SOSC 5340: Logistic Regression and MLE

Han Zhang

Feb 16, 2021

Outline

Logistics

Binary Outcomes

Logit/Probit Regressions: Assumptions

Logistic/Probit Estimation: MLE

Logistic Regression interpretations

Today's Review

• It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background
- If you find class content too easy

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background
- If you find class content too easy
 - Try to prove everything we mentioned (sometime I skipped the proofs). You will find that it's not that easy if you start doing it by yourself

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background
- If you find class content too easy
 - Try to prove everything we mentioned (sometime I skipped the proofs). You will find that it's not that easy if you start doing it by yourself
 - This will lay out a solid foundation of what we are going to learn next (especially machine learning and causal inference); when things get complex, it's not as easy as you think

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background
- If you find class content too easy
 - Try to prove everything we mentioned (sometime I skipped the proofs). You will find that it's not that easy if you start doing it by yourself
 - This will lay out a solid foundation of what we are going to learn next (especially machine learning and causal inference); when things get complex, it's not as easy as you think
 - For instance, are regression estimate of IV and DID consistent? unbiased? asymptotically normal?

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background
- If you find class content too easy
 - Try to prove everything we mentioned (sometime I skipped the proofs). You will find that it's not that easy if you start doing it by yourself
 - This will lay out a solid foundation of what we are going to learn next (especially machine learning and causal inference); when things get complex, it's not as easy as you think
 - For instance, are regression estimate of IV and DID consistent? unbiased? asymptotically normal?
 - Come to me and I can suggest you more things to read

- It is a little bit slow as most of us have already had some quantitative backgrounds. I hope we can move to causal inference as soon as possible.
- Personally, I think it is a little too fast and sometimes I have problems catching up
- The class has mixed background
- If you find class content too easy
 - Try to prove everything we mentioned (sometime I skipped the proofs). You will find that it's not that easy if you start doing it by yourself
 - This will lay out a solid foundation of what we are going to learn next (especially machine learning and causal inference); when things get complex, it's not as easy as you think
 - For instance, are regression estimate of IV and DID consistent? unbiased? asymptotically normal?
 - Come to me and I can suggest you more things to read
 - Maybe you have talent to do methodology research

• Too abstract!

- Too abstract!
- Bit theory and not too down-to-earth; too much math for non-MATH/ECON background

- Too abstract!
- Bit theory and not too down-to-earth; too much math for non-MATH/ECON background
- Purely teaching you how to run regression will let you start early, but won't let you go far

- Too abstract!
- Bit theory and not too down-to-earth; too much math for non-MATH/ECON background
- Purely teaching you how to run regression will let you start early, but won't let you go far
- We will see how the abstract knowledge help us in applied work

- Too abstract!
- Bit theory and not too down-to-earth; too much math for non-MATH/ECON background
- Purely teaching you how to run regression will let you start early, but won't let you go far
- We will see how the abstract knowledge help us in applied work
 - lots of presentations coming soon.

- Too abstract!
- Bit theory and not too down-to-earth; too much math for non-MATH/ECON background
- Purely teaching you how to run regression will let you start early, but won't let you go far
- We will see how the abstract knowledge help us in applied work
 - lots of presentations coming soon.
 - Also our first tutorial and assignment

- Too abstract!
- Bit theory and not too down-to-earth; too much math for non-MATH/ECON background
- Purely teaching you how to run regression will let you start early, but won't let you go far
- We will see how the abstract knowledge help us in applied work
 - lots of presentations coming soon.
 - Also our first tutorial and assignment
- If you cannot follow the proof, try to follow the logic

• Give me more feedback

- Give me more feedback
 - Like asking questions more often :)

- Give me more feedback
 - Like asking questions more often :)
- If you are afraid of peer pressure:

- Give me more feedback
 - Like asking questions more often :)
- If you are afraid of peer pressure:
 - send a private question to me; I will answer it but will not mention you rname

- Give me more feedback
 - Like asking questions more often :)
- If you are afraid of peer pressure:
 - send a private question to me; I will answer it but will not mention you rname
 - click the "too slow" button if you find it hard to follow

• The assigned paper list has been posted

- The assigned paper list has been posted
- Choose one you are interested to present

- The assigned paper list has been posted
- Choose one you are interested to present
 - The first presentation starts on Mar 2, two weeks later

- The assigned paper list has been posted
- Choose one you are interested to present
 - The first presentation starts on Mar 2, two weeks later
- Two kinds of articles:

- The assigned paper list has been posted
- Choose one you are interested to present
 - The first presentation starts on Mar 2, two weeks later
- Two kinds of articles:
 - Applied

- The assigned paper list has been posted
- Choose one you are interested to present
 - The first presentation starts on Mar 2, two weeks later
- Two kinds of articles:
 - Applied
 - Methodological: several of them are not easy; if you believe the content is too easy, go for it. I will give you bonus points if you are able to grasp the contents.

- The assigned paper list has been posted
- Choose one you are interested to present
 - The first presentation starts on Mar 2, two weeks later
- Two kinds of articles:
 - Applied
 - Methodological: several of them are not easy; if you believe the content is too easy, go for it. I will give you bonus points if you are able to grasp the contents.
- All are expected to read the article and ask questions

Logistics: Exercise 1

• Will post it by the end of today

Logistics: Exercise 1

- Will post it by the end of today
- Due in two weeks (Mar 2)

Recommended readings for today

• If you want to see some formal proofs:

Recommended readings for today

- If you want to see some formal proofs:
- Wooldridge, Introductory Econometrics: A Modern Approach, 2015. Chapter 17

Recommended readings for today

- If you want to see some formal proofs:
- Wooldridge, Introductory Econometrics: A Modern Approach, 2015. Chapter 17
- Hansen, Econometrics, 2020. Chapter 4, 5, 23. Free at the author's website https://www.ssc.wisc.edu/~bhansen/econometrics/

Binary Outcome

• Binary outcome variable:

- Binary outcome variable:
 - $Y_i \in \{0,1\}$

- Binary outcome variable:
 - $Y_i \in \{0,1\}$
- Examples in social science: numerous!

