High-Level Synthesizable Deep Learning Routines with Python/PyTorch Interfaces

Version 0 Revision 6

Dec. 17, 2020 (July 23, 2020)

Future Design Systems, Inc. www.future-ds.com/ / contact@future-ds.com/

Copyright © 2020 Future Design Systems, Inc.

Abstract

This document addresses Deep Learning Routines that are High-Level synthesizable. In addition to the C routines, Python Interfaces for PyTorch are included in order to verify functionality of the routines along with PyTorch deep learning framework.

Table of Contents

Copyright © 2020 Future Design Systems, Inc.	1
Abstract	1
Table of Contents	1
1 Overview	4
1.1 Verification flow	4
2 License	5
3 Convention and background	5
3.1 Naming convention	5
3.2 Multi-dimensional array	6
3.3 Python wrapper	6
3.4 PyTorch wrapper	
3.5 Hardware interface	6
3.6 Software interface	7
4 Activation	
4.1 ReLU	8
4.1.1 Python wrapper	9
4.1.2 PyTorch wrapper	
4.2 Leaky ReLU	
4.2.1 Python wrapper	
4.2.2 PyTorch wrapper	

4.3 Hyperbolic tangent	. 10
4.3.1 Python wrapper	11
4.3.2 PyTorch wrapper	11
4.4 Sigmoid	
4.4.1 Python wrapper	
4.4.2 PyTorch wrapper	
5 Concatenation	
5.1 Concat 2D	
5.1.1 Python wrapper	
5.1.2 PyTorch wrapper	
6 Convolution	
6.1 Convolution2d	
6.1.1 Python wrapper	
6.1.2 PyTorch wrapper	
7 Deconvolution (Transposed convolution)	
7.1 deconvolution2d	
7.1.1 Python wrapper	
7.1.1 Python wrapper	
8 Linear (Fully connected)	
8.1 Linear 1D	
8.1.1 Python wrapper	
8.1.2 PyTorch wrapper	
8.2.1 Python wrapper	
8.2.2 PyTorch wrapper	
9 Normalization	
9.1 Batch normalization 2D	
9.1.1 Python wrapper	
9.1.2 PyTorch wrapper	
10 Pooling	
10.1 Pooling2dMax	
10.1.1 Python wrapper	
10.1.2 PyTorch wrapper	
10.2 Pooling2dAvg	. 26
10.2.1 Python wrapper	
10.2.2 PyTorch wrapper	
11 Project: LeNet-5	
11.1 LeNet-5	
11.1.1 LeNet-5 C++ version	
11.1.2 LeNet-5 C PyTorch version	
12 Troubleshooting	
13 Acknowledgement	
14 References	
Wish list	. 33
Index	. 33
Revision history	. 34

Future Design Systems	FDS-TD-2020-09-003

Future Design Systems	FDS-TD-2020-09-003

1 Overview

DLR (Deep Learning Routines) as a part of **DPU** (Deep Learning Processing Unit) is a collection of high-level synthesizable C routines for deep learning inference network. **DLIP** (Deep Learning Intellectual Property) is HDL (Hardware Description Language) version of DLR.

DLR contain followings1:

- Convolution layer (strict convolution, matrix-multiplication-based convolution)
- → Activation layer (ReLU, Leaky ReLU, hyperbolic tangent, sigmoid)
- ♦ Pooling layer (max, average)
- → Fully connected layer (linear layer)
- ♦ De-convolution layer (transposed convolution layer)
- ♦ Batch normalization layer
- ♦ Concatenation layer

The routines have following highlights:

- → Fully synthesizable C code
- → Highly parameterized to be adopted wide range of usages
- ♦ C, Python, PyTorch, Verilog test-benches
- ♦ FPGA verified using Future Design Systems' CON-FMC

It should be noted that the routines are not optimized to get a higher performance since the routines are for hardware implementation not for computation. In addition to this the routines are only for inference not for training.

1.1 Verification flow

Figure 1 shows an overall verification flow, in which following interfaces are supported.

- Standard C/C++
- PyTorch C++ Front-End
- PyTorch

¹ Some are under development and more will be added.

Figure 1: Verification flow

2 License

DLR (Deep Learning Routines) and its associated materials are licensed with the 2-clause BSD license to make the program and library useful in open and closed source products independent of their licensing scheme.

Copyright © 2020 by Future Design Systems, Inc. http://www.future-ds.com contact@future-ds.com

3 Convention and background

3.1 Naming convention

This routine uses following coding conventions.

Future Design Systems	FDS-TD-2020-09-003		

- ♦ 4 spaces for indentation, not tab.
- ♦ Variables uses underscores separating words.
 - char item_delimiter;
- ♦ Functions starts with upper case character and follows carmel-case.
 - void Convolution2dWrapper(int stride);
- ♦ Macros uses all capital letter with underscores separating words.
 - #define MAX NUM 128
- → Temporary variable starts underscore or 't_' prefix.
 - int t tmp;
- ♦ Output comes first in the function argument list.
- ♦ Python wrapper functions follow format of DRL of C.
- ♦ PyTorch wrapper functions follow format of PyTorch nn.functional.

3.2 Multi-dimensional array

This routine uses row-major contiguous array layout, which is the same as that of the standard C language.

Figure 2: Multi-dimensional array (one-byte data case)

3.3 Python wrapper

Python wrapper uses Ctypes (a foreign function library for Python) to call C routine.

DLIP (Deep Learning IP) Python wrapper uses Python NumPy array to carry array data. As a result, PyTorch tensor should be converted to NumPy arrary in order to be called from PyTorch.

