1.1)
$$P_0 = P_r \left\{ \times (0) > \frac{1}{2}, H_0 \right\}$$

$$= P_r \left\{ \times (0) > \frac{1}{2} \right\} = \int_{\frac{1}{2}}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}} dt$$

$$= \int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}K^2} dt$$

$$= \int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}K^2} dt$$

$$= \int_{\frac{\pi}{20}}^{\frac{\pi}{20}} \int_{\frac{\pi}{20}}^{\frac{\pi}{20}} e^{-\frac{\pi}{20}R^2} dn$$

when \$ (x) is the CDF for a Danssian random variable with mean zero and variance one.

From Tables or using MATLAB program

Qinv. m in appendix 2C (
$$y = Q_{inv}(0.001)$$
 $\Rightarrow \frac{1}{2\sigma} = 3.09 \Rightarrow 0.026$
 $p(x|0); p(x|0); H_1)$

	210: A =		Don A	 	
	p/x[0]) =		- for A - /2 (x10	J-A) >	
p (x)	0); H1)		- p(×10);	۲۱) × ان	
·····	Akes sem	e to de	eide H,	4 ×101>	·····
	por su		_		
	P/740) =	· · · · · · · · · · · · · · · ·	· ————— ·····		

Pe = Pr (X10)> = 1 Horp P(710) +
Pr (X10) = = 171,3P(71)

But Pr { x(0) > 4 1) Ho} = 1- \$ (\$\frac{1}{20}\$)

from Problem 1.1. also

 $P_{r} \{x \mid o \mid z \neq 1 \mid y, \} = P_{r} \{x \mid o \mid z - \pm 1 \mid y, \}$ $= \Phi(-\frac{1}{2}\sigma)$ $= 1 - \Phi(\frac{1}{2}\sigma)$

Dirice \$ (-x) = 1-\$(x)

 $\Rightarrow P_{e} = 1 - \Phi\left(\frac{1}{2\sigma}\right) = 1 - \Phi\left(\frac{1}{2\sqrt{\sigma^{2}}}\right)$

the total section of the section of

as 0 = > 00 fe > \(\frac{1}{2}\) or we should discord \(\chi(0)\) since it has no information and just flip a coin.

Decide H, if Leads

=> Pe== fr { Leads 170) + = Pr { Tails 171, } = { Pr { Leads } + = Pr { Tails} or an equivalent decision is

Decide Hi always!

1.5) Decide signal present if $\frac{1}{2}(X|0) + X|1) > \frac{1}{2}$ or $\frac{1}{2}(X|0) + X|1 > 1$ Also E(X|0) = E(X|1) = 0

under Ho and

E(x/0)) = E(x(1)) = 1

(E(x(0))) = (1) (E(x(0)))

Decision boundary (dashed line)
is perpendicular bracetor of line
segment shown Says to Choose H.
if [x10] is closer to [i] and
wice-verse See also Example 4.6.

$$1.6) \qquad T = \frac{1}{N} \frac{N^{-1}}{2} \times \{n\}$$

$$E(T;\mathcal{H}_{0}) = E\left(\frac{1}{N}\sum_{n}W(n)\right)$$

$$= \frac{1}{N}\sum_{n}E(W(n)) = 0$$

$$E(T;\mathcal{H}_{0}) = E\left(\frac{1}{N}\sum_{n}(A+W(n))\right)$$

$$=\frac{L}{N}\sum_{n}A=A$$

$$Nan(T;H_0) = E(T^2;H_0)$$
 Since $E(T;H_0) = 0$

$$= E\left(\left(\frac{1}{N}\sum_{n}\left(x/nJ-A\right)\right)^{2},24\right)$$

$$= E\left[\left(\frac{1}{N}\sum_{n}N(n)\right)^{2}\right] - Nan(T\cdot H_{0})$$

1.7)
$$A^{2} = NA^{2} = 100$$

Chapter 2

2.1) $P = \int_{\gamma} \sqrt{\frac{1}{2\pi\sigma^2}} e^{-\frac{1}{2\sigma} - (t-u)^2} dt$

Zet $t' = t - \frac{u}{\sigma}$ $dt' = \frac{1}{\sigma} dt$

 $=\int_{-\pi}^{\pi}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}t^{2}}$

= 0/0-1

 $Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$

 $= \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}t} e^{-\frac{t}{2}t^{2}} dt$

u(+) dv(+)

=> $Y(t) = -e^{-\frac{t}{2}t^2} du(t) = -\frac{1}{\sqrt{2\pi}t^2} dt$

 $Q(x) = -\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} \left(x - \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt \right)$

 $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} - \int_{x} \sqrt{2\pi} e^{-\frac{1}{2}x^2} dt$