- Binary outcome variable:
 - $Y_i \in \{0,1\}$
- Examples in social science: numerous!
 - Higher education: 1 = has college education; 0 = does not have college education

- Binary outcome variable:
 - $Y_i \in \{0,1\}$
- Examples in social science: numerous!
 - Higher education: 1 = has college education; 0 = does not have college education
 - Conflict: 1 = civil war; 0 = no civil war

- Binary outcome variable:
 - $Y_i \in \{0,1\}$
- Examples in social science: numerous!
 - Higher education: 1 = has college education; 0 = does not have college education
 - Conflict: 1 = civil war; 0 = no civil war
 - Voting: 1 = vote; 0 = abstain

• We already know that conditional expectation E(Y|X) is the best predictor

$$E(Y|X) = X\beta$$

$$E(Y|X) = P(Y = 1|X)$$

- We already know that conditional expectation E(Y|X) is the best predictor
- Linear regression: with assumptions 1,2 and especially 3

$$E(Y|X) = X\beta$$

$$E(Y|X) = P(Y = 1|X)$$

- We already know that conditional expectation E(Y|X) is the best predictor
- Linear regression: with assumptions 1,2 and especially 3

$$E(Y|X) = X\beta$$

• When Y is binary:

$$E(Y|X) = P(Y = 1|X)$$

- We already know that conditional expectation E(Y|X) is the best predictor
- Linear regression: with assumptions 1,2 and especially 3

$$E(Y|X) = X\beta$$

• When *Y* is binary:

$$E(Y|X) = P(Y = 1|X)$$

• P(Y = 1|X) is the conditional probability of Y = 1 given X

- We already know that conditional expectation E(Y|X) is the best predictor
- Linear regression: with assumptions 1,2 and especially 3

$$E(Y|X) = X\beta$$

• When Y is binary:

$$E(Y|X) = P(Y = 1|X)$$

- P(Y = 1|X) is the conditional probability of Y = 1 given X
- What is different here: conditional probability must be between 0 and 1 by definition!

• $E(Y|X) = X\beta$ can be bigger than 1 or smaller than 0

$$0 \le E(Y|X) = F(X\beta) \le 1$$

- $E(Y|X) = X\beta$ can be bigger than 1 or smaller than 0
- Linear Probability Model: just tolerate this problem; still run OLS regression with binary outcome.

$$0 \le E(Y|X) = F(X\beta) \le 1$$

- $E(Y|X) = X\beta$ can be bigger than 1 or smaller than 0
- Linear Probability Model: just tolerate this problem; still run OLS regression with binary outcome.
- Alternatively: we can apply a function F onto $X\beta$ to ensure

$$0 \le E(Y|X) = F(X\beta) \le 1$$

Two useful functions:

$$E(Y|X) = logit^{-1}(X\beta) = \frac{exp(X\beta)}{1 + exp(X\beta)} = \frac{1}{1 + exp(-X\beta)}$$

Two useful functions:

•
$$logit(X) = log(\frac{X}{1-X})$$

$$E(Y|X) = logit^{-1}(X\beta) = \frac{exp(X\beta)}{1 + exp(X\beta)} = \frac{1}{1 + exp(-X\beta)}$$

- Two useful functions:
 - $logit(X) = log(\frac{X}{1-X})$
 - $logit^{-1}(X) = \frac{exp(X)}{1 + exp(X)}$

$$E(Y|X) = logit^{-1}(X\beta) = \frac{exp(X\beta)}{1 + exp(X\beta)} = \frac{1}{1 + exp(-X\beta)}$$

- Two useful functions:
 - $logit(X) = log(\frac{X}{1-X})$
 - $logit^{-1}(X) = \frac{e \times p(X)}{1 + e \times p(X)}$
- Logistic Regression

$$E(Y|X) = logit^{-1}(X\beta) = \frac{exp(X\beta)}{1 + exp(X\beta)} = \frac{1}{1 + exp(-X\beta)}$$

- Two useful functions:
 - $logit(X) = log(\frac{X}{1-X})$
 - $logit^{-1}(X) = \frac{exp(X)}{1 + exp(X)}$
- Logistic Regression
 - We use the inverse-logit function as F

$$E(Y|X) = logit^{-1}(X\beta) = \frac{exp(X\beta)}{1 + exp(X\beta)} = \frac{1}{1 + exp(-X\beta)}$$

Logistic Regression vs Linear Probability Model

• inverse-logit function "squashs" $X\beta$ to [0,1]

$$E(Y|X) = \Phi(X\beta)$$

• We can also "squash" $X\beta$ using standard normal CDF (normal cumulative density function)

$$E(Y|X) = \Phi(X\beta)$$

• Statistical model using normal CDF to squash $X\beta$ is known as probit regression

$$E(Y|X) = \Phi(X\beta)$$

- Statistical model using normal CDF to squash $X\beta$ is known as probit regression
- In general, any CDF can be used as F to squash $X\beta$ to [0,1]

$$E(Y|X) = \Phi(X\beta)$$

- Statistical model using normal CDF to squash $X\beta$ is known as probit regression
- In general, any CDF can be used as F to squash $X\beta$ to [0,1]
 - inverse-logit is the CDF of standard logistic distribution

$$E(Y|X) = \Phi(X\beta)$$

- Statistical model using normal CDF to squash $X\beta$ is known as probit regression
- In general, any CDF can be used as F to squash $X\beta$ to [0,1]
 - inverse-logit is the CDF of standard logistic distribution
 - Φ is the CDF of standard normal distribution

Probit vs Logit vs Linear Probability

More on linear probability model

 Binary data (and more general, most categorical data) always exhibit heteroscedasticity

$$V(\epsilon|X) = V(Y - X\beta|X)$$

$$= V(Y|X)$$

$$= P(Y = 1|X)[1 - P(Y = 1|X)]$$
(1)

More on linear probability model

 Binary data (and more general, most categorical data) always exhibit heteroscedasticity

$$V(\epsilon|X) = V(Y - X\beta|X)$$

$$= V(Y|X)$$

$$= P(Y = 1|X)[1 - P(Y = 1|X)]$$
(1)

• The above equation shows that variance of error changes based on the value of X! It is always heteroscedastic.

