2425-MA140 Engineering Calculus

Week 04, Lecture 2 Differentiation Rules

Dr Niall Madden

University of Galway

Wednesday, 08 October, 2025

Calcalas			Calculus
Díorthaigh			Derivatives
f(x)	f'(x)		
ln x	nx^{n-1} $\frac{1}{x}$	Riail an toraidh $y = uv$ $\Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v$	Product rule $\frac{du}{dx}$
e ^x e ^{xx} a ^x cos x sin x	e^x ae^{ax} $a^x \ln a$ $-\sin x$ $\cos x$	Riail an lin $y = \frac{u}{v}$ $\Rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u}{v^2}$	$\frac{dv}{dx}$
$\cos^{-1} \frac{x}{a}$ $\sin^{-1} \frac{x}{a}$	$-\frac{\sec^2 x}{\sqrt{a^2 - x^2}}$ $\frac{1}{\sqrt{a^2 - x^2}}$	Cuingriail $f(x) = u(v)$. $\Rightarrow f'(x) = \frac{du}{dv} \frac{d}{dv}$	
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$		

Let's learn about...

- 1 Remember:
- 2 Differentiation by rule
 - 3. The constant multiple rule
 - 4. Sum and Difference Rules
- 3 The Product Rule

- 4 The Quotient Rule
- 5 Chain Rule
 - Repeated application
- 6 Page 16 of the "log tables"
- 7 Exercises

See also Section 3.3 of **Calculus** by Strang & Herman:

```
https://openstax.org/books/calculus-volume-1/pages/3-3-differentiation-rules
```

Remember:

Reminders

- Assignment 2 is open; deadline is 5pm, 13 Oct. You can access it at https://universityofgalway.instructure.com/courses/46734/assignments/129715. (Or: go to Canvas, click on Assignments ... Problem Set 2 ... the bottom of the page, click Load Problem Set 2 in a new window
- ► This week's **Tutorial Sheet** is available at https://universityofgalway.instructure.com/ courses/46734/files/2883465?module_item_id=943734
- ► Info on next Tuesday's will follow in an announcement tomorrow morning.

Differentiation by rule

Yesterday, we saw how to compute derivatives of some functions using the "limit" definition (i.e., **differentiation from first principles**). However, while it is useful to be able to do that for some examples, almost always we use a set of "**rules**" which makes the process much more efficient.

These rules are themselves derived from the "limit" definition – but we don't have to use that every time.

Differentiation by rule

Yesterday, we looked at two rules:

1. The Constant Rule

If f is a constant function, i.e. f(x) = c for all x, then:

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

2. The Power Rule

If n is any real number, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

The constant multiple rule

Let f(x) be any differentiable function, and let k be constant,

$$\frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x)).$$

Example: Find the derivative of $f(x) = 5x^4$.

The Sum and Difference Rules

Let u(x) and v(x) be any differentiable functions. Then

$$\frac{d}{dx}\big(u(x)+v(x)\big)=\frac{d}{dx}\big(u(x)\big)+\frac{d}{dx}\big(v(x)\big).$$

Similarly,
$$\frac{d}{dx}(u(x) - v(x)) = \frac{d}{dx}(u(x)) - \frac{d}{dx}(v(x))$$
.

Example: Find the derivative of $f(x) = 1 + x + x^2$.

Actually, the "Difference Rule", which states that

$$\frac{d}{dx}(u(x) - v(x)) = \frac{d}{dx}(u(x)) - \frac{d}{dx}(v(x)).$$

can be combined by combining the **Sum Rule** and the **Constant Multiple Rule**.

Example

Suppose that $f(x) = -5x^3 + 3x^2 - 9x + 7$, then find:

- (a) The derivative of f(x);
- (b) The slope of the tangent line at x = 2;
- (c) The equation of the tangent at x = 2.
- (a) $f'(x) = -15x^2 + 6x 9$
- (b) The slope of the tangent line at x = 2 is f'(2):

$$f'(2) = -15(2)^2 + 6(2) - 9 = -15(4) + 12 - 9 = -60 + 12 - 9 = -57.$$

(c) The equation of the line with slope M and passing through a point (x_1, y_1) is

$$y - y_1 = M(x - x_1)$$

The y coordinate at x = 2 is

$$f(2) = -5(2)^{3} + 3(2)^{2} - 9(2) + 7$$

$$= -5(8) + 3(4) - 18 + 7$$

$$= -40 + 12 - 18 + 7$$

$$= -39.$$

So the tangent line passes through the point (2, -39) and the slope of the line is -57.

Therefore, the equation of this line is y + 39 = -57(x - 2)

Ans: The equation of the tangent line is x = 2 is y = 75 - 57x.

The Product Rule

We now consider some rules which are a little more complicated and, I think, less obvious.

The first concerns the derivative of the **product** of two functions.

The Product Rule

Let u(x) and v(x) be any differentiable functions. Then

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Let's check that this gives the current answer when evaluating the derivative of $f(x) = x^3$ when we set $u(x) = x^2$ and v(x) = x:

The Product Rule

The Product Rule

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Example Use the **product rule** to find the derivative of $f(x) = x^3(x^2 + 1)$.

