Chapter 2: Finite State Automata Finite Automata with Output

Budi Irmawati

Informatics Study Program - UNRAM

September 14, 2020

Course Outline

- General Framework
- Mealy Machines
- Moore Machines
- Equivalent between Mealy and Moore

5th week

Finite State Transducer

Also said as "Automata with Output" It has similar things to DFA as:

- The finite set Q of states
- Input alphabet Σ
- Output alphabet Γ
- No finale states

The translation of inputs to outputs is written as:

$$F_M:D\to R$$

where: F_M is a function represented by MD is a subset of Σ R is a subset of Γ

Mealy Machines

Definition

Mealy machine $M=(Q,\Sigma,\Gamma,\delta,\theta,q_0)$ where

Q is finite set of internal states,

 Σ is the input alphabet,

 $\boldsymbol{\Gamma}$ is the ouput alphabet,

 $\delta: Q \times \Sigma \to Q$ is the transition function,

 $\theta:Q\times\Sigma\to\Gamma$ is the ouput function.

 $q_0 \in Q$ is the initial state.

Mealy Machines

Definition

Mealy machine $M = (Q, \Sigma, \Gamma, \delta, \theta, q_0)$ where

Q is finite set of internal states,

 $\boldsymbol{\Sigma}$ is the input alphabet,

 Γ is the ouput alphabet,

 $\delta:Q\times\Sigma\to Q$ is the transition function,

 $\theta:Q\times\Sigma\to\Gamma$ is the ouput function.

 $q_0 \in Q$ is the initial state.

Example:

$$\delta(q_0, 0) = q_1$$

$$\theta(q_0, 0) = a$$

Moore Machines

Definition

Moore machine $M = (Q, \Sigma, \Gamma, \delta, \theta, q_0)$ where

Q is finite set of internal states,

 Σ is the input alphabet,

 $\boldsymbol{\Gamma}$ is the ouput alphabet,

 $\delta:Q\times\Sigma\to Q$ is the transition function,

 $\theta:Q\times\Sigma\to\Gamma$ is the ouput function.

 $q_0 \in Q$ is the final state.

Moore Machines

Definition

Moore machine $M = (Q, \Sigma, \Gamma, \delta, \theta, q_0)$ where

Q is finite set of internal states,

 $\boldsymbol{\Sigma}$ is the input alphabet,

 Γ is the ouput alphabet,

 $\delta: Q \times \Sigma \to Q$ is the transition function,

 $\theta:Q\times\Sigma\to\Gamma$ is the ouput function.

 $q_0 \in Q$ is the final state.

Example:

$$\delta(q_0, 0) = q_1$$
$$\theta(q_1) = b$$

Mealy and Moore

Definition

Two finite state transducers ${\cal M}$ and ${\cal N}$ are equivalent if they implement the same function,

$$F_M(w) = F_N(w)$$

Moore to Mealy

Moore Machine

Mealy Machine

Mealy Machine

5th week

Mealy Machine

The Mealy Transition Table:

	In			
q_i	a		b	
	q_{i+1}	0	q_{i+1}	0
q_0	q_1	1	q_0	0
q_1	q_0	1	q_2	1
q_2	q_0	1	q_1	0

8 / 9

Mealy Machine

The Mealy Transition Table:

		Input/output			
(q_i	a		b	
		q_{i+1}	0	q_{i+1}	0
_	q_0	q_1	1	q_0	0
-	q_1	q_0	1	q_2	1
- (q_2	q_0	1	q_1	0

	The Moore Transition Table:				
a:		q_{i+1}		Output	
	q_i	a	b	Output	
	q_{00}	q_{11}	q_{00}	0	
	q_{01}	q_{11}	q_{00}	1	
	q_{10}	q_{01}	q_{21}	0	
	$\overline{q_{11}}$	q_{01}	q_{21}	1	
	q_{21}	q_{01}	q_{10}	1	

Mealy Machine

The Mealy Transition Table:

	Input/output			
q_i	a		b	
	q_{i+1}	0	q_{i+1}	0
q_0	q_1	1	q_0	0
q_1	q_0	1	q_2	1
q_2	q_0	1	q_1	0

Moore Machine

The Moore Transition Table:

q_i	$\begin{array}{ c c c c c }\hline q_{i+1} & & & \\ \hline a & b & & & \\ \hline \end{array}$		Output
q_{00}	q_{11}	q_{00}	0
q_{01}	q_{11}	q_{00}	1
q_{10}	q_{01}	q_{21}	0
q_{11}	q_{01}	q_{21}	1
q_{21}	q_{01}	q_{10}	1

Mealy Machine

Moore Machine