Math 51 Homework 4

Due Friday July 15, 2016 by 1 pm

Instructions: Complete the following problems. Late homework will not be accepted. Please be sure to review the expectations for your submitted homework outlined online (such as: always including your name and ID number on the homework, stapling your homework, and guidelines for write-ups which will receive full credit). Make sure to submit your homework to the correct person; (if you are in Section 01, submit to Zev, and if in Section 02, submit to Valentin).

Part I: Book problems: From Levandosky's Linear Algebra, do the following exercises:

- Section 16: # 4, 9, 12, 16
- Setion 17: # 3, 6, 15*
 - *Note for # 15: in part b, compute the area two ways with and without det A.
- Section 21: # 1,3, 8, 11, 12,
- Section 22: # 2
- Section 23: # 1, 2, 7, 8, 10.

Part II: Non-book problems:

1. Recall (see Levandosky, p. 90) that a diagonal matrix D is a square matrix whose entries not located on the main diagonal are all equal to zero; that is, the matrix takes the form

$$\begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

(a) The product of two diagonal matrices (of the same size) is especially easy to compute. Compute the following product:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 11 \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

- (b) Under precisely what conditions does a diagonal matrix have an inverse? Find a formula for the inverse of a diagonal matrix in terms of its diagonal entries d_1, d_2, \ldots, d_n .
- **2.** The circle of radius 1 centered at (x,y)=(1,2) has equation

(1)
$$(x-1)^2 + (y-2)^2 = 1.$$

(a) Let u, v be the linear coordinates on \mathbb{R}^2 with respect to the basis $\mathcal{B} = \{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \}$. Express u and v in terms of the standard coordinates x and y, and also express x and y in terms of u and v. Use the latter to express the above equation (1) in terms of u and v. What is the graph of the resulting object in the uv-plane?

- (b) For the basis of part (a), determine the matrix (called C^{-1} in Levandosky) used to transform $\begin{bmatrix} x \\ y \end{bmatrix}$ into $\begin{bmatrix} u \\ v \end{bmatrix}$ and identify in terms of one of the linear transformations listed in L14. Is it consistent with the object you described in part (a)?
- (c) Redo part (a), but now with u, v as the coordinates on \mathbb{R}^2 with respect to the basis $\mathcal{B} = \{\begin{bmatrix} 3 \\ 7 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}\}$. (You don't have to draw the graph of the u, v equation you obtain from (1)).
- **3.** Let $L = \text{span}(\begin{bmatrix} 3 \\ 4 \end{bmatrix})$. Find an *orthonormal basis* $\mathcal{B} = \{\mathbf{w}_1, \mathbf{w}_2\}$ for \mathbb{R}^2 with the property that \mathbf{w}_1 lies in L.
- **4.** Let A be an $n \times n$ matrix, and T its associated linear transformation. For p a positive integer, let A^p denote the matrix obtained by multiplying A by itself p times (for example, $A^1 = A$, $A^2 = AA$, etc.). Similarly, we denote by T^p the p-fold composition $T \circ T \circ \cdots \circ T$

(the notation T^p will not factor into this problem but it is helpful notation to introduce).

- (a) Suppose \mathbf{v}_1 is an eigenvector of A with eigenvalue λ_1 . Show that \mathbf{v}_1 is also an eigenvector of the matrix A^P and find its eigenvalue.
- (b) Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be eigenvectors of A corresponding to eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$. Suppose that

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k.$$

Find $A^p \mathbf{v}$ (as a linear combination of the eigenvectors \mathbf{v}_i).

- **5.** Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that has eigenvector $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ with eigenvalue $\lambda_1 = -2$, and eigenvector $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ with eigenvalue $\lambda_2 = 1$.
 - (a) What is the matrix of T with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$?
 - (b) If $\mathbf{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$, find the coordinates $[x]_{\mathcal{B}}$ with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$.
 - (c) Find A, the matrix of T in standard coordinates.
 - (d) Find A^7 . (*Hint*: use the fact that A is diagonalizable, meaning it is similar to a diagonal matrix.)
- **6.** Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. Does A have an eigenbasis; i.e., does there exist a basis for \mathbb{R}^3 consisting entirely of eigenvectors of A? Explain.
- 7. Let A be a 3×3 matrix with eigenvalues -1, 3, 0.
 - (a) Is A invertible? Explain your answer.
 - (b) Does A have an eigenbasis? Explain your answer.