

FIG. 111

FIG. 114

FIG. 115

FIG. 116

338/345

FIG. 120

FIG. 121

FIG. 122

FIG. 123

FIG. 124

FIG. 125

FIG. 126

0.5

0

2,5

3 5

SEQUENCE LISTING

	Neose Technologi DeFrees, Shawn Zopf, David Bayer, Robert Bowe, Caryn Hakes, David Chen, Xi	es, Inc.				
<120>	REMODELING AND G	LYCOCONJUGA	TION OF PEP	TIDES		
<130>	040853-01-5050WC)				
<150> <151>	US 60/328,523 2001-10-10					
<150> <151>		`		. •		
<150> <151>	US 60/334,233 2001-11-08					
<150> <151>	US 60/334,301 2001-11-08	•				
<150> <151>	US 60/387,292 2002-06-07			,		
<150>		•				
<150> <151>						
<150> <151>	US 60/404,249					
<150> <151	> US 60/407,527 > 2002-08-28					
<160:	> 62					
<170	> PatentIn version	on 3.1				
<210: <211: <212: <213:	> 525			•		
<400 accc	> 1 ccctgg gccctgccag	ctccctgccc	cagagettee	tgctcaagtg	cttagagcaa	60
	ggaaga tocagggoga					120
						180

ctgagcagct	gccccagcca	ggccctgcag	ctggcaggct	gcttgagcca	actccatagc	240
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggateteece	cgagttgggt	300
cccaccttgg	acacactgca	gctggacgtc	gccgactttg	ccaccaccat	ctggcagcag	360
atggaagaac	tgggaatggc	cectgecetg	cagcccaccc	agggtgccat	geeggeette	420
gcctctgctt	tccagegeeg	ggcaggaggg	gtcctggttg	cctcccatct	gcagagcttc	480
ctggaggtgt	cgtaccgcgt	tctacgccac	cttgcccagc	cctga		525

<210> 2

<211> 174

<212> PRT

<213> Homo sapiens

<400> 2

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe

145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170

<210> 3 <211> 1733 <212> DNA

<213> Homo sapiens

3 <400> gcgcctctta tgtacccaca aaaatctatt ttcaaaaaag ttgctctaag aatatagtta 60 120 tgcaataata aaacattaac tttatacttt ttaatttaat gtatagaata gagatataca 180 taggatatgt aaatagatac acagtgtata tgtgattaaa atataatggg agattcaatc 240 agaaaaaagt ttctaaaaag gctctggggt aaaagaggaa ggaaacaata atgaaaaaaa 300 tgtggtgaga aaaacagctg aaaacccatg taaagagtgt ataaagaaag caaaaagaga 360 agtagaaagt aacacagggg catttggaaa atgtaaacga gtatgttccc tatttaaggc 420 taggcacaaa gcaaggtett cagagaacct ggagcctaag gtttaggctc acccatttca 480 accagtotag cagcatotgo aacatotaca atggcottga cotttgottt actggtggco 540 ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac 600 agcctgggta gcaggaggac cttgatgctc ctggcacaga tgaggagaat ctctcttttc 660 tectgettga aggacagaca tgaetttgga tttecccagg aggagtttgg caaccagtte 720 caaaaggetg aaaccatece tgteeteeat gagatgatee ageagatett caatetette 780 agcacaaagg actcatctgc tgcttgggat gagaccctcc tagacaaatt ctacactgaa 840 ctctaccagc agctgaatga cctggaagcc tgtgtgatac agggggtggg ggtgacagag 900 actoccotga tgaaggagga otocattotg gotgtgagga aatacttoca aagaatoact 960 ctctatctga aagagaagaa atacagccct tgtgcctggg aggttgtcag agcagaaatc 1020 atgagatett titettigte aacaaactig caagaaagti taagaagtaa ggaatgaaaa 1080 ctggttcaac atggaaatga ttttcattga ttcgtatgcc agctcacctt tttatgatct 1140 gccatttcaa agactcatgt ttctgctatg accatgacac gatttaaatc ttttcaaatg 1200 tttttaggag tattaatcaa cattgtattc agctcttaag gcactagtcc cttacagagg 1260 accatgotga otgatocatt atotatttaa atatttttaa aatattattt atttaactat 1320

ttataaaaca	acttattttt	gttcatatta	tgtcatgtgc	acctttgcac	agtggttaat	1380
gtaataaaat	gtgttctttg	tatttggtaa	atttattttg	tgttgttcat	tgaacttttg	1440
ctatggaact	tttgtacttg	tttattcttt	aaaatgaaat	tccaagccta	attgtgcaac	1500
ctgattacag	aataactggt	acacttcatt	tgtccatcaa	tattatattc	aagatataag	1560
taaaaataaa	ctttctgtaa	accaagttgt	atgttgtact	caagataaca	gggtgaacct	1620
aacaaataca	attctgctct	cttgtgtatt	tgatttttgt	atgaaaaaaa	ctaaaaatgg	1680
taatcatact	taattatcag	ttatggtaaa	tggtatgaag	agaagaagga	acg	1733

<210> 4

<211> 188

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys
1 10 15

Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20 25 30

Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35 40 45

Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50 55 60

Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His 65 70 75 80

Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser 85 90 95

Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr 100 105 110

Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val 115 120 125

Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys 130 135 140

Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro 145 150 155 160

Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu 165 170 175

Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu 180 185

<210> 5

<211> 757

<212> DNA

<213> Homo sapiens

<400> atgaccaaca agtgtetect ccaaattget etcetgttgt gettetecae tacagetett 60 tccatgaget acaacttgct tggattccta caaagaagca gcaattttca gtgtcagaag 120 ctcctgtggc aattgaatgg gaggcttgaa tattgcctca aggacaggat gaactttgac 180 atccctgagg agattaagca gctgcagcag ttccagaagg aggacgccgc attgaccatc 240 tatgagatgc tocagaacat etttgctatt ttcagacaag attcatetag cactggctgg 300 aatgagacta ttgttgagaa cctcctggct aatgtctatc atcagataaa ccatctgaag 360 acagteetgg aagaaaaact ggagaaagaa gattttaeca ggggaaaact catgageagt 420 ctgcacctga aaagatatta tgggaggatt ctgcattacc tgaaggccaa ggagtacagt 480 cactgtgcct ggaccatagt cagagtggaa atcctaagga acttttactt cattaacaga 540 cttacaggtt acctccgaaa ctgaagatct cctagcctgt ccctctggga ctggacaatt 600 getteaagea ttetteaace ageagatget gtttaagtga etgatggeta atgtaetgea 660 720 757 ttaaatttta ttttggaaaa taaattattt ttggtgc

<210> 6

<211> 187

<212> PRT

<213> Homo sapiens

<400> 6

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser 1 5 10 15

Thr	Thr	Ala	Leu 20	Ser	Met	Ser	Tyr	Asn 25	Leu	Leu	GIA	Pne	ьеu 30	GII	Arg	
Ser	Ser	Asn 35	Phe	Gln	Сув	Gln	Lys 40	Leu	Leu	Trp	Gln	Leu 45	Asn	Gly	Arg	
Leu	Glu 50	Tyr	Cys	Leu	Lys	Asp 55	Arg	Met	Asn	Phe	Asp 60	Ile	Pro	Glu	Glu	
Ile 65	Lys	Gln	Ľeu	Gln	Gln 70	Phe	Gln	Lys	Glu	Asp 75	Ala	Ala	Leu	Thr	Ile 80	
Tyr	Glu	Met	Ľeu	Gln 85	Asn	Ile	Phe	Ala	Ile 90	Phe	Arg	Gln	Asp	Ser 95	Ser	
ser	Thr	Gly	Trp 100	Asn	Glu	Thr	Ile	Val 105	Glu	Asn	Leu	Leu	Ala 110	Asn	Val	
Tyr	His	Gln 115		Asn	His	Leu	Lys 120	Thr	Val	Leu	Glu	Glu 125	. Ъув	Leu	Glu	·
Гуs	Glu 130		Phe	Thr	Arg	Gly 135	Lys	Leu	. Met	Ser	Ser 140	Leu	. His	Leu	r F Àa	
Arg 145		түг.	Gly	Arg	Ile 150	Leu	His	: Туг	Leu	. Lys 155	Ala ;	ь Буя	: Glu	туг	ser 160	
His	Суя	: Ala	a Trp	Thr 165	: Ile	· Val	. Arg	y Val	. Glu 170	ı Ile	e Let	ı Arg	g Asr	1 Phe 175	e Tyr	
Phe	: Ile	e Ası	180		ı Thr	gly	ŗΤΥ	: Let 18!	ı Arg	g Asr	ı	•				
<21	.0> .1> .2> l3>	7 133: DNA Hom		pien	ş											
<40)0>	7 Face	agg	ccct	caq (gete	atat	gc c	ttat:	gett	a aa	cttc	aggg	ctg	cctggct	60
															cgccaac	120
															gcagtgc	180
															ctggatt	240

tcttacagtg	atggggacca	gtgtgcctca	agtccatgcc	agaatggggg	ctcctgcaag	300
gaccagctcc	agtcctatat	ctgcttctgc	ctccctgcct	tcgagggccg	gaactgtgag	360
acgcacaagg	atgaccagct	gatctgtgtg	aacgagaacg	geggetgtga	gcagtactgc	420
agtgaccaca	cgggcaccaa	gcgctcctgt	cggtgccacg	aggggtactc	tctgctggca	480
gacggggtgt	cctgcacacc	cacagttgaa	tatccatgtg	gaaaaatacc	tattctagaa	540
aaaagaaatg	ccagcaaacc	ccaaggccga	attgtggggg	gcaaggtgtg	ccccaaaggg	600
gagtgtccat	ggcaggtcct	gttgttggtg	aatggagctc	agttgtgtgg	ggggaccctg	660
atcaacacca	tetgggtggt	ctccgcggcc	cactgtttcg	acaaaatcaa	gaactggagg	720
aacctgatcg	cggtgctggg	cgagcacgac	ctcagcgagc	acgacgggga	tgagcagagc	780
cggcgggtgg	cgcaggtcat	catccccagc	acgtacgtcc	cgggcaccac	caaccacgac	840
ategegetge	tccgcctgca	ccagcccgtg	gtcctcactg	accatgtggt	geceetetge	900
ctgcccgaac	ggacgttctc	tgagaggacg	ctggccttcg	tgcgcttctc	attggtcagc	960
	agctgctgga					1020
	tgacccagga					1080
					ctgcaagggg	1140
					gggcatcgtc	1200
					ggtctcccag	1260
					: cctcctgcga	1320
gececattte						1332

<210> 8

<211> 444

<212> PRT

<213> Homo sapiens

<400> 8

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Gly Leu Gln 1 5 10 15

Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val 20 25 30

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Glu Cys Ser Phe Glu Glu 50 55

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 65 70 75 80

Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85 90 95

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro 100 105 110

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120 125

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 135 140

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145 150 155 160

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile 165 170 175

Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val 180 185 190

Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu 195 200 205

Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile 210 215 220

Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg 225 230 235 240

Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly 245 250 255

Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr 260 265 270

Val	Pro	Gly 275	Thr	Thr	Asn	His	Asp 280	Ile	Ala	ьeu	Leu	285	Tien	TIP	GIII	
Pro	Val 290	Val	Leu	Thr	Asp	His 295	Val	Val	Pro	Leu	Cys	Leu	Pro	Glu	Arg	
Thr 305	Phe	Ser	Glu	Arg	Thr 310	Leu	Ala	Phe	Val	Arg 315	Phe	Ser	Leu	Val	Ser 320	
Gly	Trp	Gly	Gln	Leu 325	Leu	Asp	Arg	Gly	Ala 330	Thr	Ala	Leu	Glu	Leu 335	Met	
Val	Leu	Asn	Val 340	Pro	Arg	Leu	Met	Thr 345	Gln	Asp	Cys	Leu	Gln 350	Gln	Ser	
	Lys	Val 355	Gly	Asp	Ser	Pro	Asn 360		Thr	Glu	Tyr	Met 365	Phe	Cys	Ala	
Gly	Туr 370		Asp	Gly	Ser	Lys 375	Asp	Ser	Cys	Lys	Gly 380	Asp	Ser	Gly	Gly	
Pro 385	His	Ala	Thr	aiH	Туг 390	Arg	Gly	Thr	Trp	Tyr 395	Leu	Thr	· Gly	Ile	Val 400	
Ser	Trp	Gly	Gln	Gly 405		Ala	Thr	Val	Gly 410	His	Phe	: Gly	val	Tyr 415	Thr	
Arg	Val	. Ser	Gln 420		: Ile	e Glu	Trp	Leu 425	Glr	ı Lys	. Leu	. Met	: Arg	g Ser	Glu	·
Pro	Arg	9 Pro 435		va]	. Lev	ı Lev	Arg 440	g Ala	. Pro) Phe	e Pro				-	
		9 1437 DNA Homo	7 o sag	oiens	5											
<40)0>	9	tgaa	acato	gat (catgo	gcaga	aa to	cacca	aagc	c tca	atca	ccat	ctgo	cctttt	a 60
															caaaat	
															gaacct	

