

SF1681 Linjär algebra, fk HT20

SF1681 LINJÄR ALGEBRA, FORTSÄTTNINGSKURS FÖRELÄSNING 2

DAVID RYDH

2. LINJÄRA AVBILDNINGAR OCH OPERATORER

Målet för idag.

- Repetition från SF1672 Linjär algebra när det gäller
 - Linjära avbildningar
 - Matriser för linjära avbildningar
 - Basbyte för linjära avbildningar
 - Kärna och bild
- Nya perspektiv
 - Operatorer på oändligdimensionella vektorrum

Linjär avbildning.

Definition 2.1. En *linjär avbildning* är en funktion $L: V \longrightarrow W$ som uppfyller

- $L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in V.$
- $L(a\mathbf{x}) = aL(\mathbf{x})$, $\forall \mathbf{x} \in V$ och alla skalärer a.

Anmärkning 2.2. Vi säger att L respekterar addition och multiplikation med skalär.

Anmärkning 2.3. En linjär avbildning $L: V \longrightarrow W$ är unikt bestämd av sina värden på en bas för V.

Exempel 2.4 (Linjära avbildningar). Några linjära avbildningar

(1) Derivation L = d/dx ger en linjär avbildning

$$\frac{d}{dx}$$
: $\mathbb{R}[x] \longrightarrow \mathbb{R}[x]$, eller $\frac{d}{dx}$: $C^1(\mathbb{R}) \longrightarrow C(\mathbb{R})$

- (2) L: $M_n(k) \longrightarrow M_n(k)$, $L(A) = A + A^T$, där $M_n(k)$ är alla $n \times n$ -matriser med koefficienter i k.
- (3) Restriktion $L: C(\mathbb{R}) \longrightarrow C([0,1])$.

Exempel 2.5 (Vektorrummet av linjära avbildningar). Summan av linjära avbildningar är linjära och vi kan multiplicera dem med skalärer. Hom_k(V, W) är vektorrummet av alla linjära avbildningar $L: V \longrightarrow W$. Notera att Hom_k (k^n, k^m) är vektorrummet $M_{m,n}(k)$ av $m \times n$ -matriser.

Sammansättning av linjära avbildningar är linjära $L_2 \circ L_1 \colon V \longrightarrow U$ om $L_1 \colon V \longrightarrow W$ och $L_2 \colon W \longrightarrow U$. Detta ger en avbildning $\operatorname{Hom}_k(V, W) \times \operatorname{Hom}_k(W, U) \to \operatorname{Hom}_k(V, U)$.

Date: 2020-10-29.

Isomorfi.

Definition 2.6. En *isomorfi* mellan vektorrum är en linjär avbildning som är *bijektiv*, dvs *injektiv* (ett-till-ett) och *surjektiv* (på).

Om $V \to W$ är en isomorfi så skriver vi $V \stackrel{\cong}{\longrightarrow} W$ eller enbart $V \cong W$.

Sats 2.7. Ett val av en bas $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ för V ger en isomorfi

$$k^n \cong V$$

eller mer allmänt

$$k^{\oplus \mathscr{B}} = \bigoplus_{\mathbf{b} \in \mathscr{B}} k \cong V$$

om B inte är ändlig.

Bevis. $\{a_{\mathbf{b}}\}_{\mathbf{b}\in\mathscr{B}}\mapsto\sum_{i\in\mathscr{B}}a_{\mathbf{b}}\mathbf{b}$ ger en avbildning $k^{\oplus\mathscr{B}}\longrightarrow V$ som är injektiv eftersom \mathscr{B} är linjärt oberoende och surjektiv eftersom \mathscr{B} spänner upp V.

Exempel 2.8. Basen $\{1, x, x^2, \dots, x^n\}$ ger en isomorfi $L: k^{n+1} \longrightarrow k[x]_{\leq n}$ som definieras av $L((a_0, a_1, \dots, a_n)) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$.

