)}{n!} x^n = e^{e^x - 1}$$
.

(4) a_n : število 2-regularnih grafov $(degv = 2 \ \forall v \in V(G))$, F: moč množice neusmerjenih ciklov dolžime ≥ 3 : $a_n = \frac{(n-1)!}{2}$; $n \geq 3$ $\sum_n \frac{a_n}{n!} x^n = e^{\sum_{n\geq 3} \frac{(n-1)!}{2} \frac{x^n}{n}} = e^{\frac{1}{2} \left(\log \frac{1}{1-x} - x - \frac{x^2}{2}\right)} = \frac{e^{-\frac{x}{2} - \frac{x^2}{4}}}{\sqrt{1-x}}$.

Kompozitum:

$$(F \circ G)(x) = \sum_{k} \frac{a_k}{k!} G^k(x).$$

Izrek 2.6.4 (O kompoziciji).

$$F(x), G(x), F(0) = 0.$$

Potem je $(F \circ G)(x)$ erf za strukturo: množico razdelimo na bloke, vsakemu bloku damo strukturo G, množici blokov damo strukturo F.

- (1) B(n): urejena Bellova števila = število urejenih razdelitev množice [n]. B(2) = 3: $\{1,2\}$; $\{1\},\{2\}$; $\{2\},\{1\}$ $B(n) = \sum_k S(n,k)$. B(n): število vseh surjekcij iz [n]. $\sum_n \frac{B(n)}{n!} x^n = \frac{1}{1-(e^x-1)} = \frac{1}{2-e^x}$ $G(x) = e^x 1$ $F(x) = \frac{1}{1-x}$.
- (2) Permutacije z lihim številom ciklov $\sum_{n} a_{n} \frac{x^{n}}{n!} = \frac{e^{\log \frac{1}{1-x}} e^{-\log \frac{1}{1-x}}}{2} = \frac{1}{2} \left(\frac{1}{1-x} (1-x) \right).$ $G(x) = \log \frac{1}{1-x}$ $F(x) = \frac{e^{x} e^{-x}}{2} \qquad (F(x) F(-X) : \text{lihi})$

$$a_n = \begin{cases} 0 \ n = 0 \\ 1 \ n = 1 \\ \frac{n}{2} \ n \ge 2 \end{cases}$$

orf erf
$$F(x)G(x) F(x)G(x)$$

$$F^{k}(x) \frac{\frac{1}{k!}F^{k}(x)}{\frac{1}{1-F(x)}, F(0) = 0} e^{F(x)}$$

$$F \circ G F \circ G$$

Algebraične rodovne funkcije 2.7

K[x] polinomi,

K[[x]] formalni polimon (fp?),

K(x) racionalne funkcije (polje ulomkov za K[x]),

$$\frac{1}{x} \in K(x), \ \frac{1}{x} \notin K[[x]],$$

 $K(x) \cap K[[x]]$ racionalna rodovna funkcija.

Za taka zaporedja imamo linearne rekurzije.

$$F(x) = \sum_{n} a_n x^n$$

$$xF^2 - F + 1 = 0$$

 $c_{n+1} = \sum_{k=0}^n c_k c_{n-k}$ kvadratična rekurzija.

Ali je
$$F(x) \in K(x)$$
?

$$F(x) = \frac{P(x)}{Q(x)}$$

$$F(x) = \frac{P(x)}{Q(x)}$$

$$xP^2 = PQ - Q^2 = Q(P - Q)$$

L: deg $P\cdot 2+1$ - liha stopnja,

$$D: \begin{cases} \deg P < \deg Q \implies Q(P-Q) \text{ sode stopnje} \\ \deg P \ge \deg Q \implies \deg Q(P-Q) \le 2 \cdot \deg P \end{cases}$$

Definicija 2.7.1.

 $F(x) \in K[[x]]$ je algebraična redad,če

$$Q_d(x)F^d(x)+Q_{d-1}(x)F^{d-1}(x)+\cdots+Q_0(x)=0$$
 za $Q_0\cdot Q_d\in K[X],\,Q_0,Q_0\neq 0$, ne obstaja taka enačba stopnje $< d$.

Algebraična reda d = racionalna fpv (formalna potenčna vrsta).

$$F(x) = \sum_n F_n x^n$$
, $M(x) = \sum_n M_n x^n$ algebraični reda 2.

$$Q_d(x)F^d(x) + \dots + Q_0(x) = 0 \text{ za } Q_0, Q_d \neq 0$$

$$C_n: xF(x)^2 - F(x) + 1 = 0$$

$$M_n: x^2 F(x)^2 + x F(x) + 1 = 0.$$

S-drevo:

$$S \subseteq \{1, 2, 3 \dots \}.$$

Drevo s korenom, vsak element je list ali pa je število naslednikov v S.

$$\{2,3\}$$
-drevo

 a_n : število S-dreves z n vozlišči,

 b_n : število S-dreves z n listi.

$$U(x) = \sum_{n} a_n x^n$$

$$V(t) = \sum_{n} b_n t^n$$
.

$$S = \{2,3\}$$

$$U(x) = x + xU^{2}(x) + xU^{3}(x)$$
:

x: 1 vozlišče.

$$V(t) = t + v^2(t) + v^3(t)$$
:

koren ne prispeva k številu listov.

$$U(x) = x + \sum_{k \in S} x U^k(x)$$

$$V(t) = t + \sum_{k \in S} tV^k(t), 1 \notin S.$$

S končna \Longrightarrow S algebraična.

Če S neskončna, sta U in V vseeno lahko algebraični.

•
$$S=\{2\}$$
 - dvojiška drevesa.
$$v=t+v^2$$

$$v^2-v+t=0 \implies v=\frac{1-\sqrt{1-4t}}{2}=\sum_{n=1}^{\infty}C_{n-1}t^n$$
 C_n : število dvojiških dreves z $n+1$ listi.

- $S = \{k\}$ $v = t + v^k$ - Lagrangeeva inverzija (kasneje).
- $S = \{1, 2, 3, 4 \dots\}$ $U = x + x \sum_{k=1}^{\infty} U^k = x + x \frac{U}{1-U}$ $U U^2 = x xU + xU = x$ $U^2 U + x = 0 \implies U = \frac{1 \sqrt{1 4x}}{2} = \sum_{n=1}^{\infty} C_{n-1} x^n$ C_n : število ravninskih dreves z n + 1 vozlišči.

Izkaže se: U,V algebraični \iff S se za končno množico razlikuje od končne unije aritmetičnih zaporedij.

Trditev 2.7.2.

 $xF^2 - F + 1 = 0$ $F^2 + 2xFF' = 0$

 $K_{alg}[[x]] = \{F[x] \in K[[x]] \text{ algebraična}\}$ je podalgebra K[[x]].

$$F' = \frac{F^2}{1-2xF} \stackrel{?}{=} a + bF; \ a, b \in K(x)$$

$$F^2 = a + bF - 2axF - 2bxF^2$$

$$(1 - 2bx)F^2 + (2ax - b)F - ax = 0$$

$$(1 - 2bx + (2ab - x))F - 1 - 2bx - ax = 0$$

$$\Rightarrow: 2 \text{ enačbi, } 2 \text{ neznanki.}$$

$$a = \frac{1}{x(1-4x)}$$

$$b = \frac{2x-1}{x(1-4x)}$$

$$F' - \frac{1}{x(1-4x)} - \frac{2x-1}{x(1-4x)}F = 0$$

$$x(1 - 4x)F' - 1 - (2x - 1)F = 0$$

$$F' = \sum_{n} nC_n x^{n+1}$$

$$[x^n]: nC_n - 4(n-1)C_{n-1} + 2C_{n-1} + C_n \text{ za } n > 1$$

$$C_n = \frac{2(n-1)}{n+1}C_{n-1} \implies \dots C_n = \frac{1}{n+1}\binom{2n}{n}.$$

Definicija 2.7.3.

$$F(x) \in K[[x]]$$
 je D-končna, če je

$$R_n(x)F^{(d)}(x) + \cdots + R_1F'(x) + R_0 = 0 \text{ za } R_i(x) \in K[x].$$

Ekvivalentno: vektorski prostor nad K(x), generiran z F, F', F'' . . . je končno razsežen.

Definicija 2.7.4.

$$(a_n)_n$$
 je P-rekurzivna, če je $p_d(n)a_n + \cdots + p_0(n)a_{n-d} = 0$ za $n \ge d$.

Trditev 2.7.5.

$$F(x) = \sum_{n} a_n x^n$$
 je D-končna \iff $(a_n)_n$ je P-rekurzivna.

Torej: za P-rekurzivno zaporedje lahko člene hitro izračunamo.

Zqled.

$$F(x) = \sum_{n} C_{n} x^{n}$$
 je *D*-končna,

$$e^x$$
 je *D*-končna: $F' - F = 0$,

 e^x ni algebraična.

Izrek 2.7.6.

F(x) algebraična $\implies D$ -končna.

Dokaz 2.7.7. (skica):

$$Q_d(x)F^d(x) + \dots + Q_0(x) = 0 \quad /'$$

$$Q_d(x)'F^d(x) + dQ_d(x)F^{d-1}(x)F'(x) + \dots + Q'_0(x) = 0$$

$$F'(x) \in K(x, F(x))$$

Iz algebre:

K obseg, u v večjem obsegu;

- (i) v algebraičnem: K[u] = K(u) končno razsežen VP,
- (ii) v transcendentnem: $K[u] \subseteq K[x]$ ("u spremenljivka").

$$K = K[x]$$
$$u = F(x)$$

$$K[u] = K(x, F(x)).$$

Torej: K(x,F(x)) je končno razsežen VP nad K(x), torej so $1,F,F'\dots$ linearno neodvisni $\implies F$ je D-končna.

Eulerjeva in eulerska števila 2.8

 E_n : število alternirajočih permutacij v S_n .

$$E_{3} = 2 (231), (132)$$

$$2E_{n+1} = \sum_{k=0}^{n} {n \choose k} E_{k} E_{n-k} + \delta_{n0}$$

$$E(x) = \sum_{n} \frac{E_{n}}{n!} x^{n}$$

$$2F' = F^{2} + 1$$

$$\int \frac{2dF}{F^{2}+1} = \int dx$$

$$2 \arctan F = x + 2c$$

$$F = \tan\left(\frac{x}{2} + c\right)$$

$$F(0) = 1 = \tan c \implies c = \frac{\pi}{4}$$

$$\tan\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\tan\frac{x}{2} + 1}{1 - \tan\frac{x}{2}} = \frac{\sin\frac{x}{2} + \cos\frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}} = \frac{1 + \sin x}{\cos x}.$$

Izrek 2.8.1.

$$\sum_{n} \frac{E_{n}}{n!} x^{n} = \frac{1+\sin x}{\cos x} \text{ OZ.}$$

$$\frac{1}{\cos x} = \sum_{n \text{ sod}} \frac{E_{n}}{n!} x^{n}$$

$$\frac{1}{\sin x} = \sum_{n \text{ lih}} \frac{E_{n}}{n!} x^{n}$$

Opomba.

Bernoullijeva števila.

Bernoullijeva števila.
$$B_n = \begin{cases} 1 & n = 0 \\ \frac{1}{2} & n = 1 \\ 0 & n > 1, n \text{ lih} \\ \frac{(-1)^{\frac{n}{2}+1}E_{n-1}}{2^n(2^n-1)} & n > 0, n \text{ sod} \end{cases}$$

$$\sum_n B_n \frac{x^n}{n!} = \frac{xe^x}{e^x-1}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{2^{2n}(-1)^{k+1}\pi^{2k}}{2 \cdot (2k)!} = \frac{E_{2k-1}\pi^{2k}}{2(2k-1)!(2^{2k}-1)} = \zeta(2k)$$
Riemmanova funkcija ζ :

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 za $Re \ s > 1$.

Z analitičnim nadaljevanjem lahko ζ definiramo na $\mathbb{C} \setminus \{1\}$.

 $\zeta(-n) = \frac{B_{n+1}}{n+1}$ - soda negativna števila so ničle - trivialne ničle.