PCT/US02/32263 WO 03/031464

gagagagaat	gtatggaaga	aaagtgtagt	tttgaagaac	cacgagaagt	ttttgaaaac	240
actgaaaaga	caactgaatt	ttggaagcag	tatgttgatg	gagatcagtg	tgagtccaat	300
ccatgtttaa	atggcggcag	ttgcaaggat	gacattaatt	cctatgaatg	ttggtgtccc	360
tttggatttg	aaggaaagaa	ctgtgaatta	gatgtaacat	gtaacattaa	gaatggcaga	420
tgcgagcagt	tttgtaaaaa	tagtgctgat	aacaaggtgg	tttgctcctg	tactgaggga	480
tatcgacttg	cagaaaacca	gaagtcctgt	gaaccagcag	tgccatttcc	atgtggaaga	540
gtttctgttt	cacaaacttc	taagctcacc	cgtgctgagg	ctgtttttcc	tgatgtggac	600
tatgtaaatc	ctactgaagc	tgaaaccatt	ttggataaca	tcactcaagg	cacccaatca	660
	tcactcgggt					720
caggttgttt	tgaatggtaa	agttgatgca	ttctgtggag	gctctatcgt	taatgaaaaa	780
tggattgtaa	ctgctgccca	ctgtgttgaa	actggtgtta	aaattacagt	tgtcgcaggt	840
gaacataata	ttgaggagac	agaacataca	gagcaaaagc	gaaatgtgat	tcgagcaatt	900
attcctcacc	acaactacaa	tgcagctatt	aataagtaca	accatgacat	tgcccttctg	960
gaactggacg	aacccttagt	gctaaacagc	tacgttacac	ctatttgcat	tgctgacaag	1020
gaatacacga	acatcttcct	caaatttgga	tctggctatg	taagtggctg	ggcaagagtc	1080
ttccacaaag	ggagatcagc	tttagttctt	cagtacctta	gagttccact	tgttgaccga	1140
gccacatgto	ttcgatctac	aaagttcacc	atctataaca	acatgttctg	tgctggcttc	1200
catgaaggag	gtagagatto	atgtcaagga	gatagtgggg	gaccccatgt	tactgaagtg	1260
	gtttcttaac					1320
	tatataccaa					1380
	: gaaagatgga					1437

<210> 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu 20

<211> 462 <212> PRT

<213> Homo sapiens

<400> 10

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys 50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn 65 70 75 80

Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln 85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys 115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly 145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe 165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala 180 185 190

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu 195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe 210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp 225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile 245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly 260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 290 295 300

Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu 305 310 315

Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys 325 330 335

Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly 340 345 350

Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu 355 360 365

Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu 370 380

Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe 385 390 395 400

His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His 405 410 415

Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp 420 425 430

Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val 435 440 445

Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr 450 455 460

<210> 11

<211> 603

<212> DNA

<213> Homo sapiens

<400> 11 atggattact	acagaaaata	tgcagctatc	tttctggtca	cattgtcggt	gtttctgcat	60
gttctccatt	ccgctcctga	tgtgcaggat	tgcccagaat	gcacgctaca	ggaaaaccca	120
ttettetece	agccgggtgc	cccaatactt	cagtgcatgg	gctgctgctt	ctctagagca	180
tatcccactc	cactaaggtc	caagaagacg	atgttggtcc	aaaagaacgt	cacctcagag	240
tecaettget	gtgtagctaa	atcatataac	agggtcacag	taatgggggg	tttcaaagtg	300
gagaaccaca	cggcgtgcca	ctgcagtact	tgttattatc	acaaatctta	aatgttttac	360
caagtgctgt	cttgatgact	gctgattttc	tggaatggaa	aattaagttg	tttagtgttt	420
atggctttgt	gagataaaac	teteetttte	cttaccatac	cactttgaca	cgcttcaagg	480
atatactgca	gctttactgc	cttcctcctt	atcctacagt	acaatcagca	gtctagttct	540
tttcatttgg	aatgaataca	gcattaagct	tgttccactg	caaataaagc	cttttaaatc	600
atc						603

<210> 12

<211> 116

<212> PRT

<213> Homo sapiens

<400> 12

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser 1 10 15

Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro

Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro 35 40 45

Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro 50 55 60

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu 65 70 75 80

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly 85 90 95

Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 100 105 110

Tyr His Lys Ser 115

<210>	1.3	
<211>	390	
<212>	DNA	
<213>	Homo	sapiens

<400> 13
atgaagacac tecagttttt etteetttte tgttgetgga aageaatetg etgeaatage 60
tgtgagetga ceaacateac cattgeaata gagaaagaag aatgtegttt etgeataage 120
ateaacacca ettggtgtge tggetactge tacaccaggg atetggtgta taaggaecca 180
gecaggeeca aaatecagaa aacatgtace tteaaggaae tggtatatga aacagtgaga 240
gtgeecgget gtgeteacca tgeagattee ttgtatacat acceagtgge cacccagtgt 300
cactgtggea agtgtgacag egacageact gattgtactg tgegaggeet ggggeecage 360
tactgeteet ttggtgaaat gaaagaataa

<210> 14 <211> 129 <212> PRT <213> Homo sapiens

<400> 14

Met Lys Thr Leu Gln Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile 1 5 10 15

Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys 20 25 30

Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly
35 40 45

Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys 50 55 60

Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg 65 70 75 80

Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val 85 90 95

Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys
100 105 110

Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys 115 120 125

Glu

<210> 15 <211> 1342 <212> DNA <213> Homo sapiens

<400> 15 cccggagecg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 cegecetete etecaggece gtggggetgg ceetgeaceg eegagettee egggatgagg 120 gecceeggtg tggtcaceeg gegegeecca ggtcgctgag ggaceeegge caggegegga 180 gatgggggtg cacgaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc 240 tetgggeete ceagteetgg gegeeceace acgeeteate tgtgacagee gagteetgga 300 gaggtacctc ttggaggcca aggaggccga gaatatcacg acgggctgtg ctgaacactg 360 cagcttgaat gagaatatca ctgtcccaga caccaaagtt aatttctatg cctggaagag 420 gatggaggtc gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg 600 agoccagaag gaagocatot cocotocaga tgoggootca gotgotocac toogaacaat 660 cactgotgac actttccgca aactottccg agtctactcc aatttcctcc ggggaaagct 720 gaagetgtae acaggggagg cetgeaggae aggggaeaga tgaeeaggtg tgteeacetg 780 ggcatateca ccaectecet caccaacatt gettgtgeca caccetecee egecaetect 840 gaacccegtc gaggggetet cagetcageg ceageetgte ceatggacae tecagtgeca 900 gcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg 960 tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag 1020 ggacagagec atgetgggaa gacgeetgag eteactegge accetgeaaa atttgatgee 1080 aggacacget ttggaggega tttacetgtt ttegeaceta ecateaggga caggatgace 1140

tggagaactt aggtggcaag ctgtgacttc tccaggtctc acgggcatg gcactccctt 1200 ggtggcaaga gcccccttga caccggggtg gtgggaacca tgaagacagg atgggggctg 1260 gcctctggct ctcatggggt ccaagttttg tgtattcttc aacctcattg acaagaactg 1320 aaaccaccaa aaaaaaaaa aa 1342

<21.0> 16

<211> 193

<212> PRT

<213> Homo sapiens

<400> 16

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu 1 5 10 1.5

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu 20 25 30

Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 35 40 45

Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
50 55 60

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 65 70 75 80

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 85 90 95

Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 100 105 110

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
115 120 125

Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu 130 135 140

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 145 150 155 160

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu

165 170 175

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 180 185 190

Arg

<210>	17						
<211>	435						
<212>	DNA						
<213>	Homo	sapiens					
					-		
<400> atgtgg	17 ctgc	agagcctgct	gctcttgggc	actgtggcct	gcagcatctc	tgcacccgcc	60
cgctcg	ccca	gccccagcac	gcagccctgg	gagcatgtga	atgccatcca	ggaggcccgg	120
cgtctc	ctga	acctgagtag	agacactgct	gctgagatga	atgaaacagt	agaagtcatc	180
tcagaa	atgt	ttgacctcca	ggagccgacc	tgcctacaga	cccgcctgga	gctgtacaag	240
cadddc	ctac	gagacagcct	caccaagete	aagggcccct	tgaccatgat	ggccagccac	300

tacaagcagc actgccctcc aaccccggaa acttcctgtg caacccagat tatcaccttt

gaaagtttca aagagaacct gaaggacttt ctgcttgtca tcccctttga ctgctgggag

360

435

<210> 18 <211> 144 <212> PRT <213> Homo sapiens

ccagtccagg agtga

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile 1 5 10 15

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His 20 25 30

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp 35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe 50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys 70 65 Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser 105 100 Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 120 115 Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 135 130 <210> 19 <211> 501 <212> DNA <213> Homo sapiens <400> 19 atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa 180 gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 300 aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 360 tatteggtaa etgaettgaa tgtecaaege aaageaatae atgaaeteat eeaagtgatg 420 gctgaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga 480 501 ggtcgaagag catcccagta a <210> 20 166 <211> <212> PRT <213> Homo sapiens <400> 20 Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 10

Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu

30

20	25

Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 35 40 45

Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp 50 55 60

Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe 65 70 75 80

Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile 85 90 95

Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg 100 105 110

Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val

Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser 130 135 140

Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg 145 150 155 160

Gly Arg Arg Ala Ser Gln 165

<210> 21

<211> 1352

<212> DNA

<213> Homo sapiens

<400> 21
ctgggacagt gaatcgacaa tgccgtcttc tgtctcgtgg ggcatcctcc tgctggcagg 60
cctgtgctgc ctggtccctg tctccctggc tgaggatccc cagggagatg ctgcccagaa 120
gacagataca tcccaccatg atcaggatca cccaaccttc aacaagatca ccccaacct 180
ggctgagttc gccttcagcc tataccgcca gctggcacac cagtccaaca gcaccaatat 240
cttcttctcc ccagtgagca tcgctacagc ctttgcaatg ctctccctgg ggaccaaggc 300
tgacactcac gatgaaatcc tggagggcct gaatttcaac ctcacggaga ttccggaggc 360

tcagatccat	gaaggcttcc	aggaactcct	ccgtaccctc	aaccagccag	acagccagct	420
ccagctgacc	accggcaatg	gcctgttcct	cagcgagggc	ctgaagctag	tggataagtt	480
tttggaggat	gttaaaaagt	tgtaccactc	agaagccttc	actgtcaact	tcggggacac	540
cgaagaggcc	aagaaacaga	tcaacgatta	cgtggagaag	ggtactcaag	ggaaaattgt	600
ggatttggtc	aaggagcttg	acagagacac	agtttttgct	ctggtgaatt	acatcttctt	660
taaaggcaaa	tgggagagac	cctttgaagt	caaggacacc	gaggaagagg	acttccacgt	720
ggaccaggtg	accaccgtga	aggtgcctat	gatgaagcgt	ttaggcatgt	ttaacatcca	780
gcactgtaag	aagctgtcca	gctgggtgct	gctgatgaaa	tacctgggca	atgccaccgc	840
catcttcttc	ctgcctgatg	aggggaaact	acagcacctg	gaaaatgaac	tcacccacga	900
tatcatcacc	aagttcctgg	aaaatgaaga	cagaaggtct	gccagcttac	atttacccaa	960
actgtccatt	actggaacct	atgatctgaa	gagcgtcctg	ggtcaactgg	gcatcactaa	1020
ggtcttcagc	aatggggctg	acctctccgg	ggtcacagag	gaggcacccc	tgaagctctc	1080
caaggccgtg	cataaggctg	tgctgaccat	cgacgagaaa	gggactgaag	ctgctggggc	1140
catgtttta	gaggccatac	ccatgtctat	ccccccgag	gtcaagttca	acaaaccctt	1200
tgtcttctta	atgattgaac	aaaataccaa	gtatacaata	ttcatgggaa	aagtggtgaa	1260
tcccacccaa	aaataactgc	ctctcgctcc	tcaacccctc	ccctccatcc	ctggccccct	1320
ccctggatga	cattaaagaa	gggttgagct	gg		•	1352

<210> 22

<211> 418

<212> PRT

<213> Homo sapiens

<400> 22

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys
1 5 10 15

Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala 20 25 30

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn 35 40 45

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln 50 55 60

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu

Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp 290 Arg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr 310 Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe 330 325 Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys 345 340 Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly 360 355 Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile 375 370 Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu 400 395 385 Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr 410 405 Gln Lys <210> 23 <211> 2004 <212> DNA <213> Homo sapiens <400> 23 gctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc 60 ctctatectt cagagactct ggaacccctg tggtcttctc ttcatctaat gaccctgagg 120 ggatggagtt ttcaagtcct tccagagagg aatgtcccaa gcctttgagt agggtaagca 180 tcatggctgg cagcctcaca ggtttgcttc tacttcaggc agtgtcgtgg gcatcaggtg 240 cccgccctg catccctaaa agcttcggct acagctcggt ggtgtgtgtc tgcaatgcca 300 catactgtga ctcctttgac cccccgacct ttcctgccct tggtaccttc agccgctatg 360 agagtacacg cagtgggcga cggatggagc tgagtatggg gcccatccag gctaatcaca 420