3.4 PyTorch wrapper

PyTorch wrapper supports torch.nn.funtional that is stateless functional version.

3.5 Hardware interface

DLIP (Deep Learning IP) has two AMB AXI bus interfaces; one is for accessing internal registers and the other is for access shared memory.

Future Design Systems	FDS-TD-2020-09-00	

Figure 3: Deep Learning IP HW structure including test bench

3.6 Software interface

Following explains the structure of CSR (Control and Status Register) in the DLIP.

```
// ctl
// 0x00 : Control signals
      bit 0 - ap_start (Read/Write/COH)
//
      bit 1 - ap_done (Read/COR)
//
//
      bit 2 - ap_idle (Read)
//
      bit 3 - ap_ready (Read)
//
      bit 7 - auto_restart (Read/Write)
      others - reserved
// 0x04 : Global Interrupt Enable Register
      bit 0 - Global Interrupt Enable (Read/Write)
//
      others - reserved
//
// 0x08 : IP Interrupt Enable Register (Read/Write)
      bit 0 - Channel 0 (ap_done)
//
//
      bit 1 - Channel 1 (ap_ready)
      others - reserved
//
// 0x0c : IP Interrupt Status Register (Read/TOW)
      bit 0 - Channel 0 (ap_done)
//
//
      bit 1 - Channel 1 (ap_ready)
      others - reserved
// 0x10 : Data signal of shared mem
      bit 31~0 - shared mem[31:0] (Read/Write)
// 0x14 : reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on
Handshake)
```

Following shows an example to control DLIP through CSR.

Wait for ready before start	Let DLIP runs and wait for completion
#define WAIT_FOR_READY {\	#define GO_AND_WAIT_COMPLETE {\
int ap_idle, ap_idle_r;\	int ap_done, ap_done_r;\
unsigned int ap_addr;\	int ap_start, ap_data;\

Future Design Systems	FDS-TD-2020-09-003		

```
ap_addr = ADDR_CSR;\
while (1) {\
    MEM_READ(ap_addr, ap_idle_r);\
    ap_idle = (ap_idle_r >> 2) && 0x1;\
    if (ap_idle) break;\
}

unsigned int ap_addr;\
ap_addr = ADDR_CSR;\
ap_data = 0x1;\
MEM_WRITE(ap_addr, ap_data);\
while (1) {\
    MEM_READ(ap_addr, ap_done_r);\
    ap_done = (ap_done_r >> 1) && 0x1;\
    if (ap_done) break;\
}
```

4 Activation

4.1 ReLU

'ActivationReLU()' applies Rectified Linier Unit over an input data.

```
#include "activation_relu.hpp"
template<class TYPE=float>
void ActivationReLu
         TYPE
                  *out data
  , const TYPE
                  *in_data
  , const uint32 t size
   const uint16 t channel
  #if !defined(__SYNTHESIS )
  , const int
                rigor=0
   const int
                verbose=0
  #endif
);
```

Templates:

- → TYPE: data type of out_data, in_data
 - □ int, float, double, and so on².

Arguments:

- out_data: resultant data in contiguous memory and can be any dimension
 - channel x size x size
- ♦ in_data: input array in contiguous memory and can be any dimension
 - □ channel x size x size

Array size must keep following rules.

'out_data' and 'in_array' must have 'channel x size' elements.

² Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003		

4.1.1 Python wrapper

'ActivationReLu()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
ActivationReLu( out_data # any dimension
, in_data # any dimension
, rigor=False
, verbose=False)
```

4.1.2 PyTorch wrapper

'relu()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
relu( input # any dimension
, rigor=False
, verbose=False)
```

4.2 Leaky ReLU

'ActivationLeakyReLU()' applies Rectified Linier Unit over an input data.

```
#include "activation leakyrelu.hpp"
template<class TYPE =float>
void ActivationLeakyReLu
        TYPE
                 *out_data
  , const TYPE
                 *in_data
  , const uint32_t size
  , const uint16_t channel
  const uint32_t negative_slope=0x3DCCCCCD
  #if !defined(__SYNTHESIS__)
  , const int
              rigor=0
               verbose=0
  const int
  #endif
```

Templates:

♦ DTYPE: data type of out_data, in_data

□ int, float, double, and so on³.

Arguments:

out_data: resultant data in contiguous memory and can be any dimension

□ channel x size x size

³ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

- ♦ size: the number of elements per channel
- negative_slope: apply when in_data[] is negative; bit pattern of float 0.01 by default.
 - □ Note that it should carry bit-pattern
- → rigor: check values rigorously when 1

Array size must keep following rules.

'out_data' and 'in_array' must have 'channel x size' elements.

4.2.1 Python wrapper

'ActivationLeakyReLu()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
ActivationLeakyReLu( out_data # any dimension
, in_data # any dimension
, negative_slope
, rigor=False
, verbose=False)
```

4.2.2 PyTorch wrapper

'leaky_relu()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
leaky_relu( input # any dimension
, negative_slope
, rigor=False
, verbose=False)
```

4.3 Hyperbolic tangent

'ActivationTanh()' applies hyperbolic tangent over an input data.

Future Design Systems	FDS-TD-2020-09-003		

#endif			
/,			

Templates:

♦ DTYPE: data type of out_data, in_data

□ int, float, double, and so on⁴.

Arguments:

- out_data: resultant data in contiguous memory and can be any dimension
 - channel x size x size
- ♦ in_data: input array in contiguous memory and can be any dimension
 - channel x size x size
- ⇒ size: the number of elements per channel
- ♦ channel: the number of channels
- → rigor: check values rigorously when 1

Array size must keep following rules.

