Managing Machine Learning Experiments

Dr. Rutu Mulkar

About me:

BS, MS, PhD in Computer Science

Ph.D. thesis in Natural Language Processing

Founder of Al company - Ticary Solutions - sold to Sigmoidal in 2019

Contributor to IBM Watson that defeated humans in Jeopardy!

Previously worked at:

Pricewaterhouse Coopers, IBM, Moz and a Healthcare company

Outline: Managing Machine Learning Experiments

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Open Source Software
- Paid Software
- Conclusion

Outline

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Open Source Software
- Paid Software
- Conclusion

Consider this scenario

You are a data scientist

You are provided with 10,000 samples of conversational data

You are asked to build a classifier to classify a question/sentence by intent

- What time is it?
- Can you tell me the time?
- Set an alarm for 8:00PM
- Can you remind me at 8:00PM?

A typical ML workflow

A typical ML workflow

How to find the best model

- Add new features to your code
 - Adding keywords like "time" indicate the red class
 - Adding keywords like "reminder", "alarm" signify the green class
 - Maybe use Word2Vec to get keywords similar to "time" and "alarm" (link)
 - Use an n-gram word vectorizer
- Change the Algorithm
 - Naive Bayes (baseline)
 - Random Forests
 - Recurrent Neural Networks
- Change hyperparameters
 - Change the # of words, and # of chars
 - Change the values or other values in built in functions
- Pipeline changes
 - [remove sp chars, word chunking]
 - [word chunking, remove sp chars]

What time is it?

Can you tell me the time?

Set an alarm for 8:00PM

Can you remind me at 8:00PM?

but
how can we record each training and testing run?

We might record each code change in git

Outline

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Opensource Software
- Paid Software
- Conclusion

Documenting ML Experiments

Experiment ID							
A	В	С	D	E	F	G	
Experiment ID	Accuracy	Precision 0.5	Recall 0.5	F1-0.5	Additional Details	Notes	
0_jan_feb_output	0.436416185	0.7008778836	0.2598066296	0.3790895308	https://drive.google.com/	Baseline scores - score to beat	
1_tfidfoutput1	0.4454479769	0.4488333081	0.1092543365	0.1757322018	https://drive.google.com/	2000 tfidf char grams of size 1-2	
2_tfidfoutput2	0.4738078035	0.574528196	0.1238582369	0.2037841689	https://drive.google.com/	tfidf char grams 3-4, max features 5000	
3_preproc_output	0.4501445087	0.6401523854	0.08468742423	0.1495857593	https://drive.google.com/	Hashing vectorizer with preprocessing	
4_tfidf	0.4875361272	0.732219383	0.09915287236	0.1746549865		2500 char grams 3-4 grams, 2500 Word grams 1-2 grams, TFIDF vectorizer	
5_tfidf_5000	0.4985549133	0.7526197727	0.1025996849	0.1805818398		5000 char grams 3-4 grams, 5000 Word grams 1-2 grams, TFIDF vectorizer	
6_tfidf_10000	0.5028901734	0.7642833247	0.1065390523	0.1870094826		10000 char grams 3-4 grams, 10000 Word grams 1-2 grams, TFIDF vectorizer	
6_tfidf_10000_2	0.5036127168	0.7564419212	0.1029915207	0.1812987487		normalization error fixed from previous experiment	
7_tfidf_svm	0.4367774566	0.5886689759	0.135238904	0.2199477291		SVM classifier, aggressive preprocessing	
8_tfidf_15000_LR	0.492232659	0.7439588317	0.09816293454	0.1734409085		TFIDF, 15000 features	
9_tfidf_10000_LG	0.4878973988	0.7624622412	0.09266619797	0.1652488065		char grams from 3-6 chars, preprocessing	
10_tfidf_NB	0.2881141619	0.4590017825	0.004422918115	0.008761411707		Naive Bayes model	

- 0_jan_feb_output
- 0_jan_feb_output_upwork
- 0_small
- 10_tfidf_NB
- 1_tfidfoutput1
- 2_tfidfoutput2
- 3_preproc_output
- 4_tfidf
- 5_tfidf_5000
- 6_tfidf_10000
- 6_tfidf_10000_2
- 6_tfidf_10000_2_upwork
- 7_tfidf_svm
- 8_tfidf_15000_LG
- 9_tfidf_10000_LG

Tracking ML Experiments

How to reproduce experiments?

- Make copies of each run that you run
- Commit each code change to git and tag it

Other things:

- Trained model
- Outputs
- Environment Variables

- 0_jan_feb_output
- 0_jan_feb_output_upwork
- 0_small
- 10_tfidf_NB
- 1_tfidfoutput1
- 2_tfidfoutput2
- 3_preproc_output
- 4_tfidf
- 5_tfidf_5000
- 6_tfidf_10000
- 6_tfidf_10000_2
- 6_tfidf_10000_2_upwork
- 7_tfidf_svm
- 8_tfidf_15000_LG
- 9_tfidf_10000_LG

Tracking ML Experiments: Problems

- Separation of code, outputs and metrics
- No side by side comparison of code
- No side by side comparison of metrics
- Missing storage of
 - Trained models
 - Artifacts
 - Outputs
 - Environment variables

We are usually not very deliberate and disciplined about storing each of these artifacts

I am not the only one with this issue

Some verbatim comments from others in the community

Industry

- 1. "I just don't understand how they got that result"
- 2. "I thought I used the same parameters but I'm getting different results"
- 3. "I can't remember which version of the code I used to generate Figure 6"
- 4. "The new employee wants to reuse that analysis I published three years ago but he can't reproduce the figures"
- 5. "It worked yesterday"

Academia

- 1. "The Materials and Methods section doesn't explain how the results were normalized"
- 2. "The description in the Results section is different from what's in the Supplementary Material"
- 3. "I'm sure I'm using the same parameters as the original authors, but I just can't get it to work"

Reproducing code is hard!!