=) Q(x) = \frac{1}{\sqrt{217}} x e \frac{1}{217} x e \frac{1}{217} x e

as $x \to \infty$ $Q(x) \to \sqrt{-x} e^{-\frac{1}{2}x^2}$ $\frac{F_{\nu_1\nu_2}}{X_1} = \frac{x_1/\nu_1}{X_1/\nu_2} = \frac{x_1/\nu_2}{X_1/\nu_2}$ and X, & are independent $x_2 = \sum_{i=1}^{2} u_i \quad u_i \sim N(o_1)$ and IID $\frac{\chi_2}{\chi_2} = \frac{1}{\chi_2} \sum_{i=1}^{N_2} \frac{\chi_2}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2} \sum_{i=1}^{N_2} \frac{\chi_2}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2} = \frac{1}{\chi_2$ by law of large numbers => Full > Xi ~ Xi C'=DTD Where X'=DX has covariance matrix E(X'X'T)= E(DXXTDT) $= \underline{D} \subseteq \underline{D}^{T} = \underline{D} \underline{D}^{T'} \underline{D}^{T'} \underline{D}^{T'} \underline{D}^{T} = \underline{I}$ Now XTC-'X = XTDTDX

where $y = Dx \sim N(o, x)$

=> y; s one IID and
y; NN(51)

 $\frac{2}{2}y_i^2 \sim \chi_n^2$

2.5) as in Problem 2.4 $X^TC^-'X = \frac{2}{2}y_i^2$ i=1

Where y = Dx

Now however y ~ N (DM I)

yi's are independent and

y: ~ N ((DM) i)

=) \frac{7}{2} \gamma \chi^2 \land \chi^2 \l

Where A = Z[DM);

= (DM)TDM = MTDTDM

= MTCHM

Where
$$y = Y^T \times \sim N(o, Y^T \pm Y)$$

$$y^T \wedge y = \sum_{i=1}^{r} \lambda_i y_i^2$$

$$= \sum_{i=1}^{r} y_i^2$$

and yin N(01) and are independent

2.71 UTRU = \(\frac{7}{2}\) \(\lambda \quad \mu \) \(\lambda \quad \quad \mu \) \(\lambda \quad \mu \) \(\lambda \quad \mu \) \(\lambda \quad \mu \quad \mu \) \(\lambda \quad \mu \quad \quad \mu \quad \mu \quad \quad \mu \quad \quad \quad \mu \quad \

$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} u_{n} u_{n} u_{n} \int_{1}^{\infty} P_{xx}(f)$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n} u_{n} u_{n} u_{n} \int_{1}^{\infty} P_{xx}(f) u_{n} u_{n}$$

PXXIIIAF

also if $f(x)(m-n) = \delta(m-n) \Rightarrow$ $u^T R u = u^T u \text{ and } f(x)(f) = 1 \text{ so}$ that

(or use Parsaval's theorem)

AMAX = MAX \[\int \left[\vert \ver

/ 10/41/2 Pox/4/ df 2 /10/41/2df PXX/4/MAX

=) AMAX & PXX(f) MAX (Assuming)

PXX(f) # 0 2)

Similarly, we have

AMN > PXX/F/MN

2.8) $f_{xx}(f) = f_{xx}(o) + 2f_{xx}(o) - 2f_{xx}(o) - 2f_{xx}(o) - 2f_{xx}(o)$ => $f_{xx}(f)_{M_{1}N} = f_{xx}(o) - 2f_{xx}(o)$ $f_{xx}(f)_{M_{1}N} = f_{xx}(o) + 2f_{xx}(o)$

·	Now assume (xx (1) >0
· · · · · · · · · · · · · · · · · · ·	$C = \frac{(x \times 10) - \lambda}{(x \times 11)} \times (x \times 10) - \hat{P}_{XX} = \hat{P}_{XX}$
	Since Pxx(F) x) & Pxx(F) MAX. But
	[xx(0)-Pxx[f)MjN = 2)[xx[1)] = 2 (xx/1)
	=> C < 2 . Olsv
	C= (xx(0)-A) , (xx(6)-Pxx(f)MAX
	C (a)
· · · · · · · · · · · · · · · · ·	
	$= -2 C_{\times\times\{1\}} $

