1. Logic and Proofs. P, q, r, --: statements T, F: truth value (True, False) 7p: negation of P, read as "not P" Truth Table (11st of truth values for each case $\frac{P}{T} = \frac{P}{F}$ $= 7(\neg P) = P$ = PN: and, read "PAq" as "P and q" V: or, read "Pyq" as "p or q" #: xor, exclusive or -): implies, read "P->q" as "p implies q" (if and only if, Consider a statement P > 9 Converse of P-79 is 9-7P Contrapositive of P-99 is 79 -> 7P, (equivalent to P-99) Two statements of the same truth value are equivalent. $(P \rightarrow q) \equiv P \wedge \neg q, \quad (P \rightarrow q) \equiv (\neg P) \vee q$ Ex) $(P \rightarrow q) \equiv (\neg q \rightarrow \neg P)$

pa [pva	P19	P D Q	1 p -> a	2-1P	P 67	
TTF	T	TF	FTT	T F T	T T F	T F F	
FF	N F	F	F	T	: _T	+ /	

De Morgan's Laws

Pq	Pvq	78172	PAG	70079
TT	T		T	F
TF	T /	F	F	T
FT	T /	F	F	T
FF/	F	T	F	T

Bit operations T:1, F:0

Bitwise or 11 1011 1111 Bitwise and 01 0001 0100 Bitwise xor 10 1010 1011

Tautology: Always T Contradiction: Always F

Commutativity
$$(P \vee q) = (q \vee P)$$

$$(P \wedge q) = (a \wedge P)$$

Associativity

$$(P \vee Q) \vee r \equiv P \vee (Q \vee r)$$

 $(P \wedge Q) \wedge r \equiv P \wedge (Q \wedge r)$

Distributive caws

$$PV(QNV) = (PVQ) \wedge (PVV)$$

 $P\Lambda(QVV) = (P\Lambda Q) \vee (P\Lambda V)$

De Morgan's Laws

Extension of Distributive cans

$$PV\left(\stackrel{?}{\bigwedge} q_i \right) = \stackrel{?}{\bigwedge} \left(PVq_i \right)$$

$$P \wedge \left(\bigvee_{i=1}^{n} q_{i} \right) \equiv \bigvee_{i=1}^{n} \left(P \wedge q_{i} \right)$$

Extension of De Morgan's Laws

$$\neg \left(\bigwedge_{i \in I} p_i \right) \equiv \bigvee_{i = I} \left(\neg p_i \right)$$

Satisflability: There exist assignments of truth values Ex. (Sudoku) that makes the statement true.

9x9 puzzle, made of nine 3x3 subgrids each cell is assigned one of 1,2,--, 9. Some cells are given the puzzle is solved if every row, every column, every subgrids contain each of 9 possible numbers.

8		", "	<u></u>			<u> </u>		-
7	3	6	9		2			
5			4	75	7			
		1				3	R	
	1	5			\	6	0	
9	0				4			

"world's hardest Sudoku"

by Arto Inkala, 2012

Ex. (Nim)

Two players take turns removing objects from distinct heaps on each turn, a player must remove at least one object from a selected heap. A player who takes the last object wins.

In this setup, the first player has a winning strategy.