German University in Cairo Department of Computer Science Dr. Nourhan Ehab

CSEN 703 Analysis and Design of Algorithms, Winter Term 2022 Practice Assignment 2

Exercise 2-1 From CLRS (©MIT Press 2001)

Asymptotically rank the following functions: $n, n^{1/2}, log(n), log(log(n)), log^2(n), (\frac{1}{3})^n, 4, (\frac{3}{2})^n, n!$

Solution:

$$(\frac{1}{3})^n < 4 < \log(\log(n)) < \log(n) < \log^2(n) < \sqrt{(n)} < n < (\frac{3}{2})^n < n!$$

Exercise 2-2 From CLRS (©MIT Press 2001)

Explain why the statement: The running time of algorithm A is at least $O(n^2)$ is meaningless.

Solution:

The statement states that the upper bound for the lower bound of Algorithm A is $O(n^2)$. This does not make any sense as if f(n) belong to a set of functions g(n), one cannot describe the lower bound provided by g(n) in terms of an upper bound. In fact, the correct notation to use to describe a lower bound of an algorithm is the Ω notation.

Exercise 2-3 From CLRS (©MIT Press 2001)

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

Solution:

Let the running time be f(n). If $f(n) = \Theta(g(n))$, then $0 < c_1g(n) \le f(n) \le c_2g(n)$ where c_1 and c_2 are positive constants. Since $c_1g(n) \le f(n)$, therefore $f(n) = \Omega(g(n))$. Moreover, since $f(n) \le c_2g(n)$, then f(n) = O(g(n)).

Proving the other direction, if f(n) = O(g(n)), and $f(n) = \Omega(g(n))$, this implies that there are two positive constants c_1 and c_2 such that $f(n) \leq c_2 g(n)$ and $c_1 g(n) \leq f(n)$. Therefore, $c_1 g(n) \leq f(n) \leq c_2 g(n)$ satisfying the definition of the Θ notation. Hence, $f(n) = \Theta(g(n))$.

Exercise 2-4 From CLRS (©MIT Press 2001)

For every given f(n) and g(n) prove that $f(n) = \Theta(g(n))$

a)
$$g(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

b)
$$q(n) = 2^n$$
, $f(n) = 2^{n+1}$

c)
$$g(n) = \ln(n), f(n) = \log_{10}(n) + \log_{10}(\log_{10} n)$$

Solution:

For all the given f(n) and g(n) we can prove that $f(n) = \Theta(g(n))$ using the limit test and/or proving the following statement:

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \,\forall \, n \ge n_0 \tag{1}$$

a)
$$g(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

Solution 1 Using equation 1 we get

$$0 \leq c_1(g(n)) \leq f(n) \leq c_2(g(n)) \quad \forall n \geq n_0$$

$$= 0 \leq c_1 n^3 \leq 3n^3 + n^2 + n \leq c_2 n^3 \quad \forall n \geq n_0$$

$$dividing \ by \ n^3$$

$$= 0 \leq c_1 \leq 3 + \frac{1}{n} + \frac{1}{n^2} \leq c_2 \qquad \forall n \geq n_0$$

Choosing $c_1 = 3$, $c_2 = 5$, and $n_0 = 1$ helps us in proving the relations of the equation

$$= 0 \le 3 \le 3 + 1 + 1 \le 5$$
$$= 0 \le 3 \le 5 \le 5$$

Therefore, $f(n) = \Theta(g(n))$

Solution 2

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{3n^3 + n^2 + n}{n^3}$$

$$= 3 + \frac{1}{n} + \frac{1}{n^2}$$

$$= 3 + 0 + 0$$

$$= 3 \in \mathbb{R}^+$$

Therefore, $f(n) = \Theta(g(n))$

b)
$$g(n) = 2^n$$
, $f(n) = 2^{n+1}$

Solution 1 Using equation 1 we get

$$0 \leq c_1(g(n)) \leq f(n) \leq c_2(g(n)) \quad \forall n \geq n_0$$

$$= 0 \leq c_1 2^n \leq 2^{n+1} \leq c_2 2^n \quad \forall n \geq n_0$$

$$dividing by 2^n$$

$$= 0 \leq c_1 \leq 2 \leq c_2 \qquad \forall n \geq n_0$$

Choosing $c_1 = 2$, $c_2 = 2$, and $n_0 = 1$ helps us in proving the relations of the equation

$$= 0 \leq 2 \leq 2 \leq 2$$

Therefore, $f(n) = \Theta(g(n))$.

Solution 2

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{2^{n+1}}{2^n}$$

$$= \frac{2 \cdot 2^n}{2^n}$$

$$= 2 \in \mathbb{R}^+$$

Therefore, $f(n) = \Theta(g(n))$

c)
$$g(n) = \ln(n), f(n) = \log_{10}(n) + \log_{10}(\log_{10} n)$$

Solution 1

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\log_{10}(n) + \log_{10}(\log_{10}(n))}{\ln(n)}$$
$$= \frac{\infty}{\infty} 1$$