Exempel 2.9. Om V och W är delrum till U så har vi en linjär avbildning $L: V \oplus W \to U$ som definieras av $L((\mathbf{v}, \mathbf{w})) = \mathbf{v} + \mathbf{w}$. Avbildningen L är en isomorfi precis när U är en inre direkt summa av V och W. Att L är bijektiv betyder ju att för varje vektor $\mathbf{x} \in U$ finns ett unikt element $(\mathbf{v}, \mathbf{w}) \in V \oplus W$ sådant att $\mathbf{x} = \mathbf{v} + \mathbf{w}$.

Exempel 2.10 (Isomorfi). $V \oplus W \cong W \oplus V$ genom $(x,y) \mapsto (y,x)$.

Matriser för linjära avbildningar.

Definition 2.11. Låt $L: V \longrightarrow W$ vara en linjär avbildning. Om $\mathscr{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ är en en bas för V och $\mathscr{D} = \{\mathbf{d}_1, \dots, \mathbf{d}_m\}$ är en bas för W så kan vi skriva

$$L(\mathbf{b}_j) = \sum_{i=1}^m a_{ij} \mathbf{d}_i, \qquad j = 1, 2, \dots, n.$$

Detta bestämmer en matris $[L]_{\mathscr{DB}} = (a_{ij})$ sådan att

$$[L(\mathbf{v})]_{\mathscr{D}} = [L]_{\mathscr{D}\mathscr{B}}[\mathbf{v}]_{\mathscr{B}}.$$

för alla $\mathbf{v} \in V$.

Se Sadun, Thm. 3.1 för en mer precis formulering.

Anmärkning 2.12. Om V och/eller W är oändligtdimensionella, och vi har baser $\mathscr{B} = \{\mathbf{b}_j\}_{j \in J}$ och $\mathscr{D} = \{\mathbf{d}_i\}_{i \in J}$ så får vi fortfarande

$$L(\mathbf{b}_j) = \sum_{i \in I} a_{ij} \mathbf{d}_i, \qquad j \in J.$$

Då blir $[L]_{\mathscr{DB}} = (a_{ij})$ en oändligt stor matris.

Exempel 2.13. Låt k[x] vara vektorrummet av polynom med koefficienter i k. Då är $\mathcal{B} = \{1, x, x^2, \dots\}$ en bas för k[x].

• Matrisen A för $\frac{d}{dx} \colon \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ med avseende på basen \mathscr{B} ges av $A_{i,j} = j\delta_{i,j-1}$, för alla $i, j \ge 0$.

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 3 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Samma formel *definierar* derivation för alla kroppar *k*.

• Matrisen B för ev_2 : $k[x] \longrightarrow k = k^1$, där $ev_2(f) = f(2)$ (evaluera polynomet i x = 2) ges av $B_{0,j} = 2^j$ för alla j > 0

$$\begin{bmatrix} 1 & 2 & 4 & 8 & \cdots \end{bmatrix}$$

Observera att i dessa exempel indexerar vi matriserna med rader 0, 1, 2 och kolumner 0, 1, 2. Naturligt eftersom första basvektorn är x^0 , andra x^1 osv.

Basbyte för linjära avbildningar.

Sats 2.14 (Sadun, Thm. 3.3). Om $P_{\mathscr{D}'\mathscr{D}}$ ger basbyte på W och $P_{\mathscr{B}\mathscr{B}'}$ ger basbyte på V får vi

$$[L]_{\mathscr{D}'\mathscr{B}'} = P_{\mathscr{D}'\mathscr{D}}[L]_{\mathscr{D}\mathscr{B}}P_{\mathscr{B}\mathscr{B}'}$$

Bevis. Betrakta diagrammet

$$\begin{array}{c} V \stackrel{\cong_{\mathscr{B}'}}{\longrightarrow} k^n \stackrel{P_{\mathscr{B}\mathscr{B}'}}{\longrightarrow} k^n \stackrel{\cong_{\mathscr{B}}}{\longleftarrow} V \\ \downarrow L \qquad \qquad \downarrow^{[L]_{\mathscr{D}'\mathscr{B}'}} \qquad \downarrow^{[L]_{\mathscr{D}\mathscr{B}}} \qquad \downarrow^L \\ W \stackrel{\cong_{\mathscr{D}'}}{\longrightarrow} k^m \stackrel{\longleftarrow}{\longleftarrow} k^m \stackrel{\cong_{\mathscr{B}}}{\longleftarrow} W \end{array}$$

Här betecknar $\cong_{\mathscr{B}}$ isomorfin $V \to k^{\oplus \mathscr{B}}$ som ges av basen \mathscr{B} etc.

