

CHANGE POINT DETECTION IN END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia de Sistemas e Computação.

Orientador: Edmundo Albuquerque de Souza e Silva

Rio de Janeiro Janeiro de 2017

CHANGE POINT DETECTION IN END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Ximenes Mendes, Diego

Change Point Detection in End-to-End Measurements Time Series/Diego Ximenes Mendes. – Rio de Janeiro: UFRJ/COPPE, 2017.

IX, 9 p.: il.; 29,7cm.

Orientador: Edmundo Albuquerque de Souza e Silva Dissertação (mestrado) — UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2017.

Bibliography: p. 9-9.

- 1. Change Point Detection. 2. Time Series.
- 3. Machine Learning. I. Albuquerque de Souza e Silva, Edmundo. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Sistemas e Computação. III. Título.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CHANGE POINT DETECTION IN END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

Janeiro/2017

Orientador: Edmundo Albuquerque de Souza e Silva

Programa: Engenharia de Sistemas e Computação

oioioi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

CHANGE POINT DETECTION IN END-TO-END MEASUREMENTS TIME SERIES

Diego Ximenes Mendes

January/2017

Advisor: Edmundo Albuquerque de Souza e Silva

Department: Systems Engineering and Computer Science

oioioi

Contents

Li	List of Figures v				
Li	st of	Tables	ix		
1	Intr	roduction	1		
	1.1	Contributions	1		
	1.2	Dissertation Outline	1		
2	Lite	erature Review of Change Point Detection Problem	2		
	2.1	Sliding Window Techniques	2		
	2.2	Dynamic Programming	2		
	2.3	Bayesian Inference	2		
	2.4	HMM	2		
	2.5	Other Algorithms	3		
	2.6	Performance Evaluation	3		
3	Dat	aset	4		
	3.1	Description of End-to-End Packet Loss Measurements Time Series	4		
	3.2	Change Points Classification Survey	4		
4	App	olying Change Point Detection	5		
	4.1	Preprocessing	5		
	4.2	Tuning Hyperparameters	5		
		4.2.1 Grid Search and Randomized Grid Search	5		
		4.2.2 Bayesian Optimization	5		
		4.2.3 Particle Swarm Optimization	5		
	4.3	Sliding Window	6		
	4.4	Dynamic Programming			
	4.5	HMM	6		
	4.6	Bayesian Inference	6		
	4.7	LSTM			
	4.8	Ensembles	6		

5	Results			
	5.1	Classification Accuracy	7	
	5.2	Unsupervised Analysis	7	
	5.3	Algorithms Comparison	7	
6 Conclusions		nclusions	8	
Bibliography				

List of Figures

List of Tables

Introduction

- 1.1 Contributions
- 1.2 Dissertation Outline

Literature Review of Change Point Detection Problem

Here the change point problem will be "defined", including offline and online versions.

2.1 Sliding Window Techniques

Describe sliding window techniques in change point detection. Describe how two windows can be compared. Probably this technique will not be part of my solution, but I will write about it since is the simplest and most intuitive solution.

2.2 Dynamic Programming

Optimization problem will be formulated and the solution algorithm will be presented. Also will be presented pruning techniques such as PELT.

2.3 Bayesian Inference

I will erase this section if I don't use bayesian inference. Describe Fearnheard (offline) and MacKay (online) solutions. Say that there are other versions.

2.4 HMM

I will not describe HMM algorithms (viterbi, baum welch, etc), I will only describe how HMM have been used in change point detection. Describe Left-Right HMM, full HMM, and Regularized HMM in this problem.

2.5 Other Algorithms

Only cite other used algorithms and say why I chose the previous one to analyse.

2.6 Performance Evaluation

Describe how datasets are constructed in literature. Describe how an algorithm output is evaluated.

Dataset

3.1 Description of End-to-End Packet Loss Measurements Time Series

Here will be presented the TGR dataset. Small description on how data are collected, including client informations (geographic position, routes, etc) Plots: distribution between two consecutive measures, autocorrelation after time binarization, loss distribution, hour of day x loss, day of week x loss. Maybe: clusterize clients by distribution or time series.

3.2 Change Points Classification Survey

Describe web system used to get "true" change points. Describe majority voting. Describe how data were divided in train/test dataset.

Applying Change Point Detection

In each algorithm section I will: Describe adaptations and approaches. Describe dificulties of this algorithms in real data and in the current dataset that lead to adaptation.

4.1 Preprocessing

Filters applied to time series before presenting to algorithms.

4.2 Tuning Hyperparameters

4.2.1 Grid Search and Randomized Grid Search

4.2.2 Bayesian Optimization

I don't know if I am going to use this method.

4.2.3 Particle Swarm Optimization

I don't know if I am going to use this method.

4.3 Sliding Window

4.4 Dynamic Programming

4.5 HMM

4.6 Bayesian Inference

I don't know I will use this: poor performance.

4.7 LSTM

I don't know I will use this: maybe I will not have enough data.

4.8 Ensembles

If there are enough models to be tested describe how to use ensembles.

Results

5.1 Classification Accuracy

Present false positive/false negative/...

5.2 Unsupervised Analysis

Clusterize clients according with change points detected and check if latent information of clusters are also clusterized.

5.3 Algorithms Comparison

Compare algorithms results and computational performance.

Conclusions

Bibliography