To solve NA+CNA-, +NA-==0 let Nn=2° so that Z 1 + C Z 1-1 + Z 1-2 = 0 02 Z * ナ < Z ナ / = s => Z = - C + \ C 2 - 4 which are also 121=1 and thus Z=e=0. as a result wn = Ae 100 + Ax c - 100 = B cos (10+4) Noting that c=-2 costs we have N, + (No=0=) B cos (0+0) - 2 cos 0 B cos = 0 Coso cosp - Sen & Sup - 2 cos & cosp = 0 Cos(0-\$)=0=) 0=(2h+1)11+\$ k an integer NN + (NN = 0 =) B Cos ((N-2) 0+ p) -2 cos 0Bcos ((N-1) 0+ p) =0 Cos (W-2) ++) - Cos (NO+\$) - Cos (N-2)0+\$) =0 => C/2/NO+4)=0 NO+\$ = (2 L+1) T/2 lan integer NO = (2 l+1) Th + (2k+1) T - 0 $0 = \left(\frac{h+2)\pi + \pi}{N+1} = \frac{m\pi}{N+1} = \frac{2m\pi}{2/N+1}$

for m an integer. Now
A = [xx[o]-c (xx[i)
= (xx (0) + 2 COSB (xx (1))
$= \int_{XX} O\rangle + 2 \int_{XX} O\rangle \cos \frac{2\pi m}{2(N+1)}$
$2.9) \qquad f_{xx}(m) = 0.9^{m} < 0.001$
=> M > 66
E(XIAI) = E(A) = 0 for all n
E(Xtn)X(n+k)) = E(A2) = OA2 for all k
doesn't depend on n. Thus
$\Gamma_{xx}(k) = \sigma_{A}^{2}$
=> WSS Correlation time is infinite
ition since PXX(+1 = TA S(+) doesn't
east.
2.10) VMHVn = N Z e j=11 fnk e - J=11 fmk
$= \frac{1}{2} \sum_{k=0}^{N-1} e^{j2\pi \theta k}$
$=\frac{1-e^{j2\pi\theta N}}{1-e^{j2\pi\theta}}$

$$= \frac{1}{N} \frac{e^{\int I \Theta N}}{e^{\int I \Theta}} \frac{2 \int dm N \pi \Theta}{2 \int dm N \pi \Theta}$$

$$= \frac{1}{N} \frac{2 \int dm N \pi \Theta}{N} \frac{2 \int dm N \pi \Theta}{N} \frac{1}{N} \frac{1}{N}$$

=> R = Pxx(for GoGo + E Pxx (fi)(Vivit + Vi Vi

= ナル (モンーダンシン = V:

VN-c = - (CN-c+gSN-c)

+ PXX/+M-) CND CND IN

and VIVIN + VIX VIT = 2 Re(VIVIH)

= 2 Re ((Ci+ Jsi)(ct- gsit)) = 2(CiCit + sist)

To prove orthogonality consider as an example

5m Cn = Z surzofini cos sofii

= = \frac{1}{2} \sin (2\pi \mathred{m} - f_n)i)

i= 0

+ sm (201(+ n. + fa) i.)

= 1 Im 2/e 12mfn-fa)i 1=0 + e)m(fm+fn)4)

= 1 Im [N8 (m-n) + 0) = 0

Since $\sum_{i=0}^{N-1} e^{j 2\pi f_i i} = 0$ i = 12..., N-1

Similarly for the others.
Eigenvalues are 1 Pxx (+0), Pxx(+,1), Pxx(+,1),

and occur in pairs except for i=0 N/2.

2.12) (R)ma = [xx lm-n) = /2 /xx/+) e 12#+(m-n) d+ = f Pxx1fje = -15f(m-n) d+ $\frac{1}{n} \sum_{N}^{N-1} P_{XX}(f_i) e^{\int 2\pi f_i(m-n)}$ = E Pxx [fi) + e 12# fim = 2 Pxx[fi) (vo) (vi) * E PXX/fil ViviH Engenvectors are Vi's engenvalues are Pxx(fi). $\frac{2.13}{i=6} R = \frac{N^{-i}}{\sum_{i=6}^{N-i} \lambda_i V_i V_i^{H}} = \frac{V \wedge V^{H}}{\sum_{i=6}^{N-i} \lambda_i V_i^{H}}$ det (R) = det (Y) det (1) det (YH) رع / جعار = det (A) = TT di

$$=\frac{2}{2}\int_{c}^{\infty}\frac{1}{\lambda_{c}}\frac{v_{c}v_{c}\theta}{\lambda_{c}}$$

2.14) Using CLT we have

 $T(X) = \frac{1}{N} \sum_{x} \sum_{y} \sum_{n} N(E(x^2 in)), van(x^2 in))$

But $X(n) \sim N(0,5) = E(X^{2}(n)) = 5$ Also $Van(X^{2}(n)) = E(X^{2}(n)) - E(X^{2}(n))$ $= 3 E(X^{2}(n)) - E(X^{2}(n))$

= 2 (5)2 = 50

T(x) ~ N(5,1)