Riemmanova hipoteza:

 $Re\ z = \frac{1}{2}$ za vsako netrivialno ničlo z funkcije ζ .

$$\zeta(-1) = -\frac{B_2}{2} = -\frac{1}{12}$$

 $\sum_{n=1}^{\infty} n = -\frac{1}{12}$

$$\sum_{i=1}^{n} n(n+1) = n^2$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}$$

$$\sum_{i=1}^{n} i^{k} = \frac{1}{k+1} \sum_{l=0}^{k} {k+1 \choose l} B_{l} n^{k+1-l}$$

$$\sum_{i=1}^{n} i^{k} = \frac{1}{k+1} \sum_{l=0}^{k} {k+1 \choose l} B_{l} n^{k+1-l}$$

$$= \frac{n^{k+1}}{k+1} + \frac{n^{k}}{2} + \sum_{l=1}^{\lfloor \frac{k}{2} \rfloor} \frac{(-1)^{l+1} {k \choose 2l-1}}{2^{2l} (2^{2l}-1)} E_{2l-1} n^{k-1-2l}$$

$$= \log n + \gamma + \frac{1}{2n} - \sum_{k=1}^{\infty} \frac{B_{2k}}{2k \cdot n^{2k}}$$

$$= \log n + \gamma + \frac{1}{2n} - \sum_{k=1}^{\infty} \frac{(-1)^{k} E_{2k-1}}{2^{2k} (2^{2k}-1)^{n^{2k}}},$$

$$= \log n + \gamma + \frac{1}{2n} - \sum_{k=1}^{\infty} \frac{B_{2k}}{2k \cdot n^{2k}}$$

$$= \log n + \gamma + \frac{1}{2n} - \sum_{k=1}^{\infty} \frac{(-1)^k E_{2k-1}}{2^{2k} (2^{2k} - 1) n^{2k}}$$

kjer je $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ n-to harmoično število.

A(n,k): število permutacij v S_n z k-1 spusti.

$$A(n,k) = (n+1-k)A(n-1,k-1) + kA(n-1,k)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots /' / \cdot x$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + \dots // \cdot x$$
$$\frac{x+x^2}{(1-x)^3} = x + 4x^2 + 9x^3 + \dots // \cdot x$$

$$\frac{x+x^2}{(1-x)^3} = x + 4x^2 + 9x^3 + \dots / / \cdot x$$

$$\frac{x+4x^2+x^3}{(1-x)^4} = x + 8x^2 + 27x^3 + \dots$$

$$A_n(x) = \sum_k A(n,k)x^k$$
 eulerski polinom.

Izrek 2.8.2.

$$\sum_{m} m^{n} x^{m} = \frac{A_{n}(x)}{(1-x)^{n-1}}.$$

Dokaz 2.8.3.

Indukcija:

$$n = 0$$
: $\frac{1}{1-x} = \frac{1}{1-x}$

$$n-1 \rightarrow n$$
:

$$\sum_{m} m^{n-1} x^{m} = \frac{A_{n-1}(x)}{(1-x)^{n}} / / \cdot x$$

$$x \cdot \sum_{m} m^{n-1} x^{m-1} = \frac{A'_{n-1}(x)(1-x)^{n} + A_{n-1}(x)n(1-x)^{n-1}}{(1-x)^{2n}} \stackrel{?}{=} \frac{A_{n}(x)}{(1+x)^{n+1}}$$

$$[x^{k}]: (k+1)A(n-1,k-1) - kA(n-1,k) + nA(n-1,k) = A(n,k) \checkmark$$

$$A_{n-1}(x) = \sum_{k} A(n-1,k)x^{k}$$

$$A'_{n-1}(x) = \sum_{k} kA(n-1,k)x^{k-1}.$$

Izrek 2.8.4.

 $\sum_{n,k} A(n,k) x^k \frac{y^n}{n!} = \frac{1-x}{1-xe^{xy(1-y)}}$ - mešana rodovna funkcija (običajna v x, eksponentna v y).

Dokaz 2.8.5

$$\sum_{n,k} A(n,k) x^k \frac{y^n}{n!}$$
= $(1-x) \left(\sum_k \frac{A_n(x)}{(1-x)^{n+1}} \cdot \frac{y^n}{n!} (1-x)^n \right)$
= $(1-x) \sum_n \left(\sum_m m^n x^m \right) \frac{y^n (1-x)^n}{n!}$
= $(1-x) \sum_m \left(\sum_n \frac{m^n y^n (1-x)^n}{n!} \right) x^n$
= $(1-x) \sum_m e^{xy(1-x)} x^m$
= $\frac{1-x}{1-e^{xy(1-x)}}$.

Izračun povprečij in variance 2.9

Koliko elementov ima v povprečju podmnožica [n]? $\frac{\sum_{T \subseteq [n]} |T|}{2^n} = \frac{\sum_n k \binom{n}{k}}{2^n} = \frac{n \cdot 2^{n-1}}{2^n} = \frac{n}{2}$ $(1+x)^n = \sum_k \binom{n}{k} x^k /$

$$\frac{1}{2^n} = \frac{1}{2^n} = \frac{1}$$

$$x = 1$$
:

$$n \cdot 2^{n-1} = \sum_{k} k \binom{n}{k}.$$

S končna množica.

$$F(x) = \sum_{a \in S} x^{f(a)}$$

$$F(1) = |S|$$

$$F'(x) = \sum_{a \in S} f(a) \cdot x^{f(a)-1}$$

$$F'(1) = \sum_{a \in S} f(a)$$

$$\mu = \frac{F'(1)}{F(1)} = (\log' F)(1)$$

$$F(x) = (1+x)^n$$

$$\log F(x) = n \log(1+x)$$

$$\begin{split} \log' F(x) &= \frac{n}{1+x} \\ (\log' F)(1) &= \frac{n}{2} \\ \sigma^2 &= E(x^2) - \mu^2 \\ E(x^2) &= \frac{\sum_n f^2(s)}{|S|} \\ F'(x) + xF''(x) &= (xF'(x))' = \sum_{a \in S} f^2(a)x^{f(a)-1} \\ x &= 1: \\ \sigma^2 &= \frac{F'(1) + F''(1)}{F(1)} - \frac{F'(1)^2}{F(1)^2} &= \frac{F'(1)}{F(1)} + \frac{F''(1)F(1) - F'(1)^2}{F(1)^2}. \end{split}$$
 Torej
$$\mu = (\log' F)(1)$$

$$\sigma^2 &= (\log' F)(1) + (\log'' F)(1)$$

$$F(x) &= (1+x)^n$$

$$\mu = \frac{n}{2}$$

$$\log' F(x) &= \frac{n}{1+x}$$

$$\log'' F(x) &= \frac{n}{(1-x)^2}$$

$$\sigma^2 &= \frac{n}{2} - \frac{n}{4} = \frac{n}{4}$$

$$\frac{n}{2} \pm \frac{\sqrt{n}}{2}.$$
 Koliko ciklov ima v povprečju permutacija v S_n ?
$$\sum_{\pi \in S_n} x^{f(\pi)} &= \sum_k c(n,k)x^k = x^{\overline{n}} = F(x) \\ \log F(x) &= \log x + \log(x+1) + \dots + \log(x+n-1) \\ \log' F(x) &= \frac{1}{x} + \dots + \frac{1}{x+n-1}$$

$$\mu = H_n = \log n + \gamma + o(1)$$

$$\log'' F(x) &= -\frac{1}{x^2} - \dots - \frac{1}{(x+n-1)^2}$$

$$\sigma^2 &= H_n - \sum_{i=1}^n i^2 = \log n + \gamma - \frac{\pi^2}{6} + o(1)$$

$$\log n \pm \sqrt{\log n}.$$

2.10 Lagrangeeva inverzija

K[x] algebra polinomov,

K(x) obseg racionalnih funkcij (obseg ulomkov K[x]),

K[[x]] algebra formalnih potenčnih vrst,

 $K((x))=\{\sum_{n\geq n_0}a_nx^n;\ n_0\in\mathbb{Z},a_i\in K\}$ obseg formalnih Laurentovih vrst

(obseg ulomkov K[[x]]).

$$\frac{F(x)}{G(x)} = \frac{F(x)}{x^m H(x)}, \frac{F(x)}{H(x)} \in K[[x]], H(0) \neq 0.$$

Seštevanje, množenje, odvod, kompozitum, valuacija ($\in \mathbb{Z}$).

 $resF(x) = [x^{-1}]F(x)$ residuum.

Lema 2.10.1. $resF(x) = 0 \leftrightarrow F(x) = G'(x)$ za K((x)).

Dokaz 2.10.2.

 (\Longleftrightarrow)

$$F(x) = \left(\sum_{n \ge n_0} b_n x^n\right) = \left(\sum_{n \ge n_0} n b_n x^{n-1}\right)$$
$$[x^{-1}]F(x) = 0 \cdot b_0 = 0.$$

 (\Longrightarrow)

$$F(x) = \sum_{n \ge n_0} a_n x^n$$

$$G(x) = \sum_{n \ge n_0} \frac{a_{n-1} x^n}{n}$$

$$a_{-1} = 0.$$

Lema 2.10.3.

$$F(x) \in K((x)), F(x) \neq 0, res \frac{F'(x)}{F(x)} = v(F(x)).$$

Dokaz 2.10.4.

$$F(x) = x^{n_0}G(x)$$

$$n_0 = v(F(x))$$

$$G(x) \in K[[x]], G(0) \neq 0$$

$$\frac{F'(x)}{F(x)} = \frac{n_0 x^{n_0 - 1} G(x) + x^{n_0} x^{n_0} G'(x)}{x^{n_0} G(x)} = \frac{n_0}{x} + \frac{G'(x)}{G(x)}$$

$$\frac{G'(x)}{G(x)} \in K[[x]].$$

Lagrangeeva inverzija (1. verzija):

$$\begin{split} & F \in K[[x]] \\ & v(F(x)) = 1 \\ & n \cdot [x^n] \left(F^{<-1>}(x) \right)^k = k \cdot [x^{-k}] F^{-n}(x); \end{split}$$

$$F^{-n}(x) \in K((x)).$$

$$\text{Torej: } n \cdot [x^n] F^{<-1>}(x) = res F^{-1}(x).$$

$$\textbf{Dokaz 2.10.5. } (F^{<-1>}(x))^k = \sum_{m \geq k} c_m x^m$$

$$x \leftrightarrow F(x)$$

$$x^k = \sum_{m \geq k} c_m (F(x))^m / (x) F'(x) / F'(x) / F'(x)$$

$$kx^{k-1} = \sum_{m \geq k} m c_m F^{m-1}(x) F'(x) / F'(x) / F'(x)$$

$$\frac{kx^{k-1}}{F^n(x)} = \sum_{m \geq k} m c_m F^{m-n-1}(x) F'(x) / F'(x)$$

$$[x^{-1}] \frac{kx^{k-1}}{F^n(x)} = [x^{-k}] \frac{k}{F^n(x)}$$

$$F^{m-n-1}(x) F'(x) = \frac{(F^{m-n}(x))'}{m-n}; m \neq n$$

$$res \left(F^{m-n-1}(x) F'(x)\right) = 0 \text{ če } m \neq n \text{ in 1 sicer (lemi)}$$

$$\to n \cdot a_n \cdot 1 \text{ (leva stran)}.$$

Primer.

$$F(x) = x - x^{2}$$

$$F^{<-1>}(x) = ?$$

$$n[x^{n}]F^{<-1>}(x) = [x^{-1}] \left(\frac{1}{1-x^{2}}\right)^{n} = [x^{-n}] \frac{x^{-n}}{(1-x)^{n}}$$

$$\frac{1}{(1-x)^{n}} = \sum_{m} {m+n-1 \choose n-1} x^{m}$$

$$[x^{n}]F^{<-1>}(x) = \frac{1}{n} {2n-2 \choose n-1} = C_{n-1}.$$
Še ena razlaga:
$$y - y^{2} = x$$

$$y^{2} - y + x = 0 \implies y = \frac{1 \pm \sqrt{1-4x}}{2} \implies y = x \sum_{n} C_{n} x^{n}.$$

Lagrangeeva inverzija (2. verzija)

$$\begin{split} F(x) &= xG(F(x)) \\ F(x) &\in K[[x]] \\ G(x) &\in K[[x]], G(0) \neq 0, v(F) = 1 \\ [x^k] F(k)^k &= k[x^{n-k}]G(x)^n. \end{split}$$

Dokaz 2.10.6.

$$\begin{split} f(x) &:= \frac{x}{G(x)}, v(f) = 1 \\ f(F(x)) &= \frac{F(x)}{G(F(x))} = 1 \to \text{ima levi inverz, tudi desni.} \\ n[x^n] F(x)^k &= k[x^n] \left(f^{<-1>}(x)\right)^k \end{split}$$

$$= k[x^{-k}]f^{-k}(x) = k[x^{-k}]x^{-n}G^n(x).$$

Primer.

