影像分類攻擊方法模組圖形化介面 使用說明書

撰寫日期: 2022/04/23

目錄

- \	執行說明	1
1.	直接執行 EXE 檔案	1
2.	透過 Python 執行	1
二、	圖形化介面說明	2
三、	資料集說明	3
1.	MNIST 手寫辨識資料集 範例	3
四、	執行參數說明	3
1.	個別參數說明	4

一、 執行說明

1. 直接執行 EXE 檔案

「ART_Tool_CPU.exe」為影像分類攻擊方法模組程式。請注意,本程式只能運行在 Windows 64 位元 作業系統上,並且不支援 GPU 運行,只能運行在 CPU 上。

執行 EXE 檔方式支援後接參數設定,詳情請至「執行參數說明」查看。

2. 透過 Python 執行

本程式可以運行在 Python 相關虛擬環境中,像是 Anaconda。請注意,本程式只支援 Python 3.8 版本,在安裝相關環境前,請先注意 Python 版本是否正確。「requirements.txt」 為安裝 Python 相關環境需求,可透過在終端機中執行「pip3 install-r requirements.txt」 來安裝。

安裝環境完成後, 執行「python ART_Tool_RGB.py」就可以執行圖形化介面。執行 Python 檔方式也支援後接參數設定,詳情請至「執行參數說明」查看。

二、 圖形化介面說明

<pre> ART Tool</pre>							
選擇目標	≣模型 Le	eNet5	•				
選擇攻粵	B模型 Le	eNet5	•				
選擇攻擊	≜方法 FC	GSM	•				
雜訊參賞	t (eps/conf)	0.5					
選擇資	資料集		執	f			

圖1、圖形化介面

「選擇目標模型」、「選擇攻擊模型」、「選擇攻擊方法」為透過下拉選單來選擇,「雜訊參數」需自行輸入,否則為預設值「0.5」。如果為輸入 eps 擾動參數,建議輸入值介於 0 到 1 之間的浮點數,如果為輸入 conf 置信度,則建議輸入值介於 0 到 16 之間的整數。

按下「選擇資料集」後,會進入選擇資料夾視窗,接受的資料夾格式請參見「<u>資料集說</u>明」。

圖 2、選擇資料夾視窗

三、 資料集說明

選擇一個資料夾路徑,該資料夾底下必須包含名稱為「train」及「test」的兩個子資料夾,各自代表訓練資料集及測試資料集。其中資料集的架構,同一分類的圖片必須存在同一資料夾,且資料夾名稱為該類別的名稱。圖片檔名不影響程式運作。可接受 PNG 檔及 JPEG 檔的圖片檔案類型。

1. MNIST 手寫辨識資料集 範例

以下為 MNIST 手寫辨識資料集架構,以作為可接受資料集架構範例:

四、 執行參數說明

本程式支援參數設定,指令格式為

```
{ART_Tool.exe 或 python ART_Tool_RGB.py} [-h] [--interface INTERFACE]

[--cuda CUDA] [--dataset-path DATASET_PATH] [--num-workers NUM_WORKERS]

[--norm] [--predict-model PREDICT_MODEL] [--attack-model ATTACK_MODEL]

[--white-box] [--attack-func ATTACK_FUNCTION] [--max-iter MAX_ITER]

[--eps EPS] [--conf CONFIDENCE] [--epochs EPOCHS] [--batch-size BATCH_SIZE]

[--optim OPTIM] [--lr LR] [--momentum MOMENTUM]
```

範例

ART_Tool.exe --epochs 5 --lr 0.01

python ART_Tool_RGB.py --num-workers 4 --norm

1. 個別參數說明

参數	後接參數	說明	預設值
-h,help	無	顯示參數說明	無
interface	INTERFACE	選擇設定參數方式 (1:GUI介面,2:標準輸入,3:執行參數)	1
cuda	CUDA	設定運行 GPU 的 id,本程式不支援	不支援
dataset-path	DATASET_PATH	設定資料集路徑	無
num-workers	NUM_WORKERS	設定執行緒數量	8
predict-model	PREDICT_MODEL	選擇目標模型 (1:LeNet5, 2:CNN, 3:AlexNet, 4:GoogLeNet, 5:VGG19, 6:ResNeXt101)	1
attack-model	ATTACK_MODEL	選擇攻擊模型 (1:LeNet5, 2:CNN, 3:AlexNet, 4:GoogLeNet, 5:VGG19, 6:ResNeXt101)	1
white-box	無	設定白盒實驗	否
attack-func	ATTACK_FUNCTION	選擇攻擊方法 (1:FGSM, 2:BIM, 3:PGD, 4:C&W L2, 5:C&W Linf)	1
max-iter	MAX_ITER	設定最大迭代次數	20
eps	EPS	設定擾動參數	0.1
conf	CONFIDENCE	設定置信度	無
epochs	EPOCHS	設定訓練回合數	20
batch-size	BATCH_SIZE	設定 batch 值	32
optim	OPTIM	設定優化器	SGD
lr	LR	設定學習速率	0.001
momentum	MOMENTUM	設定 SGD 的 Momentum 值	0.9