P- { 1 (x) > 5 } = =

See next two pages for Montecarlo resulta.

```
prob214.m
This program is a Monte Carlo computer simulation that solves
Problem 2.14.
Set seed of random number generator to initial value.
randn('seed',0);
Set up values of variance, data record length, and number
of realizations.
var=10;
var=5; %MODIFY THE VARIANCE
N=10;
N=50; %MODIFY THE DATA RECORD LENGTH
M=1000;
M=10000; %MODIFY THE NUMBER OF REALIZATIONS
Dimension array of realizations.
T=zeros(M,1);
Compute realizations of the sample mean.
for i=1:M
  x=sqrt(var)*randn(N,1);
   T(i) = mean(x);
T(i)=x'*x/N; %MODIFY THE TEST STATISTIC
end
Set number of values of gamma.
ngam=100;
Set up gamma array.
gammamin=min(T);
gammamax=max(T);
gamdel=(gammamax-gammamin)/ngam;
gamma=[gammamin:gamdel:gammamax]';
Dimension P (the Monte Carlo estimate) and Ptrue
(the theoretical or true probability).
P=zeros(length(gamma),1);Ptrue=P;
Determine for each gamma how many realizations exceeded
gamma (Mgam) and use this to estimate the probability.
for i=1:length(gamma)
  clear Mgam;
  Mgam=find(T>gamma(i));
  P(i) = length(Mqam)/M;
end
Compute the true probability.
Ptrue=Q(gamma/(sqrt(var/N)));
 plot(gamma,P,'-',gamma,Ptrue,'--')
plot(gamma, P) %MODIFY PLOT
xlabel('gamma')
ylabel('P(T>gamma)')
grid
```


PROB. 2.14

2.151 9590 => ~= 0.05

 $\epsilon = 0.01$ $P_b \geq 0.8$

 $M \geq \left[\frac{Q^{-1}(\alpha/2)^2(1-p)}{\epsilon^2 P_p}\right]$

Since 1-90 has a maximum at

PD = 0.8 for PD = 0.8, we use This

 $M \ge (Q^{-1}(0.025))^{2} 0.2 - 9604$ $(0.01)^{2} 0.8$

Chapter 3

3.1)
$$L(x(0)) = \frac{p(x(0);H_1)}{p(x(0);H_0)}$$

$$\frac{1-e^{-\frac{1}{2}(x(0)-1)^{2}}}{\sqrt{2\pi}} = \frac{1}{(x(0)-1)^{2}} > 1$$

Taking the logarithm of both sides

32) Let
$$R_{i} = \{x : decide H_{i}\}$$

$$\begin{aligned}
PFR &= \int_{R_{i}} p(x_{i}; H_{0}) dx = 10^{-3} \\
But &p(x_{i}; H_{0}) = \sqrt{2\pi} e^{-\frac{1}{2} x^{2}(0)} \\
R_{i} &= \sqrt{2\pi} e^{-\frac{1}{2} x^{$$

$$R_1 = \{ \times \{0\} : \times \{0\} < -3 \}$$
 $R_2 = \{ \times \{0\} : \{ \times \{0\} \} > 3.3 \}$

3.3) Since $g(x_2) > g(x_1)$ if and only if $x_2 > x_1$, we have

g(2(x)) > g(t) if and only if L(X) > t, where we have let X, = t, X= = L(X) an example of g(x) is $\frac{g(x)}{g(x_1)} = \ln x$ $\frac{g(x_1)}{x_1} = \frac{1}{x_2}$

3.4) From (3.8)

Po= Q(Q"(PFA)- \d")

Where d = NA / 5-

Q"(PD) = Q"(PFA)- Taz

d= [Q-'(PFA)-Q-'(PD)]

02

 $N = \left[Q^{-1}(PFA) - Q^{-1}(PD) \right]^2$

A2/02

 $= [Q^{-1}(10^{-4}) - Q^{-1}(0.99)]^{2}$

0.001

Using pinv. m in 20 we have

N = 36,546

3.5) $\hat{A} = \frac{1}{\pi} \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} x_{n}$

as shown in Chapter 1, E(A) = A and

var (A) = 02/N

 $\frac{E(\hat{A})}{van(\hat{A})} = \frac{A^2}{\delta^2/N} = \frac{NA^2}{\delta^2/N} = d^2$

Thus this quantity, which measures estimation accuracy is actually the ENR.

3.6) For A LO we have that we decide It, if

A ZXINI > Int + NA2 as before

but now ALO So that we decide Hil

N EXINI < Or hot + A = 1'

as before = \(\frac{1}{N} \) \(\frac{7}{N}\) \(\frac{1}{N}\) \

so that

$$P_{D} = P_{\Gamma} \left\{ T(x) \perp Y' \cdot \mathcal{H}_{J} \right\}$$

$$= 1 - P_{\Gamma} \left\{ T(x) > Y' \cdot \mathcal{H}_{J} \right\}$$

$$= 1 - Q \left(\frac{Y' - A}{V \sigma^{2} N} \right)$$

$$Y' = \sqrt{\sigma_{Z}^{2}} Q^{-1} \left(1 - P_{FA} \right)$$

area = x

$$\frac{1}{Q^{-1}(1-x)} \frac{1}{Q^{-1}(x)} = \frac{1}{Q^{-1}(x)} = \frac{1}{Q^{-1}(1-x)}$$