(a)
$$S = \{k\}$$

 $k = 3$
 a_n : število k -dreves na n vozliščih.
 $v(x) = \sum_n a_n x^n$
 $V(x) = x + xV^k(x) = x (1 + V^k(x))$
 $G(x) = (1 + x)^n$
 $n[x^n]V(x)[x^{n-1}] (1 + x^k)^n = k[x^{n-1}] \sum_{i=0}^n \binom{n}{i} x^{k_i};$
 $n = ki + 1, i \in \mathbb{N}, a_n = a_{ki+1} = \frac{1}{n} \cdots = \frac{1}{ki+1} \binom{k_i+1}{i}.$

(b) Vpeta drevesa v K_n .

 r_n : število vpetih dreves s korenom v K_n .

$$R(x) = \sum_n \frac{r_n}{n!} x^n$$
 (vozlišča so označena).

Označimo drevo s korenom = koren + množica blokov, ki jim damo strukturo označenega drevesa s korenom.

$$R(x) = xe^{R(x)}$$

$$G(x) = e^{x}$$

$$n[x^{n}]R(x) = [x^{n-1}]e^{nx}$$

$$e^{n} = \sum_{k} \frac{n^{k}x^{k}}{n!}$$

$$\frac{nr_{n}}{n!} = \frac{n^{n-1}}{(n-1)!}$$

$$r_{n} = n^{n-1}$$

Število vpetih dreves v K_n je n^{n-2} .

2.11 Asimptotika koeficientov

$$\begin{split} K &= \mathbb{C} \\ F(x) &= \sum_n a_n x^n \\ F(x) &\in \mathbb{C}[[x]] \text{ ima pozitiven konvergenčni polmer} \\ R &= \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}. \end{split}$$

F je holomorfna v okolici 0.

Za $\forall \epsilon > 0$:

- $|a_n| < \frac{1}{R} + \epsilon \text{ za } \forall n \geq n_0$,
- $|a_n| > \frac{1}{R} \epsilon$ za neskončno mnogo n.

Npr.
$$F(z) = \frac{1}{1-z} = 1 + z + z^2 + \dots$$

$$R = 1$$
,

$$|a_n| < (1+\epsilon)^n$$
 za $\forall n$,

$$|a_n| > (1 - \epsilon)^n$$
 za vse sode n .

$$R = \infty \implies F(z)$$
 cela funkcija.

$$R < \infty \implies F(z)$$
 ima singularnost v $z_0, |z_0| = R$.

Definicija 2.11.1. f ima v z_0 pol reda r, če ima $f(z)(z-z_0)^r$ odpravljivo singularnost v z_0 , $\lim_{z\to z_0} f(z)(z-z_0)^r \neq 0$.

Funkcija je meromorfna, če so vse singularnosti poli in množica polov nima stekališč (oz. je diskretna).

$$f(z)(z-z_0)^r = b_0 + b_1(z-z_0) + b_2(z-z_0)^2 + \dots / (z-z_0)^n$$

V kombinatoriki: $1 - \frac{z}{z_0}, b_i \mapsto b_{i-r}$

$$f(z) = b_{-r} + b_{-r+1} \left(1 - \frac{z}{z_0} \right) + \dots + b_{-1} \left(1 - \frac{z}{z_0} \right)^{-1} + b_0 + b_1 \left(1 - \frac{z}{z_0} \right) + \dots$$

Glavni del (angl. principal part):

$$PP_{f,z_0}(z) = b_{-r} \left(1 - \frac{z}{z_0}\right)^r + \dots + b_{-1} \left(1 - \frac{z}{z_0}\right)^{-1}.$$

Če je z_0 edina singularnost na |z| = R:

 $f(z) - PP_{f,z_0}(z)$ ima konvergenčni polmer R' > R.

$$[z^n]PP_{f,z_0}(z) = \left(\sum_{i=1}^r b_{-i} \binom{n+i-1}{i-1}\right) z_0^n \sim \frac{b_{-r}n^{r-1}}{z_0^n (r-1)!}.$$

$$[z^n]PP_{f,z_0}(z) = \left(\sum_{i=1}^r b_{-i} \binom{n+i-1}{i-1}\right) z_0^n \sim \frac{b_{-r}n^{r-1}}{z_0^n(r-1)!}.$$

$$\forall \epsilon > 0 : [z^n] |f(z) - PP_{f,z_0}(z)| < \left(\frac{1}{R'} + \epsilon\right)^n \text{ za } n \ge n_0.$$

$$\frac{1}{R'} + \epsilon < \frac{1}{R}$$

$$\lim_{n \to \infty} \frac{\left(\frac{1}{R'} + \epsilon\right)^n}{\left(\frac{1}{R}\right)^n} = 0.$$

Izrek 2.11.2.

 $F(z)\in\mathbb{C}[[x]],\;R\in(0,\infty),\;z_0$ edina singularnost na $|z_0|=R,\;z_0$ je pol reda r. Potem je

$$[z^n]F(z) \sim \frac{b-r^{n^{r-1}}}{z_0^n(r-1)!}$$
, kjer je
 $b_{-r} = \lim_{z \to z_0} f(z) \left(1 - \frac{z}{z_0}\right)^r$.

Primer.

(1)
$$f(z) = \frac{1}{(1-z)(1-2z)}$$

 $R = \frac{1}{2}, z_0 = \frac{1}{2}, r = 1$
 $\lim_{z \to \frac{1}{2}} \frac{1}{(1-z)(1-2z)} (1-2z) = 2 = b_{-1}$
 $a_n \sim \frac{2}{(\frac{1}{2})^n} = 2^{n+1}$.

(2) d_n : število premestitev v S_n

$$\sum_{n} \frac{d_{n}}{n!} z^{n} = \frac{e^{-z}}{1-z}$$

$$z_{0} = 1, r = 1$$

$$b_{-1} = \lim_{z \to 1} \frac{e^{-z}}{1-z} (1-z) = e^{-1}$$

$$\frac{d_{n}}{n!} \sim \frac{e^{-1}}{1 \cdot 1} = \frac{1}{e}$$

$$d_{n} \sim \frac{n!}{e}.$$

Koliko dober je za približek?

$$\frac{e^{-z}}{1-z}-\frac{e^{-1}}{1-z}$$
je cela funkcija.

$$[z^n]$$
 (cela funkcija) $< \left(\frac{1}{R} + \epsilon\right)^n = \epsilon^n \text{ za } n \ge n_0.$

Koeficienti celih funkcij hitro padajo proti 0.

Ker je $z_0=1$ edini pol in ker je enostaven, je $\frac{b_{-1}}{z_0^n}$ odličen približek. $d_n=\left\lceil\frac{n!}{e}\right\rceil$.

(3) $\tilde{B}(n)$: urejena Bellova števila

$$\tilde{B}(n) = \sum_{k} k! S(n,k)$$

$$\sum_{n} \tilde{B}(n) \frac{z^{n}}{n!} = \frac{1}{1 - (e^{z} - 1)} = \frac{1}{2 - e^{z}}.$$
Poli so $\log 2 + 2k\pi i, \ k \in \mathbb{Z}$

$$\begin{split} z_0 &= \log 2, r = 1 \\ b_{-1} &= \lim_{z \to \log 2} \frac{1 - \frac{z}{\log 2}}{2 - e} \stackrel{L'H}{=} \lim_{z \to \log 2} \frac{-\frac{1}{\log 2}}{2} = \frac{1}{2 \log 2} = \frac{1}{\log 4} \end{split}$$

$$\tilde{B}(n) \sim \frac{n!}{2(\log 2)^{n+1}}$$

$$\tilde{B}(20) = 267 \dots 115 \ (23 \ \text{števk})$$

$$\left[\frac{20!}{2(\log 2)^{21}}\right] = 267 \dots 088$$
$$\frac{\log 2}{\log 2 + 2\pi i} \doteq 0.11.$$

- (4) n hiš.
 - 1. družina se vseli v naključno hišo,
 - 2. družina se vseli v naključno naslednjo hišo,

 a_n : pričakovano število zasedenih hiš, $\frac{n}{3} < a_n < \frac{n}{2}$?

$$a_0 = 0, a_1 = 1, a_2 = 1, a_3 = \frac{1}{3} \cdot 1 + \frac{2}{3} \cdot 2 = \frac{5}{3}.$$

$$a_n = \frac{1}{n} \sum_{i=1}^n (a_{i-2} + a_{n-i-1} + 1) / \cdot n$$

$$na_n = n + 2(a_0 + a_1 + \dots + a_{n-2})$$

$$F(x) = \sum_n a_n x^n$$

$$xF'(x) + 2xF(x) + 2F(x) = \frac{x}{(1-x)^2} + \frac{2F(x)}{1-x}$$
 - linearna DE 1. reda.

$$F(x) = \frac{1 - e^{-2x}}{2(1 - x)^2}$$

$$z_0 = 1, r = 2$$

$$b_{-2} = \lim_{z \to 1} \frac{1 - e^{-2z}}{2(1 - z)^2} (1 - z)^2 = \frac{1 - e^{-2}}{2 \cdot 1!}$$

$$a_n \sim \left(\frac{1 - e^{-2}}{2}\right)^n$$

$$\frac{1 - e^{-2}}{2} \doteq 0.423 \in \left(\frac{1}{3}, \frac{1}{2}\right).$$

Kaj pa, če imamo več singularnosti na |z|=R?

$$z_1 \dots z_k$$
 poli redov $r_1 \dots r_k$

$$[z^n] f(z) = \sum_{i=1}^k \frac{b_{-r_i} n^{r_i-1}}{z_i^n (r_i-1)!} + O\left(\left(\frac{1}{R'}\right)^n\right), R' > R.$$

Primer.

$$\begin{split} r(x) &= \frac{1}{1-z} + \frac{1}{1+z} + \frac{1}{1-z^2} \\ a_n &= 1 + (-1)^n + \frac{1}{2^n} \not\sim 1 + (-1)^n. \end{split}$$

V praksi štejejo le najvišji poli.

(a)
$$\sum_{n} \overline{p_k}(n) x^n = \prod_{i=1}^k \frac{1}{1-x^i}$$
.
Racionalna funkcija, poli
1 reda k , -1 reda $\lfloor \frac{k}{2} \rfloor$, $e^{\pm \frac{2\pi i}{3}}$ reda $\lfloor \frac{k}{3} \rfloor \dots$
1 ima najvišji red.
 $z_0 = 1, r = k$
 $b_{-k} = \lim_{z \to 1} \prod_{i=1}^k \frac{1}{1-z^i} (1-z)^k = \lim_{z \to 1} \prod_{i=1}^k \frac{1}{1+z+\dots+z^{i-1}} = \frac{1}{k!}$

$$\overline{p_k}(n) \sim \frac{n^{k-1}}{k!(k-1)!}$$

$$\sum_k p_k(n) x^k = x^k \prod_{i=1}^k \frac{1}{1-x^i}$$

$$p_k(n) \sim \frac{n^{k-1}}{k!(k-1)!}.$$

(Sibke) kompozicije n s k členi

$${\binom{n+k-1}{k-1}} \sim \frac{n^{k-1}}{(k-1)!}$$
$${\binom{n-1}{k-1}} \sim \frac{n^{k-1}}{(k-1)!}$$

 $\sum_n p(n) x^n = \prod_{i=1}^\infty \frac{1}{1-x^i}$ - ni racionalna funkcija.