More on linear probability model

 Binary data (and more general, most categorical data) always exhibit heteroscedasticity

$$V(\epsilon|X) = V(Y - X\beta|X)$$

$$= V(Y|X)$$

$$= P(Y = 1|X)[1 - P(Y = 1|X)]$$
(1)

- The above equation shows that variance of error changes based on the value of X! It is always heteroscedastic.
- So always use robust standard error if you decide to use OLS regression to model binary outcomes (linear probability model).

• Assumption 1: the expected error is 0

$$E(\epsilon) = 0$$

$$E(\epsilon|X)=0$$

$$\epsilon \sim N(0, \sigma^2)$$

• Assumption 1: the expected error is 0

$$E(\epsilon) = 0$$

• Assumption 2: mean independent between X and the error

$$E(\epsilon|X)=0$$

$$\epsilon \sim N(0, \sigma^2)$$

Assumption 1: the expected error is 0

$$E(\epsilon) = 0$$

• Assumption 2: mean independent between X and the error

$$E(\epsilon|X)=0$$

Assumption 3 of OLS (data generating process)

$$Y = X\beta + \epsilon$$

$$\epsilon \sim N(0, \sigma^2)$$

Assumption 1: the expected error is 0

$$E(\epsilon) = 0$$

• Assumption 2: mean independent between X and the error

$$E(\epsilon|X)=0$$

Assumption 3 of OLS (data generating process)

$$Y = X\beta + \epsilon$$

 Assumption 5: normal error (which implies Assumption 4, homoscedastic error)

$$\epsilon \sim N(0, \sigma^2)$$

Assumption 1 and 2: shared by logit/probit regressions

$$Y^* = X\beta + \epsilon$$

$$Y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

- Assumption 1 and 2: shared by logit/probit regressions
- Assumption 3 of logit/probit: data generating process

$$Y^* = X\beta + \epsilon$$

$$Y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

- Assumption 1 and 2: shared by logit/probit regressions
- Assumption 3 of logit/probit: data generating process

$$Y^* = X\beta + \epsilon$$

$$Y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

Y* is an unobserved latent variable

- Assumption 1 and 2: shared by logit/probit regressions
- Assumption 3 of logit/probit: data generating process

$$Y^* = X\beta + \epsilon$$

$$Y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

- Y* is an unobserved latent variable
- if the latent variable is bigger than a pre-determined cutoff (here 0), we get Y=1

Assumptions of Logistic/Probit regressions

- Assumption 1 and 2: shared by logit/probit regressions
- Assumption 3 of logit/probit: data generating process

$$Y^* = X\beta + \epsilon$$

$$Y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

- Y* is an unobserved latent variable
- if the latent variable is bigger than a pre-determined cutoff (here 0), we get Y=1
- We only observe samples of Y

Assumptions of Logistic/Probit regressions

- Assumption 1 and 2: shared by logit/probit regressions
- Assumption 3 of logit/probit: data generating process

$$Y^* = X\beta + \epsilon$$

$$Y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

- Y* is an unobserved latent variable
- if the latent variable is bigger than a pre-determined cutoff (here 0), we get Y=1
- We only observe samples of Y
 - economists may say that Y^* is the underlying preference, and Y is revealed preference

Assumptions about error of logit/probit

• Assumption 5 of Logistic/Probit regressions ϵ is distributed according to the probability density distribution of a CDF function F

Assumptions 3 and 5 together lead to

$$E(Y|X) = F(X\beta)$$

Assumptions about error of logit/probit

- Assumption 5 of Logistic/Probit regressions ϵ is distributed according to the probability density distribution of a CDF function F
 - F is inverse-logit function; the error follows standard logistic distribution

Assumptions 3 and 5 together lead to

$$E(Y|X) = F(X\beta)$$

Assumptions about error of logit/probit

- Assumption 5 of Logistic/Probit regressions ϵ is distributed according to the probability density distribution of a CDF function F
 - F is inverse-logit function; the error follows standard logistic distribution
 - F is Φ; the error follows standard normal distribution

Assumptions 3 and 5 together lead to

$$E(Y|X) = F(X\beta)$$

• There are two ways to estimate β in linear regression

$$\hat{\beta} = \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{Y} \tag{3}$$

- There are two ways to estimate β in linear regression
- We can write some population equations, plug-in the sample analog, and solve these sample equations

$$\hat{\beta} = \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{Y} \tag{3}$$

- There are two ways to estimate β in linear regression
- We can write some population equations, plug-in the sample analog, and solve these sample equations
- We can also directly minimize empirical MSE

$$\hat{\beta} = \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{Y} \tag{3}$$

- There are two ways to estimate β in linear regression
- We can write some population equations, plug-in the sample analog, and solve these sample equations
- We can also directly minimize empirical MSE
- Both solutions result in the same β estimate for OLS regression

$$\hat{\beta} = \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{Y} \tag{3}$$

 There is no way to write down a closed-form solution for logistic regression coefficients.