3.7)
$$\mathcal{A}$$
 exide \mathcal{H}_1 if $L(x) > V = \sigma$

$$\frac{N^{-1}}{T} \times \ln 2 = \frac{1}{2} \times 2^{2} \ln 2\sigma^{2}$$

$$\frac{N^{-1}}{T} \times 2 \ln 2 = \frac{1}{2} \times 2^{2} \ln 2/\sigma^{2}$$

$$\frac{N^{-1}}{T} \times 2 \ln 2 = \frac{1}{2} \times 2^{2} \ln 2/\sigma^{2}$$

 $\frac{\sigma_0^{2N}}{\sigma_1^{2N}} \in \frac{1}{2} \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right) \sum_{i=1}^{N} \chi^2/n^2$

Taking logarithms

 $\frac{1}{2}\left(\frac{1}{\sigma o^2} - \frac{1}{\sigma_1^2}\right) \sum_{n} X^2(n) > \ln\left(\frac{\sigma_1^2 N}{\sigma_0^2 N}\right)$

or since 0,2 > 002

 $\frac{1}{N} = \frac{1}{2} \times \frac{2}{1/1} > \ln \left(\frac{\sigma_1^2 N}{\sigma_0^2 N} + \right) = 1$ $\frac{1}{N} = \frac{1}{2} \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right)$

Test statistic is astimator of Second moment. For Rayleigh random variable $E(x^2) = 20^2$.

3.8) $L(X) = \sqrt{2\pi} e^{-\frac{1}{2}X^{2}(0)}$ $\frac{1}{2}e^{-\frac{1}{2}X^{2}(0)}$

Taking logarithms

- 1×2(0)+1×10)1> h(V重Y)

x2101-2/x1011 < -2 ln (1 1)

X2101-2/x10)1+1 ~ 1-2 h (TEV)

(1x10)1-1)2 < 8'

Note that 8 € (0,00) =) 8' € (-00,00) If t'eo the inequality is never satisfied and we always choose Ho => TEA-1. To avoid this let o'>0. Than decide H, if -18' < 1× 1011-1 < 18' 1-1 < |X10)1 < 17/1 tor 18' <1 -(1+VI) -(1-VI) 1-VI 1+17. For Vr'>1 - (1+VF1) 1+VF1 3.9) Decide Hi if 2 (x2/0) + x2 8.1) > 1' or x2/01+x2/11 > 271 Under Ho 02 = 002 so that

= Pr { X2 > 2+/002}

PFA = Pr { x2/0/+ x2/1/ > 21' . Ho}

$$= \int_{2\pi/\sigma_{0}}^{\infty} \frac{1}{2} e^{-\frac{1}{2}\tau} dt$$

$$= -e^{-\frac{1}{2}\tau} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\pi/\sigma_{0}} - e^{-\frac{1}{2}\tau} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\pi/\sigma_{0}} - e^{-\frac{1}{2}\tau} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\pi/\sigma_{0}} + e^{-\frac{1}{2}\sigma_{0}} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\pi/\sigma_{0}} + e^{-\frac{1}{2}\sigma_{0}} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\pi/\sigma_{0}} + e^{-\frac{1}{2}\sigma_{0}} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\pi/\sigma_{0}} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\frac{1}{2}\sigma_{0}} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\frac{1}{2}\sigma_{0}}^{\infty} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\frac{1}{2}\sigma_{0}} \Big|_{2\pi/\sigma_{0}}^{\infty} = e^{-\frac{1}{2}\sigma_{0}}^{\infty} \Big|_{2\pi/\sigma_{0$$

= e = x2 - x2 - 10 + h \(\frac{1}{20} + \frac{1}{10} \)

$$B(x) = x / g^{2}$$

$$C(x) = -x^{2} / 2 g^{2}$$

$$D(x) = -x^{2} / 2 g^{2}$$

 $= e^{A(\theta)} \sum_{n=0}^{\infty} B(x(n)) + ND(\theta) \sum_{n=0}^{\infty} C(x(n))$ $= e^{A(\theta)} \sum_{n=0}^{\infty} B(x(n)) + ND(\theta) \sum_{n=0}^{\infty} C(x(n))$

=) $T(X) = \sum_{n=0}^{\infty} B(x|ni)$ is a sufficient statistic for θ

In Janssian Case we have $B(x) = \frac{x}{5^{2}} \text{ or}$ $T(x) = \frac{1}{5^{2}} \frac{x}{(n)}$

Sufficient statistics are not unique and 1-1 transformations are also sufficient statistics