Operatorer. Har vi en *operator* $L: V \longrightarrow V$ kan vi välja samma bas för både källan och målet. Vi skriver då $[L]_{\mathscr{B}}$ istället för $[L]_{\mathscr{B}\mathscr{B}}$. Har vi två baser \mathscr{B} och \mathscr{D} så blir alltså basbytet:

$$[L]_{\mathscr{B}} = P_{\mathscr{B}\mathscr{D}}[L]_{\mathscr{D}}P_{\mathscr{D}\mathscr{B}}$$

Notera att $P_{\mathscr{D}\mathscr{B}} = (P_{\mathscr{B}\mathscr{D}})^{-1}$. Låter vi $A = [L]_{\mathscr{B}}$, $D = [L]_{\mathscr{D}}$ och $P = P_{\mathscr{B}\mathscr{D}}$ så får vi:

$$A = PDP^{-1}$$
.

Vi säger att A är D konjugerat med P. Detta känner vi igen som diagonalisering när D är en diagonalmatris. Då är kolumnerna i P egenvektorer till A och vektorerna i \mathcal{D} är egenvektorer till L. Vi återkommer till detta nästa föreläsning.

Kärna och bild.

Definition 2.15. Låt $L: V \longrightarrow W$ vara en linjär avbildning.

• *Kärnan*, $ker(L) \subseteq V$, ges av

$$\ker(L) = \{ \mathbf{x} \in V : L(\mathbf{x}) = 0 \}$$

• *Bilden*, $im(L) \subseteq W$, ges av

$$im(L) = Range(L) = \{L(\mathbf{x}) : \mathbf{x} \in V\}$$

Sats 2.16 (Sadun, Thm. 3.4). $\ker(L) \subseteq V$ och $\operatorname{im}(L) \subseteq W$ är delrum.

Bevis. Vi behöver visa att ker(L) och im(L) är slutna under addition och multiplikation med skalär:

- Om $\mathbf{x}, \mathbf{y} \in \ker(L)$ är $L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}) = \mathbf{0} + \mathbf{0} = \mathbf{0}$, så $\mathbf{x} + \mathbf{y} \in \ker(L)$.
- Om $\mathbf{x} \in \ker(L)$ och $a \in k$ är en skalär så är $L(a\mathbf{x}) = aL(\mathbf{x}) = a \cdot \mathbf{0} = \mathbf{0}$, så $a\mathbf{x} \in \ker(L)$.
- Om $\mathbf{x}, \mathbf{y} \in \text{im}(L)$ finns $\mathbf{x}', \mathbf{y}' \in V \text{ med } L(\mathbf{x}') = \mathbf{x} \text{ och } L(\mathbf{y}') = \mathbf{y}$. Då är $\mathbf{x} + \mathbf{y} = L(\mathbf{x}') + L(\mathbf{y}') = L(\mathbf{x}' + \mathbf{y}') \in \text{im}(L)$.
- Om $\mathbf{x} \in \operatorname{im}(L)$ finns $\mathbf{x}' \in V \operatorname{med} L(\mathbf{x}') = \mathbf{x} \operatorname{och} a\mathbf{x} = aL(\mathbf{x}') = L(a\mathbf{x}') \in \operatorname{im}(L)$ för alla skalärer $a \in k$.

Exempel 2.17 (Kärna och bild). Låt $k = \mathbb{R}$ eller \mathbb{C} .