Singularnosti so bistvene, množica singularnosti ima stekališča.

Lema 2.11.3.

$$\alpha \in \mathbb{R}$$
.

$$\lim_{x\to\infty} \frac{\Gamma(x+\alpha)}{x^{\alpha}\Gamma(x)} = 1.$$

$$\Gamma(x) = \int_0^x t^{x-1} e^{-t} dt$$

$$\Gamma(x+1) = x\Gamma(x)$$

$$\Gamma(n) = (n-1)! \ n = 1, 2, 3 \dots$$

 Γ lahko razširimo na $\mathbb{C} \setminus \{0, -1, -2 \dots\}$.

 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ Stirlingova formula. $\lim_{x \to \infty} \frac{\Gamma(x+\alpha)}{\sqrt{2\pi x} \left(\frac{x}{e}\right)^x} = 1.$

$$\lim_{x \to \infty} \frac{\Gamma(x+\alpha)}{\sqrt{2\pi x} \left(\frac{x}{e}\right)^x} = 1$$

Dokaz 2.11.4.

$$\lim_{x \to \infty} \frac{\Gamma(x+\alpha)}{x^{\alpha} \Gamma(x)} = \lim_{x \to \infty} \frac{\sqrt{2\pi(x+\alpha-1)} \left(\frac{x-\alpha-1}{e}\right)^{x+\alpha-1}}{x^{\alpha} \cdot \sqrt{2\pi(x-1)} \left(\frac{x-\alpha}{e}\right)^{x-1}}$$

$$= \lim_{x \to \infty} \frac{1}{e^{\alpha}} \left(\left(1 + \frac{\alpha}{x-1}\right)^{\frac{x-1}{\alpha}} \right)^{\alpha}$$

$$= \frac{e^{\alpha}}{e^{\alpha}}$$

$$= 1.$$

Lema 2.11.5.

$$\beta \in \mathbb{R} \setminus \mathbb{N}$$
.

$$\binom{\beta}{n} \sim \frac{(-1)^n}{\Gamma(-\beta)n^{\beta+1}}.$$

Dokaz 2.11.6.

$$\lim_{n \to \infty} \frac{\beta(\beta - 1) \dots (\beta - n + 1)\Gamma(-\beta)}{n!(-1)^n}$$

$$= \lim_{n \to \infty} \frac{n^{\beta + 1}\Gamma(-\beta + n)}{\Gamma(n + 1)}$$

$$\stackrel{\text{dema}}{=} 1;$$

$$x = n - \beta$$
, $\alpha = \beta + 1$.

$$z_0 \in \mathbb{R}$$

$$f(z) = \left(1 - \frac{z}{z_0}\right)^{\beta} g(z)$$
 $\beta \in \mathbb{Z} \setminus \mathbb{N}$: pol,

 $\beta \notin \mathbb{Z} \setminus \mathbb{N}$: algebraična singularnost.

Tipično: $\beta = \frac{1}{2}$, npr. $f(z) = \sqrt{1-z}$. g analitična v 0 s polmerom $> |z_0|$.

$$f(z) = \left(1 - \frac{z}{z_0}\right)^{\beta} \left(b_0 + b_1 \left(1 - \frac{z}{z_0}\right) + \dots\right)$$
$$= b_0 \left(1 - \frac{z}{z_0}\right)^{\beta} + b_1 \left(1 - \frac{z}{z_0}\right)^{\beta+1} + \dots$$

$$\begin{split} [z^n]f(z) &= b_0 \binom{\beta}{n} \frac{(-1)^n}{z_0^n} + b_1 \binom{\beta}{n} \frac{(-1)^n}{z_0^2} + \dots \\ b_0 \binom{\beta}{n} \frac{(-1)^n}{z_0^n} &\sim b_0 \cdot \frac{1}{\Gamma(-\beta)n^{\beta+1}z_0^n}, \\ b_1 \binom{\beta+1}{n} \frac{(-1)^n}{z_0^n} &\sim b_0 \cdot \frac{1}{\Gamma(-\beta-1)n^{\beta+2}z_0^n}. \\ \frac{1}{n^{\beta+1}} &> \frac{1}{n^{\beta+2}} &\to \text{majhno}. \end{split}$$

Izrek 2.11.7.

 $f(z) = \left(1 - \frac{z}{z_0}\right)^{\beta} g(z), z_0 \in \mathbb{R}, \beta \in \mathbb{R} \setminus \mathbb{N}, g(z_0) \neq 0, g$ holomorfna s konvergenčnim polmerom $> |z_0|$. Potem je

$$[z^n]f(z) \sim \frac{g(z_0)}{\Gamma(-\beta)n^{\beta+1}z_0^n}.$$

V posebnem: b = -r: $\frac{b_{-r}n^{r-1}}{\Gamma(r)z_0^n}$.

(1)
$$F(x) = \sum_{n} C_{n} x^{n}$$

$$F(x) = 1 + xF^{2}(x)$$

$$F(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

$$xF(x) = \frac{1}{2} + \frac{1}{2}\sqrt{1 - 4x}$$

$$x_{0} = \frac{1}{4}, \beta = \frac{1}{2}, g(x) = -\frac{1}{2}$$

$$C_{n-1} \sim \frac{-\frac{1}{2}}{\Gamma(-\frac{1}{2})n^{\frac{3}{2}}(\frac{1}{4})^{n}}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma\left(-\frac{1}{2}\right) = -\frac{1}{2}\Gamma\left(-\frac{1}{2}\right)$$

$$\Gamma\left(-\frac{1}{2}\right) = -2\sqrt{\pi}$$

$$C_{n-1} \sim \frac{-\frac{1}{2}4^{n}}{-2\sqrt{\pi}n^{\frac{3}{2}}} = \frac{4^{n-1}}{\sqrt{\pi}n^{\frac{3}{2}}}.$$

D.N. Dokažite to formulo iz $C_n = \frac{1}{n+1} \binom{2n}{n}$ in Stirlingovo formulo.

(2)
$$M(k) = \sum_{n} M_{n} x^{n}$$

 $M(x) = 1 + xM(x) + x^{2}M^{2}(x)$
 $x^{2}M^{2} + (x - 1)M + 1 = 0$
 $M(x) = \frac{1 - x - \sqrt{1 - 2x - 3x^{2}}}{2x^{2}}$
 $x^{2}M = \frac{1 - x}{2} - \frac{1}{2}\sqrt{(1 - 3x)(1 + x)}$
 $x_{0} = \frac{1}{3}, \beta = \frac{1}{2}, g(x) = -\frac{1}{2}\sqrt{1 + x}$
 $M_{n-2} \sim \frac{-\frac{1}{2}\cdot\sqrt{\frac{4}{3}}}{-2\sqrt{\pi}n^{\frac{3}{2}}(\frac{1}{3})^{n}}$
 $M_{n} \sim \frac{3^{\frac{3}{2}\cdot3^{n}}}{2\sqrt{\pi}n^{\frac{3}{2}}}.$

Kaj pa, če je f(n) cela?

Izrek 2.11.8 (Haymanova metoda). Naj bo f(z) dopustna funkcija (brez definicije), npr. $f(z) = e^{P(z)}$, P polinom, $[z^n]f(z) > 0$ od nekega n naprej (npr. e^z , $e^{z+\frac{z^2}{2}}$, ne pa e^{z^2}).

$$\beta(z) := \frac{zf'(z)}{f(z)}.$$

Potem ima enačba $\beta(z) = n$ natanko eno pozitivno rešitev z_n .

$$[z^n]f(z) \sim \frac{f(z_n)}{z_0^n \sqrt{2\pi z_n} \beta'(z_n)}.$$

(1)
$$f(z) = e^z$$

 $\beta(z) = \frac{ze^z}{e^z} = z$
 $z_n = n$
 $[z^n]f(z) \sim \frac{e^n}{n^n\sqrt{2\pi n}}$ - Stirlingova formula.

(2)
$$f(z) = e^{z + \frac{z^2}{2}}$$

 $\beta(z) = \frac{z \cdot e^{z + \frac{z^2}{2}}(1+z)}{e^{z + \frac{z^2}{2}}} = z^2 + z$
 $z^2 + z + n = 0$
 $z_n = \frac{-1 + \sqrt{1+4n}}{2}$
 $\frac{i_n}{n!} \sim \frac{e^{\left(\frac{-1 + \sqrt{1+4n}}{2}\right)^2 + \frac{-1 + \sqrt{1+4n}}{2}}}{\left(\frac{-1 + \sqrt{1+4n}}{2}\right)^n \sqrt{2\pi^{-1 + \sqrt{1+4n}}}\sqrt{1+4n}} \sim \dots$

Poglavje 3

Incidenčne algebre in Möbiusova inverzija

3.1 Motivacija

```
\begin{split} &f,g:\mathbb{N}\to\mathbb{R}\\ &g(n)=f(0)+f(1)+\cdots+f(n)\;n\in\mathbb{N}\\ &f(n)=g(n)-g(n-1)\\ &(g(x)=\int_0^x f(t)dt,\;g^\prime(x)=f(x)).\\ &f,g:\mathbb{N}\setminus\{0\}\to\mathbb{R}\\ &g(n)=\sum_{d\mid n}f(d)\\ &f(n)=\sum_{d\mid n}\mu\left(\frac{n}{d}\right)g(d)\;\text{klasična M\"obiusova inverzija,}\;\mu\;\text{klasična M\"obiusova}\\ &\text{funkcija,}\;\mu(n)\in\{-1,0,1\}.\\ &f,g:2^{[n]}\to\mathbb{R}\\ &g(T)=\sum_{S\subseteq T}f(S)\\ &f(T)=\sum_{S\subseteq T}(-1)^{|T\setminus S|}g(S)\;\text{-NVI}. \end{split}
```

3.2 Delno urejene množice

 (P, \leq) je delno urejena množica (dum) (angl. partially ordered set oz. poset);

refleksivnost: $x \le x$, ansitimetričnost: $x \le y, y \le x \implies x = y$, tranzitivnost: $x \le y, y \le z \implies x \le z$.

Primer.

- (1) $([n], \leq) = \underline{n} = \mathbf{n}$ $(\mathbb{N}, \leq).$
- (2) $(D_n, |) = D_n$ delitelji n $(\mathbb{N} \setminus \{0\}, |) = D.$
- (3) $(2^{[n]}, \subseteq) = B_n$ Boolova algebra.
- (4) ({razdelitve [n]}, \leq) \leq : biti finejša $\pi \leq \sigma$: vsak blok v π je vsebovan v bloku v σ $14-2-378-56 \leq 12456-378$.
- (5) (podprostori $\mathbb{F}_q^n, \subseteq$) = $L_n(q)$.

$$x \ge y \leftrightarrow y \le x$$

$$x < y \leftrightarrow x \le y, x \ne y$$

$$x < y \leftrightarrow x < y, \nexists z : x < z < y$$

x predhodnik y, y predhodnik x

$$(\mathbb{N}, \leq)$$
: $i < \cdot i + 1$

$$B_n: A \subset A \cup \{i\}; i \notin A$$

$$D: r \mid \cdot s \leftrightarrow \frac{s}{r}$$
 praštevilo

$$L_n(q): U < V \leftrightarrow U \subseteq V, \dim V - \dim U = 1$$

 \mathbb{R} : nikoli ne velja $x < \cdot y$.

Hassejev diagram:

graf,

$$V = P$$
,

$$xy \in E \iff x < y \text{ ali } y < x$$

$$x < y \implies x \text{ pod } y.$$

Hassejev diagram B_n je hiperkocka.

x maksimalen element, če velja $y \ge x \implies y = x \text{ (oz } \nexists y : y > x)$

x minimalen element, če velja $y \le x \implies y = x \text{ (oz } \nexists y : y < x).$

P končna dum $\implies P$ ima maksimalen element.

x največji element: $y \le x \ \forall y \in P$.

Nima največjega elementa.

x, y največja $\implies x \le y, y \le x \implies x = y$.

 $\hat{0}$: najmanjši element (če \exists),

 $\hat{1}$: največji element (če \exists).

P, Q dum.