- There is no way to write down a closed-form solution for logistic regression coefficients.
- We use Maximum Likelihood Estimation (MLE)

- There is no way to write down a closed-form solution for logistic regression coefficients.
- We use Maximum Likelihood Estimation (MLE)
- MLE is a general methods for estimating parameters in parametric statistical models and making statistical inference.

- There is no way to write down a closed-form solution for logistic regression coefficients.
- We use Maximum Likelihood Estimation (MLE)
- MLE is a general methods for estimating parameters in parametric statistical models and making statistical inference.
- Requirement: assumptions about functional form of conditional probability P(Y|X)

- There is no way to write down a closed-form solution for logistic regression coefficients.
- We use Maximum Likelihood Estimation (MLE)
- MLE is a general methods for estimating parameters in parametric statistical models and making statistical inference.
- Requirement: assumptions about functional form of conditional probability P(Y|X)
- Say, in logistic regression, $P(Y=1|X) = logit^{-1}(X\beta)$, and P(Y=0|X) = 1 P(Y=1|X)

- There is no way to write down a closed-form solution for logistic regression coefficients.
- We use Maximum Likelihood Estimation (MLE)
- MLE is a general methods for estimating parameters in parametric statistical models and making statistical inference.
- Requirement: assumptions about functional form of conditional probability P(Y|X)
- Say, in logistic regression, $P(Y = 1|X) = logit^{-1}(X\beta)$, and P(Y = 0|X) = 1 P(Y = 1|X)
- For a single data point, the probability we observe Y_i is exactly given by $logit^{-1}(X_i\beta)$ or $1 logit^{-1}(X_i\beta)$ (depending on observed Y_i)

 Because we have i.i.d. samples, we can multiple these empirical probabilities together, as the probability that we observe the entire sample.

$$L = \prod_{i=1}^{n} P(Y_i|X_i) \tag{4}$$

- Because we have i.i.d. samples, we can multiple these empirical probabilities together, as the probability that we observe the entire sample.
- The probability we observe the entire sample is called likelihood: L

$$L = \prod_{i=1}^{n} P(Y_i|X_i) \tag{4}$$

- Because we have i.i.d. samples, we can multiple these empirical probabilities together, as the probability that we observe the entire sample.
- The probability we observe the entire sample is called likelihood: L

$$L = \prod_{i=1}^{n} P(Y_i|X_i) \tag{4}$$

• L is a function of unknown β

- Because we have i.i.d. samples, we can multiple these empirical probabilities together, as the probability that we observe the entire sample.
- The probability we observe the entire sample is called likelihood: L

$$L = \prod_{i=1}^{n} P(Y_i|X_i) \tag{4}$$

- L is a function of unknown β
- Naturally, we say that a good β is the one that makes the likelihood the largest.

- Because we have i.i.d. samples, we can multiple these empirical probabilities together, as the probability that we observe the entire sample.
- The probability we observe the entire sample is called likelihood: L

$$L = \prod_{i=1}^{n} P(Y_i|X_i) \tag{4}$$

- L is a function of unknown β
- Naturally, we say that a good β is the one that makes the likelihood the largest.
 - Intuitively, it says that our chosen β should make the probability to observe the entire sample the largest.

- Because we have i.i.d. samples, we can multiple these empirical probabilities together, as the probability that we observe the entire sample.
- The probability we observe the entire sample is called likelihood: L

$$L = \prod_{i=1}^{n} P(Y_i|X_i) \tag{4}$$

- L is a function of unknown β
- Naturally, we say that a good β is the one that makes the likelihood the largest.
 - Intuitively, it says that our chosen β should make the probability to observe the entire sample the largest.
- Put it differently, our estimate of β should maximize the likelihood function.

MLE estimate

 In practice, it is easier to work with log of likelihood, called log-likelihood

$$\hat{\beta}_{\textit{MLE}} = \mathop{\arg\max}_{\beta} \log L$$

MLE estimate

- In practice, it is easier to work with log of likelihood, called log-likelihood
- $\log L = \sum_{i=1}^{n} \log P(Y_i|X_i)$

$$\hat{\beta}_{\mathit{MLE}} = \mathop{\arg\max}_{\beta} \log L$$

MLE estimate

- In practice, it is easier to work with log of likelihood, called log-likelihood
- $\log L = \sum_{i=1}^{n} \log P(Y_i|X_i)$
- ullet We try to find eta that maximize log-likelihood

$$\hat{\beta}_{\textit{MLE}} = \argmax_{\beta} \log L$$

MLE inference

• And estimated variance of $\hat{\beta}_{MLE}$ is given by

$$\widehat{V}(\widehat{\beta}_{MLE}) = \left(\mathbb{E}_{\beta} \left(\frac{\partial^2 \log L}{\partial \beta^2}\right)\right)^{-1} \tag{5}$$

$$\left(\hat{eta}_{ extit{MLE}} - 1.96 * \hat{\sigma}(\hat{eta}_{ extit{MLE}}), \hat{eta}_{ extit{MLE}} - 1.96 * \hat{\sigma}(\hat{eta}_{ extit{MLE}})
ight)$$

MLE inference

• And estimated variance of $\hat{\beta}_{MLE}$ is given by

$$\widehat{V}(\widehat{\beta}_{MLE}) = \left(\mathbb{E}_{\beta} \left(\frac{\partial^2 \log L}{\partial \beta^2}\right)\right)^{-1} \tag{5}$$

• $\frac{\partial^2 \log L}{\partial \beta^2}$ is called Hessian matrix.

$$\left(\hat{eta}_{ extit{MLE}} - 1.96 * \hat{\sigma}(\hat{eta}_{ extit{MLE}}), \hat{eta}_{ extit{MLE}} - 1.96 * \hat{\sigma}(\hat{eta}_{ extit{MLE}})
ight)$$