480

j

ttggaggggc	catgacagat	getgetgete	tcaacatcct	tgccctgtca	cccctgccc	540
aaaatttgct	acttaaatcg	tacttctctg	aagaaggaat	cggatataac	atcatccggg	600
tacccatggc	cagctgtgac	ttctccatcc	gcacctacac	ctatgcagac	acccctgatg	660
atttccagtt	gcacaacttc	agcctcccag	aggaagatac	caagctcaag	atacccctga	720
ttcaccgagc	cctgcagttg	gcccagcgtc	ccgtttcact	ccttgccagc	ccctggacat	780
cacccacttg	gctcaagacc	aatggagcgg	tgaatgggaa	ggggtcactc	aagggacagc	840
ccggagacat	ctaccaccag	acctgggcca	gatactttgt	gaagttcctg	gatgcctatg	900
ctgagcacaa	gttacagttc	tgggcagtga	cagctgaaaa	tgagccttct	gctgggctgt	960
tgagtggata	ccccttccag	tgcctgggct	tcacccctga	acatcagcga	gacttcattg	1020
cccgtgacct	aggtectace	ctcgccaaca	gtactcacca	caatgtccgc	ctactcatgc	1080
tggatgacca	acgcttgctg	ctgccccact	gggcaaaggt	ggtactgaca	gacccagaag	1140
cagctaaata	tgttcatggc	attgctgtac	attggtacct	ggactttctg	gctccagcca	1200
aagccaccct	aggggagaca	caccgcctgt	tecceaacac	catgctcttt	gcctcagagg	1260
cctgtgtggg	ctccaagttc	tgggagcaga	gtgtgcggct	aggeteetgg	gatcgaggga	1320
tgcagtacag	ccacagcatc	atcacgaacc	tcctgtacca	tgtggtegge	tggaccgact	1380
ggaaccttgc	cctgaacccc	gaaggaggac	ccaattgggt	gcgtaacttt	gtcgacagtc	1440
ccatcattgt	agacatcacc	aaggacacgt	tttacaaaca	gcccatgttc	taccaccttg	1500
gccacttcag	caagttcatt	cctgagggct	cccagagagt	ggggctggtt	gccagtcaga	1560
agaacgacct	ggacgcagtg	gcactgatgc	atcccgatgg	ctctgctgtt	gtggtcgtgc	1620
taaaccgctc	ctctaaggat	gtgcctctta	ccatcaagga	tectgetgtg	ggetteetgg	1680
agacaatctc	acctggctac	tccattcaca	cctacctgtg	geategecag	g tgatggagca	1740
gatactcaag	gaggcactgg	geteageetg	ggcattaaag	ggacagagto	agotoacacg	1800
ctgtctgtga	ctaaagaggg	cacagcaggg	ccagtgtgag	cttacagcga	a cgtaagecca	1860
ggggcaatgg	tttgggtgad	tcactttccc	ctctaggtgg	tgeecaggg	tggaggcccc	1920
tagaaaaaga	tcagtaagco	: ccagtgtccc	cccagccccc	: atgcttatgt	gaacatgcgc	1980
tgtgtgctgc	: ttgctttgga	aact				2004

<210> 24 <211> 536

<212> PRT

<213> Homo sapiens

<400> 24

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser 1 5 10 15

Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gin 20 25 30

Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe 35 40 45

Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser 50 55 60

Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu 65 70 75 80

Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln 85 90 95

Ala Asn His Thr Gly Thr Gly Leu Leu Thr Leu Gln Pro Glu Gln 100 105 110

Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 115 120 125

Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu 130 135 140

Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val 145 150 155 160

Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp 165 170 175

Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 180 185 190

Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln

Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu

210 215 220

Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro 225 230 235 240

Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu 245 250 255

Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270

Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu 275 280 285

Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly 290 295 300

Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu 305 310 315

Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr 325 330 335

Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr 340 345 350

Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg 355 360 365

Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser 370 380

Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met 385 390 395 400

Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly
405 410 415

Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp 420 425 430

Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp 435 440 445

Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys 450 455 460

Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys 465 470 475 480

Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val
485 490 495

Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys 500 505 510

Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile 515 520 525

His Thr Tyr Leu Trp His Arg Gln 530 535

<210> 25

<211> 1726

<212> DNA

<213> Homo sapiens

<400> atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tegeccagee aggaaateea tgecegatte agaagaggag ccagatetta ecaagtgate 120 tgcagagatg aaaaaacgca gatgatatac cagcaacatc agtcatggct gcgccctgtg 180 ctcagaagca accgggtgga atattgctgg tgcaacagtg gcagggcaca gtgccactca 240 gtgcctgtca aaagttgcag cgagccaagg tgtttcaacg ggggcacctg ccagcaggcc 300 ctgtacttct cagatttcgt gtgccagtgc cccgaaggat ttgctgggaa gtgctgtgaa 360 atagatacca gggccacgtg ctacgaggac cagggcatca gctacagggg cacgtggagc 420 acageggaga gtggegeega gtgeaceaac tggaacagea gegegttgge eeagaageee 480 tacageggge ggaggeeaga egecateagg etgggeetgg ggaaceacaa etaetgeaga 540 aacccagatc gagactcaaa gccctggtgc tacgtcttta aggcggggaa gtacagctca 600 gagttetgea geacceetge etgetetgag ggaaacagtg actgetactt tgggaatggg 660 teagectace gtggcacgca cagecteace gagtegggtg ceteetgeet ceegtggaat 720 tecatgatee tgataggeaa ggtttacaca geacagaace ceagtgeeca ggeactggge 780

ctgggcaaac ataattactg ccggaatcct gatggggatg ccaagccctg gtgccacgtg 840 ctgaagaacc gcaggctgac gtgggagtac tgtgatgtgc cctcctgctc cacctgcgc 900 960 ctgagacagt acagccagcc tcagtttcgc atcaaaggag ggctcttcgc cgacatcgcc teccaceet ggeaggetge catetttgee aageacagga ggtegeeggg agageggtte 1020 ctgtgcgggg gcatactcat cagctcctgc tggattctct ctgccgccca ctgcttccag 1080 gagaggtttc cgccccacca cctgacggtg atcttgggca gaacataccg ggtggtccct 1140 ggcgaggagg agcagaaatt tgaagtcgaa aaatacattg tccataagga attcgatgat 1200 gacacttacg acaatgacat tgcgctgctg cagctgaaat eggattegte cegetgtgce 1260 caggagagca gegtggteeg caetgtgtge etteeceegg eggacetgea getgeeggae 1320 tggacggagt gtgagetete eggetacgge aageatgagg cettgtetee tttetatteg 1380 gagoggotga aggaggotca tgtcagactg tacccatoca googotgcac atcacaacat 1440 ttacttaaca gaacagtcac cgacaacatg ctgtgtgctg gagacactcg gageggcggg 1500 ccccaggcaa acttgcacga cgcctgccag ggcgattcgg gaggccccct ggtgtgtctg 1560 aacgatggcc gcatgacttt ggtgggcatc atcagctggg gcctgggctg tggacagaag 1620 gatgtcccgg gtgtgtacac caaggttacc aactacctag actggattcg tgacaacatg 1680 1726 cgaccgtgac caggaacacc cgactcctca aaagcaaatg agatcc

<21.0> 26

<211> 562

<212> PRT

<213> Homo sapiens

<400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg 20 25 30

Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met 35 40 45

The Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn 50 60

Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser 65 70 75 80

- Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr 85 90 95
- Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu 100 105 110
- Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr 115 120 125
- Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser 130 135 140
- Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro 145 150 155 160
- Tyr Ser Gly Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His 165 170 175
- Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val
- Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys 195 200 205
- Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg 210 215 220
- Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn 225 230 235
- Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala 245 250 255
- Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly 260 265 270
- Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp 275 280 285
- Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr

290 295 300

Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala 305 310 315

Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro 325 330 335

Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile 340 345 350

Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu 355 360 365

Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu 370 380

Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp 385 390 395

Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser 405 410 415

Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro 420 425 430

Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly 435 440 445

Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys 450 455 460

Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His 465 470 475 480

Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr 485 490 495

Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp 500 505 510

Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val 515 520 525

Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly 530 535

Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met 545 550 555 560

Arg Pro

<210> 27 <211> 825 <212> DNA <213> Homo sapiens

(217) Homo paprone

<400> 27 atcactetet ttaatcacta etcacattaa eetcaactee tgecacaatg tacaggatge 60 aacteetgte ttgcattgca ctaattettg cacttgtcac aaacagtgca cetaettcaa 120 gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac 180 agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat 240 ttaagtttta catgcccaag aaggccacag aactgaaaca gcttcagtgt ctagaagaag 300 aactcaaacc tctggaggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac 360 ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa 420 cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga 480 ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa 540 aacatatcag goottotatt tatttattta aatatttaaa ttttatattt attgttgaat 600 gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt 660 ttatgattct ttttgtaagc cctaggggct ctaaaatggt ttaccttatt tatcccaaaa 720 atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta 780 825 tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa

<210> 28 <211> 156 <212> PRT

<213> Homo sapiens

<400> 28

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu

1	5	10	. 1	15
Val Thr Asn Ser 20	Ala Pro Thr Se	er Ser Ser Thr I 25	úys Lys Thr I 30	iys Lys
Thr Gln Leu Gln 35	Leu Glu His Le		Leu Gln Met 1 45	Ile Leu
Asn Gly Ile Asn 50	Asn Tyr Lys As 55		Thr Arg Met 1 60	Leu Thr
Phe Lys Phe Tyr 65	Met Pro Lys Ly 70	ys Ala Thr Glu 1 75	Leu Lys Gln I	Leu Gln 80
Cys Leu Glu Glu	Glu Leu Lys Pr 85	ro Leu Glu Glu ' 90	Val Leu Asn :	Leu Ala 95
Gln Ser Lys Asn 100		rg Pro Arg Asp 1	Leu Ile Ser . 110	Asn Ile '
Asn Val Ile Val		ys Gly Ser Glu 20	Thr Thr Phe 1 125	Met Cys
Glu Tyr Ala Asp 130	Glu Thr Ala Ti 135	hr Ile Val Glu	Phe Leu Asn 140	Arg Trp
Ile Thr Phe Cys	Gln Ser Ile I 150	le Ser Thr Leu 155	Thr	
<210> 29 <211> 7931 <212> DNA <213> Homo sag	piens			
<400> 29 atgcaaatag agct	ctccac ctgcttc	ttt ctgtgccttt	tgcgattctg c	tttagtgcc 60
		gaa ctgtcatggg		
ggtgagctgc ctgt	ggacgc aagattt	cet cetagagtge	caaaatcttt t	ccattcaac 180
		gttt gtagaattca		
gctaagccaa ggc	caccctg gatgggt	ctg ctaggtccta	ccatccaggc t	
gatacagtgg tca	ttacact taagaac	catg getteceate	ctgtcagtct t	tcatgctgtt 360

ggtgtatcct	actggaaagc	ttctgaggga	gctgaatatg	atgatcagac	cagtcaaagg	420
gagaaagaag	atgataaagt	cttccctggt	ggaagccata	catatgtctg	gcaggtcctg	480
aaagagaatg	gtccaatggc	ctctgaccca	ctgtgcctta	cctactcata	tctttctcat	540
gtggacctgg	taaaagactt	gaattcaggc	ctcattggag	ccctactagt	atgtagagaa	600
gggagtctgg	ccaaggaaaa	gacacagacc	ttgcacaaat	ttatactact	ttttgctgta	660
tttgatgaag	ggaaaagttg	gcactcagaa	acaaagaact	ccttgatgca	ggatagggat	720
gctgcatctg	ctcgggcctg	gcctaaaatg	cacacagtca	atggttatgt	aaacaggtct	780
ctgccaggtc	tgattggatg	ccacaggaaa	tcagtctatt	ggcatgtgat	tggaatgggc	840
accactcctg	aagtgcactc	aatattcctc	gaaggtcaca	catttcttgt	gaggaaccat	900
cgccaggcgt	ccttggaaat	ctcgccaata	actttcctta	ctgctcaaac	actcttgatg	960
gaccttggac	agtttctact	gttttgtcat	atctcttccc	accaacatga	tggcatggaa	1020
gcttatgtca	aagtagacag	ctgtccagag	gaaccccaac	tacgaatgaa	aaataatgaa	1080
gaagcggaag	actatgatga	tgatcttact	gattctgaaa	tggatgtggt	caggtttgat	1140
gatgacaact	ctccttcctt	tatccaaatt	cgctcagttg	ccaagaagca	tcctaaaact	1200
tgggtacatt	acattgctgc	tgaagaggag	gactgggact	atgctccctt	agtectegee	1260
cccgatgaca	gaagttataa	aagtcaatat	ttgaacaatg	gccctcagcg	gattggtagg	1320
aagtacaaaa	aagtccgatt	tatggcatac	acagatgaaa	cctttaagac	: tcgtgaagct	1380
attcagcatg	aatcaggaat	cttgggacct	. ttactttatg	gggaagttgg	agacacactg	1440
ttgattatat	ttaagaatca	agcaagcaga	ccatataaca	tctaccctca	cggaatcact	1500
gatgtccgtc	ctttgtattc	aaggagatta	ccaaaaggtg	taaaacattt	: gaaggatttt	1560
ccaattctgc	caggagaaat	attcaaatat	: aaatggacag	tgactgtaga	agatgggcca	1620
actaaatcag	atcctcggtg	cctgacccgo	: tattactcta	gtttcgttaa	tatggagaga	1680
gatctagctt	caggactcat	tggccctctc	ctcatctgct	acaaagaat	tgtagatcaa	1740
agaggaaaco	: agataatgto	: agacaagagg	g aatgtcatco	: tgttttctgt	atttgatgag	1800
aaccgaagct	ggtacctcac	: agagaatata	a caacgctttc	tccccaatc	c agctggagtg	1860
cagcttgagg	g atccagagtt	ccaagcete	aacatcatgo	e acagcatca	a tggctatgtt	1920
tttgatagtt	tgcagttgtc	agtttgtttg	g catgaggtgg	g catactggt	a cattctaagc	1980
attggagcad	c agactgactt	cetttetgte	c ttattatata	g gatatacct	t caaacacaaa	2040
atggtctate	g aagacacact	caccetatt	c ccattctca	g gagaaactg	t cttcatgtcg	2100