 $\varphi: P \to Q \text{ homomorfizem, \'ce } x \leq_P y \implies \varphi(x) \leq_Q \varphi(y).$

 $\varphi: P \to Q$ izomomorfizem, če je bijektiven homomorfizem in je inverz tudi homomorfizem, oz. φ bijekcija, $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)$.

Bijektivni homomorfizem, ni izomorfizem.

 $P \cong Q$ (P,Q izomorfna), če obstaja izomorfizem $\varphi: P \to Q$.

 $B_3 \cong D_{30}$.

P, Q dum.

 $P\times Q$ (množica $P\times Q),\,(x,y)\leq (x^{'},y^{'}),$ če $x\leq_P x^{'},y\leq_Q y^v,x,x^{'}\in P,y,y^{'}\in Q$ - kartezični produkt.

 $P \sqcup Q = P \times \{0\} \cup Q \times \{1\}.$

P+Q (množica $P\sqcup Q),\,x\leq y$ če $(x,y\in P,x\leq_P y)$ ali $(x,y\in Q,x\leq_Q y)$ -disjunktna unija.

 $P\oplus Q$ (množica $P\sqcup Q),$ $x\leq y$ če $(x,y\in P,x\leq_P y)$ ali $(x,y\in Q,x\leq_Q y)$ ali $(x\in P,y\in Q)$ - disjunktna vsota.

$$1 \oplus \cdots \oplus 1 \cong n$$

$$2 \times \cdots \times 2 \cong B_n$$

$$\varphi: 2^n \to B_n$$

$$\varphi(\epsilon_1 \dots \epsilon_n) = \{i : \epsilon_i = 2\}$$

$$D_n \cong [0, \alpha_1] \times \cdots \times [0, \alpha_k]$$

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k}, \ \alpha_i \ge 1$$
, delitelji $p_1^{\beta_1} \dots p_k^{\beta_k}, 0 \le \beta_i \le \alpha_i$.

Če je n produkt k različnih praštevil, je $D_n \cong B_k$.

Veriga je podmnožica P, če sta poljubna elementa primerljiva ($x \leq y$ ali $y \leq x$).

$$V B_8: \{\emptyset, \{1,5\}, \{1,2,5,7,8\}\},\$$

$$v D_12: \{2,6,12\}.$$

 $x_0 < x_1 < \cdots < x_k$ veriga dolžine k,

 $x_0 \le x_1 \le \dots < x_k$ multiveriga dolžine k.

Antiveriga je podmnožica P, v kateri nobena različna elementa nista primerljiva.

 $\binom{[n]}{k}$ antiveriga v B_n ,

 \P antiveriga v D.

Stopničasta dum (angl. graded) je P z rangom, t.j.

$$\rho: P \to \mathbb{N}$$
, če

$$x < y \implies \rho(x) < \rho(y)$$

$$x < y \implies \rho(y) = \rho(x) + 1.$$

$$V \mathbb{N} : \rho = id,$$

$$v B_n : \rho(A) = |A|,$$

$$\operatorname{v} D_n: \rho(p_1^{\alpha_1} \dots p_k^{\alpha_k}) = \alpha_1 + \dots + \alpha_k,$$

ni stopničasta.

Definicija 3.2.1. *P* je lokalno končna, če je za

$$\forall x \leq y: [x,y] := \{z: x \leq z \leq y\}$$
 končna.

Npr. vsaka končna dum je lokalno končna.

 \mathbb{N}, D sta lokalno končni.

3.3 Incidenčna algebra

P lokalno končna dum.

$$Int(P) := \{ [x,y] : x \le y \}$$

 $I(P,K) := \{f: \ Int(P) \to K\}$ incidenčna algebra.

$$x \leq y$$
: $f([x,y]) = f(x,y)$ (krajšamo).
$$(f+g)(x,y) = f(x,y) + g(x,y)$$

$$(\lambda f)(x,y) = \lambda \cdot f(x,y)$$

$$(f \cdot g)(x,y) = \sum_{x \leq z \leq y} f(x,z) \cdot g(z,y)$$
 - pomembno!

$$(f \cdot g) \cdot h(x,y) = \sum_{x \le z \le y} (f \cdot g)(x,z) \cdot h(z,y)$$

$$= \sum_{x \le z \le y} \left(\sum_{x \le q \le z} f(x,w)g(w,z) \right) h(z,y)$$

$$= \sum_{x \le w \le z \le y} f(f,w)g(q,z)h(z,y)$$

$$= \cdots = f \cdot (g \cdot h)(x,y).$$

(Nekomutativna algebra.)

$$P = n$$
.

 $I(\underline{n}, k) \cong$ algebra zgornje trikotnih matrik nad K.

$$f(i,j) \to [f(i,j) \text{ \'e } i \le j, 0 \text{ sicer}]_{i,j=1}^n$$

 $1 \le i \le j \le n$

$$(A \cdot B)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = \sum_{k=i}^{j} A_{ik} B_{kj}$$

$$\underline{1}(x,y) = \delta_{xy} = \begin{cases} 1 : x = y \\ 0 : x < y \end{cases}$$
enota za množenje.

$$f:\underline{1}(x,y)=\sum_{x\leq z\leq y}f(x,y)\cdot 1(z,y)=f(x,y),$$
ker $\underline{1}(z,y)=0,$ razen za $z=y.$ $\underline{1}\cdot f=f.$

Trditev 3.3.1. $f \in I(\underline{n}, K)$ je obrnljiv $\iff f(x,x) \neq 0$ za $\forall x \in P$.

Dokaz 3.3.2.

$$(\Rightarrow)$$
:

$$f \cdot g = \underline{1}$$

$$(f \cdot g)(x,x) = \sum_{x \le z \le x} f(x,z)g(z,x) = f(x,y) \cdot g(x,y)$$

$$= \underline{1}(x,x) = 1$$

$$\implies f(x,x) \ne 0.$$

 (\Leftarrow) :

 \exists desni inverz:

$$f \cdot g = \underline{1}$$

$$(f \cdot g)(x,x) = 1 = f(x,x) \cdot g(x,x)$$

$$g(x,x) = \frac{1}{f(x,x)}.$$

Skonstruiramo rekurzivno glede na |[x,y]|:

$$|[x,y]| = 1 : \checkmark$$

Imamo $g(x', y')$ za $|[x', y']| < |[x,y]|$
 $g(x,y) = \frac{\sum \dots}{f(x,x)}.$

Podobno za levi inverz, enaka.

 $\zeta(x,y) = 1 \text{ za } x < y$

$$\begin{split} &\zeta^2(x,y) = \sum_{x \leq z \leq y} \zeta(x,z) \zeta(z,y) = |[x,y]| \\ &\zeta^3(x,y) = \sum_{x \leq w \leq z \leq y} \zeta(x,w) \zeta(w,z) \zeta(z,y) = \text{število multiverig dolžine } 3 \text{ med } x \text{ in } y \\ &\zeta^k(x,y) = \text{število multiverig dolžine } k \text{ med } x \text{ in } y. \\ &(\zeta-1)(x,y) = \begin{cases} 1: x < y \\ 0: x = y \end{cases} \\ &(\zeta-1)^2 = |(x,y)| - \text{dolžina odprtega intervala.} \\ &(\zeta-1)^k = \text{število (multi?)verig dolžine } k \text{ med } x \text{ in } y = 0 \text{ od nekega } k \text{ naprej.} \\ &\frac{1}{2} + (\zeta-1) + (\zeta-1)^2 + \dots \text{ je dobro definirana (končnost).} \\ &(1+(\zeta-1)+\dots)(x,y) = \text{število verig med } x \text{ in } y. \\ &(1+(\zeta-1)+\dots)(1-(\zeta-1)) = 1 \\ &(2-\zeta)^{-1}(x,y) = \text{število verig med } x \text{ in } y. \end{split}$$

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots \\ \vdots & & \vdots & & \\ & & & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & 2 & 4 & \dots & 2^{n-1} \\ & \vdots & & & \vdots \\ & & & & 2 \\ & & & & 1 \end{bmatrix}.$$

Število verig med i in j je 2^{j-i-1} za $j \ge i+1$.

3.4 Möbius funkcija in Möbiusova inverzija

```
\mu := \zeta^{-1}: inverz obstaja, ker je \zeta(x,x) \neq 0.
\zeta \cdot \mu = \underline{1}
x = y : \zeta(x,x) \cdot \mu(x,x) = 1 \implies \mu(x,x) = 1
x < y : \sum_{x \le z \le y} \zeta(x, z) \cdot \mu(z, y) = 0
\mu(x,y) = -\sum_{x < z \le y} \mu(z,y)
\mu \cdot \zeta = 1
\sum_{x < z < y} \mu(x, z) = 0
\mu(x,y) = -\sum_{x \le z \le y} \mu(x,z)
4:
\mu(i,i) = 1
\mu(i, i+1) = -\mu(i, i) = -1
\mu(i, i+2) = -\mu(i, i) - \mu(i, i+1) = 0
v \underline{n} \text{ in } (\mathbb{N}, \leq) \colon \mu(x, y) = \begin{cases} 1 : i = j \\ -1 : j = i + 1 \\ 0 : j - i \geq 2 \end{cases}\mu(a, a) = \mu(b, b) = \dots = 1
\mu(a,b) = \mu(b,c) = \mu(c,e) = \mu(a,d) = \mu(d,e) = -1
\mu(a,b) = \mu(b,e) = 0
\mu(a, e) = 1.
```

Izrek 3.4.1 (Möbiusova inverzija). P dum, za $\forall x \in P \ \{z \in P: z \leq x\}$ je končna ($\Longrightarrow P$ je lokalno končna.) $f,g:P\to K$

$$g(y) = \sum_{x \le y} f(x) \iff f(y) = \sum_{x \le y} \mu(x, y) g(x).$$

(Dobro definirano, ker je vsota končna.)

Dokaz 3.4.2.

 (\Rightarrow) :

$$\sum_{x \le y} \mu(x, y) g(x) = \sum_{x \le y} \mu(x, y) \sum_{z \le x} f(z)$$

$$= \sum_{z \le y} \sum_{z \le x \le y} \mu(x, y) f(z) = f(y);$$

$$\ker \sum_{z \le x \le y} \mu(x, y) = \delta_{z, y}.$$

 (\Leftarrow) : podobno.

Primer.

$$P = \underline{n}$$

$$g(j) = \sum_{i \le j} \iff f(j) = \sum_{i=1}^{j} \mu(i,j)g(i) = g(j) - g(j-1) \text{ za } j \ge 2,$$

$$f(1) = g(1).$$

Kako izračunati μ za $B_n, D_n, M_n, L_n(q)$?