• 'out data' and 'in array' must have 'channel x size' elements.

4.3.1 Python wrapper

'ActivationTanh()' wrapper gets NumPy arguments for array and 'out data' carries calculated result. It returns 'True' on success or 'False' on failure.

ActivationTanh (out_data # any dimension , in_data # any dimension , rigor=False , verbose=False)

4.3.2 PyTorch wrapper

'tanh()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

tanh(input # any dimension , rigor=False , verbose=False)

4.4 Sigmoid

'ActivationSigmoid()' applies sigmoid over an input data.

⁴ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

```
#include "activation_sigmoid.hpp"
template<class TYPE=float>
void ActivationSigmoid
         TYPE
                  *out data
  , const TYPE
                  *in_data
  , const uint32_t size
   , const uint16_t channel
  #if !defined(__SYNTHESIS__)
                rigor=0
  , const int
   const int
                verbose=0
  #endif
);
```

Templates:

♦ DTYPE: data type of out_data, in_data

int, float, double, and so on⁵.

Arguments:

 out_data: resultant data in contiguous memory and can be any dimension

□ channel x size x size

→ in_data: input array in contiguous memory and can be any dimension

□ channel x size x size

⇒ size: the number of elements per channel

♦ channel: the number of channel

→ rigor: check values rigorously when 1

Array size must keep following rules.

• 'out data' and 'in_array' must have 'channel x size' elements.

4.4.1 Python wrapper

'ActivationSigmoid()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
ActivationSigmoid( out_data # any dimension , in_data # any dimension , rigor=False , verbose=False)
```

4.4.2 PyTorch wrapper

'sigmoid()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

_

⁵ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

```
sigmoid( input # any dimension
, rigor=False
, verbose=False)
```

5 Concatenation

5.1 Concat 2D

'Concat2d()' combines two 2-dimentional arrays.

```
#include "concat_2d.hpp"
template<class TYPE=float>
void Concat2d
         TYPE
                 *out data
  , const TYPE
                 *in dataA
  , const TYPE
                 *in_dataB
  , const uint16_t in rowsA
  , const uint16 t in colsA
  , const uint16_t in_rowsB
  , const uint16 t in colsB
  , const uint8 t dim
  #if !defined(_SYNTHESIS )
                rigor=0
  , const int
   const int
                verbose=0
  #endif
);
```

Templates:

- ♦ DTYPE: data type of out data, in data
 - □ int, float, double, and so on⁶.

Arguments:

- ♦ out_data[][]: resultant 2D array
 - □ in_rowsA x (in_colsA+in_colsB) when dim is 1
 - ☐ (in_rowsA+in_rowsB) x in_colsA when dim is 0
- → in_dataA[in_rowA][in_colA]: input array (rows:height, cols:width)

- ♦ verbose: print more message when 1

Array size must keep following rules.

- 'out data', 'in arrayA' and 'in dataB' are 2 dimensional array.
- 'dim' can be 0 or 1.

e -

⁶ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

Figure 4: Concat2d example

5.1.1 Python wrapper

'Concat2d()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

5.1.2 PyTorch wrapper

'cat()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
cat( (inputA
, inputB
, dim=0
, rigor=False
, verbose=False)
```

6 Convolution

6.1 Convolution2d

Future Design Systems	FDS-TD-2020-09-003

'Convolution2d()' applies a 2D convolution over an input data composed of several planes (channels).

```
#include "convolution 2d.hpp"
template<class TYPE=float>
void Convolution2d
         TYPE
                  *out data
  , const TYPE
                  *in_data
  , const TYPE
                  *kernel
                  *bias
  , const TYPE
  , const uint16_t out_size
  , const uint16_t in_size
  , const uint8_t kernel_size
  , const uint16 t bias size
  , const uint16_t in_channel
  , const uint16_t out_channel
  , const uint8_t stride
   const uint8_t padding=0
  #if !defined(_SYNTHESIS
  , const int
                rigor=0
                verbose=0
   const int
  #endif
```

Templates:

- ♦ DTYPE: data type of out_data, in_data, kernel, bias
 - □ int, float, double, and so on⁷.

Arguments:

- ♦ out_data[out_channel][out_size][out_size] resultant array in square
- ♦ in_data[in_channel][in_size][in_size] input feature array in square
- kernel[in_channel][out_channel][kernel_size][kernel_size] filter array in square
- bias[bias_size]: bias for output and each element corresponds each output channel
- ♦ out size: the number of elements in width direction (column).
- ♦ in_size: the number of elements in width direction (column)
- ♦ kernel size: the number of elements in width direction (column)
- bias_size: the number of elements in bias (zero by default)
- ♦ in channel: the number of input channels.
- out_channel: the number of output channels, i.e., filters; the number of channels produced by the convolution.
- strid: stride of the convolution (one by default)
- padding: the number of zero-paddings on both sides (zero by default, not implemented yet)
- rigor: check values rigorously when 1
- ♦ verbose: print more message when 1

⁷ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

'minibatch', 'dilation', and 'goups' are not supported, but 'minibatch' is supported through PyTorch wrapper.

Array size must keep following rules.

- 'out data', 'in data', 'kernel' are square matrix
- 'out size' = (((in size-kernel_size+2*padding)/stride)+1)
- 'kernel_size' should be odd number
- 'bias_size' should be the same as 'out_channel', i.e., the number of kernels
- 'stride' should be >=1
- 'padding' should be >=0 and will be floor(kernel_size/2) normal case

Each data arrays are row-major contagious and kernel array can be seen as 4-dimentional array of [out_channel x in_chnnel x kerne_size x kernel_size].