- What code was run?
 - Which script?
 - o name, location, version
 - options, parameters
 - dependencies (name, location, version)
 - What were the input data?
 - What were the outputs?
- Machine name(s), other identifiers (e.g. IP addresses)
- Processor architecture

- Available memory
- Operating system
 - o why was it run?
 - o what was the outcome?
 - which project was it part of
- Data, logs, stdout/stderr
 - o who launched the computation?
 - when was it launched/when did it run? (queueing systems)
 - o where did it run?

This talk

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Opensource Software
- Paid Software
- Conclusion

Image Credit: Lean Software Engineering

Image Credit: Towards Data Science

Outline

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Opensource Software
- Paid Software
- Conclusion

Write Robust and Reproducible Code

- 1. Make your code modular
- 2. Write tests for your code
- 3. Work in virtual environments
- 4. Design your code to be easily understood by others (where "others" can also include "yourself in-six-months-time")

Make the code modular

Rule of thumb: If you find yourself repeating/duplicating any code, then make it into its own function.

E.g. file opening and reading in a json or a csv

```
def get_data_from_json(filename):
def train():
                                                 file = open(filename, "r")
    filename = "train.json"
                                                     data = json.load(file)
    file = open(filename, "r")
                                                 return(data)
        data = json.load(file)
    train_data(data)
                                             def train():
                                                 data = get_data_from_file("train.json")
                                                 train_data(data)
def test():
    filename = "test.json"
    file = open(filename, "r")
                                             def test():
        data = json.load(file)
                                                 data = get_data_from_file("test.json")
    test_data(data)
                                                 test_data(data)
```

Automated Testing

- For all the tests you were performing manually before, write scripts
- Gives you confidence that your code is doing what you think it is doing
- Frees you to make wide-ranging changes to the code (for the purposes of optimization or making the code more robust, for example) without worrying that you will break something
- If you do break something, your tests will tell you immediately and you can undo the change.

Automated testing

Initial time investment

- if you already perform manual, informal testing, this time will be paid back the first or second time you run the automated suite of tests.
- Even if you did no testing at all previously, the loss of fear of changing code will lead to more rapid progress.

Write tests

- > nosetests
- > nosetests --with-coverage --cover-package=<package name>

Work with a virtual environment

Advantages - reproducibility

Python3

Have a requirements.txt file to know the library dependencies

python3 -m venv env

- ../env/bin/activate
- > pip install requirements.txt
- > deactivate

requirements.txt

```
pip freeze

# will tell you all the python modules on your system

# most of which you don't need

Pip freeze | grep <name>

# get a specific package
```

Sample requirements.txt

GitPython==2.1.11
sklearn==0.0
scikit-learn==0.21.3
nose==1.3.7
coverage==4.5.4

Ensure your code can be easily understood by others

- Write comments explaining anything slightly complex, or why a particular choice was made
- Write clear documentation

Outline

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Open Source Software
- Paid Software
- Conclusion

Experiment Management Systems

Guild	Command Line	guild run train.py	https://guild.ai/
Sumatra	Command Line	smt runexecutable=python main=main.py	https://pythonhosted.org/Sumatra/
StudioML	Command Line	studio run train_mnist_keras.py	https://github.com/studioml/studio
Datmo	Immersive	import datmo	https://github.com/datmo/datmo
Modelchimp	Immersive	from modelchimp import Tracker	https://modelchimp.com/
MLFlow	Immersive	import mlflow import mlflow.sklearn	https://mlflow.org/
Sacred	Immersive	from sacred import Experiment	https://github.com/IDSIA/sacred

Command Line

- Independent of Programming Language
- High freedom to code like you already do without changes in your workflow
- Need to learn new command line tools

Immersive

- Highly tied to the programming language
- Need to edit your workflow a little bit to fit to the platform/software
- Need to learn an API

This talk

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Open Source Software
- Paid Software
- Conclusion

Paid Tools

Comet.ml	https://www.comet.ml/	Immersive	Startups, Individuals
Neptune.ml	https://neptune.ml/	Immersive	Startups, Individuals
Weights and Biases	https://www.wandb.com/	Immersive	Startups, Individuals
Determined AI	https://determined.ai/	Immersive + Command Line	Enterprises
Dot Science	https://www.dotscience.com/	Immersive	Startups, Individuals (Focus on Jupyter Notebooks)

Outline

- Typical ML pipeline
- How we are managing ML projects right now
- How ML workflow is different from Software Engineering
- Tools to manage your ML experiments better
- Open Source Software
- Paid Software
- Conclusion

Conclusion

ML process doesn't have predefined guidelines

Best to practice Software Engineering design principles to write robust code

- Write modular code
- Write test cases
- Use Virtual environments (always)

When you are ready, start using open source tools for managing machine learning experiments and models.

Once you are done using open source tools - start looking into paid software to manage ML experiments

Thank you! Questions?

@rutumulkar