atggaaaacc	caggtctatg	gattetgggg	tgccacaact	cagactttcg	gaacagaggc	2160
atgaccgcct	tactgaaggt	ttctagttgt	gacaagaaca	ctggtgatta	ttacgaggac	2220
agttatgaag	atatttcagc	atacttgctg	agtaaaaaca	atgccattga	accaagaagc	2280
ttctcccaga	attcaagaca	ccgtagcact	aggcaaaagc	aatttaatgc	caccacaatt	2340
ccagaaaatg	acatagagaa	gactgaccct	tggtttgcac	acagaacacc	tatgcctaaa	2400
atacaaaatg	tetectetag	tgatttgttg	atgetettge	gacagagtcc	tactccacat	2460
gggctatcct	tatetgatet	ccaagaagcc	aaatatgaga	ctttttctga	tgatccatca	2520
cctggagcaa	tagacagtaa	taacagcctg	tctgaaatga	cacacttcag	gccacagctc	2580
catcacagtg	gggacatggt	atttacccct	gagtcaggcc	tccaattaag	attaaatgag	2640
aaactgggga	caactgcagc	aacagagttg	aagaaacttg	atticaaagt	ttctagtaca	2700
tcaaataatc	tgatttcaac	aattccatca	gacaatttgg	cagcaggtac	tgataataca	2760
agttccttag	gacccccaag	tatgccagtt	cattatgata	gtcaattaga	taccactcta	2820
tttggcaaaa	agtcatctcc	ccttactgag	tctggtggac	ctctgagctt	gagtgaagaa	2880
aataatgatt	caaagttgtt	agaatcaggt	ttaatgaata	gccaagaaag	ttcatgggga	2940
aaaaatgtat	cgtcaacaga	gagtggtagg	ttatttaaag	ggaaaagagc	tcatggacct	3000
gctttgttga	ctaaagataa	tgccttattc	aaagttagca	tctctttgtt	aaagacaaac	3060
aaaacttcca	ataattcagc	aactaataga	aagactcaca	ttgatggccc	atcattatta	3120
attgagaata	gtccatcagt	ctggcaaaat	atattagaaa	gtgacactga	gtttaaaaaa	3180
gtgacacctt	tgattcatga	. cagaatgctt	atggacaaaa	atgetacage	tttgaggcta	3240
aatcatatgt	: caaataaaac	tacttcatca	aaaaacatgg	aaatggtcca	acagaaaaaa	3300
gagggcccca	ttccaccaga	tgcacaaaat	ccagatatgt	cgttctttaa	gatgctattc	3360
ttgccagaat	: cagcaaggtc	gatacaaagg	actcatggaa	agaactctct	gaactctggg	3420
caaggcccca	gtccaaagca	attagtatco	ttaggaccag	g aaaaatctgt	ggaaggtcag	3480
aatttcttgt	: ctgagaaaa	a caaagtggta	ı gtaggaaagg	gtgaatttac	e aaaggacgta	3540
ggactcaaag	g agatggtttt	tccaagcago	agaaacctat	: ttcttactaa	a cttggataat	3600
ttacatgaaa	a ataatacaca	a caatcaagaa	a aaaaaaatto	aggaagaaat	agaaaagaag	3660
gaaacatta	a tocaagaga:	a tgtagttttg	g ceteagatad	atacagtgad	tggcactaag	3720
aatttcatg	a agaaccttt	t cttactgag	actaggcaa	a atgtagaag	g ttcatatgac	3780

ggggcatatg	ctccagtact	tcaagatttt	aggtcattaa	atgattcaac	aaatagaaca	3840
aagaaacaca	cagctcattt	ctcaaaaaaa	ggggaggaag	aaaacttgga	aggcttggga	3900
aatcaaacca	agcaaattgt	agagaaatat	gcatgcacca	caaggatatc	tcctaataca	3960
agccagcaga	attttgtcac	gcaacgtagt	aagagagctt	tgaaacaatt	cagactccca	4020
ctagaagaaa	cagaacttga	aaaaaggata	attgtggatg	acacctcaac	ccagtggtcc	4080
aaaaacatga	aacatttgac	cccgagcacc	ctcacacaga	tagactacaa	tgagaaggag	4140
aaaggggcca	ttactcagtc	tcccttatca	gattgcctta	cgaggagtca	tagcatccct	4200
caagcaaata	gatctccatt	acccattgca	aaggtatcat	catttccatc	tattagacct	4260
atatatctga	ccagggtcct	attccaagac	aactcttctc	atcttccagc	agcatcttat	4320
agaaagaaag	attctggggt	ccaagaaagc	agtcatttct	tacaaggagc	caaaaaaaat	4380
aacctttctt	tagccattct	aaccttggag	atgactggtg	atcaaagaga	ggttggctcc	4440
ctggggacaa	gtgccacaaa	ttcagtcaca	tacaagaaag	ttgagaacac	tgttctcccg	4500
aaaccagact	tgcccaaaac	atctggcaaa	gttgaattgc	ttccaaaagt	tcacatttat	4560
cagaaggacc	tattccctac	ggaaactagc	aatgggtctc	ctggccatct	ggatctcgtg	4620
gaagggagcc	ttcttcaggg	aacagaggga	gcgattaagt	ggaatgaagc	aaacagacct	4680
ggaaaagttc	cctttctgag	agtagcaaca	gaaagctctg	caaagactcc	ctccaagcta	4740
ttggatcctc	ttgcttggga	taaccactat	ggtactcaga	taccaaaaga	agagtggaaa	4800
tcccaagaga	agtcaccaga	aaaaacagct	tttaagaaaa	aggataccat	tttgtccctg	4860
aacgcttgtg	aaagcaatca	tgcaatagca	gcaataaatg	agggacaaaa	taagcccgaa	4920
atagaagtca	cctgggcaaa	gcaaggtagg	actgaaaggc	tgtgctctca	aaacccacca	4980
gtcttgaaac	gccatcaacg	ggaaataact	cgtactactc	ttcagtcaga	tcaagaggaa	5040
attgactatg	atgataccat	atcagttgaa	atgaagaagg	aagattttga	catttatgat	5100
gaggatgaaa	atcagagccc	ccgcagcttt	caaaagaaaa	cacgacacta	ttttattgct	5160
gcagtggaga	ggctctggga	ttatgggatg	agtagctccc	cacatgttct	aagaaacagg	5220
gctcagagtg	gcagtgtccc	tcagttcaag	aaagttgttt	tccaggaatt	tactgatggc	5280
tcctttactc	agcccttata	ccgtggagaa	ctaaatgaac	atttgggact	cctggggcca	5340
tatataagag	cagaagttga	agataatatc	atggtaactt	tcagaaatca	ggcctctcgt	5400
ccctattcct	tctattctag	ccttatttct	tatgaggaag	atcagaggca	aggagcagaa	5460
cctagaaaaa	actttgtcaa	gcctaatgaa	accaaaactt	acttttggaa	agtgcaacat	5520

astataggag	ccactaaaga	tgagtttgag	tocaaaocct	gggcttattt	ctctgatgtt	5580
						5640
	aagatgtgca					
acactgaacc	ctgctcatgg	gagacaagtg	acagtacagg	aatttgctct	gtttttcacc	5700
atctttgatg	agaccaaaag	ctggtacttc	actgaaaata	tggaaagaaa	ctgcagggct	5760
ccctgcaata	tccagatgga	agatcccact	tttaaagaga	attatcgctt	ccatgcaatc	5820
aatggctaca	taatggatac	actacctggc	ttagtaatgg	ctcaggatca	aaggattcga	5880
tggtatctgc	tcagcatggg	cagcaatgaa	aacatccatt	ctattcattt	cagtggacat.	5940
gtgttcactg	tacgaaaaaa	agaggagtat	aaaatggcac	tgtacaatct	ctatccaggt	6000
gtttttgaga	cagtggaaat	gttaccatcc	aaagctggaa	tttggcgggt	ggaatgcctt	6060
attggcgagc	atctacatgc	tgggatgagc	acacttttc	tggtgtacag	caataagtgt	6120
cagactcccc	tgggaatggc	ttctggacac	attagagatt	ttcagattac	agcttcagga	6180
caatatggac	agtgggcccc	aaagctggcc	agacttcatt	attccggatc	aatcaatgcc	6240
tggagcacca	aggagccctt	ttcttggatc	aaggtggatc	tgttggcacc	aatgattatt	6300
cacggcatca	agacccaggg	tgcccgtcag	aagttctcca	gcctctacat	ctctcagttt	6360
atcatcatgt	atagtcttga	tgggaagaag	tggcagactt	atcgaggaaa	ttccactgga	6420
accttaatgg	tettetttgg	caatgtggat	tcatctggga	taaaacacaa	tatttttaac	6480
cctccaatta	ttgctcgata	catccgtttg	cacccaactc	attatagcat	tegeageact	6540
cttcgcatgg	agttgatggg	ctgtgattta	aatagttgca	gcatgccatt	gggaatggag	6600
agtaaagcaa	tatcagatgc	acagattact	gcttcatcct	actttaccaa	tatgtttgcc	6660
acctggtctc	cttcaaaagc	tcgacttcac	ctccaaggga	ggagtaatgc	ctggagacct	6720
caggtgaata	atccaaaaga	gtggctgcaa	gtggacttcc	agaagacaat	gaaagtcaca	6780
ggagtaacta	ctcagggagt	aaaatctctg	cttaccagca	tgtatgtgaa	ggagttcctc	6840
atctccagca	gtcaagatgg	ccatcagtgg	actctcttt	ttcagaatgg	caaagtaaag	6900
gtttttcagg	gaaatcaaga	ctccttcaca	cctgtggtga	actctctaga	cccaccgtta	6960
ctgactcgct	accttcgaat	tcacccccag	agttgggtgc	accagattgo	cctgaggatg	7020
gaggttctgg	gctgcgaggc	acaggacctc	tactgagggt	ggccactgca	gcacctgcca	7080
ctgccgtcac	ctetecetec	tcagctccag	ggcagtgtcc	: ctccctggct	tgccttctac	7140
ctttgtgcta	aatcctagca	gacactgcct	tgaageetee	: tgaattaact	atcatcagtc	7200

ctgcatttct ttggtggggg	gccaggaggg	tgcatccaat	ttaacttaac	tcttacctat	7260
tttctgcagc tgctcccaga	ttactccttc	cttccaatat	aactaggcaa	aaagaagtga	7320
ggagaaacct gcatgaaagc	attcttccct	gaaaagttag	gcctctcaga	gtcaccactt	7380
cctctgttgt agaaaaacta	tgtgatgaaa	ctttgaaaaa	gatatttatg	atgttaacat	7440
ttcaggttaa gcctcatacg	tttaaaataa	aactctcagt	tgtttattat	cctgatcaag	7500
catggaacaa agcatgtttc	aggatcagat	caatacaatc	ttggagtcaa	aaggcaaatc	7560
atttggacaa tctgcaaaat	ggagagaata	caataactac	tacagtaaag	tctgtttctg	7620
cttccttaca catagatata	attatgttat	ttagtcatta	tgaggggcac	attcttatct	7680
ccaaaactag cattcttaaa	ctgagaatta	tagatggggt	tcaagaatcc	ctaagtcccc	7740
tgaaattata taaggcattc	tgtataaatg	caaatgtgca	tttttctgac	gagtgtccat	7800
agatataaag ccatttggtc	ttaattctga	ccaataaaaa	aataagtcag	gaggatgcaa	7860
ttgttgaaag ctttgaaata	aaataacaat	gtcttcttga	aatttgtgat	ggccaagaaa	7920
gaaaatgatg a					7931

<210> 30

<211> 2351

<212> PRT

<213> Homo sapiens

<400> 30

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe 1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg 35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile 65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln 85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser 100 105 110

- His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115 120 125
- Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp 130 135 140
- Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145 150 155 160
- Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165 170 175
- Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile 180 185 190
- Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr 195 200 205
- Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly 210 215 220
- Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp 225 230 235 240
- Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr 245 250 255
- Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val 260 265 270
- Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile 275 280 285
- Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser 290 295 300
- Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met 305 310 315 320

Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His 325 330 335

- Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro 340 345 350
- Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp 355 360 365
- Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser 370 380
- Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr 385 390 395 400
- Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro 405 410 415
- Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn 420 425 430
- Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met 435 440 445
- Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu 450 455 460
- Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu 465 470 475 480
- Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro 485 490 495
- His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys 500 505
- Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 515 520 525
- Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp 530 535
- Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg

545 550 555 560

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu 565 570 575

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val 580 585

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 595 600 605

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 610 615 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val 625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe 660 665 670

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr 675 680 685

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro 690 695 700

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly 705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp 725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750

Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg 755 760 765

Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 770 775 780

Ile 785	Glu	Lys	Thr	qaA	Pro 790	Trp	Phe	Ala	His	Arg 795	Thr	Pro	Met	Pro	800 Lys
Ile	Gln	Asn	Val	Ser 805	Ser	Ser	Asp	Leu	Leu 810	Met	Leu	Leu	Arg	Gln 815	Ser
Pro	Thr	Pro	His 820	Gly	Leu	Ser	Leu	Ser 825	Asp	Leu	Gln	Glu	Ala 830	Lys	Tyr
Glu	Thr	Phe 835	Ser	Asp	Asp	Pro	Ser 840	Pro	Gly	Ala	Ile	Asp 845	Ser	Asn	Asn
Ser	Leu 850	Ser	Glu	Met	Thr	His 855	Phe	Arg	Pro	Gln	Leu 860	His	His	Ser	Gly
Asp 865	Met	Val	Phe	Thr	Pro 870	Glu	Ser	Gly	Leu	Gln 875	Leu	Arg	Leu	Asn	Glu 880
Гув	Leu	Gly	Thr	Thr 885	Ala	Ala	Thr	Glu	Leu 890	Lys	Гуs	Leu	Asp	Phe 895	Lys
Val	Ser	Ser	Thr 900	Ser	Asn	Asn	Leu	Ile 905	Ser	Thr	Ile	Pro	Ser 910	Asp	Asn
Leu	Ala	Ala 915	Gly	Thr	Asp	'Asn	Thr 920		Ser	Leu	Gly	Pro 925	Pro	Ser	Met
Pro	Val 930		Туr	Asp	Ser	Gln 935	Leu	qaA .	Thr	Thr	Ьеи 940	Phe	Gly	Lys	Lys
Ser 945		Pro	Leu	Thr	Glu 950		Gly	Gly	Pro	955	. Ser	Leu	. Ser	Glu	Glu 960
Asn	Asn	. Asp	Ser	Ьув 965		Leu	. Glu	ı Ser	- Gly 970	r Leu	. Met	Asn	Ser	Gln 975	Glu
ser	· Ser	Trp	Gly 980		Asn	. Val	. Ser	985		Glu	. Ser	Gly	990	Leu	. Phe
Lys	Gly	Lys 995		, Ala	. His	: Gly	Pro 100		a Le	eu Le	eu Th	r Ly 1(/s A	sp A	Asn Ala

