

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе № 3

По курсу: Моделирование

На тему: Генераторы псевдослучайных чисел

Студент:

Турсунов Жасурбек Рустамович

Группа: ИУ7-76Б

Преподователь:

Рудаков Игорь Владимирович

Содержание

1	Задание	2					
2	Теоритическая часть						
	2.1 Программный генератор	2					
	2.2 Табличный генератор	2					
	2.3 Критерий случайности	2					
3	3 Результаты						
4	Листинг кода						
5	Вывол	7					

1 Задание

Изучить и реализовать генератор псевдослучайных чисел программным и табличным методом. Разрядность чисел должна быть равна 1, 2, 3. Сравнить методы по определенному критерию и сделать выводы.

2 Теоритическая часть

В данной лаборатоной работе рассматриваются 2 метода генерации случайных чисел:

- 1. программный;
- 2. табличный.

2.1 Программный генератор

Программный генератор формирует псевдослучайные числа. Каждое последующее число в такой последовательности зависит от предыдущего.

2.2 Табличный генератор

Табличный генератор использует таблицу проверенных некоррелированных цифр в качестве источника случайных чисел.

2.3 Критерий случайности

Для сравнения описанных методов генерации случайных чисел воспользуемся **критерием частотности**, который позволяет определить равномерность сгенерированных чисел.

Определяется количество чисел на интервале $(\mu - \sigma, \mu + \sigma)$, где μ — математическое ожидание, а σ — среднеквадратичное отклонение. Идеальным результатом будем считать отношение длины рассматриваемого интервала к длине всего промежутка, на котором генерируется последовательность. Под полученным результатом будем понимать отношение количества сгенерированных чисел на интервале к количеству всех сгенерированных чисел.

3 Результаты

_			., .					
\$ python run	.ру							
Input n: 10	Input n: 10							
Do you want input yourself (y/n) ?n								
Программный метод:								
No	1 разр.	2 разр.	3 разр.					
	++	+						
1	7.0000	67.0000	448.0000					
2	1.0000	97.0000	119.0000					
3	7.0000	78.0000	478.0000					
4	2.0000	13.0000	524.0000					
5	8.0000	97.0000	992.0000					
6	2.0000	74.0000	387.0000					
7	3.0000	22.0000	152.0000					
8	2.0000	58.0000	242.0000					
9	2.0000	16.0000	828.0000					
10	4.0000	55.0000	901.0000					
	++	+						
Ожидаемый	0.4883	0.6619	0.6514					
Полученный	0.6000	0.5000	0.5000					
Табличный ме	год:							
No	1 разр.	2 разр.	3 разр.					
	++	+						
1	5.0000	55.0000	723.0000					
2	2.0000	70.0000	294.0000					
3	9.0000	67.0000	921.0000					
4	2.0000	69.0000	925.0000					
5	2.0000	33.0000	707.0000					
6	0.0000	66.0000	903.0000					
7	0.0000	67.0000	179.0000					
8	7.0000	85.0000	122.0000					
9	2.0000	33.0000	860.0000					
10	6.0000	94.0000	961.0000					
	+							
Ожидаемый	0.5814	0.4114	0.6988					
Полученный	0.6000	0.6000	0.7000					

Рис. 1: Пример работы для 10 чисел

			., .					
<pre>\$ python run</pre>	.ру							
Input n: 100								
Do you want :	input yoursel	f (y/n) ?n						
Программный метод:								
No	1 разр.	2 разр.	3 разр.					
	++	+						
1	10.0000	25.0000	794.0000					
2	9.0000	39.0000	524.0000					
3	4.0000	70.0000	448.0000					
4	3.0000	16.0000	211.0000					
5	6.0000	91.0000	458.0000					
	•••							
96	2.0000	23.0000	406.0000					
97	3.0000	98.0000	172.0000					
98	3.0000	75.0000	578.0000					
99	2.0000	92.0000	873.0000					
100	5.0000	48.0000	481.0000					
	++	+						
Ожидаемый	0.5935	0.5970	0.5697					
Полученный	0.5600	0.6100	0.5900					
Табличный ме	год:							
No	1 разр.	2 разр.	3 разр.					
	++	+						
1	3.0000	40.0000	469.0000					
2	6.0000	86.0000	371.0000					
3	7.0000	15.0000	781.0000					
4	8.0000	11.0000	377.0000					
5	7.0000	55.0000	345.0000					
	•••							
96	4.0000	73.0000	352.0000					
97	5.0000	46.0000	732.0000					
98	3.0000	74.0000	296.0000					
99	9.0000	60.0000	399.0000					
100	9.0000	44.0000	552.0000					
Ожидаемый	0.5684	0.5615	0.5700					
Полученный	0.6300	0.5600	0.6100					
•	'							

