1° Εσπερινό ΕΠΑ.Λ. Περιστερίου - Μαθηματικά Γ Τάξης - ΜΕΘΟΔΟΛΟΓΙΑ

- 1. Αν η γραφική παράσταση μιας συνάρτησης f διέρχεται από το σημείο $\mathbf{A}(\mathbf{a}, \mathbf{\beta})$ τότε $f(\alpha) = \beta$ (εναλλακτικά: Αν το σημείο $\mathbf{A}(\mathbf{a}, \mathbf{\beta})$ ανήκει στη γραφική παράσταση μιας συνάρτησης \mathbf{f} , τότε $f(\alpha) = \beta$)
- 2. Για την εύρεση του **πεδίου ορισμού** μια συνάρτησης f, λαμβάνουμε υπόψη ότι:
 - ullet Όταν έχουμε ένα κλάσμα $\dfrac{lpha}{eta}$ τότε θα πρέπει eta
 eq 0
 - Όταν έχουμε μια τετραγωνική ρίζα $\sqrt{\alpha}$ τότε θα πρέπει $\alpha\!\geq\!0$
- 3. Όταν ένα όριο είναι της μορφής $\frac{0}{0}$ τότε κάνουμε χρήση ταυτοτήτων ή παραγοντοποίησης ή σχήματος Horner (ή συνδυασμό από αυτά)
- 4. Ο αριθμός $f'(\alpha)$ έχει τρεις ερμηνείες:
 - Παράγωγος της f στο α
 - Ρυθμός μεταβολής της f στο α
 - ullet Συντελεστής διεύθυνσης (ή κλίση) της εφαπτομένης της $\mathrm{C_f}$ στο σημείο $\mathrm{A}ig(lpha,\mathrm{f}ig(lphaig)ig)$
- 5. Το όριο $\lim_{h\to 0} \frac{f\left(\alpha+h\right)-f\left(\alpha\right)}{h}$ είναι ο αριθμός $f'(\alpha)$ (είναι ο **ορισμός παραγώγου**)

Αν για παράδειγμα μας δώσουν την συνάρτηση $f\left(x\right)=3x^4-x^2+2x-1$ και:

 $\bullet \quad \text{mag shtare to fried} \ \lim_{h \to 0} \frac{f\left(2+h\right)-f\left(2\right)}{h} \ \text{, the } \lim_{h \to 0} \frac{f\left(2+h\right)-f\left(2\right)}{h} = f'\left(2\right).$

Το f'(2) με τη σειρά του μπορεί να βρεθεί εύκολα αν παραγωγίσουμε την f(x) και όπου x θέσουμε το 2 .

$$\Delta \eta \lambda \alpha \delta \dot{\eta} \ f'(x) = 12x^3 - 2x + 2, \ \dot{\alpha} \rho \alpha \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = f'(2) = 12 \cdot 2^3 - 2 \cdot 2 + 2 = 94.$$

 $\bullet \quad \text{mag shift} \ \text{im} \frac{f'(2+h)-f'(2)}{h} \ \text{, the } \lim_{h\to 0} \frac{f'(2+h)-f'(2)}{h} = f''(2).$

Το f''(2)με τη σειρά του μπορεί να βρεθεί εύκολα αν παραγωγίσουμε την f'(x) και όπου x θέσουμε το 2 .

Δηλαδή
$$f'(x) = 36x^2 - 2$$
, άρα $\lim_{h\to 0} \frac{f'(2+h) - f'(2)}{h} = f''(2) = 36 \cdot 2^2 - 2 = 142$.

- 6. Αν η εφαπτομένη της C_f στο σημείο $A(\alpha, f(\alpha))$ είναι παράλληλη στον άξονα χ'χ, τότε $f'(\alpha) = 0$
- 7. Αν η εφαπτομένη της C_f στο σημείο $A(\alpha, f(\alpha))$ είναι παράλληλη στην ευθεία $y = \lambda x + \beta$ τότε $f'(\alpha) = \lambda$
- 8. Αν η εφαπτομένη της C_f στα σημεία $A(\alpha, f(\alpha))$, $B(\beta, f(\beta))$ είναι παράλληλες, τότε $f'(\alpha) = f'(\beta)$
- 9. Όταν μας ζητάνε το ρυθμό μεταβολής της f' στο α , βρίσκουμε το $f''(\alpha)$

10.