Leu	Phe 1010	Lys	Val.	Ser	Ile	Ser 1015	Leu	Leu	Lys	Thr	Asn 1020	Lys	Thr	Ser
Asn	Asn 1025	Ser	Ala	Thr	Asn	Arg 1030	ГÀЗ	Thr	His	Ile	Asp 1035	Gly	Pro	Ser
Leu	Leu 1040		Glu	Asn	Ser	Pro 1045	Ser	Val	Trp	Gln	Asn 1050	Ile	Leu	Glu
Ser	Asp 1055		Glu	Phe	Lys	Ьув 1060	Val	Thr	Pro	Leu	Ile 1065	His	Asp	Arg
Met	Leu 1070	Met	Asp	Lys	Asn	Ala 1075	Thr	Ala	Leu	Arg	Leu 1080	.Asn	His	Met
Ser	Asn 1085		Thr	Thr	Ser	Ser 1090	Ьуs	Asn	Met	Glu	Met 1095	Val	Gln	Gln
Lys	Lys 1100		Gly	Pro	Ile	Pro 1105		Asp	Ala	Gln	Asn 1110	Pro	Asp	Met
Ser	Phe 1115		Lys	Met	Leu	Phe 1120	Leu	Pro	Glu	Ser	Ala 1125	Arg	Trp	Ile
Gln	Arg 1130		His	Gly	Lys	Asn 1135	Ser ·	Leu	Asn	. Ser	Gly 1140	Gln	Gly	Pro
Ser	Pro 1145		Gln	Leu	Val	Ser 1150		Gly	Pro	Glu	Lys 1155	Ser	· Val	. Glu
Gly	Gln 1160		Phe	Leu	Ser	Glu 1165	Lys	Asn	. Lys	val	. Val 1170	Val	. Gly	, Lys
Gly	Glu 1175		Thr	· Lys	Asp	Val 1180		Leu	ι Ъуз	s Glu	Met 118	Va]	L Phe	e Pro
Ser	Ser 1190		ı Asn	Leu	Phe	Leu 1195		: Asr	ı Leı	ı Asp	Asn 120	Lei O	ı His	s Glu
Asr	1 Asn 1205		His	. Asr	ı Glr	ı Glu 1210		з Гуз	; Ile	e Glr	ı Glu 121	Glı 5	ı Ile	e Glu

Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro . 1365 Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys 1430 1435 1440

Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys 1445 1450 1455

Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly 1460 1465 1470

Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser 1475 1480 1485

Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp 1490 1495 1500

Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His 1505 1510 1515

Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser 1520 1525 1530

Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr 1535 1540 1545

Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val 1550 1560

Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser 1565 1570 1575

Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln 1580 1585 1590

Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys 1595 1600 1605

Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys 1610 1620

Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys 1625 1630 1635

Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg 1640 1645 1650

Leu	Cys 1655		Gln	Asn	Pro	Pro 1660	Val	Leu	Lys	Arg	His 1665	Gln	Arg	Glu
Ile	Thr 1670	Arg	Thr	Thr	Leu	Gln 1675	Ser	Asp	Gln	Glu	Glu 1680	Ile	Asp	Tyr
Asp	Asp 1685		Ile	ser		Glu 1690	Met	ГÀв	Lys	Glu	Asp 1695	Phe	Asp	Ile
Tyr	Asp 1700		Asp	Glu	Asn	Gln 1705	Ser	Pro	Arg	Ser	Phe 1710	Gln	ГÀЗ	Lys
Thr	Arg 1715		Tyr	Phe	Ile	Ala 1720	Ala	Val	Glu	Arg	Leu 1725	Trp	Asp	Tyr
Gly	Met 1730		Ser	Ser	Pro	His 1735	Val	Leu	Arg	Asn	Arg 1740	Ala	Gln	Ser
Gly	Ser 1745		Pro	Gln	Р'nе	Lys 1750	Гля	Val	Val	Phe	Gln 1755	Glu	Phe	Thr
Asp	Gly 1760		Phe	Thr	Gln	Pro 1765	Leu	Tyr	Arg	Gly	Glu 1770	Leu	Asn	Glu
His	Leu 1775		Leu	Leu	Gly	Pro 1780	Tyr	Ile	Arg	Ala	Glu 1785	Val	Glu	. Asp
Asn	Ile 1790		Val	Thr	Phe	Arg 1795		Gln	. Ala	Ser	Arg 1800	Pro	Tyr	Ser
Phe	туr 1805		Ser	Leu	Ile	Ser 1810		Glu	ı Glu	Asp	Gln 1815	Arg	Glr	. Gly
Ala	Glu 1820		Arg	Lys	Àsn	1825	Val	Lys	Pro	Asr	Glu 1830	Thr	Lys	Th
Tyr	Phe 1835		Lys	val	. Glm	1840		Met	: Ala	Pro	Thr 1845	Lys	. As <u>r</u>	Gl:
Phe	Asp 1850		. Lys	ala	ı Tr <u>r</u>	Ala 1855	Tyr	: Phe	e Se	. Asp	Val 1860	Asp)	Let	ı Gl

Lys	Asp 1865	Val	His	Ser	Gly	Leu 1870		Gly	Pro	Leu	Leu 1875	Val	Cys	His
Thr	Asn 1880	Thr	Leu	Asn	Pro	Ala 1885		Gly	Arg	Gln	Val 1890	Thr	Val	Gln
Glu	Phe 1895		Leu	Phe	Phe	Thr 1900	Ile	Phe	Asp	Glu	Thr 1905	ГÄЗ	Ser	Trp
Tyr	Phe 1910	Thr	Glu	Asn	Met	Glu 1915	Arg	Asn	Cys	Arg	Ala 1920	Pro	Cys	Asn
Ile	Gln 1925	Met	Glu	Asp	Pro	Thr 1930		Lys	Glu	Asn	Tyr 1935		Phe	His
Ala	Ile 1940	Asn	Gly	Tyr	Ile	Met 1945		Thr	Leu	Ъio	Gly 1950		Val	Met
Ala	Gln 1955	Asp	Gln	Arg	Ile	Arg 1960		Tyr	Leu	Ьeu	Ser 1965		Gly	Ser
Asn	Glu 1970	Asn	Ile	His	Ser	Ile 1975	His	Phe	Ser	Gly	His 1980		Phe	Thr
Val	Arg 1985	Lys	Lys	Glu	Glu	Tyr 1990	Lys	Met	Ala	Leu	Tyr 1995		Leu	Tyr
Pro	Gly 2000		Phe	Glu		Val 2005	Glu	Met	Leu	Pro	Ser 2010		Ala	Gly
Ile	Trp 2015		۷al	Glu	Cys	Leu 2020		Gly	Glu	His	Leu 2025		Ala	Gly
Met	Ser 2030		Leu	Phe	Leu	Val 2035	Tyr	Ser	Asn	Lys	Cys 2040		Thr	Pro
Leu	Gly 2045		Ala	Ser	Gly	His 2050		Arg	Asp	Phe	Gln 2055		Thr	Ala
Ser	Gly 2060		Tyr	Gly	Gln	Trp 2065		Pro	Ъуs	Leu	Ala 2070		Leu	His

Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser 2080 2075 Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile 2095 Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser / 2110 2105 Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr 2130 21,25 2120 Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn 2145 2140 2135 Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile 2155 2150 Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg 2170 2175 Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys 2185 2180 Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln 2200 2195 Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser 2220 2215 2210 Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp 2235 2230 2225 Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe 2250 2245 2240 Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys 2260 2255 Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser 2275 2270 Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys

2285 2290 2295

Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val 2300 2305 2310

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His 2315 2320 2325

Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu 2330 2340

Gly Cys Glu Ala Gln Asp Leu Tyr 2345 2350

<210> 31 <211> 1471 <212> DNA <213> Homo sapiens

<213> Homo sapiens

<400> 31 atggcgcccg tegccgtctg ggccgcgctg gccgtcggac tggagctctg ggctgcggcg 60 cacgcottge cogeccaggt ggcatttaca coctacgcec cggagcccgg gagcacatgc 120 eggeteagag aatactatga ecagacaget cagatgtget geageaaatg etegeeggge 180 caacatgcaa aagtettetg taccaagace teggacaceg tgtgtgacte etgtgaggac 240 agcacataca cocagetetg gaactgggtt cocgagtget tgagetgtgg etcecgetgt 300 agetetgace aggtggaaac teaageetge actegggaac agaacegeat etgeacetge 360 aggcccggct ggtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg 420 cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc agacgtggtg 480 tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcagg 540 ccccaccaga totgtaacgt ggtggccatc cctgggaatg caagcatgga tgcagtctgc 600 acgtccacgt ccccacccg gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 tocacacgat cocaacaca gcagccaact ccagaaccca gcactgctcc aagcacctcc 720 ttoctgctcc caatgggccc cagcccccca gctgaaggga gcactggcga cttcgctctt 780 ccagttggac tgattgtggg tgtgacagcc ttgggtctac taataatagg agtggtgaac 840 tgtgtcatca tgacccaggt gaaaaagaag cccttgtgcc tgcagagaga agccaaggtg 900 cctcacttgc ctgccgataa ggcccggggt acacagggcc ccgagcagca gcacctgctg 960

atcacagcgc	cgagctccag	cagcagctcc	ctggagagct	cggccagtgc	gttggacaga	1020
agggcgccca	ctcggaacca	gccacaggca	ccaggcgtgg	aggccagtgg	ggccggggag	1080
gcccgggcca	gcaccgggag	ctcagattct	tcccctggtg	gccatgggac	ccaggtcaat	1140
gtcacctgca	tcgtgaacgt	ctgtagcagc	tctgaccaca	gctcacagtg	ctcctcccaa	1200
gccagctcca	caatgggaga	cacagattcc	agcccctcgg	agtccccgaa	ggacgagcag	1260
gtccccttct	ccaaggagga	atgtgccttt	cggtcacagc	tggagacgcc	agagaccctg	1320
ctggggagca	ccgaagagaa	geceetgeee	cttggagtgc	ctgatgctgg	gatgaagccc	1380
agttaaccag	gccggtgtgg	gctgtgtcgt	agccaaggtg	ggctgagccc	tggcaggatg	1440
accctgcgaa	ggggccctgg	tccttccagg	c			1471

<210> 32

<211> 461

<212> PRT

<213> Homo sapiens

<400> 32

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 55

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 190

Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 220

Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 225 230 235 240

Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 250 255

Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 260 265 270

Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 275 280 285

Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 290 295 300

Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 305 310 315 320

Ile Thr Ala Pro Ser Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 350

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 375 380

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 400

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 . 425 430

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro 435 440 445

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450 455 460

<210> 33

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 33 tecacetgte eccgeagege eggetegege ceteetgeeg cagecacega geegeegtet 60 agegeeeega eetegeeace atgagageee tgetggegeg eetgettete tgegteetgg 120 tegtgagega etecaaagge agcaatgaac tteatcaagt tecategaac tgtgaetgte 180 taaatggagg aacatgtgtg tccaacaagt acttctccaa cattcactgg tgcaactgcc 240 caaagaaatt cggagggcag cactgtgaaa tagataagtc aaaaacctgc tatgaggga 300 atggtcactt ttaccgagga aaggccagca ctgacaccat gggccggccc tgcctgccct 360 ggaactetge cactgteett cagcaaacgt accatgeeca cagatetgat getetteage 420 tgggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct 480 atgtgcaggt gggcctaaag ccgcttgtcc aagagtgcat ggtgcatgac tgcgcagatg 540 gaaaaaaagcc ctcctctcct ccagaagaat taaaatttca gtgtggccaa aagactctga 600· ggcccgctt taagattatt gggggagaat tcaccaccat cgagaaccag ccctggtttg 660 cggccatcta caggaggcac cgggggggct ctgtcaccta cgtgtgtgga ggcagcctca 720

tcagcccttg	ctgggtgatc	agegeeacae	actgcttcat	tgattaccca	aagaaggagg	780
actacatcgt	ctacctgggt	cgctcaaggc	ttaactccaa	cacgcaaggg	gagatgaagt	840
ttgaggtgga	aaacctcatc	ctacacaagg	actacagcgc	tgacacgctt	geteaceaca	900
acgacattgc	cttgctgaag	atccgttcca	aggagggcag	gtgtgcgcag	ccatcccgga	960
ctatacagac	catctgcctg	ccctcgatgt	ataacgatcc	ccagtttggc	acaagctgtg	1020
agatcactgg	ctttggaaaa	gagaattcta	ccgactatct	ctatccggag	cagctgaaga	1080
tgactgttgt	gaagctgatt	tcccaccggg	agtgtcagca	gccccactac	tacggctctg	1140
aagtcaccac	caaaatgctg	tgtgctgctg	acccacagtg	gaaaacagat	tcctgccagg	1200
gagactcagg	gggacccctc	gtetgttece	tecaaggeeg	catgactttg	actggaattg	1260
tgagctgg g g	ccgtggatgt	gccctgaagg	acaagccagg	cgtctacacg	agagtctcac	1320
acttcttacc	ctggatccgc	agtcacacca	aggaagagaa	tggcctggcc	ctctgagggt	1380
	gaaacgggca					1440
	agctgtaaga			•		1475

<210> 34

<211> 431

<212> PRT

<213> Homo sapiens

<400> 34

Met Arg Ala Leu Leu Ala Arg Leu Leu Cys Val Leu Val Val Ser 1 5 10 15

Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp 20 25 30

Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile 35 40 45

His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile 50 55 60

Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly 65 70 75 80

Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser 85 90 95

Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu 100 105 110

- Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg 115 120 125
 - Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln 130 135 140
 - Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro 145 150 155 160
 - Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg 165 170 175
 - Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp 180 185 190
 - Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val
 - Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His 210 215 220
 - Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly 225 230 235
 - Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val 245 250 255
 - Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His 260 265 270
 - His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys 275 280 285
 - Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr 290 295 300
 - Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys 305 310 315

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly 340 345 350

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys 355 360 365

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu 370 375 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu 405 410 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu 420 425 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro

