Knowledge Injection in RUL

Let's see the last approach in action

Domain Knowledge as Constraints

Our soft constraint is in the form:

$$f(x_i; \theta) - f(x_j; \theta) = j - i$$
 $\forall i, j = 1..m \text{ s.t. } c_i = c_j$

Domain Knowledge as Constraints

Our soft constraint is in the form:

$$f(x_i; \theta) - f(x_j; \theta) = j - i$$
 $\forall i, j = 1..m \text{ s.t. } c_i = c_j$

From which we can derive the penalizer:

$$\lambda \sum_{\substack{i,j=1..m\\c_i=c_i}} \left(f(x_i;\theta) - f(x_j;\theta) - (j-i) \right)^2$$

- lacktriangle For sake of simplicity, we are using the same λ for all pairs
- ...Meaning the same standard deviation using a Normal semantic

Domain Knowledge as Constraints

Our soft constraint is in the form:

$$f(x_i; \theta) - f(x_j; \theta) = j - i$$
 $\forall i, j = 1..m \text{ s.t. } c_i = c_j$

From which we can derive the penalizer:

$$\lambda \sum_{\substack{i,j=1..m\\c_i=c_j}} \left(f(x_i;\theta) - f(x_j;\theta) - (j-i) \right)^2$$

- For sake of simplicity, we are using the same λ for all pairs
- ...Meaning the same standard deviation using a Normal semantic

There's large number of constraints, but many are redundant

Our Regularizer

For example, we can focus on subsequent pairs

$$L(\hat{y}) + \lambda \sum_{\substack{i < j \\ c_i = c_j}} \left(f(x_i; \theta) - f(x_j; \theta) - (j - i) \right)^2$$

- Where $i \prec j$ iff j is the next sample for after i for a given machine
- This approach requires a linear (rather than quadratic) number of constraints

This method can work with mini-batches

- In this case, will refer to contiguous samples in the same batch
- ...And of course for the same component

We will now see how to implement this approach

Our regularizer requires to have sorted samples from the same machine

The easiest way to ensure we have enough is using a custom <code>DataGenerator</code>

```
class SMBatchGenerator(tf.keras.utils.Sequence):
    def __init__(self, data, in_cols, batch_size, seed=42): ...
    def __len__(self): ...
    def __getitem__(self, index): ...
    def on_epoch_end(self): ...
    def __build_batches(self): ...
```

- len__ is called to know how many batches are left
- __getitem__ should return one batch
- on_epoch_end should take care (e.g.) of shuffling

The __init__ method takes care of the initial setup

```
def __init__(self, data, in_cols, batch_size, seed=42):
    super(SMBatchGenerator).__init__()
    self.data = data
    self.in_cols = in_cols
    self.dpm = split_by_field(data, 'machine')
    self.rng = np.random.default_rng(seed)
    self.batch_size = batch_size
    # Build the first sequence of batches
    self.__build_batches()
```

- We store some fields
- We split the data by machine
- We build a dedicated RNG
- ...And finally we call the custom-made __build_batches method

The __build_batches method prepares the batches for one full epoch

```
def __build_batches(self):
    self.batches, self.machines = [], []
    mcns = list(self.dpm.keys())
    self.rng.shuffle(mcns) # sort the machines at random
    for mcn in mcns: # Loop over all machines
        index = self.dpm[mcn].index # sample indexes for this machine
        . . .
        self.rng.shuffle(idx) # shuffle sample indexes for this machine
        bt = idx.reshape(-1, self.batch_size) # split into batches
        bt = np.sort(bt, axis=1) # sort every batch individually
        self.batches.append(bt) # store the batch
        self.machines.append(np.repeat([mcn], len(bt))) # add machine information
    self.batches = np.vstack(self.batches) # concatenate
    self.machines = np.hstack(self.machines)
```

We rebuild batches after each epoch

```
def on_epoch_end(self):
    self.__build_batches()
```

Most of the remaining work is done in the <u>__getiitem__</u> method:

```
def __getitem__(self, index):
    idx = self.batches[index]
    x = self.data[self.in_cols].loc[idx].values
    y = self.data['rul'].loc[idx].values
    flags = (y != -1)
    info = np.vstack((y, flags, idx)).T
    return x, info
```

- The RUL value is -1 for the unsupervised data: we flag the meaningful RULs
- ...We pack indexes, RUL values, and flags into a single info tensor

Custom Training Step

We then enforce the constraints by means of a custom training step

```
class CstRULRegressor(keras.Model):
    def __init__(self, rul_pred, alpha, beta, maxrul): ...

def train_step(self, data): ...

def call(self, data): return self.rul_pred(data)
...
```

- We use a custom keras. Model subclass
- ...And accept an externally built RUL prediction model (rul_pred)
- The custom training step is implemented in train_step
- The call method relies on the external model for RUL prediction