Figure 5 shows an example case of three input channels and two output channels⁸, in which biases are two and kernels are 'out_channel x in_channel'.

Figure 5: Convolution2d example with 3 input channels, 2 output channels

6.1.1 Python wrapper

'Convolution2d()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

IIIIj			

Future Design Systems	FDS-TD-2020-09-003

```
Convolution2d( out_data # out_channel x out_size x out_size , in_data # in_channel x in_size x in_size , kernel # out_channel x in_channel x kernel_size x kernel_size , stride=1 , padding=0 , bias=0 , rigor=False , verbose=False)
```

6.1.2 PyTorch wrapper

'conv2d()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

7 Deconvolution (Transposed convolution)

7.1 deconvolution2d

'DeConvolution2d()' applies a 2D transposed convolution over an input signal composed of several input planes (channels).

```
#include "deconvolution_2d.hpp"
template<class TYPE=float>
void Deconvolution2d
          TYPE
                   *out data
  , const TYPE
                   *in_data
  , const TYPE
                   *kernel
  , const TYPE
                   *bias
  , const uint16_t out_size
  , const uint16 t in size
  , const uint8 t kernel size
  , const uint8_t bias_size
  , const uint16_t in_channel
  , const uint16_t out_channel
  , const uint8_t stride
  , const uint8_t padding=0
#if !defined(__SYNTHESIS__)
                 rigor=0
  , const int
   const int
                 verbose=0
  #endif
```

Future Design Systems	FDS-TD-2020-09-003

);

Templates:

♦ DTYPE: data type of in_data, kernel, bias, out_data; int, float, double, and so on⁹.

Arguments:

- ♦ out_data[out_channel][out_size][out_size] resultant array in square
- ♦ in_data[in_channel][in_size][in_size] input feature array in square
- ♦ kernel[in channel][out channel][kernel size][kernel size] filter array in square
- out_size: the number of elements in width direction (column)
- ♦ in_size: the number of elements in width direction (column)
- ♦ kernel size: the number of elements in width direction (column)
- ♦ in channel: the number of input channels.
- ♦ out channel: the number of output channels, i.e., filters; the number of channels produced by the convolution.
- ♦ strid: stride of the convolution (one by default)
- ♦ padding: the number of zero-paddings on both sides (zero by default, not implemented yet)
- ♦ bias[bias size]: bias for output and each element corresponds each output channel
- ♦ bias size: the number of elements in bias (zero by default)

'paddng', 'minibatch', 'dilation', 'goups' are not supported yet.

Array size must keep following rules.

- 'out data', 'in data', 'kernel' are squre matrix
- 'out size' = (((in size-kernel size+2*padding)/stride)+1)
- 'kernel size' should be odd number
- 'stride' should be positive and larger than 0 (should not be 0)
- 'padding' should be positive including 0 and will be floor(kernel_size/2)
- 'bias size' should be 'out channel'.

7.1.1 Python wrapper

'Deconvolution2d()' wrapper gets NumPy arguments for array and 'out data' carries calculated result. It returns 'True' on success or 'False' on failure.

Deconvolution2d(out data # any dimension , in_data $\overline{\#}$ any dimension

- weight
- . bias=None
- stride=1
- , padding=0

, output padding=0

⁹ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

```
, groups=1
, dilation=1
, rigor=False
, verbose=False)
```

7.1.2 PyTorch wrapper

'conv_transpose2d()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
conv_transpose2d( input # any dimension

, weight

, bias=None

, stride=1

, padding=0

, output_padding=0

, groups=1

, dilation=1

, rigor=False

, verbose=False)
```

8 Linear (Fully connected)

8.1 Linear 1D

'Linear1d()' applies a 1D vector multiplication over an input data.

```
#include "linear 1d.hpp"
template< class TYPE=float
     , int ReLu=0
     , const int LeakyReLu=0
    , const uint32_t negative_slope=0x3DCCCCCD
void Linear1d
         TYPE
                 *out data
  , const TYPE
                 *in data
  , const TYPE
                 *weight
  , const TYPE
                 *bias
  , const uint16_t out_size
  , const uint16_t in_size
   const uint16 t bias size
  #if !defined( SYNTHESIS )
               rigor=0
  , const int
               verbose=0
   const int
  #endif
);
```

Templates:

♦ DTYPE: data type of out_data, in_data, kernel, bias, out_data

Future Design Systems	FDS-TD-2020-09-003

- □ int, float, double, and so on¹⁰.
- ReLu: add ReLU activation at the end of linear operation (it should be 0 when LeakyReLU is 1)
- LeakyReLu: Leaky-ReLU activation at the end of linear operation (it should be 0 when ReLU is 1)
- → negative_slope: Slope to be applied for negative input with 0.001 by default and only valid when LeakyReLU is 1.

Arguments:

- out_data[out_size]: resultant 1D array
- → weight[out_size][in_size]: weights
 - weight should be transposed before multiplying to in_data
- ♦ bias[out_size]: bias 1D array
- out_size: the number of elements of out_data[]
- in_size: the number of elements of in_data[]
- ♦ bias size: the number of elements of bias[]

Array size must keep following rules.

- 'out data' and 'in data' are 1 dimensional array.
- 'weight' is 2 dimensional array
- 'weight' should be 'out_size x in_size'
- 'bias' should be 1 dimensional array
- 'bias size' should be the same as 'out size'

8.1.1 Python wrapper

'Linear1d()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
Linear1d( out_data # out_size

, in_data # in_size

, weight # out_size x in_size

, bias # out_size

, rigor=False

, verbose=False)
```