 $Using\ L'H\^{o}pital's\ rule$

$$\lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \frac{\frac{1}{n \ln(10)}}{\frac{1}{n}} + \frac{\frac{1}{\log_{10}(n) \ln(10)} \cdot \frac{1}{n \ln(10)}}{\frac{1}{n}}$$

$$= \frac{n}{n \ln(10)} + \frac{n}{\ln^2(10) \log_{10}(n)}$$

$$= \frac{1}{\ln(10)} + \frac{1}{\ln^2(10) \log_{10}(n)}$$

$$= 0.434(3d.p) + 0 \in R^+$$

Therefore, $f(n) = \Theta(g(n))$

Solution 2

$$0 \leq c_{1}(g(n)) \leq f(n) \leq c_{2}(g(n)) \quad \forall n \geq n_{0}$$

$$= 0 \leq c_{1} \ln(n) \leq \log_{10}(n) + \log_{10}(\log_{10}(n)) \leq c_{2} \ln(n) \quad \forall n \geq n_{0}$$

$$dividing \ by \ \ln(n)$$

$$= 0 \leq c_{1} \leq \log_{10}(e) + \frac{\log_{10}(\log_{10}(n))}{\ln(n)} \leq c_{2} \quad \forall n \geq n_{0}$$

Choosing $c_1 = 0.434$, $c_2 = 0.5$, and $n_0 = 10$ helps us in proving the relations of the equation

$$= 0 \le 0.434 \le 0.434 \le 0.5$$

Therefore, $f(n) = \Theta(g(n))$

Exercise 2-5

For every given f(n) and g(n) prove that f(n) = o(g(n)) or $f(n) = \omega(g(n))$

a)
$$f(n) = n^3$$
, $g(n) = n^2$

b)
$$f(n) = \log(n), g(n) = \log^{2}(n)$$

Solution:

a)
$$f(n)=n^3, g(n)=n^2$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\frac{n^3}{n^2}$$

$$=n$$

$$=\infty$$

¹Note that $\frac{\log_{10}(n)}{\ln(n)}$ is the same as $\log_{10}(e)$ which is 0.434(3 d.p). The ∞ comes from the second part of the equation.

Therefore, $f(n) = \omega(g(n))$

b)
$$f(n) = \log(n), g(n) = \log^2(n)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\log(n)}{\log^2(n)}$$

$$= \frac{1}{\log(n)}$$

Therefore, f(n) = o(g(n))

Exercise 2-6 From CLRS (©MIT Press 2001)

Let f(n) and g(n) be asymptotically non-negative functions. Using the basic definition of Θ -notation, prove that $\max(f(n),g(n))=\Theta(f(n)+g(n))$.

Solution:

First let us define the function h(n) = max(f(n), g(n)) as follows:

$$h(n) = \begin{cases} f(n) & \text{if } f(n) \ge g(n), \\ g(n) & \text{if } g(n) > f(n). \end{cases}$$

We need to show that $0 \le c_1(f(n)+g(n)) \le h(n) \le c_2(f(n)+g(n))$. Since f(n) and g(n) are asymptotically non-negative, there exists $n_0 > 0$ such that $f(n) \ge 0$ and $g(n) \ge 0$ for all $n \ge n_0$. Thus, $\forall n \ge n_0$, $f(n) + g(n) \ge f(n) \ge 0$ and $f(n) + g(n) \ge g(n) \ge 0$. Since for any n, h(n) is either f(n) or g(n), then $f(n) + g(n) \ge h(n) \ge 0$ as well. Therefore, $h(n) = max(f(n), g(n)) \le c_2(f(n) + g(n))$ for all $n \ge n_0$ (taking $c_2 = 1$ in the definition of Θ notation).

Similarly, for all n, h(n) is the bigger value of f(n) and g(n). Therefore, $0 \le f(n) \le h(n)$ and $0 \le g(n) \le h(n)$. Adding both equations we get $0 \le f(n) + g(n) \le 2h(n)$, or equivalently $0 \le \frac{1}{2}(f(n) + g(n)) \le h(n)$ (taking $c_1 = \frac{1}{2}$ in the definition of Θ notation).

Therefore, taking $c_1 = \frac{1}{2}$, $c_2 = 1$ and $n_0 = 1$, the definition of the Θ notation is satisfied and $h(n) = max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Exercise 2-7 From CLRS (©MIT Press 2001)

Show that for any real constants a and b, where b>0, $(n+a)^b = \Theta(n^b)$.

Solution:

We need to find $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b \ \forall n \ge n_0$. We start by trying to find $c_1, c_2, n_0 > 0$ such that :

$$0 \le c_1 n \le n + a \le c_2 n \ \forall n \ge n_0.$$

Choosing $n_0 = 2a$, we get:

$$0 \le c_1(2a) \le 3a \le c_2(2a) \ \forall n \ge n_0 \ (dividing \ by \ 2a)$$

$$0 \le c_1 \le \frac{3}{2} \le c_2 \ \forall n \ge n_0$$

Therefore, choosing $c_1 = \frac{1}{2}$ and $c_2 = 1$ the above equation holds. Since b > 0 the inequality still holds when all parts are raised to power b:

$$0 \le (\frac{1}{2}n)^b \le (n+a)^b \le (2n)^b \ \forall n \ge n_0$$

$$0 \le (\frac{1}{2})^b n^b \le (n+a)^b \le 2^b n^b \ \forall n \ge n_0$$

The definition of the Θ notation is satisfied choosing $c_1 = (\frac{1}{2})^b$, $c_2 = 2^b$, $n_0 = 2a$. Therefore, $(n+a)^b = \Theta(n^b)$ where b > 0.

Exercise 2-8

Prove that, for $a, b \in \mathbb{R}$, $b > a \to a^n = o(b^n)$.

Solution:

Using the limit test: $\lim_{n\to\infty}\frac{a^n}{b^n}=\lim_{n\to\infty}(\frac{a}{b})^n=0$ since b>a. Therefore, $a^n=o(b^n)$.