

SMPS MOSFET

IRFB260NPbF

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Lead-Free

V _{DSS}	R _{DS(on)} max	I _D
200V	0.040Ω	56A

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	56	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	40	Α
I _{DM}	Pulsed Drain Current ①	220	
P _D @T _C = 25°C	Power Dissipation	380	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt 3	10	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.40	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

International

TOR Rectifier

Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	•	-		-		
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.26		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.040	Ω	V _{GS} = 10V, I _D = 34A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
lace	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 200V, V_{GS} = 0V$
IDSS				250	μΛ [$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `					
	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	29			S	$V_{DS} = 50V, I_{D} = 34A$
Qg	Total Gate Charge		150	220		I _D = 34A
Q _{gs}	Gate-to-Source Charge		24	37	nC	$V_{DS} = 160V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		67	100	Ī	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		17			V _{DD} = 100V
t _r	Rise Time		64		ns	$I_D = 34A$
t _{d(off)}	Turn-Off Delay Time		52			$R_G = 1.8\Omega$
t _f	Fall Time		50			V _{GS} = 10V ④
C _{iss}	Input Capacitance		4220			$V_{GS} = 0V$
Coss	Output Capacitance		580			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		140		pF	f = 1.0MHz
Coss	Output Capacitance		5080			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		230			$V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		500			V _{GS} = 0V, V _{DS} = 0V to 160V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		450	mJ
I _{AR}	Avalanche Current①		34	Α
E _{AR}	Repetitive Avalanche Energy①		38	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions					
Is	Continuous Source Current			E6		MOSFET symbol					
	(Body Diode)		56		36 A	showing the					
I _{SM}	Pulsed Source Current		22	220	^	integral reverse					
	(Body Diode) ①				220	220	220	220	220	220	220
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 34A, V_{GS} = 0V$ ④					
t _{rr}	Reverse Recovery Time		240	360	ns	$T_J = 25^{\circ}C, I_F = 34A$					
Q _{rr}	Reverse RecoveryCharge		2.1	3.2	μC	di/dt = 100A/µs ④					
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)									

International Rectifier

IRFB260NPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFB260NPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs

TO-220AB Package Outline

TO-220AB Part Marking Information

Notes:

8

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.78mH $R_G = 25\Omega$, $I_{AS} = 34$ A.
- ③ I $_{SD} \le 34$, di/dt ≤ 480 A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le 175^{\circ}C$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $^{\circ}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.7/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.