3.12) For perfect detection PDFs cannot overlap. Hence if 1-e>c on

Now assume a NP detector whose PFA is

 $PFA = \propto p_1 + (1-\alpha)p_2$. Then we must have (due to optimality of NP)

 $P_0 \geq \alpha P_0(p_1) + (1-\alpha) P_0(p_2)$

~ Po(p,) + (1-x) Po(p.) = Po(xp,+(1-x)p2)

211 det "2(5)

Taking logarithma We have

ln L(x) = - \(\frac{1}{2}\) \(\times \frac{1}{2}\) \(\times \frac{1}\) \(\times \frac{1}{2}\) \(\times \frac{1}{2}

or we decide H, if

XT 5-1/M,-Ma) > ln+ = (M,TC-1M,-MoTC-1Ma)

Now
$$C^{-1} = \begin{bmatrix} 1 - p \\ -p \end{bmatrix}$$
 $1-p^{+}$
 $1-p^{+}$
 $M_{1}-M_{0} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$C^{-1}(M_{1}-M_{0}) = \frac{1}{2} \sqrt{-p} \left(-p \right)$$
 $X^{T}C^{-1}(M_{1}-M_{0}) = \frac{1}{2} \sqrt{-p} \sqrt{-p} \times 11$
 $1-p^{+}$

or we derich H_{1} if $\times 101-p\times 111>y''$
 $M_{1}-p^{+}$
 $M_{2}-p^{+}$
 $M_{2}-p^{+}$
 $M_{3}-p^{+}$
 $M_{4}-p^{+}$
 $M_{5}-p^{+}$
 $M_{5}-p^{+}$

$$f_{n} L(X) = -\frac{1}{20^{-1}} \left[\frac{2N-1}{2} (X|n) - 2A)^{-1} - \frac{2N-1}{2} (X|n) - 2A)^{-1} - \frac{2N-1}{2} (X|n) - 2A$$

$$= -\frac{1}{26^{2}} \left(-2A \sum_{n=N}^{2N-1} (X)_{n} + 4NA^{2} \right)$$

or once ADO we double if

The observed samples { x101, x101, ..., x1N-1)}
are inclinant since may provide no
discrimination between Ho and H.

which is the mean-Shifted Gauss- Sauss

problem =) $f_0 = Q(Q^{-1}(PFA) - \sqrt{d^{-1}})$

3.16) Decide H, if

p(x1)h) > p(Ho) p/x/Ho) P(Ho)

= \frac{1}{202} \left(-2A \frac{5}{2} \left(-1) + NA^2 \right) > \frac{1-\rho(74)}{\rho(74)}

A 2x/n) = NA2 > [-P(H))

 $\frac{1}{N} \frac{N-1}{\sum_{n=0}^{N-1} \chi(n) > A}{1 + 0^{2}} + \frac{0^{2}}{NA} en \left[\frac{1-P(\gamma I_{1})}{P(\gamma I_{1})}\right]$

For N=1, A=1, 02=1 decide 71, if

×101 > = + ln 1-P(24)

If P(Ho)=P(H) => 8'=1/2 If P(Ho)=1/4, P(H)=3/4 => 8'=-0.6 Since H1 is more likely, the detector "biases" its decision toward H, by lowering the threshold. 3.17) Since P(Ho) = P(HI), we use ML rule or we decide H, if

p (x 12/1) > p (x 17/0)

 $\frac{1}{(2\pi 6^2)^{N/2}} e^{-\frac{1}{2}6^2(X-M)^{\frac{1}{2}(X-M)}} e^{-\frac{1}{2}6^2(X-M)^{\frac{1}{2}(X-M)}}$ $= \frac{1}{(2\pi 6^2)^{N/2}} e^{-\frac{1}{2}6^2(X-M)^{\frac{1}{2}(X-M)}} e^{-\frac{1}{2}6^2(X-$

Taking logarithms

- 202 (XTX - 2 MTX + MTM - XTX) > 0

52 (MTX - 1 MTM) >0

MTX > 1 MTM

For N=2 we decide H, if

Mox10)+ M, X),) > = (Mo2+M/2)

or if X(1) > - MO X/0) + 1 (M02+M,2)

(assuming u, >0)

decide / X/11) = - MO X/05+ 1 MO + MI, Stope of line segment from origin to u is M. / Mo => decision boundary line is perpendicular and also it intersects at (Myz M1/2) or medpoint Decide H, if p(21,1x) > p(210/x) p (x 1 24,) P(74,) > p(x 12)0) P(740) p(x/74)> P(74) = + p(x/740) = + 1 e - 5 x2/0) ln 1/2 - 4 x2/01 + 5 x2/01 > Ind 14 X2 (0) > Pm V28

1×1011 > 2 V LN VS 8

For $P(H_0) = P(H_1) = 1/2 \implies y = 1$ |X(0)| > 1.18 $For <math>P(H_0) = 3/4, P(H_1) = 1/4 \implies y = 3$ |X(0)| > 2.40

When P(Ho) > 1/2, the streshold becomes larger than for P(Ho) = 1/2 since Ho is more likely. Note that for $P(Ho) = \frac{1}{2}$ we have the ML rule so that we decide H_1 if $p(X | O) : H_1 > p(X | O) : H_0)$.