8.1.2 PyTorch wrapper

'linear()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

¹⁰ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

```
linear( input # minibatch x 1 x in_size
    , weight # out_size x in_size
    , bias # out_size
    , rigor=False
    , verbose=False)
```

8.2 Linear ND

'LinearNd()' applies a N-D matrix multiplication over an input data.

```
#include "linear nd.hpp"
template<class TYPE=float, int ReLu=0>
void LinearNd
       TYPE
                *out_data
  , const TYPE
                 *in_data
  , const TYPE
                  *weight
  , const TYPE
                  *bias
  , const uint16_t out_size
  , const uint16_t in_size
  , const uint16_t bias_size
  , const uint8_t ndim
  #if !defined( SYNTHESIS )
  , const int
                rigor=0
                verbose=0
  , const int
  #endif
);
```

Templates:

- → DTYPE: data type of out_data, in_data, kernel, bias, out_data
 □ int, float, double, and so on¹¹.
- ♦ ReLu: add ReLU activation at the end of linear operation

Arguments:

- → out_data[ndim][out_size]: resultant 1D array
- → in_data[ndim][in_size]: input feature 1D array
- ♦ weight[out_size][in_size]: weight
 - weight should be transposed before multiplying to in_data
- ♦ bias[out size]: bias 1D array
- → out_size: the number of elements of out_data[]
- ♦ in_size: the number of elements of in_data[]
- ♦ bias_size: the number of elements of bias[]
- ♦ ndim: dimension of in data
- → rigor: check values rigorously when 1
- verbose: print more message when 1

Array size must keep following rules.

'out_data' and 'in_data' are 2 dimensional array.

1

¹¹ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

- 'weight' is 2 dimensional array
- 'weight' should be 'out size x in size'
- 'bias' should be 1 dimensional array
- 'bias size' should be the same as 'out size'

Figure 6: Matrix multiplication over 2 dimensional array case

8.2.1 Python wrapper

'LinearNd()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
LinearNd( out_data # ndim x out_size
, in_data # ndim x in_size
, weight # out_size x in_size
, bias # out_size
, rigor=False
, verbose=False)
```

8.2.2 PyTorch wrapper

'linearNd()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
linearNd( input # minibatch x ndim x in_size
, weidht # out_size x in_size
, bias # out_size
, rigor=False
, verbose=False)
```

9 Normalization

9.1 Batch normalization 2D

'Batchnorm()' applies a batch normalization for each channel across a batch of data.

$$y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} * \gamma + \beta$$

where 'y' is outut, 'x' is input, 'E[x]' is mean, 'Var[x]' is variance, 'gamma' is scaling factor, 'beta' is shift factor (bias), 'epsilon' is value for numerical stability.

```
#include "norm 2d batch.hpp"
template< class TYPE=float
         , int LeakyReLu=0
         , int negative_slope1000=100>
void Norm2dBatch
        TYPE
                  *out data
  , const TYPE
                  *in data
  , const TYPE
                  *running_mean
  , const TYPE
                  *running_var
  , const TYPE
                  *scale
  , const TYPE
                  *bias
  , const uint32_t in_size
  , const uint16_t scale_size
  , const uint16_t bias_size
  , const uint16_t in_channel
  , const float epsilon=1E-5
#if !defined(__SYNTHESIS__)
  , const int
                rigor=0
   const int
                verbose=0
  #endif
);
```

Templates:

- DTYPE: data type of out_data, in_data, running_mean, running var, scale and bias
 - □ int, float, double, and so on.
- LeakyReLu: apply Leaky ReLU at the end of this operation
- → negative_slope1000: 100 means 0.1

Arguments:

- ♦ out data[in channel][in size][in size] resultant array in square
- ♦ in_data[in_channel][in_size][in_size] input feature array in square.
- → running_mean: running_mean[in_channel], mean of each channel
- → running_var: running_var[in_channel], standard variance of each channel
- ♦ scale: scale[in channel], scale factor (by default, 1)
- ♦ bias: bias[in_channel], shift factor (by default, 0)
- → in_size: the number of elements in width direction (column)
- ♦ scale_size: the number of elements in scale[], it can be 0 or in_channel.
- ♦ bais_sie: the number of elements in bias[], it can be 0 or in_channel
- ♦ in channel: the number of input channels

Future Design Systems	FDS-TD-2020-09-003

Array size must keep following rules.

- 'out data' and 'in data' are the same size
- scale_size, bias_size can be 0 or in_channel.

9.1.1 Python wrapper

'Norm2dBatch()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
Norm2dBatch( out_data # out_size
, in_data # in_size
, rigor=False
, verbose=False)
```

9.1.2 PyTorch wrapper

'batch_norm()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
batch_norm( input # minibatch x 1 x in_size
, rigor=False
, verbose=False)
```

10 Pooling

10.1 Pooling2dMax

'Pooling2dMax()' applies a 2D max pooling over an input data composed of several input planes (channels).

```
#include "pooling_2d_max.hpp"
template< class TYPE=float
    , const int ReLu=0
    , const int LeakyReLu=0
    , const uint32_t negative_slope=0x3DCCCCCD
void Pooling2dMax
         TYPE
                 *out data
  , const TYPE
                 *in_data
  , const uint16_t out_size
  , const uint16_t in_size
  , const uint8_t kernel_size
  , const uint16_t channel
  , const uint8_t stride
  , const uint8_t padding=0
               ceil_mode=0
  , const int
```

Future Design Systems	FDS-TD-2020-09-003

```
#if !defined(__SYNTHESIS__)
, const int rigor=0
, const int verbose=0
#endif
);
```

Templates:

- ♦ DTYPE: data type of out_data, in_data, kernel, bias, out_data □ int, float, double, and so on¹².
- → ReLU: apply ReLU at the end of this operation when 1
- ♦ LeakyReLu: apply leaky ReLU at the end of this operation when 1
- → negative_slope: Slope to be applied for negative input and only valid when LeakyReLU is 1. 0.01 by default.