Custom Training Step

In the __init__ function:

```
def __init__(self, rul_pred, alpha, beta, maxrul):
    super(CstRULRegressor, self).__init__(input_shape, hidden)
    # Store the base RUL prediction model
    self.rul_pred = rul_pred
    # Weights
    self.alpha = alpha
    self.beta = beta
    self.maxrul = maxrul
...
```

- beta is the regularizer weight, alpha is a weight for the loss function itself
- We also store the maximum RUL

Custom Training Step (CHANGE THIS)

In the custom training step:

```
def train_step(self, data):
    x, info = data
    y_true, flags, idx = info[:, 0:1], info[:, 1:2], info[:, 2:3]
    with tf.GradientTape() as tape:
        y_pred = self(x, training=True) # predictions
        mse = k.mean(flags * k.square(y_pred-y_true)) # MSE loss
        delta_pred = y_pred[1:] - y_pred[:-1] # pred. difference
        delta_rul = -(idx[1:] - idx[:-1]) / self_maxrul # index difference
        deltadiff = delta_pred - delta_rul # difference of differences
        cst = k.mean(k.square(deltadiff)) # regualization term
        loss = self_alpha * mse + self_beta * cst # loss
```

- We unpack the info tensor
- Inside a GradientTape, we construct our regularized loss

Custom Training Step

In the custom training step:

```
def train_step(self, data):
    ...
    tr_vars = self.trainable_variables
    grads = tape.gradient(loss, tr_vars) # gradient computation
    self.optimizer.apply_gradients(zip(grads, tr_vars)) # weight update
    ...
```

- We then apply the (Stochastic) Gradient Descent step
- Then we update and retun the loss trackers

Training the Lagrangian Approach

We can now test our approach

```
In [3]: | nn_aux = util.build_ml_model(input_size=len(dt_in), output_size=1, hidden=[32, 32])
        nn2 = util.CstRULRegressor(rul pred=nn aux, alpha=1, beta=5, maxrul=maxrul)
        batch gen = util.CstBatchGenerator(tr s2, dt in, batch size=32)
        history = util.train ml model(nn2, X=batch gen, y=None, validation split=0., epochs=25, ver
        Epoch 1/25
                                       - 2s 1ms/step - cst: 0.0048 - loss: 0.0408 - mse: 0.0167
        1071/1071 -
        Epoch 2/25
        1071/1071 -
                                       - 2s 1ms/step - cst: 0.0020 - loss: 0.0123 - mse: 0.0023
        Epoch 3/25
                                      - 2s 1ms/step - cst: 0.0021 - loss: 0.0129 - mse: 0.0026
        1071/1071 -
        Epoch 4/25
                                      - 1s 1ms/step - cst: 0.0019 - loss: 0.0118 - mse: 0.0023
        1071/1071 -
        Epoch 5/25
                                       - 1s 1ms/step - cst: 0.0019 - loss: 0.0123 - mse: 0.0025
        1071/1071 -
        Epoch 6/25
                                       2s 1ms/step - cst: 0.0019 - loss: 0.0123 - mse: 0.0027
        1071/1071 -
        Epoch 7/25
        1071/1071 -
                                       2s 1ms/step - cst: 0.0019 - loss: 0.0125 - mse: 0.0028
        Epoch 8/25
                                       2s 1ms/step - cst: 0.0019 - loss: 0.0122 - mse: 0.0027
        1071/1071 -
        Epoch 9/25
        1071/1071 -
                                       2s 1ms/step - cst: 0.0018 - loss: 0.0117 - mse: 0.0025
        Epoch 10/25
        1071/1071 -
                                        1s 1ms/step - cst: 0.0018 - loss: 0.0116 - mse: 0.0026
        Epoch 11/25
```

Training the Lagrangian Approach

...And we can check the training curve

Inspecting the Predictions

Let's have a look at the predictions on the test data

- The signal is much more stable
- The scale is still off, but we can fix that with a well chosen threshold

Threshold Optimization and Cost Evaluation

We can now optimize the threshold optimization (on the supervised data)

```
In [19]: cmodel = util.RULCostModel(maintenance_cost=maintenance_cost, safe_interval=safe_interval)
         th range2 = np.linspace(70, 150, 200)
         trs thr2 = util.optimize threshold(trs s['machine'].values, trs pred2, th range2, cmodel, p
         print(f'Optimal threshold for the training set: {trs_thr2:.2f}')
         Optimal threshold for the training set: 98.14
            2500
            2000
            1500
         ğ
1000 ,
            500
                             80
                                                  100
                                                            110
                                                                       120
                                                                                 130
                                                                                            140
                                                                                                      150
                                                           threshold
```

Threshold Optimization and Cost Evaluation

Finally, we can evaluate the SBR approach in terms of cost

- The number of fails has decreased very significantly
- The slack is still contained

And we did this with just a handful of run-to-failure experiments