85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr 20 25 30

Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 37

<211> 120

<212> PRT

<213> Mus musculus

<400> 37

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser 50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala 100 105 110

Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 38

<211> 106

<212> PRT

<213> Mus musculus

<400> 38

Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met 20 25 30

His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr 35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 55 60

Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp 65 70 75 80

Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr 85 90 95

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105

<210> 39

<211> 1039 <212> DNA Homo sapiens <213> <400> 39 tectgeacag geagtgeett gaagtgette tteagagace tttetteata gaetaetttt 60 ttttctttaa gcagcaaaag gagaaaattg tcatcaaagg atattccaga ttcttgacag 120 cattetegte atetetgagg acateaceat cateteagga tgaggggcat gaagetgetg 1,80 ggggcgctgc tggcactggc ggccctactg cagggggccg tgtccctgaa gatcgcagcc 240 ttcaacatcc agacatttgg ggagaccaag atgtccaatg ccaccctcgt cagctacatt 300 gtgcagatcc tgagccgcta tgacatcgcc ctggtccagg aggtcagaga cagccacctg 360 actgeegtgg ggaagetget ggacaacete aatcaggatg caccagacae etatcactae 420 gtggtcagtg agccactggg acggaacagc tataaggagc gctacctgtt cgtgtacagg 480 cctgaccagg tgtctgcggt ggacagctac tactacgatg atggctgcga gccctgcggg 540 aacgacacct tcaaccgaga gccagccatt gtcaggttct tctcccggtt cacagaggtc 600 agggagtttg ccattgttcc cctgcatgcg gccccggggg acgcagtagc cgagatcgac 660 gctctctatg acgtctacct ggatgtccaa gagaaatggg gcttggagga cgtcatgttg 720 atgggcgact tcaatgcggg ctgcagctat gtgagaccct cccagtggtc atccatccgc 780 ctgtggacaa gccccacctt ccagtggctg atccccgaca gcgctgacac cacagctaca 840

<210> 40 <211> 282 <212> PRT <213> Homo sapiens

cacaccagtt gaactgcag

<213> HOMO Saprem

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu

cccacgcact gtgcctatga caggatcgtg gttgcaggga tgctgctccg aggcgccgtt

gttcccgact cggctcttcc ctttaacttc caggctgcct atggcctgag tgaccaactg

gcccaagcca tcagtgacca ctatccagtg gaggtgatgc tgaagtgagc agcccctccc

900

960

1020

1039

5

1

10

15

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr 20 25 30

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val 35 40 45

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp 50 55 60

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp 65 70 75 80

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn 85 90 95

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser 100 105 110

Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn 115 120 125

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe 130 135 140

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly
145 150 155 , 160

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val 165 170 175

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn 180 185 190

Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu 195 200 205

Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr 210 215 220

Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly 225 230 235

Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn 245 250 255

Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser 260 265 270

Asp His Tyr Pro Val Glu Val Met Leu Lys 275 280

<210> 41 <211> 678 <212> DNA

<213> Mus musculus

<400> 41 gacatettge tgaeteagte tecagecate etgtetgtga gtecaggaga aagagteagt 60 ttctcctgca gggccagtca gttcgttggc tcaagcatcc actggtatca gcaaagaaca 120 aatggttctc caaggcttct cataaagtat gcttctgagt ctatgtctgg gatcccttcc 180 aggtttagtg gcagtggatc agggacagat tttactctta gcatcaacac tgtggagtct 240 gaagatattg cagattatta ctgtcaacaa agtcataget ggccattcac gttcggctcg 300 gggacaaatt tggaagtaaa agaagtgaag cttgaggagt ctggaggagg cttggtgcaa 360 cetggaggat ccatgaaact etcetgtgtt geetetggat teatttteag taaccaetgg 420 atgaactggg teegeeagte teeagagaag gggettgagt gggttgetga aattagatea 480 aaatctatta attctgcaac acattatgcg gagtctgtga aagggaggtt caccatctca 540 agagatgatt ccaaaagtgc tgtctacctg caaatgaccg acttaagaac tgaagacact 600 ggcgtttatt actgttccag gaattactac ggtagtacct acgactactg gggccaaggc 660 678 accactetea cagtetee

<210> 42 <211> 226 <212> PRT

<213> Mus musculus

<400> 42

Ι

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
1 10 15

Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser

20 25 30

Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile 35 40 45

Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly . 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser 65 70 75 80

Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe 85 90 95

Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu 100 105 110

Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser 115 120 125

Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val 130 135 140

Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser 145 150 155 160

Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg 165 170 175

Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met 180 185 190

Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn 195 200 205

Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr 210 215 220

Val Ser 225

<210> 43 <211> 450

<212 <213		NA omo	sapi	ens										-		
<400 gctg	> 4 catc	3 ag a	agag	gcca	t ca	agca	catc	act	gtcci	ttc	tgcc	atgg	cc ci	tgtg	gatgc	60
gcct	cctg	cc c	ctgc	tggc	g ct	gatg	gccc	tct	9999	acc	tgac	ccag	cc g	cago	ctttg	120
tgaa	ccaa	ca c	ctgt	gcgg	c tc	acac	ctgg	tgg	aagc	tct	ctac	ctag [,]	tg t	gegg	ggaac	180
gagg	cttc	tt c	taca	cacc	c aa	gacc	cgcc	ggg	aggc	aga	ggac	ctgc	ag g	tggg	gcagg	240
tgga	gatg	gg c	9999	gccc	t gg	tgca	ggca	gcc	tgca	gcc	cttg	gccc	tg g	aggg	gtccc	300
tgca	gaag	cg t	ggca	ttgt	g ga	acaa	tgct	gta	ccag	cat	ctgc	taca	tc t	acca	gctgg	360
agaa	ctac	tg c	aact	agac	g ca	gccc	gcag	gca	gccc	ccc	accc	gccg	cc t	cctg	caccg	420
agag	agat	gg a	ataa	agcc	c tt	gaac	cagc									450
1 Trp	> 1 > F > H > 4 Ala	Leu Pro	Asp 20	Met 5 Pro	Ala	Ala	Ala	Phe 25	10 Val	Asn	Ala Gln Gly	His	Leu 30	Cys	Gly	
Phe	Tyr 50	Thr	Pro	Lys	Thr	Arg 55	Arg	Glu	Ala	Glu	Asp 60	Leu	Gln	Val	Gly	,
Gln 65	Val	Glu	Leu	Gly	Gly 70	Gly	Pro	Gly	Ala	Gly 75	Ser	Leu	Gln	Pro	Leu 80	
Ala	Leu	Glu	Gly	Ser 85	Leu	Gln	Lys	Arg	Gly 90	Ile	Val	Glu	Gln	Cys 95	Cys	
Thr	Ser	Ile	Cys 100	Ser	Leu	Tyr	Gln	Leu 105	Glu	Asn	Tyr	Cys	Asn 110			

<210> 45

```
1203
<211>
<212>
      DNA
      Hepatitis B virus
<213>
<400>
atgggaggtt ggtcttccaa acctcgacaa ggcatgggga cgaatctttc tgttcccaat
                                                                       60
cctctgggat tctttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaaacaat
                                                                      120
ccagattggg acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg
                                                                      1.80
ggagacttcg ggccagggtt caccccacca cacggcggtc ttttggggtg gagccctcag
                                                                      240
gctcagggca tattgacaac agtgccagca gcgcctcctc ctgtttccac caatcggcag
                                                                      300
teaggaagae agectaetee cateteteea cetetaagag acagteatee teaggecatg
                                                                      360
cagtggaact ccacaacatt ccaccaagct ctgctagatc ccagagtgag gggcctatat
                                                                      420
tttcctgctg gtggctccag ttccggaaca gtaaaccctg ttccgactac tgtctcaccc
                                                                      480
atatogtoaa tottotogag gactggggac cotgoacoga acatggagag cacaacatca
                                                                      540
ggattcctag gacccctgct cgtgttacag gcggggtttt tcttgttgac aagaatcctc
                                                                      600
acaataccac agagtetaga etegtggtgg acttetetea attttetagg gggageacce
                                                                      660
acgtgtcctg gccaaaattc gcagtcccca acctccaatc actcaccaac ctcttgtcct
                                                                      720
ccaatttgtc ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc
                                                                       780
ctgctgctat gcctcatctt cttgttggtt cttctggact accaaggtat gttgcccgtt
                                                                       840
tgtcctctac ttccaggaac atcaactacc agcacgggac catgcaagac ctgcacgatt
                                                                       900
cctgctcaag gaacctctat gtttccctct tgttgctgta caaaaccttc ggacggaaac
                                                                       960
tgcacttgta ttcccatccc atcatcctgg gctttcgcaa gattcctatg ggagtgggcc
                                                                      1020
teagteegtt teteetgget eagtttacta gtgccatttg tteagtggtt egeagggett
                                                                      1080
tececeactg tttggettte agttatatgg atgatgtggt attgggggee aagtetgtae
                                                                      1140
aacatettga gteeettttt aeetetatta eeaattttet tttgtetttg ggtatacatt
                                                                      1.200
                                                                      1203
tga
```

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu 1 10 15

<210> 46

<211> 400

<212> PRT

<213> Hepatitis B virus

<400> 46

Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro 20 25 30

- Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn 35 40 45
- Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly 50 55 60
- Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln 65 70 75 80
- Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser 85 90 95
- Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 100 105 110
- Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His 115 120 125
- Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly
- Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro 145 150 155
- Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu 165 170 175
- Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly 180 185 190
- Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser 195 200 205
- Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly 210 215 220
- Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro 225 230 235

Pro	Ile	Cys	Pro	Gly 245	Tyr	Arg	Trp	Met	Cys 250	Leu	Arg	Arg	Phe	11e 255	Ile	
Phe	Leu	Phe	Ile 260	Leu	Leu	Leu	Сув	Ьеи 265	Ile	Phe	Leu	Leu	Val 270	Leu	Leu	
Asp	Tyr	Gln 275	Gly	Met	Leu	Pro	Val 280	Cys	Pro	Leu	Leu	Pro 285	Gly	Thr	Ser	
Thr	Thr 290	Ser	Thr	Gly	Pro	Cys 295	Lys	Thr	Cys	Thr	Ile 300	Pro	Ala	Gln	Gly	
Thr 305	Ser	Met	Phe	Pro	Ser 310	Cys	Cys	Cys	Thr	Lуs 315	Pro	Ser	Asp	Gly	Asn 320	
Сув	Thr	Cys	Ile	Pro 325	Ile	Pro	Ser	Ser	Trp 330	Ala	Phe	Ala	Arg	Phe 335	Leu	
Trp	Glu	Trp	Ala 340	Ser	Val	Arg	Phe	Ser 345		Leu	Ser	Leu	Leu 350	Val	Pro	
Phe	Val	Gln 355		Phe	Ala	Gly	Leu 360	Ser	Pro	Thr	Val	Trp 365	Leu	. Ser	Val	
Ile	Trp 370		Met	Trp	Tyr	Trp 375		Pro	Ser	Leu	Tyr 380	Asn	lle	. Leu	Ser	
Pro 385		Leu	Pro	Leu	Leu 390		Ile	Phe	. Phe	Cys 395	Leu	ı Trp	Val	. Tyr	· Ile 400	
<21 <21 <21 <21	1> 2>	47 799 DNA Homo	sap	oiens	ı											
<40 cga	0> .acca	47 ctc	aggg	tect	gt g	gaca	gcto	a co	tago	tgca	a atg	ggata	ıcag	gcto	ccggac	60
gto	cctg	jete	ctgg	jettt	tg g	jaatg	ctet	g do	etgeo	ctgg	g ctt	caag	gagg	gcag	gtgcctt	120
CCC	aacc	att	ccct	tato	ca g	gcct	tttg	ga ca	acgo	tate	gete	cege	gccc	atco	gtctgca	180
															acagaa	240
gta	ttca	attc	ctgo	caģas	ecc c	ccag	gacci	ce e	etete	gttto	e te	agagt	tcta	ttc	cgacacc	300

ctccaacagg	gaggaaacac	aacagaaatc	caacctagag	ctgctccgca	tctccctgct	360
gctcatccag	tegtggetgg	agcccgtgca	gttcctcagg	agtgtcttcg	ccaacagcct	420
ggtgtacggc	gcctctgaca	gcaacgtcta	tgacctccta	aaggacctag	aggaaggcat	480
ccaaacgctg	atggggaggc	tggaagatgg	cagcccccgg	actgggcaga	tcttcaagca	540
gacctacagc	aagttcgaca	caaactcaca	caacgatgac	gcactactca	agaactacgg	600
gctgctctac	tgcttcagga	aggacatgga	caaggtcgag	acattcctgc	gcatcgtgca	660
gtgccgctct	gtggagggca	gctgtggctt	ctagctgccc	gggtggcatc	cctgtgaccc	720
ctccccagtg	catatactgg	ccctggaagt	tgccactcca	gtgcccacca	gccttgtcct	780
aataaaatta	agttgcatc				•	799