Trditev 3.4.3. P, Q lokalno končni $\implies P \times Q$ lokalno končen.

$$\mu_{P\times Q}((x,y),(x',y')) = \mu_P(x,y) \cdot \mu_Q(x',y').$$

Dokaz 3.4.4.

$$\begin{aligned} & (\zeta_{P \times Q}(\mu_{P}, \mu_{Q})) \left((x, y), (x', y') \right) \\ &= \sum_{(x, y) \le (x'', y'') \le (x', y')} \mu_{P}(x'', x') \mu_{Q}(y'', y') \\ &= \sum_{x \le x'' \le x'} \sum_{y \le y'' \le y'} \mu_{P}(x'', x') \cdot \mu_{Q}(y'', y') \\ &= \left(\sum_{x \le x'' \le x'} \mu_{P}(x'', x') \right) \cdot \left(\sum_{y \le y'' \le y'} \mu_{P}(y'', y') \right) \\ &= \delta_{x, x'} \cdot \delta_{y, y'} \\ &= \delta_{(x, y), (x', y')}. \end{aligned}$$

Primer.

$$(1) \ B_n = \underline{2} \times \cdots \times \underline{2}$$

$$\mu(S,T) = \mu((\epsilon_1 \dots \epsilon_n), (\varphi_1 \dots \varphi_n)) = \mu_{\underline{2}}(\epsilon_1, \varphi_1) \dots \mu_{\underline{2}}(\epsilon_n, \varphi_n) = (-1)^{|T \setminus S|}$$

$$S \subseteq T$$

$$f, g : 2^{[n]} \to K$$

$$g(T) = \sum_{S \subseteq T} f(S) \iff f(T) = \sum_{S \subseteq T} (-1)^{|T \setminus S|} g(S) \text{: NVI.}$$

$$(2) \ D_n = \underline{[0, \alpha_1]} \times \cdots \times \underline{[0, \alpha_k]}$$

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$$

$$\mu(r,s) = \mu((\beta_1 \dots \beta_k), (\gamma_1 \dots \gamma_k))$$

$$= \mu(\beta_1, \gamma_1) \dots \mu(\beta_k, \gamma_k)$$

$$= \begin{cases} (-1)^l : \frac{s}{r} \text{produkt } l \text{ različnih praštevil} \\ 0 : p^2 \mid \frac{s}{r}, p \text{praštevilo} \end{cases} = \mu \begin{pmatrix} \frac{s}{r} \end{pmatrix}$$

$$r = p_1^{\beta_1} \dots p_k^{\beta_k}$$

$$s = p_1^{\gamma_1} \dots p_k^{\gamma_k}$$

$$0 \le \beta_i \le \gamma_i \le \alpha_i$$

$$r = p_1^{\gamma_1 - \beta_1} \dots p_k^{\gamma_k - \beta_k}$$

$$\mu(n) = \begin{cases} (-1)^k : n \text{ produkt } k \text{ različnih praštevil} \\ 0 : p^2 \mid n \text{ praštevilo} \end{cases}$$

$$f, g: \mathbb{N} \setminus \{0\} \to K$$

$$g(n) = \sum_{d|n} f(d) \iff f(n) = \sum_{d|n} \mu(d,n)g(d) = \sum_{d|n} \mu\left(\frac{d}{n}\right)g(d).$$

$$P$$

$$I(P,K) = \{f: Int(P) \to K\}$$

$$f \cdot g(x,y) = \sum_{x \le z \le y} f(x,z)g(z,y)$$

Izrek 3.4.5.

 ζ, μ .

Pdum, $\{y \leq x\}$ končen $\forall x \in P,$

$$f, q: P \to K$$
.

$$f(x) = \sum_{y \le x} g(y) \iff g(x) = \sum_{y \le x} \mu(y, x) f(y).$$

Izrek 3.4.6.

 $P \text{ dum}, \{y \ge x\} \text{ končen } \forall x \in P,$

$$f, g: P \to K$$
.

$$f(x) = \sum_{y \ge x} g(y) \iff g(x) = \sum_{y \ge x} \mu(x, y) f(y).$$

$$B_n: \mu(S,T) = (-1)^{|T \setminus S|}$$

$$B_n \cong \underline{2} \times \cdots \times \underline{2}$$

$$\mu_{P\times Q} = \mu_P \cdot \mu_Q$$

$$D_n: \mu(r,s) = \begin{cases} (-1)^k : \frac{s}{r} \text{ produkt } k \text{ različnih praštevil} \\ 0 : p^2 | \frac{s}{r} \end{cases}$$

3.5 Mreže

Definicija 3.5.1. $x \leq y$:

y zgornja meja za x,

x spodnja meja za y.

 ${\cal P}$ je mreža (angl. lattice?), če imata poljubna elementa najmanjšo zgornjo mejo in največjo spodnjo mejo.

 $x \vee y$ spoj (angl, join), $x \wedge y$ stik (angl. meet).

$$x \land y \le x, y \le x \lor y$$

 $x, y \le z \implies x \lor y \le z$
 $z \le x, y \implies z \le x \land y$.

Primer.

- 3 zgornje meje za x, y, noben ni \leq od ostalih, ni mreža.
- \underline{n} , \mathbb{N} : $i \vee j = \max\{i, j\}$, $i \wedge j = \min\{i, j\}$.
- $B_n: T \vee S = T \cup S, \ T \wedge S = T \cap S.$
- $D_n, D: r \vee s = l(r, s), r \wedge s = D(r, s).$
- $L_n(q): U \vee V = U + V, \ U \wedge V = U \cap V.$
- Π_n $\pi = 135 246, \sigma = 123 46 5$ $\pi \wedge \sigma = \{\text{neprazni preseki bloka } \pi \text{ in bloka } \sigma\}$ $\pi \vee \sigma = \{\text{povezane konponente grafa}, V = [n], i \sim j: i \text{ in } j \text{ v istem bloku } \pi \text{ ali } \sigma\}$ $\pi \vee \sigma = 123456.$

P končna mreža \implies ima največji in najmanjši element.

Največji: spoj vseh elementov = $\hat{1}$,

najmanjši: stik vseh elementov = $\hat{0}$.

 $\forall x < y$:

$$\begin{array}{l} \sum_{x \leq z \leq y} \mu(x,z) = 0 \implies \mu(x,y) = -\sum_{x \leq z < y} \mu(x,z) \text{ ali} \\ \sum_{x \leq z \leq y} \mu(z,y) = 0 \implies \mu(x,y) = -\sum_{x < z \leq y} \mu(z,y). \end{array}$$

Izrek 3.5.2.

P končna mreža,

$$a \neq \hat{1}$$
.

$$\mu(\hat{0}, \hat{1}) = -\sum_{x \neq \hat{0}, x \wedge a = \hat{0}} \mu(x, \wedge 1).$$

Opomba. Vedno: $\mu(\hat{0}, \hat{1}) = -\sum_{x \neq \hat{0}} \mu(x, \hat{1}).$

Torej izrek nam omogoča, da $\mu(\hat{0}, \hat{1})$ izračunamo preko vsote z manj členi.

Tipično $a < \cdot \hat{1}$.

Dokaz 3.5.3.

$$\begin{split} \sum_{x \wedge a = \hat{0}} &= \sum_{x \in P} \mu(x, \hat{1}) \cdot 1(\hat{0}, x \wedge a) \\ &= \sum_{x \in P} \mu(x, \hat{1}) \sum_{y \leq x \wedge a} \mu(\hat{0}, y) \\ &\stackrel{(*)}{=} \sum_{x \in P} \mu(x, \hat{1}) \sum_{y \leq x, y \leq a} \mu(\hat{0}, y) \\ &= \sum_{y \leq a} \left(\sum_{x \geq y} \mu(x, \hat{1}) \right) \mu(\hat{0}, y) = 0; \end{split}$$

 $\ker \sum_{x \ge y} \mu(x, \hat{1}) = 1(y, \hat{1}) = 0, \text{ ker } y \le a \ne \hat{1},$ $(*): y \le x \land a \implies y \le x \land y \le a.$

Primer.

(a)
$$B_n$$

 $\mu_n = \mu(0, [n])$
 $[S,T] \cong B_{|T \setminus S|}$
 $[\{n\}, [n]] \cong B_{n-1}$
 $A = [n-1]$
 $\mu_n = \sum_{T \neq \emptyset, T \cap [n-1] = \hat{0}} \mu(T, [n]) = -\mu(\{n\}, [n]) = -\mu_{n-1}$
 $\implies \mu_n = (-1)^n$
 $\mu(S,T) = (-1)^{|T \setminus S|}$.

(b)
$$D_n$$

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$$

$$a = p_1^{\alpha_1 - 1} \dots p_k^{\alpha_k}$$

$$\mu(1, n) = -\sum_{d|n, d \neq 1, D(d, a) = 1} \mu(d, n) = \begin{cases} 0 : \alpha_1 \geq 2 \text{ (takega } d \text{ ni)} \\ -\mu(p_1, n) : \alpha_1 = 1 \text{ } (d = p_1) \end{cases}$$

$$-\mu(p_1,n) = -\mu(1,p_2^{\alpha_2}\dots p_n^{\alpha_n}):$$
rekurzivno, = 0 če $\alpha_i \ge 2$, $(-1)^k$ sicer.

(c)
$$L_n(q)$$

$$\mu_n = \mu(0, \Pi_q^n)$$

$$[U, V] \cong L_{\dim V - \dim U}(q)$$

$$A = \Pi_q^{n-1} \times \{0\}$$

$$\mu_n = -\sum_{U \neq 0, U \cap A = 0} \mu(U, \Pi_q^n) = -q^{n-1}\mu_{n-1}.$$
 Linearna algebra: $\dim(U \cap A) + \dim(U + A) = \dim(U) + \dim(A)$: $\dim(A) = n - 1, \dim(U \cap A) = 0, \dim(U) \geq 1, \dim(U + A) \geq 0$
$$n \geq \dim(U \cap A), \dim(U) + \dim(A) \geq n$$

$$\implies \dim(U) = 1, U = Lin\{u\}; \text{ zadnja komponenta } \neq 0, \text{ BŠS } 1.$$

$$q^{n-1}: q \text{ možnosti za vsako od } n - 1 \text{ preostalih komponent.}$$

$$\mu_n = (-1)^n q^{\binom{n}{2}}$$

$$\mu(U, V) = (-1)^{\dim V - \dim U} q^{\binom{\dim V - \dim U}{2}}.$$

(d)
$$\Pi_n$$

 $\mu := \mu(1-2-3\cdots -n, 123\dots n)$
 $\alpha = 12\dots (n-1) - n$
 $\mu_n = -\sum_{\pi \neq 1-2\dots n, \pi \wedge \alpha = 1-2\dots -n} \mu(\pi, 12\dots n) = -(n-1)\mu_{n-1}$
 $\pi = 1-2-\dots -(i-1)-(in)-(i+1)-\dots -(n-1)$
 $[\pi, 12\dots n] \cong \Pi_{n-1}$
 $\mu_n = (-1)^{n-1}(n-1)!$ (do μ_1 , ne μ_0)
 $[\pi, \sigma] \cong \pi_{\alpha_1} \times \dots \times \pi_{\alpha_k}$,
kjer *i*-ti blok σ razpade na a_i blokov v π za $i = 1, 2\dots k$.
 $\pi = 12-3-4-568-7$
 $\sigma = 1247-56-8-3$
 $a_1 = 3, a_2 = 2, a_1 = 1$
 $\Pi_3 \times \Pi_2 \times \Pi_1$
 $\mu(\pi, \sigma) = (-1)^{a_1}(a_1-1)! \cdot (-1)^{a_2}(a_2-1)! \cdot (-1)^{a_3}(a_3-1)!$.

3.6 Reducirane incidenčne algebre in Dirichletove rodovne funkcije

Primer.

- $\underline{n}, \mathbb{N}$ $\mu(i,j) = \begin{cases} 1: i = j \\ -1: j = i+1 \end{cases} \text{odvisen od } j i.$ 0: j i > 1
- $B_n, B = \bigcup_{n=0}^{\infty} B_n = \{\text{končne podmnožice } \{1, 2, 3 \dots \}\}$ $\mu(S, T) = (-1)^{|T \setminus S|}$ - odvisen od $|T \setminus S|$.
- $L_n(q), L_q = \bigcup_{n=0}^{\infty} L_n(q)$ (dodamo $\times \{0\}^i$ na konce?) $\mu(U,T) = (-1)^{\dim V - \dim U} \dots$ - odvisen od dim $V - \dim U$.
- D_n, D $\mu(r, s)$ - odvisen od $\frac{s}{r}$.

Vedno: $\mu(x,y) = \mu(x^{'},y^{'})$, če je $[x,y] \cong [x^{'},y^{'}]$.

(Primer zgoraj za $\mathbb{N}, B, L(q).)$

V D: $[1, 14] \cong [1, 15] \cong B_2$, vendar $\frac{14}{1} \neq \frac{15}{1}$.

Izrek 3.6.1.

P lokalno končna dum.

$$I_{\cong}(P,K) = \{f: Int(P) \to K: [x,y] \cong [x',y'] \implies f(x,y) = f(x',y')\}.$$

(npr. za $P = \underline{n}$ zgornje trikotne matrike, ki so konstantne na diagonali(ah?)) (1, μ , ζ).

Potem velja $f, g \in I_{\cong}(P, I), \lambda \in K \implies f + g, \lambda \cdot f, f \cdot g \in I_{\cong}(P, K),$ $f \in I_{\cong}(P, K)$ obrnljiv $\implies f^{-1} \in I_{\cong}(P, K),$

 $I_{\cong}(P,K)$ reducirana incidenčna algebra.