MLE inference

• And estimated variance of $\hat{\beta}_{MLE}$ is given by

$$\widehat{V}(\widehat{\beta}_{MLE}) = \left(\mathbb{E}_{\beta} \left(\frac{\partial^2 \log L}{\partial \beta^2}\right)\right)^{-1} \tag{5}$$

- $\frac{\partial^2 \log L}{\partial \beta^2}$ is called Hessian matrix.
- Last, we can use normal approximated intervals for confidence interval (below is an example for 95% confidence interval)

$$\left(\hat{eta}_{ extit{MLE}} - 1.96 * \hat{\sigma}(\hat{eta}_{ extit{MLE}}), \hat{eta}_{ extit{MLE}} - 1.96 * \hat{\sigma}(\hat{eta}_{ extit{MLE}})
ight)$$

• MLE estimate has some good properties:

- MLE estimate has some good properties:
- It is consistent

- MLE estimate has some good properties:
- It is consistent
- It is asymptotically normal (so we can use normal-approximated confidence interval)

- MLE estimate has some good properties:
- It is consistent
- It is asymptotically normal (so we can use normal-approximated confidence interval)
- Unbiaseness? No guarantee

 Step 1: write single point probability distribution; this case it is easy:

$$P(Y_i|X_i) = \left[logit^{-1}(X_i\beta)\right]^{Y_i} \left[1 - logit^{-1}(X_i\beta)\right]^{1 - Y_i}$$
 (6)

$$L = \prod_{i=1}^{n} P(Y_i|X_i) = \prod_{i=1}^{n} \left[logit^{-1}(X_i\beta) \right]^{Y_i} \left[1 - logit^{-1}(X_i\beta) \right]^{1-Y_i}$$
(7

- Step 1: write single point probability distribution; this case it is easy:
 - $P(Y_i = 1|X_i) = logit^{-1}(X_i\beta)$, and $P(Y_i = 0|X_i) = 1 P(Y_i = 1|X)$

$$P(Y_i|X_i) = \left[logit^{-1}(X_i\beta)\right]^{Y_i} \left[1 - logit^{-1}(X_i\beta)\right]^{1 - Y_i}$$
 (6)

$$L = \prod_{i=1}^{n} P(Y_i|X_i) = \prod_{i=1}^{n} \left[logit^{-1}(X_i\beta) \right]^{Y_i} \left[1 - logit^{-1}(X_i\beta) \right]^{1-Y_i}$$
(7

- Step 1: write single point probability distribution; this case it is easy:
 - $P(Y_i = 1|X_i) = logit^{-1}(X_i\beta)$, and $P(Y_i = 0|X_i) = 1 P(Y_i = 1|X)$
 - We can write this in a single equation:

$$P(Y_i|X_i) = \left[logit^{-1}(X_i\beta)\right]^{Y_i} \left[1 - logit^{-1}(X_i\beta)\right]^{1 - Y_i}$$
 (6)

$$L = \prod_{i=1}^{n} P(Y_i|X_i) = \prod_{i=1}^{n} \left[logit^{-1}(X_i\beta) \right]^{Y_i} \left[1 - logit^{-1}(X_i\beta) \right]^{1-Y_i}$$
(7

- Step 1: write single point probability distribution; this case it is easy:
 - $P(Y_i = 1|X_i) = logit^{-1}(X_i\beta)$, and $P(Y_i = 0|X_i) = 1 P(Y_i = 1|X)$
 - We can write this in a single equation:

$$P(Y_i|X_i) = \left[logit^{-1}(X_i\beta)\right]^{Y_i} \left[1 - logit^{-1}(X_i\beta)\right]^{1 - Y_i}$$
 (6)

Step 2: for all n points:

$$L = \prod_{i=1}^{n} P(Y_i|X_i) = \prod_{i=1}^{n} \left[logit^{-1}(X_i\beta) \right]^{Y_i} \left[1 - logit^{-1}(X_i\beta) \right]^{1-Y_i}$$
(7

• Step 2 (cont'd): the log-likelihood is

$$\log L = \sum_{i=1}^{n} Y_i \log \left(logit^{-1} \left(X_i \right) + \left(1 - Y_i \right) \right) \log \left[1 - logit^{-1} \left(X_i \right) \right]$$
(8)

MLE in practice: logistic regression

• Step 2 (cont'd): the log-likelihood is

$$\log L = \sum_{i=1}^{n} Y_i \log \left(logit^{-1} \left(X_i \right) + \left(1 - Y_i \right) \right) \log \left[1 - logit^{-1} \left(X_i \right) \right]$$
(8)

• And remember that $logit^{-1}(X\beta) = \frac{exp(X\beta)}{1 + exp(X\beta)}$

MLE in practice: logistic regression

• Step 2 (cont'd): the log-likelihood is

$$\log L = \sum_{i=1}^{n} Y_i \log \left(logit^{-1} \left(X_i \right) + \left(1 - Y_i \right) \right) \log \left[1 - logit^{-1} \left(X_i \right) \right]$$
(8)

- And remember that $logit^{-1}(X\beta) = rac{exp(X\beta)}{1 + exp(X\beta)}$
- We want to select β that makes log L the largest

• How can we find β that minimize log L? Two solutions

- How can we find β that minimize log L? Two solutions
- Standard calculus

- How can we find β that minimize log L? Two solutions
- Standard calculus
 - Find β that makes the partial derivative $\frac{\partial L}{\partial \beta} = 0$.

- How can we find β that minimize log L? Two solutions
- Standard calculus
 - Find β that makes the partial derivative $\frac{\partial L}{\partial \beta} = 0$.
 - In logistic regression, you cannot analytically solve β that makes the partial derivative zero.