<210> 48 <211> 217 <212> PRT <213> Homo sapiens

<400> 48

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu 10 15

Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu 20 25 30

Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln 35 40 45

Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys 50 55 60

Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe 65 70 75 80

Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys 85 90 95

Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp 100 105 110

Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 115 120 125

Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 130 135 140

Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 145 150 155 160

Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 165 170 175

His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 180 185 190

Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys

Arg Ser Val Glu Gly Ser Cys Gly Phe 210 215

<210> 49

<211> 963

<212> DNA

<213> Homo sapiens

<400> 49 atggagacag acacactect gttatgggtg etgetgetet gggtteeagg ttecaetggt 60 gacgtcaggc gagggccccg gagcctgcgg ggcagggacg cgccagcccc cacgccctgc 120 gtcccggccg agtgcttcga cctgctggtc cgccactgcg tggcctgcgg gctcctgcgc 180 acgccgcggc cgaaaccggc cggggccagc agccctgcgc ccaggacggc gctgcagccg 240 caggagtegg tgggegeggg ggeeggegag geggeggteg acaaaaetea cacatgeeca 300 cegtgcccag cacctgaact cctggggga ccgtcagtct tcctcttccc cccaaaaccc 360 aaggacaccc tcatgatctc ccggacccct gaggtcacat gcgtggtggt ggacgtgagc 420 cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc 480 aagacaaage egegggagga geagtacaac ageaegtace gtgtggteag egteeteace 540 gtcctgcacc aggactggct gaatggcaag gagtacaagt gcaaggtctc caacaaagcc 600 ctcccagecc ccatcgagaa aaccatctcc aaagccaaag ggcagecccg agaaccacag 660 gtgtacaccc tgcccccatc ccgggatgag ctgaccaaga accaggtcag cctgacctgc 720 780 ctggtcaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tgggcagccg

gagaacaact acaagaccac gcctcccgtg ttggactccg acggctcctt cttcctctac 840
agcaagctca ccgtggacaa gagcaggtgg cagcagggga acgtcttctc atgctccgtg 900
atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tcccgggaaa 960
tga

<210> 50

<211> 320

<212> PRT

<213> Homo sapiens

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg 20 25 30

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu 35 40 45

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro 50 55 60

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro 65 70 75 80

Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr 85 90 95

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 100 105 110

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 115 120 125

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 130 135 140

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 145 150 155 160

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

175

165

170

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 195 200 205

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 210 215 220

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 225 230 235

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 245 250 255

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 260 265 270

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 275 280 285

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 290 295 300

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 305 310 315

<210> 51

<211> 107

<212> PRT

<213> Homo sapiens

<400> 51

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys 100 105

<210> 52

<211> 107

<212> PRT

<213> Mus musculus

<400> 52

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly 1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 65 70 75 80

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 . 105

<210> 53

<211> 119

<212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser 115

<210> 54

<211> 119

<212> PRT

<213> Mus musculus

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr 1 5 10 15

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly 100 105 110

Thr Leu Val Thr Val Ser Ala 115

<210> 55

<211> 214

<212> PRT

<213> Homo sapiens

<400> 55

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 56

<211> 448

<212> PRT

<213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

- Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140
- Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160
- Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175
- Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190
- Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205
- Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 220
- Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240
- Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255
- Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270
- Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285
- Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300
- Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 305 310 315 320
- Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 325 330 335
- Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr

340 345 350

Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 380

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445

<210> 57

<211> 8540

<212> DNA

<213> Homo sapiens

<400> 57 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag 60 aggecgagge ggeeteggee tetgeataaa taaaaaaaat tagteageea tgeatggge 120 ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact 180 atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240 gactttccac acctggttgc tgactaattg agatgcatgc tttgcatact tctgcctgct 300 ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccct 360 agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat ggagttccgc . 420 gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc ccgcccattg 480 acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca ttgacgtcaa 540 tgggtggact atttacggta aactgcccac ttggcagtac atcaagtgta tcatatgcca 600 agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagtac 660 atgacettat gggaetttee taettggeag taeatetaeg tattagteat egetattaee 720

atggtgatgc	ggttttggca	gtacatcaat	gggcgtggat	agcggtttga	ctcacgggga	780
	tecaceccat					840
	aatgtcgtaa					900
	tctatataag					960
	ctctcaccat					1020
ctcccaggtg	cacgatgtga	tggtaccaag	gtggaaatca	aacgtacggt	ggctgcacca	1080
tetgtettea	tettecegee	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	1140
tgcctgctga	ataacttcta	tcccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1200
ctccaatcgg	gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	1260
agcctcagca	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	agtotacgcc	1320
tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	caggggagag	1380
tgttgaattc	agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatgc	1440
ggccgtgata	tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1500
gtttgcccct	ccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1560
taataaaatg	aggaaattgc	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	1620
ggggtggggc	aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	1680
gcggtgggct	ctatggaacc	agctggggct	gacagetat	gccaagtacg	g ccccctattg	1740
acgtcaatga	. cggtaaatgg	cccgcctggc	attatgccca	gtacatgaco	: ttatgggact	1800
ttcctacttg	gcagtacatc	tacgtattag	, tcatcgctat	: taccatggtg	g atgeggtttt	1860
ggcagtacat	: caatgggcgt	ggatagcggt	ttgactcac	g gggatttcca	a agtotocaco	1920
ccattgacgt	: caatgggagt	ttgttttgg	e accaaaatca	a acgggactti	ccaaaatgtc	1980
gtaacaacto	c cgccccattg	acgcaaatg	g geggtagge	g tgtacggtg	g gaggtctata	2040
taagcagag	c tgggtacgto	ctcacattca	a gtgatcagca	a ctgaacaca	g accegtegae	2100
atgggttgg	a geeteatett	getetteeti	t gtegetgtt	g ctacgcgtg	t egetageace	2160
aagggccca	t eggtetteed	c cctggcacc	c tectecaag	a gcacctctg	g gggcacagcg	2220
gccctgggc	t gcctggtcaa	a ggactactt	c cccgaaccg	g tgacggtgt	c gtģgaactca	2280
ggcgccctg	a ccageggegt	z gcacacett	c ceggetgte	c tacagtect	c aggactctac	2340
teceteage	a gcgtggtga	c cgtgccctc	c agcagcttg	g gcacccaga	c ctacatctgc	2400
aacgtgaat	c acaagccca	g caacaccaa	g gtggacaag	a aagcagago	c caaatcttgt	2460

gacaaaactc acacatgccc accgtgccca gcacctgaac tectgggggg accgtcagtc 2	2520
ttectettee ecceaaaace caaggacace etcatgatet eccggacece tgaggteaca	2580
tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac	2640
ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac	2700
cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggactacaag	2760
tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa	2820
gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccagg	2880
aaccaggtca geetgaeetg eetggtcaaa ggettetate eeagegaeat egeegtggag	2940
tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc	3000
gacggeteet tetteeteta cagcaagete acegtggaca agagcaggtg gcagcagggg	3060
aacgtottot catgotoogt gatgoatgag gototgoaca accactacac goagaagago	3120
ctctccctgt ctccgggtaa atgaggatcc gttaacggtt accaactacc tagactggat	3180
togtgacaac atgoggoogt gatatotaog tatgatoago otogaotgtg cottotagtt	3240
gccagccatc tgttgtttgc ccctcccccg tgccttcctt gaccctggaa ggtgccactc	3300
ccactgtcct ttcctaataa aatgaggaaa ttgcatcgca ttgtctgagt aggtgtcatt	3360
ctattctggg gggtggggtg gggcaggaca gcaaggggga ggattgggaa gacaatagca	3420
ggcatgctgg ggatgcggtg ggctctatgg aaccagctgg ggctcgacag cgctggatct	3480
cccgatcccc agctttgctt ctcaatttct tatttgcata atgagaaaaa aaggaaaatt	3540
aattttaaca ccaattcagt agttgattga gcaaatgcgt tgccaaaaag gatgctttag	3600
agacagtgtt ctctgcacag ataaggacaa acattattca gagggagtac ccagagctga	3660
gactectaag ceagtgagtg geacageatt etagggagaa atatgettgt cateacegaa	3720
gcctgattcc gtagagccac accttggtaa gggccaatct gctcacacag gatagagagg	3780
gcaggagcca gggcagagca tataaggtga ggtaggatca gttgctcctc acatttgctt	3840
ctgacatagt tgtgttggga gcttggatag cttggacagc tcagggctgc gatttcgcgc	3900
caaacttgac ggcaatecta gegtgaagge tggtaggatt ttateceege tgecateatg	3960
gttcgaccat tgaactgcat cgtcgccgtg tcccaaaata tggggattgg caagaacgga	4020
gacctaccct ggcctccgct caggaacgag ttcaagtact tccaaagaat gaccacaacc	4080
tetteagtgg aaggtaaaca gaatetggtg attatgggta ggaaaacetg gtteteeatt	4140

cctgagaaca a	atcgaccttt	aaaggacaga	attaatatag	ttctcagtag	agaactcaaa	4200
gaaccaccac	gaggagetea	ttttcttgcc	aaaagtttgg	atgatgcctt	aagacttatt	4260
gaacaaccgg	aattggcaag	taaagtagac	atggtttgga	tagtcggagg	cagttctgtt	4320
taccaggaag	ccatgaatca	accaggccac	cttagactct	ttgtgacaag	gatcatgcag	4380
gaatttgaaa	gtgacacgtt	tttcccagaa	attgatttgg	ggaaatataa	acttctccca	4440
gaatacccag	gegteetete	tgaggtccag	gaggaaaaag	gcatcaagta	taagtttgaa	4500
gtctacgaga	agaaagacta	acaggaagat	gctttcaagt	tetetgetee	cctcctaaag	4560
tcatgcattt	ttataagacc	atgggacttt	tgatggattt	agatcagcct	cgactgtgcc	4620
ttctagttgc	cagccatctg	ttgtttgccc	ctcccccgtg	ccttccttga	ccctggaagg	4680
tgccactccc	actgtccttt	cctaataaaa	tgaggaaatt	gcatcgcatt	gtctgagtag	4740
gtgtcattct	attctggggg	gtggggtggg	gcaggacagc	aagggggagg	attgggaaga	4800
caatagcagg	catgctgggg	atgcggtggg	ctctatggaa	ccagctgggg	ctcgagctac	4860
tagctttgct	tctcaatttc	ttatttgcat	aatgagaaaa	aaaggaaaat	taattttaac	4920
accaattcag	tagttgattg	agcaaatgcg	ttgccaaaaa	ggatgcttta	gagacagtgt	4980
tctctgcaca	gataaggaca	aacattattc	agagggagta	cccagagctg	agactcctaa	5040
gccagtgagt	ggcacagcat	tctagggaga	aatatgcttg	tcatcaccga	agcctgattc	5100
cgtagagcca	caccttggta	agggccaatc	tgeteacaca	. ggatagagag	ggcaggagcc	5160
agggcagagc	atataaggtg	aggtaggatc	agttgctcct	cacatttgct	tctgacatag	5220
ttgtgttggg	agcttggatc	gatectetat	ggttgaacaa	gatggattgo	acgcaggttc	5280
taaggaagat	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	a caateggetg	5340
ctctgatgcc	gccgtgttcc	ggctgtcago	: gcaggggcgc	: ccggttcttt	: ttgtcaagac	5400
cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	ı gegeggetat	: egtggetgge	5460
cacgacgggc	gttccttgcg	g cagetgtget	: cgacgttgtc	c actgaagcg	g gaagggactg	5520
gctgctattg	ggcgaagtgo	cggggcagga	a totootgtoa	a totoacctt	g ctcctgccga	5580
gaaagtatcc	atcatggctg	g atgcaatgco	g geggetgeat	acgettgate	c eggetacetg	5640
cccattcgac	caccaagcga	a aacatcgcat	cgagcgagc	a cgtactcgg	a tggaagccgg	5700
tettgtegat	caggatgat	c tggacgaaga	a gcatcaggg	g ctcgcgcca	g ccgaactgtt	5760
cgccaggctc	aaggcgcgc	a tgcccgacg	g cgaggatct	c gtcgtgacc	c atggcgatgc	5820
ctgcttgccg	aatatcatg	g tggaaaatg	g cegetttte	t ggattcatc	g actgtggccg	5880

gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata ttgctgaaga 5940 gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg cttcccgatt 6000 cgcagcgcat cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt 6060 cgaaatgacc gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc 6120 cttctatgaa aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca 6180 gegeggggat eteatgetgg agttettege ceaccecaac ttgtttattg cagettataa 6240 tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca 6300 ttctagttgt ggtttgtcca aactcatcaa tctatcttat catgtctgga tcgcggccgc 6360 gatcccgtcg agagcttggc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat 6420 cegeteacaa ttecacacaa catacgagee ggageataaa gtgtaaagee tggggtgeet 6480 aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 6540 acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 6600 ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 6660 gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg 6720 6780 caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa 6840 gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct 6900 cectegtgeg etetectgtt eegaceetge egettaeegg atacetgtee geetttetee 6960 cttcgggaag cgtggcgctt tctcaatgct cacgctgtag gtatctcagt tcggtgtagg 7020 tegttegete caagetggge tgtgtgeacg aacceeegt teageeegae egetgegeet 7080 tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 7140 cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga 7200 agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga 7260 agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg 7320 gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 7380 aagateettt gatettttet aeggggtetg aegeteagtg gaaegaaaae teaegttaag 7440 ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat 7500 gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 7560

taatcagtga	ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gttgcctgac	7620
teccegtegt	gtagataact	acgatacggg	agggcttacc	atctggcccc	agtgctgcaa	7680
tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	7740
gaagggccga	gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	7800
gttgccggga	agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	gttgttgcca	7860
	catcgtggtg					7920
	aaggcgagtt					7980
	gatcgttgtc					8040
	taattctctt					8100
	caagtcattc					8160
	ggataatacc					8220
					agttcgatgt	8280
					gtttctgggt	8340
					cggaaatgtt	8400
					: tattgtctca	8460
				•	cegegeacat	8520
	agtgccacct					8540

