

Lecture 10: Signed Power and Design

- The purpose of a signed power convention
- Exercises under constraints on components

Which of the sources are delivering power?

- A. The voltage source only
- B. The current source only
- C. Both
- D. Neither
- E. Not enough information to tell

Polarity labels for Kirchhoff are Arbitrary

 $5 V \stackrel{+}{=} 10 \Omega \geqslant V_3 \stackrel{\uparrow}{=} 1 A$

Q: Find the value of V_3 .

Q: Find the power of the current source.

Q: Find the value of V_3 .

Q: Find the power of the current source.

Q: Does the sign of $P_3 = V_3 I_3$ have any meaning?

Standard Reference

Non-Standard Reference

Polarity for *Power MATTERS!*

Non-Standard Reference

$$P = -IV = -(1)(V_3)$$

Standard Reference

$$P = IV = +(1)(V_3)$$

$$P = -5 W$$

Polarity for *Ohm's Law* MATTERS!

Non-Standard Reference

$$I_2 = -\frac{V_2}{R}$$

Standard Reference

$$I_2 = \frac{V_2}{R}$$

$$I_2 = 0.5 A$$

The Equation P=IV <u>Assumes</u> Standard

Using the standard polarity labeling: $P = V I_{+\to-}$

$$P = V I_{+\rightarrow -}$$

This way, power is

defined such that it is

negative when it is

supplied (sourced) and

positive when it is

absorbed (sinked).

Recap of labeling implication

$$R = \frac{V}{I}$$

$$P = VI$$

"Standard Reference"

$$R = -\frac{V}{I}$$

$$P = -VI$$

"Non-Standard Reference"

Universal:

Ohm's Law: $I_{+\to-} = \frac{V}{R}$

Power Eqn: $P = VI_{+\rightarrow -}$

Q: With power defined as above, what is the sum of powers for all circuit elements?

Which of the sources below absorbs power?

Using the Power Equation

Q: For what values of I_S does the current source supply power?

L10 Learning Objectives

- a. Assign polarity of current and voltage
- b. Properly apply Ohm's Law to conditions of standard and non-standard polarities
- c. Properly apply the signed-Power formula to conditions of standard and non-standard polarities
- d. Design a circuit for specified power constraints.