- How can we find β that minimize log L? Two solutions
- Standard calculus
 - Find β that makes the partial derivative $\frac{\partial L}{\partial \beta} = 0$.
 - In logistic regression, you cannot analytically solve β that makes the partial derivative zero.
- Optimization:

- How can we find β that minimize log L? Two solutions
- Standard calculus
 - Find β that makes the partial derivative $\frac{\partial L}{\partial \beta} = 0$.
 - In logistic regression, you cannot analytically solve β that makes the partial derivative zero.
- Optimization:
 - Try many β and choose one that minimize log L.

- How can we find β that minimize log L? Two solutions
- Standard calculus
 - Find β that makes the partial derivative $\frac{\partial L}{\partial \beta} = 0$.
 - In logistic regression, you cannot analytically solve β that makes the partial derivative zero.
- Optimization:
 - Try many β and choose one that minimize log L.
 - How? There may be infinite choices of β

- How can we find β that minimize log L? Two solutions
- Standard calculus
 - Find β that makes the partial derivative $\frac{\partial L}{\partial \beta} = 0$.
 - In logistic regression, you cannot analytically solve β that makes the partial derivative zero.
- Optimization:
 - Try many β and choose one that minimize log L.
 - How? There may be infinite choices of β
 - There are many mature optimization algorithms that help you find β quicker

• There are many many more optimization methods

- There are many many more optimization methods
- They basically follow the similar idea: makes some initial guesses of β and gradually improve on older estimates

- There are many many more optimization methods
- They basically follow the similar idea: makes some initial guesses of β and gradually improve on older estimates
- in R, use optim package

• One commonly used optimization method: gradient descent

$$\beta_{\text{new}} = \beta_{\text{old}} + \eta \cdot \frac{\partial \log L}{\partial \beta} \tag{9}$$

$$\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{n} \left[Y_i - logit^{-1}(X\beta) \right] X_i$$

- One commonly used optimization method: gradient descent
 - It's not used in optim package in R but widely used in more advanced algorithms

$$\beta_{\text{new}} = \beta_{\text{old}} + \eta \cdot \frac{\partial \log L}{\partial \beta} \tag{9}$$

$$\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{n} \left[Y_i - logit^{-1}(X\beta) \right] X_i$$

- One commonly used optimization method: gradient descent
 - It's not used in optim package in R but widely used in more advanced algorithms

$$\beta_{\text{new}} = \beta_{\text{old}} + \eta \cdot \frac{\partial \log L}{\partial \beta} \tag{9}$$

With some math, you will find that

$$\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{n} \left[Y_i - logit^{-1}(X\beta) \right] X_i$$

- One commonly used optimization method: gradient descent
 - It's not used in optim package in R but widely used in more advanced algorithms

$$\beta_{\text{new}} = \beta_{\text{old}} + \eta \cdot \frac{\partial \log L}{\partial \beta} \tag{9}$$

With some math, you will find that

$$\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{n} [Y_i - logit^{-1}(X\beta)] X_i$$

• η is called learning rate; try different options

- One commonly used optimization method: gradient descent
 - It's not used in optim package in R but widely used in more advanced algorithms

$$\beta_{\text{new}} = \beta_{\text{old}} + \eta \cdot \frac{\partial \log L}{\partial \beta} \tag{9}$$

With some math, you will find that

$$\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{n} \left[Y_i - logit^{-1}(X\beta) \right] X_i$$

- ullet η is called learning rate; try different options
- You need to choose an starting β ; try several random guess

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

• Let us move on to interpreting regression coefficients

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

• $\frac{P(Y=1|X)}{P(Y=0|X)}$ is called odds; it is the ratio between two conditional probabilities: Y=1 vs Y=0, given X.

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

- $\frac{P(Y=1|X)}{P(Y=0|X)}$ is called odds; it is the ratio between two conditional probabilities: Y=1 vs Y=0, given X.
 - Odds > 1 means Y = 1 is more likely than Y = 0 give X

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

- $\frac{P(Y=1|X)}{P(Y=0|X)}$ is called odds; it is the ratio between two conditional probabilities: Y=1 vs Y=0, given X.
 - Odds > 1 means Y = 1 is more likely than Y = 0 give X
- $log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$ is the log of odds; we call it log-odds

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

- $\frac{P(Y=1|X)}{P(Y=0|X)}$ is called odds; it is the ratio between two conditional probabilities: Y=1 vs Y=0, given X.
 - Odds > 1 means Y = 1 is more likely than Y = 0 give X
- $log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$ is the log of odds; we call it log-odds
- Following the interpretation of OLS regression, we can interpret logistic regression coefficient in this way:

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

- $\frac{P(Y=1|X)}{P(Y=0|X)}$ is called odds; it is the ratio between two conditional probabilities: Y=1 vs Y=0, given X.
 - Odds > 1 means Y = 1 is more likely than Y = 0 give X
- $log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$ is the log of odds; we call it log-odds
- Following the interpretation of OLS regression, we can interpret logistic regression coefficient in this way:
 - One unit increase in X will lead to β increase in log-odds

$$X\beta = logit(E(Y|X)) = log\left[\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right] = log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$$

- $\frac{P(Y=1|X)}{P(Y=0|X)}$ is called odds; it is the ratio between two conditional probabilities: Y=1 vs Y=0, given X.
 - Odds > 1 means Y = 1 is more likely than Y = 0 give X
- $log\left[\frac{P(Y=1|X)}{P(Y=0|X)}\right]$ is the log of odds; we call it log-odds
- Following the interpretation of OLS regression, we can interpret logistic regression coefficient in this way:
 - One unit increase in X will lead to β increase in log-odds
 - ullet Problem: it is very intuitive to think about what eta increase in log-odds means

$$P(Y = 1|X) = logit^{-1} (-1.92 + 0.032 * income + 0.67 * gender)$$

 Example, we are interested in the effect of income and gender on whether a person vote or not. For gender, 1 is female and 0 is female. Income is in thousand dollars

$$P(Y = 1|X) = logit^{-1} (-1.92 + 0.032 * income + 0.67 * gender)$$

 A simple rule of thumb (based on Gelman and Hill, Data Analysis using Regression and Multilevel Hierarchical Models, 2007.)