<210> 58

<211> 9209

<212> DNA

<213> Mus musculus

<400> 58 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag -60 aggecgagge ggeeteggee tetgeataaa taaaaaaaat tagteageea tgeatggge 120 ggagaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact 180 atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240 gactttccac acctggttgc tgactaattg agatgcatgc tttgcatact tctgcctgct 300 ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccct 360 agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat ggagttccgc 420 gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc ccgcccattg 480

acgtcaataa	tgacgtatgt	tcccatagta :	acgccaatag	ggactttcca	ttgacgtcaa	540
	atttacggta					600
	ctattgacgt					660
	gggactttcc					720
	ggttttggca					780
	tccaccccat					840
	aatgtcgtaa					900
						960
	tctatataag				*	1020
	ctctcactat					
gcttcagtca	taatgtccag	aggacaaatt	gttctctccc	agtctccagc	aatcctgtct	1080
gcatctccag	gggagaaggt	cacaatgact	tgcagggcca	gctcaagtgt	aagttacatc	1140
cactggttcc	agcagaagcc	aggatcctcc	cccaaaccct	ggatttatgc	cacatccaac	1200
ctggcttctg	gagtccctgt	tegetteagt	ggcagtgggt	ctgggacttc	ttactctctc	1260
acaatcagca	gagtggaggc	tgaagatgct	gccacttatt	actgccagca	gtggactagt	1320
aacccaccca	cgttcggagg	ggggaccaag	ctggaaatca	aacgtacggt	ggctgcacca	1380
	tettecegee					1440
tgcctgctga	ataacttcta	tcccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1500
	gtaactccca					1560
	a gcaccctgac					1620
tgcgaagtca	a cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	caggggagag	1680
tgttgaatto	agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatgc	1740
ggccgtgata	a tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1800
gtttgccccl	cacaegtgaa	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1860
	g aggaaattgo					1920
					a tgctggggat	1980
					g ccccctattg	2040
					ttatgggact	2100
					g atgeggtttt	2160
					a agtctccacc	2220

ccattgacgt	caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	2280
	cgccccattg					2340
	tgggtacgtc					2400
	gcctcatctt					2460
	agcagcctgg					2520
	ctggctacac					2580
•	tggaatggat					2640
	aaggcaaggc					2700
	gcctgacatc					2760
	actggtactt					2820
	agggcccatc		•			2880
	ccctgggctg					2940
	gcgccctgac					3000
	ccctcagcag					3060
	acgtgaatca					3120
	acaaaactca					3180
	tectettece					3240
					gttcaactgg	3300
					gcagtacaac	3360
					gaatggcaag	3420
					a aaccatctcc	3480
					ccgggatgag	3540
					cagogacato	3600
					e gesteesgtg	3660
					a gagcaggtgg	3720
cagcagggg	a acgtcttctc	atgctccgtg	g atgcatgagg	g ctctgcaca:	a ccactacacg	3780
					a ccaactacct	3840
agactggati	t cgtgacaaca	a tgcggccgts	g atatctacg	t atgatcagc	c tegaetgtge	3900

cttctagttg	ccagccatct	gttgtttgcc	cctccccgt	gccttccttg	accetggaag	3960
gtgccactcc	cactgtcctt	tcctaataaa	atgaggaaat	tgcatcgcat	tgtctgagta	4020
ggtgtcattc	tattctgggg	ggtggggtgg	ggcaggacag	caagggggag	gattgggaag	4080
acaatagcag	gcatgctggg	gatgcggtgg	gctctatgga	accagctggg	gctcgacagc	4140
gctggatctc	ccgatcccca	gctttgcttc	tcaatttctt	atttgcataa	tgagaaaaaa	4200
aggaaaatta	attttaacac	caattcagta	gttgattgag	caaatgcgtt	gccaaaaagg	4260
atgctttaga	gacagtgttc	tctgcacaga	taaggacaaa	cattattcag	agggagtacc	4320
cagagetgag	actcctaagc	cagtgagtgg	cacagcattc	tagggagaaa	tatgcttgtc	4380
atcaccgaag	cctgattccg	tagagccaca	ccttggtaag	ggccaatctg	ctcacacagg	4440
atagagaggg	caggagccag	ggcagagcat	ataaggtgag	gtaggatcag	ttgctcctca	4500
catttgcttc	tgacatagtt	gtgttgggag	cttggatagc	ttggacagct	cagggctgcg	4560
atttcgcgcc	aaacttgacg	gcaatcctag	cgtgaaggct	ggtaggattt	tatccccgct	4620
gccatcatgg	ttcgaccatt	gaactgcatc	gtcgccgtgt	cccaaaatat	ggggattggc	4680
aagaacggag	acctaccctg	geeteegete	aggaacgagt	tcaagtactt	ccaaagaatg	4740
accacaacct	cttcagtgga	aggtaaacag	aatctggtga	ttatgggtag	gaaaacctgg	4800
ttctccattc	ctgagaagaa	tcgaccttta	aaggacagaa	ttaatatagt	tctcagtaga	4860
gaactcaaag	aaccaccacg	aggagctcat	tttcttgcca	aaagtttgga	tgatgcctta	4920
agacttattg	aacaaccgga	attggcaagt	aaagtagaca	tggtttggat	agtcggaggc	4980
agttctgttt	accaggaagc	catgaatcaa	ccaggccacc	ttagactctt	tgtgacaagg	5040
atcatgcagg	aatttgaaag	tgacacgttt	ttcccagaaa	ttgatttggg	gaaatataaa	5100
cttctcccag	aatacccagg	cgtcctctct	gaggtccagg	aggaaaaagg	catcaagtat	5160
aagtttgaag	tctacgagaa	gaaagactaa	caggaagatg	ctttcaagtt	ctctgctccc	5220
ctcctaaagc	tatgcatttt	tataagacca	tgggactttt	gctggcttta	gatcagcctc	5280
gactgtgcct	tctagttgcc	agccatctgt	tgtttgccc	tcccccgtgc	cttccttgac	5340
cctggaaggt	gccactccca	ctgtcctttc	ctaataaaat	gaggaaattg	categeattg	5400
tctgagtagg	tgtcattcta	ttetgggggg	tggggtgggg	caggacagca	agggggagga	5460
ttgggaagac	aatagcaggc	atgctgggga	tgcggtgggc	tctatggaac	cagctggggc	5520
tegagetact	agctttgctt	ctcaatttct	tatttgcata	atgagaaaaa	. aaggaaaatt	5580
aattttaaca	ccaattcagt	agttgattga	. gcaaatgcgt	tgccaaaaag	gatgctttag	5640

agacagtgtt	ctctgcacag	ataaggacaa	acattattca	gagggagtac	ccagagctga	5700
gactcctaag	ccagtgagtg	gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	5760
gcctgattcc	gtagagccac	accttggtaa	gggccaatct	gctcacacag	gatagagagg	5820
gcaggagcca	gggcagagca	tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	5880
ctgacatagt	tgtgttggga	gcttggatcg	atcctctatg	gttgaacaag	atggattgca	5940
cgcaggttct	ccggccgctt	gggtggagag	gctattcggc	tatgactggg	cacaacagac	6000
aatcggctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	caggggcgcc	cggttctttt	6060
tgtcaagacc	gacctgtccg	gtgccctgaa	tgaactgcag	gacgaggcag	cgcggctatc	6120
gtggctggcc	acgacgggcg	ttccttgcgc	agctgtgctc	gacgttgtca	ctgaagcggg	6180
aagggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	ctcctgtcat	ctcaccttgc	6240
tcctgccgag	aaagtatcca	tcatggctga	tgcaatgcgg	cggctgcata	cgcttgatcc	6300
ggctacctgc	ccattcgacc	accaagcgaa	acategeate	gagcgagcac	gtactcggat	6360
ggaagccggt	cttgtcgatc	aggatgatct	ggacgaagag	catcaggggc	tegegecage	6420
cgaactgttc	gccaggctca	aggegegeat	gcccgacggc	gaggateteg	tcgtgaccca	6480
tggcgatgcc	tgcttgccga	atatcatggt	ggaaaatggc	cgcttttctg	gattcatcga	6540
ctgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	gcgttggcta	cccgtgatat	6600
tgctgaagag	cttggcggcg	aatgggctga	cegatteata	gtgctttacg	gtatcgccgc	6660
tcccgattcg	cagcgcatcg	ccttctatcg	ccttcttgac	gagttettet	gagegggaet	6720
ctggggttcg	aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	6780
accgccgcct	tctatgaaag	gttgggcttc	ggaatcgttt	teegggaege	cggctggatg	6840
atcctccagc	geggggatet	catgctggag	ttettegece	accccaactt	gtttattgca	6900
gcttataatg	gttacaaata	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	6960
tcactgcatt	ctagttgtgg	tttgtccaaa	ctcatcaatc	tatcttatca	tgtctggatc	7020
gcggccgcga	tecegtegag	agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	7080
attgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	7140
ggggtgccta	atgagtgage	taactcacat	taattgcgtt	gcgctcactg	cccgctttcc	7200
agtcgggaaa	cctgtcgtgc	cagetgeatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	7260
gtttgcgtat	tgggcgctct	tccgcttcct	cgctcactga	ctcgctgcgc	teggtegtte	7320

ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	7380
gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	7440
aggccgcgtt	gctggcgttt	ttccataggc	teegeeeeee	tgacgagcat	cacaaaaatc	7500
gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	gegttteece	7560
ctggaagctc	cctcgtgcgc	teteetgtte	cgaccctgcc	gcttaccgga	tacctgtccg	7620
cctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	acgctgtagg	tatctcagtt	7680
cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	acccccgtt	cagcccgacc	7740
getgegeett	atccggtaac	tategtettg	agtccaaccc	ggtaagacac	gacttatcgc	7800
cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	7860
agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgcg ;	7920
ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	7980
ccaccgctgg	tageggtggt	ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaag	8040
gatctcaaga	agateetttg	atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	8100
cacgttaagg	gattttggtc	atgagattat	caaaaaggat	cttcacctag	atccttttaa	8160
attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	tctgacagtt	8220
accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	8280
ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	tctggcccca	8340
gtgctgcaat	gatacegega	gacccacgct	caccggctcc	agatttatca	gcaataaacc	8400
agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	8460
ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	8520
ttgttgccat	tgctacaggc	atcgtggtgt	cacgetegte	gtttggtatg	gcttcattca	8580
geteeggtte	ccaacgatca	aggcgagtta	catgatecee	catgttgtgc	aaaaaagcgg	8640
ttagctcctt	eggteeteeg	atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	8700
tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	tgcttttctg	8760
tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	tatgcggcga	ccgagttgct	8820
cttgcccggc	gtcaatacgg	gataataccg	cgccacataġ	cagaacttta	aaagtgctca	8880
tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	8940
gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	atcttttact	ttcaccagcg	9000
tttctgggtg	agcaaaaaca	ggaaggcaaa	atgeegeaaa	aaagggaata	agggcgacac	9060

ggaa	atgt	ttg	aata	ctcat	a ct	ctto	ccttt	: tto	caata	ıtta	ttga	agca	itt t	tatca	ıgggtt	912
atto	gtcto	cat	gagcg	ggata	ac at	attt	gaat	gta	attta	ıgaa	aaat	aaac	aa a	atagg	ggttc	918
cgcg	JCaca	att	tccc	egaaa	aa gt	geca	acct									920
<210 <213 <212 <213	.> 3 !> I	59 384 DNA Mus	muscı	ılus												
<400 atgg		59 Etc	aggto	gcaga	at ta	atcag	gatto	c ate	gctaa	atca	gtgo	ettea	igt d	cataa	ıtgtcc	6
agag	ggca	aaa	ttgtt	cctct	ca a	cagto	ctcca	gca	atco	tgt	ctgo	catct	cc a	aggg	gagaag	12
gtca	ıcaat	ga	cttg	caggg	g c ca	agcto	caagt	gta	agtt	aca	tcca	actgo	gtt d	ccago	agaag	18
ccag	gato	cat	cccc	caaac	cc ct	ggat	ttat	gco	cacat	cca	acct	ggct	tc t	tggag	gtccct	24
gtto	gctt	ca	gtggd	cagto	aa at	ctgg	ggact	tet	tact	ctc	tcac	caato	ag o	cagag	gtggag	30
gate	gaaga	atg	ctgc	cacti	a tt	tacto	gccag	g cag	gtgga	acta	gtaa	accca	acc o	cacgt	tegga	36
ggg <u>g</u>	ggad	cca	agcts	ggaaa	at ca	aaa										384
<210 <213 <212 <213	.>] !>]	50 128 PRT Mus	musci	ılus												
<400	> -(50														
Met 1	Asp	Phe	Gln	Val 5	Gln	Ile	Ile	Ser	Phe 10	Leu	Leu	Ile	Ser	Ala 15	Ser	
Val	Ile	Met	Ser 20	Arg	Gly	Gln	Ile	Val 25	Leu	Ser	Gln	Ser	Pro 30	Ala	Ile	
Leu	Ser	Ala 35	Ser	Pro	Gly	Glu	Lys 40	Val	Thr	Met	Thr	Cys 45	Arg	Ala	Ser	
Ser	Ser 50	Val	Ser	Tyr	Ile	His 55	Trp	Phe	Gln	Gln	Lys 60	Pro	Gly	Ser	Ser	
Pro 65	Lys	Pro	Trp	Ile	Tyr 70	Ala	Thr	Ser	Asn	Leu 75	Ala	Ser	Gly	Val	Pro 80	
77_ T	73 2400	nh a		C]	Cor	Clyr	Cor	C1 **	mh	Car	Пага	Cor	T.011	Thr	т1д	

85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110

Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
115 120 125

<210> 61

<211> 420

<212> DNA

<213> Mus musculus

<400> 61

atgggttgga goetcatett getetteett gtegetgttg etaegegtgt eetgteecag 60 gtacaactge ageagectgg ggetgagetg gtgaagectg gggeetcagt gaagatgtee 120 tgeaaggett etggetaeae atttaceagt tacaatatge actgggtaaa acagacacet 180 ggteggggee tggaatggat tggagetatt tateeeggaa atggtgatae tteetaeaat 240 cagaagttea aaggeaagge cacattgaet geagacaaat eeteeageae ageetaeatg 300 cageteagea geetgaeate tgaggaetet geggtetatt actgtgeaag ategaettae 360 taeggeggtg actggtaett caatgtetgg ggegeaggga ceaeggteae egtetetgea 420

<210> .62

<211> 140

<212> PRT

<213> Mus musculus

<400> 62

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg
1 5 10 15

Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45

Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 55 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Ser 85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala 130 135 140