Arguments:

- → out_data[channel][out_size][out_size] resultant array in square
- ♦ in_data[channel][in_size][in_size] input feature array in square
- ♦ out size: the number of elements in width direction (column)
- ♦ in_size: the number of elements in width direction (column)
- ♦ kernel_size: the number of elements in width direction (column)
- ♦ strid: stride of the convolution (one by default)
- padding: the number of zero-paddings on both sides (zero by default, not implemented yet)

Array size must keep following rules.

- 'out data', 'in data', 'kernel' are square matrix
- 'out_size' = floor(((in_size-kernel_size+2*padding)/stride)+1) when
 'ceil mode' is 0 by default. Otherwise, ceil() is used instead.
- 'kernel size' should be odd number
- 'stride' should be >=1
- 'padding' should be >=0 and will be floor(kernel size/2) normal case

10.1.1 Python wrapper

'Pooling2dMax()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

^{&#}x27;minibatch' is not supported.

¹² Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

```
Pooling2dMax( out_data # out_channel x out_size x out_size , in_data # in_channel x in_size x in_size , kernel_size , kernel_size , stride=1 , padding=0 , ceil_mode=False , rigor=False , verbose=False)
```

10.1.2 PyTorch wrapper

'max_pool2d()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

```
max_pool2d( input # minibatch x in_channel x in_size x in_size
    , kernel_size
    , stride=1
    , padding=0
    , ceil_mode=False
    , groups=1
    , rigor=False
    , verbose=False)
```

10.2 Pooling2dAvg

'Pooling2dAvg()' applies a 2D average pooling over an input data composed of several input planes (channels).

```
#include "pooling_2d_avg.hpp"
template<class TYPE=float>
void Pooling2dAvg
         TÝPE
                  out data
  , const TYPE
                 *in data
  , const uint16_t out_size
  , const uint16_t in_size
  , const uint8_t kernel_size
  , const uint16_t channel
  , const uint8_t stride
  , const uint8_t padding=0
                ceil_mode=0
   const int
  #if !defined(__SYNTHESIS_
  , const int
                rigor=0
                verbose=0
   const int
  #endif
```

Templates:

♦ DTYPE: data type of out_data, in_data, kernel, bias, out_data

Future Design Systems	FDS-TD-2020-09-003

□ int, float, double, and so on¹³.

Arguments:

- ♦ out_data[channel][out_size][out_size] resultant array in square.
- ♦ in_data[channel][in_size][in_size] input feature array in square
- ♦ out size: the number of elements in width direction (column)
- ♦ in size: the number of elements in width direction (column)
- ♦ kernel_size: the number of elements in width direction (column)
- ♦ strid: stride of the convolution (one by default)
- padding: the number of zero-paddings on both sides (zero by default, not implemented yet)

- → verbose: print more message when 1

Array size must keep following rules.

- 'out_data', 'in_data', 'kernel' are square matrix
- 'out_size' = floor(((in_size-kernel_size+2*padding)/stride)+1) when
 'ceil mode' is 0 by default. Otherwise, ceil() is used instead.
- 'kernel size' should be odd number
- 'stride' should be >=1
- 'padding' should be >=0 and will be floor(kernel size/2) normal case

10.2.1 Python wrapper

'Pooling2dAvg()' wrapper gets NumPy arguments for array and 'out_data' carries calculated result. It returns 'True' on success or 'False' on failure.

```
Pooling2dAvg( out_data # out_channel x out_size x out_size , in_data # in_channel x in_size x in_size , kernel_size , kernel_size , stride=1 , padding=0 , ceil_mode=False , rigor=False , verbose=False)
```

10.2.2 PyTorch wrapper

'avg_pool2d()' PyTorch wrapper gets PyTorch tensor arguments for array and returns calculated result. It calls Python wrapper after converting PyTorch tensor to NumPy array.

^{&#}x27;minibatch' is not supported.

¹³ Fixed-point data type will be supported.

Future Design Systems	FDS-TD-2020-09-003

11 Project: LeNet-5

11.1 LeNet-5

LeNet-5 is a convolutional network designed for handwritten and machineprinted character recognition. Figure 7 shows network and its data size. Table 1 shows a summary of the network and its parameters.

