# Reinforcement learning and robot navigation

Charles Dufour

April 12, 2018

### Introduction

### The problem

- Framework: a raspberry pie 3 robot which can follow lines
- The task: the robot should adapt its speed with respect to traffic lights
- How: using Reinforcement Learning (RL) and Markov Decision Process (MDP)

### Presentation

- Part I: theoretical insight
- Part II: results from implementation

# Reinforcement learning



# MDP intuition



Sequence of events :  $s_0$ ,  $a_1$ ,  $s_1$ ,  $r_1$ ,  $a_2$ , . . .

# **MDP**

#### Definition

- A set of states  $S = \{s_0, s_1, s_2, \dots, s_n\}$
- A set of actions  $A = \{a_1, a_2, a_3, \dots, a_k\}$
- A transition function  $T(a, s, s') = \mathbb{P}[s' \mid a, s]$
- A reward function  $R: \mathcal{S} \mapsto \mathbb{R}$
- A discount factor  $0 \le \gamma < 1$

### Markov property

The transitions only depends on the current state and the current action.

# How to pick actions

#### Definition

A policy  $\pi$  is a probabilistic mapping from the set of states to the set of actions :

$$\pi: \mathcal{A} \times \mathcal{S} \mapsto [0,1]$$

s.t. 
$$\sum_{a} \pi(a \mid s) = 1 \quad \forall s \in \mathcal{S}$$

### Issue

#### How to?

How to asses the quality of policies so we can find the best one ? What is the best policy ?

We are interested in maximizing the discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

### We are interested in maximizing the discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

#### Action value while in a state s under $\pi$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

We are interested in maximizing the discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}$$

Action value while in a state s under  $\pi$ 

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

State value under policy  $\pi$ 

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

### Recursive definition of value functions

#### action value

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \sum_{s'} \mathbb{P}(s' \mid a, s) \left[ r + \gamma \mathbb{E}_{\pi} \left[ G_{t+1} \mid S_{t+1} = s' \right] \right]$$

$$= \sum_{s'} \mathbb{P}(s' \mid a, s) \left[ r + \gamma v_{\pi}(s') \right]$$

with r = R(s')

### Recursive definition of value functions

#### state value

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \mathbb{P}(s' \mid a, s) \left[ r + \gamma \mathbb{E}_{\pi} \left[ G_{t+1} \mid S_{t+1} = s' \right] \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \mathbb{P}(s' \mid a, s) \left[ r + \gamma v_{\pi}(s') \right]$$

$$= \sum_{a} \pi(a \mid s) q_{\pi}(s, a)$$

with 
$$r = R(s')$$

### How to compare two policies

$$\pi \leq \pi' \iff v_{\pi}(s) \leq v_{\pi'}(s) \quad \forall s \in \mathcal{S}$$

### How to compare two policies

$$\pi \leq \pi' \iff v_{\pi}(s) \leq v_{\pi'}(s) \quad \forall s \in \mathcal{S}$$

### Optimal policy

$$\pi_*$$
 s.t.  $\forall \pi : \pi_* > \pi$ 

# Bellman optimality equations

The optimal policy  $\pi_*$  has value functions  $v_*$  and  $q_*$ 

$$egin{aligned} v_*(s) &= \max_{a} \ q_*(s,a) \ &= \max_{a} \sum_{s'} \mathbb{P}(s' \mid s,a) [R(s') + \gamma v_*(s')] \end{aligned}$$

$$q_*(s, a) = \mathbb{E} [R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \mathbb{E} \left[ R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \right]$$

$$= \sum_{s'} \mathbb{P}(s' \mid s, a) [R(s') + \gamma \max_{a'} q_*(s', a')]$$

# Finding optimal policy from value functions

$$\pi_*(s) = \underset{a}{\operatorname{argmax}} \ q_*(s, a)$$

### Another issue

### computational issue

 $\mid \mathcal{S} \mid$  equations to solve to evaluate policy:

$$O(\mid \mathcal{S}\mid^2)$$
sdljnsojgbsogbsj

 $\mid \mathcal{S} \mid$  non linear equations to solve the Bellman optimality equation:

$$O(\mid \mathcal{S}\mid^3)$$
 blablabla

### Another issue

#### computational issue

 $\mid \mathcal{S} \mid$  equations to solve to evaluate policy:

$$O(|\mathcal{S}|^2)$$
sdljnsojgbsogbsj

 $\mid \mathcal{S} \mid$  non linear equations to solve the Bellman optimality equation:

$$O(\mid \mathcal{S}\mid^3)$$
 blablabla

Approximation of value function and Policy iteration

# Solving MDP using dynamic programming

### iterative policy evaluation

update rule:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s'} T(a, s, s') \left[ R(s') + \gamma v_k(s') \right]$$

# Solving MDP using dynamic programming

### iterative policy evaluation

update rule:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s'} T(a, s, s') \left[ R(s') + \gamma v_k(s') \right]$$

### policy improvement

 $\pi/\pi'$ : old/new policy.

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q_{\pi}(s, a)$$

# Policy iteration algorithm



<sup>&</sup>lt;sup>1</sup>From (Sutton & Barto, 1998)

# Our problem





# First a simpler problem





### Modelization

#### states

- position {0,1,2,...,L, Lava }
- ullet speed  $\{ \mbox{low, medium, high } \}$

### Modelization

#### states

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

#### actions

- decelerating
- maintaining speed
- accelerating

### Modelization

#### states

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

#### actions

- decelerating
- maintaining speed
- accelerating

#### reward function

- Lava:reward of -L
- L in low speed: reward of +L
- any other state : reward of -1

# keeping the same speed graph



red: high speed

orange: medium speed

black: low speed

# accelerating graph



# decelerating



### State value function at different iterations

States values at iterations 0, 2, 4 and 6 (where stable policy is attained)



# Results for deterministic actions One of the optimal trajectories



# Results for stochastic actions

decelerating results results in keeping the same speed with probability 1/4



# Results for stochastic actions

decelerating results results in keeping the same speed with probability 1/4



# Results for stochastic actions

decelerating results results in keeping the same speed with probability 1/4



# Conclusion, what have we done?

- We introduced the theoretical framework: Reinforcement learning and Markov Decision Processes
- We solved a simple problem where we know the model

### What's next?

### already working on

- Add the traffic light into this setting
- Find the distance from the robot's camera to the traffic light

#### In a not so distant future

- Explore other algorithm and compare them : Monte-Carlo methods, temporal difference learning, Q learning, . . .
- Neuro-dynamic programming ?

### What's next?

### already working on

- Add the traffic light into this setting
- Find the distance from the robot's camera to the traffic light

#### In a not so distant future

- Explore other algorithm and compare them: Monte-Carlo methods, temporal difference learning, Q learning, . . .
- Neuro-dynamic programming ?

### **Ultimately**

Implement everything on the robot ...

### What's next?

#### already working on

- Add the traffic light into this setting
- Find the distance from the robot's camera to the traffic light

#### In a not so distant future

- Explore other algorithm and compare them: Monte-Carlo methods, temporal difference learning, Q learning, . . .
- Neuro-dynamic programming?

### **Ultimately**

Implement everything on the robot ... and pray that everything works well