Dokaz 3.6.2.

$$[x,y] \cong [x',y']$$

$$(f+g)(x,y) = f(x,y) + g(x,y) = f(x',y') + g(x',y') = (f+g)(x',y'),$$

 $\lambda \cdot f$: podobno.

$$(f \cdot g)(x,y) = \sum_{x \le z \le y} f(x,z) \cdot g(z,y)$$

$$(f \cdot g)(x', y') = \sum_{x' < z' < y'} f(x', z') \cdot g(z', y')$$

 $\phi: [x,y] \to [x',y']$ izomorfizem

$$[\phi(z), \phi(w)] \cong [z, w]$$

$$f(x,z) = f(x',z'), g(z,y) = g(z',y')$$

$$f^{-1}(x,y) = f^{-1}(x',y')$$
 z indukcijo po $|[x,y]|$.

$$|[x,y]| = 1$$

$$x = x', y = y'$$

$$f^{-1}(x,y) = \frac{1}{f(x,y)} = \frac{1}{f(x',y')} = f^{-1}(x',y')$$

|[x,y]| > 1

$$\sum_{x \le z \le y} f(x,z) f^{-1}(z,y) = \sum_{x < z \le y} f(x,z) f^{-1}(z,y) + f(x,x) f^{-1}(x,y) = 0$$
$$\sum_{x' \le z' \le y'} f(x',z') f^{-1}(z',y') = \sum_{x' < z' \le y'} f(x',z') f^{-1}(z',y') + f(x',x') f^{-1}(x',y') = 0;$$

$$f(x,z) = f(x',z'), f(x,x) = f(x',x'), f^{-1}(z,y) \stackrel{IP}{=} f^{-1}(z',y')$$

$$\implies f^{-1}(x,y) = f^{-1}(x',y').$$

 $\tau = \{\text{množica ekvivalenčnih razredov za }\cong\}: \text{množica tipov.}$

 $\mathbb{N}:\tau\equiv\mathbb{N}$

 $B:\tau\equiv\mathbb{N}$

 $L(q): \tau \equiv \mathbb{N}$

[x,y] tipa α .

$$f,g \in I_{\cong}(P,K), f \cdot g(x,y) = \sum_{x \le z \le y} f(x,z)g(z,y)$$

$$(f \cdot g)(\alpha) = \sum_{\beta,\gamma} {\alpha \choose \beta,\gamma} f(\beta) g(\gamma)$$

 $(f \cdot g)$ odvisen samo od tipa.

 $\binom{\alpha}{\beta,\gamma}:=$ število elementov $z\in[x,y];\ [x,y]$ tipa $\alpha,$ da je [x,z] tipa $\beta,\ [z,y]$ tipa $\gamma.$

Torej: $I_{\cong}(P,K)$ je izomorfna algebri preslikav $\tau \to K$ s produktom

$$(f \cdot g)(\alpha) = \sum_{\beta,\gamma} \binom{\alpha}{\beta,\gamma} f(\beta) g(\gamma).$$

$$\mathbb{N}$$

$$\binom{n}{i,j} = \begin{cases} 1: & i+j=n \\ 0: & \text{sicer} \end{cases}$$

$$f \cdot g(n) = \sum_{k=0}^{n} f(k) g(n-k)$$

$$I_{\cong}(\mathbb{N}, K) \cong K[[x]]$$

$$f \to \sum_{n} f(n) x^{n}$$

$$B$$

$$\binom{n}{i,j} = \begin{cases} \binom{n}{i} : i+j = n \\ 0 : \text{ sicer} \end{cases}$$

$$f \cdot g(n) = \sum_{k=0}^{n} \binom{n}{k} f(k) g(n-k)$$

$$I_{\cong}(B,K) \cong K[[x]]$$

$$f \to \sum_{n} \frac{f(n)}{n!} x^{n}$$

 L_q

$$\binom{n}{i,j} = \begin{cases} \binom{n}{i}_q : i+j=n \\ 0 : \text{ sicer} \end{cases}$$

$$f \cdot g(n) = \sum_{k=0}^n \binom{n}{k}_q f(k) g(n-k)$$

$$I_{\cong}(L(q), K) \cong K[[x]]$$

$$f \to \sum_n \frac{f(n)}{n!} x^n$$

 \mathbb{N}

$$\zeta \to \frac{1}{1-x}$$

$$\mu \to \left(\frac{1}{1-x}\right)^{-1} = 1 - x, \text{ torej } \mu(0) = 1, \mu(1) = -1, \mu(2) = \mu(3) = \dots = 0$$

$$\zeta^k \to \left(\frac{1}{1-x}\right)^k = \sum_n \binom{n+k-1}{k-1} x^n$$

 $\zeta^k(n)$: število multiverig dolžine $k \mod 0$ in n

$$0 \le i_1 \le \dots \le i_{k-1} \le n.$$

Kombinacije s ponavljanjem: $\binom{(n+1)+(k-1)-1}{k-1} = \binom{n+k-1}{k-1}$

$$(\zeta - 1)^k \to \left(\frac{x}{1-x}\right)^k = \sum_k \binom{n-1}{k-1} x^n$$

$$0 < i_1 < \dots < i_{k-1} < n$$

 $\binom{n-1}{k-1}$

$$(2-\zeta)^{-1} \to \left(2-\frac{1}{1-x}\right)^{-1} = \left(\frac{2-2x-1}{1-x}\right)^{-1} = \frac{1-x}{1-2x} = 1 + \sum_{n=1}^{\infty} 2^{n-1}x^n$$

 $(2-\zeta)^{-1}(n)$: število vseh verig med 0 in n:

$$0 < i_1 < \dots < i_{k-1} < n$$

 2^{n-1} , $n \ge 1$: izberem ali ne.

В

$$\zeta \to e^x$$

$$\mu \to e^{-x}$$
, torej $\mu(n) = (-1)^n$

$$\zeta^k \to e^{kx} = \sum_n \frac{k^n}{n!} x^n$$

 $\zeta^k(n)$: število multiverig $\emptyset \subseteq A_1 \subseteq \cdots \subseteq A_{k-1} \subseteq [n]$.

Za $\forall j=1,2\dots n$ izberemo A_i , v katerem se j prvič pojavi; k izbir, n-krat izbiramo $\to k^n$

$$(\zeta - 1)^k \to (e^x - 1)^k = \sum_n \frac{k!S(n,k)}{n!} x^k$$

 $(\zeta - 1)^k(n)$: število verig $\emptyset \subseteq A_1 \subset \cdots \subset A_{k-1} \subseteq [n]$

 $(A_1, A_2 \setminus A_1, A_3 \setminus A_2 \dots)$ urejena razdelitev na k blokov.

Spomnimo se: $\mu(r,s) = \mu(r',s')$, če je $\frac{s}{r} = \frac{s'}{r'}$.

$$[r, s] \sim [r', s'], \text{ \'e je } \frac{s}{r} = \frac{s'}{r'}.$$

 $I_{\sim}(D,K) = \{f: Int(D) \to K: [r,s] \sim [r',s'] \implies f(r,s) = f(r',s')\}$ je tudi podlagebra (dokaz podoben).

$$\tau \equiv \mathbb{N} \setminus \{0\}$$
$$\binom{n}{i,j} = \begin{cases} 1: & i \cdot j = n \\ 0: & \text{sicer} \end{cases}$$

 $f*g(n)=\sum_{i,j}\binom{n}{i,j}f(i)g(j)=\sum_{d\mid n}f(d)g\left(\frac{n}{d}\right)$ Dirichletova konvolucija.

Dirichletove rodovne funkcije:

$$\left\{\sum_{n=1}^{\infty} \frac{a_n}{n^s}; \ a_i \in K\right\}$$

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s} \cdot \sum_{n=1}^{\infty} \frac{b_n}{n^s} = \sum_{n=1}^{\infty} \frac{\sum_{d|n} a_d b_n}{n^s}$$
$$f \to \sum_n \frac{f(n)}{n^s} \text{ izomorfizem algeber.}$$

 $\zeta \to \zeta(s)$ (Riemmanova) funkcija ζ .

če $\sum_n \frac{a_n}{n^s}$ in $\sum_n \frac{b_n}{n^s}$ konvergirata:

$$\left(\frac{a_1}{1^s} + \frac{a_2}{2^s} + \frac{a_3}{3^s} + \dots\right) \cdot \left(\frac{b_1}{1^s} + \frac{b_2}{2^s} + \frac{b_3}{3^s} + \dots\right)$$

 $\left\lceil \frac{1}{6^s} \right\rceil : a_1b_6 + a_2b_3 + a_3b_2 + a_6b_1$ (množenje kot dejanske funkcije).

$$(r,s) \sim (r',s') \iff \frac{s}{r} = \frac{s'}{r'}$$

$$I_{\sim}(P,K) = \{f : Int(P) \to K : (r,s) \sim (r',s') \implies f(r,s) = f(r',s')\}$$

 $f*g(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$ - odvisno samo od kvocientov: pišemo en argument.

 $\left\{\sum_{n=1}^{\infty} \frac{a(n)}{n^s} : a(n) \in K\right\}$ Dirichletove rodovne funkcije.

$$\sum_{n=1}^{\infty} \frac{a(n)}{n^s} \cdot \sum_{n=1}^{\infty} \frac{b(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\sum_{d|n} a(d)b\left(\frac{n}{d}\right)}{n^s}.$$

Izomorfizem

 $I_{\sim}(P,K) \to \text{Dirichletove rodovne funkcije}$

$$Drf: f \mapsto \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

$$Drf(\zeta) = \zeta(s)$$

$$K = \mathbb{C}$$

 $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ konvergira za $s_0 \implies$ konvergira za $\forall s: \ Re \ s > Re \ s_0.$

 $\zeta(s)$ konvergira za $Re \ s > 1$.

Definicija 3.6.3.

 $f: \mathbb{N} \setminus \{0\} \to \mathbb{C}$ je multiplikativna, če je f(1) = 1 in f(ab) = f(a)f(b) za D(a,b) = 1.

Ekvivalentno: $f(p_1^{\alpha_1} \dots p_k^{\alpha_k}) = f(p_1^{\alpha_1}) \dots f(p_k^{\alpha_k}).$

Trditev 3.6.4. f multiplikativna $\iff Drf(f) = \prod_{p \text{ prašt.}} \left(1 + \frac{f(p)}{p^2} + \frac{f(p^2)}{p^{2s}} + \dots\right)$.

Dokaz 3.6.5. Pogledamo $\left\lceil \frac{1}{n^s} \right\rceil$ na obeh straneh.

Primer.
$$\zeta(s) = \prod_{p \text{ prašt.}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots\right) = \prod_{p \text{ prašt.}} \frac{1}{1 - \frac{1}{n^s}}$$

Posledica 3.6.6.

f,g multiplikativna $\implies f*g$ multiplikativna, f multiplikativna $\implies f^{-1}$ multiplikativna.

Dokaz 3.6.7.

DN: direktno iz definicije.

Preko trditve:

$$Drf(f * g) \stackrel{?}{=} Drf(f) \cdot Drf(g)$$

$$\left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots\right) \cdot \left(1 + \frac{g(p)}{p^s} + \frac{f(g^2)}{p^{2s}} + \dots\right) = 1 + \frac{f(p) + g(p)}{p^s} + \frac{f(p^2) + f(p)g(p) + g(p^2)}{p^{2s}} + \dots$$

$$Drf(f^{-1}) = \frac{1}{Drf(f)}$$

$$\frac{1}{1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots} = 1 - \left(\frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots\right) - \left(\frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots\right)^2 + \dots$$
oboje ustrezne oblike.

Opomba. f, g multiplikativni: $f * g\left(p^{k}\right) = \sum_{i=0}^{k} f\left(p^{i}\right) g\left(p^{k-i}\right)$.