3.19) Mr detector Chooses Hi for which

p(X174i) is maximim. Since X

is a sufficient statistic, we can

equivalently decide Hi for which

p(X174i) is maximum. But

 $\frac{1}{2} \sim N(-A, \frac{\sigma^2/N}{N}) \qquad \frac{21}{24}$ $\frac{1}{24} \sim N(0, \frac{\sigma^2/N}{N}) \qquad \frac{1}{24}$

← R -> ← R -> ← R, > ← R, > ← R, >

ML detector chooses the level which is Closest to X since where Ai = iA To maximize p(X 1Hi) =) mininge | X-Ail To find te wente that except for the + (M-1) A levels we make an error if 1x-A01 > A/2. There are (M-2) of these types of error . For the + (M-1) A levels we make an error if $\overline{X} - A_{M-1} < A/2$ Z-A-(1/2) > A/2 or 4 x - M-1 A L Ab X + M-1 A > A/2 Hence since P(Hi)=1/M we have Pe = 1/m [M-11/2] i= = (M-1)/2

= \frac{1}{M} \left[(M-2) Pr \left[1\times - Acl > AL 1 Hi (\frac{1}{2} + M-1) \right] + Pr \left[\times - M-1 A \right] A \right] \right] + Pr \left[\times + M-1 A > \frac{1}{2} \left[H-1 \right] \right]

$$= \frac{1}{M} \left\{ (M-2) \int_{\Gamma} \left\{ \overline{|W|} > A/2 \right\} \right.$$

$$+ \int_{\Gamma} \left\{ \overline{|W|} < A/2 \right\}$$

$$+ \int_{\Gamma} \left\{ \overline{|W|} > A/2 \right\} \right.$$

$$+ \left(\frac{A}{2\sqrt{67N}} \right)$$

$$+ \left(\frac{A}{2\sqrt{67N}} \right)$$

$$+ \left(\frac{A}{2\sqrt{67N}} \right)$$

$$= \frac{2M-2}{M} \left(\frac{A}{2\sqrt{67N}} \right)$$

Decide Ho if x101 < - 1/2

24, if 1×501 < 1/2

242 if x10) > 1/2

- Ro -> (R, +) < R2 ->

$$= 2 \int_{0}^{\frac{1}{2}} \frac{1}{2} e^{-t} dt = -e^{-t} \int_{0}^{\frac{1}{2}}$$

$$= 1 - e^{-t/2}$$

$$P_{r} \left\{ \times 101 > \frac{1}{2} 1742 \right\} = \int_{\frac{\pi}{2}}^{\infty} \frac{1}{2} e^{-1t-1} dt$$

んし ハー ねり 5 しんノ $y[n] = \int \int f(f) f(f) = \int f(f)$ - f 15(4)12 df with equality if and only if n = N-1. 4.3) Signal output = energy

y[N-1] = \(\frac{5}{5} \frac{5}{2} \langle 10 \)

- 2 A2 Con = 27 fon

$$= A^{2} \frac{z'}{z'} (\frac{1}{z} + \frac{1}{z} \cos 4\pi f_{0}n) \approx NA^{2}h$$

$$y [N-1] = \frac{z'}{z} \times 1n15/n1$$

= \(\frac{\sigma}{\sigma} \) \(\sigma / \chi - \chi_0 \) \(\sigma / \chi_0 \)

= \(\frac{\z}{\sigma} - \sigma \sigma

= $\frac{N-1-n_0}{\Sigma}$ $5/n + 1/n_0$ Degral Correlation

 $= A^{2} \sum_{n=0}^{N-1-n_{0}} \cos 2\pi f_{0} n \cos 2\pi f_{0}(n+n_{0})$

= A2 \(\frac{1}{2} \cop 2\pi fon + \frac{1}{2} \cop (4\pi fon \\ \dagger \frac{1}{2} \pi fon \)

 $\frac{\lambda^{2}}{2} = \frac{\lambda^{2} - \lambda^{2}}{2} = \frac{\lambda^{2}}{2} = \frac{\lambda^{2} - \lambda^{2}}{2} = \frac{\lambda^{2}}{2} =$

- NA2 N-no COSZATONO

degradation for no to

 $n_o = \frac{1}{4 + 6}$

4.4)
$$\eta = \left(\sum_{k=0}^{N-1} h \lfloor N-1-k \rfloor J \rfloor_{k=0}^{2}\right)^{2}$$

