1	CLAIMS		
2			
3	1.	An ap	oparatus including:
4		(a)	a housing having at least one carrying feature;
5		(b)	a battery or the battery and at least one additional battery mounted within the
6			housing;
7		(c)	an inverter circuit for inverting an output of the battery, or an output of the at least
8			one additional battery, or the output of the battery and the at least one additional
9			battery to produce a modeler's AC power output; and
10		(d)	a modeler's power panel connected to the housing and operatively connected to
11			receive power from the battery, or the at least one additional battery, or the battery
12			and the at least one additional battery, the modeler's power panel including at
13			least one DC output for powering a modeler's accessory.
14			
15	2.	The a	pparatus of claim 1 further including a battery charging control circuit operatively
16		conne	ected to the battery or to the battery and the at least one additional battery for
17		charg	ing the battery or the at least one additional battery when the charging control circuit
18		is pov	vered.
19		•	
20	3.	The a	pparatus of claim 2 further including a source battery monitoring device operatively
21		conne	ected to the charging control circuit and adapted to be connected to a DC power

1		source, the source battery monitoring device for discontinuing a charging operation
2		charging the battery or the battery and the at least one additional battery when the DC
3		power source reaches a predefined discharge level.
4		
5	4.	The apparatus of claim 1 when the modeler's power panel includes a pump output, a glow
6		plug output, and a starter output.
7		
8	5.	The apparatus of claim 1 further including a master switch operatively connected to the
9		modeler's power panel to selectively disable the modeler's power panel from receiving
10		power from either the battery or the at least one additional battery.
11		
12	6.	The apparatus of claim 1 wherein the battery or the battery and the at least one additional
13		battery are adapted to be charged by a standard 12 volt DC automotive power system.
14		
15	7.	The apparatus of claim 1 further including an inverter master switch operatively
16		connected to the inverter circuit for selectively disabling the inverter circuit.
17		
18	8.	An apparatus including:
19		(a) a housing having at least one carrying feature;
20		(b) an electrical power storage arrangement mounted within the housing;

1		(c) an inverter circuit for inverting an output of the electrical power storage
2		arrangement to produce a modeler's AC power output; and
3		(d) a modeler's power panel connected to the housing and operatively connected to
4		receive power from the electrical power storage arrangement, the modeler's power
5		panel including at least one DC output for powering a modeler's accessory.
6		
7	9.	The apparatus of claim 8 further including a charging control circuit operatively
8		connected to the electrical power storage arrangement for charging the electrical power
9		storage arrangement when the charging control circuit is powered.
10		
11	10.	The apparatus of claim 9 further including a DC source monitoring device operatively
12		connected to the charging control circuit and adapted to be connected to a DC power
13		source, the DC source monitoring device for discontinuing a charging operation charging
14		the electrical power storage arrangement when the DC power source reaches a predefined
15		discharge level.
16		
17	11.	The apparatus of claim 8 when the modeler's power panel includes a pump output, a glow
18		plug output, and a starter output.
19		

1	12.	The apparatus of claim 8 further including a master switch operatively connected between
2		the electrical power storage arrangement and the modeler's power panel to selectively
3		disable the modeler's power panel.
4		
5	13.	The apparatus of claim 8 wherein the electrical power storage arrangement is adapted to
6		be charged by a standard 12 volt DC automotive power system.
7		
8	14.	The apparatus of claim 8 further including an inverter master switch operatively
9		connected to the inverter circuit for selectively disabling the inverter circuit.
10		
11	15.	A method including the steps of:
12		(a) supplying an appropriate DC output from an electrical power storage arrangement
13		to a modeler's field accessory power output, the electrical power storage
14		arrangement being mounted in a readily portable housing; and
15		(b) inverting the DC output from the electrical power storage arrangement to produce
16		a modeler's AC output.
17		
18	16.	The method of claim 15 further including the step of charging the electrical power storage
19		arrangement from a DC automotive power system.
20		

1	17.	The method of claim 16 further including the step of monitoring the DC automotive
2		power system while charging the electrical power storage arrangement, and discontinuing
3		charging in response to a predetermined discharge level monitored from the DC
4		automotive power system.

18. The method of claim 15 wherein the step of supplying the DC power output from the electrical power storage arrangement to a modeler's field accessory power output includes supplying DC power to a modeler's starter motor output, a modeler's fuel pump output, or a modeler's glow plug output.

19. The method of claim 15 further including the step of applying the modeler's AC output to a battery charging circuit to charge a battery associated with a model control device.