$$P(Y = 1|X) = logit^{-1} (-1.92 + 0.032 * income + 0.67 * gender)$$

- A simple rule of thumb (based on Gelman and Hill, Data Analysis using Regression and Multilevel Hierarchical Models, 2007.)
 - Divide your β by 4, and this is roughly the upper bound of the change in probability

$$P(Y = 1|X) = logit^{-1} (-1.92 + 0.032 * income + 0.67 * gender)$$

- A simple rule of thumb (based on Gelman and Hill, Data Analysis using Regression and Multilevel Hierarchical Models, 2007.)
 - Divide your β by 4, and this is roughly the upper bound of the change in probability
 - For income, we divide 0.032 by 4. It means that one unit (a thousand) increase in income predicts no more than 0.8% increase in the probability of voting.

$$P(Y = 1|X) = logit^{-1} (-1.92 + 0.032 * income + 0.67 * gender)$$

- A simple rule of thumb (based on Gelman and Hill, Data Analysis using Regression and Multilevel Hierarchical Models, 2007.)
 - Divide your β by 4, and this is roughly the upper bound of the change in probability
 - For income, we divide 0.032 by 4. It means that one unit (a thousand) increase in income predicts no more than 0.8% increase in the probability of voting.
 - For gender, 0.67/4 = 0.168. This suggests that female's voting probability is 16.7% more than that of male's

$$P(Y = 1|X) = logit^{-1}(-1.92 + 0.032 * income + 0.67 * gender)$$

- A simple rule of thumb (based on Gelman and Hill, Data Analysis using Regression and Multilevel Hierarchical Models, 2007.)
 - Divide your β by 4, and this is roughly the upper bound of the change in probability
 - For income, we divide 0.032 by 4. It means that one unit (a thousand) increase in income predicts no more than 0.8% increase in the probability of voting.
 - For gender, 0.67/4 = 0.168. This suggests that female's voting probability is 16.7% more than that of male's
 - Do not write this in formal paper!

• Remember one unit increase in X lead to β increase in log-odds.

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = \exp(\beta)$$

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = exp(\beta)$$

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = exp(\beta)$$

• $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = \exp(\beta)$$

- $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = \exp(\beta)$$

- $\frac{\frac{p_{a}}{1-p_{a}}}{\frac{p_{b}}{1-p_{b}}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio
- For income, exp(0.032) = 1.03

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = \exp(\beta)$$

- $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio
- For income, exp(0.032) = 1.03
 - This means that odds is 1.03 times higher for one unit increase in income

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = \exp(\beta)$$

- $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio
- For income, exp(0.032) = 1.03
 - This means that odds is 1.03 times higher for one unit increase in income
 - Or in other words, odds ratio increase by 3%

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$\log \frac{p_a}{1 - p_a} - \log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = \exp(\beta)$$

- $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio
- For income, exp(0.032) = 1.03
 - This means that odds is 1.03 times higher for one unit increase in income
 - Or in other words, odds ratio increase by 3%
- For gender, exp(0.67) = 1.95

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = exp(\beta)$$

- $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio
- For income, exp(0.032) = 1.03
 - This means that odds is 1.03 times higher for one unit increase in income
 - Or in other words, odds ratio increase by 3%
- For gender, exp(0.67) = 1.95
 - This means that odds of voting is 1.95 times higher among females compared with males

- Remember one unit increase in X lead to β increase in log-odds.
- Write the conditional probability P(Y=1|X) before change as p_b , and the condition probability P(Y=1|X) after increasing X for one unit as p_a

$$log \frac{p_a}{1 - p_a} - log \frac{p_b}{1 - p_b} = \beta \implies \frac{\frac{p_a}{1 - p_a}}{\frac{p_b}{1 - p_b}} = exp(\beta)$$

- $\frac{\frac{p_a}{1-p_a}}{\frac{p_b}{1-p_b}}$ is called odds ratio
- One unit increase in X leads to $exp(\beta)$ change in odds ratio
- For income, exp(0.032) = 1.03
 - This means that odds is 1.03 times higher for one unit increase in income
 - Or in other words, odds ratio increase by 3%
- For gender, exp(0.67) = 1.95
 - This means that odds of voting is 1.95 times higher among females compared with males

• We can always calculate the marginal effect: how conditional probability changes for one unit increase in X: $\frac{\partial P(Y=1|X)}{\partial X}$

$$\frac{\partial P(Y=1|X)}{\partial X} = \beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$$

- We can always calculate the marginal effect: how conditional probability changes for one unit increase in X: $\frac{\partial P(Y=1|X)}{\partial X}$
- After some calculations, you will find that;

$$\frac{\partial P(Y=1|X)}{\partial X} = \beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$$

- We can always calculate the marginal effect: how conditional probability changes for one unit increase in X: $\frac{\partial P(Y=1|X)}{\partial X}$
- After some calculations, you will find that;

$$\frac{\partial P(Y=1|X)}{\partial X} = \beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$$

• In other words, one unit increase in X leads to $\beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$ changes in predicted probability

- We can always calculate the marginal effect: how conditional probability changes for one unit increase in X: $\frac{\partial P(Y=1|X)}{\partial X}$
- After some calculations, you will find that;

$$\frac{\partial P(Y=1|X)}{\partial X} = \beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$$

