GATE: CH - 45.2023

EE22BTECH11219 - Rada Sai Sujan

QUESTION

Level (h) in a steam boiler is controlled by manipulating the flow rate (F) of the break-up(fresh) water using a proportional (P) controller. The transfer function between the output and the manipulated input is

$$\frac{h(s)}{F(s)} = \frac{0.25(1-s)}{s(2s+1)}$$

The measurement and the valve transfer functions are both equal to 1. A process engineer wants to tune the controller so that the closed loop response gives the decaying oscillations under the servo mode. Which one of the following is the CORRECT value of the controller gain to be used by the engineer?

- (A) 0.25
- (B) 2
- (C) 4
- (D) 6

Solution:

PARAMETER	VALUE	DESCRIPTION
G_c	K_c	Proportional controller's transfer function
G_f	1	Valve transfer function
G_p	$\frac{0.25(1-s)}{s(2s+1)}$	Process transfer function
G_M	1	Measurement transfer function

TABLE I PARAMETER TABLE 1 Characteristic equation of a second order system can be given by,

$$D(s) = \tau^2 s^2 + 2\epsilon \tau s + 1 \tag{1}$$

Fig. 1. Block diagram

PARAMETER	DESCRIPTION	
X(s)	Input signal transfer function	
Y(s)	Output signal transfer function	
$G\left(s\right)$	Open loop transfer function	
H(s)	Feedback transfer function	
τ	Natural time period of oscillation	
ϵ	Damping coefficient/Damping factor	
TADLE II		

TABLE II PARAMETER TABLE 2

Characteristic equation of the above block diagram

can be given by,

$$D(s) = 1 + G(s)H(s)$$
(2)

$$=1+\frac{0.25K_c(1-s)}{s(2s+1)}$$
 (3)

$$\implies 2s^2 + s(1 - 0.25K_c) + 0.25K_c = 0$$
 (4)

Comparing it with the equation (1),

$$\frac{2}{\tau^2} = \frac{1 - 0.25K_c}{2\epsilon\tau} = \frac{0.25K_c}{1} \tag{5}$$

$$\therefore \tau = \sqrt{\frac{2}{0.25K_c}}, 2\epsilon\tau = \frac{1 - 0.25K_c}{0.25K_c}$$
 (6)

For the system to produce decaying oscillations ϵ < 1.

By verfying options,

$$\implies K_c = 2$$
 (7)