

Figure 1: Testosterone biosynthetic pathway

\$ 8 C 8	26 865 bp 24T>c A<26G>A	1/S1 +426G>A	A<5994+ +86G>A	I∧24 -88C>⊥	VS2 +105A>C	IVS2 -83C>T	1/25 +75C>G							
	NP29:	NP04: I	NP20: I	NP06: I	I :709N	NP22:	:E04N	Frequency (all)	ıy (all)	Frequency (EA)	y (EA)	Frequency (AA)	(AA)	
	S	S	S	S	IS	S	S	Controls	Cases	Controls	Cases	Controls	Cases	
Hap1	<u> </u>	ပ	ပ	ပ	⋖	ပ	ပ	547 (.57)	527 (.60)	494 (.57)	475 (.60)	50 (.66)	47 (.62)	2/4
Hap2		-		H	ပ		<u></u>	259 (.27)	216 (.25)	253 (.29)	208 (.26)	5 (.07)	6 (.08)	-
Нар3	ပ	⊢	•	•	•	•	ტ	91 (.09)	86 (.10)	85 (.10)	79 (.10)	3 (.04)	7 (.09)	
Hap4	Hap4 Composite	posite						63 (.07)	51 (.06)	42 (.05)	32 (.04)	18 (.24)	16 (.21)	

2B	
ıre	I
ig.	I

		3/4
	Frequency (AA)	13 (.17) 2 (.03) 6 (.08) 5 (.07) 50 (.66)
	Frequer	16 (21) 1 (.01) 4 (.05) 10 (.13) 45 (.59)
	Frequency (EA)	577 (.73) 59 (.07) 58 (.07) 19 (.02)
lacksquare	Frequer Controls	629 (.72) 64 (.07) 59 (.07) 34 (.04) 88 (.10)
	icy (all) Cases	596 (.68) 62 (.07) 64 (.07) 25 (.03) 133(.15)
	Frequency (all)	651 (68) 65 (.07) 63 (.07) 45 (.05) 136 (.14)
	SNP15: stop +2204G>C	o · o o
	T <a9581+ :209ns<="" qoja="" td=""><td>< ⋅ ⊢ ⊢</td></a9581+>	< ⋅ ⊢ ⊢
	SNP25: stop +1454C>T	o · · ·
	SNP24: stop +766 delT	⊢ · ʊ ʊ
7	SNP13: IVS7 -202C>T	0
⊲	5 <t45+ 109n2<="" 12vi:="" th=""><th>⊢ · · · ʊ</th></t45+>	⊢ · · · ʊ
	SNP11: -392A>G	∢ ⋅ ⋅ ७
A4 bp	SNP12: -747C>G	G · · · · · · · · · · · · · · · · · · ·
CYP3A4 37 073 bp	SNP47: -1232C>T	Нарт С С Нар2 . G Нар3 Т . Нар4 Composite
℃		Hap2 Hap3 Hap4 Hap5

2C
ure
Fig

763	76 341 bp	ءِ ا						<i>y</i>						∀	
			1		1 1								ı	 	
			(A<	()<	1<0	∀<97	A<9(0 <9							
	30S9C>T	A<51008)341) Te	39F (Seec	979 + 25	7991 + do	305 + do	ob + 830.							
	8 - :71	Se: - 3	₽A :SS	8V :0S	12: IV	ots :10	13: sto	ojs :GL						:	
	JN:	dN	dN	ЧN	dN	dN:	dN:	dN:	Frequency (all)	ıcy (all)	Frequer	Frequency (EA)	Frequer	Frequency (AA)	
	S	S	S	S	S	S	S	S	Controls	Cases	Controls	Cases	Controls	Cases	
Hap1	<u> </u>	മ	ტ	O	ပ	Ŋ	Ø	ტ	376 (.39)	348 (.40)	352 (.40)	321 (.40)	19 (.25)	20 (.26)	4/4
Hap2	ပ	∢	•	ပ	-			ပ	218 (.23)	212 (.24)	206 (.24)	197 (.25)	11 (.14)	13 (.17)	
Hans	O	•	•		-	•		•	108 (11)	84 (.10)	102 (.12)	81 (.10)	(80:)	3 (.04)	
2	ပ	•	•	•	•	⋖	⋖	•							
Hap4	O	4	•	ပ	-			•	73 (.08)	73 (.08)	70 (.08)	(80.) 99	•	7 (.09)	
Hap5	ပ	•	•	•			•	•	41 (.04)	42 (.05)	41 (.05)	42 (.05)	1		•
Нарб									. 32 (.03)	27 (.03)	19 (.02)	20 (.03)	13 (.17).	7 (.09)	
Hap7		Composite							112 (.12)	94 (.10)	84 (.10)	(60.) 89	27 (.36)	26 (.34)	