- In other words, one unit increase in X leads to $\beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$ changes in predicted probability
- It is easy to see that the marginal effect will change depending on exact values of X

- We can always calculate the marginal effect: how conditional probability changes for one unit increase in X: $\frac{\partial P(Y=1|X)}{\partial X}$
- After some calculations, you will find that;

$$\frac{\partial P(Y=1|X)}{\partial X} = \beta (logit^{-1}X\beta)(1-logit^{-1}X\beta)$$

- In other words, one unit increase in X leads to $\beta(logit^{-1}X\beta)(1-logit^{-1}X\beta)$ changes in predicted probability
- It is easy to see that the marginal effect will change depending on exact values of X
- ullet The marginal effect is generally bigger, when X is around the mean

• Typically there are two ways to visualize/show marginal effect

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful
 - e.g., 0 is female and 1 is male; what is gender = 0.45 means?

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful
 - e.g., 0 is female and 1 is male; what is gender = 0.45 means?
- Average marginal effect (AME)

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful
 - e.g., 0 is female and 1 is male; what is gender = 0.45 means?
- Average marginal effect (AME)
 - For each observation, holding other variables at their observed value; calculate marginal effect for one focal variable

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful
 - e.g., 0 is female and 1 is male; what is gender = 0.45 means?
- Average marginal effect (AME)
 - For each observation, holding other variables at their observed value; calculate marginal effect for one focal variable
 - Take the average of marginal effects of the focal variable for each observation

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful
 - e.g., 0 is female and 1 is male; what is gender = 0.45 means?
- Average marginal effect (AME)
 - For each observation, holding other variables at their observed value; calculate marginal effect for one focal variable
 - Take the average of marginal effects of the focal variable for each observation
- R package margins and stata command margins will return AME by default; has to explicit set parameters to calculate marginal effect at the mean

- Typically there are two ways to visualize/show marginal effect
- Marginal effect at the mean (MEM)
 - Set all other variable at their mean value
 - MEM is the change in predicted probability when the focal independent variable change for one unit
 - Cons: setting categorical variables at their means are not meaningful
 - e.g., 0 is female and 1 is male; what is gender = 0.45 means?
- Average marginal effect (AME)
 - For each observation, holding other variables at their observed value; calculate marginal effect for one focal variable
 - Take the average of marginal effects of the focal variable for each observation
- R package margins and stata command margins will return AME by default; has to explicit set parameters to calculate marginal effect at the mean
- https://cran.r-project.org/web/packages/margins/vignettes/TechnicalDetails.pdf

 Just plot predicted probability versus one focal variable you are mainly interested in

- Just plot predicted probability versus one focal variable you are mainly interested in
- And holding other X at a fixed level.

- Just plot predicted probability versus one focal variable you are mainly interested in
- And holding other X at a fixed level.
 - say, holding others at the mean

- Just plot predicted probability versus one focal variable you are mainly interested in
- And holding other X at a fixed level.
 - say, holding others at the mean
 - or at a particular value that are theoretically interesting

- Just plot predicted probability versus one focal variable you are mainly interested in
- And holding other X at a fixed level.
 - say, holding others at the mean
 - or at a particular value that are theoretically interesting
- This is especially useful if you have interaction terms

Predicted probability (example)

See RMarkdown codes and files.

 Use the divide by 4 rule and make an intuitive sense of how large the effect is

- Use the divide by 4 rule and make an intuitive sense of how large the effect is
- Then calculate AME or MEM

- Use the divide by 4 rule and make an intuitive sense of how large the effect is
- Then calculate AME or MEM
- Or plot the predicted probabilities versus the key independent variables

- Use the divide by 4 rule and make an intuitive sense of how large the effect is
- Then calculate AME or MEM
- Or plot the predicted probabilities versus the key independent variables
- You can state that

- Use the divide by 4 rule and make an intuitive sense of how large the effect is
- Then calculate AME or MEM
- Or plot the predicted probabilities versus the key independent variables
- You can state that
 - One unit increase in X leads to β change in log-odds

- Use the divide by 4 rule and make an intuitive sense of how large the effect is
- Then calculate AME or MEM
- Or plot the predicted probabilities versus the key independent variables
- You can state that
 - One unit increase in X leads to β change in log-odds
 - Or, one unit increase in X leads to $exp(\beta)$ change in odds ratio

- Use the divide by 4 rule and make an intuitive sense of how large the effect is
- Then calculate AME or MEM
- Or plot the predicted probabilities versus the key independent variables
- You can state that
 - One unit increase in X leads to β change in log-odds
 - Or, one unit increase in X leads to $exp(\beta)$ change in odds ratio
 - (but I personally find them hard to grasp; and I am sure I am not the only one)

How to interpret probit regressions?

• No direct substantive interpretation of β in probit regressions (it is not an odds ratio)

How to interpret probit regressions?

- No direct substantive interpretation of β in probit regressions (it is not an odds ratio)
- Probit just makes math calculation easier, but it lacks a natural interpretation.

• What are the assumptions of logistic/probit regressions?

- What are the assumptions of logistic/probit regressions?
- What is MLE?

- What are the assumptions of logistic/probit regressions?
- What is MLE?
- Different views to interpret logistic regression results

- What are the assumptions of logistic/probit regressions?
- What is MLE?
- Different views to interpret logistic regression results
 - divide by 4 rule

- What are the assumptions of logistic/probit regressions?
- What is MLE?
- Different views to interpret logistic regression results
 - divide by 4 rule
 - marginal effect

- What are the assumptions of logistic/probit regressions?
- What is MLE?
- Different views to interpret logistic regression results
 - divide by 4 rule
 - marginal effect
 - plot predicted probability directly

Next week

• More on generalized linear model