(a) Om $L = \frac{d}{dx}$: $k[x] \longrightarrow k[x]$ är derivering av polynom så får vi att kärnan

$$\ker(L) = \{p(x) : p'(x) = 0\} = \{a : a \in k\}$$

består av de konstanta polynomen. Bilden är im(L) = k[x] eftersom alla polynom har en primitiv funktion. Det räcker att se att baselementen ligger i bilden för att se att L är surjektiv och vi har $L\left(\frac{x^{n+1}}{n+1}\right) = x^n$, för alla $n \ge 0$.

(b) Om $M_n(k)$ är vektorrummet av $n \times n$ -matriser med element i k och $L: M_n(k) \longrightarrow M_n(k)$ ges av $L(A) = A + A^T$ får vi att kärnan

$$\ker(L) = \{A \in M_n(k) : A + A^T = 0\} = \{A \in M_n(k) : A^T = -A\}$$

är rummet av alla skev-symmetriska eller anti-symmetriska matriser. Bilden ges av

$$im(L) = \{A + A^T : A \in M_n(k)\} = \{A \in M_n(k) : A^T = A\}$$

dvs alla *symmetriska* matriser. Detta eftersom $A + A^T$ är symmetrisk, då $(A + A^T)^T = A^T + A = A + A^T$ och varje symmetrisk matris A avbildas på 2A genom L.

Rang och injektivitet.

Definition 2.18. Rangen av en linjär avbildning $L: V \longrightarrow W$ är dimensionen av bilden im(L), dvs

$$\operatorname{rk}(L) = \dim \operatorname{im}(L)$$
.

Anmärkning 2.19. Rangen kan vara ändlig även om V och W är oändligdimensionella.

Sats 2.20 (Dimensionssatsen, Sadun, Thm. 3.7). Låt $L: V \longrightarrow W$ vara en linjär avbildning. Om dim $V < \infty$ så är

$$\dim \ker L + \dim \operatorname{im} L = \dim V$$
.

Anmärkning 2.21. Dimensionen av kärnan kallas ibland för "nullity" på engelska.

Sats 2.22 (Sadun, Thm. 3.5). $L: V \longrightarrow W$ är injektiv (ett-ett) om och endast om $\ker(L) = \{0\}$.

Bevis.
$$L(\mathbf{x}) = L(\mathbf{y}) \iff L(\mathbf{x} - \mathbf{y}) = \mathbf{0} \iff \mathbf{x} - \mathbf{y} \in \ker(L)$$
.

Sats 2.23 (ungefär Sadun, Thm. 2.5). Låt V vara ett vektorrum av dimension $n < \infty$ med någon bas \mathcal{B} . Låt $L: V \to V$ vara en operator med matris $A = [L]_{\mathcal{B}}$. Följande påståenden är ekvivalenta

- (1a) Lär injektiv.
- (1b) $\ker L = \{0\}.$
- (2a) Lär surjektiv.
- (2b) $\operatorname{rk} L = n$.
 - (3) $\det A \neq 0$.
 - (4) A är rad-ekvivalent med identitetsmatrisen I_n .

Bevis. (1a) \iff (1b) är föregående sats. (2a) \iff (2b) följer av definitionen av rangen. Gauss–Jordaneliminering bevarar rangen så (2b) \iff (4). Gauss–Jordan-eliminering bevarar determinanten upp till multiplikation med noll-skild skalär så (4) \iff (3).

Exempel 2.24 (Oändligtdimensionella rum). Påståendet (1a) \iff (2a) är inte sant för oändligtdimensionella rum. Operatorn derivation $D = \frac{d}{dx}$ är surjektiv men inte injektiv. Om vi definierar operatorn $P: k[x] \longrightarrow k[x]$ "en primitiv funktion" på standardbasen enligt $P(x^d) = \frac{x^{d+1}}{d+1}$ så är matrisen av P:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & \frac{1}{2} & 0 & 0 & \cdots \\ 0 & 0 & \frac{1}{3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

P är injektiv men inte surjektiv (alla polynom i bilden saknar konstantterm). Sammansättningen $D \circ P$ är identiteten medan sammansättningen $P \circ D$ ges av matrisen.

$$\begin{vmatrix} 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$

Det kan alltså finnas ensidiga inverser som inte är inverser.