- Για να βρούμε τα σημεία τομής μιας συνάρτησης $\mathbf f$ με τον άξονα $\mathbf x'\mathbf x$ λύνουμε την εξίσωση f(x)=0 , προσέχοντας το x που θα βρούμε να ανήκει στο πεδίο ορισμού της f
- Το σημείο τομής μιας συνάρτησης ${f f}$ με τον άξονα y y είναι το A(0,f(0)), προσέχοντας το 0 να ανήκει στο πεδίο ορισμού της f

11. Ο συντελεστής διεύθυνσης της εφαπτομένης της C_f στο σημείο $A(\alpha, f(\alpha))$ είναι $f'(\alpha) = \epsilon \phi \theta$ Οπότε αν μας ζητάνε ή αν μας δίνουν τη γωνία θ που σχηματίζει η εφαπτομένη της C_f στο σημείο $A(\alpha, f(\alpha))$ με τον άξονα άξονα χ΄χ, χρησιμοποιούμε τον τύπο $f'(\alpha) = \epsilon \phi \theta$

Υπενθύμιση

γωνία χ	0_{0}	30^{0}	45°	60^{0}	120^{0}	135°	150°
εфх	0	$\sqrt{3}/3$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\sqrt{3}/_{3}$

- 12. Αν μας ζητάνε σε ποιο σημείο της C_f η εφαπτομένη έχει τον **ελάχιστο (ή τον μέγιστο) συντελεστή** διεύθυνσης, βρίσκουμε τα ακρότατα της συνάρτησης f' (δηλαδή βρίσκουμε την f''(x) και κάνουμε πινακάκι....βλέπε και άσκηση 3 σελ. 48 σχ. βιβλίου) (Αντίστοιχα δουλεύουμε όταν μας ζητάνε την **ελάχιστη (ή μέγιστη) τιμή του ρυθμού μεταβολής** μιας συνάρτησης f ως προς x)
- 13. Αν σε μια άσκηση μας ζητάνε να συγκρίνουμε δυο «παράξενες» τιμές π.χ. f(2019), f(2234) τότε μελετάμε την **μονοτονία** της f και χρησιμοποιούμε τον ορισμό της γνησίως αύξουσας ή γνησίως φθίνουσας συνάρτησης.

Για παράδειγμα η συνάρτηση $f(x) = \frac{x^3}{3} - x^2$

- είναι γνησίως αύξουσα στο $[2, +\infty)$ και επειδή 2023 < 2234 συμπεραίνουμε ότι f(2023) < f(2234)
- είναι γνησίως φθίνουσα στο $\left[0,2\right]$ και επειδή $\left[0,66\right]$ 0,66 $\left[0,66\right]$ 5 συμπεραίνουμε ότι $\left[0,66\right]$ 5 γ $\left[1,25\right]$
- 14. Αν μας ζητάνε να αποδείξουμε μια ανισότητα της μορφής
 - « $f(x) \ge k$ για κάθε $x \in [\alpha, \beta]$ » ή « $f(x) \le k$ για κάθε $x \in [\alpha, \beta]$ »

τότε μελετάμε την f ως προς τα ακρότατα.

Για παράδειγμα για τη συνάρτηση $f(x) = x^3 - 3x + 1$ βρίσκουμε ότι παρουσιάζει τοπικό μέγιστο στο -1 και τοπικό ελάχιστο στο 1. Συμπεραίνουμε ότι:

• $f\left(x\right) \leq f\left(-1\right) = 3 \ \, \text{για κάθε} \ \, x \in \left[-2,1\right] \quad \text{και} \quad f\left(x\right) \geq f\left(1\right) = -1 \, \, \text{για κάθε} \, \, x \in \left[-1,2\right] \text{ »}$