 $\sum_{k} \frac{\sum_{k} h_{l} N_{-1} - k_{l} h_{l} N_{-1} - k_{l}}{\sum_{k} \frac{\sum_{k} h_{l} N_{-1} - k_{l}}{\sum_{k} h_{l} N_{-1} - k_{l}}}$

$$= \left(\frac{2}{2} \cdot \lambda \left(N-1-k\right) J \left(k\right)\right)^{2}$$

$$= \left(\frac{2}{2} \cdot \lambda \left(N-1-k\right) J \left(k\right)\right)^{2}$$

σ= Σ h²[N-1-k] h=-~

$$= \left(\frac{z}{1-c} h(e) - 1N-1-e)\right)^{2}$$

 $\delta^{2} = \frac{\xi^{2}}{2} h^{2} | \ell |$ $\ell = -\infty$

Since the numerator does not depend on h [l] for l outside the [O, N-1] interval we maximize of by minimizing the denominator. Here we set h (l) = a if l is outside [O, N-1].

$$4.5) \qquad p = \left(\frac{\tilde{Z}}{k=-\infty} h(k) J/N-1-kJ\right)^2$$

E (5 h(k) W(N-1-k))

4.6) From (4.3) decide H, if

T(X) = \(\int \times \times \times \lambda \tau \)

\[\times \frac{\times \times \times \lambda \times \frac{\times \times \times \times \times \times \frac{\times \times \times \times \times \times \times \frac{\times \times \ti

From (4.14) $P_0 = Q(Q^{-1}(P_{FA}) - I E/g^2)$ where $E/g^2 = A^2 \sum_{g^2 = 0}^{N^{-1}} I^{2n}$

For
$$o \in \Gamma \neq 1$$
 $\stackrel{\mathcal{E}}{\sigma^{-}} \rightarrow \frac{A^{2}}{\sigma^{-}} \stackrel{1}{1-1^{2}}$

$$\Gamma = 1 \qquad \stackrel{\mathcal{E}}{\gamma_{0}} \rightarrow \infty \qquad \Longrightarrow \qquad P_{D} \rightarrow 1$$

$$\Gamma \rightarrow 1 \qquad \stackrel{\mathcal{E}}{\gamma_{0}} \rightarrow \infty \qquad \Longrightarrow \qquad P_{D} \rightarrow 1$$

4.7) From (4.14) a NP detector has
$$P_{D} = Q(Q^{-1}(PFA) - \sqrt{\epsilon_{I}\sigma_{-}})$$

$$\frac{y_{\sigma^{2}}}{\sum_{n=0}^{N-1} \sum_{n=0}^{N-1} A^{2} \sum_{n=0}^{N-1} cos^{2} 2\pi f_{0}n}$$

$$= A^{2} \sum_{n=0}^{N-1} cos^{2} \pi n$$

$$= A^{2} \sum_{n=0}^{N-1} cos^{2} \pi n$$

$$= A^{2}(1+o+1+o+...+1)$$
= 13 A²

AFA

Dame performance
for + A

4.8) Both have same energy => both have some detection performance

$$4.9) \quad A_{out} = \frac{\epsilon}{4} = \frac{\sum_{n=0}^{N-1} A^2 c_n^2 2\pi t_{on}}{n^2}$$

~ NA2/202

 $\eta_{1N} = A^2/2\sigma^2$

 $PG = 10 \log_{10} \frac{NA^{2}/20^{2}}{A^{2}/20^{2}}$

= 10 log, N dB

h[n] = 5/N-1-ns

= A Coo (27 fo (N-1-n)) OEN 4 N-1

 $H(f) = A \sum_{n=0}^{N-i} cos 2n f_i(N-i-n) = -j2n f_n$

 $= A \sum_{N=0}^{N-1} \cos 2\pi f_{0} n e^{-j 2\pi j} f(N-1-n)$

 $= A e^{-J2\pi f(N-1)} \sum_{n=0}^{N-1} \left(e^{J2\pi (f+f_0)n} - A e^{J2\pi (f-f_0)n} \right)$

For N large

4.11) Ho: x = w $\mathcal{H}_{1}: \quad X = 5 + W$ ____ or equivalently 270: 4 - DW 741: y = D5+DW - Moder 7/0 y ~ N (0, I) 24, y~N(D5, I) L(y) = P(y; H,) ply : Ho) $= \frac{1}{(2\pi)^{N/2}} = \frac{-\frac{1}{2}(y-ps)^{T}(y-ps)}{(2\pi)^{N/2}}$ 1-1-1-1- e- - 777 1271N/2 e- - 777 ln L(4) = - 1 (y Ty - 25 TO TY + 5 TD TD 5 = 57DTY - 7 STE-15

ln L(y) = 5TDTDX - 25Tc-'s

or in Terms of x

and we decide H, if