Figure 7: LeNet-5 network

Layer feature map kernel stride padding Activation **Parameters** Feature map (channel x W x H) (bias+weight) 32x32 1,024 image input 1 CONV 6 28x28 5x5 0 ReLU 6+150 4,704 MaxPOOL 6 14x14 0 1,176 CONV 3 16 10x10 5x5 0 ReLU 16+2,400 1,600 4 MaxPOOL 16 5x5 2x2 0 400 5 FC 120 1x1 5x5 0 ReLU 120+48,000 120 FC 6 84 ReLU 84+10,080 84 7 FC 10 softmax 0 10 61,706 9,118

Table 1: LeNet-5 summary

11.1.1 LeNet-5 C++ version

Following code shows an example implementation of LeNet-5 network model using DLR deep learning routines, where 'lenet5_params.h' should contain

trained results of weights and biases. Flatten step before the first linear layer is not required for DLR since its data array can be seen linear array.

```
#if !defined(DTYPE)
#define DTYPE float
#endif
#include "dlr.hpp"
#include "lenet5_params.h" // come from LeNet-5.pytorch
                  DTYPE classes[10]
        , const DTYPE image [32][32]
#if !defined(__SYNTHESIS__)
        , const int rigor
        , const int verbose
        #endif
{
                      c1_out_data[6][28][28];
          DTYPE
                    (*c1_in_data)[32][32]=(DTYPE (*)[32][32])image; // [1][32][32]
(*c1_kernel)[1][5][5]=(DTYPE (*)[1][5][5])conv1_weight; // [6][1][5][5]
  const DTYPE
  const DTYPE
  const DTYPE (*c1_bias)=conv1_bias; // [6]
  const uint16_t c1_out_size=28;
  const uint16_t c1_in_size=32;
  const uint8_t c1_kernel_size=5;
  const uint16_t c1_bias_size=6;
const uint16_t c1_in_channel=1;
const uint16_t c1_out_channel=6;
  const uint8 t c1 stride=1;
  const uint8 t c1 padding=0;
  Convolution2d<DTYPE> (
         (DTYPE *)c1_out_data
        (DTYPE *)c1_in_data
        (DTYPE *)c1_kernel
(DTYPE *)c1_bias
c1_out_size
               c1 in size
               c1_kernel_size
               c1_bias_size
               c1 in channel
               c1 out channel
               c1_stride
               c1_padding
       #if !defined(__SYNTHESIS__)
               rigor
               verbose
       #endif
  );
  DTYPE p1_out_data[6][14][14];
const DTYPE (*p1_in_data)[28][28]=c1_out_data; // [6][28][28]
  const uint16_t p1_out_size=14;
  const uint16_t p1_in_size=28; const uint8_t p1_kernel_size=2;
  const uint8_t p1_channel=6;
  const uint8_t p1_stride=2;
  const uint8_t p1_padding=0;
  const int
                 p1 ceil mode=0;
   Pooling2dMax<DTYPE, 1> ( // ReLU embedded
        (DTYPE *)p1_out_data // out_channel x out_size x out_size
       , (DTYPE *)p1_in_data // in_channel x in_size x in_size
```

```
p1_out_size // only for square matrix
            p1_in_size
                            // only for square matrix
            p1_kernel_size // only for square matrix
            p1 channel
            p1_stride
            p1_padding
            p1_ceil_mode
    #if !defined(__SYNTHESIS__)
            rigor
            verbose
    #endif
);
DTYPE c2_out_data[16][10][10];
const DTYPE (*c2_in_data)[14][14]=p1_out_data; // [6][14][14]
const DTYPE (*c2_kernel)[6][5][5]=(DTYPE (*)[6][5][5])conv2_weight; // [16][6][5][5]
const DTYPE (*c2_bias)=conv2_bias; // [16]
const uint16 t c2 out size=10;
const uint16_t c2_in_size=14;
const uint8_t c2_kernel_size=5;
const uint16_t c2_bias_size=16;
const uint16_t c2_in_channel=6; const uint16_t c2_out_channel=16;
const uint8_t c2_stride=1;
const uint8_t c2_padding=0;
Convolution2d<DTYPE> (
      (DTYPE *)c2_out_data
(DTYPE *)c2_in_data
    , (DTYPE *)c2_kernel
, (DTYPE *)c2_bias
, c2_out_size
            c2_in_size
            c2_kernel_size
            c2_bias_size
            c2 in channel
            c2_out_channel
            c2 stride
            c2_padding
    #if !defined(__SYNTHESIS__)
            rigor
            verbose
    #endif
);
DTYPE p2_out_data[16][5][5];
const DTYPE (*p2_in_data)[10][10]=c2_out_data; // [16][10][10]
const uint16_t p2_out_size=5
const uint16_t p2_in_size=10;
const uint8_t p2_kernel_size=2; const uint8_t p2_channel=16;
const uint8_t p2_stride=2;
const uint8_t p2_padding=0;
               p2_ceil_mode=0;
const int
Pooling2dMax<DTYPE, 1> ( // ReLU embedded
      (DTYPE *)p2_out_data`
(DTYPE *)p2_in_data
            p2_out_size
p2_in_size
            p2_kernel_size
            p2_channel
            p2_stride
            p2_padding
```

```
p2_ceil_mode
      #if !defined(__SYNTHESIS__)
               rigor
               verbose
     #endif
):
DTYPE f1_out_data[120];
const DTYPE (*f1_in_data)[5][5]=p2_out_data; // [16][5][5]
const DTYPE (*f1_weight)[400]=(DTYPE (*)[400])fc1_weight; // [120][400]
const DTYPE (*f1_bias)=fc1_bias; // [120]
const uint16_t f1_out_size=120;
const uint16_t f1_in_size=16*5*5; const uint16_t f1_bias_size=120;
Linear1d<DTYPE, 1> ( // ReLU embedded
       (DTYPE *)f1_out_data
(DTYPE *)f1_in_data
(DTYPE *)f1_weight
      , (DTYPE *)f1_bias
               f1_out_size
               f1_in_size
f1_bias_size
     #if !defined( SYNTHESIS )
               rigor
               verbose
     #endif
);
DTYPE f2_out_data[84];
const DTYPE (*f2_in_data)=f1_out_data; // [120]
const DTYPE (*f2_weight)[120]=(DTYPE (*)[120])fc2_weight; // [84][120]
const DTYPE (*f2_bias)=fc2_bias; // [84]
const uint16_t f2_out_size=84;
const uint16_t f2_in_size=120;
const uint16 t f2 bias size=84;
Linear1d<DTYPE, 1> ( // ReLU embedded
     (DTYPE *)f2_out_data
, (DTYPE *)f2_in_data
, (DTYPE *)f2_weight
, (DTYPE *)f2_bias
               f2_out_size
               f2_in_size
     f2_bias_size
#if !defined(__SYNTHESIS__)
               rigor
               verbose
     #endif
);
     DTYPE (*f3_out_data)=classes; // [10]
                      (*f3_in_data)=f2_out_data; // [84]
(*f3_weight)[84]=(DTYPE (*)[84])fc3_weight; // [10][84]
(*f3_bias)=fc3_bias; // [10]
const DTYPE
const DTYPE
const DTYPE
const uint16_t f3_out_size=10;
const uint16_t f3_in_size=84;
const uint16_t f3_bias_size=10;
Linear1d<DTYPE, 0> ( // ReLU not embedded
       (DTYPE *)f3 out data
     , (DTYPE *)f3_in_data
, (DTYPE *)f3_weight
, (DTYPE *)f3_bias
```