Рис. 2: Пример работы для 100 чисел

\$ python run.py Input n: 1000						
Do you want input yourself (y/n) ?n						
Программный метод:						
No .	 1 разр.	2 разр.	3 разр.			
	+					
1	6.0000	97.0000	690.0000			
2	9.0000	69.0000	809.0000			
3	3.0000	82.0000	250.0000			
4	3.0000	89.0000	142.0000			
5	4.0000	99.0000	678.0000			
	•••	,				
996	3.0000	91.0000	867.0000			
997	1.0000	68.0000	981.0000			
998	2.0000	62.0000	907.0000			
999	5.0000	48.0000	122.0000			
1000	8.0000	97.0000	150.0000			
	+					
Ожидаемый	0.5690	0.5953	0.5781			
Полученный	0.6190	0.5760	0.5660			
Табличный ме	. **					
No	1 разр.	2 разр.	3 разр.			
1	+	11 0000	954 0000			
1 2	1.0000 5.0000	11.0000 12.0000	854.0000 907.0000			
3	3.0000 0.0000	20.0000	291.0000			
4	9.0000	28.0000	960.0000			
5	9.0000 6.0000	11.0000	770.0000			
,	0.0000	11.0000	770.0000			
996	8.0000	86.0000	421.0000			
997	2.0000	14.0000	436.0000			
998	3.0000	25.0000	322.0000			
999	2.0000	42.0000	677.0000			
1000	7.0000	18.0000	175.0000			
	+					
Ожидаемый	0.5742	0.5870	0.5615			
Полученный	0.5960	0.5670	0.5680			
		- 112070				

Рис. 3: Пример работы для 1000 чисел

4 Листинг кода

```
def frequency_criterion(sequence, num_len):
      mean = numpy.mean(sequence)
      stdd = numpy.sqrt(numpy.var(sequence))
      cnt = 0
      for item in sequence:
          if (mean - stdd) < item < (mean + stdd):</pre>
          cnt += 1
      sequence_max_delta = 10
      if num_len > 1:
10
          sequence_max_delta = 9 * 10**(num_len-1)
      return (2 * stdd / sequence_max_delta), (cnt / len(sequence))
16 class StandardRandom():
      def get(self, num_len: int):
          return random.randint(10**(num_len - 1), 10**num_len)
21 class TableRandom():
      def __init__(self, path_to_table: str = "./table.txt"):
          self.digits = ""
23
          with open(path_to_table) as table_file:
              for line in table_file:
                   self.digits += line[:-1]
          self.idx_init()
30
          def idx_step(self, step: int = 1):
              self.idx += step
33
          if self.idx + step >= len(self.digits):
34
              self.idx_init(step)
36
          def idx_init(self, offset: int = 0):
```

```
now = datetime.datetime.now()
38
               self.idx = int((now.microsecond % 60)/60 * \\
                            (len(self.digits) - offset))
40
41
          def get(self, num_len: int):
               self.idx_step(num_len)
43
               rnd_num = int(self.digits[self.idx:self.idx+num_len])
          while len(str(rnd_num)) < num_len:</pre>
46
               self.idx_step()
               rnd_num = rnd_num * 10 + int(self.digits[self.idx])
48
49
          return rnd_num
```

Листинг 1: Программная реализация генерации псевдослучайных чисел программным и табличным методом

5 Вывод

Из результатов проведённой лабораторной работы справедливо сделать вывод, что, чем больше количество генерируемых случайных чисел, тем равномернее они распределены.