The Product Rule

Example: use the product rule to show that, if $f(x) = x \sin(x)$, then $f'(x) = x \cos(x) + \sin(x)$.

The Quotient Rule

The Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then $f(x) = \frac{u(x)}{v(x)}$ is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

Example: Use this rule to find the derivative of $f(x) = \frac{x+1}{x^2}$

The Quotient Rule

Example

We know that

- $\blacktriangleright \tan(x) = \frac{\sin(x)}{\cos(x)},$
- $ightharpoonup \sin^2(x) + \cos^2(x) = 1$
- \blacktriangleright $\sin'(x) = \cos(x)$ and $\cos'(x) = -\sin(x)$.

Use these facts, and the Quotient Rule to show that

$$\frac{d}{dx}(\tan(x)) = \left(\frac{1}{\cos(x)}\right)^2.$$

The Quotient Rule

Of all the differentiation rules, the **chain rule** is the most important: most other rules are actually just special cases of it. It applies to a "function of a function"

The Chain Rule

If u(x) and v(x) are differentiable, and f is the composite function f(x) = u(v(x)), then

$$\frac{df}{dx} = \frac{du}{dv}\frac{dv}{dx}.$$

The Chain Rule

If f(x) = u(v(x)), then

$$\frac{df}{dx} = \frac{du}{dv}\frac{dv}{dx}.$$

Example: What is the derivative of $f(x) = \cos(x^2)$?

Example

Find
$$\frac{dy}{dx}$$
 if $y = (x^3 + 4x^4 + 7)^{12}$.

Example: Let
$$u(v) = v^{12}$$
 and $v(x) = x^3 + 4x^4 + 7$, then y is $y = u(v(x))$.

Note that

$$\frac{du}{dv} = 12v^{11} \quad \text{and } \frac{dv}{dx} = 3x^2 + 16x^3.$$

By the Chain Rule we have

$$\frac{dy}{dx} = \frac{du}{dy}\frac{dv}{dx} = 12v^{11}(3x^2 + 16x^3),$$

and therefore

$$\frac{dy}{dx} = 12(x^3 + 4x^4 + 7)^{11}(3x^2 + 16x^3).$$

Example (Not done in detail in class)

Find
$$\frac{dy}{dx}$$
 if $y = \frac{1}{(x^4 + 2x^2 + 8)^{40}}$.

We have $y = (x^4 + 2x^2 + 8)^{-40}$. We can write y as y(x) = u(v(x)) with

- $u(v) = v^{-40}$ and so $\frac{du}{dv} = -40v^{-41}$; and
- $v(x) = x^4 + 2x^2 + 8$, so $\frac{dv}{dx} = 4x^3 + 4x$.

Applying the Chain Rule: $\frac{dy}{dx} = \frac{du}{dv} \frac{dv}{dx}$. we get

$$\frac{dy}{dx} = -40v^{-41}(4x^3 + 4x) = \frac{-40(4x^3 + 4x)}{(x^4 + 2x^2 + 8)^{41}}$$

Often we apply the **Chain Rule** to "functions of functions of functions": if y(x) = t(u(v(x))), then

$$\frac{dy}{dx} = \frac{dt}{du} \frac{du}{dv} \frac{dv}{dx}$$

Example

Find $\frac{dy}{dx}$ when $y = \sin^4(x^5 + 7)$.

Example

Show that the derivative of $y = \cos^2(1/x)$ is $\frac{dy}{dx} = 2 \frac{\sin(1/x)\cos(1/x)}{x^2}$

Page 16 of the "log tables"

Calcalas			Calculus
Díorthaigh			Derivatives
f(x)	f'(x)		
x ⁿ	nx^{n-1}	Riail an toraidh	y = uv Product rule
ln x	$\frac{1}{x}$	$\Rightarrow \frac{d}{d}$	$\frac{y}{x} = u\frac{dv}{dx} + v\frac{du}{dx}$
e ^x	e^x		
e^{ax}	ae ^{ax}	Riail an lín	$v = \frac{u}{v}$ Quotient rule
a^x	$a^x \ln a$		du dv
cos x	$-\sin x$	d	$v \frac{uu}{dx} - u \frac{dv}{dx}$
sin x	$\cos x$	$\Rightarrow \frac{a_{\nu}}{dz}$	$\frac{v}{x} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
tan x	$sec^2 x$		0/ > / / >
$\cos^{-1}\frac{x}{}$	_ 1		f(x) = u(v(x)) Chain rule
cos –	$-\frac{1}{\sqrt{a^2-x^2}}$	\Rightarrow j	$f'(x) = \frac{du}{dv}\frac{dv}{dx}$
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$		av ax
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$		

Exercises

Exercises 4.2.1 (Based on Q2(a), 2023/2024)

Find the derivative of $f(x) = \frac{\sin(x)}{\sqrt{x}}$.

Exercise 4.2.2 (Based on Q2(b), 2019/2020

Find the derivative of $f(x) = \frac{x^2 + x - 2}{x^3 + 6}$.

Exercise 4.2.3

Find the derivative of

- 1. $f(x) = x^3 \cos(x^2)$
- 2. $f(x) = \tan^3 \left(\sin^2(x^4) \right)$