Future Design Systems	FDS-TD-2020-09-003

```
, f3_out_size
, f3_in_size
, f3_bias_size
, f3_bias_size

#if!defined(__SYNTHESIS__)
, rigor
, verbose
#endif
);
}
```

11.1.2 LeNet-5 C PyTorch version

Following code shows an example of LeNet-5 network using DLR PyTorch wrapper functions.

```
import torch
import python.torch as dlr
def lenet5_infer( input
          , c1_kernel, c1_bias
          , c2_kernel, c2_bias
          , f1_weight, f1_bias
          , f2_weight, f2_bias
          , f3_weight, f3_bias
          , softmax=True
          , pkg=dlr
          , rigor=False):
  """ LeNet-5 inference network """
  z = pkg.conv2d( input=input, weight=c1_kernel, bias=c1_bias, stride=1
          , padding=0, dilation=1, groups=1, rigor=rigor)
  z = pkg.relu(input=z, rigor=rigor)
  z = pkg.max_pool2d(input=z, kernel_size=2, stride=2, padding=0,
               ceil_mode=False, rigor=rigor)
  z = pkg.conv2d( input=z, weight=c2_kernel, bias=c2_bias, stride=1
          , padding=0, dilation=1, groups=1, rigor=rigor)
  z = pkg.relu(input=z, rigor=rigor)
  z = pkg.max_pool2d(input=z, kernel_size=2, stride=2, padding=0,
               ceil_mode=False, rigor=rigor )
  z = z.view(z.shape[0], -1)
  z = pkg.linear( input=z, weight=f1 weight, bias=f1 bias, rigor=rigor )
  z = pkg.relu(input=z, rigor=rigor)
  z = pkg.linear( input=z, weight=f2 weight, bias=f2 bias, rigor=rigor )
  z = pkg.relu(input=z, rigor=rigor)
  z = pkg.linear( input=z, weight=f3_weight, bias=f3_bias, rigor=rigor )
  if softmax: z = F.softmax(input=z, dim=1)
  else: z = pkg.relu(input=z)
  return z
```

12 Troubleshooting

To be added.

Future Design Systems	FDS-TD-2020-09-003

13 Acknowledgement

This work was supported partially by KARI¹⁴ (Korea Aerospace Research Institute) under the "Development of deep learning hardware accelerator for microsatellite¹⁵" (Contract 2019110A35C-00).

Some part of this work was carried out partially by Handong Global University¹⁶ 2020 Summer Internship program.

Some part of this work was supported partially by ETRI¹⁷ (Electronics and Telecommunications Research Institute) under the "Development and training of FPGA-based AI semiconductor design environment¹⁸" (Contract EA20202206).

14 References

- [1] Future Design Systems, CON-FMC User Manual, FDS-TD-2018-03-001, 2018.
- [2] NumPy, https://numpy.org
- [3] Ctypes., https://docs.python.org/3/library/ctypes.html
- [4] PyTorch, https://pytorch.org

Wish list

☐ Sofmax, upsampling

Index

C CON-FMC 4 Deep Learning Processing Unit 4

DLIP H
Deep Learning Intellectual Property 4 HDL
Property 4 Hardware Description
Language 4
Deep Learning Routines 4

¹⁴ 한국항공우주연구원, https://www.kari.re.kr

¹⁵ 초소형위성용 딥러닝 알고리즘 하드웨어 가속기 개발

¹⁶ 한동대학교, https://www.handong.edu, Chaeeon Lim, Yoonseong Lim, Geunsu Song.

¹⁷ 전자통신연구원, https://www.etri.re.kr

¹⁸ FPGA 기반 AI 반도체 설계환경 개발 및 교육

Future Design Systems	FDS-TD-2020-09-003

Revision history

2020.12.17: Minor correction
2020.11.12: License scheme changed from proprietary to open
2020.10.20: 'channel' argument added for activation functions
2020.10.01: Major update.
2020.09.01: First version released.
2020.08.31: More IP have been added.
2020.06.23: Initial version released
2020.03.10: Started by Ando Ki (adki@future-ds.com)

- End of document -