Metropolis-Hastings algorithm

- MH algorithm is a generic method to generate a π -reversible Markov chain.
- Introduce proposal density: for any $\theta, \theta' \in \Theta$ we have $q\left(\left.\theta'\right|\theta\right) \geq 0$ and $\int_{\mathbb{X}} q\left(\left.\theta'\right|\theta\right) d\theta' = 1$; e.g. $q\left(\left.\theta'\right|\theta\right) = \mathcal{N}\left(\theta';\theta,\Sigma\right)$.
- Starting with $\theta^{(1)}$ iterate for i = 2, 3, ...
- $oldsymbol{0}$ Sample $heta^* \sim q\left(\,\cdot\,|\, heta^{(i-1)}\,
 ight)$.
- Compute

$$\alpha\left(\theta^{*}|\,\theta^{(i-1)}\right) = \min\left(1, \frac{\pi\left(\theta^{*}\right)q\left(\left.\theta^{(i-1)}\right|\,\theta^{*}\right)}{\pi\left(\theta^{(i-1)}\right)q\left(\left.\theta^{*}\right|\,\theta^{(i-1)}\right)}\right)$$

3 Sample $U \sim \mathcal{U}_{[0,1]}$. If $U \leq \alpha \left(\theta | \theta^{(i-1)}\right)$ then set $\theta^{(i)} = \theta^*$, otherwise set $\theta^{(i)} = \theta^{(i-1)}$.