Primer.

$$Drf(\mu) = Drg(\zeta^{-1}) = \frac{1}{Drf(\zeta)} = \frac{1}{\zeta(s)} = \prod_{p \text{ prašt.}} \left(1 - \frac{1}{p^s}\right) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$$

$$\mu\left(p^k\right) = \begin{cases} 1: & k = 0 \\ -1: & k = 1 \end{cases} \cdot 0$$

$$0: & k \geq 2$$

$$Drf\left(n^k\right) = \sum_{n=0}^{\infty} \frac{n^k}{n^s} = \zeta(s-k); \text{ Re $s > k+1$.}$$

$$\zeta^2(s) = ?$$

$$\zeta * \zeta(s) = \sum_{d|n} \zeta(d) \cdot \zeta\left(\frac{n}{d}\right) = \tau(n): \text{ število deliteljev n.}$$

$$\zeta^2(s) = \sum_{n=1}^{\infty} \frac{\tau(s)}{n^s}$$

$$\zeta * \zeta(p^k) = \sum_{i=0}^{k} 1 = k+1$$

$$\zeta * \zeta\left[p_1^{\alpha_1} \cdot p_k^{\alpha_k}\right] = (\alpha_1 + 1) \dots (\alpha_k + 1) = \tau(n)$$

$$\zeta(2s) = \sum_{n=1}^{\infty} \frac{1}{n^{2s}}$$

$$\begin{split} a(n) &= \begin{cases} 1: \ n = m \\ 0: \ \text{sicer} \end{cases} &- \text{multiplikativna funkcija.} \\ a(p^k) &= \begin{cases} 1: \ k \ \text{sod} \\ 0: \ k \ \text{lih} \end{cases} \\ \frac{1}{\zeta(2s)} &= \frac{1}{\prod_{p \ \text{prašt.}} \left(1 + \frac{1}{p^{2s}} + \frac{1}{p^{4s}} + \dots\right)} \\ \text{geom.} &\prod_{p \ \text{prašt.}} \left(1 - \frac{1}{p^{2s}}\right) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s} \\ b(p^k) &= \begin{cases} 1: \ k = 0 \\ -1: \ k = 2 \\ 0: \ \text{sicer} \end{cases} \\ \frac{\zeta^2(s)}{\zeta(2s)} &= ? \\ \sum_{n=0}^{\infty} \frac{c(n)}{n^s} \\ k &\geq 2: \\ c(p^k) &= \sum_{i=0}^k b(p^i)c(p^{k-i}) = 1 \cdot \tau(p^k) - 1 \cdot \tau(p^{k-2}) = k + 1 - (k-1) = 2 \\ k &= 1: \\ c(p) &= 1 \cdot \tau(1) = 2 \ \text{(potrebno preveriti zarabi } b) \\ c(p^0) &= 1 \\ c(n) &= 2^{\omega(n)}, \ \omega(n): \ \text{število praštevilskih delitevljev.} \\ \frac{\zeta^2(s)}{\zeta(2s)} &= \sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^s} \\ \sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^2} &= \frac{\zeta^2(2)}{\zeta(4)} = \frac{\left(\frac{\pi^2}{6}\right)^2}{\frac{\pi^2}{90}} = \frac{5}{2} \ \text{(konvergira počasi).} \end{split}$$

Poglavje 4

Upodobitve grup in Polyeva teorija

4.1 Permutacijske upodobitve

Definicija 4.1.1.

 (G, \circ) grupa, e enota.

Delovanje grupe G na množici X je preslikava $\vartheta: G \times X \to X$, $(g,x) \mapsto \vartheta(g,x) = g \cdot x$ (ni množica v grupi), za katero velja:

- $\vartheta(e, x) = x \ \forall x \in X \ [e \cdot x = x]$
- $\vartheta(g \circ h, x) = \vartheta(g, \vartheta(h, x)) \ \forall x \in X, g, h \in G \ [(g \cdot h) \cdot x = g \cdot (h \cdot x)]$ (ni asociativnost).

 ϑ delovanje G na X.

$$\Theta: G \to S_X$$

$$\Theta(g)(x) = \vartheta(g, x)$$

 $\Theta(g)$ je bijekcija: inverz je $\Theta(g^{-1})$.

$$\Theta(g)(\Theta(g^{-1})(x)) = \Theta(g)(\vartheta(g^{-1},x)) = \vartheta(g,\vartheta(g^{-1},x))$$

$$=\vartheta(g\circ g^{-1},x)=\vartheta(e,x)=x.$$

 Θ je homomorfizem:

$$\Theta(g \cdot h)(x) = \vartheta(g \cdot h, x)$$

$$\Theta(g)(\Theta(h)(x)) = \vartheta(g, \vartheta(h, x)).$$

Obratno: $\Theta: G \to S_X$, homomorfizem je

$$\vartheta: G \times X \to X$$

 $\vartheta(q,x) = \Theta(q)(x)$ delovanje.

Če je Θ injektiven homomorfizem ($ker\Theta$ trivialno), je delovanje zvesto (angl. faithful).

Torej: $q \cdot x = x \ \forall x \in X \implies q = e$.

V tem primeru je $G \cong \Xi(G)$, BŠS $G \leq S_X, G$ permutacijska grupa.

Zvesto delovanje \equiv permutacijska grupa \equiv zvesta permutacijska upodobitev.

 $G \to S_X$ permutacijska upodobitev.

Odslej: X, G končni, delovanje zvesto $(G \leq S_X)$.

 $x \sim y$, če $\exists g \in G: g \cdot x = y$ ekvivalenčna relacija.

$$x \in X : Gx = \{g \cdot x : g \in G\}$$
 orbita x .

X/G množica orbit.

 $g \in G : x^g = \{x \in X : g \cdot x = x\}$ množica negibnih točk g.

 $x \in X : G_x = \{x \in X : g \cdot x = x\}$ stabilizator x.

 $G_x < G$.

 $g, h \in G_x, g \cdot x = x, h \cdot x = x \implies (g \cdot h) \cdot x = g \cdot (h \cdot x) = g \cdot x = x \implies g \cdot h \in X$

$$g \in G_x, g \cdot x = x \implies g^{-1} \cdot (g \cdot x) = g^{-1} \cdot x = (g^{-1} \cdot g) \cdot x = x$$

$$\implies g^{-1}(x) = x \implies g^{-1} \in G_x.$$

V splošnem ni $G_x \triangleleft G$.

Trditev 4.1.2. $\forall x \in X : |G| = |G_x| \cdot |Gx|$.

Dokaz 4.1.3.

 $H \leq G, G/H = \{g \cdot H : g \in G\}$ kvocientna množica (množica levih odsekov). Levi odseki so disjunktni, neprazni in enako močni $(e \cdot H \rightarrow g \cdot H, h \cdot gh$ bijekcija).

$$\implies |G/H| = \frac{|G|}{|H|}.$$

$$|G/G_x| = \frac{|G|}{|G_x|}.$$

Iščemo bijekcijo $Gx \to G/G_x$.

$$\phi(g \cdot x) = g \cdot G_x.$$

Dobra definiranost (\Longrightarrow) in injektivnost (\Longleftrightarrow):

$$gx = hx \iff (h^{-1}g)x = x \iff h^{-1}g \in G_x \iff h^{-1}gG_x = G_x \iff gG_x = hG_x.$$

Sujrektivnost:

$$g \cdot G_x = \phi(g \cdot x).$$

Izrek 4.1.4 (Burnsideova lema). $|X/G| = \frac{1}{|G|} \sum_{g \in G} |x^g|$.

Število orbit = povprečno število negibnih točk.

Dokaz 4.1.5.

$$\begin{split} \sum_{g \in G} |x^g| &= \sum_{g \in G} \sum_{x \in x^g} 1 \\ &= \sum_{x \in X} \sum_{g \in G, gx = x} 1 \\ &= \sum_{x \in X} |G_x| \\ &\stackrel{\text{trd.}}{=} \sum_{x \in X} \frac{|G|}{|Gx|} \\ &= |G| \sum_{\sigma \in X/G} \frac{1}{|\sigma|} \\ &= |G| \cdot |X/G|. \end{split}$$

 σ : orbita.

4.2 Polyeva teorija

Polya.

$$x = [n], G = C_n = \{(12 \dots n)^i : 0 \le i \le n - 1\}$$

$$n = 4 : C_4 = \{(1234), (13)(24), (1432), id\}$$

$$\vartheta : \mathbb{Z}_4 \times [4] \to [4]$$

$$\vartheta(i, x) = x + i \pmod{4}$$

$$0 \cdot x = x, 1 \cdot x = x + 1, 2 \cdot x = x + 2, 3 \cdot x = x + 3$$

$$\Theta : Z_4 \to S_4$$

$$i \mapsto (x \mapsto x + i)$$

 $0 \mapsto id, 1 \mapsto (1234), 2 \mapsto (13)(24), 3 \mapsto (1432)$
 $\Theta(Z_4) = C_4$

G zvesto delovanje na X, ϑ .

R množica barv, |R| = r.

Barvanje $b: X \to R$.

Trditev 4.2.1.

$$\widehat{\vartheta}(g,b)(x) = b(\vartheta(g^{-1},x))$$
 oz. $(\widehat{g} \cdot b)(x) = b(g^{-1}x)$.

Delovanje na \mathbb{R}^X (množica barvanj na X).

Če je r > 1, je to delovanje zvesto.

Dokaz 4.2.2.

$$\begin{split} \widehat{\vartheta}(e,b)(x) &= b(\vartheta(e^{-1},x)) = b(x) \implies \widehat{\vartheta}(e,b) = b \\ \widehat{\vartheta}(g \circ h,b)(x) &= b(\vartheta((g \circ h)^{-1},x)) = b(\vartheta(h^{-1},\vartheta(g^{-1},x))) \\ \widehat{\vartheta}(g,\widehat{\vartheta}(h,b))(x) &= \widehat{\vartheta}(h,b)(\vartheta(g^{-1},x)) = b(\vartheta(h^{-1},\vartheta(g^{-1},x))) \\ \widehat{\vartheta}(g,b) &= b \text{ za } \forall b \in R^X. \\ 1,2 &\in R. \end{split}$$

Izberemo $x_0 \in X$.

$$b(x) = \begin{cases} 1: & x = x_0 \\ 2: & x \neq x_0 \end{cases}$$

$$\widehat{\vartheta}(g, b)(x) = b(x) \ \forall x \in X$$

$$b(\vartheta(g^{-1}, x)) = b(x) \ \forall x \in X$$

$$x = \vartheta(g, x)$$

$$b(x_0) = b(\vartheta(g, x_0)) = 1 \implies \vartheta(g, x_0) = x_0 \stackrel{\vartheta \text{ zvesto}}{\Longrightarrow} g = e.$$

Torej za r>1 lahko uporabimo Burnsideovo lemo za $\hat{\vartheta}.$

Število orbit = število neekvivalentnih barvanj.

 $g \in G$, kaj so negibna barvanja?

g=rotacija $\pi/4$: vse točke iste barve: rnegibnih barvanj.

g=rotacija $\pi/2$: cikla vsak iste barve: r^2 negibnih barvanj.

$$\widehat{\vartheta}(g,b) = b$$

$$b(g^{-1}(x)) = b(x) \ \forall x \in X.$$

Za $\forall x \in X$ sta x in $g^{-1}x$ iste barve.

Za $\forall x \in X$ sta x in gx iste barve.

Za $\forall x \in X$ sta gx in g^2x iste barve.

 $x, gx, g^2x, g^3x...$ iste barve.

Vsi elementi v elem ciklu $g \in S_X$ iste barve $\implies b$ negibno barvanje za g.

Izrek 4.2.3 (Polyev).

G zvesto delovanje na X,

R množica barv, r = |R|.

Število neekvivalentnih barvanj X z barvami iz R je $\frac{1}{|G|} \sum_{g \in G} r^{c(G)}$, kjer je c(g) število ciklov g kot elementov S_X (torej število ciklov $\Theta(g)$) (tudi za r = 1 (nezvesto)).

Primer.

$$C_4$$

$$\frac{1}{4}(r^4+r^2+2r)$$

 D_4 diedrska grupa

$$D_4 = C_4 \cup \{(14)(23), (12)(34), (13), (24)\}$$

$$\frac{1}{8}\left(r^4 + r^2 + 2r + 2r^2 + 2r^3\right) = \frac{1}{8}\left(r^4 + 2r^3 + 3r^2 + 2r\right).$$

$$r=2$$

$$\frac{1}{8}(16+16+12+4) = 6.$$