7. Übungsblatt

- 1. Gegeben seien die Sprachen
 - $L_1 =_{\text{def}} \{ w \in \{a, b\}^* \mid w \text{ beginnt mit einem } a \text{ und endet mit einem } b \},$
 - $L_2 =_{\text{def}} \{ w \in \{a, b\}^* \mid w \text{ enthält mindestens drei } a \},$
 - $L_3 =_{\text{def}} \{ w \in \{a, b\}^* \mid w \text{ enthält } abab \text{ als Teilstring} \}$ und
 - $L_4 =_{\text{def}} \{ w \in \{a, b\}^* \mid w \text{ ist ein beliebiger String der ungleich } bb \text{ und } bbb \text{ ist} \}.$

Bestimmen Sie reguläre Ausdrücke γ_i so, dass $L(\gamma_i) = L_i$, wobei $1 \le i \le 4$.

- 2. Für ein beliebiges Alphabet $\Sigma = \{a_1, \ldots, a_n\}$ ist der Ausdruck Σ^* die Abkürzung für $(a_1|a_2|\ldots|a_n)^*$ und $\Sigma\Sigma$ ist die verkürzte Form von $(a_1|a_2|\ldots|a_n)(a_1|a_2|\ldots|a_n)$. Sei nun $\Sigma = \{0,1\}$. Gegeben sind die regulären Ausdrücke $\gamma_1 =_{\text{def}} (0^*)1(0^*)$, $\gamma_2 =_{\text{def}} \Sigma^*1\Sigma^*$, $\gamma_3 =_{\text{def}} \{1^*(0(1^+))^*\}$ und $\gamma_4 =_{\text{def}} (\Sigma\Sigma\Sigma)^*$. Geben Sie die Sprachen $L(\gamma_1)$, $L(\gamma_2)$, $L(\gamma_3)$ und $L(\gamma_4)$ umgangssprachlich an.
- 3. Zeigen Sie mit Hilfe des Pumping-Lemmas, dass die folgenden Sprachen nicht regulär sind:
 - i) $L_1 =_{\text{def}} \{ w \in \{0,1\}^* \mid \text{es gilt } |w|_1 = |w|_0 \}$
 - ii) $L_2 =_{\text{def}} \{ww \mid w \in \{0, 1\}^*\}$
 - iii) $L_3 =_{\text{def}} \{0^{2^n} \mid n \geq 0\}$ (0^{2^n} ist ein String, der aus 2^n 0en besteht)
- 4. In der Vorlesung wurde das Pumping-Lemma mit Hilfe von DEAs bewiesen. Konstruieren Sie einen Beweis für das Pumping-Lemma mit Hilfe von Typ 3-Grammatiken. Hinweis: Verwenden Sie die Anzahl der Nichtterminale für den Schubfachschluss und analysieren Sie die Struktur von Syntaxbäumen von Typ 3 Grammatiken.

Besprechung in den Übungen am 14.6.2018.